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1
Introduction

Optimisation tools have played a fundamental role in many fields including Engineering,
Science, Medicine, etc. Since its debut in Economics [1], Combinatorial Optimisation prob-
lems, and the related resolution techniques, could be seen everywhere. With respect to In-
formatics and Computer Science, one of the last fields to adapt its problems to this paradigm
has been Software Engineering, increasing considerably its development during the last fifteen
years.

The application of various optimisation techniques in order to solve specific software engi-
neering problems and improve software performance is now a common practice. The concept
of Search-Based Software Engineering (SBSE) has been introduced and led Mark Harman to
define a challenge [2] entitled “Search for strategies rather than instances". This challenge aims
at avoiding specific software engineering optimisation algorithms to solve particular instances
of SBSE problems, but rather to look for more global strategies. Moreover, another related pur-
pose is to handle efficiently new unknown problems that share properties with already identified
problem classes.

As software could be understood as computation systems of instructions following a defined
logic, therefore a logic can be used to characterise all the possible events of a software piece.
This makes software and first-order logics related since its foundations. Therefore, automated
deduction processes could be used as intermediate layer between software engineering problems
and tools to solve them [3].

Satisfiability Modulo Theories (SMT) [4], a generalisation of the most famous Constraint
Satisfaction problem Boolean Satisfiability Problem (SAT) [5], and its tools [6, 7, 8] have been
arise as one of the most useful field to address SBSE problems, given the amount of software
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14 CHAPTER 1. INTRODUCTION

related first-order logics included in their automated deduction systems. Thus, SBSE problems
are one of the biggest applications in SMT as stated in [3, 4, 9].

Moreover, developers of Z3 [6], one of the most efficient SMT solvers, Leonardo de Moura
and Grant Onley Passmore have defined The Strategy Challenge in SMT [10]: to build theo-
retical and practical tools allowing users to exert strategic control over core heuristic aspects
of high-performance SMT solvers. Where, through a defined language, end-users can control
heuristics components of solver through programming, affecting dramatically the performance
of a SMT solver such as Z3.

However, end-users do not have the required knowledge in order to use properly all the
heuristics features in SMT solvers, therefore the absence of expert guidelines could lead to
several unsuccessful attempts.

In this work we address the Strategy Challenge in SMT defining a framework for the gen-
eration of strategies for Z3, i.e. a practical system to automatically generate SMT strategies
without the use of expert knowledge in order to improve SMT solver performance, and being
able to use it in an autonomous search system for continuous improvement. Note this is very
interesting for SBSE and to tackle the mentioned SBSE challenge, but also for others SMT ap-
plications including Combinatorial Optimisation problems such as Scheduling or Planning, as
well as building more efficient and robust Automated Deduction tools.

1.1 Research Goals

The initial motivation of this research, as explained above, is the idea of founding an ap-
proach to solve different classes of search-based software engineering problems, i.e., different
classes of combinatorial optimisation problems. This lead us to define the following hypothesis:

Adapt and refine existing SBSE techniques, i.e. combinatorial optimisation meth-
ods, to an hybrid scheme of complete search tools with incomplete search ap-
proaches, inside an application driven solver, will efficiently reduce search and
improve their exploration efficiency of most of SBSE problems, i.e. combinato-
rial optimisation problems.

Then, SMT solvers appears as key element for our hybridisation task: they belong to the
complete search tools and also are application driven solvers. However, SMT solvers devel-
opment lacks open and standard interface for modify its heuristics components without need
of reassemble the whole tool. This problem has been partially covered in Z3 theorem prover,
by the inclusion of a strategy language which allow users to exert control over the heuristic
components to solve a SMT instance, i.e. a software engineering problem. But, to take full
advantage of this language, expert guidelines for the construction of strategies are needed, and
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most of end-users do not have the understanding or knowledge of all heuristics tools inside the
solver. In this scenario local search techniques take importance, in order to automatically gen-
erate strategies which improve SMT solver performance. Thus, Z3 solver could be seen as a
collaborative solver between complete or systematic search techniques and local search criteria.
Once this scheme is defined, we define the following main and specific goals in order to answer
our hypothesis.

1.1.1 Main goal

To fulfill our motivations, we define the following main goal:

To investigate and study the impact of Hybrid Algorithms in Search-Based Software

Engineering providing more generic and reusable solvers for a different classes of

combinatorial optimisation problems.

Note that as Software Engineering problems can be modelled as Search Problems, the solving
advances achieved in Search-Based Software Engineering will help to improve the resolution
procedures used in the field of Combinatorial Optimisation.

1.1.2 Specific Goals

In order to reach our main goal, we define some specific objectives for this thesis:

— Model and build a specialised framework to generate strategies for SMT solvers, in order
to address different class of problems and extract good problem encoding from well-
known models that will help to improve solving efficiency.

— Define an hybrid collaboration tool between a systematic approach and metaheuristics
algorithms to improve the resolution of Search-Based Software Engineering problems,
i.e. combinatorial optimisation problems.

— Use designed framework and tools, in an autonomous environment, for addressing algo-
rithm building and/or selection to solve efficiently a selected combinatorial optimisation
problem.

1.2 Research Contributions

The contributions of this research work are the following:

— Building a framework, based on a set of rules as intermediate layer, to apply several local
search techniques without the need of modifying its structural components for addressing
a selected combinatorial optimisation problem.
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— Address the Strategy Challenge in SMT [10] through a framework for the automated
generation of SMT strategies in an autonomous system environment.

— Address the SBSE “Search for strategies rather than instances" challenge [2], through
the hybridisation of a systematic search system with local search algorithms.

— Introduce SMT [4] as useful systematic search system to integrate with others solving
techniques in the Combinatorial Optimisation field, e.g, metaheuristics.

1.3 Overview of the Thesis

This thesis is divided in two parts: State of The Art and Contributions. The State of the
Art part describes the foundations of this research, and the theoretical framework of the SMT
solvers that will be considered, and it is covered by Chapter 2, 3 and 4. The Contributions
part of this thesis shows an incremental work by using several engines in order to generate
more efficient strategies to improve the Z3 performance. These engines are applyed by using a
framework defined for the autonomous generation of strategies in Z3. Structure, analysis and
results of these algorithms are presented from Chapter 5 to 11.

1.3.1 State of the Art

We begin in Chapter 2, where we revisit related works that serve as basis and motivation
of this research. We build a path since the foundations of Combinatorial Optimisation; passing
by Metaheuristics, Evolutionary Computing, and Parameter Control and Tuning; until specific
trends as Autonomous Systems, Search-based Software Engineering and Automated Deduction.

In Chapter 3, we deepen in Satisfiability Modulo Theories (SMT). We analyse its imme-
diate basis, the Boolean Satisfiability problem (SAT), its applications in real-life systems, and
how they are addressed to be solved. Also, we introduce The Strategy Challenge in SMT, as
essential milestone of this research, and how we will address it in order to improve SMT solvers
performance.

Finally, in Chapter 4, we define and analyse what is a Strategy in SMT, focusing in the Z3
solver. We formalise a term grammar which could derive well-formed strategies, and check
how these strategies help to improve Z3 performance.

1.3.2 Contributions

It starts in Chapter 5, where we formalise a framework for automated generation of strategies
in Z3. This system is composed of two core elements, a rule approach and an engine system.
The former defines how to modify strategies using rules based in evolutionary computing op-
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erators, the later defines how algorithms, or engines, apply these rules and the configuration of
this procedures.

In Chapter 6, we present two simple approaches to generate optimised strategies by using
different types of rules separately. The goal is to decide which kind of rule is more relevant
for this task. The algorithms used are a evolutionary parameter tuner for strategies, called
StratTUNE, and a evolutionary strategy generator, named StratGEN.

In Chapter 7, a Tree-based Grammatical Genetic Programming Algorithm, called StratEVO,
is defined and implemented. This algorithm uses the term grammar defined in the State of Art
as base for modeling strategies as trees to ease the application of modification rules to generate
strategies. StratEVO is capable of generate complex efficient strategies for several SMT logics
by only using the more relevant type of rule with respect to the performance determined in
Chapter 6.

We revisit StratEVO, in Chapter 8, to generate schemes for collaboration between differ-
ent types of rules. We use different off-line and on-line hybridisation approaches to improve
StratEVO performance.

Last application step, Chapter 9, introduces a new set of rules to handle the semantical
component of time configuration. Here, algorithms includes rules to spread the distribution of
time given in the learning process to scenarios of execution where the time-out per instance are
up three magnitude order larger.

Finally, in Chapter 10, we analyse the contributions of this works, we discuss perspective
steps to take in the future, and how this system could be extrapolated to improve performance
in several related computer science fields.
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2
Towards an Autonomous System

In the following chapter, we revisit the advances achieved through the development of In-
formatics areas that serve as foundations of this work.

2.1 Combinatorial Optimisation

Since its historical development in Economics, as stated in [1], the field of Combinatorial
Optimisation has changed the trivial-look over discrete optimisation problems and the finite
domains of its decision variables: Today, we see these problems abound everywhere. Their
current applications follows the same path: they are finite but they seem endless. This inherent
combinatorial-space large-size feature, sometimes mixed with a complex evaluation function
and/or a hard set of constraints, made intractable the task of finding an optimal solution.

The mentioned behaviour in combinatorial optimisation problems is not just an empirical
conclusion, it is also presented as the NP-completeness framework of computational complexity
theory [5, 11, 12], which implies that even if a solution for a hard problem could be easily
verifiable in polynomial time through a deterministic Turing machine (that is to say, at least in
the NP class), the procedure of founding a solution is not trivial in function of computational and
time resources. As it is not our goal to discuss in depth the concepts and proofs of computational
complexity, we refer the reader to well-known books as [13, 14, 15].

To address this kind of problems, we should work in a reduced subset of problem instances
(an easy solvable selection), or rely on procedures based in higher level strategies and step-
by-step heuristics improvements to generate approximated optimal solutions. These approx-
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imation algorithms or Metaheuristics, have been preferred to solve combinatorial problems,
despite not being able to certify the optimality of the solutions found as exact procedures. Nev-
ertheless, these methods have been proved as incapable to match solution quality obtained by
metaheuristics, particularly for real-world problems, which often attain notably high levels of
complexity [16].

2.1.1 Combinatorial Optimisation Problems

As stated in [17], and following the black-box method of computer systems, a problem
could be defined as a input transformed into a output by means of a transformation model (see
Figure 2.1).

Model
Input Output

Figure 2.1 – Problem definition as a black-box method.

This concept leads to classify problems as follows:

1. Optimisation problems: Given a known model and an expected or specified output, the
task is to find an input configuration. Note that, the output is not necessarily known, but
could be implicitly defined, e.g. find the minimum value of a distance function. Thus,
instead specifying the exact value of the output, we expect that its value is smaller than
all others by finding inputs for realising this.

