
HAL Id: tel-02136215
https://theses.hal.science/tel-02136215

Submitted on 21 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On quantum Invariants : homological model for the
coloured jones polynomials and applications of quantum

sl(2|1).
Cristina Ana-Maria Palmer-Anghel

To cite this version:
Cristina Ana-Maria Palmer-Anghel. On quantum Invariants : homological model for the coloured
jones polynomials and applications of quantum sl(2|1).. General Topology [math.GN]. Université
Sorbonne Paris Cité, 2018. English. �NNT : 2018USPCC035�. �tel-02136215�

https://theses.hal.science/tel-02136215
https://hal.archives-ouvertes.fr




Institut de mathématiques de
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des modèles topologiques pour certaines invariantes quantiques m’a fascinée
la première fois que je l’ai entendue, elle est restée avec moi pour chaque jour
pendant ces trois années, et elle donne des très belles directions de recherche.
Les discussions avec lui m’ont enrichie mathématiquement et j’ai été tou-
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Je suis reconnaissante à Emmanuel Wagner pour m’avoir invitée plusieurs
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unique et spéciale dans mon parcours mathématique.
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de Bucarest, pendant mes premières 4 années comme étudiante. Aussi,
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mamei mele, pentru ceea ce ı̂nvăt, de la ea ı̂n fiecare zi, pentru delicatet,ea
ei, pentru momente muzicale speciale pe care le aduce printre noi, muzica de
mai sus este pentru ea. Ensuite, un grand merci a ma soeur, Cipriana, pour
être toujours proche, pour ton soutien, pour tes crêpes et bien sûr pour ton
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Résumé
Le domaine de cette thèse est dans la topologie quantique et son sujet est axé

sur l’interaction entre la topologie de basse dimension et la théorie des représentations.
Ma recherche concerne aspects différents des invariants quantiques pour les en-
trelacs et les 3-variétés, visant a créer des ponts entre les façons algébriques et
topologiques de les définir. D’une part, une description algébrique et combinatoire
pour un concept mathématique, crée l’opportunité de développer des outils de
calcul. D’un autre côté, les descriptions topologiques et géométriques ouvrent des
perspectives vers des constructions qui mènent a une compréhension plus profonde
et a des théories plus subtiles.

Les polynômes de Jones coloriés sont des invariants quantiques d’entrelacs con-
truits en partant de la théorie des représentations de Uq(sl(2)). Le premier invari-
ant de cette séquence est le polynôme de Jones original, qui peut-être caractérisé
aussi par la théorie de l’écheveau. Bigelow et Lawrence ont décrit un modèle ho-
mologique pour le polynôme de Jones. Ils ont utilisé la représentation de Lawrence,
qui est une représentation de groupe de tresses sur l’homologie des revêtements
d’espaces de configurations dans le disque pointé, et la nature de l’écheveau de
l’invariant pour la preuve. Contrairement a ce cas, les autres polynômes de Jones
coloriés ne peuvent pas être définis facilement par la théorie de l’écheveau.

Dans la premiere partie de cette thèse, nous donnons un modèle topologique
pour les polynômes de Jones coloriés. Nous utilisons leur définition comme in-
variants quantiques et construisons des correspondants topologiques pas à pas.
Nous observons d’abord que l’invariant peut être codé par des espaces dits de plus
haut poids, puis utiliser un résultat de Kohno, qui identifie ces espaces avec des
représentations de Lawrence. Nous prouvons que les polynômes de Jones coloriés
peuvent être obtenus comme une forme d’intersection géométrique gradués entre
des classes d’homologie dans certaines couvertures des espaces de configuration de
points dans le disque pointé.

Les deuxième et troisième parties sont orientées vers les applications de la
théorie de la représentation des super groupes quantiques aux invariants quan-
tiques. La deuxième partie est une collaboration avec N. Geer, ou nous con-
struisons des invariants quantiques pour 3-variétés a partir des représentations de
Uq(sl(2|1)). Turaev-Viro ont défini une méthode de type somme d’état qui donne
des invariants de 3-variétés a partir de Uq(sl(2)).Pour les super groupes quan-
tiques, cela entrâıne l’annulation des invariants. Plus tard, Geer-Patureau-Turaev
ont défini une méthode modifiée qui commence par une catégorie avec de bonnes
propriétés et conduit à des invariants non-nulls. Notre stratégie consiste a constru-
ire une catégorie qui peut-être utilisée dans cette méthode modifiée. La troisième
partie concerne l’étude des algèbre centralisatrices pour les représentations de
Uq(sl(2|1)). Wagner et Marin conjecturaient les dimensions d’une suite d’algèbres
centralisatrices correspondant à la représentation simple standard de Uq(sl(2|1)).
Nous prouvons cette conjecture en utilisant des techniques combinatoires.

Mots-clés
Invariants quantiques, Noeuds, Polynômes de Jones coloriés, Super-algèbres



Abstract
The domain of this thesis is within quantum topology and its subject is focused

towards the interaction between low dimensional topology and representation the-
ory. My research concerns different aspects of quantum invariants for links and
3-manifolds, aiming to create bridges between algebraic and topological ways of
defining them. On one hand, an algebraic and combinatorial description for a
mathematical concept, creates the opportunity to develop computational tools.
On the other hand, topological and geometrical descriptions open perspectives to-
wards constructions that lead to a deeper understanding and more subtle theories.

The coloured Jones polynomials are quantum link invariants constructed from
the representation theory of Uq(sl(2)). The first invariant of this sequence is the
original Jones polynomial, which can be characterised also by skein theory. Bigelow
and Lawrence described a homological model for the Jones polynomial. They
used the Lawrence representation, which is a braid group representation on the
homology of coverings of configuration spaces in the punctured disk, and the skein
nature of the invariant for the proof. In contrast to this case, the other coloured
Jones polynomials cannot be defined in an easy manner by skein theory.

In the first part of this thesis, we give a topological model for the coloured
Jones polynomials. We use their definition as quantum invariants and construct
step by step topological correspondents. We first observe that the invariant can be
encoded through so-called highest weight spaces and then use a result by Kohno,
which identifies these spaces with Lawrence representations. We prove that the
coloured Jones polynomials can be obtained as graded geometric intersection pair-
ings between homology classes in certain coverings of the configuration spaces of
points in the punctured disk.

The second and third parts are oriented towards applications of representa-
tion theory of super quantum groups to quantum invariants. The second part
is a collaboration with N. Geer, where we construct quantum invariants for 3-
manifolds from representations of Uq(sl(2|1)). Turaev-Viro defined a state-sum
type method that gives 3-manifold invariants from Uq(sl(2)). For super quantum
groups, this leads to vanishing invariants. Later on, Geer-Patureau-Turaev defined
a modified method which starts with a category with good properties and leads
to non-vanishing invariants. Our strategy is to construct a category that fits into
the input of this modified method.

The third part concerns the study of centralizer algebras for representations of
Uq(sl(2|1)). Wagner and Marin conjectured the dimensions of a sequence of cen-
tralizer algebras corresponding to the simple standard Uq(sl(2|1))-representation.
We prove this conjecture using combinatorial techniques.

Keywords
Quantum invariants, Knots, Coloured Jones polynomials, Super algebras
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Introduction (In English)

The subject of this thesis is within the area of low dimensional topology,
focused on the study of quantum invariants for links and 3-manifolds. It has
three main research parts which are related to topological models for quan-
tum invariants for links, constructions of quantum invariants for 3-manifolds
from the representation theory of quantum groups at roots of unity and the
study of centralizer algebras for representations of super quantum groups.

0.1 Quantum invariants - Historical context

Quantum invariants for links

The theory of quantum invariants started with the discovery of the cel-
ebrated Jones polynomial for knots and links in 1984. After that, Witten
conjectured the existence of a generalisation of the Jones polynomial to an
invariant for 3-manifolds. In 1989, Reshetikhin and Turaev proved this and
introduced a method that having as input a quantum group leads to link
invariants and 3-manifolds invariants. This construction is purely algebraic
and combinatorial.

algebraic tools , quantum dimension

( U , V1, ..., Vn ) → JV1,...,Vn(L, q)

quantum group ∈ Rep(U )  quantum link invariant

Since then, the theory of quantum invariants has become richer and richer
and it has opened new perspectives in the study of link invariants.

The coloured Jones polynomials are a family of quantum invariants for
links {JN(L, q)|N ∈ N∗} introduced by V. Jones, constructed from the rep-
resentation theory of the quantum group Uq(sl(2)). The definition of JN fits

1



0.1. QUANTUM INVARIANTS - HISTORICAL CONTEXT §0.1

into the Reshetikhin-Turaev construction, where the N th dimensional repre-
sentation VN of the quantum group Uq(sl(2)) is used as the colour for the
link components. The first invariant from this sequence, which corresponds
to N = 2, is the original Jones polynomial.

During the last 20 years, many conjectures and results concerning the
coloured Jones polynomials have been discovered. One research direction
which has been widely developed was is the study of categorifications for link
invariants, which are finer invariants. On this side, Khovanov introduced in
2000 a categorification for the Jones polynomial and later on he defined a
categorification for the coloured Jones polynomials. The tools that he used
are combinatorial and algebraic. On the other hand, there is a long-standing
question which asks whether the Jones polynomial detects the unknot. In
2010, Kronheimer and Mrowka proved that the Khovanov homology detects
the unknot. In 2012, Andersen showed that the coloured Jones polynomials
detect the unknot.

Another research direction is related to the connections between quantum
invariants and other geometrical invariants for knots and 3-manifolds. On
this line, Bigelow and Lawrence constructed a homological model for the
Jones polynomial. They presented this invariant as a graded intersection
pairing of homology classes in a covering of a certain configuration space in
the punctured disk.

Quantum invariants for 3-manifolds

At the same time as the development of the theory of quantum invari-
ants for links, people introduced tools in order to define quantum invariants
for 3-manifolds. Passing from the invariants for links towards invariants for
3-manifolds requires one to work with categories with stronger properties,
more specifically, an essential requirement was to have a finite number of
simple objects in the category and the semi-simplicity of the category. Many
quantum groups with generic q do not have this property, having infinitely
many simple representations. This is the reason for which the input data to-
wards 3-manifolds invariants is often the representation theory of a quantum
group at roots of unity.

Reshetikhin-Turaev in 1991-[77] developed a method that starting with
any modular category leads to 3-manifold invariants. They presented a 3-
manifold as a surgery along the link and using the Reshetikhin-Turaev link
invariant they constructed the 3-manifold invariant. Implicitly, they used the

2



0.1. QUANTUM INVARIANTS - HISTORICAL CONTEXT §0.1

notion of quantum dimension for objects. On the other hand, in 1992 [82],
Turaev and Viro defined invariants for 3-manifolds using a finite number of
representations from the representation theory of Uq(sl(2)) at roots of unity.
Their approach is based on triangulations and they used the notion of 6j-
symbols and quantum dimensions for objects. The invariant is constructed
in a state sum type formula.

The representation theory of a quantum group changes totally if we pass
from generic q to a root of unity. In the case of Uq(sl(2)), we have the

following correspondence (in the following formulas we denote [x]q =
qx−q−x

q−q−1 ):

q generic Rep(Uq(sl(2)))←→ N

VN ←→ dimension N ←→ qdim = [N ]q

q = ξr = e
2πi
2r Rep(Uq(sl(2)))←→ C

VN ←→ dimension N, N ∈ {1, ..., r−1} ←→ qdim ≃ [N ]ξr

Vλ ←→ dimension r, λ ∈ C \ {1, ..., r − 1} ←→ qdim = [r]ξr = 0

In their construction, they used the representations {V1, .., Vr−1} in a
state sum type formula. In other words, they used the representations of
the quantum group at roots of unity Uξ(sl(2)) with non-vanishing quantum
dimension. Later, people became interested in the study of super-quantum
groups and the construction of quantum invariants using their representation
theory. The issue that occurs a priori in this context is the fact that for super-
quantum groups the quantum dimension is generically zero. This means that
in this case, the corresponding Reshetikhin-Turaev and Turaev-Viro type
invariants for links and 3-manifolds vanish.

In 2006, Geer and Patureau used super Lie algebras of type I and defined
a method to replace the usual quantum dimension of an object with a ”mod-
ified quantum dimension” in order to obtain non-vanishing link invariants.
After that, Geer, Patureau and Turaev [33] described a conceptual method
that introduces the notion of modified dimension for a more general category
and leads to modified Reshetikhin-Turaev type link invariants. This showed
that for super lie algebras of type I, the classical Reshetikhin-Turaev link
invariants vanish while the Geer-Patureau-Turaev invariants are non-trivial.
Pursuing this line, they introduced a tool [34] that leads to 3-manifold in-
variants having as input any so called ”relative graded spherical category”.

3



0.1. QUANTUM INVARIANTS - HISTORICAL CONTEXT §0.1

They replaced the usual quantum dimensions and 6j-symbols with modified
ones in a Turaev-Viro state-sum type construction.

Centraliser algebras

The notion of centraliser algebra is well-known in representation theory
and refers to the study of intertwiner spaces corresponding to the tower of
the tensor powers of certain representations. For example, if we fix H to
be a Hopf algebra and V ∈ Rep(H), then the tensor powers of V have
again a module structure over H. Furthermore, one can construct a tower of
algebras, called ”centraliser algebras”

Cn := EndH(V
⊗n)

A particular case is the situation whereH = U (g) the enveloping algebra of a
Lie algebra g or the quantisationHq = Uq(g) namely the quantum enveloping
algebra. For the case of the Lie algebra sl(N) and the standard representation
at the classical level V ∈ Rep(U (sl(N))), one gets the following connection
to the group algebra of the symmetric group Sn:

k[Sn]։ EndU (sl(N))(V
⊗n)

which at the quantised level corresponds to the Hecke algebra:

Hn ։ EndUq(sl(N))(V
⊗n).

Wenzl studied [83] the standard representation V of so(N) and its relation
at the classical level to the Brauer algebra Brn:

Brn ։ EndU (so(N))(V
⊗n)

At the deformed level, Birman and Wenzl ([20]) showed that the quantisation
of the Brauer algebra corresponds to the Birman-Murakami-Wenzl algebra:

BMWn ։ EndUq(so(N))(V
⊗n).

The study of centraliser algebras for various representations of quantum
groups has been broadly developed and has led to relations between different
ways of describing invariants for links.

The Birman-Murakami-Wenzl alebras {BMWn}n∈N are a sequence of al-
gebras which are defined as quotients of the group algebra of the braid group

4
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by cubic relations. Moreover, these algebras lead to the Kauffman invariant
for links ([20], [68]).

Pursuing this line, the question of finding matrix unit bases for centraliser
algebras has been studied for some important algebras which are related to
quantum invariants for knots. On this subject Wenzl ([83]) and Ram and
Wenzl ([74]) described a matrix unit basis for Brauer’s centralizer algebras
and for the Hecke algebras of type A. Moreover, in [12], Blanchet and Be-
liakova described a precise basis of matrix units for the Birman-Murakami-
Wenzl algebra using idempotent elements and skein theory. In 2006, Lehrer
and Zhang ([62]) studied the cases when the morphism obtained from the
group algebra of the braid group onto the automorphism group of the tensor
power of a certain representation, given by infinitesimal actions is surjective.

In the super quantum group setting, similar questions arise in connec-
tion with the Links-Gould invariant. This is a 2-variable link polynomial
LG(L; t0, t1) ∈ Z[t±10 , t±11 ] introduced in 1992 by Links and Gould [63], con-
structed from the representation theory of the super-quantum group Uq(sl(2|1))
and it is a renormalized type invariant for links. As we have seen, the
Reshetikhin-Turaev method for constructing link invariants leads to van-
ishing polynomials if one uses as input a category of representations of a
super-quantum group. The procedure of renormalization means to use the
Reshetikhin-Turaev type construction evaluated on the link where one strand
is cut, and correct this in a way that leads to a well defined invariant.

The Links-Gould invariant fits into the Geer-Patureau machinery that
leads to renormalized invariants for links. More precisely it can be recov-
ered by a certain specialisation of the Geer-Patureau invariant for the case
of the super-quantum group Uq(sl(2|1)). Another interesting property is
that the Links-Gould polynomial recovers by a specialisation the Alexander-
Conway invariant for links. For the construction of LG(L, t0, t1), a generic 4-
dimensional representation V (0, α) of Uq(sl(2|1)) is used, which corresponds
to a generic complex number α ∈ C. Marin and Wagner in [67] studied
properties related to the sequence of centraliser algebras corresponding to
this super-representation.

5
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0.2 Main Results

Research program

The main question of my PhD was a research program with the aim of
describing geometrical categorifications for certain quantum invariants using
Floer-type methods. This program has two parts, each of them being a
fundamental question on its own. Suppose that we are given a quantum
invariant I(L, q) that we are interested in studying.

Question 1: The first part is a topological project which aims to find a
topological model for the quantum invariant I.

More precisely, topological in this context means to describe the quantum
invariant as a graded intersection pairing between two homology classes rep-
resented by Lagrangian submanifolds in a certain covering of a configuration
space.

Question 2: Once we have such a model, the second project is to pursue
a graded Floer homology-type theory for the classes given by Lagrangians in
order to obtain a geometrical categorification for the quantum invariant.

The main result of my thesis answers Question 1, describing a topological
model for the coloured Jones polynomials.

I) Topological interpretations for quantum invariants

The coloured Jones polynomials JN(L, q) are a family of quantum invari-
ants constructed from the representation theory of Uq(sl(2)) in an algebraic
and combinatorial manner. We give a topological model for JN(L, q), de-
scribing it as a graded intersection pairing between two homology classes on
a covering of the configuration space of the punctured disc.

Theorem. (Topological model for coloured Jones polynomials)([6])
Consider the colour N ∈ N. Then, for any n ∈ N, there exist homology
classes

F̃
N
n ∈ H2n,n(N−1)|γ and G̃

N
n ∈ H∂

2n,n(N−1)|γ

such that for any link L and β2n ∈ B2n such that L =
ˆ̂
βor2n (oriented plat

closure), the N thcoloured Jones polynomial has the following topological ex-
pression:

JN(L, q) =< β2nF̃
N
n , G̃

N
n > |δN−1

6
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(here γ and δN−1 are certain specialisations of coefficients 1.7.1.2)

II) Modified Turaev-Viro Invariants

The second result of my thesis is a project joint with N. Geer, where
we constructed examples of modified Turaev-Viro type quantum invariants
for 3-manifolds from the representation theory of the super quantum group
Uq(sl(2|1)) at roots of unity. We used the representation theory of Uq(sl(2|1))
in order to construct a relative C/Z-relative spherical category, which from
the Geer-Patureau-Turaev machinery leads to 3-manifold quantum invari-
ants.

Theorem. (- , Geer)([8]) Let C be the category constructed using tensor
powers of standard generic representations of Uq(sl(2|1)) at roots of unity.
Consider C N to be a certain purification of C with respect to some negligi-
ble morphisms. Then C N is a C/Z-relative spherical category that leads to
modified Turaev-Viro invariants for 3-manifolds.

III) Centralizer algebras related to quantum sl(2|1)

The third direction of my thesis is related to the study of the centraliser
algebras for the standard representation of Uq(sl(2|1)) and their relation with
the braid groups and the Links Gould invariant. Let α ∈ C\Q and V (0, α) be
the corresponding 4-dimensional representation of the super quantum group
Uq(sl(2|1)). The centraliser algebra corresponding to this representation is:

LGn(α) := AutUq(sl(2|1))(V (0, α)⊗n)

In 2011, Marin and Wagner conjectured the dimension of this algebra. We
proved this conjecture using combinatorial tools:

Theorem. ([7]) (Conjecture Marin-Wagner [67])

dim(LGn+1(α)) =
(2n)!(2n+ 1)!

(n!(n+ 1)!)2

7
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0.3 Summary of the PhD contents

I) Topological model for coloured Jones polynomials

The main result of this thesis is a topological model for all coloured Jones
polynomials. In this part, we will present a summary of the definitions and
the main tools that we use in Section 1 in order to construct a topological
model for JN(L, q).

The coloured Jones polynomials {JN(L, q)}N∈N are a family of quantum
link invariants, constructed from the representation theory {VN |N ∈ N} of
the quantum group Uq(sl(2)). The N th coloured Jones polynomial JN(L, q)
is defined using a Reshetikhin-Turaev type construction.

In 1991, R. Lawrence ([59]) introduced a sequence of homological repre-
sentations for the braid groups {Hn,m} using the homology of a certain cov-
ering of the configuration space of m unordered points in the n-punctured
disk. Using that, Bigelow and Lawrence ([16], [60]) constructed a homo-
logical interpretation for the original Jones polynomial. This invariant has
many definitions, it is a quantum invariant, but it can be characterised also
by skein relations. Their method for the proof uses the characterisation of
the Jones polynomial using skein relations. For the coloured Jones polyno-
mials, there are no skein relations that are easy to deal with. The strategy
for our topological model for all colured Jones polynomials is to analyse at
a deep level their definition as quantum invariants and to construct step by
step a homological counterpart.

(Uq(sl(2)), VN) → Coloured Jones Original Jones

polynomial polynomial

(q generic, N ∈ N) JN(L, q) 99KN=2 J2(L, q)

Description Quantum inv / No skein Quantum inv / Skein

Homological model Theorem 1.7.0.1 Bigelow-Lawrence (2001)

Proof method Quantum def Skein Theory

Tools H2n,n(N−1) H2n,n

8
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Issues and Ideas

The first remark in our proof is the fact that even if, a priori, JN(L, q) is
constructed using the tensor power of theN -dimensional Uq(sl(2))-representation
VN , actually, the whole invariant can be seen passing through a particular so
called highest weight space of this finite dimensional representation. Highest
weight spaces are subspaces in a tensor power of quantum group representa-
tions, which are invariant under the braid group action.

Secondly, in 2012 Kohno showed ([57],[41]) a deep result that shows the
fact that the highest weight spaces from the tensor power of representations of
the Uq(sl(2))-Verma modules carry homological information. More precisely,
he proved that these highest weight spaces are isomorphic to the homological
Lawrence representations. Here there is a slight subtlety that we would like
to discuss.

In the introduction of [42], it was mentioned that there are no homological
models for the coloured Jones polynomials because the highest weight spaces
of the tensor powers of finite dimensional Uq(sl(2))-modules do not yet have
known homological interpretations.

Indeed, up to this moment, there are still no known topological models
for the highest weight spaces from the tensor powers of VN . However, we look
at the inclusion from highest weight spaces of the finite dimensional module
inside those for the Verma module. We remark that if the weight is bigger
than the colour N , which is our case, this inclusion is strict. After that we
show that in fact we can construct the coloured Jones polynomials, passing
through these ”bigger” highest weight spaces of the Verma module. Then,
our method uses the Lawrence representation as a homological counterpart
for these highest weight spaces.

A second technical issue that we would like to discuss here concerns the
non-genericity of the parameters. There is a family of Verma modules V̂λ for
Uq(sl(2)) indexed by complex numbers λ ∈ C. Kohno proved that for generic
parameters λ ∈ C, the braid group representations on the highest weight
spaces of the Verma module V̂λ are isomorphic to specialisations of Lawrence
representations. For the proof, he passes through the monodromy ofKZ con-
nections and glues two very important theorems. Firstly, the Drinfeld-Kohno
Theorem, which asserts that the braid group representations on the highest
weight spaces from the Verma module at generic parameters are isomorphic
to the monodromy of the corresponding KZ connection. Secondly, in 2012,
for generic λ, Kohno identifies the braid group representations defined by the

9
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monodromy of the KZ connections with the braid group action on a certain
specialisation of the corresponding Lawrence representation. The homologi-
cal identification between the braid group action on highest weight spaces and
the Lawrence representation is then proved for generic parameters. The nat-
ural numbers are clearly non-generic and the base for the KZ-representation
used by Kohno for the two identifications explodes for these parameters.

The technical problem is that the coloured Jones polynomial JN(L, q) is
encoded by non generic parameters, corresponding to λ = N − 1. We saw
that in order to construct JN the representation VN ∈ Rep(Uq(sl(2))) is used.
One can see easily that

VN ⊆ V̂N−1

Then, to use our method we need to work with the highest weight spaces cor-
responding to non generic parameters. This is a subtle point and is related
to the choice of the quantum group Uq(sl(2)) that we are working with. We

use the quantum group over the ring Z[q±, s±] and a Verma module V̂ that
encodes all the other ones by the parameter s. Then, in order to arrive at the
case that we are interested in, we need a specialisation s = qλ. In this lan-
guage, Kohno’s Theorem asserts that the specialisation of the highest weight
representation from the Verma module and the corresponding specialisation
of the Lawrence representation are isomorphic. In [41], it was mentioned
that the identification works for non-generic parameters as well. However,
we discuss in detail the subtleties concerning this question in Section 1.5.
The idea is that using this version of the quantum group, both quantum
representations and Lawrence representations are actually specialisations of
some representations over the Laurent polynomials. On the other hand, the
KZ monodromy representation is not a specialisation of a representation
over a ring of Laurent polynomials, and from here comes the issue with the
specialisation at natural parameters.

Outline of the construction

We start with a link L and consider a braid β2n ∈ B2n such that L =
ˆ̂
βor2n (oriented plat closure). We analyse the link diagram at three levels:
the cups (corresponding to the lower part of the plat closure), the braid
in the middle and the caps from the upper part of the diagram. We use
the Lawrence representation as a correspondent for the cups and a dual
Lawrence representation to encode the cap level. The braid will correspond

10
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to the action of the braid group on the Lawrence representation. Finally,
the coloured Jones polynomial, which corresponds to the evaluation of the
Reshetikhin-Turaev algebraic method on the link will correspond to a graded
intersection pairing between the Lawrence representation and its dual. Let
us make this precise.

1)Firstly, we will study the meaning of the Reshetikhin-Turaev functor
at the braid level β2n.

We remark the fact that, having in mind that we have a closed link,
not just the braid, the Resketikhin-Turaev construction at the braid level,
which a priori uses V ⊗2nN , actually passes through the so called highest weight
spacesW2n,n(N−1) ⊆ V ⊗2nN . These highest weight spacesWn,m ⊆ V ⊗nN are very
interesting and rich objects, and they carry representations of the braid group
Bn, called quantum representations. There is not yet any known homological
interpretation for these highest weight spaces Wn,m of the finite dimensional
representation V ⊗nN .

On the other hand, the highest weight spaces Ŵn,m of the Verma module

at natural parameter V̂N−1 (an infinite dimensional module, that contains
VN) have a geometrical counterpart.

The result proved by Kohno in 2012 allows us to identify the quantum
representation Ŵn,m with a certain specialisation of the Lawrence represen-
tation: Hn,m|ψN−1

(the precise definition is given in the section 1.5.3). This
creates a bridge between quantum representations, which are purely alge-
braic, and the homological Lawrence representations, which encode a richer
geometrical structure. In our model, we use the Lawrence representation as
a counterpart to the braid part of the diagram, and from Kohno’s result, the
action of the braid on the algebraic, respectively geometrical side correspond
to one another.

2) We will translate the union of cups and caps on the geometric side,
by describing a non-degenerate homological pairing. Actually, we will use
H2n,n(N−1) to encode the algebraic co-evaluation (union of cups). For the
evaluation (union of caps), we will use a ”dual” Lawrence representation
([17]) H∂

n,m, which is a subspace of the homology relative to the boundary of
the same covering of the configuration space. There is a sesquilinear pairing
that relates these two dual spaces, called the Blanchfield pairing

<,>: Hn,m ⊗H∂
n,m → Z[x±, d±]

11
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Let us denote the specialisation of the coefficients:

αN−1 : Z[x
±, d±]→ Q(q)

αN−1(x) = q2(N−1) αN−1(d) = −q−2

Lemma 0.3.0.1. Consider the specialised Blanchfield pairing:

<,> |αN−1
: Hn,m|αN−1

⊗H∂
n,m|αN−1

→ Q(q)

This form is non-degenerate.

(The specialisation |αN−1
means induction of representations along αN−1.)

The advantage of this non-degeneracy over a field, is that any element of the
dual of the first space, can be described as the intersection with a fixed
element in the second space. From this, using Kohno’s correspondence, we
translate the evaluation on Wn,m, as an element in H∂

2n,n(N−1), and from the

previous remark, it is obtained as a pairing < ·,G > with G ∈ H∂
2n,n(N−1).

3) Then we apply Kohno’s theorem for the braid part, and use the Blanch-
field pairing as a counterpart for the evaluation and co-evaluation. Putting
it all together, we present a homological model for the coloured Jones poly-
nomial JN(L, q) (1.6.0.1), where the homology classes are constructed using
the specialisation αN−1:

F
N
n ∈ H2n,n(N−1)|αN−1

G
N
n ∈ H∂

2n,n(N−1)|αN−1

4) The last part is devoted to the construction of the homological model
for JN(L, q), using homology classes that are not specialised. We show that
if we increase the ring of coefficients to a field, by a specialisation that
doesn’t depend on the colour N , there exist two classes in the correspond-
ing Lawrence representation which lead to FN

n and G N
n by the specialisation

αN−1. However, we still need to work over a field.
Firstly we consider the following specialisation:

γ : Z[x±, d±]→ Q(s, q)

γ(x) = s2; γ(d) = −q−2.
Let us define the morphism:

δλ : Q(s, q)→ Q(q)

12
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δλ(s) = qλ

Then we get the following relation between these three specialisations:

αλ = δλ ◦ γ

We show that there exist two elements in the homology over the field
with two variables:

F̃
N
n ∈ H2n,n(N−1)|γ G̃

N
n ∈ H∂

2n,n(N−1)|γ

such that they specialise to the previous classes:

F̃
N
n |δλ = F

N
n

G̃
N
n |δλ = G

N
n .

Using these classes and the previous topological model, we conclude that
the N th coloured Jones polynomial for L has following topological model
(1.7.0.1):

JN(L, q) =< β2nF̃
N
n , G̃

N
n > |δN−1

The advantage of F̃N
n and G̃ N

n is the fact that they live inside intrin-
sic Lawrence representations, constructed over the field with two variables
Q(s, q) via γ and do not depend on αN−1. We see the specialisation αN−1, just
after we specialise the Blanchfield pairing, in order to arrive at one variable.

II) Modified Turaev-Viro Invariants

The second direction of this thesis concerns the theory of 3-manifold quantum
invariants from super quantum groups. In a collaboration with Nathan Geer,
we have constructed 3-manifold invariants using a modified Turaev-Viro type
construction ([82][34]) from the representation theory of the quantum group
Uq(sl(2|1)) at roots of unity.

In 1992, Turaev and Viro defined a method that leads to invariants for
links in 3-manifolds using the representation theory of Uq(sl(2)) at roots of
unity, using the quantum dimension and 6j-symbols for representations in a
state-sum type construction. Similarly as for the link invariants, for super Lie
algebras of type I, the associated quantum dimensions and the corresponding
6j-symbols are zero which leads to invariants that vanish.

13
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In 2011, Geer, Patureau and Turaev defined invariants for links in 3-
manifolds from any so called relative spherical category. They introduced
a modified quantum dimension and used the corresponding modified 6j-
symbols in a state-sum type construction in order to obtain non-vanishing in-
variants. For the super-Lie algebras, the representation theory with q generic
is already very rich, the simple modules being parametrised by a continuous
family. In a state sum type construction, a finite number of simple objects is
needed. For that, they required the category C to be graded by a group G,
such that each piece Cg, g ∈ G has a finite number of simple objects. Another
property from the classical case is the semi-simplicity of the category. They
require C to be generically semi-simple, which means that except a small set
X ⊆ G, any slice Cg for g ∈ G is semi-simple.

We defined invariants for links in 3-manifolds using the representation
theory of Uq(sl(2|1)) at roots of unity ql = 1. The simple modules over
Uq(sl(2|1)) with generic q are parametrised by N × C. For the first com-
ponent n small, the generic Uq(sl(2|1)) representation V (n, α) deforms to a
representation at root of unity.

Firstly we consider C to be the tensor subcategory which is generated by
retracts of tensor powers of modules of the type V (0, α̃), for α̃ ∈ C/lZ, α̃ 6=
1
4
(mod Z). After that, we proved that there exists a family of modified right

traces on C . Using the action of the quantum group, we have a C/Z-grading
on this category, but for each piece there are a priori infinitely many simple
objects, and the semi-simplicity is difficult to control outside the alcove. To
overcome this, we considered C N to be the quotient category of C by the
negligible morphisms with respect to the modified right trace. Basically,
we keep the same objects, but increase the isomorphism classes of objects,
by identifying morphisms which differ by a negligible morphism. The effect
is that summing with a module with vanishing modified dimension doesn’t
change the isomorphism class. The important point is that the modules on
the edge of the alcove have vanishing modified dimension. We show that
at the level of isomorphism classes of simple objects in C N , we keep just
the modules V (n, γ̃) from C with n ≤ l. Another main point concerns the
semi-simplicity of the category. Finally, we prove that C N is generically
semi-simple. The fact that we avoided certain weights 1

4
(mod Z), ensures

that we can control the decomposition and the semi-simplicity of the tensor
product for small natural components of the weights. Then, by an inductive
argument, we can control all the semi-simplicity in the alcove, and once we
hit its boundary, we can ignore the corresponding component thanks to the
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purification that we chose.

Theorem. (-, Geer) The category C N is a C/Z-relative spherical category
that leads to modified Turaev-Viro invariants for 3-manifolds.

III) Centralizer algebras related to quantum sl(2|1)

The third direction from my PhD is related to the study of centraliser al-
gebras for Uq(sl(2|1))-representations. Concerning the representation theory
of this super-quantum group, the finite dimensional and irreducible represen-
tations of Uq(sl(2|1)) with generic q are indexed by N×C. As we have seen,
the Links-Gould invariant is constructed using the simple 4-dimensional rep-
resentation V (0, α), corresponding to a generic complex parameter α ∈ C.
We study the sequence of centraliser algebras corresponding to the tensor
powers of the representation V (0, α).

Consider the weight α ∈ C \ Q. Using the R−matrix of the algebra
Uq(sl(2|1)), we obtain a Yang Baxter operator R ∈ AutUq(sl(2|1))(V (0, α)⊗2).
In this way, we get a sequence of braid group representations:

ρn : Bn → AutUq(sl(2|1))
(
V (0, α)⊗n

)
ρn(σi) = Idi−1 ⊗R⊗ Idn−i−1

Using the tensor power of this representation, we obtain a sequence of cen-
tralizer algebras:

LGn(α) := EndUq(sl(2|1))(V (0, α)⊗n)

In 2011, Marin and Wagner ([67]), proved that this morphism is surjective
and studied the kernel for small n. Moreover, they showed that it factors
through a cubic Hecke algebra denoted by H(α). Further on, they considered
certain relations that are in the kernel of this map: r2 for three strands and
r3 for the braid group with four strands. In this way, using these relations
they defined a smaller quotient of the cubic Hecke algebra:

An(α) := Hn(α)/(r2, r3)

ρn : CBn → LGn(α)

ց ր
An(α)
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We are interested to study properties related to the morphism ρn. Our
motivation for this, is its close relation to the Links-Gould invariant for links.
The study of the algebra LGn(α) as well as the difference between this and
CBn is related to the local relations satisfied by the operator R. Also, they
conjectured the dimension of the centralizer algebra LGn(α):

Conjecture 1. (Conjecture-Marin-Wagner [67])(-)

dim(LGn+1(α)) =
(2n)!(2n+ 1)!

(n!(n+ 1)!)2

They also conjectured that those relations (r2 and r3) are enough in order
to generate the kernel of ρn(α). As a consequence one would get that:

Conjecture 2. (Marin-Wagner [67])

An(α) ≃ LGn(α), ∀n ∈ N

The main result of this third part of the thesis, is the proof of Conjecture
3. We use combinatorial techniques in order to encode the semi-simple de-
composition of the tensor powers of of the canonical 4-dimensional Uq(sl(2|1))
representation. Firstly we pass from the initial algebraic question of com-
puting the dimension of LGn to a purely combinatorial problem. We con-
struct certain diagrams in the lattice with integer coordinates on the plane,
where each point has assigned a certain weight. This has the role of encod-
ing the dimensions of the corresponding multiplicity spaces corresponding to
V (0, α)⊗n. Inductively, we obtain that the dimensions of these multiplicity
spaces can be described using a way of counting paths in the plane with
prescribed moves.

Our strategy starts with the semi-simple decomposition of V (0, α)⊗2.
Moreover, for generic values of the parameter α ∈ C, V (0, α)⊗n is semi-
simple. Then, we remark any automorphism of V (0, α)⊗n will decompose
into blocks onto the isotypic components corresponding to the semi-simple
decomposition of V (0, α)⊗n. This shows that in order to compute the dimen-
sion of LGn, it is enough to understand this semi-simple decomposition of
the nth tensor power of V (0, α).

For any k ∈ N, we will encode the decomposition of V (0, α)⊗k into a dia-
gram D(k) in the plane. Each point (x, y) ∈ N×N will have a weight Tk(x, y)
in D(k), which is given by the multiplicity of V (x, kα+ y) inside V (0, α)⊗k.
After that, we encode the tensor with an additional V (0, α) combinatorially,
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at the level of diagrams. The conclusion is that D(k+ 1) can be determined
from D(k), by making some local moves at each point, which we call ”blow
ups”. Inductively, we obtain that each multiplicity Tn(x, y) is actually the
number of paths in the plane with length n− 1 with certain allowed moves.
The last part is related to a correspondence between this counting of paths,
and another combinatorial problem of counting pairs of paths in the plane
with some restrictions, for which the dimension was known. Putting this all
together leads to the conjectured dimension.
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Introduction (En Français)

Le sujet de cette these est dans le domaine de la topologie de petite dimen-
sion, centrée sur l’étude des invariants quantiques pour les entrelacs et les
3-variétés. Il a trois parties principales de recherche qui sont liées aux modeles
topologiques pour les invariants quantiques pour les entrelacs, les construc-
tions d’invariants quantiques pour les 3-variétés a partir de la théorie des
représentations des groupes quantiques aux racines de l’unité et l’étude des
algebres centralisatrices pour les représentations des groupes quantiques.

0.4 Invariants quantiques - Contexte historique

Invariants quantiques pour les entrelacs

La théorie des invariants quantiques a commencé avec la découverte du
fameux polynôme de Jones pour les noeuds et les entrelacs en 1984. Apres
cela, Witten conjectura l’existence d’une généralisation du polynôme de Jones
a un invariant pour les 3-variétés. En 1989, Reshetikhin et Turaev l’ont
prouvé et ont introduit une méthode qui a comme entrée un groupe quantique
et qui conduit a des invariants d’entrelacs et des invariants des 3-variétés.
Cette construction est purement algébrique et combinatoire.

utils algebriques , dimension quantique

( U , V1, ..., Vn ) → JV1,...,Vn(L, q)

group quantique ∈ Rep(U )  invariant quantique des entrelacs

Depuis lors, la théorie des invariants quantiques est devenue plus riche et
plus riche et elle a ouvert de nouvelles perspectives dans l’étude des invariants
des entrelacs.
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Les polynômes de Jones colorés sont une famille d’invariants quantiques
pour les entrelacs {JN(L, q)|N ∈ N∗} introduit par V. Jones, et construit
a partir de la théorie de la représentation du groupe quantique Uq(sl(2)).
La définition de JN entre dans la construction de Reshetikhin-Turaev, ou
la représentation N th dimensionnelle VN du groupe quantique Uq(sl(2)) est
utilisée comme couleur pour les composants de l’entrelac. . Le premier
invariant de cette suite, qui correspond a N = 2, est le polynôme original de
Jones.

Au cours des 20 dernieres années, de nombreuses conjectures et résultats
concernant les polynômes colorés de Jones ont été découverts. L’une des di-
rections de recherche qui a été largement développée est l’étude des catégorisations
pour les invariants des entrelacs, qui sont des invariants plus fins. De ce côté,
Khovanov introduit en 2000 une catégorisation pour le polynôme de Jones et
plus tard il définit une catégorification pour les polynômes de Jones colorés.
Les outils qu’il a utilisés sont combinatoires et algébriques. D’un autre côté, il
y a une question de longue date qui demande si le polynôme de Jones détecte
le noeud trivial. En 2010, Kronheimer et Mrowka ont prouvé que l’homologie
de Khovanov détecte le noeud trivial. En 2012, Andersen a montré que les
polynômes colorés de Jones détectent aussi le noeud trivial.

Une autre direction de recherche est liée aux connexions entre les invari-
ants quantiques et d’autres invariants géométriques pour les noeuds et les
3-variétés. Sur cette ligne, Bigelow et Lawrence ont construit un modele ho-
mologique pour le polynôme de Jones. Ils ont présenté cet invariant comme
une intersection graduée de classes d’homologie dans un recouvrement d’un
certain espace de configuration dans le disque pointee.

