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MODELAGEM E IDENTIFICAÇÃO EXPERIMENTAL DA DINÂMICA
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Esta tese de doutorado propõe novas formas de modelar a dinâmica torcional de uma
coluna de perfuração de petróleo considerando incertezas. Este trabalho propõe um novo
modelo estocástico de interação broca-rocha histerético (não-reversı́vel). Primeiramente,
um novo modelo nominal de interação o qual depende não somente da velocidade
angular da broca, mas também de sua aceleração é proposto. Então, um novo modelo
estocástico para a interação broca-rocha levando em consideração as flutuações inerentes
é também proposto. Além disso, uma nova bancada experimental é proposta para analisar
a dinâmica da coluna de perfuração de petróleo e interação broca-rocha, a qual é apta para
reproduzir o fenômeno do stick-slip enquanto perfura uma amostra de rocha utilizando
broca de concreto comercial, assim como validar modelos de interação broca-rocha.
Uma estratégia original para modelar incertezas em nı́vel global baseada em termos da
abordagem probabilı́stica não-paramétrica considerando um modelo torcional simples
para uma coluna de perfuração de petróleo é também proposta. Esta estratégia permite
controlar o nı́vel de dispersão para cada grau de liberdade interno e na interface de cada
subestrutura de forma independente, a qual pode prover mais informações para melhorar
a segurança operacional.
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MODELING AND EXPERIMENTAL IDENTIFICATION OF DRILL STRING
TORSIONAL DYNAMICS UNDER UNCERTAINTIES
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This D.Sc. thesis proposes new perspectives for modeling drill string torsional
dynamics under uncertainties. This work develops a novel stochastic hysteretic (non-
reversible) bit-rock interaction model. Firstly, a new nominal interaction model, which
depends not only on the bit speed, but also on the bit acceleration is developed. Then,
a new stochastic model for the bit-rock interaction, taking into account the inherent
fluctuations during the drilling, is also proposed. Furthermore, a new test-rig is proposed
to analyze drill string dynamics and bit-rock interaction, which is able to reproduce
stick-slip phenomena while drilling a rock sample using standard masonry bits, as well
as to validate bit-rock interaction models. An original strategy for modeling uncertainties
globally, based on terms of the nonparametric probabilistic approach, considering a
simple torsional model for a drill string, is also proposed. This strategy allows to control
the dispersion level of each interior and interface DOFs of each drill string substructure
independently, which can provide more information to improve the operational safety.
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Chapter 1

Introduction

1.1 General context

The Chinese people are recognized to be the first civilization to drill for oil: already
in 300 BC, they pounded holes in the ground with heavy, bronze bits suspended from
spring poles, which eliminated some of the manual labor to raise and to drop a heavy
bronze bit [31]. In the early 1800’s, drillers in the ‘modern’ oil industry used a variation
of this technique called cable-tool drilling, which utilized a steam or internal combustion
engine to raise and lower a wooden or metal beam from which the bit was suspended. In
cable-tool drilling [86], the cable (manila rope or wire line) pulled the string of tools up
and down as brought about by a spring pole or a walking beam at the surface, and the bit
has a blunt chisel end which cracks, chips and smashes the rock by the repeated blows
delivered in a measured or regular cadence. This kind of drilling is also called percussion
drilling.

In the 1860’s, some artesian wells were drilled with wooden rods supporting the
tools of the drill string, where the rods may have been to the order of 1 3/4” thick, 20 to
30 ft in length and were fastened together by a screw and box [86]. To be pulled out of
the hole, each rod had to be unscrewed when it arrived at the surface and fastened again
when going back into the hole. The use of wooden rods was soon replaced by thick rope
such as manila, sisal hemp or sea grass, thus eliminating the hookup time that wooden
rods required.

Nowadays, the drilling operation is done by drill string, which consists of a series
of pipe sections (joints) that are screwed together as they are lowered into the borehole
[4]. In general, drill strings are composed by two substructures: drill pipe (slender pipes
that can reach kilometers, herein called ”DP”) and bottomhole-assembly pipe (thicker
pipes together with a drill bit on its bottom, and its length can reach hundreds of meters
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long, herein called BHA), as showed in Fig. 1.1. For vertical drilling operations, the drill
string rotates around its longitudinal axis for drilling rocks, and a drilling fluid is injected
inside of it in order to transport drilled solids (cuttings) upward in annulus area (space
between the drill string and the borehole), avoiding borehole clogging and cooling the bit
[102], among other functions. Once the target depth is reached, the drill string is pulled
out of the hole, and another length of pipe (the production casing) is cemented in place
to prevent hole collapse and to isolate productive formations (from one another) [4]. Its
operation is not trivial and involves high costs, especially in deep water oil reserves,
which increases the interest of industries to reduce the operational costs to sustain the
competitiveness[102].

Figure 1.1: General view of a drill string (source: University of Aberdeen
web page, in https://www.abdn.ac.uk/engineering/research/modeling-and-analysis-of-
bha-and-drillstring-vibrations-149.php).

Due to drill string design concept (slender structure), torsional and lateral vibrations can
occur when it rotates. Besides, its dynamical behavior combines a complex set of actions
under operation, such as friction in bit-rock interaction, axial compression forces, fluid
structure interaction, and possible borehole contact. These effects can generate axial,
lateral and torsional damped vibrations [134]. Especially for torsional vibrations, the
friction during the bit-rock interaction, coupled with the axial efforts (torque applied
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at the bottom-end of the BHA - torque on bit), might lead to stick-slip, which is an
oscillatory twisting evidenced as a variation of bit speed [37, 51, 57, 61, 84, 98, 139].
Stick-slip oscillations might cause, for instance, measurement equipment failure, low
rate of penetration, bit damage, and fatigue [155]. Besides, oscillations can increase
the pre-existing number of uncertainty sources, as material properties (column and
drilling fluid) and dimensions of whole system (especially borehole). In this context,
drill string dynamics might be complex [42, 50, 102, 114, 134, 135], and knowledge
thereof is strategic for the industry, in order to reduce the operational costs and sustain
the competitiveness.

This work is interested in the modeling of torsional vibrations of a drill string un-
der uncertainties, in order to minimize the operational risks, which means improving
its efficiency and safety, avoiding premature material fatigue, saving operational costs
concerning the drilling efficiency, driving energy, and drilling reliability.

1.2 Literature review

Over last two centuries, structural dynamic analysis has been discussed by several
experts around the world, encouraged by theoretical investigations and by computational
methods in different fields like mechanical engineering, for designing and constructing
of machineries, and also for controlling of vibration, naval, aeronautics and also civil
engineering, for constructions in earthquake zones and under wind effects.

New methods for the calculation of eigenvalues and eigenvectors, with application
to structural dynamics, were developed in the first years of the twentieth century. The
contributions from 1896 to 1929 by Adolf Kneser (1862-1930), Aleksandr Mikhailovich
Lyapunov (1857-1918), Jacques Salomon Hadamard (1865-1963) and Tullio Levi-Civita
(1873-1941), plus Liapounov’s essay of 1907 on the ”Problème général de la stabilité du

mouvement”, opened a new field for mathematical studies applied to structural mechanics
and dynamics. Moreover, Giulio Benedetto Isacco Vivanti (1859-1949) published in
1916 ”Elementi della teoria delle equazioni integrali lineari”, where the problem related
to the numerous DOFs was resolved introducing integral equations [23]. Particularly
regarding random vibrations, in 1905, Albert Einstein (1879-1955) initiated his analysis
related to the Brownian motion [28], however, after more than fifty years, Stephen Harry
Crandall (1920-2013) made the random vibration analysis accessible for non-researcher
engineers through his seminar of 1958. In the literature, there are some books about
random vibration analysis with random excitation of linear and non-linear dynamical
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systems [22, 56, 64, 70, 151].

Studies concerning structural dynamic analysis for drill strings are more recent. In
1992, Paslay et al. [83] referred to uncoupled models for axial and torsional vibrations,
beyond lateral displacements, including the effect of the fluid-added mass, but neglected
impacts between the column and the borehole [105]. In Jansen’s Ph.D. thesis [42],
a detailed discussion about drill string dynamics is made, where he presented simple
computational models and also the non-linear formulation of an Euler-Bernoulli beam,
even though he did not consider stabilizers and bit-rock interaction (only a simple
model for the fluid-structure interaction). Abbassian and Dunayevsky [1] addressed the
string-torsional vibration, bit-lateral dynamics, and coupled torsional-lateral vibration
of the polycrystalline diamond compact (PDC) bits under induced torsional and lateral
vibrations. The papers by Tucker and Wang [140] used the Cosserat theory for modeling
the drill string dynamics, while the papers by Khulief et al.[50] and of Sampaio et al.
[114] used the Euler-Bernoulli beam stochastic model with the Finite Element Method.
These works did not consider a fluid-structure interaction, either inside or outside flows
of the column, only in the work of Tucker and Wang [140], the influence of the fluid is
considered in a simplistic way. Spanos et al. [134, 135] cited a vibration overview in
drilling processes.

In the last ten years, studies related to drill string structural dynamic analysis were
object of studies of various authors in different ways. Piovan and Sampaio [90] dis-
cretized by finite elements a continuous model for analyzing the coupled extensional
flexural and torsional vibrations of a drill string; on the other hand, Germay et al.
[33] studied the drill string axial and torsional vibrations using a lumped parameter
model characterized by a fast axial dynamics compared to the slow torsional dynamics.
Navarro-López and Licéaga-Castro [80] considered a discontinuous lumped-parameter
torsional model of four DOFs with four discontinuity surfaces, where one of them is
introduced in order to accomplish the control goal despite variations of the weight on
the bit, the top-rotary velocity and friction characteristics. Pang et al. [81] focused
in the BHA vertical-horizontal-torsional vibrations and their mechanical properties,
which are established by the non-linear dynamics considering random impacts and rubs
between the well wall and drill string, drill bit and the rock. Tikhonov and Safronov
[137] presented a 3D non-linear dynamic model of drill string in a 3D borehole, taking
into account the interaction of lateral, torsional, and axial vibrations. Divenyi et al. [25]
have shown critical stick-slip and bit-bounce behaviors related to parameter changes,
allowing to develop a deep understanding of the drill string dynamics. Liao et al. [63]
conducted experimental and numerical investigations series in order to understand the
drill string motions, checking the influence of different system parameters such as the
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mass imbalance and contact friction on the system dynamics. Liu et al. [65] introduced
a discretized non-linear model with eight DOFs, including axial, torsional and lateral
dynamics of both the DP and BHA, which showed that the motions can be self-excited
through stick-slip friction and time-delay effects, the whirling state of the DP periodically
alternates between the sticking and slipping phases, and also that the system response
stability is seen to be largely dependent upon the driving speed.

Recently in structural dynamic analysis for drill strings, Depouhon and Detournay
[24] analyzed the self-excited axial and torsional vibrations of deep drilling systems by
a discrete model that relies on a rate-independent bit-rock interaction law, and reduces
to a coupled system of state-dependent delay differential equations governing the axial
and angular perturbations to the stationary motion of the bit. This analysis indicated that,
although the steady-state motion of the bit is always unstable, the nature of the instability
depends on the nominal angular velocity imposed upon the rig of the drill string and,
when it is larger than a critical velocity, the angular dynamics are responsible for the
instability. Butlin and Langley [12] proposed an efficient drill string dynamics model
using digital filters and finite element model to describe the linear dynamics of drill
strings and reduced the DOFs of the equations of motion coupled to the non-linear contact
effects. Ren et al. [97] developed the mathematical models based on a flexible shell
under axial rotation, taking into account the coupling of axial and torsional vibrations,
which showed that when the drill string is in a low speed rotation zone, the torsional
excitation is overlapping the axial excitation for the coupling vibration, and the opposite
occurs in a high speed rotating zone. Field data of a drill string of five kilometers in
length is analyzed in Ritto et al. (2017) [112], where once again a pure torsional model
presented satisfactory results reproducing field data, where torsional vibration was the
dominant phenomenon observed.

To represent the bit-rock interaction, some authors consider it as a non-linear func-
tion between torque on bit and bit speed [51, 85, 94, 111, 112], while others apply a
switching mechanism [62]. One can find coupled axial-torsional bit-rock interaction
models, such as [99, 141]. Richard et al. [99] proposed a novel model to investigate
the self-excited stick-slip vibrations of a drilling system with a drag bit, using a discrete
model that takes into consideration the axial and torsional vibration modes. Ritto et al.
[102] proposed a new strategy of a stochastic computational model to describe the bit-
rock interaction, considering the fluid-structure interaction and the impact forces, which
uses the nonparametric probabilistic approach for modeling uncertainties in a non-linear
constitutive equation. The non-linear dynamical responses obtained were very sensitive
to uncertainties in the bit-rock interaction model, showing that uncertainties play an
important role in the coupling between axial and torsional responses, and consequently,
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in lateral responses. Ritto et al. [104] dealt with a procedure to perform the identification
of the probabilistic model of uncertainties related to the non-linear constitutive equation,
using the nonparametric probabilistic approach in a bit-rock interaction for the non-linear
dynamics of a drill string. Ritto and Sampaio [108] analyzed the stochastic dynamics
of a drill string with uncertain top speed by a linearized system with axial and torsional
motions to compute how the input power is effectively used to cut the rock and to move
the column forward. Nandakumar and Wiercigrochn [79] considered a fully coupled
two-DOF drilling model with stick-slip and bit-bounce phenomena, which is composed
by a state-dependent time delay and a viscous damping for both the axial and torsional
motions. It showed the dependency of cutting forces on the past history of the bit motion,
deducing the stable region and concluding that large speeds are eventually stable for all
weight on bit values. Recently, Terrand-Jeanne and Martins [136] considered a stick-slip
phenomenon in drill string in order to compare different kinds of modeling for some
deformable mechanical devices, analyzing the consequences of simplifying model.

Although some publications are not directly concerned with bit-rock interaction,
they are very closely related to hysteresis representation. The earliest paper presenting
direct measurements showing hysteretic response in friction-induced vibration is noticed
by Ko and Brockley [55], where a pin-on-disk tribometer, transducers and other electronic
devices permitted the accurate measurement of kinetic friction forces in the presence of
friction-induced vibration. Wojewoda et al. [152] described the phenomena of hysteretic
behaviour of dry friction occurrences as a representation of the system dynamics, where
several dry friction models are presented. They noticed that hysteretic effects can appear
by tangential stiffness between the bodies in contact during stick phase and stick-slip
transition phase, and they can appear during the slip phase, because the existence of
frictional memory caused by a lag in the friction force. The size of this macroscopic
sliding loop increases according to the velocity rate. A recent review of models and
measurements for dynamic friction is reported by Woodhouse, Putelat and McKay [153],
where they described frictional interactions and discussed a great number of friction
models, illustrating that friction response can be extremely sensitive according to the
choice of frictional constitutive model.

