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Abstract

Large deformations of flexible beams can be described using either the co-rotational
approach or the total Lagrangian formalism. The co-rotational method is an attractive
approach to derive highly nonlinear beam elements because it combines accuracy
with numerical efficiency. On the other hand, the total Lagrangian formalism is the
natural setting for the construction of geometrically exact beam theories. Classical
time integration methods such as Newmark, standard midpoint rule or the trapezoidal
rule do suffer severe shortcomings in nonlinear regimes. The construction of time
integration schemes for highly nonlinear problems which conserve the total energy, the
momentum and the angular momentum is addressed for planar co-rotational beams
and for a geometrically exact spatial Euler-Bernoulli beam.

In the first part of the thesis, energy-momentum conserving algorithms are designed
for planar co-rotational beams. Both Euler-Bernoulli and Timoshenko kinematics are
addressed. These formulations provide us with highly complex non-linear expressions for
the internal energy as well as for the kinetic energy which involve second derivatives of
the displacement field. The main idea of the algorithm is to circumvent the complexities
of the geometric non-linearities by resorting to strain velocities to provide, by means
of integration, the expressions for the strain measures themselves. Similarly, the
same strategy is applied to the highly nonlinear inertia terms. Several examples have
been considered in which it was observed that energy, linear momentum and angular
momentum are conserved for both formulations even when considering very large
number of time-steps. Next, 2D elasto-(visco)-plastic fiber co-rotational beams element
and a planar co-rotational beam with generalized elasto-(visco)-plastic hinges at beam
ends have been developed and compared against each other for impact problems.
Numerical examples show that strain rate effects influence substantially the structure
response.

In the second part of this thesis, a geometrically exact 3D Euler-Bernoulli beam theory
is developed. The main challenge in defining a three-dimensional Euler-Bernoulli beam
theory lies in the fact that there is no natural way of defining a base system at the
deformed configuration. A novel methodology to do so leading to the development of a
spatial rod formulation which incorporates the Euler-Bernoulli assumption is provided.
The approach makes use of Gram-Schmidt orthogonalisation process coupled to a one-
parametric rotation to complete the description of the torsional cross sectional rotation
and overcomes the non-uniqueness of the Gram-Schmidt procedure. Furthermore,
the formulation is extended to the dynamical case and a stable, energy conserving
time-stepping algorithm is developed as well. Many examples confirm the power of the
formulation and the integration method presented.

Keywords: Nonlinear Dynamics, Energy-momentum conserving scheme, 2D co-
rotational beam, Geometrically exact 3D Euler-Bernoulli beam, impact.
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Résumé

Le mouvement des poutres flexibles peut étre décrit a 1’aide I'approche co-rotationnelle
ou en adoptant le formalisme total lagrangien. La méthode co-rotationnelle est une
approche intéressante pour développer des éléments de poutre fortement non-linéaires
car elle allie précision et efficacité numérique. Par ailleurs, la formulation totale
lagrangienne est une approche naturelle pour la construction de théories de poutre
géométriquement exacte. Il est aujourd’hui reconnu que les méthodes de type Newmark,
la méthode du point milieu classique ou la régle trapézoidale posent des probléemes de
stabilité en régime non-linéaire. La construction de schémas d’intégration temporelle qui
conservent ’énergie totale, la quantité de mouvement et le moment cinétique est abordée
pour les poutres co-rotationnelles planes et pour la poutre spatiale d’Euler-Bernoulli
géométriquement exacte.

Dans la premiere partie de la these, les schémas d’intégration conservatifs sont appliqués
aux poutres co-rotationnelles 2D. Les cinématiques d’Euler-Bernoulli et de Timoshenko
sont abordées. Ces formulations produisent des expressions de 1’énergie interne et
I’énergie cinétique complexe et fortement non-linéaires. L’idée centrale de ’algorithme
consiste a définir, par intégration, le champ des déformations en fin de pas a partir
du champ de vitesses de déformations et non a partir du champ des déplacements au
travers de la relation déplacement-déformation. La méme technique est appliquée aux
termes d’inerties. Ensuite, une poutre co-rotationnelle plane avec rotules généralisées
élasto-(visco)-plastiques aux extrémités est développée et comparée au modele fibre
avec le méme comportement pour des problémes d’impact. Des exemples numériques
montrent que les effets de la vitesse de déformation influencent sensiblement la réponse
de la structure.

Dans la seconde partie de cette theése, une théorie de poutre spatiale d’Euler-Bernoulli
géométriquement exacte est développée. Le principal défi dans la construction d’une
telle théorie réside dans le fait qu’il n’existe aucun moyen naturel de définir un triedre
orthonormé dans la configuration déformée. Une nouvelle méthodologie permettant de
définir ce triedre et par conséquent de développer une théorie de poutre spatiale en
incorporant ’hypothése d’Euler-Bernoulli est fournie. Cette approche utilise le processus
d’orthogonalisation de Gram-Schmidt couplé avec un parametre rotation qui compléte
la description cinématique et décrit la rotation associée a la torsion. Ce processus
permet de surmonter le caractére non-unique de la procédure de Gram-Schmidt.
La formulation est étendue au cas dynamique et un schéma intégration temporelle
conservant 1’énergie est également développé. De nombreux exemples démontrent
lefficacité de cette formulation.

Mot-clé : Dynamique non-linéaire, Schémas d’intégration conservatifs, Poutre co-
rotationelle 2D, Poutre spatiale d’Euler-Bernoulli géométriquement exacte, Impact.
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Chapter 1

Introduction

1.1 Background

Nonlinear dynamics of flexible beams is an active research topic in the field of engineering.
Flexible beams can be found in many applications such as large deployable space structures,
aircrafts, wind turbines propellers and offshore platforms. These structures may undergo
large displacements and rotations which involves both geometrical and material nonlineari-
ties. Consequently, the nonlinear dynamic behaviour may appear chaotic and unpredictable
in contrast to much simpler systems. In this context, a successful simulation of these
flexible beams requires two efficient numerical tools: a finite element beam formulation
and a time integration method.

Firstly, there exist many approaches to derive the efficient beam formulations such as
the Total Lagrangian approach [1, 2, 3, 4, 5], floating approach [6, 7, 8] and co-rotational
approach [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Whereas the total Lagrangian
approach can be considered as the natural setting for geometrically exact dynamics, the
co-rotational method is an attractive approach to derive highly nonlinear beam elements
because it combines accuracy with numerical efficiency.

Secondly, response to extreme loadings, long term stability is a fundamental feature of a
time integration method to capture extended responses over sufficiently long time intervals.
The extended application of the traditional time integration scheme (i.e. Newmark family
method [21]) from linear to nonlinear dynamic systems is not trivial and can lead to
instabilities [1, 22]. Greenspan [23, 24| had demonstrated that the conservation of energy
and momenta play a crucial role in stability of the time stepping algorithms. Simo [22] first
discovered how to modify the 3D beam algorithms for the conservation of those properties
which definitely improve the stability of the algorithms. While its formulation can only
apply to the Saint-Venant Kirchhoff material, the energy momentum conserving scheme
has been developed and enhanced in different area of applications.

Many research works on the finite element model in co-rotational [12, 25, 26, 27, 28, 29, 30,
31, 32, 33] and Total Lagrangian formulations [35, 36] have been done by the department
of Civil and Architectural Engineering at KTH Royal Institute of Technology and by the
laboratory LGCGM at INSA Rennes. Amongst those works, the co-rotational planar beam
formulation proposed by Le et al. [12] is very efficient because the cubic interpolations
have been adopted for deriving consistently both inertia and internal terms. However,
the HHT-« [37] time integration scheme employed for solving the equation of motions
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introduces artificial damping and a dissipation of the energy in the system. Sansour et al.
[35] have proposed an energy-momentum method for a Total Lagrangian 2D Euler-Bernoulli
beam. The extension of this approach to 2D corotational beams and 3D total Lagrangian
beams appears to be an interesting challenge.

1.2 Aims and scope

In light of the above problems, the first objective of the research work is to extend the 2D
co-rotational beam formulation by introducing an energy-momentum method. The energy-
conserving scheme, proposed by Sansour et al. [38, 39], is applied to the co-rotational
formulation for the first time. The aim of this formulation is to conserve the total energy as
well as the linear and angular momentum. The main idea is to employ the strain velocity
instead of the strain-displacement relationships directly. But, the task is not straight
forward in the co-rotational method since the inertia terms are highly nonlinear. These
inertia terms will be modified consistently with the help of the kinematic velocities. The
work is presented in Paper I [40].

The second objective of the research work is to applied the methodology presented in
Paper I to shear flexible formulations. Based on the same idea for the time integration
scheme and on the same co-rotational framework, three different local formulations i.e.
reduced integration method, Hellinger-Reissner mixed formulation and Interdependent
Interpolation element (IIE) formulation are implemented and tested for a large number of
time steps. Since the expression of the tangent dynamic matrix of ITE formulation may be
complicated, a possible simplification is carefully studied. Finally, different predictors are
tested along with the computational time. This is reported in paper II [41].

The third objective of the research work is to developed a 2D elasto-(visco)-plastic fiber
co-rotational beam element and a planar co-rotational beam element with generalized
elasto-(visco)-plastic hinges. For the generalized elasto-plastic hinges, the inelasticity of
the structural members is considered through hinges which are modelled by combining
axial and rotational springs. These hinges are placed at the end nodes of the beam element
whereas the rest of the beam deforms elastically. The hinges remain uncoupled in the elastic
range and the axial-bending interaction is considered in the plastic range. In addition,
the strain rate effects have been considered by replacing the plastic flow rule with its
visco-plastic counterpart. These beam formulations will be compared against each other
for impact problems. This work is presented in paper III.

The fourth objective of the research work is to develop an energy-conserving time stepping
algorithm for a three-dimensional geometrically exact Euler-Bernoulli beam. A novel
methodology to the development of a spatial rod formulation which incorporates the
Fuler-Bernoulli assumption is provided. The approach makes use of Gram-Schmidt or-
thogonalisation process coupled to a one-parametric rotation. The latter completes the
description of the torsional cross sectional rotation and overcomes the non-uniqueness of
the Gram-Schmidt procedure. Furthermore, the formulation is extended to the dynamical
case and a stable, energy conserving time-stepping algorithm is presented as well. Several
examples involving large spatial deformations confirm the efficiency of both the proposed
formulation and the integration method. This work is reported in paper IV.



1.3 Research contribution

The research work in this thesis has provided the following research contributions:

— An energy-momentum method for Bernoulli/Timoshenko co-rotational planar beams.

— A comparative study of three shear flexible co-rotational 2D beam formulations,
i.e. Interdependent Interpolation Element (ITE), reduced integration and mixed
formulations.

— A 2D elasto-(visco)-plastic fiber co-rotational beam element and a planar co-rotational
beam element with generalized elasto-(visco)-plastic hinges. These formulations are
especially interesting for steel frame structures subjected to impact with and without
strain rate effect.

— A stable, energy-conserving integration scheme for a three-dimensional geometrically
exact Euler-Bernoulli curved beam in a Total Lagrangian formulation.

The above contributions are discussed and presented in the thesis and in the appended
papers.

1.4 Outline of thesis

The structure of this thesis is organized into two parts: an extended summary of the research
work and appended papers. The first part provides readers with a general introduction
and summary of the research work. This part consists of six chapters. The first chapter
containing a background introduction, aims and research contributions has been presented.
The rest of this part is organized as follows.

Chapter 2 presents a review of energy conserving/decaying integration schemes which are
used to simulate the nonlinear dynamic of structures. A short conclusion regarding these
schemes is given.

In Chapter 3, the planar beam co-rotational formulation is presented with different local
strains for Bernoulli and Timoshenko elements. The beam kinematics, Hamilton’s principle
and the conserving properties are briefly presented.

In Chapiter 4, a new 3D Euler-Bernoulli beam formulation is presented in the total
Lagrangian approach. The beam kinematics and the principle of virtual work for the
dynamical analysis of beam are provided along with the conserving properties.

In Chapter 5, an extended summary of the research work is provided. Finally, Chapter 6
presents general conclusions and possible future research. The first part of the thesis is
followed by the four appended papers.






Chapter 2

Energy-momentum method

Implicit time stepping methods are often used together with nonlinear finite elements to
study linear and nonlinear dynamic problems. One of the most commonly employed im-
plicit method is the Newmark family of algorithms [21] which includes average acceleration
method as a special case. The average acceleration algorithm yields implicit, uncondition-
ally stability and second-order accuracy in linear dynamics. However for general nonlinear
dynamics, the Newmark method becomes unstable and often blows up, often due to con-
vergence of the nonlinear Newton type iterations. In order to solve the instability problem,
Hilber-Hughes-Taylor [37] proposed an extension algorithm of the Newmark method which
enables to control dissipation to the damping, the stiffness and the external force. In this
way, the algorithm presents second-order accuracy and unconditionally stability in the high
frequency modes. Other time integration methods also include numerical dissipation in
different ways i.e. Wood-Bossak-Zienkienwicz method [42], Wilson-6 method [43], Park
method [44], the three parameter optimal y-scheme [45], the Generalized-a method [46].
These algorithms are summarized in the Generalized single step solve (GSSSS) family of
algorithms [47, 48, 49, 50]. One can notice that these methods affect the response for
lower modes more or less depending on the dissipation parameter. Without introducing
numerical dissipation, the direct extension from linear system to nonlinear one is not a
trivial task. However, it is desirable to have an algorithm which fulfils the accuracy and
stability without introducing any numerical dissipation.

With this motivation, Greenspan [23, 24| stressed out that the conserved properties (i.e.
energy, linear and angular momenta) play an important role to develop stable time stepping
algorithms. The satisfaction of these important conservation laws guarantees that the
dynamic of the system remains at least qualitatively accurate and meaningful even in
long term calculations. Moreover, numerical stability for the analysis of nonlinear systems
is often defined through the requirement that the energy of the numerical solution has
to remain bounded. Consequently, the conservation of energy may be regarded as a
manifestation of unconditional numerical stability.

2.1 Energy-momentum conserving scheme

Simo and Tarnow [22] were the first authors to develop an energy-momentum method
in nonlinear dynamics of three-dimensional elastic bodies. Their algorithm is based on
the classical midpoint rule in which the equation of motion is defined at midpoint step.
The geometrical nonlinearity arises only in the internal term which includes the 2nd
Piola-Kirchhoff stress S or the right Cauchy-Green strain tensor C. Moreover, Simo and
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Tarnow [22] have shown that the algorithm with the classical midpoint rule, in which S or
C are calculated directly from the nodal displacements and rotations, is clearly unstable.
Therefore, Simo and Tarnow [22] proposed the following energy-momentum conserving
algorithm:

Vn+1_vn S
/Bp T-ndV+/gF(cpn+%)-S.8n/8XdV

0
:/BBn_i_;'ndV—l-/aB(rTn_'_;-T]dA, VneVy (2.1)
Pnt+1 — Pn _/
————— . ndV =V -nd 2.2
[ 2 E v = [V, mav 22)

where V denotes the material velocity fields, F the deformation gradient tensor. ¢(X,t)
represents the position in the Lagrangian description. n the test function. pg : B — Ry is
the reference density. B is the body force per unit mass on the volume element B and T
denotes the surface traction on the surface 0B, .

There are two options for the 2nd Piola-Kirchhoff stress S:

Option 1: S =8, :=2VIV (C,,45) (2.3)
Option 2: S =Sy := VIV (Crip) + v (Cn+(1—/3)) (2.4)

with 8 € (0,1) such that

A

W (Chat) — W (Cp) = § - % (Coir — Cy) (2.5)

In the proof of the energy-momentum scheme, the right Cauchy-Green strain tensor C,, g
is calculated by using a Taylor expansion. It yields

Cpip = Cp+BALC, + O (AF) (2.6)

One can observe carefully that in general, C,,; 5 # C(¢,,43) except for =0 and § = 1.
They concluded that it is very important to use C, s instead of C(¢,,4,) to avoid
non-physical couplings. With the help of expression (2.6), the second-order time accuracy
is achieved for any § € (0, 1) in option 2.

However, for option 1, the second-order time accuracy is only obtained with 8 = 1/2, with
B # 1/2 only the first-order time accuracy is obtained. Indeed, in order to enforce Eq. (2.5),
a local Newton-Raphson method is used to solve for  at each quadratic point, with the
values of ¢, necessary for Eq. (2.5). The values of § are then fixed to their values from
the previous global equilibrium equation. With the values of 3, the element force vectors
and stiffness could then be determined for the next global equilibrium equation. However,
the stiffness was calculated by neglecting the dependence of 5 on the deformation variables.
It is then leading to an inconsistent stiffness matrix which may cause a convergence issue
(see Laursen and Meng [51]). Besides, the nonlinear equation (2.5) degenerates to an
equation with an explicit root when only a Saint Venant-Kirchhoff energy function is used.
For that reason, this algorithm has been implemented only for Saint-Venant Kirchhoff
material model. Nevertheless, the energy-momentum proposed by Simo and Tarnow gave
the bases for future developments in nonlinear dynamics analysis.

Laursen and Meng [51] addressed the algorithm of Simo-Tarnow by correcting the coupling
between the deformation variables and an algorithm parameter 5 which Simo and Tarnow
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did not consider. They proposed two algorithms to solve that issue: one where the nonlinear
equation for 3 is enforced at quadrature point and another where a single nonlinear equation
for an element S is enforced at the element level. Consequently, the proposed algorithm
presents an asymptotically quadratic rate of convergence and is applicable for general
constitutive models in nonlinear elastodynamics. This work has then extended for transient
impact problems [52] .

Besides, another improvement of the Simo-Tarnow framework was proposed by Simo and
Gonzalez [53] and Gonzalez [54]. They applied a so-called discrete derivative for the evalu-
ation of the stresses. The 2nd Piola-Kirchhoff stress S is given by Gonzalez-Simo framework:

s (‘pna Son—i-l) = 2dW (Cna CTL+1)
W (Cn-i-l) - W (Cn) - DW (Cn+1/2) :AC
|AC?

= 2DW (Cpyja) +2 AC  (2.7)

where
AC:=Cp4; —C,, and|AC|:=vC:C (2.8)

The stress S satisfies the directionality condition (Eq.(2.5)) and the consistency condition
(Eq. 2.7). Moreover, it is symmetric. Therefore, the algorithm is second-order accurate,
unconditionally stable and the conservation of energy and momenta is ensured. Furthermore,
there is no singularity issue for any initial conditions due to Equation (2.7). The extra
iteration needed for computing the parameter 8 in the implementation of the current
formulation is not required.

Noels et al. [55] proposed an energy-momentum conserving scheme algorithm for nonlinear
hypoelastic constitutive models. In elastic case, their algorithm is similar to Simo-Tarnow
algorithm for a Saint-Venant Kirchhoff hyperelastic material and is also valid for general
hyperelastic-based J2 plasticity models. However, the formulation of Simo et al. [35] did
not consider the objectivity of the strain (see Crisfield and Jelenié¢ [56]). For this reason,
Romero and Armero claimed that the original algorithm of Simo et al. [22] does not
exactly conserve the energy. Consequently, Romero and Armero [57] proposed an exact
energy-momentum method for geometrically exact rods with an objective approximation
of the strain measures of the rod involving finite rotations of the director frame. The
improved stability due to the energy conservation property leads definitely to an improved
performance of the algorithm.

Sansour et al. [39] developed an energy—momentum integration scheme and enhanced strain
finite elements for the non-linear dynamics of shells with seven degree of freedom. The
main idea is to use the midpoint rule but to calculate the strain field from the kinematical
field differently without using directly the strain—displacement relations. Hence, the strain
tensors E? and K at midpoint time step are defined from the calculated these strain tensor
velocities respectively. The following strain definition is given by

E), . =E) + (At Eg% (2.9)

Ko = K, + ALK (2.10)

1
n+2

where £ € (0,1) be a scalar defining any position within the time interval At. The choice of
the midpoint in the expression is actually arbitrary. The expression would provide energy
conservation for an arbitrary choice of ¢ within the interval At.
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The proposed algorithm guarantees the conservation of energy and momenta. However,
this modification of the algorithms requires to store the previous right Cauchy-Green
Strain E and tensor K at all the steps which are calculated by the midpoint rule. The
ideas introduced in [38, 39] have been applied to develop Total Lagrangian formulations
for Euler-Bernoulli [35] and Timoshenko [36] planar beams. One can notice that dealing
with the nonlinearity in the kinematic terms is not an easy task. As an illustration, the
equations for 2D Euler-Bernoulli beam are

1

L. ..
Hn—i—% :Hn+§Atf€n+% (212)
.. 2, 2 .
Ml = A+l — A (2.13)

One can observe that midpoint velocity is not used only in the strain fields but also for the
kinematic variables in order to ensure the conservation of energy and momenta. A similar
idea, proposed by Gams et al. [58], is to use unconventional incremental strain updates to
calculate the strains at midpoint. This approach was applied to the Reissner geometrically
exact planar beam.

The energy conserving algorithms mentioned above were mostly based on the midpoint
rule. Alternative methods to achieve the same objective have been proposed. Bathe [59]
proposed a collocation method by combining the trapezoidal rule and the three-point
backward Euler method in order to solve the second-order nonlinear dynamic equations.
The method is second-order accurate, stable even for large deformations and gives accurate
longtime response. Krenk [60] proposed another alternative way for energy conservation
in nonlinear dynamics with general non-linear stiffness. The proposed algorithm works
directly with the internal force and the stiffness matrix at the time integration interval
end-points. The obtained algorithm is second-order accurate. In addition, it conserves
energy and momenta which makes the algorithm unconditional stable.

While most of the energy conserving schemes addressed above are using implicit algorithms,
Lim and Taylor [61] proposed an explicit-implicit conserving scheme for flexible-rigid
multibody systems. An explicit integration scheme is adopted for the flexible body whereas
an implicit conserving scheme is employed for the rigid body. Although the energy
conservation is violated by the explicit scheme, in most cases the fluctuations of energy
in the explicit scheme are negligible within the range of stable time steps. In a recent
paper [62], Almonacid developed an explicit symplectic momentum-conserving scheme
for the dynamics of geometrically exact rods. The characteristics of this algorithm are
second-order accurate, conservation of the moment associated to the symmetries of the
discrete Lagrangian, conservation of energy for long periods of times. The advantage of an
explicit algorithm is that it is conditionally stable but does not require to solve nonlinear
iterations at each time step. Therefore, alternative integration methods can be adopted
according to the demand of specific applications.

In the past decades, energy conserving schemes or energy-momentum methods have
been applied to various applications in nonlinear dynamics i.e. rigid body dynamic [63],
multibody dynamics [61, 63, 64, 65], rod dynamics [18, 56, 66, 67] and shell dynamics
[20, 68, 69, 70, 71, 73, 74]. However, many researchers have pointed out the issue related
to spurious high frequencies in energy-momentum conserving methods. Jog and Motamarri
[70] proposed an energy-momentum method for nonlinear analysis with the framework of
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hybrid elements. When the hybrid stress element has been used, there is no need for an
algorithmic modification for dissipating higher frequencies or due to the mesh refinement.
On the other hand, Romero and Armero [57] claimed that their algorithm for geometrically
exact rods should be extended to accommodate a controllable high frequency dissipation to
handle the high numerical stiffness. The energy-momentum conserving algorithm proposed
by Puso [65] for multibody dynamics still required small time steps to solve correctly the
couple problems. Similarly, Brank et al. [69] suggested that an energy decaying scheme
should be considered in order to dissipate higher order frequencies. Ibrahimbegovié¢ and
Mamouri [67], who proposed an energy-momentum method for flexible beams in planar
motion, had the same opinion. They clearly showed that even though the energy is
preserved in the global sense and the method is unconditional stable, the beam axial force
still presents high frequencies at the element level especially for stiff problems. Gams
et al. [58] discussed about the size of time step for the axial, shear and bending strains
and showed clearly that the local drift of strains is generally small and diminishes with
a decreasing time step. However, the example proposed by Gams et al was only tested
tested during one second.

2.2 Energy-momentum decaying scheme

In order to ensure that energy conserving algorithms produce reasonable and liable re-
sults regarding both the energy and internal forces for stiff problems or high-frequency
problems, numerical dissipation is required. Kuhl and Ramm [75] proposed a general-
ized energy—-momentum method for non-linear adaptive shell dynamics which guarantees
either conservation of energy or decay of energy. Armero and Romero [76] developed
an energy conserving/decaying algorithms for nonlinear elastodynamics that exhibits a
controllable numerical dissipation in the high-frequency range. Unlike HHT dissipative
numerical schemes, the proposed algorithms result in a correct qualitative picture of the
exact dynamic behaviour for a fixed time step due to the conservation of the energy in
the first place. Ibrahimbegovi¢ and Mamouri [77] proposed an extension of the energy
conserving scheme for nonlinear dynamics of three-dimensional beams by introducing
desirable properties to controll the energy decay, as well as numerical dissipation of the
high-frequency contributions to the total response. The variation of strains and velocities
over each time step are small and diminishes through the numerical dissipation. A similar
idea was adopted by Mamouri et al. [78]. Another interesting idea adopted by Gams et
al. [79] is to introduce the numerical damping in special locations, where and when it is
needed.

2.3 Conclusion

The purpose of this chapter was to present a review of the energy-momentum conserv-
ing/dissipating algorithms. Most of the classical time integration methods have been
derived by using Taylor’s series expansions to approximate the variables such as displace-
ment, velocity, and acceleration in the discretized equations of motion. However, the
direct extended application of the traditional time integration scheme (i.e. Newmark
family method [21]) from linear to nonlinear dynamic systems is not trivial and can lead
to instabilities [1, 22]. Moreover, those methods could produce nonsense results with no
obvious warning [80] if the solution converges to a spurious steady state. Yee et al. [81]
suggested that the safety road is to understand of the dynamic behaviour of the numerical
method being used.



The breakthrough of Simo-Tarnow energy-momentum method [22] gave the foundation
for future development in nonlinear dynamics analysis. The stability of the algorithms is
improved when the conservation of energy and momenta has been guaranteed. Most of the
development of the energy conserving scheme is based on the classical midpoint rule. The
main technique for energy conservation and momenta is to apply Taylor’s series expansions
to nonlinear kinematic and strain variables rather the directly calculate these quantities
from the nodal displacements, velocities and accelerations. This idea is clearly emphasized
in the papers of Sansour et al. [35, 38, 82]. In addition, the extension of energy conserving
algorithms by introducing a controllable numerical dissipation in the high-frequency range
is recommended for stiff problems.
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Chapter 3

Co-rotational planar beam
formulations

The co-rotational method is an attractive approach to derive highly nonlinear beam elements
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 26, 27, 72, 73, 74]. The fundamental
idea is to decompose the motion of the element into rigid body and pure deformational
parts through the use of a local system which continuously rotates and translates with
the element. The deformational response is captured at the level of the local reference
frame, whereas the geometric non-linearity induced by the large rigid-body motion, is
incorporated in the transformation matrices relating local and global quantities. The
main interest is that the pure deformational parts can be assumed small and can be
represented by a linear or a low order nonlinear theory. For a general account, we refer
also to [28, 29, 30, 31, 32, 33, 34, 83, 84, 85].

One important issue in the co-rotational method is the choice of the local formulation.
Whereas the Euler-Bernoulli beam theory is completely sufficient for the applications
of slender beams, the Timoshenko beam theory takes into account shear deformation,
making it suitable for describing the behaviour of short beams, composite beams, or beams
subject to high-frequency excitation. The classical and simplest Timoshenko local element
is obtained by using linear shape functions, a linear strain-displacement relation and a
reduced integration [86, 87, 88]. Such a formulation requires a large number of elements
in order to obtain accurate results. Several alternatives for the local part are possible in
order to obtain a more efficient element: a mixed approach in which the displacements and
the stress are interpolated independently [89, 90, 91, 92], an enhanced strain formulation
[93, 94, 95, 96] or the Interdependent Interpolation element (IIE) formulation [97].

In the past decades, there have been many efforts to develop energy-momentum methods
for co-rotational formulations. These efforts have been only partially successful. Examples
of previous attempts are the ones of Crisfield and Shi [9] who developed a mid-point
energy-conserving time integrator for corotating planar trusses. In their formulation, the
time-integration strategy is closely linked to the co-rotational procedure which is "external"
to the element. A similar approach was applied to the dynamic of co-rotational shell [20]
and laminated composite shells [73]. Yang and Xia [74] proposed the energy-decaying
and momentum-conserving algorithm in the context of thin-shell structures. Galvanetto
and Crisfield [11] applied the previously developed energy-conserving time-integration
procedure to implicit nonlinear dynamic analysis of planar beam structures. Various
end- and mid-point time integration schemes for the nonlinear dynamic analysis of 3D
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co-rotational beams are discussed in [17]. They concluded that the proposed mid-point
scheme is an "approximately energy conserving algorithm". Salomon et al. [18] showed
the conservation of energy and momenta in the 2D and 3D analyses for the simulation of
elastodynamic problems. They mentioned that, for some cases, the angular momentum
is asymptotically preserved and an a priori estimate is obtained. However, despite of all
these works, the design of an effective time integration scheme for co-rotational elements
that inherently fulfils the conservation properties of energy and momenta is still an open
question.

In all the above examples energy conservation is either approximately achieved or enforced
by means of constraint equations. Indeed, so far no method exists which inherently
fulfills the conservation properties of energy and momenta in the context of co-rotational
formulation. In this context, the main idea of Sansour et al. [39, 38] is applied to the
co-rotational formulation for the first time. The fundamental idea of Sansour et al. [38, 39]
is to derive strain rate quantities from the strain-displacement relations and to integrate
the strains and the displacements by using the same schemes. However, this method is not
as straightforward as it may seem. The choice of the correct strain rates is crucial since
multiple nonlinear relations exist between the displacements and further quantities which
constitute the strain field.

In this chapter, the beam kinematics and the various local strains for the co-rotational
planar beam are presented. Hamilton’s principle is used to derive the equation of motions.
The conserving properties such as energy, linear and angular momenta for this beam model
are given. The development of the energy-momentum method and numerical examples will
be presented in Chapter 5 and in the appended papers I, II and III.

3.1 Beam kinematics

As shown in Figure 3.1, the motion of the element is decomposed in two parts. In a first
step, a rigid body motion is defined by the global translation (uj,w;) of the node 1 as
well as the rigid rotation «. This rigid motion defines a local coordinate system (z;, z;)
which continuously translates and rotates with the element. In a second step, the element
deformation is defined in the local coordinate system. Assuming that the length of the
element is properly selected, the deformational part of the motion is always small relative
to the local co-ordinate systems. Consequently, the local deformations can be expressed
in a simplified manner. For a two node beam element, the global displacement vector is
defined by

T
q:[ul wy 01 ux wo 92] ; (3.1)

and the local displacement vector is defined by

q:[a o, éQ}T (3.2)

3.2 Strain measures

Bernoulli/ITE formulation

The Interdependent Interpolation Element(IIE), proposed in [97], is adopted for the local
beam kinematic description. The development of this beam element is based on the
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Figure 3.1: Beam kinematics.

exact solution of the homogeneous form of the equilibrium equations for a Timoshenko
beam. Consequently, the ITE element retains not only the accuracy inherent to the cubic
interpolation, but also includes the bending shear deformation. The shape functions of the
IIE element are given by

2
Ny=pa GQ<1—$)+(1—$)
lo lo
X X 1'2
Ny=px 6Q<—1)—+2
lo lo 12 53
12Q2 4 2 '
Ns=p(14120- 1227 dr 527
lo T
12Qz 22 3a?
Ng = — e
‘ “( b o zg)

where Q = ET/(GAks1%), p=1/(1+12Q) and k; is the shear correction coefficient. For
a rectangular cross-section, ks is equal to 5/6. For the dynamic terms, €2 is taken to 0
since extensive numerical studies have shown that this simplification does not affect the
numerical results (see [12]). It can be observed that with {2 = 0, the Hermitian shape
functions of the classical Bernoulli element are recovered.

The shape functions of the IIE are used together with a shallow arch beam theory. The
shallow arch longitudinal and shear strains are given by

€11 =E€E—KZ (3.4)
ow
=20 (3.5)
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in which the axial strain ¢ and the curvature k are defined by

1 ou 1 [0w\?
g_l()/lo [aa;+2(ax> ]d.’IJ (36)
0w

In Eq.(3.6), the axial strain is averaged over the element in order to avoid membrane locking.
The purpose of introducing a mild geometrical non-linearity in the local formulation is to
increase the accuracy of the formulation as compared to a purely linear strain definition,
while still retaining the efficiency.

Reduced integration method

The reduced integration formulation (RIE) is the classical Timoshenko approach based on
linear interpolations and one Gauss point integration in order to avoid shear locking. The
curvature k, shear deformation v and strain ¢ are defined by

00 60,

ow ~ ~
= — — = —N — N .
Y 8:): 9 101_ f02 (3 9)
511:6—/-{,2:3—62_01 (3.10)

lo lo

The elastic potential energy for both ITE and reduced integration formulation is defined by

1 1
Uint = = EA%dx + =
lo 2

1
EIk*dx + 7/ k,GA~y*dx (3.11)
2 2 Ji,

lo

where F is the elastic modulus and G the shear modulus of the material.

Hellinger-Reissner mixed formulation

A two-field mixed formulation based on the Hellinger—Reissner variational principle is
considered. Both displacements and internal forces along the element are approximated by
independent linear interpolation functions. The elastic potential of the Hellinger-Reissner
mixed formulation is written as

Uint = / ST (é — 16) dz (3.12)
lo 2

The generalized stress resultant vector S is approximate by

N 1 0 0 N
S=|M|=N,f;=|0 —-N; N, M (3.13)
Q 0 =1/l =1/l | | M,

where N is the matrix of shape functions satisfying local equilibrium.

From Eqgs.(3.8),(3.9) and (3.10), the generalized strain vector € is written as

£ 1/ly 0 0 T
ée=|r|=Ngg=1| 0 —1/ly 1/l 01 (3.14)
Y 0 —N1 —N2 92
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The cross-section deformation vector e is defined by

1/(EA) 0 0 N
e=N, f, = 0 — N, /(EI) Ny /(EI) M, (3.15)
0 —1/(k;GAly) —1/(ksGAlo) | | Mo

3.3 Hamilton’s principle and conserving properties

Hamilton’s principle states that the integral of the Lagrangian between two specified time
instants ¢1 and ¢, of a conservative mechanical system is stationary

t t
5[ cdt=6 (K= U — Up)dt =0 (3.16)

t1 t1

wihere K is the kinetic energy, and U, is the external potential. The body is a non-
conducting linear elastic solid and thermodynamic effects are not included in the system.
Uint are defined according to each formulation (see Egs. (3.11) and (3.12)). The kinetic
energy is the sum of the translational and rotational kinetic energies:

1 1 1 .
K:f/ pA?lQde—Ff/ pAwédx—i-f/ pl 6% da (3.17)
2 /iy 2 /iy 2 Ji,

while the external potential is given as
6
Uest = _/z puuc dr — /z puwe dz — /z pobcdz — > Pigi (3.18)
0 0 0 i=1

Py and p,, are the distributed horizontal and vertical loads, py is the distributed external
moment, P; is the ¢ component (concentrated forces and moments at the nodes) of external
force vector P.

The above equations are the starting point for further developments. Further, the above
Hamiltonian system exhibits the following conservation properties. If the external loads
are conservative, the total energy of the beam element can be written as

K + Ujpt + Ugyr = constant (3.19)

The linear momentum is defined by

L:“Z]:/lopAlZﬂdm (3.20)

and the angular momentum by

ug Uug 0
J:/ pPA| wg | x | wg |de+ | pI| 0 |dz (3.21)
o 0 0 bo bc

The time derivative of the two momenta define the equations of motion:

d

dt iy Pwdz + P>+ Ps

de
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and

d

EJ = /l (uG pw — wa pu) dz + (z1 +u1) Py — (21 + w1) P
0

-+ ($2 + UQ)P5 — (22 + wg)P4 + / poda + P34+ Pg = Myt (3.23)

lo
from which it can be seen that, with vanishing external load, the linear momentum is
constant and, with vanishing external moments, the angular momentum is constant. It

should be noted that the expression "external load" refers to all possible loading conditions
including reactions forces.
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Chapter 4

Geometrically exact
Euler-Bernoulli spatial beam
formulation

Flexible beam elements can be found in different areas of engineering practice. For some
applications, such as large deployable space-structures, wind turbines propellers, offshore
platforms or structures under extreme loading, beam structures could undergo large
deformations as well. In addition to industrial applications, in many areas in biology and
biomechanics researchers are resorting to slender beam theories as a powerful modelling
tool as well.

While the linear beam theory is generally based on the Euler-Bernoulli hypothesis, which
neglects shear deformations, a generalisation to the non-linear large deformation regime is
usually based on the Timoshenko assumption which considers shear deformations. The
main reason is that the kinematic description of the deformation of the beam cross
section is straightforward under the latter assumption and very complex under the former.
Indeed, the modelling of the non-linear static and dynamic behaviour of beams has been
successfully carried out using concepts which incorporate three-parametric rotation tensors
while exhibiting shear strains. The specific assumptions, details and parameterisations may
differ but the outcomes are very much similar: Argyris et al. [98], Bathe and Balourchi [99],
Simo and Vu-Quoc [100], Cardona and Géradin [101], Pimento and Yojo [102], Bauchau et
al. [103] Ibrahimbegovi¢ [104, 105], Gruttmann et al. [106], Zupan and Saje [107], Sansour
and Wagner [108], Kapania and Lie [109], Romero [110], Mata et al. [111], Zupan et al.
[112], Zhong et al. [113]. and Li et al [114].

The extension of Euler-Bernoulli assumption to the non-linear large deformation regime is
challenging. In the planar case, the desired extension has been successfully carried out for
both the static and dynamic cases (Nanakorn and Vu [115], Armero and Valverde [116],
Sansour et al. [35]). In contrast, the general three-dimensional case finds itself faced with
multiple problems which prevented its development and so hindered possible applications.
This is especially true within the context of dynamics. In this work, a three dimensional
formulation for an Euler-Bernoulli-based beam theory is provided.

The main obstacle in defining a three-dimensional Euler-Bernoulli beam theory lies in the

fact that there is no natural way of defining a base system at the deformed configuration.
Such a system exists at the reference configuration by definition. The strain measures are
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employed to characterise the deformation of these base vectors into the current configuration.
Beam formulations, which consider shear, make use of a rotation tensor to define the current
configuration of these vectors. In an Euler-Bernoulli beam, their final position can not be
defined directly. Some recent attempts can be found in the literature where the problem
has been successfully solved via different strategies which result in replacing two rotation
parameters by expressions which relate to the displacements of the centre line resulting in
4 parametric beam formulations. Three of those parameters are either displacements or
rotations, while the fourth parameter captures the cross sectional torsional rotation or the
stretch of the centre line, respectively. The reader is referred to Pai [117], Zhoa and Ren
[118], Greco and Cuomo [119], Bauer et al. [120], Meier [121] for a complete details on the
issue. Besides, Shabana et al. [122, 123] proposed the absolute nodal position and slope
degree of freedom instead of angles to define the orientation of the element.