Invariants quantiques pour 3-variétés

En meme temps que le développement de la théorie des invariants quan-
tiques pour les entrelacs, les gens ont introduit des outils afin de définir les
invariants quantiques pour les 3-variétés. Passer des invariants pour les en-
trelacs vers les invariants pour les 3-variétés nécessite de travailler avec des
catégories aux propriétés plus fortes, plus spécifiquement, une exigence es-
sentielle était d’avoir un nombre fini d’objets simples dans la catégorie et
la semi-simplicité de la catégorie. De nombreux groupes quantiques avec q
générique n’ont pas cette propriété, ayant une infinité de représentations sim-
ples. C’est la raison pour laquelle la donnée d’entrée vers des invariants des
3-variétés est souvent la théorie de la représentation d’un groupe quantique
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aux racines de l’unité.
Reshetikhin-Turaev en 1991- [77] a développé une méthode qui, en com-

mençant par n’importe quelle catégorie modulaire, conduit a des invariants
des 3-variétés. Ils ont présenté une 3-variété comme une chirurgie le long d’un
entrelac et en utilisant l’invariant de l’entrelac de Reshetikhin-Turaev, ils ont
construit l’invariant de 3-variétés. Implicitement, ils ont utilisé la notion de
dimension quantique pour les objets. D’autre part, en 1992 [82], Turaev et
Viro ont défini des invariants pour les 3-variétés en utilisant un nombre fini
de représentations de la théorie de la représentation de Uq(sl(2)) aux racines
de l’unité. Leur approche est basée sur des triangulations et ils ont utilisé la
notion de 6j - symboles et dimensions quantiques pour les objets. L’invariant
est construit dans une formule de type somme d’état.

La théorie de représentation d’un groupe quantique change totalement si
nous passons du q générique a une racine d’unité. Dans le cas de Uq(sl(2)),
nous avons la correspondance suivante (dans les formules dessous, nous no-

tons [x]q =
qx−q−x

q−q−1 ):

q generic Rep(Uq(sl(2)))←→ N

VN ←→ dimension N ←→ qdim = [N ]q

q = ξr = e
2πi
2r Rep(Uq(sl(2)))←→ C

VN ←→ dimension N, N ∈ {1, ..., r−1} ←→ qdim ≃ [N ]ξr

Vλ ←→ dimension r, λ ∈ C \ {1, ..., r − 1} ←→ qdim = [r]ξr = 0

Dans leur construction, ils ont utilisé les représentations {V1, .., Vr−1} dans
une formule de type somme d’état. En d’autres termes, ils ont utilisé les
représentations du groupe quantique aux racines de l’unité Uξ(sl(2)) avec
une dimension quantique non nulle. Plus tard, les gens se sont intéressés a
l’étude des groupes super-quantiques et a la construction d’invariants quan-
tiques en utilisant leur théorie des représentations. Le probleme qui se pose
a priori dans ce contexte est le fait que pour les groupes super-quantiques,
la dimension quantique est génériquement nulle. Cela signifie que dans ce
cas, les invariants de type Reshetikhin-Turaev et Turaev-Viro correspondants
pour les entrelacs et les 3-variétés sont nulls.

En 2006, Geer et Patureau ont utilisé des super algebres de Lie de type I
et ont défini une méthode pour remplacer la dimension quantique habituelle
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d’un objet par une “dimension quantique modifiée” afin d’obtenir des in-
variants des entrelacs non nulles. Apres cela, Geer, Patureau et Turaev [33]
ont décrit une méthode conceptuelle qui introduit la notion de dimension
modifiée pour une catégorie plus générale et conduit a des invariants des
entrelacs de type Reshetikhin-Turaev modifiés. Ceci a montré que pour les
super-algebres de Lie de type I, les invariants des entrelacs de Reshetikhin-
Turaev classiques sont nulls alors que les invariants de Geer-Patureau-Turaev
sont non-triviaux. Poursuivant cette ligne, ils ont introduit un outil [34]
qui conduit a des invariants des 3-variétés ayant comme entrée n’importe
quelle “catégorie sphérique graduée relative”. Ils ont remplacé les dimen-
sions quantiques habituelles et les symboles 6j par des modifications dans
une construction de type somme d’état Turaev-Viro.

Algebres centralisatrices

La notion d’algebre centralisatrice est bien connue dans la théorie des
représentations et se réfere a l’étude des espaces d’entrelacement correspon-
dant a la tour des puissances tensorielles de certaines représentations. Par
exemple, si nous fixons H pour etre une algebre de Hopf et V ∈ Rep(H),
alors les puissances tensorielles de V ont encore une structure de module
sur H. De plus, on peut construire une tour d’algebres, appelée ”algebres
centralisatrices”

Cn := EndH(V
⊗n)

Un cas particulier est la situation ou H = U (g) l’algebre enveloppante d’une
algebre de Lie g ou la quantification Hq = Uq(g) a savoir l’algebre envelop-
pante quantique. Pour le cas de l’algebre de Lie sl(N) et la représentation
standard au niveau classique V ∈ Rep(U (sl(N))), on obtient la relation
suivante avec l’algebre groupale du groupe symétrique Sn:

k[Sn]։ EndU (sl(N))(V
⊗n)

qui au niveau quantifié correspond a l’algebre de Hecke:

Hn ։ EndUq(sl(N))(V
⊗n).

Wenzl a étudié [83] la représentation standard V de so(N) et sa relation au
niveau classique avec l’algebre de Brauer Brn:

Brn ։ EndU (so(N))(V
⊗n)
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Au niveau déformé, Birman et Wenzl([20]) ont montré que la quantification
de l’algebre de Brauer correspond a l’algebre de Birman-Murakami-Wenzl:

BMWn ։ EndUq(so(N))(V
⊗n).

L’étude des algebres centralisées pour diverses représentations de groupes
quantiques a été largement développée et a conduit a des relations entre
différentes façons de décrire les invariants pour les entrelacs. Les algebres
de Birman-Murakami-Wenzl {BMWn}n∈N sont une séquence d’algebres qui
sont définies comme des quotients de l’algebre groupale du groupe de tresses
par des relations cubiques. De plus, ces algebres conduisent a l’invariant de
Kauffman pour les entrelacs ([20], [68]).

Poursuivant cette ligne, la question de trouver des bases d’unités ma-
tricielles pour les algebres centralisatrices a été étudiée pour quelques alge-
bres importantes liées aux invariants quantiques des noeuds. Sur ce sujet
Wenzl ([83]) et Ram et Wenzl ([74]) ont décrit une base matricielle pour les
algebres centralisatrices de Brauer et pour les algebres de Hecke de type A. De
plus, dans [12], Blanchet et Beliakova décrivent une base précise d’unités ma-
tricielles pour l’algebre de Birman-Murakami-Wenzl en utilisant des éléments
idempotents et la théorie skein. En 2006, Lehrer et Zhang ([62]) ont étudié les
cas où le morphisme obtenu de l’algèbre de groupe du groupe de tresses sur
le groupe automorphisme du pouvoir tensoriel d’une certaine représentation
donnée par des actions infinitésimales est surjectif.

Dans le contexte du groupe super-quantique, des questions similaires se
posent en relation avec l’invariant Links-Gould. Ceci est un polynôme a deux
variables LG(L; t0, t1) ∈ Z[t±10 , t±11 ] introduit en 1992 par Links et Gould [63],
construit a partir de la théorie des représentations du groupe super-quantique
Uq(sl(2|1)) et est un type d’invariant renormalisé pour les entrelacs. Comme
nous l’avons vu, la méthode de Reshetikhin-Turaev pour construire des in-
variants des entrelacs conduit a des polynômes nulls si l’on utilise au depart
une catégorie de représentations d’un groupe super-quantique. La procédure
de renormalisation consiste a utiliser la construction de type Reshetikhin-
Turaev évaluée sur l’entrelac ou un fil est coupé, et corriger ceci d’une maniere
qui conduit a un invariant bien défini.

L’invariant de Links-Gould s’inscrit dans la machinerie de Geer-Patureau
qui conduit a des invariants renormalisés pour les entrelacs. Plus précisément,
il peut etre récupéré par une certaine spécialisation de l’invariant de Geer-
Patureau dans le cas du groupe super-quantique Uq(sl(2|1)). Une autre
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propriété intéressante est que le polynôme Links-Gould récupere par une
spécialisation l’invariant Alexander-Conway pour les entrelacs. Pour la con-
struction de LG(L, t0, t1), est utilisée une représentation 4-dimensionnelle
générique V (0, α) de Uq(sl(2|1)) , ce qui correspond a un nombre complexe
générique α ∈ C. Marin et Wagner dans [67] ont étudié les propriétés
liées a la séquence des algebres centralisatrices correspondant a cette super-
représentation.

0.5 Résultats principaux

Programme de recherche

La principale question de mon doctorat était un programme de recherche
visant a décrire les catégorisations géométriques de certains invariants quan-
tiques utilisant des méthodes de type Floer. Ce programme comporte deux
parties, chacune étant une question fondamentale en soi. Supposons qu’on
nous donne un invariant quantique I(L, q) que nous sommes intéressés a
étudier.

Question 1: La premiere partie est un projet topologique qui vise a trouver
un modele topologique pour l’invariant quantique I.

Plus précisément, topologique dans ce contexte signifie décrire l’invariant
quantique comme un intersection gradué entre deux classes d’homologie représentées
par des sous-variétés lagrangiennes dans une certaine recouvrement d’un es-
pace de configuration.

Question 2: Une fois que nous avons un tel modele, le second projet con-
siste a poursuivre une théorie de type d’homologie de Floer gradué pour
les classes données par les lagrangiens afin d’obtenir une catégorification
géométrique pour l’invariant quantique.

Le résultat principal de ma these répond a la question 1, décrivant un
modele topologique pour les polynômes de Jones colorés.

I) Interprétations topologiques pour les invariants quantiques

Les polynômes de Jones colorés JN(L, q) sont une famille d’invariants
quantiques construits a partir de la théorie de la représentation de Uq(sl(2))
de maniere algébrique et combinatoire. Nous donnons un model topologique
pour JN(L, q), en le décrivant comme un intersection gradué entre deux
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classes d’homologie sur un recouvrement de l’espace de configuration du
disque pointee.

Theorem. (Modele topologique pour les polynômes de Jones colorés)([6])
Soit la couleur N ∈ N. Alora, pour tout n ∈ N, ils existent des classes
d’homologie

F̃
N
n ∈ H2n,n(N−1)|γ and G̃

N
n ∈ H∂

2n,n(N−1)|γ

tel que pour tout entrelac L et β2n ∈ B2n tel que L =
ˆ̂
βor2n (fermeture platte

orientée), le N th-polynôme de Jones coloré a l’expression topologique suiv-
ante:

JN(L, q) =< β2nF̃
N
n , G̃

N
n > |δN−1

(ici γ et δN−1 sont certaines spécialisations de coefficients 1.7.1.2)

II) Invariants de Turaev-Viro modifiés

Le second résultat de ma these est un projet en colaboration avec N.
Geer, ou nous avons construit des exemples d’invariants quantiques de type
Turaev-Viro modifiés pour 3-variétés a partir de la théorie de représentation
du groupe super quantique Uq(sl(2|1)) aux racines de l’unité. Nous avons
utilisé la théorie de la représentation de Uq(sl(2|1)) pour construire une
catégorie sphérique relative C/Z, qui, de la machinerie de Geer-Patureau-
Turaev conduit a des invariants quantiques pour les 3-varietees.

Theorem. (- , Geer)([8]) Soit C la catégorie construite en utilisant les puis-
sances tensorielles des représentations génériques standard de Uq(sl(2|1)) aux
racines de l’unité. Soit C N une certaine purification de C par rapport aux
certains morphismes négligeables. Alors C N est une C/Z-catégorie sphérique
relative qui conduit a des invariants Turaev-Viro modifiés pour 3-variétés.

III) Algebres centralisatrices liées au sl(2|1) quantique

La troisieme direction de ma these est liée a l’étude des algebres central-
isatrices pour la représentation standard de Uq(sl(2|1)) et leur relation avec
les groupes de tresses et l’invariant Links Gould. Soit α ∈ C\Q et V (0, α) la
représentation 4 -dimensionnelle correspondante du super-group quantique
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Uq(sl(2|1)). L’algebre centralisatrice correspondant a cette représentation
est:

LGn(α) := AutUq(sl(2|1))(V (0, α)⊗n)

En 2011, Marin et Wagner ont conjecturé la dimension de cette algebre. Nous
avons démontré cette conjecture en utilisant des outils combinatoires:

Theorem. ([7]) (Conjecture Marin-Wagner [67])

dim(LGn+1(α)) =
(2n)!(2n+ 1)!

(n!(n+ 1)!)2

0.6 Résumé du contenu de la these

I) Modele topologique pour les polynômes de Jones
colorés

Le résultat principal de cette these est un modele topologique pour tous les
polynômes de Jones colorés. Dans cette partie, nous allons présenter un
résumé des définitions et des principaux outils que nous utilisons dans la
Section 1 afin de construire un modele topologique pour JN(L, q).

Les polynômes de Jones colorés {JN(L, q)}N∈N sont une famille d’invariants
quantiques pour les entrelacs , construits a partir de la théorie des représentations
{VN |N ∈ N} du groupe quantique Uq(sl(2)). Le N th polynôme de Jones
coloré JN(L, q) est défini en utilisant une construction de type Reshetikhin-
Turaev.

En 1991, R. Lawrence a introduit une séquence de représentations ho-
mologiques pour les groupes de tresses {Hn,m} en utilisant l’homologie d’un
certain recouvrement de l’espace de configuration de m de points non or-
donnés dans le disque n-pointee. En utilisant cela, Bigelow et Lawrence
([16], [60]) construisirent une interprétation homologique pour le polynôme
original de Jones. Cet invariant a de nombreuses définitions, c’est un in-
variant quantique, mais il peut aussi etre caractérisé par des relations de
skein. Leur méthode pour la preuve utilise la caractérisation du polynôme
de Jones en utilisant des relations de skein. Pour les polynômes de Jones
colorés, il n’y a pas de relations skein faciles a gérer. La stratégie pour notre
modele topologique pour tous les polynômes de Jones colorés est d’analyser
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a un niveau profond leur définition en tant qu’invariants quantiques et de
construire, étape par étape, une contrepartie homologique.

(Uq(sl(2)), VN) → Polynome Jones Polynome Jones

colorie original

(q generique, N ∈ N) JN(L, q) 99KN=2 J2(L, q)

Description Inv quantique / Non skein Inv quantique / Skein

Model homologique Theorem 1.7.0.1 Bigelow-Lawrence (2001)

Methode de dem. Def quantique Theorie Skein

Utils H2n,n(N−1) H2n,n

Problemes et idées

La premiere remarque dans notre démonstration est le fait que meme
si, a priori, JN(L, q) est construit en utilisant la puissance tensorielle de N -
dimensional Uq(sl(2))-représentation VN , en fait, tout l’invariant peut etre vu
passant a travers un espace dit de poids le plus élevé de cette représentation
de dimension finie. Les espaces de poids les plus élevés sont des sous-espaces
dans une puissance tensorielle de représentations de groupes quantiques, qui
sont invariantes sous l’action de groupe de tresses.

Deuxiemement, en 2012 Kohno a montré ([57], [41]) un résultat profond
qui montre le fait que les espaces de poids les plus élevés du pouvoir tensoriel
des représentations de Uq(sl(2))-modules de Verma portent des informations
homologiques. Plus précisément, il a prouvé que ces espaces de poids les plus
élevés sont isomorphes aux représentations homologiques de Lawrence. Ici,
il y a une légere subtilité dont nous aimerions discuter.

Dans l’introduction de [41], il a été mentionné qu’il n’y a pas de modeles
homologiques pour les polynômes de Jones colorés car les espaces de poids
les plus élevés des puissances tensorielles des Uq(sl(2))-modules finis n’ont
pas des interprétations homologiques conues.

En effet, jusqu’a ce jour, il n’existe toujours pas de modeles topologiques
connus pour les espaces de poids les plus élevés a partir des puissances ten-
sorielles de VN . Cependant, nous considérons l’inclusion des espaces de poids
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les plus élevés du module de dimension finie a l’intérieur de ceux du module
Verma. Nous remarquons que si le poid est plus grand que la couleur N ,
ce qui est notre cas, cette inclusion est stricte. Apres cela, nous montrons
qu’en fait nous pouvons construire les polynômes de Jones colorés, en pas-
sant par ces ”plus grands” espaces de poids les plus élevés du module de
Verma. Ensuite, notre méthode utilise la représentation de Lawrence comme
contrepartie homologue pour ces espaces de poids les plus élevés.

Un deuxieme probleme technique dont nous aimerions discuter ici con-
cerne la non-généricité des parametres. Il existe une famille de modules
Verma V̂λ pour Uq(sl(2)) indexée par des nombres complexes λ ∈ C. Kohno
a prouvé que pour les parametres génériques λ ∈ C, les représentations de
groupes de tresses sur les espaces de poids les plus élevés du module Verma V̂λ
sont isomorphes aux spécialisations des représentations de Lawrence. Pour
la preuve, il passe par la monodromie des connexions KZ et colle deux
théoremes tres importants. Premierement, le théoreme de Drinfeld-Kohno,
qui affirme que les représentations de groupes de tresses sur les espaces de
poids les plus élevés du module de Verma aux parametres génériques sont
isomorphes a la monodromie de la connexion KZ correspondante. Deux-
iemement, en 2012, pour le λ générique, Kohno identifie les représentations
de groupes de tresses définies par la monodromie des connexions KZ avec
l’action de groupe de tresses sur une certaine spécialisation de la représentation
de Lawrence correspondante. L’identification homologique entre l’action du
groupe de tresses sur les espaces de poids les plus élevés et la représentation
de Lawrence est ensuite prouvée pour les parametres génériques. Les nombres
naturels sont clairement non génériques et la base de la représentation KZ
utilisée par Kohno pour les deux identifications explose pour ces parametres.

Le probleme technique est que le polynôme coloré de Jones JN(L, q)
est codé par des parametres non génériques, correspondant a λ = N − 1.
Nous avons vu que pour construire JN est utilisée la représentation VN ∈
Rep(Uq(sl(2))). On peut facilement voir que

VN ⊆ V̂N−1

Ensuite, pour utiliser notre méthode, nous devons travailler avec les espaces
de poids les plus élevés correspondant a des parametres non génériques.
C’est un point subtil ici, lié au choix du groupe quantique Uq(sl(2)) avec
lequel nous travaillons. Nous utilisons le groupe quantique sur l’anneau
Z[q±, s±] et un module Verma V̂ qui encode tous les autres par le parametre
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s. Ensuite, pour arriver au cas qui nous intéresse, nous avons besoin d’une
spécialisation s = qλ. Dans ce langage, le théoreme de Kohno affirme que
la spécialisation de la représentation du poids le plus élevé du module de
Verma et la spécialisation correspondante de la représentation de Lawrence
sont isomorphes. Dans [41], il a été mentionné que l’identification fonctionne
également pour les parametres non génériques. Cependant, nous discutons
en détail des subtilités concernant cette question dans la section 1.5. L’idée
est qu’en utilisant cette version du groupe quantique, les représentations
quantiques et les représentations de Lawrence sont en fait des spécialisations
de certaines représentations sur les polynômes de Laurent. D’autre part,
la représentation de la monodromie KZ n’est pas une spécialisation d’une
représentation sur un anneau de polynômes de Laurent, et d’ou le probleme
de la spécialisation aux parametres naturels.

Esquisse de la construction

Nous commençons par un entrelac L et considérons une tresse β2n ∈
B2n telle que L =

ˆ̂
βor2n ( fermeture plate orientée). Nous analysons le dia-

gramme de l’entrelac a trois niveaux: les ”cups” (correspondant a la partie
inférieure de la fermeture plate), la tresse au milieu et les ”caps” de la par-
tie supérieure du diagramme. Nous utilisons la représentation de Lawrence
comme correspondant pour les ”cups” et une représentation de Lawrence
douale pour encoder le niveau des ”caps”. La tresse correspondra a l’action
du groupe de tresses sur la représentation de Lawrence. Enfin, le polynôme
de Jones coloré, qui correspond a l’évaluation par la méthode algébrique de
Reshetikhin-Turaev sur l’entrelac, correspond a un intersection gradué entre
la représentation de Lawrence et son dual. Faisons-le précis.

1)Premierement, nous étudierons la signification du foncteur Reshetikhin-
Turaev au niveau de la tresse β2n.

Nous remarquons que, compte tenu du fait que nous avons un entrelac
fermé, pas seulement la tresse, la construction de Resketikhin-Turaev au
niveau de la tresse, qui utilise a priori V ⊗2nN , passe en fait par ce que l’on
appelle les espaces de poids les plus élevés W2n,n(N−1) ⊆ V ⊗2nN . Ces espaces
de poids les plus élevés Wn,m ⊆ V ⊗nN sont des objets tres intéressants et
riches, et ils portent des représentations du groupe de tresses Bn, appelées
représentations quantiques. Il n’y a pas encore d’interprétation homologique
connue pour ces espaces de poids les plus élevés Wn,m de la représentation
en dimension finie V ⊗nN .
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D’autre part, les espaces de poids les plus élevés Ŵn,m du module Verma

au parametre naturel V̂N−1 (un module de dimension infinie, qui contient
VN) ont une contrepartie géométrique.

Le résultat prouvé par Kohno en 2012 nous permet d’identifier la représentation
quantique Ŵn,m avec une certaine spécialisation de la représentation de Lawrence:
Hn,m|ψN−1

(la définition précise est donnée dans la section 1.5.3). Cela crée
un pont entre les représentations quantiques, qui sont purement algébriques,
et les représentations homologiques de Lawrence, qui codent une structure
géométrique plus riche. Dans notre modele, nous utilisons la représentation
de Lawrence comme contrepartie de la partie tressée du diagramme, et d’apres
le résultat de Kohno, l’action de la tresse sur le côté algébrique, respective-
ment géométrique, correspond l’une a l’autre.

2) Nous traduirons l’union des ”cups” et des ”caps” du côté géométrique,
en décrivant un couplage homologique non dégénéré. En fait, nous utiliserons
H2n,n(N−1) pour coder la co-évaluation algébrique (union des ”cups”). Pour
l’évaluation (union des ”caps”), nous utiliserons une représentation ”dual”
de Lawrence ([17]) H∂

n,m, qui est un sous-espace de l’homologie relative a
la frontiere du meme recouvrement de l’espace de configuration. Il y a un
couplage sesquilinéaire qui relie ces deux espaces douales, appelé le couplage
de Blanchfield

<,>: Hn,m ⊗H∂
n,m → Z[x±, d±]

Notons la spécialisation des coefficients:

αN−1 : Z[x
±, d±]→ Q(q)

αN−1(x) = q2(N−1) αN−1(d) = −q−2

Lemma 0.6.0.1. Considérez le couplage spécialisé de Blanchfield:

<,> |αN−1
: Hn,m|αN−1

⊗H∂
n,m|αN−1

→ Q(q)

Cette forme est non-dégénérée.

(La spécialisation |αN−1
signifie l’induction de représentations le long de

αN−1.)
L’avantage de cette non-dégénérescence sur un corp, est que tout élément du
dual du premier espace peut etre décrit comme l’intersection avec un élément
fixe dans le second espace. A partir de cela, en utilisant la correspondance
de Kohno, nous traduisons l’évaluation sur Wn,m, en tant qu’élément de
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H∂
2n,n(N−1), et de la remarque précédente, il est obtenu comme un couplage

< ·,G > avec G ∈ H∂
2n,n(N−1).

3)Ensuite, nous appliquons le théoreme de Kohno pour la partie tresse, et
nous utilisons le couplage de Blanchfield comme contrepartie pour l’évaluation
et la co-évaluation. En mettant tout cela ensemble, nous présentons un mod-
ele homologique pour le polynôme de Jones coloré JN(L, q) (1.6.0.1), ou les
classes d’homologie sont construites en utilisant la spécialisation αN−1:

F
N
n ∈ H2n,n(N−1)|αN−1

G
N
n ∈ H∂

2n,n(N−1)|αN−1

4) La derniere partie est consacrée a la construction du modele ho-
mologique JN(L, q), en utilisant des classes d’homologie qui ne sont pas
spécialisées. Nous montrons que si nous augmentons l’anneau de coefficients
a un corp, par une spécialisation qui ne dépend pas de la couleur N , il
existe deux classes dans la représentation de Lawrence correspondante qui
conduisent a FN

n et G N
n par la spécialisation αN−1. Cependant, nous devons

encore travailler sur un corp.
Premierement, nous considérons la spécialisation suivante:

γ : Z[x±, d±]→ Q(s, q)

γ(x) = s2; γ(d) = −q−2.
Allons définir le morphisme:

δλ : Q(s, q)→ Q(q)

δλ(s) = qλ

Ensuite, nous obtenons la relation suivante entre ces trois spécialisations:

αλ = δλ ◦ γ

Nous montrons qu’il existe deux éléments dans l’homologie sur le corp
avec deux variables:

F̃
N
n ∈ H2n,n(N−1)|γ G̃

N
n ∈ H∂

2n,n(N−1)|γ
tels qu’ils se spécialisent dans les classes précédentes:

F̃
N
n |δλ = F

N
n

G̃
N
n |δλ = G

N
n .
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En utilisant ces classes et le modele topologique précédent, nous concluons
que le N th polynome de Jones coloré pour L a le modele topologique suivant
(1.7.0.1):

JN(L, q) =< β2nF̃
N
n , G̃

N
n > |δN−1

L’avantage de F̃N
n et G̃ N

n est le fait qu’ils vivent a l’intérieur des représentations
intrinseques de Lawrence, construites sur le corp avec deux variables Q(s, q)
via γ et ne dépend pas de αN−1. Nous voyons la spécialisation αN−1, juste
apres nous spécialisons le couplage de Blanchfield, afin d’arriver a une vari-
able.

II) Invariants de Turaev-Viro modifiés

La deuxieme direction de cette these concerne la théorie des invariants quan-
tiques des trois variétés obtenus des groupes super-quantiques. Dans une
collaboration avec Nathan Geer, nous avons construit des invariants des 3-
variétés en utilisant une construction de type Turaev-Viro modifiée ([82][34])
a partir de la théorie de la représentation du groupe quantique Uq(sl(2|1))
aux racines de l’unité.

En 1992, Turaev et Viro ont défini une méthode qui conduit a des in-
variants pour les entrelacs dans les 3-variétés en utilisant la théorie des
représentations de Uq(sl(2)) aux racines de l’unité, en utilisant la dimension
quantique et 6j-symbols dans une construction de type somme d’état. De
meme que pour les invariants des entrelacs, pour les super algebres de Lie de
type I, les dimensions quantiques associées et les symboles 6j correspondants
sont nuls, ce qui conduit a des invariants qui s’annulent.

En 2011, Geer, Patureau et Turaev ont défini des invariants pour les
entrelacs dans les 3-variétés a partir de toute catégorie dite sphérique relative.
Ils ont introduit une dimension quantique modifiée et ont utilisé les symboles
6j modifiés correspondants dans une construction de type somme d’état afin
d’obtenir des invariants non nulls. Pour les super-algebres de Lie, la théorie
des représentations avec q generique est déja tres riche, les modules simples
étant paramétrés par une famille continue. Dans une construction de type
somme d’état, un nombre fini d’objets simples est nécessaire. Pour cela,
ils ont demandé que la catégorie C soit graduee par un groupe G, de sorte
que chaque partie Cg, g ∈ G ait un nombre fini d’objets simples. Une autre
propriété du cas classique est la semi-simplicité de la catégorie. Ils requierent
que C soit génériquement semi-simple, ce qui signifie qu’a l’exception d’un
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petit ensemble X ⊆ G, toute tranche Cg pour g ∈ G est semi-simple.
Nous avons défini les invariants pour les entrelacs dans les 3-variétés en

utilisant la théorie des représentations de Uq(sl(2|1)) aux racines de l’unité
ql = 1. Les modules simples sur Uq(sl(2|1)) avec q générique sont paramétrés
par N × C. Pour le premier composant n petit, la représentation générique
V (n, α) de Uq(sl(2|1)) se déforme en une représentation a la racine de l’unité.

Premierement nous considérons que C est la sous-catégorie tensorielle qui
est générée par des rétractions de puissances tensorielles de modules de type
V (0, α̃), pour α̃ ∈ C/lZ, α̃ 6= 1

4
(mod Z). Apres cela, nous avons prouvé qu’il

existe une famille de traces droites modifiées sur C . En utilisant l’action du
groupe quantique, nous avons un C/Z-graduation sur cette catégorie, mais
pour chaque morceau il y a a priori un nombre infini d’objets simples, et la
semi-simplicité est difficile a contrôler en dehors du alcôve. Pour surmon-
ter cela, nous avons considéré que C N est la catégorie quotient de C par
les morphismes négligeables par rapport a la trace droite modifiée. Fonda-
mentalement, nous conservons les memes objets, mais augmentons les classes
d’isomorphismes des objets, en identifiant des morphismes qui different par
un morphisme négligeable. L’effet est que sommer avec un module avec
une dimension modifiée nulle ne modifie pas la classe d’isomorphisme. Le
point important est que les modules sur le bord de l’alcôve ont la dimension
modifiée nulle. Nous montrons qu’au niveau des classes d’isomorphisme des
objets simples dans C N , nous gardons juste les modules V (n, γ̃) de C avec
n ≤ l. Un autre point important concerne la semi-simplicité de la catégorie.
Finalement, nous montrons que C N est génériquement semi-simple. Le fait
que nous ayons évité certains poids 1

4
(mod Z), nous permet de contrôler

la décomposition et la semi-simplicité du produit tensoriel pour les petites
composantes naturelles des poids. Ensuite, par un argument inductif, nous
pouvons contrôler toute la semi-simplicité dans l’alcôve, et une fois que nous
atteignons sa limite, nous pouvons ignorer la composante correspondante
grâce a la purification que nous avons choisie.

Theorem. (-, Geer) La catégorie C N est une C/Z-catégorie relative spherique
qui conduit a des invariants de Turaev-Viro modifiés pour les 3-variétés.

III) Algebres centralisatrices liées au sl(2|1) quantique
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La troisieme direction de mon doctorat est liée a l’étude des algebres cen-
tralisatrices pour des Uq(sl(2|1))-représentations. Concernant la représentation
de ce super-groupe quantique, les représentations finies et irréductibles de
Uq(sl(2|1)) avec q générique sont indexées par N × C. Comme nous l’avons
vu, l’invariant Links-Gould est construit en utilisant la représentation sim-
ple en 4 dimensions V (0, alpha), correspondant a un parametre complexe
générique α ∈ C. Nous étudions la séquence des algebres centralisatrices
correspondant aux puissances tensorielles de la représentation V (0, α).

Soit le poid α ∈ C \ Q. Avec le R−matrix de l’algebre Uq(sl(2|1)),
on obtient un operateur de Yang Baxter R ∈ AutUq(sl(2|1))(V (0, α)⊗2). De
cette maniere, nous obtenons une séquence de représentations de groupes de
tresses:

ρn : Bn → AutUq(sl(2|1))
(
V (0, α)⊗n

)
ρn(σi) = Idi−1 ⊗R⊗ Idn−i−1

En utilisant la puissance tensorielle de cette représentation, nous obtenons
une séquence d’algebres centralisatrices:

LGn(α) := EndUq(sl(2|1))(V (0, α)⊗n)

En 2011, Marin et Wagner ([67]), prouvent que ce morphisme est surjectif et
étudient le noyau pour les petits n. De plus, ils ont montré qu’il factorise a
travers une algebre de Hecke cubique notée H(α). Plus loin, ils ont considéré
certaines relations qui sont dans le noyau de cette fonction: r2 pour trois
brins et r3 pour le groupe de tresses a quatre brins. De cette maniere, en
utilisant ces relations, ils ont défini un quotient plus petit de l’algebre cubique
de Hecke:

An(α) := Hn(α)/(r2, r3)

ρn : CBn → LGn(α)

ց ր
An(α)

Nous sommes intéressés a étudier les propriétés liées au morphisme ρn.
Notre motivation pour cela, est sa relation étroite avec l’invariant Links-
Gould pour les entrelacs. L’étude de l’algebre LGn(α) ainsi que la différence
entre celle-ci et CBn est liée aux relations locales satisfaites par l’opérateur
R. En outre, ils ont conjecturé la dimension de l’algebre de centralisateur
LGn(α):
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Conjecture 3. (Conjecture-Marin-Wagner [67])(-)

dim(LGn+1(α)) =
(2n)!(2n+ 1)!

(n!(n+ 1)!)2

Ils ont également conjecturé que ces relations (r2 et r3) sont suffisantes
pour générer le noyau de ρn(α). En conséquence, on obtiendrait cela:

Conjecture 4. (Marin-Wagner [67])

An(α) ≃ LGn(α), ∀n ∈ N

Le résultat principal de cette troisieme partie de la these est la preuve
de Conjecture 3. Nous utilisons des techniques combinatoires pour coder la
décomposition semi-simple des puissances tensorielles de la représentation
canonique 4-dimensional de Uq(sl(2|1)). On passe d’abord de la question
algébrique initiale du calcul de la dimension de LGn a un probleme purement
combinatoire. Nous construisons certains diagrammes dans le lattice avec
des coordonnées entieres sur le plan, ou chaque point a attribué un certain
poids. Ceci a pour rôle de coder les dimensions des espaces de multiplicité
correspondants associee a V (0, α)⊗n. Inductivement, nous obtenons que les
dimensions de ces espaces de multiplicité peuvent etre décrites en utilisant un
moyen de compter les chemins dans le plan avec des mouvements prescrits.

Notre stratégie commence par la décomposition semi-simple de V (0, α)⊗2.
De plus, pour les valeurs génériques du parametre α ∈ C, V (0, α)⊗n est semi-
simple. Ensuite, nous remarquons que tout automorphisme de V (0, α)⊗n se
décomposera en blocs sur les composantes isotypiques correspondant a la
décomposition semi-simple de V (0, α)⊗n. Cela montre qu’afin de calculer la
dimension de LGn, il suffit de comprendre cette décomposition semi-simple
de la puissance nth tensorielle de V (0, α).

Pour tout k ∈ N, nous coderons la décomposition de V (0, α)⊗k en un
diagramme D(k) dans le plan. Chaque point (x, y) ∈ N × N aura un poids
Tk(x, y) dans D(k), qui est donné par la multiplicité de V (x, kα + y) dans
V (0, α)⊗k. Apres cela, nous codons d’une maniere combinatoire le tenseur
avec un V (0, α) supplémentaire, au niveau des diagrammes. La conclusion
est que D(k + 1) peut etre déterminé a partir de D(k), en effectuant des
mouvements locaux a chaque point, ce que nous appelons ”blow up”. Induc-
tivement, nous obtenons que chaque multiplicité Tn(x, y) est en fait le nombre
de chemins dans le plan de longueur n − 1 avec certains déplacements au-
torisés. La derniere partie est liée a une correspondance entre ce comptage
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de chemins, et un autre probleme combinatoire de comptage de paires de
chemins dans le plan avec quelques restrictions, pour lesquelles la dimension
était connue. Mettre tout cela ensemble conduit a la dimension conjecturée.
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Chapter 1

A Homological Model for the
coloured Jones polynomials

1.1 Introduction

In this part we will present a topological model for the coloured Jones poly-
nomials. The main tools in our construction are the Lawrence representation
Hn,m, a dual Lawrence representation H∂

n,m (which are constructed using the

homology of a covering C̃n,m of the configuration space in the punctured disc
Cn,m) and a geometric intersection pairing between them. Both the Lawrence
representation and its dual are generated by homology classes of lifts of m-
dimensional Lagrangian submanifolds in the configuration space C̃n,m, called
”multiforks” and ”barcodes”. Furthermore, we study the geometric graded
intersection form <,> that exists between the Lawrence representation and
its dual and discuss its non-degeneracy for specialisations of coefficients. Us-
ing these tools, we construct a sequence of homology classes

F̃
N
n ∈ H2n,n(N−1)|γ and G̃

N
n ∈ H∂

2n,n(N−1)|γ

where γ is a certain specialisation of coefficients. Then we show that for any

link L, if we consider a braid that represents that link β2n ∈ B2n with L =
ˆ̂
β2n

(oriented plat closure), the N thcoloured Jones polynomial is obtained by the
geometric pairing in the following manner (1.7.0.1):

JN(L, q) =< β2nF
N
n ,G

N
n > |δN−1
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We would like to mention that γ is a specialisation of the coefficients that
does not depend on the colour N , whereas δN−1 is a certain specialisation of
the coefficients that depends on N .

Structure of the chapter

In Part 1.2, we present the quantum group Uq(sl(2)) that we work with
as well as certain properties about its representation theory and the defi-
nition of the coloured Jones polynomials. Further on, Section 1.3 contains
the details about the homological Lawrence representation. In Section1.4 we
present the dual Lawrence representation and we discuss the graded geomet-
ric intersection form that relates the two representations, with emphasise on
the way of computing this form and the non-degeneracy of this pairing. Af-
ter that, Part 1.5 concerns identifications between quantum and homological
representations of the braid group and contains a detailed discussion about
specialisations at natural parameters. Section 1.6, is devoted to the construc-
tion and the proof of the homological model for the coloured Jones polyno-
mials. There we construct two homology classes that live in the Lawrence
representation specialised by a function that depends on the colour. In the
last part, in Section 1.7, we show that the two homology classes can be lifted
such that they do not depend on a specialisation using the colour and we
conclude the model presented in Theorem 1.7.0.1.
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1.2 Representation theory of Uq(sl(2))

1.2.1 Uq(sl(2)) and its representations

Definition 1.2.1.1. Let q, s parameters and consider the ring Ls := Z[q±1, s±1].
Consider the quantum enveloping algebra Uq(sl(2)), the algebra over Ls

generated by the elements {E,F (n), K±1| n ∈ N∗} with the folowing relations:

KK−1 = K−1K = 1;KE = q2EK;KF (n) = q−2nF (n)K

F (n)F (m) =

[
n+m

n

]

q

F (n+m)

The generators F (n) correspond to the ”divided powers” of the generator F ,
from the version of the quantum group Uq(sl(2)) with generators {E,F,K±1}.

This is a Hopf algebra with the following comultiplication, counit and
antipode:

∆(E) =E ⊗K + 1⊗ E, S(E) =− EK−1

∆(F (n)) =
n∑

j=0

q−j(n−j)Kj−nF (j) ⊗ F (n−j), S(F (n)) =(−1)nqn(n−1)KnF (n)

∆(K) =K ⊗K S(K) = K−1,

∆(K−1) =K−1 ⊗K−1 S(K−1) =K.

We will use the following notations:

{x} := qx − q−x [x]q :=
qx − q−x
q − q−1

[n]q! = [1]q[2]q...[n]q
[
n

j

]

q

=
[n]q!

[n− j]q![j]q!
.

Now we will describe the representation theory of Uq(sl(2)). In the sequel
the abstract variable s will be thought as being the weight of the Verma
module.
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Definition 1.2.1.2. (The Verma module)
Consider V̂ be the Ls-module generated by an infinite family of vectors

{v̂0, v̂1, ...}. The following relations define an Uq(sl(2)) action on V̂ :

Kv̂i =sq
−2iv̂i,

Ev̂i =v̂i−1,

F (n)v̂i =

[
n+ i

i

]

q

n−1∏

k=0

(sq−k−i − s−1qk+i)v̂i+n.

1.2.2 Specialisations

For our purpose, to arrive at the definition of the coloured Jones polynomial,
it is needed to consider some specialisations of the previous quantum groups
and its Verma representations.

Definition 1.2.2.1. Consider the following specialisations of the coefficients:
2) Let h, λ ∈ C and q = eh. In the following, we will have eλh = q

λ. In this
case, we specialise both variable q and the highest weight s to concrete complex
numbers:

ηq,λ : Z[q
±, s±]→ C

ηq,λ(q) = eh ηq,λ(s) = eλh

3) This is the case where the coloured Jones polynomial will be defined. Con-
sider q still as a parameter (it will be the parameter from the coloured Jones
polynomial), and specialise the highest weight using λ = N − 1 ∈ N a natural
parameter:

ηλ : Z[q
±, s±]→ Z[q±]

ηλ(s) = qλ

Using these specialisations, we will consider the corresponding specialised
quantum groups and their representation theory. We obtain the following:
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Ring Quantum Group Representations Specialisations

Ls = Z[q±, s±] Uq(sl(2)) V̂ 1)q, s param

C Uq,λ =
Uq(sl(2))⊗ηq,λ C

V̂q,λ = V̂ ⊗ηq,λ C 2)(q = eh, λ) ∈
C2 ηq,λ

L = Z[q±] U = Uλ =
Uq(sl(2))⊗ηλ

Z[q±]

V̂λ = V̂ ⊗ηλ Z[q±]
VN ⊆ V̂λ

3)q param ,
λ = N − 1 ∈ N

ηλ

Remark 1.2.2.2. If we specialise as above, Uλ and Uq,λ become Hopf alge-

bras and V̂q,λ a Uq,λ-representation and V̂λ a Uλ-representation.

Lemma 1.2.2.3. If λ = N−1 ∈ N, then {v̂0, ..., v̂N−1} span an N-dimensional
Uλ-submodule inside V̂N−1. Denote this module by

VN :=< v̂0, ..., v̂N−1 >⊆ V̂N−1

Proof. We can see that K acts by scalars and E decreases the indexes on the
basis from before. We only have to see what the generators F (n) do on this
space.

F (n)v̂i =

[
n+ i

i

]

q

n−1∏

k=0

(q(N−1)−(k+i) − q−[(N−1)−(k+i)])v̂i+n.

