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Ariki et Ginzburg, en se basant sur les travaux de Zelevinsky sur les variétés orbitales, ont démontré que les multiplicités dans une representation induite totale sont données par les valeurs en q = 1 des polynômes de Kazhdan-Lusztig associés aux groupes symétriques. Dans ma thèse, j'ai introduit la notion de dérivée partielle qui raffine celle de Zelevinksy et s'identifie en q = 1, à l'exponentielle formelle de la q-dérivée de Kashiwara sur l'algèbre quantique. A l'aide de cette notion et en explorant la géométrie des variétés orbitales, je construis une procédure de symétrisation des multisegments me permettant, en particulier, de prouver une conjecture de Zelevinsky portant sur une propiété d'indépendance de l'induite parabolique totale. Je développe par ailleurs une stratégie afin de calculer les multiplicités dans une induite parabolique générale en utilisant le produit de faisceaux pervers de Lusztig.

Introduction

This thesis deals with the computation of the Jordan-Hölder decomposition of a parabolic induced representation of GL n over a p-adic field F . Starting with irreducible cuspidal representations, Zelevinsky classified the irreducible representations in terms of multisegments

a → L a ,
where L a is the irreducible representation of GL n (F ) associated to the multiset a, which is a set with multiplicities, of segments

∆ ρ,r = {ρ, ρν, • • • , ρν r-1 },
where ρ is an irreducible cuspidal representation of GL g (F ), n = rg and ν : GL g (F ) → C is the character given

x → | det(x)|.
For example, L ∆ ν (1-r)/2 ,r is the trivial representation of GL r (F ). Given a multisegment a = {∆ 1 , • • • , ∆ s } the total parabolic associated induced representation is

π(a) = L ∆ 1 × L ∆ 2 × • • • × L ∆s
and one wants to compute the multiplicity m(b, a) of L b in π(a).

Zelevinsky introduced the geometry of nilpotent orbits and conjectured that the coefficients m(b, a) is the value at q = 1 of the Poincaré series P σ(a),σ(b) (q) where σ(a) and σ(b) are the associated orbits. Moreover, he proved that these orbital varieties admit an open immersion into some Schubert varieties of type A. This conjecture was proved by Chriss-Ginzburg and Ariki, see [START_REF] Chriss | Representation theory and complex geometry[END_REF], [START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(m, 1, n)[END_REF].

In the first part of this thesis, we are interested in another conjecture of Zelevinsky stated in the last sentence of §8 of [START_REF] Zelevinsky | Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n)[END_REF].

Conjecture. The m(b, a) depend only on natural relationships between segments of a and b.

Note :

-first that using types theory, the m(b, a) are independent of the Zelevinsky lines considered , cf. [START_REF] Mínguez | L'involution de zelevinsky modulo ℓ[END_REF] for example, so that one is reduced to the case where the cuspidal support of all the segment considered are contained in the Zelevinsky line of the trivial representation. -Using this reduction, this conjecture can now be viewed as a special case of a conjecture of Lusztig about combinatorial invariance of Kazhdan-Lusztig polynomials which can be stated in these terms : i let x ≤ y two elements of the symmetric group S n , the Kazhdan-Lusztig polynomial P x,y (q) depends only on the poset structure of [x, y] := {z ∈ S n : x ≤ z ≤ y}. The main application of the results of this part of this thesis is then the proof of the above conjecture of Zelevinsky, cf. theorem 4.4.5 : the results is already interesting in the symmetric case, cf. the corollary 4.4.7.

Our approach rests on the use of some truncation functors a → a (k) , and the notion of partial derivation D k indexed by integers k ∈ Z, which allows us, starting from general multisegments a and b, to reduce to a symmetric situation where a and b are parametrized by σ, τ ∈ S n for some n usually less than the degree of a. In this symmetric case we obtain, using the result of Chriss-Ginzburg and Ariki, the equality m(a τ , a σ ) = P τ,σ [START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(m, 1, n)[END_REF], where P τ,σ is the Kazhdan Lusztig polynomial associated to the permutations τ, σ ∈ S n . Let us recall that these m(a τ , a σ ) are given, using Chriss-Ginzburg and Ariki, by Kazhdan-Lusztig polynomials for the symmetric group S m where m is the degree of a. So our formula can be also viewed as equalities between Kazhdan-Lusztig polynomials for different symmetric groups : these equalities were also obtained by Henderson [START_REF] Henderson | Nilpotent orbits of linear and cyclic quivers and Kazhdan-Lusztig polynomials of type A. Represent[END_REF], but instead of using the Billey-Warrington cancellation for the symmetric group, we investigate the geometry of nilpotent symmetric orbits. Remark: using our truncation method, it should be possible to find a new algorithm for computing the general m(b, a).

In the second part we give some applications of our method, the main aim is to give a formula for the computation of an induced representation

L a × L b = m(c, b, a)L c .
in terms of the coefficients of the "highest degree term" of some explicit Kazhdan-Lusztig polynomials. For the moment we treat the case where b is a segment and leave the general case for future work. To give an impression, ii the most simple formula in the case where b = [k + 1] from proposition 8.1.5, looks like

L a × L b = L a+b + c∈Γ ℓ k -1 (a,k) (θ k (c, a) -θ k (c [k+1] 1 , a + b))L c [k+1] 1 [k] ℓ k -1 .
where the θ k (c, a) are defined thanks to partial derivative, cf. notation 7.8.17.

It would be interesting to compare our results with the known criteria of the irreducibility for parabolic induced representations, cf. [START_REF] Minguez | Sur l'irréductibilité d'une induite parabolique[END_REF], [START_REF] Lapid | On parabolic induction on inner forms of the general linear group over a non-archimedean local field[END_REF] and [START_REF] Jantzen | On square-integrable representations of classical p-adic groups[END_REF]. Moreover, -in chapter 5, we obtain a geometric interpretation of the 5 relations defining Kazhdan-Lusztig polynomials. -In view of the conjecture of Lusztig, which can be viewed as a generalization of Zelevinsky's conjecture, in chapter 6, we give a classification of the posets S(a) = {b : b ≤ a}, in the sense of notation 1.3.2. We prove that they can be identified with either an interval in the symmetric group S n or an interval in a double quotient of S n , which corresponds to parabolic orbits in a generalized flag variety. -Concerning partial derivation, in Chapter 7, using the Lusztig product of perverse sheaves (cf. [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF]), we give a geometric meaning of the multiplicities appearing in the partial derivatives. In the general case we then obtain an explicit formula for the derivative D k (L a ), cf. corollary 7.8. [START_REF] Henderson | Nilpotent orbits of linear and cyclic quivers and Kazhdan-Lusztig polynomials of type A. Represent[END_REF]. The main application is to calculate the coefficient m(c, b, a) in chapter 8.

Let us now give more details. For a p-adic field F and g > 1, an irreducible admissible representation ρ of GL g (F ) is called cuspidal if for all proper parabolic subgroup P , the corresponding Jacquet functor J G P sends ρ to 0. We write ν :

GL g (F ) → C, ν(x) = | det(x)|
and for k ≥ 1 and ρ a cuspidal irreducible representation of GL g (F ), we call the set

∆ ρ,k = {ρ, ρν, • • • , ρν k-1 }
a segment. For such a segment, the normalized induction functor ind GL kg (F )

Pg,••• ,g (ρ ⊗ • • • ⊗ ρν k-1 )
contains an unique irreducible sub-representation denoted by L [ρ,ν k-1 ρ] , where P g,••• ,g is the standard parabolic subgroup with Levi subgroup isomorphic to iii k blocks of GL g . Then a multisegment is a multiset of segments that is a set with multiplicities. For i = 1, • • • , r, let ρ i be an irreducible cuspidal representation of GL n i (F ) and for k i ∈ N, by definition, the multisegment

a = {∆ ρ i ,k i : i = 1, • • • , r},
is of degree deg(a) = n i k i . In [START_REF] Zelevinsky | Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n)[END_REF], the author gave a parametrization a → L a of irreducible admissible representations of GL n (F ) in terms of multisegments of degree n, where for a well ordered multisegment a(cf. definition 1.1.10), the representation L a is the unique irreducible submodule of the parabolic induced representation π(a) = ind

GLn(F ) P (L ∆ ρ 1 ,k 1 ⊗ • • • ⊗ L ∆ ρr ,kr ).
Now given two multisegments a and b, one wants to determine the multiplicity m(b, a) of L b in π(a).

Thanks to the Bernstein central decomposition, one is reduced to the case where the cuspidal representation ρ i of a and b belongs to the same Zelevinsky line {ρ 0 ν k : k ∈ Z}. Zelevinsky also conjectured that m(b, a) is independent of ρ 0 and depends only on the relative position of a and b : this conjecture now follows from the theory of types, cf. [START_REF] Mínguez | L'involution de zelevinsky modulo ℓ[END_REF]. So one is reduced to the simplest case where ρ 0 is the trivial representation.

Let us now explain what is known about these coefficients m(b, a) where the cuspidal support of a, b belongs the Zelevinsky line of the trivial representation. First of all, it is proved in [START_REF] Zelevinsky | Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n)[END_REF] that there exists a poset structure on the set of multisegments such that m b,a > 0 if and only if b ≤ a. And we let S(a) = {b : b ≤ a}.

In [START_REF] Zelevinsky | A p-adic analog of the Kazhdan-Lusztig conjecture[END_REF], Zelevinsky introduced the nilpotent orbit associated to a multisegment a. More precisely, to a multisegment a, one can associate ϕ a : Z → N with ϕ a (k) the multiplicities of ν k appearing in a. For each ϕ, V ϕ is a Cvector space of dimension deg ϕ := k∈Z ϕ(k) with graded k-part of dimension ϕ(k). Then E ϕ is the set of endomorphisms T of degree +1, which admits a natural action of the group G ϕ = k GL(V ϕ,k ). Then the orbits of E ϕ under G ϕ are parametrized by multisegments a = i≤j a ij ∆ ν i ,j-i+1 such that ϕ = ϕ a consisting of T with a ij Jordan cells starting from V ϕ,i and ending in V ϕ,j . We denote by O a this orbit and we have the nice following property

O a = b≥a O b .
iv Now given a local system L a on O a , we can consider its intermediate extension IC(L a ) on O a and its fiber at a geometric point z b of O b and form the Kazhdan-Lusztig polynomial

P a,b (q) = i q i/2 dim C H i (IC(L a )) z b .
Zelevinsky then conjectured that m b,a = P a,b [START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(m, 1, n)[END_REF] and call it the p-adic analogue of Kazhdan Lusztig Conjecture. This conjecture is a special case of a more general multiplicities formula proved by Chriss and Ginzburg in [START_REF] Chriss | Representation theory and complex geometry[END_REF], chapter 8.

In this work, we first introduce the notion of a symmetric multisegment (cf. definition 2.1.5), which is, roughly speaking, a multisegment such that the beginnings and the ends of its segments are distinct and its segments admit non-empty intersections. We show that for a well chosen 1 symmetric multisegment a Id , there is a natural bijection between the symmetric group S n to the set of symmetric multisegments S(a Id ), cf. proposition 2.1.8, where n is the number of segments contained in a Id . When we restrict to the geometry of the nilpotent orbits to the symmetric locus, we recover the geometric situation of the Schubert varieties associated to S n and obtain that for two symmetric multisegment a σ , a τ associated to σ, τ ∈ S n , the coefficient m aσ,aτ = P σ,τ [START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(m, 1, n)[END_REF].

The next step in chapter 3 is to try to reach non symmetric cases, starting with a symmetric one. For example for a ≥ b two multisegments and ν k in the supercuspidal support of a, one can eliminate every ν k which appears at the end of some segments in a and b to obtain respectively a new pair of multisegments a (k) , b (k) and try to prove that that m(b, a) = m(b (k) , a (k) ). This result is almost true if we demand that b belongs to some subset S(a) k of S(a), cf. Prop.3.4.1. The proof relies on the study of the geometry of nilpotent orbits and their links with the Grassmannian, cf. the introduction of chapter 3.

In chapter 4, we iterate the process in chapter 3. In fact, for a multisegment a and k 1 , • • • , k r integers such that ν k i appears in the supercuspidal support of a, let

a (k 1 ,••• ,kr) = (((a (k 1 ) ) • • • ) (kr) ), and 
S(a) k 1 ,••• ,kr = {c ∈ S(a) : c (k 1 ,••• ,k i ) ∈ S(a (k 1 ,••• ,k i ) ) k i+1 , for i = 1, • • • , r}.
1. Thanks to corollary 4.4.7 which is a particular case of the Zelevinsky's conjecture, the results are independent of the choice of a Id . v Then we show that for b ∈ S(a) k 1 ,••• ,kr , we always have

m(b, a) = m(a (k 1 ,••• ,kr) , b (k 1 ,••• ,kr) ),
Reciprocally, we show, cf. proposition 4.2.4, that for any pair of multisegments a > b, we can find a sym and b sym < a sym such that m(b, a) = m(b sym , a sym ).

In the end of chapter 4, following an example, we present an algorithm to find (a sym , b sym ) . Finally the main application of the first part of this thesis, is, cf. theorem 4.4.5, the proof of the Zelevinsky's conjecture stated before.

In the second part, we consider the application of our result from the first four chapters. In chapter 5, as a first application, using the relation between symmetric groups and symmetric multisegments we try to give a new proof of the fact that the Poincaré polynomial P aτ ,aσ (q) of the intersection cohomology groups H i (IC(O aτ )) aσ for a σ > a τ a pair of symmetric multisegments with σ, τ ∈ S n , -where the index a σ indicates that we localize at a point in O aσ , satisfies the axioms defining the Kazhdan Lusztig polynomials for a Hecke algebra. We succeed in proving that P aτ ,aσ (q) satisfies the first four relations satisfying by P τ,σ (q) and leave the last one (see the introduction of chapter 5). As for the last relation, we give an interpretation in terms of the decomposition theorem in our contexte.

In Chapter 6, we classify the poset S(a). First of all, we single out the case where the multisegment a contains segments with different beginnings and endings and call it ordinary multisegment, cf. definition 2.1.1. In this case we prove that, as a poset, S(a) ≃ S(a sym , a sym min ) := {d ∈ S(a sym ) : d ≥ a sym min }, where a min is the minimal element in S(a) and a sym (resp. a sym min ) is the symmetric multisegment associated to a (resp. a min ) constructed in Chapter 4. Recall that in Chapter 2, we showed that S(a sym ) ⊆ S(a Id ), for some a Id , and S(a Id ) as a poset is isomorphic to S n with n equal to the number of segments contained in a Id . In this way, we identify the poset S(a) with some Bruhat interval in S n , where n is the number of segments contained in a. In the general case, as the ordinary case, we can reduce to parabolic multisegments where a multisegment a is called parabolic if all of its segments contain vi a common point, cf. definition 6.2.5 and 6.2.22. Then all our construction for symmetric multisegments can be carried out with parabolic multisegments. Finally, we show that the poset S(a) is isomorphic to a Bruhat interval in S J 2 \S n /S J 1 , where J i (i = 1, 2) is a subset of generators and S J i is the subgroup generated by J i , see proposition 6.3.6 for details. for some coefficients n(b, a) ≥ 0. As expected we can introduce a poset structure k on the set of multisegments so that n(b, a) ≥ 0 ⇔ b k a, cf. proposition 7.1.4. Then using the notion of Lusztig's product of two perverse sheaves we prove, cf. proposition 7.3.8, that n(b, a) is the value at q = 1 of the Poincaré series of Lusztig product of two explicit perverse sheaves. In the parabolic case, we give an explicit description of this Lusztig product. As a consequence, for case deg(b) < deg(a), we show that the coefficient n(b, a) is related to some µ(x, y), which is the coefficient of degree 1 2 (ℓ(y)ℓ(x) -1)

in P x,y (q) defined to be zero if ℓ(y)ℓ(x) is even), where x, y are elements in certain symmetric group and are related to a, b.

In the chapter 8 we use the computation of the partial derivatives in chapter 7 to give a recursive formula for the coefficients in the induced representation

L a × L b = m(c, b, a)L c .
It should be possible to treat the general case, but here we only consider the case where b is a segment. The idea is to pass to lower degree by applying the partial derivatives. The formulas are complicated, cf. proposition 8.1.12, even in the simplest case where b is a point. It should be interesting to implement the algorithm on a computer. In the last chapter, using previous results, I give a proof of a conjecture of Lapid and Mínguez as well as its generalizations. Also, we give a counter example to a conjecture of Badulescu in section 9.2 as well as prove a particular case of this conjecture. In section 9.3, we give an example of an imaginary multisegment due to Leclerc and relate it the the Langlands-Jacquet correspondence. We end the chapter with the following conjecture Conjecture : a is real if and only if LJ(L a ) is irreducible for all D.
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Chapitre 1

Induced Representations of GL n

The aim of this section is to present our main object of study which are some integral coeffcients introduced by Zelevinsky, and defined by the formula 1.2.4, relating to some multisegments a, b with cupsidal support contained in the Zelevinsky line associated to a cuspidal representation ρ.

Recall that the set of irreducible representations of GL n breaks into pieces according to the super-cuspidal support (Bernstein Center), and, thanks to the theory of types, we are reduced to study the unipotent block, cf. [START_REF] Mínguez | L'involution de zelevinsky modulo ℓ[END_REF], that is induced representations with super-cuspidal support contained in the Zelevinsky line attach to the representation ρ = 1.

Every unipotent irreducible representation is parametrized by a multisegment a, that can be viewed as a function from the set of segments C to N. For a multisegment a, we denote by L a the corresponding irreducible representation and π(a) the induced representation, cf. notations 1.1.16. The question is then to calculate the image of such an induced representation in the associated Grothendieck group, that is to compute the multiplicity m(b, a) of L b in π(a).

To begin, let us fix some notations. Let p be a prime number, F/Q p be a finite extension. We fix an absolute value |.| on F such that |̟ F | = 1/q, where ̟ F is a uniformizer of F , and q is the order of its residue field. For an integer n ≥ 1, we denote by ν the character of GL n (F ) defined by ν(g) = |det(g)|. Definition 1.1.2. For a partition n, let

Zelevinsky Classification

P n = P n (F ) = M n U n
be the corresponding parabolic subgroup of GL n (F ) with its decomposition into the product of its Levi subgroup

M n = GL r 1 (F ) × • • • GL rα (F )
and its unipotent radical U n . Let δ Pn be the modular character of P n , given by

δ Pn (-) = |det(ad(-)| Lie Un )| -1
For a topological group G, we recall that a representation

(π, V ) of G is -smooth if for any vectors v, the stabilizer of v in G is an open subgroup, -admissible if for any open compact subgroup K of G, V K = {v : k.v = v, ∀k ∈ K} is of finite dimension.
According to [START_REF] Bernstein | Representation theory of GL(n, F ) where F is a non-archimedean local field[END_REF] theorem 4.1, a smooth representation of GL n (F ) is of finite length if and only if it is admissible and finitely generated.

Definition 1.1.3. For n = {r 1 , • • • , r α } and ρ = ρ 1 ⊗ • • • ⊗ ρ rα a smooth representation of M n ,
where the ρ i are representations of GL r i (F ), trivially extended to P n , we define the normalized induction functor which associates to ρ the representation π = ind

GLn(F ) Pn (ρ) of G such that π = f : G → V | f (pg) = δ Pn (p) -1/2 ρ(p)f (g), ∀p ∈ P n , f (gk) = f (g) for all k ∈ K, with K a certain open subgroup. ,
here G acts on f by π(g)f (x) = f (xg).

Definition 1.1.4. Let (π, V ) be a representation of GL n (F ) and P n a parabolic subgroup. Let J GLn(F ) Pn (π) be the Jacquet functor of π defined by

J GLn(F ) Pn (π) = V /V (U n ),
where

V (U n ) = {u.v -u|u ∈ U n , v ∈ V }.
Remark: Both parabolic induction and Jacquet functor are additive exact functors between the category of smooth representations of M n and GL n (F ). Moreover, they preserve admissible representations and finitely generated representations.

Proposition 1.1.5. (cf. [START_REF] Prasad | Representation theory of GL(n) over non-Archimedean local fields[END_REF] theorem 2.7, 4.1 and 5.3.) For π a smooth representation of GL n (F ), and σ a smooth representation of M n , we have the following Frobenius reciprocity,

Hom G (π, ind GLn(F ) Pn (σ)) = Hom Mn (J GLn(F ) Pn (π), σδ -1/ 2 
Pn ). According to Harish Chandra, the study of irreducible representations of GL n is thus divided into two parts, the cuspidal representations and the parabolically induced representations. We will not discuss here the classification of cuspidal representations of GL n (F ), which rests on the theory of types for which the reader can refer to for example [START_REF] Bushnell | The admissible dual of GL(N ) via compact open subgroups[END_REF]. Definition 1.1.8. By a multiset, we mean a pair (S, r) where S is a set and r : S → N is a map. We say (S 1 , r 1 ) ⊆ (S 2 , r 2 ) if S 1 ⊆ S 2 and r 1 (s) ≤ r 2 (s) for all s ∈ S 1 . We define a bijection of multisets from (S 1 , r 1 ) to (S 2 , r 2 ) to be a bijection ξ : S 1 → S 2 satisfying r 2 (ξ(x)) = r 1 (x). Definition 1.1.9. Let (S, r) be a multi-set, then we define ♯(S, r) = s∈S r(s).

Convention : Naturally, we write a multiset as a set with repetition. For example, for S = {a, b} and r(a) = 2, r(b) = 1, then we write the multiset (S, r) by {a, a, b}. -By a segment, we mean a subset ∆ of C of the form ∆ = {ρ, νρ, • • • , ν k ρ = ρ ′ }. We denote it by ∆ = [ρ, ρ ′ ] where b(∆) := ρ is called its beginning and e(∆) := ρ ′ its end. Let Σ univ be the set of segments.

-We say that two segments ∆ 1 and ∆ 2 are linked if none of them is contained in the other and the union is again a segment.

-For

∆ 1 = [ρ 1 , ρ ′ 1 ] and ∆ 2 = [ρ 2 , ρ ′ 2 ]
, we say ∆ 1 proceeds ∆ 2 if they are linked and ρ 2 = ν k ρ 1 with k > 0.

-By a multisegment, we mean a finite multiset a

= {∆ 1 , • • • , ∆ r }. Let
O univ be the set of multisegments. -We say a multisegment a = {∆ 1 , • • • , ∆ r } is well ordered if for each pair of indices i, j such that i < j, ∆ i does not proceeds ∆ j .

Remark: for a given multisegment, we may have several ways to arrange it to be a well ordered multisegment.

Notation 1.1.11. Let a = {∆ 1 , • • • , ∆ r }. We call e(a) = e(∆ 1 ), • • • , e(∆ r ) and b(a) = b(∆ 1 ), • • • , b(∆ r )
respectively the end and the beginning of a as a multiset.

Definition-Proposition 1.1.12.

([34]3.1) Let ρ be a cuspidal representa- tion of GL m (F ) then for n = rm ind GLrm(F ) Pn m (ρ ⊗ νρ ⊗ • • • ⊗ ν r-1 ρ) contains a unique irreducible sub-representation, denoted by L [ρ,ν m-1 ρ] . Notation 1.1.13. Let n = (r 1 , • • • , r α ) be a partition. Let π i be a represen- tation of GL r i (F ) for i = 1, • • • , α. Then we denote π 1 × • • • × π α = ind GLn(F ) Pn (π 1 ⊗ • • • ⊗ π α ). Proposition 1.1.14. ([34] Theorem 4.2) Let ∆ 1 , • • • , ∆ r
be segments, then the following two conditions are equivalent :

(1) The representation L ∆ 1 × • • • × L ∆r is irreducible.
(2) For each 1 ≤ i, j ≤ r, ∆ i and ∆ j are not linked.

The following theorem gives a complete classification of the induced irreducible representations of GL n (F ) in terms of multisegments. (1) Then the representation

L ∆ 1 × • • • × L ∆r
contains a unique sub-representation, which we denote by L a .

(2) The representations L a and L a ′ are isomorphic if and only if a = a ′ as well ordered multisegments, which means that there is a way to well order a ′ to obtain a.

(3) Any irreducible representation of GL n (F ) is isomorphic to some representation of the form L a .

Remark: according to (2), the irreducible representation L a does not depend on the well ordered form of a.

Notation 1.1.16. From now on, for

a = {∆ 1 , • • • , ∆ r } being well ordered, we denote π(a) = L ∆ 1 × • • • × L ∆r .
1.2 Coefficients m(b, a)

Notation 1.2.1. We denote by R n the Grothendieck group of the category of finite length representations of GL n (F ) and

R univ = ⊕ n≥1 R n . Proposition 1.2.2.
The set R univ is a bi-algebra with the multiplication µ and co-multiplication c given by

µ(π 1 ⊗ π 2 ) = π 1 × π 2 , c(π) = n r=0 J GLn(F ) P r,n-r (π).
A consequence of theorem 1.1.15 is :

Corollary 1.2.3.
The algebra R univ is a polynomial ring with indeterminates {L ∆ : ∆ ∈ Σ univ }. Moreover, as a Z-module, the set {L a : a ∈ O univ } form a basis for R univ .

Remark: Note that this implies the Bernstein Center theorem, i.e, we have a decomposition

R univ = ρ R(ρ),
where ρ runs through the equivalent classes of irreducible supercuspidal representations. Here we say two irreducible super-cuspidal representations are equivalent if they lie in the same Zelevinsky line, and R(ρ) is the sub-algebra with support contained in the Zelevinsky line Π ρ generated by ρ. We denote by O(ρ) the set of multisegments supported on Π ρ .

Using theorem 1.1.15, let a = {∆ 1 , • • • , ∆ r } be a multisegment with support contained in some Zelevinsky line Π ρ , then we can write

π(a) = b∈O(ρ) m(b, a)L b (1.2.4)
where

π(a) = ∆ 1 × • • • × ∆ r , m(b, a) ∈ N.
One of the aims of this thesis is to give some new insights on these m(b, a). Remark: For our purpose, note that we can also rewrite the equation 1.2.4 in the following form

L a = b∈O(ρ) m(b, a)π(b). (1.2.5)
The simplest example is given by Proposition 1.2.6. (cf. [START_REF] Zelevinsky | A p-adic analog of the Kazhdan-Lusztig conjecture[END_REF] section 4.6 ) Let ∆ 1 and ∆ 2 be two linked segments, then

∆ 1 × ∆ 2 = L a 1 + L a 2 with a 1 = {∆ 1 , ∆ 2 }, a 2 = {∆ 1 ∪ ∆ 2 , ∆ 1 ∩ ∆ 2 }.
Remark: it is conjectured in [START_REF] Zelevinsky | Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n)[END_REF] 8.7 that the coefficient m(b, a) depends only on the combinatorial relations of b and a, and not on the specific cuspidal representation ρ. The independence of specific cuspidal representation can be showed by type theory, see for example [START_REF] Mínguez | L'involution de zelevinsky modulo ℓ[END_REF]. In other words, as far as we are concerned with the coefficient m(b, a), we can restrict ourselves to the special case ρ = 1, the trivial representation of GL 1 (F ). with f a associated function in C, let

ϕ a = ∆∈a f a (∆)χ ∆ ∈ S.
We call ϕ a the weight of a, and we call deg(a) = k∈N ϕ a (k) the degree of a(or, the degree of L a ).

Definition 1.2.11. For ϕ ∈ S, let S(ϕ) be the set of multisegments with weight ϕ.

A partial order on O

Definition 1.3.1. For a a multisegment, by an elementary operation, we mean replacing two linked segments

{∆ 1 , ∆ 2 } by {∆ 1 ∪ ∆ 2 , ∆ 1 ∩ ∆ 2 } in a. Notation 1.3.2.
Let b be a multisegment such that it can be obtained from a by a series of elementary operations, then we say b ≤ a. We denote

S(a) = {b : b ≤ a}. Definition 1.3.3. We define for b ≤ a, ℓ(b, a) = max n {n : a = b 0 ≥ b 1 • • • ≥ b n = b},
and ℓ(a) = ℓ(a min , a).

Definition 1.3.4. We define the following total order relations on Σ :

[j, k] ≺ [m, n], if k < n, [j, k] ≺ [m, n], if j > m, n = k. Lemma 1.3.5. Let b ∈ S(a), then π(a) -π(b) ≥ 0 in R.
Démonstration. By choosing a maximal chain of multisegments between a and b, we can assume that

a = {∆ 1 , • • • , ∆ r }, b = (a\{∆ j , ∆ k }) ∪ {∆ j ∩ ∆ k , ∆ j ∪ ∆ k }.
Then by proposition 1.2.6,

π(a) = π(b) + L ∆ 1 × • • • × L ∆ j × • • • × L ∆ k × • • • × L ∆r × L {∆ j ,∆ k } Proposition 1.3.6.
The set S(a) is a partially ordered finite set with unique minimal element a min . Furthermore, a min is the unique multisegment in S(a) in which no segment is linked to the others.

Remark: in particular by proposition 1.1.14 a multisegment a is minimal if and only if π(a) is irreducible.

Démonstration. For a proof of the fact that ≤ is a partial order, we refer to [START_REF] Zelevinsky | Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n)[END_REF] 7.1. Let X a := ∪ ∆∈a ∆ be a subset of the Zelevinsky line Π. Let ϕ a be the weight function of a. Let Σ(a) be the set of segments with support in X a : this is a finite set. For every ∆ ∈ Σ(a), we note χ ∆ the characteristic function of the set ∆. Now we consider the set

Γ(a) = {f ∈ C : ϕ a = ∆∈Σ f (∆)χ ∆ }.
Then Γ(a) is a finite set. Clearly, for any b ∈ S(a), we have f b ∈ C since the elementary operation does not change the weight function, note that b is uniquely determined by f b , so S(a) is finite since Γ(a) is finite. We define

a min = {∆ 1 , ∆ 2 , • • • , ∆ r } with ∆ 1 • • • ∆ r ,
where for ∆ 0 = ∅, we set ∆ i be the maximal segment with respect to the total order ≺, such that

χ ∆ i is supported in Supp(ϕ a -χ ∆ 0 -• • • -χ ∆ i-1 ).
We only need to show that for all b ∈ S(a), we have a min ≤ b. To see this, we look at a maximal segment ∆ ′ in b, if it is linked to some segments ∆ ′′ , then we apply the elementary operation to them and get b 1 . Now repeat the same procedure, in finite steps we get a multisegment b ′ ≤ b in which no segments are linked to the others. It remains to show that b ′ = a min . In fact, we have

ϕ a = ∆∈Σ(a) f a min (∆)χ ∆ = ∆∈Σ(a) f b ′ (∆)χ ∆ . (1.3.7) Let b ′ = {∆ ′ 1 , • • • , ∆ ′ t } with ∆ ′ 1 • • • ∆ ′ t .
Put ∆ ′ 0 = ∅ and suppose by induction that there is an s with 1 ≤ s ≤ min{r, t} such that for all 0 ≤ i < s, ∆ ′ i = ∆ i . By construction, we have ∆ ′ s ∆ s and we assume that

∆ ′ s ≺ ∆ s . By the equality (1.3.7), e(∆ s ) = e(∆ ′ s ), then χ ∆ ′ s -χ ∆s is negative. Let ∆ = ∆ s \ ∆ ′
s . Now by the equality (1.3.7), there exists a minimal i > s such that the segment ∆ ′ i satisfies the property that b(

∆ ′ i ) ≤ b(∆) ≤ e(∆) ≤ e(∆ ′ i ). But this implies that ∆ ′ s is linked to ∆ ′ i , contradiction. Therefore ∆ ′ s = ∆ s . We conclude by the same argument that r = s, ∆ ′ i = ∆ i , 1 ≤ i ≤ r.
Concerning the coefficient m(b, a), we have 

Partial Derivatives

In this section we show how to define some analogue of the Zelevinsky derivation. This section will not be used until Chapter 7 but some of the properties of partial derivation will appear all along the text.

Definition 1.4.1. We define a left partial derivation with respect to index i to be a morphism of algebras

i D : R → R, i D(L [j,k] ) = L [j,k] + δ i,j L [j+1,k] if (k > j), i D(L [j] ) = L [j] + δ [i],[j] .
Also we define a right partial derivation with respect to index i to be a morphism of algebras

D i : R → R D i (L [j,k] ) = L [j,k] + δ i,k L [j,k-1] if (j < k) D i (L [j] ) = L [j] + δ [i],[j] .
Definition 1.4.2. We define

D [i,j] = D j • • • • • D i [i,j] D = ( i D) • • • • • ( j D) And for c = {∆ 1 , • • • , ∆ s } with ∆ 1 • • • ∆ s , we define D c = D ∆ 1 • • • • • D ∆s and c D = ( ∆s D) • • • • • ( ∆ 1 D).
Remark: we recall that in [START_REF] Bernstein | Induced representations of reductive p-adic groups[END_REF] 4.5, Zelevinsky defines a derivative D to be an algebraic morphism D : R → R, which plays a crucial role in Zelevinsky's classification theorem.

The relation between Jacquet functor and derivative is given by Proposition 1.4.3. (cf. [START_REF] Zelevinsky | Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n)[END_REF]3.8) Let δ be the algebraic morphism such that δ(ρ) = 1 for all ρ ∈ C and δ(L ∆ ) = 0 for all non cuspidal representations

L ∆ . Then D = (1 ⊗ δ) • c,
where c is the co-multiplication.

The main advantage to work with partial derivatives instead of the derivative defined by Zelevinsky is that they are much more simpler but share the following positivity properties :

Theorem 1.4.4. Let a be any multisegment, then we have

D i (L a ) = b∈O n(b, a)L b ,
such that n(b, a) ≥ 0, for all b.

Remark: the same property of positivity holds for i D.

The theorem follows from the following two lemmas Definition 1.4.5. For i ∈ Z, let φ i be the morphism of algebras defined by

φ i : R → Z φ i ([j, k]) = δ [i],[j,k] .
Lemma 1.4.6. For all multisegment a, we have φ i (L a ) = 1 if and only if a contains no other segments than [i], otherwise it is zero. Lemma 1.4.7. We have

D i = (1 ⊗ φ i ) • c.
Démonstration. Since both are algebraic morphisms, we only need to check that they coincide on generators. We recall the equation from [START_REF] Zelevinsky | Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n)[END_REF], proposition 3.4

c(L [j,k] ) = 1 ⊗ L [j,k] + k-1 r=j L [j,r] ⊗ L [r+1,k] + L [j,k] ⊗ 1. Now applying φ i , (1 ⊗ φ i )c(L [j,k] ) =L [j,k] + δ i,k L [j,k-1] if (k > j) (1 ⊗ φ i )c(L [j] ) =L [j,k] + δ i,j ,
where δ i,j is the Kronecker symbol. Comparing this with the definition of D i yields the result.

Remark:

We have the following relation between partial derivative and derivative of Zelevinsky. Let e(a)

= {[i 1 ], • • • , [i α ] : i 1 ≤ • • • ≤ i α } be the end of a, then D(a) = D [i 1 ,iα] (a).
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Chapitre 2

Schubert varieties and KL polynomials

In this chapter we recall some of the geometric constructions of Zelevinsky : the nilpotent orbital varieties and their relation with Schubert varieties. viewed in the Schubert variety associated to the symmetric group S n , where σ(a) and σ(b) are certain permutations attached to a and b. This conjecture was proved by Chriss-Ginzburg [START_REF] Chriss | Representation theory and complex geometry[END_REF], and Ariki [START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(m, 1, n)[END_REF].

In the following, we study the case of symmetric multisegments in the sense of definition 2.1.5. The set of symmetric multisegment of some specific weight ϕ is indexed by S m , where m = max k∈Z ϕ(k), which is in general strictly smaller than its degree= k ϕ(k). In this symmetric situation, we construct a fibration from the symmetric locus in the orbital varieties E ϕ to some smooth variety, where the stratification of E ϕ gives rise to a stratification of the fibers. And we show that the fiber is isomorphic to some Schubert variety of type A m-1 , which identifies the stratification of fiber with the stratification by Schubert cells.

Symmetric multisegments

Before we introduce the symmetric multisegments, we present a type of multisegments which is more general and will be used in Chapter 6.

Definition 2.1.1. We say a multisegment a is ordinary if there exists no two segments in a that possesses the same beginning or end.

