
HAL Id: tel-02136338
https://theses.hal.science/tel-02136338v1

Submitted on 22 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On convolution of graph signals and deep learning on
graph domains

Jean-Charles Vialatte

To cite this version:
Jean-Charles Vialatte. On convolution of graph signals and deep learning on graph domains. Artificial
Intelligence [cs.AI]. Ecole nationale supérieure Mines-Télécom Atlantique, 2018. English. �NNT :
2018IMTA0118�. �tel-02136338�

https://theses.hal.science/tel-02136338v1
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE

BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE
COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication

Spécialité : Informatique – Intelligence Artificielle

Par

Convolution et Apprentissage Profond sur Graphes
On Convolution of Graph Signals and Deep Learning on Graph Domains

Thèse présentée et soutenue à Brest, le 13 décembre 2018
Unité de recherche : Dpt ELEC, ITI et LUSSI, laboratoire Lab-STICC
Thèse N° : 2018IMTA0345

Rapporteurs avant soutenance :

Pierre Borgnat Directeur de recherche, ENS Lyon
Matthias Löwe Professeur, Université de Münster

Composition du Jury :

Président : Paulo Goncalves Directeur de recherche, ENS Lyon
Examinateurs : Pierre Borgnat Directeur de recherche, ENS Lyon

Matthias Löwe Professeur, Université de Münster (absence excusée)
Juliette Mattioli Senior expert, Thales, Palaiseau

Dir. de thèse : Gilles Coppin Professeur, IMT Atlantique, Brest
Encadrant : Vincent Gripon Chargé de recherche, IMT Atlantique, Brest

Invité :

Mathias Herberts Directeur technique et scientifique, SenX, Guipavas

Jean-Charles VIALATTE

Build version as of 2019-04-15 18:24:34

Revision number 349

Ph. D. candidate: Jean-Charles Vialatte
Supervisor: Gilles Coppin (professor at IMT Atlantique)
Advisor: Vincent Gripon (researcher at IMT Atlantique)
Jury director: Paulo Gonçalves (research director at ENS Lyon)
Jury examiner 1: Pierre Borgnat (research director at ENS Lyon)
Jury examiner 2: Matthias Löwe (professor at Münster university)
Jury member: Juliette Mattioli (senior expert at Thales Palaiseau)
Invited member: Mathias Herberts (chief technical officer at SenX)

Degree: Thèse de doctorat
Subject: On convolution of graph signals and deep learning on graph do-
mains
Defense date: 2018-12-13

Institutions: IMT Atlantique, COMUE Université Bretagne Loire
Laboratory: IMTA dpt. ELEC, ITI, LUSSI and Lab-STICC
Doctoral school: MathSTIC (601)
Specialty: Computer science - Artificial intelligence (cs.ai)
Funded by: SenX, ANRT

On

Convolution of Graph Signals
And

Deep Learning on Graph Domains

Abstract

This manuscript is a thesis submitted to apply for a doctorate.

It is devoted to two subjects. The first one is about extending the

discrete convolution to graph signals. The second one is about ex-

tending neural networks to graph domains. Both subjects are related

since neural networks can make use of convolutions to leverage the

underlying structure of their input domain.

Résumé

Ce manuscrit est une thèse soumise pour candidater au grade de

docteur. Il est dévolu à deux sujets. Le premier traite d’extensions

de la convolution discrète aux signaux sur graphe. Le second traite

d’extensions de l’ensemble de définition des réseaux de neurones à

des graphes. Les deux sujets sont reliés car les réseaux de neurones

peuvent tirer profit de la structure sous-jacente de leur ensemble de

définition à l’aide de convolutions.

iii

iv

Contents

Introduction 1

1 Presentation of the field 3
Chapter overview . 4

1.1 Tensors . 5

1.1.1 Definition . 5

1.1.2 Manipulation . 7

1.1.3 Binary operations . 10

1.2 Deep learning . 14

1.2.1 Neural networks . 14

1.2.2 Interpretation . 20

1.2.3 Training . 21

1.2.4 Some historical advances 24

1.2.5 Common layers . 27

1.3 Deep learning on graphs . 33

1.3.1 Graph and signals . 33

1.3.2 Learning tasks . 36

1.3.3 Datasets . 38

1.3.4 Spectral methods . 40

1.3.5 Vertex-domain methods 45

2 Convolution of graph signals 49
Chapter overview . 50

v

2.1 Analysis of the classical convolution 52

2.1.1 Properties of the convolution 52

2.1.2 Characterization on grid graphs 53

2.1.3 Usefulness of convolutions in deep learning 57

2.2 Construction on the vertex set 59

2.2.1 Preliminaries . 60

2.2.2 Steered construction from groups 62

2.2.3 Construction under group actions 66

2.2.4 Mixed domain formulation 70

2.3 Inclusion of the edge set in the construction 74

2.3.1 Edge-constrained convolutions 74

2.3.2 On properties of the corresponding operators 78

2.3.3 Locality-preserving convolutions 80

2.3.4 Checkpoint summary 83

2.4 From groups to groupoids . 84

2.4.1 Motivation . 84

2.4.2 Definition of notions related to groupoids 85

2.4.3 Construction of partial convolutions 87

2.4.4 Construction of path convolutions 92

2.5 Conclusion . 98

3 Deep learning on graph domains 99
Chapter overview . 101

3.1 Layer representations . 102

3.1.1 Neural interpretation of tensor spaces 102

3.1.2 Propagational interpretation 103

3.1.3 Graph representation of the input space 104

3.1.4 Novel ternary representation with weight sharing . . 106

3.2 Study of the ternary representation 109

3.2.1 Genericity . 109

3.2.2 Sparse priors for the classification of signals 111

vi

3.2.3 Efficient implementation under sparse priors 112

3.2.4 Influence of symmetries 115

3.2.5 Experiments with general graphs 118

3.3 Learning the weight sharing scheme 121

3.3.1 Discussion . 121

3.3.2 Experimental settings 121

3.3.3 Experiments with grid graphs 123

3.3.4 Experiments with covariance graphs 125

3.3.5 Improved convolutions on shallow architectures . . . 126

3.3.6 Benchmarks on citation networks 128

3.4 Inferring the weight sharing scheme 130

3.4.1 Methodology . 130

3.4.2 Translations . 131

3.4.3 Finding proxy-translations 134

3.4.4 Subsampling . 137

3.4.5 Data augmentation . 139

3.4.6 Experiments . 139

3.5 Conclusion . 140

Conclusion 143

Bibliography 147

Résumé en français 163

vii

viii

Introduction

One of the first appearances of the convolution operation was in the eigh-
teenth century (D’Alembert, 1754, according to Dominguez-Torres, 2010).
Since then it has been used in a wide range of domains, including ap-
plied mathematics, physics, engineering, computer science and real world
problems. In today’s era of computerized industry and big data, the con-
volution has never been more useful. A famous example is its usage in
deep learning algorithms for image processing (LeCun et al., 2015). But
this is just the tip of the iceberg. Years after years, IT companies acquire
more and more data. With hashing algorithms, accessing single points
or moderately sized batches of data is relatively easy. However, process-
ing the entire database’s knowledge is another story. Algorithms that do
not scale well are too time consuming, so only those that traverse the
entire database only a few times remain feasible. And that is the point:
traversing the database (done in a paralleled manner) to process it can
be modeled with a convolution. Therefore this little mathematical tool is
bound to play a great role! An example can be seen in the company that
funded this Ph.D.: one of its technologies for processing large quantities
of data is a programming language centered around a few frameworks.
One of them is nothing more than a reimplementation of the convolution
by various complicated functions, which helps tremendously to produce
simplified scripts.

The subject of this thesis is a timely one, since deep learning have never
received as much spotlight as in the last decade. However, deep learning

1

2

models are often very specialized to their use cases. Standard Convolu-
tional Neural Networks (CNNs) can only be applied to datasets for which
each object can be modeled by a signal defined on an Euclidean domain,
like images or sounds. This is because the discrete convolution takes into
account the structure of the domain of its inputs, in addition to raw data.
Our goal is to study and find ways to extend deep learning models to
signals defined on a broader range of domains. To this end we build an
algebraic theory of convolutions of graph signals, with the hope to charac-
terize what a more generic definition of convolution should be and what
properties it should preserve to keep its usefulness in deep learning mod-
els. We choose to model the domain of signals under study with a graph,
since this structure can represent a wide range of domains. Our subject
fits the idea that efforts in the Artificial Intelligence (AI) field should tend
toward a general-purpose AI, and in a lesser extent, that AI-based algo-
rithm, like deep learning, should seek genericity.

The ultimate aim is to use these general-purpose technologies and
apply them to all sorts of important real world problems.

— Demis Hassabis

This manuscript is broken down into three chapters. Each chapter is pre-
ceded by a short overview so that the reader can grasp its essential con-
tents at a glance. In Chapter 1, we present our domains of interest with
a selected literature review. Then, in Chapter 2, we theorize an algebraic
understanding of convolutions of graph signals. Finally, in Chapter 3, we
study neural networks intended for graph domains. We summarize our
contributions in the conclusion and dissuss limitations and perspectives.

Chapter 1

Presentation of the field
Contents

Chapter overview . 4

1.1 Tensors . 5

1.1.1 Definition . 5

1.1.2 Manipulation . 7

1.1.3 Binary operations 10

1.2 Deep learning . 14

1.2.1 Neural networks 14

1.2.2 Interpretation . 20

1.2.3 Training . 21

1.2.4 Some historical advances 24

1.2.5 Common layers . 27

1.3 Deep learning on graphs 33

1.3.1 Graph and signals 33

1.3.2 Learning tasks . 36

1.3.3 Datasets . 38

1.3.4 Spectral methods 40

1.3.5 Vertex-domain methods 45

3

4 CHAPTER 1. PRESENTATION OF THE FIELD

Chapter overview

In this chapter, we present notions related to our domains of interest. One
of them, deep learning, is the field of research that focuses on a particular
class of functions: neural networks. Since we try to employ a rigorous ap-
proach, we first define properly their input domain and their codomain,
which can be modeled as tensor spaces. In particular, we give original def-
initions of tensors in Section 1.1 that are appropriate for the study of
neural networks. We also explain how data is handled and manipulated.
We give definitions of some binary operations that are important for our
study: tensor contraction, and convolution. In Section 1.2, we define neural
networks, discuss their biological interpretation, present how they learn,
and relate some historical advances. Then we introduce common layers,
especially convolutional ones for which we demonstrate a little result that
helps toward our study. In the last section, Section 1.3, we present the
field of deep learning on graphs. We start with definitions about graphs and
signals, and then we describe use cases. Finally, we give a review of state-
of-the-art models in two separate subsections, one on spectral methods,
and the other one on vertex-domain methods.

1.1. TENSORS 5

1.1 Tensors

Intuitively, tensors in the field of deep learning are defined as a gener-
alization of vectors and matrices, as if vectors were tensors of rank 1

and matrices were tensors of rank 2. That is, they are objects in a vec-
tor space and their dimensions are indexed using as many indices as
their rank, so that they can be represented by multidimensional arrays.
In mathematics, a tensor can be defined as a special type of multilinear
function (Bass, 1968; Marcus, 1975; Williamson, 2015) which can be repre-
sented by a multidimensional array. Alternatively, Hackbush proposes a
mathematical construction of a tensor space as a quotient set of the span
of an appropriately defined tensor product (Hackbusch, 2012), which co-
ordinates in a basis can also be represented by a multidimensional array.
In particular in the field of mathematics, tensors enjoy an intrinsic def-
inition that neither depends on a representation nor would change the
underlying object after a change of basis, whereas in our domain, tensors
are confounded with their representation.

1.1.1 Definition

Our definition of tensors is such that they are a bit more than multi-
dimensional arrays but not as much as mathematical tensors. They are
embedded in a vector space, called tensor space, so that deep learning
objects can be later defined rigorously.

Given canonical bases, we first define a tensor space, then we relate it to
the definition of the tensor product of vector spaces.

Definition 1. Tensor space
We define a tensor space T of rank r as a vector space such that its canonical
basis is a Cartesian product of the canonical bases of r finite-dimensional
vector spaces.

6 CHAPTER 1. PRESENTATION OF THE FIELD

Its shape is denoted n1×n2× · · · ×nr, where the {nk} are the dimensions
of the vector spaces.

Remark. Unless stated otherwise, vector spaces are assumed to be over the
field of real numbers R.

Definition 2. Tensor product of vector spaces
Given r vector spaces V1,V2, . . . ,Vr, their tensor product is the tensor space T

spanned by the Cartesian product of their canonical bases under coordinate-
wise sum and outer product.

We use the notation T =
r⊗

k=1

Vk.

Remark. This simpler definition is indeed equivalent with the definition
of the tensor product given in (Hackbusch, 2012, p. 51). The drawback
of our definition is that it depends on the canonical bases, which at first
can seem limiting as being canonical implies that they are bounded to
a certain system of coordinates. However this is not a concern in our
domain as we need not distinguish tensors from their representation.

Naming convention
We will also call vector space a tensor space of rank 1. In case there is a
vector space that we do not need to see as a tensor space of rank 1, we may
use the term linear space instead. We also make a clear distinction between
the terms dimension (that is, for a tensor space it is equal to

∏r
k=1 nk) and

the term rank (equal to r). Note that some authors use the term order or
mode instead of rank as the latter is also affected to another notion.

1.1. TENSORS 7

Definition 3. Tensor
A tensor t is an object of a tensor space. The shape of t, which is the same as
the shape of the tensor space it belongs to, is denoted n

(t)
1 ×n

(t)
2 ×· · ·×n

(t)
r .

1.1.2 Manipulation

In this subsection, we describe notations and operators used to manip-
ulate data stored in tensors. The formalism we present here should be
familiar to the researcher in the domain, since it is similar to the nota-
tions used by NumPy (Oliphant, 2006) and most deep learning libraries
e.g. TensorFlow (Abadi et al., 2015), PyTorch (Paszke et al., 2017), Mxnet
(Chen et al., 2015), Keras (Chollet, 2015).

Definition 4. Indexing
An entry of a tensor t ∈ T is one of its scalar coordinates in the canonical
basis, denoted t[i1, i2, . . . , ir].

More precisely, if T =
r⊗

k=1

Vk, with bases ((eik)i=1,...,nk
)k=1,...,r, then we have

t =

n1∑
i1=1

· · ·
nr∑
ir=1

t[i1, i2, . . . , ir](e
i1
1 , . . . , e

ir
r)

We call the index space of T the Cartesian product of integer intervals

I =
r∏

k=1

J1, nkK.

Remark. When using an index ik for an entry of a tensor t, we implicitly
assume that ik ∈ J1, n(t)

k K unless otherwise specified.

8 CHAPTER 1. PRESENTATION OF THE FIELD

Definition 5. Subtensor
A subtensor t′ is a tensor of same rank composed of entries of t. We denote{

t′ = t[[i11, . . . , i
1
n1

(t′)], . . . , [i
r
1, . . . , i

r
nr

(t′)]]

where t′[j1, . . . , jr] = t[i1j1 , . . . , i
r
jr]

Given p, if [ip1, . . . , i
p

np
(t′)] is a singleton, we drop the brackets. If it is a

strictly increasing contiguous sequence, we write instead ip1 : ip
np

(t′) . We
drop the left (or right) of : if it is the possible lower (or upper) bound.

Remark. This notation for indexing subtensors is not the same as the one
used by NumPy. However the use of : is similar (except that we also
include the right of :).

Definition 6. Slicing
A slice operation, along the last ranks {r1, r2, . . . , rs}, and indexed by

(ir1 , ir2 , . . . , irs), is a morphism s : T =
r⊗

k=1

Vk →
r−s⊗
k=1

Vk, such that:

s(t)[i′1, i
′
2, . . . , i

′
r−s] = t[i′1, i

′
2, . . . , i

′
r−s, ir1 , ir2 , . . . , irs]

i.e. s(t) : = t[:, :, . . . , :, ir1 , ir2 , . . . , irs]

where := means that entries of the right operand are assigned to the left
operand. We denote tir1 ,ir2 ,...irs and call it the slice of t. Slicing along a
subset of ranks that are not the lasts is defined similarly. s(T) is called a
slice subspace.

Definition 7. Flattening
A flatten operation is an isomorphism f : T → V, between a tensor space

T of rank r and an n-dimensional vector space V, where n =
r∏

k=1

nk. It is

1.1. TENSORS 9

characterized by a bijection in the index spaces g :
r∏

k=1

J1, nkK→ J1, nK such

that

∀t ∈ T, f(t)[g(i1, i2, . . . , ir)] = f(t[i1, i2, . . . , ir])

We call an inverse operation a de-flatten operation.

Row major ordering
The choice of g determines in which order the indexing is made. g is
reminiscent of how data of multidimensional arrays or tensors are stored
internally by programming languages. In most tensor manipulation lan-
guages, incrementing the memory address (i.e. the output of g) will first
increment the last index ir if ir < nr (and if else ir = nr, then ir := 1 and
ranks are ordered in reverse lexicographic order to decide what indices
are incremented). This is called row major ordering, as opposed to column
major ordering. That is, in row major, g is defined as

g(i1, i2, . . . , ir) =
r∑
p=1

(
r∏

k=p+1

nk

)
ip (1)

Definition 8. Reshaping
A reshape operation is an isomorphism defined on a tensor space T =
r⊗

k=1

Vk such that some of its basis vector spaces {Vk} are de-flattened and

some of its slice subspaces are flattened.

10 CHAPTER 1. PRESENTATION OF THE FIELD

1.1.3 Binary operations

We define binary operations on tensors that we’ll later have use for. In
particular, we define tensor contraction which is sometimes called tensor
multiplication, tensor product or tensor dotproduct by other sources. We also
define convolution and pooling which serve as the common building blocks
of convolution neural network architectures.

Definition 9. Contraction
A tensor contraction between two tensors, along ranks of same dimensions,
is defined by natural extension of the dot product operation to tensors.
More precisely, let T1 a tensor space of shape n(1)

1 ×n
(1)
2 ×· · ·×n

(1)
r1 , and T2 a

tensor space of shape n(2)
1 ×n

(2)
2 ×· · ·×n

(2)
r2 , such that ∀k ∈ J1, sK, n(1)

r1−(s−k) =

n
(2)
k , then the tensor contraction between t1 ∈ T1 and t2 ∈ T2 is defined as:
t1 ⊗ t2 = t3 ∈ T3 of shape n(1)

1 × · · · × n
(1)
r1−s × n

(2)
s+1 × · · · × n

(2)
r2 where

t3[i
(1)
1 , . . . , i

(1)
r1−s, i

(2)
s+1, . . . , i

(2)
r2] =

n
(2)
1∑

k1=1

· · ·
n
(2)
s∑

ks=1

t1[i
(1)
1 , . . . , i

(1)
r1−s, k1, . . . , ks] t2[k1, . . . , ks, i

(2)
s+1, . . . , i

(2)
r2

]

For the sake of simplicity, we omit the case where the contracted ranks
are not the last ones for t1 and the first ones for t2. But this definition still
holds in the general case subject to a permutation of the indices.

Definition 10. Covariant and contravariant indices
Given a tensor contraction t1 ⊗ t2, indices of the left hand operand t1 that
are not contracted are called covariant indices. Those that are contracted
are called contravariant indices. For the right operand t2, the naming con-
vention is the opposite. The set of covariant and contravariant indices of
both operands are called the transformation laws of the tensor contraction.

1.1. TENSORS 11

Remark. Contrary to most mathematical definitions, tensors in deep learn-
ing are independent of any transformation law, so that they must be spec-
ified for tensor contractions.

Einstein summation convention

The Einstein summation convention is a notational convention to write a
sum-product expression as a product expression. The summation indices
are those that appear simultaneously in the superscript of the left operand
and in the subscript of the right one, if subscripts precede superscripts in
the notation, or else vice-versa. For example, a dot product is written
ukv

k = λ and a matrix product is written Ai
kBk

j = Ci
j .

The tensor contraction of Definition 9 can be rewritten using this conven-
tion:

t1i(1)1 ···i
(1)
r1−s

k1···kst2k1···ks
i
(2)
s+1···i

(2)
r2 = t3i(1)1 ···i

(1)
r1−s

i
(2)
s+1···i

(2)
r2 (2)

Proposition 11. A contraction can be rewritten as a matrix product.

Proof. Using notation of (2), with the reshapings t1 7→ T1, t2 7→ T2 and
t3 7→ T3 defined by grouping all covariant indices into a single index and
all contravariant indices into another single index, we can rewrite

T1gi(i
(1)
1 ,...,i

(1)
r1−s)

gk(k1,...,ks)T2gk(k1,...,ks)
gj(i

(2)
s+1,...,i

(2)
r2

) = T3gi(i
(1)
1 ,...,i

(1)
r1−s)

gj(i
(2)
s+1,...,i

(2)
r2

)

where gi, gk and gj are bijections defined similarly as in (1).

Definition 12. Convolution
The n-dimensional convolution, denoted ∗n, between t1 ∈ T1 and t2 ∈ T2,
where T1 and T2 are of the same rank n such that ∀p ∈ J1, nK, n(1)

p ≥ n
(2)
p ,

12 CHAPTER 1. PRESENTATION OF THE FIELD

is defined as:
t1 ∗n t2 = t3 ∈ T3 of shape n(3)

1 × · · · × n
(3)
n where

∀p ∈ J1, nK, n(3)
p = n

(1)
p − n(2)

p + 1

t3[i1, . . . , in] =

n
(2)
1∑

k1=1

· · ·
n
(2)
n∑

kn=1

t1[i1 + n
(2)
1 − k1, . . . , in + n(2)

n − kn] t2[k1, . . . , kn]

Proposition 13. A convolution can be rewritten as a matrix product.

Proof. Let t1 ∗n t2 = t3 defined as previously with T1 =
r⊗

k=1

V(1)
k , T2 =

r⊗
k=1

V(2)
k . Let t′1 ∈

r⊗
k=1

V(1)
k ⊗

r⊗
k=1

V(2)
k such that t′1[i1, . . . , in, k1, . . . , kn] = t1[i1 +

n
(2)
1 − k1, . . . , in + n

(2)
n − kn], then

t3[i1, . . . , in] =

n
(2)
1∑

k1=1

· · ·
n
(2)
n∑

kn=1

t′1[i1, . . . , in, k1, . . . , kn] t2[k1, . . . , kn]

where we recognize a tensor contraction. Proposition 11 concludes.

The two following operations are meant to further decrease the shape of
the resulting output.

Definition 14. Strided convolution
The n-dimensional strided convolution, with strides s = (s1, s2, . . . , sn),
denoted ∗ns , between t1 ∈ T1 and t2 ∈ T2, where T1 and T2 are of the same
rank n such that ∀p ∈ J1, nK, n(1)

p ≥ n
(2)
p , is defined as:

t1 ∗ns t2 = t4 ∈ T4 of shape n(4)
1 × · · · × n

(4)
n where

∀p ∈ J1, nK, n(4)
p = bn

(1)
p −n

(2)
p +1

sp
c

t4[i1, . . . , in] = (t1 ∗n t2)[(i1 − 1)sn + 1, . . . , (in − 1)sn + 1]

1.1. TENSORS 13

Remark. Informally, a strided convolution is defined as if it were a regular
subsampling of a convolution. They match if s = (1, 1, . . . , 1).

Definition 15. Pooling
Let a real-valued function f defined on all tensor spaces of any shape,
e.g. the max or average function. An f -pooling operation is a mapping
t 7→ t′ such that each entry of t′ is an image by f of a subtensor of t.

Remark. Usually, the set of subtensors that are reduced by f into entries
of t′ are defined by a regular partition of the entries of t.

14 CHAPTER 1. PRESENTATION OF THE FIELD

1.2 Deep learning

In this manuscript, we adopt the point of view that a neural network is
first a mathematical function, even though it derives its name from biolog-
ical inspiration. That is, we won’t discuss whether any of our works are
biologically plausible or not, but we may provide biological interpretation
when it happens.
In this section, we present a mathematical formalization and its biological
interpretation. Then, we review a few important advances in the field
before we finally present the most commonly used layers.

1.2.1 Neural networks

A feed-forward neural network could originally be formalized as a com-
posite function chaining linear and non-linear functions (Rumelhart et al.,
1985; LeCun et al., 1989; LeCun and Bengio, 1995). That was still the case
in 2012 when important breakthroughs regenerated a surge of interest
in the field (Hinton et al., 2012; Krizhevsky et al., 2012; Simonyan and
Zisserman, 2014). However, in more recent years, more complex architec-
tures have emerged (Szegedy et al., 2015; He et al., 2016a; Zoph and Le,
2016; Huang et al., 2017), such that the former formalization does not
suffice. We provide a definition for the first kind of neural networks (Def-
inition 16) and use it to present its related concepts. Then we give a more
generic definition (Definition 20).
Note that in this manuscript, we only consider neural networks that are
feed-forward (Zell, 1994; Wikipedia, 2018a), as opposed to recurrent.
We denote by If the domain of definition of a function f ("I" stands for
"input") and by Of = f(If) its image ("O" stands for "output"), and we
represent it as If

f−→ Of or f : If → Of .

1.2. DEEP LEARNING 15

Definition 16. Neural network (simply connected)
Let f be a function such that If and Of are vector or tensor spaces.
f is a (simply connected) neural network function if there are a series of
affine functions (gk)k=1,2,..,L and a series of non-linear derivable univariate
functions (hk)k=1,2,..,L such that:

∀k ∈ J1, LK, fk = hk ◦ gk,
If = If1

f1−→ Of1
∼= If2

f2−→ . . .
fL−→ OfL = Of ,

f = fL ◦ ... ◦ f2 ◦ f1

The couple (gk, hk) is called the k-th layer of the neural network. L is its
depth. For x ∈ If , we denote by xk = fk ◦ ... ◦ f2 ◦ f1(x) the activations of
the k-th layer. We denote by N the set of neural network functions.

Definition 17. Activation function
An activation function h is a real-valued univariate function that is non-
linear and derivable, that is also defined by extension with the functional
notation h(v)[i] = h(v[i]).

Definition 18. Layer
A layer is a couple L = (g, h) : I → O, where g : I → O is a linear function,
and h : O → O is an activation function. It computes the function

y = h(g(x) + b)

where b is a constant called bias.

That is, in the simple formalization, a neural network is just a sequence
of layers.

16 CHAPTER 1. PRESENTATION OF THE FIELD

Remark. The bias augments the expressivity of the layers. For notational
convenience, we may sometimes omit to write it down.

The most common activation function is the rectified linear unit (ReLU) (Glo-
rot et al., 2011), used for its better practical performances and faster com-
putation times. It implements the rectifier function h : x 7→ max(0, x) (with
convention h′(0) = 0), as depicted on Figure 1.

−2 0 2 4

0

2

4

Figure 1: ReLU activation function

Examples
Let f : x→ y be a neural network. For example, if f is used to classify its
input x in one of c classes, then its output y would be a vector of dimen-
sion c, and each dimension corresponds to a class. The prediction of f for
the class of x is the dimension of y where it has the bigger value. Typi-
cally, f is terminated by a softmax activation (Wikipedia, 2018b), so that
values of the output y fall in the range [0, 1], and so that y tends to have a
dimension with a much bigger weight as to facilitates discrimination.
A neural network that comprises convolutional layers, i.e. layers s.t. g is
expressed with a convolution, is called a Convolutional Neural Network
(CNN). An old example is the LeNet-5 architecture (LeCun et al., 1989) as

1.2. DEEP LEARNING 17

Figure 2: LeNet-5 (LeCun et al., 1989)

Figure 3: VGG-16 (Simonyan and Zisserman, 2014, figure from Cord,
2016)

18 CHAPTER 1. PRESENTATION OF THE FIELD

depicted in Figure 2. It implements a function

f = h4 ◦ g4 ◦ · · · ◦ h1 ◦ g1

where g1 and g2 are linear functions that applies 5x5 convolutions fol-
lowed by subsampling, h1, h2 and h3 are ReLU activations, and h4 is
a softmax activation. It was originally applied to the task of handwrit-
ten digit classifications (for example for automatically reading postal ZIP
codes).
Another example is the VGG architecture, a very deep CNN, and was
state-of-the-art in image classification in 2014 (Simonyan and Zisserman).
It is depicted on Figure 3. In more recent years, state-of-the-art architec-
tures can no longer be described with a simple formalization.
The former neural networks are said to be simply connected because each
layer only takes as input the output of the previous one. We give a more
general definition after first defining branching operations.

Definition 19. Branching
A binary branching operation between two tensors, xk1 on xk2 , outputs, sub-
ject to shape compatibility, either their addition, either their concatenation
along a rank, or their concatenation as a list.