Let i ∈ {0, ..., N − 1}.
If n < N− i, from the definition, the action of F (n) will remain inside the

module:
F (n)v̂i ≃ v̂i+n ∈ VN .

For n ≥ N− i, we obtain that n− 1 ≥ N − 1− i.
This shows us that in the previous formula with the action of F (n), there

is a term corresponding to k = N − 1− i and its coefficient vanishes.
We obtain that F (n)v̂i = 0, for any n ≥ N − i.
This concludes the existence of the N -dimensional submodule VN .
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1.2.3 The Reshetikhin-Turaev functor

In this section, we will present the general construction due to Reshetikhin
and Turaev, that having as input any ribbon category C gives a functor
from the category of tangles to C . In particular, this machinery leads to link
invariants. We will present this, using the category of representations of U .

Notation: We will use Uq(sl(2))⊗̂Uq(sl(2)) to denote a completion of the
module Uq(sl(2))⊗Uq(sl(2)), where we allow infinite formal sums of tensors.

Proposition 1.2.3.1. There exist an element R ∈ Uq(sl(2))⊗̂Uq(sl(2)) called
R-matrix which leads to a braid group representations. For any representa-
tion V of Uq(sl(2)) (finite dimensional or the Verma module V̂ ), we have
that the morphism:

ϕVn : Bn → EndUq(sl(2))(V
⊗n)

such that

σi ←→ Id
(i−1)
V ⊗ (R ◦ τ)⊗ Id(n−i−1)V

σ−1i ←→ Id
(i−1)
V ⊗ (τ ◦R

−1)⊗ Id(n−i−1)V

gives a well defined action of Bn.
(here τ : V ⊗V → V ⊗V flips the two factors between them: τ(x⊗y) = y⊗x)

Proposition 1.2.3.2. 1) Using the R-matrix of Uq(sl(2)), the category of
Uq(sl(2)) representations Rep(Uq(sl(2))) becomes a braided category. More
precisely, for any V,W ∈ RepUq(sl(2)), the braiding R̃V,W : V ⊗W → W ⊗ V
is defined using the R-matrix in the following way:

R̃V,W = (R y (W ⊗ V )) ◦ τ

2) The subcategory of finite dimensional U -representations Repf. dim(U ) be-
comes a ribbon category. In this case, the braiding comes from the action of
the specialisation of the R-matrix R|ηλ⊗ηλ ∈ U ⊗̂U .

For any representations V,W ∈ RepU , the braiding RV,W : V ⊗ W →
W ⊗ V is defined as:

RV,W = (R|ηλ⊗ηλ y (W ⊗ V )) ◦ τ

The dualities of this category have the following form:

∀ VN ∈ Repf. dim
U
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←−
coevVN :L→ VN ⊗ V ∗N is given by 1 7→

∑
vj ⊗ v∗j ,

←−
evVN :V

∗
N ⊗ VN → L is given by f ⊗ w 7→ f(w),

−→
coevVN :L→ V ∗N ⊗ VN is given by 1 7→

∑
v∗j ⊗K−1vj, (1.1)

−→
evVN :VN ⊗ V ∗N → L is given by v ⊗ f 7→ f(Kv),

for {vj} a basis of VN and {v∗j} the dual basis of VN
∗.

Remark 1.2.3.3. The action of R̃ on the standard basis of the Verma module
V̂ ⊗ V̂ is given in [41](Section 4.1):

R̃(v̂i ⊗ v̂j) = s−(i+j)
i∑

n=0

Fi,j,n(q)
n−1∏

k=0

(sq−k−j − s−1qk+j) v̂j+n ⊗ v̂i−n.

In the previous formula Fi,j,n ∈ Z[q±] has the expression:

Fi,j,n(q) = q2(i−n)(j+n)q
n(n−1)

2

[
n+ j

j

]

q

.

For the Verma module V̂N−1, since it is infinite dimensional, we do not
have a well defined coevaluation. However, there is the finite dimensional
submodule inside it VN ⊆ V̂N−1, which has a coevaluation defined on it. In
the sequel, we will define a kind of evaluation on V̂N−1, which will be sup-
ported on VN .
Let us make this precise. From the classification of finite dimensional repre-
sentations of U , it is known that the finite dimensional representations are
self-dual.

Lemma 1.2.3.4. The function αN : VN → V ∗N defined by:

αN(v̂i) = (−1)iq−i(N−i)v̂∗N−i−1
is an isomorphism of U -modules.

Notation 1.2.3.5.

Let
−→

EvVN : V
⊗2
N → C

←−

CoevVN : C→ V ⊗2N

−→

EvVN :=
−→
evVN ◦ (Id⊗ αN)

←−

CoevVN := (Id⊗ α−1N ) ◦ ←−
coevVN (1.2)
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Definition 1.2.3.6. Consider
−→

EvV̂N−1
: V̂ ⊗2N−1 → Z[q±] given by the expression

−→

EvV̂N−1
(v̂i ⊗ v̂j) =

{ −→

EvVN (v̂i ⊗ v̂j), if i, j 6 N − 1

0, otherwise
(1.3)

and extended it by linearity. In other words, this is an extension of the
previous evaluation:

−→

EvV̂N−1
|V ⊗2
N

=
−→

EvVN

In the following part we will present the Reshetikhin-Turaev method of
obtaining link invariants starting from any ribbon category. Firstly, we will
see the definition for the category of coloured tangles.

Definition 1.2.3.7. Let C be a category. The category of C -colored framed
tangles TC is defined as follows:

Ob(TC ) = {(V1, ǫ1), ..., (Vm, ǫm)|m ∈ N, ǫi ∈ ±1, Vi ∈ C }.
HomTC

((V1, ǫ1), ..., (Vm, ǫm); (W1, δ1), ..., (Wn, δn)) = C−colored framed tangles

T : (V1, ǫ1), ..., (Vm, ǫm) ↑ (W1, δ1), ..., (Wn, δn)/isotopy

Remark: The tangles T have to respect the colors Vi which are at their bound-
aries. Once we have such a tangle, it has an induced orientation, coming from
the signs ǫi , using the following conventions:

(V,−) ↓, (V,+) ↑
Theorem 1.2.3.8. (Reshetikhin-Turaev)
There exist an unique monoidal functor F : TRepf.dim(U ) → Repf.dim(U ) such
that ∀V,W ∈ Repf.dim(U ), it respects the following local relations:

1) F((V,+)) = V ; F((V,−)) = V ∗

2) F( ) = RV,W ∈ Hom(V ⊗W → W ⊗ V )

F( ) =
←−
coevV : Z[q

±]→ V ⊗ V ∗

F( ) =
−→
evV : V ⊗ V ∗ → Z[q±]

Notation 1.2.3.9. Let V ∈ Repf.dim(U ). Consider the subcategory TV ⊆
TRepf.dim(U ) which contains two objects V and V ∗ and all tangles are coloured
just with these two colours. Denote by

FV : TV → Repf.dim(U )

the restriction of the Reshetikhin-Turaev functor F onto this subcategory.
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1.2.4 The coloured Jones polynomial JN(L, q)

So far we have seen the algebraic structure coming from U and the Reshetikhin-
Turaev construction. Now, we will present how this machinery is actually a
tool that leads to quantum invariants for links.

Definition 1.2.4.1. (The coloured Jones polynomial-V. Jones)
Let N be a natural number and L a link. Then L ∈ HomT

Repf.dim(U )
(∅, ∅).

The N ′th coloured Jones polynomial is defined from the Reshetikhin-Turaev
functor, using the representation VN ∈ Rep(U ) as colour, in the following
way:

JN(L, q) := FVN (L) ∈ Z[q±]

(here by applying the functor we get a morphism from Z[q±] to Z[q±], which
is identified with a scalar )

As we have seen so far, the construction that leads to the definition of
JN(L, q) is purely algebraic and combinatorial. We are interested in a geo-
metrical interpretation for this invariant. The method that we are thinking
of is to study what is happening with the Reshetikhin-Turaev functor at the
intermediary levels of the link diagram. More precisely, we will start with L
as a plat closure of a braid β ∈ B2n. Then, we will have to study what is
happening with F at three levels:

1) the evaluation ∩ ∩ ∩ ∩
2) braid level β
3)the coevaluation ∪ ∪ ∪ ∪
The interesting part and the starting point in our description is the fact

that at the level of braid group representation, there is a homological counter-
part for the quantum representation, called Lawrence representation([60],[57]).
This relation is established using the notion of highest weight spaces.

1.2.5 Highest weight spaces

In this part, we will introduce and discuss the properties of some certain
vector subspaces which live in the tensor power of a certain representation
(we will refer to the ones defined in the table 1.2.7). These subspaces are rich
objects and carry very interesting braid group representations, as we will see.

Definition 1.2.5.1. Consider the set of indexes:

En,m := {e = (e1, ..., en−1) ∈ Nn−1|e1 + ...+ en−1 = m}
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EN
n,m := {e = (e1, ..., en−1) ∈ En,m|e1, ..., en−1 ≤ N − 1}
E≥Nn,m := {e = (e1, ..., en−1) ∈ En,m|∃i, ei ≥ N}

For an element e = (e1, ..., en) ∈ Nn, let us denote:

ve := v̂e1 ⊗ ...⊗ v̂en

Remark 1.2.5.2. En,m is the set that has as elements all partitions of the
natural number m into n− 1 natural numbers (possible zero). Its cardinal is
well known and we will use the notation:

dn,m := card (En,m) =

(
n+m− 2

m

)

Definition 1.2.5.3. Let n,m ∈ N two natural numbers.
1) The case of two parameters q, s
The weight space of the generic Verma module V̂ corresponding to the weight
m:

V̂n,m := {v ∈ V̂ ⊗n|Kv = snq−2mv}
The highest weight space of the generic Verma module V̂ ⊗n corresponding to
the weight m:

Ŵn,m := V̂n,m ∩KerE
2) Specialisation with two complex numbers
Let h, λ ∈ C and q = eh.
The weight space of V̂ ⊗n

q,λ corresponding to the weight m:

V̂ q,λ
n,m := {v ∈ V̂ ⊗n

q,λ |Kv = qnλ−2mv}

The highest weight space of the Verma module V̂ ⊗n
q,λ corresponding to the

weight m:
Ŵ q,λ
n,m := V̂ q,λ

n,m ∩KerE
3)The case with q parameter and λ natural number
a) Inside the Verma module V̂ ⊗nN−1

Consider λ = N − 1 ∈ N.
The weight space of V̂ ⊗nN−1 of weight m:

V̂ N−1
n,m := {v ∈ V̂ ⊗nN−1|Kv = qnλ−2mv}
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The highest weight space for Verma module V̂ ⊗nN−1 corresponding to the weight
m:

ŴN−1
n,m := V̂ N−1

n,m ∩KerE
b) Inside the finite dimensional module V ⊗nN

The weight space for the finite dimensional representation V ⊗nN of weight m:

V N
n,m := {v ∈ V ⊗nN |Kv = qn(N−1)−2mv}

The highest weight space of the finite dimensional representation V ⊗nN corre-
sponding to the weight m:

WN
n,m := V N

n,m ∩KerE
Remark 1.2.5.4. Since VN ⊆ V̂N−1, we have

ve ∈ V ⊗nN if and only if e ∈ EN
n,m.

This will happen also at the level of (highest) weight spaces:

V N
n,m ⊆ V̂ N−1

n,m and WN
n,m ⊆ ŴN−1

n,m .

Remark 1.2.5.5. 1) Basis for the weight spaces from Verma module
One can see easily that:

V̂n,m =< ve|e ∈ En+1,m > |Ls ⊆ V̂ ⊗n

V̂ N−1
n,m =< ve|e ∈ En+1,m > |Z[q±] ⊆ V̂ ⊗nN−1

Using 1.2.5.2, the dimensions of these space will be:

dim(V̂n,m) = dim(V̂ N−1
n,m ) = dn+1,m =

(
n+m− 1

m

)

2) Basis for the weight space of the finite dimensional module
VN :
From the previous remark and 1), we conclude that:

V N
n,m =< ve|e ∈ EN

n+1,m > |Z[q±] ⊆ V ⊗nN

Remark 1.2.5.6. Moreover, if we denote by

V ≥Nn,m =< ve|e ∈ E≥Nn+1,m >Ls⊆ V̂ ⊗nN−1

W≥N
n,m = V ≥Nn,m ∩KerE

then we have the following splitting as vector spaces:

V̂ N−1
n,m = V N

n,m ⊕ V ≥Nn,m

ŴN
n,m = WN

n,m ⊕W≥N
n,m
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1.2.6 Basis in heighest weight spaces

In [44], there were studied certain bases in the highest weight spaces from
the Verma module, as well as connections between highest weight spaces and
weight spaces corresponding to different parameters n and m. Jackson and
Kerler proved that for the parameter m = 2, the braid group action onto the
highest weight space Ŵn,m corresponds to the homological Lawrence-Bigelow-
Krammer ([59], [15],[55],[56])representation and conjectured that this identi-
fication is true for any natural number m. Later on, Kohno ([41],[57]) proved
this conjecture. We will discuss in details this identification in section 1.5.

Now, we will present from [41] some ”good” bases for the highest weight
spaces, that will have a role in the identification between quantum and ho-
mological representations of the braid groups.

Definition 1.2.6.1. (Basis for Ŵn,m) For e ∈ En+1,m, we will denote by:

vse := s
∑n
i=1 iei v̂e1 ⊗ ...⊗ v̂en

Notice that BV̂n,m
:= {vse|e ∈ En+1,m} form a basis for V̂n,m.

In the sequel, the highest weight spaces Ŵn,m will be identified with a

certain subspace of the weight spaces V̂n,m.
Let ι : En,m → En+1,m the inclusion:

ι((e1, ..., en−1)) = (0, e1, ..., en−1)

Denote by V̂ ′n,m := Lsv̂0 ⊕ V̂n−1,m ⊆ V̂n,m. Then, BV̂ ′
n,m

:= {v̂sι(e)|e ∈ En,m}
will give a basis for the space V̂ ′n,m.

Proposition 1.2.6.2. [41] Consider the function φ : V̂ ′n,m → Ŵn,m described
by the formula:

φ(w) :=
m∑

k=0

(−1)ks−k(n−1)q2mk−k(k+1)vk ⊗ Ek(w)

Then φ is an isomorphism of Ls-modules.
The set BŴn,m

= {φ(vsι(e))|e ∈ En,m} will describe a basis for the generic

highest weight space Ŵn,m. It follows that (1.2.5.2,1.2.5.5):

dim (Ŵn,m) = dn,m =

(
n+m− 2

m

)
.
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1.2.7 Quantum representations of the braid groups

In the following part, we will see that the braid group action on (generic)
Verma module and on the finite dimensional module V ⊗nN , passes at the level
of highest weight spaces.

Proposition 1.2.7.1. Since ϕV̂n gives an action on V̂ ⊗n which commutes
with the quantum group action ( Prop. 1.2.3.1), it will commute with the
actions of generators K,E. Then, it will induce a well defined action on the
generic highest weight spaces ϕŴn,m : Bn → Aut(Ŵn,m).

This action in the basis BŴn,m
will lead to a representation:

ϕŴn,m : Bn → GL(dn,m,Ls)

This is called the generic quantum representation on highest weight spaces of
the Verma module.

Proposition 1.2.7.2. Similarly, using the previous specialisations we have
induced braid group actions :

2) ϕŴ
q,λ

n,m : Bn → Aut(Ŵ q,λ
n,m)

well defined action induced by ϕ
V̂q,λ
n

3)a) ϕŴ
N−1

n,m : Bn → Aut(ŴN−1
n,m )

well defined action induced by ϕ
V̂N−1
n called the quantum representation on

highest weight spaces of the Verma module.

3)b) ϕW
N

n,m : Bn → Aut(WN
n,m)

well defined action induced by ϕVNn called the quantum representation on high-
est weight spaces of the finite dimensional module.

As a summary we have the following highest weights spaces, which carry
braid group actions and live inside the nth tensor power of different speciali-
sations of the Verma module V̂ :
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Braid group
action

Highest weight
space

Representation Specialisation

ϕŴn,m Ŵn,m V̂ ⊗n 1) q, s param

ϕŴ
q,λ

n,m Ŵ q,λ
n,m V̂ ⊗nq,λ 2)q = eh, λ ∈ C

ηq,λ

ϕŴ
N−1

n,m ŴN−1
n,m V̂ ⊗nN−1 3)a) q param

λ = N − 1 ∈ N
ηλ

ϕW
N

n,m WN
n,m V ⊗nN 3)b) q param

λ = N − 1 ∈ N
ηλ

1.3 Lawrence representation

1.3.1 Local system

In this section we will present certain braid group representations introduced
by Lawrence ([60]). These are defined on the middle homology of a certain
covering of the configuration space in the punctured disk. They are called
homological Lawrence representations and they have a topological descrip-
tion.

Let n ∈ N. Consider D2 ⊆ C the unit disk with its boundary and
{p1, ..., pn}- n points in its interior, on the real axis.

Let Dn := D2 \ {p1, ..., pn} and fix m ∈ N a natural number.
Let Cn,m be the unordered configuration space ofm points in the n-punctured
disk:

Cn,m = Confm(Dn) = (Dmn \{x = (x1, ..., xn)| ∃ i, j such that xi = xj})/Symm

( by Symm we denote the symmetric group of order m)
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Definition 1.3.1.1. (Local system on Cn,m)
Consider the abelianisation

ab : π1(Cn,m)→ H1(Cn,m).

Then H1(Cn,m) ≃ Zn⊕Z, where each i-th element of Zn is generated by a
loop around the puncture pi and the last component counts the total winding
number of the loop with respect to itself, viewed in the configuration space
Cm(D2).
Consider the function

aug : Zn ⊕ Z→ Z ⊕ Z

< x > < d >
by taking the sum on the first components: aug((x1, ..., xn), y) = (x1 +

...+ xn, y).
By composing the previous maps, define the local system :

φ : π1(Cn,m)→ Z⊕ Z

φ = aug ◦ ab
We denote C̃n,m be the covering of Cn,mcorresponding to Ker(φ) and its
associated projection map π : C̃n,m → Cn,m.

Remark 1.3.1.2. The deck transformations of the covering are:

Deck(C̃n,m) = Z⊕ Z.

Then each deck transformation will induce a cellular chain map for C̃n,m and
moreover this map will pass at the level of homology. So we have an action

Z⊕ Z y H lf
m(C̃n,m,Z).

Moreover, this action will be defined at the level of the group ring:

Z[Z⊕ Z] ≃ Z[x±, d±]

It follows that the homology groups H lf
m(C̃n,m,Z) and Hm(C̃n,m,Z; ∂) have a

structure of Z[x±, d±]-modules ( here H lf means the Borel-Moore homology/
the homology of locally finite chains).
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1.3.2 Basis of multiforks

So far, we have seen the covering of the configuration space whose homology
will lead to the Lawrence representation. For that, we will define certain
subspaces in the homology (Borel-Moore/relative to the boundary) ([22]) of
C̃n,m.

Definition 1.3.2.1. (Multiforks)[18],[41]
1) Submanifolds
Let e = (e1, ..., en−1) ∈ En,m as in the definition 1.2.5.1. To each e it will

be associate an m-dimensional submanifold in C̃n,m which will give a class in
the Borel Moore homology.

Fix d1, ..., dm ∈ ∂Dn.
For each i ∈ {1, ..., n − 1}, consider ei-disjoint horizontal segments in

Dn, between pi and pi+1 (which meet just at their boundary). Denote those
segments by Ie1 , ..., I

e
e1
, ..., Iem. Also, for each k ∈ {1, ...,m}, choose a vertical

path γek between the segment Iek and dk.
Think each segment as a map Iei : (0, 1)→ Dn. Since these segments are

disjoint, their product gives a map:

Ie1 × ...× Iem : (0, 1)m → Dm
n \ {x = (x1, ..., xn)|xi = xj})

Let the projection defined by the quotient with respect to the Symm-action:

πm : Dm
n \ {x = (x1, ..., xn)|xi = xj})→ Cn,m
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Composing the two previous maps we obtain: Fe : Dm(= (0, 1)m)→ Cn,m

Fe = πm ◦ (Ie1 × ...× Iem)

2) Base Points: The paths to the base points d1, .., dm will help us to lift
the submanifold Fe in C̃n,m. The m-uple (d1, ..., dm) defines a point d ∈ Cn,m.
Consider d̃ ∈ π−1(d). The product of the paths towards the boundary γek, will
define a path in the configuration space. Let

γe := πm ◦ (γe1, ..., γem) : [0, 1]→ Cn,m

Consider the unique lift of the path γe such that γ̃e(0) = d̃:

γ̃e : [0, 1]m → C̃n,m

3) Multiforks Consider F̃e to be the unique lift of Fe to the covering
which passes through the point γ̃e(1):

F̃e : Dm(= (0, 1)m)→ C̃n,m

Then F̃e will define a class in the Borel-Moore Homology [F̃e] ∈ H lf
m(C̃n,m,Z).

[F̃e] is called the multifork corresponding to the element e ∈ En,m
The Lawrence representation will be a subspace of this Borel-Moore ho-

mology of the covering, spanned by these multiforks. More precisely we have
the following definition:

Definition 1.3.2.2. Consider the subspace:

Hn,m :=< [F̃e] | e ∈ En,m >Z[x±,d±]⊆ H lf
m(C̃n,m,Z) 1.3.1.2

Denote by BHn,m := {[F̃e] | e ∈ En,m}.

Proposition 1.3.2.3. From ([41],Prop 3.1) Hn,m is a free module over
Z[x±, d±] of dimension dn,m and BHn,m describes a basis called multifork
basis.

As we have seen, the cardinal of En,m is known (1.2.5.2), so we have:

rank(Hn,m) = dn,m =

(
n+m− 2

m

)
.
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1.3.3 Braid group action

Now we are interested about the relation between this subspace which lives in
the homology of the covering of the configuration space and the braid group
action on the punctured disc. It is known ([49], chap. I.6) that:

Bn =MCG(Dn) = Homeo+(Dn, ∂)/isotopy

Then Bn y Cn,m and it will induce an action

Bn y π1(Cn,m).

Remark 1.3.3.1. Let π : E → B be a covering map corresponding to a local
system φ : π1(B, x0)→ H where H is an abelian group.

Suppose that G is a group that acts on B.
We will consider the fiber of E over a point x ∈ B in the following way:

π−1(x) = {classes of paths from the fixed point x0 to x}� ≃

where σ1 ≃ σ2 iff φ(σ1σ
−1
2 ) = 0.

Then this action can be lifted to a G-action on E (constructed at the level
of paths using the previous definition) if and only if

∀g ∈ G, g(ker(φ)) ⊆ ker(φ)

From the definition of the local system 1.3.1.1 it can be shown that ∀β ∈
Bn:

β(ker(φ)) ⊆ ker(φ)

.

Remark 1.3.3.2. 1) It follows that there is a well defined action of the braid
group Bn on the covering of the configuration space C̃n,m.

2)We are interested to study the homology of this covering(1.3.1.2). One
can check that the action Bn y C̃n,m commutes with the action of the Deck
transformations < x, d >.

Moreover, it can be shown that φ is the finest abelian local system such that
the induced action of the braid group on the corresponding covering 1.3.3.1
commutes with the deck transformations given by H.

For us, the base space B will be the configuration space Cn,m and the group
H = Z⊕ Z, as in 1.3.1.1.
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Corollary 1.3.3.3. From the previous remarks, one can conclude that there
is a well defined action:

Bn y H lf
m(C̃n,m,Z) ( as a Z[x±, d±]−module).

Definition 1.3.3.4. ([41] Prop 3.1) (Lawrence representation)
The subspace Hn,m ⊆ H lf

m(C̃n,m,Z) is invariant under the action of Bn.
Considering the braid group action on Hn,m in the multifork basis BHn,m,

it is obtained a representation which is called the Lawrence representation:

ln,m : Bn → GL(dn,m,Z[x
±, d±]) (= End(Hn,m,Z[x

±, d±])).

1.4 Blanchfield pairing

In this section, we will present a non-degenerate duality between the Lawrence
representation Hn,m and a ”dual” space, which we will denote by H∂

n,m. This
dual space lives in the homology of the covering relative to its boundary. Us-
ing this form, we will be able to express any element in the dual of Hn,m, as
certain geometric pairing, using elements from the dual space. This property
will play an important role in the homological model from Section 1.6.

1.4.1 Dual space

Firstly we will define a subset in the homology of the covering of the config-
uration space relative to its boundary Hm(C̃n,m,Z; ∂), by specifying a gener-
ating set, which we will think as a dual set to the multifork basis.

Definition 1.4.1.1. (Barcodes)[18]
1) Submanifolds Let e = (e1, ..., en−1) ∈ En,m ( 1.2.5.1). For each such

e, we will define an m-dimensional submanifold in C̃n,m, which will give a
homology class in Hm(C̃n,m,Z; ∂).

For each i ∈ {1, ..., n − 1}, consider ei-disjoint vertical segments in Dn,
between pi and pi+1 as in the picture above. Denote those segments by
Je1 , ..., J

e
e1
, ..., Jem. Also, for each k ∈ {1, ...,m}, choose a vertical path δek

between the segment Jek and dk.
Each of these segments is a map Jei : [0, 1] → Dn. Then the product of

these segments leads to a map:

Je1 × ...× Jem : [0, 1]m → Dm
n \ {x = (x1, ..., xn)|xi = xj}.
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Projecting onto the configuration space using πn we obtain a submanifold:

De : (D̄m(= [0, 1]m), ∂D̄m)→ (Cn,m, ∂Cn,m).

2) Base Points: As in the case of multiforks, the paths to the base
point d ∈ Cn,m will help us to lift the submanifold De to the covering C̃n,m.
Consider the path in the configuration space:

δe := πm ◦ (δe1, ..., γem) : [0, 1]→ Cn,m.

Define δ̃e to be the unique lift of the path δe such that δ̃e(0) = d̃:

δ̃e : [0, 1]→ C̃n,m.

.
3) Barcodes Consider D̃e to be the unique lift of De to the covering which

passes through δ̃e(1):
D̃e : Dm → C̃n,m.

Then D̃e will define a class in the homology relative to the boundary [D̃e] ∈
Hm(C̃n,m,Z; ∂).

[D̃e] is called the barcode corresponding to the element e ∈ En,m.

Definition 1.4.1.2. (The ”dual” representation)
Let the subspace generated by all the barcodes:

H∂
n,m :=< [D̃e] | e ∈ En,m >Z[x±,d±]⊆ Hm(C̃n,m,Z; ∂) 1.3.1.2.

We will call this the ”dual” representation of Hn,m. Also, consider the set:

BH∂n,m := {[D̃e]|e ∈ En,m}.

Remark 1.4.1.3. We do not know yet that BH∂n,m is a basis for H∂
n,m, but

we will prove this in the next section, using a pairing between Hn,m and H∂
n,m.

1.4.2 Graded Intersection Pairing

In this part, we will describe how the Borel-Moore homology and the homol-
ogy relative to the boundary of C̃n,m are related by a pairing. More precisely
we are interested to define a Blanchfield type pairing betweenHn,m andH∂

n,m.
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We will present a duality type pairing, which uses the middle dimensional
homologies with respect to differents parts of the ”boundary” of the covering
space. We will use the space C̃n,m and think about its boundary as having two
parts. The first part, the ”boundary at infinity”, contains the multi-points
in C̃n,m, where one of their components projects to Dn ”close to a puncture”
or where two components get very close one to another by projection. The
second part, is the actual boundary and contains the multi-points for which
there exists a component which projects onto the boundary of Dn.

The Borel-Moore homology of C̃n,m, can be thought as the homology
with respect to the first boundary from above, relative to infinity. The second
homology that we will use will be the homology with respect to the boundary
of C̃n,m, as described above as the second set.

We will follow [17], [18], especially the way of computing the pairing in
the case when the homology classes are given by some manifolds. Let us take
two homology classes [M̃ ] ∈ H lf

m (C̃n,m,Z) and [Ñ ] ∈ Hm(C̃n,m,Z; ∂) which
can be represented by the classes of lifts of two m-dimensional submanifolds
M,N ⊆ Cn,m. The idea is to fix the second submanifold Ñ in the covering
and act with all deck transformations on the first submanifold M̃ . Each time,
we will count the geometric intersection between the two submanifolds with
the coefficient given by the element from the deck group. Recall that the
local system is defined as φ : π1(Cn,m)→ Z⊕ Z and Deck(C̃n,m) = Z⊕ Z.

Definition 1.4.2.1. [16](Graded intersection)
Let F ∈ H lf

m (C̃n,m,Z) and G ∈ Hm(C̃n,m,Z; ∂). Suppose that there exist
M,N ⊆ Cn,m transverse submanifolds of dimension m which intersect in a
finite number of points such that there exist lifts in the covering M̃, Ñ with

F = [M̃ ] and G = [Ñ ].

Then the graded intersection between the submanifolds M̃ and Ñ is defined
by the formula:

<< M̃, Ñ >>:=
∑

(u,v)∈Z⊕Z

(xudv y M̃ ∩ Ñ) · xudv ∈ Z[x±, d±]

where (· ∩ ·) means the geometric intersection number between submanifolds.

Remark 1.4.2.2. For any ϕ ∈ Deck(C̃n,m):

ϕM̃ ∩ Ñ ⊆ π−1(M ∩N)
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This shows that the previous sum has a finite number of non-zero terms and
the graded geometric intersection between M̃ and Ñ is well defined.

In the sequel, we will see that the graded intersection between M̃ and Ñ
which is a priori defined in the covering C̃n,m, can be computed in the base,
using M and N and the local system for coefficients. More specifically, the
pairing will be described as a sum parametrised by all intersection points of
M and N in Cn,m, where for each point it will be counted a coefficient which
is prescribed by the local system.

Proposition 1.4.2.3. Let x ∈ M ∩ N . Then there exists an unique ϕx ∈
Deck(C̃n,m) such that

(ϕxM̃ ∩ Ñ) ∩ π−1(x) 6= ∅.

Proof. The fact that N is a submanifold guarantees that ∀y ∈ N :

card |Ñ ∩ π−1({y})| = 1.

Let us denote ỹÑ := Ñ ∩π−1({y}) and ỹM̃ := M̃ ∩π−1({y}) (we use the same
property for M as well). Then it follows that:

(ϕM̃ ∩ Ñ) ∩ π−1({x}) 6= 0 iff x̃Ñ ∈ ϕM̃

From this, we conclude that if ϕ satisfies the required condition, then

ϕ(x̃M̃) = x̃Ñ

From the properties of the Deck transformation, this is a characterisation for
an unique ϕx.

The last two remarks show that the intersection points between all the
translations of M̃ by the deck transformations and Ñ are actually parametrised
by the intersection points between M and N :

⋃

ϕ∈Deck(C̃n,m)

(ϕM̃ ∩ Ñ)←→M ∩N

Computation[16] We will fix a basepoint d ∈ Cn,m and d̃ ∈ π−1(d). From
the last part, we notice that in order to compute the pairing << M̃, Ñ >>,
it is enough to consider a sum parametrised by the set M ∩N and see which
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is the corresponding coefficient for each intersection point. Let x ∈ M ∩ N
and ϕx ∈ Deck(C̃n,m) as in 1.4.2.3. Denote by x̃ = (ϕM̃ ∩ Ñ)∩π−1(x). Now
we will describe ϕx using just the local system and the point x. We notice
that we have the same sign of the intersection in the covering and in the
base:

(ϕxM̃ ∩ Ñ)x̃ = (M ∩N)x

Denote this sign by cx. Consider two paths γM : [0, 1] → Cn,m and δN :
[0, 1]→ Cn,m such that if we take the unique lifts of which start in d̃ of those
paths
γ̃M , δ̃N : [0, 1]→ C̃n,m we have the following properties:

γM(0) = d; γM(1) ∈M ; γ̃M(1) ∈ M̃

δN(0) = d; δN(1) ∈ N ; δ̃N(1) ∈ Ñ
After that, let us denote by γ̂M , δ̂N : [0, 1]→ Cn,m such that

Im(γ̂M) ⊆M ; γ̂M(0) = γM(1); γ̂M(1) = x

Im(δ̂N) ⊆ N ; δ̂N(0) = δN(1); δ̂N(1) = x

We can consider the loop:

lx := δN δ̂N γ̂
−1
M γ−1M

Proposition 1.4.2.4. [16]
ϕx = φ(lx)

Corollary 1.4.2.5. The pairing between M̃ and Ñ can be computed using
just the submanifolds in the base space Cn,m and the local system:

<< M̃, Ñ >>=
∑

x∈M∩N

cxφ(lx) ∈ Z[x±, d±]

This pairing <<,>> can be defined in a similar way for homology classes
F ∈ H lf

m (C̃n,m,Z) and G ∈ Hm(C̃n,m,Z; ∂) that can be represented as linear
combinations of homology classes of lifts of submanifolds of the type that we
described above, with the condition of a finite set of intersection points.

Lemma 1.4.2.6. ([18](6.2)) The paring << F,G >> does not depend on
the representants of the homology classes, so it is well defined at the level of
homology.
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1.4.3 Pairing between Hn,m and H∂
n,m

Definition 1.4.3.1. Let us consider the Blanchfield pairing:

<,>: Hn,m ⊗H∂
n,m → Z[x±, d±]

< [F̃e], [D̃f ] >=<< F̃e, D̃f >>

which will define a sesquilinear form (with respect to the transformations
x↔ x±, d↔ d−1).

Lemma 1.4.3.2. For any e, f ∈ En,m, the pairing has the following form:

< [F̃e], [D̃f ] >= pe · δe,f
where pe ∈ N[d±] and pe 6= 0 with a non-zero constant term.

Proof. We remark that working in the configuration space Fe ∩ Df = ∅ if
e 6= f . Let e ∈ En,m.

<< F̃e, D̃e >>=
∑

x∈Fe∩De

cxφ(lx) ∈ Z[x±, d±]

Secondly, we notice that the previous intersection can be computed using the
separate intersections between the submanifolds from Fe and De ”supported”
between punctures i and i+ 1, in the following manner:

<< F̃e, D̃e >>=
n−1∏

i=1

<< F̃ei , D̃ei >>

where Fei := F(0,0,...,ei,...,0) and Dei := D(0,0,...,ei,...,0).

Now we will compute << F̃ei , D̃ei >>. We notice that each intersection
point x ∈ Fei∩Dei is characterised by an ei-uple which pairs a horizontal line
from the multifork with a vertical line from the barcode. In other words, x
is determined by a permutation on the grid σx ∈ Sei . It follows:

<< F̃ei , D̃ei >>=
∑

σ∈Sei

cσφ(lσ)

The geometric intersection sign cσ counts whether Fei and Dei have a
positive or a negative intersection in x =

(
x(1,σ(1)), ..., x(ei,σ(ei))

)
. The config-

uration space on the disc is orientable. Let us consider R = {v1, v2} the stan-
dard base for the tangent space of the disc. Let c = (c1, ..., cm) ∈ Cn,m and a
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tangent vector in this point w. We will define the orientation of w by writing
it into the form (w1

c1
, ..., wmcm , w

2
c1
, ..., w2

cm) and see if written in the canonical
base R has the same sign or not as the vector (v1c1 , ...., v

1
cm , v

2
c1
, ..., v2cm). This

is well defined at the level of configuration space, because we are working on
a manifold of even dimension, so if we change the order of points by a trans-
position, we will have to modify the matrix with an even number negative
signs.

Following this recipe, we see that cσ is the sign of the tangent vector
vσ obtained by taking the tangent vectors at the multiforks followed by the
tangent vectors at the barcode:

vσ = (v1x(1,σ(1)) , ...., v
1
x(ei,σ(ei))

, v2x(1,σ(1)) , ..., v
2
x(ei,σ(ei))

)

Here, we used that all segments of the multifork are oriented in the same
way, and also, that all parts of the barcode have the same orientation. We
conclude that cσ = 1.

Now we will look at the polynomial part from the graded intersection.
Following the previous description of computation, for any k ∈ 1, ...,m let:

γ̂ek ⊆ Ik such that γ̂ek(0) = γek(1); γ̂
e
k(1) = x(k,σ(k))

δ̂ek ⊆ Jk such that δ̂ek(0) = δek(1); δ̂
e
k(1) = x(k,σ(k))

Let us denote ai := e1 + ...+ ei−1 and the following paths in the configu-
ration space:

Γei :=
(
γeai+1, ..., γ

e
ai+ei

)
Γ̂ei :=

(
γ̂eai+1, ..., γ̂

e
ai+ei

)

∆ei :=
(
δeai+1, ..., δ

e
ai+ei

)
∆̂ei :=

(
δ̂eai+1, ..., δ̂

e
ai+ei

)

Then, the loop corresponding to σ has the following form:

lσ = ∆ei∆̂eiΓ̂
−1
ei
Γ−1ei

Firstly we see that lσ does not goes around any of the punctures, so the
variable x from the local system will not appear. Secondly, for σ = Id the
path lId is the union of trivial loops and so φ(lId) = 1.
From the formula 1.4.3 and the previous remarks, we conclude that:

<< F̃ei , D̃ei >> ∈ N[d±]
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and has a nontrivial free term. Combining this with the computation 1.4.3,
we conclude that

< [F̃e], [D̃e] >∈ N[d±]

with a non trivial free part, which concludes the proof.

This shows that all the polynomials pe are not zero divisors in Z[x±, d±].

Definition 1.4.3.3. Let e, f ∈ En,m and consider [F̃e] ∈ Hn,m, [D̃f ] ∈ H∂
n,m

Lemma 1.4.3.4. The family of barcodes {[D̃e]|e ∈ En,m} is linearly indepen-
dent and it forms a basis for H∂

n,m.

Proof. Let α1, ..., αdn,m ∈ Z[x±, d±] and suppose that
∑dn,m

i=1 αi[D̃ei ] = 0 ∈
H∂
n,m.
Consider j ∈ {1, ..., dn,m}. After we make the pairing with the multifork

[F̃ej ] we obtain:

< [F̃ej ],

dn,m∑

i=1

αi[D̃ei ] >=< [F̃ej ], αej [D̃ej ] >= αj · pej = 0

Since the polynomials p are not zero divisors in Z[x±, d±], we conclude that
αj = 0, ∀j ∈ {1, ..., dn,m}.

Notation 1.4.3.5. The set BH∂n,m will be called the barcodes basis for H∂
n,m.

Remark 1.4.3.6. By an analog argument, we re-obtain also a proof for the
fact that the multiforks {[F̃e]|e ∈ En,m] are linearly independent in H lf

m (C̃n,m,Z).
(see[43]-3.1)

Remark 1.4.3.7. From the previous computation, we get the matrix of the
graded intersection pairing <,> in the bases of multiforks BHn,m and barcodes
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BH∂n,m:

M<,> =




pe1 0 ... 0

0 pe2 0 ... 0

0 ... 0 pedn,m




(where p1, ..., pedn,m ∈ Z[x±, d±] are all non-zero divisors).

Corollary 1.4.3.8. The Blanchfield pairing is a non-degenerate sesquilinear
form:

<,>: Hn,m ⊗H∂
n,m → Z[x±, d±]

1.4.4 Specialisations

Our aim is to describe the coloured Jones polynomials in a homological way.
For this purpose, our starting point is the deep connection that relates the
quantum representations of the braid groups and certain specializations of
the Lawrence representations. In this part we will focus in order to define
and study Blanchfield pairings which are defined on those specializations of
the Lawrence representation that are used in Kohno’s Theorem.

Definition 1.4.4.1. Let λ = N − 1 ∈ N a parameter.
1)Consider the specialization of the coefficients ψq,λ defined by:

ψλ : Z[x
±, d±]→ Z[q±]

ψλ(x) = q2λ, ψλ(d) = −q−2
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2) The specialized Lawrence representation and its dual will have the following
definition:

Hn,m|ψλ = Hn,m ⊗ψλ Z[q±] =< [F̃e]|e ∈ En,m] >Z[q±]

and these multiforks will define a basis of Hn,m|ψλ over Z[q±], using 1.4.3.6

H∂
n,m|ψλ = H∂

n,m ⊗ψλ Z[q±] =< [D̃e]|e ∈ En,m] >Z[q±]

and these barcodes will define a basis of Hn,m|ψλ over Z[q±], using 1.4.3.4

Definition 1.4.4.2. Let us consider a specialised Blanchfield pairing, ob-
tained from the generic pairing <,> by specialising its coefficients using ψλ.

<,> |ψλ : Hn,m|ψλ ⊗H∂
n,m|ψλ → Z[q±]

< [F̃e], [D̃f ] > |ψλ = ψλ(pe) · δe,f
Remark 1.4.4.3. We notice that {pe|e ∈ En,m} ∩Ker(ψλ) = ∅.

1)Here we see that the choice of barcodes on the dual side of Hn,m has
an important role. They lead to the non-zero polynomials p ∈ N[d±] on
the diagonal of the matrix M<,> of the geometric intersection pairing <,>.
This fact, ensures that these polynomials become non-zero elements in Z[q±]
through the specialization ψλ.

