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Résumé — Dans cette thèse, nous nous intéressons à la résolution de nombreux problèmes
d’optique anidolique. Plus précisément, il s’agit de construire des composants optiques
qui satisfont des contraintes d’illumination à savoir que l’on veut que la lumière réfléchie
(ou réfractée) par ce composant corresponde à une distribution fixée en avance. Comme
applications, nous pouvons citer la conception de phares de voitures ou de caustiques. Nous
montrons que ces problèmes de conception de composants optiques peuvent être vus comme
des problèmes de transport optimal et nous expliquons en quoi cette formulation permet
d’étudier l’existence et la régularité des solutions. Nous montrons aussi comment, en utilisant
des outils de géométrie algorithmique, nous pouvons utiliser une méthode numérique efficace, la
méthode de Newton amortie, pour résoudre tous ces problèmes. Nous obtenons un algorithme
générique capable de construire efficacement un composant optique qui réfléchit (ou réfracte)
une distribution de lumière prescrite. Nous montrons aussi la convergence de l’algorithme de
Newton pour résoudre le problème de transport optimal dans le cas où le support de la mesure
source est une union finie de simplexes. Nous décrivons également la relation commune qui
existe entre huit différents problèmes de conception de composants optiques et montrons qu’ils
peuvent tous être vus comme des équations de Monge-Ampère discrètes. Nous appliquons aussi
la méthode de Newton à de nombreux problèmes de conception de composants optiques sur
différents exemples simulés ainsi que sur des prototypes physiques. Enfin, nous nous intéressons
à un problème apparaissant en transport optimal numérique à savoir le choix du point initial.
Nous développons trois méthodes simples pour trouver de “bons” points initiaux qui peuvent
être ensuite utilisés comme point de départ dans des algorithmes de résolution de transport
optimal.
Mots clés : transport optimal, géométrie algorithmique, conception de réflecteurs.

Abstract — In this thesis, we are interested in solving many inverse problems arising in
optics. More precisely, we are interested in designing optical components such as mirrors and
lenses that satisfy some light conservation constraints meaning that we want to control the
reflected (or refracted) light in order match a prescribed intensity. This has applications in
car headlight design or caustic design for example. We show that optical component design
problems can be recast as optimal transport ones for different cost functions and we explain
how this allows to study the existence and the regularity of the solutions of such problems. We
also show how, using computational geometry, we can use an efficient numerical method namely
the damped Newton’s algorithm to solve all these problems. We will end up with a single
generic algorithm able to efficiently build an optical component with a prescribed reflected
(or refracted) illumination. We show the convergence of the Newton’s algorithm to solve the
optimal transport problem when the source measure is supported on a finite union of simplices.
We then describe the common relation between eight optical component design problems
and show that they can all be seen as discrete Monge-Ampère equations. We also apply the
Newton’s method to optical component design and show numerous simulated and fabricated
examples. Finally, we look at a problem arising in computational optimal transport namely
the choice of the initial weights. We develop three simple procedures to find “good” initial
weights which can be used as a starting point in computational optimal transport algorithms.
Keywords: optimal transport, computational geometry, reflector design.
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General introduction

Designing physical materials with desired reflection or refraction patterns is attracting
more and more attention in many research fields. This includes the field of non-imaging

optics where one is interested in designing optical components that transfer the radiation
emitted by a light source onto a prescribed target illumination. The question of building such
components naturally appears when one wants to optimize the use of light energy to decrease
light loss or light pollution for example. Applications include the design of car headlights that
have a specific shape to avoid directly lighting up incoming cars; street lamps to avoid wasting
energy; solar ovens or hydroponic agriculture to optimize their production. Another interesting
field of application is more a creative one where one wants to design components that produce
aesthetically pleasing caustics, one can for instance think of architecture or computer graphics.

In traditional optics, one wants to transport one image from a source domain onto a target
domain. More precisely, one is given a bijection between the incident source rays and the
target positions and one wants to find the surface that reflects (for a mirror) or refracts (for a
lens) the source rays onto the target positions respecting the given bijection. Roughly speaking,
if we have a bijection S : X → Y from a source domain X to a target domain Y and if we
model the surface by a height field ϕ : X → R, then we want to find such function ϕ such
that Tϕ(x) = S(x) for all x ∈ X. Here Tϕ : X → Y is a function that models the behaviour of
the component when it is hit by a ray coming from a point in X. In practice we can assume
it is of the form Tϕ(x) = F (x,∇ϕ(x)) where F is known (it can for instance be Snell’s law)
and the problem can be recast as integrating the gradients ∇ϕ(x), meaning finding a surface
with normals ~nϕ(x) = (∇ϕ(x),−1)/ ‖(∇ϕ(x),−1)‖. Let us remark that this is a first order
partial differential equation (PDE) on ϕ. In non-imaging optics, S is not an input anymore
and the problem amounts to finding both the bijection S and the normal field ~nϕ, making
the problem more complex as it corresponds now to a second order PDE. Recently, a lot of
research [WMB+05; PP05] has been dedicated to the development of efficient methods to solve
such problems.

The classical approach to tackle this problem is to first estimate the bijection S using a
heuristic and then integrate the normal vector field ~nϕ [Kis+12; Yue+14]. Recent methods
make use of a mathematical tool called optimal transport [Sch+14]. The optimal transport
problem, as first posed by Gaspard Monge in the 18th century, consists in finding a way
of transporting a source measure onto a target measure while minimizing a cost function.
In the last few years, this problem has received a lot of attention due to its relations with
several areas of theoretical and applied mathematics such as optimization, partial differential
equations, machine learning or geometry processing. Using optimal transport seems well suited
in non-imaging optics since one is interested in transporting the source rays onto the target
positions while minimizing some error. One category of methods uses optimal transport as
a heuristic to estimate the bijection S and then integrate the normal field as in traditional
optics.
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Another category of methods make use of recent striking results that show that optimal
transport can be used to recover both the bijection S and the parametrization ϕ at the same
time. We can, for instance, cite the work of Oliker and Caffarelli [CO08] or Wang [Wan96] who
formulated the problem of finding the mirror that reflects an ideal point light source located
at the origin onto a prescribed far-field (located at infinity) target density as an optimal
transport problem. Other works showed that we can have a similar formulation for other
optical component design problems: mirror and lens design for a collimated light source (a
source that emits parallel rays) [GT13]; lens design for a point light source [GH09]. In all the
cases, the Kantorovich potential gives access to a parametrization of the optical component.
There is also a close relation between these results and the work of Alexandrov and Pogorelov
[Pog64] or the Minkowski problem (reconstruct a convex surface given its Gaussian curvature).
Let us also remark that, in most cases, the far-field setting is not realistic as in practice one
wants to focus the target image at a finite distance, setting that is called the near-field. One
can wonder if near-field problems as well as other optics problems can be formulated in a
similar fashion, for instance when the light source is not ideal anymore. It was shown that
near-field problems are not related to optimal transport but can be recast as solving so-called
generated Jacobian equations [GK17] whose structure is very different from the equations
arising in optimal transport. When the source is not ideal, we speak about extended sources
and, in this case, for one surface point there can be multiple incident rays making the problem
ill-posed. In this thesis, we focus on problems that can be formulated in terms of optimal
transport.

Furthermore, we can distinguish optimal transport methods by the assumptions they make
on the support of the source and target measures and on the cost function. In this thesis,
we focus on the so-called semi-discrete setting where the source measure is continuous and
the target measure is a sum of Dirac masses. Oliker [CO08] shows that this formulation is
well suited to prove the existence and regularity of solutions to non-imaging optics problems.
For instance, he shows that the solution to the mirror design for a point light source in the
continuous case can be seen as the limit of solutions to semi-discrete problems which are easier
to study. This setting has also multiple advantages:

• under some assumptions on the cost function and the support of the source density,
one can show that the semi-discrete optimal transport problem can be recast as the
maximization of a concave function involving the so-called Laguerre diagram;

• one can also show that the solutions satisfy some geometric properties namely being
convex. This kind of geometric results is important in optics since convexity helps in
milling the component and ensures that the normal field is well-behaved;

• efficient numerical methods exist and are well-studied from a theoretical viewpoint.
We can for instance cite the damped Newton’s algorithm whose convergence as well as
convergence rates were proven in different settings: for the quadratic cost in the plane or
for more general costs satisfying the so-called Ma-Trudinger-Wang condition.
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In this thesis, we study in detail the relation between semi-discrete optimal transport and
non-imaging optics. We also made the choice to also discretize the support of the source
measure by triangulating it.

The semi-discrete setting is interesting to use in non-imaging optics because of many
aspects but it also raises some difficulties. First, it involves computing the optimal transport
between a set of codimension 1 (for example S2 for non-imaging problems involving a point
light source) and a point cloud which is not a well studied topic. Then, the support of the
measures are not structured i.e. are not Cartesian grids, contrary to recent methods in discrete
optimal transport which take advantage of the grid structure to develop very efficient numerical
methods. Another important point is the fact that the cost functions appearing in the optical
component design problems are not “classical” which raises some theoretical issues about the
existence of solutions. For instance, in the case of the mirror design for a point light source,
the cost function c is given by c(x, y) = − ln(1− 〈x | y〉). Thus, if we want to be able to solve
efficiently non-imaging optics problems using semi-discrete optimal transport, we need to make
many refinements:

• study the convergence of the damped Newton’s algorithm to solve optimal transport when
the source measure is supported on lower-dimensional subsets (for instance a triangulated
surface in R3);

• develop a robust way of computing the Laguerre diagram which, in the settings we
consider, corresponds to computing the intersection between a triangulation and a Power
diagram;

• choose a good initialization. As in traditional Newton’s methods, the choice of the initial
point heavily influences the convergence of the algorithm. It is even more important in
the semi-discrete case since we will see that the convergence is only proven when the
initial point satisfies some constraints.

In this thesis, we show that all the choices we made (optimal transport, semi-discrete
setting, triangulating the support of the source measure) will allow us to develop a fully generic
and efficient algorithm that is able to solve eight different non-imaging optics problems. We
also show that we are able to handle large discretizations of the target, which was not possible
before. To summarize, we leverage the formulation of these problems in terms of optimal
transport to construct a coherent framework in which one can solve many optical component
design problems in a suitably discretized fashion.
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Detailed outline

Chapter 1

In the first chapter, we introduce the problem of optimal transport, its different formulations,
the different cases we can consider and the associated numerical methods. We then look
more in depth at the semi-discrete setting which is at the core of this thesis. We introduce
the Laguerre diagram as well as the main numerical method that will be used throughout
this thesis namely the damped Newton’s algorithm. Our main contribution in this chapter
is the study of semi-discrete optimal transport problem in an usual setting namely when the
source measure is supported on a union of lower dimensional subsets (simplices) in Rd for the
quadratic cost. A particular case of this setting is a triangulated surface in R3. We show the
convergence of the damped Newton’s method with linear speed under two assumptions:

• regularity of the source measure. More precisely, we enforce a condition that can be
surprising at first that is a strong connectedness assumption which ensures that it is not
possible to disconnect the support of the source measure by removing a finite number of
points. We will see that this condition is necessary to prove the strong concavity of the
Kantorovich functional and thus the convergence of the Newton’s method;
• genericity of the target point cloud with respect to the support of the source measure.

These two hypotheses will be made clear in Section 1.4.1. We also explain why they are
reasonable assumptions to obtain the convergence of the Newton’s method to solve optimal
transport in this setting. More precisely, we prove the following theorem (which is a simplified
version of theorems 13 and 14):

Theorem. Assume µ is a regular simplicial measure and ν a discrete probability measure
whose support Y = {y1, . . . , yN} ⊂ Rd is in generic position with respect to the support of µ.
Then the damped Newton’s method converges in a finite number of steps with a linear rate.

After proving this theorem, we apply these results on some geometry processing algorithms
on triangulations in R3. We can for instance cite the optimal quantization of a probability
density over a triangulated surface (approximate a probability density with a point cloud)
or remeshing (re-triangulate a mesh such that the new distribution of triangles respects a
prescribed density), see Figure 1 for two examples. These results are published in [MMT18a].

Chapter 2

In this chapter, we look at the connection between optimal transport and non-imaging optics
problems. In particular, we explain, following [CGH08], how optimal transport helps in
defining a notion of Brenier solution to optical component design problems. This formulation
is interesting since it directly enforces some geometric properties of the solution namely being
convex. We then place ourselves in a semi-discrete setting and show that the optical component
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Figure 1 – Examples of applications of optimal transport for source measures sup-
ported on triangulated surfaces. Left: optimal quantization of a triangulated surface for a
uniform density. Middle and right: remeshing using optimal transport (initial and new mesh).

design problems considered in this thesis have the same structure and can be recast as solving
a non-linear system of equations of the form, see Equation (DMA)

Find ψ ∈ RN such that ∀i ∈ {1, . . . , N},
∫

Lagi(ψ)
dµ(x) = νi,

where µ is the source measure, ν = (νi)16i6N the discrete target probability measure and
Lagi(ψ) is the Laguerre cell of yi. This equation involves prescribing the amount of light
reflected (or refracted) in a finite number of directions and can be seen as as a discretization of
the so-called Monge-Ampère equation that appears in continuous optimal transport. Another of
our contributions is that we study the cost function arising when building lenses for point light
sources. In particular, we show that, under some assumptions, it satisfies the Ma-Trudinger-
Wang condition. This condition appears when studying the regularity of solutions to optimal
transport problems in the continuous setting. It is also important in the semi-discrete setting
since it guarantees that the Laguerre cells are connected and the convergence of the damped
Newton’s method.

Chapter 3

In this chapter, we see how we can leverage the formulation presented in the previous chapter to
develop a generic framework to solve eight optical component design problems. This genericity
will also be a consequence of the fact that, in the cases considered in this thesis, the Laguerre
diagram can be expressed in the following fashion:

Lagi(ψ) = Powi(P ) ∩X

where X is the support of the source measure which is a subset of R2 × {0} (for a collimated
light source) or S2 (for a point light source) and Powi(P ) the Power cell of a point pi. Since,
in this chapter, we will suppose that X is a triangulation, this will allow us to reuse the
algorithm developed in the first chapter. We will end up with a generic algorithm that needs
no parameter and that is able to solve all the optical component design problems considered
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in this thesis. We also show how we can solve the near-field setting using a simple iterative
procedure. We finish the chapter by showing numerous simulated and fabricated examples, see
Figure 2 for two examples. These results are published in [MMT18b].

Figure 2 – Examples of simulated and physical results obtained with our method.
Left: three lenses that refract the three channels of a color image for three collimated light
sources. Right: fabricated mirror that reflects a collimated light source.

Chapter 4

In this last chapter, we look at an important aspect of computational optimal transport namely
the choice of the initial point in the Newton’s method. Indeed, to obtain the convergence of
the damped Newton’s algorithm that we use throughout this thesis, we need to ensure that all
the Laguerre cells have positive mass at every stage of the algorithm and in particular at the
beginning. We will see in Chapter 3 that this condition can be hard to satisfy in practice. To
find such weights, we detail three simple procedures, prove their convergence and illustrate
their behaviours on numerous numerical examples. We also explain that discrete optimal
transport can also benefit from having a “better” initialization. Let us note that this is still an
ongoing work.

Publications

The publications associated with this thesis are the following:

- Light in Power: A General and Parameter-free Algorithm for Caustic Design, Quentin
Mérigot, Jocelyn Meyron, Boris Thibert, ACM Transaction on Graphics (Transactions
On Graphics, Proc. SIGGRAPH Asia), [MMT18b]

- An algorithm for optimal transport between a simplex soup and a point cloud, Quentin
Mérigot, Jocelyn Meyron, Boris Thibert, SIAM Journal on Imaging Sciences, 11.2 (2018),
pp. 1363–1389, [MMT18a]



Introduction générale

Concevoir des matériaux qui réfléchissent ou réfractent des motifs choisis par l’utilisateur
est un sujet de plus en plus étudié. Cela inclut l’optique non imageante qui s’intéresse à

la conception de composants optiques transférant l’énergie lumineuse émise par une source
de lumière vers une densité d’illumination cible prescrite à l’avance. Cette question apparaît
naturellement lorsque l’on veut optimiser l’utilisation d’énergie lumineuse afin de diminuer les
pertes énergétiques ou la pollution lumineuse. Les applications sont nombreuses et incluent par
exemple la conception de phares de voitures ayant une forme spécifique pour éviter d’éblouir
les autres voitures; les lampadaires pour éviter de gaspiller de l’énergie; les four solaires et
l’agriculture hydroponique afin d’optimiser leurs productions. Un autre domaine d’application,
plus créatif, est la conception de caustiques où l’on souhaite créer des composants optiques
produisant des motifs agréables à l’œil.

Traditionnellement, en optique, l’objectif est de transporter une image d’un domaine source
vers un domaine cible. Étant donnée une bijection entre les rayons sources et les positions
cibles, l’objectif est de déterminer la surface qui réfléchit (pour un miroir) ou réfracte (pour une
lentille) les rayons sources vers les positions cibles en respectant la bijection. Plus précisément,
si on note S : X → Y une bijection d’un domaine source X vers un domaine cible Y et si nous
modélisons la surface par un champ de hauteur ϕ : X → R, le but est de trouver une fonction ϕ
telle que Tϕ(x) = S(x) pour tout x ∈ X. Ici, Tϕ est une fonction modélisant le comportement
du composant optique quand il est touché par un rayon venant d’un point x ∈ X. En pratique,
on peut supposer qu’elle est de la forme Tϕ(x) = F (x,∇ϕ(x)) où F est connue (la loi de
Descartes par exemple) et le problème revient à intégrer les gradients ∇ϕ(x) c’est-à-dire trouver
une surface dont les normales sont données par ~nϕ(x) = (∇ϕ(x),−1)/ ‖(∇ϕ(x),−1)‖. On peut
remarquer que cela correspond à une équation aux dérivées partielles (EDP) du premier ordre
en ϕ. En optique non imageante, S n’est plus une donnée et le problème implique de trouver
à la fois la bijection S et le champ de normales ~nϕ. Cela rend le problème plus complexe
puisqu’il correspond maintenant à une EDP d’ordre deux. Récemment, beaucoup de travaux
[WMB+05; PP05] se sont intéressés au développement de méthodes efficaces pour résoudre de
tels problèmes.

L’approche standard pour aborder ce problème est, dans un premier temps, d’estimer la
bijection S en utilisant une heuristique et ensuite d’intégrer le champ de normales ~nϕ [Kis+12;
Yue+14]. Des méthodes récentes utilisent un outil mathématique appelé le transport optimal
[Sch+14]. Le problème du transport optimal, posé pour la première fois par Gaspard Monge
au 18me siècle, consiste à trouver la manière optimale de transporter une mesure source vers
une mesure cible tout en minimisant une fonction coût. Récemment, ce problème a reçu
beaucoup d’attention grâce à ces relations avec de nombreux domaines des mathématiques à la
fois théoriques et appliquées comme l’optimisation, l’étude d’équations aux dérivées partielles,
l’apprentissage automatique ou encore en geometry processing. Utiliser le transport optimal en
optique non imageante semble être adapté car on souhaite transporter les rayons sources sur
les positions cibles tout en minimisant une certaine erreur. Une catégorie de méthodes utilise

7
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donc le transport optimal comme une heuristique pour estimer S et ensuite intègre le champ
de normales comme en optique traditionnelle.

Une autre catégorie de méthodes utilisent des résultats récents qui montrent que le transport
optimal peut être directement utilisé pour déterminer à la fois la bijection S et la paramétrisation
ϕ. On peut par exemple citer le travail d’Oliker et Caffarelli [CO08] ou Wang [Wan96] qui
ont formulé le problème consistant à trouver le miroir qui réfléchit la lumière émise par une
source ponctuelle idéale située à l’origine vers une densité cible située à l’infinie (on parle de
problème en champ lointain) en termes de transport optimal. D’autres travaux montrent que
des formulations similaires existent pour d’autres problèmes de conception de composants
optiques : conception de miroirs et de lentilles pour une source collimatée (émettant des rayons
parallèles) [GT13]; conception de lentilles pour une source ponctuelle [GH09]. Dans tous les cas,
il a été montré que le potentiel de Kantorovich donne accès à une paramétrisation du composant
optique. Il existe aussi une forte relation entre ces résultats et les travaux d’Alexandrov et
Pogorelov [Pog64] ou bien le problème de Minkowski (reconstruire une surface convexe à partir
de la donnée de sa courbure de Gauss). On peut aussi remarquer que dans la plupart des cas,
le problème en champ lointain n’est pas le plus réaliste car en pratique on souhaite plutôt
focaliser l’image cible à une distance finie, ce problème est dit en champ proche. Nous pouvons
nous demander si de tels problèmes, voire d’autres problèmes apparaissant en optique, peuvent
aussi se formuler d’une manière semblable, comme par exemple lorsque la source de lumière
n’est plus idéale. Il a été montré que les problèmes en champ proche ne sont pas des problème
de transport optimal mais font partis d’une autre catégorie à savoir des équations au Jacobien
généré [GK17] dont la structure est très différente des équations apparaissant en transport
optimal. Quand la source n’est plus idéale, on parle de source étendue et dans ce cas, pour un
point de la surface, il peut exister plusieurs rayons incidents, rendant le problème mal posé.
Dans cette thèse, nous nous concentrons sur les problèmes qui peuvent être formulés en termes
de transport optimal.

De plus, nous pouvons différencier les méthodes numériques utilisées pour résoudre le
transport optimal en fonction des hypothèses qu’elles font sur le support des mesures source et
cible et sur la fonction coût. Dans cette thèse, nous nous concentrons sur le cadre semi-discret
où la mesure source est continue et la mesure cible est une somme de masses de Dirac. Oliker
[CO08] a montré que cette formulation est adaptée pour montrer l’existence et la régularité
des solutions de problèmes d’optique non imageante. Par exemple, il a montré que la solution
au problème de conception d’un miroir qui réfléchit la lumière émise par une source ponctuelle
dans le cas continu peut être vue comme la limite de solutions de problèmes semi-discrets, qui
sont plus simples à étudier. Ce cadre a aussi d’autres avantages:

• sous certaines hypothèses sur la fonction coût et le support de la densité source, on peut
montrer que le problème de transport optimal semi-discret équivaut à maximiser une
fonction concave faisant intervenir le diagramme de Laguerre;

• nous pouvons aussi montrer que les solutions vérifient certaines propriétés géométriques,
à savoir des propriétés de convexité. Ces résultats sont importants en optique car la
convexité aide au fraisage des composants et assure que le champ de normales est bien
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défini;

• des méthodes numériques efficaces existent et sont bien comprises d’un point de vue
théorique. Nous pouvons par exemple citer la méthode de Newton amortie dont la
convergence ainsi que la vitesse de convergence ont été obtenues dans différents cas :
pour le coût quadratique dans le plan ou pour des fonctions coûts plus générales qui
satisfont la condition de Ma-Trudinger-Wang.

Dans cette thèse, nous étudions en détails la relation entre le transport optimal semi-discret
et l’optique non imageante. Nous faisons aussi le choix de discrétiser le support de la mesure
source en le triangulant.

Il est intéressant d’utiliser le cadre semi-discret en optique non imageante par beaucoup
d’aspects mais il soulève également certaines difficultés. Tout d’abord, il implique de calculer
le transport optimal entre un ensemble de codimension 1 (par exemple S2 pour les problèmes
où la source est ponctuelle) et un nuage de points, problème qui n’est pas très bien compris.
De plus, le support des mesures n’est pas structuré dans le sens où ce ne sont pas des grilles
cartésiennes, contrairement à certaines méthodes récentes en transport optimal discret qui
tirent avantage de cette structure pour développer des méthodes numériques très efficaces. Un
autre point important est le fait que les fonctions coûts apparaissant dans les problèmes de
conception de composants optiques ne sont pas « classiques », ce qui soulève des problèmes sur
l’existence de solutions pour de tels problèmes. Par exemple, dans le cas de la conception d’un
miroir pour une source ponctuelle, la fonction coût est donnée par c(x, y) = − ln(1− 〈x | y〉).
Par conséquent, si nous voulons être capable de résoudre efficacement des problèmes d’optique
non imageante, nous devons faire de nombreux raffinements :

• étudier la convergence de la méthode de Newton amortie pour résoudre le transport
optimal quand la mesure source est supportée sur des ensembles de dimension non pleine
(par exemple sur une surface triangulée dans R3);

• développer une méthode robuste pour calculer le diagramme de Laguerre qui, dans les
cas que l’on considèrent, peut être vu comme l’intersection entre une triangulation et un
diagramme de puissance;

• choisir une bon itéré initial Il est connu que dans les méthodes de Newton, le choix de
lu point initial influence grandement la convergence de l’algorithme. Il est encore plus
important dans le cadre semi-discret car nous verrons que la convergence est prouvée
uniquement quand ce point satisfait certaines contraintes.

Dans cette thèse, nous montrons que les choix que nous avons faits (transport optimal, cadre
semi-discret, trianguler le support de la mesure source) vont nous permettre de développer un
algorithme générique et efficace capable de résoudre huit différents problèmes de conception de
composants optiques. Il nous permettra aussi de considérer de très grandes discrétisations de
la mesure cible. Pour résumer, nous tirons profit de la formulation de ces problèmes en termes
de transport optimal pour construire un cadre cohérent dans lequel nous pouvons résoudre de
nombreux problèmes de conception de composants optiques convenablement discrétisés.
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Plan détaillé

Chapitre 1

Dans ce premier chapitre, nous introduisons le problème du transport optimal, ses différentes
formulations, les différents cas que l’on peut considérer ainsi que les méthodes numériques
associées. Nous étudions ensuite plus en détail le cadre semi-discret qui est au cœur de cette
thèse. Nous introduisons le diagramme de Laguerre ainsi que la méthode numérique principale
qui sera utilisé tout au long de ces travaux à savoir la méthode de Newton amortie. Notre
principale contribution dans ce chapitre est l’étude du transport optimal semi-discret dans un
cadre inhabituel à savoir quand la mesure source est supportée sur une union d’ensembles de
dimension non pleine (des simplexes) dans Rd pour le coût quadratique. Un cas particulier de
ce cadre est quand la mesure source est supportée sur une surface triangulée dans R3. Nous
montrons la convergence linéaire de la méthode de Newton amortie sous deux hypothèses :

• régularité de la mesure source. Plus précisément, nous imposons une condition de forte
connexité qui assure que le support de la mesure source ne peut pas être déconnecté en
enlevant un nombre fini de points. Nous verrons que cette condition est nécessaire pour
prouver la stricte concavité de la fonctionnelle de Kantorovich et donc la convergence de
la méthode de Newton;
• généricité du nuage de points cible par rapport au support de la mesure source.

Nous clarifierons ces deux hypothèses dans la Section 1.4.1. Nous expliquons ensuite en quoi
ces hypothèses sont raisonnables pour obtenir la convergence de la méthode de Newton pour
résoudre le problème du transport optimal dans ce cadre. Plus précisément, nous démontrons
le théorème suivant (qui est une version simplifiée des théorèmes 13 et 14) :

Théorème. Si µ est une mesure simpliciale régulière et ν une mesure de probabilité discrète
dont le support Y = {y1, . . . , yN} ⊂ Rd est en position générique par rapport au support de µ,
alors la méthode de Newton amortie converge linéairement en un nombre fini d’étapes.

Après avoir démontré ce théorème, nous appliquons ces résultats sur différents problèmes
géométriques faisant intervenir des surfaces triangulées dans R3. Cela inclut par exemple la
quantification optimale d’une densité de probabilité sur une surface triangulée (approcher une
densité de probabilité par un nuage de points) ou le remaillage (re-trianguler un maillage de
telle sorte que la distribution des triangles respecte une certaine densité), voir Figure 3 pour
deux exemples. Ces résultats sont publiés dans [MMT18a].

Chapitre 2

Dans ce chapitre, nous nous intéressons à la relation entre le transport optimal et l’optique
non imageante. En particulier, nous expliquons, en nous inspirant de [CGH08], comment le
transport optimal est utile pour définir une notion de solution à la Brenier pour les problèmes
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Figure 3 – Exemples d’applications du transport optimal pour des mesures sources
supportées sur des surfaces triangulées. À gauche : quantification optimale d’une surface
triangulée pour une densité uniforme. Au milieu et à droite : remaillage en utilisant le transport
optimal (maillages initial et final).

de conception de composants optiques. Cette formulation est intéressante car elle encode
directement certaines propriétés géométriques de la solution à savoir sa convexité. Nous nous
plaçons ensuite dans le cadre semi-discret et montrons que les problèmes de conception de
composants optiques considérés dans cette thèse ont la même structure et sont équivalents à
résoudre un système non linéaire d’équations de la forme, voir Équation (DMA)

Trouver ψ ∈ RN tel que ∀i ∈ {1, . . . , N},
∫

Lagi(ψ)
dµ(x) = νi,

où µ est la mesure source, ν = (νi)16i6N la mesure de probabilité cible et Lagi(ψ) est la cellule
de Laguerre de yi. Cette équation impose de prescrire la quantité de lumière réfléchie (ou
réfractée) dans un nombre fini de directions et peut être vue comme une discrétisation de
l’équation de Monge-Ampère apparaissant en transport optimal. Une autre de nos contributions
est l’étude de la fonction coût apparaissant lorsque l’on veut concevoir des lentilles pour des
sources ponctuelles. En particulier, nous montrons, sous certaines hypothèses, qu’elle vérifie la
condition de Ma-Trudinger-Wang. Cette condition apparaît lors de l’étude de la régularité des
solutions de transport optimal dans le cadre continu. Elle est aussi importante dans le cadre
semi-discret car elle garantit la connexité des cellules de Laguerre ainsi que la convergence de
la méthode de Newton amortie.