Definition 20. Neural network (generic definition)
The set of neural network functions N is defined inductively as follows

1. Id ∈ N

2. f ∈ N ∧ (g, h) is a layer ∧Of ⊂ Ig ⇒ h ◦ g ◦ f ∈ N

3. for all shape compatible branching operations:
f1, f2, . . . , fn ∈ N ⇒ f1 on f2 on · · · on fn ∈ N

1.2. DEEP LEARNING 19

Figure 4: Module with a residual connection (He et al., 2016a) c©2016

IEEE

Figure 5: DenseNet (Huang et al., 2017) c©2017 IEEE

20 CHAPTER 1. PRESENTATION OF THE FIELD

Examples

The neural network proposed in (Szegedy et al., 2015), called Inception,
use depth-wise concatenation of feature maps. Residual networks (ResNets,
He et al., 2016a) make use of residual connections, also called skip connec-
tions, i.e. an activation that is used as input in a lower level is added
to another activation at an upper level, as depicted on Figure 4. Densely
connected networks (DenseNets, Huang et al., 2017) have their activations
concatenated with all lower level activations. These neural networks had
demonstrated state of the art performances on the imagenet classification
challenge (Deng et al., 2009), outperforming simply connected neural net-
works. For example, DenseNet is depicted on Figure 5.

Remark. For layer indexing convenience, we still use the simple formaliza-
tion in the subsequent subsections, even though the presentation would
be similar with the generic formalization.

1.2.2 Interpretation

Until now, we have formally introduced a neural network as a mathemat-
ical function. As its name suggests, such function can be indeed inter-
preted from a connectivity perspective (LeCun, 1987).

Definition 21. Connectivity matrix
Let g a linear function. Without loss of generality subject to a flattening,
let’s suppose Ig and Og are vector spaces. Then there exists a connectivity
matrix Wg, such that:

∀x ∈ Ig, g(x) = Wgx

We denote Wk the connectivity matrix of the k-th layer.

1.2. DEEP LEARNING 21

Biological inspiration
A neuron is defined as a computational unit that is biologically inspired
(McCulloch and Pitts, 1943). Each neuron is capable of:

1. receiving modulated signals from other neurons and aggregate them,
2. applying to the result an activation function,
3. passing the signal to other neurons.

That is to say, each domain {Ifk} and Of can be interpreted as a layer of
neurons, with one neuron for each dimension. The connectivity matrices
{Wk} describe the connections between each successive layers. A neuron
is illustrated on Figure 6.

x2 Σ h
activation

y

x1

x3

1

w1

w2

w3

b

Figure 6: The McCulloch-Pitts model of a neuron

1.2.3 Training

Given an objective function F , training is the process of incrementally
modifying a neural network f upon obtaining a better approximation
of F . The most used training algorithms are based on gradient descent, as
proposed in (Widrow and Hoff, 1960). These algorithms became popular
since (Rumelhart et al., 1985). Informally, f is parameterized with initial
weights that characterize its linear parts. These weights are modified step
by step. At each step, a batch of samples are fed to the network, and
their approximation errors sum to a loss. The weights of the network are
updated in the opposite direction to their gradient with respect to that

22 CHAPTER 1. PRESENTATION OF THE FIELD

loss. If the samples are shuffled and grouped in batches, this is called
Stochastic gradient descent (SGD). Stochastic approximation (Robbins and
Monro, 1985) tends to minimize effects of outliers on the training and is
agnostic of the order in which the samples are fed.

Definition 22. Weights
Let consider the k-th layer of a neural network f . We define its weights
as coordinates of a vector θk, called the weight kernel, such that:

∀(i, j),

∃p,Wk[i, j] := θk[p]

or Wk[i, j] = 0

A weight p that appears multiple times in Wk is said to be shared. Two
parameters of Wk that share a same weight p are said to be tied. The
number of weights of the k-th layer is n(θk)

1 .

Learning
A loss function L penalizes the output xL = f(x) relatively to the ap-
proximation error |f(x) − F (x)|. Gradient w.r.t. θk, denoted ~̀

θk
, is used

to update the weights via an optimization algorithm based on gradient
descent and a learning rate α, that is:

θ
(new)
k = θ

(old)
k − α · ~

h
θk

(
L
(
xL, θ

(old)
k

)
+R

(
θ

(old)
k

))
(3)

whereR is a regularizer, and where α can be a scalar or a vector and · can
denote outer or coordinate-wise product, depending on the optimization
algorithm that is used.

Linear complexity
Without loss of generality, we assume that the neural network is simply
connected. Thanks to the chain rule, ~̀ θk

can be computed using gradients
that are w.r.t. xk, denoted ~̀

xk
, which in turn can be computed using

1.2. DEEP LEARNING 23

gradients w.r.t. outputs of the next layer k + 1, up to the gradients given
on the output layer.

That is:

~h
θk

= Jθk(xk)
~h
xk

(4)

~h
xk

= Jxk(xk+1)
~h
xk+1

~h
xk+1

= Jxk+1
(xk+2)

~h
xk+2

. . .

~h
xL−1

= JxL−1
(xL)

~h
xL

(5)

Obtaining,

~h
θk

= Jθk(xk)(
L−1∏
p=k

Jxp(xp+1))
~h
xL

(6)

where Jwrt(.) are the respective Jacobians which can be determined with
the layer’s expressions and the {xk}; and ~̀

xL
can be determined using

L, R and xL. This allows to compute the gradients with a complexity
that is linear with the number of weights (only one computation of the
activations), instead of being quadratic if it were done with the differ-
ence quotient expression of the derivatives (one more computation of the
activations for each weight).

Backpropagation

We can remark that (5) rewrites as

~h
xk

= Jxk(xk+1)
~h
xk+1

= Jx′k(h(x′k))Jxk(Wkxk)
~h
xk+1

(7)

24 CHAPTER 1. PRESENTATION OF THE FIELD

where x′k = Wkxk, and these Jacobians can be expressed as:

Jx′k(h(x′k))[i, j] = δjih
′(x′k[i])

Jx′k(h(x′k)) = I h′(x′k)
(8)

Jxk(Wkxk) = W T
k (9)

That means that we can write ~̀ xk
= (h̃k ◦ g̃k)(~̀ xk+1

) such that the connec-
tivity matrix W̃k is obtained by transposition. This can be interpreted as
gradient calculation being a back-propagation on the same neural network,
in opposition of the forward-propagation done to compute the output.

1.2.4 Some historical advances

Universal approximation
Early researches have shown that neural networks with one level of depth
can approximate any real-valued function defined on a compact subset
of Rn. This result was first proved for sigmoidal activations (Cybenko,
1989), and then it was shown it did not depend on the sigmoidal activa-
tions (Hornik et al., 1989; Hornik, 1991).
For example, this result brings theoretical justification that objective func-
tions exists (even though it does not inform whether an algorithm to
approach it exists or is efficient).

Computational difficulty
However, reaching such objective is a computationally difficult problem,
which drove back interest from the field. Thanks to better hardware and
to using better initialization schemes that speed up learning, researchers
started to report more successes with deep neural networks (Hinton et
al., 2006; Glorot and Bengio, 2010) ; see (Bengio, 2009) for a review of this
period. It ultimately came to a surge of interest in the field after a signifi-
cant breakthrough on the imagenet dataset (Deng et al., 2009) with deep

1.2. DEEP LEARNING 25

CNNs (Krizhevsky et al., 2012). The use of the fast ReLU activation func-
tion (Glorot et al., 2011) as well as leveraging graphical processing units
with CUDA (Nickolls et al., 2008) were also key factors in overcoming
this computational difficulty.

Adoption of ReLU activations
Historically, sigmoidal and tanh activations were mostly used (Cybenko,
1989; LeCun et al., 1989). However in recent practice, the ReLU activation
(first introduced as the positive part, Jarrett et al., 2009), become the most
used activation, as it was demonstrated to be faster and to obtain better
results (Glorot et al., 2011). ReLU originated numerous variants e.g. leaky
rectified linear unit (Maas et al., 2013), parametric rectified linear unit (PReLU,
He et al., 2015), exponential linear unit (ELU, Clevert et al., 2015), scaled
exponential linear unit (SELU, Klambauer et al., 2017), each one having
particular advantages in some applications.

Avoiding overfitting
Neural networks, like any other machine learning technique, may overfit.
That is, a model may behave well on the training set but fails to generalize
well on unseen examples. The introduction of dropout (Srivastava et al.,
2014) have helped models with more parameters to be less prone to over-
fitting, as dropout consists in hiding some parts of the training samples
and their intermediate activations. Another good practice is to normalize
per batch (Ioffe and Szegedy, 2015).

Expressivity and expressive efficiency
The study of the expressivity (also called representational power) of families
of neural networks is the field that is interested in the range of functions
that can be realized or approximated by this family (Håstad and Gold-
mann, 1991; Pascanu et al., 2013). In general, given a maximal error ε and
an objective F , the more expressive is a family N ⊂ N , the more likely it

26 CHAPTER 1. PRESENTATION OF THE FIELD

is to contain an approximation f ∈ N such that d(f, F) < ε. However, if
we consider the approximation fmin ∈ N that have the lowest number of
neurons, it is possible that fmin is still too large and may be unpractical.
For this reason, expressivity is often studied along the related notion of
expressive efficiency (Delalleau and Bengio, 2011; Cohen et al., 2018).

Rectifier neural networks
Of particular interest for the intuition is a result stating that a simply con-
nected neural networks with only ReLU activations (a rectifier neural net-
work) is a piecewise linear function (Pascanu et al., 2013; Montufar et al.,
2014), and that conversely any piecewise linear function is also a rectifier
neural network such that an upper bound of its depth is logarithmically
related to the input dimension (Arora et al., 2018, th. 2.1.). Their expres-
sive efficiency have also been demonstrated compared to neural networks
using threshold or sigmoid activations (Pan and Srikumar, 2016).

Benefits of depth
Expressive efficiency analysis have demonstrated the benefits of depth,
i.e. a shallow neural network would need an unfeasible large number of
neurons to approximate the function of a deep neural network (e.g. Delal-
leau and Bengio, 2011; Bianchini and Scarselli, 2014; Poggio et al., 2015;
Eldan and Shamir, 2016; Poole et al., 2016; Raghu et al., 2016; Cohen and
Shashua, 2016; Mhaskar et al., 2016; Lin et al., 2017; Arora et al., 2018).
This field seeks to give theoretical grounds to the practical observation
that state-of-the-art architectures are getting deeper.

Benefits of branching operations
Recent works have provided rationales supporting benefits of using branch-
ing operations, thus giving justifications for architectures obtained with
the generic formalization. In particular, (Cohen et al., 2018) have ana-
lyzed the impact of residual connections used in Wavenet-like architec-

1.2. DEEP LEARNING 27

tures (Van Den Oord et al., 2016) in terms of expressive efficiency, using
tools from the field of tensor analysis ; (Orhan and Pitkow, 2018) have em-
pirically demonstrated that residual connections can resolve some ineffi-
ciency problems inherent of fully-connected networks (dead activations,
activations that are always equal, linearly dependent sets of activations).

1.2.5 Common layers

Definition 23. Connections
The set of connections of a layer (g, h), denoted Cg, is defined as:

Cg = {(i, j),∃p,Wg[i, j] := θg[p]}

We have 0 ≤ |Cg| ≤ n
(Wg)
1 n

(Wg)
2 .

Definition 24. Dense layer
A dense layer (g, h) is a layer such that |Cg| = n

(Wg)
1 n

(Wg)
2 , i.e. all possible

connections exist. The map (i, j) 7→ p is usually a bijection, meaning that
there is no weight sharing.

A neural network made only of dense layers is called a Multi-Layer Per-
ceptron (MLP, Hornik et al., 1989).

Definition 25. Partially connected layer
A partially connected layer (g, h) is a layer such that |Cg| < n

(Wg)
1 n

(Wg)
2 .

A sparsely connected layer (g, h) is a layer such that |Cg| � n
(Wg)
1 n

(Wg)
2 .

Definition 26. Convolutional layer
A n-dimensional convolutional layer (g, h) is such that the weight kernel θg
can be reshaped into a tensor w of rank n+ 2, and such that Ig and Og are tensor spaces of rank n+ 1

∀x ∈ Ig, g(x) = (g(x)q =
∑
p

xp ∗n wp,q)∀q

28 CHAPTER 1. PRESENTATION OF THE FIELD

where p and q index slices along the last ranks.

A neural network that contains convolutional layers is called convolu-
tional neural network (CNN).

Definition 27. Feature maps and input channels
The slices g(x)q are typically called feature maps, and the slices xp are called
input channels. Let’s denote by no = n

(Og)
n+1 and ni = n

(Ig)
n+1 the number of

feature maps and input channels. In other words, Definition 26 means
that for each feature maps, a convolution layer computes ni convolutions
and sums them, computing a total if ni × no convolutions.

Remark. Note that because they are simply summed, entries of two differ-
ent input channels that have the same coordinates are assumed to share
some sort of relationship. For instance on images, entries of each input
channel (typically corresponding to Red, Green and Blue channels) that
have the same coordinates share the same pixel location.

Benefits of convolutional layers
Comparatively with dense layers, convolution layers enjoy a significant
decrease in the number of weights. For example, an input 2 × 2 convolu-
tion on images with 3-color input channels, would breed only 12 weights
per feature maps, independently of the numbers of input neurons. On
image datasets, their usage also breeds a significant boost in performance
compared with dense layers (Krizhevsky et al., 2012), for they allow to
take advantage of the topology of the inputs while dense layers do not (Le-
Cun and Bengio, 1995). A more thorough comparison and explanation of
their assets will be discussed in Section 2.1.3.

Decrease of spatial dimensions
Given a tensor input x, the n-dimensional convolutions between the in-
puts channels xp and slices of a weight tensor wp,q would result in outputs

1.2. DEEP LEARNING 29

yq of shape n(x)
1 − n

(w)
1 + 1 × . . . × n(x)

n − n(w)
n + 1. So, in order to preserve

shapes, a padding operation must pad x with n
(w)
1 − 1 × . . . × n

(w)
n − 1

zeros beforehand. For example, the padding function of the library tensor-
flow (Abadi et al., 2015) pads each rank with a balanced number of zeros
on the left and right indices (except if n(w)

t − 1 is odd then there is one
more zero on the left).

Definition 28. Padding
A convolutional layer with padding (g, h) is such that g can be decomposed
as g = gpad ◦ g′, where g′ is the linear part of a convolution layer as in
Definition 26, and gpad is an operation that pads zeros to its inputs such
that g preserves tensor shapes.

Remark. One asset of padding operations is that they limit the possible
loss of information on the borders of the subsequent convolutions, as well
as preventing a decrease in size. Moreover, preserving shape is needed to
build some neural network architectures, especially for ones with branch-
ing operations e.g. examples in Section 1.2.1. On the other hand, they
increase memory and computational footprints.

Definition 29. Stride
A convolutional layer with stride is a convolutional layer that computes
strided convolutions (with stride > 1) instead of convolutions.

Definition 30. Pooling
A layer with pooling (g, h) is such that g can be decomposed as g = g′◦gpool,
where gpool is a pooling operation.

Layers with stride or pooling downscale the signals that passes through
the layer. These types of layers allows to compute features at a coarser
level, giving the intuition that the deeper a layer is in the network, the
more abstract is the information captured by the weights of the layer.
From a practical point of view, they contribute to lower the computational
complexity at deeper levels.

30 CHAPTER 1. PRESENTATION OF THE FIELD

A simple result

In two dimensions, convolutional operations can be rewritten as a matrix-
vector multiplication where the matrix is Toeplitz. We show below that it
is still the case in n dimensions.

Proposition 31. Connectivity matrix of a convolution with padding
A convolutional layer with padding (g, h) is equivalently defined as its
connectivity matrix Wg being a ni × no block matrix such that its blocks
are Toeplitz matrices, and where each block corresponds to a couple (p, q)

of input channel p and feature map q.

Proof. Let’s consider the slices indexed by p and q, and to simplify the
notations, let’s drop the subscripts p,q. We recall from Definition 12 that

y = (x ∗n w)[j1, . . . , jn]

=

n
(w)
1∑

k1=1

· · ·
n
(w)
n∑

kn=1

x[j1 + n
(w)
1 − k1, . . . , jn + n(w)

n − kn]w[k1, . . . , kn]

=

j1+n
(w)
1 −1∑

i1=j1

· · ·
jn+n

(w)
n −1∑

in=jn

x[i1, . . . , in]w[j1 + n
(w)
1 − i1, . . . , jn + n(w)

n − in]

=

n
(x)
1∑

i1=1

· · ·
n
(x)
n∑

in=1

x[i1, . . . , in] w̃[i1, j1, . . . , in, jn]

where w̃[i1, j1, . . . , in, jn] =w[j1 + n
(w)
1 − i1, . . . , jn + n

(w)
n − in] if ∀t, 0 ≤ it − jt ≤ n

(w)
t − 1

0 otherwise

Using Einstein summation convention as in (2) and permuting indices,
we recognize the following tensor contraction

yj1···jn = xi1···inw̃
i1···in

j1···jn (10)

1.2. DEEP LEARNING 31

Following Proposition 11, we reshape (10) as a matrix product. To reshape
y 7→ Y , we use the row major order bijections gj as in (1) defined onto
{(j1, . . . , jn),∀t, 1 ≤ jt ≤ n

(y)
t }. To reshape x 7→ X , we use the same row

major order bijection gj , however defined on the indices that support non
zero-padded values, so that zero-padded values are lost after reshaping.
That is, we use a bijection gi such that gi(i1, i2, . . . , in) = gj(i1 − o1, i2 −
o2, . . . , in − on) defined if and only if ∀t, 1 + ot ≤ it ≤ n

(y)
t , where the {ot}

are the starting offsets of the non zero-padded values. w̃ 7→ W is reshaped
by using gj for its covariant indices, and gi for its contravariant indices.
The entries lost by using gi do not matter because they would have been
nullified by the resulting matrix product. We remark that W is exactly the
block (p, q) of Wg (and not of Wg′). Now let’s prove that it is a Toeplitz
matrix.
Thanks to the linearity of the expression (1) of gj , by denoting i′t = it − ot,
we obtain

gi(i1, i2, . . . , in)− gj(j1, j2, . . . , jn) = gj(i
′
1 − j1, i

′
2 − j2, . . . , i

′
n − jn) (11)

To simplify the notations, let’s drop the arguments of gi and gj . By bijec-
tivity of gj , (11) tells us that gi − gj remains constant if and only if i′t − jt
remains constant for all t. Recall that

W [gi, gj] =

w[j1 + n
(w)
1 − i′1, . . . , jn + n

(w)
n − i′n] if ∀t, 0 ≤ i′t − jt ≤ n

(w)
t − 1

0 otherwise

(12)

Hence, on a diagonal of W , gi−gj remaining constant means that W [gi, gj]

also remains constants. So W is a Toeplitz matrix.
The converse is also true as we used invertible functions in the index
spaces through the proof.

32 CHAPTER 1. PRESENTATION OF THE FIELD

Remark. Note that the proof does not hold in case there is no padding.
This is due to border effects when the index of the nth rank resets in the
definition of the row-major ordering function gj that would be used. In-
deed, under appropriate definitions, the matrices could be seen as almost
Toeplitz.

This proposition provides an equivalent-characterization of convolutional
layers by their connectivity matrix. Therefore, a first avenue to define con-
volutions on graph signals could be to define them with the connectivity
matrix being as in this characterization. However, the Toeplitz property
implies that the dimensions have a specific order, which is not possible
when dimensions correspond to vertices of a graph. This is because per-
muting the order of the vertices wouldn’t change the graph, but would
change the connectivity matrix (which cannot be Toeplitz for every order-
ing).

1.3. DEEP LEARNING ON GRAPHS 33

1.3 Deep learning on graphs

Deep learning algorithms have been particularly successful for datasets
of signals defined on regular domains such as images or time series. One
key ingredient of their success is the use of convolutions. However, clas-
sical convolutions are only defined on Euclidean domains, so that ex-
tending deep learning on non-Euclidean domains is not straightforward.
One way to represent a non-Euclidean domain is through a graph i.e. as
points (the vertices) and relations between them (the edges). This field
also comprises the study of deep learning on manifolds (i.e. locally Eu-
clidean domains). The field of deep learning on graphs or manifolds have
been called recently Geometric Deep Learning (Bronstein et al., 2017). In
this manuscript, we are only interested in deep learning on graphs.

1.3.1 Graph and signals

We present the vocabulary, notation and conventions we will employ for
graphs and signals.

Definition 32. Graph
A graph G is a couple of countable vertex and edge sets 〈V,E〉 s.t. E ⊂ V 2.

The terms vertex and node are used interchangeably. Additionally, we con-
sider that a graph is always simple i.e. no two edges share the same set
of vertices. Unless stated otherwise, a graph is undirected, i.e. (u, v) and
(v, u) refer to the same edge. When it is not the case, it is called a digraph.
We define the relation u ∼ v ⇔ (u, v) ∈ E. We precise the graph if needed
over the symbol G∼. For a digraph we use the symbol → instead of ∼. A
walk is a sequence v1 ∼ · · · ∼ vr. It is said to be simple if its vertices are dis-
tinct, except possibly for the first and last. A graph is said to be connected
if there exists a walk from any vertex to any other vertex. We define the
neighborhood of a vertex as Nu = {v ∈ V, u ∼ v}. For digraphs, it is equal

34 CHAPTER 1. PRESENTATION OF THE FIELD

to the union of the in- and out-neighborhoods. We only consider graphs
without isolated vertex (a vertex with an empty neighborhood). We also
only consider weighted graphs. That is, a graph G = 〈V,E〉 is associated
with a weight mapping w : V 2 → R+ s.t. w(u, v) = 0 ⇔ u � v. If G is
finite, its adjacency matrix A ∈ RV×V is defined w.r.t. to a vertex ordering
V = {v1, . . . , vn} as A[i, j] = w(vi, vj). Figure 7 illustrates an example of a
graph and its adjacency matrix.

1

2
3

4

5

a

b

c

d

e

0 a 0 d e
a 0 0 b 0
0 0 0 c 0
d b c 0 0
e 0 0 0 0

Figure 7: Example of a graph and its adjacency matrix

The order of G is equal to its number of vertices, possibly infinite. The
degree of a vertex v is equal to the number of edges it is attached to. For
digraphs the degree is the sum of the in- and out-degrees. The degree of
G refers to its max degree. G is said to be degree-regular if all its vertices
have the same degree. If it is finite, its degree matrix D (w.r.t. to a vertex
ordering V = {v1, . . . , vn}) is the diagonal matrix for which the diagonal
entry corresponding to a vertex is the sum of the weights of the edges
it is part of. Its Laplacian matrix L is the substraction L = D − A, which
can be normalized L = I − D−

1
2AD−

1
2 , left-normalized L = I − D−1A, or

right-normalized L = I − AD−1. The same naming convention is used for
normalized version of the adjacency matrix A. A subgraph of G induced
by a subset U ⊂ V is the graph with vertex and edge set restricted by U .

The complement graph GC shares the same vertex set but u GC

∼ v ⇔ u
G� v. A

1.3. DEEP LEARNING ON GRAPHS 35

complete graph is such that there exists an edge between any two vertices.

Definition 33. Grid graph
Let a graph G = 〈V,E〉 such that the expression u ∼ v ⇔ ‖u − v‖1 = 1

makes sense. G can be called:
• a grid graph if V = Z2

• a finite grid graph if ∃(n,m) ∈ Z2, V = J1, nK× J1,mK
• a circulant grid graph if ∃(n,m) ∈ Z2, V = Z/nZ× Z/mZ

Definition 34. Bipartite graph
A graph is called bipartite if its vertex set is a disjoint union V = V1 ∪ V2

s.t.
u ∼ v ⇒ (u, v) ∈ V1 × V2 ∨ (u, v) ∈ V2 × V1

If it is finite, its bipartite-adjacency matrix A ∈ RV1×V2 is a rectangular matrix
defined w.r.t. to a vertex ordering V1 = {u1, . . . , un}, V2 = {v1, . . . , vn} and
weight mapping w as A[i, j] = w(ui, vj).

Definition 35. Signal
A signal on V , s ∈ S(V), is a function s : V → R. The signal space S(V) is
the linear space of signals on V .

Remark. In particular, a vector space, and more generally a tensor space,
are finite-dimensional signal spaces on any of their bases. Reciprocally,
a signal space is a linear space which canonical basis is the signal space
domain. Therefore, signals can be represented as vectors (or tensors) and
then fed to neural networks.

A graph signal on a graph G = 〈V,E〉 is a signal on its vertex set V . We
denote by S(G) or S(V) the graph signal space. G can be referred as the
underlying structure of S(V). An entry of a signal s is an image by s of
some v ∈ V and we denote s[v]. If v is represented by an n-tuple, we can
also write s[v1, v2, . . . , vn]. The support of a signal s ∈ S(V) is the subset

36 CHAPTER 1. PRESENTATION OF THE FIELD

supp(s) ⊂ V on which s 6= 0. For spaces of signals that aren’t real-valued,
their codomain E is precised in the subscript SE(V). The signal Id is the
identity function. Given v ∈ V , the Dirac signal δv ∈ S(V) is the signal
valued as 1 on v and 0 everywhere else. The family of all Dirac signals
spans S(V).

1.3.2 Learning tasks

There are two main tasks related to deep learning and graph signals.

Supervised classification of graph signals
This is the classical application of deep learning transposed to graph sig-
nals, rather than image or audio signals. It is the main task we will have
in mind in the course of this manuscript. Given a graph G = 〈V,E〉 and
an input signal x ∈ S(G) the goal is to classify x. If there are c possible
classes, a neural network f outputs a vector y = f(x) of dimension c,
and its dimension with the biggest weight determines the predicted class.
Indeed, a standard MLP can be trained on a dataset of graph signals.
However, an MLP wouldn’t take the graph structure G into consideration.
By similarity with CNNs that leverage the grid structure of images to
achieve better performances than MLPs, a challenge is to define a neural
network on graph signals that can leverage G. We review some models
from the literature in Section 1.3.4 and in Section 1.3.5. We develop an
algebraic understanding in Chapter 2 of why and how they should work,
and also propose our own models and point of view in Chapter 3.

Semi-supervised classification of nodes
This task is in some way obtained from a transposed perspective of the
previous one. Given a dataset of graph signals, represented as a matrix
X ∈ Rn×N , where the rows represent the nodes, and the columns repre-
sent the signals, the goal is to classify the nodes. This amounts to classify

1.3. DEEP LEARNING ON GRAPHS 37

the rows, whereas the previous task amounts to classify the columns. As
opposed to the previous one, this task is transductive i.e. every node data is
available during training, including those from the validation and test set
(but their labels are not), and it is semi-supervised i.e. some nodes have no
label. This allows to learn on much more data than if we were restricted to
labeled data. In this task, the edges connect learning samples, however in
the previous one, the edges were connecting features of learning samples.
This is this edge relationship between learning samples that renders the
semi-supervised approach possible. This task have received much more
attention than the previous one in the recent literature. We explain why
in Section 1.3.4.

Other learning tasks
In this manuscript, we are less interested in other deep learning tasks
related to graphs, so we briefly discuss them here. One is supervised
classification of graphs, which is different than classifying graph signals.
Examples include (Niepert et al., 2016; Tixier et al., 2017; Nikolentzos et
al., 2017; Bai et al., 2018). Another related interesting task is called repre-
sentation learning of nodes, which tackles the challenge to learn a linear
representation of nodes. A common approach, derived from word2vec
(Mikolov et al., 2013b; Mikolov et al., 2013a), is called node2vec (Grover
and Leskovec, 2016), and was later improved in graphSAGE (Hamilton
et al., 2017a). A review on this subject is done by Hamilton et al., 2017b.
A thorough survey on representation learning for networks is given in
(Zhang et al., 2017).

38 CHAPTER 1. PRESENTATION OF THE FIELD

1.3.3 Datasets

We present here the standard datasets that we will use in this manuscript.

Images
Images are signals on grid graphs. Therefore they constitute a first test for
models that are designed to be able to classify graph signals. A second
step is to test on scrambled versions of image datasets, i.e. a random
permutation of the pixels is fixed and the tested models are fed with
images whose pixels have been shuffled according to this permutation.
Therefore the domains of the scrambled input signals are not grid graphs.

• MNIST (LeCun et al., 1998) is a dataset of handwritten digits of size
28x28. It contains 10 classes and is split between 50’000 samples for
training and 10’000 samples for testing.

• CIFAR-10 (Krizhevsky, 2009) is a dataset of tiny pictures of size
32x32. It contains 10 classes and is split between 50’000 samples for
training and 10’000 samples for testing.

• Scrambled MNIST is the scrambled version of MNIST. A graph
based on nearest neighbors from the pixel covariances is used to
represent each scrambled sample as a graph signal.

• Scrambled CIFAR-10 is analogous.

Functional magnetic resonance imaging (fMRI)
fMRI samples can be represented by graph signals. The graphs are resem-
bling grid graphs to some extent since they are embedded in an Euclidean
space.

• The PINES dataset consists of fMRI scans on 182 subjects, during an
emotional picture rating task (Chang et al., 2015). In (Lassance et al.,

1.3. DEEP LEARNING ON GRAPHS 39

2018), we fetched individual first-level statistical maps (beta images)
for the minimal and maximal ratings from https://neurovault.

org/collections/1964/, to generate the dataset. Full brain data was
masked on the MNI template and resampled to a 16mm cubic grid,
in order to reduce dimensionality of the dataset while keeping a
regular geometrical structure to infer the graph. Final volumes used
for classification contain 369 signals for each subject and rating.

