N

N
N

HAL

open science

Design of ultra high throughput rate NB-LDPC decoder

Hassan Harb

» To cite this version:

Hassan Harb. Design of ultra high throughput rate NB-LDPC decoder. Signal and Image processing.
Université de Bretagne Sud; Université Libanaise, 2018. English. NNT: 2018LORIS504 . tel-

02136786

HAL Id: tel-02136786
https://theses.hal.science/tel-02136786

Submitted on 22 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-02136786
https://hal.archives-ouvertes.fr

UNIVERSITE universi

THESE DE DOCTORAT DE

Rapporteurs avant soutenance

ANDREAS Burg Assistant Professeur, Ecole Polytechnique Fédérale de Lausanne
ZHENGYA Zhang Assistant Professeur, University of Michigan

Comp osition du Jury

Président : Olivier Berder Professeur, IUT Lannion
Examinateurs :  Catherine Douillard Professeur, Dept. Electronique, IMT Atlantique
Dir. de thése :  Emmanuel Boutillon Professeur, Lab-STICC Université de Bretagne Sud

Co-dir. de thése : Laura Conde-Canencia  Assistant Professeur, Lab-STICC Université de Bretagne Sud

Invité
Bertrand Le Gal Assistant Professeur, IMS Lab Bordeaux



UNIVERSITE

BRETAGNE

Université
Bretagne Sud

.'

Conception du décodeur NB-LDPC a débit ultra-élevé

Mots clés : NB-LDPC, H-CN, VN, FTSES.

Résumé : Les codes correcteurs d’erreurs Non-
Binaires Low Density Parity Check (NB-LDPC)

sont connus pour avoir de meilleure performance

que les codes LDPC binaires. Toutefois, la
complexité de décodage des codes non-binaires
bien supérieure a celle des codes binaires. L’objectif
de cette thése est de proposer de nouveaux

algorithmes et de nouvelles architectures matérie
de code NB-LDPC pour le décodage des NBLDF

La premiére contribution de cette thése consiste

réduire la complexité du noeud de parité en triant

amont ses messages d’entrées. Ce tri initial permet
de rendre certains états trés improbables et le

matériel requis pour les traiter peut tout simpleme

étre supprimé. Cette suppression se traduit
directement par une reduction de la complexité d
décodeur NB-LDPC, et ce, sans affecter

significativement les performances de décodage.

Un modéle d’architecture, appelée "architecture
hybride" qui combine deux algorithmes de 1’état de
I’art ("’Extended Min Sum" et le "Syndrome
Based") a été proposé afin d’exploiter au maximum
le pré-tri. La these propose aussi de nouve
méthodes pour traiter les noeuds de variable da
context d’une architecture pré-tri. Différen
exemples d’implémentations sont donnés pour des
codes NB-LDPC sur GF(64) et GF(256). |
particulier, une architecture trés efficace
décodeur pour un code de rendement 5/6 sur GF
est présentéeknfin, une problématique récurrer
dans les architectures NB-LDPC, qui est
recherche deB minimums parmi une liste de taill
N., est abordée. La thése propose une archite:
originale appelée first-then-second minimum p
une implantation efficace de cette tache.

Design of ultra high throughput rate NB-LDPC decoder

Keywords : NB-LDPC, H-CN, VN, FTSES.

Abstract The Non-Binary Low Density Parit
Chedk (NB-LDPC) codes constitutes an interesti
category of error correction codes, and are \
known to outperform their binary counterpar
However, their non-binary nature makes th
decoding process of higher complexity. This P
thesis aims at proposing new decoding algorithms
NB-LDPC codes that will be shaping the result
hardware architectures expected to be of
complexity and high throughput rate. The fi
contribution of this thesis is to reduce the comple;
of the Check Node (CN) by minimizing the numt
of messages being processed. This is done thank
pre-sorting process that sorts the messages inter
to enter the CN based on their reliability valu
where the less likely messages will be omitted
consequently their dedicated hardware part will
simply removed. This reliability-based sortil
enabling the processing of only the highly relia
messages induces a high reduction of the hard
complexity of the NB-LDPC decoder. Clearly, tt
hardware reduction must come at no signific
performance degradation. A new Hybrid architectt
CN model (H-CN) combining two state-tfe-art
algorithms - Forward-Backward CN (FBN) and

This hybrid model permits to effectively exploit th
advanages of pre-sorting.

This thesis proposes also new methods to perfor
the Variable Node (VN) processing in the contexi
pre-sorting-based architecture. Different example
of implementation of NB-LDPC codes defined ov
GF(64) and GF(256) are presented. For decoder
run faster, it must become parallel. From this
perspective, we have proposed a new efficient
parallel decoder architecture for a 5/6 rate NB-
LDPC code defined over GF(64). This architectul
is characterized by its fully parallel CN architectu
receiving all the input messages in only one clocl
cycle. The proposed new methodology of paralle
implementation of NB-LDPC decoders constitute
new vein in the hardware conception of ultra-higt
throughput rate decoders. Finally, since the NB
LDPC decoders requires the implementation of a
sorting function to extract P minimum values
among a list of size iNa chapter is dedicated to th
problematic where an original architecture called
First-Then-Second-Extrema-Selection (FTSES) t
been proposed.

Syn drome Based CN ( S B_@mtpﬁﬁgéﬁcé@hNﬁ—mWS@bit ultra-élevé par Hassan Harb 2018



Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Acknowledgement

It is my honor to present this work for my parents who encouraged and supported me.

I am thankful for who trusted and chose me to be the one who works with them, I
mean Dr. Ali Al Ghouwayel, Prof. Emmanuel Boutillon, Prof. Ali Alaedine and Dr.
Laura Conde-Canencia. Fruitful discussions of experiments with them are gratefully
acknowledged. With them, I knew what devotion, dedication, determination and dis-
cipline mean. Their company taught me how to perform knowledge in a real technical
work.

Sincerely, I highly appreciate the dedicated and effective effort and ideas that were
proposed by Dr. Cédric Marchand to make this work successful.

Of course I cannot but thank Dr. Bertarnd Le Gal for the unforgettable knowledge
and care he provided me during my accommodation in Bordeaux, where I learned a
new tool that was extremely useful to complete this work and it will be helpful in my
future.

The authors would like to acknowledge the valuable comments and suggestions of the
reviewers Prof. Zhang Zhengya and Prof. Andreas Burg, which have improved the
quality of this work.

The authors would like to acknowledge the jury members Prof. Olivier Berder and

Prof. Catherine Douillard who paid attention for our work and gave us their precious
time to have fruitful and objective discussion with them.

Hassan HARB.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Contents

Contents 9
List of Figures 13
List of Tables 17
1 Introduction 1

2 NB-LDPC codes: Principles, Decoding Algorithms and Architec-

tures 5
2.1 Non-Binary LDPC codes defined on a Galois field . . ... ... ... 5
2.2 Tterative decoding algorithms for NB-LDPC codes . . . . . . .. ... 8
2.2.1 BPalgorithm . . .. ... ... ... 0oL 10
2.2.2 Log-BP algorithm . . . . . . ... ... .. ... ........ 11
2.2.3 Min-Sum algorithm . . . . .. ... ... 12
2.2.4 EMS algorithm and its variants . . . . . . . ... ... .. .. 12
2.2.5 Min-Max algorithm . . . . . ... ... ... 0oL 14
2.3 FB and SB CNs algorithms . . . . ... ... ... ... ... ..., 15
2.3.1 Forward-Backward CN processing . . . . . . ... ... .. .. 15
2.3.2  Syndrome-based CN processing . . . .. .. .. ... ..... 17
2.3.3 Presorting . . . . ... 19
2.4 Description of an existing VN architecture . . . . ... ... ... .. 21
2.4.1 An example of the VN functionality . . . . . ... ... .. .. 21
2.4.1.1 An example in update mode . . . . . .. .. .. L. 21
2.4.1.2  An example in decision mode . . . . .. .. ... .. 22
2.4.2 VN architecture in update mode . . . . . . ... ... ... .. 23
2.4.2.1  Architecture of the Sorter block . . . . . .. .. ... 24
2.4.3 VN architecture in the decision-making mode . . . . . . . .. 26
2.5 Layered vs. Flooding decoder scheduling . . . . ... ... ... ... 28
2.6 State-of-the-art NB-LDPC decoder architectures . . . . . . . . .. .. 29

2.6.1 A fully parallel NB-LDPC decoder with fine-grained dynamic
clock gating . . . . . . ... oo 29
2.6.2 Trellis-Based extended Min-Sum algorithm Decoder . . . . . . 30

9

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



10 contents

2.6.3 A 21.66 Gbps Non-Binary LDPC decoder for high-speed com-
munications . . . .. .. ...
2.7 Conclusion . . . . . . . ... e

3 Efficient architectures for NB-LDPC decoding

3.1 New Check Node Architectures . . . . ... ... ... ... .....
3.1.1 FB-CN with presorting . . . . . . ... ... ... .......
3.1.2 Proposed FB-CN Architecture . . . . . ... ... ... ....
3.1.2.1  Sorter . . . ...
3.1.22 Switch . . . .. ... o
3.1.2.3 Simplified ECNs . . ... ... ... 0oL
3.1.2.4 ECN simplifications for global CN with different d.
values . ..o
3.1.3 Implementation and simulation results . . . .. ... ... ..
3.1.3.1 Implementation results . . . . . . ... ... .....
3.1.3.2 Simulation results . . .. . ... ... ... ...,
3.1.4 Extended Forward and hybrid CN . . . . . .. ... ... ...
3.1.4.1 Syndrome computation using the EF processing . . .
3.1.4.2 EF CN with presorting . . . . . . ... ... .....
3.1.4.3 The Syndrome Node . . . . ... ... ... .....

3.1.4.4 Hybridization between FB and EF CN architectures
3.1.4.5 General notations for hybrid architectures . . . . . .
3.1.4.6  Choice of parameters (psn, PEF, PFB) « « « « « « « « .
3.1.4.7 Suppression of final output RE . . . . ... ... ..
3.1.5 Performance and complexity analysis . . . . .. .. ... ...
3.1.5.1 Performance. . . . . ... ... .. .. ... .....
3.1.5.2 Implementation results . . . . . . ... ... ... ..
3.1.5.3 Area and energy efficiency comparison . . . .. . ..
3.1.5.4 Throughput . . . . ... ...
3.1.6 CN Skip Processing Controller (SPC) . . . . ... . ... ...
3.2 New VNP architecture . . . . . .. .. ... ... ... ... ...
3.2.1 Proposed VN architecture . . . .. ... .. ... ... ....
3.21.1 VNP inupdate mode . . .. ... .. ........

3.2.1.2 Proposed architecture of the decision-making circuit
3.2.2 Implementation results . . . . . .. ... ... ... ... ...
3.3 Conclusion . . . .. ... L

4 Parallel pipelined architectures: LLR generator and extrema selec-
tion algorithms
4.1 Parallel pipelined LLR generator . . . . . .. ... ... ... ....
4.1.1 Definition of the LLRs . . . . . . ... ... ... .. .....
4.1.2 Proposed architecture . . . .. .. .. ... ... ... ...
4.1.2.1 Parallel sorting of the channel observations. . . . . .
4.1.2.2  Design of the pre-defined set of potential candidates

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018

66



contents

11

4.1.2.3 Sorting of the potential candidates . . . .. .. . ..
4.1.2.4 Inverse permutation of the GF values of J* . . . ..
4.1.3 Complexity analysis . . . . ... ... ... ... ...
4.1.4 Example forn,, =4 . . ... ...
4.2 Parallel pipelined architecture for extrema selection algorithm
4.2.1 Problem Statement and Proposed Algorithm . . . . ... ...
4.2.1.1 Algorithm . . . . ... ... .. ... .........
4.2.1.2  Architecture of N-SU for Ny =8 . . . ... .. ...
4.2.2  Proposed N,-SU Architecture: Complexity and Performance
Analysis . . . . . .o
4.2.2.1 Global N,-SU Architecture . . . . ... .. ... ..
4.2.2.2 Complexity Analysis . . . . ... .. .. ... ....
4.2.2.3 Timing Analysis . . . .. ... ... ... ... ...
4.2.2.4 Discussion . . . . . . ... oo
4.2.3 Hardware Implementation . . . .. . ... ... ... .....
4.2.3.1 Implementation Results . . . . .. ... ... ....
4.2.3.2 Area and power efficiency comparison . . . ... ..
4.2.4 Extension of the proposed sorter. . . . . . . .. ... ... ..
4.3 Conclusion . . . . . . . . ..

5 Proposed parallel and pipelined decoder

5.1 Code structure and decoding algorithm . . . . . . ... ... ... ..
5.1.1 Code Structure . . . . . . . . ... ...
5.1.2  Decoding algorithm . . . . . ... ... ... ... ... ...
5.1.3 Simulationresults . . . . . ... ..o

5.2 Architectural overview . . . . . .. ... L
5.2.1 Memorization system . . . . ... ..o
5.2.2 Timing diagram of the overall decoder . . . . . . ... .. ..

5.3 Decoder components architecture . . . . .. .. ... ... ... ...
5.3.1 The CN-VN block . . . ... ... ... ... ... ......
5.3.1.1 Presorting architecture . . . . . . .. ... ... ...

5.3.1.2  Switching + Multiplication . . . . ... .. ... ..

5.3.1.3 Syndrome Node (SN) . . . ... ... ... ......

5.3.1.4 The shape and the architecture of ECN1 . . . . . ..

5.3.1.5 ECN2, ECN3 and ECN4 architectures . . . ... ..

5.3.1.6  DeBl Architecture . . . . ... ... ... ... ...

5.3.1.7 VN architecture . . . . . . . ... ... ... ...,

5.3.1.8 NR architecture . . . . . . . . ... ... ... ...,

5.3.1.9 Timing diagram of the CN-VN unit . . . . . . . . ..

5.3.2 DMU architecture . . . . . . .. ..o
533 PTB . . ..

5.4 Timing diagram of the global decoding process . . . . . . . . .. ...
5.5 Implementation results . . . . . . . .. ... ... L.
5.6 Hardware emulation . . . . . .. ... . 0o oL

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018

68
68
69
72
72
72
74

75
)
)
7
7
78
78
79
80
83

85

85

86

88

97

99
102
106
108
108
110
110
111
116
116
117
118
120
121
123
127
129
131
133



12 contents
5.7 Conclusion . . . . . . . ... 135

6 Conclusion and perspectives 139
6.1 Conclusion . . . . . .. ... 139
6.2 Perspectives . . . . . . ..o L 141

7 Appendix A 143
A.1 Introduction of the Galois field . . .. .. ... ... ... ...... 143
A.1.1 Algebraic structures . . . . .. ... 143

A1.2 Thegroups . . ... .. .. . ... .. .. .. 144

A13 Therings . . . . . . . . 145

A.1.4 Congruence and modular arithmeticinZ . . . . . . ... ... 145

A15 Galoisfield . ... ... .. ... .. 146

A.1.6 The polynomialson GF(¢q) . . . .. ... ... ... ... ... 147

A.1.7 Construction of the Galois field GF(2™) . .. ... ... ... 148
Bibliography 153

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8
2.9
2.10
2.11
2.12

2.13
2.14
2.15

2.16
2.17

3.1

3.2

3.3
3.4
3.5
3.6

3.7
3.8

A graphic representation of an LDPC code with a bipartite graph. 6
A graphic representation for a CN in case of NB-LDPC code [7]. . . 7
The main algorithms for optimal NB-LDPC decoding [7]. . . . . . . 9
S-bubble ECN and generalized S-bubble ECN. . . . ... ... ... 15
FB-CN processing with d. =6. . . . . . ... ... ... .. ..... 16
Example of a deviation path. . . . . ... ... ... ... 17
Syndrome-based CN processing (left part) and details of the DU unit

(right part). . . . . . ... 18
Pre-sorting principle. . . . . . . . . ... Lo 21
A VN v connected to two CNs pg and p;. . . . . . . ... ... ... 22
Architecture of the VN [7] in update mode. . . . . . ... ... ... 23
Timing diagram of VN in update mode [7]. . . . . .. ... ... .. 24
(a) Comparator Ounly (CO), (b) Comparator (C'), (¢) Comparator

Swap (CS) and (d) ESU (4-SU) Architecture. . . . ... ... ... 25
(a) CS, (b) C. . o o 25
Architecture of the Sorter block [7].. . . . . ... ... ... ... .. 26
VN architecture in decision-making mode (only active blocks are shown)

[7]. . 27
Timing diagram of VN in decision mode [7]. . . . . . . ... ... .. 28
Stages of processing. . . . . .. ... 29

Matrix representation of a S-Bubble Check FB-CN with d. = 12 and
Ny = 20. The b = 1680 red circles represent the bubbles in the original
FB-CN algorithm. The squares represent the remaining ° = 648

bubbles after the pruning process in the S-FB algorithm. . . . . . . . 34
Architecture of the Sorter and Switch blocks. The Sorter architecture

follows [45]. . . . . . . . 35
S-4B architecture. . . . . . . . ... 36
S-2B architecture. . . . . . . . ... 37
S-1B+1 ECN and its architecture. . . . . . .. .. ... .. ..... 37
Simulation results of NB-LDPC decoding algorithms for (576, 480)

code over GF(64) and d. = 12 under AWGN channel. . . . . . .. .. 40
EF CN Architecture. . . . . . . . . . . . ... .. .. .. ... ... 41
Example to illustrate the redundant syndromes. . . . . . . . ... .. 42

13

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



14

list of figures

3.9

3.10

3.11

3.12

3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
5.3
5.4
5.9
5.6
2.7
5.8

Architecture of the proposed PS EF CN with d. = 12, ny <4 (ny,m =
5), nt? = ny = 20, where n!? is the number of output bubbles of S-5B. 43
Maximum number of syndromes needed to be generated, for each out-
put V/, n,, = 18 valid syndromes. The output number is denoted by

7

i. The code rate is R =5/6 and E,/Ng =4.5dB. . . ... ... ... 45
HB(0, 4, 2) architecture for a CN with d. = 6. The last two outputs

Vi and V] are generated by a classical FB architecture. . . . . . . . . 45
HB(6, 4, 2) architecture with d. = 12, nyout = 16, Nypin = 5 and

Mo = 200+ o 46
FER performance for a (144, 120) NB-LDPC code over GF(64). . . . 48
FER performance for a (144, 120) NB-LDPC code over GF(256) . . 49
BER performance for a (1536, 1344) NB-LDPC code over GF(64). . 50
CN with SPC. . . . . . . 53
Simulation results in case of CR=5/6. . . .. . ... ... ... ... 54
Saving in % of not making a CN for CR=5/6. . . . . . ... ... .. 55
Simulation results in case of CR=9/10.. . . . . . . ... .. ... .. 56
Saving in % of not making a CN for CR=3/4. . . . . . .. ... ... 57
Proposed architecture of the VN update mode . . . . . . . ... ... o7
Architectures of the classical and the modified comparator-swap . . . 58
Architecture of the proposed VN decision-making mode . . . . . . . 59
Sorter architecture of the observed bits. . . . . ... ... ... ... 66
Sorter Architecture generating the most reliable n,, intrinsic LLRs,

T 68
Sorter architecture of the observed bits. . . . . . ... ... ..... 70
Architecture of the intrinsic outputs. . . . . . . .. .. .. ... ... 71
ESU (4-SU) Architecture. . . . . .. .. ... ... ... ... . 72
8-SU Architecture . . . . . . . . . . ... ... 74
N,-SU Architecture, Ny =2F . . . . . .. ... ... ... ... ... 76
SMU Architectures for N,-SU, N, = 2*: (a) SMU-TS (b) SMU-PS . 77
Proposed 8-to-4 sorter architecture. . . . . . . .. ... ... ..... 81
Detailed 4-to-1 and 8-to-1 MUXs. . . . . . ... ... ... ...... 82
Architecture of the simplified proposed 8-to-4 sorter. . . . . . . . .. 83
Architecture of the odd-even 8-to-4 sorter. . . . . . .. .. ... ... 84
The Topology of PCM. . . . . ... ... ... ... ... ..... 86
PCM of the (144,120) NB-LDPC code. . . . . . . . ... ... ... .. 87
The non-zero coefficients of the PCM. . . . . .. ... .. ... ... 89
SN shape. . . . . . . . . e 90
ECN1 shape. . . . . . . . . . . . e 93
ECN2 shape. . . . . . . . . . . 94
ECN3 and ECN4 structures. . . . . . .. ... ... ... ...... 95
FER performance for a (144, 120) NB-LDPC code: Proposed decoder

vs FB CN-based decoder. . . . . . .. ... ... ... ........ 98

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



list of figures

15

2.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
0.23
5.24
2.25
5.26
2.27
0.28
2.29
9.30
5.31
5.32
2.33
5.34
2.35
3.36
2.37
2.38
2.39
5.40
0.41
0.42

5.43
5.44
5.45
5.46

FER performance for a (144, 120) NB-LDPC code over GF(64) Pro-
posed decoder vs (864, 720) B-LDPC code over GF(2) OMS decoder.
Average number of iterations versus E, /Ng. . . . . . ... ... L.
Throughput versus Ep,/No. . . . . . ..o 000 o o
Global architecture of the decoder. . . . . . . . ... ... ... ...
12 intrinsic RAMs. . . . . . . ..
Extrinsic RAMs. . . . . . . . . .
ROM block. . . . . . . . . e
Timing diagram of the overall decoder. . . . . . . . . ... ... ...
Architecture of the CN-VN unit. . . . . . ... ... ... ... ...
Architecture of the presorting block. . . . . .. ... ... ... ...
The switching part architecture. . . . . .. ... ... ... .....
The multiplication part architecture. . . . . . . . . ... . ... ...
The bubbles of SN8. . . . . . . .. . ...
Architecture of the merged SN1 to SN8. . . . . . ... ... ... ..
The bubbles of SN9. . . . . . . .. ...
Architecture of SN9. . . . . . ..
The shape and the architecture of ECN1. . . .. ... ... .....
bubbles generator of ECN2, ECN3 and ECN4. . . . .. ... .. ..
DeBIl Architecture. . . . . . . . ...
VN architecture. . . . . . . ... oo
eLLR architecture. . . . . . . . .. ... o o
24-to-b architecture. . . . . . ... Lo
Sorters and sub-sorters architectures. . . . . . . .. ... ... ...
20-to-5 architecture. . . . . . ...
Architecture of the redundant suppression block. . . . . . ... ...
NR architecture. . . . . . . . . ...
Timing diagram of the CN-VN unit. . . . . ... ... ... ... ..
DMU Architecture. . . . . . . . . . ...
DMUR architecture. . . . . . . .. .. .. ... ...
Timing diagram of the DMU unit. . . . .. ... ... ... .....
SD architecture. . . . . . ...
Timing diagram of PTB phase 1. . . . . . . ... ... ... .....
Timing diagram of PTB phase 2. . . . . .. . .. .. ... ... ...
Timing diagram of the decoder in case of processing two frames simul-
taneously. . . . . .. L
Timing diagram of the decoder in case of interleaving frames.

Overall hardware emulation architecture. . . . . . . . .. ... .. ..
Symbol generator architecture. . . . . . . .. ... L.
Simulation and emulation results of NB-LDPC decoding algorithms
for (864, 720) code over GF(64) and d. = 12 under AWGN channel
(FER versus Ep,/No). . . . o o o oo o o

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018

99
100
101
103
104
105
106
107
109
110
112
113
113
114
115
115
116
117
118
119
120
121
122
123
124
124
125
126
127
127
128
129
130

130
131
133
134

136



16

list of figures

5.47 Simulation and emulation results of NB-LDPC decoding algorithms for
(864, 720) code over GF(64) and d. = 12 under AWGN channel(BER
versus By /No). . oo oo 136

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



List of Tables

3.1 Number of ECN schemes for different d, values. . . . . . . ... ... 38
3.2 Post synthesis results for different ECN schemes on a Xilinx Virtex 6
FPGA. . . 39
3.3 Post-synthesis results for the FB-CNs with (P-FB) and without (S-FB)
pre-sorting on a Xilinx FPGA device. . . . .. . ... ... .. ... 39
3.4 Post-synthesis results for different ECN architectures and CN sub-
units on 28 nm FD-SOI technology. . . . . . . .. ... .. ... ... ol
3.5  Post-synthesis results for CN architectures on 28 nm FD-SOI technology. 52
3.6  Area and energy efficiency for different architectures. . . . . . . . .. 52
3.7 HB and SB comparison . . .. .. ... ..o 53
3.8 Complexity analysis of the VNP using Xilinx Virtex6, xc6vIx240t-
2ff1156 device . . . . . L Lo 60
4.1 The elements of ®,,__165. . . . . . ... Lo 67
4.2 Synthesis results on virtex 6, xc6vlx240t -2 ff1156 FPGA device. . . 69
4.3  Computational Complexity Comparison . . . . ... ... ... ... 78
4.4  Post-synthesis results of N,-SU on TSMC 28 nm, Non-Pipelined Ar-
chitecture (A: Area, C: Critical Path, P: Power) . . . . . ... .. .. 79
4.5  Post-synthesis results of Ny-SU on TSMC 28 nm, Pipelined Architec-
ture (A: Area, C: Critical Path, P: Power) . . . . . ... ... .. .. 79
5.1 COMPARISON OF STATE-OF-THE-ART NB-LDPC DECODERS
(ASICs). . . o 132
5.2 Synthesis results on Virtex 6 xc6vlx240t-2ff1156 FPGA device. . . . 133
6.1 Example of messages used for T-EMS . . . ... .. ... ... ... 141
6.2 Example of messages used for EMS . . . .. .. .. ... ... 141
TA.1 Conventional rules of both multiplicative and additive notations . . . 145
TA.2 modulo 2 addition . . . . . . . .. ... ... ... ... ... 146
TA.3 modulo 2 multiplication . . . . .. ... ... ... .......... 146
17

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Acronyms

AE
AER
APP
ASIC
AWGN
BER
BP
BPSK

cO

cS
CL
CG
CC
CU
CAM
CN
CNP

CR
DBV
DU

Area

Area Efficiency

Area Efficiency Ratio

A Posteriori Probability
Application-Specific Integrated Circuit
Additive White Gaussian Noise
Bit Error Rate

Belief Propagation

Binary Phase-Shift Keying

Set of complex numbers
Critical Path

Comparator Only

Comparator

Comparator Swap

Cycle Latency

Control Generator

Clock Cycle

Control Unit

Content Addressable Memory
Check Node

Check Node Processor
de rat 1t K 1 dy
code rate equal to — =1 — —
q N d,

Discard Binary Vector

Decorrelation Unit

19

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



20

list of tables

DPU
DMU
DMUR
DeBl
DMUS
DAVINCI

DVB
EF-CN
EE
ESU
EMB
ES
ECN
EMS
FB-CN
FTSES
FER
FMU
FPHD
FFT
FIFO
Gel/s
GFRB
GF
H-CN
H

HEP
HD

I

IL-MwBRB

Decorrelation Processor Unit
Decision Making Unit

DMU Reordering

Decorrelation + Devision Block
DMU Storage

Design And Versatile Implementation of Non-binary wireless
Communications based on Innovative LDPC codes

Digital Video Broadcast
Extended Forward Check Node
Energy Efficiency

Elementary Sorting Unit
Encoded Modulated Bits
Extrinsic Storage

Elementary Check Node
Extended Min-Sum

Forward Backward Check Node
First then Second Extrema Selection
Frame Error Rate

First Minimum Unit

Fully Parallel Hybrid Decoder
Fast Fourier Transform
First-In First-Out

Gega elements per second

GF Routing Block

Galois Field

Hybrid Check Node

Parity Check Matrix

High Energy Efficiency

Hard Decision

Intrinsic messages

Improved Layered Multiple-symbol-reliability
weighted Bit-Reliability Based

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



list of tables

21

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



22

list of tables

IW

IS

IFFT
LDPC

LLR
Lab-STICC

LDPC
LLR
LUT
MS
NB
NB-LDPC
NR
0.S
OG
OMS
OW
P-FB
P

Pk
PCG
PS

PE
PER
PTB
PCM
QC-LDPC
R

RE
RTL
RS
RAM

Input Wrapper

Intrinsic Storage

Inverse Fast Fourier Transform
Low Density Parity Check

Log Likelihood Ratio

Laboratoire des Sciences et Techniques de I'Information
de la Communication et de la Connaissance

Low-Density Parity-Check
Log-Likelihood Ratio
Look Up Table

Min Sum

Non Binary

Non-Binary LDPC
Normalization + Reordering
Occupied Slices

Outputs Generator

Offset Min Sum

Output Wrapper

FB-CN with Presorting
Power

Clock Period

Possible Candidates Generator
Parallel Structure

Power Efficiency

Power Efficiency Ratio
Parity Test Block

Parity Check Matrix
Quasi Cyclic LDPC

Set of real numbers
Redundant Elimination
Register Transfer Level
Redundant Suppression

Random Access Memory

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



list of tables

23

ROM
SB-CN
S-FB
SPC
SN

SA
SRE
SU
SMU
SCRB
SM
T-MM
TS
TEC
VN
VNP
VHDL

WIFI
WIMAX

Read Only Memory

Syndrome Based Check Node
FB-CN without Presorting

Skip Processing Controller
Syndrome Node

Saving Amount

Sorter + Redundant Elimination
Sorting Unit

Second Minimum Unit
Stopping Criteria Router Block
Switching + Multiplication
Trellis Min Max

Tree Structure

Throughput Error Computation
Variable Node

Variable Node Processor

VHSIC Hardware Description Language

Set of natural integers
Set of relative integers

Wireless Local Area Network

Worldwide Interoperability for Microwave Access

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Parameters

EESF=EReR
]

+

<

S

QL&
S

Order of GF

Number of bits to represent a GF value

Number of considered GF elements among ¢ GF elements
Number of maximum iterations

LLR value of M

GF value of M

Degree of the CN (number of VNs connected to a CN)
Degree of the VN (number of CNs connected to a VN)
number of information symbols

number of redundant symbols

code length (number of VNs)

Non-zero value in PCM that connects CN; with VN;
Messages sent from VN; to CN;

Messages sent from CN; to VN,

Degree of the variable node (number of CNs connected to a VN)
Degree of the check node (number of VNs connected to a CN)

25

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



26

list of tables

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Chapter 1

Introduction

The thesis is a part of a collaborative framework between the Université Bretagne Sud
(UBS, France) and the Lebanese Univerisity (LU, Lebanon) and has been supervised
by Prof. Emmanuel Boutillon, Prof. Ali Alaeddine, Dr. Ali Al Ghouwayel and
Dr. Laura Conde-Canencia. During these years I also collaborated with Dr. Cédric
Marchand who provided significant inputs for my work.

In 1948, Shannon showed that reliable communications are possible thanks to error
control coding [5]. Since then, numerous error-correcting schemes have been proposed
including algebraic and convolutional codes. With the invention of Turbo codes in
the early 90s [12], followed by the rediscovery of LDPC [15,16], iterative decoding
algorithms based on trellises or graphs became a main topic of study. Recently, other
decoding approaches have been proposed (e.g. with the introduction of Polar codes).
Today, error-correcting codes are ubiquitous and adopted in almost every modern dig-
ital communication system for wireless communications, sensor networks and deep-
space communications, among others. New-generation standards and other emerging
applications demand codes with near-optimal error-correcting capabilities. However,
the design and implementation of those high-performance error-correcting codes also
face many challenges that include low energy consumption, high throughput and low
implementation area.

Even if most of the standardized coding schemes are binary, non-binary LDPC codes
have been proven to outperform convolutional Turbo codes and binary LDPC codes.
In fact, this new family of codes retains the benefits of steep waterfall region for short
codewords (typical of Turbo codes) and low error floor (typical of binary LDPC). An-
other advantage of non-binary LDPC codes is that, compared to binary LDPC, they
generally present higher girths, which leads to better decoding performance. More-
over, since non-binary LDPC codes are defined on high-order fields, there is a closer
connection between non-binary LDPC and high-order modulation schemes. However,

1

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



2 Introduction

the main drawback of non-binary LDPC codes is their increased decoding complexity.

The work presented in this report deals with the study of new non-binary LDPC de-
coding algorithms for high order fields (¢ > 64) and their associated architectures. We
aim at reducing the hardware complexity and/or increase the area and throughput
efficiency. We mainly focus on the Extended Min Sum (EMS) decoding algorithm
because of its competitive error-correcting performance. During this PhD we have
mainly considered the three following goals: first, the reduction of the decoder cost
by eliminating the inner elements not relevant in the output generation. This first
goal implies the sorting of the input list, thus, the second goal has been the design
of an efficient architecture for this sorting task. The third and final goal was the
implementation of a highly parallel decoder for non-binary LDPC codes.

So far, the results obtained through this PhD have been spread in the scientific com-
munity through the following publications:

Cédric Marchand, Emmanuel Boutillon, Hassan Harb, Laura Conde-Canencia, Ali Al
Ghouwayel, "Extended-Forward Architecture for Simplified Check Node Processing
in NB-LDPC Decoders", IEEE International Workshop on Signal Processing Systems
(SIPS’2017), Dallas, United States. Oct. 2016.

Hassan Harb, Cédric Marchand, Laura Conde-Canencia, Emmanuel Boutillon, Ali
Al Ghouwayel, "Pre-sorted Forward-Backward NB-LDPC Check Node Architecture",
IEEE International Workshop on Signal Processing Systems (SIPS’2016), Lorient,
France, Oct. 2017.

Titouan Gendron, Hassan Harb, Alban Derrien, Cédric Marchand, Laura Conde-
Canencia, Bertand Le Gal and Emmanuel Boutillon, "Demo: Construction of good
Non-Binary Low Density Parity Check codes", Demo night at SIPS’2017, Lorient,
France, Oct. 2017.

Hassan Harb, Emmanuel Boutillon, Bertrand Le Gal, "Real-time evaluation of NB-
LDPC codes thanks to HLS-based hardware emulation", Demo night at DASIP’2018,
Porto, Portugal, Oct. 2018.

Cédric Marchand, Emmanuel Boutillon, Hassan Harb, Laura Conde-Canencia and
Ali Al Ghouwayel, "Hybrid Check Node Architectures for NB-LDPC Decoders", Ac-
cepted in IEEE Transactions on Circuits And Systems-I, August 2018.

Therefore, this manuscript is organized as follows:

Chapter 2: This chapter introduces LDPC codes as well as the main decoding al-
gorithms and their associated architectures. Section 1 presents notation
and definitions related to binary and NB-LDPC codes. Section 2 de-

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



3

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

scribes several decoding algorithms such as the Belief-Propagation and
the Min-Max. Section 3 and 4 show some of the existing serial CN and
VN architectures respectively. Section 4 reviews processing schedules
that are considered in most of the literature. Finally, Section 6 highlights
some of the state-of-the-art high-throughput decoding architectures.

This chapter presents my different contributions to improve the existing
NB-LDPC decoder architectures. These contributions are detailed at
the different blocks of the decoder. Section 1 shows the modifications
on the CN processor block and Section 2 presents the modifications on
the VN processor block.

This chapter is dedicated to parallel pipelined architectures providing
higher throughput and better hardware efficiency than the serial ones.
Section 1 shows a new technique to implement the LLR generator that
is included in most of the NB-LDPC decoder algorithms. Then, section
2 presents the proposed parallel pipelined sorter algorithm along with
an example of its extended approach.

The proposed high-throughput fully-parallel pipelined NB-LDPC de-
coder architecture is shown in this chapter. Section 1 introduces the
considered NB-LDPC code along with the decoding algorithm and the
simulation results. Section 2 shows the global decoder architecture where
the parallelism of the exchanged data is presented along with the mem-
orization system and the timing diagram. Section 3 presents in details
the architecture of each block. Section 4 shows the timing diagram
of the global processing of the decoder where the frame interleaving is
demonstrated. The chapter continues with section 5 where the synthesis
analysis is shown. Finally, section 6 shows the global architecture of the
hardware emulation.

This chapter concludes the work and presents our perspectives.

Finally, it is worth mentioning that not all the work done in the 3 years period of my
PhD has been included in this document. I have decided to focus only on hardware
implementation. Thus, concerning NB-LDPC matrix construction, in a few words, I
have contributed to the generation of the Lab-STICC NB-LDPC database™) by writ-
ing a gecode program® (a constraint programming Frame work) that optimizes both
the girth of the matrix and the affectation of GF coefficients on non-nul positions
(see [56]). Recently, I also proposed a new NB-LDPC structure that allows, thanks
to a trick, to use a NB-LDPC decoder of a certain rate to decode NB-LDPC codes of
higher rate, opening thus the path toward hardware flexibility.

(Whttp: / /www-labsticc.univ-ubs.fr/nb_ldpc/MatricesDir /toto.html

(2)

www.gecode.org

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Chapter 2

NB-LDPC codes: Principles,

Decoding Algorithms and
Architectures

This chapter first introduces NB-LDPC codes. Then, two state-of-the-art check node
algorithms are recalled and two different schedules of decoding process (Layered and
Flooding) are described. Finally, some of the NB-LDPC state-of-the-art decoding
architectures are presented. (Section 2.1 and most of Section 2.2 are derived from |7]).
For mathematical background about the GF definition and construction, the reader
is referred to Appendix A.

2.1 Non-Binary LDPC codes defined on a Galois field

An LDPC code is a linear block code defined by a sparse Parity Check Matrix (PCM),
denoted by H, of dimensions M x N designed over GF(q = 2). This code is binary
since its symbols belong to GF(2) = {0,1}. The number of rows, M, corresponds
to the number of parity check constraints of the code. The number of columns, N,
corresponds to the length of the codewords. A codeword consists of K information
symbols and M = N — K redundancy symbols added by the encoder. The parity
check constraints of H must be respected by the codewords in the construction. Thus,
a message C of length N is a codeword if and only if C.HT=0, where HT is the
transposed matrix of H.

Let us consider the following example of a PCM with M =4 and N = 6:

hoo hox hoa O 0 0
0 h171 0 h1’3 h1’4 0
h270 0 0 h273 0 h275
0 0 h372 0 h374 h375

H =

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



6 NB-LDPC codes: Principles, Decoding Algorithms and Architectures

ONORONONONO

po p1 p2 p3

Figure 2.1: A graphic representation of an LDPC code with a bipartite graph.

A codeword C' = [¢g, ¢1, 2, 3, 4, c5] satisfies the four following equations:

h070.60 + h071.01 + h072.62 =0 (21)
h171.61 + h173.03 + h174.64 =0 (22)
h?,O'CO + h2’3.03 + h275.C5 =0 (23)
h372.02 + h3’4.C4 + h375.C5 =0 (24)

An LDPC code can also be represented by a bipartite graph (or Tanner graph) [21].
This kind of graph provides a complete description of the structure of the code and
also helps to describe the decoding algorithms as will be explained in Section 2.2. A
bipartite graph composed of two sets of nodes such that two nodes of the same set are
connected only through one node of the other set. In the case of an LDPC code, we
talk about the set of parity Check Nodes (CN) and the set of Variable Nodes (VN).
A CN represents a row in the PCM (or equivalently a parity constraint) and a VN
represents a column (or equivalently a symbol of the codeword). Consequently, the
bipartite graph associated to an LDPC code represented by a PCM H of dimensions
M x N is composed of M CNs and N VNs. A ON p; is related to a VN v; if the
element of the i row and j* column of the PCM is non-zero (or equivalently, if
the j symbol of the codeword participates in the i parity constraint). Thus, the
example of the matrix H mentioned before can be represented by a Tanner graph as
shown in Fig. 2.1.

The number of non-zero symbols in each column of PCM and the number of non-zero
symbols in each row are respectively denoted by d, and d.. An LDPC code is called

N
regular if d, is constant for all the columns in H and d. = —.d, is constant for all

rows. Otherwise, the code is called irregular. Although irregular codes have better
performance because of their highly randomized structure, regular codes are usually
structured codes which makes them hardware friendly from a decoding perspective.
It is possible to locate the regularity of a code using its bipartite graph. The code is
regular if the number of outgoing edges of each VN and the number of outgoing edges

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



2.1 Non-Binary LDPC codes defined on a Galois field 7

OBORNO

Py

Figure 2.2: A graphic representation for a CN in case of NB-LDPC code [7].

of each CN are constant. Therefore, d, and d. are called the connectivity degrees of
the VNs and CNs respectively. In the case of a regular LDPC code defined by a full
rank matrix, i.e, no row of the matrix is linear combination of other rows, the code
rate R of the code can be expressed as a function of d, and d.:

K N-M d,

1— =2 (2.5)

RN N d.