Chapitre 3

Dans ce chapitre, nous voyons comment on peut tirer parti de la formulation présentée dans
le chapitre précédent pour développer un cadre générique pour résoudre huit problèmes de
conception de composants optiques. Cette généricité sera aussi une conséquence du fait que
dans les cas que l’on considère dans cette thèse, le diagramme de Laguerre a la forme suivante

Lagi(ψ) = Powi(P ) ∩X

où X est le support de la mesure source qui est un sous-ensemble de R2×{0} (pour une source
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collimatée) ou S2 (pour une source ponctuelle) et Powi(P ) la cellule de puissance du point pi.
Puisque dans ce chapitre, nous supposons que X est une triangulation, cela nous permettra de
réutiliser l’algorithme développé dans le premier chapitre. Nous obtiendrons un algorithme
générique, sans paramètre et qui est capable de résoudre tous les problèmes de conception de
composants optiques considérés dans cette thèse. Nous montrons aussi comment nous pouvons
utiliser une procédure itérative simple pour résoudre le problème en champ proche. Nous
terminons ce chapitre en présentant différents exemples simulés et des prototypes physiques,
voir Figure 4 pour deux exemples. Ces résultats sont publiés dans [MMT18b].

Figure 4 – Exemple simulé et prototype physique obtenus avec notre méthode. À
gauche : trois lentilles qui réfractent les trois canaux d’une image couleur avec trois sources
collimatées. À droite : miroir qui réfléchit une source collimatée.

Chapitre 4

Dans ce dernier chapitre, nous nous intéressons à un autre aspect important du transport
optimal numérique à savoir le choix de l’itéré initial dans la méthode de Newton. En effet,
afin d’obtenir la convergence de la méthode de Newton amortie que nous utilisons dans toute
cette thèse, nous avons besoin d’assurer que toutes les cellules de Laguerre ont une masse
strictement positive à chaque étape de l’algorithme et en particulier au début. Nous verrons
dans le Chapitre 3 que cette condition est difficile à satisfaire en pratique. Nous détaillons
trois procédures permettant de trouver un tel itéré, nous montrons leur convergence et nous les
illustrons sur différents exemples. Nous expliquons également en quoi les méthodes numériques
pour le transport optimal discret pourrait être améliorées en choisissant un meilleur itéré initial.
Ce chapitre correspond à un travail en cours.

Publications
Les publications associées avec cette thèse sont les suivantes :

- Light in Power: A General and Parameter-free Algorithm for Caustic Design, Quentin
Mérigot, Jocelyn Meyron, Boris Thibert, ACM Transaction on Graphics (Transactions
On Graphics, Proc. SIGGRAPH Asia), [MMT18b]

- An algorithm for optimal transport between a simplex soup and a point cloud, Quentin
Mérigot, Jocelyn Meyron, Boris Thibert, SIAM Journal on Imaging Sciences, 11.2 (2018),
pp. 1363–1389, [MMT18a]
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In mathematics, the optimal transport problem, first introduced by Monge [Mon81], consists
in finding an optimal way of transporting one probability measure onto another one. In

the last few years, it has received a lot of attention in mathematics (see e.g. [Vil09; San15]),
in mathematical physics, in machine learning but also in computational geometry and in
geometry processing because of the intimate connection between optimal transport maps for
the quadratic cost and Power diagrams [OP89; AHA98; Mér11; Goe+12; CMT15; Lév15].
Since it allows to measure distances and interpolate between functions (and even more general
objects) by taking into account both the intensity of the function and its graph, it has been
used in numerous applications such as image processing [TPG16] or machine learning [Cut13;
Fro+15]. Furthermore, it also defines a geometry on the space of probability measures which
can be for instance used to solve partial differential equations, see for instance [GM17] that
uses optimal transport to enforce the incompressibility constraint for the Euler equation. In

13
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this first chapter, we look at a degenerate setting of semi-discrete optimal transport where the
source measure is supported on a collection of lower-dimensional subsets of Rd.

In Section 1.1, we introduce the optimal transport problem, recall its different formulations
and the main results on the existence of solutions. In Section 1.2, we review the existing
numerical methods in different settings. In Section 1.3, we look more precisely at the so-called
semi-discrete setting. We introduce the concept of Laguerre diagram and study the main
conditions necessary for the transport maps to be well-defined as well as the main algorithm
that we will use throughout this thesis, namely the damped Newton’s method. We also show
why this setting can be interesting through different applications. In Section 1.4, we introduce
the setting we will look in this chapter namely the optimal transport between a simplicial
measure and a finitely supported measure. We give the main theorem on the convergence with
linear speed of the damped Newton’s method to solve the optimal transport in this particular
setting. The proof relies on two conditions: (i) a genericity condition on the point cloud with
respect to the support of the source measure and (ii) a (strong) connectedness condition on
the support of the source measure. The convergence will then be a direct consequence of the
regularity and the strict motonicity of the Kantorovich functional. Finally, in Section 1.5, we
present various numerical illustrations of the effectiveness of this algorithm through different
examples such as optimal quantization of a probability density over a surface, remeshing or
rigid point set registration on a mesh.

1.1 Generalities on optimal transport

In this section, we introduce the main formulations of optimal transport and state the main
results of existence and uniqueness of optimal transport maps. We start by introducing the
concept of the pushforward measure.

Definition 1.1 (Pushforward measure)
Let X and Y be two measurable spaces, µ a measure on X and a function T : X → Y . We
define the pushforward of the measure µ by T as the measure T#µ such that

∀A ⊂ Y Borel set, T#µ(A) = µ(T−1(A)).

If µ and ν are two measures on X and Y , and if T#µ = ν, then T preserves the mass between
X and Y .

We can now state the Monge formulation of optimal transport.

Definition 1.2 (Monge formulation of optimal transport)
For two probability measures µ and ν supported respectively on X and Y subsets of Rd, and a
cost function c : X ×Y → R, the optimal transport problem between µ and ν consists in finding
a map called the transport map T : X → Y that minimizes the global transportation cost. It
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can be summarized as

inf
T :X→Y

∫
X
c(x, T (x))dµ(x) under the constraint T#µ = ν. (M)

An illustration of this problem can be found in Figure 1.

Figure 1 – Illustration of the optimal transport problem. The goal of optimal transport
is to find a mass-preserving map T : X → Y that transports mass between (X,µ) and (Y, ν)
while minimizing the transport cost c.

With this formulation, T must be a valid map making impossible to split mass which could
be necessary for some applications. This prevents for instance the case where µ is a Dirac
mass and ν is not. To circumvent this issue Kantorovich proposed in [Kan58] to relax the
constraint T#µ = ν as follows:

Definition 1.3 (Kantorovich formulation of optimal transport)
For two probability measures µ and ν supported respectively on X and Y subsets of Rd, and a
cost function c : X × Y → R, we are looking for a probability measure called the transport plan
γ on the product space X × Y with marginals µ and ν i.e.

inf
γ∈Γ(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) where Γ(µ, ν) = {γ | (PX)#γ = µ and (PY )#γ = ν} (K)

where PX : (x, y) ∈ X × Y 7→ x and PY : (x, y) ∈ X × Y 7→ y are the projections on X and Y .

Remark 1. There is a relation between the Monge problem and the relaxed Kantorovich
problem: if (I × T )#µ (where I denotes the identity map) is a transport plan then T#µ = ν,
i.e. T is a transport map, so that the Kantorovich cost is smaller than the Monge cost. See
Chapter 1 of [San15] for more details on the relation between the two formulations.

Remark 2. When c(x, y) = ‖x− y‖p for p > 1, then the optimal cost to transport µ onto ν is
called the Wasserstein p distance and is thus defined as

Wp(µ, ν) = min
γ

{∫
X×Y

‖x− y‖p dγ(x, y) | γ ∈ Γ(µ, ν)

}1/p

The function Wp defines a distance over the space of probability measures and can be used to
define a notion of geodesics, see [San15].
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With this formulation, the problem becomes a linear program with convex constraints. One
can then take the dual formulation that amounts to solving

sup

{∫
X
ϕdµ+

∫
Y
ψdν | ϕ ∈ L1(µ), ψ ∈ L1(ν), ∀x, y, ϕ(x) + ψ(y) 6 c(x, y)

}
. (K∗)

The functions ϕ and ψ that solve this problem are called Kantorovich potentials.

This dual formulation will be at the heart of many numerical methods for solving optimal
transport notably in the semi-discrete case. We now state the main existence results for optimal
transport plans for the primal and dual Kantorovich problems. The proofs of these theorems
can be found for instance in [Vil03; San15].

Theorem 3. Let µ and ν be two probability measures supported on X and Y compact metric
spaces and c : X ×Y → R be lower semi-continuous and bounded from below. Then (K) admits
a solution.

Theorem 4. Let µ and ν be two probability measures supported on X and Y compact and
c : X × Y → R ∪ {∞} be a continuous cost function. Then (K∗) admits a solution.

The next theorem is a duality result that ensures that, under some assumptions, the
Kantorovich problem (K) and its dual formulation (K∗) have the same solution.

Theorem 5. If X and Y are two compact manifolds in Rd and c : X × Y → R is uniformly
continuous and bounded then (K∗) admits a solution that coincides with the solution of (K).

Remark 6. The previous theorem can be stated for very general spaces X and Y (Polish
spaces). Here, to avoid introducing other notions, we restrict ourselves to the setting in which
we will use this result.

As a previous theorem states, the existence of optimal transport maps is obtained through
fairly general assumptions. However, uniqueness results are obtained under stricter conditions.
For instance, when the cost function is of the form c(x, y) = h(x − y) where h is a strictly
convex function, then Brenier’s theorem [Bre91] allows to get an expression for the optimal
transport map.

Theorem 7. Let µ and ν be two probability measures supported on a compact domain Ω ⊂ Rd,
then there exists a unique transport plan γ for the cost c(x, y) = h(x− y) for h strictly convex.
It is of the form (I, T )#µ provided that µ is absolutely continuous and ∂Ω negligible. Moreover,
there is the following relation between T and a Kantorovich potential ϕ:

T (x) = x− (∇h)−1(∇ϕ(x)).

In particular, when c is the quadratic cost c(x, y) = ‖x− y‖2 then

T (x) = ∇x
(
x2 − ϕ(x)

2

)
= ∇F (x) where F is convex.
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We finish this section by recalling the link between optimal transport and the Monge-Ampère
equation, see [BFO12] for applications and numerics.

Remark 8 (Monge-Ampère equation). When µ and ν are two probability densities on Rd, and
c is the quadratic cost function, then the previous theorem asserts that the optimal transport
map T = ∇F is the gradient of a convex function F . Injecting this expression into T#µ = ν,
we get that F solves (in a suitable weak sense) the non-linear differential equation called the
Monge-Ampère equation

ν(∇F (x)) det(D2F (x)) = µ(x) such that ∇F (X) = Y and F convex. (MA)

When the cost c is not the quadratic cost but satisfies the so-called (Twist) condition (see next
section), the equation becomes trickier to study and is of the general form

det(D2ϕ(x)−D2
xxc(x, T (x))) = det(D2

xyc(x, T (x))
µ(x)

ν(T (x))

where ϕ is a Kantorovich potential. See [Vil09] for more details.

1.2 Computational optimal transport

In this section, we look at the main numerical methods to solve optimal transport problems. We
do not detail here the semi-discrete setting since it will be studied in depth in Section 1.3. We
distinguish the methods by the assumptions they make on the support of the source and target
measures and/or the cost function. Indeed, we will see that one has to make a compromise
between the complexity of the algorithm and how general the cost function can be.

In the following of this chapter, we will replace ψ by its opposite in the dual formulation of
the Kantorovich problem to make the results clearer, (K∗) becomes

sup

{∫
X
ϕdµ−

∫
Y
ψdν | ϕ ∈ L1(µ), ψ ∈ L1(ν), ∀x, y, ϕ(x)− ψ(y) 6 c(x, y)

}
. (K∗)

1.2.1 Discrete setting

Uniform measures on sets with the same cardinal. When both probability measures
are uniform and supported on point clouds with the same cardinal N , finding optimal transport
maps is equivalent to the assignment problem appearing in combinatorial optimisation. One
of the first methods is the auction algorithm developed by Bertsekas [Ber81; Ber88]. It can
be found in Algorithm 1. This algorithm is based on a coordinate-wise ascent on the dual
cost. Since it is known that coordinate-wise ascent methods can be stuck at some points
which are not maximizers, the auction algorithm enforces another condition known as the
ε-complementary slackness condition to avoid these points.

Roughly speaking, the auction algorithm is an iterative method which builds a bijection T
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Algorithm 1: Bertsekas’ auction algorithm
Input: cost function c, increment ε > 0
Output: bijection T : X → Y , Kantorovich potential ψ ∈ RY
ψ ← 0
S ← ∅
while ∃x ∈ X \ S do

y0 ← argminy∈Y (c(x, y) + ψ(y))
ψ(y0)← ψ(y0) + ε
if ∃x′ ∈ X s.t. T (x′) = y0 then

S ← S \ {x′}
end
S ← S ∪ {x}, T (x)← y0

end
return T, ψ

(corresponding to the transport map) between X and Y while maintaining a set of assigned
points of X and a weight vector ψ. At each iteration, if x is an unassigned point, we
look for the target point y0 such that y0 ∈ argminy∈Y (c(x, y) + ψ(y)). We then try to
increase the corresponding weight ψ(y0) by a fixed increment ε > 0 and checks if y0 has
already a correspondence x′. If it is the case, we swap x and x′, assign x to y0 and starts a
new iteration. The original version of this algorithm has a complexity of O(N3C/η) where
C = maxx,y∈X×Y c(x, y) and η the numerical error. There exists a scaled version that has a
worst-case complexity of O(N3 log(C/η)), More details on the convergence analysis of this
algorithm can be found in [Mér13].

Remark 9. The expression miny∈Y (c(x, y) + ψ(y)) corresponds to the c-transform of the
function ψ evaluated at the point x which is a notion appearing in optimal transport. It is also
used in the semi-discrete setting, see Section 1.3 and [LS17].

General discrete case. The other most popular methods are based on the entropic reg-
ularization of optimal transport introduced in [Cut13]. Let us note the work of Schmitzer
[SS13] that establishes a connection between these methods and Bertsekas’ auction algorithm.
The core of these methods is the Sinkhorn or Iterative Proportional Fitting Procedure (IPFP)
procedure, which we now briefly explain. The algorithm maintains two Kantorovich potentials
ϕ and ψ and update them iteratively. We denote by ε the regularization parameter. The basis
of this method is that when ε tends to 0 then the regularized problem should converge to the
non-regularized one, see [Car+17] for a study of the quadratic cost. Furthermore, the update
step on ϕ can be written as

ϕk+1(x) = ε log(µx)− ε log

∑
y∈Y

exp(−1

ε
(c(x, y) + ψk(y)))

 . (Sinkhorn/Update)
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One can see that when ε tends to 0, this expression becomes

ϕk+1(x) = argmin
y∈Y

(c(x, y) + ψk(y)).

One can also remark that this step corresponds exactly to the update step in the auction
algorithm (see the previous paragraph).

Algorithm 2: Sinkhorn-Knopp algorithm
Input: measures µ, ν, cost matrix C, regularization parameter ε > 0, kmax > 0
Output: Kantorovich potentials ϕ,ψ
u0 ← 1X , v0 ← 1Y
Gε = exp(−C

ε )
for 0 6 k 6 kmax do

uk+1 ← µ/(Gεvk)
vk+1 ← ν/(GTε uk+1)

end
return ε ln(ukmax),−ε ln(vkmax)

Making the change of variable (u, v) = (exp(ϕ/ε), exp(−ψ/ε)), it is easy to see that each
iteration practically consists only in two matrix-vector products, the matrix Gε being the
so-called Gibbs kernel, see Algorithm 2. It is therefore crucial to make this algorithm efficient
that these matrix-vector products can be computed in subquadratic time. This is known to
be possible when the point sets are distributed on regular grids and when the transport cost
is `p, using a simple tensorization trick. It is also possible when both point sets lie on the
same surface and when the cost is the squared geodesic distance [Sol+15]. Due to its easy
implementation and effectiveness, this formulation has been used with success in numerous
applications such as barycenters of measures [Sol+15] or surface matching [Fey+17]. The
main weakness of the approach is the choice of the regularization parameter ε. In general,
the relation between objects of the regularized and non-regularized problems is still not well
understood.

1.2.2 Continuous setting

When both measures are continuous, one of the first numerical methods was the so-called
Benamou-Brenier algorithm proposed in [BB00]. It is based on a computational fluid mechanics
formulation of optimal transport between two probability densities ρ0 and ρ1 defined on Rd.
The square of the Wasserstein distance W2 can be expressed as follows:

W2
2(ρ0, ρ1) = inf

ρ,v

{∫
Rd

∫ 1

t=0
ρ(t, x) ‖v(t, x)‖2 dtdx | ρ(0, ·) = ρ1, ρ(1, ·) = ρ1, ∂tρ+∇ · (ρv) = 0

}
.

This dynamic formulation allows to use efficient finite element or finite difference discretizations
or augmented Lagrangian algorithms for solving the optimization problem.

The authors of [LR05] proposed to use a Newton’s algorithm by linearizing the Monge-
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Ampère operator. Other methods are based on efficient discretizations of the Monge-Ampère
equation (MA) such as monotone schemes [BFO12; BCM16]. The main difficulties that appear
when solving Monge-Ampère type equations are: first, imposing the boundary condition
∇F (X) = Y for F convex which is known as second boundary value problem (BV2) is hard
to impose. In practice, this condition can be handled using for instance a Hamilton-Jacobi
equation on the boundary, see [BFO14]. Secondly, the fact that it is a degenerate elliptic
equation imposes to design specific numerical schemes satisfying some kind of motonicity
property on the space of convex functions. This scheme should also be designed to enforce
the convexity of the discrete solution. More details on the study of such equations and the
regularity of its solutions can be found in [Gut12].

The next section will be dedicated to the study of the so-called semi-discrete setting i.e.
when the source measure is continuous and the target measure is supported on a point cloud.
We will show that in this setting, one can develop efficient and robust numerical methods for
the quadratic cost c(x, y) = ‖x− y‖2.

1.3 Optimal transport in the semi-discrete setting

We now suppose that the target measure ν is finitely supported on a point cloud Y =

{y1, . . . , yN} ⊆ Rd, i.e. ν =
∑

16i6N νiδyi where
∑N

i=1 νi = 1. This setting will be referred to
as the semi-discrete setting.

1.3.1 Kantorovich functional

The dual Kantorovich problem presented earlier becomes the following

sup

{∫
X
ϕdµ−

N∑
i=1

ψiνi | ϕ ∈ L1(µ), ψ ∈ RN , ∀x, i, ϕ(x)− ψi 6 c(x, yi)

}
. (K∗)

We now take a closer look at the constraint ϕ(x) − ψi 6 c(x, yi). We can rewrite it as
ϕ(x) 6 c(x, yi) + ψi. An easy computation show that if (ϕ,ψ) satisfies this constraint then
(ψc, ψ), where ψc(x) = inf16i6N (c(x, yi)−ψi), also satisfies it. Another calculation (see [LS17]
for instance) shows that maximizers of (K∗) are of the form (ψc, ψ). Following [AHA98; GM96],
we then denote by Φ the following function that we call the Kantorovich functional

Φ(ψ) =

∫
X

inf
16i6N

(c(x, yi) + ψi) dµ(x)−
N∑
i=1

νiψi (Kantorovich)

The goal of this section is to show that under some assumptions on the cost function c, one can
relate the semi-discrete optimal transport problem to the maximization of the functional Φ.

Looking at the expression of Φ, it is natural to define the following so-called Laguerre
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diagram of a point cloud Y .

Definition 1.4 (Laguerre diagram)
For a point cloud Y = {y1, . . . , yN} ⊂ Rd, a cost function c : X × Y → R and weights ψ ∈ RN ,
we define the Laguerre cell of yi ∈ Y by

Lagi(ψ) = {x ∈ X | ∀j, c(x, yi) + ψi 6 c(x, yj) + ψj}. (Laguerre)

The Laguerre diagram is the collection of all the Laguerre cells (Lagi(ψ))16i6N .

Remark 10. The Laguerre diagram is a very important object in semi-discrete optimal transport
due to its relation with computational geometry. Indeed, one can remark that in the case of the
quadratic cost c(x, y) = ‖x− y‖2, one has the relation Lagi(ψ) = Powi(ψ) ∩X where Powi(ψ)

denotes the usual Power cell of yi defined by

Powi(ψ) = {x ∈ Rd | ∀j, ‖x− yi‖2 + ψi 6 ‖x− yj‖2 + ψj}.

This implies that the Laguerre diagram is the restriction of a Power diagram to X. This idea
will be studied in more depth in the following section.

We now look at a necessary condition to ensure that transport maps are well-defined and
that the Laguerre diagram forms a partition of X.

Definition 1.5 (Negligibility condition)
Given X ⊂ Rd and a point cloud Y ⊂ Rd, a measure µ supported on X is said to satisfy the
Negligibility condition if

∀ψ ∈ RN , ∀i 6= j, µ(Lij(ψ)) = 0, (Neg)

where Lij(ψ) is the hyperplane separating Lagi(ψ) and Lagj(ψ) defined by, for i 6= j

Lij(ψ) = {x ∈ X | c(x, yi) + ψi = c(x, yj) + ψj}.

We can show that this condition is verified in some standard settings appearing in optimal
transport theory:

1. When c is the quadratic cost i.e. c(x, y) = ‖x− y‖2. An easy calculation shows that,
for i 6= j, Lij(ψ) = X ∩ {x ∈ Rd | 2〈x | yi − yj〉 = ψj − ψi} meaning that Lij(ψ) is an
hyperplane and thus its d-dimensional measure vanishes.

2. When c satisfies the so-called Twist condition [Vil09] which can be stated as the following:

∀x ∈ X, y ∈ Y 7→ Dc(x, y) is injective. (Twist)

The fact that the (Twist) condition is a sufficient condition for having the (Neg) condition
is a consequence of the implicit function theorem, see [KMT16] for a detailed proof.

The link between the Kantorovich functional and solutions of semi-discrete optimal transport
lies in the fact that, under some conditions on the geometry of the cost function namely the
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(Neg) condition, the function Φ is differentiable as stated by the next theorem.

Theorem 11 (Regularity of Φ). If µ is an absolutely continuous measure that satisfies the
(Neg) condition then we can rewrite Φ as

Φ(ψ) =
N∑
i=1

∫
Lagi(ψ)

(c(x, yi) + ψi)dµ(x)−
N∑
i=1

νiνi. (1.3.1)

It is also of class C1 and its gradient is given by

∂Φ

∂ψi
(ψ) = Gi(ψ)− νi where Gi(ψ) =

∫
Lagi(ψ)

dµ(x).

Proof. Under the (Neg) condition, maps of the form Tψ : x ∈ X 7→ argmin16i6N (c(x, yi) + ψi)

are well defined µ-almost everywhere and we can deduce another expression for Φ:

Φ(ψ) =

N∑
i=1

∫
Lagi(ψ)

(c(x, yi) + ψi)dµ(x)−
N∑
i=1

νiνi.

Then, for any γ ∈ RN , let us remark that: min16i6N (c(x, yi) + γi) 6 c(x, Tψ(x)) + γTψ(x). We
also have:

Φ(ψ) =

∫
X

(c(x, Tψ(x)) + ψTψ(x))dµ(x)−
N∑
i=1

νiψi.

Thus

Φ(ψ)− Φ(γ) 6
∫
X

(ψTψ(x) − γTψ(x))dµ(x)−
N∑
i=1

(ψi − γi)

6
N∑
i=1

(∫
Lagi(ψ)

dµ(x)− νi

)
(ψi − γi) = 〈G(ψ)− ν | ψ − γ〉.

We deduce that the supdifferential ∂+Φ(ψ) is not empty meaning that Φ is concave. Moreover,
under the (Neg) condition, we can show that G is continuous, see for instance Proposition
2.3 in [KMT16]. Moreover, the vector G(ψ) − ν depends continously on ψ, thus ∂+Φ(ψ) is
reduced to one point and Φ is C1 smooth with its gradient given by ∇Φ(ψ) = G(ψ)− ν.

This result implies that finding ψ ∈ RN such that ∇Φ(ψ) = 0 directly induces an optimal
transport map Tψ between µ and ν, see Figure 2.

If we now set G = (G1, . . . , GN ), then the optimal transport problem between µ and
ν =

∑
i νiδyi amounts to the resolution of the following finite-dimensional non-linear system of

equations:
Find ψ ∈ RN such that G(ψ1, . . . , ψN ) = (ν1, . . . , νN ). (DMA)

Remark 12. Equation (DMA) can be regarded as a discretization of the Monge-Ampère
equation (MA), hence the abbreviation.
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Figure 2 – Illustration of Laguerre diagrams in semi-discrete optimal transport. The
target point cloud is randomly sampled inside [0, 1

3 ]2 while the source measure is uniform on
the square [0, 1]2. The target measure is uniform. Left: initial diagram; Right: final diagram
where for all i ∈ {1, . . . , N} , µ(Lagi(ψ)) = 1

N .

1.3.2 Numerical methods

We now look at the main methods to solve semi-discrete optimal transport which we showed is
equivalent to solving Equation (DMA). We can separate the methods into two types: the ones
based on variations of the so-called Oliker-Prussner algorithm and the ones based on Newton
methods.

Oliker-Prussner based algorithms

The problem of optimal transport between a probability density on Rd and a finitely supported
measure has been considered in many works, and can be traced back to Alexandrov and
Pogorelov. One of the first methods was proposed by the authors of [OP89] who analysed a
coordinatewise-decrement algorithm for a problem similar but not quite equivalent to optimal
transport – namely, a Monge-Ampère equation with Dirichlet boundary conditions. In the
following, we will call this method the Oliker-Prussner algorithm, it can be found in Algorithm 3.
More precisely, this algorithm consists in an iterative procedure that updates a weight vector
ψ ∈ RN so as to satisfy at the end Equation (DMA). At each step, we look at the points yi
such that Gi(ψ) 6 νi − ε for a fixed ε > 0. We then look at the minimal decrement t > 0

we can choose to have that G(ψ − t1i) > νi where 1i denotes the vector of RN with a zero
everywhere except at i where there is a 1. We then update ψ by decreasing ψi by t and start a
new iteration. After convergence, one has ‖G(ψ)− ν‖∞ 6 Nε.

This coordinatewise-decrement approach was extended to an optimal transport setting
in [CKO99b], leading to a O(N3/η) algorithm where N is the number of Dirac masses and
η is the desired numerical error. The complexity of the algorithm makes it difficult to use
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Algorithm 3: Oliker-Prussner algorithm to solve semi-discrete optimal transport

Input: source measure µ, target measure ν =
∑N

i=1 νiδyi , cost c, decrement ε > 0
Output: weights ψ that solves the optimal transport between µ and ν for the cost c
• Initialization: Define

ψ0
i =

{
0 if i = 0

C := maxX×Y c(x, y)−minX×Y c(x, y) for i 6= 0

Then it is easy to see that G0(ψ0) = 1 and Gi(ψ0) = 0 for i 6= 0
• While there exists i 6= 0 such that Gi(ψk) 6 νi − ε, define

ti = min{t > 0 | Gi(ψk − t1i) > νi}

and set ψk+1 = ψk − ti1i.
return ψk

it in practical situation where the number of Diracs masses can be of order 105 ∼ 106 for a
reasonable numerical error η ≈ 10−8. We also note that, contrary to the auction algorithm
detailed in the previous section, there exists no scaling method.

Newton methods

Aurenhammer, Hoffmann and Aronov [AHA98] proposed a variational formulation for semi-
discrete optimal transport, but do not analyse its algorithmic consequences further. This
variational formulation was combined with quasi -Newton [Mér11; Lév15; CMT15] or Newton
[Goe+12; Su+13] methods with good experimental results but without analyzing the conver-
gence. The convergence of a damped Newton’s algorithm was established first in [Mir15] for
the Monge-Ampère equation with Dirichlet condition and was extended to optimal transport
for cost functions satisfying the so-called Ma-Trudinger-Wang condition in [KMT16]. In the
next paragraph, we introduce the damped Newton’s method.