In this work, an alternative and direct approach to realise the objective of developing an
Fuler-Bernoulli-based three-dimensional beam theory is presented. Based on the Euler-
Bernoulli assumption, the only information available is that 1) the base vectors will stay
normal to each other after the deformation and 2) the central line is well defined by means
of a displacement vector and the only vector which changes length is that tangent to the
central line. Two approaches to define the position of the deformed base system in a way
consistent with the overarching Euler-Bernoulli assumption will be presented. In a first
approach, the issue is resolved by resorting to the following idea. Given the tangent vector
at the base line (centre line), which is available through a standard differentiating process,
an orthogonal base system is constructed by means of a Gram-Schmidt process. This base
system is then rotated to the final deformed one by means of a rotation tensor, the rotation
vector of which is parallel to the tangent vector at the deformed configuration. Hence, this
rotation is only one-parametric. The rotation defines an angle which is a degree of freedom
of the system. Indeed, it contributes to the definition of the torsional motion of the cross
section, though it does not describe it completely as parts of this torsional rotation are
captured by means of the orthogonalisation process. However, since the orthogonal base
system constructed by means of the Gram-Schmidt process is not unique, the rotation
angle is not unique as well. Though, the final configuration of the base vectors is unique
and so the resulting strain measures are unique and objective providing us with an access
to a complete Euler-Bernoulli three-dimensional beam theory.

In a second approach, it will be shown as to how the rotation tensor can be defined based
on first and second derivatives of the displacement vector of the centre line, together along
a one parametric rotation. While this second approach is presented, it is not going to be
implemented as the numerical implementation is restricted to the first approach.

The design of energy conservation is not straightforward and depends very much on the
involved non-linearities in the formulation at hand. In fact the Euler-Bernoulli hypothesis,
due to its coupling of the cross sectional deformation to the deformation of the central
line, does provide us with highly complex non-linear expressions for bending as well as
for the kinetic energy, which involve second derivatives of the displacement field. A
general methodology for the systematic construction of energy-conserving schemes has
been proposed by Sansour et al. [38, 39] and successfully applied to different shell and rod
formulations in [82], [35]. The methodology is based on the realisation that geometric and
material non-linearities have to be treated differently. The complexities of the geometric
non-linearities can be circumvented by resorting to strain velocities to provide, by means
of integration, the expressions for the strain measures themselves. The expressions for

18



Figure 4.1: Beam kinematics.

the strain velocities, by definition, are linear in the velocities of the degrees of freedom of
the system; the displacements as in the case of the present beam formulation. This is a
powerful statement which makes energy-conservation accessible no matter how complex
the geometric non-linearities, meaning the expressions of the strain-displacement relations,
may be. This methodology will be applied to the present formulation and it proves itself
again as powerful.

In this chapter, the beam kinematics and the implementation of Euler-Bernoulli assumption
for the first approach are presented. An alternative approach to the same objective is
presented as well. The principle of virtual work is given along with the conserving properties.
The details for the development of energy-conserving scheme for this new formulation are
discussed in Chapter 5 and the paper IV.

4.1 Beam kinematics

Let B C R3, where B defines a reference configuration of a material body. The map
¢(t) : B — R3? is an embedding depending on a time-like parameter ¢ € R. Hence,
w0 = ¢ (t = to) defines a reference configuration which enables the identification of the
material points. Then, for the reference position X € B and the deformed position
x € By , it gives: x(t) = ¢(X,t) and X (t) = ¢~ (x,t). Furthermore, let e;, i = 1,2,3
be the Cartesian basis vectors. As shown in Figure 4.1, all the center points of the
rod cross-sections defined the centre line, which assume to be smooth. An arc length
parametrisation of this line with the arc length L at the reference configuration denoted as
s € [0, L]. Therefore, a curvilinear coordinate system, which is considered to be convected,
is described by the triple (s, z, j) for any material point in the cross-section.

Let X be the position of the center line at the reference configuration and it gives:
X (s,2,4) = Xo(s) + 2N (s) +j M(s) (4.1)

The unit tangent vector is defined as T' = 90X /0s] j=a—o- Similarly, the vectors Ty =
0X/0s, N = 0X/0z and M = 90X /0j are introduced. Hence, the triple (T'1, N, M)
defines a local curvilinear basis for the reference configuration. The corresponding
contravariant-based vectors are then given by (Tl,N .M ) with T" = T/ |T1]>. In

a latter expression, |e| denotes the norm of a vector.
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The corresponding tangent vectors at the deformed configuration are defined as (g, n, m)
with g = 9x/0s and both n and m are the normal vectors of the cross-section. From
Figure 4.1, the position  of point A’ at the deformed configuration is then defined as :

x(s,2,7) = Xo(s) +u(s) +zn(s) +jm(s) (4.2)

where u(s) is the displacement vector of the center line. From the above expression, it
gives:

g=z,=Xos+tus+zn,+jimg (4.3)
and the unit tangent vector ¢ is given by
X
o 0s s (4.4)
[ Xo,s + sl

where a comma denotes the derivative.

Two choices for the normal vectors of cross-sections in the deformed configuration are
discussed in the following section.

First approach

By the definition of the Gram-Schmidt process, the deformed normal vector n* can be
constructed based on the deformed unit tangent vector t and one of the normal vectors
(N or M) in the reference configuration. By doing this, the n* and ¢ stay normal to each
other. Therefore, the normal vector n* is defined as:

., N—-(N-t)t ., M-(M-t)t
" TIN-(N o ¢ T IM -

where a dot denotes the scalar product of vectors.

(4.5)

This base system is then rotated to the final deformed one by means of a rotation tensor
R, this rotation vector is parallel to the tangent vector at the deformed configuration.
Hence, this rotation has only one parameter «. This parameter defines an angle which is
taken as a degree of freedom of the element. Indeed, it contributes to the definition of the
torsional motion of the cross section, though it does not describe it completely as parts of
this torsional rotation are captured by means of the orthogonalisation process.

The rotation tensor Ry is defined with the help exponential map as follow (Choquet-Bruhat
et al. [124]; Dubrovin et al. [125]).

Ry =I+sinyIl, 4+ (1 —cosy) L, T} (4.6)
where I'; denotes a skew-symmetric matrix of the vector ¢:

0 —t(3) t(2)
Li=| t3 0 -1 (4.7)
—t(2) t1) 0

Therefore, the final normal vector n in the deformed configuration is given as
n=Rn" (4.8)

Since the Euler-Bernoulli assumption is adopted, the remaining normal vector m stays
normal to other vectors (n, t) after the deformation. It is defined by m = ¢t X n where x
denotes the cross product of two vectors.
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Second approach

In a second approach, the rotation tensor is defined based on first and second derivatives
of the displacement vector of the centre line, together with one parametric rotation . The
total rotation matrix is obtained by a multiplication of two rotation matrices:

R =Ri (7t) Ry (w) (4.9)

where the rotation tensor Ry is already defined in the first approach. w is the rotation
vector of Ry which is computed from the following expression:

T -t=|T||t|cosa = cosa (4.10)
T x t = |T||¢t| sina’w—‘ = %y (4.11)
w o'

with a being the angle between the vectors T and t. It yields:

w=_— (T x t) (4.12)
The rotation tensor Ry is given as:
Ry, =1+ Sh;a r,+ _OijOZEwEw
ST4L, o LT, (4.13)

where I'), denotes a skew-symmetric matrix of the vector w and I', a skew-symmetric
matrix of the vector v =T x t.

Finally, the normal vectors in the deformed configuration are then given by:

n=RN (4.14)
m=RM (4.15)

4.2 Strain measures

Based on the above beam kinematics, the deformation gradient can be written down in the
curvilinear bases system as: F = g®@T' +n® N +m® M. The right Cauchy deformation
tensor is defined as FTF, which gives under the matrix form:

g9-9 g-n g-m
C=|gn 1 0 (4.16)
g-m 0 1

Then, the Green stain tensor E = 1 (C —1) is given as

Ei1 Eip Eis
E=|E, 0 0 (4.17)
FEi3 0 0
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The non-trivial components of the Green tensor are written as

Eiyy=e1n1+ 2K+ Jk2 (4.18)
1.

Ei = 5] K192 (4.19)
1

E13 == 5 Z k13 (420)

where €17 denotes as the axial strain, k1, ko as the curvature of the direction z and j
respectively, k12 and k13 as the torsion of the cross-section. These strains are given after
some algebraic manipulations:

1
e~ XO,s Us T U Ug

; (4.21)
K1 = (X073+u,5) "M g —X075 'N7S (4.22)
Ko = (X073+’u75) -m7S—X07S -M75 (4.23)
kig=n-mgs— N -M g (4.24)
kig=mngs-m—N g- M (4.25)

The axial strain is simplified by neglecting terms of 2% and j2 since the thickness of the
beam is small compared to its length. Besides, k12 = —k13 are equal to each other in
magnitude because the following condition of normality is satisfied: (m-n— M - N)  =0.

4.3 Principle of virtual work and conserving properties

The principle of virtual work in dynamics is given by:

£2 2F
/ (/ pE- 5$dV+/ E Ei10F; dV+/ —— Fs0FE15dV
t1 \%4 1% vi+v

2F

+ vi+v

N
E13 5E13 dVv — / p(S) -ou ds — Z Pi . 5uz> dt =0 (4.26)
L i=1

Equation (4.26) is further developed to produce:

t2
/ (/pAil-éuds—i—/pIzﬁ~5nd5+/ijﬁl~5mds
t1 L L L

+/EA 5115611d8—|—/EIZH15H1d8+/EIjH25H2dS
L L L

N
+/ Glj k12 0k12ds +/ GI, K130Kk13ds — / p(s) - du ds — ZPi . (5ui> dt =0 (4.27)
L L L p

where V' is the volume of the beam, L the length, p the density of the material, A the area
of the cross section, I, and I; moment of inertia. E is young module of the material and G
shear modulus with the coefficient of Poisson v. P;, ¢ = 1,2, ..., N are concentrated force
and p is a distributed external force.

Since k12 = —kK13, the terms related to torsion can be combined into a single term:

/ GIj K12 5/4,12 ds + / GIZ K13 5/@13 ds = / G (Ij + Iz) K192 5%12 ds = / GJ K12 5%12 ds
L L L L
(4.28)
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Indeed, the torsional constant J equal to I; + I, is only valid for circular section. However,
for any arbitrary cross-section, the actual torsional constant J is adopted instead of the
terms I; + 1.
Therefore, Equation (4.27) can be rewritten as
to
/ (/ pAii-éuds+/pIzﬁ-6nds+/ pl;m - omds
t1 L L L

+/EA 811(5611d8+/EIzK1(5I£1d8—|—/EIj/ﬁJQ(SHQdS
L L L

N
+ / GJ k19 0Kk12ds — / p(s) - du ds — Z P, 5ui> dt =0 (4.29)
L L

i=1
One can show that the aforementioned statement do entail certain conservation properties.
The total energy is defined by:

E=K+ U;pt + Uest (4.30)
with:

1 1 1
K:7/pA'&-'dds+f/plzh'hderf/ijm-ﬁ’Lds (4.31)
2 L 2 L 2 L

1 1 1 1
Uint = 7/ EA e} ds—f——/ EI K3 ds+f/ EI; n%ds%—f/ GJ K3y ds (4.32)
2JL 2JL 2J)L 2JL

N
Uert = —/Lp(s)-uds—ZPi-ui (433)
i=1
The linear momentum is defined by

L:/ pa‘;dvz//p(a+zn+jm) dAdL:/pAads (4.34)
1% LJA L

and the angular momentum defined by

J:/par:x:i:dV
v

:/pA (Xo—i—u)xﬂds—i—/pIZ(nxh)ds—i—/ij(mXTh)ds (4.35)
L L L

Functional (4.29) is equivalent to the statements:

D N

—L= -ou d P; 4.36
pit = [P buds =3P, (1.36)

D N

—J = X d x P; 4.37
D! = [, 0% pls)ds + 3o x P (4:37)

From the aforementioned equations, linear and angular momenta are conserved:

L = constant, for vanishing loading (4.38)
J = constant, for vanishing moments (4.39)

Likewise, one can derive that the total energy of the system E = K + Ut + Uegt, which
coincides in most cases with the Hamiltonian, is constant if damping is disregarded. It
gives: E = K+ Ujpt + Ueyr = constant.
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Chapter 5

Research work

In this thesis, the research work is divided into two main parts. The first part concerns the
development of energy-momentum method for the co-rotational planar beam formulation.
The work of this part produces three models with a specific application of steel structures
subjected to seismic and impact loadings. This work is presented in papers I, IT and III.
The second part is devoted to the development of a 3D geometrically exact curved beam
in the total Lagrangian approach. The detail of this formulation is presented in paper IV.

5.1 2D co-rotational Bernoulli beam (Paper I)

The dynamic co-rotational planar beam element proposed by Le et al. [12] is efficient:
accurate results are obtained with only few elements. However, the HHT-a method [37] is
used as time stepping method and consequently the energy and momenta of the system are
not conserved. In order to tackle this problem, a so called energy-momentum method, that
enhances the stability for long term analyses without introducing any numerical dissipation,
is introduced. For that, the co-rotational formulation needs to be adapted.

The development of the energy-momentum method for the co-rotational formation is based
on the following expression :

tn 1 .
/ " (/ pA i due; da +/ pA i Swe dr +/ T i 66 dar
tn l() lO l()

—1—/ FEAcdedx + Elmdladx—/pudugdx—/pwdwgdx
lo lo lo

lo

6
—/pg&%;dx—ZPiéqi) dt =0 (5.1)
lo

=1

The previously developed time integration scheme [38, 39] is here adapted in the present
context of the co-rotational formulation. Whereas the main idea of relating the strain
fields to the strain velocity still applies, its specific realisation in the co-rotational context
is not straightforward and is developed here for the first time. The midpoint velocities
are applied to both the kinematic variables and strains. Formally, it takes the following
generic form:

tn+1
/t TR0 a R () A= o A (5.2)
where the function f can represent either a kinematic variable or a deformational quantity.
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Consequently, the application of the midpoint rule (Eq. (5.2)) to Eq. (5.1) gives the
dynamical equation of motions at midpoint step:

ou T ow T
Gn+i Gn+i

Al 1| =2 daz+/ A 1| ——2] dz
/lop Gn+s ( 8qn+% ) lop Gn+s5 ( 8qn+% )

T T
. 89G7n+% 85n+%
+ pI@GnJrl —2 | dx+ EAenJrl dx
lo T2\ 04,1 lo >\ 99,11
T T
Ok 1 aUG 1
+ | Elk, 1 s dx—/puwr; __Gnty dz
lo 2 8qn+% lo 2 8qn+%
T T
awG n+i a(9G nt+i
— | —2 d:c—/ 1| ———2)] dz—P_,1=0 5.3
/lo pw,n+§ ( 8qn+% o p@,n+§ aqn_i_% n+s ( )

The derivative of the kinematic and strain fields by respect to the global displacement q
(the right side of each component) are calculated from the classical co-rotational equations.
However, the accelerations (ilGJH_%, qu%, 9G7n+%) and the local strains (5n+%, /ﬁ;n_'_%) are
not directly calculated from the nodal displacements, velocities and accelerations. In fact,
since these variables are highly nonlinear, their coupling behavior can cause an instability
[1, 22]. To see the matter clearly, one can show first how the nodal global displacement
and the nodal global acceleration at midpoint are calculated:

At |
. 2, 2 .
qn—l—% = Eqn_l,_% - Eqn (55)

One can see that both nodal displacement and acceleration depend mainly on the nodal
velocity at n + 1/2 and the previous variable at step n. In order to solve the coupling
problems, each kinematic relation has to apply the same procedure with the help of Egs.
(5.4) and (5.5). The accelerations are then obtained as:

2 . 2 .

.. 2 2 .
wG’,n—&-% = E wG,n—i—% - E Wa,n
.. 2 . 2 .
Ocnit = xg0cm+t = xg06m

uG,n—i—%

In the same way, the local strains are obtained as:

€n+% :€n+7€n+%
] At
Fntl = fn T 5 Fpyl

(5.7)

It can be observed that the strains obtained by integrated the strain velocity using Egs.
(5.7) produces strains at n + % that are not equal to the strains determined from the total
displacements and rotations at n + % In fact, both the strains and the displacements are
updated using the mid-point rule and the strain field is accordingly consistent with the
second order accuracy for single step method. The same concept is also applied to the
computation of the accelerations as shown in Egs. (5.6).
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The proposed algorithm results in the conservation of energy and momenta. These
properties can be shown theoretically. The details of those proofs are presented in Paper 1.
This indicates that the algorithm is unconditionally stable. Moreover, the expressions of
the internal force vector and the tangent matrix can be obtained exactly without using
any gauss point integration along the length of the element. These expressions have been
derived by using MATLAB symbolic.

In paper I, four examples are tested in order to validate the proposed algorithm. The first
example, see Figure 5.1, is a cantilever beam subjected to a concentrate load at its tip.
The load induces large displacements to the beam. The results presented in Figure 5.2,
show that the proposed energy-momentum scheme conserves the energy of the system and
is stable during one million time steps. However, the Newmark method shows instabilities
after some 24 s, see Figure 5.3. The HHT-« is stable but the energy is not conserved.

P

l 20x106
4
1

<« rl

0.075 0.15 t(s)

Figure 5.1: Geometry and load history of cantilever beam
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Figure 5.2: Comparison of energy from 0s to 30s

The last example is a free flying beam as shown in Figure 5.4. The length of the beam
is L = 3 m, the cross-sectional area is A = 0.002 m? and the moment of inertia I =
6.667 x 107% m*. The material properties are: elastic modulus E = 210 GPa and density
p = 7850 kg/m3. The number of element is 4 and the time step size is At = 1073 s.

This problem is suitable to study the conservation of the linear and angular momenta. Since
only vertical loads are applied at the beginning, the linear momentum in the horizontal

27



x 107

3 T
2.95r |
2.9}f l i
= 7
> 2.9315%19
2 2851 |
(4]
c
w
2.9315
2.8 —— Energy-momentum method |
— Alpha method (o = - 0.01)
2.9315 _
500 1,000 |—Alpha method (a =-0.001)
2.75f |
27 ‘ ! L s
0 200 400 600 800 1000
Time [s]

Figure 5.3: Comparison of energy from 0s to 1000s

direction should be zero. As shown in Figure 5.5(b), this linear momentum is almost zero
with the maximum value of 3 x 1077, Figures 5.5(a), 5.5(b) and 5.6(a) show that the
energy, the linear momentum in the vertical direction and the angular momentum are
constant. This example has also been studied with the average acceleration and HHT-«
(v = —0.01) methods. As shown in Figure 5.6(b), the angular momentum is not conserved
with these two methods.

2P P 4P (N)
T l 3000
L/2
L 0 >
le > 020  0.40 t(s)

Figure 5.4: Geometry and load history of free flying beam
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Figure 5.5: (a). Energy of free flying beam, (b). Linear momentum.
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Figure 5.6: (a). Angular momentum of Energy-Momentum method, (b). Angular momen-
tum of Average acceleration method (left) and Alpha method ov = —0.01 (right).

5.2 2D co-rotational shear-flexible beam (Paper II)

In this work, the concept of energy-momentum method presented in paper I [40] is further
developed to co-rotational shear flexible 2D beam elements. Based on the previous works
of Sansour et al. [39, 38], the main idea is to apply the midpoint rule not only to nodal
displacements, velocities and accelerations but also to the strain fields. The conservation
of energy, linear and angular momentum is proved theoretically and also observed in the
numerical applications.

Based on the same co-rotational framework, three different local formulations are imple-
mented and tested for a large number of time steps. The respective shape functions and
strain assumptions for each local formulation are presented in Table 5.1. The reduced
integration method (RIE) is the classical Timoshenko approach based on linear interpola-
tions and one Gauss point integration for the static terms. The Hellinger-Reissner mixed
formulation (MX) is also based on linear interpolations but a mixed approach is used to
derive the static terms. For the Interdependent Interpolation element (IIE) formulation,
the ITIE cubic shape functions [97] are used and a nonlinear shallow arch strain definition is
adopted. For this last element, the expression of the tangent dynamic matrix is complicated
and a possible simplification is carefully studied. For the three formulations, different
predictors are tested.

Table 5.1: Formulations

Formulations | Shape function | Static term

RIE Linear Linear strain with reduced integration
MX Linear Linear strain with mixed formulation
11IE Cubic Shallow arch strain

For the reduced and mixed formulations, linear interpolations are taken for the local
displacements u, w and local rotation 8. Consequently, a constant mass matrix is obtained.
The tangent mass matrix is:
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K; = .
FTOAR (5:8)
where the constant mass matrix M is given by
[A/3 0 0 A/6 O 0 7
0 A/3 0 0 A/6 O
M = ol 0 0 I/3 0 0 1/6 (5.9)

A6 0 0 A/3 0 0
0 A6 0 0 A/3 0
O 0 I/6 0 0 I/3)

The development of the local IIE formulation [97] is based on the exact solution of the
homogeneous form of the equilibrium equations for a Timoshenko beam. Consequently,
the IIE element retains not only the accuracy inherent to the cubic interpolation, but also
includes the bending shear deformation. However, due to the cubic shape functions, the
exact expression of the tangent mass matrix is very complicated:

8fk,n+%
Ky=—-"—2
8¢1n+1

2 T 1 T (4T zT

=g [T™MIT + 5 (7" (1f™M, + M) T) (Aq e

2

% (T"™MLT) (8qrT) + (TTM,;, T) (A 80_1“%)

q
aqn+1
90, 1
+ (T™M, ,T) (A > *2)

q i afuw@
g1

At aqn—i—l

(5.10)

The expression of the tangent mass matrix is very long and its computation requires
a lot of computational time. In order to reduce the computational time, Geradin and
Cardona [101, 126] suggested to keep only the mass matrix and to neglect the gyroscopic
and centrifugal matrices. Hence, a simplified tangent dynamic matrix is proposed:

2

_ 4 (T
K= (T MlT) (5.11)
where T is the rotation matrix:
i cn+% sm_% 0 0 0 0]
—sn+% cn+% 0 0 0 0
T — 0 0 1 0 0 0 (5.12)
0 0 0 Cotl  Sntl 0
0 0 0 —sn+% cn+% 0
i 0 0 0 0 0 1 |

The choice of an efficient predictor is also important. The predictor provides the initial
value for the solution at time n+ 1. A poor predictor can increase the number of iterations
and in some cases makes the procedure fail to converge. In this work, three predictors have
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been implemented and tested:
e The first predictor (Pred.1), referred to as "Unchanged displacements", is used by Simo
and Vu-Quoc [100].

dn+1 = 4y (513)

e The second predictor (Pred.2), called as "Null accelerations", is proposed by Cardona and
Geradin [101], Mékinen [127], Chung and Hulbert [128]. Zero accelerations are taken as
predictor for the solution at time n + 1. In the case of midpoint rule the nodal accelerations
at time n + % are taken to zero, hence the new prediction for displacements is obtained as

dn+1 =94, T At qn (514)

e The idea of the third predictor (Pred.3), proposed by de Borst et al. [129], is to assume
that the system behaves linearly between steps n — % and n+ % In the present case, Pred.3
can be written as

2

2 T
2

In order to validate the proposed formulations, four numerical examples are presented in
paper II. Four main features are discussed:

e Conservation of the total energy, linear and angular momentum.

e Stability of the algorithms for a large number of time steps (one million step).

e Efficiency of the three proposed formulations, both regarding the required number of
elements and the computational time.

e Validation of the reference solution by taking a large number of elements against the
three shear flexible formulations.

Only the shallow arch beam example is considered here. A shallow arch beam of span
L =10 m with clamped ends is depicted in Fig. 5.7. The radius R of the arch is 10 m and
the height H is 1.3997 m. The shallow arch is subjected to a time-dependent concentrated
load P = Py sin(wt) at mid-span. The amplitude of the load Py is 80 MN and its frequency
w is 1000 rad/s. The characteristics of the arch are: cross-sectional area A = 0.087 m?,
elastic modulus F = 210 GPa, moment of inertia I = 3.562 x 1073 m?*, Poisson’s ratio
v = 0.3 and density p = 7850 kg/m?. The size of time step is At = 1075 s.

For the presentation of the results, the following colors are used in Figure 5.8:

— — — — Reference solution —————— [IE formulation

Reduced integration method =—————— Mixed formulation

The following number of elements is used respectively for each formulation: 8 for ITE
formulation, 16 for mixed formulation, 24 for Reduce integration method and 100 for the
reference solution. Figure 5.8(a) shows the vertical displacement v at mid-span for the
four analyses. With only 8 elements, the results obtained with ITE formulation are very
close to the reference solution. However, large discrepancies can be observed between the
results obtained with the mixed formulation (16 elements) and with the reduced integration
method (24 elements) compared to the reference solution.
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Figure 5.8: (a). Vertical displacement v, (b). Relative energy error.

For the three formulations, the relative energy error is depicted in Fig. 5.8(b). The largest
value is about 3 x 10~8 for a maximum external energy of 1.85 x 108 J. These results proved
the good stability of the proposed algorithm even for a large number of steps (one million).

The numerical performances of the three proposed formulations are presented in detail in
Paper II. For each formulation, the three predictors described aboved have been tested. For
the IIE approach, both the exact tangent dynamic matrix (Eq.(5.10)) and the simplified one
(Eq. (5.11)) have been tested. For each example, the same number elements (corresponding
to the number of elements for the MX approach in Table 2 of paper II) have been used in
all analyses. In Table 5.2, the computational time and the total number of iterations (in
parenthesis) are given for each case considering 5000 steps.

Table 5.2: Numerical performances for shallow arch beam

RIE MX ITE-exact ITE-simp.
Pred.1 38 (14999) 38 (14999) 138 (18569) 110 (22902)
Pred.2 38 (14999) 38 (14999) 114 (15000) 97 (19951)
Pred.3 38 (14997) 38 (14997) 115 (14999) 99 (19996)

The following conclusions can be drawn:
e For the RIE and MX approaches, all the predictors give almost the same computational
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time. For the IIE formulation, Predictor 2 gives the lowest computational time, but the
difference between Predictors 2 and 3 is not significant.

e The CPU time and number of iterations for the RIE and MX formulations are almost
the same. This was expected since the only difference between these approaches resides in
different constant local stiffness matrices. However, as shown previously in the examples,
the RIE approach requires a larger number of elements in order to get an accurate solution.
e For the IIE formulation, it is better to use the simplified tangent stiffness matrix. The
number of iterations increases but the CPU time decreases by 20% to 40% (Predictor 2).
e With Predictor 2, the IIE formulation (with simplified tangent dynamic matrix) requires
about 2.0-2.6 times more CPU time than the MX formulation. On the other hand, the
numerical examples have shown that with twice the number of elements, the MX formulation
gives less accurate results that the IIE one. It is therefore difficult to conclude if one
formulation is more efficient than another one.

5.3 A 2D elasto-(visco)-plastic fiber co-rotational beam
element and a planar co-rotational beam element with
generalized elasto-(visco)-plastic hinges (Paper III)

In this paper, 2D co-rotational beam element formulations for nonlinear dynamics of frame
structures subjected to impact are developed. Based on the co-rotational framework, the
inelastic behaviour of the frame structures is modelled by either distributed plasticity and
generalized hinge approaches. Both Bernoulli and Timoshenko local beam formulations are
employed for the distributed plasticity approach whereas Bernoulli formulation is associated
with the generalized hinges element. For the latter, a condensation procedure is used to
remove the internal degrees of freedom and to produce a two noded super-element that
fits the standard co-rotational approach. For the three formulations, strain effects have
been considered by replacing the plastic flow rule with its visco-plasticity counterpart. In
addition, the dynamical equations of motion are solved by using a scheme that conserves
the energy in case of elasticity. The responses of the three formulations have been compared
against each other for impact problems.

Distributed plasticity models

For the Bernoulli model, the element is based on the classical linear beam theory, using a
linear interpolation for the local axial displacement and a cubic one for the local transverse
displacement. For the Timoshenko model, a reduced integration formulation based on
linear interpolations and a single Gauss point is employed in order to avoid shear locking.

In these models, it is assumed that total strain rate is defined as the sum of elastic and
plastic strain rates:

E=E+& (5.16)
The plastic strain rate is determined by the plastic flow rule:
. . 0P
=P
2 =)= 5.17
75 (5.17)

where A is the plastic multiplier and X is the stress-resultant vector. The yield function ®
for each formulation is defined by:
1/ For the Bernoulli formulation:

¢ = |o| — 0oy, (5.18)
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where X is to equal to o and o, is the yield stress.
2/ For the Timoshenko formulation, von Mises yield function is adopted:

1/2
® = (o2 +37%) ? s, (5.19)
with ¥ =[o 7]

The visco-plastic flow rule is introduced in order to study the strain rate effect of the
structures subjected to impact. The plasticity flow rule is then defined by:

¢

. @ ;

i=) D() it @0 (5.20)
0 if ®<0

where ® is given by a power function of Cowper-Symonds-Bonder type [130, 131]. D and
¢ are material constants; for mild steel, ¢ = 5 and D = 40.4 s~! according to Cowper and
Symonds [130] and for aluminum alloys, ¢ = 4 and D = 6500 s~ ! according to Bonder and
Symonds [131].

The details regarding the derivation of the consistent local tangent matrix are given in
Paper III.

Generalized hinges

The structural member consists of three sub-elements: a standard flexible beam element
and two generalized plastic hinges that are modeled by a combination of axial and rotational
springs (see Figure 5.9). The elongation or shortening of the hinges occurs along the beam
axis. The generalized hinges can be seen as finite elements with zero initial length. By
assembling these hinges with the beam element and by performing static condensation, a
two node super-element (see Figure 5.9) is obtained. This element is then incorporated into
a co-rotational framework in order to introduce geometrical nonlinearities. Consequently,
the local axial displacement u; is equal to 0.

M1y§1 Mé’ g‘l
(1 4 j N,
Ml 0, M>,62 Mb2,02 be, 0; N M; 0; M, 04
N, = ; E Ty Nys, m( } Nyz @5 Ns us \: @ E 4.y
2]
l(“ 0 | 12) | l(’) 0
f— \ | f——

Figure 5.9: Local super-element.

The co-rotational kinematics of the element are shown in Figure 5.10. The motion of the
element is decomposed in two parts. In a first step, a rigid body motion is defined by
the global translation (uq,w;) of the node 1 and the rigid rotation «. This rigid motion
defines a local coordinate system (z7,2;) which continuously translates and rotates with
the element. In a second step, the element deformation is defined in the local coordinate
system. The vectors of global, local and sub-element displacements are respectively defined
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The generalized plastic hinge model assumes that the plasticity is lumped into axial and
rotational springs located at the end of the flexible beam element. The elastic behaviour
of the generalized hinge is uncoupled whereas axial-moment interaction is considered
in the plastic range. One adopts the total generalized strain rate decomposition into
elastic and plastic parts which consists of the axial and rotational strain rate. For an
associated flow rule, the direction of the generalized plastic strain rate vector is given by the
gradient to the yield function, with its magnitude given by the plastic multiplier rate. The
generalized stress vector containing the axial and bending forces in the hinge is denoted
by ¥ =[N M]T. The plastic multiplier A is determined by the classical complementary
conditions:

A>0, ®N,M)<0, ADN,M)=0 (5.22)

In the case of visco-plasticity for the hinges, the visco-plasticity flow rule is defined by:

(5.23)

5 D*®¢ if &>0
N 0 if <0

where D* and ( are material constants. The value D* will be appropriately selected on
the case study.

A family of symmetric and convex yield surfaces of generalized super-elliptic shape is

considered: )
B\ r
—1 (5.24)

where «, § and p are the parameters of the yield surface shape.

M |¢ N
PN, M) = (‘M *'Np
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Local tangent stiffness matrix for generalized hinges

The elastic stiffness matrix of the hinges is given by:

ki O
C. = [ 0 k@} (5.25)

In (visco)-plasticity, the incremental stress-resultant for the first hinge (similar expression
for the second hinge) is defined by

AR oy

AM, o Cw | | AGy — NG (5.26)

The details about the discrete governing equations of the generalized plastic hinges are
described in [132, 133].

For the static condensation, the local internal force f; and the local tangent stiffness matrix
k; of the super beam element are given as

Af =k Aq

B (5.27)
k; = knn — kyy, k' Ko

In elasticity, the equivalent local stiffness matrix k., should be the local stiffness of the
Bernoulli beam element:

EAJly 0 0
0 4EI/ly 2EI/l (5.28)
0 2EI/ly 4EI/l

To achieve that the elastic stiffness parameters of the hinges (see Eq.(5.25)) and the stiffness
parameters of the elastic beam sub-element are taken as:

ka = on EA/ZO

5.29
kg = om E1]/ly ( )

k‘11 = W1 EA/ZO
]4}22 = k‘33 = w9 EI/ZO (5.30)
k‘gg = k‘32 = W3 EI/ZO

By introducing Egs.(5.29) and (5.30) in the second expression of Eqgs.(5.27), the following
relations are obtained:

o= (1-20,")"

oy — 4 Qm(@m - 3)
LT ok —8om + 12 (5.31)
2 02,
w ey
ST 02, —8om + 12

Hence, the idea of the method is to choose the coefficients o, 0, of the hinges and then to
calculate the coefficients wy, wa, w3 of the beam sub-element by using Eq.(5.31).

Related the impact analyses, the contact model is developed in a rigorous framework of

non-smooth dynamics. The equations of motion are derived using a set of differential
measures and convex analysis tools. Velocity jumps at impact instants are considered
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Figure 5.12: Evolution of the maximum horizontal displacements of the impacted column
of frame ¢ with v9 = 30 m/s

using the Newton’s impact law by a means of the coefficient of restitution € to account for
possible energy losses during the collisions. The dynamic equations of motion are solved
by using the energy momentum conserving scheme developed by Chhang et al.[40, 41].

Example

Three steel frames are depicted in Fig. 5.11. The column of each structure is subjected to
a mass m at the position A with the initial velocities vg. The parameter of the member
are: density of the material p = 7850kg/ m?, Young modulus £ = 210 GPa, yield stress
oy = 355 MPa and coefficient of poisson v = 0.3. The yield function of the hinges for
elasto-(visco)-plastic model is ®(N, M) = |M/MP|*% 4 |N/NP|? —1 for the square section.
The time step for the analysis is At = 107°.
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Regarding the element discretization, the size of the element is 0.1 m for the fiber model.
For the hinges model, one element is taken for each member except for the impacted
column where two elements have been considered. Figure 5.12 shows the evolution of
the maximum displacements of the impacted column for the initial velocity of 30 m/s for
frame c. For the elasto-perfectly plastic case, the result obtained with the generalized
plastic-hinges are in good agreement comparing to the ones obtained with the two fiber
models. Furthermore, the series of calculation on the maximum displacement of the
impacted column are summarized in Table 5.3. The discrepancies between Timoshenko and
Bernoulli fiber models are small and do not exceed 3%. Otherwise, the maximum difference
between the generalized elasto-plastic hinges and the distributed plasticity models are
about 11% which is acceptable considering the fact that the generalized hinges model used
only a few number of elements.

Regarding to the study on the strain effect, ( = 5 and D = 40.4 s~! are the material
constants for the mild steel [130] which are employed for the fiber models whereas { = 5
and D* = 2.025 x 10® s7! are used for the generalized hinges model. Table 5.4 shows the
maximum displacements of the impacted column. The discrepancies between the two fiber
models are about 3% which indicates that the shear effect of the Timoshenko model does
not influence the outcome of the displacements. Besides, with an appropriate value D*
(2.025 x 108 in this case), this model can reproduce the correct results (see Fig. 5.12) with
an overall maximum difference of 11%.

Table 5.3: Elasto-perfectly Plasticity model: maximum displacement on the impacted
column: Mass of vehicle 1500 kg, section 20 cm x 20 cm, € = 0

Timoshenko Bernoulli Hinges

Frame a (vo = 20 m/s) 0.1085 0.1074  0.1030
Frame a (vo = 30 m/s) 0.1905 0.1909  0.1907
Frame a (vo = 40 m/s)  0.2718 0.2728  0.2739
Frame b (vo = 20 m/s) 0.1261 0.1232 0.1118
Frame b (v = 30 m/s)  0.2454 0.2493  0.2351
Frame b (v = 40 m/s)  0.3940 0.3094  0.3883
Frame ¢ (v = 20 m/s)  0.1200 0.1226  0.1125
Frame ¢ (vg = 30 m/s) 0.2521 0.2579  0.2414
Frame ¢ (vp = 40 m/s) 0.4136 0.4253  0.4086

Table 5.4: Elasto-visco-plasticity model: displacement maximum on the impacted column:
Mass of vehicle 1500 kg, section 20 cm x 20 cm, € = 0

Timoshenko Bernoulli Hinges

Frame a (vo = 20 m/s) 0.0804 0.0780  0.0763
Frame a (vo = 30 m/s) 0.1402 0.1367  0.1469
Frame a (vo = 40 m/s) 0.2011 0.1982  0.2228
Frame b (vo = 20 m/s) 0.0854 0.0856  0.0799
Frame b (vo = 30 m/s) 0.1645 0.1625  0.1625
Frame b (vo = 40 m/s)  0.2659 0.2638  0.2685
Frame ¢ (vo = 20 m/s) 0.0853 0.0840  0.0806
Frame ¢ (vo = 30 m/s) 0.1644 0.1635  0.1641
Frame ¢ (vo = 40 m/s) 0.2718 0.2714  0.2743
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Another serie of calculations (see Table 5.5) has been made for testing the value D* with
another mass (3000 kg) and a different coefficient of restitution (0.5). The results show that
the maximum difference for the displacement does not exceed 10%. It can be concluded
that these values can be used for this type of frame with square section.

Table 5.5: Elasto-visco-plasticity model: displacement maximum on the impacted column:
Mass of vehicle 3000 kg, section 25 cm x 25 cm, € = 0.5

Timoshenko Bernoulli Hinges

Frame a (vo = 20 m/s) 0.0842 0.0819  0.0761
Frame a (vo = 30 m/s) 0.1525 0.1495  0.1524
Frame a (vo =40 m/s) 0.2240 0.2196  0.2389
Frame b (vo = 20 m/s)  0.0876 0.0869  0.0787
Frame b (vo = 30 m/s) 0.1697 0.1700  0.1630
Frame b (vo = 40 m/s)  0.2743 0.2746  0.2714
Frame ¢ (vg = 20 m/s) 0.0860 0.0854  0.0793
Frame ¢ (vo = 30 m/s) 0.1685 0.1700  0.1641
Frame ¢ (vo = 40 m/s) 0.2775 0.2803  0.2765

5.4 Geometrically exact Euler-Bernoulli spatial curved
beam (Paper IV)

In this paper, an alternative and direct approach to develop an Euler-Bernoulli-based
three-dimensional beam theory is presented. The approach is based on the two following
aspects. Based on the Euler-Bernoulli assumption, the only information available is that
1) the base vectors stay normal to each other after the deformation and 2) the central
line is well defined by means of a displacement vector and the only vector which changes
length is that tangent to the central line. Two approaches to define the position of the
deformed base system in a way consistent with the overarching Euler-Bernoulli assumption
is presented in chapter 4.

The general methodology for the systematic construction of energy-conserving schemes
has been proposed by Sansour et al. [38, 39] and successfully applied to different shell
and rod formulations in [82] and [35]. The methodology is based on the realisation that
geometric and material non-linearities have to be treated differently. The complexities
of the geometric non-linearities can be circumvented by resorting to strain velocities to
provide, by means of integration, the expressions for the strain measures themselves.

