Bases neuronales de binding dans des représentations symboliques

. En revanche, les modèles concernant les opérations de liaisons(binding) nécessaires à la construction de structures symboliques complexes et possiblement hiérarchiques, pour lesquelles des manipulations précises des composants doit être possible, sont encore peu testés de façon expérimentale et incapables de prédire les signaux en neuroimagerie.

Combler le fossé entre les données de neuroimagerie expérimentale et les modèles proposés pour résoudre le problème de binding est une étape cruciale pour mieux comprendre les processus de traitements et de représentation des structures symboliques. Au regard de ce problème, l'objectif de ce travail était d'identi er et de tester expérimentalement les théories basées sur des réseaux neuronaux, capables de traiter des structures symboliques pour lesquelles nous avons pu établir des prédictions testables, contre des mesures existantes de neuroimagerie fMRI et ECoG dérivées de tâches de traitement du langage.

.

La seconde approche que nous avons identi ée est celle du "Neural Blackboard Architecture" (NBA), développée par Marc De Kamps et Van der Velde[187]. Elle se démarque des autres en proposant une implémentation des mécanismes associatifs à travers des circuits formés par des assemblages de réseaux neuronaux. L'architecture du Blackboard repose sur des changements de connectivité transitoires des circuits d'assemblages neuronaux, de sorte que le potentiel de l'activité neurale permise par les mécanismes de mémoire de travail après un processus de liaison, représente implicitement les structures symboliques.

Dans la première partie de cette thèse, nous détaillons la théorie derrière chacun de ces modèles et les comparons, du point de vue du problème de binding. Les deux modèles sont capables de répondre à la plupart des dé s théoriques posés par la modélisation neuronale des structures symboliques, notamment ceux présentées par Jackendo [99]. Néanmoins, ces deux classes de modèles sont très di érentes. Le TPR de Smolenky s'appuie principalement sur des considérations spatiales statiques d'unités neurales arti cielles, avec des représentations explicites complètement distribuées et spatialement stables mises en oeuvre par des vecteurs. La NBA en revanche, considère les dynamiques temporelles de décharge de neurones arti ciels, avec des représentations spatialement instables implémentées par des assemblages neuronaux.

Dans la deuxième partie de la thèse, nous testons empiriquement le principe de superposition qui stipule que l'activité associé à une structure est la somme des activités de ses parties. Ceci est une des hypothèses les plus cruciales du TPR de Smolensky. A n d'obtenir un ensemble de données pertinent pour tester ce principe, nous avons créé une expérience IRMf dans laquelle les participants lisaient ou entendaient des pseudomots composés de deux syllables CV. Nous avons employé un approche de décodage de l'activité BOLD a n d'analyser comment ces bisyllabes sont encodées dans diverses régions cérébrale. Nous avons obtenu de bon scores de classi cation dans certaines régions sensorielles et nous avons reproduit des e ets connus, tel que les représentations semi-locales superposées induites par la rétinotopie. Dans le cas des régions auditives, nous avons trouvé un faible évidence en faveur de la superposition dans les zones supérieures dans la hiérarchie de traitement auditif. Nous avons montré que la classi cation des items bi-syllabiques dans les régions 44 et 45 de Broca etait signi cative et que l'ensemble de ces régions montrait des preuves en faveur de la superposition.

.

Nous nous sommes également intéressés à la dynamique temporelle des liaisons qui pourrait être détectée dans les mesures de neuro-imagerie IRMf et ECoG. Etant donné que le TPR de Smolensky n'a pas de prédictions particulières sur la dynamique temporelle neurale ou sur les décharges neuronales biologiques, nous nous sommes focalisés sur les prédictions de la NBA. Dans la deuxième partie de la thèse, nous avons créé une nouvelle implémentation de la NBA basée sur les techniques de densité de population, qui nous a permis de faire des prédictions temporelles de haute résolution de la dynamique neurale liée au processus de liaison. Une partie importante de ce travail a été réalisée en collaboration avec Marc De Kamps.

Nos simulations s'appuient sur la dynamique des modèles de point de décharges des neurones : Les neurones qui Leaky-integrate-and-re (LIF) et adaptive-exponential-integrate-and-re (AdEx). Plutôt que de simuler des milliers de neurones en décharges, nous avons utilisé des techniques de densité de population (PDT) pour modéliser la dynamique au niveau de la population. Bien que liée aux modèles basés sur les taux de décharge, pour les PDTs la correspondance avec les quantités de population moyennées de neurones en décharge peut être montrée rigoureusement. En particulier, nos simulation montrent que les dynamiques transitoires sont capturées avec plus de précision par les PDT que par les modèles basés sur les taux de décharge. Le contraste entre les modèles LIF et ADEx nous ont permis de démontrer que, bien qu'ils ne soient pas di érenciés par la dynamique moyenne, leur paramétrisations ont de fortes implications pour le timing et le contrôle des événements de traitement des phrases.

Nous montrons que notre implementation de l'architecture NB, avec des paramètres réglés unqiauement pour répondre à des contraintes opérationnelles, reproduit qualitativement les pro ls d'activités neuronales de deux expériences de neuro-imagerie, utilisant l'EcoG [141] et l'IRMf[153], et mettant en oeuvre des opérations de binding linguistique. En même temps que la exibilité partiellement explorée de la NBA pour représenter des structures d'arbres binaires arbitraires et des schémas d'analyse, ces résultats en font un outil prometteur pour l'exploration des hypothèses linguistiques et une prise en compte quantitative subtile des mesures de neuroimagerie multi-échelles.
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Summary -Neural bases of variable binding in symbolic representations

The aim of this thesis is to understand how the brain computes and represents symbolic structures, such like those encountered in language or mathematics. The existence of parts in structures like morphemes, words and phrases has been established through decades of linguistic analysis and psycholinguistic experiments. Nonetheless the neural implementation of the operations that support the extreme combinatorial nature of language remains unsettled. Some basic composition operations that allow the stable internal representation of sensory objects in the sensory cortex, like hierarchical pattern recognition, receptive elds, pooling and normalization, have started to be understood [START_REF] Marcus Gary | The atoms of neural computation[END_REF]. But models of the binding operations required for construction of complex, possibly hierarchical, symbolic structures on which precise manipulation of its components is a requisite, lack empirical testing and are still unable to predict neuroimaging signals.

In this sense, bridging the gap between experimental neuroimaging evidence and the available modelling solutions to the binding problem is a crucial step for the advancement of our understanding of the brain computation and representation of symbolic structures. From the recognition of this problem, the goal of this PhD became the identi cation and experimental test of the theories, based on neural networks, capable of dealing with symbolic structures, for which we could establish testable predictions against existing fMRI and ECoG neuroimaging measurements derived from language processing tasks.

We identi ed two powerful but very di erent modelling approaches to the problem. The rst is in the context of the tradition of Vectorial Symbolic Architectures (VSA) that bring precise mathematical modelling to the operations required to represent structures in the neural units of arti cial neural networks and manipulate them. This is Smolensky's formalism with tensor product representations (TPR) [START_REF] Smolensky | The harmonic mind: From neural computation to optimality-theoretic grammar[END_REF], which he demonstrates can encompass most of the previous work in VSA, like Synchronous Firing [START_REF] Shastri | From simple associations to systematic reasoning: A connectionist representation of rules variables and dynamic bindings using temporal synchrony[END_REF], Holographic Reduced Representations [START_REF] Plate | Holographic reduced representations[END_REF] and Recursive Auto-Associative Memories [START_REF] Chalmers | Syntactic Transformations on Distributed Representations[END_REF].

The second, is the Neural Blackboard Architecture (NBA) developed by Marc De Kamps and Van der Velde [START_REF] Van Der Velde | Neural blackboard architectures of combinatorial structures in cognition[END_REF], that importantly di erentiates itself by proposing an implementation of binding by process in circuits formed by neural assemblies of spiking neural networks. Instead of solving binding by assuming precise and particular algebraic operations on vectors, the NBA proposes the establishment of transient connectivity changes in a circuit structure of neural assemblies, such that the potential ow of neural activity allowed by working memory mechanisms after a binding process takes place, implicitly represents symbolic structures.

The rst part of the thesis develops in more detail the theory behind each of these models and their relationship from the common perspective of solving the binding problem. Both models are capable of addressing most of the theoretical challenges posed currently for the neural modelling of symbolic structures, including those presented by Jackendo [START_REF] Jackendo | Combinatoriality. In Foundations of Language[END_REF]. Nonetheless they are very di erent, Smolenky's TPR relies mostly on spatial static considerations of arti cial neural units with explicit completely distributed and spatially stable representations implemented through vectors, while the NBA relies on temporal dynamic considerations of biologically based spiking neural units with implicit semi-local and spatially unstable representations implemented through neural assemblies.

For the second part of the thesis, we identi ed the superposition principle, which consists on the addition of the neural activations of each of the sub-parts of a symbolic structure, as one of the most crucial assumptions of Smolensky's TPR. To obtain a relevant dataset to test this principle, we created an fMRI experiment where participants perceived bi-syllabic CVCV pseudoword items in auditory and visual modalities, looking for sensory independent representations, and used decoding techniques to analyse how these were encoded in diverse brain regions. We achieved high accuracy scores in our decoding models for representations in sensory areas and reproduced known e ects like the superposed semi-local representations induced by retinotopy. In the case of auditory regions we found weak evidence in favour of superposition in areas higher in the auditory processing hierarchy. We show that bi-syllabic item classi cation is signi cant in regions 44 and 45 of the Broca's complex and that the whole complex portrays evidence in favour of superposition.

Moreover we found evidence against superposed representations in the visual word form area (VWFA), which is coherent with previous evidence of whole word representations in that region [START_REF] Glezer | Evidence for highly selective neuronal tuning to whole words in the "visual word form area[END_REF]. We also veri ed that it was possible to decode auditory representations form the VWFA, providing additional evidence to the literature body claiming that this region can be modulated by speech as well as reading [START_REF] Yoncheva | Auditory selective attention to speech modulates activity in the visual word form area[END_REF]. We were surprised by a global lack of generalization from decoding models trained in one sensory modality to the other, which can be either interpreted as a lack of sensitivity due to variability of the representations signal or as the absence of amodal representations for simple bi-syllabic pseudowords. We observed in most regions with signi cant classi cation scores, outside of sensory areas, extreme variability in the accuracy scores of individual items, such that few had particularly high scores while most remained uniformly at chance level. This particular accuracy pattern could be explained by lack of sparsity and low variability in the spatial distribution of values of the neural vectors underlying the neural representations, for which we captured only some deviant segments by chance. From this we still think that it would be worth to further test the superposition principle with BOLD signals but only if taking advantage of higher spatial resolutions as those o ered by recent techniques like laminar fMRI [START_REF] Lawrence | Laminar fmri: applications for cognitive neuroscience[END_REF].

We were also interested in the temporal dynamics of binding which could be re ected in fMRI and ECoG neuroimaging measurements. As Smolensky's TPR do not have particular predictions on neural temporal dynamics or biological neural spiking, we decided to focus on predictions of the NBA. So for the second part of the thesis we created a new implementation of the NBA based on population density techniques, that allow us to make temporal high resolution predictions of neural dynamics linked to the binding process. A large amount of work, done in collaboration with Marc De Kamps, was needed to actually implement the NBA.

Our simulations are based on the dynamics of spiking point model neurons: leaky-integrate-and-re (LIF) and adaptive-exponential-integrate-and-re (AdEx) neurons. Rather than simulating thousands of spiking neurons, we use population density techniques (PDTs) to model dynamics at the population level. Although related to rate based models, for PDTs the correspondence to population-averaged quantities of spiking neurons can be shown rigorously. In particular transient dynamics are captured more accurately than by rate based models. Contrasting LIF and AdEx models allowed us to demonstrate that, although they are not importantly di erentiated by average dynamics, their parametrization have strong implications for the timing and control of phrase processing events.

We demonstrate that an NBA implementation, only tuned to operational constraints, qualitatively reproduces the neural activity patterns of at least two neuroimaging experiments involving linguistic binding at di erent spatiotemporal scales. With the sole implementation of the binding mechanism we qualitatively reproduce temporal segments of the neural dynamics of sentence comprehension from intracortical recordings (ECoG) patterns [START_REF] Nelson | Neurophysiological dynamics of phrase-structure building during sentence processing[END_REF]. Our model also replicates sub-linear patterns of hemodynamic responses caused by phrase constituency manipulations [START_REF] Pallier | Cortical representation of the constituent structure of sentences[END_REF] and produces an alternative hypothesis to explain it, based on the number of binding operations executed during phrase processing. These results, alongside the partially explored exibility of the NBA to represent arbitrary binary tree structures and parsing schemes, makes it a promising tool for linguistic hypothesis exploration and future re ned quantitative accounts of multi-scale neuroimaging measurements.

Theories of variable binding

In this chapter we introduce the binding problem in neuroscience. We also explain two main modelling approaches to the problem, namely Smolensky's tensor product representations and the Neural Blackboard Architecture (NBA).

Approaching the binding problem in language neuroscience

The binding problem

We want to understand how the brain computes and represents symbolic structures, such like those encountered in language. The existence of parts in structures like morphemes, words and phrases has been established through decades of linguistic analysis and psycholinguistic experiments.

Nonetheless the neural implementation of the operations that support the extreme combinatorial nature of language remains unsettled. Some basic composition operations that allow the stable internal representation of sensory objects in the sensory cortex, like hierarchical pattern recognition, receptive elds, pooling and normalization, have started to be understood [START_REF] Marcus Gary | The atoms of neural computation[END_REF]. But models of the binding operations required for construction of complex symbolic structures on which precise manipulation of its components is a requisite, lack empirical testing and are still unable to predict neuroimaging signals.

The term binding was introduced into the neuro-scienti c community by von der Malsburg [START_REF] Der Malsburg | The Correlation Theory of Brain Function[END_REF] during the rst explorations of neural phase synchronization. At this rst stages of the study of binding, the term was really being used to study "feature binding", which just consists on association of concepts to form an object internal representation that will not have its properties confused with another object. An example would be to not confuse the colors of a "blue square" and a "red circle" presented together on a screen. Binding was also motivated by the empirical discovery of the distributed and segmented encoding of features along the cortex. For example color and shape, in the case of vision, are robustly integrated during perception, but can be independently impaired by brain damage, which implies that the two features are represented independently in the cortex, even though we perceived them in unity.

If we consider the binding problem in generality, as presented by Feldman [START_REF] Feldman | The neural binding problem(s)[END_REF], it has several sub-problems from which "feature binding" is one of them. The current work is motivated instead by the "variable binding" sub-problem. Feldman [START_REF] Feldman | The neural binding problem(s)[END_REF] presents "variable binding" as an abstract high level cognitive faculty, mainly required by symbolic thought. As explained by Marcus et al. [START_REF] Marcus Gary | The atoms of neural computation[END_REF], it consists on creating a transitory link between two pieces of information: a variable (like Z in a equation, or a placeholder like noun in a phrase) and an arbitrary instantiation of that variable (like a number to replace Z in the equation, or a word that corresponds to the noun placeholder). It goes beyond the extensively studied sensory, attention and short-term memory phenomena of "feature binding", that only require appending features to a bag or set, to avoid confusion with other simultaneous representations.

The need for "variable binding" is to run logical inference on data structures that encode relationships between their items. For example the sentence "Mary owns a book" allows to establish a relation of the type own(Mary, book) that implies owner(book, Mary), such that we can later ask the question "Who owns this book?", which would not be answerable under a simpler "feature binding" mechanism that would just confuse the three words in a bag as just belonging to the same group. To implement this in language, most linguistic theories propose that there are types of words, named grammatical categories, like 'noun' and 'verb', that are instantiated during sentence comprehension to be combined under a nite set of constraints. These instantiated word types would point to each other to form a graph data structure, a tree, on which query and join operations can be performed, and they would also point to their corresponding speci c words. Then solving "variable binding" in language, requires a biologically feasible implementation of a pointer mechanism that can link instantiated grammatical categories and their corresponding words. For the rest of this work, whenever we use the term binding for simplicity, we will really be referring to the more speci c "variable binding" sub-problem.

Additional challenges for the neural implementation of language processing

In "Foundations of Language", Jackendo presents four important challenges that any proposal for the neural implementation of language processing must face [START_REF] Jackendo | Foundations of Language[END_REF], from which "variable binding" is only one of them. These challenges are the massiveness of binding, the problem of 2, the problem of variables ("variable binding") and the short and long term encoding problem.

The massiveness of binding is related to the combinatorial explosion that is encountered in symbolic structures like language, suggesting the impossibility to store in advance all combinations in memory. The problem of 2 is related to the representation of the same component, for example the same word, in the same structure but with a di erent purpose or meaning, for example to denote two di erent objects. A concrete example would be the word "ball" in "the blue ball and the red ball". The problem of variables is to propose a mechanism to manipulate a symbolic structure to extract partial information from it, for example to ask "where did the children go?" and extract "the park" from the sentence "the children went to the park". The short and long term memory encoding problem is related to the fact that the brain has to be able to represent in short term memory transitory new formed structures to perform certain cognitive operations, as well as structures that will be stored and retrieved from long term memory. It is necessary to explain how both mechanisms operate together to completely account for the encoding of symbolic structures.

The basic properties of any model considered must at least be able to answer Jackendo 's challenges, besides providing the neural mechanism to instantiate symbolic representations and perform binding.

Summary of models identified to approach the binding problem

We identi ed two powerful but very di erent modelling approaches to the problem. The rst is in the context of the tradition of Vectorial Symbolic Architectures (VSA) that bring precise mathematical modelling to the operations required to represent structures in the neural units of arti cial neural networks and manipulate them. This is Smolensky's formalism with tensor product representations (TPR) [START_REF] Smolensky | The harmonic mind: From neural computation to optimality-theoretic grammar[END_REF], which he demonstrates can encompass most of the previous work in VSA, like Synchronous Firing [START_REF] Shastri | From simple associations to systematic reasoning: A connectionist representation of rules variables and dynamic bindings using temporal synchrony[END_REF], Holographic Reduced Representations [START_REF] Plate | Holographic reduced representations[END_REF] and Recursive Auto-Associative Memories [START_REF] Chalmers | Syntactic Transformations on Distributed Representations[END_REF].

The second, is the Neural Blackboard Architecture (NBA) developed by Marc De Kamps and Van der Velde [START_REF] Van Der Velde | Neural blackboard architectures of combinatorial structures in cognition[END_REF], that importantly di erentiates itself by proposing an implementation of binding by process in circuits formed by neural assemblies of spiking neural networks. Instead of solving binding by assuming precise and particular algebraic operations on vectors, the NBA proposes the establishment of transient connectivity changes in a circuit structure of neural assemblies. The potential ow of neural activity allowed by working memory mechanisms after a binding process takes place, implicitly represents symbolic structures.

Both modelling approaches considered in this work, namely Smolensky's tensor framework and the Neural Blackboard Architecture, satisfy Jackendo 's challenges [START_REF] Jackendo | Foundations of Language[END_REF].

Smolensky's tensor product representations

The integrated connectionist/symbolic cognitive architecture (ICS)

In the Harmonic Mind [START_REF] Smolensky | The harmonic mind: From neural computation to optimality-theoretic grammar[END_REF], Smolensky presents an integrationist view of the current theoretical approaches to model cognition. On one hand, the brain architecture seems to be best represented by a purely connectionist approach, in which interconnected neural units parallely process vectorial representations. On the other hand, symbolic architectures and computation has been behind the most successful models to explain the mind and its related behaviors [160; 84; 170; 158; 35]. These two di erent approaches have been put at odds by the eliminativists, that claim we do not need anything besides purely connectionist models to account for cognition. On the other hand the implementationalists claim we only need symbolic computation to develop cognitive theories. Smolensky argues instead for what he calls a split-level architecture, in which the highest symbolic computational provides functionally relevant structure, while the lowest connectionist computational level provides physically relevant structures.

Similar to a previous proposal of Marr [START_REF] Marr | Vision: A Computational Investigation Into[END_REF] called the Purely Symbolic Architecture (PSA), Smolensky provides a framework on which, with tensor algebra in his case, the gap between the connectionist and symbolic levels is lled to explain all aspects of symbolic thought in cognition. This is accomplished by establishing an equivalence or isomorphism between the constituents in symbolic and vectorial representations. Also a correspondence is established between tensor algebraic operations and algorithms implementable in feed-forward and symmetric recursive neural networks. This isomorphism is then codi ed in what Smolensky refers to as tensor product representations.

Representations Principle of ICS and implementation of basic tensor product representations

The main assumption of the representation principle in ICS is that cognitive representations are implemented by widely distributed neural activity patterns (activation vectors), which have a global structure that can be described with the discrete data structures of symbolic cognitive theory. Three basic structural operations are proposed to act on the symbols or constituents of symbolic structures: combination by superposition, variable binding by tensor products and embeddings with recursively de ned role vectors.

Combinations by superposition mean that parts of a structure are represented by vectors with the same dimension, that are then simply added together to create the complete structure vector, as illustrated for the phonemes of the word "cat" in Figure 1. 1. This addition operation raises the question of how complete information about individual components can be extracted from the nal vectorial structure. In particular there is an issue to determine order of the constituents, because Superposition illustration from Smolensky's Harmonic Mind: This plot was taken from Smolensky's Harmonic Mind. It illustrates the neural activation vectors corresponding to the bindings of each of the phonemes of the word "cat", such that their sum would constitute the activation vector of the word according to the superposition principle. Phonemes are considered as Fillers and node positions in the structure tree as Roles addition is a commutative operation. To address this issue Smolenky proposes that each constituent is formed by the binding, through a tensor product, of a symbol or content vector, called a Filler, with a slot of the complete symbolic structure called a Role.

The idea of Role vectors is similar to the notion of "frame" introduced by Minsky in 1975 [START_REF] Minsky | A framework for representing knowledge[END_REF], which corresponds to the assignment of a xed set of atomic elements to a xed set of atomic roles. The nature of the Role vectors could be based on positional roles that denote absolute coordinates of a graph structure, like a vector representing the second node of the left branch in a tree. Alternatively they could be based on contextual roles, such that properties are bound together, like if we had the tensor product of an Adjective and a Noun to denote that the Adjective modi es the speci c Noun. How we de ne the roles that will be part of the binding of a symbol is an open question. Currently positional roles are considered as a plausible explanation for the tree node positions of syntactic trees, while contextual roles are considered plausible to bind semantic concepts to relevant semantic contexts.

By assuming linear independence between the Filler vectors and between the Role vectors, it is possible to secure perfect recovery of a Filler vector by computing the inner product of the corresponding Role vector with the complete structure vector. It is also possible then to recover Role vectors by the inner product of their bound Filler vectors. Nonetheless if the same Filler is bound to more than one Role, like the word "star" in the sentence "The big star above the small star", the linear combination of all the respective Roles would be retrieved instead of a speci c one.

Enforcing linear independence importantly restricts the amount of neural units necessary to be greater than the number of concepts encoded and not enforcing it would create intrusion, where the extracted Filler vector will also contain a linear combination of all other Filler vectors. Nonetheless there is a graceful degradation of the encoded representations with the degree of dependency of the Role or Filler vectors, that degrades as the square root of N for the N dimensional space given by N neural units. The expected intrusion (EI) has the form given in Equation 1.1. This graceful degradation also implies a graceful saturation of a connectionist network of xed size with N neural units, such that the exact most conservative estimate of the expected total magnitude of intrusions for m bindings also grows as the square root of N.

EI = 2 π(N -1) (1.1)
The mathematical form of a tensor product representation is provided in Equation 4.1. In Figure 1.2 we illustrate the tensor product of a Filler and a Role vector, which operates in a similar way to an outer product, multiplying each item of the rst vector by each item of the second vector to determine the value of the neural units. Tensor product illustration: The tensor product operates like the outer product of a Role and a Filler vector, of dimensions 4 and 3 respectively in the gure. Then each neural unit in the resulting binding neural activation vector, of dimension 12 in this case, encodes the multiplication of one component of the Role by one component of the Filler. The neural activation vectors of multiple bindings would be summed according to the superposition principle.

another important property of Role vectors is that they permit the de nition of recursive embeddings. Hierarchical tree structures, as those proposed by phrase grammars in language, require de nition of roles at each level of the proposed trees and need to have the exibility to implement as many levels as the faculty of language allows. Nonetheless there are several ways to implement such hierarchies from which Smolensky emphasize two. First the possibility to have local representations, with dedicated neural units, for each level of the tree. Second to have completely distributed representations that use all neural units for all levels, by binding tree level Role vectors to their corresponding upper level nodes in the tree hierarchy. In the case of asymmetric branches that would create a dimensionality di erence in the Roles outer products, a dummy Role vector is introduced to rebalance the tree branches.

Local, semilocal and distributed representations

An important property of the ICS tensor product representations is that they have the exibility to accommodate any degree of locality, which means that they can be made local, semilocal or completely distributed. The locality of a representation consist on the amount of neural units that are employed by the di erent Filler and Role vectors. Representations that correspond to a oneto-one mapping between possible elements represented and neural unit sets are purely local representation. If only the Role vectors have a local structure, then these would be role register or semilocal representations, for which an example would be roles modelling the position of an image with respect to the eyes, since there are inverse hemispheric projections in primary visual areas of the two eyes. Finally in fully distributed representations all neural units can be recruited for any representation.

There are three important examples in the previous literature of fully distributed representations, supporting the idea of Parallel Distributed Processing (PDP): the coarse coding representations of Hinton McClelland and Rumelhart [START_REF] Rumelhart | A general framework for parallel distributed processing[END_REF], that focus on the many-to-many relation between visual positions and the activation of receptive elds; the conjunctive coding of McClelland and Kawamoto [START_REF] Mcclelland | Mechanisms of sentence processing: Assigning roles to constituents of sentences[END_REF] that consist on three-way conjunctions of the learned features of nouns, verbs and semantic roles; and the wickelfeatures of Rumelhart and McClelland[168] that employed the 1-neighbour context decomposition to learn the binding of phonetic segments as Fillers to phonetic contexts as Roles to represent the past tense of english verbs.

It is important to understand which is the degree of locality of representations in a cognitive domain, because local and distributed networks di er in several properties. In the case of linear networks there is a transformation from any local representation to its distributed version and vice-versa, but this is not the case with non linear activation functions like those describing saturation and adaptation phenomena in neurons. Neural damage would have di erent e ects depending on network locality since distributed representations are more resilient to local damages. Learning of distributed patterns by networks could be more challenging and take more time, due to the interference of synergy of the concepts representations. There is better generalization of representation patterns in the case of distributed representations due to the similarity that can be established with unseen patterns, while in a local network representations must be orthogonal. Finally there is an important di erence in the representational capacity of the network, since "N" neural units can only support "N" local representations, but a distributed network can maintain a higher number of representations for which exactness decrease gracefully.

Generalization of tensor product representations to accomodate previous vectorial symbol architectures (VSA)

One of the most powerful features of Smolensky's tensor product representations is that he can encompass most of the previous work in vectorial symbol architectures (VSA), like Synchronous Firing [START_REF] Shastri | From simple associations to systematic reasoning: A connectionist representation of rules variables and dynamic bindings using temporal synchrony[END_REF], Holographic Reduced Representations [START_REF] Plate | Holographic reduced representations[END_REF] and Recursive Auto-Associative Memories [START_REF] Chalmers | Syntactic Transformations on Distributed Representations[END_REF].

In Chapter 7 of the Harmonic Mind, Smolensky performs an in-depth analysis of the typology of previous vectorial symbol architectures (VSA) in the literature to show how they can be accommodated by tensor product representations. Some models, like the parietal cortex model of Pouget and Sejnowski [START_REF] Pouget | Spatial transformations in the parietal cortex using basis functions[END_REF] and the propositional information models of Halford, Wilson and Phillips [START_REF] Halford | Processing capacity de ned by relational complexity: Implications for comparative, developmental, and cognitive psychology[END_REF], are simply equivalent to tensor product representations. Other important models, including Synchronous Firing [START_REF] Shastri | From simple associations to systematic reasoning: A connectionist representation of rules variables and dynamic bindings using temporal synchrony[END_REF], Holographic Reduced Representations [START_REF] Plate | Holographic reduced representations[END_REF] and Recursive Auto-Associative Memories [START_REF] Chalmers | Syntactic Transformations on Distributed Representations[END_REF], can be considered as tensor product representations if we generalize them by inclusion of postprocessing operations from tensor algebra.

The Synchronous Firing [START_REF] Shastri | From simple associations to systematic reasoning: A connectionist representation of rules variables and dynamic bindings using temporal synchrony[END_REF] model became important for its biological plausibility and the e ciency of employing time as an additional neural resource. It is also the simplest model to accommodate, since it does not require additional tensor algebra operations, but only reconsidering conceptually the neural resources and the nature of Role vectors. Using time as a neural resource simply requires that we de ne time slot Role vectors alongside semantic Role and Filler vectors. Shastri et al [START_REF] Shastri | From simple associations to systematic reasoning: A connectionist representation of rules variables and dynamic bindings using temporal synchrony[END_REF] proposes to implicitly bind a semantic role like "giver" to a semantic ller like "John", by explicitly binding both of them to a common formal role representing a time slot, which di ers from previous considerations of contextual/semantic roles formulated to bind directly "giver" to "John". The roles distinction is portrayed in equations 1.3 and 1.4, that correspond to contextual and formal role considerations respectively. Formalizing this model with tensor product representations facilitates its comparison to other models and makes its extension from local to completely distributed representation almost trivial.

giver ⊗ John, contextual/semantic role (1.3)

giver ⊗ timeslot 1 + John ⊗ timeslot 1 , formal role (1.4)
In the case of Holographic Reduced Representations [START_REF] Plate | Holographic reduced representations[END_REF], developed to model human memory, they are of interest because they predict empirical results on how people relate structured elements. In this model Filler/Role bindings are achieved by employing a vector operation called circular convolution instead of a tensor product. For Filler and Role vectors of dimension n, this operation is attractive because the dimensionality of the output vector remains as n, while a traditional tensor product would produce an output vector with dimensionality n 2 . Since the requirements of tensor products grow exponentially with the depth of trees in hierarchical structures, circular convolution is a more economical operation in terms of neural resources, at the cost of renouncing to exact or general-purpose representations to have instead inexact or special-purpose representations. To accommodate this model and others based on vector reduction operations, Smolensky introduces the tensor contraction linear operator from tensor calculus, to be applied to the nal symbolic representations, and proves that circular convolution is just a particular case of tensor contractions.

In the case of the autoencoder model of Recursive Auto-Associative Memories [START_REF] Chalmers | Syntactic Transformations on Distributed Representations[END_REF] (RAAM), it is of interest because of its capacity to learn which Role vectors allows the relevant structures received as input to be encoded, while displaying in some cases the same fully parallel processing implementable with standard tensor product representations. Smolenky demonstrates that the encoded representations in the middle layer of the RAAM model can be reproduced by tensor product representations by applying a squashing (sigmoidal) function element-by-element to a contraction of the superposition of the bindings performed with the RAAM input vectors.

We display the extension of the basic tensor products of Equation 1.5, with the contraction operator in Equation 1.6, followed by the element-by-element application of a function in Equation 1.7. Then the generalized tensor product is the element-by-element application of some function to the contraction over some pair of indices of the (superposition) addition of the tensor products representing the bindings of Filler and Role vectors. The basic tensor product representations are then just the speci c case where the function is the identity and the contraction is the trivial contraction that do not perform a dimensionality reduction. Generalizing tensor product representations to allow post-processing by contraction and/or squashing allows to subsume under one formalism all alternatives in the literature, while keeping the principles of binding by tensor product and superposition of symbolic representations intact, since the generalization only add post-processing steps.