This method solves Equation (DMA) using Algorithm 4. In this algorithm, we denote by
A+ the pseudo-inverse of a matrix A. As usual for Newton’s methods, the convergence will
be a natural consequence of the C1 regularity of G and of a strict monotonicity property for
DG (see Theorem 13 in the next section). The strict monotonicity of G only holds near points
ψ ∈ RN such that every Laguerre cell contains a positive fraction of the mass, i.e. ψ ∈ K+

where
K+ = {ψ ∈ RN | ∀i ∈ {1, . . . , N}, Gi(ψ) > 0}. (1.3.2)

The role of the damping step in Algorithm 4 (i.e. the choice of ` in the loop) is to ensure that
ψk always remain in K+. Also, since G is invariant under the addition of a constant to all
weights, we cannot expect strict monotonicity of G in all directions. We denote by {cst}⊥
the orthogonal complement of the space of constant functions on Y for the canonical scalar



1.3. Optimal transport in the semi-discrete setting 25

product on RN , i.e.
{cst}⊥ = {v ∈ RN |

∑
16i6N

vi = 0}.

Algorithm 4: Damped Newton’s algorithm
Input A measure µ, a finitely supported measure ν =

∑
16i6N νiδyi ,

A numerical error η > 0,
A family of weights ψ0 ∈ RN such that ε0 := min

[
miniGi(ψ

0), mini νi
]
> 0

While
∥∥G(ψk)− ν

∥∥ > η

• Compute vk = −DG(ψk)+(G(ψk)− ν)
• Determine the minimum ` ∈ N such that ψk,` := ψk + 2−`vk satisfies

min
16i6N

Gi(ψ
k,`) > ε0∥∥∥G(ψk,`)− ν
∥∥∥ 6 (1− 2−(`+1))

∥∥∥G(ψk)− ν
∥∥∥

• Set ψk+1 = ψk + 2−`vk and k ← k + 1.

Output A family of weights ψk solving (DMA) up to η, i.e.
∥∥G(ψk)− ν

∥∥ 6 η.

1.3.3 Applications

We finish this section by mentioning some applications of semi-discrete optimal transport:

• Blue noise sampling: the authors of [Goe+12] used semi-discrete optimal transport
to develop an algorithm to generate blue-noise sampling of densities supported on 2D
domains. At the end of this chapter, we extend this algorithm to also work on densities
supported on triangulated surfaces, see Section 1.5.
• Non-imaging optics: we will see in Chapter 3 that numerous inverse problems appearing
in optics can be recast as optimal transport problems. In these problems, one wants
to design optical component design that optimally transfer a source illumination into a
prescribed target radiation. Optimal transport can be used to formulate these problems
in a common framework.
• Euler equation for incompressible fluids: the authors of [Goe+15] used optimal

transport to develop a particle-based approach to solve PDEs appearing in computational
fluid mechanics. In particular, optimal transport is an efficient way of imposing the
incompressibility constraint.

Illustrations of these applications can be found in Figure 3.
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Figure 3 – Examples of applications of semi-discrete optimal transport. Top: Blue
noise sampling of a greyscale image (image extracted from [Goe+12]); Bottom: Euler equation
for incompressible fluids using a formulation based on Power diagrams (images extracted from
[Goe+15]).

1.4 Optimal transport between a simplex soup and a point
cloud

In this section, we look at a more singular setting where the source measure µ is not a
probability density anymore, but is instead supported on what we call a simplex soup, i.e. a
finite union of simplices in Rd. We will allow the dimension of the simplices to range from 2 to
d. We call such a measure a simplicial measure. The situation where one or more simplices
in the collection have dimension strictly less than d is difficult both in theory (as Brenier’s
theorem does not apply, and the optimal transport might not exist or not be unique) and in
practice. In Section 1.4.4, we will show the convergence of Algorithm 4 to solve the optimal
transport problem even in this degenerate setting. This section corresponds to the publication
[MMT18a].

This result can be applied to different settings where the source and target measures are
concentrated on lower-dimensional objects. We investigate at the end of this chapter applications



1.4. Optimal transport between a simplex soup and a point cloud 27

such as optimal quantization of a probability density over a surface, remeshing or point set
registration on a mesh. Another interesting application is the optimal transport problem between
measures concentrated on graphs of functions [MTW05], which are lower-dimensional subsets
of Rd. Such problems occur for instance in signal analysis and machine learning [Tho+16].
The cost involved in this setting is of the form c(x, y) = ||x− y||2 + |f(x)− g(y)|2. When the
functions f and g are strictly convex and their gradients are less than one, the cost c satisfies
the Ma-Trudinger-Wang condition [MTW05] and we can apply the results of [KMT16]. When
f and g do not satisfy these assumptions, our result shows that the damped Newton’s algorithm
still converges. Our work can be used in other applications involving optimal transport map
between point sets and surfaces. The authors of [Dig+14] use optimal transport to reconstruct
a simplicial complex from a point set: the simplicial complex is initially chosen as the Delaunay
triangulation of the input point set and optimal transport is used to get an error metric to
iteratively simplify the complex. Optimal transport has also been used in surface mapping.
For instance, in [Man+17], the authors use optimal transport to find a low distortion map
between two surfaces, without user interaction.

1.4.1 Formulation as a non-linear system of equations

From now on, we assume that the cost function is the quadratic cost c(x, y) = ‖x− y‖2 and
that the source measure µ is a simplicial probability measure, as defined below.

Definition 1.6 (Simplex soup)
A simplex soup is a finite family Σ of simplices of Rd. The dimension of a simplex σ is denoted
dσ. The support of the simplex soup Σ is the set K = ∪σ∈Σσ.

Definition 1.7 (Simplicial measure)
We call simplicial measure a measure µ =

∑
σ∈Σ µσ, where Σ is a simplex soup, and where the

measure µσ has density ρσ with respect to the dσ-dimensional Hausdorff measure on σ, i.e.

∀B ⊆ Rd Borel, µ(B) =
∑
σ∈Σ

∫
B∩σ

ρσ(x)dHdσ(x).

Before summarizing the main properties of G, we will need the following additional
definition.

Definition 1.8 (Regular simplicial measure)
A simplicial measure µ supported on

⋃
σ∈Σ σ is called regular if

• the dimension of every simplex σ is > 2,
• for every σ ∈ Σ, ρσ : σ → R is continuous and minσ ρσ > 0,
• it is not possible to disconnect the support K =

⋃
σ∈Σ σ by removing a finite number of

points, i.e. ∀S ⊆ K finite, K \ S is connected.

The main result on the properties of G is the following.



28 Chapter 1. Transporting a simplex soup on a point cloud

Theorem 13. Assume µ is a regular simplicial measure and that the points y1, . . . , yn are in
generic positions (according to Definition 1.9). Then,

• G has class C1 on RN .
• G is strictly monotone in the following sense

∀ψ ∈ K+, ∀v ∈ {cst}⊥ \ {0}, 〈DG(ψ)v | v〉 < 0.

The statement of this theorem is similar to Theorems 1.3 and 1.4 in [KMT16]. However,
the results of [KMT16] were established under the assumption that the Laguerre cells induced
by the cost function are convex in some “c-exponential chart”, which is the discrete version of
the so-called Ma-Trudinger-Wang property [MTW05; Loe09]. In the setting considered here,
the Laguerre cells can be disconnected, so that we cannot expect them to be convex in any
chart. Consequently, the strategy used in [KMT16] cannot be applied here, and we need to
find an alternative way to establish the regularity of G. What we show here is that a mild
genericity assumption on the points y1, . . . , yN ensures that G is C1 even when the source
measure is singular, i.e. supported over a lower-dimensional subset of Rd. The price to pay
for this, however, is that we do not (and cannot expect to) get quantitative estimates on the
speed of convergence of the algorithm as in [KMT16]. In particular, the existence of τ∗ in the
following theorem is obtained through a compactness argument.

Theorem 14. Under the hypotheses of the previous theorem, the proposed Damped Newton’s
algorithm (see Algorithm 4) converges in a finite number of steps. Moreover, the iterates satisfy∥∥∥G(ψk+1)− ν

∥∥∥ 6

(
1− τ?

2

)∥∥∥G(ψk)− ν
∥∥∥ ,

where τ∗ ∈]0, 1] depends on µ, ν and ε0.

As we will see in Section 1.5, the behaviour of Algorithm 4 seems better in practice meaning
that the number of Newton’s iterations is small even for large point sets.

We now show that the optimal transport problem we consider amounts to solving the
system (DMA). The results mentioned here are very classical when the source measure is
supported on a full dimensional subset of Rd. Here, in order to handle lower-dimensional
simplex soups, we need to introduce a notion of genericity. In the following, we denote by
[x0, . . . , xk] the convex hull of the points x0, . . . , xk.

Definition 1.9 (Generic point set)
A point set {y1, . . . , yN} ⊂ Rd is in generic position with respect to a k-dimensional simplex
σ = [x0, . . . , xk] if the following condition holds for every integer p ∈ {1, . . . , k}, every ` ∈
{1, . . . ,min(d,N − 1)}, every distinct i0, . . . , i` ∈ {1, . . . , N} and every distinct j0, . . . , jp ∈
{0, . . . , k}:

dim({yi1 − yi0 , . . . , yi` − yi0}
⊥ ∩ vect(xj1 − xj0 , . . . , xjp − xj0)) = max(p− `, 0) (Generic)

The point set is in generic position with respect to a simplex soup K = ∪σ∈Σσ if it is in generic
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position with respect to all the simplices σ ∈ Σ. See Figure 4 for an illustration of this condition
in R3.

Figure 4 – Illustration of the genericity condition for a triangle σ in R3. Left: {y1, y2}
is in generic position with respect to σ. Right: {y1, y2} is not in generic position since the line
(y1, y2) is orthogonal to σ .

Definition 1.10 (Power diagram)
The ith power cell induced by weights ψ ∈ RN on a point set {y1, . . . , yN} is defined by

Powi(ψ) := {x ∈ Rd | ∀j ∈ {1, . . . , n}, ‖x− yi‖2 + ψi 6 ‖x− yj‖2 + ψj}.

Remark 15. Note that the Laguerre cells for the quadratic cost are intersections of Power
cells with the simplex soup, namely

Lagi(ψ) = Powi(ψ) ∩K. (1.4.3)

Condition (Generic) ensures in particular that for any choice of weights (ψi)16i6N the (d− `)-
dimensional facets of the Power diagram induced by (yi)16i6N , (ψi)16i6N intersect the p-
dimensional facets of σ in a trivial way, when (d− `) + p 6 d.

We also need the following technical lemma that states that, under genericity, the Laguerre
cells form a partition of a simplex soup almost everywhere. This is a variation of the (Neg)
condition for this setting.

Lemma 16. Assume that µ is a simplicial measure and that y1, . . . , yN is in generic position
(Def 1.9). Let ψ ∈ RN and define Lagi,j(ψ) = Lagi(ψ) ∩ Lagj(ψ) Then,

∀i 6= j, µ(Lagi,j(ψ)) = 0 and ∀i, µ(∂ Lagi(ψ)) = 0.

Proof. Let σ = [x0, . . . , xk] be a k-dimensional simplex in the support of µ. Then, from the
genericity assumption, one has dim(vect(x1 − x0, . . . , xk − x0) ∩ {yi − yj}⊥) = k − 1, so that
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in particular dim(σ ∩ Lagi,j(ψ)) 6 k − 1. This gives

µσ(Lagi,j(ψ)) =

∫
σ∩Lagi,j(ψ)

ρσ(x)dHk(x)dx = 0.

Summing these equalities over σ ∈ Σ, we get µ(Lagi,j(ψ)) = 0. The second equality then
follows from ∂ Lagi(ψ) ⊆

⋃
j 6=i Lagi,j(ψ).

The relation between solutions of (DMA) and optimal transport maps is explained in the
following proposition.

Proposition 17. Let µ be a simplicial measure supported on K, and let y1, . . . , yN be in
generic position (Def 1.9). If ψ ∈ RN satisfies (DMA), then, the map

Tψ : x ∈ K 7→ argmin
i
‖x− yi‖2 + ψi.

is well-defined µ-a.e. and is an optimal transport map between µ and ν.

Proof. The fact that Tψ is well-defined almost everywhere follows from Lemma 16. Remark
that Tψ is a transport map between µ and T#µ . Denote ψ(yi) := ψi. Then, by definition
of Tψ, one has for any transport map T ‖x− Tψ(x)‖2 + ψ(Tψ(x)) 6 ‖x− T (x)‖2 + ψ(T (x)).
Integrating this inequality gives∫

K
(‖x− Tψ(x)‖2 + ψ(Tψ(x)))dµ(x) 6

∫
K

(‖x− T (x)‖2 + ψ(T (x)))dµ(x).

Since T and Tψ are both transport maps between µ and ν, a change of variable gives∫
K
ψ(Tψ(x))dµ(x) =

∑
16i6N

ψiνi =

∫
K
ψ(T (x))dµ(x).

Subtracting this equality from the inequality above directly gives the result.

The next sections are dedicated to the proof of Theorem 13. It is split into three parts:
first, we prove the C1 regularity of the function G; then its strict motonicity and finally we
analyze the convergence of Algorithm 4.

1.4.2 C1 regularity

The main result of this section is the following theorem that states that under genericity
conditions, the function G : RN → RN appearing in (DMA) is of class C1.

Theorem 18. Let µ be a regular simplicial measure supported on a simplex soup Σ (as in
Definition 1.8) and let Y = {y1, . . . , yN} be a generic point set. Then,

• the function G appearing in (DMA) has class C1 on RN ;
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• denoting Lagi,j(ψ) := Lagi(ψ) ∩ Lagj(ψ), the derivatives of G are given by
∂Gi
∂ψj

(ψ) =
∑

σ∈Σ
1

2‖Πσ0 (yi−yj)‖
∫

Lagi,j(ψ)∩σ ρσ(x)dHdσ−1(x) ∀i 6= j

∂Gi
∂ψi

(ψ) = −
∑

j 6=i
∂Gi
∂ψj

(ψ) ∀i.
(1.4.4)

where Πσ0 : Rd → σ0 denotes the orthogonal projection on the linear subspace σ0 tangent
to σ.

Remark 19. Note that in contrast with Theorem 4.1 in [KMT16], the map G is continuous
on the whole space RN and not only on the set K+ defined in (1.3.2). Without the genericity
hypothesis, one cannot hope a global regularity result of this kind.

• Let µ be the uniform probability measure on K = [0, 1]2 ⊆ R2 (union of two triangles),
and let y1 = (1

2 , 0), y2 = (−1
2 , 0) and y3 = (1, 0). Set ψt = (0, t, 0). Then,

∂G1

∂ψ3
(ψt) = H1(K ∩ Lag1(ψt) ∩ Lag3(ψt)) =

{
0 when t > −6

4

1 when t < −6
4 ,

thus showing that G is not globally C1.
• The regularity hypothesis would never be satisfied when one of the simplex is one-
dimensional, thus explaining the first hypothesis in our definition of regular simplicial
measure (Def. 1.8). Note also that this lack of genericity translates into a lack of
regularity for G. Indeed, take µ the uniform measure over a segment [a, b]. Then, the
partial derivative

∂Gi
∂ψj

(ψ) = H0(Lagi(ψ) ∩ Lagj(ψ) ∩ [a, b]) = Card(Lagi(ψ) ∩ Lagj(ψ) ∩ [a, b])),

can only take values in {0, 1} and must be discontinuous or constant.

The end of this section if devoted to the proof of Theorem 18. We first remark that by
linearity of the integrals in the definition of G with respect to µ, the theorem will hold for
a simplicial measure if it holds for any measure with density supported on a simplex. We
therefore let σ be a k-dimensional simplex of Rd and µ = µσ be a measure on σ with continuous
density ρσ : σ → R with respect to the k-dimensional Hausdorff measure on σ. We also
introduce

Gσ,i(ψ) :=

∫
Lagi(ψ)∩σ

ρσ(x)dHk(x)dx. (1.4.5)

The following lemma will be used to compute the first derivatives of the function Gσ,i.

Lemma 20. Let ρ : Rk → R be a continuous function on Rk and let z1, · · · , zN ∈ Rk be vectors
whose conic hull is Rk (i.e. ∀x ∈ Rk, ∃λ1, . . . , λN > 0 s.t. x =

∑
i λizi). Given λ ∈ Rk, define

K̂(λ) := {x ∈ Rk | ∀i ∈ {1, . . . , N}, 〈x | zi〉 6 λi}, (1.4.6)

Ĝ(λ) :=

∫
K̂(λ)

ρ(x)dHk(x). (1.4.7)



32 Chapter 1. Transporting a simplex soup on a point cloud

Then,

• Assume that the zi are non-zero. Then, the function Ĝ is continuous.
• Assume that all the vectors zi are pairwise independent (i.e. not collinear, implying in
particular that they are non-zero). Then Ĝ has class C1 and its partial derivatives are

∂Ĝ

∂λi
(λ) =

1

‖zi‖

∫
K̂(λ)∩{x|〈x|zi〉=λi}

ρ(x)dHk−1(x) (1.4.8)

Proof. Let e1, . . . , eN be the canonical basis of RN . We will proceed in two steps: we first
show that under the first assumption Ĝ is continuous. Then, in a second step, we use this
property on an other function to prove the C1 regularity of the function Ĝ.

Step 0. Note that, because the conic hull of the zi equals Rk, the polytope K̂(λ) is always
compact. Moreover, one easily sees that if λ 6 λ′ (coordinate-wise), one has K̂(λ) ⊆ K̂(λ′).
This implies that

∀R > 0, ∃CR ⊆ Rd compact s.t. ∀λ′ ∈ RN max
i
|λ′i − λi| 6 R⇒ K̂(λ′) ⊆ CR. (1.4.9)

We now sketch how to prove the continuity of the function Ĝ near any λ ∈ RN . Let t ∈ [−R,R].
We can assume that t > 0. First, note that the symmetric difference K̂(λ)∆K̂(λ + tei) is
contained in a slab, or more precisely

K̂(λ)∆K̂(λ+ tei) ⊆ CR ∩ {x ∈ Rd | 〈x | zi〉 ∈ [λi, λi + t]},

and that the width of the slab is t/ ‖zi‖. This gives∣∣∣Ĝ(λ)− Ĝ(λ+ tei)
∣∣∣ 6 ∫

K̂(λ)∆K̂(λ+tei)
ρ(x)dHk−1(x) 6

[
diam(CR)d−1 maxCR |ρ|

‖zi‖

]
t

A similar bound obviously exists for t 6 0. Using this estimate on each coordinate axis, one
obtains the continuity of Ĝ (and in fact, this proof even shows that Ĝ is locally Lipschitz).
This proves the first statement.

Step 1. We now prove the second statement, and assume that ρ is continuous and the zi
are pairwise independent. Fix some index i0 ∈ {1, . . . , N} and take λ ∈ RN . We consider
the convex set L := {x ∈ Rk | ∀i 6= i0 〈x | zi〉 6 λi}. For any t > 0, using the function
u : x ∈ Rk 7→ 〈x | zi0〉−λi0 , one has K̂(λ+ tei0) \ K̂(λ) = L∩u−1([0, t]). Applying the co-area
formula with the function u whose gradient is ∇u = zi0 , we can evaluate the slope

1

t
(Ĝ(λ+ tei0)− Ĝ(λ)) =

1

t

∫
L∩u−1([0,t])

ρ(x)dHk(x)

=
1

t

∫ t

0

∫
L∩u−1(s)

ρ(x)

‖zi0‖
dHk−1(x)ds

=
1

t

∫ t

0
gi0(λ+ sei0)ds (1.4.10)
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where we have set

gi0(λ) :=

∫
K̂i0 (λ)

ρ(x)

‖zi0‖
dHk−1(x) with K̂i0(λ) = {x ∈ K̂(λ) | 〈x | zi0〉 = λi0}

Note that by construction, K̂i0(λ) is the facet of K̂(λ) with exterior normal zi0/ ‖zi0‖. Assume
for now that we are able to prove that the functions gi0 are continuous. Then, by the
fundamental theorem of calculus and by Equation (1.4.10) one has ∂Ĝ

∂λi0
(λ) = gi0(λ). Since we

have assumed that gi0 is continuous, this shows that the function Ĝ has continuous partial
derivatives and is therefore C1, and gives the desired expression for its partial derivatives.

Step 2. Our goal is now to establish the continuity of the function gi0 . In order to do
that, we will parameterize the facet K̂i0(λ) using the hyperplane V = {zi0}⊥ and ΠV the
orthogonal projection on this hyperplane. Then, since x ∈ K̂i0(λ) satisfies 〈x | zi0〉 = λi0 one
has x = ΠV (x) + λi0

zi0

‖zi0‖
2 and thus

gi0(λ) =
1

‖zi0‖

∫
ΠV (K̂i0 (λ))

ρ

(
y + λi0

zi0
‖zi0‖

2

)
dHk−1(y)

By compactness, ρ is uniformly continuous on CR, where CR is defined in Equation (1.4.9):
there exists a function ωR : R+ → R+ satisfying limr→0 ωR(r) = 0 and such that for all
x, y ∈ CR, |ρ(x)− ρ(y)| 6 ωR(‖x− y‖). Using the function ρλ(y) := ρ(y + λi0zi0/ ‖zi0‖

2) and
the notation ˜̂

Ki0(λ) = ΠV (K̂i0(λ)), one has for every λ′

‖zi0‖
∣∣gi0(λ)− gi0(λ′)

∣∣
=

∣∣∣∣∣
∫

˜̂
Ki0 (λ)

ρλ(y)dHk−1(y)−
∫

˜̂
Ki0 (λ′)

ρλ′(y)dHk−1(y)

∣∣∣∣∣
6

∣∣∣∣∣
∫

˜̂
Ki0 (λ)

(ρλ(y)− ρλ′(y))dHk−1(y)

∣∣∣∣∣
+

∣∣∣∣∣
∫

˜̂
Ki0 (λ)

ρλ′(y)dHk−1(y)−
∫

˜̂
Ki0 (λ′)

ρλ′(y)dHk−1(y)

∣∣∣∣∣
(1.4.11)

Suppose now that maxi |λi − λ′i| 6 R. Then the first term of the right hand side term is
bounded by Hk−1(ΠV (CR))ωR(

∣∣λi0 − λ′i0∣∣ / ‖zi0‖) which tends to zero when λ′ tends to λ. For
the second term, we note that

˜̂
Ki0(λ) = {y ∈ V | ∀i 6= i0, 〈y + λi0zi0/ ‖zi0‖

2 | zi〉 6 λi}
= {y ∈ V | ∀i 6= i0, 〈y | z̃i〉 6 λi − λi0〈zi | zi0〉/ ‖zi0‖

2},

where we have set z̃i = ΠV (zi) = Π{zi0}⊥
(zi). The assumption that zi and zi0 are independent

implies that the vectors z̃i are non-zero. We conclude using the first part of the Lemma that
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the function
λ 7→

∫
˜̂
Ki0 (λ)

ρλ′(y)dHk−1(y)

is continuous. Using the inequality (1.4.11), we see that limλ′→λ gi0(λ′) = λ. This shows that
gi0 is continuous and concludes the proof of the lemma.

Note that when applying this lemma to the C1 regularity of Gσ,i, the vectors zi will be
used both to define the Laguerre cell and the simplex σ. We will also use the following easy
consequence of the genericity hypothesis.

Lemma 21. Assume {y1, . . . , yN} ⊂ Rd is in generic position with respect to a k-dimensional
simplex σ = [x0, . . . , xk] and let H = vect(x1 − x0, . . . , xk − x0). Then,

• For every pairwise distinct i, j, l ∈ {1, . . . , n}, the vectors z1 = πH(yj − yi) and z2 =

πH(yl − yi), where πH is the orthogonal projection on H, are not collinear.
• For every distinct i, j ∈ {1, . . . , n}, the vector πH(yj − yi) is not perpendicular to any of
the (k − 1)-dimensional facets of σ.

Proof. By the genericity condition of Definition 1.9, {yj − yi}⊥ ∩ H is of dimension k − 1.
Furthermore, for a vector u ∈ {yj − yi}⊥ ∩H, one has 〈u | yj − yi〉 = 0 and 〈u | z1〉 = 0 which
implies that {yj − yi}⊥ ∩H = {z1}⊥ ∩H. Similarly, one has {yl − yi}⊥ ∩H = {z2}⊥ ∩H. If
z1 and z2 are collinear, then {yj − yi, yl − yi}⊥ ∩H = ({yj − yi}⊥ ∩H) ∩ ({yl − yi}⊥ ∩H) is
of dimension k − 1 which contradicts the genericity condition. The proof of the second item is
straightforward.

We conclude this section by proving the C1 regularity of Gσ,i. To do that, we will use
Lemma 20 with a set of vectors (zi) that describe the boundary of the Power cell Powi and
the simplex σ.

Proof of Theorem 18. Our goal is to show that Gσ,i (defined in (1.4.5)) is C1–regular and to
compute its partial derivatives. From now on, we fix some index i0 ∈ {1, . . . , N}. Reordering
indices if necessary, we assume that i0 = N . We want to apply Lemma 20, and for that purpose
we are first going to rewrite Lagi(ψ) ∩ σ under the form (1.4.6). Denote H the k-dimensional
affine space spanned by σ; translating everything if necessary, we can assume that H is a linear
subspace of Rd. A simple calculation shows that the intersection of the Nth power cell with H
is given by

PowN (ψ) ∩H = {x ∈ H | ∀i ∈ {1, . . . , N − 1}, 〈x | zi〉 6 λi},

where λi = 1
2(‖yi‖2 + ψi − (‖yN‖2 + ψN )) and zi is the orthogonal projection of yi − yN on H.

Since σ is a k-dimensional simplex, it can be written as the intersection of k + 1 half-spaces
of H, i.e. σ = {x ∈ H | ∀j ∈ {N, . . . , N + k}, 〈x | zj〉 6 1} for some non-zero vectors zi of H.
Combining these two expressions, one gets

LagN (ψ) ∩ σ = {x ∈ H | ∀i ∈ {1, . . . , N + k}, 〈x | zi〉 6 λi}.
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where λi = 1 for i ∈ {N, . . . , N + k}.

We will now show that the assumptions of Lemma 20 are satisfied. Since σ is a nondegenerate
simplex, zi 6= 0 for every i > N and the vectors zi, zj for i 6= j and i, j > N are pairwise
independent. From the first genericity property of Lemma 21, we know that zi = ΠH(yi − yN )

and zj = ΠH(yj − yN ) are independent (i 6= j and i, j < N). From the second genericity
condition, we also know that zi, zj are independent when i 6= j and i < N and j > N . In
order to apply Lemma 20 we need to extend the continuous density ρσ : σ ⊆ H → R into a
continuous density ρ : H → R. Since σ is convex, this can be easily done using the projection
map Πσ : H → σ, and by setting ρ(x) = ρσ(Πσ(x)). Then, ρ is continuous as the composition
of two continuous maps (recall that since σ is convex, the projection Πσ is 1-Lipschitz). With
these constructions one has

Gσ,N (ψ) = Ĝ(A(ψ)),

where A : RN → RN+k is the affine map

A(ψ) :=

(
1

2
(‖y1‖2 + ψ1 − (‖yN‖2 + ψN )), . . . ,

1

2
(‖yN−1‖2 + ψN−1 − (‖yN‖2 + ψN ), 1, . . . , 1

)
with k + 1 trailing ones. By Lemma 20, Ĝ has class C1, and the expression above shows that
Gσ,N is also C1. Moreover, denoting A = (A1, . . . , AN+k), one gets

∀i 6= N,
∂Gσ,N
∂ψi

(ψ) =
∑

16j6N+k

∂Aj
∂ψi

(ψ)
∂Ĝ

∂λj
(A(ψ))

=
1

2

∂Ĝ

∂λi
(A(ψ))

=
1

2 ‖zi‖

∫
K̂(A(ψ))∩{x∈H|〈x|zi〉=λi}

ρσ(x)dHk−1(x)

=
1

2 ‖zi‖

∫
Lagi,N (ψ)∩σ

ρσ(x)dHk−1(x),

thus establishing the first formula in (1.4.4). The second formula in this equation deals with
the case i = N , and follows from a similar computation and from the expression(

∂Aj
∂ψN

(ψ)

)
16j6N+k

=

(
−1

2
, . . . ,−1

2
, 0, . . . , 0

)
,

with k + 1 trailing zeros. We have therefore established the theorem when µ = µσ. The case
where µ =

∑
σ∈Σ µσ is a simplicial measure follows by linearity.