Text documents
Text documents can be represented as graph signals. Words are the ver-
tices, and the value of a signal at a given vertex corresponds to a nor-
malized occurrence of the corresponding word. Edges connect nearest
neighbors in some metric space.

• 20NEWS (Joachims, 1996) is a dataset of text documents. It contains
20 classes and is split between 11’314 samples for training and 7’532

samples for testing. Each document is represented by a bag-of-word.
In the version used by Defferrard et al., 2016, that we consider, doc-
uments are treated as signals on a graph of 10’000 vertices which
represent the 10’000 most common words (the other words are not
used). Edges are drawn from each vertex to their 16 nearest neigh-
bors in the cosine similarity metric space.

Citation networks
In a citation network (i.e. a graph of citations), nodes are bag-of-word
documents and edges represent citations. Models are tested on a citation
network to the task of semi-supervised classification of the nodes. We use
three standard datasets: Cora, Citeseer and Pubmed (Sen et al., 2008), for
which we follow the experimental settings of Yang et al., 2016, and the
dataset split from Kipf and Welling, 2016. In particular, there are only 20

training samples per class, but they are connected to other samples.

https://neurovault.org/collections/1964/
https://neurovault.org/collections/1964/

40 CHAPTER 1. PRESENTATION OF THE FIELD

• Cora is a dataset of 2’708 nodes of dimension 1’433 with 5’429 edges.
It contains 7 classes and consists of 140 samples for training, 500

samples for validation, 1’000 samples for testing, and 1’068 unla-
beled samples.

• Citeseer is a dataset of 3’327 nodes of dimension 3’703 with 4’732

edges. It contains 6 classes and consists of 120 samples for train-
ing, 500 samples for validation, 1000 samples for testing, and 1’707

unlabeled samples.

• Pubmed is a dataset of 19’717 nodes of dimension 500 with 44’338

edges. It contains 3 classes and consists of 60 samples for training,
500 samples for validation, 1000 samples for testing, and 18’157 un-
labeled samples.

1.3.4 Spectral methods

Spectral methods are based on spectral graph theory (Chung, 1996) which
aims at characterizing structural properties of a graph G = 〈V,E〉 through
the eigenvalues of the Laplacian matrix L. In particular, since it is Her-
mitian, it admits a complete set of normalized eigenvectors. By fixing
a normalized eigenvector basis ordered in the rows of U (by ascending
eigenvalues), U is used to define the Graph Fourier Transform (GFT) of a
signal s ∈ S(G) (Shuman et al., 2013), and the conjugate-transpose U∗

defines the inverse GFT. We write

ŝ = Us (13)

s̃ = U∗s (14)

1.3. DEEP LEARNING ON GRAPHS 41

Remark. The GFT extends the notion of Discrete Fourier Transform (DFT)
to general graphs, since that for circulant grid graphs U can be the DFT
matrix.

By analogy with the convolution theorem, a convolution can be defined as
pointwise multiplication, denoted ·, in the spectral domain of the graph
(Hammond et al., 2011). For s, g ∈ S(G), we have:

s ∗ g = ˜̂s · ĝ (15)

This expression can be used to define convolutional layers and spectral
CNNs on graphs. However, Bruna et al., 2013 pointed out that (15) would
generate filters with O(n) weights, where n is the order of G. So they pro-
posed to learn filters θ with only O(1) weights and then to smoothly in-
terpolate the remaining weights as g = Kθ, where K is a linear smoother
matrix. They motivate their construction by the fact that smooth multipli-
ers in the spectral domain should simulate local operations in the vertex
domain. To elaborate a bit on this, note that we have:

Ls[u] =
∑
v∈V

w(u, v)(s[u]− s[v]) (16)

And so,

sTLs =
∑
u∈V

∑
v∈V

w(u, v)s[u](s[u]− s[v])

=
1

2

∑
u∈V

∑
v∈V

w(u, v)s[u](s[u]− s[v]) +
1

2

∑
v∈V

∑
u∈V

w(v, u)s[v](s[v]− s[u])

=
∑
u∈V

∑
v∈V

w(u, v)

2
(s[u]− s[v])2 (17)

That is, sTLs is some sort of measure of smoothness of the signal s, penal-
ized by the weights w. The bigger is w(u, v), the closest s(u) and s(v) must

42 CHAPTER 1. PRESENTATION OF THE FIELD

be to lower the smoothness (17). Since L is symmetric, its eigenvalues are
non-negative real numbers, and U diagonalizes L as Λ = ULU∗. Denote
(λi)i the eigenvalues, the smoothness measure rewrites:

sTLs = ŝ∗Λŝ =
n∑
i=1

λiŝ[i]
2 (18)

Therefore, as they pointed out, smoothness of s can be read off the coor-
dinates of ŝ, like for the DFT. Moreover, spectral multipliers modulate its
smoothness, and decay in the spectral domain is related to smoothness
in the vertex domain. But contrary to their conjecture, smoothness in the
spectral domain is not necessary related to decay is the vertex domain
(and so to some form of locality). For instance, since the Laplacian LC

of the complement graph GC commutes with L, it can share the same
eigenvector basis U , and thus define the same GFT, but their notion of
locality in the vertex domain are opposed. Another drawback is that this
method requires computing the GFT which complexity is at least O(n2)

as there is no equivalent of the Fast Fourier Transform (FFT) on graphs,
so the authors suggest to use a lower number of eigenvectors d < n from
the Laplacian eigenbasis.

Then, Defferrard et al., 2016 remedy to these issues by proposing an ap-
proximate formulation based on the Chebychev polynomials, denoted by
(Ti)i, where i is the polynomial order. That is, their proposed approximate
filters are in the form

gθ(L) =
k∑
i=0

θ[i]Ti(L̃) (19)

where L̃ = λmax

2
L−In is the scaled normalized Laplacian with eigenvalues

lying in the range [−1, 1]. gθ(L) are spectral multipliers since we have:

gθ(L)s = gθ(U
∗ΛU)s = U∗gθ(Λ)Us

1.3. DEEP LEARNING ON GRAPHS 43

= g̃θ(Λ)1 ∗ s (20)

These filters enjoy locality properties, they contain O(1) weights, and
their complexity is O(n) when rows of L are sparse. The use of trun-
cated Chebychev expansion (Hammond et al., 2011) ensures that in the-
ory any set of spectral multipliers can be approximated. Also, since they
are Laplacian polynomials, some authors would argue that these filters
are transferable from one graph to another. From a combinatorial point
of view this is true. However there is no reason that spectral multipli-
ers from a spectral domain make sense in another one, and there are
no experiment in the literature to support the hypothesis. On the other
hand, (Yi et al., 2016) (who do not use polynomial filters) fix a canonical
spectral base in order to synchronize every spectral domains. Their idea
is to learn a warping from any eigenbasis to the canonical one, prior to
performing spectral multiplication, in the manner of spatial transformer
networks (STN, Jaderberg et al., 2015).

However, it is hard to evaluate if a model performs well on the task of
supervised classification of graph signals, because there are not much
known datasets in the literature for which the given graph domain holds
enough information.

For example, Defferrard et al. built a graph signal dataset from the text
categorization dataset 20NEWS (Joachims, 1996, see Section 1.3.3). How-
ever, their model (ChebNet32) fails to surpass Multinomial Naive Bayes
(MNB). Moreover, even though they report that their model beats MLPs,
but through experiments we noticed the contrary. In results we report in
Table 1, we see that a lighter MLP, composed of a single Fully-Connected (FC)
layer with ReLU and 20% dropout outperforms ChebNet32. We replicated
their preprocessing phase from the code on their official repository and
averaged our results on 100 runs of 10 epochs1.

1A few epochs are enough since models seem to overfit fast on this dataset.

44 CHAPTER 1. PRESENTATION OF THE FIELD

MNB FC2500 FC2500-FC500 ChebNet32 FC500

68.51a 64.64a 65.76a 68.26a 71.96± 0.15b

a As reported in Defferrard et al., 2016

b From our experiments.

Table 1: Accuracies (in %) on 20NEWS

Despite the significant theoretical contribution, this negative result stresses
out the importance of the graph used in practice to support the convolu-
tion, a point that they also discussed. Henaff et al., 2015, proposed su-
pervised graph estimation techniques, but a better graph signal dataset
would be one that come with an already suitable graph, that of current
literature is still lacking.
On the other hand, attention in the domain has shifted toward the task of
semi-supervised classification of nodes, where good datasets are not lack-
ing. For example, Levie et al., 2017, mainly demonstrate the usefulness
of their model on these type of tasks. They define polynomial filters, for
which Chebychev filters are a special case, that are capable to specialize
in narrow bands of frequency in the spectral domain.
Another spectral avenue consists in using wavelets defined in the graph
spectral domain (Hammond et al., 2011), in order to build a scattering
network (Bruna and Mallat, 2013; Chen et al., 2014). This idea have been
exploited recently by Zou and Lerman, 2018, then by Gama et al., 2018.

1.3. DEEP LEARNING ON GRAPHS 45

1.3.5 Vertex-domain methods

As their name suggests, vertex-domain methods operates directly on the
vertices of the graph. Convolution can be modeled as a function f of the
kernel weights θ and neighboring vertices (contained in the local receptive
field R(v)), usually based on dot products. That is

y[v] = fθ ({u ∈ R(v)}) (21)

As such, it retains the property of being localized and of sharing weights
in some way. But there remains the need to specify how the shared weights
are allocated in this local receptive field (Vialatte et al., 2016). This allo-
cation can depend on e.g. an arbitrary order (Niepert et al., 2016), on a
diffusion process (Atwood and Towsley, 2016), on a function of both ver-
tices and their neighbors (Monti et al., 2016; Simonovsky and Komodakis,
2017), on a random walk (Hechtlinger et al., 2017), on another learned
kernel (Vialatte et al., 2017), on an attention mechanism (Velickovic et al.,
2017; Lee et al., 2018), on pattern identification (Sankar et al., 2017), or on
translation identification (Pasdeloup et al., 2017a). All these methods dif-
fer in the function f , but in the end, their definition highly overlap. That
is why some authors have proposed unified frameworks (Gilmer et al.,
2017). The representation we present in Chapter 3 is also unifying in that
sense (see Section 3.2.1).

In particular, Kipf and Welling, 2016, were first to transpose ChebNet
to the task of semi-supervised node classification. Chebychev filters (19)
then take a form that is interpretable in the vertex domain, which is

Y =
k∑
i=0

Ti(L̃)XΘ (22)

where X ∈ Rn×N , Θ ∈ RN×M , n is the number of nodes, N is the number

46 CHAPTER 1. PRESENTATION OF THE FIELD

of input channels (features per node), and M is the number of output
feature maps. On the left, powers of L̃ diffuse the graph signal X to share
node information. On the right, Θ maps the diffused signals to another
representation. So in essence, this formulation is more a vertex-domain
method. They found that the best performing filters were expressed in a
simplified form

Y = ÃXΘ (23)

where Ã is the normalized adjacency matrix of the graph to which self-
loops are added. They call the architecture composed with these filters
a Graph Convolution Network (GCN). Similarly, ÃX shares node infor-
mation via the edges and Θ makes the model learns. This formulation
attracted a lot of research attention and was, in particular, extended with
attention mechanism (no pun intended), inspired from the field of neural
machine translation (Bahdanau et al., 2014). A review is done by Lee et al.,
2018.

For example, Velickovic et al., 2017, propose a model that learns attention
in a local receptive field. They call it Graph ATtention network (GAT). The
attention mechanism is parameterized by a neural network a, containing
a single FC layer (g,LeakyReLU), which takes as input a couple of neigh-
boring nodes (i, j) and outputs a scalar αi,j . The attention that i deserves
to j is:

αi,j = softmaxj (a(X[i, :] Θ ‖ X[j, :] Θ)) (24)

where ‖ denotes concatenation. In a sense, a learns which input feature
maps are most useful to describe the attention a node should deserve to
another. The forward propagation is done similarly than (23), but with a
matrix Ak filled with the attention coefficients αi,j instead of Ã. They also
propose that the model learns multiple attention heads, so that a GAT

1.3. DEEP LEARNING ON GRAPHS 47

layer amounts to:

Y =
Kn

k=1

AkXΘk (25)

or Y =
1

K

K∑
k=1

AkXΘk (26)

Another method called Topology Adaptive GCN (TAGCN, Du et al., 2017)
uses a convolution filter borrowed from graph signal processing litera-
ture (Sandryhaila and Moura, 2013), which is defined in the vertex do-
main as:

Y [:, f] =
N∑
c=1

(
K∑
k=1

Θk[c, f] Ãk

)
X[:, c] (27)

It can be rewritten as:

Y =
K∑
k=1

ÃkXΘk (28)

Each successive powers of the normalized adjacency matrix Ã allows for
considering wider neighborhoods.
Other works extending or resembling GCN are numerous in recent days
(e.g. Niepert and Garcia-Duran, 2018). We do not cover them since that
their novelty compared to GCN is limited.

In the next chapter, we study how to characterize a convolution of graph
signals in the vertex domain.

48 CHAPTER 1. PRESENTATION OF THE FIELD

Chapter 2

Convolution of graph signals
Contents

Chapter overview . 50

2.1 Analysis of the classical convolution 52

2.1.1 Properties of the convolution 52

2.1.2 Characterization on grid graphs 53

2.1.3 Usefulness of convolutions in deep learning 57

2.2 Construction on the vertex set 59

2.2.1 Preliminaries . 60

2.2.2 Steered construction from groups 62

2.2.3 Construction under group actions 66

2.2.4 Mixed domain formulation 70

2.3 Inclusion of the edge set in the construction . . . 74

2.3.1 Edge-constrained convolutions 74

2.3.2 On properties of the corresponding operators . . . 78

2.3.3 Locality-preserving convolutions 80

2.3.4 Checkpoint summary 83

2.4 From groups to groupoids 84

2.4.1 Motivation . 84

2.4.2 Definition of notions related to groupoids 85

2.4.3 Construction of partial convolutions 87

2.4.4 Construction of path convolutions 92

2.5 Conclusion . 98

49

50 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

Chapter overview

Defining a convolution of signals over graph domains is a challenging
problem. If the graph is not a grid graph, there exists no natural exten-
sion of the Euclidean convolution. In Section 2.1, we analyze the reasons
why the Euclidean convolution operator is useful in deep learning. In
particular, we recall a classical characterization: that convolution opera-
tors are exactly the class of linear functions that are equivariant to trans-
lations (Theorem 41). Therefore, we then search for domains onto which
a convolution with these properties can be naturally obtained. This leads
us to put our interest on representation theory and convolutions defined
on groups. Since the Euclidean convolution is just a particular case of
the group convolution, it makes perfect sense to steer our construction
in this direction. In Section 2.2, we seek to transfer the definition of the
group convolution onto the vertex domain, through its symmetric group.
To obtain the wanted characterization, we will see that we need to base
our construction on actions of groups, rather than on their elements. We
manage to obtain it should we fix an equivariant mapping between the
active group and the vertex domain (Theorem 54). Then, we propose a
mixed formulation of this convolution as a binary operation between a
signal defined on the vertex domain and a signal defined on the cor-
responding group, for which we demonstrate that the characterization
also holds under abelianity (Corrolary 61). In Section 2.3, we introduce
the role of the edge set and see how it influences the construction. In
particular, we define a notion of edge constraint and a notion of locality
preservation. For both, we obtain a characterization of graphs that admit a
natural construction of convolutions with this property (Theorem 65 and
Theorem 73). We analyze the notions of locality and weight sharing in
this construction, and give a formulation for small kernels. At this point,
with the obtained theorems we are able to describe convolutions on any

51

graphs, as convolutions on appropriate subgraphs. Then, in Section 2.4,
we relax some aspect of the construction to better adapt it to general
graphs. We explain why a construction based on groups is less interest-
ing for some graphs, and introduce the notion of groupoid. We extend
the previous construction with groupoids of partial transformations, and
prove that under a mild condition the characterization by equivariance is
preserved (Theorem 83). Finally, we extend it another time with another
type of groupoid, that we call path groupoids. Path groupoids allow to
tackle the more general case, and for them we obtain the characterization
should we fix a way to traverse the vertex set using a subset of the edge
set (Theorem 90), but at the price of allowing more degenerated cases.
We summarize our constructions in a conclusive Section 2.5. The result of
this chapter is the obtention of a set of general expressions and theorems
that describe convolutions of graph signals.

52 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

2.1 Analysis of the classical convolution

In this section, we are exposing a few properties of the classical convolu-
tion that a generalization to graphs would likely try to preserve. For now
let’s consider a graph G agnostically of its edges i.e. G ∼= V is just the set
of its vertices.

2.1.1 Properties of the convolution

Consider an edge-less grid graph i.e. G ∼= Z2. By restriction to compactly
supported signals, this case encompass the case of images.

Definition 36. Convolution on S(Z2)

Recall that the (discrete) convolution between two signals s1 and s2 over
Z2 is a binary operation in S(Z2) defined as:

∀(a, b) ∈ Z2, (s1 ∗ s2)[a, b] =
∑
i

∑
j

s1[i, j] s2[a− i, b− j]

Definition 37. Convolution operator
A convolution operator is a function of the form fw : x 7→ x∗w, where x and
w are signals of domains for which the convolution ∗ is defined. When ∗
is not commutative, we differentiate the right operator x 7→ x ∗w from the
left one x 7→ w ∗ x.

The following properties of the convolution on Z2 are of particular interest
for our study.

Linearity
Operators produced by the convolution are linear. So they can be used as
linear parts of layers of neural networks.

2.1. ANALYSIS OF THE CLASSICAL CONVOLUTION 53

Locality and weight sharing
When w is compactly supported on K, an impulse response fw(x)[a, b]

amounts to a weighted aggregation of entries of x in a neighborhood of
(a, b), called the Local Receptive Field (LRF). The weight kernel w used for
the aggregation is fixed w.r.t. (a, b), so that we say that the weights are
shared.

Commutativity
This convolution is commutative. However, it won’t necessarily be the
case on other domains.

Equivariance to translations
Convolution operators are equivariant to translations. Below, we show
that the converse of this result also holds with Theorem 41.

2.1.2 Characterization on grid graphs

We first define what a transformation of a domain is, and how it can be
extended to signals defined on this domain.

Definition 38. Transformation
A transformation f : V → V is a function with same domain and codomain.
The set of transformations is denoted Φ(V). The set of invertible transfor-
mations is denoted Φ∗(V) ⊂ Φ(V). If V is a linear space, the set of its
linear transformation is denoted L(V).

Remark. Note that Φ∗(V) forms what is usually called the symmetric
group of V .

Φ∗(V) can move signals of S(V) by linear extension of its group action, as
we explain with the lemma that follows.

54 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

Lemma 39. Extension of Φ∗(V) to L(S(V))

An invertible transformation f ∈ Φ∗(V) can be extended linearly to the
signal space S(V), and we have:

∀s ∈ S(V),∀v ∈ V, f(s)[v] = s[f−1(v)]

Proof. Let s ∈ S(V), f ∈ Φ∗(V), Lf ∈ L(S(V)) s.t. ∀v ∈ V, Lf(δv) = δf(v).
Then, by linear decomposition of s on the family of Dirac signals, we
have:

Lf (s) =
∑
v∈V

s[v]Lf (δv)

=
∑
v∈V

s[v] δf(v)

So, ∀v ∈ V, Lf (s)[v] = s[f−1(v)]

Lf extends f to S(V). When there is no ambiguity, we use the same sym-
bol for f(.) and Lf (.).

For translations, we use the following formalism.

Definition 40. Translation on S(Z2)

A translation on Z2 is defined as a transformation t ∈ Φ∗(Z2) such that

∃(a, b) ∈ Z2,∀(x, y) ∈ Z2, t(x, y) = (x+ a, y + b)

By Lemma 39, it also acts on S(Z2) with the notation ta,b i.e.

∀s ∈ S(Z2),∀(x, y) ∈ Z2, ta,b(s)[x, y] = s[x− a, y − b]

The next theorem fully characterizes convolution operators with their
translational equivariance property. This can be seen as a discretization

2.1. ANALYSIS OF THE CLASSICAL CONVOLUTION 55

of a classic result from the theory of distributions (Schwartz, 1957).

Theorem 41. Characterization of convolution operators on S(Z2)

On real-valued signals over Z2, the class of linear transformations that are
equivariant to translations is exactly the class of convolutive operations
i.e.

∃w ∈ S(Z2), f = . ∗ w ⇔

f ∈ L(S(Z2))

∀t ∈ T (S(Z2)), f ◦ t = t ◦ f

Proof. The result from left to right is a direct consequence of the defini-
tions:

∀s ∈ S(Z2),∀s′ ∈ S(Z2),∀(α, β) ∈ R2,∀(a, b) ∈ Z2,

fw(αs+ βs′)[a, b] =
∑
i

∑
j

(αs+ βs′)[i, j]w[a− i, b− j]

= αfw(s)[a, b] + βfw(s′)[a, b] (linearity)

∀s ∈ S(Z2),∀(x, y) ∈ Z2,∀(a, b) ∈ Z2,

fw ◦ tx,y(s)[a, b] =
∑
i

∑
j

tx,y(s)[i, j]w[a− i, b− j]

=
∑
i

∑
j

s[i− x, j − y]w[a− i, b− j]

=
∑
i′

∑
j′

s[i′, j′]w[a− i′ − x, b− j′ − y] (29)

= fw(s)[a− x, b− y]

= tx,y ◦ fw(s)[a, b] (equivariance)

Now let’s prove the result from right to left.

Let f ∈ L(S(Z2)), s ∈ S(Z2) and we suppose that f commutes with
translations. By linear decomposition of s on the family of Dirac signals,

56 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

we have:

f(s) =
∑
i

∑
j

s[i, j] f(δi,j)

=
∑
i

∑
j

s[i, j] f ◦ ti,j(δ0,0)

=
∑
i

∑
j

s[i, j] ti,j ◦ f(δ0,0)

By denoting w = f(δ0,0) ∈ S(Z2), we obtain:

∀(a, b) ∈ Z2, f(s)[a, b] =
∑
i

∑
j

s[i, j] ti,j(w)[a, b] (30)

=
∑
i

∑
j

s[i, j]w[a− i, b− j]

i.e. f(s) = s ∗ w

For example, on Figure 8, f is a convolution operator if, and only if, this
diagram commutes.

translation

f f

translation

Figure 8: Commutative diagram when f is a convolution operator

2.1. ANALYSIS OF THE CLASSICAL CONVOLUTION 57

2.1.3 Usefulness of convolutions in deep learning

Equivariance property of CNNs

In deep learning, an important argument in favor of CNNs is that con-
volutional layers are equivariant to translations. Intuitively, that means
that a detail of an object in an image should produce the same features
independently of its position in the image.

Lossless superiority of CNNs over MLPs

The converse result, as a consequence of Theorem 41, is never mentioned
in deep learning literature. However it is also a strong one. For example,
let’s consider a linear function that is equivariant to translations. Thanks
to the converse result, we know that this function is a convolution op-
erator parameterized by a weight vector w, fw : . ∗ w. If the domain is
compactly supported, as in the case of images, we can break down the
information of w in a finite number nq of kernels wq with small com-
pact supports of same size (for instance of size 2 × 2), such that we have
fw =

∑
q∈{1,2,...,nq} fwq . The convolution operators fwq are all in the search

space of 2 × 2 convolutional layers. In other words, every translational
equivariant linear function can have its information parameterized by
these layers. So that means that the reduction of parameters from an MLP
to a CNN is done without loss of expressivity (provided the objective
function is known to bear this property). Besides, it also helps the train-
ing to search in a much more confined space. For example, on CIFAR-10

(see description in Section 1.3.3), CNNs reportedly attain up to 2.31% er-
ror on classification (Yamada et al., 2018), while MLPs plateaued at 21.38%
(Lin et al., 2015). Intuitively, the reason for this success is simplification by
symmetry: the supposed translational equivariance of the objective func-
tion is a symmetry that is exploited by the convolution layer to simplify
its input.

58 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

Methodology for extending to general graphs
Hence, in our construction, we will try to preserve the characterization
from Theorem 41 since it is mostly the reason why they are successful in
deep learning. Note that other useful properties are also a consequence
of this characterization. For example, the fact that convolutional layers
have less parameters than a dense layer is also a consequence of this
characterization.

2.2. CONSTRUCTION ON THE VERTEX SET 59

2.2 Construction on the vertex set

As Theorem 41 is a complete characterization of convolutions, it can be
used to define them i.e. convolution operators can be constructed as the
set of linear transformations that are equivariant to translations. However,
in the general case where G is not a grid graph, translations are not de-
fined, so that construction needs to be generalized beyond translational
equivariances.
In mathematics, convolutions are more generally defined for functions
defined over a group structure. The classical convolution that is used
in deep learning is just a narrow case where the domain group is an
Euclidean space. Therefore, constructing a convolution on graphs should
start from the more general definition of convolution on groups rather
than convolution on Euclidean domains.
Our construction is motivated by the following questions:
• Does the equivariance property holds ? Does the characterization

from Theorem 41 still holds ?
• Is it possible to extend the construction on non-group domains, or

at least on mixed domains ? (i.e. one signal is defined over a set, and
the other is defined over its transformations).
• Can a group domain draw an underlying graph structure ? Is the

group convolution naturally defined on this class of graphs ?
• Can we characterize graphs accepting our construction ?

In this section, we first aim at transferring the group convolution onto the
vertex set. Then, in Section 2.3, we will see the implications of considering
the edge set in the process.

60 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

2.2.1 Preliminaries

We first recall preliminary notions about groups and group convolutions.

Definition 42. Group
A group Γ is a set equipped with a closed, associative and invertible
composition law that admits a unique left-right identity element e.

When the law is commutative, the group is said to be abelian. The group
convolution extends the notion of the classical discrete convolution and
is defined as follows.

Definition 43. Group convolution
Let a group Γ, the group convolution between two signals s1 and s2 ∈ S(Γ)

is defined as:

∀h ∈ Γ, (s1 ∗Γ s2)[h] =
∑
g∈Γ

s1[g] s2[g−1h]

provided at least one of the signals has finite support if Γ is not finite.

We call left multiplication the transformation Lg : h 7→ gh, and right multi-
plication the transformation Rg : h 7→ hg. Then, thanks to Lemma 39, the
group convolution can be rewritten with the functional formulation:

s1 ∗Γ s2 =
∑
g∈Γ

s1[g]Lg(s2) (31)

=
∑
g∈Γ

s2[g]Rg(s1) (32)

which would then be commutative if, and only if, Γ were abelian.
The group convolution preserves the characterization from Theorem 41.

Theorem 44. Characterization of group convolution operators
Let a group Γ, let f ∈ L(S(Γ)),

2.2. CONSTRUCTION ON THE VERTEX SET 61

(i) f is a group convolution right operator ⇔ f is equivariant to left
multiplications,

(ii) f is a group convolution left operator ⇔ f is equivariant to right
multiplications,

(iii) f is a group convolution commutative operator ⇔ f is equivariant
to multiplications.

Proof. The proof is similar than the proof of Theorem 41.

⇒ : Given w ∈ S(Γ), let fR = . ∗Γ w, fL = w ∗Γ ., s ∈ S(Γ), and p ∈ Γ.
We have:

(Lp ◦ fR)(s) = Lp(s ∗Γ w) (Rp ◦ fL)(s) = Rp(w ∗Γ s)

= Lp

(∑
g∈Γ

s[g]Lg(w)

)
= Rp

(∑
g∈Γ

s[g]Rg(w)

)
=
∑
g∈Γ

s[g] (Lp ◦ Lg)(w) =
∑
g∈Γ

s[g] (Rp ◦Rg)(w)

=
∑
pg∈Γ

s[p−1pg]Lpg(w) =
∑
gp∈Γ

s[gpp−1]Rgp(w)

=
∑
g∈Γ

Lp(s)[g]Lg(w) =
∑
g∈Γ

Rp(s)[g]Rg(w)

= Lp(s) ∗Γ w = w ∗Γ Rp(s)

= (fR ◦ Lp)(s) = (fL ◦Rp)(s)

⇐ : We show the converse only for (i) since it is similar for (ii). Let
f ∈ L(S(Γ)). We suppose ∀p ∈ Γ, Lp ◦ f = f ◦ Lp. First, note that

∀h ∈ Γ, Lg(δg)[h] = 1⇔ δg[g
−1h] = 1

⇔ g−1h = g

⇔ h = e

i.e. Lg(δg) = δe

62 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

Then, we define w = f(δe). Let s ∈ S(Γ), we have:

f(s) =
∑
g∈Γ

s[g] f(δg)

=
∑
g∈Γ

s[g] (f ◦ Lg)(δe)

=
∑
g∈Γ

s[g] (Lg ◦ f)(δe)

=
∑
g∈Γ

s[g]Lg(w)

= s ∗Γ w

(iii) derives from (i) and (ii).