∑ i Filler i ⊗ Role i , Basic Tensor Products (1.5) C[ ∑ i Filler i ⊗ Role i ],
with Contraction (1.6)

F[C[ ∑ i Filler i ⊗ Role i ]],
with element-by-element Function (1.7) How Jackendo 's problems are answered by tensor product representations in ICS First, "The massiveness of binding" is addressed by the binding operation de ned with tensor products alongside the graceful saturation of inexact representations. Second, "The problem of variables" is handled by the linear independence assumption between Filler vectors and between Role vectors that permits unbinding with the inner product, with a graceful degradation of information when the linear independence assumption is violated. Third, "The Problem of 2" is managed by binding the same Filler vector to di erent Role vectors, nonetheless if we were interested in querying the Role of a repeated Filler we would have problems, since we would recover the linear combination of all the corresponding Role vectors. Finally, learning the Filler and Role vectors in neural networks is analogous to a long term memory mechanism, while implementing the tensor product operations would permit instantiating in short term memory new symbolic structures from the binding of Filler and Role vectors. Moreover the generalization of tensor products to account for memory related models like Holographic Reduced Representations and RAAM, demonstrates its exibility to model diverse memory related mechanisms.

The Neural Blackboard Architecture (NBA) Neural models of language

To understand how the cognitive faculty of language operates, we need to take into account, not only the underlying supporting structures, but also their dynamics. This means that we have to consider simultaneously the grammars given by linguistic theory and a temporal component to give birth to computational mechanisms, like automaton models, capable of explaining behavior [START_REF] Hale | Automaton theories of human sentence comprehension[END_REF]. To extend this into neuroscience we have to go even further and also provide reasonable implementation models, corresponding to the biological components of the brain. This implementation is necessary to be able to go beyond behavioral measurements and ultimately test computational hypotheses directly against the currently available spatio-temporal neural measurements.

A good example of success in this direction is the computational theory of visual receptive elds [START_REF] Lindeberg | Normative theory of visual receptive elds[END_REF] which has made impressively accurate predictions about the shape of the biological visual elds in the retina. Knowledge of these basic units of visual perception has even recently allowed to correlate the mechanisms behind deep convolutional neural networks to visual pathways [80; 58] and has in uenced our understanding of higher-level visual phenomena such as visual illusions [START_REF] Eagleman | TIMELINE: Visual illusions and neurobiology[END_REF]. Although expecting at the moment something similar in the case of language might sound overambitious, we must note that basic phonetic features have already been decoded in the Superior Temporal Gyrus from electrocorticography (ECoG) [START_REF] Mesgarani | Phonetic Feature Encoding in Human Superior Temporal Gyrus[END_REF].

Numerous Arti cial Neural Networks (ANNs) have been implemented, motivated by biological principles in the brain [18; 39; 134; 200; 173], to model particular aspects of brain language function or to reproduce behavior in speci c language tasks. Nonetheless they lack dynamic biological considerations necessary to match their output with neuroimaging measurements, and except for Vector Symbol Architectures (VSA) [START_REF] Smolensky | The harmonic mind: From neural computation to optimality-theoretic grammar[END_REF], they are di cult to integrate into a general framework for the implementation of complete language functions. More relevant to our work are previous e orts to model language function with more biologically plausible Spiking Neural Networks (SNNs) [94; 166; 18; 121; 56; 162; 161; 72; 123], that would eventually allow to establish a mechanistic link between neural measurements and computational linguistic hypothesis. Contrary to the VSA and the Neural Blackboard Architecture (NBA) [START_REF] Van Der Velde | Neural blackboard architectures of combinatorial structures in cognition[END_REF], these do not follow a general theoretical framework, to address all the neural challenges of a complete language function implementation, that can also provide a mechanistic explanation for the most basic computational components and behaviors.

In most models, biological details necessary to match high temporal resolution in-vivo neural patterns of language processes have been kept out of scope. This has been a reasonable strategy considering the computational cost of building circuits with detailed neural models based on simulations of each neuron. Nonetheless recent developments like population density techniques [START_REF] De Kamps | A generic approach to solving jump di usion equations with applications to neural populations[END_REF] now permit to simulate state-of-the-art temporally detailed dynamics of circuits of neural populations.

In this work we will go beyond previous SNN simulations that were limited in scope to describe language function and temporal resolution of the neural dynamics. We will implement a temporally detailed spiking neural network circuit inspired by the Neural Blackboard Architecture [START_REF] Van Der Velde | Neural blackboard architectures of combinatorial structures in cognition[END_REF]. The circuit implementation will be capable of realizing the binding operation for any level of language processing and for any grammar theory and parsing scheme, but we will focus on its application to the syntactic structure of phrases.

Introduction to the Neural Blackboard Architecture

Van der Velde and De Kamps [START_REF] Van Der Velde | The necessity of connection structures in neural models of variable binding[END_REF] argue in favour of a small world network model that, thanks to transient changes in its connectivity, allows the formation of complex structures. Binding takes place in the Neural Blackboard Architecture by conditionally co-activating neural assemblies representing grounded concepts and instances of variable types, which is a process driven by a control mechanism. The co-activation of the neural assemblies activates a working memory mechanism that last for a short period of time, to permit future activation of one bound neural assembly by its pair.

In this framework, working memory acts as a control that reduces inhibition on paths of neural ow necessary to maintain the bindings established by the initial transient co-activation, such that pointers have been declared implicitly between the co-activated concepts. Data structures are implicitly encoded by the short lived reinforced paths of neural activity ow. Then query operations are possible by reactivating nodes -included in the query -that induce co-activation of answer nodes, thanks to the reinforced connectivity. This successive co-activation of neural assemblies referred as "binding by process", leads to a short-term lived graph that implicitly encodes the nal data structure.

The level of abstraction of the NBA allows to apply it to several cognitive functions like motor control, attention and symbolic thought. In the case of syntactic parsing during language comprehension, one needs a grammar to specify the necessary variable type relations and some parsing scheme to determine the bindings' timing. The NBA provides a circuit with nodes that can be readily interpreted in terms of spiking neural populations. This can be conceptually linked to the notion of cell assemblies, whose existence and functional relevance, as computational units, is supported on substantial biological evidence [START_REF] Huyck | A review of cell assemblies[END_REF].

Circuits of the architecture

A complete illustration of the blackboard architecture is provided in Figure 1.3. Nodes in Figures 1. [START_REF] Abrams | Syntactic structure modi es attention during speech perception and recognition[END_REF].A and 1.3.B represent neural cell assemblies that can be interpreted as linked spiking neural populations. There are several previous implementations of sub-circuits of the NBA with varying degrees of biological plausibility, the latest relying mostly on Wilson Cowan population dynamics [START_REF] Destexhe | The Wilson-Cowan model 36 years later[END_REF]. Some of the previous simulations attempted to address diverse aspects of language processing, such as ambiguity [START_REF] Frank | Linking population dynamics and high-level cognition: Ambiguity resolution in a neural sentence processing model[END_REF] and learning control from syntactic stimuli [START_REF] Van Der Velde | Learning of control in a neural architecture of grounded language processing[END_REF]. Other simulations addressed circuit implementation issues like how to develop a connectivity matrix with randomly connected networks [START_REF] Van Der Velde | Development of a connection matrix for productive grounded cognition[END_REF] and how to implement a central pattern generator sub-circuit for sequential activation [START_REF] Van Dijk | A central pattern generator for controlling sequential activation in a neural architecture for sentence processing[END_REF].

We will focus on providing a summary of the Neural Blackboard Architecture operation from a perspective relevant to variable binding. For a deeper review of the NBA circuit and mechanisms we recommend reading a recent paper with a circuit design and examples that focus on sentence processing [START_REF] Kamps | Combinatorial structures and processing in neural blackboard architectures[END_REF], as well as the original framework proposal introducing abstract combinatorial structures [START_REF] Van Der Velde | Neural blackboard architectures of combinatorial structures in cognition[END_REF].

A "Gating Circuit", illustrated in Figure 1.3.A, is the most basic component of the NBA, from which all other circuits are built. The main idea is that neural activity would ow from the assembly X to the assembly Y, but is blocked by the Gate Keeper (GK) assembly, which is also excited by assembly X. So to allow directional activity ow from X to Y, a Control (Ctl) assembly has to inhibit the GK assembly. Notice that it is trivial to extend the gating circuit for bidirectional control of activity ow as illustrated in Figure 1 Another basic mechanism of the NBA is a proposal for working memory (WM). Persistent neural activity in response to stimuli is considered to be the neural process underlying active (working) memory, and its implementation is hypothesized to be based on excitatory reverberation [START_REF] Wang | Synaptic reverberation underlying mnemonic persistent activity[END_REF]. Based on this, the NBA considers a Delay Activity [START_REF] De Kamps | A model for delay activity without recurrent excitation[END_REF] mechanism as a biologically plausible implementation of WM. It consists on a neural assembly, that after being excited beyond a certain threshold, achieved by the coactivation of input populations, will maintain a constant amount of activation for a short period of time. By maintaining its activity, WM acts as a short lived bidirectional link between two assemblies. This process can be equated to the creation of an implicit pointer from one assembly to the other, such that future reactivation of one assembly can be driven from the other to perform query operations. The respective "Memory Circuit" is shown in Figure 1.3.B.

Two bidirectional "Gating Circuits" connected by a "Memory Circuit" form a "Compartment Circuit" capable of implementing variable binding and query operations. The key point of this circuit is that Main assemblies (MA), representing grounded concepts or instances of variables types, activate Sub assemblies (SA), if a control signal driven by another mechanism allows it. Then co-activation of SAs is what realizes a temporary binding of MAs by activating WM. So one "Compartment Circuit" models speci cally the neural activity of a variable binding operation. It is operated by a mechanism that drives control signals simultaneously in multiple "Compartment Circuits" to instantiate binary tree like data structures on which query/unbinding operations can be performed later.

Finally, a "Connection Matrix", portrayed in Figure 1.3.C, allows the implementation of a complete "Blackboard". It contains variable type relations learned by the "Blackboard" as sets of mutually inhibitory "Compartment Circuits" that enable the selection of the "Compartment Circuits" requested by the control mechanism. We portray the "Blackboard" as a regular grid for illustrative purposes, although there is already a proof of concept implementation with randomly connected networks [START_REF] Van Der Velde | Development of a connection matrix for productive grounded cognition[END_REF]. Also implementing a general syntactic control mechanism should be feasible, as suggested by the Feed-forward arti cial neural networks employed in previous Figure 1.3: The Neural Blackboard architecture: A. Gating circuit that allows the implementation of conditional neural activity transfer between Neural assemblies X and Y through a gate assembly. The gate keeper assembly (GK) is activated by the X assembly and then inhibits the gate assembly (G). To let information ow through the gate assembly, a control assembly (Ctl) must therefore inhibit the gate keeper assembly. B. Architecture of a single compartment circuit of a connection matrix. Six gating circuits are arranged in a way that makes conditional bidirectional neural activity ow between two main assemblies possible. Control assemblies regulate the direction of information ow and allow the activation of sub assemblies. The two sub assemblies excite the working memory assembly which, once activated, encode the binding of the main assemblies and allow activation to ow between them if the controls allow it too. C. Each connection matrix contain n by m compartment circuits that encode the same relationship type between the same pair of assembly categories. There are m available assemblies for one category and n available assemblies for the complementary category and only one cell circuit can activate its working memory assembly to link two particular assemblies due to mutual row and column inhibition of cells in the connection matrix. The size of the connection matrix e ectively represents memory limitations. A blackboard is composed of an arbitrary number of connection matrices that encode di erent relationship types for a pair of assembly categories. D. A blackboard is composed of multiple connection matrices, where each of them is de ned by two node categories and a relationship type between them. E. Example of a possible tree structure that can be represented based on the speci ed connection matrices.

NBA simulations [START_REF] Van Der Velde | Learning of control in a neural architecture of grounded language processing[END_REF] and recent state of the art feed-forward network architectures that have shown top performance for diverse language parsing tasks [START_REF] Andor | Globally normalized transition-based neural networks[END_REF]. Moreover a more recent proposed extension of the NBA, that imitates the motor circuit of the marine mollusk Tritonia diomedea, shows how to generate patterns for sequential activation control [START_REF] Van Dijk | A central pattern generator for controlling sequential activation in a neural architecture for sentence processing[END_REF]. Simulating these higher level mechanisms is a task out of the scope of this work, since we focus speci cally on reproducing the neural signatures of variable binding operations.

Instantiation of symbolic representations with the NBA

The level of abstraction of the NBA allows to apply it to several cognitive functions like motor control, attention and symbolic thought. In the case of syntactic parsing during language comprehension, one needs a grammar to specify the necessary variable type relations and some parsing scheme to determine the bindings' timing. In contrast to VSA, the NBA provides a circuit with nodes that can be readily interpreted in terms of spiking neural populations. This can be conceptually linked to the notion of cell assemblies, whose existence and functional relevance, as computational units, is supported on substantial biological evidence [START_REF] Huyck | A review of cell assemblies[END_REF].

Applying the NBA to syntactic processing in language consists of two simple assumptions. First, equating the parsing mechanism to the control mechanism that coordinate binding events of words and word types and phrase types. Second, determining the number of compartment circuits necessary to instantiate a complete syntactic structure and the content of MA nodes from a grammar theory. The NBA has the exibility to test any arbitrary parsing mechanism and an important variety of alternative theories of grammar based on binary trees. For example dependency grammars that assume multiple direct word bindings instead of the hierarchical phrase bindings modelled in this work have been employed in previous simulations [START_REF] Van Der Velde | Learning of control in a neural architecture of grounded language processing[END_REF].

To understand how a sentence is processed in the NBA, let us consider rst the simplest case of binding two words, like "Sad student", belonging to grammatical categories instantiated in the MAs of one "Compartment Circuit", such that one MA is an "Adjective" corresponding to "sad" and the other one is a "Noun" corresponding to "student". The MAs activate with timings corresponding to word presentation, re ecting processing of the word grammatical category. Then an assumed parsing mechanism determines that a link operating on "Adjective" and "Noun" types is necessary in the blackboard, driving activity in several "Compartment Circuits" from which only one, that we consider as the recruited "Compartment Circuit", completes co-activation of SAs to drive WM and realize binding between the word types. To process a complete phrase this process is repeated by recruiting more "Compartment Circuits", realizing an implicit representation in the cortex of the whole phrase through the activation of the Working Memory neural assemblies.

How Jackendo 's problems are answered by the Neural Blackboard Architecture

First, "The massiveness of binding" is addressed by instantiation of variable types as assemblies that are bound to grounded concepts and other variable types instances, allowing the creation of combinatoric structures on demand. Second, "The problem of variables" is handled by the previously explained coactivation mechanism capable of creating pointers from grounded concepts to variable type instances. Third, "The Problem of 2" is managed by having multiple neural assemblies that instantiate the same variable type in the architecture but that can occupy di erent parts of the same data structure. Finally a working memory mechanism is provided, that allows transient shortterm co-activations of concepts to be maintained without interfering with the possibility of storing related data structures in the long term in other parts of cortex with other mechanisms.

Summary and comparison of the modelling approaches

On one hand Smolensky proposes that the brain employs explicit active encodings, in neural units, of "uni ed" data structures produced by tensor products acting as binding operations on spatially stable, unique and linearly independent neural unit vectors. These data structures can be later queried with inner products acting as unbinding operations. The latter are resilient to squashing functions, like those proposed by Plate, that can importantly decrease the number of neural units necessary for the nal representation as the tensors increase in dimensionality with more complex structures. Representations in this model can be completely distributed and nothing is clari ed about the encoding of parallel representations in memory. Smolensky o ers in great detail implementations of VSA with feedforward and symmetric recursive ANNs [START_REF] Smolensky | The harmonic mind: From neural computation to optimality-theoretic grammar[END_REF] and has recently shown how to extend the framework with an optimization scheme to instantiate input representational vectors [START_REF] Smolensky | Optimization and Quantization in Gradient Symbol Systems: A Framework for Integrating the Continuous and the Discrete in Cognition[END_REF]. Nonetheless, no important operational consideration is given to time, although it is possible to employ it as a tensor for vector encoding purposes, as is done for Synchronous Firing. This limits the neural dynamics predictions of the framework and its interpretation with SNNs.

On the other hand the Neural Blackboard Architecture proposes that the brain encodes complete symbolic structures implicitly, encoded by the activity of short term memory mechanisms. A circuit of neural assemblies on which neural activity ows conditioned by control and memory mechanisms allows both binding and query operations. Since the NBA explicitly de nes the architecture and operation of the circuits, it is straightforward to implement them with SNNs. By representing the bound concepts as speci c neural assemblies the NBA induces local representations and by allowing arbitrary selection of mutually inhibitory competing sub-circuits (Compartment circuits) makes the representations themselves dynamic and spatially unstable.

From the description of these models we can appreciate that they approach the problem very di erently, which motivates experimenting with both of them. They employ di erent practical neural implementations and simulations. Also they assume di erent properties of the internal neural representations of concepts. In Table 1.1 we present together all the di erent aspects of both modelling approaches. Smolenky's TPR relies mostly on spatial static considerations of arti cial neural units with explicit completely distributed and spatially stable representations implemented through vectors, while the NBA relies on temporal dynamic considerations of biologically based spiking neural units with implicit semi-local and spatially unstable representations implemented through neural assemblies. Another di erence between models is how they handle multiple parallel representations in memory. Smolensky do not propose any particular mechanism, although using the same neural units for this would work with the creation of memory slot roles. The NBA handles parallel representations in memory explicitly, by keeping separate neural assemblies assigned to each structure, but then its capacity is limited by the size of blackboard and the dynamics introduced by the mutual inhibition of compartment circuits in a connection matrix.

Aspect

Smolensky In this chapter we provide a quick summary of methodological details useful to better understand the superposition experiment analysis (BOLD-fMRI related methodology) and the implementation of the Neural Blackboard Architecture (neural simulation related methodology).

BOLD-fMRI

The BOLD-fMRI signal

The rst studies of BOLD-fMRI, that showed how sensory stimulation modulated a blood oxygenation level dependent contrast date back to 1992 [START_REF] Ogawa | Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging[END_REF]. BOLD-fMRI is one of the most common neuroimaging techniques, that captures non-invasively indirect measures of neural activity in a whole brain volume, with a high spatial resolution (1-3mm 3 ) and a low temporal resolution (1-3 seconds). This technique takes advantage of the fact that "ferrous iron on the heme of deoxyhemoglobin is paramagnetic, but diamagnetic in oxyhemoglobin" [START_REF] Chen | 10 principles of bold functional mri[END_REF]. This means that a strong magnetic eld can detect changes in the concentration of oxygen in the blood stream, which is modulated by neural activity. The shape of the modulation of oxygen concentration due to changes on neural activity is called the hemodynamic response function (HRF). Boynton et al. [START_REF] Boynton | Linear systems analysis of functional magnetic resonance imaging in human v1[END_REF] showed that a double gamma basis function, applied with a linear regression model, could capture well the HRF. Although the HRF can take up to 30 s to completely develop, it was shown that the response of two stimuli add linearly if their presentation is separated by at least 2 seconds [START_REF] Buckner | Event-related fmri and the hemodynamic response[END_REF]. We show an example double gamma basis function [START_REF] Glover | Deconvolution of impulse response in event-related BOLD fMRI[END_REF] in Figure 2.1. [START_REF] Glover | Deconvolution of impulse response in event-related BOLD fMRI[END_REF]: The HRF rst shows a quick increase from 1 to 5.2s, then "undershoots", drops below baseline, from 5.2 to 12.2s, and nally comes back to baseline from 12.2 to 30s.

BOLD-fMRI preprocessing

To acquire brain images, a subject is introduced in an MRI scanner and from the pulse sequences of an acquisition protocol, images, formed by "voxels" of a certain volume, for example 1.5mm 3 , are reconstructed. The obtained datasets are preprocessed with a variety of pipelines, some of which have been extensively evaluated [START_REF] Strother | Evaluating fmri preprocessing pipelines[END_REF]. Common pipeline steps are: slice timing correction, motion correction, spatial co-registration, spatial normalization and spatial smoothing. Since the brain volumes are acquired by slices in di erent time points, it is necessary to extrapolate to a common time point the measurements of all slices which leads to slice timing correction. Subject movements during the acquisition have to be taken into account to build a voxel time series that correctly represents spatial location, so motion correction is implemented. Functional images that contain the BOLD signal are commonly co-registered with a T1 anatomical scan of the subject to be able to extract voxels corresponding to anatomical structures like gray matter and allow normalization. Then anatomical images from subjects are projected into the space of a reference image, such that group level activations can be estimated by compensating an important portion of inter-subject variability [START_REF] Handwerker | Variation of bold hemodynamic responses across subjects and brain regions and their e ects on statistical analyses[END_REF]. Finally and optionally, the resulting images are smoothed with a Gaussian kernel to increase the local signal-to-noise ratio (SNR), due to spatial correlation of voxel activations. More details on di erent preprocessing steps can be consulted in Lindquist review1 .

E ects estimation in univariate analysis

After preprocessing, traditionally BOLD time series are analysed with a General Linear Model (GLM) [START_REF] Friston | Analysis of fmri time-series revisited[END_REF]. This practice remained because it was demonstrated that BOLD responses to stimuli add approximately linearly if the stimuli presentation is separated for at least 2 seconds [START_REF] Buckner | Event-related fmri and the hemodynamic response[END_REF]. To t the GLM, a design matrix is produced in which di erent conditions are modelled with di erent regressors. In each condition, the onsets and durations of the corresponding events are modelled as a stepwise constant (boxcar) signal, that is then convolved by an HRF like the one shown in Figure 2.1. In Figure 2.2 we show the construction of an example design matrix with four conditions. A GLM model, described by Equation 2.1 and illustrated in Figure 2 

Y = X β + ǫ, ( 2.1) 
The design matrix corresponds to the X in the GLM estimation and the β (betas) corresponds to the estimated amplitude of the BOLD response of each condition in a voxel. The betas of all voxels considered together are called Figure 2.3: GLM model: The signal in each voxel is modelled as a linear combination of the time series given in the design matrix plus noise. "beta maps", which are then employed to compare conditions across the brain. The comparison is done by testing if a particular linear combination of betas, called a contrast, is di erent from 0. Staying with the four conditions example, a contrast vector c ∈ R 4 would be de ned as c = [+1, 0, -1, 0] to test in which voxels there is a signi cant positive di erence between the rst and third conditions [START_REF] Lindquist | The statistical analysis of fmri data[END_REF]. From this contrast, a t, z or F statistic map, normally called statistical parametric maps, will be computed and then thresholded at some level of p-value signi cance to interpret the surviving spatial clusters of activations in the brain. We illustrate the computation of the p-value for a z-test in Figure 2 Alternatively to this way of computing p-values, it is also possible to employ non parametric approaches in which, under some theoretical constraints, we can estimate the empirical distribution of the contrast of permuted condition labels and observe the probability of the real labels on that distribution. More details on the statistical analysis of fMRI data can also be consulted in Lindquist review 2 .

Decoding of activation maps

The GLM mass univariate fMRI analysis is a forward model. Forward models, also called encoding models, model brain responses following a stimulus. Inverse models, also called decoding models, go in the opposite direction, they predict stimuli from brain images. A scheme of these concepts is shown in Figure 2.5.

Figure 2.5:

Encoding and decoding scheme: We provide a scheme showing how decoding and encoding models relate to brain activations and stimulus.

With decoding models we explore the possibility that the spatial neural activity patterns, re ected in the amplitude of estimated BOLD responses in voxels, carry distributed information beyond the overall activity of individual voxels. This type of multivariate approach, has been very in uential in the analysis of fMRI data [START_REF] Varoquaux | How machine learning is shaping cognitive neuroimaging[END_REF]. It was named initially as "multivoxel pattern analysis" [START_REF] Norman | Beyond mindreading: multi-voxel pattern analysis of fmri data[END_REF] and later as "multi-variate pattern analyses" [START_REF] Haxby | Decoding neural representational spaces using multivariate pattern analysis[END_REF]. It has been shown that the relationship between stimuli and beta maps can be captured appropriately by linear models, considering that non-linear models tend to have a similar performance as the linear ones [START_REF] Misaki | Comparison of multivariate classi ers and response normalizations for patterninformation fMRI[END_REF]. Moreover employing linear models can give better insights into how each individual feature (voxel) contribute to the nal prediction [START_REF] Hastie | The Elements of Statistical Learning[END_REF].

A commonly used decoding model in fMRI is linear support vector machines (SVMs), that from a set of "support vector" points draw an hyperplane to maximize the "margin" distance between the hyperplane and the nearest data points from two classes of points. The SVM expresses the hyperplane as the coordinates of a vector orthogonal to the hyperplane, such that the absolute magnitude of each coordinate or "coe cient" related to a feature (voxel) can indicate how important the feature is for the separation of classes. In Figure 2.6 we illustrate a particular mathematical formulation of the SVM called NuSVM, in which the number of support vectors selected by the algorithm is controlled by the "nu" parameter in the model. We present two classes as blue and brown points. The NuSVM learns a hyperplane, a line in this two dimensional case, to discriminate the two classes. The nu parameter permits to regularize the algorithm by controlling the number of support vectors selected. For small value of nu, few observations are selected as support vectors, while for a large value of nu, all observations are selected.

A decoder is evaluated by its capacity to predict correctly a stimulus or condition from a given set of voxel activations (from beta maps). In the case of classi cation of balanced conditions, the typical evaluation metric is accuracy, computed from the number of correctly classi ed samples over all samples. Accuracy of a trained model should be evaluated on left out unseen data to secure we correctly capture true generalization performance of the model. This is necessary due to the risk of over tting or over-learning the particularities of the samples selected to train the model instead of the general trend.

A common procedure to select the best model, to optimize generalization accuracy, is to perform K-fold cross-validation [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF]. This procedure consists on dividing the dataset in "K" data segments, such that iteratively a segment will be left out as unseen data to evaluate the accuracy of a model, which was trained on the rest of the data. The selection of model parameters (hyperparameters), like nu in a NuSVC classi er, should also be cross-validated to avoid the introduction of a positive bias in the generalization accuracy of the model, with a nested cross-validation scheme [START_REF] Cawley | On over-tting in model selection and subsequent selection bias in performance evaluation[END_REF].

After we have estimated the generalization accuracy of the model, it is desirable to be able to assess its signi cance, in particular considering the possibility of nding accuracy scores slightly better than chance. This veri cation is important due to the possible biases and uctuations that can be introduced in the accuracy scores by noise in fMRI data and the small sample sizes normally available. A typical procedure to achieve this is to randomly exchange condition labels on the data points, to obtain permuted labels, and train a new model on the permuted labels. The empirical distribution obtained from the accuracy on the "N" permuted label sets allows to compute a p-value, by assessing how extreme is the accuracy of the model trained on the real labels.

Another problem we face with fMRI data is that of feature (voxel) selection. Considering the curse of dimensionality, which explains that we need an amount of samples that grow exponentially with the number of features considered, and the small sample sizes commonly available, we are encouraged to diminish the amount of features (voxels) considered by a model as much as possible.

There are two ways to deal with this problem. The rst is by " ltering", which consists on selecting features based on some procedure unrelated to the accuracy score of the trained model. A typical way of doing this in fMRI is by ranking voxels according to scores obtained from univariate tests, like an F test to detect any di erence between all conditions in a voxel. The second is by "wrapping", for which we consider subsets of features as an hyperparameter of the model and then decide on the best subset in the same way that we would select other hyperparameters of the model, by nested cross-validation.

Neural simulation

We assume that the Neural Blackboard Architecture (NBA) lives in the cortex, and seek a good compromise between realistic modelling of the cortical dynamics and the tractability of the simulation. State-of-the-art simulations of larger cortical structures are based on point model neurons that allow the inclusion of biological details such as synaptic dynamics and adaptation, but are restricted to about the size of a cortical column [START_REF] Potjans | The cell-type speci c cortical microcircuit: relating structure and activity in a full-scale spiking network model[END_REF]. For larger scale networks, such as ours, a population-based approach is currently the only feasible approach. The two choices are: rate based models or population density techniques (PDTs). In rate based models, the population is described by a single variable, usually related to the population ring rate or average membrane potential of neurons in the population. A prominent example is the Wilson-Cowan equation [START_REF] Wilson | Excitatory and inhibitory interactions in localized populations of model neurons[END_REF], which describes the dynamics of the population activity as a rst order linear di erential equation driven by inputs. Another example is the Jansen-Rit model [START_REF] Jansen | Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns[END_REF], which is primarily motivated by phenomenological considerations. In both examples, the relationship with the underlying neural state is unclear. We have opted for PDTs, also a population based approach, but one where the relationship with the dynamics of a group of spiking point model neurons can be made rigorous. Although they are computationally more expensive than rate based models, they are easier to manage than a full-blown model using spiking neurons, which would need hundreds of thousands of neurons at the scale of the cortical network considered here. We will brie y set out the assumptions that we use in modelling populations and describe the numerical methods involved.

Consider a leaky-integrate-and-re (LIF) neuron, which is characterized by a single state variable: the membrane potential. If the neuron has a potential di erent from its equilibrium potential, or when it experiences an external drive, for example generated by a synaptic current, the potential evolves according to:

τ dV dt = -(V -V rev ) + I(t). (2.2)
Here V is the membrane potential in V, τ the membrane time constant in s,

V rev the reversal potential and I(t) and external current, which may comprise contributions from other neurons in the form of spikes, and therefore may be stochastic. If the membrane is driven far above the equilibrium potential, at a potential V th , the threshold, the neuron spikes. We assume it will be inactive for an absolute refractive period τ re f and then nds itself reset to the equilibrium potential after that. This scenario is easy to simulate: using a simulator like NEST [START_REF] Gewaltig | Nest (neural simulation tool)[END_REF], or BRIAN [START_REF] Stimberg | Equationoriented speci cation of neural models for simulations[END_REF], one can create populations of LIF neurons. In the simplest case a population is driven by synthetically generated input spike trains, where the spike train events are created by a random generators. The default assumption is that inter-spike intervals are Poisson distributed, although this can be extended to non-Markov processes [START_REF] Lai | Population density equations for stochastic processes with memory kernels[END_REF]. It is clear that I(t) in Eq. 2.2 now should be considered as a stochastic variable and that the threshold crossings of LIF neurons themselves are stochastic events as a consequence. Fig. 2.7 A demonstrates a simple scenario: a population of 10000 LIF neurons, driven by a stochastic input -Poisson generated spike trains, where each LIF neuron experiences about 800 input spikes per second.

The simulation shows a spike raster of the population response: rst nothing: although each LIF neuron receives input spikes and as a consequence has its membrane potential driven up, none of the neurons have reached threshold; then a spike volley: most neurons hit threshold at approximately the same time; followed by a period of relative silence: only interrupted by a few stragglers; at last a gradually achieved nal neural state of asynchronous random ring. More complex networks can be formed by feeding the output spikes of one population into other populations. This is a fascinating but unwieldy process and statistical methods have been used to describe it at the population level [175; 105; 150]. A population is described by a density function, which expresses how the population is distributed over state space. For LIF neurons this is a function ρ(V), where ρ(V)dV is the fraction of neurons with their membrane potential in interval [V, V + dV) (when we integrate the density function over a certain state interval, we will refer to the result as the amount of mass in that interval). The initial distribution of the neurons in the population must be chosen, but the evolution of the density is tractable. It is clear that neurons move through state space due to the deterministic neural dynamics, Eq 2.2 for LIF neurons, and also go transitions due to the input spikes. The collective contribution of the stochastic process to the evolution of the density pro le can be modelled using a Poisson master equation [START_REF] Gardiner | Handbook of stochastic methods for physics, chemistry and the natural sciences[END_REF]; the contribution of the deterministic dynamics can be modelled using an advection equation (see [START_REF] Omurtag | On the simulation of large populations of neurons[END_REF] for a lucid explanation).

As a consequence, the process of simulating thousands of neurons is now replaced by modelling the evolution of a density which is given by a single equation:

∂ρ ∂t - 1 τ ∂ ∂v (ρv) = dhp(h)ν(ρ(v -h) -ρ(v)), (2.3) 
Here p(h) is the distribution of synaptic e cacies, ν the frequency of the incoming spike trains, ρ the density function, t the time since start of simulation and v the membrane potential. Mass that is being pushed across threshold corresponds to neurons spiking; consequently the ring rate of the population can be calculated directly from the mass ux across threshold.