The dynamic equation of motion is obtained from the application of the midpoint rule
(Eq.5.2) to Equation (4.29):

ou\T n\"T om .
/LpA<aq) 1ds—|—/pI (aq> 1d3+/,0[ <8q) i, 1 ds
8811 (9/11 8/12 T
—i—/LEAeSHTH_% (8{1) ds+/LEIZ/-@1n+% (8(]) ds+/EI — <8q) ds

8/612 T 8u T
—|—/LGJ/€12H_,’_% (aq> dS—/L(aq> pn_,’_%(s)d ( ) ZP 1—0 (5.32)

The main idea is to employ kinematic and strain velocity fields to define the kinematic
and strain fields n + % instead the kinematic and strain fields defined from the global
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displacements, velocities and accelerations directly. The kinematic and strain velocity fields
are computed as:

on n on |
n+i du Usntl X T+l

om om .
"t du, Usntd + Oy T+l

€11 n+% = (XO»S + ’u',anr%) ’ u,anr% (533)
sntd Msngl T (XO’S + “,sn+%> “Msnt}

Hzn_'—% - u75n+% ) mvsn+% t (XO’S T u,sn-i-%) m,sn-i-%

K12n+% :nn_,’_% .m,sn_‘_% —i—nn_l_% -m

K’ln—i—% =u

1
,8 n—|—§

Given the strain and kinematic fields at time n and computing quantities of Eqs. (7.84) at
step n + %, the same fields at step n + % are then defined as follows:

. 2 2

oyt = Ml = 20

. _ 2 2

Mty T AT T AL

Elinsl =Elint+ 2At511n+§ (5.34)

1A .
K1n+%:/€1n+§ tl{ln+%

...
/€2n+% = Kon + §At"€2n+%

1A .
R1an4d :“1271"’5 t“12n+%

By doing that, the proof of energy and linear momentum can be demonstrated theoretically
as presented in Paper IV. Four numerical examples are considered in the numerical sections.
These examples focus on the accuracy and the stability of the new algorithms.

Roorda-Koiter frame example [26] is presented in this section. In this problem, the
connection between the column and the beam is not an easy task to solve because it
requires nonlinear constraint equation. One possible solution for maintaining the continuity
of this connection is to introduce a small radius R of 0.25 m, see Fig. 5.13(a). Lee’s frame
has a uniform rectangular cross-section and is subjected to two out-of-plane forces. Both
applied forces follow the pattern of a hat function as shown in Fig. 5.13(b). The length
L is 12m, the width 0.3 m and the depth 0.2m. The material characteristic are: Young
modulus F = 210 GPa, Poisson’s ratio v = 0.3 and density p = 7850 kg/m3. The time step
size is taken At = 107* s.

The reference solution, obtained with 22 elements (11 elements per member), and the
results obtained with the proposed formulation with 10 elements (4 straight beam elements
and 1 curved beam per member) are shown in Figures 5.14(a), 5.14(b) and 5.15(a). It can
be observed that with only 10 elements, the new total Lagrangian formulation gives results
that are in good agreement with the reference solution. Additionally, Figure 5.15(b) shows
the conservation of the energy for one million time steps after the external loads vanishes.
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Chapter 6

Conclusions and future research

6.1 Conclusions

Most effort in this thesis is devoted to the development of energy-momentum method for non-
linear finite beam elements. Several formulations with various purposes for corotational
planar beam elements are presented in papers I, II and III. Paper IV focuses on the
development of energy-conserving scheme for geometrically exact spatial curve beam in
nonlinear dynamics.

2D co-rotational beam element models
2D Bernoulli beam element

The development of a stable momentum and energy conserving integration scheme for a
co-rotational beam formulation has been achieved. The main idea is to use the classical
midpoint rules for both the kinematic and strain quantities. The advantage of the proposed
algorithm is that the conservation of the total energy of the system results in a very
stable and accurate algorithm even for very large number of time steps. Besides, in the
absence of applied external loads, the linear and angular momenta are constant. These
characteristics have been proved theoretically and confirmed numerically by using four
numerical examples.

2D shear flexible beam element

Three shear flexible co-rotational planar beam formulations have been developed and
tested together with the energy-momentum method presented in paper I [40]. The three
proposed shear flexible formulations share the same co-rotational framework and differ
in the choice of the local strain definition and the local shape functions. If local linear
strains and local linear shape functions are taken, the numerical results show that it is
more efficient to adopt a local mixed approach instead of a pure displacement one: the
CPU time is unchanged but the same accuracy is obtained with a less number of elements.
The numerical results show also that it can be interesting to use a nonlinear local strain
approach together with local cubic shape functions: the computational time is increased
(due essentially to mathematically more complicated dynamic terms) but the same accuracy
is obtained with a much less number of elements. For that approach, it has also been
shown that a simplified dynamic tangent matrix should be taken and that the choice of an
efficient predictor can be important.
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A 2D elasto-(visco)-plastic fiber co-rotational beam element and a planar
co-rotational beam element with generalized elasto-(visco)-plastic hinges

2D co-rotational beam element formulations for nonlinear dynamics of frame structures
subjected to impact are developed. Based on the co-rotational framework, the inelastic
behaviour of the frame structures is modelled by either distributed plasticity or generalized
hinge approaches. Both Bernoulli and Timoshenko local beam formulations are employed
for the distributed plasticity approaches whereas the Bernoulli formulation is associated
with the generalized hinges element. For the latter, a condensation procedure is used to
remove the internal degrees of freedom and to produce a two noded super-element that fits
the standard co-rotational appraoch. For the proposed formulations, strain effects have
been considered by replacing the plastic flow rule with its visco-plasticity counterpart.

The numerical examples show that the beam elements with distributed plasticity accurately
predict the response of the structures and are then used as reference solutions by taking
a large number of elements. The effects of the shear deformation in both elasto-plastic
and visco-elasto-plastic models are not significant in the impact problem. Besides, the
formulation with generalized hinges gives relatively accurate results with only few elements
compared to the approach with distributed plasticity. The introduction of the strain rate
in the constitutive law shows that the frame deformed less due to the hardening of the
material.

3D geometrically exact beam element model

An energy-conserving scheme for geometrically exact Euler-Bernoulli spatial curved beam
in nonlinear dynamic has been developed. Two approaches to define the position of the
deformed base system in a way consistent with the overarching Euler-Bernoulli assumption
are provided. The first approach makes use of the Gram-Schmidt orthogonalisation process
coupled to a one-parametric rotation. The latter completes the description of the torsional
cross sectional rotation and overcomes the non-uniqueness of the Gram-Schmidt procedure.
In a second approach, the rotation tensor is defined by using the first and second derivatives
of the displacement vector of the centre line, together along a one parametric rotation. The
new formulation is able to produce accurate results with both straight and curved beams.
Numerical comparisons with the co-rotational formulations [26] and Abaqus have been
performed. Last but not least, the proposed energy-conserving algorithm can conserve the
total energy of the system and remains stable even if a very large number of time steps are
applied. In the absence of applied external loads, the linear and angular momenta remain
constant.

6.2 Future research

The models developed in this thesis focus on the energy-momentum method for nonlinear
beam elements. However, there is still room for more developments and enhancements.
Some future research are suggested as the following:

Energy-momentum decaying scheme

Previous works, i.e. Kuhl and Ramm [75], Romero and Amero [76], Ibrahimbegovié¢ and
Mamouri [77], Mamouri et al. [78], Gam et al. [79] to mention a few, have pointed out that
it is very important to have a controllable numerical dissipation in the energy-momentum
method in order to damp high frequencies especially for stiff beams. As discussed in [77, 79],
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even though the energy is preserved in the global sense and the algorithm is unconditionally
stable, the internal forces in the element level may exhibit spurious high frequencies. In
this context, the numerical problem which may arise from the energy-momentum method
or the refined mesh can disappear through numerical dissipation.

3D co-rotational energy-momentum method

The extension of the proposed energy-momentum method of co-rotational planar beams to
co-rotational spatial beams is very challenging. The main difficulty is related to the large
spatial rotations and the way these rotations affects the strain rates. The objectivity of the
strain (see [56]) should be considered because it has been shown by Romero and Armero
[57] that this strain could improve the accuracy and the stability of the algorithms.
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Chapitre 7

Résumé en francais

7.1 Introduction

Motivation

La dynamique non-linéaire des poutres flexibles reste un sujet de recherche tres actif surtout
dans le domaine de l'ingénerie. Les poutres flexibles sont utilisées dans de nombreuses
applications pour l'instant des grandes structures déployées dans l’espace, les hélices
d’avions, les pales d’éoliennes et des plateformes offshores. Ces structures peuvent subir de
grands déplacements et de grandes rotations. Alors, la simulation de ces structures nécessite
deux outils numériques efficaces : formulation des élément finis et méthode d’intégration
temporelle.

Premierement, il y a plusieurs méthodes pour le développement des formulations efficaces
de la poutre : la formulation totale lagrangienne [1, 2, 3, 4, 5], la méthode flottante
[6, 7, 8] et la méthode co-rotationnelle [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Parmi
de ces méthodes, la formulation totale lagrangienne est une approche naturelle pour la
construction de théories de poutre géométriquement exacte. La méthode co-rotationnelle est
une approche intéressante pour développer des éléments de poutre fortement non-linéaires
car elle allie précision et efficacité numérique.

Deuxiémement, il est aujourd’hui reconnu que les méthodes de type Newmark, la méthode
du point milieu classique ou la régle trapézoidale posent des problemes de stabilité en régime
non-linéaire. Alors, la stabilité a long terme est considérée comme une caractéristique
fondamentale pour la construction du schéma d’intégration temporelle. L’extension du
schéma d’intégration temporelle traditionnelle (Newmark méthodes [21]) de la dynamique
linéaire a celle de non-linéaire n’est pas banal et parfois cause l'instabilité. Greenspan
[23, 24] avait démontré 'importance de la conservation de 1’énergie totale, de la quantité
de mouvement et du moment cinétique dans le développement du schéma d’intégration
temporelle. Simo [22] découvrait comment modifier des algorithmes de la poutre spatiale
pour la conservation de ces quantités qui améliorent la stabilité des algorithmes. Bien
que son formulation n’applique qu’au matériau de Saint-Venant Kirchhoff, les schémas
d’intégration conservatifs ont été enrichis méme ou différemment manieéres dans des autres
applications.

De nombreuses des travaux de recherche sur la formulation des éléments finis dans I’approche
co-rotationnelle [12, 25, 26, 27, 28, 29, 31, 32, 33] et dans l'approche totale lagrangienne
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[35, 36] ont été réalisés par le département de génie civil et architectural a KTH Royal
Institute of Technology et la laboratoire LGCGM a 'INSA Rennes. Parmi de ces travaux,
la formulation co-rotationnelle sur la poutre 2D proposée par Le et al. [12] est tres
efficace car les interpolations cubiques ont été utilisées pour dériver les termes d’inerties
et les termes d’internes. Pourtant, la méthode d’intégration HHT-alpha [37] introduit la
dissipation artificielle qui dissipe 1’énergie dans le systéme. Sansour [35] a développé le
schéma d’intégration temporelle qui conserve 1’énergie totale, la quantité de mouvement
et le moment cinétique pour la poutre Euler-Bernoulli 2D. Dongc, c’est tres intéressant de
développer la poutre planaire co-rotationnelle et la poutre spatiale total lagrangienne avec
ce schéma d’intégration conservatif.

Objective

Dans la premieére partie de la these, le schéma d’intégration conservatif est appliqué aux
poutres co-rotationnelles 2D [40, 41]. Les cinématiques de Bernoulli et de Timoshenko
sont abordées. Ces formulations produisent des expressions non-linéaires complexes pour
I’énergie interne et 1’énergie cinétique. L’idée centrale de 'algorithme consiste a définir,
par intégration, le champ des déformations en fin de pas a partir du champ de vitesses
de déformations et non a partir du champ des déplacements au travers de la relation
déplacement-déformation [38, 82]. La méme technique est appliquée aux termes d’inerties.
Plusieurs exemples ont été considérés dans lesquels ils sont observés que I’énergie totale, la
quantité de mouvement et le moment cinétique sont conservés pour les deux formulations.
Ensuite, des poutres co-rotationnelles planes en considérant un comportement élasto-
(visco)-plastique sont développées et sont comparées les uns aux autres pour les problémes
d’impact. Des exemples numériques montrent que les effets de la vitesse de déformation
influencent sensiblement la réponse de la structure.

Dans la seconde partie de cette these, une théorie de poutre spatiale d’Euler-Bernoulli
géométriquement exacte est développée. Le principal défi dans la construction d’une
telle théorie réside dans le fait qu’il n’existe aucun moyen naturel de définir un triedre
orthonormé dans la configuration déformée. Une nouvelle méthodologie permettant de
développer une théorie de poutre spatiale en incorporant I’hypotheése d’Euler-Bernoulli est
fournie. Cette approche utilise le processus d’orthogonalisation de Gram-Schmidt couplé
avec un parametre rotation qui compléte la description cinématique et qui décrit la rotation
associée a la torsion. Il permet de surmonter le caractére non-unique de la procédure de
Gram-Schmidt. La formulation est étendue au cas dynamique et un schéma intégration
temporelle conservant I’énergie est également développé. Plusieurs exemples démontrent
lefficacité de cette formulation.

7.2 Poutres co-rotaionelles 2D (Article I, IT et III)

La méthode co-rotationnelle est une approche intéressante pour dériver des éléments des
poutres non-linéaires [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 26, 27, 72, 73, 74].
L’idée principale est de décomposer le mouvement de 1’élément en deux parties : un
mouvement corps rigide et un mouvement en petites perturbations (déformation pures). Au
cours du mouvement rigide, un systéme local déplace et tourne avec ce dernier. L’intérét
principal de cette approche est la possibilité d’utiliser des différentes formulations locales.

Dans cette section, la cinématique de la poutre, des déformations, le principe d’Hamilton
sont présentés ainsi que les résumés des articles I, IT et III.
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Fi1Gure 7.1: Cinétique de la poutre 2D.

7.2.1 Cinématique de la poutre

La cinématique d’un élément poutre co-rotationnelle a deux noeuds est représentée a la
figure 7.1. Le noeud 1 est pris comme origine du systéme des coordonnées locales (z;, z;)
qui continue a déplacer et tourner avec I’élément. L’axe z; est coincident avec la droite
reliant les deux nceuds de ’élément. Par suite du choix du systeme local, le vecteur des
déplacements globaux est défini par :

T
q:{ul wr O ux ws 92] ; (7.1)

et le vecteur des déplacements locaux par :

q:[a o, eQ}T (7.2)

7.2.2 Déformations

a) Formulations d’ITE/Bernoulli

Dans cette formulation locale, les fonctions d’interpolation de I'Interdependent Interpolation
Element (IIE), proposées dans [97], ont été utilisées avec une théorie des poutres en arc a
profondeur faible. Le développement de ces éléments est basé sur la solution exacte sous la
forme homogene de ’équation d’équilibre d’une poutre Timoshenko. Par conséquent, 'lIE
conserve non seulement la précision inhérente a ’'interpolation cubique, mais comprend
également la déformation de cisaillement. La fonction de forme de I'IlE est donnée par :
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Avec Q = EI/(GAkgl3), p=1/(1+12Q) et ks le coefficient de correction de cisaillement.
En prenant €2 égale & 0, on retombe sur la poutre Bernoulli. Des études numériques effectuées
par [12] ont montré que cette simplification ne modifie par les résultats numériques.

La déformation longitudinale en arc et la déformation de cisaillement sont définies par :

11 =€ —KRZ (7.4)
ow
=5 - (7.5)

dans lequel la déformation axiale € et la courbure x sont définies par

1 ou 1 [ow\?
g_l()/lo [(%;+2(ax> ]d.’IJ (76)
0w

Dans I'équation (7.7), la déformation axiale a été prise en moyen sur I’élément pour éviter
le verrouillage de la membrane. Le but d’introduire la géométrie non-linéaire dans la
formulation locale est d’augmenter la précision en comparant avec la déformation linéaire.
Alors, Defficacité de cette formulation reste précise avec peu nombre d’éléments.

b) Méthode d’intégration réduite (RIE)

La méthode d’intégration réduite est une approche classique de Timoshenko en basant sur
I'interpolation linéaire. Un point d’intégration de Gauss est utilisé pour éviter le verrouillage
de l'effort tranchant. La courbure x, la déformation de cisaillement ~ et la déformation
axiale € sont définies par :

00 0,6,
ow - -
=——0=—-N — N .
7= a0 0 191_ f92 (7.9)
511:5—5223—62_012 (7.10)

lo lo

Alors, énergie interne pour I'lIE et la méthode d’intégration réduite est définie par :

1 1
Uint = 5 " EA €2dl' + 5

1
EIk*dx + 5/1 k,GA~y*dx (7.11)
0

lo
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avec E étant le module élastique et G le module de cisaillement, A Daire de la section et
le moment inertie de la section.

c) Formulation de Hellinger-Reissner (MX)
Une formulation mixte a deux champs basée sur le principe variationnel de Hellinger-
Reissner est considérée. Les déplacements et les forces internes le long de I’élément sont

approximés par la fonction de forme linéaire indépendamment. Alors, 1’énergie interne de
Hellinger-Reissner s’écrit :

Uint = / ST (é — 1e) da (7.12)
lo 2

Le résultant des contraintes généralisée est approximé par :

N 1 0 0 N
S=|M|=N,f,=]0 —-N; N, M (7.13)
Q 0 —1/lg =1/l | | M,

ou N est la matrice des fonctions de forme satisfaisante a 1’équilibre local. En utilisant les
équations (7.8),(7.9) et (7.10), la déformation généralisée é est définie par :

€ 1/l 0 0 U
é= K :Né(j: 0 —1/[0 1/[0 ql (714)
Y 0 —N1 —N2 02
Les déformations de la section transversale sont définies par :
1/(FA) 0 0 N
e=Ng f; = 0 —Ni/(EI) Ny/(EI) M,y (7.15)
0 —1/(ksGAly) —1/(ksGAlp) Mo

7.2.3 Principe d’Hamilton

Le principe d’Hamilton stipule que I'intégrale du lagrangien entre deux temps spécifiés t;
et to d’'un systéme conservatif est stationnaire :

tn+1 tn+1

0 Ldt=§ (K—=Ujnt —Uezt)dt =0 (7.16)

tn tn
ou K est I'énergie cinétique et Ugy: I'énergie externe. Les effets thermodynamiques ne
sont pas inclus dans le systéme. L’énergie interne U;,; est définie en fonction de chaque
formulation (Voir Egs. (7.11) et (7.12)). L’énergie cinétique est la somme des énergies
cinétiques de translation et de rotation :

1 1 1 .
K:f/pAz'ﬂGdzL“%—f/pAwédx%—f/pIGédx (7.17)
2 lo 2 lo 2 lo
et I’énergie externe est donnée par :
6
Uewt = —/l Puug dr — /l Powg dr — /l pobcdr — > Py (7.18)
0 0 0 i=1

avec p étant la masse volumique, p, et p,, les charges distribuées horizontales et verticales,
pp le moment distribué extérieur, P; le composant ¢ (forces et moments concentrés aux
nceuds) du vecteur de la force externe P.
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Le systeme hamiltonien ci-dessus manifeste les propriétés de conservation suivantes. Si les
charges externes sont conservatrices, I’énergie totale de I’élément de la poutre s’écrit :

K + Ujnt + Ugyr = constant (7.19)

La quantité de mouvement est définie par :

L:[tZ]:/lopAlgg]dx (7.20)

et le moment cinétique par :

uG el 0
J:/ pPA| wg | X | wg |dx+ [ p[| 0 |dz (7.21)
fo 0 0 b | g

La dérivée temporelle pour la quantité de mouvement et pour le moment cinétique est
définie par :

d J; pudx + P+ Py
—L=| o 7.22
de [flopwdx+P2+P5 ( )
d
aJ = /l (uG pw — wa py) dz + (21 + u1)Po — (21 + w1) P
0
+ (132 + u2)P5 — (2’2 + wg)P4 + / podr + Py + Ps = Myt (7.23)
lo

La quantité de mouvement et le moment cinétique sont constants apres la disparition des
charges externes. L’expression "charge externe" désigne toutes les conditions de chargements
possibles, y compris les réactions.

7.2.4 Article I

Dans cet article, le schéma d’intégration conservatif développé par Sansour [38, 39] est ap-
pliqué a la formulation poutre co-rotationnelle Bernoulli 2D. I.’idée centrale de I’algorithme
consiste a définir, par intégration, le champ des déformations en fin de pas & partir du
champ de vitesses de déformations et non a partir du champ des déplacements au travers
de la relation déplacement-déformation [38, 82]. La méme technique est appliquée aux
termes d’inertie. Le schéma d’intégration conservatif est basé sur la méthode du point
milieu classique :

[ H 0= 0,5 At = 5,y A0 (7.24)
tn 2 2

Alors, ’équation des motions a n + % est définie par :

ou T ow :
Gn+i Gn+i

Adi, 1 | —2"%2 ) gy / Adiy, 1 | =22 ) g
/lop G7n+2 ( aqn—i—% ) lop G7”+2 ( aqn+% )

T T
n / I Pansy dz+ [ EAe Ocn+y d
1 e X 1 T
o P G,n+§ 8qn+% o n+s3 8qn+l

0K T ou T
1 G, 1
+ | Elk, 1 s dx—/pun+; _onty dx
lo 2\ 94,41 o "2\ 0q,, 1
T T
ow 1 00 1
Gnts Gntsg
— | p 1| == dx—/p 1| ——2) dz—P,_,1=0 7.25
/lo w,n+3 aqn_’_% o 9,n+2 aqn+% n+s ( )



La dérivée du champ cinématique et du champ de déformations par rapport au déplacement
global g (le coté droit de chaque composant) est calculée a partir des équations co-
rotationnelles classiques. Les accélérations Ui oy 1 (e 1 éG’n +1 et les déformations
locales (¢, +10 Rl ) ne sont pas directement calculées & partir des déplacements nodaux,
des vitesses nodales et des accélérations nodales. En fait, ces variables sont fortement
non-linéaires, les comportements de couplages peuvent causer 'instabilité. Pour le voir
clairement, on montre tout d’abord comment les déplacements nodaux et les accélérations
nodales a n + % sont calculés :

At
Unit =9 T 5 nyl (7.26)

.. 2. 2,

En observant les équations ci-dessus, les déplacements nodaux et les accélérations nodales
dépendent principalement des vitesses nodales a n + % et les variables précédentes a pas n.
Pour éviter les couplages, chaque variable cinématique et déformation doit étre appliquée
la méme procédure & 1'aide des équations (7.26) et (7.27). Ces variables sont définies par :

.. 2 . 2 .

UG+l = Af UGyl — I UG,n

.. 2 . 2 .

Ugn+d = A7 Yonsl = 77 Wem (7.28)

. 2 . 2 .

9G,n+% = EGGJLJF% - EHG,n
En+% =é&nt 9 énJr% (7 29)
Kn+% :I{n+7lin+%

L’algorithme proposé assure la conservation de ’énergie totale, de la quantité de mouvement
et du moment cinétique. Ces propriétés sont prouvées théoriquement et sont présentées
dans Darticle I [40].

Exemple

Un seul exemple présenté ici est la poutre dans l'espace (cf. Fig. 7.2). La longueur est
L = 3 m, laire de section A = 0,002m? et le moment d’inertie I = 6,667 x 10~8m?.
Les propriétés du matériau sont : module élastique E = 210 GPa et mass volumique =
7850 kg/mg. Le nombre d’élément est 4 et le pas de temps est At = 1073 s.

Ce probleme est convenu pour étudier la conservation de la quantité de mouvement et
du moment cinétique. Puisque les charges verticales sont appliquées seulement au début,
la quantité de mouvement dans la direction horizontale doit étre nulle. La quantité de
mouvement présentée 3 la figure 7.3(b) est presque nulle avec la valeur maximale de 3x 1077,
Les figures 7.3(a), 7.3(b) et 7.4(a) montrent que ’énergie, la quantité de mouvement de
la direction verticale et le moment cinétique sont constants. Cet exemple a également été
testé avec les méthodes d’accélération moyenne et de HHT-«v (« = —0.01). La figure 7.4(b)
montre que le moment cinétique ne conserve pas avec ces deux méthodes.
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FIGURE 7.2: Géométrie et I'histoire de la charge

6000 . . .
\ 600
5000 1 .
6000 5728.25 _ 500} | x10 600.1 i
4000 5728.2 | £
4000 : = 0.5 600.05
3000 1 = 4001 |
= 5728.15 c
~ 2000 E| 0 600
3 2000 5728.1 1 @ 300 1
2 — o g 0.5 599.95
w
1000 5728.05 ] E ol |
= -1 599.9
-2000 5728 8 0 500 1000 500 1000
0 0 0.5 500 1000 ] 3
100 f —
-1000 1
0
2000 . . . ‘ ‘ ‘ . .
0 200 400 600 800 1000 0 200 400 600 800 1000
Time [s] Time [s]
(a) (b)

FIGURE 7.3: (a). Energie totale de la poutre, (b). Quantité de mouvement.
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FIGURE 7.4: (a). Moment cinétique du schéma d’intégration conservatif, (b). Moment
cinétique de la méthode d’accélération moyenne (gauche) et de la méthode HHT-a o =
—0.01 (droite).

7.2.5 Article I1

Dans ce travail, la méme conception du schéma d’intégration conservatif de 'article I
[40] est appliquée pour le développement de la formulation poutre co-rotationnelle plane
Timoshenko. En basant sur la méme description co-rotationnelle, trois formulations locales
sont testées avec un grand nombre de pas de temps. Les fonctions de forme et les hypotheses
de déformation pour chaque formulation locale sont présentées dans le tableau 7.1. Pour la
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formulation d’IIE, 'expression du la matrice tangente dynamique est compliquée et une
simplification est éventuellement étudiée. Pour les trois formulations, différents prédicteurs
sont aussi testés en fonction de temps de calcul (CPU time).

TABLE 7.1: Formulations

Formulations | Interpolation | Terme statique

RIE Linéaire Déformation linéaire avec I'intégration reduite
MX Linéaire Déformation linéaire avec la formulation mixte
I1IE Cubique Déformation de l’arc

Pour les formulations de RIE et MX, les interpolations linéaires sont utilisées dans les
coordonnées co-rotationnelles locales : u = Ny u, w = 0 et 6 = Ny 01+ N5 05. Par conséquent,
la matrice dynamique tangente s’écrit :

2
Kp,=— .
F= A (7.30)
ou la masse matrice constante M est donnée par :
[A/3 0 0 A/6 O 0 7
0 A/3 0 0 A/6 O
M = pl; 0 0o I/3 0 0 1/6 (7.31)

A6 0 0 A/3 0 0
0 A/6 0 0 A/3 0
o 0 I/6 0 0 I/3)

Cependant, pour la formulation d’ITE, la matrice tangente dynamique pour les termes
d’inertie est tres compliquée et son expression s’exprime :

afk,n+%
K,=—"—2
361n+1
2 T 1/ /o 2T
2

) (sar”) (v ) (2050

1 aqn+1
003 111 2 Of
T'™M,, T) | A e )| - 2 Zuwd 32
+ ( 1,62 ) ( q 04,11 ) At 9q,,41 (7:32)

La derniére expression est trés longue et son opération nécessite beaucoup de temps de
calcul. Afin de réduire ce temps de calcul, Geradin et Cardona [126, 101] ont suggéré de ne
garder que la matrice de masse et négliger les matrices gyroscopiques et centrifuges. Pour
la deuxieme simplification, la matrice tangente dynamique est proposée :

K; = A2t2 (TTMlT> (7.33)

95



avec T étant la matrice de rotation :

_anr% St 0 0 0 0
“Sntl Cnyl 0 0 0 0
1
el o
0 0 0 —snj% Wé 0
. 0 0 0 0 0 1 |

Par ailleurs, le choix du prédicteur est aussi important pour rendre le calcul plus efficace.
Un prédicteur médiocre peut augmenter le nombre d’itérations, et dans certains cas la
solution ne converge pas. Trois prédicteurs ont été proposés et testés :
e Le premier prédicteur (Pred.1), appelé "déplacements inchangés", est utilisé par Simo et
Vu-Quoc [100]

Qs = 40 (7.35)

e Le second prédicteur (Pred.2), appelé "accélérations nulles", est proposé par Cardona et
Géradin [101], Méakinen [127], Chung et Hulbert [128]. Les accélérations nulles sont utilisées
pour la solution au temps n + 1. Pour la méthode du point milieu, les accélérations nodales
au temps n + % sont nulles. Alors, les déplacements sont définis par :

dni1 =49, +ALG, (7.36)

e L’idée du troisieme prédicteur (Pred.3), proposée par de Borst [129], est de supposer que
le systéeme se comporte linéairement entre n — % et n+ % Dans le cas présent, le Pred.3
s’écrit :
2 2
INZ T"MT + K, . Aq = N Fuwon-1 — fg,nf% + fezt,n+% (7.37)

1 2
n—s3

Exemple

Un exemple de poutre en arc est présenté ici. Une poutre de portée L = 10 m avec les
extrémités encastrés est présentée a la figure 7.5. Le rayon R est de 10 m et la hauteur
H de 1.3997 m. La poutre est soumise & une charge concentrée P = Pysin(wt) a mi-
portée. L’amplitude de la charge Py est de 80 MN et sa fréquence est de 1000 rad/s. Les
caractéristiques de la poutre sont : I’aire de section A = 0,087 m?, le module élastique
E = 210 GPa, le moment d’inertie I = 3,562 x 103 m?, le coefficient de Poisson v = 0, 3
et la masse volumique p = 7850 kg/ m>. La pas de temps est At = 107" s.

FI1GURE 7.5: Géométrie et 'histoire de la charge.
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FIGURE 7.6: (a). Déplacement vertical, (b). Erreur relative d’énergie.

Pour la présentation des résultats, les couleurs ci-dessous sont utilisées pour la figure 7.6.
= = — = Reference solution = [IE formulation

Reduced integration method == Mixed formulation

Le nombre d’éléments est : 8 pour la formulation ITE, 16 pour la formulation mixte, 24
pour la méthode d’intégration réduite et 100 pour la solution de référence. La figure 7.6(a)
présente le déplacement vertical v & mi-portée pour les quatre analyses. Avec seulement 8
éléments, le résultat obtenu par la formulation d’IIE est légerement différent en comparant
avec la solution de référence. Cependant, des écarts importants sont observés entre les
résultats obtenus par la formulation mixte (16 éléments) et par la méthode d’intégration
réduite (24 éléments).

Pour les trois formulations, 'erreur relative d’énergie est présentée a la figure 7.6(b). La
plus grande valeur est d’environ 3 x 10~® pour une énergie externe maximale de 1,85 x 108
J. Ces résultats ont prouvé que la stabilité de ’alogrithme est assurée pour une durée
longue méme pour un grand nombre de pas (un million).

Les performances numériques des ces formulations sont détaillées dans I'article II [41]. Pour
chaque formulation, les trois prédicteurs ci-dessus ont été testés. Pour 'approche I1E; la
matrice tangente dynamique (Eq. 7.32) et la matrice simplifiée (Eq. 7.33) ont été testées.
Pour chaque exemple, le méme nombre d’éléments (correspondant au nombre des éléments
de l’approche MX figurant dans le tableau 2 de larticle II) ont été utilisés dans toutes
les analyses. Dans le tableau 7.2, le temps de calcul et le nombre total d’itérations (entre
parentheses) sont donnés pour chaque cas de 5000 pas.

TABLE 7.2: Peformances numériques pour la poutre en arc

RIE MX IIE-exact  IIE-simp.
Pred.l 38 (14999) 38 (14999) 138 (18569) 110 (22902)
Pred.2 38 (14999) 38 (14999) 114 (15000) 97 (19951)
Pred.3 38 (14997) 38 (14997) 115 (14999) 99 (19996)
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Les conclusions suivantes peuvent étre conclues :

e Pour les approches RIE et MX, tous les prédicteurs donnent presque le méme temps de
calcul. Pour la formulation ITE, le Pred. 2 donne le temps de calcul le plus bas, mais la
différence entre les prédicteurs 2 et 3 n’est pas significatif.

e Le temps de calcul et le nombre d’itérations pour les formulations RIE et MX sont
quasiment identiques. Cela est juste puisque la seule différence entre ces approches réside
dans différentes matrices de rigidité locales (constantes). Cependant, comme indiqué
précédemment dans les exemples, 'approche RIE exige un plus grand nombre d’éléments
afin d’obtenir une solution précise.

e Pour la formulation IIE, il est préférable d’utiliser la matrice de rigidité tangente simplifiée.
Le nombre des itérations augmente mais le temps CPU diminue de 20% a 40% (Pred. 2).
e Avec le Pred. 2, la formulation ITE (avec matrice dynamique tangente simplifiée) nécessite
environ 2,0 a 2,6 fois plus de temps processeur que la formulation MX. Par contre, les
résultats ont montrés qu’avec deux fois plus d’éléments, la formulation MX donne moins des
résultats précis que la formulation IIE. Il est donc difficile de conclure si une formulation
est plus efficace que 'autre.

7.2.6 Article I11

Dans cet article, une poutre co-rotationnelle plane avec rotules généralisées élasto-(visco)-
plastiques aux extrémités est développée et comparée aux modeles fibres pour des problemes
d’impact. Pour le modeéle avec des rotules généralisées, le comportement d’inélastique est
simulé par des rotules généralisées placées aux deux extrémités d’un élément poutre
Bernoulli élastique. Puisque ces éléments introduisent des degrés de liberté supplémentaires,
la condensation statique est nécessaire au niveau de la formulation locale. Par conséquent,
la poutre co-rotationelle classique a deux nceuds peut étre utilisée. Les rotules généralisées
prennent en compte l'interaction entre le moment de flexion M et la force normale N [132].
En plus, les coefficients de rigidité élastique de la poutre et des rotules sont déterminés de
maniere a ce que la rigidité élastique totale de 1’élément soit conservée.

Modele de plasiticté pour les poutres co-rotationnelles planes

Pour le modele de poutre Bernoulli, I’élément est basé sur la théorie de poutre linéaire en
utilisant une interpolation linéaire pour le déplacement axial local et une interpolation
cubique pour le déplacement transversal local. Pour le modele de poutre Timoshenko, une
méthode d’intégration réduite est basée sur des fonctions de forme linéaire et un point
d’intégration gaussien pour éviter le verrouillage par cisaillement.

Dans ces modeles, on suppose que la vitesse de déformation est la somme de la vitesse de
déformation élastique et la vitesse de déformation plastique :

e

_l’_

[
[

—
- —
—

P (7.38)

La vitesse de déformation plastique est déterminée par la regle d’écoulement plastique :

: . 0P
==\ ——

ott B est un multiplicateur plastique. X est le vecteur de champs des contraintes. La
fonction de rendement ® pour chaque formulation est définie par :
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1/ Pour la poutre Bernoulli :
=|o| —oy (7.40)

avec X = o et 0y étant la limite élastique.
2/ Pour la poutre Timoshenko, la fonction de rendement de von Mises est utilisée :

o= (02 + 37’2) V2 oy (7.41)

avec X = [0 T].

La regle d’écoulement vicso-plastique est introduite pour étudier les effets de taux de

déformation. Ca s’écrit :
¢
: ®
A= D () i @20

oy (7.42)

=0 if <0

ot @ est donnée par une fonction de puissance de type Cowper-Symonds-Bonder [130, 131].
D and ¢ sont des constantes matérielles ; pour 'acier doux, ¢ = 5 and D = 40.4 s~! selon
Cowper et Symonds [130] et pour I'alliage d’aluminum, ¢ = 4 et D = 6500 s~ ! selon Bonder
et Symonds [131].

Les détails de derivation de la matrice tangente sont présentés dans l'article III.
Rotules généralisés

Un élément poutre se compose de trois sous-éléments : un élément de poutre Bernoulli
élastique et deux rotules elasto-(visco)-plastique généralisées modélisées par une combinaison
de ressorts axiaux et rotatifs (cf. Fig. 7.7). L’allongement ou le raccourcissement des rotules
se produit le long de 'axe de la poutre. Les rotules généralisées peuvent étre considérées
comme |’élément avec une longueur nulle en état initiale. En assemblant ces rotules avec
I’élément de la poutre et en effectuant une condensation statique, un super élément a
deux noeuds (cf. Fig. 7.7) est obtenu. Cet élément est ensuite incorporé dans la description
co-rotationelle afin d’introduire des non-linéarités géométriques. Le déplacement axial local
u1 est supposé a 0.

M, 0, M4, 0,
(@ @‘5 Ny,
M1 0, M,, 0, Mb 0, Mbi 0; Mf 03 M4,94N
N = \/‘ ; N, Gy Ny u;( } Nys Tig N3 s \: @ ; 4y
(2]
I ’) =0 | 12 | l(f/ 0
e \ g e

FIGURE 7.7: Local super-element.

La motion de I’élément poutre a deux noeuds est présenté a la figure 7.8. Les vecteurs des
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FIGURE 7.8: Beam kinematics.

déplacements globaux, locaux et des sous-éléments sont respectivement définis par :

q= { iy 01 04 }T (7.43)

Le modele des rotules généralisées en elasto-plastique suppose que la plasticité est concentrée
aux ressorts axial et rotatif situés a 'extrémité de I’élément de poutre flexible. Le compor-
tement élastique des rotules généralisés est découplé tandis que l'interaction axiale-moment
est considérée dans le domaine plastique. Nous adoptons la décomposition de la vitesse de
déformation généralisée totale par des parties d’élastique et de plastique qui contiennnet la
vitesse de déformation axiale et rotative. Pour une reégle de flux associée, la direction de
la vitesse de déformation plastique est donnée par le gradient a la fonction de rendement,
avec son amplitude donnée par le taux de multiplicateur plastique. Le vecteur de contrainte
généralisé contenant la force normale et la flexion est représenté par X = [N M]T. Le
multiplicateur plastique A est déterminé par les conditions complémentaires classiques :

A>0, ®N,M)<0, AO(M,N)=0 (7.44)
La regles de flux de visco-plasticité pour les rotules généralisées est définit par :
A=D*(®)° if >0
(@ if = (7.45)
=0 it ®<0

ou D* and ( sont des constants de matériaux. La valeur D* sera sélectionnée de maniere
appropriée en fonciton de I’étude de cas.

On considére une famille des surfaces convexes et symétriques de formes super-elliptique

généralisée :
1
B\ p
(7.46)

(M, N) = ( N

M
Mp
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ou «, [ et p sont des parametres pour la surface de rendement.
Matrice de rigidité locale pour les rotules généralisées

En supposant que le comportement élastique est linéaire, les contraintes généralisées sont
données comme suit :

Y =C.(E-ZEP) (7.47)
et la matrice de rigidité élastique est donnée par :
kg O

oo [t 0] -

Dans le cas de (visco)-plasticité, 'incrément de la contrainte résultante pour la premieére
rotule (expression similaire pour la seconde rotule) est défini par :

[ANQ]:lCH cmHA@_Ml]

AM, Cor Con | | Ay — NGy (7.49)

Les détails sur les équations discretes des rotules plastiques généralisées sont décrits dans
[132, 133].