Example 2.1.2. Some typical examples of ordinary multisegments : Démonstration. In fact, by transitivity, we only need to check this for case where b can be obtained from a by applying the elementary operation to the pair

let a = {∆ 1 , ∆ 2 , ∆ 3 }, and b = {∆ 4 , ∆ 5 , ∆ 6 } ∆ 1 = [1, 4], ∆ 2 = [2, 5], ∆ 3 = [3, 6], ∆ 4 = [1, 2], ∆ 5 = [2, 4], ∆ 6 . = [4, 5]
{∆ 1 ≺ ∆ 2 }. Hence b = a \ {∆ 1 , ∆ 2 } ∪ {∆ 1 ∪ ∆ 2 , ∆ 1 ∩ ∆ 2 }. Note that e(∆ 1 ∪ ∆ 2 ) = e(∆ 2 ), b(∆ 1 ∪ ∆ 2 ) = b(∆ 1 ), and if ∆ 1 ∩ ∆ 2 = ∅, e(∆ 1 ∩∆ 2 ) = e(∆ 1 ), b(∆ 1 ∩∆ 2 ) = b(∆ 2 ). Hence b(b) ⊆ b(a), e(b) ⊆ e(a). Definition 2.1.5. Let a = {∆ 1 , • • • , ∆ n } be ordinary. We say that a is symmetric if max{b(∆ i ) : i = 1, • • • , n} ≤ min{e(∆ i ) : i = 1, • • • , n}.
To explain the link with the symmetric group, we recall some basic facts about the symmetric group S n (cf. [START_REF] Björner | Combinatorics of Coxeter groups[END_REF]). Let (i, j) be the transposition exchanging i and j, then

S = {σ i := (i, i + 1) : i = 1, • • • n -1}
form a system of generators of S n .

Definition 2.1.6. For w ∈ S n , its length ℓ(w) is the smallest integer

k such that w = s 1 s 2 • • • s k , with s i ∈ S, for i = 1, • • • , k.
On S n , we have the famous Bruhat order which is defined as follow :

Definition 2.1.7. Let T = {wsw -1 : w ∈ S n , s ∈ S}. For u, w ∈ S n , (i) We write u t / / w , if u -1 w = t ∈ T and ℓ(u) < ℓ(w).
(ii) We write u / / w , if u t / / w for some t ∈ T .

(iii) We write u ≤ w if there exists a sequence of w i ∈ S n , such that

u → w 1 → w 2 → • • • → w k = w.
This defines a partial order on S n , which is called the Bruhat order.

Proposition 2.1.8. Let a Id = {∆ 1 , • • • , ∆ n } be symmetric, such that b(∆ 1 ) < • • • < b(∆ n ), e(∆ 1 ) < • • • < e(∆ n ).
Then for w ∈ S n , the formula

Φ(w) = n i=1 [b(∆ i ), e(∆ w(i) )]
defines a bijection between S n and S(a Id ). Moreover, the order relation on S(a Id ) induces the inverse Bruhat order, i.e.,

w ≤ v ⇔ Φ(w) ≥ Φ(v).
Example 2.1.9. Let n = 3 and a Id = {∆ 1 , ∆ 2 , ∆ 3 } with

∆ 1 = [1, 4], ∆ 2 = [2, 5], ∆ 3 = [3, 6].
Then Φ(σ 1 ) = {∆ 4 , ∆ 5 , ∆ 6 } with

∆ 4 = [1, 5], ∆ 5 = [2, 4], ∆ 6 = [3, 6]. Figure 2.2 -Symmetric multi-segments
Démonstration. The injectivity is clear. We observe that Φ(Id) = a Id . We show now that Φ(w) ∈ S(a Id ) for general w and the partial order on S(a Id ) induces the inverse Bruhat order.

(1) For v ≤ w, by the chain property of Bruhat order(cf. [START_REF] Björner | Combinatorics of Coxeter groups[END_REF] Theorem 2.2.6), we have

v = w 0 < w 1 < • • • < w α = w,
such that w γ = σ i γ-1 ,j γ-1 w γ-1 for some i γ-1 < j γ-1 and ℓ(w γ ) = ℓ(w γ-1 ) + 1. Now by lemma 2.1.4 of [START_REF] Björner | Combinatorics of Coxeter groups[END_REF], we know that

w -1 γ-1 (i γ-1 ) < w -1 γ-1 (j γ-1 ). Hence the segments [b(∆ w -1 γ-1 (i γ-1 ) ), e(∆ i γ-1 )] [b(∆ w -1 γ-1 (j γ-1 )
), e(∆ j γ-1 )] are linked in Φ(w γ-1 ). Moreover, by performing the elementary operation on the two segments, we obtain Φ(w γ ), hence Φ(w γ-1 ) > P hi(w γ ).

Again by transitivity of partial orders, we are done. Note that we proved that all Φ(w) are in S(a Id ). Moreover, for any b ∈ S(a Id ), the fact that a Id is symmetric implies b(a Id ) = b(b) since no segment is juxtaposed to the others. The same reason shows that e(a Id ) = e(b). Hence there is a unique w ∈ S n such that

b = n i=1 [b(∆ i ), e(∆ w(i) )].
This proves the surjectivity.

(2) Let Φ(w) ≥ Φ(v), we choose

Φ(w) = Φ(w 0 ) > Φ(w 1 ) > • • • > Φ(w α ) = Φ(v)
to be a maximal chain of multisegments, where Φ(w γ ) is obtained from Φ(w γ-1 ) by performing the elementary operation to segments

{[b(∆ i γ-1 ), e(∆ w γ-1 (i γ-1 ) )], [b(∆ j γ-1 ), e(∆ w γ-1 (j γ-1 ) )]} in Φ(w γ-1 ) with i γ-1 < j γ-1 . Then w γ-1 (i γ-1 ) < w γ-1 (j γ-1 ). Hence w γ = σ w γ-1 (i γ-1 ),w γ-1 (j γ-1 ) w γ-1 .
Note that in this case, we have either

w γ < w γ-1 or w γ > w γ-1 , by (1) 
, the former implies Φ(w γ-1 ) < Φ(w γ ), contradiction to our assumption.

Hence we must have

w γ > w γ-1 .
We conclude by transitivity of partial order that w < v.

Nilpotent Orbits

In this section we shall introduce the nilpotent orbits constructed in [START_REF] Zelevinsky | A p-adic analog of the Kazhdan-Lusztig conjecture[END_REF] and discuss their geometry and relations with multisegments.

Definition 2.2.1.

(

) Let ϕ ∈ S (cf. Def. 1.2.7) such that supp ϕ = {1, • • • , h}. Let V ϕ = ⊕ k∈Z V ϕ,k be a Z-graded C vector space such that dim V ϕ,k = ϕ(k). 1 
(2) Let E ϕ be the set of endomorphism T of V ϕ of degree 1, i.e. such that T V ϕ,k ⊆ V ϕ,k+1 .

Remark: (cf. [START_REF] Zelevinsky | A p-adic analog of the Kazhdan-Lusztig conjecture[END_REF] 

E ϕ ≃ M ϕ(2),ϕ(1) × • • • × M ϕ(h),ϕ(h-1)
Here we suppose that supp ϕ ⊆ [1, h] and M k,ℓ denotes the vector space of matrices over C with k rows and ℓ columns.

Remark: In this case, the group

G ϕ = GL ϕ(1) × • • • × GL ϕ(h)
acts by 

(g 1 , • • • , g h ).(f 1 , • • • , f h-1 ) = (g 2 f 1 g -1 1 , g 3 f 2 g -1 2 , • • • , g h f h-1 g -1 h-1
V ϕ = V 1 ⊕ V 2 ⊕ V 3 such that V 1 = Cv 1 , V 2 = Cv 2 ⊕ Cv 3 , V 3 = Cv 4 .
Consider the operator T ∈ E ϕ , such that

T (v 1 ) = v 2 -v 3 , T (v 2 ) = T (v 3 ) = v 4 .
Then by choosing a new basis

v ′ 1 = v 1 , v ′ 2 = v 1 -v 2 , v ′ 3 = v 1 + v 3 , v ′ 4 = 2v 4 , we get T (v ′ 1 ) = v ′ 2 , T (v ′ 2 ) = 0, T (v ′ 3 ) = v ′ 4 , which gives the Jordan form J T of T J T =     0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0     Proposition 2.2.5. (cf.[35], 2.
3) The orbits of E ϕ under G ϕ are naturally parametrized by multisegments of weight ϕ.

Démonstration. Let a = i≤j a ij [i, j] such that ϕ a = ϕ, then the orbit associated consists of the operators having exactly a ij Jordan cells starting from V ϕ,j and ending in V ϕ,i . Notation 2.2.6. We denote by O a the orbit associated to the multisegment a.

Example 2.2.7. We take the same function ϕ = χ 1 + 2χ 2 + χ 3 as in example 2.2.4. Then the multisegments of weight ϕ are listed below(cf. [START_REF] Zelevinsky | Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n)[END_REF] section 11.4)

a max = {[1], [2], [2], [3]}, a ℓ = {[1, 2], [2], [3]}, a r = {[1], [2], [2, 3]}, a 0 = {[1, 2], [2, 3]}, a min = {[1, 3], [2]}.
And the corresponding Jordan forms are given by

J amax = 0, J a ℓ =     0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0     J ar =     0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0     , J a 0 =     0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0     , J a min =     0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0     . Proposition 2.2.8. (cf. [35], 2.2) In E ϕ , we have O b = a≥b O a .
Definition 2.2.9. For any T ∈ E ϕ , and i ≤ j, denote by T [i,j] the composition map :

V i T / / V i+1 • • • T / / V j ,
we define r ij (T ) = rank(T [i,j] ).

Remark: For a a multisegment, r ij (T ) remains constant for any T ∈ O a , we denote it by r ij (a).

We recall the following combinatorial results

Proposition 2.2.10. (cf. [START_REF] Zelevinsky | A p-adic analog of the Kazhdan-Lusztig conjecture[END_REF]section 2.5) Let a, b be two multisegments such that ϕ a = ϕ b . Then the following two conditions are equivalent :

(1) b ≤ a ; (2) r ij (a) ≤ r ij (b) for all i ≤ j.
In symmetric case, we have the following interesting description of r ij . Lemma 2.2.11. Let w ∈ S n . Then we have r i,j+n-1 (w) := r i,j+n-1 (Φ(w)) = {k ≤ i : w(k) ≥ j}.

Démonstration. In fact, take

a Id = n k=1 [k, k + n -1],
and consider the bijection

Φ : S n → S(a Id ) with Φ(w) = n k=1 [k, w(k) + n -1].
By definition, r i,j+n-1 (w) is the number of segments in L Φ(w) which contains

[i, j + n -1], hence is of the form [k, w(k) + n -1] with k ≤ i, w(k) ≥ j.
Now combining with the proposition 2.2.10, gives the following known results, Proposition 2.2.12. ([28] Proposition 2.1.12) In S n , v ≤ w ⇔ r ij (v) ≤ r ij (w), for all i ≤ j.

Schubert Varieties and KL Polynomials

Let Y be an algebraic variety over C. Given a stratification H, we let U ℓ denote the set of strata whose dimension is ≥ ℓ. Remark: Let V be a C vector space. Note that GL n acts transitively on the set of complete flags F(V

) := {(U i : i = 0, • • • , n) : 0 = U 0 ⊂ U 1 ⊂ • • • ⊂ U n = V, dim(U i ) = i}
and the stabilizer of a complete flag is given by a Borel subgroup. Hence by fixing a complete flag (V i : i = 0, • • • , n) and denoting its stabilizer by B, we identify the variety GL n /B with F(V ), in this way, we can consider the Schubert variety as a subset of F(V ). Then for the Schubert variety X w , we have a stratification given by H = {C v : v ≤ w}. Definition 2.3.8. Let v ≤ w, we define the Kazhdan Lusztig polynomial for the pair v, w :

P v,w (q) = i q (i+dw)/2 dim H i (X w ) xv , where x v is an element in C v and d w = dim(X w ) = ℓ(w).
Concerning the intersection cohomology of Schubert varieties, we have the following purity theorem due to Kazhdan and Lusztig.

Theorem 2.3.9. ( [START_REF] Kazhdan | Representations of Coxeter groups and Hecke algebras[END_REF]) If i + ℓ(w) is odd, then the cohomology group

H i (X w ) = 0.
Remark: This implies that P v,w (q) is a polynomial in q.

Orbital Varieties and Schubert Varieties

Note that on the orbital variety O b , we have a stratification given by Hence again by theorem 2.3.9, we know that P a,b is a polynomial in q.

H b = {O a : ϕ a = ϕ b , b ≤ a}.
P a,b (q) = i q (i+d b )/2 dim H i (O b ) xa ,
Here, we briefly recall Zelevinsky's results in [START_REF] Zelevinsky | Two remarks on graded nilpotent classes[END_REF]. Let ϕ be a function in S(cf. Def. 1.2.7) such that supp(ϕ) ⊆ [1, r]. We consider the flag variety

F(ϕ) = {0 = U 0 ⊂ U 1 ⊂ • • • U r = V ϕ : dim(U i /U i-1 ) = ϕ(i), 1 ≤ i ≤ r}
We fix the standard flag

F ϕ = {0 = V 0 ϕ ⊆ V 1 ϕ • • • ⊆ V r ϕ : V i ϕ = V ϕ,1 ⊕ • • • ⊕ V ϕ,i } ∈ F(ϕ).
Definition 2.4.2. Let G(ϕ) be the subset of F(ϕ) containing the elements

(U i : 0 ≤ i ≤ r) ∈ F(ϕ) such that U i ⊇ V i-1 ϕ for i = 1, • • • , r.
Zelevinsky defined a map τ : E ϕ → G(ϕ), by associating to T ∈ E ϕ the element τ (T ) = (U i : 0 ≤ i ≤ r) such that 

U i = {(v 1 , • • • , v r ) ∈ V ϕ,1 ⊕ • • • ⊕ V ϕ,r : v j+1 = T (v j ), j ≥ i}.
b ij [i, j], X b = (x ij ) with x ij =b ij , for i ≤ j x ij =0, for i > j + 1 x i,i-1 = n≤i-1,i≤m b nm . Example 2.4.4. Let ϕ = χ [1] + 2χ [2] + χ [3] ,a = [1, 2] + [2, 3], b = [1, 3] + [2]. And X a = (x a ij ), X b = (x b ij ) be the matrix such that X a =   0 1 0 1 0 1 0 1 0   , X b =   0 0 1 1 1 0 0 1 0   Definition 2.4.5.
Let b be a multisegment of weight ϕ and

X b = (x i,j ) 1≤i,j≤r .
We define Y b to be the set of flags

(U i : i = 0, 1, • • • , r) ∈ G(ϕ) such that dim((U i ∩ V j ϕ )/(U i ∩ V j-1 ϕ + U i-1 ∩ V j ϕ )) = x ij , for all 1 ≤ i, j ≤ r.
Example 2.4.6. Let a be the multisegment in example 2.4.4. We have Y a be the set of flags (U i : i = 0, 1, 2, 3) such that

U 0 = 0; dim(U 1 ∩ V 1 ϕ ) = x a 11 = 0 ⇒ U 1 ∩ V 1 ϕ = 0; dim(U 1 ∩ V 2 ϕ ) = x a 12 = 1 ⇒ U 1 ⊆ V 2 ϕ ; dim(U 2 ∩ V 1 ϕ ) = x a 21 = 1 ⇒ U 2 ⊇ V 1 ϕ . And dim(U 2 ∩ V 2 ϕ /(U 2 ∩ V 1 ϕ + U 1 ∩ V 2 ϕ )) = x a 22 = 0, which implies U 2 ∩ V 2 ϕ = U 2 ∩ V 1 ϕ + U 1 ∩ V 2 ϕ ; hence U 2 ∩ V 2 ϕ = V 1 ϕ + U 1 , which is of dimension 2.
Hence Y a is the set of flags (U i : i = 0, 1, 2, 3) satisfying

U 0 = 0, U 1 ∩ V 1 ϕ = 0, U 2 ∩ V 2 ϕ = V 1 ϕ + U 1 , U 3 = V 3 ϕ . Proposition 2.4.7. (cf. [37] Theorem 1.) We have O b = Y b ∩ E ϕ . Example 2.4.8. Again, let a = [1, 2] + [2, 3]. Let T ∈ E ϕ ∩ Y a , then we have τ (T ) = (U i : i = 0, 1, 2, 3), satisfying U 0 = 0, U 1 ∩ V 1 ϕ = 0, U 2 ∩ V 2 ϕ = V 1 ϕ + U 1 , U 3 = V 3 ϕ .
By definition, if we write T = (T 1 , T 2 ) such that

T i : V ϕ,i → V ϕ,i+1 , i = 1, 2, then U 1 = {(v, T 1 v, T 2 T 1 v) ∈ V ϕ : v ∈ V ϕ,1 },
and

U 1 ∩ V 1 ϕ = 0 is equivalent to T 1 v = 0. Also, we have U 2 = {(v 1 , v 2 , T 2 v 2 ) ∈ V ϕ : v 1 ∈ V ϕ,1 , v 2 ∈ V ϕ,2 }. Note that U 2 ∩ V 2 ϕ = V 1 ϕ + U 1 is equivalent to the following conditions U 1 ⊆ V 2 ϕ , U 2 V ϕ,2 .
We know that

U 1 ⊆ V 2 ϕ is equivalent to the fact that for any v ∈ V ϕ,1 , (v, T 1 v, T 2 T 1 v) ∈ V ϕ,2 , hence T 2 T 1 v = 0. Furthermore, we know that U 2 V ϕ,2 is equivalent to the fact that there exits v ∈ V ϕ,2 such that (0, v, T 2 v) / ∈ V ϕ,2 , hence T 2 v = 0. Hence we obtain that T ∈ E ϕ ∩ Y a is equivalent to the following facts T 1 = 0, T 2 T 1 = 0, T 2 = 0.
The latter is the same as to say that T ∈ O a .

Definition 2.4.9.

Let B i (ϕ) = {j : m≤i-1 ϕ(m) < j ≤ m≤i ϕ(m)}. S b = {w ∈ S deg(b) : Card(w(B i (ϕ)) ∩ B j (ϕ)) = x ij , 1 ≤ i, j ≤ r}.
We denote by w(b) the unique element in S b of maximal length.

Example 2.4.10. In the example 2.4.4, we have

B 1 (ϕ) = {1}, B 2 (ϕ) = {2, 3}, B 3 (ϕ) = {4}. Let a = [1, 2] + [2, 3].
Then by definition The same method shows that

S a = {w ∈ S 4 : Card(w(B i (ϕ)) ∩ B j (ϕ)) = x a ij , 1 ≤ i, j ≤ 3} Therefore, for w ∈ S a , we have w(1), w(4) ∈ {2, 3}, {w(2), w(3)} ∩ {2, 3} = ∅, therefore, {w (1) 
w(b) = (1423)
Note in the picture we denote a permutation by its image. Remark: Combining with theorem 2.4.11, this theorem gives a complete calculation of the coefficients m(b, a). But as we have seen, this often involves elements in a huge symmetric group, which is too clumsy. Moreover, another difficulty arise from the description of the element w(b), which is not explicit. Remark: In this chapter, for symmetric multisegments a and b, we will give more concrete description about the coefficient m b,a in terms of elements in S n with n equals to the number of segments contained in a, cf. corollary 2.5.9. For general case, we will give use the reduction method from chapter 4 to give a more concrete description.

Geometry of Symmetric Nilpotent Orbits

For the moment, we consider a special case of symmetric multisegments, we assume that

a Id = n i=1 [i, n + i -1], ϕ = ∆∈a f a (∆)χ ∆ .
We remind that we already constructed a bijection

Φ : S n → S(a Id ) such that Φ(Id) = a Id . Definition 2.5.1. Let O w = O Φ(w) , and 
O sym ϕ = w∈Sn O w ⊆ E ϕ . Also, let O sym w = O w ∩ O sym ϕ . Definition 2.5.2. Let E ϕ pϕ = M 2,1 × • • • M n-1,n-2 × M n,n-1 × M n-1,n × • • • × M 1,2 Z ϕ := M 2,1 × • • • M n-1,n-2 × M n-1,n × • • • × M 1,2 .
be the natural projection with fiber M n,n-1 . Now we want to describe the fiber of the restriction p ϕ | O sym ϕ . Definition 2.5.3. We define GL n,n-1 to be the subset of M n,n-1 consisting of the matrices of rank n -1.

We denote by p n : M n,n ։ M n,n-1 the morphism of forgetting the last column of elements in M n,n . Remark: Now by restriction to GL n , we have the morphism

p n : GL n ։ GL n,n-1 , which satisfies the property that p n (g 1 g 2 ) = g 1 p n (g 2 ) for g 1 , g 2 ∈ GL n . Proposition 2.5.4. The morphism p n : GL n ։ GL n,n-1 ,
is a fibration. Furthermore, it induces a bijection

p n : B n \GL n /B n → B n \GL n,n-1 /B n-1 .
Démonstration. To see that it is locally trivial, note that p n is GL n equivariant with GL n acting by multiplication from the left. Since GL n acts transitively on itself, it acts also transitively on GL n,n-1 . Now p n is equivariant implies that all the fibers of p n are isomorphic. Let H be the stabilizer of p n (Id), then GL n,n-1 ≃ GL n /H, it is a étale locally trivial fibration according to Serre [START_REF] Serre | Espaces fibrés algébriques (d'après André Weil)[END_REF] proposition 3. By Bruhat decomposition, every g ∈ GL n admits a decomposition

g = b 1 wb 2 , b i ∈ B n , i = 1, 2, w ∈ S n ,
here we identify S n with the set of permutation matrices in GL n . We can decompose b 2 = b 3 v, where b 3 ∈ GL n-1 , which is identified with the direct summand in the Levi subgroup GL n-1 × C × , and v -Id only contains non zero elements in the last column, by definition,

p n (g) = b 1 p n (w)b 3 .
We obtain that p n induces

p n : B n \GL n /B n → B n \GL n,n-1 /B n-1 .
It is bijective because given p n (w), there is a unique way to reconstruct an element which belongs to S n . Theorem 2.5.5. The morphism

p ϕ | O sym ϕ is smooth with fiber GL n,n-1 . Moreover, the morphism p ϕ | Ow : O w → p ϕ (O sym ϕ ) is surjective with fiber B n p n (w)B n-1 .
Démonstration. Note that smoothness follows from that p ϕ :

E ϕ → Z ϕ is smooth and that O sym ϕ is open in E ϕ .
To see the rest of the properties, we fix an element e w in each orbit O w as follow. Let

(v ij )(i = 1, • • • , 2n -1, j = 1, • • • , ϕ(i)) be a basis of V ϕ,i , and an element e w satisfying    e w (v ij ) = v i+1,j , for i < n -1 e w (v n-1,j )= v n,w(j) , e w (v ij ) = v i+1,j-1 , for i ≥ n.
, here we put v i,0 = 0.

Example 2.5.6. Let w = (1, 2), then by the strategy in the proof, e w is given by the following picture : We claim that e w ∈ O w . In fact, it suffices to observe that

e w : v ii → • • • → v n-1,i → v n,w(i) → v n+1,w(i)-1 → • • • v n+w(i)-1,1 ,
which by proposition 2.2.5, implies that the multisegment indexing e w contains [i, w(i) + n -1] for all i = 1, • • • , n, hence it must be Φ(w). Note that, by definition, we have p ϕ (e Id ) = p ϕ (e w ), for all w ∈ S n .

Since p ϕ is compatible with the action of G ϕ , we get

p ϕ (O sym ϕ ) = p ϕ (O w ), for all w ∈ S n ,
which implies that p| Ow is surjective. Now it remains to characterize its fiber. Let

T ′ ∈ p ϕ (O sym ϕ ), then p -1 ϕ (T ′ ) ≃ M n,n-1 in E ϕ . Moreover, for T = (T 1 , • • • , T 2n-2 ) ∈ p -1 ϕ (T ′ ), then T ∈ O sym ϕ if and only if T n-1 ∈ GL n,n-1 .
Therefore, the map

T → T n-1 induces p -1 ϕ (T ′ ) ∩ O sym ϕ ≃ GL n,n-1 . Consider the variety p -1 ϕ (T ′ ) ∩ O w . Note that since G ϕ acts transitively on p ϕ (O sym ϕ ), we may assume that T ′ = p ϕ (e Id ). Lemma 2.5.7. The set of f w ∈ O w satisfying f w (v ij ) = v i+1,j , for i < n -1 f w (v ij ) = v i+1,j-1 , for i ≥ n. is in bijection with B n p n (w)B n-1 via p -1 ϕ (p ϕ (e Id )) ∩ O sym ϕ ≃ GL n,n-1 . Démonstration. Now the element f w ∈ O w is completely determined by the component f w,n-1 : V ϕ,n-1 → V ϕ,n .
We know by proposition 2.2.5 that f w,n-1 is injective hence of rank n -1.

Hence we have f w,n-1 ∈ GL n,n-1 . Now by proposition 2.5.4 we get B n \GL n,n-1 /B n-1 is indexed by S n , it remains to see that f w,n-1 is in the class indexed by p n (w).

Finally, we note that p ϕ is a morphism equivariant under the action of

G ϕ = GL 1 × GL 2 × • • • × GL n-1 × GL n × • • • × GL 2 × GL 1 . Since G ϕ acts transitively on O w , the image of O w is G ϕ .(p ϕ (e w )), hence is p ϕ (O Id ). Now we prove that the stabilizer of p ϕ (e w ) is B n × B n-1 . Let e Id = (e 1 , • • • , e n-1 , e n , • • • , e 2n-2 ) with e i ∈ M i,i+1 if i < n and e i ∈ M i,i-1 if i ≥ n. We have p ϕ (e Id ) = (e 1 , • • • , e n-2 , e n , • • • , e 2n-2 ). Let g = (g 1 , • • • , g n , g n+1 , • • • , g 2n-1
) such that g.p ϕ (e Id ) = p ϕ (e Id ). Then by definition for i < n -1 we know that g i+1 e i g -1 i = e i . We prove by induction on i that g i ∈ B i ∈ GL i for i ≤ n -1. For i = 1, we have nothing to prove. Now assume that i ≤ n -2, and g i ∈ B i , we show that g i+1 ∈ B i+1 . Consider

g i+1 e i g -1 i (g i (v ij )) = g i+1 e i (v ij ) = g i+1 (v i+1,j ).
On the other hand, by induction, we know that

g i+1 e i g -1 i (g i (v ij )) = e i (g i (v ij )) ∈ ⊕ k≤j Cv i+1,k .
Therefore we have g i+1 ∈ B i+1 . Actually, since e i is injective, the equality e i (g i (v ij )) = g i+1 (v i+1,j ), implies that g i is completely determined by g i+1 . This shows that g n-1 ∈ B n-1 it determines all g i for i ≥ n -1. The same method proves that g n ∈ B n and it determines all g i for i ≥ n. We conclude that the fiber of the morphism

p ϕ | Ow is isomorphic to B n p n (w)B n-1 .
Corollary 2.5.8. We have for v ≤ w in S n , and X w the closure of

B n wB n in GL n , dim H i (O sym w ) v = dim H i (X w ) v
, for all i ∈ Z, here the index v on the left hand side means that we localize at a generic point in O v and on the right hand side means that we localize at a generic point in C v . Démonstration. Since p ϕ | O sym ϕ is a fibration with fiber GL n,n-1 over Z ϕ , we apply the smooth base change theorem to the following Cartesian diagram

GL n,n-1 / / O sym ϕ p ϕ (Φ(Id)) / / Z ϕ .
We get

dim H i (O sym w ) v = dim H i (B n p n (w)B n-1 ) Bnpn(v)B n-1 . Now apply proposition 2.5.4, we have dim H i (B n p n (w)B n-1 ) Bnpn(v)B n-1 = dimH i (X w ) v . Corollary 2.5.9. We have for v ≤ w in S n , m Φ(v),Φ(w) = P v,w (1). 
Démonstration. This follows from the fact that

dim i H i (X(w)) v = P v,w (1) 
(cf. [START_REF] Kazhdan | Schubert varieties and Poincaré duality[END_REF]).

Chapitre 3 Descent of Degrees for Multisegment

To attack the question of calculating the coefficient m(b, a), this first naive idea, which can trace back to Zelevinsky [START_REF] Zelevinsky | Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n)[END_REF], is to use the (partial) derivation. If we believe that for b ∈ S(a), the coefficient m(b, a) only depends on the relative position between the segments in a, but not on the exact multisegment a, we should be allowed to do some sort of truncation on the multisegments simultaneously without changing the coefficient m(b, a). It is reasonable to think that the partial derivative should play the role of truncation.

However, it is not true that we can always truncate. For example if we take a = {[1, 2], [START_REF] Ioan | Jacquet-langlands et unitarisabilité[END_REF][START_REF] Badulescu | Une condition suffisante pour l'irréductibilité d'une induite parabolique de GL(m, D). Annales[END_REF]} and we replace the segment [START_REF] Ioan | Jacquet-langlands et unitarisabilité[END_REF][START_REF] Badulescu | Une condition suffisante pour l'irréductibilité d'une induite parabolique de GL(m, D). Annales[END_REF] by [START_REF] Ioan | Jacquet-langlands et unitarisabilité[END_REF]( truncate at the place 3), then we get a ′ = {[1, 2], [START_REF] Ioan | Jacquet-langlands et unitarisabilité[END_REF]}, this should not allowed because we changed the linkedness relation between the two segments. And simple calculation shows that

D 3 (L a ) = L a ,
we quickly notice that D 3 (L a ) does not achieve its minimal degree term L a ′ , which are supposed to appear.

Such examples lead us to think that we can do truncation only when our partial derivative achieve its minimal degree terms. More explicitly, we should avoid applying truncation to the multisegments as a above. This gives us the hypothesis H k (a)(definition 3.1.3). And satisfying the hypothesis H k (a) means that we can apply the truncation without changing the coefficients.

Morphism for Descent of Degree of multisegment

For a multisegment a and k ∈ Z, we will introduce a hypothesis called H k (a) and let S(a) k be the set of elements in S(a) satisfying the hypothesis H k (a).

We construct a multisegment a (k) and a morphism ψ k : S(a) k → S(a (k) ). We show that the morphism ψ k is surjective.

Notation 3.1.1. For ∆ = [i, j] a segment, we put ∆ -=[i, j -1], -∆ = [i + 1, j], ∆ + =[i, j + 1], + ∆ = [i -1, j].
Definition 3.1.2. Let k ∈ Z and ∆ be a segment, we define For (b), by (a), we have

∆ (k) = ∆ -, if e(∆) = k; ∆, otherwise . For a multisegment a = {∆ 1 , • • • , ∆ r }, we define a (k) = {∆ (k) 1 , • • • , ∆ (k) r }.
deg(a (k) ) ≤ deg(b (k) ) ≤ deg(c (k) ). The fact that c ∈ S(a) k implies that deg(a (k) ) = deg(c (k) ), hence deg(a (k) ) = deg(b (k) ) and b ∈ S(a) k . As for (c), suppose that deg(b (k) ) = deg(a (k) ), we prove b (k) < a (k) . Let a = a 0 > • • • > a r = b
be a maximal chain of multisegments, then by (b), we know deg(a

(k) j ) = deg(a (k)
), for all j = 1, • • • , r. Our proof breaks into two parts.

(1)We show that deg(a

(k) j ) = deg(a (k) j+1 ) ⇒ a (k) j ≥ a (k) j+1 .
Let a j+1 be obtained from a j by applying the elementary operation to two linked segments ∆, ∆ ′ .

-If none of them ends in k, then a (k) j contains both of them. And we obtain a 

(∆ ′ ) = k. -If ∆ precedes ∆ ′ , we know that if e(∆) < k -1, ∆ is still linked to ∆ ′-,
and one obtains a

(k)
j+1 by applying elementary operation to {∆,

∆ ′-}, otherwise e(∆) = k -1, which implies a (k) j+1 = a (k) j .
-If ∆ is preceded by ∆ ′ , then the fact that deg(a (2)Assuming that a satisfies the hypothesis H k (a), we show that

(k) j+1 ) = deg(a (k) j ) implies b(∆) ≤ k, hence ∆ ′-is linked to ∆,
a (k) 1 < a (k) .
Let a 1 be obtained from a by performing the elementary operation to ∆, ∆ ′ . We do it as in (1) but put j = 0. Note that in (1), the only case where we can have a

(k) 1 = a (k) is when ∆ precedes ∆ ′ and e(∆ ′ ) = k, e(∆) = k -1.
But such a case can not exist since a verifies the hypothesis H k (a). Hence we are done. Finally, for (d), we construct b in the following way. Suppose that a does not satisfy the hypothesis H k (a), then there exists a pair of linked segments

{∆, ∆ ′ } such that e(∆) = k -1, e(∆ ′ ) = k,
let a 1 be the multisegment obtained by applying the elementary operation to ∆ and ∆ ′ . We have a

(k) 1 = a (k) . If again a 1 fails the hypothesis H k (a), we repeat the same construction to get a 2 , • • • , since a > a 1 > • • • .
In finite step, we get b satisfying the conditions in the theorem and

b (k) = a (k) .
Remark: Actually, the multisegment constructed in (d) is unique, as we shall see later(proposition 3.4.1).

Definition 3.1.7. We define a morphism

ψ k : S(a) k → S(a (k) )
by sending c to c (k) .

Proposition 3.1.8. The morphism ψ k is surjective.

Démonstration. Let d ∈ S(a (k) ), such that we have a maximal chain of multisegments,

a (k) = d 0 > • • • > d r = d.
By induction, we can assume that there exists c i ∈ S(a) k such that c (k) i = d i , for all i < r. Assume we obtain d from d r-1 by performing the elementary operation on the pair of linked segments {∆ ≺ ∆ ′ }.

-If e(∆) = k -1 and e(∆ ′ ) = k -1, then we observe that the pair of segments are actually contained in c r-1 . Let c r be the multisegment obtained by performing the elementary operation to them . We conclude that c (k) r = d r , and c ∈ S(a

) k . -If e(∆) = k -1, then ∆ ∈ c r-1 or ∆ + ∈ c r-1 and ∆ ′ ∈ c r-1 . The fact that d r-1 = c (k) r-1 implies that k / ∈ e(d r-1 )
, hence e(∆ ′ ) > k. Hence both ∆ and ∆ + are linked to ∆ ′ . In either case we perform the elementary operation to get c r such that c

(k) r = d. -If e(∆ ′ ) = k -1, then ∆ ′ ∈ c r-1 or ∆ ′+ ∈ c r-1 and ∆ ∈ c r-1 .
The same argument as in the second case shows that there exists c r such that c (k) r = d.

Actually, the proof in proposition 3.1.8 yields the following refinement. 

ψ k : S(a) k → S(a (k) ) c → c (k)
is also surjective. 

(k) ∆ = -∆, if b(∆) = k; ∆, otherwise . Let a = {∆ 1 , • • • , ∆ r },
be a multisegment, we define (2) there exists no pair of linked segments {∆,

(k) a = { (k) ∆ 1 , • • • , (k) ∆ r , }.
∆ ′ } such that b(∆) = k, b(∆ ′ ) = k + 1.
Remark: There exists a version of lemma 3.1.6 for (k) a. In the following sections, we will work exclusively with a (k) and the hypothesis H k (a). But all our results will remain valid if we replace a (k) by (k) a and H k (a) by k H(a).

Injectivity of ψ k : First Step

By previous section, we know there exists c ∈ S(a) k such that c (k) = (a min ) min , the minimal element in S(a (k) ). In this section, we give an explicit construction of such a c and show that it is the unique multisegment in S(a) k which is set to (a (k) ) min by ψ k .

-In proposition 3.2.3, we construct a multisegment c ∈ S(a 1 ) k such that c (k) = (a (k) ) min , where a 1 is a multisegment such that a ∈ S(a 1 ). -We prove that there exists a unique element in S(a) k which is sent to (a (k) ) min by ψ k . -Then we apply the uniqueness result to S(a 1 ) k to prove that the constructed c before is in S(a) k .