E cient and stable simulation methods are available [145; 44; 46; 96], and remarkably, the process of solving Eq. 2.3 is computationally less expensive for LIF neurons than the direct simulation using NEST [START_REF] Nykamp | A population density approach that facilitates large-scale modeling of neural networks: Analysis and an application to orientation tuning[END_REF]. The process of keeping track of a single density function, and the communication between populations using ring rates rather than individual spikes, frees the modeller from keeping track of thousands of spikes per second and leads to simpler simulations. Figure 2.7 shows the very close correspondence between direct simulations of LIF spiking neurons and population density results. It shows, rst, that the simulation results indeed are very close to that of the spiking simulation, and second, that Wilson-Cowan dynamics must be tuned in a way that PDTs do not: the correct steady state activation must be provided to the Wilson-Cowan dynamics in the form of a sigmoid, while in PDTs the correct steady state ring rate is calculated from rst principles -input ring rate, synaptic e cacies and neural parameters -without any need for tuning.

The population density formalism can be extended to higher dimensional models. For example, the adaptive-exponential-integrate-and-re neuron (AdEx) [START_REF] Brette | Adaptive exponential integrate-and-re model as an e ective description of neuronal activity[END_REF] is a two dimensional model that has the membrane potential and an adaptivity parameter as a variable. Consequently, the state space is two dimensional. The motivation behind this model is that rst, it includes adaptation, and second that it is the e ective approximation of the complex conductance-based processes that take place in a real neuron. The equations of the model are:

We consider the AdEx model as presented by Brette and Gerstner [START_REF] Brette | Adaptive exponential integrate-and-re model as an e ective description of neuronal activity[END_REF], which describes individual neurons by the following equations:

C m dV dt = -g l (V -E l ) + g l e (V-V T ) ∆ T (2.4) τ w dw dt = a(V -E l ) -w
Where C m is the membrane capacitance, g l the leak conductance, E l the leak potential (equivalent to the reversal potential for the LIF), V T a threshold potential, ∆ T a shape parameter for the spike, τ w the adaptation time constant, a the subthreshold adaptation parameter, V the membrane potential and w the adaptation parameter. Upon a spike, the neuron is undergoes a transition in w: w → w + b, where b is the spike adaptation parameter. We use the parameters given by [START_REF] Brette | Adaptive exponential integrate-and-re model as an e ective description of neuronal activity[END_REF].

We illustrate the dynamics of the neuron in Fig. 2.8. The direction of the dynamics is shown by arrows, the speed of the dynamics by the size of the cells: big cells implies fast dynamics as the cells represent equidistant time steps. This shows that at w = 0 dynamics are leaky, i.e. towards the equilibrium, i.e. an input spike raises the PSP by 3% of the di erence between threshold and equilibrium potential, τ = 50 ms, following [START_REF] Omurtag | On the simulation of large populations of neurons[END_REF]). B. Firing rate calculated from the PDT method (solid curve), compared to ring rate from spiking neuron simulation (red markers). C. The density calculated by the PDT method (solid curve) at t = 0.3 s, compared to a histogram of the membrane potential over the population at the same time. D. Wilson-Cowan prediction for the ring rate, compared to PDT result. Importantly, Wilson-Cowan output must be tuned: the steady state value to which it converges is not predicted by the Wilson-Cowan equations, but must be provided as a sigmoid. In contrast, the PDT method calculates the ring rate from rst principles, and agrees well with the spiking neuron simulation, within statistics.

except at high values of V, on the right, which corresponds to spike generation. At high values of w, there are two e ects: stronger leak (larger cells) and a lower (more negative) equilibrium potential, which makes it harder for a cell at high w to be driven across threshold, precisely the e ect one expects due to adaptation. At low w, the opposite happens: cells become more excitable. For very low w values, which can not be reached under cortical conditions, at least not for the parameters we used, there is the theoretical probability of a Right: a heat plot of the density pro le during simulation. On the horizontal axis the membrane potential, on the vertical axis the adaptivity parameter. Note that the right gure constitutes a considerable reduction of state space compared to left. For the connectivity parameters we use, the state space on the right is the part of state space reachable by dynamics.
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rebound (neuron always spikes).

A density function now lives in this two dimensional space: ρ(V, w). The evolution equation is a direct generalization of Eq. 2.3. For a model with n state variables V, a point model takes the form:

τ d V dt = F( V) (2.5) 
and the density equation:

∂ρ ∂t + ∂ ∂ V • ( Fρ) τ = dhp(h)ν(ρ( V -h) -ρ( V)) (2.6) 
, where h represents the e ect of an input spike.

We represent the density function by a heat plot on state space: the highest values or white, low values are red. We are able to simulate the density function by a method analogous to that of [47; 96], generalized to two dimensions. In Fig. 2.8 we show the result of a simulation: the density function as a xed point in time. As before, we can calculate the ring rate of the population by calculating the the ux across threshold (which is still given by V = V threshold , i.e. the right hand side of the grid).

The simulation software, MIIND, is publicly available 3 . The LIF version of Bridging the gap between experimental neuroimaging evidence and the available modelling solutions to binding, is a crucial step for the advancement of our understanding of the brain computation and representation of symbolic structures. From the recognition of this problem, the goal of this PhD became the identi cation and experimental test of the theories, based on neural networks, capable of dealing with symbolic structures, for which we could establish testable predictions against existing fMRI and ECoG neuroimaging measurements derived from language processing tasks.

We identi ed two powerful but very di erent modelling approaches to the problem: Smolensky's tensor product representations and the Neural Blackboard Architecture (NBA). In the case of Smolensky's tensor products, we considered the superposition principle to be one of its crucial assumptions, so we decided to acquire a new fMRI dataset to test it in di erent brain regions. In the case of the NBA, we built a new simulation to be able to perform predictions on the temporal dynamics and spatial patterns of binding observed in the neuroimaging literature. In this chapter we introduce the problem of testing the superposition principle, that depend on Smolensky's tensor product representations, with BOLD-fMRI and how bi-syllabic pseudowords are modelled.

BOLD-fMRI interpretation of superposition and vectorial representations

The superposition principle: In Smolensky's Integrated Connectionist/Symbolic architecture (ICS) [START_REF] Smolensky | The harmonic mind: From neural computation to optimality-theoretic grammar[END_REF], the neural activation of a symbolic structure is given by the union of the Filler/Role bindings belonging to the symbolic structure.

The set of Fillers that can be assigned, as well as the set of Roles will depend on the modelled stimuli. We could consider for example phonemes as Fillers, to be assigned to node positions in a tree structure as Roles, to nally form morphemes and words as the resulting symbolic structure. Smolensky proposes to employ the linear operation of addition as the union operator of the bindings, such that the neural activity of an abstract symbolic structure is given by Equation 4.1. We present a concrete example in Equation 4.2, where the word "cat" is formed by adding the bindings of the phoneme Fillers "k", "ae" and "t", with their respective positional Roles in a tree structure.

Structure = Filler 1 ⊗ Role 1 + ... + Filler n ⊗ Role n , Abstract representation (4.1) S cat = F k ⊗ R 0 + F ae ⊗ R 10 + F t ⊗ R 11 , Example word (4.2) S f igu = F f i ⊗ R le f t + F gu ⊗ R right , Example pseudoword (4.3)
In this work we will consider pseudowords composed of the combination of two syllables of one consonant and one vowel (CVCV). We present in Equation 4.3 the modelled representation of the pseudoword " gu" as an example. Moreover in Figure 4.1 we show the BOLD-fMRI interpretation of neural vectors. The main idea is that BOLD activity in voxels is meant to represent the aggregated neural activity of a set of neural units from the representations neural vectors. Aggregation of neural activity implies an important loss of information that could impede decoding of the representations if the values of neural activations are similarly distributed in di erent segments of the neural vector established for each voxel. Illutration of superposed tensor product representation in BOLD-fMRI: We present the example neural vectors of the syllables "na" and "gu" bound to the left and right positions of a bi-syllabic pseudoword. We illustrate how the level of BOLD activity should re ect the aggregated activity of a segment of the neural units that form a representation. The superposition principle consists on the sum of the vector values from each binding, to obtain the nal total activity in a voxel. The voxel values of the pseudoword "nagu" correspond to the plots of the neural vectors and those of the pseudoword "guna" were derived in a similar way. Due to the e ect of aggregation, only one voxel in the example permits di erentiating the two pseudowords.

Stability, uniqueness and intrusion of vectorial representations: An important assumption behind tensor product representations is that the hypothesized Filler and Role vectors have been learned by the cortex and are xed to a speci c set of neural units and values. Nonetheless there are some biological and theoretical factors that could go against this assumption. It is known that there is state-dependent adaptation in the cortex [START_REF] Kim | Frequencydependent neural activity, cbf, and bold fmri to somatosensory stimuli in iso urane-anesthetized rats[END_REF] and ring thresholds can be altered according to arousal state [START_REF] Mccormick | Sleep and arousal: thalamocortical mechanisms[END_REF], which can also complexify the behavior of neurovascular coupling [101; 125]. Moreover there is evidence for the existence of cell assemblies in parts of the cortex, like the hippocampus, where neural spiking is importantly a ected by local network interactions [START_REF] Harris | Organization of cell assemblies in the hippocampus[END_REF], and the formation and dissolution of dynamic cell assemblies have been demonstrated during cognitive processing [START_REF] Breakspear | A novel method for the topographic analysis of neural activity reveals formation and dissolution of 'dynamic cell assemblies[END_REF].

These possibilities could increase importantly the variability of the unit neural activity or even imply the existence of more than one pattern assigned to a particular Filler or Role vector. An analogy of how this type of e ects would operate against pattern identi cation is changing gaze position with respect to visual stimuli presentated on a screen. Not accounting for gaze position would give the impression of multiple representation patterns for the same image, even though retinotopic representations are very stable and precise relative to other activations in the cortex, because the activation vectors would change spatial location (change neural units) from trial to trial.

Smolensky also proposes that the neural activation vectors of the Fillers and Roles should be linearly independent in the best case to allow for exact unbinding operations in the cortex, although linear independence is not a strict demand, because there is a graceful degradation as the correlation between vectors increases on a distributed representation. Nonetheless even if it was the case that underlying distributed neural unit representations were linearly independent, this do not imply that the aggregated activity of arbitrary segments of those neural units would remain independent, or even di erentiable from each other to the necessary degree to detect it with the signal to noise ratio of the BOLD signal. For example in Figure 4.1 we illustrate the possibility of not being able to di erentiate the pseudowords "nagu" and "guna" in their voxel activations, which was the case of Voxel 2 in the plot, even though their underlying Filler and Role neural vectors are linearly independent.

Locality and sparsity of vectorial representations:

The tensor framework proposed by Smolensky allows for the possibility of completely distributed representations and encourages it, since distributed representations have several advantages in terms of pattern generalization and memory e ciency over local representations. From the neurobiological point of view, it seems likely that there are broadly distributed representations when we are able to nd with coarse random sampling neurons tuned to speci c experimental stimuli. Consider for example the work by [START_REF] Allman | Stimulus speci c responses from beyond the classical receptive eld: neurophysiological mechanisms for local-global comparisons in visual neurons[END_REF], that characterizes the receptive eld of a set of sampled neurons to moving dots. Spatially broadly distributed representations would be an advantage for BOLD-fMRI detection of neural patterns, since it increases the amount of voxels that would contain information about the patterns. Nonetheless this would only be the case if the spatial distribution of activation values across neural units is not uniform, such that we can capture higher random spatial di erences between the aggregated activity patterns of the neural units.

Another property that would help pattern identi cation with BOLD-fMRI is having enough sparsity in the distributed representations to augment di erences in the aggregated activity or even cause semilocal representations. A trivial example of semi local representations would be the inversed hemispheric retinotopic projections of the visual information shown to the di erent eyes. From the neurobiological point of view, it seems likely that there is certain degree of sparsity. Olshausen et al. shows how a coding strategy that maximizes sparseness is su cient to account for important properties of the mammalian primary visual cortex, which are considered to be spatially localized, oriented and bandpass, comparable to the basis functions of wavelet transforms [START_REF] Olshausen | Emergence of simple-cell receptive eld properties by learning a sparse code for natural images[END_REF]. In the neuroscienti c literature the actual degree of sparseness related to neural representations is still debated, sometimes even only one neuron is found to be responsive to very speci c stimuli, giving rise to the hypothesis of grandmother cells. An interesting debate on this account is developed by Bowers et al. [START_REF] Bowers | On the biological plausibility of grandmother cells: implications for neural network theories in psychology and neuroscience[END_REF], in which it is made clear that the degree of sparsity observed depends on the experimental stimuli de ned and will vary across neural areas. The neural sampling methodologies employed so far in humans have not been able to completely characterize the degree of sparsity, because they are still not capable of capturing the separated neural activity of complete local neural populations.

Stimuli selected to test superposition on syntactic operations: There are few explorations in the neuroimaging literature about composition operations. Additive models of composition for sensory stimuli, similar to the superposition principle in tensor product representations, have been tested with multi unit neural recordings in monkeys. It seems that the composition operations employed by the brain depend importantly on the features considered. For example in the monkey's inferotemporal cortex, evidence was provided for conjunctive non additive models in the case of shapes composition [START_REF] Baker | Impact of learning on representation of parts and wholes in monkey inferotemporal cortex[END_REF], but when considering jointly shape and color in the same region, evidence for linearly additive composition was found instead [START_REF] Mcmahon | Linearly additive shape and color signals in monkey inferotemporal cortex[END_REF].

More work has been done with sensory stimuli on other animal models, but testing speci cally for symbolic representations is more complicated due to the limited measurement techniques that we have for the human brain. In the case of BOLD-fMRI there are already some studies employing a variety of machine learning techniques, that have tried to approach the problem in di erent cognitive domains. Decoding methods, classifying stimuli conditions from BOLD signals, have been used to demonstrate a compositional code similar to superposition for rule representations in the human prefrontal cortex [START_REF] Reverberi | Compositionality of rule representations in human prefrontal cortex[END_REF]. In the case of language, Mitchell et al. tested an additive model of semantic features with encoding models, that predicted the BOLD brain images associated to English nouns [START_REF] Mitchell | Predicting human brain activity associated with the meanings of nouns[END_REF], but no similar work has been done for syntactic features yet.

In this work we were interested in testing the additive model proposed by superposition on syntactic operations of language, which in most levels of language processing are hypothesized to depend on hierarchical tree structures. The idea of assuming positional Roles representing nodes of trees is relatively uncontroversial at the phonological and morphological level of language processing and previous work have been successful in characterizing the neural representations of isolated syllables with BOLD-fMRI [START_REF] Evans | Hierarchical organization of auditory and motor representations in speech perception: evidence from searchlight similarity analysis[END_REF]. Moreover several neural activity e ects spread in the fronto-temporal language network, linked to phonological manipulations and pseudowords processing, have been reviewed in various metanalysis [195; 178]. Taking all this into account, we decided to test superposition of the syntactic representations of bi-syllabic 

From neural unit recordings to BOLD-fMRI measures of aggregated activity

In Smolensky's Integrated Connectionist/Symbolic architecture (ICS) [START_REF] Smolensky | The harmonic mind: From neural computation to optimality-theoretic grammar[END_REF], the implementation of symbolic representations is done through the activation of neural units that form part of a neural network. This means that Smolensky's tensor product representations have a straight interpretation on the spiking activity of Multi Unit Activity recordings (MUA) of neurons.

To test properties of Smolensky's proposal with other neuroimaging techniques like BOLD-fMRI, that re ect aggregated neural activity, it is important to verify that there is a linear mapping between the underlying neural activity and the aggregated activity. So we need a correspondence between the spatial location and neural activity values with respect to single neural unit measurements. Moreover, since in this work we want to test the additive model brought forward by superposition, it is important that the mapping from neural activity to BOLD remains approximately linear.

Regarding spatial localization of the signals, Siero et al. studied the spatial properties of the hemodynamic (BOLD) signal at 7T and recon rmed its spatial correspondence with intracortical (ECOG) time series in the motor cortex for a nger tapping task [START_REF] Siero | BOLD matches neuronal activity at the mm scale: A combined 7T fMRI and ECoG study in human sensorimotor cortex[END_REF]. They managed to decode spatially the tapping of di erent ngers and found that the spatial correlation between signals for the di erent ngers is high (on average R=0.54) and their maxima co-localized within 3 mm distance.

In the case of the mapping of neural activity values to aggregated activity, Cardoso et al. designed a visual task, in which drifting sine-wave gratings were presented passively to monkeys during 3-4 s while they xated [START_REF] Cardoso | The neuroimaging signal is a linear sum of neurally distinct stimulus-and task-related components[END_REF]. With this task they demonstrated high predictability (0.94 R squared) of a component of the BOLD hemodynamic response, the cerebral blood volume (CBV), from direct neural measurements (MUA and LFP). Nonetheless the BOLD signal itself is more complex, it depends on the coupling between cerebral blood volume (CBV), cerebral blood ow (CBF) and oxygen concentration measures (CMRO2), where the last two have been linked to adaptation and other nonlinear e ects [START_REF] Moradi | Adaptation of cerebral oxygen metabolism and blood ow and modulation of neurovascular coupling with prolonged stimulation in human visual cortex[END_REF]. For example Toyoda et al. [START_REF] Toyoda | Source of nonlinearity of the BOLD response revealed by simultaneous fMRI and NIRS[END_REF], employing chequerboard visual stimuli with durations between 1 and 8 seconds, showed that the contribution of the oxygen extraction fraction (OEF) to the BOLD signal, which is a measure related to CMRO2, can be four to seven times greater than the contribution attributed to the CBV under the range of plausible parameters of neural activity and adaptation. But they also showed that the contribution ratio of OEF over CBV can be compensated with the experimental design, since the ratio decreases as the duration of the stimuli increases.

Despite this complexity of the BOLD signal, a consensus is emerging on a linear relationship for long duration stimuli of enough intensity [8; 9; 29; 89; 110; 124; 152; 184]. Important exceptions exist, but often they are related to sensory stimuli of short-duration [5; 174; 193; 204], or low-intensity that do not overcome the activity threshold necessary to generate an hemodynamic response [START_REF] Vazquez | Nonlinear aspects of the bold response in functional mri[END_REF]. For example, strong evidence of a linear relationship between BOLD and MUA, for long-duration sensory stimuli with varying stimulation frequency, was provided by Devonshire et al. [START_REF] Devonshire | Neurovascular coupling is brain region-dependent[END_REF]. They studied regions inside and outside of the cortex and demonstrated the e ect with electrical stimulation of the entire whisker pad on the left of a rat's snout, during 40 s with di erent pulse frequencies. All the mentioned evidence points to the idea that it is reasonable to interpret and test neural unit level representations with BOLD-fMRI, as long as temporal variables of the experimental design like length of stimulation or inter-stimuli intervals are manipulated to minimize the in uence of BOLD non-linearities.

In this chapter we present the two tasks of the experimental design, the Bold-fMRI data acquisition, preprocessing and processing, and the analysis methods employed to assess the likelihood of superposed representations in the Regions of Interest considered.

Experimental design

Participants: Five native French speakers participated in the experiment (two females with ages 22 and 32 and three males with ages 23, 26 and 36). All subjects had high school background from French universities (Bac) and were right handed with a Laterality Quotient (LQ) of at least 40 (mean 70, SD 20.98), as measured by the Edinburgh Handedness Inventory [START_REF] Old | The assessment and analysis of handedness: the edinburgh inventory[END_REF]. The experiment was conducted at the NeuroSpin center and all subjects came on four di erent days, for a total of four scanning sessions. The experiment was sponsored by the Unicog lab U-992 in NeuroSpin, and received ethical approval by the regional ethical committee (Comite de Protection des Personnes, hopital de Bicetre). All subjects gave written informed consent and received 80 euros for their participation.

Introduction to the experimental design: Two experimental designs were developed; a language localizer [START_REF] Mahowald | Reliable individual-level neural markers of high-level language processing: a necessary precursor for relating neural variability to behavioral and genetic variability[END_REF], to identify in each subject language processing regions, and a pseudoword representations design to obtain brain representations of the syntactic union of two syllable combinations devoid of semantic content. All experimental tasks were implemented with python scripts exploiting the capabilities of the Expyriment python library [START_REF] Krause | Expyriment: A python library for cognitive and neuroscienti c experiments[END_REF].

For both designs, visual and auditory sensory modalities were used for stimulation, since in language regions we aim to nd abstract representations insensitive to sensory modality. Visual Stimuli consisted of text, projected one word at a time in rapid serial visual presentation (RSVP), on a translucent screen with a digital light processing projector (PTD7700E, panasonic, frame rate: 60 Hz, resolution of 1024 x 768), with a viewing distance of 89 cm. Auditory Stimuli were delivered through MRI-compatible headphones (MR confon), and the volume was adjusted for each participant to a comfortable hearing level.

Language Localizer

Stimuli: The stimuli consisted in blocks of three phrases and blocks of three non language stimuli that varied in implementation with the sensory modality. These blocks were presented in an alternated fashion with the purpose of extracting brain areas processing language from the contrast of these block categories [START_REF] Mahowald | Reliable individual-level neural markers of high-level language processing: a necessary precursor for relating neural variability to behavioral and genetic variability[END_REF]. Visual stimuli was text presented in the screen with a xed point Inconsolata font 1 . The text comprised 0.72 degrees of vertical visual 1 https://fonts.google.com/specimen/Inconsolata angle and a maximum of 5.8 degrees of horizontal visual angle, with the longest word having 14 letters. The visual non language stimuli was formed by replacing words in the phrases with consonant strings, for example "the cat" could be replaced by "ztr pfg". Auditory stimuli consisted on the same phrases digitally recorded at 22.05 kHz in a quiet room by a male speaker. Phrase recordings had a mean duration of 2.33 seconds (SD, 0.41 s), giving a total average duration of 7 seconds for a block made of three sequences. To generate the control auditory non language stimuli, the phrase recordings were scrambled with the multiband approach suggested by Ellis and Lee [START_REF] Ellis | Time-domain scrambling of audio signals in matlab[END_REF], but with python code using the Brain Hears software [START_REF] Fontaine | Brian hears: online auditory processing using vectorization over channels[END_REF].

Task and trial structure: The subjects were instructed to read or listen attentively to all stimuli presented. Each trial consisted on presenting one of the blocks designed, which were the grouped phrases or non language stimuli. Each block contained three phrases or three consonant strings, the rst made of 9 units, the second of 10 units and the last of 9 units. A xation cross was presented before the presentation of each phrase or string, for 500 ms, followed by a blank screen for 500 ms. In the visual case, each text unit was presented regularly for 200 ms, which is not the case in the auditory modality that has variable sequence duration. Between the presentation of the three stimuli a blank screen was presented for 600 ms. At the end of the presentation of the three stimuli a blank screen was presented for 7 seconds waiting for the next trial (the next block). There were 4 runs of acquisition and in each of them 90 trials were presented. In Figure 5.1 we show an example of a sequence in the visual modality.

CVCV Pseudowords presentation

Stimuli: The "CV" syllables " ", "gu" and "na" were selected to form all possible "CVCV" pseudowords from their combinations: " ", " gu", " na", "gu ", "gugu", "guna", "na ", "nagu" and "nana". These syllables were selected under two constraints. The rst was that all syllabic combinations could not lead to word formation, such that we could assume similar sensory and language processing of symmetric representations like " gu" and "gu ", expecting only syllable position e ects. The second was that we wanted to improve auditory discriminability, so we maximized the featural distance between consonants and between vowels. We selected one velar consonant "gu", one labio-dental " " and one alveolar "na" with their respective high-back tongue "u", high-front tongue "i" and low-back tongue "a" vowels. The e ect of featural distances in auditory representations was demonstrated in the cortex by the work on phonetic organization of spatial patterns of Bouchard et al [START_REF] Bouchard | Functional organization of human sensorimotor cortex for speech articulation[END_REF].

The pseudowords were presented in a visual and auditory modality. In the visual case they were presented as text in the screen with a xed point Inconsolata font. We decided to make the text as big as possible to increment expected retinotopic e ects but also tried to avoid the stimuli perception to be too tiring for the subjects, so nally the pseudowords were presented as lower-case text centered on the screen, spanning maximum 2.39 degrees of vertical visual angle and maximum 5.05 degrees of horizontal visual angle. For the auditory stimuli, three tokens of the syllables 'gu', 'na' and ' ' were recorded at 22.05 kHz in a sound-proof room by a male speaker. They were edited to have the same duration, by cutting some of the periods inside the vocalic part. They were then concatenated to generate the nine bisyllabic experimental stimuli. These stimuli all had a duration of 660ms. Probe stimuli, required by the task, consisted on smaller upper-case text spanning 0.6 degrees of vertical visual angle and 1.68 degrees of horizontal visual angle for the visual modality and modi ed recordings of the syllables with 10% higher pitch for the auditory modality.

Task and trial structure: The task consisted on keeping the pseudowords in memory for a possible comparison with a second pseudoword. The instruction given to the subjects was to xate a green dot and to keep in memory a following pseudoword, until the arrival of a red dot that signalled the end of the trial. From time to time the subjects had to make a comparison with a second pseudoword presented in the middle of the trial, in which case, con rmation of a positive match was indicated with a right hand button press and of a negative match with a left hand button press. We included the matching task to make sure subjects were complying with the task and paying attention to the stimuli, but we did not include a matching task on each trial to try to maximize the amount of stimuli presented in a session.

We show the structure of a trial from the visual modality in Figure 5.2. The green dot appeared for 0.5 seconds followed by a ashing presentation of the pseudoword, in the visual case, to be kept in memory for 3.2 seconds with a 0.25 seconds jitter. We decided to present the visual pseudowords for only 0.2 seconds to minimize the in uence of saccades in the estimation of brain activations. The pseudowords were ashed twice for 0.1 seconds to increase visual response. In the matching task trials, the second pseudoword was presented for 0.5 seconds followed by a response and rest period of 6.5 seconds. At the end of the trial the red dot was presented for 0.5 seconds followed by a 2.5 seconds resting period. Each imaging run consisted of 45 trials (5 per pseudoword), where the order of presentation of the pseudoword conditions was shu ed. In total there were 8 runs in a session, with two auditory sessions and two visual sessions, for a total of 80 trials per condition per modality. Only nine trials were randomly selected to contain a second pseudoword to perform a matching task. In the auditory case the trial structure is identical except for the 660 ms duration of the pseudowords recordings, in which case the memory time was reduced to 2.8 seconds to have the same trial total duration as in the visual case. Figure 5.2: Visual trial example of the pseudoword matching task: A green dot is presented for 500 ms, followed by a pseudoword ashed twice for a total presentation duration of 200 ms. It has to be kept in memory for a period of 3200 ms with a 250 ms jitter. Nine times in a run a second uppercased pseudoword is presented for comparison during 500 ms with a response period of 6500 ms.

Data acquisition and processing

Imaging: The acquisition was performed with a 3 Tesla Siemens Prisma Fit system equipped with a thirty two channels coil. Anatomical images were taken using a 3D Gradient-echo sequence and voxel size of 1x1x1 mm. Functional images were acquired as T2*-weighted echo-planar image volumes (Multi-Band EPI C2P from Minnesota University). The MultiBand EPI consisted on the parallel acquisition of 4 slices at a time, reconstructed by a parallel imaging reconstruction algorithm [START_REF] Chaâri | A waveletbased regularized reconstruction algorithm for sense parallel mri with applications to neuroimaging[END_REF]. Eighty transverse slices covering the whole brain were obtained with a TR of 1.5 s and a voxel size of 1.5 x 1.5 x 1.5 mm (TE = 26.8 ms, ip angle = 70, no gap). Moreover accurate timing of stimuli presentation relative to FMRI acquisition was achieved with an electronic trigger at the beginning of each run.

Acquisition sessions: Each subject had four sessions of scanning with a similar structure. The rst two sessions included the visual version of the pseudoword matching task and the last two sessions the auditory version. Each scanning session lasted 78 min and 6 sec with an anatomical scan and 10 functional runs structured as follows:

1. Anatomical T1 ( Data preprocessing: The OASIS-30 Atropos template atlas from Mindboggle 2 was used as reference for normalization and segmentation 2 http://www.mindboggle.info/data.html of the subjects anatomy. The methodology behind this atlas is based on state of the art algorithms from the Advanced Normalization Tools (ANTS) and a cohort of 101 manually segmented subjects, giving very precise probabilistic maps and anatomical ROIs [START_REF] Klein | Mindboggle: a scatterbrained approach to automate brain labeling[END_REF]. A transformation between this template and one provided by ICBM in MNI space was also performed for MNI coordinate reports and visualization. The ICBM 2009a Nonlinear Asymmetric template was considered [START_REF] Collins | Animal+ insect: improved cortical structure segmentation[END_REF].

After normalization and segmentation of each subject anatomy. The functional runs of all tasks were slice timed with SPM with reference to the 1st slice (default SPM behavior) and realigned with respect to the 3rd volume of the rst acquired run of the rst session. Realignment was performed with FSL MCFLIRT algorithm and co-registration was also performed with FSL but with the FLIRT algorithm employing a boundary based registration that takes into account previously performed white matter segmentation of the anatomy [START_REF] Greve | Accurate and robust brain image alignment using boundary-based registration[END_REF]. All preprocessing steps were implemented with the Nipype software [START_REF] Gorgolewski | Nipype: a exible, lightweight and extensible neuroimaging data processing framework in python[END_REF].

Data processing: Two General Linear Model (GLM) estimations were performed, one on the non-smoothed, non-normalized and realigned functional images and the second on the smoothed version of the same images, with a 6 mm Gaussian kernel. The non-smoothed beta maps derived were employed for decoding, while the smoothed beta maps were employed for parametric statistical tests. The GLM was implemented with the Nistats 3 3 https://github.com/nistats/nistats software, which is part of the Nipy and Nilearn [START_REF] Abraham | Machine learning for neuroimaging with scikit-learn[END_REF] ecosystem. A glover HRF was employed for the estimation with an additional cosine drift model to high-pass lter above 1/128Hz.

The language localizer was modelled with two regressors for the block conditions, alongside motion regressors extracted from the realignment preprocessing step. Statistical estimation of a contrast between the two block conditions was performed on the smoothed images to extract the language network.

In the case of the pseudoword matching task, each pseudoword condition was modelled with one regressor, alongside left and right motor events derived from the behavioral responses and motion regressors extracted from the realignment preprocessing step. The condition beta maps corresponding to the smoothed images were employed for statistical estimation of motor contrasts and syllable position e ects, for which a xed e ect model was considered across runs and sessions in each subject. To obtain statistical e ects of syllable position, we modelled the conditions as two factors (left and right position), with three levels (syllables , gu and na). We estimated contrast vectors for the e ect of left position, e ect of right position and interaction of left and right positions, by employing the contrasts vector speci cation procedure of Henson and Penny [START_REF] Henson | Anovas and spm[END_REF].

It has been shown that taking into account trial-to-trial variability is desirable for multivoxel pattern analysis (MVPA) [1; 140]. As we wanted to look into the representational patterns of the di erent pseudowords, we decided to also estimate one beta map per trial, following the same methods employed for beta-series analysis [START_REF] Cisler | A comparison of statistical methods for detecting context-modulated functional connectivity in fmri[END_REF]. This is also desirable to capture attention modulated variability in the voxel patterns of the pseudowords, since the task do not allow us to verify the processing integrity of each trial but only to motivate subjects engagement.

Data analysis

All data analysis was performed employing diverse Python scienti c open source libraries [START_REF] Oliphant | Python for scienti c computing[END_REF]: Numpy [START_REF] Walt | The numpy array: a structure for e cient numerical computation[END_REF], Pandas [START_REF] Mckinney | Data structures for statistical computing in python[END_REF], Matplotlib [START_REF] Hunter | Matplotlib: A 2d graphics environment[END_REF], Ipython [START_REF] Pérez | Ipython: a system for interactive scienti c computing[END_REF], Scikit-Learn [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF] and the neuroimaging library Nilearn [START_REF] Abraham | Machine learning for neuroimaging with scikit-learn[END_REF].

