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General context

The Chinese people are recognized to be the first civilization to drill for oil: already in 300 BC, they pounded holes in the ground with heavy, bronze bits suspended from spring poles, which eliminated some of the manual labor to raise and to drop a heavy bronze bit [START_REF] Fagan | An introduction to the petroleum industry[END_REF]. In the early 1800's, drillers in the 'modern' oil industry used a variation of this technique called cable-tool drilling, which utilized a steam or internal combustion engine to raise and lower a wooden or metal beam from which the bit was suspended. In cable-tool drilling [START_REF]Oil History -The Drill String -Cable Tools[END_REF], the cable (manila rope or wire line) pulled the string of tools up and down as brought about by a spring pole or a walking beam at the surface, and the bit has a blunt chisel end which cracks, chips and smashes the rock by the repeated blows delivered in a measured or regular cadence. This kind of drilling is also called percussion drilling.

In the 1860's, some artesian wells were drilled with wooden rods supporting the tools of the drill string, where the rods may have been to the order of 1 3/4" thick, 20 to 30 ft in length and were fastened together by a screw and box [START_REF]Oil History -The Drill String -Cable Tools[END_REF]. To be pulled out of the hole, each rod had to be unscrewed when it arrived at the surface and fastened again when going back into the hole. The use of wooden rods was soon replaced by thick rope such as manila, sisal hemp or sea grass, thus eliminating the hookup time that wooden rods required.

Nowadays, the drilling operation is done by drill string, which consists of a series of pipe sections (joints) that are screwed together as they are lowered into the borehole [START_REF] Baker | Practical Reservoir Engineering and Characterization[END_REF]. In general, drill strings are composed by two substructures: drill pipe (slender pipes that can reach kilometers, herein called "DP") and bottomhole-assembly pipe (thicker pipes together with a drill bit on its bottom, and its length can reach hundreds of meters long, herein called BHA), as showed in Fig. 1.1. For vertical drilling operations, the drill string rotates around its longitudinal axis for drilling rocks, and a drilling fluid is injected inside of it in order to transport drilled solids (cuttings) upward in annulus area (space between the drill string and the borehole), avoiding borehole clogging and cooling the bit [START_REF] Ritto | Nonlinear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF], among other functions. Once the target depth is reached, the drill string is pulled out of the hole, and another length of pipe (the production casing) is cemented in place to prevent hole collapse and to isolate productive formations (from one another) [START_REF] Baker | Practical Reservoir Engineering and Characterization[END_REF]. Its operation is not trivial and involves high costs, especially in deep water oil reserves, which increases the interest of industries to reduce the operational costs to sustain the competitiveness [START_REF] Ritto | Nonlinear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF]. Due to drill string design concept (slender structure), torsional and lateral vibrations can occur when it rotates. Besides, its dynamical behavior combines a complex set of actions under operation, such as friction in bit-rock interaction, axial compression forces, fluid structure interaction, and possible borehole contact. These effects can generate axial, lateral and torsional damped vibrations [START_REF] Spanos | Oil and gas well drilling: A vibrations perspective[END_REF]. Especially for torsional vibrations, the friction during the bit-rock interaction, coupled with the axial efforts (torque applied at the bottom-end of the BHA -torque on bit), might lead to stick-slip, which is an oscillatory twisting evidenced as a variation of bit speed [START_REF] Hong | Identification and control of stickslip vibrations using Kalman estimator in oil-well drill strings[END_REF][START_REF] Khulief | Vibration analysis of drillstrings with self-excited stick-slip oscillations[END_REF][START_REF] Kreuzer | Controlling torsional vibrations of drill strings via decomposition of traveling waves[END_REF][START_REF] Leine | Stick-slip vibrations induced by alternate friction models[END_REF][START_REF] Patil | A comparative review of modelling and controlling torsional vibrations and experimentation using laboratory setups[END_REF][START_REF] Richard | Self-excited stick-slip vibrations of drill bits[END_REF][START_REF] Tucker | On the effective control of torsional vibrations in drilling systems[END_REF]. Stick-slip oscillations might cause, for instance, measurement equipment failure, low rate of penetration, bit damage, and fatigue [START_REF] Wu | Identifying the Root Cause of Drilling Vibration and Stick-Slip Enables Fit-for-Purpose[END_REF]. Besides, oscillations can increase the pre-existing number of uncertainty sources, as material properties (column and drilling fluid) and dimensions of whole system (especially borehole). In this context, drill string dynamics might be complex [START_REF] Jansen | Nonlinear dynamics of oilwell drillstrings[END_REF][START_REF] Khulief | Finite element dynamic analysis of drillstrings[END_REF][START_REF] Ritto | Nonlinear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF][START_REF] Sampaio | Coupled axial/torsional vibrations of drilling-strings by mean of nonlinear model[END_REF][START_REF] Spanos | Oil and gas well drilling: A vibrations perspective[END_REF][START_REF] Spanos | Drillstring vibrations[END_REF], and knowledge thereof is strategic for the industry, in order to reduce the operational costs and sustain the competitiveness. This work is interested in the modeling of torsional vibrations of a drill string under uncertainties, in order to minimize the operational risks, which means improving its efficiency and safety, avoiding premature material fatigue, saving operational costs concerning the drilling efficiency, driving energy, and drilling reliability.

Literature review

Over last two centuries, structural dynamic analysis has been discussed by several experts around the world, encouraged by theoretical investigations and by computational methods in different fields like mechanical engineering, for designing and constructing of machineries, and also for controlling of vibration, naval, aeronautics and also civil engineering, for constructions in earthquake zones and under wind effects.

New methods for the calculation of eigenvalues and eigenvectors, with application to structural dynamics, were developed in the first years of the twentieth century. The contributions from 1896 to 1929 by Adolf Kneser (1862-1930), Aleksandr Mikhailovich Lyapunov (1857-1918), Jacques Salomon Hadamard (1865-1963) and Tullio Levi-Civita (1873-1941), plus Liapounov's essay of 1907 on the "Problème général de la stabilité du mouvement", opened a new field for mathematical studies applied to structural mechanics and dynamics. Moreover, Giulio Benedetto Isacco Vivanti (1859-1949) published in 1916 "Elementi della teoria delle equazioni integrali lineari", where the problem related to the numerous DOFs was resolved introducing integral equations [START_REF] Corradi | A Short Account of the History of Structural Dynamics between the Nineteenth and Twentieth Centuries[END_REF]. Particularly regarding random vibrations, in 1905, Albert Einstein (1879Einstein ( -1955) ) initiated his analysis related to the Brownian motion [START_REF] Einstein | On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat[END_REF], however, after more than fifty years, Stephen Harry Crandall (1920Crandall ( -2013) ) made the random vibration analysis accessible for non-researcher engineers through his seminar of 1958. In the literature, there are some books about random vibration analysis with random excitation of linear and non-linear dynamical systems [START_REF] Crandall | Random Vibration in Mechanical Systems[END_REF][START_REF] Kree | Mathematics of Random Phenomena: Random Vibrations of Mechanical Structures (Mathematics and Its Applications)[END_REF][START_REF] Lin | Probabilistic Theory of structural Dynamics[END_REF][START_REF] Lutes | Stochastic Analysis of Structural and Mechanical Vibrations[END_REF][START_REF] Wirsching | Random Vibrations: Theory and Practice[END_REF].

Studies concerning structural dynamic analysis for drill strings are more recent. In 1992, Paslay et al. [START_REF] Paslay | Detection of lateral ressonances while drilling with surface longitudinal and torsional sensors[END_REF] referred to uncoupled models for axial and torsional vibrations, beyond lateral displacements, including the effect of the fluid-added mass, but neglected impacts between the column and the borehole [START_REF] Ritto | Numerical analysis of the nonlinear dynamics of a drill-string with uncertainty modelling[END_REF]. In Jansen's Ph.D. thesis [START_REF] Jansen | Nonlinear dynamics of oilwell drillstrings[END_REF], a detailed discussion about drill string dynamics is made, where he presented simple computational models and also the non-linear formulation of an Euler-Bernoulli beam, even though he did not consider stabilizers and bit-rock interaction (only a simple model for the fluid-structure interaction). Abbassian and Dunayevsky [START_REF] Abbassian | Application of stability approach to torsional and lateral bit dynamics[END_REF] addressed the string-torsional vibration, bit-lateral dynamics, and coupled torsional-lateral vibration of the polycrystalline diamond compact (PDC) bits under induced torsional and lateral vibrations. The papers by Tucker and Wang [START_REF] Tucker | An integrated model for drill-string dynamics[END_REF] used the Cosserat theory for modeling the drill string dynamics, while the papers by Khulief et al. [START_REF] Khulief | Finite element dynamic analysis of drillstrings[END_REF] and of Sampaio et al. [START_REF] Sampaio | Coupled axial/torsional vibrations of drilling-strings by mean of nonlinear model[END_REF] used the Euler-Bernoulli beam stochastic model with the Finite Element Method. These works did not consider a fluid-structure interaction, either inside or outside flows of the column, only in the work of Tucker and Wang [START_REF] Tucker | An integrated model for drill-string dynamics[END_REF], the influence of the fluid is considered in a simplistic way. Spanos et al. [START_REF] Spanos | Oil and gas well drilling: A vibrations perspective[END_REF][START_REF] Spanos | Drillstring vibrations[END_REF] cited a vibration overview in drilling processes.

In the last ten years, studies related to drill string structural dynamic analysis were object of studies of various authors in different ways. Piovan and Sampaio [START_REF] Piovan | Continuous models for drill-strings of the oil industry: Analysis of approaches and discretization schemes [Modelos continuos de sondas de perforación para la industria petrolera: Análisis de enfoques y su discretización[END_REF] discretized by finite elements a continuous model for analyzing the coupled extensional flexural and torsional vibrations of a drill string; on the other hand, Germay et al. [START_REF] Germay | Nonlinear drillstring dynamics analysis[END_REF] studied the drill string axial and torsional vibrations using a lumped parameter model characterized by a fast axial dynamics compared to the slow torsional dynamics. Navarro-López and Licéaga-Castro [START_REF] Navarro-López | Non-desired transitions and sliding-mode control of a multi-DOF mechanical system with stick-slip oscillations[END_REF] considered a discontinuous lumped-parameter torsional model of four DOFs with four discontinuity surfaces, where one of them is introduced in order to accomplish the control goal despite variations of the weight on the bit, the top-rotary velocity and friction characteristics. Pang et al. [START_REF] Pang | Finite element analysis of dynamics characteristics for the BHA system in vertical well[END_REF] focused in the BHA vertical-horizontal-torsional vibrations and their mechanical properties, which are established by the non-linear dynamics considering random impacts and rubs between the well wall and drill string, drill bit and the rock. Tikhonov and Safronov [START_REF] Tikhonov | Analysis of postbuckling drillstring vibrations in rotary drilling of extended-reach wells[END_REF] presented a 3D non-linear dynamic model of drill string in a 3D borehole, taking into account the interaction of lateral, torsional, and axial vibrations. Divenyi et al. [START_REF] Divenyi | Drill-string vibration analysis using non-smooth dynamics approach[END_REF] have shown critical stick-slip and bit-bounce behaviors related to parameter changes, allowing to develop a deep understanding of the drill string dynamics. Liao et al. [START_REF] Liao | Parametric studies on drillstring motions[END_REF] conducted experimental and numerical investigations series in order to understand the drill string motions, checking the influence of different system parameters such as the mass imbalance and contact friction on the system dynamics. Liu et al. [START_REF] Liu | Nonlinear motions of a flexible rotor with a drill bit: Stick-slip and delay effects[END_REF] introduced a discretized non-linear model with eight DOFs, including axial, torsional and lateral dynamics of both the DP and BHA, which showed that the motions can be self-excited through stick-slip friction and time-delay effects, the whirling state of the DP periodically alternates between the sticking and slipping phases, and also that the system response stability is seen to be largely dependent upon the driving speed.

Recently in structural dynamic analysis for drill strings, Depouhon and Detournay [START_REF] Depouhon | Instability regimes and self-excited vibrations in deep drilling systems[END_REF] analyzed the self-excited axial and torsional vibrations of deep drilling systems by a discrete model that relies on a rate-independent bit-rock interaction law, and reduces to a coupled system of state-dependent delay differential equations governing the axial and angular perturbations to the stationary motion of the bit. This analysis indicated that, although the steady-state motion of the bit is always unstable, the nature of the instability depends on the nominal angular velocity imposed upon the rig of the drill string and, when it is larger than a critical velocity, the angular dynamics are responsible for the instability. Butlin and Langley [START_REF] Butlin | An efficient model of drillstring dynamics[END_REF] proposed an efficient drill string dynamics model using digital filters and finite element model to describe the linear dynamics of drill strings and reduced the DOFs of the equations of motion coupled to the non-linear contact effects. Ren et al. [START_REF] Ren | Nonlinear Model and Qualitative Analysis for Coupled Axial/Torsional Vibrations of Drill String[END_REF] developed the mathematical models based on a flexible shell under axial rotation, taking into account the coupling of axial and torsional vibrations, which showed that when the drill string is in a low speed rotation zone, the torsional excitation is overlapping the axial excitation for the coupling vibration, and the opposite occurs in a high speed rotating zone. Field data of a drill string of five kilometers in length is analyzed in [START_REF] Ritto | Validation of a drill string dynamical model and torsional stability[END_REF] [START_REF] Ritto | Validation of a drill string dynamical model and torsional stability[END_REF], where once again a pure torsional model presented satisfactory results reproducing field data, where torsional vibration was the dominant phenomenon observed.

To represent the bit-rock interaction, some authors consider it as a non-linear function between torque on bit and bit speed [START_REF] Khulief | Vibration analysis of drillstrings with self-excited stick-slip oscillations[END_REF][START_REF] Pavone | Application of high sampling rate downhole measurements for analysis and cure of stick-slip in drilling[END_REF][START_REF] Real | Hysteretic Bit/Rock Interaction Model to Analyze the Torsional Dynamics of a Drill String[END_REF][START_REF] Ritto | Bayesian approach to identify the bit-rock interaction parameters of a drill-string dynamical model[END_REF][START_REF] Ritto | Validation of a drill string dynamical model and torsional stability[END_REF], while others apply a switching mechanism [START_REF] Leine | Stick-slip Whirl Interaction in Drillstring Dynamics[END_REF]. One can find coupled axial-torsional bit-rock interaction models, such as [START_REF] Richard | A simplified model to explore the root cause of stick-slip vibrations in drilling systems with drag bits[END_REF][START_REF] Tucker | Torsional vibration control and Cosserat dynamics of a drill-rig assembly[END_REF]. Richard et al. [START_REF] Richard | A simplified model to explore the root cause of stick-slip vibrations in drilling systems with drag bits[END_REF] proposed a novel model to investigate the self-excited stick-slip vibrations of a drilling system with a drag bit, using a discrete model that takes into consideration the axial and torsional vibration modes. Ritto et al. [START_REF] Ritto | Nonlinear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF] proposed a new strategy of a stochastic computational model to describe the bitrock interaction, considering the fluid-structure interaction and the impact forces, which uses the nonparametric probabilistic approach for modeling uncertainties in a non-linear constitutive equation. The non-linear dynamical responses obtained were very sensitive to uncertainties in the bit-rock interaction model, showing that uncertainties play an important role in the coupling between axial and torsional responses, and consequently, in lateral responses. Ritto et al. [START_REF] Ritto | Probabilistic model identification of the bit rock-interaction-model uncertainties in nonlinear dynamics of a drillstring[END_REF] dealt with a procedure to perform the identification of the probabilistic model of uncertainties related to the non-linear constitutive equation, using the nonparametric probabilistic approach in a bit-rock interaction for the non-linear dynamics of a drill string. Ritto and Sampaio [START_REF] Ritto | Measuring the efficiency of vertical drill-strings: A vibration perspective[END_REF] analyzed the stochastic dynamics of a drill string with uncertain top speed by a linearized system with axial and torsional motions to compute how the input power is effectively used to cut the rock and to move the column forward. Nandakumar and Wiercigrochn [START_REF] Nandakumar | Stability analysis of a state dependent delayed,coupled two DOF model of drill-string vibration[END_REF] considered a fully coupled two-DOF drilling model with stick-slip and bit-bounce phenomena, which is composed by a state-dependent time delay and a viscous damping for both the axial and torsional motions. It showed the dependency of cutting forces on the past history of the bit motion, deducing the stable region and concluding that large speeds are eventually stable for all weight on bit values. Recently, Terrand-Jeanne and Martins [START_REF] Terrand-Jeanne | modellingś approaches for Stick-Slip phenomena in drilling[END_REF] considered a stick-slip phenomenon in drill string in order to compare different kinds of modeling for some deformable mechanical devices, analyzing the consequences of simplifying model.