1 Notation 3.2.1. Let ℓ k = f e(a) (k) (cf. Def.1.2.7). Definition 3.2.2. Let a 0 = {∆ ∈ (a (k) ) min : e(∆) = k -1}. Proposition 3.2.3. Let a 0 = {∆ 1 • • • ∆ r }. Let c be a multisegment such that (1) If ϕ a (k -1) ≥ ϕ a (k), then r = ϕ a (k -1) -ϕ a (k) + ℓ k . Let c = ((a (k) ) min \ a 0 ) ∪ {∆ + 1 • • • ∆ + ℓ k ∆ m+1 • • • ∆ r }. (2) If ϕ a (k) -ℓ k < ϕ a (k -1) < ϕ a (k), then r = ϕ a (k -1) -ϕ a (k) + ℓ k . Let c = ((a (k) ) min \ a 0 ) ∪ {∆ + 1 • • • ∆ + r ≻ [k] = • • • = [k] ℓ k -r } (3) If ϕ a (k -1) ≤ ϕ a (k) -ℓ k , then a 0 = ∅ and c = a (k) + ℓ k [k].
Then c satisfies the hypothesis H k (c) and c (k) = (a (k) ) min .

Démonstration. We show only the case ϕ a (k -1) > ϕ a (k), the proof for other cases is similar. Note that we have the following equality

ϕ a (k -1) = ϕ (a (k) ) min (k -1) = r + ♯{∆ ∈ (a (k) ) min : ∆ ⊇ [k -1, k]}.
Moreover, ϕ a (k -1) > ϕ a (k) implies that no segment in (a (k) ) min starts at k by minimality, hence we also have

ϕ a (k) = ϕ (a (k) ) min (k) + ℓ k = ♯{∆ ∈ (a (k) ) min : ∆ ⊇ [k -1, k]} + ℓ k .
Now comparing the two formulas gives the equality r = ϕ a (k-1)-ϕ a (k)+ℓ k . By definition we have c (k) = (a (k) ) min . To check that c satisfies the hypothesis H k (c), it suffices to note that (a (k) ) min \ a 0 does not contain segment which ends in k -1.

Lemma 3.2.4. Let c ∈ S(c) k be a multisegment such that c (k) is minimal. Then if d ∈ S(c) such that d (k) = c (k) , then c = d Démonstration. Suppose that d < c is a multisegment such that d (k) = c (k) .
Consider the maximal chain of multisegments

c = c 0 > • • • > c t = d.
Our assumption implies that c 

(k) i = c (k) for all i = 1, • • • , t
Démonstration. Let c = {∆ 1 , • • • , ∆ r } such that e(∆ t ) = k if and only if t = i, • • • , j with i ≤ j. Then D k (π(c)) = ∆ 1 × • • • × ∆ i-1 × (∆ i + ∆ - i ) × • • • × (∆ j + ∆ - j ) × ∆ j+1 × • • • × ∆ r
with minimal degree term given by

π(c (k) ) = ∆ 1 × • • • × ∆ i-1 × ∆ - i × • • • × ∆ - j × ∆ j+1 × • • • × ∆ r .
The same calculation shows that for any d ∈ S(c), the minimal degree terms in D k (π(d)) is given by π(d (k) ), whose degree is strictly greater than that of c (k) since by previous lemma we know that d / ∈ S(c) k . Note that D k (L d ) is a non-negative sum of irreducible representations ( Theorem 1.4.4), which cannot contain any representation of degree equal to that of c (k) , by comparing the minimal degree terms in D k (π(d)) and 

(k) = (a (k) ) min . Démonstration. Let a = {∆ ′ 1 , • • • , ∆ ′ s } such that e(∆ ′ t ) = k if and only if n = i, • • • , j with i ≤ j. Then D k (π(a)) = ∆ ′ 1 × • • • × ∆ ′ i-1 × (∆ ′ i + ∆ ′ i -) × • • • × (∆ ′ j + ∆ ′- j ) × ∆ ′ j+1 × • • • × ∆ ′ s
with minimal degree term given by

π(a (k) ) = ∆ ′ 1 × • • • × ∆ ′ i-1 × ∆ ′- i × • • • × ∆ ′- j × ∆ ′ j+1 × • • • × ∆ ′ r .
Note that in π(a (k) ), m((a (k) ) min , a (k) ) = 1(cf. [START_REF] Zelevinsky | A p-adic analog of the Kazhdan-Lusztig conjecture[END_REF]). Now compare with the terms of minimal degree in 

Démonstration.

Let

a 1 = a (k) + m[k],
then we observe that a ∈ S(a 1 ). Because of c ∈ S((a

(k) ) min + m[k]), we have c ∈ S(a 1 ). Note that since deg((a 1 ) (k) ) = deg(c (k) ), the fact that c ∈ S(c) k implies that c ∈ S(a 1 ) k . Now let d ∈ S(a) k , then we have d ∈ S(a 1 ) k since deg(d (k) ) = deg(a (k) 1 ) = deg(a (k)
). Assume furthermore that d (k) is minimal, then by proposition 3.2.6, we know that such a multisegment in S(a 1 ) k is unique, which implies d = c.

Corollary 3.2.8. Let c ∈ S(a) k such that c (k) = (a (k) ) min , then c is minimal in S(a) k .
Démonstration. By corollary 3.1.12, we know that for any d ∈ S(a) k , there exists a multisegment c ′ ∈ S(a) k with c ′(k) = (a (k) ) min , such that d > c ′ . By uniqueness, we must have c = c ′ .

Geometry of Nilpotent Orbits : General Cases

In this section, we show geometrically that the morphism

ψ k : S(a) k → S(a (k) ) c → c (k)
is bijective, satisfying the properties

(1) For c ∈ S(a) k , we have m(c, a) = m(c (k) , a (k) ).
(2) The morphism ψ k preserves the order, i.e, for c, d

∈ S(a) k , c > d if and only if c (k) > d (k) .
To achieve this, firstly we consider the sub-variety

X k a = c∈ S(a) k O c
, and construct a fibration α from X k a to Gr(ℓ k , V ϕa,k ), the latter is the space of the ℓ k -dimensional subspace of V ϕa,k . Secondly, we construct an open immersion

τ W : (X k a ) W → Y a (k) × Hom(V ϕa,k-1 , W ),
where (X k a ) W is the fiber over W with respect to α and Y a

(k) = c∈S(a (k) ) O c .
Our main difficulty here lies in proving that τ W is actually an open immersion. The idea is to apply Zariski Main theorem, to do this, we have to prove the normality and irreducibility of both varieties. Irreducibility of (X k a ) W follows from our results in previous section, and normality follows from the fibration α and the fact that orbital varieties are locally isomorphic to some Schubert varieties, by Zelevinsky, cf. [START_REF] Zelevinsky | Two remarks on graded nilpotent classes[END_REF]. Once we prove that τ W is an open immersion. All the desired properties of ψ k follow.

Here we fix a multisegment a and let ϕ = ϕ a . Definition 3.3.1. 2 2. In this section we only work with

X (k) a instead of X (k) a = b∈S(a) k O b . The reason -Let X k a = c∈ S(a) k O c , -Let Y a (k) = c∈S(a (k) ) O c .
-For b > c in S(a) k , we define

X k b,c = b≥d≥c O d . Let c ∈ S(a) k , T ∈ O c , then Lemma 3.3.2. Let ϕ = ϕ a . We have dim(ker(T | V ϕ,k )) = ♯{∆ ∈ a : e(∆) = k} = ℓ k (Notation 3.2.1
), which does not depend on the choice of T .

Démonstration. The fact

T ∈ O c implies dim(ker(T | V ϕ,k )) = ♯{∆ ∈ c : e(∆) = k}.
Then our lemma follows from lemma 3.1.5.

Definition 3.3.3. Let Gr(ℓ k , V ϕ ) = {W ⊆ V ϕ,k : dim(W ) = ℓ k },
and for W ∈ Gr(ℓ k , V ϕ ), let

V ϕ /W = V ϕ,1 ⊕ • • • V ϕ,k-1 ⊕ V ϕ,k /W ⊕ • • • .
Also, we denote by

p W : V ϕ → V ϕ /W the canonical projection.
can be seen from the simple example of the affine plane A 2 endowed with the stratification

X 1 = A 2 -A 1 , X 2 = A 1 -pt, X 3 = pt.
If we are interested in X 1 X 3 , it is better to study A 2 , because there is no nontrivial directed extension of X 1 by X 3 . Instead, if we are interested in X 1 X 2 , we can study A 2pt, which is already a nontrivial extension. Definition 3.3.4. We define

Z k = {(T, W ) : W ∈ Gr(ℓ k , V ϕ ), T ∈ End(V /W ) of degree +1},
and the canonical projection

π : Z k → Gr(ℓ k , V ϕ ) (T, W ) → W.
Proposition 3.3.5. The morphism π is a fibration with fiber

E ϕ a (k) ( Def.2.2.1).
Démonstration. This follows from the definition.

Definition 3.3.6. Assume b, c ∈ S(a (k) ). -Let Z k,a = {(T, W ) ∈ Z k : T ∈ Y a (k) }. -Let Z k,a b,c = {(T, W ) ∈ Z k : T ∈ b≥d≥c O d }, Z k,a b = {(T, W ) ∈ Z k : T ∈ d≥b O d }. -Let Z k,a (c) = {(T, W ) ∈ Z k,a , T ∈ O c }.
Remark: The restriction of π to Z k,a is a fibration with fiber Y a (k) .

Definition 3.3.7. Now we define

T (k) ∈ End(V / ker(T | V ϕ,k )) such that T (k) | V ϕ,i =    T | V ϕ,i , for i = k, k -1, p T,k • T | V ϕ,i , for i = k -1 T | V ϕ,i • p T,k , for i = k.
where p T,k :

V ϕ → V ϕ / ker(T | V ϕ,k ) is the canonical projection.
This gives naturally an element (T (k) , ker(T

| V ϕ,k )) in Z k,a . We construct a morphism γ k : X k a → Z k,a . by γ k (T ) = (T (k) , ker(T | V ϕ,k )). Definition 3.3.8. We define α : X k a → Gr(ℓ k , V ϕ ), with α(T ) = ker(T | V ϕ,k ).
Remark: We have a commutative diagram

X k a α γ k / / Z k,a π y y Gr(ℓ k , V ϕ ).
where γ k maps fibers to fibers.

Proposition 3.3.9. The morphism α is a fiber bundle such that α| Oc is surjective for any c ∈ S(a) k .

Démonstration. We have to show that α is locally trivial. We fix W ∈ Gr(ℓ k , V ϕ ) Note that GL ϕ(k) acts transitively on Gr(ℓ k , V ϕ ). Let P W be the stabilizer of W . Then by Serre [START_REF] Serre | Espaces fibrés algébriques (d'après André Weil)[END_REF] proposition 3, we know that the principle bundle GL ϕ(k) → GL ϕ(k) /P W is étale-locally trivial. Here the base GL ϕ(k) /P W is isomorphic to Gr(ℓ k , V ϕ ).

It is even Zariski-locally trivial because P W is parabolic, which is special in the sense of Serre [START_REF] Serre | Espaces fibrés algébriques (d'après André Weil)[END_REF], § 4. Now we can write

X k a GL ϕ(k) × P W α -1 (W ) δ o o u u Gr(ℓ k , V ϕ ) where δ([g, T ]) = g.T.
We claim that δ is an isomorphism. In fact, for any T ∈ X k a , we choose

g ∈ GL ϕ(k) such that g(ker(T | V ϕ,k )) = W. This implies g.T ∈ α -1 (W ), thus δ([g -1 , g.T ]) = T.
This shows the surjectivity. For injectivity, it is enough to show that

δ([g, T ]) = g.T ∈ α -1 (W )
implies g ∈ P W . But this is by definition of P W .

The fact that α is locally trivial then can be deduced from that of

GL ϕ(k) × P W α -1 (W ),
while the latter is a consequence of the fact that GL ϕ(k) is locally trivial over Gr(ℓ k , V ϕ ).

Finally, we want to show the surjectivity of the orbit α| Oc . This is a consequence the fact that GL ϕ(k) acts transitively on Gr(ℓ k , V ϕ ).

Proposition 3.3.10. Let c ∈ S(a) k . The restriction map

γ k : O c → Z k,a (c (k) ) is surjective. Démonstration. Let (T 0 , W ) ∈ Z k,a (c (k) ). Consider m = ♯{∆ ∈ c : e(∆) = k, deg(∆) ≥ 2} ≤ min{ℓ k , dim(ker(T 0 | V ϕ,k-1 ))}.
We choose a splitting V ϕ,k = W ⊕ V ϕ,k /W and let T ′ : V ϕ,k-1 → W be a linear morphism of rank m. Finally, we define T ∈ γ -1 k ((T 0 , W )) by letting

T | V ϕ,k-1 = T ′ ⊕ T 0 | V ϕ,k-1 , T | V ϕ,k = T 0 | V ϕ,k /W • p W , T | V ϕ,i = T | V ϕ,i , for i = k -1, k. Let {∆ ∈ c : e(∆) = k, deg(∆) ≥ 2} = {∆ 1 , • • • , ∆ m }, b(∆ 1 ) ≤ • • • ≤ b(∆ m ).
We denote

W i = T [b(∆ 1 ),k-1] 0 (V ϕ,b(∆ 1 ) ) ∩ ker(T 0 | V ϕ,k-1 ), then W 1 ⊆ • • • ⊆ W r ⊆ ker(T 0 | V ϕ,k-1 ).
Then we have T ∈ O c if and only if

dim(T ′ (W i )) -dim(T (W i-1 )) = dim(W i /W i-1 ), i = 1, • • • , m.
Since such T ′ always exists, we are done.

Démonstration. Let c ∈ S(a) k such that c (k) = (a (k) ) min . We shall use the description in proposition 3.2.3. We show that the image of

O c ∩ (X k a ) W is open in O c (k) × Hom(V ϕ,k-1 , W ). Let T ∈ (O c ) W .
We check case by case :

(1)

If ϕ(k-1) ≤ ϕ(k)-ℓ k , the fact c (k) = (a (k) ) min implies that T (k) | V ϕ,k-1 is injective. As a consequence we have Im(T | V ϕ,k-1 ) ∩ W = 0. Hence for any element T 0 ∈ Hom(V ϕ,k-1 , W ) , we define T 0 ∈ O c , such that T 0 | V ϕ,k-1 = T 0 ⊕ T (k) | V ϕ,k-1 ,
which lies in the fiber over (γ k ) -1 W ((T (k) , W )). Since by proposition 3.3.10, every element in O c (k) comes from some element in O c , hence

τ W (O c ∩ (X k a ) W ) = O c (k) × Hom(V ϕ,k-1 , W ), which is open. (2) If ϕ(k) -ℓ k < ϕ(k -1) < ϕ(k), the fact c (k) = (a (k) ) min implies that the morphism T (k) | V ϕ,k-1 contains a kernel of dimension ϕ(k -1) -ϕ(k) + ℓ k .
Our description of c in proposition 3.2.3 shows that in this case

dim(Im(T | V ϕ,k-1 ) ∩ W ) = ϕ(k -1) -ϕ(k) + ℓ k .
In this situation, given an element T 0 ∈ Hom(V ϕ,k-1 , W ) we define

T ′ ∈ E ϕ , such that T ′ | V ϕ,k-1 = T 0 ⊕ T (k) | V ϕ,k-1 , T ′ | V ϕ,k = T (k) | V ϕ,k /W • p W , T ′ | V ϕ,i = T (k) , for i = k -1, k.
By construction and proposition 2.2.5, we know that 

T ′ ∈ O c if and only if T ′ | V ϕ,k-1 is injective, since no segment in c ends in k -1,
T 0 | ker(T (k) | V ϕ,k-1 ) is injective. This is an open condition, hence O c ∩ (X k a ) W is open in O c (k) × Hom(V ϕ,k-1 , W ). (3) If ϕ(k -1) ≥ ϕ(k), then by proposition 3.2.3 c (k) = (a (k) ) min implies Im(T | V ϕ,k-1 ) ⊇ W.
Recall the notation from proposition 3.2.3

a 0 = {∆ 1 • • • ∆ r }. with r = ϕ(k -1) -ϕ(k) + ℓ k . Then c = ((a (k) ) min \ a 0 ) ∪ {∆ + 1 • • • ∆ + ℓ k ∆ ℓ k +1 • • • ∆ r }. Let T 0 ∈ Hom(V ϕ,k-1 , W ), we define T ′ ∈ E ϕ T ′ | V ϕ,k-1 = T 0 ⊕ T (k) | V ϕ,k-1 , T ′ | V ϕ,k = T (k) | V ϕ,k /W • p W , T ′ | V ϕ,i = T (k) , for i = k -1, k.
Consider the following flag over V ϕ,k-1 ,

ker(T (k) | ϕ,k-1 ) = V r ⊇ • • • ⊇ V 1 ⊇ V 0 = 0,
where

V i = Im((T (k) ) ∆ i ) ∩ ker(T (k) | ϕ,k-1 ), with i = 1, • • • , r, for the notation (T (k)
) ∆ , we refer to definition 2.2.9. Now by proposition 2.2.5, we know that T ′ ∈ O c if and only if

dim(T 0 (V i )) -dim(T 0 (V i-1 )) = dim(V i /V i-1 ), for i = 1, • • • , ℓ k . In fact, if V i = V i-1 , then dim(V i /V i-1 ) = ♯{j : ∆ j = ∆ i }.
And by construction, if i ≤ ℓ k , by proposition 2.2.5, the fact that c contains

∆ + i implies that if T ′ ∈ O c , dim(T 0 (V i )) -dim(T 0 (V i-1 )) = dim(V i /V i-1 ).
The converse holds by the same reason. Again, this is an open condition, which proves that 

O c ∩ (X k a ) W is open in O c (k) × Hom(V ϕ,k-1 , W ).
(Z k,a ) W × Hom(V ϕ,k-1 , W )
are normal by theorem 1 of [START_REF] Zelevinsky | Two remarks on graded nilpotent classes[END_REF]. Also, by proposition 3.3.12, we know that 

(X k a ) W is
O c ∩ (X k a ) W is open in (O c (k) × Hom(V ϕ,k-1 , W )).
Démonstration. We already showed that

O c ∩ (X k a ) W is a sub-variety of O c (k) × Hom(V ϕ,k-1 , W ).
Moreover, we know that

(O c (k) × Hom(V ϕ,k-1 , W )) ∩ (X k a ) W is open in O c (k) × Hom(V ϕ,k-1 , W ) since τ W is open.
Finally, by proposition 3.3.10,

(O c (k) × Hom(V ϕ,k-1 , W )) ∩ (X k a ) W = d∈ S(a) k ,d (k) =c (k) O d ∩ (X k a ) W .
The variety

(O c (k) × Hom(V ϕ,k-1 , W )) ∩ (X k a ) W is irreducible because (O c (k) × Hom(V ϕ,k-1 , W )) is irreducible, hence the stratification d∈ S(a) k ,d (k) =c (k) O d ∩ (X k a )
W by locally closed sub-varieties can only contain one term which is open, from the point of view of Zariski topology. Since for any element 

d ′ ∈ {d ∈ S(a) k , d (k) = c (k) },
) = P a (k) ,c (k) (q).
Démonstration. First of all, by proposition 3.3.9 and Kunneth formula, we know that

H j (O c ) a = H j (O c ∩ (X (k) a ) W ) a , the localization being taken at a point in O a ∩ (X (k)
a ) W . Now by proposition 3.3.16 and proposition 3.3.17 , we may regard

O c ∩(X (k) a ) W as an open subset of O c (k) × Hom(V ϕ,k-1 , W ), hence H j (O c ∩ (X (k) a ) W ) a = H j (O c (k) × Hom(V ϕ,k-1 , W )) a (k)
and Kunneth formula implies that the latter is equal to Démonstration. By corollary 3.1.12, we know that there exists

H j (O c (k) ) a (k) .
c ′ ∈ S(a) k such that d > c ′ , c ′(k) = c (k) .
And proposition 3.3.17 implies c ′ = c. Finally, applying the corollary 3.3.18 to the pairs {a, c} and {d, c} yields the result.

Conclusion

In this section, we draw some conclusions from what we have done before, espectially the properties related to ψ k .

Proposition 3.4.1. The map

ψ k : S(a) k → S(a (k) ) c → c (k) is bijective. Moreover, -for c ∈ S(a) k m(c, a) = m(c (k) , a (k) ).
-for b, c ∈ S(a) k , we have b > c if and only if b (k) > c (k) .

Démonstration. By proposition 3.3.17, we know that ψ k is injective. Surjectivity is given by proposition 3.1.11.

For c ∈ S(a) k , m(c, a) = m(c (k) , a (k) )
is by corollary 3.3.18 by putting q = 1, and applying theorem 2.4.12. 

ψ k : S(a) k → S(a (k) ), ψ k : S(b) k → S(b (k) ) = S(a (k) ),
Hence comparing the cardinality gives S(a) k = S(b) k .

Minimal Degree Terms in Partial Derivatives

Proposition 3.5.1.

(i) Suppose that a satisfies the hypothesis H k (a). Then D k (L a ) contains in R a unique irreducible representation of minimal degree, which is L a (k) , and it appears with multiplicity one.

(ii) If a fails to satisfy the hypothesis H k (a), then L a (k) will not appear in D k (L a ), and the irreducible representations appearing are all of degree > deg(a (k) ).

Démonstration. Let a = {∆ 1 • • • ∆ r }, such that e(∆ 1 ) ≤ • • • < e(∆ i ) = • • • = e(∆ j ) < • • • ≤ e(∆ r ),
with k = e(∆ i ).

We prove the proposition by induction on ℓ(a)(cf. definition 1.3.3). For, ℓ(a) = 0, which means that a = a min , in this case a satisfies the H k (a), and

D k (L a ) = D k (π(a)) = ∆ 1 × • • • × (∆ i + ∆ - i ) × • • • × (∆ j + ∆ - j ) × • • • which contains L a (k) = π(a (k) ) = ∆ 1 × • • • × ∆ - i × • • • ∆ - j × • • • .
Hence we are done.

For general a, we have refer to the lemma 3.1.6. We write

π(a) = L a + b<a m(b, a)L b . (3.5.2)
Now applying D k to both sides and consider only the lowest degree terms, on the left hand side, we get -Then we study some examples and we show how our algorithm works for finding the coefficient m(b, a).

π(a (k) ) = ∆ 1 × • • • × ∆ i-1 × ∆ - i × • • • × ∆ - j × • • • ∆ r . ( 3 
-Finally, in the last paragraph, we give a proof of the Zelevinsky's conjecture stated in the introduction.

Minimal Degree Terms

The goal of this section is to define the set S(a) d ⊆ S(a) and describe some of its properties.

Definition 4.1.1. Let (k 1 , • • • , k r ) be a sequence of integers. We define a (k 1 ,••• ,kr) = (((a (k 1 ) ) • • • ) (kr) ). Notation 4.1.2. Let ∆ = [k, ℓ], we denote a (∆) = a (k,••• ,ℓ) . More generally, for d = {∆ 1 • • • ∆ r }, let a (d) = (• • • ((a (∆r) ) (∆ r-1 ) ) • • • ) (∆ 1 ) . Definition 4.1.3. Let (k 1 , • • • , k r ) be a sequence of integers , then we define S(a) k 1 ,••• ,kr = {c ∈ S(a) : c (k 1 ,••• ,k i ) ∈ S(a (k 1 ,••• ,k i ) ) k i+1 , for i = 1, • • • , r}. and ψ k 1 ,••• ,kr : S(a) k 1 ,••• ,kr → S(a (k 1 ,••• ,kr) ), sending c to c (k 1 ,••• ,kr) . Notation 4.1.4. Let d = {∆ 1 • • • ∆ r } such that ∆ i = [k i , ℓ i ]. We denote S(a) d := S(a) kr,••• ,ℓr,k r-1 ,••• ,k 1 ,••• ,ℓ 1 and ψ d := ψ kr,••• ,ℓr,k r-1 ,••• ,k 1 ,••• ,ℓ 1 . Proposition 4.1.5. Let (k 1 , • • • , k r ) be a sequence of integers . Then the set S(a) k 1 ,••• ,kr is non-empty.
In fact, we have a bijective morphism

ψ k 1 ,••• ,kr : S(a) k 1 ,••• ,kr → S(a (k 1 ,••• ,kr) ).
Moreover,

(1) For c ∈ S(a) k 1 ,••• ,kr , we have m(c, a) = m(c (k 1 ,••• ,kr) , a (k 1 ,••• ,kr) ).
(

) For b, c ∈ S(a) k 1 ,••• ,kr , then b > c if and only if b (k 1 ,••• ,kr) > c (k 1 ,••• ,kr) . 2 
(3) We have

π(a (k 1 ,••• ,kr) ) = c∈S(a) k 1 ,••• ,kr m(c, a)L c (k 1 ,••• ,kr ) . ( 4 
) Let b ∈ S(a) k 1 ,••• ,kr and b (k 1 ,••• ,kr) = a (k 1 ,••• ,kr) , then S(a) k 1 ,••• ,kr = S(b) k 1 ,••• ,kr .
Démonstration. Injectivity follows from the fact

ψ k 1 ,••• ,kr = ψ kr • ψ k r-1 • • • • • ψ k 1 .
For surjectivity, let d ∈ S(a

(k 1 ,••• ,kr) ), we construct b inductively such that ψ k 1 ,••• ,kr (b) = d. Let a r = d, assume that we already construct a i ∈ S(a (k 1 ,••• ,k i ) ) k i+1 satisfying that a (k i+1 ,••• ,k j ) i ∈ S(a (k 1 ,••• ,k j )) k j+1
for all i < j ≤ r and a

(k i+1 ,••• ,kr) i = d.
Note that by the bijectivity of the morphism

ψ k i : S(a (k 1 ,••• ,k i-1 ) ) k i → S(a (k 1 ,••• ,k i ) ), there exists a unique a i-1 ∈ S(a (k 1 ,••• ,k i-1 ) ) k i , such that a (k i ) i-1 = a i .
Finally, take b = a 0 ∈ S(a) k 1 ,••• ,kr . We show (1) by induction on r. The case for r = 1 is by proposition 3.4.1. For general r, by induction

m(c, a) = m(c (k 1 ,••• ,k r-1 ) , a (k 1 ,••• ,k r-1 ) ),
and now apply the case r = 1 to the pair

c (k 1 ,••• ,k r-1 ) , a (k 1 ,••• ,k r-1 ) gives m(c (k 1 ,••• ,k r-1 ) , a (k 1 ,••• ,k r-1 ) ) = m(c (k 1 ,••• ,kr) , a (k 1 ,••• ,kr) ). Hence m(c, a) = m(c (k 1 ,••• ,kr) , a (k 1 ,••• ,kr) ).
Also, to show (2), it suffices to apply successively the proposition 3. 

(k i ,••• ,k 1 ) c ∈ k i+1 S( (k i ,••• ,k 1 ) a), for i = 1, • • • , r}. and kr,••• ,k 1 ψ : kr,••• ,k 1 S(a) → S( (kr,••• ,k 1 ) a), sending c to (kr,••• ,k 1 ) c. Notation 4.1.7. Let d = {∆ 1 , • • • , ∆ r } such that ∆ i = [k i , ℓ i ] with k 1 ≤ • • • ≤ k r We denote d S(a) := kr,••• ,ℓr,k r-1 ,••• ,k 1 ,••• ,ℓ 1 S(a), and 
d ψ := kr,••• ,ℓr,k r-1 ,••• ,k 1 ,••• ,ℓ 1 ψ.
Remark: Let k 1 , k 2 be two integers. In general, we do not have

k 2 (S(a) k 1 ) = ( k 2 S(a)) k 1 .
For example, let

k 1 = k 2 = 1, a = {[1], [2]}, then k 2 (S(a) k 1 ) = {a}, ( k 2 S(a)) k 1 = {[1, 2]}.
Notation 4.1.8. We write for multisegments d 1 , d 2 , a,

d 2 S(a) d 1 := ( d 2 S(a)) d 1 , S(a) d 1 ,d 2 := (S(a) d 1 ) d 2 .
and

d 2 ψ d 1 := ( d 2 ψ) d 1 , ψ d 1 ,d 2 := (ψ d 1 ) d 2
And for b ∈ S(a),

(d 2 ) b (d 1 ) := ( d 2 b) (d 1 ) , b (d 1 ,d 2 ) := (b (d 1 ) ) (d 2 ) .

Reduction to symmetric case

Now we return to the main question, i.e., the calculation of the coefficient m(c, a) for c ∈ S(a). Before we go into the details, we describe our strategies :

(i) Find a symmetric multisegment, denoted by a sym , such that L a is the minimal degree term in some partial derivative of L a sym .

(ii) For c ∈ S(a), find c sym ∈ S(a sym ), such that we have m(c, a) = m(c sym , a sym ).

Proposition 4.2.1. Let a be any multisegment, then there exists an ordinary multisegment b, and two multisegments

c i , i = 1, 2 such that b ∈ c 2 S(b) c 1 , a = (c 2 ) b (c 1 ) Démonstration. Let a = {∆ 1 , • • • , ∆ r } be such that ∆ 1 • • • ∆ r , and e(∆ 1 ) ≤ • • • < e(∆ j ) = • • • = e(∆ i ) < e(∆ i+1 ) ≤ • • • ,
such that ∆ j is the smallest multisegment in a such that e(∆ j ) appears in e(a) with multiplicity greater than 1. Let ∆ 1 = [e(∆ i ) + 1, ℓ] be a segment, where ℓ is the maximal integer such that for any m such that e(∆ i ) ≤ m ≤ ℓ -1, there is a segment in a which ends in m. Let a 1 be the multisegment obtained by replacing ∆ i by ∆ + i , and all ∆ ∈ a such that e(∆) ∈ (e(∆ i ), ℓ] by ∆ + . Now we continue the previous construction with a 1 to get a 2 • • • , until we get a multisegment a r 1 such that e(a r 1 ) contains no segment with multiplicity greater than 1. Let

c 1 = {∆ 1 , ∆ 2 , • • • , ∆ r 1 }.
Note that by construction, we have

∆ 1 ≺ ∆ 2 ≺ • • • ≺ ∆ r 1 .
And we show that a r 1 ∈ S(a r 1 ) c 1 . Note that

a i = a (∆ r 1 ,••• ,∆ i+1 ) r 1
, by induction on r 1 , we can assume that a 1 ∈ S(a r 1 ) ∆ r 1 ,••• ,∆ 2 and show that a ∈ S(a 1 ) ∆ 1 . We observe that in a 1 , by construction, with the notations above, ∆ j , • • • , ∆ i-1 are the only segments in a 1 that ends in e(∆ i ), and ∆ + i is the only segment in a 1 that ends in e(∆ i ) + 1. Hence we conclude that a 1 ∈ S(a 1 ) e(∆ i )+1 . And for e(∆ i ) + 1 < m ≤ ℓ, we know that a

(e(∆ 1 )+1,••• ,m-1) 1 
does not contain a segment which ends in m -1, hence a

(e(∆ 1 )+1,••• ,m-1) 1 ∈ S(a (e(∆ 1 )+1,••• ,m-1) 1
) m . We are done by putting m = ℓ. Now same construction can be applied to show that there exists a multisegment a r 2 such that b(a r 2 ) contains no segment with multiplicity greater than 1, and

c 2 = { 1 ∆, • • • , r 2 ∆}, such that a r 2 ∈ c 2 S(a 2 ), a r 1 = (c 2 ) a r 2
as minimal degree component. Note that in this way we construct an ordinary multisegment b

= a r 2 , b ∈ c 2 S(b) c 1 , a = (c 2 ) b (c 1 )
To finish our strategy (i), we are reduced to consider the case of ordinary multisegments. 

a 2 ∈ [0,1] S(a 2 ) [3,4] , a = ([0,1]) a ([3,4]) 2 
Next, we reduce the ordinary multisegment a 2 to a multisegment a sym , as is showed in the following picture.

Here,we have a sym = {[0, 3], [START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(m, 1, n)[END_REF][START_REF] Bernstein | String bases for quantum groups of type a r . In I. M. Gelfand seminar part I Advances in Soviet Mathematics[END_REF], [START_REF] Ioan | Jacquet-langlands et unitarisabilité[END_REF][START_REF] Beȋlinson | Faisceaux pervers[END_REF], [START_REF] Badulescu | Une condition suffisante pour l'irréductibilité d'une induite parabolique de GL(m, D). Annales[END_REF][START_REF] Bernstein | Representation theory of GL(n, F ) where F is a non-archimedean local field[END_REF] where P v,w (q) is the Kazhdan Lusztig polynomial associated to v, w. One knows that P v,w (q) = 1 + q, hence P v,w (1) = 2.

As we have seen, to each multisegment, we have (at least) two different ways to attach a Kazhdan Lusztig polynomial :

(1)To use the Zelevinsky construction as described in section 4.2.

(2)To first construct an associated symmetric multisegment, and then attach the corresponding Kazhdan Lusztig polynomial. Lemma 4.4.3. Let a and a ′ be of the same relation type induced by ξ. Let {∆ 1 ∆ 2 } be linked in a. Denote by a 1 (a ′ 1 , resp.) the multisegment obtained by applying the elementary operation to {∆ 1 , ∆ 2 }( {ξ(∆ 1 ), ξ(∆ 2 )}, resp.). Then a 1 and a ′ 1 also have the same relation type. Démonstration. We define a bijection

∆ cover ∆ ′ if ∆ ⊇ ∆ ′ ; -linked but not juxtaposed if ∆ does not cover ∆ ′ and ∆ ∪ ∆ ′ is a segment but ∆ ∩ ∆ ′ = ∅ ; -juxtaposed if ∆ ∪ ∆ ′ is a segment but ∆ ∩ ∆ ′ = ∅ ; -unrelated if ∆ ∩ ∆ ′ = ∅ and ∆, ∆ ′ are not linked. Definition 4.4.2. Two multisegments a = {∆ 1 , • • • , ∆ r } and a ′ = {∆ ′ 1 , • • • , ∆ ′ r ′ }
ξ 1 : a 1 → a ′ 1 by ξ 1 (∆ 1 ∪ ∆ 2 ) = ξ(∆ 1 ) ∪ ξ(∆ 2 ), ξ 1 (∆ 1 ∩ ∆ 2 ) = ξ(∆ 1 ) ∩ ξ(∆ 2 ) and ξ 1 (∆) = ξ(∆), for all ∆ ∈ a \ {∆ 1 , ∆ 2 }.
It induces a bijection between the end multisets e(a 1 ) and e(a ′ 1 ) as well as the beginning multisets b(a 1 ) and b(a ′ 1 ). Also the morphism ξ preserves the partial order follows from the fact that for x, y ∈ e(a) such that x ≤ y, then e(ξ 1 )(x) = e(ξ)(x) ≤ e(ξ 1 )(y) = e(ξ)(y)( The same fact holds for b(ξ 1 )). Finally, it remains to show that ξ 1 respects the relation type. Let ∆ ∆ ′ be two segments in a 1 , if non of them is contained in

{∆ 1 ∪ ∆ 2 , ∆ 1 ∩ ∆ 2 }, then ξ 1 (∆) = ξ(∆) and ξ 1 (∆ ′ ) = ξ(∆ ′
) and they are in the same relation type as {∆, ∆ ′ } by assumption. For simplicity, we only discuss the case where

∆ = ∆ 1 ∪ ∆ 2 but ∆ ′ is not contained in {∆ 1 ∪ ∆ 2 , ∆ 1 ∩ ∆ 2 }, other cases are similar.
-If ∆ ′ cover ∆, then ∆ cover ∆ 1 and ∆ 2 , hence ξ 1 (∆) = ξ(∆) cover ξ(∆ 1 ) and ξ(∆ 2 ), which implies ξ 1 (∆ ′ ) covers ξ 1 (∆). -If ∆ ′ is linked to ∆ but not juxtaposed, then either ∆ ′ covers ∆ 2 and linked to ∆ 1 , or ∆ ′ is linked to ∆ 2 but not juxtaposed. In both cases we have ξ(∆ ′ ) is linked to ξ(∆ 1 ) ∪ ξ(∆ 2 ) and not juxtaposed.