Regions of Interest (ROIs)

Sensory-Motor regions: In Figure 5.3 we display the contours of primary sensory-motor regions, taken from the cytoarchitectonic SPM toolbox [START_REF] Eickho | A new spm toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data[END_REF], projected on the anatomy of Subject 1 alongside the gray matter mask, the brain glass template contours were adapted to the T1 anatomy of the subject.

Notice that the primary regions are broad, since we considered any voxel with non zero probability to be part of the region, and cover both hemispheres. Sensory-motor regions projected on Subject 1 anatomy: Contours are shown for the projected primary Visual, Auditory and Motor regions, alongside the subject extracted gray matter. The brain glass template contours were adapted to the T1 anatomy of the subject. Language regions: Two sets of language regions were selected for the analysis. The rst set of regions, shown in Figure 5.4, was selected to evaluate the quality of the language localizer contrasts from a study done by Mahowald and Fedorenko [START_REF] Mahowald | Reliable individual-level neural markers of high-level language processing: a necessary precursor for relating neural variability to behavioral and genetic variability[END_REF]. In this study activation parcels were derived from similar language localizer acquisitions in hundreds of subjects, covering the whole fronto-temporal language network. Fedorenko. The brain glass template contours were adapted to the T1 anatomy of the subject. The second set of regions is shown in Figure 5.5. Diverse regions, also covering the fronto-temporal language network, that have been directly linked to binding or constituency e ects, from di erent sources, were selected to facilitate the analysis and interpretation of the results 4 . 4 Besides the ROIs nally considered, we explored peaks of pseudoword phonetic and morphological e ects from various metaanalysis [195; 178]. The e ects reported were numerous and spread across the whole frontotemporal network. We veri ed that the ROIs covered most of the e ects and opted to perform the analysis in a smaller set of bigger ROIs than what would be obtained from spheres centered at the reported e ect peaks. It could be argued that we are missing speci c e ects, but since we will implement a searchlight selection procedure of voxels, any speci c e ects should be selected inside their containing ROIs for the decoding models First we considered the left visual word form area (VWFA) that has been linked to binding of visual and verbal representations in both words and pseudowords, for early stages of language processing [41; 194; 50; 75; 205]. The VWFA was built as a 4 mm sphere centered at the x=-46, y=-61 and z=-10 in MNI space [START_REF] Dehaene | The unique role of the visual word form area in reading[END_REF].

Second we considered the left hemispheric regions derived from neural activation clusters related to phrase constituency e ects, observed in the experiment of Pallier et al. [START_REF] Pallier | Cortical representation of the constituent structure of sentences[END_REF]. In this experiment two groups of clusters were found to respond di erently to constituency manipulations in phrases and jabberwocky stimuli. Some regions responded only to semantic coherence from phrase stimuli, namely the anterior superior temporal sulcus (aSTS), the temporal pole (TP) and the temporo parietal junction (TPJ). Other regions responded also to syntactic coherence from the jabberwocky stimuli that contained pseudowords to minimize semantic content, namely the posterior superior temporal sulcus (pSTS) and the inferior frontal gyrus pars triangularis and pars orbitalis (IFGtri and IFGorb) [START_REF] Pallier | Cortical representation of the constituent structure of sentences[END_REF].

Finally we considered Broca's complex for its long standing link to binding operations in language [START_REF] Hagoort | On broca, brain, and binding: a new framework[END_REF]. We took the Broca 44 and 45 regions from the cytoarchitectonic SPM toolbox [START_REF] Eickho | A new spm toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data[END_REF], which are broad due to non zero probability consideration of voxels in the probabilistic map. 

Sanity checks

To verify the integrity of the language localizer acquisitions, we compared the thresholded activations of the contrasts (word sequence over non words sequence), with the parcels of Mahowald and Fedorenko. These parcels represent probable activation derived from thresholded maps at p < 0.001 for hundreds of subjects, so not being able to cover them with our language localizer could signal problems with the acquisition and limit our interpretation of syllabic representations in the derived language network. In the case of the pseudoword matching task runs, we validated the estimated activation maps in two ways. First we veri ed the statistical e ect of the left vs right motor response contrast and checked that we could decode left and right response activation maps derived from the GLM estimation. Second we looked for expected retinotopic e ects of the centered text in the visual modality, that implied a separation of the statistical e ects of the rst syllable position and second syllable position in the right and left hemispheres respectively.

Sensory-Motor Classification methods

Classification of motor responses: Motor classi cation was simply performed on the average beta maps of each session derived from the smoothed images GLM model, masked by the motor 4a region of the cytoarchitectonic maps. We standardized voxel activations to form the features used for training a nonlinear SVC classi er based on a radial basis functions kernel with default parameters from the Scikit-Learn [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF] software. We employed the multiclass One Vs Rest (ovr) classi cation strategy, such that the decision function is based on one classi er per condition, with a Leave One Out Cross Validation (LOOCV) procedure based on sessions.

Sensory and language classification methods

Classification models: In each Region of Interest (ROI), we trained three decoding models: the rst identifying full bi-syllabic pseudowords (CVCV model), the second identifying only rst position syllables (CV1 model) and the third identifying only second position syllables (CV2 model). Chance on the CV1 and CV2 models was 33.33% for the three conditions " ", "gu" and "na", and 11.11% on the CVCV model for the nine pseudoword conditions. Moreover we trained one model per sensory modality, so we trained one model on the visual stimuli and one model on the auditory stimuli for each ROI, except for the visual and auditory regions. In all models we tested generalization to the opposite sensory modality.

Searchlight and voxel selection procedure for ROI analysis: The ROIs that we considered had thousands of voxels (features), which could impact negatively the performance of the classi ers, so we rst decided to select promising voxels by running a Searchlight [START_REF] Etzel | Searchlight analysis: promise, pitfalls, and potential[END_REF] classi cation procedure on a 5 millimeter radius spheres. We ran the searchlight on a selection of voxels in the gray matter mask of each subject constrained by additional statistical considerations. For all regions we considered only voxels on which a 3 mm sphere centered on them contained at least one statistical e ect of syllable in rst position, of syllable in second position or position interaction with a pvalue < 0.001. For language regions we also constrained the 3 mm voxel sphere to contain at least one statistical e ect of the language network contrast with a p-value < 0.001. For the searchlight classi ers we employed the average beta maps of each session from the non smoothed images GLM model. We ran in each sphere the three classi er models for each sensory modality dataset. The classi ers accuracy was assigned to the center voxel of each sphere, resulting in three accuracy maps. Then voxels from each map were ranked and the top "n" voxels of each map alongside a 3 mm sphere around them were taken as features for the nal ROI classi er. The number "n" of top voxels to consider was cross validated in a parameter grid search of the ROI classi ers, taking values from 1 to 40 in sensory regions and from 1 to 20 in language regions. Classification procedure: For all classi cation models, we employed the multiclass One Vs Rest (ovr) classi cation strategy, such that the decision function is based on one classi er per condition. A Leave One Out Cross Validation (LOOCV) procedure based on sessions was implemented for all trained classi ers, taking into account activation maps from the 720 trials of each sensory modality. We took into account only the voxels (features) selected by the previously explained searchlight preprocessing procedure in an ROI. The trials in the training set were employed to standardize the beta activation values of all trials inside each feature. The standardized features were then passed to a NuSVC linear classi er, for which we performed a grid search for the best value of the "nu" parameter taken from 0.2, 0.5 and 0.8, alongside the number "n" of top voxels.

To estimate p-values for accuracy and other values taken from the classi er, we retrained a model 100 times with the same dataset but shu ed labels (shu ed models) 5 . From each classi cation model we extracted confusion 5 Taking into account only a 100 permutations introduced a limited precision of 10 -2 in the estimation of p-values, such that 0.01 is the best threshold that can be tested. This had to be done to reduce the computational time that was, already for a 100 permutations, around 2 hours for each model per ROI in a parallelized setup on a machine with an 8 cores 3 Ghz AMD CPU matrices and the model coe cients for further analysis.

Structural tests of representations

Null distributions for interpretation of representations tests: We will test the superposition principle and the locality of representations by interpreting measurements taken from the confusion matrix and coe cient weights of the NuSVC linear classi ers. Since the classi er has particular biases, it is important that we de ne appropriately a null distribution, such that we can assess how extreme or signi cant are the obtained measurements for a given dataset and condition labels. As was done to evaluate the classi ers accuracy, we built the null distribution by repeating the measurement in the results of the 100 shu ed models, in which the same dataset was employed but condition labels were uniformly shu ed. For demonstration here we took the shu ed models of an example dataset corresponding to the selected voxels for the visual hOc1 region classi er of Subject 4. As an additional check, we trained a 100 NuSVC classi ers with a fake white noise dataset of same dimension as the example dataset (white noise models), such that an alternative null distribution was generated using the same 100 label shu es of the shu ed models. In the following paragraphs we demonstrate that the null distribution given by the shu ed models is similar to that of the white noise models.

Reminder of the implications of the superposition principle: The superposition principle predicts that neural representations (voxel activations) should follow Equation 5.1. This means that the activation value of a pseudoword at a voxel is the sum of the activation value of a syllable bound to the rst position and the activation value of the other syllable bound to the second position. Then we expected the representation patterns of pseudowords sharing syllables in the same position to be more similar to each other than completely unrelated pseudowords. Moreover we expected pseudowords sharing syllables in di erent positions to not be more similar to each other than to other unrelated pseudowords, since the neural activity of a syllable is meant to change after being bound to its position according to Smolenky's framework.

Activation = Syllable × Position 1 + Syllable × Position 2 + Noise (5.1)
Testing superposition with confusion matrices: In Figure 5.6 we identify each of the cells of a classi er confusion matrix according to the relationship between the syllables of the true and predicted pseudowords. Besides the diagonal of the confusion matrix, that represents predicting the same original pseudoword label, encoding the accuracy of the condition, we have three more types of cells: when the pseudowords have a syllable in the same position (overlapping syllables); when there is a shared syllable but in a di erent position (shared syllables); and when there are no common syllables between pseudowords (di erent syllables). The diagonal represents the same true and predicted pseudoword. The rest of the pairs correspond to pseudowords that have an overlapping syllable in one position (Overlapping), a common non overlapping syllable (Shared) or no common syllables (Di erent)

Syllables comparison

The representation similarity structure given by the linear terms in the superposition equation should be re ected in the confusion between conditions in a linear classi er, which means that we can compare the mean confusion of the di erent cell groups to provide evidence for or against superposed representations. The principle predicts that the mean confusion between conditions with overlapping syllables should be higher than between those sharing syllables with no overlap or with di erent syllables. In Figure 5.7 we show how the mean confusion of the di erent cell groups are related in the case of the null distributions. We provide evidence in favour of superposition if the mean confusion values of the cell groups in a tested model are located above the diagonal of both plots in the Figure 5.7.

Also we have to verify that mean confusion values of a tested model have a distance from the center reference higher than chance, which is given by the vector (0.11, 0.11, 0.11) that describes equal confusion for all pseudoword categories. To make this con rmation, we computed the empirical distribution of distances between the mean confusion vectors of the shu ed models and the chance vector, from which we calculate a p-value for the vector of a tested model. We observe in the Figure 5.7 plots that the projected distribution of the cell groups mean confusion of the shu ed models is similar to that of white noise models, so we consider sensible to take the empirical distribution of shu ed models as reference to estimate p-values. From ranking the feature (voxel) coe cients of the linear classi ers of the CV1 and CV2 models we can get an idea of the level of partition of position related information in a region. Based on the voxel selection procedure, we have that the voxels selected for both models are the same or at least one set of voxels is completely contained in the other. Thanks to this we can take the "N" best voxels subset of each model and then look at the proportion of shared voxels between the two sets. We expect an statistically extreme overlap of the best voxels subsets in case of distributed representations, while we expect less overlap than that given by chance in the case of semilocal representations. We can obtain the null distribution for the overlap of each N best voxels subset from the shu ed CV1 and CV2 models.

We show in Figure 5.8 several curve distributions to demonstrate how our argument operates in practice: a red distribution derived from an example CV1 and CV2 shu e models taken from the visual hOc1 region of Subject 4; a green distribution derived from the corresponding white noise models. and a theoretical blue curve distribution that illustrates the overlap in subsets taken from two ordinary lists, that share voxel indexes, uniformly permuted to create fake random voxel rankings, which re ects our intuition of the amount of overlap that can be achieved by random uniform permutations of rankings; The blue curve distribution represents repeated overlap comparison of uniform random permutations of an index list to create fake random rankings. The red curve distribution was derived from an example set of shu ed models taken from the visual hOc1 region of Subject 4. The green curve distribution was derived from shu ed models trained on Gaussian noise data with the same shu ed labels as the example set.

As we can appreciate from the green curve distribution, the amount of overlap introduced by an SVM model trained on white noise is quite di erent from the intuition given by a simple uniform random permutation of rankings, suggesting the need to estimate an empirical distribution from each SVM model. We also observe that the shu ed models null distribution behave similar to the white noise models null distribution, so it is sensible to use the empirical distribution of the shu ed labels to estimate p-values of the low deviation, towards semilocal representations, or high deviation, towards distributed representations. We will test the overlap deviation for each "N" best voxel subset of the target CV1 and CV2 models.

In this chapter we report the data analysis results. We comment on the successful pass of all required sanity checks and analyse the properties of pseudoword representations in the selected brain regions. In particular we will demonstrate evidence in favour of superposition in anterior brain regions and other interesting e ects.

Behavioral performance

Four subjects (1 to 4), had a behavioral performance above 97% in both visual and auditory CVCV Pseudowords presentations, while Subject 05, that reported concentration span issues over all the acquisition, had a lower overall performance of 90%. Note that due to the experimental design structure, in which we only query few random samples, small score decrements can imply distraction over an important task segment. Subjects 01 and 04 reported in the second auditory session that the volume was not high enough to be comfortable, although this did not re ect on their behavioral performance. So we consider all subjects data apt to neuroimaging interpretation, with caution over Subject 05. Behavioral performance details are provided in Table 6 

Sanity checks

Language localizer activations: The contours of the language localizers' contrasts, thresholded at p-value < 10e-3, for both auditory and visual modalities are presented in Figure 6.1. We also show in Figure 6.2 the coverage of Mahowald et al. parcels [START_REF] Mahowald | Reliable individual-level neural markers of high-level language processing: a necessary precursor for relating neural variability to behavioral and genetic variability[END_REF] by the thresholded language localizers for all Visual modality Auditory modality subjects. We observe a left lateralization of the detected language network with more than 40% coverage of all the language parcels, which covers the fronto-temporal language system that has been well depicted in previous imaging studies [118; 63; 51; 16]. There is variability between the modalities, that particularly disfavours activations of the visual one, in which the subjects can get distracted from perceiving and processing the stimuli more easily, than in the auditory case. This could be expected from the intrinsic variability of di erent experimental designs in language localizers as demonstrated by Mahowald et al. [START_REF] Mahowald | Reliable individual-level neural markers of high-level language processing: a necessary precursor for relating neural variability to behavioral and genetic variability[END_REF]. Subjects 1 and 5 have a de cient coverage that will diminish our capacity to interpret syllabic representation e ects along their cortex. In particular Subject 5, who reported concentration problems, have an extremely de cient coverage of the language network. We also veri ed that we can employ a Support Vector Classi er (SVC) to Statistical images correspond to the anatomical space of each subject. distinguish left and right button press average activation maps derived from the CVCV Pseudowords presentation General Linear Model (GLM) runs. There were in total 32 maps for each condition corresponding to one map per run per session (8 runs in 4 sessions). As can be seen in Table 6.2, we achieve high classi cation scores of right and left button press events for all subjects. Moreover, the classi cation generalize across sensory modalities. Visual activations: From the statistical tests performed in the GLM beta maps, of syllable position e ects and position interaction, we observed that the statistical e ects (any syllable di erence) in left and right syllable position in the Visual hOc1 region corresponded to inversed hemispheric projections. In the experimental design we asked the subjects to xate a centered green dot before stimuli presentation. The inversed hemispheric e ect can be seen in Figure 6.4, where Subjects 1 and 4 have the clearest retinotopic activations. We obtained signi cant classi cation scores for almost all condition categories in all subjects, with subject 4 having an exemplary performance, distinguishing signi cantly all conditions in all classi ers. We show in Figure 6.5 accuracy scores from which chance baseline was substracted for each condition. All the classi ers were trained on the visual stimuli and were not able to generalize to auditory stimuli, as would be expected from primary visual areas. Signi cant scores are marked with a star in case of a p-value < 0.05. We observe, from the relative area of accuracy above chance, that we could decode syllables in each position and pseudowords best in Subjects 1 and 4. Moreover Subject 5, that reported problems with attention, had the worst classi er performance. We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables and di erent syllables. The smaller cyan dots correspond to the shu ed models of all subjects. All other dots correspond to subjects. A star means signi cance with a p-value < 0.05. The pattern of all Subjects support superposition, where Subjects 1 and 4 and the group are signi cant.
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We also observe in Figure 6.6, evidence in favour of superposed representations, as all subjects have a higher mean confusion values on pseudowords with position overlapping syllables. Subjects 1 and 4, that had the highest classi cation scores, as well as the group as a whole have a signi cant mean confusion vector, with signi cance given by a p-value < 0.05. We also observe in Figure 6.7 signi cant segments of semi-local representations in all Subjects except Subject 5. The best segment belongs to Subject 4 that had the most accurate models. More details about decoding performance in this region can be veri ed in the Appendix section A.1.

Subject 1

Subject 2 Subject 3 Subject 4 Subject 5 We trained separate models for the auditory hierarchy of regions, shown in Figure 6.4. We observed signi cant classi cation results in all regions for all Subjects. In all CVCV models there were 5 or less pseudowords with individual signi cant accuracy scores and 4 or less syllables with signi cant scores considering the CV1 and CV2 models together. Nonetheless the level of classi cation in auditory areas was far less than that obtained in visual areas and for any subject only ve or less pseudowords had an individual signi cant accuracy score. In Figure 6.8 we show the high variability in accuracies in some conditions with respect to others in the CVCV models of all regions.

The more anterior auditory region Te12 shows evidence in favour of superposition at the group level, contrary to Te10 and Te11 that show no particular pattern. We show in Figure 6.9 the pattern change with respect to superposition from region Te10 to Te12. Moreover while region Te10 We observed that few Subjects had signi cant accuracy scores in the CVCV model, with few signi cant pseudoword individual accuracies, as can be seen in Figure 6.13. There seems to be a bias in the models towards pseudowords containing the syllable " ", which is particularly emphasized by the accuracy score patterns of Subjects 1 and 4 in the auditory CVCV model. No model generalized from the sensory modality in which they were trained to the other.

Although not signi cant, patterns of the superposition test suggest evidence against superposition in this area, supporting instead a non additive model. We observed in Figure 6.14 that the mean confusion between pseudowords with overlapping syllables is less than that of pseudowords with shared syllables or di erent syllables for all Subjects. We did not nd substantial patterns in the locality test to support semi-local or distributed representations. More details on the visual and auditory decoding models can be checked in the Appendix sections A. We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables and di erent syllables. The smaller cyan dots correspond to the shu ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a tested model is re ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi cance with a p-value < 0.05

Bimodal distribution of pseudoword accuracy scores

A recurrent pattern in the pseudoword accuracy scores of the CVCV models with signi cant overall accuracy was that some of the pseudowords (4 or more) would have a non signi cant accuracy very close to chance levels, while the signi cant ones seemed to have extremely better accuracy values. This motivated us to verify the distribution of pseudoword accuracy scores from the CVCV models of regions that demonstrated evidence in favor of superposition, namely the auditory region Te12 and Broca's complex. In Figure 6.15 we show that is possible a bimodal distribution describes the accuracy scores according to their signi cance. From the three regions there were in total 24 signi cant models (with p-value < 0.05) and from these models we considered separately the accuracies of pseudowords that were signi cant, shown in red, and those that were not, shown in blue. Figure 6.15: Possible bimodal distribution of accuracy scores in superposition regions: From the regions Te12, Broca 44 and Broca 45 we considered all Subject CVCV models for which the overall accuracy was signi cant with a p-value < 0.05. In total there 24 models were signi cant. From these models we considered separately the individual accuracies of pseudowords that were signi cant with a p-value < 0.05, in red, and those that were not, in blue. A bimodal distribution appears to describe the accuracy scores categories. The black line indicates the 0.11 chance level of classi cation.

Final remarks

So far we have not mentioned results related to the language constituency regions extracted by Pallier et al., namely aSTS, TP, TPJ, pSTS, IFGorb and IFGtri. The reason can be veri ed in the decoding model details provided in Appendix A. All these regions have very low accuracy scores, with only few subjects showing signi cant accuracy scores in a few conditions, which adds di culties to the interpretation of any patterns in the locality or superposition tests. Moreover their superposition tests are inconsistent, for example Subject 4 has a signi cant value against superposition in the visual modality of IFGorb, but every other Subject, although not signi cant, follow a pattern that would be congruent instead with superposition. We show this inconsistency in Figure 6. [START_REF] Binder | Human brain language areas identi ed by functional magnetic resonance imaging[END_REF]. It seems that we were not able to decode well the bi-syllabic pseudoword representations in any region along the temporal lobes and we did not nd any CVCV, CV1 or CV2 model that generalized their predictive power across sensory modalities. To summarize, although we were not successful at decoding in several language regions, we found several e ects of representations in anterior regions, namely the auditory Te12, Broca 44 and Broca 45 shown in Figure 6.8. All this regions provided evidence in favour of superposition and demonstrated support for di erent levels of locality in representations, where Te12 strongly supported semi-local representations while Broca's complex pointed at distributed representations. Moreover we found in these regions evidence for a bimodal distribution of the particular pseudoword accuracy scores. Finally we provided weak evidence for non additive representations in the VWFA and modulation of the region by auditory stimuli. In this chapter we interpret the results obtained from the analysis of sensory and language related representations of pseudowords. Then we comment on the decisions and limitations of the experimental design. Finally we provide our perspective for further experimentation to test Smolensky's superposition principle and other properties of tensor product representations.

Results interpretation

We expected, from well known retinotopic e ects in the primary visual cortex [START_REF] Tootell | From retinotopy to recognition: fmri in human visual cortex[END_REF], to see an hemispheric partition of left and right syllable position e ects, such that left syllable e ects would be emphasized in the right hemisphere and right syllable e ects in the left hemisphere. This was the case, but we could also appreciate in the images that some subjects did not manage to completely follow the xation instruction, since e ects of both positions were present together in both hemispheres. It could have been useful to have eye tracking recordings to be able to account in visual areas for gaze position when evaluating representations, nonetheless this was not crucial for us since superposition of representation in visual areas is known and was just looked for as a quality check of the activation maps. The size of the text presented in the Pseudowords matching task, around ve horizontal degrees, allowed us to induce enough spatial spread in the voxel activations, due to retinotopic mapping. Thanks to this we obtained high classi cation results across all pseudoword conditions, even while ignoring e ects of gaze movement.

In the case of auditory representations, since we maximized the featural distance between consonants and between vowels [START_REF] Bouchard | Functional organization of human sensorimotor cortex for speech articulation[END_REF], we expected to be able to decode syllables with higher accuracies than the ones we observed. Nonetheless other experiments in which syllable representations have been decoded employed fast sparse protocols that allowed presentation of syllables during a silence gap [START_REF] Evans | Hierarchical organization of auditory and motor representations in speech perception: evidence from searchlight similarity analysis[END_REF]. Our decision of not employing a di erent acquisition protocol across sensory modalities, to have comparable results in abstract representations, compromised our capacity to perform decoding in the auditory cortex.

Still our decoding results are coherent with evidence of hierarchical organization of the auditory and speech pathways. Previous evidence suggest that speech-speci c responses to isolated syllables are only observed in later stages of processing [90; 112; 183], and we decode syllables better on the Te12 more anterior region of the primary auditory areas. Moreover we were able to demonstrate evidence in favour of superposition and semi-local representations in this region.

We also found evidence for superposition in the Broca's complex (Broca 44 and Broca 45), that had the best signi cant accuracy scores from the language related regions tested. It has been shown through a series of neuroimaging studies pooled in a meta-analysis [START_REF] Zaccarella | Reviewing the functional basis of the syntactic merge mechanism for language: A coordinatebased activation likelihood estimation meta-analysis[END_REF], that Broca 44 is consistently engaged with syntactic binding operations, alongside the posterior superior temporal sulcus (pSTS) and the superior temporal gyrus (STG). In the same metaanalysis it is argued that Broca 44 is a pure syntactic processor, while pSTS and STG integrate syntactic and semantic information. The fact that we also nd evidence for distributed representations in the Broca's complex turns it into the most promising region to further test Smolensky's tensor product representations.

In the rest of the language regions extracted from the study of Pallier et al. [START_REF] Pallier | Cortical representation of the constituent structure of sentences[END_REF], for which semantic and syntactic coherence e ects of constituency were demonstrated, we were not able to nd any clear patterns to report and most accuracy scores were insigni cant. In the case of the regions aSTS, TP and TPJ that were only sensitive to semantic coherence, not nding pseudoword representations could be expected. On the other hand pSTS, IFGorb and IFGtri were also sensitive to syntactic coherence, so we considered the possibility of nding pseudoword representations. The fact that we did not nd any signi cant representations in these regions could be explained by the claims of the meta-analysis of Zaccarella et al. [START_REF] Zaccarella | Reviewing the functional basis of the syntactic merge mechanism for language: A coordinatebased activation likelihood estimation meta-analysis[END_REF], in which IFG was not particularly linked to binding operations and pSTS was linked to the integration of syntactic and semantic information that we lack in pseudowords. Moreover Matchin et al. [START_REF] Matchin | The role of the ifg and psts in syntactic prediction: Evidence from a parametric study of hierarchical structure in fmri[END_REF] demonstrate that pSTS, IFGtri and IFGorb might be related to topdown syntactic prediction instead of basic syntactic combination. Since we are presenting pseudowords in isolation we would not expect top-down syntactic predictions to take place.

The VWFA, linked to binding of visual and verbal representations in both words and pseudowords, for early stages of language processing [41; 194; 50; 75; 205], showed evidence against superposition or in favor of non additive models. This result goes in hand with the study of Glezer et al. [START_REF] Glezer | Evidence for highly selective neuronal tuning to whole words in the "visual word form area[END_REF] that argues against theories of sublexical representation in the VWFA. Moreover the fact that we found signi cant accuracy scores in the auditory modality supports previous evidence about speech modulation of the VWFA [START_REF] Yoncheva | Auditory selective attention to speech modulates activity in the visual word form area[END_REF].

One important clari cation to make regarding evidence against superposition is that such evidence do not necessarily immediately discards Smolensky's model of generalized tensor product representations, but only its basic version, in which the nal composition step of symbolic structures is given by addition. In the generalized version other operations are allowed to take place after construction of the nal symbolic structure, like tensor contractions, exempli ed by the memory e cient holographic reduced representations of Plate [START_REF] Plate | Holographic reduced representations[END_REF]. More analysis of the origin of the non additive pattern observed in the VWFA will be necessary to completely discard application of Smolensky's framework to its internal representations.

We observed an extreme variability between pseudowords with signi cant and non signi cant accuracy scores. We con rmed this variability by simply plotting the histograms of the separate distributions of signi cantly and non signi cantly classi ed conditions. We found an approximate bimodal distribution. This result is di cult to interpret without more detailed inspection of the decoding models. Other factors related to model training could in uence this result, like the bias introduced for not doing a nested cross validation or the greedy voxel spheres selection approach implemented. Nonetheless we think this result can be explained by a lack of sparsity or variability in the spread of neural activations of the underlying neural unit patterns. Lacking variability in the spatial distribution of activations decreases the probability of nding substantial di erences in the aggregated neural activity values of voxels. An example in which underlying neural patterns lead to aggregated activity in voxels that can not di erentiate pseudoword conditions is shown in Figure 7.1.

A nal unexpected result was the complete lack of generalization between sensory modalities in all classi cation models. This can be accommodated by two di erent interpretations. On one hand it is possible that noise in BOLD-fMRI measurements or non unique spatial assignment of neural vectors to neural units do not let us generalize across datasets. On the other hand it is also possible that there are no amodal abstract representations for simple stimuli like bi-syllabic pseudowords. We would require further tests of stability, outliers and to assess generalization across more datasets to con rm which is the case.

Limitations of the experimental design and methodology

With the objective of testing the superposition principle on syntactic operations of language, we opted for the simplest stimuli we could use as a rst approach, namely two-syllabic pseudowords. Nonetheless even with this simple stimuli, due to the nature of BOLD imaging, our experiment su ered from several methodological limitations.

Following Devonshire et al. [START_REF] Devonshire | Neurovascular coupling is brain region-dependent[END_REF] guidelines to counteract possible nonlinearities in the mapping from neural activity to the BOLD response, we designed a task to keep a pseudoword in memory to prolong its duration and tried to extend ISI as much as possible, 7 seconds, to still preserve a good sample size of the 9 stimuli conditions, 40 samples per condition per Illutration of superposed tensor product representation in BOLD-fMRI: We present the example neural vectors of the syllables "na" and "gu" bound to the left and right positions of a bi-syllabic pseudoword. We illustrate how the level of BOLD activity should re ect the aggregated activity of a segment of the neural units that form a representation. The superposition principle implies the sum of the vector values from each binding to give the nal total activity in a voxel. The voxel values of the pseudoword "nagu" correspond to the plots of the neural vectors and those of the pseudoword "guna" were derived in a similar way. Due to the e ect of aggregation, no voxel in the example permits di erentiating the two pseudowords, even though the neural unit patterns are linearly independent between Roles and between Fillers.

session. Nonetheless this is far from the actual long stimuli durations of 40 s at which linearity was ensured [START_REF] Devonshire | Neurovascular coupling is brain region-dependent[END_REF]. We consider testing in the future the modulation of BOLD responses to the target stimuli instead of using heuristics to setup design parameters, which will be important to test this kind of model assumptions, that are sensitive to the underlying neural interpretation of the BOLD response.

Regarding the task, the fact that we did not probe every trial limited our capacity to assess attention modulation and outliers of the internal representations. Considering that we did not nd a uniform increase in accuracy across the di erent pseudoword conditions, it could have been useful to assess if the variability in representations could be explained by correlates of attention.

In the case of the decoding methodology, there are several decisions that were made heuristically to save computational resources. For example we did not smooth the data to avoid inducing additional voxel correlations that would complicate interpretation of the feature coe cients of the classi er and to better exploit any extreme e ects in particular voxels, but we could have explored the e ect of di erent smoothing kernel sizes. Also for the searchlight voxel selection procedure we xed the radius of the spheres to 5 mm, which means a 2 voxel radius for our acquisition parameter to search for local e ects, and passed the complete spheres to the classi er. Instead we could have also determined empirically how this radius a ects classi ers performance. Moreover the fact that we performed a grid search without a nested cross validation could have introduced a small positive bias in the classi cation results [START_REF] Cawley | On over-tting in model selection and subsequent selection bias in performance evaluation[END_REF]. To improve classi cation accuracy and compensate the high number of features in the classi ers, a 100 or more, we decided to ask the same subjects to come for several sessions to increase our sample size, such that we would have at least 80 samples per condition per sensory modality, but with respect to the number of features in classi ers this remains a very small sample size.

Future perspective

In this work we selected the simplest stimuli possible as a rst approach to test the superposition principle in syntactic operations of language, but it will be interesting to go further and test superposition in more complex syntactic stimuli like pseudoword lists and jabberwocky phrases. Nonetheless this would increase the challenges faced when working with BOLD-fMRI by introducing additional variables in the experimental design like stimuli duration, length in terms of number of words and rate of word presentation.

All this additional experimental factors have been shown to induce nonlinear BOLD responses. Saturation from long phrase reading and nonlinear modulation from word presentation rate have been demonstrated [START_REF] Rees | Characterizing the relationship between bold contrast and regional cerebral blood ow measurements by varying the stimulus presentation rate[END_REF]. Nonlinear e ects of presentation rate have been shown to be similar in words and pseudowords and spatially heterogeneous across brain regions [START_REF] Mechelli | The e ects of presentation rate during word and pseudoword reading: a comparison of pet and fmri[END_REF]. Also nonlinear e ects of stimuli duration have been shown to be spatially heterogeneous [START_REF] Birn | Spatial heterogeneity of the nonlinear dynamics in the fmri bold response[END_REF]. If we expect representations of multiple words to be completely distributed we also have to be careful about the rate of presentation due to possible neural adaptation e ects [START_REF] Kim | Frequencydependent neural activity, cbf, and bold fmri to somatosensory stimuli in iso urane-anesthetized rats[END_REF]. It will be necessary to study in detail the optimal setup of the mentioned experimental parameters, to diminish or correct the nonlinearities that can a ect evidence for additive linear models of composition like the superposition principle.