Although some publications are not directly concerned with bit-rock interaction, they are very closely related to hysteresis representation. The earliest paper presenting direct measurements showing hysteretic response in friction-induced vibration is noticed by Ko and Brockley [START_REF] Ko | The Measurement of Friction and Friction-Induced Vibration[END_REF], where a pin-on-disk tribometer, transducers and other electronic devices permitted the accurate measurement of kinetic friction forces in the presence of friction-induced vibration. Wojewoda et al. [START_REF] Wojewoda | Hysteretic effects of dry friction: modelling and experimental studies[END_REF] described the phenomena of hysteretic behaviour of dry friction occurrences as a representation of the system dynamics, where several dry friction models are presented. They noticed that hysteretic effects can appear by tangential stiffness between the bodies in contact during stick phase and stick-slip transition phase, and they can appear during the slip phase, because the existence of frictional memory caused by a lag in the friction force. The size of this macroscopic sliding loop increases according to the velocity rate. A recent review of models and measurements for dynamic friction is reported by Woodhouse, Putelat and McKay [START_REF] Woodhouse | Are there reliable constitutive laws for dynamic friction?[END_REF], where they described frictional interactions and discussed a great number of friction models, illustrating that friction response can be extremely sensitive according to the choice of frictional constitutive model. Hysteretic cycles have been observed experimentally for the bit-rock interaction in [START_REF] Leine | Stick-slip Whirl Interaction in Drillstring Dynamics[END_REF][START_REF] Pavone | Application of high sampling rate downhole measurements for analysis and cure of stick-slip in drilling[END_REF][START_REF] Real | Hysteretic Bit/Rock Interaction Model to Analyze the Torsional Dynamics of a Drill String[END_REF]. As far as the author is aware, the only hysteretic bit-rock interaction model found in the literature was proposed in [START_REF] Hong | Identification and control of stickslip vibrations using Kalman estimator in oil-well drill strings[END_REF]. The authors in [START_REF] Hong | Identification and control of stickslip vibrations using Kalman estimator in oil-well drill strings[END_REF] used the experimental results presented in [START_REF] Leine | Stick-slip Whirl Interaction in Drillstring Dynamics[END_REF], and applied their hysteretic model, which employs a switching mechanism, to the analysis of Proportional-Integral (PI) control strategy, aiming at mitigating stick-slip oscillations. Especially in Real et al. [START_REF] Real | Hysteretic Bit/Rock Interaction Model to Analyze the Torsional Dynamics of a Drill String[END_REF], the authors have highlighted large fluctuations of the nonlinear bit-rock interaction law during the drilling. These fluctuations, which are mainly due to the soil's mechanical properties during the drilling, propagate to the drill string dynamical behavior and have to be taken into account in order to study the drill string stability with a good robustness. This work is described in detail in this thesis.

In addition to the bit-rock interaction models, some fluctuations can be observed in this interaction, which must be characterized as uncertainties [START_REF] Real | Hysteretic Bit/Rock Interaction Model to Analyze the Torsional Dynamics of a Drill String[END_REF]. In [START_REF] Spanos | Nonlinear stochastic drillstring vibrations[END_REF], a stationary random process is considered to model lateral forces at the bit. In [START_REF] Ritto | Nonlinear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF], an adaptation of the nonparametric probabilistic approach [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF] is proposed to model uncertainties in the bit-rock interaction model. For the latter two papers, the probabilistic models are not time-dependent, i.e., the bit-rock interaction model is random but does not vary during the drilling. Constructing such a stochastic computational models including the stochastic fluctuations of the bit-rock interaction forces would be helpful for robust optimization of the drill string [START_REF] Ritto | Robust optimization of the rate of penetration of a drill-string using a stochastic nonlinear dynamical model[END_REF]. In Ritto et al. [START_REF] Ritto | Robust optimization of the rate of penetration of a drill-string using a stochastic nonlinear dynamical model[END_REF], the nonparametric probabilistic approach is employed to model uncertainties in the coupled axial-torsional drill string dynamics. Other aspects of uncertainty of the drill string problem were tackled in [START_REF] Ritto | Probabilistic model identification of the bit rock-interaction-model uncertainties in nonlinear dynamics of a drillstring[END_REF][START_REF] Ritto | Stochastic drill-string dynamics with uncertainty on the imposed speed and on the bit-rock interaction parameters[END_REF][START_REF] Ritto | Drill-string horizontal dynamics with uncertainty on the frictional force[END_REF][START_REF] Ritto | Measuring the efficiency of vertical drill-strings: A vibration perspective[END_REF], as in Ritto and Sampaio [START_REF] Ritto | Stochastic drill-string dynamics with uncertainty on the imposed speed and on the bit-rock interaction parameters[END_REF] uncertainties are considered in the bit-rock interaction parameters.

To validate the models, a test-rig is required to reproduce drill string vibrations. Some researches have developed laboratory test-rigs to better understand the drill string dynamics and the bit-rock interaction. Patil and Teodoriu [START_REF] Patil | A comparative review of modelling and controlling torsional vibrations and experimentation using laboratory setups[END_REF] highlighted some contributions in the field of modeling and controlling torsional drill strings vibration. They also summarized some experimental studies carried out in laboratories. Usually, experimental setups consist of a slender bar driven by an electric motor at one end and, at the other end, a heavy disc is attached. Actually, few test-rigs found in the literature drill the rock. To emulate the bit-rock interaction, some authors consider brakes or shakers close to the disc [START_REF] Khulief | Laboratory investigation of drillstring vibrations[END_REF][START_REF] Melakhessou | A Nonlinear Well-Drillstring Interaction Model[END_REF][START_REF] Mihajlovic | Frictioninduced limit cycling in flexible rotor systems: An experimental drill-string set-up[END_REF][START_REF] Vlajic | Stick-slip motions of a rotor-stator system[END_REF]. Torsional models were applied successfully to represent test rigs that were constructed in [START_REF] Mihajlovic | Frictioninduced limit cycling in flexible rotor systems: An experimental drill-string set-up[END_REF] to analyze the friction-induced limit cycling. Elsayed [START_REF] Elsayed | A novel approach to dynamic representation of drill strings in test rigs[END_REF] introduced an approach to represent a drill string test-rig, which offers flexibility to modify, remove or augment the modes representing the system. This approach is based on the multi-degree-of-freedom in-series spring-mass system with Rayleigh damping and, applying the force to the end node (bit), the modes can then be decoupled and their contributions to bit displacement can be added algebraically. His work showed that the lowest frequency modes are not necessarily the most critical.

Raymond et al. [START_REF] Raymond | Laboratory simulation of drill bit dynamics using a model-based servohydraulic controller[END_REF] developed an advanced BHA simulator able to model the response of more complex representations of a drill string with multiple modes of vibration and to measure the dynamic properties. In this rig, an actual drill bit is used to drill rock samples. Likewise, Kapitaniak et al. [START_REF] Kapitaniak | Unveiling complexity of drill-string vibrations: Experiments and modelling[END_REF] and Wiercigroch et al. [START_REF] Wiercigroch | State dependent delayed drill-string vibration: Theory, experiments and new model[END_REF] investigated the drill string dynamics on an experimental rig, which uses commercial drill bits and rock-samples. This experimental rig uses commercial drill bits and rock-samples, capable of reproducing various phenomena, such as stick-slip oscillations, whirling, drill bit bounce and helical buckling. In Westermann et al. [START_REF] Westermann | A new test rig for experimental studies of drillstring vibrations[END_REF], a new laboratory rig is presented, constituted of a rotating shaft representing a BHA section between two stabilizers, which is capable of reproducing lateral drill string vibrations with and without contact and of measuring the contact forces. Wang et al. [START_REF] Wang | Modeling and experimental investigations on the drag reduction performance of an axial oscillation tool[END_REF] designed a test-rig to analyze axial oscillation drag reduction mechanism. The authors also performed the identification of the friction parameters for coupled torsional/axial model based on the experimental data. Liu et al. [START_REF] Liu | Numerical and experimental studies of stick-slip oscillations in drill-strings[END_REF] analyzed the multistability in drill strings under stick-slip oscillations in a small-scale test-rig able to drill real rock samples. Cayres et al. [START_REF] Cayres | Analysis of dry frictioninduced stick-slip in an experimental test rig modeling a drill string[END_REF] proposed a simplified test-rig, which is constructed by a slender shaft and two discs: one simulates the drill bit, and the other one, an intermediary contact region (borehole contact). Finally, the test-rig proposed in this work [START_REF] Real | Experimental analysis of stick-slip in drilling dynamics in a laboratory test-rig[END_REF] drills a rock sample using a masonry bit and reproduces stick-slip cycles with a low cost design basis, where the hysteric effects in the bit-rock interaction are noticed.

In addition to the bit-rock interaction uncertainty, there are other sources of uncertainties related to the computational model of the drill string, such as the material properties, geometry variation along the axial axis, mud density, etc. Therefore, a probabilistic model of uncertainties is required to check how robust this computational model is, according some inferred fluctuations. Some works take into account uncertainties in different ways [START_REF] Ritto | Nonlinear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF][START_REF] Ritto | Stochastic drill-string dynamics with uncertainty on the imposed speed and on the bit-rock interaction parameters[END_REF][START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Spanos | Nonlinear stochastic drillstring vibrations[END_REF], considering parametric and nonparametric probabilistic approaches. For contextualization purposes, a parametric probabilistic approach consists of replacing uncertain parameters with random variables [START_REF] Ghanem | Stochastic Finite Elements: A Spectral Approach[END_REF][START_REF] Schueller | Developments in stochastic structural mechanics[END_REF][START_REF] Schueller | On the treatment of uncertainties in structural mechanics and analysis[END_REF], which is very efficient if the computational model is a good representation of the dynamical systems; nonparametric probabilistic approach [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF] considers the uncertainties at the operator level globally, by modeling the reduced-order matrices of a dynamical system as random matrices. Therefore, the experimental identification is required to be applied, in order to identify the parameters according to the field data or experimental data, validating the representation of uncertainties behavior without losing its accuracy.

For completeness of the nonparametric probabilistic approach studies, it is important to cite Soize's works [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modelling random uncertainties in transient elastodynamics[END_REF][START_REF] Soize | Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model[END_REF][START_REF] Soize | A comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamics[END_REF][START_REF] Soize | Random matrix theory for modelling uncertainties in computational mechanics[END_REF][START_REF] Soize | Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions[END_REF]] and Batou's work [START_REF] Batou | A global/local probabilistic approach for reduced-order modelling adapted to the low-and mid-frequency structural dynamics[END_REF], which proposed a new methodology for the construction of a probabilistic reduced-order model of uncertainties adapted to the low-and mid-frequency structural dynamics, using a nonparametric approach for the global matrix blocks and the local matrix blocks separately, allowing to control the global fluctuations and the local fluctuations.

In order to model the uncertainties globally, a work by this thesis's author concerning this issue is Real et al. [START_REF] Real | A probabilistic model of uncertainties in the substructures and interfaces of a dynamical system -application to the torsional vibration of a drill-string[END_REF], which further develops Soize and Chebli's work [START_REF] Soize | Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model[END_REF]. This new strategy considers the separation of uncertainties related to the inner and interface degrees of freedom (DOFs) from nonparametric probabilistic approach applied for each substructure using the Craig-Bampton substructuring method, which means that there is a specific parameter to control the uncertainties for each inner and interface DOFs.

Purpose and objectives

The purpose of this thesis is to improve the robustness of drilling torsional vibration analysis methods, by taking into account uncertainties in the drill string computational model and the non-linear bit-rock interaction model. The four objectives are:

1. to establish a novel hysteretic (non-reversible) bit-rock interaction model, which depends not only on the bit speed, but also on the bit acceleration, providing a new representation of stick-slip oscillations due to a torque applied to the bottom-end of the BHA of a drill string, according to experimental and field data observations;

2. to propose a new stochastic model for the bit-rock interaction, considering the stickslip effects described by the torque on the bit, in terms of parametric probabilistic approach and experimental identification, in order to reproduce the uncertainties related to the cutting process;

3. to construct a new test-rig to analyze drill string dynamics and bit-rock interaction, which is able to reproduce stick-slip phenomena while drilling a rock sample using standard masonry bits, as well as to validate bit-rock interaction models; and 4. to determine an original strategy for modeling uncertainties globally, based on terms of the nonparametric probabilistic approach, considering a simple torsional model for a drill string, which allows to control the dispersion level of each inner and interface DOF of each drill string substructure independently.

An expected result is to provide a new way of modeling the torsional vibrations of a drill string, in order to improve the operational safety and to avoid premature material fatigue, saving operational costs concerning the drilling efficiency, driving energy, and drilling reliability.

Organization of the manuscript

In chapter 2, drill string torsional modeling and reduced-order model are described. A new bit-rock interaction model contemplating hysteresis effect is detailed in section 3, and a new stochastic modeling for this new bit-rock interaction model is depicted in chapter 4. In chapter 5, a new test-rig to analyze drill string dynamics and bit-rock interaction is proposed, as well as a comparison of a drilling simulation applying these new models and experimental results is presented. An original strategy for modeling uncertainties globally, based on terms of the nonparametric probabilistic approach, considering a simple torsional model for a drill string, is described in chapter 6, and in chapter 7, conclusions and future works are reported.

Chapter 2

Drill string torsional model

Torsional model

As mentioned in the introduction (section 1.1), drill strings are composed mainly by two substructures (DP and BHA), as showed in Fig. 2.1. Under operation, drill string rotates around its longitudinal axis due to the angular velocity at the DP top end to drill rocks by the drill bit on the bottom of the BHA. Thereby, a reaction force is applied to the drill bit by the rock in contact with. Although DP and BHA are connected together by shaft couplings, stiffness values of these couplings are considered here as negligible, because they are low enough to bring natural frequencies in torsion down into the range of excitation frequencies [START_REF] Vance | Machinery vibration and rotordynamics[END_REF].

A full description model, including all dynamics, although possible, presents many difficulties due to lack of downhole data. During the drilling process there are many phenomena which are hard to measure, or simply not fully measured. Therefore, simple models can be convenient enough to represent this kind of system. Here, the nominal model of the drill string is constructed as two torsional beams which are discretized by means of the finite element method [START_REF] Jansen | Nonlinear dynamics of oilwell drillstrings[END_REF][START_REF] Khulief | Finite element dynamic analysis of drillstrings[END_REF][START_REF] Ritto | Stochastic drill-string dynamics with uncertainty on the imposed speed and on the bit-rock interaction parameters[END_REF], and a reduced-order model is constructed using the elastic modes. The non-linear bit-rock interaction forces are modeled as a point torque applied at the end of the BHA. This simple model can enable an efficient representation of a drill string.