In this manuscript, we consider the case of LDPC codes defined on Galois fields
GF(q = 2™), m > 1, and known as NB-LDPC. Thus, the elements of the PCM ma-
trix belong to Galois field GF(¢ = 2™), m > 1 and the matrix products of the parity
equations use the internal composition laws of the Galois field. Therefore, a new class
of nodes called the permutation nodes are added to the bipartite graph of Fig. 2.1 to
model the multiplication of the symbols of the codeword by the non-zero elements of
the PCM. Fig. 2.2 illustrates the partial bipartite graph of equation (2.2) by adding
the permutation nodes that correspond to the elements h; 1, hy 3 and hq 4.

Binary LDPC codes have asymptotic performance approaching the Shannon limit
[12,13|. However, for small or medium size codewords, the performance of the binary
LDPC codes degrades considerably. It is shown in [19] that this loss can be compen-
sated by using NB-LDPC codes of high cardinality. In addition, the high cardinality
of the codes ensures better resistance to packet errors [20]. However, the performance
gain introduced with high Galois fields significantly increases the complexity of the
decoding algorithms and their practical implementations.

Next section describes some of the state-of-the-art NB-LDPC decoding algorithms:

Belief Propagation (BP) [19], Log-BP [22], Min-Sum [22|, Extended Min-Sum (EMS)
[24,25] and Min-Max [27| algorithms.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



8 NB-LDPC codes: Principles, Decoding Algorithms and Architectures

2.2 Iterative decoding algorithms for NB-LDPC codes

BP decoding algorithms are based on the bipartite graph defined by the NB-LDPC
code. They are also called message-passing algorithms because, at each iteration,
messages are transmitted from CNs to VNs and vice versa. We distinguish two types
of messages:

> Intrinsic or a prior: messages are computed from the channel observations. They
are called intrinsic because the information they contain only comes from the

channel. At the initialization stage, these messages are directly sent to all the
CNs.

> Extrinsic messages are computed from messages coming from other branches
of the graph. Outgoing extrinsic messages from a VN are computed from an
intrinsic message and extrinsic messages from the connected CNs. Outgoing
extrinsic messages from a CN are computed from incoming extrinsic messages
(from the connected VNs) and with the local parity constraint.

The decoder should be able to converge on a valid codeword after a finite number
of iterations. In practice, the decoding algorithm can be stopped according to two
criteria. The simplest is to set the number of iterations independently of the con-
vergence of the decoder. The second criterion, which permits to reduce the latency
of the decoder, consists in stopping the decoding as soon as it converges to a valid
codeword (an estimated codeword C' is valid if it satisfies the syndrome C.H” = 0).
However, to avoid an infinite execution in case the decoder fails to converge to a valid
codeword, a maximum number of iterations is fixed.

In the BP algorithm, the exchanged messages are a posteriori probabilities calculated
on the symbols of the codeword. However, the BP algorithm [19] suffers from a pro-
hibitive computational complexity, dominated by O(g¢?), which mainly comes from
the calculations carried out during the update of the parity constraints.

Barnault et al. proposed in [21] the FFT-BP algorithm in which the updates of the
parity constraints are made in the frequency domain. This transforms the convo-
lution products into simple multiplications. Thus, additional operations of Fourier
transform, direct and inverse, are added between the VNs and the CNs to ensure
the transition from the probability domain to the frequency domain, and vice versa.
Although the complexity of the FFT-BP algorithm is considerably reduced to the
order of O(qlog(q)), a large number of multiplications remains necessary to perform
the update of the nodes in the graph.

The log-BP algorithm |22] performs the four deccoding steps in the logarithmic domain

to allow a hardware layout less sensitive to quantization errors, and therefore better
suited to fixed-point arithmetic. However, the update of the CNs always requires a

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



2.2 Iterative decoding algorithms for NB-LDPC codes 9

channel channel channel 1: Initialization
¥ 2: VN update
3: CN update
4: Stopping criteria

log: Logarithmic function
exp: Exponential function

B

8] - o
8 [l e i ¢

o
]

+] E*ﬁ*l*
RCAERLAEN

;
L 5|
H
o]
s
=

4

_
2[HElF e
=

BP FFT-BP log-BP log-BP-FFT

Figure 2.3: The main algorithms for optimal NB-LDPC decoding [7].

large amount of calculation and the complexity of the decoder remains dominated
by O(¢?). A direct combination of the FFT-BP and log-BP algorithms is not ad-
vantageous because the calculation of the Fourier transform is very complex in the
logarithmic domain.

To simultaneously benefit from the advantages of the FF'T-BP and log-BP algorithms,
Song et al. proposed in [20] the log-BP-FFT algorithm. In this algorithm, the VNs
are processed in the logarithmic domain. The extrinsic messages of the VNs undergo
a double transformation to pass from the logarithmic domain to the probabilities do-
main and from the probabilities domain towards the frequency domain in which the
CNs will be processed. The extrinsic messages of the CNs in turn undergo a double
transformation to return back to the logarithmic domain of the VNs. However, the
log-BP-FF'T algorithm requires look-up tables to ensure the conversion between the
probabilities domain and the logarithmic domain. These tables have the disadvantage
of consuming a lot of memory resources, a consumption that increases with the degree
of parallelism of the decoder. Fig. 2.3 illustrates the steps of the different decoding
algorithms mentioned above.

The BP [19]|, FFT-BP [21], log-BP [22]| and log-BP-FFT [20] algorithms are optimal
decoding algorithms because they do not use any mathematical approximation to re-
duce the complexity of the decoding. The BP algorithm and its variants guarantee
optimal decoding performance but they are not of great interest for a hardware imple-

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



10 NB-LDPC codes: Principles, Decoding Algorithms and Architectures

mentation. Therefore, other algorithms based on approximations of the BP algorithm
are proposed in order to ensure a reasonable performance/complexity tradeoff. We cite
mainly the algorithm Min-Sum [22] and its variant EMS (Extended Min-Sum) [24,25].
A detailed comparison of the optimal and suboptimal algorithms cited above can be
found in [26]. Besides the EMS algorithm, there is also the Min-Max algorithm [27]
which can be considered as an approximation of the Min-Sum algorithm, and which
consequently provides poorer performance.

In what follows, we detail the algorithms BP, log-BP, Min-Sum, EMS and Min-Max.
We adopt the following mathematical convention: Let V' = [vg, vy, ..., v,_1] be vector
composed of n elements. If 7 is a positive integer or zero, the notation V(i) indicates
the element of position i in V. If § € GF(2™), the notation V] indicates the element
associated with the symbol 5 in V.

2.2.1 BP algorithm

Let ¢ = [co,c1,...,cn-1], ¢; € GF(q), be the transmitted codeword. The decod-
ing algorithm should converge toward a valid codeword ¢ = [, ¢, ..., En—1] from
v = Y0, Y1, .-, Yn_1], the noisy version of c¢. The decoding is successful if ¢ = c.

In the BP algorithm, the intrinsic information of the VN v; is a g-ary vector of a
posteriori probabilities defined as:

I; = [p(vi = Bolyi), p(vi = Bilyi), - - - p(vi = By-1]yi)] (2.6)
where p(a|b) is the conditional probability of a given b.
Let i =0,1,...,M —1and j =0,1,..., N — 1. If the element h;; of the PCM H is

not zero then M, denotes the message sent by the VN v; to the CN p; and M,,,,
the message sent by the CN p; to the VN v;. The steps of the BP algorithm are:

(a) Initialization: Each VN v; transmits its intrinsic information to the CNs con-
nected to it.

(b) Permutation: Before entering CN p;, the message M, ,, is multiplied by the
non-zero element h;; of the PCM. The resultant message M, ,, is computed as:

My, [8] = My, [B-hij] B € GF(g) (2.7)
(c) CN update: the update of the CN p; is given by:

Mpivj [8] = Z H Mvspi [6;] (2.8)

Z 65 :B 57&]
875] his?éo
his 750

where 8 and 6, are GF(q) symbols. The update of p; is done by calculating the
probability of all symbol combinations that satisfy the parity equation.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



2.2 Iterative decoding algorithms for NB-LDPC codes 11

(d) Inverse permutation: Before entering VN v;, the message M, is divided by
the non-zero element h;; of the PCM. The resultant Mpwj is obtained as:

My, [B] = My, [B-h5'] B € GF(q) (2.9)

(e) VNs update: A VN v, receives d, messages Mpwj and generates d, messages
M,,p,. Outgoing messages from v; are computed by (2.10). Each outgoing
message is a function of all incoming messages to v, except the one from p;.

Mvjpi 18] = Hop; X I; (8] x H Mpsvj (B) B € GF(q) (2.10)
hjj-ézo
where pi,,,, is a normalization factor such that >, My,[Bl=1
BEGF (g=2m)

(f) Estimation of the codeword: at every iteration, the a priori probability vector
(APP;) is computed as follows:

APP;[B] = o, LIBL. [] M0, (8) B € GF(g) (2.11)
hs,j=0
where fi,, is a normalization factor such that >, APP;[5] = 1. The
BEGF (¢=2™)
decision is made based on selecting the symbol of highest probability in APP;
as:
¢; = argmax{APP;[f]} j=0,1,...,N—1 (2.12)

BEGF(q)

If the set of symbols of ¢; forms a codeword then the decoding is considered as
finished.

2.2.2 Log-BP algorithm

The reliability of a symbol can be measured by the Log-Likelihood Ratio (LLR) as
defined in the following equation:

_ Py = Bly;)
LLR(B) = lnm p and 5y € GF(q) (2.13)

On the one hand, replacing the probabilities with LLRs in (2.8, 2.10, and 2.11) trans-
forms the multiplication operations into additions and on the other hand reduces the

quantization errors. Thus, in the log-BP algorithm, the intrinsic information of a VN
v; is defined by:

| p(v; = Bily;) lnp(vj = By—1ly))

L= O =By ™ 0o, = ol (2.14)

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



12 NB-LDPC codes: Principles, Decoding Algorithms and Architectures

The messages circulating on the bipartite graph are composed by LLRs. The log-
BP algorithm keeps the same steps of the BP algorithm while modifying the update
equations. The update of a VN v; is described as:

Mvjpz Z psvg /8 € GF(q) (215)
s#£1

higj7#0

The update of CN p; is computed as:

My, (B =Tn( Y exp(Y_ M,,[6.]))  B€GF(g) (2.16)
Z 0526 575.7
S;ﬁ] his7£0
hzs#o

Finally, the update of the a priori information can be written as:

APP;[f Bl+ > My 3 e GF(q) (2.17)
5]#0

2.2.3 Min-Sum algorithm

The Min-Sum algorithm is proposed in [24] to reduce the complexity of the log-BP
algorithm by making an approximation of (2.16). Indeed, in the Min-Sum algorithm,
the update of CN p; can be written as:

My, ~ i {37, [6.]) (218)
s#j 7
his 7£ IS ?50

Thus, the Min-Sum algorithm simplifies the decoder by eliminating the lookup tables
needed to implement the exponential and logarithmic functions, and by minimizing
the number of the arithmetic operations.

2.2.4 EMS algorithm and its variants

The EMS caracteristics can be summarized as:

Truncation of the exchanged messages: To further simplify the Min-Sum de-
coder, the authors in [24] introduced the idea of truncating the messages that circulate
on the bipartite graph from ¢ to the n,, most reliable symbols. However, the value of
n,, must be carefully chosen to avoid performance loss.

Extra memories for the GF symbols: In the log-BP algorithm, the messages
are vectors composed of ¢ unsorted reliability values. In addition, it is not necessary

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



2.2 Iterative decoding algorithms for NB-LDPC codes 13

to explicitly indicate the value of the symbol associated with each of the reliabilities
since it can be easily deduced by its position in the message. Due to truncation,
messages from the EMS algorithm must be sorted and symbol values must be explic-
itly mentioned. The messages that circulate in the bipartite graph are represented
as M = [(LLR(0), 0k)]o<k<n.,,—1, such that ) is a variable in GF(q) and LLR(6y)
> LLR(6y) if k¥ < K”. In the following, M® represents the partial message that
contains the set of GF symbols of message M and M™ represents the vector that
contains the set of LLRs of the message M. The most reliable symbol in M is M®(0)
and the less reliable one is M®(n,, — 1).

Compensating candidates: The truncation of messages leads to performance degra-
dation that can be compensated by using a constant reliability value noted ~ for
symbols not retained during truncation. The value of ~ is calculated as follows:

y=M"(n,—-1)+0 (2.19)

in which O is a scalar that can be determined by simulation to minimize the Bit Error
Rate (BER) or theoretically as described in [25].

The steps of EMS algorithm can be summarized as follows:

(a) Initialization: each VN v; sends the most n,, reliable intrinsic information sym-
bols to its set of connected CNs.

(b) VNs update: A VN v; receives d, messages Mpwj and a compensation scalar ;
associated to each J\;[pivj. The value of ~; is determined by (2.19). The sorted
message M, . contains the n,, most reliable symbols by combining the intrinsic
information with the incoming messages except p; itself. The reliability of a
symbol M, (k)x—o1....n, 1 is obtained by:

ML (k) = LIMS, (k)] + ) Wi(k) (2.20)
S#1
hs,i7é0

such that

Wlk) = {M MG ()it M, (k) € M.,

Vs else

(c) Permutation: each symbol of M, , will be multiplied by the element h;; # 0 of
the PCM. 3
M® (k) =hij - M® (k) k=0,1,... 1, —1 (2.21)
(d) CNs update: the reliability of a symbol of an outgoing message is calculated as
in 2.18. M,,,, outgoing messages contain the most reliable n,, symbols.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



14 NB-LDPC codes: Principles, Decoding Algorithms and Architectures

(e) Inverse permutation: each symbol of M,,,, will be divided by the element h;; # 0
of PCM. 3
M® (k)=hi" ME (k)  k=0,1,...,n,—1 (2.22)

pivj PzU]

(f) Estimation of the codeword: at every iteration, each VN v, updates a vector of
prior LLRs APP; as:

APP;|j3 8] + Z W.(8) B eGF(q) (2.23)
s ]#0
such that

Ws[ﬁ] — {M;;;vj [ﬁ]a lfﬁ c Mz?vj

Vss else

Finally the decision is taken based on (2.12).

2.2.5 Min-Max algorithm

The LLR value as defined in sections 1.3.1 and 1.3.3 may assume negative values.
However, it would be easier to deal only with positive values. Therefore, the author
of [27] proposed the following definition of the LLRs:

LLR(B) = —In (x{z(ﬂ\y)9| X B € GF(2™) (2.24)
max T =
9EGF(2m) p Y
where y = (yo,¥1,--.,Ym—1) is the channel observation and x = (zg,x1,...,Zm_1) is

the transmitted symbol.

In this definition, the normalization is done by the probability of the most reliable
symbol. It follows that the LLR of this symbol is always zero and the LLRs of the
other symbols are positive.

Also in [27], the author proposed the Min-Max algorithm which allows to simplify the
processing at the check nodes level by replacing the sum in (2.18) by the operator max:

M, . 8] ~ i M, , [0, 2.25
vy 8] % min {max Mo, [6:]} (2.25)
875] 'LS7é
hzs7é0

The messages of the Min-Max algorithm can be truncated like in the EMS algorithm.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



2.3 FB and SB CNs algorithms 15

2.3 FB and SB CNs algorithms

This section reviews the two state-of-the-art implementations of the EMS algorithm:
the Forward-Backward (FB) [22| and the Syndrome-Based (SB) [23]. Then, the new
innovative technique called presorting is introduced to show that sorting the CN
input messages can lead to significant savings in terms of computational complexity
and hardware implementation.

2.3.1 Forward-Backward CN processing

The FB-CN algorithm exploits the commutative and associative properties of the ad-
dition in GF(q) and factorizes (2.18) using a set of 2-input l-output ECNs. For the
sake of simplicity, the inputs of the CN are denoted by {U;},—o._._4.—1 and the outputs
are denoted by {V;}i—o._4.—1. The CN processing is split into three layers: forward,
backward and merge, each one containing d. — 2 ECNs [25]. As Fig. 2.4 shows, an
ECN processes a single output C' as a function of two inputs A and B. Fig. 2.5
shows the resulting structure for a FB-CN with d. = 6 inputs using (d. — 2) x 3 = 12
ECNs, each ECN being represented by a block H. Intermediate results of the ECNs
are reused in the later stages, avoiding re-computations and thus reducing the amount
of processing. Several reported hardware implementations of NB-LDPC decoders use
this efficient FB architecture [31] [59].

B[0] B[9] BJ[0] B[0]
A[0] -
AN OO =
~ ¢
(at1)(b+1)<n,
A[9] w \i vy
a)(n,, n,, n)=(10,10,10) 5)(10,3,10) ¢)(10,5,20)

Figure 2.4: S-bubble ECN and generalized S-bubble ECN.

The ECN processing [31] can be described in three steps.

1. Addition: for each couple of indexes (a,b) € {0,1,...,n,, — 1}?, the output
tuple

Cop = (c"(z),2) = (AT[a] + BT[], A®[a] ® B®[b]) =z € GF(q) (2.26)

is computed.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



16

NB-LDPC codes: Principles, Decoding Algorithms and Architectures

Uy U1¢ Uz‘ :;*j U4¢ Us

[
|

N
) J
]

=
e
i

=

P

i

=
i

=V

==

A J

=t

A
 J

Vs 14

Figure 2.5: FB-CN processing with d. = 6.

Note that since AT[0] =0 and BT[0] = 0, the first output value of C'is C'(0) =
(0, A®[0] @ B®[0]). For the sake of clarity, the three ECN steps are represented
by H as:

C=A@B (2.27)

In [31], it is shown that (2.26) needs to be evaluated only for indexes (a, b) that
verify (a + 1)(b+ 1) < n,,. In fact, since vectors A™ and BT are sorted in
increasing order in terms of LLR, any couple (o, V') verifying (0 < ¢’ < a) and
(0 <V <) gives Cp, < Cfy. Consequently, there are at least (a + 1)(b+ 1)
couples (a’, ') verifying C,,, < C,. In other words, if (a + 1)(b+ 1) > n,,
then C,; does not belong to the set of the n,, smallest values and thus, does
not need to be evaluated.

As proposed in [48], the notion of potential bubbles is proposed by specifying the
index variation ranges n, and n; of the two entries A and B, i.e. 0 < a < n,
and 0 < b < ny and the one of the output C' as n., i.e. 0 < ¢ < n.. Note
that n, and n, should be smaller than or equal to n.. In Fig. 2.4(a), the sub-
set of potential bubbles is represented in grey for n,, = n,, = 10. Fig. 2.4(b)
and Fig. 2.4(c) show the potential bubbles when (n,,ny,n.) = (10,3,10) and
(ng, ny, ne.) = (10,5, 20), respectively.

. Sorting: the couples (¢™(x),x) are sorted in increasing order of ¢*(z). The

output vector C' contains the first n,, ordered couples corresponding to the first
n,, smallest values of ¢*(x).

. Redundancy elimination: if two couples (a,b) and (a’,V’) correspond to the

same GF value, i.e., A®[a] ® B®[b] = A®[d'] ® B®[/], the one with higher LLR
is suppressed (V' during this Redundancy Elimination (RE) step. In order to
generate at least n,, valid outputs with a high probability, a number n,, > n,,

(MWaccording to (2.24), high LLR corresponds to low reliability

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



2.3 FB and SB CNs algorithms 17

outputs is generated by each ECN (typically, n,, = n,, +2) [24].

A serial hardware implementation of the Bubble CN architecture was presented in
[31]. Suboptimal versions considering only the subset of the most probable potential
bubbles (the first two rows and two columns) were presented in [31], [59] and [43].

2.3.2 Syndrome-based CN processing

The SB-CN algorithm [23] relies on the definition of a deviation path and its associ-
ated syndrome. In the sequel, n,,, (resp. nm, o) refers to the size of the input (resp.
output) vector of a CN.

A deviation path, denoted by 4, is defined as a d.-tuple of integer values, i.e. § =
(0(0),6(2),...,0(d. — 1)), with §(¢) € {0,1,...,np,, — 1}, ¢ = 0,1...,d. — 1. A
syndrome associated to a deviation path § is denoted by S(J) and defined as the
3-tuple (ST(4), S®(d), SP[6]) with:

de—1

ST(0) = Z UF[6(i)], (2.28)

5°(5) — ) UFI5(1) (229
U M 220
U, U, U, U,

(5.82)] [7.B1s) | (48] | [(6.60
(@.8:) | [(6.B1s) | [3.Bc) | (5.6
(39B21) (57661) (27618) (4’[346)
(27ﬁ16) (5’641) (17[317) (35[351)
(0,Bs6)/ (0,B21) | (0,Ba1) [ |(0,B:5)

)

8=(0,1,0,2) S(8)=(9, B4, 0101
Figure 2.6: Example of a deviation path.
where ST(§) is an LLR value, S® is an element of GF(g) and S”[§] is a binary vector
of size d, called Discard Binary Vector (DBV). Fig. 2.6 shows an example of a CN for

q =64, d. = 4 and input messages U;,7 = 0,...,d.—1 of size n,,,, = 5. In this figure,
the deviation path § = (0, 1,0, 2) is represented by a grey shade in each input vector.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



18 NB-LDPC codes: Principles, Decoding Algorithms and Architectures

It is also represented with straight lines linking U;[0], Us[1], Us[0] and Uy[2]. Assum-
ing that the elements of GF(64) are represented by the power of a primitive element
B, of GF(64) constructed using the primitive polynomial P[5] = B + 5 + 1, the syn-
drome associated to ¢ is S(§) = (0+54+0+4, B56D Ba1 B P21 B Pas, 0101) = (9, F42,0101).

Let Ay be the set of all possible deviation paths that can contribute to an output
value, i.e., Ag C {0,...,ny,, — 1}%. Using the syndrome associated to a deviation
path, (2.18) can be reformulated as

vi(z) = min {S*(6) — U [6()] } (2.31)
6€A0,SP(8) QUL [3(i)]=x

The DBV is used to reduce the complexity of (2.31) by avoiding redundant compu-

tation. In fact, if SP[](i) = 0, then §(i) = 0 and U;"[5(:)] = 0. It is thus possible to

simplify (2.31) as

v (z) = min ST(S 2.32

i (@) 5er,SD[5][i]:o,s@(5)@U§9[0}::,;{ )} (232)
Finally, (2.32) is further reduced by replacing § € Ay by § € A where A is a subset
of Ay with a reduced cardinality |A| = ny as described in |23].

The SB-CN algorithm proposed in [23] is summarized in Algo. 1 and its associated
architecture is presented in Fig. 2.7. Step 1 is performed by the Syndrome unit, Step
2 by the Sorting unit and, finally, Step 3 by d. Decorrelation Units (DU) and d. RE
units. The DUs are represented in parallel to show the inherent parallelism of the
SB-CN. The RE units discard couples with a GF value already generated (last test of
step 3 in Algo. 1). Note that in [23] the sorting process is done only partially.

ylo gU - y Ve

Ay Syndrome unit Ue0 S[k]
5GLees) Y bU
Sorting unit y i
//// "+ D
) VS[kLk=1.... |A| v SOl ST S [k]
Uiea[()] P Uej_ [0] N i
vy Py Ny oy T ki o
py,| - |DU | - DU, A \4
7 v B o lid
RE,|  |RE | -+ [RE v(ﬁk]’v) v’

dc-1
v, v, Vi

Figure 2.7: Syndrome-based CN processing (left part) and details of the DU unit
(right part).

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



2.3 FB and SB CNs algorithms 19

Offline processing:
Select a subset A C Ag of cardinality |A| = n, (which is a trade-off between
performance and complexity).
Initialization:
for i< 0tod.—1do
| Ji< 0
end
Processing:
Step 1 (syndrome computation): ¥V € A, compute S(0)
Step 2 (sorting process): sort the syndromes in the increasing order of S™(0)
to obtain an ordered list {S[k]}x=12,.a| of syndromes;
Step 3 (decorrelation and RE):
for k + 1 to |A| do
fori<0tod.—1do
if SP[k][i] =0 and j; < Ny, 0u then
v« SOk] @ UP[0]
if v ¢ {Vill]®}i=.j—1 then
Vilji] <= (S*[k], o)
Ji < Ji + 1

end
end

Algorithm 1: The SB-CN algorithm.

Fig. 2.7 also shows a detailed scheme with the operations in a DU. S? is the d.-wide
bit vector that indicates for which output edges the syndrome should be discarded
during the decorrelation process. A simple reading of bit i in the binary vector S”
validates or not the syndrome for the output edge 1.

2.3.3 Presorting

The new innovative technique called presorting is shown in this section. First a
redefinition of the LLR value is presented then the presorting description is shown.
Let us say that the element that represents {U;}i—o,. 4.1 is e; in which e; € GF(q).
Each input e; can take ¢ values. Similarly to (2.24), each element of the probability
distribution E associated to e can be expressed in the logarithmic domain as the LLR
denoted by et (z):

et(z) = —In <%) (2.33)

where 7 is the hard decision on e obtained by taking the most probable GF symbol,
i.e. T = argmax,cgr(q) P(e = 7).

By definition of the LLR, we have: et (z) = 0 and Vo € GF(q), e (z) > 0. The
distribution (or message) £ associated to e is thus £ = {e*(2)}scar(q)-

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



20 NB-LDPC codes: Principles, Decoding Algorithms and Architectures

Input The d. input message {U;}i—01,.. d.—1-

Step 1: Extract vector U' = (U [1], U [1],..., U  _,[1])
Sort U! in ascending order to generate U"L.
return permutation 7 = (7(0),...,m(d. — 1)) associated to the sorting

process: U (i) = U(x(i)),1=0,1...d. — 1.
Step 2: Permute input vectors using the permutation 7:
fori=0,1,...,d. — 1, Ul = Uy
Step 3: Perform the CN process with input vectors {U]}i—o1....
generate output vectors {V/}i—o1,. d.—1-
Step 4: Permute output vector using the inverse permutation 7=!: for
i=0,1,...,d. =1, Ve =V/
Algorithm 2: Pre-sorting principle

de—1 to

The idea of the input pre-sorting is to polarize the statistics of d. variable-to-check
messages by sorting them according to the reliability of the hard decision input, i.e.,
the probability P(e; = U[0]),7=0,1,...,d.—1. The reason for this approach is that
many bubbles in the ECN are very unlikely to contribute to the output, suppressing
them does not affect performance but can lead to architectural simplifications.
Considering Eq. (2.33) and knowing that ) .. P(e; = x) = 1, the probability
P(e; =UZ[0]),i=0,1,...,d. — 1 can be expressed as:

1
' Z] Oe_Uj—

Note that in Eq. 2.34, the values of U;"[j] for j > n,, are equal to U;"[n,, — 1] + O,
where O is a constant offset value, as detailed in 2.19 [25]. Since U;'[0] = 0 and, for
j>2, U] <Utj], then P(e; = UZ[0]) can be approximated by:

)

(2.34)

1
14 Uil
In other words, the higher the value of U;"[1], the higher P(e; = U?”[0]). From

this, we can state that the pre-sorting step is performed according to vector Ul =
(U [1], U 1], ..., Uy _,[1]) as described by the Algorithm 2. As shown in the example
of Fig. 2.8 for n,,, = 5 and d. = 4, the non used entries are in dashed area, so only a
reduced number of values in the sorted vectors {U] }i=o1....4.—1 are considered as inputs
to the EMS CN block. This observation motivated the original approach described in
the following subsection.

The SB-CN with presorting is presented in [47] where the number of considered de-
viation paths was reduced after the suppression of the paths that are unlikely to

contribute to an output.

P(e; = U2[0]) ~ (2.35)

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



2.4 Description of an existing VN architecture 21

(4.B5) | (6,B4s) | [(3.8535) | [(5.B10)
(3.821)] |(5:Be1) | [(2,B1s) | |(4,Bas) |
@p)| [Biba) | [G60) | [@ipy) Y =25 13)
©p) (000 | (0020 | [0p0)|
L U, L U, L U, L U, Presorter
/:i?”:::\\S}f\/thh// o n=(1,3,0,2)
S — ,,
757 [532) (587 i  Reg |
(3’[321) (23618)
/& (3,(151) (25B16) (17[517)
(0,B21)] |[(0,B15)| | (0,Bs6)| | (0,B2)
W YUYW JUS LU
| EMS CN |
LV - i Vli v i V‘ n'=(2,0,3,1)
[ Switeh; [T

Figure 2.8: Pre-sorting principle.

2.4 Description of an existing VIN architecture

The VN of d, = 2 proposed in [7] Chapter 2 Section 2.2.1 operates in three modes:
generation of the intrinsic couple candidates, VN update and decision making. In the
following, we show the VN update and the decision making modes. First, an example
is shown then the architecture is presented.

2.4.1 An example of the VN functionality

In this section an example of the VN functionality is shown, the example in update
mode is presented first then the example of the decision mode is shown.

2.4.1.1 An example in update mode

Fig. 2.9 shows a VN v connected to two CNs py and p;. Let us say that n,,, , = 8 is
the length of the extrinsic messages M, and n,,, = 4 is the length of M,, . Each
element belongs to M, and M,,, is a couple of (LLR, GF). The intrinsic GF vector
I is required in the update mode. Therefore, Let M = {0,2,7,19,20,20, 20,20},
Mg, = {B1,0, B4, Bs, Bo, B2, B3, B}, 17 = {0,7,15} and I¥ = {f35,0, 5o} be the input
vectors of v.

The update mode is divided into two phases, M, is processed in phase 1 and I is
processed in phase 2. Concerning phase 1, the intrinsic LLR value of each element in
M is computed. Let IM,,, = {63,7,18,0,15,33,69,45} be the vector of intrinsic

pov

LLR value of MY (the computation of IM,, is performed by the eLLR block in the

pov

architecture). Then, the two vectors M and IM,,, are added to form the updated

pov

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



22 NB-LDPC codes: Principles, Decoding Algorithms and Architectures

po pl

Figure 2.9: A VN v connected to two CNs py and p;.

extrinsic LLR values M\ = M), + I My, = {63,9,25,19,35,53,89,65}. Therefore,
My and Mg, = My, = {B1,0, B4, Bs, Bo, B2, B3, B} are inputs of a sorter block
to extract the most 7n,,,, reliable GF symbols in terms of LLR value, let MsF =
{9,19, 25,35} is the most reliable updated extrinsic LLR values stored in the sorter
and M3% = {0, 85, B4, Bo} its associated GF values.

After that, phase 2 is performed. The last extrinsic LLR value MJ [7] = 20 is
considered as offset of I, so the second input vector of the sorter is My = IT+20+0
along with M, = I, O is an offset value. Each time a redundant GF symbol occurs,
its associated LLR value is replaced by the Sat (maximum LLR) value. Thus, since
I®[0] = B5 and I®[1] = 0 are already processed and generated as valid GF symbols in
phase 1, the intrinsic message vectors fed to the sorter are My = {Sat, Sat, 35+ O}
and My = {55,0,5}. Finally, after the normalization, the output of the VN in
update mode is M} = {0,10,16,26} and M, = {0, s, B4, 5o}

p1

2.4.1.2 An example in decision mode

The first ny = 3 elements in M,,, are saved in a Content-Addressable Memory (CAM),
so let Mg,y = {0,10,16} and Mg,y = {0, 85, B4} be the saved data in the CAM.
Let us say that p; replied to v by M} = {0,19,41,47,48,48,48,48} and M7, 6 =
{Bo, Bs, B2, 3,0, b1, Pa, B5}. Again, there are two phases in decision mode, phase 1 to
process M,,,, and phase 2 to process Mcan (the message contained in the CAM). The

two vectors are updated as:

v = (VG MED) M = ME
by M} [i] + My y[2] + O Otherwise

then
ME k] = My lk] + M)

p1v

7+ 0

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



2.4 Description of an existing VN architecture 23

Wherei =0,...,7,j=0,1,2,k =0,1,2and O = 1. Therefore, M} = {18, 36, 58,64,
487 657 647 58}7 M;;ﬁa; = {607 667 627 B37 07 617 647 65}7 MgXM = {497 597 65} and MgAGABM =
{0, 85, B4}. Finally, By is the GF symbol corresponding to the minimum LLR value

and hence it is the output of the decision block.

2.4.2 VN architecture in update mode

The VN architecture in update mode is shown in Fig. 2.10 where n,,,,, = nm,, = m.

Rd: Read
y Wr: Write
[ Rd
Sel
0 %v
) | vy o
P e eLLR
M >0
Pre o1y ]\4}7v
]
Sel
¢ 1
- >
M
Y n I Sorter » M,
%v[nfn_l]+04>0 Sat y MVN !
1

Figure 2.10: Architecture of the VN |7] in update mode.

Updating a VN takes place serially in two phases. As a first step, the VN updates
the Mp,_, v extrinsic message from the CN Processor (CNP). Therefore, the signal
Sely takes the value 0 and the signals Sel; and Sely take the value 1. The update of
the message M, , is given by:

M& i) = ME i
YFN[Z,] ﬁ[ﬂ’ o i=0,1,... 1y —1 (2.36)
MVN[Z] = Mplv[z] + I [MPIU[Z]L

The intrinsic LLRs I*[M5[i]] used to update the LLRs of the M,,, messages are

progressively generated by the eLLR block. The Flag block is a g-bits register (each

bit, corresponds to a symbol of the Galois field). The bits of this register are updated
by:

FlagiM@[i] =1, i=0,1,...,n, —1 (2.37)

piv

In a second step, the VN Processor (VNP) updates the LLRs of the ng symbols of
the intrinsic message GF values I®. Therefore, the signal Sel, takes the value 1 and

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



24 NB-LDPC codes: Principles, Decoding Algorithms and Architectures

the signal Sel; takes the value 0. If a symbol of the message I® belongs to the vector
messages M,,, (that means if Flag[I®[i]] = 1,i = 0,1,...,n5 — 1) then the signal
Sely takes the value 0 and the LLR associated with this symbol is saturated (fed
with the maximum LLR value) in order to avoid duplicate symbols in the outgoing
messages from the VNP. The update of the messages I is done by:

M (n,, + i) = I®[i]

IH]i) + ME (n,, —1)+ 0 if Flag[I®[i]] =0

) (2.38)
Sat otherwise

M\J;N(nm—i-z'):{
i:O,l,...,ng—l

The message My of size (n,, +ng) is progressively introduced in the Sorter block to
be sorted in increasing order. The message M, , is obtained by selecting the first
N, outgoing elements of the Sorter block. The latency of the VNP in this mode is
Lynp1 = ny + ng + 2 clock cycles as shown in Fig. 2.11.

i » Clock cycles

Figure 2.11: Timing diagram of VN in update mode [7].

2.4.2.1 Architecture of the Sorter block

The different types of comparators used in this manuscript are shown in Fig. 2.12:
Comparator Only (CO) (Fig. 2.12.a), Comparator (C) (Fig. 2.12.b), Comparator-
Swaps (C'S) (Fig. 2.12.c) and 2-to-1 multiplexers (MUX2-1). The C'O generates only
a comparison signal defined as: ¢,; = 1 if x, < 4, otherwise c,, = 0. The comparator
C selects the minimum value (m) as follows:

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



2.4 Description of an existing VN architecture 25

C
c c cpq X o
% gra 4 q
xq—> Xq—> xq—» C X - <
CO < MR > m P
Xp" xp—» P "10) m
|
(a) (b)
0
G "
7 1cs < [H%pq
x> bem; Xt
0
g

(©)

Figure 2.12: (a) Comparator Only (CO), (b) Comparator (C), (¢) Comparator Swap
(C'S) and (d) ESU (4-SU) Architecture.

|
-
X5 m; X,V —»m

(a) (b)

Figure 2.13: (a) C'S, (b) C.

oifr,<z,=>cHy=1m=ux,
o ifr,>x,=cy=0m=uzx,

The CS is composed of one comparator and two MUX2-1s. This C'S sorts the input
values where the lower and upper outputs represent the first minimum (m;) and
second minimum (my) values respectively as described below:

o ifr, <zy=cpy=1m1 =z, and my = 7,

o ifr, >z, = cpy=0,m =z, and my = z,.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



26 NB-LDPC codes: Principles, Decoding Algorithms and Architectures

For sake of simplicity in representing some architectures, we use the symbols shown
in Fig. 2.13.a and Fig. 2.13.b as C'S and C respectively.

The architecture of the sorter is shown in Fig. 2.14. This architecture consists of
N, (number of outputs) stages regardless of the size of the input list. In addition,
the latency of this architecture is equal to the number of inputs. So to sort a list
containing ¢ = 64 elements, the latency is L, = 64 clock cycles.

Stage 1 Stage 2 Stage
R, R, R,
Input o | L .. IR
R, 1 CS R, 1 CcS &] C
- - WM
I v
-’

Figure 2.14: Architecture of the Sorter block |7].

Each stage of the sorter consists of two registers (Ry and Ry,) and a CO. Ry (register
high) stores the last element provided at the input and Ry, (register low) stores the
minimum element in terms of LLR value. Each stage sends the symbol of higher LLR
to the next one. Thus, the n,, Ry registers, from stage 1 to stage n,,, form a list
sorted in ascending order. On arrival of the last element of the inputs, the result of
Ry, of stage 1 is fed to the output. In the next cycle, the sorter selects the couple from
Ry, of stage 2, and so on.

2.4.3 VN architecture in the decision-making mode

In the decision mode, only the ny messages from M,,, are stored in the CAM. There-
fore, the sets A1, Ay and A3 are defined as:

Ay = {ME 1]} icor, im0 M,
Ay = {Mv%l 1]} icon,. me—1 \ A1
As = MP,\ A,

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



2.4 Description of an existing VN architecture 27

The computation of the a priori information APP is given by:

My [x] + M) [7], ifx ey
APPlz]senunung = § Mo, [2] + M (ny, — 1) + O, if 2 € Ay (2.39)
M o)+ ME (ng — 1) + 0O,  otherwise

Then, the decision is made by:

¢ = argmin {APPIz]} (2.40)

xeEA1NA2 ﬂAg

Therefore, the architecture of the decision making is illustrated in Fig. 2.15 where n,
is the number of bits to represent an LLR value.

RAM M,

(n,+m)xn, Rd : Read

. Wr - Write
g cant Flag Sei =1—=xEA,
Sel;=0—xcA
M r CAM _Rd,[ | 0 3
o, “r; n, " Sé’fl =l—-xe :'\2
Rd - q Sel,=0—-x€A,
M =”b+”'; A4pv “rr. 56312= 1— APP :1‘\1]
Sel,=0— APP[A,UA;]

M, (n,-1)+0O

cam’t

E 1 Sel,
.0 T
camr[ M, L] e ' app

P °

ML [n-11+0

Sorter ¢

Figure 2.15: VN architecture in decision-making mode (only active blocks are shown)

[7]-

The VNP receives the first ng M,, messages and stores them in the CAM. Then, it
computes the APP message in two phases:

> Phase 1: The VNP computes the APP values associated with the set A; U Aj
(the symbols of the message M,,,). The signal Sel, takes value 0. Whenever

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



28 NB-LDPC codes: Principles, Decoding Algorithms and Architectures

a symbol of A; exists in CAM, the signal Sel, takes value 1 otherwise it takes
value 0. The register Flag stores the symbols of the set Ay UAs (Flag[MS,[i]] =
1,i=0,1,...,0m —1).

> Phase 2: The VNP computes the APP values of the set Ay (the symbols stored
in the CAM except those in the set Aj). The signal Sely takes value 1. The
symbols of CAM that belong to the set A; are identified by the Flag register.
In the presence of these symbols the signal Sel; takes value 0 and its associated
APP value is saturated to not be processed by the Sorter block.

During both phases, the APP values are progressively introduced in the Sorter block.
The decision is made by selecting the symbol with the smallest APP value. The
latency of the VNP during decision-making mode is Ly np2 = 1y, + 15 + 2 as shown
in Fig. 2.16.