In our experiment we only found evidence for superposition in a small set of regions located close to each other, namely Broca's complex and the anterior primary auditory region Te12. Considering that there is spatial heterogeneity of BOLD activation patterns across the brain, the best path of action would be to focus future acquisition of images in speci c brain regions. Focusing on acquiring only a sub-volume of the cortex can facilitate improving spatial and temporal resolution of the BOLD signal. Moreover the uneven classi cation of individual pseudowords conditions, that we interpret as lack of variability in the spatial distribution of neural activations at the 3T 1.5 mm isometric resolution analysed, suggest to attempt similar and new experiments at higher imaging resolutions. For example high resolution laminar imaging with boundary based surface registration has been shown to reveal internal visual representations discernible with the bare eyes [START_REF] Lawrence | Laminar fmri: applications for cognitive neuroscience[END_REF]. In addition, focusing on speci c regions facilitates the design of functional localizer paradigms to better segment target regions for analysis and reduction of the amount of voxels (features) provided to decoding models. Also exploring sub-volumes of anterior brain regions in future experiments suggest to rely more on speech than reading. Since we also found evidence for superposition in auditory regions linked to later stages of speech processing (Te12), it will be interesting to study in detail how the properties of auditory representations change from non additive to superposed and from semi-local to completely distributed. Lack of consideration of the problems introduced by the fMRI acoustic noise greatly diminished the performance of our classi ers. Future experiments should carefully pilot the e ect of fast sparse protocols on the study of the properties of representations like the superposition principle, since they add their own constraints to the experimental design [START_REF] Perrachione | Optimized design and analysis of sparse-sampling fmri experiments[END_REF]. Studying in detail superposition and hierarchical processing of individual pseudowords in auditory regions with laminar fMRI, might be a good rst step before continuing the analysis to the Broca's complex with pseudoword lists and jabberwocky.

Regarding our ndings in the VWFA, we consider running future tests on this region to con rm in more detail the non additive nature of its representations will be interesting. For future experiments, considering the small size of the VWFA, we recommend also designing a localizer task to delineate with more certainty its location in individual subjects.

Besides further testing the superposition principle, it will also be important to better assess the stability of representations, which we considered was a weakness in our work. We had signi cant classi cation scores, but these were still quite low, only around 20%, to evaluate individual representations. We were not able for example, to determine if the bimodal distribution of accuracy scores could be explained by outliers or attention modulation e ects. Since neural ring thresholds are known to alter according to arousal state [START_REF] Mccormick | Sleep and arousal: thalamocortical mechanisms[END_REF], it will be important to include in future tasks processing con rmation of individual stimuli and assessment of attention modulation.

In conclusion, we think we have provided enough evidence for the superposition principle in anterior brain regions to motivate further experimentation based on Smolensky's tensor product representations. We expect to have illustrated well the great challenges behind testing experimentally even the simplest assumptions of this theoretical model. Considering the contrast between the maturity of theoretical models and the lack of empirical tests of their most basic assumptions, we hope to incentivize more work in the experimental direction.

8 Language binding e ects in neuroimaging and the Neural Blackboard Architecture

In this chapter we present some language neuroimaging studies of binding that we consider important and interesting to attempt reproduction with simulation of the Neural Blackboard Architecture (NBA). We also introduce the application of the NBA to syntactic representations in phrases.

Some language neuroimaging studies of binding

Most linguistic theories assume a constituency property that allows to combine and replace smaller phrases in larger phrases. Since solving variable binding requires an explanation of how to implement links between bits of information -like words and word types -to create basic data structures, like phrases in language, it is likely to also explain how to create links between such basic structures.

Behavioral evidence for constituents in phrases has been around for a while [15; 3], with more recent studies demonstrating the reuse of recently heard syntactic structures through syntactic priming experimental paradigms [19; 23]. But only recently we have started to characterize the detailed neural correlates of constituency and word binding with diverse brain-imaging techniques [141; 64; 25; 54; 12; 153; 11; 117].

We selected The ECoG analysis of Nelson et al. [START_REF] Nelson | Neurophysiological dynamics of phrase-structure building during sentence processing[END_REF] as the rst study to compare to our model. It is one of the only two studies so far demonstrating spatially speci c and temporally detailed neural dynamics of phrase processing, made possible by analyses of intracranial neurophysiological data taken from epileptic patients. Moreover it is the rst one to characterize the speci c patterns of phrase-structure formation, possibly revealing the rst neural signatures of variable binding related operations. Nelson et al. refer to them as "merge" operations that combine syntactic objects (word types and phrase types). In the study words were presented sequentially to patients in a screen to be read under a Rapid Serial Visual Presentation paradigm. The task was to keep a phrase of up to 10 words in memory to compare it just after with a probe sentence composed of 2 to 5 words. We will show that simulation of the NBA portion responsible for variable binding, while only tuned for correct operation, generates strikingly similar temporal patterns of neural activity when aggregating the binding operations corresponding to complete phrase processing, assuming the phrase grammar and bottom-up parsing scheme employed by Nelson et al. in their analyses.

As a second study, we selected an fMRI experiment [START_REF] Pallier | Cortical representation of the constituent structure of sentences[END_REF] to portray the capacity of the model to capture results from multiple neuroimaging spatiotemporal scales. In this experiment, trials with lists of 12 words obtained by concatenating phrases of a given length, were presented to healthy subjects. Conditions were formed from all combinations of m by n that give 12, satisfying the form n phrases of m words, like 2 phrases of 6 words. Besides normal words, the design also included pseudoword conditions that maintained morphological markers and closed-class (function) words. This allowed the authors to demonstrate a clear separation of syntactic and semantic binding neural activation patterns in language related regions, which is interesting to us, since syntactic speci c patterns are the closest to the abstract considerations of binding of our model, assuming the same phrase grammar and parsing scheme employed for comparison with the ECoG results. The authors found a sub-linear pattern of neural activation as the number of constituents increase, which could not be explained by a simple "accumulation" model motivated by measurements of sequence learning tasks in awake macaque monkeys. The Neural Blackboard Architecture predicts this sub-linear e ect from the circuit recruitment process required by the number of binding operations, alongside expected patterns of hemodynamic peak onset di erences from delay activity considerations.

The Neural Blackboard Architecture (NBA) applied to language

The details presented in this section are a literal reminder of those already developed in subsections 1.3 and 1.3 of Chapter 1, so in case that chapter was consulted recently we recommend skipping to the next chapter 9. What we present here are only the key aspects of the Neural Blackboard Architecture that must be understood to follow details of the circuit implementation presented in the following chapters. To understand more details about the properties of neural representations in the NBA please consult section 1.3 of Chapter 1.

There are several previous instantiations of sub-circuits of the NBA with varying degrees of biological plausibility, the latest relying mostly on Wilson Cowan population dynamics [START_REF] Destexhe | The Wilson-Cowan model 36 years later[END_REF]. Some of the previous simulations attempted to address diverse aspects of language processing, such as ambiguity [START_REF] Frank | Linking population dynamics and high-level cognition: Ambiguity resolution in a neural sentence processing model[END_REF] and learning control from syntactic stimuli [START_REF] Van Der Velde | Learning of control in a neural architecture of grounded language processing[END_REF]. Other simulations addressed circuit implementation issues like how to develop a connectivity matrix with randomly connected networks [START_REF] Van Der Velde | Development of a connection matrix for productive grounded cognition[END_REF] and how to implement a central pattern generator sub-circuit for sequential activation [START_REF] Van Dijk | A central pattern generator for controlling sequential activation in a neural architecture for sentence processing[END_REF] In the following paragraphs we summarize the main abstract mechanisms and assumptions behind the NBA to implement binding operations. A complete illustration of the blackboard architecture is provided in Figure 8.1. For a deeper review we recommend reading a recent paper with a circuit design and examples that focus on sentence processing [START_REF] Kamps | Combinatorial structures and processing in neural blackboard architectures[END_REF], as well as the original framework proposal introducing abstract combinatorial structures [START_REF] Van Der Velde | Neural blackboard architectures of combinatorial structures in cognition[END_REF].

Figure 8.1: The Neural Blackboard architecture: A. Gating circuit that allows the implementation of conditional neural activity transfer between Neural assemblies X and Y through a gate assembly. The gate keeper assembly (GK) is activated by the X assembly and then inhibits the gate assembly (G). To let information ow through the gate assembly, a control assembly (Ctl) must therefore inhibit the gate keeper assembly. B. Architecture of a single compartment circuit of a connection matrix. Six gating circuits are arranged in a way that makes conditional bidirectional neural activity ow between two main assemblies possible. Control assemblies regulate the direction of information ow and allow the activation of sub assemblies. The two sub assemblies excitep the working memory assembly which, once activated, encode the binding of the main assemblies and allow activation to ow between them if the controls allow it too. C. Each connection matrix contain n by m compartment circuits that encode the same relationship type between the same pair of assembly categories. There are m available assemblies for one category and n available assemblies for the complementary category and only one cell circuit can activate its working memory assembly to link two particular assemblies due to mutual row and column inhibition of cells in the connection matrix. The size of the connection matrix e ectively represents memory limitations. A blackboard is composed of an arbitrary number of connection matrices that encode di erent relationship types for a pair of assembly categories. D. A blackboard is composed of multiple connection matrices, where each of them is de ned by two node categories and a relationship type between them. E. Example of a possible tree structure that can be represented based on the speci ed connection matrices.

Nodes in Figures 8.1.A and 8.1.B represent neural assemblies that can be interpreted as linked spiking neural populations. The most basic component of the NBA is a "Gating Circuit" illustrated in Figure 8.1.A. The main idea is that neural activity would ow from the assembly X to the assembly Y, but is blocked by the Gate Keeper (GK) assembly, which itself is excitepd by assembly X. So to allow directional activity ow from X to Y, a Control (Ctl) assembly has to inhibit the GK assembly. Notice that it is trivial to extend the gating circuit for bidirectional control of activity ow as illustrated in Another basic component of the NBA is a proposal for working memory (WM). Persistent neural activity in response to stimuli is considered to be the neural process underlying active (working) memory, and its implementation is hypothesized to be based on excitatory reverberation [START_REF] Wang | Synaptic reverberation underlying mnemonic persistent activity[END_REF]. Based on this, the NBA considers a Delay Activity [START_REF] De Kamps | A model for delay activity without recurrent excitation[END_REF] mechanism as a biologically plausible implementation of WM. It consists on a neural assembly, that after being excited beyond a certain threshold, achieved by the co-activation of input populations, will maintain a constant amount of activation for a short period of time. By maintaining its activity, WM acts as a short lived bidirectional link between two assemblies. This mechanism can be considered as the creation of an implicit pointer from one assembly to the other, such that future reactivation of one assembly can be driven from the other to perform query operations. This conforms a "Memory Circuit" as depicted in Figure 8.1.B.

Two bidirectional "Gating Circuits" connected by a "Memory Circuit" form a "Compartment Circuit" capable of implementing variable binding and query operations. The key point of this circuit is that Main assemblies (MA), representing grounded concepts or instances of variables types, activate Sub assemblies (SA) if a control signal driven by another mechanism allows it. Then co-activation of SAs is what realizes a temporary binding of MAs by activating WM. So one "Compartment Circuit" models speci cally the neural activity of a variable binding operation. It is operated by a mechanism that drives control signals simultaneously in multiple "Compartment Circuits" to instantiate binary tree like data structures on which query/unbinding operations can be performed later.

As might be evident by now, applying the NBA to syntactic processing in language consists of two simple assumptions. First, equating the parsing mechanism to the control mechanism that coordinate binding events of words and word types and phrase types. Second, determining the number of compartment circuits necessary to instantiate a complete syntactic structure and the content of MA nodes from a grammar theory. In this work we will only employ a phrase grammar and bottom-up parsing scheme following theoretical assumptions of selected neuroimaging experiments. Nonetheless, a promising feature of the NBA is that it has the exibility to test any arbitrary parsing mechanism incorporating top-down considerations and an important variety of alternative theories of grammar based on binary trees. For example dependency grammars that assume multiple direct word bindings instead of the hierarchical phrase bindings modelled in this work have been employed in previous simulations [START_REF] Van Der Velde | Learning of control in a neural architecture of grounded language processing[END_REF].

To understand how a sentence is processed in the NBA, let us consider rst the simplest case of binding two words, like "Sad student", belonging to grammatical categories instantiated in the MAs of one "Compartment Circuit", such that one MA is an "Adjective" corresponding to "sad" and the other one is a "Noun" corresponding to "student". The MAs activate with timings corresponding to word presentation, so we are assuming that words were recognized to motivate their corresponding instantiated grammatical categories before we attempt to link them. Then an assumed parsing mechanism determines that a link operating on "Adjective" and "Noun" types is necessary in the blackboard, driving activity in several "Compartment Circuits" from which only one, that we consider as the recruited "Compartment Circuit", completes co-activation of SAs to drive WM and realize binding between the word types.

In the case of a complete phrase, like "Fat sad student", if we are assuming the instantiation of phrase types that form a hierarchical tree theorized by a phrase grammar, then the time at which the binding of the instantiated grammatical categories of "sad student" takes place would be the time at which a "Noun Phrase" is activated and bound to the "Adjective" corresponding to "Ten".

Finally, a "Connection Matrix", portrayed in Figure 8.1.C, allows the implementation of a complete "Blackboard". It contains variable type relations learned by the "Blackboard" as sets of mutually inhibitory "Compartment Circuits" that enable the selection of the "Compartment Circuits" requested by the control mechanism. We portray the "Blackboard" as a regular grid for illustrative purposes, although there is already a proof of concept implementation with randomly connected networks [START_REF] Van Der Velde | Development of a connection matrix for productive grounded cognition[END_REF]. Nonetheless in this work we will ignore the "Connection Matrix" dynamics by considering the "Compartment Circuits" as individual isolated circuits, since we lack information to form hypothesis about the size of the Blackboard, total number of Connection matrices and other important parameters. Simplifying our simulation by ignoring the "Connection Matrix" dynamics should only a ect substantially predictions on language processing variables unrelated to binding, like memory constraints, which we do not explore in this work.

To implement a general syntactic control mechanism, although challenging, should be feasible, as suggested by the Feed-forward arti cial neural networks employed in previous NBA simulations [START_REF] Van Der Velde | Learning of control in a neural architecture of grounded language processing[END_REF] and recent state of the art feed-forward network architectures that have shown top performance for diverse language parsing tasks [START_REF] Andor | Globally normalized transition-based neural networks[END_REF]. Moreover a more recent proposed extension of the NBA, that imitates the motor circuit of the marine mollusc Tritonia diomedea, shows how to generate patterns for sequential activation control [START_REF] Van Dijk | A central pattern generator for controlling sequential activation in a neural architecture for sentence processing[END_REF]. Nonetheless we considered that simulating the higher level mechanisms of control is a task out of the scope of this work, since we focus speci cally on reproducing the neural signatures of variable binding operations.

In this chapter we present the architectural decisions of the simulation, how we determined the diverse parameters of the Compartment Circuit of the Neural Blackboard Architecture (NBA) and the experiments performed to tune the circuit for correct binding operation.

NBA simulation

Previous simulations of the NBA approximate the mean activity of neural assemblies with Wilson Cowan dynamics [START_REF] Frank | Linking population dynamics and high-level cognition: Ambiguity resolution in a neural sentence processing model[END_REF]. Nonetheless, as explained in Chapter 2 Section 2.2, direct simulations of leaky-integrate-and-re (LIF) neurons [START_REF] Omurtag | On the simulation of large populations of neurons[END_REF] have di erent transient behaviour than the dynamics described by the Wilson Cowan equations.Since we are interested in modelling the transient dynamics of variable binding in order to compare the simulation with real temporally detailed patterns of intracortical neural measurements like ECoG, we feel the need to model spiking neuron dynamics is important.

The decision to use AdEx, rather than LIF neurons has two motivations: rst, adaptation is ubiquitous and its inclusion has a substantial impact on the dynamical range allowed within the constraints of the blackboard architecture. Second, it has been shown that 2D models, like AdEx, can already predict correctly 96% of the spikes of detailed conductance models [START_REF] Brette | Adaptive exponential integrate-and-re model as an e ective description of neuronal activity[END_REF]. Also, this model reproduces many known electro-physiological features, as can be appreciated in the spike-frequency adaptation review of Benda et al. [13; 14]. Our approach is consistent with a trend towards simpler, geometrically motivated 2D models that preserve the essence of more complex biophysically motivated models [START_REF] Izhikevich | Dynamical systems in neuroscience[END_REF].

AdEx is now available in MIIND. To our knowledge this is the rst time that the AdEx model will be employed to approximate the neural dynamics of a circuit of this magnitude reproducing cognitive function.

In the case of Delay Activity (DA) populations like Working Memory (WM), we decided as a rst approach to model such a mechanism phenomenologically. We plan to address the di erent alternatives to model persistent cortical activity with interacting neural populations in future work. As suggested by de Kamps [START_REF] De Kamps | A model for delay activity without recurrent excitation[END_REF] not only models of recurrent excitation but also recurrent inhibition can account for this phenomena. In the current simulation, a constant ring rate for DAs is kicked o by a speci ed level of input, resulting in activation that is sustained for a predetermined period of time. Contrary to previous simulations [START_REF] Van De Velde | Ambiguity resolution in a Neural Blackboard Architecture for sentence structure[END_REF], we do not consider Sub-Assemblies (SAs) as DA populations. We nd that SAs can show rich and interesting dynamics just by ful lling their function of mediating activation for WM.

We model Main-Assemblies (MAs) as receiving input from DA populations, representing word types in some cases, and WM populations representing phrase types in other cases. We do this to satisfy the assumptions of a phrase grammar that requires representation of deep tree hierarchical structures, so that we can separate the notion of a phrase resulting from previous word type bindings stored in WM, from the recruitment of MAs representing word grammatical category instantiations that take place during sentence processing. Note that for other grammar types, like dependency grammars considered in previous NBA simulations [START_REF] Van De Velde | Ambiguity resolution in a Neural Blackboard Architecture for sentence structure[END_REF], to consider words as nodes in their syntactic representations, we only need to model word types for the MAs of the necessary compartment circuits.

Compartment circuit parameters

The compartment circuit contains two di erent types of neural populations. Arti cial neural populations following a boxcar event model, shown in Figure 9.1.B and biological neural populations following LIF or AdEx neural models. We took LIF parameters from [START_REF] Omurtag | On the simulation of large populations of neurons[END_REF] [START_REF] Omurtag | On the simulation of large populations of neurons[END_REF] and AdEx parameters from Brette and Gertsner [START_REF] Brette | Adaptive Exponential Integrate-and-Fire Model as an E ective Description of Neuronal Activity[END_REF].

As a rst step we wanted to only explore the general behavior of the circuit of neural populations following well studied sets of parameters. Nonetheless it is clear that studying the neural dynamics of speci c brain regions might require adapting the parameters of the neural models to local measurements. Each neural population is either excitatory or inhibitory; this means that a population that is excitatory (inhibitory) on one population is excitatory (inhibitory) on others as well, respecting Dale's law.

The dynamics of most populations are given by the PDTs and ultimately determined by the underlying model of spiking neurons. These neural populations comprise a pair of Main Assemblies (MA), a pair of Sub Assemblies (SA), six Gate Assemblies (G) and six Gate Keeper Assemblies (GK).

Nonetheless there are a few other populations for which we simpli ed the simulation to the phenomenological level with an imitation of Delay Activity, which means that, after transient stimulation, a population retains its activation above a certain threshold for a given period of time. For instance, the biophysical mechanisms of WM are still not understood completely, but its characterization as Delay Activity is relatively uncontroversial. We modelled in this way, Control assemblies (Ctl), Working memory assemblies (WM), Event Input Assemblies (Inp) and a Baseline Assembly (B) that drives baseline We use a boxcar event model for persistent activity. This model requires speci cation of the starting point of events, the persistent ring rate of the population and the duration of the persistent activity. In the case of the Delay Activity of WM we also have to provide a kicko input rate threshold that automatically triggers the boxcar event instead of providing a start time point. The duration of persistent activity was pragmatically set up long enough for the neural dynamics to reach steady state and allow the formation of all required bindings between phrase types and word types. Finally the persistent activity rate and kicko rate threshold were arbitrarily selected from possible parameter range values as a result of simulations of the circuit dynamics that will become clear in the following section.

Selecting ring rates to tune the compartment circuit is a complex task given the contrast between the extremely simpli ed circuit and real neural networks that contain multiple types of neurons with diverging behavior across cortical layers [START_REF] Wohrer | Populationwide distributions of neural activity during perceptual decisionmaking[END_REF]. Wohrer et al [START_REF] Wohrer | Populationwide distributions of neural activity during perceptual decisionmaking[END_REF] show, from measurements in rat cortex, that the actual ring rate distributions of neural networks do not di er much between resting state and evoked activity. The small di erence would come from very few neurons that manage to drive up the mean ring rate in recordings while most neurons in the population are almost silent, some with rates as low as 0.1 Hz [START_REF] Kerr | From The Cover: Imaging input and output of neocortical networks in vivo[END_REF], whose activity might not even be picked up by most recording devices. Although theoretical analysis of the distribution of ring rates in randomly recurrently connected networks of LIF neurons near the uctuation-driven regime suggests considering mean ring rates around 6.4 Hz [START_REF] Roxin | On the Distribution of Firing Rates in Networks of Cortical Neurons[END_REF]. Based on the review of Wohrer et al. [START_REF] Wohrer | Populationwide distributions of neural activity during perceptual decisionmaking[END_REF], particularly on the ring rate in motor areas of behaving macaques, we decided to kickstart biological neural populations activity up to a conservative baseline ring rate of 1 Hz and study the neural dynamics of circuit input ring rates of up to 10Hz.

There are two parameters governing transmission of neural activity between neural populations. First, the synaptic e cacy of connections, which was setup to be uniform across the circuit under the lack of appropriate hypothesis to tinker it in a detailed manner. According to London [START_REF] London | The information e cacy of a synapse[END_REF], current understanding of synapses is limited and contextual measurements and parametrization of e cacy might be more appropriate than xing individual connection parameters. For example recent evidence [START_REF] Briggs | Attention enhances synaptic e cacy and the signal-to-noise ratio in neural circuits[END_REF] shows that synaptic e cacy might be modulated by attention processes. In the study of Briggs [START_REF] Briggs | Attention enhances synaptic e cacy and the signal-to-noise ratio in neural circuits[END_REF] neurons of the thalamus were stimulated while measuring evoked responses from corresponding monosynaptically connected neurons in primary visual cortex. With this procedure the authors showed that, the percentage of shocks that evoke a postsynaptic response, the average e cacy, ranged from 28% to 36% depending on the type of neurons considered and the attention state. Considering the possible e cacy variability in cortex, we decided to verify, through simulations of a sub-circuit, the sensitivity of the circuit temporal dynamics to low (10%) and high (30%) values of synaptic e cacy, where percentages are taken with respect to the di erence between equilibrium and threshold potential, for both LIF and AdEx populations.

The second parameter governing transmission of neural activity was the number of connections between a pair of neural populations. Unlike synaptic e cacy, the number of connections were determined from a series of simulation experiments. First the number of connections from baseline persistent activity was set such that, during rest, the circuit steady state activity would stabilize around 1 Hz. The number of baseline connections necessary is a function of input ring rate, synaptic e cacy and neural model, such that a lower synaptic e cacy required a higher number of connections. Then the number of connections coming from excitatory populations was determined such that bidirectional gating circuits would have a stable steady state ring rate when both Gs allow neural activity to be transmitted. Finally the number of connections coming from inhibitory nodes were setup high enough to block neural activity ow in a gating circuit, which means that GKs driven by MAs would be able to completely inhibit activity in Gs. Our simple approach to neural rate transmission ignores many intricacies like activity regimes that might allow rich internal computations. [START_REF] Ostojic | Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons[END_REF]. Also connections distribution might have an impact in spike based communication [START_REF] Teramae | Optimal spike-based communication in excitable networks with strong-sparse and weakdense links[END_REF]. Still we decided to keep connections between populations as simple and homogeneous as possible for a rst approach. The rst simulation simply consists of the activity of one neural population driven by a xed activity rate of 1 Hz. We used this simulation to explore the necessary number of baseline connections to drive baseline activity in the circuit to approximately 1 Hz. The second simulation allowed us to explore how neural activity ows through a chain of neural populations being regulated by a control mechanism. The third simulation explores how neural activity is enhanced by a closed loop between a MA and SA, since it will be the case in the memory sub-circuit that activity is allowed to ow bidirectionally once the WM delay activity is unleashed. Finally the fourth simulation consists on adding GKs to the closed loop sub-circuit of the second simulation to explore how many inhibitory connections are necessary to keep activity from owing in the circuit unless the control mechanism allows it.

Simulation experiments performed

After determining reasonable parameter values, we simulated the complete circuit, shown in Figure 9.1, for both LIF and AdEX neural populations. Then we compared the resulting neural patterns of the MA, SA, G and GK neural populations to binding and constituency e ects available in the neuroimaging literature.

We simulated the binding activity related to the processing of complete phrases, by assuming a syntactic tree structure given by a phrase grammar and the order of control events given by a bottom up parsing scheme. As a rst simpli ed approximation to the NBA dynamics, we instantiated the required compartment circuits independently to represent the complete assumed tree structure and temporally align their neural signals according to input onsets. Like this we obtained entire phrase neural time series, by summing activity across similar node categories of the multiple independent compartment circuits instantiated. We used this procedure to simulate the neural activity of simple phrases, corresponding to increasing size right branching tree structures, to be compared with two di erent neuroimaging signals.

First, we showed similarities between the activity of simple phrases and ECoG time series patterns of binding revealed by Nelson et al [START_REF] Nelson | Neurophysiological dynamics of phrase-structure building during sentence processing[END_REF]. We naively compared the ring rates of our simulation directly to the patterns observed in ECoG recordings, considering the correlation that exist between the high gamma power of local eld potential signals and ring rates [163; 119]. Nonetheless a quantitative comparison would require a more careful consideration, employing recent models tuned to electro-physiological measurements that o er a way to translate neural activity to local eld potentials [127; 81].

Second, we concatenated simple phrases to reproduce the stimuli of Pallier et al. (2011) [START_REF] Pallier | Cortical representation of the constituent structure of sentences[END_REF]. Then we convolved the stimuli neural time series with the Glover Hemodynamic Response Function [START_REF] Glover | Deconvolution of Impulse Response in Event-Related BOLD fMRI1[END_REF]. This allowed us to make a qualitative comparison with the hemodynamic constituency e ects depicted by Pallier et al. (2011) [START_REF] Pallier | Cortical representation of the constituent structure of sentences[END_REF].

Since the quantitative level of neural activity can be easily tuned for a wide range of parameter values with similar behavior, when comparing the circuit neural dynamics with the neuroimaging literature, we only focused on the qualitative neural temporal patterns observed.

In this chapter we present the outcome of the circuit tuning experiments, the phrase syntactic processing patterns of the simulator after tuning and how we reproduce diverse evidence from BOLD-fMRI and ECoG neuroimaging experiments.

Sub-circuit simulations Experiment 1: Simple neural population

In the rst experiment we explored the steady state rate and temporal behavior of the di erent neural models with di erent synaptic e cacies. As indicated in the circuit topology of Figure 10.1, neural populations were driven by a persistent 1 Hz input rate. We show the steady state rate as a function of the number of baseline connections in the top plots of each neural model in Figures 10.1 and 10.2. In the bottom plots we display the respective ring rate dynamics for di erent number of connections.

In the case of a LIF population, by manipulating the number of connections, we can tune to any value the steady state rate. For all synaptic e cacy values, the ring rate increases smoothly until achieving the steady state at approximately 200 ms. The AdEx population has a di erent temporal behavior. An immediate transient peak of activity on initial stimulation is driven down by adaptation, achieving a steady state at approximately 600 ms.

The adaptation e ect, on a 30% synaptic e cacy, limits the range of values that the steady state rate can take by manipulating the number of connections.

As explained in the Methods section 9.2, binding takes place in the Compartment Circuit when the kicko input rate threshold of the Working Memory (WM) population is reached. The total input rate of WM depends on the sum of the ring rate of both Sub-Assemblies in the Compartment Circuit, which themselves are driven by separate input events. Since steady state rate values are limited in the AdEx model with high synaptic e cacy, operation of the circuit would be more constrained with non simultaneous input events, than in the low synaptic e cacy case.

Because we wanted to explore the behavior of the Compartment circuit for all possible timings of input events, we decided to restrict all remaining simulations to a 10% synaptic e cacy. We also xed the number of baseline connections to 115 and 1646, for LIF and AdEx populations respectively, since these values best approximated the desired 1Hz steady state ring rate under a 10% synaptic e cacy.

Experiment 2: Neural activity flow and control release

For the second experiment we wanted to understand how ring rate, in the Subassemblies of the Compartment Circuit, would vary with the timing of the onset of input and control events. To accomplish this we employed the sub-circuit topology presented in Figure 10.3. In this topology the Gate (G) population is permanently inhibited by a Control (Ctl) population with persistent activity, such that the Sub-Assembly (SA) can not be driven by the Main-Assembly (MA) until a control event, that inhibits the Control population, takes place. For this experiment, the number of excitatory connections was xed to 9 for LIF populations and 20 for AdEx populations. The e ect of modifying the number of excitatory connections will be explored in Experiment 3 in Results section 10.1.

We considered two possible persistent rates for the input event, 10 Hz or 20 Hz for the LIF model and 20 Hz or 30 Hz for the AdEx model. We needed higher input rates for the AdEx model since adaptation induces smaller steady state rates with respect to the LIF model. There are three possible extreme cases of timing between the input and control events; When the input event takes place at 0 ms and the control event at 1000 ms (Input First); When both events start at 1000 ms (Simultaneous); And when the control event starts at 0 ms followed by the input event at 1000 ms (Control First). These timing of events are extreme cases because 1000 ms is enough time for the neural populations to achieve a steady state rate after any event initiated at 0 ms. Any other timing in which populations have still not achieved a steady state before the arrival of the second event would produce neural dynamics with patterns in between the extreme cases. For language stimuli, timing cases can be interpreted as di erent types of parsing mechanisms, where Control First corresponds to a predictive (top-down) one and Simultaneous and Input First to a reactive (bottom-up) one. We show in Figure 10.3 the ring rate time series of the Sub-Assembly (SA) for all possible event timing cases and input ring rates. First we observe that the input rate do not change the relative behavior of the timing cases but only increase the steady state rate and transient uctuations. We see that the timing cases do not modify the nal steady state rate, which Figure 10.3: Neural dynamics of input and control events: We plot the temporal dynamics of the Sub Assembly population corresponding to the sub-circuit topology shown. 9 and 20 excitatory connections are assumed for the LIF and AdEx models respectively. We show the time series after 1000 ms, time at which all neural populations have achieved a steady state rate from their initial events at time 0. For each neural model two constant input rates are simulated for the input events, 10 Hz and 20 Hz for LIF, and 20 Hz and 30 Hz for AdEx. There are three possible extreme cases of timing between the input and control events; When the input event takes place at 0 ms and the control event at 1000 ms (Input First); When both events start at 1000 ms (Simultaneous); And when the control event starts at 0 ms followed by the input event at 1000 ms (Control First).

only depends on the input rate, but in uence the maximum rate of the transient activity uctuations. In the case of AdEx, the speed at which the steady state is approximated is also a ected by the timing cases, for example the Simultaneous case takes approximately 400 ms more than the Control First case, to achieve the steady state, for a 30 Hz input rate. The steady state rate is in most cases and neural models the lowest ring rate, with some short transient exceptions. Moreover the timing cases have di erent relative behaviors depending on the neural model, as can be seen from the Control First case that has the lowest transient rates for AdEx but the highest ones for LIF.