Pour la condensation statique, la force interne locale f; et la matrice de rigidité locale k;
sont données par :

Afi=k Aq
k; = knn, — kyy, k' ko

En élasticité, la matrice de rigidité locale k; devrait étre la matrice rigidité locale de
Bernoulli :

(7.50)

EA/ly 0 0
0 4EI/ly 2EI/l (7.51)
0 2EI/ly 4EI/l

Les parametres de rigidité du sous-élément de la poutre élastique sont définis par :

kaw = on EA/ZO

7.52
ks = om EI/ly (7:52)

]{,‘11 = Wi EA/ZO
kgg = k33 = W9 EI/Z() (753)
]{723 = k32 = W3 E[/lo

En introduisant les équations (7.52) et (7.53) dans la deuxiéme expression des équations
(7.50), les relations suivantes sont obtenues :

@ =(1-20,")"

o — 4Qm(9m*3)
LT 0% —Bom + 12 (7.54)
B 2 02,
3 R 1 12

L’idée de cette procédure est donc de choisir les coefficients des rotules ¢, 0,, . Puis, on
calcule des coefficients wi, we, w3 en utilisant I’équation (7.54).
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Concernant des analyses d’impact, le modele de contact est développé dans un cadre
rigoureux de la dynamique non-lisse. Les équations des motions sont dérivées en utilisant
un ensemble de mesures différentielles et outils d’analyse convexe. Les sauts de vitesse
aux instants d’impact sont considérés en utilisant les lois d’impact par un coeflicient
de restitution € pour tenir compte d’éventuelles pertes d’énergie lors des collisions. Les
équations dynamiques sont résolues en utilisant le schéma d’intégration conservatif [40, 41].

Exemple

Trois portiques métalliques sont présentés a la figure 7.9. Un poteau de chaque structure
est soumi a une masse m de la position A avec la vitesse initale vg. Les parametres de
I’élément de la poutre sont : le module élastique £ = 210 GPa, la limite élastique o,
= 355 MPa et le coefficient de poisson v = 0.3. La fonction de rendement de rotules
est ®(M,N) = |M/M?|*? + |N/N?|> — 1 pour la section carrée. Le pas de temps est
At =107,

6 m

4 m

3m 3m

|
1
[N o 4 4
1 v
S 3 3
0.2 m - 0.2 m ” 0.2m o
[« [« [«
muy | muy | i my
O UM OME
: :
<~ ~< - < - <<
(a) (b) (c)

FIGURE 7.9: Géométrie avec I'impact

Concernant la discrétisation, le taille de chaque élément est de 0.1 m pour le modele de
fibre. Pour les rotules, un élément est pris pour chaque élément sauf deux éléments sont
considérés pour le poteau sous 'impact. La figure 7.10 montre 1’évolution des déplacements
maximaux du poteau sous l'impact pour une vitesse initiale de 30 m/s (la structure c).
Pour le cas plastique, le résultat obtenu par les rotules généralisées est en bon accord avec
les deux modeles de fibre type Bernoulli et Timoshenko. En outre, la série de calcul sur le
déplacement maximal du poteau sous I'impact est résumée dans le tableau 7.3. Les écarts
entre les modeles de fibre Timoshenko et Bernoulli sont tres faibles et ne dépassent pas de
3%. La différence maximale entre les rotules généralisées et les modeles de fibre avoisine
11%. Ce qui est acceptable compte tenu du fait que le modele de rotule utilise peu nombre
d’éléments.
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FIGURE 7.10: Evolution du déplacement maximal du poteau sous Pimpact de la structure
c avec vg = 30 m/s

TABLE 7.3: Modele plastique : déplacement maximal du poteau sous I'impact : Mass de
véhicule 1500 kg, section carrée 20 cm, € = 0

Timoshenko Bernoulli Rotules
Structure a (vp = 20 m/s) 0.1085 0.1074  0.1030
Structure a (vg = 30 m/s) 0.1905 0.1909 0.1907
Structure a (vp = 40 m/s) 0.2718 0.2728  0.2739
Structure b (vo = 20 m/s)  0.1261 0.1232  0.1118
Structure b (vg = 30 m/s) 0.2454 0.2493 0.2351
Structure b (vo = 40 m/s)  0.3940 0.3994  0.3883
Structure ¢ (vgp = 20 m/s) 0.1200 0.1226 0.1125
Structure ¢ (vgp = 30 m/s) 0.2521 0.2579 0.2414
Structure ¢ (vg = 40 m/s) 0.4136 0.4253 0.4086

Pour I’étude sur Ueffet de déformation, ¢ = 5 et D = 40.4 s~! sont employés pour le modele
de fibre tandis que ¢ = 5 et D* = 2.025 x 10® s~! sont utilisé pour le modéle de rotules
généralisées. Le tableau 7.4 montre le déplacement maximal du poteau sous I'impact. Les
écarts entre les deux modeles de fibre ne sont que de 3% et cela indique que 'effet de
cisaillement n’influence pas sur les déplacements globaux. Avec le choix de la valeur D*, ce
modele peut reproduire les résultats corrects (voir I’évolution du déplacement a la figure
7.10). Sa différence maximale en comparant avec les modeles de fibre est 11%.
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TABLE 7.4: Modeéle visco-plastique : déplacement maximal du poteau sous I'impact : Mass
de véhicule 1500 kg, section carré 20 cm, € = 0

Timoshenko Bernoulli Rotules

Structure a (vo = 20 m/s) 0.0804 0.0780 0.0763
Structure a (vp = 30 m/s) 0.1402 0.1367  0.1469
Structure a (vp = 40 m/s) 0.2011 0.1982 0.2228
Structure b (vg = 20 m/s) 0.0854 0.0856 0.0799
Structure b (v = 30 m/s) 0.1645 0.1625 0.1625
Structure b (vg = 40 m/s) 0.2659 0.2638  0.2685
Structure ¢ (vgp = 20 m/s) 0.0853 0.0840 0.0806
Structure ¢ (vg = 30 m/s) 0.1644 0.1635 0.1641
Structure ¢ (vgp = 40 m/s) 0.2718 0.2714 0.2743

Une autre serie de calcul pour la masse de 3000 kg, la section carrée 25 cm et la valeur € =
0.5 est présentée dans le tableau 7.5. Avec la méme valeur de D* = 2.025 x 10% s7! | la
différence du déplacement maximal entre le modele de rotules généralisées et le modele de
fibre reste dans le méme écart (10%).

TABLE 7.5: Modele visco-plastique : déplacement maximal du poteau sous I'impact : Mass
de véhicule 3000 kg, section carrée 25 cm, € = 0.5

Timoshenko Bernoulli Rotules

Structure a (vp = 20 m/s) 0.0842 0.0819  0.0761
Structure a (vp = 30 m/s) 0.1525 0.1495 0.1524
Structure a (vg = 40 m/s) 0.2240 0.2196  0.2389
Structure b (vo = 20 m/s)  0.0876 0.0869  0.0787
Structure b (vgp = 30 m/s) 0.1697 0.1700  0.1630
Structure b (vg = 40 m/s)  0.2743 0.2746  0.2714
Structure ¢ (vg = 20 m/s) 0.0860 0.0854 0.0793
Structure ¢ (vgp = 30 m/s) 0.1685 0.1700  0.1641
Structure ¢ (vg = 40 m/s) 0.2775 0.2803 0.2765

7.3 Poutre spatiale d’Euler-Bernoulli géométriquement
exacte (Article IV)

Dans cet article, une théorie de poutre spatiale d’Euler-Bernoulli géométriquement exacte
est développée. Le principal défi dans la construction d’une telle théorie réside dans le fait
qu’il n’existe aucun moyen naturel de définir un triedre orthonormé dans la configuration
déformée. Une nouvelle méthodologie permettant de définir ce triedre et par conséquent de
développer une théorie de poutre spatiale en incorporant I’hypothése d’Euler-Bernoulli est
fournie. Cette approche utilise le processus d’orthogonalisation de Gram-Schmidt couplé
avec un parametre rotation qui complete la description cinématique et décrit la rotation
associée a la torsion. Ce processus permet de surmonter le caractére non-unique de la
procédure de Gram-Schmidt.

Dans ce chapitre, la cinématique de la poutre spatiale géométriquement exacte et ses
déformations sont présentées. On présente le principe de travail virtuel pour dériver
I’équation des motions. Ensuite, le schéma d’intégration conservatif est présenté et est
appliqué a la nouvelle formulation ainsi qu’un exemple de grand déplacement.

64



F1Gure 7.11: Cinématique de la poutre spatiale

7.3.1 Cinématique de la poutre

Soit B C R? oti B définit une configuration de référence d'un corps matériel. (t) : B — R3
est une incorporation dépendant d’un parametre temporel ¢ € R. Donc, ¢ = ¢ (t = to)
définit une configuration de référence qui permet 'identification des points matériels. Alors,
pour la position référentielle X € B et la position déformée x € By, on a : x(t) = (X, )
et X(t) = ¢! (x,t) . Soit e;, i = 1,2,3 les vecteurs de base cartésiens. Dans la figure
7.11, tous les points centraux de la section transversale sont définis par une longueur de
l'arc (L € R) au configuration de référence désignée par s € [0, L] C R. Par conséquent, un
systéme de coordonnées curvilignes est décrit par le triple (s, z,j) pour tout point matériel
de la section transversale.

Soit X la position de la ligne centre dans la configuration de référence et on a :
X(s,2,5) = Xo(s) + 2N (s) +jM(s) (7.55)

On définit le vecteur tangent d'unité T' = 90X /0s| j=z—0- De méme, on introduit les
vecteurs : Th = 0X /0s, N = 0X /0z et M = 90X /0j. Ainsi, le triplet (T'1, N, M) définit
des bases locales curvilignes pour la configuration de référence. Les vecteurs correspondants
a la base de contrevariantes sont ensuite donnés par (Tl, N, M ) avec T =T/ |T1|2 ou

|e| dénote la norme d’un vecteur.

Les vecteurs tangents correspondants a la configuration déformée sont définis par (g, n, m)
avec g = 0x/0Js. n et m sont les vecteurs normaux de la section. A partir de la figure 7.11,
la position x au point A’ de la configuration déformée est définie par :

(s, z,j) = Xo(s) +u(s) + zn(s) +jm(s) (7.56)
ot u(s) est le vecteur de déplacement de la ligne centre. Le vecteur g est obtenu :
g=zs=Xps+us+zn,+jmg (7.57)

et le vecteur tangent unitaire ¢ par

XO,S + U s

t=—"7-"-—""—
|X0,s + u,s’

(7.58)

ou une virgule indique la dérivée.
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Deux méthodes pour définir les vecteurs normaux de la section transversales dans la
configuration déformée sont définies dans la section suivante :

Premiére methode

Par le processus de Gram-Schmidt, le vecteur n* est construit par la base du vecteur
tangent ¢t et 'un des vecteurs normaux (IN ou M) dans la configuration de référence.
Dans ce processus, l'orthogonalité de deux vecteurs (n* et t) est assuré. Par conséquent, le
vecteur normal n* est défini :

M- (M-t)t

n*:]N—(N:t)t] Or n*:]M—(M-t)t\ (7.59)

ou un point indique le produit scalaire de deux vecteurs.

Ce systeme de base est ensuite tourné vers le dernier déformé par un tenseur de rotation
R;. Ce vecteur de la rotation est parallele au vecteur tangent a la configuration déformée.
Donc, cette rotation n’a qu’un seul parametre . Ce parametre définit un angle qui décrit
le mouvement de torsion de la section transversale. Le tenseur de rotation R; [124, 125]
est défini par :

Ry =I+sinyIl;, 4+ (1 —cosy) L, T, (7.60)

ou I'; désigne la matrice asymétrique du vecteur ¢ :

—4(3)  t(2)
L= t3) 0 —t1) (7.61)
—t(2) t1) 0

Alors, le vecteur n dans la configuration déformée est obtenu :
n=R;n" (7.62)

Puisque ’hypothése de la théorie Euler-Bernoulli est utilisée, le vecteur m reste normal
avec les autres vecteurs (n, t) apres la déformation et est donc défini par m =t x n ou x
désigne le produit croisé de deux vecteurs.

Deuxiéme methode

Dans une second approche, le tenseur de rotation est défini par la base des premieres et
secondes dérivées du vecteur de déplacement de la ligne centre associé avec un parametre
de rotation «. La matrice de rotation totale est obtenue par une multiplication de deux
matrices de rotation :

R =Ri(vt) Ry (w) (7.63)

ou le tenseur de rotation R; est defini dans la premiere méthode. w est le vecteur de
rotation de Ro qui calcule a partir de ’expression suivante :

T -t=|T||t|cosa =cosa (7.64)
T x t = |T||¢t| sina,uj—‘ = % (7.65)
w o
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avec « étant 'angle de deux vecteurs T and t. On a :

= T xt 7.66
v sin « (T'>¢) ( )
Le tenseur de rotation Ro est défini par :
sin « 1 —cosa
Ro=1+ 5 L, 2 r,r,
1
=1+, +——I, T .

+—v+1+T.t—v—v (767)

ou L', designe la matrice asymétrique du vecteur w et L', la matrice asymétrique du
vecteur v =T X t.

Enfin, les vecteur normaux dans la configuration déformée sont définis par :

7.3.2 Déformations

Le gradient de déformation est défini par le systéme de bases curvilignes : F = g @ T +
n® N +m ® M. Le tenseur de déformation droite de Cauchy est défini comme FTF, ce
qui donne sous la forme matricielle :

. g g . n g . m
‘n 1 0 (7.70)
-m 0 1

C=

Qww

Ensuite, on peut calculer le tenseur de déformation de Green par E = %(C —1I). Les
composants non-triviaux du tenseur de Green s’écrivent :

E11 =€11 +2K1 + j K9 (771)
1.

E12 = 5] K12 (772)
1

E13 = 5 Z K13 (7.73)

avec €11 étant la déformation axiale, k1, ko les courbures de la direction z et j, respec-
tivement, k12 et k13 sont des torsions de la section transversale. Les déformations sont
obtenues :

1
E11 ~ X073 S+ §u7s “U g (7.74)
K1 = (X0’5+u75) ‘Mg —X075 -N75 (775)
Ko = (X078+u7s) -m75—X075 'M73 (776)
Kie=n-ms—N-M (7.77)
ﬂ13:n75-m—N7s-M (778)

La déformation axiale est simplifiée en négligeant des termes de second-ordre 22 et j2 puisque
I’épaisseur de la poutre est faible par rapport a sa longueur. En plus, k13 = —k13 sont
égales en magnitude car la condition de normalité (m -n — M - N) . = 0 est satisfaisante.
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7.3.4 Principe du travail virtuel

Le principe du travail virtuel en dynamique est donné par :

to 2K
/ (/ pfi‘-éde—F/EEll(SElldV-l-/ ——— F190FE1,dV
t1 \% 1% vi+v
—|—/2EE OE dV—/ (s) 5uds—§P‘ du; | dt =0 (7.79)
vitu 13 13 Lp gt % 7 - .

L’équation (7.79) réduit a

to
/ (/pAil-cSuds—i—/pIzﬁ-5nds+/ijm-6mds
t1 L L L

+/EA 5115611d8+/EIZK15K1d8+/EIjI€25K2dS
L L L

+/ GI; H125H12d5+/ GI, k130Kk13ds
L L

=1

ou V est le volume et L la longueur de de la poutre, p le densité du matériau, A Iaire de la
seciton transversale, I, et I; les moments d’inertie. ¥ est le module élastique du matériau
et G le module de cisaillement et le coefficient de Poisson v. P;, i = 1,2, ..., N sont la force
concentrée et p est la force externe distribuée.

Comme k19 = —K13, les termes liés a la torsion peuvent étre combinés en seul terme :

/ GIj K12 (5%12 ds + / GIz K13 5/4313 ds = / G (Ij + Iz) K12 (5%12 ds = / GJ K12 (5:‘@12 ds
L L L L

(7.81)
En fait, la constante de torsion J égale a I; + I, n’est que valable pour la section circulaire.

Cependant, pour toute section transversale arbitraire, la constante de torsion réelle J est
adoptée au lieu des termes I; + 1.

Alors, I'equation (7.82) s’écrit :

to
/ (/ pAii-éuds+/pIzﬁ-énds+/ijm-5mds
t1 \JL L L

+/EA 811(5611d8+/EIZK16f€1d8+/EIjHQ(SHQdS
L L L

N
+ / GJ k12 0Kk12ds — / p(s) - du ds — Z P, 5ui> dt =0 (7.82)
L L

=1

7.3.5 Schéma d’intégration conservatif

La méthodologie générale pour la construction systématique de schéma d’intégration
conservatif a été développée par Sansour [38, 39] et est appliquée avec succes aux différentes
formulations de la coque et de la poutre. L’idée principale est que les non-linéarités
géométriques et matérielles sont traités différemment. Les complexités de non-linéarités
géométriques sont résolues en calculant la vitesse de déformation, par intégration, les
expressions pour la mesures de déformation elles-mémes. La méme technique est appliquée
aux termes d’inerties.
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L’équation de motion est obtenue par 'application de ’équation (7.24) a I’équation (7.82) :

oo

+/LEA €1intl (

ou
dq

T
) ﬁn+%d5+/LpIZ <

Oe11
dq
OK9

on

dq

T
> ds—l—/LEIz/ianré(

T
) ﬁnJr%ds—l—/Lij <

8/{1 T
8(1) dS

O0K12

om

dq

) -

m

n+% ds

T
>ds

T N
=1

T
8(1) dS‘i‘/LGJ:‘€12n+é(

) Puryoras— (3

4 [ Bk, (

/L iFontl

_/ (8u
L

dq
L’idée principale est d’utiliser des champs de vitesses cinématiques et des champs de vitesses
de déformations pour définir les champs cinématiques et des champs de déformations au
lieu du calcul directement a partir des déplacement nodaux, des vitesses nodales et des
accélérations nodales. Les champs de vitesses cinématiques et les champs des vitesses de
déformations sont définis par :

dq

u
5 (7.83)

) on . on .
nn_i_% = Wsuﬁn—i_% + a’}’m_%
. om om .
1 :OTU’S"+%+37’Y%+%

€11 n+% = (XO,s + u,anr%) ’ u,anr%
) n,anr% + (XO:S + u,sn+%) ' n,sn+%

T gl T (XO’S + %m%) M sn+3

(7.84)
’%l n+% = u,s n+%

Ko n-‘,—% = u,s n—l—%

HlZn—l—% = nn—i—% ) m,sn—l—% + nn—f—% ) m,sn—l—%

Alors, les champs de cinématiques et les champs des de déformations sont définis & pas
1 .
n+ 5 par:

. 2 . 2 .
'n,n+% :EnnJr% Enn
L2 2
s} = Rt T
1.,
€11 ny L 511n+§At€11n+1 55)
1 . ’
K’ln-}—% :Hln_‘_?Atﬁln—&—l
1.,
Koyl :m2n+§At/£2n+1

1A .
R12n43 —”12n+§ tRigpyl

En faisant cette procédure, la conservation de 1’énergie et de la quantité de mouvement
ont été prouvées théoriquement et sont présentées dans 'article IV.

Exemple

69



Le portique de Roorda-Koiter [26] est présenté ici. Une seule différence est que la continuité
de ce portique a été retenue par le petit rayon R égal a 0,25 m, voir la figure 7.12(a). Le
portique a une section rectangulaire uniforme et est soumi a deux forces hors du plan. La
forme de deux forces appliquées est présentée a la figure 7.12(b). La longueur L est de 12
m, la largeur de 0,3 m et la hauteur de 0.2 m. Le module élastique E du portique est 210
GPa et le coefficient de Poisson 0.3. La masse volumique est de 7850 kg/ m®. La pas de
temps est At = 1074 s.

La discretization de I’élément de la poutre est : 22 éléments (11 éléments pour la poutre et
11 éléments pour le poteau) pour le référence et 10 éléments (4 éléments a poutre droite et
1 courbe) pour la formulation proposée. Les figures 7.13(a), 7.13(b) et 7.14(a) présentent
des déplacements en point A. On observe qu’avec seuelement 10 éléments, la nouvelle
formulation produit de bon résultat en comparant avec la solution de référence. Sur la
figure 7.14(b), I’énergie est conservée pour un million de pas, ce qui montre la stabilité de
I’algorithme.

"
>
=
—>
Y
N

L/2

0 01 02

FIGURE 7.12: (a). Géométrie, (b). Histoire de la charge.
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FIGURE 7.14: (a). Déplacement u, du point A, (b). Evolution de I’énergie.

7.4 Conclusion et perspective

7.4.1 Conclusion

Le plupart des efforts sont consacrés principalement au développement du schéma inté-
gration conservatif qui conserve 1’énergie totale, la quantité de mouvement et le moment
cinétique pour la poutre planaire co-rotationnelle. Ces modeles sont développés avec divers
buts et sont présentés dans les articles I, IT et III. L’article IV est consacré au développe-
ment du schéma d’intégration conservatif de la nouvelle formulation de la poutre spatiale
FEuler-Bernoulli géométriquement exacte dans ’approche totale lagrangienne.

Poutre co-rotationnelle Bernoulli plane

Le schéma d’intégration conservatif pour la poutre planaire co-rotationnelle de type
Bernoulli est développé. L’idée centrale de I'algorithme consiste a définir, par intégration,
le champ des déformations en fin de pas a partir du champ de vitesses de déformations et
non & partir du champ des déplacements au travers de la relation déplacement-déformation.
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La méme technique est appliquée aux termes d’inertie. L’avantage de cet algorithme est la
conservation de ’énergie totale, de la quantité de mouvement et du moment cinétique. Ces
caractéristiques ont été prouvées théoriquement et confirmées numériquement en utilisant
quatre exemples numériques.

Poutre co-rotationnelle Timoshenko plane

Trois formulations de la poutre planaire co-rotationnelle Timosheko ont été présentées
et testées en utilisant le schéma d’intégration conservatif. Les formulations proposées
different dans le choix de la définition de la déformation locale et des interpolations locales.
Si les déformations et les fonctions de forme linéaire locales sont prises, les résultats
numériques montrent qu’il est plus efficace d’utiliser une approche mixte au lieu d’une
méthode d’intégration réduite : le temps de calcul (CPU) est inchangé mais la méme
précision est obtenue avec peu nombre d’éléments. Les résultats numériques ont aussi
montrés qu’il peut étre intéressant d’utiliser une approche de déformation locale non-linéaire
avec les interpolations cubiques. Tandis que le temps de calcul est augmenté car les termes
dynamiques sont compliqués, mais la méme précision est obtenue avec peu élément utilisé.
Pour cette approche, une matrice tangente dynamique simplifiée devrait étre prise et que
le choix d’un prédicteur efficace peut étre important.

Poutre co-rotationnelle plane en elasto-(visco)-plastique de 1’élément fibre et
des rotules généralisées élasto-(visco)-plastique

Une poutre co-rotationnelle plane avec rotules généralisées élasto-(visco)-plastiques aux
extrémités est développée et comparée aux modeles fibres pour des problemes d’impact.
L’idée principale de rotules généralisées est de combiner un élément poutre élastique avec
des rotules généralisées a ses extrémités. Pour incorporer 1’élément obtenu dans le contexte
de co-rotationnel, on effectue une condensation statique afin de supprimer les degrés de
liberté supplémentaires. En outre, les équations de motion sont résolues en utilisant un
schéma d’intégration conservatif qui conserve I’énergie totale en cas élastique.

Des résultats numériques montrent que les modeles de fibre sont tres efficaces a prédire les
déplacements de la structure et sont utilisées comme la solution de référence en prenant
beaucoup d’éléments. En plus, les effets de la déformation par cisaillement pour les modeles
de fibre n’influencent pas les résultats globales de déplacements. Par ailleurs, le modele de
I’élément poutre avec rotules généralisées en utilisant peu nombre d’éléments est capable de
reproduire un bon résultat de déplacement maximal en comparant avec les modeles fibres
de types Bernoulli et Timshenko. Enfin, les effets de la vitesse de déformation influencent
sensiblement la réponse de la structure.

Poutre spatiale d’Euler-Bernoulli géométriquement exacte

Le schéma d’intégration conservatif pour la poutre spatiale géométriquement exacte a été
développé. Le principal défi dans la construction d’une telle théorie réside dans le fait
qu’il n’existe aucun moyen naturel de définir un triedre orthonormé dans la configuration
déformée. Une nouvelle méthodologie permettant de définir ce triedre et par conséquent
de développer une théorie de poutre spatiale en incorporant I’hypothese d’Euler-Bernoulli
est fournie. Cette approche utilise le processus d’orthogonalisation de Gram-Schmidt
couplé avec un parametre rotation qui complete la description cinématique et décrit la
rotation associée a la torsion. Ce processus permet de surmonter le caractére non-unique
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de la procédure de Gram-Schmidt. La formulation est étendue au cas dynamique et un
schéma intégration temporelle conservant I’énergie est également développé. Cet algorithme
proposé peut conserver 1’énergie totale du systéme, la quantité de mouvement et le moment
cinétique.

7.4.2 Perspective

Les modeles développés dans cette these se concentrent sur le schéma d’intégration conser-
vatif pour les éléments poutres non-linéaires. Cependant, il y a autres modeles a développer
et a perfectionner. Les recherches a I’avenir sont suggérées comme suit :

Schéma d’intégration conservatif avec la dissipation numérique

Les travaux précédents comme Kuhl et Ramm [75], Romero et Amero [76], Ibrahimbegovié
et Mamouri [77], Mamouri [78], Gams [79] ont été soulignés qu’il est trés important
d’avoir une dissipation numérique contrélable dans le schéma d’intégration conservatif
afin d’amortir des hautes fréquences, en particulier pour les problémes raides. Comme
discuté dans les articles [77, 79], méme si 1’énergie est préservée dans le sens global et
est stable sans conditions, les forces internes au niveau de 1’élément peuvent exposer de
hautes fréquences parasites. Dans ce contexte, le probleme numérique qui vient du schéma
d’intégration conservatif ou du maillage raffiné peut étre disparaitre par la dissipation
numérique.

Schéma d’intégration conservatif de la poutre spatiale co-rotationnelle

L’extension du schéma d’intégration conservatif de la poutre co-rotationnelle plane a
spatiale est tres difficile et sera le but de travail de recherche & I'avenir. La principale
difficulté est liée aux grandes rotations spatiales et comment ces rotations influencent les
vitesses de déformation. L’objectivité de la déformation [56] devrait étre considérée parce
que Romero et Armero [57] ont montré que ¢a pourrait améliorer la précision et la stabilité
du schéma d’intégration temporelle.
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Abstract

This article presents an energy-momentum integration scheme for the nonlinear dy-
namic analysis of planar Euler-Bernoulli beams. The co-rotational approach is adopted
to describe the kinematics of the beam and Hermitian functions are used to interpolate
the local transverse displacements. In this paper, the same kinematic description is
used to derive both the elastic and the inertia terms. The classical midpoint rule is
used to integrate the dynamic equations. The central idea, to ensure energy and mo-
menta conservation, is to apply the classical midpoint rule to both the kinematic and
the strain quantities. This idea, developed by one of the authors in previous work, is
applied here in the context of the co-rotational formulation to the first time. By doing
so, we circumvent the nonlinear geometric equations relating the displacement to the
strain which is the origin of many numerical difficulties. It is rigorously shown that the
proposed method conserves the total energy of the system and, in absence of external
loads, the linear and angular momenta remain constant. The accuracy and stability of
the proposed algorithm, especially in long term dynamics with a very large number of
time steps, is assessed through four numerical examples.

Keywords: Co-rotational formulation; energy-momentum method; conserving energy;
nonlinear dynamic; 2D Beam.

1. Introduction

Dynamics of slender beams is still a very active research field especially when it
comes to large deformations and displacements. Flexible beams are used in many ap-
plications, for instance large deployable space structures, aircrafts and wind turbines
propellers, offshore platforms. These structures undergo large displacements and rota-
tions and in some cases moderate-to-large strains. Several approaches are available to
model the dynamics of geometrically flexible nonlinear beams. In addition to the Total
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Lagrangian approach [1, 2, 3, 4, 5], floating approach [6, 7, 8] and co-rotational ones
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] have been considered
for the development of efficient formulations. Whilst the total Lagrangian approach can
be considered as the natural setting for geometrically exact dynamics, the co-rotational
method is still an attractive approach to derive highly nonlinear beam elements because
it combines accuracy with numerical efficiency. Especially for very large structures with
a high number of beam elements, efficiency is still of great importance for successful
simulation.

Response of large structures to earthquake, to impact or to extreme loading con-
ditions are some examples where dynamics is essential with efficiency being a key in-
gredient that decides about the choice of the finite element. Here, long term stability
is a fundamental feature of a time integration method to capture extended responses
over sufficiently long time intervals. Implicit time stepping methods are often used
together with nonlinear finite elements to investigate complex dynamic problems. It is
well known that Newmark’s method [37] and alike are conditionally stable for nonlinear
dynamics. To avoid these instabilities, Geradin and Cardona [38] introduced numer-
ical dissipations (Alpha method [39]) in order to damp the high frequencies with the
consequence that the system energy is not conserved [41, 40]. Since the early work of
Simo and Tarnow [41], it is accepted that energy conservation, respectively control, is
key for stability. In their work, they presented a methodology to construct time in-
tegration algorithms that inherit, by design, the conservation of momenta and energy
for geometrically nonlinear problem involving quadratic Green-Lagrange strains. Gen-
erally, the design of energy-momentum conserving algorithms comes with conservation
of linear and angular momentum as well, hence the term energy-momentum methods.
The core idea of these methods is to use a discrete directional derivative to construct
scheme that preserve the Hamiltonian along with other integrals. This concept can be
traced back to Gotusso [42] and was first applied to elastodynamics by Gonzalez [43].
Since then much effort was devoted to develop energy-momentum methods for various
types of formulations and structural elements. For nonlinear rod dynamics we refer to
[48, 49, 50, 52, 51] and contributions to nonlinear shell dynamics have been made in
[53, 54, 55, 56, 57|, among others. In all cases, some form of shearable structures were
considered, that is, either the Reissner-Mindlin kinematic for shells or the equivalent
Timoshenko one for the rod. Nonlinear dynamics of hypoelastic continuum has been
addressed by [44, 43, 45]. Further energy-momentum-related work is that of Betsch
and Steinmann [46]. A simple parameter free collocation-type composite time integra-
tion scheme has been proposed by Bathe [47] with the objective to conserve energy.
Of special interest, also with regard to this work, is the formulation by Sansour et al.
[54, 55], which is designed to secure energy conservation independently of the nonlinear
complexities involved in the strain-displacement relations. It has been applied to ar-
bitrary continuum formulations [61] and to geometrically exact Bernoulli beam model
[49]. Gams et al. [50] developed a time integration algorithm in the spirit of the method
described in [61] for the geometrically exact planar Reissner beam. Besides, they con-
sidered the dissipation of high frequency oscillations associated to energy-momentum
methods [62].

With regard to the co-rotational formulation for rods, we employ here the one
originally proposed by Rankin and Nour-Omid [58, 59] , and further developed by
Battini and Pacoste [30, 31] and many other authors. The fundamental idea of a
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co-rotational formulation is to decompose the large motion of the element into rigid
body and pure deformation parts through the use of a local system which continuously
rotates and translates with the element. The deformation is captured at the level of the
local reference frame, whereas the geometric nonlinearity induced by the large rigid-
body motion, is incorporated in the transformation matrices relating local and global
quantities. The main interest is that the pure deformation part can be assumed as
small and can be represented by a linear or a low order nonlinear theory. Avoiding
the nonlinear relationship between the strain tensor and the displacement gradient is
what makes the co-rotational approach very attractive and efficient for nonlinear static
analysis. For a general account, we refer also to [27, 29, 28, 30, 31, 32, 33, 34, 35, 36].

As one may expect, there have been many efforts to develop energy-momentum
methods for co-rotational formulations as well. These efforts have been only partially
successful. Examples of previous attempts are that of Crisfield and Shi [9] who de-
veloped a mid-point energy-conserving time integrator for co-rotating planar trusses.
In their formulation, the time-integration strategy is closely linked to the co-rotational
procedure which is "external” to the element. A similar approach was applied to the
dynamic of co-rotational shell [24] and laminated composite shells [25]. Yang and Xia
[26] proposed the energy-decaying and momentum-conserving algorithm in the context
of thin-shell structures. Galvanetto and Crisfield [11] applied the previously developed
energy-conserving time-integration procedure to implicit nonlinear dynamic analysis
of planar beam structures. Various end- and mid-point time integration schemes for
the nonlinear dynamic analysis of 3D co-rotational beams are discussed in [18]. They
concluded that the proposed mid-point scheme is an ”approximately energy conserving
algorithm”. Le et al. [12] adopted Interpolation Interdependent Element formulation
[60], hence cubic interpolation functions, to derive both the inertia and elastic terms in
conjunction with a Newmark-type time integration algorithm and considering simplifi-
cations in the expression of the mass matrix. Le et al. [12] showed that this formulation
is more efficient than using constant mass matrices as it requires less elements. The
formulation was extended to 3D Bernoulli beam elements without [19, 20] and with
warping [21]. Salomon et al. [22] showed the conservation of energy and momentum in
the 2D analysis. But, they did not get exact angular momentum conservation in the
3D analysis.

It was soon recognized that the decomposition of the beam motion into a rigid and
deformation-related parts with the help of a local frame that moves with the beam
produces complex kinetic energy terms as a result of the movement of the local frame
regardless of order of the interpolating functions. To circumvent these difficulties,
Iura et al. [13] proposed to use an inertial frame to derive kinetic energy function
in terms the global displacement components. Similar approach has been followed by
Crisfield et al.[10, 18] who suggested to derive the mass matrix by interpolating global
quantities with linear shape functions (Timoshenko model). The use an inertial frame
to derive kinetic energy function in terms the global displacement components was also
recommended in Crisfield et al. [18] as a remedy to complicated expressions of kinetic
energy-related terms.

In all the above examples energy conservation is either approximately achieved or
enforced by means of constraint equations. Indeed, so far no method exists which in-
herently fulfills the conservation properties of energy and momenta in the context of
co-rotational formulation. It is with this goal in mind that we approach the present
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research. At the heart of the approach is to apply the fundamental ideas of Sansour et
al. [54, 55] in the context of the present co-rotational formulation. The complexities
induced by the decomposition of the beam movement have hampered the develop-
ment of a consistent energy-momentum conserving co-rotational formulation. While
the fundamental idea of Sansour et al. [54, 55] can be summarized as using the strain-
displacement relations to deduce strain rate quantities with the help of which then a
strain filed is integrated using the same schemes as for the displacement fields, the task
as such is not as straightforward as it may seem. The choice of the correct strain rates
is crucial since multiple nonlinear relations exist between the displacements and further
quantities which constitute the strain field. Questions arise as to which of the nonlin-
ear quantities are to be integrated first. Also and beyond the possible formulation, the
applicability of the same in long-term dynamics is to be tested as well.

The outline of the paper is as follows. In Section 2, the kinematics and strain
measures of the 2D beam element are shortly presented. Section 3 is devoted to the
Hamilton’s principle and the conserving properties. In Section 4, the energy momentum
scheme is developed, the element (i.e. the elastic and inertia terms) is fully derived.
Proofs of the conservation of energy, linear and angular momenta are given in sec-
tion 5. In Section 6, four numerical applications are presented in order to assess the
performances of the proposed method. The paper concludes in Section 7.

2. Beam Kinematics and strain definition

2.1. Co-rotational beam kinematics

The kinematics of the beam and all the notations used in this section are shown
in Figure 1. The motion of the element is decomposed in two parts. In a first step, a
rigid body motion is defined by the global translation (u1,w;) of the node 1 as well as
the rigid rotation . This rigid motion defines a local coordinate system (x;, 2;) which
continuously translates and rotates with the element. In a second step, the element
deformation is defined in the local coordinate system. Assuming that the length of
the element is properly selected, the deformational part of the motion is always small
relative to the local co-ordinate systems. Consequently, the local deformations can be
expressed in a simplified manner. The vectors of global and local displacements are
now defined by
q=[U1 wy 01wy wy 92}T, (1)
and
g=1[a 6 6] (2)
Explicitly, the components of g are given by

u=1-1
51:01—04 (3)
éQZQQ_OZ

where [y and [ denote the initial and current lengths of the element, respectively:

lg = \/($2—$1)2+(ZQ —21)2
l:\/($2+U2—$1—U1)2+(22+w2—21—’LU1)2
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Figure 1: Beam kinematics 1

The rigid rotation a can be related to the node co-ordinates
displacements as follows:
sine = ¢y S — 8g C

cosa = cgcC+ Sg S

with
co = cosfy = l—(xg — 1)
0
50 = sinfly = 1—(22 —2)
0
and ]
c=cosfl = 7($2 +uy — 1 —uy)
1
s =sinf = 7(22 +wy — 21 — wy)

and the corresponding

(5)

The current global co-ordinate of the cross-section centroid G is given by

l
OG = (z1+w)i+ (zn+w)j+—zra+wb (8)

lo

with
a = cosf i+ sinfj

b= —sinfi+ cosfj

and w as the local transversal displacement of G. By using Egs.

the global displacement of G are obtained as

ug = Nl(!El + Ul) + NQ(.rQ + Ug) — wsinﬁ

(9)

(7), the components of

we = Ni(z1 + wi) + Na(zo + wy) + w cosfs (11)
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with

(12)

Finally, the global rotation of the cross-section is related to the local cross section
rotation ¥ via
(9@ =0+« (13)

2.2. Strain measures

The Bernoulli assumption is adopted for the local formulation. Hence, linear in-
terpolation is considered for the axial displacement u and a cubic function for the
transversal displacement w. With the interpolation functions

2
)
b (14)
Nee 1 4r  32?
A P
2r 32
Ny = —
T B

the above choice results in the following local displacement distribution

T _
U= U
lo
w = N3 él + N4 52 (15)

Y = N5 9_1 + N6 9_2
The local normal strain follows directly from the Bernoulli hypothesis:
11 =€ —KZ (16)

in which the axial strain ¢ and the curvature s are defined by

1 ou 1 [ow\?
6—54[%4-5(%)](11’ (17)

9*w

K= —
0x?

(18)
In Eq.(17), a shallow arch strain definition has been considered. To avoid membrane
locking, the axial strain is averaged over the element. The purpose of introducing a
mild geometrical nonlinearity in the local formulation is to increase the accuracy of the
formulation as compared to a purely linear strain definition, while still retaining the
efficiency.
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3. Hamilton’s principle and conserving properties

Hamilton’s principle states that the integral of the Lagrangian between two specified
time instants t; and 5 of a conservative mechanical system is stationary

to
5/ L£dt =0 (19)
t1

The Lagrangian £ is given by
L=K-— Uint - Uecnt (20)

with K as the kinetic energy, U;,; and U,,; are the internal and the external potentials,
respectively. The body is a non-conducting linear elastic solid and thermodynamic
effects are not included in the system. The kinetic energy is the sum of the translational
and rotational kinetic energies:

1 1 1 :
K:5/pAuédx+§/pAwédx+§/pI«9édx (21)

lo lo lo

The elastic potential is defined as

1 1
Uit = 5/ EA%dx + 5/ EI k*dx (22)

lo lo

while the external potential is given as

6
Uewt = — / putic da — / puwwe dz — / pobede — > P (23)
0 =1

lo lo l

E is Young’s modulus of the material, A is the area of the cross-section, I is the second
moment of area of the cross-section, p, and p,, are the distributed horizontal and vertical
loads, py is the distributed external moment, P; is the i component (concentrated forces
and moments at the nodes) of external force vector P.