2. Modelling problems: Given some known inputs and outputs, the job is to seek a model
function that delivers the correct output for each known input, i.e., to find a model that
matches previous experiences, and can hopefully generalise even unseen instances. Note
that modelling problems can be transformed into optimisation problems, by minimizing
the error rate or maximizing its success rate of a proposed model used as input.

3. Simulation problems: Given the system model and some inputs, the task is to compute
the outputs corresponding to these inputs. This type of problems are commonly used for
prediction and forecasting jobs aiming to look into the future.

Combinatorial optimisation problems are related to the first two classes of problems, which
have several candidates to solve the problem as inputs or models. The candidates for solving
these kind of problems are located in a space of possibilities which is usually enormous. Then,
the problem solving process is a search through a potentially huge set of possibilities to find
a solution. Thus, combinatorial optimisation problems can be seen as search problems. This
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leads to the definition of search concept: to found, evaluate and accept solutions as candidates

to solve a problem from the set of all possible solutions. This set of possible solutions is called
search space, which is generally defined by the domains of all decision variables that define a
problem solution.

The evaluation of solution is performed using a specific function called evaluation or objec-

tive function that quantifies and compares candidates. The acceptance of the solution depends
if a set of constraints is fulfilled. Then a candidate is a feasible solution if can be evaluated by
the objective function and satisfies the requirements of the problem. Thus, search problems are
also classified according to the components that evaluate and accept solutions, i.e., guide the
search, as shown in Table 2.1.

Objective Function
Constraints

Yes No

Yes
Constraint Satisfaction

and Optimisation Problem
(CSOP)

Constraint
Satisfaction Problem

(CSP)

No
Free

Optimisation Problem
(FOP)

No Problem

Table 2.1 – Search problems classification according to its elements.

If only a evaluation function is present, we face a free optimisation problem. Its counterpart
are the constrained satisfaction problems which have to satisfy only a set of constraints. When
both elements are present, we talk about a constraint satisfaction and optimisation problem.
Commonly, a problem from a specific type can be mapped as another problem class, i.e., all
these classification can used to address a same of problems. For illustrate this, we define the
Example 2.1.

Example 2.1 The famous constraint satisfaction problem, N-Queens problems [18], states
the following:

Place n queens on a n × n chess board

in such a way that no two queens check each other.

In Figure 2.2, an example with n = 8 queens is shown. This problem could be addressed as:

— Free Optimisation Problem: Given a search space S of all board configurations with
n queens, we define an objective function f that outputs the number of free queens
for a given configuration. Thus, a problem solution is any configuration s ∈ S with
f(s) = n.
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Figure 2.2 – N-Queens problem with n = 8 queens.

— Constraint Satisfaction Problem: Using the same search space S, we define a constraint
C that is satisfied only if and only if two queens are not checked. Then, a specific
configuration s ∈ S is a solution if satisfies C(s) = True.

— Constraint Satisfaction and Optimisation Problem: Using the same search space S, we
define an constraint D which is satisfied only if and only if no queens in the board are in
the same column and row, and a evaluation function g counting the amount of diagonal
checks between all placed queen. The solution of this problem is a configuration s ∈ S

such that g(s) = 0 and D(s) = True. ♦

2.1.2 Metaheuristics

Before define the concept of metaheuristics, and its more relevant procedures for this thesis,
let us remark the two existent classifications of search paradigms stated in [19]:

— Local Search vs Systematic Approximation: Systematic Approximation look for com-

pleteness: traverse the search space in a systematic way which guarantees with certainty
either if a optimal solution is found, or if no solution exists. Local search points to move
partially, called incompleteness, in the search space from a known starting point, moving
through different small sub-spaces of the search space. Differently from its systematic
counterpart, local search cannot guarantee the existence of a feasible or optimal solution,
and the fact that no solution exists can never be determined with certainty.

— Constructive vs Perturbative Search [20]: Constructive search aims to build a good-
enough feasible solution from scratch, generally extending incomplete candidate solu-
tions. Perturbative Search looks to modify one or more elements of a existing candidate
solution in order to generate improvements.

Therefore, we can understand a metaheuristic as an automatic process to search a "good-
enough" solution, either building or repairing, with regards to a finite, but intractable, set of
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candidates. Note that, both objective function and constraints bound the search space in terms of
feasible solutions. Nevertheless, unfeasible solutions can be a bridge between disjoint feasible-
portions of the search space, then soft some constraints to be unsatisfied, and quantify them in
the evaluation function for fair comparison, can help to improve metaheuristics performance.

2.1.2.1 Local Search

Local search procedures are mostly based on repairative or perturbative search. They rely
on search improvements inside the local scope of a candidate solution, or neighborhood. The
neighborhood is determined by applying movement in the current candidate: a perturbation in
eligible solution components, based in local knowledge or heuristic.

Originally, local search techniques were designed for improve a solution in a single-objective
scope. The intuitive iterative improvement, Hill-Climbing, serves a starting point for more ro-
bust techniques as Simulated Annealing [21], Tabu Search [22], GRASP [23] or Generalised
Hill Climbing [24].

As everyday local search techniques turn more sophisticated, the key simplicity and general-
ity of them have been push-aside in search of better performance, producing confusion between
heuristics and metaheuristics. Iterated Local Search [25] arise to clearly define between the
general procedure strategy (metaheuristic) and the decision-making based in problem-specific
knowledge (heuristic). Also, local search techniques have been adapted and extend to gain a
huge space in multi-objective optimisation, as well summarised in [26]. Also, their use allowed
to define multi-objective standalone local search algorithms as Pareto Local Search [27, 28] or
Bi-criteria Local Search [29].

For more detailed information in the mentioned techniques, algorithms adaptations to others
scopes, we refer the reader to Hoos and Stützle Stochastic Local Search [19] compilation and
applications.

Notwithstanding, one of the most interesting applications are on the fields of parameter
control and tuning, or Parameter Configuration, which will be analysed in Section 2.1.4, where
algorithms are adapted as better as possible to a specific situation.

2.1.2.2 Evolutionary Computing

The set of techniques based on the principles of Darwin’s theory on evolution and natural
selection [30] are circumscribed in the Evolutionary Computing or Computation (EC) [17] area.
Despite being novel concept (1990s’) its main techniques were separately developed for almost
two decades before. These techniques or Evolutionary algorithms (EAs) [31] are characterised
by working over a set of individuals (candidate solutions) called population, rather than work-
ing over a single candidate as in Local Search. Then, EAs modify population individuals via
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evolutionary or biological based-operators as selection, mutation, recombination (or crossover),
etc. Four major trends are considered:

1. Evolutionary Programming (EP) [32, 33, 34]: Developed by Fogel et al. in the 1960s as
simulation of evolution. EP aims to evolve different species, represented for a real-value
vector of features, in a population driven by a mutation operator.

2. Evolution Strategies (ES) [35, 36]: Invented in Germany also in the 1960s and developed
in the 1970s by Rechenberg and Schwefel. ES creates an offspring set from the origi-
nal population, where individuals are real-value vectors, through operators as mutation
and recombination. Then, the best n-ranked individuals of the union-set of parents and
children make up the next generation, if plus scheme (µ + λ) is selected; or the parent
population is completely replaced by the offsprings generated, if comma scheme (µ,λ) is
chosen.

3. Genetic Algorithm (GA) [37, 38, 39]: Initially proposed by Holland in 1973 and rectified
by De Jong in 1975. GA evolves a population, where an individual is represented by a
binary vector, using a combination of crossover, mutation and selection, the former being
the predominant operator. These operators, with exception of selection, have a defined
occurrence probability, therefore they are not always applied.

4. Genetic Programming (GP) [40, 41, 42, 43]: Born in the 1990s, and run by John Koza,
Genetic Programming is a particular application of Genetic Algorithms, which is power-
ful enough to be considered as a stand-alone Evolutionary Computation trend. It works
similar as GA, but individual representation is made using tree structures, which gen-
erally represent models, syntax or grammars of mathematical expressions or computer
programs. Therefore, all operator are defined to work over a tree structure.

2.1.2.2.1 Grammar-based Genetic Programming

Despite being the youngest trend in Evolutionary Computation, Genetic Programming has
served as starting point for techniques that includes its principles. The most interesting advances
start from the use of formal grammars in order to model individuals and its evolution process,
called Grammar-based Genetic Programming (GbGP) [44]. The advantages of using grammars
include assure the closure property, i.e., any individual generated by genetic operators must be
evaluable, and to bias the GP structures, i.e., individuals typing and syntax are easily maintained
by manipulating the explicit derivation tree from the grammar, as explained by Whigham [45]
in one of the first works known in the area.

Actually, one of the most used variations is Grammatical Evolution (GE) [46, 47]. GE uses
a grammar to map a integer-value vector into a code segment thanks to a simple enumeration of
the production rules, as shown in Example 2.2.
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Example 2.2 Let G be a grammar representing basic arithmetic operations, addition (+) and
multiplication (×), between two expressions composed by two variables, X and Y , by using
the following production rules:

A) exp → exp op exp (0)
| var (1)

B) var → x (0)
| y (1)

C) op → + (0)
| × (1)

The basic operation x × y, can be mapped as the following array of integers:

I = 24 307 78 155 229 43

Starting in the symbol exp and reading I , from left to right, we could generate the
mentioned expression by using the following scheme for rule selection:

Selected Rule = Array Component Value % Number of Rules for Symbol

where % is the classic arithmetic modulo operator. Thus, the following table, shows how I

is decoded.

Expression
Current
Symbol

Current
Array Value

Total
Rules

Selected
Rule

New
Expression

exp exp 24 2 24 % 2 = 0 exp op exp

exp op exp exp 307 2 307 % 2 = 1 var op exp

var op exp var 78 2 78 % 2 = 0 X op exp

X op exp op 155 2 155 % 2 = 1 X× exp

X× exp exp 229 2 229 % 2 = 1 X× var

X× var var 43 2 43 % 2 = 1 X × Y

Note, for each step the chosen symbol is the one located to the left on the current expres-
sion. ♦

This approach holds the properties mentioned above and adds: use any type of language to
be evolved, handle a population with individuals of different size, and avoid the inclusion of
several introns while mutating the population.
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2.1.2.2.2 Semantic-based Genetic Programming

However, evolving mathematical expressions or code programs, regardless the use of gram-
mars, is done purely over a syntactic space [48]. Syntax-driven search could lead to meaningless

efforts, because some traded expressions could be radically different but generate no impact at
all, therefore this "meaning" also constraints the evolution process. The meaning of the syntax
symbols or expression over a defined context is what we call Semantics (as in linguistics). Since
2012, the use of semantics in Genetic Programming to avoid blind-search over the meaning of
the generated candidate solutions have increased, but still unexploited. We will refer this as
Semantic-based Genetic Programming.