‘ » Clock cycles

L on, n n. n

! s ' m : s ' m

| | | | |

\ Y Y Y ‘

‘ i i i \
| | | |
| | | |
i i \ \
| | | |
T T ‘ ‘
‘ v ‘ nv

N LR

| |
VNP,2

e

\ \

Figure 2.16: Timing diagram of VN in decision mode [7|.

2.5 Layered vs. Flooding decoder scheduling

This section reviews the principles of two different decoder schedulings over the Tan-
ner graph: the layered and the flooding scheduling.

To complete one iteration, the four CNs and their connected VNs must be updated
as shown in Fig. 2.17.a). The two schedules of processing are performed as follows:

Flooding: Let us take vy that is connected to pg and ps as shown in Fig. 2.17.b), vy
feeds the two CNs pg and p3 by the same vector messages, i.e, M,, p,, =

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



2.6 State-of-the-art NB-LDPC decoder architectures 29

® © © © © @

Figure 2.17: Stages of processing.

My, p,. Thus, the CNs are not benefiting from the updated VN messages
in the same iteration.

Layered: In this approach, vy feeds CN py by M,, ,, as shown in Fig. 2.17.c), then
vy Teceives My, ,, to generate the updated vector messages M, ,, which is
sent to CN p3. Thus, the CNs benefit from the updated VN messages in
the same iteration.

Each type of scheduling has its advantage: the layered one provides better perfor-
mance and the flooding one presents lower latency. So the choice between them
should be done on this basis. In our work, the proposed parallel pipelined decoder,
we consider the flooding schedule of processing.

2.6 State-of-the-art NB-LDPC decoder architectures

In this section, some NB-LDPC decoder architectures are presented to show the last
advances on this area.

2.6.1 A fully parallel NB-LDPC decoder with fine-grained dy-
namic clock gating

The decoder architecture presented in [59] implements the EMS algorithm over a
GF(64) (160, 80) regular-(2, 4) NB-LDPC code with n,, = 16. In this approach,

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



30 NB-LDPC codes: Principles, Decoding Algorithms and Architectures

N = 160 VNs and M = 80 CNs are implemented and the exchanged inputs and
outputs are interleaved to reduce the latency per one iteration process. In addition,
the bubble ECN proposed in 39| is modified in order to increase the frequency. Fur-
thermore, the satisfaction of the PCM equations is checked for two reasons: First, to
apply the Clock Gating on the blocks that are unnecessary to be processing anymore.
Applying the clock gating approach on a block means making it not functioning any-
more which leads to reduce the power consumption. Second, to stop the decoding of
the current frame and start processing the next one before the ending of the maxi-
mum number of iterations which further increases the throughput by considering the
average number of iterations.

However, even though there are N VNs and M CNs processed in parallel, the func-
tionality of each block is still serial which affects negatively the throughput and the
hardware efficiency. The number of clock cycles needed per iteration is equal to 47
which results in a global throughput rate of 1.22 Gbits/s.

2.6.2 Trellis-Based extended Min-Sum algorithm Decoder

The authors in [29] adopted the T-EMS algorithm for their NB-LDPC decoder imple-
mentation. Even if, in this architecture, complexity is independent of the check node
degree, it significantly increases with ¢. In fact, only GF(4) practical implementations
are considered in [29], leading to a throughput of 2.4 Gbits/s for the serial decoder
architecture and up to 3.6 Gbits/s for the parallel decoder architecture.

2.6.3 A 21.66 Gbps Non-Binary LDPC decoder for high-speed
communications

The authors in [58] introduce a new algorithm called Improved Layered Multiple-
symbol-reliability weighted Bit-Reliability Based (IL-MwBRB). In fact, their proposed
algorithm is derived from the MwBRB algorithm [32|. The pipelining and paral-
lelism in the architecture are considered to increase the throughput to 21.66 Gbits/s.
Unlike the mentioned decoding algorithms (FFT-BP, EMS, T-EMS and Min-Max al-
gorithms), IL-MwBRB algorithm processes the reliability messages at the bit level
which leads to performance degradation.

2.7 Conclusion

In this chapter, we started by recalling the definition of LDPC codes defined over
Galois field GF(q = 2™). Then, we have discussed the main algorithms used in the
decoding of NB-LDPC codes. The BP algorithm is optimal but its hardware imple-
mentation is not feasible. Although the FFT-BP algorithm converts the convolution
operation to a multiplication, it is still heavy to perform in hardware. The Log-BP
algorithm replaces the multiplication by a simple addition operation but a lot of mem-
ories are required to store the ¢ symbols. The sub-optimal algorithm, EMS, and its

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



2.7 Conclusion 31

variants at the CN level have been described. The key idea in the EMS algorithm is
to truncate n,, << ¢ symbols to be exchanged between the CNs and the VNs, thus
both hardware cost and memory consumption are reduced.

Afterward, the FB, SB and presorting algorithms are shown. The impact of the pre-
sorting on the FB-CN and the new hybrid CN are shown in next chapter.

Then, the layered and flooding schedules of the decoding process have been reviewed.
Finally, we presented some of the state-of-the-art NB-LDPC decoder architectures,
where the throughput rate of each decoder architecture has been discussed.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Chapter 3

Efficient architectures for NB-LDPC
decoding

This Chapter presents the main contributions of this thesis which are the new archi-
tectures for the CNP and the VNP. Section 1 describes the improvements done on
the existing CNP to obtain the new parallel CNP architecture and section 2 shows

the new VNP architecture. These architectures will constitute the global decoder

5
described in Chapter 5. In this chapter, only an example of high code rate (CRZE)

will be considered. The proposed algorithm /architecture can easily be extended to
other code rates: an example of extension from d. = 12 to d. = 16 is also given.

3.1 New Check Node Architectures

In this section we focus on the CNP and we describe the advantages of the new
innovative presorting technique in terms of hardware cost on the FB-CN and the two
recent proposed architectures called Extended Forward CN (EF-CN) and Hybrid CN
(H-CN). Finally, a block called Skip Processing Controller (SPC) is presented. The
idea is to define a criteria and when it is satisfied, the CN processing is skipped. Thus,
the role of the SPC block is to test this criteria and indicate to the CNP whether the
processing is to be skipped. This permits to reduce the decoding latency per iteration
and hence to increase the global throughput or reduce the global power consumption.

3.1.1 FB-CN with presorting

As shown in chapter 2, pre-sorting allows a significant reduction of the number of syn-
dromes that need to be computed in the pre-sorted SB architecture. In this chapter,
we apply the presorting technique to the FB-CN architecture. The basic principle
is similar to the SB architecture: bubbles that are unlikely to be used are simply
discarded, which leads to hardware complexity reduction.

A statistical study of the behavior of the bubbles in the input vectors {U}}i—o1,. d.—1
allow us to predict for each ECN the bubbles that can be omitted without affecting

33

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



34 Efficient architectures for NB-LDPC' decoding

the global performance of the FB-CN processing. This study is performed through
the observation of each ECN processing during the Monte-Carlo simulation of a (576,
480) GF(64)-LDPC code at SNR = 3.5 dB over more than ten thousand decoded
frames. The effect of the bubble suppression is translated into hardware complexity
reduction. In what follow, the FB-CN with presorting.

layer -~ S

Forward

Backward
layer
o
(e}
z

s F s f  sw F  sm F  sm F ey B sB F s F siB

o
%5
5% ECN ECN ECN ECN ECN ECN ECN ECN ECN
== M2 M3 M4 M5 M6 £7 M8 M9 MI0

Figure 3.1: Matrix representation of a S-Bubble Check FB-CN with d. = 12 and
Ny = 20. The b = 1680 red circles represent the bubbles in the original FB-CN
algorithm. The squares represent the remaining b° = 648 bubbles after the pruning
process in the S-FB algorithm.

To be specific, Fig. 3.1 represents a S-Bubble Check FB-CN with d. = 12, composed
of three layers of d. — 2 = 10 ECNs each. The points (inside or outside each small
black square) represent the positions of the processed bubbles with the S-Bubble
architecture [43], which are a total of b = 1680. The black squares represent the
positions of the bubbles that contribute to an output after applying the pre-sorting
technique. They represent a number of v° = 648 bubbles, i.e, 40% of the initial
number of bubbles. Consider for example ECN B10 in the Backward layer, only one
bubble is used in practice for implementation: a S-Bubble architecture at this ECN
clearly implies a waste of resources. The idea is then to implement for each ECN the
most simplified architecture that guarantees a correct ECN processing as detailed in
the following section. Please also note that the pre-sorting technique requires extra
hardware blocks compared to the classical unsorted CN architecture: a d.-input vector
sorter and two permutation networks (or switches). We will also show in section 3.1.3
that the area cost of this extra hardware is compensated with the ECN simplifications,
leading to an optimised global CN implementation.

3.1.2 Proposed FB-CN Architecture

This section first describes the elementary blocks constituting the proposed FB-CN
architecture: sorter, switch and simplified ECNs. Then, the global CN architectures
for different d. values are presented.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



3.1 New Check Node Architectures 35

3.1.2.1 Sorter

Several sorting algorithms have been proposed in the literature based on serial [44]
and parallel approaches [67]. The selection of the most suitable sorter architecture
is based on two main criteria: hardware complexity and speed performance. The
architecture of the sorter we implemented is a semi-parallel architecture based on
the algorithm proposed in [45]. The architecture is composed of d./2 stages where
each stage contains d. — 1 comparator-swap blocks. As shown in Fig. 3.2, since the
processing time of the FB-CN processor will be greater than the sorting time, we have
implemented only one stage that will be running d./2 times in order to sort an input
vector of size d. and to generate the permutation order vector m where each L;, i =
0,...,d.—1, is a LLR value. Thus, MUX 1 selects for only one clock cycle (first clock
cycle) {(Uy[1],0), ..., (U; _[1], dc—1)} then selects { (Lo, 7(0)), ..., (Lg,—1, 7(dc—1))}
for the rest d./2 — 1 clock cycles. The latency of this sorter architecture is d./2 cycles
and it constitutes a good trade-off between complexity and performance.

- »(L, . n(d-1))
(Udj_l[l],dc-l)) - CS — (L, ., m(d-2))
§ > | ) cs >(LM n(dC-S))
\: | > CS 4» ; ; de-3 c
| ‘ :
n | | | |
Guwos _ | |
. ! | |
é A || d2; @20 }
inputs \ ! !
= i |
Ly (d-1)» | i | |
. | \ !
| | ‘
| > - | ‘
| !
| o CS | o > (L, 7(2))
L > | cs » (L,n(l
(L, 7(0)) » CS >ELPZE0;;
UO Ud] U0 Udcl

MUX &g | n(d-1)

U d_Multiplexers U

Figure 3.2: Architecture of the Sorter and Switch blocks. The Sorter architecture
follows [45].

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



36 Efficient architectures for NB-LDPC' decoding

3.1.2.2 Switch

The Switch block receives the d. inputs {U;}i—o1....4.—1 and permutes them based on
the permutation vector 7 received from the Sorter. This Switch is composed of d,.
multiplexers of size d.-to-1, as shown in Fig. 3.2.

3.1.2.3 Simplified ECNs

As previously mentioned, the hardware resources of each ECN can be reduced without
affecting performance. Five different structures of ECN can be considered in Fig. 3.1:

S-4B: This ECN architecture, known as S-bubble ECN, is described in [43] where
four bubbles are compared per clock cycle. It is composed of 4 FIFO blocks, a
minimum detector C' of 4 input values, two arithmetic adders (the two adders related
to A[1| and BJ[1]) and four modulo-2 adders implemented using XOR gates as shown
in Fig. 3.3. The candidates in each FIFO are sorted, the MIN block detects the
minimum among four candidates and then its corresponding index will be increased
by 1. The Flag is to check whether the current reliable symbol is redundant or not
and the multiplexer is to either select the current reliable symbol or the saturated
data in case of redundancy.

B A

Y
RSz
Y g

»

T
Lo ST (
v MIN
sl Fror oy

B[]

: .
])@ »  FIFO3

Al

Figure 3.3: S-4B architecture.

S-2B: It is based on the S-bubble ECN but composed of only the first row and
first column of the matrix shown in Fig. 2.4. Thus, only two bubbles are compared
per clock cycle, two FIFO blocks are needed with only one comparator C' and two
modulo-2 adders (see Fig. 3.4). There are 10 S-2B ECNs used in case of d. = 12 as
shown in Fig. 3.1, these ECNs are F3, F4, F5, F6, B4, B5, B6, B7, M2 and M3.

S-1B: This vector ECN generates the output C' as: Cf, = A*[a], C5y = A®[a] &
B®[0] (a =0,...,n, —1). Note that vectors A and B can be exchanged depending

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



3.1 New Check Node Architectures 37

B 4

—

> Flag |
o0 ]
\
g
T

V)

C
—»

<
MUX

»

non-valid
data

Figure 3.4: S-2B architecture.

() (b
Figure 3.5: S-1B+1 ECN and its architecture.

on the distribution of the bubbles. The only required component of S-1B ECN is the
XOR gate.

S-1B-+1: The bubbles considered in this ECN processing are shown in Fig. 3.5.a and
the architecture in Fig. 3.5.b. It is composed of a comparator, two 2-to-1 multiplexers
and a single register. The control signal S is initially 0 and then set to 1 for all the
following cycles if and only if A*[i] > B*[1], i = 1,2,...n,, — 1 and Cfy # Cg,
where Cfy = A®[i] @ B®[0] and CF, = A®[0] @ B®[1]. The control signal S, is also
initialized to 0 and keeps this value while A*[i] < B*[1]. It will be turned to 1 for
only one cycle when A*[i] > B*[1] and Cf) is different to all the symbols C5, j < 1,
already output. The only required component for S-1B+1 ECN is the XOR gate.

1B: This ECN considers a single bubble where the output is the most reliable ele-
ment Ci, = A®[0] @ B[0].
3.1.2.4 ECN simplifications for global CN with different d. values

The statistical analysis and architectural ECN simplifications were performed for d, =
6,8,12 and 20, i.e. coding rates 2/3, 3/4, 5/6 and 9/10, respectively. For d. = 12

5
(CRZE)’ Fig. 3.1 depicts the architecture retained for each ECN. Table 3.1 presents
the number of each kind of ECN being implemented in the S-FB CN for several d,

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



38 Efficient architectures for NB-LDPC' decoding

values. From these results we can predict significant potential area gains specially for
high d. values: for example, for d. = 20 the S-Bubble architecture will be replaced 10
times by the 1B architecture.

Table 3.1: Number of ECN schemes for different d. values.

S-FB
de. | S-4B | S-2B | S-1B | S-1B+1 | 1B
6 3 7 - - -
8 9 5 2 1 1
12 6 10 8 4 2
20| 12 7 24 1 10

Therefore, the higher the value of d., the higher the number of the suppressed bubbles
and hence the higher the gain obtained with the presorting.

3.1.3 Implementation and simulation results

To quantify the interest of the pre-sorting technique in FB-CN architectures we have
implemented the different architectural designs on a FPGA device. We also show
simulations results of the new approach where no performance loss is obtained.

3.1.3.1 Implementation results

We considered the Xilinx VIRTEX 6, xc6vIx240t-2ff1156 FPGA device to obtain
synthesis results. The five ECN architectures were synthesized to obtain the results
presented in Table 3.4. The LLR and GF values are quantified on 6 bits. The 1B
and S-1B ECNs have negligible complexity and a maximum frequency of 714 MHz.
Also, the S-1B+1 and S-2B ECNs have reduced complexity and operate at higher
frequencies compared to S-4B.

Table 3.3 summarizes the overall complexity of the FB-CN for different d. values.
Please note that "S-FB" stands for the S-Bubble CN implementation and that "P-FB"
stands for the presorting approach proposed in this paper. The proposed architecture
leads to a global CN complexity reduction of 5% for d. = 6, 43% for d. = 12 and 54%
for d. = 20, compared to the state-of-the-art S-FB architecture.

Table 3.3 also shows the synthesis results of the Sorter and Switch blocks. These extra
blocks (1 Sorter and 2 Switches) of the pre-sorting step constitute about 30% (46%)
of the total area for d. = 12 (resp. d. = 20), but the ECN architectural simplifications
compensate for this and a global gain of 43% (resp. 54%) is obtained.

Even if the implementation of the variable node is out of the scope of this study, let
us note that significant area reduction is expected as the number of sorted values to
compute for CN input messages is reduced. For d. = 12, the n,, = 20 values (for each
message) is reduced to a maximum of 10 for U] and a minimum of 1 for U7,, as shown
in Fig. 3.1.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



3.1 New Check Node Architectures 39

Table 3.2: Post synthesis results for different ECN schemes on a Xilinx Virtex 6
FPGA.

ECN Number of Frequency | Latency
occupied slices | (MHz) (cycles)
1B 7 714
S-1B 17 714 1
S-1B+1 35 349 1
S-2B 82 334 2
S-4B 138 269 2

Table 3.3: Post-synthesis results for the FB-CNs with (P-FB) and without (S-FB)
pre-sorting on a Xilinx FPGA device.

FB-CN Nb. of occupied slices

d. | Case | Sorter | Switch | CN | Total | Gain

6 S-FB 0 0 1,617 | 1,617 5%
P-FB 50 93 1,268 | 1,532 0
S-FB 0 0 2,481 | 2,481

8 P-FB 7 142 1,701 | 2,061 17%
S-FB 0 0 4,666 | 4,666

12 P-FB | 160 283 1,858 | 2,653 43%
S-FB 0 0 6,519 | 6,519

20 P-FB | 386 495 1,232 | 2,955 54%

3.1.3.2 Simulation results

Finally we present bit-true Monte-Carlo simulation results over the Additive White
Gaussian Noise (AWGN) channel with a Binary Phase Shift Keying (BPSK) modu-
lation scheme. Extrinsic and intrinsic LLR messages are quantified on 6 bits and the
a-posteriori LLRs on 8 bits. The two scenarios presented in Fig. 3.1 are considered:
1) the S-FB which corresponds to the state-of-the-art S-Bubble approach without pre-
sorting, 2) the P-FB which corresponds to the approach with pre-sorting and ECN
simplifications.

Fig. 3.6 shows the simulation results for a (576, 480), d. = 12 GF(64)-LDPC code.
The pre-sorting technique shows negligible performance degradation while implemen-
tation results in Table 3.3 shows 43 % complexity reduction with d. = 12. Thus, if
slight degradation is accepted, further simplification is possible.

3.1.4 Extended Forward and hybrid CN

The FB and the SB CN architectures as well as the application of the presorting
technique to both of them have been presented. In this section, we consider the
hybridization of these approaches in a unique CN architecture. The first proposed

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



40 Efficient architectures for NB-LDPC' decoding

FER

— X — Standard, S-FB
—H— Pre-sorted, P-FB

1 1 v—_\]
3 35 4 4.5 5
E/N (dB)

Figure 3.6: Simulation results of NB-LDPC decoding algorithms for (576, 480) code
over GF(64) and d. = 12 under AWGN channel.

hybrid architecture uses an Extended Forward (EF) processing to dynamically gen-
erate the set of syndromes. The objective is to take advantage of the simplicity of
the SB architecture while keeping the complexity linear with d.. The second original
architecture introduces presorting in the EF to further reduce the complexity. Finally,
a new level of hybridization is performed to take the most advantage of the presorting
technique in the EF architecture.

3.1.4.1 Syndrome computation using the EF processing

A syndrome set S, can also be computed by performing a forward iteration on all the
inputs of the CN using a serial concatenation of ECNs (2.27) as

Sy = B, U, (3.1)

Applying the SB CN approach with ECNs of parameters (n,,, n,, n,) provides n,,
syndromes sorted in increasing order of their associated LLR values. The syndrome
set can be computed in a serial scheme as shown in Fig. 3.7 or it can also be computed
with [log,(d.)] layers of ECNs using a tree structure.

Thanks to the use of ECNs, the computed syndrome set is sorted and can be directly
applied to the decorrelation process. Note that in [23], a sorting process is required
after the syndrome computation. However, the ECNs used in the EF architecture

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



3.1 New Check Node Architectures 41

L hehedhedal
N T S

DU, DU, | Dy, | | DU, | | DU, | | DU, |

Vo Vi Vs Vs Vs Vs

Figure 3.7: EF CN Architecture.

require a small additional patch compared to those in the FB architecture. The role
of this patch is to construct the DBV (2.30), denoted here by cﬁb, during the ECN
processing. The ECN addition (2.26) is then modified as

Ca,b = (C:,b’ Cib? Cc?,b) = (A+ [CL] + B+[b]a
A®[q] @ BE[), (3.2)
AP[d]|| B (b)),

where || represents the concatenation operation of two binary vectors.

The CN inputs are initialized with a DBV value of one bit as follows: UP[0] = 0
and UP[j] = 1,Vj > 0. Thanks to the DBV computation, the output of the EF
processing is similar to the output of the SB processing just before the decorrelation.
In particular, the notion of deviation path can be also applied to the EF processing,
with the only difference that the set of deviation paths Agp is input dependent, while
A is predefined offline in the SB architecture |23].

A first drawback of the EF is that the number of computed syndromes is typically
3 X Ny out to compensate the discarded redundant syndromes.

Even with this approach, the first simulation results of the EF algorithm showed sig-
nificant performance degradation compared to the FB algorithm [50]. The reason of
this performance degradation is the RE process performed by each ECN: since an
ECN performs RE, no more than one ECN output could be associated to a given GF
value.

However, since the ECN outputs in the EF algorithm are partial syndromes, RE may
discard useful partial syndromes that would construct valid complete syndromes at
the end of the EF processing.

In Fig. 3.8, an example of CN with d. = 4, 1,5, = 2 and n,,, o = 3 is presented to il-
lustrate the problem. The two deviation paths 6; = (1,0,0,0) and d = (0, 1,0, 0) lead
to the same GF value, i.e., B4+ 0o+ B+ +0 = By + B4+ Bs+ 0 = SBy. The output C; =
U, B U, of the first ECN is equal to C7 = {(0,0,00), (1, a4, 10), (2, 524, 01), (3,0, 11)}

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



42 Efficient architectures for NB-LDPC' decoding

before the RE and equal to C; = {(0,0,00), (1, 824, 10)} after RE. Note that the seed
of the partial syndrome 05 is eliminated. The final output in this example will be
S = C5 = {(0, 84,0000), (1, By, 1000), (7, B17,0010)} and after the decorrelation unit,
‘/0 = {(O, 524), (7, 547)}, instead of % = {(O, 524), (2, 0), (7, 547)}.

The key idea to avoid this problem is to allow redundant GF values in the syndrome
set. Thus, removing the RE process from the ECN processing avoids performance
degradation. Moreover, as a beneficial side effect, it also reduces the complexity of
the ECN without impacting latency. In fact, the effect of the RE operation was to
introduce idle cycles in the pipeline each time a symbol was deleted. The introduction
of idle cycle is now avoided.

Let us define a modified ECN operation with symbol B’ where the ECN addition is
performed as in (3.2) and no RE is performed. The syndrome set of size n,, can then
be computed as

Sy = BiZy Us (3.3)
61=(1,0,O,0)
(1.84) ~\,\»'(2’B4) e (7.817) (9,8s1)] — 8,=(0,1,0,0)
(0,8)-1" 1 (0,B) (0, By ) 222 (0.60) | S(8,)=(1,ps,1000)
Uo 1 U, Us 2 )=24,P4,
J‘H JVT J‘H 5(d )=(2[5 0100)
g W g iy

Figure 3.8: Example to illustrate the redundant syndromes.

The RE process will then take place after the decorrelation operation performed by
the DUs. As previously mentioned, the set of paths A in the SB CN is pre-determined
offline, while it is determined dynamically on the fly in the EF CN according to the
current LLR values being processed. This leads to a significant reduction of the total
number n of syndromes to be computed [49].

3.1.4.2 EF CN with presorting

As shown in previous sections, presorting leads to significant hardware savings by
reducing the number of candidate GF symbols to be processed within the CN. In this
section, we show that this presorting technique, when applied to the message vectors
entering the EF CN| leads to a high complexity reduction of the CN architecture. This
architectural reduction is obtained by reducing the number of bubbles to be considered
at each ECN. For this, we perform a statistical study based on Monte-Carlo simulation
that traces the paths of the GF symbols that contribute to the output of the CN, in
their way across the different ECNs. This statistical study [48] identifies in each ECN
how often a given bubble contributes to an output. This information allows pruning

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



3.1 New Check Node Architectures 43

the bubbles that never or rarely contribute. More formally, this study is conducted
through the following two steps:

1. Monte Carlo simulation giving the trace of the different bubbles (each time
a bubble b is used in an output message, its score y(b) is incremented).

2. ECN pruning that aims at discarding the less important bubbles, thus sim-
plifying the ECN architectures.

How to prune low-score bubbles for best efficiency is still an open question. However,
we propose here a method that prunes bubbles based on the statistics of their scores
at each ECN. Let [}, be a sorted set of indexes of the potential bubbles of a given ECN
verifying V(b,¥') € IZ, b < b = ~(b) < v(V). Let 7 be a real between 0 and 1 and let
' be the cumulative score of all bubbles, i.e., I' = 3, ., v(b). The pruning process
suppresses the first p bubbles associated to the first p indexes of I, with p defined as

p/
p = arg max{z v(b) < 71T} (3.4)
p'ely
b=0
U() U,7 U'X UI‘) U 10 U’I 1
S S S S
1 C7 Cx 5 qu% CIO: CH Sai CIZ
| [S-2B[ ™S 2Bl »{S-3B| w1 % > >
3 fs3B|
SN | i 5-3B i % S
”””””””””””””””””””””””””””””” V', 1s-5B

Figure 3.9: Architecture of the proposed PS EF CN with d. = 12, ny, <4 (nyin = 5),
nl? = n, = 20, where n!? is the number of output bubbles of S-5B.

After this pruning process, the structure of some ECNs is greatly simplified. The
choice of the values of 7 is a trade-off between hardware complexity and performance.
As an example, Fig. 3.9 represents the remaining bubbles after the pruning process
for a d. = 12 GF(64) (144, 120) NB-LDPC code with n,, ,u: set to 16. The pruning
process has been performed for a SNR of 5 dB and a value of 7 equal to 0.01, leading
to different simplified ECN architectures similar to the case of S-FB with one extra
type of ECN which is S-xB described as:

e S-2B: with x > 1, also known as S-bubble ECN. As described in [43], this
architecture compares x bubbles per clock cycle.

In Fig. 3.9, we represent each bubble in an ECN by a filled circle and the direction
for the next bubble by an arrow. The number of squares in each ECN represents the
depth of the FIFO in its architecture. Note that the complexity of the ECNs increases
from left to right. In fact, only trivial ECN blocks, i.e. 1B, S-1B, S-2B architectures,
are required on the left part while a S-5B ECN is required on the right part. It

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



44 Efficient architectures for NB-LDPC' decoding

is possible to regroup several ECNs in a single component called Syndrome Node
(SN). As detailed hereafter, this SN computes sorted partial syndromes in only one
clock cycle, leading to significant latency reduction besides the hardware reduction
compared to the EF.

3.1.4.3 The Syndrome Node

In Fig. 3.9 the first 3 ECNs are of type 1Bs and can be processed together in a
single clock cycle by simply adding the most reliable GF values of all inputs: Cy =
{(0,C2[0],CP[0])}, where CF[0] = @:_, U/®[0] and CP[0] = 0000. Also, the né =3
values of Cs can also be computed in one clock cycle. In fact, thanks to presorting,

Ugt[1] < ULT[1] and the first three partial syndromes are

06[0] = (0,C{[0] & UL[0] & UE2[0],000000)
T, CP[0] @ UL[0] © UL2[1],000001)
|7, CF[0] @ U[1] @ UE[0],000010),

In summary, we can consider all these computations to belong to a unique block, i.e.
the SN, that involves several ECNs (to be specific, 5 ECNs in the example of Fig.
3.9) but that generates its outputs in a single clock cycle.

3.1.4.4 Hybridization between FB and EF CN architectures

Combining the EF architecture and the FB approach leads to a reduction of the total
number of needed syndromes to guarantee a given number of valid output syndromes.
Fig. 3.10 shows the average number of syndromes that should be computed for a
given output V; to obtain, with a probability of 90%, n,, = 18 valid syndromes.
This number is denoted by n%?(i) and varies for each output V/. Note that when
the presorting technique is considered, n%(i) increases with i. To decode without
performance degradation, the number of computed syndromes is bounded by the
number of syndromes required by the last output, i.e. ny, = n%9(12) = 46 in the
example of Fig. 3.10.

Fig. 3.9 shows that V}, can be directly obtained from C}; without DU, as C}; contains
the contribution of all the inputs except Uj,, i.e. V{; = Cj;. This result can be
seen as the application of the FB algorithm on the output V; since the forward
process of the FB algorithm is included in the EF systematically generating VY.
Consequently, the number of required syndromes can be reduced from n,(12) = 46
down to ng(11) = 36. This reduces the overall complexity and latency of the EF
CN architecture without performance degradation. Note that this constitutes a first
example of a hybrid architecture where one output is generated with the FB approach
and the other d. — 1 = 11 outputs with the EF CN. This kind of approach can be
generalized, as described by the following.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



3.1 New Check Node Architectures 45

50

40
~—~ 30t ©)
Sw
S 20t

10+

o

0 2 4 6 8 10 12
7
Figure 3.10: Maximum number of syndromes needed to be generated, for each output

V!, ngp = 18 valid syndromes. The output number is denoted by i. The code rate is
R =5/6 and E; /Ny = 4.5 dB.

3.1.4.5 General notations for hybrid architectures

Let HB(psn, per, pre) be an hybrid architecture that combines the SN, EF and FB
schemes. The first pgy inputs are processed by a SN block, the next pgr inputs are
processed by an EF block and the remaining ngp inputs are processed by a FB block.
Obviously, psy + per + prp = d..

U’ U'li U’zi Ugi U'4i U’Sl
| S S S ST ST
(1] ol ol ol N
o T 2
T T S
Y
DPU DPU, DPU, DPU, DPU, DPU,
A\ A\ A\ Yy \ AR \ AR
B 2 | 2 | v Y 2
_REL; RE2 |  RE3 | | RE4] RES |  RE6 |
Voy v, Voy v, Viy Viy

Figure 3.11: HB(0, 4, 2) architecture for a CN with d. = 6. The last two outputs V5
and VJ are generated by a classical FB architecture.

Fig. 3.11 shows the HB(0, 4, 2) architecture for a CN of degree 6. As shown, V)
and V7 are computed using the FB algorithm in order to further reduce the number
of required syndromes. There are several possible HB architectures between the EF

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



46 Efficient architectures for NB-LDPC' decoding

(i.e., HB(0, 6, 0)) and the classical FB-CN (i.e., HB(0, 0, 6)). Note that V{ (resp. V)
should bypass the decorrelation units and should be directly connected to V(s (resp.
Vi) Fig. 3.11 shows the case where m(5) = 2, i.e. the third multiplexer connects
Vo to VZ, and w(4) = 4, i.e. the fifth multiplexer connects Vj to V). Finally, Vj, Vi,
V3 and V; are each one connected to the output of the corresponding DPU. Fig. 3.12
shows the HB(6, 4, 2) architecture for a CN of degree 12. V}, and VY, are computed
using the FB algorithm and a SN is used to process the 6 first input U] to U.

UI] . UI6 UI U! U! UI]O U!

7 8 9

Ll
SN *%:S%ZB*%ZZB*

@
0
(@]
i

R
=

S-2B/»] o

S-3B S-3B

Figure 3.12: HB(6, 4, 2) architecture with d. = 12, nyoue = 16, Ny = 5 and
n, = 20.

3.1.4.6 Choice of parameters (psny, per, PFB)

The determination of the CN architecture parameters, i.e. (psn,prr, prg) for the
macro level, the internal structure of the EF and the FB blocks (the parameters
of each ECN) for the micro level, is a complex problem. It can be formulated as an
optimization problem: how to minimize the hardware complexity without introducing
significant performance degradation. In this section, we have first limited the value of
prp to 1 and 2. Then, for the two hypothesis (0, d.—prp, PFB) ppyp=12, We have applied
the method described in Section 3.1.4.2 to determine the parameters of each ECN of
the EF and FB blocks. Note that after the automatic raw pruning process described
in Section 3.1.4.2 | the parameters are further tuned by hand using a "try and see
(i.e. estimate performance by simulation)" method. Once the pruning process is
completed, the value of pgy is fixed in order to optimize the hardware efficiency of the
CN architecture. In fact, at a given point, CN with parameters (psy+1, ppr—1, pr5)
will have a higher hardware complexity than CN with parameters (psy, per, prg) but
with a lower decoding latency.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



3.1 New Check Node Architectures 47

3.1.4.7 Suppression of final output RE

In some decoder implementations [31] [52] with d, = 2, the VNs connected to a CN
are updated right after the CN update. For example, in Fig. 3.11 a variable node
unit may be connected directly to each output Vj to Vs right after the RE units RE;
to REg. In these implementations, RE is performed in the VN. In this case, the RE
block can be removed from the hybrid architecture for complexity reduction. The
suppression of the d. RE blocks is specially interesting for high d. values. In a HB
architecture with final RE, the RE reduces the number of output messages from n; (in
case that all message are valid) to 1, 0u¢- By removing the RE, the number of output
messages becomes 15 > Ny, mout- The impact on complexity is limited since the 7, u
elements are not stored but computed on the fly serially by the VN. However, it may
impact slightly the VN consumption since the VN will have to deal with n, elements
instead of 7., mous €lements. The suppression of RE does not affect the algorithm
output, and thus, does not affect performance.

3.1.5 Performance and complexity analysis

We consider GF(64)-LDPC and GF(256)-LDPC codes to obtain performance and
post-synthesis results for the different proposed decoding architectures.

3.1.5.1 Performance

We ran bit-true Monte-Carlo simulations over the AWGN channel with BPSK mod-
ulation scheme. The different parameters were set as follows: extrinsic and intrinsic
LLR messages quantified on 6 bits, the a posteriori LLRs on 7 bits and the maxi-
mum number of decoding iterations to 10. The matrices used in our simulations are
available in |41].

Fig. 3.13 shows the obtained Frame Error Rate (FER) for a GF(64) code of size
(864,720) bits, code rate R = 5/6, d. = 12 and d, = 2 over the AWGN channel. We
consider the FB decoder in [43] as a reference, i.e. S-bubble algorithm with 4 bubbles,
Ny, = 16 and n,, = 18. We simulated the HB(6, 6, 0) or EF, the HB(6, 5, 1) and
the HB(6, 4, 2) architectures with the same number of computed syndromes n, = 20.
Fig. 3.12 shows the HB(6, 4, 2) architecture, for which no performance degradation
is observed. We observe less than 0.05 dB of performance loss for the HB(6, 5, 1)
and around 0.2 dB for the HB(6, 6, 0) configuration. We then conclude from these
simulation results that the hybrid architectures can achieve the same performance as
the FB architecture and outperform the EF architecture while needing 3 or 4 less
syndromes compared to the original EF approach.

Fig. 3.14 shows performance results for a GF(256)-LDPC code of size (1152, 960) bits,
code rate R = 5/6, d. = 12 and d, = 2. We consider as a reference the FB decoder
with a S-bubble architecture [43|, 6 bubbles, n,, = 40 and n,, = 45. The HB(5, 5,
2) architecture presents the same performance as the FB and the HB(5, 6, 1) shows

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



48 Efficient architectures for NB-LDPC' decoding

FER
S

HB(6,6,0), n_=16, n_=20 - :
[| —a—HB(6,5,1),n_=16,n =20 - N
107} —+— HB(6.4,2),n_=16,n =20/ .

H| —<— FB, nm=16, n0p=18

3 3.5 4 4.5 5

Figure 3.13: FER performance for a (144, 120) NB-LDPC code over GF(64).

a performance loss smaller than 0.05 dB. The HB(7,5,0) architecture (or equivalently
the EF architecture) presents around 0.1 dB of performance loss compared to the FB.
We can then conclude that this new family of hybrid architectures allows for significant
complexity reduction in CN implementations without any performance loss compared
to more complex state-of-the-art solutions.

Finally, Fig. 3.15 shows the simulation results of one of the rare GF(64) implementa-
tion for high rate in the literature where CR=7/8, d. = 16 and d, = 2. We consider
as a reference the FB decoder with a S-bubble architecture [43], 4 bubbles, n,, = 16
and n,, = 18. The performance of the Trellis Min-Max (T-MM) algorithm [51] is
also presented for comparison (same code rate and length are considered). The ar-
chitecture used is the same as the one presented in Fig. 3.12 except that the SN
includes four more 1B ECNs, (i.e. the HB(10, 4, 2) CN architecture). Once again, at
lower hardware complexity, the hybrid architectures show similar performance as the
original FB architecture and outperform the T-MM based one.

3.1.5.2 Implementation results

For complexity and power analysis, we considered the implementation of the archi-
tectures on 28 nm FD-SOI technologies targeting a clock frequency of 800 MHz. The
different kinds of ECNs presented in Fig. 3.9, were synthesized individually to provide

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



3.1 New Check Node Architectures 49

10 E
St | HB(5,7.0), n =40, n.=50|]
ol | —~—HB(E61).n, =40, n=50
—+— HB(55,2),n_=40,n =50
102 N Sl R R |
107}
o
I S
T e
107 i NG
107k NG
107 F N
107 ' :
3 3.5 4 4.5
E/N,(dB)

Figure 3.14: FER performance for a (144, 120) NB-LDPC code over GF(256)

the results in Table 3.4. Additionally, the synthesis results of the SN, the S-bubble
with RE (used in the FB-CN), the sorter, the switch, the DU (Fig. 2.7) and the RE
units synthesis results are also provided. The sorter is implemented using a serial ar-
chitecture as in [48], and the switch is a cross bar switch. The minimum clock period
(Pag) is given in nanoseconds with a clock uncertainty of 0.05 ns and a setup time
of 0.02 ns. The Cycle Latency (CL) represents the number of clock cycles between
the first input and the first output. A reduction factor of 57, 34 and 7 is observed
betweeen the 1B and the S-4B RE architectures in terms of area, power and clock
period, respectively. These results show that significant gain can be obtained even if
it implies the overcost of the presorter, the switch and the DPU units.

Table 3.5 summarizes the implementation results for all the CN architectures pre-
sented in this chapter, for a GF(64) and a GF(256)-LDPC codes with d. = 12. In this
Table we present the synthesis results with and without RE considering that the RE
can be suppressed in implementations when d, = 2 [31]. The Check Latency of CN,
CL(CN), is the clock cycles latency between the first input and the first output of a
CN, taking into account the latency of the ECNs, the Pre-Sorter, the switch, the DPU,
the RE and the GF multiplication and division. For the FB architecture, CL(CN) is
given as: CL(CN) = CL(mult) + (d. — 2) x CL(S — 4BRE) 4 CL(div) = 22. For the
HB(6,4,2) architecture (Fig. 3.12), CL(CN) = CL(Sorter) + CL(Switch) + CL(SN) +

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



50 Efficient architectures for NB-LDPC' decoding

10
1078
107
107
o
L b NN o UN
(o T T N N
10‘5 T R T AN T
10_6'§§§§E§§§§§E§§§§§EE§§§§§E§§§§§E HER AN
............................ %
107l —4—HBaosy | N |
—&— HB(10,4,2) o f
——FB,n_=16,n_=18] "1
10_8 1 p 1 1 1
3.2 3.4 3.6 3.8 4 4.2
E/N (dB)

Figure 3.15: BER performance for a (1536, 1344) NB-LDPC code over GF(64).

3 x CL(S — 2B) + 2 x CL(S — 3B) + CL(S — 4B) + CL(DPU) = 14, considering that
the multiplication is performed in the same cycle as the switch and the division is
performed in the same cycle as the DPU.

For GF(256) results, the FB architecture is with n,, = 40 and S-6B ECNs, the EF
and HB architectures consider ECNs with a maximum n,, ;, value of 6.