1.4.3 Strict monotonicity

As mentioned in Section 1.4.1, the second ingredient needed for the proof of the convergence
of the damped Newton’s algorithm is a motonicity property of G, or equivalently the strong
concavity of the function Φ defined in Equation (1.3.1). This property relies heavily on the



36 Chapter 1. Transporting a simplex soup on a point cloud

“strong connectedness” of the support of µ assumed in the third item of Definition 1.8. We
recall that we denote by {cst}⊥ = {v ∈ RY |

∑
16i6N vi = 0} the orthogonal of the constant

functions on Y .

Theorem 22. Let µ be a regular simplicial measure and assume that y1, . . . , yN is generic
with respect to the support of µ (Definition. 1.9). Then G is strictly monotone in the sense that

∀ψ ∈ K+, ∀v ∈ {cst}⊥ \ {0}, 〈DG(ψ)v | v〉 < 0.

Figure 5 – Example illustrating the connectivity property in the definition of a
regular simplicial measure. Here, K is a simplex soup made of the two triangles in gray
and the set of points y1, y2 such that µ(Lag1,2(ψ)) = 0 has not a zero measure.

Remark 23. Let us illustrate the fact that the connectedness of K is not sufficient (i.e. why
we require that it is impossible to disconnect the support K of µ by removing a finite number
of points). Consider the case where K is made of the two 2-dimensional simplices embedded
in R2, and displayed in grey in Figure 5. We assume that µ is the restriction of the Lebesgue
measure to K and that Y = {y1, y2}. Then, the Jacobian matrix of G at ψ is the 2-by-2 matrix
given by

DG(ψ) =

(
a −a
−a a

)
where a =

1

2 ‖y1 − y2‖
H1(Lag1,2(ψ) ∩K).

If we fix y1 ∈ R2, it is easy to see that for any y2 in the blue domain, there exists weights ψ1

and ψ2 such that the interface Lag1,2(ψ) (in red) passes through the common vertex between the
two simplices, thus implying that a = 0, hence DG(ψ) = 0. In such setting, G is not strictly
monotone, the conclusion of Theorem 22 does not hold.

The end of this section is devoted to the proof of Theorem 22.
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Preliminary lemmas

With a slight abuse, we call tangent space to a convex set K the linear space vect(K − x) for
some x in K (this space is independent of the choice of x). We denote relint(K) the relative
interior of a convex set K ⊆ Rd and we call dimension of K the dimension of the affine space
spanned by K.

Lemma 24. Let e, f be convex sets and E and F their tangent spaces. Assume that relint(f)∩
relint(e) 6= ∅. Then,

dim(e ∩ f) = dim(E ∩ F ).

Proof. Let G be the tangent space to e ∩ f , so that dim(e ∩ f) = dim(G). It suffices to show
that G = E ∩ F to prove that dim(e ∩ f) = dim(E ∩ F ). The inclusion G ⊆ E ∩ F holds
without hypothesis (a tangent vector to e ∩ f is always both a tangent vector to e and to
f). For the reciprocal inclusion, consider x ∈ relint(e) ∩ relint(f) and v ∈ E ∩ F . Then, by
definition of the relative interior, for t small enough one has x + tv ∈ e and x + tv ∈ f , i.e.
x+ tv ∈ e ∩ f , so that tv belongs to G. This shows G ⊆ E ∩ F and concludes the proof.

Lemma 25. Let f ⊆ f ′ and e be three convex sets of Rd, and F ⊆ F ′ and E be their tangent
spaces. Assume that

• relint(f) ∩ relint(e) 6= ∅ ;
• dim(F ′) = dim(F ) + 1 and dim(E ∩ F ′) = dim(E ∩ F ) + 1.

Then dim(e ∩ f ′) = dim(e ∩ f) + 1.

Proof. Let us first show that relint(e) ∩ relint(f ′) 6= ∅ .We consider a basis e1, . . . , en of F and
a vector en+1 ∈ E ∩F ′ such that E ∩F ′ = (E ∩F )⊕Ren+1 and F ′ = F ⊕Ren+1. Let x0 be a
point in the intersection relint(f)∩ relint(e), which we assumed non-empty. There exists ε > 0

such that ∆ := conv({x0 ± εei | 1 6 i 6 n}) ⊆ f. Using the assumption that F ′ is the tangent
space to f ′, we know that there exists a point y ∈ f ′ such that v = y − x0 ∈ F ′ \ F . Consider
the convex sets ∆± spanned by ∆ and one of the points x0 ± v, ∆± = conv(∆ ∪ {x0 ± v}) .
The convex set ∆+ ∪∆− is a neighborhood of x0, meaning that there exists t 6= 0 such that
x± := x0 ± ten+1 ∈ relint(∆±). Assume for instance x+ ∈ relint(∆+) ⊆ f ′. Since ∆+ has the
same dimension as f ′, one has x+ ∈ relint(∆+) ⊆ relint(f ′) and by a standard property of the
relative interior one has (x0, x+] = (x0, x0 + ten+1] ⊆ relint(f ′). Finally, since x0 belongs to
the relative interior of e and en+1 ∈ E, the segment (x0, x0 + ten+1] must intersect the relative
interior of e, proving that relint(e) ∩ relint(f ′) 6= ∅.

Then using Lemma 24, we have dim(e∩ f) = dim(E ∩F ) and dim(e∩ f ′) = dim(E ∩F ′) =

dim(e ∩ f) + 1.
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Proof of the strict motonicity

This theorem will follow using standard arguments, once one has established the connectedness
of the graph induced by the Jacobian matrix. Let ψ ∈ K+, H := DG(ψ) and consider the
graph G supported on the set of vertices V = {1, . . . , N} and with edges

E(G) := {(i, j) ∈ V 2 | i 6= j and Hi,j(ψ) > 0}.

Remark that thanks to the formula established in Theorem 18, the matrix H is symmetric.
This fact could also be deduced from the variational formulation: H is the Hessian of the
functional Φ defined in Equation (1.3.1). This implies in particular that G is not oriented.

Lemma 26. If Lagi,j(ψ) intersects some k-dimensional simplex σ ∈ Σ, then the intersection is
either a singleton or has dimension k − 1.

Proof. Denote σ = [x0, . . . , xk] and assume that m = dim(Lagi,j(ψ) ∩ σ) > 1. Consider
a p-dimensional facet f = [xj0 , . . . , xjp ] of σ and a facet Lagi0,...,i`(ψ) =

⋂`
k=0 Lagik(ψ) of

Lagi,j(ψ) (we take i0 = i and i1 = j) such that dim(Lagi0,...,i`(ψ) ∩ f) = m and assume that
both facets are minimal for the inclusion. It is easy to see that this minimality property implies
that the relative interiors of f and Lagi0,...,i`(ψ) must intersect each other. With Lemma 24,
this ensures that

m = dim(Lagi0,...,i`(ψ) ∩ f) (1.4.12)

= dim({yi1 − yi0 , . . . , yi` − yi0}
⊥ ∩ vect(xj1 − xj0 , . . . , xjp − xj0)) = p− `, (1.4.13)

where we used the genericity property (Def 1.9) to get the last equality. We now prove that
p = k and ` = 1 by contraction. If we assume that p < k, there exists jp+1 ∈ {1, . . . , k}
distinct from {j0, . . . , jp}. Set e = Lagi0...,i`(ψ), f = [xj0 , . . . , xjp ] and f ′ = [xj0 , . . . , xjp+1 ].
The genericity hypothesis allows us to apply Lemma 25. The conclusion of the lemma is that
dim(Lagi0,...,i`(ψ) ∩ f ′) = p+ 1− ` > m, which violates the definition of m. By contradiction
one must have p = k. With the same arguments (removing a point yin for some n ∈ {0, . . . , `}
different from yi and yj from the list if i` > 1) we can see that necessarily ` = 1. With (1.4.12)
we get m = k − 1, thus concluding the proof of the lemma.

Lemma 27. The graph G is connected.

Proof. Consider the finite set

S := {x ∈ Rd | ∃σ ∈ Σ,∃i 6= j ∈ {1, . . . , N}, Lagi,j(ψ) ∩ σ = {x}}.

For any simplex σ ∈ Σ, denote σ∗ = σ \ S, and let K∗ = K \ S. By definition of a regular
simplicial measure (Def. 1.8), we know that K∗ is connected. Let C = {i1, . . . , ic} be a
connected component of the graph G, and define L =

⋃
i∈C Lagi(ψ) and L′ =

⋃
i 6∈C Lagi(ψ).

Step 1 We first show that for any simplex σ ∈ Σ, one must have either σ∗ ⊂ int(L) or
σ∗ ⊂ int(Rd \ L). For this, it suffices to prove that for any σ ∈ Σ, σ∗ ∩ ∂L = ∅. We argue by
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contradiction, assuming the existence of a point x ∈ ∂L ∩ σ∗. Then, by definition of ∂L, there
exists i ∈ C and j 6∈ C such that x ∈ Lagi,j(ψ). Since x ∈ σ∗, we know that x does not belong
to S. This implies that Lagi,j(ψ) ∩ σ cannot be a singleton. By the previous Lemma, this
gives dim(σ ∩ Lagi,j(ψ)) = dσ − 1 so that

Hi,j(ψ) = const(yi, yj)

∫
σ∩Lagi,j(ψ)

ρσ(x)dHdσ−1(x) > 0.

This shows that i and j are in fact adjacent in the graph G and contradicts j 6∈ C.

Step 2 We now prove that C is equal to {1, . . . , N} by contradiction. We group the simplices
σ ∈ Σ according to whether σ∗ belongs to int(L) or to int(Rd \ L). The sets K∗i are open for
the topology induced on K∗ because K∗1 = int(L)∩K∗ and K∗2 = int(L′)∩K∗. Since they are
also non empty, this violates the connectedness of K∗. We can conclude that C = {1, . . . , N},
i.e. G is connected.

Proof of Theorem 22. First note that the matrix H is symmetric and therefore diagonalizable
in an orthonormal basis. Gershgorin’s circle theorem immediately implies that the eigenvalues
of the matrix are negative. The theorem will be established if we are able to show that the
nullspace of H (i.e. the eigenspace corresponding to the eigenvalue zero) is the 1-dimensional
space generated by constant functions. The computations presented here are similar to the
ones in [CGS10, Lemma 3.3]. Consider v in the nullspace and let i0 be an index where v
attains its maximum, i.e. i0 ∈ argmax16i6n vi. Then using Hv = 0, hence (Hv)i0 = 0, one has

0 =
∑
i 6=i0

Hi,i0vi +Hi0,i0vi0 =
∑
i 6=i0

Hi,i0vi −
∑
i 6=i0

Hi,i0vi0 =
∑
i 6=i0

Hi,i0(vi − vi0).

This follows from Hi0,i0 = −
∑

i 6=i0 Hi,i0 . Since for every i 6= i0, one has Hi,i0 > 0 and
vi0 − vi > 0, this implies that vi = vi0 for every i such that Hi,i0 6= 0. By induction
and using the connectedness of the graph G, this shows that v has to be constant, i.e.
Ker(H) = vect({cst}).

1.4.4 Convergence analysis

In this section, we show the convergence of a damped Newton’s algorithm for a general function
G : RN → RN that satisfies some regularity and strict monotonicity conditions. As a direct
consequence, using the results of Sections 1.4.2 and 1.4.3, we show the convergence with a
linear speed of the damped Newton’s algorithm to solve the non-linear equation (DMA). We
denote by PN the set of ν = (ν1, · · · , νN ) ∈ RN that satisfies νi > 0 and

∑
i νi = 1. For a

given function G : RN → PN and ε > 0, we define the set

Kε :=
{
ψ ∈ RN | ∀i, Gi(ψ) > ε

}
,

where G(ψ) = (Gi(ψ))16i6N . We then have the following proposition, which is an adaptation
to our setting of Theorem 1.5 in [KMT16] and Proposition 2.10 in [Mir15].
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Proposition 28. Let G : RN → PN be a function which is invariant under the addition of a
constant, i.e. a multiple of (1, . . . , 1) ∈ RN , and ε > 0. We assume the following properties:

1. (Compactness) For every a ∈ R, the following set is compact:

Kεa := Kε ∩

{
ψ ∈ RN |

N∑
i=1

ψi = a

}
=

{
ψ ∈ RN | ∀i, Gi(ψ) > ε and

N∑
i=1

ψi = a

}
.

2. (C1 regularity) The function G is of class C1 on Kε.

3. (Strict monotonicity) We have:

∀ψ ∈ Kε, ∀v ∈ {cst}⊥ \ {0}, 〈DG(ψ)v | v〉 < 0

Then Algorithm 4 converges with linear speed. More precisely, if ν ∈ PN and ψ0 ∈ RN are
such that ε0 = 1

2 min
(
miniGi(ψ

0),mini νi
)
> 0, then the iterates (ψk) of Algorithm 4 satisfy

the following inequality, where τ∗ ∈ (0, 1] depends on ε0:∥∥∥G(ψk+1)− ν
∥∥∥ 6

(
1− τ?

2

)∥∥∥G(ψk)− ν
∥∥∥ .

Proof. Let ν ∈ PN and ψ0 ∈ RN such that ε0 = 1
2 min

(
miniGi(ψ

0),mini νi
)
is positive. For

convenience, we denote in this proof ε := ε0. We put a =
∑N

i=1 ψ
0
i . We are going to show that

there exists τ ′ ∈]0, 1] such that for every ψ ∈ Kεa and every τ ∈ (0, τ ′), one has

ψτ ∈ Kεa and ‖G(ψτ )− ν‖ 6
(

1− τ

2

)
‖G(ψ)− ν‖ ,

where ψτ = ψ − τv and v = DG+(ψ)(G(ψ) − ν). This directly implies the convergence of
Algorithm 4 by putting τ∗ = τ ′

2 .

Since Kεa is a compact set, the continuous map DG is uniformly continuous on Kεa, i.e.
there exists a function ω : R+ → R+ that satisfies lim

x→0
ω(x) = ω(0) = 0 and such that

∀ψ, ψ̃ ∈ Kεa,
∥∥∥DG(ψ)−DG(ψ̃)

∥∥∥ 6 ω(
∥∥∥ψ − ψ̃∥∥∥).

Note also that the modulus of continuity ω can be assumed to be an increasing function. For
any ψ ∈ Kεa, we let v = DG+(ψ)(G(ψ)− ν) and ψτ = ψ− τv for any τ > 0. Since G is of class
C1, a Taylor expansion in τ gives

G(ψτ ) = G(ψ − τDG+(ψ)(G(ψ)− ν)) = (1− τ)G(ψ) + τν +R(τ) (1.4.14)

where R(τ) =
∫ τ

0 (DG(ψt) − DG(ψ))vdt is the integral remainder. Then, we can bound the
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norm of R(τ)

‖R(τ)‖ =

∥∥∥∥∫ τ

0
(DG(ψt)−DG(ψ))vdt

∥∥∥∥
6 ‖v‖

∫ τ

0
ω(‖ψt − ψ‖)dt = ‖v‖

∫ τ

0
ω(t ‖v‖)dt

6 τ ‖v‖ω(τ ‖v‖)

where we have used the fact that ω is an increasing function.

Step 1 We first want to show that for every ψ ∈ Kεa there exists τ(ψ) > 0 such that

∀τ ∈ (0, τ(ψ)) ψτ ∈ Kεa and ‖G(ψτ )− ν‖ 6
(

1− τ

2

)
‖G(ψ)− ν‖ . (1.4.15)

Recall that for every i ∈ {1, . . . , N} one has νi > 2ε and Gi(ψ) > ε. Thus one gets

Gi(ψτ ) > (1− τ)Gi(ψ) + τνi +Ri(τ) > (1 + τ)ε− ‖R(τ)‖ .

So if we choose τ such that ‖R(τ)‖ 6 τε then Gi(ψτ ) > ε and ψτ ∈ Kε. Now, since
lim
x→0

ω(x) = 0, there exists α1 > 0 such that for every 0 6 t 6 α1, one has ω(t) 6 ε/ ‖v‖. This
implies that if τ 6 α1/ ‖v‖, then ‖R(τ)‖ 6 τε and consequently ψτ ∈ Kε. Note that G(ψ)− ν
belongs to {cst}⊥ and that DG(ψ) is an isomorphism from {cst}⊥ to {cst}⊥. We deduce that
ψτ − ψ = τv belongs to {cst}⊥, hence ψτ ∈ Kεa.

From Equation (1.4.14), we have G(ψτ )− ν = (1− τ)(G(ψ)− ν) + R(τ). So, to get the
second condition of Equation (1.4.15), it is sufficient to show that ‖R(τ)‖ 6 (τ/2) ‖G(ψ)− ν‖.
The estimation on ‖R(τ)‖ and the definition of v gives us

‖R(τ)‖ 6 τ
∥∥DG+(ψ)

∥∥ ‖G(ψ)− ν‖ω(τ ‖v‖).

Still from the continuity of ω at 0, we can find α2 > 0 such that for every τ 6 α2/ ‖v‖
one has ω(τ ‖v‖) 6 ε/2 ‖DG+(ψ)‖, thus ‖R(τ)‖ 6 (τ/2) ‖G(ψ)− ν‖. Therefore, by putting
τ(ψ) := min(α1/ ‖v(ψ)‖ , α2/ ‖v(ψ)‖ , 1), Equation (1.4.15) is proved. Note that we impose
τ(ψ) to be less than 1.

Step 2 The function G is of class C1 on Kεa. For every ψ in Kεa, DG(ψ) is an isomorphism from
{cst}⊥ to {cst}⊥ and its inverse DG+(ψ) depends continuously on ψ. Since

∑
iGi(ψ) =

∑
i νi,

G(ψ) − ν belongs to {cst}⊥, so the function v(ψ) = DG+(ψ)(G(ψ) − ν) is also continuous
by composition. If G(ψ) 6= ν, the strict monotonicity of G ensures that v(ψ) 6= 0 and so
τ(ψ) = min(α1/ ‖v(ψ)‖ , α2/ ‖v(ψ)‖ , 1) is also continuous in ψ. If G(ψ) = ν, then v(ψ) = 0.
However, by continuity of v, the function ψ̃ 7→ τ(ψ̃) is constant equal to 1 in a neighborhood
of ψ. Hence the function ψ 7→ τ(ψ) is globally continuous. Therefore, the infimum of τ(ψ)

over the compact set Kεa is attained at a point of Kεa, thus is strictly positive. We deduce that
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we can take a uniform bound τ(ψ) =: τ ′ > 0 in Equation (1.4.15) that does not depend on ψ.
This directly implies the convergence of the damped Newton algorithm with linear speed.

Proof of Theorem 14. The function G appearing in (DMA) satisfies the regularity condition
(Theorem 18) and the monotonicity condition (Theorem 22) needed in Proposition 28. It
remains to show the compactness condition. Let us take a ∈ R and let us show that Kεa is
compact. It is easy to see that Kεa is closed since G is continuous. Let ψ ∈ Kεa, i 6= j and
x ∈ Lagi(ψ). Then one has

ψi 6 ψj + ‖x− yj‖2 − ‖x− yi‖2 6 ψj + diam(K ∪ Y )2,

where diam(K ∪ Y ) is the diameter of K ∪ Y . So the differences |ψi − ψj | are bounded by
diam(K ∪ Y )2. Combined with the fact that

∑
i ψi is constant, one has that ψ is bounded by

a constant independent on ψ. Thus, Kε
a is compact.

1.5 Numerical results

In this section, we solve the optimal transport problem in R3 between triangulated surfaces
(possibly with holes, with or without a boundary) and point clouds, for the quadratic cost and
show it can be used in different settings: optimal quantization of a probability density over a
surface, remeshing and point set registration on a mesh. The source density is assumed to be
affine on each triangle of the triangulated surface. One crucial aspect of the algorithm is the
exact computation of the combinatorics of the Laguerre cells, i.e. the intersection between a
triangulated surface and a 3D power diagram, see Equation (1.4.3). Another important aspect
is the initialization step in Algorithm 4, i.e. finding a set of weights ψ0 which guarantees
that all the initial Laguerre cells have a positive mass. This aspect is described in detail
in Chapter 4. We first explain the algorithm we use to compute the Laguerre cells and the
function G along with its Jacobian matrix DG before presenting some results and applications.

1.5.1 Implementation details

We describe here an algorithm to compute the combinatorics of the intersection of a Power
diagram Pow(P ) := (Powi(P ))i of a weighted point cloud P = {(pi, ωi)} with a triangulated
surface K = ∪σ∈Σσ where σ is a triangle. Note that in general the intersection of a Power
cell with K is not convex and can even have several connected components (as illustrated for
instance in Figure 6 in the second and third rows). We encode here the triangulated surface K
with a connected graph G1 where G1 is the 1-skeleton of K (i.e. the collection of its vertices
and edges) seen as a subset of R3. Similarly, the intersection of the 2D faces of the Power
diagram with the triangulated surface K, namely G2 = ∪i(K ∩ ∂ Powi), is encoded by a graph.

Remark 29. Remark that for every i, the intersection between the triangulated surface K
and the boundary of the three dimensional convex set Powi(P ) is generically a union of closed
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polygonal lines. Let us also remark that G2 can be disconnected. For instance, if K is a
triangulation of the sphere, then the intersection between a Power cell Powi(ψ) that “traverses”
the sphere will have two connected components.

The core of the algorithm to compute G1 ∪G2 is then composed of the following steps:

1. We first split the edges in the graph G1 at points in G1 ∩ G2. Since G1 is connected,
this can be done by a simple traversal, in which we need to intersect the edges of the
triangulation with the 2-dimensional Power cells.

2. We then traverse G2 starting from vertices in G1 ∩G2 by intersecting the 2-dimensional
Power cells with triangles. G2 might be disconnected, but we can discover the connected
components using the non-visited vertices in G1 ∩G2. This step provides us with both
the geometry and connectivity of G1 ∪ G2, and also an orientation coming from the
underlying triangulated surface K.

3. The graph G1 ∪ G2 is embedded on the triangulated surface K, and the connected
components of K \ (G1 ∪ G2) are (open) convex polygons. Each of these polygons
represents an intersection of the form Powi ∩σ. The boundary of these polygons can
easily be reconstructed from G1 ∪G2 and the orientation (obtained in the second step).

This algorithm is encapsulated into a function power_diagram_surface_intersection(tri,
pow, f) where tri represents the graph G1, pow is the 3D power diagram (which is actually
represented by its dual graph called a regular triangulation) and f is a functor which will
be called on each polygon P that is the intersection between a triangle σ and a Power cell
Powi(ψ).

As always in computational geometry algorithms, we need predicates and constructions.
Here, the main predicates we need are the intersection tests between a 2D face and a segment
(for the first step) and between a Power edge (1D face) and a triangle (used in the second step).
These predicates are implemented in an exact manner using the filtered predicates mechanism
provided by the CGAL library [CGA16]. The same library allows to efficiently compute 3D
Power diagrams using a randomized algorithm which is quadratic in the worst-case but close
to linear most of the time.

Remark 30. Other algorithms exist for intersecting a Power diagram to a triangulated surface.
For instance, the authors of [SNA17] use an elementary property of Voronoi diagrams to
develop an efficient and parallelizable algorithm to intersect a Voronoi diagram in Rd with
a triangulated surface. The GEOGRAM library [Lév15] also provides functions to compute the
intersection of a 2D or 3D Voronoi diagram with a triangulation or a tetrahedrization in R3.

The core of the algorithm, meaning the computation of the intersection between a triangu-
lated surface and a 3D Power diagram is implemented in C++ amounting to 1.6k lines of code
(counting the predicates). Once the combinatorics are computed, one needs to integrate the
source density over the Laguerre cells, this has to be done in an exact manner (see the next
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paragraph for more details). In our setting, we assumed the source density to be piecewise
affine. Such density µ is represented by a class able to answer the following question: what is
the value of µ(p) knowing that p belongs to a triangle t? This is implemented using a simple
barycentric interpolation. On top of it, we made Python bindings using the pybind11 library
to leverage the speed and ease-of-use of Python libraries like NumPy, SciPy an Matplotlib.
This allowed us to quickly obtain a working damped Newton’s algorithm and then focus on the
applications (see the next section for details). To give an idea of how the computation time is
divided: if we take a triangulation of the sphere S2 for K with a uniform measure and a point
cloud Y of size 105 uniformly sampled in [−1/2, 1/2]3, then the running time to compute G(ψ)

and DG(ψ) is divided into two parts: 73 % for computing the Laguerre diagram and 27 % for
computing the integrals.

Numerical integration. The computation of Gi(ψ) and ∂Gi
∂ψj

(ψ) requires the evaluation of
integrals of the form

∫
Lagi(ψ)∩σ ρσ(x)dH2(x) and

∫
Lagi,j(ψ)∩σ ρσ(x)dH1(x) where ρσ : R3 → R+

is an affine density and σ a triangle with vertices in R3. In order to evaluate these integrals
exactly, we use the classical Gaussian quadrature formulas. In our setting, we have that if
t = [a, b, c] is a triangle, s = [a, b] a line segment and ρ : t→ R an affine density, then∫

t
ρ(x)dH2(x) = Area(t) · ρ

(
a+ b+ c

3

)
and

∫
s
ρ(x)dH1(x) = ‖b− a‖ · ρ

(
a+ b

2

)
.

Computation of the descent direction vk. We can solve efficiently the linear system
DG(ψk)vk = −(G(ψk) − ν) since DG(ψk) is sparse. In practice, we use a sparse Cholesky
solver, but a conjugate gradient method can also be used.

1.5.2 Numerical results and applications

We compute the optimal transport map between a piecewise linear measure defined on a
triangulated surface K and a discrete measure defined on a 3D point cloud. Even if we can
handle non uniform measures, in the examples presented here, the source density is uniform
over the triangulation: ρσ = 1/Area(K) for every σ ∈ Σ, where Area(K) is the area of K.
The point cloud is chosen to be a sampling of point on the mesh with some noise added. In
the examples, the solutions are computed up to an error of η = 10−6. In practice, we do not
check the genericity assumption of Definition 1.9 and the solver worked in all our experiments.

The first two rows of Figure 6 displays results for a uniform target measure and the last
two for a non-uniform one. Remark that in this case the non uniformity creates smaller
Laguerre cells on the right side. Note that the centroids of the Laguerre cells provide naturally
a correspondence between the point cloud and the triangulated surface: we associate to each
yi the centroid of the Laguerre Lagi(ψ

k), where ψk is the output of Algorithm 4. In practice,
the number of iterations remains small even for large point sets. For instance, if we choose
10, 000 noisy samples on the torus, the algorithm takes 16 iterations to solve the problem.
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The transport map can be seen on two examples in Figure 7. For a uniform target density
(first figure), the transport map can roughly be seen as the orthogonal projection on the mesh.
However it is more complex for a non-uniform one (second figure). Corresponding error plots
(in logarithmic scale) for a numerical error of η = 10−14 can be found in Figure 8. We observe
in Figure 8 and Figure 9 that the error rate decreases superlinearly. More precisely, we observe
in Figure 9 that the convergence becomes quadratic when the Newton step parameter τ := 1/2`

(where ` is given in Algorithm 4) is equal to 1. We also observe in Figure 10 that the damped
Newton’s method converges in much less iterations than the BFGS algorithm [LN89].

Remark 31. We also underline that the Laguerre cells can be non geodesically convex and
even disconnected (as illustrated in the second and third columns of Figure 6) which shows that
our method handles more general settings than [KMT16], i.e. cost functions whose Laguerre
cells cannot be convex in any chart (violating the hypothesis of [KMT16], Definition 1.1).

We now show how to use this algorithm as a building block for higher level operations such
as optimal quantization of surfaces, remeshing and point set registration.

Optimal quantization of a surface

Optimal quantization is a sampling technique used to approximate a density function with
a point cloud, or more accurately a finitely supported measure. It has many applications in
image dithering or in computer graphics (see [Goe+12] for more details). Here, we show how to
perform this kind of sampling on triangulated surfaces. Given a triangulated surface K ⊂ R3

and a density µ on K, the problem can be stated as follows

min
y1,...,yN∈R3

W2

(
µ,

1

N

N∑
i=1

δyi

)
,

where W2(µ, ν) is the Wasserstein distance between µ and ν for the quadratic cost. A procedure
to find a solution to this minimization problem is the following: we first define Y 0 as the set
of vertices of K and consider the constant probability measure ν0 on Y 0. For each k ≥ 0, we
solve the optimal transport between µ on K and νk on Yk and pick one point, for instance
the centroid, per Laguerre cell. We iterate this procedure by choosing for the new point cloud
Y k+1 the set of the previously computed centroids and for νk+1 the uniform measure over
Y k+1. After a few iterations, this gives us a (locally) optimal quantization of K. Figure 11
shows examples of sampling on different surfaces with different densities.