In this work, a simple torsional model is proposed which considers a drill string as continuous beam with two different parts, characterizing the DP and the BHA with their own stiffness and damping. This proposal is really simple compared to what is found in the literature (see section 1.2), as showed in Fig. 2.1. To do so, it is assumed that there is no warp in cross section under applied torque, there is no lateral contact between the drill string and the borehole, as well the inertial effects due to the global rotation of the drill string and the gyroscopic effects induced by the transverse displacements are negligible (see [START_REF] Chin | Wave Propagation in Petroleum Engineering: Modern Applications to Drillstring Vibrations[END_REF]). Besides, the transverse and axial deformations are not modeled here.

Drillpipes BHA Bit

Constant speed at the top Bit/Rock interaction A simple mathematical model for describing the torsional dynamics of a drill string can be too simple compared to a real system, but it has to be representative enough to describe the phenomena involved [START_REF] Batou | A global/local probabilistic approach for reduced-order modelling adapted to the low-and mid-frequency structural dynamics[END_REF][START_REF] Soize | Stochastic Models of Uncertainties in Computational Mechanics[END_REF]. A good mathematical model must be efficient to carry out parametric studies, simple enough to provide insight into the underlying physics, and which retain sufficient details to correlate to real dynamics behaviour. In this case, the torsional dynamics of a drill string can be analyzed by solving the motion equation of a torsional beam [START_REF] Inman | Engineering Vibration. International Edition[END_REF][START_REF] Vance | Machinery vibration and rotordynamics[END_REF] ρJ

∂ 2 θ (x,t) ∂t 2 -G ∂ ∂ x J ∂ θ (x,t) ∂ x = T (x,t) , (2.1) 
where θ (x,t) is the angular rotation about the x-axis (longitudinal axis), J is the cross sectional polar moment of inertia, G is the shear modulus, T (x,t) is the torque per unit length. The boundary conditions at the top under constant speed Ω are given by:

θ (0,t) = Ωt θ (0,t) = Ω , (2.2) 
and the initial conditions are

θ (x, 0) = 0, θ (x, 0) = Ω , (2.3) 
Unlike [START_REF] Ritto | Nonlinear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF][START_REF] Ritto | Stochastic drill-string dynamics with uncertainty on the imposed speed and on the bit-rock interaction parameters[END_REF], the present strategy solves the system considering its rotational displacements about a rotating frame. Let θ rel (x,t) be the relative angular rotation in the rotating frame associated with the imposed angle at the top, as follows

θ (x,t) = Ωt + θ rel (x,t). (2.4)
The system is discretized by means of the finite element model, where linear shape functions are applied. Let u(t) be the vector of θ rel (x,t) nodal values related to the drill string mesh. Note that, in the rotating frame, the angular displacement is fixed at the top because there is no relative displacement between the top drive and the first node, at the top of the drill string. Adding a proportional damping to the system, the vector u(t) is solution of the matrix equation [START_REF] Jansen | Nonlinear dynamics of oilwell drillstrings[END_REF][START_REF] Khulief | Finite element dynamic analysis of drillstrings[END_REF][START_REF] Sampaio | Coupled axial/torsional vibrations of drilling-strings by mean of nonlinear model[END_REF] [M] ü(t)

+ [D] u(t) + [K]u(t) = T( u(t), ü(t))) , (2.5) 
where [M] is the mass matrix, [D] is the damping matrix, and [K] is the stiffness matrix, and T( u(t), ü(t))) is the torque vector, which also depends on the angular velocity ( u(t)) and the acceleration ( ü(t)), as explained in chapter 3.

According to Eqs. (2.3) and (2.4), the initial conditions in the rotating frame read

u(0) = 0, u(0) = -Ω1. (2.6)
where 1 is a vector with all entries equal to one. All the components of the torque vector are zero except the one corresponding to the drill bit node. For this node, the nonlinear torque applied to the bit is denoted by T bit ( θbit (t), θbit (t)), where θbit (t) is the bit angle within the absolute frame, and will be described in chapter 3.

Reduced-order model

In order to optimize the computational cost, the size of matrices of the full finite element model n can be reduced by constructing a reduced-order model using the normal modes of the conservative homogeneous system. The m first eigenvalues 0 < λ 1 ≤ λ 2 ≤ . . . ≤ λ m associated with the elastic modes {φ 1 , φ 2 , . . . , φ m } are solutions of the following generalized eigenvalue problem

[K] φ = λ [M] φ . (2.7)
The reduced-order model is obtained by projecting the full computational model on the subspace spanned by the m first elastic modes calculated using Eq. (2.7). Let [Φ] be the n × m matrix whose columns are the m first elastic modes. Then, the displacement vector u can be approximated by

u = [Φ] q , (2.8)
in which q is the vector of the m generalized coordinates obtained from the following reduced matrix equation

[ M] q + [ D] q + [ K]q = T( q(t), q(t)) , (2.9) 
in which

[ M] = [Φ] T [M] [Φ], [ D] = [Φ] T [D] [Φ] and [ K] = [Φ] T [K] [Φ]
are the m × m mass, damping and stiffness generalized matrices, T( q(t), q(t)) = [Φ] T T(t) is the vector of the reduced-order generalized torque, with the initial conditions

q(0) = 0, q(0) = -Ω [ M] -1 [Φ] T [M]1.
(2.10)

The set of equations (2.8), (2.9) and (2.10) can be solved using commonly used integration schemes, such as the Euler scheme or the Runge-Kutta, for instance.

Chapter 3

Bit-rock interaction

Due to the bit-rock friction, the slender structure and the contact with mud, drill string dynamic behaviour is under axial, lateral and torsional damped vibrations. As stated previously, this thesis is interested in the steady-state small torsional vibrations of a drill string due to a non-linear torque applied at the bottom-end of the BHA, named torque on bit and denoted T bit ( θbit (t), θbit (t)), that might lead to stick-slip oscillations.

Stick-slip is an oscillatory twisting evidenced as an oscillatory variation of bit speed ( θbit (t)) [START_REF] Hong | Identification and control of stickslip vibrations using Kalman estimator in oil-well drill strings[END_REF][START_REF] Khulief | Vibration analysis of drillstrings with self-excited stick-slip oscillations[END_REF][START_REF] Kreuzer | Controlling torsional vibrations of drill strings via decomposition of traveling waves[END_REF][START_REF] Leine | Stick-slip vibrations induced by alternate friction models[END_REF][START_REF] Patil | A comparative review of modelling and controlling torsional vibrations and experimentation using laboratory setups[END_REF][START_REF] Richard | Self-excited stick-slip vibrations of drill bits[END_REF][START_REF] Tucker | On the effective control of torsional vibrations in drilling systems[END_REF], which turns the bit locked for a period. In severe conditions, the drill bit sticks (zero bit speed) then slips (high bit speed), and might cause, for instance, measurement equipment failure, low rate of penetration, bit damage, and fatigue [START_REF] Wu | Identifying the Root Cause of Drilling Vibration and Stick-Slip Enables Fit-for-Purpose[END_REF].

In next sections will be presented some ways to represent the non-linear torque on bit, including hysteretic effects.

Deterministic average model for bit-rock interaction

As it mentioned before, there are several papers available in the literature concerned with the drill string torsional dynamics and stick-slip oscillations [START_REF] Khulief | Vibration analysis of drillstrings with self-excited stick-slip oscillations[END_REF][START_REF] Kreuzer | Controlling torsional vibrations of drill strings via decomposition of traveling waves[END_REF][START_REF] Mihajlovic | Frictioninduced limit cycling in flexible rotor systems: An experimental drill-string set-up[END_REF][START_REF] Navarro-López | Non-desired transitions and sliding-mode control of a multi-DOF mechanical system with stick-slip oscillations[END_REF][START_REF] Ritto | Bayesian approach to identify the bit-rock interaction parameters of a drill-string dynamical model[END_REF][START_REF] Ritto | Validation of a drill string dynamical model and torsional stability[END_REF][START_REF] Viguié | Using passive nonlinear targeted energy transfer to stabilize drill-string systems[END_REF]. A model proposed by Tucker and Wang (1997) [START_REF] Tucker | The excitation and control of torsional slip-stick in the presence of axial vibrations[END_REF] and used, for instance, by [START_REF] Khulief | Vibration analysis of drillstrings with self-excited stick-slip oscillations[END_REF][START_REF] Sampaio | Coupled axial/torsional vibrations of drilling-strings by mean of nonlinear model[END_REF][START_REF] Tucker | On the effective control of torsional vibrations in drilling systems[END_REF], describes a deterministic torque on bit model ( Tbit ( θbit (t))) which takes into account a non-linear behaviour of a bit-rock interaction for a vertical borehole:

Tbit ( θbit (t)) = µW bit r tanh( α 0 θbit ) + α 1 θbit 1 + α 2 θ 2 bit , (3.1) 
where µ is friction coefficient, W bit is weight on bit, the bit radius is r, and α 0,1,2 are parameters of this model.

This deterministic model for torque on bit ( Tbit ( θbit (t))) is a reversible model, because it can provide the same torque value for each θ bit (t) value. This model is based on a superposition of the three distinct effects: Coulomb friction (hyperbolic tangential behaviour), Stribeck friction (negatively sloped behaviour) and viscous friction (directly proportional to angular velocity). Figure 3.1 shows separately the two terms of Eq. (3.1): the first term (tanh, in blue) increases fast, and reaches a limit torque value as the speed increases; the second term (fraction term, in green) is responsible for the peak in the bit-rock interaction model, and it dies out as the bit speed increases. The reversible model (Eq. (3.1)) is the sum of these two terms which is represented by the magenta curve. Near zero speed the applied bit-rock interaction model is regularized. Other models consider explicitly stick and slip phases as it can be found in [START_REF] Leine | Stick-slip Whirl Interaction in Drillstring Dynamics[END_REF]. Equation (3.1) fits to a common field average behaviour. In order to show that, let consider a real example of drill string described in the table 3.1, according to Ritto et al. [START_REF] Ritto | Validation of a drill string dynamical model and torsional stability[END_REF]. Field data related to this drill string are torque and bit speed, which are observed in a frequency of 50 Hz, during 60 seconds (3,000 records). Thanks to a research collaboration between service company and operator, the BHA was equipped with a high-frequency measurement device. The sub is capable of measuring axial forces, torque, bending moments, angular speed, and tri-axial accelerations. The data set used in this study corresponds to 3 meters of drilling, where only the on-bottom data (actual drilling) was used. Figure 3.2 shows these measurements during a drilling operation of an ultra-deep-water well. Figure 3.2 shows seven stick-slip entire cycles: when the bit speed is close to zero, the bit is in stick phase; when the bit speed is going up and down, the bit is slipping (slip phase).

For the deterministic curve, the parameters α 0 , α 1 , and α 2 were calibrated using the field data disposal in [START_REF] Ritto | Validation of a drill string dynamical model and torsional stability[END_REF]. Classical least square method [START_REF] Aguirre | Introduc ¸ão à identificac ¸ão de sistemas -Técnicas lineares e nãolineares aplicadas a sistemas reais[END_REF] is applied to identify the parameters of Eq. (3.1): 4, 700 for µ multiplied by weight on bit (W bit ), α 0 = 1.67x10 4 , α 1 = 5.30, and α 2 = 3.45, all with appropriate units. Figure 3.3 compares the fitted model to the experimental measurements. 

Hysteretic model for bit-rock interaction

Some authors have highlighted large fluctuations of the nonlinear bit-rock interaction during the drilling, which present a behaviour of hysteretic cycles [START_REF] Leine | Stick-slip Whirl Interaction in Drillstring Dynamics[END_REF][START_REF] Pavone | Application of high sampling rate downhole measurements for analysis and cure of stick-slip in drilling[END_REF][START_REF] Real | Hysteretic Bit/Rock Interaction Model to Analyze the Torsional Dynamics of a Drill String[END_REF]. Wojewoda et al. [START_REF] Wojewoda | Hysteretic effects of dry friction: modelling and experimental studies[END_REF] noticed that hysteretic effects in dry friction occurrences can appear by tangential stiffness between the bodies in contact during stick phase and stick-slip transition phase, and they can appear during the slip phase, because the existence of frictional memory caused by a lag in the friction force.

Bit-rock interaction is not a real dry friction because the drilling fluid (mud). However, the average behaviour of bit-rock interaction has been represented as a dry friction process, for instance the model proposed by Tucker and Wang (1997) [START_REF] Tucker | The excitation and control of torsional slip-stick in the presence of axial vibrations[END_REF]. Therefore, if the average behaviour of bit-rock interaction seems like a dry friction process, hysteresis can be also valid for bit-rock interaction.

Considering that experimental observations have shown the presence of loops mainly during the slip, and according to [START_REF] Wojewoda | Hysteretic effects of dry friction: modelling and experimental studies[END_REF] the size of this macroscopic sliding loop is related to the velocity rate, we present here a novel hysteretic (non-reversible) bit-rock interaction model [START_REF] Real | Hysteretic Bit/Rock Interaction Model to Analyze the Torsional Dynamics of a Drill String[END_REF], which is verified by field data presented in [START_REF] Ritto | Validation of a drill string dynamical model and torsional stability[END_REF] and validated by experimental results. Non-reversible means that the torque on bit is represented not only by the bit speed, but also by the bit acceleration (velocity rate), producing a type of hysteretic cycle, even though when unloaded the torque goes back to zero.

The field data used in section 3.1 was separated in seven entire stick-slip cycles (last one is despised), for which have been smoothed using a time sliding window average (SWA) to remove the measurement noise. Figure 3.4 shows six field data stick-slip cycles. As indicate the arrows of the first graphic of Fig. 3.4, when the bit accelerates, the upper path occurs, and when the bit speed decreases, the lower path occurs. These paths for each entire cycle can be considered as fluctuations of the hysteretic cycles. Based on field experience, the possible cause of the variability of cycles is due to the heterogeneity of rock formation drilled.

These cycles indicate that (1) for each cycle, the torque value for positive and negative accelerations are not the same, that means the hysteretic (non-reversible) phenomenon and (2) each observed cycle is different from one another. This section tackles the first point, i.e., it proposes a bit-rock interaction model including hysteresis, which represents a mean behaviour; the second one will be addressed in chapter 4.

The mean cycle is obtained by applying a SWA methodology, at each bit speed, for the upper phases (positive acceleration) and the lower phases (negative acceleration) separately. Figure 3.5 shows the field stick-slip cycles and their mean. The mean of all cycles (upper and lower) is in blue, and the mean cycle is showed in green. The upper green curve is the mean of upper cycles and the lower green curve is the mean of lower cycles.

If we look at the green line as showed in Fig. 3.5, i.e. the field data mean hysteretic cycle, it is remarked that the thickness of this cycle decreases as the bit speed increases. At some point, the upper and lower curves collapse.

Once fitted, the bit-rock interaction model described by Eq. (3.1) yields an accept- able agreement with the average experimental plots (blue plots in Fig. 3.5). Nevertheless it suffers from two drawbacks: (1) it is not flexible enough to fit correctly the experiments for both low and large velocities; and (2) it cannot generate hysteresis effects in order to separate the forward and backward behaviours (green plots in Fig. 3.5).

In order to improve the model Eq. (3.1), it is proposed two modifications to address these two issues: (1) the power exponents of the bit speed in the fraction term can vary in order to give to the model more flexibility; and (2) the fraction term is modulated by an acceleration (and speed)-dependent factor to obtain different amplitudes for the forward and backward phases.

The new bit-rock interaction model proposed here contains these improvements, and is described by Eq. (3.2).

T HYS bit ( θbit , θbit ) = b 0 tanh(b 1 θbit ) + b 2 | θbit | b 4 sign( θbit ) 1 + b 3 | θbit | b 5 (1 + H( θbit , θbit )) . (3.2)
It is usually observed that the reaction torque is much lower when the bit speed is negative. That is because the bit cutters are not symmetrical. Actually, we do not have enough field data to support any interaction model for θbit < 0, but, in the cases analyzed in this work, the values of bit speed were always equal or greater than zero. 