3.1.5.3 Area and energy efficiency comparison

To compare the efficiency of the different CN architectures, we consider the number
of computed CNs per second as follows: Toy = Fui/(CL(layer)) where CL(layer)
is the periodicity of a CN computation in a layered decoder and F; is the clock
frequency of the design. In our design, CL(layer) = CL(CN) 4+ CL(VN) + nyp out +
N, int Where CL(VN) is 7, nyp, e = 4 for GF(64) and ny, s,y = 6 for GF(256). Table
3.5 illustrates the implementation results of the different CN architectures with and
without PS and RE. As shown, the PS highly reduces the complexity of the EF and
F'B architectures. RE induces additional area and power consumption. It is clear that
the HB architectures are less area and power consuming as compared to the FB and
EF ones. In order to give a more accurate assessment, we have evaluated two new
metrics: Area Efficiency (AE) and Energy Efficiency (EE) defined in the following.
AE is defined as the number of computed CN per second per mm?: AE = T¢y/Area.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



3.1 New Check Node Architectures 51

Table 3.4: Post-synthesis results for different ECN architectures and CN sub-units on
28 nm FD-SOI technology.

Area | Power | P, CL

(nm?) | (mW) | (ns) | (cycles)
1B 77 | 0.081 | 0.15 1
S-1B 170 | 0.16 | 0.25 1
2 S-2B 2570 | 1.66 | 0.79 1
O S-3B 3227 | 2.15 | 0.88 1
- S-4B 4022 | 257 | 1.03 1
S-6B 5413 | 3.43 | 1.11 1
S-4B RE 4428 | 2.76 | 1.03 2
S-6B RE 5818 | 3.64 | 1.11 2
= | 6-input SN 354 0.34 | 0.31 1
5 PreSorter 12 1196 0.96 0.84 6
& | PreSorter 16 || 1600 1.07 | 0.84 8
A Switch 2724 | 1.95 | 0.28 1
. DPU 187 | 0.177 | 0.22 1
© RE 606 | 0407 |07l | 1
mult 64 107 | 0.070 | 0.34 1
mult 256 178 | 1.082 | 0.43 1

EE is defined as the number of computed CNs per mJ per second: EE = T n/(Power).
The clock frequency F; is set at 800 MHz. Table 3.6 compares both AE and EE for
the most relevant architectures of each type, i.e., FB, EF and HB. The HB(6,5,1) and
HB(6,4,2) in GF(64) improve the AE compared with the FB architecture by a factor
of 6.8 and 6.2, respectively. When comparing the EE, the improvement factors are of
6.4 and 5.5.

To compare the HB to the SB, we refer to [54]|. Table 3.7 presents the obtained results
where the areas are evaluated in a 65 nm CMOS technology. In fact, the area of the
HB architecture (marked with an asterisk) was obtained from 28 nm technology with
a normalization factor of 4. The throughput 7, is expressed in terms of giga elements
(output symbols) per second (Gel/s) and the area efficiency in terms of Gel/s mm?.
In our case, T, = d. X Fui X Ny, out/CL(layer).

Focusing on AE as a function of d. for HB and SB, one can note that AE of HB
increase with d. while AE of SB decrease with d.. The d. threshold for which HB
becomes more efficient than SB can be estimated at d. = 10 deduced as a linear
interpolation of obtained result.

3.1.5.4 Throughput

The throughput can be greatly improved by processing p CNs in parallel in a layered
decoder [50] [52]. Because we consider a code with d, = 2, the VNs are cascaded after
the CN as in [31] [50]. The throughput of a layered decoder is given by T' = (N X Fy, X

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



52 Efficient architectures for NB-LDPC' decoding

Table 3.5: Post-synthesis results for CN architectures on 28 nm FD-SOI technology.

Area | Power | P, | CL(CN)

GF CN (mm2) | (mW) | (ns) | (cycles)
FB 0.140 94 1.02 22
PS FB 0.037 26 1.12 20
EF RE 0.125 83 1.22 13
PS EF 0.0328 26 1.12 19

PSEFRE | 0037 | 28 | 112 19
HB(6,6,0) | 0.0227 | 149 | 1.03 15
HB(6,6,0) RE || 0.0269 | 17.1 | 1.03 15
64 [ HB(0,10,2) | 0.0257 | 165 | 1.17 19
HB(0,10,2) RE |[ 0.0292 | 184 | 1.17 19
HB(6,5,1) | 0.0228 | 152 | 1.04 15
HB(6,5,1) RE || 0.0271 | 17.4 | 0.99 15
HB(6,4,2) | 0.0259 | 19 | 1.00 15
HB(6,4,2) RE || 0.0306 | 19.4 | 0.99 15
HB(10,4,2) | 0.0307 | 30 | 0.9 17
HB(10,4.2) RE |[ 0.0363 | 35 |0.95 17

B 0.328 | 210 | 1.14 22
PS EF 0.074 | 54 | 1.06 19

PSEF RE || 0.0909 | 65 | 1.17 19

256 | HB(5,6,1) 0.0753 | 45 1.2 16

HB(5,6,1) RE || 0.0871 | 48 | 1.15 16
HB(5,5,2) | 0.0803 | 454 | 1.20 16
HB(5,5,2) RE || 0.094 | 52 | 1.20 16

Table 3.6: Area and energy efficiency for different architectures.

CL(layer) | Tcy | AE | EE

GF | oN | eveer) | Cl) | () | i)
FB a7 208 | 148 | 0.18

6 PS FB 15 198 | 535 | 0.68
PS EF 46 190 | 579 | 1.45
HB(6,5,1) 12 231 | 1013 | 1.25
HB(6,4,2) 12 238 | 919 | 1.00
HB(10,4,2) 14 227 | 739 | 0.61

FB 74 11.8 | 36 ] 0.051

256 | HB(5,6,1) 69 121 | 160 | 0.257
HB(5,5,2) 69 121 | 151 | 0.255

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



3.1 New Check Node Architectures

53

Table 3.7: HB and SB comparison

CN || Tech. | d. | Fg Area T, AE
SB 65 4 400 0.067 5.2 77.5
SB 65 12 280 0.189 2.9 15.3
HB 28 12 | 1000 | 0.1036* | 4.57 37.2
HB 28 16 | 1000 | 0.1228* | 5.82 40.0

p)/(M x CL(layer) X it ) where it,,, is the average number of iterations and Fy is
fixed at 800 MHz. The layered GF(64) (1536, 1344) code allows different parallelism
options depending on the splitting factor [53| (p = 2,3,4,6,8, 12,16, 24, 32,48, 96)
in two layers and the average number of iterations at SNR = 4.0 is 1.5. With a
parallelism of 12, the throughput can reach 4.4 Gbps for GF(64) and 3.3 Gbps for
GF(256) at SNR equal to 4.0 db.

3.1.6 CN Skip Processing Controller (SPC)

In this section, the SPC block before the CNP is shown. The aim of the SPC is to
reduce the average number of processed CN per iteration. Consequently, the power
consumption and/or the throughput will be improved. In the following we explain
how the SPC block operates.

(UARRNVANRIN

Uj[l]}‘

U, U, U, U,
W07 BLY2BY || W BLUEBY || O BLUEBD || (UBL U2 B])

W, 2,020 || W rLe®e || @ rLe®en || e, e

@, 0. 020 || @'m u®oy || @m o®on || @tn oo a‘{UJ[‘]v
G, 101, G2 101) || @,'101, G ®101) || W, 7101, G201 || (,tI01, U@[OJ) 4"{Uo@ (01, u® 101, U201, Uj@[O]}‘

U,

U.

3

| Parity Check | | Check Threshold |

SPC

equation_valid \L

-

II

<

U

AND

\; threshold_valid

)

e

N -

1

Figure 3.16: CN with SPC.

Sel

g
'

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018




54 Efficient architectures for NB-LDPC' decoding

N=144, K=120, GF=64, CR=5/6

10° E
—%#— Regular decoding | ]
—&— Threshold=-1
—+— Threshold=1 3
—D~ Threshold=5 :
Threshold=9
102 F
o
'3 F
E 10 j
104
105 F
10.6 L L |
3 3.5 4 45

Eb/NO (db)

Figure 3.17: Simulation results in case of CR=5/6.

Fig. 3.16 shows the principal of the proposed block in case of d. = 4 and n,, = 4.
The idea is to skip the CN processing when a predefined criteria is satisfied. Thus,
a SPC is inserted at the CN input. The SPC performs two operations: 1) Parity
check: Y% h UP[0] = 0 (j = 0,..., M —1); 2) Check threshold: if U [1] > ~
where ¢ =0,...,d.—1 and 7 is a predefined threshold. If both conditions (1) and (2)
are satisfied, the SPC gives an indication to skip the CN processing and hence the
outputs of MUX are Z; = U;, otherwise, the CN update will be performed and hence
Z;=V,(i=0,...,d.—1).

Fig. 3.17 shows the simulation results for different threshold values for a (144, 120)
NB-LDPC code defined over GF(64). In the worst case where 7 = —1 (i.e, only con-
dition (1) must be satisfied) there is a performance loss of about 0.2 db compared to
the regular decoding process, while the degradation is 0.06 db in case of v = 9.

Fig. 3.18 shows the percentage of skipping CN processing. For v = —1, the saving
reached about 50% for Eb/NO = 4.5 db while it is equal to 5% for Eb/NO = 3 db. In
case of threshold = 9, the saving varies between 1% and 7% (Eb/NO is between 3 db
and 4.5 db).

Fig. 3.19 and Fig. 3.20 show the simulation and saving results respectively for a
(210,189) NB-LDPC.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



3.2 New VNP architecture 55

N=144, K=120, GF=64, CR=5/6

50 T T T T
—%— EB/NO = 3 db
45 —8—EbNO=35db| |
—©—Eb/NO = 4 db
40 1 —+—Eb/NO=45db| |

(%)

SA

Figure 3.18: Saving in % of not making a CN for CR=5/6.

The Saving Amount (SA) is computed as follows:

N.= Ny x M x N, — Nj.

N x M x N, — N N, — Nj x M x (N! = N,
g X2 X C):100><(5 7 X M (N, “>).(3.5)

A=1
> OOX( N; x M x N, N; x M x N,

In which, Ny is the total number of simulated frames, N, is the average number of
iterations of the decoding process with SPC, N; is the number of skipped CNs and
hence N, is the total number of executed CNs in case of CN with SPC. Thus, SA
can be negative in case that the term Ny x M x (N, — N,) > Ngcn, i.e, if the total
number of executed CNs in case of SPC is greater than the number of executed CNs
in case of regular decoding process (N, > Ny x M x N,). This case does not occur if
a fixed number of iterations is considered, which in the worst case SA will be equal

to 0 %.

3.2 New VNP architecture

In this section we present the modifications we propose to improve the VNP ar-
chitecture presented in [6] and described in section 2.4. We first present the VNP

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



56 Efficient architectures for NB-LDPC' decoding

N=210, K=189, GF=64, CR=0.9

1 00 ;] T T
—%— Regular coding
—0O~ Threshold=-1
—&— Threshold=1
101 E Threshold=3
—&— Threshold=5
—#*— Threshold=7
Threshold=8
102 F
- r
L
TR
10° F
104
1 0.5 L L L L L L L L L
3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8

Eb/NO (db)

Figure 3.19: Simulation results in case of CR=9/10.

architecture in both update and decision modes, then a complexity analysis is given.

3.2.1 Proposed VN architecture

The proposed VN architecture performs the three operations mentioned in section 2.4:
generation of the intrinsic couple candidates, VN update mode and decision-making
mode. The simplification is done on both VN update and decision-making modes.

3.2.1.1 VNP in update mode

Fig. 3.21 depicts the architecture of the new VNP architecture. In the first phase,
the signal Sel is set to 0 to update the message M,,, described in equation (3.6). In
the second phase, Sel is set to 1 and the ng intrinsic messages are updated:

M (n + 1) = 19(3)
Mg +1) = T(0) + MB(n,, —1) +O  i=0,1,...,n5—1

piv

(3.6)

The Sorter+Redundant Elimination (SRE) block sorts the n,, 4+ ng messages and
discards, on the fly, the redundant symbols to generate the most reliable and valid
n,, reliable messages. Compared to the architecture depicted in Fig. 2.10, the Flag

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



3.2 New VNP architecture 57

T

N=210, K=189, GF=64, CR=0.9

60 x
—#—Eb/NO = 5 db
] —O~ EB/NO = 4.5db
50 —8—EbNO=4db | -
—+ Eb/NO=35db
Eb/NO = 3 db

SA (%)

Figure 3.20: Saving in % of not making a CN for CR=3/4.

| y

! v

—» ¢eLLR

M
D v M
1e{0,1} )4 v
1e{0,1}
Sel

+
M
—“"‘U’l}v ]\47L MVN ‘]va
> | 4 SRE ——»
M [n 140 D
140,1}

Figure 3.21: Proposed architecture of the VN update mode

of size ¢ with its associated logic control are removed, hence reducing the complexity
of the global architecture of the VN.

Architecture of the SRE block

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



58 Efficient architectures for NB-LDPC' decoding

The comparator-swap presented in Fig. 2.14 is modified to also apply the redundancy
elimination. The new architecture is presented in Fig. 3.22.

max’
Ay
-
B*y|
A
— max
B
A* |
(A, A) C | Sel
(max”’, max ) B
(BB )
. Afpo
A C |l Ser —»min*
B, e By,
(A, A) : : A—po .
(min', min ) —® min
(B,B) B 1
a) b)

Figure 3.22: Architectures of the classical and the modified comparator-swap

Let us consider two input couples A=(A*, A®) and B=(B*, B®). The classical
comparator-swap is shown in Fig. 3.22.a), where min=A and max=B when AT <
Bt (Sel = 0) or min=B and max—=A when Bt < A" (Sel = 1). The same approach
for the modified one is presented in Fig. 3.22.b), with an additional XNOR gate to
compare A% to B® and generate a signal Selgr = 1 in case of equality. Thus, if Selgr
is 1, a redundant symbol is detected and should be discarded by setting its LLR to
a saturation (maximum LLR) value. We take use of the structure of the incoming
messages that are sorted in terms of LLR value. For instance, if MS [i] = M7 [j]
({i,7} € {0,1,...,npn —1}?,i < j), and since M} [i] < M [j] and the same intrinsic
LLR value generated by the eLLR block is added on both of them, thus, Myx[i] <
Myxlj]. Therefore, Myx[i] is in position k in the sorter (k = 0,1,...,n, — 1) then
Myx[j] surely passes by position k& and then the suppression will be done.

The suppression part works as follows: if A® = B® then Selgr = 1 and max™ takes
the +00 value (saturation value in practice) which forces its exclusion from the sorted
list. Therefore, the latency of VNP in VN mode is still equal to n,, +ng+ 2 (see Fig.
2.11).

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



3.2 New VNP architecture 59

3.2.1.2 Proposed architecture of the decision-making circuit

The decision-making is performed taking into account the three sets ®;, 5 and Pj:

®, = {M$1 (1) }ico1,me—1 N M;?u

Dy = ML, — &,
O3 = {M,,[0]}

The computation of the a priori information APP is given by:

My (o] + M (], if z e &,
APP[x]:ce@lU@gU{Mwl[O}} = M;;v[x] + MJI_H (ns — 1) —+ O7 ifx € P, (37)
MJ 0] + M, (n, — 1) + O Otherwise
and then the decision is made by:
¢= argmin {APP[z]} (3.8)
rzePUPUD3
M
Vpl
>
PIV pl v
>
+
CAMl )
CAM ' [n-1]+O o
ﬂ< Sel,
171 v
> 1 APP A
4 > c
]\4]71 v[nnz_l]L% »D—> C »
Sel, |

Figure 3.23: Architecture of the proposed VN decision-making mode

As shown in Fig. 3.23, there is no consideration of the redundant elimination since the
structure of the incoming symbols helps dismissing the redundant GF values. Let us
say that ME[i] = MG[j] ({i,j} € {0,1,... ,nm—1}2i < j) then APP+[i] <APP+[j]
since M [i] < M [j], i.e, there is no need to check the equality of ME [i] and ME 7]

piv
as long as the minimum is being selected considering the two LLR values APP*[i] and

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



60 Efficient architectures for NB-LDPC' decoding

APP*[j]. Therefore, during phase 1, Sel; = 1, Sely = 1 if Mﬁ, € CAM otherwise
Selp = 0. During phase 2, Sel; = 0, Sely = 1 for only one clock cycle to consider only
the most reliable symbol from the CAM M,,, [0]. The other symbols are dismissed
since the same LLR value (M, [n, — 1] + O) is added on a sorted list of symbols
stored in the CAM. Thus, the latency is equal to n,, + 3 whatever the value of n (the

depth of CAM).

3.2.2 Implementation results

The proposed VNP is better than the one proposed in [7] in terms of both complexity
and frequency as shown in Table 3.8 (for n,, = 12).

Table 3.8: Complexity analysis of the VNP using Xilinx Virtex6, xc6vlx240t-2{f1156
device

VNP Nb. of occupied | Nb. of slice | Nb. of slice F
slices LUTs registers | (Mhz)
[7] 401 T 631 136
Proposed 212 429 452 211

The proposed VN architecture is superior |7] in which the number of occupied slices is
equal to 212 slices and the frequency is equal to 211 Mhz for the proposed architecture
while it is equal to 401 slices and 136 Mhz respectively for |7].

3.3 Conclusion

This chapter was dedicated to the proposed architectures of the CNP and VNP that
can be included in most of the NB-LDPC decoding algorithms. First, the effect of
the presorting on the FB-CN is shown where the number of used bubbles is reduced
in each ECN. The implementation results showed that a complexity reduction up
to 54 % is obtained for d. = 20 along with similar performance compared to the
existing FB-CN without presorting. We then presented a new CN algorithm called
extended forward CN, where, all the input vectors are combined by d. — 1 ECNs to
generate syndromes that are decorrelated to obtain the appropriate output vectors. To
significantly reduce the number of generated syndromes, the FB-CN and the EF-CN
are hybridized to form hybrid CN. The proposed CN algorithms are studied with and
without presorting. The post-synthesis results on 28 nm ASIC technology showed that
the area efficiency is improved by a factor of 6.2 without any performance loss, or by
a factor of 6.8 with a performance loss of 0.04 dB compared to FB-CN. Continuing on
CN improvements, the skip processing CN approach is introduced. In this approach,

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



3.3 Conclusion 61

two tests are applied: 1) the parity check test that sums the most reliable GF symbol
of each input vector U;, i = 0,...,d. — 1; 2) the LLR test that compares each U;"[1]
to a pre-defined threshold. If these two conditions are satisfied, the CN processing
is skipped, otherwise the CN update is performed. Skipping some of the CNs leads
to power reduction and/or throughput increase. The statistical study showed that
the percentage of skipping CNs can reach 50% for low predefined threshold and high
Eb/NO respecting the acceptance of the performance loss.

Finally, we proposed a simplified VN architecture. In case of the update mode, we
proposed to merge the redundant suppression with the sorter block, while in the
decision-making mode, we exploited the incoming sorted messages in terms of LLR
value to remove some components and reduce the latency by considering only the first
candidate from CAM instead of n, candidates. The implementation results on virtex
6 FPGA device showed that the number of occupied slices is reduced by a factor of
1.9 and the frequency is increased by a factor of 1.55.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Chapter 4

Parallel pipelined architectures: LLR
generator and extrema selection
algorithms

As shown in the previous chapter, NB-LDPC architecture based on EMS algorithm
requires sorting architectures. In order to increase the decoding throughput of a de-
coder, the solution is to shift from serial sorting structures to fully parallel sorting
structures. This chapter is dedicated to this problem. The study was motivated by
the objective of designing a very high speed NB-LDPC decoder but the obtained re-
sults can also be applied in many other applications. To cite few of them, sorting is
required in data mining, databases [79], [80], [81], digital signal processing [82], [83],
network processing, communication switching systems [84], [85], scientific comput-
ing [86], searching, scheduling [86], pattern recognition, robotics 87|, [87], pattern
recognition, robotics |88, image and video processing [89], [90], |91], and high-energy
physics (HEP) [92].

First section is dedicated to the parallel generation of Non-Binary LLR from binary
LLR (component used in chapter 5). Then, the general problem of finding two ex-
trema among N, values is studied and a new architecture named First then Second
Extrema Selection is proposed. Finally, this architecture is extended to the problem
of finding M, extrema in a list of size Ny, a problem which is recurrent in the EMS
based NB-LDPC algorithm, as well as many other algorithms.

4.1 Parallel pipelined LLR generator
Designing an efficient LLR generator with low complexity and high throughput rate is
required when the decoder is operating at high throughput rate. This section proposes

an efficient fully parallel pipelined architecture of the LLR computation for NB-LDPC
codes designed over GF(64) for BPSK (equivalently QPSK) channel.

63

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



64 Parallel pipelined architectures: LLR generator and extrema selection algorithms

4.1.1 Definition of the LLRs

Let X = (zo, 1, ..., Tm—1) be a GF (¢ = 2™) symbol composed by m = log,(q) binary
symbols and let Y = (yo,91, ..., Yym—1) be the log likelihood vector associated to the

binary vector X as:
P(x; # 0/a;)
;=1 _ = 4.1
= tog (oo 2 (4.)
where a; is the observation of the channel. For example, in case of a BPSK (or
QPSK) modulation channel, x; is associated to the symbol B(x;) = (—1)" and the
received sample is the AWGN channel a; = B(x;) + w; where w; is a realization of

. . . . . a; S
a white Gaussian noise of variance o®. Developing 4.1, y; = —. Thus, let X =

(Zo, X1, ..., Tm—1) be the Hard Decision (HD) on Y (for i = 0,1,...,m — 1, if sign(y;)
> 0, then Z; = 0, Z; = 1 otherwise). For an AWGN channel with a noise of variance
o2, In(P(A|X)) is given by:

-1

In(P(A|X)) =In(| | Pla;|x;))

%

S (L as

=0

3

I
o

where A = {ag,...,an,_1}. Thus, equation (4.2) is maximized in case of X = X.
Therefore, considering the hypothesis that the GF(q) symbols are equiprobable, the
reliability X~ of a symbol X is defined as:

_ P(A|X)
X =In (P(A\X)) . (4.3)

which, using 4.2 can be developed as:

- — mz_:l (_(az‘ — B(xi))” e B(fz‘))Q)

202 202

m—1

1

=55 > (2ai(B(x:) — B(x))). (4.4)
=0

By definition of X, X~ is a negative number. In order to deal with positive numbers,

the quantity X™ = —X~ will be considered in what follows. Using equation (4.4),

X can be written as:

2 m—
== Z la;|A(x;, a;) (4.5)
i=0
= Z |yil Az, i) (4.6)
i=0

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



4.1 Parallel pipelined LLR generator 65

where X is the LLR value of X and A(z;,y;) = 0 if (—1)% = sign(y;), A(xs,y:) = 1
otherwise. Note that, by definition, X+ = 0.

4.1.2 Proposed architecture

This section describes the new proposed parallel architecture that generates the first
n,, most reliable LLR values with their associated GF symbols in a parallel and
pipelined fashion. The key idea is to perform the LLR calculation starting from a
sorted list of positive binary LLRs rather than a random list. This LLR calculation
is performed in four steps:

(1) Parallel sorting of the absolute value of the LLR y;, i = 0,...,m — 1, where a
permutation set II = {7(0),...,7(m — 1)} is generated.

(2) Design of a predefined set containing the potential candidates that contribute in
the generation of the list of the most n,, reliable intrinsic symbols. The design
of this set is based on the fact that the binary LLRs are sorted in increasing
order thanks to the permutation II.

(3) Parallel sorting of the predefined set to extract the n, most reliable intrinsic
symbols.

(4) Inverse permutation of the GF values in order to generate the original GF sym-
bols that correspond to the binary LLRs before permutation.

Note that step 2 can be performed offline once the size n,, is defined. The sorted
elements in step 3 constitutes only the list of desired symbols.

4.1.2.1 Parallel sorting of the channel observations

The first step is then to sort the received LLR v;, i = 0...m — 1, using the odd-even
sorting algorithm [55] of size m. Fig. 4.1 shows the fully parallel pipelined sorter
that receives the absolute value of the LLR |y;| and sorts them generating the couples
s; = (sf,m(1)), i =0,...,m —1, where 7(i) € {0,...,m — 1} and 5] = |y(»| (i-e,

0<sy<sf<---<sb ).

m—1
Therefore, the potential candidates are generated in next step based on s;, ¢+ =
0,...,m — 1, where n, potential candidates are generated in the next step among
64 possible combinations of the elements of the set S = {sg,s1,...,55}. The value

of n, is determined according to the number of desired symbols n,, that implies the
generation of all the possible potential candidates that could contribute to the list
of the first n,, most reliable symbols. Then using a parallel sorter, the n,, intrinsic
candidates are extracted among the n, input candidates. Each combination means
LLR addition of two elements or more from s;, 2 =0,...,5.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



66 Parallel pipelined architectures: LLR generator and extrema selection algorithms

5= (5= [ Y b T(5))
5,= (5= | Vg b T(4))
5,7 (5= [ Vb T3))
5,= (5= | 70 | 7(2)
5,7 (5= [ Yl WD)

o= (5= 17 1(0))

[

Figure 4.1: Sorter architecture of the observed bits.

4.1.2.2 Design of the pre-defined set of potential candidates

The second step is to generate the set that should contain all the potential candidates
needed to select the first n,, most reliable symbols among ¢ = 2™. This set is denoted
by ®. = {Jo,J1,...,Jn,—1}, where n, represents the cardinality of this set, and
Ji = (J;, J?) denotes the i candidate with LLR value J;* and GF symbol J. Let
us consider the design of the set @, over GF(¢ = 64). Note that the same approach
can be applied to any GF order. For sake of simplicity, we start the generation from
a hard decision Jy = (J3,J5) = (0,(0,0,0,0,0,0)), where J§ is considered as the
zero GF symbol. Once the generation of the list is completed, all the n,, generated
symbols will be Xored with the real hard decided GF symbol X. Thus, the n,
potential candidates are generated one by one as follows:

1) The first element being determined to be .Jy, the second element has only one
candidate symbol that is (sg, (1,0,0,0,0,0)), where the bit in position 0 is in-

2
verted according to equation (4.6). Note that the factor — is omitted, and it

o
will be compensated in the quantization operation to be performed prior to the
generation of the fixed point representation.

2) It is clear that the second minimum element has also only one candidate that is
(s1,(0,1,0,0,0,0)).

3) The fourth element is min(sg + s, s3 ). Thus, the two possible candidates are
(s3,(0,0,1,0,0,0)) and (s + s7,(1,1,0,0,0,0)).

4) The candidates of the fifth element depends on the fourth element being deter-
mined. This means, if s§ + s = min(s§ + s, s3) then the fifth element will

be s, otherwise, min(sg + s7, s3). Therefore, the new possible candidate that
could be selected as the fifth element is (s4, (0,0,0,1,0,0)).

This process continues till reaching the n" element with all its possible candidates.
Table 4.1 shows all the elements of the set ®, that constitute all the possible candi-
dates needed to extract n,, = 12 symbols. In this case ®, is of cardinality n, = 16.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



4.1 Parallel pipelined LLR generator

67

Table 4.1: The elements of ®,,__y.

Jo=(Ji,J§) = (0,(0,0,0,0,0,0))

Jy=(JF JP) = (s4,(1,0,0,0,0,0))
Jo = (J5,J9) = (s7,(0,1,0,0,0,0))
Js = (J5,J9) = (s5,(0,0,1,0,0,0))
Jyo=(JF,J9) = (s3,(0,0,0,1,0,0))
Js = (JF, J&) = (sF,(0,0,0,0,1,0))
Js = (J&, J§) = (s4,(0,0,0,0,0,1))
Jr = (JF,J9) = (s§ +s7,(1,1,0,0,0,0))
Js = (Jg&, JE) = (s§ +s5,(1,0,1,0,0,0))
Jo = (J3, J$) = (sf +s5,(0,1,1,0,0,0))

J (‘]107 Jle%)

(s¢ + s +s5,(1,1,1,0,0,0))

Ji = (Ji, ) =

(sg +s4.(1,0,0,1,0,0))

Ji2 = (Jlga J%) =

(si +s4,(0,1,0,1,0,0))

Jis = (Ji5, Ji3) =

(s3 +s4,(0,0,1,1,0,0))

‘] (‘]147 ‘]14)

(SO +81 +S3+ (17170717070))

Jis = (Ji§, Jia) =

(s¢ +s5,(1,0,0,0,1,0))

4.1.2.3 Sorting of the potential candidates

The last step is to sort the pre-defined potential candidates J,, £k = 0,...,15, to
generate the list of n,, sorted LLR J?, i« = 0,...,n,, — 1, where we are considering
Ny, = 12. The first three outputs are J; = Jy, J{ = J; and J; = J,. For the re-
maining 9 outputs, we propose the sorter architecture shown in Fig. 4.2. The sorter
receives the 13 elements Ji, k = 3,...,15, and extract the first 9 symbols having the
smallest LLR values. Note that there are some sorted couples in the set of 13 input
candidates that are exploited to reduce the number of comparators and multiplex-
ers. Therefore, the 13 elements are split up into 4 sets based on the LLR value as:
{J5 < Jf < I8 < JSH AT < U < U5 < Tk {0 < i < ) {40} and {U55)

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



68 Parallel pipelined architectures: LLR generator and extrema selection algorithms

Jis »3) MO

J " —>(4) ;:_’; b

J, @ i »a) »v) »a) ¥ )

S BCAIEG |

J, e @ M EHBE )|
J o o v My |[ >y »v) —>le
J, »(4) »v) »v) »v) bE)— A T,
J g D> J;
J, »(1) l »a) :Qj—-{?——r J;
J, S @L NCEINCERINCINYS
.]5 —y) »v) »v) »ar— J;
J4 #‘(‘_-' )i FQ; .‘r&}——-ré > J 4S
J, "y > J;
J, >J,
J, »J'
J, >Jy

Figure 4.2: Sorter Architecture generating the most reliable n,, intrinsic LLRs, n,, =
12.

The sorter architecture is based on odd-even [55] algorithm. It is composed of 7 sets
of CSs operating concurrently in each set. It contains a total of 22 CSs and 4 Cs with
a critical path of T'=7 x T¢g, where T is the execution time of one CS.

4.1.2.4 Inverse permutation of the GF values of J*

Each GF value J;® k = 0,...,11, is generated based on the sorted binary LLRs
s;, and should be permuted to constitute the real GF symbols that corresponds to
the unsorted LLRs ;. This inverse permutation is performed according to IT™! (the
inverse of IT) and the permuted GF symbols are Xored with X, as previously explained
to obtain the intrinsic candidates I} as follows: IZ[i| = J;9[I1(i)| @ zi, I,7 = J;T,
k=0,...,15,2=0,1,...,5.

4.1.3 Complexity analysis

In this section, the implementation results on virtex 6, xc6vlx240t -2 ff1156 FPGA
device of n,, = {4,6,8,10,12} are shown. Note that from an architecture designed

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



4.1 Parallel pipelined LLR generator 69

for n,, = 12, it is straightforward to design an architecture for n,, < 12 (one needs
just to prune unused hardware).

Table 4.2: Synthesis results on virtex 6, xc6vIix240t -2 ff1156 FPGA device.

F Periodicity Efficiency Throughput
Algorithm Nim 0.8 (Clock Cycles) (Mhz/0. S) (Msymbols/s)
(MHz) Proposed | [37] || Proposed | [37] | Factor gain || Proposed | [37] | Factor gain
12 516 402 8 0.779 0.191 4 4824 315 15.3
10 480 408 6 0.85 0.255 3.33 4080 350 11.65
Proposed 8 451 406 1 4 0.9 0.383 2.34 3248 420 7.7
6 295 413 2 1.4 0.766 1.8 2478 630 3.9
4 167 556 1 3.3 1.53 2.15 2224 840 2.65
[37] All cases | 137 210

Table 4.2 presents the hardware cost of the proposed architecture compared to the
systolic one. The complexity of each design is defined as the number of Occupied
Slices (O. S).. The complexity of the systolic architecture is constant since the 6
stages (in case of GF(64)) are performed for any value of n,,. However, in terms of
hardware efficiency, there is a factor gain ranging from 2.15 up to 4, while in terms of
throughput, the gain factor varies from 2.65 up to 15.4.

F
Effici Mhz/O. S) = 7
ciency (Mhz/O. 5) O. S x Periodicity’ 49
F X np,
- hout (M bol _ XN 4.8
roughput (Msymbols/s) Periodicity’ (48)

The Efficiency and the throughput are computed based on equations 4.7 and 4.8
respectively, where the Periodicity is the latency between two set of inputs.

4.1.4 Example for n,, =4

In this section we show the architecture of the parallel pipelined LLR generator for
n,, = 4. In this specific case, only the set {sg, s1, s2} is required. Fig. 4.3 shows the
architecture of the sorter observed bits. Comparing this architecture with Fig. 4.1,
we notice that three comparator swaps are replaced by three comparators.

The possible candidates are generated as:

Jo = (J(j_v‘](?> - (072)7

Ji = (Ji, JP) where Ji = s{ and Jf is equal to Z except that Z() is replaced by
its opposite zx(o),

Jo = (J5, J) where Ji = s and J5 is equal to Z except that Z;( is replaced by
its opposite zx(1),

J3 = (J5,JJ) where J = s§ and J5 is equal to Z except that Z() is replaced by
its opposite zx(2),

Jy = (Ji,J7) where Jf = s§ + s and JY is equal to Z except that Z) and Z.()

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



70 Parallel pipelined architectures: LLR generator and extrema selection algorithms

A

| Vs, = (5= | s 1(2)

5= (5= |y b 7(1)

>5,= (5= | ¥, (0))

Figure 4.3: Sorter architecture of the observed bits.

are replaced by their opposite zr) and z(1) respectively.
Then, the outputs are generated as: Iy = Jo, [y = Ji, I = Jo and I3 = min(.J3, Jy)
where the min function returns the couple that is having the lowest LLR value.

Fig. 4.4 shows the architecture that generates the possible candidates {.Jy, Ji, J2, J3, J4 }
and the intrinsic outputs {Iy, I1, I, I3}. The Control Generator (CG) generates the
control signals ¢;;, @ = 0,1,2 and j =0,...,5, as:

. {1 If 7(3) = j (£9)

0  Otherwise

this process is to recognize the positions of the first three minimum observed bits. For
instance, coy = 1, c19 = 1 and ¢95 = 1 means that |y,| is the first minimum, |ys| is the
second minimum and |ys| is the third minimum respectively.

Then, the Possible Candidates Generator (PCG) block is to generate the set {.Jy, Jo, J3, J4 }
as:

z, e, =0
Jel =4 T (4.10)
x;  Otherwise
and
Ji i) = s (4.11)
where 1 = 1,2,3,j=0,...,5 and k =i — 1. While J; is computed as: J; = s§ + s7,
then the control signals ¢; = cg; or ¢y;, © = 0,...,5, to indicate which two bits have

the first and second minimum LLR values and hence the GF value J° is generated
by the set of 2-to-1 MUXs.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



4.1 Parallel pipelined LLR generator 71

Finally, the Outputs Generator (OG) block generates the four intrinsic candidates
{Iy, I, I5, I3} using one comparator.

x() xO xO
— J. [0] |+ J [0]l |+ J,. [0
n(0)+E_> X, L0 > 0], ; [0]
‘ COO Flo 020
1(0)_p | | |
5> 05 Xs ‘ Xs ‘ Xs ‘
SE= T 0 i
COS C]S C25
n(l), c X
%’ iR J. [0]
. X 4
7T(2)+ | ‘
EHC | 4
¢ !
) a<Prgd |
7( )*% X,
s, J. [5
0— X 4 [ ]
CG S—|1—4> 5
CS
PCG
JH C —»l
Ji :
Syl
‘]14>]1
J 1
oG

Figure 4.4: Architecture of the intrinsic outputs.

This architecture is used in the proposed parallel pipelined decoder shown in chapter
5.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



72 Parallel pipelined architectures: LLR generator and extrema selection algorithms

4.2 Parallel pipelined architecture for extrema selec-
tion algorithm

In this section, we consider the the design of a parallel architecture of a sorter extract-
ing the first two extrema among N, input values. The proposed algorithm is called
First-Then Second Extrema Selection (FTSES). A detailed analysis of the elementary
sorting units, computational complexity, structural modularity and pipelining tech-
niques are addressed. Finally, one of the possible extension cases of the proposed
two extrema sorter is presented to show that it can be generalized to detect M, > 2
minimum /maximum values among Ny values and still outperforms its odd-even coun-
terpart sorter algorithm in some cases.

4.2.1 Problem Statement and Proposed Algorithm

Given a set of Ny numbers, S = {zg,x1,...,2Zn._1}, the first minimum is defined as
my = min{S}, and my = min{S\z, = m; }, where the \ operator indicates exclusion
of only one element representing the first minimum value, with p € {0,1,..., Ny —1}.
This section first presents the Elementary Sorting Unit (ESU) receiving four inputs
(4-SU) along with its basic blocks, and then the architecture of the global Ng-input
Sorting Unit (N,-SU) for N, = 2%,

4.2.1.1 Algorithm

The basic blocks shown in Fig. 2.12 are organized in a modular structure to obtain
the ESU architecture shown in Fig. 4.5.

m2—>3
.X3_’ 1 z—>3 ”
= CSim
2 0-3
(DZ
m0—>1
2
X
1 1 2
CSO ml(Hl R C"SO L 03
XO—’ v ml

Figure 4.5: ESU (4-SU) Architecture.

In the following, each C'S will be appended by an upper index indicating the stage it
belongs to, and a lower index indicating its position within the stage. Therefore, the
notations of the first and second minimums will be updated accordingly by appending
an upper index indicating the range of indices of the input elements from which they
are extracted. Fig. 4.5 shows the internal structure of a 4-SU composed of two stages.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



4.2 Parallel pipelined architecture for extrema selection algorithm 73

The first stage is composed of two C'Ss: C’S]l,j = 0, 1, operating concurrently to gen-

: 2j—25+1 2j—2j5+1 s
erate their sorted values (my’ AR r e )j=01, the first and second minimums of

the j* CS receiving the 25 and (25 + 1) inputs.

The second stage is composed of one C'S denoted by C'Sg and one MUX2-1. The C'S3

: . . 09 +2
receives the first minimums from the previous stage (my "**'),_, and sorts them

producing the first minimum, (mlll]_ﬂ‘”g)] —0, among the four inputs. The second mini-

1j—4j+3
mum, (my’ ¥ *%);_o, will be the minimum value of the set ®373 = {max(m$=*, m3=3),

sel(m$ 041 ,m373)}, where the function sel(m3~!, m273) denotes a selection function
that selects my7Lif (md7t < m273) ie., c = 1 m2_>3 otherwise (¢ = 0). The selected

value (m%j_ﬁjﬂ) comes from the C'S} that contains the first local minimum being

determined at the second stage, thus the second minimum will be either this selected
value or max(m{~* m273). This ensures that the second local minimum is always

contained in the set ®373. The ESU function is described in details in Algorithm 3.

In general for any stage 7, the first two minimums generated locally by a given C’S;

can be denoted by (m?* 7UFDZ L 22021 Cwhare 5 denotes the index of the

CS within the 7% stage. The ranges of ¢ and j, i.e., the total number of stages and
the number of C'Ss per stage will be discussed later in section III.