Hysteretic cycles have been observed experimentally for the bit-rock interaction in
[62, 85, 94]. As far as the author is aware, the only hysteretic bit-rock interaction
model found in the literature was proposed in [37]. The authors in [37] used the
experimental results presented in [62], and applied their hysteretic model, which employs
a switching mechanism, to the analysis of Proportional-Integral (PI) control strategy,
aiming at mitigating stick-slip oscillations. Especially in Real et al. [94], the authors
have highlighted large fluctuations of the nonlinear bit-rock interaction law during the
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drilling. These fluctuations, which are mainly due to the soil’s mechanical properties
during the drilling, propagate to the drill string dynamical behavior and have to be taken
into account in order to study the drill string stability with a good robustness. This work
is described in detail in this thesis.

In addition to the bit-rock interaction models, some fluctuations can be observed
in this interaction, which must be characterized as uncertainties [94]. In [133], a
stationary random process is considered to model lateral forces at the bit. In [102],
an adaptation of the nonparametric probabilistic approach [124] is proposed to model
uncertainties in the bit-rock interaction model. For the latter two papers, the probabilistic
models are not time-dependent, i.e., the bit-rock interaction model is random but does not
vary during the drilling. Constructing such a stochastic computational models including
the stochastic fluctuations of the bit-rock interaction forces would be helpful for robust
optimization of the drill string [103]. In Ritto et al. [103], the nonparametric probabilistic
approach is employed to model uncertainties in the coupled axial-torsional drill string
dynamics. Other aspects of uncertainty of the drill string problem were tackled in
[104, 106, 107, 108], as in Ritto and Sampaio [106] uncertainties are considered in the
bit-rock interaction parameters.

To validate the models, a test-rig is required to reproduce drill string vibrations.
Some researches have developed laboratory test-rigs to better understand the drill
string dynamics and the bit-rock interaction. Patil and Teodoriu [84] highlighted some
contributions in the field of modeling and controlling torsional drill strings vibration.
They also summarized some experimental studies carried out in laboratories. Usually,
experimental setups consist of a slender bar driven by an electric motor at one end and,
at the other end, a heavy disc is attached. Actually, few test-rigs found in the literature
drill the rock. To emulate the bit-rock interaction, some authors consider brakes or
shakers close to the disc [52, 73, 74, 146]. Torsional models were applied successfully
to represent test rigs that were constructed in [74] to analyze the friction-induced limit
cycling. Elsayed [30] introduced an approach to represent a drill string test-rig, which
offers flexibility to modify, remove or augment the modes representing the system. This
approach is based on the multi-degree-of-freedom in-series spring-mass system with
Rayleigh damping and, applying the force to the end node (bit), the modes can then be
decoupled and their contributions to bit displacement can be added algebraically. His
work showed that the lowest frequency modes are not necessarily the most critical.

Raymond et al. [92] developed an advanced BHA simulator able to model the re-
sponse of more complex representations of a drill string with multiple modes of vibration
and to measure the dynamic properties. In this rig, an actual drill bit is used to drill
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rock samples. Likewise, Kapitaniak et al. [47] and Wiercigroch et al. [150] investigated
the drill string dynamics on an experimental rig, which uses commercial drill bits
and rock-samples. This experimental rig uses commercial drill bits and rock-samples,
capable of reproducing various phenomena, such as stick-slip oscillations, whirling,
drill bit bounce and helical buckling. In Westermann et al. [149], a new laboratory
rig is presented, constituted of a rotating shaft representing a BHA section between
two stabilizers, which is capable of reproducing lateral drill string vibrations with and
without contact and of measuring the contact forces. Wang et al. [147] designed a test-rig
to analyze axial oscillation drag reduction mechanism. The authors also performed
the identification of the friction parameters for coupled torsional/axial model based on
the experimental data. Liu et al. [67] analyzed the multistability in drill strings under
stick-slip oscillations in a small-scale test-rig able to drill real rock samples. Cayres et al.
[13] proposed a simplified test-rig, which is constructed by a slender shaft and two discs:
one simulates the drill bit, and the other one, an intermediary contact region (borehole
contact). Finally, the test-rig proposed in this work [95] drills a rock sample using a
masonry bit and reproduces stick-slip cycles with a low cost design basis, where the
hysteric effects in the bit-rock interaction are noticed.

In addition to the bit-rock interaction uncertainty, there are other sources of uncer-
tainties related to the computational model of the drill string, such as the material
properties, geometry variation along the axial axis, mud density, etc. Therefore, a proba-
bilistic model of uncertainties is required to check how robust this computational model
is, according some inferred fluctuations. Some works take into account uncertainties in
different ways [102, 106, 124, 133], considering parametric and nonparametric proba-
bilistic approaches. For contextualization purposes, a parametric probabilistic approach
consists of replacing uncertain parameters with random variables [35, 118, 119], which
is very efficient if the computational model is a good representation of the dynamical
systems; nonparametric probabilistic approach [124] considers the uncertainties at
the operator level globally, by modeling the reduced-order matrices of a dynamical
system as random matrices. Therefore, the experimental identification is required to be
applied, in order to identify the parameters according to the field data or experimen-
tal data, validating the representation of uncertainties behavior without losing its accuracy.

For completeness of the nonparametric probabilistic approach studies, it is impor-
tant to cite Soize’s works [124, 125, 126, 127, 128, 131] and Batou’s work [7], which
proposed a new methodology for the construction of a probabilistic reduced-order
model of uncertainties adapted to the low- and mid-frequency structural dynamics,
using a nonparametric approach for the global matrix blocks and the local matrix blocks
separately, allowing to control the global fluctuations and the local fluctuations.
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In order to model the uncertainties globally, a work by this thesis’s author con-
cerning this issue is Real et al. [93], which further develops Soize and Chebli’s work
[126]. This new strategy considers the separation of uncertainties related to the inner and
interface degrees of freedom (DOFs) from nonparametric probabilistic approach applied
for each substructure using the Craig-Bampton substructuring method, which means
that there is a specific parameter to control the uncertainties for each inner and interface
DOFs.

1.3 Purpose and objectives

The purpose of this thesis is to improve the robustness of drilling torsional vibration
analysis methods, by taking into account uncertainties in the drill string computational
model and the non-linear bit-rock interaction model.

The four objectives are:

1. to establish a novel hysteretic (non-reversible) bit-rock interaction model, which
depends not only on the bit speed, but also on the bit acceleration, providing a new
representation of stick-slip oscillations due to a torque applied to the bottom-end of
the BHA of a drill string, according to experimental and field data observations;

2. to propose a new stochastic model for the bit-rock interaction, considering the stick-
slip effects described by the torque on the bit, in terms of parametric probabilistic
approach and experimental identification, in order to reproduce the uncertainties
related to the cutting process;

3. to construct a new test-rig to analyze drill string dynamics and bit-rock interaction,
which is able to reproduce stick-slip phenomena while drilling a rock sample using
standard masonry bits, as well as to validate bit-rock interaction models; and

4. to determine an original strategy for modeling uncertainties globally, based on terms
of the nonparametric probabilistic approach, considering a simple torsional model
for a drill string, which allows to control the dispersion level of each inner and
interface DOF of each drill string substructure independently.

An expected result is to provide a new way of modeling the torsional vibrations of a drill
string, in order to improve the operational safety and to avoid premature material fatigue,
saving operational costs concerning the drilling efficiency, driving energy, and drilling
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reliability.

1.4 Organization of the manuscript

In chapter 2, drill string torsional modeling and reduced-order model are described. A
new bit-rock interaction model contemplating hysteresis effect is detailed in section
3, and a new stochastic modeling for this new bit-rock interaction model is depicted
in chapter 4. In chapter 5, a new test-rig to analyze drill string dynamics and bit-rock
interaction is proposed, as well as a comparison of a drilling simulation applying these
new models and experimental results is presented. An original strategy for modeling
uncertainties globally, based on terms of the nonparametric probabilistic approach,
considering a simple torsional model for a drill string, is described in chapter 6, and in
chapter 7, conclusions and future works are reported.
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Chapter 2

Drill string torsional model

2.1 Torsional model

As mentioned in the introduction (section 1.1), drill strings are composed mainly by
two substructures (DP and BHA), as showed in Fig. 2.1. Under operation, drill string
rotates around its longitudinal axis due to the angular velocity at the DP top end to drill
rocks by the drill bit on the bottom of the BHA. Thereby, a reaction force is applied to
the drill bit by the rock in contact with. Although DP and BHA are connected together
by shaft couplings, stiffness values of these couplings are considered here as negligible,
because they are low enough to bring natural frequencies in torsion down into the range
of excitation frequencies [142].

A full description model, including all dynamics, although possible, presents many
difficulties due to lack of downhole data. During the drilling process there are many
phenomena which are hard to measure, or simply not fully measured. Therefore, simple
models can be convenient enough to represent this kind of system. Here, the nominal
model of the drill string is constructed as two torsional beams which are discretized
by means of the finite element method [42, 50, 106], and a reduced-order model is
constructed using the elastic modes. The non-linear bit-rock interaction forces are
modeled as a point torque applied at the end of the BHA. This simple model can enable
an efficient representation of a drill string.

In this work, a simple torsional model is proposed which considers a drill string as
continuous beam with two different parts, characterizing the DP and the BHA with their
own stiffness and damping. This proposal is really simple compared to what is found in
the literature (see section 1.2), as showed in Fig. 2.1. To do so, it is assumed that there is
no warp in cross section under applied torque, there is no lateral contact between the drill
string and the borehole, as well the inertial effects due to the global rotation of the drill
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string and the gyroscopic effects induced by the transverse displacements are negligible
(see [16]). Besides, the transverse and axial deformations are not modeled here.

Drillpipes

BHA

Bit

Constant speed

at the top

Bit/Rock

interaction

Figure 2.1: General scheme for modeling a drill string.

A simple mathematical model for describing the torsional dynamics of a drill string
can be too simple compared to a real system, but it has to be representative enough to
describe the phenomena involved [7, 132]. A good mathematical model must be efficient
to carry out parametric studies, simple enough to provide insight into the underlying
physics, and which retain sufficient details to correlate to real dynamics behaviour. In
this case, the torsional dynamics of a drill string can be analyzed by solving the motion
equation of a torsional beam [40, 142]

ρJ
∂ 2θ(x, t)

∂ t2 −G
∂

∂x

(
J

∂θ(x, t)
∂x

)
= T (x, t) , (2.1)

where θ(x, t) is the angular rotation about the x-axis (longitudinal axis), J is the cross
sectional polar moment of inertia, G is the shear modulus, T (x, t) is the torque per unit
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length. The boundary conditions at the top under constant speed Ω are given by:{
θ(0, t) = Ωt

θ̇(0, t) = Ω
, (2.2)

and the initial conditions are

θ(x,0) = 0, θ̇(x,0) = Ω , (2.3)

Unlike [102, 106], the present strategy solves the system considering its rotational
displacements about a rotating frame. Let θ rel(x, t) be the relative angular rotation in the
rotating frame associated with the imposed angle at the top, as follows

θ(x, t) = Ωt +θ
rel(x, t). (2.4)

The system is discretized by means of the finite element model, where linear shape func-
tions are applied. Let u(t) be the vector of θ

rel(x, t) nodal values related to the drill string
mesh. Note that, in the rotating frame, the angular displacement is fixed at the top because
there is no relative displacement between the top drive and the first node, at the top of the
drill string. Adding a proportional damping to the system, the vector u(t) is solution of
the matrix equation [42, 50, 114]

[M]ü(t)+ [D]u̇(t)+ [K]u(t) = T(u̇(t), ü(t))) , (2.5)

where [M] is the mass matrix, [D] is the damping matrix, and [K] is the stiffness matrix,
and T(u̇(t), ü(t))) is the torque vector, which also depends on the angular velocity (u̇(t))
and the acceleration (ü(t)), as explained in chapter 3.

According to Eqs. (2.3) and (2.4), the initial conditions in the rotating frame read

u(0) = 0, u̇(0) =−Ω1. (2.6)

where 1 is a vector with all entries equal to one. All the components of the torque vector
are zero except the one corresponding to the drill bit node. For this node, the nonlinear
torque applied to the bit is denoted by Tbit(θ̇bit(t), θ̈bit(t)), where θ̇bit(t) is the bit angle
within the absolute frame, and will be described in chapter 3.
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2.2 Reduced-order model

In order to optimize the computational cost, the size of matrices of the full finite element
model n can be reduced by constructing a reduced-order model using the normal modes
of the conservative homogeneous system. The m first eigenvalues 0 < λ1 ≤ λ2 ≤ . . .≤ λm

associated with the elastic modes {φ 1,φ 2, . . . ,φ m} are solutions of the following general-
ized eigenvalue problem

[K]φ = λ [M]φ . (2.7)

The reduced-order model is obtained by projecting the full computational model on the
subspace spanned by the m first elastic modes calculated using Eq. (2.7). Let [Φ] be the
n×m matrix whose columns are the m first elastic modes. Then, the displacement vector
u can be approximated by

u = [Φ]q , (2.8)

in which q is the vector of the m generalized coordinates obtained from the following
reduced matrix equation

[M̃]q̈+[D̃]q̇+[K̃]q = T̃(q̇(t), q̈(t)) , (2.9)

in which [M̃] = [Φ]T [M] [Φ], [D̃] = [Φ]T [D] [Φ] and [K̃] = [Φ]T [K] [Φ] are the m×m mass,
damping and stiffness generalized matrices, T̃(q̇(t), q̈(t)) = [Φ]T T(t) is the vector of the
reduced-order generalized torque, with the initial conditions

q(0) = 0, q̇(0) =−Ω [M̃]
−1
[Φ]T [M]1. (2.10)

The set of equations (2.8), (2.9) and (2.10) can be solved using commonly used integra-
tion schemes, such as the Euler scheme or the Runge-Kutta, for instance.
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Chapter 3

Bit-rock interaction

Due to the bit-rock friction, the slender structure and the contact with mud, drill string
dynamic behaviour is under axial, lateral and torsional damped vibrations. As stated
previously, this thesis is interested in the steady-state small torsional vibrations of a drill
string due to a non-linear torque applied at the bottom-end of the BHA, named torque on
bit and denoted Tbit(θ̇bit(t), θ̈bit(t)), that might lead to stick-slip oscillations.