-If ∆ ′ is juxtaposed to ∆, then ∆ ′ is juxtaposed to ∆ 2 since ∆ 2 ∆ 1 . Therefore ξ(∆ ′ ) is juxtaposed to ξ(∆ 2 ) which implies ξ 1 (∆ ′ ) is juxtaposed to the segment ξ 1 (∆). -If ∆ ′ is unrelated to ∆ 1 ∪ ∆ 2 , then it is unrelated to both ∆ 1 and ∆ 2 with ∆ 2 ∆ ′ , this implies that ξ(∆ ′ ) is unrelated to ξ(∆ 1 ) ∪ ξ(∆ 2 ).
Remark: As every element b ∈ S(a) is obtained from a by a sequence of elementary operations, we can define an application of poset Ξ : S(a) -→ S(a ′ ).

Lemma 4.4.4. The application Ξ is well defined and bijective.

Démonstration. We give a new definition of Ξ in the following way. For b ∈ S(a), we define

Ξ(b) = {[b(ξ)(b(∆)
), e(ξ)(e(∆))] : ∆ ∈ b} such a definition is independent of the choice of elementary operations. It remains to see that it coincides with the one using elementary operation. In fact, let a 1 be a multisegment obtained by applying the elementary operation to the pair of segments {∆ 1 ∆ 2 }, then by our original definition of Ξ, it sends a 1 to a ′ 1 in the previous lemma. Now by the new definition, we have Ξ(a 1 ) given by

{ξ(∆) : ∆ ∈ a\{∆ 1 , ∆ 2 }}∪{[b(ξ)(b(∆ 1 )), b(ξ)(b(∆ 2 ))], [b(ξ)(b(∆ 2 )), b(ξ)(b(∆ 1 ))]}.
By our definition of ξ, we get

[b(ξ)(b(∆ 1 )), b(ξ)(b(∆ 2 ))] = ξ(∆ 1 ) ∪ ξ(∆ 2 ),
and

[b(ξ)(b(∆ 2 )), b(ξ)(b(∆ 1 ))] = ξ(∆ 1 ) ∩ ξ(∆ 2 ).
Hence we conclude that Ξ is well defined. Note that by our definition, ξ is invertible, which gives ξ -1 , and in the same way we can construct Ξ -1 . Now we have ΞΞ -1 = Id, Ξ -1 Ξ = Id by our definition above using b(ξ) and e(ξ). This shows that Ξ is bijective. Démonstration. First of all, we consider the case where a and a ′ are symmetric multisegments. Let a = Φ(w) by fixing a map

Φ : S n → S(a Id ).
Now since a and a ′ have the same relation type, we know that a ′ = Φ ′ (w) for some fixe map

Φ ′ : S n → S(a ′ Id ). Finally, let a = {∆ 1 , • • • , ∆ n } and a ′ = {∆ ′ 1 , • • • , ∆ ′ n } such that b(∆ 1 ) < • • • < b(∆ n ), ∆ ′ i = ξ(∆ i ).
Without loss of generality, we assume that b(∆ 

1 ) = b(∆ ′ 1 ). We can assume that b(∆ i ) = b(∆ i-1 ) + 1. In fact, if b(∆ i ) > b(∆ i-1 ) + 1, then by replacing ∆ i by + ∆ i ,
m(b 1 , a 1 ) = m(b ′ , a ′ ) implies that m(b ′ , a ′ ) = m(b, a).
Therefore it suffices to prove the theorem for a 1 and a ′ . From now on, let b

(∆ i ) = b(∆ i-1 ) + 1 and b(∆ i ) = b(∆ ′ i ).
The same argument shows that we can furthermore assume that

e(∆ w -1 (i) ) = e(∆ w -1 (i-1) ) + 1, e(∆ ′ w -1 (i) ) = e(∆ ′ w -1 (i-1) ) + 1.
Now if e(∆ w -1 (1) ) < e(∆ ′ w -1 (1) ), then consider the truncation functor a ′ → a ′(e(∆ w -1 (1) )+1,••• ,e(∆ w -1 (1) )) , the latter is a symmetric multisegment having the same relation type as a ′ , and

m(b ′ , a ′ ) = m(b ′(e(∆ w -1 (1) )+1,••• ,e(∆ w -1 (1)
)) , a ′(e(∆ w -1 (1) )+1,••• ,e(∆ w -1 (1) )) ) by proposition 4.1.5. Repeat the same procedure, in finite step, we find c, such that a = a ′(c) and m(b, a) = m(b ′ , a ′ ).

by proposition 4.1.5.

Remark: an interesting application of this computation is given in the corollary 4.4.7.

For general case, note that in section 4.4, we construct a symmetric multisegment a sym and three multisegments c i , i = 1, 2, 3 such that

a sym ∈ c 2 ,c 3 S(a sym ) c 1 , a = (c 2 ,c
3 ) a sym,(c 1 ) .

(cf. Corollary 4.2.3). The same for a ′ , we have

a ′ sym ∈ c ′ 2 ,c ′ 3 S(a ′ sym ) c ′ 1 , a ′ = (c ′ 2 ,c ′ 3 ) a ′ sym,(c ′ 1 ) .
Lemma 4.4.6. The two multisegment a sym and a ′ sym have the same relation type. And let Ξ sym : S(a sym ) → a ′ sym be the bijection constructed above, then we have the following commutative diagram Démonstration. Note that by construction we know that the number of segments in a sym is the same as that of a. Let

c 2 ,c 3 S(a sym ) c 1 Ξ sym / / c 2 ,c 3 ψc 1 c ′ 2 ,c ′ 3 S(a ′ sym ) c ′ 1 c ′ 2 ,c ′ 3 ψ c ′ 1 S ( 
a sym = {∆ 1 • • • ∆ r }, then a = { (c 2 ,c 3 ) ∆ (c 1 ) 1 • • • (c 2 ,c 3 ) ∆ (c 1 ) r }. Also let a ′ sym = {∆ ′ 1 • • • ∆ ′ r }. We define ξ sym :a sym → a ′ sym ∆ i → ∆ ′ i .
This automatically induces bijections e(ξ sym ) : e(a sym ) → e(a ′ sym ), b(ξ sym ) : b(a sym ) → b(a ′ sym ), since all of them are sets. Note that we definitely have

ξ( (c 2 ,c 3 ) ∆ (c 1 ) i ) = (c ′ 2 ,c ′ 3 ) ∆ ′(c ′ 1 ) i
It remains to show that ξ sym preserve the relation type. Let i ≤ j. Then ∆ i and ∆ j are linked if and only if one of the following happens

-(c 2 ,c 3 ) ∆ (c 1 ) i and (c 2 ,c 3 ) ∆ (c 1 ) j are linked, juxtaposed or not ; -(c 2 ,c 3 ) ∆ (c 1 ) i and (c 2 ,c 3 ) ∆ (c 1 ) j are unrelated. And ∆ j covers ∆ i if and only if (c 2 ,c 3 ) ∆ (c 1 ) j covers (c 2 ,c 3 ) ∆ (c 1 ) i
. Since ξ preserves relation types, this shows that ξ sym also preserves relation types. Hence we conclude that a sym and a ′ sym have same relation type. To see that the map

Ξ sym sends c 2 ,c 3 S(a sym ) c 1 to c ′ 2 ,c ′ 3 S(a ′ sym ) c ′ 1 , consider b ∈ S(a) and its related element b sym ∈ c 2 ,c 3 S(a sym ) c 1 .
-First of all, we assume that l(b) = 1, i.e. b can be obtained from a by applying the elementary operation to the pair

{ (c 2 ,c 3 ) ∆ (c 1 ) i , (c 2 ,c 3 ) ∆ (c 1 ) j }(i < j).
Let b be the element in S(a sym ) obtained by applying the elementary operation to the pair of segments {∆ i , ∆ j } in a sym . Then we have b = (c 2 ,c 3 ) b (c 1 ) .

Let b ′ = Ξ sym ( b). By construction, we have b ′ = Ξ(b) = (c ′ 2 ,c ′ 3 ) b ′(c ′ 1 ) . Now consider b 0 = b > • • • > b n = b sym be a maximal chain of multisegments and let b ′ i = Ξ sym ( b ′ i ), then b ′ 0 > • • • > b ′ n . Let b i = {∆ i,1 • • • ∆ i,r i }, b ′ i = {∆ ′ i,1 • • • ∆ ′ i,r i }. We prove by induction that b ′ = (c ′ 2 ,c ′ 3 ) b ′(c ′ 1 ) i .
We already showed the case where i = 0. Assume that we have

b ′ = (c ′ 2 ,c ′ 3 ) b ′(c ′ 1 ) j
for j < i. Suppose that b i is obtained from b i-1 by applying the elementary operation to the pair of segments {∆ i-1,α i-1 ∆ i-1,β i-1 }. We deduce from the fact b i ≥ b sym that we are in one of the following situatios

-(c 2 ,c 3 ) ∆ (c 1 ) i-1,α i-1 = ∅ or (c 2 ,c 3 ) ∆ (c 1 ) i-1,β i-1 = ∅ ; -b( (c 2 ,c 3 ) ∆ (c 1 ) i-1,β i-1 ) = b( (c 2 ,c 3 ) ∆ (c 1 ) i-1,α i-1 ) ; -e( (c 2 ,c 3 ) ∆ (c 1 ) i-1,β i-1 ) = e( (c 2 ,c 3 ) ∆ (c 1 ) i-1,α i-1 ). According the our assumption that b ′ i = Ξ sym ( b ′ i ), we have ξ( (c 2 ,c 3 ) ∆ (c 1 ) i-1,j ) = (c 2 ,c 3 ) ∆ ′(c 1 ) i-1,j , therefore the pair { (c 2 ,c 3 ) ∆ ′(c 1 ) i-1,α i-1 , (c 2 ,c 3 ) ∆ ′(c 1 )
i-1,β i-1 } also satisfies one of the listed properties above. And this shows that b

′ i is sent to b ′ by c ′ 2 ,c ′ 3 ψ c ′ 1 .
Therefore by proposition 3.3.17, we know that

b ′ n ≥ b ′ sym .
Conversely, we have

Ξ sym -1 (b ′ sym ) ≥ b sym .
Combine the two inequalities to get

Ξ sym (b sym ) = b ′ sym .
-The general case where ℓ(b) > 1, we can choose a maximal chain of multisegments

a = a 0 > • • • > a ℓ(b) = b.
Let a ′ i = Ξ(a i ), by assumption, we can assume that for i < ℓ(b), we have

Ξ sym (a sym i ) = a ′ sym i .
By considering the set S(a ℓ(b)-1 ), we are reduce to the case where ℓ(b) = 1.

Hence we are done. Then m(Φ(v), Φ(w)) = P w,v (1).

Démonstration. The special case where

a Id = n i=1 [i, i + n -1]
is already treated in corollary 2.5.9. The general case can be deduced from the theorem above.

Relation (2) and (3)

Since the relation ( 2) and ( 3) are symmetric to each other, we only prove [START_REF] Ioan | Jacquet-langlands et unitarisabilité[END_REF]. By [START_REF] Björner | Combinatorics of Coxeter groups[END_REF] (1.26), the conditions

σ k 1 -1 w > w, σ k 1 -1 v < v.
are equivalent to

w -1 (k 1 -1) < w -1 (k 1 ), v -1 (k 1 -1) > v -1 (k 1 ). Proposition 5.1.1. Let a = Φ(w), c = Φ(v) ∈ S(a), such that w -1 (k 1 -1) < w -1 (k 1 ), v -1 (k 1 -1) > v -1 (k 1 ), then P w,v (q) = P σ k 1 -1 w,v (q).
Démonstration. Suppose that

Φ(Id) = {∆ 1 • • • ∆ n }. Let b = Φ(σ k 1 -1 w), then b = j [b(∆ j ), e(∆ σ k 1 -1 w(j) )] = j [b(∆ w -1 σ k 1 -1 (j) ), e(∆ j )] = j =k 1 -1,k 1 [b(∆ w -1 (j) ), e(∆ j )] + [b(∆ w -1 (k 1 -1) ), e(∆ k 1 )] + [b(∆ w -1 (k 1 ) ), e(∆ k 1 -1 )].
Note that k) . Now applying the corollary 3.3.19 gives the result.

e(∆ k 1 -1 ) = n + k 1 -2 = k -1, e(∆ k 1 ) = n + k 1 -1 = k, then b (k) = a (

Relation (4)

Let a = Φ(Id), ϕ = ϕ a , As in section 3.3, we know that for fixed W , by proposition 3.3.16, we have an open immersion

τ W : (X k a ) W → (Z k,a ) W × Hom(V ϕ,k-1 , W ).
Definition 5.2.1. By composing with the canonical projection

(Z k,a ) W × Hom(V ϕ,k-1 , W ) → (Z k,a ) W ,
we have a morphism

φ W : (X k a ) W → (Z k,a ) W . Proposition 5.2.2. For any b = Φ(w) ∈ S(a) k , we have ψ -1 k (b (k) ) = {b, b ′ = Φ(σ k 1 -1 w)}.
Moreover, φ W is a fibration such that

(1) We have an isomorphism φ -1 W (O b (k) ) ≃ (C 2 -{0}) × C 2n-k-1 . (2) We have φ -1 W (O b (k) ) ∩ O b ′ ≃ C × × C 2n-k-1 . Démonstration. Note that we have ψ -1 k (b (k) ) ⊆ S(b (k) + [k]), we observe that S(b (k) + [k]) ∩ S(a) = S(b ′ ), Since b is minimal in ψ -1 k (b (k)
) (See Prop. 3.3.17), we have

ψ -1 k (b (k) ) = {b, b ′ }.
Then consider the restricted morphism

φ W : (O b ∪ O b ′ ) W → O b (k) . Let T ∈ O b ∪ O b ′ , T 0 ∈ Hom(V ϕ,k-1 , W ). Define T ′ ∈ E ϕ by T ′ | V ϕ,k-1 = T 0 ⊕ T (k) | V ϕ,k-1 , T ′ | V ϕ,k = T (k) | V ϕ,k /W • p W , T ′ | V ϕ,i = T (k) , for i = k -1, k.
We know that dim(W ) = ℓ k = 1, and for dim(ker(

T (k) | V ϕ,k-1 )) = 2. Now let ∆ 1 < ∆ 2
be the two segments in b (k) which ends in k-1. And we consider the following flag

V 0 = ker(T (k) | V ϕ,k-1 ) ⊇ V 1 = Im(T (k) ) ∆ 2 ∩ ker(T (k) | V ϕ,k-1 ).
And we have dim(

V 1 ) = 1. Then for T ′ ∈ O b ∪ O b ′ , it is necessary and sufficient that T 0 (V 0 ) = 0.
This amounts to give a nonzero element in Hom(V 0 , W ) ≃ C 2 , which proves that the fiber φ -1

W (T (k) ) ≃ (C 2 -0)×C 2n-k-1
, where the factor

C 2n-k-1 comes from the fact that dim(V ϕ,k-1 ) = 2n -(k -1) = 2n -k + 1. As for T ′ ∈ O b ′ , it is necessary and sufficient that T 0 (V 1 ) = 0, T 0 (V 0 ) = 0, which amounts to give a zero element in Hom(V 0 /V 1 , W ) ≃ C. Hence φ -1 W (T (k) )∩ O b ′ ≃ C × × C 2n-k-1 . To see that φ W is a fibration, fix V ⊆ V ϕ,k-1 such that dim(V ) = 2. Consider the sub-scheme of Z k W given by U V = {T ∈ Z k W : ker(T | V ϕ,k-1 ) = V }. Note that since dim(V ϕ,k-1 ) = dim(V ϕ,k /W )+2, the fact that dim(ker(T | V ϕ,k-1 )) = 2 implies that U V is actually open in Z k W . In this case φ -1 W (U V ) = U V × (Hom(V, W ) -{0}) × Hom(V ϕ,k-1 /V, W ). Proposition 5.2.3. Let b = Φ(w), c = Φ(v) ∈ S(a), such that w -1 (k 1 -1) > w -1 (k 1 ), v -1 (k 1 -1) > v -1 (k 1 ), w < v,
and w is not comparable with σ k 1 -1 v, then

P w,v (q) = P σ k 1 -1 w,σ k 1 -1 v (q).
Remark: As before, our conditions are equivalent to

σ k 1 -1 w > w, σ k 1 -1 v > v.
Démonstration. Note that our assumption implies that both b and c are in

S(a) k . Let b ′ = Φ(σ k 1 -1 w), c ′ = Φ(σ k 1 -1 v). Then b ′ > c ′ . For b > d > c, we must have d = Φ(α) with σ k 1 -1 α < α. In fact, σ k 1 -1 α > α would imply d > c ′
by lifting property of Bruhat order (cf. [START_REF] Björner | Combinatorics of Coxeter groups[END_REF] proposition 2.2.7). Now that we have b > d > c ′ , contradicting to our assumption that b is not comparable to c ′ . Let d ′ = Φ(σ k 1 -1 α). Note that we create actually by this way construct a morphism between the sets ) with e ′ > c ′ . We show that σ k 1 -1 β > β. In fact, assume that σ k 1 -1 β < β. Then the lifting property of Bruhat order implies b > e ′ > c ′ , which is a contradiction to the fact that b is not comparable to c ′ . Hence we have e = Φ(σ k 1 -1 β) < e ′ . Moreover, since

ρ : {d : b ≥ d ≥ c} → {d ′ : b ′ ≥ d ′ ≥ c ′ } sending d to d ′ .
σ k 1 -1 w < β < σ k 1 -1 v, and w > σ k 1 -1 w, v > σ k 1 -1 v, we have w < σ k 1 -1 β < v, hence b > e > c.
This proves the surjectivity. The injectivity is clear from the definition.

As a corollary, we have Lemma 5.2.5. The restricted morphism

φ W : X k b ′ ,c ′ → Z k b (k) ,c (k) (cf. Def. 3.3.6) is a fibration with fibers isomorphic to C × × C n-k . Démonstration. Since φ W is a composition of τ W ,
which is an open immersion, and a canonical projection, to show that it is a fibration, it suffices to show that all of its fibers are isomorphic to C × × C n-k . This follows from proposition 5.2.2 and the fact that for any d ′ ∈ S(b ′ ) we have d ′ / ∈ S(a) k .

Hence we get

P b ′ ,c ′ (q) = P b (k) ,c (k) (q).
Now we are done by applying corollary 3.3.19, i.e,

P b (k) ,c (k) (q) = P b,c (q).
Hence we are done.

Relation (5)

Finally, we arrive at the relation [START_REF] Bernstein | String bases for quantum groups of type a r . In I. M. Gelfand seminar part I Advances in Soviet Mathematics[END_REF]. We will give an interpretation of this relation in terms of the decomposition theorem (See [START_REF] Beȋlinson | Faisceaux pervers[END_REF]).

Definition 5.3.1. Let Z W ={(T, z) ∈ Z k,a W × Hom(V * ϕ,k-1 , W * ) : and z factors through the canonical projection V * ϕ,k-1 → ker(T | V ϕ,k-1 ) * }.
Proposition 5.3.2. The canonical projection Z W → Z k,a W turns Z W into a vector bundle of rank 2 over Z k W . Démonstration. Note that we have dim(ker(T | V ϕ,k-1 )) = 2 and dim(W ) = 1. Note that by taking dual, as a scheme, Z W is isomorphic to the scheme parametrize the data (T, z)

∈ Z k W × V ϕ,k-1 such that z ∈ ker(T | V ϕ,k-1 ). Fix V ⊆ V ϕ,k-1 such that dim(V ) = 2. Consider the sub-scheme of Z k W given by U V = {T ∈ Z k W : ker(T | V ϕ,k-1 ) = V }. As is showed in proposition 5.2.2, U V is actually open in Z k W . Using the previous interpretation of Z k W , we observe that the open set U V trivializes the projection Z W → Z k,a W . Definition 5.3.3. Let Z k W = P roj Z k,a W (Z W ) be the projectivization of the vector bundle Z W → Z k W .
And we shall denote the structure morphism by

κ k W : Z k W → Z k W . Definition 5.3.4.
From now on, we fix a pair of non-degenerate bi-linear forms

ζ k-1 : V ϕ,k-1 × V ϕ,k-1 → C, ζ k : V ϕ,k × V ϕ,k → C. which allows us to have an identification η i : V ϕ,i ≃ V * ϕ,i , for i = k -1, k. Remark: Here our definition X k a depends on the choice of V ϕ . If we choose V ′ ϕ such that V ′ ϕ,i = V ϕ,i , for i = k -1, k, V ′ ϕ,k-1 = V * ϕ,k-1 , V ′ ϕ,k = V * ϕ,k , we can get X k a (V ′ ϕ ), which is isomorphic to X k a after we choose an isomorphism V * ϕ,k-1 ≃ V ϕ,k-1 and V * ϕ,k ≃ V ϕ,k
. This is what we do here. Note that once we fix V * ϕ,k-1 ≃ V ϕ,k-1 and V * ϕ,k ≃ V ϕ,k . Our morphism η i will become an inner automorphism, but in general we have

η k (W ) = W * = W . Definition 5.3.5. Let T ∈ (X k a ) W , then we define λ : (X k a ) W → (X k a ) η k (W ) , by letting λ(T )| V ϕ,k-2 = η k-1 • T | ϕ,k-2 λ(T )| V ϕ,k-1 = η k • T | ϕ,k-1 • η -1 k-1 , λ(T ) V ϕ,k = T | ϕ,k • η -1 k , and λ(T ) V ϕ,i = T | ϕ,i , for i = k -2, k -1, k.
Lemma 5.3.6. We have ker(λ(T )| V ϕ,k ) = η k (W ), and

ker(λ(T ) (k) | V ϕ,k-1 ) = η k-1 (ker(T | V ϕ,k-1 )).
Démonstration. The fact ker(λ(T )| V ϕ,k ) = η k (W ) follows from definition. Note that

ker(T (k) | V ϕ,k-1 ) = {v ∈ V ϕ,k-1 : T (v) ∈ W } = T | -1 V ϕ,k-1 (W ). Since (λ(T )| V ϕ,k-1 ) -1 (η k (W )) = η k-1 (T | V ϕ,k-1 ) -1 (W ) = η k-1 (ker(T | V ϕ,k-1 )), hence ker(λ(T ) (k) | V ϕ,k-1 ) = η k-1 (ker(T | V ϕ,k-1 )).
Definition 5.3.7. We define

ξ W : (X k a ) W → Z k W , for T ∈ (X k a ) W , then ξ W (T ) = (T (k) , λ(T )| ker(λ(T ) (k) | V ϕ,k-1 ) ).
This is well defined since

λ(T )| ker(λ(T ) (k) | V ϕ,k-1 ) ∈ Hom(ker(λ(T ) (k) | V ϕ,k-1 ), η k (W )), and 
Hom(ker(λ(T ) (k) | V ϕ,k-1 ), η k (W )) ≃ Hom(ker(T (k) | V ϕ,k-1 ) * , W * ),
and λ(T

)| ker(λ(T ) (k) | V ϕ,k-1 ) = 0. Proposition 5.3.8. The morphism ξ W is a fibration with fibers isomorphic to C × × C n-k . Démonstration. Let V ⊆ V ϕ,k-1 be a subspace such that dim(V ) = 2. Consi- der the open sub-scheme of Z W U 1,V = {(T, z) ∈ Z W : z = 0, ker(T | V ϕ,k-1 ) = η -1 k-1 (V )}. U V = {T ∈ Z k W , ker(T | V ϕ,k-1 ) = η -1 k-1 (V )}.
Let U 1,V be the image of U 1,V in Z k W by the canonical projection. As indicated in the proof of proposition 5.3.2, the set U V trivialize the morphism

Z W → Z k W , hence U 1,V ≃ U V × (Hom(V, η k (W )) -{0}/C × )
Note that we have

Hom(V, η k (W )) ≃ Hom(η -1 k-1 (V ), W ).
And by proposition 3.3.16 and proposition 5.2.2, we have the following isomorphism

ξ -1 W ( U 1,V ) ≃ U V × (Hom(η -1 k-1 (V ), W ) -0) × Hom(V ϕ,k-1 /η -1 k-1 (V ), W ).
Hence for any (T, z)

∈ Z k W such that ker(T | V ϕ,k-1 ) = η -1 k-1 (V ) , let U 2,V be an open subset of (Hom(η -1 k-1 (V ), W ) -0)/C which trivializes the bundle (Hom(η -1 k-1 (V ), W ) -0) → (Hom(η -1 k-1 (V ), W ) -0)/C, then the open sub-scheme U V × U 2,V of U V,1
trivialize the morphism φ W as a neighborhood of (T, z).

Definition 5.3.9. Let b > c be two elements in S(a) k , then we define

Z k b,c = ξ W ((X k b,c ) W ). And Z k (b) = ξ W ((O b ) W ).
Definition 5.3.10. Let w < v be two elements in S n such that

σ k 1 -1 v < v. We define R(w, v) k 1 = {z : w ≤ z < σ k 1 -1 v, σ k 1 -1 z < z}.
And we denote R(Id, v)

k 1 by R(v) k 1 . Now let b = Φ(w), c = Φ(v) such that w(k 1 -1) > w(k 1 ), v(k 1 -1) > v(k 1 ).

And let b

′ = Φ(σ k 1 -1 w), c ′ = Φ(σ k 1 -1 v). We assume that b > c, b > c ′ ,
which coincide with the assumption in relation ( 5) at the beginning of this chapter.

Remark: Note that one should be able to deduce the above results from a general statement about the decomposition theorem. We leave this for future work.

Remark: It seems that we have done here may be generalized to give the normality of for general O b instead of using the results of Zelevinsky.

Chapitre 6

Classification of Poset S(a)

Let a be a multisegment and S(a) = {b ≤ a} the associated poset defined in 1.3.2. The aim of this chapter is to identify the poset structure of S(a).

In the first section we consider the case where a is ordinary and prove that S(a) is an interval in S m ≃ B\GL m /B, where m is the number of segments in a. and B is the Borel subgroup.

In the general case we identify S(a) with an interval in a parabolic quotient S J 1 \S m /S J 2 of S m given in section 2 related to the double quotient P J 1 \GL m /P J 2 , where P J 1 and P J 2 are parabolic subgroups.

Ordinary Case

Our goal in this section is to prove that for general ordinary multisegment a, the set S(a) is isomorphic to some Bruhat interval [x, y] for x, y ∈ S n , where n depends on a. ) min , then [START_REF] Vinay | On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials[END_REF] for general Coxeter System (W, S). However, as indicated in the same article, in our case where G = GL n , this is not so interesting because we have a good fibration G/P → G/B, so basically everything boils down to the Borel case. In this section, for certain multisegment a, we shall relate the set S(a) to the orbits in GL n /P , where the multiplicities appear to be the corresponding Parabolic Kazhdan (2) for w ∈ S J n , and x ∈ S J , ℓ(wx) = ℓ(w) + ℓ(x) . Remark: Now we can identify S J n with S n /S J , hence it is in bijection with the Borel orbits in GL n /P , where P is the parabolic subgroup determined by J.

Notation 6.2.3. Let a J Id = {∆ 1 , • • • , ∆ n } such that e(∆ 1 ) < • • • < e(∆ n ), and b(∆ 1 ) ≤ • • • ≤ b(∆ n ), such that b(∆ i ) = b(∆ i+1 ) if and only if σ i ∈ J and b(∆ n ) ≤ e(∆ 1 ).
Example 6.2.4. Let n = 4, and J = {σ 1 , σ 3 }, then we can choose

a J Id = [1, 3] + [1, 4] + [2, 5] + [2, 6].
Definition 6.2.5. We call a multisegment a ∈ S(a J Id ) a multisegment of parabolic type J. Proposition 6.2.6. For w ∈ S J n , let a J w = [b(∆ i ), e(∆ w(i) )], then a J w ∈ S(a J Id ). Example 6.2.7. Let a J Id as in example 6.2.4. For w = σ 1 σ 2 , then

a J w = [1, 4] + [1, 5] + [2, 3] + [2, 6].
Démonstration. We proceed by induction on |J|. If |J| = 0, we are in the symmetric case, so we are done by Proposition 2.1.8. And in general, let

J = J 1 ∪ {σ i 0 } with i 0 = min{i : σ i ∈ J} and i 1 = max{i : b(∆ i ) = b(∆ i 0 )}. Let a 1 = {∆ 1 1 , • • • , ∆ 1 n }, such that ∆ 1 i = + (∆ i ), for i ≤ i 0 , ∆ 1 i = ∆ i , otherwise. ( cf. Nota. 3.1.1).
Example 6.2.8. Let a J Id be a multisegment as in example 6.2.4. Then

a 1 = [0, 3] + [1, 4] + [2, 5] + [2, 6]. Let a J 1 Id = a 1 with b(∆ 1 i ) = b(∆ i ) -1, for i ≤ i 0 , b(∆ i ), for i > i 0 .
Then we have

a J Id = (b(∆ 1 1 ),••• ,b(∆ 1 i 0 )) a 1 . Let w 1 = (i 1 , • • • , i 0 +1, i 0 ), then w 1 ∈ S J 1 n
. Note that we have also ww 1 ∈ S J1 n , since

ww 1 (i) = w(i -1) < ww 1 (i + 1) = w(i), for i = i 0 + 1, • • • , i 1 -1.
Then by induction, we know that

a J 1 ww 1 = i [b(∆ 1 i ), e(∆ 1 ww 1 (i) )] ∈ S(a 1 ).
Example 6.2.9. Let a J Id as in the previous example. Then i 1 = 2, and J 1 = {σ 3 }. In this case, we have w 1 = σ 1 and ww 1 = σ 1 σ 2 σ 1 , with

a J 1 ww 1 = [0, 5] + [1, 4] + [2, 3] + [3, 6].
Moreover,

a J w = (b(∆ 1 1 ),••• ,b(∆ 1 i 0 
)) a J 1 ww 1 . The result, that is the fact a J w ∈ S(a J Id ) follows from the next lemma.

Lemma 6.2.10. We have

a J 1 ww 1 ∈ b(∆ 1
Démonstration. In fact, let a 1,0 = a J Id and for j ≤ i 0 , a 1,j = {∆ 1,j , • • • , ∆ n,j }, such that

∆ i,j = + (∆ i ), for i ≤ j, ∆ i,j = ∆ i , otherwise. Then we have a 1,j = (b(∆ 1 j+1 ),••• ,b(∆ 1 i 0 )) a 1 , for j = 0, 1, • • • , i 0 . For j < i 0 -1, let b j = j<i≤i 0 [b(∆ 1 i ) + 1, e(∆ 1 w(i) )] + i>i 0 , or i≤j [b(∆ 1 i ), e(∆ 1 w(i) )],
and

b i 0 = a J 1 ww 1 so that b j = (b(∆ 1 j+1 ),••• ,b(∆ 1 i 0
)) a 2 . We show that b j ∈ b(∆ 1 j ) S(a 1,j ) by induction on j.

(1) For j = i 0 , we have

b(∆ 1 i 0 ) = b(∆ 1 i 0 +1 ) -1 = • • • = b(∆ 1 i 1 -1 ) -1 = b(∆ 1 i 1 ) -1.
And ww

1 (i 0 ) > ww 1 (i 1 ) > ww 1 (i 1 -1) > • • • > ww 1 (i 0 + 1), hence e(∆ 1 ww 1 (i 0 ) ) > e(∆ 1 ww 1 (i 1 ) ) > e(∆ 1 ww 1 (i 1 -1) ) > • • • > e(∆ 1 ww 1 (i 0 +1) ),
because w ∈ S J . This implies that b i 0 satisfies the hypothesis ( b(∆ 1 i 0

) H(a 1,i 0 )). (2) For general j ≤ i 0 -1, By induction, we may assume that b j+1 ∈ b(∆ 1 j+1 ) S(a 1,j+1 ). Now to show b j ∈ b(∆ 1 j ) S(a 1,j ) , we know that b(∆ 1 j ) + 1 < b(∆ 1 j+1 ) + 1 in b j+1 (we have inequality by assumption on i 0 ), which proves that b j ∈ b(∆ 1 j ) S(a 1,j ) . Hence we are done. Lemma 6.2.11. Let J = {σ i 0 } ∪ J 1 such that i 0 = min{i : σ i ∈ J}. Let i 1 ∈ Z be the maximal integer satisfying for i 0 ≤ i < i 1 we have σ i ∈ J. Then

S J 1 J = {w i : i = 1, • • • , i 1 -i 0 + 1} with w i = (i 1 -i + 1, • • • , i 0 + 1, i 0 ) ∈ S J .
As a consequence, we have

S J 1 n = i S J n w i .
Démonstration. By proposition 6.2.2, we only need to show that S J = j w j S J 1 and w j ∈ S J 1 . The fact that w j ∈ S J 1 follows from

w j (i) = i -1, for i = i 0 + 1, • • • , i 1 -j + 1, w j (i 0 ) = i 1 -j + 1,
and

w j (i) = i for i / ∈ {i 0 , • • • , i 1 -j + 1}. Finally, to see that S J = j w j S J 1 ,
we compare the cadinalities. Let J 0 = {σ i :

i = i 0 • • • , i 1 -1}, then S J ≃ S J 0 × S J\J 0 , S J 1 ≃ S J 0 \{σ i 0 ,i 0 +1 } × S J\J 0 . Hence ♯S J /♯S J 1 = ♯S J 0 ♯S J 0 \{σ i 0 ,i 0 +1 } = (i 1 -i 0 +1)!/(i 1 -i 0 )! = i 1 -i 0 +1
. Finally, by proposition 6.2.2, we know that

S n = v∈S J n vS J = i 1 -i 0 +1 j=i 0 v∈S J n vw j S J 1 = j S J n w j S J 1 .
Keeping the notations of proposition 6.2.6, we have Lemma 6.2.12.

For i = 1, • • • , i 1 -i 0 + 1, we have a J w = (b(∆ 1 1 ),••• ,b(∆ 1 i 0
)) a J 1 ww i . Démonstration. Note that by definition We have

a J 1 ww j = i b(∆ 1 i ), e(∆ 1 ww j (i) )].
As noted before, we have

b(∆ 1 i ) = b(∆ i ) -1, for i ≤ i 0 , b(∆ 1 i ) = b(∆ i ), for i > i 0 .
Also,we observe that e(∆ 1 i ) = e(∆ i ). Hence

(b(∆ 1 1 ),••• ,b(∆ 1 i 0 )) a J 1 ww i = i b(∆ i ), e(∆ ww j (i) )].
It remains to see that we have

i 1 -j+1 i=i 0 b(∆ i ), e(∆ ww j (i) )] = i 1 -j+1 i 0 b(∆ i ), e(∆ w(i) )] since b(∆ i 0 ) = • • • = b(∆ i 1 -j+1
). Hence we have

a J w = (b(∆ 1 1 ),••• ,b(∆ 1 i 0
)) a J1 ww i . Definition 6.2.13. As in the symmetric cases, we have the following map

Φ J : S J n → S(a J Id ) w → a J w .
Proposition 6.2.14. The morphism Φ J is bijective and translate the inverse Bruhat order on S J n to the order on S(a J Id ). Démonstration. Again, we do this by induction on |J|. If |J| = 0, we are in the symmetric case, so everything is done in section 2.3. In general, we keep the notation in the proposition 6.2.6. We have J = J 1 ∪ {σ i 0 }. And as we proved above,

a J 1 ww 1 ∈ b(∆ 1 1 ),••• ,b(∆ 1 i 0
) S(a 1 ). Also, we note that the morphism b(∆

1 1 ),••• ,b(∆ 1 i 0
) ψ sends Φ J 1 (ww 1 ) to Φ J (w) for w ∈ J, as is proved in the proposition above. Therefore

Φ J = b(∆ 1 1 ),••• ,b(∆ 1 i 0 ) ψ • Φ J 1 ,
and the injectivity of follows from that of b(∆

1 1 ),••• ,b(∆ 1 i 0
) ψ and induction on J 1 . For surjectivity, let b ∈ S(a J Id ), by surjectivity of the map

b(∆ 1 1 ),••• ,b(∆ 1 i 0 ) ψ : b(∆ 1 1 ),••• ,b(∆ 1 i 0 ) S(a 1 ) → S(a J Id ),
we know that there exists a w ′ ∈ S J 1 , such that

Φ J 1 (w ′ ) ∈ b(∆ 1 1 ),••• ,b(∆ 1 i 0 ) S(a 1 ), and is sent to b by b(∆ 1 1 ),••• ,b(∆ 1 i 0
) ψ. By lemma 6.2.11, every w ′ ∈ S J 1 can be write as ww j for some w ∈ S J and w j ∈ S J 1 . Now by lemma 6.2.12, b = a J w .