Standard variational arguments and integration by parts provide the following ex-
pression :

/ ,OA ugéu(; dz + / pA wc;(swg dx +/ ,OI ég(seg dx

lo lo lo

—|—/EA555dx+/Elméﬁdx—/puéucdx—/pw5wcdz

lo lo lo lo

6
- / podleda — 3 Pidg; = 0 (24)
lo i=1

The above equation is the starting point for further developments. Further, the above
Hamiltonian system exhibits the following conservation properties. If the external loads
are conservative, the total energy of the beam element can be written as

K + Ujpn: + Uepr = constant (25)
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The linear momentum is defined by

and the angular momentum by

UG ug 0
J= / pA | wg | x | wg | dz+ / pl | 0 |dx (27)
lo 0 0 fo Oc

The time derivative of the two momenta define the equations of motion:

— L= lo 28
de {flopwdx+P2+P5] (28)
and

d

EJ = / (UG pw — We pu) dz + (21 + up) Py — (21 + w1) Py

lo
+($2+U2)P5—<22+MQ)P4+/pedfl]—FPg—FP(;:Mezt (29)
lo

from which it can be seen that, with vanishing external load, the linear momentum is a
constant and, with vanishing external moments, the angular momentum is a constant.
It should be noted that the expression ”external load” refers to all possible loading
conditions including reactions forces.

4. Energy-momentum conserving time integration scheme

Implicit time stepping methods are often used together with nonlinear finite ele-
ments to study dynamic problems. The midpoint rule or Newmark’s method [37] have
applied successfully in the linear dynamic problems. However, these methods present
instabilities [41, 40] in nonlinear dynamic problems, especially in long-term analysis.
Since the early work of Simo and Tarnow [41], it is known that the energy-momentum
method enhances considerably the stability of time-stepping algorithms. The main idea
is to ensure the conservation of the linear and angular momenta, and the total energy.
Therefore, we aim to develop the energy-momentum method to a co-rotational beam
formulation where the central idea of this method starts from the classical midpoint
rule.

4.1. Classical midpoint rule

The classical midpoint time integration scheme is defined by the following equations:

q,41+4, 1
. e T4 @4 Aq 30
ntj = D) At At (30)
. _qn+1+qn_qn+1_qﬂ_ QA _i'
L N AN N AL
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from which follows

qn+1 = qn + Aq
4
qn+1 Atz q Atqn q,

4.2. Time integration scheme

The previously developed time integration scheme [55, 54] is here adapted in the
present context of the co-rotational formulation. While the core idea to develop the
strain fields from expressions related to the strain velocity still applies, the specific
realisation is not straightforward and is to be developed, in what follows, for the first
time. The midpoint velocities are applied to both the kinematic variables and strains
as well. Formally it takes the following generic form:

| = st = £, A
tn At (32)
fn+% = fn + 7 fn+%

where the function f can represent either a kinematic variable or deformational quantity.
The application of the midpoint rule (32) to Hamilton’s principle (24) gives

lo lO

/P190n+159Gn+1 d:r—l—/EAenJr;(?anr;dx—i—/E]Hn+;§f<an+;1)dx

lo lo lo

/pun+1(5ugn+1 dz — /pw’n+%5wG7n+%dx—/p97n+;69G7n+édx

lo lo lo
Z ity 5qzn+ > =0

After eliminating At, Eq.(33) can be simplified to

aqu+%
aqn—i—%

;

oq" / pA Gy,

lo
+/w%w(ﬁzz
J e
[

lo

+
Dj

-

pu,n-ﬁ-f
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' d / A awG n-&-%
lo “ i aqn—t—%

dx—i—/ EAe,

T
)dx

05%; de
0q,,. 1 +1
8”G,n+% ' dx
aqn+%

T
Dby
Gnt3 dr — Pn+l -0
8qn+% 2




As the variation dq is arbitrary, the dynamic equilibrium at time n + % is governed by
the relation

ou T ow T
.. G+l . G+
A MY A M3
/lop tamty ( 0q,, 1 ) d$+/zop Hon+s ( 0q,,41 ) &
T T
. 89 nt+L 65n 1
—l—/p[@GnJr;(aQ +2> dl’—l—/EA8 (6 +2> dz
lo ' qn+ lo Qn+2
0Ky 1 T OUg i1 8
+/Ellin_‘_é 3 i dz—/pu,m_; 86’ 2 ) 4
lo qn-&-% lo qn+%

oW iy 1 ' 005 i1 !
o — dx—/ il —=2 | dz—P,.1=0 35

The midpoint rule is applied to the kinematic variables defined in Eqs. (10), (11) and
(13):

. Aug
U+l = A7 = fi E (36)
. Awg
Yanty = A7 fz At (37)
: Abg
9G,n+% A = f3 At (38)
in which the vectors f, f, and f; are defined at time n + 3 as
T T T T 0 ) z'
FT=bF —s,.1 (N3bT + N,bT) —c, s <N3 Oy is + N 02,%%) z
n-‘r%
T T T T ] ) 2!
F3=bF +cp1 (NsbY + NybT) 5, <N3 011 + N 92%%) z (39)
n+i
T T T, 2 2
f3 =Nsb; + Ngb, +
by
with the following notations
T
z = [ Sn+% _Cn+% 0 _8n+% cn+% 0 ]
bi=[N, 00 N, 00]"
T
b=[0 N, 0 0 N, 0] . (40)
bs=[0 0100 0] -
n+%
bi=[00000 1] -2
n—&-%

With the help of the third relation in Eqs.(30), the accelerations at the midpoint are
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obtained as

. 2 2 . 2 2 .
UGn+y = A7 Aug — Aplon =13 flAq— A o (41)
.. 2 2 2 2 .
Weniy = 12 AWe = 1 Wen = 3 f2Aq— N (42)
" 2 2 . 2 2
0 =500 — —bgn =~ F3 Ag— —bc, 43
Further, from Eq.(32), the strain fields at time n + 3 are obtained as
At
Entl =En+ S Cnsl (44)
At
Kpyl = Kn + b Rl (45)
in which the strain velocity fields can be calculated using Eqs.(17),(18) and (30) as
. Ae Aq
. Ak Aq
ot =~ A )
with
T
T T 2.0 1.1\, 2.1 1.1\,
fi= o (Eb?’ - %bz;) 01 st + <1—5b4 —5gbs ) Panis (48)
f5T = N3,1‘:E b3T + N4,1’:7c b:f (49)
and
T
r = [—Cn+% —Sn+% 0 Cn_l_% Sn+% 0] (50)

It can be observed that updating the strains by integrated the strain velocity using Eqs.
(44) and (45) produces strains at n+1 that are not equal to the strains determined from
the total displacements and rotations at n+ 1. However, the displacement field itself is
approximated using the mid-point rule and so the suggested strain field updates based
on strain velocities follows the same line of the displacement update and is accordingly
consistent with the second order accuracy know for single step method.

4.3. Residual force vector and tangent stiffness matriz
The residual force vector at t = n + £ is defined from Eq.(35) as

fR,n+§ = fk:,n—}—% + fg,n—i—% - fe:tt,n—i—% =0 (51)
in which f, . 1 is the inertia force vector, f, . 1 the elastic force vector and f,,, 1
the external load vector. By inserting Eqs. (41), (42) and (43) into (35), the following

expression for the inertia force vector is obtained
2
Funes =25 [ 104 (FFT + Faf3) + o1 £,87) qia
0

2

- [pA (g f1 + 0Gn F2) + pI b f3} do (52)
lo

96



in which the velocities at time n are evaluated, using Eqgs. (10), (11) and (13);

uG,n = Nl Vuln + N2 Vu2,n + N3 Vu3,n + N4 Vudn
wG,n = Nl Vwi,n + N2 Vw2,n + NS Vw3,n + N4 Vwan (53)
0c,n = N5 Vg1, + No Vo2,n + Vo3 n

The quantities vy;, vy (i = 1:4) and vg; (7 = 1 : 3) are updated at the end of each
step by according to

2
vulnH:Kt [ 1 0 000 O}Aq—vul,n
2
Vu2,n+1 N [ 000120 O]Aq—Uw,n
2 - 2T (54)
nts3
2 _ 2T
Vud,nt1 = At <_5n+1 b4T — Cnyl 0, nts] +1> Ag — vy
nTy
2
le,n+1:E[0 1000 O]Aq Vwi,n
2
Vw2,n+1 = A_t [ 000010 ]Aq_va,n
2 _ 2T 55
Vw3 n+1 = A_t (Cn+1 b3 - Sn.q_% 91’n+%l +1> Aq — Vw3,n ( )
nTy
2 ~ 2T
Vuwant1 = A7 (Cn+§ by — Snt-l ‘92,n+§ ln+1> Aq — vyan
2
2 7
Vo1,n+1 = Ebg Aq — Vo1,n
2
Vo241 = Ktbz Ag — vgan (56)
2 [ 2T
Vo3,n+1 = E <ln+1> Aq — Vo3,n
2

The inertia tangent stiffness matrix is computed by considering the derivative of the
corresponding force vector with respect to the kinematic variables:

afk n+i
K = — 57
g aqn+1 ( )
Inserting Eqgs.(44) and (45) into Eq.(35), the elastic force vector takes the form
= L [ (BAf g7+ BI£,67) Aqd
fg,n+l— ( Fafi + f5f5) qar
L 59

+/ (EAe, f,+ Elk, f5) dz

lo
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The axial strain and the curvature are updated at the end of each step by using

Ent1 = En + Até 1 =0+ F1Aq (59)
Fnt1 = Fn + At R, 1 = Ky + filAq (60)

The curvature &, is calculated as follows
fin = N3g2 015 + Nigo 02 (61)

and the local nodal rotations are updated at the end of each step according to

9_1,n+1 = 9_1,n + bgT Agq

, (62)
02,041 = Oa, + by Ag
The elastic tangent stiffness matrix follows as
Of it
K, = oty (63)
aqn+1

The external force vector is defined as
fea:t,n+% = / pu,n-i—%fl dr + / pw,n+%f2 dr + / p&,n—&-%fB dr + Pn-i—% (64)
lo lo lo

from which the external tangent stiffness matrix follows as

afext,n—i—%

Kex =
' 8qn+1

(65)

Hence, the total tangent matrix is
KT = Kk + Kg - Kext (66)

The details of the calculations of the force vectors f; . 1 J o+ 1 Sextny 1 and the
tangent matrices Ky, K,, K., are presented in the appendix. It can be noted that
all these quantities are computed exactly by performing exact integrations over the
element length. Both the tangent stiffness (K,) and tangent dynamic (Kj) matrices
are not symmetric. Symmetrizing these matrices is an option but in some cases, it will
require a larger number of iterations at each step.

Algorithm 1 : Energy conserving scheme
1. Variables at time t,,
Nodal displacement, velocity and acceleration : q,,,4q,, q,
Kinematic quantities : Vyin, Vwin, Vojn fori=1:4,7=1:3
Axial strain and curvature-related quantities : &, §17n, ég,n
2. Initialization: qZLH =¢q) and Ag=0
3. Loop over the iteration step j
Compute the residual force fg ;1 (qu+1) (51)

Compute the tangent stiffness matrix Ko (q’, 4+1) (66)
Compute the incremental displacement Ag? = — K71 i Rint 1
Check the convergence
if | frnsy || > toliand || AgZ || > tol
@t = dh + AP
j+1—jand go to (3)
else
Update the variables at time n +1: q,,, 4, (31)
Vuin+1 (54)77Uwi,nj—1 (55) » Vgj,n+1 (56) fori=1:4,7=1:3
ent+1 (89), 0141, 02 n41 (62), n+1— n and go to (1)
end if
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5. Conservation properties of the scheme

In this section we rigorously prove that the proposed method conserves the total
energy of the system and, in absence of external loads, the linear and angular momenta
remain constant.

5.1. Proof of the conservation of energy

The purpose of this section is to prove that the proposed energy-momentum al-
gorithm conserves the total energy of the system while the external load is assumed
conservative. To this end Eq.(35) is multiplied with the midpoint velocity g, 1 to yield

/pAilG7n+éﬂG7n+édx+/,OAmejLéu')G’nJr;d:E +/p19G,n+;0G,n+§dx

lo lo lo

EAe, i€, 1dx+/EI/<;n 1K, 1d:t:—/ w Ui et dx
/lo +1 L, +1hn4l Pultignyl

lo

/pwan+1da: /pg@Gn+1dx—Zqu+1—O (67)

lo i=1

which, with the help of the midpoint rule, gives

s

UGnt+1 — UGn UGnt+1 T UGn W n+1 — Wan Went1 + Wan
A ) ) ) ) d A ) ) ) ) d
Al 2 $+/p Al 2 ¢

lo

+

s

Ocni1—Ocn Ocn Oc En €n Entl — En
7 06nt1 =060 6011 +0c, dx+/EA 41+ 41 Qe
lo

J
/lo At 2 2 At
+ /l ET ”"“; Y e - /1 Pu —“G’”“A; 2O gy
_/lopw wG,nJrlA; wan de — /lope Oc n+1 9Gn ZP i, n+1 —0 (68)

This equation can be rewritten as

1 ) ) ) . 1 ) ) ) .
3 / PA (UG n+1 Uent1 — Ucn Uan) dr + 3 / PA (WG 1 Went1 — Wan Wen) AT
l() lO

1 . . .. 1
+5 / ol (eg,nﬂ Ot — Ocn eg,n) de + 3 / EA (6ni1 Ens1 — enen) dz

lo lo

1

+§/ ETl (Knt1 Kng1 — K Kn) do — / Pu (UG 1 — Uug,y) do
lo lO

6

- / Pw (wG,n+1 - wG,n) dr — / Do <0G,n+1 - GG,n) - ZPZ (Qi,'rrl»l - %,n) =0 (69)

lo o i=1

Finally, from the Eqgs. (21), (22) and (23), Equation (69) is equivalent to
[K + Uznt + Uemt]n+1 [K + Uznt + Uemt] (70)

which shows that the proposed midpoint algorithm conserves the total energy of the
system.
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5.2. Proof of the conservation of linear momentum

In this subsection we prove that, for vanishing external loading, the proposed energy-
momentum algorithm conserves the linear momentum. The equation of motion (35)
can be written as

Py = [ PATiguey Frdet [ pAi, fodot [ o1,y fide
0

lo lo

+/EAEnJr; f4dm+/Efﬁn+;f5dx—/pum+§fldx

lo lo lo

~ [ Py F2do = [y fidr =Py =0 (71)
0 0

The components fp; . 1 of the residual vector are shown in Figure 2. Since each
component is equal to zero, the following expressions, corresponding to the sums of the
residual forces in horizontal and vertical directions, can be considered:

[ frinet + Fransd ] _ [ 0 ] (72)

fRQ,n—s—% + fR5,n+% 0

Besides, from Eqgs.(39), (48) and (49) the following expressions can be derived

[ i+ fua ]
| fi2+ fi5 |
[ for+ fou ]
| Sfa2 + fos |

[ fa14 foa |
| Szt f35

(73)

Az

24wy

2 +wy

T +Uy Ty +Up

Figure 2: Components of the residual force vector
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and
far+ fua _ |0
fao + fas 0
[f51+f54} _ [0}
fs2 + f55 0
where f;; is the j component of vector f;. By combining Egs.(73) and (74), Eq.(72)
can be rewritten as

. 1 .. -
/pAquJr;[O]dx—k/pAwG’nJré{?}dx—k/p[@am%[g]dx
lo lo lo
+ | FAe 0 dz + Elk 0 dx — 1 dx
lo n+% O lo TL«I»% O Io puvn+% O

0 0 Pl,n+l + P4,n+l
e[ 2] o 8] [t 15

=0 75
P2,n+% + PS,nJr% ] ( )
which simplifies to

uG,nJr% o flo pu,nJr% dz + P17TL+% + P4,n+%

pA do =
/10 Wy L ] [ Jio Punsr v+ Pyn + Py ]

For vanishing external loading, together with the midpoint rule, the last equation be-

comes . .
A W”“]d :/ A{%’”]d 77
/lop [ WG, n+1 v lop WG n v (77)

which means that the linear momentum is conserved:

Ln+1 = Ln

(74)

(76)

5.3. Proof of the conservation of angular momentum
The purpose of this section is formally prove that for vanishing external moments,
the proposed energy-momentum algorithm conserves the angular momentum. As for
the linear momentum, the residual vector, see Eq.(71) and Figure 2 is used. Since each
component of fp, 1 is equal to zero, the following expression, corresponding to the
sum of the moments about the origin O can be considered:
#(fR,n—i—%) - (331 + ul,n-‘r%)fRZn—‘r% - (21 + wl,n—i—%)le,n—‘r%
+ (UUQ + U27n+%)f}z5,n+é - (Z2 + w2,n+%)fR4,n+% (78)

+ frsmrt + fronyy =0

Moreover, the following expressions can easily be obtained:

z 1
v 1 - [, 1 [C’H‘% (xz T Upnigy =01~ ul’"+%>
2 2

n-+ n+

+ Sp41 (Z2 + w27n+% — 2 wl,n+%>:| = CfH_l + 8721_‘_% = (79)
H (T') = Sn-i—% <[L’2 + u2,n+% Iy ul,n-‘r%)

— Cppl (22+w2n+1—21 w1n+1>:0 (80)



1 /- _
+ 1_0 <01,n+% + 92,n+%) =0

1
n+s3

z
:u(f5) = _(N3,1x+N4,mx) W <l ) +N3,;rx+N4,xm =0

With the help of Eqgs.(81) to (85), Eq. (78) can be rewritten as

/ pA <uG,n+%wG,n+% - wG,n—i—%uG,rH_%) dz + / pl 0G,n+%dx

lo lO

:/l (uG,n—i-%pw,n—i—% - wG,n-{—%pu,n—‘r%) dz + (]}1 + ul,n-{—%)PQ,n-i-%

0

_(Zl + wl,n+%)P1,n+% + (xQ + u2,n+%>P5,n+% - (ZQ + w2,n+%)P4,n+%

+/l Po,n+-1 do + P3,n+% + P6,n+%
0

Applying the midpoint rule to the previous equation gives

[ UG UG 41 0
/ PA | Went1 | X | Wenper | do+ / pl| 0 dx
o 0 0 o0 | o

UGn 0

ugn
:/pA Wan | X | Wen d:l:—l—/p[ 0 dw+AtMext,n+%
lo

0 0 fo Oc.n

(81)

(82)

(83)

(86)

(87)

where M., is defined in (29). In the case of vanishing external moments, the result is

immediate

Jn+1 = Jn
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which shows the conservation of the angular momentum.

6. Numerical examples

Four numerical applications are presented in this section. The first purpose of these
examples is to verify numerically that the proposed energy-momentum algorithm con-
serves the total energy of the system and remains stable even if a very large number of
time steps are considered. The second purpose is to show that in the absence of applied
external loads, the proposed algorithm conserves the linear and angular momenta. For
all the examples, the number of iterations at each step was between 3 and 5.

6.1. Cantilever beam

The first example, see Figure 3, is a cantilever beam loaded by a concentrated force
at its free end. The load history is as depicted in the same figure. The parameters of
the problem are:

L=3mA=01m?*7=833x10"°m’
E =200 GPa,p = 48831 kg/m’
At =107 s, Number of elements = 4

The results obtained with the present energy-momentum formulation are compared
against the ones obtained with the co-rotational formulation proposed by Le et al.
[12]. In this previous formulation, the alpha method was used to solve the equations
of motion. Three cases are considered here, a = 0, which corresponds to the classical
average acceleration method, o« = —0.01 and @ = —0.001 which gives a small numerical
damping that limits the influence of higher modes on the response.

The results presented in Figure 4 show that in the early stage of the motion all three
approaches give exactly the same results. Figures 5 and 6 show clearly that with the
average acceleration method, the total energy of the system does blow up after some 24s,
causing the solution to diverge. With the alpha method, the solution does not diverge,
but as expected, there is a loss of the total energy due to numerical damping. With
a = —0.001 the loss of energy is small. However, with the present energy-momentum
approach, the total energy is constant and the solution remains stable even if a very
large number of steps (one million) is applied.

P
l 20% 106 f------ :
4 i
Y :
IA L N 0 >

[« Vl

0.075 0.15 t(s)

Figure 3: Geometry and load history of cantilever beam
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—— Energy-momentum method
— - Average acceleration method
— = Alpha method (a. = - 0.01)

Vertical displacement [m]

3 L ! L L

0 0.2 0.4 0.6 0.8
Time [s]

Figure 4: Comparison the displacements at the end of the tip

5x107 ‘ ‘

—— Energy-momentum method
41 — - Average acceleration method
— - Alpha method (o =-0.01)
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: | ,
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> 4x10 296219 . |
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0 2.94 |
0
1 2.92 |
2
. 29 1
21 0 02 04 0 10 20 30
-3 L L L L L
0 5 10 15 20 25
Time [s]

Figure 5: Comparison of energy from Os to 30s

6.2. Lee’s frame

30

The second example, see Figure 7, is the Lee’s frame [63] subjected to an applied
constant load after the time ¢ = 2.5 x 10~*s. The parameters of the problem are

L=24m A=006m?7=2x10"*m!
E =210 GPa, p = 7850 kg/m’
At = 2.5 x 107* s, Number of elements = 10
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Figure 6: Comparison of energy from 0s to 1000s
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Figure 7: Geometry and load history of Lee’s frame
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—— Energy-momentum method
— - Average acceleration method
— —Alpha method (o = - 0.01)

Vertical displacement [m]

!

0 0.5 1 1.5 2
Time [s]

25 3 3.5

Figure 8: Comparison the vertical displacements at the point load

—— Energy-momentum method
3.5} — - Average acceleration method ||
— - Alpha method (a = - 0.01)

Horizontal displacement [m]

0 0.5 1 1.5
Time [s]

2 25 3 3.5

Figure 9: Comparison horizontal displacements at the point load
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Figure 10: Comparison of energy of Lee’s frame
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Figure 11: Energy of Lee’s frame (by Energy-momentum method)

This example has been also studied with the average acceleration and alpha methods.
The vertical and horizontal displacements at the loading point are depicted in Figures
8 and 9. It can be observed that exactly the same results are obtained with the three
methods. Besides, Figure 10 shows that the average acceleration and alpha methods
does not conserve the energy of the system when the load is constant. However, with
the energy-momentum method, the energy remains constant (detail in Figure 11) even
if one million time steps are performed. It can be noted that the absolute maximum
external potential is about 2 x 107.J.
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6.3. Shallow arch beam

The third example is the shallow arch depicted in Figure 12. The structure is
subjected to a time-dependent concentrated force P = F'sin(wt) at its mid span. The
amplitude of the load is ' = 160 MN and its frequency w = 1000 rad/s. The parameters
of the problem are:

L=10m H =13397m,R=30m, A= 0.087 m? I = 3,562 x 107° m*,

E =210 GPa, p = 7850 kg/m®
At = 107s, Number of elements = 10

In this example, the external load is not constant and consequently Equation (70),
in which the external load is assumed to be constant, cannot be used to show the
conservation of energy. However, it can be shown that the difference between the kinetic
and elastic energies between the time instants ¢,, and ¢, is equal to the external work
performed by the applied force P between the time instants ¢, and ¢,:

[K + Uint]n+1 - [K + U'mt]n = Wewt|z+1 (89)

Applying the midpoint rule provides

n+1
Wl = [ P = Py (g — ) (90)

Moreover, since at the beginning there is no energy in the system, the above equation
gives

K Ut = Wesl, =0, We= [ Py (91)
0
At each step, the relative error is defined as

_ |K + Uint - Wext|
|Weact|

(92)

This quantity has been calculated for one million time steps. The maximum obtained
value is 9.35 x 107 whereas the maximum external energy is about 14.7 x 107J. Fur-
thermore, the beam undergoes large displacements with high oscillations as shown in
Figure 13. These results proved a good stability of the proposed algorithm for a long
period analysis.

Figure 12: Geometry and load history of shallow arch beam
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Figure 13: Vertical displacements at mid-span from Os to 0.1s

6.4. Free flying beam

The last example is a free flying beam, see Figure 14. The parameters of the
problems are

L=3m,A=0.002m?=6.667x107% m?
E =210 GPa,p = 7850 kg/m’
At =10"* s, Number of elements = 4

The interest of this problem is that after 0.4s, no forces and moments are applied to the
beam. Consequently, this problem is suitable to study the conservation of the linear
and angular momenta. Since only vertical loads are applied at the beginning, the linear
momentum in the horizontal direction should be zero. As shown in Figure 16, this
linear momentum is almost zero with the maximum value of 3 x 10~7. Figures 15, 16
and 17 show that the energy, the linear momentum in the vertical direction and the
angular momentum are constant. This example has also been studied with the average
acceleration and alpha (v = —0.01) methods. As shown in Figure 18, the angular
momentum does not remain with these two methods. Finally, the snap shots of the
motion are shown in Figure 19. The points A and B are the two ends of the beam.

]

| e L > 020  0.40 t(s)

Figure 14: Geometry and load history of free flying beam
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Figure 16: Linear momentum
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Figure 17: Angular momentum of Energy-Momentum method
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7. Conclusion

In this paper the development of a stable momentum and energy conserving integra-
tion scheme for a co-rotational beam formulation has been achieved. The main idea is to
use the classical midpoint rules for both the kinematic and strain quantities. Although
the idea as such was developed in previous work, its realization is problem-specific and
had to be developed here in the context of the co-rotational 2D beam element formula-
tion. In that context the developments here are novel. The advantage of the proposed
algorithm lies in the fact that conservation of the total energy of the system results in
a very stable and accurate algorithm even for very large number of time steps. Besides,
in the absence of applied external loads, the linear and angular momenta are constant.
These characteristics have been proved theoretically and confirmed numerically by using
four numerical examples.

The extension of the proposed method to co-rotational 3D beams is very challenging
and will be the purpose of future research work. In that context, the main difficult is
related to the large spatial rotations and the way these rotations affect the strain rates.
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Appendix A Residual force and stiffness matrix
The residual vector force is defined as

fR,n—&-% :-fk,n—l—% + fg,n—&-% - fext,n—i—%

- /l (DA (F1£T + Fof ) + pIF5£T] Aqds

lo

+%/ (EAf,fi +EIfsf:) Aqdx

lo

+/ (EAenfy+ Elk,f5) dx_/pu,n+;f1 dx
0

lo l
- / pw,n-i—%fQ dr — / p@,n—&-%-f?) dr — Pi,n—‘r%
lo lo

The following matrices are introduced:

[ A (15T + £uf1)] dr =My

/ plfsfs dv = T "M, T

lo

/ EAf,fidr=T'K.T

lo
/ EIf fsde=T"K,T
lo

where T is the rotation matrix

Cryl  Spyl 0 0 0 O

~Spyl Cpyl 0 0 0 O

0 0 1 0 0 O

T= 0 0 0 €1 841 O
0 0 O “Sppl Cpyl 0

| 0 0 0 0 0 1]

(A.93)

(A.04)

(A.95)

M, is the mass matrix due to the local axial and transversal displacements, M5 is the
mass matrix due to the rotation, K, is the stiffness matrix due to the axial strain and
K. is the stiffness matrix due to the curvature. Then, the matrices M; = M;; + Mo
and K., = K. + K, are introduced. All these matrices are calculated exactly by using

MATLAB symbolic. The following vectors are introduced:

/ UG frde = f,

lo

/ W fodr = f,

lo

/ Ogn fsdr = f,

lo

/ knfsde = f,.

lo
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and

. fldx:fpl
l fg dr = fpg (A97)
dex:fpS

lo

All these vectors are calculated exactly by using MATLAB Symbolic. The residual
vector force can be reformulated as

2 2
1
+§ (T'K..T) Aq+ EAlye, f,+ EIf,

_pu,nJr%fpl - pw7n+%fp2 - p97n+%fp3 - Pi,nJr% (A98)

fR,n-i—% (@ni1) =

The local rotations 91771 11 and 92771 41 are calculated by

- At = _ 1
Ornes = 0o+ 011 = O1n + §bgﬁq

2
_ _ At . _ 1 (A99)
Ornis = Orn+ 50201y =02+ 5b1 A
The tangent matrix is given by
Of pnst
Ky = "ta
8qn-}—l
2 T | 5T
=—— [T"™M, T+ = (T" (ITM; + MyI,) T) | Aq
At 2 Lot}

1 T T T aélﬂ“r%
5 (T MllT) (Aq’r )+ (T Ml,ng) Aq
anrl
a0

il 2 of of If g
4 (T™, ;. T) [ Ag =22t —-[A( L4 w>+l
( " ) < a 0q,,41 ) At g 0y 04y g 011

T
T'K.. T + % (T" (ITK.x + Ko D) T) <Aq z )
n+3;

L1
2

l\')lr—\

T T T 89717%%
+= (T'K.,T) (Aqr") + (T'K,,.5,T) | Aq
aqn+1

00y, .1
+ (T"K., 5, T) | Agq—"2 || + EAlye, Ofs | py 0w
’ 049,11 04, 41 o] S
afpl apr afp3
s aC] g 8qn+1 bints aqn—i—l ( )
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where

0 10 0 00
-1 00 0 0O
oT 0 00 0 00
I=35=10 00 0 10 (A-101)
0 00 -1 00
| 0 00 0 0 0]
oM,
M
1l aanr%
. oM,
Ry A
' 801,n+%
oM,
l9_2: —
’ 00 nt L
aKZ *z (A.102)
KEK,J: ol —
n+%
aK&Ii
H,e_ = —
- 891,n+%
K.
Ksm,ézzaé
2,n+%
and _
391,n+§ _ lbg n lAqT rzT2+ zrt
a‘i!n+1 2 4 ln+;
_ 2 (A.103)
892,n+% Lry 1. przt42r"
=:b, +-Aq¢ —5——
0q,., 2 4 ln+%

The derivation and calculation of the tangent matrix have been performed using MAT-
LAB symbolic.
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Abstract

This paper presents an energy-momentum method for three dynamic co-rotational for-
mulations of shear flexible 2D beams. The classical midpoint rule is applied for both
kinematic and strain quantities. Although the idea as such was developed in previous
work, its realization and testing in the context of co-rotational Timoshenko 2D beam
elements is done here for the first time. The main interest of the method is that the
total energy and momenta are conserved. The three proposed formulations are based
on the same co-rotational framework but they differ in the assumptions done to derive
the local formulations. Four numerical applications are used to assess the accuracy and
efficiency of each formulation. In particularly, the conservation of energy with a very
large number of steps and the possibility to simplify the tangent dynamic matrix are
investigated.

Keywords: Co-rotational formulation; Energy-momentum method; nonlinear
dynamics; 2D beams; Shear.

1. Introduction

Flexible beams are used in many applications, for instance large deployable space
structures, aircrafts, wind turbines propellers and offshore platforms. These structures
undergo large displacements and rotations, but still with small deformations. The
simulation of their nonlinear dynamic behaviour is usually performed using beam finite
elements. The co-rotational method is a very attractive approach to derive highly
nonlinear beam elements [1, 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. The
fundamental idea is to decompose the motion of the element into rigid body and pure
deformational parts through the use of a local system which continuously rotates and
translates with the element. The deformational response is captured at the level of the

*Corresponding author
Email addresses: sophy.chhang@insa-rennes.fr (Sophy Chhang),
jean.marc.battini@byv.kth.se (Jean-Marc Battini ), mohammed.hjiaj@insa-rennes.fr
(Mohammed Hjiaj)

122



local reference frame, whereas the geometric non-linearity induced by the large rigid-
body motion, is incorporated in the transformation matrices relating local and global
quantities. The main interest is that the pure deformational parts can be assumed
small and can be represented by a linear or a low order nonlinear theory [19, 20, 21,
22, 23, 24, 25, 26, 27, 28|.

One important issue in the co-rotational method is the choice of the local formula-
tion. Whereas the Euler-Bernoulli beam theory is completely sufficient for the applica-
tions of slender beams, the Timoshenko beam theory takes into account shear deforma-
tion, making it suitable for describing the behaviour of short beams, composite beams,
or beams subject to high-frequency excitation. The classical and simplest Timoshenko
local element is obtained by using linear shape functions, a linear strain-displacement
relation and a reduced integration [29, 30, 31]. However, such a formulation requires a
large number of elements in order to obtain accurate results. Several alternatives for the
local part are possible in order to obtain a more efficient element: a mixed approach in
which the displacements and the stress are interpolated independently [32, 33, 34, 35],
an enhanced strain formulation [36, 37, 38, 39] or the Interdependent Interpolation
element (IIE) [40].

Regarding the inertia terms in the co-rotational context, Crisfield et al. [2, 10]
used linear local interpolations although they took local cubic interpolations to derive
the elastic terms. Then, the inertia terms are easily derived and the classical constant
Timoshenko mass matrix is obtained. However, Le at al. [4] adopted the IIE formulation
[40], and hence cubic shape functions, to derive both the inertia and elastic terms.
This leads to a formulation that requires a less number of elements but also to more
complicated expressions for the inertia force vector and tangent dynamic matrix. The
formulation was then extended to 3D beams without [11, 12] and with [13] warping.

Another important issue in the context of non-linear dynamics is the choice of the
time stepping method. In commercial finite element programs, the Alpha method [41]
is usually used. However, this approach introduces numerical dissipations and conse-
quently, the energy in the system is not conserved [42, 43]. In the last decades, it has
been recognized that energy conservation is a key for the stability of time-stepping algo-
rithms in dynamics of solids and structures. Simo and Tarnow [42] were the first authors
to design energy-momentum algorithms that inherit the conservation of momenta and
energy for geometrically nonlinear problem involving quadratic Green-Lagrange strains.
Since then, much effort was devoted to develop energy-momentum methods for various
types of formulations such as nonlinear rod dynamics [44, 45, 46, 47, 48], nonlinear
shell dynamics [49, 50, 51, 52, 53, 54], hypoelastic continuum [55, 56] and elastodynam-
ics [56, 57, 58]. With the same objective of conserving energy and momenta, Bathe
[59] proposed a simple composite time stepping scheme when large deformations and
long-time durations are considered.

In the co-rotational context, there have been some efforts to develop energy-momentum
methods as well. Crisfield and Shi [1] proposed a mid-point energy-conserving time al-
gorithm for two-dimensional truss elements. This concept was further developed by
Galvanetto and Crisfield [3] for planar beam structures. Various end- and mid-point
time integration schemes for the nonlinear dynamic analysis of 3D co-rotational beams
are discussed in [10]. The authors concluded that the proposed mid-point scheme can
be considered as an ”approximately energy conserving algorithm”. A similar approach
was applied to the dynamic of co-rotational shells [16], laminated composite shells [17]
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and thin-shell structures [18]. Salomon et al. [14] showed the conservation of energy
and momenta in the 2D and 3D analyses for the simulation of elastodynamic problems.
They mentioned that, for some cases, the angular momentum is asymptotically pre-
served and an a priori estimate is obtained. However, despite of all these works, the
design of an effective time integration scheme for co-rotational elements that inherently
fulfils the conservation properties of energy and momenta is still an open question.

In this paper, a new energy-momentum method in the context of co-rotational shear
flexible 2D beam elements is proposed. Based on the previous works of Sansour et al.
[50, 52], the main idea is to apply the midpoint rule not only to nodal displacements,
velocities and accelerations but also to the strain fields. It means that the strains are
updated by using the strain velocities instead of using directly the strain-displacement
relation. The conservation of energy, linear and angular momentum is proved theoret-
ically and also observed in the numerical applications.

Based on the same co-rotational framework, three different local formulations are
implemented and tested for a large number of time steps. The respective shape func-
tions and strain assumptions for each local formulation are presented in Table 1. The
reduced integration method (RIE) is the classical Timoshenko approach based on lin-
ear interpolations and one Gauss point integration for the static terms. The mixed
formulation (MX) is also based on linear interpolations but a mixed approach is used
to derive the static terms. For IIE formulation, the IIE cubic shape functions [40] are
used and a nonlinear shallow arch strain definition is adopted. For this last element, the
expression of the tangent dynamic matrix is complicated and a possible simplification

is carefully studied. For the three formulations, different predictors are tested.
Table 1: Formulations

Formulations | Shape function | Static term

RIE Linear Linear strain with reduced integration
MX Linear Linear strain with mixed formulation
I1E Cubic Shallow arch strain

The paper is organized as follows: the beam kinematics is presented in Section 2. In
Section 3, Hamilton’s principle and conserving properties are presented. In Section 4,
the energy-momentum method is developed. The inertia and elastic terms are derived
respectively in Sections 5 and 6. In Section 7, the equation of motion for all formulations
is presented along with the choice of predictors and the algorithm. The proofs of the
conservation of energy, linear and angular momenta are given in Section 8. In Section 9,
four numerical applications are presented in order to assess the numerical performances
of the proposed formulations. Finally, conclusions are presented in Section 10.

2. Beam kinematics

The kinematics of the beam and all the notations used in this section are shown
in Fig. 1. The motion of the element is decomposed in two parts. In a first step, a
rigid body motion is defined by the global translation (u1,w;) of the node 1 as well as
the rigid rotation a. This rigid motion defines a local coordinate system (x;, z;) which
continuously translates and rotates with the element. In a second step, the element
deformation is defined in the local coordinate system. Assuming that the length of
the element is properly selected, the deformational part of the motion is always small
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Figure 1: Beam kinematics

relative to the local co-ordinate systems. Consequently, the local deformations can be
expressed in a simplified manner.
The vectors of global and local displacements are defined by

g=[u w 6 uy w 6’2]T (1)

and

where [y and [ denote the initial and current lengths of the element, respectively:

lo = \/(1’2 —1’1>2+(2’2 —21)2
l:\/(SCQ“FUQ—$1—U1)2+(2’2+w2—2’1—w1)2

(4)

The current angle of the local system with respect to the global system is denoted as
£ and is given by

C:COSﬁZZ(Z'Q_FUQ_I]_—Ul)
(5)
s=sinf =~ (22 +wy — 21 —wy)

l
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The differentiation of the expressions (3) gives
0q =Biq (6)
with

-c -5 0 ¢ s 0
B=| —s/l ¢/l 1 s/l —c/l 0 (7)
—s/l ¢/l 0 s/l —c/l 1

3. Hamilton’s principle

Hamilton’s principle states that the integral of the Lagrangian between two specified
time instants t; and ¢, of a conservative mechanical system is stationary

t2
5 / Ldt=0 (8)
ty
The Lagrangian L is given by
L=K- Uint - Uemt (9)

with K as the kinetic energy. U;,; and U.,; are the internal and the external potentials,
respectively. The body is non-conducting linear elastic solid and thermodynamic effects
are not included in the system. The kinetic energy and the internal potential for each
formulation will be defined in the following sections. The external potential is defined
as

6
Uezt = _Z‘P’Lq’b (]‘O)
i=1

where P; is the ¢ component (concentrated forces and moments at the nodes) of the
external force vector P.
If the external loads are conservative, the total energy of the beam element can be
written as

K+ U;ne + Uggr = constant (11)

The linear momentum is defined by

L:[ll::]:/lopA[Z}Z]dx (12)

and the angular momentum by

ug uag 0
J:/pA wg | X | weg dx+/,0] 0 |dz (13)
lo 0 0 lo Oc

In the above equations, ug, wg and 9@ are the global velocities of the centroid G of the
cross-section.
The time derivative of the two momenta define the equations of motion:

iL P+ P
dt | P+ Ps
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and

d
EJ:(.Z'l—i-ul)Pg—<21+U)1)P1+<1'2+U2)P5

_(Z2+w2)P4+P3+P6:Mext (15)

from which it can be seen that, with vanishing external load, the linear momentum is a
constant and, with vanishing external moments, the angular momentum is a constant.