Stick-slip is an oscillatory twisting evidenced as an oscillatory variation of bit
speed (θ̇bit(t)) [37, 51, 57, 61, 84, 98, 139], which turns the bit locked for a period. In
severe conditions, the drill bit sticks (zero bit speed) then slips (high bit speed), and
might cause, for instance, measurement equipment failure, low rate of penetration, bit
damage, and fatigue [155].

In next sections will be presented some ways to represent the non-linear torque on
bit, including hysteretic effects.

3.1 Deterministic average model for bit-rock interaction

As it mentioned before, there are several papers available in the literature concerned with
the drill string torsional dynamics and stick-slip oscillations [51, 57, 74, 80, 111, 112,
144]. A model proposed by Tucker and Wang (1997) [138] and used, for instance, by
[51, 114, 139], describes a deterministic torque on bit model (T̄bit(θ̇bit(t))) which takes
into account a non-linear behaviour of a bit-rock interaction for a vertical borehole:

T̄bit(θ̇bit(t)) = µWbitr̄

[
tanh(α0θ̇bit)+

α1θ̇bit

1+ α2θ̇ 2
bit

]
, (3.1)
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where µ is friction coefficient, Wbit is weight on bit, the bit radius is r̄, and α0,1,2 are
parameters of this model.

This deterministic model for torque on bit (T̄bit(θ̇bit(t))) is a reversible model, be-
cause it can provide the same torque value for each ˙θ bit(t) value. This model is based
on a superposition of the three distinct effects: Coulomb friction (hyperbolic tangential
behaviour), Stribeck friction (negatively sloped behaviour) and viscous friction (directly
proportional to angular velocity).
Figure 3.1 shows separately the two terms of Eq. (3.1): the first term (tanh, in blue)
increases fast, and reaches a limit torque value as the speed increases; the second term
(fraction term, in green) is responsible for the peak in the bit-rock interaction model,
and it dies out as the bit speed increases. The reversible model (Eq. (3.1)) is the sum of
these two terms which is represented by the magenta curve. Near zero speed the applied
bit-rock interaction model is regularized. Other models consider explicitly stick and slip
phases as it can be found in[62].
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Figure 3.1: Terms of the bit-rock interaction reversible model, Eq. (3.1): tanh term in
blue, fraction term in green, and complete reversible model in magenta.

Equation (3.1) fits to a common field average behaviour. In order to show that, let
consider a real example of drill string described in the table 3.1, according to Ritto
et al. [112]. Field data related to this drill string are torque and bit speed, which are
observed in a frequency of 50 Hz, during 60 seconds (3,000 records). Thanks to a
research collaboration between service company and operator, the BHA was equipped
with a high-frequency measurement device. The sub is capable of measuring axial forces,
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torque, bending moments, angular speed, and tri-axial accelerations. The data set used
in this study corresponds to 3 meters of drilling, where only the on-bottom data (actual
drilling) was used. Figure 3.2 shows these measurements during a drilling operation of
an ultra-deep-water well.

Table 3.1: Drill string characteristics, according to Ritto et al. [112].

DP BHA
Elastic Modulus [GPa] 220 220
Poisson’s coefficient 0.29 0.29
Volumetric mass density [kg/m3] 7,800 7,800
Length [m] 4,733.60 466.45
Inner radius [m] 0.0595 0.0363
Outer radius [m] 0.070 0.0803
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Figure 3.2: Experimental bit speed, according to Ritto et al. [112].

Figure 3.2 shows seven stick-slip entire cycles: when the bit speed is close to zero, the bit
is in stick phase; when the bit speed is going up and down, the bit is slipping (slip phase).

For the deterministic curve, the parameters α0 , α1, and α2 were calibrated using
the field data disposal in [112]. Classical least square method [3] is applied to identify the
parameters of Eq. (3.1): 4,700 for µ multiplied by weight on bit (Wbit), α0 = 1.67x104,
α1 = 5.30, and α2 = 3.45, all with appropriate units. Figure 3.3 compares the fitted
model to the experimental measurements.
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Figure 3.3: Experimental bit-rock interaction (Ritto et al. [112]) and identified average
model.

Figure 3.3 shows a good agreement between the deterministic model of bit-rock
interaction and the field data. Nevertheless, it can be seen that the experimental data show
large fluctuations related to the deterministic model. These fluctuations are explained in
the next chapter.

3.2 Hysteretic model for bit-rock interaction

Some authors have highlighted large fluctuations of the nonlinear bit-rock interaction
during the drilling, which present a behaviour of hysteretic cycles [62, 85, 94]. Wojewoda
et al. [152] noticed that hysteretic effects in dry friction occurrences can appear by
tangential stiffness between the bodies in contact during stick phase and stick-slip
transition phase, and they can appear during the slip phase, because the existence of
frictional memory caused by a lag in the friction force.

Bit-rock interaction is not a real dry friction because the drilling fluid (mud). However,
the average behaviour of bit-rock interaction has been represented as a dry friction
process, for instance the model proposed by Tucker and Wang (1997) [138]. Therefore, if
the average behaviour of bit-rock interaction seems like a dry friction process, hysteresis
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can be also valid for bit-rock interaction.

Considering that experimental observations have shown the presence of loops mainly
during the slip, and according to [152] the size of this macroscopic sliding loop is
related to the velocity rate, we present here a novel hysteretic (non-reversible) bit-rock
interaction model [94], which is verified by field data presented in [112] and validated
by experimental results. Non-reversible means that the torque on bit is represented not
only by the bit speed, but also by the bit acceleration (velocity rate), producing a type of
hysteretic cycle, even though when unloaded the torque goes back to zero.

The field data used in section 3.1 was separated in seven entire stick-slip cycles
(last one is despised), for which have been smoothed using a time sliding window aver-
age (SWA) to remove the measurement noise. Figure 3.4 shows six field data stick-slip
cycles. As indicate the arrows of the first graphic of Fig. 3.4, when the bit accelerates, the
upper path occurs, and when the bit speed decreases, the lower path occurs. These paths
for each entire cycle can be considered as fluctuations of the hysteretic cycles. Based on
field experience, the possible cause of the variability of cycles is due to the heterogeneity
of rock formation drilled.

These cycles indicate that (1) for each cycle, the torque value for positive and
negative accelerations are not the same, that means the hysteretic (non-reversible)
phenomenon and (2) each observed cycle is different from one another. This section
tackles the first point, i.e., it proposes a bit-rock interaction model including hysteresis,
which represents a mean behaviour; the second one will be addressed in chapter 4.

The mean cycle is obtained by applying a SWA methodology, at each bit speed, for
the upper phases (positive acceleration) and the lower phases (negative acceleration)
separately. Figure 3.5 shows the field stick-slip cycles and their mean. The mean of all
cycles (upper and lower) is in blue, and the mean cycle is showed in green. The upper
green curve is the mean of upper cycles and the lower green curve is the mean of lower
cycles.

If we look at the green line as showed in Fig. 3.5, i.e. the field data mean hysteretic
cycle, it is remarked that the thickness of this cycle decreases as the bit speed increases.
At some point, the upper and lower curves collapse.

Once fitted, the bit-rock interaction model described by Eq. (3.1) yields an accept-
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Figure 3.4: Downhole field data, torque [N.m] versus angular speed [RPM] at the bit: six
stick-slip cycles available. The path from the top occurs when the bit accelerates, and the
path from the bottom occurs when the bit speed decreases. The direction of the cycle is
the same for all six cycles.
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Figure 3.5: Downhole field data: six stick-slip cycles and their mean. The mean of all
cycles (upper and lower) is in blue, and the mean cycle is showed in green.

able agreement with the average experimental plots (blue plots in Fig. 3.5). Nevertheless
it suffers from two drawbacks: (1) it is not flexible enough to fit correctly the experiments
for both low and large velocities; and (2) it cannot generate hysteresis effects in order to
separate the forward and backward behaviours (green plots in Fig. 3.5).

In order to improve the model Eq. (3.1), it is proposed two modifications to ad-
dress these two issues: (1) the power exponents of the bit speed in the fraction term can
vary in order to give to the model more flexibility; and (2) the fraction term is modulated
by an acceleration (and speed)-dependent factor to obtain different amplitudes for the
forward and backward phases.

The new bit-rock interaction model proposed here contains these improvements,
and is described by Eq. (3.2).

T HYS
bit (θ̇bit, θ̈bit) = b0

(
tanh(b1θ̇bit)+

b2|θ̇bit|b4sign(θ̇bit)

1+b3|θ̇bit|b5
(1+H(θ̇bit, θ̈bit))

)
. (3.2)

It is usually observed that the reaction torque is much lower when the bit speed
is negative. That is because the bit cutters are not symmetrical. Actually, we do
not have enough field data to support any interaction model for θ̇bit < 0, but, in the
cases analyzed in this work, the values of bit speed were always equal or greater than zero.
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Note that if b4 = 1, b5 = 2 and H = 0 it can be retrieved the bit-rock interaction
model found in Eq. (3.1). The parameters b4 and b5, with 0 < b4 < b5, depend on the
bit and rock properties. The parameter b0 [N.m] represents the weight on bit, the friction
coefficient and the bit radius (for instance, this parameter might be written as b0 = µWbitr̄).

The proposed model, Eq. (3.2), allows a better fit with the field data points. H is
the hysteretic function: if it is equal to zero, the model is reversible, with no hysteretic
cycles. The hysteretic model is only activated if H is different from zero, where H is
presented in Eq. (3.3).

H(θ̇bit, θ̈bit) = β1 tanh(β2θ̈bit)sign(θ̇bit) , (3.3)

which means that the variation of bit speed (bit angular acceleration) should be taken
into account, and the hysteretic cycle is limited (1±β1). Figure 3.6 shows the hysteretic
term as a function of the bit acceleration. It increases fast, and reaches a limit value as
the acceleration increases/decreases. In the present case, β1 is identified experimentally
as 14%, i.e., the hysteretic cycle is within plus or minus 14% of the reversible model. In
addition, note that (1+H) is multiplying only the second term of the bit-rock interaction
model (the fraction term), such that as the bit speed increases the thickness of the
hysteretic cycle decreases, as it is observed in most field data cycles showed in Fig. 3.4,
and also in the field data mean cycle showed in Fig. 3.5.

Figure 3.7 shows the hysteretic bit-rock interaction model for positive bit speeds.
The arrows indicate the path of the cycle. The curve in blue happens when the bit ac-
celeration is positive, and the curve in green happens when the bit accelaration is negative.

First, the Eq. (3.2) with H = 0 is considered, in order to check the equivalence to Eq.
(3.1). The fitted parameters of the bit-rock interaction model are: b0 = 3478, b1 = 938,
b2 = 2.56, b3 = 0.38, b4 = 0.78, and b5 = 1.1, with appropriate units. Figure 3.8 shows
the mean of the field data together with the fitted model. The blue line is the same field
data blue line as showed in Fig. 3.5. There is a very good agreement between the bit-rock
interaction model and the field data.

Now the model including hysteresis is considered, Eq.(3.2) with H 6= 0. The fitted
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Figure 3.6: Hysteretic term H as a function of the bit acceleration (top graph) and a zoom
image (bottom graph).
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Figure 3.7: Hysteretic bit-rock interaction model. Blue line when the bit acceleration is
positive and green line when the bit accelaration is negative.
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Figure 3.8: Field data vs. bit-rock interaction reversible model, (Eq. (3.1)): Fitted model
in magenta and mean field data in blue.
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parameters of the hysteretic function are: β1 = 14%, β2 = 10.6, with appropriate units.
Figure 3.9 shows the field data upper and lower mean cycles together with the fitted
hysteretic bit-rock interaction model. The green lines are the same field data green lines
as showed in Fig. 3.5. Again, there is a very good agreement between the proposed
bit-rock interaction model and the field data.
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Figure 3.9: Field data vs. hysteretic bit-rock interaction model (Eq. (3.3)): fitted model
in black, and mean cycle of field data in green.

A larger hysteretic cycle is also considered, with β1 = 56%. This parameter was chosen
such that all field data cycles (black lines in Fig. 3.5) fit in. Finally, Fig. 3.10 shows the
three bit-rock interaction models that will be used for computations: (1) fitted reversible
model (magenta line), (2) fitted model with hysteresis effects (black line), and (3) model
with large hysteresis effects (red line). The parameters used in the computational model
are the ones that were fitted with the available field data: b0 = 3478, b1 = 938, b2 = 2.56,
b3 = 0.38, b4 = 0.78, b5 = 1.1 and β2 = 10.6. For model number (1) H = 0, for model
number (2) β1 = 14%, and for model number (3) β1 = 56%.
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Figure 3.10: Bit-Rock interaction models (Eqs. 3.1 and 3.3): (1) reversible (magenta), (2)
hysteretic β1 = 14% (black), and (3) hysteretic β1 = 56% (black).

3.3 Stability analysis of the hysteretic model

In order to construct a stability map, Monte Carlo simulations are done considering
the variation of top speed from 50 up to 160 RPM, and the WOB from 5 up to 60 klbf
(22 to 267 kN). Simulations consider the drill string described on table 3.1, mass and
stiffness matrices using 100 finite elements, damping matrix is diagonal with damping
ratios (identified experimentally) equal to 0.095 for the first mode, and 0.02 for all the
other modes, and the modified Euler scheme (see Appendix A) with a time step 0.512 ms
is implemented to approximate the solution of the ordinary differential equation (ODE).
The first five natural frequencies computed for the system are: 0.13, 0.42, 0.74, 1.07,
1.41 Hz.

The bit-rock interaction model showed in Eq. (3.2) was calibrated considering 245 kN,
and the model assumes that T HYS

bit (θ̇bit, θ̈bit) is linear with respect to the WOB, varying
the coefficient b0 linearly. Thus, a coefficient is used to multiply the coefficient b0 of the
Eq. (3.2) such that different values of WOB can be simulated. For example, if the WOB
is 200 kN, then the coefficient b0 of the Eq. (3.2) must be multiplied by 200/245 = 0.816.

The torsional stability of a drill string can be quantified through the stick-slip severity
factor, defined by

SS(θ̇top drive) =
θ̇ MAX

bit − θ̇ MIN
bit

2θ̇top drive
(3.4)
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where θ̇ MAX
bit and θ̇ MIN

bit are maximum and minimum values respectively for bit speed of a
chosen range sample, and θ̇top drive is top drive speed.

In case of pure slipping, SS(θ̇top drive) = 0. If there are stick-slip oscillations then
SS(θ̇top drive) > 0. If there is no torsional oscillations, SS(θ̇top drive) = 0. If there is
stick-slip oscillations (θ̇ MIN

bit = 0) and the maximum bit speed (θ̇ MAX
bit ) is two times the

nominal surface speed (θ̇top drive), then SS(θ̇top drive) = 1. If SS(θ̇top drive) is lower than
0.5 the system will be consider stable, otherwise it is considered unstable [112].