H( θbit , θbit ) = β 1 tanh(β 2 θbit ) sign( θbit ) , (3.3) 
which means that the variation of bit speed (bit angular acceleration) should be taken into account, and the hysteretic cycle is limited (1 ± β 1 ). Figure 3.6 shows the hysteretic term as a function of the bit acceleration. It increases fast, and reaches a limit value as the acceleration increases/decreases. In the present case, β 1 is identified experimentally as 14%, i.e., the hysteretic cycle is within plus or minus 14% of the reversible model. In addition, note that (1 + H) is multiplying only the second term of the bit-rock interaction model (the fraction term), such that as the bit speed increases the thickness of the hysteretic cycle decreases, as it is observed in most field data cycles showed in Fig. 3.4, and also in the field data mean cycle showed in Fig. 3.5. parameters of the hysteretic function are: β 1 = 14%, β 2 = 10.6, with appropriate units. Figure 3.9 shows the field data upper and lower mean cycles together with the fitted hysteretic bit-rock interaction model. The green lines are the same field data green lines as showed in Fig. 3.5. Again, there is a very good agreement between the proposed bit-rock interaction model and the field data. A larger hysteretic cycle is also considered, with β 1 = 56%. This parameter was chosen such that all field data cycles (black lines in Fig. 3.5) fit in. Finally, Fig. 3.10 shows the three bit-rock interaction models that will be used for computations: 

Stability analysis of the hysteretic model

In order to construct a stability map, Monte Carlo simulations are done considering the variation of top speed from 50 up to 160 RPM, and the WOB from 5 up to 60 klbf (22 to 267 kN). Simulations consider the drill string described on table 3.1, mass and stiffness matrices using 100 finite elements, damping matrix is diagonal with damping ratios (identified experimentally) equal to 0.095 for the first mode, and 0.02 for all the other modes, and the modified Euler scheme (see Appendix A) with a time step 0.512 ms is implemented to approximate the solution of the ordinary differential equation (ODE).

The first five natural frequencies computed for the system are: 0.13, 0.42, 0.74, 1.07, 1.41 Hz.

The bit-rock interaction model showed in Eq. (3.2) was calibrated considering 245 kN, and the model assumes that T HYS bit ( θbit , θbit ) is linear with respect to the WOB, varying the coefficient b 0 linearly. Thus, a coefficient is used to multiply the coefficient b 0 of the Eq. (3.2) such that different values of WOB can be simulated. For example, if the WOB is 200 kN, then the coefficient b 0 of the Eq. (3.2) must be multiplied by 200/245 = 0.816.

The torsional stability of a drill string can be quantified through the stick-slip severity factor, defined by

SS( θtop drive ) = θ MAX bit -θ MIN bit 2 θtop drive (3.4)
where θ MAX bit and θ MIN bit are maximum and minimum values respectively for bit speed of a chosen range sample, and θtop drive is top drive speed.

In case of pure slipping, SS( θtop drive ) = 0. If there are stick-slip oscillations then SS( θtop drive ) > 0. If there is no torsional oscillations, SS( θtop drive ) = 0. If there is stick-slip oscillations ( θ MIN bit = 0) and the maximum bit speed ( θ MAX bit ) is two times the nominal surface speed ( θtop drive ), then SS( θtop drive ) = 1. If SS( θtop drive ) is lower than 0.5 the system will be consider stable, otherwise it is considered unstable [START_REF] Ritto | Validation of a drill string dynamical model and torsional stability[END_REF].

The stability map is constructed as follows. For each pair (WOB, θtop drive ) the bit speed is computed and SS( θtop drive ) is recorded for the steady state response. Figure 3.11 shows the stability map when employing the bit-rock interaction models 1 (reversible) and 2 (small hysteresis effects). It can be noted that the maximum SS( θtop drive ) value is greater for the reversible bit-rock interaction model (model 2), but, at the same time, the stability region (dark blue) is a little bigger when employing this model. Now let us analyze Fig. 3.12, which shows the stability map when employing the bit-rock interaction model 3 (large hysteresis effects). This last chart presents a stability region (dark blue region) bigger than the other two charts.

This means, in one hand, that the hysteresis favours the stability of the system. It seems that when the bit speed decreases, and T HYS bit ( θbit , θbit ) is in the lower curve of the hysteretic cycle (see Fig. 3.10), it allows the system to escape from instability. On the other hand, it can also be obverved that the instability region (orange-red region) in Fig. 3.12 presents values of SS( θtop drive ) higher than the charts in Fig. 3.11. Hence, at the same time that the hysteresis in the bit-rock interaction model favours the stability of the system for low values of weight on bit and high values of nominal surface speed, it favours the aggravation of the torsional oscillations of the system for high values of weight on bit and low values of nominal surface speeds. Since T HYS bit ( θbit , θbit ) passes through the upper curve of the hysteretic cycle (see Fig. 3.10) the amplitude of the stick-slip oscillations increases as well.

In summary, hysteretic effect favors the stability of the system for high nominal surface speeds and low WOB and induces also higher stick-slip oscillations for low nominal surface speeds and high WOB. Chapter 4

Stochastic modeling for bit-rock interaction

There are sources of uncertainties related to the drill string dynamics and bit-rock interaction, such as material properties, unknown geometry, rock properties and its resistance for cutting process, etc. Besides, the linear torsional model used here is a simple representation of the torsional vibration of the drill string yielding some model-form uncertainties.

In this chapter, we are interested in uncertainties related to the stochastic fluctuations of the torque on bit. Here we propose a new stochastic model for the bit-rock interaction considering these uncertainties. The proposed stochastic model considers the hysteretic model for torque on bit presented in the previous chapter, including a multiplicative stochastic process.

The idea concerning the stochastic fluctuations of the bit-rock interaction model by including a multiplicative stochastic process to the deterministic models is because the range variation of these fluctuations: if it take a look at the field data in Fig. 3.5, it is noticed that the torque on bit varies from about 7 to 10.5 kNm, when the bit speed is close to 10 RPM; for higher speeds (above 200 RPM), the torque on bit varies from about 4 to 5.8 kNm. The distance between the higher and lower values is very different, depending on the bit speed: 3.5 and 1.8 kNm. But, for both speeds the torque on bit is varying plus or minus 20%.

Here we describe this new stochastic non-linear bit-rock interaction model which is constructed by introducing a multiplicative stationary Gaussian stochastic process. Field data are used to calibrate the power-spectral density function of this stochastic process. Once calibrated, independent realizations can be generated and statistics on the drill string dynamical behaviour can be estimated using the Monte Carlo simulation method.

Construction of the stochastic model

Stochastic fluctuations of the bit-rock interaction model are taken into account introducing a multiplicative stochastic process to the hysteretic model according to the Eq. (3.2), as follows:

T ST O bit ( θbit , θbit ) = T HYS bit ( θbit , θbit ) (1 + η(t)), (4.1) 
where η(t) is a centred stochastic process η(t) which can be rewritten as

η(t) = T ST O bit ( θbit , θbit ) T HYS bit ( θbit , θbit ) -1. (4.2)
The experimental stochastic process η exp (t) can be computed using Eq. (4.2) and the field data related to the torque on bit (see Fig. 3.5 in section 3.2), which means the upper phases (positive acceleration) and the lower phases (negative acceleration) as T ST O bit ( θbit , θbit ) (green lines), and T HYS bit ( θbit , θbit ) equal to the mean of all cycles obtained by SWA methodology (blue line). This stochastic process is showed in Fig. 4.1. Unfortunately, there is not enough field data to completely characterize this stochastic process. Here, it will assume that η(t) is a centred stationary Gaussian stochastic process. This assumption will be verified in experimental data (see chapter 5).

A model for the stochastic range η(t) must be constructed using the information provided by the experimental stochastic process η exp (t). In that case, if it is assumed a Gaussian distribution, η(t) is completely determined by its Power Spectral Density (S( f )) [START_REF] Meko | Applied Time Series Analysis[END_REF]. S( f ) is estimated using the Periodogram Method [START_REF] Priestley | Spectral Analysis and Time Series[END_REF]. There are variations of Periodogram Method, including filters for smoothing. Here, it is appropriate to use the classical method proposed by Schuster (1898) [START_REF] Schuster | On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena[END_REF], in order to preserve a raw behaviour from the field data. For this reason, it is necessary to obtain average functions for S( f ), represented by the function S( f )), in order to regularize its behaviour.

Periodogram Method requires interpolated data from the field data over a regular grid. Therefore, interpolated data is measured in peaks from the torque on bit field data related to its average, and normalized by it. The regular grid is obtained by the limits of time range, which is divided by a regular step, as follows:

Tbit Interp ( θbit (t), θbit (t)) = ∑ nb i=1 T exp bit inside-window ( θbit (t), θbit (t)) nb , (4.3) 
where Tbit Interp ( θbit (t), θbit (t)) is the interpolated torque on bit, T exp bit inside-window ( θbit (t), θbit (t)) is the normalized torque on bit interpolated over a regular grid, and nb is related to a given precision parameter proportional to the number of records. The window width is determined by nb close to the available data values for θbit (t), that means for each interpolated point, it is going to be used the same size of sliding-window (same nb). Regarding Fig. 4.2, the PSD is constant until a critical frequency and then decreases linearly (in log-log scale). This type of PSD is often encountered when addressing turbulent forces [START_REF] Batou | Experimental identification of turbulent fluid forces applied to fuel assemblies using an uncertain model and fretting-wear estimation[END_REF]. Then the proposed PSD model S( f ) is written as

log( S( f )) = A 0 for f < f 0 , log( S( f )) = a log( f ) + b for f ≥ f 0 , (4.4)
where f 0 , A 0 , a and b are the parameters of the model. These parameters are calibrated using the experimental PSD such that f 0 = 0.27, A 0 = -7.6, a = -3.13 and b = -11.67 (with appropriate units). With the PSD S( f ) in hands one can generate independent realizations of the stochastic process η(t) using a classical generator of Gaussian process [START_REF] Benaroya | Probability Models in Engineering and Science[END_REF], i.e., an aleatory Gaussian process is generated using values provided by PSD S( f ) over a given f range. Figure 4.4 shows two independent trajectories of η(t), which again give reasonable agreement with the observed process η exp (t) showed in Figure 4.1. The previous section was concerned with the construction of a stochastic bit-rock interaction model including hysteretic cycles fluctuations. A stationary stochastic process was introduced for the computation of the torque on bit, Eq. (4.1). The stochastic bit-rock interaction model is then added to the torsional drill string model, Eq. (2.9), and the stochastic non-linear dynamical response of the drill string is computed and analyzed. Note that Eq. (2.9) becomes random because of the random bit-rock interaction, Eq. (4.1). The general integration scheme for one realization of the stochastic bit-rock interaction model is presented in Algorithm 1 using field data from table 3.1. A step-by-step algorithm for drilling simulation is described in Appendix B.

The mass and stiffness matrices are constructed using 100 finite elements, after convergence check. The generalized damping matrix is diagonal with damping ratios equal to 0.095 for the first mode, and 0.02 for all the other modes, where these values are identified experimentally. The first five natural frequencies computed for the system are: 0.13, 0.42, 0.74, 1.07, 1.41 Hz.

The non-linear equation (2.9) is solved using a modified Euler scheme (see Appendix A) with a time step 0.512 ms. For one realization of the stochastic bit-rock interaction model, Figure 4.5 shows the stochastic response of the drill string in the stationary regime. In comparison with Fig. 3.5, it can be observed the same stochastic behaviour but with a slightly larger value of the maximum bit speed. This difference is due to the finite element model used here which can not reproduce all the complexity of a real drill string dynamics. But the objective here concerns the construction of the stochastic bit rock interaction model which should not depend on the computational model of the drill string.

Algorithm 1: Simulation of the drill string dynamics.

INITIALIZATION:

Generate a realization of stochastic process η(t);

q 0 = 0; q0 = -Ω [ M] -1 [Φ] T [M]1;
LOOP: for k = 1, . . . , (n t ) do Update the angle and angular speed (depending on the integration scheme):

( qi-1 , qi-1 ) → ( qi , qi ) ; ui = [Φ] qi ; θbit,i = ubit,i + Ω ; θbit,i = übit,i ; Calculate the torque on bit: Figure 4.6 compares the random bit response using the proposed stochastic bit-rock interaction model with the response obtained using the deterministic model described by Eq. (3.2). While a 3-cycles periodic regime (limited by red dash-dot lines) is reached for the deterministic case, as expected, no periodicity is observed in the stochastic case.

T ST O bit,i ( θbit,i , θbit,i ) = T HYS bit ( θbit,i , θbit,i )(1 + η i (t
For the deterministic case, the 3-cycles periodic sequence for the duration of the stick and slip phases are respectively (1.34, 2.53, 2.48) s and (5.4, 6.28, 6.41) s . For the stochastic case, these durations are random and their associated probability distribution (obtained It can be seen in these figures, a large variability of the stick and slip durations with modes closed to values corresponding to the values calculated with a deterministic bit-rock interaction model.

Stochastic stability analysis

Now the analysis is extended to quantify statistics on the stability threshold of the system, as the imposed speed at the top varies. The torsional stability of a drill string can be quantified through the stick-slip severity factor as defined in Eq. (3.4).

First, the deterministic system is analyzed. The stick-slip severity factor in the range B = [6; 27] rad/s is plotted in Fig. 4.8. As expected, the stick-slip severity factor decreases when the imposed rotation at the top increases. If the speed at the top is lower than 16 rad/s, SS( θtop drive ) is greater than 0.5. For the stochastic bit-rock interaction model, the stick-slip severity factor becomes random and its statistics are estimated using the Monte Carlo simulation method with n s = 500 samplings, according the Eq. (C.1) of convergence analysis in Appendix C. Figure 4.9 shows statistics on the random stick-slip severity factor. The statistical envelope showed in Fig. 4.9, due to the stochastic bit-rock interaction, yields large fluctuation in the random stick-slip severity factor. This means that bit-rock interaction variability has a direct impact on the drill string stability and should therefore be taken into account for a robust analysis of the drill string dynamics. The results show that when the top speed is about 20.5 rad/s the system has 5% probability of having the value of SS( θtop drive ) greater than 0.5. The probability of instability increases as the speed decreases. This result brings much more information comparing with the deterministic result, where, for the same threshold of SS( θtop drive ) < 0.5, the limit speed of 16 rad/s was obtained. 

Chapter 5 Test-rig for experimental results

A test-rig has been developed in order to simulate torsional drill string dynamics for validating and calibrating deterministic and stochastic models for the bit-rock interaction [START_REF] Real | Experimental analysis of stick-slip in drilling dynamics in a laboratory test-rig[END_REF]. The concept was to design and to construct a test-rig which would be able to reproduce stick-slip phenomena while drilling a rock sample. The proposed test-rig was based on the project developed by [START_REF] Cayres | Analysis of dry frictioninduced stick-slip in an experimental test rig modeling a drill string[END_REF] with some improvements: (1) test-rig is in vertical position instead of horizontal; (2) a mandrel and a standard masonry bit are used to drill a rock sample (made of concrete), while in [START_REF] Cayres | Analysis of dry frictioninduced stick-slip in an experimental test rig modeling a drill string[END_REF] friction is induced by pins; (3) a platform holds the test-body and an electrical jack provides the test-body lift. In the design process, low-cost and simple construction were prerequisites.

The designed test-rig is showed in Fig. 5.1. The idea is to isolate torsional and axial vibrations from lateral ones by assembling a slender steel bar, representing the drillpipes, between two bearings that are disposed on two extremes of it (one right after the top drive and another one just before the mandrel). The upper part of the rig consists on an electric drive motor, a slender cylindrical bar, a inertial disk, and a masonry bit. Those elements represent the top drive, the drillpipes (DP), the bottom-hole assembly (BHA), and the drill bit, respectively. The lower part consists of a rock sample, a holder, a platform to support the holder and an electrical jack to lift the sample for drilling.