Read the four inputs: x,,p=0,1,2,3
Run the first stage, i = 1:
for j=0to1do
Execute CS;:
if x9; < z9;41 then
c= 1,m1j_>2j+1 = 1y; and m2]_>2]+1 = Tojt+1
else
c= 0 m2]—>2j+1 = Z9;41 and m2]—>2j+1 o
end if
end for
Run the second stage, 1 = 2:
if m97! < m?73 then
c= 1 m0—>3 0—>1 max(m(lHl,m2_>3) m2—>3
sel( O—>1’ %—)3) O—>1 q)0—>3 {m2—>3 —>1}
else
c = 0 m0—>3 — m%—>3 max(m(lHl m%—>3) m(l)—>1
sel( 0—>1 m§—>3) m%—>3 (I>O—>3 {m0—>1 —>3}
end if

Algorithm 3: ESU Function

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



74 Parallel pipelined architectures: LLR generator and extrema selection algorithms

4.2.1.2 Architecture of N,-SU for N, =8

In a modular fashion, an 8-SU architecture is obtained by implementing two 4-SUs
in parallel connected to a third stage composed of one comparator-swap, C'S3, and
two MUX2-1s as shown in Fig. 4.6. The CS3 receives the two first minimums,
m{73 and mi{~7, and sorts them, hence, their minimum value will constitute the
first minimum among the 8 input values entering the 8-SU. The maximum value,
max(m{~3, m{~7), will be inserted into the set of second minimum candidates, 77,
whose cardinality is equal to log,(8). The key idea in our proposed algorithm is
to postpone the determination of the second minimum until the last stage of the
sorter in order to reduce the number of comparators to be used in each stage. Thus,
instead of determining the local second minimum mg_)j ~!among j elements, a local set
9777 is formed progressively containing log,(j) candidate elements at the log,(5)™
stage, hence delaying the selection of the second minimum until the last stage of
the sorting unit. This reduces the complexity of an ESU from (2 CSs, 3 Cs, 1
MUX2-1), needed in the TS approach [71], down to (3 C'Ss, 1 MUX2-1). However,
more outputs are generated at each stage, since a set of second minimum candidates,
CDg_)j ~!is propagated to the next stage instead of only one element representing the
local second minimum. The set )77 at the 3"¢ stage is obtained according to the

following equation:

(4.12)

PO — {(Dg_)?’ U{mi?7} ifc=1
2

PITU{mi3} ifc=0.

0—-7
CDZ

lc max(ml()%, mf‘%)

1 2
CSO mlo->1 CSO mlo_>3 CSS’ mlo—>7

[Q
Lt »

Figure 4.6: 8-SU Architecture

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



4.2 Parallel pipelined architecture for extrema selection algorithm 75

At the 3" stage, the second minimum m3~7 can be simply determined by selecting

the minimum of the three elements constituting the set ®3~7, which can be performed
using comparators in a serial or a parallel structure. The implementation of the unit
that generates the second minimum will be discussed in more details in next section.

4.2.2 Proposed N,-SU Architecture: Complexity and Perfor-
mance Analysis

This section describes the architecture of the global N,-SU, N, = 2* for any integer k,
and discusses the complexity in terms of hardware resources, C'Ss, C's and MUX2-1s,
as well as the performance in terms of execution time.

4.2.2.1 Global N,-SU Architecture

A N,-SU architecture is thus composed of two main units: FMU and SMU. The FMU

can be designed in a hierarchical fashion using, at the last stage of the binary tree

Ns
—5>—1 ——>N -1
2 “andm® 77 to

0—N;—1

structure, two N;/2-SUs connecting their first minimums m(l)
the C'S %2 ™ that sorts them generating the global first minimum m]

Ny Ne N
in Fig. 4.7. The sets <I>0_>7 " and D2 o , each being of cardinality 10g2( <), are

logy N

as shown

connected to a multiplexer controlled by the s1gnal c generated by the C'S,
log2 N

COoIn-

ponent to select one of the sets accordingly. The upper output of the C'S along
with the selected ®5 forms the set <I>O_>N5_1 fed to the SMU to select the minimum

value contained in this set that will constitute the second global minimum mj """

Each of the N,/2-SU is implemented hierarchically starting from the reference level
of hierarchy (L = 1) contained in 4-SU, and successively repeated log,(£) — 1 times.
Thus, the global architecture is obtained using log,(/N,) — 1 hierarchy levels containing
log, N stages of C'S that form the FMU, plus the SMU.

4.2.2.2 Complexity Analysis

The first stage of the FMU (i = 1) contains N,/2 = 2*~! C'Ss and no multiplex-
ers other than those contained in the C'Ss, where each C'S contains two MUX2-1s.
The second stage (i = 2) contains 272 O'Ss and 2¢-2 MUX2-1s. More generally,
the " stage of FMU, for i = 1,2,...k contains 2*~* CSs and (i — 1)2*~* MUX2-1s,
or equivalently 2% C's and (i + 1)2*=* MUX2-1s. In total, the number of Cs con-
tained in the FMU is given by Zle 2F~1-N,-1, and the number of MUX2-1s is given
by S2F (i +1)257%. It can be shown that the total number of MUX2-1s reduces to
Doi 1257+ 30 2 = N () + NG () = 3N — k-3,

The SMU can be implemented using k-1 Cs implemented in a Tree Structure (TS)

composed of [log, k] stages as shown in Fig. 4.8.a, where [x] denotes the nearest
integer greater than or equal to z. This TS architecture of the SMU will be denoted

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



76 Parallel pipelined architectures: LLR generator and extrema selection algorithms

L=log,(Ng/2)-1

ATTTTIITIIIIIIII I I I I I I T e e

Ve i| """" L. 422 i i
ST
// ::::QD__‘: : _____ : :
D s : !
Pl D= : |
A} [ i :
s T L-log,(Ny2)-2 i
(SN LETTTTTT R :
o o L=2 ' i
Ny i D: i i
2, S|} D ————— ; !
’ HETDe =
oo L |
NS oo fosfon s 1
L
! 0->(Ng-1)
2 yi -
L
log,(N) -1 0—>Ng—1
N 23S m
Ns SMU |——
o
CS " mO Vsl
FMU

Figure 4.7: N,-SU Architecture, N, = 2¥

by SMU-TS. Note that each comparator implemented in the SMU-TS refers to the
comparator C' shown in Fig. 1.a, which contains only one MUX2-1. Alternatively, the
SMU can be implemented in only one stage using k(k —1)/2 simple COs implemented
in parallel and comparing concurrently the elements of 37" = {eg, ... e,_1} by
pairs. For instance, each element e, is compared to all elements e,, where p,q €
{0,1,....,k — 1}, p # q, and e,,e, € Y771 Each CO receives a pair of two
elements and generates a signal ¢,,, with ¢,, = 1 if e, < ¢,, otherwise ¢,, = 0.

The control signals c,, are fed to a control logic encoder to generate the selec-
tion signals s; = (A_,;) A (/\f:_jlﬂcji), A is the logic-AND operation and i,j €
{0,1,...,k — 1}. The second minimum is thus selected as: my """t = VF=!(s; A e;);
V is the logic-OR operation.

This Parallel Structure (PS), denoted by SMU-PS, is shown in Fig. 4.8.b. The overall
complexity of the proposed architecture using the different SMU structures is shown
in Table 4.3.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



4.2 Parallel pipelined architecture for extrema selection algorithm 77

€ mmmmnmnnnee £ cOs mrmmanees >
€y € €2
Co1
Jcol || T
e
! Co2
e; Co e;
1
A—] ' Co k1
L] lco )
i_» Cp € - €,
Ll C P
1 —> 3
! == 0>Ng-1 8D ]
®ONs k L C 2 2 % £ N g
2 E Cs o S k-input || k-input
. S €6 ND/ \AND
1 =
E —] C X © e [Soeq |% S Sl
E C N A 4 A4
1= C Ik AND) |AND AND
_\i/—c» : g
<------ (log2 k—| stages ------ >

() (b)

Figure 4.8: SMU Architectures for N,-SU, N, = 2*: (a) SMU-TS (b) SMU-PS

4.2.2.3 Timing Analysis

The critical path T of the proposed sorting unit architecture can be easily com-
puted as T' = Tryu + Tsyu, where Tryp and Tspp denote the propagation time
of the FMU and SMU respectively. Each of the k = [log,(N;)]| stages of FMU
has a critical path equal to T + Thyxo_1, where T denotes the time needed to
perform one comparison, thus Tryy = k(Te + Tyuxe—1). The time Tgpp de-
pends on the selected architecture as shown in Fig. 4.8. For the SMU-TS, Tsyp =
Tspv—1s = [logy k| (T + Tauxa—1). For the parallel structure, Tsypy = Tsyu—ps =
To + [logy k| Tanp + Tanp + [logs k| Tor, where Tanp and Tpg denote the propaga-
tion time of the logic AND and OR gates respectively. By approximating Th;pxo-1 ~
Tanp + Tor, and Typyxp—1 = [logs k| Thvuxa—1, Tsmu—ps can be approximated as
Tsyu-ps = Te + [logy k] Thuxa-1.

4.2.2.4 Discussion

Theoretically, and in comparison with the TS-based architecture [71], our proposed
architecture offers an important saving in the number of comparators (Table 4.3),
where a reduction factor close to 2 is obtained. The number of multiplexers is re-
mained the same. In terms of critical path, the proposed architecture imposes an
additional delay due to the SMU. However, using the SMU-PS, the critical path of

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



78 Parallel pipelined architectures: LLR generator and extrema selection algorithms

the proposed architecture is reduced by a factor log, (k)T and becomes smaller than
the critical path of the TS-based architecture as shown in the rightmost column of
Table 4.3. We omitted the theoretical complexity comparison with [72] since they do
not have similar structures. However, a technology-based assessment has been per-
formed, where we have considered the ASIC implementation of our algorithm and the
algorithms proposed in [71] and [72]. The implementation results will be discussed in
next section.

Table 4.3: Computational Complexity Comparison

Complexity/ TS [71] FTSES Architecture
Critical Path SMU-TS ‘ SMU-PS
7 of C?é“g‘;arators IN,-3 Ny+k—2 | Notk(k—1)/2-1
7+ Oﬁ%&;;‘fi@)"ers 3N,-4 3N, —k—3+k—1=3N,—4
.. kTc+ “{Z + log, k—l X (k? + 1)Tc+
Critical Path
Htieat ba (2k — DTyuxo-1 | (Te + Tavuxe-1) | [k +1ogy k] Taruxa—1

4.2.3 Hardware Implementation

To assist with analyzing implementations, we developed a generic VHDL Register
Transfer Level (RTL) code for our proposed algorithm and the algorithms proposed
in [71] and [72]. The VHDL models are conveniently parametrized to provide the
flexibility of designing and analyzing RTL with a variable number of inputs Ny, as
well as different levels of pipeline registers. The designer can easily change (add or
remove) each level of pipeline registers to get a design with a different latency, resource
requirements, and frequency. This feature helps achieve variable levels of throughput
and latency that may be desired.

4.2.3.1 Implementation Results

The different designs are synthesized using a TSMC 28-nm standard cell technology.
For all our synthesis results, the parameterizable data width has been set to 6 bits.
We reported the results for two different structures: non-pipeline, and 1 stage of
pipeline registers placed at the middle stage of each architecture. Table 4.4 shows the
post-synthesis results for non-pipelined N,-SU, where different values of N, have been
considered. As shown, the proposed architecture with SMU-TS consumes less power
and permits to get an area reduction ranging from 14 % (resp. 32 %), when N,=16,
up to 31 % (resp. 50 %), when N;=512, as compared to the architecture proposed
in |71] (resp. [72|). However, the proposed architecture suffers from longer critical
path imposed by the SMU. When implemented using the parallel structure of SMU
(SMU-PS), the proposed architecture becomes less complex with the smallest critical

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



4.2 Parallel pipelined architecture for extrema selection algorithm 79

path for all values of N,. A slight increase in the power consumption is observed.

Table 4.4: Post-synthesis results of N,-SU on TSMC 28 nm, Non-Pipelined Architec-
ture (A: Area, C: Critical Path, P: Power)

[72] TS [71] FSTSE, SMU-TS FSTSE, SMU-PS
Ny A C P A C P A C P A C P
(pm?) | (ns) | (W) || (um?) | (ns) | (uW) || (um?) | (ns) | (uW) || (um?) | (ns) | (W)
16 5927 | 3.6 | 729 4689 | 3.5 | 830 4020 1 447 3276 | 2.8 | 836
32 || 13671 | 4.5 | 1575 9963 5 | 1336 7888 | 5.5 | 1123 6771 1 867

64 26824 6 2702 20157 6 2297 15265 6.5 1890 13957 5 2173

128 55775 7.5 5742 41207 7 4302 28786 9 3097 28843 6.2 3826

256 114748 8 8807 84275 8.5 7991 57208 10.5 5741 56947 7.6 6843

512 230596 9.4 15892 166292 10 14869 114707 12 10899 113196 8.8 12468

Table 4.5 shows the results for pipelined architectures with 1 pipeline stage. For
N, > 32, the proposed architecture with SMU-PS has both the smallest critical path
and the smallest occupied area, with an area reduction reaching the 50 % as compared
to the architecture in [72|. In terms of power consumption, the proposed architec-
ture has a higher consumption for Ny=16, 32 and becomes less power consuming
for large values of N,. If we consider fully pipelined architectures, i.e., a pipeline
register is inserted between each two adjacent stages, the critical path of the TS-
based architecture |71] would be T + 2T x2-1, while that of the FMU would be
Tec + Thyuxa—1. In this case the SMU should be also pipelined and its critical path
will be maX{Tc, “ng k—‘ TMUXQ_l}.

Table 4.5: Post-synthesis results of N,-SU on TSMC 28 nm, Pipelined Architecture
(A: Area, C: Critical Path, P: Power)

[72] TS [71] FSTSE, SMU-PS Efficiency Ratios vs [72], |71]
N, A C P A C P A C P [72] [71]
(pm?) | (ns) | (uW) || (pm?) | (ns) | (pW) || (pm?) | (ns) | (uW) || AER [ PER || AER [ PER
16 5525 | 2.1 | 1103 4164 | 2.5 | 1536 3285 | 2.7 | 1144 13 | 075 || 117 | 1.24
32 || 12345 | 3.7 | 1488 9186 | 3.2 | 2074 6732 | 3.2 | 1950 || 2.12 | 0.88 || 1.36 | 1.06
64 || 23783 | 4 | 3997 || 18023 | 3.7 | 3665 || 14105 | 3.7 | 3060 18 | 141 || 1.27 | 1.19
128 || 54917 | 5.5 | 5853 || 37197 | 52 | 5082 || 27533 | 4.5 | 5296 24 | 1.35 || 1.56 | 1.1
256 || 108560 | 6 | 10901 || 67647 | 6.2 | 8453 || 55301 6 | 8214 || 1.95 | 1.32 || 1.26 | 1.06
512 || 216230 | 6.8 | 22145 || 153615 | 7 | 16821 || 108413 | 6.7 | 14797 || 2.02 | 1.51 || 1.48 | L.18

4.2.3.2 Area and power efficiency comparison

In order to compare the efficiency of the different architectures, we evaluated two
metrics: Area Efficiency (AE) and Power Efficiency (PE). The AE, indicating the
number of symbols sorted per time unit (ns) per area unit (um?), is defined as: AE =
1/(N,x C[ns] x A[um?]), where N, represents the number of cycles per sorted symbol.
Since there are two symbols sorted in each cycle, N, is equal to 0.5. Similarly, the
PE indicates the number of symbols sorted per seconds per puW, defined as: PE =
1/(N. x Clns| x P[uW]).

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018




80 Parallel pipelined architectures: LLR generator and extrema selection algorithms

To better illustrate the efficiency comparison, we have evaluated the AE Ratio (AER)
(resp. PE Ratio (PER)) defined as the ratio of the AE (resp. PE) of the FTSES
architecture to the AE (resp. PE) of each of the architectures [72] and [71].

In Table 4.5, the four rightmost columns show the numerical values of these efficiency
ratios for different input lengths. In terms of AE, the proposed architecture outper-
forms both architectures by a factor ranging from 1.17 up to 2. It is also more power
efficient for all values of N, as compared to [71], and for Ny > 64 when compared
to |72]. Note that these AER and PER results would be more in favor of the pro-
posed architecture if we considered the implementation results of the non-pipelined
architectures.

4.2.4 Extension of the proposed sorter

In this section an example of the extension of the proposed sorter is presented, where
Ny =8 and My =4, i.e, 4 minimum values are detected among 8 values.

Fig. 4.9 shows the architecture of the proposed 8-to-4 sorter algorithm. The set of 8
random values S = {xo,...,x7} are split up into two sorted sets Sy = {so, 51, S2, S3}
and Sy = {s4, S5, S¢, S7} by the two 4-to-4 sorter blocks, in which sy < 57 < 59 < 53
and s; < s5 < s¢ < s7. The sorter of four values is in common between the proposed
algorithm and the odd-even algorithm. For sake of simplicity, the control signal C'
is appended by the index of the C'S that is being generated from. The architecture
shown in Fig. 4.9 is designed based on the following analysis:

1. The candidate values for m;:

o If my=s9= Cop=1,m; = min(sy, S4).

o If mg=s4 = Cy=0,m; = min(sg, s5).
Thus, the four candidates for m; are {so, s1, S4, S5}, the selection between sy and
s1 is determined by the comparator-swap CSy and the selection between s; and
s5 indicated by the 2-to-1 MUX controlled by Cy. Then the two appropriate
candidates are compared by CS;.

2. The candidate values for ma:

It {mo,ml} = {80, 81} = {Co,Cl} = {1, 1},m2 = HliIl(SQ, 4).
If {mo, m1} = {s0, 54} = {Co, C1} = {1,0}, my = min(sy, s5).
It {mo,ml} = {84, 80} = {Co,Cl} = {0, 1},m2 = HliIl(85, 81).
It {mo,ml} = {84, 85} = {Co,Cl} = {0,0},7712 = HliIl(SG, So).

Thus, the six candidates for my are {sq, s1, $2, 4, S5, S¢}. The comparator-swaps
CSp and CSq, the 2-to-1 MUX and the 4-to-1 MUX permit to extract the two

candidates among six candidates to be entered to CS; and hence my will be
detected.

V2

o O o o
V)

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



4.2 Parallel pipelined architecture for extrema selection algorithm 81

X7—> L5,

X6~ 4-to-4 56

XYs—> Sorter |—» s

X4—» —> S,

X3—> —>S3

4-to-4 52

X;—>] Sorter >,

So— —>,

Figure 4.9: Proposed 8-to-4 sorter architecture.

3. The candidate values for ms:

It {mo,ml,mQ} = {80,84,81} = {00,01,02} {1 1 1} m ( )
If {mg, my, ma} = {s0, 54,5} = {Cy, C1,Ca} = {1,1,0}, m3 = min( )
It {mo,ml,mQ} = {80,81,84} = {00,01,02} {1 0 1} m mi ( )
If {mo,ml,m2} = {50, 81, 52} = {007 C'1702} {17 070}77”3 = mlﬂ(84, 83)-
+={0,1,1}, m3 = min( )
} ={0,1,0}, m3 = min( )
}=10,0,1},m (s6,51)

in(sy, Sg).

If {m0>m1>m2} = {34, S0, 55} = {Co, C1, 0y in(s
If {m07m17m2} - {847 50, Sl} = {COJ 01702
If {m0>m1>m2} = {34, Ss, 50} = {Co, C1, 0y 3 = min(se, 51).
If {mo, m1, ma} = {54, 5,56} = {Co, C1,Co} = {0,0,0}, m3 = min(so, s7).

Thus, the eight candidates for mg are {so, s1, $2, 4, S5, S¢, S7}. The comparator-
swaps CSg, CS; and CS,, the 2-to-1 MUX, the 4-to-1 MUX and the 8-to-1 MUX
extract the two candidates among six to be entered to the comparator C and
hence mjs is detected.

o ¢ ¢ 0 o o o o
=
V2
(=2

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



82 Parallel pipelined architectures: LLR generator and extrema selection algorithms

So——i11
Ss—>11 Se—>|110
Sr—= 10 Ss—>]101
S3—>»]100

S1—> 01
Se —o11
Se—>9 S2—po10
§1—>0o1
G, G, §7——{00

Figure 4.10: Detailed 4-to-1 and 8-to-1 MUXs.

The 8-to-1 MUX of Fig. 4.9 could be simplified where three 2-to-1 MUXs could be
removed. Let us detail the 4-to-1 and the 8-to-1 MUXs as shown in Fig. 4.10. As we
can notice, the two 2-to-1 MUXs that are surrounded by a dashed rectangle receive
the same inputs along with the same control signals. Thus, these two MUXs along
with the MUX receiving their outputs can be removed from the 8-to-1 MUX and
the corresponding signal can be steered directly from the output of the 4-to-1 MUX
implemented in earlier stage. Fig. 4.11 shows the proposed sorter after removing the
redundant MUXs.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



4.8 Conclusion 83

S7—0)
0

S3—>1
N L { \

S2—o
Xe— a.+0.4 5 1
6 4-to-4 6 Sg—) =
x ' ¢ A
s— Sorter |—» s s
X4—» —> S,
X y——>]
2 4-to-4 [*52

X,—| Sorter —>S,

Xo—> —>

Figure 4.11: Architecture of the simplified proposed 8-to-4 sorter.

Fig. 4.12 presents the 8-to-4 odd-even sorter algorithm [55]. In conclusion, apart
the 4-to-4 sorter blocks which are in common between the proposed and the odd-
even algorithms, the same number of multiplexers is required for both algorithms (16
2-to-1 MUXs) while the proposed algorithm needs only four comparators while the
odd-even algorithm requires eight. Thus, the proposed algorithm is less costly than
the odd-even algorithm and the reduction in terms of comparators increases with Nj.

4.3 Conclusion

In this Chapter, we have described new parallel architectures of two core components
of the NB-LDPC decoders: LLR generator and sorter.

The proposed LLR generator provides the LLR values of the first n,, most reliable GF
symbols. The key idea is to perform the LLR calculation starting from a sorted list
of binary LLR values deduced from the received channel observations. A pre-defined
set of the candidate elements is defined offline. Then, the outputs are selected based
on a parallel and pipelined sorter generating the n,, most reliable GF symbols along

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



84 Parallel pipelined architectures: LLR generator and extrema selection algorithms

S
S —_— ®
Se
Xo—> > A
4-to-4 O
Sorter |g
X5—> 5 ;f)
> A

S3
X3—> _®
X2—> Sz '\
4-to-4
X, Sorter |s,
XO—> SO

Figure 4.12: Architecture of the odd-even 8-to-4 sorter.

with their associated LLR values. We showed that the proposed LLR generator ar-
chitecture outperforms the systolic architecture in terms of hardware efficiency and
throughput.

Second, we presented the design and the implementation of a low-hardware cost and
low latency two-minimum value sorting architecture called FTSES. Theoretical com-
plexity and performance analysis of the proposed sorting algorithm as compared to
its best counterpart algorithms in literature have been addressed. Moreover, non-
pipelined and pipelined structures have been presented together with synthesis results
on TSMC 28 nm standard cell technology. For any size of data stream, N, > 32, the
proposed architecture requires the lowest area and offers the highest frequency, where
an area efficiency ranging from 1.17 up to 2 is obtained. Furthermore, the theoret-
ical study of the modest example of the extension of the proposed sorter algorithm
(8-to-4 sorter) shows that it outperforms the odd-even algorithm in terms of number
of comparators while the number of MUXSs remains the same. Future work will cover
the generalization of the proposed algorithm to extract the M > 2 extrema values.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Chapter 5

Proposed parallel and pipelined
decoder

In chapter 3, several architectures have been proposed for the serial check node. In
this chapter, we revise the hybrid architecture in the context of a fully parallel check
node architecture, i.e., a check node where every clock cycle, all the d. x n,, input
messages are received and processed in parallel. After a fixed latency, all the d. x n,,
outputs are generated in the same clock cycle. Since the architectural optimization
is linked to the code, we first construct a (N, K) = (144,120) code over GF(64) of

5 . : . .
code rate —. Then, from this code, we derive the fully hardware implementation to

demonstrate the possibility of defining a high parallel hardware architecture. Note
that all the material presented in this chapter is a personal contribution.

The structure of this chapter is as follows. Section 1 defines the code and the pa-
rameters used for the implemented Hybrid architecture, then it presents the decoding
algorithm, after that it shows the simulation results along with the average number
of iterations and throughput versus Ey,/Ng. Section 2 introduces the global hardware
architecture of the decoder along with the memory structure and the global timing
diagram. The chapter continues with section 3 where the hardware description of
each component of the decoder is shown. Then, section 4 shows the results on ASIC
design and FPGA device of the code. Finally, the hardware emulation is illustrated.

5.1 Code structure and decoding algorithm

This section first introduces the structure of the PCM of the considered NB-LDPC
code and its parameters. Then, the decoding algorithm is presented. After that, the
simulation results are shown. Finally, the average number of iterations versus E;, /Ny
and the throughput versus E, /Ny are presented.

85

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



86 Proposed parallel and pipelined decoder

5.1.1 Code Structure

The code considered in this work is a (144,120) NB-LDPC defined over GF(64) with
d, = 2, d. = 12 and a code rate CR=5/6 taken from the LAB-STIC NB-LDPC
website [41]. This code is a Quasi-Cyclic LDPC (QC-LDPC) code constructed from
the complete 2 x 12 base matrix H defined as:

2y — 000O0O0OO0OO0ODOODOTO O O
|01 23456789 10 11
with an expansion factor equal to 12. Every element H(i,j), ¢ = 0,1 and j =

0,1,...,11, during the lifting process of H, is replaced by the 12 x 12 identity matrix
with a right shift rotation of value equal to (4, 7). Thus, The lifted matrix H is given
in Fig. 5.1.

Figure 5.1: The Topology of PCM.

By construction, the girth (i.e., the minimum cycle size in the Tanner Graph associ-
ated to the parity check matrix) is equal to 8. The NB-LDPC coefficients are selected
passing by two phases as defined in [56]. First, the coefficients of a given check node are
selected in order to optimize the property of the binary code associated to the parity
check node. In this work, we use the set of coefficients {5, 85, 57, 525, 529, 530, 38, Ba3,
Bass P50, Bs5, P57} Second, this set of GF coefficients are affected globally to each
parity check in order to avoid low weight codewords. The considered primitive poly-
nomial to design the GF values is P(X) = X6 + X + 1.

For sake of simplicity, we consider the representation of PCM shown in Fig. 5.2. The
associated PCM is of size M x N = 24 x 144. Each row represents a CN connected
to d. = 12 VNs whose indexes are indicated in each cell of the row. For instance,
CNy is connected to {VNg, VNia,..., VNi32}. Those 12 VNs are simply denoted
{Uop,...,Up1} when a CN alone is considered. The 24 CNs are split up into two lay-
ers, where the set {CNj,...,CNy; } constitutes Layer 1 (L;) and the set {CNys,...,CNa3}

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.1 Code structure and decoding algorithm

87

constitutes Layer 2 (Ly). A layer in a PCM is a set of CNs that do not have common

VNs.

u U U U U U U U U U U, U,
CN,| 0 |12 |24 |36 |48 | 60 | 72 | 84 | 96 | 108 | 120 | 132
CN, | 1 13 12537149 |61 |73 |85 | 97 | 109 | 121 | 133
CN,| 2 | 14|26 |38 |50 | 62|74 |8 | 98 | 110 | 122 | 134
CN,| 3 | 15|27 39|51 |63 75|87 | 99 | 111 | 123 | 135
CN, 4 |16 |28 |40 | 52 | 64 | 76 | 88 | 100 | 112 | 124 | 136
CN, | 5 |17 |29 |41 | 53 65| 77 | 8 | 101 | 113 | 125 | 137
CN,| 6 | 18 | 30|42 |54 66| 78 | 90 102 | 114 | 126 | 138
CN,| 7 |19 |31 |43 5567|7991 103 115 | 127 | 139
CN,| 8 | 20|32 |44 56| 68 |80 | 92 | 104 116 | 128 | 140
CN,| 9 | 21|33 45|57 )69 |8l |93 105|117 | 129 | 141
CN, 10 | 22| 34|46 | 58 | 70 | 82 | 94 | 106 | 118 | 130 | 142
CN, | 11 | 23 | 35|47 |59 | 71 |83 |95 107 | 119 | 131 | 143
CN, 0 | 1326 |39 |52 |65 |78 |91 | 104 | 117 | 130 | 143
CN, 1 14 | 27 | 40 | 53 | 66 | 79 | 92 | 105 | 118 | 131 | 132
CN, 2 | 15|28 |41 | 54 | 67 | 80 | 93 | 106 | 119 | 120 | 133
CN, 3 16 | 29 | 42 | 55 | 68 | 81 | 94 | 107 | 108 | 121 | 134
CN,, 4 117 |30 |43 56 |69 |8 |95 9 | 109 | 122 | 135
CN,, 5 18 | 31 | 44 | 57 | 70 | 83 | 84 | 97 | 110 | 123 | 136
CN, 6 | 19 |32 |45 |58 | 71 | 72 | 85 | 98 | 111 | 124 | 137
CN, 7 |20 |33 |46 |59 60|73 |8 | 99 | 112 | 125 | 138
CN,| 8 |21 |34 47|48 |61 | 74 | 87 | 100 | 113 | 126 | 139
CN,| 9 |22 |35|36|49 62|75 |8 | 101 | 114 | 127 | 140
CN,,| 10 | 23 | 24 | 37 | 50 | 63 | 76 | 89 | 102 | 115 | 128 | 141
CN,,| 11 | 12 | 25 | 38 | 51 | 64 | 77 | 90 | 103 | 116 | 129 | 142

Figure 5.2: PCM of the (144,120) NB-LDPC code.

The indexes of the non-zero GF coefficients of PCM are shown in Fig. 5.3. These
values represent the indexes of the GF symbols used in the GF permutation and

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



88 Proposed parallel and pipelined decoder

inverse permutation performed at the input and output of the CN respectively. For
instance, when making the processing of CNy, VNj is multiplied by the GF value
ho = B3 at the input of CN and by hal = 54_31 = Bg3_43 = (o0 before making the VN
update, where 3;3' is the inverse in GF domain of the GF value (343. Therefore, in the
following the non-zero elements {hy, ..., hi1} vary depending on the CN that is being
processed.

5.1.2 Decoding algorithm

In section 3.1.4, the hybrid architecture has been presented to perform the EMS
algorithm. For this work, we use a simplified version of the HB(10,0,2) Hybrid archi-
tecture, i.e, some bubbles of the HB(10,0,2) have been dismissed to further simplify
the hardware and fulfill the constraint of a fully parallel check node decoder. This
section presents precisely the implemented algorithm in order of this work to be re-
producible. Thus, we will present the exact computation performed by every block
along with the precise description of inputs and outputs. Before diving into the de-
coding steps, let us show how the channel observations are being quantified over 5
bits. Let ys, = {¥s;.05----,Ys,; 5} be the bit representation of ys,, i = 0,...,11 and
s; = 0,...,143. Thus, each observed bit y,, ;, 7 =0,...,5, is quantified as:

Yseg = sat((floor(ye?; x Q/o) +0.5),Q). (5.1)
where
b If a>b
sat(a,b) = ¢ —b If a<-—b (5.2)

a Otherewise

@ = 15 is the quantization factor and yi’ij is the channel observation before quantiza-
tion. For instance, when CNj is being processed, i.e, the set {VNg, VN5, ..., VN3 }
is considered and hence s =0, s; = 12, ..., s;; = 132 are the indexes associated to
VNy, VNys, ..., VNj35 respectively.

Therefore, the decoding steps are:

1. Initialization: Each VN is initialized with its n,, = 4 intrinsic candidates I as:
Uilk] = L;Jk], i =0,...,11 and k = 0, 1,2,3. The architecture shown in section
4.1.4 is the considered architecture to generate the n,, = 4 intrinsic candidates
for each observed symbol ys,,.

2. Check Node Variable Node (CN-VN) processing: The CN implemented in the
software simulator of the decoder is HB(10, 0, 2) (see section 3.1.4). In the
proposed decoder, the CN and the VN units are merged together. The inputs
of the CN-VN unit are: 1) the set of vectors {Uy,...,Us1}, where each Uj,
i=0,...,11, carries n,, = 4 (LLR, GF) couples; 2) the set of the most reliable
GF intrinsic symbols {[,[0],..., [11[0]}; 3) the indexes {m;[0], m;[1], m[2]}, @ =

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.1 Code structure and decoding algorithm

89

h

5

h

6

h

7

h

8

h

9

10

CN, | 43

25

46

55

38

50

57

29

30

25

46

55

38

50

57

CN, | 29

7

30

25

46

55

38

50

CN, | 57

0

7

30

25

46

55

38

CN, | 50

43

0

7

30

25

46

55

CN; | 38

5

43

0

7

30

25

46

CN, | 46

57

29

5

43

0

7

30

CN. | 25

50

57

29

5

43

0

CN; | 30

38

50

57

29

5

43

55

38

50

57

29

5

43

46

55

38

50

57

29

5

CN,, | 43

25

46

55

38

50

57

29

CN, o

38

30

57

25

29

46

5

55

43

CN..| 55

0

38

50

30

57

25

29

46

5

43

CN,| 43

55

0

7

50

30

57

25

29

5

46

CN,| 46

43

55

38

7

50

30

57

29

25

5

CN | 5

46

43

0

38

7

50

57

30

29

25

CN | 25

5

46

55

0

38

50

7

57

30

29

CN.| 29

25

5

43

55

38

0

50

7

57

30

CN,| 30

29

25

46

55

43

38

0

50

7

57

CN, | 57

30

29

46

5

55

43

38

0

50

7

CN, | 7

57

30

29

46

5

55

43

38

0

50

CN,,| 50

7

30

25

29

46

5

55

43

38

0

CN..| 0o

7

50

57

25

29

46

5

55

43

38

Figure 5.3: The non-zero coefficients of the PCM.

0,...,11, of the 3 minimum values of y,, required to recompute the n,, intrinsic
., h11}; 5) the inverse of the

messages of VN;; 4) the non-zero elements {ho, ..

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



90

Proposed parallel and pipelined decoder

non-zero elements {hy", ..., hij'}; 6) finally, the absolute values of the observed
bits {{|yso.il}, - {|¥Ysijl}}s 7 = 0,...,5. Therefore, the steps of the CN-VN
unit to update the messages are:

e Presorting, switching and GF permutation: the presorting generates the

indexes U = {¢[0],...,9[11]} based on the presorting principle shown
in Fig. 2.8 for d. = 12. Based on W, all the inputs of the CN-VN are
switched. The switched data are appended by the symbol ' hereafter. The
GF permutation is being processed in this phase based on equation (2.21).
Thus, the set of vectors {U[,...,U];} contains the permuted GF value.

ECNs computation: The set of vector messages {Uj,...,U;,} are split up
into four groups as: 1) {Uj, U;, U}, UL} where each U/, i = 0,...,3, con-
tains one couple of LLR equal to 0, i.e, U/"[0] = 0; 2) {U}, UL, UL, UL}
where each U/, i = 4,...,7, contains two couples; 3) {U{} of three couples;
4) {U{, Uly, Uy, } where each U/, i = 9,10, 11, contains four couples. In the
following, we show how the vector messages are combined by set of ECNs.
First, the set {U},...,Uj} are combined by the Syndrome Node (SN) block
as shown in Fig. 5.4. As we can see, the ECNs SN1 to SN9 are very simple,
where there are three ECNs of one bubble (SN1, SN2 and SN3), i.e, they
require only GF addition (XOR gate), and the number of required bubbles
in the rest of the ECNs, SN4, ..., SN9, varies from 2 up to 9. The number
of considered bubbles in each SNz, ¢ = 1,...,9, is found by simulation
depending on the allowed performance loss.

o

U
'4 v, g 2l
Q v v o U.[0]
i> il }Oo’bm ’b” ’USN 1
SN1 SN2 SN3 O O O b SN[ ]
sNe sns O O 1,9 U, 2]
o CS>N7 b2’9 Uy [3]
b, 69 S
CE Os USN[S]
SN b SN
SN s U [6]

Figure 5.4: SN shape.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.1 Code structure and decoding algorithm 91

The vectors {Uy, ..., U} are first combined and then the {bgg ,..., bso},
is combined with Uy to generate the output set {Usx}. Let us start with
SN1 to SN8. The bubbles in SN8 are computed wisely considering that
Uit[1] < --- < UST[1] due to the presorting. Each bubble carries the LLR,
value, the GF value and the valid syndrome vector b”*" information as:

beos = 0, by s = Ug”[0] D - - - @ Us”[0].

bcls—U§+1, as = U [ @ U [0] D Us7[0].

1] D
bls = Us'[1], s = Us" 11 D Up” (0] B - - - D U5™[0] D Uz”[0] €D U™ [0].
béss = Us"[1], bz s = U [L] D Ug*[0] B - - - @ US7[0] D Ug” 0] - - - B U [0].
blas = Ui'[1], biis = U (1] D U (0] B - - - @ U™ (0] D Uz®[0] - - - B Ug[0].
bis = Us"[1], brig = U] D Ug" [0 D - - - @ U77[0].
bhs = Us" (2], bl s = U 2] D U701 D - - - D U77[0].

and

bos =11,1,1,1,1,1,1,1,1}.
bas=11,1,1,1,1,1,1,0,1}.
bag =11,1,1,1,1,1,0,1,1}.
bas =11,1,1,1,1,0,1,1,1}.
bas=11,1,1,1,0,1,1,1,1}.
b =1{1,1,1,1,1,1,1,1,0}.
b =1{1,1,1,1,1,1,1,1,0}.

The VSV indicates whether the bubble is generated from the most reliable
GF symbol or not. In more details, let b € {beos, ..., bess, br1s, brag}, if
b"V[i] = 1,4 =0,...,8, thus U/[0] contributes in the computation of b®,
otherwise, U/[k] is contributing, k = 1,2, 3.

Therefore, the outputs of SN8 are: bgg = beos, b1g = b1 s and {bag, b3,
b4,9,b5’9} = SOI‘t5_4({br278,bch,bcg’g,bcg’g,bc478}>, where in this case the
sorts_4 function is to detect the four bubbles having the lowest LLR values
among five bubbles and hence b; 9 < big < bzg < b;Q.

Next, SN9 receives the set {bgo,...,bs9} along with U} to generate the
outputs Usx[0],...,Usx[6], where each Usx[i] = (Udxli], Usxli], U i]),
1t =0,...,6. The bubbles shown in SN9 along with their VSV information
are computed as:

by = 0, bey = by @ U™ [0], big" = (b, 1)-
bei = big, bey = by @ Us?[0], bel” = (bYg, 1).
béy = b3 g, bey = b3y @ Ug®[0], b3" = (b33, 1).

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



92

Proposed parallel and pipelined decoder

bés = by, bz = bie B Ug”[0], b" = (biy, 1).
bs = big, bey = bie D Ug”[0], bei” = (b, 1).
bes = by g, biz = b5o B Ug”[0], b5" = (b5, 1).
b = Ug™[1], by = bgo @ Ug?[1], by = (byy., 0).
b = Ug"[2], b = byl @ Us?[2], by = (byy, 0).
bis = Ug"[3], big = bgo @ Us”[3], b5" = (byy, 0).

Therefore, the outputs of the SN block are generated as: Usy[0] = beo,

USN[l] = by and {USN[Q], ) USN[6]} = SOTt7—5({bc17 bea, bes, bed, bes, bro, br3})7
where in this case the sort;_s5 function is to detect the five bubbles having
the lowest LLR values among seven bubbles and hence Ug[2] < --- <

Usl6].

In parallel with SN, the two vectors Uj, and Uj; are combined by ECN1,
see Fig. 5.5. The bubbles shown in ECN1 are computed as:

by =0, by’ = Ui5[0] D Uiy [0].
by = Ui{[1], b = U5 (0] @ UTT[1].