4. Energy-momentum method

The Newmark family’s method [60], which is the most widely used in the implicit
time stepping method, is said to be unconditionally stable in linear analyses but it
suffers severe shortcomings [42, 43] in nonlinear dynamics. Since the achievement of
Simo and Tarnow [42], it is accepted that the energy-momentum method is the key
for stability which ensure the conservation of the linear and angular momenta, and
the total energy. Therefore, we aim to develop the energy-momentum method for co-
rotational shear flexible formulations where the central idea starts from the classical
midpoint rule.

The classical midpoint time integration scheme is defined by the following equations:

9ni1 + 4, 1
Quiy =5 =4t 5Aq
. qn—i—l + qn 4,11 — 4, Aq
Doty 2 At At (16)
. Qn—i-l + qn qn—i—l - qn 2 2 .
p— pu— p— A _— —
Inss 2 At ACTT A

from which follows
qpi1 = q, +Aq

) 2 .

Qi1 = 7,080~ Gn (17)
4 4

.. I O I

qn+1 Atz q Atqn q,

To develop the energy-momentum method, we follow the ideas developed in Sansour
et al. [52, 50]. While the main idea is to applied midpoint rule to the strain field, the
task is not as straightforward and is to be developed for the first time. The midpoint
midpoint rule is applied to both the kinematic variables and strains as well. Formally,
it takes the following generic form:

[ st = ) At = £ a0

At (18)
fn—‘—% = fn + 7fn+%
Jnt1 an-l-AtfnJr%

where the function f can represent either a kinematic variable or deformational quantity.

5. Inertia force vector and tangent dynamic matrix

The purpose of this section is to derive the dynamic terms (i.e. the inertia force
vector and tangent dynamic matrix) for the three formulations.
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5.1. IIE formulation

The Interdependent Interpolation Element (IIE), proposed in [40], is adopted for the
local beam kinematic description. The development of this beam element is based on the
exact solution of the homogeneous form of the equilibrium equations for a Timoshenko
beam. Consequently, the ITE element retains not only the accuracy inherent to the cubic
interpolation, but also includes the bending shear deformation. The shape functions of
the IIE element are given by

2
Ny=pzl6Q(1-Z)+(1-2%
Iy lo
x r 2
Ny=px {69(——1) ——-1——2}
lo l() lU (19)
120 4 2
Ny=p (14120 220t 50
b B
12Qx 2z 322
N6:u ——+—2
b o B

where Q = ET/(GAk I2), p=1/(1412Q) and k, is the shear correction coefficient.
For a rectangular cross-section, k; is equal to 5/6. For the dynamic terms, €2 is taken
to 0 because this simplification does not affect the numerical results. In addition, with
) = 0 the Hermitian shape functions of the classical Bernoulli element are recovered.
The local axial displacement u, the local transversal displacement w and the local

rotation # are calculated by

u = NQ U

w:N3§1—|—N4§2 (20)

0 = N0, + Ng 0

From Fig. 1, the components ug, wg of the global displacements of the centroid G and
the global rotation 64 of the cross section are obtained as

ug = N1 (21 +up) + Na (22 + up) — wsin
wa = Ny (21 + wy) + Ny (29 + wy) + w cosf (21)
QG =0 + «

where the linear interpolations Ny, N5 are

N=1-2

;0 (22)

Ny ==
2 o

The kinetic energy is defined by the sum of the translational and rotational kinetic
energies
K:1/pAuédx+1/pAw2de+1/pI«9édx (23)
2 /i, 2 /i 2 /i,
where p is the density, A the cross-section area and I the moment of inertia of the
cross-section.
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The variation of Eq.(23) gives

to to . .
t1 t1 lo lo lo

By using integration by parts and since the virtual displacement of the two end points
vanishes, Eq.(24) can be reformulated as

to to .
6/ Kdt:—/ (/ pAilgéugdx—l—/pAwgédex+/p[9059gdx) dt (25)
t1 t1 lo lo lo

The application of the midpoint rule (18) to Eq.(25) gives

2 . 8uG,n+l . awG,n-ﬁ-l
5/ Kdt:—AtéqL% (/lOpAquJré 5 2dx+/pAwG’n+%—2dx

1 qn-l—% lo aqn-ﬁ-%
. 00 41 B
+ [ plOs, 1 —2dx 26
| ey T (26)

Since the variation 6q2 L1 s arbitrary, the inertia force vector is defined as
2

ou B ow B
B . Gty .. Gty
Frngt —/lopAuG’nJré < Ja,.e > dx+/lopAwG7n+% <—8qn+1 dz
2 2

. 00 i1 !
+ | plb,. A ¥ 27
K G,+2<8qn+§> (27)

With the help of the third relationship of Eqs.(16), the accelerations at midpoint are
obtained as

. 2 2 . 2 2 .
fiansy = 3 Mo~ iy tan = 3 1 A0 5 llon
. 2 2 . 2 2 .
wG,nJr%:AtQ AwG_EwG,n:A_th;FAq—Eme (28)
2 2 . 2 2 .
= 2 N — by = fTAG— =g,
Gy = pp Ao = xp ben = Jp fa B g b

in which the vectors f,, f, and f, at time n + % are obtained by differentiation of
Egs.(21):

auG nt ' z
fi1= B 12 =b — Sptl (N3 b3 + Nyby) — Cntg Wntj [ .1
qn"rg B
ow R
Gn+i z
fo= (9—12 =by, + Cpil (N3bs + Ny by) — Sptd Wny l I (29)
qn+§ B
005,01\ "
3= Gnts = N5 b3 + Ng by + -
g, 1 bnt g
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with the following notations

T
z:[3n+% _Cn+% 0 _Sn+% Cn+% O]

bi=[N, 00 N, 00]"
bo=[0 N, 00 N, 0]" (30)
by=[0 0100 0] -~
n+i
bo=[00000 1] -2
n+3

The velocities at time n are evaluated by using Egs. (21):

UGn = N1ty + Notgy + N3vygp + Ny Vyap
wG,n = Nl wl,n + NQ wQ,n + N3 Vw3,n + N4 Vwa,n (31)
éG,n = Ns él,n + Ne é?,n + (1 — N5 — Ng) vy,

where 1 ,, Ug p, W1y, Wap, 9'1771 and 0.2,71 are the global nodal velocities at time n and the
quantities v,3, Vys, Vw3, Vs and vy are updated at the end of each step according to

2 - 2T
_ T
Vusnt1 = A7 —Spyl b; — Cpyl 0177%% 7 AqQ — vy3

ntd
. (32
2 T _ 2T
Vudn+1 = 1 | TSl b, — Cpyl 92,n+% o Aq — vyan
2
2 - zt
Vw3,n+1 = Al (Cn+1 b;gr Sn—)—% '91’”4_% ln+1> Aq — Vw3 n
: (33)
: by Gyos 2 | A
Vwa,n+1 = ntl 04 — 8,11 2n+1 q — Vwan
At + +3 Y2n+] vt
2 [ 27
= Aq — 4
UG,n+1 At <ln+1 ) q U(),n (3 )
2
and the local rotations are calculated by using the second relationship of Eqs.(18):
- - At - - 1
01,71—4—% = (91’»,1 + 7 917,”_’_% = 91771 + 5 b3T Aq (35)
_ _ At = — 1
927n+% = eg’n + 7 927n+% = 6927” + 5 b4T Aq (36)
Inserting Eqgs.(28) and (29) into Eq.(27), the inertia force vector is obtained as
2
fones =z | A (F1 554 £83) + o1 £, £3] g s
¥ (37)

2 . . :
- E/ [PA (UG,n 1 +ign .fz) +pl0cn f3] dz

lo
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All these vectors are calculated exactly by using MATLAB Symbolic. Hence,

lowing expressions are introduced:

[ A (5T a2 401 £, 3] @ =TT

lo

/ [pA (g f1 + e F2) + 10 fg} dz = fuwe

lo

with M; is the nonlinear mass matrix and T is the rotation matrix:

Copl  Sper 00 0 0
_Sn-i-% Cn+% 0 0 0 0

0 0 1 0 0 0

T= 0 0 0 cpur S 0
0 0 0 —Spl Cpyl 0

0 0 0 0 1]

Inserting Eqgs.(38) into Eq. (37), the inertia force vector takes the form
2

2
:At2 Aq__fuw@

(T™M,T) Az

fk,n—i—%

The exact tangent dynamic matrix is given by

afk,nJr%

K, =
aqn-ﬁ-l

NG

T
TT™M,T + % (T (IT™M, + M,I,) T) (Aq zz 1 )
n+3

T T TN - 8él,”+%
(T Mlle) (Aqr )—|— (T MlﬂlT) Agq

8qn+1
a9_2,n+§
aqn-l—l

R
2

. i 8.fuw9
At aqn—H

+ (T™M,4,T) (Aq

with
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(39)

(40)

(42)



and

0
I—%— 0
0
0

o O OO

(43)

-1
0

O OO o oo
OO = O OO
OO oo oo

O oo o o

The expression of the tangent dynamic matrix is very long and its computation requires
a lot of computational time. In order to reduce the computational time, Geradin and
Cardona [61, 43] suggested to keep only the mass matrix and to neglect the gyroscopic
and centrifugal matrices. Hence, a simplified tangent dynamic matrix is proposed:

2
K, =-— (T"™M,T 44
5.2. Reduced integration and Hellinger-Reissner formulations

For both formulations, linear interpolations for u, w and 6 are used in the local
corotational coordinates system. This gives

u = N2 U
w=0 (45)
0= N1 51 + NQ 52

Therefore, the kinetic energy (23) can be written as

1, .
K= 3y M, (46)

and the inertia term (27) as

fk,n-i—% = M qn-‘r% (47)

where the constant mass matrix M is given by

[ A/3 0 0 A/6 O 0
0 A/3 0 0 A/6 0
B 0 0 I/3 0 0 1/6
M=plo| a6 0 0 4/3 0 0 (48)
0 A/6 O 0 A/3 0
0 0 I/6 0 0 1/3
Hence, the tangent dynamic matrix is obtained as
Ky = 2 M (49)
FTOAR

6. Elastic force vector and tangent stiffness matrix

The purpose of this section is to derive the elastic force vector and tangent stiffness

matrix for the three formulations.
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6.1. Reduced integration method

The reduced integration formulation (RIE) is the classical Timoshenko approach
based on linear interpolations and one Gauss point integration in order to avoid shear
locking. The curvature k, shear deformation v and strain ¢ are defined by

00 92 04
K=o = I (50)
a—w -0 = —N191 NQéQ
ox

N =

u 92—91
El1=E€E—RZ=— —

lo lo

(51)

(52)

The elastic potential energy is defined by

1 1 1
Ui = —/ EA&%dx + —/ EI x%*dz + —/ k,GA~*dx (53)
2 lo 2 lo 2 lo
where F is the elastic modulus and G the shear modulus of the material
The application of the midpoint rule (18) to Eq.(53) gives

to 85
5/ Ui dt = AL67",, /E’Aa
t1 2 lo

n+2
n+2 8q + dz

lo

Ok, 0y, 5

+2 n+2

+ / Elk, 1 e d +/ ksGAy, 1 r dx) (54)
lo

By using the relation (6), the previous equation leads to

to
(5/ Umtdt:At(;q:_,_; BT </ FAe
t1 2

%
Ok, Oyt B
—i—/EI/a'nJr 2dx+/kGA7n+1—2da: (55)
lo aq n—+

where the components of matrix B are computed at time n+ . As the variation dq N
is arbitrary, the global elastic force vector is given as

T
.fg,n—i—% =B fl,n—&-%

(56)
in which the local elastic force vector f;, 1 is defined as
Oe, 1 * Ok, +1 B
fzn+:/EA€n+1 —= d$+/E[/{ dz
b lo : aqn+% lo 8qn+
T (57)
a’}/nJrl
+ | kGAv, 1 | 72— dx
l() 2 aqn«|»1
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By using the local strains (Egs.(50),(51),(52)), the local elastic force is obtained as
Fingr = [N My M, ]T =Kig, 1 (58)

in which the local stiffness matrix is

EA/l 0 0
Ki=| 0 kGAl/A+EI/ly kGAly/d—EI/ly (59)
0  kGAly/d—EIJly kGAly/4+ EI/l

The local rotations 6, ,,, 1 and Or s 1 are defined respectively in Eqgs.(35),(36) and the
axial local displacement is defined by

At . 1
—u

nid =Unt n+%:ﬂn+§rTAq (60)

<

U 1=
By taking the derivative of Eq.(56) with respect to the global displacements at time
n 4+ 1 and by using the local displacements (Eqs.(35),(36),(60)), the global tangent
stiffness matrix is obtained as

8fg,n+% Tafler% 4 9 <BT-fl,n+%>

K, = =B
I 9q,,11 0G4 0q,,41
fmw%
1 1 z2T rzt + zr?t
:iBTKl (B+§BO)+2l N+ 5 2 (M + Ms) (61)
ntg n+3

with
AqT (zz7T) (g1
B, = | Aq" (rz" + zrT) /lfH% (62)
AGT (rz" +2r") /12,

6.2. Hellinger-Reissner formulation

A two-field mixed formulation in this work based on the Hellinger—Reissner varia-
tional principle is considered. Both displacements and internal forces along the element
are approximated by independent linear interpolation functions. The elastic potential
of the Hellinger-Reissner mixed formulation is written as

1
Uint = / St (é - —e) dx (63)
lo 2

The generalized stress resultant vector S is approximate by

N 1 0 0 N
S=|M|=N,f,=0 =N, N, M, (64)
Q 0 =1/l =1/l | | M,

where Ny is the matrix of shape functions satisfying local equilibrium.
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From Egs.(50),(51) and (52), the generalized strain vector € is written as

€ 1/ly 0 0 g
é= Y :Néq_: 0 —1/[0 1/[0 Ql (65)
7 0 -Ni =N, 0,
The cross-section deformation vector e is defined by
1/(FEA) 0 0 N
e=Ng f, = 0 —Ny/(ET) Ny /(ET) M, (66)
0 —1/(ksGAly) —1/(ksGAly) M,
The variation of Eq.(63) gives
U\ U\
Uit = 5@5 1 —int + 5an 1 it (67)
t +3 (aanré) lints afmw%
where
i
int
=G 1 68
MNie
(afl + ) =G ~Hfpn (69)
with
1 00
G= [ N/Ndz=|010 (70)
lo 0 01
Lo 0 0
T Ay 1 I 1
H= | N,Ndz = 0 g7t rean  “6ET T moan (71)
lo 0 —lo 4 oo 1
6E1 ' k.GAly 3ET ' k.GAlp

As the variation J f; . 1 is arbitrary, the expression (69) is equal to zero. Therefore,
f,7n+% is obtained as

fl,nJr% =K, qn+% (72)
in which the local stiffness matrix is
K =H1! (73)

The expression of the local internal force vector (Eq.(72)) is similar to the one of the
Mixed formulation (Eq.(58)) but with a different local constant stiffness matrix. Hence,
the global quantities f, . 1 and K, are obtained in the same way by using Eqgs.(56)
and (61) respectively .
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6.3. IIE formulation

The shape functions of the ITE are used together with a shallow arch beam theory.
The shallow arch longitudinal and shear strains are given by

€11 = &€ —KRZ (74)
_ vy (75)
T o

in which the axial strain € and the curvature x are defined by

1 ou 1 [ow\”
E—E/lol%Jri(a—x)]de (76)

o
K_axQ

(77)

In Eq.(77), the axial strain is averaged over the element in order to avoid membrane
locking. The purpose of introducing a mild geometrical non-linearity in the local for-
mulation is to increase the accuracy of the formulation as compared to a purely linear
strain definition, while still retaining the efficiency.

By using Eqgs.(53-57) and introducing the strain definitions (Eqs.(75-77)) together
with the local quantities (Eqgs.(20)) and shape functions (Eqgs.(19)), the local elastic
force vector f,, 41 s obtained after some basic manipulations:

fl,n+§ = Kll Qn+% + -fs (78)
in which
El 0 0 0 000
Kiy=-=10 3241 32 —1 | +k,GAL(6Qu)° | 0 1 1 (79)
10 3ur—1 3u*+1 011

‘fs =FAl €n+% bs (80)

bs = {(1/%) (ctléLn+%-+<¢291n+%> (ctQéLn+%-+<¢léZn+%) }T (81)

with ) .
L
Ct1 = — 4+ —
20 12
5 (82)
7 1
ty =2 — —
20 12
The axial strain is updated as
At 1
€n+%:€n+7én+%:€n+§f4TAq (83)
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in which the vector f, at time n + 3§ is obtained from Eq.(76):

8&?” 1 B r
f4 = ( +3 > = l_ + el,n-i-% (Ctl b3 + Ctg b4) + 92,n+% (Ct2 b3 + Ctl b4) (84)
0

The global elastic force vector f, ., 1 is obtained by using Eq.(56). Besides, since the
local elastic force vector is not a linear function of g, 1 the expression of the global

stiffness matrix is different from Eq.(61) and is obtained as

1 1 zzT rzT + zrT
nggBT(Kll“rKlQ)<B+§B0)+2l 1N+ 2[2 (M1+M2>
n+3

n+%
1 of
—FEAl T+ AgT—4 85
+2 0f4<f4+ q 94, (85)
with
0O 0 0
KZQ =FA lo €n+% 0 Ctl CtQ (86)
0 CtQ Ctl
and
of, 227 1 o P _ rzt 4+ zr?t
- 57 (B = b0) (by = b0)" 5o (s + Oyy)
0q,y 2ol 1 24 20 \ btz T TRt zg+%
2 rzt + 2T
n+%

7. Solution of the equation of motion: choice of the predictor

In the previous sections, the inertia and elastic force vectors have been defined for
each formulation. By applying Hamilton’s principle (8), the equation of motion is given
as

.fR,n—&-% = fk,n—&-% + fg,n—i—% - fezt,n—&-% =0 (88)
in which the external force vector is defined as
fe:z:t,n—i—% = Pn—i—% (89)
The total tangent matrix is defined by

The predictor provides the initial value for the solution at time n+ 1. A poor predictor
can increase the number of iterations and in some cases makes the procedure fail to
converge. In this work, three predictors have been implemented and tested:
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e The first predictor (Pred.l), referred to as ”Unchanged displacements”, is used by
Simo and Vu-Quoc [62].

qn+1 =49q, (91)
e The second predictor (Pred.2), called as ”Null accelerations”, is proposed by Cardona
and Geradin [61], Méakinen [63], Chung and Hulbert [64]. Zero accelerations are taken
as predictor for the solution at time n + 1. In the case of midpoint rule the nodal
accelerations at time n+% are taken to zero, hence the new prediction for displacements
is obtained as

e The idea of the third predictor (Pred.3), proposed by de Borst et al. [65], is to assume
that the system behaves linearly between steps n — % and n+ % In that case, the elastic
force vector can be written as

fg,n—‘—% = fg,n—l + Kg,n—% Aq (93)

2

If the inertia term is linear, it can be written as
= Mg =M 2 A 2 94
fk,n-ﬁ—% - qn+§ - A_tQ q— Kt q, ( )

Inserting Eqgs.(93) and (94) into the Eq.(88), it is obtained:

2 2 .
(A_t2 M + Kgﬂ_%) Aq = Kt qu - fg,n—% + fe:z:t,n-i—% (95)

If the inertia term is nonlinear and by considering the similarity between Egs.(40) and
(94), one idea is to take:

2 2
fk:,n-i—% :E (TTMZT)TL_% Aq - Kt fuwQ,n—l (96)

2

Introducing Eqgs.(93) and (96) into the Eq.(88) leads to

2

2
(E TTMlT + KQ) . Aq = E fuw@,n—% - fg,n—% + -fext,n—l—% (97)

The present algorithm can be summarised as follows:
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Algorithm : Energy conserving scheme
1. Parameters at time n
Nodal displacement, velocity and acceleration : gq,,,q,,,4q,

IIE: Vu3,ns Vud,ns Yw3d,ns Vwa,ny Von, En, 91,11792,7L
RIE and MX: U, él,ny §2,n
2. Initialization: g/, (see the predictors)
3. Loop over the iteration step j
Compute fR,n-s-%(quH) (88) and KT(qu) (90)
Compute the displacement increment Ag? = ~K1' fp,., 1
Check the convergence
if | fr |l > tolyor | Ag’ || > toly
@, =+ A, j+1—jand go to (3)
else
Update the parameters at time n+1: ¢, 1, @, (17)
ITE: Vu3,n+1, 'Uué,nJrl (32)7vw§,n+1a Vwa,n+1 (33)7 Vo,n+1 (34)
En+1 (83)7 91,n+1 (35), 92771_._1 (36)

RIE and MX: %y,41 (60), 91,n+1 (35), 92,n+1 (36)
n+1— n and go to (1)
end

8. Conservation properties of the scheme

In this section, we rigorously prove that the proposed method conserves the total
energy of the system and, in absence of external loads, that the linear and angular
momenta remain constant.

8.1. Proof of the conservation of linear momentum

A 2

2 +U»

21 +Un

Figure 2: Components of the residual force vector

The purpose of this section is to prove that without external loads, the proposed
energy-momentum method gives a constant linear momentum (see Eq.(12)).
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The components fp; 1 (Eq.(88)) of the residual vector are shown in Figure 2.
Since each component is equal to zero, the following expressions, corresponding to the
sums of the residual forces in horizontal and vertical directions, can be considered:

[ frines + FRanst ] _ [ 0 ] (98)

fR2,n+% + fR5,n+% 0

For the three formulations, the sum of inertia forces (Eqs.(27),(47)) and elastic forces
(Egs.(56)) in horizontal and vertical directions give after some algebraic manipulations:

fkl””r% + fk4’"+% — / pA UG+ dz
i Jromt + Jrsnat ] lo Wan+g (99)
Jouney Floaney | _ [ : ]
i fg2,n+% + fg5,n+% | 0
where fkm% and fgj,nJr% are respectively the j component of vectors fk7n+% and fg7n+%.
By using Eqgs.(99), Eq.(98) can be rewritten as
/ pa | Bt | gy = | Dt Py (100)
lo Wen+3 P2,n+§ + P5,n+§

Without external forces and by introducing the midpoint rule (the third relationship of
Egs.(16)), the last equation gives L, 41 = L,, which shows the conservation of the linear
momentum.

8.2. Proof of the conservation of angular momentum

The purpose of this section is to prove that without external moments, the proposed
energy-momentum algorithm gives a constant angular momentum (see Eq.(13)).

As for the linear momentum, the residual vector, see Eq.(88) and Figure 2 is used.
Since each component of fp, .. 1 is equal to zero, the following expression, corresponding
to the sum of the moments about the origin O can be considered:

g(fR,n+%> = (z1 +uy) fRz,n+% — (21 +w) le,n-i—% + (72 + up) fR5,n+§

— (22 +wo) fR4,n+% + fRB,n—&—% + fRG,n+§ =0 (101)
For the three formulations, the application of (101) to the elastic force vector f, . 1
(see Eq.(56)) gives zero. Therefore, the previous equation gives after some algebraic
manipulations

/ pA (UG,n-i-% Wentt = Wanyd Uc,n+%> dzr + / pl ‘9G,n+% dz

lo lO

= (21 + U1,n+%) Pynyl — (21 + wl,n+%) Pl + (22 + Uz,n+§> Psnit

- (’Z? + w2,n+%) P4,n+% + P3,n+% + PBJH»% (102)
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Then, by introducing the midpoint rule (16), the previous equation leads to

[ ugn UG nt1 0
/ PA | wgnt1 | X | Wentr | dx+ / pl 0 dz
fo L 0 0 o 9G,n+1
I ugmn uG,n 0
:/ PA | wen | X | wen | do +/ pl | 0 |do+ At M., (103)
lo 0 0 lo éG,n

where M., is defined in (15). In case of vanishing external moments, it found that
Jni1 = J, which shows the conservation of the angular momentum.

8.3. Proof of the conservation of energy

The purpose of this section is to prove that the proposed energy-momentum algo-
rithm conserves the total energy (see Eq.(11)) of the system when the external load is
assumed conservative.

8.3.1. Reduced integration and IIE formulation
Eq.(88) (see also Eqs.(27),(56)) is multiplied the midpoint velocity q: 41 to yield
2

lo lo lo

+/EA5n+;én+;dx+/Efﬂn+é/%n+édx+/kSGA’yn+éf'yn+%dx

lo lo lo
6
- Z Pi,n-i—% an—i-% =0 (104)
i=1

which, by using the midpoint rule (16), gives

/lo DA ﬂG,n+1A ; UG n uG,n+12+ U, dz + /lo oA wG,n—HA ; Wan wG,n+12+ Wa e
n /lo ol éa,n+1A; éc,n 90,n+12+ éG,n de + /lo A €n+12+ €n enHA; En g
+ /l pp it L el 2 g /l RGA LTI = g
oS Py B — (105)

The last equation can be rewritten as

1 . ) .. 1 . . . .
5 / PA (UG ni1UGnt1 — UGn tan) dr + 3 / PA (WG n1 WG nt1 — WG n WG,n) dz
lo lo
+§ pI <9G,n+1 0G,n+1 - GG,n 9G,n> dz + 5 EA (En—i-l Ent+1 — En ‘Sn) dz
lo ZO
1 1
—|—§ EI ("in—&-l Kn+1 — Rn K/n) dr + 5 ksGA (’7n+1 Yn4+1 — Tn ’Yn) dx
l() lO

Pi,n+% (Qi,n-i-l - qi,n> =0 (106)
1

[
1=
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By using Egs. (23), (53) and (10), Eq.(106) is equivalent to
[K + Umt + Uemt]n_H [K + Umt + Uemt] (107)

which shows that the proposed midpoint algorithm conserves the total energy of the
system.

8.3.2. Hellinger-Reissner formulation
The Eqs.(88) and (69) are rewritten as:

fR,n+§ = qu—‘r% + BTfl,n—i—% - fext,n-i—% =0 (108)
T
aZ/{'int —
<8fl,n+§> = Ty —H f100y =0 (109)

By multiplying Eq.(108) by qu and Eq.(109) by flTnJr%, and adding outcomes it is
2 b
found, after some algebraic manipulations, that

QLéMdH;—l—/S 1en+1dx—z it d Qi 1

. T 1 1
S e — — de—= [ 8T ,e  1dz=0 110
+/l0 nt 1 (e 26)%; x 2/zo nil €ny1de (110)

By using the midpoint rule (16), the above equation gives

™ dx

. A 1 ~ 1
Qn+1 + qn M qﬂ+1 q, 4 / Ssﬂ + Sg (e - §e)n+1 - (e - 56)
2 At o 2 At

Sn+1 SE (é_%e)n+1+(é_% n Q'LnJrl q; o
+/lo N 5 dx—z m+,—_0 (111)

The last equation can be rewritten as

1. ) 1. ) .1
) (qTMq)n+1 9 (qTMQ)n Jr/ SE+1 <e - §e>n+1 dz

lo
1 6
Finally, from Eqs. (46) and (63), Eq. (112) is equivalent to

[K + Ulnt + Ueajt]n+1 [K + Uznt + UEIt] (113)

This proves the conservation of the total energy of the system.

9. Numerical examples

Four numerical examples are presented in this section. The first purpose is to ver-
ify that the proposed algorithm conserves the total energy of the system and remain
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stable even if a very large number of time steps are applied. The second purpose is
to show that the proposed algorithm conserves the linear and angular momenta in the
absence of applied external loads. The third purpose is to assess the efficiency of the
three proposed formulations, both regarding the required number of elements and the
computational time. For that, a reference solution is calculated. This reference solution
is obtained by taking a large number of elements and is identical for the three formula-
tions. Regarding the computational time, the possibility of using a simplified tangent
dynamic matrix for the ITE formulation and the choice of the predictor are carefully
studied. The number of elements for each example is given in Table 2.

Table 2: Number of elements

Examples IIE MX RIE Reference
Lee’s frame 10 20 30 100
Simple beam 8 16 24 100
Shallow arch beam 8 16 24 100
Free fly beam 4 8 12 50

For the presentation of the results, the following colors are used in all figures:
— — — — Reference solution = IIE formulation

Reduced integration method == Mixed formulation

9.1. Lee’s frame

Consider a Lee’s frame (as shown in Fig. 3) subjected to a concentrated load P. The
length is L = 2.4 m. The cross-section width and depth are b = 0.3 m and A = 0.2 m.
The mechanical properties are: elastic modulus £ = 210 GPa, Poisson’s ratio v = 0.3,
density p = 7850 kg/m?. The time step is At =5 x 107 s.

Figs. 4 and 5 show the vertical and horizontal displacements at the applied load P
respectively for the four analyses. The results obtained with the IIE formulation (only
10 elements) are in very good agreement with the reference solution. However, even
with a large number of elements (20 for the mixed formulation and 30 for the reduced
integration method), large discrepancies are obtained between these two formulations
and the reference solution. Finally, the results show in Fig. 6 that the total energy for
all formulations is conserved when the load is constant even if one million time steps
are applied.
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Figure 3: Lee’s frame: geometry and loading history.
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Figure 4: Lee’s frame: horizontal displacement u.
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Figure 5: Lee’s frame: vertical displacement v.
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Figure 6: Lee’s frame: energy.
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9.2. Simple beam

A simply-supported beam depicted in Fig. 7 is subjected to a vertical concentrated
load P = 4.1 MN at mid-span. The length of the beam is L = 1 m. The cross-section
width and depth are b = 0.20 m and h = 0.15 m. The material parameters are: elastic
modulus E = 1 GPa, Poisson’s ratio v = 0.3, density p = 7850 kg/m3. The time step
size is At = 10~* s. The interest of this example is that for this short beam the shear
effect is important.

The horizontal displacement at the right end and the vertical displacement at mid-
span for the four analyses are depicted in Figs. 8 and 9. The number of elements for
each formulation is: 8 for IIE formulation, 16 for mixed formulation, 24 for reduced
integration method and 100 for the reference solution. The results show that the dis-
placements of all formulations are nearly identical to the reference solution. In Fig.
10, it is shown that the three proposed formulations conserve the total energy of the
system and that the solutions remain stable for one million time steps.

P (MN)

p |

L N 0.05 0.1 t(s)

0.1 T T T T

u [m]

_0'8 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

t [s]

Figure 8: Simple beam: horizontal displacement u.
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Figure 9: Simple beam: vertical displacement v.
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Figure 10: Simple beam: energy.
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9.3. Shallow arch beam

A shallow arch beam of span L = 10 m with clamped ends is depicted in Fig. 11. The
radius R of the arch is 10 m and the height H is 1.3997 m. The shallow arch is subjected
to a time-dependent concentrated load P = Py sin(wt) at mid-span. The amplitude of
the load Py is 80 MN and its frequency w is 1000 rad/s. The characteristics of the
arch are: cross-sectional area A = 0.087 m?, elastic modulus £ = 210 GPa, moment of
inertia [ = 3.562 x 1072 m*, Poisson’s ratio v = 0.3 and density p = 7850 kg/m?. The
size of time step is At = 107° s.

In Fig. 12, the vertical displacement v at mid-span is depicted for the four analyses.
With only 8 elements, the result obtained with IIE formulation is slightly different
from the reference solution. However, large discrepancies can be observed between
the results obtained with the mixed formulation (16 elements)and with the reduced
integration method (24 elements) compared to the reference solution.

In this example, the external force is not constant and consequently Eq.(11) cannot
be directly used. However, it can be easily shown from Eq.(11) that the difference of
the kinetic and elastic energies between the times n and n 4 1 is equal to the external
work performed by the applied force P between the times n and n + 1:

(K + Unl, g — K+ Uinel,, = W1 (114)

Applying the midpoint rule provides
1 n+1
Weall = [ Pda=Poy (@ — ) (115)
Since, there is no energy in the system at the beginning, the above equations give
[K + Uint - Wext]n - 07 Wext,n - / qu (116)
0

At each step, the relative error is defined as

— |K + Uint - Wext|
|Wext|

(117)

For the three formulations, the relative energy error is depicted in Fig. 13. The largest
value is about 3 x 1078 for a maximum external energy of 1.85 x 10® J. These results
proved the good stability of the proposed algorithm even for a large number of steps
(one million).

ny l,

L)2

»|
= d

Figure 11: Shallow arch beam: geometry and loading history.
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Figure 12: Shallow arch beam: vertical displacement v.
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Figure 13: Shallow arch beam: relative energy error.

9.4. Free fly beam

Consider a free fly beam without support subjected to a concentrate load P as shown
in Fig. 14. The length of the beam is L = 3 m, the cross-sectional area is A = 200 cm?
and the moment of inertia I = 66.67 cm®*. The material properties are: elastic modulus
E = 200 GPa, Poisson’s ratio v = 0.3, density p = 48831 kg/m?. The time step size is
At =10"%s.

In Fig. 15, the horizontal displacement at mid-span is depicted for the four analyses.
The solution with the ITE formulation (4 elements) is nearly identical to the reference
solution. But, with a larger number of elements (8 for the mixed formulation and 12 for
the reduced integration method), some discrepancies are observed between the reference
solution and these two formulations. In Fig. 16, the results show the conservation of
the total energy for all formulations even if one million time steps are applied.

The interest of this problem is to study the conservation of the linear and angular
momenta after the time 0.4 s because no forces and moments are then applied to the
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beam. Since only vertical loads are applied at the beginning, the linear momentum Lu
for the horizontal direction should be zero. As shown in Fig. 17, the linear momentum
Lu is conserved with the maximum value 2 x 10~°. Moreover, Figs. 17 and 18 show
the conservation of linear momentum Lw for the vertical direction and the angular
momentum for one million time steps.
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Figure 14: Free fly beam: geometry and loading history.
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Figure 15: Free fly beam: horizontal displacement u.
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Figure 17: Free fly beam: linear momentum.
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Figure 18: Free fly beam: angular momentum.

9.5. Choice of the predictor and numerical performance

The numerical performances of the three proposed formulations are presented in
Tables 3 to 6. For each formulation, the three predictors described in Section 7 have
been tested. For the IIE approach, both the exact tangent dynamic matrix (Eq.(41))
and the simplified one (Eq. (44)) have been tested. For each example, the same number
elements (corresponding to the number of elements for the MX approach in Table 2)
have been used in all analyses. In Tables 3 to 6, the computational time and the total
number of iterations (in parenthesis) are given for each case considering 5000 steps.
The following conclusions can be drawn:

e For the RIE and MX approaches, all the predictors give almost the same computa-
tional time. For the IIE formulation, Predictor 2 gives the lowest computational time,
but the difference between Predictors 2 and 3 is not significant.

e The CPU time and number of iterations for the RIE and MX formulations are al-
most the same. This was expected since the only difference between these approaches
resides in different constant local stiffness matrices. However, as shown previously in
the examples, the RIE approach requires a larger number of elements in order to get
an accurate solution.

e For the IIE formulation, it is better to use the simplified tangent stiffness matrix. The
number of iterations increases but the CPU time decreases by 20% to 40% (Predictor
2).
e With Predictor 2, the IIE formulation (with simplified tangent dynamic matrix) re-
quires about 2.0-2.6 times more CPU time than the MX formulation. On the other
hand, the numerical examples have shown that with twice the number of elements, the
MX formulation gives less accurate results that the ITE one. It is therefore difficult to
conclude if one formulation is more efficient than the other one.
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Table 3: Numerical performances for Lee’s frame

Examples RIE MX ITE-exact I[TE-simp.
Pred.1 38 (15000) 38 (15007) 145 (19526) 112 (23539)
Pred.2 38 (15000) 38 (15000) 115 (15000) 99 (20482)
Pred.3 38 (14999) 38 (14999) 116 (15043) 104 (21370)
Table 4: Numerical performances for simple beam
Examples RIE MX ITE-exact I[TE-simp.
Pred.1 19980) 60 (19998) 185 (19999) 139 (23873)

60 (
Pred.2 47 (15000) 47 (15000) 141 (15011) 120 (19996)
Pred.3 47 (15007) 49 (15567) 151 (15874) 122 (20002)

Table 5: Numerical performances for shallow arch beam

Examples RIE MX ITE-exact ITE-simp.
Pred.1 38 (14999) 38 (14999) 138 (18569) 110 (22902)
Pred.2 38 (14999) 38 (14999) 114 (15000) 97 (19951)
Pred.3 38 (14997) 38 (14997) 115 (14999) 99 (19996)

Table 6: Numerical performances for free fly beam

Examples RIE MX ITE-exact  ITE-simp.
Pred.1 21 (14994) 21 (14994) 76 (19467) 51 (20025)
Pred.2 21 (14774) 21 (14801) 60 (14799) 42 (15862)
Pred.3 21 (14953) 21 (14981) 61 (14985) 45 (16623)

10. Conclusion

In this paper, three dynamic co-rotational shear flexible 2D beam formulations have
been presented and tested together with an energy-momentum method. The main
idea of this method is to use the classical midpoint rule for both kinematic and strain
quantities. Although the idea as such was developed in previous work, its realization
to these specific elements had not been done. The advantage of the proposed algorithm
is that it conserves the total energy of the system and the solution remains stable
even if a very large number of steps are applied. Moreover, in the absence of applied
external loads, the linear and angular momenta are constant. These characteristics
have been proved theoretically and also confirmed numerically by using four numerical
applications.

The three proposed shear flexible formulations share the same co-rotational frame-
work and differ in the choice of the local strain definition and the local shape functions.
If local linear strains and local linear shape functions are taken, the numerical results
show that it is more efficient to adopt a local mixed approach instead of a pure dis-
placement one: the CPU time is unchanged but the same accuracy is obtained with
a less number of elements. The numerical results also show that it can be interesting
to use a nonlinear local strain approach together with local cubic shape functions: the
computational time is increased (due essentially to mathematically more complicated
dynamic terms) but the same accuracy is obtained with a much less number of elements.
For that approach, it has also been shown that a simplified dynamic tangent matrix
should be taken and that the choice of an efficient predictor can be important.
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Abstract

In this paper, a co-rotational planar flexible beam element with generalized elasto-
plastic hinges is extended to handled non-linear dynamics problems including impacts.
To handle large displacement, the co-rotational formalism is adopted. The inelastic
behavior of the frame structure is modelled either by distributed plasticity or by plastic
hinge approach. In the later case, a family of symmetric and convex yield surfaces of
super-elliptic shape is considered for the inelastic behavior. A condensation procedure
is used to remove the internal degrees of freedom and to produce a two noded super-
element that is compatible with the standard co-rotational approach. Strain effects have
been considered by replacing the plastic flow rule with its visco-plasticity counterpart.
In addition, impact loading is described by the Newton law in which a coefficient of
restitution is used to accommodate energy loss. The equations of motion are rigorously
derived using a set of differential measures and convex analysis tools. The response of
the proposed formulation is compared against standard co-rotational based on linear
Bernoulli/Timoshenko local formulation. It is shown that the proposed formulation is
efficient, accurate and requires less elements.
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1. Introduction

Nowadays, structures should be designed to withstand extreme loadings induced by
vehicle impact or explosion which may cause the resisting structure to undergo large
displacement and substantial inelastic deformation. Subjected to impact or explosion
loading, load carrying members of the building may fail due to the high intensity load
produced by an impact or an explosion. The failure of such a local element can lead
to the collapse of the entire structure or a disproportionately large part of it, called
progressive collapse. The building must be designed to have sufficient robustness that
is the state in which the structure has either adequate ductility or enough redundancy.
Adequate ductility here is defined as the ability of the structural elements locally and
directly affected to absorb energy corresponding to the load before failure; enough re-
dundancy means the ability of the structure to redistribute the loads to the neighboring
undamaged members.