2.2.2 Steered construction from groups

For a graph G = 〈V,E〉 and a subgroup Γ ⊂ Φ∗(V) of its invertible trans-
formations, Definition 43 is applicable for S(Γ), but not for S(V) as V is
not a group. Nonetheless, we will try to use the group convolution on
S(Γ) to construct the convolutions on S(V). Our goal is to construct a
formulation like (31) while preserving Theorem 44 at the same time.

For now, let us assume that there is a subgroup Γ ⊂ Φ∗(V), which we

associate through a one-to-one correspondence ϕ with V . We denote Γ
ϕ∼=

V and gv
ϕ7→ v. Then, the linear morphism ϕ̃ from S(Γ) to S(V) defined

on the Dirac bases by ϕ̃(δgv) = δϕ(gv) is a linear isomorphism. Hence S(V)

inherits the same structural properties as S(Γ). For the sake of notational
simplicity, we will use the same symbol ϕ for both ϕ and ϕ̃ (as done
between f and Lf). A commutative diagram between the sets is depicted
on Figure 9.

2.2. CONSTRUCTION ON THE VERTEX SET 63

Γ V

S(Γ) S(V)

ϕ

S S

ϕ̃

Figure 9: Commutative diagram between sets

We naturally obtain the following relation, which put in simpler words
means that signals on S(Γ) are mapped to S(V) when ϕ is simultaneously
applied on both the signal space and its domain. At the same time, this
relation is reminiscent of Lemma 39.

Lemma 45. Relation between S(Γ) and S(V)

∀s ∈ S(Γ),∀u ∈ V, ϕ(s)[u] = s[ϕ−1(u)] = s[gu]

Proof.

∀s ∈ S(Γ), ϕ(s) = ϕ(
∑
g∈Γ

s[g] δg) =
∑
g∈Γ

s[g]ϕ(δg) =
∑
g∈Γ

s[g] δϕ(g)

=
∑
v∈V

s[gv] δv

So ∀u ∈ V, ϕ(s)[u] = s[gu].

With this lemma, we can steer the definition of the group convolution
from S(Γ) to S(V) as in the following definition.

Remark. Note that the following definition is just a step in our construc-
tion since we will see that it is not enough to obtain the wanted counter-
part of Theorem 41.

64 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

Definition 46. Vertex-group convolution

Let a subgroup Γ ⊂ Φ∗(V) such that Γ
ϕ∼= V . The vertex-group convolution

between two signals s1 and s2 ∈ S(V) is defined as:

∀u ∈ V, (s1 ∗Γ s2)[u] =
∑
v∈V

s1[v] s2[ϕ(g−1
v gu)]

We use the same symbol ∗Γ since the group and vertex-group convolution
are inherently the same operation but applied to different domains.

Lemma 47. Relation between group and vertex-group convolutions

Let a subgroup Γ ⊂ Φ∗(V) such that Γ
ϕ∼= V ,

∀s1, s2 ∈ S(Γ),∀u ∈ V, (ϕ(s1) ∗Γ ϕ(s2))[u] = (s1 ∗Γ s2)[gu]

Proof. Using Lemma 45,

(ϕ(s1) ∗Γ ϕ(s2))[u] =
∑
v∈V

ϕ(s1)[v]ϕ(s2)[ϕ(g−1
v gu)]

=
∑
v∈V

s1[gv] s2[g−1
v gu]

=
∑
g∈Γ

s1[g] s2[g−1gu]

= (s1 ∗Γ s2)[gu]

Let f be a convolution right operator on S(V), s.t. f = . ∗Γ w, and f̃ be its

2.2. CONSTRUCTION ON THE VERTEX SET 65

counterpart on S(Γ), i.e. f̃ = . ∗Γ ϕ
−1(w). Then, we have

∀s ∈ S(V), f(s)[u] = f̃(ϕ−1(s))[gu] (Lemma 47)

= ϕ(f̃(ϕ−1(s)))[u] (Lemma 45)

i.e. f = ϕ ◦ f̃ ◦ ϕ−1 (33)

This is also better depicted on a commutative diagram, see Figure 10.

S(Γ) S(V)

S(Γ) S(V)

f̃ f

ϕ−1

ϕ

Figure 10: Commutative diagram of (33)

And so, given p ∈ Γ, the equivariance of f̃ rewrites for f :

ϕ ◦ Lp ◦ f̃ ◦ ϕ−1 = ϕ ◦ f̃ ◦ Lp ◦ ϕ−1 (34)

i.e. (ϕ ◦ Lp ◦ ϕ−1) ◦ f = f ◦ (ϕ ◦ Lp ◦ ϕ−1) (35)

That is, if we paraphrase Theorem 41, the class of vertex-group convo-
lution operators is the class of linear operators that are equivariant to
{ϕ ◦ Lp ◦ ϕ−1, p ∈ Γ}. However, our goal is to obtain equivariance to Γ.
Since Lp is not exactly an object of Γ, but a realization of a group action,
we are going to consider group actions next.

66 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

2.2.3 Construction under group actions

We have been previously using the notion of group action implicitly, let
us define it here.

Definition 48. Group action
An action of a group Γ on a set V is a homomorphism L : Γ→ Φ∗(V).

In particular, L(Γ) is a subgroup of the symmetric group Φ∗(V).

Remark. Given g ∈ Γ, we denote Lg = L(g), or just g(.) when there is
no ambiguity. Lg is called the action of g by L on V . When a group Γ

is in one-to-one correspondence with a set V , we will abusively attribute
actions of the objects of the group to their corresponding objects in the set.

Hence, note that an group element g ∈ Γ can act on both Γ through
the left multiplication L and on V . This ambivalence can be seen on a
commutative diagram, see Figure 11.

gu gvgu

u ϕ(gvgu)

Lgv

ϕ ϕ

(36)
gv

Figure 11: Commutative diagram. All arrows except for the one labeled
with (36) are always true.

For (36) to be true means that ϕ is an equivariant map i.e. whether the
mapping is done before or after the action of Γ has no impact on the
result. When such ϕ exists, Γ and V are said to be equivalent and we
denote Γ ≡ V .

2.2. CONSTRUCTION ON THE VERTEX SET 67

Definition 49. Equivariant map
A map ϕ from a group Γ acting on the destination set V and itself, is said
to be an equivariant map if

∀g, h ∈ Γ, g(ϕ(h)) = ϕ(g(h))

Remark. For example, if g acts on Γ through left multiplication then g(h) =

Lg(h) = gh.

Suppose we have Γ
ϕ∼= V . If we also have that Γ ≡ V , we are interested to

know if then ϕ exhibits the equivalence and under which auto-action.

Definition 50. ϕ-Equivalence

A group Γ acting on V such that Γ
ϕ∼= V , is said to be (left) ϕ-equivalent if

ϕ is a bijective equivariant map under left multiplication i.e. :

∀v, u ∈ V, gv(u) = ϕ(gvgu) (36)

i.e. ∀g ∈ Γ, g(.) = ϕ ◦ Lg ◦ ϕ−1 (37)

It is said to be right ϕ-equivalent if ϕ is a bijective equivariant map under
right multiplication i.e. :

∀v, u ∈ V, gv(u) = ϕ(gugv) (38)

i.e. ∀g ∈ Γ, g(.) = ϕ ◦Rg ◦ ϕ−1 (39)

We denote Γ
ϕ
≡ V . Unless stated otherwise, we will implicitly consider it

is under left multiplication.

68 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

Remark. For example, translations on the grid graph, with ϕ(ti,j) = (i, j),
are ϕ-equivalent since ti,j(a, b) = ϕ(ti,j ◦ ta,b). However, with ϕ(ti,j) =

(-i, -j), they would not be ϕ-equivalent since in general ti,j(a, b) 6= ti,j(-a, -b).

We are now equipped to define the vertex-action convolution.

Definition 51. Vertex-action convolution

Let a group Γ acting on V such that Γ
ϕ∼= V . The vertex-action convolution

between two signals s1 and s2 ∈ S(V) is defined as:

s1 ∗V s2 =
∑
v∈V

s1[v] gv(s2) (40)

=
∑
g∈Γ

s1[ϕ(g)] g(s2) (41)

The two expressions differ on the domain upon which the summation
is done. Expression (40) puts the emphasis on each vertex and its corre-
sponding action, whereas expression (41) puts the emphasis on the action
of Γ.

Lemma 52. Relation with vertex-group convolution
There is ϕ-equivalence if, and only if, vertex-group and vertex-action con-
volutions are equal, i.e. Γ

ϕ
≡ V ⇔ ∗Γ = ∗V

Proof.

∀s1, s2 ∈ S(V),

s1 ∗Γ s2 = s1 ∗V s2

⇔ ∀u ∈ V,
∑
v∈V

s1[v] s2[ϕ(g−1
v gu)] =

∑
v∈V

s1[v] s2[g−1
v (u)] (42)

Hence, the direct sense is obtained by applying (36).
For the converse, given u, v ∈ V , we first realize (42) for s1 := δv, obtaining
s2[ϕ(g−1

v gu)] = s2[g−1
v (u)], which we then realize for a real signal s2 having

2.2. CONSTRUCTION ON THE VERTEX SET 69

no two equal entries, obtaining ϕ(g−1
v gu) = g−1

v (u). From the latter we
finally obtain (36) with the one-to-one correspondence gv′ := g−1

v .

Remark. Note that we used the fact that the ϕ-equivalence is implicitly left.
If it were right, we would have instead s1 ∗Γ s2 = s2 ∗V s1.

We now coin the term ϕ-convolution, for when there is ϕ-equivalence.

Definition 53. ϕ-convolution
The ϕ-convolution is defined as the vertex-action convolution such that
Γ

ϕ
≡ V , i.e. given s1 and s2 ∈ S(V), we have:

s1 ∗ϕ s2 = s1 ∗V s2

= s1 ∗Γ s2

This time we do obtain equivariance to Γ as expected, and the full charac-
terization as well.

Theorem 54. Characterization of ϕ-convolution right operators
Let a group Γ acting on V s.t. Γ

ϕ
≡ V , let f ∈ L(S(Γ)), then:

f is a ϕ-convolution right operator⇔ f is equivariant to Γ

Proof. As a consequence of (35), (37), Lemmas 47, and 52, we can use
bullet (i) of Theorem 44 to obtain the proof.

Corollary 55. Characterization of ϕ-convolution operators
Let a group Γ acting on V s.t. Γ

ϕ
≡ V , let f ∈ L(S(Γ)), then:

f is equivariant to Γ⇔ f is a ϕ-convolution operator s.t. its laterality is
opposed to the laterality of the ϕ-equivalence

Proof. As per Theorem 54 and its counterpart for bullet (ii) of Theorem 44.

70 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

Remark. The counterpart of bullet (iii) of Theorem 44 would just inform
that it is equivalent to say that either the ϕ-equivalence is commutative,
or the ϕ-convolution is commutative, or Γ is abelian.

Theorem 54 tells us that in order to define a convolution on the vertex
domain of a graph G = 〈V,E〉, all we need is a group Γ acting on the
vertex set V (or on a subset of V), that is equivalent to it. The choice
of Γ can be done with respect to the edge set E. This is discussed in
more details in Section 2.3, where we will see that in fact, we only need a
generating set of Γ.
The previous construction relies on exposing a bijective equivariant map ϕ
between Γ and V . In the next subsection, we show that in case Γ is abelian,
we even need not expose ϕ and the characterization still holds.

2.2.4 Mixed domain formulation

From (41), we can define a mixed domain convolution i.e. that is defined
for r ∈ S(Γ) and s ∈ S(V), without the need of expliciting ϕ.

Definition 56. Mixed domain convolution
Let a group Γ acting on V . The mixed domain convolution between two
signals r ∈ S(Γ) and s ∈ S(V) results in a signal r ∗µ s ∈ S(V) and is
defined as:

r ∗µ s =
∑
g∈Γ

r[g] g(s)

We call it µ-convolution. From a practical point of view, this expression of
the convolution is useful because it relegates ϕ as an underpinning object.

2.2. CONSTRUCTION ON THE VERTEX SET 71

Lemma 57. Relation with vertex-action convolution
∀ϕ ∈ bij(Γ, V),∀(r, s) ∈ S(Γ)× S(V),

r ∗µ s = ϕ(r) ∗V s

Proof. Let ϕ ∈ bij(Γ, V), (r, s) ∈ S(Γ)× S(V),

r ∗µ s =
∑
g∈Γ

r[g] g(s) =
∑
v∈V

r[gv] gv(s)
(�)
=
∑
v∈V

ϕ(r)[v] gv(s)

= ϕ(r) ∗V s

Where
(�)
= comes from Lemma 45.

In other words, ∗µ is a convenient reformulation of ∗V .

Lemma 58. Relation with group, vertex-group and ϕ-convolutions
Let ϕ ∈ bij(Γ, V), (r, s) ∈ S(Γ)× S(V), we have:

Γ
ϕ
≡ V ⇔ ∀v ∈ V, (r ∗µ s)[v] = (r ∗Γ ϕ

−1(s))[gv]

⇔ r ∗µ s = ϕ(r) ∗Γ s

⇔ r ∗µ s = ϕ(r) ∗ϕ s

Proof. On one hand, Lemma 57 gives r ∗µ s = ϕ(r)∗V s. On the other hand,
Lemma 47 gives ∀v ∈ V, (r ∗Γ ϕ

−1(s))[gv] = (ϕ(r) ∗Γ s)[v]. Then Lemma 52

concludes.

From µ-convolution, a left operator can be used as a layer of a neural
network since it is defined over S(V), whereas right operators are not.

72 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

Proposition 59. Condition of equivariance for ∗µ
Let a group Γ acting on V . Γ is abelian, if and only if, µ-convolution left
operators are equivariant to Γ.

Proof. Let w, g ∈ Γ, and define fw : s 7→ w∗µs. In the following expressions,
Γ is abelian if and only if (43) and (44) are equal (the converse is obtained
by particularizing on well chosen signals):

(fw ◦ g)(s) =
∑
h∈Γ

w[h]hg(s) (43)

=
∑
h∈Γ

w[h] gh(s) (44)

= g

(∑
h∈Γ

w[h]h(s)

)
= g(w ∗µ s)

= (g ◦ fw)(s)

Remark. We used this proof because it is simpler and does not require one-
to-one correspondence between Γ and V . However, the reason behind the
abelian condition is that mixed domain convolutions are expressed as
if the underlying ϕ-equivalence were left. Therefore it is a consequence
of Corrolary 55. Note that if we used a right expression for ∗µ (which
amounts to commute the operands), we would be interested in right
operators instead of left ones, which would just change the problem to
"right-right" instead of "left-left" which would also require abelianity for
the equivariance.

We then coin the term m-convolution, for which Γ is abelian.

2.2. CONSTRUCTION ON THE VERTEX SET 73

Definition 60. M-convolution
Let a group Γ acting on V . The m-convolution is defined as a mixed do-
main convolution such that Γ is an abelian subgroup of Φ∗(V).

Corollary 61. Characterization of M-convolution left operators
Let a group Γ acting on V s.t. Γ ∼= V , and Γ is abelian. Let f ∈ L(S(Γ)),
then:

f is a m-convolution left operator⇔ f is equivariant to Γ

Proof. As a corollary of Corrolary 55 and Proposition 59.

Remark. Note that despite abelianity, we do not call them "commutative"
operators but still call "left" operators since the domain is mixed. Also,
note that unlike for Proposition 59, the converse of Corrolary 61 requires
Γ and V to be in one-to-one correspondence.

When the group domain is abelian, it is preferable to use ∗m rather than
∗ϕ since ϕ is not needed. When Γ and V are not in one-to-one correspon-
dence, the equivariance is preserved but not the characterization. This
is not a limitation on the size of the kernel w of corresponding convolu-
tion operators since small kernels can be obtained by limiting the support
of w.

The obtained constructions ϕ- and m-convolutions are independent of the
edge set. In fact, they characterize more generally convolutions for signals
defined on sets. Next, we will see what happens should we also consider
the edge set.

74 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

2.3 Inclusion of the edge set in the construction

The constructions from the previous section involve the vertex set V and
a group Γ acting on it. Therefore, it looks natural to try to relate the edge
set and Γ.
There are two point of views. Either Γ describes an underlying graph
structure G = 〈V,E〉, either G can be used to define a relevant subgroup Γ

to which the produced convolutive operators will be equivariant. Both ap-
proaches will help characterize classes of graphs that can support natural
definitions of convolutions.

2.3.1 Edge-constrained convolutions

Definition 62. Edge-constrained transformation
An edge-constrained (EC) transformation on a graph G = 〈V,E〉 is a trans-
formation f : V 7→ V such that

∀u, v ∈ V, f(u) = v ⇒ u
E∼ v

Figure 12 gives a basic example of an EC transformation.

d

a b

c

e

f(a) ∈ {c, d}
f(a) /∈ {b, e}

Figure 12: Depiction of an EC transformation

We denote Φec(G) and Φ∗
ec

(G) the sets of EC and invertible EC transfor-
mations. Note that Φ∗

ec
(G) is not a group. Therefore, we are interested in

generating sets of groups.

2.3. INCLUSION OF THE EDGE SET IN THE CONSTRUCTION 75

Definition 63. Edge-constrained convolution
An edge-constrained (EC) convolution on a graph G = 〈V,E〉 is a ϕ- or m-
convolution of group Γ, such that Γ is generated by a set U which actions
on V are EC transformations.

This leads us to consider Cayley graphs (Cayley, 1878).

Definition 64. Cayley graph
Let a group Γ and one of its generating set U . The Cayley graph generated
by U , is the digraph ~G = 〈V,E〉 such that V = Γ and E is such that, either:

(i) ∀a, b ∈ Γ, a→ b⇔ ∃g ∈ U , ga = b (left Cayley graph)
(ii) ∀a, b ∈ Γ, a→ b⇔ ∃g ∈ U , ag = b (right Cayley graph)

We denote ~G = 〈U ,Γ, E〉. If Γ is abelian, we call it an abelian Cayley graph.
Also, we call Cayley subgraph a directed subgraph that is isomorphic to a
Cayley graph.

Remark. Note that in the literature, a Cayley graph is usually what we
defined as a right one.

In the case of left Cayley graphs of vertex set Γ, it is clear that the ϕ-
convolution based on Γ is EC (since the ϕ-equivalence is implicitly under
left multiplication). More precisely, we obtain the following characteriza-
tion:

Theorem 65. EC characterization by Cayley subgraphs
Let a graph G = 〈V,E〉,

(i) its left Cayley subgraphs characterize its EC ϕ-convolutions,
(ii) its abelian Cayley subgraphs characterize its EC m-convolutions.

Proof. We show the result only in the first case since the proof in the
abelian case is similar.

1. Let an EC ϕ-convolution of group Γ. Since ∗ϕ is EC, there is a gen-
erating set U such that its actions are EC. So the graph ~Gs defined

76 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

such that u → v ⇔ ∃g ∈ U , g(u) = v is a subgraph of G, and we
have:

u→ v ⇔ ∃g ∈ U , g(u) = v

⇔ ∃g ∈ U , g(ϕ(gu)) = ϕ(gv)

⇔ ∃g ∈ U , ϕ(ggu) = ϕ(gv) (since (36))

⇔ ∃g ∈ U , ggu = gv

Therefore the subgraph ~Gs and the Cayley graph 〈U ,Γ, Ec〉 are iso-
morphic via ϕ.

2. Let a subgraph ~Gs = 〈Vs, Es〉 that is isomorphic to a left Cayley
graph ~Gc = 〈U ,Γ, Ec〉. Let ψ be a graph isomorphism from Gs to Gc.

Let us define the group action L : Γ→ Φ∗(Vs) inductively as follows:

(a) ∀g ∈ U , Lg(u) = v ⇔ gψ(u) = ψ(v)

(b) Whenever Lg and Lh are defined, the action of gh is defined by
homomorphism as Lgh = Lg ◦ Lh

(c) Whenever Lg is defined, the action of g−1 is defined by homo-
morphism as Lg−1 = L−1

g i.e. Lg−1(u) = v ⇔ ψ(u) = gψ(v)

Note that the induction transfers the property (a) to all g ∈ Γ in a
transitive manner because

Lgh(u) = Lg(Lh(u)) = w ⇔ ∃v ∈ Vs

Lh(u) = v

Lg(v) = w

and

∃v ∈ Vs

hψ(u) = ψ(v)

gψ(v) = ψ(w)
⇔ ghψ(u) = ψ(w)

2.3. INCLUSION OF THE EDGE SET IN THE CONSTRUCTION 77

We must also verify that this construction is well-defined, i.e. when-
ever we define an action with (b) or (c), if the action was already
defined, then they must be equal. This is the case because the homo-
morphism g 7→ Lg on Γ is in fact an isomorphism as

Lg = Lh ⇔ ∀u ∈ V, Lg(u) = Lh(u)

⇔ ∀u ∈ V, gψ(u) = hψ(u)

⇔ g = h

Also note that (c) is needed only in case that Γ is infinite.

Denote ϕ = ψ−1 : gu 7→ u the inverse graph isomorphism. Since (a)
has been transferred from U onto Γ, we have, for all g, h ∈ Γ:

Lg(u) = v ⇔ gψ(u) = ψ(v)

⇔ ϕ(gψ(u)) = v

i.e. Lg(u) = ϕ(ggu)

So Γ
ϕ
≡ V . Furthermore, the corresponding ϕ-convolution is EC be-

cause of (a).

Remark. Note that right ϕ-equivalences are instead characterized by right
Cayley graphs.

Through the former proof, we also obtain the following corollary. Note
that we call an orientation ~Gs = 〈Vs, Es〉 of a graph G = 〈V,E〉, a directed
subgraph with same vertex set Vs = V and such that Es ⊂ E.

78 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

Corollary 66. ϕ is a graph isomorphism from a Cayley graph
Let a graph G = 〈V,E〉, a group Γ of generating set U such that Γ

ϕ
≡

V . Then ϕ is also a graph isomorphism between the left Cayley graph
〈U ,Γ, Ec〉 and an orientation of G.

2.3.2 On properties of the corresponding operators

Until now we have described operators with kernel w of any size. How-
ever, in practice in deep learning we rather use convolution operators
with small kernels. This case is indeed encompassed by kernel of any size
by considering a smaller support. This is convenient with edge-constrained
convolutions, since we can choose a support not larger than the span of
the generating set U , so that an EC convolution operator can be expressed
with only actions of U . We formalize this discussion as follows.

Definition 67. Supporting set
Let fϕw be an EC ϕ-convolution right operator of group Γ. The supporting
set of fϕw is the largest subsetM⊂ Γ such that ϕ(M) ⊂ supp(w).
Let fm

w be an EC m-convolution left operator of group Γ. The supporting
set of fm

w is the largest subsetM⊂ Γ such thatM⊂ supp(w).

Definition 68. Strictly edge-constrained convolution operator
We say that an EC ϕ or m-convolution operator, of group Γ and generating
set U , is strictly edge-constrained (EC*) if its supporting set M ⊂ U and
M is symmetric (i.e. g ∈M⇔ g−1 ∈M).

Remark. EC* convolution operators are simpler to obtain as we can con-
struct them just with the actions U → Φ∗

ec
(G) without composing the

transformations. Also, their complexity is O(kn), where n = |V | is the
order of the graph and k = |M| is the size of the kernel. In comparison,
EC convolutions have complexity up to O(n2).

2.3. INCLUSION OF THE EDGE SET IN THE CONSTRUCTION 79

Regardless of being EC, EC*, or not EC, the supporting setM allows for
writing the operators as a sum with less elements. In the abelian case, the
formulation of fm

w is simplified as:

fm

w (s) =
∑
g∈M

w[g] g(s) (45)

In the non-abelian case, the formulation is less explicit and depends on
the vertex u on which the convolution operator is realized. Since we have

w[g−1
v (u)] 6= 0⇔ g−1

v (u) ∈ ϕ(M)

⇔ g−1
v gu ∈M

⇔ g−1
v ∈Mg−1

u

⇔ v ∈ gu(ϕ(M−1))

where M−1 = {g−1, g ∈ M} (which equals M in the usual case if it is
symmetric). Denote Ku = gu(ϕ(M−1)), fϕw can be rewritten as:

∀u ∈ V, fϕw(s)[u] =
∑
v∈Ku

s[v]w[g−1
v (u)] (46)

Let us call r the root vertex defined as the ϕ-fiber of the identity element e
(i.e. gr = e). We can interpret (46) as if the convolution was first realized
on r with a sum over a vertex patch initially localized on Ke = ϕ(M−1),
and then its realization on another vertex u would amount to move this
patch under the action of gu, exactly like with convolution operators on
Euclidean domains.
From this expression, we can observe the following proposition.

80 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

Proposition 69. Weight sharing
Let a ϕ- or m-convolution operator fw of supporting setM⊂ Γ. Then the
entries of w are shared between each realization of fw.

Proof. By reading (45), this result is obvious for m-convolution operators.
So let us assume that fw is a ϕ-convolution operator. Given a realization
vertex a ∈ V , the non-null entries of w in expression (46) are characterized
by vertices α ∈ Ka. Given another realization vertex b, its non-nil entries
match those of a if, and only if,

g−1
Kb

(b) = g−1
Ka

(a)⇔ g−1
b gKb

= g−1
a gKa

⇔ Kb = gbg
−1
a (Ka) = gbg

−1
a ga(ϕ(M−1))

⇔ Kb = gb(ϕ(M−1))

which is true by definition.

Although the weight-sharing property is preserved and the ϕ-convolution
can be seen as moving a patch Ku around V , the latter patch can have a
different shape for each vertex u. We discuss in the next subsection what
characterizes convolutions for which this shape is stationary.

2.3.3 Locality-preserving convolutions

Euclidean convolution operators have the property of preserving the local
shape, in the sense that the shape of the kernel w is preserved while being
moved over the domain. In the case of graphs, what we call shape is more
formally a subgraph. Therefore, the notion of locality preservation we aim
to define is associated with graph automorphisms.

2.3. INCLUSION OF THE EDGE SET IN THE CONSTRUCTION 81

Definition 70. Locality-preserving convolutions
Let a graph G = 〈V,E〉, we say that a ϕ- or m-convolution, of group Γ, is
locality-preserving (LP) if the actions of Γ are graph automorphisms.

Figure 13 depicts a group action of an LP convolution.

a b

c

a’ b’

c’

g(.)

Figure 13: Local depiction of the action of an LP convolution. The sup-
porting set (red) is moved under the action of g(.) to a subgraph of same
shape.

Similarly than with EC and EC*, we are also interested to particularize
this property for operators with small kernels.

Definition 71. Strictly locality-preserving convolution operator
We say that a ϕ-convolution operator, of supporting setM⊂ Γ, is strictly
locality-preserving (LP*) if every subgraph Ku = gu(Ke) are isomorphic.

Remark. We assume that m-convolution operator are always LP* in the
sense that the sum is always over M. Also note that LP is a stronger
property than LP* (i.e. LP implies LP*) and that LP* and LP are not related
in the same way than EC* and EC.

Similarly than for EC convolutions, LP convolutions can be characterized
with Cayley subgraphs.

82 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

Lemma 72. On left Cayley graphs, right multiplicative auto-actions are
automorphisms (and vice-versa).

Proof. Since a→ b⇔ ∃g, ga = b⇔ ∃g, gah = bh⇔ ah→ bh.

Theorem 73. LP characterization by Cayley subgraphs
Let a graph G = 〈V,E〉,

(i) its right Cayley subgraphs characterize its LP ϕ-convolutions
(ii) its abelian Cayley subgraphs characterize its LP m-convolutions

Proof. Let a group Γ of generating set U . Denote ~GR the right Cayley
graph and ~GL the left one. Let us assume that Γ

ϕ
≡ V . We denote the action

corresponding to the usual left equivalence by gL(.) = ϕ ◦ Lg ◦ ϕ−1, and
the action corresponding to the right equivalence by gR(.) = ϕ ◦ Rg ◦ ϕ−1,
where L and R are the left and right multiplicative auto-actions by Γ on
itself, as in (37) and (39). By Lemma 72, gL(.), that is EC on ~GL, is LP on
~GR, and vice-versa. By Theorem 65, ~GL characterizes gL(.), while naturally

also characterizing ~GR. Therefore, ~GR characterizes gL(.), onto which it is
LP, so is the corresponding ϕ-convolution.

Corollary 74. Characterization of convolutions that are EC and LP
Let a graph G = 〈V,E〉,

(i) if a ϕ-convolution of group Γ is EC and LP then Γ is abelian,
(ii) an m-convolution is EC if, and only if, it is also LP.

Proof. As a consequence of Theorem 65 and Theorem 73.