Semantics have several definitions, as stated in [48, 49], but could be reduced to one com-
mon element: fitness, the function which encode the genotype as phenotype. Thus, the evalua-
tion function generates the semantics values of the set of solutions, called Semantic Space. In
this new space, as shown in Example 2.3, we could found that very different solutions in struc-
ture (genotype) are semantically equivalent (phenotype), or small configuration differences lead
to great evaluation variance.

Example 2.3 Let S be the set of all boards configuration for N-Queens problem (shown in
Example 2.1). Let f be a fitness or objective function which evaluates how many queens
are checked for a given board configuration s ∈ S. Figure 2.3 shows how different boards
configuration are mapped to different regions of the Semantic Space by means of the fitness

Figure 2.3 – N-queens Semantic Space example: several boards configuration mapped into
Semantic Space by means of an objective function f .
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or objective function f .

Two boards configuration, s1, s2 ∈ S with s1 �= s2, are

semantically equivalent if and only if f(s1) = f(s2).

Lets us remark, that several boards configuration could be mapped to the same Semantic
Space region. ♦

Classification to the inclusion of semantics in Genetic Programming has been done in [48,
50], but we rather classify the most important advances as follows:

1. Semantic-constrained grammars: In order to include semantical information to the can-
didate solution generation, formal grammars with a set of production rules based on their
meaning are used. Then, individuals are validated by a parse tree including some se-
mantical constraints attached to the original grammar. Some relevant works includes the
use of Attribute grammars [51, 52, 53], Christiansen grammars [54, 55] and Logic gram-
mars [56, 57, 58].

2. Semantic-guided operators: Several operator have been created to add semantics elements
to candidates solutions. Semantic-driven operators [59, 60] works as regular Genetic
Programming operator, but avoiding create semantically equivalent solutions. Semantic
distance concept, distance between two solutions in the semantic space, have been si-
multaneously defined, forked and used in Nguyen’s semantic operators [50], Locally Ge-
ometric Semantic operators [61] and Approximate Geometric Semantic operators [62].
The latter is the root point of the very promising Geometric Semantic Genetic Program-
ming [49, 63], the first kind of algorithm which applies genetic operators directly in the
semantic space, but with a recoil of solution size overgrowing. Others operator uses struc-
ture information for semantic reduction, as in [59, 60, 64], which removes redundant and
isomorphic substructures in binary trees.

3. Semantic-guided population: Population diversity in Genetic Programming is the key to
avoid premature local optima blockage [65, 66, 67], this have been taken to generate
semantic-diverse population, especially in population initialisation [68, 69], in order of a
better exploration of the semantic space. Also, some semantic-guided operator aims for
diversity in the evolving process as in Semantic-driven operators [59, 60] or Nguyen’s
Semantic-aware operators [50].

4. Formal methods: Retrieving systems internal information through mathematical tech-
niques, used for specification, development and verification of software and hardware
systems [70], in order to infer semantical information. Appraised work includes the use
of Abstract interpretation [71, 72] and Model Checking [73, 74] procedures.
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Figure 2.4 condenses the classification of the explained Evolutionary Computation cate-
gories relevant for this research.

Figure 2.4 – Evolutionary Computing: techniques classification

2.1.3 Autonomous Search

The success of approximation algorithms relies on the ability to fit to a specific problem, in
order to reduce the gap with the unknown global optimum. Two elements are identified as key
in this process:

1. Be suitable, i.e., be an efficient implementation option to solve the problem, and

2. Have a correct local configuration, i.e., use the best algorithm setting values to improve
performance.

These features have been largely studied as part of Algorithm Selection Problem [75], and
used as starting point for Autonomous Search [76] systems. The goal of these systems is to pro-

vide an easy-to-use interface for end users, who could provide a possibly informal description

of their problem and obtain solutions with minimum interaction and technical knowledge [77].
This is achieved through the use of several Combinatorial Optimisation problem solving ideas,
algorithms or techniques, which serve as partial solution in an ideal non-human assisted sys-
tem, e.g. hyper-heuristics, portfolio optimisation, evolutionary computing, adaptive or reactive
methods, and so on.

An ideal Autonomous Search system will use the most suitable solving technique and its
best available configuration in order to solve a problem, based on the existing and generated
knowledge, always inside the real-life solving constraints as computing resources or time con-
sumption, i.e., automatically, as shown in Figure 2.5.
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Figure 2.5 – Autonomous Search System: ideal interaction scheme [76].

In this thesis, we focus in two kinds of metaheuristics which are generally used in Au-
tonomous Search systems: Local Search and Evolutionary Computing. These metaheuristics
are used in one of its most critical applications: parameter control and tuning, which we call
Parameter Configuration.

2.1.4 Parameter Configuration

Most metaheuristics rely on their local settings to fit as better as possible to the problem and
to obtain good performances. Despite of being successful, metaheuristics are generally used
with configuration values defined by conventions, ad-hoc choices and/or empirical conclusion
in a limited scale [78] (e.g. three cases over a thousand). Therefore, is hard to know if the
chosen settings really fit the algorithm and, given their impact, optimise its performance for a
defined scope [79].

What configuration fits better? This is a task that not all researchers or developers are aware
of, and little effort is spent with regards to their potential effects. Also it is a non-trivial problem
by the following reasons:

1. Time consuming: it depends on several execution of the metaheuristic.

2. Problem related: best/better configurations change depending on the problem.

3. Interelated: parameters are generally related by complex and/or non-linear interactions.

We could address parameter configuration task by two approaches, defined in [80] and
shown in Figure 2.6: Parameter Tuning and Parameter Control.
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Figure 2.6 – Parameter configuration classification

Both schemes search for an common goal: to obtain an automatic algorithm configura-
tion in order to maximise its performance. This is a high-impact topic in Evolutionary Com-
puting [81] and Autonomous Systems [76].

2.1.4.1 Parameter Tuning

Parameter Tuning advocates to change algorithm configuration in an off-line procedure,
i.e., the setting values change outside the algorithm execution. Therefore, an interative execu-
tion process is the path to evaluate how good is a configuration w.r.t others settings. As stated
in [82], several ways exist to tune parameters:

— Arbitrary criteria: Use and modify parameter configuration based in designers/users own-
criteria.

— Analogous criteria: Follow established guidelines, used and defined in recognised works,
to set parameter values.

— Experimental criteria: Generate a sample through experimental design to decide or define
by statistical tools an appropriate setting.

— Search criteria: Use search methods to define a good algorithm setting from the space of
all available combinations, i.e., use metaheuristics to generate a good parameter configu-
ration.

— Hybrid criteria: Combination of above methods, generally mixing Experimental and
Search criteria.

Several tuning algorithms exists, which have specially a great impact for Evolutionary Al-
gorithms [83] given the amount of parameters present in them. The most relevant techniques in
the literature, regarding this work, are summarised as follows:

— F-Race [84, 85, 86]: Based on racing procedures, F-Race is an iterative procedure which
evaluates several parameter configuration through different benchmarks instances. At
each step, candidates configurations or racers are contrasted through a non-parametric
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statistical test, Ranked-based Friedman [87], to disqualify the ones who are far-away
from the leader. This discrimination is done to reduce computational resources wasted in
poor performance configuration and focus them in more promising options. But, F-Race
is impractical to use when the amount of parameter is large, because it has to evaluate
all combinatorial as initial state, turning into an intractable process. Sampling F-Race
and Iterative F-Race, proposed both in [86], tackle this problem. Sampling F-Race use
a subset, sampled from the space of all configurations, as initial state to then apply F-
Race. The success of Sampling F-race depends on the subset size [79]. Iterative F-Race,
improves Sampling F-Race making it an two-step iterative process. Thus, the first step of
the iteration is to choose a sample from a known probabilistic model, and the second step
is to apply F-Race. The winner and runners-up of a race serve to update the mentioned
model in the next iteration.

— ParamILS [88, 89]: A Iterated Local Search algorithm framework designed for parameter
tuning, being one of the most used tools for algorithm configuration. ParamILS repairs an
algorithm configuration by performing a local search procedure designed to quickly reach
or approach a locally optimal setting. Then, this new candidate is perturbed to escape
from local optima. Best candidate between iterations is saved by a defined criteria, to
then reset the process from the last checkpoint: better overall solution found. The criteria
defined to decide that one setting is better than other are: BasicILS and FocusedILS. The
former compares two configuration performance in a subset of fixed size of all benchmark
set. The latter uses dominion concept to block already compared configuration which
are worst than others, thus unnecessary execution on poor-performance configuration are
avoided.

— CALIBRA [90]: A hybrid criteria method combining experimental design and local
search. It samples the configuration space to found promising settings areas to then uses
local search to improve these solution by the use of Taguchi Orthogonal Arrays. Regret-
tably, it usually works with tiny amounts of parameters.

— REVAC [91]: Relevance Estimation and Value Calibration is a evolutionary algorithm
for parameter tuning which includes sampling, but in this case with regards to the value
distribution of each parameter and not the candidate distribution in configuration space.
The distribution estimation is done to initialise the population in order to diversify over
the search space. Then, through specially designed operators for crossover and mutation,
in each generation the range of possible values of parameters is reduced to focus the
search. Pitifully, REVAC needs of several parameters to work.

— EVOCA [92]: The Evolutionary Calibrator was born in order to improve REVAC flaws as
lose relevant parameter information when reducing the set of possible values to choose,
or the introduction of new parameters to make the algorithm work. EVOCA evolves a
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population generated from an uniform sampling of the variable dominion, also is this
element which decides the population size. Also, crossover and mutation elements works
stochastically reducing the amount operator parameters, and they allow introduce values
that are forbidden in REVAC because of premature locality.

For more detailed information about tuning methods, their classification and scope we refer
the reader to [82, 83].

2.1.4.2 Parameter Control

Parameter Control scheme allows change the parameters values in an on-line procedure,
i.e., transform the values during the execution of the metaheuristic. The goal is to use different
parameter settings through an algorithm run to face as better as possible its different steps, be-
cause a fixed parameter setting does not guarantee optimal algorithm behaviour, since different

algorithm configurations may be optimal at different stages of the optimisation process [93]. As
stated by Eiben in [80], Parameter Control procedures could be classified in:

1. Deterministic: Parameter values are controlled using a deterministic rules applied, i.e.,
without assistance of the search information. Generally, a time schedule is used to activate
these rules.

2. Adaptive: Algorithm setting is modified using feedback from the search process in order
to determine the strength and/or direction of the changing process.

