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Résumé

Ariki et Ginzburg, en se basant sur les travaux de Zelevinsky sur les variétés
orbitales, ont démontré que les multiplicités dans une representation induite
totale sont données par les valeurs en ¢ = 1 des polynomes de Kazhdan-
Lusztig associés aux groupes symétriques. Dans ma thése, j'ai introduit la
notion de dérivée partielle qui raffine celle de Zelevinksy et s’identifie en
q = 1, a U'exponentielle formelle de la g-dérivée de Kashiwara sur ’algébre
quantique. A l'aide de cette notion et en explorant la géométrie des variétés
orbitales, je construis une procédure de symétrisation des multisegments me
permettant, en particulier, de prouver une conjecture de Zelevinsky portant
sur une propiété d’indépendance de I'induite parabolique totale. Je développe
par ailleurs une stratégie afin de calculer les multiplicités dans une induite
parabolique générale en utilisant le produit de faisceaux pervers de Lusztig.

Abstract

Ariki and Ginzburg, after the previous work of Zelevinsky on orbital varieties,
proved that multiplicities in a total parabolically induced representations are
given by the value at ¢ = 1 of Kazhdan-Lusztig Polynomials associated to the
symmetric groups. In my thesis I introduce the notion of partial derivative
which refines the Zelevinsky derivative and show that it can be identified with
the formal exponential of the g-derivative of Kashiwara with q=1. With the
help of this notion, I exploit the geometry of the nilpotent orbital varieties
to construct a symmetrization process for the multi-segments, which allows
me to proove a conjecture of Zelevinsky on the property of the independence
of the total parabolic induction. On the other hand, I develop a strategy
to calculate the multiplicity in a general parabolic induction by using the
Lusztig product of perverse sheaves.
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This thesis deals with the computation of the Jordan-Hélder decomposition
of a parabolic induced representation of GL,, over a p-adic field F'. Starting
with irreducible cuspidal representations, Zelevinsky classified the irreducible
representations in terms of multisegments

a— Ly,

where L, is the irreducible representation of GL,(F) associated to the mul-
tiset a, which is a set with multiplicities, of segments

Ap,r = {p7 pY, .- 7101/1"71}7

where p is an irreducible cuspidal representation of GL,(F), n = rg and
v :GLy(F) — C is the character given

x +— | det(z)].

For example, Ln ., , 1s the trivial representation of GL.(F). Given a

multisegment a = {A;,---, A} the total parabolic associated induced re-
presentation is
7r(a) :LAl ><LA2 X X LAS

and one wants to compute the multiplicity m(b, a) of Ly, in 7(a).

Zelevinsky introduced the geometry of nilpotent orbits and conjectured that
the coeflicients m(b, a) is the value at ¢ = 1 of the Poincaré series Py (a) +(b)(q)
where o(a) and o(b) are the associated orbits. Moreover, he proved that
these orbital varieties admit an open immersion into some Schubert varieties
of type A. This conjecture was proved by Chriss-Ginzburg and Ariki, see [12],

1.
In the first part of this thesis, we are interested in another conjecture of
Zelevinsky stated in the last sentence of §8 of [34].

Conjecture. The m(b,a) depend only on natural relationships between seg-
ments of a and b.

Note :

— first that using types theory, the m(b,a) are independent of the Ze-
levinsky lines considered , cf. [30] for example, so that one is reduced
to the case where the cuspidal support of all the segment considered
are contained in the Zelevinsky line of the trivial representation.

— Using this reduction, this conjecture can now be viewed as a spe-
cial case of a conjecture of Lusztig about combinatorial invariance
of Kazhdan-Lusztig polynomials which can be stated in these terms :



let © < y two elements of the symmetric group 5, the Kazhdan-
Lusztig polynomial P, ,(¢) depends only on the poset structure of
[,y ={2€ 8,12 <z<y}
The main application of the results of this part of this thesis is then the proof
of the above conjecture of Zelevinsky, ct. theorem : the results is already
interesting in the symmetric case, cf. the corollary [4.4.7]

Our approach rests on the use of some truncation functors

a—al,

and the notion of partial derivation
2* indexed by integers k € Z,

which allows us, starting from general multisegments a and b, to reduce to
a symmetric situation where a and b are parametrized by o, 7 € S,, for some
n usually less than the degree of a. In this symmetric case we obtain, using
the result of Chriss-Ginzburg and Ariki, the equality

m(a7'>aa) = PT,0'<1)a

where P, , is the Kazhdan Lusztig polynomial associated to the permutations
T,0 € Sy.

Let us recall that these m(a,, a,) are given, using Chriss-Ginzburg and Ariki,
by Kazhdan-Lusztig polynomials for the symmetric group S,,, where m is the
degree of a. So our formula can be also viewed as equalities between Kazhdan-
Lusztig polynomials for different symmetric groups : these equalities were also
obtained by Henderson [I6], but instead of using the Billey-Warrington can-
cellation for the symmetric group, we investigate the geometry of nilpotent
symmetric orbits.

Remark: using our truncation method, it should be possible to find a new
algorithm for computing the general m(b, a).

In the second part we give some applications of our method, the main aim is
to give a formula for the computation of an induced representation

Ly % Ly, = Zm(c, b,a)Le.
in terms of the coefficients of the "highest degree term” of some explicit
Kazhdan-Lusztig polynomials. For the moment we treat the case where b is

a segment and leave the general case for future work. To give an impression,
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the most simple formula in the case where b = [k+ 1] from proposition [8.1.5]
looks like

Lax Lp=TLap+ »_  (0k(c,a) = Ou(c®™ a4+ b)) L g, -

celk—1(a,k)

where the 0 (c, a) are defined thanks to partial derivative, cf. notation[7.8.17
It would be interesting to compare our results with the known criteria of the
irreducibility for parabolic induced representations, cf. [29], [22] and [17].
Moreover,

— in chapter 5, we obtain a geometric interpretation of the 5 relations
defining Kazhdan-Lusztig polynomials.

— In view of the conjecture of Lusztig, which can be viewed as a generali-
zation of Zelevinsky’s conjecture, in chapter 6, we give a classification
of the posets S(a) = {b : b < a}, in the sense of notation [1.3.2]
We prove that they can be identified with either an interval in the
symmetric group S, or an interval in a double quotient of S,,, which
corresponds to parabolic orbits in a generalized flag variety.

— Concerning partial derivation, in Chapter 7, using the Lusztig product
of perverse sheaves (cf. [27]), we give a geometric meaning of the mul-
tiplicities appearing in the partial derivatives. In the general case we
then obtain an explicit formula for the derivative 2% (L,), cf. corollary
7.8.16, The main application is to calculate the coefficient m(c, b, a)
in chapter 8.

Let us now give more details. For a p-adic field F' and g > 1, an irreducible
admissible representation p of GL,(F) is called cuspidal if for all proper
parabolic subgroup P, the corresponding Jacquet functor Jg sends p to 0.
We write

v:GL,(F)— C, v(z) = |det(x)]
and for k£ > 1 and p a cuspidal irreducible representation of GL,(F'), we call
the set

Ap,k = {p7PV> e 7p1/k71}

a segment. For such a segment, the normalized induction functor

GLkg(

indp, "V (p® @ pt)

contains an unique irreducible sub-representation denoted by L, ,x-1,, where
P

9, ¢ 15 the standard parabolic subgroup with Levi subgroup isomorphic to
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k blocks of GL,. Then a multisegment is a multiset of segments that is a
set with multiplicities. For ¢ = 1,---  r, let p; be an irreducible cuspidal
representation of GL,,(F') and for k; € N, by definition, the multisegment

a={A,i=1--- 1}

is of degree deg(a) = ankz In [34], the author gave a parametrization

a — L, of irreducible admissible representations of GL,,(F) in terms of mul-
tisegments of degree n, where for a well ordered multisegment a(cf. definition
, the representation L, is the unique irreducible submodule of the pa-
rabolic induced representation

m(a) = indp"(La, , ® @ La, ).

p1,k1
Now given two multisegments a and b, one wants to determine the multipli-
city m(b,a) of Ly in m(a).

Thanks to the Bernstein central decomposition, one is reduced to the case
where the cuspidal representation p; of a and b belongs to the same Ze-
levinsky line {pov* : k € Z}. Zelevinsky also conjectured that m(b,a) is
independent of py and depends only on the relative position of a and b : this
conjecture now follows from the theory of types, cf. [30]. So one is reduced
to the simplest case where pg is the trivial representation.

Let us now explain what is known about these coefficients m(b, a) where the
cuspidal support of a, b belongs the Zelevinsky line of the trivial represen-
tation. First of all, it is proved in [34] that there exists a poset structure on
the set of multisegments such that my, 5 > 0 if and only if b < a. And we let

S(a)={b:b < a}.

In [35], Zelevinsky introduced the nilpotent orbit associated to a multiseg-
ment a. More precisely, to a multisegment a, one can associate ¢, : Z — N
with @, (k) the multiplicities of v* appearing in a. For each ¢, V, is a C-
vector space of dimension deg ¢ := Z ©(k) with graded k-part of dimension

keZ
@(k). Then E,, is the set of endomorphisms 7" of degree +1, which admits a

natural action of the group G, = H GL(V, ). Then the orbits of E, under
k

G, are parametrized by multisegments a = Z ai;Ayi j_i+1 such that ¢ = ¢,
1<j

consisting of T" with a;; Jordan cells starting from V,,; and ending in V,, ;.

We denote by O, this orbit and we have the nice following property

Oa=1|]0n.

b>a

v



Now given a local system L, on O,, we can consider its intermediate extension
IC(L,) on O, and its fiber at a geometric point zp of Op and form the
Kazhdan-Lusztig polynomial

Pa,b(Q) = Z qi/2 dim(C Hi(lc(ﬁa))zw

Zelevinsky then conjectured that my,, = Pap(l) and call it the p-adic ana-
logue of Kazhdan Lusztig Conjecture. This conjecture is a special case of a
more general multiplicities formula proved by Chriss and Ginzburg in [12],
chapter 8.

In this work, we first introduce the notion of a symmetric multisegment (cf.
definition [2.1.5), which is, roughly speaking, a multisegment such that the
beginnings and the ends of its segments are distinct and its segments admit
non-empty intersections. We show that for a well chosenﬂ symmetric multi-
segment ayq, there is a natural bijection between the symmetric group .5,, to
the set of symmetric multisegments S(ayq), cf. proposition , where n is
the number of segments contained in aq.

When we restrict to the geometry of the nilpotent orbits to the symmetric
locus, we recover the geometric situation of the Schubert varieties associated
to S, and obtain that for two symmetric multisegment a,, a, associated to
0,7 € S, the coefficient ma,, 2, = Py (1).

The next step in chapter 3 is to try to reach non symmetric cases, starting
with a symmetric one. For example for a > b two multisegments and * in
the supercuspidal support of a, one can eliminate every v* which appears at
the end of some segments in a and b to obtain respectively a new pair of
multisegments a®), b®) and try to prove that that m(b,a) = m(b® a®).
This result is almost true if we demand that b belongs to some subset S(a)y
of S(a), cf. Prop[3.4.1] The proof relies on the study of the geometry of
nilpotent orbits and their links with the Grassmannian, cf. the introduction
of chapter 3.

In chapter 4, we iterate the process in chapter 3. In fact, for a multisegment
aand ky,-- - , k. integers such that v* appears in the supercuspidal support

of a, let
alkurkn) — (((atk)y ..oy,

and

S(@a)g .., ={ce S(a): clhrmki) ¢ S(a(’“l""’k"))km, fori=1,---,r}.

)

1. Thanks to corollary which is a particular case of the Zelevinsky’s conjecture,
the results are independent of the choice of arq.



Then we show that for b € S(a)y, ... »,, we always have
m(b,a) = m(a(kh“'vkr)’ b(kly"',k'r)>’

Reciprocally, we show, cf. proposition that for any pair of multiseg-
ments a > b, we can find a®™ and b*™ < a®™ such that

m(b,a) = m(b¥™", a¥™).

In the end of chapter 4, following an example, we present an algorithm to
find (a¥™, b¥™) . Finally the main application of the first part of this thesis,
is, cf. theorem [£.4.5] the proof of the Zelevinsky’s conjecture stated before.

In the second part, we consider the application of our result from the first
four chapters. In chapter 5, as a first application, using the relation bet-
ween symmetric groups and symmetric multisegments we try to give a new
proof of the fact that the Poincaré polynomial P, _a,(¢) of the intersection
cohomology groups H'(IC(Oa,))a, for

— a, > a, a pair of symmetric multisegments with o,7 € .S,, ,

— where the index a, indicates that we localize at a point in O,_,
satisfies the axioms defining the Kazhdan Lusztig polynomials for a Hecke
algebra. We succeed in proving that P, a,(q) satisfies the first four relations
satisfying by P:,(¢) and leave the last one (see the introduction of chap-
ter 5). As for the last relation, we give an interpretation in terms of the
decomposition theorem in our contexte.

In Chapter 6, we classify the poset S(a). First of all, we single out the case
where the multisegment a contains segments with different beginnings and
endings and call it ordinary multisegment, cf. definition In this case we
prove that, as a poset,

S(a) ~ S(@ a”™) :={d e S(a”™):d > a>;'},

where a,;, is the minimal element in S(a) and a*™(resp. &) is the sym-

metric multisegment associated to a (resp. api,) constructed in Chapter 4.
Recall that in Chapter 2, we showed that S(a®™) C S(ay), for some ayq, and
S(amq) as a poset is isomorphic to S,, with n equal to the number of segments
contained in ay. In this way, we identify the poset S(a) with some Bruhat
interval in S,,, where n is the number of segments contained in a.

In the general case, as the ordinary case, we can reduce to parabolic multiseg-
ments where a multisegment a is called parabolic if all of its segments contain
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a common point, cf. definition [6.2.5| and [6.2.22] Then all our construction for
symmetric multisegments can be carried out with parabolic multisegments.
Finally, we show that the poset S(a) is isomorphic to a Bruhat interval in
S1,\Sn/Sy, where J;(i = 1,2) is a subset of generators and S, is the sub-
group generated by .J;, see proposition for details.

In chapter 7, if one is interested in calculating the multiplicities in L, X Ly,
it might be interesting to first compute 2%(L,). Using the formula of 7(a) =

Z m(b,a) Ly, one is reduced to compute
b

7*(r(a)) = Y n(b,a)Ly
b
for some coefficients n(b,a) > 0. As expected we can introduce a poset
structure =, on the set of multisegments so that n(b,a) > 0 < b =< a, cf.
proposition [7.1.4] Then using the notion of Lusztig’s product of two perverse
sheaves we prove, cf. proposition , that n(b,a) is the value at ¢ = 1 of
the Poincaré series of Lusztig product of two explicit perverse sheaves. In the
parabolic case, we give an explicit description of this Lusztig product. As a
consequence, for case deg(b) < deg(a), we show that the coefficient n(b,a)

1
is related to some p(x,y), which is the coefficient of degree i(ﬁ(y) —l(x)—1)

in P, ,(¢q) defined to be zero if {(y) — ¢(x) is even), where z,y are elements
in certain symmetric group and are related to a, b.

In the chapter 8 we use the computation of the partial derivatives in chapter
7 to give a recursive formula for the coefficients in the induced representation

Lo x Ly =Y m(c,b,a)Le.

It should be possible to treat the general case, but here we only consider the
case where b is a segment. The idea is to pass to lower degree by applying the
partial derivatives. The formulas are complicated, cf. proposition [8.1.12} even
in the simplest case where b is a point. It should be interesting to implement
the algorithm on a computer.

In the last chapter, using previous results, I give a proof of a conjecture
of Lapid and Minguez as well as its generalizations. Also, we give a counter
example to a conjecture of Badulescu in section 9.2 as well as prove a particu-
lar case of this conjecture. In section 9.3, we give an example of an imaginary
multisegment due to Leclerc and relate it the the Langlands-Jacquet corres-
pondence. We end the chapter with the following conjecture

Conjecture : a is real if and only if LJ(L,) is irreducible for all D.

Vil
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Premiére partie

Multiplicities in Induced
Representations






Chapitre 1

Induced Representations of G L,

The aim of this section is to present our main object of study which are some
integral coeffcients introduced by Zelevinsky, and defined by the formula
1.2.4] relating to some multisegments a, b with cupsidal support contained
in the Zelevinsky line associated to a cuspidal representation p.

Recall that the set of irreducible representations of GL,, breaks into pieces
according to the super-cuspidal support (Bernstein Center), and, thanks to
the theory of types, we are reduced to study the unipotent block, cf. [30],
that is induced representations with super-cuspidal support contained in the
Zelevinsky line attach to the representation p = 1.

Every unipotent irreducible representation is parametrized by a multisegment
a, that can be viewed as a function from the set of segments C to N. For a
multisegment a, we denote by L, the corresponding irreducible representation
and 7(a) the induced representation, cf. notations . The question is then
to calculate the image of such an induced representation in the associated
Grothendieck group, that is to compute the multiplicity m(b,a) of Ly in
m(a).

To begin, let us fix some notations. Let p be a prime number, F'/Q, be a finite
extension. We fix an absolute value |.| on F' such that |wp| = 1/q, where wp
is a uniformizer of F, and ¢ is the order of its residue field. For an integer
n > 1, we denote by v the character of GL, (F) defined by v(g) = |det(g)|.

1.1 Zelevinsky Classification

Notation 1.1.1. We denote a partition of n by n = {ry,--- ,ro} with
Zri = n. For a divisor m of n, the partition (m,--- ,m) will be denoted

i=1
M. We will also use the notation n +m = (n,m).

3



Definition 1.1.2. For a partition n, let
Py = Py(F) = MU,

be the corresponding parabolic subgroup of GL,(F) with its decomposition
into the product of its Levi subgroup M, = GL, (F) x ---GL, (F) and its
unipotent radical Uy. Let 6p, be the modular character of P,, given by

Op, (=) = |det(ad(=)|Licv,)

For a topological group G, we recall that a representation (m, V') of G is
— smooth if for any vectors v, the stabilizer of v in G is an open subgroup,
— admissible if for any open compact subgroup K of G, VX = {v : kv =
v,Vk € K} is of finite dimension.
According to [6] theorem 4.1, a smooth representation of GL,, (F) is of finite
length if and only if it is admissible and finitely generated.

Definition 1.1.3. Forn = {r, -+ ,74} and p = p1 ® -+ ® p,, a smooth
representation of M,, where the p; are representations of GL,,(F), trivially
extended to P,, we define the normalized induction functor which associates

to p the representation ™ = indIG;nL”(F) (p) of G such that

_ .oy o) =0mp) " p(p)f(9),p € Fu f(gh) = f(9)
’ for all k € K, with K a certain open subgroup. ’

here G acts on f by w(g)f(z) = f(zg).

Definition 1.1.4. Let (m, V') be a representation of GL,(F) and P, a para-

bolic subgroup. Let JGL"(F (7) be the Jacquet functor of m defined by

T (m) = VIV (U,
where V(U,) = {u.v —ulu € U,,v € V}.

Remark: Both parabolic induction and Jacquet functor are additive exact
functors between the category of smooth representations of M,, and GL,,(F).
Moreover, they preserve admissible representations and finitely generated
representations.

Proposition 1.1.5. (c¢f. [31] theorem 2.7, 4.1 and 5.3.) For w a smooth
representation of GL,(F), and o a smooth representation of M,, we have
the following Frobenius reciprocity,

GLn(F) (o)) = JGLn(F) 5oL2

Homg(m, indp, Homyy, (Jp, " (1), 00p,"7).
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Definition 1.1.6. A smooth representation of GL,(F') is called cuspidal if
for all nontrivial parabolic subgroup P, of GL,(F),

JG) () ~ 0.
We denote by 6, the set of irreducible cuspidal representations of GL,(F),

and
¢ =[] %.

n>1

Proposition 1.1.7. (¢f. [7] 4.1) Let m be an irreducible representation of
GL,(F), then there exists a partition n = {ry,--- ,ra} and a cuspidal re-
presentation p = p1 @ -+ @ po, of M,, such that ™ can be embedded into
indJGDTLL"(F) (p). The set {p1,--- ,pr} is determined by m up to permutation, we
call it the cuspidal support of .

According to Harish Chandra, the study of irreducible representations of GL,,
is thus divided into two parts, the cuspidal representations and the parabo-
lically induced representations. We will not discuss here the classification of
cuspidal representations of GL, (F'), which rests on the theory of types for
which the reader can refer to for example [10].

Definition 1.1.8. By a multiset, we mean a pair (S,r) where S is a set and
r:S — Nis amap. We say (S1,71) C (S2,12) if S1 C Sy and r1(s) < ra(s)

for all s € Sy. We define a bijection of multisets from (S1,71) to (Sa,re) to
be a bigection & : Sy — Sy satisfying

ra(§(z)) = ri(x).
Definition 1.1.9. Let (S,r) be a multi-set, then we define

1S, 7) =) r(s).

seS

Convention : Naturally, we write a multiset as a set with repetition. For
example, for S = {a,b} and r(a) = 2,7(b) = 1, then we write the multiset
(S’ r) by {a7 a? b}'

Definitions 1.1.10. — By a segment, we mean a subset A of € of the
form A = {p,vp,--- ,vFp = p'}. We denote it by A = [p, p'] where
b(A) := p is called its beginning and e(A) = p' its end. Let X*™ be
the set of segments.
— We say that two segments A1 and Ay are linked if none of them is
contained in the other and the union is again a segment.
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— For Ay = [p1, p] and Ay = [pa, pb], we say Ay proceeds Ny if they are
linked and py = v*py with k > 0.

— By a multisegment, we mean a finite multiset a = {Ay,--- A, }. Let
O™ be the set of multisegments.

— We say a multisegment a = {Aq,--- , A} is well ordered if for each
pair of indices i, 5 such that i < j, A; does not proceeds A;.

Remark: for a given multisegment, we may have several ways to arrange it
to be a well ordered multisegment.

Notation 1.1.11. Let a = {Ay,--- ,A,}. We call
e(a) = {e(A1), - ,e(A)}  and  bla) = {b(Ay), -+ ,b(A,)}
respectively the end and the beginning of a as a multiset.

Definition-Proposition 1.1.12. ([3]3.1) Let p be a cuspidal representa-
tion of GLy,(F) then for n =rm

indgfn:m(F)(p QupR--- @V 1)

contains a unique irreducible sub-representation, denoted by Ly, m-1,).

Notation 1.1.13. Let n = (11, -+ ,7r4) be a partition. Let m; be a represen-
tation of GL,,(F) fori=1,--- ,a. Then we denote

T X e X Ty = indgf"(p)(m ® - Qmy).

Proposition 1.1.14. ([3]] Theorem 4.2) Let Ay,--- | A, be segments, then
the following two conditions are equivalent :

(1) The representation La, X --+ X La, is trreducible.
(2) Foreach 1 <i,j <r, A; and A; are not linked.

The following theorem gives a complete classification of the induced irredu-
cible representations of GL,(F) in terms of multisegments.

Theorem 1.1.15. ([3])] Theorem 6.1) Let a = {Ay,--- , A} be a well orde-
red multisegment.

(1) Then the representation

LAlx---xLAT

contains a unique sub-representation, which we denote by L.
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(2) The representations L, and Ly are isomorphic if and only if a = a’
as well ordered multisegments, which means that there is a way to well
order a' to obtain a.

(3) Any irreducible representation of GL,(F') is isomorphic to some re-
presentation of the form L,.

Remark: according to (2), the irreducible representation L, does not depend
on the well ordered form of a.

Notation 1.1.16. From now on, for a = {Ay,--- A} being well ordered,
we denote
W(&)ILAl Xoee XLA .

T

1.2  Coefficients m(b, a)

Notation 1.2.1. We denote by R, the Grothendieck group of the category
of finite length representations of GL,(F) and

Runiv — @TLZ an ]

Proposition 1.2.2. The set R*™ is a bi-algebra with the multiplication
and co-multiplication ¢ given by

p(my @ my) = m X T, c(m) = Jgﬁ"}f) ().

A consequence of theorem [1.1.15]is :

Corollary 1.2.3. The algebra RY™ s a polynomial ring with indeterminates
{La : A € X"}, Moreover, as a Z-module, the set {L, : a € O""} form
a basis for R"™".

Remark: Note that this implies the Bernstein Center theorem, i.e, we have a
decomposition

Runiv _ H 'R(p),
p

where p runs through the equivalent classes of irreducible supercuspidal re-
presentations. Here we say two irreducible super-cuspidal representations are
equivalent if they lie in the same Zelevinsky line, and R (p) is the sub-algebra
with support contained in the Zelevinsky line II, generated by p. We denote
by O(p) the set of multisegments supported on II,.
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Using theorem [1.1.15] let a = {Aq, -+, A} be a multisegment with support

contained in some Zelevinsky line II,, then we can write

m(a)= ) m(b,a)Ly (1.2.4)

beO(p)

where m(a) = Ay x --- x A,, m(b,a) € N. One of the aims of this thesis is
to give some new insights on these m(b, a).

Remark: For our purpose, note that we can also rewrite the equation [1.2.4]
in the following form

L= Y (b a)m(b). (1.2.5)

beO(p)
The simplest example is given by

Proposition 1.2.6. (c¢f. [3]] section 4.6 ) Let Ay and Ay be two linked
segments, then
Al X Ag = Lal —+ La2

with a; — {Al, AQ}, Ay — {Al U Ag, Al N AQ}

Remark: it is conjectured in [34] 8.7 that the coefficient m(b, a) depends only
on the combinatorial relations of b and a, and not on the specific cuspidal
representation p. The independence of specific cuspidal representation can be
showed by type theory, see for example [30]. In other words, as far as we
are concerned with the coefficient m(b, a), we can restrict ourselves
to the special case p = 1, the trivial representation of GL,(F).

Definitions 1.2.7. Let
M={V":kecz}

denote the Zelevinsky line of p = 1. We note
— X the set of segments associated to 11,
— O the set of multisegments associated to 3,
— R the subalgebra of R“™ generate by the elements in L, with a € O,
— C=A{f:X — N with finite support},
— S={p:Z— N}.

Notation 1.2.8. For i < j, we will identify Ly ,;) € R with [i,j]( for
simplicity we let [i] = [i,i]). More generally we denote a multisegment a by

Z aij [Z,j]

1<j



Proposition 1.2.9. By associating to f € C the multisegment

> HA)A,

Ae¥

we can identify C with O. For every element b € O, we set fy, for the asso-
ciated function in C.

Definition 1.2.10. For a multisegment
a=Y_aylijl
1<j

with fa associated function in C, let

Pa = Zfa(A)XA es.

A€a

We call pq the weight of a, and we call deg(a) = Z ©a(k) the degree of a(or,
keN
the degree of Ly ).

Definition 1.2.11. For ¢ € S, let S(p) be the set of multisegments with
weight ¢.

1.3 A partial order on O

Definition 1.3.1. For a a multisegment, by an elementary operation, we
mean replacing two linked segments {A1, As} by {A1 U Ay, Ay N Ay} in a.

Notation 1.3.2. Let b be a multisegment such that it can be obtained from
a by a series of elementary operations, then we say b < a. We denote

S(a)={b:b < a}.
Definition 1.3.3. We define for b < a,
E(b,a):mgx{n:a:bozbl--- > b, = b},
and £(a) = (amin, Q).
Definition 1.3.4. We define the following total order relations on X :

[7,k] < [m,n], if k <n,
[]?k] = [m,n], Zf] > m,n:k.
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Lemma 1.3.5. Let b € S(a), then w(a) — w(b) > 0 in R.

Démonstration. By choosing a maximal chain of multisegments between a
and b, we can assume that

a= {Ah"' aAT}a
b= (a\{Aj, Ak}) U {A] N Ak, AJ' @) Ak}
Then by proposition [I.2.6]
m(a) =m(b) + La, X --- X EAj X -ee X ZALAk X oo X La, X Lia; ap
O

Proposition 1.3.6. The set S(a) is a partially ordered finite set with unique
minimal element ayi,. Furthermore, ap;, is the unique multisegment in S(a)
in which no segment is linked to the others.

Remark: in particular by proposition [1.1.14] a multisegment a is minimal if
and only if 7(a) is irreducible.

Démonstration. For a proof of the fact that < is a partial order, we refer to
[34] 7.1. Let X, := Uacal be a subset of the Zelevinsky line II. Let ¢, be
the weight function of a. Let ¥(a) be the set of segments with support in
X, : this is a finite set. For every A € 3(a), we note ya the characteristic
function of the set A. Now we consider the set

Fla)={fe€C: pa= ) f(A)xa}.

AeX

Then I'(a) is a finite set. Clearly, for any b € S(a), we have f, € C since
the elementary operation does not change the weight function, note that b
is uniquely determined by fy,, so S(a) is finite since I'(a) is finite.

We define ap, = {A1, Ag, -+, AL} with Ay = -+ = A, where for Ay = 0),
we set A; be the maximal segment with respect to the total order <, such
that xa, is supported in Supp(pa — Xa, = — Xa,_,)-

We only need to show that for all b € S(a), we have a,;, < b. To see this,
we look at a maximal segment A’ in b, if it is linked to some segments A”,
then we apply the elementary operation to them and get b,. Now repeat the
same procedure, in finite steps we get a multisegment b’ < b in which no
segments are linked to the others. It remains to show that b’ = a;,.

In fact, we have

Pa= Y. fam@D)xa= > fu(A)xa. (1.3.7)
)

A€eX(a Aex(a)

10



Let b = {A],--- ,A}} with A] = -+ = Al. Put Aj = () and suppose by
induction that there is an s with 1 < s < min{r, ¢} such that forall0 < i < s,
A} = A;. By construction, we have A, < A, and we assume that A < A,.

By the equality , e(A;) = e(A)), then xa, — xa, is negative. Let
A = A, \ AL. Now by the equality , there exists a minimal ¢ > s such
that the segment A/ satisfies the property that b(A}) < b(A) < e(A) < e(A)).
But this implies that A is linked to Al, contradiction. Therefore A, = A,.
We conclude by the same argument that

r=s, Al=A;1<i<r.

Concerning the coefficient m(b, a), we have

Proposition 1.3.8. (¢f.[3]] 7.1) The coefficient m(b,a) is
— nonzero if and only if b < a, and
— equal to 1 if b = a.

1.4 Partial Derivatives

In this section we show how to define some analogue of the Zelevinsky deriva-
tion. This section will not be used until Chapter 7 but some of the properties
of partial derivation will appear all along the text.

Definition 1.4.1. We define a left partial derivation with respect to indez 1
to be a morphism of algebras

‘9 R =R,
"D(Liju) = Lijug + 0i5Lin of (k> 4),
‘D(Ly) = Lij + O )-

Also we define a right partial derivation with respect to index i to be a mor-
phism of algebras

2" R =R
P'(Lijw) = Ly + 6w Lijn—y if (5 < k)
P'(Lyy) = Lij) + 0 13-

Definition 1.4.2. We define
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9 = ()00 (19)
And for ¢ = {Aq, -+, A} with
A1 j tre j AS)
we define
@c:@AIO---O@AS
and

‘D= (D)o 0(M9).

Remark: we recall that in [7] 4.5, Zelevinsky defines a derivative Z to be an

algebraic morphism
2:R—R,

which plays a crucial role in Zelevinsky’s classification theorem.
The relation between Jacquet functor and derivative is given by

Proposition 1.4.3. (cf. [54/3.8) Let § be the algebraic morphism such that
d(p) =1 for all p € € and 6(La) = 0 for all non cuspidal representations
La. Then

2 =(1®0)oc,

where ¢ is the co-multiplication.

The main advantage to work with partial derivatives instead of the derivative
defined by Zelevinsky is that they are much more simpler but share the
following positivity properties :

Theorem 1.4.4. Let a be any multisegment, then we have

P'(La) = Y _n(b,a)Ly,

beO
such that n(b,a) > 0, for all b.

Remark: the same property of positivity holds for ‘2.
The theorem follows from the following two lemmas

Definition 1.4.5. Fori € Z, let ¢; be the morphism of algebras defined by

®i([7, k]) = O 1j,h-

Lemma 1.4.6. For all multisegment a, we have ¢;(La) = 1 if and only if a
contains no other segments than [i|, otherwise it is zero.
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Démonstration. We prove this result by induction on the cardinality of S(a),
denoted by [S(a)|. If [S(a)| = 1, then a = a,;,, hence ¢;(La) = ¢i(mw(a)),
which is nonzero if and only if a contains no other segments than [i], and in
latter case it is 1. Let a be a general multi-segment,

m(a) = La + Z m(b, a) L.

b<a

Now [S(a)| > 1, we know that a is not minimal in S(a), hence a contains
segments other than [i], which implies ¢;(7(a)) = 0.

Since |S(b)| < |S(a)| for any b < a, by induction, we know that ¢;(Ly) = 0
because b must contain segments other than [i]. So we are done.

]
Lemma 1.4.7. We have 2" = (1® ¢;) o c.