B [1]
by = Uiy [2], by = U{?[ D Ui [2].
bj = U11[3], by = Uig[0] @ UT7 [3].
b =Uig[1], bf = U{?[ ]@U{?[O]-
by = U{Hl] +UfT[1], b U{?[l] @D Uiy [L].
bg = Ug [1] + UiT 2], bée = Ui [ D U [2].
b = U{HQ], 7 =Uj2 ]@U{?[ |-
bg = U{3[2] + U{T[ ] bg = Uiy [2] @ UTT [1].
by = U4 (3], bs' = Uig [3] @ U17 [0].
Thus, the outputs are generated as: Ugcni[0] = bo, Ugceni[1l] = by and
{Ugcn1(2], ..., Ugcni[6]} = sortg_5(ba, ..., bg), where in this case the min

function is to detect the five bubbles having the lowest LLR values among
eight bubbles and hence Uy, [2] < -+ < Ulon, [6]-

After that, as Fig. 5.6 shows, the two vectors Usy and Ugcny are merged
to generate the output vector Ugcne of 19 couples. The bubbles shown in
Fig. 5.6 are computed as:

b(T =0,by = U?N[O] @UE‘?CNI[O]'

b;r = Ugcm[l]a b? = USGBN[O] S UPEZBCNI[l]'
b; = UECM[Q] b;e = US@N[ 1D UE)BCNID]'
b;,r = Ugcmm b@ USQBN[ ]@UE‘?CNI[B]'

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.1 Code structure and decoding algorithm 93

U’l]
el
- Zm[;]
0. 00O %3}
O U
ECNI Uiﬁﬁm
UECN1[6]

Figure 5.5: ECN1 shape.

b+ = Ugcm[‘l] b@ USN[ ]@UE‘?CNIM]'

bl = Usleni 5], b5’ = Usy [0 @ Uien: 5

bér = USN[ ] b? = USN[ ]@U]?CNI[ ]

bt = Ugk[1] + Ugeni 1], b = Usi [1] @ Ugon (1.

bg = Ugx (1] + Ugena 2, bga = Ugx [1] @ Ugen [2]-
= Ugx[1] + Ugien 3], by = Uk [1] D Usienn [3]-

bTo Usk[1] + Ugen: [4]; b?o U (1] €D Ugena [4]-
b;rl = US+N[2]7 b% - US@N[ ]@UI?CNI[O]'
bis = Usx[2] + Ugen [1], bz = Usy[2] @ Ugon [1]-
bfs U;N[BL b% = U?N[ ]@UEDCM[ J-
by = Usx[3] + Ugen [1; biy = Usx 3] @ U [1]-
b;rsy = USJFN[4]7 b?s = USQBN[ ]@UE‘?CNI[ J-
bii_G = US+N [4] + Ugcm[l]a b% = US@N [4] D U]%BCNl[l]'
b?? = US+N [5], b?? = US@N[E)] S UE)BCNI[O]'
bis = Usn[5] + Ugen (1], bis = Uss[5] @ Uson [
birg = U;N [6], b% = US@N[6] S UEZBCNl[O]'

Note that VSV is not used in ECN2, so this information propagates directly
to the output considering that all the bubbles that belong to the same row

in Fig. 5.6 have the same VSV information, i.e, by™ = --- = bs™ = UR'[0],
bg? = --- = by’ = URN[1]... etc. Thus, the outputs are Ugcna|i] = by,

1=20,...,19, i.e, there is no need to sort the bubbles in terms of their LLR
values since the intrinsic LLR values will be added to them during the VN
processing and hence the sorted bubbles will become unsorted. The LLR
value bfg is considered as offset (O) for the VNs processing associated to

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



94

Proposed parallel and pipelined decoder

S

o)
Z

<)
° Ee
&e

"
. UECNZ[O]
() -
SN
0/
by Ugerol19]

C
0000060

ECN2

Figure 5.6: ECN2 shape.

the extrinsic messages {Vj, ..., Vy} as will be shown hereafter.

ECN3 and ECN4 operate in parallel with ECN2 to generate the two ex-
trinsic messages Vj, and V}, respectively as shown in Fig. 5.7. The two
ECNs have the same shape and functionality. Thus, in the following we
will show the functionality of ECN3. The required inputs for ECN3 block
are {Usx}, U], and the non-zero element h{;* which is the inverse of h);.
Note that the ULy is not needed since the generation of VY is performed
using an ECN and not using a decorrelation operation with Uj,, as will
be the case for {Vj,...,Vy}. Thus, and only for example, bj = 0 and
by = (UK [0] @ UT[0]).h4;". The same manner of computing the bubbles
shown in ECN1 and ECN2 is applied to the remaining bubbles, i.e, it is

only a matter of changing the indexes of Usy and U7,[0].

After that, the bubbles are directly mapped to the outputs as: V{,;[i] = b;
where ¢ = 0, ..., 15, without the need of a sorter operation. The LLR value
by; is considered as offset for the VN that processes V/,. Thus, in order to
save the complexity of detecting the offset value - which is considered as
the last valid output in the S-bubble approach - we managed to consider
the LLR value of an offline selected bubble as offset.

In this case, two extrinsic messages V, and V], are generated indepen-
dently, while the rest of the extrinsic messages {V{,...,Vy} are generated
by the decorrelation and inverse permutation processes as will be shown
next.

Decorrelation and inverse permutation: The set of couples {Ugcn2[0], . . .,
Ugcne[19]} carries the combination of all the input vectors {U],...,U;; }.
Thus, to extract the exact extrinsic messages {Vj, ..., Vy}, the 19 symbols
{Ugcn2[0], . . ., Uron2[19]} should be decorrelated as:

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.1 Code structure and decoding algorithm 95

U,

Uanl0]
Usl1]
Usnl2]
Ual3]
Usnl4]
Ua 5]
Usnl6]

Figure 5.7: ECN3 and ECN4 structures.

Vi [j] = (V15 ViRl =

2

(Uiexsli) Uexal N @ UK W URGIN =1
(Sat,0) Otherwise
where, i = 0,...,9, =0,...,19 and Sat is the maximum LLR value. In
practice, since we know that only the most reliable symbol is considered
from {U], ..., U}, we manage to consider all the 20 symbols {Ugcn2[0],

..., Upcn2[19]} without checking their associated VSV information.

Now, after generating all the extrinsic messages {V{, ..., V/;}, the updated
messages will be computed. We recall that the length of the extrinsic
vectors {V{,...,Vy} is equal to 19 while the two extrinsic vectors V}, and
V{, are of length equal to 16. In addition, the considered offset to process
{Vy,...,V4} is equal to bfs shown in Fig. 5.6 while for V/; and V}, is equal
to bj; shown in Fig. 5.7 in ECN3 and ECN4 respectively.

e VNs processing: There are 12 VN blocks in the decoder. The required
data for every VN block are: the extrinsic messages V;, the most reli-
able intrinsic GF value I;%[0], the indexes that are generated by the LLR
generator {m;[0], m;[1],m;[2]} and the absolute values of the observed bits
{lysioly -3 |Us;51}, @ = 0,...,11. In the following, the range of the index
denoting the elements V/[j], is 7 € {0,...,19}, when ¢ = 0,...,9, and
j €40,...,15}, when ¢ = 10, 11. The four steps of the VN processing are:

— Regeneration of the four intrinsic candidates: the most reliable in-
trinsic GF value I;®[0], the indexes {m;[0],m[1],m;[2]} and the ab-

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



96

Proposed parallel and pipelined decoder

solute value of the observed bits {|ys,ol,---.|ys; 5|} are used to re-
generate the intrinsic candidates {I/[0], I/[1], I[[2], I/[3]}. These candi-
dates are regenerated considering the architecture shown in Fig. 4.4.
Then, the offset value O will be added to each intrinsic LLR value as:
'kl =Ltk + 0, k=0,1,2,3.

— Generation of the intrinsic LLR value of the extrinsic candidates: the
intrinsic LLR value of each V/?[j] is computed as:

Iy 5] = Z\ysz AV, LE0][E]).
Then, IV{[ ] is added to V/*[j] as: V;"*[j] = V" [4] + Lv:[j].

— Extraction of the five sorted symbols {V;*[0],...,V/*[4]} having the
lowest LLR values among the set {V/[0],..., V/[19], I/'[0], ..., I[3]}
where V°*[0] < --- < V*T[4].

— Generation of the four most reliable symbols {U/[0],...,U/[3]} that
have no redundant GF values. V/*"[k;] is replaced by Sat value when
V/*ko] = V/**[k,] where k; = 0,...,4 and kg < k;. Then, the up-
dated messages {U/[0], ..., U/[3]} are detected among the set {V/*[0],. ..
V) where U0 < - < U7[3]

e Normalizing and reordering the updated messages: the updated messages
{{Us}, ..., {U],}} are normalized as: U, *[j] = U/ "[j]-U/"[0],: =0,...,11
and j = 1,2,3. Then, it should be reordered to their original order based
on U1 as: U U 1=0,...,11.

H11—4)>

3. Decision making: The required messages for this process are {U/[0], U;[1], U;[2]},

{V/[0],...,V/[j]} and the appropriate offset O, i = 0,...,11. Every V/[j] is
updated as:

VA UMD Vel = U
Vel = VAU V) = P
V;/Jr ] + Ui/+ 2] + O  Otherwise

and
Vel = Ve,

and the symbol U/[0] is updated as: U;"* = U/7[0] + O and U/*® = U/®[0]. We
recall that the set {U],..., U}, Uy, and Uj; have different offset O. Therefore,
the decision is made as: GF; = min({V/*[0], ..., V/*[j],U/*}), where the min
fumction detects the GF value having the lowest LLR value. Finally, the set of
{GFg, ..., GF};} is reordered by U~! to generate {GFy,...,GF;} as: GF; =
GFl\iy g i =0,..., 1.

. Stopping criteria: the decoder stops processing if all the M = 24 equations in the
11

PCM are satisfied, i.e, @h;.GF; = 0. Remember that the set {GFy, ..., GF;}

1=0

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.1 Code structure and decoding algorithm 97

and {ho, ..., h11} are related to PCM. For instance, let CNg be the CN that is be-

ing processed, in this case {GFy, ..., GFy; } are the decisions on {VNy, ..., VN3 }
and {ho,...,h11} = {Bas,..., 05} (see Fig. 5.2 and Fig. 5.3). On the other

hand, the decoder stops processing when n;; iterations is reached regardless the

satisfaction of the 24 equations.

5.1.3 Simulation results

As we mentioned in section 5.1.2, some bubbles from the HB(10,0,2) are eliminated
and hence performance loss is obtained. To compensate this performance degradation,
the global number of iterations within the decoder is increased. Fig. 5.8 shows the
simulation results of the proposed decoder compared to the FB CN decoder considered
as reference in our performance comparison. The FB CN-based decoder is simulated
using two different scheduling schemes: flooding and layered. The proposed decoder,
in its hardware version, is implemented using only the flooding schedule. This is due
to the fact that by its nature, the new parallel decoder allows to start a new CN
processing at each clock cycle which leads to reach the second layer of CNs without
having completed the processing of the VNs being started in the first layer. Thus,
the decoder should enter in an idle time waiting the availability of the required data.
To avoid this idle time, we have decided to adopt the flooding schedule. This point
will be discussed in more details in next sections. Different number of iterations 8, 15
and 30 are considered for the proposed decoder.

The ECNs implemented in the FB-CN are the S-bubble ECNs for n,, = 20 and
Nep = 25. The performance is studied under AWGN channel and the LLR values are
quantified over 6 bits.

Comparing the performance of the FB-CN layered schedule decoding with the pro-
posed decoder for different n;; values, a performance loss of 0.4 dB is observed when
n;; = 8 and goes down to 0.2 and 0.08 when n;; = 15 and 30 respectively.

When comparing to the FB CN-based decoder in flooding scheme, performance losses
of 0.31 and 0.11 dB are introduced for n; = 8 and 15 respectively. On the other hand,
a gain of 0.05 dB is obtained when n; = 30 is used.

Fig. 5.9 compares the performance of the proposed decoder with the B-LDPC code
Offset Min-Sum (OMS) decoding algorithm of N = 864 bits, K = 720 bits and
CR = 5/6. There is more than 0.4 db gain in favor of the proposed decoder. More-
over, code alone is not a fair comparison, i.e, with high order modulation, NB-LDPC
codes have some advantages compared to binary code. For instance, no need for iter-
ative demodulation in case of NB-LDPC codes.

Fig. 5.10 shows the average number of iterations versus E,/Ny. For the proposed de-
coder, the average number of iterations has a high discrepancy for low SNR (E;, /Ny <
3 dB) when n; = 10,15 and 30. This discrepancy dramatically decreases when
Ep/No < 3.5 dB and tends to 0 at 4 dB. However, this difference dramatically de-
creases starting from E, /Ny > 3.5 db until they meet on E,/Ny = 4 db. When

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



98 Proposed parallel and pipelined decoder

100§ T T T T T T T T T
A
107 il Sg\\ 3
>~ :\\‘\ - ~
\t\\sx:\\‘\ \\‘\\
10-2 L \Q\Q\f‘\\f\ W>\\ i
i\\\ N N
\IQ\\\ﬁf\ o
N \:\ ~N N
103 F bés:\\:\\\ o 3
E \:Q‘s\:\\ N>
T TN N
'4 = \\\\\\s \‘ =
107 F —©-- FB-CN, layered, n, =8 ‘\j\\\\ﬁ ]
L \\*\\
L — - - Proposed, flooding, n, =30 \%k}\
AN
10° — %-- FB-CN, flooding, n, =8 \Q\C\Q:Q E
i —<1-- Proposed, flooding, n =15 \\\5\
N
106 F — 1> Proposed, flooding, n =8 SN A
E % NS
\\‘i
10-7 1 1 1 1 1 1 1 1 1
3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

E_/N, (dB)

Figure 5.8: FER performance for a (144, 120) NB-LDPC code: Proposed decoder vs
FB CN-based decoder.

comparing the proposed decoder n; = 30 with the FB-CN flooding schedule and
n; = 8, the difference is high in favor of FB-CN for 3 db < E,/Ny < 4 db, while
the difference is highly reduced for E,/Ny > 4 db until obtaining the same average
number if iterations at E, /Ng = 6.5 db. On the other hand, when comparing the pro-
posed decoder n; = 30 with the FB-CN layered schedule and n;; = 8, the difference
is high in favor of FB-CN when 3 db < E,/Ny < 5 db, to reach the same average
at E,/No = 6.5 db. Thus, the higher the E, /Ny the lower the difference in terms
of the average number of iterations a;. The value a; affects the throughput that is
computed as:

loga(q) x K x F
103 x a; x M
where a; € {1,2,3,...,n;} is the average number of iterations and F = 650 MHz.
We early gave the amount of the frequency to see how the throughput of the proposed

decoder varies with E;,/Nj.
Fig. 5.11 shows the throughput versus Ey/Ny for the proposed decoder in case of
ny = 10,15 and 30. We can see the significant difference of the throughput when

Throughput (Gbits/s) = (5.4)

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.2 Architectural overview 99

100 T T T T T T T T T

——©S— Proposed, flooding
—¥— B-LDPC, OMS decoding algorithm

FER

10-7 1 1 1 1 1 1 1 1 1
3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

E_/N, (dB)

Figure 5.9: FER performance for a (144, 120) NB-LDPC code over GF(64) Proposed
decoder vs (864, 720) B-LDPC code over GF(2) OMS decoder.

3db < E,/Ny < 3.7 db, where it is equal to 0.6 Gbits/s, 0.9 Gbits/s and 1.4 Gbits/s
at E,/Ng = 3 db for n; = 8,15 and 30 respectively. However, when E, /Ny > 3.7 db,
the difference is significantly reduced and tends to zero at E,/Ng =4 db.

5.2 Architectural overview

Fig. 5.12 shows the global architecture of the proposed decoder. From left to right,
the blocks that constitutes the decoder are:

1. LLR Generator Block: The proposed architecture shown in section 4.1.4 is the
implemented architecture in this work. Since there are eight observed symbols
entering the decoder in parallel, eight LLR Generators are needed. Every LLR
generator generates n,, = 4 intrinsic couples along with the indexes set. In the
proposed decoder, the permutation indexes {7[0], 7[1], 7[2]} are needed to be
output to help the regeneration of the intrinsic LLR later on during the decod-
ing process as explained in section 5.1.2. According to the simulation results,
setting n,, = 4 is a good choice to keep good performance at low hardware

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



100

Proposed parallel and pipelined decoder

20 T T T T T T
— Proposed, n..=30
18%F *= Frop it |
\ —O— Proposed, nn=15
16 '\\ —D>- Proposed, n,=10 -
n
5 14 L \ —— FB-CN, Flooding, n=8| |
§ ! —<— FB-CN, Layered, nit=8
[0}
= q2p | |
8 10 \ i
S \
c 8fF \ 4
JCR 1N \%
(o))
T RN oy |
(O] \ \IX\
> \
<C \ §\
N OB
ha

Figure 5.10: Average number of iterations versus Ey, /No.

complexity. Thus, only four intrinsic LLR values along with their GF symbols
and permutation indexes are generated.

Intrinsic Router block: The observed symbols are being received in order, start-
ing from gy up to y143. Thus, the intrinsic router is to send the outputs of the
8 LLR generator blocks to their appropriate locations in the RAM Banks. We
purposely managed that eight symbols to be received in parallel {ys,. .., ysi7},
$=0,8,16...,136 (details will be shown in section 5.4).

Control Unit (CU): The CU block controls the read/write operations from/to
the RAM Banks. The start signal indicates the arrival of the observed symbols

and hence the control signal of the RAM Banks are generated based on a counter
in the CU.

RAM Banks: The RAM Banks store the outputs of the 8 LLR generator blocks
and the updated messages by the CN-VN block U,[j], i = 0,...,11, and j =
0,...,3. In addition, the RAM Banks provide the inputs to the CN-VN block.

CN-VN block: This block constitutes the core of the decoder that performs the
CN and VN processing. It receives 4 x d. updated messages U = {Uy, ..., U1}

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.2 Architectural overview 101

20 ' ' ' ' >
18l —O— Proposed, n, =30 i
—x— Proposed, nit=15
16 —m3— Proposed, nit=8 T
14 - 7

-y
N
T

Throughput (Gbits/s)
=

8 - -
6 7
Va
Ar w/ -
[(/6/
2% / 1
@
O 1 1 1 1 1 1
3 4 5 6 7 8 9 10
E./N, (dB)
Figure 5.11: Throughput versus Ey,/No.
where each U;, 1 = 0,...,11, is a vector of length n,, = 4, and the most reliable
GF symbol of each intrinsic vector I;°[0] along with the permutation indexes
milk], i =0,...,11 and k = 0,1,2. It receives the non-zero elements h; of the

PCM along with their GF inverse h;l, ¢t =0,...,11. The absolute values of the
channel bit observations y,, ; are also needed to regenerate the n,, = 4 intrinsic

candidates.
For instance, let CNy be the current CN to be performed. Thus, the set of

VNS {VNO) VN127 VN247 VN367 VN48) VNGO) VN?Q) VN84) VN967 VN108) VN1207
VNi32} is being updated. Therefore, CN-VN reads from the RAM Banks:

o {{Uo[0], Uo[1],Us[2],Us[3]}, - .., {Un1]0], Ur1[1], U11[2], U11[3]} }, which are as-
sociated to VN(), Vng, ceay VN132.

o {I5[0],...,I5[0]}, where I$[0],..., I [0] are the HD associated to VN,
..., VNj3, respectively.

e The permutation indexes generated by the LLR generators {{m[0], mo[1],
m0[2]}, - -, {m]0], m1[1], m1[2]} } associated to {VNy, ..., VNi32} respec-
tively.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



102 Proposed parallel and pipelined decoder

L4 {h07 h17 h27 h37 h47 h57 h67 h77 h87 h97 h107 hll} - {6437 617 687 6317 6267 B477 B567
ng, B51, 6587 630, BG} along with their inverse {hal, ceey hl_ll} in the GF do-

main.
e The absolute values |ys, |, for i = 0,...,11, s; = 0,12,...,132 and j =
0,....5.

6. Decision Making Unit (DMU): This unit is composed of d. = 12 sub-units
dedicated to make decision on all the VNs in order to determine which GF
symbol each VN does represent. This block receives V' and U’ messages from
the CN-VN unit and generates the decided symbols GF’.

7. DMU Reordering (DMUR) block: due to the presorting at the input of the
CN-VN, the outputs of the DMU are not ordered, so the DMUR reorders the
outputs according to their original positions.

8. GF Routing Block (GFRB): This block is responsible of routing the decided
GF symbols to their appropriate positions in the Register holding the 144 GF
symbols. These symbols are received in sets of size equal to 12.

9. Stopping Criteria Router Block (SCRB): This block selects the GF symbols to
be sent to the next block for parity check test. At each clock cycle, 24 GF
symbols are read from the 144-Register.

10. Parity Test Block (PTB): this block performs the test of all the M = 24 parity

11

check equations: @h;.GF; = 0. Once the M = 24 equations are satisfied, the
i=0

decoder stops the decoding process of the current frame and starts a new frame.

Otherwise, the decoder continues till reaching the maximum allowed number of

iterations n;.

The next sections describe in details each component of the decoder.

5.2.1 Memorization system

The RAM Banks shown in Fig. 5.2 consists of: 1) the intrinsic RAM dedicated to store
the absolute value of the observed bits and the intrinsic information {I[0],..., I[3]}
and {7[0], 7[1], 7[2]} generated by the LLR generators; 2) the extrinsic RAMs, where
the updated messages {U,,[0], Un,[1], Uy, 2], Un,[3]}, ¢ = 0,...,11 are saved; 3) The
ROM to store the non-zero elements of the PCM and their GF inverse. The structures
of the RAM banks are described in the following.

1. Intrinsic RAMs: Fig. 5.13 shows the structure of the intrinsic RAM Banks orga-
nized into 12 separate banks denoted by R;, : =0,1,...,11. Each bank R; is a
12 x 45 array storing the absolute values of the channel observations y,, of 12 VN
messages each containing an LLR value. Each y;, is composed of 6 components
Ys,j» J = 0,1,...,5, represented each on 5 bits. In addition, the hard decision

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



103

5.2 Architectural overview
{GF’}
RN
SCRB {GF"} PTB
A
Stop
{GF} {h}
Yea| | cnt, == 30—
| |
| |
Y ‘ l -
‘ R ——
LLR (U A A
Generator e
Blocks | GFRB
. L {UH}> GFOA 7777777 ,AGFH
sets o
intrinsic &8 sets of
candidates indexes {]@ P
Intrinsic
Router
| my
> RAM |
Banks | |
g
start CU {h}
Control Uit
RAM o
Banks
L o b,

Y

>

Figure 5.12: Global architecture of the decoder.

I®[0] along with the indexes of the first 3 minimum values {[0], 7[1], 7[2]} of the
sorted y,, are stored. This information will be exploited later on in the decoding

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



104

Proposed parallel and pipelined decoder

process. Thus, the required information are concatenated to be stored in each
cell as: (IEB[O] & 7-‘-[0] & ﬂ-[l] & 7-‘-[2] & ‘ysi,o & ‘yshl & |y3i72 & ‘y3i73 & ‘y3i74 &
|ys; 5|), where & represents the concatenation operation. The cumulative length
of the vector is equal to 6 +3 + 3 +3 4+ 6 x 5 = 45.

RO Rl R2 R3 R4 RS R6 R7 RS R9 I{1 0 Rl 1
0 12 1124 1136 |48 | 60 | 72| 8 || 96 108 |120| 132
1 13 11251/37 /49|61 |73 8 || 97 /109 |121| 133
2 14 26 | 38| 50 62|74 8 || 98 |110| 122 134
3 15112713951 |63 || 75| 87 || 99 | 111 |123| 135
4 16 || 28 || 40 || 52 || 64 || 76 | 88 ||100 | |112 | 124 | 136
5 17 1129 | 41 |53 | 65 |77 | 8 ||/101 113 |125| 137
6 18 || 30 || 42 || 54 || 66 || 78 || 90 | |102 | 114 126|138
7 19 || 31 | 43 || 55| 67 |79 | 91 103 115 |127||139
8 20 |32 |44 || 56 || 68 | 80 | 92 |104| 116|128 |140
9 1121 13345 57| 69 |81 | 93 /105 117 129|141
10 || 22 |34 |46 || 58 || 70 || 82 || 94 || 106 118 |130]|| 142
11 1123 /35|47 |59 |71 | 8 || 95||107||119| 131|143

Figure 5.13: 12 intrinsic RAMs.

Extrinsic RAMs: The 24 extrinsic RAMs denoted by R,L; are shown in Fig.
5.14, where R for RAM and L for Layer, « = 0...11 and j = 1,2. These RAMs
are represented as columns in Fig. 5.14. The extrinsic RAMs store the updated
messages {Uy, [0], Up,[1], Un,[2], Un,[3]}. When performing the CN-VN process-
ing, the data of the VNs associated to L; are read from Ly and the results are
stored in L, and vice versa. For instance, let CNy be the CN that is being
processed by CN-VN;| i.e, the VNs that are being read are {VNy,...,VNy3,}.
The intrinsic information are read from the RAMs in Fig. 5.13 as {R¢[0] ,...,
R11[0]}. The input messages are read from the RAMs Ly shown in Fig. 5.14,
where VN is associated to the first element in RgLs, VN5 is associated to the
last element in R;Ls, VN, is associated to the 11" element in Ryl and so on.
Then, each output {U,,[0],U,,[1],Un,[2],Uy,,[3]}, i = 0,...,11, is saved in its
appropriate position in R;Ly, where {Up,[0], Upn,[1], Uny (2], Uno 131}, - - s {Un1, 0],
Uni [1], Unyy [2], Unyy [3]} are the updated messages associated to VN, ..., VNi3s.

The depth of each cell of the extrinsic RAMs is equal to 42 bits. There are
4 GF values each of 6 bits and 3 LLR values each of 6 bits, considering that
the most reliable GF value of LLR equal to 0 (U, [0] = 0). Thus, every cell

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.2 Architectural overview 105

ROLI RILI R2Ll R3L1 l{4Ll RSLI R6L1 R7L1 RSLI R9L1 RIOLI RHL]
0| 1224 36 48| 60 | 72| 84 | 96| 108 120 132
1|13 25//37 /49|61 |73 |85 97| 109] 121|133
2|14 |26 |38 50| 62 |74 |86 98| 110] 122|134
3001502739 |51 63| 75| 87| 99 | 111 123 135
41116 |28 |40 || 52| 64 |76 |88 | 100 112|124 |136
500172941 || 53] 65/||77| 8 |[101] 113 |125] 137
6 || 18|30 | 42 |54 66| 78|90 |102] 114 126|138
7 |1 19 || 31|43 ||55] 67|79 91 ||[103] 115 |127] 139
8 12032 44 |56 68| 80 |92 104|116 128 140
9 |121|33 45|57 69| 81 |93 105 117 129|141
10 || 2234 |46 | 58 || 70 || 82 || 94 | 106|118 130|142
11233547 /59 | 71|83 95| 107|119 131|143

R0L2 R1L2 R2L2 R3L2 1{4112 R5L2 R6L2 R7L2 R8L2 R9L2 R10L2 RllLZ

0 1311263952 /65|78 |91 |104|117| 130||143
1 14 1127140 | 53 /66 |79 |92 |105| 118|131 |132
2 151128 |41 || 54 67|80 || 93 |106/|119| 120|133
3 16 || 29 || 42 | 55| 68 || 81 || 94 |107| 108|121 |134
4 17 113043 /56 69 |82 |95 |96 |109| 122|135
5 18 || 31 | 44 || 57 |70 || 83 || 84 || 97 || 110 123|136
6 19113245 58 |71 || 72 || 85 || 98 || 111 124|137
7 201331146 |59 |60 73|86 || 99 |112]]125||138
8 21 |1 34 || 47 || 48 |61 || 74 | 87 |100| 113|126/ |139
9 1122135 ]/36 /49 /62 |75 |88 |101|| 114 |127||140
10 |23 |24 |37 /50 63|76 |8 |102| 115|128/ 141
11 12 25|38 /51,64 |77 |90 |[103]| 116|129 142

Figure 5.14: Extrinsic RAMs.

receives (U [0] & UZ[1] & UL 2] & UP 3] & UL[1] & Ul [2] & U, [3]). The ex-
trinsic RAMs are initialized by the intrinsic messages at the beginning of the
decoding process.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



106 Proposed parallel and pipelined decoder

3. ROM: The non-zero elements of the PCM and its inverse are stored in ROM
block. Fig. 5.15 shows the 24 cells (rows) of the ROM block. Each cell is of size
equal to 6 x 24 = 144 bits since every non-zero GF value h; consists of 6 bits and
so its inverse h; ', i = 0,...,11. For instance, ROM[0] is related to the non-zero
elements of CNy, so it contains the GF values {543, 5o, 57, B30, Bas, Bas, P55, P3s,

Bs0, Bs7, B29, Bs, Bas» B0, B s Bio Bas s Big» Bos s Bas'» Baos B Bag B ' -

ROMI0] | 7y & ..... & by & ' & ..... & '

ROM[23] 1, & ..... & b, & I & ... & I

Figure 5.15: ROM block.

5.2.2 Timing diagram of the overall decoder

The timing diagram of the overall decoder is shown in Fig. 5.16. We aim to show the
launch phase of the decoder and how the data are being read from the RAMs.

From left to right, the N = 144 observed symbols are being received in parallel as 8
symbols per Clock Cycle (CC) {ys,...,Yss7}, s = 0,8,16,...,136, i.e, the N = 144

observed symbols are received after — = 18 CCs. The reason of receiving eight

symbols per CC is explained in section 5.4. However, after 17 CCs the set of VNs
that are connected to CNg is completed, since VN3, is the last connected VN to CNj.
The LLR Generator Blocks start processing immediately after receiving the first set
of ys, it takes 2 CCs latency to start generating outputs and hence the total execution
time of this unit is equal to 18 + Lrra) = 18 + 2 = 20 CCs where L rrq) is the
latency of the LLR generator. The RAM Banks start storing the outputs of the 8
LLR Generator blocks once they start to be output.

After 17 + Lra) — 19 CCs, the required data of the VNs that are associated to
CNy are ready to be sent to the CN-VN, and hence the CN-VN keeps reading from
the RAM Banks for M = 24 CCs. As shown in Fig. 5.16, the VNs that are connected
to L1 are updated first where their required data are being read from the RAMs
associated to L2, and their outputs start to be saved in the RAMs associated to L1
after 16 CCs. Once all the 12 CNs of L1 have started their update, i.e, after 12 CCs,
the first CN of L2 (CNy9) starts its update immediately at the next cycle, where their
required data are being read from the RAMs associated to L1, and their outputs are
being saved in the RAMs associated to L2. The intrinsic information and the non-zero

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.2 Architectural overview 107

,,,,,,,,,,,,,, 1I8CCs
,,,,,,,,,, 17CCs .
Yo-r Y, Yizg+ Yisg kY136 Y143

(18 + Ly, ) = (18 +2) =20 CCs

LLR Generator Blocks \

... 18CCs
2C Wrt intrinsic information in RAM Bankg
S

C
L 19CCs | - 12CCs | 12CCs
Update L1 > Update L2 }
16 CCs 12 CCs 12 CCs

Figure 5.16: Timing diagram of the overall decoder.

elements are being read from the intrinsic RAMs and the ROM block respectively.
The 16 CCs latency of the CN-VN block are detailed later.

The DMU block starts making decision after 7 CCs from the beginning of the CN-VN
processing (when its required inputs are ready), the decision is being made considering
L; so it takes 12 CCs to make decision for all the N = 144 VNs.

Finally, after 1 CC latency from the DMU block, the PTB block starts checking the
validity of the parity check equations. It takes 18 CCs to decide if the decoder can stop
the processing of the current frame, i.e, to indicate if the 24 equations are satisfied.
In fact, PTB block is composed of two sub-modules to check each equation in PCM.
Since the decisions are being made by set of d. GF' decisions per clock cycle, the PTB
can check the first 12 CNs (L;) on the fly using one sub-unit. Then when the 144
decisions are made, the two sub-units operate in parallel to check the validity of the

12
remaining 12 CNs (Ly) and hence the total latency is equal to 12 + 5 = 18 CCs.

Details on this point are explained later

Note that the 19 CCs latency of the launch phase is considered only once at the
first iteration of the first codeword. Then the CN-VN processing will be dominating
the global throughput of the decoding process. Thus, the number of CCs needed
to decode one frame is equal to 24 X a;, where the average number of iterations
ayz € {1,2,...,n;}. Details are shown in section 5.4.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



108 Proposed parallel and pipelined decoder

5.3 Decoder components architecture

In this section, we detail the different components of the decoder: the CN-VN, DMU,
DMUR and PTB blocks.

5.3.1 The CN-VN block
The CN-VN architecture is shown in Fig. 5.17.

The presorting block receives the set of LLR values {U;[1],...,U{;[1]} to generate
the indexes permutation vector ¥ = {¢[0],...,¢[11]}. Depending on ¥, the Switch-
ing + Multiplication (SM) block switches the inputs U = {Uy, ..., U1}, the intrinsic
indexes permutation II = {m[0], m[1], m;[2]}, ¢ = 0,...,11, the absolute value of
the observed symbols {|ys, o, --,|¥s;.5/} associated to the current VNs, the non-zero
elements {ho,...,hy} and {hy',... h'}. In the following, the permuted data is
appended by the prime symbol ’.

Afterward, {U[, ..., U}} are combined by the SN block to generate the outputs Usx[0],
..., Usnig)- The inputs of the SN block are split up into four sets: 1) the set of vectors
that have 1 symbol {U[, U], U}, Ui} = {U}[0], U7[0], U5[0], U5[0]}; 2) the set of vectors
that have 2 symbols {Uy, Us, Us, Uz} = {{U4[0], U[11}, {U5]0], Us[1], {Ug[0], Ug[1],
{U5[0], UZ[1]}}}}; 3) the vector that has 3 symbols {UL} = {U{[0], U{[1], Ui[2]} and 4)
the vector that has 4 symbols {Uj} = {U[0], Us[1], Us[2], Us[3]}-

In parallel with SN, U], and Uj, are processed by ECN1 where 4 symbols are consid-
ered from each vector. The outputs are Ugoni[0], - - ., Usceni [5]-

Then, ECN2 receives Ugy and Ugcni to generate the 20 syndrome couples contained
in Ugcne. ECN3 and ECN4 operate in parallel with ECN2. ECN3 processes Usy, U7,
and performs the GF inverse permutation using h;;' to generate V/, of 16 couples.
The same does ECN4 for Usx, U, and h},' to generate V/, of 16 couples.

The set {hy ', ..., hy '} and Ugcne are inputs to the Decorrelation + division block
(DeBl). This block is to decorrelate each Ugon,li], ¢ = 0,...,19, from U]{@[O],
j = 0,...,9 by making GF addition between them. Then, it makes the inverse
GF permutation by multiplying each decorrelated result by its associated h;-_l. In

more details, Vj@ i) = (Ugenali] D U],'@ [O])'h;_l-

The VN update is processed next, where the sets {{m}[0], my[1], 73[2]}, . . ., {71, ]0], 71, [1],
213}, {lveols -5 19s sl @ = 0,...,5 and {Vj, ..., V/|} are entered to their asso-
ciated VN blocks to generate the unordered updated messages {U), U,

Finally, the set of unordered updated messages {U; ,...,U,  } is normalized and

ordered by the Normalization and Reordering (NR). Each U/[j], j = 1,2, 3, is normal-

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.8 Decoder components architecture 109

ifo m i/”[l]
‘ Presorting } 4
S S S A
SM
UO’ 777777777777777777 U9' Vljl'() ‘yUlll‘
: W v
. e IR ECN{]
SN Usx Usen s
vooov . U 0] U (0] YYYYYYY  YYVVVY
o hy — ¢ T - |
vy ‘ 20 Uea ¥
'Couples, <
L » b . Eon2 r 1
— iR
UI'I—PE-P ECN3 ECN4 <—§<— U,
20 20 ! ! .
Couples Couples 16 16
Y : Y ! Couples | _, Couples | 1.
4 4 Voo Wi v LAGY
0 9 | |
n
g
*U};O Ur: *Ur: 10 *Ur;ll
pl NR
Uﬂ U”n
Figure 5.17: Architecture of the CN-VN unit.
ized by subtracting U;[0], i.e, U;*[j] = U;"[j] — U;T[0]. Then the set {U}, ,..., U, }

is reordered using a set of MUXs controlled by W~ (the inverse of W) to generate the
ordered updated messages {Up,, - .., Un,, }-

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



110 Proposed parallel and pipelined decoder

Before diving into details for each block in CN-VN, we should highlight the two
reasons of making the VNs update before the reordering process. As V{, and V}, are
generated independently, they do not have the same size of V/, i = 0,...,9, and hence
VNjp and VNy; can be specified to process 16 symbols instead of 20 symbols. Besides
that, if the reordering block were before the VNs update, it would have to reorder the
set {Vy,...,V{|}, i.e, the length of each input set would be 20 symbols instead of 4

symbols (the length of each U}, , i =0,...,11).

5.3.1.1 Presorting architecture

The presorting, based on the odd-even sorter architecture [55], is presented in Fig.
5.18. The index vector W = {[0],...,¢[11]} is obtained based on the sorting of
Ut[1],7=0,...,11, and contains the set of switching indexes that permits to obtain
the sorted list {UF",... U}, where UF'[1] < UF'[1], for i < j as will be shown
next. The sorter architecture is based on a network of comparator-swaps, where each
1i] represents the position of (i + 1) minimum.

U] > > y[11]
Ul 1] -» > —> y[10]
U, [1]-»(&-%b) > —w[9]
Uy 1]y (v -~ 8]
8-SU
Uﬁ[l]»%» ~ - —yl7]
U;L[l]» - > (6]
U, 1@ - g —yl5]
ANRIRNG) - - - yl4]
8 Sorter Unit (8-SU) 8-SU
U, (1] >®) =3l
U," 1]y v —yl2]
U, 1] wh) B
Uy [11-»()»(¥) )

Figure 5.18: Architecture of the presorting block.

5.3.1.2 Switching + Multiplication

The architectures of the switching part and the multiplication part of the SM block
are shown in Fig. 5.19 and Fig. 5.20 respectively. Starting with the switching
operation, the set U = {Uy,...,Uj;} are switched by 12-to-1 MUXs controlled by

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.8 Decoder components architecture 111

{[0],...,%[11]}. The switched U; are called U, i = 0,...,11. The set UP =
{UE, ..., UV} are split up into four groups depending on the number of the required
bubbles from each UP. Recalling SN block in Fig. 5.4, we can say that U’[0] is re-
quired for all 4 = 0,...,11, while U’[1] is required for ¢ = 4,...,11 and U’[2] and
U?[3] are required for i = 8,...,11 and ¢ = 9,...,11 respectively. Thus, the total
number of 12-to-1 MUXs to generate the set UP are 27 MUXs.

The sets {{mo}, .., {mu1}}s {{lvsol}s---s {lvsi,[}}s {Ros-.. ki) and {hy', ... ki
are switched by sets of 12-to-1 MUXs controlled by W. Where each {m;} = {m;[0], m;[1],

71—2[2]} a’nd {|y81 } = {|y8i,0 9 ‘ysi,l ) |y8i,2 9 ‘ysi,.?) 9 ‘ysi,4 ) |y8i,5 }7 2 = 07 oty 11

After switching the input set U, 21 bubbles are dismissed (pointed bubbles) among
48 bubbles as shown in Fig. 5.20 in the Multiplication block. The elimination of
these bubbles leads to high reduction in terms of complexity of the CN-VN block
even though there is an extra hardware for the presorting, switching and reordering
blocks.

The GF multiplication is processed after the switching operation to reduce the num-
ber of GF multipliers. In more details, performing the GF multiplication before the
switching operation requires d. X n,, = 12 x 4 = 48 GF multipliers, while performing
it after the switching operation reduces the number of GF multipliers from 48 down to
27. However, the set {ho, ..., hi1} has to be switched, that requires 12 MUXs 12-to-1
controlled by ¥, but in total, the overall solution with less number of GF multipliers
is better. Finally, the permuted set U’ = {U},...,U;,} is generated as: U] = U!.h,
i=0,...,11.

5.3.1.3 Syndrome Node (SN)

Fig. 5.4 shows the shape of the ECNs, SN1 ..., SN9, in the SN block. The number of
considered bubbles is significantly reduced thanks to the presorting technique. Since
all the shown bubbles in the ECNs obtained by combining U"[j] with U;*[0] = 0,
t=20,...,9and 0 > j < 3, there is no need for LLR additions. Thus, the required
output symbols are computed using only GF additions, i.e, simple XOR gates.