2) It would be interesting to compare this situation with the case where
we use dual-noodles (noodles with multiplicities) instead of barcodes. In that
case, the generic pairing will have as coefficients on the diagonal, polyno-
mials p ∈ Z[x±, d±], which are really in 2 variables and moreover have Z
coefficients not only N coefficients. In our geometric model for the coloured
Jones polynomial JN(L, q), we will use the specialisation ψN−1 with natural
parameter λ = N − 1 ∈ N. In this case, some of these diagonal polynomi-
als might become zero through the specialisation ψN−1 because this change of
coefficients essentially impose the relation x = −d−λ and λ = N − 1 ∈ N.

3)An interesting question is to understand the pairing in the noodle case
and to compute its kernel.

Corollary 1.4.4.4. The form <,> |ψλ is sesquilinear and non-degenerate
over Z[q±].
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1.4.5 Dualizing the algebraic evaluation

This part is motivated by the fact that we are interested to describe the
third level of a plat closure of a braid (the union of ”caps”) viewed through
the Reshetikhin-Turaev functor, in a geometrical way using the geometric
intersection pairing. We will see the details of this in the folowing section
1.6, but for this part the aim is to be able to understand an element of the
dual of Hn,m|ψλ , as a geometric intersection < ·,G > for some G ∈ Hn,m|ψλ .

Remark 1.4.5.1. The pairing <,> |ψλ : Hn,m|ψλ ⊗ H∂
n,m|ψλ → Z[q±] is

non-degenerate and has the matrix:

M<,> =




ψλ(pe1) 0 ... 0

0 ψλ(pe2) 0 ... 0

0 ... 0 ψλ(pedn,m )




(where ψλ(p1), ..., ψλ(pedn,m ) ∈ Z[q±2] are polynomials with non-zero free term).

In particular, this shows that the diagonal coefficients of the pairing are
not necessary invertible elements in Z[q±].

Problem 1.4.5.2. From this, we see that a priori, not any element of F ∈
(Hn,m|ψλ)∗ can be described as a geometric intersection pairing < ·,GF > for
some GF ∈ H∂

n,m|ψλ. This issue comes from the fact that we are working over
a ring and not over a field. In order to overcome this problem, in the sequel
we will change the coefficients ring Z[q±] by passing to the field of fractions
Q(q).
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We remember the specialisation ψλ : Z[x
±, d±]→ Z[q±] described by:

ψλ(x) = q2λ ψλ(d) = −q−2

Let us consider the embedding i : Z[q±] →֒ Q(q) and use Q(q) as field of
coefficients.

Definition 1.4.5.3. (New Specialisation)
1)Let the specialization αλ : Z[x

±, d±]→ Q(q) defined by:

αλ = i ◦ ψλ

2)Let the specialised Lawrence representations defined in a similar way as
before:

Hn,m|αλ := Hn,m ⊗αλ Q(q) =< [F̃e]|e ∈ En,m] >Q(q)

and the multiforks define a basis of Hn,m|αλ over Q(q), from 1.4.3.6

H∂
n,m|αλ = H∂

n,m ⊗αλ Q(q) =< [F̃e]|e ∈ En,m] >Q(q)

and the barcodes define a basis of Hn,m|αλ over Q(q), from 1.4.3.4

We notice that, in fact the specialisations are related in the following
manner:

Hn,m|αλ := Hn,m|ψλ ⊗i Q(q); H∂
n,m|αλ := H∂

n,m|ψλ ⊗i Q(q)

Also, let us denote pλ : Hn,m|ψλ →( · ⊗i1) Hn,m|αλ the corresponding change
of the coefficients.

Definition 1.4.5.4. Consider in a similar way as before a specialised Blanch-
field pairing, by specialising the pairing <,> using αλ:

<,> |αλ : Hn,m|αλ ⊗H∂
n,m|αλ → Q(q)

< [F̃e], [D̃f ] > |αλ = αλ(pe) · δe,f
Remark 1.4.5.5. For any e ∈ En,m, αλ(pe) ∈ Q(q) is a non-zero element,
so it is invertible. This shows that <,> |αq,λ

is a non-degenerate sesquilinear
form.
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Moreover, working on a field, we conclude that any element in the dual
of the first space, will be described as a pairing with a fixed element from
the second space.

Corollary 1.4.5.6. For any G ∈ (Hn,m|αλ)∗, there exist a homology class
G ∈ H∂

n,m|αλ such that:
G =< ·,G > |αλ

Remark 1.4.5.7. (Construction of geometric duals)
Start with an element G0 ∈ (Hn,m|ψλ)∗ = Hom(Hn,m|ψλ , Z[q±]). Construct
the following corresponding element:

G := G0 ⊗ IdQ(q) ∈ (Hn,m|αλ)∗.

If we consider the pairing with the dual element G of G given by 1.4.5.6, we
obtain G0 in a geometrical way:

G0 ⊗ IdQ(q) =< ·,G > |αλ

1.5 Identifications between quantum repre-

sentations and homological representations

So far, we have presented two important constructions that lead to represen-
tations of the braid group: the quantum representation and the Lawrence rep-
resentation. A priori, they are defined using totally different tools, the quan-
tum representation comes from the algebraic world whereas the Lawrence
representation has a homological description. In this section we will discuss
about those, using a result due to Kohno that relates these two representa-
tions.

Let h, λ ∈ C and q = eh. Let us consider the folowing two specialisations
of the coefficients using these complex numbers:

1) for the quantum representation Ŵ (defined over Z[q±, s±]):

ηq,λ : Z[q
±1, s±1]→ C

ηq,λ(q) = q; ηq,λ(s) = qλ
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2) for the Lawrence representation Hn,m (defined over Z[x±, d±]):

ψq,λ : Z[x
±, d±]→ C

ψq,λ(x) = q2λ; ψq,λ(d) = −q−2.
Kohno relates these two representations, by connecting each of them with a
monodromy representation of the braid group which arises using the theory
of KZ-connections. We will shortly describe these relations, following [41].

1.5.1 KZ-Monodromy representation

Let the Lie algebra sl2(C) and consider an orthonormal basis {Iµ}µ for its
Cartan-Killing form. Denote by

Ω =
∑

µ

Iµ ⊗ Iµ ∈ sl(2)⊗ sl(2).

Notation 1.5.1.1. 1) For λ ∈ C∗ consider Mλ to be the Verma module of
sl(2),
Mλ =< v0, v1, ... >C with the following actions:

Hvi = (λ− 2i)vi

Evi = vi−1

Fvi = (i+ 1)(λ− i)vi+1.

2)Denote by Xn = Cn \
(⋃

1≤i,j≤nKer(zi = zj)
)
and Yn := Xn/Sn.

3) Let n ∈ N and consider the endomorphism

Ωi,j ∈ End(M⊗n
λ )

to be the action of Ω onto the ith and jth components.

Definition 1.5.1.2. (KZ-connection) Let h ∈ C∗ be a parameter.
Consider ωh the following 1-form defined over Yn with values into End(M⊗n

λ ),
called the KZ-connection (Knizhnik-Zamolodchikov):

ωh =
h√
−1 π

∑

1≤i,j≤n

Ωi,j
dzi − dzj
zi − zj

This describes a connection which is flat with values into the trivial bundle
Yn ×M⊗n

λ over Yn.
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After that, the monodromy of this connection will lead to a representa-
tion:

νh : Bn → Aut(M⊗n
λ )

Definition 1.5.1.3. (Space of null vectors)
Let m ∈ N. The space of null vectors in M⊗n

λ corresponding to the weight m
is described using the sl2-action in the following way:

N [nλ− 2m] := {v ∈M⊗n
λ |Ev = 0;Hv = (nλ− 2m)v}

Definition 1.5.1.4. (Monodromy representation from ωh and Mλ)
For any m ∈ N, the monodromy of the KZ-connection ωh will induce a braid
group representation on the spaces of null vectors:

νh : Bn → Aut(N [nλ− 2m]).

Proposition 1.5.1.5. [41] For e ∈ En,m, consider the vector

we :=
m∑

i=0

(−1)i 1

λ(λ− 1) · ... · (λ− i)F
iv0 ⊗ Ei(F e1v0 ⊗ ...⊗ F en−1v0).

Then, for any λ ∈ C∗ \N, the following set describes a basis of N [nλ− 2m]:

BN [nλ−2m] := {we|e ∈ En,m}

Remark 1.5.1.6. For natural parameter λ ∈ N, BN [nλ−2m] is not even well
defined.

Theorem 1.5.1.7. [41],[57](Kohno’s Theorem)
There exist an open dense set U ⊆ C∗×C∗ such that for any (h, λ) ∈ U there
is the following identification of representations of the braid group:

(
Ŵ q,λ
n,m,BŴ q,λ

n,m

)
≃Θq,λ

(
Hn,m|ψq,λ

,BHn,m |ψq,λ

)

More precisely, the quantum representation ϕŴ
q,λ

n,m and Lawrence representa-
tion ln,m|ψq,λ

are the same in the bases described above (1.2.7.1,1.3.1.2).
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1.5.2 Identifications with q and λ complex numbers

We are interested in understanding the quantum representations with natural
parameter λ = N − 1 ∈ N. In this case, we are not anymore in the ”generic
parameters” case. For that, we will study the relation between the previous
braid group representations specialised with any parameters.

We will start with some general remarks about the group actions on
modules and how they behave with respect to specialisations.

Remark 1.5.2.1. Let R be a ring and M an R-module with a fixed basis B

of cardinal d. Consider a group action G y M and a representation of G
using the basis B:

ρ : G→ GL(d,R).

Suppose that S is another ring and we have a specialisation of the coefficients,
given by a ring morphism:

ψ : R→ S

Denote: Mψ := M ⊗R S and BMψ := B ⊗R 1 ∈ Mψ. From this, we will
have an induced group action GyMψ.
Then, we have the following properties:
1) BMψ is a basis for Mψ.
2)Let ρψ : G → GL(d, S) the representation of G on Mψ coming from the
induced action, in the basis BMψ . In this way, the two actions, before and
after specialisation give the same action in the following sense:

ρψ(g) = ρ(g)|ψ ∀g ∈ G

(here if f : M → M , denote by f |ψ : Mψ → Mψ the specialisation f |ψ =
f ⊗R IdS)

Comment 1.5.2.2. We are interested into the case of non-generic complex
parameters (h, λ) ∈ C∗×C. We would like to to emphasise that quantum rep-
resentation and Lawrence representation on one side and the KZ-monodromy
representation on the other have different natures with respect to the complex
parameters (h, λ). Actually, both quantum representation ϕŴ

q,λ

n,m and Lawrence
representation ln,m|ψq,λ

are coming from some generic braid group represen-

tations ϕŴn,m and ln,m and then are specialised using the procedure from the
previous remark for the functions ηq,λ and ψq,λ. On the contrary, in order
to obtain the KZ-monodromy representation ηh, one has to fix the complex
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numbers (λ, h) and do all the construction through this parameters. This is
not globalised in a way that does not depend on the specific values, in the
sense that we can’t construct a representation over some abstract variables
such that the KZ-representation at the complex parameters can be obtained
from the abstract one by a specialisation, as in the previous remark.

Problem 1.5.2.3. Since the KZ representation does not comes from a spe-
cialisation procedure, we see that we do not have a well defined action in
a well defined basis for any complex parameters. From the remark 1.5.1.6,
for λ ∈ N a natural parameter, BN [nλ−2m] is not even a well defined set
in N [nλ − 2m]. However, the isomorphism between the quantum and ho-
mological representations still works for any parameters, using a continuity
argument.

Theorem 1.5.2.4. Let (h, λ) ∈ C∗×C fixed parameters. Then the following
braid group representations are isomorphic, using the following corresponding
bases: (

Ŵ q,λ
n,m,BŴ q,λ

n,m

)
≃Θq,λ

(
Hn,m|ψq,λ

,BHn,m|ψ
q,λ

)

Proof. 1) In the proof of 1.5.1.7, there are glued two identifications between
representations of the braid group Bn. Basically, the relation between the
quantum representation and the Lawrence representation is established by
passing from both of them to the monodromy of the KZ-connection. There
are constructed two isomorphisms of braid group representations:

fWN
q,λ : Hn,m|ψq,λ

→ N [nλ− 2m]

fNHq,λ : N [nλ− 2m]→ Ŵ q,λ
n,m

More precisely, those isomorphisms are proved using correspondences be-
tween the following bases:

ϕŴ
q,λ

n,m νh ln,m|ψq,λ

Ŵ q,λ
n,m ≃ N [nλ− 2m] ≃ Hn,m|ψq,λ

BŴq,λ
n,m

BN [nλ−2m] BHn,m|ψ
q,λ

φ(vse)|ηq,λ ← we ← [F̃e]

fNHq,λ fWN
q,λ
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2)From this, Kohno proved that for any pair of parameters (h, λ) ∈ U :

ϕŴ
q,λ

n,m (β) = ln,m|ψq,λ
(β), ∀β ∈ Bn

3) Let us denote by
Θq,λ : Hn,m|ψq,λ

→ Ŵ q,λ
n,m

Θq,λ([F̃e]) = φ(vse)|ηq,λ , ∀e ∈ En,m
This function is defined for all (h, λ) ∈ C × C. We notice that, having in
mind that they are defined directly on the bases, the functions fWN

q,λ , fNHq,λ

are continuous with respect to the parameters (h, λ) ∈ U . This means that
the function Θq,λ is continuous with respect to the two complex parameters.

Now, we will see what is happening with non-generic parameters.
4) We are interested to see what is happening to the specialisation of the
quantum representation.

We know that BŴn,m
is a basis for Ŵn,m. Making the specialisation ηq,λ,

means to take a tensor product, which will ensure that BŴn,m
|ηq,λ will still

describe a basis for the specialised module. We conclude that

BŴq,λ
n,m

:= BŴn,m
|ηq,λ

is a well defined basis of Ŵ q,λ
n,m, for any (h, λ) ∈ C∗ × C.

5) Since the specialisation ηq,λ is well defined for any complex parameters

(h, λ) ∈ C∗ × C, all the coefficients from ϕŴn,m|ηq,λ will become well defined

complex numbers. In particular ϕŴ
q,λ

n,m in the basis BŴn,m
|ηq,λ has all the

coefficients well defined.
6) Using the previous steps 4) and 5), we conclude that for any braid

β ∈ Bn, the specialisation of the matrix obtained from the initial action ϕŴn,m
onto Ŵn,m in the basis BŴn,m

, is actually the matrix of the specialised action

ϕŴ
q,λ

n,m in the specialised basis BŴq,λ
n,m

:

ϕŴn,m(β)|ηq,λ = ϕŴ
q,λ

n,m (β), ∀(h, λ) ∈ (C∗ × C)

BŴq,λ
n,m

7) The set BHn,m|ψ
q,λ

is well defined and describes a basis for Hn,m|ψq,λ

for any parameters (h, λ) ∈ C∗ × C (1.4.3.6).
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8)This shows that for every β ∈ Bn, the specialisations of the matrices
from the action on Hn,m in the multifork basis, are actually the same as the
matrices of the specialised Lawrence action, in the specialised multifork basis
BHn,m |ψq,λ

:

ln,m(β)|ψq,λ
= ln,m|ψq,λ

(β), ∀(q, λ) ∈ (C∗ × C)

BHn,m |ψq,λ

Combining the points 2), 3), 6), 8) we obtain that for any parameters
(q, λ) ∈ C∗ × C, we have the identification:

ϕŴ
q,λ

n,m (β) = ln,m|ψq,λ
(β), ∀β ∈ Bn

This concludes that the quantum representation and the Lawrence represen-
tation are isomorphic for any parameters.

1.5.3 Identifications with q indeterminate

From the previous discussion, we know that the quantum representation
Ŵn,m and the Lawrence representation ln,m are isomorphic after appropriate
identifications of the coefficients, as long as we fix (q, λ) complex numbers.
In the sequel, we will state a similar result, but for the case where we keep q
as an indeterminate.

Definition 1.5.3.1. Let us fix λ = N − 1 ∈ N and q an indeterminate.
Consider the specialisations of the coefficients:

ηλ : Z[q
±1, s±1]→ Z[q±]

ηλ(s) = qλ

ψλ : Z[x
±, d±]→ Z[q±]

ψλ(x) = q2λ; ψλ(d) = −q−2

For q ∈ C, let fq : Z[q
±]→ C

fq(q) = q

Then we notice that the specialisations are related:

ηq,λ = fq ◦ ηλ
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ψq,λ = fq ◦ ψλ
We remind the notations:

Ŵ λ
n,m = Ŵn,m ⊗ηλ Z[q±]

Hn,m|ψλ = Hn,m ⊗ψλ Z[q±]

Theorem 1.5.3.2. The braid group representations over Z[q±] are isomor-
phic: (

Ŵ λ
n,m,BŴλ

n,m

)
≃Θλ

(
Hn,m|ψλ ,BHn,m |ψλ

)

Proof. We will basically use the Theorem 1.5.2.4, and just study a little more
its proprieties. Let

Θλ : Hn,m|ψλ → Ŵn,m|ηλ
Θλ(F̃e) = φ(vse)|ηλ, ∀e ∈ En,m

1) We notice that BŴn,m
|ηλ is well defined and, as in the proof of Theorem

1.5.2.4, it will define a basis in Ŵ λ
n,m.

2)Similarly, BHn,m |ψλ is a basis of Hn,m|ψλ .
3) Actually we have the relations:

Ŵ q,λ
n,m = Ŵ λ

n,m ⊗fq C

Hn,m|ψq,λ
= Hn,m|ψλ ⊗fq C

4) If we take β ∈ Bn, we notice that for any q ∈ C:

ϕŴ
q,λ

n,m (β) = fq

(
ϕŴn,m(β)|ηλ

)

ln,m(β)|ψq,λ
= fq (ln,m(β)|ψλ)

(here, the sense is that fq : M(dn,m,Z[q
±]) → M(dn,m,C), by specialising

every entry of the matrix using the function fq ).
5)This shows that

ϕŴn,m(β)|ηλ = ln,m(β)|ψλ , ∀β ∈ Bn

6)Up to this point, this is just an equality of matrices. The question now,

is whether these are matrices of the actions ϕŴn,m|ηλ and ln,m|ψλ in some well
defined basis.
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Puting everything together, we conclude that the vector spaces Ŵ λ
n,m and

Hn,m|ψλhave the specialised subsets BŴn,m
|ηλ , BHn,m |ψλ which are still well

defined through the specialisation and moreover they describe two bases using
the remarks (1) and 2)).
From this, we get that:

ϕŴn,m(β)|ηλ = ϕŴ
N−1

n,m (β)

BŴn,m
|ηλ

ln,m(β)|ψλ = ln,m|ψλ(β)
BHn,m |ψλ

Combining the previous two conclusions, 5) and 6) we obtain that:

ϕŴ
N−1

n,m (β) = ln,m|ψλ(β)
BŴλ

n,m
BHn,m |ψλ

This shows that the braid group actions ϕŴ
N−1

n,m and ln,m|ψλ are isomorphic.

Definition 1.5.3.3. 1) Let us denote Bor
n to be the set of oriented braids on

n strands.
2) For β ∈ B2n, we call oriented plat closure to be a way of closing the braid
to a link by cupping all the upper strands in pairs (i, i+1) with caps oriented
to the right and all the bottom strands in pairs (i, i + 1) with cups oriented
to the left.

Lemma 1.5.3.4. Let L be an oriented link. Then there exist n ∈ N and
β2n ∈ B2n such that it leads to the link by oriented plat closure:

L =
ˆ̂
βor2n

Proof. There is known that there exists an oriented braid βorn ∈ Bor
n such

that L = β̂or. Then, we pick the first strand of L that continues as a trivial
circle outside of the braid. We move the straight part such that it arrives
between the first and second strand of βorn . We continue with the trivial part
of the second strand, and pull it over the braid, until it arrives between the
strands which were initially second and third. We continue the algorithm
inductively. We obtain L as a plat closure of a braid, but the orientation of
cups and caps can be in any way. If we see a cup oriented to the right, then
we add a twist on top of it and transform it to be left-oriented. We do the
same for caps. Finally we get the desired β2n.
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1.6 Homological model for the Coloured Jones

Polynomial

In this section, we present a geometric model for the Coloured Jones poly-
nomials. We will start with a link and consider a braid that leads to the
link by plat closure. Firstly we will study the Reshetikhin-Turaev functor
on a link diagram that leads to the invariant, by separating it on three main
levels. Secondly, we will describe step by step for each of these levels a
homological counterpart using the Lawrence representation and its dual. Fi-
nally, we will show that the evaluation of the Reshetikhin-Turaev functor on
the whole link corresponds to the geometric intersection pairing between the
homological counterparts.

Consider the colour N ∈ N. Let the parameter λ = N − 1 and the
specialisations as in Section 1.5:

ηN−1 ψN−1.

For the simplicity of the notations, we denote:

Ŵn,m := ŴN−1
n,m Wn,m := WN

n,m

ϕ̂Ŵn,m := ϕŴ
N−1

n,m ϕWn,m := ϕW
N

n,m

We recall the change of coefficients from 1.4.5:

αλ : Z[x
±, d±]→ Q(q)

defined by the formula αλ(x) = q2λ; αλ(d) = −q−2.

Theorem 1.6.0.1. (Homological model for coloured Jones polynomials)
Let n ∈ N. Then, for any colour N ∈ N there exist two homology classes

F
N
n ∈ H2n,n(N−1)|αN−1

and G
N
n ∈ H∂

2n,n(N−1)|αN−1

such that for any link L for which there exists β2n ∈ B2n with L =
ˆ̂
βor2n

( oriented plat closure 3.1.0.8), the N thcoloured Jones polynomial has the
formula:

JN(L, q) =< β2nF
N
n ,G

N
n > |αN−1
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Proof. Let L be a link and β2n ∈ B2n such that L =
ˆ̂
βor2n ( oriented plat

closure). Consider the corresponding planar diagram for the link L, using
the plat closure of the braid β2n which has three main levels:
1) the upper closure with n caps (oriented to the right) ∩ ∩ ∩ ∩
2) the braid β2n
3) the lower closure with n cups (oriented to the left) ∪ ∪ ∪ ∪

Step I Following the definition of the Reshetikhin-Turaev construction,
the Coloured Jones polynomial 1.2.4.1, can by obtained in the following way:

JN(L, q) =
(
−→
ev
⊗n

VN
◦ FVN (β2n) ◦

←−
coev

⊗n

VN

)
(1) ∈ Z[q±1]

As we have seen in section 1.5, quantum representations of the braid group
have homological information. Therefore, for the braid part we are interested
to have the action on V ⊗2nN but there is a difference with the orientation of
the strands. In the previous picture, corresponding to the braid group action,
we have the Reshetikhin-Turaev functor:

FVN (β2n) ∈ Aut((V ∗N ⊗ VN)⊗n)
We will compose at the first and the third level with isomorphisms that

transform (VN)
∗ into VN and back, Then, at the middle level we will have

the Reshetikhin-Turaev functor between V 2n
N , which is exactly the quantum

representation ϕVN2 n. Let us make this precise:

Lemma 1.6.0.2. Let V,W finite dimensional representations of U and
φ : V → V ∗ isomorphism of representations. Then there is the following
commutation relation:

RV ∗⊗W = (Id⊗ φ) ◦RV,W ◦ (φ−1 ⊗ Id)
Proof.

RV ∗⊗W = RV ∗⊗W ◦ τ = (RV ∗⊗W ◦ (Id⊗ φ)) ◦
(
(Id⊗ φ−1) ◦ τ

)
=

= ((Id⊗ φ) ◦RV⊗W ) ◦
(
τ ◦ (φ−1 ⊗ Id)

)
= (Id⊗ φ) ◦RV,W ◦ (φ−1 ⊗ Id)

Denote βor2n the braid with the topological support β2n and the orientation
inherited from the oriented plat closure. Also let β̃or2n be the same braid where
we put all the strands to be oriented upwards. The previous lemma tell us
the following:
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Corollary 1.6.0.3.

FVN (β
or
2n) =

(
(IdVN ⊗ αN)⊗n

)
◦ FVN (β̃or2n)

(
IdVN ⊗ α−1N )⊗n

)

We remark that for the diagram, we need the specific orientation for the
braid, but through the Reshetikhin-Turaev functor it is enough to know the
source and the target and that encodes the orientation:

FVN (β̃
or
2n) = ϕVN2n (β2n)

Using the previos two formulas, the first remark from Step I and 1.2, we
conclude:

JN(L, q) =

(
−→

Ev
⊗n

VN
◦ ϕVN2n (β2n) ◦

←−

Coev
⊗n

VN

)
(1) ∈ Z[q±1]

V⊗nN W2n,n(N−1) Ŵ2n,n(N−1) H2n,n(N−1)|ψN−1

V⊗nN W2n,n(N−1) Ŵ2n,n(N−1) H2n,n(N−1)|ψN−1
⊗ H∂

2n,n(N−1)|ψN−1

Z[q±]

Z[q±] Z[q±]

1)
←−
Coev

⊗n

VN

2)
←−
Coev

⊗n

VN
3)

1)ϕVN2n (β) 2)ϕW2n,n(N−1)(β) 3)ϕ̂Ŵ2n,n(N−1)(β) 4)l2n,n(N−1(β)

1)
−→
Ev
⊗n

VN 2)
−→
Ev
⊗n

VN

3)
−→
Ev
⊗n

V̂ηN−1 〈 , 〉ψ

⊇

⊇

⊆ ι

⊆

≃ΘN−1

≃ΘN−1

Rk 1 ≡ Rk 2 ≡ Th.Kohno ≡

Step II The important remark is the fact that, from algebraic properties, by

following the first morphism
←−

Coev
⊗n

VN
, we naturally arrive a particular highest

weight space.

Remark 1.6.0.4. Im(
←−

Coev
⊗n

VN
) ⊆ W2n,n(N−1) (⊆ V ⊗nN )
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Proof. From the fact that
←−

Coev: Z[q±]→ V ⊗2N is an isomorphism U -modules,
this will commute with the E and K-actions. Since Z[q±1] is regarded as
being the trivial representation, this shows that:

Im

(
←−

Coev
⊗n
)
⊆ Ker(E y V ⊗2nN ) ∩Ker

(
(K − Id) y V ⊗2nN

)

From this, one gets that for any vector v ∈ Im
(
←−

Coev
⊗n

VN

)
:

Kv = v = q0v

After writing q0 = q2n(N−1)−2(N−1)n, we conclude that:

Im(
←−

Coev
⊗n

VN
) ⊆ W2n,n(N−1)

We know that the action B2n y V ⊗2nN preserves the highest weight spaces, in
particular preservesW2n,n(N−1). Using this invariance, we notice that actually
we can obtain JN(L, q) using the highest weight spaces, by composing the
morphisms from the second column (2)).

Remark 1.6.0.5.

JN(L, q) =

(
−→

Ev
⊗n

VN
◦ ϕW2n,n(N−1)(β2n) ◦

←−

Coev
⊗n

VN

)
(1)

Problem 1.6.0.6. The highest weight spaces W2n,m of the finite dimensional
module V ⊗2nN , do not have a geometric counterpart known yet. This is one
of the reasons why there are not known geometric interpretations for these
invariants. On the other hand, by Kohno’s Theorem, we know a geometric
flavor of the bigger highest weight spaces Ŵ2n,n(N−1), which live inside the

power of the Verma module V̂N−1.

Step III Having this in mind, we will look at the inclusion

W2n,n(N−1) →֒ι Ŵ2n,n(N−1)

In this part, we will study the behaviour of this inclusion with respect to
the braid group action. More precisely, we will see that if we start from the
small highest weight spaces, and see them as subsets of the big ones, then
these are left invariant by the braid group action.
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Lemma 1.6.0.7. The Bn-action on the highest weight spaces from the Verma
module, lives invariant the highest weight spaces of the finite dimensional
module:

ϕ̂Ŵn,m |Wn,m
= ϕWn,m ∀n,m ∈ N

Proof. In 1.2.3.3, it is given the action of the R-matrix on V̂ ⊗ V̂ . We are
interested in this action, specialised with the parameter λ = N − 1 and
s = qλ.
It follows that R y V̂N−1 ⊗ V̂N−1 has the form:

R(v̂i⊗v̂j) = q−(N−1)(i+j)
i∑

n=0

Fi,j,n(q)
n−1∏

k=0

(q(N−1)−k−j−q−((N−1)−k−j)) v̂j+n⊗v̂i−n

Firstly, we will prove that this action preserves VN ⊗ VN , inside V̂N−1 ⊗
V̂N−1 (1.2.2.3). We will show this, by checking it on the basis {v̂i ⊗ v̂j|0 ≤
i, j ≤ N − 1}. Let 0 ≤ i, j ≤ N − 1. In the formula above, all the second
components v̂i−n will remain in VN . For the first components, suppose that
we pass over VN , and j + n ≥ N . The idea is that in this situation, the
coefficient will vanish.
We notice that q(N−1)−k−j − q−((N−1)−k−j) = 0 if k = N − 1− j.
If j + n ≥ N , it follows that N − 1 − j ≤ n − 1, so the term corresponding
to k = N − 1 − j will appear in the previous product, so the coefficient of
vj+n ⊗ vi−n vanishes.

Secondly, we will look at the action: Bn y Wn,m ⊆ Ŵn,m.
We will show that each generator σi preserves Wn,m.
Let w ∈ Wn,m. Using that Wn,m ⊆ Vn,m, it is possible to write

w =
∑

e∈ENn,m

αev̂e1 ⊗ v̂ei ⊗ v̂ei+1
⊗ ...⊗ v̂en

We have that σiw = (Idi−1 ⊗R⊗ Idn−i−1)w.
From the first part, σiw will modify just the components i and i + 1 of w,
and always the indexes of those vectors will remain smaller than N . This
shows that:

σiw ∈ V ⊗nN . (a)

Since the action of Bn is an action over Uq-modules, this commutes with
the action of E and K, so it preserves the weights and the kernel of E.
(b)
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As a conclusion, from (a) and (b), σiw ∈ Ŵn,m∩V ⊗nN and so σiw ∈ Wn,m.

Step IV The strategy will be to use the highest weight spaces from the
Verma module in the algebraic description of the coloured Jones polynomial.

We remember that the evaluation
−→

EvV̂N−1
on the Verma module V̂ ⊗2N−1

restricted to V ⊗2N gives the evaluation
−→

EvVN (1.2). From this, we can obtain
the invariant starting with the co-evaluation on the highest weight spaces
W2n,n(N−1) from VN , then following the inclusion into Ŵ2n,n(N−1), the braid
group action on those and finally close with the evaluation on the ”big”

highest weight spaces
−→

EvV̂N−1
(following the column 3) ). We conclude that

the coloured Jones polynomial has the form:

JN(L, q) =

(
−→

Ev
⊗n

V̂N−1
◦ ϕ̂Ŵ2n,n(N−1)(β2n) ◦ ι ◦

←−

Coev
⊗n

VN

)
(2)

Step V Now, we will pas towards homological classes. The advantage
of the ”big” highest weight spaces Ŵ2n,n(N−1) is the fact that they have an
homological correspondent, given by the Lawrence representation H2n,n(N−1),
due to Kohno’s relation. We will consider the element corresponding to the
image of 1 through the co-evaluation, followed by inclusion, which lives in
Ŵ2n,n(N−1). After that, we will reverse it to the geometrical part given by
the Lawrence construction, using Khono’s function.

Definition 1.6.0.8. Let v ∈ Ŵ2n,n(N−1) described by:

v = ι ◦
←−

Coev
⊗n

VN
(1) ∈ Ŵ2n,n(N−1)

F0 := Θ−1N−1(v) ∈ H2n,n(N−1)|ψN−1
Remark 1.6.0.9. From Kohno’s Theorem, we obtain the following identifi-
cation:

ϕ̂Ŵ2n,n(N−1)(β2n)(v) = ΘN−1

(
l2n,n(N−1)|ψN−1

(β2n)(F0)
)

In other words, we would like to stress the fact that the correspondence
between v and F0 one to the other through the fuction ΘN−1, is preserved
by the action of B2n.
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Remark 1.6.0.10.

JN(L, q) =

(
−→

Ev
⊗n

V̂ηN−1
◦ ϕ̂Ŵ2n,n(N−1)(β2n) (v)

)
=

1.6.0.9 =

(
−→

Ev
⊗n

V̂ηN−1
◦ ΘN−1 ◦ l2n,n(N−1)|ψN−1

(β2n) (F0)

)

Up to this point, we found the first homology class F0, such that encodes

homologically the algebraic coevaluation
←−

Coev
⊗n

VN
. Using this, the braid group

action on the quantum side and on this class will correspond.
Step VI In the sequel, we are interested to find the second homology

class G , which will be a geometric counterpart for the evaluation
−→

Ev
⊗n

VN
de-

fined on Wn,m. Even if we are interested to do this, in practice we will find a

description for the evaluation
−→

Ev
⊗n

V̂N−1
on Ŵ2n,n(N−1), but which encodes ba-

sically the evaluation on the highest spaces of the finite dimensional module.

We will study
−→

Ev
⊗n

V̂N−1
as an element of the dual space (Ŵ2n,n(N−1))

∗ and make

the correspondence with a geometric element in element in H∂
2n,n(N−1)|αN−1

.
We will use the discussion from Section1.4.5 about different flovours of spe-
cialisations of the Blanchfield pairing.

We remind that we have the non-degenerate, sesquilinear pairing:

<,> |αN−1 : H2n,n(N−1)|αN−1
⊗H∂

2n,n(N−1)|αN−1
→ Q(q)

Definition 1.6.0.11. Let G0 :=
−→

Ev
⊗n

V̂N−1
◦ ΘN−1 ∈ Hom(H2n,n(N−1)|ψN−1

,Z[q±]).

Consider the dual element G N
n ∈ H∂

n,m|αN−1
given by 1.4.5.7.

Let FN
n := F0 ⊗i 1 ∈ H∂

2n,n(N−1)|αN−1

Remark 1.6.0.12. This means that ∀E ∈ H2n,n(N−1)|αN−1
we have:

G0(E ) =< E ,G N
n > |αN−1

Step VII Now we will prove that we have the following model for the
coloured Jones polynomial :

JN(L, q) =< β2nF
N
n ,G

N
n >αN−1
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Remark 1.6.0.13. Let the morphism of changing the coefficients pN−1, as
in 1.4.5. Then pN−1 commutes with the braid groups actions on the two
specialisations of the Lawrence representations as below:

H2n,n(N−1)|ψN−1
H2n,n(N−1)|αN−1

H2n,n(N−1)|ψN−1
H2n,n(N−1)|αN−1

l2n,n(N−1)|ψN−1
l2n,n(N−1)|αN−1

F0

β2nF0

FN
n

β2nF
N
n

pN−1

pN−1

≡

Putting all the previous steps together, we obtain the following:

JN(L, q) =
1.6.0.10

−→

Ev
⊗n

V̂N−1
◦ ΘN−1 ◦ l2n,n(N−1)|ψN−1

(β2n) (F0) =

=1.6.0.11 G0 ◦ l2n,n(N−1)|ψN−1
(β2n) (F0) =

=1.6.0.131.4.5.7 G ◦ l2n,n(N−1)|αN−1
(β2n) (F

N
n ) =

=1.6.0.12< l2n,n(N−1)|αN−1
(β2n) (F

N
n ),G N

n > |αN−1

Simplifying the notations, we obtain the desired interpretation:

JN(L, q) =< β2n F
N
n ,G

N
n > |αN−1

which concludes the proof.

1.7 Topological model with non-specialised Ho-

mology classes

For the homological model for JN(L, q), we have constructed homology classes

F
N
n ∈ H2n,n(N−1)|αN−1

and G
N
n ∈ H∂

2n,n(N−1)|αN−1

that give the invariant by geometric pairing. We notice that the colour N
appears in two places. Firstly it showes up in the number of points from
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the configuration space, because we are taking the configuration spaces in a
fixed punctured disk (with 2n points removed), but with n(N − 1) points.
Secondly, we use the spacialisation αN−1, which depends on the color N .

In this section, we will show that actually FN
n and G N

n come from two ho-
mology classes that live in the unspecialised Lawrence representation. More
precisely, they live in the homology of C̃2n.n(N−1), where we basically just
increase the ring of coefficients. The feature of this model is that now the
color shows up just in the number of points from the configuration space, but
not anymore in the specialisation. In the sequel, we will prove the following
statement:

Theorem 1.7.0.1. (Homological model for coloured Jones polynomials)

Let n ∈ N. Then, for any colour N ∈ N there exist two homology classes

F̃
N
n ∈ H2n,n(N−1)|γ and G̃

N
n ∈ H∂

2n,n(N−1)|γ

such that for any link L for which there exists β2n ∈ B2n with L =
ˆ̂
βor2n

( oriented plat closure 3.1.0.8), the N thcoloured Jones polynomial has the
formula:

JN(L, q) =< β2nF̃
N
n , G̃

N
n > |δN−1

1.7.1 Identifications with q, s indeterminates

In the previous section 1.5, we have studied identifications between quantum
representations and homological representations specialised with two com-
plex generic parameters or to a natural number and an indeterminate. In
this section, we will show that, if we increase a bit the ring of coordinates,
the identification holds also over a ring with two indeterminates.

We recall that the quantum representation Ŵ is defined over Z[q±, s±].
On the other hand, the Lawrence representationHn,m is defined over Z[x±, d±].
We have the following spacialisations:

ηλ : Z[q
±1, s±1]→ Z[q±]

ηλ(q) = q; ηλ(s) = qλ

ψλ : Z[x
±, d±]→ Z[q±]

ψλ(x) = q2λ; ψλ(d) = −q−2.
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Definition 1.7.1.1. Consider the specialisation which increase the ring of
coefficients in the following manner:

ξ : Z[x±, d±]→ Z[s±, q±]

ξ(x) = s2; ξ(d) = −q−2.
For an argument which will appear, we will need to work over a field. Con-
sider the inclusion:

j : Z[s±, q±]→ Q(s, q).

Then, let us define the extension of the initial ring by:

γ : Z[x±, d±]→ Q(s, q)

γ = j ◦ ξ
Concerning the field that we used for the model from 1.6.0.1, let us consider
the specialisation:

δλ : Q(s, q)→ Q(q)

δλ(s) = qλ

Remark 1.7.1.2. This shows that we have the following commutative dia-
grams between the previous specialisations of the coefficients:

Z[x±1, d±1]

Z[s±1, q±1]

Z[q±1]

Q(q)

Q(s, q)

ξ

ηλ

i

ψλ

αλ

γ

j

δλ

Using a similar argument as the one that we discussed in 1.5.3, one can
concludes that the identification between quantum and homological repre-
sentations works over a ring in two inteterminates. This was also briefly
discussed in [41].

84



1.7. TOPOLOGICAL MODEL WITH NON-SPECIALISED

HOMOLOGY CLASSES §1.7

Theorem 1.7.1.3. The braid group representations over Z[s±, q±] are iso-
morphic:

Ŵn,m ≃Θ Hn,m|ξ
BŴn,m

BHn,m |ξ

1.7.2 Lift of the homology classes FN
n and G N

n

Our aim is to lift the homology classes, which leave a priori in the special-
isation αN−1 towards two elements constructed from the Lawrence repre-
sentation spacialised using the specialisation ξ. However, since in our ar-
guments we need to work over a field in order to be able to interpret the
non-degeneracy of the Blanchfield pairing by dual elements, we will use the
specialisation γ.

Lemma 1.7.2.1. There exist two homology classes

F̃
N
n ∈ H2n,n(N−1)|γ and G̃

N
n ∈ H∂

2n,n(N−1)|γ

such that under the specialisation δN−1 one has

F̃
N
n |δN−1

= F
N
n

G̃
N
n |δN−1

= G
N
n .

Proof. 1) We remark that in the formulas from 1.2.3.4, we can use the same
functions over the ring Z[s±, q±] in the definition of evaluation and coevalu-
ation. We do not need to have the property that αN is an isomorphism over
the quantum group over this new ring, all what we need are the formulas for
the two functions. Consider the vector

vs = ιs ◦
←−

Coev
s⊗n

VN
(1) ∈ Ŵ2n,n(N−1)( overZ[q

±, s±])

We remark that also in 1.2.6.2, the function Θ is defined over the ring with
two parameters. Using 1.7.1.3, we can consider:

F̃0
N

n := Θ−1(vs) ∈ H2n,n(N−1)|ξ

2) On the other hand, the evaluation from 1.2.3.4 that corresponds to the
caps from the diagram of the link, can be defined over the ring Z[s±, q±] in
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two parameters as well. Secondly, the Blanchfield pairing will remain non-
degenerate when we specialise the coefficients using the function γ. Then,
dualising this evaluation and extending the coefficients to the field Q(s±, q±)
(as in the main proof from the previous section before), we get an homology
class:

G̃
N
n ∈ H∂

2n,n(N−1)|γ

3) Let us define: F̃N
n := F̃0

N

n |j. Then, from the previous remarks we get
that:

F
N
n := F̃

N
n |δN−1

G
N
n := G̃

N
n |δN−1

which concludes the proof. Moreover, the pairings are related one with the
other

< βF
N
n ,G

N
n >=< βF̃

N
n , G̃

N
n > |δN−1

Corollary 1.7.2.2. Following the homological model from 1.6.0.1 and the
result concerning the lift of the homology classes 1.7.2.1, we conclude the
topological model for JN(L, q), as it is presented in Theorem 1.7.0.1.
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Chapter 2

Modified Turaev-Viro
Invariants from quantum sl(2|1)

This chapter is a joint project with Nathan Geer where we constructed quan-
tum invariants for 3-manifolds from super quantum groups at roots of unity.
This appeared as a paper on arxiv [8].