Remeshing

We now consider the following problem: given a triangulated surface K, a density µ supported
on this mesh, we want to build a new mesh such that the distribution of triangles respect
this density, meaning that we want more triangles where the density is bigger. This has
applications for instance in finite element methods for solving partial differential equations
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Figure 6 – Optimal transport between a connected triangulated surface in R3 and
a target measure supported on a 3D point cloud. From left to right: Mesh and initial
point cloud (in blue), Initial Laguerre cells, Final Laguerre cells, Centroids of the final Laguerre
cells. The source measure is uniform. In the first two rows, the target density is uniform while
in the last two, it linearly decreases from left to right. In the first row, N = 50 while in the
other rows, N = 1000. Computation time (number of iterations): 3s (4) / 41s (6) / 74s (13) /
58s (22) for a numerical error η = 10−6.

where the quality of the mesh used for discretization matters. To do this, we can use the
following simple procedure: we consider the uniform discrete measure ν supported on the
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Figure 7 – Visualization of a transport map. Here, the transport map is visualized as a
collection of segments (in green) connecting an initial point yi (in blue) to the centroid (in
red) of its Laguerre cell Lagi(ψ). The first figure corresponds to a uniform target density on
the Stanford bunny model (second row of Figure 6), while the second one corresponds to a
non-uniform target density on the torus (third row of Figure 6). On both examples, N = 1000.

Figure 8 – Evolution of the error rate (
∥∥G(ψk)− ν

∥∥)k for the four examples of Figure 6
for a numerical error η = 10−14 (the y-axis is in logarithmic scale).

vertices of K; we solve the optimal transport between µ on K and ν; the new mesh will be
taken as the dual (in the graph sense) of the final Laguerre diagram. See Figure 12 for two
examples for different source densities.
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Figure 9 – Evolution of the error rate and the Newton step parameter. Top: evolution
of the error rate; Bottom: evolution of τ := 1/2` of Algorithm 4 for the Fandisk model. In the
top row, the y-axis is in logarithmic scale. The numerical error is set to η = 10−14.

Figure 10 – Comparison between the damped Newton’s method (Algorithm 4) and
the BFGS algorithm on the third example of Figure 6. We stopped the BFGS algorithm
after 1000 iterations (the y-axis is in logarithmic scale).

Point set registration

We finally consider the rigid point set registration on a mesh. Given a triangulated surface
K and a point cloud Y , we want to find a rigid transformation T such that the L2 distance
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Figure 11 – Optimal quantization of triangulated surfaces for different densities and
surfaces. From left to right: uniform density µ = 1 on the Stanford Bunny (10k points);
non-linear density µ(x, y, z) = e−3|y| on the sphere (10k points); checkerboard texture and
sampling for the density corresponding to the UV-mapping of the texture on the hemisphere
(5k points).

Figure 12 – Remeshing using optimal transport. From left to right: source density; initial
mesh and remeshed surface. First row: Uniform density: µ = 1; Second row: µ is proportional
to a mean curvature estimator of the source mesh. Number of vertices for each model: Bunny:
2.2k; Torus: 5.6k.

between K and T (Y ) is minimal that is to say it solves the following minimization problem

min
T rigid

∑
y∈Y

min
x∈K
‖T (y)− x‖2 .

The most popular method to do this is the Iterative Closest Point (ICP) algorithm developed
in [BM92]. For this algorithm, we need to be able to compute for each point yi from the point
cloud Y its closest point on the mesh K. We can replace the traditional nearest neighbor query
with the following routine: we solve the optimal transport between the constant probability
measure µ on K and the constant probability measure ν on Y , then associate each point yi to
a point (for instance the centroid) of the Laguerre cell Lagi(ψ) where ψ ∈ RN are the final
weights. It amounts to considering the following problem
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min
T rigid

W2

(
µ,

1

N

N∑
i=1

δT (yi)

)
where µ is the uniform measure over K. The resulting algorithm is called Optimal Transport
ICP (OT-ICP). See Figure 13 for one example. In our results, OT-ICP converges in much less
iterations than standard ICP, namely 3 iterations versus 20 iterations for the same stopping
criterion in our two test cases. The quality of the final point clouds is approximately the same
for the two algorithms. The main disadvantage of OT-ICP is its running time which remains
higher than the traditional method.
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Figure 13 – Comparison between ICP and OT-ICP. From top to bottom: initial mesh (in
grey) and initial point cloud (in red); initial (red) and final (blue) point clouds using traditional
ICP; initial (red) and final (blue) using OT-ICP.
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In this chapter, we show how one can study many different inverse problems arising in optics
in a unified framework using optimal transport. More precisely, we describe the intimate

relation between optimal transport for different cost functions and optical component design
problems.

We introduce in Section 2.1 the field of non-imaging optics, explain how it relates to the
design of optical components (such as mirrors or lenses) and give the main settings that we will
look into namely the far-field and near-field settings. We also describe the numerical methods
that exist to solve such problems. In Section 2.2, we explain in a particular setting namely the
mirror design for a collimated source and a target at infinity, how one can formalize the problem
using optimal transport and the notion of weak solution à la Brenier. We show existence of
solutions in the semi-discrete and continuous settings. In Section 2.3, we present a method
inspired by the supporting paraboloids algorithm and show how, using optimal transport, we
can develop a common framework to solve different optical component design problems for an
ideal light source in the far-field setting. Finally, in Section 2.4, we explain in more details the
Ma-Trudinger-Wang (MTW) condition [MTW05]. We show that the cost function appearing in
the design of lenses for point light sources satisfies this MTW condition using similar arguments

53
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as in [GH09]. The main interest for us is that it guarantees: i) that the Laguerre cells are
connected; ii) the convergence of the damped Newton’s method presented in Chapter 1.

2.1 Non-imaging optics

In this section, we present the field of non-imaging optics as well as the existing numerical
methods developed to solve the problems arising in this domain.

2.1.1 Introduction

The field of non-imaging optics deals with the design of optical components whose goal is
to transfer the radiation emitted by a light source onto a prescribed target. This question
is at the heart of many applications where one wants to optimize the use of light energy by
decreasing light loss or light pollution. An illustration can be found in Figure 1 with a point
light source µ and a target at infinity ν.

Figure 1 – An example of problem arising in non-imaging optics. We want to design
the mirror R that reflects the light emitted from a point source µ towards the prescribed target
illumination ν located at infinity.

Such problems appear in the design of car beams [And+15], public lighting, solar ovens
and hydroponic agriculture. This problem has also been considered under the name of caustic
design, with applications in architecture, interior decoration [FDL10; DH15]. A caustic is the
envelope of rays reflected or refracted by an object. In the following, we will call a setting a
pair (light source, target illumination), and more precisely (type of light source, position of the
target). When the target illumination is located at infinity, we can model it as a collection
of directions and we say that it is a far-field problem. On the contrary, when the target is
located at a finite distance, we say that it is a near-field problem. We can also consider
different types of light sources, the most common types are the following:

• ideal sources: such sources are light sources where there is only one incident ray for a
given surface point. For instance, the sun is not an ideal source. This category includes
collimated light sources that emits rays parallel to each other; or point light sources that
emits rays in every direction.
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• extended sources: unlike ideal ones, extended light sources possess a radius and thus
are capable of producing shadows with fuzzy edges. In practice, they are modelled as a
collection of point light sources.

In this chapter, we consider the problem of designing a wide variety of mirrors and lenses
that satisfy different kinds of light energy constraints. To be a little bit more specific, in each
problem that we consider, one is given a light source and a desired illumination after reflection
or refraction which is called the target. The goal is to design the geometry of a mirror or lens
which transports exactly the light emitted by the source onto the target. The design of such
optical components can be thought of as an inverse problem, where the direct problem would
be the simulation of the target illumination from the description of the light source and the
geometry of the mirror or lens, using for instance ray tracing techniques.

In practice, the mirror or lens needs to satisfy aesthetic and pragmatic design constraints.
In many situations, such as for the construction of car lights, physical moulds are built by
milling and the mirror or lens is built on this mould. Sometimes the optical component itself
is directly milled. This imposes some constraints that can be achieved by imposing convexity
or smoothness conditions. The convexity constraint is classical since it allows in particular to
mill the component with a tool of arbitrary large radius. Conversely, concavity allows to mill
the mould of the component. Also, convex mirrors are easier to chrome-plate, because convex
surfaces have no bumps in which the chrome would spuriously concentrate [CBC77].

In the next section, we summarize a few of the existing numerical methods that exist to
solve such problems.

2.1.2 Existing numerical methods

The field of non-imaging optics has been extensively studied in the last thirty years. We give
below an overview of the main approaches to tackle several optical component design problems.
These methods can be mainly separated into two categories: (i) ad-hoc (or parametric) methods
whose goal is to develop procedures specific to a particular setting; (ii) freeform optics which
tries to create tools that can be used more freely to design optical components. In the following,
we will indistinctly use “reflector” to refer to a mirror and “refractor” to refer to a lens.

Ad hoc methods. Ad-hoc methods are methods specific to each setting. For instance,
in [WMB+05], many different methods are presented for different optical component design
problems. More precisely, they study the underlying optical phenomena to find a configuration in
which they are able to design “image-forming concentrators” that is to say optical components
that transform a source radiation into a prescribed target one. They also study different
combinations of basic components such as spherical mirrors, parabolic concentrators, hyperbolic
concentrators, lenses... They can also reduce the dimensionality of the problem by assuming
for instance that the optical component has some symmetry. Most of these methods only
work in specific settings as they are restrained to only use some types of surface and thus lack
degrees of freedom. On the contrary, in this chapter, we are interested in being able to design
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components for a variety of different settings with a common formulation.

This is why we now look at the second category of methods namely the freeform-based
ones. A freeform surface, contrary to traditional optics, has no translational or rotational
symmetry. We will differentiate the methods depending on the setting namely, the type of
source and location of the target. We start by looking at the setting where the source is ideal
and the target located at infinity.

Ideal source and far-field target

Non convex energy minimization methods. Many different methods to solve inverse
problems arising in non-imaging optics rely on variational approaches. When the energies to
be minimized are not convex, they can be handled by different kind of iterative methods. A
survey on inverse surface design from light transport behaviour can be found in [PP05].

One class of methods uses stochastic optimization. In [FDL10], the optical component
(mirror or lens) is represented as a C2 B-spline triangle mesh and a stochastic optimization is
used to adjust the heights of the vertices so as to minimize a light energy constraint. Note that
this approach is very costly, since a forward simulation (i.e. simulating the behaviour of the
light through the component) needs to be performed at every step and the number of steps
is very high in practice. Furthermore, using this method, lots of artifacts in the final caustic
images are present.

Stochastic optimization has also been used in [Pap+11] to design reflective or refractive
caustics for collimated light sources. At the center of the method is the Expectation Minimiza-
tion algorithm initialized with a Capacity Constrained Voronoi Tessellation (CCVT) using
a variant of the Lloyd’s algorithm [Llo82]. The source is a uniform directional light and is
modeled using an array of curved microfacets. Microfacets are tiny facets that approximate
a surface, they are used in computer graphics for instance to approximate reflections. The
target is represented by a mixture of Gaussian kernel functions. This method cannot accurately
handle low intensity regions and artifacts due to the discretization are present. Microfacets
were also used in [Wey+09] to represent the mirror. Due to the sampling procedure, this
method cannot correctly handle smooth regions and does not scale well with the size of the
target.

The method proposed in [Yue+12] uses transparent sticks made of acrylate resin to represent
the refractive surface. This allows to reduce production cost, to be more entertaining for the
user since a single set of sticks can produce different caustic patterns. The main problem
with this approach is the computational complexity since they need to solve a NP-hard mixed
integer programming problem.

Ray-mapping and normal integration. The approaches of [Kis+12; Yue+14; Sch+14]
have in common that they first compute some bijection between the incident rays and their
position on the target screen and then use an iterative method to compute the shape of the
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refractive surface. The method of [Yue+14] uses a continuous parametrization and thus cannot
correctly handle totally black and high-contrast regions (boundaries between very dark and
very bright areas).

In [Sch+14], the authors propose a method to build lenses that can refract complicated and
highly contrasted targets. They first use optimal transport on the target space to compute a
mapping between the refracted rays of an initial lens and the desired normals, then perform a
post-processing step to build a surface whose normals are close to the desired ones. The authors
of [FFL16] also considers the design of lenses for point light sources by first computing a ray
map between the source and target rays. They then build the surface with prescribed normals
using a least-squares design approach. The main difficulty here is this normal integration step.
Indeed, the problem may not have a solution since it is non-convex.

Monge-Ampère equations. When the source and target lights are modeled by continuous
functions, the problem amounts to solving a generalized Monge-Ampère equation, either in
the plane for collimated light sources, or on the sphere for point light sources. These partial
differential equations are highly non-linear. The existence and regularity of the solutions,
namely of the mirror or lens surfaces, have been extensively studied. When the light source
is a point, the regularity of the solutions has been studied for mirrors [CO08; CGH08] and
lenses [GH09] and when the light source is collimated, one recovers the usual Monge-Ampère
equation in R2 [GT13].

Optimal transport based methods in non-imaging optics. In fact, the Monge-Ampère
equations corresponding to the non-imaging problems considered in this chapter can be recast
as optimal transport problems. This was first observed by [Wan04] and [GO03] for the mirror
problem with a point light source. Many algorithms related to optimal transport have been
developed to address non-imaging problems. For collimated sources, one can use wide-stencils
finite difference schemes [Pri+13], or numerical solvers for quadratic semi-discrete optimal
transport, such as [Mér11] or [Goe+12]. For point sources, there exist variants of the Oliker-
Prussner algorithm for the mirror problem [CKO99a] or the lens problem [GH09]. These
variants are both based on the idea of constructing the mirror or lens as the intersection of
simple objects such as paraboloids (for mirrors) or ellipsoids (for lenses). This is why these
methods are also called supporting paraboloids or supporting ellipsoids. We will refine this idea,
see Section 2.3 and Chapter 3. The main weakness of these methods is that they have a O(N4)

complexity, restricting their use to small discretizations. A quasi-Newton method based on
the supporting paraboloids method has been proposed in [CMT15] for uniform point-source
reflector design, and can handle around 105 Dirac masses. Finally we note that the approach of
[Sch+14] to build lenses also relies on optimal transport. However, the optimal transport step
is used as a heuristic to estimate the normals of the surface, and not to directly construct a
solution to the non-imaging problem. A post-processing step is then performed by minimizing
a non-convex energy composed of five weighted terms.
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Ideal source and near-field target

When the target is located at a finite distance, the problem does not correspond to an optimal
transport problem anymore. In particular, the cost function is not “separable” anymore into a
sum of a function of the weight ψ and a function of (x, y) where x is an incident ray and y
one of the prescribed target directions. The cost function satisfies a variant of the so-called
Ma-Trudinger-Wang condition [MTW05], for which Trudinger established a regularity theory
[Tru12]. The corresponding partial differential equation is part of a more general category
called Generated Jacobian equations. When the source is a point, regularity of the solutions
have been studied in [KO97] for reflectors and in [GH14] for refractors. When the source is
collimated, the refractor problem has been studied in [GT13]. Let us note that the easiest way
to prove existence of weak solutions is through a semi-discrete approach i.e. by approximating
the target illumination by a finitely supported probability measure. For more general results
(and in particular for reflectors for collimated light sources) on the regularity of the solutions
of such equations, see [GK17]. The results from the same article encapsulate a lot of different
settings: collimated or point light source with a target light at a finite distance. A numerical
method based on the supporting ellipsoids method has been proposed to solve the near-field
reflector problem for a point light source [KO97] but can only handle a discretization of a few
dozens of Dirac masses.

Extended light sources

When the light source is not ideal, we say that the light source is extended. The optical
component design problem becomes ill-posed since more than one ray can touch the component
surface for one given point. The authors of [FCR09] proposed a method based on the supporting
ellipsoids algorithm developed for the far-field setting but is not able to efficiently solve problems
of relatively high resolution.

2.2 Mirror design for a collimated source and target at infinity

In this section, the goal is to show that continuous inverse problems arising in optics can
be approached by semi-discrete ones. To illustrate this, we look at the following optical
component design problem: find the mirror that reflects a collimated light source onto a
prescribed illumination at infinity. It is known [GT13] that this problem amounts to solving a
Monge-Ampère equation for the quadratic cost. We will study the existence of weak (Brenier)
solutions for this problem. The strategy will be the following:

1. Prove the existence of solutions when ν is a finitely supported probability measure, which
can be understood as the semi-discrete version of the original problem;

2. Prove that a solution of the continuous problem can be seen as the limit of a sequence of
solutions of semi-discrete problems.
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Proving the existence of solutions using intermediary semi-discrete problems it not a novel
idea, as it has been used in [CO08] to prove the existence of solutions of mirror design for a
point light source. It is a generalization of the work by Alexandrov and Pogorelov [Pog64] and
has relations with the semi-discrete Minkowski problem [Gu+13] (reconstruct a convex surface
with prescribed Gaussian curvature).

Let us model the collimated light source by a probability measure µ supported on a domain
Ω ⊂ R2. The target light illumination will be represented by a probability measure ν on S2.
The mirror surface will be denoted by R. According to Snell’s law, for an incident ray i ∈ S2,
a normal vector n ∈ S2, the reflected ray R(i, n) is given by:

R : S2 × S2 → S2, (i, n) 7→ i− 2〈i | n〉n.

In our setting, since the light is collimated, all the incident rays i are parallel to ez =

(0, 0, 1). The mirror will be represented by a graph of a function ϕ over Ω meaning that
R = {(x, ϕ(x)) | x ∈ Ω}. For a point x ∈ Ω, the normal of the surface R at x is given by
~n(x) = (∇ϕ(x),−1)/ ‖(∇ϕ(x),−1)‖. If we define

F : v ∈ R2 7→ R

(
ez,

(v,−1)

‖(v,−1)‖

)
∈ S2 \ {ez},

Let us remark that v ∈ R2 7→ (v,−1)
‖(v,−1)‖ is a bijection from R2 to the open lower hemisphere

S2
− = {y ∈ S2 | 〈y | ez〉 < 0} and that R(ez,S2

−) = S2 \ {ez}. Thus F is a diffeomorphism
between R2 and S2 \ {ez}. Then the reflection of an incident ray with origin x ∈ R2 with
direction ez is given by F (∇ϕ(x)). We deduce that for a function ϕ, the reflected measure is
(F ◦ ∇ϕ)#µ. Since we want to prescribe this measure, the problem can then be stated as

Find ϕ : Ω→ R differentiable such that (F ◦ ∇ϕ)#µ = ν.

With this formulation, the problem is posed on the target domain S2. Since F is a bijection
from R2 to S2 \ {ez}, applying the inverse transformation F−1, we can look at the problem on
the source domain Ω:

Find ϕ : Ω→ R differentiable such that ∇ϕ#µ = (F−1)#ν. (2.2.1)

We now introduce the notion of Brenier solution that appears in optimal transport, see
[San15].

Definition 2.1 (Brenier solution)
We say that a differentiable function ϕ : Ω→ R is a solution of the mirror design problem in
the Brenier sense if it is convex and satisfies Equation (2.2.1).

Remark 32. The notion of Brenier solution can also be defined in the semi-discrete setting.
In this case, the function ϕ will be differentiable µ-almost everywhere.

The rest of the section is dedicated to the proof of the following theorem that states the
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existence of solutions to this problem. We will denote by supp(µ) the support of a measure µ
and Mµ(Ω) the set of functions whose mean value is zero with respect to a measure µ on Ω:

Mµ(Ω) =

{
ϕ : Ω→ R |

∫
Ω
ϕ(x)dµ(x) = 0

}
.

Theorem 33. Let µ be a compactly supported, absolutely continuous measure with a bounded
density ρ and let ν be a probability measure such that supp(ν) ⊂ S2 \ {ez} is compact. We also
suppose that µ satisfies a Poincaré inequality

∀ϕ ∈Mµ(Ω),

∫
Ω
|ϕ(x)|2dµ(x) 6

∫
Ω
|∇ϕ(x)|2dµ(x). (Poincaré)

Then there exists a Brenier solution to the mirror design problem which is unique up to the
addition of a constant.

This theorem is already known, see [Pri+13]. We include here a proof to show how semi-
discrete optimal transport can be used as a tool to prove the existence of weak solutions of
such equations. As said in the introduction, we will start by looking at the case where ν is
finitely supported. The result is the following proposition.

Proposition 34. If ν is a finitely supported probability measure on Y = {y1, . . . , yN}, then
Equation (2.2.1) admits a Brenier solution ϕ differentiable almost everywhere which can be
written as

∀x ∈ Ω, ϕ(x) = max
16i6N

(〈x | pi〉 − ψi)

where pi is defined by the relation F (pi) = yi and ψ is the Kantorovich potential solution of
the semi-discrete optimal transport problem between µ and

∑N
i=1 νiδpi for the quadratic cost.

Moreover this solution is unique up to the addition of a constant.

Proof. We first take pi such that F (pi) = yi and define for ψ ∈ RN the function ϕψ(x) =

max16i6N (〈x | pi〉 − ψi), then it is easy to see that ϕψ is convex. We now show that there
exists a vector ψ such that ϕψ is a solution of Equation (2.2.1).

We consider the semi-discrete optimal transport problem between µ and ν =
∑N

i=1 νiδpi
for the quadratic cost. According to Theorem 5, there exist Kantorovich potentials ϕ∗ and ψ∗

solution to this problem. We put ϕ = ϕψ∗ and show that ϕ is a solution of Equation (2.2.1).
First, it is easy to see that ∇ϕ(x) = pi if and only if x ∈ Lagi(ψ) where Lagi(ψ) is the Laguerre
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cell of pi, see Definition 1.4. Then, taking A = {yi0 , . . . , yik} ⊂ Y we have:

(F ◦ ∇ϕ)#µ(A) = µ(∇ϕ−1(F−1(A)))

= µ(∇ϕ−1({pi0 , . . . , pik}))

= µ

 k⋃
j=1

Lagij (ψ)


=

k∑
j=1

νij = ν(A).

Thus (F ◦ ∇ϕ)#µ = ν and ϕ is a solution of Equation (2.2.1). An illustration of the graph of
this solution be found in Figure 2.

We now prove the uniqueness (up to the addition of a constant) of the solution. We
take two solutions ϕ1 and ϕ2. They are both solutions of Equation (2.2.1) meaning that
∇ϕ1(Ω) ⊂ {p1, . . . , pN} as well as ∇ϕ2(Ω). Since they are also convex and differentiable
µ-almost everywhere, they are both of the form ϕj : x 7→ max16i6N (〈x | pi〉 − ψji ), where
j ∈ {1, 2} and ψj ∈ RN . Then the application ∇ϕj : x ∈ Ω 7→ pi such that x ∈ Lagi(ψ

j) is an
optimal transport map meaning that ∇ϕ1 and ∇ϕ2 are both optimal transport maps for the
quadratic cost. Brenier’s theorem affirms that, for the quadratic cost, the transport plan is
unique thus ∇ϕ1 = ∇ϕ2 µ-almost everywhere. Translating ϕ1 and ϕ2, we can suppose that
ϕ1, ϕ2 ∈Mµ(Ω). Thus, since ϕ1 − ϕ2 ∈Mµ(Ω), the Poincaré inequality gives:∫

Ω
‖ϕ1(x)− ϕ2(x)‖2 dµ(x) 6

∫
Ω
‖∇ϕ1(x)−∇ϕ2(x)‖2 dµ(x) = 0.

We deduce that ϕ1 − ϕ2 is a constant function and the solution is unique up to the addition of
a constant.

Figure 2 – Illustration for the construction of a solution to the (2.2.1) problem in the
semi-discrete setting. The solution is a convex function constructed as the lower envelope
of affine functions.
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We will now show the following convergence result.

Proposition 35. We let µ be an absolutely continuous probability measure on a bounded
domain Ω ⊂ R2 with a bounded density ρ. We also suppose that µ satisfies the Poincaré
inequality (Poincaré).

Let (νk) be a sequence of finitely supported probability measures weakly converging towards
a probability measure ν. We suppose there exists a compact set K ⊂ S2 \ {ez} such that
supp(νk) ⊂ K and supp(ν) ⊂ K.

Let ϕk ∈Mµ(Ω) denote the solution of (2.2.1) for the target measure νk. Then the sequence
(ϕk) converges uniformly towards a function ϕ ∈Mµ(Ω) which is the unique solution of (2.2.1)
for the target measure ν.

Proof. For any k > 0, by Proposition 34, there exists a unique solution ϕk ∈Mµ(Ω) a solution
of (2.2.1) for the discrete target measure νk.

The assumption on the support of the target measures νk implies that supp((F−1)#ν
k) ⊂

F−1(K) is compact since F−1 is continuous. Thus the image of ∇ϕk is included in the compact
set F−1(K). This means that ∇ϕk is uniformly bounded so that ϕk is L-Lipschtiz (with L
independent of k). Furthermore, combined with the fact that Ω is bounded and that the
mean value of ϕk is 0 (since ϕk ∈ Mµ(Ω)), we get that ϕk is uniformly bounded on Ω. The
Arzelà-Ascoli theorem implies that there exists a subsequence (ϕσk)k that uniformly converges
towards a function ϕ ∈Mµ(Ω).

Then, since ρ is bounded on Ω, we have

‖∇ϕσk −∇ϕ‖L1(µ) =

∫
Ω
ρ(x)(∇ϕσk(x)−∇ϕ(x))dx 6 ‖ρ‖∞ ‖∇ϕ

σk −∇ϕ‖L1(Ω) .

Using Theorem 3.5 of [CCSM10], we have that (∇ϕσk)k converges towards ∇ϕ for the L1(Ω)

norm. Thus, using the previous inequality, we have that (∇ϕσk)k also converges towards ∇ϕ
for the L1(µ) norm.

Now, if we denote γk = (∇ϕσk ,∇ϕ)#µ, then a simple calculation shows that it is a transport
plan between νσk and ν, thus

W1(∇ϕσk# µ,∇ϕ#µ) 6
∫

Ω×Ω
‖x− y‖dγk(x, y) =

∫
Ω
‖∇ϕσk(x)−∇ϕ(x)‖ dµ(x)

6 ‖∇ϕσk −∇ϕ‖L1(µ)

We deduce that the sequence (∇ϕσk# µ)k converges towards ∇ϕ#µ for the W1 norm. Since
(∇ϕσk)#µ = (F−1)#ν

σk , then ((F−1)#ν
σk)k converges towards ∇ϕ#µ for the W1 norm. Then,

Theorem 5.9 of [San15] ensures that ((F−1)#ν
σk)k also weakly converges towards ∇ϕ#µ. Using

the continuity of F−1, we also have that ((F−1)#ν
σk)k weakly converges towards F−1

# ν. Since
the limit of a sequence is unique, we get ∇ϕ#µ = F−1

# ν and ϕ is a solution of (2.2.1).
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We now show that all the converging subsequences of (ϕk) are converging towards the same
limit. Let us take two subsequences converging towards two functions ϕ1 and ϕ2 in Mµ(Ω).
ϕ1 and ϕ2 are convex since they are the limits of convex functions. The first part of the proof
shows that they both solve the same optimal transport problem between µ and (F−1)#ν for
the quadratic cost. Using Brenier’s theorem, see Theorem 7, we get that ∇ϕ1 = ∇ϕ2 µ-almost
everywhere. Furthermore ϕ1 − ϕ2 ∈Mµ(Ω), thus the Poincaré inequality gives that ϕ1 = ϕ2

almost everywhere.

We deduce that any converging subsequence of (ϕk) converges towards the same limit.
This implies that (ϕk) converges towards the same limit ϕ, the unique solution of the limit
problem.

Proof of Theorem 33. The last thing we need to do is to describe how to construct a sequence
(νk) of finitely supported probability measures that weakly converges towards a continuous
probability measure ν supported on a compact set K ⊂ S2 \ {ez}. The construction is heavily
inspired by the one done in [CO08].

We let R > 0 and take k ∈ N such that k > 2. Let V k
i for i = 1, . . . , k be a partition of K

into k subsets such that diam(V k
i ) < 1

R and ν(V k
i ) > 0. One can for instance choose a Voronoi

diagram on K for a sufficiently large number of well chosen sites. Take a point yki per subset
V k
i and pose νki =

∫
V ki
dν(y). We now define the measure νk on K by

νk =

k∑
i=1

νki δyki
.

The sequence (νk)k weakly converges towards ν as k goes to infinity and for every k, supp(νk) ⊂
K by construction. We can then apply Proposition 35 to the sequence (νk)k and get the
existence of a function ϕ ∈Mµ(Ω) solution of (2.2.1) for the target measure ν.

Similar (but more complex) proofs can be done to show the existence of weak solutions for
other non-imaging problems in optics.