Test-rig setup

DP is represented by a slender and cylindrical steel bar with 1,530 mm length and 5 mm diameter. On the cylindrical bar bottom, BHA is made by an inertial disk with 28.4 mm thickness and 138 mm diameter and a mandrel, as showed in Fig. 5.1. A drill bit (standard masonry bit) is attached to them for drilling a concrete cylinder (test-body), which is placed in a rock holder and can be changed for another kind of rock according to the user's desire. Rock holder is fixed in a platform set (see Fig. 5.2) that can rotate along vertical axis and it is attached to an electrical jack that is responsible for vertical displacement to turn possible its drilling.

Top drive is composed by a DC Brushless motor, which is controlled using an Eletronic Speed Control Module (ESC) model ESC Emax 25A. This drive set is capable of achieving 300 RPM, 8 Nm torque, and it is responsible for applying the torque and for creating an angular speed on the cylindrical bar. A cantilever load-cell (model BSPH4-10kg, Weightech) at the top is connected to the back of DC Brushless Motor in order to measure the torque made by this motor through the measured force. Two encoders (model H40, LS Mecapion) are also used to measure the angular position of the cylindrical bar at the top (close to the drive) and at the bottom (close to the bit).

Rock holder (where the test-body is fixed) is placed on the platform set supported over 3 load-cells (capacity range equal to 0-50 kg of each one) that measure the normal interaction force between the drill bit and the test-body, which corresponds to weight on bit (WOB) (see Fig. 5.3). WOB, as expressed in the oil industry, is the amount of downward force exerted on the drill bit. Although this set is free to rotate, a perpendicular rod was installed under it, which is fixed on a cantilever load-cell (capacity range equal to 0-10 kg) for measuring the torque on bit. This load-cell is fixed at the electrical jack that is not free to rotate. This system allows the measurement of the torque on bit just in one direction. Supporting the rock holder and the platform, there is an electrical jack to lift it to turn viable the drilling. This system is able to simulate an usual condition of penetration for Polycrystalline Diamond Compact (PDC) bits, that means 2.8-4.2 mm/s. Lift distance and rate of penetration (ROP) are measured by two optical sensors (Balluf BOD26K LA01 C 06) disposed side by side to get the distance average. This system is able to measure a distance between 0 and 30 mm according to the principle of triangulation. Drive torque, torque on bit, drive and bit speeds, drive and bit rotation, and WOB are recorded by a data acquisition device controlled by Labview graphical interface that allows the real-time response monitoring. 

Experimental planning

Matlab is used to design the experiments considering just one kind of material (test-body of ordinary concrete -30 fck, 100 mm diameter, 200 mm length), one target value of rate of penetration (ROP), close to 2 mm/s, and 10 samples, and drive speed varying from 100 to 220 RPM, in increasing steps of 20 RPM. For these conditions, the experimental planning has resulted at 210 tests during 70 hours, considering 20 minutes per test. The planning has considered the top drive speed and bit diameter as input variables, and the WOB, torque on bit and bit speed as output variables.

Experimental results

Test-rig set-up and proceedings

Experiments are demanded to check the consistency of data results to improve the reliability of test-rig results. Test-rig constitutive characteristics are showed in table 5 4) to [START_REF] Batou | A global/local probabilistic approach for reduced-order modelling adapted to the low-and mid-frequency structural dynamics[END_REF] in the existing holes, in order to optimize the use of test-body, and, after that, change to the 8 mm diameter drill bit and repeat from item ( 4) to ( 7) again.

Experimental data analysis

Matlab is used to obtain graphics from experimental data. Figure 5.4 summaries all 210 tests through stick-slip severity factor (Eq. (3.4)). All experimental data are available on blog [100]. All results refer to some of the phenomena that occur in real drilling operations. Stick-slip oscillations are present in all the situations with different severities depending on the drilling conditions (top drive speed, rock strength, bit diameter, etc), being more evident between 120 and 160 RPM in 10 and 12 diameter bits.

Top drive speed decreases between 40% and 60% during drilling, oscillating around a mean value. It happens because the top drive control is based on open-loop system. Some measurements presented long time of stick phase due to the lateral friction between drilled material and the bit, enforcing how is important to establish a maximum value for borehole depth in test procedure. SS sustains its average until 160 RPM and decreases after that.

A bit wear control was done to verify if there is some influence on the results: after all tests, the bit wear is 2% for each masonry bit, lower than the uncertainty of test measurements which is 3%. Uncertainty of test measurements is calculated by sum between the biggest value of intrinsic uncertainty of all instruments in parallel (1%) and the acquisition data set (2%).

Besides, fluctuations of these 210 samples were analyzed to check if a previous assumption is correct concerning the centered stationary Gaussian random process. For the whole samples, the fluctuations η exp (t) are analyzed and the its average is equal to 7.8296 × 10 -5 , and its standard deviation is approximately constant, and equal to 0.4674, that means these fluctuations can be considered as a centered stationary Gaussian random process. One sample is extracted from the total ones and it is explored below. The chosen sample number is 175 in which the bit diameter is 12 mm and the nominal top drive speed is 160 RPM. The total sample time is 60 seconds and 3 seconds are separated in order to allow an analysis in detail of the stick-slip mechanism. It is possible to identify 3 time intervals (28s-30s, 50s-52s and 56s-58s, approximately) in which bit sticks for a longer time. This happens when the top drive is not able to overcome the reactive torque. Sometime, the bit sticks and achieves a reactive torque that electrical motor is not able to overcome. In these cases, it is necessary to relief WOB in order to decrease the torque on bit. Besides the variations due to stick-slip in WOB, there is also a lower frequency variation. This lower frequency variation is due to the control mechanism of electrical jack (that is performed setting input voltage constant and using a switch). In Fig. 5.6, seven stick-slip cycles are separated from sample 175 to be analyzed. Six vertical lines are drawn for one cycle in order to explain the mechanism in detail. This cycle was chosen because bit sticks at a sufficient time to provide an influence in the other variable. The explanations presented here are in agreement with the ones presented by Shen et. al [START_REF] Shen | The Origin and Mechanism of Severe Stick-Slip[END_REF], which used field data to explain stick-slip mechanism. The description of the mechanism for each point highlighted in fig. 5.6 is as follows:

1. Bit is stuck, the torque on bit starts to increase due to the accumulation of strain energy in the drill string and WOB is high.

2. Bit is released and speed starts to increase. Torque on bit achieves its maximum value that represents the maximum cutting resistance imposed by the rock. WOB is approximately at the same level.

3. Bit speed is increasing and achieves the value of average top drive speed indicating that drill string start to lose strain energy. Torque on bit starts to decrease and WOB achieves its local maximum value and starts to decrease as well.

4. Bit speed is at local maximum and torque on bit is at local minimum, as WOB. At this point, torque on bit starts to increase again and bit speed reduces.

5. Bit speed is decreasing and torque on bit is increasing. WOB starts to increase. The behavior of WOB can be explained because just before bit sticks, it induces a reduction of ROP and this is done by an increase in WOB.

6. Bit sticks again and stick-slip cycle restarts. Torque on bit achieves maximum value again just before decreasing to a value just enough to overcome applied torque and maintain the bit stuck. WOB increases and achieves a new value.

This analysis reinforces the fact that torsional vibrations are coupled with axial vibrations, and the bit-rock interaction is an important source of this coupling. 5.7(a) shows the bit speed variation which begins at zero, achieves its local maximum value and then returns to zero, as noticed before. Figure 5.7(b) plots the torque on bit versus bit speed. This graph is generally used to describe bit-rock interaction in torsional vibration of drill strings. The so called velocity weakening effect [START_REF] Pavone | Application of high sampling rate downhole measurements for analysis and cure of stick-slip in drilling[END_REF][START_REF] Ritto | Validation of a drill string dynamical model and torsional stability[END_REF] is present in which torque on bit decreases with bit speed. Another identified phenomenon is the hysteresis effect, i.e., the fact that torque on bit decreases when bit speed increases in a different path then torque on bit increases while bit speed decreases. In all the analyzed situations, torque on bit decreasing path is almost always above the increasing path. This phenomenon was first mentioned in literature in [START_REF] Pavone | Application of high sampling rate downhole measurements for analysis and cure of stick-slip in drilling[END_REF] and modeled in [START_REF] Hong | Identification and control of stickslip vibrations using Kalman estimator in oil-well drill strings[END_REF][START_REF] Real | Hysteretic Bit/Rock Interaction Model to Analyze the Torsional Dynamics of a Drill String[END_REF]. Shen et. al [START_REF] Shen | The Origin and Mechanism of Severe Stick-Slip[END_REF] also observed this behavior through field data. In fig. 5.7(c), the WOB is plotted versus bit speed and another cycle is noticed. This cycle can be one of the factors that contributes for stick-slip being a self sustained phenomenon. As in torque on bit, there is a hysteric effect in this system in which the path during bit speed increasing is different from the path during bit speed decreasing.

Rock resistance variation of test-body material can cause the WOB variation. That is related to the cutting process and the severity of stick-slip: during the cutting process, WOB increases when the bit is starting the cutting process and it is relieved according to the rock resistance decreases, when it appears an upward force acting on the drill bit due to helical deformation of the steel cylindrical bar [START_REF] Kapitaniak | Helical buckling of drill-strings[END_REF]. Depending on the magnitude of rock resistance, WOB can decrease in different rates and, depending on the cumulative energy during the stick and rock resistance, WOB can "return" below or above its initial trajectory. If the bit deceleration in slip phase is more severe, the trend is to "return" above its initial trajectory (higher magnitude); otherwise, the trend is to "return" below its initial trajectory. Three more samples were selected to show other stick-slip cycles. Figure 5.8 shows time intervals of 5 seconds of stick-slip cycles for 4 samples. The orange line represents the sliding-window average. In samples 93 and 115, the bit diameter is 10 mm and average top drive speed is approximately 65 and 82 RPM, respectively. Otherwise, samples 165 and 175 are related to a bit diameter of 12 mm and average top drive speed of 81 and 78 RPM, respectively. There are two types of variation in this figure: the first is related to the cycles of the same sample with theoretically the same drilling conditions; the second is related to the variation between the samples. The first kind of variation elucidates the presence of uncertainties in bit-rock interaction. The second kind shows that bit-rock interaction depends on the drilling conditions. 

Comparison between experimental data and mathematical models -validation of test-rig results

To validate the test-rig results, experimental data are compared to mathematical models. Experimental results are compared to two known models: (1) a commonly used nonlinear reversible (regularized model) bit-rock interaction model which is given by Eq. (3.1); (2) a simple non-regularized and reversible bit-rock interaction model, which is introduced by [START_REF] Ritto | Validation of a drill string dynamical model and torsional stability[END_REF] using polynomial functions:

T bit non-reg ( θbit ) =      r WOB (a 0 + a 1 θbit )1.36, f or θbit ≤ 0.01( θbit ); r WOB (a 2 + a 3 θbit )1.36, f or0.01( θbit ) < θbit ≤ 0.05( θbit ) r WOB (a 4 + a 5 θbit + a 6 θ 2 bit + a 7 θ 3 bit )1.36, f or θbit ≥ 0.05( θbit ) , (5.1) 
where T bit non-reg is the "non-regularized" torque on bit in N.m, r WOB = 0.8058 is the ratio WOB/WOB re f , where WOB re f is the reference WOB, and the parameters a 0 , a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , and a 7 are coefficients with the appropriate units.

SWA methodology has been applied to selected time range of experimental data to get the average behaviour for parameter identification. The deterministic models of bitrock interaction given by Eq. (3.1) as regularized model and Eq. (5.1) as non-regularized model were taken to evidence the experimental data compliance. Least-Square method and graphical identification was applied to identify the parameters for calibration of these models.

Compliance using the sample number 13 is done as follows, which corresponds to bit speed set to 120 RPM and bit diameter equal to 8 mm, as showed in Fig. 5.9. Time range between 44 and 59 seconds is taken to analyze the bit-rock interaction.

In total, there are 19 stick-slip cycles for selected range, with different kind of .9: Full data of torque on bit, bit speed and WOB data using φ 8 mm bit and drive speed setted at 120 RPM (sample 3), where the red box is the selected range for analysis (range between 44s and 59s). behaviour and levels of severity. All of them present a hysteresis behaviour, because the lost of energy during the stick-slip occurrence.

For better fitting model evaluation, a comparison between the regularized model and non-regularized model is done by variance of mean squared error (Var[MSE]) [START_REF] Breiman | Statistics With a View Toward Applications[END_REF], where the better fitting model presents lower Var[MSE] lower values, which is given by

Var[MSE] = var[( T exp bit inside-window ( θbit (t), θbit (t)) -T Model i bit ( θbit (t))) 2 ], (5.2) 
where T exp bit inside-window ( θbit (t), θbit (t)) is given by Eq. Three points are important in tests: accuracy, repeatability and reproducibility.

According to [START_REF] Jcgm/Wg | Evaluation of measurement data -Guide to the expression of uncertainty in measurement[END_REF], accuracy is related to the precision of measurements; repeatability is the agreement between the results of successive measurements carried out under the same conditions of measurement; and reproducibility is the agreement between the results of measurements carried out under changed conditions of measurement.

Accuracy is insured by calibration of sensors and system filters. All sensors were verified previously comparing to known standard-mass or to calibrated instruments, where any necessary adjustments are done. This issue are overcomed.

Reproducibility is noticed changing the input variables, that means bit diameter and top drive speed. Figure 5.4 in section 5.3.2 is a summary of all 210 tests, where all results fit the expected field behaviour, showing that the proposed test-rig reflects the bit-rock interaction of a drill string.

Repeatability can be insured by test-procedure (see section 5.3.1), but some limitations of test-rig, uncertainties or uncontrolled variables can affect this issue. To have a good analysis about that, table 5.2 shows some statistics of samples 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20, as the variance of mean squared error for each sample and each model(according to Eq. (5.2)), coefficient of variation (CV), standard-deviation (std(T exp bit )) and mean (mean (T exp bit )) of each sample.

According to table 5.2, the repeatability is not ensured because of the stochasticity of bit-rock interaction process. However, the non-regularized model fits the sample data better than the regularized model (lower Var[MSE] values). Some samples presented a huge off-set, that may be caused by another factor. In case of Sample 12, it is clear that there is a problem: some torque measurements are negative, that means the platform set was not stable enough during the drilling because the borehole was drilled close to the test-body border.

Coefficient of variation (CV) concept is the ratio between standard-deviation (std(T exp bit )) and mean (mean (T exp bit )), which is related to the hysteresis fluctuations; stochastic fluctuations are more related to the variation of rock properties and rock resistance. Therefore, 8 among 10 samples are acceptable according to the established criteria, which is enough to validate the test-rig results (bigger than 70%) and can prove the test-rig is able to reproduce torsional oscillations of a drill string. However, results can be improved including a safety region to drill the test-bodies (excluding the borders regionsee Sample 12 results).

Validation of hysteretic models using numerical simulations

As mentioned before, observed stick-slip cycles in field and experimental results indicate that for each cycle the torque value for positive acceleration and for negative acceleration are not the same ( [START_REF] Leine | Stick-slip Whirl Interaction in Drillstring Dynamics[END_REF][START_REF] Pavone | Application of high sampling rate downhole measurements for analysis and cure of stick-slip in drilling[END_REF]), that means non-reversible phenomenon. According to [START_REF] Real | Hysteretic Bit/Rock Interaction Model to Analyze the Torsional Dynamics of a Drill String[END_REF], non-reversible means that the torque on bit depends not only on the bit speed, but also on the bit acceleration, producing a type of hysteretic cycle. Besides, each observed cycle is different from one another, because the independence of cycles: each stick-slip cycle depends on the saving energy during the stick phase and how this energy is applied to motion in slip phase. It happens because the effect of the WOB combined to acceleration and deceleration behaviour, simulating an axial-torsional coupled model into non-coupled model, that is a great advantage.