2.3. INCLUSION OF THE EDGE SET IN THE CONSTRUCTION 83

2.3.4 Checkpoint summary

In Section 2.2, we obtained two formulations of convolutions of signals
on a graph G = 〈V,E〉, ∗ϕ and ∗m, depending on a group Γ, that pre-
serve fully the characterization by equivariance to actions of Γ. The ϕ-
convolution can be used given a bijective equivariant map ϕ between Γ

and a subset Vs ⊂ V , whereas the m-convolution can be used under the
condition that Γ is abelian. Then in Section 2.3, we introduced conditions
related to the edge set E, which leads us to define EC and LP convolu-
tions, that we were able to characterize by Cayley subgraph isomorphism,
and for which we were capable to understand the impact of abelianity.
We also defined EC* and LP* convolution operators, that are closer to
what can be used in deep learning practice. In particular, to define an EC*
convolution operator, we only need to search for a set of actions that is a
generating set of Γ. A practical example will be seen in Section 3.4.
The sets of theorems we obtained are already satisfactory enough to un-
derstand how to convolute signals on any graph, using symmetries de-
fined by a group acting on the vertex domain (or on a subset of the vertex
domain). Therefore we can consider that the main contributions of this
chapter have already been presented.
Nonetheless, symmetries defined by groups can have limitations, since
they may be too perfect for some graphs, as discussed in the next section.
Hence, we can try to extend further the construction with partial symme-
tries defined by groupoids. That is the research avenue that we explore in
the remainder of this chapter.

84 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

2.4 From groups to groupoids

2.4.1 Motivation

One possible limitation coming from searching for Cayley subgraphs is
that they are degree-regular i.e. the in- and the out-degree d = |U| of each
vertex is the same. That is, for a general graph G, the size of the weight
kernel w of an EC* convolution operator fw supported on U is bounded
by d, which in turn is bounded by twice the minimal degree of G (twice
because G is undirected and U can contain every inverse).
There are a lot of possible strategies to overcome this limitation. For ex-
ample:

1. connecting each vertex with its k-hop neighbors, with k > 1,

2. artificially creating new connections for less connected vertices,

3. ignoring less connected vertices,

4. allowing the supporting setM to exceed U i.e. dropping * in EC*.

These strategies require to concede that the topological structure sup-
ported by G is not the best one to support an EC* convolution on it,
which breeds the following question:

• What can we relax in the previous EC* construction in order to un-
bound the supporting set, and still preserve the equivariance char-
acterization?

The latter constraint is a consequence that every vertex of the Cayley sub-
graph ~G must be composable with every generator from U . Therefore, an
answer consists in considering groupoids (Brandt, 1927) instead of groups.
Roughly speaking, a groupoid is almost a group except that its composi-
tion law needs not be defined everywhere. Weinstein, 1996, unveiled the

2.4. FROM GROUPS TO GROUPOIDS 85

benefits to base convolutions on groupoids instead of groups in order to
exploit partial symmetries.

2.4.2 Definition of notions related to groupoids

Definition 75. Groupoid
A groupoid Υ is a set equipped with a partial composition law with do-
main D ⊂ Υ×Υ, called composition rule, that is

1. closed into Υ i.e. ∀(g, h) ∈ D, gh ∈ Υ

2. associative i.e. ∀f, g, h ∈ Υ,

(f, g), (g, h) ∈ D ⇔ (fg, h), (f, gh) ∈ D

(f, g), (fg, h) ∈ D ⇔ (g, h), (f, gh) ∈ D

when defined, (fg)h = f(gh)

3. invertible i.e. ∀g ∈ Υ,∃!g−1 ∈ Υ s.t.

(g, g−1), (g−1, g) ∈ D

(g, h) ∈ D ⇒ g−1gh = h

(h, g) ∈ D ⇒ hgg−1 = h

Optionally, it can be domain-symmetric i.e. (g, h) ∈ D ⇔ (h, g) ∈ D, and
abelian i.e. domain-symmetric with gh = hg.

Remark. Note that left and right inverses are necessarily equal (because
(gg−1)g = g(g−1g)). Also note we can define a right identity element erg =

g−1g, and a left one elg = gg−1, but they are not necessarily equal and
depend on g.

Most definitions related to groups can be adapted to groupoids. In partic-
ular, let’s adapt a few notions.

86 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

Definition 76. Partial transformations groupoid
The partial transformations groupoid Ψ∗(V), is the set of invertible partial
transformations, equipped with the functional composition law with do-
main D such that Dgh = h(Dh) ∩ Dg

(g, h) ∈ D ⇔ Dgh 6= ∅

Remark. Note that a subgroupoid Υ ⊂ Ψ∗(V) is domain-symmetric when
∃v ∈ V, g(v) ∈ Dh ⇔ ∃u ∈ V, h(u) ∈ Dg

Definition 77. Groupoid partial action
A partial action of a groupoid Υ on a set V is a groupoid homomorphism
L : Υ→ Ψ∗(V).

Remark. As usual, we will confound Lg and g(.) when there is no possible
confusion, and we denote DLg = Dg = {v ∈ V, (g, v) ∈ DL}.

Definition 78. Partial equivariant map
A map ϕ from a groupoid Υ partially acting on the destination set V is
said to be a partial equivariant map if

∀g, h ∈ Υ,

ϕ(h) ∈ Dg ⇔ (g, h) ∈ D

g(ϕ(h)) = ϕ(g(h))

Also, ϕ-equivalence between a groupoid and a set is defined similarly
than for groups, with also left multiplicative partial action being implicit.

2.4. FROM GROUPS TO GROUPOIDS 87

2.4.3 Construction of partial convolutions

The expression of the convolution we constructed in the previous section
cannot be applied as is. We first need to extend the algebraic objects we
work with. Extending a partial transformation g on the signal space S(V)

(and thus the convolutions) is a bit tricky, because only the signal entries
corresponding toDg are moved. A convenient way to do this is to consider
the groupoid closure obtained with the addition of an absorbing element.

Definition 79. Zero-closure
The zero-closure of a groupoid Υ, denoted Υ0, is the set obtained by addi-
tion of an absorbing element, denoted 0, such that the groupoid axioms
1, 2 and 3, and the domain D are left unchanged, and

4. the composition law is extended to Υ0 ×Υ0 with ∀(g, h) /∈ D, gh = 0

Remark. Note that this is coherent as the properties 2 and 3 are still par-
tially defined on the original domain D.

Now, we will also extend every other algebraic object used in the expres-
sion of the ϕ-convolution and the m-convolution, so that we can directly
apply our previous constructions.

Lemma 80. Zero-extension of ϕ on V 0

Let a partial equivariant map ϕ : Υ → V . It can be extended to a (total)
equivariant map ϕ : Υ0 → V 0 = V ∪ ϕ(0), such that ϕ(0) /∈ V , that we
denote 0V = ϕ(0), and such that

∀g ∈ Υ0, ∀v ∈ V 0, g(v) =

ϕ(ggv) if gv ∈ Dg
0V else

Proof. We have ϕ(0) /∈ V because ϕ is bijective. Additionally, we must
have ∀(g, h) /∈ D, g(ϕ(h)) = ϕ(gh) = ϕ(0) = 0V .

88 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

Remark. Note that for notational convenience, we may use the same sym-
bol 0 for 0Υ, 0V and 0R.

Similarly to Φ∗(V), Ψ∗(V) can also move signals of S(V).

Lemma 81. Zero-extension of partial actions to S(V)

Let g ∈ Ψ∗(V). Its extension is done in two steps:

1. g is extended to V 0 = V ∪ {0V } as g(v) = 0V ⇔ v /∈ Dg.

2. Under the convention ∀s ∈ S(V), s[0V] = 0R, g is extended via linear
extension to S(V), and we have

∀s ∈ S(V),∀v ∈ V, g(s)[v] = s[g−1(v)]

Proof. Straightforward.

With these extensions, we can obtain the partial ϕ- and m-convolutions
related to Υ almost by substituting Υ0 to Γ in Definition 53 and Defini-
tion 56.

Definition 82. Partial convolutions
Let a groupoid Υ acting on V 0. The partial ϕ- and m-convolutions ex-
tend their definition on groups to groupoids using the appropriate zero-
extensions i.e.

(i) ∀s, w ∈ S(V), s ∗ϕ w =
∑
v∈V

s[v] gv(w) =
∑
g∈Υ

s[ϕ(g)] g(w) s.t. Υ
ϕ
≡ V

(ii) ∀(w, s) ∈ S(Υ)× S(V), w ∗m s =
∑
g∈Υ

w[g] g(s) s.t. Υ is abelian

Symmetrical expressions
Note that, as ∀r, r[0] = 0, the partial convolutions can also be expressed
on the domain D with a convenient symmetrical expression:

2.4. FROM GROUPS TO GROUPOIDS 89

(i) ∀u ∈ V, (s ∗ϕ w)[u] =
∑

(ga,gb)∈D
s.t. gagb=gu

s[a]w[b]

(ii) ∀u ∈ V, (w ∗m s)[u] =
∑
v∈Dg

s.t. g(v)=u

w[g] s[v]

We obtain an equivariance characterization similar to Theorem 54 and
Theorem 61, under the mild condition that Υ is at least domain-symmetric
if it is not abelian.

Theorem 83. Characterization by equivariance to Υ

Let a groupoid Υ acting on V 0. Supposedly for (i), Υ
ϕ
≡ V , and for (ii), Υ

is abelian.

1. Then,
(i) partial ϕ-convolution right operators are equivariant to Υ,

(ii) partial m-convolution left operators are equiv to Υ.
2. Conversely,

(i) if Υ is domain-symmetric, linear transformations of S(V) that
are equivariant to Υ are partial ϕ-convolution right operators,

(ii) linear transformations of S(V) that are equivariant to Υ are
partial m-convolution left operators.

Proof. (i) (a) Direct sense:
Using the symmetrical expressions, and the fact that ∀r, r[0] =

0, we have

(fw ◦ g(s))[u] =
∑

(ga,gb)∈D
s.t. gagb=gu

g(s)[a]w[b]

=
∑

(ga,gb)∈D
s.t. gagb=gu

s[g−1(a)]w[b]

90 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

=
∑

(ga,gb)∈D
s.t. (g,ga)∈D
s.t. ggagb=gu

s[a]w[b]

=
∑

(ga,gb)∈D
s.t. (g,ga)∈D

s.t. gagb=g−1gu=gϕ(g−1gu)=gg−1(u)

s[a]w[b]

= fw(s)[g−1(u)]

= (g ◦ fw(s))[u]

(b) Converse:
Let v ∈ V . Denote ergv = g−1

v gv the right identity element of gv,
and erv = ϕ(ergv). We have that

gv(e
r
v) = v

So, δv = gv(δerv)

Let f ∈ L(S(V)) that is equivariant to Υ, and s ∈ S(V). Thanks
to the previous remark we obtain that

f(s) =
∑
v∈V

s[v] f(δv)

=
∑
v∈V

s[v] f(gv(δerv))

=
∑
v∈V

s[v] gv(f(δerv))

=
∑
v∈V

s[v] gv(wv) (47)

where wv = f(δerv). In order to finish the proof, we need to find
w such that ∀v ∈ V, gv(w) = gv(wv).

Let’s consider the equivalence relationR defined on V ×V such

2.4. FROM GROUPS TO GROUPOIDS 91

that:

aRb⇔ wa = wb

⇔ era = erb

⇔ g−1
a ga = g−1

b gb

⇔ (gb, g
−1
a) ∈ D

⇔ (g−1
a , gb) ∈ D (48)

with (48) owing to the fact that Υ is domain-symmetric.

Given x ∈ V , denote its equivalence class R(x). Under the hy-
pothesis of the axiom of choice (Zermelo, 1904) (if V is infi-
nite), define the set ℵ that contains exactly one representative
per equivalence class. Let w =

∑
n∈ℵwn. Then V is the disjoint

union V = ∪n∈ℵR(n) and (47) rewrites:

∀u ∈ V, f(s)[u] =
∑
n∈ℵ

∑
v∈R(n)

s[v] gv(wn)[u]

=
∑
n∈ℵ

∑
v∈R(n)

s[v]wn[g−1
v (u)]

=
∑
n∈ℵ

∑
v∈R(n)

s[v]w[g−1
v (u)] (49)

= (s ∗ϕ w)[u]

where (49) is obtained thanks to (48).

(ii) With symmetrical expressions, it is clear that the convolution is
abelian, if and only if, Υ is abelian. Then (i) concludes.

92 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

Inclusion of EC and LP

Similarly to the construction in Section 2.3, partial convolutions can define
EC, EC*, LP and LP* counterparts with the same characterizations by
Cayley subgraphs whose vertex sets are zero-closure of groupoids, and
other similar results.

Limitation of partial convolutions

However, because of the groupoid associativity, if g ∈ Ψ∗
ec

(G), then, any
v ∈ V s.t. g(u) = v would be constrained to allow to be acted by every
h s.t. (h, g) ∈ D. That is, partial convolutions alleviates the limitations of
convolutions based on groups by partitioning the graph into parts onto
which it behaves like if it was based on local groups. This can be seen as
a limitation since we might want the convolution to behave similarly on
the whole graph.

2.4.4 Construction of path convolutions

To answer the limitation of partial convolutions, given U ⊂ Ψ∗
ec

(G), we
explore the idea of proceeding with a foliation of each g ∈ U into pieces,
each piece corresponding to an edge e ∈ E, and together generating an-
other groupoid with a different associativity law, as follows.

Definition 84. Path groupoid
Let U ⊂ Ψ∗

ec
(G). The path groupoid generated from U , denoted UnG, with

composition rule Dn, is the groupoid obtained inductively with:

1. U n1 G = {(g, v) ∈ U × V, v ∈ Dg} ⊂ U nG

2. ((gn, vn) · · · (g1, v1), (hm, um) · · · (h1, u1)) ∈ Dn ⇔ hm(um) = v1

3. ((gn, vn) · · · (g1, v1))−1 = (g−1
1 , g1(v1)) · · · (g−1

n , gn(vn))

2.4. FROM GROUPS TO GROUPOIDS 93

We call path its objects. Given a length l ∈ N, we denote U nl G the
subset composed of the paths that are the composition of exactly l paths
of U n1 G.

Remark. This groupoid construction is inspired from the field of opera-
tor algebra where partial action groupoids have been extensively studied,
e.g. Nica, 1994; Exel, 1998; Li, 2016.

Such groupoids usually come equipped with source and target maps. We
also define the path map.

Definition 85. Source, target and path maps
Let a path groupoid U n G. We define on it the source map α the target
map β and the path map γ as:

α : (gn, vn) · · · (g1, v1) 7→ v1 ∈ V

β : (gn, vn) · · · (g1, v1) 7→ gn(vn) ∈ V

γ : (gn, vn) · · · (g1, v1) 7→ gngn−1 . . . g1 ∈ Ψ∗(V 0)

Remark. Note that the path groupoid can be seen as the local structure of
the partial transformation groupoid.

Lemma 86.
Note the following properties:

1. (p, q) ∈ Dn ⇔ α(p) = β(q)

2. α(p) = β(p−1)

3. elp = pp−1 = (Id, β(p)) and erp = p−1p = (Id, α(p))

4. γ is a groupoid partial action. We will denote γp instead of γ(p).

94 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

Remark. Note that this time we won’t use the notation p(v) for γp(v) for
clarity.

One of the key object of our construction is the use of ϕ-equivalence in
order to transform a sum over a group(oid) of (partial) transformations,
into a sum over the vertex set. With the current notion of path groupoid,
searching for something similar amounts to searching for a graph traver-
sal.

Definition 87. Traversal set
Let a graph G = 〈V,E〉 that is connected. A traversal set is a pair (U , T) of
EC partial transformations subsets ⊂ Ψ∗

ec
(G), such that

1. U is edge-deterministic, in the sense that an edge can only correspond
to a unique g, i.e. ∀g, h ∈ U : ∃v ∈ V, g(v) = h(v)⇒ g = h

2. The EC partial transformations of T are restrictions of those of U ,

i.e. ∀g ∈ U ,∃!h ∈ T ,

Dh ⊂ Dg∀v ∈ Dh, h(v) = g(v)

(equivalently, T nG is a path subgroupoid of U nG s.t. |T | = |U|)

3. The subgraph GT = 〈V, T n1 G〉 is a spanning tree of G.

We denote (U , T) ∈ trav(G), and denote by r the root of GT .
For p ∈ T nG ⊂ U nG, we denote γT nGp and γUnGp its path maps.

Remark. The assumption that the graph G is connected does not lose gen-
erality as the construction can be replicated to each connected component
in the general case.

A traversal set (U , T) defines a ϕ-equivalence between the α-fiber of the
root r and the vertex set V as follows.

2.4. FROM GROUPS TO GROUPOIDS 95

Lemma 88. Path ϕ-Equivalence
Let (U , T) ∈ trav(G). Given v ∈ V , there exists a unique pv ∈ T nG such
that α(pv) = r and β(pv) = v. Denote T nr G = α−1

T nG{r}. We can do the
following construction:

1. Define ϕ : pv 7→ v.

2. Define (pv, pu) 7→ puv ∈ U0 nr G such that the sequence of partial
transformations of puv and pv are the same (i.e. γU

0nG
puv

= γUnGpv), and
the source of puv is the target of pu (i.e. α(puv) = β(pu) = u)

3. Define the external composition pvpu = puvpu ∈ U0 nr G.

Then ϕ : α−1
T nG{r} → V is a bijective partial equivariant map.

Proof. Bijectivity is a consequence of the spanning tree structure of T .
Equivariance because γpv(u) = γpvγpu(r) = γpvpu(r) = ϕ(pvpu).

We can now define the convolution that is based on a path groupoid.

Definition 89. Path convolution
Let (U , T) ∈ trav(G). The path convolution is the partial convolution based
on the path subgroupoid T n G, which uses the groupoid partial action
γ := γU

0nG of the embedding groupoid zero-closure U0 nG.

(i) In what follows are the three expressions of the path ϕ-convolution
for signals s1, s2 ∈ S(V), and u ∈ V :

(s ∗ϕ w) =
∑
v∈V

s[v] γpv(w)

=
∑

p∈T nG
s.t. α(p)=r

s[ϕ(p)] γp(w)

(s ∗ϕ w)[u] =
∑

(a,b)∈V
s.t. γpa (b)=u

s[a]w[b]

96 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

(ii) The mixed formulations with w ∈ S(T nG) are:

(w ∗m s) =
∑

p∈T nG
s.t. α(p)=r

w[p] γp(s)

(w ∗m s)[u] =
∑

(p,v)∈T nG×V
s.t. α(p)=r

s.t. γp(v)=u

w[p] s[v]

Remark. The role of T is to provide a ϕ-equivalence. The role of U is to
extend every partial transformation γT nGg to the domain of its unrestricted
counterpart γUnGg .

Theorem 83 also holds for path groupoids, except that the domain-symmetric
condition of 2.(i) is not needed.

Theorem 90. Characterization by equivariance to U nG’s action
Let (U , T) ∈ trav(G).

(i) The class of linear transformations of S(V) that are equivariant to
the path actions of U n G is exactly the path ϕ-convolution right-
operators;

(ii) in the abelian case, they are also exactly the m-convolution left-
operators.

Proof. Instead of the domain-symmetric condition that was used in the
proof of the converse of Theorem 83 (2.(i)), we use the fact that any vertex
can be reached with an action from the root of the spanning tree of the
traversal set. Indeed, given v ∈ V , as we have γpv(r) = v, then γpv(δr) = δv.
Therefore, by developing a linear transformation f(s) on the Dirac family,
and commuting f with γpv , we obtain that f(s) = s ∗ϕ w, where w = f(δr).
The rest of the proof is similar to that of Theorem 83.

2.4. FROM GROUPS TO GROUPOIDS 97

Remark. Note that UnV ’s action is almost the same as the groupoid partial
action of Υ = 〈U〉 (only "almost" because not all combinations of partial
transformations might exist in the paths).

Even though U n V alleviates the limitations of Υ we discussed earlier,
it introduces another one: the zero-extension of the partial actions puv can
be harsh for some graphs with puv often being equal to the zero of the
groupoid (since the edge sequence of pu must be walkable from v). How-
ever, there would be less degenerated scenarios for EC* operators coun-
terparts supported on paths of small length. On the other hand, it can be
preferable to avoid the degenerated cases and stick to partial actions or
strategies discussed in Section 2.4.1.

98 CHAPTER 2. CONVOLUTION OF GRAPH SIGNALS

2.5 Conclusion

In this chapter, we constructed convolutions on graph domains. We first
saw that classical convolutions are in fact the class of linear transforma-
tions of the signal space that are equivariant to translations. For signals
defined on graph domains, there is no natural definition of translations.
Therefore, we adopted a more abstract standpoint and considered in the
first place any kind of transformation of the vertex set V . Hence, given a
group Γ acting on V , we constructed the class of linear transformations of
the signal space that are equivariant to it. This provided us with an expres-
sion of a convolution based on this subgroup, and a bijective equivariant
map between Γ and V , in order to transport a sum over Γ into a sum
over V . We also proposed a simpler expression in the abelian case. Then,
we introduced the role of the edge set E, and we constrained Γ by it. This
leads us to define two types of properties. One is about constraining the
transformations to follow the edges, and the other one is about preserv-
ing locality through them. For each property, we obtain characterizations
of graphs that admit convolutions that bear them. We analyzed intrinsic
properties of the constructed convolution operator, namely locality and
weight sharing. We also discussed operators with a smaller kernel, as
they are more practical and simpler to construct. Finally, we explored av-
enues to overcome the limitation that groups aren’t well representative of
symmetries on some graphs. So we extended the previous construction
with two types of groupoids, and we obtained constructions for which the
characterization by equivariance also holds. We saw that they can handle
degenerated cases, but the expressions of the obtained convolutions can
be degenerated as well.

Chapter 3

Deep learning on graph domains
Contents

Chapter overview . 101

3.1 Layer representations 102

3.1.1 Neural interpretation of tensor spaces 102

3.1.2 Propagational interpretation 103

3.1.3 Graph representation of the input space 104

3.1.4 Novel ternary representation with weight sharing . 106

3.2 Study of the ternary representation 109

3.2.1 Genericity . 109

3.2.2 Sparse priors for the classification of signals 111

3.2.3 Efficient implementation under sparse priors 112

3.2.4 Influence of symmetries 115

3.2.5 Experiments with general graphs 118

3.3 Learning the weight sharing scheme 121

3.3.1 Discussion . 121

3.3.2 Experimental settings 121

3.3.3 Experiments with grid graphs 123

3.3.4 Experiments with covariance graphs 125

3.3.5 Improved convolutions on shallow architectures . . 126

3.3.6 Benchmarks on citation networks 128

3.4 Inferring the weight sharing scheme 130

3.4.1 Methodology . 130

99

100 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

3.4.2 Translations . 131

3.4.3 Finding proxy-translations 134

3.4.4 Subsampling . 137

3.4.5 Data augmentation 139

3.4.6 Experiments . 139

3.5 Conclusion . 140

101

Chapter overview

Our goal in this chapter is to understand how neural networks can be
extended to other domains than what they were intended for. To this end,
in Section 3.1, we make an effort to interpret the linear algebra that under-
pins a layer to build our intuition. First we state the obvious by explaining
further the interpretation of tensor space as a neural space, as well as how
to juggle between tensors and signals. Then, we propose a representation
based on graphs. Between two layers, a propagation graph explains how
the propagation is done. On the input layer, the neurons can have an un-
derlying graph structure. We show a relation between these two graphs,
obtained if and only if the local receptive fields of the neurons are inter-
twined. By introducing the notion of weight sharing in our analysis, we
discover that a layer on any domain can be expressed by a linear ternary
operation, that we call neural contraction. Its operands are the input sig-
nal X , the weight kernel Θ, and the weight sharing scheme S. We denote
Θ̇SX . We study it in Section 3.2. We see that it is generic in comparison
with related works, and propose an efficient implementation. With an
experiment based on it, we see how exploiting symmetries is beneficial,
which justifies the use of convolutions. Through other experiments, we
explore ideas based on randomizations to apply it on general graphs. In
Section 3.3, we study the effect of learning how the weights are shared,
which amounts to learn both S and Θ. We explore this avenue for graph
domains, with experiments on grids, covariance graphs and on citation
networks. Finally, in Section 3.4, we investigate an example of a CNN ar-
chitecture used for graph signals. The convolution is based on translations
on graphs which define the weight sharing scheme S of the convolutional
layer. We present the model of translations and the approximation we use,
the subsampling layer, the data augmentation, and experiments on grid
graphs or graphs resembling to grids.

102 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

3.1 Layer representations

Let L = (g, h) be a neural network layer, where g : I → O is its linear
part, h : O → O is its activation function, I and O are its input and output
spaces, which are tensor spaces.

3.1.1 Neural interpretation of tensor spaces

Recall from Definition 1 that a tensor space has been defined such that its
canonical basis is a Cartesian product of canonical bases of vector spaces.
Let I =

⊗p
k=1 Vk and O =

⊗q
l=1 Ul. Their canonical bases are denoted

vk = (v1
k, . . . , v

nk
k) and ul = (u1

l , . . . , u
nl
l).

Remark. Note that a tensor space is isomorphic to the signal space defined
over its canonical basis.

More precisely, we have the following relation.

Lemma 91. Relation between tensor and signal spaces
Let V, U be vector spaces, and v, u be their canonical bases. Let T be a
tensor space. ⊗ and × denote tensor and Cartesian products. Then,

(i) V ∼= S(v)

(ii) V⊗ U ∼= S(v× u)

(iii) V⊗ T ∼= ST(v)

where ST are signals taking values in T (and S are real-valued signals).

Proof. (i) Given x ∈ V, define x̃ ∈ S(v) such that ∀i, x̃[vi] = x[i]. The
mapping x 7→ x̃ is a linear isomorphism.

(ii) x̃[vi, uj] = x[i, j]

(iii) x̃[vi] = x[i, :, . . . , :]

3.1. LAYER REPRESENTATIONS 103

Let d ≤ nk and e ≤ nl. Define V and U as the Cartesian products
V =×d

k=1
vk and U =×e

l=1
ul. Thanks to Lemma 91, we can identify the in-

put and output spaces as I = S(V)⊗
⊗p

k=d+1 Vk and O = S(U)⊗
⊗q

l=e+1 Ul.
As S(v) ⊗ T = ST(v), an object of V or U can be interpreted as the repre-
sentation of a neuron which can take multiple values.

In what follows, without loss of generality, we will make the simplifica-
tion that a neuron can only take a single value (we do not consider input
channels and feature maps yet). We’ll thus consider that I = S(V) and
O = S(U), where V is the set of input neurons, and U is the set of output
neurons.

3.1.2 Propagational interpretation

Let L = (g, h), recall that g : S(V)→ S(U) is characterized by a connectiv-
ity matrix W such that, g(x) = Wx.

Remark. Using the mapping defined in the proof of Lemma 91, for no-
tational convenience, we’ll abusively consider x as a vector (eventually
reshaped from a tensor), and W as an object of a binary tensor product
for its indexing (i.e. W [u, v] := W [i, j] where u = ui and v = vj).

Definition 92. Propagation graph
The propagation graph P = 〈(V, U), EP 〉 of a layer L = (W,h) is the bipartite
graph that has the connectivity matrix W for bipartite adjacency matrix.

The propagation graph defines an input topological space TV , and an
output topological space TU .

Definition 93. Topological space
A topological space is a pair T = (X,O), where X is a set of points,O is a set
of sets that is closed under intersection (the open sets), and such that every
point x ∈ X is associated with a set N (x) ∈ O, called its neighborhood.

104 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

Hence, the neural topologies TV and TU are defined as

1. TV = (V,O(U)), with ∀v ∈ V,N (v) = {u ∈ U, v P∼ u}

2. TU = (U,O(V)), with ∀u ∈ U,N (u) = {v ∈ V, v P∼ u}

In particular, given an output neuron u ∈ U , a neighborhood N (u) is also
called a local receptive field (LRF), that we denote R(u).

3.1.3 Graph representation of the input space

Let’s consider that the input neurons V have a (possibly edge-less) graph
structure G = 〈V,E〉.

Definition 94. Underlying graph structure
An underlying graph structure of an input space V is simply a graph
such that V is its vertex set.

For our definition of edge-constrained layer, we want that the LRF are
constrained by the edges of the underlying graph. So we define it as
follows.

Definition 95. Edge-constrained layer
A layer L : G = 〈V,E〉 → U , is said to be edge-constrained (EC) if:

1. There is a one-to-one correspondence π : Vπ → U , where Vπ ⊂ V .

2. Given an output neuron u, an input neuron v is in its receptive field,
if and only if, v and the π-fiber of u are connected in G,

i.e. ∀u ∈ U, v ∈ R(u)⇔ v
E∼ π−1(u)

Figure 14 illustrate an example of a local receptive field of an edge-constrained
layer.

3.1. LAYER REPRESENTATIONS 105

Vπ U

Figure 14: An LRF of a vertex (in red) of an EC layer

Remark. Note that EC convolutions from Chapter 2 are indeed EC layers.

Also, the following property is important.

Proposition 96. Let W the connectivity matrix of an EC layer w.r.t. a graph
G = 〈V,E〉, which adjacency matrix is A. Then W is masked by A, i.e.

A[i, j] = 0⇒ W [i, j] = 0

Proof. Suppose A[i, j] = 0, then vi � vj , hence vi /∈ R(π(vj)) so W [i, j] =

0.

We have the following characterization to determine which layers admit
an underlying graph for which they are EC layers.