In scenario-based design approach, a sudden column loss [1, 2, 3] is assumed and
the response of the structure is analyzed. This method is rather unrealistic as it does
not capture the nonlinear dynamic effect excited from the abnormal loading. Before
the column collapses, it experiences large displacement and substantial plastic deforma-
tion. The column ductility also plays a role in absorbing the kinetic energy generated
from the moving vehicle or the explosion. This interaction requires a full nonlinear dy-
namic and inelastic analysis of the whole structure including rigorous modeling of the
impact interactions between the vehicle and the structure. Considering that 3D sim-
ulations and experimental tests require a considerable amount of time and resources,
the problems have also been simplified to planar and fully nonlinear model with limited
computational cost. The choice of finite element is essential in order to capture accu-
rately both geometrical and material nonlinearities with minimal computational cost.
In this context, the co-rotational method [4, 5, 6, 7, 8] is an attractive candidate thanks
to its ability to combine accuracy with numerical efficiency. The main idea of the co-
rotational formulation is to decompose the motion of the element into rigid body and
pure deformational parts through the use of a local system which continuously rotates
and translates with the element.

The inelastic behavior of framed structures can be modelled either with distributed
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plasticity or plastic hinge approach. Although the distributed plasticity approach can
accurately capture the inelastic behaviour of the structures, it is not convenient for
practical usage. The reason is that it requires a large number of stress-strain sam-
pling points through the cross-section and along the member length in order to ac-
curately reproduce the plastic effects. This results in prohibitive computational time
for nonlinear dynamic problems. In contrast to the distributed plasticity approach,
the plastic-hinge approach requires fewer elements. For this reason, the plastic-hinge
method is often preferred for practical use. In the past decades, many plastic hinge
models [14, 15, 16, 17, 18, 19, 20, 21] have been proposed and enhanced in order to
capture the inelastic behavior of framed structures. Lumped plasticity is one amongst
of the developed plastic hinges approaches. The lumped plasticity method considers
that plasticity is concentrated at specific cross-section located at the end of the mem-
bers. This behaviour is modeled by means zeros plastic hinges in the form of nonlinear
springs located at the member ends.

In the recent development, Heng et al. [22] proposed the generalized plastic-hinges
method which is modelled by a combined axial and rotational spring. The plastification
of the hinges follow the normality rule with a super-elliptic yield surface that accounts
for the interaction between bending moment and normal force. Alhasawi et al. [23]
proposed a two-node co-rotational flexible beam with generalized elasto-plastic hinges
at the beam ends in static case.

It is well established that materials such as mild steel are highly sensitive to strain
rate. Many experiments have shown that the yield stress increases substantially with
the rate of straining affecting significantly the structure response. Therefore, this phe-
nomena cannot be ignored especially for impact loadings. Several constitutive models
have been proposed to reproduce the effect of strain-rate on the elasto-plastic response
[24, 25, 26, 27, 28, 29]. Among these models, the elastic-visco-plastic model devel-
oped by Perzyna [26] has received much attention mainly due to its simplicity and its
consistency with the classic theory of plasticity.

In this paper, a co-rotational planar flexible beam element with generalized elasto-
visco-plastic hinges is developed. Strain effects have been considered by replacing the
plastic flow rule with its visco-plasticity counterpart. Besides, a family of symmetric

and convex yield surfaces of super-elliptic shape is considered for the inelastic behavior.
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A condensation procedure is used to remove the internal degrees of freedom and to
produce a two noded super-element that is compatible with the standard co-rotational
approach. In addition, the elastic stiffness coefficients of the beam and the hinges are
determined so that the total elastic stiffness of the element is conserved (see [30]). The
predictions obtained from the generalized hinges are compared against the reference
solution obtained using distributed plasticity (both Bernoulli and Timoshenko local
visco-plastic beam formulations [31]).

For the impact analyses, the contact model is developed in a rigorous framework of
non-smooth dynamics. The equations of motion are derived using a set of differential
measures and convex analysis tools. Velocity jumps at impact instants are considered
using the Newton’s impact law by a means of the coefficient of restitution to account
for possible energy losses during the collisions. The dynamic equations of motion are
solved by using the energy-momentum conserving scheme developed by Chhang et al.
(32, 33].

The outline of the paper is as follows. In the next section, the standard co-rotational
beam formulation and the beam kinematic of the generalized hinges are described. The
local formulation and the constitutive law for generalized elasto-visco-plastic hinges are
presented in details in Section 3. In Section 4, the dynamical equations derived from
the principle of virtual work and the energy-conserving scheme are presented. Section
5 is dedicated to the specific equations of motion for impact problem. In Section 6, two
numerical examples are presented in order to assess the performances of the proposed

method. Finally, conclusions are drawn in Section 7.

2. Co-rotational framework for planar beam elements

2.1. Standard co-rotational beam formulation

The central idea of the co-rotational formulism is to introduce a local coordinate
system that continuously rotates and translates with a two-noded element. With respect
to this moving frame, local deformational displacements q are defined by extracting the
rigid body movements from the global displacements g. The local displacements are

expressed as functions of the global ones, that is
d=3(q) (1)
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The local displacement vector @ is used to compute the internal force vector f; and the
tangent stiffness matrix k; in the local coordinates system. Note that f; and k; depend
only on the definition of the local strains and not on the particular form of equation
(1).
The transformation matrix B between the local and global displacements is defined
by:
0qg = Bdq (2)

and is obtained by differentiation of equation (1). The expression of the internal force
vector f, in the global coordinate system can be obtained by equating the internal

virtual work in both the global and local coordinate systems, that is

f, =B f (3)

Equation (1), (2) and transformation (3) are explained in details in [31].

2.2. Co-rotational beam kinematic with generalized hinges

In this model, the structural member consists of three sub-elements: a standard
flexible beam element and two generalized hinges that are modeled by a combination
of axial and rotational springs, see Fig. 1. The elongation or shortening of the hinges
occurs along the beam axis. The generalized hinges can be seen as finite element
with zero initial length. By assembling these hinges with the beam element and by
performing static condensation (see Section 3.1), a two node super-element (see Fig.
1) is obtained. This element is then incorporated into ‘the co-rotational framework
in order to account for geometrical nonlinearities. As a consequence, the local axial

displacement ; is equal to 0.
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Figure 1: Local super-element.

The motion of the beam element (see Fig. 2) is decomposed in two parts. In a

first step, a rigid body motion is defined by the global translation (u,w;) of the node
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1 as well as the rigid rotation a. This rigid motion defines a local coordinate system
(21,2;) which continuously translates and rotates with the element. In a second step,

the element deformation is defined in the local coordinate system.

A 2

Figure 2: Beam kinematics.

The vectors of global and local displacements are respectively defined by
T
q:[u1 wy O ug wy 94}
~ 9T
q= |: Uy 91 94 ]
The vectors of the local displacements of the standard beam is defined by
~ ~ 9T
Qoup = [ uy Oy uz O3 } (5)
The components of g are given by

ﬂ4:l—lo
0r=0—a=0,—5+05 (6)
0s=10,—a="0,—LF+p

where [y and [ denote the initial and current lengths of the element, respectively:

lo= /(24— 21)% + (24 — 21)?

l:\/(x4—|—u4—x1—u1)2+(z4+w4—21—w1)2

165



The current angle of the local system with respect to the global system is denoted as
£ and is given by
1
c=cosf == (xg+us— a1 —up)
l ®)
1

s:sinB:7(24+w4—zl—w1)

3. Local element formulation for generalized elasto-visco-plastic hinges

The main objective of this paper is to assess the performances (accuracy, comput-
ing time) of the super-element by comparing its predictions against reliable reference
solutions obtained from standard beam formulations using distributed visco-plasticity

approach. To keep the paper self-contained, the major steps of the derivation are given.

3.1. Local tangent stiffness matriz of super beam element

The purpose of this sub-section is to define the local stiffness matrix k; for the super
beam element. The introduction of the hinges in the element member produces addi-
tional degree of freedoms exceeding the original ones of the co-rotational formulation.
Therefore, the static condensation procedure is used to eliminate the internal nodes
and their corresponding degree of freedoms.

The elastic stiffness matrix of the hinges is given by:

kz O
C,=C, = 9)
0 kg
In plasticity, the incremental stress-resultant for the first hinge (similar expression for

the second hinge) is defined by

AN. Aty — Al Cnu C Aty — A
2 _ Ct 72 71 _ 11 12 72 71 (10)
AM, Afy — Ab, Co1 Coa Aby — Ab,
where CH = Ct(l, 1),012 = Ct(l, 2), 021 = Ct(2, 1) and 022 = Ct<2, 2)

The incremental stress-resultants for the first hinge, the elastic beam and the second

hinge are defined respectively:

AM, Cop —Cy —Cy Ab,
ANy | = | =Ci2 Cn Cig Atiy (11)
AM, —Cy Oy Oy Af,
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ANbQ kll 0 _kll 0 Aﬂg
AM, 0 k 0 ko AG.
2 | 22 23 P (12)
ANbg _kll 0 kll 0 Aﬂg
AMbg 0 k‘gg 0 k‘33 Aég
ANs Css Oy —C53 —Csy Atig
AMs; B Cig Cu —Cy3 —Cu Afs (13)
AN, —Cs3 —Cs4 (g Csy Aty
i AMy | i —Cys —Cu Cy3  Cy 1L Ab, |

Moreover, the nodal equilibrium equations at the points 2 and 3 as shown in Fig. 1 are
written by:
ANQ —|— ANb2 - O
AMQ —|— AMb2 — O
(14)
ANbg —|— ANg — O
AMbg + AMg - O
By combining the Eqgs.(11)-(13) with the previous equilibrium equations (Eqs.(14)), the

following expression is obtained:

A k k Ag
fl _ hh hb q (15)
0451 ko kp Aq,,,
with
T
fl = | Ny, My M, (16)
Cs33 0 Csy
khh = 0 022 0 (17)
Cis 0 Cu

0 0 Cs3 Cxn
Ky = kah == Cu Cxn 0 0 (18)
0 0 Cy Cu
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ki1 4+ Ci Ch2 —k11 0
C! kay + C: 0 ko:
kbb _ 21 22 22 23 (19)
—kqy 0 k11 + Cs3 Cay
i 0 /{532 C'43 k33 + 044 ]

After the static condensation, the local internal force f; and the local tangent stiffness
matrix of the super-element k; are given as:
Af =k Agq
(20)
k; = kp, — kg, kp,' ke
In elasticity, the local stiffness matrix k; of the super beam element should be the local

stiffness of the Bernoulli beam element:

B0
4EI 2EI 21
0 L2 (21)
2FE1 4 FET1
O lo lo

To achieve that the elastic stiffness parameters of the hinges (see Eq.(9)) and the

stiffness parameters of the elastic beam sub-element (see Eq.(12)) are taken as:

EA
kﬂ = in_
0
It (22)
ké le_
0
EA
ki = wll_
0
EI
k’QQ = k’33 = Wo—— (23)

By introducing Eqs.(22) and (23) in the second expression of Eqgs.(20), the following

relations are obtained:
1\ —1
w1 = (1 -2 in)

oy = 4Qm(gm - 3)
t 0 8ot 12 (24)
2 0%,
w fr—
ST 2 —8om +12

Hence the idea of the method is to choose the coefficients g,, 0,, of the hinges and then

to calculate the coefficients twy, ws, w3 of the beam sub-element by using Eq.(24). By
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doing this procedure, the choice of the elastic stiffness coefficients does not influence
the results for generalized plastic-hinge formulation. Moreover, as shown in [30], their

results are identical to the ones of the classical Bernoulli co-rotational beam element.

3.2. Constitutive law

The general plasticity theory is applied to the generalized elasto-visco-plastic hinges.
The present model assumes that visco-plasticity is lumped into axial and rotational
springs located at the end of flexible beam element. The elastic behavior of the gener-
alized hinge is uncoupled whereas axial-moment interaction is considered in the visco-
plastic range. The total generalized strain rate is decomposed into elastic and visco-

plastic parts:

[1]-

="+ 2 (25)

[
I
[

where B = [ 0]T are the axial and rotational strain rate. For an associated flow
rule, the direction of the generalized visco-plastic strain rate vector, which based on the
overstress concept, is given by the gradient to the yield function, with its magnitude

given by the plastic multiplier rate A

- p . 0D
E =)A= 26
[9)> (26)
where 3 = [N, M ]T is the generalized stress vector containing the bending and axial

forces in the hinge. ® (X) is a super-elliptic yield surface defined by:

B\ »
) 1 (27)

where «, # and p are the parameters of the yield surface shape. For example, the case

(N, M) = <‘%

¢ N
TV

of =1, 8 =1.3 and p = 1 corresponds to a yield surface of doubly symmetrical steel
section.
In the case of visco-plasticity, the plastic multiplier \ is determined from the power
function related to the visco-plastic behaviour of the material as:
. D*®¢ (%) if ®(X)>0
A= (28)
0 if ®(X)<0
where D* and ( are the drag stress and the viscosity exponent. The expression in Eq.

(28) infers the loading and unloading conditions as following. ® (¥) < 0 corresponds to
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the elastic domain, which leads to A = 0, and ® () > 0 gives the over-stress resulting
from the viscosity, which is the distance between the the current stress state and the
boundary ¢ = 0.

In case of plasticity, the plastic multiplier )\ is determined by the classical comple-

mentary conditions:

A>0, ®N,M)<0, ABN,M)=0 (29)

3.8. Discrete constitutive equations

For the midpoint rule integration, the discrete system of equations of the stress-

resultants read:

¥, =%, +-C.(AE - AE?) (30)

n+3;

By introducing the trial state as:

» 1
trial __ —
Eq. (30) becomes:
5, —srid - Lo ame
ntd = Hnpl T 5 CeAS (32)

where the plastic strain at mid-point is given by

1 1 0P
B =B+ ABP=EP + AN <
n+3 nty nty Aaz il (33)
2
while the incremental plastic stain is defined by from expression (26) :
0P
AEP = AN —— 34
75| . (34)
2
By using the latter expression, Eq. (32) can be written as
- 1 0P
__ ytrial _ — il
En%fEnJr% 2C5A)\ I (35)
2

where the incremental plastic multiplier can be determined by using expression (29) as:

ALD 0 () i @ (Z,0) 20

oA 0 it ®(3,,,) <0

(36)
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3.4. Consistent tangent operator
The tangent operator for the case of nonlinear yield surface requires the derivative
of stress resultant vector X, 1 with respect to the deformation vector &, | 1. By using

Eq. (35), the derivative of the stress resultant derive the %, 1 is:

4 0P 1 0?P
_ trial - il
dzn-‘*% - dEn-ﬁ-% 82 D) Ce AN 822 il dzn-ﬁ-% (37)
2
Rearranging the latter equation, it gives:
0P
tmal
dX, . 1= <d2 0% | ) (38)
where the matrix H is given as:
0?P
H=1I —|— C A)\a—dE (39)
in which I is a 2 x 2 unit matrix. By taking derivative of Eq. (36), dA is obtained as
* ¢—1 do !
dAN=AtD*( P — d¥, 1 (40)
dX n+l 2
2
Furthermore, the derivative of the yield surface is obtained from Eq. (27) as
de |*
dq)n+§ TS o d2n+% (41)
nTy

By replacing Eq.(38) into the latter equation, dA\ is given by:

-1 trial
H dEH;)

-1
1 ao|" o Ao |"
dAN = [ 1+ At D* (P — 1C, == At D* (P —
( LR > 75|, .. sl
(42)
Provided that
z:gja%l =C.AE, 1 (43)
The consistent tangent operator for the visco-plasticity is then given by:
-1
1 do |" 0P
C,=H'C. |[I--|1 AtD* P — H
t > ( AP s il )
At D*¢P¢! ae ae ' H'C (44)
d¥ |, 1 d¥| . ©
For the plastic case, the tangent operator C; is derived from Eq. (44):
-1
1(1do|" o oo  do|"
=H! I--| =—x= — — H!
Ce Ce 2 <2d2 - co%| ) (az w1 A2 1 Ce)
(45)
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4. Dynamic equations

4.1. Principle of virtual work

The principle of virtual work reads:

/t2 (/ pAiig dug dx +/ pA g dwg dr + / plégéegdx +0q” o= 5qTP) dt=0

t1 lo lo lo (46)
with I being the second moment of area of the cross-section and P the external force
vector component of concentrated forces and moments at the nodes. The components
ug and wg of the global displacements of the centroid G and the global rotation 64 of

the cross-section are approximated by a linear interpolation:

x T
UGZ(l——)U1+—U4

lo lo
wg = i w1—|—£w4 (47)
Lo lo
b= (1-2) 6+ =0,
lo lo
Hence, the expression (46) can be written as:
to
/ ( / 6¢"M gdx +0q" BT f, — 6qTP) dt =0 (48)
t1 lo
where M is the constant mass matrix:
A3 0 0 A/6 0 0
0 A/3 0 0 A/6 0
0 0 I/3 0 0 1I/6
M = plo (49)
A6 0 0 A/3 0 0
0 A/6 O 0 A/3 0
0 0 I/6 O 0 1/3

4.2. Residual force vector and tangent matrix

The energy-momentum method [32, 33] in the context of co-rotational approach is

used to solve the dynamical equation (Eq.(46)). The central idea of this method starts

from the classical midpoint time integration:

qn+1 + qTL 1
iy == 5 ~dnt R4
. i1t 80 Qo — 40 _ Aq
_ _ _ =24 50
qn+] 2 At At (50)
I SR O LS Gk QA _ 2,
R VA V- AV VAL
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The main idea is to applied the midpoint rule to the strain fields. It takes the following

generic form:

[ i = g, 8= 5, A

(51)
At .
fn-‘,—% = fn + 7 fn-i—%
The application of the midpoint rule Eq.(51) to Eq.(48) gives
For any arbitrary 5q; L1 the residual force vector is defined as
2
. T
.fRn+§ = qu+% + Bn+%fln+% - Pn+% =0 (53>

The global tangent matrix is obtained by the derivation of the residual force vector

Frny 1 respect to the global displacement vector g, +:

T
2 1op 1 Fnty Fnil
2
54
Irn+% z:+l + szr% rz_Fl ( )
+ 22[2 ] : (Mln-i-% +M4n+%>
n+3

with k; is the local tangent stiffness which is defined in Section 3 depending on the local

beam theory. Besides, the remaining variables are:

T
r"Jr% - |: _Cn—t-% _Sn-‘r% 0 Cn-i—% Sn-i-% 0 ] <55)
T
Z""'% - [ Sn+% _Cn+% 0 _Sn+% cn+% 0 ] (56)
- z zT —
N
il
r 1 +Z 1 r
n+ +1 n+ + 5
BOn-ﬁ-% —_ AqT ( 2 n 122 2 2) (57)
zT n+,%z rT
AqT ”VH’% n+%2+ ”H’l n %
L ln+% m

5. Non-smooth dynamics: impact loading

5.1. Contact model and constraint law

In this contact model, we consider an impact between a rigid point mass m,. and a

nodal mass m; of the beam element (Fig. 3). The motions of the masses are constrained
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by the contact conditions without penetration and adhesion conditions. These contact

conditions at position level can be summarized by the so-called Signorini’s force law:
gy 20, Ay >0, gyAn=0 (58)

where gy = ¢; — x. is the gap function between the positions of mass m. and m;. Ay
corresponds to the force exerted Fj_.. by mass m; on mass m.. In reverse, the force

exerted F,,; by mass m,. on mass m; is defined as —A\y according to Newton’s third

laws.
JW
M, ) m; )
. Le, Te C)—% qi
@,
JW

Figure 3: Contact model.

These laws do not consider the properties of the collision’s contact. Newton intro-
duced the coefficient of restitution € in order to accommodate the energy dissipation
during collision. By inserting Newton’s impact law, the constraint law at the velocity
level can be written as

v >0, —Ay <0 EvAN=0 (59)
where A is the percussion force and &y = v + €7y where vy = ¢; — . is the relative

velocity. The superscript (—) and (+) are referred to the state before and after impact

respectively.

5.2. Equations of motion
Depending on the value of the gap gy, the equation of motion are defined for two
cases: open contact (gy > 0) and closed contact (g5 = 0). The equations of motion of

the open contact are
M jécm% =0 (60)
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while the external force vector P is not considered in the impact.

When the impact occurs, the velocity may jump at the time instances. At those
times the velocity is not differentiable and the contact force is impulsive. In [34], Moreau
proposed a set of differentiable measures in which an equation of motion is combined
together. Thus, one does not have to write separately the equation of smooth part and

impact part of the closed contact. The equation of the closed contact is now written as

me <-'j:cn+1 - xcn) - _PN (62)
M <Qn+1 _qn) +fgn+%At: PNIl (63)
EN =YNnt1 T €WNn =0 (64)

where I is the unit vector corresponding to the impact node and Py is the percussion

force resulting from the integration of the differential measure of the contact force:

tnt1 tnt1
tn tn

In order to solve Eqs.(62)-(64), the following methodology is used. First, the percussion
force Py is assumed to be zero, then Eqs.(62) and (64) are solved for the unknown
displacements. If & > 0, the prediction of no percussion force is true. Otherwise, if
& < 0, then the contact force exists and has a positive value. In such case, the following

equations are solved for the unknown displacements and the contact force:

me (-jfcn—i-l - -rcn) - _PN (66)
M (qn+1 _qn) +fgn+%At: PNIl (67)
N = VNn+1 T €Yvn =0 (68)

Equation (68) can be written as:
Tent1 = Ging1 + € (Gin — Ten) (69)
By replacing the latter equation into Eq. (66), it gives after some manipulations:
Me [Gins1 + €Gin — (€ + 1)icn] = —Py (70)
By replacing one more time Eq. (70) into Eq. 67, only one final equation is given:
M (qp1 — Gn) + Fonp 1 At = =me [Gins1 + €Gin — (€ + 1)icn] In (71)
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6. Numerical examples

The purpose of these examples presented in this section is to show the ability of
the proposed model in capturing the response of frame structures subjected to impact

loadings.

6.1. Example 1

Three steel frames is depicted in Fig. 4. The column of each structure is subjected
to a mass m at the position A with the initial velocities vy. The parameter of the
member are: the density p = 7850 kg/m?, Young modulus E = 210 GPa, the yield
stress o, = 355 MPa and the coefficient of poisson v = 0.3. The yield function of the
generalized hinges for the square section is ®(N, M) = |M/M?|"% + |[N/N?|* —1. The
time step for the analysis is At = 107°.

6 m

4 m

3m 3m

[ <« >
a0 4
'y ﬂ 'y
= 5 B
0.2 m - 0.2 m - 0.2 m .
[« [«—>] [«
muy | mug | i mvy
@ o-| @
% % %
Sy <y cx
K== - AN\ - ANNNY
(a) (b) (c)

Figure 4: Geometry of the frames with the impact loadings

Regarding to the element discretization, the size of the element is 0.1 m for the dis-
tributed plasticity models. For the generalize hinges, one element is taken for each
member except for the impacted column when two elements have been considered. Fig-
ures 5 and 6 shows the evolution of the maximum horizontal and vertical displacements

of the impacted column, respectively, for the initial velocity of 30 m/s for the frame c.
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Figure 5: Ex1: Evolution of the maximum horizontal displacement [m] of the impacted column of

frame ¢ with vy = 30 m/s.

For the elasto-perfectly plastic case, the result obtained with the generalized plastic-
hinges are in good agreement comparing to the ones obtained with the two fiber models.
Furthermore, the series of calculation on the maximum displacement of the column un-
der the impact are summarized in Table 1. The discrepancies between Timoshenko and
Bernoulli fiber models are small and it does not exceed 3%. Otherwise, the maximum
difference between the generalized elasto-plastic hinges and the distributed plasticity
models are about 11% which is still acceptable in the fact that the generalized hinges

model used only few number of elements.
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Figure 6: Ex1: Evolution of the maximum vertical displacement [m] of the impacted column of frame

¢ with vgp = 30 m/s.

Table 1: Ex1: Elasto-perfectly plasticity model: maximum displacement on the impacted column:

Mass of vehicle 1500 kg, square section 20 cm, € = 0.

Timoshenko Bernoulli Hinges
Frame a (vy = 20 m/s) 0.1085 0.1074  0.1030
Frame a (vo = 30 m/s) 0.1905 0.1909  0.1907
Frame a (vy = 40 m/s) 0.2718 0.2728  0.2739
Frame b (vg = 20 m/s) 0.1261 0.1232  0.1118
Frame b (vy = 30 m/s) 0.2454 0.2493  0.2351
Frame b (vy = 40 m/s) 0.3940 0.3994  0.3883
Frame ¢ (vy = 20 m/s) 0.1200 0.1226  0.1125
Frame ¢ (vg = 30 m/s) 0.2521 0.2579  0.2414
Frame ¢ (vo = 40 m/s)  0.4136 0.4253  0.4086
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Table 2: Ex1: Elasto-visco-plasticity model: displacement maximum on the impacted column: Mass

of vehicle 1500 kg, square section 20 cm, € = 0.

Timoshenko Bernoulli Hinges

Frame a (vy = 20 m/s) 0.0804 0.0780  0.0763
Frame a (vy = 30 m/s) 0.1402 0.1367  0.1469
Frame a (vy = 40 m/s) 0.2011 0.1982  0.2228
Frame b (vy = 20 m/s) 0.0854 0.0856  0.0799
Frame b (vy = 30 m/s) 0.1645 0.1625  0.1625
Frame b (vo = 40 m/s)  0.2659 0.2638  0.2685
Frame ¢ (vp =20 m/s)  0.0853 0.0840  0.0806
Frame ¢ (vg = 30 m/s) 0.1644 0.1635  0.1641
Frame ¢ (vg = 40 m/s) 0.2718 0.2714  0.2743

Regarding to the study on the strain effect, ( = 5 and D = 40.4 s~! are material
constant for the mild steel [35] which are employed for the fibre models whereas ¢ =
5 and D* = 2.025 x 10® s are used for the hinges. Table 2 shows the maximum
displacement of the impacted column for each frame and initial velocities. The discrep-
ancies between the two fiber models are only 3% which indicate that the shear effect
of Timoshenko model does not influence the outcome of the displacements. With the
appropriate selected value of D* (2.025 x 10® in this case), this model can reproduce
the correct results and the evolution of the displacements (see Figures 5 and 6) with
the overall maximum different of 11%.

Another series of calculation (see Table 3) have been made for testing the value
D* above if it can be used for other mass (3000 kg in this case) or the coefficient of
restitution (0.5 in the case). With the same value D*, the maximum different of the
displacement does not exceed 10%. It can be concluded that this value can be used for

the application of the steel structure with the square section.
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Table 3: Ex1: Elasto-visco-plasticity model: displacement maximum on the impacted column: Mass

of vehicle 3000 kg, square section 25 cm, € = 0.5.

Timoshenko Bernoulli Hinges

Frame a (vy = 20 m/s) 0.0842 0.0819  0.0761
Frame a (vy = 30 m/s) 0.1525 0.1495  0.1524
Frame a (vy = 40 m/s) 0.2240 0.2196  0.2389
Frame b (vy = 20 m/s) 0.0876 0.0869  0.0787
Frame b (vy = 30 m/s) 0.1697 0.1700  0.1630
Frame b (vg = 40 m/s) 0.2743 0.2746  0.2714
Frame ¢ (vo = 20 m/s) 0.0860 0.0854  0.0793
Frame ¢ (vg = 30 m/s) 0.1685 0.1700  0.1641
Frame ¢ (vg = 40 m/s) 0.2775 0.2803  0.2765

6.2. Example 2

Only frame c illustrated in Fig. 4 are used in this example. The material character-
istics and the discretization remains the same. The section of all member is HEB240.
The radius fillet for this sections is not taking account. The characteristic of the section
are: area of the cross-section 0.0102 m?, the inertia moment 1.0893 x 10~*m?, the axial
resistant NP = 3628.1kN and the bending resistance M? = 360.66 kNm. The yield
function of the generalized hinges is ®(N, M) = |M/M?|"? + |N/N?|'® — 1. The mass
of the vehicle is 1500 kg. The coefficient of the restitution € is 0.5. The time step for
the analysis is At = 107°. For the study of strain rate effect, the value ( =5 and D =
40.4 s~ is used for the fibre models whereas ( = 5 and D* = 2.025 x 107 s~! are used
for the hinges.

Figures 7 and 8 shows the evolution of the maximum horizontal and vertical dis-
placements of the impacted column with and without strain effects, respectively. The
evolution of the displacements for both directions are very similar. Tables 4 and 5 show
the maximum displacement of the impacted column for frame c. The results show that
the maximum difference between the Timoshenko and Bernoulli fiber models does not
exceed 5.6% for both case studies. In addition, the response of the displacements ob-
tained from the generalized elasto-plastic hinges differs to Timoshenko model about 6%

and to Bernoulli model about 12% in maximum. With the value of D* = 2.025 x 107,
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Figure 7: Ex2: Evolution of the maximum horizontal displacement [m] of the impacted column of

frame ¢ with vp = 40 m/s.
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Figure 8: Ex2: Evolution of the maximum vertical displacement [m] of the impacted column of frame

¢ with vgp = 40 m/s.
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the generalized hinges model is able to capture the correct response of the structures.

Table 4: Ex2: Elasto-perfectly plastic model: maximum displacement on the impacted column

Timoshenko Bernoulli Hinges

Frame ¢ (vy = 20 m/s) 0.2550 0.2536  0.2557
Frame ¢ (vy = 30 m/s) 0.5433 0.5339  0.5707
Frame ¢ (vy = 40 m/s) 0.8840 0.8345  0.9331

Table 5: Ex2: Elasto-visco-plastic model: maximum displacement on the impacted column

Timoshenko Bernoulli Hinges

Frame ¢ (vy = 20 m/s) 0.1621 0.1580  0.1533
Frame ¢ (vg = 30 m/s) 0.3506 0.3211  0.3300
Frame ¢ (vo = 40 m/s) 0.5528 0.5296  0.5675

7. Conclusion

In this paper, a co-rotational planar flexible beam element with generalized elasto-
plastic hinges is extended to handled non-linear dynamics problems including impacts.
Strain effects have been considered by replacing the plastic flow rule with its visco-
plasticity counterpart. A family of symmetric and convex yield surfaces of super-elliptic
shape is consider the behaviour of the hinges. A condensation procedure is used to
remove the internal degree of freedom and to produce a two noded super-element that
fit the standard co-rotational appraoch. Besides, the dynamical equations of motion
are solved by using a scheme that conserves the energy in case of elasticity. The
predictions obtained from the generalized hinges are compared against the reference
solution obtained using distributed plasticity. Both Bernoulli and Timoshenko local
beam formulations are employed for the distributed plasticity approach.

The responses of the three formulations have been compared against each other
for the impact problems. The numerical examples show that the distribute plasticity
beam elements accurately predict the response of the structures and are employed as
the reference solution by taking lot of number of elements. The effects of the shear
deformation in both elasto-plastic and visco-elasto-plastic ranges is not significant in

the impact problem. Besides, the generalized hinges beam element is able to reproduce
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with a good accuracy with only a few elements by comparing with the reference of the
two plastic zone models. The introduction of the strain rate in the constitutive law

shows that the frame deformed less due to the hardening of the material.
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Appendix A. Distributed plasticity approach

In this section, the tangent stiffness matrix k; and the consistent tangent operator of
local element formulations for both Bernoulli and Timoshenko are derived. The details
for both linear Bernoulli and Timoshenko local plastic beam formulations are presented
in [31].

The tangent stiffness matrix is obtained by taking the differentiation of the internal
force vector f:

k;= [ NTkN,dz (A1)
lo
where the cross-section tangent stiffness matrix k is calculated by taking the variations

of the cross-section constitutive relation (Eq. (A.1)):
k= / ATC, A dA (A.2)
A

A.1. Bernoulli formulation

The vector A is defined by:
T
A= [ 1 —2 } (A.3)

The matrix N, relates the variation of the cross-section deformation to the variation of

the local displacement degree of freedoms:

1
N B 0 A
ol bz_4 6xz_ 2 (A.4)
lg 0 Ig 0
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If the behaviour is elastic, C;, = C, = E. Otherwise, C;, = 0 for elasto-perfectly

plastic. For the visco-plasticity, C; is given by:

-1
1 1AtD do |t )
C,=H'E 1——<1+— 4<c1><*1— H~ 1Ea— )
2 2 Oy dO' n+% 80' nJr%
T
ALDC e 42 de H—lE (A.5)
o'g do n“'é dO'
with
82
H_1+2EA)\8 do, 1 (A.6)

The yield surface ® is given by a power function of Cowper-Symonds-Bonder type
[35, 36]. D and ¢ are material constants; for mild steel, ( = 5 and D = 40.4 s}
according to Cowper and Symonds [35] and for aluminum alloys, ( = 4 and D = 6500
s~! according to Bonder and Symonds [36].

A.2. Timoshenko formulation

The matrix A; is defined by

1 —z2 0
0 0 1

Ay (A.7)

The matrix N, is defined by
1
i 0 0
_ 1 1
Ne=10 =4 %

0 —(1-%) ¢

In elastic case, the stiffness matrix C; is defined by:

(A.8)

E 0
0 G

with G being the shear modulus of the material.
For the visco-plasticity, the tangent operator is defined by:

0P

do |*
¢—1
< ¢ 82

2 5% =),

H—lce)
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C,=H'C, |[I-= H

2

1 1AtD
<1+ tDg

¥

do |*

< (A.10)
3 2l

At ?C Pé-1 @
og dX .




with X = [0 7] .

The tangent operator for plasticity case is given by:

-1
1(1do|" o oo  do|"
C,=H'C |I-=-|>— H'C. — — — H'C,
2(2d2 ntl 0x ntl 0% ntl dx ntl
(A.11)
with
1 0P
H :I+ §Ce AAﬁdE'rkF% (A12)
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Abstract

While the linear beam theory is generally based on the Euler-Bernoulli hypothesis,
which neglects shear deformations, a generalisation to the non-linear large deformation
regime is usually based on the Timoshenko assumption which considers shear deforma-
tions. The formulation of a 3D Euler-Bernoulli beam has been significantly delayed and
only recently it did attract the attention of few researchers. The main reason lies in the
challenging complexities met once an attempt to develop such a theory is undertaken.
Though, such a formulation would be very useful in cases such as biomechanics, very
large systems or when ill-conditioning becomes a dominant issue. This is especially
true in the case of dynamics. The main obstacle in defining a three-dimensional Euler-
Bernoulli beam theory lies in the fact that there is no natural way of defining a base
system at the deformed configuration. Such a system exists at the reference config-
uration by definition. To define strain measures, we need to be able to characterise
the deformation of these base vectors into the current configuration. In this paper, we
provide a novel methodology to do so leading to the development of a spatial rod for-
mulation which incorporates the Euler-Bernoulli assumption. The approach makes use
of Gram-Schmidt orthogonalisation process coupled to a one-parametric rotation. The
latter completes the description of the torsional cross sectional rotation and overcomes
the non-uniqueness of the Gram-Schmidt procedure.

Furthermore, the formulation is extended to the dynamical case and a stable, energy
conserving time-stepping algorithm is presented as well. The time integration scheme

extends previously developed energy-conserving time stepping algorithms, which is in-
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dependent of the non-linear complexities involved in the geometric description of the
deformation at hand. Many examples of large spatial deformations confirm the power
of the formulation and the integration method presented.

Keywords: Nonlinear dynamics, Euler-Bernoulli beam, 3D Geometrically exact

beam, Total Lagrangian, Energy-conserving scheme.

1. Introduction

Flexible beam elements can be found in different areas of engineering practice. For
some applications, such as large deployable space-structures, wind turbines propellers,
offshore platforms or structures under extreme loading, beam structures could undergo
large deformations as well. In addition to industrial applications, in many areas in biol-
ogy and biomechanics researchers are resorting to slender beam theories as a powerful
modelling tool as well.

While the linear beam theory is generally based on the Euler-Bernoulli hypothesis,
which neglects shear deformations, a generalisation to the non-linear large deformation
regime is usually based on the Timoshenko assumption which considers shear deforma-
tions. The main reason is that the kinematic description of the deformation of the beam
cross section is straightforward under the latter assumption and very complex under the
former. Indeed, the modelling of the non-linear static and dynamic behaviour of beams
has been successfully carried out using concepts which incorporate three-parametric
rotation tensors while exhibiting shear strains. The specific assumptions, details and
parameterisations may differ but the outcomes are very much similar: Argyris et al.
[1], Bathe and Balourchi [2], Simo and Vu-Quoc [3], Cardona and Géradin [4], Pimento
and Yojo [5], Bauchau et al. [6] Ibrahimbegovi¢ [7, 8], Gruttmann et al. [9], Zupan and
Saje [10], Sansour and Wagner [11], Kapania and Lie [12], Mata et al. [13], Zupan et
al. [14], Zhong et al. [15]. and Li et al [16].

The extension of Euler-Bernoulli assumption to the non-linear large deformation
regime is far more challenging. A spatial Euler-Bernoulli-based beam formulation has
the advantage of being displacement-based with only three degrees of freedom, along
with additional degrees of freedom to describe the torsional behaviour. This is useful in
the simulation of very large structures, where the number of degrees of freedom could

be very high, or when the slenderness is high rendering the numerical models ill-posed,
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e.g. already at moderate slenderness rates, shear deformable beam theories exhibit
locking in the framework of finite elements. Also, the complexities of rotations and
their update could be avoided.

In the planar case, the desired extension has been successfully carried out for both
the static and dynamic cases (Nanakorn and Vu [17], Armero and Valverde [18], San-
sour et al. [19]). In contrast, the general three-dimensional case finds itself faced with
multiple problems which prevented its development and so hindered possible applica-
tions. This is especially true within the context of dynamics. In this paper, we take
the challenge and provide a three dimensional formulation for an Euler-Bernoulli-based
beam theory.

The main obstacle in defining a three-dimensional Euler-Bernoulli beam theory lies
in the fact that there is no natural way of defining a base system at the deformed
configuration. Such a system exists at the reference configuration by definition. To
define strain measures we need to be able to characterise the deformation of these
base vectors into the current configuration. Beam formulations, which consider shear,
make use of a rotation tensor to define the current configuration of these vectors. In
an Euler-Bernoulli beam, their final position cannot be defined directly. Some recent
attempts can be found in the literature where the problem has been successfully solved
via different strategies which result in replacing two rotation parameters by expressions
which relate to the displacements of the centre line resulting in 4 parametric beam
formulations. Three of those parameters are either displacements or rotations, while
the fourth parameter captures the cross sectional torsional rotation or the stretch of the
centre line, respectively. The reader is referred to Pai [20], Zhoa and Ren [21], Greco
and Cuomo [22], Bauer et al. [23], Meier [24] for a complete details on the issue. We
mention also Shabana et al. [25, 26] who used the absolute nodal position and slope
degree of freedom instead of angles to define the orientation of the element.