Note that for w > w ′ in S J , then ww 1 > w ′ w 1 in S J 1 , hence by induction

Φ J 1 (ww 1 ) < Φ J 1 (ww 1 ), we get Φ J 1 (w) < Φ J 1 (w),
since the morphism b(∆ 1 Proposition 6.2.15. Let v 1 , v 2 ∈ S J , then we have

P Φ J (v 1 ),Φ J (v 2 ) (q) = P J v 1 ,v 2 (q)
where on the right hand side is the parabolic KL polynomial indexed by v 1 , v 2 .

Démonstration. As is proved in [START_REF] Vinay | On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials[END_REF], we have

P J v 1 ,v 2 (q) = P v 1 v J ,w 2 v J (q)
, where v J is the maximal element in S J . So it suffices to show that we have the equality

P Φ J (v 1 ),Φ J (v 2 ) (q) = P v 1 v J ,v 2 v J (q)
. Also, from lemma 6.2.10, we know that

Φ J (v 1 ) = b(∆ 1 1 ),••• ,b(∆ 1 i 0 ) ψ(Φ J 1 (v 1 w 1 ))
, where w 1 is described in lemma 6.2.11. Hence we have

P Φ J 1 (v 1 w 1 ),Φ J 1 (v 2 w 1 ) (q) = P Φ J (v 1 ),Φ J (v 2 ) (q)
by corollary 3.3.18. By induction, we have

P Φ J 1 (v 1 w 1 ),Φ J 1 (v 2 w 1 ) (q) = P v 1 w 1 v J 1 ,v 1 w 1 v J 1 (q).
Now to finish, we have to show v J = w 1 v J 1 . But we know that

S J = j w j S J 1 with w 1 = max{w j : j = 1, • • • , i 1 -i 0 + 1}, we surely have v J = w 1 v J 1 .
More generally, for J i ⊆ S, i = 1, 2, we can consider the P J 1 orbit in GL n /P J 2 . We state the related result without proving.

Definition 6.2.16. Let S J 1 ,J 2 n = {w ∈ S n : s 1 vs 2 > v for all s i ∈ J i , i = 1, 2}. Definition 6.2.17. Let v ∈ S J 1 ,J 2 n . We define S J 2 ,v J 1 = {w ∈ S J 1 : ws > w, for all s ∈ S J 1 ∩ vS J 2 v -1 }.
Remark: If we let M J be the Levi subgroup of P J , then the set S J 2 ,v J 1 corresponds to the Borel orbits in M J 1 /(M J 1 ∩ vM J 2 v -1 ). Proposition 6.2.18. We have

(1) S n = v∈S J 1 ,J 2 n S J 1 vS J 2 ; (2) ℓ(xvy) = ℓ(v) + ℓ(x) + ℓ(y) for v ∈ S J 1 ,J 2 , x ∈ S J 2 ,v J 1 , y ∈ S J 2 . (3) The P J 1 orbits in GL n /P J 2 are indexed by S J 1 ,J 2 n . Definition 6.2.19. For v 1 , v 2 ∈ S J 1 ,J 2 such that v 1 ≤ v 2 , we let P J 1 ,J 2 v 1 ,v 2 (q)
be the Poincaré series of the localized intersection cohomology

H • (P J 1 v 2 P J 2 ) v 1 P J 2 . Lemma 6.2.20. For v 1 , v 2 ∈ S J 1 ,J 2 such that v 1 ≤ v 2 , we have P J 1 ,J 2 v 1 ,v 2 (q) = P w 1 ,w 2 (q),
where w i is the element of maximal length in

S J 1 v i S J 2 . Notation 6.2.21. Let a J 1 ,J 2 Id = {∆ 1 , • • • , ∆ n } such that e(∆ 1 ) ≤ • • • ≤ e(∆ n ), such that e(∆ i ) = e(∆ i+1 ) if and only if σ i ∈ J 1 and b(∆ 1 ) ≤ • • • ≤ b(∆ n ), such that b(∆ i ) = b(∆ i+1 ) if and only if σ i ∈ J 2
and b(∆ n ) ≤ e(∆ 1 ). Definition 6.2.22. We call a multisegment a ∈ S(a J 1 ,J 2

Id

) a multisegment of parabolic type (J 1 , J 2 ). Lemma 6.2.23.

For w ∈ S J 1 ,J 2 , let a J 1 ,J 2 w = [b(∆ i ), e(∆ w(i) )], then a J 1 ,J 2 w ∈ S(a J 1 ,J 2 

Id

). Therefore we have an application

Φ J 1 ,J 2 : S J 1 ,J 2 → S(a J 1 ,J 2 Id ) w → a J 1 ,J 2 w .
Proposition 6.2.24. The morphism Φ J 1 ,J 2 is bijective and translate the inverse Bruhat order on S J 1 ,J 2 to the order on S(a J 1 ,J 2

Id

).

Next we show how to reduce a general multisegment a to a multisegment a J 1 (a),J 2 (a) w of parabolic type (J 1 (a), J 2 (a)) without changing the poset structure S(a). Proposition 6.3.3. Let a be a multisegment, then there exists a multisegment c, and a multisegment a J 1 (a),J 2 (a)

w of parabolic type (J 1 (a), J 2 (a)), such that a J 1 (a),J 2 (a) w ∈ S(a J 1 (a),J 2 (a) w ) c , a = (a J 1 (a),J 2 (a) w ) (c)
Démonstration. In general a is not of parabolic type, i.e, we do not have min{e(∆) : ∆ ∈ a} ≥ max{b(∆) : ∆ ∈ a}. Now we show how to construct a J 1 (a),J 2 (a)

w . In fact, let a = {∆ 1 , • • • , ∆ n }, ∆ 1 ≺ • • • ≺ ∆ n . Then e(∆ 1 ) = min{k : i = 1, • • • , n}.
If a is not of parabolic type, let ∆ 1 = [e(∆ 1 ) + 1, ℓ] with ℓ maximal satisfying that for any m such that e(∆ 1 ) ≤ m ≤ ℓ -1, there is a segment in a ending in m. We construct a 1 by replacing every segment ∆ in a ending in

∆ 1 by ∆ + . Repeat this construction with b 1 to get a 2 • • • , until we get a s , which is of parabolic type. Let c = {∆ 1 , • • • , ∆ s }, then we do as in proposition 4.2.1 to get a s ∈ S(a s ) c , a = (a s ) (c) .
Note that by our construction we have Chapitre 7

J 1 (a i ) = J 1 (a), J 2 (a i ) = J 2 (a), for i = 1, • • • , s. Lemma 6.3.4. Assume that a ∈ S(a) k such that J 1 (a) = J 1 (a (k) ), J 2 (a) = J 2 (a (k) ).
J 1 (a) = J 1 (a (k) ), J 2 (a) = J 2 (a (k) ),

Computation of Partial Derivatives

In this chapter, we study the problem of computing the partial derivatives D k (L a ) of the irreducible representation L a attached to a multisegment a.

The idea is to use these computations to calculate the multiplicities in the induced representation L a × L b , cf. the next chapter. Recall that we have already given a way of computing L a as a sum, cf. (

L a = b m b,a π(a). 1.3.7) 
So one is reduced to the calculate

D k (π(a)) = b n b,a L b , n b,a ≥ 0.
As for the coefficient m b,a , we first introduce a new poset structure k on the set of multisegments so that we have the equivalence between n b,a > 0 and b k a, cf. proposition 7.1.4.

The principal result of this chapter is the interpretation of the coefficient n b,a as the value at q = 1 of some Poincaré series of the Lusztig product of two explicit perverse sheaves on orbital varieties, cf. proposition 7.3.8. In 7.4, we compute these Lusztig products as the push forward by a projection β ′′ , cf. corollary 7.4.19, of some concrete perverse sheaf on an orbital variety.

In §7.6 we first study the geometry of the case where the multisegments are of Grassmanian type. In this case the projection β ′′ is simply cf. proposition 7.6.8, the natural projection GL n /P → GL n /P ′ with P ⊆ P ′ two parabolic subgroups. The geometry of the parabolic case is treated in §7.7 : the constructions and proofs are the same as the Grassmanian type.

Finally in the last section 7.8, we obtain a complete formula for D k (L a ) in the general case, cf. corollary 7.8.16

New Poset Structure on Multisegments

In this section we define a new poset structure k depending on an integer k on the set of multisegments and show that the term

L b appears in D k (π(a)) if and only if b k a. Definition 7.1.1. For a well ordered multisegment a = {∆ 1 , • • • , ∆ s } with ∆ 1 • • • ∆ s , let a(k) := {∆ ∈ a : e(∆) = k} = {∆ i 0 , ∆ i 0 +1 , • • • , ∆ i 1 }. Now let Γ ⊆ a(k), let a(k) Γ := (a(k) \ Γ) ∪ {∆ (k) : ∆ ∈ Γ}, and 
a Γ := (a \ a(k)) ∪ a(k) Γ .
We say b k a if there exist a multisegment c ∈ S(a) such that b ≤ a Γ for some Γ.

Lemma 7.1.2. We have

D k (π(a)) = π(a) + Γ⊆a(k),Γ =∅ π(a Γ ). (7.1.3) Démonstration. Let a = {∆ 1 , • • • , ∆ r , ∆ r+1 , • • • , }.
Then

π(a) = r i=1 L ∆ i × i>r L ∆ i
for some c ′ ∈ S(a). Note that by replacing c ′ by a, we can assume that d = a Γ 1 and ℓ(b, a Γ 1 ) = 1.

By definition, we know that b is obtained by applying the elementary operation to a pair of segments {∆ ∆ ′ } in a T . Now we set out to construct c.

-If {∆, ∆ ′ } ⊆ a \ {∆ (k) : ∆ ∈ Γ 1 } ⊆ a, let c be the multisegment obtained by applying the elementary operations to {∆, ∆ ′ }. And we have

b = c Γ 1 . -If {∆, ∆ ′ } ∩ {∆ (k) : ∆ ∈ Γ 1 } = {∆ ′ }, then {∆, ∆ ′+ } ∈ a let c
be the multisegment obtained by applying the elementary operations to {∆, ∆ ′+ }. Then let Démonstration. By definition we have a k a for any a ∈ O. Suppose a 1 k a 2 , a 2 k a 3 , we want to show that a 1 k a 3 . By proposition 7.1.7, there exists c ∈ S(a 2 ) and Γ 1 ⊆ c(k) , such that

Γ = (Γ 1 \ {∆ ′+ }) ∪ {∆ ∪ ∆ ′+ } and we have b = c Γ . -If {∆, ∆ ′ } ∩ {∆ (k) : ∆ ∈ Γ 1 } = {∆}, then {∆ + , ∆ ′ } ∈ a let c
a 1 = c Γ 1 .
Note that by corollary 7.1.6, the fact a 2 k a 3 implies D k (π(a 3 ))-π(a 2 ) ≥ 0.

Hence we have n(a 3 , c) > 0, therefore c k a 3 by proposition 7.1.4. In turn, we know that there exists a multisegment c ′ ∈ S(a 3 ) and

Γ 2 ⊆ c ′ (k), such that c = c ′ Γ 2 .
Since we have c(k) ⊆ c ′ (k), we take 

Γ 3 := Γ 1 ∪ Γ 2 ⊆ c ′ (k).

Now we get

a 1 = c ′ Γ 3 , which implies a

Canonical Basis and Quantum Algebras

In this section, following [START_REF] Leclerc | Induced representations of affine Hecke algebras and canonical bases of quantum groups[END_REF], we recall the results of Lusztig on canonical basis, the relation of quantum algebras and the algebra R. We are especially interested in the construction of a product of perverse sheaves over orbital varieties defined by Lusztig [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF], which is closely related to the product defined by induction in R. Definition 7.2.1. Let N (Z) be the semi-group of sequences (d j ) j∈Z of non negative integers which are zero for all but finitely many j. Let α i be the element whose i-th term is 1 and other terms are zero. Definition 7.2.2. We define a symmetric bilinear form on N (Z) given by

(α i , α j ) =    2,
for i = j; -1, for |i -j| = 1; 0, otherwise .

Definition 7.2.3. Let q be an indeterminate and Q(q 1/2 ) be the fractional field of Z[q 1/2 ]. Let U ≥0 q be the Q(q 1/2 )-algebra generated by the elements E i and K ±1 i for i ∈ Z with the following relations :

K i K j = K j K i , K i K -1 i = 1; K i E i = q 1/2(α i ,α j ) E i K i ; E i E j = E j E i , if |i -j| > 1; E 2 i E j -(q 1/2 + q -1/2 )E i E j E i + E j E 2 i = 0, if |i -j| = 1
. and let U + be the subalgebra generated by the E i 's.

Remark: This is the + part of the quantized enveloping algebra U associated by Drinfeld and Jimbo to the root system A ∞ of SL ∞ . And for q = 1, this specializes to the classical enveloping algebra of the nilpotent radical of a Borel subalgebra. Definition 7.2.4. We define a new order on the set of segments Σ

[j, k] ⊳ [m, n], if k < n, [j, k] ⊲ [m, n], if j < m, n = k. We also denote [j, k] ⊳ [m, n] or [j, k] = [m, n] by [m, n].
Lemma 7.2.5. The algebra U + q is N (Z) -graded via the weight function wt(E i ) = α i . Moreover, for a given weight α, the homogeneous component of U + q with weight α is of finite dimension, and its basis are naturally parametrized by the multisegments of the same weight.

Démonstration. Let a = r s=1 m is,js [i s , j s ] be a multisegment of weight α, note that here we identify the weight ϕ i with α i , and that

[i 1 , j 1 ] • • • [i r , j r ]( cf. Def. 7.2.4)
Then we associate to a the element

(E j 1 • • • E i 1 ) • • • (E jr • • • E ir ).
Notation 7.2.6. For x ∈ U + be an element of degree α, we will denote wt(x) = α.

Example 7.2.7. For i ≤ j, let α ij = α i +• • •+α j . Consider the homogeneous components of U + with weight α = 2α 12 , whose basis is given by

E 1 E 2 E 1 E 2 , E 1 E 1 E 2 E 2 .
The element

E 1 E 2 E 1 E 2 is parametrized by the multisegment [1] + [1, 2] + [2], while E 1 E 1 E 2 E 2 is parametrized by the multisegment 2[1] + 2[2].
In [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF], Lusztig has defined certain bases for U + q associated to the orientations of a Dynkin diagram, called PBW( Poincaré-Birkhoff-Witt) basis, which specializes to the classical PBW type bases. Following [START_REF] Leclerc | Induced representations of affine Hecke algebras and canonical bases of quantum groups[END_REF], we describe the PBW-basis Definition 7.2.8. We define

E([i]) = E i , E([i, j]) = [E j [• • • [E i+1 , E i ] q 1/2 • • • ] q 1/2 ] q 1/2 ,
where [x, y] q 1/2 = xy-q -1/2(wt(x),wt(y)) yx. More generally, let a = s a is,js [i s , j s ] be a multisegment, such that

[i 1 , j 1 ] • • • [i r , j r ]( cf. Def. 7.2.4),
we define

E(a) = 1 s [a is,js ] q 1/2 ! E([i 1 , j 1 ]) a i 1 ,j 1 • • • E([i r , j r ]) a ir ,jr , here [m] q 1/2 = q 1/2m -q -1/2m q 1/2 -q -1/2 for m ∈ Z and [m] q 1/2 ! = [m] q 1/2 [m-1] q 1/2 • • • [2] q 1/2 .
Definition 7.2.9. Let x → x be the involution defined as the unique ring automorphism of U + q defined by q 1/2 = q -1/2 , E i = E i .

Proposition 7.2.10. (cf. [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF]) Let L := a∈O Z[q 1/2 ]E(a) ⊆ U + q . Then there exists a unique Q(q 1/2 )-basis {G(a) : a ∈ O} of U + q such that

G(a) = G(a), G(a) = E(a) modulo q 1/2 L.
This is called Lusztig's canonical basis.

Lusztig also gave a geometric description of his canonical basis in terms of the orbital varieties O a .

Definition 7.2.11. Let A be the group ring of Q * ℓ over Z. Let K ϕ be the Grothendieck group over A of the category of constructible, G ϕ -equivariant Q ℓ sheaves over E ϕ , considered as a variety over a finite field F q . Lemma 7.2.12. (cf. [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF]) The A-module K ϕ admits a basis {γ a : a ∈ S(ϕ)} indexed by the G ϕ orbits of E ϕ , where γ a corresponds to the constant sheaf Q ℓ on the orbit O a , extending by 0 to the complement. Definition 7.2.13. Let ϕ = ϕ 1 + ϕ 2 ∈ S. We define a diagram of varieties

E ϕ 1 × E ϕ 2 E ′ β o o β ′ / / E ′′ β ′′ / / E ϕ , (7.2.14) 
where (2) The morphism β is a locally trivial trivial fibration with smooth connected fibers.

E ′′ :={(T, W ) : W = W i , W i ⊆ V ϕ,i , T (W i ) ⊆ W i+1 , dim(W i ) = ϕ 2 (i)}, E ′ :={(T, W, µ, µ ′ ) : (T, W ) ∈ E ′′ , µ : W ≃ V ϕ 2 , µ ′ : V ϕ /W ≃ V ϕ 1 }, and 
β ′′ ((T, W )) = W, β ′ ((T, W, µ, µ ′ )) = (T, W ), β((T, W, µ, µ ′ )) = (T 1 , T 2 ), such that T 1 = µ ′ • T • µ ′-1 , T 2 = µ • T • µ -1 . Proposition 7.2.15. (cf. [27]) The group G ϕ × G ϕ 1 × G ϕ 2 acts
(3) The morphism β ′′ is proper.

Example 7.2.16. Let ϕ 1 = χ 1 , ϕ 2 = χ 2 . Then ϕ = χ 1 + χ 2 and

E ϕ 1 = E ϕ 2 = 0, E ϕ = F q .
Moreover, we have

E ′′ = {(T, W ) : W = V ϕ 2 , T ∈ F q } ≃ F q , and 
E ′ = {(T, W, µ, µ ′ ) : (T, W ) ∈ E ′′ , µ, µ ′ ∈ F × q } ≃ F q × (F × q ) 2 .
Corollary 7.2.17. (cf. [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF]) Let a ∈ O(ϕ 1 ), a ′ ∈ O(ϕ 2 ). There exists a simple perverse sheaf( up to shift ) P such that

β * (IC(O a ) ⊗ IC(O a ′ )) = β ′ * (P).
Example 7.2.18. As in example 7.2.16, let a

= {[1]}, a ′ = {[2]}, then IC(O a ) = Q ℓ , IC(O a ′ ) = Q ℓ .
Hence if we let 

P = Q ℓ , then β * (IC(O a ) ⊗ IC(O a ′ )) = β ′′
IC(O a ) ⋆ IC(O a ′ ) = β ′′ * (P) = IC(E ϕ ),
note that here β ′′ is an isomorphism.

Proposition 7.2.21. (cf. [START_REF] Lusztig | Canonical bases arising from quantized enveloping algebras[END_REF]) Let a ∈ O(ϕ 1 ), a ′ ∈ O(ϕ 2 ). We associate to the intersection cohomology complex IC(O a )

γ a = b≥a p b,a (q)γ b ,
where p b,a (q) is the formal alternative sum of eigenvalues of the Frobenius map on the stalks of the cohomology sheaves of IC(O a ) at any F q rational point of O b . Moreover, the multiplication ⋆ gives a A-bilinear map

K ϕ 1 × K ϕ 2 → K ϕ ,
which defines an associative algebra structure over K = ϕ K ϕ .

To relate the algebra K and U ≥0 Proposition 7.2.22. ([27] Prop. 9.8, Thm. 9.13) -The elements γ i := γ [i] for all i ∈ Z generate the algebra K over A.

-Let U ≥0 A = U ≥0 q ⊗ Z A. Then we have a unique A-algebra morphism Γ : K → U ≥0

A such that

Γ(γ j ) = K -j j E j ;
for all j ∈ Z. Moreover, for ϕ ∈ S, let

S(ϕ) = i∈Z (ϕ(i) -1)ϕ(i)/2 - i∈Z ϕ(i)ϕ(i + 1).
Then there is an A-linear map Θ :

K ϕ → U + A , such that Γ(ξ) = q 1/2S(ϕ) K(ϕ)Θ(ξ),
where

K(ϕ) = i∈Z K -iϕ(i) i . -We have Γ(γ c ) = q 1/2(r-δc) K(ϕ c )E(c),
where

r = i ϕ c (i)(ϕ c (i) -1)(2i -1)/2 - i iϕ c (i -1)ϕ c (i),
and

δ c is the co-dimension of the orbit O c in E ϕc . -We have Θ(γ a ) = q 1/2 dim(Oa) E(a), Θ( γ a ) = q 1/2 dim(Oa) G(a).

Hence

G(a) = b≥a P b,a (q)E(b).

Proposition 7.2.23. The canonical basis of U + q are almost orthogonal with respect to a scalar product introduced by Kashiwara [START_REF] Kashiwara | On crystal bases of the Q-analogue of universal enveloping algebras[END_REF], which are given by 

(E(a), E(b)) = (1 -q) deg(a) i≤j h a ij (q) δ a,b , where a = i≤j a ij [i, j], h k (z) = (1 -z) • • • (1 -z k )
E * (a) = i≤j h a ij (q) (1 -q) deg(a) E(a) = -→ ij q 1/2( a ij 2 ) E * ([i, j]) a ij ,
here the product is taken with respect to the order ≤. Example 7.2.26. Let a = [1] + [START_REF] Ioan | Jacquet-langlands et unitarisabilité[END_REF]. Then

E * (a) = E([1])E([2]) = E(a), and 
G * ([1, 2]) = E * ([1, 2]), G * (a) = E * (a) -q 1/2 E * ([1, 2]).
Finally, we establish the relation of between the algebras R and U + .

Definition 7.2.27. Let B be the polynomial algebra generated by the set of coordinate functions {t ij : i < j}. Following [START_REF] Leclerc | Induced representations of affine Hecke algebras and canonical bases of quantum groups[END_REF], we write t ii = 1, t ij = 0 if i > j, and indexed the non-trivial t i,j 's by segments, namely, t [ij] = t i,j-1 for i < j.

Now by corollary 1.2.3, we have the following Proposition 7.2.28. We have an algebra isomorphism φ : B ≃ R by identifying t [ij] with L [ij] for all i < j.

Definition 7.2.29. Let B q be the quantum analogue of B generate by {T ij : i < j}, where T ij is considered as the q-analogue of t ij . Also, we write T ii = 1 and T ij = 0 if i > j. And we will indexed the non-trivial T ij by T [i,j-1] . The generators T s 's satisfies the following relations (cf. [START_REF] Bernstein | String bases for quantum groups of type a r . In I. M. Gelfand seminar part I Advances in Soviet Mathematics[END_REF]). Let s > s ′ be two segments. Then T s ′ T s = q -1/2(wt(s ′ ),wt(s)) T s T s ′ + (q -1/2q 1/2 )T s∩s ′ T s∪s ′ , if s and s ′ are linked, q -1/2(wt(s ′ ),wt(s)) T s T s ′ , otherwise .

Proposition 7.2.30. (cf. [START_REF] Leclerc | Induced representations of affine Hecke algebras and canonical bases of quantum groups[END_REF] Section 3.5) There exist an algebra isomorphic morphism ι :

U + q → B q ,
given by ι(E * ([i, j])) = T [i,j] . Moreover, for a = i≤j a ij [i, j], we have

ι(E * (a)) = -→ i≤j q 1/2( a ij 2 ) T a ij [i,j] ,
here the multiplication is taken with respect to the order <. 

Partial Derivatives and Poincaré's series

In this section we will deduce a geometric description for the partial derivatives, using results of last section.

Definition 7.3.1. Kashiwara [START_REF] Kashiwara | On crystal bases of the Q-analogue of universal enveloping algebras[END_REF] introduced some q-derivations E ′ i in End(U + q ) for all i ∈ Z satisfying

E ′ i (E j ) = δ ij , E ′ i (uv) = E ′ i (u)v + q -1/2(α i ,wt(u)) uE ′ i (v). Example 7.3.2. Simple calculation shows that E ′ i (E([j, k])) = δ i,k (1 -q)E([j, k -1]
), by taking dual, we get

E ′ i (E * ([j, k])) = δ i,k E * ([j, k -1]), Proposition 7.3.3. We have (E ′ i (u), v) = (u, E i v)
, where (, ) is the scalar product introduced in proposition 7.2.28.

Note that by identifying the algebra U + q and B q via ι, we get a version of q-derivations in End(B q ). Definition 7.3.4. By specializing at q = 1, the q derivation E ′ i gives a derivation e ′ i of the algebra B by Finally, to show that D i and D i coincides, it suffices to prove that

e ′ i (t [jk] ) = δ ik t [j,k-1] , e ′ i (uv) = e ′ i (u)v + ue ′ i (v).
φ • D i (t [j,k] ) = D i • φ(t [j,k] ), but we have D i (t [j,k] = t [j,k] + δ i,k t [j,k-1] ,
and

D i (L [j,k] ) = L j,k + δ i,k L [j,k-1] .
Therefore, we have φ

• D i (t [j,k] ) = D i • φ(t [j,k] ).
Remark: Without specializing at q = 1, the operator D i is not an algebraic morphism. To get an algebraic morphism at the level of U + q , one should consider not only the summation of the iteration of e ′ i 's but all the derivations, which gives rise to an embedding into the quantum shuffle algebras, cf. [START_REF] Leclerc | Dual canonical bases, quantum shuffles and qcharacters[END_REF]. Next we show how to determine D i (L a ) by the algebra K of Lusztig. 

E n i G(b) = d (E n i G(b), E * (d))E(d) = d (G(b), E ′n i E * (d))E(d),
where Démonstration. Note that by proposition 7.2.22, we have

Γ( γ ℓ[k] ⋆ γ b ) = Γ( γ ℓ[k] )Γ( γ b ) = q 1/2(S(ϕ ℓ[k] )+S(ϕ b )) K(ϕ ℓ[k] )K(ϕ b )Θ( γ ℓ[k] )Θ( γ b ) = q 1/2(S(ϕ ℓ[k] )+S(ϕ b )) K(ϕ ℓ[k] + ϕ b )q 1/2(dim(O ℓ[k] )+dim(O b )) G(ℓ[k])G(b).

Since we have

S(ϕ ℓ[k] ) = dim(O ℓ[k] ) = 0, G(ℓ[k]) = E(ℓ[k]) = 1 [ℓ] q 1/2 ! E ℓ k , ϕ ℓ[k] + ϕ b = ϕ a , so Γ( γ ℓ[k] ⋆ γ b ) = 1 [ℓ] q 1/2 ! q 1/2(S(ϕ b )+dim(O b )) K(ϕ a )E ℓ k G(b).
And

Γ(γ d ) = q 1/2S(ϕ d ) K(ϕ d )Θ(γ d ) = q 1/2(S(ϕ d )+dim(O d )) K(ϕ d )E(d).
Now write

γ ℓ[k] ⋆ γ b = b k d,ϕ d =ϕa p d,b (q)γ d , with p d,b (q) = i q i H 2i (IC(O ℓ[k] ) ⋆ IC(O b )) d .
Applying Γ gives

1 [ℓ] q 1/2 ! q 1/2(S(ϕ b )+dim(O b )) K(ϕ a )E ℓ k G(b) = b k d,ϕ d =ϕa p d,b (q)q 1/2(S(ϕ d )+dim(O d )) K(ϕ d )E(d).
Hence

E ℓ k G(b) = [ℓ] q 1/2 ! b k d,ϕ d =ϕa p d,b (q)q 1/2(S(ϕ d )+dim(O d )-S(ϕ b )-dim(O b )) E(d),
now compare with lemma 7.3.6, we get

(G(b), E ′n i E * (d)) = [ℓ] q 1/2 !p d,b (q)q 1/2(S(ϕ d )+dim(O d )-S(ϕ b )-dim(O b )) .
Finally, we write

1 [ℓ] q 1/2 ! E ′n i E * (d) = b n b,d (q)G * (b),
by applying the scalar product, we get

n b,d (q) = (G(b), 1 [ℓ] q 1/2 ! E ′n i E * (d)) = p d,b (q)q 1/2(S(ϕ d )+dim(O d )-S(ϕ b )-dim(O b )) .
Hence, by specializing at q = 1, we have

n b,d = p d,b (1) 
.

Now take d = a, we get the formula in our proposition.

A formula for Lusztig's product

In this section we will find a geometric way to calculate Lusztig's product in special case, which allows us to determine the partial derivatives in the following sections. from which we obtain

ϕ b = ϕ a (k) + ϕ e(b) (k)χ [k] .
By assumption, we know that

ϕ b + ℓχ [k] = ϕ a .
Combining with the formula

ϕ a = ϕ a (k) + ϕ e(a) (k)χ [k] ,
we have ϕ Definition 7.4.7. Let V be a vector space and ℓ 1 < ℓ 2 < dim(V ) be two integers. We define

Gr(ℓ 1 , ℓ 2 , V ) = {(U 1 , U 2 ) : U 1 ⊆ U 2 ⊆ V, dim(U 1 ) = ℓ 1 , dim(U 2 ) = ℓ 2 }.
Definition 7.4.8. Let ℓ be an integer and a be a multisegment. We let

E ′′ a = {(T ′ , W ′ ) : T ′ ∈ Y a , W ′ ∈ Gr(ℓ, ker(T ′ | V ϕa,k
))}. Note that we have a canonical morphism

α ′ : E ′′ a → Gr(ℓ, ϕ e(a) (k), V ϕa,k ) sending (T ′ , W ′ ) to (W ′ , ker(T ′ | V ϕa,k )).
Proposition 7.4.9. The morphism α ′ is a fibration.

Démonstration. The morphism α ′ is equivariant under the action of GL(V ϕa,k ). The same proof as in proposition 3.3.9 shows that the morphism α ′ is actually a P (U 1 ,U 2 ) bundle, where P (U 1 ,U 2 ) is a subgroup of GL(V ϕa,k ) which fixes the given element (U 1 , U 2 ). Now we take a Zariski neighborhood U of (U 1 , U 2 ) over which we have the trivialization

γ : α ′-1 (U) ≃ α ′-1 ((U 1 , U 2 )) × U,
such an isomorphism comes from a section

s : U → GL(V ϕa,k ), s((U 1 , U 2 )) = Id, by γ((T, W ′ )) = [(g -1 T, g -1 W ′ ), α ′ ((T, W ′ ))]
, where g = s(α ′ ((T, W ′ ))). We remark that the existence of the section s is guaranteed by local triviality of GL(V ϕa,k ) → GL(V ϕa,k )/P (U 1 ,U 2 ) , cf. [START_REF] Serre | Espaces fibrés algébriques (d'après André Weil)[END_REF], § 4. Proposition 7.4.10. Assume that a is a multisegment satisfying (A k ) and

d = a + r[k + 1] for some r ≤ ϕ e(a) (k). Let ℓ ∈ N such that r + ℓ = ϕ e(a) (k) and W a subspace of V ϕ d ,k+1 such that dim(W ) = r. We have a canonical projection p : (X d ) W → E ′′ a where for T ∈ (X d ) W with τ W (T ) = (T 1 , T 0 ) ∈ (Z k+1,d ) W × Hom(V ϕ d ,k , W ), we define p(T ) = (T 1 , ker(T 0 | W 1 )), where W 1 = ker(T 1 | V ϕ d ,k
) (Note that here we identify (Z k+1,d ) W with Y a , see the remark after proposition 3.3.12 ). Moreover, let U 1 ⊆ U 2 ⊆ V ϕ d ,k be subspaces such that dim(U 1 ) = ℓ, dim(U 2 ) = ϕ e(a) (k), then p is a fibration with fiber

{T ∈ Hom(V ϕ d ,k , W ) : ker(T | U 2 ) = U 1 }.
Démonstration. We first show that σ ′ is locally trivial. We observe that the group GL(V ϕa,k ) acts both on the source and target of σ ′ in such a way that σ ′ is GL(V ϕa,k )-equivariant. As in the proof of proposition 7.4.9, let U ⊆ Gr(ℓ, ϕ e(a) (k), V ϕa,k ) be a neighborhood of a given element (U 1 , U 2 ) such that we have a section

s : U → GL(V ϕa,k ), s((U 1 , U 2 )) = Id.
Note that in this case we have a natural trivialization of σ ′ by

σ ′ : β ′-1 (U) ≃ U × β ′-1 ((U 1 , U 2 )) by σ ′ ((T, U )) = [(U, π -1 (ker(T | V ϕa,k ))), g -1 ((T, U ))] with g = s((U, π -1 (ker(T | V ϕa,k )))).
Finally, we show that σ is surjective and locally trivial. We observe that α ′ = σ ′ σ and σ preserves fibers. Now we fix a neighborhood U as above and get a commutative diagram

α ′-1 (U) γ / / U × α ′-1 ((U 1 , U 2 )) δ σ ′-1 (U) γ ′ / / U × σ ′-1 ((U 1 , U 2 ))
where δ([x, T ]) = [x, σ(T )] for any x ∈ U and T ∈ α ′-1 ((U 1 , U 2 )). Therefore to show that σ is locally trivial , it suffices to show that it is locally trivial when restricted to the fiber α ′-1 ((U 1 , U 2 )). Note that we have

α ′-1 ((U 1 , U 2 )) ≃ {T ∈ Y a : ker(T | V ϕa,k ) = U 2 } ≃ (X k a ) U 2 ֒→ Y a (k) ×Hom(V ϕa,k-1 , U 2 )
and

σ ′-1 ((U 1 , U 2 )) ≃ {T : T ∈ End(V ϕa /U 1 ) of degree 1, ker(T | V ϕa,k /U 1 ) = U 2 /U 1 , T ∈ O b , for some b k a} ֒→ Y a (k) × Hom(V ϕa,k-1 , U 2 /U 1 ).
Note that the canonical morphism

Hom(V ϕa,k-1 , U 2 ) → Hom(V ϕa,k-1 , U 2 /U 1 )
is a fibration. Hence to show that

α ′-1 ((U 1 , U 2 )) → σ ′-1 ((U 1 , U 2 ))
is a fibration, it suffices to show that σ| α ′-1 ((U 1 ,U 2 )) is surjective with isomorphic fibers everywhere . Let (T, U 1 ) ∈ σ ′-1 ((U 1 , U 2 )) with Moreover, it induces a one to one correspondance between orbits.

τ U 2 /U 1 (T ) = (T 0 , q 0 ) ∈ Y a (k) × Hom(V ϕa,k-1 , U 2 /U 1 )
Démonstration. Note that for T ∈ (X d ) W , such that τ

W (T ) = (T 1 , T 0 ) ∈ (Z k+1,d ) W × Hom(V ϕ d ,k , W ), let U 1 = ker(T 1 | V ϕ d ,k ), U 0 = ker(T 0 | U 1 )
we have p(T ) = (T 1 , U 0 ). Now it follows from the definition that we have p(gT ) = π * (g)p(T ).

Hence p sends orbits to orbits. It remains to show that the pre-image of an orbit is an orbit instead of unions of orbits. We proved in proposition 7.4.10 that

p -1 p(T ) = {(T 1 , q) : q ∈ Hom(V ϕ d ,k , W ), ker(q| U 1 ) = U 0 },
note that here we identify elements of (X d ) W with its image under τ W . Let (T 1 , q) ∈ p -1 p(T ). Then we want to find g ∈ G ϕ d ,W such that g(T 1 , T 0 ) = (T 1 , q). Note that by fixing a splitting

V ϕ d ,k+1 = W ⊕ V ϕ d ,k+1 /W , we can choose g ∈ G ϕ d such that g i = Id ∈ GL(V ϕ d ,i
) for all i = k + 1, and

g k+1 = g 1 g 12 0 Id V ϕ d ,k+1 /W ∈ P W ,
where g 1 ∈ GL(W ), and g 12 ∈ Hom(V ϕ d ,k+1 /W, W ). By hypothesis, we know that the restrictions of q and T 0 to U 1 are surjective with kernel U 0 , so we can choose g 1 ∈ GL(W ), such that

g 1 T 0 (v) = q(v), for all v ∈ U 1 .
Finally, for v 1 ∈ V ϕ d ,k+1 /W , by our assumption at the beginning of this section on a, we know that

T 1 |V ϕ d ,k is surjective, hence there exists v ∈ V ϕ d ,k such that T 1 (v) = v 1 .
Then we define

g 12 (v 1 ) = q(v) -g 1 T 0 (v).
We check that this is well defined, i.e, for another

v ′ ∈ V ϕ d ,k such that T 1 (v ′ ) = v 1 , we have q(v) -g 1 T 0 (v) = q(v ′ ) -g 1 T 0 (v ′ ),
this is the same as to say that

q(v -v ′ ) = g 1 T 0 (v -v ′ ).
We observe that T

1 (v -v ′ ) = 0, hence v -v ′ ∈ U 1 , now q(v -v ′ ) = g 1 T 0 (v -v ′ )
follows from our definition of g 1 . Under such a choice, we have

g((T 1 , T 0 )) = (T 0 , q).
Hence we are done. 