Démonstration. Since both are algebraic morphisms, we only need to check
that they coincide on generators. We recall the equation from [34], proposition

3.4
k—1

(L) =1® Lijug + > Lija) ® Ly + Ly © 1.

r=j

Now applying ¢;,

(1 ® ¢i)e(Lijn) =Lijw + iLlijp-1y if (k> )
(1 ® ¢i)e(Ly)) =Lijr + i

where §; ; is the Kronecker symbol. Comparing this with the definition of 2’

yields the result. ]
Remark: We have the following relation between partial derivative and deri-
vative of Zelevinsky. Let e(a) = {[i1], -+, [ia] : 11 < -+ < iy} be the end of
a, then

P(a) = gliel(a).
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Chapitre 2

Schubert varieties and KL
polynomials

In this chapter we recall some of the geometric constructions of Zelevinsky :
the nilpotent orbital varieties and their relation with Schubert varieties.

Concretely, for a, b multisegments of degree n such that the nilpotent or-
bit O, is included in the closure of Oy, the germs of intersection complexe
IC(Oy) at a generic point of O, gives the Poincaré polynomial P,1,(q) and
Zelevinsky conjectured that

Mba = Papb(1) = Po(a)om)(1)

viewed in the Schubert variety associated to the symmetric group .5,,, where
o(a) and o(b) are certain permutations attached to a and b. This conjecture
was proved by Chriss-Ginzburg [12], and Ariki [I].

In the following, we study the case of symmetric multisegments in the sense

of definition[2.1.5] The set of symmetric multisegment of some specific weight

¢ is indexed by S,,, where m = max ©(k), which is in general strictly smaller
€

than its degree— Z ©(k). In this symmetric situation, we construct a fibra-
k

tion from the symmetric locus in the orbital varieties £, to some smooth
variety, where the stratification of E, gives rise to a stratification of the fi-
bers. And we show that the fiber is isomorphic to some Schubert variety of
type A,,_1, which identifies the stratification of fiber with the stratification
by Schubert cells.
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2.1 Symmetric multisegments

Before we introduce the symmetric multisegments, we present a type of mul-
tisegments which is more general and will be used in Chapter 6.

Definition 2.1.1. We say a multisegment a is ordinary if there exists no
two segments in a that possesses the same beginning or end.

Example 2.1.2. Some typical examples of ordinary multisegments : let a =
{Ah AQJ A3}7 and b = {A47 A57 AG}

Ay =[1,4], Ay =[2,5], Ay =[3,6],

Ay =[1,2], As = [2,4], Ag. = [4,5]

o———o——o—o0 o———o
I
A, 4
——o—o
o——o——o—o0
A
2 Ay
o—o
o——o——o—o
A

FIGURE 2.1 — Ordinary multi-segments

Proposition 2.1.3. If a is ordinary then every b < a is ordinary.

Démonstration. From the definition, b is ordinary if and only if each element
in e(b) and b(b) appears with multiplicity one. We deduce from the following
lemma that b < a is also ordinary. O

Lemma 2.1.4. Note that forb < a, we have e(b) C e(a) and b(b) C b(a)(cf.

notation|1.1.11)).

Démonstration. In fact, by transitivity, we only need to check this for case

where b can be obtained from a by applying the elementary operation to the
pair {A; < Ay}. Hence

b = a\ {Al, Ag} U {Al U AQ, Al N AQ}

Note that e(A; U Ay) = e(Ag), b(A; UAy) = b(Ay), and if Ay N Ay # (),
e(A1NAy) = e(Ay), b(A1NA) = b(Ay). Hence b(b) C b(a), e(b) Ce(a). O
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Definition 2.1.5. Let a = {Ay,--- ,A,} be ordinary. We say that a is
symmetric if

max{b(A;):i=1,--- ,n} <minfe(d;) :i=1,--- n}.

To explain the link with the symmetric group, we recall some basic facts
about the symmetric group Sy, (cf. [8]). Let (¢, j) be the transposition exchan-
ging ¢ and 7, then

S={o;:=(,i+1):i=1,---n—1}
form a system of generators of .S,,.

Definition 2.1.6. For w € S, its length {(w) is the smallest integer k such
that
W= 8189 Sk, with s; €S, fori=1,--- k.

On S,,, we have the famous Bruhat order which is defined as follow :
Definition 2.1.7. Let T = {wsw™' : w € S,,,s € S}. For u,w € S,,,

(i) We write u——>w , ifu"'w=1t¢€ T and {(u) < {(w).

(i) We write u—w , if u——>w for somet € T.

(iii) We write u < w if there exists a sequence of w; € S, such that

U—> W —> Wy —++ — W =W.

This defines a partial order on S, which is called the Bruhat order.

Proposition 2.1.8. Let ajg = {Ay,--- , A, } be symmetric, such that
(A1) < -+ <b(A,),

e(Ay) < -+ <e(Ay).
Then for w € S,, the formula

n

S(w) =Y (A, e(Au)]

i=1

defines a bijection between S,, and S(ay). Moreover, the order relation on
S(ayq) induces the inverse Bruhat order, i.e.,

w< v d(w) > d(v).
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Example 2.1.9. Let n = 3 and ajq = {A1, Ay, Az} with
Ay =[1,4], Ay =1[2,5], Az =[3,6].
Then (I)(O'l) = {A4, A5, AG} with

Ay =[L,5], As=[2,4], Ag=[3,6].

o—o0——0—o0 ® © ® © ®
A, A,
*r—o—0
r—O— 00—
A
2 Ag
*r—0——9
10—
A B

FIGURE 2.2 — Symmetric multi-segments

Démonstration. The injectivity is clear. We observe that ®(Id) = ajq. We
show now that ®(w) € S(ayq) for general w and the partial order on S(ay)
induces the inverse Bruhat order.

(1) For v < w, by the chain property of Bruhat order(cf. [§] Theorem
2.2.6), we have
V=W <w <: < Wy =W,

such that w, = o; _,; ,w,_; for some i,_; < j,_; and {(w,) =
{(wy_1) + 1. Now by lemma 2.1.4 of [§], we know that

w«7—11 (1y-1) < w;—ll (Jy-1)-

Hence the segments

[b(Awgfll(iA,_l))ﬂ e(Ai’yfl )]

[b(Aw;il(jﬂ{,l))a e(Ajw—l )]

are linked in ®(w,_1). Moreover, by performing the elementary ope-
ration on the two segments, we obtain ®(w,), hence

O(wy—1) > Phi(w,).
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Again by transitivity of partial orders, we are done. Note that we
proved that all ®(w) are in S(ayq). Moreover, for any b € S(ay), the
fact that ayq is symmetric implies b(ayq) = b(b) since no segment is
juxtaposed to the others. The same reason shows that e(aq) = e(b).
Hence there is a unique w € S,, such that

b= > Ib(A), e(Augo))

This proves the surjectivity.

Let ®(w) > ®(v), we choose
P(w) = P(wy) > P(wy) > -+ > P(w,) = P(v)

to be a maximal chain of multisegments, where ®(w.,) is obtained from
®(w,_1) by performing the elementary operation to segments

{b(A:)s elBu, )l (A, (B, 1,01
in ®(w,_1) with i,_1 < jy—1. Then
Wy—1(iy-1) < wy-1(Jy-1)-
Hence

Wy = Owpy 1 (iry—1)ywry—1 (fy—1) Wry—1-

Note that in this case, we have either
Wy < Wry—1
or
Wy > Wy-1,

by (1), the former implies ®(w,_1) < ®(w,), contradiction to our
assumption.

Hence we must have

W~ > Wry—1-

We conclude by transitivity of partial order that w < v.
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2.2 Nilpotent Orbits

In this section we shall introduce the nilpotent orbits constructed in [35] and
discuss their geometry and relations with multisegments.

Definition 2.2.1. (1) Let ¢ € S (¢f. Def. such that suppp =
{1,--- ,h}. Let V, = @pezVir be a Z-graded C vector space such that

(2) Let E, be the set of endomorphism T of V,, of degree 1, i.e. such that
TVQOJC g VQOJC-F].'
Remark: (cf.[35], 1.8) G,(C) = H GL(V, ) acts on E, by conjugation. For
keZ
each element T"in E,,, there exists a basis of V,, that consists of homogeneous
elements, under which T is of the Jordan form .

Notation 2.2.2. From now on, for simplicity, in all circumstances, we will

write Gy, for G,(C), GL,, for GL,(C) and M, ; for M, ;(C).
Lemma 2.2.3. By fizing a basis for each Vi, we have
By = Mp) o) X -+ X Moy p(n-1)

Here we suppose that supp¢ C [1,h] and My, denotes the vector space of
matrices over C with k rows and £ columns.

Remark: In this case, the group
Gy =GLyay X -+ X GLyp
acts by
(g1, gn)-(f1, - fom1) = (925191, 93295 s L gnfre19n )
Démonstration. It follows directly from the definition of F,. O]

Example 2.2.4. Consider the function ¢ = x1 + 2x2 + x3 € S(cf. Def
, where X}, denotes the characteristic function of k. To ¢ we can attach
the space V, = Vi @ Vo @ V3 such that

Vi = Cuy, Vo = Cuy & Cus, V3 = Cuy.
Consider the operator T' € E,,, such that

T(vy) = vy — w3, T(vy) =T(v3) = vy4.
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Then by choosing a new basis
/o I I [ 2
V] = V1, Uy = U1 — Vg, U3 = U1 + V3, Uy = 2y,

we get
T(vy) = vy, T(vy) = 0,T(vg) = v,

which gives the Jordan form Jp of T

0000
1000
‘]T_oooo
0010

Proposition 2.2.5. (cf.[35], 2.3) The orbits of E, under G, are naturally
parametrized by multisegments of weight .

Démonstration. Let a = Zaij i, 7] such that ¢, = ¢, then the orbit asso-
1<j

ciated consists of the operators having exactly a;; Jordan cells starting from

V,,; and ending in V, ;. O

Notation 2.2.6. We denote by O, the orbit associated to the multisegment
a.

Example 2.2.7. We take the same function ¢ = x1+2x2+ X3 as in example
2.2.4). Then the multisegments of weight ¢ are listed below(cf. [F]|] section

11.4)
amax = {[1], [2], 2], 3]}, ar = {[1,2], [2], [3]},
ar = {[1]7 [2]7 [273]}7 ap = {[L 2]’ [273]}7 Amin = {[173]a [2]}

And the corresponding Jordan forms are given by

0 00O

1 000

Jamax O’Jaz 00 00

0 00O
0 00O 0000 0 00O
00 0O 1 000 1 00 0
Jar = OOOO’JaU_OOOO’Jami‘“_OOOO
0010 0010 01 00

Proposition 2.2.8. (cf. [35], 2.2) In E,, we have Oy, = H Oa.

a>b
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Definition 2.2.9. For any T € E,, and i < j, denote by T the composi-
tion map :

Vi Lo Vi 2=V,
we define

rij(T) = rank(T[i’j]).

Remark: For a a multisegment, 7;;(T") remains constant for any 7' € O,, we
denote it by r;;(a).
We recall the following combinatorial results

Proposition 2.2.10. (cf. [35]section 2.5) Let a, b be two multisegments such

that
Ya = ¥b-
Then the following two conditions are equivalent :
(1) b<a;

(2) mi(a) <ri(b) for alli < j.
In symmetric case, we have the following interesting description of r;.

Lemma 2.2.11. Let w € S,,. Then we have 1; j1p—1(w) := 7 j1n—1(P(w)) =
{k <i:w(k)>j}.

Démonstration. In fact, take

n

ag = Z[k:,k:—i—n— 1],

k=1
and consider the bijection
P . Sn — S (ald)
with

n

P(w) = Z[k,w(k) +n—1].

k=1
By definition, 75 j4n—1(w) is the number of segments in Lg(,) which contains
[i,j + n — 1], hence is of the form [k, w(k) + n — 1] with

kE<i, wk)>j.
[l

Now combining with the proposition[2.2.10] gives the following known results,

Proposition 2.2.12. (28] Proposition 2.1.12) In S,, v < w < r;;(v) <
rij(w), for alli < j.
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2.3 Schubert Varieties and KL Polynomials

Let Y be an algebraic variety over C.

Definition 2.3.1. By a stratification $ on Y, we mean a decomposition of
Y into locally closed smooth sub-varieties Y;. An element of § is called a
stratum.

Remark: We require a variety to be irreducible.

Definition 2.3.2. Let D°(Y) = DY) be the bounded derived category
of sheaves with values in complex vector spaces over Y. And let D(Y) be
the subcategory consisting of those complexes whose cohomology sheaves are
constructible.

Given a stratification £, we let U, denote the set of strata whose dimension
is > /.

Definition 2.3.3. (cf.[13] Remark 3.8.1) Given a local system on the open
stratum Uy with d = dim(Y'), we define inductively a complex IC(Y, L) in
D(Y) as follows.

We start by letting IC(Uy, L) := L[dim Y. Assuming that we already defined
IC(Upsy, L), let 7 : Uy — Uy be the open immersion, then we define

IO(Ug, L) = TS_[_le*[C(U[+1, L),

here 1<, is the truncation from the right in degree k. In finite step, we get
IC(Y,L).

Notation 2.3.4. When we take L = C, which is always the case for us, we
denote IC(Y,C) by IC(Y). In this case we denote

HI(Y) :=H(IC(Y)).

Remark: The cohomology sheaves H'(Y') are locally constant over each stra-
tum in $).

Definition 2.3.5. Letn > 1. By a Schubert variety of type A,,_1, we mean a
closed sub-variety of the projective variety G L, /B, which is stable under the
multiplication by B,, from the left, where B,, is the Borel subgroup consisting
of upper triangular matrices.

Remark: Let V be a C vector space. Note that GL,, acts transitively on the
set of complete flags F(V) = {(U" :i=0,---,n):0=0UCc U C--- C
U™ = V,dim(U") = i} and the stabilizer of a complete flag is given by a Borel
subgroup. Hence by fixing a complete flag (V' :i = 0,---,n) and denoting
its stabilizer by B, we identify the variety GL,,/B with F(V), in this way,
we can consider the Schubert variety as a subset of F(V).
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Proposition 2.3.6. (¢f. [11] page 1/8.) We identify S, with the set of
the permutation matrices in GL,. Then we have the Bruhat decomposition
GL, = H B,wB,,. Moreover, we have

wWESy

B,wB, = ]_[ B,vB,.

Definition 2.3.7. We denote C,, := B,wB, /B, in GL,/B, and the Schu-
bert variety X, = C,.

Then for the Schubert variety X,,, we have a stratification given by $ =
{Cy v <w}.

Definition 2.3.8. Let v < w, we define the Kazhdan Lusztig polynomial for
the pair v,w :

Pouw(q) = ¢ dim H (X,)a,

where x, is an element in C, and d,, = dim(X,,) = {(w).

Concerning the intersection cohomology of Schubert varieties, we have the
following purity theorem due to Kazhdan and Lusztig.

Theorem 2.3.9. ([19]) If i + ¢(w) is odd, then the cohomology group
H'(X,) = 0.

Remark: This implies that P, ,,(q) is a polynomial in g.

2.4 Orbital Varieties and Schubert Varieties

Note that on the orbital variety Oy, we have a stratification given by $, =
{Oa : pa = pp,b < a}.

Definition 2.4.1. Let a, b be two multisegments such that b € S(a). Then
we define the polynomial

Pa,b(q) = Z q(ierb)/Q dim HZ (ab)xa7

where x4 € Oy is an arbitrary point and dp, = dim(Oy). We call it the
Kazhdan Lusztig polynomial associated to {a,b}.
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Remark: In [37] Theorem 1, Zelevinsky showed that the varieties Oy, are
locally isomorphic to some Schubert varieties of type A,,, where m = deg(b).
Hence again by theorem we know that P,y is a polynomial in q.

Here, we briefly recall Zelevinsky’s results in [37]. Let ¢ be a function in S(cf.
Def. [1.2.7) such that supp(¢) C [1,7]. We consider the flag variety

Flo)={0=0°cU' C---U =V, : dim(U"/U") = p(i),1 <i<r}
We fix the standard flag
Fo={0=V)CV, - - CV :VI=Vo1 & ®V,;} € Flp).

Definition 2.4.2. Let G(p) be the subset of F(p) containing the elements
(U :0<i<r)eF(p) such that U' D V! fori=1,---r.

Zelevinsky defined a map 7 : E, — G(p), by associating to T' € E, the
element 7(7') = (U" : 0 < i < r) such that
Ui = {(Ul, e ,Ur) € Vap,l DD V%T : Uj+1 = T(’Uj),j Z ’l}

Theorem 2.4.3. (cf.[371[Theorem 1) The morphism T is an open immersion
into the Schubert variety G(yp).

In fact, for b a multisegment of weight ¢, we can describe explicitly the image
of Oy, in terms of Schubert cells in G(p). Let b= > by[i, j], X® = (xy)
1<i<j<r
with
Tij :bija for 4 S]
x;; =0, fore>j+1

Tii—1 = E bnm

n<i—1,:<m

Example 2.4.4. Let ¢ = xp)+2xp9 + xp3.2 = [1,2] +(2,3], b=[1,3] +[2].
And Xo = (25;), Xp = (xf;) be the matriz such that

X* =

o = O

10
0 1], XP=
10

o = O

01

10

10

Definition 2.4.5. Let b be a multisegment of weight ¢ and
XP = (2ijh<ijer
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We define Yy, to be the set of flags
(U':i=0,1,---,7) € G(p)
such that
dim((U' N V) /U N VI + U 0 VD)) = ayy, forall1 <i,j<r.

Example 2.4.6. Let a be the multisegment in example [2.4.4. We have Y be
the set of flags (U' : 1 =10,1,2,3) such that

UO
dim(U"' NV})
dim(U' NV2)
dim(U* NV})

0;
iy =0=>U"'NV} =0;
xa
2 =1=U?’DV.
21 = VYo

And
dim(U? N Vj/(U2 N V; +U'N Vj)) =25, =0,

which tmplies
UnVv;=0nVv, +U0'nV};

hence U? N Vj = Vsj + U, which is of dimension 2. Hence Yy is the set of
flags (U i =0,1,2,3) satisfying

0_ 1AL 2 12 _ 1] 1 73 _ 13
U°=0, U'nVE=0, U*NV2 =V +U', U3 = V3,
Proposition 2.4.7. (c¢f. [37] Theorem 1.) We have O, = Yy, N E,,.

Example 2.4.8. Again, let a = [1,2] +[2,3]. Let T' € E,NY,, then we have
m(T) = (U':i=0,1,2,3), satisfying

0_ 1 1_ 2 2 _ /1 1 773 _ /3
U'=00nNV,=0 0NV, =V, +U, U =V,.
By definition, if we write T = (T1,T3) such that
T; : Vgo,z' — Vgo,i-‘rl? 1=1,2,

then
U = {(v, Tiw, Tyv) €V, :v € V1),

and U' N V; = 0 is equivalent to Tiv # 0. Also, we have
U? = {(v1,v9, Tovg) € V,, s vy € V1,09 € V, 0}
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Note that U N V; = V@l + U is equivalent to the following conditions
1 2 2
U'CVy, U*2V,a.

We know that U' C Vf is equivalent to the fact that for any v € V1,
(v, Thv, ToTv) € V9, hence TyTiv = 0. Furthermore, we know that U? ;é
Vo is equivalent to the fact that there exits v € Vo such that (0,v,Thv) ¢
V2, hence Thv # 0. Hence we obtain that T' € E, NY, is equivalent to the

following facts
T1 % 0, T2T1 - 0, TQ # 0

The latter is the same as to say that T € O,.

Definition 2.4.9. Let B;(yp) = {j : Z p(m) <j < ng(m)}

m<i—1 m<s
SP = {w € Saeg(v) : Card(w(By(¢)) N Bj(p)) = wij,1 < i,j <7}
We denote by w(b) the unique element in S® of mazimal length.

Example 2.4.10. In the ezample we have
Bi(p) = {1}, Ba() = {2, 3}, Bs(p) = {4}.
Let a = [1,2] + [2,3]. Then by definition
S ={w € Sy : Card(w(B;(p)) N Bj(¢)) = x3;,1 <i,j < 3}
Therefore, for w € S?, we have

w(l),w(4) € {2,3}, {w(2),w(3)} N{2,3} =0,

therefore,
{w(1)7 w<4)} = {27 3}7 {w(2)7 w(3)} = {17 4}a
hence
w = (13)(24), or w = (12)(34),

compare the length, we have
w(a) = (13)(24).
The same method shows that
w(b) = (1423)

Note in the picture we denote a permutation by its tmage.
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FIGURE 2.3 — Bruhat Order for S,

Theorem 2.4.11. (cf. [37]) Let b’ > b such that Yy, C Yy, we have
Py b(q) = Pugw),wm)(0)-

Theorem 2.4.12. ([35], [12]) Let H'(Oy)a denote the stalk at a point v € Oa
of the i-th intersection cohomology sheaf of the variety Oy. Then

m(b,a) = P, a(1).

Remark: The intersection cohomology is nonzero only if ¢ + dim(Oy,) is even.
Hence m(b, a) is the value at v = 1 of a certain Kazhdan Lusztig polynomial
for the symmetric group S, with m = deg(b).

Remark: Combining with theorem [2.4.T1] this theorem gives a complete cal-
culation of the coefficients m(b, a). But as we have seen, this often involves
elements in a huge symmetric group, which is too clumsy. Moreover, another
difficulty arise from the description of the element w(b), which is not explicit.
Remark: In this chapter, for symmetric multisegments a and b, we will give
more concrete description about the coefficient my, 5 in terms of elements in
S, with n equals to the number of segments contained in a, cf. corollary
For general case, we will give use the reduction method from chapter
4 to give a more concrete description.
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2.5 Geometry of Symmetric Nilpotent Orbits

For the moment, we consider a special case of symmetric multisegments, we

assume that .

ag=>» [in+i—1, ¢=Y falA)xa.

i=1 Aca
We remind that we already constructed a bijection

D Sn — S(aId)
such that ®(Id) = ayg.

Definition 2.5.1. Let
Ouw = Opy, and O™ =[] Ou C E,.
wWE Sy
Also, let B B
0, =0,Nn0o2™.

Definition 2.5.2. Let
Ecp: M2,1 X oo My 1o X My 1 X Mp_15 X --- X Mo

jpv

ZWZ M2,1 Xoee Mnfljn,Q X Mnflyn X oo X MLQ'

be the natural projection with fiber M,, ,,_;.
Now we want to describe the fiber of the restriction p,

sym ,
Og

Definition 2.5.3. We define GL,,,,—; to be the subset of M, ,_1 consisting
of the matrices of rank n — 1.

We denote by p,, : M, ,, = M, ,—1 the morphism of forgetting the last column
of elements in M, ,,.
Remark: Now by restriction to GL,,, we have the morphism

Pn i GLy — GLy 1,
which satisfies the property that p,(g192) = g1pn(92) for g1, 92 € GL,.
Proposition 2.5.4. The morphism

pn: GL, = GL,, 1,
is a fibration. Furthermore, it induces a bijection

Pn : Bo\GL,/B, — B,\GLy,—1/By_1.
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Démonstration. To see that it is locally trivial, note that p, is GL,, equi-
variant with GL, acting by multiplication from the left. Since GL, acts
transitively on itself, it acts also transitively on GL,, ,,—1. Now p, is equiva-
riant implies that all the fibers of p, are isomorphic. Let H be the stabilizer
of p,(Id), then GL,,,—1 ~ GL,,/H, it is a étale locally trivial fibration accor-
ding to Serre [32] proposition 3. By Bruhat decomposition, every g € GL,
admits a decomposition

g = blwb27 bz € Bn,i = 1,2, w e Sn,

here we identify S,, with the set of permutation matrices in GL,. We can
decompose by = bsv, where by € GL,,_1, which is identified with the direct
summand in the Levi subgroup GL,_; x C*, and v — Id only contains non
zero elements in the last column, by definition,

pn(g) = blpn(w)bi’)-
We obtain that p, induces
Pn : B,\GL,/B,, — B,\GLy,,—1/By_1.

It is bijective because given p,(w), there is a unique way to reconstruct an
element which belongs to S,,. m

Theorem 2.5.5. The morphism

Plosm

is smooth with fiber G Ly, 1. Moreover, the morphism p,|o,, : Ow — pp(O3™)
is surjective with fiber B,p,(w)By,_1.

Démonstration. Note that smoothness follows from that p, : E, — Z, is
smooth and that OF™ is open in E,. To see the rest of the properties, we
fix an element e, in each orbit O, as follow. Let (v;;)(i =1,--- ,2n—1,j =
1,---,¢(i)) be a basis of V,;, and an element e,, satisfying

ew(”ij) = Vi+1,j, fori<n-—1
€w(Vn—1,)= Unu(j); )
ew<vij> = Vi+1,j—1, for ¢ 2 n.
here we put v; o = 0.

Example 2.5.6. Let w = (1,2), then by the strategy in the proof, e, is given
by the following picture :
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FIGURE 2.4 —
Construction of e,, in case n = 3

We claim that e, € O,,. In fact, it suffices to observe that
Cw *Vii = " 7 Un—14 7 Unw(i) 7 Untlw(@)-1 7 Untw(i)-1,1,

which by proposition[2.2.5} implies that the multisegment indexing e,, contains
[i,w(i) + n — 1] for all i = 1,--- ,n, hence it must be ®(w). Note that, by
definition, we have

Polera) = polew), for all w e S,,.
Since p,, is compatible with the action of G, we get

Po(O7™) = pp(Oy), for all w € S,

which implies that p|p, is surjective. Now it remains to characterize its
fiber. Let T € p,(OY™), then p,'(T') ~ M,,—1 in E,. Moreover, for
T =Ty, , Ton—2) € p, ' (T"), then T'€ O™ if and only if

Tnfl S GLn,nfl-
Therefore, the map 1"+ T,,_; induces
p;l(T/) N O;ym = GLn,n—l-

Consider the variety p,'(T") N O,. Note that since G,, acts transitively on
Pe(OF™), we may assume that 7' = p,(e1q).-

Lemma 2.5.7. The set of f, € O, satisfying

fw(vij) = Vit1,5, fOTi <n-—1
fw(vij) = Vi+1,j—1, fOT’i 2 n.

is in bijection with Bpp,(w)B,_1 via p;l(pw(eld)) NOY™ = GLpy 1.

31



Démonstration. Now the element f,, € O, is completely determined by the
component

fw,n—l . Vgp,n—l — Vi ne

We know by proposition that f, n,—1 is injective hence of rank n — 1.
Hence we have fy, -1 € GLy 1.

Now by proposition we get B,\GLy ,—1/B,-1 is indexed by S, it re-
mains to see that f, ,—1 is in the class indexed by p,(w).

Finally, we note that p, is a morphism equivariant under the action of

G@:GIQXGLQX---XGLn_lXGLnX”-XGLQXGLl.

Since G, acts transitively on O, the image of O, is G,.(py(ey)), hence
is p,(O1a). Now we prove that the stabilizer of p,(e,) is B, X B,_1. Let
era = (€1, -+ ,en_1,6€n, -+ ,€a,2) With e; € M; ;41 if i <n and e; € M;,;_; if
7 > n. We have

pap(eld) = (61, T, €6p—2,€En, 7627172)-

Let g = (91, s 9n, Gnt1, -+ » g2n—1) such that g.p,(erq) = py(era). Then by
definition for ¢ < n — 1 we know that g;11e;9; ! — ¢,. We prove by induction
on ¢ that g; € B; € GL; for i < n — 1. For ¢ = 1, we have nothing to prove.
Now assume that ¢ <n —2, and g; € B;, we show that ¢g;11 € B;1. Consider

ginr€ig; (9i(vij)) = girr€i(vi;) = giv1(vigaj)-
On the other hand, by induction, we know that

giv1€:9; (9i(viy)) = ei(gi(vij)) € Br<;Cuip1p.
Therefore we have g;11 € B;y1. Actually, since e; is injective, the equality
ei(gi(vij)) = giy1(vit1;), implies that g; is completely determined by g¢;41.
This shows that g, 1 € B,_1 it determines all g; for ¢ > n — 1. The same

method proves that g, € B,, and it determines all g; for ¢ > n. We conclude
that the fiber of the morphism p,|o, is isomorphic to B,p,(w)B,_1. O

[]

Corollary 2.5.8. We have for v < w in S,, and X,, the closure of B,wB,
mn G Ly, o ‘

dim H*(0.)™), = dim H'(Xy)s,
for all v € Z, here the index v on the left hand side means that we localize at
a generic point in O, and on the right hand side means that we localize at a

generic point in C,.
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Démonstration. Since p, oy is a fibration with fiber GL,, ,_1 over Z,, we
apply the smooth base change theorem to the following Cartesian diagram

GLn,n— 11— Os@ym

L]

pe(®(Id)) —— Z,,.

We get o o
dim HZ(Oi}ym)v = dim HZ(BnpnOU)Bn*l)BnPn(U)B

Now apply proposition [2.5.4] we have

n—1"°

dim H' (Bpn (W) Bu1) Bupn(0)B,, 1 = GimH (Xy)o.

O
Corollary 2.5.9. We have for v < w in S,,
Ma(w),e(w) = Fow(l).
Démonstration. This follows from the fact that
dim >~ H (X (w))y = Pyu(1)
(cf. [20]). O
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Chapitre 3

Descent of Degrees for
Multisegment

To attack the question of calculating the coefficient m(b, a), this first naive
idea, which can trace back to Zelevinsky [34], is to use the (partial) deriva-
tion. If we believe that for b € S(a), the coefficient m(b,a) only depends
on the relative position between the segments in a, but not on the exact
multisegment a, we should be allowed to do some sort of truncation on the
multisegments simultaneously without changing the coefficient m(b, a). It is
reasonable to think that the partial derivative should play the role of trun-
cation.

However, it is not true that we can always truncate. For example if we take
a = {[1,2],]2,3]} and we replace the segment [2,3] by [2]( truncate at the
place 3), then we get a’ = {[1,2],[2]}, this should not allowed because we
changed the linkedness relation between the two segments. And simple cal-
culation shows that

P*(Ly) = La,

we quickly notice that 2°(L,) does not achieve its minimal degree term L.,
which are supposed to appear.

Such examples lead us to think that we can do truncation only when our
partial derivative achieve its minimal degree terms. More explicitly, we should
avoid applying truncation to the multisegments as a above. This gives us
the hypothesis Hy,(a)(definition [3.1.3). And satisfying the hypothesis Hy(a)
means that we can apply the truncation without changing the coefficients.

35



3.1 Morphism for Descent of Degree of multi-
segment

For a multisegment a and k € Z, we will introduce a hypothesis called Hy(a)
and let S(a), be the set of elements in S(a) satisfying the hypothesis Hy(a).
We construct a multisegment a®® and a morphism v, : S(a), — S(a®)). We
show that the morphism ), is surjective.

Notation 3.1.1. For A = [i, j| a segment, we put
AT =[i,j—1], "A=[i+1,7],
AT =[i,j+1], TA=[i—1,7].
Definition 3.1.2. Let k € Z and A be a segment, we define
AR — { A7, ife(A) = k;

A, otherwise .

For a multisegment a = {Ay,--- | A}, we define
a® = (AP ... ARY

Definition 3.1.3. We say that the multisegment b € S(a) satisfies the
hypothesis Hi(a) if the following two conditions are verified

(1) deg(b™) = deg(a™) ;
(2) there exists not a pair of linked segments {A, A’} such that e(A) =
k—1, e(A") =k.

Definition 3.1.4. Let
S(a), = {c € S(a) : deg(c™) = deg(a™)}.
Lemma 3.1.5. Let ¢ € S(a);,. Then
tH{Aca:e(A)=k}=4{Acc:e(A) =k}
Démonstration. Note that
deg(a) = deg(a®™) + #{A € a: e(A) = k}.
Now that for ¢ € S(a);
deg(c) = deg(a), deg(c®) = deg(a®).

we have

tH{Aca:e(A)=k}=84{Acc:e(A) =k}
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Lemma 3.1.6. Let k € Z
(a) For any b € S(a), we have deg(b®) > deg(a®).
(b) Letc € S(a), then forb € S(a) such thatb > ¢, we have b € S(a)y.

(c) Let b € S(a), then b® e S(a®). Moreover, if we suppose that a
satisfies the hypothesis Hy(a) and b # a, then

bk ¢ S(a(k)) _ {a(k)}

(d) Suppose that a does not verify the hypothesis Hy(a), then there ezists
ab € S(a) satisfying the hypothesis Hy(a), such that b%®) = a®,

Démonstration. For (a), by lemma for any b € S(a), e(b) is a sub-
multisegment of e(a). And from b to b'"”, we replace those segments A such
that e(A) = k by A™. Now (a) follows by counting the segments ending in
k.

For (b), by (a), we have

deg(a®) < deg(b™) < deg(c™).

The fact that ¢ € §~(a)k implies that deg(a®) = deg(c®), hence deg(a™) =
deg(b™) and b € S(a),.
As for (c), suppose that deg(b®) = deg(a®), we prove b® < a®. Let

a=ay>--->a.=Db
be a maximal chain of multisegments, then by (b), we know deg(ag-k)) =
deg(a®), for all j = 1,--- ,r. Our proof breaks into two parts.