In this paper, we present an alternative and direct approach to realise the objective
of developing an Euler-Bernoulli-based three-dimensional beam theory. In the present
approach, we start by the following two facts. Based on the Euler-Bernoulli assumption,
the only information available is that 1) the base vectors will stay normal to each other
after the deformation and 2) the central line is well defined by means of a displacement

vector and the only vector which changes length is that tangent to the central line. We
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will present two approaches to define the position of the deformed base system in a
way consistent with the overarching Euler-Bernoulli assumption. In a first approach,
we resolve the issue by resorting to the following idea. Given the tangent vector at the
base line (centre line), which is available through a standard differentiating process, we
construct an orthogonal base system by means of a Gram-Schmidt process. This base
system is then rotated to the final deformed one by means of a rotation tensor, the
rotation vector of which is parallel to the tangent vector at the deformed configuration.
Hence, this rotation is only one-parametric. The rotation defines an angle which is
a degree of freedom of the system. Indeed, it contributes to the definition of the
torsional motion of the cross section, though it does not describe it completely as
parts of this torsional rotation are captured by means of the orthogonalisation process.
However, since the orthogonal base system constructed by means of the Gram-Schmidt
process is not unique, the rotation angle is not unique as well. Though, the final
configuration of the base vectors is unique and so the resulting strain measures are
unique and objective providing us with an access to a complete Euler-Bernoulli three-
dimensional beam theory.

In a second approach, it will be shown as to how the rotation tensor can be defined
based on first and second derivatives of the displacement vector of the centre line,
together along a one parametric rotation. While this second approach is presented, it
is not going to be implemented as we restrict the numerical implementation to the first
approach.

A further important objective of this paper is to provide a corresponding formulation
for the dynamics of such beams and the design of a time integration scheme to capture
the large overall motion in the context of long term dynamics. The latter requires
a stable time stepping method which renders standard time integration schemes as
inappropriate. Indeed, it is well known that stability of the time integration scheme
relates to its capacity to conserve energy, in case of Hamiltonian systems (Simo and
Tarnow [27]). Examples of special design of energy-conservation schemes which suite
certain specific formulations are plenty in the literature (Gonzalez [28], Betsch and
Steinmann [29], Laursen and Meng [30], Bottasso et al. [31], Brank [32], Romero and
Armero [33], Ibrahimbegovi¢ and Mamouri [34], Noels et al. [35], Bathe [36], Gams et
al. [37], Krenk [38], Chhang et al. [39, 40]).
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The design of energy conservation is not straightforward and depends very much on
the involved non-linearities in the formulation at hand. In fact the Euler-Bernoulli hy-
pothesis, due to its coupling of the cross sectional deformation to the deformation of the
central line, does provide us with highly complex non-linear expressions for bending as
well as for the kinetic energy, which involve second derivatives of the displacement field.
A general methodology for the systematic construction of energy-conserving schemes
has been proposed by Sansour et al. [41, 42] and successfully applied to different shell
and rod formulations in [43], [19]. The methodology is based on the realisation that
geometric and material non-linearities have to be treated differently. The complexities
of the geometric non-linearities can be circumvented by resorting to strain velocities to
provide, by means of integration, the expressions for the strain measures themselves.
The expressions for the strain velocities, by definition, are linear in the velocities of the
degrees of freedom of the system; the displacements in the case of the present beam
formulation. This is a powerful statement which makes energy-conservation accessible
no matter how complex the geometric non-linearities, meaning the expressions of the
strain-displacement relations, may be. This methodology will be applied to the present
formulation and it proves itself again as powerful.

The paper is organised as follows. In the next section, we present the beam kine-
matics in the three-dimensional case and show how to implement the Euler-Bernoulli
assumption. An alternative approach to the same objective is presented as well. In
Section 3, Hamilton’s principle is applied to generate the field equations, followed by
the finite element formulation in Section 4. The time integration scheme is discussed
in full in Section 5, followed by several examples presented in Section 6. The paper

concludes in Section 7.

2. Beam kinematics and strains

2.1. Beam kinematics

Let B C R?, where B defines a reference configuration of a material body. The map
o(t) : B — R3 is an embedding depending on a time-like parameter ¢ € R. Hence,
wo = p (t = to) defines a reference configuration which enables the identification of the
material points. Then, for the reference position X € B and the deformed position

x € B, , we have: z(t) = ¢(X,t) and X (t) = ¢ '(x,t). We introduce the Cartesian
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Figure 1: Beam kinematics.

basis vectors e;, 1 = 1,2,3. As shown in Figure 1, all centre points of the rod cross
sections define the centre line, which we assume to be smooth. We consider an arc length
parametrisation of this line with the arc length L at the reference configuration denoted
as s € [0, L] C R. Therefore, a curvilinear coordinate system, which we consider to be

convected, is described by the triple (s, z, j) for any material point in the cross-section.

Let X be the position of the center line at the reference configuration and we have:
X(s,2,5) = Xo(s) +2N(s) +j M(s) (1)

We define the unit tangent vector T = 0X,/0s] Similarly, we introduce the

j=2=0"
vectors: Ty = 0X /0s, N = 0X /0z and M = 0X /0j. Hence, the triple (T';, N, M)
defines a local curvilinear basis for the reference configuration. The corresponding
contravariant-based vectors are then given by (Tl, N, M ) with T' =T,/ |T, |2. In the
latter expression, || denotes the norm of a vector.

The corresponding tangent vectors at the deformed configuration are defined as
(g,m,m) with g, =t = g|._;_;, g = 0z/0s and both n and m are the normal

vectors of the cross-section. From Figure 1, the position x of point A" at the deformed

configuration is then defined as :
x(s,2,7) = Xo(s) +u(s) + zn(s) + jm(s) (2)

where u(s) is the displacement vector of the center line. From the above expression,
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we derive:
g=z.,=Xo.tu.+z2n,+;jm, (3)

and the unit tangent vector t is given by:

XO,s + ’U,’s

t= 0
|X0,s + u,sl

(4)

where a comma denotes the derivative.
Two choices for the normal vectors of cross-sections in the deformed configuration

are discussed in the following section.

2.1.1. First approach

By the definition of the Gram-Schmidt process, the normal vector n* in the deformed
configuration can be constructed based on the deformed unit tangent vector ¢ and one
of the normal vectors (IN or M) in the reference configuration. By doing this, the
orthogonality of the n* and t is exactly met. Therefore, the normal vector n* is defined

as:

., N-(N-tt

B M — (M -t)t
"TINS(N b o

NITEEL ©)

Or n*

where a dot denotes the scalar product of vectors.

This base system is then rotated to the final deformed one by means of a rotation
tensor Ry, the rotation vector of which is parallel to the tangent vector at the deformed
configuration. Hence, this rotation is only one-parametric v. The rotation defines an
angle which is a degree of freedom of the system. Indeed, it contributes to the definition
of the torsional motion of the cross section, though it does not describe it completely as
parts of this torsional rotation are captured by means of the orthogonalisation process.

The rotation tensor R, is defined with the help exponential map as follow (Choquet-
Bruhat et al. [48]; Dubrovin et al. [49]).

Ri =I+sinyL;+ (1 —cosy) L, I, (6)

where I', denotes a skew-symmetric matrix of the vector ¢:

0 —t3) #2)
Lo=| #3) 0 —t(1) (7)



Therefore, the final normal vector n in the deformed configuration is given as
n=Rin" (8)

Since we adopt the Euler-Bernoulli assumption, the remaining normal vector m stays

normal to other vectors (n, t) after the deformation and hence is defined by:
m=txn 9)
where X denotes the cross product of two vectors.

2.1.2. Second approach

In a second approach, the rotation tensor will be defined based on first and second
derivatives of the displacement vector of the centre line, together along a one parametric
rotation . The total rotation matrix is obtained by a multiplication of two rotation

matrix:
R=Ri(7t) Rz (w) (10)

where the rotation tensor R is already defined in the first approach. w is the rotation

vector of Ry which is computed from the following expression:

T -t=|T||t| cosa = cosa (11)
T xt=|T||t|sina— = 2%, (12)
jw|  «

with « being the angle between the vectors T' and t. It yields:

(0%

= Txt 13
v sin ( ) (13)
The rotation tensor Ry is given as:
. 1_
R2:I+smaEer c2osa£w£w
« o
1

=1+, +——TL,T 14
+_”+1+T-t_”_” (14)

where I' | denotes a skew-symmetric matrix of the vector w and I, a skew-symmetric
matrix of the vector v =T X t.

Finally, the normal vectors in the deformed configuration are then given by:

n=RN (15)
m=RM (16)
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2.2. Strains

Based on the above beam kinematics, the deformation gradient can be written down

in the curvilinear bases system as:
F=gT'+n@N+meM (17)

The right Cauchy deformation tensor is defined as FTF, which gives under the

matrix form:

g-g g-n g-m

g-m 0 1
Then, we can compute the Green strain tensor by E = % (C—1) as
Eyn En Eis
Eiz3 0 0

The non-trivial components of the Green tensor are written as

Eyn=cn+2zr1+JkKe (20)
1

E12 = 5] K12 (2]_)
1

E13 = 5 Z K13 (22)

where £1; denotes as the axial strain, x;, x2 as the curvature of the direction z and
j respectively, k1o and k13 as the torsion of the cross-section. These strains are given
after some algebraic simplifications such as the condition of normality and the neglected

terms of 2% and j? (the thickness of the beam is small compared to its length):

e~ Xos U+ %U,s cU g
k1= (Xos+us) ns— Xo, - N
ko= (Xos+tus) my— Xos - M (23)
Kig=m-ms— N M
Kis=ns-m—N - M
Moreover, k12 = —k13 are equal to each other in magnitude because we have the

following condition of normality (m-n— M - N) = 0.

S
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3. Principle of virtual work and field equations

3.1. Principle of virtual work

The principle of virtual work in dynamics is given by:

& 2F
/ (/ p:c <o dV + / EEH 5E11 dV + / —Elg (SElg dVv
t1 v 1% v14+v

o N M

i=1 j=1

(24)

Equation (24) is further developed to produce

to
/ (/pAi'L-5uds~|—/p]zﬁ-5nds+/pljﬁz-6mds
t L L L

—|—/EA 6116611d8+/E[Z/€15/€1d5+/E[jﬁgéligdS“y‘/GlelgélileS
L L L L

N M
+/GIZH136/$13ds—/p(s)-(5u ds—ZPi-éui—ZMjﬁOJ) dt =0 (25)
L L i=1

j=1
where V' is the volume of the beam, L its length, p the density of the material, A the
area of the cross section and I, and I; moment of inertia. £ is young module of the
material and G shear modulus with the coefficient of Poisson v. P;, i = 1,2,....N
are concentrated forces and p is a distributed external force. M;, ¢ = 1,2,..., M and
0; are the concentrated external moments and the corresponding rotational angles,
respectively.

Since k12 = —k13, the terms related to torsion can be combined together into a
single term:

/G[jﬁ125K12d5+/GIzlilg(S:‘ilgdS:/G([j+[z) ngdﬁlgdS:/GJlilg(sl‘ileS
L L L

L

(26)

Indeed, the torsional constant J equal to I; 4+ I, is only valid for circular section.
However, for an arbitrary cross-section, the actual Saint-Venant torsional constant .J

should be adopted instead of the terms I; 4 1.
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Therefore, Equation (25) can be rewritten as

to
/ (/pA'i],-(Suds—i-/plzh-énds—i—/plj'fh,-dmds
t L L L

+/EA 511(5511d8+/E[zlﬁl(;fildS‘i’/E[jfig(S/iQdS
L L L

N M
+/GJ/€125/£12d5—/p($)-5u ds—ZPi-&ui—ZMj-cSOj) dt=0 (27)
L L i=1 j=1

What remains to be determined in (25) is the variation 66. The variation of 46 is given

as:

56 =356+ 30, = (m-on)t+tx ot

(28)

One can show that the aforementioned statement entails certain conservation properties.

The total energy is defined by:
E=K+ Uint + Uezt
with:

1 1 1
K:—/pAa-ads+—/p[zh-hder—/ijm-mds
2JL 2JL 2L

1 1 1 1
Umt:—/EA5flds+—/Elzm%ds+—/Eljfﬁgds—k—/GJ/ifzds
2/ 2L 2L 2L

N M
Umz/p(S)-uds+ZPi-ui+ZMj-50]»
L

i=1 j=1

The linear momentum is defined by

L:/pa'ch://,o('&—i—zh—kj'r'n) dAdL:/pA'&ds
1% LJa L
and the angular momentum defined by
J:/pacxa'ch
1%

:/pA (Xo—i—u)xﬂds—l—/
L

pIz(nxh)ds+/ij(m><'nd)ds
L

L
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Functional (27) is equivalent to the statements:

D

N
EL/Lp(s)'(Su ds—&-ZPi

i=1

EJ—/L;BO( ds+2w0 ) x P, +ZM

7j=1

From the aforementioned equations, we entail the conservation properties:

L = constant, for vanishing loading

J = constant, for vanishing moments

(37)
(38)

Likewise, one can derive that the total energy of the system E = K+ U;,,; + Uy, which

coincides in most cases with the Hamilitonian, is constant if damping is disregarded. It

gives: E = K+ U;,; + Ugyy = constant.

3.2. Field equations

In order to obtain the field equations, we start from functional (27):

. on\" . . oOn
/pAu 6uds+/p[ — | f-dus+n-—0y| ds
ou 4 ’ oy
[( ) w47 Ty
oy

+/EIZ 8 5us+/{1 Or1 (5uss+/{18ﬁ157+/{18ﬁ15 vs | ds
I ’ ouss oy Oys
8 Oko OkKo Oko
+ /L EI; ( 5u,s + Ko s (5u,ss + Ko 8—757 + Ko W{Sy,s> ds
n / GJ 8’“‘125u TP I ST 7§ RO P N TP
I ’ 8u,33 ’ oy 877

=1 Jj=1

We use the following identities for determine the field equations:
o
5 s = ) — . ¥
2565904 = (8- 565; O),S ( aos) ©

8D o o
Y50 10.= (D 80,53'50’5)8_(( 8055)5 50)5

ol
! (Dao,s) L©
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ds + / EA (511 611) du s ds
ou g

(39)

(40)

(41)



where [J and () represent any variable vectors.

By using Gauss’s theorem above and with the help of Eq. (40) and Eq. (41), Eq.

Oe1s
—FA (811 au,s),s

(39) can be rewritten as

/ Ai— oL | (O™ N 7| (o™ b
L patt Pl au,s " Pli 8“75 m

ou ou. s ou g
OK12 Ok Ok
+ GJ kg —= P — EI (m au’ss) - EI, <m2 au;> S
- GJ (Klg 8512 ) — Pz> -ou
Ou s )
) Boundary
OK1 OkKo Ok
(EI Kl —— Dut0s + Lk 2 B wa + GJk 12 12 ZM >
Boundary
. On . om OK1 Oka OK12
I, — I -—— + F1I, El k GJ kK
+/L(pnafy+p]m a’y+ Hl@’y—’_ ]287-1— 1287
Ok Ok Ok
St ) e () e (o a;f))
OK1 Ok 0
(E] - Lt Bl Ky a;+GJm f2 ZM ) =0 (42)
Boundary

Because the variations du,du 4, 07, are arbitrary, two Euler-Lagrange equations are
obtained:

. on 5 . om 5 .. Oe1y
pAi — pl, [(awS) n] — pl; [(875> m| —FA (511 3u,s),8
0Ky OkKa OK12
— EIZ (Hl au’s)ys - E]J (Hg au’s)ys - GJ (ngau’s)7s

Ok OkKa Ok12 _
+ E[z <:‘€1 ou SS>7SS + E]] (Iizau—’ss> . + GJ K19 <8’u,’ss> » = p(S) (43)

’

. On . om Ok Oks OK12
I i — I« —o ;
pl. 7 8’y+p]m 87+E[ K1 8’V+EI] 287+GJ 12 pn
ok ok ok
—FEI, (Hlﬁ’Yi@)’s - FEI; (/@ 37,25)73 - GJ (/112 3’7:2)’8 =0 (44)
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following with the three boundary conditions:

T T

8u,s Ou s
oK Ok oK
+ GJ kg aulz — EI (“laul ) — EI, (“Za 2 )

,S ,88 u,ss ,
a L
K12 L
-G/ (&1Qazuss) )‘ = Pilo (45)
75 0
Ok Oty B LM 00, |"
1 12
(EI K1 " +E[ Ry — - +GJ kK K12 B ’SS) ) — ; f 8,“] (46)
- 0
Oy Dty AN 90.|"
EI, EI; G.J 2y =N a2 47
( H187+ R287+ H1287)0 ; Ja,yo (47)

4. Finite element discretization

Given the fact that the second derivatives are presented in functional (27) (a result
of the Bernoulli hypothesis), the finite element formulation must exhibit continuous
first derivatives. Hence, we resort within a finite element context by using the cubic
Hermite interpolation function. Consider a 3D curved beam element of arc length L
with two nodes (I, I1) at the end; see Figure 2. At each node, the degrees of freedom
for the displacement fields are wy, ug, us, u}, u), uy which describe respectively three
displacements and their derivatives. For the torsional fields, the degrees of freedom are

~v and +'. The interpolations at the element level read:

u=Ngq (48)
us,=N;q (49)
U =N q (50)
71=Hgq (51)
Vs =Msq (52)
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where
Ny 0 00N O 0 0Ny O 0 0N, O 0 0
N=10 N 000 N, 000 Ng 0 0 0 N, O 0| (53
0 0 NyO O O Ny, O O O N3 00 0 Ny O

H=[000N1000N2000N3000N4] (54)
where q ,denotes the global degrees of freedom, given as
T
q= [ T Y T Y LY VY L L Y0 e L 7'11}
(55)
and the interpolations functions are defined by
g3 1
= — =4 - 56
1= 1 + 5 (56)
L& LE2 LE L
Ny=—"—> > _ >4 =
2 3 3 3 + 3 (57)
e 3 1
No—= —2 1254 =
3 1 + 1 + 5 (58)
L& LE L L
N4:_£+_€__§__ (59)

8 '8 8 8
with & = [=1,1].

Figure 2: A 3D Beam element.

5. Time integration scheme

5.1. Energy-momentum method
The Newmark method [45], is the most widely used in the implicit time stepping

method. It is said to be unconditionally stable in linear analyses but it suffers severe
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shortcomings in nonlinear dynamics [27, 46]. It is known that the energy-momentum
method ensures the conservation of the linear and angular momenta, and the total
energy which improves the stability of the algorithm. Therefore, we aim to develop the
energy-momentum method for the geometrically exact 3D Euler-Bernoulli beam where
we follow the idea developed by Sansour et al. [41, 42].

The starting point comes from the standard midpoint rule:

q, +4q, 1
Qnil = TH —dtg Agq (60)
. qn+1 —4q, QAQ .
= = — 61
. q.n+1 - q.n 2Aq Qqn
= = — 62
Inty At A2 At (62)
The midpoint rule applied to any variable f gives
t2
/ Fat = £, At (63)
t1

Equation (27) leads to
/LPAﬁn+§'5un+;d5+/j;plzﬁn+é'5nn+§d5+/Lp[j":hn+;'5mn+§d5

+ /L EAeyn, 108y, 1ds+ /L EL fiy 1 0y 1ds + /L Elj Ky pyt Oy, 1ds

N M
+/ GJ Kyt ORpgpy1ds — /p(s) 6, 1 ds— Y Pi-du, 1 — > M;-50;=0
I 2 2 I 2 2 o

i=1

(64)

By taking the variation (5qz L1 from Eq. (64), the equation of motion is obtained as:
2
/ a (%) G (2 L (2t
p ﬁn15+/pz— ﬁn18+/p-— m, 1ds
L 8qn+% i L aanr% 2 [ aanr% 2
T T T
0211 11 0Ky i1 OKgpi1
EA —2] d EI, —=21 d ET; 21 d
+/L 511n+§( q 5+/L Kiptl 94 s—i—/L iRontl 94 S
T T T
gt u,, 1 ou,, 1 N
+ | GIRygpyr | ——= ds—/ s s)ds — =1 -y P,
/L s < g L\ 91 p(s) 8qn+é ;
T
00, . 1 M
(Gt) s - o

The key step is to employ strain velocity fields to define the strain fields in replace-

ment of Equations (23). These equations are used to merely define the strain velocity
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fields. The same concept is applied for the kinematic velocity fields of Equations (8)
and (9). One has

glln—i-% = (XU,S + ’u’,sn—i—%) ' U’,sn—i—%
K’ln-‘r% = ,u’,sn-i-% ’ n,sn—l—% + (XQS + ’u’,sn-‘r%) ) ’n’,sn-‘r%

K’Qn—i—% = ’u’,sn-i-% ) m,sn-l—% + (XO,S + u,sn—&-%) m,sn-i—%
(66)

I€12’n+% = nn+% .m7sn+% +nn+% -m

on . on .
Y ,u’7sn+% + ({9_’}/ 7n+%

1
$nt3

om . om
n—i—% aTs ’u’,sn—i—% + 8_’)/ 777,—0—%
Given the strain and kinematic fields at time n and computing quantities of Eqs. (66)

at time n + % from q,,,. 1 the same fields at time n + % are then defined as follows:

E11ntl = Elin + §At €11n4l
1

K}ln_’_% = Kin + §At/€1n+%

Koptl = Kon + §At Ronyl

1 (67
Kigntl = Ki2n + §At Flonsl

. 2 2

nn+% = E’I’Ln+% — Enn

y 2 2 .

R Vi

It should be noted that the complexities of the geometric non-linearities can be cir-
cumvented by resorting to strain velocities to provide, by means of integration, the
expressions for the strain measures themselves. The expressions for the strain veloci-
ties, by definition, are linear in the velocities of the degrees of freedom of the system;
the displacements as in the case of the present beam formulation. This is a power-
ful method which makes energy-conservation accessible no matter how complex the

geometric non-linearities.

5.2. Proof of the conservation of total energy

To prove the aforementioned statement, we take the scalar product of Equation (43)

with @, 1 the multiplication of Equation (44) with 7, 1. The following expressions

are obtained:
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. on . om . Okt | Oky |
pIZ’n’n—&-% . 8_7’yn+% +pljmn+% 8—77n+% +E]z"11n+% W,YTH—% +E[]/<L2n+% 8—7’)/n+%
Ok1z . 0Ky . Oks .
+GJ ’%12n+% 87 ’7n+% - E[z ("fanr; 8’7 ’7n+§ - E[] K2n+% 8’7 /YnJr%
OK12 .
-GJ <Rl2n+éw> Tn+l = 0 (69)

For the boundary equations, we take the scalar product of Equation ((45)) w,, +1, Equa-

tion (46) with w +1 and the multiplication of Equation (47) with 4, 11 are given as

on . . om\ " . e .
pIZ nn+% ) un+% + p[j aT anr% ) n+1 + EA 511n+ a ) unJr%

(9u75 )8
8/11 8/@2 8512
Y EBLky, 1 i, 1+ Elky, 10—t 1+ GJ K R
+5 n+35 JV2n+3 n+ 12n+ n+5
P u, e : Ou, : Ju,

El ( Gl ' El Orz '
— LAy | Ripgpl g CUpyl — LAy { Ropg lo—— Uyl
20Us ) 2 20Uss ) 2

)

81612
- GJ |k i—— | s
12n+§auss n+§
) »S

L
=P,

0

Ok . Oky . Ok1a . L
(Efz it} Gu,, Lontd T EI K941 Bun, Lend T GJ Kiapy Bus Lot )|
M L
= Z M] au ' sn-l-% (71)
Jj=1 * 0
8/4 852 8512 . L
(EI l{anr a 7n+1 +E[ /{2n+ 8 7n+1 +G‘]l€12n+ a ,YnJrg
0
Y L
Z M; - 87 'Yn+2 (72)

0
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The subsequent application of Gauss’s theorem with the boundary conditions (70),

(71), (72) results in

.. . on\" .. , . on .
/LpAun+§ 'Un+;d5+/LP[z [(873) (KT PE E 8_77"+;] ds

=

om\" . . .. om . Oe1y .
—I-/Lp[] [(87) mn—&—% . u’sn_’_% +mn+% . W"}/ﬂ_‘_% ds + / EA€11n+1 a—uwﬂ_%ds
5S 7s
8%1 8/@1 8/4;1 8&1
+ | EL (K, .1— - 1 1+ K, 1 ——1TU 14Ky 1 —Y 1+ K 1 —AN 1] ds
/L ( 1n+é au’s ,sn—i—% 1n+é 8u,ss ,ssn—&—; 1,n+é 6’)/ ’.Yn—i-é 1,71—0—% ar}/’S’)/,sn—i-%
Oky . Ok . Oks | Oky |
+ /L E[] (KJQn—&-; M ) u,sn—&-% + K’Qn-ﬁ-% a—u,ssn-i-% + KQ,n-ﬁ—% a_,y’yn-i-% + KQJH-% 6_778714-% ds
Ok1a Ok1a . Ok1a | Ok1s .
+/LGJ <K12n+; aT ) usn+1 + I{12n+2 a ussn+1 + H12n+— a 7n+; + "112n+2 a lysn+2 ds
,S
N M
. . a0; . 00; .
- / p(s) i, 1ds+ > Pi-t, 1+ M- <ﬁ U1 a—; ’yn+§> (73)
L i=1 Jj=1 ®

By using equations (66), the previous equation is rewritten as

/pA’i],nJré-unJr;dS—i-/pIZﬁnJr;~hn+éd8+/p[j’fhn+;- n+;d8
L L L

+/EA611”+%811n+;ds+/EIzmln+é “Ringl d5+/EIj/<;2n+§ "Ryl ds
L L L

N M
+/IIGJHI271+§ '/.{12n+% ds:/llp(s)'un+; dS+ZPi'un+% +ZMJ 'oj,nJr%

i=1 =1
(74)
which, with the use of the midpoint rule, is equivalent to
/LpA U"HA; Un u”+12+ Un ds + /LpIZ nn+1A; ny, hn+12+ n, ds
+/Lp[j mn+1A; m, mn+12+ M L /LEA 511n+12+ €11n eunﬂAt Eiin g,
‘f’/LE]z mn+12+ Kin lilnHA; Kin dS-l—/LE] K2n+12+ Kon ﬁgnHAt Ko ds
n+1 T K12n Ki2nt1 — Ki2n
+/LGJ f2 “2 Ri2n K12 +1At Fi2n oo
:/Lp(s).%dﬂzp uln+1 ZM MH 0;, 75)

=1
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The last equation finally simplifies to

L / pA (i2,, — %) ds + 2 / oL, (A2, —02) ds+ / oL, (12, —12) ds
2 2/, 2/,

+% /EA (etins1 = €lin) d3+% /EI (Kfnt1 = Kin) d3+; /EI (K31 — K3y ds
L

1
2 /GJ (“12n+1 f‘v‘12n) ds = /P(S) (Unt1 — up) ds + ZPi (Wint1 — Win)
L ;

LS M, (00 0,0) (76)
Assuming that the external loading is conservative, Equation (5.2) is equivalent to:

[K + Umt + Uext]n+1 [K + Umt + Uea:t] (77)

which proves the conservation of the total energy.

5.3. Proof of the conservation of linear momentum

To prove the conservation of linear momentum, we start by integrating field equation
(43) , which provides us with the statement,

/ Aii,ds—/ L2 Tﬁ om Tm
L P L Pl au’s 311,75
Ok Ok OK12
-+ EIZ (/‘il au’s> , + E[J ("QQ au’s> , + GJ K12 (au’s> .
Ok Oko OK12
- EIZ (Elﬁvss) ,88 - EI] (KQ 8uvss> ,S8 N G]j (K:12 auass),sS) ds - /Lp(S) dS

The subsequent application of Gauss’s theorem results in

/Ailds— (o Tﬁ+ 1 (o™ Tm+EA O
LP Pl (911,,8 j2% 811,75 €11 8u,s

+p[]

Ok Ok Ok
+ElzﬁlaT;+EljﬂgaTi+GJ/€12 aulj
8% 8/{2 8/{12 L /
— EI, —FEljkg —— —GJ = d 79
K1 m— D, 3“,35 K12 O, . LP(5> S (79)

The boundary condition (45) appears in the equation (79) which yields the general

linear momentum equation:

N
/pAi],nJréds:/p(s)ds%—ZPi (80)
L L i=1
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which indicates that in the case of vanishing external forces and by applying the mid-

point rule provides with the statement, we get:

/L pA u"%?“" ds =0 (81)
leading to
[ A G =) ds = 0 (52
which reveals in Equation (33):
Lot =La (83)

Hence, the conservation of linear momentum is now proven.

6. Numerical examples

In this section, four numerical examples are presented. The first purpose is to
assess the efficiency and the accuracy of the proposed formulation considering both
straight and curved beams. Moreover, we compare the predictions of our model against
the numerical results obtained from Abaqus software considering a large number of
elements. We also compare the responses of the displacement of the first example by
the cubic co-rotational formulation by Le et al. [47]. Both compared formulations are
performed with only the straight beam element. The second purpose is to show that
the proposed algorithm conserves the total energy of the system and remain stable even
if a very large number of time steps are applied. The last purpose is to verify if this new
formulation conserves also the linear and angular momenta in the absence of applied

external loads.

6.1. Example 1: Shallow arch

A circular shallow arch clamped at both ends is considered [47] in this example.
The shallow arc has a span of L = 20 m with a uniform square cross-section of b = 0.25
m (see Fig. 3). The radius R of the arch is equal to 20 m with ® = 30°. The arch is
subjected to a vertical force Fy, and to an out-of-plane sinusoidal force F, (see Fig. 4).

The circular frequency of F, is w = 10 rad/s. The arch has a modulus of elasticity E
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= 210 GPa, and a Poisson ratio v = 0.3. The mass per unit volume p is 7850 kg/mB.
The time step is chosen as At = 1074 s.

This example is suitable for showing the efficiency of the new curved Bernoulli beam
element. Only 12 elements are used to perform the analysis whereas the reference
solution is obtained with 21 elements. We also compare the response of displacements
with cubic co-rotational formulation [47] by using the HHT-a method while the value
of a is taken —0.05. The same scheme has been considered for Abaqus simulation. The
time histories of the displacements are depicted in Figs. 5, 6 and 7. It can be observed
that, with only 12 elements, the results obtained with the proposed formulation are in
very good agreement with the reference solution and the cubic co-rotational approach.
As shown in Fig. 8, the proposed algorithm conserves the energy for one million time

steps. This indicates that the stability of the system has been achieved.
L/3 L/3

Fy l Fz
A Ve ,

Figure 3: Shallow arch - Geometrical data.

0 0.05 0.10

Figure 4: Shallow arch - Loading history.
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Figure 5: Shallow arch - Displacement wu,(m) of point A.
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—— Total Lagrangian (12 elem.)
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-0.5
-1 e
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Figure 6: Shallow arch - Displacement u,(m) of point A.
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Figure 8: Shallow arch - Time evolution of the energy.
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Diplacement u_ of point A

) I I I I I
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Figure 7: Shallow arch - Displacement u,(m) of point A.

6.2. Example 2: Roorda-Koiter frame

Roorda-Koiter frame is considered [47] in this example. In this problem, the connec-
tion between the column and the beam is not an easy task to solve because it requires

nonlinear constraint equation. One possible solution for maintaining the continuity of
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this connection is to introduce a small radius R of 0.25 m, see Fig. 9. This frame has
a uniform rectangular cross-section and is subjected to two out-of-plane forces. Both
applied forces follow the pattern of a hat function as shown in Fig. 10. The length of
the beam L is 12 m, the width of the beam 0.3 m and the depth of the beam 0.2m. The
Young modulus E of the frame is 210 GPa and the Poisson’s ratio v = 0.3. The mass
per unit volume p is 7850 kg/mg. The time step size is taken ¢t = 107 s.

The reference solution, obtained with 22 elements (11 elements per member), and
the results obtained with the proposed formulation with 10 elements (4 straight beam
elements and 1 curved beam per member) are shown in Figs. 11, 12 and 13. It can
be observed that with only 10 elements, the new total Lagrangian formulation gives
results that are in good agreement with the reference solution. Additionally, we can
show again in Fig. 14 the conservation of the energy for one million time steps after

the external loads vanish.

L/2

N

‘j—b <

4
D —

=

—>
Y
N

L/2

—————>

} L/2

Figure 9: Roorda-Koiter frame - Geometrical data.
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Figure 10: Roorda-Koiter frame - Loading history.
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Figure 11: Roorda-Koiter frame - Displacement u,. of point A.
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015
t(s)

0.6 0.7 0.8 0.9 1

Figure 12: Roorda-Koiter - Displacement u,, of point A.
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Figure 13: Roorda-Koiter - Displacement u, of point A.
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Figure 14: Roorda-Koiter - Time evolution of the energy.

6.3. Example 3: Right-angle cantilever beam subject to out-of-plane loading

The right-angle cantilever beam [3, 7, 44, 20] is subjected to an out-of-plane con-
centrated load applied at the elbow (see Fig. 15 and 16). The radius R is 0.25 m, the
length of the beam L is 10 m, the width of the beam 0.2m and the depth of the beam
0.4m. The Young modulus F of the frame is 210 GPa and the Poisson’s ratio v = 0.3.
The mass per unit volume p is 7850 kg/ m®. The time step size is taken ¢t = 1074 s.

The reference solution, obtained with 22 elements (11 elements per member), and
the displacement responses obtained with 10 elements (4 straight beam elements and
1 curved beam per member) are shown in Figs. 17, 18 and 19. It can be observed
that with only 10 elements, the proposed formulation approach gives results that are
in good agreement with the reference solution. As shown in Fig. 20, the new algorithm
preserves the conservation of the energy for one million time steps after vanishing of

the external loads at 0.2 s.
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Figure 16: Right-angle cantilever beam - Loading history.
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Figure 17: Right-angle cantilever beam - Displacement u, of point A.
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Figure 18: Right-angle cantilever beam - Displacement u, of point A.
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Figure 20: Right-angle cantilever beam - Time evolution of the energy.

6.4. Example 4: Free beam undergoing a large overall motion
The last example focuses on the conservation of energy and momenta. The problem
was analysed in the plane case in ([3, 37]). The current loadings as shown in Fig. 22

are different from the original problems. The beam is subjected to an horizontal force
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F, and to an out-of-plane force F,. The geometrical data of the beam are the length
of L = 10 m and a uniform cross-section of b = 0.2 m. The beam has a modulus of
elasticity £ = 210 GPa and a Poisson ratio ¥ = 0.3. The mass per unit volume is
7850 kg/ m®. Ten elements have been used to perform the calculation. The time step
is chosen as At = 107* s.

Fig. 23 shows the time history of the displacement in the direction u, in which the
beam moves in a very long distance about 31528 m.

Figs. 24, 25 and 26 show respectively the time histories of the energy, the linear
momentum and the angular momentum. The fluctuation relative error for the energy is
only 3.75 x 10~% after vanishing the external load. It proved again that the formulation
conserves the energy in case of free fly beam. Besides, for the linear momentum, the
fluctuation relative errors are 2.16 x 107%, 5 x 107® and 5 x 107® for L,, L, and L,
respectively. At last, the fluctuation relative errors for the angular momentum are
2.42x107* 4.80x107% and 4.80x 1078 for J,, J, and .J, respectively. It can be concluded
that the new total Lagrangian formulation preserves as well linear and angular momenta

for a million time steps of the duration 100s.
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Figure 21: Free beam - Geometrical data.
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Figure 23: Free beam - Displacement u, of point A.
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Figure 24: Free beam - Time evolution of the energy.
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Figure 25: Free beam - Time evolution of the linear momentum.
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Figure 26: Free beam - Time evolution of the angular momentum.

7. Conclusion

An energy-conserving scheme for geometrically exact Euler-Bernoulli 3D curved
beam dynamics is presented. In this paper, we provide a novel methodology to do so
leading to the development of a spatial rod formulation which incorporates the Euler-
Bernoulli assumption. The approach makes use of Gram-Schmidt orthogonalisation
process coupled to a one-parametric rotation. The latter completes the description of
the torsional cross sectional rotation and overcomes the non-uniqueness of the Gram-
Schmidt procedure. The formulation is extended to the dynamical case and a stable,
energy-conserving time-stepping algorithm is presented. The time integration scheme
extends previously developed energy-conserving time stepping algorithms, which is in-
dependent of the non-linear complexities involved in the geometric description of the
deformation at hand. The numerical results have shown a high level of accuracy com-
pared to the benchmark reference solutions of Abaqus and the solution of the cubic
co-rotational formulation. Finally, the proposed algorithm conserves the energy and

momenta which guarantees the stability for the long-term dynamic analysis.
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Résumé : Dans la premiére partie de la thése, les
schémas d’intégration conservatifs sont appliqués
aux poutres co-rotationnelles 2D. Les
cinématiques d'Euler-Bernoulli et de Timoshenko
sont abordées. Ces formulations produisent des
expressions de I'énergie interne et I'énergie
cinétique complexe et fortement non-linéaires.
L’idée centrale de l'algorithme consiste a définir,
par intégration, le champ des déformations en fin
de pas a partir du champ de vitesses de
déformations et non a partir du champ des
déplacements au travers de la relation
déplacement-déformation. La méme technique est

appliquée aux termes d’inerties. Ensuite, une
poutre co-rotationnelle plane avec rotules
généralisées élasto-(visco)-plastiques aux

extrémités est développée et comparée au modeéle
fibore avec le méme comportement pour des
problémes d'impact. Des exemples numériques
montrent que les effets de la vitesse de
déformation influencent sensiblement la réponse
de la structure.

Keywords : Nonlinear Dynamics, Energy-momentum
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Abstract : In the first part of the thesis, energy-
momentum conserving algorithms are designed for
planar co-rotational beams. Both Euler-Bernoulli and
Timoshenko kinematics are addressed. These
formulations provide us with highly complex non-
linear expressions for the internal energy as well as
for the kinetic energy which involve second
derivatives of the displacement field. The main idea
of the algorithm is to circumvent the complexities of
the geometric non-linearities by resorting to strain
velocities to provide, by means of integration, the
expressions for the strain measures themselves.
Similarly, the same strategy is applied to the highly
nonlinear inertia terms. Next, 2D elasto-(visco)-
plastic fiber co-rotational beams element and a
planar co-rotational beam with generalized elasto-
(visco)-plastic hinges at beam ends have been
developed and compared against each other for
impact problems.

Dans la seconde partie de cette thése, une théorie de
poutre spatiale d’Euler-Bernoulli géométriquement
exacte est développée. Le principal défi dans la
construction d’'une telle théorie réside dans le fait qu’il
n‘existe aucun moyen naturel de définir un triedre
orthonormé dans la configuration déformée. Une
nouvelle méthodologie permettant de définir ce triedre
et par conséquent de développer une théorie de
poutre spatiale en incorporant I'hypothése d'Euler-
Bernoulli est fournie. Cette approche utilise le
processus d'orthogonalisation de Gram-Schmidt
couplé avec un parameétre rotation qui compléte la
description cinématique et décrit la rotation associée a
la torsion. Ce processus permet de surmonter le
caractéere non-unique de la procédure de Gram-
Schmidt. La formulation est étendue au cas
dynamique et un schéma intégration temporelle
conservant l'énergie est également développé. De
nombreux exemples démontrent l'efficacité de cette
formulation.

conserving scheme, 2D co-rotational beam,

In the second part of this thesis, a geometrically
exact 3D Euler-Bernoulli beam theory is developed.
The main challenge in defining a three-dimensional
Euler-Bernoulli beam theory lies in the fact that there
is no natural way of defining a base system at the
deformed configuration. A novel methodology to do
so leading to the development of a spatial rod
formulation which incorporates the Euler-Bernoulli
assumption is provided. The approach makes use of
Gram-Schmidt orthogonalisation process coupled to
a one-parametric rotation to complete the description
of the torsional cross sectional rotation and
overcomes the non-uniqueness of the Gram-Schmidt
procedure. Furthermore, the formulation is extended
to the dynamical case and a stable, energy
conserving time-stepping algorithm is developed as
well. Many examples confirm the power of the
formulation and the integration method presented.
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