106 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

Proposition 97. EC Characterization with receptive fields
Let a layer L : V → U , Vπ ⊂ V , and a one-to-one correspondence π : Vπ →
U . There exists a graph G = 〈V,E〉 for which L is EC, if and only if, the
receptive fields are intertwined (i.e. ∀a, b ∈ Vπ, a ∈ R(π(b))⇔ b ∈ R(π(a))).

Proof. (⇒) Thanks to a ∈ R(π(b))⇔ a
E∼ b⇔ b ∈ R(π(a))

(⇐) If the receptive fields are intertwined, then the relation defined as
a ∼ b⇔ a ∈ R(π(b)) is symmetric, and thus can define an edge set.

Therefore, any layer that has its receptive fields intertwined, admits an
underlying graph structure. For example, a 2-d convolution operator can
be rewritten as an EC* convolution on a lattice graph, and as an EC con-
volution on a grid graph.

3.1.4 Novel ternary representation with weight sharing

Weight sharing refers to the fact that some parameters of the connectivity
matrix W are equal, and stay equal after each learning iteration. In other
words they are tied together. From a propagational point of view, this
amounts to label the edges of the propagation graph P with weights,
where weights can be used multiple times to label these edges. Supposed
W is of shape m×n and there are ω weights in the kernel used to label the
edges. Given a input neuron i and an output neuron j, the edge labeling
can be expressed as:

W [j, i] = θ[h] = θTa (50)

where θ, the weight kernel, is a vector of size ω and a is a one-hot vector
(full of 0s except for one 1) of size ω with a 1 at the index h corresponding

3.1. LAYER REPRESENTATIONS 107

to the weight that labels the edge i ∼ j ; or a is the zero vector in case
i � j.
This equation (50) can be rewritten as a tensor contraction under Einstein
summation convention, by noticing that a depends on i, j and by defining
a tensor S such that a = S[:, i, j], as follows:

Wij = θkS
k
ij (51)

Therefore, the linear part of L can be rewritten as:

g(x)j = θkS
k
j
ixi (52)

If we consider that the layer L is duplicated with input channels and
feature maps, then θ, x and g(x) become tensors, denoted Θ, X and g(X).
Usually, for stochastic gradient descent, X and g(X) are also expanded
with a further rank corresponding to the batch size and we obtain:

g(X) = ΘSX where

Wpq
ij = Θpq

kSk
ij

g(X)jq
b = Wjq

ipXip
b

(53)

index size description
i n input neuron
j m output neuron
p N input channel
q M feature map
k ω kernel weight
b B batch instance

Table 2: Table of indices

Since the multiplicative expression ΘSX is written regardless of the or-
dering of the tensors ranks and is defined by index juggling, we will
write instead Θ̇SX to avoid confusion. ·̂ · · is a ternary operator which

108 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

we will call neural contraction. Note that it is associative and commutative.
This can be seen by the index symmetry of (54), which rewrites (53), and
where the sum symbols Σ and scalar values commute:

Θ̇SX[j, q, b] =
ω∑
k=1

P∑
p=1

n∑
i=1

Θ[k, p, q]S[k, i, j]X[i, p, b] (54)

Definition 98. Ternary representation, neural contraction
The ternary representation of a layer L : X 7→ Y , with activation function h,
is the equation Y = h

(
Θ̇SX

)
, where the neural contraction ·̂ · · is defined

by (54), Θ is the weight kernel, and S is called the weight sharing scheme.

Remark. In (50), we defined a = S[:, i, j] as a one-hot vector when i ∼ j, as
its role is to select a weight in θ = Θ[p, q, :]. However, a can also do this
selection linearly, so in fact it is not necessarily a one-hot vector.

Figure 15 depicts an example of how the equation (53) labels the edges
of P .
The ternary representation uncouples the roles of Θ and S in W , and
is the most general way of representing any kind of partially connected
layer with weight sharing.

3.2. STUDY OF THE TERNARY REPRESENTATION 109

5

4

3

2

1

5

4

3

2

1

W [p, q, i = 4, j = 5] =
ω∑
k=1

Θ[p, q, k]S[k, 4, 5]

Figure 15: Example of a propagation graph P for a given input channel p
and feature map q. The edge 4 ∼ 5 is labelled with a linear combination
of kernel weights from Θ[p, q, :]. In the usual case, S[k, 4, 5] is a one-hot
vector that selects a single kernel weight: ∃h,W [p, q, 4, 5] = Θ[p, q, h].

3.2 Study of the ternary representation

In this section, we study the ternary representation, which is the general
representation with weight sharing we obtained above. We already saw
that it is linear, associative and commutative.

3.2.1 Genericity

The ternary representation can represent any kind of layer. We explain be-
low how to obtain standard ones. See Table 2 and Table 3 for a description
of the indices, notations and shapes.

ã To obtain a fully connected layer, one can choose ω = nm such that
the slices S[:, i, j] constitute every possible one-hot vectors.

ã To obtain a convolutional layer, one can choose ω to be the size of
the kernel. S would contain one-hot vectors. A stride > 1 can be

110 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

obtained by removing the corresponding dimensions. If the convo-
lution is a classical convolution, or more generally, is characterized
by a Cayley subgraph (see Chapter 2), then S would be circulant
along the input neurons rank in the canonical basis.

ã To obtain a graph convolutional layer (Kipf and Welling, 2016, see
description in Section 1.3.5), one can choose B = 1, ω = 1, and S

(viewed as a matrix) to be the normalized adjacency matrix Ã.

ã Other variants of GCN can also be obtained, for instance to obtain
Chebychev filters (Defferrard et al., 2016), S would be

∑k
i=0 Ti(L̃).

ã To obtain a graph attention layer (Velickovic et al., 2017, see descrip-
tion in Section 1.3.5), one can concatenate K graph convolutional
layers, where K is the number of attention heads, and with Ã filled
with the learned attention coefficients. Instead of concatenation, one
could also choose ω = K, and given an attention head k, the slices
S[k, :, :] would be matrices containing the coefficients.

ã A topology-adaptive graph convolution layer (Du et al., 2017, see
description in Section 1.3.5) is a neural contraction layer for which
S contains the powers of Ã along the first rank.

ã A mixture model convolutional layer (Monti et al., 2016, equations
(9) and (10)) is a neural contraction layer for which S contains the
values of the weighting functions i.e. S[k, i, j] = wk(u[i, j]).

ã A generalized convolution (Vialatte et al., 2016, equations (1) and
(10)) is a neural contraction layer for which S is the allocation tensor
Ae which has the sparse priors mentioned in the next subsection.

ã Any partially connected layer with (or without) weight sharing can
be obtained with appropriate construction of S.

3.2. STUDY OF THE TERNARY REPRESENTATION 111

3.2.2 Sparse priors for the classification of signals

In the more general case, the scheme S is a real-valued tensor, which may
introduce more weights in the layer. However, for Euclidean convolutions,
S is already determined by the Euclidean convolution operator and does
not count for more memory. To imitate this property, we can focus on the
class of layer with these sparse priors:

1. Given a couple of neuron indices (i, j), S[:, i, j] is either a one-hot
vector, or the zero vector, as in (50).

2. Given an output neuron index j, a weight θ[h] can appear only once
in its LRF.

Remark. For these sparse priors we consider the case of classification of
signals. In the case of semi-supervised node classification, S would only
be sparse between the rank indexed by i and the one indexed by j, but
not on the other rank.

Therefore, we can describe S with a weight assignment table T , which is a
matrix such that

T [i, j] =

h if ∃!h, θTS[:, i, j] = θ[h]

0 else
(55)

In turn, T can be described by the set of transformations (or partial trans-
formations), defined as

gh(j) = i⇔ T [i, j] = h (56)

where each (partial) transformation gh corresponds to the weight indexed
by h.

112 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

Without loss of generality, let us reduce to the simple case where B =

P = Q = 1. The neural contraction (54) rewrites as:

θ̄Sx[j] =
ω∑
k=1

n∑
i=1

θ[k]S[k, i, j]x[i] (57)

=
ω∑
h=1

θ[h]x[gh(j)] (58)

which for EC layers, can be rewritten as an EC* convolution of graph
signals as studied in Chapter 2, since the (partial) transformations are
invertible thanks to the sparse priors. Conversely, given a convolution of
graph signals (formulated as ∗ϕ or ∗m), we can derive an assignment table
T and its corresponding scheme S to obtain a neural contraction.

3.2.3 Efficient implementation under sparse priors

Remark. This section applies in supervised settings but not in semi-supervised
setting for which it is best to use sparse functions of common deep learn-
ing libraries.

What is the fastest way to compute Θ̇SX ?

As the equation (53) is associative and commutative, there are three ways
to start to calculate it: with ΘS, SX , or ΘX , which we will call middle-
stage tensors. The computation of a middle-stage tensor is the bottleneck
to compute (53) as it imposes to compute significantly more entries than
for the second tensor contraction. In Table 3, we compare their shapes.
We refer the reader to Table 2 for the denomination of the indices.

3.2. STUDY OF THE TERNARY REPRESENTATION 113

tensor shape
Θ ω ×N ×M
S ω × n×m
X n×N ×B
ΘS n×m×N ×M
SX ω ×m×N ×B
ΘX ω × n×M ×B

Θ̇SX m×M ×B

Table 3: Table of shapes

We usually want to have ω � n and ω � m, which means that we have
weight kernels of small sizes (for example in the case of images, convo-
lutional kernel are of size significantly smaller than that of the images).
Also, the number of input channels N and of feature maps M are roughly
in the same order, with N < M more often than the contrary. So in prac-
tice, the size of ΘS is significantly bigger than the size of SX and of ΘX ,
and the size of SX is usually the smallest.

How to exploit S sparsity ?

Also, in usual supervised settings, S is sparse as S[:, i, j] are one-hot vec-
tors. So computing SX should be faster than computing ΘX , provided
we exploit the sparsity. Although S is very sparse as it contains at most
a fraction 1

w
-th of non-zero values, it is only sparse along the first rank,

which makes implementation with sparse classes of common deep learn-
ing libraries use less parallelization than it can. However, we can benefit
from the sparse priors mentioned in Section 3.2.2.

So we proceed differently. The idea is to use a non-sparse tensor Xlrf that
has a rank that indexes the LRF, and another rank that indexes elements
of these LRF, in order to lower the computation to a dense matrix multi-
plication (or a dense tensor contraction) which is already well optimized.
This approach is similar to that proposed in Chellapilla et al., 2006, which

114 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

is also exploited in the cudnn primitives (Chetlur et al., 2014) to efficiently
implement the classical convolution.

The LRF representation

In our case, it turns out that Xlrf can be exactly SX , as given fixed b, p,
and j, SX[:, j, p, b] corresponds to entries of the input signal X[:, p, b] re-
strained to a LRF Rj of size ω. Therefore,

∃ lrfj = [i1, . . . , iω] s.t. SX[:, j, p, b] = X[lrfj, p, b] (59)

The elements of lrfj can be found by doing a lookup in the one-hot
vectors of S, provided each kernel weight occurs exactly once in each
LRF. We have:

Rj[k] = ik s.t. S[:, ik, j][k] = 1 (60)

This lookup needs not be computed each time and can be done before-
hand. Finally, if we define lrf = [lrf1, . . . , lrfm], (59) gives:

SX = X[lrf, :, :] (61)

The equation (61) is computed with only ω ×m assignations and can be
simply implemented with automatic differentiation in commonly used
deep learning libraries.

Benchmarks

To support our theoretical analysis, we benchmark three methods for com-
puting the tensor contraction SX :

• naively using dense multiplication,
• using sparse classes of deep learning libraries,
• using the LRF based method we described above.

3.2. STUDY OF THE TERNARY REPRESENTATION 115

We run the benchmarks under the sparse priors mentioned in Section 3.2.2.
For each method, we make 100 runs of computations of SX , with S and
X being randomly generated according to the assumptions. In Table 4,
we report the mean times. The values of the hyperparameters were each
time n = m = N = M = B = 256, and ω = 4. The computations were
done on graphical processing units (GPU)1.

Method Mean time
Naive 950 ms
Sparse 413 ms
LRF 365 ms

Table 4: Benchmark (100 runs each)

We observe that the LRF method is faster, since the sparse implementation
isn’t optimized for this use case.

3.2.4 Influence of symmetries

In the case of images, or other signals over a grid, the grid structure of the
domain defines the weight sharing scheme S of the convolution operation.
For example, for a layer L : X 7→ Y = h(Θ̇SX), and given fixed b, p, q, the
classical convolution can be rewritten as

y[j] = h

(
ω∑
k=1

θ[k]
n∑
i=1

S[k, i, j]x[i]

)
(62)

= h

(
ω∑
k=1

θ[k]xlrf[k, j]

)
(63)

Where xlrf[k, j] can be obtained by matching (63) with the expression
given by the definition (see Definition 36). So, S[k, :, j] is a one-hot vector

1The GPU was an Nvidia Geforce GTX1060, the CPU was an Intel Xeon E5-1630v4

at 3.70GHz with 4 cores. We used tensorflow and the function gather_nd for the assig-
nations.

116 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

that specifies which input neuron in the LRF of y is associated with the
k-th kernel weight, and the index of the 1 is determined by xlrf[k, j].
That is to say, in the ternary representation, Θ captures the information
the layer has learned, whereas S captures how the layer exploits the sym-
metries of the input domain.

Visual construction
Visually, constructing S amounts to move a rectangular grid over the pixel
domain, as depicted on Figure 16 where each point represents the center
of a pixel, and the moving rectangle represents the LRF of its center j.
Each of its squares represents a kernel weight θ[k] which are associated
with the pixel xlrf[k, j] that falls in it.

Figure 16: Weight assignement of convolutions on pixel domains

The case of images is very regular, in the sense that every pixels are reg-
ularly spaced out, so that obtained S is circulant along its last two ranks.
This is a consequence of the translational symmetries of the input domain,
which underlie the definition of the convolution, as seen in Chapter 2.

• What happens if we loose these symmetries?

To answer this question, we make the following experiment (Vialatte et
al., 2016):

3.2. STUDY OF THE TERNARY REPRESENTATION 117

1. We distort the domain by moving the pixels randomly. The radial
displacement is uniformly random with the angle, and its radius
follows a Gaussian distribution N (0, σ).

2. Then we compare performances of shallow CNNs expressed under
the ternary representation, for which S is constructed similarly than
with the above visual construction, for different values of σ.

The visual construction of S on distorted domain is depicted by Figure 17.

Figure 17: Weight assignement in generalized convolution on distorted
domains

We run a classification task with standard hyperparameters on a toy
dataset (we used MNIST, LeCun et al., 1998). The results are reported
in Figure 18.
The bigger is σ, the less accurate are the symmetries of the input domain,
up to a point where the ternary representation becomes almost equivalent
to a dense layer. The results illustrate nicely this evolution, and stress
out the importance of trying to leverage symmetries when defining new
convolutions.
Moreover, they indicate that the ternary representation also allows to im-
prove performances compared to using dense layers, providing we are
able to create a relevant weight sharing scheme S to exploit symmetries.

118 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

0 1 2 3 4 5 6

1

1.2

1.4

1.6

1.8

2

2.2

+

σ (in unit of initial pixel separation)

Er
ro

r
(i

n
%

)
MLP
CNN

10−1 100 101 102

Figure 18: Error in function of the standard deviation σ, for generalized
CNNs and an MLP, each with 500 weights.

For example, in the case the underlying graph structure of the input is
embedded in a two-dimensional Euclidean space, S can be created just as
in this experiment.

3.2.5 Experiments with general graphs

The neural contraction is not usable off-the-shelf for general graphs since
the weight sharing scheme S needs to be specified. One strategy is to learn
it alongside the weight kernel Θ, see Section 3.3. Another one consists in
inferring it from the graph itself, see Section 3.4. But first let us try some
ideas based on randomizations.

Supervised classification of graph signals
We test the idea to fill the schemes S with one-hot vectors randomly, but
with respect to the sparse priors mentioned in Section 3.2.2. We apply
neural contractions in a depthwise separable fashion similarly than for
depthwise separable convolutions (Chollet, 2016). That is, we first propa-
gate the neurons values on the propagation graph for each of the N input

3.2. STUDY OF THE TERNARY REPRESENTATION 119

feature maps independently. In the process, we use one different realiza-
tion of S per input feature map. Then we apply a fully connected layer
in the feature space (which is a convolution with trivial sliding window).
Since this amounts to do M (one for each output feature map) learned
weighted averages of N random realizations, we call that a Monte-Carlo
(MC) module. We call Monte-Carlo Networks (MCNet) the corresponding
neural networks.
We replicated the experimental setup done by Defferrard et al., 2016 on
the 20NEWS dataset. We refer the reader to Section 1.3.4 for the prelimi-
nary discussion on this experiment. We used the architecture depicted on
Figure 19. It starts with 2 MC modules with 64 output feature maps, fol-
lowed by a trivial convolution with 1 output feature map, then a FC layer
with 500 hidden units and a final FC layer for classification. A residual
connection is added between the input and the first FC layer. For the MC
modules, we used the graph connecting 2 nearest neighbors. Therefore
this architecture can be seen as a small random perturbation of the MLP
from Table 1. Each layer except for the last is followed by 20% dropout.
As usual, we use reLU activations except for the last that has softmax
activation.

in
pu

t

M
C

64

M
C

64

Tr
iv

ia
lC

on
v

1

+

FC
50

0

FC
20

ou
tp

ut

Figure 19: Diagram of the MCNet architecture used

After 100 runs of 10 epochs, MCNet obtained a mean accuracy of 70.74± 2.19%,
which is a gain that is statistically significant compared to ChebNet (65.76%,

120 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

see Table 1), but not against the former MLP (71.46 ± 0.08%). It is to be
noted that the variance of MCNet is quite high and cherry picking the
max instead of considering the mean improves the result to 72.62%, which
is better than the MLP’s max at 72.25%. Therefore, in some random real-
izations, MCNet is capable of leveraging the underlying graph structure
(and being state-of-the-art).
This is the least to be expected. But when the quality of the graph is
low, there may not be anything better to demonstrate. A dataset with a
graph that suits well the underpining structure of the domain is often
resembling a grid graph to some extent. Therefore we expect the model
that will be presented in Section 3.4 to be more relevant in most cases.

Semi-supervised classification of nodes
A similar kind of randomization based idea that come in mind when
transposing the question to the semi-supervised task is to use dropout on
the edges of the graph. We call that graph dropout. We test this approach
on citation networks, for which we set ω = 1 (i.e. one graph). The obtained
architecture amounts to a GCN (Kipf and Welling, 2016) to which graph
dropout is applied. We report and discuss our results in Section 3.3.6,
Table 8, where we compare them with other models.

3.3. LEARNING THE WEIGHT SHARING SCHEME 121

3.3 Learning the weight sharing scheme

3.3.1 Discussion

In the ternary representation Y = h(Θ̇SX) of a layer L, the weight ker-
nel Θ is usually the only operand that is learned, and the role of S is
to label the edges of the propagation graph P with these weights. Recall
that, as noted after Definition 98, S needs not be sparse and composed
of one-hot vectors. In that case, the labeling is done linearly as depicted
previously in Figure 15. Therefore, the weight sharing scheme S can also
be updated during the learning phase. This can be interpreted as learn-
ing a convolution-like operator on the underlying graph G (Vialatte et al.,
2017).

Remark. When S does not have the sparse priors mentioned in Section 3.2.2,
we must not have more parameters in S and Θ than in W , so that the
weight sharing still makes sense. If we call l the number of edges in
the resulting propagation graph P , then the former assumption requires
lω+ωNM ≤ lNM or equivalently 1

ω
≥ 1

NM
+ 1

l
. It implies that the number

of weights per filter ω must be lower than the total number of filters NM
and than the number of edges l, which is always the case in practice.

3.3.2 Experimental settings

In our experiments, we learn the scheme S and the kernel Θ simultane-
ously.

Constraints for supervised classification of graph signals

Because of our inspiration from CNNs, we propose constraints on the pa-
rameters of S. Namely, we impose them to be between 0 and 1, and to sum

122 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

to 1 along the first rank (the rank that is contracted in the product ΘS).

∀(k, i, j), S[k, i, j] ∈ [0, 1] (64)

∀(i, j),
ω∑
k=1

S[k, i, j] = 1 (65)

Therefore, the vectors on the first rank of S can be interpreted as perform-
ing a positive weighted average of the parameters in Θ. Also, we choose
to aim our study at graph signals. Hence, we consider a graph G = 〈V,E〉
and that the layer is EC. For this reason, Proposition 96 tells us that the
connectivity matrix W of the layer is masked by the adjacency matrix A.
Therefore, S is also masked by A i.e. we impose the constraint that

A[i, j] = 0⇒ ∀k, S[k, i, j] = 0 (66)

Constraints for semi-supervised classification of nodes
For the case of citation networks, we consider only one graph and thus
we set ω = 1 so that S and Θ are matrices. Additionally, we impose rows
of the scheme S to be normalized so that each node receives a normal-
ized information from its neighborhood. In our experiments, we choose
to use softmax normalization because it is of standard usage (but other
normalizations could do as well).

Name
In (Vialatte et al., 2017), we used the term Local Receptive Graph layers,
since Proposition 97 relates G with local receptive fields defined by W .
However it was cumbersome so in this manuscript we will just call them
Graph Contraction Layer in reference to the neural contraction (see Defi-
nition 98). We call Graph Contraction Networks (GCT) the corresponding
neural networks. The main addition to the paper (Vialatte et al., 2017)
from Section 3.3 is Section 3.3.6.

3.3. LEARNING THE WEIGHT SHARING SCHEME 123

Initialization

In supervised settings, we introduce three types of initialization for the
scheme S. The last two have the sparse priors mentioned in Section 3.2.2:

1. uniform random: parameters of S are simply initialized with a uni-
form random distribution with limits as described by Glorot and
Bengio, 2010.

2. random one-hot: one-hot vectors are distributed randomly on the
S[:, i, j], with the constraint that for each LRF, a particular one-hot
vector can only be distributed at most once more than any other.

3. circulant one-hot: one-hot vectors are distributed in a circulant fash-
ion on the S[:, i, j], so that on Euclidean domains, the initial state
of S correspond exactly to the weight sharing scheme of a standard
convolution.

In semi-supervised settings, we initialize the scheme S using the nor-
malized adjacency matrix Ã to which we add a Gaussian noise N (0, σ),
where the standard deviation σ is determined following Glorot and Ben-
gio, 2010.

3.3.3 Experiments with grid graphs

We experiment GCTs on the MNIST dataset (see Section 1.3.3). We use a
shallow architecture made of a single ternary layer with 50 feature maps,
without pooling, followed by a FC layer of 300 neurons, 50% dropout, and
terminated by a FC layer of 10 neurons with softmax activation. ReLu
activations are used. Input layers are regularized by a factor weight of
10−5 (Ng, 2004). We optimize with ADAM (Kingma and Ba, 2014) up
to 100 epochs and fine-tune (while S is frozen) for up to 50 additional
epochs.

124 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

For the underlying graph structure, we consider a grid graph that con-
nects each pixel to itself and its 4 nearest neighbors (or less on the bor-
ders). We also consider the square of this graph (pixels are connected to
their 13 nearest neighbors, including themselves), the cube of this graph
(25 nearest neighbors), up to 10 powers (211 nearest neighbors). We test
the model under two setups: either the ordering of the node is unknown,
and then we use random one-hot initialization for S; either an ordering
of the node is known, and then we use circulant one-hot initialization for
S which we freeze in this state. We use the number of nearest neighbors
as for the dimension of the first rank of S. We also compare with a convo-
lutional layer of size 5x5, thus containing as many weights as the cube of
the grid graph. On MNIST, training architectures that learn S took about
twice longer. Table 5 summarizes the obtained results. The ordering is un-
known for the first result given, and known for the second result between
parenthesis.

Conv5x5 Grid1 Grid2 Grid3

(0.87) 1.24(1.21) 1.02(0.91) 0.93(0.91)

Grid4 Grid5 Grid6 Grid10

0.90(0.87) 0.93(0.80) 1.00(0.74) 0.93(0.84)

Table 5: Error rates (in %) on powers of the grid graphs on MNIST.

We observe that even without knowledge of the underlying Euclidean
structure, grid GCTs obtain comparable performances as CNNs, and when
the ordering is known, they match them. We also noticed that after train-
ing, even though the one-hot vectors used for initialization had changed
to floating point values, their most significant dimension was almost al-
ways the same. That suggests there is room to improve the initialization

3.3. LEARNING THE WEIGHT SHARING SCHEME 125

and the optimization.
In Figure 20, we plot the test error rate for various normalizations when
using the square of the grid graph, as a function of the number of epochs
of training, only to find that they have little influence on the performance
but sometimes improve it a bit. Thus, we will treat them as optional hy-
perparameters.

0.01

0.1

0 20 40 60 80 100

Te
st

er
ro

r
ra

te

Epoch

l2
l2 + Pos

None
Norm + Pos

l2 + Pos + Norm

Figure 20: Evolution of the test error rate when learning MNIST using
the square of a grid graph and for various normalizations, as a function
of the epoch of training. The legend reads: “l2” means `2 normalization
of weights is used (with weights 10−5), “Pos” means parameters in S are
forced to being positive, and “Norm” means that the `1 norm of each
vector in the first dimension of S is forced to 1.

3.3.4 Experiments with covariance graphs

As underlying graph structure, we use a thresholded covariance matrix
obtained by using all the training examples. We choose the threshold so
that the number of remaining edges corresponds to a certain density p

(5x5 convolutions correspond approximately to a density of p = 3%). We
also infer a graph based on the k nearest neighbors of the inverse of the
values of this covariance matrix (k-NN). The latter two are using no prior

126 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

about the signal underlying structure. The pixels of the input images are
shuffled and the same re-ordering of the pixels is used for every image.
Dimension of the first rank of S is chosen equal to k and its weights are
initialized random uniformly. GCTs are also compared with models ob-
tained when replacing the first layer by a fully connected or convolutional
one. Architecture used is the same as in the previous section. Results are
reported on table 6.

MLP Conv5x5 Thresholded (p = 3%) k-NN (k = 25)

1.44 1.39 1.06 0.96

Table 6: Error rates (in %) on scrambled MNIST.

We observe that GCTs outperform the CNN and the MLP on scrambled
MNIST. This is remarkable because that suggests it has been able to ex-
ploit information about the underlying structure.

3.3.5 Improved convolutions on shallow architectures

On CIFAR-10 (see Section 1.3.3), we made experiments on shallow CNN
architectures and replaced convolutions by receptive graphs. We report
results on a variant of AlexNet (Krizhevsky et al., 2012) using little distor-
tion on the input that we forked from a tutorial of tensorflow (Abadi et al.,
2015). It is composed of two 5x5 convolutional layers of 64 feature maps,
with max pooling and local response normalization (Krizhevsky et al.,
2012), followed by two fully connected layers of 384 and 192 neurons. On
CIFAR-10, training architectures that learn S took about 2.5 times longer.
We compare two different graph supports: the one obtained by using the
underlying graph of a regular 5x5 convolution, and the support of the
square of the grid graph. Optimization is done with stochastic gradient

3.3. LEARNING THE WEIGHT SHARING SCHEME 127

descent on 375 epochs where S is freezed on the 125 last ones. Circulant
one-hot initialization is used. These are weak classifiers for CIFAR-10 but
they are enough to analyze the usefulness of the proposed layer. Experi-
ments are run five times each. Means and standard deviations of accura-
cies are reported in table 7. “Pos” means parameters in S are forced to
being positive, “Norm” means that the `1 norm of each vector in the third
dimension of S is forced to 1, “Both” means both constraints are applied,
and “None” means none are used.

Support Learn S None Pos Norm Both

Conv5x5 No / / / 86.8± 0.2

Conv5x5 Yes 87.4± 0.1 87.1± 0.2 87.1± 0.2 87.2± 0.3

Grid2 Yes 87.3± 0.2 87.3± 0.1 87.5± 0.1 87.4± 0.1

Table 7: Accuracies (in %) of shallow networks on CIFAR-10.

The GCTs are able to outperform the corresponding CNNs by a small but
statistically significant amount in a shallow architecture.

Learning the scheme S implies a memory overhead due to the increase in
the number of weights of each layer, thus why we limited this experiment
to a shallow architecture. An example of strategy to extend this experi-
ment to deeper architectures is to tie the schemes of each layer together,
or to reuse a same scheme (previously learned) for all layers.

128 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

3.3.6 Benchmarks on citation networks

We benchmark multiple graph convolutional methods on citation net-
works. We refer the reader to Section 1.3.3 for a description of the datasets,
and to Section 1.3.5 for a review of the tested models. The models we
benchmark are:

• Graph Convolution Network (GCN, Kipf and Welling, 2016),
• Graph Attention Network (GAT, Velickovic et al., 2017),
• Topology Adaptive GCN (TAGCN, Du et al., 2017),
• Addition of graph dropout to GCN (GCN*, from Section 3.2.5),
• Graph Contraction Network (GCT, this work).