The stability map is constructed as follows. For each pair (WOB,θ̇top drive) the bit
speed is computed and SS(θ̇top drive) is recorded for the steady state response. Figure
3.11 shows the stability map when employing the bit-rock interaction models 1 (re-
versible) and 2 (small hysteresis effects). It can be noted that the maximum SS(θ̇top drive)

value is greater for the reversible bit-rock interaction model (model 2), but, at the same
time, the stability region (dark blue) is a little bigger when employing this model. Now
let us analyze Fig. 3.12, which shows the stability map when employing the bit-rock
interaction model 3 (large hysteresis effects). This last chart presents a stability region
(dark blue region) bigger than the other two charts.

This means, in one hand, that the hysteresis favours the stability of the system. It
seems that when the bit speed decreases, and T HYS

bit (θ̇bit, θ̈bit) is in the lower curve of
the hysteretic cycle (see Fig. 3.10), it allows the system to escape from instability. On
the other hand, it can also be obverved that the instability region (orange-red region) in
Fig. 3.12 presents values of SS(θ̇top drive) higher than the charts in Fig. 3.11. Hence, at
the same time that the hysteresis in the bit-rock interaction model favours the stability
of the system for low values of weight on bit and high values of nominal surface speed,
it favours the aggravation of the torsional oscillations of the system for high values of
weight on bit and low values of nominal surface speeds. Since T HYS

bit (θ̇bit, θ̈bit) passes
through the upper curve of the hysteretic cycle (see Fig. 3.10) the amplitude of the
stick-slip oscillations increases as well.

In summary, hysteretic effect favors the stability of the system for high nominal surface
speeds and low WOB and induces also higher stick-slip oscillations for low nominal
surface speeds and high WOB.
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Figure 3.11: Stability map for models 1 (reversible) and 2 (hysteretic β1 = 14%).
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Figure 3.12: Stability map for the model 3 (hysteretic β1 = 56%).
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Chapter 4

Stochastic modeling for bit-rock
interaction

There are sources of uncertainties related to the drill string dynamics and bit-rock interac-
tion, such as material properties, unknown geometry, rock properties and its resistance for
cutting process, etc. Besides, the linear torsional model used here is a simple represen-
tation of the torsional vibration of the drill string yielding some model-form uncertainties.

In this chapter, we are interested in uncertainties related to the stochastic fluctua-
tions of the torque on bit. Here we propose a new stochastic model for the bit-rock
interaction considering these uncertainties. The proposed stochastic model considers
the hysteretic model for torque on bit presented in the previous chapter, including a
multiplicative stochastic process.

The idea concerning the stochastic fluctuations of the bit-rock interaction model
by including a multiplicative stochastic process to the deterministic models is because
the range variation of these fluctuations: if it take a look at the field data in Fig.3.5, it
is noticed that the torque on bit varies from about 7 to 10.5 kNm, when the bit speed
is close to 10 RPM; for higher speeds (above 200 RPM), the torque on bit varies from
about 4 to 5.8 kNm. The distance between the higher and lower values is very different,
depending on the bit speed: 3.5 and 1.8 kNm. But, for both speeds the torque on bit is
varying plus or minus 20%.

Here we describe this new stochastic non-linear bit-rock interaction model which
is constructed by introducing a multiplicative stationary Gaussian stochastic process.
Field data are used to calibrate the power-spectral density function of this stochastic
process. Once calibrated, independent realizations can be generated and statistics on
the drill string dynamical behaviour can be estimated using the Monte Carlo simulation
method.
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4.1 Construction of the stochastic model

Stochastic fluctuations of the bit-rock interaction model are taken into account introducing
a multiplicative stochastic process to the hysteretic model according to the Eq. (3.2), as
follows:

T STO
bit (θ̇bit, θ̈bit) = T HYS

bit (θ̇bit, θ̈bit)(1 + η(t)), (4.1)

where η(t) is a centred stochastic process η(t) which can be rewritten as

η(t) =
T STO

bit (θ̇bit, θ̈bit)

T HYS
bit (θ̇bit, θ̈bit)

−1. (4.2)

The experimental stochastic process ηexp(t) can be computed using Eq. (4.2) and
the field data related to the torque on bit (see Fig.3.5 in section 3.2), which means
the upper phases (positive acceleration) and the lower phases (negative acceleration)
as T STO

bit (θ̇bit, θ̈bit) (green lines), and T HYS
bit (θ̇bit, θ̈bit) equal to the mean of all cycles

obtained by SWA methodology (blue line). This stochastic process is showed in Fig.4.1.
Unfortunately, there is not enough field data to completely characterize this stochastic
process. Here, it will assume that η(t) is a centred stationary Gaussian stochastic process.
This assumption will be verified in experimental data (see chapter 5).

A model for the stochastic range η(t) must be constructed using the information
provided by the experimental stochastic process ηexp(t). In that case, if it is assumed
a Gaussian distribution, η(t) is completely determined by its Power Spectral Density
(S( f )) [75]. S( f ) is estimated using the Periodogram Method [91]. There are variations
of Periodogram Method, including filters for smoothing. Here, it is appropriate to use the
classical method proposed by Schuster (1898) [120], in order to preserve a raw behaviour
from the field data. For this reason, it is necessary to obtain average functions for S( f ),
represented by the function S̄( f )), in order to regularize its behaviour.

Periodogram Method requires interpolated data from the field data over a regular
grid. Therefore, interpolated data is measured in peaks from the torque on bit field data
related to its average, and normalized by it. The regular grid is obtained by the limits of
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Figure 4.1: Stochastic process ηexp(t) obtained experimentaly with field data.

time range, which is divided by a regular step, as follows:

T̄bitInterp(θ̇bit(t), θ̈bit(t)) =
∑

nb
i=1 T̄ exp

bitinside−window
(θ̇bit(t), θ̈bit(t))

nb
, (4.3)

where T̄bitInterp(θ̇bit(t), θ̈bit(t)) is the interpolated torque on bit, T̄ exp
bitinside−window

(θ̇bit(t), θ̈bit(t))

is the normalized torque on bit interpolated over a regular grid, and nb is related to a
given precision parameter proportional to the number of records. The window width
is determined by nb close to the available data values for θ̇bit(t), that means for each
interpolated point, it is going to be used the same size of sliding-window (same nb).
Figure 4.2 shows the estimated field data PSD.

Regarding Fig. 4.2, the PSD is constant until a critical frequency and then decreases
linearly (in log-log scale). This type of PSD is often encountered when addressing
turbulent forces [5]. Then the proposed PSD model S̄( f ) is written as

log(S̄( f )) = A0 for f < f0 ,

log(S̄( f )) = a log( f )+b for f≥ f0 ,
(4.4)

where f0, A0, a and b are the parameters of the model. These parameters are calibrated
using the experimental PSD such that f0 = 0.27, A0 =−7.6, a =−3.13 and b =−11.67
(with appropriate units). Figure 4.3 compares the calibrated PSD model with field data
PSD, where a reasonable agreement is observed.
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Figure 4.3: Zoom image of the comparison between the calibrated PSD (in red) and the
field data PSD (in black).

With the PSD S̄( f ) in hands one can generate independent realizations of the stochastic
process η(t) using a classical generator of Gaussian process [8], i.e., an aleatory Gaussian
process is generated using values provided by PSD S̄( f ) over a given f range. Figure 4.4
shows two independent trajectories of η(t), which again give reasonable agreement with
the observed process ηexp(t) showed in Figure 4.1.
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Figure 4.4: Two independent realizations of the stochastic process η(t).

4.2 Simulation of the stochastic drill string dynamics

4.2.1 Analysis of one realization of the stochastic drill string dynam-
ical response

The previous section was concerned with the construction of a stochastic bit-rock
interaction model including hysteretic cycles fluctuations. A stationary stochastic process
was introduced for the computation of the torque on bit, Eq. (4.1). The stochastic bit-rock
interaction model is then added to the torsional drill string model, Eq. (2.9), and the
stochastic non-linear dynamical response of the drill string is computed and analyzed.
Note that Eq. (2.9) becomes random because of the random bit-rock interaction, Eq.
(4.1). The general integration scheme for one realization of the stochastic bit-rock inter-
action model is presented in Algorithm 1 using field data from table 3.1. A step-by-step
algorithm for drilling simulation is described in Appendix B.

The mass and stiffness matrices are constructed using 100 finite elements, after
convergence check. The generalized damping matrix is diagonal with damping ratios
equal to 0.095 for the first mode, and 0.02 for all the other modes, where these values are
identified experimentally. The first five natural frequencies computed for the system are:
0.13, 0.42, 0.74, 1.07, 1.41 Hz.

The non-linear equation (2.9) is solved using a modified Euler scheme (see Appendix
A) with a time step 0.512 ms. For one realization of the stochastic bit-rock interaction
model, Figure 4.5 shows the stochastic response of the drill string in the stationary
regime. In comparison with Fig. 3.5, it can be observed the same stochastic behaviour but
with a slightly larger value of the maximum bit speed. This difference is due to the finite
element model used here which can not reproduce all the complexity of a real drill string
dynamics. But the objective here concerns the construction of the stochastic bit rock
interaction model which should not depend on the computational model of the drill string.
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Algorithm 1: Simulation of the drill string dynamics.
INITIALIZATION:
Generate a realization of stochastic process η(t);
q0 = 0;
q̇0 =−Ω [M̃]−1[Φ]T [M]1;
LOOP: for k = 1, . . . ,(nt) do

Update the angle and angular speed (depending on the integration scheme):
(q̇i−1, q̇i−1)→ (q̇i, q̇i) ;
u̇i = [Φ] q̇i ;
θ̇bit,i = u̇bit,i +Ω ;
θ̈bit,i = übit,i ;

Calculate the torque on bit:
T STO

bit,i (θ̇bit,i, θ̈bit,i) = T HYS
bit (θ̇bit,i, θ̈bit,i)(1+ηi(t)) ;

Calculate the torque vector Ti ;
Calculate the reduced-order torque vector T̃i = [Φ]T Ti
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Figure 4.5: One realization of the simulated bit-rock interaction.

Figure 4.6 compares the random bit response using the proposed stochastic bit-rock
interaction model with the response obtained using the deterministic model described by
Eq. (3.2). While a 3-cycles periodic regime (limited by red dash-dot lines) is reached for
the deterministic case, as expected, no periodicity is observed in the stochastic case.

For the deterministic case, the 3-cycles periodic sequence for the duration of the stick and
slip phases are respectively (1.34,2.53,2.48) s and (5.4,6.28,6.41) s . For the stochastic
case, these durations are random and their associated probability distribution (obtained
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Figure 4.6: Bit speed: deterministic bit-rock interaction model (left, 3-cycles periodicity
observed) and stochastic bit-rock interaction model (right, no periodicity observed).

statistically using 750 cycles) are represented on Fig. 4.7.
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Figure 4.7: Random stick and slip phases duration: probability density functions (black
line) and corresponding 3-cycles periodic values calculated with a deterministic bit-rock
interaction model (red vertical lines)

It can be seen in these figures, a large variability of the stick and slip durations with
modes closed to values corresponding to the values calculated with a deterministic
bit-rock interaction model.

4.2.2 Stochastic stability analysis

Now the analysis is extended to quantify statistics on the stability threshold of the system,
as the imposed speed at the top varies. The torsional stability of a drill string can be
quantified through the stick-slip severity factor as defined in Eq. (3.4).
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First, the deterministic system is analyzed. The stick-slip severity factor in the
range B = [6;27] rad/s is plotted in Fig. 4.8. As expected, the stick-slip severity factor
decreases when the imposed rotation at the top increases. If the speed at the top is lower
than 16 rad/s, SS(θ̇top drive) is greater than 0.5.
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Figure 4.8: Stick-slip severity factor for a deterministic bit-rock interaction. Red dashed
line indicates the stability threshold of SS(θ̇top drive).

For the stochastic bit-rock interaction model, the stick-slip severity factor becomes
random and its statistics are estimated using the Monte Carlo simulation method with
ns = 500 samplings, according the Eq. (C.1) of convergence analysis in Appendix C.

Figure 4.9 shows statistics on the random stick-slip severity factor. The statistical
envelope showed in Fig. 4.9, due to the stochastic bit-rock interaction, yields large
fluctuation in the random stick-slip severity factor. This means that bit-rock interaction
variability has a direct impact on the drill string stability and should therefore be taken
into account for a robust analysis of the drill string dynamics. The results show that
when the top speed is about 20.5 rad/s the system has 5% probability of having the value
of SS(θ̇top drive) greater than 0.5. The probability of instability increases as the speed
decreases. This result brings much more information comparing with the deterministic
result, where, for the same threshold of SS(θ̇top drive) < 0.5, the limit speed of 16 rad/s
was obtained.
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Figure 4.9: Random stick-slip severity factor for a stochastic bit-rock interaction. Solid
lines: mean response and 90% confidence region. Dashed line: deterministic case (black),
stability threshold (red).
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Chapter 5

Test-rig for experimental results

A test-rig has been developed in order to simulate torsional drill string dynamics for
validating and calibrating deterministic and stochastic models for the bit-rock interaction
[95]. The concept was to design and to construct a test-rig which would be able to
reproduce stick-slip phenomena while drilling a rock sample. The proposed test-rig
was based on the project developed by [13] with some improvements: (1) test-rig is in
vertical position instead of horizontal; (2) a mandrel and a standard masonry bit are used
to drill a rock sample (made of concrete), while in [13] friction is induced by pins; (3)
a platform holds the test-body and an electrical jack provides the test-body lift. In the
design process, low-cost and simple construction were prerequisites.

The designed test-rig is showed in Fig. 5.1. The idea is to isolate torsional and
axial vibrations from lateral ones by assembling a slender steel bar, representing the
drillpipes, between two bearings that are disposed on two extremes of it (one right after
the top drive and another one just before the mandrel). The upper part of the rig consists
on an electric drive motor, a slender cylindrical bar, a inertial disk, and a masonry bit.
Those elements represent the top drive, the drillpipes (DP), the bottom-hole assembly
(BHA), and the drill bit, respectively. The lower part consists of a rock sample, a holder,
a platform to support the holder and an electrical jack to lift the sample for drilling.

5.1 Test-rig setup

DP is represented by a slender and cylindrical steel bar with 1,530 mm length and 5
mm diameter. On the cylindrical bar bottom, BHA is made by an inertial disk with 28.4
mm thickness and 138 mm diameter and a mandrel, as showed in Fig. 5.1. A drill bit
(standard masonry bit) is attached to them for drilling a concrete cylinder (test-body),
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which is placed in a rock holder and can be changed for another kind of rock according
to the user’s desire. Rock holder is fixed in a platform set (see Fig. 5.2) that can rotate
along vertical axis and it is attached to an electrical jack that is responsible for vertical
displacement to turn possible its drilling.