(1)We show that

) 5 o)

k k
deg(a§ )) = deg(ag-jl) = a i

J
Let aj;; be obtained from a; by applying the elementary operation to two
linked segments A, A’

— If none of them ends in &, then a§k) contains both of them. And we

obtain ayi)l by applying the elementary operation to them.
If one of them ends in k, we assume e(A’) = k.
— If A precedes A’, we know that if e(A) < k—1, A is still linked to A,
and one obtains aﬁl by applying elementary operation to {A, A"},
(k) (k)

otherwise e(A) = k — 1, which implies a;//; = a;".
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— If A is preceded by A’, then the fact that

deg(aj)) = deg(aj”)

implies b(A) < k, hence A" is linked to A, and we obtain agli)l from
ag-k) by applying elementary operation to them.

Here we conclude that b® e S(a®).

(2)Assuming that a satisfies the hypothesis Hy(a), we show that

al") < a®,
Let a; be obtained from a by performing the elementary operation to A, A’.
We do it as in (1) but put 7 = 0. Note that in (1), the only case where we
can have al") = a® is when A precedes A’ and e(A') = k, e(A) = k — 1.
But such a case can not exist since a verifies the hypothesis Hi(a). Hence we
are done.
Finally, for (d), we construct b in the following way. Suppose that a does
not satisfy the hypothesis Hy(a), then there exists a pair of linked segments
{A, A’} such that

e(A)=k—1, e(A")=k,

let a; be the multisegment obtained by applying the elementary operation

to A and A’. We have

a(lk) =a®,

If again a; fails the hypothesis Hy(a), we repeat the same construction to
get ag, - - -, since
a>a; > .

In finite step, we get b satisfying the conditions in the theorem and
b — k)
O

Remark: Actually, the multisegment constructed in (d) is unique, as we shall
see later(proposition (3.4.1)).

Definition 3.1.7. We define a morphism
¥y, - S(a), — S(a®)
by sending ¢ to ¢™.
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Proposition 3.1.8. The morphism vy is surjective.

Démonstration. Let d € S(a®), such that we have a maximal chain of mul-
tisegments,

ab) =dy>--->d, =d.
By induction, we can assume that there exists ¢; € S (a) such that cgk) =d;,
for all 7 < r. Assume we obtain d from d,_; by performing the elementary
operation on the pair of linked segments {A < A'}.

— If e(A) # k — 1 and e(A’) # k — 1, then we observe that the pair
of segments are actually contained in c,_;. Let ¢, be the multiseg-
ment obtained by performing the elementary operation to them . We
conclude that ¢c®) = d,, and c € S(a)y.

— If e(A) = k—1,then A € ¢c,_; or AT € ¢,_; and A’ € ¢,_;. The
fact that d,_; = cgk_)l implies that k& ¢ e(d,_1), hence e(A") > k.
Hence both A and A" are linked to A’. In either case we perform the

elementary operation to get c, such that cg,k) =d.

— Ife(A’) =k -1, then A" € ¢,_; or A" € ¢,_; and A € c,_;. The
same argument as in the second case shows that there exists c, such
that c™ = d.

O

Actually, the proof in proposition yields the following refinement.
Corollary 3.1.9. Let ¢ € S(a);,d € S(a®™) such that
c® > d,
then there exists a multisegment e € S(a);, such that
c>e, e =d.

Démonstration. Note that ¢ € S(a), implies S(a);, 2 S(c);. Combine with
the surjectivity of _
wk : S(C)k — S(C(k)>,

we get the result. ]
Definition 3.1.10. For a a multisegment, and k € Z we define
S(a)e = {c € S(a)y : ¢ satisfies the hypothesis Hy(a)}.
Proposition 3.1.11. The restriction
Uy, S(a), — S(@a®)
¢ c

1s also surjective.
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Démonstration. For d € S(a®), by proposition [3.1.8 we know that there
exists ¢ € S(a); such that ¢® = d. But by (d) in lemma we know
that there exists ¢’ € S(c), such that ¢/® = ¢® = d. We conclude by the

observation that if ¢ € S(a)y, then

S(C)k g S(a)k.

Also, concerning the corollary [3.1.9] we have the following

Corollary 3.1.12. Let ¢ € S(a); and d € S(a®) such that ¢ > d. Then
there exists a multisegment e € S(c)y, such that e® = d.

Démonstration. By corollary 3.1.9L we know that there exists an € € S (c)k
such that €® = d. By (d) in lemma [3.1.6, we know that there exists e €
S(e'); such that e® = &® = d. Hence we conclude by the fact that if

¢’ € 5(a), then

S(e’)k g S(a)k

Definition 3.1.13. Let k € Z and A be a segment.

k) A — { A, ifb(A) =

A, otherwise .

Let
a= {Ab'" 7A7“}7

be a multisegment, we define
®a={BA ... WA Y

Definition 3.1.14. We say that the multisegment b € S(a) satisfies the
hypothesis H(a) if the following two conditions are verified

(1) deg(“b) = deg(Va) ;
(2) there exists no pair of linked segments {A, A"} such that

b(A) =k, b(A) =k + 1.

Remark: There exists a version of lemma for ®g. In the following
sections, we will work exclusively with a®) and the hypothesis Hj,(a). But all
our results will remain valid if we replace a® by ®a and Hy(a) by H(a).
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3.2 Injectivity of ;. : First Step

By previous section, we know there exists ¢ € S(a), such that c¢®) =

(@™ i, the minimal element in S(a®). In this section, we give an ex-

plicit construction of such a ¢ and show that it is the unique multisegment
in S(a), which is set to (a(k))min by 1.

— In proposition we construct a multisegment ¢ € S(a;); such

that ¢®) = (a(k )min, Where a; is a multisegment such that a € S(a;).

— We prove that there exists a unique element in S(a); which is sent to

(a(k))mln by wk
— Then we apply the uniqueness result to S(a;), to prove that the
constructed ¢ before is in S(a) k[|

Notation 3.2.1. Let €}, = fe)(k) (cf. Def[1.2.7).
Definition 3.2.2. Let

ag — {A c (a(k))mm . 6(A) =k — ]_}

Proposition 3.2.3. Let ag = {A; = -+ = A,}. Let ¢ be a multisegment
such that

(1) If alk = 1) > @a(k), then 1 = ga(k — 1) — pa(k) + . Let

¢ =((a")min \ a0) U{A] = - = A} = Apyr = -+ = A

(2) ]f ()Oa(k) - ék < §0a<k - 1) < Qpa(k); then r = <)Oat(k - 1) - Soa(k> + fk
Let

¢ = (@) \ag) ULAT = - = AT = k] = - - = [K]}

Co—r
(3) If pa(k — 1) < pa(k) — 1, then ag = 0 and
c=a® + ¢,k
Then ¢ satisfies the hypothesis Hy(c) and c® = (a®) 4.

Démonstration. We show only the case pa(k—1) > @a(k), the proof for other
cases is similar. Note that we have the following equality

palk —1) = Qawy, (k= 1) =r+{A € (@")pn : A D [k — 1, k]}.

1. Here we use partial derivative to prove our result, but it can also be done in a purely
combinatorial way, which is less elegant and more lengthy though.
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Moreover, @a(k — 1) > pa(k) implies that no segment in (a®));, starts at k
by minimality, hence we also have

Pa(k) = pamy,, (k) + 0 =t{A € (%) in : A D [k — 1, K]} + 4.

Now comparing the two formulas gives the equality r = pa(k—1)—pa(k)+lk.
By definition we have ¢®) = (a(k))min. To check that c satisfies the hypothesis
H(c), it suffices to note that (a®®)., \ ag does not contain segment which
ends in & — 1. O

Lemma 3.2.4. Let ¢ € S(c);, be a multisegment such that ¢ is minimal.
Then if d € S(c) such that d® = c® | then ¢ =d

Démonstration. Suppose that d < ¢ is a multisegment such that d® = ¢®.

Consider the maximal chain of multisegments
c=cy>--->c =d.

Our assumption implies that cgk) =c® foralli=1,---,¢ by lemma .
Hence we can assume ¢ = 1 and consider d € S(c) to be a multisegment
obtained by applying the elementary operation to the pair of linked segments
{A < A"}
— If e(A) # k,e(A) # k, then the pair {A, A’} also appears in c¢®),
contradict the fact that ¢®) is minimal.
— If e(A") = k, then by the fact that ¢ € S(c)x, we know that e(A) <
k — 1, which implies that the pair {A, A7} is linked and belongs to
c® contradiction.
— If e(A") = k and b(A") < k + 1, then the pair {A7, A’} is still linked
and belongs to ¢, contradiction.
Hence we must have e(A’) = k and b(A’) = k+1, this implies that deg(d®) >
deg(c®™) and d ¢ S(c)y. Finally, (b) of lemmaimplies that for alld < c,
we have d ¢ S(c)y. O

Proposition 3.2.5. Let ¢ € S(c);, be a multisegment such that ¢® is mi-
nimal. Then the partial derivative 2*(L¢) contains in R a unique term of
manimal degree L.k, which appears with multiplicity one.

Démonstration. Let ¢ = {Aq,---,A,} such that e(A;) = k if and only if
t=1,---,7 with i < j. Then

PH(m(c)) = Ap X - X Ay X (A + A7) X -+ % (Aj+A7) X Ajypr X - XA,
with minimal degree term given by

w(c(k)):Alx---xAi,lxA[x---xA;xAﬂlx---xAr.
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The same calculation shows that for any d € S(c), the minimal degree terms
in 2*(r(d)) is given by 7(d®), whose degree is strictly greater than that
of ¢® since by previous lemma we know that d ¢ S(c)s. Note that 2*(Lg)
is a non-negative sum of irreducible representations ( Theorem 1.4.4)), which
cannot contain any representation of degree equal to that of ¢™. by compa-

ring the minimal degree terms in 2*( ) and Z m(e,d)2"(Le). Finally,
eGS(d)
comparing the minimal degree terms in 2*(n(c)) and Z m(e,c)P"(Le)
ecS(c)

gives the proposition.
]

Proposition 3.2.6. Let a be a multisegment. Then S(a)y contains a unique
multisegment ¢ such that ¢ = (a(k))mm.

Démonstration. Let a = {A],---, AL} such that e(A}) = k if and only if
n=t,---,7 with ¢ < j. Then

D" (w(a)) = AT X X ALy X (AJHAT) X X (A AT AL X x A
with minimal degree term given by
m(@®) = Al x - X AL ) AT X X AT XA X AL

Note that in 7(a®), m((a®)um,a®) = 1(cf. [35]). Now compare with the

terms of minimal degree in Z (d,a)2"(Lq) and apply the proposition
deS(a)

3.2.6| yields the uniqueness of ¢ such that ¢ = (a(k))min. O]

Proposition 3.2.7. Let ¢ be the multisegment constructed in proposition

3.2.3. Then ¢ € S(a).

Démonstration. Let
a, = a® + mlk],

then we observe that a € S(a;). Because of ¢ € S((a®)nim + m[k]), we have
c € S(a;). Note that since deg((a;)®) = deg(c®), the fact that ¢ € S(c)x
implies that ¢ € S(a;);. Now let d € S(a), then we have d € S(a;); since
deg(d®) = deg(agk)) = deg(a®). Assume furthermore that d*) is minimal,
then by proposition , we know that such a multisegment in S(a;) is
unique, which implies d = c. O

Corollary 3.2.8. Let ¢ € S(a)y, such that c®™ = (a™) i, then ¢ is minimal
in S(a)g.
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Démonstration. By corollary [3.1.12 we know that for any d € S(a)y, there
exists a multisegment ¢’ € S(a), with ¢'® = (a®)_;., such that d > ¢’. By
uniqueness, we must have ¢ = c’. 0

3.3 Geometry of Nilpotent Orbits : General Cases
In this section, we show geometrically that the morphism

Uy s S(a)y — S(a®)
c s c®

is bijective, satisfying the properties
(1) For c € S(a)y, we have m(c,a) = m(c® a®).

(2) The morphism )y preserves the order, i.e, for ¢,d € S(a)x, ¢ > d if
and only if ¢® > d®.

To achieve this, firstly we consider the sub-variety Xéf = H O, and
ceS(a),

construct a fibration a from X% to Gr(€x, V,,, 1), the latter is the space of the

(i-dimensional subspace of V,,_ . Secondly, we construct an open immersion

W (X:)W — Ya(k) X Hom(V%,k_l, W),

where (X¥)y is the fiber over W with respect to a and Yy = H Oe.
ceS(alk)

Our main difficulty here lies in proving that 7y is actually an open immersion.
The idea is to apply Zariski Main theorem, to do this, we have to prove the
normality and irreducibility of both varieties. Irreducibility of (X¥)y follows
from our results in previous section, and normality follows from the fibration
a and the fact that orbital varieties are locally isomorphic to some Schubert
varieties, by Zelevinsky, cf. [37].

Once we prove that 7y is an open immersion. All the desired properties of
Uy, follow.

Here we fix a multisegment a and let ¢ = ;.

Definition 3.3.1. [

2. 1In this section we only work with X{*) instead of X{*) = H Oy,. The reason
beS(a)k
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— Let

— Let Yy = H O..
ceS(ak)
— For b > c in S(a)x, we define

Xte= ] Oa

b>d>c
Let ¢ € S(a);,, T € O, then

Lemma 3.3.2. Let ¢ = pa. We have dim(ker(Ty,,)) = H{A € a:e(A) =
k} =l (Notation , which does not depend on the choice of T

Démonstration. The fact T € O, implies
dim(ker(T|y,,)) = H{A € c: e(A) = k}.

Then our lemma follows from lemma B.1.5

Definition 3.3.3. Let

Gr(ly, V,) ={W C V,; : dim(W) = 4},
and for W e Gr(l, V), let

Vo /W =Vo1 @ Vo1 @V /W o -+

Also, we denote by
pw Vi = Vo /W

the canonical projection.

can be seen from the simple example of the affine plane A? endowed with the stratification
X1:A2—A1, XQZAl—pf, X3 :pt

If we are interested in X3 HXg, it is better to study A2, because there is no nontrivial

directed extension of X; by Xj3. Instead, if we are interested in X3 H X5, we can study

A? — pt, which is already a nontrivial extension.
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Definition 3.3.4. We define
78 = {(T,W): W € Gr(t,V,,),T € End(V/W) of degree +1},
and the canonical projection

w28 = Gr(l,V,)
(T, W) — W.

Proposition 3.3.5. The morphism m is a fibration with fiber

By ( DefEZI).

Démonstration. This follows from the definition. ]

Definition 3.3.6. Assume b,c € S(a®).
— Let
Zka — {(T, W) eZk.Te Ya(k)}.

— Let

Zyr={(Twyezt:Te [] Oa}, 2> ={(T,W)e ZF:T e [] Oa}.
b>d>c a>b

— Let
Zka(c) = {(T,W) € Z** T € O.}.

Remark: The restriction of 7 to Z"® is a fibration with fiber Y.

Definition 3.3.7. Now we define T"™ € End(V/ ker(Tly, ,)) such that

T|Vgp’i7 fO?”i ;é k)k - 17
T(k)\vw =49 prxoTly,,, fori=k—1
Tly,,oprk, fori=Fk.

where pry 1V, — Vi, / ker(T|y, ) is the canonical projection.

This gives naturally an element (T, ker(T v,,.)) in Z"* We construct a
morphism
Vo1 Xo — ZM2

by
Ww(T) = (TW, ker(Tly, ,)).
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Definition 3.3.8. We define

a: XE— Gr(t, V,),
with a(T) = ker(T'y, ).
Remark: We have a commutative diagram

L
Xk Zka

=g

GT(EM ch)

where 7, maps fibers to fibers.

Proposition 3.3.9. The morphism « is a fiber bundle such that o|o, is
surjective for any ¢ € S(a)g.

Démonstration. We have to show that « is locally trivial. We fix W €
Gr(lk,V,) Note that G L) acts transitively on Gr (g, V,,). Let Py be the
stabilizer of W. Then by Serre [32] proposition 3, we know that the principle
bundle

GL¢(k) — GLLp(k)/PW

is étale-locally trivial. Here the base G'Ly)/Pw is isomorphic to Gr (£, V).
It is even Zariski-locally trivial because Py is parabolic, which is special in
the sense of Serre [32], § 4. Now we can write

Xg 9 GLgo(k) X Pw Oé*l(W)

.

GT(&C, V@)

where
o(lg,T]) = g.T.

We claim that ¢ is an isomorphism. In fact, for any 7' € XF¥ we choose
g € G Ly, such that
glker(Tly,,)) = W.

This implies g.T € o' (W), thus
o(lg~",g.T]) =T.
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This shows the surjectivity. For injectivity, it is enough to show that
0([9,T]) = ¢.T € =" (W)

implies g € Py. But this is by definition of Py, .
The fact that « is locally trivial then can be deduced from that of

GLyw) X py o (W),

while the latter is a consequence of the fact that G'L, ) is locally trivial over

Gr(ﬁk, VW)
Finally, we want to show the surjectivity of the orbit a|p,. This is a conse-
quence the fact that G L) acts transitively on Gr(lx, V,,). O

Proposition 3.3.10. Let ¢ € S(a),. The restriction map
Vi : O — ZF2(c™)
18 surjective.
Démonstration. Let (Tp, W) € Z52(c™). Consider
m=f{A €c:e(A) =k,deg(A) > 2} < min{/y, dim(ker(Tolv,,_,))}-

We choose a splitting V,, = W @ V,, /W and let T - Vor—1 — W be a
linear morphism of rank m. Finally, we define T' € ~; ' ((Ty, W)) by letting

T|V<p,k—1 =T D T0|Vgo,k—17

Ty, , = Tolv,,w o pw,
T‘V%i = T’V%ia for 4 % k — 1, k.
Let

{A€c:e(A)=k,deg(A) >2} ={A, -, An}, b(A) < - <bA).
We denote W; = Téb(Al)’kfl](V%b(Al)) Nker(Toly,,_,), then
Wy C - €W, Cker(Tolv,, )
Then we have T' € O, if and only if
dim (T (W) — dim(T(W;_1)) = dim(Wi/Wi_y), i=1,--- ,m.
Since such T" always exists, we are done. O
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Notation 3.3.11. We fix W € Gr(4x,V,), and denote
(Xw,  (Z")w
the fibers over W.

Proposition 3.3.12. The fiber (X2)w is normal and irreducible as an alge-
braic variety over C.

Démonstration. Note that since S (a) contains a unique minimal element c,
the variety X: is contained and is open in the irreducible variety O.. Now
by [37] theorem 1, we know that X" is actually normal.

By proposition , we know that « is a fibration between two varieties X :
and Gr({g,V,). The fact that both are normal and irreducible implies that
the fiber (X)) is normal and irreducible. O

Remark: Note that by definition, we are allowed to identify (Z*?®)y, with

Y, . This is what we do from now on.

Definition 3.3.13. We choose a splitting V,, = W @V, /W and denote by
qw : Vo — W the projection. We define a morphism Ty

Tw(T) = ((m)w(T),qw o Tlv,,_,)-

Remark: Then we have the following commutative diagram

(X!:)W L (Zk’a)w X HOHI(V%k_l, W)

l(%)w/

(Zk,a)w
where s is the canonical projection.
Lemma 3.3.14. The morphism Ty s injective.

Démonstration. Note that any T € (XF)y is determined by (7;)w (T') and
Tly,,_,- Furthermore, Ty, ,_, is determined by pwoT|y,,_, and gwoTly,,_,.
Since pw o T'|y, ,_, is a component of (y)w (1), it is determined by (v)w (1)
and gy o T |VM_1. This gives us the injectivity. [

Lemma 3.3.15. Let ¢ € S(a); such that c® = (a(k))min. Then The image
of Oc N (XE)w is open in Ogw x Hom(V,, 51, W).
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Démonstration. Let ¢ € S(a); such that ¢® = (a®),;,. We shall use the
description in proposition [3.2.3. We show that the image of

Oc N (XH)w

is open in Ogw x Hom(V,, x—1, W).
Let T € (O¢)w. We check case by case :
(1) Ifo(k—1) < @(k)—Ly, the fact ¢®) = (a®)_;, implies that T(k)\vw,l
is injective. As a consequence we have Im(7T'|y,_, ) N W = 0. Hence
for any element Ty € Hom(V,, ,_1, W) , we define T € O, such that

T0|V<p,k71 =T ® T(k)|V¢,kf17

which lies in the fiber over (y)yt ((T™),W)). Since by proposition
3.3.10] every element in O.x comes from some element in O, hence

Tw(OC N (X:)W) = Oc(k) X Hom(Vw,k,l, W),

which is open.
(2) If o(k) — €, < p(k — 1) < p(k), the fact c®) = (a®)),;,, implies that
the morphism
T(k)‘V@,k—l

contains a kernel of dimension
p(k —1) = o(k) + L.
Our description of ¢ in proposition shows that in this case
dim(Im (7, ,_,) N W) = @(k — 1) — (k) + .

In this situation, given an element 7, € Hom(V, ;_1,W) we define
T’ € E,, such that

T/‘Vw,kfl = TO @ T(k) ’VAP,IC717
T'lv,, = T(k)|v%,€/w o pw,
T'ly,, =TW, fori#k—1,k

By construction and proposition we know that 7" € O, if and
only if T’|VM_1 is injective, since no segment in ¢ ends in £ — 1, as
described in proposition And this is equivalent to say

T
0lker(@ )y, )

is injective. This is an open condition, hence O, N (XF)yy is open in
Oc(k) X HOHI(V%k,l, W)
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(3) If p(k — 1) > ¢(k), then by proposition [3.2.3]
¢ = (),

implies
m(Tly,,.,) 2 W

Recall the notation from proposition [3.2.3]
ag={A;1 == A}
with r = @p(k — 1) — ¢(k) + €. Then
¢ = (@) \ a0) U{AT = = Af = Agn = = AL
Let T € Hom(V,, ;—1, W), we define 7" € E,,
Ty, =To®TW)y,,_,,
Ty, =T®v, w0 pw,

T'y,,=T®, fori#k—1k

Consider the following flag over V,, ;_1,

ker(TW|o 1) =V, 2---2 V1 2V =0,
where V; = Im((T™)2) Nker(TW)|,x_1), with i = 1,--- ,r, for the
notation (T™)2 | we refer to definition
Now by proposition we know that 7" € O, if and only if
fori =1, -+ lg. In fact, if V; # V;_1, then
dim(V;/Vie1) = #{7 : 4; = Ai}.

And by construction, if ¢ < ¢, by proposition [2.2.5 the fact that c
contains A implies that if 7" € O,,

dim(Ty(V;)) — dim(Tp(Vi_1)) = dim(V;/Vi_,).

The converse holds by the same reason.
Again, this is an open condition, which proves that O N (X¥)y is
open in Oy x Hom(V,, ;—1, W).
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Proposition 3.3.16. The morphism Ty is an open tmmersion.

Démonstration. To see that it is open immersion, we shall use Zariski’s main
theorem. Since all Schubert varieties are normal, we observe that

(Zk’a)W X Hom(V¢7k_1, W)
are normal by theorem 1 of [37]. Also, by proposition [3.3.12) we know that

(XF)yy is irreducible and normal, hence 7y is an open immersion. O
Proposition 3.3.17. Let ¢ € S(a). Then ¢ € S(a)y, if and only if
Oc N (XHw

18 Open in
(Oc(k) X HOID(V%k_h W))
Démonstration. We already showed that
O.N (XE)w
is a sub-variety of
Oc(k) X Hom(Vw’k,l, W)

Moreover, we know that

(Oc(k) X Hom(V%k_l, W)) N (Xk)w

a

is open in

Ogry X Hom(V%k_l, W)
since Ty is open. Finally, by proposition [3.3.10}
(Oc(k) X Hom(V%k,l, W)) N (X:)W
- H Od N (X:)W

deS(a)g,dF) =ck)

The variety (Oyx x Hom(V, x_1, W))N(XF)w is irreducible because (Ogu) %
Hom(V,, ;—1,W)) is irreducible, hence the stratification H O4 N
deS(a)y,,d® =ck)
(XF)w by locally closed sub-varieties can only contain one term which is
open, from the point of view of Zariski topology. Since for any element

d' e {d e Sa),,d® =c®},
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by (d) of lemma|3.1.6] we know that there exists ¢ € S(a);, such that d’ > ¢’

Hence we conclude that
{d € S(a);,,d® = ¥},

contains a unique minimal element, which lies in S(a);. Now our proposition
follows. ]

Corollary 3.3.18. Let a be a multisegment and
c e S(a),

then
Pac(q) = Paw o0 (q)-

Démonstration. First of all, by proposition [3.3.9] and Kunneth formula, we
know that o o
H (OC)a =" (Oc N (Xz(ak))W)aa

the localization being taken at a point in O, N (X (k))W. Now by proposition

a

3.3.16/and proposition |3.3.17|, we may regard OcN (X,C(‘ ))W as an open subset

of Ocwy X Hom(Vy, -1, W), hence
HI(Oe N (XN )a = HI (Ogey x Hom(Vip o1, W) ) ate
and Kunneth formula implies that the latter is equal to

HI (5,:(@ )a(k) .

Corollary 3.3.19. Let d € S(a) such that
4" — a®

)

and
ce Say,
then ¢ < d, and
Pac(q) = Pac(q)-

Démonstration. By corollary [3.1.12] we know that there exists ¢’ € S(a);
such that
d>c, /W =c®.

And proposition [3.3.17 implies ¢’ = c. Finally, applying the corollary |3.3.18
to the pairs {a,c} and {d, c} yields the result. O
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3.4 Conclusion

In this section, we draw some conclusions from what we have done before,
espectially the properties related to .

Proposition 3.4.1. The map

vy, 0 S(a)y — S(a®)

¢ c

18 bijective. Moreover,
— forc e S(a)g
m(c,a) = m(c® a®).
— forb,c € S(a), we have b > ¢ if and only if b®) > *)

Démonstration. By proposition [3.3.17, we know that ¢ is injective. Surjec-
tivity is given by proposition [3.1.11]
For ¢ € S(a)y,

m(c,a) = m(c® a®)
is by corollary by putting ¢ = 1, and applying theorem [2.4.12
Finally, for b,c € S(a)y, if b > ¢, then ¢ € S(b®,b), and by lemma [3.1.6]
we know that b® > ¢ Reciprocally, if b® > ¢®), by proposition |3.3.17
we know that Oy, C O, hence b > c.

O
Corollary 3.4.2. We have

m@®) = > m(c,a)Lw, (3.4.3)

ceS(a),

— letb € S(a) such that b satisfies the hypothesis Hy(a) and b® = a®),
then
m(b,a) =1, S(a), = S(b).

Démonstration. The first part follows from the fact that 1 is bijective and
m(c,a) = m(c® a®). For the second part of the lemma, we note that
Ly = L,k appears with multiplicity one in W(a(k)), then equation (3.4.3))
implies m(b,a) = m(b® a®)) = 1. To see that S(a), = S(b); C S(b). Note
that we have S(b), C S(a), and two bijection

wk : S(a)k — S(a(k)),
i = S(b), = S(b™) = S(a®),
Hence comparing the cardinality gives S(a), = S(b)y. ]
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3.5 Minimal Degree Terms in Partial Deriva-
tives

Proposition 3.5.1. (i) Suppose that a satisfies the hypothesis Hy(a).
Then 2%(La) contains in R a unique irreducible representation of
manimal degree, which is L), and it appears with multiplicity one.

(ii) If a fails to satisfy the hypothesis Hy(a), then
Lo will not appear in P*(Ly), and the irreducible representations
appearing are all of degree > deg(a®).

Démonstration. Let a = {A; = --- < A,}, such that

with k = e(4,;).

We prove the proposition by induction on ¢(a)(cf. definition [1.3.3)). For,
¢(a) = 0, which means that a = a;,, in this case a satisfies the Hy(a),
and

D*(La) = 2" (m(@)) = Ay X -+ X (A + A7) X oo X (A + A7) X -+
which contains

La(k) :7T<a(k)) :Al NEEE XA; X AJ_ X oo,
Hence we are done.
For general a, we have refer to the lemma [3.1.6]
We write
m(a) = La+ Y _m(b,a)Ly. (3.5.2)

b<a

Now applying 2* to both sides and consider only the lowest degree terms,
on the left hand side, we get

m(@®) = Apx o X A X AT X X AT XA (3.5.3)

By theorem [1.4.4] both sides are positive sum of irreducible representations,
then

— If a satisfies the hypothesis Hy(a), on the right hand side, from our

lemma and induction, we know that for all b < a, 2*(Ly,) does

not contain L, as subquotient, hence 2"(L,) must contain Lu

with multiplicity one. We have to show that it does not contain other

95



subquotients of w(a®)). Note that by induction, we have the following

formula
r(a®) = X + Z m(c,a) L.,
ceS(a)k\a

where X denotes the minimal degree terms in 2"(L,). Now apply
corollary we conclude that X = L_u).

— Now if a fails to satisfy the hypothesis Hi(a), a ¢ S(a)g, by pro-

position and induction, we know that there exists b € S(a)y,
such that a® = b® and P*(Ly,) contains L, as a subquotient with
multiplicity one.
Now by the lemmal[l.3.5] (a)—(b) is a positive sum of irreducible re-
presentations which contain L, : by the positivity of partial derivative,
we know that we obtain a positive sum of irreducible representations
after applying 2*. Now

2*(n(a) — n(b)) = 7(a®) — 7(b®)) + higher degree terms

contains only terms of degree > deg(a®™), so does 2*(L,).
This finishes our induction.

Corollary 3.5.4. Let a be a multisegment such that @) (k) = 1. Then
— Ifac S(a), then Z"(La) = La + Lo .
— Ifa¢ S(a), then 2°(La) = La.

Démonstration. First of all, we observe that the highest degree term in
P*(Ly) is given by Ly. In fact, we have

P*(r(a)) = )+ > _m(b,a)Z"(Ly),

b<a

meanwhile we have
P*(r(a)) = n(a) + lower terms.
By induction on /(a) we conclude that the highest degree terms in 2%(L,)
}Sf ﬁae S(a)g, then proposition implies that the minimal degree term of
P*(La), but since deg(a®) = deg(a) — 1, therefore we must have
P*(La) = La + Ly

o6



On the contrary, if a ¢ S(a)g, then by (ii) of the proposition we
know that all irreducible representations appearing in Qk(La) are of degree
> deg(a®) = deg(a) — 1, which implies

P*(La) = La.
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Chapitre 4

Reduction to symmetric cases

- In the first paragraph of this chapter, we generalize the construction of
chapter 3 by iterating the truncation functor to obtain for c;, cy two multi-
segments, the truncation Vb2 of a multisegment b.

- Then we give an algorithm to, starting from two multisegments a and
b € S(a), construct two symmetric multisegments a®™ and b¥™ € S(a*™™)
such that we have the following equality

m(b,a) = m(b¥™, a¥™").

- Then we study some examples and we show how our algorithm works for
finding the coefficient m(b, a).

- Finally, in the last paragraph, we give a proof of the Zelevinsky’s conjecture
stated in the introduction.

4.1 Minimal Degree Terms

The goal of this section is to define the set S(a)q C S(a) and describe some
of its properties.

Definition 4.1.1. Let (ky,--- ,k,) be a sequence of integers. We define
alkkn) — (@) ..o )kn)y

Notation 4.1.2. Let A = [k, (], we denote

More generally, for d = {A; < -+ <A}, let
al@ = (... ((alBd))Br-0y . (@A),
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Definition 4.1.3. Let (kyi,--- , k) be a sequence of integers , then we define
S(a)g,..k = {c € Sa): k) ¢ glalkki ))ki+1> fori=1,--- r}

and

'(ﬁkl?...,k?d : S<a)k17"-,kr N S(a(lﬂ,-..,kr))’

sending ¢ to cFv k),

Notation 4.1.4. Let d = {A; 2 -+ 2 A} such that A; = [k;, ¢;]. We
denote

S(a)d = S(a)kh... /N R SR

and
rébd = ¢k'm"' 7&"71?7—17"' 7k“17“' ’Kl ’

Proposition 4.1.5. Let (ky,--- ,k,) be a sequence of integers . Then the set
S(a)k, ... k. is non-empty. In fact, we have a bijective morphism

wkl,"‘,kr : S(a>k1,“~,kr — S(a(lﬁ,...,kr)).

Moreover,
(1) Force S(a). . k., we have

m(c,a) = m(ckrkr) glkiko)y

(2) Forb,ce S(a), .. k., then b > c if and only if bk okr) 5 glhrke)
(3) We have

W(a(kl’w’]ﬁ)) _ Z m(c,a) Loy, kr)-

c€S(A)ky, -k
(4) Letb € S(a)y,.... . and blFr ) = gkr=ke) Sy e
S@)ky .k = SOy k-
Démonstration. Injectivity follows from the fact

wkl,-..,kr = ?ﬂk,« o ¢kr,1 ©:--0 lbkl-

For surjectivity, let d € S (a(kl’“"’“)), we construct b inductively such that
Uty 4 (b) = d. Let a, = d, assume that we already construct a; € S(a™*),
satisfying that

al ) € s(alh ),

J+1
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for allz<j<randa Rivinkn) g,

Note that by the bijectivity of the morphism
¢ki : S(a(kl’m’ki*l))ki — S(a(kl’“"ki))’

there exists a unique a;_; € S(a®*-1)), “such that

al(-]f"l) = a,.