To proceed, we forked the official code repository of Velickovic et al.,
2017, in order to replicate their environmental setup, from which we im-
plemented the other tested models. This entailed a few differences to be
noted between our implementation of GCN and TAGCN from the origi-
nal ones: a bias is added, the right products XW are computed first and
are followed by 50% dropout, and the best model on the validation set
is saved to be reused at test time. We also used 50% graph dropout for
GAT, TAGCN, and GCT, except on the Pubmed dataset for which we saw
that it was detrimental. The inputs of each layer undergo 50% dropout,
and the value of graph dropout of GCN* is also 50%. Every model is
composed of two hidden layers. GAT models uses 8 heads with 8 hidden
units (which amounts to 64 hidden units) on the first layer, and 1 head on
the second one (except on Pubmed where it also uses 8) of also 8 hidden
units. The number of hidden units for other models was grid searched
in {16, 32, 64}1. The polynomial degree of TAGCN was 2. For compari-
son, we also ran the experiment with an MLP composed of 500 hidden
neurons. The results are reported in Table 8.

1Most of the time the value of 16 was selected, sometimes 32, and never 64.

3.3. LEARNING THE WEIGHT SHARING SCHEME 129

Dataset MLP GCN GAT TAGCN GCN* GCT

Cora 58.8± 0.9 81.8± 0.9 83.3± 0.6 82.9± 0.7 83.4± 0.7 83.3± 0.7

Citeseer 56.7± 1.1 72.2± 0.6 72.1± 0.6 71.7± 0.7 72.5± 0.8 72.7± 0.5

Pubmed 72.6± 0.9 79.0± 0.5 78.3± 0.7 78.9± 0.5 78.2± 0.7 79.2± 0.4

Table 8: Mean accuracy (in %) and standard deviation after 100 runs

Even though GCT models performed best overall, the differences with the
second bests are not statistically significant. In particular, GCN models
enjoy a bump in performances in this setup compared to the experiments
in the original paper. The addition of graph dropout put them back on par
with the other models on CORA and Citeseer (they were already ahead
on Pubmed). We also noticed that the results we obtained for TAGCN
on Pubmed were significantly worse than claimed by the authors. We
contacted them to check for details and are awaiting response, so we may
amend this result in a future version of this document1. It is worth noting
that the MLP performed a lot worse as expected since it did not exploit
the graph structure.

1However it is possible that this is due to the experimental setup.

130 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

3.4 Inferring the weight sharing scheme

3.4.1 Methodology

As we saw in Section 3.2.4 (Figure 16), the classical convolution on grid
graphs can be obtained visually by translating a rectangular window
over the pixel domain. The idea of this section is to define similarly a
convolution on graph domains, using a notion of translation defined on
graphs (Pasdeloup et al., 2017b). The translations we use match Euclidean
translations on 2D grid graphs (Grelier et al., 2016), and extend them on
general ones, by preserving three simple key properties: injectivity, edge-
constraint, and neighborhood-preservation, which we will detail later.

Given a set of graph translations T = {ti, i ∈ {1, 2, . . . , κ− 1}} ∪ {t0 = Id},
the corresponding convolution can be expressed using the same formal-
ism we used in Chapter 2, as:

w ∗ x =
∑
t∈T

w[t] t(x) (67)

where x is a signal over vertices of a graph G = 〈V,E〉, and w is a signal
defined on T ⊂ Φec(G). Depending on the algebraic nature of T (that
we will discuss later), the theoretical results obtained in Chapter 2 hold.
Under the ternary representation, finding such translations amounts to
infer the weight sharing scheme S.

By denoting wi = w[ti], we obtain the more familiar expression:

∀u ∈ V,w ∗ x[u] =
κ−1∑
i=0

wi x[t−1
i (u)] (68)

This expression extends the definition of convolutions from grid graphs
to general graphs, with the use of graph translations. We use it to obtain
extended CNNs that can be applied on graphs. In this manuscript, we

3.4. INFERRING THE WEIGHT SHARING SCHEME 131

coin the term Translation-convolutional neural network (TCNN) to refer to
them, but they are the same as the extended convolutions we defined in
Pasdeloup et al., 2017a.
Besides defining translation-convolution on general graphs, designing a
TCNN also implies extending the other building blocks of classical CNNs.
As a counterpart for pooling operations, we define a graph subsampling
and apply strided translation-convolution. The translations of the subsam-
pled graph are derived from those of the base graph to define translation-
convolution at the downscaled level. We will also use a weak form of data
augmentation using these translations. Figure 21 depicts the proposed
methodology (Lassance et al., 2018).

3.4.2 Translations

Let a graph G = 〈V,E〉. We suppose the graph is connected, as conversely
the process can be applied to each connected component of G. We denote
by d the max degree of the graph and n = |V | the number of vertices.

Definition 99. Candidate-translation
A candidate-translation is a function φ : U → V , where U ⊂ V and such
that:
• φ is injective:
∀v, v′ ∈ U, φ(v) = φ(v′)⇒ v = v′,

• φ is edge-constrained:
∀v ∈ U, (v, φ(v)) ∈ E,
• φ is strongly neighborhood-preserving:
∀v, v′ ∈ U, (v, v′) ∈ E ⇔ (φ(v), φ(v′)) ∈ E.

The cardinal |V −U | is called the loss of φ. A translation for which V = U

is called a lossless translation. Two candidate-translations φ and φ′ are said
to be aligned if ∃v ∈ U, φ(v) = φ′(v). We define Nr(v) as the set of vertices
that are at most r-hop away from a vertex v ∈ V .

132 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

Step 0 (optional): infer a graph (see Pasdeloup et al., 2017a)

x0x1...
xm

... ⇒ 1 2

43

Step 1: infer translations

1 2

43

⇒

Step 2: infer the weight sharing scheme

w1×

+ w2×

+ w3×

+ w4×

+ w0×

Step 3: infer data augmentation

x0 ⇒

Step 4: infer subsampling and weight sharing scheme

1 2

43

⇒ 1 2

43

⇒w0× + w1×

+ w2×

Figure 21: Outline of the proposed method

3.4. INFERRING THE WEIGHT SHARING SCHEME 133

Definition 100. Translation
A translation in a graph G is a candidate-translation such that there is no
aligned translation with a strictly smaller loss, or is the identity function.

If the graph is a 2D grid, obtained translations are exactly natural transla-
tions on images Grelier et al., 2016.
Because translations and candidate-translations need not be surjective
on V , we introduce a zero vertex1 denoted 0V , such that any candidate
translation φ : U → V is extended as a function φ : V → V ∪ {⊥}

∀v /∈ U, φ(v) = 0V (69)

Finding translations is an NP-complete problem (Pasdeloup et al., 2017b).
So in practice, we will first search locally. For this reason, we define local
translations:

Definition 101. Local translation
A local translation of center v ∈ V is a translation in the subgraph of G
induced by N2(v), that has v in its definition domain.

With the help of local translations, we can construct proxies to global
translations.

Definition 102. Proxy-translations
A family of proxy-translations (ψp)p=0,..κ−1 initialized by v0 ∈ V is defined
algorithmically as follows:

1. We place an indexing kernel on N1(v0) i.e.
N1(v0) = {v0, v1, ..., vκ−1} with ∀p, ψp(v0) = vp,

2. We move this kernel using each local translation φ of center v0:
∀p, ψp(φ(v0)) = φ(vp),

1Sometimes called black hole. (Grelier et al., 2016)

134 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

3. We repeat 2) from each new center reached until saturation. If a
center is being reached again, we keep the indexing that minimizes
the sum of losses of the local translations that has lead to it.

We explain this algorithm in more details in the next Section 3.4.3. A
family of proxy-translations defines a translation-convolution as follows:

Definition 103. Translation-convolution layer
Let (ψp)p=0,..,κ−1 be a family of proxy-translations identified on G s.t. ψ0 =

Id. The translation-convolution layer L : x 7→ y is defined as:

∀v ∈ V, y[v] = h

(
κ−1∑
p=0

wp x[ψp(v)] + b

)

where h is the activation function, b is the bias term, and with the conven-
tion that x[0V] = 0.

3.4.3 Finding proxy-translations

We describe in three steps how we efficiently find proxy-translations.

First step: finding local translations

For each vertex v ∈ G, we identify all local translations using a bruteforce
algorithm. This process requires finding all translations in all induced
subgraphs. There are n such subgraphs, each one contains at most d lo-
cal translations. Finding a translation can be performed by looking at all
possible injections from 1-hop vertices around the central vertex to any
vertex that is at most 2-hops away. We conclude that it requires at most
O(ndd2(d+1)) elementary operations and is thus linear with the order of
the graph. On the other hand, it suggests that sparsity of the graph is a
key criterion in order to maintain the complexity reasonable.

3.4. INFERRING THE WEIGHT SHARING SCHEME 135

Figure 22 depicts an example of a grid graph and the induced subgraph
around vertex v0. Figure 23 depicts all obtained translations in the in-
duced subgraph.

v0

Figure 22: Grid graph (in dashed grey) and the subgraph induced by
N2(v0) (in black).

Figure 23: Translations (black arrows) in the induced subgraph (dashed
grey) around v0 (filled in black) that contains v0 and only some of its
neighbors.

Second step: move a small localized kernel
Given an arbitrary1 vertex v0 ∈ V , we place an indexing kernel on N1(v0)

i.e. N1(v0) = {v0, v1, ..., vκ−1}. Then we move it using every local transla-
tions of center v0, repeating this process for each center that is reached
for the first time. We stop when the kernel has been moved everywhere
in the graph. In case of multiple paths leading to the same destination,

1In practice we run several experiments while changing the initial vertex and keep
the best obtained result.

136 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

we keep the indexing that minimizes the sum of loss of the series of lo-
cal translations. We henceforth obtain an indexing of at most κ objects of
N1(v) for every v ∈ V .
This process is depicted in Figure 24. Since it requires moving the kernel
everywhere, its complexity is O(nd2).

a) v0v1v2

v3

b) v0v1v2

v3

c) v0v1v2

v3

d) v0v1v2

v3

Figure 24: Illustration of the translation of a small indexing kernel using
translations in each induced subgraph. Kernel is initialized around v0 (a),
then moved left around v1 (b) using the induced subgraph around v0,
then moved left again around v2 (c) using the induced subgraph around
v1 then moved up around v3 (d) using the induced subgraph around v2. At
the end of the process, the kernel has been localized around each vertex
in the graph.

Final step: identifying proxy-translations
Finally, by looking at the indexings obtained in the previous step, we ob-
tain a family of proxy-translations defined globally on G. More precisely,

3.4. INFERRING THE WEIGHT SHARING SCHEME 137

each index defines its own proxy-translation. Note that they are not trans-
lations because only the local properties have been propagated through
the second step, so there can exist aligned candidates with smaller losses.
Because of the constraint to keep the paths with the minimum sum of
losses, they are good proxies to translations on G.
An illustration on a grid graph is given in Figure 25. The complexity is
O(nd). Overall, all three steps are linear in n.

Figure 25: Proxy-translations in G obtained after moving the small kernel
around each vertex. Each color corresponds to one translation.

3.4.4 Subsampling

Downscaling is a tricky part of the process because it supposes one can
somehow regularly sample vectors. As a matter of fact, a non-regular
sampling is likely to produce a highly irregular downscaled graph, on
which looking for translations irremediably leads to poor accuracy, as we
noticed in our experiments.
We rather define the translations of the strided graph using the previously
found proxy-translations on G.

First step: extended convolution with stride r
Given an arbitrary initial vertex v0 ∈ V , the set of kept vertices V↓r is
defined inductively as follows:

138 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

• V 0
↓r = {v0},

• ∀t ∈ N, V t+1
↓r = V t

↓r ∪ {v ∈ V, ∀v′ ∈ V t
↓ , v 6∈ Nr−1(v′) ∧ ∃v′ ∈ V t

↓r, v ∈
Nr(v

′)}.
This sequence is non-decreasing and bounded by V , so it eventually be-
comes stationary and we obtain V↓r = limt V

t
↓r. V↓r is the set of output

neurons of the extended convolution layer with stride r. Figure 26 illus-
trate the first downscaling V↓2 on a grid graph.

Second step: convolutions for the strided graph
Using the proxy-translations on G, we move a localized r-hop indexing
kernel over G. At each location, we associate the vertices of V↓r with in-
dices of the kernel, thus obtaining what we define as induced ↓r-translations
on the set V↓r. In other words, when the kernel is centered on v0, if v1 ∈ V↓r
is associated with the index p0, we obtain φ↓rp0(v0) = v1. Subsequent convo-
lutions at lower scales are defined using these induced ↓r-translations.

v0

Figure 26: Downscaling of the grid graph. Disregarded vertices are filled.

3.4. INFERRING THE WEIGHT SHARING SCHEME 139

3.4.5 Data augmentation

Once proxy-translations are obtained on G, we use them to move train-
ing signals, artificially creating new ones. Note that this type of data-
augmentation is weaker than for images since no flipping, scaling or ro-
tations are used.

3.4.6 Experiments

Matching CNNs on supervised image classification
On CIFAR-10 (see Section 1.3.3), our models are based on a variant of
a deep residual network, namely PreActResNet18 (He et al., 2016b). We
tested different combinations of graph support and data augmentation.
For the graph support, we use either a regular 2D grid or either an in-
ferred graph obtained by keeping the four neighbors that covary the most.
In the second case, which correspond to scrambled CIFAR-10 (see Sec-
tion 1.3.3), no structure prior have been fed to the process, so the results
can be compared with those of Lin et al., 2015. We also report results ob-
tained with ChebNet (Defferrard et al., 2016), where only convolutional
layers have been replaced for comparison. Table 9 summarizes our results.
In particular, it is interesting to note that results obtained without any
structure prior (91.07%) are only 2.7% away from the baseline using clas-
sical CNNs on images (93.80%). This gap is even smaller (less than 1%)
when using the grid prior. Also, on scrambled CIFAR-10 (case without
prior) our method significantly outperforms the others.

Experiments on a fMRI dataset
We used a shallow network on the PINES dataset (see Section 1.3.3). The
results reported on Table 10 show that our method was able to improve
over CNNs, MLPs and other graph-based extended convolutional neural
networks.

140 CHAPTER 3. DEEP LEARNING ON GRAPH DOMAINS

Support MLP CNN Grid Graph Covariance Graph
ChebNetc Proposed Proposed

Full Data Augmentation 78.62%a,b 93.80% 85.13% 93.94% 92.57%
Data Augmentation - Flip —— 92.73% 84.41% 92.94% 91.29%
Graph Data Augmentation —— 92.10%d —— 92.81% 91.07%a

None 69.62% 87.78% —— 88.83% 85.88%a

a No prior about the structure
b Lin et al., 2015

c Defferrard et al., 2016

d Data augmentation done with covariance graph

Table 9: CIFAR-10 and scrambled CIFAR-10 comparison table.

Support None Neighborhood Graph
Method MLP CNN (1x1 kernels) ChebNetc Proposed
Accuracy 82.62% 84.30% 82.80% 85.08%

Table 10: PINES fMRI comparison table.

3.5 Conclusion

In this chapter, we developed a new perspective to look at neural net-
works. This led us to discover that neural layers can be formulated with
a ternary operation, that we called neural contraction, between an input
signal X , a weight kernel Θ, and a weight sharing scheme S. We studied
this representation and proposed efficient implementations. We saw it can
represent any kind of layer. In particular we showed how related works
from the literature can be represented with neural contractions. Also, we
used it see the influence of symmetries, and concluded on their critical
role in the success of convolutions. Then, we tested models on the task
of graph signals classification and on the task of semi-supervised classi-
fication of nodes. To construct the scheme S, we tested ideas based on
randomizations, from which we derived what we called Monte-Carlo Neu-
ral Networks (MCNN), and a technique we called graph dropout. We also
tested to learn the scheme S, obtaining Graph Contraction Networks (GCT).

3.5. CONCLUSION 141

Finally, we tested to infer the scheme S from a set of translations inferred
from the domain, which we called Translation-Convolution Neural Networks
(TCNN). On image and fMRI datasets, GCTs and TCNNs obtained perfor-
mances that match those of CNNs. On scrambled image datasets, TCNNs
obtained almost the same performance as in the non-scrambled case, out-
performing alternatives by a large margin. On text documents, MCNNs
beat the other graph convolution alternative. On citation networks, GCTs
set new state-of-the-art results, but by small margins that are not statisti-
cally significant.

142

Conclusion

In this manuscript, after a presentation of the fields of research, we devel-
oped a theory on convolution of graph signals, and proposed new models
that extend deep learning to graph domains.

In Chapter 2, we formulated two constructions of convolutions of sig-
nals defined on a vertex set V , based on a group Γ acting on V . The ϕ-
convolution can be employed when Γ and V are in one-to-one correspon-
dence via an equivariant map ϕ, while the m-convolution is a more conve-
nient formulation that can be employed when Γ is abelian. We proved that
the characterization by equivariance to Γ, inherited from group convolu-
tions holds. Then we introduced two properties that bind these convolu-
tions with the edge set E : edge-constraint (EC) and locality-preservation
(LP). In view of describing operators that are used in deep learning, we
proposed formulations with kernels of smaller supports, and proved that
the weight sharing property holds. We demonstrated that the existence of
convolutions on a graph can be characterized by the existence of Cayley
subgraphs. For some graphs, their Cayley subgraphs might not be well
representative of their topology. Therefore, we suggested a few strate-
gies and we extended the previous results with convolutions based on
groupoids rather than on groups. We constructed two types of groupoids,
from partial transformations and paths, and were able to extend the re-
sults but also with some limitations. With the first type of groupoid this
almost amounted to partition the graph into Cayley subgraphs, whereas
with the second one it included degenerated cases.

143

In Chapter 3 we proposed a novel layer representation for extending CNN
architectures to other input domains. This representation is based on a
ternary operation that we called neural contraction, from which we de-
rived new models: Monte-Carlo Neural Networks (MCNN), Graph Contrac-
tion Networks (GCT), Translation-Convolutional Neural Networks (TCNN);
and a new technique: graph dropout. We also showed how to represent
related models from the literature with neural contractions. The MCNN
is a first idea exploiting the neural contraction. Roughly speaking, it is
based on randomizing the structure that is leveraged, then averaging. So
we didn’t expect much from it but it fared well on a text categorization
task. The GCT is based on the idea of learning how the weights are shared
while learning them. It sets new state-of-the-art performances on the task
of semi-supervised classification of nodes in citation networks, but outper-
forms only by a small margin that is not statistically significant. In par-
ticular, we also observed that using graph dropout also significantly im-
proved the results of alternative models on this type of tasks. The TCNN
relies on constructing a convolution based on graph translations. It sets a
new state-of-the-art on classification of scrambled images by a large mar-
gin, and performs well on a fMRI dataset which is structured by a graph
resembling a grid graph.

We tested these models in two types of tasks: supervised classification
of graph signals and semi-supervised classification of nodes. The first
task is historically the one that gave visibility to CNNs. However, we do
not know of a dataset with a very unusual graph structure that is well
fitted for the first task, or if it exists, it might not be the best graph to
describe the underlying structure. This is why is practice, experiments
for the supervised task are done with graphs resembling grid graphs to
some extent. This is not the case for the semi-supervised task.

In the end, both task can be abstracted to a more general one. For example,
let us consider a dataset represented by a matrix X , of shape B × N ,

144

where B is the number of instances and N is the number of features.
The linear part of the GCN layer formulation Y = AXΘ exploits both
a graph on the rows (that we saw can be learned with the GCT) and
a complete graph on the columns. Thus this layer amounts to two half
layers, a sparse and a dense one. This idea can be generalized given a
dataset represented by a tensor X of rank r. The formulation would then
be Y = g(X,A1, A2, . . . , Ar) where g realizes every tensor contractions
between X and each Ai along the corresponding ranks. In that case, the
Ai can be seen as a learnable normalized adjacency matrix corresponding
to a graph structure on the ith rank. This idea can originate a class of
neural networks that can be called multiary neural networks.

As pointed out in the introduction, this work participates in making
CNNs more generic, and thus applicable to a broader range of real world
problems. In the process, we also advanced our understanding of con-
volutions, providing a thorough description with a set of expressions,
mathematical results and theorems about how to extend them on graph
domains while preserving key properties, and how to characterize them.
We hope that the reader had pleasure reading this manuscript and that it
gave him ideas and shed new lights !

145

146

Bibliography

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete War-
den, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng
(2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems. Software available from tensorflow.org. url: http://tensorflow.
org/ (cit. on pp. 7, 29, 126).

Arora, Raman, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee
(2018). “Understanding Deep Neural Networks with Rectified Lin-
ear Units”. In: International Conference on Learning Representations. url:
https://openreview.net/forum?id=B1J_rgWRW (cit. on p. 26).

Atwood, James and Don Towsley (2016). “Diffusion-convolutional neu-
ral networks”. In: Advances in Neural Information Processing Systems,
pp. 1993–2001 (cit. on p. 45).

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neu-
ral machine translation by jointly learning to align and translate”. In:
arXiv preprint arXiv:1409.0473 (cit. on p. 46).

147

http://tensorflow.org/
http://tensorflow.org/
https://openreview.net/forum?id=B1J_rgWRW

Bai, Lu, Yuhang Jiao, Luca Rossi, Lixin Cui, Jian Cheng, and Edwin R Han-
cock (2018). “A Quantum Spatial Graph Convolutional Neural Net-
work using Quantum Passing Information”. In: arXiv preprint arXiv:1809.01090
(cit. on p. 37).

Bass, Jean (1968). “Cours de mathématiques”. In: (cit. on p. 5).
Bengio, Yoshua (2009). “Learning deep architectures for AI”. In: Founda-

tions and trends R© in Machine Learning 2.1, pp. 1–127 (cit. on p. 24).
Bianchini, Monica and Franco Scarselli (2014). “On the complexity of neu-

ral network classifiers: A comparison between shallow and deep archi-
tectures”. In: IEEE transactions on neural networks and learning systems
25.8, pp. 1553–1565 (cit. on p. 26).

Brandt, Heinrich (1927). “Über eine Verallgemeinerung des Gruppenbe-
griffes”. In: Mathematische Annalen 96.1, pp. 360–366 (cit. on p. 84).

Bronstein, Michael M, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre
Vandergheynst (2017). “Geometric deep learning: going beyond eu-
clidean data”. In: IEEE Signal Processing Magazine 34.4, pp. 18–42 (cit.
on p. 33).

Bruna, Joan and Stéphane Mallat (2013). “Invariant scattering convolution
networks”. In: IEEE transactions on pattern analysis and machine intelli-
gence 35.8, pp. 1872–1886 (cit. on p. 44).

Bruna, Joan, Wojciech Zaremba, Arthur Szlam, and Yann LeCun (2013).
“Spectral networks and locally connected networks on graphs”. In:
arXiv preprint arXiv:1312.6203 (cit. on p. 41).

Cayley, Professor (1878). “Desiderata and Suggestions: No. 2. The Theory
of Groups: Graphical Representation”. In: American Journal of Mathe-
matics 1.2, pp. 174–176. issn: 00029327, 10806377. url: http://www.
jstor.org/stable/2369306 (cit. on p. 75).

Chang, Luke J, Peter J Gianaros, Stephen B Manuck, Anjali Krishnan, and
Tor D Wager (2015). “A sensitive and specific neural signature for

148

http://www.jstor.org/stable/2369306
http://www.jstor.org/stable/2369306

picture-induced negative affect”. In: PLoS biology 13.6, e1002180 (cit.
on p. 38).

Chellapilla, Kumar, Sidd Puri, and Patrice Simard (2006). “High perfor-
mance convolutional neural networks for document processing”. In:
Tenth International Workshop on Frontiers in Handwriting Recognition. Su-
visoft (cit. on p. 113).

Chen, Tianqi, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tian-
jun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang (2015). “Mxnet:
A flexible and efficient machine learning library for heterogeneous
distributed systems”. In: arXiv preprint arXiv:1512.01274 (cit. on p. 7).

Chen, Xu, Xiuyuan Cheng, and Stéphane Mallat (2014). “Unsupervised
deep haar scattering on graphs”. In: Advances in Neural Information
Processing Systems, pp. 1709–1717 (cit. on p. 44).

Chetlur, Sharan, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer (2014). “cudnn: Ef-
ficient primitives for deep learning”. In: arXiv preprint arXiv:1410.0759
(cit. on p. 114).

Chollet, François et al. (2015). Keras. https://keras.io (cit. on p. 7).
Chollet, François (2016). “Xception: Deep Learning with Depthwise Sepa-

rable Convolutions”. In: arXiv preprint arXiv:1610.02357 (cit. on p. 118).
Chung, Fan R. K. (1996). Spectral Graph Theory (CBMS Regional Conference

Series in Mathematics, No. 92). American Mathematical Society. isbn:
0821803158 (cit. on p. 40).

Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter (2015).
“Fast and accurate deep network learning by exponential linear units
(elus)”. In: arXiv preprint arXiv:1511.07289 (cit. on p. 25).

Cohen, Nadav and Amnon Shashua (2016). “Convolutional rectifier net-
works as generalized tensor decompositions”. In: International Confer-
ence on Machine Learning, pp. 955–963 (cit. on p. 26).

149

https://keras.io

Cohen, Nadav, Ronen Tamari, and Amnon Shashua (2018). “Boosting Di-
lated Convolutional Networks with Mixed Tensor Decompositions”.
In: International Conference on Learning Representations. url: https://
openreview.net/forum?id=S1JHhv6TW (cit. on p. 26).

Cord, Matthieu (2016). Deep learning an weak supervision for image classifi-
cation. [Online; accessed April-2018]. url: http://webia.lip6.fr/
~cord/pdfs/news/TalkDeepCordI3S.pdf (cit. on p. 17).

Cybenko, George (1989). “Approximation by superpositions of a sigmoidal
function”. In: Mathematics of control, signals and systems 2.4, pp. 303–314

(cit. on pp. 24, 25).
D’Alembert, Jean Le Rond (1754). Recherche sur différents points importants

du système du monde (cit. on p. 1).
Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst (2016).

“Convolutional neural networks on graphs with fast localized spec-
tral filtering”. In: Advances in Neural Information Processing Systems,
pp. 3837–3845 (cit. on pp. 39, 42–44, 110, 119, 139, 140).

Delalleau, Olivier and Yoshua Bengio (2011). “Shallow vs. deep sum-
product networks”. In: Advances in Neural Information Processing Sys-
tems, pp. 666–674 (cit. on p. 26).

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei (2009).
“Imagenet: A large-scale hierarchical image database”. In: Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on.
IEEE, pp. 248–255 (cit. on pp. 20, 24).

Dominguez-Torres, Alejandro (2010). “The origin and history of convo-
lution: continuous and discrete convolution operations”. In: [Online;
accessed April-2018]. url: http://www.slideshare.net/Alexdfar/
origin-adn-history-of-convolution (cit. on p. 1).

Du, Jian, Shanghang Zhang, Guanhang Wu, José MF Moura, and Soum-
mya Kar (2017). “Topology adaptive graph convolutional networks”.
In: arXiv preprint arXiv:1710.10370 (cit. on pp. 47, 110, 128).

150

https://openreview.net/forum?id=S1JHhv6TW
https://openreview.net/forum?id=S1JHhv6TW
http://webia.lip6.fr/~cord/pdfs/news/TalkDeepCordI3S.pdf
http://webia.lip6.fr/~cord/pdfs/news/TalkDeepCordI3S.pdf
http://www. slideshare. net/Alexdfar/origin-adn-history-of-convolution
http://www. slideshare. net/Alexdfar/origin-adn-history-of-convolution

Eldan, Ronen and Ohad Shamir (2016). “The power of depth for feedfor-
ward neural networks”. In: Conference on Learning Theory, pp. 907–940

(cit. on p. 26).
Exel, Ruy (1998). “Partial actions of groups and actions of inverse semi-

groups”. In: Proceedings of the American Mathematical Society 126.12,
pp. 3481–3494 (cit. on p. 93).

Gama, Fernando, Alejandro Ribeiro, and Joan Bruna (2018). “Diffusion
Scattering Transforms on Graphs”. In: arXiv preprint arXiv:1806.08829
(cit. on p. 44).

Gilmer, Justin, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl (2017). “Neural message passing for quantum chem-
istry”. In: arXiv preprint arXiv:1704.01212 (cit. on p. 45).

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty
of training deep feedforward neural networks”. In: Proceedings of the
thirteenth international conference on artificial intelligence and statistics,
pp. 249–256 (cit. on pp. 24, 123).

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio (2011). “Deep sparse
rectifier neural networks”. In: International Conference on Artificial Intel-
ligence and Statistics, pp. 315–323 (cit. on pp. 16, 25).

Grelier, Nicolas, Bastien Pasdeloup, Jean-Charles Vialatte, and Vincent
Gripon (2016). “Neighborhood-Preserving Translations on Graphs”.
In: Proceedings of IEEE GlobalSIP, pp. 410–414 (cit. on pp. 130, 133).

Grover, Aditya and Jure Leskovec (2016). “node2vec: Scalable feature learn-
ing for networks”. In: Proceedings of the 22nd ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM, pp. 855–
864 (cit. on p. 37).