Top drive is composed by a DC Brushless motor, which is controlled using an
Eletronic Speed Control Module (ESC) model ESC Emax 25A. This drive set is capable
of achieving 300 RPM, 8 Nm torque, and it is responsible for applying the torque
and for creating an angular speed on the cylindrical bar. A cantilever load-cell (model
BSPH4-10kg, Weightech) at the top is connected to the back of DC Brushless Motor
in order to measure the torque made by this motor through the measured force. Two
encoders (model H40, LS Mecapion) are also used to measure the angular position of the
cylindrical bar at the top (close to the drive) and at the bottom (close to the bit).

Rock holder (where the test-body is fixed) is placed on the platform set supported
over 3 load-cells (capacity range equal to 0-50 kg of each one) that measure the normal
interaction force between the drill bit and the test-body, which corresponds to weight
on bit (WOB) (see Fig. 5.3). WOB, as expressed in the oil industry, is the amount of
downward force exerted on the drill bit. Although this set is free to rotate, a perpendicular
rod was installed under it, which is fixed on a cantilever load-cell (capacity range equal
to 0-10 kg) for measuring the torque on bit. This load-cell is fixed at the electrical jack
that is not free to rotate. This system allows the measurement of the torque on bit just
in one direction. Supporting the rock holder and the platform, there is an electrical jack
to lift it to turn viable the drilling. This system is able to simulate an usual condition
of penetration for Polycrystalline Diamond Compact (PDC) bits, that means 2.8-4.2
mm/s. Lift distance and rate of penetration (ROP) are measured by two optical sensors
(Balluf BOD26K LA01 C 06) disposed side by side to get the distance average. This
system is able to measure a distance between 0 and 30 mm according to the principle of
triangulation. Drive torque, torque on bit, drive and bit speeds, drive and bit rotation, and
WOB are recorded by a data acquisition device controlled by Labview graphical interface
that allows the real-time response monitoring.
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Figure 5.1: General view of test-rig.
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Figure 5.2: Bit, test-body and platform set view.
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Figure 5.3: Platform design - general and load cell views.
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5.2 Experimental planning

Matlab is used to design the experiments considering just one kind of material (test-body
of ordinary concrete - 30 fck, 100 mm diameter, 200 mm length), one target value of rate
of penetration (ROP), close to 2 mm/s, and 10 samples, and drive speed varying from
100 to 220 RPM, in increasing steps of 20 RPM. For these conditions, the experimental
planning has resulted at 210 tests during 70 hours, considering 20 minutes per test. The
planning has considered the top drive speed and bit diameter as input variables, and the
WOB, torque on bit and bit speed as output variables.

5.3 Experimental results

5.3.1 Test-rig set-up and proceedings

Experiments are demanded to check the consistency of data results to improve the
reliability of test-rig results. Test-rig constitutive characteristics are showed in table 5.1.

DP BHA
Elastic Modulus [GPa] 220 220
Poisson’s coefficient 0.29 0.29
Volumetric mass density [kg/m3] 7,800 7,800
Length [m] 1.700 0.028
Radius [m] 0.0025 0.069
Mass [kg] 0.260 3.921

Table 5.1: Test-rig characteristics.

Masonry bits (average mass of bits are considered in BHA mass) are assembled in
mandrel of diameters equal to 8 mm, 10 mm, and 12 mm. Test-body of ordinary concrete
(30 fck, 100 mm diameter, 200 mm length) is applied as rock (for bit-rock interaction),
and 10 samples for each target drive speed (100, 120, 140, 160, 180, 200, and 220 RPM).
All these combinations mean 210 tests, as previewed by 5.2.

Experimental natural frequencies are measured: 20 Hz is the first natural frequency
for platform set plus electrical jack set, and 3 Hz is the value for the torsional natural
frequency of the column. To mitigate the influence of platform set vibrations, a second
order filter of Infinite Impulse Response (IIR) is applied with lowpass band set to 10
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Hz for the hole sensors in Labview code (software for acquiring experimental data),
including the encoders.

The test procedure relates the test-rig operation in order to get experimental results
of torsional drill string dynamics, as drive torque, torque on bit, drive speed, bit speed,
and WOB, being able to simulate torsional vibrations (stick-slip oscillations). Tests are
done according to steps as follow:
(1) run the bridge calibration for all active modules for acquiring data, where is applica-
ble;
(2) lift the platform set close to the drill bit of 12 mm;
(3) adjust the power supplier of the electrical jack for desired platform set lifting;
(4) adjust the desired drive motor rotation;
(5) lift the platform set in order to drill the body-proof adding water;
(6) observe the WOB values until stick-slip begins (WOB value will vary according to
rotation, bit and test-body hardness);
(7) drill at least 10 mm depth into the test-body, checking the time range equal to 60
seconds as a minimum, a total of 10 holes;
(8) Change to the 10 mm diameter drill bit and repeat from item (4) to (7) in the existing
holes, in order to optimize the use of test-body, and, after that, change to the 8 mm
diameter drill bit and repeat from item (4) to (7) again.

5.3.2 Experimental data analysis

Matlab is used to obtain graphics from experimental data. Figure 5.4 summaries all 210
tests through stick-slip severity factor (Eq. (3.4)). All experimental data are available
on blog [100]. All results refer to some of the phenomena that occur in real drilling
operations. Stick-slip oscillations are present in all the situations with different severities
depending on the drilling conditions (top drive speed, rock strength, bit diameter, etc),
being more evident between 120 and 160 RPM in 10 and 12 diameter bits.

Top drive speed decreases between 40% and 60% during drilling, oscillating around
a mean value. It happens because the top drive control is based on open-loop system.
Some measurements presented long time of stick phase due to the lateral friction between
drilled material and the bit, enforcing how is important to establish a maximum value for
borehole depth in test procedure. SS sustains its average until 160 RPM and decreases
after that.
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A bit wear control was done to verify if there is some influence on the results: af-
ter all tests, the bit wear is 2% for each masonry bit, lower than the uncertainty of test
measurements which is 3%. Uncertainty of test measurements is calculated by sum
between the biggest value of intrinsic uncertainty of all instruments in parallel (1%) and
the acquisition data set (2%).

Besides, fluctuations of these 210 samples were analyzed to check if a previous
assumption is correct concerning the centered stationary Gaussian random process. For
the whole samples, the fluctuations ηexp(t) are analyzed and the its average is equal to
7.8296×10−5, and its standard deviation is approximately constant, and equal to 0.4674,
that means these fluctuations can be considered as a centered stationary Gaussian random
process.
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Figure 5.4: Box-plot of 210 test-rig experiments.

One sample is extracted from the total ones and it is explored below. The chosen sample
number is 175 in which the bit diameter is 12 mm and the nominal top drive speed is 160
RPM. The total sample time is 60 seconds and 3 seconds are separated in order to allow
an analysis in detail of the stick-slip mechanism.

Figure 5.5 shows the experimental results for sample 175 in test time. The stick-
slip phenomenon is clearly present during almost all the time of test. Stick-slip is
identified by high fluctuations of bit speed that achieves values between 0 and almost
200 RPM while the average top drive speed is 78 RPM. These variations are also noticed
in torque on bit and WOB. It is possible to identify 3 time intervals (28s-30s, 50s-52s
and 56s-58s, approximately) in which bit sticks for a longer time. This happens when
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the top drive is not able to overcome the reactive torque. Sometime, the bit sticks and
achieves a reactive torque that electrical motor is not able to overcome. In these cases, it
is necessary to relief WOB in order to decrease the torque on bit. Besides the variations
due to stick-slip in WOB, there is also a lower frequency variation. This lower frequency
variation is due to the control mechanism of electrical jack (that is performed setting
input voltage constant and using a switch).
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Figure 5.5: Full data of bit speed, torque on bit and WOB for sample 175. The red box is
the time interval used in the detailed stick-slip mechanism analysis.

In Fig. 5.6, seven stick-slip cycles are separated from sample 175 to be analyzed. Six
vertical lines are drawn for one cycle in order to explain the mechanism in detail. This
cycle was chosen because bit sticks at a sufficient time to provide an influence in the other
variable. The explanations presented here are in agreement with the ones presented by
Shen et. al [122], which used field data to explain stick-slip mechanism. The description
of the mechanism for each point highlighted in fig. 5.6 is as follows:

1. Bit is stuck, the torque on bit starts to increase due to the accumulation of strain
energy in the drill string and WOB is high.

2. Bit is released and speed starts to increase. Torque on bit achieves its maximum
value that represents the maximum cutting resistance imposed by the rock. WOB
is approximately at the same level.

3. Bit speed is increasing and achieves the value of average top drive speed indicating
that drill string start to lose strain energy. Torque on bit starts to decrease and WOB
achieves its local maximum value and starts to decrease as well.
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4. Bit speed is at local maximum and torque on bit is at local minimum, as WOB. At
this point, torque on bit starts to increase again and bit speed reduces.

5. Bit speed is decreasing and torque on bit is increasing. WOB starts to increase.
The behavior of WOB can be explained because just before bit sticks, it induces a
reduction of ROP and this is done by an increase in WOB.

6. Bit sticks again and stick-slip cycle restarts. Torque on bit achieves maximum value
again just before decreasing to a value just enough to overcome applied torque and
maintain the bit stuck. WOB increases and achieves a new value.

This analysis reinforces the fact that torsional vibrations are coupled with axial vibrations,
and the bit-rock interaction is an important source of this coupling.
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Figure 5.6: Data from sample 175 with a time interval from 34 to 37 seconds.

Figure 5.7 is generated considering the stick-slip cycle explained before. The red
dots represent the start point of the cycle and the red arrows indicate the progressive
direction of stick-slip cycle. Figure 5.7(a) shows the bit speed variation which begins
at zero, achieves its local maximum value and then returns to zero, as noticed before.
Figure 5.7(b) plots the torque on bit versus bit speed. This graph is generally used to
describe bit-rock interaction in torsional vibration of drill strings. The so called velocity
weakening effect [85, 112] is present in which torque on bit decreases with bit speed.
Another identified phenomenon is the hysteresis effect, i.e., the fact that torque on bit
decreases when bit speed increases in a different path then torque on bit increases while
bit speed decreases. In all the analyzed situations, torque on bit decreasing path is almost
always above the increasing path. This phenomenon was first mentioned in literature in
[85] and modeled in [37, 94]. Shen et. al [122] also observed this behavior through field
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data. In fig. 5.7(c), the WOB is plotted versus bit speed and another cycle is noticed.
This cycle can be one of the factors that contributes for stick-slip being a self sustained
phenomenon. As in torque on bit, there is a hysteric effect in this system in which the
path during bit speed increasing is different from the path during bit speed decreasing.

Rock resistance variation of test-body material can cause the WOB variation. That
is related to the cutting process and the severity of stick-slip: during the cutting process,
WOB increases when the bit is starting the cutting process and it is relieved according to
the rock resistance decreases, when it appears an upward force acting on the drill bit due
to helical deformation of the steel cylindrical bar [48]. Depending on the magnitude of
rock resistance, WOB can decrease in different rates and, depending on the cumulative
energy during the stick and rock resistance, WOB can ”return” below or above its initial
trajectory. If the bit deceleration in slip phase is more severe, the trend is to ”return”
above its initial trajectory (higher magnitude); otherwise, the trend is to ”return” below
its initial trajectory.
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Figure 5.7: Stick-slip cycle from sample 175 for time interval from 35.3 to 35.67 seconds.
(a) bit speed versus time; (b) torque on bit versus bit speed and; (c) WOB versus bit speed.

Three more samples were selected to show other stick-slip cycles. Figure 5.8 shows time
intervals of 5 seconds of stick-slip cycles for 4 samples. The orange line represents the
sliding-window average. In samples 93 and 115, the bit diameter is 10 mm and average
top drive speed is approximately 65 and 82 RPM, respectively. Otherwise, samples 165
and 175 are related to a bit diameter of 12 mm and average top drive speed of 81 and 78
RPM, respectively. There are two types of variation in this figure: the first is related to
the cycles of the same sample with theoretically the same drilling conditions; the second
is related to the variation between the samples. The first kind of variation elucidates the
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presence of uncertainties in bit-rock interaction. The second kind shows that bit-rock
interaction depends on the drilling conditions.
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Figure 5.8: Stick-slip cycles for 4 different samples (93, 115, 165, and 175). The cycles
corresponds to a time interval of 5 seconds in each sample.

5.3.3 Comparison between experimental data and mathematical
models - validation of test-rig results

To validate the test-rig results, experimental data are compared to mathematical models.
Experimental results are compared to two known models: (1) a commonly used nonlinear
reversible (regularized model) bit-rock interaction model which is given by Eq. (3.1); (2)
a simple non-regularized and reversible bit-rock interaction model, which is introduced
by [112] using polynomial functions:

Tbitnon−reg(θ̇bit) =


rWOB(a0 +a1θ̇bit)1.36, f orθ̇bit ≤ 0.01( ¯̇

θbit);
rWOB(a2 +a3θ̇bit)1.36, f or0.01( ¯̇

θbit)< θ̇bit ≤ 0.05( ¯̇
θbit)

rWOB(a4 +a5θ̇bit +a6θ̇ 2
bit +a7θ̇ 3

bit)1.36, f orθ̇bit ≥ 0.05( ¯̇
θbit)

, (5.1)

where Tbitnon−reg is the ”non-regularized” torque on bit in N.m, rWOB = 0.8058 is the ratio
WOB/WOBre f , where WOBre f is the reference WOB, and the parameters a0, a1, a2, a3,
a4, a5, a6, and a7 are coefficients with the appropriate units.

SWA methodology has been applied to selected time range of experimental data to
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get the average behaviour for parameter identification. The deterministic models of bit-
rock interaction given by Eq. (3.1) as regularized model and Eq. (5.1) as non-regularized
model were taken to evidence the experimental data compliance. Least-Square method
and graphical identification was applied to identify the parameters for calibration of these
models.

Compliance using the sample number 13 is done as follows, which corresponds to
bit speed set to 120 RPM and bit diameter equal to 8 mm, as showed in Fig. 5.9. Time
range between 44 and 59 seconds is taken to analyze the bit-rock interaction.

In total, there are 19 stick-slip cycles for selected range, with different kind of
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Figure 5.9: Full data of torque on bit, bit speed and WOB data using φ 8 mm bit and drive
speed setted at 120 RPM (sample 3), where the red box is the selected range for analysis
(range between 44s and 59s).

behaviour and levels of severity. All of them present a hysteresis behaviour, because the
lost of energy during the stick-slip occurrence.