3. Self-adaptive: Parameters are encoded as part of candidate solutions, then metaheuristics
can modify their own parameter values during execution through their search method.
This is known as co-evolution in Evolutionary Algorithms.

Our concern is in Adaptive Parameter Control which has several involvements in the use of
metaheuristics.

In Local Search, the biggest trend is Reactive Search Optimisation [94, 95, 96], led by Battiti
and Brunato. It integrates symbolic notions of machine learning on behalf adaptive behaviour.
Some examples are adaptive versions of classic local search metaheuristics as: Reactive Tabu
Search [97, 98, 99], Adaptive Simulated Annealing [100, 101, 102] and Adaptive Random
Search [103]. Lately, Reinforcement Learning have been studied to be successfully inserted in
these kind of techniques. [104]

In Evolutionary Algorithms, parameter control has not been exploited as parameter tun-
ing, despite the former can solve the problem addressed by the later [105]. Several promising
works have been achieved, but they do not integrate all elements of standard EAs. As men-
tioned in [105], most of the focus is given to parameters controlling population and variation
operators (as crossover and mutation). Also, most adaptive techniques are phenotypic [93],
i.e., changes in parameters values respond to the information given by the evaluation function
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at some execution stage, leaving in background some other relevant information. The diverse
work done for controlling population size and behaviour are well summarised in [106, 107],
meanwhile for variation operators most recurrent works are about Adaptive Operator Selec-
tion [108, 109, 110, 111], a technique which autonomously select which operator, among the

available ones, should be applied by the EA at a given instant, based on how they have per-

formed in the search so far.

For more detailed classification of techniques used for controlling parameters and their
trends, we recommend [93, 105] surveys.

2.2 Search-Based Software Engineering

As explained before, combinatorial optimisation problems, i.e., search problems, tends to
appear everywhere, even in several non-related areas. In Computer Science, Software Engi-
neering tasks were typically seen as more practical and human-experience dependent [2], i.e.,
software engineer knowledge played an unique fundamental role in order to solve well-known
complex problems. Despite this, the inclusion of search algorithms in order to automate soft-
ware engineering problem resolution and support the decision making in software life-cycle
problems have been arise and settled as a common practice in the last decade. This turned into
one of the biggest applications of search algorithms to the date.

In 2001, Mark Harman et al. [112] grounded the first glimpses of this promising area as
Search-Based Software Engineering (SBSE). SBSE promotes the use of metaheuristics to solve
well-known software engineering problems, which could be mapped as search problems. Soft-
ware Engineering now is one of the biggest application of combinatorial optimisation methods.

Search-based Software Engineering also introduced some interesting points of compari-
son between software common elements and evolutionary algorithms structure, e.g. software
metrics with fitness function, bridging evolutionary computing to the field. As consequence,
Software Engineering field opened their doors for several related Artificial Intelligence (AI)
as Predictive Modelling [113, 114], Clustering [115], Machine Learning [116] and Automatic
Deduction [117]. Moreover, in [2] some interesting challenges were defined to address the
use of AI techniques for software engineering problems, being the most relevant the goal of
searching for strategies rather than instances, aiming to solve class of problems rather than
specific problem instances. This is well-known objective in optimisation problem solving, be-
ing a foundamental basis of the Autonomous Search systems, as explained in Section 2.1.3.

As Harman stated in [118, 119], Testing problems [120, 121] have taken most benefit from
SBSE. Despite this, search procedures have gained quite interest in other core Software Engi-
neering topics as Project Management [122], Maintenance [123, 124], Design and Architec-
ture [125, 126], Program Analysis [127] and Software Improvement [128, 129, 130].
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2.2.1 Genetic Improvement

One of the biggest features of software is its capacity of evolve [131]. Despite not be-
ing formulated as a technical feature, it responds to adaptive capacity of software to fulfill the
changing requirements and environments in which they operate. This evolutionary software
property have served as one of the main motivations of using Evolutionary Algorithms in Soft-
ware Engineering problems. As mentioned in [129, 132], Evolutionary Algorithms have been
used around 71% of all research done in SBSE until 2011, being Genetic Algorithms and Ge-
netic Programming the most used techniques.

The intrinsic capability of Genetic Programming to evolve code, explained in Section 2.1.2.2,
has been the starting point of Genetic Improvement (GI), i.e., automated search to find improved
versions of existing software or software improvement. GI has triggered huge improvements for
a diverse set of software performance properties: execution time, energy and memory consump-
tion; as well as repairing and extending software system functionality [129]. Some examples
are Software Transplantation [130], where some portion of code from one system is exported to
another, entirely unrelated, system; or Software reengineering [128], where a genetic program-
ming algorithm evolves a software to perform faster. Nevertheless, several SBSE areas inside
Software Improvement are not yet exploited, having a great potential: Software Synthesis, Re-
pair and Transformation, Parameter Tuning, etc. More details of GI could be found in [129]
survey.

2.3 Automated Deduction

Automated Deduction or Automated Theorem Proving (ATP) is the task of given a formula,
try to automatically evaluate if it is universally valid or not, through the uses of logic-based
computational programs [117]. Algorithms for automated deduction were developed well be-
fore computational tools building or software engineering became a field, using first-order logic
which is rooted in logic and foundations for mathematics. First-order satisfiability is concerned
whether there is an interpretation (model) that satisfies a given formula.

Despite being initially far from combinatorial optimisation scope, huge improvements of
theorem proving tools came with the boolean first-order logic or, Propositional Logic, and the
search methods to address the most famous Constraint Satisfaction Problem, Boolean Satisfac-
tion Problem [5] or SAT.

Moreover, Search-based Software Engineering problems, i.e., search problems, have used
automated deduction solvers as one of the most relevant tools for solving different classes of
problems based on their natural connection: logics can be an intermediate layer between soft-

ware problems and automated deduction tools, problems can be mapped as queries in a logical

satisfiability space, and tools could focus to solve them. The connection between logic and
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software was established early since its foundations, because before a programming language

or software existed, logical formalisms for calculus, automata, and equational reasoning were

building the basis of their development [3].

Note that, each software is computation piece of instructions following a defined logic,
therefore a logic can be used to characterise all the possible events of a software piece, either
inputs to a program, values assignation to variables at some execution point, the possible steps
to follow in a program, the effects of these execution steps on the program state, or the properties
of execution traces of a program. Thus, first-order satisfiability has been very useful specially
for software validation or verification problems [117].

2.3.1 Boolean Satisfiability Problem

Propositional logic is directly related to SAT [5, 133, 134] formulas and could be seen as
the smallest sensible subset of first-order logic [3]. SAT formulas are checked efficiently by
modern SAT solvers. This allowed to SAT-solving turns into a highly active research area. The
satisfiability problem is Constraint Satisfaction problem and it is simpler to represent: a model
for a propositional formula is an assignment of the propositional variables to truth values 0
(false) or 1 (true), such that the formula evaluates to 1 (true) under this assignment.

With respect to Search-based Software Engineering, SAT-solving has been applied to soft-
ware verification through model checking [135, 136, 137], software analysis [138] and software
testing [139]. However, binary nature of SAT formula have been a major barrier in order to
model several search problems into SAT domain.

2.3.2 Satisfiability Modulo Theories

The theory of arithmetic has been a central topic in logic ever since symbolic logic took
shape [3]. Satisfiability Modulo Theories (SMT) [4] has been risen generalisation of SAT which
includes support for domains that are commonly found in programs (integer, real, linear and no-
linear arithmetics, arrays, bit-vectors, pseudo-booleans, etc) and specialised algorithms to solve
these type of mathematical assertions. This contrasts pure first-order theorem proving that has
no built-in support for those domains, which are critical for modeling and analyzing software
systems.

As shown in [3, 4, 9], several applications for SMT solvers exist in Software Engineering,
different from classic Program Verification problems [140, 141], including: Symbolic Execu-
tion Testing, Program Analysis, Static Runtime Checking, Test Case Generation and Software
Modeling.

More detailed insights about SMT could be found in his dedicated analysis in Chapter 3.
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2.4 Conclusions

In this chapter, we have presented the main foundations of this work, classic Combinatorial
Optimisation procedures for Search Problems, and how are they used for Autonomous Search,
the idea of automatically solving a problem with minimum end-user interaction.

Also, we review important topics as Metaheuristics and how their are used in autonomous
procedures mainly focused on Parameter Configuration.

Moreover, we have introduced a current application for these techniques, Search-Based
Software Engineering, and how their own challenges could be addressed from search related
methods, as Evolutionary Computing and Automatic Deduction: the former being essential
part of Metaheuristics, and the later includes the popular combinatorial problem: SAT.



3
Satisfiability Modulo Theories

In this chapter, we introduce Satisfiability Modulo Theories (SMT) concepts, scopes and
applications. Also, we explain the importance of SMT solving tools and we address one of
the most important challenges in the field. Before describing SMT, Constraint Satisfaction
problems and Boolean Satisfiability problems (SAT) should be explained.

3.1 Boolean Satisfiability problem: SAT

Boolean Satisfiability problem, called SAT [133, 134], is a fundamental problem in Com-
puter Science. Given a set of propositional logic formulas (F = {f1, f2, . . . , fn}) over boolean
variables (x1, x2, . . . , xn) related by logical connectives (NOT ¬, AND ∧, OR ∨), SAT problem
aims to decide if they can be evaluated as true by choosing true or false values for its variables.
It is famous for being the first demonstrated NP-Complete problem by Cook-Levin [5] theorem
in 1971.

Example 3.1 Let x1, x2, x3, x4 boolean variables, defining the formula set F = {f1, f2, f3, f4},
with f1 = (¬x1 ∨ x2), f2 = (¬x1 ∨ x2 ∨ ¬x3), f3 = (¬x1 ∨ x3 ∨ ¬x4) and f4 = (x1 ∨ x4).

What values must be assigned to variables in order to
4�

i=1

fi be true? ♦

In Example 3.1, as in most SAT instances and applications, formulas are presented in Con-

junctive Normal Form (CNF). In CNF formulas, the literals (i.e., variables and their negations
(NOT ¬)), are joined by disjunctive connector (OR ∨), building a formula or clause. Then,

39
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clauses are joined by the conjunctive operator (AND ∧). Also, this example has at most 3-literals
per clause, called 3-SAT, which is one of the Karp’s 21 NP-Complete Problems [142].