Hackbusch, Wolfgang (2012). Tensor spaces and numerical tensor calculus.
Vol. 42. Springer Science & Business Media (cit. on pp. 5, 6).

151

Hamilton, Will, Zhitao Ying, and Jure Leskovec (2017a). “Inductive repre-
sentation learning on large graphs”. In: Advances in Neural Information
Processing Systems, pp. 1024–1034 (cit. on p. 37).

Hamilton, William L, Rex Ying, and Jure Leskovec (2017b). “Representa-
tion learning on graphs: Methods and applications”. In: arXiv preprint
arXiv:1709.05584 (cit. on p. 37).

Hammond, David K, Pierre Vandergheynst, and Rémi Gribonval (2011).
“Wavelets on graphs via spectral graph theory”. In: Applied and Com-
putational Harmonic Analysis 30.2, pp. 129–150 (cit. on pp. 41, 43, 44).

Håstad, Johan and Mikael Goldmann (1991). “On the power of small-
depth threshold circuits”. In: Computational Complexity 1.2, pp. 113–
129 (cit. on p. 25).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Delv-
ing deep into rectifiers: Surpassing human-level performance on ima-
genet classification”. In: Proceedings of the IEEE international conference
on computer vision, pp. 1026–1034 (cit. on p. 25).

— (2016a). “Deep residual learning for image recognition”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778 (cit. on pp. 14, 19, 20).

— (2016b). “Identity mappings in deep residual networks”. In: European
Conference on Computer Vision. Springer, pp. 630–645 (cit. on p. 139).

Hechtlinger, Yotam, Purvasha Chakravarti, and Jining Qin (2017). “A gen-
eralization of convolutional neural networks to graph-structured data”.
In: arXiv preprint arXiv:1704.08165 (cit. on p. 45).

Henaff, Mikael, Joan Bruna, and Yann LeCun (2015). “Deep convolutional
networks on graph-structured data”. In: arXiv preprint arXiv:1506.05163
(cit. on p. 44).

Hinton, Geoffrey, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mo-
hamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Tara N Sainath, et al. (2012). “Deep neural networks for

152

acoustic modeling in speech recognition: The shared views of four
research groups”. In: IEEE Signal Processing Magazine 29.6, pp. 82–97

(cit. on p. 14).
Hinton, Geoffrey E, Simon Osindero, and Yee-Whye Teh (2006). “A fast

learning algorithm for deep belief nets”. In: Neural computation 18.7,
pp. 1527–1554 (cit. on p. 24).

Hornik, Kurt (1991). “Approximation capabilities of multilayer feedfor-
ward networks”. In: Neural networks 4.2, pp. 251–257 (cit. on p. 24).

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (1989). “Multi-
layer feedforward networks are universal approximators”. In: Neural
Networks 2.5, pp. 359–366 (cit. on pp. 24, 27).

Huang, Gao, Zhuang Liu, Kilian Q Weinberger, and Laurens van der
Maaten (2017). “Densely connected convolutional networks”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
Vol. 1. 2, p. 3 (cit. on pp. 14, 19, 20).

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: acceler-
ating deep network training by reducing internal covariate shift”. In:
Proceedings of the 32nd International Conference on International Confer-
ence on Machine Learning-Volume 37. JMLR. org, pp. 448–456 (cit. on
p. 25).

Jaderberg, Max, Karen Simonyan, Andrew Zisserman, et al. (2015). “Spa-
tial transformer networks”. In: Advances in neural information processing
systems, pp. 2017–2025 (cit. on p. 43).

Jarrett, Kevin, Koray Kavukcuoglu, Yann LeCun, et al. (2009). “What is
the best multi-stage architecture for object recognition?” In: Computer
Vision, 2009 IEEE 12th International Conference on. IEEE, pp. 2146–2153

(cit. on p. 25).
Joachims, Thorsten (1996). A Probabilistic Analysis of the Rocchio Algorithm

with TFIDF for Text Categorization. Tech. rep. Carnegie-mellon univ
pittsburgh pa dept of computer science (cit. on pp. 39, 43).

153

Kingma, Diederik and Jimmy Ba (2014). “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (cit. on p. 123).

Kipf, Thomas N and Max Welling (2016). “Semi-supervised classification
with graph convolutional networks”. In: arXiv preprint arXiv:1609.02907
(cit. on pp. 39, 45, 110, 120, 128).

Klambauer, Günter, Thomas Unterthiner, Andreas Mayr, and Sepp Hochre-
iter (2017). “Self-Normalizing Neural Networks”. In: Advances in Neu-
ral Information Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett.
Curran Associates, Inc., pp. 971–980. url: http://papers.nips.cc/
paper/6698-self-normalizing-neural-networks.pdf (cit. on p. 25).

Krizhevsky, Alex (2009). “Learning multiple layers of features from tiny
images”. In: (cit. on p. 38).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Ima-
genet classification with deep convolutional neural networks”. In: Ad-
vances in Neural Information Processing Systems, pp. 1097–1105 (cit. on
pp. 14, 25, 28, 126).

Lassance, Carlos Eduardo Rosar Kos, Jean-Charles Vialatte, and Vincent
Gripon (2018). “Matching Convolutional Neural Networks without
Priors about Data”. In: (cit. on pp. 38, 131).

LeCun, Y. (1987). “Modeles connexionnistes de l’apprentissage (connec-
tionist learning models)”. PhD thesis. Université P. et M. Curie (Paris
6) (cit. on p. 20).

LeCun, Yann, Yoshua Bengio, et al. (1995). “Convolutional networks for
images, speech, and time series”. In: The handbook of brain theory and
neural networks 3361.10, p. 1995 (cit. on pp. 14, 28).

LeCun, Yann, Bernhard Boser, John S Denker, Donnie Henderson, Richard
E Howard, Wayne Hubbard, and Lawrence D Jackel (1989). “Backprop-
agation applied to handwritten zip code recognition”. In: Neural com-
putation 1.4, pp. 541–551 (cit. on pp. 14, 16, 17, 25).

154

http://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf
http://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf

LeCun, Yann, Corinna Cortes, and Christopher JC Burges (1998). The
MNIST database of handwritten digits (cit. on pp. 38, 117).

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learn-
ing”. In: Nature 521.7553, pp. 436–444 (cit. on p. 1).

Lee, John Boaz, Ryan A Rossi, Sungchul Kim, Nesreen K Ahmed, and
Eunyee Koh (2018). “Attention Models in Graphs: A Survey”. In: arXiv
preprint arXiv:1807.07984 (cit. on pp. 45, 46).

Levie, Ron, Federico Monti, Xavier Bresson, and Michael M Bronstein
(2017). “CayleyNets: Graph Convolutional Neural Networks with Com-
plex Rational Spectral Filters”. In: arXiv preprint arXiv:1705.07664 (cit.
on p. 44).

Li, Xin (2016). “Partial transformation groupoids attached to graphs and
semigroups”. In: International Mathematics Research Notices 2017.17, pp. 5233–
5259 (cit. on p. 93).

Lin, Henry W, Max Tegmark, and David Rolnick (2017). “Why does deep
and cheap learning work so well?” In: Journal of Statistical Physics 168.6,
pp. 1223–1247 (cit. on p. 26).

Lin, Zhouhan, Roland Memisevic, and Kishore Reddy Konda (2015). “How
far can we go without convolution: Improving fully-connected net-
works”. In: CoRR abs/1511.02580. arXiv: 1511.02580. url: http://
arxiv.org/abs/1511.02580 (cit. on pp. 57, 139, 140).

Maas, Andrew L, Awni Y Hannun, and Andrew Y Ng (2013). “Rectifier
nonlinearities improve neural network acoustic models”. In: Proceed-
ings of the 30th international conference on machine learning (cit. on p. 25).

Marcus, Marvin (1975). “Finite dimensional multilinear algebra”. In: (cit.
on p. 5).

McCulloch, Warren S and Walter Pitts (1943). “A logical calculus of the
ideas immanent in nervous activity”. In: The bulletin of mathematical
biophysics 5.4, pp. 115–133 (cit. on p. 21).

155

https://arxiv.org/abs/1511.02580
http://arxiv.org/abs/1511.02580
http://arxiv.org/abs/1511.02580

Mhaskar, Hrushikesh, Qianli Liao, and Tomaso Poggio (2016). “Learn-
ing functions: when is deep better than shallow”. In: arXiv preprint
arXiv:1603.00988 (cit. on p. 26).

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean
(2013a). “Distributed representations of words and phrases and their
compositionality”. In: Advances in neural information processing systems,
pp. 3111–3119 (cit. on p. 37).

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013b). “Ef-
ficient estimation of word representations in vector space”. In: arXiv
preprint arXiv:1301.3781 (cit. on p. 37).

Monti, Federico, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan
Svoboda, and Michael M Bronstein (2016). “Geometric deep learn-
ing on graphs and manifolds using mixture model CNNs”. In: arXiv
preprint arXiv:1611.08402 (cit. on pp. 45, 110).

Montufar, Guido F, Razvan Pascanu, Kyunghyun Cho, and Yoshua Ben-
gio (2014). “On the number of linear regions of deep neural networks”.
In: Advances in neural information processing systems, pp. 2924–2932 (cit.
on p. 26).

Ng, Andrew Y (2004). “Feature selection, L 1 vs. L 2 regularization, and
rotational invariance”. In: Proceedings of the twenty-first international con-
ference on Machine learning. ACM, p. 78 (cit. on p. 123).

Nica, Alexandru (1994). “On a groupoid construction for actions of cer-
tain inverse semigroups”. In: International Journal of Mathematics 5.03,
pp. 349–372 (cit. on p. 93).

Nickolls, John, Ian Buck, Michael Garland, and Kevin Skadron (2008).
“Scalable parallel programming with CUDA”. In: ACM SIGGRAPH
2008 classes. ACM, p. 16 (cit. on p. 25).

Niepert, Mathias and Alberto Garcia-Duran (2018). “Towards a Spectrum
of Graph Convolutional Networks”. In: arXiv preprint arXiv:1805.01837
(cit. on p. 47).

156

Niepert, Mathias, Mohamed Ahmed, and Konstantin Kutzkov (2016). “Learn-
ing Convolutional Neural Networks for Graphs”. In: Proceedings of
the 33rd International Conference on International Conference on Machine
Learning, pp. 2014–2023 (cit. on pp. 37, 45).

Nikolentzos, Giannis, Polykarpos Meladianos, Antoine Jean-Pierre Tix-
ier, Konstantinos Skianis, and Michalis Vazirgiannis (2017). “Kernel
Graph Convolutional Neural Networks”. In: arXiv preprint arXiv:1710.10689
(cit. on p. 37).

Oliphant, Travis E (2006). A guide to NumPy. Vol. 1. Trelgol Publishing
USA (cit. on p. 7).

Orhan, Emin and Xaq Pitkow (2018). “Skip Connections Eliminate Singu-
larities”. In: International Conference on Learning Representations. url:
https://openreview.net/forum?id=HkwBEMWCZ (cit. on p. 27).

Pan, Xingyuan and Vivek Srikumar (2016). “Expressiveness of rectifier
networks”. In: International Conference on Machine Learning, pp. 2427–
2435 (cit. on p. 26).

Pascanu, Razvan, Guido Montufar, and Yoshua Bengio (2013). “On the
number of response regions of deep feed forward networks with piece-
wise linear activations”. In: arXiv preprint arXiv:1312.6098 (cit. on pp. 25,
26).

Pasdeloup, Bastien, Vincent Gripon, Jean-Charles Vialatte, and Dominique
Pastor (2017a). “Convolutional neural networks on irregular domains
through approximate translations on inferred graphs”. In: arXiv preprint
arXiv:1710.10035 (cit. on pp. 45, 131, 132).

Pasdeloup, Bastien, Vincent Gripon, Nicolas Grelier, Jean-Charles Vialatte,
and Dominique Pastor (2017b). “Translations on graphs with neighbor-
hood preservation”. In: arXiv preprint arXiv:1709.03859 (cit. on pp. 130,
133).

Paszke, Adam, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,

157

https://openreview.net/forum?id=HkwBEMWCZ

and Adam Lerer (2017). “Automatic differentiation in PyTorch”. In:
(cit. on p. 7).

Poggio, Tomaso, Fabio Anselmi, and Lorenzo Rosasco (2015). I-theory on
depth vs width: hierarchical function composition. Tech. rep. Center for
Brains, Minds and Machines (CBMM) (cit. on p. 26).

Poole, Ben, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and
Surya Ganguli (2016). “Exponential expressivity in deep neural net-
works through transient chaos”. In: Advances in neural information pro-
cessing systems, pp. 3360–3368 (cit. on p. 26).

Raghu, Maithra, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha
Sohl-Dickstein (2016). “On the expressive power of deep neural net-
works”. In: arXiv preprint arXiv:1606.05336 (cit. on p. 26).

Robbins, Herbert and Sutton Monro (1985). “A stochastic approximation
method”. In: Herbert Robbins Selected Papers. Springer, pp. 102–109 (cit.
on p. 22).

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1985).
Learning internal representations by error propagation. Tech. rep. Califor-
nia Univ San Diego La Jolla Inst for Cognitive Science (cit. on pp. 14,
21).

Sandryhaila, Aliaksei and José MF Moura (2013). “Discrete signal process-
ing on graphs”. In: IEEE transactions on signal processing 61.7, pp. 1644–
1656 (cit. on p. 47).

Sankar, Aravind, Xinyang Zhang, and Kevin Chen-Chuan Chang (2017).
“Motif-based Convolutional Neural Network on Graphs”. In: arXiv
preprint arXiv:1711.05697 (cit. on p. 45).

Schwartz, Laurent (1957). Théorie des distributions. Vol. 2. Hermann Paris
(cit. on p. 55).

Sen, Prithviraj, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gal-
ligher, and Tina Eliassi-Rad (2008). “Collective classification in net-
work data”. In: AI magazine 29.3, p. 93 (cit. on p. 39).

158

Shuman, David I, Sunil K Narang, Pascal Frossard, Antonio Ortega, and
Pierre Vandergheynst (2013). “The Emerging Field of Signal Process-
ing on Graphs: Extending High-Dimensional Data Analysis to Net-
works and Other Irregular Domains”. In: IEEE Signal Processing Maga-
zine 30, pp. 83–98 (cit. on p. 40).

Simonovsky, Martin and Nikos Komodakis (2017). “Dynamic Edge-Conditioned
Filters in Convolutional Neural Networks on Graphs”. In: arXiv preprint
arXiv:1704.02901 (cit. on p. 45).

Simonyan, Karen and Andrew Zisserman (2014). “Very deep convolu-
tional networks for large-scale image recognition”. In: arXiv preprint
arXiv:1409.1556 (cit. on pp. 14, 17, 18).

Srivastava, Nitish, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov (2014). “Dropout: a simple way to prevent
neural networks from overfitting.” In: Journal of Machine Learning Re-
search 15.1, pp. 1929–1958 (cit. on p. 25).

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Ra-
binovich, et al. (2015). “Going deeper with convolutions”. In: Confer-
ence on Computer Vision and Pattern Recognition (cit. on pp. 14, 20).

Tixier, Antoine Jean-Pierre, Giannis Nikolentzos, Polykarpos Meladianos,
and Michalis Vazirgiannis (2017). “Classifying Graphs as Images with
Convolutional Neural Networks”. In: arXiv preprint arXiv:1708.02218
(cit. on p. 37).

Van Den Oord, Aaron, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and
Koray Kavukcuoglu (2016). “Wavenet: A generative model for raw au-
dio”. In: arXiv preprint arXiv:1609.03499 (cit. on p. 27).

Velickovic, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio (2017). “Graph Attention Networks”.
In: stat 1050, p. 20 (cit. on pp. 45, 46, 110, 128).

159

Vialatte, Jean-Charles, Vincent Gripon, and Grégoire Mercier (2016). “Gen-
eralizing the convolution operator to extend cnns to irregular domains”.
In: arXiv preprint arXiv:1606.01166 (cit. on pp. 45, 110, 116).

Vialatte, Jean-Charles, Vincent Gripon, and Gilles Coppin (2017). “Learn-
ing Local Receptive Fields and their Weight Sharing Scheme on Graphs”.
In: arXiv preprint arXiv:1706.02684 (cit. on pp. 45, 121, 122).

Weinstein, Alan (1996). “Groupoids: unifying internal and external sym-
metry”. In: Notices of the AMS 43.7, pp. 744–752 (cit. on p. 84).

Widrow, Bernard and Marcian E Hoff (1960). Adaptive switching circuits.
Tech. rep. STANFORD UNIV CA STANFORD ELECTRONICS LABS
(cit. on p. 21).

Wikipedia, contributors (2018a). Feedforward neural network — Wikipedia,
The Free Encyclopedia. [Online; accessed April-2018]. url: https://en.
wikipedia.org/wiki/Feedforward_neural_network (cit. on p. 14).

— (2018b). Softmax function — Wikipedia, The Free Encyclopedia. [Online; ac-
cessed April-2018]. url: https://en.wikipedia.org/wiki/Softmax_
function (cit. on p. 16).

Williamson, S Gill (2015). “Tensor spaces-the basics”. In: arXiv preprint
arXiv:1510.02428 (cit. on p. 5).

Yamada, Yoshihiro, Masakazu Iwamura, and Koichi Kise (2018). “Shake-
Drop regularization”. In: arXiv preprint arXiv:1802.02375 (cit. on p. 57).

Yang, Zhilin, William W Cohen, and Ruslan Salakhutdinov (2016). “Re-
visiting semi-supervised learning with graph embeddings”. In: arXiv
preprint arXiv:1603.08861 (cit. on p. 39).

Yi, Li, Hao Su, Xingwen Guo, and Leonidas Guibas (2016). “Syncspec-
cnn: Synchronized spectral CNN for 3d shape segmentation”. In: arXiv
preprint arXiv:1612.00606 (cit. on p. 43).

Zell, Andreas (1994). Simulation neuronaler netze. Vol. 1. Addison-Wesley
Bonn (cit. on p. 14).

160

https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Softmax_function

Zermelo, Ernst (1904). “Beweis, daß jede Menge wohlgeordnet werden
kann”. In: Mathematische Annalen 59.4, pp. 514–516 (cit. on p. 91).

Zhang, Daokun, Jie Yin, Xingquan Zhu, and Chengqi Zhang (2017). “Net-
work representation learning: A survey”. In: IEEE transactions on Big
Data (cit. on p. 37).

Zoph, Barret and Quoc V Le (2016). “Neural architecture search with rein-
forcement learning”. In: arXiv preprint arXiv:1611.01578 (cit. on p. 14).

Zou, D. and G. Lerman (Mar. 2018). “Graph Convolutional Neural Net-
works via Scattering”. In: ArXiv e-prints. arXiv: 1804.00099 [cs.IT]

(cit. on p. 44).

161

https://arxiv.org/abs/1804.00099

162

Résumé en français

Ce manuscrit est une thèse soumise pour candidater au grade de docteur.
Il est dévolu à deux sujets. Le premier traite d’extensions de la convo-
lution discrète aux signaux sur graphe. Le second traite d’extensions de
l’ensemble de définition des réseaux de neurones à des graphes. Les deux
sujets sont reliés car les réseaux de neurones peuvent tirer profit de la
structure sous-jacente de leur ensemble de définition à l’aide de convolu-
tions.

Dans un premier temps, nous présentons les notions relatives à nos sujets
d’étude. L’un deux, l’apprentissage profond, est le domaine de recherche qui
se concentre sur une classe particulière de fonctions: les réseaux de neu-
rones. Puisque nous essayons de suivre une approche rigoureuse, nous
commençons par définir proprement leurs ensembles de définition et
d’arrivée, qui peuvent être modélisés par des espaces tensoriels. En par-
ticulier, nous donnons des définitions originales pour les tenseurs, qui
sont appropriées dans le cadre de l’étude de réseaux de neurones. Nous
expliquons aussi comment les données sont traitées et manipulées. Nous
définissons certaines opérations binaires qui sont importantes pour notre
étude : contraction tensorielle et convolution. Ensuite, nous définissons les
réseaux de neurones, discutons leur interprétation biologique, montrons
comment ils apprennent, et relatons quelques avancées historiques. Puis,
nous introduisons des couches classiques, en particulier les couches con-
volutionelles pour lesquelles nous démontrons un premier résultat qui
avance notre réflexion. Puis, nous présentons le domaine de recherche

163

relatif à l’apprentissage profond sur graphes. Nous commençons par des déf-
initions relatives aux graphes, puis nous décrivons des cas d’usage. Enfin,
nous faisons une revue des modèles à l’état de l’art en deux parties, l’une
sur les méthodes spectrales, l’autre sur les méthodes dans le domaine des
sommets du graphe.

Au cours du deuxième chapitre, nous formalisons mathématiquement les
principes de l’extension de la convolution aux signaux sur graphes. Si
le graphe n’est pas un graphe grille, il n’existe pas de manière naturelle
d’étendre la convolution Euclidienne. Nous commençons par analyser
les raisons pour lesquelles la convolution Euclidienne est utile en ap-
prentissage profond. En particulier, nous rappelons une caractérisation
classique : la classe des opérateurs de convolutions est exactement la
même que celle des fonctions linéaires qui sont équivariantes aux trans-
lations. Nous nous demandons donc sur quels domaines une convolu-
tion avec ces propriétés peut être obtenue de manière naturelle. Cela
nous amène à considérer la théorie des représentations et les convolu-
tions définies sur des groupes. Puisque la convolution Euclidienne est
juste un cas particulier de la convolution de groupes, cela est parfaite-
ment pertinent de diriger notre construction dans cette direction. Ensuite,
nous cherchons à transférer la définition de la convolution de groupes
sur les sommets, par le biais de son groupe symétrique. Pour obtenir la
caractérisation désirée, nous constatons que nous avons besoin de baser
la convolution sur les actions du groupe, plutôt que sur ses éléments.
Nous parvenons à l’obtenir, à condition de fixer une carte équivariante
entre le groupe actif et les sommets. Puis, nous proposons une expres-
sion mixte de cette convolution, définie entre un signal sur le groupe
actif et un signal sur les sommets, pour laquelle nous démontrons que la
caractérisation reste valable sous condition de commutativité. Puis, nous
introduisons le rôle de l’ensemble des arrêtes du graphe pour voir com-
ment il devrait influencer la construction. En particulier, nous définis-

164

sons la notion de contrainte par les arrêtes et la notion de préservation
de la localisation. Pour chacune, nous obtenons une caractérisation de
graphes admettant une construction naturelle de convolutions avec cette
propriété. Nous analysons les notions de localités et de partage de poids,
et proposons une formulation dans le cas de petits noyaux de convolu-
tion. Grâce aux théorèmes obtenus, nous sommes capable de décrire les
convolutions sur n’importe quel graphe, en tant que convolutions sur
des sous-graphes appropriés. Ensuite, nous assouplissons certains con-
traintes de cette construction pour mieux l’adapter à des graphes quelcon-
ques. Nous expliquons pourquoi une construction basées sur des groupes
est peu intéressante pour certains graphes, et nous introduisons la no-
tion de groupoïde. Nous étendons la construction précédente avec des
groupoïdes de transformations partielles, et démontrons que la caractéri-
sation par équivariance est préservée. Enfin, nous étendons encore notre
construction avec un autre type de groupoïdes que appelons groupoïdes
de chemins. Les groupoïdes de chemins permettent de traiter le cas le
plus général, et pour eux nous obtenons aussi la caractérisation à condi-
tion de fixer un manière de traverser les sommets, mais au prix d’inclure
des cas dégénérés.

Dans le chapitre final, nous cherchons à comprendre comment les réseaux
de neurones peuvent être étendus à des ensembles de définition pour
lesquels ils n’étaient pas conçus pour y être applicable. Dans ce but, nous
proposons une interprétation des opérations linéaires sous-jacentes afin
d’améliorer notre intuition. Dans un premier temps, nous démontrons
l’évident en expliquant avec plus de détails comment un espace tensoriel
peut être interprété en temps qu’espace neuronal, tout en jonglant en-
tre les représentations tensorielles et les représentations à bases de sig-
naux. Puis, nous proposons une représentation basée sur des graphes.
Entre deux couches, un graphe de propagation décrit cette propagation.
Sur la couche en entrée, les neurones peuvent avoir une structure sous-

165

jacente de graphe. Nous montrons une relation entre ces graphes, que
nous obtenons si, et seulement si, les champs de réceptions locaux des
neurones sont entremêlés. En introduisant la notion de partage de poids
dans notre analyse, nous découvrons qu’une couche, quel que soit son
ensemble de définition, peut être formulée par une opération ternaire
et linéaire, que nous appelons contraction neurale. Ses opérandes sont le
signal d’entrée X , le noyaux de poids Θ, et le schéma de partage de poids S.
Nous écrivons Θ̇SX . Nous étudions ses propriétés, et sa généricité en
comparaison avec les méthodes de la littérature. Nous proposons une
méthode pour l’implémenter de manière efficace. Grâce à une expérience
qui se base sur cette opération, nous observons en quoi l’exploitation
de symétries est bénéfique, ce qui justifie l’utilisation de convolutions.
A l’aide d’autres expériences, nous explorons des idées basées sur des
tirages aléatoires pour appliquer cette représentation ternaire dans le cas
de graphes quelconques. Puis, nous étudions la possibilité d’apprendre
comment les poids sont partagés, ce qui revient à apprendre à la fois
S et Θ. Nous explorons cette piste pour des domaines de graphes, avec
des expériences sur des grilles, sur des graphes de covariance et sur des
réseaux de citations. Enfin, nous testons un exemple d’architecture con-
volutionelle appliquées pour des signaux sur graphe. La convolution est
construite à partir de translations sur graphe qui définissent le schéma
de partage de poids S de la couche convolutionelle. Nous présentons
des modèles de translations et les approximations, les couches de sous-
échantillonage, ainsi que la technique d’augmentation de données que
nous utilisons. Au travers d’expériences, nous appliquons ce modèle à
des graphes grilles et autres graphes y ressemblant.

Dans la conclusion, nous rappelons les différents résultats, avancées, et
nouveaux modèles de réseaux de neurones que nous avons présentés tout
au long de ce mémoire.

167

Titre : Convolution et Apprentissage Profond sur Graphes

Mots clés : Intelligence artificielle, Apprentissage profond, Traitement du signal sur graphes,
Théorie des groupes

Résumé : Pour l’apprentissage automatisé de
données régulières comme des images ou des
signaux sonores, les réseaux convolutifs
profonds s’imposent comme le modèle de deep
learning le plus performant. En revanche,
lorsque les jeux de données sont irréguliers (par
example : réseaux de capteurs, de citations,
IRMs), ces réseaux ne peuvent pas être utilisés.

Dans cette thèse, nous développons une théorie
algébrique permettant de définir des
convolutions sur des domaines irréguliers, à
l’aide d’actions de groupe (ou, plus
généralement, de groupoïde) agissant sur les
sommets d’un graphe, et possédant des
propriétés liées aux arrêtes.

A l’aide de ces convolutions, nous proposons
des extensions des réseaux convolutifs à des
structures de graphes. Nos recherches nous
conduisent à proposer une formulation
générique de la propagation entre deux
couches de neurones que nous appelons la
contraction neurale. De cette formule, nous
dérivons plusieurs nouveaux modèles de
réseaux de neurones, applicables sur des
domaines irréguliers, et qui font preuve de
résultats au même niveau que l’état de l’art
voire meilleurs pour certains.

Title : On Convolution of Graph Signals and Deep Learning on Graph Domains

Keywords : Artificial intelligence, deep learning, graph signal processing, group theory

Abstract : Convolutional neural networks have
proven to be the deep learning model that
performs best on regularly structured datasets
like images or sounds. However, they cannot be
applied on datasets with an irregular structure
(e.g. sensor networks, citation networks, MRIs).

In this thesis, we develop an algebraic theory of
convolutions on irregular domains. We construct
a family of convolutions that are based on group
actions (or, more generally, groupoid actions)
that acts on the vertex domain and that have
properties that depend on the edges.

With the help of these convolutions, we
propose extensions of convolutional neural
netowrks to graph domains. Our researches
lead us to propose a generic formulation of the
propagation between layers, that we call the
neural contraction. From this formulation, we
derive many novel neural network models that
can be applied on irregular domains. Through
benchmarks and experiments, we show that
they attain state-of-the-art performances, and
beat them in some cases.

	Contents
	Introduction
	Chapter 1 Presentation of the field
	Chapter overview
	1.1 Tensors
	1.2 Deep learning
	1.3 Deep learning on graphs

	Chapter 2 Convolution of graph signals
	Chapter overview
	2.1 Analysis of the classical convolution
	2.2 Construction on the vertex set
	2.3 Inclusion of the edge set in the construction
	2.4 From groups to groupoids
	2.5 Conclusion

	Chapter 3 Deep learning on graph domains
	Chapter overview
	3.1 Layer representations
	3.2 Study of the ternary representation
	3.3 Learning the weight sharing scheme
	3.4 Inferring the weight sharing scheme
	3.5 Conclusion

	Conclusion
	Bibliography
	Résumé en français