For better fitting model evaluation, a comparison between the regularized model
and non-regularized model is done by variance of mean squared error (Var[MSE]) [11],
where the better fitting model presents lower Var[MSE] lower values, which is given by

Var[MSE] = var[(T̄ exp
bitinside−window

(θ̇bit(t), θ̈bit(t))− T̄ Modeli
bit (θ̇bit(t)))2], (5.2)

where T̄ exp
bitinside−window

(θ̇bit(t), θ̈bit(t)) is given by Eq. (4.3), and T̄ Modeli
bit (θ̇bit(t)) can be

given by Eq. (3.1) or Eq. (5.1).
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Therefore, Var[MSE] using Eq. (3.1) model is 20.8601, while Var[MSE] using
Eq. (5.1) model is 0.0017. These Var[MSE] values show that the Eq. (5.1) model fits
better the data than Eq. (3.1) model.

Three points are important in tests: accuracy, repeatability and reproducibility.
According to [46], accuracy is related to the precision of measurements; repeatability is
the agreement between the results of successive measurements carried out under the same
conditions of measurement; and reproducibility is the agreement between the results of
measurements carried out under changed conditions of measurement.

Accuracy is insured by calibration of sensors and system filters. All sensors were
verified previously comparing to known standard-mass or to calibrated instruments,
where any necessary adjustments are done. This issue are overcomed.

Reproducibility is noticed changing the input variables, that means bit diameter
and top drive speed. Figure 5.4 in section 5.3.2 is a summary of all 210 tests, where all
results fit the expected field behaviour, showing that the proposed test-rig reflects the
bit-rock interaction of a drill string.

Repeatability can be insured by test-procedure (see section 5.3.1), but some limita-
tions of test-rig, uncertainties or uncontrolled variables can affect this issue. To have
a good analysis about that, table 5.2 shows some statistics of samples 11, 12, 13, 14,
15, 16, 17, 18, 19 and 20, as the variance of mean squared error for each sample and
each model(according to Eq. (5.2)), coefficient of variation (CV), standard-deviation
(std(T exp

bit )) and mean (mean (T exp
bit )) of each sample.

According to table 5.2, the repeatability is not ensured because of the stochasticity
of bit-rock interaction process. However, the non-regularized model fits the sample data
better than the regularized model (lower Var[MSE] values). Some samples presented a
huge off-set, that may be caused by another factor. In case of Sample 12, it is clear that
there is a problem: some torque measurements are negative, that means the platform set
was not stable enough during the drilling because the borehole was drilled close to the
test-body border.

Coefficient of variation (CV) concept is the ratio between standard-deviation (std(T exp
bit ))

and mean (mean (T exp
bit )), which is related to the hysteresis fluctuations; stochastic

fluctuations are more related to the variation of rock properties and rock resistance.
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Sample Var[MSE] Var[MSE] mean std CV
Regularized Model Non-Regularized Model (T exp

bit ) (T exp
bit )

11 52.9938 0.2725 1.3812 0.6430 0.4656
12 58.0845 1.8469 0.7390 0.5208 0.7048
13 20.8601 0.0017 1.8502 0.5266 0.2846
14 9.1219 0.0072 2.2292 0.5144 0.2307
15 17.7767 0.0109 1.4754 0.9759 0.6615
16 0.0302 0.0075 1.9774 0.5903 0.2985
17 8.2123 0.0302 1.6453 0.5441 0.3307
18 43.1178 0.2388 0.9307 0.5450 0.5856
19 37.7625 0.2410 1.5059 0.2140 0.3222
20 27.8216 0.0264 1.9485 0.4453 0.2285

Table 5.2: Statistics related to T exp
bit of samples 11, 12, 13,14, 15, 16, 17, 18, 19 and 20.

An acceptance criteria to evaluate the samples, it can be spanned by the blend of CV
average and the variation of concrete properties. According to the field knowledge, an
acceptance criteria of quality related to variation of concrete resistance is 10%. CV
average of samples according to table 5.2 is 0.329 can be used, that means an acceptance
criteria equal to 43% of variation. Considering 39% of variation over the torque on
bit values, an acceptable value for Var[MSE] of regularized model is 47.93 and 0.26
for non-regularized model. That means, the samples 14, 15, 16, 17, 18, 19 and 20 are
acceptable for regularized and non-regularized models.

Therefore, 8 among 10 samples are acceptable according to the established crite-
ria, which is enough to validate the test-rig results (bigger than 70%) and can prove the
test-rig is able to reproduce torsional oscillations of a drill string. However, results can be
improved including a safety region to drill the test-bodies (excluding the borders region -
see Sample 12 results).

5.4 Validation of hysteretic models using numerical sim-
ulations

As mentioned before, observed stick-slip cycles in field and experimental results indicate
that for each cycle the torque value for positive acceleration and for negative acceleration
are not the same ([62, 85]), that means non-reversible phenomenon. According to [94],
non-reversible means that the torque on bit depends not only on the bit speed, but also
on the bit acceleration, producing a type of hysteretic cycle. Besides, each observed
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cycle is different from one another, because the independence of cycles: each stick-slip
cycle depends on the saving energy during the stick phase and how this energy is
applied to motion in slip phase. It happens because the effect of the WOB combined
to acceleration and deceleration behaviour, simulating an axial-torsional coupled model
into non-coupled model, that is a great advantage.

As hysteretic function (Eq. (3.3)) was applied to regularized model, as showed in
Eq. (3.2), it can be applied to non-regularized model according to Eq. (5.1), as follows

T HY S
bitnon−reg

(θ̇bit, θ̈bit) = Tbitnon−reg(θ̇bit)(1+H(θ̇bit, θ̈bit)) (5.3)

Validation of the proposed models using numerical simulations will be done in the future
works.
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Chapter 6

Stochastic computational model of the
drill string

Chapter 4 describes a new stochastic model of the bit-rock interaction. However, there are
sources of uncertainties related to the computational model of the drill string presented
in the Eq. (2.5), such as material properties and variability of geometry along the axial
axis. Besides, the modeling of interfaces for the present model is very simple compared
to complex mechanical real link between the DP and BHA. Then, the linear torsional
model is a simple representation of the torsional vibration of the drill string yielding
some model-form uncertainties in the model.

For these reasons, a new probabilistic model of uncertainties is constructed in or-
der to quantify the sensitivity of outputs with respect to these uncertainties efficiently.
This new strategy is an extension of the nonparametric probabilistic approach [124],
which considers the uncertainties at the operator level globally, allowing to control
the dispersion level of each inner and interface DOFs of each drill string substructure,
independently. This strategy allows to control the level of the uncertainties related to
the inner and interface DOFs from the nonparametric probabilistic approach together
with Craig-Bampton substructuring method, extending the work developed by Soize and
Chebli [126].

6.1 Classical nonparametric probabilistic approach - a
brief overview

Nonparametric probabilistic approach is based on the random matrix theory [72, 124],
which consists in replacing the deterministic reduced-order matrices of the deterministic

54



computational model by random matrices, and acts directly at the reduced operator level.
In its basic version, this approach assumes that there are no rigid body modes, that means
the deterministic reduced matrices are symmetric positive-definite. Systems may not be
attached to a fixed frame, that means they present rigid body modes - in such case, see
section 6.5. Some substructures

For contextualizing, nonparametric probabilistic approach [124] considers the un-
certainties at the operator level globally: the constructed stochastic model is controlled
by a few number of dispersion parameters which make their experimental identification
feasible [14, 15, 26, 27, 32, 129]. Furthermore, by randomizing the reduced-order
operators, this approach allows to extend the range of prediction of the computational
model without modifying the reduced displacement subspace [93].

Let [A] denote the mass, damping or stiffness reduced order matrix of substructure
Sk, that means A = M,D or K. The nonparametric probabilistic approach consists in
replacing [A] by a random matrix [A], such as

[A] = [LA][GA][LA]
T , (6.1)

where [GA] is a normalized random matrix and [LA] is a lower triangular matrix related to
the Cholesky factorization of matrix [A], i.e.,

[A] = [LA][LA]
T . (6.2)

Probability density function of random matrix [GA] is constructed using the maximum
entropy principle [45], and depends on a dispersion parameter δA, which controls the
level of the statistical fluctuations of the random matrix [GA] around its mean value (the
unit matrix [Im]. Then,

δA =

(
E{||[GA]− [Im]||2F}

||[Im]||2F

)1/2

, (6.3)

where || · ||F is the Frobenius norm and E{·} is the mathematical expectation. A generator
of independent realizations of random matrix [GA] has been proposed in [124].

Stochastic model in terms of nonparametric probabilistic approach (SMfull) for the
reduced order computational model without substructuring method is constructed in
replacing each deterministic matrices [M], [D] and [K] in Eq. (2.5) by random matrices
[M], [D] and [K], according to Eq. (6.1). In this way,

[M]q̈+[D]q̇+[K]q = T̃(q̇(t), q̈(t)) , (6.4)
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which yields in the frequency domain

(−ω
2[M]+ jω[D]+ [K])q(ω) = T̃ω(ω). (6.5)

For A = M,D or K, the probabilistic model of the random reduced-order matrix
[A] is constructed by using the nonparametric probabilistic approach which is briefly
presented above. Hence, the stochastic model SMfull is completely defined by only three
dispersion coefficients δM, δD, δK , one for each the random reduced-order matrix, that
means M,D or K respectively.

6.2 Nonparametric probabilistic approach together with
Craig-Bampton substructuring method

6.2.1 Craig-Bampton substructuring method

Reduced-order model reduces the order of the matrices according to the elastic modes
of the whole structure, as showed in section 2.2. In some cases can be more interesting
to divide this one in substructures, for instance complex structures or to get access in
specific parts of the structure, saving computational cost. Since 60’s, aerospace and
automotive industries have used substructuring techniques called Component Modal
Synthesis (CMS), in order to model the dynamical responses of complex structures [20].
CMS involved basically two steps[82]:
(1) definition of modal sets of each system component; and
(2) coupling of these sets to form a reduced-order model.

In 1968, Craig and Bampton [21, 77] created a simple strategy of substructuring
method based on over-positioning of normal and static modes of each substructure (CMS
step (1)) through coupled matrix composition (CMS step (2)), which is able to reduce
drastically the computational cost[20].

The structure is decomposed into ns substructures S1,S2, . . . ,Sns . For k = 1, . . . ,ns,
the displacement uk of Sk consists in nI,k inner DOFs uI

k and in nΓ,k interface DOFs uΓ
k ,
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i.e.,

uk =

 uI
k

uΓ
k

 . (6.6)

Let [Ak] be the mass, damping or stiffness matrix of substructure Sk, that means A = M,D

or K, and let fk be the force vector of substructure Sk. Then,

[Ak] =

 [AII
k ] [AIΓ

k ]

[AΓI
k ] [AΓΓ

k ]

 and fk =

 fI
k

fc
k

 , (6.7)

in which fI
k is the inner force and fc

k is the coupling force at the interface. In Eq. (2.5), it
is assumed that there is no external force applied on the interfaces.

Craig-Bampton substructuring method [21] consists in reducing the number of in-
ner DOFs by using fixed-interface elastic modes and static modes, such that uI

k

uΓ
k

=

 [ΦI
k] [RI

k]

[0] [InΓ,k]


 qI

k

uΓ
k

 , (6.8)

where [ΦI
k] is the matrix of the mk fixed-interface elastic modes, RI

k are the matrix of the
static modes described such that

RI
k =−[KII

k ]
−1[KIΓ

k ], (6.9)

and [InΓ,k ] is the (nΓ,k × nΓ,k) identity matrix. In Eq.(6.8), qI
k is the vector of the mk

generalized coordinates related to the fixed-interface elastic modes. The Eq. (6.8) can be
rewritten as

uk = [Ψk]qk (6.10)

with

[Ψk] =

 [ΦI
k] [RI

k]

[0] [InΓ,k]

 and qk =

 qI
k

uΓ
k

 . (6.11)
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Let nk = mk +nΓ,k. Let [Ãk] be (nk×nk) such that

[Ãk] = [Ψk]
T [Ak][Ψk] =

 [ÃII
k ] [ÃIΓ

k ]

[ÃΓI
k ] [ÃΓΓ

k ]

 . (6.12)

Let [PI
k ] = ([Imk ] [0]) and [PΓ

k ] = ([0] [InΓ,k ]) be the projection matrices on the inner and
interface coordinates, respectively. Then,

[ÃII
k ] = [PI

k ]
T [Ãk][PI

k ], [ÃIΓ] = [PI
k ]

T [Ãk][PΓ
k ], [ÃΓΓ

k ] = [PΓ
k ]

T [Ãk][PΓ
k ] . (6.13)

For the stiffness matrices, the coupling blocks are algebraically equal to zero. For in-
stance, there are two substructures (DP + BHA) for the drill string showed in the figure
2.1, that means ns = 2 substructures. Taking into account the continuity of the displace-
ment at the interface, the force equilibrium at the interface and the relation Eq. ((6.10))
for each substructure, the dynamical matrix equation of the assembled structure for the
substructuring Craig-Bampton method are written with lower subscript CB as follow

[MCB]q̈CB(t)+ [DCB]q̇CB(t)+ [KCB]qCB(t) = TtCB(t) , (6.14)

for time domain, and

(−ω
2[MCB]+ jω [DCB]+ [KCB])qCB(ω) = TωCB(ω), (6.15)

for frequency domain, in which

qCB =


qI

1

qI
2

uΓ

 , TkCB =


[Ψ1]T Tk

I
1

[Ψ2]T Tk
I
2

[RI
1]T Tk

I
1+[RI

2]T Tk
I
2

 , (6.16)

and

[ACB] =


[ÃII

1 ] [0] [ÃIΓ
1 ]

[0] [ÃII
2 ] [ÃIΓ

2 ]

[ÃΓI
1 ] [ÃΓI

2 ] [ÃΓΓ
1 ]+[ÃΓΓ

2 ] ,

 . (6.17)
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The displacement vector u is finally calculated as

u = [Ψ]qCB , (6.18)

where [Ψ] is constructed by assembling matrices, that means [Ψ1] and [Ψ2] for ns = 2
substructures (for ns substructures, [Ψ1], . . . , [Ψns]).