Fig. 5.21 recall the notations of the merged {SN; , ..., SNg} ECNs. The bubbles that
belong to the first column, beg s, . . . ,bea s, have been computed wisely by exploiting the
sorted symbols in terms of LLR value, Ug"[1] < U;7[1] < ... < U,*[1]. In more details,
b:?),s =0, bj:rl,s = U;+[1]’ bj:r2,8 - Ué+[1]= bzr?,,s - Ué+[1]’ b:4,8 = Uf[l], bjl,s - UEI;+[1]
and b:«rzs = Ué+[2]. As for its GF values, b%’g, b?l’g, bg’g, b%sa ba& bf?l’g and b%B,
let us take the following addition as a reference:

U210l @ U,2[0] @ U,2[0] & U,2[0] @ U,2[0] @ U.2[0] @ U2 [0] @ U.2[0] @ Up[0]. (5.5)

In equation 5.5, the most GF reliable symbols from U to Ug are added giving the
GF value of b,gs. The GF value of the other bubbles is straightforward to compute,

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Proposed parallel and pipelined decoder

310[0] ************* U, 10]
12-to-1 MUX _<«—y[11]
v
Uy [0]
v,y — - U, 1]
v v
12-to-1 MUX _<—y[7]
v
Uy[1]
30[2] ************* U, [2]
12-to-1 MUX _<«— y[3]
Z+JS” [2]
ulsl — - U, [3]
v v
12-to-1 MUX _<— y[2]
v
0y 13]
{myy {TJ”}
12-to-1 MUX _<—y[11]
v
{7['0}
Wl = {Q’s“'}
12-to-1 MUX _<«—y[11]
W
o T %5
v v
12-to-1 MUX _<«—y[11]
%,
7 7l
+11
12-to-1 MUX _<«—y[11]
v
n;l

afo[O] ************* l{,l[O]
12-to-1 MUX _<—w[0]
v
Uy l0]
vl — U,l1]
v v
12-to-1 MUX _<—y[0]
v
Gf ]
6{0[2] ************* U, [2]
12-to-1 MUX _<—w[0]
v
U112]
U3l ——— - U, [3]
v v
12-to-1 MUX _<— y[0]
éfﬁ[ﬂ
{mg} {m,,}
v v
12-to-1 MUX _<«— y[0]
v
{',}
B b, I}
l+'0 + 11
12-to-1 MUX _<«— 0]
{Lx’ml}
i J 1,
v v
12-to-1 MUX _<«—[0]
v
Hll
sl il
+0 + 11
12-to-1 MUX _<«—[0]
v
h'—l

Figure 5.19: The switching part architecture.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.8 Decoder components architecture 113

U

-1 -1
B xS

v, U

cecsegsss

Figure 5.21: The bubbles of SN8.

merely replace UZ-/@[O] by U;EB[j] whenever the LLR of the bubble is equal to U,*[;]
(¢ = 4..8 and j = 1,2). The GF addition, the mapping of the LLR, values and the

generation of the VSV information are being processed in the bubbles generator block
shown in Fig. 5.22.

The architecture of the merged SNi (i = 1...8) blocks is shown in Fig. 5.22. It oper-
ates as follows: the first output is bgg = bg s, the second output is by g = b1 g while

the comparators and multiplexers are to select the remaining outputs among the rest
of bubbles as:

i=1,2,3,4

o B 0 ifb;nggb;’g
1SNE 1  Otherwise

ij+1,8 1f CjSNS = 0
bjy39 =< bs else if Cj11ysns =0 J=0,1,2
b, Otherwise

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



114 Proposed parallel and pipelined decoder

i]’o 7777777 3]’8 bCO’S )
bubbles b, b
generator ’ 1.9
# 777777777 # ¢ # 2,8—»
ch 8 bc4,8 brl 8 “rl8 é +b2 0
cl,8 /E{
COSNS
12,8—P é
’ S *b3,9
b+ c2,8
28 (T:/é OSN8
ISN8
n CO;’COSNS
cl,8—/ > b <
I'2,84> D *b
b 2 4,9
+ co—C 3.8
bos p 1SN8 T/élsNg
> CZSN8
Ry co—C
3.8/ 2508 br2,8—> é »bh
5,9
" el CO C bc4,8—>%
.
bc P 3SN8 CSI%;NS

Figure 5.22: Architecture of the merged SN1 to SN8.

The bubbles {bgg ,..., bso} are fed to SN9. Fig. 5.23 recalls the notations of the
bubbles of the SN9 ECN. In which, b; = by, b& = by & Ug®[0], i = 0,...,5 and
bl = Us™[j], by = bge @ Ug®[j], 7 = 1,2,3. The VSV vector of these bubbles are
generated as explained in section 5.1.2.

Seven output symbols {Usx|[0],...,Usx[6]} are generated among nine bubbles {b.,
bcl; bc27 bc37 bc47 bc57 brl; br27 br3}-

The architecture of SN9 ECN is shown in Fig. 5.24. It operates similarly to the SN8
ECN, where the processing is split up into two parts. Part 1 generates the bubbles
and detects the signals {Oy, ..., O4} that have the lowest LLR values among the bub-
bles {bc1.9, be2,9, bes.os beag, bes g, brag} using the same approach shown in Fig. 5.22.
Then, part 2 detects the outputs {Usx[0], ..., Usx[6]} that have lowest LLR values
among the symbols {Og, O1, Oy, O3, Oy, beo.g, br1g, brso} using the same approach of

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.8 Decoder components architecture

115

part 1. We note th&t, USN[O] = bc0,9 and USN[]-] = brl,g.

oo o o oo

(e}
(9]

()
\S]

(e
W

OO0

Qéj

Figure 5.23: The bubbles of SN9.

bubbles
generator

v v i v i vy

c4—

l

+
3]

c5

co
CO—~»°
co

0
-
COSN9

>0

ISN9

2SN9

0
-
C35N9

0
-
C4SN9

ch—b 2 0
T/(gfj}SN9

22— D $O4

C

4SN9

Part 2

et

vY YU vy vy 4

:

C

&)

C

S

C

S

Cco

Cco

1
-
COSN9

1
-
C]SN9

1
-
CZSN9

1
-
C3SN9

1
-
C4SN9

b

09— USN[O]

b

r1,94>USN[1]

b

13,9—

Uy [2]

v
Q> MUX

0SN9

> Ua[3]

1

C1 oSN
1SN9

MUX

o
13,9— | % Lo USN[4]

e
C1C1SN9
25N9

o
g NE

s
C1C25N9
3SN9

Figure 5.24: Architecture of SN9.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



116 Proposed parallel and pipelined decoder

5.3.1.4 The shape and the architecture of ECN1

The shape and the architecture of ECN1 are shown in Fig. 5.25. The bubbles genera-
tor block is to generate the required bubbles as explained in section 5.1.2. The output
of minimum LLR value is Ugcn2[0] = b and the output of second minimum LLR
value is Ugcne[l] = by. As for the rest of outputs, the architecture is designed taking
into account there are some presorted bubbles and hence the number of comparators
and MUXs are reduced. In more details, bj < bZ < bl and by > bd > b, thus
these bubbles are grouped together as shown in Fig. 5.25. Similarly, by < bj and
by < b, thus the bubbles {bs, bz, bs, bg} are grouped together as shown in Fig. 5.25.
U'

11

:

&y

0000
1159

o,
&y

@ec

U'l 0
ECN1
U’lo U'11 bo >UECN1[O]
R b, Uy epa[1]
bubbles
generator
bO b‘)
b, Upeni[21
i bz : UECNI 3]
% b6 }% UECNI [4]
‘b79h>®—>®—> >UECNl[S]
ECNI1 architecture

Figure 5.25: The shape and the architecture of ECN1.

5.3.1.5 ECN2, ECN3 and ECN4 architectures

The ECN2, ECN3 and ECN4 are very simple to implement. It is a matter of bubbles
generation as shown in Fig. 5.26. The bubbles of each block are generated based
on the description in section 5.1.2. The ECN2 bubbles generator consists of GF

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.8 Decoder components architecture 117

and LLR additions while ECN3 and ECN4 consists of GF and LLR addition and
GF permutation. The bubbles are directly mapped to the outputs. The bj, value
taken from the ECN2 bubbles generator block is the offset of the VNs block that
process {V{,...,Vy} while the bjy value taken from ECN3 bubbles generator and
ECN4 bubbles generator blocks are the two offset values of the VNs that process V7,
and V}, respectively.

! 1 -1 ’ "= 1
i]SN i]ECNl i]srxl i]n fll iJSN ijlo i’lO
ECN2 ECN3 ECN4
bubbles N bubbles N bubbles .
generator —*b, generator [ *b, generator [ *b,
]i() 77777777777777 l:319 30 77777777777777 b15 bO 77777777777777 b16
UECNZ[O] UECN2[19] V'IO [O] V'IO [15] Vvll [0] V'll [15]

Figure 5.26: bubbles generator of ECN2, ECN3 and ECN4.

It is important to highlight the fact that, in these ECNs, the offset is predefined which
permits to avoid the extra hardware that detects the last valid symbol of the outputs
that is normally considered as offset.

5.3.1.6 DeBIl Architecture

The DeBl architecture is shown in Fig. 5.27, it consists of two blocks operating in
parallel to perform the following:

1. Decorrelation + GF permutation: this block is to decorrelate every Upgayslil
from U/®[0] by making GF addition, then the generated GF value is inversely
permuted through its multiplication by h;_l. In other word, the GF extrinsic
messages are computed as: V/?[j] = (Ufono[j] @ U[0]).R, i =0,...,9 and
j=0,...,19.

2. VSV checking: this block is to check if the GF symbol Ugqy,[i], 5 =0,..., 19,
is computed from the most reliable GF symbol U;®[0], i = 4,...,9. It operates
as:

V/+[j] = UECNQU] It Ué%vm[j]m =1 (5 6)
’ Sat Otherewise '

This block is removed for {Uj, U, Uy, Ui} since only their most reliable GF
symbol is considered to compute Ugcna[0], - . ., Uscna[19)].

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



118 Proposed parallel and pipelined decoder

ﬁ U [O]ﬁv
UECN2 [0]4» 777777777777 - UECNZ[ 1 9]
-1 -1
hi»% 77777777777777 hi Decorrelation
+

Vi' [0] V’i [19] GF permutation

Ul 0] Sft U [19] Sf;
Upnal 01— MUX__ 7"~~~ Upenal 191>
A8 () VSV checking 7 [19]

Figure 5.27: DeBl Architecture.

5.3.1.7 VN architecture

The proposed architecture of the VN is shown in Fig. 5.28. Note that the range of
the index j is as follows: j = 19 for the V/, i =0,...,9, and j = 15 for V}, and V},.
The LLR extrinsic update block receives {|ys ol,- -, |ys;5|}, {V/[0],...,V/[j]} and
I®[0] to update the extrinsic LLR value V/"[k], k = 0,...,j. The eLLR block archi-
tecture is shown in Fig. 5.29. Each V/?[k][l] is XORed with I;®[0][l], k = 0,...,j and
[ =0,...,5, to check their equality. In case that the two bits are different, the MUX
selects the LLR value |ys, |, otherwise, MUX selects the value 0. Then, all the LLR
values are added to generate Iy/[k]. After that, Iy/[k] is added to V;*[k] to update it.
The Intrinsic regeneration and offset addition block is to regenerate the n,, = 4 intrin-
sic candidates {I/[0],..., I![3]} based on the proposed architecture shown in section
4.1 for n,, = 4. Then, the offset O is added to {I;*[0],..., I/"[3]}. Regenerating the
intrinsic candidates is less complex than storing them in RAMs and then switching
them by SM block.

The Sorter and Redundant Suppression (RS) block is to detect the four updated
messages {U, [0],..., U, [3]} having the lowest LLR values among the set of symbols
{v/[0], ..., V/[4], I{[0], ..., I[[3]} by the j+4-to-5 sorter, and then remove any redun-
dant symbol to obtain the set {U; [0],..., U}, [3]}. The 24-to-5 sorter architecture in
case of 7 = 19 is shown in Fig. 5.30. The sub-sorter is a sorter whose some of its
inputs are already sorted. Fig. 5.31.a) shows the 4-to-4 sorter, Fig. 5.31.b) shows
the 8-to-5 sorter, Fig. 5.31.c) shows the sub 10-to-5 sorter where zo < --- < x4y
and z5 < --- < z9, Fig. 5.31.d) shows the sub 8-to-5 sorter where o < --- < 3 and
xy < --- < z7and finally Fig. 5.31.e) shows the sub 10-to-5 sorter where zq < --- < x4
and x5 < --- < xg. All the sorter blocks are designed based on the odd-even algo-
rithm |55]|. Fig. 5.32 shows the sorter architecture in case of j = 15.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.8 Decoder components architecture 119
{n[0]
n1]
by, [} f 0] w[2]
v g I

Regeneration of the
four intrinsic candidates

R
fi[0] Lif1] 1if2] 1i[3]

7'70]

'

AN AP AIE)
T “T"
0 0 i
o) 1 21 1)

Intrinsic regenration
and offset addition

K'10]

¢ ,,,,,

KU1 0T #01 F121 (3]

A A

'

Jj+4-to-5 Sorter

Ke[0]y = - T{'S[4]¢
RS
Sorter
+ ' ' ’ '
s Unl01 Uy [11 Uy [2] U 3]

Figure 5.28: VN architecture.

Finally, the RS blocks detects the updated messages {U), [0],..., U], [3]} of lowest
LLR values that do not have any redundant GF symbols. The architecture of the
redundant suppression block is presented in Fig. 5.33. Each V/*®[[y] is compared with
VL) (lo=1,...,4, 1, =0,...,1g—1), if V*®[lg] = V*®[l;] then C}, = 1, otherwise,
Cy, = 1. The first output is U}, [0] = V/[0] and the multiplexers select the rest of
outputs based on the control signals {C}, Cy, C3, Cy} as:

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



120 Proposed parallel and pipelined decoder

Vel I =0
V/#[2] Else If Cy =0
U,.[1] = V/*[3] Else If C5 =0 (5.7)
Vs [4] Else If Cy =0
[ (Sat,0)  Otherwise

Vel IEC =0
V5 [3] Else If Cy =1 and Cy, =0
[

vl =40 - - _ (5.9
V5 [4] ElseIf C; =1and Cy, =1 and C3 =0
(Sat,0)  Otherwise
Ve8] O, =0and Co=0
U3 V/*[4] Else If ((C; =1 and Cy =0) or (C; =0 and Cy = 1)) (5.9)

mal = and (C3 =0 and C; = 0)
(Sat,0)  Otherwise
5.3.1.8 NR architecture

The NR architecture is shown in Fig. 5.34. First, all the LLR values U/ [j], i =
0,...,11 and j = 1,2, 3, are normalized as: U!*[j] = U/"[j] — U!*[0] (see the Nor-
malization block in Fig. 5.34). Then, U;"[0] is replaced by the LLR value 0. After

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.8 Decoder components architecture 121

RIS
[ .
M s -
. i 8-to-5 ™
V' [19]» > Sorter ™
VU8l 4104 7 —
V'i [17]-»  sorter :
V' [16]-»
V' [15]-» Sub
, 9-to-5
V4l Sorter
v [13] - .
V' [12}» 8-to-5 >
V' [11}> Sorter [ ™ '
V' (10} > o . RdNSd
V' 9] L, 1 [3]
V' [8}> . IR
Sub [ » ) N[1]
10-to-5 > 1 5[0]
V' [7}» Sorter
V161>
I/vi[s]_> -
, >
V41> 80-5  »
V' [3}» Sorter
V' [2}»> ™
Vi
v [0}~

Figure 5.30: 24-to-5 architecture.

that, the vectors {Uy,...,U;} are reordered as: U; = Uy-1j11-4, © = 0,...,11 (see
the Reordering block in Fig. 5.34).

5.3.1.9 Timing diagram of the CN-VN unit

Fig. 5.35 shows the timing diagram of the CN-VN unit, where two consecutive CNs,
CN; (white color) and CNy (gray color), are shown to show the pipelining approach.
One set of inputs { U, I1, |y|, h, "'} per CC is entering the CN-VN unit for each CN;,
i =0,...,23. The presorting indexes ¥ = {¢[0],...,9[11]} are generated after 3 CCs

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



122 Proposed parallel and pipelined decoder

X3 o xS
X | (V) xS
X (A-b(h) xS
L

a) 4-to-4 sorter

d) Sub 8-to-5 sorter e) Sub 9-to-5 sorter

Figure 5.31: Sorters and sub-sorters architectures.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.8 Decoder components architecture 123

V' [15]-+] JARY
V' [14] . 710]
V' [13}»
V'[12]» 8-to-5
V' [111> Sorter
V' [10}»

V'.[91»

V' [8}»

Sub
9-to-5
Sorter

YYYVY

Sub
10-to-5
V' [7]> Sorter
V' [6] >
V' [5)>
VA 8105
V' [3}» Sorter
v [2)
Ve
v [0}

RERR!

YYVYYY

Figure 5.32: 20-to-5 architecture.

latency. Then, the permuted data U’ = {U},...,Uj;}, II' = {{n{},.... {71 }},
‘y/| = {‘yé‘v ) |yil‘}= h' = {h67 SRR hlll}v h'™! = {h6_17 ) hll_ll} and 17! =
x5y, ... {77'}) are generated after 1 CC latency. After that, the two vectors
Usy and Ugcn are generated after 2 CCs latency. Next, The three vectors Ugcne,
Urcns and Ugcns are generated along with V' = {V{,...,V},} after 1 CC. Then, the
unordered updated messages U, = {U/,...,U;,} are generated after 8 CCs. Finally,
the updated messages U, = {U},...,U;,} are generated after 1 CC. Thus, the total
latency of the CN-VN unit is equal to 16 CCs and it is for one time so the CN-VN

unit starts generating the updated messages of every CN;, ¢ = 0, ..., 23, consecutively
each 1 CC.

The CN-VN unit is pipelined in an optimized way so that the decoder runs at highest
possible frequency.

5.3.2 DMU architecture

Fig. 5.36 shows the DMU architecture, where ¢ = 0,...,11 while 7 = 19 in case of
the DMUs that process {Vj,...,Vy} and j = 15 in case of the DMUs that process

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Proposed parallel and pipelined decoder

[4%* __

2} o=~ R s
=g . T K3 i)
J>—

-
| Vi [4]>
>l Vi [3]» Uy [2]
= c Boee
|
-
, ] -
—> S[3]»

H»:* i 2]+ U [1]

2] c Zf } ’
—>__] 2 'S[1]-»

[0]— CACI
1] c, &
0»== "C

Figure 5.33: Architecture of the redundant suppression block.

it it it it
g ugol Ui U o]
- - - -

it it

0 [2] 2]

—»@« 77777777777777777777777777777777777 —»@«

it it

Ui 13] Ui 3]

*@« Normalization *@«

"""""""""" g'n U"""""""""”l{'n
12-to-1 MUX <y I[11} 12-to-1 MUX _<—y-1[0]
Uy Reordering Ul

Figure 5.34: NR architecture.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.8 Decoder components architecture 125

Caces g™
e (ro (0D
vl

Figure 5.35: Timing diagram of the CN-VN unit.

{Vio, V{1 }. Therefore, the DMU unit consists of three blocks operating consecutively
as:

Control generator: generates the control signals Cyo and C}; are generated, k =
0,...,7. In which, Cy; = 1if V/®[k] = U/®[l], Ci, = 0, otherwise, [ = 0, 1.

Extrinsic LLR update: each V/*[k], k =0,...,7, is updated as:

VITIk]+ UT0] If Cro=1
VITk] = V/TIk] + UT[1]  Elseif Cyy =1 (5.10)
VITIk] + U[2] Otherwise

in addition, one updated message U/[0] is considered in making the decision where its
LLR value is updated as: U;*[0] = U;"[0] + O.

Finally, the decision GF’ is taken by detecting the GF symbol of lowest LLR value
among {V/[0],...,V/[s], U/[0]} using MIN detector block consisting of a tree of com-

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



126 Proposed parallel and pipelined decoder

parators.
Ur 0- e |G 0T
Lo uTree
(Ji’ [1]*%227*6'0,1 (/l'ﬂ“[z] 72‘
1 CO,O*
; CO,]—i
| 0= 0]
blocks% | V/[0] »
| Jrl |
| blocks? |
| | | MIN |, Gp
: [ ‘ i
Ut 0] e @#[0] — o Detector
. ol *C'O . >< i []]—P
WO O -2
UG g Tn iUing
Control generator gjﬁ Detecting GF having
+j,1—7 . Lowest LLR value
Ul K]
+
U'[0]—— »
Extrinsic LLR update

Figure 5.36: DMU Architecture.

After generating the decided GF symbols {GFj, ..., GF;}, their reordering to their
original order is performed by the DMUR block as shown in Fig. 5.37. The set {GFY,
..., GF,} is reordered as: GF; = GF/ 1, ;,i=0,...,11.

Fig. 5.38 shows the timing diagram of the DMU and DMUR units. After 2 CCs
latency from receiving V' = {Vy,...,V{;} and U’ = {V{,..., V], }, the list of decided
GF symbols GF = {GFy,...,GFy;} is obtained. Thus, each clock cycle, one set
of V', U’ is received for every CNg,...,CNy; consecutively to make the decisions

and hence 14 CCs is the required execution time to have the GF decisions on all the
N = 144 VNs.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.8 Decoder components architecture 127

v v
GF, GF

Figure 5.37: DMUR architecture.

Figure 5.38: Timing diagram of the DMU unit.

5.3.3 PTB

Fig. 5.39 shows the architecture of the PTB unit. PTB is to check if the M equations

of the PCM are satisfied as: 4

& (n;.GF;) = 0. (5.11)
i=0
Recalling Fig. 5.38, the decisions on the VNs that are associated to L; are being made
for each CN;, 7 =0, ..., 11, consecutively. Thus, PTB unit-1 shown in Fig. 5.39 starts
processing L; right after that the decisions on the VNs of CN; are made. Therefore,
PTB unit-1 operates as:

Phase 1: The outputs of DMU are selected first by a set of MUXs controlled by Cqr,
ie, {GF},...,GFY{} = {GFy,...,GF1;}. This phase is an idle phase for
PTB unit-2.

Phase 2: Once the set of CNs {CNy, ..., CNy;} is processed, the set of MUXs selects
the set {GF),...,GF},} to be processed. The set {GF},..., GF},} that
comes from the SCRB block shown in Fig. 5.12 is related to the set of CNs
{CNi3,...,CNy7} where one CNj, j =12,...,17, is considered each CC.

The non-zero elements {hy, . .., hi1} are being read from the ROM shown in Fig. 5.15,
so they are delayed to be used in PTB unit-1. Each GFY is multiplied by h; using a
set of 12 GF multiplications. Then, the results are added by a tree of 11 GF adders.
Note here that the addtition symbol denotes a GF adder, i.e., a simple XOR gate.
The result GF* belongs to GF(64), i.e, it consists of 6 bits. If GF* = 0, then the
parity check is satisfied. The result of the test is stored in its appropriate register
where each register is related to one CN. In more details, when checking the validity

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



128 Proposed parallel and pipelined decoder

PTB unit 1

PTB unit 2 G,

Figure 5.39: SD architecture.

of CN;, 1 =0,...,17, the MUX that is controlled by Cy selects the result of the OR
gate that is associated to CN; to be saved in R;.

PTB unit-2 operates in parallel with PTB unit-1 where only the set {GF;, ..., GFj;}
is considered. The set {GFy, ..., GF},} that comes from the SCRB block is related
to the set of CNs {CNyg, ..., CNy3} where one CN;, j = 18, ..., 23, is considered each
CC. The required non-zero elements {hy, ..., hi11} are read from the ROM block dur-
ing the processing of PTB unit-2. Thus, the ROM shown in Fig. 5.15 is a dual-port
ROM. The functionality of PTB unit-2 is the same as PTB unit-1 where the bit that
indicates the validity of CN; is saved in R;, 7 = 18,...,23.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.4 Timing diagram of the global decoding process 129

After that all the registers Ry, ..., R;; are filled, their results are NORed to check
if the M = 24 equations are satisfied. Thus, the stop signal sy, takes the value 1
when all the 24 registers are filled with zero, i.e, all the 24 equations are satisfied,
otherwise, sio, takes the value 0. Note that this circuit could be simplified by using
only a 2-input OR gate that receives: 1) the output of the 6-input OR gate and 2)
a feedback from a register placed at its output. This will be one of the optimization
that could be done in the next version of the decoder.

Fig. 5.40 and Fig. 5.41 show the timing diagram of the PTB unit during phase
1 and phase 2 respectively. In phase 1, the outputs of the DMU block GF =
{GFy,...,GFy;} are directly considered along with their appropriate non-zero ele-
ments h = {hyg, ..., hi;}. During this phase, the 12 equations associated to CNy, ...,
CNjy; are checked and the results are saved in Rg,...,Rq;. Then, after that all the
N = 144 GF decisions are made, the equations associated to CNig, ..., CNy3 are
checked during phase 2. In this phase, PTB unit-1 and PTB unit-2 operate in parallel
to check the equations associated to CNyg, ..., CNy; and CNyg, ..., CNag respectively.
After 18 CCs when the 12 registers are filled, the result s, is generated by the NOR
gate.

12 CCs

Figure 5.40: Timing diagram of PTB phase 1.

5.4 Timing diagram of the global decoding process

The decoder is designed to be able to overlap the processing of two consecutive frames,
which permits to increase the degree of parallelism and thus the global throughput
rate. Fig. 5.42 shows the timing diagram when two frames are being processed. The
decoder starts processing an iteration of frame 2 immediately after processing an it-
eration of frame 1 where M = 24 CCs is the latency of one iteration. For instance,
let us consider that two iterations are required to decode frame 1 while 3 iterations
are required to decode frame 2. The decoder starts processing the first iteration of
frame 1, then the decoder starts processing the first iteration of frame 2, after that
the decoder starts processing the second iteration of frame 1 where the PTB block
will indicate that the 24 equations are satisfied so stop processing frame 1. Thus, the
observed symbols of frame 3 start entering the decoder in parallel with the processing

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



130

Proposed parallel and pipelined decoder

Phase 6 CCs
2
CN,,
fffffffffffffffffffffffffffffffff G
fffffffffffffffffffffffffffffffff i
fffffffffffffffffffffffffff "
6 CCs ]

Figure 5.41: Timing diagram of PTB phase 2.

the second iteration of frame 2 as shown in Fig. 5.43.

Frame 1 Frame 2
Update L1 > Update L2 Update L1 > Update L2
,,,,,,,, 16CCs
Outputs L1 > Outputs L2 >< Outputs L1 >< Outputs L2
9 CCs 12 CCs
DMU
PTB

Figure 5.42: Timing diagram of the decoder in case of processing two frames simul-

taneously.

As we mentioned in section 5.2.2, the required data of the VNs that are connected to
CNy will be ready after 19 CCs. As Fig. 5.43 shows, the stopping decision of frame 1
is made after 9 + 1 + 18 = 28 CCs, i.e, the CN-VN unit still have 19 CCs to process
frame 2 and hence CN-VN unit can start processing the first iteration of frame 3 right
after frame 2. For that, 8 observed symbols are received in parallel to be able to start
processing next frame just after the current one. This parallelism in the simultaneous

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.5 Implementation results 131

processing of two consecutive frames requires the duplication of the intrinsic RAMs
and extrinsic RAMs to store the data of two frames.

Frame 3
A8
,,,,,,,, 17CCs___
Yo Yy ) age yl})/kll%'“ Vi
,,,,,,,,,,,,,, 006
LLR Generator Blocks ‘
,,,,,,,,,,,,,,,, 8CCs
2\ Write intrinsic data in RAM Banks
CCs
Frame 1, second iteration Frame 2, second iteration
oM |
Inputs CN-VN (Read from RAM Banks) # Inputs CN-VN (Read from RAM Banks)
,,,,,, 6CCs_ . WCCs. |
LOutputs CN-VN (write updated data in RAM Banks) LOutputs CN-VN (write updated data in RAM Banks)
C9CCs 12CCs_
DMU # DMU
o 18CCs
1 CCL §
PTB top PTB

Figure 5.43: Timing diagram of the decoder in case of interleaving frames.

To summarize, looking at the global execution of the decoder, the latency of preparing
the data (shown in Fig. 5.16) as well as the 16 CCs latency of the CN are not counted
when evaluating the execution time of the decoder that has a direct impact on the
throughput rate. We also note that without the duplication of the RAMs, that allowed
the parallel processing of two consecutive frames, the 16 CCs latency of the CN have
to be counted as part of the execution time at each iteration. This is due to the fact
that CNo3 and CNj share the same variable VN5, which prevent the start of the
second iteration till the Ly processing has been finished. Thus, M = 24 CCs is the
latency of one iteration.

5.5 Implementation results

Table 5.1 shows the synthesis results of this work where it is called Fully Parallel
Hybrid Decoder (FPHD) compared to three state-of-the-art decoder architectures

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



132 Proposed parallel and pipelined decoder

[29, 58,59]. We chose to compare with these three works since they provide high
throughput and adopt the parallel approach in their architectures. Refer to section 2.6
to recall the overview of these works. Note that our discussion of the implementations
results and namely the throughput efficiency calculation, we refer to Fig. 5.10 that
shows the average number of iterations needed for our decoder and that varies with
Ep/No.

Table 5.1: COMPARISON OF STATE-OF-THE-ART NB-LDPC DECODERS
(ASICs).

[29] [58] [59] FPHD
Technology 40 nm 90 nm 65 nm 28 nm
Design Synthesis | Synthesis Silicon Synthesis
N (symbols) 3888 837 160 144
CR 8/9 13/15 1/2 5/6
GF 4 32 64 64
Decoding Algorithm T-EMS | IL-MwBRB EMS EMS
Decoding schedule Layered - Flooding | Flooding
Gate Count (NANDs) 4M 4.54M 2.78M 0.79M
Frequency (MHz) 1000 207.04 700 650
[terations 10 10 10-30 1-30
Throughput (Mb/s) 3600 21661.56 1221 1060-19500
Thr((ﬁiig‘/‘f\fgfgf;‘;ncy 900 ATTL27 | 439.2 | 1341-24683

Thus, comparing FPHD with:

[29]: FPHD consumes 0.79 M NAND gates while [29] consumes 4 M. On the other
hand, FPHD runs at 650 MHz while [29] runs at 1000 MHz. The number of
iterations in [29] is fixed to 10 while it varies between 1 and 30 in FPHD. In
terms of throughput, FPHD outperforms [29] starting from E,/No = 3.7 db
where FER =~ 1072. However, the area efficiency of FPHD is better for all
Eb/NO > 3 db.

[58]: Our proposed decoder allows a saving of NAND gates of a factor equal to 5.74. In
addition, a factor gain equal to 3 is obtained in terms of frequency. On the other
hand, [58] outperforms FPHD in terms of throughput for all cases of E;/Nj.
However, in terms of throughput efficiency, FPHD starts outperforming [58]
from E,/Ng = 3.7 db where FER ~ 1072 in which the throughput is equal to

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.6 Hardware emulation

133

about 4 Gbits/s. Hence, the area efficiency is equal to 5063. Again, the number
of iteration in [58] is fixed to 10.

[59]: There are 1.99M NAND gates less in FPHD than [59]. While there is 50 MHz
difference in terms of frequency in favor of [59]. However, FPHD decoder pro-
vides better throughput for all cases of E;, /Ny > 3 db and hence better hardware
efficiency in a factor ranging from 4.6 up to 56. The average number of iterations
in [59] varies from 10 to 30 while in FPHD it varies from 1 to 30.

Table 5.2 shows the synthesis results on Virtex 6 FPGA target. OS is the number of
occupied slices, LUTs is the number of slice look up tables and SR is the number of
slice registers. FPHD consumes 27.3$ of LUTs and run at F = 128 MHz.

Table 5.2: Synthesis results on Virtex 6 xc6v1x240t-2ff1156 FPGA device.

oS

LUTs

SR

F (MHz)

22827

65821

25704 128

5.6 Hardware emulation

In order to verify the software simulation results described in section 5.1, we have
designed an emulation chain based on a FPGA core Kintex 7. A complete digital
chain has been implemented. Some parts were designed using the High Level Synthe-
sis (HLS) tool VIVADO using the System C toolkit and the other parts were coded
in VHDL. VIVADO Tool permits to translate the System-C based blocks into VHDL
description code that will be synthesized on FPGA device.

Ebf%

Symbol

enable -

OS

Mbps

LLR

generator | (Geneartor

Ebits

| L

ow

Eﬁames

Figure 5.44: Overall hardware emulation architecture.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



134 Proposed parallel and pipelined decoder

Fig. 5.44 shows the overall architecture of the hardware emulation design. The blocks
in white color are described using systemC language while the blocks that are color
are described using VHDL language. The LLR Generator block, the CN-VN block
and the DMU block were described in details in this chapter. Thus, the remaining of
blocks are:

1. Symbol generator: Fig. 5.45 shows the architecture of the symbol generator
block. The enable signal indicates when to begin the emulation and the E; /Ny
is the energy per bit to noise ratio of the emulation. The randc block generates
six random values, then from them, six AWGN noise samples are generated.
Then, the noise samples are added with the 6 BSPK bits, i.e, {—1.0,1.0}, where
six bits are read from the Encoded Modulated Bits ROM (EMB-ROM) block
that stores a codeword generated using a LDPC encoder and a BPSK modulator.
The content of this EMB-ROM is recorded during the Monte Carlo simulations
conducted using the C-based simulator of the chain being run on a PC. Thus,
a codewords that has been decoded using the C-simulator will be emulated in
hardware. The stored codeword is an array of size N = 6 x 144 = 864 bits.
After that, the six noisy bits are quantified by the Q block on 5 bits. Finally,
the Input Wrapper (IW) block collects the six quantified noisy bits and send
them as Output Symbol (OS). The LLR generator receives OS to generate the
n,, = 4 intrinsic candidates.

EbiNO
6 random values 6 noise samples
randc "IAWGN| Add
six
noisy
bits
EMB-ROM 6 BPSK 0
) modulated bits .
enable SIX
quantified
noisy
4 bits
w
(O

Figure 5.45: Symbol generator architecture.

2. The Intrinsic Storage (IS) block: in this block, the required intrinsic information
are stored. See section 5.2, intrinsic RAMs paragraph.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.7 Conclusion 135

3. The Extrinsic Storage (ES) block: in this block, the n,, x N =4 x 144 = 576
updated messages are stored. At the beginning, this block is initialized by the
intrinsic messages.

4. The DMU Storage (DMUS) block: this block is to store the decisions made on
the 144 VNs.

5. The PTB block: this block is to check if the 24 equations are satisfied. The
reason that it is systemC coded is to make it generic for any size NB-LDPC
codes.

6. The Output Wrapper (OW) block: this block reads the output from the DMUS
block when all the equations are satisfied or after 30 iterations of processing.

7. The Throughput Error Computation (TEC) block: in this unit the throughput
of the hardware emulation Mbps, the number of erroneous bits Ey;s and the
number of erroneous frames Eg,mes are generated. The considered codeword is
stored in this block to be used in computing Epits and Egames-

The IS, ES and PTB blocks are generic coded so they can be reconfigured for any
NB-LDPC codes of d. = 12. Fig. 5.46 and Fig. 5.47 show the simulation and the
emulation results of the proposed decoder in case of n; = 30 for FER and BER
versus E;, /Ny respectively. We can see that there is no performance loss between the
simulation and the emulation results in both FER and BER curves.

The last version of the hardware emulation architecture achieved a throughput Mbps
= 500 Mbits/s running at F' = 100 MHz in Virtex 7 FPGA target. Improvements are
done on IS and ES where their latency is highly reduced and hence better throughput
is expected.

5.7 Conclusion

This chapter was dedicated to the proposed fully parallel and pipelined NB-LDPC
decoder for d. = 12. The code structure was shown first where the parameters of the
considered NB-LDPC code are introduced, N = 144, M = 24, ¢ = 64 and CR = 5/6.
Then, the decoding algorithm was described in details, the number of considered bub-
bles in each ECN was given along with its shape. We showed that there was 0.08 db
performance loss when comparing the proposed decoder n;; = 30 with the FB-CN lay-
ered schedule with n;; = 8. However, we showed that there was 0.05 db performance
gain when comparing with the FB-CN flooding schedule with n;; = 8.

Then, the overall architecture of the proposed decoder was shown. The core of the
decoder is the CN-VN block where the CN and VN processing are being performed.
The CN-VN block was surrounded by the RAM banks, the DMU block and the PTB
block. Then, we showed the structure of the intrinsic and extrinsic RAMs and the
ROM block. We presented the timing diagram of the decoder during both launch and

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



136 Proposed parallel and pipelined decoder

100/ T T T T T T T T T
~1 — 3-- Proposed, Simulation, nit=30

1071 3 NS —©- - Proposed, Emulation, n,=30 | 4

FER
/

10_6 E N3

1 1 1 1 1 1 1 1 1

107
3 32 34 36 38 4 42 44 46 48 5

E/N, (dB)

Figure 5.46: Simulation and emulation results of NB-LDPC decoding algorithms for
(864, 720) code over GF(64) and d. = 12 under AWGN channel (FER versus E;, /Ny).

107 ‘ ‘
‘t§\\ — g-- Proposed, Simulation, nn=30
Tl — - Proposed, Emulation, n._=30
2k S it i
102 -
; B
‘\~
el
10-3 ? ‘\‘\\‘ 3
£ S
\~
i I e
T a4l ) ]
104 ST
\«
. \*\h
105 F ey 5
F N
108 o
107 * *
3 3.5 4 45
Eb/NO (dB)

Figure 5.47: Simulation and emulation results of NB-LDPC decoding algorithms for
(864, 720) code over GF(64) and d. = 12 under AWGN channel(BER versus Ej;, /Ny).

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



5.7 Conclusion 137

updating phases.

Next, we presented the architecture of each component of the decoder. We started
with the CN-VN block where the HB(10,0,2) was considered for the CN processing.
Then, we showed the architecture of the DMU block where the decisions on the 144
VNs are made based on L; in PCM. Finally, the architecture of the PTB block was
presented where the satisfaction of the 24 equations are checked.

After that, the timing diagram of the global decoding process was shown. We showed
that the processing of the frames was interleaved so that the decoder processes two
frames simultaneously. Interleaving the processing of the frames allows to avoid the
19 CCs latency of the launch phase and the 16 CCs latency of the CN-VN block.

The synthesis results showed that the proposed decoder provides important through-
put and hardware efficiency. We showed that the throughput and the hardware ef-
ficiency are related to the average number of iterations and hence to E,/Ny. Thus,
starting from E, /Ny = 3.7 db where FER = 1072, the throughput efficiency of the
proposed decoder outperforms its counterpart decoder architectures for different NV,
CR and GF values

Finally, the high level of the hardware emulation design was shown. We presented the
AWGN channel along with the quantization operation which systemC coded to have
a model that can be implemented in hardware. The design was tested on Kintex 7
FPGA device. We showed that the simulation results are too close to the emulation
results. The throughput of the hardware emulation reached 500 Mbits/s.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Chapter 6

Conclusion and perspectives

6.1 Conclusion

This thesis has addressed the hardware design of a high throughput rate NB-LDPC
decoder. Knowing that the optimization during the phase of hardware design is not
sufficiently efficient, we have carefully reviewed the algorithmic optimization of the
most important existing decoding algorithms.

After a careful investigation of the state-of-the-art NB-LDPC decoders, we have con-
sidered the EMS-based decoder for two reasons: 1) it is one of the most important
sub-optimal decoders; 2) there is still room for algorithmic optimization. The focus
was on the reduction of the messages being processed by the decoder, hence enabling
the reduction of the hardware complexity and thus guaranteeing the freedom for higher
degree of parallelism while designing.

In this context, we reviewed two main approaches for designing a CN: FB-CN and
SB-CN, where FB-CN operates serially using a network of S-bubbles while SB-CN is
based on parallel processing of messages. Both approaches have been re-implemented
using the technique called "pre-sorting" applied to the messages entering the CN.
Based on the LLR values, this pre-sorting technique permits to classify the entering
symbols into two categories: 1) high reliability candidates and 2) low reliability candi-
dates. The high reliability candidates carry out an inherent high entropy which helps
the elimination of a large amount of their competitor candidates. However, the low
reliability candidates, due to the low entropy they are carrying, they compete between
them and this high competition requires a high computational complexity to identify
the most reliable candidate. We showed that the pre-sorting technique allows a high
complexity reduction of the FB-CN up to 54.