Finally, take b = ag € S(a), ... k.. We show (1) by induction on r. The case
for » = 1 is by proposition [3.4.1} For general r, by induction

m(c,a) = m(ckr k1) gk ko))

Y

and now apply the case r = 1 to the pair clhumbr—1) gk k1) gives

m(c(k‘l,“' 7k7‘—1)’ a(k17~“ 7kr—1)) — m(c(kh'“ 7k7')’ a(k17“' 7k7')).

Hence
m(c,a) = m(ckrkr) gl ko

Also, to show (2), it suffices to apply successively the proposition 3.4.1, And
(3) follows from the bijectivity of ), ... 5. and (1). As for (4), we know by

7k:7"
definition,
S(a)kl v ke 2 S(b)k1,~~~,k
We know that any for ¢ € S(a)y, ... ., we have ¢k < plkk) by (9)
this implies that ¢ < b. Hence we are done. ]

Similarly, we have
Definition 4.1.6. Let (kyi,--- , k) be a sequence of integers, then we define
kr,---,lﬂs(a) = {C € S(a) Rk S ki+1s((ki7m’kl)a)7 fori=1,-- 7T}'

and

kr,.‘.,kllﬂ : kT,"',kﬂS(a) N S((k“‘“vkl)a)’

sending ¢ to Fr ke,

Notation 4.1.7. Let d = {Ay,--- , A} such that A; = [k, 4;] with ky <
- < k, We denote

dS(a) Tk, k1, k1, 01 S(a),

and
dw ::k’r:"' 7£T7kr—17"' ’klz"' 7£1 17/}
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Remark: Let ki, ko be two integers. In general, we do not have
ke (S(@)ky) = (kS (@)) 1y -
For example, let k; = ks = 1, a = {[1], [2]}, then
(S(@)k) = {a}, (L5(@)k = {[1,2]}.
Notation 4.1.8. We write for multisegments dy, ds, a,
a5(@)a, = (a,5(a))a,, S(@)aa, = (S(a)a,)a.-

and
do¥a; = (@¥)dys Yy a, = (Ya,)a,
And for b € S(a),

(d2)py(d1) . (dzb)(d1)7 pldid2) . (b(dl))(dz)‘

4.2 Reduction to symmetric case

Now we return to the main question, i.e., the calculation of the coefficient
m(c, a) for ¢ € S(a). Before we go into the details, we describe our strategies :

(i) Find a symmetric multisegment, denoted by a®™, such that L, is the

minimal degree term in some partial derivative of Lgsym.

(ii) For ¢ € S(a), find ¢ € S(a®™), such that we have m(c,a)

m(c™™, a®™™m).

Proposition 4.2.1. Let a be any multisegment, then there exists an ordinary

multisegment b, and two multisegments c;,© = 1,2 such that
b € ,S(b),, a= bl
Démonstration. Let a = {Aq, -+, A,} be such that
Ap =2 2A,,

and

e(Ay) <o <e(Ay) = =e(A;) <e(Ajpg) < -+

such that A; is the smallest multisegment in a such that e(A;) appears in e(a)
with multiplicity greater than 1. Let A' = [e(A;) 4 1,¢] be a segment, where
¢ is the maximal integer such that for any m such that e(A;) <m < ¢ —1,
there is a segment in a which ends in m. Let a; be the multisegment obtained
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by replacing A; by A}, and all A € a such that e(A) € (e(A;), (] by A*.
Now we continue the previous construction with a; to get as - - -, until we get
a multisegment a,, such that e(a,,) contains no segment with multiplicity
greater than 1. Let

o= {AL A2 AT}

Note that by construction, we have
AV < A? < < AT

And we show that a,, € S(a,,)c,. Note that

;= a7,
by induction on 71, we can assume that a; € S(a,,)ar ... a2 and show that
a € S(aj)ar. We observe that in a;, by construction, with the notations
above, A;, .-+, A;_; are the only segments in a; that ends in e(A;), and A
is the only segment in a; that ends in e(A;) + 1. Hence we conclude that
a; € S(a1)e(a41. And for e(A;) +1 < m < £, we know that a{“*)+H =

does not contain a segment which ends in m — 1, hence age(AI)H““’m_l) €

S(alfAth My We are done by putting m = £.

Now same construction can be applied to show that there exists a multiseg-
ment a,, such that b(a,,) contains no segment with multiplicity greater than
1, and

Co = {1A7 e 7T2 A}’

such that
a,, € 2S(ay), a,, = (’32).%1,,2

as minimal degree component.
Note that in this way we construct an ordinary multisegment b = a,.,,

b e C2S(b)C17 a= (CZ)b(C1)
]

To finish our strategy (i), we are reduced to consider the case of ordinary
multisegments.

Proposition 4.2.2. Let b be an ordinary multisegment, then there exists a
symmetric multisegment b*™  and a multisegment ¢ such that such that

b € S(bV™)e, b =b¥™ (),
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Démonstration. In general b is not symmetric, i.e, we do not have min{e(A) :

A € b} > max{b(A) : A € b}. Let
b={A . AJ, bA) > >b(A,).

so that
b(Ay) = max{b(A;):i=1,---r}.

If b is not symmetric, let A' = [¢,b(A;) — 1] with £ maximal satisfying that
for any m such that £ — 1 < m < b(A;), there is a segment in b starting in
m. We construct by by replacing every segment A in b ending in A' by TA.
Repeat this construction with by to get by - - -, until we get b¥™ = by, which
is symmetric. Let ¢ = {A',--- | A®}, then as before, we have

b¥™ € S(b¥™), b= ©(b™™).

As a corollary, we know that

Corollary 4.2.3. For any multisegment a, we can find a symmetric multi-
segment a*™ and three multisegments c;,1 = 1,2, 3, such that

a™™m € o, .S (@™, a= (c2,¢3) gsym,(e1)
Now applying proposition [4.1.5
Proposition 4.2.4. The morphism
cacaler *eaesd (@™o, — S(a)
is bijective, and for b € S(a), there exists a unique b*™ € S(a®™™) such that

m(b,a) = m(b¥™", a¥™).

4.3 Examples

In this section we shall give some examples to illustrate the idea of reduction
to symmetric case.

We first take a = {[1], [2], [2], [3]} to show how to reduce a general multiseg-
ment to an ordinary multisegment. The procedure is showed in the following

picture.
Here we have a; = {[0, 1], [1, 3], [2], [3,4]}, such that

64



Ao by Ay Ay —o o
° ° o . o 4,
b 4, , A, e o—o
= =) A
FIGURE 4.1 -
o——e o—o—o
= =
o—o0o—o o—o0o—o0—o0
° —o o—e —o—o
*—o—o o0—o—o0——o0
FIGURE 4.2 -

2y € o.1)S(a) 54, a = OWal>D

Next, we reduce the ordinary multisegment a, to a multisegment a®™ as is
showed in the following picture.
Here,we have

a™™" = {[O’ 3]7 [17 5]7 [274]’ [37 6]} = CI)(IU)
where w = 09 € S4.
Now we take b = {[1,2],[2,3]}, we want to find b¥™ € S(a®™) such that
m(b,a) = m(b*¥™ a¥™"). Actually, following the procedure in Figure 2 above,
we have

— o —o—o ——°—
FIGURE 4.3 —

Here we get by = {[0, 3], [1], [2,4]}. Again, follow the procedure in Figure 3
above gives

Hence we get
b¥™ = {[0, 5], [1, 3], [2,6], [3,4]} = ©(v)
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FIGURE 4.4 —

with v = (13)(24) € S,. From [34] section 11.3, we know that m(b,a) = 2,
hence we get m(b*™, a™™") = 2.
Remark: We showed in section 2 that

m(b¥™, a¥") = P, ,(1),

where P,,(q) is the Kazhdan Lusztig polynomial associated to v, w. One
knows that P, ,(q) =1+ ¢, hence P, (1) = 2.

As we have seen, to each multisegment, we have (at least) two different ways
to attach a Kazhdan Lusztig polynomial :

(1)To use the Zelevinsky construction as described in section 4.2.

(2)To first construct an associated symmetric multisegment, and then attach
the corresponding Kazhdan Lusztig polynomial.

Remark: In general, for a > b, (1) gives a polynomial Pafb which is a Kazh-
dan Lusztig polynomial for the symmetric group Sgega). And (2) gives a
polynomial Pf,m which is a KL polynomial for a symmetric group 5,, with
n < deg(a). It may happen that n = deg(a). By corollary we always
have P:fb = Pib.

Example 4.3.1. Consider a = {1,2,2,3},b = {[1,2],[3,4]}, then by [35]
section 3.4, we know that szb =1+ q. And the symmetrization of a and b
are given by

a¥™ =v((2,3)), bY¥Y"=V((1,3)(2,4)).
Hence sz:b = Pu3),1,3)24) = 1 +q, which is the Kazhdan Lusztig polynomial

for the pair ((2,3),(1,3)(2,4)) in Sy
4.4 Proof of the Zelevinsky’s conjecture

Definition 4.4.1. The relation type between 2 segments {A, A’} is one of
the following
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— A cover A" if ADA';

— linked but not juztaposed if A does not cover A and AU A’ is a
segment but ANA" £ ;

— guztaposed if AU A is a segment but ANA =0 ;

— unrelated if ANA =0 and A, A" are not linked.

Definition 4.4.2. Two multisegments
a={A,-,A} and a ={A},--- AL}

have the same relation type if
—r=7;
— there exists a bijection
E:a—a
of multisets which preserves the partial order < and relation type of
segments and induces bijection of multisets

e(€) s e(a) — e(a’), b(&):bla) — b(a).
satisfying
e(§)(e(A)) = e(§(A)),  bE)(b(A)) = b(E(A)).
Lemma 4.4.3. Let a and a’ be of the same relation type induced by &. Let
{A; =X Ay} be linked in a. Denote by a; (A}, resp.) the multisegment obtained

by applying the elementary operation to {A1, As}( {£(A1),£(A2)}, resp.).
Then a; and a) also have the same relation type.

Démonstration. We define a bijection
51 ra; — a’l

by
§1(A1 U Ay) = E(A) UE(A2),  &(A1NAR) =E(A) NE(A)

and
51<A) = f(A), for all A € a\ {Ala AQ}

It induces a bijection between the end multisets e(a;) and e(a)) as well as
the beginning multisets b(a;) and b(a]). Also the morphism £ preserves the
partial order follows from the fact that for x,y € e(a) such that z < y,
then e(&)(z) = e(§) () < e(&1)(y) = e(€)(y)( The same fact holds for b(&;)).
Finally, it remains to show that &; respects the relation type. Let A < A’ be
two segments in aj, if non of them is contained in {A; U Ay, A N Ay}, then
&(A) = £(A) and & (A") = £(A’) and they are in the same relation type
as {A, A’} by assumption. For simplicity, we only discuss the case where
A = A;UA; but A is not contained in {A; U Ay, A; N Ay}, other cases are
similar.
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— If A" cover A, then A cover A; and Ay, hence & (A) = £(A) cover
&(Ay) and £(A,), which implies &;(A") covers & (A).

— If A is linked to A but not juxtaposed, then either A" covers A, and
linked to Ay, or A’ is linked to A, but not juxtaposed. In both cases
we have £(A") is linked to £(A;) U&(A,y) and not juxtaposed.

— If A’ is juxtaposed to A, then A’ is juxtaposed to A, since Ay >
A;. Therefore £(A’) is juxtaposed to &(Ay) which implies & (A') is
juxtaposed to the segment & (A).

— If A is unrelated to A; U Ay, then it is unrelated to both A; and A,
with Ay < A’) this implies that £(A") is unrelated to £(A;) U E(Ay).

O

Remark: As every element b € S(a) is obtained from a by a sequence of
elementary operations, we can define an application of poset

=:S5(a) — S(a).
Lemma 4.4.4. The application = is well defined and bijective.

Démonstration. We give a new definition of = in the following way. For b €
S(a), we define

E(b) = {[b(&)(b(A)), e(§)(e(A))] : A € b}

such a definition is independent of the choice of elementary operations. It
remains to see that it coincides with the one using elementary operation. In
fact, let a; be a multisegment obtained by applying the elementary operation
to the pair of segments {A; < Ay}, then by our original definition of Z, it
sends a; to a} in the previous lemma. Now by the new definition, we have
=(ap) given by

{6(A) - A e a\{Ar, A} FU{[B(E) (b(A1)), () (b(A2))], [b(§) (b(A2)), b(§) (b(A1))]}-
By our definition of £, we get

[D(£)(b(A1)),b(£)(b(A2))] = £(A1) UE(Ay),
and
[0(£)(b(A2)),b(£)(b(A1))] = £(A1) NE(As).

Hence we conclude that = is well defined. Note that by our definition, £ is
invertible, which gives ¢!, and in the same way we can construct =~!. Now
we have

(11

==l=1d, = !'=2=1d

by our definition above using b(§) and e(§). This shows that = is bijective.
[
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Theorem 4.4.5. For a and a’ having the same relation type, then for b €
S(a) with b' = Z(b), we have

m(b,a) = m(b’,a’).

Démonstration. First of all, we consider the case where a and a’ are symme-
tric multisegments. Let a = ®(w) by fixing a map

D . Sn — S(ald).

Now since a and a’ have the same relation type, we know that a’ = ®'(w)
for some fixe map

o .S, — S(ayy).
Finally, let a = {Ay,--- ,A,} and &’ = {A],--- Al } such that

DA <o < b(An), AL=E(A).

Without loss of generality, we assume that b(A;) = b(A]). We can assume
that b(A;) = b(A;_1) + 1. In fact, if b(A;) > b(A;_1) + 1, then by replacing
A; by TA; |, we get a new symmetric multisegment a; which has the same
relation type as a. Moreover, let b € S(a) and b; be the corresponding
multisegment in S(a;), then

m(b,a) = m(by,a;)
by proposition [3.4.1. We note that the equality
m(by,a;) = m(b’,a’)

implies that
m(b’,a") = m(b,a).

Therefore it suffices to prove the theorem for a; and a’. From now on, let
b(A;) = b(A;_1) + 1 and b(A;) = b(AL). The same argument shows that we

can furthermore assume that
B(Aurl(i)) = G(Awfl(z‘—l)) +1, B(A;}—l(i)) = B(Aiu—l(ifl)) + 1.

Now if e(Ay-1(1)) < e(A,-1(3)), then consider the truncation functor a’

a’(e(Aw—l(l))“’"'76(Aw‘1<1>)), the latter is a symmetric multisegment having the

same relation type as a’, and

m(b, af) = m(b 310 B0 et ldi)))
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by proposition [£.1.5] Repeat the same procedure, in finite step, we find c,
such that
a=a'l®
and
m(b,a) = m(b’,a’).
by proposition 4.1.5
Remark: an interesting application of this computation is given in the corol-

lary [£.4.7]

For general case, note that in section 4.4, we construct a symmetric multi-
segment a®™ and three multisegments c;,7 = 1,2, 3 such that

RS CQ,C3S(asym>C17 a = (C2’CS)aSym’(C1)-
(cf. Corollary [4.2.3)). The same for a’, we have
/ / /
a’svm ¢ c’2,cg3<alsym)c’17 a = (c2,c3)alsym,(cl).

]

m /sym

Lemma 4.4.6. The two multisegment a*>™ and a have the same relation
type. And let =™ : S(a™™) — a’™ be the bijection constructed above, then
we have the following commutative diagram

=sym

/
Czycss(asym%l c! C/SS(a sy ch

lCQ,C3¢01 lcé,cé

S(a)

(1]

Admitting the lemma, we have
m(b,a) = m(b¥™, a¥™), m(b’,;a’) = m(b'¥™ a"v™m)

by proposition £.2.4 Now by what we have proved before and the above
lemma, we have
m(bsym’ asym) — m(b/sym’ a/sym)’

which implies m(b,a) = m(b’,a’).

Démonstration. Note that by construction we know that the number of seg-
ments in a*™ is the same as that of a. Let a¥™ = {A; < -+ < A, }, then

a= {(°2’°3)A§C1) <. = (°2’°3)A£°1)}. Also let a’"¥™ = {A] < --- <A’} We
define

é-syrn :asym — a/sym
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This automatically induces bijections
(E™) < e(al™) = e@™™), BET™) < b(@™) — b(a' ™),
since all of them are sets. Note that we definitely have
5((CQ,CS)AEC1)) _ (c;,cg)A;(c’l)

It remains to show that ™ preserve the relation type. Let ¢ < j. Then A;
and A; are linked if and only if one of the following happens

- (Cg,c;g)AECl) and (€23 A€ o6 linked, juxtaposed or not ;
o (cz,%)AZ(Cl) and (€22 A1) 216 unrelated.

And A; covers A; if and only if (CQ’CS)AE»CI) covers (°2’°3)A£°1). Since £ preserves
relation types, this shows that ™ also preserves relation types. Hence we
conclude that a®™ and a’*™ have same relation type. To see that the map
EVT sends ¢y.e;5(a™™)e, 10 o e, S(@"™) e, consider b € S(a) and its related
element b™™ € ., .,5(a™™"),.

.S

- First of all, we assume that {(b) = 1, i.e. b can be obtained from a by
applying the elementary operation to the pair {(CQ’CS)AECI), (°2’C3)A§-Cl)}(i <

j). Let b be the element in S (a®¥™) obtained by applying the elementary
operation to the pair of segments {A;, A,} in a®™. Then we have

b = (e2.ea)pyer)
Let b’ = 2¥™(b). By construction, we have

b =

[1]

(b) = (2eh)p/en),

Now consider N N N
bo=b>---> b, =b¥"

—sym

be a maximal chain of multisegments and let b} = Z¥™(b!), then
by > - >bl.

Let B B
b ={Aj1 = 2 A ), bi={A], 2 2A}

We prove by induction that

b’ — (cheh)p/(eh)

)
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We already showed the case where ¢ = (0. Assume that we have

b’ — (cheh)p/(eh)
J

for 5 < 4. Suppose that EZ is obtained from Ei—l by applying the elementary
operation to the pair of segments {A; 1., , = Aj_15,_,}. We deduce from

the fact b; > b™™ that we are in one of the following situatios

_ (C2’C3)Az(‘ill),ai_1 =0 or (CQ’CS)AZ(‘ill)ﬂi—l - (Z);
_ b((CQ’CS)AEil1),6i—1) = b<(CZ7C3)Az('ill),ai—1) ;
o 6((c2’c3)A§ill),Bi_1) _ e((cz,c3)A§ill)’ai_l).

According the our assumption that b} = Z¥™(b!), we have

5((02,03)A(cl) ) _ (cz,C3)A{(C1)

i—1,5 i—1,5

therefore the pair {(°2’°3)A;(::i?ai_l, (°2’°3)A;(_Ci)5i71} also satisfies one of the lis-

ted properties above. And this shows that b is sent to b’ by c;,cg¢cg . There-
fore by proposition [3.3.17] we know that

b;L Z blsym'
Conversely, we have
Esym—l(b/sym) > bsym'
Combine the two inequalities to get

Esym<bsym) — b/sym'

- The general case where ¢(b) > 1, we can choose a maximal chain of multi-
segments
a=ag>-->ayp =b.

Let a, = Z(a;), by assumption, we can assume that for i < ¢(b), we have

—sym m /sym

= () — o,
By considering the set S(agwp)-1), we are reduce to the case where ¢(b) = 1.
Hence we are done. O]

Corollary 4.4.7. Let ayq be a symmetric multisegment associated to the
identity in S,, and
D Sn — S(ald).

Then
m(®(v), ®(w)) = Puu(1).

)



Démonstration. The special case where

n

aId:Z[i,i—i-n—l]

=1

is already treated in corollary The general case can be deduced from
the theorem above. O
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Chapitre 5

Geometric Proof of KL Relations

For n > 1, recall that the permutation group S, of {1,--- ,n} and that
S ={o;=(i,i+1):i=1,--- ,n—1} is a set of generators. It is followed from
[19] that the following properties characterize a unique family of polynomials
P, ,(q) of Z[q] for z,y € S,

(1) P,,=1foralxeS,;

(2) if x <y and s € S, are such that sy <y, st > x, then P, , = Py, ,;

(3) if x <y and s € S, are such that ys <y, zs > x, then P, , = Py, ;

(4) if x < y and s € S, are such that sy < y, st < z, and x is not

comparable to sy, then P, , = Py, oy ;
(5) if x <y and s € S, are such that sy < y, sz < z, and x < sy, then

Px,y - Psx,sy + qu,sy - Z ql/Q(Z(y)—f(z))'u(Z7 Sy)Pm,za
r<z<sy,52<2z
here yu(z, sy) is the coefficient of degree 1/2(¢(sy) — {(z) — 1) in P, 4,
defined to be zero if £(sy) — £(z) is even).
In this chapter , we shall prove by using our results in section 3.3 that the
polynomial

P, (q) := ¢2(@im(Oaw)-dim(Oe)) Z q%iHi(ap(y))@(az)

satisfies the first 4 conditions and we give an interpretation geometric for the
fifth condition which will be used in the Chapter 7.

Remark: The condition P, , = 1 is trivial.

The set up for through this chapter is the following. Assume that k, &k € N
such that 1 < k; < n,k =n+ k; — 1, and ajq be a multisegment such that
we have an isomorphism

b : Sn — S(ald).
Note that we have n < k£ < 2n — 1.
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5.1 Relation (2) and (3)

Since the relation (2) and (3) are symmetric to each other, we only prove (2).
By [8] (1.26), the conditions

Oy —1W > W, O, 10 < 0.
are equivalent to
Yk —1) <w k), vk —1) > v k).
Proposition 5.1.1. Let a = ®(w),c = ®(v) € S(a), such that
Ty —1) <w k), vk —1) >0 k),

then
Pw,v(Q) = Pakl,lw,v(Q)'

Démonstration. Suppose that
B(I) = {A < < A,).

Let b = ®(0y,_1w), then

b= Z[b(Aj), (Ao, rw(i)]
_Z wLog, 1 e(Aj)]

= Z [B(Au-1(7)); €(A5)] + [D(Au-1(k, 1)), €(A8)] + [B(Aw-1(k1)), €( AR, —1)]-
J#k1—1,k1

Note that
e(Ap—1)=n+k —2=k—1, e(Ar,)) =n+k —1=F,

then b® = a®. Now applying the corollary |3.3.19| gives the result. O

5.2 Relation (4)

Let a = ®(Id), ¢ = pa, As in section 3.3, we know that for fixed W, by
proposition [3.3.16, we have an open immersion

w o (XEYw — (Z"*)w x Hom(V,, 41, W).
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Definition 5.2.1. By composing with the canonical projection
(ZF*)w x Hom(V, p—1, W) — (25,

we have a morphism
¢W : (X!:)W — (Zk’a)W.

Proposition 5.2.2. For any b = ®(w) € S(a);, we have
wk_l<b(k)) = {bvb/ = cD(O—kl*lw)}'

Moreover, ¢y is a fibration such that
(1) We have an isomorphism qﬁ;Vl(Ob(k)) ~ (C? - {0}) x C2n—k-1
(2) We have ¢y} (Opw) N O ~ C* x CIk=L,

Démonstration. Note that we have
U (™) € S(b™) + [k)),

we observe that

S(® +[k]) N S(a) = S(b'),
Since b is minimal in 1, ' (b®) (See Prop. [3.3.17)), we have
Yt (b") = {b,b'}.
Then consider the restricted morphism
ow : (Ob U Op)w — Oy
Let T' € Op U Oy, Ty € Hom(V,, ;—1,W). Define T" € E,, by

T/|V<p,k—1 =T0® T(k)|Vw

k—17

Ty, = T(k)fv%k/w ° pw,

T'|y,, =TW, fori#k— 1,k
We know that dim(W) = £, = 1, and for dim(ker(T™|y, , |)) = 2. Now let

A1<A2

be the two segments in b*) which ends in k£—1. And we consider the following
flag
Vo =ker(TWly ) 2 Vi = Im(T®)* nker(TW]y,, ).
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And we have dim(V;) = 1. Then for 7" € Oy U Oy, it is necessary and
sufficient that

To(Vo) # 0.

This amounts to give a nonzero element in Hom(Vg, W) ~ C?, which proves
that the fiber ¢y} (T™®) o (C?—0) x C**~*~! where the factor C*"*~! comes
from the fact that dim(V,,—1) =2n—(k—1) =2n—k+1. Asfor T' € Oy,
it is necessary and sufficient that

To(V1) = 0, To(Vo) # 0,

which amounts to give a zero element in Hom(V;/V;, W) ~ C. Hence ¢y, (T™*))N
Oy ~ C* x C?=*=1 Ty see that ¢w is a fibration, fix V' C V,,;,_; such that
dim (V') = 2. Consider the sub-scheme of Z};, given by

Uy ={T € Z}y, : ker(T|v,, ,) = V}.

Note that since dim(V,, x—1) = dim(V[, ./W)+2, the fact that dim(ker(T'|y, ,_,)) =
2 implies that Uy is actually open in Z{fv. In this case

o (Uy) = Uy x (Hom(V, W) — {0}) x Hom(V,,;,_,/V,W).

Proposition 5.2.3. Let b = ®(w),c = ®(v) € S(a), such that
w ik —1) >w k), v ki —1)>v k), w<ov,
and w 1s not comparable with oy, _ v, then
Puo(q) = Poy_ywo, _10(q)-
Remark: As before, our conditions are equivalent to
Ofy—1W > W, Ok, —10 > V.

Démonstration. Note that our assumption implies that both b and c are in
S(a)g. Let b’ = ®(o,_1w),c’ = ®(op,_1v). Then b’ > ¢’

For b > d > ¢, we must have d = ®(«) with oy, 1 < a. In fact, o3, 100 > «
would imply d > ¢’ by lifting property of Bruhat order (cf. [8] proposition
2.2.7). Now that we have b > d > ¢, contradicting to our assumption that
b is not comparable to ¢’. Let d' = ® (o4, _1¢). Note that we create actually
by this way construct a morphism between the sets

p:{d:b>d>c}—{d:b>d >}
sending d to d’.
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Lemma 5.2.4. The morphism p is a bijection.

Démonstration. Let € = ®(8) € S(b’) with € > ¢’. We show that oy, 15 >
B. In fact, assume that o, 18 < (. Then the lifting property of Bruhat
order implies b > € > ¢/, which is a contradiction to the fact that b is
not comparable to ¢’. Hence we have e = ®(o,_18) < €. Moreover, since
Op—1W < B < 0k, —1v, and w > op, 1w, v > 0,10, we have

w < o108 <,

hence b > e > c. This proves the surjectivity. The injectivity is clear from
the definition.
O

As a corollary, we have

Lemma 5.2.5. The restricted morphism
ow : Xiy o = Zyia oo (cf. Def. [3:3.6)

is a fibration with fibers isomorphic to C* x C"7*.

Démonstration. Since ¢y is a composition of 7y, which is an open immer-
sion, and a canonical projection, to show that it is a fibration, it suffices to
show that all of its fibers are isomorphic to C* x C"*. This follows from
proposition [5.2.2and the fact that for any d’ € S(b’) we have d’ ¢ S(a);. O

Hence we get
Py o (q) = Pyt 0 (q).

Now we are done by applying corollary [3.3.19] i.e,
Powy e (@) = Poe(q).

Hence we are done. O

5.3 Relation (5)

Finally, we arrive at the relation (5). We will give an interpretation of this
relation in terms of the decomposition theorem (See [4]).

Definition 5.3.1. Let

3w :{(T, Z) € Z{;}a X Hom(V@*,k_l, W*) :oand 2

factors through the canonical projection V}, | — ker(Tly, )"}
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Proposition 5.3.2. The canonical projection 3y — Z{f‘}a turns 3w into a
vector bundle of rank 2 over Zj;.

Démonstration. Note that we have dim(ker(7T|y, ,_,)) = 2 and dim(W) = 1.
Note that by taking dual, as a scheme, Zy, is isomorphic to the scheme
parametrize the data (T, 2) € Zf, x V1 such that z € ker(Tly,,_,). Fix
V C V, 41 such that dim(V) = 2. Consider the sub-scheme of Z};, given by

Uy ={T € Z}y :kex(T|y,, ,) =V}

As is showed in proposition [5.2.2) Uy is actually open in ZF,. Using the
previous interpretation of 3{},, we observe that the open set Uy trivializes
the projection 3y — Z2.

m
Definition 5.3.3. Let Zf, = Pron;vc‘,/a(SW) be the projectivization of the
vector bundle 3w — Ztlfv- And we shall denote the structure morphism by
kY 2R = 2
Definition 5.3.4. From now on, we fiz a pair of non-degenerate bi-linear

forms
Ck—l : ch,k—l X V%k_l — (C, Ck : V%k X V%k — C.

which allows us to have an identification n; : Vy; =V, fori=k—1,k.

Remark: Here our definition X depends on the choice of V,,. If we choose
V such that

r ) . _ / _ * !’ *
VW’ — Ten for 4 7é k—1,k, V%k—l — Vek=1 Yok T Yok

we can get X* (V), which is isomorphic to X, ¥ after we choose an isomorphism

k-1~ Vor—1 and V7 ~ V. This is what we do here. Note that once we
fix V71 = Vor—1 and V) =~ V. Our morphism 7; will become an inner
automorphism, but in general we have n, (W) = W* £ W,

Definition 5.3.5. Let T € (XF)y, then we define
A (XDw = (XD nom),

by letting
)‘(T)|V¢,k72 = Mk—-10 T|s0,k—2
)‘(T)|V¢,k71 =Mk © T|<P,k71 © 7]1;_117
NT)v,, = Tlosomy s
and

MT)v,, =Tlpi, fori#k—2k—1k

82



Lemma 5.3.6. We have ker(A(T')|v, ) = n(W), and

ker(A(T) Py, ) = mer (ker(Ty,, -, ))-

Démonstration. The fact ker(A(T)|y,,) = nx(W) follows from definition.
Note that

ker(T(k)|VM71) ={veV,1:Tw) eW} =T}

p,k—1

(W).
Since
(A(T)|V¢,k_1)_1(nk(w)) - nk—l(T|V<p,k—1)_1(W) = nk—l(ker(T|V¢,k—1))7

hence
ker(/\(T)(k) |V¢,k71 ) = Mk—-1 (ker(T|VM71 )) :

Definition 5.3.7. We define
Ew  (XP)w — Zy,
for T € (XF)w, then
Ew(T) = (T, A(T)|ker(A(T)(k>|VM_l))-
This is well defined since
D araryo,,_ € Hom(ker MDYy ,_,), (W)
and
Hom(ker(A(T)®ly.,, ), (W) = Hom(ker(T®]y, )", W*),

and A(T>|ker(,\(T)<k>|VM_l) 70

Proposition 5.3.8. The morphism &w is a fibration with fibers isomorphic
to C* x C" k.

Démonstration. Let V' C V,, ;1 be a subspace such that dim(V') = 2. Consi-
der the open sub-scheme of 3y

Uy ={(T,2) € 3w : 2 #0, kex(T|y,,_,) = n;,",(V)}.
Uy ={T € Z, ker(Tly,,_,) = 0y 21 (V)}.
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Let 1717‘/ be the image of Uy v in Z}, by the canonical projection. As indicated
in the proof of proposition [5.3.2] the set Uy trivialize the morphism 3y —
7%, hence

Upv ~ Uy x (Hom(V,ne(W)) — {0}/C*)

Note that we have
Hom(V, ny(W)) ~ Hom(n, 2, (V), W).

And by proposition [3.3.16| and proposition [5.2.2] we have the following iso-
morphism

&t (Ury) =~ Uy x (Hom(nt, (V), W) — 0) x Hom(V, 51 /05 (V), W).

Hence for any (T, z) € 2}, such that ker(Tlv,,_,) = n21(V) , let Uyy be an
open subset of (Hom(n; ', (V), W) — 0)/C which trivializes the bundle

(Hom(n;, 2, (V), W) — 0) — (Hom(y, 44 (V), W) — 0)/C,

then the open sub-scheme Uy x Usy of (7\/71 trivialize the morphism ¢y as
a neighborhood of (7T, z).
O

Definition 5.3.9. Let b > ¢ be two elements in S(a)y, then we define
lei,c - fW((Xll:,c>W)

And
Z*(b) = &w(Op)w).

Definition 5.3.10. Let w < v be two elements in S, such that oy, v < v.
We define
R(w,v)g, ={z:w < 2 < 0p, 10,04, 12 < 2}.