Solving this kind of problem is not trivial due to its complex nature, but they allow to easily
present its huge search space and the effects of how to address it. Figure 3.1 shows the search
space of Example 3.1, which correspond to the different truth values, encoded as 0 and 1, that
can be assigned to the variables. Note that the instantiation and value assignment order of
variables plays a fundamental role in the effectiveness to find a solution.

x1

x2 x2

x3

x4
x4

unsat unsat unsat unsat

x3

x4 x4

sat unsat sat unsat

x3

x4 x4

unsat unsat unsat sat

x3

x4 x4

sat unsat sat unsat

x1 = 1 x1 = 0

x2 = 1 x2 = 0

x3 = 1 x3 = 0

x4 = 1 x4 = 0

x2 = 1 x2 = 0

x3 = 1 x3 = 0x3 = 1 x3 = 0 x3 = 1 x3 = 0

x4 = 1 x4 = 0

Figure 3.1 – Example 3.1 SAT formula search space.

Actually, most SAT solvers are based on Davis, Putman, Logeman and Loveland (DPLL)
method [143, 144] from 1960s’, which was retaken in 1990s’ [3]. DPLL algorithm is a complete
backtracking-based search procedure, which shrinks the search process by simplifying the CNF
formula through the elimination of literals whose value could be easily derived in order to obtain
a true value, e.g. literals in one-variable clause, or literals whose negation does not appears in
the formula.

Despite being the smallest sensible case of first-order logic [3], the advances in SAT prob-
lem resolution have been boosted since 1990s [133] specially improving Automated Reasoning
systems by using the Conflict-driven Clause Learning (CDCL) [145, 146, 147] algorithm, which
adds a back-jump to the DPLL backtracking method. However, many problems are hard to map
into a boolean logic space, because they need richer language to be modeled [4].

3.2 Satisfiability Modulo Theories: SMT

Satisfiability Modulo Theories, SMT [4, 148], is a generalisation of SAT born by the need
of including and combining several first-order theories, called modulos, rather than boolean
algebra theory, e.g. arithmetics or algebra theories. The inclusion and combination of these
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modulos gives a richer language to reason and decide over more complex scenarios by modeling
real-life situations more precisely [4].

Example 3.2 Let be a ∈ Z an integer variable, defining the formula set F = {f1, f2}, with

f1 = ¬(a ≥ 3) and f2 = ((a ≥ 3) ∨ (a ≥ 5)). Is ∃a
2�

i=1

fi satisfiable? ♦

Note that in Example 3.2, SAT literals are replaced by formulas related to some theories, i.e.,
Linear Integer Arithmetic. Also, some additional first-order logic elements could appear, i.e.,
Universal and/or Existential variable quantifiers 1. Then, through using a bidirectional mapping
from boolean to theories space and using some theories-related techniques, called Theories

Solvers, satisfiability procedure can be developed.

PLIA = ¬(a ≥ 3) ∧ ((a ≥ 3) ∨ (a ≥ 5))

p1 = a ≥ 3

p2 = a ≥ 5

PSAT = ¬p1 ∧ (p1 ∨ p2) DPLL

PSAT is Satisfiable with:
p1 → false

p2 → true

¬(a ≥ 3) ∧ (a ≥ 5) → false

¬p1 ∧ p2 → true

LLIA:
(a ≥ 3) ∨ ¬(a ≥ 5) → true

Hypothesis:
PSAT ∧ LSAT → true

Theory Lemma LSAT :
p1 ∨ ¬p2 → true

DPLL

PSAT ∧ LSAT is
Unsatisfiable.

PLIA is Unsatisfiable.

Linear Integer Arithmetic

Propositional Logic
Initial Mapping

Proof by Contradiction

Model Results

SMT

SAT

SMT/SAT

Figure 3.2 – Example 3.2 SMT formula solving procedure through DPLL(T) framework.

Despite generalizing SAT, SMT uses it as the fundamental core for solving its own for-
mulas by integrating DPLL procedure with theories solvers, in a theoretical framework called
DPLL(T). Figure 3.2 summarises the resolution of the SMT formula shown in Example 3.2 by
using DPPL(T) procedure:

1. SMT formula is mapped to SAT formula through the transformation of literals into boolean
variables, i.e., ¬(a ≥ 3) ∧ ((a ≥ 3) ∨ (a ≥ 5)) into ¬p1 ∧ (p1 ∨ p2).

2. SAT formula is solved using DPLL, finding a model for the mapped formula: {p1 →
false, p2 → true}.

3. If SAT formula is unsatisfiable, then SMT formula is unsatisfiable. Otherwise, the solu-
tion model must be contrasted in the modulo scope by the theory solver.

1. In SAT problems all variables are assumed to be existentially quantified.
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4. SAT model implies a set of literals to proof satisfiability, {¬p1, p2}, but in the original
modulo the literal set {¬(a ≥ 3), (a ≥ 5)} is unsatisfiable.

5. To check this inconsistency, a theory solver achieves a proof by contradiction using a
theory lemma: as ¬(a ≥ 3) ∧ (a ≥ 5) is unsatisfiable, therefore (a ≥ 3) ∨ ¬(a ≥ 5) is
valid. Consequently, adding p1 ∨ ¬p2 to the SAT mapped formula should not affect the
obtained satisfiability model.

6. As the theory lemma inclusion leads to an unsatisfiable SAT formula, ¬p1∧(p1∨p2)∧(p1∨
¬p2), then original SMT formula is also unsatisfiable in the integer arithmetic modulo.

As mentioned in [4], lemma proof procedure is repeated until convergence, and it always
converges because a there a finite number of theories lemmas that could be created using the
atoms in the formula.

3.2.1 SMT Applications

SMT great development in the last decade has been pushed by its adaptive capacity to model
different situations. This has allowed applying SMT in different where uninterpreted first-order
logic formulas would be too general or SAT formula would require additional encodings. These
application include:

— Interactive Theorem Provers: Automated Theorem Proving (ATP) applications include
the generation of formal proofs over mathematical hypothesis. One of these trends is
Interactive Theorem Proving, which uses human-machine interaction to build the desired
proofs. As well as SAT, SMT solvers have been applied to automatise some proofs in
proofs assistants such as Dafny [149], HOL4 [150], and Isabelle [151].

— Constraint Satisfaction Problems: As SAT is the most famous CSP and have been used
to model several Combinatorial Optimisation problems, but boolean modeling is a harsh
constraint to adapt complex real life situations. SMT opens opportunities to solve these
kinds of problems, especially the ones related to Constraint Programming, Constraint
Satisfaction Problems (CSP). Examples include the use of SMT in Scheduling [133, 152,
153] and in Planning [154, 155, 156].

— Search-Based Software Engineering: First-order logic defines the ground to set different
theories by symbols, operators and axioms. Several of these theories are basic elements
that defines program building process in Software Engineering [4]. Therefore, several
types of Search-based Software Engineering (SBSE) problems could be modelled thanks
to formulas with different theories. SMT theories related to Software Engineering in-
cludes Linear and Real Arithmetics, Floating Points, Arrays, Bit-vectors, Boolean and
Pseudo-Booleans theories and their combinations. These theories are applied in the fol-
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lowing SBSE problems [3, 4, 9]: Program Verification, Symbolic Execution Testing, Pro-
gram Analysis, Static Runtime Checking, Test Case Generation and Software Modeling.

Note that in several applications, theories could appear at same time and be related. SMT solv-
ing procedures handle the combination of multiple theories within a unique solving framework
using the well-known Nelson-Oppen combination approach [157].

3.2.2 SMT-LIB

As the applications of SMT started to grow, an initiative rose in order to unify the interested
community: SMT Library or SMT-LIB [158]. Since its inception in 2003, the initiative has
pursued the following concrete goals:

— Develop and promote common input and output languages for SMT solvers, called SMT-
LIB standard [159].

— Provide standard rigorous descriptions of background theories used in SMT systems,
called SMT Logics [160].

— Establish and make available to the research community a large library of benchmarks.

— Collect and promote software tools useful to the SMT community. This is achieved
through an annual competition called The Satisfiability Modulo Theories Competition

or SMT-COMP [161].

3.2.2.1 SMT-LIB standard

The SMT-LIB standard [159] (currently version 2.6) defines concepts, formal languages,
and a command (script) language. It also introduces the concepts of Theories and Logics in
order to classify problems or instances. A problem belongs to a logic; a logic refers to some
theories; and a theory is a specific set of symbols together with a set of axioms that defines a
well-known system.

3.2.2.2 SMT Logics

As explained before, a SMT Logic (from now logic) is a classification for SMT problems
or instances. A logic could refer to one or more modulos, therefore includes all possible com-
bination of first-order theories. Figure 3.3 summarises some of the recurrent logics in SMT
problems.

Logics have been named using letter groups that evoke the theories used and some restriction
in their formulas. Some of the conventions are the following:
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Figure 3.3 – SMT Logics [160]: SMT problem classification.

— QF: restricted to quantifier-free formulas,
i.e., without universal or existential quan-
tifiers.

— A or AX: Theory of Arrays.

— BV: Theory of Bit Vectors.

— FP: Theory of Floating Point.

— IA: Theory of Integer Arithmetic.

— RA: Theory of Real Arithmetic.

— IRA: Theory of Mixed Integer and Real
Arithmetic.

— L: Linear fragment of an arithmetic logic.

— N: Non-linear fragment of an arithmetic
logic.

Thus, logics related with more than one modulo are easily identified, e.g., QF_ALIA log-
ics indicates SMT instances or problems with quantifier-free formulas mixing Linear Integer
Arithmetic and Array theories. Note that most of Search-based Software Engineering prob-
lems are encoded as SMT problems related to the following logics: LIA, LRA, QF_LIA and
QF_LRA [4]. We focus on this types of problems in this thesis.

3.2.2.3 SMT-COMP

The Satisfiability Modulo Theories Competition or SMT-COMP [161] is an annual compe-
tition [162, 163, 164, 165, 166], born in 2005 [167], whose objective is to collect and promote
software tools for solving SMT problems, but also to spur adoption of the common, community-
designed SMT-LIB standard, and to spark further advances in SMT. SMT-COMP is inspired by
others related competitions, as CASC [168] or the SAT competition [169], which have helped
inspire continuing improvements in SMT tools.
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3.2.2.4 SMT Solvers

Automatic theorem provers for SMT, or SMT solvers, are software designed as tools to
automatically decide the satisfiability of a given formula related to a set of theories. Generally,
a solver core relies on the DPLL(T) procedure explained in Section 3.2. However, many SMT
formulas are not suitable for being directly solved by it: they cannot be easily mapped into a
SAT scope or the resulting SAT formula is too complex to be solved by DPLL.

Example 3.3 Let be x, y ∈ R two real variables. A formula set F = {f1, f2}, where f1 =

((x ≥ 1) ∨ (y ≤ 0)) and f2 = (x + y = 0). Is ∀x∃y
2�

i=1

fi satisfiable? ♦

Note that in Example 3.3, SMT formula is a LRA instance whose modulo defines operators
symbols, as + in f2. Therefore, a SMT solver needs to combine several algorithms or heuristics
before use its core resolution process in order to improve solver performance, e.g. reducing
complexity of the formula through theory-related techniques. Hence, a SMT solver must define
and decide a strategy: how to select and apply these solving components?.