2.3 Light Energy Conservation equation

We present in this section several mirror and lens design problems arising in non-imaging
optics. Let us note that we do not take into account multiple reflections or refractions as well
as the Fresnel coefficient. The setting we will place ourselves in is the following: we are given
an ideal light source as well as a desired illumination “at infinity” after reflection or refraction,
called the target. The goal is to design the geometry of a mirror or lens which transports the
energy emitted by the source onto the target. Even though the problems we consider are quite
different from one another, they share a common structure in that they all correspond to a
so-called generalized Monge-Ampère equation, whose discrete version is given by Equation
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(DMA) that was studied in Chapter 1. Let us note that our method is heavily inspired by the
supporting paraboloids method developed by [CKO99a].

In the following, the source illumination is denoted by ρ with support Ω where Ω is a subset
of R2 × {0} or S2 and the desired target illumination is described by a set of intensity values
σ = (σi)16i6N supported on a finite set of directions Y = {y1, · · · , yN} ⊂ S2. We also recall
the following notions explained in Chapter 1:

• Laguerre cell of a point yi ∈ R3 for a vector of weights ψ ∈ RN :

Lagi(ψ) = {x ∈ Ω | ∀j, c(x, yi) + ψi 6 c(x, yj) + ψj}.

• Function G: G(ψ) = (Gi(ψ))16i6N where Gi(ψ) = ρ(Lagi(ψ)).
• Discrete Monge-Ampère equation (DMA):

Find ψ ∈ RN such that ∀i ∈ {1, . . . , N}, Gi(ψ) = νi.

2.3.1 Mirror design

Convex mirror for a collimated light source

In this first problem, the light source is collimated meaning that it emits parallel vertical rays,
and the source can be encoded by a light intensity function ρ over a 2D domain. For simplicity,
we assume that the domain is included in R2 × {0} ⊂ R3 and that all the rays are parallel
to the z direction and directed upwards. The problem is to find the surface R of a mirror
that sends the source intensity ρ to the target intensity σ, see figures 3 (top left) and 4. This
problem corresponds to a Monge-Ampère equation in the 2D plane, which corresponds to the
quadratic optimal transport problem [Pri+13]. The following proposition describes how we
can find such mirror R.

Proposition 36. For a collimated light source ρ supported on R2 × {0}, a target illumination
at infinity σ =

∑N
i=1 σiδyi , a convex mirror R reflecting ρ into ν can be parametrized by

Rψ : x ∈ R2 × {0} 7→ (x, max
16i6N

(〈x | pi〉 − ψi))

where pi ∈ R2, ψ ∈ RN is a vector of elevations solving a discrete Monge-Ampère equa-
tion (DMA) for the cost c(x, y) = −〈x | y〉.

Proof. Since the number of reflected directions Y is finite, the mirror surface R is composed
of a finite number of planar facets, as illustrated in Figure 4. We define Rψ as the graph of
a convex function of the form x 7→ (maxi〈x | pi〉 − ψi); for every i ∈ {1, · · · , N}, pi is the
orthogonal projection of a unit normal of the plane (called slope in the following) that reflects
according to Snell’s law the vertical ray (0, 0, 1) towards the direction yi (see Section 3.2 for
the full expression) and ψi is a real number that encodes the elevation of the supporting plane
with slope pi. We denote by ψ := (ψi)16i6N the set of elevations. The Visibility cell Vi(ψ) of
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Figure 3 – Four inverse problems arising in non-imaging optics. In each case, the
goal is to build the surface R of a mirror or a lens. Remark that for each problem, we
provide two solutions (for instance, we can have convex and concave surfaces when the light
source is collimated). Top/Bottom: Collimated light sources/Point light sources. Left/Right:
Mirror/Lens design.

yi is defined as the set of locations x ∈ R2 × {0} whose rays are reflected towards the direction
yi, meaning that the vertical rays hit the ith facet of Rψ. Given the definition of Rψ, we have

Vi(ψ) = {x ∈ R2 × {0} | ∀j,−〈x | pi〉+ ψi 6 −〈x | pj〉+ ψj}.

Remark 37. One can see that the Visibility cell corresponds to a Laguerre cell for the cost
function c(x, y) = −〈x | y〉 defined on (R2 × {0})× S2.

By construction, the vertical ray emanating from the point x ∈ Vi(ψ) touches the mirror
surface R at an altitude 〈x | pi〉 − ψi for a given i and is reflected to the direction yi, and
therefore the amount of light reflected towards the direction yi equals the integral of ρ over
Vi(ψ). Note that one also has ∇Rψ(x) = pi if x ∈ Vi(ψ). The Collimated Source Mirror
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problem (CS/Mirror) then amounts to finding ψ ∈ RN such that

∀i ∈ {1, · · · , n}
∫

Vi(ψ)
ρ(x)dx = σi. (LEC)

By construction, a solution to Equation (LEC) provides a parameterization Rψ of a convex
mirror that sends the collimated light source ρ to the discrete target σ:

Rψ : x ∈ R2 7→ (x, max
16i6N

〈x | pi〉 − ψi),

where R2 × {0} and R2 are identified. Notice that since the mirror is a graph over R2 × {0},
the vectors yi cannot be upward vertical.

Remark 38. In practice we assume that yi ∈ S2
− := {y ∈ S2, 〈y | ez〉 6 0} and localize the

position of the mirror by considering it only above the support Xρ := Ω = {x ∈ R2×{0}, ρ(x) 6=
0} of ρ.

surface R

Xρ

yix

Vi(ψ)

plane with slope pi

Figure 4 – Convex Mirror for a collimated light source (when N = 16). The mirror
surface R is the graph of a convex piecewise affine functions. The support Ω of ρ is decomposed
into Visibility cells (Vi(ψ))16i6N . Every vertical ray above a point x ∈ Xρ belongs to a cell
Vi(ψ), touches a plane with slope pi and is reflected to the direction yi.

Concave mirror. The same approach also allows the construction of concave mirrors, using
a concave function of the form x 7→ mini(〈x | pi〉+ψi). This amounts to replacing the Visibility
cells by

Vi(ψ) = {x ∈ R2 × {0} | ∀j, 〈x | pi〉+ ψi 6 〈x | pj〉+ ψj}

which is a Laguerre diagram for the cost c(x, y) = 〈x | y〉. In that case, a solution to Equation
(LEC) provides a parametrization of a concave mirror Rψ(x) = (x,mini〈x | pi〉 + ψi) that
sends the collimated light source ρ to the discrete target σ.
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Concave mirror for a point source

In the second mirror design problem, all the rays are emitted from a single point in space,
located at the origin, and the light source is described by an intensity function ρ supported on
the unit sphere S2. The problem we consider is to find the surface R of a mirror that sends
the light intensity ρ to the light intensity σ (Fig. 3, bottom left). The following proposition
gives a parametrization of such mirror R.

Proposition 39. For a point light source ρ supported on S2, a target illumination at infinity
σ =

∑N
i=1 σiδyi , a convex mirror R reflecting ρ into ν can be parametrized by

Rψ : x ∈ S2 7→ min
16i6N

ψi
1− 〈x | yi〉

x

where ψ ∈ RN+ is a vector of focal distances solving a discrete Monge-Ampère equation (DMA)
for the cost c(x, y) = − ln(1− 〈x | y〉).

Proof. Following [CO08], we build a concave surface R that is composed of pieces of confocal
paraboloids. More precisely, we denote by P (yi, ψi) the solid (i.e filled) paraboloid whose focal
point is at the origin with focal distance ψi and with direction yi. We define the surface Rψ as
the boundary of the intersection of the solid paraboloids, namely Rψ = ∂ (∩iP (yi, ψi)). The
Visibility cell Vi(ψ) is the set of ray directions x ∈ S2 emanating from the light source that
are reflected in the direction yi. Since each paraboloid ∂P (yi, ψi) is parameterized over the
sphere by x 7→ ψix/(1− 〈x | yi〉) for ψi > 0, one has

Vi(ψ) =

{
x ∈ S2 | ∀j, ψi

1− 〈x | yi〉
6

ψj
1− 〈x | yj〉

}
.

The Point Source Mirror problem (PS/Mirror) then amounts to finding the vector ψ that satisfies
the Light Energy Conservation Equation (LEC). The mirror surface is then parameterized by

Rψ : x ∈ S2 7→ min
i

ψi
1− 〈x | yi〉

x.

In practice, we assume that the target Y is included in S2
−, that the support Xρ of ρ is included

S2
+ := {y ∈ S2, 〈y | ez〉 > 0}, and that the mirror is parameterized over Xρ.

Remark 40. We can rewrite Vi(ψ) as

Vi(ψ) =
{
x ∈ S2 | ∀j, ln(ψi)− ln(1− 〈x | yi〉) 6 ln(ψj)− ln(1− 〈x | yj〉)

}
.

This implies that the Visibility cell Vi(ψ) can be seen as the Laguerre cell Lagi(ψ̃) for ψ̃ =

(ln(ψi))16i6N and the cost function c(x, y) = − ln(1− 〈x | y〉) defined on S2 × S2.

Remark 41. One can also define the mirror surface as the boundary of the union (instead of
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the intersection) of a family of solid paraboloids. Then, the Visibility cells become

Vi(ψ) =

{
x ∈ S2 | ∀j, ψi

1− 〈x | yi〉
>

ψj
1− 〈x | yj〉

}
and a solution to Equation (LEC) provides a parameterization Rψ(x) = xmaxi

ψi
1−〈x|yi〉 of the

mirror surface. It is a Laguerre cell for ψ̃ = (ln(ψi))16i6N and c(x, y) = ln(1− 〈x | y〉).

2.3.2 Lens design

In this section, the goal is to design lenses that refracts a given light source intensity to a
desired one. Similarly to mirror design, we consider collimated and point light sources. We
denote by n1 the refractive index of the lens, by n2 the ambient space refractive index, see
Figure 5 and by κ = n1

n2
the ratio of the two indices.

R2 × {0}

Collimated source

S2 Target light

Lens R

Point source

S2 Target light

Lens R

O

n2

n1
n1

n2

Figure 5 – Lens design. n1 is the refractive index of the lens, n2 the one of the ambient
medium and κ = n1

n2
. Left: collimated source; Right: point light source.

Concave lens for a collimated light source

We consider here a collimated light source encoded by a function ρ supported on a 2D domain.
The goal is to find the surface of a lens that sends ρ to σ, see the top right diagram in Figure 3.
We assume that the rays emitted by the source are vertical and that the bottom of the lens is
flat and orthogonal to the vertical axis. There is no refraction angle when the rays enter the
lens, and we therefore only need to build the top part of the lens.

By a simple change of variable, we show that this problem is equivalent to (CS/Mirror).
More precisely, for every yi ∈ Y , we now define pi to be the slope of a plane that refracts the
vertical ray (0, 0, 1) to the direction yi (see Section 3.2 for a detailed expression). We define R



2.3. Light Energy Conservation equation 69

as the graph of a convex function of the form x 7→ (maxi〈x | pi〉 − ψi), where ψ = (ψi)16i6N is
the set of elevations. We define the Visibility cell Vi(ψ) to be the set of points x ∈ S2 that are
refracted to the direction yi

Vi(ψ) = {x ∈ S2 | ∀j, −〈x | pi〉+ ψi 6 −〈x | pj〉+ ψj}.

The Collimated Source Lens problem (CS/Lens) then amounts to finding weights (ψi)16i6N

that satisfy (LEC). In that case the lens surface is parameterized by

Rψ : x ∈ S2 7→ (x, max
16i6N

〈x | pi〉 − ψi).

In practice, we choose the directions yi in S2
+ and the mirror to be parameterized over the

support Xρ of ρ.

Convex lens. Remark that we can also build convex lenses by considering parameterizations
with concave functions of the form x 7→ min16i6N (〈x | pi〉+ ψi). Figure 6 illustrates a concave
and a convex solution to the same non-imaging optics problem.

Figure 6 – Concave (left) and convex (right) lens for a uniform collimated light source
and the same target.

Convex lens for a point source

We now consider the same problem, except that we replace the collimated light source by a
point source one. As in the collimated setting, we fix the bottom part of the lens. We choose a
piece of sphere centered at the source, so that the rays are not deviated. The next proposition
gives a parametrization of the outer part of the lens.

Proposition 42. For a point light source ρ supported on S2, a target illumination at infinity
σ =

∑N
i=1 σiδyi , a convex lens R reflecting ρ into ν can be parametrized by

Rψ : x ∈ S2 7→ min
16i6N

ψi
1− κ′〈x | yi〉

x
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where ψ ∈ RN+ is a vector solving an optimal transport problem for the cost c(x, y) = − ln(1−
κ′〈x | y〉).

Proof. As in [GH09], the lens is composed of pieces of ellipsoids of constant eccentricities
κ′ := 1

κ < 1, where κ is the ratio of the indices of refraction. Each ellipsoid ∂E(yi, ψi) can be
parameterized over the sphere by x 7→ x ψi

1−κ′〈x|yi〉 for ψi > 0. The Visibility cell of yi is then

Vi(ψ) =

{
x ∈ S2 | ∀j, ψi

1− κ′〈x | yi〉
6

ψj
1− κ′〈x | yj〉

}
.

which corresponds to a Laguerre cell for the cost function c(x, y) = − ln(1 − κ′〈x | y〉) on
S2× S2. The Point Source Lens problem (PS/Lens) then amounts to finding weights (ψi)16i6N

that satisfy (LEC). Remark that the top surface of the lens is then parameterized by

Rψ : x ∈ S2 7→ min
16i6N

ψi
1− κ′〈x | yi〉

x.

In practice, we choose the set of directions yi to belong to S2
+ and the lens to be parameterized

over the support Xρ ⊂ S2
+ of ρ.

Remark 43. One can also choose to define the lens surface as the boundary of the union
(instead of the intersection) of a family of solid ellipsoids. In that case, the Visibility cells are
given by

Vi(ψ) =

{
x ∈ S2 | ∀j, ψi

1− κ′〈x | yi〉
>

ψj
1− κ′〈x | yj〉

}
and a solution to Equation (LEC) provides a parameterization Rψ(x) = xmaxi

ψi
1−κ′〈x|yi〉 of the

lens surface. This corresponds to a Laguerre diagram on the sphere for c(x, y) = ln(1−κ′〈x | y〉).

2.3.3 Generic formulation

Let X be a domain of either the plane R2×{0} or the unit sphere S2, ρ : X → R a probability
density and Y = {y1, · · · , yN} ⊂ S2 be a set of N points. We define the function G : RN → RN
by

Gi(ψ) =

∫
Vi(ψ)

ρ(x)dx

where G(ψ) = (Gi(ψ))16i6N and Vi(ψ) ⊂ X is the Visibility cell of yi, whose definition depends
on the non-imaging problem. Using this notation, Equation (LEC) can be rephrased as finding
weights ψ = (ψi)16i6N such that

∀i ∈ {1, · · · , N}, Gi(ψ) = σi. (2.3.2)

Remark 44. Many other problems arising in non-imaging optics amount to solving Equa-
tion (2.3.2). For example, the design of a lens that refracts a point light source to a desired
near-field target can also be modeled by a Monge-Ampère equation that has the same struc-
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ture [GH09]. In this case, the Visibility diagram correspond to the radial projection onto the
sphere of pieces of confocal ellipsoids with non constant eccentricities and is not associated to
an optimal transport problem.

Let us also remark that this equation corresponds to a discrete Monge-Ampère equa-
tion (DMA) as presented in Chapter 1 meaning that we can use the damped Newton’s
algorithm, see Algorithm 4 to solve this equation. In the next chapter, we will discuss the
specifics of this algorithm for non-imaging problems. Before doing that, we will take a closer
look to the Ma-Trudinger-Wang condition and its relation to the regularity of the solutions of
Monge-Ampère equations.

2.4 Ma-Trudinger-Wang condition for the refractor problem

This section deals with the so-called Ma-Trudinger-Wang (MTW) condition [MTW05] that
appears in the regularity theory of solutions of optimal transport problems. This condition
appears to be important when studying the convergence of the damped Newton’s method
presented in Chapter 1. Indeed, it has been shown in [Loe09] that the MTW condition allows
to have a bound on the complexity of the Laguerre diagram and to show that the Laguerre
cells are connected. This is used in [KMT16] to show that the algorithm has a superlinear
convergence rate.

Here, we study this condition for cost functions related to the so-called refractor problem
or lens design problem presented in the previous section. It has been shown in [GH09] that
one can solve this problem by parametrizing the lens as an intersection (or union) of ellipsoids.
As in the previous section, the ratio of the indices of refraction is denoted by κ = n1

n2
where n1

is the refraction index of the interior medium and n2 the ambient medium. We put κ′ = 1
κ .

When κ′ < 1, it is known that the problem is equivalent to solving the optimal transport
problem on the sphere between the light source distribution ρ and the target illumination ν for
the cost function c(x, y) = − ln(1−κ′〈x | y〉) if we choose to build the lens as an intersection of
ellipsoids or with the cost function c(x, y) = ln(1−κ′〈x | y〉) if we choose an union of ellipsoids.
The authors of [GH09] proved that for an intersection of ellipsoids the MTW condition is not
satisfied when κ′ < 1. The case where κ′ < 1 corresponds to what we call the practical setting.
Indeed, in practical applications, the lens has a greater index of refraction than the one of
the ambient medium. The goal of this section is to show that when the component is instead
parametrized by a union of ellipsoids, the MTW condition is satisfied in the practical setting,
when κ′ < 1.

We use the following notations for the partial derivatives of a differentiable function
f : X → Y and x ∈ X:

• Dxkf(x) = fxk(x) := ∂f
∂xk

(x),

• Dxi,xjf(x) = fxi,xj (x) := ∂2f
∂xi∂xj

(x).
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2.4.1 Ma-Trudinger-Wang condition

We start by introducing the Ma-Trudinger-Wang (MTW) condition. In the semi-discrete case,
we mention a geometric version of this condition called the Loeper’s condition [Loe09]. We
suppose we are given a manifold M ⊂ Rd, a set Y ⊂ Rd and a cost function c : M × Y → R.
We also suppose that c is regular namely that for all y ∈ Y , the function x 7→ c(x, y) is of class
C1,1 on M and that it satisfies the (Twist) condition introduced in the previous chapter. We
start by defining the c-exponential.

Definition 2.2 (c-exponential)
For a given y0 ∈ Y , the c-exponential at y0 for the cost function c is denoted by expcy0 and is
defined by

expcy0 : v ∈ Ty0M = [∇yc(x, y0)]−1(v) ∈M.

We can also define the c-exponential with respect to the first variable meaning that for x0 ∈ X,
we define expcx0

expcx0 : v ∈ Tx0M = [∇xc(x0, y)]−1(v) ∈M.

The choice between the two will be clear in context.

Using this notion, we can state the weak version of the Ma-Trudinger-Wang condition,
[Vil09].

Definition 2.3 (Weak Ma-Trudinger-Wang condition)
A function c : M × Y → R satisfies the weak Ma-Trudinger-Wang condition if

∀x ∈M, ∀p, ξ, η ∈ TxM, ξ ⊥ η and
∑
i,j,k,l

Dpi,pjak,l(x, p)ξiξjηkηl 6 0 (w-MTW)

where D is the gradient operator and ak,l(x, p) = ∇2
xk,xl

c(x, expcx(p)).

When Y = {y1, . . . , yN} is finite, this condition can be stated more clearly using the notion
of Laguerre cells introduced in Section 1.3. Roughly, it amounts to saying that the Laguerre
cells are convex in some c-exponential charts, see [Loe09; KMT16] for more details. The
c-convexity of a set Ω is defined as below.

Definition 2.4 (c-convexity)
A set Ω ⊂M is said to be c-convex if it is convex in every c-exponential chart meaning that

∀y0 ∈ Y, (expcy0)−1(Ω) is convex.

Loeper’s condition in the semi-discrete case can then be stated as follows:

Definition 2.5 (Loeper’s condition)
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A function c : M × Y → R satisfies Loeper’s condition if

∀y0 ∈ Y, ∀ψ ∈ RN , Lagy0(ψ) is c-convex.

This is equivalent to saying that:

∀y0 ∈ Y, ∀y 6= y0, v ∈ Ty0M 7→ c(expcy0 v, y0)− c(expcy0 v, y) is quasiconvex

A function is said to be quasiconvex if all its sublevelsets are convex.

Remark 45. Under certain assumptions on the cost function c, one can show that this semi-
discrete version of Loeper’s condition is implied by classical conditions introduced in the smooth
setting such as the MTW condition. See Remark 4.3 of [KMT16] for more details.

2.4.2 (PS/Lens) for a union of ellipsoids

We show here that the cost function arising in the (PS/Lens) problem for a union of ellipsoids
when κ′ < 1 satisfies the (w-MTW) condition. The main result is the following theorem:

Theorem 46. The function c(x, y) = ln(1− κ′〈x | y〉) for 0 < κ′ < 1 defined on Sd−1 × Sd−1

satisfies the (w-MTW) condition.

Table 2.1 summarizes the cases where the MTW condition is satisfied or not for mirror and
lens design for a point light source. For mirror design, a calculation shows that the (w-MTW)
condition is verified when parametrizing the mirror as an intersection of paraboloids [Wan96;
Loe11]. For a union of paraboloids, the authors of [CMT15] shows that the corresponding
Laguerre cell can be composed of multiple connected components and thus does not satisfy the
MTW condition. For lens design, it has been shown in [GH09] that the condition is verified for
a union of hyperboloids for κ′ > 1 and is not verified for an intersection of ellipsoids for κ′ < 1.
In this section, we show the last two remaining cases meaning the intersection of hyperboloids
and the union of ellipsoids.

MTW NON MTW
(PS/Mirror) intersection paraboloids (PS/Mirror) union paraboloids
(PS/Lens) union ellipsoids, κ′ < 1 (PS/Lens) intersection ellipsoids, κ′ < 1

(PS/Lens) union hyperboloids, κ′ > 1 (PS/Lens) intersection hyperboloids, κ′ > 1

Table 2.1 – Summary of the settings that satisfy the (w-MTW) condition or not.

The calculations presented in this section are very similar to the ones done in [GH09], we
also follow the same outline and use the same notations for clarity reasons. We start by seeing
how the notion of tangential gradient and tangential Hessian matrix is expressed on the unit
sphere Sd−1.

Proposition 47. Let f : Sd−1 → R be a differentiable function, its tangential gradient ∇f



74 Chapter 2. Optimal transport & non-imaging optics

and its tangential Hessian matrix ∇2f at a point x ∈ Sd−1 are given by

∇f(x) = Df(x)− 〈Df(x) | x〉x
∇2f(x) = D2f(x)− 〈Df(x) | x〉I

where Df(x) and D2f(x) are the standard gradient and Hessian of f in Rd and I is the identity
matrix.

To prove this result, we first need to compute the c-exponential expcx(p) that we will denote
as Y (x, p) in the following for clarity.

Lemma 48. For the cost function c(x, y) = ln(1− κ′〈x | y〉) with 0 < κ′ < 1, the point Y (x, p)

that satisfies ∇xc(x, Y (x, p)) = p is given by the expression

∀x ∈ Sd−1, ∀p ∈ TxSd−1, Y (x, p) = λ(p)x+

(
λ(p)− 1

κ′

)
p,

where λ(p) =
‖p‖2+

√
h(p)

κ′(1+‖p‖2)
and h(p) = κ′2 − (1− κ′2) ‖p‖2 defined for ‖p‖2 6 κ′2

1−κ′2 .

Proof. The first observation we can make is that, in the case where κ′ < 1, Snell’s law implies
that there is a maximum incidence angle 0 6 θ 6 θmax = arcsin(κ′). An easy computation
shows that this constraint is equivalent to having 〈x | y〉 > κ′ for an incident ray x and a
refracted ray y.

We then let x ∈ Sd−1 and p ∈ TxSd−1, we want to find Y (x, p) such that∇xc(x, Y (x, p)) = p.
A simple calculation gives the following expressions for the gradient and tangential gradient
with respect to x

Dxc(x, y) =
−κ′y

1− κ′〈x | y〉
and ∇xc(x, y) =

−κ′y + κ′〈x | y〉x
1− κ′〈x | y〉

.

We now search for Y (x, p) in vect(x, p) meaning that we look for two scalars λ, µ ∈ R such
that Y (x, p) = λx+ µp. If we inject this expression in the tangential gradient, we find that
µ = λ − 1

κ′ . Then, using the fact that ‖Y (x, p)‖2 = 1, we get the following second order
equation

(1 + ‖p‖2)λ2 − 2

κ′
‖p‖2 λ+

(
‖p‖2

κ′2
− 1

)
= 0.

An easy calculation shows that if ‖p‖2 6 κ′2

1−κ′2 then the solutions are given by λ±(p) =

‖p‖2±
√
h(p)

κ′(1+‖p‖2)
where h(p) = κ′2 − (1− κ′2) ‖p‖2. Then, because we need to have 〈x | Y (x, p)〉 =

λ±(p) > κ′, we deduce that we have to choose the root with the plus sign, thus

Y (x, p) = λ+(p)x+

(
λ+(p)− 1

κ′

)
p.
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Proof of Theorem 46. In the following, we let x ∈ Sd−1 and p ∈ TxSd−1. The proof is divided
into three parts. First, we compute the first order coefficients cxi(x, Y (x, p)) = Dxic(x, Y (x, p));
then, we compute the second order coefficients ak,l(x, p); and finally, we show that the condition
(w-MTW) is verified when κ′ < 1.

Step 1: Computation of cxi(x, Y (x, p)). Using Lemma 48, we get

Dxc(x, Y (x, p)) = p− κ′λ(p)

1− κ′λ(p)
x.

We deduce that

cxi(x, Y (x, p)) = Dxic(x, Y (x, p)) = pi −
κ′λ(p)

1− κ′λ(p)
xi.

Let us also remark that we have following relation that we be useful in the next part of the
proof:

〈Dxc(x, Y (x, p)) | x〉 =
−κ′λ(p)

1− κ′λ(p)
.

Step 2: Computation of ak,l(x, p). First, an easy computation shows that

∀x, y ∈ Sd−1, ∀k, l, cxk,xl(x, y) = −cxk(x, y)cxl(x, y). (??)

Let us remark that, contrary to [GH09], here we have a minus sign in front. Then:

cxk,xl(x, Y (x, p)) = −
(
pk −

κ′λ(p)

1− κ′λ(p)
xk

)(
pl −

κ′λ(p)

1− κ′λ(p)
xl

)
.

With that, we are ready to compute the coefficients ak,l(x, p). These coefficients depend on
the tangential Hessian matrix, see Proposition 47.

ak,l(x, p) = ∇2
xk,xl

c(x, Y (x, p)) = cxk,xl(x, Y (x, p))− 〈Dxc(x, Y (x, p)) | x〉δk,l
= −(pk − g(p)xk)(pl − g(p)xl) + δk,lg(p)

where g(p) = κ′λ(p)
1−κ′λ(p) .

Step 3: Checking the (w-MTW) condition. Finally, we show that the condition (w-MTW)
is verified when κ′ < 1.

Then, the second derivatives of ak,l with respect to pi and pj are given by the following
expressions where δi,j is the Kronecker symbol. To simplify the notations, we dropped the
evaluation at (x, p).

Dpiak,l = −
[
(δk,i − ∂pigxk)(pl − gxl) + (pk − gxk)(δj,l − ∂pjgxl)

]
+ δk,l∂pig
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Expanding this equation, we get:

Dpi,pjak,l = −[−(∂pi,pjgxk)(pl − gxl)︸ ︷︷ ︸
(1)

+ (δk,i − ∂pigxk)(δj,l − ∂pjgxk)︸ ︷︷ ︸
(2)

+

(δj,k − ∂pjgxl)(δl,i − ∂pigxl)︸ ︷︷ ︸
(3)

+ (pk − gxk)(−∂pi,pjgxl)︸ ︷︷ ︸
(4)

] + δk,l∂pi,pjg︸ ︷︷ ︸
(5)

Now, we take ξ, η ∈ TxSd−1 such that ξ ⊥ η and we study the quantity Dpi,pjak,lξiξjηkηl. To

do that, we will look at each term separately. The notation
∑
= means that we sum over i, j, k, l.

We start by looking at the last term (5)

(5) ξiξjηkηl = ∂pi,pjgξiξjδk,lηkηl = ∂pi,pjgξiξjη
2
k

∑
= 〈D2

ppg(p)ξ | ξ〉 ‖η‖2 .

Then, we look at the first one (1):

(1) ξiξjηkηl = −∂pi,pjgxk(pl − gxl)ξiξjηkηl = −∂pi,pjgξiξjηkxk(pl − gxl)ηl∑
= −〈D2

ppgξ | ξ〉〈η | x〉(〈p | η〉 − g〈x | η〉) = 0 since η ⊥ x.