And we denote R(Id,v)g, by R(v), .
Now let b = ®(w), ¢ = ®(v) such that
w(ky — 1) > w(ky), v(ky —1) > v(ky).
And let b’ = ®(oy,, _w), ¢ = ®(ok,_1v). We assume that
b>c, b>c,

which coincide with the assumption in relation (5) at the beginning of this
chapter.
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Now we apply the decomposition theorem to the projective morphism

d k,a
Rw - Zb’,c’ — Zb(k) c(k) W

which asserts that there exists a finite collection of triples (d;, L;, h; = i =

1,---,r), with d € S(a),, b® < d(k < ¢®, where L; is a vector spaces
over C, such that

R(kw) IC (2 o) = IC(Z55 oo ) @iy 1C(Z) L)k, (5.3.11)

b<k) A w

Now localize at a point zpx) € Oy k), we have know that the Poincaré series
k,a . .

of (IC(Z, ) o® W>>ffb(k> is given by Py c(q) = Puo(q). And

Lemma 5.3.12. The Poincaré series of R (ky (xpw), IC(Z o)) is given
by Poy, ywon,—10(Q) + qPuoy, _,0(q), where T is the functor of taking global
sections.

Démonstration. Note that by assumption, we have

Iia/l (mb(k)) ~ Pl

such that sy (vpm) N Z8(D) = {pt} and ky' (vpw) N ZF(b) ~ P — {pt}.
And we have the following exact sequence
0= IC(Z4 )l = IC(2 o) = IC(ZL )|~ )ty 0

Taking the Poincaré series gives the result.
O

Now it is clear that our equation ([5.3.11]) will give rise to an equation of the
form as that in (5) in the introduction of this chapter. Comparing the two
equations, we get

Proposition 5.3.13. The collection of triples (d;, Li,h; i =1,---,r) are
gen by

(1) We have {d; :i=1,--- ,r} ={z € R(w,v) : u(z,0x_1v) # 0}.

(2) Ifd; = ©(2), then L; ~ CH(z0k-1v)

(3) Ifd; = ®(z), then h; = L(v) — £(z).

Démonstration. Note that the Poincaré series of the intersection complex
k .
[C(Z (Zl) d(k> W Lz)[hz] 1S
dim(L;)¢"*" P, ..(q),

where d; = ®(z;). Now compare the polynomials given by [5.3.11] and the
relation (5) in the beginning of this chapter, we get our results. ]
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Remark: Note that one should be able to deduce the above results from a
general statement about the decomposition theorem. We leave this for future

work.
Remark: 1t seems that we have done here may be generalized to give the
normality of for general Oy, instead of using the results of Zelevinsky.
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Chapitre 6

Classification of Poset S(a)

Let a be a multisegment and S(a) = {b < a} the associated poset defined
in [1.3.2] The aim of this chapter is to identify the poset structure of S(a).
In the first section we consider the case where a is ordinary and prove that
S(a) is an interval in S,, ~ B\GL,,/B, where m is the number of segments
in a. and B is the Borel subgroup.

In the general case we identify S(a) with an interval in a parabolic quo-
tient Sy, \S;/Sys, of S, given in section 2 related to the double quotient
Py \GL,,/Py,, where Py, and P;, are parabolic subgroups.

6.1 Ordinary Case

Our goal in this section is to prove that for general ordinary multisegment a,
the set S(a) is isomorphic to some Bruhat interval [z, y] for x,y € S,,, where
n depends on a.

Lemma 6.1.1. Assume that b € S(b); such that b and b%®) are both ordi-
nary. Let ¢ € S(b)g. Then ford € S(b) and d > ¢, we have d € S(b).

Démonstration. It suffices to show that d satisfies the hypothesis Hy(b).
Note that e(d) = {e(A) : A € d} is a set because d is ordinary and by
lemma [2.1.4] we have e(d) C e(b) .

Note that k& — 1 ¢ e(b) since b € S(b); and b%®) is ordinary , therefore it is
not in e(d) either. Hence to show that d € S(b); hence it is equivalent to
show that k& € e(d). Since ¢ € S(d), we know that e(c) C e(d) . Now that
k € e(c), we conclude that k € e(d). We are done. O

Now let b’ € S(b);, such that ¢ (b’) = (b®)) i, then
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Lemma 6.1.2. We have
S()r={ce Sb):c> b’}.

Démonstration. By the lemma above, we know that S(b), 2 {c € S(b) :
c > b’}. We conclude that we have equality since 1 preserve the order. [J

Proposition 6.1.3. Assume that a is ordinary. Then

(1) There exists a symmetric multisegment a*™ such that
S(a) ~ 5@ )k, -
(2) There exists an element &' € S(a¥™) such that

S(a¥™), .4 ={c e S@Y™):c>a'}.

Ty

Démonstration. Note that (1) follows directly from proposition and (2)
follows from applying successively lemma to the sequence obtained in

the lemma below. O
Lemma 6.1.4. There exists a sequence of multisegments ag = a,--- ,a, =
a™" such that a®™ is symmetric, with a; € S(a;), and a;—; = agki) for some
k;. Moreover, a; is ordinary for alli=1,--- ,r

Démonstration. Recall that in proposition that every ordinary multi-
segment a can be obtained as

a = ag,ag, - ,a,

where a, is symmetric, with a; € S(a;)x, and a;_1 = agki) for some k;.
The statement (1) follows directly from proposition [4.2.2l Note that the or-
dinarity of a;’s follows from construction.

O

6.2 The parabolic KL polynomials

For fixed n € N and a pair of elements in S,,, we can associate a Kazhdan
Lusztig Polynomial P, ,(q). We know also that the coefficients of such a
polynomial are given by the dimensions of the intersection cohomology of
corresponding Schubert varieties in G L, /B.

Similar construction can give rise to a polynomial related to the Poincaré
series of the intersection cohomology of the Schubert varieties in GL, /P,
where P is a standard parabolic subgroup. This has been done in Deodhar
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[14] for general Coxeter System (W,S). However, as indicated in the same
article, in our case where G = G, this is not so interesting because we
have a good fibration G/P — G/B, so basically everything boils down to
the Borel case.

In this section, for certain multisegment a, we shall relate the set S(a) to
the orbits in GL,,/ P, where the multiplicities appear to be the corresponding
Parabolic Kazhdan Lusztig Polynomials.

Notation 6.2.1. Let S = {o; : i = 1,---,n — 1} be a set of generators
for S,. For J C S, let S; =< J > be the subgroup generated by J and
ST ={weS,:ws>w foralscJ}.

Proposition 6.2.2. (cf. [§] Prop. 2.4.4) We have
(1) Sp = H wSy;

wesSy

(2) forwe S , and v € Sy, ((wz) = L(w) + {(z) .

Remark: Now we can identify S with S, /S, hence it is in bijection with
the Borel orbits in GL,, /P, where P is the parabolic subgroup determined
by J.

Notation 6.2.3. Let ajy = {Ay,---,A,} such that
e(Ay) < - <e(Ay),

and
b(Ay) < - <b(A,),

such that
b(A;) = b(A;41) if and only if o, € J

and b(A,) < e(Aq).
Example 6.2.4. Let n =4, and J = {01, 03}, then we can choose

aj; = [1,3] + [1,4] + [2,5] + [2,6].

Definition 6.2.5. We call a multisegment a € S(ajy) a multisegment of
parabolic type J.

Proposition 6.2.6. For w € S/, let al, = Z[b(Ai),e(Aw(i))], then al €
S(ai]d)'
Example 6.2.7. Let aI‘]d as 1 example m For w = 0109, then

al = [1,4] +[1,5] +[2,3] + [2,6].
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Démonstration. We proceed by induction on |J|. If |J| = 0, we are in the
symmetric case, so we are done by Proposition And in general, let
J = JyU{0;,} with ip = min{i : 0, € J} and i; = max{i : b(A;) = b(A;,)}
Let a; = {A7,---,Al}, such that

All =t (Al), for ¢ < io,
A} = A;, otherwise. ( cf. Nota. B1.).

Example 6.2.8. Let aj; be a multisegment as in exzample|6.2.4. Then
a; = [0,3] + [1,4] + [2,5] + [2,6].

Let aI‘]C‘i = a; with

b(A;)—1, fori<i
1\ 7 5 =~ 00,
b(A}) = { b(A;), for 1 > 1.
Then we have ) )
aIJd — (b(Al)v"'vb(Az‘O))al‘

Let wy = (i1, ,ip+1,4g), then w; € S7*. Note that we have also ww, € S,
since

ww (i) =w(i — 1) <wwy (i + 1) =w(i), for i =ig+1,--- 43 — 1.

Then by induction, we know that

g, = D b(AD, e(AL,, ;)] € S(a).

%

Example 6.2.9. Let a‘I]d as in the previous example. Then iy = 2, and J, =
{o3}. In this case, we have wy = o1 and ww; = 0105071, with

ajt, =[0,5] + [1,4] +[2,3] + [3,6].

Moreover,

aw - ‘0 aww1'

The result, that is the fact a/ € S(aj;) follows from the next lemma.

Lemma 6.2.10. We have
ay,, € b(AD) - p(al ) (@)
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Démonstration. In fact, let a; o = aj; and for j < g, a;; = {A1j, -+, An ),
such that

Ai,j :Jr (Az), fOI' Z S j,

A, j = A;, otherwise.

b(AL)

Then we have a; ; = (B(AF 1) a;, for j=0,1,--- ,ig. For j <ig—1, let

bj= Y DA +Le(Aya)l+ D [bAD ey,

j<i<io i>io, or i<j
and b;, = a}, sothat b; = (b(AJ ) A0 D, We show that b; € ya1S(ai;)
J
by induction on j.

(1) For j = iy, we have

B(AL) = b(AL,) — 1= =b(AL )~ 1=bA}) ~ 1

i1—1

And ww (ig) > wwy (i) > wwy(iy — 1) > -+ > ww;(ip + 1), hence
e(Atluwl(io)) > e(Aqlﬂwl(z‘l)) > e(Atluwl(il—l)) > 2 B(Af}uwl(io+1))v

because w € S”. This implies that by, satisfies the hypothesis (a1 \H (a1,3,))-
0

(2) For general j < ip — 1, By induction, we may assume that b; 1 €
b(A;H)S(aLjH). Now to show b; € b(A;)S(au) , we know that b(A}) +
1< b(A}H) + 1 in b,y (we have inequality by assumption on i),
which proves that b, € b(A})S(aLj) . Hence we are done.

]

Lemma 6.2.11. Let J = {0;,} U J;y such that iy = min{i : 0; € J}. Let
11 € Z be the mazimal integer satisfying for ioc <1 < iy we have o; € J. Then

S o={w;i=1,--+ iy —ig+ 1}

with
wl:(zl—l‘l—l, 7i0+17i0)€SJ-

As a consequence, we have
i
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Démonstration. By proposition|6.2.2, we only need to show that S; = H w; Sy,
J

and w; € S7. The fact that w; € S”* follows from

wi(i) =i—1, fori=ip+1,--- i1 —j+1, w;(ig) =i —j+ 1,
and w;(i) =i for ¢ ¢ {ip,--- ,4; —j+ 1}. Finally, to see that S; = HU)jSJl,
we compare the cadinalities. Let Jy = {o; : i =ip--- ,i; — 1}, then ’

SJZSJO XSJ\JO,

SJl ~ SJO\{JZ.O’Z.OH} X SJ\JO.

S
Hence ﬁSJ/ﬂSJl = Ij—JO = (Zl —Zo+1)'/(ll —Zo)' = /il —Zo—|—1 Finally,
ﬂSJO\{UiO,iO+1}
by proposition [6.2.2] we know that
i1—i0+1
Sn: HUSJ: H vajSJ1:HS7{ijJ1.
vesS; J=to wveS J

Keeping the notations of proposition [6.2.6] we have

Lemma 6.2.12. Fori=1,--- ,1;1 —ig + 1, we have

J — (b(A%)v 7b(A110))aJ1

w ww; *

a

Démonstration. Note that by definition We have
g, = Z D(A}), (A, iy)]-
As noted before, we have
b(A}) = b(A;) — 1, for i <ig, b(A]) = b(4;), for i > ij.
Also,we observe that e(A}) = e(4A;). Hence

(b(A%),--~7b(A%O))aZ]1wi — Z (A, e(Au; 1))]-

It remains to see that we have

i1—j+1 i1—j+1
D b(A) e(Auu)] = D bA), e(Aug)]
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since b(A;)) = -+ = b(A;,_j4+1). Hence we have

aJ — (b(Ai)f”'vb(Ale))aJl

w ww; *
O]

Definition 6.2.13. As in the symmetric cases, we have the following map

J

w*

w—a

Proposition 6.2.14. The morphism ® ; is bijective and translate the inverse
Bruhat order on S to the order on S(ay,).

Démonstration. Again, we do this by induction on |J]|. If |J| = 0, we are in
the symmetric case, so everything is done in section 2.3. In general, we keep
the notation in the proposition [6.2.6f We have J = J; U {0y, }. And as we

proved above,

a’L{)lwl S b(A%),---,b(A;‘O)S(al)‘

Also, we note that the morphism ya1) ... y(a1 y¥ sends @5, (wws) to ®;(w) for
o b(AY
w € J, as is proved in the proposition above. Therefore

Py = pab), - pat)¥ o P,

and the injectivity of follows from that of ya1) ... a1 )2 and induction on Jj.
io

For surjectivity, let b € S(a{,), by surjectivity of the map
b(A}),.--,b(A;OW : b(A%),--~,b(A}O)S<al) - S(ai]d)a

we know that there exists a w’ € S”', such that &, (w') € b(A}),-~~,b(A}O)S(al)’

and is sent to b by ya1 .. par y¥. By lemma 6.2.11} every w' € 8™ can be
20

)

write as ww; for some w € S7 and w; € S71. Now by lemma [6.2.12]

b=a’.
Note that for w > w’ in S”, then ww; > w'w,; in S”*, hence by induction
(I)Jl (wwl) < (I)]l (wwl),

we get
(I)J1<w) < (I)J1 (w)>

since the morphism a1y .. ya1 )9 preserves the order.
) ) ig
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Proposition 6.2.15. Let vy, v, € S7, then we have

Paj(01),0,5(02) (@) = Py 0, (0)
where on the right hand side is the parabolic KL polynomial indexed by vy, vs.

Démonstration. As is proved in [I4], we have P, , (q) = Pyyu,ws0,(q), where

vy is the maximal element in S;. So it suffices to show that we have the

equality Py (v,),0,(w)(@) = Poyvyvev, (). Also, from lemma [6.2.10, we know
that

©y(v1) = peab),- war )Y (®s (v1wr)),
where w; is described in lemma [6.2.11, Hence we have
P‘:I)Jl (7}1’11)1),@]1 (’U2w1) (Q) = P@J(U1),¢J(’U2)(q)
by corollary |3.3.18

By induction, we have

P<I>J1 (v1w1),® 5, (v2w1)(q) = PUl’LUl'Ujl U1W1V g (Q)

Now to finish, we have to show v; = wyvy . But we know that

SJ = ijSJ1
J
with wy = max{w; : j =1,--- 43 — iy + 1}, we surely have
Vy = wvy,.

]

More generally, for J; C S, i = 1,2, we can consider the Pj, orbit in GL,,/P;,.
We state the related result without proving.

Definition 6.2.16. Let 87{1"]2 ={w € S, : svsy > v foralls; € J;i =
1,2}.

Definition 6.2.17. Let v € 572, We define
Sf’” ={we Sy, :ws>w, forallscS; NvSyv '}

Remark: If we let M; be the Levi subgroup of P;, then the set Sf’” corres-
ponds to the Borel orbits in My, /(M;, NvMzv™").

Proposition 6.2.18. We have
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(1) Sn = H SJIUSJQ ;

Jp,J
vES,L2

(2) Uzvy) = L(v) + (x) + L(y) forv e STz e Sff’”,y €Sy,
(3) The Py, orbits in GL,/P;, are indeved by S

Definition 6.2.19. For vy, v, € S772 such that v, < vy, we let Pi{;f(q) be
the Poincaré series of the localized intersection cohomology

H*(Prv2Pr)up,,-
Lemma 6.2.20. For vy, vy € S70% such that vy < vy, we have
P2 (@) = Puywn ().
where w; is the element of maximal length in S v;Sy,.
Notation 6.2.21. Let aji”® = {Ay,---, A} such that

e(Ay) <--- <e(Ay),

such that
e(A;) = e(Ai41) if and only if o; € Jy
and
b(Ar) < < B(Ay),
such that

b(A;) = b(Ai11) if and only if o; € Jo
and b(A,) < e(Aq).

Definition 6.2.22. We call a multisegment a € S(aiﬁ’h) a multisegment of
parabolic type (Jy, Js).

Lemma 6.2.23. Forw € S letalt”2 = Z[b(Ai),e(Aw(i))], then a2 €
S(ai]&"]z). Therefore we have an application

. QJ1,J2 J1,J2
U — S(ag™?)

J1,J2
w > all’.

Proposition 6.2.24. The morphism ®;, j, is bijective and translate the in-

verse Bruhat order on S”'2 to the order on S(ajl”?).
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Proposition 6.2.25. Let wy,wy € S22 then we have

Pq)Jl,JQ (w1)7¢J17J2 (w2) (q) = PU{;:'L]?Z (q)

where on the right hand side is the parabolic KL polynomual indexed by w1, ws.

Example 6.2.26. We are now ready to interpret the following results (due
to Zelevinsky, see [35] Section 3.3) : let a = k[0,1] + (n — k)[1,2] then a
corresponding to the identity in S77 with

J=A{o; i #k}.

Note that in this case, we have GL, /Py is the Grassmanian G(C"), where
as the Py orbits correspond to the stratification, for r < rqo = min{k,n — k}
and fized C* € G, (C™),

X, = {U S G’k(C") : dlm(U N Ck) =k — T}

with YT = H Xr/.

r’'<r

Remark: There is another way to obtain the result of this section , i.e., by
direct geometric construct, as in section 4.3, where we prove the same result
for symmetric case. In this situation, instead having the flag variety G/B in
the fibers, we will find G/Pj in the fibers. There is one advantage in this
geometric construction, i.e, by employing the same proof as in section 4.4,
one can get a resolution for G/P; by pulling back that of the corresponding
orbit variety. This shows for example, that the resolution can not be small
when the associated quiver is of type A,, n > 3, by the example constructed
by Zelevinsky for flag variety, which does not admit any small resolution.
We remark that the resolution is always small for type As, as is proved by
Zelevinsky.

Remark: Note that in [35], Zelevinsky constructed a small resolution for the
O, with a = {[1,2],[2, 3]}, which corresponds to a Schubert varieties of 2-
step . Now with our interpretation, we should be able to construct a small
resolution for all 2-step Schubert varieties. We return to this question later.
Remark: With the help of partial derivative which we will develop in next
section, we will be able to give inverse parabolic KL. polynomials combining
results of this section, which is described in [14] . See next section for more
details.
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6.3 Non Ordinary Case

In this section, for a general multisegment a, we will relate the poset S(a) to
a Bruhat interval [z, y] with 2 < y in some 572,
Now let a be a multisegment. First of all, we decide the set J, J5.

Definition 6.3.1. We define two sets Jy(a), Ja(a).
— Let b(a) = {ky < --- < k.}. Then let Jo(a) C S, be the set such that
o; € Jo(a) if and only if k; = kiyq.
— Lete(a) ={¢ <--- <UL, }. Then let Jy(a) C S, be the set such that
o; € Ji(a) if and only if €; = C;41.

Keeping the notations in definition [6.3.1]
Proposition 6.3.2. There exists a unique w € S;h(a)"b(a), such that

Z[k Cu(j) J-

j
Démonstration. We observe that there exists an element w’ € S, such that
a= Y [k tw()).

J
Now by proposition|6.2.18] we know that there exists w' = w,, (aywWw j,(a) With
W) € Sy fori = 1,2 and w € S‘]1 ) J2(a),

that
= [k, Lu(h)):
J
In fact, by definition of J;(a),i = 1,2, we know that
kj = Ky, for all v € Sy,

Now we only need to prove

l; = Ly, for all v € Sy (a)

Hence

a= Z[k]’ ngl(a)wag(a)(j)]
— Z ki, Lao(ayu s, oy ()]
- Z Jz(a) Y5 ]
= Z[k‘j,ﬁw@)]
J
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Next we show how to reduce a general multisegment a to a multisegment
a1 (@2 of parabolic type (Ji(a), J2(a)) without changing the poset struc-
ture S(a).

Proposition 6.3.3. Let a be a multisegment, then there exists a multiseg-
ment ¢, and a multisegment al* @72 of parabolic type (Jy(a), Jo(a)), such
that

ai}(a)"h(a) e S(ail(a),Ja(a)) a— (agvl(a)sz(a)>(C)

CH

Démonstration. In general a is not of parabolic type, i.e, we do not have

min{e(A) : A € a} > max{b(A) : A € a}. Now we show how to construct
J1(a),J2(a)
a'll)

In fact, let

a={A, - A LA < <A,

Then
e(Ay) =min{k:i=1,--- ,n}.

If a is not of parabolic type, let A' = [e(A;) 41, £] with £ maximal satisfying
that for any m such that e(A;) < m < £ —1, there is a segment in a ending
in m. We construct a' by replacing every segment A in a ending in A' by
A™. Repeat this construction with by to get a- - -, until we get a®, which is
of parabolic type. Let ¢ = {A',---, A®}, then we do as in proposition m
to get

a® € S(a%)e, a=(a%)l®.

Note that by our construction we have
Ji(a') = Ji(a), L(a’) = Ja(a),
fori=1,---s. O]
Lemma 6.3.4. Assume that a € S(a); such that
Ji(a) = Ji(a®), Jy(a) = Jy(a®).
Let ¢ € S(b). Then for d € S(b) and d > ¢, we have d € S(b)y.

Démonstration. Tt suffices to show that d satisfies the hypothesis Hy(a). Note
that e(d) C e(a) by lemma Assume that k € e(a) to avoid triviality.
Now that £ — 1 ¢ e(a) since a € S(a); and

Ji(a) = Ji(a®)), Jy(a) = Jo(a®),

so it is also not in e(d). Hence to show that d € S(b); hence it is equivalent
to show that ypea)(k) = €c(a)(k). Since ¢ € S(d), we know that e(c) C e(d)
hence Yea) < @e(a)(k). Now that ¢ € S(a);, implies @) = Pe(a), We conclude
that @ea)(k) = €c(a) (k). We are done. O
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Now let a’ € S(a)y, such that ¢y (a’) = (a®) i, then
Lemma 6.3.5. We have
S(a)y ={ce S(a):c>a'}.

Démonstration. By the lemma above, we know that S(a);, 2 {c € S(a) :
¢ > a'}. We conclude that we have equality since ¢ preserve the order. [

Proposition 6.3.6. Assume that a is a multisegment. Then
(1) There exists a multisegment a?*@72@) of parabolic type (Jy(a), Jy(a))

w
and a sequence of integers ky,--- , k. such that

S(a) ~ S(a;]vl(a)"]?(a))kh... K-

(2) There exists an element a’' € S(alt@72@)) sych that

S(alr@ 2@y, — e e Sal@®@ @) ¢ >a}.

Ty Ty

Démonstration. Note that (1) follows from proposition 16.3.3 and proposition
4.1.5, And (2) follows from applying the lemma [6.3.5| successively to the
lemma below. [

Lemma 6.3.7. There exists a sequence of multisegments ag = a,--- ,a, =
alt@ (@) gy ch that alr®72@) s of parabolic type (Ji(a), J2(a)), a; € S(a;)x,
and a;_1 = agki) for some k;. Moreover,

Jl(ai) = J1<a), Jg(a) = Jz(a)
foralli=1,---r.

Démonstration. This follows from our construction in the proof of proposi-
tion [0.5.9l O

99



100



Chapitre 7

Computation of Partial
Derivatives

In this chapter, we study the problem of computing the partial derivatives
P*(Ly) of the irreducible representation L, attached to a multisegment a.
The idea is to use these computations to calculate the multiplicities in the
induced representation L, X Ly, cf. the next chapter. Recall that we have
already given a way of computing L, as a sum, cf.

La = Z mb@’ﬁ(a).
b

So one is reduced to the calculate

7" (n(a)) = an,aLb, Npa > 0.
b

As for the coefficient my, o, we first introduce a new poset structure =< on

the set of multisegments so that we have the equivalence between ny, > 0

and b =, a, cf. proposition [7.1.4]

The principal result of this chapter is the interpretation of the coefficient np 5

as the value at ¢ = 1 of some Poincaré series of the Lusztig product of two

explicit perverse sheaves on orbital varieties, cf. proposition [7.3.§

In 7.4, we compute these Lusztig products as the push forward by a projection
" cf. corollary [7.4.19] of some concrete perverse sheaf on an orbital variety.

In §7.6 we first study the geometry of the case where the multisegments are

of Grassmanian type. In this case the projection 3” is simply cf. proposition

7.6.8, the natural projection

GL,/P — GL,/P'
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with P C P’ two parabolic subgroups. The geometry of the parabolic case is
treated in §7.7 : the constructions and proofs are the same as the Grassmanian

type.
Finally in the last section 7.8, we obtain a complete formula for 2*(L,) in

the general case, cf. corollary [7.8.16

7.1 New Poset Structure on Multisegments

In this section we define a new poset structure <, depending on an integer k
on the set of multisegments and show that the term Ly, appears in 2%(7(a))
if and only if b <} a.

Definition 7.1.1. For a well ordered multisegment a = {Aq, -+, As} with
Ap =2 2 A, et

a(k:) = {A ca: G(A) = ]{7} = {Ai07Ai0+17 cee ,Ail}.

Now let T' C a(k), let
a(k)r == (a(k) \I)U{A® : A €T},
and
ar := (a\ a(k)) Ua(k)r.
We say b < a if there exist a multisegment c € S(a) such that
b S ar

for some .

Lemma 7.1.2. We have

P*(n(a)) = 7(a) + (ar). (7.1.3)
I'Ca(k),[#£0

Démonstration. Let
a = {Ala"' 7AT7AT+17"' 7}'

Then

7r(a) = HLA’L X HLAz
1=1

i>r
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and

r

7*(r(a)) = [[(La, + Lyw) X IIza

i=1 i>r
=m(a) + Z w(ar).
I'Ca(k),I'#0
O
Proposition 7.1.4. Let
7*(r(a)) =Y npale. (7.1.5)
b

Then npa > 0 if and only if b <4 a.

Démonstration. Let b < a, then by definition we have b < ar for some TI'.
Therefore mp, o, > 0, now we have ny, o > 0 by equation [7.1.3} Conversely, if
Npa > 0, then by equation [7.1.3] we know that b < ap for some T'. O

Corollary 7.1.6. We have b =< a if and only if 2" (n(a)) —n(b) >0 in R.

Démonstration. We keep the notations in the proof of proposition [7.1.4, We
know that b <, a implies b < ar for some I' C a(k). By lemma , we
know that b < ar implies that 7(ar) — 7(b) > 0 in R. Since 2"(n(a)) —
m(ar) > 0 by equation (7.1.3), we have 2*(r(a)) — 7(b) > 0. Conversely,
if 2%(n(a)) — w(b) > 0, we have n(b,a) > 0, hence b <, a by proposition

| O]

Proposition 7.1.7. For any b < a, there exists c € S(a), and some subset
I' C c(k), such that
b = Cr.

Conversely, if b = cr for some ¢ € S(a), then b <; a.

Démonstration. For the converse part, suppose ¢ # a, by equation [7.1.3] we
have Z*(r(c))—m(b) > 0in R. By lemme[1.3.5, we know that 7(a)—m(c) > 0
in R, hence Z*(n(a)) — 2*(x(c)) > 0 by theorem [1.4.4] Therefore ny, 5 > 0.
Hence we have b <, a.

For the direct part, suppose that b <, a, hence b < ar, for some I';. We
prove by induction on ¢(b,ar). If /(b,ar,) = 0, then b = ar,, we are done.
Now let b < d < ar, such that ¢(b,d) = 1, by induction, we know that

o
d = cp,,
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for some ¢’ € S(a). Note that by replacing ¢’ by a, we can assume that
d= ar, and E(b,apl) =1.

By definition, we know that b is obtained by applying the elementary ope-
ration to a pair of segments {A < A’} in ar. Now we set out to construct
c.

— If {A,A} Ca\{A® . A € |} C a, let ¢ be the multisegment
obtained by applying the elementary operations to {A, A’}. And we
have

b = Cr,.

— I {AAYN{AP . A €T} = {A}, then {A, A"} € alet ¢ be
the multisegment obtained by applying the elementary operations to
{A, A"}, Then let

=T\ {A'+}) Uu{AuU A”“}
and we have
b= Cr.

— I {AAYN{AW . A €T} = {A}, then {A* A’} € alet ¢ be
the multisegment obtained by applying the elementary operations to
{AT,A’}. Then let

=T \{ATHU{ANA}

and we have
b = Cr.

Hence we are done.

Proposition 7.1.8. The relation <}, defines a poset structure on O.

Démonstration. By definition we have a < a for any a € O. Suppose a; =<
as,a; =) as, we want to show that a; <, as. By proposition [7.1.7 there
exists ¢ € S(ag) and I'y C ¢(k) , such that

a; = Cp, .

Note that by corollary[7.1.6} the fact a; <) a3 implies 2% (r(ag)) —m(ag) > 0.
Hence we have n(as,c) > 0, therefore ¢ <4 a3 by proposition [7.1.4] In turn,
we know that there exists a multisegment ¢’ € S(a3) and I'y C ¢/(k), such
that



Since we have c¢(k) C c'(k), we take
Fg = Fl U FQ - Cl(k).
Now we get
a) = C/F37

which implies a; <} as by proposition Finally, if a <, b and b <} a,
then by definition we have a = b.
O

Definition 7.1.9. We let

['(a,k) ={b:b =, a}.

7.2 Canonical Basis and Quantum Algebras

In this section, following [25], we recall the results of Lusztig on canonical
basis, the relation of quantum algebras and the algebra R. We are especially
interested in the construction of a product of perverse sheaves over orbital va-
rieties defined by Lusztig [27], which is closely related to the product defined
by induction in R.

Definition 7.2.1. Let N be the semi-group of sequences (dj)jez of non
negative integers which are zero for all but finitely many j. Let «; be the
element whose i-th term is 1 and other terms are zero.

Definition 7.2.2. We define a symmetric bilinear form on N%) given by

2, fori=j;
(Oéi7Oéj) = _17 f07" ‘Z _]’ = 17
0, otherwise .

Definition 7.2.3. Let ¢ be an indeterminate and Q(¢"/?) be the fractional
field of Z[q"?]. Let UqZO be the Q(q'/?)-algebra generated by the elements E;
and K for i € Z with the following relations :

K,K; = K;K;, K;K; ' = 1;
K,F; = ¢"/***) B K;;
E}E; — (¢"? + ¢ V) EE;E; + E;E} = 0, if |i — j| = 1.

and let UT be the subalgebra generated by the E;’s.
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Remark: This is the 4+ part of the quantized enveloping algebra U associated
by Drinfeld and Jimbo to the root system A, of SL.. And for ¢ = 1, this
specializes to the classical enveloping algebra of the nilpotent radical of a
Borel subalgebra.

Definition 7.2.4. We define a new order on the set of segments 3

{ i, k] < [m.n], if k <n,
[j, k] > [m,n], if j <m,n=k.

We also denote [j, k] < [m,n] or [j, k] = [m,n] by I[m,n].

Lemma 7.2.5. The algebra UqJr is NP _graded via the weight function wt(E;) =
a;. Moreover, for a given weight a, the homogeneous component of UqJr with
weight o is of finite dimension, and its basis are naturally parametrized by
the multisegments of the same weight.

T

Démonstration. Let a = Z m;, j,|is, js| be a multisegment of weight a, note

s=1
that here we identify the weight ¢; with «;, and that

[i1, j1] < -+ < iy, Ji] ( cf. Def. [[.2.4)
Then we associate to a the element
(Ejl . E“) . (Ejr . Ew)
O

Notation 7.2.6. For x € Ut be an element of degree o, we will denote
wt(x) = a.

Example 7.2.7. Fori < j, let oy;; = o;+- - -+ . Consider the homogeneous
components of Ut with weight o = 215, whose basis is given by

ENEy By By, ErEn By Ey.

The element EyEyEy Ey is parametrized by the multisegment [1] + [1, 2] + [2],
while E1EyEyFy is parametrized by the multisegment 2[1] + 2[2].

In [27], Lusztig has defined certain bases for UqJr associated to the orienta-
tions of a Dynkin diagram, called PBW( Poincaré-Birkhoff-Witt) basis, which
specializes to the classical PBW type bases. Following [25], we describe the
PBW-basis
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Definition 7.2.8. We define
() = Bi. B(id]) = (B[ [Buvs, Bl -~ gl i,

where [x,y] 12 = zy—q 2@ 0 More generally, let a = Z a;, j.lis, Js|
be a multisegment, such that

[il,jl] ﬁ e ﬁ [irajr]( Cf' Def a

we define
B(a) Bl i) Bl )
a) = ——— I3 21501 o W ZT‘) r Z7‘,J'r7
Hs[ais,js]ql/g! 1, J1 J
q1/2m _ q71/2m
here [m] 12 = RV = form € Z and [m] /2! = [m]2[m—1] 12 - -+ [2] /2.