Y a p ′ GL ϕa(k) × P U p ′-1 (U ) δ o o u u
Gr(ℓ, V ϕa,k ) which shows that p ′ is a GL ϕa,k bundle. Moreover, the same proof as in lemma 7.4.14 shows that the orbits of Y are in in one to one correspondance with that of the fibers

p ′-1 (U ) ≃ {T ∈ End(V ϕa /U ) :T is of degree 1, T ∈ O b for some b k a},
under the action of stabilizer G ϕa,U of U . Let ϕ ∈ S be the such that ϕ + ℓχ [k] = ϕ a . Then by identifying V ϕ with V ϕa /U , we can view p ′-1 (U ) as an open subvariety of E ϕ . Note that we are identifying orbits with orbits by the canonical projection G ϕa,U → G ϕ .

Now it follows that the fibers are parametrized by the set S. Finally, let b ∈ S.

We have to show that σ -1 (Y(b)) is irreducible, which is a consequence of the following lemma. 

c ♯ = (c \ c(k)) ∪ Γ ∪ {∆ + : ∆ ∈ c(k) \ Γ},
and E ′′ a (c ♯ ) is the orbit indexed by c ♯ . Moreover, the set Q(a, b) contains a unique minimal element.

Remark:

We remark that S(ϕ) contains a unique maximal element.

Démonstration. Recall that we constructed in proposition 7.4.10 a morphism p, consider the composition k+1) . Therefore we conclude that there is a bijection between the G ϕa -orbits in σ -1 (Y(b)) and Q(a, b).

(X d ) W p - → E ′′ a σ - → Y a , which sends (O c ) W to Y(b), where b = c (k,k+1) for c ∈ S(d). Hence we have b = (c (k+1) ) Γ for Γ = {∆ ∈ c : e(∆) = k}. Note that c ∈ S(d) implies that c (k+1) ≤ a = d (k+1) . Conversely, for c ∈ Q(a, b), such that b = c Γ , there is a unique element c ′ = c ♯ in S(d) such that O c ′ ⊆ X d and c = c ′(
Finally, for

ϕ a = ϕ b + ℓχ [k] ,
we show by induction on ℓ that the set Q(a, b) contains a unique minimal element.

For case ℓ for some Γ ′ ⊆ e(k). Again let

= 1, let b(k) := {∆ ∈ b : e(∆) = k} = {∆ 1 • • • ∆ h }. and c i = (b \ ∆ i ) ∪ ∆ + i . Then Q(a, b) ⊆ {c i : i = 1, • • • , h},
Γ ′ 1 ⊆ Γ ′ , e ′ = e Γ ′ 1 such that ℓ = ♯Γ ′ = ♯Γ ′ 1 + 1. Now we obtain e ′ ∈ Q 1 , b = e ′ Γ ′ \Γ ′ 1 . By minimality of c 1 , we know that c 1 ≤ e ′ .
Note that this implies c 1 e ′ , and by transitivity of poset relation, we get c 1 k e. Now we apply proposition 7.1.7 to get

c 1 = f Γ ′′ ,
for some f ∈ S(e) and Γ ′′ ⊆ f (k). Again we deduce from induction that f ≥ c 2 .

Hence c 2 ≤ e. Now we return to the calculation of product of perverse sheaves, cf. corollary 7.2.17. 

(O b ) ⋆ IC(O ℓ[k] ) = β ′′ * (IC(E ′′ a (c ♯ ))).
Démonstration. First of all, by definition

E ′′ = {(T, U ) : T ∈ E ϕa , T (U ) = 0, dim(U ) = ℓ}, therefore we have E ′′ a ⊆ E ′′ . Furthermore, the variety E ′′ a is open in E ′′ . In fact, consider the canonical morphism β ′′ : E ′′ → E ϕa , then E ′′ a = β ′′-1 (Y a ). Since Y a is open in E ϕa , we know that E ′′ a is open in E ′′ . Now we have two morphisms σβ ′ :β ′-1 (E ′′ a ) → Y a , β :E ′ → E ϕ b × E ϕ ℓ[k] ≃ E ϕ b . We claim that β -1 (O b ) ∩ β ′-1 (E ′′ a ) = β ′-1 σ -1 (Y(b)), where Y(b) is the orbit in Y(b) under the action of G ϕa .
By definition of β, we know that

β -1 (O b ) ∩ β ′-1 (E ′′ a ) = {(T, W, µ, µ ′ ) :µ : W ≃ V ϕ ℓ[k] , µ ′ : V ϕa /W ≃ V ϕ b , T ∈ O f for some f ∈ S(a), b k f }.
Now by definition of σ and β ′ , we know that

β -1 (O b )∩β ′-1 (E ′′ a ) = β ′-1 σ -1 (Y(b)
). Now by proposition 7.4.17, σ -1 (Y b ) contains E ′′ a (c ♯ ) as the unique open suborbit, where c is the minimal element in Q(a, b). Therefore we conclude that

β ′ * (IC(E ′′ a (c ♯ ))) = β * (IC(O b ) ⊗ IC(E ϕ ℓ[k] )).

Now by definition

IC(O b ) ⋆ IC(O ℓ[k] ) = β ′′ * (IC(E ′′ a (c ♯ ))).

Multisegments of Grassmanian Type

In order to precisely describe the previous corollary concerning Lusztig's product in the Grassmanian case in the next section, we generalize the construction in section 3.3 to get more general results concerning the the set S(a) for general multisegment a. Let V a C vector space of dimension r + ℓ and Gr r (V ) be the variety of r-dimensional subspaces of V .

Definition 7.5.1. By a partition of ℓ, we mean a sequence λ = (ℓ 1 , • • • , ℓ r ) for some r, where

ℓ i ∈ N , 0 ≤ ℓ 1 ≤ • • • ℓ r ≤ ℓ.
And for µ = (µ 1 , • • • , µ s ) be another partition, we say µ ≤ λ if and only if µ i ≤ λ i for all i = 1, • • • ,. Let P(ℓ, r) be the set of partitions of ℓ into r parts.

Definition 7.5.2. We fix a complete flag

0 = V 0 ⊂ V 1 ⊂ • • • ⊂ V r+ℓ = V.
This flag provides us a stratification of the variety Gr r (V ) by Schubert varieties, labeling by partitions , denoted by X λ ,

X λ = {U ∈ Gr r (V ) : dim(U ∩ V ℓ i +i ) ≥ i, for all i = 1, • • • , r}. Lemma 7.5.3. (cf. [36]) We have µ ≤ λ ⇐⇒ X µ ⊆ X λ .
And the Schubert cell

X λ = X λ - µ<λ X µ
is open in X λ .

Definition 7.5.4. Let Ω r,ℓ be the set

Ω r,ℓ = {(a 1 , • • • , a m ; b 0 , • • • , b m-1 ) : i a i = r, j , b j = ℓ, for 0 < i < m, a i > 0, b i > 0}.
Lemma 7.5.5. (cf. [START_REF] Zelevinsky | Small resolutions of singularities of Schubert varieties[END_REF]) There exists a bijection Ω r,ℓ → P(ℓ, r),

which sends (a 1 , • • • , a m ; b 0 , • • • , b m-1 ) to a partition of ℓ given by b 0 , b 0 + b 1 , • • • , , b 0 + • • • + b m-1 , and that the elements b 0 + • • • + b i-1 figures in λ with multiplicity a i .
Notation 7.5.6. From now on, we will also write

λ = (a 1 , • • • , a m ; b 0 , • • • , b m-1 ),
with notations as in the previous lemma.

We introduce the formula in [START_REF] Zelevinsky | Small resolutions of singularities of Schubert varieties[END_REF] to calculate the Kazhdan Lusztig polynomials for Grassmannians. From now on until the end of this section, we let Let λ = (a 1 , a 2 ; b 0 , b 1 ) = (1, 0; 2, 1), then a λ = [1, 5] + [2, 5] + [START_REF] Badulescu | Une condition suffisante pour l'irréductibilité d'une induite parabolique de GL(m, D). Annales[END_REF][START_REF] Beȋlinson | Faisceaux pervers[END_REF] + [START_REF] Beȋlinson | Faisceaux pervers[END_REF][START_REF] Bernstein | String bases for quantum groups of type a r . In I. M. Gelfand seminar part I Advances in Soviet Mathematics[END_REF]. This corresponds to the element ς

J = {σ i : i = 1, • • • , r -1} ∪ {σ i : i = r + 1 • • • , r + ℓ -1}, and 
a := a J,∅ Id = {∆ 1 , • • • , ∆ r , • • • , ∆ r+ℓ } be a multisegment of parabolic type (J, ∅), where e(∆ i ) = k -1, for i = 1, • • • , r,
-1 1 • ς 2 (λ) = σ 1 σ 2 in S J,∅ 4 .
Figure 7.2 -Proposition 7.5.17. Let λ, µ ∈ Ω r,ℓ such that λ < µ. We have P a λ ,aµ (q) = P λ,µ (q).

Démonstration. We can also prove this proposition in the following way. Let w, v ∈ S J,∅ r+ℓ , such that

λ = ς -1 2 ς 1 (w), µ = ς -1 2 ς 1 (v).
Let P J be the parabolic subgroup of GL n , then by fixing an element in V 0 ∈ Gr r (C r+ℓ ), we can identify P J \GL n with Gr r (C r+ℓ ). Moreover, the Borbits P J \wB corresponds to the varieties X λ , see [START_REF] Brion | Lectures on the geometry of flag varieties[END_REF] for a precise description. Hence we have P λ,µ (q) = P J,∅ w,v (q) = P a λ ,aµ (q).

Remark: One can surely prove this result using the open immersion we constructed in section 3.3.

Definition 7.5.18. Let λ ∈ Ω r,ℓ .

Proposition 7.6.8. Let P J and P J 1 be the parabolic subgroups corresponding to J, J 1 respectively. Consider the natural morphism

π : P J 1 \GL r+ℓ → P J \GL r+ℓ . Then n(a µ , a λ ) = i dim H 2i (π * (IC(P J 1 w µ B))) x
for some x ∈ P J t λ B, here t λ is the element in S J,∅ r+ℓ associated to the partition λ.

Démonstration. Consider the composed morphism

h : X d = (X d ) W p - → E ′′ a β ′′ -→ E ϕa .
This proposition can be deduced from a construction of fibration similar to the one we did in Chapter 2 for symmetric multisegments, cf. §2.5.

Parabolic Case

In this section, as in the Grassmannian case, we deduce a formula for calculating the coefficient n(b, a). Let J ⊆ S be a subset of generators and a = a J,∅ Id be some multisegment of parabolic type (J, ∅) associated to the identity, satisfying f e(a) (k) = 0, f e(a) (k + 1) = 0. O aw , where a w = a J 1 (r 0 ,k),∅ w ∈ S(a 1 ) is the element associated to w by lemma 6.2.23. Proposition 7.7.4. Let w ∈ S J 2 (r 0 ,k),∅ n . Then there exists w ♭ ∈ S J,∅ n , such that {b ∈ S(a) :

Notation 7.7.1. For k ∈ Z, we let ℓ k = f e(a) (k). Definition 7.7.2. Let a(k) = {∆ 1 , • • • , ∆ ℓ k } with ∆ 1 • • • ∆ ℓ k and r 0 ∈ N with 1 ≤ r 0 ≤ ℓ k . Then let a 1 = (a \ a(k)) ∪ {∆ ∈ a(k) : ∆ ∆ ℓ k -r 0 } ∪ {∆ + ∈ a(k) : ∆ ∆ ℓ k -r 0 +1 }, a 2 = (a \ a(k)) ∪ {∆ -∈ a(k) : ∆ ∆ r 0 } ∪ {∆ ∈ a(k) : ∆ ∆ r 0 +1 } and J i (r 0 , k)(i = 1, 2) be a subset of S such that a i is a multisegment of parabolic type (J i (r 0 , k), ∅). Moreover, let a J i (r 0 ,k),∅ Id = a i , for i = 1, 2.
a w k b} = {a v : v ∈ S J,∅ n , v ≤ w ♭ }. More explicitly, if a w (k -1) = {∆ 1 , • • • , ∆ ℓ k-1 } with ∆ 1 • • • ∆ ℓ k-1 , then a w ♭ = (a w \a w (k-1))∪{∆ + ∈ a w (k-1) : ∆ ∆ r 0 }∪{∆ ∈ a w (k-1) : ∆ ∆ r 0 +1 }. Proposition 7.7.5. Let w ∈ S J 2 (r 0 ,k),∅ n . Then (a µ ♭ ) ♯ = (a w ♭ \ a w (k)) ∪ {∆ + : ∆ ∈ a w (k)}
for definition of (a µ ♭ ) ♯ , cf. lemma 7.4.18. Definition 7.7.6. Let t w ∈ S J 1 (ℓ k -r 0 ,k),∅ n be the element such that a tw = (a w ♭ ) ♯ . Proposition 7.7.7. Let P J and P J 1 (ℓ k -r 0 ,k) be the parabolic subgroups corresponding to J, J 1 (ℓ kr 0 , k) respectively. Consider the natural morphism

π : P J 1 (ℓ k -r 0 ,k) \GL n → P J \GL n . Then n(a w , a v ) = i dim H 2i (π * (IC(P J 1 (ℓ k -r 0 ,k) t w B))) x
for some x ∈ P J vB.

Démonstration. Consider the composed morphism

h : X d = (X d ) W p - → E ′′ a β ′′ -→ E ϕa .
This proposition can be deduced from a construction of fibration similar to the one we did in Chapter 2 for symmetric multisegments, cf. §2.5.

Calculation of Partial Derivatives

Again, as previous section, we restrict ourselves to the case of multisegment of parabolic type.

Definition 7.8.1. Let J 1 ⊆ J 2 ⊆ S be two subsets of generators of S n . Let v ∈ S J 1 ,∅ n , w ∈ S J 2 ,∅ n , we define θ J 1 J 2 (w, v) to be the multiplicities of IC(P J 2 wB) in π * (IC(P J 1 vB)), where π : P J1 \GL n → P J 2 \GL n be the canonical projection. Remark: By proposition 5.3.13, we know that in case where

J 1 = ∅, J 2 = {s i } we have θ J 1 J 2 (w, v) = µ(s i w, v) if ℓ(v) ≤ ℓ(s i v)
, where µ(x, y) is the coefficient of degree (ℓ(y)ℓ(x) -1)/2 in P x,y (q). Proposition 7.8.2. Let J ⊆ S be a subset of generators in S n . Let k ∈ Z and a be a multisegment satisfies all the assumptions in the beginning of section 7.7. Then for any w ∈ S J,∅ n , we have

D k (L Φ(w) ) = ℓ k r 0 =0 v∈S J 2 (r 0 ,k),∅ n θ J 1 (ℓ k -r 0 ,k) J (w, t v )L Φ(v) .
Démonstration. Note that by proposition 7.1.4

D k (π(Φ(w))) = b k Φ(w) n(b, a)L b .
Note that by proposition proposition 7.1.7, we know that b k Φ(w) implies that b = Φ(v), for some v ∈ J 2 (ℓ kr 0 , k). Moreover, according to the proposition 7.7.7

n(Φ(v), Φ(w)) = i dim H 2i (π * (IC(P J 1 (ℓ k -r 0 ,k) t v B))) x
for some x ∈ P J wB. In fact, by the decomposition theorem, we have

π * (IC(P J 1 (ℓ k -r 0 ,k) t v B) = u∈S J n ⊕ i IC(P J uB) h i (u,tv) [d i u ] (7.8.3) therefore θ J 1 (ℓ k -r 0 ,k) J (u, t v ) = i h i (u, t v ).
Note that Γ i (a, k) = S(a i ), which implies that we have

Γ i (a, k) k 1 = S(a i ) k 1 .
Finally, note that by proposition 3.4.1 we have a bijection

ψ k 1 : S(a i ) k 1 → S(a (k 1 ) i
).

Note that

k 1 = k -1, k implies that a (k 1 ) i ∈ Γ i (a (k 1 ) , k) and Γ(a (k 1 ) , k) = i S(a (k 1 ) i
).

And if

k 1 = k, then Γ(a, k) k = S(a) k , Γ(a (k 1 ) , k) = S(a (k) ).
Hence we are done.

Lemma 7.8.10. Let k 1 , k ∈ Z then the map

k 1 ψ : k 1 Γ(a, k) → Γ( (k 1 ) a, k) b → (k 1 ) b is bijective.
Démonstration. If k 1 = k, the proof is the same as that of the previous lemma. Consider the case where k Applying the derivation k 1 D to the equation (7.8.12), we get

1 = k. Let a(k) = {∆ 1 • • • ∆ r 0 ≻ [k] = • • • = [k] r 1 }. Then for i ≤ ℓ k , we have a i = (a \ a(k)) ∪ {∆ - j : j ≤ i} ∪ {∆ j : j > i}, where ∆ j = [k] if j > r 0 . And we have Γ i (a, k) = S(a i ). By definition, we have b ∈ k Γ i (a, k) if and only if b ∈ k S(b), (k) b ∈ Γ i ( (k) a, k). Since (k) a(k) = {∆ 1 , • • • , ∆ r 0 }, we know that for b ∈ k Γ i (a, k), we must have i ≤ r 0 . Also, let ( (k) a) i = ( (k) a \ (k) a(k)) ∪ {∆ - j : j ≤ i} ∪ {∆ j : r 0 ≥ j > i}. And we have Γ i ( (k) a, k) = S(( (k) a) i ). Then we have (k) a i = ( (k) a) i .
k 1 DD k (L c ) = k 1 D(L c ) + d k c n(d, c)( k 1 D)(L d ).
Note that in this case the sub-quotient of In §8.1 we treat the first case, which is simpler to deal with. We have an explicit formula for the case where b = [k+1] (cf. lemma 8.1.7 and proposition 8.1.5), and then we deduce by induction the general case (cf. proposition 8.1.12). For example the formula of proposition 8.1.5 looks like

L a × L b = L a+b + c∈Γ ℓ k -1 (a,k) θ k (c, a) -θ k (c [k+1] 1 , a + b) L c [k+1] 1 [k] ℓ k -1 .
where the θ k (c, a) are defined thanks to partial derivative, cf. notation 7.8.17.

Here our main tool is the derivatives for which we have complete formulas, cf. proposition 7. which gives the formula. Now for general i < r, assume that we have m(c

[k i ] ℓ k i [k i-1 ] ℓ k i-1 •••[k 1 ] ℓ k 1 , b, a) = m(c, b, a (k 1 ,••• ,k i ) ),
that is to say

L a (k 1 ,••• ,k i ) × L b = c∈S(a+b) k 1 ,••• ,k i m(c, b, a)L c (k 1 ,••• ,k i ) .
Now apply D k i+1 and the same argument as in the case where i = 1 gives

L a (k 1 ,••• ,k i+1 ) × L b = c∈S(a+b) k 1 ,••• ,k i+1 m(c, b, a)L c (k 1 ,••• ,k i+1 ) .
Remark: If we assume that a is of parabolic type, i.e Then by replacing a by a (k 1 ,••• ,kr) , we are reduced to the case where f e(a) (ki 0 -1) = 0. 

•••[k 1 ] ℓ k 1 , b, a [kr] ℓ kr [k r-1 ] ℓ k r-1 •••[k 1 ] ℓ k 1 )
Remark: This proposition allows us to reduce to the case where f e(a) (k + 1) = 0.

Démonstration. The proof is the same as that of the proposition above.

As usual, we reduce to the parabolic case by the following proposition. In this case we cannot compute the multiplicity of L c 2 using directly the partial derivatives.

Remark: The proposition is also false if we remove the condition 

-i 0 +1] ℓ k-i 0 +1 [k-i 0 ] ℓ k-i 0 -1 , b, a i 0 )L c [k-i 0 +1] ℓ k-i 0 +1 [k-i 0 ] ℓ k-i 0 -1 , with m(c [k-i 0 +1] ℓ k-i 0 +1 [k-i 0 ] ℓ k-i 0 -1 , b, a i 0 ) = d∈Γ ℓ k-i 0 -1 (a,k-i 0 ) k-i 0 +1 θ k-i 0 (d, a)m(c, b, d (k-i 0 +1) )- e θ k-i 0 (c [k-i 0 +1] ℓ k-i 0 +1 , [k-i 0 +1
] 1 e)m(e, (k-i 0 +1) b, a i 0 )

where c runs through all the terms such that m(c, b, d (k-i 0 +1) ) = 0 for some d and f b(c) (ki 0 + 1) = 0, e runs through all the terms such that m(e, (k-i 0 +1) b, a i 0 ) = 0 . In this case, we apply the derivative D k-i 0 +1 D k-i 0 to the equation (8.1.13) and consider terms of degree equal to deg(c (k-i 0 ,k-i 0 +1) ). On the left hand side we find in the induction L a i 0 × L b so that by taking the difference, we get our results.

Remark: In general the multisegment d (k-i 0 +1) in the the formula does not satisfies the condition f e(d (k-i 0 +1) ) (i) = 0, for all ki 0 ≤ i ≤ k.

In order to proceed our calculation, we have to apply proposition 8. More generally, for an multisegment a, following proposition 6.3.2, we can associate an element τ in S J 1 (a),J 2 (a) n , such that

a = n i=1 [k i , ℓ τ (i) ]
with

k 1 ≤ k 2 ≤ • • • k n , ℓ 1 ≤ ℓ 2 ≤ • • • ≤ ℓ n .
Again, by proposition [?], we know that every multisegment in S(a) is of the following form

a σ = n i=1 [k i , ℓ σ(i) ]
with σ ≥ τ , here we let [i, j] = ∅ if i > j and a σ = ∅ if ℓ σ(i) < k i for all i. Now we get the following proposition Proposition 9.1.2. We fix the notation as above, then π(a τ ) = σ≥τ P J 1 (a),J 2 (a)

τ,σ (1) 
L aσ .

Equivalently, we have L aτ = σ≥τ P J 1 (a),J 2 (a),- τ,σ

(1)π(a σ ), here we let L a = π(a) = 0 if a = ∅ and P J 1 (a),J 2 (a),- τ,σ (q) = γ∈S J 1 (a) σS J 2 (a)

(-1) ℓ(γ)-ℓ(τ ) P w 0 γ,w 0 τ (q).

Démonstration. The first formula is deduced from proposition 6.2.25. The second can be obtained by applying the partial derivation to the formula for symmetric case( which reverses our procedure to produce a symmetric multisegment from a given one).

Two conjectures of Badulescu

In this section, let D be an central division algebra of dimension d 2 over our local field F . We consider G ′ =: GL n (D), which is an inner form of G = GL nd (F ). Note that the fact a σ is maximal in σ 0 (× j S(A j (a)))∩S J 1 (a),J 2 (a) r implies that S(C(a σ )) contains only one element. Hence LJ(L aσ ) = L C(aσ) .

Assume that t for all τ ∈ σ 0 (× j S(A j (a))) ∩ S J 1 (a),J 2 (a) (j) ,γ∈S(A j ) J 1 (a) σ 0 ∩S(A j ),J 2 (a) P J 1 (a) σ 0 ∩S(A j ),J 2 (a)∩S(A j ) σ (j) ,γ

(1)L C(a,j)γ ) = τ ∈σ 0 (× j S(A j (a)))∩S J 1 (a),J 2 (a) r ,τ >σ j P J 1 (a) σ 0 ∩S(A j ),J 2 (a)∩S(A j ) σ (j) ,τ (j) (1)L C(aτ ) , the first equality follows from the fact that the multisegment C(a σ ) j lies in different Tadić line for different j, the second follows from lemma 9.2.21. Therefore it suffices to show the following formula j P σ (j) ,τ (j) (1) = P σ,τ (1), which is proved in lemma 9.2.24. Hence we are done. (c) Finally, we prove the case (ii). We start with the following formula L aσ = π(σ σ ) + τ >σ,τ ∈S J 1 (a),J 2 (a) r P J 1 (a),J 2 (a),- σ,τ note that the second equality is proved in case (b). Therefore we obtain the following LJ(L aσ ) = aτ ∈S(aσ)∩T (a) γ≥τ,γ∈σ 0 (× j S(A j (a)))∩S J 1 (a),J 2 (a) r P J 1 (a),J 2 (a),- σ,τ

(1)P J 1 (a),J 2 (a) τ,γ

(1)L C(aγ ) . Now for fixed γ ∈ σ 0 (× j S(A j (a))) ∩ S J 1 (a),J 2 (a) r , we get the multiplicity of L (aγ ) in LJ(L aσ ) given by m(L C(aγ ) , LJ(L aτ )) = aτ ∈S(aσ)∩T (a),τ ≤γ P J 1 (a),J 2 (a),- σ,τ

(1)P J 1 (a),J 2 (a) τ,γ Clearly a is not simple with respect to D. We have T (a) = {a, a (13) , a [START_REF] Leclerc | Dual canonical bases, quantum shuffles and qcharacters[END_REF] , a [START_REF] Zelevinsky | A p-adic analog of the Kazhdan-Lusztig conjecture[END_REF] , a (153) , a (13) [START_REF] Leclerc | Dual canonical bases, quantum shuffles and qcharacters[END_REF] , a (24) [START_REF] Zelevinsky | A p-adic analog of the Kazhdan-Lusztig conjecture[END_REF] , a (153)(24) }.

We have P w 0 (13)(24),w 0 [START_REF] Leclerc | Dual canonical bases, quantum shuffles and qcharacters[END_REF] (1) = P (135), [START_REF] Mínguez | On a determinantal formula of Tadić[END_REF] (1) = 1, P w 0 (35)(24),w 0 [START_REF] Leclerc | Dual canonical bases, quantum shuffles and qcharacters[END_REF] (1) = P (153), [START_REF] Mínguez | On a determinantal formula of Tadić[END_REF] (1) = 1, and P w 0 (153) [START_REF] Leclerc | Dual canonical bases, quantum shuffles and qcharacters[END_REF],w 0 [START_REF] Leclerc | Dual canonical bases, quantum shuffles and qcharacters[END_REF] (1) = P (35), [START_REF] Mínguez | On a determinantal formula of Tadić[END_REF] (1) = 2.

First of all, we have L a (24) = π(a [START_REF] Leclerc | Dual canonical bases, quantum shuffles and qcharacters[END_REF] ) + other termsπ(a (13)(24) )π(a (24) [START_REF] Zelevinsky | A p-adic analog of the Kazhdan-Lusztig conjecture[END_REF] ) + 2π(a (153) [START_REF] Leclerc | Dual canonical bases, quantum shuffles and qcharacters[END_REF] ). Explicit computation shows that LJ(L a (24) ) = L C(a (24) ) + L C(a (153) [START_REF] Leclerc | Dual canonical bases, quantum shuffles and qcharacters[END_REF] ) .

Remark:

The example above also shows that lemma 9.2.24 is not true in general for a not simple.

Imaginary Multisegment

According to [START_REF] Leclerc | Imaginary vectors in the dual canonical basis of u_q(n)[END_REF],

Definition 9.3.1. A multisegment a is said to be imaginary if L a × L a is not simple, otherwise it is said to be real.

In this section we give an example of an imaginary multisegment, following [START_REF] Leclerc | Imaginary vectors in the dual canonical basis of u_q(n)[END_REF].

In chapter 7 ,

 7 if one is interested in calculating the multiplicities in L a × L b , it might be interesting to first compute D k (L a ). Using the formula of π(a) = b m(b, a)L b , one is reduced to compute D k (π(a)) = b n(b, a)L b

Notation 1 . 1 . 1 .

 111 We denote a partition of n by n = {r 1 , • • • , r α } with α i=1 r i = n. For a divisor m of n, the partition (m, • • • , m) will be denoted n m . We will also use the notation n + m = (n, m).

(π) = 0 .

 0 We denote by C n the set of irreducible cuspidal representations of GL n (F ), and C = n≥1 C n . Proposition 1.1.7. (cf. [7] 4.1) Let π be an irreducible representation of GL n (F ), then there exists a partition n = {r 1 , • • • , r α } and a cuspidal representation ρ = ρ 1 ⊗ • • • ⊗ ρ α , of M n , such that π can be embedded into ind GLn(F ) Pn (ρ). The set {ρ 1 , • • • , ρ r } is determined by π up to permutation, we call it the cuspidal support of π.

Theorem 1 . 1 .

 11 15. ([34] Theorem 6.1) Let a = {∆ 1 , • • • , ∆ r } be a well ordered multisegment.

Definitions 1 . 2 . 7 .Notation 1 . 2 . 8 .Proposition 1 . 2 . 9 .Definition 1 . 2 . 10 .

 1271281291210 Let Π = {ν k : k ∈ Z} denote the Zelevinsky line of ρ = 1. We note -Σ the set of segments associated to Π, -O the set of multisegments associated to Σ, -R the subalgebra of R univ generate by the elements in L a with a ∈ O, -C = {f : Σ → N with finite support}, -S = {ϕ : Z → N}. For i ≤ j, we will identify L [ν i ,ν j ] ∈ R with [i, j]( for simplicity we let [i] = [i, i]). More generally we denote a multisegment a by i≤j a ij [i, j]. By associating to f ∈ C the multisegment ∆∈Σ f (∆)∆, we can identify C with O. For every element b ∈ O, we set f b for the associated function in C. For a multisegment a = i≤j a ij [i, j]

Démonstration.

  We prove this result by induction on the cardinality of S(a), denoted by |S(a)|. If |S(a)| = 1, then a = a min , hence φ i (L a ) = φ i (π(a)), which is nonzero if and only if a contains no other segments than [i], and in latter case it is 1. Let a be a general multi-segment, π(a) = L a + b<a m(b, a)L b . Now |S(a)| > 1, we know that a is not minimal in S(a), hence a contains segments other than [i], which implies φ i (π(a)) = 0. Since |S(b)| < |S(a)| for any b < a, by induction, we know that φ i (L b ) = 0 because b must contain segments other than [i]. So we are done.

  Concretely, for a, b multisegments of degree n such that the nilpotent orbit O a is included in the closure of O b , the germs of intersection complexe IC(O b ) at a generic point of O a gives the Poincaré polynomial P a,b (q) and Zelevinsky conjectured that m b,a = P a,b (1) = P σ(a),σ(b)[START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(m, 1, n)[END_REF] 

Figure 2 . 1 -Lemma 2 . 1 . 4 .

 21214 Figure 2.1 -Ordinary multi-segments

Definition 2 . 3 . 1 .

 231 By a stratification H on Y , we mean a decomposition of Y into locally closed smooth sub-varieties Y i . An element of H is called a stratum. Remark: We require a variety to be irreducible. Definition 2.3.2. Let D b (Y ) = D b c (Y ) be the bounded derived category of sheaves with values in complex vector spaces over Y . And let D(Y ) be the subcategory consisting of those complexes whose cohomology sheaves are constructible.

Definition 2 . 3 . 3 .

 233 (cf.[13] Remark 3.8.1) Given a local system on the open stratum U d with d = dim(Y ), we define inductively a complex IC(Y, L) in D(Y ) as follows. We start by letting IC(U d , L) := L[dim Y ]. Assuming that we already defined IC(U ℓ+1 , L), let j : U ℓ+1 → U ℓ be the open immersion, then we define IC(U ℓ , L) := τ ≤-ℓ-1 Rj * IC(U ℓ+1 , L), here τ ≤k is the truncation from the right in degree k. In finite step, we get IC(Y, L). Notation 2.3.4. When we take L = C, which is always the case for us, we denote IC(Y, C) by IC(Y ). In this case we denote H i (Y ) := H i (IC(Y )). Remark: The cohomology sheaves H i (Y ) are locally constant over each stratum in H. Definition 2.3.5. Let n ≥ 1. By a Schubert variety of type A n-1 , we mean a closed sub-variety of the projective variety GL n /B n which is stable under the multiplication by B n from the left, where B n is the Borel subgroup consisting of upper triangular matrices.

Proposition 2 . 3 . 6 .

 236 (cf.[START_REF] Chevalley | Classification des groupes algébriques semi-simples[END_REF] page 148.) We identify S n with the set of the permutation matrices in GL n . Then we have the Bruhat decomposition GL n = w∈Sn B n wB n . Moreover, we haveB n wB n = v≤w B n vB n .Definition 2.3.7. We denote C w := B n wB n /B n in GL n /B n and the Schubert variety X w = C w .

Definition 2 . 4 . 1 .

 241 Let a, b be two multisegments such that b ∈ S(a). Then we define the polynomial

  where x a ∈ O a is an arbitrary point and d b = dim(O b ). We call it the Kazhdan Lusztig polynomial associated to {a, b}. Remark: In [37] Theorem 1, Zelevinsky showed that the varieties O b are locally isomorphic to some Schubert varieties of type A m , where m = deg(b).

Theorem 2 . 4 . 3 .

 243 (cf.[37]Theorem 1) The morphism τ is an open immersion into the Schubert variety G(ϕ). In fact, for b a multisegment of weight ϕ, we can describe explicitly the image of O b in terms of Schubert cells in G(ϕ). Let b = 1≤i≤j≤r

  , w(4)} = {2, 3}, {w(2), w(3)} = {1, 4}, hence w = (13)(24), or w = (12)(34), compare the length, we have w(a) = (13)(24).

Figure 2 . 3 -

 23 Figure 2.3 -Bruhat Order for S 4

Figure 2 . 4 -

 24 Figure 2.4 -Construction of e w in case n = 3

Definition 3 . 1 . 3 .Lemma 3 . 1 . 6 .

 313316 We say that the multisegment b ∈ S(a) satisfies the hypothesis H k (a) if the following two conditions are verified (1) deg(b (k) ) = deg(a (k) ) ; (2) there exists not a pair of linked segments {∆, ∆ ′ } such that e(∆) = k -1, e(∆ ′ ) = k. Definition 3.1.4. Let S(a) k = {c ∈ S(a) : deg(c (k) ) = deg(a (k) )}. Lemma 3.1.5. Let c ∈ S(a) k . Then ♯{∆ ∈ a : e(∆) = k} = ♯{∆ ∈ c : e(∆) = k}. Démonstration. Note that deg(a) = deg(a (k) ) + ♯{∆ ∈ a : e(∆) = k}. Now that for c ∈ S(a) k deg(c) = deg(a), deg(c (k) ) = deg(a (k) ), we have ♯{∆ ∈ a : e(∆) = k} = ♯{∆ ∈ c : e(∆) = k}. Let k ∈ Z (a) For any b ∈ S(a), we have deg(b (k) ) ≥ deg(a (k) ). (b) Let c ∈ S(a) k , then for b ∈ S(a) such that b > c, we have b ∈ S(a) k . (c) Let b ∈ S(a) k , then b (k) ∈ S(a (k) ). Moreover, if we suppose that a satisfies the hypothesis H k (a) and b = a, then b (k) ∈ S(a (k) ) -{a (k) } . (d) Suppose that a does not verify the hypothesis H k (a), then there exists a b ∈ S(a) satisfying the hypothesis H k (a), such that b (k) = a (k) . Démonstration. For (a), by lemma 2.1.4 for any b ∈ S(a), e(b) is a submultisegment of e(a). And from b to b (k) , we replace those segments ∆ such that e(∆) = k by ∆ -. Now (a) follows by counting the segments ending in k.

  j+1 by applying the elementary operation to them. If one of them ends in k, we assume e

  and we obtain a (k) j+1 from a

  (k) j by applying elementary operation to them. Here we conclude that b (k) ∈ S(a (k) ).

Corollary 3 . 1 . 9 .