The category of finite dimensional module over the quantum superalge-
bra Uq(sl(2|1)) is not semi-simple and the quantum dimension of a generic
Uq(sl(2|1))-module vanishes. This vanishing happens for any value of q (even
when q is not a root of unity). These properties make it difficult to create
a fusion or modular category. Loosely speaking, the standard way to obtain
such a category from a quantum group is: 1) specialize q to a root of unity;
this forces some modules to have zero quantum dimension, 2) quotient by
morphisms of modules with zero quantum dimension, 3) show the resulting
category is finite and semi-simple. In this chapter we show an analogous
construction works in the context of Uq(sl(2|1)) by replacing the vanishing
quantum dimension with a modified quantum dimension. In particular, we
specialize q to a root of unity, quotient by morphisms of modules with zero
modified quantum dimension and show the resulting category is generically
finite semi-simple. Moreover, we show the categories from this chapter are
relative G-spherical categories. As a consequence we obtain invariants of
3-manifold with additional structures.
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2.1 Context

The numerical 6j-symbols associated with the Lie algebra sl2(C) were first
introduced in theoretical physics by Eugene Wigner in 1940 and Giulio (Yoel)
Racah in 1942. These symbols have been generalized to quantum 6j-symbols
coming from tensor categories. If the category is fusion and spherical then
the quantum 6j-symbols lead to Turaev-Viro invariants of 3-manifold (see
[20, 10, 53, 82, 81]). The prototype of such a topological invariant arises
from a particular category of modules over the quantum algebra Uq(sl2(C)).

Let us describe the T-V construction for this example. Without modifica-
tion the category of finite dimensional modules over Uq(sl2(C)) is not fusion.
If q is generic then there are an infinite number of non-isomorphic simple
modules. When q is a root of unity then the quantum dimension of some
of these modules becomes zero. Loosely speaking, by taking the quotient of
such modules one obtains a category with a finite number of simple modules.
More precisely, taking the quotient of the category of Uq(sl2(C))-modules by
negligible morphisms one obtains the desired spherical and fusion category
S . Here a morphism f : V → W is negligible if for all morphisms g : W → V
we have

Trq(f ◦ g) = 0

where Trq is the quantum trace. If V is a simple module whose quantum
dimension qdim(V ) = Trq(IdV ) is zero then any morphism to or from V is
negligible; such a module is called negligible. The simple modules which are
not negligible are said to be in the alcove.

The Turaev-Viro invariant is defined as a certain state sum computed on
an arbitrary triangulation of a 3-manifold. The state sum on a triangulation
T of a closed 3-manifoldM is defined, roughly speaking, as follows: Consider
states of T which are maps from the edges of T to a finite index set I
corresponding to isomorphism class of simple objects in the category S .
Given a state ϕ : {edges of T } → I one associates with each tetrahedron
T of T a particular quantum 6j-symbol denoted by |T |ϕ. The state sum is
defined by taking the product of these symbols over all tetrahedra of T and
summing up the resulting products (with certain weights) over all I colorings
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of T :

TV (T ) = D−2v
∑

ϕ state


 ∏

e∈{edges of T }

qdim(ϕ(e))




 ∏

T∈{tetrahedron of T }

|T |ϕ




(2.1)
where qdim(ϕ(e)) is the quantum dimension of the simple module associated
to ϕ(e) and D2 =

∑
i∈I qdim(i)2.

The main point of this construction is that the state sum TV (T ) is in-
dependent of the choice of triangulation. This can be verified in two steps.
First, the quantum 6j-symbols satisfy the symmetries of the tetrahedron.
Second, any two triangulations of a closed 3-manifold can be transformed
into one another by a finite sequence of the so called Pachner moves and
an ambient isotopy (see [73]). Thus, it is enough to check that the state
sum is invariant under the Pachner moves. For the category S , these moves
correspond to well-known algebraic identities which the quantum 6j-symbols
satisfy.

Obstructions to applying this construction to a general pivotal tensor
category C include:

1. zero quantum dimensions,

2. non-semi-simplicity of C ,

3. infinitely many isomorphism classes of simple objects of C .

Kashaev [47] and later Baseilhac and Benedetti [12] considered 3-manifold
invariants arising from a category with such obstructions, namely the cat-
egory of modules over the Borel subalgebra of quantum sl(2) at a root of
unity. Geer, Patureau-Mirand, and Turaev [34] gave an alternate general
approach to dealing with these obstructions and defined a secondary Turaev-
Viro invariant of oriented 3-manifolds M . This is accomplished by three
main modifications of the T-V invariant.

First, to address obstruction (1) they replace the vanishing qdim and |T |ϕ
in Equation (2.1) with corresponding non-zero modified quantum dimension
and modified 6j-symbol, see [33, 34].

The second modification is dealing with the last two obstructions. If the
usual state sum described above is applied to a category with infinitely many
isomorphism classes of simple objects, this sum is of course infinite. With
this in mind, the authors of [34] required that the pivotal tensor category C
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had additional structure, including a G-grading on C where G is an abelian
group. To overcome the infinite sum problem, a finite number of modules
are selected using a cohomology class in H1(M,G). This step also addresses
obstruction (2) by requiring that generically graded pieces of the category
are semi-simple.

The final modification is to introduce a link L in the manifold M . If
one applies the changes described above, in the first two steps the invariant
can still be zero or not well defined (see [34]). In particular, the sum of the
modified dimensions over a graded piece is zero, i.e. the analogous quantity
associated to D2 in Equation (2.1) is zero. To construct a non-zero invariant
one can consider triangulations T of M that realized the isotopy class of L
as a so called Hamiltonian link in T (see [12]). The Hamiltonian link is used
to modify the weights in the terms of the state sum.

Let us be more precise. The construction of the modified TV-invariant
works in the context of a relative G-spherical category (see Section 2.2 for
details): Let G be an abelian group with a small symmetric subset X ⊂ G.
Let C =

⊕
g∈G Cg be a G-graded pivotal k-category such that

1. Cg is finitely semi-simple for each g ∈ G \ X ,
2. there exists a t-ambi pair (A, d : A → k×) where each object of A

is isomorphic to a unique element of ∪g∈G\XIg and Ig represents the
isomorphic classes of simple objects of Cg,

3. there exists a map b : A → k satisfying the condition in Definition
2.2.3.1.

In [34] it is shown that a relative G-spherical category (with basic data) gives
rise to modified quantum 6j-symbols. In this context, these 6j-symbols are
not numbers but rather tensors on certain multiplicity spaces.

Let M be a closed orientable 3-manifold and L a link in M . Following
[12], we consider H-triangulation (T ,L) of (M,L): T is a quasi-regular tri-
angulation of M , L is a set of unoriented edges of T such that every vertex
of T belongs to exactly two edges of L and the union of the edges in L is
the link L. Let Φ : {edges} → G be a G-valued 1-cocycle on T which takes
values in G \ X . A state of the G-coloring Φ is a map ϕ assigning to every
oriented edge e of T an element ϕ(e) of IΦ(e) such that ϕ(−e) = ϕ(e)∗ for all
e. The set of all states of Φ is denoted St(Φ).

Give a state ϕ and a tetrahedron T of T we can associate a modified
6j-symbols |T |ϕ, for details see [34]. Any face of T belongs to exactly two
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tetrahedra of T , and the associated multiplicity modules are dual to each
other. The tensor product of the 6j-symbols |T |ϕ associated to all tetrahedra
T of T can be contracted using this duality. We denote by cntr the tensor
product of all these contractions. Let T1 be the set of unoriented edges T
and let T3 the set of tetrahedra of T . Set

TV (T ,L,Φ) =
∑

ϕ∈St(Φ)

∏

e∈T1\L

d(ϕ(e))
∏

e∈L

b(ϕ(e)) cntr

(⊗

T∈T3

|T |ϕ
)
∈ k.

Theorem 2.1.0.1. TV (T ,L,Φ) depends only on the isotopy class of L in M
and the cohomology class [Φ] ∈ H1(M,G). It does not depend on the choice
of the H-triangulation of (M,L) and on the choice of Φ in its cohomology
class.

In this paper we show that the category D of finite dimensional modules
over the quantum linear Lie superalgebra Uq(sl(2|1)) leads to a relative G-
spherical category and so gives rise to a modified TV-invariant. Our approach
is based on a generalization of the usual technique: we take a quotient by
negligible morphisms corresponding to the modified trace. As we will discuss,
the obtained invariants should have different properties than the usual TV-
invariants.

The category D has the obstructions (1)–(3) listed above. When q is
generic, the simple Uq(sl(2|1))-modules are indexed by pairs (n, α) where
n ∈ N and α ∈ C. Even when q is generic most of these simple modules have
vanishing quantum dimensions. Therefore, taking the quotient of D by the
negligible morphisms corresponding to the quantum trace would trivialize
most of the category. Alternatively, the ideal I generated by the four di-
mensional module V (0, α) has a non-zero modified trace and corresponding
non-zero modified quantum dimensions. When q = e2πi/l is a root of unity
some of these modified quantum dimensions become zero. In particular, the
modified quantum dimensions of modules on the boundary of the “alcove”
vanish. The idea behind this paper is to take the quotient of D by these
modules to obtain a relative G-spherical category.

This construction has a novel feature: The alcove has an infinite number
of non-isomorphic simple modules V (n, α̃) where α̃ ∈ C/lZ, 0 ≤ n ≤ l′ − 2
and l′ = 2l

3+(−1)l
. Let V (n, α) be the simple module over Uq(sl(2|1)) when q is

generic. By setting q = e2πi/l the module V (n, α) specializes to V (n, α+ lZ)
for α ∈ C. Modified 6j-symbols corresponding to these modules exist for
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both q generic and q = e2πi/l. An interesting problem is to see if the 6j-
symbols coming from generic q will specialize to the 6j-symbols constructed
in this paper for roots of unity of any order. If this is true one could see
if there exist an invariant defined for generic q which when specialized to
q = e2πi/l, for any l recovers the modified TV-invariants corresponding to the
relative G-spherical categories defined in this paper. Results in this direction
have been obtain for the usual Reshetikhin-Turaev quantum invariants, see
[37, 38, 61, 70] and references within.

What is different in our context is that the modified invariants arising
from the work of this paper require manifolds with additional structures, in-
cluding the cohomology class discussed above. This makes the definition of
the invariants more technical but can also add new information. For example,
the modified RT-type invariants of [23, 21] recover the multivariable Alexan-
der polynomial and Reidemeister torsion, which allows the reproduction of
the classification of lens spaces. Also, the invariants of [23, 21] give rise to
TQFTs and mapping class group representations with the notable property
that the action of a Dehn twist has infinite order. This is in strong contrast
with the usual quantum mapping class group representations where all Dehn
twists have finite order. We expect similar properties for the invariants com-
ing from this paper. Combining such properties with the ideas discussed in
the previous paragraph could lead to appealing applications.

We should also mention that 3-manifold invariants arising from a quanti-
zation of sl(2|1) have already been constructed by Ha in [36]. Ha’s construc-
tion uses a “unrolled” version of quantum sl(2|1). He also uses a modified
trace on a different ideal which consists of projective modules, most of which
only exist when q is a root of unity. In comparison, in this paper the quotient
of D we take contains all the projective modules of D . Also, for 0 ≤ n ≤ l′−2
and α ∈ C the ideal Ha works with does not contain a module which is the
specialization of the simple Uq(sl(2|1))-module V (n, α) discussed above.

2.2 Categorical Preliminaries

As mentioned above our main theorem will be that Uq(sl(2|1)) gives rises to
a relative G-spherical category. With this in mind, in this section we will
recall the general definition of such a category, for more details see [31, 34].
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2.2.1 k-categories

Let k be a field. A tensor k-category is a tensor category C such that its hom-
sets are left k-modules, the composition and tensor product of morphisms is
k-bilinear, and the canonical k-algebra map k → EndC (I), k 7→ k IdI is an
isomorphism (where I is the unit object). A tensor category is pivotal if it
has dual objects and duality morphisms

−→
coevV : I→ V⊗V ∗, −→

evV : V
∗⊗V → I,

←−
coevV : I→ V ∗⊗V and

←−
evV : V⊗V ∗ → I

which satisfy compatibility conditions (see for example [20, 27]).
An object V of C is simple if EndC (V ) = k IdV . Let V be an object in

C and let α : V → W and β : W → V be morphisms. The triple (V, α, β)
(or just the object V ) is a retract of W if βα = IdV . An object W is a direct
sum of the finite family {Vi}i of objects of C if there exist retracts (Vi, αi, βi)
ofW with βiαj = 0 for i 6= j and IdW =

∑
i αiβi. An object which is a direct

sum of simple objects is called semi-simple.

2.2.2 Colored ribbon graph invariants

Let C be a pivotal k-category. A ribbon graph is formed from several oriented
framed edges colored by objects of C and several coupons colored with mor-
phisms of C . We say a C -colored ribbon graph in R2 (resp. S2 = R2 ∪ {∞})
is called planar (resp. spherical). Let F be the usual Reshetikhin-Turaev
functor from the category of C -colored planar ribbon graphs to C (see [81]).

Let T ⊂ S2 be a closed C -colored ribbon graph. Let e be an edge of T
colored with a simple object V of C . Cutting T at a point of e, we obtain
a C -colored ribbon graph TV in R × [0, 1] where F(TV ) ∈ End(V ) = k IdV .
We call TV a cutting presentation of T and let 〈TV 〉 ∈ k denote the isotopy
invariant of TV defined from the equality F(TV ) = 〈TV 〉 IdV .

Let A be a class of simple objects of C and d : A → k× be a mapping
such that d(V ) = d(V ∗) and d(V ) = d(V ′) if V is isomorphic to V ′. We say
(A, d) is t-ambi pair if for any closed C -colored trivalent ribbon graph T with
any two cutting presentations TV and TV ′ , V, V ′ ∈ A the following equation
holds:

d(V )〈TV 〉 = d(V ′)〈T ′V 〉.
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2.2.3 G-graded and generically G-semi-simple categories

Let G be a group. A pivotal k-category is G-graded if for each g ∈ G we
have a non-empty full subcategory Cg of C such that

1. I ∈ Ce, (where e is the identity element of G)

2. C =
⊕

g∈G Cg,

3. if V ∈ Cg, then V
∗ ∈ Cg−1 ,

4. if V ∈ Cg, V
′ ∈ Cg′ then V ⊗ V ′ ∈ Cgg′ ,

5. if V ∈ Cg, V
′ ∈ Cg′ and HomC (V, V

′) 6= 0, then g = g′.

For a subset X ⊂ G we say:

1. X is symmetric if X−1 = X ,

2. X is small in G if the group G can not be covered by a finite number
of translated copies of X , in other words, for any g1, . . . , gn ∈ G, we
have

⋃n
i=1(giX ) 6= G.

1. A k-category C is semi-simple if all its objects are semi-simple.

2. A k-category C is finitely semi-simple if it is semi-simple and has
finitely many isomorphism classes of simple objects.

3. A G-graded category C is a generically finitely G-semi-simple category
if there exists a small symmetric subset X ⊂ G such that for each
g ∈ G \ X , Cg is finitely semi-simple. By a generic simple object we
mean a simple object of Cg for some g ∈ G \ X .

The notion of generically G-semi-simple categories appears in [34, 32]
through the following generalization of fusion categories (in particular, fusion
categories satisfy the following definition when G is the trivial group, X = ∅
and d = b = qdimC is the quantum dimension):

Definition 2.2.3.1 (Relative G-spherical category). Let C be a generically
finitely G-semi-simple pivotal k-category with small symmetric subset X ⊂ G
and let A be the class of generic simple objects of C . We say that C is (X , d)-
relative G-spherical if
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1. there exists a map d : A→ k× such that (A, d) is a t-ambi pair,

2. there exists a map b : A → k such that b(V ) = b(V ∗), b(V ) = b(V ′)
for any isomorphic objects V, V ′ ∈ A and for any g1, g2, g1g2 ∈ G \ X
and V ∈ Gg1g2 we have

b(V ) =
∑

V1∈irr(Cg1 ), V2∈irr(Cg2 )

b(V1) b(V2) dimk(HomC (V, V1 ⊗ V2))

where irr(Cgi) denotes a representing set of isomorphism classes of
simple objects of Cgi.

If C is a category with the above data, for brevity we say C is a relative
G-spherical category. In [34], to construct a 3-manifold invariant from a
relative G-spherical category C the authors assume that C has a technical
requirement called basic data. The following lemma (proved in [31]) says
that in most situations X can be enlarged so that C has basic data. This
lemma implies that we can assume the categories we considered in this paper
have basic data.

Lemma 2.2.3.2. If no object of A is isomorphic to its dual, then C contains
a basic data. In particular, basic data exists if X contains the set {g ∈ G :
g = g−1}.

2.2.4 Traces on ideals in pivotal categories

In this subsection we recall some facts about right traces in a pivotal k-
category C , for more details see [35, 27]. In this paper we will use right
traces to show that a t-ambi pair exists.

By a right ideal of C we mean a full subcategory I of C such that:

1. If V ∈ I and W ∈ C , then V ⊗W ∈ I.

2. If V ∈ I and if W ∈ C is a retract of V , then W ∈ I.

A right trace on a right ideal I is a family of linear functions

{tV : EndC (V )→ k}V ∈I

such that:
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1. If U, V ∈ I then for any morphisms f : V → U and g : U → V in C

we have
tV (gf) = tU(fg).

2. If U ∈ I and W ∈ C then for any f ∈ EndC (U ⊗W ) we have

tU⊗W (f) = tU

(
(IdU ⊗

←−
evW )(f ⊗ IdW ∗)(IdU ⊗

−→
coevW )

)

Next we recall how to construct a right trace. Given an object V of C

we define the ideal generated by V as

IV = {W ∈ C |W is a retract of V ⊗X for some object X}.

In [35] the notion of a right ambidextrous simple object is developed (see
Sections 4.2 and 4.4 of [35]). Theorem 10 of [35] implies:

Theorem 2.2.4.1 ([35]). If V is a right ambidextrous simple object then
there exists a non-zero right trace {tV } on the ideal IV ; this trace is unique
up to multiplication by a non-zero scalar.

Now we will recall a way to show a simple object is right ambidextrous.
Let V be a simple object in C . We fix a direct sum decomposition of V ⊗V ∗
into indecomposable objects Wi indexed by a set I:

V ⊗ V ∗ =
⊕

k∈I

Wk. (2.2)

Let ik : Wk → V ⊗V ∗ and pk : V ⊗V ∗ → Wk be the morphisms corresponding
to this decomposition. In particular,

∑
k∈I ikpk = IdV⊗V ∗ and pkik = IdWk

,
for all k ∈ I. From Lemma 3.1.1 of [27] we have the following lemma:

Lemma 2.2.4.2 ([27]). There exists unique j, j′ ∈ I so that

1. HomC (I,Wj) is non-zero and is spanned by pj
−→
coevV and

2. HomC (Wj′ , I) is non-zero and is spanned by
←−
evV ij′.

Theorem 3.1.3. of [27] gives the following theorem.

Theorem 2.2.4.3 ([27]). The simple object V is right ambidextrous if and
only if j = j′.
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Finally, let us explain how to produce a t-ambi pair from a right trace.
Let t be a right trace on a right ideal I of C . Let d be the modified dimension
associated with t defined by d(V ) = tV (IdV ) for V ∈ I. Set

B = {V ∈ I ∩ I∗ |V is simple and d(V ) = d(V ∗)}
where I∗ = {V ∈ C | V ∗ ∈ I}. The following theorem is Corollary 7 in [35].

Theorem 2.2.4.4 ([35]). The pair (B, d) is a t-ambi pair.

2.3 Quantum sl(2|1) at roots of unity

2.3.1 Notation

Fix a positive integer l ≥ 3 and let q = e
2π

√
−1
l be a lth-root of unity. Set

l′ =





l if l is odd

l/2 if l is even

.

We use two quotients of the complex numbers: C/Z and C/lZ. We will use
greek letters to denote elements of C. We will denote elements in C/Z and
C/lZ with bars and tildes, respectively. In this paper, both C/Z and C/lZ
are abelian groups induced from the addition in C.

For α ∈ C, let α̃ be the element of C/lZ such that α is in the equivalence
class of α̃. In other words, α maps to α̃ under the obvious map C → C/lZ.
Similarly, for α ∈ C or α̃ ∈ C/lZ let ᾱ ∈ C/Z such that α or α̃ is mapped
to ᾱ under the map C → C/Z or C/lZ → C/Z, respectively. For x in C or

C/lZ set {x} = qx − q−x and [x] = {x}
{1}

.

2.3.2 Superspaces

A superspace is a Z2-graded vector space V = V|0| ⊕ V|1| over C. We denote
the parity of a homogeneous element x ∈ V by |x| ∈ Z2. We say x is even
(odd) if x ∈ V|0| (resp. x ∈ V|1|). If V and W are Z2-graded vector spaces
then the space of linear maps HomC(V,W ) has a natural Z2-grading given
by f ∈ HomC(V,W )|j| if f(V|i|) ⊂ W|i|+|j| for |i|, |j| ∈ Z2. Throughout, all
modules of over a Z2-graded ring will be Z2-graded modules.
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2.3.3 The superalgebra Uq(sl(2|1))
Let A = (aij) be the 2 × 2 matrix given by a11 = 2, a12 = a21 = −1 and
a22 = 0. Let Uq(sl(2|1)) be the C-superalgebra generated by the elements
Ki, K

−1
i , Ei and Fi, i = 1, 2, subject to the relations:

K±1i Kj = KjK
±1
i , K−1i K±1j = K±1j K−1i , KiFjK

−1
i = q−aijFj,

KiEjK
−1
i = qaijEj, [Ei, Fj] =δi,j

Ki −K−1i
q − q−1 ,

E2
1E2 − (q + q−1)E1E2E1 + E2E

2
1 = 0, F 2

1F2 − (q + q−1)F1F2F1 + F2F
2
1 = 0
(2.3)

where [, ] is the super-commutator given by [x, y] = xy−(−1)|x||y|yx. All gen-
erators are even except for E2 and F2 which are odd. The algebra Uq(sl(2|1))
is a Hopf algebra where the coproduct, counit and antipode are defined by

∆(Ei) =Ei ⊗ 1 +K−1i ⊗ Ei, ǫ(Ei) =0 S(Ei) =−KiEi

∆(Fi) =Fi ⊗Ki + 1⊗ Fi, ǫ(Fi) =0 S(Fi) =− FiK−1i
∆(Ki) =Ki ⊗Ki ε(Ki) =1, S(Ki) =K

−1
i ,

∆(K−1i ) =K−1i ⊗K−1i ε(K−1i ) =1, S(K−1i ) =Ki.

2.3.4 Representations of Uq(sl(2|1))
A Uq(sl(2|1))-module V is a weight module if V is finite dimensional and
both K1 and K2 act diagonally on V . Let D be the tensor category of finite
dimensional Z2-graded weight Uq(sl(2|1))-modules, whose unit object is the
trivial module I = C. It is easy to see that this category is a C-category.

A direct calculation shows that S2(x) = K−22 xK2
2 for all x ∈ Uq(sl(2|1)).

Thus, the square of the antipode is equal the conjugation of a group-like ele-
ment and so D is a pivotal category (see [14, Proposition 2.9]). In particular,
for any object V in D , the dual object and the duality morphisms are defined
as follows: V ∗ = HomC(V,C) and

−→
coevV :C→ V ⊗ V ∗ is given by 1 7→

∑
vj ⊗ v∗j ,

−→
evV :V

∗ ⊗ V → C is given by f ⊗ w 7→ f(w),
←−
coevV :C→ V ∗ ⊗ V is given by 1 7→

∑
(−1)|vj |v∗j ⊗K2

2vj, (2.4)
←−
evV :V ⊗ V ∗ → C is given by v ⊗ f 7→ (−1)|f ||v|f(K−22 v),
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where {vj} is a basis of V and {v∗j} is the dual basis of V ∗. These morphisms
satisfy the compatibility conditions of a pivotal category.

The simple Uq(sl(2|1))-modules have been studied in [1]. Here we will
consider what they call the typical type A representations: let ω ∈ {±1},
0 ≤ n ≤ l′ − 1 and α̃ ∈ C/lZ then there exists a highest weight module
V (ω, n, α̃) with highest weight vector v such that

Eiv = 0, K1v = ωqnv and K2v = qα̃v.

In [1] it is shown that under certain conditions V (ω, n, α̃) is a simple module
of dimension 4(n+1). Let us now give these conditions. To simplify notation
if ω = 1 we set V (n, α̃) = V (1, n, α̃).

Proposition 2.3.4.1 ([1], page 873). If [α̃] · [α̃+ n+ 1] 6= 0 then V (n, α̃) is
simple.

Remark 2.3.4.2. We use slightly different notation than [1]. Our module
V (n, α̃) corresponds to the module from [1, page 873] with the following pa-
rameters:

ω = 1, N = n+ 1, λ1 = qn, µ1 = n = N − 1, λ2 = qα, µ2 = α.

Since

[x] = 0⇔ qx − q−x
q − q−1 = 0⇔ qx − q−x = 0⇔ q2x = 1⇔ x ∈ l

2
Z

then the above proposition implies that V (n, α̃) is simple if α̃ /∈ ( l
2
Z)/lZ ∪

(( l
2
Z) − (n + 1))/lZ. In particular, if ᾱ /∈ {0̄, l̄

2
} ⊆ C/Z then V (n, α̃) is

simple.

Theorem 2.3.4.3 ([1]). Let n ∈ {0, ..., l′ − 1} and α̃ 6∈ ( l
2
Z)/lZ ∪ (( l

2
Z) −

(n + 1))/lZ. Then V (n, α̃) has a basis {wρ,σ,p|p ∈ {0, ..., n}; ρ, σ ∈ {0, 1}}
whose action of Uq(sl(2|1)) is given by:

K1 · wρ,σ,p = qρ−σ+n−2pwρ,σ,p, K2 · wρ,σ,p = qα̃+σ+pwρ,σ,p, (2.5)

F1 · wρ,σ,p = qσ−ρwρ,σ,p+1 − ρ(1− σ)q−ρwρ−1,σ+1,p, F2 · wρ,σ,p = (1− ρ)wρ+1,σ,p,
(2.6)

E1 · wρ,σ,p = −σ(1− ρ)qn−2p+1wρ+1,σ−1,p + [p][n− p+ 1]wρ,σ,p−1, (2.7)

E2 · wρ,σ,p = ρ[α̃ + p+ σ]wρ−1,σ,p + σ(−1)ρq−α̃−pwρ,σ−1,p+1. (2.8)

Here the super grading of this basis is given by |wρ,σ,p| = ρ+ σ ∈ Z/2Z.
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Since w1,1,n is a lowest weight vector of V (n, α̃) with weight (−n, α̃+ñ+1̃)
then we have

V (n, α̃)∗ = V (n,−α̃− ñ− 1̃).

We will use the modules of the form V (0, α̃) extensively. With this in mind we
highlight the structure of such modules. If α̃ 6∈ ( l

2
Z)/lZ∪ (( l

2
Z)− (n+1))/lZ

then V (0, α̃) is a 4-dimensional module with the following action:

w0,0 w1,0 w0,1 w1,1

ρ = 0, σ = 0 ρ = 0, σ = 0 ρ = 0, σ = 0 ρ = 0, σ = 0

K1 w0,0 qw1,0 q−1w0,1 w1,1

K2 qα̃w0,0 qα̃w1,0 qα̃+1w0,1 qα̃+1w1,1

E1 0 0 w1,0 0

E2 0 [α̃]w0,0 0 [α̃ + 1]w0,1

F1 0 w0,1 0 0

F2 w1,0 0 w1,1 0

We will use the following lemma in the proof of the Decomposition Lemma
below.

Lemma 2.3.4.4. Let V be an object in C . Suppose V1, ..., Vn are simple
submodules of V such that Vi is not isomorphic to Vj for all i 6= j and

dim(V1) + ...+ dim(Vn) = dim(V ).
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Then V = V1 ⊕ ...⊕ Vn.

Proof. Consider the statement P (k): if i1, ..., ik, j ∈ {1, ..., n} are all different
then

Vj ∩ (Vi1 + ...+ Vik) = {0}.
If P (k) were true for k ∈ {1, ..., n−1} then V1⊕...⊕Vn would be a submodule
of V . The hypothesis on the dimensions would then imply

V = V1 ⊕ ...⊕ Vn.

Thus, it suffices to prove P (k) holds for k ∈ {1, ..., n − 1}. We will do this
by induction.

First, we will show P (1) holds. Let i, j ∈ {1, ..., n} such that Vi∩Vj 6= {0}
and i 6= j. Therefore, there is a non-zero vector in Vi ∩ Vj which generates a
submodule W of Vi ∩ Vj. In particular, W is a submodule of both Vi and Vj.
Since these modules are simple we have W is equal to both Vi and Vj. Thus,
Vi = Vj which is a contradiction.

Next assuming P (k) is true we will show P (k + 1) holds. Let i1, ..., ik+1

and j be unique elements of {1, ..., n}. Suppose by contradiction that Vj ∩
(Vi1+ ...+Vik+1

) 6= {0} and let v be a non-zero vector in this intersection. Let
< v > be the non-zero module generated by v. Since v ∈ Vj then < v > is a
submodule of Vj. But Vj is simple so < v >= Vj. Similarly, v ∈ Vi1+...+Vik+1

implying < v > is in this sum and we conclude

Vj ⊆ Vi1 + ...+ Vik+1
.

From the induction step for P (k), we deduce that Vi1 + ...+Vik+1
= Vi1 ⊕

...⊕ Vik+1
. Combining the last two observations, we have Vj is a submodule

of Vi1 ⊕ ... ⊕ Vik+1
. This implies HomC (Vj, Vi1 ⊕ ... ⊕ Vik+1

) 6= {0} since the
inclusion morphism is in this space.

On the other hand, since the simple modules Vj and Vis are non-isomorphic
for s ∈ {1, .., k + 1} then HomC (Vj, Vis) = {0}. This implies

HomC (Vj, Vi1 ⊕ ...⊕ Vik+1
) = HomC (Vj, Vi1)⊕ ...⊕ HomC (Vj, Vik+1

) = {0}.

But above we showed this homomorphism space was non-zero so we have a
contradiction. Thus, the induction step is complete.
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Lemma 2.3.4.5. (Decomposition Lemma) Let α̃, β̃ ∈ C/lZ with ᾱ, β̄ 6∈
{0̄, l̄

2
} and ᾱ + β̄ 6∈ {0̄, l̄

2
}. Then for any n ∈ {0, ..., l′ − 2} we have

V (0, α̃)⊗V (n, β̃) = V (n, α̃+β̃)⊕V (n+1, α̃+β̃)⊕V (n−1, α̃+β̃+1)⊕V (n, α̃+β̃+1)

where we use the convention that V (−1, α̃ + β̃ + 1) = 0 in the case when
n = 0.

Proof. We will prove the case when n 6= 0 (the case n=0 will be analogous).

Since ᾱ, β̄ /∈ {0̄, l̄
2
}, it means that V (0, α̃) and V (n, β̃) have the structure

described in Theorem 2.3.4.3: let {w(0,α̃)
ρ,σ } and {w(n,β̃)

ρ,σ,p } be the bases of V (0, α̃)
and V (n, β̃), respectively.

We will prove that there are four highest weight vectors:

v(n,α̃+β̃), v(n+1,α̃+β̃), v(n−1,α̃+β̃+1), v(n,α̃+β̃+1) ∈ V (0, α̃)⊗ V (n, β̃)

where the weight of v(i,γ̃) is (q
i, qγ̃). First, clearly v(n,α̃+β̃) := w

(0,α̃)
0,0 ⊗ w(n,β̃)

0,0,0

is a highest weight vector of weight (n, α̃ + β̃). Second, we want to find a

highest weight vector v2 = v(n+1,α̃+β̃) with weight (qn+1, qα̃+β̃). We’ll search
for v2 as a combination of the form:

v2 = w
(0,α̃)
0,0 ⊗ w(n,β̃)

1,0,0 + c · w(0,α̃)
1,0 ⊗ w(n,β̃)

0,0,0 .

To find c we check that E1 and E2 act by zero. For any c we have E1(v2) = 0.

On the other hand, E2(v2) = 0 implies c = −q−α̃ · [β̃]
[α̃]
. So,

v2 = w
(0,α̃)
0,0 ⊗ w(n,β̃)

1,0,0 − q−α̃ ·
[β̃]

[α̃]
· w(0,α̃)

1,0 ⊗ w(n,β̃)
0,0,0

is a highest weight vector.
Third, we want a highest weight vector v3 = v(n−1,α̃+β̃+1) of the form

c1w
(0,α̃)
0,0 ⊗ w(n,β̃)

0,1,0 + c2w
(0,α̃)
0,0 ⊗ w(n,β̃)

1,0,1 + c3w
(0,α̃)
1,0 ⊗ w(n,β̃)

0,0,1 + c4w
(0,α̃)
0,1 ⊗ w(n,β̃)

0,0,0 .

After checking the conditions which come from the action of E1 and E2, and
setting c2 = 1 we obtain:

v3 = q−(n+1)[1][n] · w(0,α̃)
0,0 ⊗ w(n,β̃)

0,1,0 + w
(0,α̃)
0,0 ⊗ w(n,β̃)

1,0,1

− 1

[α̃]
(q−(α̃+β̃+n+1)[1][n] + q−α̃[β̃ + 1]) · w(0,α̃)

1,0 ⊗ w(n,β̃)
0,0,1

− q−1[1][n]

[α̃]
(q−(α̃+β̃+n+1))[1][n] + q−α̃[β̃ + 1]) · w(0,α̃)

0,1 ⊗ w(n,β̃)
0,0,0 .
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Similarly we obtain:

v4 = v(n,α̃+β̃+1) = −q−α̃
[α̃]

[β̃ + 1]
w

(0,α̃)
0,0 ⊗ w(n,β̃)

1,1,0

+ q−α̃−1
[β̃]

[α̃ + 1]
(q−n + q−1−β̃

[1][n]

[β̃ + 1]
)w

(0,α̃)
1,1 ⊗ w(n,β̃)

0,0,0

+ (q−n + q−1−β̃
[1][n]

[β̃ + 1]
)w

(0,α̃)
0,1 ⊗ w(n,β̃)

1,0,0

+ w
(0,α̃)
1,0 ⊗ w(n,β̃)

0,1,0 −
q−β̃

[β̃ + 1]
w

(0,α̃)
1,0 ⊗ w(n,β̃)

1,0,1 .

Consider the submodule W(i,γ̃) of V (0, α̃) ⊗ V (n, β̃) generated by one of
the highest weight vectors v(i,γ̃) constructed above. As mentioned above the
classification of Uq(sl(2|1))-highest weight modules is given in [1]. From this
classification, since W(i,γ̃) is a highest weight module of weight (qi, qγ̃), with

γ̄ = ᾱ + β̄ /∈ {0̄, l̄
2
} it follows that W(i,γ̃) is isomorphic to V (i, γ̃) and is a

simple of dimension 4(i+ 1).
Thus, we have

dim(W(n,α̃+β̃)) + dim(W(n+1,α̃+β̃)) + dim(W(n−1,α̃+β̃+1)) + dim(W(n,α̃+β̃+1))

= 4((n+ 1) + (n+ 2) + n+ (n+ 1)) = 4(4n+ 4) = 16(n+ 1).

But dim(V (0, α̃)⊗V (n, β̃)) = 4·4(n+1) = 16(n+1). So, the four submodules
satisfy the conditions of Lemma 2.3.4.4, which means that their direct sum
is isomorphic to V (0, α̃)⊗ V (n, β̃).

From the previous result, we obtain that, with some weight restrictions,
the decomposition of the tensor product of two typical modules depends
just on the total weight-sum, and it is independent on the two separate
components. More precisely:

Corollary 2.3.4.6. Consider α̃, β̃ ∈ C/lZ, n ∈ {0, ..., l′ − 1} such that

ᾱ, β̄, ᾱ + β̄ /∈ {0̄, l̄
2
}. Then

V (0, α̃)⊗ V (n, β̃) ≃ V (0, α̃ + ǫ)⊗ V (n, β̃ − ǫ)

for any ǫ ∈ C such that α + ǫ, β − ǫ /∈ {0̄, l̄
2
}.
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For g ∈ C/Z, let Dg be the full subcategory of D whose objects are all
Uq(sl(2|1))-module V such that the central element K l

2 acts as multiplication
by qlg. In particular, for 0 ≤ n ≤ l′− 1 and α̃ ∈ C/lZ we have V (n, α̃) ∈ Dᾱ.
This gives a C/Z-grading on the category D and we write D =

⊕
g∈C/Z Dg.

2.3.5 The subcategory C of D

Now we want to construct a subcategory C of D that will eventually (after
taking a quotient) lead to our invariants for 3-manifolds. From Corollary
2.3.4.6, we see that the tensor product of two representations , doesn’t change
if we modify their second components in a balanced way such that they still
satisfy the technical conditions of avoiding 1

2
. One of our main aims, is

to arrive at a category which is generically semi-simple, which means semi-
simple in any grading excepting few special gradings.

The idea that we have in mind is that we want to do this by a cer-
tain induction on the number of components of a tensor product of V (0, α).
However, we need to make sure that when we take a product of n + 1 rep-
resentations, we can find two of them which satisfy the requirement of the
previous Corollary. Then the idea would be to choose a good ǫ, and ballance
them by it as in the formula 2.3.4.6 , such that one of them together with all
the other n− 1 representations have a good weight so that we can apply the
induction hypothesis for them.

In the sequel, we will define a way of choosing this subcategory in order
to make sure that for any tensor product of V (0, α)’s from this set, we can
find always two of them which satisfy the requirements 2.3.4.6.

Definition 2.3.5.1. Set Y = (1
4
Z)/Z. Let C the full sub-category of D

containing the trivial module and all retracts of a module of the form

V (0, α̃1)⊗ V (0, α̃2)⊗ ...⊗ V (0, α̃n) (2.9)

where α̃1, ..., α̃n ∈ C/lZ such that ᾱ1, ..., ᾱn ∈ (C/Z) \ Y.

Lemma 2.3.5.2. The category C is a C/Z-graded pivotal C-category, where
the grading and pivotal structure are induced from D .

Proof. Let W1 and W2 in C . From the definition, for j = 1, 2, there exists
α̃j,1, ..., α̃j,nj ∈ C/lZ, with ᾱj,1, ..., ᾱj,nj ∈ (C/Z)\Y such thatWj be is retract
of
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Vj := V (0, α̃j,1) ⊗ ... ⊗ V (0, α̃j,nj). Let pj : Vj → Wj and qj : Wj → Vj be
the morphisms of this retract. Then V1 ⊗ V2 is of the form of the module in
Equation (2.9) with all ᾱj,n /∈ Y . It follows that W1 ⊗W2 is an object of C

since it is a retract of V1⊗ V2 with maps p1⊗ p2 and q1⊗ q2. Therefore, C is
a tensor category. Moreover, C is C-category since it is a full sub-category
of the C-category D .

Finally, we will check that C is closed under duality. Let W ∈ C . Then
W is a retract of some V := V (0, α̃1) ⊗ ... ⊗ V (0, α̃n) such that ᾱ1, ..., ᾱn ∈
(C/Z) \ Y . Then W ∗ is a retract of V ∗ and we have that:

V ∗ ∼= (V (0, α̃1)⊗ ...⊗ V (0, α̃n))
∗ ∼= V (0, α̃n)

∗ ⊗ ...⊗ V (0, α̃1)
∗

∼= V (0,−α̃n − 1̃)⊗ ...⊗ V (0,−α̃1 − 1̃).

But −ᾱn − 1̄, ...,−ᾱ1 − 1̄ ∈ (C/Z) \ Y so we have W ∗ ∈ C . Thus, since C

is a full subcategory of D then the duality morphisms of D give a pivotal
structure in C . Finally, the C/Z-grading on D induces a C/Z-grading on
C .

The Decomposition Lemma 2.3.4.5 says we can decompose the tensor
product V (0, α̃) ⊗ V (0, β̃) into simple modules if ᾱ + β̄ /∈ {0̄, l̄

2
}. Given a

module as in Equation (2.9), the following lemma says we can always find
a pair α̃i, α̃j with this property. This fact is one of the motivations for the
choice of the set Y .

Lemma 2.3.5.3. For any α̃1, ..., α̃n ∈ C/Z such that ᾱ1, ..., ᾱn ∈ (C/Z) \ Y
and

ᾱ1 + ...+ ᾱn /∈ {0̄,
l̄

2
}

then there exist i, j ∈ {1, ..., n} such that i 6= j and ᾱi + ᾱj /∈ {0̄, l̄2}.

Proof. If n = 2, we have just two numbers and from the hypothesis they
have the desired sum.

Let us consider the case n ≥ 3 and let suppose by contradiction that

αi + αj ∈ {0̄,
l̄

2
}, (2.10)

for all i, j ∈ {1, ..., n} with i 6= j. Up to a reordering, we can suppose that
there exists m ∈ {2, ..., n} such that:
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• α1 + αi = 0̄, ∀i ∈ {2, ...,m}

• α1 + αj =
l̄
2
, ∀j ∈ {m+ 1, ..., n}.