Definition 7.2.9. Let x — T be the involution defined as the unique ring
automorphism of U; defined by

¢\2 =q'* E;=F,.

Proposition 7.2.10. (¢f. [27]) Let L = @Z[ql/Q]E(a) C U/. Then there
acO
exists a unique Q(q'/?)-basis {G(a) : a € O} of U/ such that

Q
2
I
Q
N
2
N
I

E(a) modulo ¢/*L.
This is called Lusztig’s canonical basis.

Lusztig also gave a geometric description of his canonical basis in terms of
the orbital varieties O,.

Definition 7.2.11. Let A be the group ring of @Z over Z. Let K, be the
Grothendieck group over A of the category of constructible, G ,-equivariant
Q¢ sheaves over E,, considered as a variety over a finite field F,.

Lemma 7.2.12. (c¢f. [27]) The A-module K, admits a basis {7va:a € S(¢)}
indexed by the G, orbits of E,, where va corresponds to the constant sheaf
Qy on the orbit O,, extending by 0 to the complement.
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Definition 7.2.13. Let ¢ = o1 + 2 € S. We define a diagram of varieties

ﬁ Bl ﬁ//

E, xFE

~——F > p' L F

©

(7.2.14)

1
where

E"={(T,W): W =@ Wi, W; C Vi, T(W;) € Wiy, dim(W;) = (i)},
E'={(T, W, 1) - (T,W) € B", e W = Vi, pil 1 Vi, JW =V, },

and

BT W) =W, B'(T, W, p, 1)) = (T, W), BUT, W, p, 1)) = (Th, T2),

such that
Ty=poTop ™", Ty=poTopu "

Proposition 7.2.15. (c¢f. [27]) The group G, x G, X G, acts naturally on
the varieties in the diagram with G, acting trivially on E, x E,,
and Gy, x G, acting trivially on E,. And all the maps there are compatible
with such actions. Moreover, we have

(1) The morphism B is a principle G,, X G, -fibration.

(2) The morphism (3 is a locally trivial trivial fibration with smooth connec-
ted fibers.

(8) The morphism 3" is proper.
Example 7.2.16. Let o1 = x1, @2 = X2. Then ¢ = x1 + x2 and
E, =E, =0, E,=F,.
Moreover, we have
E' ={(T,W): W=V, TeF,} ~F,
and
E = {(T,W, ) - (I,W) € E", i, i € F; } ~TF, x (F, ).

Corollary 7.2.17. (c¢f. [27]) Let a € O(p1),a" € O(ps). There exists a
simple perverse sheaf( up to shift ) P such that

B*(I1C(0a) ® IC(Ow)) = B"(P).
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Example 7.2.18. As in example let a={[1]},a" = {[2]}, then
I1C(0,) = Q, IC(0x) = Q.

Hence if we let
P - QZ?

then
B*(IC(0a) @ IC(Ox)) = B"(P).

Definition 7.2.19. We define a multiplication
1C(04) * 1C(Ow) = B(P)
Example 7.2.20. As in the example we have
1C(04) * IC(Ow) = B!(P) = IC(E,),
note that here 8" is an isomorphism.

Proposition 7.2.21. (c¢f. [27]) Let a € O(p1),a" € O(ps). We associate to

the intersection cohomology complex 1C(O,)

Fa =Y Pbal@) 7,

b>a

where pya(q) is the formal alternative sum of eigenvalues of the Frobenius
map on the stalks of the cohomology sheaves of IC(O,) at any F, rational
point of Oy. Moreover, the multiplication * gives a A-bilinear map

K, xK,, = K,

which defines an associative algebra structure over K = @ K,.
©

To relate the algebra K and U=°

Proposition 7.2.22. ([27/ Prop. 9.8, Thm. 9.13)
— The elements ~y; == 7y for all i € Z generate the algebra K over A.
— Let Uio = quo ®z A. Then we have a unique A-algebra morphism
N K— Uio such that

D) = KB
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for all j € Z. Moreover, for ¢ € S, let
S(p) = (i) = (i) /2 =Y (i)p(i+1).
i€ ieZ
Then there is an A-linear map © : K, — Uy, such that

L(€) = /P K (9)0(8),

where K(p) = H Ki_i(p(i).
i€z
— We have
P(ve) = ¢"2" 9 K (pe) E(c),

where

r= 0 pelD)(pei) = (20 = 1)/2 = 3 Jigeli = Dgeli),

i

and d¢ 1is the co-dimension of the orbit Og in E,.
— We have

@(Va) — q1/2dim(Oa)Ev<a)7 @(%) _ q1/2dim(Oa)G(a).

Hence

G(a) = 3 Poal@) E(b).

Proposition 7.2.23. The canonical basis of UqJr are almost orthogonal with
respect to a scalar product introduced by Kashiwara [18], which are given by

(1 — )

(E(a), E(b)) = m5a,b,

where a = Zaij[i,j], hi(2) = (1 — 2)--- (1 — 2%) and § is the Kronecker

i<y

symbol([26]). And we have

(G(a),G(b)) = dap mod q/?A.

Notation 7.2.24. We denote by {E*(a)} and {G*(a)} the dual basis of

{E(a)} and {G(a)} with respect to the Kashiwara scalar product.

Proposition 7.2.25. (c¢f. [2]]) Let a = Zaij (i, 7]. Then

1<j
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— We have

[T ha, (q)

i<j — agj
T B = [ [ ),

E (a) = (1 _ q)deg(a .
ij

here the product is taken with respect to the order <.
— And
E*(a) =Y _ Pab(q)G*(b).

b<a

Example 7.2.26. Let a = [1| + [2]. Then

and

G*([1,2]) = E*([1,2]),
G*(a) = E*(a) — ¢'E*([1,2)),
Finally, we establish the relation of between the algebras R and U™,

Definition 7.2.27. Let B be the polynomial algebra generated by the set of
coordinate functions {t;; 1 i < j}. Following [25], we write t; =1, t;; = 0 if
i > j, and indezed the non-trivial t; ;’s by segments, namely, t; = t; ;1 for
i<

Now by corollary [1.2.3], we have the following

Proposition 7.2.28. We have an algebra isomorphism ¢ : B ~ R by iden-
tifying t;;) with Ly for all i < j.

Definition 7.2.29. Let B, be the quantum analogue of B generate by {T;; :
i < j}, where T;; is considered as the q-analogue of t;;. Also, we write T;; = 1
and Ti; = 0 if © > j. And we will indexed the non-trivial Ti; by Tj; j—1). The
generators Ty’s satisfies the following relations (cf. [5]). Let s > s" be two
segments. Then

o q—1/2(wt(sr),wt(s)),TSTs, + (q—1/2 _ ql/Q)Tsﬁs’ e, if s and s are linked,
T g VAE)WESD T T otherwise

Proposition 7.2.30. (cf. [25] Section 3.5) There exist an algebra isomorphic
morphism

e
LU — By,
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gwen by o(E*([7,7])) = Ty ;- Moreover, for a = Zaij i, 7], we have

(5]

— 1/2( %) rais
(B (a)) = [Ja"2(¥) T,
i<j

here the multiplication is taken with respect to the order <.
Example 7.2.31. Let a = [1] + [2], then
UE*(a)) =TT

Proposition 7.2.32. By specializing at ¢ = 1, the dual canonical basis
{G*(a) : a € O} gives rise to a well defined basis for B, denoted by {g*(a) :
a € O}. Moreover, the morphism ¢ sends g*(a) to Ly for alla € O.[]

7.3 Partial Derivatives and Poincaré’s series

In this section we will deduce a geometric description for the partial deriva-
tives, using results of last section.

Definition 7.3.1. Kashiwara [18] introduced some q-derivations E; in End(U,")
for all i € Z satisfying

E{(E;) = by, Ej(uv) = Ej(u)v + ¢V Dug(v).
Example 7.3.2. Simple calculation shows that
E(E([5, k) = 6ix(1 — @) E([j, k — 1]),
by taking dual, we get
E{(E ([, k])) = oinE"([5, k — 1]),

Proposition 7.3.3. We have

(Ei(u),v) = (u, Ew),
where (,) is the scalar product introduced in proposition .

1. It is surprising that an isomorphism in the commutative world is governed by a non-
commutative one, such phenomenon also happens in the theory of periods, where a period
be a complex number whose real and imaginary parts are values of absolutely convergent
integrals of rational functions with rational coefficients, over domains in R, given by
polynomial inequalities with rational coefficients, then there is a conjecture saying that
two rational functions give the same period if and only if they can be transformed to each
other according to three simple rules, see [21I] chapter 1.
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Note that by identifying the algebra Uq+ and B, via ¢, we get a version of
g-derivations in End(B,).

Definition 7.3.4. By specializing at ¢ = 1, the q derivation E; gives a
derivation €, of the algebra B by

€;(tyn) = Ointpip—1), € (uv) = ej(u)v + ue;(v).
Proposition 7.3.5. Let
i |
D «— ZO mel .

Then the morphism D' : B — B is an algebraic morphism. Moreover, if we
wdentify the algebras R and B via ¢, then the morphism D' coincides with
the partial derivative 9°.

Démonstration. For n € N, we have

therefore

D =35 3 (D) eto) = Dwp)

r+s=n

Finally, to show that D® and 2" coincides, it suffices to prove that

¢ o D'(tgp) = 2" 0 dltym),
but we have

Dt = tyim + diktyyn-a,

and .

D" (Lijw) = Lik + 0inLijr—1y-
Therefore, we have ' ‘

¢ o D' (tyu) = 2" 0 dltyn)-

]

Remark: Without specializing at ¢ = 1, the operator D’ is not an algebraic
morphism. To get an algebraic morphism at the level of U; , one should
consider not only the summation of the iteration of €;’s but all the derivations,

which gives rise to an embedding into the quantum shuffle algebras, cf. [24].
Next we show how to determine 2°(L,) by the algebra K of Lusztig.
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Lemma 7.3.6. Letn € N, and d € O. Then we have
ErG(b) =) (EG(b), E*(d)E(d) = Y _(G(b), EI"E*(d))E(d),
d d

where (,) is the Kashiwara scalar product. Moreover, for each b such that

(G(b), EM"E*(d)) # 0, we have

wt(d) = wt(b) + na;.
Démonstration. This is by definition. m
Corollary 7.3.7. Let b =, d such that wt(d) = wt(b) + na;. Then Ly,
appears as a factor of %e;’"(ﬂ(d)) if and only if r = n.

Démonstration. We know that for each b <, d, the representation L, is a

. , 1
factor of 2'(w(d)). Now by proposition [7.3.5, 2" = Z —'ef", moreover, by
r!

r

1
lemmal|7.3.6| factors of —'e?"(ﬂ(d)) always have weight wt(d) —ra;. Therefore
r!

we are done. O

Proposition 7.3.8. Let b <, a, then there exists ¢ € S(a) such that ¢ =
b + ([k]. Then

Nba = dmH*(IC(Ogyp)  IC(Op))a.

Démonstration. Note that by proposition [7.2.22] we have

L (Ve * b)) = T (Fe)T ()
= ¢"/2SCan)+5@e)) [ (o) K (1) (Fign )© ()
— ql/Q(S(W[k]HS(sDb))K(¢Z[k] + (pb)ql/Q(dim(Of[k])+dim(0b))G(€[k:])G(b).

Since we have

. 1
qt/2:
SO
~ oy 1 im
F(W[k} *Yp) = WQW(S(%)M (Ob))K(gpa)Eﬁg(b).
qL/2:
And

(va) = 4"V K (pa)O(7a)
= ¢'/2(S(ea)+dim(Oa)) [ (Y E(d).
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Now write

Vel * Vb = Z Pa,b(7)7a,
bjkded:‘pa

with o B B
pab(q) = Z qH*(IC(Ogpy) % 1C(Op))a-

Applying I gives

L 1/2(S(pw) +dim(O)) ¢
— un K(p,)E,G(b) =
[ﬁ]ql/Q!q (SO) k ( )
Z pd7b(q)q1/2(5(<ﬂd)+dim(od))K(gpd)E(d)'
b=rd,pa=wa
Hence

EﬁG(b) = [(] /2! Z pd7b(q)ql/Q(S(WdH‘dim(od)_S(S@b)_dim(ob))E(d)’

bfkd#’d:#’a

now compare with lemma [7.3.6] we get
(G(b), EME*(d)) = [g]ql/z!pdb(q)ql/Q(S(‘PdH‘dim(Od)*S(‘Pb)*dim(ob))'

Finally, we write

1
[€]172!

EPEN(d) = 3 ()G (b),

by applying the scalar product, we get

1
1/2!

npa(q) = (G(b), 4 E"E*(d)) = pap(q)q"/? S pa)tdim(Oa)=5(en)~dim(On)),

q

Hence, by specializing at ¢ = 1, we have

Nbd = Pab(l)-

Now take d = a, we get the formula in our proposition. O

7.4 A formula for Lusztig’s product

In this section we will find a geometric way to calculate Lusztig’s product
in special case, which allows us to determine the partial derivatives in the
following sections.
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Definition 7.4.1. Let k € Z. We say that a satisfies the assumption (Ay) if
it satisfies the following conditionsﬂ

(1) We have
max{b(A): A €a}+1<min{e(A): A € a}.

(2) Moreover, we have Q@) (k) # 0 and pe@)(k+1) = 0.

Lemma 7.4.2. Let a be a multisegment satisfying the assumption (Ay). Then
a 1s of parabolic type. Moreover, The set S(pa) contains a unique mazximal
element satisfying the assumption (Ay), denoted by ayq.

Démonstration. Let b(a) = {ky <--- <k}, e(a) ={l <--- < (.}
Then by proposition we know that there exists an element w € S71(@-"2()

such that
a=>Y [k lu).

J

i = Y [k;, 4],

j
now by proposition [6.2.24] we know that a < ajg. Finally, ajq depends only
on b(a) and e(a), not on a, which shows that ajq is the maximal element in
S(¢a) satisfying the assumption (Ayg). O

Let

Lemma 7.4.3. Suppose that a is a multisegment satisfying the hypothesis
(Ay), then

(1) S(a) = S(a);
(2) we have

Démonstration. Note that by assumption
max{b(A) : A € a} < min{e(A): A € a}.

This ensures that for any ¢ € S(a), we have pec)(k) = @e@)(k), hence by
definition ¢ € S(a)g. This proves (1), and (2) follows from (1). O

2. Since here we only work with the partial derivative 2% with k € Z, for every multi-
segment, we can always use the reduction method to increase the length of segments from
the left, so that at some point we arrive at the situation of our assumption (Ay), therefore
we do not lose the generality.
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Lemma 7.4.4. Let a be a multisegment satisfying the assumption (Ay) and
a=ay. Let £ € N such that { < gy (k) and p € S such that

© + X[k = Pa-

Then for b € S(p), we have b < a if and only if b* < a® and e(by(k —
1)=1(+ gOe(a)(/C —1).

Démonstration. Let b € S() such that b < a, then by proposition [7.1.7]
we know that b = cr for some ¢ € S(a) and I' C c¢(k). Therefore
b® — k) < 4

by the lemma above. And by definition of cr, we know that
Peb)(k — 1) = L+ @e(e)(k — 1).
Now applying the fact that a satisfies the assumption (Ay), we deduce that
Pe(e)(k = 1) = @e(a)(k — 1).

Conversely, let b € S(p) be a multisegment such that b® < a® and
Peo) (k= 1) = £+ pea)(k = 1).
We deduce from b®*) < a® that

b < a® + gum) (k) [K],
from which we obtain
Pb = Pak) + Spe(b)(k>X[k]~
By assumption, we know that
b + X[k = Pa-
Combining with the formula
Pa = Pat + Pe(a)(B)X[H];

we have
Qpe(a)(k) = Soe(b)(k> + L.
Now that for any A € a, if e(A) =k, then b(a) < k — 1. Therefore we have

Qpe(a(k))(k - 1) = Soe(a)(k - 1) + Soe(a)(k)'
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Applying the formula @.p)(k — 1) = € + @e@)(k — 1), gpe(b<k))(k —-1) =
Pe(at)(k — 1), we get

ey (k= 1) = pew)(k — 1) + pew) (k).

Such a formula implies that for A € b, if e(A) = k, then b(A) < k — 1.
Let b(a) = {k1 < -+ < k.}, e(a) = {¢; < --- < {,}. The assumption that

a = apg implies that

a= Z[kza 4;]
Suppose that
Take I' = {[kz,fz] . ’L.() —|—€ S 1 S Z1} and

a’ = ar.

Then a’ <, a. Note that a’ is a multisegment of parabolic type which corres-
ponds to the identify in some symmetric group, cf. notation [6.2.21] Finally,

proposition [6.2.24] implies that b € S(a’).
O

Lemma 7.4.5. Assume that a is a multisegment satisfying (Ay). Let r <
Pe(a)(k) and d = a + r[k + 1]. Then we have X5 = Yy and for a fived
subspace W of Vi, k1 of dimension r, the open immersion

Tw - (XS_H)W — (Zk+1’d)w X Hom(V¢d,k, W)
1S an isomorphism.

Démonstration. Note that our assumption on a ensures that Xg“ = Y4

since we have dn;, € S (d)gy1. It suffices to show that 1y is surjective.
Let (T™W,Ty) € (2" x Hom(V,,, , W), by fixing a splitting Vi, x11 =
W @ Vyykt1/W, we define

T/’de!k =T ® T(k+1)|v

wd-k’

k
T/’VLpd,k+l = T( +1)’V<Pd!k+1/W ° pw,
T/|V<Pd,i = T(k+1)7 for ¢ 7é k) k + 17

where p,, : Vi, — Viuk/W is the canonical projection. Then we have 7" € Yy
hence T' € (Xkt!)yy. Now since by construction we have 7y (T") = (T"®), Tp),
we are done. ]
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Definition 7.4.6. Assume that a is a multisegment satisfying (Ay) and d =
a+rlk + 1] for some r < pea)(k). Let Xq be the open sub-variety of Xit!
consisting of those orbits O with ¢ € S(d), such that pec)(k) +1 = Qe(a) (k).

Definition 7.4.7. Let V' be a vector space and ¢ < ¢y < dim(V') be two
integers. We define
Gr(ly,05, V) = {(U1,Us) : Uy C Uy CV,dim(Uy) = 61, dim(Us) = €5}
Definition 7.4.8. Let ¢ be an integer and a be a multisegment. We let
El={(T' W) :T €Y, W e Gr(f,ker(T’|V¢a,k))}.
Note that we have a canonical morphism
o Ey = Gr(l, ¢e@)(k), Vpa k)
sending (T',W') to (W' ker(T"|y,_,))-
Proposition 7.4.9. The morphism o' is a fibration.

Démonstration. The morphism o is equivariant under the action of GL(V,, ).
The same proof as in proposition m shows that the morphism o' is ac-
tually a Py, v,) bundle, where P, 1, is a subgroup of GL(V,, 1) which fixes
the given element (Uy, Us). Now we take a Zariski neighborhood U of (U, Us)
over which we have the trivialization

v TN ) ~ (UL Us)) x U,
such an isomorphism comes from a section
s —= GL(V,k), s(Uy,Us)) = Id,

by y((T.W")) = [(¢7' T, g~' W),/ (T, W"))], where g = s(a/((T,W))). We
remark that the existence of the section s is guaranteed by local triviality of
GL(V%”k) — GL(Vgoa,k)/P(Ul,Ug)a cf. [32], § 4. ]
Proposition 7.4.10. Assume that a is a multisegment satisfying (Ay) and
d=a+rk+1] for somer < @@y (k). Let £ € N such that v+ £ = @) (k)
and W a subspace of Vi, 41 such that dim(W) = r. We have a canonical
projection
p: (%d)W — Eg

where for T € (Xa)w with Tw/(T) = (Ty, Ty) € (2w x Hom(V,,, 1, W),
we define p(T') = (T, ker(Tolw,)), where Wy = ker(Th|v,_,) (Note that here
we identify (Z¥ 1Y)y with Yy, see the remark after pmposition ). Mo-
reover, let Uy C Uy C Vi, 1 be subspaces such that dim(U;) = ¢, dim(Us;) =
Qe(a)(k), then p is a fibration with fiber

{T' € Hom(V, 1, W) : ker(T'|y,) = Ur }.
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Démonstration. We show that p is well defined. Since by definition of (X4)w
we know that

dim(W) + dim(ker(T0|ker(Tl|V¢d,k))) = dim(ker(T4[v,, ,)),

hence to see that
! = dim(ker(TO|ker(T1|V¢d,k)))’

it suffices to show that
Spe(a)(k) = dim(ker(levvd,k))a

this follows from the fact that a = d**Y. Finally, we show that p is a
fibration. Note that by definition, the fiber of p is isomorphic to

{T € Hom(V,, &, W) : ker(T|y,) = Uy }.

So it suffices to show that it is locally trivial. To show this, we consider the
open subset 4 in E. as constructed in the proof of proposition
Now we construct a trivialization for p

o:p HaTHW) = o HU) x {T € Hom(V,, x, W) : ker(T'|y,) = Ur }

with o(T) = [(Ti, W), g™} (Ty)], where g = s((W", W), Wi = ker(Tilv,..,).
Note that given

(T, W), Ty] € &1 (8h) x {T € Hom(V,,, 1, W) : ker(T|p,) = U1},

take Wy = ker(T[y,_ ,) then (W', W) € 4, hence g = s((W', 1)) exists.
Let Tj = gTy. Then T = 7} ((T1, Ty)) € p~*(o/7H(LW)).
[l

Definition 7.4.11. Let { + dim(W) = e (k). We define Ya to be the set
of pairs (T,U) satisfying

(1) UeGr(t,Vour), T € End(V,,/U) of degree 1 ;
(2) T € Oy, for some b <, a.

And we have a canonical projection
o:El - 9.
for (T,U) € EI, we associate
o((T,U)) = (T",U)
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where T' € End(V,, /U) is the quotient of T. Also, we have a morphism
o' Ya — Gr(L, Soe(a)(k)a Vioak)s
by
o' (T, U)) = (U, (kex(Ty,, . /v)))-

where 7 : Vi, p — Vi 1/U be the canonical projection.

Lemma 7.4.12. We have for T € 9)a,
(1) w(T) € 2
(2) Tlv,,,_, is surjective ;
(3) dim(ker(7Ty,, ,/v)) = dim(W);
for i, see definition|3.5.77.
Démonstration. (1)To show (1) € Z*?, it suffices to show that for b < a,

we have b® < a®_ Note that by proposition , there exists ¢ € S(a)
and T C c(k), such that

b:CF.

Now by lemma [7.4.3, we have ¢ € S(a)y, which implies that
b — ) < 4.

(2)By definition for any 7' € )., we have Y € Oy, for some b <, a. By the
fact that a satisfies the assumption (Ay), we know that any ¢ € S(a) satisfies
(Ay), hence

b = Cr
cannot contain a segment which starts at k, therefore T]V(Pa’kf1 is surjective.

(3) Note that from the definition of ), we know that for T' € )., we have
T € Oy for some b <}, a. Now it follows

ker(T|y,, . /v) = $e(a)(k) — £ = dim(W).
[

Proposition 7.4.13. Let a be a multisegment satisfying the assumption
(Ay). Then the morphism o' is a fibration. Moreover, if we assume that
a = ayu, cf. lemma[7.4.5, then the morphism o is also a fibration.
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Démonstration. We first show that ¢’ is locally trivial. We observe that the
group GL(V,, ;) acts both on the source and target of ¢’ in such a way
that o' is GL(V,,x)-equivariant. As in the proof of proposition , let
U C Gr(l, pea)(k), Vou k) be a neighborhood of a given element (Uy, Us) such
that we have a section

s:U— GL<V<pa,k)a S((Ul, UQ)) = Id.
Note that in this case we have a natural trivialization of ¢’ by
o BTN ~ U x BH(ULUy))

by o' (T, U)) = (U, 7~ (ker(Tv,, ), g~ (T, U))] with g = s((U, 7" (kex(T'|v, ,))))-
Finally, we show that o is surjective and locally trivial.

We observe that o’ = 0’0 and o preserves fibers. Now we fix a neighborhood

il as above and get a commutative diagram

o HYU) — = U x o/ (U, Uy))

L,k

oY) — = U x o (U, Uy))

where §([z,T]) = [z,0(T)] for any = € $ and T € o/~ '((Uy, Uy)). Therefore
to show that o is locally trivial , it suffices to show that it is locally trivial
when restricted to the fiber o/~*((Uy, Us)). Note that we have

o/ ((Uy,Us)) AT € Ya : kex(Tly,, ) = Us} = (XZ)u, = Yaw xHom(V,,, 51, Us)
and

oM (U,Uy)) = {T:T¢€ End(V,,/U;) of degree Lkef(T’v%k/Ul) = U, /Uy,
T € Oy, for some b <, a} = Y, x Hom(V,, p—1,Us/Un).

Note that the canonical morphism
Hom(V,, x—1,Uz) = Hom(V,,, y—1,Us/Un)
is a fibration. Hence to show that
o H((Ur, Us)) = o' ((Un, Ua))

is a fibration, it suffices to show that o|.—1(w,,u,)) is surjective with isomor-
phic fibers everywhere . Let (T,U;) € o'"'((Uy, Uy)) with

TU> /Uy (T> = (TOaQO> € Yom X Hom(vgaa,kfb U2/U1),
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where 7y,/p, is the morphism in definition @ We fix a splitting Uy ~
Us /Uy @ Uy. Now to give (T',U;) € o '((T,U;)) amounts to give ¢ €
Hom(V,,, x—1,Uy) such that

70,(T") = (To, g0 © qu)-

Note that by lemma [7.4.4, the condition a = arq implies that 7" lies in (XF),
if and only if ¢; satisfies

dim (ker(qo @ Q1’ker(T0|VWa’k71))) = Pe(a)(k — 1),

which is an open condition. Therefore o is surjective. By definition of 9),, we
know that
dinl(ker(qo|kel"(:’10|v¥ja’,c 1))) = @e(a)(k - 1) + ga

therefore if we denote W, = ker(qo\ker(m% k_l)), then ¢, satisfies that

dim(ker(ql|ker(To‘Vwa’k_1)) N W) = Pe(a) (k — 1).

Such a condition is independent of the pair (7}, qp) since we always have
dim(ker(Toly, ) = Petay (k — 1) + puay(k) and dim( ;) = g,qa)(k — 1) +
L. ]

We return to the morphism p and o.

Lemma 7.4.14. Note that an element of G, stabilizes (Xa)w if and only
if it stabilizes W. Let Gy, w be the stabilizer of W, then for ¢ < d, and
T € O:.N (Xa)w, we have

Oc N (Xa)w = Gy T.

Démonstration. Recall that from proposition [5.3.2] we have

XA w0 GLgy (1) Xpy @ H(W)

-

GT(&H—h vSDd)
where (11 = @ea)(k + 1). Note that we have
Gogw = X Guyp X Py X Goypya X -0,

where G, ; = GL(V,,:). From this diagram we observe that the orbits there
is a one to one correspondance between the G, orbits on X:™ and G, w
orbits on o' (W). Finally, since X4 is an open subvariety consisting of Goq
orbits, we are done. O
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Definition 7.4.15. The canonical projection
i Vg = Voo /W

induces a projection
T Gogw — Go,,

where we identify Vi, /W with V.

Proposition 7.4.16. The morphism p is equivariant under the action of
Gogw and Gy, via T, i.e,

plgz) = m.(g)p(z).
Moreover, it induces a one to one correspondance between orbits.

Démonstration. Note that for T € (X4)w, such that mw(T) = (T1,To) €
(ZFHYy x Hom(V,,, g, W), let

U1 = keI’(T1|de7k), U() = ker(T0|U1)

we have
p(T) = (T1, Uy).

Now it follows from the definition that we have

p(gT) = m.(9)p(T).

Hence p sends orbits to orbits. It remains to show that the pre-image of an
orbit is an orbit instead of unions of orbits.

We proved in proposition that
p_lp(T) = {(T17Q) ‘q e H0m<V<PdJ€> W)’ker(Q|U1) = UO}?

note that here we identify elements of (Xq)w with its image under 7y. Let
(Ty,q) € p~'p(T). Then we want to find g € G, w such that g(Ty,Tp) =
(T1,q). Note that by fixing a splitting Vi, xs1 = W @ Vi, k11/W, we can
choose g € G, such that g; = Id € GL(V,,;) for all i # k + 1, and

g1 g12
= € Py,
Gk+1 (O Idy d,k+1/W) w

©

where g, € GL(W), and g1 € Hom(V,,, x+1/W, W). By hypothesis, we know
that the restrictions of ¢ and Ty to U; are surjective with kernel Uj, so we
can choose g1 € GL(W), such that

g1 To(v) = q(v), for all v € U;.
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Finally, for v; € V, ,+1/W, by our assumption at the beginning of this
section on a, we know that 73|V, ; is surjective, hence there exists v € V,, &
such that 7 (v) = v;. Then we define

gi12(v1) = q(v) — 1 To(v).

We check that this is well defined, i.e, for another v' € V, , such that
Ti(v') = vy, we have

q(v) — g1 To(v) = q(v) — a1 To(v'),
this is the same as to say that
qlv—2") = g To(v —0").

We observe that T} (v—2v") = 0, hence v—v" € Uy, now q(v—1") = g1 Ty(v—2")
follows from our definition of g;. Under such a choice, we have

9((T, Tp)) = (T, q).
Hence we are done. O]

Proposition 7.4.17. The morphism o is equivariant under the action of
Gy, Assume that a is a multisegment which satisfies the assumption (Ay).
Let o € S such that

@+ X[k = Pa
where x is the characteristic function. Then there exists a one to one corres-
pondance between the orbits of Q. and the set

S:={be S(p):b =, a}.
Moreover, for each orbit )(b) indexved by b, o~ (2 (b)) is irreducible hence

contains a unique orbit in E. as (Zariski) open subset.

Démonstration. The fact that o is equivariant under the action of G, follows
directly from the definition. To show that the orbits of ) under G, is indexed
by S, consider the morphism

P Da— Gr(l, Vo), (I,U) U

As in the proposition [5.3.2] we have the following diagram

Va~—"——GLg,x) Xp, ¥~ (V)
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which shows that p’ is a G L., . bundle. Moreover, the same proof as in lemma
shows that the orbits of ) are in in one to one correspondance with
that of the fibers

p ' (U) ~{T € End(V,,/U) :T is of degree 1,T € Oy, for some b <, a},

under the action of stabilizer G, y of U. Let ¢ € S be the such that ¢ +
{Xk) = @a. Then by identifying V,, with V,,, /U, we can view P HU) as an
open subvariety of £,. Note that we are identifying orbits with orbits by the
canonical projection

G@a,U — GW‘

Now it follows that the fibers are parametrized by the set S. Finally, let b € S.
We have to show that o~!(2)(b)) is irreducible, which is a consequence of
the following lemma.

]

Lemma 7.4.18. Let a,b be the multisegments as above. Then there exists a
bijection between the set

Q(a,b) ={ce S(a):b=cr for someT C c(k)},
and the orbits in o' (Y (b)) which respects the poset structure, given by
c = B{(cf),
where for b = cr,
! =(c\ck)UTU{AT A cc(k)\T},

and E!(c*) is the orbit indexed by c*. Moreover, the set Q(a,b) contains a
unique minimal element.

Remark:
We remark that S(g) contains a unique maximal element.

Démonstration. Recall that we constructed in proposition a morphism
p, consider the composition

(Xa)w = EY 5 Da,
which sends (Oc)w to 9(b), where b = c®*+1 for ¢ € S(d). Hence we have

b= (c(kJrl))F
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for T'= {A € ¢ : e(A) = k}. Note that ¢ € S(d) implies that c*™) < a =
d*+Y . Conversely, for ¢ € Q(a,b), such that

b = Cr,
there is a unique element
¢ =cf

in S(d) such that Ou € X4 and ¢ = ¢/*™). Therefore we conclude that there
is a bijection between the G, -orbits in ¢~ (2)(b)) and Q(a, b).
Finally, for

Pa = ©b + LX[],

we show by induction on ¢ that the set Q(a,b) contains a unique minimal
element.
For case ¢ =1, let

b(k):={Ae€b:e(A) =k} ={A 2 A}
and ¢; = (b\ A;) UA. Then
Q(a,b) C{c;:i=1,---,h},

and cj is minimal in the latter, which implies that c, € (Q(a,b) and is
minimal. In general, let

® = Yo+ XK

Note that there exists ¢’ € S(p) satisfying the assumption (Aj) and IV C
c'(k) such that
b - C/F/.