We then formulated our design strategy as: better algorithmic optimization, less com-
putation, lower hardware complexity and more opportunities for parallelism. From
this perspective we have proposed new CN architecture called EF-CN inspired by the
SB-CN approach but with reduced complexity, increasing linearly (not exponentially
as in SB-CN) with d.. In order to allow further complexity reduction, we have com-

139

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



140 Conclusion and perspectives

bined the EF-CN and FB-CN where some ECNs have been implemented allowing
the reduction of the number of bubbles being processed and the execution time as
well. A hybrid CN (HB) was then proposed and implemented efficiently with different
configurations using the pre-sorting technique. The simulation results showed that
the HB(6,4,2) gives similar performance as compared to FB-CN when designed over
GF(64), while over GF(256) HB(5,5,2) is preferred to obtain same performance. The
synthesis results confirmed the lower complexity of the EF-CN and HB-CN as com-
pared to the FB-CN. The selection between the different HB configurations depends
on the desired performance, throughput rate and area efficiency.

In order to avoid useless CN processing, we have introduced the "CN skip processing"
approach that permits to skip the CN intended to be processed if the parity test of
the symbols entering the CN is satisfied.

In addition to the CN optimization, we have proposed a new model of the VN. In this
model, the redundancy elimination process is merged with the sorter, which implied
some hardware reductions. The proposed VN has been implemented and the ASIC
synthesis results showed that it consumes less area and operates at higher frequency
compared to the VN proposed in [7].

Being of high importance and of high impact on the throughput of the decoder, the
LLR generator and sorter have been carefully re-designed. We have proposed a new
parallel pipelined architecture of LLR generator able to generate the n,, potential
candidates in only 3 clock cycles offering a gain factors up to 4 in terms of hardware
efficiency, and up to 15 in terms of throughput rate. Note that the latency depends
on the number of pipeline layers. The specific case for n,,—4 has been implemented
in the proposed decoder prototype. We have also proposed a new parallel sorting
algorithm to extract the two extrema values among N,. Compared to the existing
architectures, the proposed architecture requires the lowest area and offers the highest
frequency, where an area efficiency ranging from 1.17 up to 2 is obtained. We have
also considered the generalization of the proposed algorithm to extract more than 2
extrema values.

Finally the global architecture of the NB-LDPC decoder was introduced. We have
considered a Quasi-cyclic (120,144) NB-LDPC code, d,—2 and d.=6, code rate=>5/6.
The decoding algorithm has been described along with all the detailed specifications
of the CN and VN parameters, and simulated using the flooding schedule. The aver-
age number of iterations at different SNRs has been calculated. The layered-schedule
was not adopted since it would introduce idle time in the decoding process imposed
by the VN and CN dependency. Compared to the FB-CN-based decoder with n;;=8
layered schedule (resp. flooding schedule), the proposed decoder, with flooding sched-
ule and n;;=30, introduces a performance loss of 0.08 dB (resp. a gain of 0.05 dB).
The proposed architecture has been synthesized on 18 nm ASIC technology and com-
pared to three state-of-the-art decoder architectures [29,58,59]. In terms of area, i.e.
NAND Gates consumption, the proposed decoder offers reduction factors of 5, 5.7

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



6.2 Perspectives 141

and 3.5 when compared to [29, 58, 59| respectively. In terms of throughput efficiency,
the proposed decoder starts to outperform [29] at Eb/N0—=3 dB, [58] at 3.7dB and
[59] at 3dB. This work has been ended by the design of an emulation chain using the
high level synthesis tool VIVADO, where the AWGN channel has been modeled us-
ing sytemC. The obtained emulations results matched the software simulation results.

6.2 Perspectives

The work presented in this report does not totally close the topic of efficient NB-LDPC
decoding implementation. There are still several development tasks to be considered:

e We believe that the optimization effort of the Hybrid architecture is not fully
completed yet. There is still some freedom to optimize the architecture. In this
direction, we would particularly focus our effort on the Variable Node architec-
ture.

e Optimization of parallel Hybrid architecture for all value of d. and GF(q).

e Automatic generation of the hardware architecture from a given NB-LDPC ma-
trix.

e Develop a generic hardware architecture able to process a large variety of NB-
LDPC codes in terms of code rate, GF order, size, ..., etc.

Table 6.2: Example of messages used for EMS

Moreover, there are two competing algorithms to decode at high speed NB-LDPC
so far: the Hybrid architecture and the T-MM architecture [51|. If both algorithms
target a simplified check node algorithm, they are almost orthogonal in the way of
processing the incoming messages. For example, in the example of Table 6.1, the gray

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



142 Conclusion and perspectives

cells show the incoming information used by the Trellis EMS algorithm while Table
6.2 shows the incoming information used by the EMS algorithm for n,, = 2. In the
T-EMS there are two values used per row, while in the EMS there are two (n,, in the
general case) values used per column. A first direction of investigation would be hav-
ing an accurate comparison between those two architectures in terms of complexity,
flexibility, decoding performance, ..., etc. Later, an investigation direction would be
to merge those two approaches to propose new and hopefully more efficient algorithms.

Finally, all the work presented in this thesis has been applied for NB-LDPC only. An

interesting research direction would be to see if the acquired knowledge can also be
applied for other type of Non-Binary code like the Non-Binary Turbo-code [94].

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Chapter 7

Appendix A

A.1 Introduction of the Galois field

Modern algebra is characterized by a high level of abstraction. Indeed, classical alge-
bra studies N, Z, R and C sets, built with arithmetic operations such as addition and
multiplication. As for modern algebra, the notion of operation (or rule of composi-
tion) takes on a more complex dimension and it is defined as an application which, in
generalized sets, associates two or more symbols with another symbol. Coding theory
has taken advantage of this abstraction to extend the definition of error-correcting
codes to set new classical sets than the mentioned above. In this thesis manuscript,
we are particularly interested in the case of non-binary LDPC codes defined on the
Galois Fields (GF). In order to give a complete definition of the Galois fields, we begin
by describing the basic algebraic structures with rules of internal composition. The
content of this section is mainly extracted from [8], [9], [10] and [11].

A.1.1 Algebraic structures

Let us consider two sets E and K.

Definition 1.1. A law of internal composition on E is an applied operation on a
couple (x,y) € E x E that gives an element z € E.

Definition 1.2. A law of external composition on E is an applied operation on a
couple (x,y) € K x E that gives an element z € E.

A law of composition is generally noted «x». We particularly distinguish the additive

law noted «+» and the multiplicative law noted «.». We call compound of an element
x by an element y, the unique element x *x y associated to the law «x» of the couple

(z,y).

143

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



144 Appendiz A

Definition 1.3. A basic algebraic structure is a set provided with one or more laws
of internal composition.

Definition 1.4. An algebraic structure S is finite if it contains a finite number of
elements. The number of elements of S is then denoted |S| and it is called the order
of the algebraic structure.

A.1.2 The groups

Definition 1.5. A group is a set G with a law of internal composition «x» as :

> «x» is associative : Ya,b,c € G, (a*b) *x c=ax* (bxc).

> «x» has a neutral element e € G : Va € G,a*xe = e *a.

> Va € G there is a symmetric element b€ G : axb=bx*xa = e.

Group G becomes abelian (in honor of Niels Abel) if «x» is also commutative: Ya,b €
G,axb="bxa.

The neutral element e is unique. In addition, Va € G, its symmetrical b is unique. The
associativity of the law of composition guarantees that the expression a; * as * - - -* a,
represents a unique element of GG regardless the position of the parentheses.

The group G will be called additive in case of using the additive notation of the law
of composition.The symmetric element of a (or the opposite of a) is then noted —a
and the neutral element is denoted 0. In case the multiplicative notation is used, the
group will be called multiplicative, the symmetrical element of a (or the inverse of a)
is denoted a~! and the neutral element is denoted 1.

We use the following definitions to indicate the n-times compound of an = element
with itself :

> Notation of additive : nx =z 4+ x + --- + x, n times.

> Notation of Multiplicative : 2™ = x.x. ... x, n times.

Table TA.1 gives some conventional rules for the two multiplicative and additive no-
tations.

Subtraction and division operations are defined as a function of the symmetric ele-
ment :
> Subtraction : a —b=a+ (-b) .

... a _
> division : 5 =a.b’t.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



A.1 Introduction of the Galois field

145

Table TA.1: Conventional rules of both multiplicative and additive notations

Notation of Multiplicative

Notation of additive

a® =1
a=(a" )"
a™tm = a".a™

anm — (an)m

0a =0
(—n)a = n(—a)
(n+m).a =n.a+m.a
(nm)a = n(ma)

A.1.3 The rings

Definition 1.6. A ring (A,+,.) Is a set with two laws of internal composition «+»
and «.» such that :

> A with «+» is an abelian group.

> «.» is associative : Ya,b,c € A, (a.b).c = a. (b.c).

> «.» is distributive to «+» : Ya,b,c € A, (a+b) .c = a.c+b.c and c. (a + b) = c.a+c.b.
> «.» has an neutral element.

> A is commutative if «.» is commutative : Ya,b € A : a.b = b.a.

The neutral element of «+» is noted 0 and so for «.» is noted 1. We use «+» and
«.» to indicate that the two laws of internal composition of a ring satisfy some of the
properties of addition and multiplication of the relative integer numbers. However,
we must always keep in mind the definition of a composition law given in subsection
1.1.1.

A.1.4 Congruence and modular arithmetic in Z

Definition 1.7. Let a and b two integers, and n s strictly positive integer.

> We say that a is congruent to b modulo n if n divides a — b. We use the nota-
tion a = b (mod n).

> a = b (mod n) means in an equivalent way that b is the rest of Fuclidean divi-
sion of a by n. We use the notation p = a mod n.

We then get the following equivalences:
a=b(modn) <= Ik e€Z/a=b+kn <= b=amodn.

> The additive operation of a and b modulo n is of definition :
a®, b= (a+b) modn

> The multiplicative operation of a and b modulo n is of definition :
a®, b= (a.b) mod n.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



146 Appendiz A

Table TA.2: modulo 2 addition

@201
0 1
11110

Particularly, the addition and multiplication operations in the set Zy={0, 1} corre-
spond to the two logical functions XOR and AND as it is shown in Table TA.2 and
Table TA.3.

It is simple to prove that, in general, the set Z,={0, 1, 2, ... , n-1} provided with
both laws of internal composition & and ® forms a commutative ring.

A.1.5 GGalois field

Definition 1.8. A field (C,+,.) is a set with two laws of internal composition «-+»
and «.» such that :
> C with «+» is a commutative ring.

>Va#0€C,3at € Claat =1,

Definition 1.9. A finite field is a field having a finite number of elements. A finite
field is usually called Galois field and it is noted as GF. The order (or cardinal) of a
Galois field is the number of its elements.

It is easy to demonstrate that the commutative ring (Zo, @2, ®2) forms a Galois field
of order 2. In general, we can prove that for any prime number p, the commutative
ring (Z,, ®,, ®,) is a Galois field of order p and it is denoted GF(p).

Definition 1.10. Let C is a field and K is a subset of C. If K of laws of internal

composition is also a field then we say that K is a subfield of C. Equivalently, C is
called extension of body K.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



A.1 Introduction of the Galois field 147

We can show that for any prime number p and any positive integer m, the commuta-
tive ring (Zym, Bpm, ®pm) forms a finite field. Z,» is an extension of the Galois field
GF(p). It is also called Galois field of order ¢ = p™ and it is denoted GF(gq). In
particular, Galois fields of order ¢ = 2™, with m is a positive integer, are of great
interest in practice, particularly in coding theory. Indeed, as we will show below, an
element belongs to a Galois field GF(2™) can be uniquely represented in the form of
a binary symbol of m bits.

Definition 1.11. We say that a set is closed for an operation if this operation always
produces an element of the set when it is applied to any element belongs to it.

A Galois field GF(g) is closed for the two internal compositions @, and ®j.
A.1.6 The polynomials on GF(q)

Definition 1.12. A polynomial f defined on the Galois field GF(q) is an expression
of the form :

FX) =B X"+ Bua X" 4+ B1X + o

In which the coefficients p;, i = 0,1,...,n, are elements belong to GF(q) and X is
a formal symbol called indeterminate polynomaial. the positive integer n is called the
degree of the polynomial and it is noted deg(f).

Definition 1.13. Lets take two polynomials f(X) = > ja; X" and g(X) = > b; X"
where m < n. the polynomial g(X) can be formulated like g(X) = Y1 b; X" consid-
ering that the coefficients b; are nulls for all i > m. the following definitions will be
obtained :

> f=g if and only if Vi € 0,1,...,n,a; = ;.

> The additive operation defined on the polynomials is :

n

FX) +9(X) = (i @y bi) X'

=0

> The multiplicative operation defined on the polynomials is :

n+m
f(X).g(X)= Z cx X®, where ¢, = @ a; @qb;
k=0 i+j=k

1€{0,1,...,n} and j€{0,1,...,m}

> The set F,|X] of polynomials of indeterminate X and coefficients in GF(q) with
the multiplication and addition operations are rings.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



148 Appendiz A

The theorem of Euclidean division can be generalized on polynomials. Thus, if ¢ is
a non-zero polynomial in F,[X] then for every polynomial f of F,[X] there are two
polynomials ¢ and r in F,[X] such that :

f(X) = q(X).g(X) +r(X), where deg(f) < deg(g)

Definition 1.14 Let f and g € F,[X] are two polynomials.

> We say that g is a divider of f if there is a polynomial q € F,[X] such that
f(X) = q(X).9(X).

> f is irreducible in F,[X]| if deg(f)>0 and f can not be factored by multipli-
cation of two polynomials of degree > 0 each. In other word, if f=q.g then
deg(q) =0 or deg(g) = 0.

> an irreducible polynomial f of degree m is primitive if X™ + 1 = f(X).g(X)
implies that n > 2™,

> An element 5 € GF(q) is a root of polynomial f € F,[X] if f(5)=0. In equivalent
way, we can prove that B is a root of f if the polynomial (X-5) is a divider of f.

A.1.7 Construction of the Galois field GF(2")

Let p is a primitive polynomial of degree m and coefficients in GF(2). This polynomial
does not have a root in GF(2). However, in abstract algebra, we can imagine that it
has a root in another set (by analogy to polynomials with coefficients in R that may
have one or more roots in C). We consider the two elements 0 and 1 in GF(q) and the
new element 5. Defining the multiplicative operation denoted «.» as the following :
> 0 is the absorbent element of the multiplication : 0.6 =5.0=0.1=1.0=0.0=0
> 1 is the neuter element of the multiplication : 1.6 = 5.1 = and 1.1 =1

> The composition n-times of the element S with itself is noted £, = 8.5. ... .5.. By
convention By = 1.

> Vi, 7 €N, 5.8, = B;.8i = Biyj

p is being a primitive polynomial of degree m implies :

X 41 = g(X).p(X)

By replacing X by 3, we will obtain

Pam_1+1=q(B).p(B) =q(B).0=0

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



A.1 Introduction of the Galois field 149

And then fym 1 = 1. Consequently, the set F' = {0,1,5,0s,...,02m o} with the law of
«.» is a finite set of order 2.

Through this section, we will show that the set F', with the law of multiplication «.»
and the law of addition «+» forms a Galois field of order 2.

We begin by defining the law of addition so that (F', +) forms an abelian group. For
this, we observe that each element (; of F' can be represented in a unique way by a
nonzero polynomial of degree strictly inferior to m. Indeed, the Euclidean division of
the monomial X% ¢ = 0,1,...,2™ — 2, by p gives X’ = ¢;(X).p(X) + a;(X), where
ai(X) = aip + an X + aipX? + ... + a;(m-1)X™ " and the coefficients a;; € {0,1}. The
polynomials a;(X) are necessarily non-zero because X* and p are prime with each
other. Moreover, it is easy to prove that a;(X) # a;(X) if i # j. Since f is a root
of pso B; = a;(B),1 =0,1,...,2™ — 2. We just shown that each non-zero element of
F' is represented by a polynomial a;(X). By convention, the element 0 of F' is rep-
resented by the null polynomial. Each element of F' also has a binary representation
considering only the coefficients of its polynomial representation. The law of addition
is defined as follows :

> 0-+0=0

> 0 is the neutral element of the addition : 0+ 3, = 3, +0= ;1 =0,1,...,2™ — 2
> B+ B = ai(B) + a;(B) = Spy (agm a2 bj) X1,0 < i, j < 2m — 2.

It is easy to prove that the set (F,+,.) is a commutative ring. Moreover, we observe

that 5.6, = B(itjymod@m—1)- It means that each non-zero element 3; of I has an
inverse equal to Som_1_;. In conclusion (F,+,.) Forms a Galois field of order 2.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Publications

H. Harb, C. Marchand, A. A. Ghouwayel, L.. Conde-Canencia, and E. Boutillon, " Pre-
sorted forward-backward NB-LDPC check node architecture," in IEEE International
Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

Titouan Gendron, Hassan Harb, Alban Derrien, Cédric Marchand, Laura Conde-
Canencia, Bertand Le Gal and Emmanuel Boutillon, "Demo: Construction of good
Non-Binary Low Density Parity Check codes", Demo night at SIPS’2017, Lorient,
France, Oct. 2017.

C. Marchand, H. Harb, E. Boutillon, A. Al Ghouwayel, and L. Conde-Canencia,
" Extended-forward architecture for simplied check node processing in NB-LDPC' de-
coders," in IEEE International Workshop on Signal Processing Systems (SiPS), Oc-
tober 2017, Lorient, France.

Cédric Marchand, Emmanuel Boutillon, Hassan Harb, Laura Conde-Canencia and

Ali Al Ghouwayel, "Hybrid Check Node Architectures for NB-LDPC Decoders", Ac-
cepted in [EEE Transactions on Circuits And Systems-I, August 2018.

Hassan Harb, Emmanuel Boutillon, Bertrand Le Gal, "Real-time evaluation of NB-
LDPC codes thanks to HLS-based hardware emulation", Demo night at DASIP’2018,
Porto, Portugal, Oct. 2018.

Ali Al-Ghouwayel, Member, IEEE, Hassan Harb and Emmanuel Boutillon, Senior
Member, IEEE, " First-Then-Second Extrema Selection,". Submitted.

Hassan Harb, Ali Al Ghouwayel, Cédric Marchand, Laura Conde-Canencia, Em-
manuel Boutillon, " Throughput Rocket EMS NB-LDPC Decoder Based On A Parallel
And Pipelined Architecture,". In preparation.

Hassan Harb, Ali Al Ghouwayel and Emmanuel Boutillon, " Parallel pipelined LLR
generator,". In preparation.

151

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



152 Appendiz A

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



Bibliography

[1] R. G. Gallager. Low-density parity-check codes, Cambridge, MA: MIT. Press,
1963.

[2] The Digital Video Broadcasting Project. http://www.dvb.org/.

[3] The 3rd Generation Partnership Project. http://www.3gpp.org/.

[4] Jeffrey G Andrews, Arunabha Ghosh, and Rias Muhamed. Fundamentals of
WiMAX : understanding broadband wireless networking., Prentice Hall, Upper
Saddle River, NJ, 2007.

[5] Claude Elwood Shannon and Warren Weaver. The mathematical theory of com-
munication., University of Illinois Press, Urbana, 1964.

|6] Shu Lin. Error control coding : fundamentals and applications., Pearson-Prentice
Hall, Upper Saddle River, N.J, 2004.

|7] Oussama Abassi, Laura Conde-Canencia and Emmanuel Boutillon. Study of de-
coders Non-Binary LDPC. Prepared by UMR 6285 Sud Brittany University Lab-
STICC.

|8] Rudolf Lidl and Harald Niederreiter. Finite fields., Cambridge University Press,
Cambridge, 2008.

|9] Jean-Pierre Deschamps and Gustavo D Sutter. Hardware implementation of finite
field arithmetic., McGraw-Hill, New York, 2009.

[10] John M. Howie. Fields and Galois Theory (Springer Undergraduate Mathematics
Series)., McGraw-Hill, Springer, 2007.

[11] David Forney. Introduction to finite fields.
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science /6-
451-principles-of-digital-communication-ii-spring-2005/lecture-notes /chap7.pdf.

[12] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-
correcting coding and decoding: Turbo-codes. 1. In Communications, 1995. ICC
93 Geneva. Technical Program, Conference Record, IEFE International Confer-
ence on, volume 2, pages 1064-1070 vol.2, 1993.

153

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



154 bibliography

[13] C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27 :379-423 and 623-656, 1948.

[14] R. G. Gallager. Low-density parity-check codes. PhD thesis, MIT, Cambridge,
Mass., September 1960.

[15] D. J. C. MacKay and R. M. Neal. Near Shannon limit performance of low density
parity check codes. Electron. Lett., 32(18) :1645-1646, August 1996.

[16] D. J C MacKay. Good error-correcting codes based on very sparse matrices.
Information Theory, IEEE Transactions on, 45(2) :399-431, 1999.

[17| Jorge Moreira. FEssentials of error-control coding. John Wiley & Sons, West
Sussex, England, 2006.

[18] R.M. Tanner. A recursive approach to low complexity codes. Information Theory,
IEEE Transactions on, 27(5) :533-547, 1981.

[19] M.C. Davey and D. MacKay. Low density parity check codes over GF(q). Com-
munications Letters, IEEE, 2(6) :165-167, 1998.

[20] Hongxin Song and J.R. Cruz. Reduced-complezity decoding of Q-ary LDPC codes
for magnetic recording. Magnetics, IEEE Transactions on, 39(2) :1081-1087, 2003.

[21] L. Barnault and D. Declercq. Fast decoding algorithm for LDPC over gf(2%). In
information Theory Workshop, 2003. Proceedings. 2003 IEEE, pages 70-73, 2003.

[22] H. Wymeersch, H. Steendam, and M. Moeneclaey. Fuast decoding algorithm for
LDPC over GF(q > 2). In Communications, 2004 IEEE International Conference
on, volume 2, pages 772-776 Vol.2, 2004.

[23] P Schlifer, N Wehn, M Alles, T Lehnigk-Emden, E Boutillon. Syndrome based
check node processing of high order NB-LDPC decoders. International Conference
on Telecommunications, Apr 2015, Sydney, Australia..

[24] D. Declercq and M. Fossorier. Decoding Algorithms for Nonbinary LDPC Codes
Over GF(q). Communications, IEEE Transactions on, 55(4) :633-643, 2007.

[25] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard. Low-Complezity,
Low-Memory EMS Algorithm for Non-Binary LDPC Codes. In Communications,
2007. ICC 07. IEEE International Conference on, pages 671-676, 2007.

[26] L. Conde-Canencia, E. Boutillon, and A. Al-Ghouwayel. Complexity comparison
of non-binary ldpc decoders. In proceedings of ICT Mobile Summit, Spain, June
2009.

[27] V. Savin. Min-Mazx decoding for non binary LDPC codes. In Information Theory,
2008. ISIT 2008. IEEE International Symposium on, pages 960-964, 2008.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



bibliography 155

[28] Erbao Li, K. Gunnam, and D. Declercq. Trellis based Extended Min-Sum for
decoding nonbinary LDPC codes. In Wireless Communication Systems (ISWCS),
2011 8th International Symposium on, pages 46-50, Nov 2011.

[29] Erbao Li, D. Declercq, and K. Gunnam. Trellis-Based Extended Min-Sum Algo-
rithm for Non-Binary LDPC Codes and its Hardware Structure. Communications,
IEEE Transactions on, 61(7) :2600-2611, July 2013.

[30] Design And Versatile Implementation of Non-binary wireless Communications
based on Innovative LDPC codes. http://www.ict-davinci-codes.eu/.

[31] E. Boutillon, L. Conde-Canencia, and A. Al Ghouwayel. Design of a GF(64)-
LDPC decoder based on the EMS algorithm. Circuits and Systems I : Regular
Papers, IEEE Transactions on, 60(10) :2644-2656, 2013.

[32] L. Song, Q. Huang, Z. Wang, M. Zhang, and S. Wang. Two Enhanced Reliability-
Based Decoding Algorithms for Nonbinary LDPC Codes. IEEE Transactions on
Communications, vol. 64, no. 2, pp. 479-489, Feb 2016.

[33] C.Y. Chen, Q. Huang, C. C. Chao, and S. Lin. Two Low-Complezity Reliability-
Based Message-Passing Algorithms for Decoding Non-Binary LDPC Codes. IEEE
Transactions on Communications, vol. 58, no. 11, pp. 3140-3147, 2010.

[34] C. Xiong and Z. Yan. Improved Iterative Hard- and Soft-Reliability Based
Majority-Logic Decoding Algorithms for Non-Binary Low-Density Parity-Check
Codes. in 2011 Conference Record of the Forty Fifth Asilomar Conference on
Signals, Systems and Computers (ASILOMAR), Nov 2011, pp. 894-898.

[35] X. Zhang, F. Cai, and S. Lin. Low-Complezity Reliability-Based Message-Passing
Decoder Architectures for Non-Binary LDPC Codes. IEEE Transactions on Very
Large Scale Integration Systems, vol. 20, no. 11, pp. 1938-1950, 2012.

[36] F. Garcia-Herrero, D. Declercq, and J. Valls. Non-Binary LDPC Decoder Based
on Symbol Flipping with Multiple Votes. IEEE Communications Letters, vol. 18,
no. o5, pp. 749-752, 2014.

[37] A.A. Ghouwayel and E. Boutillon. A Systolic LLR Generation Architecture for
Non-Binary LDPC Decoders. Communications Letters, IEEE, 15(8) :851-853,
2011.

[38] Youngjoo Lee, Member, IEEE, Bongjin Kim, Student Member, IEEE, Jachwan
Jung, Student Member, IEEE, and In-Cheol Park, Senior Member, IEEE Low-
Complezity Tree Architecture for Finding the First Two Minima. IEEE TRANS-
ACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS, VOL. 62,
NO. 1, JANUARY 2015.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



156 bibliography

[39] E. Boutillon and L. Conde-Canencia. Bubble check: a simplified algorithm for
elementary check node processing in extended min-sum non-binary LDPC decoders.
IEEE Electron. Lett., vol. 46, no. 9, pp. 633-634, Apr. 2010.

[40] Voicila, A., Declercq, D., Verdier, F., Fossorier, M., and Urard, P. Low-
Complezity, Low-Memory EMS Algorithm for Non-Binary LDPC Codes. Proc. of
IEEE Int. Conf. on Commun., I[CC’2007, Glasgow, United Kingdom, June 2007.

[41] http://www-labsticc.univ-ubs.fr/nb_ldpc/

[42] E. Boutillon and L. Conde-Canencia. Simplified check node processing in non-
binary LDPC decoders. In Turbo Codes and Iterative Information Processing
(ISTC), 2010 6th International Symposium on, pages 201-205, 2010.

[43] Oussama Abassi, Laura Conde-Canencia, Ali Al Ghouwayel and Emmanuel
Boutillon A Nowel Architecture for Elementary-Check-Node Processing in Nonbi-
nary LDPC Decoders. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-
II: EXPRESS BRIEFS, VOL. 64, NO. 2, FEBRUARY 2017.

[44] Koch, Dirk and Torresen, Jim A High Performance Sorting Architecture Exploit-
ing Run-time Reconfiguration on FPGAs for Large Problem Sorting. Proceedings
of the 19th ACM /SIGDA International Symposium on Field Programmable Gate
Arrays, pages 45-54, year 2011.

[45] J. Martinez and R. Cumplido and C. Feregrino An FPGA-based parallel sorting
architecture for the Burrows Wheeler transform. 2005 Int. Conf. on Reconfigurable
Computing and FPGAs, Sept. 2005.

[46] Emmanuel Boutillon and Laura Conde-Canencia. Procédé de commande d’une
unité de calcul, tel qu'un noeud de parité élémentaire dans un décodeur de code
LDPC non binaire, et unité de calcul correspondante. patent no. FR0952988, May
2009.

[47] C. Marchand and E. Boutillon. NB-LDPC' check node with pre-sorted input. in
9th International Symposium on Turbo Codes & Iterative Information Processing,
September 2016.

[48] Harb, H. and Marchand, C. and Al Ghouwayel and A. Conde-Canencia and L.
and Boutillon, E. Pre-Sorted Forward-Backward NB-LDPC Check Node Architec-
ture. in SIPS, 2016.

[49] Cedric Marchand, Emmanuel Boutillon, Hassan Harb, Laura Conde-Canencia,
and Ali Al Ghouwayel. Eztended-forward architecture for simplied check node
processing in NB-LDPC' decoders,. in IEEE International Workshop on Signal
Processing Systems (SiPS), October 2017, Lorient, France.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



bibliography 157

[50] Marchand, C. Harb, H. Boutillon, E. Al Ghouwayel, A. and Conde-Canencia,
L. An Efficient Decoder Architecture for Nonbinary LDPC Codes With Extended
Min-Sum Algorithm. TEEE Transactions on Circuits and Systems II: Express
Briefs, VOL. 63, NO. 9, Sept 2016.

[51] J. O. Lacruz, F. Garcia-Herrero, M. J. Canet, and J. Valls Reduced-Complexity
Non-Binary LDPC' Decoder for High-Order Galois Fields Based on Trellis Min-
Maz Algorithm. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 24, no. 8, pp. 2643-2653, Aug 2016.

[52] Y. L. Ueng and C. Y. Leong and C. J. Yang and C. C. Cheng and K. H. Liao and
S. W. Chen. An Efficient Layered Decoding Architecture for Nonbinary QQC-LDPC
Codes. IEEE Transactions on Circuits and Systems [: Regular Papers, VOL. 59,
NO. 2, Feb 2012.

[53] C. Marchand and J. B. Dore and L. Conde-Canencia and E. Boutillon. Conflict
resolution for pipelined layered LDPC decoders. 2009 IEEE Workshop on Signal
Processing Systems, Oct 2009.

[54] P. Schlafer. Implementation Aspects of Binary and Non-Binary Low-Density
Parity-Check Decoders. Technische UniversitAxt Kaiserslautern, 2016.

[55] Amin Farmahini-Farahani, Henry J. Duwe III, Michael J. Schulte, and Katherine
Compton Modular Design of High-Throughput, Low-Latency Sorting Units. IEEE
TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 7, JULY 2013.

[56] C. Poulliat, M. Fossorier, and D. Declercq, Design of reqular (2,dc)-ldpc codes
over GF(q) using their binary images,. IEEE Transactions on Communications,
vol. 56, no. 10, pp. 1626-1635, October 2008.

[57] F. Cai and X. Zhang. Relazed Min-Maz Decoder Architectures for Nonbinary
Low-Density Parity-Check Codes. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 21, no. 11, pp. 2010-2023, Nov 2013.

[58] J. Tian, J. Lin, and Z. Wang. A 21.66Gbps Non-Binary LDPC Decoder for High-
Speed Communications. IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. PP, no. 99, pp. 1-1, 2017.

[59] Y. S. Park, Y. Tao, and Z. Zhang. A Fully Parallel Nonbinary LDPC Decoder
With Fine-Grained Dynamic Clock Gating. IEEE Journal of Solid-State Circuits,
vol. 50, no. 2, pp. 464-475, Feb 2015.

[60] P Schlafer, N Wehn, M Alles, T Lehnigk-Emden, E Boutillon. Syndrome based
check node processing of high order NB-LDPC' decoders. International Conference
on Telecommunications, Apr 2015, Sydney, Australia. <hal-01151980>.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



158 bibliography

[61] Z. Guo and P. Nilsson. Algorithm and implementation of the K-best sphere decod-
ing for MIMO detection. IEEE J. Sel. Areas Commun., vol. 24, no.3, pp. 491503,
Mar. 2006.

[62] R. M. Pyndiah. Near-optimum decoding of product codes: block turbo codes. IEEE
Trans. Commun., vol. 46, no. 8, pp. 10031010, Aug. 1998.

[63] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X. Y. Hu, Reduced-
complexity decoding of LDPC codes. IEEE Trans. Commun., vol. 53, no. 8, pp.
12881299, Aug. 2005.

|64] S. Zezza, S. Nooshabadi, and G. Masera, A 2.63 Mbit/s VLSI Implementation
of SISO Arithmetic Decoders for High Performance Joint Source Channel Codes.
IEEE Trans. Circuits Syst. [, Reg. Papers, vol. 60, no. 4, pp. 951964, Apr. 2013.

[65] S. Papaharalabos, P. T.Mathiopoulos, G.Masera, and M.Martina, Non-recursive
maz* operator with reduced implementation complexity for turbo decoding. 1ET
Commun., vol. 6, no. 7, pp. 702-707, Jul. 2012.

|66] K.E. Batcher. Sorting Networks and Their Applications. Proc. AFIPS Proc.
Spring Joint Computer Conf., pp. 307-314, 1968.

|67] A.Farmahini-Farahaniand al. Modular Design of High- Throughput, Low-Latency
Sorting Units. Computers, IEEE Trans., vol. 62, no. 7, pp. 13891402, 2013.

[68] G. Xiao, M. Martina, G. Masera, A Parallel Radiz-Sort-Based VLSI Architec-
ture for Finding the First W Mazimum/Minimum Values. TEEE TRANSAC-
TIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BRIEFS, VOL. 61, NO.
11, NOVEMBER 2014.

[69] K. Gunnam, G. Choi, and M. Yeary, A Parallel VLSI Architecture for Layered
Decoding for Array LDPC Codes. in Proc. IEEE Int. Conf. VLSI Design, 2007,
pp. 738743.

[70] C. Condo, M. Martina, and G. Masera, VLSI Implementation of a Multi-Mode
Turbo/LDPC Decoder Architecture. IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 60, no. 6, pp. 14411454, Jun. 2013.

[71] C. L. Wey, M. D. Shieh, and S. Y. Lin, Algorithms of Finding the First Two
Minimum Values and Theiwr Hardware Implementation. IEEE Trans. on Circuits
and Systems [, vol. 55, no. 11, pp. 34303437, Dec 2008.

|72| G. Masera L.G. Amaru, M. Martina, High Speed Architectures for Finding the
First two Mazimum/Minimum Values. IEEE Transactions on Very Large Scale
Integration, vol. 20, no. 12, pp. 23422346, 2012.

[73] D. E. Knuth, The Art of Computer Programming, 2nd ed. New York: Addison-
Wesley, 1998, vol. 3, Sorting and Searching, sec. 5.3.3.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



bibliography 159

[74] D. Zhao, X. Ma, C. Chen, and B. Bai, A Low Complexity Decoding Algorithm
for Majority-Logic Decodable Nonbinary LDPC Codes. IEEE Commun. Lett., vol.
14, no. 11, pp. 1062-1064, Nov. 2010.

[75] C.-Y. Chen, Q. Huang, and C.-C. Chao, Low-Complexity Reliability-Based
Message-Passing Decoder Architectures for Non-Binary LDPC Codes. IEEE
Trans. Commun., vol. 58, no. 11, pp. 3140-3147, Nov. 2010.

[76] Ying Yu Tai, Student Member, IEEE, Lan Lan, Lingqi Zeng, Shu Lin, Life Fellow,
IEEFE, and Khaled A. S. Abdel-Ghaffar, Member, IEEFE, Algebraic construction
of quasi-cyclic LDPC codes for the AWGN and erasure channels. IEEE TRANS-
ACTIONS ON COMMUNICATIONS, VOL. 54, NO. 10, OCTOBER 2006.

|77] Shumei Song, Lingqi Zeng, Shu Lin and Khaled Abdel-Ghaffar Department of
Electrical and Computer Engineering University of California, Davis, Davis, CA
95616, U.S.A, Algebraic Constructions of Nonbinary Quasi-Cyclic LDPC Codes.
ISIT 2006, Seattle, USA, July 9 14, 2006.

|78| Lingqi Zeng, Lan Lan, Ying Yu Tai, Bo Zhou, Shu Lin, and Khaled A. S. Abdel-
Ghaffar, Construction of nonbinary cyclic, quasi-cyclic and reqular LDPC' codes:
a finite geometry approach. IEEE TRANSACTIONS ON COMMUNICATIONS,
VOL. 56, NO. 3, MARCH 2008.

[79] S. Azuma, T. Sakuma, T. Takeo, T. Ando, and K. Shirai, Di-
aprism — Hardware Sorter - Sort aMillion Records within o Second.
http://sortbenchmark.org/Y2000 Datamation DiaprismSorter.pdf, 2000.

[80] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha, GPUTeraSort: High Per-
formance Graphics Co-Processor Sorting for Large Database Management, Proc.
Conf. Management of Data, pp. 325-336, 2006.

[81] D. Koch and J. Torresen, FPGASort: A High Performance Sorting Architecture
Exploiting Run-Time Reconfiguration on FPGAs for Large Problem Sorting, Proc.
Symp. Field Programmable Gate Arrays, pp. 45-54, 2011.

[82] D. Pok, C.-I. Chen, J. Schamus, C. Montgomery, and J. Tsui, Chip design for
monobit receiver, IEEE Trans. Microwave Theory and Techniques, vol. 45, no. 12,
pp. 2283-2295, Dec. 1997.

|83] I. Pitas and A.N. Venetsanopoulos, Nonlinear Digital Filters: Principles and
Applications, Kluwer Academic Publishers, 1990.

[84] J.P. Agrawal, Arbitrary size bitonic (ASB) sorters and their applications in
broadband ATM switching, Proc. IEEE Int’l Conf. Computers and Comm., pp.
454-458, Mar. 1996.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018



160 bibliography

[85] K. Yun, K. James, R. Fairlie-Cuninghame, S. Chakraborty and R. Cruz, A
self-timed real-time sorting network, IEEE Trans. Very Large Scale Integration
Systems, vol. 8, no. 3, pp. 356-363, June 2000.

[86] A. Colavita, E. Mumolo, and G. Capello, A novel sorting algorithm and its ap-
plication to a gamma-ray telescope asynchronous data acquisition system, Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrom-
eters, Detectors and Associated Equipment, vol. 394, no. 3, pp. 374-380, 1997.

|87] D.C. Stephens, J.C. Bennett, and H. Zhang, Implementing scheduling algorithms
in high-speed networks, TEEE J. Selected Areas in Comm, vol. 17, no. 6, pp.
1145-1158, June 1999.

|88] V. Brajovic and T. Kanade, A VLSI sorting image sensor: global massively
parallel intensity-to-time processing for low-latency adaptive vision, IEEE Trans.
Robotics and Automation, vol. 15, no. 1, pp. 67-75, Feb. 1999.

|89] C. Chakrabarti and L.-Y. Wang, Nowel sorting network-based architectures for
rank order filters, IEEE Trans. Very Large Scale Integration Systems, vol. 2, no.
4, pp. 502-507, Dec. 1994.

[90] S.-N. Dong, X.-T. Wang, and X.-B. Wang, A Nowvel High-Speed Parallel Scheme
for Data Sorting Algorithm Based on FPGA, Proc. Int’l Cong. Image and Signal
Processing, pp. 1-4, Oct. 2009.

|91] K. Ratnayake and A. Amer, An FPGA Architecture of Stable-Sorting on a Large
Data Volume : Application to Video Signals, Proc. Ann. Conf. Information Sci-
ences and Systems, pp. 431-436, 2007.

[92] A. Gregerson, M. Schulte, and K. Compton, High-Energy Physics, Handbook of
Signal Processing Systems, pp. 179-211, Springer, 2010.

|93|] Titouan Gendron, Hassan Harb, Alban Derrien, Cédric Marchand, Laura Conde-
Canencia, Bertand Le Gal and Emmanuel Boutillon, Demo: Construction of good
Non-Binary Low Density Parity Check codes. Demo night at SIPS’2017, Lorient,
France, Oct. 2017.

[94] Rami Klaimi, Charbel Abdel Nour, Catherine Douillard, and Joumana Farah,
Design of Low-Complexity Convolutional Codes over GF(q). ACCEPTED FOR
PUBLICATION IN IEEE-GLOBECOM 2018.

Conception du décodeur NB-LDPC a débit ultra-élevé par Hassan Harb 2018


http://www.tcpdf.org