6.3 The methodology

Soize and Chebli [126] proposed a probabilistic model (called here as stochastic model
SMCB1) for taking into account different levels of uncertainties in each substructure: for
each substructure Sk , the reduced matrices were replaced by random matrices whose
probabilistic models were constructed by using the nonparametric probabilistic approach
that has been briefly presented in section 6.1. Hence, for A = M,D or K and for each
substructure Sk, deterministic matrices [ÃII

k ], [Ã
ΓI
k ], [ÃΓΓ

k ] introduced in section 6.2.1 and
involved in the assembling of the deterministic matrix [ACB] are replaced by the random
matrices [ÃII

k ], [Ã
ΓI
k ] and [ÃΓΓ

k ], defined as [93]

[ÃII
k ] = [PI

k ]
T [Ãk][PI

k ], [ÃIΓ] = [PI
k ]

T [Ãk][PΓ
k ], [ÃΓΓ

k ] = [PΓ
k ]

T [Ãk][PΓ
k ], (6.19)

where [Ãk] is a random matrix for which its statistical fluctuation due to the uncertainties
is related to [Ãk] (see section 6.2.1), PI

k and PΓ
k are described in Real et al. (2017) [93],

and whose probabilistic model is constructed by using the nonparametric approach that is
briefly presented in section 6.1. The assembling of those random matrices yield a random
matrix [ACB1] that models the statistical fluctuation related to uncertainties on [ACB]. For
instance, for ns = 2, and for A = M,D or K, [ACB1] is given by

[ACB1] =


[ÃII

1 ] [0] [ÃIΓ
1 ]

[0] [ÃII
2 ] [ÃIΓ

2 ]

[ÃΓI
1 ] [ÃΓI

2 ] [ÃΓΓ

1 ]+[ÃΓΓ

2 ]

 . (6.20)

Stochastic model SMCB1 allows different levels of uncertainties to be modeled in
each substructure and here are 6 dispersion parameters because ns = 2 substructures. In a
general way, the total number of parameters is equal to 3×ns parameters, which control
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the uncertainties of the system: δM,1,δD,1,δK,1, . . . ,δM,ns , δD,ns , δK,ns .

6.4 New stochastic model: one extension of nonpara-
metric probabilistic approach together with Craig-
Bampton substructuring method, which separates of
the statistical fluctuations related to the inner and in-
terface DOFs

In nonparametric probabilistic approach together with Craig-Bampton substructuring
method proposed by Soize and Chebli [126] (SMCB1), every components of a given ran-
dom matrix [Ãk] are related to the same dispersion coefficient for each substructure. Nev-
ertheless, each component of random matrix [Ãk] is related to a linear system of stochastic
second order ordinary differential equations, in terms of random generalized coordinates
and random displacements on the interfaces between two substructures. Stochastic model
SMCB1 does not allow to take into account different levels of statistical fluctuation on
those coefficients. In order to circumvent such a limitation, a new stochastic model (called
here stochastic model SMCB2) is proposed here, extending the work developed by Soize
and Chebli [126]. For each substructure Sk and for A = M,D or K, two statistically
independent random matrices [ÃI

k] and [ÃΓ
k ] are introduced to model the statistical fluc-

tuations that are related to each matrix [Ãk] (see section 6.2.1). Their probabilistic model
are constructed using the nonparametric probabilistic approach as briefly presented in
section 6.1, and for two different dispersion cofficients δA,I,k and δA,Γ,k. Cholesky factori-
sation of these random matrices yields two random lower triangular matrices [LI

A,k] and
[LΓ

A,k], such that
[ÃI

k] = [LI
A,k][L

I
A,k]

T , [ÃΓ
k ] = [LΓ

A,k][L
Γ
A,k]

T . (6.21)

Hence, for each substructure Sk, the deterministic matrices [ÃII
k ], [ÃΓI

k ], [ÃΓΓ
k ] re-

lated to assembly of the deterministic matrix [ACB] introduced in section 6.2.1 are
replaced by the random matrices [ÃII

k ], [Ã
ΓI
k ] and [ÃΓΓ

k ], defined as

[ÃII
k ] = [PI

k ]
T [ÃI

k][P
I
k ], [ÃIΓ

k ] = [PI
k ]

T [L̃I
A,k][L

Γ
A,k]

T [PΓ
k ], and [ÃΓΓ

k ] = [PΓ
k ]

T [ÃΓ
k ][P

Γ
k ].

(6.22)
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The assembly of those random matrices yields a random matrix [ACB2] that mod-
els the statistical fluctuation related to uncertainties on [ACB2]. For instance, for ns = 2,
ACB2 is given by

[ACB2] =


[ÃII

1 ] [0] [ÃIΓ
1 ]

[0] [ÃII
2 ] [ÃIΓ

2 ]

[ÃΓI
1 ] [ÃΓI

2 ] [ÃΓΓ
1 ]+[ÃΓΓ

2 ]

 . (6.23)

The levels of the statistical fluctuations of random matrix [ACB2] are controlled by
two dispersion coefficients δA,I,k and δA,Γ,k, which are related to the nonparametric mod-
els of [ÃI

k] and [ÃΓ
k ], respectively. Here, Stochastic model SMCB2 allows different levels

of uncertainties to be modeled in each substructure by 6 dispersion parameters, totalizing
12 parameters because ns = 2 substructures. In a general way, the probabilistic model
of uncertainties is controlled by 6× ns dispersion coefficients, that allow controlling the
level of statistical fluctuations of the inner and interface coordinates separately for each
random matrices, giving more flexibility than the stochastic model SMCB1. In this case,
the dispersion coefficients for the full structure are δM,I,1, δM,Γ,1, δD,I,1, δD,Γ,1, δK,I,1,

δK,Γ,1, . . . , δM,I,ns, δM,Γ,ns, δD,I,ns, δD,Γ,ns, δK,I,ns, δK,Γ,ns .

6.5 Comments concerning the nonparametric probabilis-
tic approach - presence of floating substructures

Some substructures of the systems may not be attached to a fixed frame, that means they
present rigid body modes. This is the case, for instance, for the BHA of the drill string
showed in figure 2.1. These floating substructures yield a positive semi-definite stiffness
matrix [K̃k] and then the nonparametric construction presented in the previous sections
cannot be applied directly. To circumvent this difficulty, the projection of the stiffness
matrix into the rigid body subspace is kept equal to zero almost surely while the pro-
jections into the subspace of flexible displacements are randomized. Such construction
makes sense since the rigid body subspace is not perturbed by the presence of uncertain-
ties. The construction proposed here corresponds to the ensemble of random matrices

61



”SE+0” introduced in [128]. Let [Prb,k] be the matrix whose columns are vectors that
span the null space of [K̃k] and let [Pflex,k] be the matrix whose columns are vectors that
spans the range space of [K̃k]. It is assumed that the columns of [Prb,k] and [Pflex,k] are
normalized. In this way, [Prb,k]

T [Pflex,k] = [I]. Letting [Pk] = ([Prb,k][Pflex,k]), K̃k is given
by

[K̃k] = [Pk]

 [0] [0]

[0] [Ck]

 [Pk]
T , (6.24)

in which [Ck] is the diagonal matrix of the nonzero eigenvalues of [K̃k].

The stochastic models SMCB1 and SMCB2 are then constructed by replacing the
deterministic matrix [Ck] by the random matrix [Ck], for which the probabilistic model
is constructed by using the nonparametric approach presented in section 6.1. Finally,
for [Kk] = [K̃k] (for the stochastic model SMCB1), [K̃I

k] and [K̃Γ
k ] (for Stochastic Model

SMCB2), Kk is written as

[Kk] = [Pk]

(
[0] [0]
[0] [Ck]

)
[Pk]

T . (6.25)

6.6 New stochastic model (SMCB2): application and veri-
fication

The objective of this section is just to validate and illustrate the proposed methodology
using a simple torque model, which allows to perform a comparison among the non-
parametric probabilistic models, and to check how robust is this computational model
according some inferred fluctuations in order to evaluate the impact of the different
sources of uncertainties.

In order to verify the new stochastic model (SMCB2) presented in section 6.4, it is
implemented taking into account the uncertainties related to the computational model
of the drill string presented in section 2.1, considering an unitary torque is applied to
the bottom-end of BHA for all frequency range of analysis. It is noticed that the unitary
torque applied to the bit is not a real representation of a bit-rock interaction torque, but it
is necessary as a comparison methodology.

The stochastic model SMCB2 6.4 is compared to the stochastic models SMfull (see
section 6.1) and SMCB1 (see section 6.2). Then, the stochastic model SMCB2 is analyzed
in order to evaluate the impact of the different sources of uncertainties: DP versus BHA,
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mass versus damping versus stiffness, and inner versus interface DOFs.

Hypothetic drill string are used for the implementation, considering 1,700 m DP
length and 300 m BHA length. As stated before, only two substructures are considered
in this analysis: DP and BHA. The mass and stiffness matrices for this substructure
are constructed using 100 elements with linear shape functions for each substructure,
considering the top-end of the DP clamped. The top-end of the BHA is coupled with the
bottom-end of the DP. Therefore, there is only one interface DOF.

For better visualization, the acceleration response is given in logarithmic scale
(dB) according to 20log10ü(ω). Three points are observed: Pobs,1, which corresponds to
the first non-clamped node at the top of the DP, Pobs,2, which corresponds to the interface
node, and Pobs,3, which corresponds to the bottom node of the BHA. The statistical
envelope with probability level 0.95 is estimated using 2,500 Monte Carlo simulations
(see Appendix C).

Craig-Bampton projection matrices [ΦI
1] and [ΦI

2] are both constructed using the
number of modes above the number obtained by convergence analysis obtained after the
convergence analysis (see Appendix C) due to the user’s prudence: m1 = m2 = 25 fixed-
interface elastic modes. The reduced damping matrices [D̃1] and [D̃2] are both constructed
using a Rayleigh model [40], i.e., [D̃1] = a1[M̃1] + b1[K̃1] and [D̃2] = a2[M̃2] + b2[K̃2]

where a1, b1, a2 and b2 are calculated such that the damping ratios are 0.05 and 0.01 at
frequencies 1 Hz and 10 Hz for each substructure, respectively. Dispersion parameters
(δ ’s) are set to 0.1, that means 10% of fluctuation range.

6.6.1 Validation of the new stochastic model SMCB2: one comparison

In order to validate the new stochastic model SMCB2, this one is compared to
SMfull and SMCB1, using all δ ’s set equal to 0.1 (user’s choice), that means 10%
of dispersion: for the full model SMfull, δM = δD = δK = 0.1; for model SMCB1,
δM,1 = δM,2 = δD,1 = δD,2 = δK,1 = δK,2 = 0.1; for model SMCB2, δM,I,1 = δM,Γ,1 =

δM,I,2 = δM,Γ,2 = δD,I,1 = δD,Γ,1 = δD,I,2 = δD,Γ,2 = δK,I,1 = δK,Γ,1 = δK,I,2 = δK,Γ,2 = 0.1.
The normalized random matrices [GA] are constructed for each case using Gamma distri-
bution, based on the maximum entropy principle [45].

Figures 6.1, 6.2 and 6.3 show the comparison of the statistical envelopes at the
three observed points for each stochastic model. It can be observed that the statistical

63



envelopes get wider as the frequency increases, especially for the response in the top-end
of the DP node, as showed in Fig. 6.1. The three figures present similar envelopes for all
methodologies. These results indicate that the proposed strategy is consistent, with one
advantage of allowing more parameters to control uncertainties.
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Figure 6.1: Comparison of three stochastic models - frequency response in acceleration
for point Pobs,1.
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Figure 6.2: Comparison of three stochastic models - frequency response in acceleration
for point Pobs,2.
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Figure 6.3: Comparison of three stochastic models - frequency response in acceleration
for point Pobs,3.

Next, results of the new stochastic model for different levels of uncertainties will
be explored, which allows the control of uncertainties for each operator, each substruc-
ture and each inner or interface DOF.

6.6.2 Random response of stochastic model SMCB2

Mass versus damping versus stiffness

i- Case study 1: mass uncertainty, Table 6.1.

DP-inner DP-interface BHA-inner BHA-interface
Mass δM,I,1 = 0.1 δM,Γ,1 = 0.1 δM,I,2 = 0.1 δM,Γ,2 = 0.1
Damping δD,I,1 = 0 δD,Γ,1 = 0 δD,I,2 = 0 δD,Γ,2 = 0
Stiffness δK,I,1 = 0 δK,Γ,1 = 0 δK,I,2 = 0 δK,Γ,2 = 0

Table 6.1: Case study 1 - values of the dispersion parameters.

ii- Case study 2: damping uncertainty, Table 6.2.

iii- Case study 3: stiffness uncertainty, Table 6.3.

Figures 6.4, 6.5 and 6.6 show the random responses comparing uncertainties in the
mass, damping and stiffness matrices. The results are very similar for uncertain mass
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DP-inner DP-interface BHA-inner BHA-interface
Mass δM,I,1 = 0 δM,Γ,1 = 0 δM,I,2 = 0 δM,Γ,2 = 0
Damping δD,I,1 = 0.1 δD,Γ,1 = 0.1 δD,I,2 = 0.1 δD,Γ,2 = 0.1
Stiffness δK,I,1 = 0 δK,Γ,1 = 0 δK,I,2 = 0 δK,Γ,2 = 0

Table 6.2: Case study 2 - values of the dispersion parameters.

DP-inner DP-interface BHA-inner BHA-interface
Mass δM,I,1 = 0 δM,Γ,1 = 0 δM,I,2 = 0 δM,Γ,2 = 0
Damping δD,I,1 = 0 δD,Γ,1 = 0 δD,I,2 = 0 δD,Γ,2 = 0
Stiffness δK,I,1 = 0.1 δK,Γ,1 = 0.1 δK,I,2 = 0.1 δK,Γ,2 = 0.1

Table 6.3: Case study 3 - values of the dispersion parameters.

and stiffness matrices, except at very low frequencies, where stiffness uncertainties are
predominant. Besides, the statistical envelopes increase with the frequency .

On the other hand, these figures show that the sensitivity of the response for an
uncertain damping model is very low (very thin statistical envelopes): that means the sys-
tem is robust to damping model uncertainties, considering the used dispersion parameters.
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Figure 6.4: Case study 1, 2 and 3 - frequency response in acceleration for point Pobs,1.

DP versus BHA

i- Case study 4: DP uncertainty, Table 6.4.
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Figure 6.5: Case study 1, 2 and 3 - frequency response in acceleration for point Pobs,2.
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Figure 6.6: Case study 1, 2 and 3 - frequency response in acceleration for point Pobs,3.