As hysteretic function (Eq. (3.3)) was applied to regularized model, as showed in Eq. (3.2), it can be applied to non-regularized model according to Eq. (5.1), as follows

T HY S bit non-reg ( θbit , θbit ) = T bit non-reg ( θbit )(1 + H( θbit , θbit )) (5.3) 
Validation of the proposed models using numerical simulations will be done in the future works.

Chapter 6

Stochastic computational model of the drill string

Chapter 4 describes a new stochastic model of the bit-rock interaction. However, there are sources of uncertainties related to the computational model of the drill string presented in the Eq. (2.5), such as material properties and variability of geometry along the axial axis. Besides, the modeling of interfaces for the present model is very simple compared to complex mechanical real link between the DP and BHA. Then, the linear torsional model is a simple representation of the torsional vibration of the drill string yielding some model-form uncertainties in the model.

For these reasons, a new probabilistic model of uncertainties is constructed in order to quantify the sensitivity of outputs with respect to these uncertainties efficiently. This new strategy is an extension of the nonparametric probabilistic approach [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF], which considers the uncertainties at the operator level globally, allowing to control the dispersion level of each inner and interface DOFs of each drill string substructure, independently. This strategy allows to control the level of the uncertainties related to the inner and interface DOFs from the nonparametric probabilistic approach together with Craig-Bampton substructuring method, extending the work developed by Soize and Chebli [START_REF] Soize | Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model[END_REF].

Classical nonparametric probabilistic approach -a brief overview

Nonparametric probabilistic approach is based on the random matrix theory [START_REF] Mehta | Random Matrices. Revised and Enlarged Second Edition[END_REF][START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF], which consists in replacing the deterministic reduced-order matrices of the deterministic computational model by random matrices, and acts directly at the reduced operator level.

In its basic version, this approach assumes that there are no rigid body modes, that means the deterministic reduced matrices are symmetric positive-definite. Systems may not be attached to a fixed frame, that means they present rigid body modes -in such case, see section 6.5. Some substructures For contextualizing, nonparametric probabilistic approach [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF] considers the uncertainties at the operator level globally: the constructed stochastic model is controlled by a few number of dispersion parameters which make their experimental identification feasible [START_REF] Chebli | Experimental validation of a nonparametric probabilistic model of nonhomogeneous uncertainties for dynamical systems[END_REF][START_REF] Chen | Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels[END_REF][START_REF] Duchereau | Transient dynamics in structures with nonhomogeneous uncertainties induced by complex joints[END_REF][START_REF] Durand | Structural-acoustic modelling of automotive vehicles in presence of uncertainties and experimental identification and validation[END_REF][START_REF] Fernandez | Sound-insulation layer modelling in car computational vibroacoustics in the medium-frequency range[END_REF][START_REF] Soize | Probabilistic model identification of uncertainties in computational models for dynamical systems and experimental validation[END_REF]. Furthermore, by randomizing the reduced-order operators, this approach allows to extend the range of prediction of the computational model without modifying the reduced displacement subspace [START_REF] Real | A probabilistic model of uncertainties in the substructures and interfaces of a dynamical system -application to the torsional vibration of a drill-string[END_REF].

Let [A] denote the mass, damping or stiffness reduced order matrix of substructure S k , that means A = M, D or K. The nonparametric probabilistic approach consists in replacing [A] by a random matrix [A], such as

[A] = [L A ][G A ][L A ] T , (6.1) 
where [G A ] is a normalized random matrix and [L A ] is a lower triangular matrix related to the Cholesky factorization of matrix [A], i.e.,

[A] = [L A ][L A ] T . (6.2)
Probability density function of random matrix [G A ] is constructed using the maximum entropy principle [START_REF] Jaynes | Probability Theory: The Logic of Science[END_REF], and depends on a dispersion parameter δ A , which controls the level of the statistical fluctuations of the random matrix [G A ] around its mean value (the unit matrix [I m ]. Then,

δ A = E{||[G A ] -[I m ]|| 2 F } ||[I m ]|| 2 F 1/2 , (6.3) 
where || • || F is the Frobenius norm and E{•} is the mathematical expectation. A generator of independent realizations of random matrix [G A ] has been proposed in [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF].

Stochastic model in terms of nonparametric probabilistic approach (SM full ) for the reduced order computational model without substructuring method is constructed in replacing each deterministic matrices [M], [D] and [K] in Eq. (2.5) by random matrices [M], [D] and [K], according to Eq. (6.1). In this way,

[M] q + [D] q + [K]q = T( q(t), q(t)) , (

i.e.,

u k =    u I k u Γ k    . (6.6)
Let [A k ] be the mass, damping or stiffness matrix of substructure S k , that means A = M, D or K, and let f k be the force vector of substructure S k . Then,

[A k ] =    [A II k ] [A IΓ k ] [A ΓI k ] [A ΓΓ k ]    and f k =    f I k f c k    , (6.7) 
in which f I k is the inner force and f c k is the coupling force at the interface. In Eq. (2.5), it is assumed that there is no external force applied on the interfaces.

Craig-Bampton substructuring method [START_REF] Craig | Coupling of Substructures for Dynamic Analysis[END_REF] consists in reducing the number of inner DOFs by using fixed-interface elastic modes and static modes, such that

   u I k u Γ k    =    [Φ I k ] [R I k ] [0] [I n Γ,k ]       q I k u Γ k    , (6.8) 
where [Φ I k ] is the matrix of the m k fixed-interface elastic modes, R I k are the matrix of the static modes described such that

R I k = -[K II k ] -1 [K IΓ k ], (6.9) 
and [I n Γ,k ] is the (n Γ,k × n Γ,k ) identity matrix. In Eq.(6.8), q I k is the vector of the m k generalized coordinates related to the fixed-interface elastic modes. The Eq. (6.8) can be rewritten as

u k = [Ψ k ] q k (6.10)
with

[Ψ k ] =    [Φ I k ] [R I k ] [0] [I n Γ,k ]    and q k =    q I k u Γ k    . (6.11) Let n k = m k + n Γ,k . Let [ Ãk ] be (n k × n k ) such that [ Ãk ] = [Ψ k ] T [A k ][Ψ k ] =    [ ÃII k ] [ ÃIΓ k ] [ ÃΓI k ] [ ÃΓΓ k ]    . (6.12) Let [P I k ] = ([I m k ] [0]) and [P Γ k ] = ([0] [I n Γ,k ]
) be the projection matrices on the inner and interface coordinates, respectively. Then,

[ ÃII k ] = [P I k ] T [ Ãk ][P I k ], [ ÃIΓ ] = [P I k ] T [ Ãk ][P Γ k ], [ ÃΓΓ k ] = [P Γ k ] T [ Ãk ][P Γ k ] . (6.13) 
For the stiffness matrices, the coupling blocks are algebraically equal to zero. For instance, there are two substructures (DP + BHA) for the drill string showed in the figure 2.1, that means n s = 2 substructures. Taking into account the continuity of the displacement at the interface, the force equilibrium at the interface and the relation Eq. ((6.10)) for each substructure, the dynamical matrix equation of the assembled structure for the substructuring Craig-Bampton method are written with lower subscript CB as follow

[M CB ] qCB (t) + [D CB ] qCB (t) + [K CB ]q CB (t) = T t CB (t) , (6.14) 
for time domain, and

(-ω 2 [M CB ] + jω [D CB ] + [K CB ])q CB (ω) = T ω CB (ω), (6.15) 
for frequency domain, in which

q CB =         q I 1 q I 2 u Γ         , T k CB =         [Ψ 1 ] T T k I 1 [Ψ 2 ] T T k I 2 [R I 1 ] T T k I 1 +[R I 2 ] T T k I 2         , (6.16) 
and

[A CB ] =         [ ÃII 1 ] [0] [ ÃIΓ 1 ] [0] [ ÃII 2 ] [ ÃIΓ 2 ] [ ÃΓI 1 ] [ ÃΓI 2 ] [ ÃΓΓ 1 ]+[ ÃΓΓ 2 ] ,         . (6.17)
The displacement vector u is finally calculated as

u = [Ψ] q CB , (6.18) 
where [Ψ] is constructed by assembling matrices, that means [Ψ 1 ] and [Ψ 2 ] for n s = 2 substructures (for n s substructures, [Ψ 1 ], . . . , [Ψ n s ]).

The methodology

Soize and Chebli [START_REF] Soize | Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model[END_REF] proposed a probabilistic model (called here as stochastic model SM CB1 ) for taking into account different levels of uncertainties in each substructure: for each substructure S k , the reduced matrices were replaced by random matrices whose probabilistic models were constructed by using the nonparametric probabilistic approach that has been briefly presented in section 6. 

[ ÃII k ] = [P I k ] T [ Ãk ][P I k ], [ ÃIΓ ] = [P I k ] T [ Ãk ][P Γ k ], [ ÃΓΓ k ] = [P Γ k ] T [ Ãk ][P Γ k ], (6.19) 
where [ Ãk ] is a random matrix for which its statistical fluctuation due to the uncertainties is related to [ Ãk ] (see section 6.2.1), P I k and P Γ k are described in Real et al. (2017) [START_REF] Real | A probabilistic model of uncertainties in the substructures and interfaces of a dynamical system -application to the torsional vibration of a drill-string[END_REF], and whose probabilistic model is constructed by using the nonparametric approach that is briefly presented in section 6.1. The assembling of those random matrices yield a random matrix [A CB1 ] that models the statistical fluctuation related to uncertainties on [A CB ]. For instance, for n s = 2, and for A = M, D or K, [A CB1 ] is given by

[A CB1 ] =         [ ÃII 1 ] [0] [ ÃIΓ 1 ] [0] [ ÃII 2 ] [ ÃIΓ 2 ] [ ÃΓI 1 ] [ ÃΓI 2 ] [ ÃΓΓ 1 ]+[ ÃΓΓ 2 ]         . ( 6.20) 
Stochastic model SM CB1 allows different levels of uncertainties to be modeled in each substructure and here are 6 dispersion parameters because n s = 2 substructures. In a general way, the total number of parameters is equal to 3 × n s parameters, which control the uncertainties of the system: δ M,1 , δ D,1 , δ K,1 , . . . , δ M,n s , δ D,n s , δ K,n s .

6.4 New stochastic model: one extension of nonparametric probabilistic approach together with Craig-Bampton substructuring method, which separates of the statistical fluctuations related to the inner and interface DOFs

In nonparametric probabilistic approach together with Craig-Bampton substructuring method proposed by Soize and Chebli [START_REF] Soize | Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model[END_REF] (SM CB1 ), every components of a given random matrix [ Ãk ] are related to the same dispersion coefficient for each substructure. Nevertheless, each component of random matrix [ Ãk ] is related to a linear system of stochastic second order ordinary differential equations, in terms of random generalized coordinates and random displacements on the interfaces between two substructures. Stochastic model SM CB1 does not allow to take into account different levels of statistical fluctuation on those coefficients. In order to circumvent such a limitation, a new stochastic model (called here stochastic model SM CB2 ) is proposed here, extending the work developed by Soize and Chebli [START_REF] Soize | Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model[END_REF]. For each substructure S k and for A = M, D or K, two statistically independent random matrices [ ÃI k ] and [ ÃΓ k ] are introduced to model the statistical fluctuations that are related to each matrix [ Ãk ] (see section 6.2.1). Their probabilistic model are constructed using the nonparametric probabilistic approach as briefly presented in section 6.1, and for two different dispersion cofficients δ A,I,k and δ A,Γ,k . Cholesky factorisation of these random matrices yields two random lower triangular matrices 

[L I A,k ] and [L Γ A,k ], such that [ ÃI k ] = [L I A,k ][L I A,k ] T , [ ÃΓ k ] = [L Γ A,k ][L Γ A,k ] T . ( 6 
[ ÃII k ] = [P I k ] T [ ÃI k ][P I k ], [ ÃIΓ k ] = [P I k ] T [ LI A,k ][L Γ A,k ] T [P Γ k ], and 
[ ÃΓΓ k ] = [P Γ k ] T [ ÃΓ k ][P Γ k ]. (6.22)
The assembly of those random matrices yields a random matrix [A CB2 ] that models the statistical fluctuation related to uncertainties on [A CB2 ]. For instance, for n s = 2, A CB2 is given by

[A CB2 ] =         [ ÃII 1 ] [0] [ ÃIΓ 1 ] [0] [ ÃII 2 ] [ ÃIΓ 2 ] [ ÃΓI 1 ] [ ÃΓI 2 ] [ ÃΓΓ 1 ]+[ ÃΓΓ 2 ]         . (6.23)
The levels of the statistical fluctuations of random matrix [A CB2 ] are controlled by two dispersion coefficients δ A,I,k and δ A,Γ,k , which are related to the nonparametric models of [ ÃI k ] and [ ÃΓ k ], respectively. Here, Stochastic model SM CB2 allows different levels of uncertainties to be modeled in each substructure by 6 dispersion parameters, totalizing 12 parameters because n s = 2 substructures. In a general way, the probabilistic model of uncertainties is controlled by 6 × n s dispersion coefficients, that allow controlling the level of statistical fluctuations of the inner and interface coordinates separately for each random matrices, giving more flexibility than the stochastic model SM CB1 . In this case, the dispersion coefficients for the full structure are δ M,I,1 , δ M,Γ,1 , δ D,I,1 , δ D,Γ,1 , δ K,I,1 , δ K,Γ,1 , . . . , δ M,I,n s , δ M,Γ,n s , δ D,I,n s , δ D,Γ,n s , δ K,I,n s , δ K,Γ,n s .

Comments concerning the nonparametric probabilistic approach -presence of floating substructures

Some substructures of the systems may not be attached to a fixed frame, that means they present rigid body modes. This is the case, for instance, for the BHA of the drill string showed in figure 2.1. These floating substructures yield a positive semi-definite stiffness matrix [ Kk ] and then the nonparametric construction presented in the previous sections cannot be applied directly. To circumvent this difficulty, the projection of the stiffness matrix into the rigid body subspace is kept equal to zero almost surely while the projections into the subspace of flexible displacements are randomized. Such construction makes sense since the rigid body subspace is not perturbed by the presence of uncertainties. The construction proposed here corresponds to the ensemble of random matrices "SE +0 " introduced in [START_REF] Soize | Random matrix theory for modelling uncertainties in computational mechanics[END_REF]. Let [P rb,k ] be the matrix whose columns are vectors that span the null space of [ Kk ] and let [P flex,k ] be the matrix whose columns are vectors that spans the range space of [ Kk ]. It is assumed that the columns of [P rb,k ] and [P flex,k ] are normalized. In this way, 

[P rb,k ] T [P flex,k ] = [I]. Letting [P k ] = ([P rb,k ][P flex,k ]), Kk is given by [ Kk ] = [P k ]    [0] [0] [0] [C k ]    [P k ] T , ( 6 
[K k ] = [P k ] [0] [0] [0] [C k ] [P k ] T . (6.25) 

New stochastic model (SM CB2 ): application and verification

The objective of this section is just to validate and illustrate the proposed methodology using a simple torque model, which allows to perform a comparison among the nonparametric probabilistic models, and to check how robust is this computational model according some inferred fluctuations in order to evaluate the impact of the different sources of uncertainties.

In order to verify the new stochastic model (SM CB2 ) presented in section 6.4, it is implemented taking into account the uncertainties related to the computational model of the drill string presented in section 2.1, considering an unitary torque is applied to the bottom-end of BHA for all frequency range of analysis. It is noticed that the unitary torque applied to the bit is not a real representation of a bit-rock interaction torque, but it is necessary as a comparison methodology.

The stochastic model SM CB2 6.4 is compared to the stochastic models SM full (see section 6.1) and SM CB1 (see section 6.2). Then, the stochastic model SM CB2 is analyzed in order to evaluate the impact of the different sources of uncertainties: DP versus BHA, mass versus damping versus stiffness, and inner versus interface DOFs.