Successful binding in the Compartment Circuit depends on the sum of activity of two SAs, that reaches the kicko threshold rate of the Working Memory (WM) population. Assuming activity of SAs is driven by two separate input events, like two words to be bound presented 200 ms apart, the timing of the two input events and the timing cases of their respective control events will determine the possible range of values for the WM kicko threshold. We can also think the other way around and say that the range of values of the WM kicko threshold constrain the possible timing of all events.

An example scenario, illustrated in Figure 10.3 for a LIF population with 20 Hz input, would be that the onset of input events correspond to the onset of word presentation, 200 ms apart, where the timing of the rst SA input event follows the Input First case and the timing of the second SA input event follows the Control First case. In that scenario any WM kicko threshold between 16 Hz and approximately 44 Hz would be reached by the sum of the 15 Hz steady state rate of the rst SA and the ring rate of the second SA achieving a transient maximum of approximately 29 Hz.

Since we wanted to consider all possible event timings when studying the Compartment Circuit dynamics, we took from this experiment the cases with the highest transient rates for each neural model, to later analyse the circuit parameter space. We see in Figure 10.3 that the Control First case has the highest transient rate for the LIF model, while the Simultaneous case has the highest transient rate for the AdEx model.

Experiment 3: Circuit operation according to the parameter space

In a third experiment, we studied the parameter space of the input rate, the number of excitatory connections and the WM kicko activation threshold, to understand the operational, event timing related, constraints of the Compartment Circuit when attempting to instantiate binding under di erent regions of the parameter space. As shown in Figure 10.4, to explore the circuit behavior, we have to consider the Sub-Assembly (SA) temporal dynamics presented in Results section 10.1 and a sub-circuit topology representing an excitatory loop between two SAs.

As shown in the Compartment Circuit diagram of Figure 9.1 of Methods section 9.2, once the Working Memory (WM) Delay activity is unleashed, both Gate Keepers (GKs) are inhibited, creating an excitatory loop between the Sub-Assemblies (SAs). Beyond a certain number of excitatory connections, there is the possibility of runaway activity in the excitatory loop, which motivates a constraint in the parameter space of the Compartment Circuit. The excitatory loop activity considered is only driven by the 1 Hz baseline input rate, as would be the case in the circuit once the input events stop driving activity in Main-Assemblies (MAs) and as a consequence in SAs. In Figure 10.4 we plot the space of excitatory connections up to 11 connections and 21 connections for LIF and AdEx respectively, values at which we observed runaway activity in the excitatory loop.

Alongside the excitatory loop baseline steady state rate curve of the SA, we also plot the input driven maximum transient ring rate and steady state rate of an SA, according to the di erent events' timing behavior presented in Figure 10.4: Excitatory loop and WM activation parameter regions: At the top the two subcircuit topologies from which SA ring rate curves are derived. Rate curves consist on ring rate as a function of the number of excitatory connections for a given input rate of 10 Hz and 25 Hz for the LIF and AdEx models respectively. From the chained neural population topology we consider the highest maximum transient rate and the steady state rate. From the excitatory loop topology we consider the steady state rate driven only by baseline activity. We color the regions between the curves to indicate the di erent WM activation cases determined by the value of the WM "half" kicko threshold rate. The four parameter regions refer to the possible combination of input and control events that would allow binding to take place if the WM "half" kicko threshold falls in the region: The perpetual activation region implies that WM will get permanently reactivated;

The exible activation region implies that all events cases can produce binding; The constrained activation region implies that only some combination of events' timings can permit binding; Finally the impossible region implies that no binding can take place for the given WM kicko rate. Results section 10.1. The ring rate curves correspond to an input of 10 Hz and 25 Hz for LIF and AdEx populations respectively. All the ring rate curves correspond to the activity of only one SA, so whenever we represent the WM kicko rate threshold in Figure 10.4, we refer to the "Half" kicko threshold. For example the convenient "Half" kicko rate threshold of 6 Hz, marked with a green line in the LIF Model plot, implies a total WM kicko rate threshold of 12 Hz.

From the relationship between the three ring rate curves, we can establish four parameter regions with di erent implications for the behavior of the Compartment Circuit: First, below the excitatory loop baseline steady state rate, we have a parameter region for which WM would be continuously reactivated. The initial activation of WM leads to the excitatory loop steady state rate, so if the kicko threshold is below it, WM will be reactivated perpetually. We call this the WM perpetual activation region; Second, in the area between the loop steady state and the input steady state curves, all input and control event timing cases will lead to activation of WM, which can be explained by the steady state rate being the lowest transient rate. We call this the WM exible activation region; Third, in the region between the input driven maximum transient rate and the steady state rate curves, activation of WM will not take place for some timings of input and control events. The higher the WM kicko threshold in this region, less input and control event timing cases can activate WM. We call this the WM constrained activation region; Finally, above the input driven highest maximum transient rate, it is clear that activation of WM can not be achieved under any circumstance, which is why we denote it as the WM impossible activation region.

To understand the constrained activation region, it helps to take a look back at Figure 10.3 of Results section 10.1. Consider the AdEx model with a 30 Hz input rate. We can see that a WM kicko rate of 14 Hz would be reached by adding the steady state of one SA and the transient rate of any events' timing case for the second SA. If we raise the WM kicko rate to 20 Hz then we would need the events driving the second SA activity to follow the Input First or Simultaneous timing cases, while raising it further to 25 Hz would leave the Simultaneous case as the only option.

We still do not know the parameter variability allowed by the cortex to implement the circuit, so we consider the proportion between the constrained and exible activation parameter regions as a indicator of the di culty to operate the Compartment Circuit under the di erent neural models. Based on this, we observe in Figure 10.4 that the AdEx model is more likely to induce constraints in the timing of input and control events to perform the bindings necessary to represent complete structures in cortex. To allow the most exible behavior exploration of the Compartment Circuit, when simulating language processing, we decided to select parameters in the exible activation region. We selected a combination of 10 Hz and 20 Hz input rates, 8 and 20 excitatory connections and 10 Hz and 9 Hz WM kicko rates for LIF and AdEx populations respectively.

Experiment 4: Inhibition of undesired activity spill

In the fourth experiment, we tuned the amount of inhibitory connections between Gate Keepers (GKs) and Gates (Gs) to avoid undesired spill of neural activity from the Main Assemblies (MAs) to the Sub-Assemblies (SAs). We wanted any spill to be practically insigni cant for any number of excitatory connections and arbitrary input activity uctuations to which the AdEx model is sensitive. We decided to study this with the sub-circuit topology of Figure 10.5.

We plot, in Figure 10.5, the maximum transient ring rate of the SA as a function of the number of inhibitory connections for a varied number of excitatory connections. If the amount of inhibitory connections is not enough, transient activity of the SA will be increased beyond its baseline activity, denoted with a black line. We determined how many inhibitory connections are necessary by looking at the amount of inhibitory connections at which the maximum ring rate becomes practically insensitive to the number of excitatory connections. It is clear from the plots that, after a certain number of inhibitory connections, unidirectional activity will be allowed only by controlled inhibition of the GKs. From these experiment observations, we Figure 10.5: Inhibition to avoid excitatory loop: The sub-circuit topology at the right depicts the inhibition of Gates (Gs) by the Gate Keepers (GKs) that are driven themselves by the Main and Sub Assemblies (MA and SA) to avoid an excitatory loop between them. Activity in the sub-circuit is driven only by a 1 Hz baseline rate. Each curve in the plots represent how the maximum transient rate of SA for a given number of excitatory connections varies as we increase the number of inhibitory connections. We present one plot for each neural model (LIF and AdEx). The maximum ring rate is employed instead of the steady state rate to observe sensitivity to transient rate uctuations. decided to set the number of inhibitory connections to 70 and 250 for LIF and ADEX populations respectively.

Complete compartment circuit simulations

After selecting a set of parameters in line with the previous experiments, we analysed the behavior of the complete compartment circuit simulation. The dynamics of the compartment circuit can be summarized by a combination of the input events that drive activity in Main-Assemblies (MAs) and the control events that inhibit Gate Keepers (GKs) such that activity can ow from MAs to Gates (Gs) and from the latter to Sub-Assemblies (SAs). In Table 10.1 we present a summary of the parameters taken for LIF and AdEx simulations and in Figure 10.6 we present the temporal dynamics of the compartment circuit for a complete and incomplete binding. First, we show the baseline dynamics of the circuit when no event takes place in part A of gure 10.6. In this case all neural populations are only receiving an input baseline rate of 1 Hz. So the di erent populations just re ect with their ring rate the architecture of the circuit. Gs show a low rate of activation due to GKs inhibition, while GKs show the highest rate driven by MA and baseline activity. MAs show an activation close to the approximated 1 Hz baseline as well as SAs that have been isolated in the circuit thanks to Neural activation of the circuit when only one MA is activated by a word event or WM at 500 ms. Shows the neural activity related to an erroneous control signal at 800 ms. It is possible to see that the steady state of neural activity is resilient to a slip of control, going to the appropriate levels of neural activity once the control activity is over. C. Neural activity of the Compartment Circuit for a successful binding. The second MA gets activated at 800 ms alongside the controls. Since both MAs are active, the SAs manage to activate WM to instantiate the binding of the MAs. Two interesting dynamics arise from the binding: The rst is that a spike of activity in SAs, GKs and Gs takes place due to the sudden inhibitory activity of WM on the GKs; The second is that the memory circuit internally raises its baseline activity due to the excitatory loop formed.

Parameter

GKs inhibition.

Second, we show the activity of the circuit for an incomplete binding in part B of Figure 10.6. This means that only one MA is driven by an input event, after which a Control (Ctl) event allows activity ow from both MAs to SAs, even though there is no binding to be done. Due to stimulation of the MA, the GK ring rate raises to stop activity to ow to the SA until the control event takes place to inhibit the GK. As only one SA is driven by input, the total rate contribution to the WM population do not achieve the WM kicko threshold rate necessary to perform a binding. Both neural models display a transient spike of neural activity in the SA, G and memory sub-circuit GKs during the time window the control permits activity to ow to the SA. In the case of the AdEx dynamics, shown in Figure 2.8, there is the possibility of an activity rebound after inhibition, in which neurons will respond more vigorously than if they would not have been inhibited, re ected in the GKs after control stops.

Third, we show the circuit dynamics of a successful binding in part C of Figure 10.6. When both MAs are driven by an input event and a control event takes place. In this case the added activity of the SAs reaches the WM kicko threshold and kickstarts the Delay activity of WM. Then activity in the SAs and Gs of the memory sub-circuit raise to a new baseline due to the excitatory loop created by WM inhibition of GKs, which also generates an initial transient spike of activity in SAs. A similar behavior to this one, simulating sentence parsing, was also reported by previous work with the NBA [START_REF] Frank | Linking population dynamics and high-level cognition: Ambiguity resolution in a neural sentence processing model[END_REF]. Finally, after the WM Delay activity stops, the LIF model activity goes back to baseline, but the AdEx model exhibits a nal transient rise of ring rate in the GKs of the memory sub-circuit, similar to that of the GKs a ected by control inhibition release.

Simulation of complete phrase processing

With the neural dynamics of several isolated Compartment Circuits, simulated independently of each other, we approximated the binding of complete phrases. As explained in the Introduction section 8.2, we simpli ed the simulation of the Blackboard by ignoring mutually inhibitory Compartment Circuits dynamics determined by a Connection Matrix. The right branching hierarchical structure that corresponds to an example phrase of 4 words, determined by a phrase grammar, is shown in Part A of Figure 10.7. In this example only three Compartment Circuits are necessary to realize all the bindings that would correspond to the phrase processing, and the exact input event onsets were taken from the LIF simulation. The onset of input events driving Main Assemblies that represent word grammatical categories were matched to word presentation onsets spaced 600 ms apart from each other. In the case of phrasal nodes, we assumed that their input event onset corresponds to the previous realization of a binding, determined by the moment at which their respective Working Memory population was activated. In this way, phrasal nodes can be represented by activity in the Main-Assemblies of a Compartment Circuit and be bound to other word grammatical categories or phrasal nodes.

We needed to prolong the Main-Assemblies and Working Memory activity long enough to instantiate all the necessary bindings, so in this example we assumed WM and input events to last 2300 ms for all simulations. As indicated in the second phrasal node (PN2) of the tree example, if input events were active for less than 1972 ms then activation of the rst word MA would cease before the accompanying phrasal node MA comes into play to realize the last binding. In the Compartment Circuit simulation presented in Figure 10.6, there was a di erence in timing of WM activation between the LIF and the AdEx neural models, that was not easy to see in the plots. The Working Memory population became active 86 ms after all input and control events take place in the LIF simulation, while in the AdEx simulation this only took 42 ms. This time di erence originates in the faster initial transient response of the AdEx dynamics in contrast to the LIF dynamics, that can be seen in Figures 10.2 and 10.1 respectively. By contrasting the LIF and AdEx complete phrase simulations in Figure 10.7 we can better appreciate how this di erence adds up to accelerate phrase processing in the AdEx model.

To later compare the phrase processing simulation with neuroimaging patterns, we rst substracted baseline activity from the time series of each neural population in each Compartment Circuit. Then we summed the aligned time series of the same neural population category belonging to di erent Compartment Circuits. Finally, to obtain total neural activity of phrase processing, we summed activity from all the non phenomenological neural populations and the Working Memory population, such that they would all be equally weighted under the absence of a more detailed hypothesis about the neural population sizes and their spatial distribution in the cortex.

alitative reproduction of ECoG pa erns

As presented in the Introductory section 8.1, the ECoG analysis of Nelson et al. [START_REF] Nelson | Neurophysiological dynamics of phrase-structure building during sentence processing[END_REF] is the rst to characterize the speci c temporal patterns of phrase-structure formation from intracranial neurophysiological data, possibly revealing the rst neural signatures of binding operations. Nelson et al. demonstrate two patterns that are of particular interest to our simulations: rst, the average temporal dynamics of processing increasing size right branching phrases. Second, the average neural dynamics for hypothesized number of pending binding operations, during phrase processing, under a bottom-up parsing approach. In Figure 10.8 we show the aggregated neural activity predicted by our LIF and AdEx simulations, alongside the temporal dynamics of phrase processing presented by Nelson et al., from the mean high gamma power of the intracortical recordings.

As can be seen in the top plots, our simulations suggest the existence of four qualitatively di erent segments of neural dynamics: rst, as words are presented to the circuit, input events drive activity in Main-Assemblies (MAs) corresponding to the grammatical categories of words. The activity of all the MAs accumulate but still do not change the activity of other neural populations on the Compartment Circuits, since for parsing a right branching tree under a bottom up parsing scheme, control events that allow bindings, do not occur until the last word is presented. The second segment correspond to the succession of bindings that take place after the last word of the phrase is processed. The neural activity allowed by the control events creates a transient rise in activity that stabilizes with the accumulated Delay activity of the Working Memory populations and the still ongoing input activity. The third segment is characterized by the gradual drop of input related activity. And the fourth segment corresponds to the nal drop of Working Memory activity, such that all the neural populations return to their baseline steady state rate.

We see in the bottom plots of Figure 10.8, modi ed from the Figures in Nelson et al., that we can qualitatively identify the three initial segments predicted by the simulation in the high gamma power time series. We observe an initial increase in neural activity, for which a later onset and higher magnitude of the peak appear to depend on phrase length, as would be explained by the rst segment of the simulation based on an increase of activity in Main Assemblies (MAs). The following transient uctuations of the ECoG time series could be identi ed with the binding related segment and the nal activity drop with the release of MA activity. In the simulation, because we deactivate MAs on discrete time steps, we observe plateaus of MA activity, while the ECoG time series suggest a more abrupt drop after bindings have taken place, which complicates distinguishing the neural uctuations related to the binding operations, from those related to the MAs activity release. In the longer 6 words phrase "Ten sad students of Bill Gates", there is a middle sentence high transient uctuation that is not expected from a bottom up parsing scheme.

We indicate with red bars, that the activity drop of the ECoG time series stops at a higher level than the initial baseline, which is compatible with the hypothesized ongoing Working Memory (WM) activity of the simulation. The AdEx model distinguishes itself from the LIF model, during WM inactivation, by predicting a nal burst of activity due to the inhibition release of the Gate Keepers in the memory circuit. Nonetheless, due to the task of the ECoG experiment, which requires retaining in memory the phrase for later comparison with another phrase, we should not be able to observe the nal drop of WM activity predicted by the simulation, as is the case.

In Figure 10.9 we show, in the top plots, the simulation time series aligned on the last word onset, to demonstrate the neural activity uctuations linked to the number of accumulated and executed binding operations, which Nelson et al. refer to as the number of nodes closing. In the bottom plots we show modi ed Figures from Nelson et al., where the e ect is demonstrated in the case of middle sentence operations and sentence end operations.

alitative reproduction of BOLD-fMRI pa erns

As explained in the Introductory section 8.1, we also reproduced patterns from an experimental design employed to show constituency e ects with BOLD-fMRI [START_REF] Pallier | Cortical representation of the constituent structure of sentences[END_REF]. Stimuli, presented to a subject in a trial, consisted of a list of phrases with the same number of words (constituents), such that in total 12 words would be presented. All phrases correspond to right branching trees according to the phrase grammar considered by the authors. The conditions In the standard analysis of BOLD-fMRI time series, events are modelled as a constant stepwise function that re ects the duration of the stimuli, called a boxcar model. The boxcar model events are then convolved by an Hemodynamic Response Function (HRF), for which we considered the HRF proposed by Glover [START_REF] Glover | Deconvolution of Impulse Response in Event-Related BOLD fMRI1[END_REF], available in the python open source package Nistats 1 . The convolved events are then used in a general linear model (GLM) to We generated a prediction of hemodynamic responses from our simulations by rescaling the conditions' time series by the maximum ring rate of all conditions and then convolving them with the HRF. We present the predicted hemodynamic responses in the top and middle plots of Figure 10.10. Since in the Pallier et al. study, 12 words are presented every 300 ms, we considered the last word onset of 3600 ms as the duration of the stimuli for a traditional boxcar event model, shown in the bottom plots, to compare it with our models. We mark the HRF peak and its onset with black lines on all the HRF convolved time series.

We observe that the neural time series would predict in all cases a peak onset displaced many seconds with respect to the traditional boxcar event that only represents the duration of the stimuli. Looking at the time series, this would be expected, since the HRF peak onset depends on the center of mass of the accumulated neural activity, which continues several seconds after the last word onset in our simulations. The peak onset in the LIF and AdEx models follow a super-linear increase with respect to the number of constituents, at odds with with sub-linear patterns reported by Pallier et al. Also the LIF neural model introduces an slightly longer onset delay with respect to the AdEx neural model, due to its slower activation of Working Memory populations. We demonstrate that the hemodynamic pattern of the neural populations in the simulation follow closely the number of bindings executed. In the bottom plots we contrast the pattern of the total neural activity in the simulation alongside the sub-linear patterns reported by Pallier et al. in the pSTS, IFGorb and IFGtri brain regions.

In the case of the HRF peak amplitudes, we show in Figure 10.11 that both LIF and AdEx models predict a sub-linear pattern of peak amplitudes as a function of the number of constituents. We demonstrate in the top plots that the HRF magnitudes of added neural activity in all neural populations of the Compartment Circuit follow the pattern given by the number of executed bindings in a condition. It is unlikely then, that the sub-linear pattern appreciated in the HRF amplitudes would be qualitatively changed by manipulating other parameters of the circuit, like the duration of the input to Main-Assemblies and Working Memory that could modify qualitatively the peak onsets pattern.

Pallier et al. reported constituent sub-linear responses in the language areas TP, aSTS, pSTS, TPJ, IFGorb and IFGtri, but only the regions pSTS, IFGorb and IFGtri showed a similar response pattern when minimizing the semantic content of phrases with pseudowords. Since our simulation puts aside semantic considerations, we consider this type of experimental manipulation to be a better re ection of the binding activity modelled in the Compartment Circuit. In the bottom plots of In this chapter we discuss results obtained from the Neural Blackboard Architecture simulation and comment on future perspectives of the framework for further experimental work.

The neural models and circuit architecture

Regarding the neural model parameter values, we considered those from Omurtag [START_REF] Omurtag | On the simulation of large populations of neurons[END_REF] and Brette et al. [START_REF] Brette | Adaptive Exponential Integrate-and-Fire Model as an E ective Description of Neuronal Activity[END_REF] for a rst approximation of the neural dynamics. We left for future work consideration of values based on electrophysiological recordings from speci c brain regions. For example, there are di erent adaptation constants along the cortex, that could change the AdEx model dynamics. Since we have compared the simulation with neural activity in speci c brain regions like aSTS, pSTS, IFGtri and IFGorb, it would be reasonable to t the simulations to their speci c biological reality.

In the case of the Compartment Circuit assumptions, we made many simpli cations that should be revised in future work. We approximated baseline dynamics with a low constant input rate instead of considering the natural oscillatory activity of the cortex, homeostatic mechanisms in cortical circuits [START_REF] Turrigiano | Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit re nement[END_REF] and balanced networks [START_REF] Wolf | Dynamical models of cortical circuits[END_REF]. Also we adopted homogeneous synaptic connections instead of testing di erent synaptic distributions that could have an impact in the neural dynamics. Moreover, if we allowed random connectivity to shape the Compartment Circuit architecture our capacity to control its dynamics with the number of connections would be restrained.

The explicit simulation of Delay Activity in Working Memory was left out of the current work due to its exible and still debated implementation [43; 68]. Studying it could reveal important neurobiological limitations on the way we assess the relative proportion of neural activity between Main-Assemblies and Working Memory. Also it could provide a more limited set of hypothesis about the spatio-temporal memory limitations of the Neural Blackboard Architecture, to be contrasted with neuroimaging and psycholinguistic evidence.

Out of two options, we took the decision to allow the existence of excitatory loops after Working Memory activation, although this permits the possibility of unstable runaway neural activity. Neural activity related to these excitatory loops was regulated in the Working Memory sub-circuit by careful tuning of the number of excitatory connections and the number of inhibitory connections that would close the loops. The second option was to introduce in the Working Memory sub-circuit a bidirectional control mechanism similar to that employed to regulate communication between Main-Assemblies (MAs) and Sub-Assemblies (SAs). Nonetheless the second approach implies additional complexity in the number of nodes, connections and events that we have to consider for the circuit operation. Since we do not really know what is closer to the biological reality of the cortex, we decided to show how the less complex architecture that includes excitatory loops could be made stable, but consideration of a more complex architecture would also be possible.

To our knowledge, this is also the rst time complex neural models like AdEx are simulated alongside LIF for variable binding and language function related circuits. In contrast to previous simulations [189; 188; 67; 191], we employed population density techniques implemented in the MIIND software [START_REF] De Kamps | The state of MIIND[END_REF], that allowed us to approximate the transient uctuations of the di erent binding related events. Thanks to this, we found that the circuit implementation and neural dynamics interpretation can depend on the underlying neural model in non trivial ways. For example we observed that in a LIF model there was a nonconsequential trade-o between synaptic e cacy and number of excitatory connections to control the steady state rates of the circuit. On the other hand the AdEx model was very sensitive to changes in synaptic e cacy due to adaptation e ects, to the point of making us unable to control the magnitude of the steady state rate of the circuit for high synaptic e cacy values. If the physical reality of the cortex was closer to an AdEx model with high synaptic e cacies we would then need to restrict our hypothesis about the circuit operation with input and control events to a subset of the possibilities explored in our simulation. Adaptation in the AdEx model also had an important e ect in the case of lower synaptic e cacies, making coordination of input and control events more restricted in a larger portion of the circuit parameter space. Since we have to take into account the possibility of random variation of those parameters in the cortex, this e ect can be crucial to understand limits and constraints of language processing in di erent brain regions.

Another important distinction observed between the AdEx and LIF model was how dynamics after inhibition are qualitatively di erent under the in uence of adaptation. While in the LIF circuit, neural activity on a population would smoothly recover back to its steady state after inhibition stops, that of an AdEx circuit would show a renovated burst of activity due to adaptation decreasing during the inhibition period. The e ect might be strong enough to suggest it as a predictive marker for certain events in the circuit, like the release of Working Memory activity.

Moreover, characterizing the Working Memory activation parameter regions was important to understand the reliability of the circuit if exposed to noisy input rates, arbitrary timing coordination of events, control mistakes or anticipatory control signals. Although for a bottom-up parsing approach, we can safely assume control events to take place after input events, this might not be the case for other parsing strategies like top-down, that could be implemented with anticipatory control events. Since some parameter regions restrict the timing of input and control events, we might get insights into the possible set of parsing mechanisms directly from the anatomical structure of the cortex that constrain the parameter boundaries.

Finally, the question of how a Compartment Circuit and the Neural Blackboard Architecture could be formed during brain development and modi ed by learning is still work in progress, partially tackled in a previous study [START_REF] Van Der Velde | Development of a connection matrix for productive grounded cognition[END_REF]. Demonstrating how neural mechanisms approximated by the architecture can be implemented with biological realistic Hebbian or STDP rules alongside random connectivity constraints, during development and learning, would be an important avenue of future research.

Circuit implications of the linguistic hypothesis

A strength of the current simulation is its exibility to predict the neural activity of diverse grammar theories and parsing schemes, which we only explore partially in this work. We could in principle, without circuit modi cation, predict the binding activity for any structure that can be represented by a binary tree. This is the case of the phrase grammar of the minimalist program of Chomsky [START_REF] Chomsky | The Minimalist Program[END_REF], that represent phrases as binary trees, and also the case of other theories like dependency grammars [START_REF] Nivre | Dependency grammar and dependency parsing[END_REF] that represent grammatical relations between words. Nonetheless in the case of dependency grammars, as they do not require a hierarchical representation, we would not need to assume that the Working Memory of an executed binding drives the Main-Assembly of another Compartment Circuit.

Because we only modelled a bottom-up parsing scheme, we considered activation of the Main-Assemblies corresponding to phrase nodes only after the binding that produces the corresponding phrase took place. For example, for the phrase "the black cat" we would create an input event for the phrase node of "black cat" after "black" and "cat" have been bound. If we consider instead a pure top-down parsing scheme, that implies prediction of future bindings, or the generalized left corner parsing scheme proposed by Hale [START_REF] Hale | Automaton theories of human sentence comprehension[END_REF], there would be three additional mechanistic options to consider: First, we could start input events for Main-Assemblies representing the phrase nodes before their corresponding bindings and only start the control event after the bindings have been con rmed; Second, we could start the control events beforehand, which is an option explored in the simulation, and still make input events follow the corresponding bindings; Third, we could go ahead and perform bindings ahead of time, that would need to be deactivated by an error signal provided by the parsing mechanism. This last option would allow to simulate the possibility of multiple parallel phrase representations, from which only one survives at the end.

A simpli cation was made regarding the Compartment Circuit selection mechanism in the Neural Blackboard Architecture. We did not model the dynamic inhibition of competing Compartment Circuits belonging to the same Connection Matrix. To do it we would require an hypothesis about the size of the Neural Blackboard, governed by memory limitations and the total number of possible grammatical category combinations given by a grammar. Forming such an hypothesis was out of the scope of this work, so we opted to assume the simplest selection mechanism possible based on uniform random selection, which is how we justify simply recruiting Compartment Circuits as needed. Nonetheless we are only able to ignore the inhibitory activity of competing Compartment Circuits in complete Connection Matrices because we are not planning to explore the e ects of memory limits under time compressed sentence processing scenarios or memory tasks. Otherwise important deviations in background neural activity due to depletion of available Compartment Circuits and additional inhibitory activity would become a crucial factor for the simulation. We plan to explore this in future work, to try to reproduce temporal bottleneck e ects shown by Vagharchakian et al. on hemodynamic responses, based on a BOLD-fMRI experiment with an experimental design containing compressed speech and reading conditions [START_REF] Vagharchakian | A Temporal Bottleneck in the Language Comprehension Network[END_REF].

With respect to the parsing mechanism, we only model its interface with the Compartment Circuit that implements binding, through the assumed control signals. We considered that understanding how a parsing algorithm is learned and implemented by the cortex, such that it can provide the respective control signals, was a separate research question. Previous work has shown the feasibility to implement a parsing mechanism with neural networks in connection to the Neural Blackboard Architecture [START_REF] Van Der Velde | Learning of control in a neural architecture of grounded language processing[END_REF], for a limited set of possible syntactic structures.

As can be inferred from this discussion, there is already great potential for exploration of linguistic hypothesis with the current simulation developed, but there are also many open questions left for future development. We believe that taking into account more experimental evidence from psycholinguistics and neuroimaging studies is necessary to guide future re nements of the circuit architecture and simulation.

alitative reproduction of neuroimaging evidence

Comparison of our simulation with neuroimaging measurements revealed striking qualitative similarities, even though the circuit was only tuned for its correct operation, with respect to binding execution. We aggregated the time series of the simulation in the simplest way possible, uniformly, under the lack of more precise hypothesis about the spatial distribution of the Neural Blackboard Architecture in the cortex. Although we interpreted reports of the high gamma power of Local Field Potentials and hemodynamic responses separately, there is the potential to integrate all these di erent measurements as coherent quantitative evidence thanks to recent e orts on modelling their relationship [START_REF] Hermes | Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local eld potential[END_REF].

High gamma power has been shown to be correlated to the ring rate time series of spiking neurons from in-vivo recordings [START_REF] Ray | Di erent Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex[END_REF], and we decided to make a direct qualitative comparison between the ring rate of the simulation and high gamma power time series. Nonetheless a future quantitative comparison would require a more precise mapping from the simulation ring rates to local eld potentials, as has been done recently [127; 81]. An important discrepancy between the simulation and the high gamma power time series, was that the simulation segments of neural activity identi ed with binding and Main-Assemblies transient activity drop were not as clearly separable in the intracortical recordings. Moreover the data seem to suggest an immediate Main-Assemblies transient drop after a binding event takes place, instead of the paced inactivation assumed during the simulation. This would suggest the addition to the Compartment Circuit of a feedback mechanism from the Working Memory populations to the Main-Assemblies to knock out their unnecessary activity once binding has been established. It would be an e cient strategy from an energetic point of view at the cost of extra complexity in the circuit architecture.

We also observed a middle phrase activity drop in the intracortical time series of the longest phrase, which was not coherent with a bottom-up parsing hypothesis. In the phrase "Ten sad students of Bill Gates" the activity drop took place after "Ten sad students", and was compensated immediately after to bind the remaining phrase "of Bill Gates". Two possibilities arise from this observation: The obvious rst one is to consider an alternative parsing mechanism combining a bottom-up and top-down approach, a generalized left corner parsing scheme, to explain the uctuation; The second one is di culties of the Compartment Circuit to sustain local activity in Main-Assemblies for prolonged periods of time, such that they need to be reactivated if a binding has still not taken place. If this was the case, we could also explain the previously explained apparent immediate Main-assemblies activity drop after binding as a side e ect of an imminent deactivation that was going to take place independently of binding.

To approximate hemodynamic responses, we resorted to a naive approximation that has to be interpreted with caution since the relationship between neural activity, cerebral blood ow and blood oxygenation can be non-linear under certain circumstances [70; 31] and better represented by the balloon model than the gamma function considered in this work [START_REF] Waldorp | Robust and Unbiased Variance of GLM Coe cients for Misspeci ed Autocorrelation and Hemodynamic Response Models in fMRI[END_REF]. A more precise translation from ring rates to an hemodynamic response would allow a quantitative t of simulation parameters and to test linguistic hypothesis. At the moment we show that the simulation could be adapted to other hemodynamic peak onset patterns and that it naturally reproduces magnitude patterns, although we do not attempt to tune the simulation to reproduce the relative di erences between conditions.