This implies the following:

• ᾱi = −ᾱ1, ∀i ∈ {2, ...,m}

• ᾱi = l̄
2
− ᾱ1, ∀j ∈ {m+ 1, ..., n}.

Now we have three cases.
Case 1. If m ≥ 3, then ᾱ2 = ᾱ3 = −ᾱ1 which implies

ᾱ2 + ᾱ3 = −2ᾱ1 /∈ {0̄,
l̄

2
}, since ᾱ1 /∈ {

1̄

2
,
l̄

4
}

which is a contradiction with our supposition.
Case 2. If n−m ≥ 2, then ᾱm+1 = ᾱm+2 =

l̄
2
− ᾱ1 which implies

ᾱm+1 + ᾱm+2 = −2ᾱ1.

Here as above this leads to a contradiction.
Case 3. If we are not in the first two cases and n 6= 2 then it means

n = 3 and m = 2. In this case we have

• ᾱ2 = −ᾱ1

• ᾱ3 =
l̄
2
− ᾱ1.

The relations above lead to:

ᾱ2 + ᾱ3 =
l̄

2
− 2ᾱ1.

But from the initial supposition, we have that ᾱ2 + ᾱ3 ∈ {0̄, l̄2}.
If ᾱ2 + ᾱ3 = 0̄, it implies that l̄

2
− 2ᾱ1 = 0̄, so ᾱ1 =

l̄
4
which contradicts

that ᾱ1 /∈ Y = 1
4
Z/Z.

If ᾱ2 + ᾱ3 = l̄
2
, then l̄

2
− 2ᾱ1 = l̄

2
, and it means ᾱ1 ∈ {0̄, 1̄2} which is

impossible since ᾱ1 /∈ Y .
Thus all cases lead to contradictions and so the lemma follows.
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The next part is devoted to an argument that will lead to the fact that
the tensor product of simple modules in the alcove is commutative. The
proof uses the braiding of the “un-rolled” quantum UH

q (sl(2|1)), studied by
Ha in [36]. In his paper he works with odd ordered roots of unity but as we
observe his proof also works for even roots of unity (at least for the existence
of a braiding, it may not extend to the twist).

Let UH
q = UH

q (sl(2|1)) be the superalgebra generated by the elements

Ki, K
−1
i , hi, Ei and Fi, i = 1, 2, subject to the relations in (3.1) and

[hi, Ej] = aijEj, [hi, Fj] = −aijFj, [hi, hj] = 0, [hi, Kj] = 0

for i, j = 1, 2. All generators are even except E2 and F2 which are odd. This
superalgebra is a Hopf algebra where the coproduct, counit and anitpode of
Ki, K

−1
i , Ei and Fi are given in Subsection 2.3.3 and

∆(hi) = hi ⊗ 1 + 1⊗ hi, ǫ(hi) = 0, S(hi) = −hi

for i, j = 1, 2.
For a UH

q -module V let qhi : V → V be the operator defined by qhi(v) =
qλiv where v is a weight vector with respect to hi of weight λi. The superal-
gebra ideal I generated by El′

1 and F l′
1 is a Hopf algebra ideal (i.e. an ideal in

the kernel of the counit, a coalgebra coideal and stable under the antipode).
Let DH be the category of finite dimensional UH

q /I-modules with even mor-
phisms such that qhi = Ki as operators for i = 1, 2. Since UH

q /I is a Hopf
superalgebra then DH is a tensor category. Moreover, the maps given in
Equation (2.4) define a pivotal structure on DH . There is a forgetful functor
from DH to D which forgets the action of h1 and h2. Given two objects V,W
of DH let K : V ⊗W → V ⊗W be the operator defined by

K(v ⊗ w) = q−λ1µ2−λ2µ1−2λ2µ2v ⊗ w

where hiv = λiv and hiw = µiw for i = 1, 2. Consider the truncated R-
matrix:

Ř =
l′−1∑

k=0

{1}k
(k)q!

Ek
1 ⊗ F k

1

1∑

s=0

(−{1})s
(s)q!

Es
3 ⊗ F s

3

1∑

t=0

(−{1})t
(t)q!

Et
2 ⊗ F t

2 (2.11)

where E3 = E1E2 − q−1E2E1, F3 = F2F1 − qF1F2, (n)q =
1−qn

1−q
and (n)q! =

(1)q · ... · (n)q.
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Theorem 2.3.5.4. The family {cV,W : V ⊗W → W ⊗ V }V,W∈DH defined by

cV,W (v ⊗ w) = τ(ŘK(v ⊗ w))

is a braiding on DH where τ is the super flip map τ(v⊗w) = (−1)|w||v|w⊗v.

Proof. The proof is essentially given by Ha in [36]. As mentioned above, in
Theorem 3.6 of [36], Ha proves the theorem for odd ordered roots of unity.
Ha’s proof works for even ordered roots of unity as well. In particular, before
Proposition 3.5 of [36] Ha uses the PBW basis of Uq(sl(2|1)) to define an
algebra U<. In our case, when defining this algebra one should take powers
of E1 and F1 from 0 to l′ − 1 not l − 1. Then use this algebra to define the
projection p : Uq(sl(2|1))→ U< and the element

R< = p⊗ p(Rq)

where Rq is the R-matrix defined in [50, 84] for Uq(sl(2|1)) when q is generic.
With these modifications the proofs of Proposition 3.5 and Theorem 3.6 in
[36] holds word for word for both the even and odd case. Note that at the
end of the proof of Theorem 3.6 in [36] Ha says, “The element R< has no
pole when q is a root of unity of the order l.” This is true in our case because
we defined R< using p which only allows powers of E1 or F1 smaller than
l′ − 1 which is analogous to the definition of Ř above.

For (n, α) ∈ N × C with 0 ≤ n ≤ l′ − 1 and ᾱ /∈ {0̄, l̄
2
}, one can check

directly that there is a UH
q (sl(2|1))-module V H(n, α) with basis {wαρ,σ,p|p ∈

{0, ..., n}; ρ, σ ∈ {0, 1}} whose action is given by

h1 · wαρ,σ,p = (ρ− σ + n− 2p)wαρ,σ,p, h2 · wαρ,σ,p = (α + σ + p)wαρ,σ,p, (2.12)

and Equations (2.5), (2.6), (2.7), and (2.8) with α̃ replaced with α. Moreover,
by definition the operators qhi = Ki are equal on V H(n, α).

Lemma 2.3.5.5. For n ∈ {0, ..., l′− 1} and α ∈ C with ᾱ /∈ {0̄, l̄
2
}, then the

actions of El′
1 and F l′

1 are zero on V (n, α̃) and V H(n, α).

Proof. We will prove the theorem for V (n, α̃) the proof for V H(n, α) is es-
sential identical. Let us prove the action of F l′

1 is zero on V (n, α̃) the proof
that El′

1 act as zero is similar and left to the reader.
It is enough to prove that F l′

1 wρ,σ,p = 0 where wρ,σ,p is any of the basis
vectors given in Theorem 2.3.4.3. Equation (2.6) gives the action of F1 on
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V (n, α̃). In particular, if ρ 6= 1 and σ 6= 0 then F1wρ,σ,p = qσ−ρwρ,σ,p+1.
Therefore, in this case,

F l′
1 wρ,σ,p = ql

′(σ−ρ)wρ,σ,p+l′ = 0

since wρ,σ,i = 0 if i ≥ l′.
Now a direct calculation implies:

F k
1 w1,0,p = q−kw1,0,p+k − qk−2

(
k−1∑

i=0

q−2i

)
w0,1,p+k−1.

When k = l′ we see each of these terms is zero, since wρ,σ,i = 0 if i ≥ l′ and
∑l′−1

i=0 q
−2i = 1−q−2l′

1−q−2 = 0.

Corollary 2.3.5.6. For n ∈ {0, ..., l′ − 1} and α ∈ C with ᾱ /∈ {0̄, l̄
2
} then

the UH
q (sl(2|1))-module V H(n, α) is an object in DH .

Lemma 2.3.5.7. (Commutativity Lemma) Let n, n′ ∈ N such that 0 ≤
n, n′ ≤ l′ − 1 and α̃, α̃′ ∈ C/lZ such that ᾱ, ᾱ′ /∈ {0̄, l̄

2
}. Let {wρ,σ,p} and

{w′ρ′,σ′,p′} be the basis given in Theorem 2.3.4.3 for V (n, α̃) and V (n′, α̃′),
respectively. Choose α, α′ ∈ C such that [α] = α̃ and [α′] = α̃′ in C/lZ.
Then there exists an isomorphism

ψα,α′ : V (n, α̃)⊗ V (n′, α̃′)→ V (n′, α̃′)⊗ V (n, α̃)

such that

ψα,α′(w0,0,0⊗w′ρ′,σ′,p′) = q−n(α
′+σ′+p′)−α(ρ′−σ′+n′−2p′)−2α(α′+σ′+p′)w′ρ′,σ′,p′⊗w0,0,0

and

ψα,α′(wρ,σ,p⊗w′0,0,0) = q−(ρ−σ+n−2p)α
′−(α+σ+p)n′−2α′(α+σ+p)w′0,0,0⊗wρ,σ,p+

∑

i

cixi⊗yi.

(2.13)
where each xi is a basis element in {w′ρ′,σ′,p′} not equal to w′0,0,0.

Proof. Recall the forgetful functor from DH to D . Lemma 2.3.5.5 and Corol-
lary 2.3.5.6 imply that V H(n, α) maps to V (n, α̃) under this functor. Sim-
ilarly, V H(n′, α′) maps to V (n′, α̃′). Now the braiding cV H(n,α),V H(n′,α′) of
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Theorem 2.3.5.4 under the forgetful functor gives the desired isomorphism
ψα,α′ in D .

We have

ψα,α′(wρ,σ,p ⊗ w′ρ′,σ′,p′) = τ(ŘK(wαρ,σ,p ⊗ w′α
′

ρ′,σ′,p′))

where

K(wα0,0,0 ⊗ w′α
′

ρ′,σ′,p′) = q−n1(α′+σ′+p′)−α(ρ′−σ′+n′−2p′)−2α(α′+σ′+p′)wα0,0,0 ⊗ w′α
′

ρ′,σ′,p′

Since E1w
α
0,0,0 = E2w

α
0,0,0 = 0 it follows that Ř(wα0,0,0 ⊗ w′α

′

ρ′,σ′,p′) = wα0,0,0 ⊗
w′α

′

ρ′,σ′,p′ and the first formula in the lemma holds.
To prove the second formula, recall from Equation (2.11) that

Ř = 1⊗ 1 +
∑

i

diai ⊗ bi

where each bi is of the form F k
1 F

s
3F

t
2 where at least one of the indices k, s or

t is non-zero. Therefore, from the defining relations of Theorem 2.3.4.3 we
have biw

′α
′

0,0,0 is a linear combination of basis vectors wα
′

ρ′,σ′,p′ where ρ
′, σ′, p′

are not all zero (since the action of either F1 or F2 on any basis vector increase
at least one of the indices of the vector, see Equation (2.6)). Combining the
above we have

Ř(wαρ,σ,p ⊗ w′α
′

0,0,0) = wαρ,σ,p ⊗ w′α
′

0,0,0 +
∑

i

di(ai ⊗ bi)(wαρ,σ,p ⊗ w′α
′

0,0,0)

= wαρ,σ,p ⊗ w′α
′

0,0,0 +
∑

j

d′jyj ⊗ xj

where each xi is a basis element in {w′α′

ρ′,σ′,p′} not equal to w′α
′

0,0,0. Thus, since

K acts diagonally on the basis, we just need to compute K(wαρ,σ,p ⊗ w′α
′

0,0,0).
This can be done as above to obtain Equation (2.13).

Remark 2.3.5.8. Clearly, the isomorphism ψα,α′ in Lemma 2.3.5.7 depends
on the choice of α and α′.

Lemma 2.3.5.9. Consider α̃1, ..., α̃n ∈ C/lZ with ᾱi 6∈ Y , i ∈ {1, ..., n}.
From the Lemma 2.3.5.3, there exists i, j such that ᾱi + ᾱj /∈ {0̄, l̄2}. Then,
for any ǫ ∈ C/lZ such that: ᾱj− ǭ /∈ {0̄, l̄2} and ᾱi+ ǭ /∈ {0̄, l̄2} we can modify
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the weights without changing the tensor product in the following way:

V (0, α̃1)⊗ ...⊗ V (0, α̃i)⊗ ...⊗ V (0, α̃j)⊗ ...⊗ V (0, α̃n) ≃
V (0, α̃1)⊗ ...⊗ V (0, α̃i + ǫ)⊗ ...⊗ V (0, α̃j − ǫ)⊗ ...⊗ V (0, α̃n).

Proof. From the choice of ǫ, Lemma 2.3.4.6 implies

V (0, α̃i)⊗ V (0, α̃j) ≃ V (0, α̃i + ǫ)⊗ V (0, α̃j − ǫ).

In the following expression, we will use the notation V̂ as a term in a ten-
sor product, in order to say that we skip the module V from this product.
Combining this isomorphism with Lemma 2.3.5.7 we have the following iso-
morphisms:

V (0, α̃1)⊗ ...⊗ V (0, α̃i)⊗ ...⊗ V (0, α̃j)⊗ ...⊗ V (0, α̃n)

≃ V (0, α̃1)⊗ ...⊗ V̂ (0, α̃i)⊗ ...⊗ V̂ (0, α̃j)⊗ ...⊗V (0, α̃n)⊗V (0, α̃i)⊗V (0, α̃j)

≃ V (0, α̃1)⊗...⊗V̂ (0, α̃i)⊗...⊗V̂ (0, α̃j)⊗...⊗V (0, α̃n)⊗V (0, α̃i+ǫ)⊗V (0, α̃j−ǫ)
≃ V (0, α̃1)⊗ ...⊗ V (0, α̃i + ǫ)⊗ ...⊗ V (0, α̃j − ǫ)⊗ ...⊗ V (0, α̃n).

This concludes the proof.

2.4 The right trace and its modified dimen-

sion

2.4.1 The existence of the right trace

In Subsection 2.2.4 we recalled several results about right traces. Here we
apply these results to construct a right trace on the ideal generated by V (0, α̃)

for ᾱ /∈ {0̄, l̄
2
}.

We’ve seen in the Decomposition Lemma 2.3.4.5 that for α̃, β̃ ∈ C/lZ

such that ᾱ, β̄, ᾱ + β̄ /∈ {0̄, l̄
2
} we have the following decomposition:

V (0, α̃)⊗ V (0, β̃) = V (0, α̃ + β̃)⊕ V (0, α̃ + β̃ + 1)⊕ V (1, α̃ + β̃).

In the case
V (0, α̃)⊗ V (0, α̃)∗ = V (0, α̃)⊗ V (0,−α̃− 1)
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the decomposition is no longer semi-simple, and the two 4-dimensional mod-
ules corresponding to V (0,−1) and V (0, 0) merge into an indecomposable
non-simple 8-dimensional module which we will denote by V1(α̃). More pre-
cisely we have the following result:

Proposition 2.4.1.1. Let α̃ ∈ C/Z such that ᾱ /∈ {0̄, l̄
2
}. We have the

following decomposition:

V (0, α̃)⊗ V (0, α̃)∗ = V1(α̃)⊕ V2(α̃) (2.14)

where V2(α̃) is an 8-dimensional simple module and V1(α̃) is an indecompos-
able module such that HomC (C, V1(α̃)) and HomC (V1(α̃),C) are both non-
zero.

Proof. Recall V (0, α̃)∗ is isomorphic to V (0,−α̃−1). Let {wα̃ρ,σ} and {w−α̃−1ρ,σ }
be the bases of V (0, α̃) and V (0,−α̃− 1) given in Theorem 2.3.4.3. Consider
the vectors of V (0, α̃)⊗ V (0,−α̃− 1):

v7 = q−α̃−1[α̃]wα̃1,1 ⊗ w−α̃−10,0 + qα̃[α̃ + 1]wα̃0,0 ⊗ w−α̃−11,1

and
u0 = [α]wα̃0,0 ⊗ w−α̃−11,0 + q−α̃[α + 1]wα̃1,0 ⊗ w−α̃−10,0 .

Let V1(α̃) and V2(α̃) be the modules generated by v7 and u0, respectively.
The action of these modules is given in Tables 2.1 and 2.2 where {vi} and
{ui} are bases for the corresponding modules.

We will show that module V1(α̃) is indecomposable. Suppose W1 and W2

are modules such V1(α̃) = W1⊕W2. Since {vi} is a basis of V1(α̃) there exists

v = c0v0 + c1v1 + c2v2 + ...+ c7v7

such that c7 6= 0 and v ∈ W1 or v ∈ W2. Without loss of generality assume
v ∈ W1. From Table 2.1 we have F2E2E1E2v is a non-zero multiple of v1. So
v1 ∈ W1. Then Table 2.1 implies that

{v1, c−1E2v1, F1v1, F2F1v1} = {v0, v1, v2, v3} ⊂ W1.

Similarly, E2F2F1F2v is a non-zero multiple of v5 so v5 ∈ W1 and

{v5, E1v5,−c−1F2v5} = {v4, v5, v6} ⊂ W1.
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Since W1 is a submodule we have

v7 = c−17 (v − c0v0 − c1v1 − c2v2 − ...− c6v6) ∈ W1

Thus, W1 = V1(α̃) and we have showed that V1(α̃) is indecomposable.
Next we will show that V2(α̃) is simple. Suppose U is a non-zero sub-

module of V2(α̃). Notice that the generator u0 of V2(α̃) is a highest weight
vector. The idea is to push any non-zero vector of U to a multiple of u0. So
let u be a non-zero vector of U . Write u in terms of the basis {ui}:

u = c0u0 + c1u1 + c2u2 + ...+ c7u7.

If there exists an element x in Uq(sl(2|1)) such that xu is a non-zero multiple
of u0 then since u0 is a generator of V2(α̃) we would have U ∼= V2(α̃). We
will show this is true for all possible non-zero coefficients of u.

1. If c4 6= 0 then from the Uq(sl(2|1))-action given in the above table we
have E1E2E1E2u is a non-zero multiple of u0.

2. If c4 = 0 and c7 6= 0 then E2E1E2u is a non-zero multiple of u0.

3. If c4 = c7 = 0 and c3 6= 0 then E1E2E1u is a non-zero multiple of u0.

4. If c4 = c7 = c3 = 0 and c6 6= 0 then E1E2u is a non-zero multiple of u0.

5. If c4 = c7 = c3 = c6 = 0 and c2 6= 0 then E2E1u is a non-zero multiple
of u0.

6. If c4 = c7 = c3 = c6 = c2 = 0 and c5 6= 0 then E2u is a non-zero
multiple of u0.

7. Finally, if c2 = c3 = c4 = c5 = c6 = c7 = 0 and c1 6= 0 then E1u is a
non-zero multiple of u0.

8. Finally, if c1 = c2 = c3 = c4 = c5 = c6 = c7 = 0 then c0 6= 0 and u is a
non-zero multiple of u0.

Thus, U ∼= V2(α̃) and V2(α̃) is simple.
Next, we consider the head and socle of V1(α̃). We have

v3 = q2(−α̃−1)wα̃1,1⊗w−α̃−10,0 −q−α̃−1wα̃0,1⊗w−α̃−11,0 +q−α̃wα̃1,0⊗w−α̃−10,1 +wα̃0,0⊗w−α̃−11,1
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which generates the trivial module in V1(α̃). Thus, HomC (C, V1(α̃)) is non-
zero. Also, from Table 2.1 we can see the map

V1(α̃)→ C given by c0v0 + c1v1 + ...+ c7v7 7→ c7

is a Uq(sl(2|1))-module morphism. Thus, HomC (V1(α̃),C) is non-zero.
Finally, we prove that Equation (2.14) holds. Since the dimension of

V (0, α̃)⊗ V (0, α̃)∗ is equal to the sum of the dimensions of V1(α̃) and V2(α̃),
it suffices to show that V1(α̃) ∩ V2(α̃) = {0}. Suppose this is not true. Then
there exists a non-zero v ∈ V1(α̃) ∩ V2(α̃). Since V2(α̃) is simple then V2(α̃)
is isomorphic to the module < v > generated by v. But since v ∈ V1(α̃) then
V2(α̃) ∼=< v >⊂ V1(α̃). Since V1(α̃) and V2(α̃) have the same dimension this
implies that V2(α̃) ∼= V1(α̃) which is a contradiction because V1(α̃) contains
the trivial module as a submodule and V2(α̃) is simple. Thus, we have the
decomposition.

Corollary 2.4.1.2. Let α̃ ∈ C/lZ such that ᾱ /∈ {0̄, l̄
2
}. Then V (0, α̃) is a

right ambidextrous object in the category C .

Proof. Equation (2.14) gives a decomposition of V (0, α̃) ⊗ V (0, α̃)∗ into in-
decomposable as in Equation (2.2) where W1 = V1(α̃) and W2 = V2(α̃).
Since W2 = V2(α̃) is an 8-dimensional simple module then HomC (C,W2) =
HomC (W2,C) = 0. From Lemma 2.2.4.2 there are unique j, j′ ∈ {0, 1} such
that HomC (I,Wj) and HomC (Wj′ , I) are non-zero. Thus, j = j′ = 1 and
Theorem 2.2.4.3 implies V (0, α̃) is right ambidextrous.

2.4.2 The modified trace

From Theorem 10 of [27] (for a statement see Theorem 2.2.4.1 above) we
have that the right ambidextrous object V (0, α̃) gives a unique right trace:

Theorem 2.4.2.1 ([27]). Let α̃ ∈ C/lZ such that ᾱ /∈ {0̄, l̄
2
}. There ex-

ists a non-zero right trace {tV } on the ideal IV (0,α̃) which is unique up to
multiplication by a non-zero scalar.

The following lemma shows that the ideal generated by V (0, α̃) contains
all objects of C except the trivial module C and thus the right trace is defined
on all these objects. It follows that this ideal is independent of α̃ and we will
denote it by I.
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Lemma 2.4.2.2. For any α̃ ∈ C/lZ such that ᾱ /∈ {0̄, l̄
2
} we have IV (0,α̃) =

C \ {C}.

Proof. First, we will show IV (0,α̃) ⊆ C \ {C}. By definition this ideal is
contained in C so we only need to show C /∈ IV (0,α̃). Suppose on the contrary
that IV (0,α̃) = C . From Lemma 2.2.4.2 and Theorem 2.2.4.3 it follows that
the trivial module C is right ambidextrous. By Theorem 2.2.4.1 there is a
unique right trace on IC = C . It is easy to see this trace is equal to the
usual quantum trace in C and its associated modified dimension is the usual
quantum dimension qdim. Since IV (0,α̃) = C = IC then from the proof of
Lemma 4.2.2 in [26] we have qdim(V (0, α̃)) 6= 0 (note [26] requires a braiding
but it is easy to see the cited proof works in our pivotal context). But this
is a contradiction so we have the desired inclusion.

Now, we will show the converse inclusion. First, notice that if β̃ ∈ C/lZ

satisfies β̄, ᾱ + β̄ /∈ {0̄, l̄
2
} then Lemma 2.3.4.5 implies that V (0, α̃ + β̃) is a

retract of V (0, α̃)⊗V (0, β̃). Therefore, V (0, α̃+β̃) ∈ IV (0,α̃). Now if µ̃ ∈ C/lZ

such that µ̄ /∈ {0̄, l̄
2
} then there exists β̃, γ̃ ∈ C/lZ such that β̄, γ̄ /∈ {0̄, l̄

2
},

µ̃ = α̃+ β̃+ γ̃ and α̃+ β̃ /∈ {0̄, l̄
2
}. Lemma 2.3.4.5 implies V (0, µ̃) is a retract

of V (0, α̃ + β̃) ⊗ V (0, γ̃). We have proved that if µ̃ ∈ C/lZ with µ̄ /∈ {0̄, l̄
2
}

then V (0, µ̃) ∈ IV (0,α̃).
Now let V ∈ C \ {C}. By definition of C there exists α̃1, ..., α̃n ∈ C/lZ

with ᾱ1, ..., ᾱn /∈ Y such that V is a retract of V (0, α̃1) ⊗ V (0, α̃2) ⊗ ... ⊗
V (0, α̃n). Since V (0, α̃1) is in the ideal IV (0,α̃) then V ∈ IV (0,α̃).

2.4.3 Computations of modified dimensions

In the proof of Theorem 2.5.2.4 we will show that the ideal I contains V (n, α̃)

such that 0 ≤ n ≤ l′− 2 and ᾱ /∈ {0̄, l̄
2
}. In the next lemma we will compute

the modified quantum dimension of such modules. Recall that the modified
quantum dimension is defined to be d(V ) = tV (IdV ) for V ∈ I.

Lemma 2.4.3.1. If V (n, α̃) ∈ I for 0 ≤ n ≤ l′ − 1 and ᾱ /∈ {0̄, l̄
2
} then the

right trace {tV }V ∈I can be normalized so

d(V (n, α̃)) =
{n+ 1}

{1}{α̃}{α̃ + n+ 1} (2.15)

where {z} = qz − q−z.
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Proof. In the proof of Lemma 2.4.2.2 we showed that V (0, 1̃
3
) ∈ I. The trace

is unique up to a global scalar and we choose a normalization so that

d(V (0,
1̃

3
)) = t

V (0, 1̃
3
)
(Id

V (0, 1̃
3
)
) =

1

{ 1̃
3
}{ 1̃

3
+ 1}

.

Let V (n, α̃) ∈ I for 0 ≤ n ≤ l′ − 1 and ᾱ /∈ {0̄, l̄
2
}. Fix α ∈ C such that

α̃ = α modulo lZ. For U,W ∈ C and f ∈ EndC (U ⊗W ) define

ptrW (f) =
(
(IdU ⊗

←−
evW )(f ⊗ IdW ∗)(IdU ⊗

−→
coevW )

)
.

Recall the isomorphisms ψα, 1
3
and ψ 1

3
,α of Lemma 2.3.5.7.

Let S ′
α, 1

3

and S ′1
3
,α
be the complex numbers defined by the following equa-

tions:

S ′1
3
,α
IdV (n,α̃) = ptrV (0, 1̃

3
)
(
ψ 1

3
,αψα, 1

3

)
, S ′

α, 1
3
Id
V (0, 1̃

3
)
= ptrV (n,α̃)

(
ψα, 1

3
ψ 1

3
,α

)
.

Now from properties of the modified trace we have

d(V (n, α̃))S ′1
3
,α
= tV (n,α̃)

(
ptrV (0, 1̃

3
)
(
ψ 1

3
,αψα, 1

3

))

= t
V (n,α̃)⊗V (0, 1̃

3
)

(
ψ 1

3
,αψα, 1

3

)

= t
V (0, 1̃

3
)⊗V (n,α̃)

(
ψα, 1

3
ψ 1

3
,α

)

= t
V (0, 1̃

3
)

(
ptrV (n,α̃)

(
ψα, 1

3
ψ 1

3
,α

))

= d

(
V
(
0,

1̃

3

))
S ′
α, 1

3
.

Now, if S ′1
3
,α
6= 0 (which we will show below) then

d(V (n, α̃)) =
S ′
α, 1

3(
{ 1̃
3
}{ 1̃

3
+ 1}

)
S ′1

3
,α

. (2.16)

Thus, to find a formula for d(V (n, α̃)) it suffices to compute S ′1
3
,α

and S ′
α, 1

3

.

We now compute S ′1
3
,α
. Let {wρ,σ,p}ρ,σ∈{0,1},p∈{0,...n−1} and {w′ρ′,σ′,0}ρ′,σ′∈{0,1}

is the weight bases of V (n, α̃) and V (0, 1̃
3
), respectively. Any endomorphism
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of V (n, α̃) maps the highest weight vector w0,0,0 of V (n, α̃) to a multiple of
itself. Since V (n, α̃) is simple it is enough to compute this coefficient, in
other words

ptrV (0, 1̃
3
)
(
ψ 1

3
,αψα, 1

3

)
(w0,0,0) = S ′1

3
,α
w0,0,0. (2.17)

Now ψ 1
3
,α and ψα, 1

3
are determined by the action of the R-matrix ŘK on the

UH
q (sl(2|1))-modules V H(n, α) and V H(0, 1

3
). Since we are taking a partial

trace only diagonal quantities of this action contribute when writing on the

weight vector basis {w
1
3
ρ,σ,0}ρ,σ∈{0,1} of V H(0, 1

3
) given above. So it is enough

to know the values of ψα, 1
3
(w0,0,0 ⊗ w′ρ′,σ′,0) and ψ 1

3
,α(w

′
ρ′,σ′,0 ⊗ w0,0,0) which

are computed in Lemma 2.3.5.7. Note, the terms cixi⊗ yi in Equation (2.13)
are not diagonal and so do not contribute. Thus, evaluating the left side of
Equation (2.17) we have

S ′1
3
,α
=

1∑

ρ′,σ′=0

q(−2n−4α)(
1
3
+σ′)−2α(ρ′−σ′)(−1)ρ′+σ′

w′
∗
ρ′,σ′,0

(
K−22 w′ρ′,σ′,0

)

=
1∑

ρ′,σ′=0

q(−2n−4α)(
1
3
+σ′)−2α(ρ′−σ′)−2( 1̃

3
+σ′)(−1)ρ′+σ′

= q(−
2
3
−1)(2α+n+1)

(
q2α+n+1 − q−n−1 − qn+1 + q−2α−n−1

)

= q−(
2
3
+1)(2α+n+1){α}{α + n+ 1}.

Similarly,

S ′
α, 1

3
= q−(2α+n+1)( 2

3
+1){n+ 1}

{1} {1/3}{4/3}.

Finally, since {x̃} = {x} for any x ∈ C then Equation (2.16) implies the
result.

2.5 The relative C/Z-spherical category

2.5.1 Purification of C

The category C that we’ve constructed still needs to be modified in order
to obtain a relative G-spherical category. One of the main problem is that
there are an infinite number of non-isomorphic simple objects in each graded
piece of C . In order to obtain a finite number of objects in each grading, we
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will “purify” the category using the modified trace. This will have the effect
of removing all modules outside the alcove. This generalizes the well known
purification of a category discussed in Chapter XI of [81].

Let V,W ∈ I = C \ {C}. A morphism f ∈ HomC (V,W ) is called
negligible with respect to the right trace t if

tW (f ◦ g) = tV (g ◦ f) = 0

for all g ∈ HomC (W,V ). Denote Negl(V,W ) as the set of negligible mor-
phisms from V to W . The set Negl(V,W ) is actually a sub-vector space
of HomC (W,V ). Thus, we can take the quotient and obtain a C-vector
space HomC (V,W )/Negl(V,W ). We set Negl(V,C) = Negl(C, V ) = 0 for
any V ∈ C .

We describe a purification process of C which will produce a category C N

where all negligible morphism are zero. We define a new pivotal C-category
C N whose objects are the same as in C . The set of morphisms between two
objects V and W of C N is

HomCN (V,W ) = HomC (V,W )/Negl(V,W ).

The composition, tensor product, pivotal structure and grading in C N is
induced from C :

Lemma 2.5.1.1. The category C N is a pivotal C-category with a C/Z-
grading induced from the grading of C .

Proof. First, we will show that C N is a pivotal C-category. There is an
obvious functor F : C → C N which is the identity on objects and maps a
morphism to its class modulo negligible morphisms:

1. F(A) = A, ∀A ∈ Ob(C ),

2. F(f) = [f ] ∈ HomCN (A,B), ∀f ∈ HomC (A,B).

Using this functor we can induce the tensor C-linear structure of C onto
C N . We also define the dual structure on C N as the one coming from C , via
the functor F . Since the dualities morphisms in C satisfy the compatibility
conditions for a pivotal structure, then the corresponding dualities under F
will also satisfy these compatibility conditions in C N .

Recall the definition of a G-graded category given in Subsection 2.2.3.
From Lemma 2.3.5.2, we know that C is C/Z-graded. For any g ∈ C/Z,
define C N

g := F(Cg). It is easy to see this gives a C/Z-graded on C N .
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We will use the same notation for the object V (n, α̃) of C and the corre-
sponding object in C N .

Lemma 2.5.1.2. If W ∈ C such that W is simple and d(W ) = 0 then every
morphism to or from W is negligible.

Proof. It suffices to prove that tW (h) = 0 for any h ∈ EndC (W ). This will
imply that if V ∈ C and f ∈ HomC (V,W ) then

tW (f ◦ g) = 0

for any g ∈ EndC (W,V ). Thus, f is negligible. A similar statement holds for
f ∈ HomC (W,V ).

To prove the first statement, let h ∈ EndC (W ). Since W is simple,
EndC (W ) = C IdW and we will define the scalar < h >∈ C as the solution
to the equation h =< h > IdW . But d(W ) = 0, in other words tW (IdW ) = 0.
Thus,

tW (h) = tW (< h > IdW ) =< h > tW (IdW ) = 0.

Lemma 2.5.1.3. Let V and W be objects in C such that W is simple and
d(W ) = 0. Then V,W are also object in C N with the property that the direct
sum V ⊕W is isomorphic to V in C N , in other words V ⊕W ≃CN V .

Proof. Let i1 : V → V ⊕ W and pr1 : V ⊕ W → V be the injection and
projection morphisms with pr1 ◦ i1 = IdV in C . This gives the relation
pr1 ◦ i1 = IdV in C N . We want to show i1 ◦ pr1 = IdV⊕W in C N . To do this
consider the other inclusion and projection morphisms i2 : W → V ⊕W and
pr2 : V ⊕W → W in C . Then by definition IdV⊕W = i1 ◦ pr1 + i2 ◦ pr2 in C .
But from Lemma 2.5.1.2 we have i2 ◦ pr2 is negligible. Thus, in C N we have
IdV⊕W = i1 ◦ pr1 and so i1 is the inverse of pr1.

Corollary 2.5.1.4. Let γ̃ ∈ C/lZ such that γ̄ /∈ {0̄, l̄
2
}. If V (l′ − 1, γ̃) ∈

I then for any V ∈ C N we have V ⊕ V (l′ − 1, γ̃) ≃CN V. In particular,
V (l′ − 1, γ̃) ≃CN {0}.

Proof. From Lemma 2.4.3.1, we have that d(V (l′ − 1, γ̃)) = 0. Applying the
previous lemma we conclude the isomorphism.
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2.5.2 Generically finitely semi-simple

Lemma 2.5.2.1. Let V be a simple object in C . As an object of C N , V is
either simple or V ≃CN {0}.

Proof. Since V is simple we have that EndC (V ) ≃ C·IdV is the 1-dimensional
vector space. By definition

EndCN (V ) = EndC (V )/Negl(V, V ) = (C · IdV )/Negl(V, V ).

Thus, EndCN (V ) is either 0 or 1-dimensional corresponding to the two cases
of the lemma.

Lemma 2.5.2.2. Let U ∈ C such that U = (C ⊕j∈J Sj) ⊕W where J is a
finite indexing set and Sj is simple for all j ∈ J . Let V ∈ C be a retract of
U with maps i : V → U and p : U → V . Then the following statements are
true:

1) There exist J ′ ⊆ J and W ′ ⊆ W such that:

Im(i) = (⊕j∈J ′Sj)⊕W ′.

Moreover, if i′ : V → Im(i) is the function i but with range Im(i) then i′ is
an isomorphism with inverse p′ := p|Im(i).

2) W ′ is a retract of W .

Proof. 1) Denote by pj : U → Sj and pW : U → W the projections onto
direct summands of U .

Consider J ′ := {j ∈ J |pj ◦ i 6= 0} and W ′ = Im(pW ◦ i). Since for any j ∈
J , Sj is simple then it is generated by any non-zero element. Using this and
the fact that pj ◦ i : V → Sj is a non-zero morphism for all j ∈ J ′, we obtain
that this morphism is surjective. We conclude that Im(i) = C (⊕j∈J ′Sj)⊕W ′.
So i′ is surjective and injective. Moreover, p′ ◦ i′ = p ◦ i = IdV .

2) We prove the second statement in two steps.
Step 1. We will show that (⊕j∈J ′Sj)⊕W ′ is a retract of (⊕j∈JSj)⊕W .

Consider ι : (⊕j∈J ′Sj) ⊕W ′ → (⊕j∈JSj) ⊕W the natural inclusion, of each
component of the direct sum in the left to the corresponding one on the right
hand side. From the first part of the proof we have

p ◦ ι = p′.
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Define π : (⊕j∈JSj)⊕W → (⊕j∈J ′Sj)⊕W ′ by π := i′ ◦ p. Then since i′ and
p′ are inverses we have:

π ◦ ι = (i′ ◦ p) ◦ ι = i′ ◦ (p ◦ ι) = i′ ◦ p′ = Id(⊕j∈J′Sj)⊕W
′ .

This concludes the Step 1.
Second 2. Consider ιW ′ : W ′ → (⊕j∈J ′Sj) ⊕W ′ and πW ′ : (⊕j∈J ′Sj) ⊕

W ′ → W ′ the injection and projection with respect to the direct summand of
W ′. Similarly, consider the injection ιW : W → (⊕j∈JSj)⊕W and projection
πW : (⊕j∈JSj)⊕W → W .

Define ι′ : W ′ → W and π′ : W → W ′ as:

ι′ := πW ◦ ι ◦ ιW ′ and π′ := πW ′ ◦ π ◦ ιW .

By definition we have:

π′ ◦ ι′ = πW ′ ◦ π ◦ (ιW ◦ πW ) ◦ ι ◦ ιW ′ .

Since Im(ι ◦ ιW ′) ⊆ 0⊕W ⊆ (⊕j∈JSj)⊕W , this means that

(ιW ◦ πW ) ◦ ι ◦ ιW ′ = ι ◦ ιW ′ .

So, we obtain:
π′ ◦ ι′ = πW ′ ◦ π ◦ ι ◦ ιW ′ .

Using the conclusion of the first step (π ◦ ι = Id) we have:

π′ ◦ ι′ = πW ′ ◦ ιW ′ = IdW ′ .

This finishes the proof of the second part.

Lemma 2.5.2.3. Let V,W ∈ C such that W is retract of V in C . If V is
isomorphic to the zero module in C N (i.e. V ≃CN {0}) then so is W :

W ≃CN {0}.

Proof. Let i : W → V and π : V → W be the retract in C . Let [i] : W → V
and [π] : V → W be there images in C N . Since V ≃CN {0}, this means the
zero maps in C N :

[0]V : V → {0} and [0]V : {0} → V
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are inverses of each other in C N . In particular, we have:

[0]V ◦ [0]V =CN [IdV ]. (2.18)

Consider the zero maps:

[0]W : W → {0} and [0]W : {0} → W.

We have [0]W ◦ [0]W =CN [0] =CN [Id{0}]. For the other composition, notice
that

[0]W =CN [0]V ◦ [i] and [0]W =CN [π] ◦ [0]V

so we have:

[0]W ◦ [0]W =CN ([π] ◦ [0]V ) ◦ ([0]V ◦ [i]) =CN [π] ◦ ([0]V ◦ [0]V ) ◦ [i]

=CN π ◦ [IdV ] ◦ i =CN π ◦ i =CN [IdW ]

where third equality comes from Equation (2.18). Thus, we have shown [0]W
and [0]W are inverses of each other.

Theorem 2.5.2.4. Let g ∈ G, g 6∈ {0̄, l̄
2
}.

1) The category C N
g is semi-simple.

2) The set of isomorphism classes of simple objects in
⋃
g∈G\{0̄, l̄

2
}
C N
g is

{
V (n, γ̃)|0 ≤ n ≤ l′ − 2, γ̃ ∈ C/lZ, γ̄ /∈

{
0̄,
l̄

2

}}
.

Proof. Proof of part 1). To prove the first statement we begin by showing
that elementary tensor products of V (0, α̃) which arrive in grading g are
semi-simple in C N

g . To do this we first work in C and use induction on the
number of terms in the tensor product. Then we show such a tensor product
is semi-simple in C N

g .
Let P (n) be the following statement:

If h ∈ G and α̃i ∈ C/lZ such that h 6∈ {0̄, l̄
2
}, ᾱi 6∈ Y for

i = 1, ..., n and ᾱ1+ ᾱ2+ · · ·+ ᾱn = h then as an object in C the
tensor product

V (0, α̃1)⊗ V (0, α̃2)⊗ ...⊗ V (0, α̃n)

can be written as a direct sum of modules of the following form:

122



2.5. THE RELATIVE C/Z-SPHERICAL CATEGORY §2.5

(a) V (m, β̃) where m ≤ min{n− 1, l′ − 2} and β̄ = h,

(b) V (l′ − 1, δ̃)⊗W where δ̄ /∈ {0̄, l̄
2
} and W is an object of C .

Moreover, this decomposition contains at least one module of the
form V (min{n− 1, l′− 2}, β̃) for some β̃ ∈ C/lZ with β̄ = h and
W = {0} if n < l′ − 1.

We prove this statement by induction.
The case n = 2. Let h ∈ G \ {0̄, l̄

2
} and α̃1, α̃2 ∈ C/lZ such that

ᾱ1 + ᾱ2 = h. It follows from Lemma 2.3.4.5 that:

V (0, α̃1)⊗ V (0, α̃2) =C V (0, α̃1 + α̃2)⊕ V (1, α̃1 + α̃2)⊕ V (0, α̃1 + α̃2 + 1).