 319 Let c ∈ S(a) k , d ∈ S(a (k) ) such that c (k) > d, then there exists a multisegment e ∈ S(a) k such that c > e, e (k) = d. Démonstration. Note that c ∈ S(a) k implies S(a) k ⊇ S(c) k . Combine with the surjectivity of ψ k : S(c) k → S(c (k) ), we get the result. Definition 3.1.10. For a a multisegment, and k ∈ Z we define S(a) k = {c ∈ S(a) k : c satisfies the hypothesis H k (a)}. Proposition 3.1.11. The restriction

Démonstration.

  For d ∈ S(a (k) ), by proposition 3.1.8, we know that there exists c ∈ S(a) k such that c (k) = d. But by (d) in lemma 3.1.6, we know that there exists c ′ ∈ S(c) k such that c ′(k) = c (k) = d. We conclude by the observation that if c ∈ S(a) k , thenS(c) k ⊆ S(a) k .Also, concerning the corollary 3.1.9, we have the following Corollary 3.1.12. Let c ∈ S(a) k and d ∈ S(a (k) ) such that c (k) > d. Then there exists a multisegment e ∈ S(c) k such that e (k) = d. Démonstration. By corollary 3.1.9, we know that there exists an e ′ ∈ S(c) k such that e ′(k) = d. By (d) in lemma 3.1.6, we know that there exists e ∈ S(e ′ ) k such that e (k) = e ′(k) = d. Hence we conclude by the fact that if e ′ ∈ S(a) k , then S(e ′ ) k ⊆ S(a) k . Definition 3.1.13. Let k ∈ Z and ∆ be a segment.

Definition 3 . 1 . 14 .

 3114 We say that the multisegment b ∈ S(a) satisfies the hypothesis k H(a) if the following two conditions are verified (1) deg( (k) b) = deg( (k) a) ;

  by lemma 3.1.6. Hence we can assume t = 1 and consider d ∈ S(c) to be a multisegment obtained by applying the elementary operation to the pair of linked segments {∆ ≺ ∆ ′ }.-If e(∆) = k, e(∆ ′ ) = k, then the pair {∆, ∆ ′ } also appears in c(k) , contradict the fact that c (k) is minimal.-If e(∆ ′ ) = k, then by the fact that c ∈ S(c) k , we know that e(∆) < k -1, which implies that the pair {∆, ∆ -} is linked and belongs to c (k) ,contradiction. -If e(∆ ′ ) = k and b(∆ ′ ) < k + 1, then the pair {∆ -, ∆ ′ } is still linked and belongs to c (k) , contradiction. Hence we must have e(∆ ′ ) = k and b(∆ ′ ) = k+1, this implies that deg(d (k) ) > deg(c (k) ) and d / ∈ S(c) k . Finally, (b) of lemma 3.1.6 implies that for all d < c, we have d / ∈ S(c) k . Proposition 3.2.5. Let c ∈ S(c) k be a multisegment such that c (k) is minimal. Then the partial derivative D k (L c ) contains in R a unique term of minimal degree L c (k) , which appears with multiplicity one.

  e∈S(d) m(e, d)D k (L e ). Finally, comparing the minimal degree terms in D k (π(c)) and e∈S(c) m(e, c)D k (L e ) gives the proposition. Proposition 3.2.6. Let a be a multisegment. Then S(a) k contains a unique multisegment c such that c

  d∈S(a) m(d, a)D k (L d ) and apply the proposition 3.2.6 yields the uniqueness of c such that c (k) = (a (k) ) min . Proposition 3.2.7. Let c be the multisegment constructed in proposition 3.2.3. Then c ∈ S(a).

Proposition 3 . 3 . 16 .

 3316 The morphism τ W is an open immersion. Démonstration. To see that it is open immersion, we shall use Zariski's main theorem. Since all Schubert varieties are normal, we observe that

  irreducible and normal, hence τ W is an open immersion. Proposition 3.3.17. Let c ∈ S(a) k . Then c ∈ S(a) k if and only if

  by (d) of lemma 3.1.6, we know that there exists c ′ ∈ S(a) k such that d ′ > c ′ . Hence we conclude that {d ∈ S(a) k , d (k) = c (k) }, contains a unique minimal element, which lies in S(a) k . Now our proposition follows. Corollary 3.3.18. Let a be a multisegment and c ∈ S(a) k , then P a,c (q

Corollary 3 . 3 . 19 .

 3319 Let d ∈ S(a) such that d (k) = a (k) , and c ∈ S(a) k , then c < d, and P a,c (q) = P d,c (q).

  Finally, for b, c ∈ S(a) k , if b > c, then c ∈ S(b (k) , b), and by lemma 3.1.6, we know that b(k) > c (k) . Reciprocally, if b (k) > c (k) , by proposition 3.3.17, we know that O b ⊆ O c , hence b > c. Corollary 3.4.2. We have π(a (k) ) = c∈S(a) k m(c, a)L c (k) ,(3.4.3) -let b ∈ S(a) such that b satisfies the hypothesis H k (a) and b (k) = a (k) , then m(b, a) = 1, S(a) k = S(b) k . Démonstration. The first part follows from the fact that ψ k is bijective and m(c, a) = m(c (k) , a (k) ). For the second part of the lemma, we note that L b (k) = L a (k) appears with multiplicity one in π(a (k) ), then equation (3.4.3) implies m(b, a) = m(b (k) , a (k) ) = 1. To see that S(a) k = S(b) k ⊆ S(b). Note that we have S(b) k ⊆ S(a) k and two bijection

.5. 3 ) 4

 34 By theorem 1.4.4, both sides are positive sum of irreducible representations, then -If a satisfies the hypothesis H k (a), on the right hand side, from our lemma 3.1.6 and induction, we know that for all b < a, D k (L b ) does not contain L a (k) as subquotient, hence D k (L a ) must contain L a (k) with multiplicity one. We have to show that it does not contain other subquotients of π(a (k) ). Note that by induction, we have the following formula π(a (k) ) = X + c∈S(a) k \a m(c, a)L c (k) , where X denotes the minimal degree terms in D k (L a ). Now apply corollary 3.4.2, we conclude that X = L a (k) . -Now if a fails to satisfy the hypothesis H k (a), a / ∈ S(a) k , by proposition 3.4.1 and induction, we know that there exists b ∈ S(a) k , such that a (k) = b (k) and D k (L b ) contains L a (k) as a subquotient with multiplicity one. Now by the lemma 1.3.5, π(a)-π(b) is a positive sum of irreducible representations which contain L a : by the positivity of partial derivative, we know that we obtain a positive sum of irreducible representations after applying D k . Now D k (π(a)π(b)) = π(a (k) )π(b (k) ) + higher degree terms contains only terms of degree > deg(a (k) ), so does D k (L a ). This finishes our induction. Corollary 3.5.4. Let a be a multisegment such that ϕ e(a) (k) = 1. Then -If a ∈ S(a) k , then D k (L a ) = L a + L a (k) . -If a / ∈ S(a) k , then D k (L a ) = L a . Démonstration. First of all, we observe that the highest degree term in D k (L a ) is given by L a . In fact, we have D k (π(a)) = D k (L a ) + b<a m(b, a)D k (L b ), meanwhile we have D k (π(a)) = π(a) + lower terms. By induction on ℓ(a) we conclude that the highest degree terms in D k (L a ) is L a . If a ∈ S(a) k , then proposition 3.5.1 implies that the minimal degree term of D k (L a ), but since deg(a (k) ) = deg(a) -1, therefore we must have D k (L a ) = L a + L a (k) . On the contrary, if a / ∈ S(a) k , then by (ii) of the proposition 3.5.1, we know that all irreducible representations appearing in D k (L a ) are of degree > deg(a (k) ) = deg(a) -1, which implies D k (L a ) = L a . 57 Chapitre Reduction to symmetric cases -In the first paragraph of this chapter, we generalize the construction of chapter 3 by iterating the truncation functor to obtain for c 1 , c 2 two multisegments, the truncation (c 1 ) b (c 2 ) of a multisegment b. -Then we give an algorithm to, starting from two multisegments a and b ∈ S(a), construct two symmetric multisegments a sym and b sym ∈ S(a sym ) such that we have the following equality m(b, a) = m(b sym , a sym ).

  4.1. And (3) follows from the bijectivity of ψ k 1 ,••• ,kr and (1). As for (4), we know by definition, S(a) k 1 ,••• ,kr ⊇ S(b) k 1 ,••• ,kr . We know that any for c ∈ S(a) k 1 ,••• ,kr , we have c (k 1 ,••• ,kr) ≤ b (k 1 ,••• ,kr) , by (2), this implies that c ≤ b. Hence we are done. Similarly, we have Definition 4.1.6. Let (k 1 , • • • , k r ) be a sequence of integers, then we define kr,••• ,k 1 S(a) = {c ∈ S(a) :

Proposition 4 . 2 . 2 .

 422 Let b be an ordinary multisegment, then there exists a symmetric multisegment b sym , and a multisegment c such that such that b sym ∈ S(b sym ) c , b = b sym, (c) .

Figure 4 . 1 -Figure 4

 414 Figure 4.1 -

Figure 4 . 3 -Figure 4 . 4 -

 4344 Figure 4.3 -Here we get b 2 = {[0, 3], [1], [2, 4]}. Again, follow the procedure in Figure 3 above gives Hence we get b sym = {[0, 5], [1, 3], [2, 6], [3, 4]} = Φ(v)

Remark: 4 4. 4

 44 In general, for a > b, (1) gives a polynomial P Z a,b which is a Kazhdan Lusztig polynomial for the symmetric group S deg(a) . And (2) gives a polynomial P S a,b , which is a KL polynomial for a symmetric group S n with n ≤ deg(a). It may happen that n = deg(a). By corollary 3.3.18, we always have P Z a,b = P S a,b . Example 4.3.1. Consider a = {1, 2, 2, 3}, b = {[1, 2], [3, 4]}, then by [35] section 3.4, we know that P Z a,b = 1 + q. And the symmetrization of a and b are given by a sym = Ψ((2, 3)), b sym = Ψ((1, 3)(2, 4)).Hence P S a,b = P (2,3),(1,3)(2,4) = 1 + q, which is the Kazhdan Lusztig polynomial for the pair ((2, 3), (1, 3)(2, 4)) in S Proof of the Zelevinsky's conjecture Definition 4.4.1. The relation type between 2 segments {∆, ∆ ′ } is one of the following -

  have the same relation type if r = r ′ ; -there exists a bijection ξ : a → a ′ of multisets which preserves the partial order and relation type of segments and induces bijection of multisets e(ξ) : e(a) → e(a ′ ), b(ξ) : b(a) → b(a ′ ). satisfying e(ξ)(e(∆)) = e(ξ(∆)), b(ξ)(b(∆)) = b(ξ(∆)).

Theorem 4 . 4 . 5 .

 445 For a and a ′ having the same relation type, then for b ∈ S(a) with b ′ = Ξ(b), we have m(b, a) = m(b ′ , a ′ ).

  we get a new symmetric multisegment a 1 which has the same relation type as a. Moreover, let b ∈ S(a) and b 1 be the corresponding multisegment in S(a 1 ), then m(b, a) = m(b 1 , a 1 ) by proposition 3.4.1. We note that the equality

  a) Ξ / / S(a ′ ). Admitting the lemma, we have m(b, a) = m(b sym , a sym ), m(b ′ , a ′ ) = m(b ′ sym , a ′ sym ) by proposition 4.2.4. Now by what we have proved before and the above lemma, we have m(b sym , a sym ) = m(b ′ sym , a ′ sym ), which implies m(b, a) = m(b ′ , a ′ ).

Corollary 4 . 4 . 7 .

 447 Let a Id be a symmetric multisegment associated to the identity in S n and Φ : S n → S(a Id ).

Lemma 5 . 2 . 4 .

 524 The morphism ρ is a bijection. Démonstration. Let e ′ = Φ(β) ∈ S(b ′

Lemma 6 . 1 . 1 .

 611 Assume that b ∈ S(b) k such that b and b (k) are both ordinary. Let c ∈ S(b) k . Then for d ∈ S(b) and d > c, we have d ∈ S(b) k . Démonstration. It suffices to show that d satisfies the hypothesis H k (b). Note that e(d) = {e(∆) : ∆ ∈ d} is a set because d is ordinary and by lemma 2.1.4 we have e(d) ⊆ e(b) . Note that k -1 / ∈ e(b) since b ∈ S(b) k and b (k) is ordinary , therefore it is not in e(d) either. Hence to show that d ∈ S(b) k hence it is equivalent to show that k ∈ e(d). Since c ∈ S(d), we know that e(c) ⊆ e(d) . Now that k ∈ e(c), we conclude that k ∈ e(d). We are done. Now let b ′ ∈ S(b) k such that ψ k (b ′ ) = (b (k)

  Let c ∈ S(b) k . Then for d ∈ S(b) and d > c, we have d ∈ S(b) k . Démonstration. It suffices to show that d satisfies the hypothesis H k (a). Note that e(d) ⊆ e(a) by lemma 2.1.4. Assume that k ∈ e(a) to avoid triviality. Now that k -1 / ∈ e(a) since a ∈ S(a) k and

  so it is also not in e(d). Hence to show that d ∈ S(b) k hence it is equivalent to show that ϕ e(d) (k) = e e(a) (k). Since c ∈ S(d), we know that e(c) ⊆ e(d) hence ϕ e(d) ≤ ϕ e(d) (k). Now that c ∈ S(a) k implies ϕ e(c) = ϕ e(a) , we conclude that ϕ e(d) (k) = e e(a) (k). We are done.

  be the multisegment obtained by applying the elementary operations to {∆ + , ∆ ′ }. Then let Γ = (Γ 1 \ {∆ + }) ∪ {∆ ∩ ∆ ′ } and we have b = c Γ . Hence we are done. Proposition 7.1.8. The relation k defines a poset structure on O.

1 k a 3

 3 by proposition 7.1.7. Finally, if a k b and b k a, then by definition we have a = b. Definition 7.1.9. We let Γ(a, k) = {b : b k a}.

Notation 7 . 2 . 24 .

 7224 and δ is the Kronecker symbol([26]). And we have (G(a), G(b)) = δ a,b mod q 1/2 A. We denote by {E * (a)} and {G * (a)} the dual basis of {E(a)} and {G(a)} with respect to the Kashiwara scalar product. Proposition 7.2.25. (cf. [25]) Let a = i≤j a ij [i, j]. Then -We have

  -And E * (a) = b≤a P a,b (q)G * (b).

Example 7 . 2 . 31 .Proposition 7 . 2 . 32 .

 72317232 Let a = [1] + [2], then ι(E * (a)) = T [1]T[START_REF] Ioan | Jacquet-langlands et unitarisabilité[END_REF] . By specializing at q = 1, the dual canonical basis {G * (a) : a ∈ O} gives rise to a well defined basis for B, denoted by {g * (a) : a ∈ O}. Moreover, the morphism φ sends g * (a) to L a for all a ∈ O.1 

  Then the morphism D i : B → B is an algebraic morphism. Moreover, if we identify the algebras R and B via φ, then the morphism D i coincides with the partial derivative D i . Démonstration. For n ∈ N, we have e ′n (uv) = i (u)e ′s i (v) = D i (u)D i (v).

Lemma 7 . 3 . 6 .

 736 Let n ∈ N, and d ∈ O. Then we have

Corollary 7 . 3 . 7 .

 737 , ) is the Kashiwara scalar product. Moreover, for each b such that (G(b), E ′n i E * (d)) = 0, we have wt(d) = wt(b) + nα i . Démonstration. This is by definition. Let b k d such that wt(d) = wt(b) + nα i . Then L b appears as a factor of 1 r! e ′r i (π(d)) if and only if r = n. Démonstration. We know that for each b k d, the representation L b is a factor of D i (π(d)). Now by proposition 7.3.5, D i = i (π(d)) always have weight wt(d)-rα i . Therefore we are done. Proposition 7.3.8. Let b k a, then there exists c ∈ S(a) such that c = b + ℓ[k]. Then n b,a = i dim H 2i (IC(O ℓ[k] ) ⋆ IC(O b )) a .

Lemma 7 . 4 . 4 .

 744 Let a be a multisegment satisfying the assumption (A k ) and a = a Id . Let ℓ ∈ N such that ℓ ≤ ϕ e(a) (k) and ϕ ∈ S such that ϕ + ℓχ [k] = ϕ a . Then for b ∈ S(ϕ), we have b k a if and only if b (k) ≤ a (k) and ϕ e(b) (k -1) = ℓ + ϕ e(a) (k -1). Démonstration. Let b ∈ S(ϕ) such that b k a, then by proposition 7.1.7, we know that b = c Γ for some c ∈ S(a) and Γ ⊆ c(k). Therefore b (k) = c (k) ≤ a (k) by the lemma above. And by definition of c Γ , we know that ϕ e(b) (k -1) = ℓ + ϕ e(c) (k -1). Now applying the fact that a satisfies the assumption (A k ), we deduce that ϕ e(c) (k -1) = ϕ e(a) (k -1). Conversely, let b ∈ S(ϕ) be a multisegment such that b (k) ≤ a (k) and ϕ e(b) (k -1) = ℓ + ϕ e(a) (k -1). We deduce from b (k) ≤ a (k) that b ≤ a (k) + ϕ e(b) (k)[k],

Definition 7 . 4 . 6 .

 746 e(a) (k) = ϕ e(b) (k) + ℓ. Now that for any ∆ ∈ a, if e(∆) = k, then b(a) ≤ k -1. Therefore we have ϕ e(a (k) ) (k -1) = ϕ e(a) (k -1) + ϕ e(a) (k). Assume that a is a multisegment satisfying (A k ) and d = a + r[k + 1] for some r ≤ ϕ e(a) (k). Let X d be the open sub-variety of X k+1 d consisting of those orbits O c with c ∈ S(d), such that ϕ e(c) (k) + r = ϕ e(a) (k).

Proposition 7 . 4 . 17 .

 7417 The morphism σ is equivariant under the action of G ϕa . Assume that a is a multisegment which satisfies the assumption(A k ). Let ϕ ∈ S such that ϕ + ℓχ [k] = ϕ a ,where χ is the characteristic function. Then there exists a one to one correspondance between the orbits of Y a and the setS := {b ∈ S(ϕ) : b k a}. Moreover, for each orbit Y(b) indexed by b, σ -1 (Y(b)) is irreducible hence contains a unique orbit in E ′′ a as (Zariski) open subset. Démonstration. The fact that σ is equivariant under the action of G ϕa follows directly from the definition. To show that the orbits of Y under G ϕa is indexed by S, consider the morphism p ′ : Y a → Gr(ℓ, V ϕa,k ), (T, U ) → U As in the proposition 5.3.2, we have the following diagram

Lemma 7 . 4 . 18 .

 7418 Let a, b be the multisegments as above. Then there exists a bijection between the set Q(a, b) = {c ∈ S(a) : b = c Γ for some Γ ⊆ c(k)}, and the orbits in σ -1 (Y(b)) which respects the poset structure, given by c → E ′′ a (c ♯ ), where for b = c Γ ,

and c h 1 .

 1 is minimal in the latter, which implies that c h ∈ Q(a, b) and is minimal. In general, letϕ = ϕ b + χ [k] .Note that there exists c ′ ∈ S(ϕ) satisfying the assumption (A k ) andΓ ′ ⊆ c ′ (k) such that b = c ′ Γ ′ . In fact, by assumption, we know that b = c Γ for some c ∈ S(a) and Γ ⊆ c(k). Let Γ ⊇ Γ 1 , such that ℓ = ♯Γ = ♯Γ ′ + 1 and c ′ = c Γ 1 , then we have b = c ′ Γ\ΓNow we apply our induction to the caseQ 1 := {c ∈ S(ϕ) : c satisfies the assumption (A k ), b = c Γ for some Γ ⊆ c(k)}, from which we know that there exists a unique minimal element c 1 in Q 1 . Now by assumption, we know that b 1 ≤ c ′ k a, and by induction, we know that the set Q(a, b 1 ) contains a unique element b 2 . We claim that b 2 is minimal in Q(a, b). In fact, let e ∈ Q(a, b), then b = e Γ ′

Corollary 7 . 4 . 19 .

 7419 Let a be a multisegment satisfying the assumption(A k ) and b k a such that ϕ a = ϕ b + ℓχ [k] .Let c the minimal element in Q(a, b) and E ′′ a (c) be the G ϕa orbit indexed by c in E ′′ a . Then we have IC

Definition 7 . 5 . 7 .

 757 Let λ = (a 1 , • • • , a m ; b 0 , • • • , b m-1) be a partition. Following[START_REF] Zelevinsky | Small resolutions of singularities of Schubert varieties[END_REF], we represent a partition as a broken line in the plane (x, y), i.e, the graph of the piecewise-linear function y = λ(x) which equals |x| for large |x|, has everywhere slope ±1, and whose ascending and decreasing segments are precisely b 0 , • • • , b m-1 and a 1 , • • • , a m , respectively. Moreover, we call the local maximum and minimum of the graph y = λ(x) the peaks and depressions of λ.

Figure 7 . 1 -

 71 Figure 7.1 -

Example 7 . 5 . 16 .

 7516 and e(∆ i ) = k, for i = r + 1, • • • , r + ℓ. For example, for r = 1, ℓ = 3, with J = {σ 2 , σ 3 } and a = a J,∅ Id = [1, 4] + [2, 5] + [3, 5] + [4, 5].

Lemma 7 . 7 . 3 .

 773 Let ℓ 1 = ℓ kr 0 and d = a + ℓ 1 [k + 1], then -we have a = a

Finally, we conclude

  that b ∈ k Γ i (a, k) if and only if b ∈ k S(a i ). Since the map Proposition 7.8.11. Let b, c be two multisegments andk 1 ∈ Z such that b = (k 1 ) c, c ∈ k 1 S(c). If we write D k (L c ) = L c + d∈Γ(c,k)\{c} n(d, c)L d ,(7.8.12)then D k (L b ) = L b + d∈ k 1 Γ(c,k)\{c} n(d, c)L(k 1 ) d . Démonstration. -Suppose that deg(c) = deg(b) + 1.In fact, by corollary 3.5.4, we havek 1 D(L c ) = L c + L bBy applying the derivation D k and using the factD k ( k 1 D) = k 1 DD k , we have D k (L c ) + D k (L b ) = L c + L b + d∈Γ(c,k)\{c} n(d, c) k 1 D(L d )By assumption that deg(b) + 1 = deg(c), we havek 1 D(L d ) = L d + L(k 1 ) d or L d ,wherek 1 D(L d ) = L d + L(k 1 ) d if and only if d ∈ k 1 S(d) and deg( (k 1 ) d) = deg(d) -1. This is equivalent to say that d ∈ k 1 Γ(a, k).-For general case, consider{∆ ∈ c : b(∆) = k 1 } = {∆ 1 • • • ∆ r }.Now by proposition 3.5.1 and proposition 7.1.4, we know thatk 1 D(L c ) = L b + f d (k 1 )>f b (k 1 ) n(d, c)L d , for some n(d, c) ∈ N. If k 1 = k, then We observe that for any d such that f d (k 1 ) > f b (k 1 ) and d ′ k d, we have f d ′ (k 1 ) > f b (k 1 ), which implies that L d ′ can not be a summand of D k (L b ). Therefore we know that D k (L b )is the sum of all irreducible representations L d ′′ contained in D k ( k 1 D)(L c ) satisfying f d ′′ (k 1 ) = f b (k 1 ).

k 1 Proposition 7 . 8 . 14 . 1 .Notation 7 . 8 . 17 . 8 ( 2 )

 178141781782 DD k (L c ) consisting of irreducible representations L d ′′ satisfying f d ′′ (k 1 ) = f b (k 1 )is given byL b + d∈ k 1 Γ(c,k)\{c} n(d, c)L(k 1 ) d .Compare the equationk 1 DD k (L c ) = D k ( k 1 D)(L c ) gives the results. If k 1 = k, consider {∆ ∈ c : b(∆) = k 1 } = {∆ 1 • • • ∆ r }.Let c ′ be the multisegment obtained by replacing all segments ∆ in c such that b(∆) < k 1 by + ∆, and ∆ 1 by + ∆ 1 . Then there existsk 2 = k 1 -1 > k 3 > • • • > k r such that c = (kr,••• ,k 2 ) c ′ , and b = (kr,••• ,k 3 ,k 1 ,k 2 ,k 1 ) c ′ . Let b ′ = (k 1 ) c ′ , then by induction on f b(c) (k), we can assume that D k (L b ′ ) = L b ′ + d∈ k Γ(c ′ ,k)\c ′ n(d, c ′ )L(k) d .Applying what we have proved before, we getD k (L b ) = L b + d∈ kr ,••• ,k 3 ,k,k 2 ,k Γ(c ′ ,k)\{c ′ } n(d, c ′ )L(k r ,••• ,k 3 ,k,k 2 ,k) d .Also, we haveD k (L c ) = L c + d∈ kr ,••• ,k 3 ,k 2 Γ(c ′ ,k)\{c ′ } n(d, c ′ )L(k r ,••• ,k 3 ,k 2 ) d . Let k 1 = k -1, k, k + 1. Let b, c be two multisegments such that b = c (k 1 ) , c ∈ S(c) k If we write D k (L c ) = L c + d∈Γ(c,k)\{c} n(d, c)L d ,(7.8.15)then D k (L b ) = L b + d∈Γ(c,k) k 1 \{c} n(d, c)L d (k 1 ) .Démonstration. The proof is the same as the proposition above. Now let c ′ = Φ(w) for some w ∈ S J,∅ n .Corollary 7.8.16. We haveD k (L a ) = ℓ k r 0 =0 v∈S J 2 (r 0 ,k),∅ n ,Φ(v)∈ k 1 ,••• ,kr (Γ(Φ(w),k) k r+1 ,••• ,k r+ℓ ) θ J 1 (ℓ k -r 0 ,k) J (w, t v )L (k 1 ,••• ,kr ) Φ(v) (k r+1 ,••• ,k r+ℓ ) . For b k a, we denote θ k (b, a) = θ J 1 (ℓ k -r 0 ,k) J (w, t v ) if b = (k 1 ,••• ,kr) Φ(v) (k r+1 ,••• ,k r+ℓ ) . Otherwise, put θ k (b, a) = 0.Remark: The same way we define k θ(b, a) by the formula( k D)(L a ) = b k θ(b,a)L b . And let Γ(k, a) = {b : k θ(b, c) = 0 for some c ∈ S(a)}, it shares similar properties with Γ(a, k). 149 Chapitre Multiplicities in induced representations : case of a segment In this chapter we will consider the multiplicities m(c, b, a) of irreducible components in the induced representation L a × L b , L a × L b = m(c, b, a)L c . Our goal in this chapter is then to determine a formula for the coefficient m(c, b, a) in case where b = [ki 0 + 1, k + 1](i 0 ≥ 0) is a segment. Roughly speaking, there are two major cases to discuss (1) max b(a) ≤ ki 0 + 1, max b(a) > ki 0 + 1.

8 . 16 .

 816 Note that even in the case where b = [k + 1] is a point, we come across the difficulty that we have D k (L c ) = L c for certain multisegments, cf. example 8.1.10, which prevents us from applying the partial and consider the minimal degree terms on both sides, we obtainL a (k 1 ) × L b = c∈S(a+b) k 1 m(c, b, a)L c (k 1 )

  ) k 1 ,••• ,kr = S(a).

Proposition 8 . 1 . 3 .

 813 Let a be a multisegment such that f e(a) (k + 1) = 0.And let{t ∈ e(a) :t ≥ k + 1} = s i=1 ℓ k i [k i ] with k 1 < k 2 < • • • < k s . Then m(c, b, a) = m(c [kr] ℓ kr [k r-1 ] ℓ k r-1

Proposition 8 . 1 . 4 . 1 . 8 . 1 . 5 . 2 Remark:Example 8 . 1 . 10 .

 814181528110 Let a be a multisegment satisfying max b(a) ≤ k -i 0 +1, then there exists a sequence of integers k 1 , k 2 , • • • , k r and a parabolic multisegments c of type(J 1 (a), ∅)such that a = (k 1 ,••• ,kr) c, c ∈ k 1 ,••• ,kr S(c) and if L c × L b = d m(d, c, b)L d then L a × L b = d∈ k 1 ,••• ,kr S(c+b) m(d, c, b)L(k 1 ,••• ,kr ) d .Démonstration. The existence of c follows from proposition 6.3.3. To deduce our result, it suffices to apply the derivation( k 1 D)( k 2 D) • • • ( kr D) to L c × L b = d m(d,c, b)L d and then apply proposition 3.5.Proposition Assume that a is a parabolic multisegment such thatf e(a) (ki + 1) = 0 for some 1 ≤ i ≤ i 0 . Then m(c, b, a) = m(c (k-i+2,••• ,k-1,k) , b (k+1) , a (k-i+2,••• ,k-1,k) ).Démonstration. The proof is the same as that of proposition 8.1.Combining the proposition 8.1.2, 8.1.4, 8.1.5, and 8.1.3, the calculation of the coefficients m(c, b, a) for case (1) can be reduced to the case where a is a parabolic multisegment such that f e(a) (k -i 0 -1) = f e(a) (k +1) = 0, f e(a) (k -i+1) = 0, for all 1 ≤ i ≤ i 0 +1. Remark: The proposition is no longer true if we remove the condition f e(a) (k -1) = 0. Let a = [0, 2] + [1, 3] + [2, 3] and b = [4], and c 1 = [0, 3] + [1, 4] + [2], c 2 = [0, 2] + [1, 4] + [2, 3], d = [0, 2] + [2] + [1, 3], then L a × L b = L a+b + L c 1 + L c 2 and D 3 (L a ) = L a + L d , D 3 (L c 2 ) = L c 2 .

fExample 8 . 1 . 11 .Proposition 8 . 1 . 12 .

 81118112 e(a) (k + 1) = 0 Let a = [1, 2] + [2, 3] and b = [3], then L a × L b = L a+b which contradicts our formula. Let a i 0 = Φ i 0 (w) and b = [ki 0 , k + 1]. Then L a i 0 × L b = e m(e, (k-i 0 +1) b, a)L[k-i 0 +1] 1 e + c m(c [k

Démonstration.

  Consider the formulaL a i 0 × L b = c m(c, b, a i 0 )L c . (8.1.13) In case ki 0 + 1 ∈ b(c), we know that c ∈ k-i 0 +1 S(a + b), and moreover m(c, b, a) = m( (k-i 0 +1) c, (k-i 0 +1) b, a),this gives the first part of the formula in our proposition. Now ifki 0 + 1 / ∈ b(c), then we have f e(c) (i) = f e(a) (i), for all ki 0 + 1 ≤ i ≤ k, f e(c) (ki 0 ) = f e(a) (ki 0 ) -1.

- 1

 1 (a,k-i 0 ) k-i 0 +1 θ k-i 0 (d, a)m(c, b, d (k-i 0 +1) )L c .While for fix c, on the right hand side we find( e θ k-i 0 (c [k-i 0 +1] ℓ k-i 0 +1 , [k-i 0 +1] 1 e)m(e, (k-i 0 +1) b, a) + m(c [k-i 0 +1] ℓ k-i 0 +1 [k-i 0 ] ℓ k-i 0 -1 , b, a i 0 ))L chere e runs through all the terms such that m(e, (k-i 0 +1) b, a) = 0. The first part in the coefficient comes from the part e m(e, (k-i 0 +1) b, a)L[k-i 0 +1] 1 e

1 . 5 .Proposition 8 . 2 . 3 .

 15823 Remark: Combining all the propositions above, we finish the computation of m(c, b, a) in case where b= [ki 0 + 1, k + 1], max b(a) ≤ ki 0 + 1. Let k 1 = ki 0 + 1 and a be a multisegment such that a ∈ k S(a), f e(a) (k) = 1. If we assume that b = [ki 0 + 1, k + 1](i 0 ≥ 0) and L a × L b = c m(c, b, a)L c , then m(d, b, (k 1 ) a) = m( [k 1 ] 1 d, b, a).Démonstration. The proof is the same as that of proposition 8.1.4.Remark:Combining the three proposition we get the computation of m(c, b, a) for any a and b a segment.

(

  iii) For σ ∈ S J 1 (a),J 2 (a) r such that S(a σ ) ∩ T (a) = ∅, then LJ(a σ ) = 0.Démonstration. (1)Note that we haveL aσ = τ ∈S J 1 (a),J 2 (a) r ,τ ≥σ m ′ (a τ , a σ )π(a τ )the fact that there exists a j such that B j (a) = A j (a) implies there is a segment [a i , b τ (i) ] of whom s(ρ) does not divide the length, hence LJ(π(a τ )) = 0. Hence we must have LJ(L aτ ) = 0.(2)We consider the case (2).(a) First of all we consider the case where S(a σ )∩T (a) = ∅, which means that for any a τ ∈ S(a σ ), there exists a segment [a i , b τ (i) ] of whom s(ρ) does not divide the length. The same argument as in case[START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(m, 1, n)[END_REF] shows that LJ(a σ ) = 0. (b) Secondly, if a σ ∈ T (a), we prove by induction on ℓ(σ) that LJ(L aσ ) = L C(aσ) . For case where ℓ(σ) is maximal among elements of σ 0 (× j S(A j (a)))∩ S J 1 (a),J 2 (a) r , then we have S(a σ ) ∩ T (a) = {a σ }, and consider the formula π(a σ ) = L aσ + b<a m(b, a)L b by applying LJ and case (a), we obtain LJ(L aσ ) = LJ(π(a σ )) = π(C(a σ )).

r

  and τ > σ, we have LJ(L τ ) = L C(aτ ) . Consider the formulaL aσ = π(a σ )τ ∈S J 1 (a),J 2 (a) r ,τ >σ m(a τ , a σ )L aτ ,applying the morphism LJ, we getLJ(L aσ ) = π(C(a σ ))τ ∈σ 0 (× j S(A j (a)))∩S J 1 (a),J 2 (a) r,τ >σ m(a τ , a σ )L C(aτ ) . 168 But we have π(C(a σ )) = j π(C(a σ , j)) = j ( γ≥σ

( 1 )

 1 π(a τ ). Now apply the morphism LJ, we get LJ(L aσ ) = aτ ∈S(aσ)∩T (a) P J 1 (a),J 2 (a),- σ,τ(1)LJ(π(a τ )).AndLJ(π(aτ )) = π(C(a τ )) = γ≥τ,γ∈σ 0 (× j S(A j (a)))∩S J 1 (a),J 2 (a) r P J 1 (a),J 2 (a) τ,γ(1)L C(aγ )

25 .

 25 With the remark above, we give a counter example to the conjecture 3.10 in[START_REF] Ioan | Jacquet-langlands et unitarisabilité[END_REF]. Let a = [1, 2] + [2, 3] + [3, 4] + [4, 5] + [5, 6], and d = 2. Then A 0 (a) = {2, 4}, A 1 (a) = {1, 3, 5}, B 0 (a) = {2, 4, 6}, B 0 (a) = {3, 5}.

Therefore

  LJ(L a (24) ) = π(C(a (24) ))π(C(a (13)(24) ))π(C(a (24)[START_REF] Zelevinsky | A p-adic analog of the Kazhdan-Lusztig conjecture[END_REF] )) + 2π(C(a (153)[START_REF] Leclerc | Dual canonical bases, quantum shuffles and qcharacters[END_REF] )).

  Definition 1.1.6. A smooth representation of GL n (F ) is called cuspidal if for all nontrivial parabolic subgroup P n of GL n (F ),

	J	GLn(F ) Pn

  From now on, for simplicity, in all circumstances, we will write G ϕ for G ϕ (C), GL n for GL n (C) and M i,j for M i,j (C).

	, 1.8) G ϕ (C) =	GL(V ϕ,k ) acts on E ϕ by conjugation. For
	k∈Z each element T in E ϕ , there exists a basis of V ϕ that consists of homogeneous
	elements, under which T is of the Jordan form .
	Notation 2.2.2. Lemma 2.2.3. By fixing a basis for each V k , we have

  ).