Hypothetic drill string are used for the implementation, considering 1,700 m DP length and 300 m BHA length. As stated before, only two substructures are considered in this analysis: DP and BHA. The mass and stiffness matrices for this substructure are constructed using 100 elements with linear shape functions for each substructure, considering the top-end of the DP clamped. The top-end of the BHA is coupled with the bottom-end of the DP. Therefore, there is only one interface DOF.

For better visualization, the acceleration response is given in logarithmic scale (dB) according to 20log 10 ü(ω). Three points are observed: P obs,1 , which corresponds to the first non-clamped node at the top of the DP, P obs,2 , which corresponds to the interface node, and P obs,3 , which corresponds to the bottom node of the BHA. The statistical envelope with probability level 0.95 is estimated using 2,500 Monte Carlo simulations (see Appendix C).

Craig-Bampton projection matrices [Φ I 1 ] and [Φ I 2 ] are both constructed using the number of modes above the number obtained by convergence analysis obtained after the convergence analysis (see Appendix C) due to the user's prudence: m 1 = m 2 = 25 fixedinterface elastic modes. The reduced damping matrices [ D1 ] and [ D2 ] are both constructed using a Rayleigh model [START_REF] Inman | Engineering Vibration. International Edition[END_REF]

, i.e., [ D1 ] = a 1 [ M1 ] + b 1 [ K1 ] and [ D2 ] = a 2 [ M2 ] + b 2 [ K2 ]
where a 1 , b 1 , a 2 and b 2 are calculated such that the damping ratios are 0.05 and 0.01 at frequencies 1 Hz and 10 Hz for each substructure, respectively. Dispersion parameters (δ 's) are set to 0.1, that means 10% of fluctuation range.

Validation of the new stochastic model SM CB2 : one comparison

In order to validate the new stochastic model SM CB2 , this one is compared to SM full and SM CB1 , using all δ 's set equal to 0.1 (user's choice), that means 10% of dispersion: for the full model SM full , δ

M = δ D = δ K = 0.1; for model SM CB1 , δ M,1 = δ M,2 = δ D,1 = δ D,2 = δ K,1 = δ K,2 = 0.1; for model SM CB2 , δ M,I,1 = δ M,Γ,1 = δ M,I,2 = δ M,Γ,2 = δ D,I,1 = δ D,Γ,1 = δ D,I,2 = δ D,Γ,2 = δ K,I,1 = δ K,Γ,1 = δ K,I,2 = δ K,Γ,2 = 0.1.
The normalized random matrices [G A ] are constructed for each case using Gamma distribution, based on the maximum entropy principle [START_REF] Jaynes | Probability Theory: The Logic of Science[END_REF]. Figures 6.1, 6.2 and 6.3 show the comparison of the statistical envelopes at the three observed points for each stochastic model. It can be observed that the statistical envelopes get wider as the frequency increases, especially for the response in the top-end of the DP node, as showed in Fig. 6.1. The three figures present similar envelopes for all methodologies. These results indicate that the proposed strategy is consistent, with one advantage of allowing more parameters to control uncertainties. Next, results of the new stochastic model for different levels of uncertainties will be explored, which allows the control of uncertainties for each operator, each substructure and each inner or interface DOF.

Random response of stochastic model SM CB2

Mass versus damping versus stiffness

i-Case study 1: mass uncertainty, Table 6.1. On the other hand, these figures show that the sensitivity of the response for an uncertain damping model is very low (very thin statistical envelopes): that means the system is robust to damping model uncertainties, considering the used dispersion parameters. 

DP-inner

DP-interface BHA-inner BHA-interface Mass δ M,I,1 = 0.1 δ M,Γ,1 = 0.1 δ M,I,2 = 0.1 δ M,Γ,2 = 0.1 Damping δ D,I,1 = 0 δ D,Γ,1 = 0 δ D,I,2 = 0 δ D,Γ,2 = 0 Stiffness δ K,I,1 = 0 δ K,Γ,1 = 0 δ K,I,2 = 0 δ K,Γ,2 = 0
= 0 δ M,Γ,1 = 0 δ M,I,2 = 0 δ M,Γ,2 = 0 Damping δ D,I,1 = 0.1 δ D,Γ,1 = 0.1 δ D,I,2 = 0.1 δ D,Γ,2 = 0.1 Stiffness δ K,I,1 = 0 δ K,Γ,1 = 0 δ K,I,2 = 0 δ K,Γ,2 = 0
= 0 δ M,Γ,1 = 0 δ M,I,2 = 0 δ M,Γ,2 = 0 Damping δ D,I,1 = 0 δ D,Γ,1 = 0 δ D,I,2 = 0 δ D,Γ,2 = 0 Stiffness δ K,I,1 = 0.1 δ K,Γ,1 = 0.1 δ K,I,2 = 0.1 δ K,Γ,2 = 0.1

DP versus BHA

i-Case study 4: DP uncertainty, Table 6.4.

DP-inner DP-interface BHA-inner BHA-interface

Mass δ M,I,1 = 0 δ M,Γ,1 = 0 δ M,I,2 = 0.1 δ M,Γ,2 = 0.1 Damping δ D,I,1 = 0 δ D,Γ,1 = 0 δ D,I,2 = 0.1 δ C,Γ,2 = 0.1 Stiffness δ K,I,1 = 0 δ K,Γ,1 = 0 δ K,I,2 = 0.1 δ K,Γ,2 = 0.1
Table 6.5: Case study 5 -values of the dispersion parameters. the DP and in the BHA. The statistical envelopes for uncertain DP increase significantly when frequency increases, except around 3.7 Hz, where they become thinner. It can be concluded that the DP uncertainties affect more the response of the system for the frequency range analyzed, due to low stiffness of the DP compared to BHA stiffness.

For uncertain BHA, the envelopes increase more significantly from 5 Hz, but they are much thinner than the response of the system for an uncertain DP. Specially for point P obs,3 , this behaviour means that the strategy in Eq. (2.5) is not robust for uncertainties present in bit-rock interaction for high frequencies; however, the strategy in Eq. (2.5) is robust for low frequencies that is the operational range. Therefore, a stochastic bit-interaction model is valid, as it done in chapter 4.

Inner DOFs versus interface DOFS

i-Case study 6: Inner DOFs uncertainty, Table 6 ii-Case study 7: Interface DOFs uncertainty, Table 6.7. 6.11, and 6.12 show the random responses comparing inner and interface uncertainties. Both statistical envelopes increase when frequency increases, except in the region around 3.7Hz for P obs,2 . However, the statistical envelopes for uncertain interface DOFs are much thinner comparing to the statistical envelopes for uncertain inner DOFs. In the present analysis there is only one DOF in the interface, and the response is robust to uncertainties in this interface DOF, although it has a clear impact in the random response of the system. This new strategy can allow to control the dispersion level of each inner and interface DOFs of each drill string substructure independently. We have to take into account which substructures and which frequencies the results are robust or not, showing that a bit-interaction stochastic model is valid even for an analysis of global uncertainties in a drill string.

Chapter 7 Conclusions, contributions and future works

This thesis proposes a robust analysis for drill string torsional dynamics, based on modeling and experimental identification under uncertainties. It involves the development of a new deterministic bit-rock interaction model, a new stochastic computational model for bit-rock interaction, an identification strategy, the construction of a simplified test-rig to obtain experimental results, and a new non-parametric approach that allows the assessment of main sources of uncertainties. The methodologies applied here are simple to implement and fitted the field data in all cases, showing good accuracy with low computational cost. This is an important topic for real application.

Only torsional vibrations were analyzed for a torsion bar system, discretized by means of the finite element method. A reduced-order model was constructed to speed up the computations. A new bit-rock interaction model, including a type of hysteresis (non-reversibility), is proposed herein. The verification of the proposed model is based on field data and its validation by experimental results was done. The analysis shows that the system including a bit-rock interaction model with hysteresis effects (1) favors the stability of the system for high nominal surface speeds and low WOB, and (2) induces higher stick-slip oscillations for low nominal surface speeds and high WOB. The reason for that has to do with the hysteretic cycle of the torque on bit versus the bit speed. In addition, the calibration procedure is straightforward, and could be implemented in real-time operations, which is still a challenge. Furthermore, a new probabilistic model for the bit-rock interaction model is proposed. This model includes a multiplicative stochastic process to take into account fluctuations of the torque on bit during the drilling. The stochastic model was calibrated with field data and validated with experimental data, and it takes into account hysteretic cycles and their stochastic fluctuations. The proposed bit-rock probabilistic model can be constructed independently from the computational model of the column.

The deterministic and stochastic torsional dynamics of a drill string are analyzed and a reasonable agreement between model predictions and field data is observed. The statistics of the stick and slip duration were also analyzed. Residuals are measured, and both models are representative, but some improvements concerning the parameter identification can refine the fitting procedure.

A considerable impact of the proposed stochastic model on the torsional stability of the system was observed. To such end, the stick-slip severity factor is computed and statistical envelopes are plotted for varying imposed speeds at the top. A robust estimation of the minimum angular speed is estimated using these plots.

A low-cost test-rig was designed to reproduce torsional vibrations of drill strings. The test-rig uses an electrical motor to rotate a slender circular bar with an inertial disk connected to a bit at the bottom. In the lower part, a test-body of concrete is lifted using an electrical jack. The rotation angle and speed are measured at the top (near electrical motor) and at the bit. Besides, the torque on electrical motor and on bit are measured using cantilever load cells. The axial force (WOB) is also measured using load cells. It was obtained 210 samples for 3 bit sizes and an top speed range of 100-220 RPM. The capability of reproducing stick-slip phenomenon is proved by the experimental data presented. The obtained results are in accordance to the field data behavior and they are validated with known models in the literature. The stick-slip cycle was then explained in detail by dividing the independent cycles and by extracting a single cycle, which presented a hysteretic effect for both torque on bit and WOB versus bit speed. It was concluded that uncertainties are clearly present in stick-slip cycles for the same sample and that bit-rock interaction highly depends on drilling conditions.

A new probabilistic model of uncertainties is implemented, in order to efficiently quantify the sensitivity of outputs with respect to these uncertainties. This new strategy is based on the terms of nonparametric probabilistic approach, together with Craig-Bampton substructuring method, which considers the uncertainties at the operator level globally, allowing to control the dispersion level of each inner and interface DOF of each drill string substructure independently. The random vibrations of the torsional drill string were analyzed, where the column is divided in two substructures (DP and BHA). For uncertain BHA, the envelopes increase more significantly from 5 Hz until 7 Hz, but they are much thinner than the response of the system for an uncertain DP, showing that the strategy for drill string torsional model is not robust for uncertainties present in bit-rock interaction for high frequencie, but it is robust for low frequencies (operational range). Therefore, a bit-interaction stochastic model is valid even for an analysis of global uncertainties in a drill string.

Contributions of this work were published on or submitted to international journals. The first one [START_REF] Real | A probabilistic model of uncertainties in the substructures and interfaces of a dynamical system -application to the torsional vibration of a drill-string[END_REF] was published on journal Archive of Applied Mechanics (impact factor equal to 1.103), with the title A probabilistic model of uncertainties in the substructures and interfaces of a dynamical system -application to the torsional vibration of a drill string. This article is about the application of the new stochastic model, which is shown in this work. The second article [START_REF] Real | Hysteretic Bit/Rock Interaction Model to Analyze the Torsional Dynamics of a Drill String[END_REF] is published on Mechanical System and Signal Processing (impact factor equal to 4.116), with the title Hysteretic Bit/Rock Interaction Model to Analyze the Torsional Dynamics of a Drill String. This article proposes a novel hysteretic (non-reversible) bit-rock interaction model for the torsional dynamics of a drill string, where the non-linear torsional vibration and the stability map of the drill string system are analyzed employing the proposed bit-rock interaction model and also a commonly used reversible model (without hysteresis). A third article [START_REF] Real | Experimental analysis of stick-slip in drilling dynamics in a laboratory test-rig[END_REF] has already been published on Journal of Petroleum Science and Engineering (impact factor equal to 2.382), with the title Experimental analysis of stick-slip in drilling dynamics in a laboratory test-rig, about the new and simple test-rig to analyze drilling dynamics, especially stick-slip oscillations, which might take into account hysteric effects for the bit-rock interaction. Yet another article is submitted to Journal of Vibration and Control, about a new stochastic model for the hysteretic behavior of the nonlinear bit-rock interaction, where the fluctuations of the stick-slip oscillations and the hysteretic effect provided by the nonlinear bit-rock interaction are modelled by introducing a stochastic process associated with the variations during the drilling.

The next steps of this work need to be developed: [START_REF] Abbassian | Application of stability approach to torsional and lateral bit dynamics[END_REF] for applying the new stochastic model for bit-rock interaction into the new strategy SM CB2 , in order to get a full analysis of torsional dynamics under uncertainties, which demands a deep and careful study;

(2) for experimenting with more tests to improve the test-rig skills; (3) validation of the proposed models using numerical simulations; (4) for enabling axial DOF for the test-rig, in order to propose coupled axial-torsional models; and (5) for proposing a new strategy to control the torsional oscillations under uncertainties using hysteresis modeling, simulating a real operation of a drill string. 
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 11 Figure 1.1: General view of a drill string (source: University of Aberdeen web page, in https://www.abdn.ac.uk/engineering/research/modeling-and-analysis-ofbha-and-drillstring-vibrations-149.php).
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 21 Figure 2.1: General scheme for modeling a drill string.
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 31 Figure 3.1: Terms of the bit-rock interaction reversible model, Eq. (3.1): tanh term in blue, fraction term in green, and complete reversible model in magenta.
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 32 Figure 3.2: Experimental bit speed, according to Ritto et al. [112].
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 33 Figure 3.3: Experimental bit-rock interaction (Ritto et al.[START_REF] Ritto | Validation of a drill string dynamical model and torsional stability[END_REF]) and identified average model.
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 3 Figure 3.3 shows a good agreement between the deterministic model of bit-rock interaction and the field data. Nevertheless, it can be seen that the experimental data show large fluctuations related to the deterministic model. These fluctuations are explained in the next chapter.
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 3435 Figure 3.4: Downhole field data, torque [N.m] versus angular speed [RPM] at the bit: six stick-slip cycles available. The path from the top occurs when the bit accelerates, and the path from the bottom occurs when the bit speed decreases. The direction of the cycle is the same for all six cycles.

Note that if b 4 = 1 ,

 41 b 5 = 2 and H = 0 it can be retrieved the bit-rock interaction model found in Eq. (3.1). The parameters b 4 and b 5 , with 0 < b 4 < b 5 , depend on the bit and rock properties. The parameter b 0 [N.m] represents the weight on bit, the friction coefficient and the bit radius (for instance, this parameter might be written as b 0 = µW bit r).
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 336 Figure 3.7 shows the hysteretic bit-rock interaction model for positive bit speeds.The arrows indicate the path of the cycle. The curve in blue happens when the bit acceleration is positive, and the curve in green happens when the bit accelaration is negative.
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 3738 Figure 3.7: Hysteretic bit-rock interaction model. Blue line when the bit acceleration is positive and green line when the bit accelaration is negative.
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 39 Figure 3.9: Field data vs. hysteretic bit-rock interaction model (Eq. (3.3)): fitted model in black, and mean cycle of field data in green.
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 3 Figure 3.10: Bit-Rock interaction models (Eqs. 3.1 and 3.3): (1) reversible (magenta), (2) hysteretic β 1 = 14% (black), and (3) hysteretic β 1 = 56% (black).
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 311 Figure 3.11: Stability map for models 1 (reversible) and 2 (hysteretic β 1 = 14%).
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 312 Figure 3.12: Stability map for the model 3 (hysteretic β 1 = 56%).
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 41 Figure 4.1: Stochastic process η exp (t) obtained experimentaly with field data.
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 4 2 shows the estimated field data PSD.