In fact, by assumption, we know that
b = Cr

for some ¢ € S(a) and I' C c(k). Let

oIy,
such that £ = #I" = IV + 1 and
¢ =cr,,
then we have
b = cprp,-
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Now we apply our induction to the case
Q1 :={c € S(¢) : c satisfies the assumption (Ay), b = cr for some I C c(k)},

from which we know that there exists a unique minimal element c; in ;.
Now by assumption, we know that

bl S C, jk a,

and by induction, we know that the set Q(a,b;) contains a unique element
by. We claim that by is minimal in Q(a, b). In fact, let e € Q(a, b), then

b = erv
for some I C e(k). Again let
IMNCr, e =ep
such that ¢ = I = "} + 1. Now we obtain
e/ € Ql, b = e%,\rll.
By minimality of c¢;, we know that
c, <é€.

Note that this implies ¢; < €, and by transitivity of poset relation, we get
¢, = e. Now we apply proposition to get

¢ = fru,
for some f € S(e) and I C f(k). Again we deduce from induction that
f > c,.
Hence ¢y < e. O

Now we return to the calculation of product of perverse sheaves, cf. corollary

217
Corollary 7.4.19. Let a be a multisegment satisfying the assumption (Ay)
and b <, a such that

Pa = Pb + EX[p-
Let ¢ the minimal element in Q(a,b) and E,(c) be the G, orbit indezed by
c in E!. Then we have

IC(Op) * IC(Ogpy) = BL(IC(E(cH))).
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Démonstration. First of all, by definition
E'"={(T,U):Te€E,,, T(U)=0, dim(U) = (},

therefore we have
E// C E/I
" CE".
Furthermore, the variety E! is open in E”. In fact, consider the canonical
morphism
" E" — E,,,
en = ). Since Y, is open in , we know tha is open in
then E/ = 8"7*(Ya). Since Y, i in £, know that E i i
E"”. Now we have two morphisms

o :ﬂ'_l(E;/) — Va,
B:E — E,, X E

Polk]

~ B,

We claim that 371 (Op)NB""HEY) = B 'o 1 (Y(b)), where 2 (b) is the orbit
in Y(b) under the action of G,.
By definition of 3, we know that

B O0p) NBTHEY) = {(T W, i, ) i s W Vi, il Vi J[W =V
T € O for some f € S(a),b =< f}.
Now by definition of o and 3, we know that 5~ (O)N3 " (E!) = B o 1 (D (b)).

Now by proposition [7.4.17, 7' (Q)p) contains E!(c*) as the unique open sub-
orbit, where c is the minimal element in @)(a, b). Therefore we conclude that

B(IC(E{(c?))) = B*(IC(Op) ® IC(Ey,,)).

Now by definition

10(0y) + IC(Ouy) = BLIC(EL())).

7.5 Multisegments of Grassmanian Type

In order to precisely describe the previous corollary concerning Lusztig’s pro-
duct in the Grassmanian case in the next section, we generalize the construc-
tion in section 3.3 to get more general results concerning the the set S(a) for
general multisegment a.

Let V a C vector space of dimension r + ¢ and Gr.(V) be the variety of
r-dimensional subspaces of V.
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Definition 7.5.1. By a partition of {, we mean a sequence X = ({1,--- , ;)
for some r, where {; e N ;0 < ly <-4, < /L. And for p = (1, , ps) be
another partition, we say p < X if and only if pu; < \; for allv=1,--- .. Let
P(l,r) be the set of partitions of £ into r parts.

Definition 7.5.2. We fizx a complete flag
0=V'cVv'ic...cvt=w

This flag provides us a stratification of the variety Gr,. (V) by Schubert varie-
ties, labeling by partitions , denoted by X,

X\ ={U € Gr. (V) : dim(UNV T >4, foralli=1,---,r}.
Lemma 7.5.3. (¢f. [36]) We have
p<Ae= X, CX,.
And the Schubert cell
Xa=Xy-) X,

p<A

is open in X .
Definition 7.5.4. Let Q™" be the set
Q" = {(ay, - ,am;bo, - ,bm_1) :Zai = T,Z,bj =/,
i J
for0<i<m,a; >0,b; > 0}.
Lemma 7.5.5. (¢f. [36]) There exists a bijection
Q-t — P, ),

which sends (a1, - ,am;bo, -+ ,bm_1) to a partition of ¢ given by by, by +
bi,-+, ;bo+ -4 bn_1, and that the elements by + --- + b;_1 figures in A
with multiplicity a;.

Notation 7.5.6. From now on, we will also write
A= (Cll,"' 7am;b07"' 7bm—1)7
with notations as in the previous lemma.

We introduce the formula in [36] to calculate the Kazhdan Lusztig polyno-
mials for Grassmannians.
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Definition 7.5.7. Let A\ = (a1, ,am;bo, -+ ,bm_1) be a partition. Follo-
wing [36], we represent a partition as a broken line in the plane (z,vy), i.e, the
graph of the piecewise-linear function y = \(x) which equals |x| for large |z|,
has everywhere slope +£1, and whose ascending and decreasing segments are
precisely by, - -+ ;b1 and ay,- -+, ay,, respectively. Moreover, we call the lo-
cal mazimum and minimum of the graph y = A(z) the peaks and depressions

of \.

FIGURE 7.1 —

Lemma 7.5.8. (cf. [36]) For A\, € Q™ then
A > p <= \Nz) > p(z), for all x.
From now on until the end of this section, we let
J=Ao;:i=1,---;r=1}U{o;:i=r+1--- ,r+0—1},

and

J0
a:=aj] :{Ah"' JA 7Ar+€}

be a multisegment of parabolic type (J, 1), where
e(A;))=k—1, fori=1,---r

and

e(A;) =k, fori=r+1,--- ,r+¢
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Definition 7.5.9. Then to each partition A € O such that vy > r and
ri+ 4 =r+ 4, we associate

bo bo+a1
ay= > [b(A) K]+ > [b(A)k—1]+-
i=1 i=bo+1
bo+ay-+bj_1+a; bo+ay--+b;
+ D, bA) k=T Y AR+
i=bo+ay--+bj_1+1 i=bo+-+bj _1+a;+1
Definition 7.5.10. Let r,n € N such that r < n. Let
R.(n)={(x1, - ,2,): 1 <y < -+ <z <m}.
(1) Let x = (1’1, e 7557”1) € er(n) and x' = (wlla T 7'T;2) € er(n) such
that ry > ro. We say x 2 o’ if {xy,--- 2, } D {27, 27, }.
(2) Let x = (21, ,2,) € Re(n) and 2/ = (2,--- ,2]) € R.(n). We say
x> ifx; >l foralli=1,---r.

(8) We definex =y, if v >y Dy for somey .
Remark: The set R.(n) is a poset with respect to the relation >. And the
set Ur<, R, (n) is a poset with respect to the relation D.
Proposition 7.5.11. For J ={o;:i=1,--- ,r—=1}U{o; :i=r+1--- ;r+
¢ — 1}, we have an isomorphism of posets

S Sﬁ)@ — R.(r+1),

by associating the element w with x, == (w™ (1), -- ,w™(r)).
Démonstration. Note that by definition
SJ,(Z)

e ={w € S w (1) < - <w Hr) and w(r+1) < - <w H(r+0)})

Therefore, ¢ is a bijection. This preserves the partial order, for a proof, see

8| proposition 2.4.8. ]
18] prop

Definition 7.5.12. For A € Q™" and X € Q™% such that r + 0 = r + (4.
We define X D X if and only if x5 D xy, and X = XN if and only if x\ = .

Definition 7.5.13. Let A = (a1, -+ ,am;bo, -+ ,bm—1), consider the set
{b(A): Acay,e(A)=k—1} ={z1 < - <x,},

here we have r segments ending in k—1 since 5 a; = r, we associate A with
i
the element
Ty = (21, ,x,).

This allows us to get a morphism ¢ : Q™" — R.(r + 0) sending \ to x.
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Lemma 7.5.14. The map < is an isomorphism of posets.

Démonstration. To see that ¢ is a bijection, we only need to construct an
inverse. Given = = (x1,---,2,) € R.(r + {), we have y = (y1, - ,y) €
Ry(r+¢) such that {1,--- ,r+¢} = {xy, - , 2,91, -+, ye}. We can associate
a multisegment to x

T

a, = > [b(Ag,).k— 11+ [b(A,), k].

J=1 J=1

Note that this allows us to construct a partition A\(z) € Q" by counting the
segments ending in k£ and k + 1 alternatively.
A simple calculation shows that if we write A = (¢1,---,¢,) with 0 < ¢; <
coo </, then
§2(>\) = (El + ]-7 U 7£T +T>7
as described in [9]. This shows that
1= Aealp) = o).
O

Proposition 7.5.15. For A € Q"' we have ay € S(a), moreover, all the
elements in S(a) are of this form. Moreover, we have S(ay) = {a, : p > A}.

Démonstration. Let w € Sw, by definition, we have
w (1) < <w(r), wir4+1) < <w(r+0).

By definition, we have

©p(w) =Y (A, e(Aug)]

i
= [B(Au1(5), €(A))]
i
r r4-¢
=Y B(Aur) k=14 D b(Ay), K]
i=1 j=r+1
= a§2_1($w)

Now that ¢, ' o ¢, preserves the partial order, we have
S(an) = fa, :p > A}

by proposition [6.2.14
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Example 7.5.16. For example, for r = 1,{ =3, with J = {02,03} and
a=a’=[1,4 42,5 +[3,5] + [4,5].

Let A\ = (ay,a9;b0,b1) = (1,0;2,1), then ay = [1,5] + [2,5] + [3,4] + [4,5].
This corresponds to the element ¢;* 0 G3(\) = o105 in S;{’@.

[
[«
o
[«
®

FIGURE 7.2 —

Proposition 7.5.17. Let \, i € Q" such that A\ < . We have

Paj a,(0) = Pru()

Démonstration. We can also prove this proposition in the following way. Let
J,0
w,v € S;,, such that

=g la(w), p=cq ).

Let P; be the parabolic subgroup of GL,, then by fixing an element in
Vo € Gr,(C™), we can identify P;\GL, with Gr,.(C"**). Moreover, the B-
orbits P;\wB corresponds to the varieties X, see [9] for a precise description.
Hence we have

Pr,u(q) = PM(q) = Puya,(q).
0

Remark: One can surely prove this result using the open immersion we
constructed in section 3.3.

Definition 7.5.18. Let A\ € Q.
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(1) We define
'\ ={ne Qb ol =r b >, A}
and
D) = {0 cn =1 = A}
DY) ={W rp> w1 2 A}

(2) For peT'(N\), we define
SEA) ={N e Q™ N >\ pu= N},

and let
SEN) =N e N> \ud N}
Proposition 7.5.19. Let \ € QO™ and e QN with ry > 1 and r + 0 =
r+{. Then w(a,) appears as a summand of 2*(w(ay)) if and only if u € T(\).
A A

Démonstration. Let z) = (z},---,2)) = @()\) and yy = (y7,---,¥)) €
R, (r + ¢) such that

{L 7T+£} = {l’i\, 71‘27yi\a"' 7?/?}
As described in proposition [7.5.15] we have

r 4

ay =Y [b(An) k= 1]+ [b(A,), k).

j=1 7j=1

therefore

P (w(an) = m(an) + Y mlag1,)-

Y2\

Now by lemma [1.3.5, we know that 7(u) is a summand of 2*(r(a,)) if and
only if 1 > ¢; ' (y) for some y D xy, i.e, = A. ]

Corollary 7.5.20. We have = X if and only if a, <; ay.

Démonstration. By corollary we know that a, =< a, if and only if
2*(n(ay)) — m(a,) > 0 in R, which is equivalent to say that g < A by the
previous proposition. O]

Proposition 7.5.21. Let A € Q™" and p € Q™. Then we have a, = (ay)r
for some T' C ay(k). if and only if we have u O A.
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Démonstration. Let x, = (.Ii\, x’\) = @A) and y\ = (9?7 JJ?) <
R,.(r + () such that

{17 7T+‘€} = {.fi\, 7'1:7)"\7yi\7"' 7yl%\}
As described in proposition [7.5.15 we have
r l
ay = Z[b(Ax;‘)Jf - 1] +

Jj=1 J

(A, 1],

1

And we have

r t
]71 m=1 ]g{j17 7ji}
Therefore
Ty DTy
as a set. The converse is also true. O

7.6 Grassmanian case
As before, let
J=Ao;:i=1,---;r=1}U{o;:i=r+1--- ,r+0—1},

and

J0
a:=aj :{Ah... VAV 7Ar+€}

be a multisegment of parabolic type (J,0), where
e(A))=k—1, fori=1,---r

and
e(A) =k, fori=r+1,--- ,r+¢.
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Moreover, for A\ € P({,7), let zy = (27, --,2)) = @A) € R.(r +¢) and
yx = (U7, -+ ,y;) € Re(r + {) such that

{17 7T+€} = {ZEi\, ,!B;\,yi‘,"' 7y2\}
As described in proposition [7.5.15] we have

r J4

ay =Y [b(An). k= 1]+ Y [b(A), k]

j=1 j=1
Let0<7‘0§£andr1:7“+7“0, by =10 —ry.

Proposition 7.6.1. Let u € P({1,r1). Then there exists i’ € P(L,r), such
that

{beS(a):a, =.b}={ay: A Pr), \< i}
More explicitly, if x, = (z¥,--- , 2t ) = c(u), then

» My
b
Ty = §2(,u ) = ($¢0+17 te 7$¢1)‘
Démonstration. By lemma [7.4.18] we know that the set

{be S(a):a, < b}

contains a unique minimal element a , € S(a) for some 1’ € P(L,r). There-
fore we have

(beS(@):a, =.b}={ay: A Pr), N<u'}.

Note that if we write

ay = Z[b(AI“>7k - 1] + Z[b(Ay;L)?kL
then
o r1 41
Ap = Z[b(Am;% k] + Z [b(Am;)7 k— 1] + Z[b(Ay;% k]

is the minimal element in S(a) satisfying

for some I' C a,; (k). O
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Definition 7.6.2. Let
Jy=Aoi:i=1,--- ;r=1}Ho; i =r+1,--+ ,r1—1}Ho; : m+1, -+ rH0—1},

and

. ‘]11® _ + +
a =ay = {Al"" 7AT17AT1+1"" 7Ar+g )

where a = {Aq, -+, Apo} with Ay QA -~ IA, (¢f. Def. }

Lemma 7.6.3. Letd = a+ (1[k + 1], then

k+1
— wehavea:ang),'

— and Xq = H O,,,, where a,, = a;f,}’m € S(ay) is the element asso-

J
wGST}r’Zw

ciated to w by lemma[6.2.23

Démonstration. Note that by definition we have

Al
And by definition of X4, we know that X4 consists of the orbit O, with
c € S(d) such that @.c)(k) + {1 = @e(a)(k), and the latter condition implies
that there exists w € STJJF? such that ¢ = a1’ O
Proposition 7.6.4. Let d = a + (1[k + 1] and W C V,, x41 such that
dim(W) = ¢, (which implies that W = Vi, k11). Then the composition of
morphisms

Xa=Ew 2 B 5 E

a Par
sends Oa,, N (Xa)w to O ).
Démonstration. This is by definition. O

Proposition 7.6.5. Let p € P(ly,r1) and z, = o(p) = («f, -+ ,2k), y, =
(), ) such that

{1,-- 7r1+€1}:{x’f7"' axﬁlayllla"' 7yZ}'

Then
(@) = DA+ D0 BAw), k= 1]+ (A, k1),

for definition of (aub)ﬁ, cf. lemma .
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Démonstration. Note that by proposition [7.6.1], we know that

To r1 01
ae = D (A K]+ Y B(Au) k= 1+ DA,
j=1 j=ro+1 j=1
and
a, = (aub)p
for I' = Z . Now by construction in lemma [7.4.18, we know that
o 1 4
(@) =Y [b(Ag), K+ Y (D) k= 1]+ Y [b(A), k+1].
j=1 j=ro+1 j=1

Proposition 7.6.6. We have
n(a,,a,) =t{c e S(a): ¢ =a, c > (a,)}
Démonstration. Consider the composed morphism
h:Xq=(Xa)w > E! Z, Ea
then the orbits contained in h’l(OaHb) is indexed by the set
{c € S(ay):cFt) = ay,c>(ay)}

Note that by corollary [7.4.19] and proposition [7.3.8] the number

(@, a,) = Z dim H* (B (I1C(E{((2,0)9))))a

for some x € Oab Finally, note that the morphism " is smooth when

restricted to the variety 3”7'(O, ,). Moreover, the fibers are open in some
u
Schubert variety, therefore, we are reduced to the counting of orbits. [

More generally, we have
Definition 7.6.7. Let w, € S;]jr’g) be the element such that
ay, = (a,).
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Proposition 7.6.8. Let Py and P, be the parabolic subgroups corresponding
to J, Jy respectively. Consider the natural morphism

T le\GLT+g — PJ\GLT+Z.

Then ' o
n(a,, ay) = Y dim ¥ (1. (IC(Prw,B)))s

for some x € Pjt\B, here ty is the element in S;]fg associated to the partition

A
Démonstration. Consider the composed morphism
h:Xq=Xaw > E 5B,

This proposition can be deduced from a construction of fibration similar to
the one we did in Chapter 2 for symmetric multisegments, cf.§2.5.
]

7.7 Parabolic Case

In this section, as in the Grassmannian case, we deduce a formula for calcu-
lating the coefficient n(b, a).

Let
JCS
be a subset of generators and
— sz
a=aj

be some multisegment of parabolic type (J,0) associated to the identity,
satisfying feca) (k) # 0, fe@)(k +1) = 0.

Notation 7.7.1. For k € Z, we let ), = fe (k).

Definition 7.7.2. Leta(k) = {Ay, -+, Ay } with Ay <Q--- <A, andrg € N
with 1 < rqg < {,. Then let

a; = (a\ak)U{Ae€ak): AQA, .} U{AT €a(k): A> Ay i1}
ay=(a\a(k)) U{A" ca(k): A<A, JU{Aca(k): A> A, 11}

and Ji(ro,k)(i = 1,2) be a subset of S such that a; is a multisegment of
parabolic type (J;(ro, k), D). Moreover, let

alioM0 —a fori=1,2.
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Lemma 7.7.3. Let {; =l —rg and d = a+ {1k + 1], then

— we have a = agkﬂ) ;
— and Xq = H O, , where a,, = a;il(m’k)’@ € S(ay) is the element
J1(rg,k),0

wESy

associated to w by lemma[6.2.23

Proposition 7.7.4. Let w € S200M0 Then there exists w” € S?°, such
that

{beS(a):a, < b} ={a,:veS

n

v<w}

More explicitly, if a,(k—1) = {Ay,--- Ay, } with Ay <--- <A, |, then
a, = (a,\a,(k—1))U{A" € a,(k—1) : AJA, JU{A € a,(k—1) : ADA, 1}
Proposition 7.7.5. Let w € S2000  Thep

(a,0)F = (A, \ 2, (k) U{A" 5 A € 2 (k)}
for definition of (aub)ﬁ, cf. lemma .

Definition 7.7.6. Let t,, € S0k pe the element such that

atw = (awb )ti

Proposition 7.7.7. Let Py and Py (,—r, k) be the parabolic subgroups cor-
responding to J, Jy (€ — ro, k) respectively. Consider the natural morphism

™ PJ1(fk7T0,k)\GLn — P]\GLn

Then

n(aun av) - Z dim /H%(W*([O(PJl(fk*m,k)th)))x

for some x € P;uB.

Démonstration. Consider the composed morphism

hiXa=Xaw 2B 5B,
This proposition can be deduced from a construction of fibration similar to
the one we did in Chapter 2 for symmetric multisegments, cf.§2.5.

]
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7.8 Calculation of Partial Derivatives

Again, as previous section, we restrict ourselves to the case of multisegment
of parabolic type.

Definition 7.8.1. Let J; C Jy C S be two subsets of generators of S,. Let
vE S;Lh’@,w € ST{Q’Q, we define 95; (w,v) to be the multiplicities of IC(P,wB)
in m.(IC(Py,vB)), where

T PJl\GLn — PJQ\GLn

be the canonical projection.

Remark: By proposition [5.3.13] we know that in case where J; = 0, Jo = {s;}
we have 92 (w,v) = p(s;w,v) if £(v) < €(s;v), where u(x,y) is the coefficient
of degree (¢(y) — ¢(x) —1)/2 in P, ,(q).

Proposition 7.8.2. Let J C S be a subset of generators in S,. Let k € Z and
a be a multisegment satisfies all the assumptions in the beginning of section
7.7. Then for any w € S, we have

n

Ly,
J1(l,—7ro.k
PLow) =Y > 077w, t,) Lo

Jo(rg,k),0

r0=0 vES,

Démonstration. Note that by proposition

7*(r(@w))) = Y n(b,a)L.

b=} ®(w)

Note that by proposition proposition we know that b < ®(w) implies
that
b = &(v),

for some v € Jy({, — 19, k). Moreover, according to the proposition m

n(®(v), B(w)) = Z dim 7 (. (1C(Py, (6—ro.to B)))

for some x € P;wB. In fact, by the decomposition theorem, we have

T (IC(P, (t—roiteB) = @D &:IC(PyuB)" ") [d.] (7.8.3)

ues;

therefore
ejl(ék_ka) (u7 t’L}) = Z hz<u7 tv)
%
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Furthermore, if we denote by
07 TP () (q) = Y hilut,)g
by localizing at a point of P;wB and applying proper base change, we get
do o AP = Y07 T ) (@) P ) (7.8.4)
PES /11 (0, —r0 k) u

Now we return to the formula
Z P2 (1) Lo (7.8.5)

By induction, we can assume that for u > w, we have that Lg(,) appears in
P*(La(uy) with mult1phc1ty (9‘]1 (be=ro.) (u,t,). Then by applying the derivation
2* to equation (7 , on the right hand side we get the multiplicity of Lg,)

given by
T+ Z le(é’“_ro’k) (u, tv)Pd:%(l),

u>w

where z denotes the multiplicity of Lg(,) in the derivative Z"(Lg)). And
on the right hand side, applying corollary [3.3.19] we get

Z PpgjifffiTO’k)’@(l).
PES T/ 1 (£, —r0,k)
Now compare with the equation (|7 to get x = 49‘]1(&“ ro.k) (w,t,) O

From now on we consider the derivative 2*(L,.) for a general multisegment
c such that f.c)(k) > 0.

Proposition 7.8.6. There exists a multisegment ¢’ which is of parabolic type

(Ji(c), D) ( cf. definition|6.5.1) and a sequence of integers ki, ... ke, kpy1, ..., kete
such that L. is the minimal degree term with multiplicity one in

kigy .. krgpgpkrer L. _@kv-Jrl(Lc,)’

and

fe(c/)(i> - fe(c)(i)7 Zfl < k’,
fe(c’)(k + 1) - 07
ki>k+1, ifi>r
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Démonstration. Let ig = min{i : fyc)(¢) > 1} and Ag = max{A € c :
=

b(A) = ig}. Then replace all segments A € ¢ with b(c) < ip by TA and A,
by *A to get a new multisegment c¢;. Then if we let {i € b(c) : i < ig} =
{j1 <--- <7}, we have L, is the minimal degree terms in

g g (L),

Repeat this procedure to get cy and a sequence of integers kq,--- , k. such
that L. is the minimal degree term with multiplicity one in

kg K P(Le,).

Suppose that feey)(k + 1) > 0. Then replace all segments A in ¢, with
e(A) > k by AT to obtain ¢’, we are done. O

Definition 7.8.7. We define
I(a,k) = {b € I'(a, k) : deg(b) +i = deg(a)},
where U, = fea)(k).
Definition 7.8.8. Let a be a multisegment and k,k, € Z. Then we define
T(a, k), = {beT(ak):bec S(b),,b*) cT(a* i)},
D(a, k), = Uil (a, k),
More generally for a sequence of integers ky,--- , k., we define
U(a, k), ...k, = {b <j a: blkrki-) e Pakkio0 By - for 1 < i <7}
Similarly, we can define ,I'(a, k) and g, .. p,I'(a, k).
Remark: We can also talk about the set 4, .. x,,,(I'(a, k)i . &, )-
Lemma 7.8.9. Let ky # k — 1, then the map

U, T(a, k)p, — T(@®) | k)
b s b

1s bijective.

Démonstration. In fact we have I''(a, k) = S(a;) where a; is constructed in
the following way : let a(k) = {A; = -+ = A, }, then

a; = (a\a(k)) U{AT :j <} U{A; :j > i),
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Note that I'(a, k) = S(a;), which implies that we have
I(a, k), = S(ai), -
Finally, note that by proposition we have a bijection
Ui, Sag)y, — S@*).
Note that k; # k — 1, k implies that agkl) e I'(a*) k) and
I(a*) k) = U S(agkl)).

And if k& = k, then

Hence we are done. ]
Lemma 7.8.10. Let ky, k € Z then the map
w i (a k) — D(*a, k)
b+ b
15 bijective.
Démonstration. If ki # k, the proof is the same as that of the previous

lemma. Consider the case where k; = k. Let a(k) = {Ay = -+ = A, >
[k] = --- = [k]}. Then for i < ¢, we have
N—_——

a; = (a\a(k) U{A] :j < i} U{Ay 1) > i,

where A; = [k] if 7 > 7. And we have I'(a, k) = S(a;). By definition, we
have b € ,I"(a, k) if and only if

b€ Sb), ®beri(Wa k).

Since Ma(k) = {A,---,A,,}, we know that for b € ,I"(a, k), we must have
1 < rg. Also, let

(Ma); = (Pa\ ®a(k)) U {A; 1 <iyU{Aj g > 5 > i}
And we have T*(Wa, k) = S((Wa);). Then we have
kK q, = ((k)a)i.

Finally, we conclude that b € ;I"'(a, k) if and only if b € ;S(a;). Since the
map

is bijective, we are done. O
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Proposition 7.8.11. Let b, c be two multisegments and ki € Z such that
b=k ¢ ceySc).

If we write
P"(Le) =Le+ Y 7i(d,c)La, (7.8.12)
del(e,k)\{c}
then
P*"(Ly) = Lo+ Y. 7i(d,c)Log
deg, I'(c,k)\{c}

Démonstration. -Suppose that deg(c) = deg(b) + 1. In fact, by corollary

[3.5.4) we have

MP(Le) = Le + Ly

By applying the derivation 2* and using the fact 2F("2) = " 29" we
have
P(Le) + 2 (Lp) = Le + L+ Y #i(d,¢)" Z(La)
deT(c,k)\{c}

By assumption that deg(b) + 1 = deg(c), we have
" P(La) = La + Linyg or L,

where ¥ P (Lgq) = Lq + Luyg if and only if d € j,5(d) and deg(*Vd) =
deg(d) — 1. This is equivalent to say that d € y,I'(a, k).

-For general case, consider
{Acc:b(A)=k}={A1 = - = A}
Now by proposition [3.5.1] and proposition [7.1.4] we know that
“P(Le)=Lo+ Y 7i(d,c)La,
fa(k1)> fo (k1)

for some n(d, c) € N.
If by # k, then We observe that for any d such that fq(ki) > fun(k1) and
d’' <, d, we have
far(kr) > fo(kr),
which implies that Lg can not be a summand of 2*(Ly). Therefore we know
that
7*(Lv)
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is the sum of all irreducible representations Lgs contained in 2%(" 2)(L.)
satisfying
Jar (k1) = fo(ky).
Applying the derivation * 2 to the equation (7.8.12)), we get
MDD (Le) =M D(Le) + Y 7i(d, )M 2)(La).

djkc

Note that in this case the sub-quotient of ** 2 %% (L) consisting of irreducible
representations Lgr satisfying

far(kr) = fo(ki)
is given by

Lb + Z ﬁ(d,C)L(kl)d.
deg, I'(c,k)\{c}

Compare the equation ®* 22%(L.) = 2F(" @)(L.) gives the results.
If k1 = k, consider

{Acc:bA) =k}t ={A = = A}

Let ¢’ be the multisegment obtained by replacing all segments A in ¢ such
that b(A) < k; by A, and A; by "A;. Then there exists

ko=ki —1>ky>--->k,

such that

Cc = (kra“' 7k2)C/’

and

b= (kr,"',k&kl,kmkl)cl_

Let b’ =) ¢, then by induction on fye)(k), we can assume that
P"(Ly) =Ly + Y #i(d,¢)Lg
derI(c’,k)\e’
Applying what we have proved before, we get
@k<Lb> = Lb + Z ﬁ(d, CI)L(kr,<-<,k3,k,k2,k)d.
dekm...7k3,k’k27kr(cl,k)\{cl}
Also, we have

.@k(Lc) =L.+ Z ﬁ(d, C/)L(kr,»~,k3,k2)d.

deg,..... Y1€37k2F(C/,k)\{c'}
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Since for any multisegment d, we have

(kva‘7"' 7k3ak2)d :(k?,, 7k37k=k27k) d
Y

it remains to show that

oo sk kL (€ ) =ty kg ky (€, ).

By definition and the following lemma, we can assume that r = 2. In this
case we argue by contradiction. Suppose that d € yx_1,I"(c', k) and d ¢
kk—11(c’, k), which is equivalent to say that d ¢ ,,_15(d). Note that d ¢
kk—15(d) implies that there exists two linked segments {A, A"}, such that

bA) =k, bA)=Fk— 1.

Then *~1%d contains the pair of segments {~A, “A’}. The fact that *~2¥d ¢
kS(*=19d) implies that ~A’ = (), i.e. A’ = [k — 1]. However, this implies
that ®E-LRq ¢ Pi(RE-LRC 1) since deg(®F1Hd) + i = deg(®F~1Ma) 41,
which is a contradiction.

Conversely, assume that d € ., I(c/,k) and d ¢ jx_140"(c’, k), which by
definition is equivalent to d ¢ ; x_1,5(d). Note that d ¢ ;1 ,S(d) implies
that d ¢ S(d), which contradicts to d € j;—15(d). O

Lemma 7.8.13. Let k > k — 1> k' be two integers. Then for any multiseg-
ment c, we have

k’kIF(C, ]{7) = k/,kI’(c, k})
Démonstration. Note that since for any multisegment d
(k/,k)d — k,k’d
the fact
k,k/F(C, /ﬂ) = k/,kr‘(C, k)

is equivalent to
de k’k/S(d) <de k’,ks(d)

for all d € 4 I'(c, k). But for any multisegment d and & > k —1 > £/, we
have

de k,k’S(d> &de k/ﬁS(d)

Hence we are done. O
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Proposition 7.8.14. Let ki # k—1,k, k+ 1. Let b, c be two multisegments
such that
b=ck) cecSc),.

If we write
P*(Le) =Le+ Y 7i(d,c)La, (7.8.15)
der(c,k)\{c}
then
PMLy) =Lo+ Y 7i(d,c)Lyo.
del(c,k), \{c}
Démonstration. The proof is the same as the proposition above. O

Now let ¢’ = ®(w) for some w € S/

Corollary 7.8.16. We have

L
k _§ : § : J1(Lk—ro,k)
.@ (La) = 9] (w7tv)L(kLmykr)cp(v)(kr+lvmvkr+z)'
"0=00e82 0 B (v)ey, ok (D) Kk, g )

Notation 7.8.17. For b <, a, we denote

O(b,a) = 071 (w1,
if b =kuke) () ke ke - Otherwise, put 0,(b,a) = 0.
Remark: The same way we define ;0(b,a) by the formula

(*2)(La) = > _ 18(b,a)Ly.

And let
['(k,a) = {b: f(b,c) # 0 for some c € S(a)},

it shares similar properties with I'(a, k).
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Chapitre 8

Multiplicities in induced
representations : case of a
segment

In this chapter we will consider the multiplicities m(c,b,a) of irreducible
components in the induced representation L, X Ly,

Lax Lp =Y _m(c,b,a)Le.

Our goal in this chapter is then to determine a formula for the coefficient
m(c,b,a) in case where b = [k —ig+ 1,k + 1](ip > 0) is a segment. Roughly
speaking, there are two major cases to discuss

(1) maxb(a) < k —ip+ 1,

(2) maxb(a) >k —ip+ 1.
In §8.1] we treat the first case, which is simpler to deal with. We have an
explicit formula for the case where b = [k+1] (cf. lemma[8.1.7jand proposition

8.1.5), and then we deduce by induction the general case (cf. proposition
8.1.12). For example the formula of proposition looks like

Lo X Ly = Lawp + Z <9k(C, a) — ek(c[k:-i-lh’ a—+ b)>Lc[k+1]1[k]5k—1'

cels—1(a,k)

where the 0 (c, a) are defined thanks to partial derivative, cf. notation .
Here our main tool is the derivatives for which we have complete formulas,
cf. proposition . Note that even in the case where b = [k+1] is a point,
we come across the difficulty that we have 2%(L.) = L. for certain multi-
segments, cf. example which prevents us from applying the partial
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derivations. Our idea here is to first treat the case where fa)(k—1) =0, cf.
proposition [8.1.5] and then reduce everything to such case.

In §8.2, we describe a procedure to compute m(c, b, a) for the second case,
combining the first case and partial derivatives.

Finally, we remark that our method could be used to deduce the general
multiplicities for case where b is not a segment. We intend to study this
general case in some future work.