	Démonstration. It follows directly from the definition of E ϕ .
	Example 2.2.4. Consider the function ϕ = χ 1 + 2χ 2 + χ 3 ∈ S(cf. Def
	1.3.4), where χ k denotes the characteristic function of k. To ϕ we can attach
	the space

  as described in proposition 3.2.3. And this is equivalent to say

  Lusztig Polynomials. Notation 6.2.1. Let S = {σ i : i = 1, • • • , n -1} be a set of generators for S n . For J ⊆ S, let S J =< J > be the subgroup generated by J and S J n = {w ∈ S n : ws > w for all s ∈ J}. Proposition 6.2.2. (cf. [8] Prop. 2.4.4) We have (1) S n =

	wS J ;
	w∈S J n

  naturally on the varieties in the diagram(7.2.14) with G ϕ acting trivially on E ϕ 1 × E ϕ 2 and G ϕ 1 × G ϕ 2 acting trivially on E ϕ . And all the maps there are compatible with such actions. Moreover, we have(1) The morphism β ′ is a principle G ϕ 1 × G ϕ 2 -fibration.

  * (P).

	Definition 7.2.19. We define a multiplication
	IC(O a ) ⋆ IC(O a ′ ) = β ′′ * (P).
	Example 7.2.20. As in the example 7.2.16, we have

,

  Definition 7.4.15. The canonical projectionπ : V ϕ d → V ϕ d /W induces a projection π * : G ϕ d ,W → G ϕa ,where we identify V ϕ d /W with V ϕa .Proposition 7.4.16. The morphism p is equivariant under the action of G ϕ d ,W and G ϕa via π * , i.e,

	p(gx) = π * (g)p(x).

Here we use partial derivative to prove our result, but it can also be done in a purely combinatorial way, which is less elegant and more lengthy though.

),••• ,b(∆ 1 i 0) S(a 1 ).

),••• ,b(∆ 1 i 0) ψ preserves the order.

It is surprising that an isomorphism in the commutative world is governed by a noncommutative one, such phenomenon also happens in the theory of periods, where a period be a complex number whose real and imaginary parts are values of absolutely convergent integrals of rational functions with rational coefficients, over domains in R n given by polynomial inequalities with rational coefficients, then there is a conjecture saying that two rational functions give the same period if and only if they can be transformed to each other according to three simple rules, see[START_REF] Kontsevich | Periods. In Mathematics unlimited-2001 and beyond[END_REF] chapter 1.

Since here we only work with the partial derivative D k with k ∈ Z, for every multisegment, we can always use the reduction method to increase the length of segments from the left, so that at some point we arrive at the situation of our assumption (A k ), therefore we do not lose the generality.

k S(a i ) → S( (k) a i ) is bijective, we are done.

Remerciements

 Notation 3.3.11. We fix W ∈ Gr(ℓ k , V ϕ ), and denote (X k a ) W , (Z k,a ) W the fibers over W .

Proposition 3.3.12. The fiber (X k a ) W is normal and irreducible as an algebraic variety over C.

Démonstration. Note that since S(a) k contains a unique minimal element c, the variety X k a is contained and is open in the irreducible variety O c . Now by [START_REF] Zelevinsky | Two remarks on graded nilpotent classes[END_REF] theorem 1, we know that X k a is actually normal. By proposition 3.3.9, we know that α is a fibration between two varieties X k a and Gr(ℓ k , V ϕ ). The fact that both are normal and irreducible implies that the fiber (X k a ) W is normal and irreducible.

Remark: Note that by definition, we are allowed to identify (Z k,a ) W with Y a (k) . This is what we do from now on.

Definition 3.3.13. We choose a splitting V ϕ,k = W ⊕ V ϕ,k /W and denote by q W : V ϕ,k → W the projection. We define a morphism τ W τ W (T ) = ((γ k ) W (T ), q W • T | V ϕ,k-1 ).

Remark: Then we have the following commutative diagram

where s is the canonical projection.

Lemma 3.3.14. The morphism τ W is injective.

Démonstration. Note that any T ∈ (X k a ) W is determined by (γ k ) W (T ) and

, it is determined by (γ k ) W (T ) and q W • T | V ϕ,k-1 . This gives us the injectivity. As a corollary, we know that Corollary 4.2.3. For any multisegment a, we can find a symmetric multisegment a sym and three multisegments c i , i = 1, 2, 3, such that a sym ∈ c 2 ,c 3 S(a sym ) c 1 , a = (c 2 ,c 3 ) a sym,(c 1 ) . 

Now applying proposition

Examples

In this section we shall give some examples to illustrate the idea of reduction to symmetric case. We first take a = { [START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(m, 1, n)[END_REF], [START_REF] Ioan | Jacquet-langlands et unitarisabilité[END_REF], [START_REF] Ioan | Jacquet-langlands et unitarisabilité[END_REF], [START_REF] Badulescu | Une condition suffisante pour l'irréductibilité d'une induite parabolique de GL(m, D). Annales[END_REF]} to show how to reduce a general multisegment to an ordinary multisegment. The procedure is showed in the following picture.

Here we have a 2 = {[0, 1], [START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(m, 1, n)[END_REF][START_REF] Badulescu | Une condition suffisante pour l'irréductibilité d'une induite parabolique de GL(m, D). Annales[END_REF], [START_REF] Ioan | Jacquet-langlands et unitarisabilité[END_REF], [START_REF] Badulescu | Une condition suffisante pour l'irréductibilité d'une induite parabolique de GL(m, D). Annales[END_REF][START_REF] Beȋlinson | Faisceaux pervers[END_REF]}, such that Chapitre 5

Geometric Proof of KL Relations

For n ≥ 1, recall that the permutation group S n of {1, • • • , n} and that S = {σ i = (i, i+1) : i = 1, • • • , n-1} is a set of generators. It is followed from [START_REF] Kazhdan | Representations of Coxeter groups and Hecke algebras[END_REF] that the following properties characterize a unique family of polynomials P x,y (q) of Z[q] for x, y ∈ S n (1) P x,x = 1 for all x ∈ S n ;

(2) if x < y and s ∈ S, are such that sy < y, sx > x, then P x,y = P sx,y ;

(3) if x < y and s ∈ S, are such that ys < y, xs > x, then P x,y = P xs,y ; (4) if x < y and s ∈ S, are such that sy < y, sx < x, and x is not comparable to sy, then P x,y = P sx,sy ; (5) if x < y and s ∈ S, are such that sy < y, sx < x, and x < sy, then P x,y = P sx,sy + qP x,sy -x≤z<sy,sz<z q 1/2(ℓ(y)-ℓ(z)) µ(z, sy)P x,z , here µ(z, sy) is the coefficient of degree 1/2(ℓ(sy)ℓ(z) -1) in P z,sy defined to be zero if ℓ(sy)ℓ(z) is even). In this chapter , we shall prove by using our results in section 3.3 that the polynomial P x,y (q) := q

satisfies the first 4 conditions and we give an interpretation geometric for the fifth condition which will be used in the Chapter 7. Remark: The condition P x,x = 1 is trivial. The set up for through this chapter is the following. Assume that k, k 1 ∈ N such that 1 < k 1 ≤ n, k = n + k 1 -1, and a Id be a multisegment such that we have an isomorphism Φ : S n → S(a Id ).

Note that we have n < k ≤ 2n -1.

Now we apply the decomposition theorem to the projective morphism

. which asserts that there exists a finite collection of triples

, where L i is a vector spaces over C, such that

given by P b,c (q) = P w,v (q). And Lemma 5.3.12. The Poincaré series of RΓ(κ

, where Γ is the functor of taking global sections.

Démonstration. Note that by assumption, we have

And we have the following exact sequence

Taking the Poincaré series gives the result. Now it is clear that our equation (5.3.11) will give rise to an equation of the form as that in [START_REF] Bernstein | String bases for quantum groups of type a r . In I. M. Gelfand seminar part I Advances in Soviet Mathematics[END_REF] in the introduction of this chapter. Comparing the two equations, we get Proposition 5.3.13. The collection of triples

Démonstration. Note that the Poincaré series of the intersection complex

where d i = Φ(z i ). Now compare the polynomials given by 5.3.11 and the relation [START_REF] Bernstein | String bases for quantum groups of type a r . In I. M. Gelfand seminar part I Advances in Soviet Mathematics[END_REF] in the beginning of this chapter, we get our results.

S(b)

Démonstration. By the lemma above, we know that S(b) k ⊇ {c ∈ S(b) : c ≥ b ′ }. We conclude that we have equality since ψ preserve the order. Proposition 6.1.3. Assume that a is ordinary. Then (1) There exists a symmetric multisegment a sym such that

(2) There exists an element a ′ ∈ S(a sym ) such that

Démonstration. Note that (1) follows directly from proposition 4.2.2 and (2) follows from applying successively lemma 6.1.2 to the sequence obtained in the lemma below. Lemma 6.1.4. There exists a sequence of multisegments

Démonstration. Recall that in proposition 4.2.2 that every ordinary multisegment a can be obtained as

where a r is symmetric, with a i ∈ S(a i ) k i and a i-1 = a

for some k i . The statement (1) follows directly from proposition 4.2.2. Note that the ordinarity of a i 's follows from construction.

The parabolic KL polynomials

For fixed n ∈ N and a pair of elements in S n , we can associate a Kazhdan Lusztig Polynomial P x,y (q). We know also that the coefficients of such a polynomial are given by the dimensions of the intersection cohomology of corresponding Schubert varieties in GL n /B. Similar construction can give rise to a polynomial related to the Poincaré series of the intersection cohomology of the Schubert varieties in GL n /P , where P is a standard parabolic subgroup. This has been done in Deodhar Proposition 6.2.25. Let w 1 , w 2 ∈ S J 1 ,J 2 n , then we have

where on the right hand side is the parabolic KL polynomial indexed by w 1 , w 2 .

Example 6.2.26. We are now ready to interpret the following results (due to Zelevinsky, see [START_REF] Zelevinsky | A p-adic analog of the Kazhdan-Lusztig conjecture[END_REF] 

Note that in this case, we have GL n /P J is the Grassmanian G k (C n ), where as the P J orbits correspond to the stratification, for r ≤ r 0 = min{k, n -k} and fixed

Remark: There is another way to obtain the result of this section , i.e., by direct geometric construct, as in section 4.3, where we prove the same result for symmetric case. In this situation, instead having the flag variety G/B in the fibers, we will find G/P J in the fibers. There is one advantage in this geometric construction, i.e, by employing the same proof as in section 4.4, one can get a resolution for G/P J by pulling back that of the corresponding orbit variety. This shows for example, that the resolution can not be small when the associated quiver is of type A n , n ≥ 3, by the example constructed by Zelevinsky for flag variety, which does not admit any small resolution. We remark that the resolution is always small for type A 2 , as is proved by Zelevinsky.

Remark: Note that in [START_REF] Zelevinsky | A p-adic analog of the Kazhdan-Lusztig conjecture[END_REF], Zelevinsky constructed a small resolution for the O a with a = {[1, 2], [START_REF] Ioan | Jacquet-langlands et unitarisabilité[END_REF][START_REF] Badulescu | Une condition suffisante pour l'irréductibilité d'une induite parabolique de GL(m, D). Annales[END_REF]}, which corresponds to a Schubert varieties of 2step . Now with our interpretation, we should be able to construct a small resolution for all 2-step Schubert varieties. We return to this question later.

Remark: With the help of partial derivative which we will develop in next section, we will be able to give inverse parabolic KL polynomials combining results of this section, which is described in [START_REF] Vinay | On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials[END_REF] . See next section for more details.

Non Ordinary Case

In this section, for a general multisegment a, we will relate the poset S(a) to a Bruhat interval [x, y] with x < y in some S J 1 ,J 2 r . Now let a be a multisegment. First of all, we decide the set J 1 , J 2 . Definition 6.3.1. We define two sets J 1 (a), J 2 (a).

-Let b(a

Keeping the notations in definition 6.3.1, Proposition 6.3.2. There exists a unique w ∈ S J 1 (a),J 2 (a) r , such that

Démonstration. We observe that there exists an element w ′ ∈ S r , such that

Now by proposition 6.2.18, we know that there exists w ′ = w J 1 (a) ww J 2 (a) with w J i (a) ∈ S J i (a) for i = 1, 2 and w ∈ S J 1 (a),J 2 (a) r . Now we only need to prove that a = j [k j , ℓ w (j)].

In fact, by definition of J i (a), i = 1, 2, we know that

Now let a ′ ∈ S(a) k such that ψ k (a ′ ) = (a (k) ) min , then Lemma 6.3.5. We have

Démonstration. By the lemma above, we know that S(a) k ⊇ {c ∈ S(a) : c ≥ a ′ }. We conclude that we have equality since ψ preserve the order. Proposition 6.3.6. Assume that a is a multisegment. Then

(1) There exists a multisegment a J 1 (a),J 2 (a) w of parabolic type (J 1 (a), J 2 (a)) and a sequence of integers

(2) There exists an element a ′ ∈ S(a J 1 (a),J 2 (a) w ) such that

Démonstration. Note that (1) follows from proposition 6.3.3 and proposition 4.1.5. And (2) follows from applying the lemma 6.3.5 successively to the lemma below. Lemma 6.3.7. There exists a sequence of multisegments a 0 = a, • • • , a r = a J 1 (a),J 2 (a) w such that a J 1 (a),J 2 (a) w is of parabolic type (J 1 (a), J 2 (a)), a i ∈ S(a i ) k i and a i-1 = a

for some k i . Moreover,

Démonstration. This follows from our construction in the proof of proposition 6.3.3. and 

Hence we have b k a.

For the direct part, suppose that b k a, hence b < a Γ 1 for some Γ 1 . We prove by induction on ℓ(b,

We say that a satisfies the assumption (A k ) if it satisfies the following conditions 2

(1) We have

(2) Moreover, we have ϕ e(a) (k) = 0 and ϕ e(a) (k + 1) = 0.

Lemma 7.4.2. Let a be a multisegment satisfying the assumption (A k ). Then a is of parabolic type. Moreover, The set S(ϕ a ) contains a unique maximal element satisfying the assumption (A k ), denoted by a Id .

Then by proposition 6.3.2, we know that there exists an element

now by proposition 6.2.24, we know that a ≤ a Id . Finally, a Id depends only on b(a) and e(a), not on a, which shows that a Id is the maximal element in S(ϕ a ) satisfying the assumption (A k ).

Lemma 7.4.3. Suppose that a is a multisegment satisfying the hypothesis

S(a) k = S(a) ;

(2) we have

Démonstration. Note that by assumption

This ensures that for any c ∈ S(a), we have ϕ e(c) (k) = ϕ e(a) (k), hence by definition c ∈ S(a) k . This proves (1), and (2) follows from [START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(m, 1, n)[END_REF].

Then a ′ k a. Note that a ′ is a multisegment of parabolic type which corresponds to the identify in some symmetric group, cf. notation 6.2.21. Finally, proposition 6.2.24 implies that b ∈ S(a ′ ). 

is an isomorphism.

Démonstration. Note that our assumption on a ensures that

. Now since by construction we have τ W (T ′ ) = (T (k) , T 0 ), we are done.

Démonstration. We show that p is well defined. Since by definition of (X d ) W we know that

it suffices to show that

this follows from the fact that a = d (k+1) . Finally, we show that p is a fibration. Note that by definition, the fiber of p is isomorphic to

So it suffices to show that it is locally trivial. To show this, we consider the open subset U in E ′′ a as constructed in the proof of proposition 7.4.9. Now we construct a trivialization for p

We define Y a to be the set of pairs (T, U ) satisfying

(2) T ∈ O b for some b k a. And we have a canonical projection

where T ′ ∈ End(V ϕa /U ) is the quotient of T . Also, we have a morphism

where π : V ϕa,k → V ϕa,k /U be the canonical projection.

Lemma 7.4.12. We have for T ∈ Y a ,

(1) 

(2)By definition for any T ∈ Y a , we have Y ∈ O b for some b k a. By the fact that a satisfies the assumption (A k ), we know that any c ∈ S(a) satisfies

(3) Note that from the definition of Y, we know that for T ∈ Y a , we have

Proposition 7.4.13. Let a be a multisegment satisfying the assumption (A k ). Then the morphism σ ′ is a fibration. Moreover, if we assume that a = a Id , cf. lemma 7.4.2, then the morphism σ is also a fibration.

where τ U 2 /U 1 is the morphism in definition 3.3.13. We fix a splitting

Note that by lemma 7.4.4, the condition a = a Id implies that T ′ lies in

which is an open condition. Therefore σ is surjective. By definition of Y a , we know that dim(ker

Such a condition is independent of the pair (T 0 , q 0 ) since we always have dim(ker

We return to the morphism p and σ. 

Démonstration. Recall that from proposition 5.3.2, we have

where ℓ k+1 = ϕ e(d) (k + 1). Note that we have

From this diagram we observe that the orbits there is a one to one correspondance between the G ϕ d orbits on X k+1 d and G ϕ d ,W orbits on α -1 (W ). Finally, since X d is an open subvariety consisting of G ϕ d orbits, we are done. Definition 7.5.9. Then to each partition λ ∈ Ω r 1 ,ℓ 1 such that r 1 ≥ r and r 1 + ℓ 1 = r + ℓ, we associate

Remark: The set R r (n) is a poset with respect to the relation ≥. And the set ∪ r≤n R r (n) is a poset with respect to the relation ⊇.

Proposition 7.5.11.

we have an isomorphism of posets ς 1 : S J,∅ r+ℓ → R r (r + ℓ), by associating the element w with x w := (w -1 (1), • • • , w -1 (r)).

Démonstration. Note that by definition

Therefore, ς is a bijection. This preserves the partial order, for a proof, see [START_REF] Björner | Combinatorics of Coxeter groups[END_REF] proposition 2.4.8. Definition 7.5.12. For λ ∈ Ω r,ℓ and λ ′ ∈ Ω r 1 ,ℓ 1 such that r + ℓ = r 1 + ℓ 1 . We define λ ⊇ λ ′ if and only if x λ ⊇ x λ ′ , and λ λ ′ if and only if

here we have r segments ending in k -1 since i a i = r, we associate λ with the element

x λ := (x 1 , • • • , x r ). This allows us to get a morphism ς 2 : Ω r,ℓ → R r (r + ℓ) sending λ to x λ . Lemma 7.5.14. The map ς 2 is an isomorphism of posets. Démonstration. To see that ς is a bijection, we only need to construct an inverse. Given

Note that this allows us to construct a partition λ(x) ∈ Ω r,ℓ by counting the segments ending in k and k + 1 alternatively. A simple calculation shows that if we write λ

as described in [START_REF] Brion | Lectures on the geometry of flag varieties[END_REF]. This shows that

Proposition 7.5.15. For λ ∈ Ω r,ℓ , we have a λ ∈ S(a), moreover, all the elements in S(a) are of this form. Moreover, we have S(a λ ) = {a µ : µ ≥ λ}.

Démonstration. Let w ∈ S J,∅ , by definition, we have

By definition, we have

Now that ς -1 2 • ς 1 preserves the partial order, we have S(a λ ) = {a µ : µ ≥ λ} by proposition 6.2.14.

(1) We define

(2) For µ ∈ Γ(λ), we define

and let

Proposition 7.5.19. Let λ ∈ Ω r,ℓ and µ ∈ Ω r 1 ,ℓ 1 with r 1 ≥ r and r 1 + ℓ 1 = r+ℓ. Then π(a µ ) appears as a summand of D k (π(a λ )) if and only if µ ∈ Γ(λ).

As described in proposition 7.5.15, we have

Now by lemma 1.3.5, we know that π(µ) is a summand of D k (π(a λ )) if and only if µ ≥ ς -1 2 (y) for some y ⊇ x λ , i.e, µ λ.

Corollary 7.5.20. We have µ λ if and only if a µ k a λ .

Démonstration. By corollary 7.1.6, we know that a µ k a λ if and only if D k (π(a λ ))π(a µ ) ≥ 0 in R, which is equivalent to say that µ λ by the previous proposition.

Proposition 7.5.21. Let λ ∈ Ω r,ℓ and µ ∈ Ω r 1 ,ℓ 1 . Then we have a µ = (a λ ) Γ for some Γ ⊆ a λ (k). if and only if we have µ ⊇ λ.

As described in proposition 7.5.15, we have

And we have

Therefore

x µ ⊇ x λ as a set. The converse is also true.

Grassmanian case

As before, let

Moreover, for λ ∈ P(ℓ, r), let

As described in proposition 7.5.15, we have

Let 0 < r 0 ≤ ℓ and r 1 = r + r 0 , ℓ 1 = ℓr 0 .

Proposition 7.6.1. Let µ ∈ P(ℓ 1 , r 1 ). Then there exists µ ♭ ∈ P(ℓ, r), such that {b ∈ S(a) :

Démonstration. By lemma 7.4.18, we know that the set {b ∈ S(a) : a µ k b} contains a unique minimal element a µ ♭ ∈ S(a) for some µ ♭ ∈ P(ℓ, r). Therefore we have {b ∈ S(a) : a µ k b} = {a λ : λ ∈ P(ℓ, r), λ ≤ µ ♭ }.

Note that if we write

then

is the minimal element in S(a) satisfying

for some Γ ⊆ a µ ♭ (k).

Definition 7.6.2. Let

and

O aw , where a w = a J 1 ,∅ w ∈ S(a 1 ) is the element associated to w by lemma 6.2.23.

Démonstration. Note that by definition we have

And by definition of X d , we know that X d consists of the orbit O c with c ∈ S(d) such that ϕ e(c) (k) + ℓ 1 = ϕ e(a) (k), and the latter condition implies that there exists w ∈ S J 1 ,∅ r+ℓ such that c = a J 1 ,∅ w .

Proposition 7.6.4.

). Then the composition of morphisms

Démonstration. This is by definition.

Proposition 7.6.5. Let µ ∈ P(ℓ 1 , r 1 ) and

for definition of (a µ ♭ ) ♯ , cf. lemma 7.4.18.

Démonstration. Note that by proposition 7.6.1, we know that

. Now by construction in lemma 7.4.18, we know that

Proposition 7.6.6. We have

Démonstration. Consider the composed morphism

then the orbits contained in h -1 (O a µ ♭ ) is indexed by the set {c ∈ S(a 1 ) :

Note that by corollary 7.4.19 and proposition 7.3.8, the number

for some x ∈ O a µ ♭ . Finally, note that the morphism β ′′ is smooth when restricted to the variety β ′′-1 (O a µ ♭ ). Moreover, the fibers are open in some Schubert variety, therefore, we are reduced to the counting of orbits.

More generally, we have Definition 7.6.7. Let w µ ∈ S J 1 ,∅ r+ℓ be the element such that

Furthermore, if we denote by

by localizing at a point of P J wB and applying proper base change, we get

(u, t v )(q)P J,∅ w,u (q). (7.8.4)

Now we return to the formula

By induction, we can assume that for u > w, we have that L Φ(v) appears in D k (L Φ(u) ) with multiplicity θ

Then by applying the derivation D k to equation (7.8.5), on the right hand side we get the multiplicity of L Φ(v) given by

x

, where x denotes the multiplicity of L Φ(v) in the derivative D k (L Φ(w) ). And on the right hand side, applying corollary 3.3.19, we get

.

Now compare with the equation (7.8.4) to get x = θ

From now on we consider the derivative D k (L c ) for a general multisegment c such that f e(c) (k) > 0.

Proposition 7.8.6. There exists a multisegment c ′ which is of parabolic type (J 1 (c), ∅)( cf. definition 6.3.1) and a sequence of integers k 1 , . . . , k r , k r+1 , . . . , k r+ℓ such that L c is the minimal degree term with multiplicity one in

and 

we have L c is the minimal degree terms in

Repeat this procedure to get c 0 and a sequence of integers k 1 , • • • , k r such that L c is the minimal degree term with multiplicity one in

Suppose that f e(c 0 ) (k + 1) > 0. Then replace all segments ∆ in c 0 with e(∆) > k by ∆ + to obtain c ′ , we are done.

Definition 7.8.7. We define

where ℓ k = f e(a) (k).

Definition 7.8.8. Let a be a multisegment and k, k 1 ∈ Z. Then we define

More generally for a sequence of integers k 1 , • • • , k r , we define

Similarly, we can define k 1 Γ(a, k) and k 1 ,••• ,kr Γ(a, k).

Remark: We can also talk about the set

Lemma 7.8.9. Let k 1 = k -1, then the map

is bijective.

Démonstration. In fact we have Γ i (a, k) = S(a i ) where a i is constructed in the following way : let

Since for any multisegment d, we have

By definition and the following lemma, we can assume that r = 2. In this case we argue by contradiction. Suppose that

Lemma 7.8.13. Let k > k -1 > k ′ be two integers. Then for any multisegment c, we have

Démonstration. Note that since for any multisegment d

Hence we are done. derivations. Our idea here is to first treat the case where f e(a) (k -1) = 0, cf. proposition 8.1.5, and then reduce everything to such case. In §8.2, we describe a procedure to compute m(c, b, a) for the second case, combining the first case and partial derivatives.

Finally, we remark that our method could be used to deduce the general multiplicities for case where b is not a segment. We intend to study this general case in some future work. 

Proposition 8.1.2. Let a be a multisegment satisfying the condition f e(a) (ki 0 -1) = 0.

If we assume that

{t ∈ e(a) :

Démonstration. We prove by induction on i that m(c

For i = 1, since a satisfies the hypothesis H k 1 (a), by proposition 3.5.1, D k 1 (L a ) contains a unique minimal degree term with multiplicity one, which is L a (k 1 ) , now apply

From now on until the end of the section, assume that a J,∅ Id be a multisegment of type (J, ∅) associated to the identity in S n , which satisfies

Id ) and a i 0 = Φ i 0 (w). Lemma 8.1.6. Under the above assumption, we have

Démonstration. This follows directly from the definition.

Démonstration. Note that

And for each c ∈ S(a

This implies that if c = a 0 + b and [k + 1] ∈ c, then L c can not be a direct summand of L a 0 × L b . Furthermore, by assumption on a 0 , we know that for any c ∈ S(a 0 + b) and [k + 1] / ∈ c, we have c ∈ S(a 0 + b) k and hence c ∈ S(a 0 + b) k,k+1 . Moreover, we know that c (k,k+1) ∈ Γ ℓ k -1 (a 0 , k). Therefore we have

Now apply the derivation D k to both sides of the equation to get

and the right hand side we get

Now by the following lemma we know that for c ∈ Γ ℓ k -1 (a 0 , k)

therefore by comparing the two sides, we obtain that for c

Hence we are done. Lemma 8.1.8. Let a be a multisegment such that

Démonstration. First of all, it is known by Zelevinsky that L a+[k+1] appears in L a × L [k+1] with multiplicity one. Also, since

we know that L a [k+1] 1 is the only element in S(a + [k + 1]) which appears as a subquotient in L a × L [k+1] and does not contain

and contains [k + 1] as a beginning.

In particular,gathering all the calculation in case where b = [k +1], we obtain the following formula.

Corollary 8.1.9. Let a be a parabolic multisegment satisfying the condition

General case

Now we consider the case (2) in the introduction of this chapter.

Proposition 8.2.1. Let k ∈ Z and a be a multisegment. Then there exists a multisegment a ′ and a sequence of integers

and for any

Démonstration. This is proved by applying successively the truncation functor, which is the same as the proof of proposition 6.3.3.

Proposition 8.2.2. Let a be a multisegment such that

Démonstration. Note that by assumption we have

If we apply

on the left hand side get

while on the right hand side we get

by comparing the two hand side, we get our result.

Chapitre 9

On Several Conjectures

Conjecture of Mínguez et Lapid

In this section we recall a conjecture in [START_REF] Mínguez | On a determinantal formula of Tadić[END_REF] (Conjecture 1)and give a proof for it.

To summarize what we have proved in chapter 5, 

where w 0 is the maximal element in the symmetric group S n .

Démonstration. The first formula is by corollary 4.4.7, and the second is known to be equivalent to the first (cf. [START_REF] Kazhdan | Representations of Coxeter groups and Hecke algebras[END_REF]).

Remark: By letting τ = Id, we get the determinantal formula by Mínguez and Lapid L a Id = σ (-1) ℓ(σ) π(a σ ) Notation 9.2.1. In this section, we denote by R univ (G) and R univ (G ′ ) the Grothendieck group of admissible representations of G n and G ′ n , respectively. Let

Also, we denote by Π(G) and Π(G ′ ) the set of essentially square integrable representations of G and G ′ , respectively.

Remark: We can define a multiplication and a co-multiplication on R univ (D) exactly like the case of R univ (F ) and verify that we obtain a Hopf algebra(cf. [START_REF] Tadic | Induced representations of gl (n, a) for p-adic division algebras a[END_REF]). Definition 9.2.2. We say that two elements semi simple regular g ∈ G and g ′ ∈ G ′ correspond to each other if their characteristic polynomials are the same.

Definition 9.2.3. Let π ∈ R univ (G) and π ′ ∈ R univ (G ′ ). We say that π ′ is the Jacquet-Langlands transfer of π if we have

for all correspondent semi simple regular elements g ∈ G, g ′ ∈ G ′ , where χ π and χ π ′ are the character function of π and π ′ , respectively. Theorem 9.2.4. (cf. [START_REF] Ioan | Jacquet-langlands et unitarisabilité[END_REF]) There exists a unique morphism of Hopf algebras LJ : R(F ) → R(D) such that LJ(π) is the transfert of π for all π ∈ R(F ). Moreover, this morphism is surjective. Moreover, if π is essentially square integrable of G, then LJ(π) = (-1) n(d-1) π ′ for some essentially square integrable representation π ′ of G ′ . We shall denote by C(π) the representation π ′ .

Remark: According to [2] section 3.5, we can define a Zelevinsky type involution t on R(D) such that we have LJ(π t ) = (-1) nd-n LJ(π) t for all representation π ∈ R univ (G) Now following [START_REF] Badulescu | Une condition suffisante pour l'irréductibilité d'une induite parabolique de GL(m, D). Annales[END_REF] section 4.4, we calculate the image of all irreducible representations L a ∈ R univ (G). Definition 9.2.5. Let ρ be a cuspidal representation of GL p (F ). We denote by s(ρ) the minimal natural number such that d divides s(ρ)p. 

Remark: According to theorem 9.2.4 and the remark following on Zelevinsky involution, if

with the same notations as in the previous proposition. 

• • • , a j k j } to be the multi-set in increasing order of a i which is congrue to j + 1 modulo s(ρ) and B j (a) = {b j 1 , b j 2 , • • • , b j ℓ j } be the multi-set in increasing order of b i which are congruent to j modulo s(ρ). Notation 9.2.12. For each j, let S(A j (a)) be the set of permutations of A j (a) . 

))} is in bijection with the set S J 1 (a) σ 0 \(× j S(A j (a)))/S J 2 (a) , where

Lemma 9.2.14. We have

Démonstration. This follows from the definition of B j (a) and J 1 (a).

Definition 9.2.15. We define S(A j ) J 1 (a) σ 0 ∩S(A j ),J 2 (a) = {σ ∈ S(A j ) : s 1 σs 2 > σ, ∀s 1 ∈ J 1 (a) σ 0 ∩S(A j ), s 2 ∈ J 2 (a)} and (× j S(A j )) J 1 (a) σ 0 ,J 2 (a) = {σ ∈ (× j S(A j )) : s 1 σs 2 > σ, for all s 1 ∈ J 1 (a) σ 0 , s 2 ∈ J 2 (a)}.

Lemma 9.2.16. We have

Démonstration. Note that each element τ ∈ S J 1 (a),J 2 (a) r , we have a unique element a τ = [a i , b τ (i) ] associated. We know that such an element satisfies the condition τ (A j (a)) ⊆ B j (a) if and only if s(ρ) divides deg(∆) for all ∆ ∈ a τ . Then, we have σ -1 0 τ ∈ × j S(A j ). In this case, we can write

where τ (j) is the induced element in S(A j ) by σ -1 0 τ . Note that

wherefore if a j i = a j i+1 , then by the fact τ ∈ S J 1 (a),J 2 (a) r , we have

. This shows that σ -1 0 τ ∈ (× j S(A j )) J 1 (a) σ 0 ,J 2 (a) . The converse can be showed similarly. Definition 9.2.17. Let

Then by the previous lemma we have

where < σ > denote the subgroup generate by σ. Hence T (a) = {a σ 0 }.

Remark:

In [START_REF] Badulescu | Une condition suffisante pour l'irréductibilité d'une induite parabolique de GL(m, D). Annales[END_REF], the authors only treat the case where

while we allow the a i 's and b i 's to be equal.

Definition 9.2.19. For τ ∈ σ 0 (× j S(A j (a))) ∩ S J 1 (a),J 2 (a) r , we let τ (j) be the induced element of σ -1 0 τ in S(A j (a)). We define

here we view σ -1 0 τ as an element in (× j S(A j (a))).

Notation 9.2.20. For γ ∈ S(A j (a)), we denote by

By definition, we have C(a τ , j) = C(a, j) τ (j) .

Lemma 9.2.21. We have

Note that by definition, we know that C(a, j) γ = C((a, j) γ ).

Hence C induces a bijection between S((a, j)) and S(C(a, j)). Now induction on ℓ(γ) gives the result.

Definition 9.2.22. We say that the multisegment is simple with respect to D if each of the set A j (a) is a consecutive subset of {a 1 , • • • , a r } for all j.

Theorem 9.2.23. Assume that a is simple with respect to D. We have (1) If there exists j ∈ {1, • • • , s} such that ♯A j (a) = ♯B j (a), then LJ(L a ) = 0. (2) Suppose for all j ∈ {1, • • • , s} we have A j (a) = B j (a), then (i) For σ ∈ S J 1 (a),J 2 (a) r such that a σ ∈ T (a), we have

see Proposition 9.1.2 for notation. Lemma 9.2.24. Assume that a is simple with respect to D. We have j P J 1 (a) σ 0 ∩S(A j ),J 2 (a)∩S(A j ) σ (j) ,τ (j) (q) = P σ,τ (q). Démonstration. Let r j = ♯A j (a), then

which is considered as a closed subgroup in GL r (C) via the diagonal imbedding. To prove the lemma, we consider the following imbedding ι : M/M ∩ P J 1 (a) → GL r (C)/P J 1 (a) , ι(g) = σ 0 g here P J 1 (a) is the parabolic subgroup associated to J 1 (a). We construct a retraction from the variety X = σ∈× j S(A j (a)) P J 2 (a) σ 0 σP J 1 (a) to M/M ∩ P J 1 (a) . In fact, by the fact that σ -1 0 S J 2 (a) σ 0 ⊆ × j S(A j (a)), we know that σ -1 0 P J 2 (a) σ 0 ∩ M is a parabolic subgroup in M and the quotient N = σ -1 0 P J 2 (a) σ 0 /(σ -1 0 P J 2 (a) σ 0 ∩ M ) is unipotent. We observe that the unipotent group N admits a section into σ -1 0 P J 2 (a) σ 0 , whose image is a normal subgroup in the latter. Now let x ∈ σ -1 0 P J 2 (a) σ 0 , it admits a unique decomposition x = x M x N , x M ∈ M, x N ∈ N and we define p : σ -1 0 P J 2 (a) σ 0 → M by letting p(x) = x M . The morphism p is a group homomorphism. Finally, we define p : X → M/M ∩ P J 1 (a) , p(xσ 0 σP J 1 (a) ) = p(σ -1 0 xσ 0 )σ(P J 1 (a) ∩ M ).

Now p is a fibration over its target and maps P J 2 (a) -orbits to P J 2 (a) ∩M -orbits. Note that the fact that a is simple with respect to D implies that X is locally closed in GL n (C)/P J 1 (a) . Now apply the construction of intersection complex gives the desired results.

Remark:

The formula in (2) (ii) is still valid for the non simple case if we modify m(L C(aγ ) , LJ(L aσ )) = τ ≤γ,aτ ∈S(aσ)∩T (a)

P J 1 (a),J 2 (a),- σ,τ

(1) j P J 1 (a) σ 0 ∩S(A j ),J 2 (a)∩S(A j ) τ (j) ,γ (j) (q). We keep the notation in example 9.3.2. Now we are ready to show that L aσ × L aσ is not irreducible. Assume the contrary, i.e, L aσ × L aσ = L aσ+aσ . Consider And we are mainly interested in the terms of degree deg(a σ + (6) a σ ). Let b = (6) a (13) + a (24) , b 2 = 2( (6) a σ ).

Finally, by our results in chapter 7, we know that 
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