DP-inner DP-interface BHA-inner BHA-interface
Mass δM,I,1 = 0.1 δM,Γ,1 = 0.1 δM,I,2 = 0 δM,Γ,2 = 0
Damping δD,I,1 = 0.1 δD,Γ,1 = 0.1 δD,I,2 = 0 δC,Γ,2 = 0
Stiffness δK,I,1 = 0.1 δK,Γ,1 = 0.1 δK,I,2 = 0 δK,Γ,2 = 0

Table 6.4: Case study 4 - values of the dispersion parameters.

ii- Case study 5: BHA uncertainty, Table 6.5.
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DP-inner DP-interface BHA-inner BHA-interface
Mass δM,I,1 = 0 δM,Γ,1 = 0 δM,I,2 = 0.1 δM,Γ,2 = 0.1
Damping δD,I,1 = 0 δD,Γ,1 = 0 δD,I,2 = 0.1 δC,Γ,2 = 0.1
Stiffness δK,I,1 = 0 δK,Γ,1 = 0 δK,I,2 = 0.1 δK,Γ,2 = 0.1

Table 6.5: Case study 5 - values of the dispersion parameters.
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Figure 6.7: Case study 4 and 5 - frequency response in acceleration for point Pobs,1.
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Figure 6.8: Case study 4 and 5 - frequency response in acceleration for point Pobs,2.

Figures 6.7, 6.8, and 6.9 show the random responses comparing uncertainties in
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Figure 6.9: Case study 4 and 5 - frequency response in acceleration for point Pobs,3.

the DP and in the BHA. The statistical envelopes for uncertain DP increase significantly
when frequency increases, except around 3.7 Hz, where they become thinner. It can
be concluded that the DP uncertainties affect more the response of the system for the
frequency range analyzed, due to low stiffness of the DP compared to BHA stiffness.

For uncertain BHA, the envelopes increase more significantly from 5 Hz, but they
are much thinner than the response of the system for an uncertain DP. Specially for point
Pobs,3, this behaviour means that the strategy in Eq. (2.5) is not robust for uncertainties
present in bit-rock interaction for high frequencies; however, the strategy in Eq. (2.5)
is robust for low frequencies that is the operational range. Therefore, a stochastic
bit-interaction model is valid, as it done in chapter 4.

Inner DOFs versus interface DOFS

i- Case study 6: Inner DOFs uncertainty, Table 6.6.

DP-inner DP-interface BHA-inner BHA-interface
Mass δM,I,1 = 0.1 δM,Γ,1 = 0 δM,I,2 = 0.1 δM,Γ,2 = 0
Damping δD,I,1 = 0.1 δD,Γ,1 = 0 δD,I,2 = 0.1 δC,Γ,2 = 0
Stiffness δK,I,1 = 0.1 δK,Γ,1 = 0 δK,I,2 = 0.1 δK,Γ,2 = 0

Table 6.6: Case study 6 - values of the dispersion parameters.

ii- Case study 7: Interface DOFs uncertainty, Table 6.7.
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DP-inner DP-interface BHA-inner BHA-interface
Mass δM,I,1 = 0 δM,Γ,1 = 0.1 δM,I,2 = 0 δM,Γ,2 = 0.1
Damping δD,I,1 = 0 δD,Γ,1 = 0.1 δD,I,2 = 0 δD,Γ,2 = 0.1
Stiffness δK,I,1 = 0 δK,Γ,1 = 0.1 δK,I,2 = 0 δK,Γ,2 = 0.1

Table 6.7: Case study 7 - values of the dispersion parameters.
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Figure 6.10: Case study 6 and 7 - frequency response in acceleration for point Pobs,1.
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Figure 6.11: Case study 6 and 7 - frequency response in acceleration for point Pobs,2.
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Figure 6.12: Case study 6 and 7 - frequency response in acceleration for point Pobs,3.

Figures 6.10, 6.11, and 6.12 show the random responses comparing inner and in-
terface uncertainties. Both statistical envelopes increase when frequency increases,
except in the region around 3.7Hz for Pobs,2. However, the statistical envelopes for
uncertain interface DOFs are much thinner comparing to the statistical envelopes for
uncertain inner DOFs. In the present analysis there is only one DOF in the interface, and
the response is robust to uncertainties in this interface DOF, although it has a clear impact
in the random response of the system.

This new strategy can allow to control the dispersion level of each inner and inter-
face DOFs of each drill string substructure independently. We have to take into account
which substructures and which frequencies the results are robust or not, showing that a
bit-interaction stochastic model is valid even for an analysis of global uncertainties in a
drill string.
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Chapter 7

Conclusions, contributions and future
works

This thesis proposes a robust analysis for drill string torsional dynamics, based on
modeling and experimental identification under uncertainties. It involves the develop-
ment of a new deterministic bit-rock interaction model, a new stochastic computational
model for bit-rock interaction, an identification strategy, the construction of a simplified
test-rig to obtain experimental results, and a new non-parametric approach that allows
the assessment of main sources of uncertainties. The methodologies applied here are
simple to implement and fitted the field data in all cases, showing good accuracy with
low computational cost. This is an important topic for real application.

Only torsional vibrations were analyzed for a torsion bar system, discretized by
means of the finite element method. A reduced-order model was constructed to speed
up the computations. A new bit-rock interaction model, including a type of hysteresis
(non-reversibility), is proposed herein. The verification of the proposed model is based
on field data and its validation by experimental results was done. The analysis shows that
the system including a bit-rock interaction model with hysteresis effects (1) favors the
stability of the system for high nominal surface speeds and low WOB, and (2) induces
higher stick-slip oscillations for low nominal surface speeds and high WOB. The reason
for that has to do with the hysteretic cycle of the torque on bit versus the bit speed.
In addition, the calibration procedure is straightforward, and could be implemented in
real-time operations, which is still a challenge.

Furthermore, a new probabilistic model for the bit-rock interaction model is pro-
posed. This model includes a multiplicative stochastic process to take into account
fluctuations of the torque on bit during the drilling. The stochastic model was calibrated
with field data and validated with experimental data, and it takes into account hysteretic
cycles and their stochastic fluctuations. The proposed bit-rock probabilistic model can be
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constructed independently from the computational model of the column.

The deterministic and stochastic torsional dynamics of a drill string are analyzed
and a reasonable agreement between model predictions and field data is observed. The
statistics of the stick and slip duration were also analyzed. Residuals are measured,
and both models are representative, but some improvements concerning the parameter
identification can refine the fitting procedure.

A considerable impact of the proposed stochastic model on the torsional stability
of the system was observed. To such end, the stick-slip severity factor is computed
and statistical envelopes are plotted for varying imposed speeds at the top. A robust
estimation of the minimum angular speed is estimated using these plots.

A low-cost test-rig was designed to reproduce torsional vibrations of drill strings.
The test-rig uses an electrical motor to rotate a slender circular bar with an inertial disk
connected to a bit at the bottom. In the lower part, a test-body of concrete is lifted using
an electrical jack. The rotation angle and speed are measured at the top (near electrical
motor) and at the bit. Besides, the torque on electrical motor and on bit are measured
using cantilever load cells. The axial force (WOB) is also measured using load cells.
It was obtained 210 samples for 3 bit sizes and an top speed range of 100-220 RPM.
The capability of reproducing stick-slip phenomenon is proved by the experimental data
presented. The obtained results are in accordance to the field data behavior and they are
validated with known models in the literature. The stick-slip cycle was then explained
in detail by dividing the independent cycles and by extracting a single cycle, which
presented a hysteretic effect for both torque on bit and WOB versus bit speed. It was
concluded that uncertainties are clearly present in stick-slip cycles for the same sample
and that bit-rock interaction highly depends on drilling conditions.

A new probabilistic model of uncertainties is implemented, in order to efficiently
quantify the sensitivity of outputs with respect to these uncertainties. This new strategy
is based on the terms of nonparametric probabilistic approach, together with Craig-
Bampton substructuring method, which considers the uncertainties at the operator level
globally, allowing to control the dispersion level of each inner and interface DOF of
each drill string substructure independently. The random vibrations of the torsional drill
string were analyzed, where the column is divided in two substructures (DP and BHA).
For uncertain BHA, the envelopes increase more significantly from 5 Hz until 7 Hz,
but they are much thinner than the response of the system for an uncertain DP, showing
that the strategy for drill string torsional model is not robust for uncertainties present in
bit-rock interaction for high frequencie, but it is robust for low frequencies (operational
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range). Therefore, a bit-interaction stochastic model is valid even for an analysis of
global uncertainties in a drill string.

Contributions of this work were published on or submitted to international jour-
nals. The first one [93] was published on journal Archive of Applied Mechanics (impact
factor equal to 1.103), with the title A probabilistic model of uncertainties in the sub-

structures and interfaces of a dynamical system - application to the torsional vibration

of a drill string. This article is about the application of the new stochastic model, which
is shown in this work. The second article [94] is published on Mechanical System

and Signal Processing (impact factor equal to 4.116), with the title Hysteretic Bit/Rock

Interaction Model to Analyze the Torsional Dynamics of a Drill String. This article
proposes a novel hysteretic (non-reversible) bit-rock interaction model for the torsional
dynamics of a drill string, where the non-linear torsional vibration and the stability map
of the drill string system are analyzed employing the proposed bit-rock interaction model
and also a commonly used reversible model (without hysteresis). A third article [95] has
already been published on Journal of Petroleum Science and Engineering (impact factor
equal to 2.382), with the title Experimental analysis of stick-slip in drilling dynamics

in a laboratory test-rig, about the new and simple test-rig to analyze drilling dynamics,
especially stick-slip oscillations, which might take into account hysteric effects for the
bit-rock interaction. Yet another article is submitted to Journal of Vibration and Control,
about a new stochastic model for the hysteretic behavior of the nonlinear bit-rock
interaction, where the fluctuations of the stick-slip oscillations and the hysteretic effect
provided by the nonlinear bit-rock interaction are modelled by introducing a stochastic
process associated with the variations during the drilling.

The next steps of this work need to be developed: (1) for applying the new stochastic
model for bit-rock interaction into the new strategy SMCB2, in order to get a full analysis
of torsional dynamics under uncertainties, which demands a deep and careful study;
(2) for experimenting with more tests to improve the test-rig skills; (3) validation of
the proposed models using numerical simulations; (4) for enabling axial DOF for the
test-rig, in order to propose coupled axial-torsional models; and (5) for proposing a
new strategy to control the torsional oscillations under uncertainties using hysteresis
modeling, simulating a real operation of a drill string.
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Appendix A

Modified Euler Scheme

Modified Euler Scheme is a first-order numerical integration method for solving ordinary
differential equations (ODEs), which requires low computational cost. This methodology
substitutes angular acceleration ü per angular velocity u̇, by the simple approximations:

üi ≈
u̇(i+1)− u̇i

∆t
, (A.1)

u̇i ≈
ui− u(i−1)

∆t
. (A.2)

For convenience, let rewrite the equations above and, specially for Eq. (A.1), let
rewrite in the step back,

u̇i ≈ ü(i−1)∆t + u̇(i−1), (A.3)

ui ≈ u̇i ∆t + u(i−1). (A.4)

Let the Eq. (2.5) or (2.7), Eq. (A.3) and Eq. (A.4). After some manipulations, it is
possible to get the follow system formed by Eq. (A.5) and Eq. (A.6)

u̇i ≈ u̇(i−1)+ ∆t[M̃]−1(T̃( u̇, ü)− D̃] u̇(i−1)− [K̃]u(i−1)), (A.5)

ui ≈ u̇i ∆t + u(i−1). (A.6)

It is important to mention that this system is stable if

∆t <
π

5ωnmax

, (A.7)
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where ωnmax is the maximum value for the natural frequency of the structure.

90



Appendix B

Algorithm

The Algorithm 2 details the steps of drilling simulation methodology.

Algorithm 2: Drilling simulation algorithm.
INITIALIZATION:
Input initial values (geometrical, physical and mechanical characteristics);
Load the field or experimental data;
Implement the FEM strategy:

Input the number of elements;
Construct the full matrices;
Get the reduced-order matrices;

Determine the torque on bit and its standard-deviation from deterministic models;
Identify the parameters related to the torque on bit and its standard-deviation using
the field or experimental data;

Estimate the PSD by Periodogram Method;
Generate the simulated track (Gauss distribution);
Initiate the drill string simulation;
LOOP: for k = 1, . . . ,(nt) do

Prediction of angular velocity and displacement (reduced-order);
q̇ = q̇i−1 +(∆t[M̃]−1).∗ ([T̃ ]− ([D̃].∗ q̇)− ([K̃].∗qi−1));
q = qi−1 +∆t ∗ q̇;

Actualization (reduced-order);
q̇i−1 = q̇;
qi−1 = q

Angular velocity and displacement on bit;
θ̇ = Φ∗ q̇;
θ = Φ∗q;

Calculate the torque on bit according to the selected model;
Calculate the stochastic torque on bit (including simulated track);
Actualization of torque (reduced-order);
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Appendix C

Convergence analysis

For each Monte Carlo loop, an independent realization of the stochastic bit-rock inter-
action model is generated and a realization of the stochastic angular velocity is calculated.

Convergence for stick-slip severity factor is determined on the stationary regime.
The convergence with respect to the number of samplings ns is analyzed by introducing
the convergence function

Conv1(ns) =

√
1
ns

ns

∑
i=1

∫
B

SSi(θ̇top drive)2dθ̇top drive, (C.1)

where SSi(θ̇top drive) corresponds to the ith calculated realization of the stick-slip severity
factor. Equation (C.1) is plotted in Figure C.1.It can see in this figure that a good
convergence is achieved using 500 realizations.

Convergence analysis is also demanded for number of simulations and number of normal
modes for the whole structure and for each substructure (DP and BHA) separately,
according to the Tab. 3.1 data. The mean square convergence method is applied through
the equation:

Conv2(ns,N) =

√
1
ns

ns

∑
i=1

∫
B
‖a,(ωi,θi)‖2dω (C.2)

where θi represents one generated simulation i, ωi is the frequency, ns is the num-
ber of simulations, and N is the number of normal modes. The Fig. C.2 shows the
convergence analysis for number of iterations acoording to the Eq. (C.2), and the Figs.C.3
and C.4 show the convergence analysis for BHA and DP normal modes, respectively,
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Figure C.2: Convergence analysis for number of iterations.

It is noticed the Fig. C.2 shows the convergence in ns = 2,500 simulations safely,
and Figs. C.3 and C.4 ensure the convergence after 7 modes for DP and BHA, that is why
it was used here 20 modes for both. Uncertainty level δ is considered in these figures in
three scenarios:

1. first one considers uncertainties for both, DP and BHA, at level δ equal to 0.1 for
stiffness, damping and mass matrices;

2. second one considers uncertainties only for BHA, at level δ equal to 0.1 for stiff-
ness, damping and mass matrices;
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Figure C.4: Convergence analysis for BHA normal modes.
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3. third one considers uncertainties only for DP, at level δ equal to 0.1 for stiffness,
damping and mass matrices.
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