8.1 When maxb(a) <k —ip+1

In this section we consider the case L, x Ly where b = [k —ig + 1,k + 1],
with 7o > 0, is a segment and a is a multisegment satisfying

maxb(a) < k —ip+ 1.

Definition 8.1.1. Let b be a multisegment such that fow)(k+1) = 0. Then
we denote by ¥ the unique element in S(b + i[k + 1)), such that

c = (clHtD),
Proposition 8.1.2. Let a be a multisegment satisfying the condition

Foqay(k —ig — 1) #0.

If we assume that
{tee(a): t<k—ig—1} = 0k
i=1

with ky < --- <k, =k —1, then

m(c[k’"}’fkr N m(c,b,alFr k),
Démonstration. We prove by induction on ¢ that

m(c[ki][’“i imley, ke, .b,a) = m(c, b, ak )

For i = 1, since a satisfies the hypothesis Hy, (a), by proposition [3.5.1]
9™ (L,) contains a unique minimal degree term with multiplicity one, which
is L k), now apply 7" to

Lo x Ly =Y m(c,b,a)L
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and consider the minimal degree terms on both sides, we obtain

La(kl) X Lb = Z m(c,b,a)Lc(h)
CES(a"rb)kl

which gives the formula. Now for general ¢ < r, assume that we have
(e g ) = (e, b, alhe R0),
that is to say

La(kl,-»-,ki) X Lb = E m(c, b, a)LC(kl,m,ki).
CGS(EH’b)kly.“’k

i

Now apply 2%+! and the same argument as in the case where i = 1 gives

La(k1,~~~,ki+1) X Lb = E m(c,b,a)LC(kl,m,ki_‘_l).

CES(a-‘rb)kl,.u i1

Remark: If we assume that a is of parabolic type, i.e

(1A#0

A€a

then
S a)k17...7kT = S(a)

Fioke) we are reduced to the case where

Then by replacing a by a
fe@(k —ip—1) =0.
Proposition 8.1.3. Let a be a multisegment such that
Je@)(k+1) #0.
And let .
{tee(@ t>k+1} =Y {k]
i=1

with k1 < ky < -+ < k,. Then
m(c,b,a) = m(c[k"'h’“r ler—aley,  ~[kuley, , b, a[kr]e’w er—aley, -~ lknley, )
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Remark: This proposition allows us to reduce to the case where

fe@(k+1) =0.
Démonstration. The proof is the same as that of the proposition above. [J
As usual, we reduce to the parabolic case by the following proposition.

Proposition 8.1.4. Let a be a multisegment satisfying maxb(a) < k—ip+1,
then there exists a sequence of integers ki, ko, --- , k. and a parabolic multi-
segments ¢ of type (Ji(a),D)such that

LIRS

a=( C, CE . iS(c)

and if
Le x Ly = Y _m(d,c,b)Lq
d

then
Lo x Ly, = > m(d,¢,b)Luy g

(s ISy k- S(c+b)

Démonstration. The existence of ¢ follows from proposition To deduce
our result, it suffices to apply the derivation

" 2)(*22)-- (*2)

to Le X Ly = Z m(d, c,b)Lq and then apply proposition [3.5.1] ]
d

Proposition 8.1.5. Assume that a is a parabolic multisegment such that
fetw(k—i+1) =0

for some 1 <1 < 1ig. Then

k=42, k=1k) | (k+1) a(k7i+2,---,k71,k))

m(c,b,a) = m(c'

Démonstration. The proof is the same as that of proposition [8.1.2 O]

Remark: Combining the proposition [8.1.2] [8.1.4] [8.1.5] and [8.1.3] the calcu-

lation of the coefficients m(c, b, a) for case (1) can be reduced to the case
where a is a parabolic multisegment such that

fe(a)(/{—io—l) = fe(a)(k—{—l) =0, fe(a)(/{—i—{—l) #0, forall 1 <7 <ig+1.
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From now on until the end of the section, assume that

J0
A

be a multisegment of type (J, () associated to the identity in S,, which sa-
tisfies

fe(a‘l{;@)(k —ig—1) = fe(a{é@)(k +1) =0, fe(a{f)(i) >0 for k—i9<i<k,
and fix a bijection
o S0 — S(ap))
and a;, = ®°(w).
Lemma 8.1.6. Under the above assumption, we have
J1(lg—iy — 10,k —i0) = Jo(lk—iy — 70, k — 1p).
Démonstration. This follows directly from the definition. ]
Lemma 8.1.7. Let b = [k + 1] and {; = feay) (k). Then
Lo % Lo =Lagin + 3. (0(c.a0) = O™ a9 + b)) L usniu,
celk~1(ag,k)

Démonstration. Note that

("M D) (Lag X L) = Lag X Lt + La,.
And for each ¢ € S(ag + b) if [k + 1] € c, then

(" D)Le = Le + Lisiye.

This implies that if ¢ # ap + b and [k + 1] € ¢, then L. can not be a direct
summand of L,, X Ly. Furthermore, by assumption on ay, we know that
for any ¢ € S(ap + b) and [k + 1] ¢ ¢, we have ¢ € S(ag + b); and hence
c € S(ag+b)j 1. Moreover, we know that ¢+ € T%~1(ay, k). Therefore
we have

Lay X Lty = Lag+b + g m(c, b, aO)LC[th[’ﬂ]qu‘
celk—1(a,k)

Now apply the derivation 2% to both sides of the equation to get
PM(Lay x L) = (Y Ok(c,a0)Le) x Ly

c=kao

= Z Or(c,a9)Le X Ly, + other degree terms

cel’k~(ag,k)
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and the right hand side we get

Z Or(c,ap+b)Le+ Z m(c, b, ag) L.k, + other degree terms .

cel’k~!(c,ap+b) celk~1(ag,k)
Now by the following lemma we know that for ¢ € I'*~!(ay, k)
Le X Ly, = Leyw + Lot
therefore by comparing the two sides, we obtain that for ¢ € I'*~!(ay, k)
m(c,b,ag) + 0 (1 ag + b) = Oi(c, ag).

Hence we are done.

Lemma 8.1.8. Let a be a multisegment such that
maxb(a) <k+1, fqa(k)=1 fea(k+1)=0.

Then we have
Lo X Ligy1) = Layps1) + Lo, -

Démonstration. First of all, it is known by Zelevinsky that L. 41 appears
in Ly X L4y with multiplicity one. Also, since

9k+1(La X L[k+1]) - La X L[k+1] _I_ La7

we know that Lk, is the only element in S(a + [k + 1]) which appears
as a subquotient in L, X L1 and does not contain [k 4 1] as a beginning.
Finally, since

"D (La X Ljy1)) = La X Ligi1) + La,

we conclude that a+ [k + 1] is the only multisegment in S(a+ [k + 1]) which
is a subquotient of Ly x Lyx11] and contains [k + 1] as a beginning. O

In particular,gathering all the calculation in case where b = [k+1], we obtain
the following formula.

Corollary 8.1.9. Let a be a parabolic multisegment satisfying the condition

fe(a) (k) 7& 07 fe(a)(k - 1) = fe(a)(k: + 1) = 07
and b = [k +1]. Then

La X Ly = Layp + Z <9k(c, a) — Qk(c[k+1]1’ a—+ b)> Lc[k+1]1[k]ék71.

cel’k~1(a,k)
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Remark: The proposition is no longer true if we remove the condition
fe@(k —1) = 0.

Example 8.1.10. Let a = [0,2] + [1,3] + [2, 3] and b = [4], and

c1 =[0,3]+ 1,4 +1[2], c2=10,2]+[1,4+[2,3], d=10,2]+[2]+[1,3],

then
La X Lb = La+b + Lc1 + Lc2

and
D*(Ly) = La+ La, 2°(Le,) = Le,.

In this case we cannot compute the multiplicity of Le, using directly the partial
derivatives.

Remark: The proposition is also false if we remove the condition
Je@(k+1) =0

Example 8.1.11. Let a = [1,2] + [2,3] and b = [3], then
La X Ly = Latp

which contradicts our formula.

Proposition 8.1.12. Let a;, = ®°(w) and b = [k — i, k + 1]. Then

Laio X Ly, = Zm(e, (k7i0+1)b, a)L[k7i0+l]1e+
e

[k—ig]

[k—io—‘rl]e ) [k—io]g -
E m(c k—ig+1 k—ig 1,b,al'0)Lc[k—io+1]

[

Ck—ig+1 L

with

m(c[kfio+1]ék_i0+1 [kfio}ek_iofl7 b, aio) _ Z ek—io (d, a)m(c, b, d(k—io+1))_
deFe’“*iO_l(a,kfio)kﬁOH

Z ek—io (C[k—ioﬂ]zk_io“ ’[k—i0+1]1 e)m(e, (k—i0+1)b’ aio)
e

where ¢ runs through all the terms such that m(c,b,d(’“’i‘)“)) # 0 for
some d and fb(c)(k — g+ 1) = 0, e runs through all the terms such that

m(e, =0 Vb a,) £ 0 .
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Démonstration. Consider the formula

Lo, X L = Y _m(c,b,a;,) Le. (8.1.13)

[

In case k —ip + 1 € b(c), we know that ¢ € ;_;,+15(a+ b), and moreover
m(c,b,a) = m(k-iothe kit 5)

this gives the first part of the formula in our proposition. Now if k —ig+ 1 ¢
b(c), then we have

fe(c)(i) = fe(a)(i)a for all k_i0+1 <1< ka fe(c)(k_i0> = fe(a)(k_io) - L

In this case, we apply the derivative 9’“”")“95’"0 to the equation (8.1.13)
and consider terms of degree equal to deg(c(k’m’k’m“)). On the left hand
side we find

> > O_i,(d, a)m(c, b, d* 0T L.
C ger‘k—io 71(a7k_7;0)k—i0+1

While for fix ¢, on the right hand side we find
(Z ek—io (C[k—ioﬂ]ek,iﬁl ’[k—io+1]1 e)m(e’ (k—z'0+1)b’ a)
e

+ m(c[k_iOJrﬂffchioH [k_io]e’“*i(fla b,a;,))Lc

here e runs through all the terms such that m(e, *-*Yb a) # 0. The first
part in the coefficient comes from the part

Z m(e, (k_i0+1)b, a)Li—igr11e
e

in the induction L, x Ly so that by taking the difference, we get our results.
O

k—io—f—l)

Remark: In general the multisegment d in the the formula does not

satisfies the condition
fe(d(k—i0+1))(i) =0, forall k —ip <i<k.

In order to proceed our calculation, we have to apply proposition [8.1.5
Remark: Combining all the propositions above, we finish the computation of
m(c,b,a) in case where

b=[k—iy+1,k+1], maxbla) <k —ig+ 1.
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8.2 General case

Now we consider the case (2) in the introduction of this chapter.

Proposition 8.2.1. Let k € Z and a be a multisegment. Then there exists
a multisegment a’' and a sequence of integers ki, --- , k. such that

a= (k17--~7kr)a/’ a’ € k1,~~-,kr5(a/)7
and for any 1 <i <r,
deg(*i+)a) = deg(*i+1F)a) — 1, maxb(a’) < k.

Démonstration. This is proved by applying successively the truncation func-
tor, which is the same as the proof of proposition [6.3.3] ]

Proposition 8.2.2. Let a be a multisegment such that
ac k,io+1S(a), fe(a)<k — 19+ 1) =1.

If we assume that b = [k —ig+ 1,k + 1](ip > 0) and

Lo x Ly =Y m(c,b,a)Le,

then
m(d,b,*  a) =} “m(c,b,a)(s—i110(d, c)) — m(d,* "V b, a).

Démonstration. Note that by assumption we have
kiiOJrl.@La = Lo+ Lk—ig+1)a.

If we apply ¥~ 9 to
Lax Lp =Y _m(c,b,a)Le,
on the left hand side get

Ly x Ly + L(k7i0+1)a X Ly,

while on the right hand side we get

> Y mle,b,a)(j—i+10(d, c)) La
d c
by comparing the two hand side, we get our result. O
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Proposition 8.2.3. Let ky # k —ip+ 1 and a be a multisegment such that
ac kS(a), fe(a)(k) = 1.
If we assume that b = [k —ig+ 1,k + 1](ip > 0) and

Lax Ly = Zm(c,b,a)Lc,
then
m(d, b, ®a) = m(Fhd b, a).
Démonstration. The proof is the same as that of proposition O]

Remark: Combining the three proposition we get the computation of m(c, b, a)
for any a and b a segment.
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Chapitre 9

On Several Conjectures

9.1 Conjecture of Minguez et Lapid

In this section we recall a conjecture in [I5] (Conjecture 1)and give a proof
for it.
To summarize what we have proved in chapter 5,

Proposition 9.1.1. We fix a symmetric multisegment aiq and a bijection
D : Sn — S(aId)

if we denote by a, = ®(1), then

m(a;) = Z Pro(1)La,,

and reciprocally,

o>T
where wy is the maximal element in the symmetric group S,.

Démonstration. The first formula is by corollary and the second is
known to be equivalent to the first (cf. [19]).
O

Remark: By letting 7 = Id, we get the determinantal formula by Minguez
and Lapid

LaId = Z(_l)e(a)ﬂ-(aﬁ)

g
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More generally, for an multisegment a, following proposition we can
associate an element 7 in S71(®2® such that

n

a= Z[kzv 67(1)]

=1

with ky <ky <---ky,, {4 < ly < --- < {,. Again, by proposition |?|, we know
that every multisegment in S(a) is of the following form

n

a, = [k, bogo)

=1

with ¢ > 7, here we let [i,7] = 0 if i > j and a, = 0 if {,;) < k; for all 4.
Now we get the following proposition

Proposition 9.1.2. We fix the notation as above, then

r(a) = 30 PASEO(1)L, .

o>T

Equivalently, we have

Lo, = Y PR "O (1)n(a,),

o>T

here we let Ly = 7m(a) =0 ifa= 0 and

PLOMO @ = 3 ()OO P o)

YES ) ()95 7y (a)

Démonstration. The first formula is deduced from proposition [6.2.25 The
second can be obtained by applying the partial derivation to the formula
for symmetric case( which reverses our procedure to produce a symmetric
multisegment from a given one). O

9.2 'Two conjectures of Badulescu
In this section, let D be an central division algebra of dimension d* over
our local field F. We consider G' =: GL, (D), which is an inner form of
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Notation 9.2.1. In this section, we denote by R*™(G) and R*"(G') the
Grothendieck group of admissible representations of G, and G.,, respectively.
Let

RY“U(F) =Y R“WY(GLy(F)), R"™ (D)= R""(GLy(D)).

Also, we denote by II(G) and TI(G") the set of essentially square integrable
representations of G and G', respectively.

Remark: We can define a multiplication and a co-multiplication on R (D)
exactly like the case of R*"*(F') and verify that we obtain a Hopf algebra(cf.
133]).

Definition 9.2.2. We say that two elements semi simple reqular g € G and
g € G’ correspond to each other if their characteristic polynomials are the
same.

Definition 9.2.3. Let 7 € R“"(G) and ' € R (G"). We say that 7' is
the Jacquet-Langlands transfer of m if we have

X (9) = X (9')

for all correspondent semi simple reqular elements g € G, ¢ € G', where x,
and x are the character function of ™ and 7', respectively.

Theorem 9.2.4. (cf. [2]) There exists a unique morphism of Hopf algebras
LJ:R(F)— R(D)

such that LJ(m) is the transfert of m for all 1 € R(F'). Moreover, this mor-
phism is surjective. Moreover, if w is essentially square integrable of G, then
LJ(m) = (=)™’ for some essentially square integrable representation
7' of G'. We shall denote by C(7) the representation 7.

Remark: According to [2] section 3.5, we can define a Zelevinsky type invo-
lution ¢ on R(D) such that we have

LJ(7") = (=)™ " LJ(7)

for all representation 7 € R“""(G)

Now following [3] section 4.4, we calculate the image of all irreducible repre-
sentations L, € R (G).

Definition 9.2.5. Let p be a cuspidal representation of GL,(F). We denote
by s(p) the minimal natural number such that d divides s(p)p.
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Notation 9.2.6. Let A is a multisegment of length s(p) in Z,. Then by
theorem above, p' = C(Lat) is a cuspidal representation of G L (D). Let
d

Vy = ) and Zy a Tadic line generate by p' and v, .

Proposition 9.2.7. (cf. [3]) Let A = [a,b], and A" = [a', V], such that

/ a—+ s(p;fl / b+ s(pgfl
a = —’ =
s(p) s(p)

Then C(LAt) = LA/t.

Remark: According to theorem [9.2.4] and the remark following on Zelevinsky
involution, if A = [a,b], is a segment such that s(p) divides b — a + 1, then

LJ(La) = Ly,
with the same notations as in the previous proposition.
Notation 9.2.8. We denote by
C([a, ,)
the segment [a', V] .
Remark: The map C' induces a bijection between
{ACZ,:s,|deg(A)} and {ACZ,}

Proposition 9.2.9. (cf. [2] 2.3) The essentially square integrable represen-
tations of G' are of the form La:, where A is a segment on the Tadic line
generated by the cuspidal representation p and t : R(D) — R(D) is the
Zelevinsky involution.

Proposition 9.2.10. (c¢f. [9] Prop. 8.5) The ring R*™" (D) is isomorphic
to the commutative polynomaial ring with infinitely many variables indexed by

Jn@r. o)),

reN

Definition 9.2.11. Now let a = {Ay,--- A} such that A; = [a;, bi], for
i =1,---,r, where ay < ay < -+ < ap,byp < by < -0 < b We define
Aj(a) = {af, - 7“5@-} to be the multi-set in increasing order of a; which is

congrue to j + 1 modulo s(p) and B;(a) = {b],b}, - - ,sz} be the multi-set
in increasing order of b; which are congruent to j modulo s(p).
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Notation 9.2.12. For each j, let S(A;(a)) be the set of permutations of
Aj(a) .

Lemma 9.2.13. (¢f. [3])

(1) There exists a permutation o of {1,--- ,r} such that for alli, s divide
bo(iy — a; + 1 if and only if we have §A;(a) = §B;(a) for all j.

(2) If tA;(a) = 8B;(a) for all j, let oy be the permutation of minimal
length which induces a bijection between {ay,--- ,a,} and {by,--- ,b.}
and sends Aj(a) to Bj(a) increasingly. Then the permutation w € S,
such that w(A;(a)) C Bj(a) is in bijection with the set S(Aj(a))) via
left multiplication by oy .

(3) Leta, = Z[ai, b)) for T € S,. Then the set {a, : o, 0 € (x;5(4;(a)))}

is in bijection with the set Sy, ayeo \(Xx;S(A4;j(a)))/S ), where
Ji(a)? = {oy 00y : 0 € Ji(a)}.
Lemma 9.2.14. We have

Ji(@) = [[(Ni(@)™ N s(4))).

J

Démonstration. This follows from the definition of B;(a) and J;(a). O
Definition 9.2.15. We define
S(A,)@7NSADR@) — L5 S(A)): 51085 > 0,51 € J1(2)°NS(A;), 55 € Jo(a)}
and
(x;S(A))r @720 — L5 e (x;5(A)) : 81085 > 0, for all s, € Jy(a), 55 € Jo(a)}.
Lemma 9.2.16. We have

ao((x;S(A7) 1@ R@) = 00 (x;S(A () N 512,

(a),ﬁ(a)’ we have a unique

Démonstration. Note that each element 7 € S
element a, = Z[ai, b- ;)] associated. We know that such an element satisfies

the condition 7(A4;(a)) C B i(a) if and only if s(p) divides deg(A) for all
A € a,. Then, we have o, '7 € x;S(A;). In this case, we can write

ZZa bj
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where 719 is the induced element in S (A;) by oy . Note that
bi(j)(i) = 7(a}),
wherefore if a] = a],,, then by the fact 7 € S/*®"2() e have

7(a) < 7(al)

0 S bi(ﬂ(i-&-l)’ i.e, 7V (i) < 79 (i + 1). This shows that oy 7 €

(x;S(A;))1®702@) The converse can be showed similarly.

hence b’ T

O
Definition 9.2.17. Let
T(a)={a,:0€ S;,]l(a)"]z(a),ao_la € (x;5(4;(a)))}.

Example 9.2.18. Let a = [1,3] 4 [2,5] 4 [2,6] and d = 2 then s(1) = 2. We
have

Al(a) = {1}7 A2(a) = {272}7 Bl(a> = {6}a B2(a) = {375}
Then by the previous lemma we have
oo = (132)

and
S(As(a)) =< s3>, Sp@a) =< 82 >,

where < o > denote the subgroup generate by o. Hence
T(a) = {aao}'
Remark: In [3], the authors only treat the case where
a < g < - <a,., b <by<---<b,,

while we allow the a;’s and b;’s to be equal.

Definition 9.2.19. For 7 € oo(x;S(A;(a))) N S/ @:2@) e jet 70) be the
induced element of oy ' in S(A;(a)). We define

C(a,,j) ZC J bim ZC ar, j)

here we view oy ' as an element in (x;S(4;(a))).
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Notation 9.2.20. For v € S(A;(a)), we denote by
C<a7j)’7
the element Z C([al, bi(i)]ﬁ)' By definition, we have

C(aT,j) = C(a,j)T(j).
Lemma 9.2.21. We have

m(C(a, j),) = > Py (1) Leqa,j),
7—2%7-65(14].)‘71 (a)70NS(Aj),Ja(a)
Démonstration. Let (a,j) = Z[af,bf] and

i

(a,4)y = ) _lal, U],

)

Note that by definition, we know that

C(a,j)y = Cl(a,7)y):

Hence C induces a bijection between S((a, j)) and S(C(a,7)). Now induction
on () gives the result.
[

Definition 9.2.22. We say that the multisegment is simple with respect to
D if each of the set A;(a) is a consecutive subset of {a1,--- ,a,} for all j.

Theorem 9.2.23. Assume that a is simple with respect to D. We have
(1) If there exists j € {1,--- , s} such that§A;(a) # §B;(a), then LJ(Ly) =
0.
(2) Suppose for all j € {1,---,s} we have Aj(a) = Bj(a), then
(i) For o € Sh@2@) such that a, € T(a), we have LJ(Ly,) =

Lo, ;
(ii) For o € SH1@"2@) gych that a, ¢ T(a) and S(a,) N T(a) # 0,
then
LJ(La,) = Z m(Lca,), L (La,))Lca,)s
wza,veao(ij(Aj(a)))ﬂS,Z]l(a)’J?(a)
with
Moy L)) = Y BASHO— () pawse)

T7<v,ar€S(as)NT (a)

see Proposition for notation.
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(iii) For o € S@72@) sych that S(a,)NT (a) = 0, then LJ(a,) = 0.

Démonstration. (1)Note that we have

L., = Z m/(a,,a,)r(a,)

resl1 @@

the fact that there exists a j such that Bj(a) # Aj(a) implies there is a
segment [a;, by ;)] of whom s(p) does not divide the length, hence L.J(7(a,)) =
0. Hence we must have LJ (L, ) = 0.

(2)We consider the case (2).

(a) First of all we consider the case where S(a,)N7T (a) = (), which means
that for any a, € S(a,), there exists a segment [a;, b-(;)] of whom s(p)
does not divide the length. The same argument as in case (1) shows
that LJ(a,) = 0.

(b) Secondly, if a, € T (a), we prove by induction on ¢(¢) that LJ(L,,) =
L¢(a,)- For case where /(o) is maximal among elements of (% ;S(A;(a)))N
S71@):2@) then we have S(a,) N 7T (a) = {a,}, and consider the for-
mula

m(a,) = La, + Zm(b,a)Lb

b<a

by applying L.J and case (a), we obtain
LJ(La,) = LJ(7(a,)) = 7(C(ay)).

Note that the fact a, is maximal in oo (x ;S(A4;(a)))NS7 @®2@) implies
that S(C(a,)) contains only one element. Hence

LJ(La,) = Lc(a,)-

Assume that t for all 7 € go(x;S(4;(a))) NS/ @2@) and 7 > ¢, we
have LJ(L;) = L¢(a,). Consider the formula

Laa = W(aa) — Z m(am aU)LaTa

TES}JI (@), J2(2) T>0

applying the morphism LJ, we get

LJ(Ly,) = n(C(ay)) — > m(a,,a,)Loa)-

T€00(X;S(A; (a)))ﬂS;’l(a)’JQ(a),T>a
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But we have

m(C(ay)) = HW(C(aa,J))
— H(

a)?0NS(A;),J2(a)NS(A;
3 P SRS (1) Lo )

7Zg(j)7765(147_)J1(a)goﬁS(Aj)an(a)
_ J1(a)?0NS(A;),J2(a)NS(A;)
= H Pg<j>77<j) (1)LC(aT)»
reoo(x;S(A;(a)ns 1@ 2@ 15

the first equality follows from the fact that the multisegment C(a,);
lies in different Tadié line for different j, the second follows from lemma
9,221l

Therefore it suffices to show the following formula

H P,u) -0 (1) = Pr-(1),

which is proved in lemma [9.2.24] Hence we are done.
(c) Finally, we prove the case (ii). We start with the following formula

La, = m(0,) + > PO ()r(a,),

>0, TGSJl (@), 72(a)

Now apply the morphism L.J, we get
LI(La,)= ), PE®EO(1)LI(n(a,)).
ar€S(as)NT (a)
And
LJ(n(a;)) =m(C(as)) = Z P}{i/(a)’JZ(a)(l)LC(ay)
21 €00(x;S(A; (a))Ns; L2

note that the second equality is proved in case (b). Therefore we obtain
the following

LI(La)) = ) ) PA R (1) PSR (1) Leg,).

ar€5(@o)NT(@) y> 7 yeao(x;5(4;(a)))ns; 22

Now for fixed v € ao(x;S(A4;(a)))NS®2@) e get the multiplicity
of La,) in LJ(La,) given by

(Lc ), LI (La,)) = Z P(;{lT(a)»Jz(a)ﬁ(1)p;{#(a),Jz(a)(1)'

ar€S(as)NT (a),7<y
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Lemma 9.2.24. Assume that a is simple with respect to D. We have

PJ1(a)f’omS(Aj)Jz(a)ﬂS(Aj)(q) = P,.(q).

o) 7(3)
J
Démonstration. Let r; = §A;(a), then er =r. Let M = HGLT].(C),

J J
which is considered as a closed subgroup in GL,(C) via the diagonal imbed-

ding. To prove the lemma, we consider the following imbedding
L M/Mmp«h(a) %GLT(C)/Pth(a)v L(Q) = 009

here Py, (a) is the parabolic subgroup associated to J;(a). We construct a re-

traction from the variety X = H Pj,(2)000 Py (a) to M/MN Py, (a). In
oex;S(A;(a))

fact, by the fact that o "Ss,a)00 C x;5(A;(a)), we know that og " Py, (a)00 N

M is a parabolic subgroup in M and the quotient

N: O'O_IPJQ(a)O'()/(O'O_IPJQ(a)O'OmM)

is unipotent. We observe that the unipotent group N admits a section into
oy IPJQ(a)O-O, whose image is a normal subgroup in the latter. Now let x &€
oy 1PJ2(a)00, it admits a unique decomposition

r=xyry, Ty € M,xy e N

and we define p : 0-0_1PJ2(3)0-0 — M by letting p(x) = xp;. The morphism p
is a group homomorphism. Finally, we define

p: X = M/MNPjw, p(oeoPr@)=ploy x00)o(Pr @ NM).

Now p is a fibration over its target and maps Pj,)-orbits to Py,(a)MM-orbits.
Note that the fact that a is simple with respect to D implies that X is locally
closed in GL,,(C)/Py, ). Now apply the construction of intersection complex
gives the desired results.

[
Remark:
The formula in (2) (ii) is still valid for the non simple case if we modify
1(a),J2(a),— Ja"OﬂSAj,J aﬂSA]-
(Lo, LI (La,)) = D0 PASROS@) JL PRI AR ),

7<v,a-€S(a,)NT (a) J

170



Example 9.2.25. With the remark above, we give a counter example to the
congecture 3.10 in [2]. Let

a—[1,2]+ 2,3+ [3.4] + [4,5] + 5.6,
and d = 2. Then
Ao(a) = {2,4}, Ai(a)={1,3,5}, Bo(a)=1{2,4,6}, DBy(a)=1{3,5}.
Clearly a 1s not simple with respect to D. We have
T (a) = {a, a@s), a(24), A(35), A(153)> A(13)(24)» A(24)(35)» A(153)(24) } -
We have
Puo(13)(24),00(24) (1) = Puss),a5)(1) = 1, Pug(3s)24),w0(24) (1) = Pusz),as)(1) =1,

and
Pouo(153)(24),w0(24) (1) = Prssy,15)(1) = 2.

First of all, we have
Lo, = m(a@) + other terms — m(ans)2q)) — T(A@ayss)) + 2m(aass)24))-
Therefore
LJ(La(M)) = F(C(a(24))) — W(C(a(lg)(24))) — F(C(a(g4)(35))) + 27’(’(0(3_(153)(24))),
Ezxplicit computation shows that

LJ(La(24)) - LC(3(24)) + LC(8(153)(24>)'

Remark: The example above also shows that lemma [9.2.24] is not true in
general for a not simple.

9.3 Imaginary Multisegment

According to [23],

Definition 9.3.1. A multisegment a is said to be imaginary if La X La 18
not simple, otherwise it is said to be real.

In this section we give an example of an imaginary multisegment, following
[23].
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Example 9.3.2. Let d = 4. And we consider the case

a=[1,9]+[2,11] + [4,12] + [6, 13],
and o = (23) such that

a, =[1,9] + [2,12] + [4,11] + [6, 13].
Also, we have

Ao(a) = {4}, Ai(a) ={1}, A(a)={2,6}
and
Bo(a) = {12}, Bi(a) ={9,13}, By(a)=10, Bs(a)={11}
In this case a 1s not simple with respect to D with
T(a) = {aqusz), ausa

Let wy = (14)(23). One checks to see that

Puo132)w00 (1) = 1, Poug(1324),w00 = 2-
Hence we get

LJ(La,) = =m(Claqasy)) + 2m(C(ansa)))

and
LJ(La,) = _LC(a(132)) + LC(a(1324))'

We keep the notation in example [0.3.2] Now we are ready to show that
La, X La, is not irreducible.

Assume the contrary, i.e, Lo, X La, = La_+ta,-

Consider

(6@> (La(, X Laa) = Laa X La(, + 2Lao X L(6)ao_ + L(G)a(, X L(G)ag'

And we are mainly interested in the terms of degree deg(a, + (6)ag).
Let
b="ags +aw), by=2(%a,).

Finally, by our results in chapter 7, we know that
(°2)(Laa,) = Laa, + 2L, +a, + Lb + other terms .
If Lya, = L, X L,, by considering the terms of degree deg(a, + (G)a(,), we get
2L, X L,, =2L®),,4a, +Lb+ other terms ,

which is clearly a contradiction.
We end this section by the following conjecture :
Conjecture : a is real if and only if LJ(L,) is irreducible for all D.
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Résumé

Ariki et Ginzburg, en se basant sur les travaux de Zelevinsky sur les variétés
orbitales, ont démontré que les multiplicités dans une representation induite
totale sont données par les valeurs en ¢ = 1 des polynéomes de Kazhdan-
Lusztig associés aux groupes symétriques. Dans ma thése, j’ai introduit la
notion de dérivée partielle qui raffine celle de Zelevinksy et s’identifie en
g = 1, a I'exponentielle formelle de la ¢-dérivée de Kashiwara sur ’algébre
quantique. A I'aide de cette notion et en explorant la géométrie des variétés
orbitales, je construis une procédure de symétrisation des multisegments me
permettant, en particulier, de prouver une conjecture de Zelevinsky portant
sur une propiété d’indépendance de I'induite parabolique totale. Je développe
par ailleurs une stratégie afin de calculer les multiplicités dans une induite
parabolique générale en utilisant le produit de faisceaux pervers de Lusztig.

Title : Parabolic Induction and Geometry of Orbital Vaieties

Abstract

Ariki and Ginzburg, after the previous work of Zelevinsky on orbital varieties,
proved that multiplicities in a total parabolically induced representations are
given by the value at ¢ = 1 of Kazhdan-Lusztig Polynomials associated to the
symmetric groups. In my thesis I introduce the notion of partial derivative
which refines the Zelevinsky derivative and show that it can be identified with
the formal exponential of the g-derivative of Kashiwara with q=1. With the
help of this notion, I exploit the geometry of the nilpotent orbital varieties
to construct a symmetrization process for the multi-segments, which allows
me to proove a conjecture of Zelevinsky on the property of the independence
of the total parabolic induction. On the other hand, I develop a strategy
to calculate the multiplicity in a general parabolic induction by using the
Lusztig product of perverse sheaves.

Discipline : Mathématiques
Mots-clefs : théorie de représentation d’un groupe p-adique, variété de Schu-
bert, polynéme de Kazhdan-Lusztig.

Université Paris 13, Sorbonne Paris Cité,
LAGA, Institut Galilée,

99 avenue J-B Clément, 93430 Villetaneuse,
France
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