As we can see, all the modules have the right form V (n, α̃) with n ≤ 1 and
there is one V (1, α̃1 + α̃2) which occurs.

Next we assume P (n) is true and show P (n+ 1) holds. To do this
we need to consider two cases n ≥ l′ − 1 and n < l′ − 1.

Case 1: n ≥ l′ − 1. Let α̃1, ..., α̃n+1 be as in the statement of P (n+ 1).
From Lemma 2.3.5.3, there exists i, j ∈ {1, ..., n + 1} such that ᾱi + ᾱj 6∈
{0̄, l̄

2
}. Choose ǫ ∈ C/lZ such that:

1. ᾱ1 + ᾱ2 + ...+ ̂̄αj + ...+ ᾱn+1 + ǭ 6= 0̄, l̄
2
,

2. ᾱj − ǭ 6= 0̄, l̄
2
,

3. ᾱi + ǭ 6= 0̄, l̄
2
.

Using Lemma 2.3.5.9 and the Commutativity Lemma 2.3.5.7, we obtain that:

V (0, α̃1)⊗ ...⊗ V (0, α̃i)⊗ ...⊗ V (0, α̃j)⊗ ...⊗ V (0, α̃n+1) ≃C

V (0, α̃1)⊗ ...⊗ V (0, α̃i + ǫ)⊗ ...⊗ V (0, α̃j − ǫ)⊗ ...⊗ V (0, α̃n+1) ≃C

V (0, α̃1)⊗ ...⊗ ̂V (0, α̃i)⊗ ...⊗ ̂V (0, α̃j)⊗ ...⊗ V (0, α̃n+1)⊗ V (0, α̃i + ǫ)⊗ V (0, α̃j − ǫ).
This shows it suffices to prove that the statement P (n+1) holds for weights
of the form

(α̃1, ..., α̂i, ..., α̂j, ..., α̃n+1, α̃i + ǫ, α̃j − ǫ).
By the choice of ǫ we have α̃1, ..., α̂i, ..., α̂j, ..., α̃n+1, α̃i + ǫ has the total

grading different than 0̄, l̄
2
, so it satisfies the property in the statement of

P (n). Therefore, by the induction hypothesis there exists:

m1, ...,mk ∈ {0, ..., l′−3}, β̃1, ..., β̃k, γ̃1, ..., γ̃s, δ̃1, ..., δ̃p ∈ C/lZ, and W1, ...,Wp ∈ C
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such that

V (0, α̃1)⊗ ...⊗ V̂ (0, α̃i)⊗ ...⊗ V̂ (0, α̃j)⊗ ...⊗ V (0, α̃n+1)⊗ V (0, α̃i + ǫ)

∼=C (⊕uV (mu, β̃u))⊕ (⊕tV (l′ − 2, γ̃t))⊕ (⊕k(V (l′ − 1, δ̃k)⊗Wk))

Taking the tensor product with V (0, α̃j − ǫ) we obtain:

V (0, α̃1)⊗...⊗V̂ (0, α̃i)⊗...⊗V̂ (0, α̃j)⊗...⊗V (0, α̃n+1)⊗V (0, α̃i+ǫ)⊗V (0, α̃j−ǫ)
∼=C (⊕u(V (mu, β̃u)⊗ V (0, α̃j − ǫ)))⊕ (⊕t(V (l′ − 2, γ̃t)⊗ V (0, α̃j − ǫ)))

⊕ (⊕k((V (l′ − 1, δ̃k)⊗Wk)⊗ V (0, α̃j − ǫ))).

Since the tensor product preserves the grading we have

β̄u = γ̄t = ᾱ1 + ...+ α̂j + ᾱn+1 + ǭ

for all u ∈ {1, ..., k} and t ∈ {1, ..., s}. It follows that

β̄u + ᾱj − ǭ = ᾱ1 + ...+ ᾱn+1 6∈ {0̄,
l̄

2
}.

Similarly, γ̄t+ᾱj− ǭ 6∈ {0̄, l̄2}. Lemma 2.3.4.5 implies that the final expression
in the previous tensor decomposition is isomorphic to

⊕u
(
V (mu, β̃u + α̃j − ǫ)⊕ V (mu + 1, β̃u + α̃j − ǫ)⊕

⊕ V (mu − 1, β̃u + α̃j − ǫ+ 1)⊕ V (mu, β̃u + α̃j − ǫ+ 1)
)
⊕

⊕⊕t
(
V (l′ − 2, γ̃t + α̃j − ǫ)⊕ (V (l′ − 1, γ̃t + α̃j − ǫ)⊗ I)⊕

⊕ V (l′ − 3, γ̃t + α̃j − ǫ+ 1)⊕ V (l′ − 2, γ̃t + α̃j − ǫ+ 1)
)
⊕

⊕⊕k
(
V (l′ − 1, δ̃k)⊗W ′

k

)

whereW ′
k = Wk⊗V (0, α̃j−ǫ). We notice that from the induction hypothesis

δ̄k /∈ {0̄, l̄2} and from the previous relation γ̄t+ᾱj−ǭ 6∈ {0̄, l̄2}, so all the second
components that occur are not in {0̄, l̄

2
}. Also, notice that the decomposition

contains V (l′ − 2, γ̃t + α̃j − ǫ+ 1) as a summand. Thus, we proved the step
P (n+ 1) in this case.

Case 2: n < l′ − 1. The proof of the previous case also works here
except that things are slightly simpler in this case because no module of the
form V (l′ − 1, γ̃) ⊗ W appears in the large tensor product. We highlight
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the differences: the first part of the proof is the same. Then the induction
hypothesis implies there exists:

m1, ...,mk ∈ {0, ..., n− 1}, and β̃1, ..., β̃k ∈ C/lZ

such that

V (0, α̃1)⊗...⊗V̂ (0, α̃i)⊗...⊗V̂ (0, α̃j)⊗...⊗V (0, α̃n+1)⊗V (0, α̃i+ǫ) ∼= ⊕uV (mu, β̃u)

where at least one mi = n − 1. As above take the tensor product with
V (0, α̃j − ǫ) then the Decomposition Lemma 2.3.4.5 implies

V (mu, β̃u)⊗ V (0, α̃j − ǫ) (2.19)

decomposes into a direct sum of modules of the form V (m, β̃) where m ≤
mu + 1 ≤ n < l′ − 1 and β̄ = β̄u + ᾱj − ǭ /∈ {0̄, l̄2}. Also notice that when
mu = mi = n− 1 then the tensor product in Equation (2.19) as a summand
for the form V (mi+1, β̃) = V (n, β̃). Thus, we have proved that the statement
for P (n+ 1) holds.

Now we will show that C N
g is semi-simple

Let V ∈ C N
g . Then, from the definition, V is a C -retract of a module

V (0, α̃1)⊗ V (0, α̃2)⊗ ...⊗ V (0, α̃n) (2.20)

where ᾱi /∈ Y and ᾱ1 + ᾱ2 + · · ·+ ᾱn = g. From the first part, we know that
there exist

m1, ...,mk ∈ {0, ..., l′ − 2}, β̃1, ..., β̃k, δ̃1, ..., δ̃p ∈ C/lZ, and W1, ...,Wp ∈ C

such that

V (0, α̃1)⊗ ...⊗ V (0, α̃n) ∼=C

(⊕

u

V (mu, β̃u)

)
⊕
(⊕

t

(
V (l′ − 1, δ̃t)⊗Wt

))

where β̄u, δ̄t 6∈ {0̄, l̄2}. Applying Lemma 2.5.2.2 to the right side of previous
equation there exists a subset J ′ ⊂ {1, ..., k} and a retract W ′ of ⊕t(V (l′ −
1, δ̃t)⊗Wt) such that

V ≃C (⊕u∈J ′V (mu, β̃u))⊕W ′.
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Now, for all t ∈ {1, ..., p}, Corollary 2.5.1.4 implies

V (l′ − 1, δ̃t) ≃CN {0}.

This shows that ⊕

t

(
V (l′ − 1, δ̃t)⊗Wt

)
≃CN {0}.

Using 2.5.2.3, we obtain that:

W ′ ≃CN {0}

Thus we conclude that in C N :

V ≃ ⊕u∈J ′V (mu, β̃u). (2.21)

Since the modules in the previous decomposition are simples in C , then
Lemma 2.5.2.1 implies they are also simple in C N and we obtain that V is
semi-simple in C N .

Proof of part 2). Now we will prove the second part of the theorem. Let

V ∈ C N
g be a simple object (i.e. EndCN (V ) = C IdV ), with g ∈ G, g /∈ {0̄, l̄2}.

By definition V is obtained from a C -retract of tensor products of modules
of the form V (0, α) and from Equation (2.21) we have

V ≃CN ⊕u∈J ′V (mu, β̃u)

where each V (mu, β̃u) is simple in both C and C N . If the carnality of J ′ was
strictly greater than one then dim(EndCN (V )) ≥ 2 which is a contradiction.
So

V ≃CN V (mu, β̃u)

for some 0 ≤ mu ≤ l′−2 and β̄i = g. This shows that any simple object that
occur in C N

g is of the desired form.

For the other inclusion, let 0 ≤ s ≤ l′ − 2, γ̃ ∈ C/lZ, γ̄ = g /∈ {0̄, l̄
2
}. We

will show that V (s, γ̃) is in C N
g .

In the first part of this proof we showed the statements P (n) hold. The
last part of these statements imply that for all 0 ≤ m ≤ l′ − 2 and h ∈
C/Z \ {0̄, l̄

2
} there exists β̃ ∈ C/lZ such that β̄ = h and V (m, β̃) is a simple

object in C N
h . We use this as follows.

Choose β̄ ∈ C/Z such that β̄, γ̄− β̄ /∈ {0̄, l̄
2
}. There exists a lift β̃ ∈ C/lZ

of β̄ so that V (s, β̃) is C N
β̄

as discussed above. Set ǫ̃ = γ̃ − β̃ then ǭ and

β̄ + ǭ = γ̄ are not in {0̄, l̄
2
}.
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In C , by definition V (s, β̃) is a retract of a module:

V (0, α̃1)⊗ V (0, α̃2)⊗ ...⊗ V (0, α̃n).

Taking the tensor product of this module with V (0, ǫ̃), we get that V (s, β̃)⊗
V (0, ǫ̃) is a C -retract of

V (0, α̃1)⊗ V (0, α̃2)⊗ ...⊗ V (0, α̃n)⊗ V (0, ǫ̃). (2.22)

Since β̄, ǭ, β̄ + ǭ /∈ {0̄, l̄
2
} we have

V (s, β̃)⊗V (0, ǫ̃) ≃C V (s, γ̃)⊕V (s+1, γ̃)⊕(1−δ̃s,0)V (s−1, γ̃+1)⊕V (s, γ̃+1)

and we see that V (s, γ̃) is a C -retract of V (s, β̃)⊗ V (0, ǫ̃). Using properties
of C -retracts (if A is a retract of B and B is a retract of C, then A is a retract
of C) and the previous two decompositions, we have V (s, γ̃) is a C -retract
of the module in Equation (2.22). This concludes the proof.

A set of simple objects A is said to be represented by a set of simple
objects RA if any element of A is isomorphic to a unique element of RA.
Lemma 2.5.1.1 and Theorem 2.5.2.4 imply the following corollary.

Corollary 2.5.2.5. The category C N is a generically finitely C/Z-semi-
simple pivotal C-category with small symmetric subset X = 1

2
Z/Z. The class

of generic simple objects A of C N is represented by

RA = {V (n, γ̃) | 0 ≤ n ≤ l′ − 2, γ̃ ∈ C/lZ, γ̄ /∈ X}. (2.23)

2.5.3 Trace

Here we will show that the right trace t on I induces a trace in C N .

Lemma 2.5.3.1. The full subcategory IN := C N \ {C} is a right ideal in
C N .

Proof. We need to show that IN satisfies the two conditions to be a right
ideal (see Subsection 2.2.4). The first condition is true from the definitions of
C and C N . For the second condition we need to check that the trivial object
C is not a retract of an object in C N . On the contrary, suppose there exists an
object W in C N and morphisms f ∈ HomCN (C,W ) and g ∈ HomCN (W,C)
such that gf = IdC. But by definition HomCN (C,W ) = HomC (C,W ) and
HomCN (W,C) = HomC (W,C) so f and g give a C -retract of the trivial
module which would imply that I = C which is a contradiction to Lemma
2.4.2.2. Thus, C /∈ C N .
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Lemma 2.5.3.2. For V ∈ IN the assignment tNV : EndCN (V )→ C given by
[f ] 7→ tV (f) is a well defined linear function. Moreover, the family {tNV }V ∈IN
is a right trace on IN .

Proof. We need to show t
N
V does not depend on the representative of [f ] in

EndCN (V ) = HomCN (V, V ) = HomC (V, V )/Negl(V, V ).

Suppose [f ] = [g] then f = g + h for some h ∈ Negl(V, V ). Then tV (f) =
tV (g + h) = tV (g), implying t

N
V ([f ]) = t

N
V ([g]).

In order to prove that tNV is a right trace on IN , we have to prove that
this satisfies the conditions 1) and 2) from the definition.

1) Let U, V ∈ IN and [f ] ∈ HomCN (V, U), [g] ∈ HomCN (U, V ). Let
f ∈ HomC (V, U), g ∈ HomC (U, V ) such that the class of f and g in C N are
[f ] and [g] respectively. Then

t
N
V ([g][f ]) = t

N
V ([gf ]) = tV (gf) = tU(fg) = t

N
U([fg]) = t

N
U([f ][g]).

2) Consider U ∈ IN and W ∈ C and f ∈ EndNC (U ⊗W ). Let f ∈ EndC (U ⊗
W ) such that the class of f in C is [f ]. Then we obtain:

t
N
U⊗W ([f ]) = tU⊗W (f) = tU

(
(IdU ⊗

←−
evW )(f ⊗ IdW ∗)(IdU ⊗

−→
coevW )

)
=

= t
N
U

(
([IdU ]⊗ [

←−
evW ])([f ]⊗ [IdW ∗ ])([IdU ]⊗ [

−→
coevW )]

)

The previous two equalities conclude the statement.

2.5.4 T-ambi pair

Let d : RA → C be the function given in Equation (2.15), in other words:

d(V (n, α̃)) =
{n+ 1}

{1}{α̃}{α̃ + n+ 1} (2.24)

for V (n, α̃) ∈ RA. Extend this function to A by requiring d(V ) = d(V (n, α̃))
if V is isomorphic to V (n, α̃).

Lemma 2.5.4.1. The pair (A, d) is a t-ambi pair in C N .
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Proof. Consider d
N the modified dimension on IN coming from the right

trace t
N on C N .

Let B := {V ∈ IN ⋂(IN)∗ | V simple, d
N(V ) = d

N(V ∗)}. From Theorem
2.2.4.4, it follows that (B, dN) is a t-ambi pair. We notice that (IN)∗ = IN .

We will prove that A ⊆ B and that dN is determined by Equation (2.24).
Let V ∈ A. By definition there exists 0 ≤ n ≤ l′ − 2 and γ̃ ∈ C/lZ with
γ̄ /∈ X such that V ≃ V (n, γ̃). We have

d
N(V (n, γ̃)) = t

N([IdV (n, γ̃)]) = t(IdV (n, γ̃)) = d(V (n, γ̃))

and so d
N(V (n, γ̃)) is given by the formula in Equation (2.24).

Since V (n, α̃)∗ = V (n,−α̃− ñ− 1̃), Equation (2.24) implies

d(V (n, α̃)) = d((V (n, α̃))∗).

We conclude that
d
N(V (n, α̃)) = d

N((V (n, α̃))∗)

for any V ∈ A. This shows that A ⊆ B. Thus, since (B, dN) is a t-ambi pair,
it is easy to check that (A, d) is a t-ambi pair.

2.5.5 The b map

Here we show C N has a map b as in the definition of a relative G-spherical
category. To do this we need the following technical lemmas.

Lemma 2.5.5.1. Let L,R ∈ C N with L ∈ C N
g , R ∈ C N

h with g, h /∈ {0̄, l̄
2
}.

Suppose L =CN L1 ⊕ L2 and R =CN R1 ⊕R2 such that

L ≃CN R and L1 ≃CN R1.

Then
L2 ≃CN R2.

Proof. Using Theorem 2.5.2.4, we have that both L and R are semi-simple
in C N . More precisely, there exists N ∈ N, and S1, ..., SN ∈ RA all different
such that:

L = η1S1 ⊕ ...⊕ ηNSN
R = η′1S1 ⊕ ...⊕ η′NSN ⊕ J
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where ηi, η
′
i ∈ N, are the multiplicities of the simple object Si and J is a

direct sum of elements of RA which are all different than Si, i ∈ {1, ..., N}.
As an observation, from the computation of d we have:

d(V ) 6= 0 for all V ∈ RA,

in particular d(Si) 6= 0, for all i ∈ {1, ..., N}.
We have that:

HomC (L,R) = HomC (η1S1 ⊕ ...⊕ ηNSN , η′1S1 ⊕ ...⊕ η′NSN ⊕ J)
=
⊕

i,j

(HomC (ηiSi, η
′
jSj))⊕

⊕

i

(HomC (ηiSi, J)).

We notice that Hom(Si, Sj) = 0 for i 6= j and Hom(Si, J) = 0 since J has no
Si-isotipic components so:

HomC (L,R) =
⊕

i

(HomC (ηiSi, η
′
iSi)).

Now we will study the negligible morphisms from this space. By definition
Negl(L,R) ⊆ HomC (L,R) as a vector subspace. From the last two relations
we obtain that:

Negl(L,R) =
⊕

i

(Negl(ηiSi, η
′
iSi)).

We will prove that actually we have no negligible morphisms between isotipic
components of Si.

Suppose that there exists f ∈ Negl(ηiSi, η
′
iSi) which is non-zero. For

k ∈ {1, ..., N}, denote by ιk : Si → ηiSi and πk : η
′
iSi → Si the inclusion and

projection of the kth component.
Since f is non-zero, then there exists k, l ∈ {1, ..., N} such that πl◦f ◦ιk 6=

0. Also, since Si is simple in C :

πl ◦ f ◦ ιk = πl ◦ f ◦ ιk(1) IdSi .

At the level of the modified trace we have:

tSi(πl ◦ f ◦ ιk) = (πl ◦ f ◦ ιk(1)) tSi(IdSi) = (πl ◦ f ◦ ιk(1)) d(Si) 6= 0.

From the properties of t, we have:

tSi(πl ◦ f ◦ ιk) = tη′iSi
(f ◦ ιk ◦ πl) = 0

130



2.5. THE RELATIVE C/Z-SPHERICAL CATEGORY §2.5

(since f is negligible).
The last two equalities lead to a contradiction. We conclude thatNegl(L,R) =

{0} and so:
HomC (L,R) = HomCN (L,R).

Now let [φ] ∈ HomCN (L,R) be an isomorphism. Consider φ ∈ HomC (L,R)
that gives [φ] in C N . From the previous considerations, φ : L → R is an
isomorphism in C .

Using this, we obtain that J = {0} (it is not possible to have more isotipic
components in R than in L). Also, since we are in a category of represen-
tations which are semi-simple and morphisms between representations, we
obtain that

ηi = η′i, ∀i ∈ {1, ..., N}.
So now, both R and L are semi-simple modules in C with the same isotipic
decomposition.

Now both L1 and R1 are direct summands in L and R. It means that
each of them has a semi-simple decomposition with modules from the set
Si. But L1 and R1 are isomorphic in C N . Using the same argument as
in the first part with L and R, we obtain that L1 and R1 are isomorphic
in C . It means that they have the same isotipic decompositions with the
same multiplicities. Let us compose φ to the right with an automorphism
of L that makes a permutation on the isotipic components such that the
ones corresponding to L1 are sent onto the ones corresponding to φ−1(R1)
respectively. This means that we obtain an isomorphism

φ̃ : L→ R

such that
φ̃(L1) = R1.

We conclude that
φ̃|L2 : L2 → R2

is an isomorphism in C and also in C N .

Lemma 2.5.5.2. For all α̃, β̃ ∈ C/lZ and n ∈ N such that ᾱ, β̄, ᾱ+β̄ /∈ {0̄, l̄
2
}

and n ≤ l′ − 2 then given m ≤ n we have

V (m, α̃)⊗V (n, β̃) ≃CN V (0, α̃)⊗
(
V (n+m, β̃)⊕V (n+m−2, β̃+1)⊕· · ·⊕V (n−m, β̃+m)

)

where we set V (k, β̃) = 0 if k ≥ l′ − 1.
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Proof. We will show the statement by induction on m. The case m = 0 is
true from Lemma 2.3.4.5. Next, we will check the case m = 1.

Let α̃, β̃ ∈ C/lZ and n ∈ N such that ᾱ, β̄, ᾱ + β̄ /∈ {0̄, l̄
2
} and 1 ≤ n ≤

l′− 2. Choose γ̃ ∈ C/lZ such that γ̄, ᾱ− γ̄, ᾱ− γ̄+ β̄ /∈ {0̄, l̄
2
}. From Lemma

2.3.4.5 we have

V (0, α̃− γ̃)⊗ V (n, β̃) ≃CN V (n, α̃− γ̃ + β̃)⊕ V (n, α̃− γ̃ + β̃ + 1)

⊕ (1− δl′−2,n)V (n+ 1, α̃− γ̃ + β̃)⊕ V (n− 1, α̃− γ̃ + β̃ + 1)

in C N . Take the tensor product of both sides of this equation with V (0, γ̃).
Then decomposing the left side by grouping the first two simple modules
together we have

(
V (0, γ̃)⊗ V (0, α̃− γ̃)

)
⊗ V (n, β̃) ≃CN

(
V (0, α̃)⊗ V (n, β̃)

)

⊕
(
V (0, α̃ + 1)⊗ V (n, β̃)

)
⊕
(
V (1, α̃)⊗ V (n, β̃)

)

On the other hand the left side is
(
V (0, γ̃)⊗ V (n, α̃− γ̃ + β̃)

)
⊕
(
V (0, γ̃)⊗ V (n, α̃− γ̃ + β̃ + 1)

)

⊕ (1− δl′−2,n)
(
V (0, γ̃)⊗ V (n+ 1, α̃− γ̃ + β̃)

)

⊕
(
V (0, γ̃)⊗ V (n− 1, α̃− γ̃ + β̃ + 1)

)

Now, using Corollary 2.3.4.6 we see the first two tensor products in the
last two expressions are the same direct sum of simple modules so they are
isomorphic. Thus, Lemma 2.5.5.1 implies

V (1, α̃)⊗ V (n, β̃) ≃CN (1− δl′−2,n)
(
V (0, γ̃)⊗ V (n+ 1, α̃− γ̃ + β̃)

)

⊕
(
V (0, γ̃)⊗ V (n− 1, α̃− γ̃ + β̃ + 1)

)
.

Using Corollary 2.3.4.6 we see the right hand side of this equation is isomor-
phic to

(1− δl′−2,n)
(
V (0, α̃)⊗ V (n+ 1, β̃)

)
⊕
(
V (0, α̃)⊗ V (n− 1, β̃ + 1)

)
.

Thus, we have proved the lemma for the case m = 1.
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Now assume the statement is true for k ≤ m and we will show the state-
ment holds for m+ 1. Let α̃, β̃, γ̃ and n be as above. Let us denote:

Eβ̃
m,n :=

(
V (n+m, β̃)⊕ V (n+m− 2, β̃ + 1)⊕ · · · ⊕ V (n−m, β̃ +m)

)
.

From the induction hypothesis we have

V (0, γ̃)⊗ V (m, α̃− γ̃)⊗ V (n, β̃) ≃CN V (0, γ̃)⊗ V (0, α̃− γ̃)⊗Eβ̃
m,n. (2.25)

Using Lemma 2.3.4.5 to decompose the first tensor product we have the left
hand side of Equation (2.25) is isomorphic to

(
V (m, α̃)⊗ V (n, β̃)

)
⊕
(
V (m, α̃ + 1)⊗ V (n, β̃)

)
⊕

⊕
(
V (m− 1, α̃ + 1)⊗ V (n, β̃)

)
⊕
(
V (m+ 1, α̃)⊗ V (n, β̃)

)

Similarly, the right hand side of Equation (2.25) is isomorphic to

(
V (0, α̃)⊗ Eβ̃

m,n

)
⊕
(
V (0, α̃ + 1)⊗ Eβ̃

m,n

)
⊕
(
V (1, α̃)⊗ Eβ̃

m,n

)

From the induction hypothesis, the first two terms of the last two expres-
sions are isomorphic, thus from Lemma 2.5.5.1 we obtain

(
V (m− 1, α̃ + 1)⊗ V (n, β̃)

)
⊕
(
V (m+ 1, α̃)⊗ V (n, β̃)

)
≃CN V (1, α̃)⊗Eβ̃

m,n.

(2.26)
Next, we decompose the right side of this equation. By induction we

know that for any 1 ≤ n′ ≤ l′ − 2 and k ≤ m we have

V (1, α̃)⊗V (n′, β̃+k) ≃CN V (0, α̃)⊗
(
V (n′ + 1, β̃ + k)⊕ V (n′ − 1, β̃ + k + 1)

)
.

Applying this to each term of the sum Eβ̃
m,n we obtain:

V (1, α̃)⊗ Eβ̃
m,n ≃CN V (0, α̃)⊗

(
Eβ̃
m,n+1 ⊕ Eβ̃+1

m,n−1

)
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From the definition Eβ̃
m,n we have

V (0, α̃)⊗
(
Eβ̃
m,n+1 ⊕ Eβ̃+1

m,n−1

)
=

= V (0, α̃)⊗
(
Eβ̃
m,n+1 ⊕

(
Eβ̃+1
m−1,n ⊕ V (n− 1−m, β̃ +m+ 1)

))

= V (0, α̃)⊗
((
Eβ̃
m,n+1 ⊕ V (n− 1−m, β̃ +m+ 1)

)
⊕ Eβ̃+1

m−1,n

)

= V (0, α̃)⊗
(
Eβ̃
m+1,n ⊕ Eβ̃+1

m−1,n

)

≃CN

(
V (0, α̃)⊗ Eβ̃

m+1,n

)
⊕
(
V (m− 1, α̃ + 1)⊗ V (n, β̃)

)

where the isomorphism comes from the induction hypothesis. Combining
the last two equation and using Lemma 2.5.5.1 we see that Equation (2.26)
implies

V (m+ 1, α̃)⊗ V (n, β̃) ≃CN V (0, α̃)⊗ Eβ̃
m+1,n

which proves the statement for m+ 1 and concludes the induction step.

Now we use this lemma to show C N has a b map. In [34] it is shown
how to construct a b map from a character. Our b map will be defined on
the representative class of simple objects RA and extended to A by setting
b(W ) = b(V ) if W ≃ V for W ∈ A and V ∈ RA.

Here a character is a map χ : RA → C satisfying

1. χ(V ∗) = χ(V ) for all V ∈ RA,

2. if V (m, α̃), V (n, β̃) ∈ RA such that ᾱ + β̄ /∈ X then

χ(m, α̃)χ(n, β̃) =
∑

k,γ̃

dim
(
HomCN (V (k, γ̃), V (m, α̃)⊗ V (n, β̃))

)
χ(k, γ̃)

here for simplicity we denoted χ(V (m, α̃)) = χ(m, α̃),

3. for any g ∈ G\X , the element Dg =
∑

V ∈CNg ∩RA
χ(V )2 of C is non-zero.

If χ is a character then Lemma 23 of [34] implies the map G\X → C, g 7→ Dg
is a constant function with value D. Moreover, the map b = 1

D
χ satisfies the

properties listed in Definition 2.2.3.1. We will now show a character exists.
Let V (m, α̃) be inRA. Consider the formal character χ(m, α̃) =

∑
k,γ̃ ck,γ̃e

keγ̃

of V (m, α̃) in C . Here ek and eγ̃ are both formal variables for each k ∈ Z
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and γ̃ ∈ C/lZ and ck,γ̃ is the dimension of the (k, γ̃) weight space determined
by the action of (K1, K2).

The variables ek and eγ̃ of a character χ(m, α̃) can be specialized to qk and
1, respectively to obtain a complex number which we denote by χq(m, α̃) ∈ C.
We will show χq is a character in C N .

Using the basis in Theorem 2.3.4.3 we see

χq(m, α̃) = (2 + q + q−1)(qm + qm−2 + · · ·+ q−m) = (2 + q + q−1)[m+ 1].

In particular, χq(l
′ − 1, α̃) = 0. Also, V (m, α̃)∗ = V (m,−α̃ − m̃ − 1̃) which

implies χq(V
∗) = χq(V ) for V ∈ RA.

Next, we show property (2) holds for χq. We first do this for the case
m = 0 and 0 ≤ n ≤ l′ − 2. Let V (0, α̃), V (n, β̃) ∈ RA such that ᾱ + β̄ /∈ X .
From Lemma 2.3.4.5 we have

V (0, α̃)⊗ V (n, β̃) ≃C V (n, α̃ + β̃)⊕ V (n+ 1, α̃ + β̃)

⊕ (1− δ0,n)V (n− 1, α̃ + β̃ + 1)⊕ V (n, α̃ + β̃ + 1) (2.27)

in C . This implies

χ(0, α̃)χ(n, β̃) = χ(n, α̃+β̃)+χ(n+1, α̃+β̃)+(1−δ0,n)χ(n−1, α̃+β̃+1)+χ(n, α̃+β̃+1).

By specializing the variables of this equation we have:

χq(0, α̃)χq(n, β̃) = χq(n, α̃ + β̃) + χq(n+ 1, α̃ + β̃)

+ (1− δ0,n)χq(n− 1, α̃ + β̃ + 1) + χq(n, α̃ + β̃ + 1). (2.28)

Translating Equation (2.27) to C N we have:

V (0, α̃)⊗ V (n, β̃) ≃CN V (n, α̃ + β̃)⊕ (1− δl′−2,n)V (n+ 1, α̃ + β̃)

⊕ (1− δ0,n)V (n− 1, α̃ + β̃ + 1)⊕ V (n, α̃ + β̃ + 1).

Since χq(l
′ − 1, α̃ + β̃) = 0 then the last equation implies we can rewrite

Equation (2.28) as

χq(0, α̃)χq(n, β̃) =
∑

k,γ̃

dim
(
HomCN (V (k, γ̃), V (0, α̃)⊗ V (n, β̃))

)
χq(k, γ̃)
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here all but possibly four homomorphism spaces are zero. This implies that

if W ≃CN

⊕s
i=1

(
V (0, α̃)⊗ V (ni, β̃i)

)
where ᾱ, β̄i, ᾱ + β̄i /∈ X and 0 ≤ ni ≤

l′ − 2 for all i ∈ {1, ..., s} then
s∑

i=1

χq(0, α̃)χq(ni, β̃i) =
∑

k,γ̃

dim (HomCN (V (k, γ̃),W ))χq(k, γ̃). (2.29)

Next we consider the general case. Let V (m, α̃), V (n, β̃) ∈ RA such that
ᾱ + β̄ /∈ X . A direct computation shows

χq(m, α̃)χq(n, β̃) = (2 + q + q−1)2[m+ 1][n+ 1].

where it can be shown that

[m+ 1][n+ 1] = [n+ 1 +m] + [n+ 1 +m− 2] + ...+ [n+ 1−m].

This implies,

χq(m, α̃)χq(n, β̃)

= χq(0, α̃)
(
χq(n+m, β̃) + χq(n+m− 2, β̃ + 1) + ...+ χq(n−m, β̃ +m)

)
.

But from Lemma 2.5.5.2 and Equation (2.29) we have the right side of the
last equation is equal to

∑

k,γ̃

dim
(
HomCN (V (k, γ̃), V (m, α̃)⊗ V (n, β̃))

)
χq(k, γ̃)

and we have shown that property (2) holds.
Finally, we show χq satisfies the last property to be a character. Fix

α̃ ∈ C/lZ such that ᾱ = g /∈ X then for any k ∈ {0, ..., l′ − 1} we have

l′−1∑

m=0

χq(m, α̃ + k)2 = c2
l′−1∑

m=0

[m+ 1]2 =
c2

(q − q−1)2
l′−1∑

m=0

(qm+1 − q−m−1)2
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where c = 2 + q + q−1. Let us compute the sum in this expression:

l′−1∑

m=0

(qm+1 − q−m−1)2 =
l′−1∑

m=0

(
q2m+2 + q−2m−2 − 2

)

= −2l′ + q2
l′−1∑

m=0

q2m + q−2
l′−1∑

m=0

q−2m

= −2l′ + q2
q2l

′ − 1

q2 − 1
+ q−2

q−2l
′ − 1

q−2 − 1
= −2l′.

Thus, we have

Dg =
∑

V ∈CNg ∩RA

χq(V )2 =
l′−1∑

m,k=0

χq(m, α̃ + k)2 =
l′−1∑

k=0

−2l′c2
(q − q−1)2 =

−2(l′)2c2
(q − q−1)2

which is non-zero.
In summary, χq is a character and as explained above leads to a map

b = 1
D
χ satisfies the properties listed in Definition 2.2.3.1.

2.5.6 Main theorem

Here we summarize the results of this chapter in the following theorem.

Theorem 2.5.6.1. Let G = C/Z and X = 1
2
Z/Z. Let A be the set of

generic simple objects of C N given in Equation (2.23). Let d : A → C×

be the function defined in Equation (2.24). Let b : A → k be the function
constructed in Subsection 2.5.5. With this data C N is a relative G-spherical
category with basic data and leads to the modified TV-invariant described in
Theorem 2.1.0.1.

Proof. The proof follows directly from Corollary 2.5.2.5 and Lemmas 2.5.4.1
and 2.2.3.2.
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Table 2.1: Action on V1(α̃), where c = q−α̃(q−1[α̃]− [α̃ + 1]).

V1(α̃) v0 v1 v2 v3 v4 v5 v6 v7

E1 0 0 v1 0 0 v4 0 0

E2 0 c · v0 0 0 [α̃][α̃ + 1]v3 0 v5 −[α̃][α̃ + 1]v2

F1 0 v2 0 0 v5 0 0 0

F2 v1 0 v3 0 0 −c · v6 0 v4
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Table 2.2: Action on V2(α̃), where c = q−α̃(q−1[α̃]− [α̃ + 1]).

V2(α̃) u0 u1 u2 u3 u4 u5 u6 u7

E1 0 u0 u5 u6 u7 0 (q + q−1)v5 0

E2 0 0 0 0 −c · u3 c · u0 c · u1 c · u2

F1 u1 0 u3 0 0 u6 0 u4

F2 u5 u2 0 u4 0 0 u7 0
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Chapter 3

A combinatorial description of
the centralizer algebras
connected to the Links-Gould
Invariant

In this chapter, we study the tensor powers of a 4-dimensional representation
of the quantum super-algebra Uq(sl(2|1), focusing on the rings of its algebra
endomorphisms so called centralizer algebras, denoted by LGn. Their dimen-
sions were conjectured by Marin and Wagner [67]. We will prove this conjec-
ture, describing the intertwiners spaces from a semi-simple decomposition as
sets consisting in certain paths in a planar lattice with integer coordinates.

Structure of the chapter
This part is split into four main sections. In Part 3.1, we present the super

quantum group Uq(sl(2|1)) and some properties concerning its representation
theory. Further on, in Section 3.2 we discuss the definition of the Links-
Gould invariant. Section 3.3 is devoted to the definition of the centralizer
algebras LGn(α) and some properties and conjectures about them. In the
last part, Section 3.4, we prove the Marin-Wagner Conjecture concerning the
dimensions of these centralizer algebras.
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3.1 The quantum group Uq(sl(2|1))
In this section we will introduce the super-quantum group Uq(sl(2|1)) and
discuss about its representation theory. Let us fix a ground field k. A super
vector space is a vector space over k with a Z2 grading: V = V0 ⊕ V1. A
homogenous element x ∈ V is called even if x ∈ V0 and odd if x ∈ V1.
Through this section, all the objects that we will work with will respect the
Z2-gradings.

Notation 3.1.0.1. Consider ℏ to be an indeterminate and the field k :=
C((ℏ)). Denote by:

q := e
ℏ

2 {x} := qx − q−x

expq(x) :=
∞∑

n=0

xn

(n)q!
(k)q =

1− qk
1− q (n)q! = (1)q(2)q...(n)q

For two homogeneous elements x and y with gradings x̄, ȳ ∈ Z2, the super-
commutator has the formula:

[x, y] := xy − (−1)x̄ȳyx

Definition 3.1.0.2. Let A = (aij) be the square matrix given by

A =
(

2 −1
−1 0

)

Consider Uq(sl(2|1)) to be the superalgebra over C((ℏ)) generated by {Ei, Fi, hi}i∈{1,2}
where the generators E2 and F2 are odd and all the others are even, with the
following relations:

[hi, hj] = 0, [hi, Ej] =ai,jEj, [hi, Fj] =− ai,jFj,

[Ei, Fj] =δi,j
qhi − q−hi
q − q−1 , E2

2 =F 2
2 = 0

E2
1E2 − (q + q−1)E1E2E1 + E2E

2
1 = 0, F 2

1F2 − (q + q−1)F1F2F1 + F2F
2
1 = 0
(3.1)
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The algebra Uq(sl(2|1)) is a Hopf algebra where the coproduct, counit and
antipode are defined by

∆(Ei) =Ei ⊗ 1 + q−hi ⊗ Ei, ǫ(Ei) =0 S(Ei) =− qhiEi
∆(Fi) =Fi ⊗ qhi + 1⊗ Fi, ǫ(Fi) =0 S(Fi) =− Fiq−hi
∆(hi) =hi ⊗ 1 + 1⊗ hi, ǫ(hi) =0 S(hi) =− hi.

Notation 3.1.0.3. Consider the following elements:

E ′ := E1E2 − q−1E2E1 F ′ = F2F1 − qF1F2

Proposition 3.1.0.4. In [50],[84] it has been shown that the quantum group
Uq(sl(2|1)) admits an R-matrix, defined in the following way: R = ŘK
where:

Ř = expq({1}E1 ⊗ F1)expq(−{1}E ′ ⊗ F ′)expq(−{1}E2 ⊗ F2)

K = q−h1⊗h2−h2⊗h1−2h2⊗h2

In this sequel we will recall some facts about the representation theory
of the quantum group Uq(sl(2|1)). We would like to emphasyse the fact that
the representation theory of super-quantum groups has continuous families
of representations already when q is generic. This is in contrast with the
classical case of quantum groups, where it is possible to gain a continuous
family of representations, just if q is specialised to a root of unity. We will
follow [28].

Definition 3.1.0.5. 1) An element v ∈ V is called a weight vector of weight
λ = (α1, α2) if:

hiv = αiv, ∀ i ∈ {1, 2}.
2) A weight vector is called highest weight vector if:

Eiv = 0, ∀i ∈ {1, 2}.

3)A module V is called a highest weight module of weight λ = (α1, α2) if it
is generated by a highest weight vector v0 ∈ V of weight λ.

Proposition 3.1.0.6. There exists a continuous family of simple represen-
tations of Uq(sl(2|1)),
indexed by Λ = N× C:

λ = (α1, α2) ∈ Λ←→ V (α1, α2) highest weight module of weight λ
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The weight λ is called “typical” if α1 + α2 6= −1 and α2 6= 0, otherwise it is
called “atypical”. Using this, the previous family is split into two types of rep-
resentations: typical/ atypical if they correspond to typical/atypical highest
weight.

Remark 3.1.0.7. Using the R-matrix, we obtain a braiding on the category
of finite dimensional representations of Uq(sl(2|1)):

RV,W := τ s ◦ (R y V ⊗W )

where τ s is the super flip on two homogeneous elements defined as

τ s(x⊗ y) = (−1)degx degyy ⊗ x

Proposition 3.1.0.8. The braiding from the category of representations in-
duces a well defined braid group action, in the following way:

ρn : Bn → AutUq(sl(2|1))(V (λ)⊗n)

ρn(σ
±1
i ) = Id⊗i−1 ⊗R

±1
V (λ),V (λ) ⊗ Idn−i−1

Theorem 3.1.0.9. ([28], Lemma 1.3) If α, β ∈ C∗, n ∈ N such that all the
modules from the following expression are typical, then V (0, α) ⊗ V (n, β) is
semi-simple and has the following decomposition:
1) For n 6= 0:

V (0, α)⊗V (n, β) = V (n, α+β)⊕V (n+1, α+β)⊕V (n−1, α+β+1)⊕V (n, α+β+1).

2) For n = 0:

V (0, α)⊗ V (0, β) = V (0, α + β)⊕ V (0, α + β + 1)⊕ V (1, α + β).

3.2 The Links-Gould invariant

In this section, we will recall the definition of the Links-Gould invariant for
links. After that, in the second part, we will see how this invariant can be
recovered from a more general set of renormalized invariants introduced by
Geer and Patureau using the representation theory of Uq(sl(2|1)).

Let K := C(t
± 1

2
0 , t

± 1
2

1 ) and V :=< v1, ..., v4 > a K-vector space of dimen-
sion 4.