Several solvers have been developed through SMT rise in Computer Science. Most of them
have an ad-hoc design for a limited set of theories, e.g. MathSAT [170], OpenSMT [171]; while
others have been discontinued but its contribution is an important milestone in the state of the
art, e.g. BarceLogic [172]. Currently, three solvers are the most popular and used tools in SMT,
sharing the features of cover most defined logics in SMT-LIB [7] and dominate the last five
SMT-COMP.

— Z3 [6]: Microsoft Research’s SMT solver. Its development was targeted at solving prob-
lems that arise in software verification and software analysis. It has been considered as
the overall most reliable solver by winning SMT-COMP from its beginning in 2007 until
2017 (since 2014, it has been the symbolic winner because its non-competitive participa-
tion). Z3 takes advantage of an open and strong strategy design which helps to drastically
improve performance of Z3. More detailed information is given in Section 3.3.

— CVC4 [7]: The Cooperating Validity Checker is a open-source joint project of the New
York University and the University of Iowa. CVC4 has been the official winner of SMT-
COMP from 2014 onwards. In the last competition it obtained, for first time in the last
decade, a better overall performance than Z3 over all logics. Also, it have participated in
SMT-COMP since the first edition.

— Yices [8]: The SRI International’s SMT solver. It has been developed since 2006 and has
obtained the second in the last five editions of SMT-COMP.

Note that all current SMT solvers uses SMT-LIB standard v2.X [159] as input/output language
for modeling and solving SMT instances.
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3.3 The Strategy Challenge in SMT

In 2013, De Moura and Passmore introduced The Strategy Challenge in SMT [10], which
states the following:

To build theoretical and practical tools allowing users to exert strategic

control over core heuristic aspects of high-performance SMT solvers.

The main idea is to efficiently address the heuristics components in SMT solving, which are
outside the scope of the DPLL(T) procedure, i.e., efficient creation of strategies to improve SMT
solvers performance. To encourage the development these proofs and/or tools, Z3 provided a
code-language interface to define strategies, i.e., a representation of the selection and ordering
of modulo solving components. To proof the importance of the proposed challenge, Z3 strategy
language was tested over QF_LIA logic using an incremental building. The final generated
strategy reduced in 75% the amount of instances that could not be decided and around 60% the
execution time.

This challenge has only been addressed by Graham-Legrand [173]. The proposal aims to
use PSYCHE system [174], which allows users to test various techniques and strategies for either
interactive or automated theorem proving. PSYCHE provides users with an API to use strategies
as plugins for theorem proving solvers. Then, a Slot Machines approach [173] is introduced
to ensure output correctness by using a recursive procedure, allowing test several strategies
without jeopardise the processes of a selected theorem prover.

3.3.1 The Strategy Challenge as a SBSE problem

As explained in Chapter 1, the initial foundation of this work is inspired by the Search-Based
Software Engineering (SBSE) challenge Search for strategies rather instances [2], which looks
for strategies to solve classes of problems in SBSE rather than solving specific problem in-
stances. Then, our hypothesis is to demonstrate that the search space of most SBSE problems
could be efficiently handled using a hybridisation between a systematic search trend and a local
search system. SMT is an appropriated systematic search system to use over SBSE problems
given the natural concordance existing between first-order logic and software systems [3], and
the current amount of SBSE problems, which are currently addressed with it [4]. Meanwhile,
metaheuristics are the most used local search techniques in SBSE, especially Evolutionary Al-
gorithms [129, 132].

But, how hybridise metaheuristics with SMT? The Strategy Challenge acts as integrative
point between both trends. With regards to Z3, the creation of a modifiable interface adds de-
grees of freedom to create strategies outside the solver normal execution scope to improve its
performance. This interface is based in a language, which is defined over a grammar, then the
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creation or modification of these code segments could be done following some grammatical
rules. This could be seen as Software Improvement problem (e.g. Program Refactoring, Trans-
formation and/or Parameter Tuning), i.e., look for improved version of an existing software,
where Genetic Improvement (see Section 2.2.1) is a well-known trend to solve these kind of
SBSE problems. Therefore, metaheuristics techniques could be used to automatically search
an improved SMT solver version related to a specific logic. Figure 3.4 shows the hybrid system,
between a SMT solver and Metaheuristics, to address SBSE problems.

DPLL

Theories

Solvers

SMT
Instance

SMT
Model/Proof

Solution

SBSE

Problem

SMT
Strategy Metaheuristc

SMT Solver

DPLL(T)

SMT Logic

Figure 3.4 – A SMT-Metaheuristics hybrid system: Mixing SMT and Metaheuristic to solve
SBSE problems.

Note that we reduced our initial task to a SBSE problem: to found a good strategy config-

uration, in order to improve overall SMT solver performance for an specific logic. This hybrid
scheme have a great advantage: it is an abstraction level over our initial goal, i.e., is not only
interesting for SBSE problems encoded as SMT instances, but for all SMT applications.

Regrettably, this hybrid approach has an important issue to address. Metaheuristics per-
formance to generate efficient strategies will depend on the complexity of the problems and
the SMT logic related to them. Thus, a basic metaheuristic, as Tabu Search, could work for
some problems related to a specific logics, but fail for more complex ones. We have fall on
the Algorithm Selection Problem [75]. We introduce an Autonomous System [76] approach for
the generation of strategies, in order to ensure the selection of best available metaheuristic for
address the instances of a selected SMT logic.

3.3.2 Autonomous Generation of Strategies

In addition to the discussion in Section 3.3.1, the idea of exert strategic control over SMT
solver heuristics components adds a new limitation to the equation: expert knowledge. In spite
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of the degrees of freedom added to the SMT solving process by creating strategies, the Strategy
Challenge needs several expert guidelines to create effective tools to improve the decidability
of a SMT solver, otherwise it will not achieve any advantage. Note that most of the time, users
do not have the required knowledge in order to use properly all the heuristics features in SMT
solvers, but some hints exists in default strategies that SMT provers use. These default strategies
are generally designed by developers, or experts researchers, allowing us to use this information
as guide for improvement. This lack of knowledge is a fundamental milestone of this research,
aiming to take full advantage of the strategy structure in SMT solvers without need of expert
knowledge.

In this thesis, we address the Strategy Challenge in SMT defining a framework for the au-
tomatic generation of strategies for Z3 using an autonomous search system, i.e., a practical
system to automatically generate SMT strategies that improve SMT solvers performance with

no need of expert knowledge.
Figure 3.5 resumes the architecture of this system applied to solve SBSE problems.
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Figure 3.5 – Autonomous Generation of Strategies in SMT: Addressing the Strategy Challenge
in SMT to improve SMT solving for SBSE problems with Z3.

3.4 Conclusions

In this chapter, Satisfiability Modulo Theories (SMT) concepts, instances and applications
were introduced, as well as its fundamental basis, the Boolean Satisfiability Problem (SAT).
We have presented the solving technique for SMT problems: DPLL(T), a combination between
DPLL solving procedures used in SAT, and Theories Solvers, which are obtained from mapping
the original SMT instance to SAT scope.
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Community research efforts were also mentioned, being the SMT-LIB initiative (standard
and benchmarks), the SMT logic classification, and the annual SMT Competition (SMT-COMP)
the most relevant for our work.

Later, we sort out SMT solvers, software used to automatically to deduce satisfiability over
SMT formulas, focusing in Microsoft Research’s Z3 Theorem Prover, one of the most popular
and efficient SMT solvers according to SMT-COMP.

Also, we analysed the Strategy Challenge in SMT, and how is the starting point of this
research. We made emphasis in the concept of strategies, solving heuristics used outside the
DPLL(T) scope to improve SMT solver performance.

Finally, we propose to address the Strategy Challenge in SMT through an Autonomous
Search system in order to automatically generate SMT strategies that improve Z3 solver perfor-

mance without expert knowledge requirements. This is not only interesting for SBSE problem
mapped as SMT instances, as intended at first, but for all SMT related applications.





4
Strategies

In the previous chapter, the strategy concept and the Strategy Challenge in SMT were dis-
cussed. However, the definition of strategy is still vague. This chapter address the importance
of strategies in SMT, applied to the Z3 theorem prover. We deepen the definition of a strategy,
for later analysing its structure in Z3 and how it helps to improve solver performance.

4.1 What is a Strategy?

The strategy concept is hard to define, because it changes depending on the application
field and its boundaries are commonly blurry. A good start point is a neutral definition given
by a well-known english language dictionary [175]: a planned series of actions for achieving

something. With regards to Computer Science, the term strategy appears frequently. Here are
some examples:

— Software Engineering: In Design Pattern [176], a strategy is a dynamic on-line algorithm
selection in order to realise an operation depending on the requirements of the process.

— Evolutionary Computing: In Evolutionary Strategies algorithms [35, 36], a strategy is a
scheme which define how a population evolves through generations.

— Hyper-heuristics: The automated selection or generation process of a heuristic from a
pool of recommended procedures for a determined problem, is called strategy [177].

Sometimes, the concept is simply reduced to a method of doing something or dealing with

a problem, being a synonym of the term approach. But, as in Computer Science is increasingly

51
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common define problems as combinatorial search, a strategy could be defined as adaptations

of general search mechanisms which reduce the search space by tailoring its exploration to a

particular class of problems [10].

The last definition seems appropriated. However it does not consider the final goal of strate-
gies, as in the SMT case context: optimise the performance of a major structure. Therefore,
and considering all these perspectives, we define a strategy as: a set of heuristics processes
that helps to reduce the search space and/or the way how it is explored in order to find
well-known solvable instances in a set of problems.

4.1.1 Strategies in SMT

As explained in Section 3.3, we refer to a strategy in SMT as the way that several theories-
related algorithms or heuristics are used; i.e., selected, arranged, and/or applied; outside the
DPLL(T) solving process in order to improve SMT solver performance. These strategies ap-
pears implemented into the source-code of most SMT solvers and they are based in developers
knowledge. The main goal of these heuristics methods or strategies is to reduce the complex-
ity of the SMT formula, i.e., reduce formula search space, generating more efficient problem
resolution.

With the appearance of the Strategy Challenge in SMT [10], the focus was fixed into the
importance of the strategies for the behaviour of SMT solvers, especially in the Z3 theorem
prover, which, at date, were relevant only for developers. Then, according to the needs of the
SMT solver users, build or modify a strategy shows empirically the impact of the selection,
arrangement and application of heuristics elements to address as best as possible a set of prob-
lems.

4.2 Z3 Strategies

In Z3 theorem prover, strategies could be found inside its source-code as well as they could
be created through a language designed to represent the way heuristics and formula solving
techniques are applied. Strategies define the way heuristics or solving components are applied
over a SMT formula in Z3, regardless where they were defined, by following the tactic frame-

work.