  Figure 4.3 compares the calibrated PSD model with field data PSD, where a reasonable agreement is observed.
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 4243 Figure 4.2: Field data PSD.
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 44 Figure 4.4: Two independent realizations of the stochastic process η(t).
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 2 Simulation of the stochastic drill string dynamics 4.2.1 Analysis of one realization of the stochastic drill string dynamical response

  )) ; Calculate the torque vector T i ; Calculate the reduced-order torque vector Ti = [Φ] T T i
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 45 Figure 4.5: One realization of the simulated bit-rock interaction.
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 4647 Figure 4.6: Bit speed: deterministic bit-rock interaction model (left, 3-cycles periodicity observed) and stochastic bit-rock interaction model (right, no periodicity observed).
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 48 Figure 4.8: Stick-slip severity factor for a deterministic bit-rock interaction. Red dashed line indicates the stability threshold of SS( θtop drive ).
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 49 Figure 4.9: Random stick-slip severity factor for a stochastic bit-rock interaction. Solid lines: mean response and 90% confidence region. Dashed line: deterministic case (black), stability threshold (red).
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 51 Figure 5.1: General view of test-rig.
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 52 Figure 5.2: Bit, test-body and platform set view.
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 53 Figure 5.3: Platform design -general and load cell views.
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 54 Figure 5.4: Box-plot of 210 test-rig experiments.
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 5 Figure 5.5 shows the experimental results for sample 175 in test time. The stickslip phenomenon is clearly present during almost all the time of test. Stick-slip is identified by high fluctuations of bit speed that achieves values between 0 and almost 200 RPM while the average top drive speed is 78 RPM. These variations are also noticed in torque on bit and WOB. It is possible to identify 3 time intervals (28s-30s, 50s-52s and 56s-58s, approximately) in which bit sticks for a longer time. This happens when
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 55 Figure 5.5: Full data of bit speed, torque on bit and WOB for sample 175. The red box is the time interval used in the detailed stick-slip mechanism analysis.
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 56 Figure 5.6: Data from sample 175 with a time interval from 34 to 37 seconds.
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 5 Figure 5.7 is generated considering the stick-slip cycle explained before. The red dots represent the start point of the cycle and the red arrows indicate the progressive direction of stick-slip cycle.Figure5.7(a) shows the bit speed variation which begins at zero, achieves its local maximum value and then returns to zero, as noticed before. Figure5.7(b) plots the torque on bit versus bit speed. This graph is generally used to describe bit-rock interaction in torsional vibration of drill strings. The so called velocity weakening effect[START_REF] Pavone | Application of high sampling rate downhole measurements for analysis and cure of stick-slip in drilling[END_REF][START_REF] Ritto | Validation of a drill string dynamical model and torsional stability[END_REF] is present in which torque on bit decreases with bit speed. Another identified phenomenon is the hysteresis effect, i.e., the fact that torque on bit decreases when bit speed increases in a different path then torque on bit increases while bit speed decreases. In all the analyzed situations, torque on bit decreasing path is almost always above the increasing path. This phenomenon was first mentioned in literature in[START_REF] Pavone | Application of high sampling rate downhole measurements for analysis and cure of stick-slip in drilling[END_REF] and modeled in[START_REF] Hong | Identification and control of stickslip vibrations using Kalman estimator in oil-well drill strings[END_REF][START_REF] Real | Hysteretic Bit/Rock Interaction Model to Analyze the Torsional Dynamics of a Drill String[END_REF]. Shen et. al[START_REF] Shen | The Origin and Mechanism of Severe Stick-Slip[END_REF] also observed this behavior through field
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 57 Figure 5.7: Stick-slip cycle from sample 175 for time interval from 35.3 to 35.67 seconds. (a) bit speed versus time; (b) torque on bit versus bit speed and; (c) WOB versus bit speed.
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 58 Figure 5.8: Stick-slip cycles for 4 different samples (93, 115, 165, and 175). The cycles corresponds to a time interval of 5 seconds in each sample.
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 5 Figure 5.9: Full data of torque on bit, bit speed and WOB data using φ 8 mm bit and drive speed setted at 120 RPM (sample 3), where the red box is the selected range for analysis (range between 44s and 59s).

  (4.3), and T Model i bit ( θbit (t)) can be given by Eq. (3.1) or Eq. (5.1). Therefore, Var[MSE] using Eq. (3.1) model is 20.8601, while Var[MSE] using Eq. (5.1) model is 0.0017. These Var[MSE] values show that the Eq. (5.1) model fits better the data than Eq. (3.1) model.
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 61 Figure 6.1: Comparison of three stochastic models -frequency response in acceleration for point P obs,1 .
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 62 Figure 6.2: Comparison of three stochastic models -frequency response in acceleration for point P obs,2 .
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 63 Figure 6.3: Comparison of three stochastic models -frequency response in acceleration for point P obs,3 .
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 64 Figure 6.4: Case study 1, 2 and 3 -frequency response in acceleration for point P obs,1 .
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 67 Figure 6.7: Case study 4 and 5 -frequency response in acceleration for point P obs,1 .
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 68 Figure 6.8: Case study 4 and 5 -frequency response in acceleration for point P obs,2 .
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 69 Figure 6.9: Case study 4 and 5 -frequency response in acceleration for point P obs,3 .
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 612 Figure 6.12: Case study 6 and 7 -frequency response in acceleration for point P obs,3 .

  Figures 6.10, 6.11, and 6.12 show the random responses comparing inner and interface uncertainties. Both statistical envelopes increase when frequency increases, except in the region around 3.7Hz for P obs,2 . However, the statistical envelopes for uncertain interface DOFs are much thinner comparing to the statistical envelopes for uncertain inner DOFs. In the present analysis there is only one DOF in the interface, and the response is robust to uncertainties in this interface DOF, although it has a clear impact in the random response of the system.
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 1 Figure C.1: Convergence function n s → Conv(n s .
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 2 Figure C.2: Convergence analysis for number of iterations.
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 3 Figure C.3: Convergence analysis for DP normal modes.
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 4 Figure C.4: Convergence analysis for BHA normal modes.
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 3 1: Drill string characteristics, according to Ritto et al.[START_REF] Ritto | Validation of a drill string dynamical model and torsional stability[END_REF].

	DP	BHA

  The proposed model, Eq. (3.2), allows a better fit with the field data points. H is the hysteretic function: if it is equal to zero, the model is reversible, with no hysteretic cycles. The hysteretic model is only activated if H is different from zero, where H is presented in Eq. (3.3).

  .1.Hz for the hole sensors in Labview code (software for acquiring experimental data), including the encoders.The test procedure relates the test-rig operation in order to get experimental results of torsional drill string dynamics, as drive torque, torque on bit, drive speed, bit speed, and WOB, being able to simulate torsional vibrations (stick-slip oscillations).

			Tests are
	done according to steps as follow:		
	(1) run the bridge calibration for all active modules for acquiring data, where is applica-
	ble;		
	(2) lift the platform set close to the drill bit of 12 mm;		
	(3) adjust the power supplier of the electrical jack for desired platform set lifting;
	(4) adjust the desired drive motor rotation;		
	(5) lift the platform set in order to drill the body-proof adding water;
	(6) observe the WOB values until stick-slip begins (WOB value will vary according to
	rotation, bit and test-body hardness);		
		DP	BHA
	Elastic Modulus [GPa]	220	220
	Poisson's coefficient	0.29	0.29
	Volumetric mass density [kg/m 3 ] 7, 800 7, 800
	Length [m]	1.700 0.028
	Radius [m]	0.0025 0.069
	Mass [kg]	0.260 3.921
	Table 5.1: Test-rig characteristics.	
	Masonry bits (average mass of bits are considered in BHA mass) are assembled in
	mandrel of diameters equal to 8 mm, 10 mm, and 12 mm. Test-body of ordinary concrete
	(30 fck, 100 mm diameter, 200 mm length) is applied as rock (for bit-rock interaction),
	and 10 samples for each target drive speed (100, 120, 140, 160, 180, 200, and 220 RPM).
	All these combinations mean 210 tests, as previewed by 5.2.	

Experimental natural frequencies are measured: 20 Hz is the first natural frequency for platform set plus electrical jack set, and 3 Hz is the value for the torsional natural frequency of the column. To mitigate the influence of platform set vibrations, a second order filter of Infinite Impulse Response (IIR) is applied with lowpass band set to 10 (7) drill at least 10 mm depth into the test-body, checking the time range equal to 60 seconds as a minimum, a total of 10 holes; (8) Change to the 10 mm diameter drill bit and repeat from item (

Table 5 .

 5 2: Statistics related to T exp bit of samples11, 12, 13,14, 15, 16, 17, 18, 19 and 20. An acceptance criteria to evaluate the samples, it can be spanned by the blend of CV average and the variation of concrete properties. According to the field knowledge, an acceptance criteria of quality related to variation of concrete resistance is 10%. CV average of samples according to table 5.2 is 0.329 can be used, that means an acceptance criteria equal to 43% of variation. Considering 39% of variation over the torque on bit values, an acceptable value for Var[MSE] of regularized model is 47.93 and 0.26 for non-regularized model. That means, the samples 14, 15, 16, 17, 18, 19 and 20 are acceptable for regularized and non-regularized models.

	Sample	Var[MSE] Regularized Model Non-Regularized Model (T exp Var[MSE] mean bit ) (T exp std bit )	CV
	11	52.9938	0.2725	1.3812 0.6430 0.4656
	12	58.0845	1.8469	0.7390 0.5208 0.7048
	13	20.8601	0.0017	1.8502 0.5266 0.2846
	14	9.1219	0.0072	2.2292 0.5144 0.2307
	15	17.7767	0.0109	1.4754 0.9759 0.6615
	16	0.0302	0.0075	1.9774 0.5903 0.2985
	17	8.2123	0.0302	1.6453 0.5441 0.3307
	18	43.1178	0.2388	0.9307 0.5450 0.5856
	19	37.7625	0.2410	1.5059 0.2140 0.3222
	20	27.8216	0.0264	1.9485 0.4453 0.2285

  1. Hence, for A = M, D or K and for each substructure S k , deterministic matrices [ ÃII ] introduced in section 6.2.1 and involved in the assembling of the deterministic matrix [A CB ] are replaced by the random matrices [ ÃII

k ], [ ÃΓI k ], [ ÃΓΓ k k ], [ ÃΓI k ] and [ ÃΓΓ k ],

defined as

[START_REF] Real | A probabilistic model of uncertainties in the substructures and interfaces of a dynamical system -application to the torsional vibration of a drill-string[END_REF] 

  .24) in which [C k ] is the diagonal matrix of the nonzero eigenvalues of [ Kk ]. The stochastic models SM CB1 and SM CB2 are then constructed by replacing the deterministic matrix [C k ] by the random matrix [C k ], for which the probabilistic model is constructed by using the nonparametric approach presented in section 6.1. Finally, for [K k ] = [ Kk ] (for the stochastic model SM CB1 ), [ KI

k ] and [ KΓ k ] (for Stochastic Model SM CB2 ), K k is written as

Table 6 .

 6 1: Case study 1 -values of the dispersion parameters.ii-Case study 2: damping uncertainty, Table6.2. iii-Case study 3: stiffness uncertainty, Table6.3.

	Figures 6.4, 6.5 and 6.6 show the random responses comparing uncertainties in the
	mass, damping and stiffness matrices. The results are very similar for uncertain mass

Table 6 .

 6 

		2: Case study 2 -values of the dispersion parameters.
		DP-inner	DP-interface BHA-inner BHA-interface
	Mass	δ M,I,1

Table 6 .

 6 3: Case study 3 -values of the dispersion parameters. and stiffness matrices, except at very low frequencies, where stiffness uncertainties are predominant. Besides, the statistical envelopes increase with the frequency .
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which yields in the frequency domain

(6.5)

For A = M, D or K, the probabilistic model of the random reduced-order matrix [A] is constructed by using the nonparametric probabilistic approach which is briefly presented above. Hence, the stochastic model SM full is completely defined by only three dispersion coefficients δ M , δ D , δ K , one for each the random reduced-order matrix, that means M, D or K respectively.

Nonparametric probabilistic approach together with

Craig-Bampton substructuring method

Craig-Bampton substructuring method

Reduced-order model reduces the order of the matrices according to the elastic modes of the whole structure, as showed in section 2.2. In some cases can be more interesting to divide this one in substructures, for instance complex structures or to get access in specific parts of the structure, saving computational cost. Since 60's, aerospace and automotive industries have used substructuring techniques called Component Modal Synthesis (CMS), in order to model the dynamical responses of complex structures [START_REF] Craig | A Brief tutorial on substructuring analysis and testing[END_REF]. CMS involved basically two steps [START_REF] Park | Curso ASEN 5022-Dynamics of Aerospace Structures[END_REF]:

(1) definition of modal sets of each system component; and

(2) coupling of these sets to form a reduced-order model.

In 1968, Craig and Bampton [START_REF] Craig | Coupling of Substructures for Dynamic Analysis[END_REF][START_REF] Morand | Substructure variational analysis for the vibrations of coupled fluid-structure systems[END_REF] created a simple strategy of substructuring method based on over-positioning of normal and static modes of each substructure (CMS step (1)) through coupled matrix composition (CMS step (2)), which is able to reduce drastically the computational cost [START_REF] Craig | A Brief tutorial on substructuring analysis and testing[END_REF].

The structure is decomposed into n s substructures S ii-Case study 5: BHA uncertainty, Table 6.5. 

DP-inner

DP-inner DP-interface BHA-inner BHA-interface

Appendix A Modified Euler Scheme

Modified Euler Scheme is a first-order numerical integration method for solving ordinary differential equations (ODEs), which requires low computational cost. This methodology substitutes angular acceleration ü per angular velocity u, by the simple approximations:

For convenience, let rewrite the equations above and, specially for Eq. (A.1), let rewrite in the step back, ui ≈ ü(i-1) ∆t + u(i-1) , (A.3)

Let the Eq. (2.5) or (2.7), Eq. (A.3) and Eq. (A.4). After some manipulations, it is possible to get the follow system formed by Eq. (A.5) and Eq. (A.6)

), (A.5)

It is important to mention that this system is stable if

where ω n max is the maximum value for the natural frequency of the structure.

Appendix B Algorithm

The Algorithm 2 details the steps of drilling simulation methodology.

Algorithm 2: Drilling simulation algorithm.

INITIALIZATION:

Input initial values (geometrical, physical and mechanical characteristics); Load the field or experimental data; Implement the FEM strategy: Input the number of elements; Construct the full matrices; Get the reduced-order matrices; Determine the torque on bit and its standard-deviation from deterministic models; Identify the parameters related to the torque on bit and its standard-deviation using the field or experimental data; Estimate the PSD by Periodogram Method; Generate the simulated track (Gauss distribution); Initiate the drill string simulation; LOOP: for k = 1, . . . , (n t ) do Prediction of angular velocity and displacement (reduced-order);

)); q = q i-1 + ∆t * q; Actualization (reduced-order);

qi-1 = q; q i-1 = q Angular velocity and displacement on bit; θ = Φ * q; θ = Φ * q; Calculate the torque on bit according to the selected model; Calculate the stochastic torque on bit (including simulated track); Actualization of torque (reduced-order);

Appendix C Convergence analysis

For each Monte Carlo loop, an independent realization of the stochastic bit-rock interaction model is generated and a realization of the stochastic angular velocity is calculated.

Convergence for stick-slip severity factor is determined on the stationary regime. The convergence with respect to the number of samplings n s is analyzed by introducing the convergence function Convergence analysis is also demanded for number of simulations and number of normal modes for the whole structure and for each substructure (DP and BHA) separately, according to the Tab. 3.1 data. The mean square convergence method is applied through the equation:

where θ i represents one generated simulation i, ω i is the frequency, n s is the number of simulations, and N is the number of normal modes. The