143



3.2. THE LINKS-GOULD INVARIANT §3.2

Consider the set B to be the following ordered basis for V :

B := (v1 ⊗ v1, ..., v1 ⊗ v4, v2 ⊗ v1, ..., v2 ⊗ v4, ..., v4 ⊗ v1, ..., v4 ⊗ v4)

Let us denote by Y := ((t0 − 1)(1− t1))
1
2 .

Consider the operator R ∈ Aut(V ⊗ V ) given by the following matrix:




t0 · · · · · · · · · · · · · · ·
· · · · t

1
2
0 · · · · · · · · · · ·

· · · · · · · · t
1
2
0 · · · · · · ·

· · · · · · · · · · · · 1 · · ·
· t

1
2
0 · · t0 − 1 · · · · · · · · · · ·

· · · · · −1 · · · · · · · · · ·
· · · · · · t0t1 − 1 · · −t

1
2
0 t

1
2
1 · · −t

1
2
0 t

1
2
1 Y · · ·

· · · · · · · · · · · · · t
1
2
1 · ·

· · t
1
2
0 · · · · · t0 − 1 · · · · · · ·

· · · · · · −t
1
2
0 t

1
2
1 · · · · · Y · · ·

· · · · · · · · · · −1 · · · · ·
· · · · · · · · · · · · · · t

1
2
1 ·

· · · 1 · · −t
1
2
0 t

1
2
1 Y · · Y · · Y 2 · · ·

· · · · · · · t
1
2
1 · · · · · t1 − 1 · ·

· · · · · · · · · · · t
1
2
1 · · t1 − 1 ·

· · · · · · · · · · · · · · · t1




Proposition 3.2.0.1. [24] The operator R y V ⊗ V satisfies the Yang-
Baxter equation, and it induces a representation of the braid group:

ϕn : Bn → Aut(V ⊗n)

ϕ(σ±1i ) = Idi−1 ⊗R±1 ⊗ Idn−i−1

Definition 3.2.0.2. Consider the operator µ ∈ Aut(V ) defined as:

µ =



t−10 · · ·
· −t1 · ·
· · −t−10 ·
· · · t1




For an endomorphism f ∈ End(V ) which is a scalar times the identity,
we denote by < f > the corresponding element of K:

f =< f > IdV
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Theorem 3.2.0.3. For any braid β ∈ Bn, the following partial trace is a
scalar:

Tr2,...,n((IdV ⊗ µ⊗(n−1)) ◦ ϕn(β)) ∈ K · IdV .
The Links-Gould polynomial is defined using this partial trace in the following
way:

LG(L; t0, t1) :=< Tr2,...,n((IdV ⊗ µn−1) >
Then, this is a well defined link invariant and it has integer coefficients ([40]):

LG(L; t0, t1) ∈ Z[t±10 , t±11 ].

Lemma 3.2.0.4. In [28], the authors defined a way of constructing modi-
fied type invariants using the representation theory of Uq(sl(2|1)). Let n ∈ N,
α1, ..., αk ∈ C and a link L. They color the components of L with the represen-
tations {V (n, α1), ..., V (n, αk)}. Then, a modified Reshetikhin-Turaev type
construction leads to a well defined link invariant called the Geer-Patureau
modified invariant:

(Uq(sl(2|1)), V (n, α1), ..., V (n, αk))→ F ′(L) = f(L) ·Mn(L)(q, qα1 , ..., qαk)

where f is a function that depends on the linking number of L and

Mn(L)(q, qα1 , ..., qαk) ∈ Q(q, q1, ..., qk).

Theorem 3.2.0.5. ([30],[54]) The modified Geer-Patureau invariants from
Uq(sl(2|1)) recover the Links-Gould invariant, by a specialisation of coeffi-
cients:

LG(L; t0, t1)|(t0=q−2α,t1=q2α+2) = {α}{α + 1}M0(q, qα, ..., qα)

3.3 The centralizer algebra LGn

In this section, we will introduce a sequence of centralizer algebras corre-
sponding to a sequence of tensor powers a fixed representation V (0, α) of the
super-quantum group Uq(sl(2|1)). The aim is to understand characteristics
of this sequence and its relations to the group algebra of the braid group.

Definition 3.3.0.1. Let us fix α ∈ C \ Q. The centralizer algebra corre-
sponding to the representation V (0, α) is defined as:

LGn(α) := EndUq(sl(2|1))
(
V (0, α)⊗n

)
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Then {LGn}n∈N form a sequence of algebras, each of them included into the
next one:

LGn−1(α) ⊆ LGn(α)

such that LGn(α) becomes a bimodule over LGn−1(α).

Remark 3.3.0.2. From the braid group action defined in Proposition 3.1.0.8,
at the level of the braid group algebra it is obtained the following morphism:

ρn(α) : kBn → LGn(α)

Theorem 3.3.0.3. (Marin-Wagner [67]) The morphism ρn(α) is surjective.

Once we know that this morphism is surjective, it is interesting to study
more deeply the image and the kernel of this map. They were studied for
small values of n (n ≤ 5) by Marin and Wagner and there have been a couple
of conjectures about them. Firstly, the question would be to compute the
dimension of the image. Further on, to study the kernel of the map and
which are the relations that are needed to quotient the algebra kBn by, in
order to obtain an isomorphism.

Conjecture 5. (Marin-Wagner [67])

dim(LGn+1)(α) =
(2n)!(2n+ 1)!

(n!(n+ 1)!)2
.

Moreover, going further in the study of the morphism ρn(α), the following
question refers to the difference between the algebra LGn(α) and kBn.

Definition 3.3.0.4. (The cubic Hecke algebra)
Let a, b, c ∈ k∗. Define the corresponding cubic Hecke algebra as:

Hn(a, b, c) := kBn/ ((σ1 − a)(σ1 − b)(σ1 − c))

Actually, for specific values of the parameters, the cubic Hecke algebra
will lead to the centralizer algebra LGn.

Proposition 3.3.0.5. ([67]) Let α ∈ C \Q such that {1, α, α2} are linearly
independent.
Consider the parameters a = −q−2α(α+1), b = q−2α

2
and c = q−2(α+1)2.
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Denote by Hn(α) = Hn(a, b, c). Then the morphism ρn(α) factors through
the cubic Hecke algebra Hn(α):

ρn(α) : kBn −→ LGn(α)

ց ր ρ̃n(α)
Hn(α)

In [39], Ishii introduced a relation r2 in H3(α) and showed that this rela-
tion is the kernel of ρ̃3(α). However, on the next number of strands, it is still
needed to quotient by more relations. In [67], the authors defined a relation
r3 ∈ H4(α) and proved that H4/(r2, r3) ≃ LG4. They conjectured that these
relations are enough in order to describe the kernel of ρn(α) for all values of
n.

Definition 3.3.0.6. Consider the quotient algebra defined by An(α) := Hn(α)/(r2, r3).

Conjecture 6. (Marin-Wagner[67]) For any number of strands n ∈ N, there
is the isomorphism:

An(α) ≃ LGn(α).

3.4 Proof of the Conjecture

In this part, we prove the Conjecture 5 by Marin-Wagner. We will use com-
binatorial tools to control the semi-simple decomposition of the tensor power
of Uq(sl(2|1)) representations. We encode the semi-simple decomposition of
V (0, α)n as a certain diagram D(n) in the plane. Then, each point will have
a weight, which corresponds to a certain multiplicity of a simple representa-
tion inside the the n-th tensor power of V (0, α). The final part is to express
these weights from the diagram D(n) as a certain ways of counting planar
paths of fixed length with prescribed possible moves.

3.4.1 Combinatorial description for the intertwiners of
V (0, α)⊗n

As we have seen

LGn(α) = EndUq(sl(2|1))(V (0, α)⊗n).
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We will describe the intertwiners that occur in the tensor decomposition
of V (0, α)⊗n in a combinatorial way. We are interested in the semi-simple
decomposition of V (0, α)⊗n. We remark that since α /∈ Q, by an inductive
argument it follows that the tensor power V (0, α)⊗n is semi-simple and the
formula 3.1.0.9 can be applied at each step.

Notation 3.4.1.1. Let us denote the semi-simple decomposition by:

V (0, α)⊗k = ⊕x,y∈N×N ( Tk(x, y)⊗ V (x, kα + y) )

where Tk(x, y) is the intertwiner space corresponding to the weight (x, kα+y).

We will codify this decomposition by a graph in the plane with integer
coordinates, where each point will have a certain ”weight”.

Definition 3.4.1.2. We say that D(n) is a diagram for V (0, α)⊗n if it is
included in the lattice with integer coordinates and weights natural numbers
such that each point (x, y) ∈ D(n) has the associated multiplicity

tn(x, y) = dim Tn(x, y).

This encodes in the position (x, y) the multiplicity of the module with highest
weight that moves from the fundamental weight (0, n · α) with x from 0 and
with y from nα.
In other words, we can think that the origin of diagram D(n) has the coordi-
nates (0, n · α).

As we can see, we can deduce the tensor decomposition of V (0, α)⊗n by
reading the non-zero multiplicities associated to points from D(n). Let us
see some examples:

n = 2 V (0, α)⊗V (0, α) = V (0, 2α)⊕V (0, 2α+1)⊕V (1, 2α).

1 1

1

(3.2)
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Case n = 3

V (0, α)⊗3 = (V (0, 2α)⊕ V (0, 2α + 1)⊕ V (1, 2α))⊗ V (0, α) =

= (V (0, 2α)⊗ V (0, α))⊕ (V (0, 2α + 1)⊗ V (0, α))⊕ (V (1, 2α)⊗ V (0, α)) =

= (V (0, 3α)⊕ V (0, 3α + 1)⊕ V (1, 3α))⊕
⊕ (V (0, 3α + 1)⊕ V (0, 3α + 2)⊕ V (1, 3α + 1))⊕

⊕ (V (1, 3α)⊕ V (1, 3α + 1)⊕ V (0, 3α + 1)⊕ V (2, 3α)) .

We conclude that the semi-simple decomposition of the third tensor power
is the following:

V (0, α)⊗3 = V (0, 3α)⊕ 3 · V (0, 3α + 1)⊕ V (0, 3α + 2)

⊕2 · V (1, 3α)⊕ 2 · V (1, 3α + 1)⊕ V (2, 3α).

We obtain the diagram for D(3) in the following way:

1 2 1

3 2

1 (3.3)

Case n = 4

V (0, α)⊗4 = V (0, α)⊗3 ⊗ V (0, α) =

= ((V (0, 3α)⊗ V (0, α))⊕3·(V (0, 3α + 1)⊗ V (0, α))⊕(V (0, 3α + 2)⊗ V (0, α))⊕
⊕2·(V (1, 3α)⊗ V (0, α))⊕2·(V (1, 3α + 1)⊗ V (0, α))⊕(V (2, 3α)⊗ V (0, α)) =

= (V (0, 4α)⊕ V (0, 4α + 1)⊕ V (1, 4α))⊕
⊕ (3V (0, 4α + 1)⊕ 3V (0, 4α + 2)⊕ 3V (1, 4α + 1))⊕
⊕ (V (0, 4α + 2)⊕ V (0, 4α + 3)⊕ V (1, 4α + 2))⊕

⊕ (2V (1, 4α)⊕ 2V (1, 4α + 1)⊕ 2V (0, 4α + 1)⊕ 2V (2, 4α))⊕
⊕ (2V (1, 4α + 1)⊕ 2V (1, 4α + 2)⊕ 2V (0, 4α + 2)⊕ 2V (2, 4α + 1))⊕

⊕ (V (2, 4α)⊕ V (2, 4α + 1)⊕ V (1, 4α + 1)⊕ V (3, 4α)) .
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We conclude that the semi-simple decomposition of the fourth tensor power
is the following:

V (0, α)⊗4 = V (0, 4α)⊕ 6 · V (0, 4α + 1)⊕ 6 · V (0, 4α + 2)⊕

⊕V (0, 4α + 3)⊕ 3 · V (1, 4α)⊕ 8 · V (1, 4α + 1)⊕
⊕3 · V (1, 4α + 2)⊕ 3 · V (2, 4α)⊕ 3 · V (2, 4α + 1)⊕ V (3, 4α).

We obtain diagram D(4) with the following weights:

1 3 3 1

6 8 3

6 3

1
(3.4)

In the sequel, we will describe how the diagrams D(n), can be constructed
in a recursive way. More precisely, if we suppose that we know the diagram
D(n), then by applying certain moves, we will be able to obtain D(n+ 1).
Let us start with V (m, β). We will encode the decomposition of V (m, β) ⊗
V (0, α) in a lattice. Let us think that initially, V (m, β) is encoded by dia-
gram D which has as origin (m, β) and the corresponding multiplicity 1.

Definition 3.4.1.3. a) From the Theorem 3.1.0.9, for any x ∈ N \ {0} and
any y ∈ N, n ∈ N we have the decomposition:

V (0, α)⊗ V (x, nα + y) = V (x, (n+ 1)α + y)⊕ V (x+ 1, (n+ 1)α + y)⊕

⊕V (x− 1, (n+ 1)α + y + 1)⊕ V (x, (n+ 1)α + y + 1).

We call the effect of tensoring V (x, nα + y) with V (0, α) a “blow up of type
(x, y)” and B(x, y) the new corresponding diagram:
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(x, y)

(3.5)

b) If the first coordinate x = 0, then for any y ∈ N and n ∈ N, the decompo-
sition is as follows:

V (0, α)⊗ V (0, nα + y) = V (0, (n+ 1)α + y)⊕ V (1, (n+ 1)α + y)⊕

⊕V (0, (n+ 1)α + y + 1).

We call the effect of tensoring V (0, nα + x) with V (0, α) a “blow up of type
(0, y)” and B(0, y) the new corresponding diagram.

(0, y)

(3.6)

Lemma 3.4.1.4. The diagram D(n + 1) can be obtained from D(n), by
blowing up each point (x, y) ∈ D(n) with B(x, y) for tn(x, y) times and add
in each vertex all the new multiplicities.

Proof. Suppose we have D(n). This means that:

V (0, α)⊗n = ⊕x,y∈N×N (tn(x, y) · V (x, nα + y))

In order to obtain the multiplicities that occur in D(n+ 1), we have:

V (0, α)⊗n+1 = ⊕x,y∈N×N (tn(x, y) · (V (x, nα + y)⊗ V (0, α)) ) (∗)
On the other hand, the multiplicities tn+1 occur in the following way:

V (0, α)⊗n+1 = ⊕x,y∈N×N (tn+1(x, y) · V (x, (n+ 1)α + y) )
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Using the previous formula (∗), we notice that the diagram D(n + 1), has
some extra weights with respect to the diagram D(n). More precisely, each
term (V (x, nα+ y)⊗V (0, α)) will add to the weights from D(n), some extra
multiplicities corresponding to a blow up of center

(x+ 0, (nα + y) + α) = (x, (n+ 1)α + y).

This is encoded in D(n+1) as the blow-up B(x, y) with center (x, y). Count-
ing the multiplicities, for each point (x, y), we’ll have to do the blow-up
B(x, y) for tn(x, y) times. In this way, we obtain tn+1(x, y).

Up to this point, we saw how to construct the recursive relation that re-
lates D(n) and D(n+1). However, this is still at the theoretical level. In the
following part, we will use the fact that we know the initial step correspond-
ing to the diagram D(1), and using the recursive relation we will show how
each multiplicity tn(x, y) can be described in a natural way, using a method
of counting paths in the plane.

Remark 3.4.1.5. 1)In D(n+ 1), for each point (x, y), the total multiplicity
if obtained by adding all the multiplicities of the points from D(n), which can
arrive to (x, y) using one of the following moves:
M1) stay move (x, y)→ (x, y)
M2) −→ (x, y)→ (x+ 1, y)
M3) ↑ (x, y)→ (x, y + 1)
M4) տ (x, y)→ (x− 1, y + 1) if x > 0.
Here, the reason for having the condition that the move M4 can be done just
if x > 0, is the fact that a coefficient that decreases the y coordinate occurs
in the blow-up B(x, y) if and only if x > 0.

2)If we start from D(n− 1), we can obtain D(n+1), by counting certain
paths of length 2 in the integer lattice (with the corresponding multiplicities
as in D(n−1). In this way, applying twice the first remark we conclude that:

tn+1(x, y) = card { paths of length 2 starting from points in D(n− 1) which

end in (x, y), with the possible movesM1,M2,M3 orM4 }.
3) We will iterate this argument by induction, using as initial data the

diagram D(1) which has the following form:

1
(3.7)
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We obtain the following combinatorial description for the intertwiners spaces:

Theorem 3.4.1.6. In D(n+1), for each point (x, y) ∈ Z×Z the associated
multiplicity has the formula:

tn+1(x, y) = number of paths in the plane from (0, 0) to (x, y) of length (n)

and possible moves M1, M2, M3 or M4 with the condition that

they do not have any point with a negative coordinate on the x-axis.

Remark 3.4.1.7. In the diagram D(n + 1), the only points that have non-
zero associated weights are inside the standard simplex ∆n ∈ R2 ( the length
of the edge of ∆n is n ).

Notation 3.4.1.8. Consider the following set of paths:

Pn+1(x, y) := {planar paths from (0, 0) to (x, y) of length n

with possible moves M1, M2, M3 or M4

with the condition that

they are contained in the positive cadran}
Remark 3.4.1.9. For any number n ∈ N and x, y ∈ ∆n:

tn+1(x, y) = |Pn+1(x, y)|

Now we will see which is the relation between the dimension of centralizer
algebra LGn(α) and the dimensions of its intertwiner spaces.

Remark 3.4.1.10. As we have seen, there is the following decomposition of
the tensor power of the 4-dimensional representation:

V (0, α)⊗n = ⊕x,y∈N×N (tn(x, y)V (x, nα + y) )

where tn(x, y) is the cardinality of the intertwiner space corresponding to the
weight (x, n · α + y).

Proposition 3.4.1.11. From [28], for typical (n, α) ∈ Λ, V (n, α) is simple
representation and moreover:

HomUq(sl(2|1)) (V (n, α), V (m, β)) ≃ δ
(m,β)
(n,α) · kId.
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In our case, using that α /∈ Q, we deduce that for any (x, y) ∈ ∆n, all
modules V (x, nα+ y) are typical. This shows the following decomposition of
the endomorphism ring of the tensor product:

EndUq(sl(2|1))
(
V (0, α)⊗n

)
≃ ⊕ EndUq(sl(2|1)) (tn(x, y) V (x, nα + y))) ≃

≃3.4.1.11 ⊕M(tn(x, y), k).

Corollary 3.4.1.12. From the previous decomposition of LGn using isotipic
components, we obtain a formula for its dimension:

dim LGn(α) =

x+y≤n−1∑

x,y∈N×N

tn(x, y)
2.

Corollary 3.4.1.13. From this formula of LGn(α), we conclude that:

dim LGn+1(α) =

x+y≤n∑

x,y∈N×N

|Pn+1(x, y)|2.

3.4.2 Computation for the dimension of LGn+1(α)

In this section we will finish the proof of Conjecture 5. In [67], it is men-
tioned that F. Chapoton remarked that the conjectured dimension of LGn+1

coincides with a combinatorial formula for a way of counting pairs of paths
in the plane.

Theorem 3.4.2.1. [4], [80], There is the following identity:

(2n)!(2n+ 1)!

(n!(n+ 1)!)2
= number of pairs of disjoint paths in the

(n+ 1)× (n+ 1) square, which go either

upwards or straight to the right ↑ or→
between (0, 1)→ (n, n+ 1) and (1, 0)→ (n+ 1, n).

Definition 3.4.2.2. We will denote by Cn+1 this set of pairs of paths.
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We will prove the Conjecture using the previous formula 3.4.1.13 for
dim LGn+1(α) and this result for the conjectured number.
Since in the formula for the dimension of LGn+1(α), there are counted all
multiplicities tn+1(x, y), for (x, y) ∈ ∆n, we will describe Cn+1 as an union of
subsets, indexed by the same set ∆n. Having a pair of paths in the square,
the idea is to remember where those paths ”cut the principal diagonal”, and
use this data as an indexing set.

(3.8)

Cn+1(a, b) (n+ 1− a, a) (n+ 1− b, b)

(3.9)

C∆
n+1(a, b) (n+ 1− a, a) (n+ 1− b, b)
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Definition 3.4.2.3. Let (a, b) ∈ N× N such that a, b ≤ n+ 1 and a > b.
We consider the following sets:

Cn+1(a, b) := { pairs of paths in Cn+1 that cut the principal diagonal of the

square precisely in the points (n+1− a, a) and (n+1− b, b)}.
C∆
n+1(a, b) := { pairs of disjoint paths contained in the simplex ∆n+1

between the points (1, 0) and (n+ 1− a, a)
respectively (0, 1) and (n+ 1− b, b)}.

Remark 3.4.2.4. Using these notations, Cn+1 can be expressed in the fol-
lowing way:

Cn+1 =
a>b⋃

a,b≤n+1

Cn+1(a, b)

Cn+1(a, b) ≃ C∆
n+1(a, b)× C∆

n+1(a, b)

The second bijection can be established by starting with a path from Cn+1(a, b),
and cutting it along the principal diagonal of the square. In this way, there
are obtained two paths in C∆

n+1(a, b).

Proposition 3.4.2.5. From the previous remarks and definitions we con-
clude that:

Cn+1 =
a>b⋃

a,b≤n+1

(
C∆
n+1(a, b)× C∆

n+1(a, b)
)

| Cn+1 |=
a>b∑

a,b≤n+1

| C∆
n+1(a, b) |2

Notation 3.4.2.6. For (a, b) ∈ N× N with a, b ≤ n and a ≥ b, denote by

D∆
n (a, b) := { pairs of paths in ∆n between the points

(0, 0)→ (n+ 1− a, a) and (0, 0)→ (n+ 1− b, b)
that can intersect each other just in integer points,

but they do not cross each other }.
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Proposition 3.4.2.7. There is a bijection between the following sets:

C∆
n+1(a, b) ≃ D∆

n (a, b− 1)

Proof. Let C,D ∈ C∆
n+1(a, b) to be a pair of paths.

By modifying C → C +(−1, 1), we will obtain C +(−1, 1), D ∈ D∆
n (a, b− 1)

(where here the simplex ∆n is seen as being bounded by the points (0, 1), (n, 1),
and (n+ 1, 0)).
After that, it can be easily shown that this function is a bijection.

(3.10)

n

(3.11)

Lemma 3.4.2.8. From the last remark, it can be deduced that the cardinality
of Cn can be expressed using pairs of paths in the simplex ∆n:

| Cn+1 |=
a≥b∑

a,b≤n

| D∆
n (a, b) |2

Remark 3.4.2.9. For any pair of paths

C1 = ((C1)
k
x, (C1)

k
y) and C2 = ((C2)

k
x, (C2)

k
y) in D

∆
n (a, b)

the condition that they do not cross each other can be stated as:

(C1)
k
y ≤ (C2)

k
y, ∀k.

Now, we arrive at the last part, and we will show a correspondence be-
tween Pn+1(x, y) and D

∆
n (a, b).
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Lemma 3.4.2.10. We have the following correspondence between the previ-
ous two sets of planar paths:

Pn+1(x0, y0) ≃ D∆
n (x0 + y0, y0),

for any fixed point in the length n simplex (x0, y0) ∈ ∆n.

Proof. Let C1, C2 ∈ D∆
n (x + y, y). This pair of paths can be encoded in a

sequence of moves of four types. We start at the common point (0, 0) which
correspond to the step 0. Then, we see how each of the two paths changes
from one step to the other.
Suppose that (x1, y1) ∈ C1 and (x2, y2) ∈ C2 which correspond to the kth

step. In order to pass to the (k + 1)st step, we have four possibilities.

Movements corresponding to D∆
n (x+ y, y)

The pair ((x1, y1), (x2, y2)) for which we know the condition y2 ≥ y1, can
be modified in order to arrive at the next step, by adding one out of the four
following pairs of vectors:

((0, 1), (0, 1))

((1, 0), (1, 0))

((1, 0), (0, 1))

((0, 1), (1, 0))

On the other hand, for any path C ∈ Pn+1(x, y), it can be also encoded by
specifying which move we do from the kth step to the (k + 1)ststep.

Movements corresponding to Pn+1(x, y)
Let (x, y) a point in C and we know the condition that x ≥ 0. In order

to pass to the next point in the path, we can modify the point with one out
of the following vectors:

(0, 0)

(0, 1)

(1, 0)

(−1, 1)
Now, we want to establish a correspondence between the two types of move-
ments. We will define a function

f : D∆
n (x0 + y0, y0)→ Pn+1(x0, y0).
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Let C1, C2 ∈ D∆
n (x+ y, y). We want to send each pair of points

((x1, y1) ∈ C1, (x2, y2) ∈ C2) into f ((x1, y1), (x2, y2))

such that it satisfies the restrictions from Pn+1(x0, y0).
Since we know the condition y2 ≥ y1, it would be natural to send

f((x1, y1), (x2, y2))1 = y2 − y1

which would ensure us the necessary condition for positivity.
Consider f to be defined by the following formula:

f ((x1, y1), (x2, y2)) = (y2 − y1, x2) .

Then f ((0, 0), (0, 0)) = (0, 0), so it preserves the initial points. Now we
can check that this transformation, preserves correspondingly all the possi-
ble movements that we described in the two cases, in the following way:

((x1, y1), (x2, y2)) −→ (y2 − y1, x2)
(0, 1), (0, 1) ←→ (0, 0)

(1, 0), (1, 0) ←→ (0, 1)

(1, 0), (0, 1) ←→ (1, 0)

(0, 1), (1, 0) ←→ (−1, 1)
This shows that the function f is a well-defined bijection between

D∆
n (x0 + y0, y0) and Pn+1(x0, y0).

Using the previous combinatorial interpretations, we obtain the result:

Theorem 3.4.2.11.

dim(LGn+1(α)) =
(2n)!(2n+ 1)!

(n!(n+ 1)!)2
.

Proof. Using the formulas from Corollary 3.4.1.13, Theorem 3.4.2.1, Lemma
3.4.2.8 and Lemma 3.4.2.10, we obtain the proof of the Marin-Wagner Con-
jecture.
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Further directions

In recent years, the study of categorifications of link invariants provided a
powerful tool that has led to many important results in knot theory. Kho-
vanov homology is categorification for the original Jones polynomial. It was
proved that this categorification detects the unknot, whereas the question
whether the Jones polynomial itself detects the unknot is still open. On the
other hand, Ozsváth and Szabó ([71], [72]) and Rasmussen ([76]) defined a
categorification of the Alexander polynomial using Heegaard Floer homology.
In ([75]), Rasmussen introduced an invariant using Khovanov homology and
showed that it gives a bound for the slice genus which lead to a proof of the
Milnor conjecture.

The main problems and questions that I would like to pursue to study are
related to the understanding at a deep level of the connections and relations
between the initial algebraic description of quantum invariants on one side
and topological constructions or topological applications on the other side.
This comes from the main theme and aim of my thesis. More precisely, I
am interested to study categorifications for quantum invariants that have a
geometric nature, using Floer type methods. In view of the program 0.5,
the path that I am interested to follow is to start with a quantum invariant,
and once we find a topological model as a graded intersection pairing, this
will provide a tool to study possible geometrical categorifications. The first
immediate invariants that I am interested to study are the coloured Jones
polynomials and coloured Alexander polynomials
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Coloured Jones and Coloured Alexander polynomials

The Alexander polynomial and the Jones polynomial for a links are invari-
ants which are defined initially in different manners, but both of them can be
seen as quantum invariants. Their definitions come both from the represen-
tation theory of the quantum group Uq(sl(2)). As we have seen, the coloured
Jones polynomials come from the representation theory of Uq(sl(2)) with
generic q and the first term of this sequence is the original Jones polynomial.
On the other hand, in 1992, Akustu, Deguchi and Ohtsuki([5]) introduced a
sequence of quantum invariants for links called the coloured Alexander poly-
nomials, using the representation theory of Uξ(sl(2)) ( where ξ is a root of
unity). They were the first renormalized-type quantum invariants for knots.
In the sequel we will present the similarities and differences between the two
type of constructions.

The construction of renormalized type invariants is related to the prob-
lem that passing from q generic to q root of unity, the so called quantum
dimensions of representations are generically zero. Moreover, the classical
Reshetikhin-Turaev construction encodes those quantum dimensions, lead-
ing to invariants that vanish. The idea to overcome the vanishing of the
Reshetikhin-Turaev functor, is to cut one strand of the link, and apply the
functor to the (1, 1)-tangle obtained in this way.

Comparison between the two quantum invariants

The representation theory of Uq(sl(2)) changes totally if we pass from q
generic to q root of unity. If ξ2N = 1 then the simple representations of
Uξ(sl(2)) form a continuous family {Vλ}λ∈C. Here, for constructing link in-
variants, we fix q, but the parameter is given by the highest weight of the
representation Vλ.

The quantum groups Uq(sl(2)) and Uξ(sl(2)) are braided, and using their
representation theories there are two families of braid group representations:

ϕNn : Bn → Aut(V ⊗nN ) ψλn : Bn → Aut(V ⊗nλ )

∀N ∈ N∗ ∀λ ∈ C
From the algebraic structure of those quantum groups, there is a quantum

trace on the category of representations (which means closing with all cups
and caps) and a partial quantum trace (which corresponds to cut one strand
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and close all the others).

qtrn : End(V ⊗nN )→ Z[q±1] pqtrn : End(V ⊗nλ )→ End(Vλ) ≃ C

In other words, at the level of braid group representation, if we start with a
link L and write L = β̂, the Nth coloured Alexander invariant invariant is
defined

φN(L, λ) ≈ pqtr2n(ψ
λ
2n(β ∪ In))

On the other hand, the coloured Jones polynomial can be defined as:

JN(L, q) = qtr2n(ϕ
N
2n(β ∪ In))

We remark the fact that actually, the ADO polynomial and the coloured
Jones polynomial, are constructed as being mirror to one another.

( q generic, VN fixed)
(
ξ = 2N th root of 1, Vλvariable

)

total quantum trace partial quantum trace

(Uq(sl(2)), VN)→ JN(L, q) (Uξ(sl(2)), Vλ)→ φN(L, λ)

Coloured Jones polynomial Coloured Alexander polynomial
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Towards Geometrical Categorifications

A research direction that I would like to pursue concerns topological cate-
gorifications for certain quantum invariants, following the second question
(0.5) of the research program that I started in this thesis. For the case of
the coloured Jones polynomials there are known categorifications constructed
with algebraic tools, but there is no geometrical categorification known. A
further plan is to continue the study of the homological model that we con-
structed for the coloured Jones polynomials and investigate if the Floer the-
ory coming from that leads to a well defined invariant. We discuss details
about it in 4 and present a precise conjecture (7) concerning this question.

Concerning the Alexander polynomials, Bigelow, Cattabriga and Florens
([19]) used the Lawrence representations, in order to extend the original
Alexander polynomial to tangles. Further more, they obtained from this
model ( and later Kalinin by a direct method) a homological interpretation
for the original Alexander polynomial.

For the case of coloured Alexander polynomials there are no known topo-
logical interpretations yet. Moreover, there are not known any type of cate-
gorifications for these invariants. Firstly we conjecture that it is possible to
find a topological model for coloured Alexander polynomials 8 and discuss
details about that in 4. Pursuing this line, if we have a homological model
for the coloured Alexander invariants, we can go further and study a Floer
type categorification that arises from this description, which is presented in
Conjecture 9.

A summary of these questions and models is presented below.
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Algebraic construction-Reshetikhin-Turaev method

(Uq(sl(2)), VN) → Coloured Jones Jones polynomial

polynomial

(q generic, N ∈ N∗) JN(L, q) 99KN=2 J2(L, q)

Description Quantum inv / No skein Quantum inv/ Skein

↓ ↓

Homological model Theorem 1.7.0.1 Bigelow-Lawrence(2001)

Geometrical ??? Symplectic Khovanov

Categorification Conjecture 7 Homology

(Uq(sl(2)), Vλ) → Coloured Alexander Alexander polynomial

polynomial

(q2N = 1, λ ∈ C) ΦN(L, λ) 99KN=2 ∆(L, t)

Description Quantum inv / No skein Quantum inv / Skein

↓ ↓

Homological model Conjecture 8 Bigelow-Kalinin

Geometrical ??? Heegaard Floer

Categorification Conjecture 9 Homology

Geometrical interpretation-Homological braid group representations
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Floer Categorification for coloured Jones polynomials

This project is the second part of the program that I started in my PhD.
In Theorem 1.7.0.1, we described a topological model for the coloured Jones
polynomials. The question is to study the Floer type homology coming from
this model and whether this leads to a categorification for these invariants.

Conjecture 7. (Categorification for the coloured Jones polynomials)
The graded Floer homology groups HFN

m (β2n) coming from the homological
model from Theorem 1.7.0.1 define link invariants and give a geometrical
categorification for the coloured Jones polynomial JN(L, q).

Global Strategy We will start with the punctured disk in the plane
Dn = D2 \ {p1, ..., pn} and consider the unordered configuration space in it
Cn,m = Confm(Dn). Then let C̃n,m be the covering corresponding to the
local system from Section 1.3.

Let us fix a colour N ∈ N which corresponds to the coloured Jones in-
variant that we want to study. In Theorem 1.7.0.1, we have constructed two
families of homology classes which leave into the homology this covering:

{FN
n ∈ H2n,n(N−1)|αN−1

}n∈N {G N
n ∈ H∂

2n,n(N−1)|αN−1
}n∈N.

Further on we will discuss about the link that we want to study.

Let L be link and β2n ∈ B2n such that L =
ˆ̂
βor2n. We have proved that there

is the following expression:

JN(L, q) =< β2nF
N
n ,G

N
n > |αN−1

The Lawrence representationHn,m and its dualH∂
n,m are generated by homol-

ogy classes of m-dimensional Lagrangian submanifolds in C̃n,m called ”mul-
tiforks” (1.3.2.2) and ”barcodes” (1.4.1.2). Both are lifts of Lagrangian sub-
manifolds from Cn,m. This means that (β2n)Fn, Gn are homology classes
given by a combination of lifts of Lagrangian submanifolds in Cn,m.

In 1.4.2, we saw how the Blanchfield pairing <,> which is defined be-
tween homologies of the covering slace C̃n,m, can be computed using a graded
intersection in the base space Cn,m, the graduation coming from the local sys-
tem. From this we conclude that < (β2nF

N
n ,G

N
n > is a linear combination of

graded intersections between Lagrangian submanifolds in C2n,n(N−1).
Our plan is to apply graded Floer homology to each graded intersection

from before, and define the Floer homology groups HFN
m (β2n). The further

question would be whether the construction of the Floer groups HFN
m (β2n)

are invariant with respect to the Markov moves.
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Topological model for the coloured Alexander invariants

This project concerns the research program presented in the introduction
(0.5), for the case of coloured Alexander polynomials. The precise aim is
to give a topological interpretation for the coloured Alexander polynomials.
Further on, our aim is to study the graded Floer homology groups coming
from this model.

Conjecture 8. (Topological model for coloured Alexander invariants)
Let N ∈ N to be the colour of the invariant. Consider n ∈ N.

Then there exist two families of homology classes

E
N
n ∈ H2n−1,(n−1)(N−1) D

N
n ∈ H∂

2n−1,(n−1)(N−1)

such that if L is a link and β ∈ Bn with L = β̂ (normal closure), the N th

coloured Alexander invariant has the formula:

φN(L, λ) =< (βn ∪ In−1)E N
n ,D

N
n > |ψλ

Global strategy The main idea for this model is the fact that the
Reshetikhin-Turaev construction evaluated on a link arrives naturally in a
particular highest weight space. The first subtlety concerns the fact that the
Coloured Alexander invariant in a renormalized invariant for links, which
is reflected through a partial quantum trace type construction. Secondly,
opposite to the case for Uq(sl(2)) with generic q, for roots of unity the rep-
resentations are not self-dual. In the sequel we sketch a plan concerning this
topological model.

Firstly we fix a natural number N ∈ N. We will work with Uξ(sl(2)) with
ξ2N = 1 and its representations {Vλ|λ ∈ C}.

Let us consider L to be a link and βn ∈ Bn such that L = β̂n (normal clo-
sure). By cutting the first strand of this closure, we get a (1, 1) tangle which
is obtained from β∪In−1 by joining the strands 2, ..., n with the corresponding
ones from In−1 with caps and cups. We will study the Reshetikhin-Turaev
functor at these 3 levels of the tangle.

We will start with v0 ∈ Vλ. The coloured Alexander polynomial φN(L, λ)
will be the coefficient of v0 that is obtained after applying the functor.

1) Following the functor at the bottom level (corresponding to the cups),
we will arrive in the tensor power of Vλ and V ∗λ . The first remark is that we
arrive actually in a particular highest weight space:

W λ
2n−1,(n−1)(N−1) ⊆ V ⊗nλ ⊗ V ∗λ ⊗n−1
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2) We remark that the Kohno’s Theorem that gives a homological coun-
terpart for highest weight spaces in the Verma module works at this root
of unity, following the discussion from 1.5.2.4. Here there is an issue com-
ing from the fact that we have highest weight spaces inside tensor power of
modules with different weights.

We conjecture the existence of a Lawrence type representation
H2n−1,(n−1)(N−1), defined using the configuration space of (n−1)(N−1) points
in the 2n−1 punctured disc with a choice of a certain local system such that,
after an identification of the parameters ψλ (which depends on λ) we have
the following isomorphism:

B2n−1 y W λ
2n−1,(n−1)(N−1) ≃ H2n−1,(n−1)(N−1)|ψλ x B2n−1

After that, we can show that the invariant can be obtained considering all
the construction through this highest weight space.

3) We will consider a dual Lawrence representation H∂
2n−1,(n−1)(N−1) and

study the non-degeneracy of the pairing <,> specialised at roots of unity:

<,> |ψλ : H2n−1,(n−1)(N−1)|ψλ ⊗H∂
2n−1,(n−1)(N−1)|ψλ → C

4) Once we have a non-degenerate pairing, the homological model will be
obtained with a machinery that constructs the homological counterparts of
caps and cups:

E
N
n ∈ H2n−1,n(N−1) and D

N
n ∈ H∂

2n−1,n(N−1).

We would like to emphasise the role of the partial quantum trace in this
construction ( in comparison to a total quantum trace). We can see directly
on the homological model, that the effect of the partial trace appears in
the Lawrence type representation, as we work with configuration space of
points in the disk where we remove one more puncture in comparison to the
one used for the total trace. This is the difference between the model for
the coloured Jones polynomial and the model for the coloured Alexander
invariant. Further on, such a model will be suitable for a lagrangian Floer
Homology type construction.

Conjecture 9. (Categorification for coloured Alexander invariants)
The graded Floer homology groups HFN

m (βn) coming from the homological
model from Conjecture 8, are invariant to Markov moves and lead to a cate-
gorification for the coloured Alexander polynomial φN(L, λ).
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Bridges towards known categorifications

A guiding line and direction that we also have in mind is oriented towards
the categorifications that are already known. Concerning the coloured Jones
polynomials, Khovanov ([51]) and Beliakova and Wehrli ([13]) defined cate-
gorifications for these invariants using diagrammatic and combinatorial tech-
niques.

Moreover, for the original Jones polynomial it is known a geometrical
type categorification. The results of Khovanov and Seidel ([52]), Seidel and
Thomas ([79]) and Seidel and Smith ([78]) lead to a homology theory coming
from geometry of nilpotent slices called symplectic Khovanov homology. In
2015, Abouzaid and Smith ([2], [3]) proved that the symplectic Khovanov ho-
mology coincides with the combinatorial Khovanov homology. This method
was generalised by Manolescu for coloured link homlogies ([64], [66]). We
would like to mention also the work of Manolescu ([65]) and Gabdaleb, Thiel
and Wagner ([25]), where the authors discuss connections between algebraic
and geometrical type categorifications for the Jones polynomial.

The Seidel-Smith construction interpolates between the geometry of nilpo-
tent transverse slices for the Lie algebra slm and lagrangian Floer theory.
They start with a link and see it as a closure of a braid βm ∈ Bm. They
construct a certain nilpotent slice inside the Lie algebra sl2m which leads to
a symplectic fibration over the configuration space of 2m points in the plane.
The second step is to define a Lagrangian in the fiber using the theory of van-
ishing cycles and using a parallel transport method. Then, the monodromy
along βm ∪ Im (as a loop in this configuration space) give rise to a second
Lagrangian into the fiber. The categorification is then constructed by a la-
grangian Floer model, between the initial Lagrangian and the one obtained
by monodromy along the braid.

It would be interesting to compare the categorification coming from the
topological model from (1.7.0.1, 7 ) with the Seidel-Smith symplectic cate-
gorification for the case of the original Jones polynomial. We remark that
our model is based on the interpretation of the braid group as the mapping
class group of the punctured disk, and uses this action in a Floer type con-
struction to obtain a categorification, whereas the Seidel-Smith theory uses
the braid group as the fundamental group of a configuration space and uses
it like a monodromy action.
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Concerning the coloured Alexander polynomials, as we have seen, they
recover at the first level the original Alexander polynomial. In the same spirit,
it would be a good question to investigate if there are some patterns between
the categorification from (9) for the Alexander polynomial and Heegaard
Floer homology.
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