Regarding the hemodynamic peak onsets, our rst observation was that persistent neural activity in Main-Assemblies and Working Memory can substantially delay the onset of the hemodynamic response, with respect to that given by a traditional boxcar model event. Such a large delay demonstrates the importance of modelling neural dynamics to avoid an event model misspeci cation. It has been reported that parametric estimation of gamma based models, used for General Linear Model estimation to analyse BOLD-fMRI experiments, quickly deteriorates as model misspeci cation increases [START_REF] Lindquist | Modeling the hemodynamic response function in fmri: e ciency, bias and mismodeling[END_REF]. To realize a future quantitative comparison between the generated simulation time series and hemodynamic measurements, we would need to t a new linear model for each simulation hypothesis to the available BOLD time series, looking for the best t.

The super-linear increase pattern of peak onset we observed was not coherent with sub-linear patterns reported by Pallier et al. Nonetheless the peak onset of our simulation depends on the input events and Working Memory durations, that were arbitrarily set to a constant duration. The Neural Blackboard Architecture does not provide a particular hypothesis on the timing of the deactivation of Main-Assemblies and Working Memory, which is why durations were simply set to a pragmatic constant that secured binding of the last phrasal node with the rst word of the longest phrase. Comparison of our simulation with intracortical recordings in results section 10.4 suggested a quicker drop of the Main-Assemblies activity after binding operations were executed, instead of the current choice of persistent activity for a constant amount of time after binding. Modifying the simulation to drop activity in Main-Assemblies after binding, would permit emulating sub-linear patterns of peak onset as necessary to reproduce the hemodynamic measurements.

Regarding the hemodynamic peak amplitudes, future quantitative comparison of the levels of neural activity between the word list condition (c01) and rest of the conditions in which binding takes place, could give insights into the relative proportion of Main-Assemblies activity and the rest of populations in the circuit. At the moment, the simulation's initial slope of hemodynamic peak amplitude increase was lower than that reported by Pallier et al, which can be interpreted as an underestimation of the binding related populations contribution to the total neural activity. Pallier et al. initially hypothesized a linear pattern of peak amplitudes instead of the sub-linear one observed. Their initial hypothesis was based on a simple "accumulation" model where each new word presented would add a constant amount of neural activity until a binding was not possible, leading to a sudden drop of activity back to baseline. After their ndings, the authors revised their hypothesis to propose instead a model that assigns a logarithmic increase of activity to each new word presented. Nonetheless our simulation suggest another explanation for the sub-linear pattern as a direct re ection of the number of binding operations executed during phrase processing. It turns out that the type of stimuli employed by the authors consisted exclusively of right branching trees and that their concatenation lead to a sub-linear increase of number of binding operations, which is why our simulation is at a rst sight coherent with the logarithmic word activity addition model. Then our simulation suggest the possibility that assigning a logarithmic increase of activity to the next word presented in a phrase is an artefact of the experimental design, due to missing consideration of other syntactic tree structures for phrases containing the same number of words.

Future perspective

Even though the current simulation can still be improved in many ways, we would like to emphasize with this work the quick progress in the development of biologically plausible models of cognition. New computational methods like population density techniques have made it tractable to approximate, at a circuit scale, point neural models as complex as the adaptive exponential. With an additional modelling e ort at the level of the neural populations, we could close the gap that has delayed physical mechanistic testing of computational linguistic hypothesis with direct neuroimaging measurements. Taking into account cytoarchitectonic details, tailored to di erent brain regions, would allow to study the spatial distribution in the cortex of the Neural Blackboard Architecture and other circuit alternatives. Modelling these details would allow better physical reproduction of temporally and spatially detailed signals, like Local Field Potentials (LFP) [127; 81] and hemodynamics (BOLD) [START_REF] Buxton | Modeling the hemodynamic response to brain activation[END_REF]. Moreover, it would also be possible to integrate the evidence from multiple spatiotemporal scales in a coherent way, such as has been done in the literature, taking as example recent work linking LFP and BOLD signals [START_REF] Hermes | Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local eld potential[END_REF].

We selected two experiments that we considered best characterized key neuroimaging evidence of binding in phrase processing. Moreover we think these experiments, coming from di erent spatio-temporal scales and experimental designs, demonstrate the potential of our simulations to integrate varied experimental paradigms. Many other experiments could inform di erent parameters and circuit assumptions from the ones explored in this work. For example we could look at processing speed and memory constraints of the Neural Blackboard architecture with the BOLD-fMRI manipulation of Vagharchakian et al. [START_REF] Vagharchakian | A Temporal Bottleneck in the Language Comprehension Network[END_REF] based on compressed speech and reading conditions. Creating a database of such neuroimaging experiments alongside psycholinguistic behavioral evidence would create the opportunity to incrementally and systematically test linguistic computational hypothesis and their brain implementation.

As we commented in Discussion section 11.2, the current implementation of the Compartment Circuit allows us to test any grammar theory providing binary tree representations, combined with any parsing scheme that determines the timing of input and control events in the circuit. Although we focused on one parsing scheme and grammar, it is evident that we can explore all other alternatives in the future. This means that as we re ne the boundary of the circuit parameters and operating assumptions, we can obtain for any corpus the neural activity of all its phrases for all the di erent linguistic hypothesis available. From such arti cial dataset we could motivate experimental designs and tests that would be optimal to explore the linguistic hypothesis space. For example controlling for diverse variables like phrase length or number of syllables, we could estimate the likelihood of a phrase grammar versus a dependency grammar theory, by comparing a set of phrases that maximize neural activity di erences between the theories with respect to a set of control phrases.

We think that the proposed framework could lead to quick progress in our understanding of language function if accompanied by the most recent neuroimaging techniques. We would imagine a setting in which intracortical recordings can be systematically positioned with information coming from quick and reliable fMRI language localizer paradigms [START_REF] Mahowald | Reliable individual-level neural markers of high-level language processing: a necessary precursor for relating neural variability to behavioral and genetic variability[END_REF]. From a language localizer and anatomical scans, it would be possible to take advantage of 3d printing techniques, already tested in non-human primates [START_REF] Chen | 3d printing and modelling of customized implants and surgical guides for non-human primates[END_REF], to make frames perfectly adapted to the skull of patients, with electrodes precisely positioned at the peaks of hemodynamic e ects. Moreover recent advances in laminar fMRI [START_REF] Lawrence | Laminar fmri: applications for cognitive neuroscience[END_REF] are an exciting possible addition for the tuning of models approximating cortical columns with cytoarchitectonic constraints, which we propose to extend our simulations.

In conclusion we hope to have demonstrated that we are close to producing biologically realistic mechanistic neural models of cognitive function. In particular to provide new ways of testing linguistic hypothesis integrating evidence from varied neuroimaging techniques with di erent spatio-temporal scales. With this work we expect to inspire further e orts in this direction.

Part IV

Concluding remarks

12 Final remarks

Summary of findings

In the experimental part of this work, we identi ed the superposition principle to be one of the crucial assumptions of Smolensky's basic tensor product representations. To test the superposition principle we created and fMRI dataset from which we could extract spatial representations of bi-syllabic pseudowords in visual and auditory sensory modalities.

The decoding analysis in sensory brain regions revealed the highest accuracy scores and reproduced known e ects like the superposed semi-local representations induced by retinotopy. In the case of auditory regions we found weak evidence in favour of local superposed representations in anterior areas higher in the auditory processing hierarchy. Decoding on language related regions only revealed signi cant classi cation in Broca's complex (44 and 45), for which we could provide evidence in favour of superposition and more distributed representations. Finding superposed representations in Broca is interesting, since this region has been shown in a meta-analysis of fMRI studies [START_REF] Zaccarella | Reviewing the functional basis of the syntactic merge mechanism for language: A coordinatebased activation likelihood estimation meta-analysis[END_REF] to be consistently engaged with syntactic binding manipulations. We were also able to provide evidence against superposition or in favour of non additive models in the visual word form area (VWFA), which is coherent with previous evidence of whole word representations in that region [START_REF] Glezer | Evidence for highly selective neuronal tuning to whole words in the "visual word form area[END_REF].

There were also other ndings not directly related to the superposition principle. We veri ed that it was possible to decode auditory representations form the VWFA, providing additional evidence to the literature body claiming that this region can be modulated by speech as well as reading [START_REF] Yoncheva | Auditory selective attention to speech modulates activity in the visual word form area[END_REF]. Moreover we were surprised by a global lack of generalization from decoding models trained in one sensory modality to the other, which can be either interpreted as a lack of sensitivity due to variability of the representations signal or as the absence of amodal representations for simple bi-syllabic pseudowords. Finally we observed in most regions with signi cant classi cation scores, except Visual, extreme variability in the accuracy scores of individual items, such that few had particularly high scores while most remained closer to chance level. We demonstrate this e ect with an approximate bimodal distribution of the accuracy scores and we think this pattern could be explained by lack of sparsity and low variability in the spatial distribution of values of the neural vectors underlying the neural representations.

In the modelling part of this work, we created a new implementation of the Neural Blackboard Architecture (NBA) based on population density techniques, that allowed us to make temporal high resolution predictions of neural dynamics linked to the binding process. Our simulations were based on the dynamics of spiking point model neurons: leaky-integrate-and-re (LIF) and adaptive-exponential-integrate-and-re (AdEx) neurons. Contrasting LIF and AdEx models allowed us to demonstrate that, although they are not importantly di erentiated by average dynamics, their parametrization have strong implications for the timing and control of phrase processing events.

We also showed that an NBA implementation, only implementing the binding mechanism and tuned to operational constraints, qualitatively reproduces the neural activity patterns of at least two neuroimaging experiments involving linguistic binding at di erent spatio-temporal scales. We qualitatively reproduced three out of four predicted temporal segments of the neural dynamics of sentence comprehension revealed by intracortical recordings (ECoG) [START_REF] Nelson | Neurophysiological dynamics of phrase-structure building during sentence processing[END_REF]. Moreover our simulation provides a similar drop of neural activity related to the moment at which a binding operation takes place, by activating the working memory mechanism, and an increasing activity baseline that depend on the number of bindings performed. We also reproduce qualitatively sub-linear patterns of hemodynamic responses caused by phrase constituency manipulations [START_REF] Pallier | Cortical representation of the constituent structure of sentences[END_REF]. Our simulation provides an alternative hypothesis to explain the sub-linear pattern, based on the number of binding operations executed during phrase processing. Alongside these results, we illustrate the exibility of the NBA to represent arbitrary binary tree structures and parsing schemes, which makes it a promising tool for linguistic hypothesis exploration and future re ned quantitative and integrated accounts of multiscale neuroimaging measurements.

Global perspectives

In this work we parallely explored two modelling approaches to the binding problem. We selected these approaches for how powerful they are to handle several aspects of language modelling: like answering Jackendo 's challenges [START_REF] Jackendo | Foundations of Language[END_REF], being able to represent multiple levels of hierarchical language processing and exibly implement multiple linguistic hypothesis. Alongside being quite powerful, both approaches appear to be importantly distinct in their underlying assumptions, as we explained in Chapter 1 Section 1.4. In Table 12.1 we provide a reminder of the comparison.

Although there seem to be many di erences between the modelling approaches, we think that the computational operations supporting bindings, binding and unbinding are the truly fundamental di erences between them. The other di erences are linked to implementational issues that most likely will converge as we better understand the structural and functional properties as synaptic weights in a layered network. The problem with this interpretation is the in nite possible concrete network con gurations that are equivalent and that the dynamics of computation in real networks is ignored. Recent work from Smolensky on a dynamic optimization scheme to instantiate input representational vectors [START_REF] Smolensky | Optimization and Quantization in Gradient Symbol Systems: A Framework for Integrating the Continuous and the Discrete in Cognition[END_REF] could help bridge the gap on temporal predictions to compare it with the NBA.

For future experimental designs, besides the intricacies that can be introduced by the particular neuroimaging modalities employed, there are three aspects that should be emphasized. First, that future work should still focus on simple syntactic structures, namely syllable combinations to form pseudowords, short pseudoword lists and short jabberwocky phrases. It seems clear from recent meta-analysis [START_REF] Zaccarella | Reviewing the functional basis of the syntactic merge mechanism for language: A coordinatebased activation likelihood estimation meta-analysis[END_REF] that limiting the semantic content of stimuli importantly reduce the number of brain regions involved in its processing. For example only Broca 44 is constantly involved in purely syntactic operations while the the posterior superior temporal sulcus (pSTS) and the superior temporal gyrus (STG) seem to be involved with syntactic and semantic integration [START_REF] Zaccarella | Reviewing the functional basis of the syntactic merge mechanism for language: A coordinatebased activation likelihood estimation meta-analysis[END_REF]. Second, based on the previous point and our nding of superposition in Broca's complex and auditory regions, future experiments should focus speci cally on anterior brain regions, including auditory areas higher in the processing hierarchy and Broca's complex. Focusing in speci c regions would also facilitate targeted acquisition with di erent neuroimaging modalities that have less spatial coverage but high temporal resolution like intracortical recordings (ECoG). Third, the stage at which abstract representations arise in the brain, which we were not able to demonstrate with simple bi-syllabic stimuli, should be explored in more detail. The process of formation of abstract representations could be linked to audiovisual integration and related cognitive phenomena in language like the McGurk e ect [START_REF] Tiippana | What is the mcgurk e ect?[END_REF].

Regarding the available linguistic computational hypothesis, it is important to seriously consider simultaneously grammar alternatives like Phrase structure grammars and Dependency grammars and parsing schemes like bottom-up, top-down and generalized-left corner parsing. Both modelling approaches have the capacity to interpret the diversity of linguistic hypothesis and their test is intrinsically related to the hypothesis considered. For very simple stimuli like bi-syllabic stimuli, this do not seem to be a crucial issue, but processing of jabberwocky phrases is already subject to highly divergent linguistic theories and we can not avoid assuming one or another when matching model predictions with neuroimaging measurements. Incrementally testing the di erent linguistic hypothesis alongside the modelling approaches would be an important complementary extension to the e orts of this work.

Finally we would like to emphasize the recent advances in neuroimaging techniques that will provide even richer evidence to future experimental e orts, like laminar fMRI [START_REF] Lawrence | Laminar fmri: applications for cognitive neuroscience[END_REF] and increasingly available intracortical (ECoG) recordings. Also there are diverse theoretical and computational advances in the simulation of neural cortical columns that allow to reproduce complex neural signals like Local Field Potentials (LFP) [127; 81], hemodynamics (BOLD) [START_REF] Buxton | Modeling the hemodynamic response to brain activation[END_REF] and their relationship [START_REF] Hermes | Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local eld potential[END_REF]. Perhaps soon it will be possible to produce precise mechanistic predictions of neural signals out of linguistic computational hypothesis and that future work should aim to arrive to such reality.

Conclusion

Neuroscienti c models of language have matured, while empirical tests of their assumptions have been left behind. New neuroimaging techniques and the recent possibility to simulate some of their corresponding neural signals should not be ignored and lead to a new wave of experiments capable of mechanistically testing linguistic computational hypothesis. We think we have been able to give a glance at the value of the approaches considered, namely Smolensky's tensor product representations and the Neural Blackboard Architecture, and the challenges we face to test them empirically. In this work we have covered just a small segment of the path leading to understanding of variable binding in symbolic structures and hope to motivate more work in this direction.

Other experimental work not included in the manuscript

In addition to the experimental work presented, there are several other projects that were conducted or are currently in progress, but were not included in this manuscript.

During my master thesis I performed an empirical investigation, using fMRI, of the brain regions involved in representing the syntax of mathematical formula, manipulating their complexity and using structural repetition priming, which was nished during the rst months of the PhD, but I decided then to focus completely on the binding problem for the PhD and this manuscript. Also as part of the tests of the superposition principle, we had the idea to also run a two-digit numbers version of the bi-syllabic pseudowords experiment. Nonetheless decoding of the number conditions was not sensitive enough, so I decided to concentrate on language stimuli for the rest of PhD and this manuscript.

There is currently work in progress on the analysis of an ECoG dataset of a phrase and word list reading task, to better understand the timing of events related to the temporal segments and neural assemblies predicted by the Neural Blackboard Architecture. We are employing supervised learning techniques to characterize time segments linked to di erent grammatical features, possibly connected to the dynamics of some NBA neural assemblies. We are considering grammatical features from alternative grammar theories, a phrase grammar and a dependency grammar, such that we can also explore tests to empirically evaluate the likelihood of these theories. We are also exploring the application of unsupervised learning techniques, based on time series alignment with dynamic time warping, to extract clusters of electrodes with similar neural signatures related to binding dynamics.

Contributions to a study in Pediatric neuro-oncology

As a side project, I carried a substantial contribution to the statistical analysis and methodological development of a clinical study where we investigated the relationships between the changes in di erent cognitive scores and radiation dose distribution in 30 children treated for a posterior fossa tumor. We showed two cases for which there was a relationship between the radiation dose in speci c brain areas and particular cognitive decline. From my participation I was recognized as third author of the published study [START_REF] Doger De Speville | Relationships between regional radiation doses and cognitive decline in children treated with cranio-spinal irradiation for posterior fossa tumors[END_REF] Children treated for posterior fossa tumor with cranial radiation therapy often su er from cognitive impairments. Radiotherapy might speci cally impact brain regions implicated in di erent cognitive functions. Therefore, identifying regional e ects of radiotherapy on cognitive functions may help to propose speci c rehabilitation interventions adapted to the risk of cognitive impairment. 

Open source so ware development and assistance to open science initiatives

Figure 1

 1 Figure 1.1:Superposition illustration from Smolensky's Harmonic Mind: This plot was taken from Smolensky's Harmonic Mind. It illustrates the neural activation vectors corresponding to the bindings of each of the phonemes of the word "cat", such that their sum would constitute the activation vector of the word according to the superposition principle. Phonemes are considered as Fillers and node positions in the structure tree as Roles

Structure = Filler 1 ⊗Figure 1

 11 Figure 1.2:Tensor product illustration: The tensor product operates like the outer product of a Role and a Filler vector, of dimensions 4 and 3 respectively in the gure. Then each neural unit in the resulting binding neural activation vector, of dimension 12 in this case, encodes the multiplication of one component of the Role by one component of the Filler. The neural activation vectors of multiple bindings would be summed according to the superposition principle.

  .3.B. Introducing bidirectional conditional control signals is what gives the NBA the possibility of implementing separately queries like 'what follows X?' or 'what follows Y?'.

Figure 2

 2 Figure 2.1: Canonical Double gamma basis function (HRF)[START_REF] Glover | Deconvolution of impulse response in event-related BOLD fMRI[END_REF]: The HRF rst shows a quick increase from 1 to 5.2s, then "undershoots", drops below baseline, from 5.2 to 12.2s, and nally comes back to baseline from 12.2 to 30s.

  .

  4. 

Figure 2 . 4 :

 24 Figure 2.4: Classical z-test: In a z-test a gaussian distribution provides the reference for which we can estimate the accumulated probability of a particular value α, such that we can compute its pvalue.

Figure 2 . 6 :

 26 Figure 2.6: NuSVM example:We present two classes as blue and brown points. The NuSVM learns a hyperplane, a line in this two dimensional case, to discriminate the two classes. The nu parameter permits to regularize the algorithm by controlling the number of support vectors selected. For small value of nu, few observations are selected as support vectors, while for a large value of nu, all observations are selected.

Figure 2 . 7 :

 27 Figure 2.7: LIF dynamics: A. A spike raster showing an LIF population undergoing a jump response. Neurons are at equilbrium at t = 0. From t = 0 each neuron receives a Poisson distributed input spike train (λ = 800 Hz, h = 0.03,i.e. an input spike raises the PSP by 3% of the di erence between threshold and equilibrium potential, τ = 50 ms, following[START_REF] Omurtag | On the simulation of large populations of neurons[END_REF]). B. Firing rate calculated from the PDT method (solid curve), compared to ring rate from spiking neuron simulation (red markers). C. The density calculated by the PDT method (solid curve) at t = 0.3 s, compared to a histogram of the membrane potential over the population at the same time. D. Wilson-Cowan prediction for the ring rate, compared to PDT result. Importantly, Wilson-Cowan output must be tuned: the steady state value to which it converges is not predicted by the Wilson-Cowan equations, but must be provided as a sigmoid. In contrast, the PDT method calculates the ring rate from rst principles, and agrees well with the spiking neuron simulation, within statistics.

Figure 2 . 8 :

 28 Figure 2.8: AdEx dynamics: Left: Overview of AdEx dynamics.Right: a heat plot of the density pro le during simulation. On the horizontal axis the membrane potential, on the vertical axis the adaptivity parameter. Note that the right gure constitutes a considerable reduction of state space compared to left. For the connectivity parameters we use, the state space on the right is the part of state space reachable by dynamics.

Objectives outline: 1 . 2 .

 12 Test the superposition principle of Smolensky's tensor product representations with BOLD-fMRI (a) Design experimental manipulation for the acquisition of a two-syllabic pseudoword representations BOLD-fMRI dataset. (b) Extract pseudoword representation patterns with traditional univariate techniques (c) Develop tests with decoding algorithms to provide evidence in favour or against superposition in brain Regions of Interest and study the locality of those representations. Test the neural activity and temporal dynamics predicted by the Neural Blackboard Architecture (a) Implement a compartment circuit simulation with spiking neural networks employing population density techniques (b) Tune the implemented circuit only for correct binding operation (c) Generate the neural activity of selected stimuli from fMRI and ECoG experiments (d) Evaluate the qualitative similarity between the NBA circuit predictions and the results reported by the fMRI and ECoG experiments Part II Testing the superposition principle with bi-syllabic pseudowords 4 The superposition principle with BOLD-fMRI

Figure 4

 4 Figure 4.1:Illutration of superposed tensor product representation in BOLD-fMRI: We present the example neural vectors of the syllables "na" and "gu" bound to the left and right positions of a bi-syllabic pseudoword. We illustrate how the level of BOLD activity should re ect the aggregated activity of a segment of the neural units that form a representation. The superposition principle consists on the sum of the vector values from each binding, to obtain the nal total activity in a voxel. The voxel values of the pseudoword "nagu" correspond to the plots of the neural vectors and those of the pseudoword "guna" were derived in a similar way. Due to the e ect of aggregation, only one voxel in the example permits di erentiating the two pseudowords.

  pseudowords with decoding techniques in BOLD-fMRI, for which modelled representation examples were given in Equation 4.3 and Figure 4.1.

Figure 5 . 1 :

 51 Figure 5.1: Visual trial of the language localizer: Each black square represents the screen at a di erent time point. Only one example phrase and consonant string is shown, which comprises only one third of a block stimuli.

  Figure 5.3:Sensory-motor regions projected on Subject 1 anatomy: Contours are shown for the projected primary Visual, Auditory and Motor regions, alongside the subject extracted gray matter. The brain glass template contours were adapted to the T1 anatomy of the subject. Language regions: Two sets of language regions were selected for the analysis. The rst set of regions, shown in Figure5.4, was selected to evaluate the quality of the language localizer contrasts from a study done by Mahowald and Fedorenko[START_REF] Mahowald | Reliable individual-level neural markers of high-level language processing: a necessary precursor for relating neural variability to behavioral and genetic variability[END_REF]. In this study activation parcels were derived from similar language localizer acquisitions in hundreds of subjects, covering the whole fronto-temporal language network.

Figure 5 . 4 :

 54 Figure 5.4: Language localizer parcels projected on Subject 1 anatomy: Contours are shown for the projected language localizer parcels reported by Mahowald and Fedorenko. The brain glass template contours were adapted to the T1 anatomy of the subject.The second set of regions is shown in Figure5.5. Diverse regions, also covering the fronto-temporal language network, that have been directly linked to binding or constituency e ects, from di erent sources, were selected to facilitate the analysis and interpretation of the results 4 .

Figure 5 . 6 :

 56 figu fina gufi gugu guna nafi nagu nana

Figure 5 . 7 :

 57 Figure 5.7: Superposition test: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables and di erent syllables. The red dots correspond to example shu ed models taken from the classi er of the visual hOc1 region of Subject 4. The green dots correspond to the white noise models using the same shu ed labels as the example shu ed models. If the mean confusion values of a tested model is re ected as a dot above the black line in both plots, then we have evidence for superposition.

Figure 5 . 8 :

 58 Figure 5.8: Locality test: Each curve in the plot represents the proportion of overlap between best voxel subsets from CV1 and CV2 models.The blue curve distribution represents repeated overlap comparison of uniform random permutations of an index list to create fake random rankings. The red curve distribution was derived from an example set of shu ed models taken from the visual hOc1 region of Subject 4. The green curve distribution was derived from shu ed models trained on Gaussian noise data with the same shu ed labels as the example set.

Figure 6 . 1 :

 61 Figure 6.1: Language localizers: We show left and right hemispheric contours of the language localizer contrast of word sequences over control stimuli (consonant strings or scrambled recordings), thresholded at a p-value < 10e-3. Statistical images are projected in the anatomical space of each subject.

Figure 6 . 2 :

 62 Figure 6.2: Language localizer parcel coverage: We show the parcel coverage of each language localizer for the 6 language parcels derived by Mahowald et al. in both hemispheres. Each subject is represented in a radial chart to emphasize the overall coverage of the language localizers of each subject. Also the left and right hemisphere parcels have been arranged symmetrically in the radial charts. Motor activations: We veri ed the integrity of the activation maps of the CVCV Pseudowords presentation with statistical tests portraying the left and right hand button press contrast. Z score maps of the left over right button press contrast, for all subjects, are shown in Figure 6.3, con rming a good statistical separation of hand responses.We also veri ed that we can employ a Support Vector Classi er (SVC) to

Figure 6 . 3 :

 63 Figure 6.3: Button press e ects: We show the left button press over right button press contrast Z scores from the auditory modality, thresholded at p < 10e-4, for all subjects.Statistical images correspond to the anatomical space of each subject. distinguish left and right button press average activation maps derived from the CVCV Pseudowords presentation General Linear Model (GLM) runs. There were in total 32 maps for each condition corresponding to one map per run per session (8 runs in 4 sessions). As can be seen in Table6.2, we achieve high classi cation scores of right and left button press events for all subjects. Moreover, the classi cation generalize across sensory modalities.

  p < 10e-3, *** : p < 10e-4 Bonferroni corrected for 25 similar tests performed

Figure 6 . 4 :

 64 Figure 6.4: Retinotopic e ect: We show rst and second syllable position e ects masked by the Visual hOc1 region, thresholded at a p-value < 0.005. Statistical images correspond to the anatomical space of each subject.

Figure 6 . 6 :

 66 Figure 6.6: Superposition test in Visual-h0c1:We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables and di erent syllables. The smaller cyan dots correspond to the shu ed models of all subjects. All other dots correspond to subjects. A star means signi cance with a p-value < 0.05. The pattern of all Subjects support superposition, where Subjects 1 and 4 and the group are signi cant.

Figure 6 . 7 :Figure 6 . 7 :

 6767 Figure 6.7: Locality test in visual regions:We show in black the overlap of the "N" best voxel sets given by the two syllable position classi ers. In red we show the overlap distribution given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05 with respect to the shu ed distribution.

Figure 6 . 8 :Figure 6 . 9 :Figure 6 . 10 :Figure 6 . 11 :

 6869610611 figu

Figure 6 . 12 :Figure 6 . 13 :

 612613 Figure 6.12: Distributed representations in Broca's complex: We show in black the overlap of the "N" best voxel sets given by the two syllable position classi ers. In red we show the overlap distribution given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05 with respect to the shu ed distribution.

  Figure 6.14:Non additive representations in VWFA: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables and di erent syllables. The smaller cyan dots correspond to the shu ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a tested model is re ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi cance with a p-value < 0.05

  Figure 6.16:Inconsistent evidence in IFGorb: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables and di erent syllables. The smaller cyan dots correspond to the shu ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a tested model is re ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi cance with a p-value < 0.05

Figure 6 . 16 :

 616 Figure 6.16: Superposition regions projected on Subject 1 anatomy: Contours are shown for the projected superposition regions. The brain glass template contours were adapted to the T1 anatomy of the subject.

Figure 7

 7 Figure 7.1:Illutration of superposed tensor product representation in BOLD-fMRI: We present the example neural vectors of the syllables "na" and "gu" bound to the left and right positions of a bi-syllabic pseudoword. We illustrate how the level of BOLD activity should re ect the aggregated activity of a segment of the neural units that form a representation. The superposition principle implies the sum of the vector values from each binding to give the nal total activity in a voxel. The voxel values of the pseudoword "nagu" correspond to the plots of the neural vectors and those of the pseudoword "guna" were derived in a similar way. Due to the e ect of aggregation, no voxel in the example permits di erentiating the two pseudowords, even though the neural unit patterns are linearly independent between Roles and between Fillers.

Figure 8 . 1 .

 81 B. Introducing bidirectional conditional control signals is what gives the NBA the possibility of implementing separately queries like 'what follows X?' or 'what follows Y?'.

Figure 9 . 1 :

 91 Figure 9.1:Compartment circuit example: A. Details of the Compartment Circuit implementation. Only half of the circuit is shown since the design is symmetric. The baseline (B) and Event input (Inp) populations are part of the simulation and not of the original abstract circuit proposal. B. The behavior of the arti cial neural populations and their selected parameters is shown

  Since it is possible to tune the circuit to reproduce a wide range of ring rate absolute values under which circuit dynamics are similar and stable, we simply aimed at picking reasonable parameter values such that the circuit would maintain overall modest ring rate values with respect to the literature of neural measurements. To setup parameters and compare in detail the compartment circuit dynamics for LIF and AdEx neural populations, four simulation experiments were performed taking di erent sub-circuits into account. A diagram of each sub-circuit is shown in Figure9.2.

Figure 9 . 2 :

 92 Figure 9.2: Sub-circuit simulation topologies: For better visualization baseline activity nodes are excluded from the topologies. A. Single neural population driven by baseline activity. This topology reminds of the fact that all MA, SA, G and GK populations are driven initially in the same way by a persistent baseline xed rate. B. Chain of populations where activity is temporally interrupted by a control node. C. Excitatory loop between SAs when Working Memory is activated. D. Excitatory loop broken thanks to GKs inhibition.

Figure 10 . 1 :

 101 Figure 10.1: LIF Baseline neural dynamics: The plots at the top show how the steady state rate of a neural population relates to the number of baseline connections for a baseline input of 1Hz. The plots at the bottom show the temporal dynamics for di erent number of baseline connections.

Figure 10 . 2 :

 102 Figure 10.2: AdEx Baseline neural dynamics: The plots at the top show how the steady state rate of a neural population relates to the number of baseline connections for a baseline input of 1Hz. The plots at the bottom show the temporal dynamics for di erent number of baseline connections.

Figure 10 . 6 :

 106 Figure 10.6: Pro les of neural activity: A. Neural activation driven only by baseline input. B.Neural activation of the circuit when only one MA is activated by a word event or WM at 500 ms. Shows the neural activity related to an erroneous control signal at 800 ms. It is possible to see that the steady state of neural activity is resilient to a slip of control, going to the appropriate levels of neural activity once the control activity is over. C. Neural activity of the Compartment Circuit for a successful binding. The second MA gets activated at 800 ms alongside the controls. Since both MAs are active, the SAs manage to activate WM to instantiate the binding of the MAs. Two interesting dynamics arise from the binding: The rst is that a spike of activity in SAs, GKs and Gs takes place due to the sudden inhibitory activity of WM on the GKs; The second is that the memory circuit internally raises its baseline activity due to the excitatory loop formed.

Figure 10 . 7 :

 107 Figure 10.7: Sentence processing example: A. Tree structure hypothesized for a given 4 words phrase. It is shown how compartment circuits correspond to sections of the tree structure and how the nodes corresponding to grammatical categories of words processed or phrase nodes are instantiated in time under a bottom-up parsing approach. B. Blackboard time series that correspond to the simulated processing of the considered tree structure and time of activation of the nodes. The separate activity of the LIF populations of each compartment circuit are shown separately, followed by their summary and total activity. C. Same as B but for AdEx populations.

Figure 10 . 8 :

 108 Figure 10.8: Simulation comparison with intracortical (EcoG) recordings: In the top plots we show phrase processing for the LIF and AdEx simulations. We denote with arrows the four segments of neural dynamics identi ed in the simulations; The Main Assemblies (MAs) activity increase the segment; The accumulated binding operations segment; The Main Assemblies (MAs) activity release segment; And the Working Memory (WM) release segment. We denote with red bars the magnitude of Working Memory activity in the circuit that depends on phrase length and remains at the end of phrase processing. In the bottom plots we identify, in Figures modi ed from Nelson et al., the segments of intracortical recordings that resemble the simulation and denote with red bars the possible Working Memory related activity that remains at the end of phrase processing.