The same computation holds for (4). Furthermore, for the second term (2), we have:

(2) ξiξjηkηl = (δk,i − ∂pigxk)(δj,l − ∂pjgxl)ξiξjηkηl
= (δk,iδj,l − δk,i∂pjgxl − δj,l∂pigxk + ∂pig∂pjgxkxl)ξiξjηkηl

= ξiηiξjηj − ξiηi∂pjgξjxlηl − ξi∂pigξjηjxkηk + ∂pigξi∂pjgξjηkηl∑
= 〈ξ | η〉2 − 〈ξ | η〉〈Dpg(p) | ξ〉〈x | η〉 − 〈Dpg(p) | ξ〉〈ξ | η〉〈x | η〉+ 〈Dg(p) | ξ〉2〈x | η〉2 = 0.

since x ⊥ η and ξ ⊥ η. And the same computation works for (3).

Combining the terms, we get:∑
i,j,k,l

Dpi,pjak,lξiξjηkηl =
∑
i,j,k,l

(5) ξiξjηkηl = 〈D2
ppg(p)ξ | ξ〉 ‖η‖2 .

We then have g(p) = κ′2

1−κ′2 +

√
h(p)

1−κ′2 where we recall that h(p) = κ′2 − (1− κ′2) ‖p‖2. This
implies that ∇g(p) = − p√

h(p)
and that

〈D2
ppg(p)ξ | ξ〉 = −h(p) ‖ξ‖2 + (1− κ′2)〈p | ξ〉2

h(p)3/2
.
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Finally, we get:

∑
i,j,k,l

Dpi,pjak,lξiξjηkηl = −h(p) ‖ξ‖2 + (1− κ′2)〈p | ξ〉2

h(p)3/2
‖η‖2 . (?)

We conclude that if κ′ < 1 then the right hand side is negative (since h(p) is positive) and
(w-MTW) is verified.

Remark 49. It is easy to show using very similar arguments that the cost function c(x, y) =

− ln(κ′〈x | y〉 − 1) (corresponding to an intersection of hyperboloids) does not satisfy the MTW
condition when κ′ > 1.

Remark 50. We obtain very similar results as the one presented in [GH09] except that we
have a minus sign in front of the expression (?) and that the function h is different. This sign
comes from the expression (??) and it is preserved under differentiation.
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In this chapter, we will show how we can leverage the formulation of non-imaging optics
problems in terms of optimal transport described in the previous chapter to develop an

efficient method to solve them: we propose a generic algorithm to solve eight optical component
design problems.

We start in Section 3.1 by showing that all the Visibility diagrams we consider have the
same structure and can be obtained by intersecting a 3D Power diagram with a planar or
spherical domain. Then, in Section 3.2, we describe an algorithm based on the damped
Newton’s method explained in Chapter 1 to solve many optical component design problems
when the target illumination is located at infinity i.e. in the far-field setting. We also show that
we can use a simple iterative procedure to also handle the case when the target is located at a
finite distance i.e. the near-field setting. This allows us to consider more complex problems
such as when the target is a color image and or when one wants builds multiple components
that target the same illumination to account for occlusion. Finally, in Section 3.3, we illustrate
our method with numerous simulated and fabricated examples. In particular, we show that we
can handle high resolution target lights with more than 4 million Dirac masses. The results
presented in this chapter come from the article [MMT18b].
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Figure 1 – Examples of simulated and physical results. Our algorithm can be used
to design mirrors and lenses that reflect or refract collimated or point light sources onto a
prescribed distribution of light. From top to bottom and left to right: Three lenses that refract
the three channels of a color image; Mirror that reflects a point light source (located inside the
mirror); Fabricated mirror that reflects a collimated light source; Fabricated lens that refracts
a collimated light source.

3.1 Visibility diagram as a restricted Power diagram

The main difficulty in evaluating the function G appearing in Equation (LEC) is to compute
the Visibility cells Vi(ψ) associated to each optical modeling problem. We show in this section
that the Visibility cells have always the same structure, allowing us to build a generic algorithm
in Section 3.2. More precisely, in all the non-imaging problems presented in Section 2.3, the
Visibility cells are of the form

Vi(ψ) = Powi(P ) ∩X. (3.1.1)

For a collimated source, X denotes the plane R2 × {0} and for a point source, X is the unit
sphere S2. We recall that the sets Powi(P ) are the usual Power cells of a weighted point cloud
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P = {(pi, ωi)} ⊂ R3 × R defined as

Powi(P ) = {x ∈ R3 | ∀j, ‖x− pi‖2 + ωi 6 ‖x− pj‖2 + ωj}.

This will allow us to efficiently compute the Visibility cells as it is easier and more generic to
intersect a Power diagram with a domain than directly computing the cells. The expression
of the weighted point cloud P = {(pi, ωi)} depends on the problem as we will explain in the
following.

3.1.1 Collimated source

In the (CS/Mirror) case, the following proposition explains the structure of the Visibility cells.

Proposition 51. Letting X = R2 × {0} and ψ ∈ RN , we have Vi(ψ) = Powi(P ) ∩X where
the weighted point cloud P = {(pi, ωi)} is given by the following expressions

• Convex mirror:
(pi, ωi) =

(
projR2(yi − ez)
〈yi − ez | ez〉

, 2ψi − ‖pi‖2
)
,

• Concave mirror:

(pi, ωi) =

(
−projR2(yi − ez)
〈yi − ez | ez〉

, 2ψi − ‖pi‖2
)
.

where projR2 : R3 → R2 × {0} denotes the orthogonal projection onto R2 × {0}.

Proof. We explain the formulas in the convex case. In the (CS/Mirror) case, the light source
is collimated and pi ∈ R2 × {0} is the slope of the plane which reflects (according to Snell’s
law) the upward vertical ray ez = (0, 0, 1) to the direction yi. We can express Snell’s law in
vector form by ~r =~i− 2〈~i | ~n〉~n where ~i is the unit incident ray, ~n the unit normal and ~r the
reflected ray. Then, a straightforward calculation shows that

pi =
projR2(yi − ez)
〈yi − ez | ez〉

.

The Visibility cell of yi is then given by

Vi(ψ) = {x ∈ X | ∀j,−〈x | pi〉+ ψi 6 −〈x | pj〉+ ψj}
= {x ∈ X | ∀j, ‖x− pi‖2 + 2ψi − ‖pi‖2 − ‖x‖2 6 ‖x− pj‖2 + 2ψj − ‖pj‖2 − ‖x‖2}
= {x ∈ X | ∀j, ‖x− pi‖2 + ωi 6 ‖x− pj‖2 + ωj},
= Powi(P ) ∩X,

where ωi = 2ψi − ‖pi‖2. In the concave case, one just has to replace pi by its opposite.
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Remark 52. When looking at the (CS/Lens) problem, one just has to replace the expression
of pi with the slope of the plane that refracts the upward vertical ray ez to the direction yi. A
straightforward calculation shows that in the concave case:

pi = −projR2(yi − κez)
〈yi − κez | ez〉

.

In the convex case, one just replaces pi by its opposite.

3.1.2 Point light source

We now look at the (PS/Lens) setting. The calculations are similar to the one presented in
[CMT15] but are included here for completeness. The main result is the following proposition:

Proposition 53. Letting X = S2 and ψ ∈ RN , we have Vi(ψ) = Powi(P ) ∩ X where the
weighted point cloud P = {(pi, ωi)} is given by

• Convex lens:

(pi, ωi) =

(
−κ′ yi

2ψ̃i
,− 1

ψ̃i
− κ′2

4ψ̃i
2

)
,

• ˜Concave lens:

(pi, ωi) =

(
κ′
yi

2ψ̃i
,

1

ψ̃i
− κ′2

4ψ̃i
2

)

where κ′ = 1
κ , ψ̃ = (ln(ψi))16i6n.

The notation ˜Concave means that the component is not concave but converges towards a
concave one when the discretization tends to infinity.

Proof. First, in order to transform the problem into an optimal transport one (see Remark 40
in the previous section), we let ψ̃ = (ln(ψi)))16i6N . We then take x ∈ Vi(ψ) which is equivalent
to x ∈ Vi(ψ̃) (due to the fact that ln is non-decreasing), we have

i = argmin
16j6N

ψ̃j
1− κ′〈x | yj〉

⇐⇒ i = argmax
16j6N

(
ψ̃−1
j − 〈x | κ

′ψ̃−1
j yj〉

)
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Then:

max
16j6N

(
ψ̃−1
j − 〈x | κ

′ψ̃−1
j yj〉

)
= max

16j6N

(
ψ̃−1
j −

∥∥∥∥x+
κ′

2
ψ̃−1
j yj

∥∥∥∥2

+ ‖x‖2 +
1

4

∥∥∥κ′ψ̃−1
j yj

∥∥∥2
)

= ‖x‖2 − min
16j6N

(∥∥∥∥x+
κ′

2
ψ̃−1
j yj

∥∥∥∥2

− ψ̃−1
j −

κ′2

4
ψ̃−2
j

)
= 1− min

16j6N

(
‖x− pi‖2 + ωi

)
where we have denoted pi = −κ′ yi

2ψ̃i
and ωi = −ψ̃−1

i −
κ′2

4 ψ̃
−2
i . We conclude that

x ∈ Vi(ψ) ⇐⇒ x ∈ Powi(P ) ∩X.

The formulas for the ˜Concave can be recovered by doing very similar computations.

Remark 54. Let us remark that setting κ′ = 1 in the previous equation allows us to recover
the formulas for the (PS/Mirror) setting.

All the formulas for the eight different settings are summarized in Table 3.1.

Table 3.1 – Formulas for the weighted points used to define the Power cells in Equation (3.1.1)
for the various problems. In the lens design problem, κ > 0 is the ratio of the indices of
refraction, κ > 1 in the (PS/Lens) setting, κ′ = 1

κ . Ccv means concave and Cvx convex. C̃cv
means that the optical component converges to a concave one when the discretization tends to
infinity.

Setting Points Weights
Cvx (CS/Mirror) pi =

projR2 (yi−ez)

〈yi−ez |ez〉 ωi = 2ψi − ‖pi‖2

Ccv (CS/Mirror) pi = −projR2 (yi−ez)

〈yi−ez |ez〉 ωi = 2ψi − ‖pi‖2

Cvx (PS/Mirror) pi = − yi
2 ln(ψi)

ωi = − 1
ln(ψi)

− 1
4 ln(ψi)2

C̃cv (PS/Mirror) pi = yi
2 ln(ψi)

ωi = 1
ln(ψi)

− 1
4 ln(ψi)2

Cvx (CS/Lens) pi = −projR2 (yi−κez)

〈yi−κez |ez〉 ωi = 2ψi − ‖pi‖2

Ccv (CS/Lens) pi =
projR2 (yi−κez)

〈yi−κez |ez〉 ωi = 2ψi − ‖pi‖2

Cvx (PS/Lens) pi = −κ′ yi
2 ln(ψi)

ωi = − 1
ln(ψi)

− κ′2

4 ln(ψi)2

C̃cv (PS/Lens) pi = κ′ yi
2 ln(ψi)

ωi = 1
ln(ψi)

− κ′2

4 ln(ψi)2

In the next section, we will show how we can leverage the relation between a Visibility
diagram and a Power diagram to use an algorithm based on the damped Newton’s method,
detailed in Algorithm 4, to solve efficiently and generically all the optical component design
problems.
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3.2 A generic algorithm

For each optical design problem, given a light source intensity function, a target light intensity
function and an error parameter, we will detail an algorithm, namely Algorithm 5 outputs a
triangulation of a mirror or a lens that satisfies the Light Energy Conservation Equation (LEC).

The goal is to find weights ψ such that G(ψ) = σ (see Equation (2.3.2)). In the previous
section, we saw how we can compute the Visibility diagram as the restriction of a Power
diagram with a planar or spherical domain. This allows us to reuse the damped Newton’s
method we presented in Chapter 1 to solve this equation. A key point of this algorithm is to
enforce the Jacobian matrix DG(ψ) to always be of rank N − 1. To this purpose, we need to
enforce all along the process that

∀i ∈ {1, . . . , N}, Gi(ψ) > 0. (3.2.2)

Indeed, first remark that since G is invariant under the addition of a constant, the kernel of
DG(ψ) always contains the vector (1, . . . , 1). Now remark that if we have Gi(ψ) = 0, then
the corresponding Visibility cell Vi(ψ) is empty, which implies that ∇Gi(ψ) = 0 (the gradient
being taken with respect to ψ). This is because the gradient of Gi involves integral on the
boundary ∂Vi(ψ), as shown for instance in Theorem 18 and Theorem 1.3 of [KMT16]. Hence,
if Gi(ψ) = 0, then the rank of DG(ψ) is at most N − 2 which prevents from using the Damped
Newton method. Our method consists of three steps:

• Initialization (Section 3.2.1): We first discretize the source density into a piecewise
affine density supported on a triangulation and the target one into a finitely supported
measure. Then, we find initial weights ψ0 satisfying the condition ∀i, Gi(ψ0) > 0.

• Damped Newton (Section 3.2.2): We construct a sequence ψk following Algorithm 6
until

∥∥G(ψk)− σ
∥∥ 6 η. The main difficulty here is to evaluate G(ψk) and DG(ψk).

• Surface construction (Section 3.2.3): Finally, we convert the solution ψk ∈ RN into a
triangulation. Depending on the non-imaging problem, this amounts to approximating an
intersection (or union) of half-spaces (or solid paraboloids, or ellipsoids) by a triangulation.

3.2.1 Initialization

Discretization of light intensity functions. Our framework allows to handle any kind
of collimated or point light source or target light intensity functions. The light source can be
for example any positive function supported on the plane or the sphere (depending on the
problem). We first approach the support of the source density ρ by a triangulation T and
assume that the density ρ : T → R+ is affine on each triangle with a value at each vertex. We
then normalize ρ by dividing it by the total mass

∫
T ρ(x)dx.

Similarly, the target light intensity function can also be any discrete probability measure
supported on a finite set Y ⊂ S2. If the user provides a greyscale image, one can transform
it into a discrete measure of the form σ =

∑
i σiδyi using Lloyd’s algorithm or more simply
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Algorithm 5: Mirror / lens construction
Input A light source intensity function ρin.

A target light intensity function σin.
A tolerance η > 0.

Output A triangulation RT of a mirror or lens.

Step 1 Initialization (Section 3.2.1)
T, ρ← DISCRETIZATION_SOURCE(ρin)
Y, σ ← DISCRETIZATION_TARGET(σin)
ψ0 ← INITIAL_WEIGHTS(Y )

Step 2 Solve Equation (LEC): G(ψ) = σ using Algorithm 6 (Section 3.2.2)
ψ ← DAMPED_NEWTON(T, ρ, Y, σ, ψ0, η)

Step 3 Construct a triangulation RT of R (Section 3.2.3)
RT ← SURFACE_CONSTRUCTION(ψ,Rψ)

by taking one Dirac mass per pixel. We do the latter in all experiments. The target measure
is also normalized by dividing with the discrete integral

∑
i σi. We need mini σi > 0 for the

damped Newton’s algorithm to converge, so if σi = 0, we simply remove the corresponding
Dirac mass δyi , thus ensuring that no light is sent towards the direction yi.

Choice of the initial family of weights ψ0. As mentioned at the beginning of this section,
we need to ensure that at each iteration all the Visibility cells have non-empty interiors. In
particular, we need to choose a set of initial weights ψ0 = (ψ0

i )16i6N such that the initial
Visibility cells are not empty. In our case, we can use simple heuristics:

• For the collimated light sources cases (CS/Mirror) and (CS/Lens), it is easy to see that if
we choose ψ0

i = ‖pi‖2
2 then ωi = 0, where pi is obtained using the formulas of Section 3.1,

then the Visibility diagram becomes a Voronoi diagram, hence pi ∈ Vi(ψ
0).

• For the mirror design for a point light source (PS/Mirror) case, an easy calculation shows
that if we choose ψ0

i = 1, then −yi ∈ Vi(ψ
0).

• For the lens design for a point light source (PS/Lens) case, we can show that if we also
choose ψ0

i = 1, then yi ∈ Vi(ψ
0).

Remark that the previous expressions for ψ0 ensure that Gi(ψ0) = ρ(Vi(ψ
0)) > 0 only when

the support Xρ of the light source is large enough. As an example in the (PS/Mirror) case, if
for some i, −yi /∈ Xρ, then we may have Gi(ψ0) = 0. To handle this difficulty, we use a linear
interpolation between ρ and a constant density supported on a set that contains the (−yi)’s.
This strategy also works for the (CS/Mirror), (PS/Lens) and (CS/Lens) cases.
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Remark 55. More details on the initialization methods for optimal transport and in particular
for the linear interpolation procedure can be found in Chapter 4 of this thesis.

3.2.2 Damped Newton’s algorithm

When the light source is collimated (i.e. X = R2 × {0}), the problem is known to be an
optimal transport problem in the plane for the quadratic cost, the function G is the gradient of
a concave function, its Jacobian matrix DG is symmetric and DG 6 0. Moreover, if Gi(ψ) > 0

for all i and if Xρ is connected, then the kernel of DG is spanned by ψ = cst. This ensures the
convergence of the damped Newton’s algorithm, see Algorithm 4 and [KMT16], presented as
Algorithm 6.

In the case of a point source, we make the change of variable ψ̃ = ln(ψ) and G̃ = G ◦ exp,
so that G(ψ) = σ if and only if G̃(ψ̃) = σ. This change of variable turns the optical component
design problem into an optimal transport problem, ensuring that G̃ is the gradient of a
concave function and that DG̃ is symmetric negative [CMT15], thus easily invertible. In the
(PS/Mirror) problem with convex mirrors, the damped Newton algorithm is also provably
converging [KMT16].

Computation of G and DG. By Section 3.1, the Visibility cells Vi(ψ) can be computed by
intersecting a certain 3D Power diagram with a triangulation T of the support Xρ of ρ. Such
intersection can be computed for instance using the algorithm detailed in Section 1.5 or the
ones described in [Lév15; SNA17]. Then,

Gi(ψ) =

∫
Vi(ψ)

ρ(x)dx

can be computed using first order quadrature formulas. The computation of DG is done
using forward-mode automatic differentiation [Ral81], where we store the gradient of Gi(ψ)

as a sparse vector. Note that this works quite efficiently since all numbers that occur in the
computation of Gi(ψ) depend only on the values ψj where j is such that (i, j) are neighbors in
the Visibility diagram, i.e. Vi(ψ) ∩Vj(ψ) 6= ∅.

Linear system. Since DG̃ is sparse and symmetric negative, we can efficiently solve the
linear systems using preconditioned conjugate gradient or Cholesky solver.

3.2.3 Surface construction

In the last step of Algorithm 5, we build a triangulation of the mirror or lens surface. The
input is a family of weights ψ solving Equation (LEC) and the parameterization function
Rψ whose expression is given in Section 2.3 and depends on the eight different cases. We
triangulate each Visibility cell by taking the convex hull of the vertices of its boundary. A
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Algorithm 6: Damped Newton’s method for an optical component design problem
Input The source ρ : T → R+ and target σ =

∑
i σiδyi ; an initial vector ψ0 and a

tolerance η > 0.

Step 1 Transformation into an optimal transport problem

If X = R2 × {0}, then ψ̃0 = ψ0 (and G̃ = G).
If X = S2, then ψ̃0 = (ln(ψ0

i ))16i6N (and G̃ = (Gi ◦ exp)16i6N ).

Step 2 Solve the equation: G̃(ψ̃) = σ using Algorithm 4 on Page 25

Return ψ := (ψ̃ki )16i6N if X = R2 × {0} or
ψ := (exp(ψ̃ki ))16i6N if X = S2.

vertex of the triangulation will belong to at least one Visibility cell. For each vertex, we can
compute exactly the normal to the (continuous, non-discretized surface) using Snell’s law since
we know the incident ray and the corresponding reflected/refracted direction yi.

3.3 Results and discussion

In this section, we present several numerical examples for the different problems previously
described as well as some other applications. In the experiments, we take κ = 1.5. Unless
stated otherwise, the light source is chosen to be uniform and the discretization of the target
(number of Diracs N) is chosen to be equal to the size of the image. The stopping criterion of
the Newton’s algorithm (Algorithm 6) is set to η = 10−8.

The output of our algorithm is a triangulation equipped with a normal at each vertex.
In all the simulations, we use the LuxRender rendering engine, with the Bidirectional Path
Tracing rendering method combined with a Sobol sampler and Fresnel losses are not taken
into account.

3.3.1 Simulated results

Genericity. Our algorithm is able to solve the eight different optical component design
problems presented in Section 2.3. We present for instance in Figure 2 four examples for
which we display the Visibility diagram of Xρ as well as the optical component (lens or mirror)
above it, a mesh of the optical component and a forward simulation using LuxRender. Then,
for the examples of Figures 3, 4, 6, and 7, we display the target distribution as an image; a
mean curvature plot (blue represents low mean curvature and red high mean curvature) of the
constructed mesh RT and a forward simulation using LuxRender.
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High-contrast and complex target lights. We can handle any kind of target distribution.
Figures 3 and 4 shows several examples of mirror design for respectively a collimated and a
point light source. Note that we are able to construct mirrors for smooth images such as the
Cameraman (first row) or Lena (second row) images as well as images with totally black
areas (third and fourth rows). We are also able to handle target supported on non-convex sets
such as the Hikari and Siggraph images. One can notice that since the area of the Visibility
cells are equal to the greyscale values of the image then the triangles have roughly the same
size, implying that one can recognize the target image in the mesh of the surface, see Figure
2 for zooms on different meshes. The mean curvature plot shows the discontinuities in the
surface which come from the black areas in the image. Figures 6 and 7 show the same kind of
results for the lens design problems (CS/Lens) and (PS/Lens).

Non-uniform light sources. Algorithm 5 can also be used with non-uniform light sources.
In Figure 5, we compare the meshes that are generated in the (CS/Lens) case when the source
is either uniform or a Gaussian (left). Because of the higher concentration of light, the details
of the triangulation are more concentrated in the middle in the Gaussian case (middle) than in
the uniform case (right).

Convex / concave optical components. As shown in Section 2.3, for each problem, one
can choose between two different parameterizations. For instance, for the (CS/Lens) problem,
one can build a lens which is either concave or convex, see Figure 6 for an illustration of these
differences. Note that in the (PS/Lens) setting (which corresponds to the last row of Figure 2
and Figure 7), the light source is not supported on the full hemisphere S2

+ but instead on
a smaller part of it. Indeed, choosing a smaller support for µ enforces that RT is a graph
above the plane instead of the hemisphere and thus avoids potential inter-refractions. As for
all figures, we have performed no post-processing on RT in order to emphasize the benefit
of designing convex or concave optical components (convexity is a form of regularity). One
also observes that when the lens is rotated with respect to the light source (Figure 9 and
first row of Figure 14), or when the target screen is not at the right distance (Figure 13), the
image is deformed in a monotonic and regular way. We believe this is due to the monotonicity
properties of optimal transport and to the concavity/properties of the optical components.

Comparison with previous work. Figure 8 compares the state of the art results presented
in [Sch+14] (second column) and the LuxRender renderings obtained by our method (third
column) on two target distributions for the (CS/Lens) case with a collimated uniform light
source in the near-field setting. Although the results are comparable, one can notice, in the
second column, the presence of small artifacts between the black and white regions, for instance
around the rings (notably in the center).

Application to pillows This problem consists in decomposing the optical component (mirror
or lens) into several smaller optical components that are called pillows, as illustrated in the
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first image of Figure 1, and are widely used in car headlight design. Each pillow independently
satisfies a non-imaging problem with the same target light, but with a different source (since it
receives only a portion of the light). Hence, the optical component made with all the pillows
glued together is more reliable and allows for example to reduce the artifacts due to small
occluders. Indeed if one object is in front of one or more lenses, the quality of the refracted
image decreases but the image can still be recognized. Using pillows also gives some flexibility
to the designer to improve the appearance and the volume occupied by the component. An
example with 9 pillows can be found in Figure 10, and the effect of a small occluder.

Application to color images Using pillows, we can also target color images. Indeed, we
can build one component for each of the Red, Green and Blue channels of an image. If we
then place three lights (red, green and blue) in front of each component the 3 images will be
perfectly aligned and thus produce the original color image, see the first image of Figure 1.

3.3.2 Physical prototypes

We built three lenses (see Figure 11) and two mirrors (see figures 12 and 1) corresponding to
collimated light sources. The lenses are fabricated in PMMA (whose index of refraction is
1.49) and the mirrors in aluminum. All the lenses and mirrors have size 100mm× 100mm and
were milled in one pass on 3-axis CNC machines after milling the blank. For the Cameraman
and Hikari lenses, we choose to focus the target image on a wall at 2 meters and the target is
a square of size 600mm× 600mm. For the Einstein’s signature lens and the two mirrors,
we choose to focus the target image on a wall at 1 meter and the target is a square of size
300mm×300mm. The five components were milled in one pass on the DMG-DC100V machine
with a 10mm radius end-mill.

The milling process is very sensitive. For the lenses, the end-mill is a super finishing ball
mill D10, 3 teeth and is following a concentric spiral trajectory. For the mirrors the end-mill is
a PCD ball mill hooped D10, 2 teeth and is following a parallel scanning trajectory. We observe
that the precision of the milling is not accurate enough: when the collimated light source is
traversing a lens or reflected by a mirror with no sandpapering and polishing, the light is
dispersed and we do not recognize the target (see Figure 14, second row). We had to sandpaper
them by hand before polishing them with a polishing paste. This clearly damages the lens
surface: there is a trade-off between removing the artifacts due to the milling and smoothing
too much the surface (see Figure 14, rows 3-5), thus damaging its refractive properties. Remark
that thanks to the convexity property (see Figure 14, fourth row), the lens surface is quite
regular and is more robust to sandpapering.

We can also observe some artifacts in the milling process. For instance, some corrugations
are present in the Cameraman lens (Figure 14 first row) and induce some artifacts in the
rendered image (Figure 11, first row, at the top of the projected image). We observe that
although the image are very contrasted, the projected image are very accurate. The boundary
of the target is often slightly blurred and this is due to the boundary of the lens or mirror
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where the milling was less good. Our model do not take into account the different wavelengths
of the white color and we observe on the boundary of the projected images a small chromatic
aberration (the boundary is slightly blue).

3.3.3 Limitations

The main limitation of the approach is the fact that we only deal with ideal light sources
(a light bulb is for instance neither collimated nor a point). A second remark is that we do
not account for self shadowing and internal reflections (although, this is not a problem in the
situations we have encountered).
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Figure 2 – Four non-imaging problems solved with Algorithm 5. From left to right:
Visibility diagram on Xρ (wireframe) with the optical component R, Triangulation RT of R;
forward simulation using LuxRender. From top to bottom: Convex Collimated Source Mirror;
Concave Point Source Mirror; Concave Collimated Source Lens; Point Source Lens (with the
union of ellipsoids).
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Figure 3 – Convex Collimated Source Mirror problem with a uniform light source for
different target distributions. From left to right: target distribution, mean curvature plot
of the mirror, forward simulation using LuxRender. Dimensions of the images from top to
bottom: 256x256, 256x256, 300x300, 400x400.
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Figure 4 – Concave Point Source Mirror problem for a uniform point light source with
different target distributions. From left to right: target distribution, mean curvature plot of
the mirror (top view), forward simulation using LuxRender. Dimensions of the images from
top to bottom: 256x256, 256x256, 300x300, 400x400.
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Figure 5 – Triangulation RT for a non-uniform light source. From left to right : non
uniform collimated light source; mesh of the lens for this non-uniform light; mesh of the lens
for a uniform light source.
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Figure 6 – Concave Collimated Source Lens with a uniform light source for different target
distributions. From left to right: target distribution, mean curvature plot of the lens (top
view), forward simulation using LuxRender. Dimensions of the images from top to bottom:
256x256, 256x256, 300x300, 400x400.
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Figure 7 – Point Source Lens with a uniform light source for different target distributions.
The lens surface is the boundary of the union of filled ellipsoids, hence is not convex, nor
concave. From left to right: target distribution, mean curvature plot of the lens (top view),
forward simulation using LuxRender. Dimensions of the images from top to bottom: 256x256,
256x256, 300x300, 400x400.
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Figure 8 – Comparison with [Sch+14] From left to right: target distribution; images
obtained by [Sch+14] and taken from their article; our forward simulation using LuxRender.
Last row: meshes of the two corresponding convex lenses: Rings (left) and Siggraph (right).

Figure 9 – Stability under rotation of the lens. LuxRender renderings in the (CS/Lens)
setting for the Cameraman target while rotating the lens with respect to the direction of the
collimated light source (0 degree / 5 degrees / 15 degrees).
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Figure 10 – Pillows and differences between FF and NF. Top: The lens is composed
of three pillows that solve the FF problem. Remark in the last image the shift between the
three projected images. Middle: A lens composed of nine pillows (each of them solving the
NF problem) that refracts a uniform collimated light source; Bottom: The same lens with an
obstacle in red.
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Figure 11 – Fabricated lenses for a collimated light source. From left to right: ex-
perimental setup, zoom on the target screen. From top to bottom: Cameraman, Hikari,
Einstein’s signature targets. Images are focused on a screen at 2 meters for the first two
rows and 1 meter for the last one.
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Figure 12 – Fabricated mirror for a collimated light source. Hikari target. The image
is focused on a screen located at 1 meter.