4.2.1 The Tactic Framework

The tactic framework define how strategy components, called tactics, interact with a SMT
formula in order to reduce and/or solve it. Figure 4.1 shows the rules that define the tactic
framework.
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goal = formula sequence × attribute sequence
tactic = goal → return
return = empty → model

| false → proof
| goal → goal sequence × modelconv × proofconv
| fail

modelconv = model sequence → model
proofconv = proof sequence → proof

Figure 4.1 – The Z3 Tactic Framework: Solving formulas using tactics.

As explained above, a strategy is composed of elements called tactics. A tactic could be a
heuristic or a solving component, as well as a combination of some of them. Even if two tactics
can be different, or focused on separated task, they are treated in as the same: a set of rules or

constraint to be applied. These tactics operate over a SMT formula, called goal. A goal is a
sequence of modulo-related formulas which includes a set of specific attributes. When a tactic
is applied over a goal, a subproblem set is always returned. The possible subproblem set values
are:

1. Empty Set: when a tactic determines if a goal is satisfiable, a empty set is returned. Tactics
applied to this set do not modify it. The empty set is related to a model that proves the
satisfiability of the goal.

2. False set: if a tactic computes an unsatisfiable goal, a false set is returned. As in the
empty set, any tactic applied to the false set does not change the output. It has associated
a unsatisfiability proof for the goal.

3. Goal set: when a tactic is applied to a problem, but neither empty nor false set is reached,
the returned subproblem set can be:

(a) the original problem G, if the applied tactic does not change the initial goal;

(b) a subset G�, which represent the original goal G after apply a tactic procedure. It
has associated a model converter (modelconv) and a proof converter (modelconv),
which can rebuild a satisfiability model or unsatisfiability proof, respectively, for
the original goal G form the subset G�, if a solving result is found.

4. Fail set: if the tactic does not have all requirements to properly work, a fail set is returned
and the original goal is not processed. This may have two consequences:

(a) it leads to a global fail result if tactics are combined by conjunction, which means
that no result could be obtained.

(b) it skips the failing tactic if tactics are joined by disjunction, using the next tactic
over the original problem or goal G.
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Note that Z3 as well as most SMT solvers, must show the following results, defined in
SMT-LIB standard [159], when a instance is addressed:

1. sat: when the problem is satisfiable. This value is related to the empty set.

2. unsat: when the problem is unsatisfiable. This value is related to the false set.

3. unknown: when no solution could be decided. This value is related to the fail set.

4. timeout: when solving time limit is exceeded before the final decision could be deter-
mined.

4.2.2 Tactics classification

As shown before, a tactic encapsulates different formula solving procedures under the same
concept. To clarify their difference, we classify tactics in basic tactics and compounded tactics

and we formalise them by using the notation shown in Table 4.1.

Symbol Definition
Φ Set of all SMT goals.
Π Set of all parameter vector of tactics.

Λ
Set of all satisfiability models and

possible unsatisfiability proofs of a goal.

I
Set of SMT formula solving outputs.

{sat,unsat,unknown,timeout}
J

Set of boolean values.
{True,False}

T Set of all possible tactics.

Table 4.1 – Notation for tactic formalisation

4.2.2.1 Basic tactics

Basic tactics are atomic elements of a strategy. They can be used individually or in a com-
pounded tactic. There are three types of basic tactics:

Definition 4.1 A solver tactic checks the satisfiability of a goal. Any solver can be defined
as:

S : Φ × Π → I

Note that, the application of a solver S relies in its own parameter vector α ∈ Π to generate
goal G ∈ Φ output. ♦
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Definition 4.2 A heuristic tactic transforms the problem into a sequence of subproblems.
Any heuristic can be defined as:

H : Φ × Π → Φn × Ω

where Ω is a satisfiability model or an unsatisfiability proof converter, from the generated
subgoals to the original goal, defined as:

Ω : Λn → Λ

We define the application of a heuristic H with parameter vector α ∈ Π to a problem or goal
G as:

H(G,α) = ((G1, G2, . . . , Gn),Ω(G1, G2, . . . , Gn)) ♦

Definition 4.3 A probe tactic checks if in its current state the problem or goal has some
property. A probe is formalised as:

P : Φ → J

Note that a probe P applied to a goal G returns a truth value depending on the existence of
some goal property. ♦

4.2.2.2 Compounded tactics

A compounded tactic is a combination of tactics through the use of tacticals.

Definition 4.4 A Tactical is a function that define how tactics are applied and/or combined.
Using a tactical over a set of tactics generates a new complex tactic. Tacticals are defined as:

C : 2T → T

Thus, a tactical C over a set of tactics τ ∈ T generates a new tactical t ∈ T . ♦

4.3 Formalising Z3 Strategies

Once explained all strategies components, introduced by the tactic framework, we could
formalise the notion of Z3 strategy through a language which compiles into the tactic framework
and define a strategy grammar. For introducing the grammar, we use the following notations
based in first-order logic systems:

— Arity function: ar(f) is the arity of the function symbol f , e.g., if a function symbol f is
defined as f(, ), then f has arity ar(f) = 2.
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— Function symbol: Let f be a function symbol, then f/n refers to f with arity ar(f) = n.

— Constant: Let c bet a function symbol, then c is a constant iff c has arity ar(c) = 0.

4.3.1 Strategy syntax components

We consider the following sets in order to build strategies: Constants, Functions, and Pa-
rameters.

4.3.1.1 Constants

Let Θ be a set of constants Θ = Solver ∪ Heuristic ∪ Probe where Solver,
Heuristic, and Probe are sets of constant functions that correspond to the various types of
basic tactics explained in Section 4.2.2.

— The set Solver contains procedures to check the satisfiability of a problem (or subprob-
lem).

— The set Heuristic contains techniques that transform a problem into a sequence of
subproblems.

— The set Probe contains functions to check properties of the current subgoal of a problem.

4.3.1.2 Functions

Strategies in Z3 includes two types of functions: combinators and parameters modifiers.

4.3.1.2.1 Parameters modifiers

Let Δ be the set of binary functions which allow to change the parameter vector values of a
tactic. A function δ ∈ Δ is defined as:

δ : T × Π → T

Note that given a tactic t ∈ T and parameter configuration α ∈ Π, a δ function creates a new
tactic t� ∈ T . Consequently, this set is composed by the following functions:

— try-for/2: function that defines the running time-limit of a tactic in milliseconds.

— using-params/2: function that defines parameters values to a tactic, e.g., random seed.

4.3.1.2.2 Combinators

Let Γ be the set of n-ary functions for combining tactics, i.e., generate new complex tactics. A
combinator γ ∈ Γ is defined as:

γ : T n → T
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Note that given a set of n tactics T � = {t1, t2, . . . , tn} with T � ⊂ T , a combinator γ generates a
new composetd tactic t� ∈ T . This set is the union of the following functions set:

— Γand = {and-then/n|n ≥ 1}, where each function combines conjunctively a set of n

tactics.

— Γor = {or-else/n|n ≥ 1}, where each function combines disjunctively a set of n

tactics.

4.3.1.3 Parameters

Let Π be the set of parameter vectors, considered as constants, which correspond to tactics
parameters. As shown in Section 4.2, only elements from Solver and Heuristic set have
a parameter vector α ∈ Π by their definition.

However, a combinator function γ ∈ Γ generates a composed tactic formed from a set of
tactics T � = {t1, t2, . . . , tn} that includes constants from {Solver ∪ Heuristic}. Thus, a
γ function could have associated a parameter vector β to be applied to each tactic ti ∈ T �.

Therefore, we can apply a parameter function δ ∈ Δ to a γ function, making δ(γ, β)

is valid. This beacause, β will be applied to all tactics in the combinator with δ(γ, β) =

γ(δ(t1, β), δ(t2, β), . . . , δ(tn, β)). Note that, this expression is also valid.

4.3.2 Strategy language grammar

As usually, we represent strategies as trees, i.e., first-order terms. The set of terms T (Σ) is
built on the signature Σ = Θ ∪Δ ∪ Γ ∪ Π. Of course not all strategies are correct with regards
to the syntax and semantics of Z3. Based on the Z3 strategy syntax components explained in
Section 4.3.1 and in order to restrict the set of allowed strategies, we use a term grammar [178].

A term grammar is a tuple G = (N , T , S, P), where N is the set of non-terminal symbols,
T is the set of terminal symbols, S is the starting symbol, and P is the set of production rules.

Definition 4.5 The following term grammar, GZ3, represents Z3 strategies:

— N = {Tactic,CStrategy,Strategy}
— T = Σ

— S = {Strategy}
— P includes the following rules:

(a)
Strategy → CStrategy

| Tactic

(b)
CStrategy → δ(Strategy, π); with δ ∈ Δ, π ∈ Π

| γ(Strategy, . . . ,Strategy); with γ ∈ Γ, ar(γ) = n
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(c)
Tactic → p; with p ∈ Probe

| h; with h ∈ Heuristic

| s; with s ∈ Solver

♦

The language generated by this grammar is denoted Strat and corresponds to well-formed
strategies, i.e., syntactically correct terms. For better understanding, we refer the reader to the
following example.

1 (and-then
2 (fail-if (not(is-ilp)))
3 simplify
4 split-clause
5 (or-else
6 (try-for sat 100)
7 (using-params smt :random-seed 100)
8 )
9 )

Figure 4.2 – User-defined strategy example.

Example 4.1 Let be S an user defined strategy, shown in Figure 4.2. The strategy S is a
composed tactic, generated by using the conjunctive combinator and-then over the fol-
lowing tactics:

— A probe, fail-if(not(is-ilp)), which checks if the SMT formula is a integer
linear programming model.

— A heuristic, simplify, which reduces the SMT formula complexity by applying
context-independent simplification rules, e.g. constant folding, (x + 0) → x.

— A heuristic, split-clause, which separates clauses of literals related by disjunc-
tion (∨) into cases. e.g. G : (x > 0)∧ ((y < 1)∨ (y > 1)) into G1 : (x > 0)∧ (y < 1)

and G2 : (x > 0) ∧ (y > 1).

— A composed tactic of solvers, joined disjunctively through the combinator or-else.
This tactic includes:

— The solver sat, which try to decide over a SMT formula using a SAT solver.
This solver has defined, through the use of the binary function try-for, a time
limit of 100 milliseconds.

— The solver smt, which try to decide over a SMT formula using a solver based in
DPLL(T) procedure. This solver has defined, through the use of the binary func-
tion using-params, a specific value for the solver random seed parameter
of 100.
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Tactic
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100Strategy

Tactic
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Figure 4.3 – User-defined strategy generated by the derivation tree of the Z3 strategy term
grammar.