Figure 10 . 9 :

 109 Figure 10.9: E ect of number of executed binding operations: In the top plots we show the phrase processing time series of the LIF and AdEx simulations, aligned on the onset of the last word. We denote with arrows the segment of transient rise and drop of neural activity hypothesized to be linked to the number of executed pending binding operations, which we refer to as number of nodes closing in the plots, following terminology from Nelson et al. In the bottom plots we show, in Figures modi ed from Nelson et al., the intracortical recordings e ect of executed pending binding operations at the middle and end of phrases.

  1 https://github.com/nistats/nistats obtain a peak estimate of hemodynamic responses for the di erent conditions, as was the done in the Pallier et al. study.

Figure 10 . 10 :

 1010 Figure 10.10: Hemodynamic interpretation of the simulation: At the top and middle plots we show the rescaled time series of the LIF and AdEx simulations respectively, alongside the HRF convolved time series. At the bottom we show a boxcar event of 3600 ms and its convolution, as was employed by Pallier et al. to estimate the amplitude of responses for the di erent conditions from the BOLD-fMRI time series. we considered the HRF proposed by Glover, available in the open source python package Nistats.

Figure 10 . 11 :

 1011 Figure 10.11: Hemodynamic peak magnitudes comparison with BOLD-fMRI experiment: The top plots show the number of bindings executed for each condition alongside the rescaled Hemodynamic Response Function (HRF) amplitudes of each of the Compartment Circuit neural populations.We demonstrate that the hemodynamic pattern of the neural populations in the simulation follow closely the number of bindings executed. In the bottom plots we contrast the pattern of the total neural activity in the simulation alongside the sub-linear patterns reported by Pallier et al. in the pSTS, IFGorb and IFGtri brain regions.

Figure 10 .

 10 11, we show the similarity between the HRF magnitude pattern of the total neural activity in the simulation models with what is reported by Pallier et al. in the pSTS, IFGorb and IFGtri brain regions.

I 39 Figure A. 1 :

 391 figu

Figure A. 19 :

 19 Figure A.19: Accuracy in IFGorb: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

Figure A. 43 :

 43 Figure A.43: Accuracy in TP: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05
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	Subject Visual (%) Auditory (%) Overall (%) 01 97.22 97.22 97.22 02 100.00 98.61 99.31 03 97.92 97.22 97.57 04 99.31 99.31 99.31 05 92.36 88.89 90.62	Table performance 6.1: Pseudowords matching task: Behavioral on the Performance correspond to correctly identifying if the pseudowords were the same
		or di erent, with no answer
		considered as incorrect. Visual
		and Auditory headers refer to the
		sensory modality of the task, where
		overall is the mean performance of
		both modalities.

Table 10 . 1 :

 101 Complete simulation parameters

		LIF AdEx
	baseline connections	115	1646
	excitatory connections	8	20
	inhibitory connections 70	250
	Input rate (Hz)	10	20
	WM/Ctl rate (Hz)	10	20

Table A . 1 :

 A1 Accuracy Visual-h0c1 CVCV: * p-value < 0.05, ** p-value < 0.01. Accuracy in VWFA: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.2 VWFA (Visual dataset)							
			CVCV			CV1 and CV2 (1 or 2)
									(1) fi	
				fifi							
		figu		nana					
							(1) gu					(2) na
		fina				nagu				0.07	0.18
	Subject			0.03 0.07 0.11					
	01 02	gufi				nafi	(1) na					(2) gu
	03										
	04										
	05		gugu	guna				(2) fi	
	Figure A.4: Condition		gu	na	gu	gugu guna na	nagu nana	Mean
	Subject										
	01	0.21* 0.11	0.16	0.16* 0.11	0.07	0.11	0.10	0.20** 0.14*
	02	0.10	0.24** 0.21* 0.07	0.16* 0.09	0.06	0.07	0.10	0.12
	03	0.17	0.10	0.11	0.07	0.15	0.10	0.09	0.11	0.07	0.11
	04	0.07	0.16	0.10	0.10	0.14	0.12	0.15* 0.10	0.04	0.11
	05	0.14	0.11	0.17	0.11	0.14	0.19* 0.11	0.16* 0.07	0.13*
	Condition		gu	na	gu	gugu guna	na	nagu	nana	Mean
	Subject										
	01	0.30** 0.23** 0.29** 0.19*	0.19*	0.15		0.16*	0.12	0.20** 0.20**
	02	0.17	0.20*	0.21*	0.16	0.15	0.09		0.23** 0.15*	0.12	0.17**
	03	0.25*	0.19	0.21*	0.14	0.17** 0.12		0.19** 0.14*	0.11	0.17**
	04	0.41** 0.45** 0.44** 0.31** 0.31** 0.35** 0.39** 0.33** 0.24** 0.36**
	05	0.20*	0.23** 0.16	0.14	0.20** 0.16*	0.15*	0.14	0.11	0.17**

Table A . 3 :

 A3 Accuracy VWFA CVCV: * p-value < 0.05, ** p-value < 0.01. Accuracy in TP: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.3 TP (Visual dataset)						
			CVCV			CV1 and CV2 (1 or 2)
									(1) fi	
				fifi						
		figu			nana					
							(1) gu				(2) na
		fina				nagu				0.07	0.18
	Subject			0.03 0.08 0.13				
	01 02	gufi			nafi	(1) na				(2) gu
	03									
	04									
	05		gugu		guna				(2) fi	
	Figure A.7: Condition		gu	na	gu	gugu guna na	nagu nana Mean
	Subject									
	01	0.19	0.20*	0.17	0.14	0.12	0.11	0.11	0.10	0.15* 0.14**
	02	0.24** 0.11	0.11	0.12	0.19* 0.09	0.15	0.12	0.11	0.14*
	03	0.10	0.12	0.23** 0.06	0.10	0.17* 0.19* 0.16* 0.14	0.14**
	04	0.11	0.12	0.12	0.17* 0.15	0.10	0.09	0.11	0.15* 0.13
	05	0.16	0.26** 0.10	0.16	0.11	0.11	0.14	0.07	0.09	0.13*

Table A . 5 :

 A5 Accuracy TP CVCV: * p-value < 0.05, ** p-value < 0.01.Figure A.10: Accuracy in TPJ: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.4 TPJ (Visual dataset)						
			CVCV			CV1 and CV2 (1 or 2)
									(1) fi	
				fifi						
		figu			nana				
							(1) gu				(2) na
		fina				nagu				0.07	0.18
	Subject			0.03 0.15 0.27				
	01 02	gufi				nafi	(1) na				(2) gu
	03									
	04									
	05		gugu		guna				(2) fi	
	Condition		gu	na	gu	gugu guna	na	nagu nana Mean
	Subject									
	01	0.45** 0.11 0.17	0.06	0.09	0.11	0.00	0.00	0.06	0.12
	02	0.23	0.21 0.12	0.15	0.12	0.17** 0.03	0.05	0.11	0.13*
	03	0.16	0.09 0.24** 0.12	0.15	0.17*	0.07	0.17* 0.11	0.14**
	04	0.06	0.14 0.16	0.23* 0.06	0.14	0.16* 0.20* 0.10	0.14*
	05	0.14	0.11 0.11	0.17	0.12	0.20*	0.05	0.11	0.11	0.13*

Table A . 7 :

 A7 Accuracy TPJ CVCV: * p-value < 0.05, ** p-value < 0.01.Figure A.13: Accuracy in aSTS: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.5 aSTS (Visual dataset)				
			CVCV		CV1 and CV2 (1 or 2)
								(1) fi
				fifi				
		figu		nana			
						(1) gu			(2) na
		fina			nagu				0.07	0.19
	Subject			0.03 0.09 0.15			
	01 02	gufi			nafi	(1) na			(2) gu
	03							
	04							
	05		gugu	guna				(2) fi
	Condition		gu	na gu	gugu guna na	nagu nana Mean
	Subject							
	01	0.30** 0.15	0.10 0.15	0.16* 0.10	0.14 0.05	0.15* 0.14**
	02	0.10	0.17*	0.10 0.21* 0.12	0.15	0.09 0.15	0.10	0.13*
	03	0.17	0.28** 0.19 0.16	0.10	0.11	0.09 0.06	0.06	0.14
	04	0.21*	0.25** 0.09 0.16* 0.17* 0.16* 0.05 0.11	0.10	0.15**
	05	0.14	0.20	0.12 0.14	0.17	0.05	0.11 0.15* 0.12	0.13*

Table A . 9 :

 A9 Accuracy aSTS CVCV: * p-value < 0.05, ** p-value < 0.01.Figure A.16: Accuracy in pSTS: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.6 pSTS (Visual dataset)						
			CVCV			CV1 and CV2 (1 or 2)
									(1) fi	
				fifi						
			figu			nana				
							(1) gu				(2) na
		fina				nagu				0.07	0.18
	Subject			0.03 0.08 0.13				
	01 02	gufi				nafi	(1) na				(2) gu
	03									
	04									
	05		gugu		guna				(2) fi	
	Condition		gu	na	gu	gugu guna	na	nagu	nana Mean
	Subject									
	01	0.20	0.16	0.16	0.07 0.12	0.16*	0.10	0.11	0.09	0.13*
	02	0.14	0.28** 0.16	0.10 0.14	0.07	0.10	0.09	0.14	0.13*
	03	0.12	0.23*	0.14	0.14 0.12	0.19** 0.20** 0.20** 0.14* 0.16**
	04	0.24* 0.16	0.19* 0.14 0.09	0.11	0.11	0.05	0.19* 0.14**
	05	0.20	0.14	0.06	0.12 0.06	0.15	0.16** 0.06	0.11	0.12

Table A .

 A 11: Accuracy pSTS CVCV: * p-value < 0.05, ** p-value < 0.01.

	A.7 IFGorb (Visual dataset)		
		CVCV		CV1 and CV2 (1 or 2)	
				(1) fi	
		fifi			
		figu	nana		
				(1) gu	(2) na
		fina	nagu	0.07	0.17
	Subject		0.03 0.06 0.09		
	01 02	gufi	nafi	(1) na	(2) gu
	03				
	04				
	05	gugu	guna	(2) fi	

Table A .

 A 13: Accuracy IFGorb CVCV: * p-value < 0.05, ** p-value < 0.01.Figure A.22: Accuracy in IFGtri: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.8 IFGtri (Visual dataset)					
			CVCV		CV1 and CV2 (1 or 2)
								(1) fi
				fifi					
		figu	nana				
						(1) gu				(2) na
		fina			nagu				0.07	0.18
	Subject			0.03 0.10 0.17				
	01 02	gufi			nafi	(1) na				(2) gu
	03								
	04								
	05		gugu	guna				(2) fi
	Condition Condition		gu gu	na gu na gu	gugu guna gugu guna na na	nagu nagu nana nana Mean Mean
	Subject Subject								
	01 01	0.23** 0.16 0.14 0.16	0.11 0.19** 0.14 0.15 0.15 0.06	0.11 0.14	0.07 0.04 0.15 0.11	0.14* 0.13** 0.06 0.12
	02 02	0.20 0.17	0.19* 0.09 0.09 0.25** 0.11 0.16	0.14 0.04	0.19** 0.10 0.17** 0.11 0.15 0.10 0.15 0.17** 0.15** 0.14**
	03 03	0.20* 0.12	0.07 0.24*	0.11 0.11 0.12 0.14	0.12 0.04	0.14 0.10	0.14 0.16* 0.09 0.14	0.12 0.12	0.13* 0.12
	04 04	0.21 0.19	0.17 0.19	0.15 0.11 0.09 0.20* 0.10 0.15	0.12 0.14	0.10 0.11 0.11 0.07	0.11 0.07	0.14* 0.13
	05 05	0.15 0.34* 0.10 0.17	0.20 0.14 0.14 0.07	0.05 0.11	0.05 0.07	0.11 0.11 0.10 0.09	0.06 0.01	0.12 0.12

Table A .

 A 15: Accuracy IFGtri CVCV: * p-value < 0.05, ** p-value < 0.01.Figure A.25: Accuracy in Broca-44: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.9 Broca-44 (Visual dataset)						
			CVCV			CV1 and CV2 (1 or 2)
									(1) fi	
				fifi						
		figu			nana					
							(1) gu			(2) na
		fina				nagu				0.07
	Subject			0.03 0.09 0.15				
	01 02	gufi			nafi	(1) na			(2) gu
	03									
	04									
	05		gugu	guna				(2) fi	
	Condition		gu	na	gu	gugu guna	na	nagu nana	Mean
	Subject									
	01	0.17*	0.17*	0.23** 0.10	0.21** 0.15	0.12	0.12	0.15	0.16**
	02	0.25** 0.21** 0.06	0.20* 0.20** 0.14	0.14	0.19* 0.12	0.17**
	03	0.07	0.15	0.25** 0.16	0.15	0.14	0.14	0.05	0.15*	0.14**
	04	0.25** 0.11	0.15	0.03	0.14	0.30** 0.17* 0.05	0.28** 0.16**
	05	0.14	0.19	0.21** 0.16	0.12	0.10	0.10	0.11	0.10	0.14*

Table A .

 A 17: Accuracy Broca-44 CVCV: * p-value < 0.05, ** p-value < 0.01.Figure A.28: Accuracy in Broca-45: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.10 Broca-45 (Visual dataset)					
			CVCV			CV1 and CV2 (1 or 2)
									(1) fi	
				fifi						
		figu			nana					
							(1) gu			(2) na
		fina				nagu				0.07	0.16
	Subject			0.03 0.09 0.15				
	01									
	02	gufi			nafi	(1) na			(2) gu
	03									
	04									
	05		gugu		guna				(2) fi	
	Condition		gu	na	gu	gugu guna	na	nagu nana	Mean
	Subject									
	01	0.20	0.19*	0.15	0.10 0.15	0.16	0.16*	0.10	0.12	0.15**
	02	0.21*	0.31** 0.11	0.12 0.17* 0.12	0.17*	0.15	0.19** 0.17**
	03	0.11	0.23** 0.19	0.14 0.12	0.21** 0.14	0.06	0.06	0.14**
	04	0.26** 0.16*	0.12	0.06 0.14	0.24** 0.20** 0.07	0.25** 0.17**
	05	0.07	0.25** 0.29** 0.14 0.09	0.14	0.20** 0.10	0.07	0.15**

Table A .

 A 19: Accuracy Broca-45 CVCV: * p-value < 0.05, ** p-value < 0.01.Figure A.31: Accuracy in VWFA: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.11 VWFA (Auditory dataset)					
			CVCV			CV1 and CV2 (1 or 2)
									(1) fi	
				fifi						
			figu		nana				
							(1) gu				(2) na
		fina				nagu				0.07	0.18
	Subject				0.03 0.06 0.09				
	01 02	gufi				nafi	(1) na				(2) gu
	03									
	04									
	05		gugu		guna				(2) fi	
	Condition		gu	na	gu	gugu guna na	nagu nana Mean
	Subject									
	01	0.17	0.23** 0.20* 0.12 0.12	0.11	0.11	0.10	0.12	0.14*
	02	0.17	0.11	0.20* 0.12 0.12	0.11	0.05	0.07	0.09	0.12
	03	0.16	0.11	0.15	0.12 0.11	0.07	0.11	0.05	0.09	0.11
	04	0.21* 0.20*	0.20* 0.16 0.10	0.11	0.17** 0.09	0.14	0.15**
	05	0.17	0.09	0.17	0.11 0.14	0.11	0.12	0.10	0.10	0.12

Table A .

 A 21: Accuracy VWFA CVCV: * p-value < 0.05, ** p-value < 0.01.Figure A.34: Accuracy in Auditory-Te10: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05 Figure A.37: Accuracy in Auditory-Te11: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05 Figure A.40: Accuracy in Auditory-Te12: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.12 Auditory-Te10 (Auditory dataset) A.13 Auditory-Te11 (Auditory dataset) A.14 Auditory-Te12 (Auditory dataset) A.15 TP (Auditory dataset)	
			CVCV CVCV CVCV CVCV			CV1 and CV2 (1 or 2) CV1 and CV2 (1 or 2) CV1 and CV2 (1 or 2) CV1 and CV2 (1 or 2)
								(1) fi (1) fi (1) fi (1) fi
				fifi			
				fifi fifi fifi			
		figu			nana		
		figu figu figu			nana nana nana		(1) gu (1) gu (1) gu (1) gu	(2) na (2) na (2) na (2) na
	Subject 02 05 05 05 05 04 04 04 04 03 03 03 03 01 02 01 02 02 01 01 Subject Subject Subject	gufi gufi gufi gufi fina fina fina fina	gugu gugu gugu gugu		guna guna guna guna 0.03 0.07 0.11 nafi nafi nafi nafi nagu 0.03 0.07 0.11 0.03 0.07 0.11 0.03 0.07 0.11 nagu nagu nagu	(1) na (1) na (1) na (1) na	(2) fi (2) fi (2) fi (2) fi	(2) gu (2) gu (2) gu (2) gu 0.16 0.07 0.07 0.07 0.07 0.17
	Condition Condition Condition Subject Subject Subject		gu gu gu	na na na	gu gu gu	gugu guna gugu guna na na gugu guna na	nagu nana Mean nagu nana Mean nagu nana Mean
	01 02 01 01 03 02 02 04 03 03 05 04 04 05 05	0.24** 0.24** 0.15 0.19 0.14 0.14 0.16 0.17 0.11 0.21* 0.23** 0.10 0.25** 0.21* 0.20** 0.10 0.20* 0.15 0.10 0.14 0.14 0.17* 0.09 0.14 0.16* 0.19* 0.24** 0.20** 0.11 0.12 0.17** 0.09 0.09 0.12 0.10 0.12 0.16* 0.12 0.19** 0.16* 0.12 0.11 0.05 0.16* 0.14* 0.16** 0.10 0.17** 0.13* 0.15 0.21* 0.17 0.14 0.14 0.14 0.11 0.11 0.09 0.14* 0.19* 0.16 0.19* 0.25** 0.15 0.12 0.11 0.14 0.09 0.16** 0.17** 0.21** 0.14 0.14 0.07 0.19** 0.19** 0.16* 0.09 0.09 0.24** 0.20* 0.21** 0.21** 0.10 0.10 0.12 0.12 0.09 0.16** 0.23** 0.15 0.19* 0.14 0.17* 0.11 0.19** 0.16* 0.14 0.16** 0.14** 0.12 0.16 0.09 0.19* 0.16* 0.14 0.06 0.14 0.16 0.20 0.16 0.10 0.25** 0.11 0.10 0.09 0.10 0.11 0.14* 0.21** 0.14 0.11 0.05 0.17* 0.14 0.10 0.15 0.09 0.13* 0.14* 0.09 0.10 0.06 0.16* 0.15 0.16* 0.09 0.16* 0.19* 0.13* 0.09 0.17 0.12 0.11 0.15 0.17* 0.12 0.11 0.14* 0.13*
	Table A.23: Accuracy Auditory-Te10 CVCV: * p-value < 0.05, ** p-value < Table A.25: Accuracy Auditory-Te11 CVCV: * p-value < 0.05, ** p-value < Table A.27: Accuracy Auditory-Te12 CVCV: * p-value < 0.05, ** p-value < 0.01. 0.01. 0.01.

Table A .

 A 29: Accuracy TP CVCV: * p-value < 0.05, ** p-value < 0.01.Figure A.46: Accuracy in TPJ: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.16 TPJ (Auditory dataset)						
		CVCV				CV1 and CV2 (1 or 2)
								(1) fi
			fifi						
		figu		nana				
						(1) gu			(2) na
		fina			nagu				0.07	0.19
	Subject		0.03 0.08 0.13				
	01 02	gufi			nafi	(1) na			(2) gu
	03								
	04								
	05	gugu	guna				(2) fi
	Condition Condition	gu gu	na na gu	gu	gugu guna na gugu guna na	nagu nagu nana Mean nana Mean
	Subject Subject								
	01 01	0.19 0.11 0.23 0.16 0.14 0.00 0.21* 0.05	0.11 0.23	0.11 0.07	0.06 0.00	0.15* 0.05 0.16	0.07 0.12	0.12
	02 02	0.14 0.15 0.20 0.16 0.12 0.24** 0.10 0.16 0.20** 0.14	0.11 0.07	0.14 0.06	0.10 0.09	0.05	0.12 0.12	0.14*
	03 03	0.19 0.12 0.16 0.15 0.09 0.10 0.20** 0.15	0.12 0.10	0.11 0.09	0.19* 0.17** 0.14 0.16* 0.15* 0.06 0.12	0.16**
	04 04	0.20 0.14 0.16 0.11 0.10 0.04 0.20 0.16	0.09 0.16	0.05 0.11	0.15 0.07	0.07 0.11	0.17** 0.14* 0.16* 0.12
	05 05	0.12 0.23** 0.16 0.09 0.14 0.15 0.23* 0.14	0.10 0.14	0.14 0.07	0.14 0.11	0.10 0.14	0.06	0.12 0.12*	0.14*

Table A .

 A 31: Accuracy TPJ CVCV: * p-value < 0.05, ** p-value < 0.01.Figure A.49: Accuracy in aSTS: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.17 aSTS (Auditory dataset)				
			CVCV			CV1 and CV2 (1 or 2)
								(1) fi
				fifi				
			figu		nana			
						(1) gu		(2) na
		fina			nagu			0.07	0.18
	Subject			0.03 0.09 0.15			
	01 02	gufi			nafi	(1) na		(2) gu
	03							
	04							
	05		gugu	guna				(2) fi
	Condition		gu	na gu	gugu guna na	nagu	nana Mean
	Subject							
	01	0.19* 0.16 0.07 0.16	0.17* 0.10	0.12	0.12	0.14	0.14*
	02	0.20	0.17 0.14 0.16	0.17* 0.09	0.17	0.11	0.14	0.15**
	03	0.15	0.14 0.10 0.14	0.14	0.07	0.15* 0.12	0.07	0.12
	04	0.14	0.07 0.11 0.19* 0.11	0.11	0.12	0.20** 0.19* 0.14*
	05	0.30* 0.14 0.14 0.11	0.10	0.15* 0.07	0.10	0.06	0.13

Table A .

 A 33: Accuracy aSTS CVCV: * p-value < 0.05, ** p-value < 0.01.Figure A.52: Accuracy in pSTS: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.18 pSTS (Auditory dataset)					
			CVCV			CV1 and CV2 (1 or 2)
									(1) fi	
				fifi						
			figu		nana				
							(1) gu				(2) na
		fina				nagu				0.07	0.19
	Subject			0.03 0.08 0.13				
	01 02	gufi				nafi	(1) na				(2) gu
	03									
	04									
	05		gugu		guna				(2) fi	
	Condition		gu	na	gu	gugu guna	na	nagu nana Mean
	Subject									
	01	0.21* 0.23* 0.11	0.19* 0.05	0.23** 0.12	0.06	0.15* 0.15**
	02	0.14	0.15	0.16	0.12	0.15	0.14	0.16* 0.09	0.15	0.14*
	03	0.12	0.11	0.15	0.15	0.17* 0.21** 0.16* 0.05	0.12	0.14**
	04	0.16	0.15	0.26** 0.16	0.16	0.12	0.14	0.10	0.14* 0.16**
	05	0.15	0.12	0.16	0.20* 0.14	0.10	0.14	0.10	0.10	0.13*

Table A .

 A 35: Accuracy pSTS CVCV: * p-value < 0.05, ** p-value < 0.01.Figure A.55: Accuracy in IFGorb: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.19 IFGorb (Auditory dataset)					
			CVCV			CV1 and CV2 (1 or 2)
									(1) fi	
				fifi						
			figu		nana				
							(1) gu				(2) na
		fina				nagu				0.07	0.18
	Subject				0.03 0.07 0.11				
	01 02	gufi				nafi	(1) na				(2) gu
	03									
	04									
	05		gugu		guna				(2) fi	
	Condition		gu	na	gu	gugu guna	na	nagu nana Mean
	Subject									
	01	0.24* 0.16 0.16	0.11	0.09	0.19** 0.15* 0.06	0.06	0.14*
	02	0.24* 0.11 0.10	0.07	0.12	0.14	0.14	0.09	0.14	0.13
	03	0.11	0.11 0.17* 0.20* 0.19** 0.14	0.09	0.19* 0.10	0.14**
	04	0.17	0.15 0.15	0.15	0.14	0.10	0.06	0.05	0.11	0.12
	05	0.15	0.15 0.20* 0.21* 0.09	0.14	0.14	0.10	0.09	0.14**

Table A .

 A 37: Accuracy IFGorb CVCV: * p-value < 0.05, ** p-value < 0.01.Figure A.58: Accuracy in IFGtri: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.20 IFGtri (Auditory dataset)				
			CVCV			CV1 and CV2 (1 or 2)
									(1) fi
				fifi					
		figu			nana			
							(1) gu			(2) na
		fina				nagu				0.07	0.18
	Subject			0.03 0.08 0.13			
	01 02	gufi				nafi	(1) na			(2) gu
	03								
	04								
	05		gugu		guna				(2) fi
	Condition		gu	na	gu	gugu guna	na	nagu nana Mean
	Subject								
	01	0.19	0.14 0.09	0.19* 0.11	0.16*	0.14	0.14	0.19* 0.15**
	02	0.28** 0.16 0.14	0.10	0.14	0.15	0.19** 0.11	0.09	0.15**
	03	0.19	0.17 0.14	0.21* 0.14	0.09	0.19** 0.11	0.05	0.14*
	04	0.23*	0.17 0.14	0.16	0.16	0.19** 0.16*	0.07	0.09	0.15**
	05	0.15	0.16 0.23* 0.11	0.09	0.10	0.10	0.05	0.09	0.12

Table A .

 A 39: Accuracy IFGtri CVCV: * p-value < 0.05, ** p-value < 0.01.Figure A.61: Accuracy in Broca-44: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.21 Broca-44 (Auditory dataset)			
			CVCV			CV1 and CV2 (1 or 2)
										(1) fi
				fifi					
			figu			nana			
							(1) gu			(2) na
		fina				nagu				0.07
	Subject				0.03 0.06 0.09			
	01 02	gufi				nafi	(1) na			(2) gu
	03								
	04								
	05		gugu		guna					(2) fi
	Condition		gu	na	gu	gugu guna na	nagu nana Mean
	Subject								
	01	0.19* 0.17	0.21* 0.11 0.14	0.20* 0.07 0.10	0.15	0.15**
	02	0.10	0.19* 0.17* 0.14 0.20** 0.14	0.11 0.11	0.16* 0.15**
	03	0.23* 0.17	0.16	0.15 0.16	0.07	0.09 0.15* 0.09	0.14*
	04	0.15	0.11	0.20* 0.10 0.09	0.15	0.12 0.10	0.10	0.12
	05	0.19	0.12	0.14	0.14 0.19*	0.15	0.12 0.10	0.12	0.14**

Table A .

 A 41: Accuracy Broca-44 CVCV: * p-value < 0.05, ** p-value < 0.01.Figure A.64: Accuracy in Broca-45: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The accuracy score points are denoted with stars whenever they are signi cant with p-value < 0.05

	A.22 Broca-45 (Auditory dataset)				
			CVCV			CV1 and CV2 (1 or 2)
									(1) fi
				fifi					
			figu		nana				
							(1) gu			(2) na
		fina				nagu				0.07	0.18
	Subject			0.03 0.09 0.15			
	01 02	gufi			nafi	(1) na			(2) gu
	03								
	04								
	05		gugu		guna				(2) fi
	Condition		gu	na	gu	gugu guna	na	nagu nana	Mean
	Subject								
	01	0.09	0.16	0.17	0.11	0.11	0.24** 0.09	0.10	0.25** 0.15**
	02	0.12	0.17	0.24** 0.19*	0.11	0.12	0.17* 0.14	0.20*	0.16**
	03	0.16	0.11	0.15	0.25** 0.17	0.12	0.15* 0.06	0.19*	0.15**
	04	0.21* 0.11	0.15	0.06	0.16* 0.12	0.15	0.09	0.14	0.13*
	05	0.17	0.24** 0.19*	0.12	0.15	0.19** 0.10	0.10	0.06	0.15**

Table A .

 A [START_REF] Compte | Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model[END_REF]: Accuracy Broca-45 CVCV: * p-value < 0.05, ** p-value < 0.01.

M. A. Lindquist. The statistical analysis of fmri data. Statistical Science, pages 439-464,

M. A. Lindquist. The statistical analysis of fmri data. Statistical Science, pages 439-464, 2008

http://miind.sf.net the algorithm has been available for some time[START_REF] De Kamps | The state of MIIND[END_REF], while the two dimensional version has become available recently.
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Part III

The neural dynamics of binding in language with the Neural Blackboard Architecture of cortical circuits. There are several aspects related to implementation details that could and should be reconciled to properly compare the approaches in future work. Two in particular that we thought about are the basic representational units assumed by the models and the inclusion of temporal dynamics in Smolensky's framework.

Neurons are still considered by most models as simple compartment units although their superior information processing power has been known for some time [START_REF] Koch | The role of single neurons in information processing[END_REF]. In this regard both approaches might require a reinterpretation of their implementation. In the case of the Neural Blackboard Architecture (NBA), its fundamental mechanisms are based on the idea of a gating circuit and a short term memory device. Although these mechanisms have been interpreted at the level of a circuit of neural assemblies and reverberating activity, an alternative implementation at the cellular level for gating [START_REF] Larkum | A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex[END_REF] and synaptic short term memory [START_REF] Mongillo | Synaptic theory of working memory[END_REF] have been demonstrated in the literature. This means that it could be possible to reimplement the functionality of complete Compartment Circuits of a Blackboard with few neurons to bring its implementation at the neural unit level. In the case of Smolensky's framework the mapping of cellular activity to theoretical values of the neural units is not clear and several alternatives based on the computational complexity of a single neuron should be considered in the future.

The NBA provide a clear temporal depiction of the control and memory mechanisms necessary to implement binding. On the other hand Smolensky presents in the Harmonic mind [START_REF] Smolensky | The harmonic mind: From neural computation to optimality-theoretic grammar[END_REF], the implementation of tensor products abstractly as matrix multiplication, were the matrix coe cients are interpreted [START_REF] Abdulrahman | E ect of trial-to-trial variability on optimal event-related fmri design: Implications for beta-series correlation and multi-voxel pattern analysis[END_REF] (1) gu ( 1) na ( 1 We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 ( We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 ( given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 [START_REF] Abdulrahman | E ect of trial-to-trial variability on optimal event-related fmri design: Implications for beta-series correlation and multi-voxel pattern analysis[END_REF] (1) gu ( 1) na ( 1 given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 [START_REF] Abdulrahman | E ect of trial-to-trial variability on optimal event-related fmri design: Implications for beta-series correlation and multi-voxel pattern analysis[END_REF] (1) gu ( 1) na ( 1 given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 ( given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 ( given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 ( given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 ( given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 ( We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 ( We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 [START_REF] Abdulrahman | E ect of trial-to-trial variability on optimal event-related fmri design: Implications for beta-series correlation and multi-voxel pattern analysis[END_REF] (1) gu ( 1) na ( 1 We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 [START_REF] Abdulrahman | E ect of trial-to-trial variability on optimal event-related fmri design: Implications for beta-series correlation and multi-voxel pattern analysis[END_REF] (1) gu ( 1) na ( 1 given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 [START_REF] Abdulrahman | E ect of trial-to-trial variability on optimal event-related fmri design: Implications for beta-series correlation and multi-voxel pattern analysis[END_REF] (1) gu ( 1 given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05 [START_REF] Abdulrahman | E ect of trial-to-trial variability on optimal event-related fmri design: Implications for beta-series correlation and multi-voxel pattern analysis[END_REF] (1) gu ( 1 given by the shu ed models. In green we denote segments of signi cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi cantly higher overlap with a p-value < 0.05