Figure 13 – Stability with respect to the depth of the focus plane. The lens of
Cameraman is designed to focus at a distance of 2 meters. The target screen is at different
depths, top: 1 meter; bottom: 50cm (left), 25cm (right).
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Figure 14 – Fabrication process. First row: lens for the Cameraman target with a zoom
on milling errors (left). The lens is rotated (20 degrees) around the axis of the light source
(right). Second row: Collimated light projected after reflection or refraction on the screen
(rough Cameraman mirror and rough Einstein’s signature)) Third row: Rough mirror /
sandpapered and polished mirror. Fourth row: Rough lens / sandpapered and polished lens.
Fifth row: Sandpapering with water / Polishing by hand
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We now look at an important aspect of computational optimal transport, namely the choice
of the initial weight vector ψ0. In the semi-discrete setting, we described the damped

Newton’s method in Chapter 1 and saw that a necessary condition for the convergence of this
algorithm is that all Laguerre cells must have positive mass at every stage of the algorithm
and in particular at the beginning. We also saw in the previous chapter that this condition
can be hard to satisfy in practice, for instance when the support of the source measure is small
(when building pillows for example, see Section 3.3). When the cost function is quadratic, it is
easy to ensure that all the Laguerre cells are not empty, see Section 4.1.1, but there can still
be Laguerre cells that have zero mass. Thus, one must develop other ways of finding correct
initial weights.

Let us remark that this initialization problem is also important in other numerical methods
for optimal transport and in particular in the discrete setting. Indeed, the auction algorithm
(see Algorithm 1) as well as the Sinkhorn-Knopp algorithm (see Algorithm 2) can be very slow
in some cases if we don’t use scaling techniques. We now look more precisely at the latter
case and denote by ε the regularization parameter. In practice, when ε is not too small, the
algorithm behaves well and there are no initialization issues as it suffices to take for ϕ0 and ψ0

constant vectors equal to 0. However if ε is small, and in some settings, this choice can lead to
numerical instabilities. Consider the case where the source and target measures have disjoint
supports that are far away one from the other and suppose that we choose constant vectors

103
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equal to 0 for the initial Kantorovich potentials ϕ0 and ψ0. In that case, there will exist points
x and y such that c(x, y) will be large so that the update formula (Sinkhorn/Update) will
involve dividing by numbers close to 0. This problem can be seen as an initialization problem
and can be handled using scaling techniques on ε, see [SS13].

In this chapter, we investigate different initialization strategies to find initial weights in the
semi-discrete setting. Let us remark that this is an ongoing work. In Section 4.1, we describe
three methods to initialize semi-discrete optimal transport algorithms and in Section 4.2,
we illustrate the different methods on numerous examples to show their effectiveness and
robustness.

4.1 Initialization procedures

We detail here three procedures that can be used to initialize Algorithm 4 for solving the
semi-discrete optimal transport for the cost functions used in this thesis. We detail each
method and prove its convergence. Numerical examples can be found in Section 4.2. We recall
that µ denotes a probability measure on a source domain X and ν a probability measure on a
target domain Y .

4.1.1 Local perturbation method

We saw that, for the cost functions considered in this thesis (quadratic cost and cost functions
related to inverse problems in optics) the Laguerre diagram can be seen as the intersection
between a Power diagram and the support X of the source measure µ, see Section 3.1. We will
see how one can leverage this formulation to develop a method based on local perturbations to
find a good initialization. The next proposition describes how we can choose weights ψ0 such
that all the Laguerre cells (Lagi(ψ

0))16i6N are non-empty i.e. contains at least one point.

Proposition 56. Let X ⊂ Rd be a compact set, Y = {y1, . . . , yN} ⊂ Rd be a point set and
ψ0
i = −dX(yi)

2. Then

∅ 6= {x ∈ X | dX(yi) = ‖x− yi‖} ⊂ Lagi(ψ
0)

where dX(yi) = minx∈X ‖x− yi‖.

Proof. Let i ∈ {1, . . . , N} and x ∈ X such that dX(yi) = ‖x− yi‖, then for j ∈ {1, . . . , N}

‖x− yj‖2 + ψ0
j = ‖x− yj‖2 − dX(yj)

2

> dX(yj)
2 − dX(yj)

2 = 0 = ‖x− yi‖2 + ψ0
i .

Thus x ∈ Lagi(ψ
0).

With this choice of initial weights, some Laguerre cells can still have zero mass. This
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happens for instance when the intersection of a Power cell with the source domain X is reduced
to a point. We therefore need a stronger result on how to choose initial weights such that the
Laguerre cells also have non empty interiors. In the remaining of this section, we show how
one can use an iterative method to find such weights.

Setting. We now suppose that µ is a regular simplicial measure supported on a simplex soup
X, as in Definition 1.7. We also suppose that Y is in generic position with respect to X, as
in Definition 1.9. We denote by Z(ψ) the set of indices of Laguerre cells with zero mass for
weights ψ ∈ RN (see the left image of Figure 1 for an illustration). More precisely,

Z(ψ) := {i ∈ {1, . . . , N} | Gi(ψ) = 0}.

We also denote by 1A, for a set of indices A ⊂ {1, . . . , N}, the vector of RN whose i-th entry
is equal to 1 if i ∈ A and 0 otherwise.

Pow1(ψ)

Pow2(ψ)

Pow3(ψ)

Pow4(ψ)

Powi(ψ) Powj(ψ)

p

Hi,j(ψ̃)

Powk(ψ)

σ

Figure 1 – Illustration of the Local Perturbation method. Left: µ is supported on
the black triangle. The boundaries of the Power cells are drawn in red and blue. For the
red Power diagram, Z(ψ0) = {1, 2, 3}. By applying a small perturbation to ψ0, we obtain
weights ψ1 and the corresponding blue Power diagram where Z(ψ1) = {2}; Right: illustration
of Lemma 59.

Iterative local perturbation. We now present an iterative method to find weights ψ such
that Z(ψ) = ∅. Roughly speaking, at each iteration, we show that we can find a small
decrement ε > 0 such that ψ̃ = ψ− ε1Z(ψ) satisfies Card(Z(ψ̃)) < Card(Z(ψ)). Repeating this
process, we end up with weights for which all the Laguerre cells have positive mass. The effect
of one iteration is summarized in the following proposition.

Proposition 57. Let µ be a regular simplicial measure supported on a simplex soup X, Y be
a point cloud in generic position with respect to X. Let ψ ∈ RN be a vector such that Z(ψ) 6= ∅
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and for every i ∈ {1, . . . , N}, Powi(ψ) ∩X 6= ∅. Then there exists ε0 > 0 such that for ε < ε0

Card(Z(ψ̃)) < Card(Z(ψ)) and ∀i ∈ {1, . . . , N}, Powi(ψ̃) ∩X 6= ∅

where ψ̃ = ψ − ε1Z(ψ).

We start by defining, for i 6= j, the halfspace Hi,j(ψ) by

Hi,j(ψ) = {x ∈ Rd | ‖x− yi‖2 + ψi 6 ‖x− yj‖2 + ψj}.

Let us remark that we have Powi(ψ) ⊂ Hi,j(ψ) for any j 6= i. We will also need the following
lemmas.

Lemma 58. Let i ∈ {1, . . . , N}, ε > 0, and ψ̃ = ψ − ε1{i}, then the distance between ∂Hi,j(ψ)

and ∂Hi,j(ψ̃) is given by

d(∂Hi,j(ψ), ∂Hi,j(ψ̃)) =
ε

2 ‖yi − yj‖
.

Let us remark that Hi,j(ψ) ⊂ Hi,j(ψ̃) meaning that ∂Hi,j(ψ̃) moves closer to yj .

Lemma 59. Let µ be a regular simplicial measure supported on X, p a point in X and ψ ∈ RN ,
we define the set of empty cells containing p by

Zp(ψ) = {i ∈ Z(ψ) and p ∈ Powi(ψ) ∩X}.

If Zp(ψ) 6= ∅ and ψ̃ = ψ − ε1Z(ψ) for ε > 0, there exists r > 0 such that

B(p, r) ⊂
⊔

j∈Zp(ψ)

Powj(ψ̃)

where B(p, r) denotes the ball of center p and radius r and
⊔

the disjoint union.

An illustration of this lemma can be found in the right image of Figure 1.

Proof. We take a point p ∈ X, a weight vector ψ ∈ RN , i ∈ Zp(ψ), ε > 0 and define
ψ̃ = ψ − ε1Z(ψ). We also take j 6∈ Zp(ψ).

By definition, we have Powi(ψ) =
⋂
k 6=iHi,k(ψ), thus Lemma 58 implies that if we choose

r < ε
2‖yi−yj‖ then B(p, r) ⊂ Hi,j(ψ̃). Furthermore, if we choose

r =
ε

4 min
i∈Zp(ψ),j 6∈Zp(ψ)

‖yi − yj‖
,

then we get
∀j 6∈ Zp(ψ), B(p, r) ⊂

⋃
i∈Zp(ψ)

Hi,j(ψ̃).
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Taking the complement that we denote by X{ (for a set X ⊂ Rd), we get

∀j 6∈ Zp(ψ), B(p, r){ ⊃

 ⋃
i∈Zp(ψ)

Hi,j(ψ̃)

{

=
⋂

i∈Zp(ψ)

Hi,j(ψ̃){ =
⋂

i∈Zp(ψ)

Hj,i(ψ̃) ⊃ Powj(ψ̃).

This means ⋂
j 6∈Zp(ψ)

Powj(ψ̃) ⊂ B(p, r){.

Finally, taking the complement again and using the fact that the Power diagram is a partition
of Rd, we obtain the intended result i.e.

B(p, r) ⊂
⋃

j 6∈Zp(ψ)

Powj(ψ̃){ =
⋃

j∈Zp(ψ)

Powj(ψ̃).

Proof of Proposition 57. We take ψ ∈ RN such that Z(ψ) 6= ∅ and for every i, Powi(ψ)∩X 6= ∅.
According to Theorem 18, G is of class C1. In particular it is continuous, so we can find ε0 > 0

such that for ε < ε0 and ψ̃ = ψ − ε1Z(ψ), we have: Gi(ψ) > 0 =⇒ Gi(ψ̃) > 0. Furthermore,
if i ∈ Z(ψ) then Powi(ψ) ⊂ Powi(ψ̃). We conclude that if Powi(ψ) ∩X is not empty then
Powi(ψ̃) ∩X stays not empty.

We now take p ∈ X such that Zp(ψ) 6= ∅ and ε < ε0, then Lemma 59 gives the existence of
r > 0 such that

B(p, r) ⊂
⊔

j∈Zp(ψ)

Powj(ψ̃).

We know that p belongs to a simplex σ. Since µ is a regular simplicial measure, the density
µσ with respect to the dim(σ)-dimensional Haussdorf measure on σ is bounded from below,
so that µ(B(p, r) ∩ σ) > 0. Thus 0 < µ(B(p, r) ∩ σ) 6

∑
j∈Zp(ψ) µ(Powj(ψ̃) ∩ σ). This means

that there exists j ∈ Zp(ψ) such that µ(Powj(ψ̃) ∩ σ) > 0 i.e. j 6∈ Z(ψ̃). Thus we found a
Laguerre cell Lagj(ψ) that gained mass i.e. Card(Z(ψ̃)) < Card(Z(ψ)).

The Local Perturbation method is detailed in Algorithm 7. Since we have no bounds
on ε, we use the following heuristic: we assume we are given a maximal decrement and if, for
this choice, the number of empty cells does not decrease then we halve it and try again. The
next proposition explains the convergence of this algorithm.

Proposition 60. Let µ be a regular simplicial measure supported on a simplex soup X, Y ⊂ Rd
a point cloud in generic position with respect to X. Then, Algorithm 7 converges in a finite
number of steps.

Proof. We simply iterate the result of Proposition 57. Indeed, the proposition tells us that
we can find a sequence of weights (ψk)k such that (Card(Z(ψk)))k is strictly decreasing while
maintaining the fact that all the Laguerre cells are not empty.
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Algorithm 7: Local perturbation method
Input A regular simplicial measure µ,

A finitely supported measure ν =
∑

16i6N νiδyi ,
A maximal decrement ε > 0,
A family of weights ψ0 ∈ RN such that ∀i, Lagi(ψ

0) 6= ∅
Output A family of weights ψ such that ∀i, Gi(ψ) > 0.
Initialization ψ ← ψ0, p← Card(Z(ψ)0)
while p > 0 do

pcur ← N
εcur ← ε
while pcur > p do

ψcur ← ψ − εcur1Z(ψcur)

pcur ← Card(Z(ψcur))
if pcur < p then

ψ ← ψcur
p← Card(Z(ψ))
break

else
εcur ← εcur/2

end
end

end

4.1.2 Interpolation method

We now detail another method which can work with every cost function as long as an algorithm
to solve optimal transport exist for this cost. This covers all the problems studied in this thesis:
quadratic cost and cost functions related to inverse problems in optics. The core of the method
is a linear interpolation between two source measures: the initial source measure µ and the
normalized Lebesgue measure λP supported on a bigger domain P containing X ∪ Y . Note
that this measure can be defined on a set that has a higher dimension than the support of µ.
For instance, when X is a surface embedded in R3, then λP can be the normalized Lebesgue
measure supported on a bounding cube containing X ∪ Y ; when X is a 2D domain, λP can be
the normalized Lebesgue measure supported on a sufficiently large rectangle containing X ∪ Y .
We define for t ∈ [0, 1] an interpolating measure

µt = tλP + (1− t)µ

in such a way that µ1 = λP and µ0 = µ. It is easy to see that choosing constant weights is
sufficient to ensure that all the Laguerre cells for µ1 = λP have positive mass.

The method then consists in iteratively decreasing t and solving the optimal transport
problem between µt and ν, refer to Algorithm 8 for more details. In this algorithm, we denote
by SOLVE_OT(µ, ν, η, ψ0) a function that solves the optimal transport between µ and ν with a
numerical error η starting from weights ψ0 (which can for instance be Algorithm 4).
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Algorithm 8: Linear interpolation method
Input A measure µ supported on X,

A finitely supported measure ν =
∑

16i6N νiδyi ,
A set P that contains X ∪ Y ,
A tolerance η > 0,
Weights ψ0 ∈ RN such that ∀i, λP (Lagi(ψ

0)) > 0.
Output A family of weights ψ such that ∀i, Gi(ψ) > 0.
Initialization k := 0 and t := 1
while t > tmin := mini νi − η, 0 do

Define µt = tλP + (1− t)µ
ψk+1 ← SOLVE_OT(µt, ν, η, ψk)
t← t/2
k ← k + 1

end

The stopping criterion is justified by the following proposition.

Proposition 61. For t < mini νi − η where η is the numerical error of Algorithm 4 then for
every i ∈ {1, . . . , N}, µ(Lagi(ψ)) > 0.

To prove this proposition, we will need the next lemma.

Lemma 62. Let µ be a probability measure defined on X, λP the normalized Lebesgue measure
on P and µt = tλP + (1− t)µ, for t ∈]0, 1[ be a probability measure on P . Then

∀A ⊂ P, µt(A) > t =⇒ µ(A) > 0.

Proof. We take 0 < t < 1 and suppose that µt(A) > t and µ(A) = 0. Then since µt(A) =

tλP (A), we get λP (A) > 1 which is not possible since λP is a probability measure over P .
Thus µ(A) > 0.

Proof of Proposition 61. For a numerical error η and i ∈ {1, . . . , N}, at the end of the optimal
transport algorithm (see Algorithm 4) between two measures µt and ν =

∑N
i=1 νiδyi , we have

|µt(Lagi(ψ)) − νi| 6 η. Thus µt(Lagi(ψ)) > νi − η > mini νi − η. So if t < mini νi − η then
µt(Lagi(ψ)) > t and we can apply Lemma 62 with A = Lagi(ψ), so that µ(Lagi(ψ)) > 0.

4.1.3 Rescaling method

The third method we look at is a classical trick, that we call rescaling. Let us remark that this
procedure only works for the quadratic cost. The idea is to first translate and/or rescale the
target point cloud Y such that it is included in the support of the source measure X. More
precisely, we find a translation vector t ∈ Rd and a scalar λ > 0 such that the point cloud
Z = {z1, . . . , zN} defined by zi = λyi + t is such that zi ∈ X and we look at the optimal
transport between (X,µ) and (Z, ν) for the quadratic cost.
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In the following, we denote by X the centroid of a domain X ⊂ Rd. If X = {x1, . . . , xN}
is finite then X = 1

N

∑N
i=1 xi; if it is a continuous domain equipped with some measure µ then

X =
∫
X xdµ(x)∫
X dµ(x)

. We also denote by bbox(X) an axis-aligned bounding box of a domain X ⊂ Rd.
Finally, the diameter of a compact set X is denoted by diam(X) = maxx,y∈X ‖x− y‖.

We propose two choices for the translation vector t and the scaling factor λ:

1. (t, λ) =
(
X − Y , diam(X)

diam(Y )

)
,

2. (t, λ) =
(

bbox(X)− bbox(Y ), vol(bbox(X))
vol(bbox(Y ))

)
.

Remark 63. These choices are not guaranteed to work for any domain X and point cloud Y
as they heavily depend on the geometry of X and Y . For instance, when X is disconnected
or non-convex, such values for t and λ does not always guarantee that Z = λY + t ⊂ X. A
possible solution (at least when both sets have the same underlying dimension) would be to find
the biggest box enclosed in X and find the parameters t and λ to fit Y inside this box.

The following proposition details the relation between the Laguerre cells of the two point
clouds Y and Z.

Proposition 64. Given a point set Y = {y1, . . . , yN} ⊂ Rd, λ > 0 and t ∈ Rd, if we define
the point set Z = {z1, . . . , zN} ⊂ Rd by zi = λyi + t, then there is the following relation between
the Laguerre cells of the two sets

Lagzi(ψ) = Lagyi(ϕ)

where ϕi = ψi
λ + 2〈t | yi〉+ (λ− 1) ‖yi‖2 for i ∈ {1, . . . , N}.

Proof. Let us take x ∈ Lagzi(ψ) for a vector of weights ψ ∈ RN and j ∈ {1, . . . , N}, we have

‖zj‖2 − ‖zi‖2 = 〈zj − zi | zj + zi〉
= λ〈yj − yi | λ(yj + yi) + 2t〉
= λ2(‖yj‖2 − ‖yi‖2) + 2λ〈t | yj − yi〉

= λ
[
‖yj‖2 − ‖yi‖2 + (λ− 1)(‖yj‖2 − ‖yi‖2) + 2〈t | yj − yi〉

]
.

Thus

x ∈ Lagzi(ψ) ⇐⇒ ∀j, ‖x− zi‖2 + ψi 6 ‖x− zj‖2 + ψj

⇐⇒ ∀j, −2〈x | zi − zj〉 6 ψj − ψi + ‖zj‖2 − ‖zi‖2

⇐⇒ ∀j, −2〈x | yi − yj〉 6 ϕj − ϕi + ‖yj‖2 − ‖yi‖2

⇐⇒ ∀j, ‖x− yi‖2 + ϕi 6 ‖x− yj‖2 + ϕj ⇐⇒ x ∈ Lagyi(ϕ).

An easy consequence of this proposition is the following result.
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Corollary 65. Tψ is an optimal transport map between (X,µ) and (Z, ν) for the quadratic
cost if and only if Tϕ is an optimal transport map between (X,µ) and (Y, ν) for the quadratic
cost where ϕ are the weights defined in Proposition 64.

It then suffices to solve the optimal transport between (X,µ) and (Z, ν). Solving the
optimal transport between (X,µ) and (Z, ν) can be easier since Z ⊂ X. Indeed, in this case,
choosing constant weights is sufficient to ensure that the Laguerre cells are non-empty. If there
are still empty cells, we can apply one of the two previous methods. In practice, we observe
that there are less empty cells with (Z, ν) than with (Y, ν).

4.2 Numerical results

In this section, we compare and illustrate the pros and cons for the different methods we
presented in the previous section. We recall that the work presented in this chapter is an
ongoing work.

4.2.1 Illustrations of the convergence of the three methods

We start by illustrating the different methods when both the source and target measures are
supported on 2D domains. In Figure 2, we display the evolution of the number of empty
Laguerre cells for the Local Perturbation method in different settings, the maximal
decrement is chosen to be ε = 10−2 and the number of iterations corresponds to the number
of times the outer loop of Algorithm 7 is executed. One can observe that the number of
empty Laguerre cells is strictly decreasing. Let us also remark that the settings considered in
Figure 2 are bad candidates for the Local Perturbation method because a lot of points in
Y are “projected” onto the same point on X. More precisely, there are a lot of points yi such
that Powi(ψ

0) ∩X is the same point (where ψ0 are the weights detailed in Proposition 56).
Furthermore, in the last row of Figure 2, the support of µ is disconnected. In particular, µ is
not regular and is not covered by Proposition 57, meaning that we do not have guarantees on
the convergence of the algorithm in this case. In particular, one Laguerre cell could be “stuck”
inside one connected component.

In Figure 3, we detail the Interpolation method on one example where the source
measure is supported on [−1, 0]× [−1, 1] and the target point cloud is composed of random
points sampled in [−1, 1]2. We see that the number of empty Laguerre cells is also strictly
decreasing. At the end of the procedure, all the Laguerre cells intersect the support of the
source measure. In Figure 4, we display the initial, final Laguerre cells for different settings for
the Interpolation method. Finally, in Figure 5, we illustrate how the Rescale method
works on one example. Let us stress that the heuristics used to choose t and λ can not work
when the support of the source measure is disconnected, non-convex or more generally when
the two sets do not have the same topology.
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Figure 2 – Local Perturbation method in 2D. Both measures are uniform. Left:
setting (the source measure is supported on the red domain, the target measure on the blue
point cloud); Right: evolution of the number of empty Laguerre cells (for ε = 10−2), an
iteration correponds to an update of the vector ψ. From top to bottom: left part of a square;
ring; two disks.

We now show that we can also use these initialization procedures when the source measure
is supported on a triangulated surface in R3 and the target measure is a weighted point cloud
in R3. In Figure 6, we display the evolution of the number of empty Laguerre cells for three
examples of triangulated surfaces for the Local Perturbation method. Let us remark that
the number of empty Laguerre cells is strictly decreasing. We can also note that there is less
iterations than in Figure 2. This is because for a triangulated surface, the number of points yi
that are “projected” on the same point is finite thus avoiding the drawbacks present in the 2D
examples. As in Figure 2, for the last example, since the support of µ is not connected we do
not have guarantees of convergence but it still works in practice. In Figure 7, we display the
initial and final Laguerre cells obtained during the Interpolation procedure. Let us note
that for a triangulated surface, the Rescale method can not work since it is impossible to
move, with only a translation vector and a scaling factor, a point cloud onto a surface.
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Figure 3 – Detailed illustration of the Interpolation method in 2D. The setting
corresponds to the first row of Figure 2. Top: we show for different iterations (1, 3, 5 and 7)
the points corresponding to empty Laguerre cells in red. Bottom: initial Laguerre cells; final
Laguerre cells; evolution of the number of empty Laguerre cells.

Figure 4 – Illustrations of the Interpolation method in 2D. The settings correspond
to the second and third rows of Figure 2. From left to right: initial Laguerre cells; final
Laguerre cells; evolution of the number of empty Laguerre cells.

4.2.2 Performance

We now briefly look at the performance of the three methods we presented on the semi-discrete.
All tests have been done on a laptop with a 3.6 GHz i7 CPU. We compare the running times of
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Figure 5 – Rescale method in 2D. The source measure is supported on the red domain,
the target measure on the blue point cloud and the rescaled point cloud is in green.

the three methods as well as the number of secondary optimal transport problems that we need
to solve. The results can be found in Table 4.1. We can also see that in most of the examples,
the Local Perturbation method takes more time than the Interpolation one. This is
due to the fact that the number of iterations is much greater in the Local Perturbation
method (because ε is small), and also because the Laguerre diagram is computed more times:
4104 vs 106 times for instance in the setting corresponding to the first row. Let us also stress
that the Rescale is inapplicable in most of the settings because of the simplicity of the choice
of the translation vector t and the scaling factor λ that can not handle complex geometries.

Setting Local Perturbation Interpolation Rescale
time (s) # OT time (s) # OT time (s) # OT

square 75 0 4 9 0.4 1
ring 56 0 8 9 X X

two disks 175 0 4 11 X X
hemisphere 52 0 20 9 X X

torus 17 0 33 7 X X
two spheres 14 0 9 5 X X

Table 4.1 – Running time and number of secondary optimal transport problems using the three
initialization procedures. An X denotes that the method can not be used.

4.2.3 Application to non-imaging optics

We now show how we can use the methods described in the previous section and in particular
the Interpolation method to solve non-imaging optics problems. In particular, we will look
at the case of pillows detailed in Section 3.3. The setting is the following: we have a uniform
collimated light source supported on X = [−1, 0]× [−1, 1] the target is the cameraman image
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Figure 6 – Illustrations of the Local Perturbation method for a triangulated
surface in R3. Left: setting (the source measure is supported on the red domain and the
target one on the blue point cloud); Right: evolution of the number of empty Laguerre cells.
From top to bottom: µ is supported on the right hemisphere and the target point cloud is
sampled on the whole sphere S2; µ is supported on a torus and the target point cloud is
sampled inside [−1, 1]3; µ is supported on two disconnected spheres and the target point cloud
is sampled inside [−1, 1]3.

discretized with 1024 Dirac masses. In this case, we can not choose constant weights to get
good initial weights since with this choice, approximately half of the Power cells do not intersect
X, see the top row of Figure 8. One can remark that at the end of the Interpolation
procedure all the Laguerre cells intersect the support of the light source.

4.2.4 Pros and cons

We finish this section by summarizing the pros and cons of each method in Table 4.2. We
make some observations on this table:

• the Local Perturbation method is relatively fast since we only have to compute
squared distances (to get ψ0) and the areas of the Laguerre cells i.e. Gi(ψ) for i ∈
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Figure 7 – Illustrations of the Interpolation method for a triangulated surface in
R3. We display the initial and the final Laguerre cells. Both the source and target measures
are uniform for the three examples of Figure 6.

{1, . . . , N};
• the Interpolation method is potentially slow since there can be many different optimal

transport problems to solve but can handle any cost function;
• the Rescale method is fast since there is only one optimal transport to solve but it
can not be used in most of the cases because of the geometry of the source and target
domains.

Method Pros Cons
Local Perturbation fast; guarantees quadratic cost; many iterations

Interpolation any cost; guarantees slow
Rescale fast; guarantees quadratic cost; same dimension

Table 4.2 – Pros and cons of each initialization method. “guarantees” means that we have
theoretical guarantees on the convergence of the method.
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Figure 8 – Illustrations of the Interpolation method for a non-imaging optics
problem. Top: in blue the support of the light source and in red the points pi corresponding
to empty Laguerre cells; Bottom: initial and final Laguerre cells;





Conclusion and perspectives

In this thesis, we looked at the relations between optimal transport and optical component
design. We showed that many inverse problems arising in optics can be seen as an instance of
an optimal transport problem between the light source represented by a probability measure
supported on a planar or spherical domain and a target illumination at infinity represented by
a probability measure on the sphere, for different cost functions. This allowed us to use a very
efficient numerical method by combining the damped Newton’s algorithm with results coming
from computational geometry and create a common framework for solving optical component
design problems. We also looked at another important aspect of optimal transport algorithms
namely the choice of the initial weight vectors.

In the future, we first want to see if we can extend the initialization strategies mentioned
in the last chapter to discrete optimal transport. Another perspective would be to look at the
so-called Generated Jacobian Equations and try to see if some of the methods developed in this
thesis can be adapted in this setting. This could be interesting since such equations encompass
other optical component design problems such as the near-field setting. The main difficulty
is the additional non-linearity added by such equations which makes the study of solutions
more complex. We also want to see if we can adapt the methods developed in this thesis for
other non-convex inverse problems. For instance, we want to consider the optical component
design problems we presented where we replace the ideal light source by an extended one. The
first step would be to find a setting in which this problem is well-posed. Another example
is in seismic imaging and more precisely in the full waveform inversion framework. In this
setting, one wants to measure the misfit between a predicted and recorded seismic signal. It
has recently been shown that choosing a Wasserstein distance to measure the misfit between
the two signals “convexifies” the error function and thus helps in minimizing it. We want to
see if introducing semi-discrete optimal transport can improve the minimization of the error.
The main difficulty is because these signals are by nature very oscillatory, the initial weights
need to be chosen carefully since we can easily end up in a case where many Laguerre cells
have zero mass. We believe that we can develop some heuristics to speed up the initialization
procedures in this specific setting.
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