The strategy S can be represented by the term st ∈ Strat generated by the grammar
GZ3, and explained by the derivation tree shown in the Figure 4.3. Note the color used:
blue code represent a basic tactical, orange sentences indicates n-ary combinators functions,
red refers to binary functions, and green expressions show values modified in the parameter
vector of a tactic. ♦

4.4 Using Z3 Strategies

In order to show how to use strategies and how they perform to decide over a SMT formula,
let us introduce the following example to be used for a step by step explanation.

Example 4.2 Let be a ∈ Z an integer variable, which define the clause set F = {f1, f2}
with f1 = ((a < 10) ∨ (a = 10) ∨ (a > 10)) and f2 = (2a = 20). Is ∃a

2�
i=1

fi satisfiable?♦

4.4.1 SMT-LIB standard language

The SMT-LIB standard [159] defines an input language for formulas to be understood by
SMT solvers. Its syntax is based in first-order sorted languages, where operators symbols appear
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at first in an expression, to then mention the elements that will be related, e.g. the clause
(x + y) ≥ 1 will be expressed as (>= (+ x y) 1).

1 (declare-const a Int)
2 (assert (or (< a 10 ) (= a 10) (> a 10))
3 (assert (= (* 2 a) 20))
4 (check-sat)

Figure 4.4 – SMT-LIB standard example: A simple problem in Integer Arithmetic Modulo
Theory.

Figure 4.4 shows the integer arithmetic modulo formula in SMT-LIB standard language. At
first, variables (as well as functions) must be defined, e.g. in line 1 a constant symbol a (i.e.,
variable) in the theory of integer arithmetic is defined. Thus, the problem will belong to a SMT
logic that includes all modulos defined in variables and functions. After symbol definition, each
clause is expressed using the assert token, following the standard syntax rules. Line 2 refers
to the clause f1, as line 3 refers to clause f2. The command check-sat, indicates that all
clauses were defined and the solver could decide over the formula, i.e., the conjunction of all
clauses, using the default strategy defined in the solver for the logic of the problem.

4.4.2 Adding strategies

Syntactically, Z3 includes two ways to apply a strategy in a formula modeled with SMT-
LIB standard, as shown in Figure 4.5. In the first case, Figure 4.5a, an end-user strategy is
defined before the check-sat instruction. Thus, the user-defined strategy will be applied at
first, to then, if necessary, perform the Z3 default strategy. In the second case, Figure 4.5b,
the Z3 default strategy is completely replaced by the end-user strategy. Note that check-sat
instruction is replaced by check-sat-using token. This new instruction, also set the end
of clause definition, but also implies that SMT formula will be decided using an user-defined
strategy. Since we want to create new alternatives to Z3 default strategies, in this work we use
the second syntax in the procedures of our system for autonomous generation of strategy.

1 <Problem header and assertions>
2 (apply <strategy>)
3 (check-sat)

(a) Conjunction between an user-defined strategy
and default strategy.

1 <Problem header and assertions>
2

3 (check-sat-using <strategy>)

(b) Replacing default strategy with an user-
defined strategy.

Figure 4.5 – Syntax to apply Z3 strategies over a SMT formula.
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4.4.3 Solving formulas using strategies

Strategies define how to address the solving procedure. Thus, the way its components are
selected and placed plays a major role in the Z3 performance.

1 (declare-const a Int)
2 (assert (or (< a 10 ) (= a 10) (> a 10))
3 (assert (= (* 2 a) 20))
4 (check-sat-using
5 (and-then
6 (fail-if (not(is-ilp)))
7 simplify
8 split-clause
9 (or-else

10 (try-for sat 100)
11 (using-params smt :random-seed 100)
12 )
13 )
14 )

Figure 4.6 – Simple problem in Integer Arithmetic Modulo Theory featuring an end-user strat-
egy.

Example 4.3 Let be G = ∃a : {((a < 10) ∨ (a = 10) ∨ (a > 10)) ∧ (2a = 20)} the goal
defined by the SMT formula of Example 4.2. Also, let S the strategy defined in Example
4.1, which represent the term st ∈ Strat generated by the term grammar GZ3. Figure 4.6
shows the use of the user-defined strategy S (lines 4 to 14) over the linear arithmetic formula
G (line 1 to line 3) in a SMT-LIB standard input for Z3 solver. ♦

In this problem, one probe, two heuristics tactics, and a disjunctive composed tactic, which
includes two solvers tactics, are applied in a linear conjunctive order strategy (between lines 5
and 13). The solver interprets the strategy as follows:

1. At line 4, the check-sat-using command indicates the end of the clauses definition,
and the begin of formula solving using an user-defined strategy.

2. The function and-then marks the begin of a composed tactic as strategy (line 5). This
function joins conjunctively a set of tactics (line 6 to 9).

3. At line 6, the probe is-ilp is the first basic tactic to be applied. It checks if the problem
is in an Integer Linear Programming (ILP) form. The result of the probe will be processed
by the function fail-if as fail if the probe result is true, or as the original goal if it is
false. Therefore, using the negation of the probe, (not is-ilp), allows to apply the
designed strategy only when the goal is in ILP form, which is this case.
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4. The first applied heuristic (simplify, line 7), reduces the problem and gives the fol-
lowing subgoal:

G� = ∃a : {(¬(a ≥ 10) ∨ (a = 10) ∨ ¬(a ≤ 10)) ∧ (a = 10)}

5. The heuristic split-clause (line 8) splits disjunctions into a subgoal set, and returns
the following:

G�
1 = ∃a : {¬(a >= 10) ∧ (a = 10)}

G�
2 = ∃a : {(a = 10) ∧ (a = 10)}

G�
3 = ∃a : {¬(a <= 10) ∧ (a = 10)}

6. The combinator function or-else (line 9) generates a composed tactic, by joining dis-
junctively two solver tactics (line 10 and line 11).

7. First attempt of solving is done by sat tactic (line 10). It cannot solve or modify any
subproblem within the timeout of 100 milliseconds specified in the tactical try-for.
Hence, it returns the fail subgoal set. However, this tactic is inside a disjunctive combi-
nator, thus the original subgoal set must be analysed by the following tactic.

8. The last tactic smt (line 11) uses DPLL(T) procedure in each goal, solving the whole set.
It returns the following subproblem set: G�

1 = false, G�
2 = empty, G�

3 = false. The use
of the tactical using-params allows to change the default value of the random seed

generating a new parameter vector for the tactic.

The tree in Fig. 4.7 sketches the application of the strategy tactics. At the end, Z3 can
rebuild the original problem in conjunctive normal form and returns an empty set as the final
result. Finally, the translation of this subset is the expected sat output.

Line 1

Line 2
Line 3

S

Line 4

Line 7 Line 8

Line 11

Line 11

Line 11

a

false

false

empty

G�
1

G�
2

G�
3

G�G

Figure 4.7 – Solving a SMT formula using an user-defined strategy: Linear arithmetic modulo
arithmetic example. Information under arrows refer to line numbers of the example in Figure
4.6.
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4.5 Conclusions

In this chapter, we defined the concept of strategy, given a search optimisation analogy.
Also, we compared this concept with other related definitions. Thus, we understood why the
selection, arrangement and application of heuristics components in SMT solvers is also called
strategy.

Concerning to Z3, the solver used to present The Strategy Challenge in SMT [10], we
analyzed the structure of its strategies. We introduce the tactic framework, which define a tactic

as strategy core element, and how it interacts with a SMT formula. Then, we explained the
different tactic types found in most strategies. This framework acts as a low-level language, a
kind of assembly language used by Z3.

Moreover, we describe the Z3 strategy language, a high-level language that can be compiled
into the tactics defined in the Z3 tactic framework. Then, we formalise their syntax components
to define a term grammar. This grammar acts as constructor for every well-formed Z3 strategy.

Finally, we explained how strategies, in Z3, work over a SMT formula in a step-by-step
resolution example.
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5
Automated Generation of Strategies

Next, we address the task of strategy building. We analyse different search approaches to
define an automated process for generating strategies. This procedure is used as core element
to define our framework proposal for autonomous generation of strategies in SMT.

5.1 Search Paradigm Selection

As explained in Section 3.3.1, the strategy building process could be seen as a Search-
Based Software Engineering (SBSE) problem, specifically a Software Improvement problem.
To address this task, we should define what search paradigm to use. We focus on the paradigms
exposed in Section 2.1.2.

5.1.1 Local Search over Systematic Search

Given the nature of the search space, the processes for automatic strategy generation are
based on local search procedures leaving aside systematic search ideas. Systematic search
procedure will tend to fail, based on the following remarks:

— Huge search space: Given the amount of valid strategies, which is a finite but intractable
number, systematic procedures will not found or ensure the existence of an optimum
strategy.

— No global optimal bound: As optimal values depends by the amount of problems or
instance decided to solve, an this will change depending of the class to address, there is
not a optimal bound to approach it.

67
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— Progressive benchmarks: SMT instances grow up in function of time, therefore an (local)
optimum strategy will lose it quality while new type of problems appears.

Hence, the use of local search procedures could be naturally adapted to this kind of problem.
Also, evidence of its efficiency has been shown, especially using evolutionary approaches [40,
44, 45, 46, 47].

5.1.2 Perturbative Search over Constructive Search

Our system for automated generation of strategies follows perturbative search guidelines
rather than constructive search by using evolutionary computing methods. Let us remark
that generating strategies from scratch is possible, but rather intractable due to the size of the
search space. This problem complexity is drastically reduced if the generation process repairs
a well-known strategy.

Remember that our task is constrained by the idea of build a system for generate strategies
without need of expert knowledge. This does not implies avoid the use of specialised strategies
contained within SMT solvers. These strategies could be very useful to cut problem search
space. Expert-defined strategies adds valuable information to the generation process that end-
users does not handle, as:

— Strategies structures: It avoids the process of creating a strategy structure from scratch.

— Sub-strategies: Composed tacticals (or continuous portions of them) could be treated and
analysed as a single tacticals or a single strategy. These could weight its contribution to
the strategy purpose or its impact for a selected logic.

— Tactic arrangement: Once a structure is defined, perturbations could be more easily per-
formed according to the tactic arrangement in the strategy. Thus, if we want add or replace
an heuristic tactic, we already known where to locate it, and analyse it impact.

Thus, it is more effective to get default strategies to initialise our process in order to aim for
better quality designed strategies.

5.2 The Rules Approach

We introduce a system based on the application of a set of rules as perturbative search
procedure in order to generate new strategies. This rules approach constitutes the key feature
of our strategy generation process. Rules are applied on strategies in order to modify either their
structures or their behaviours. According to the Z3 strategy grammar defined in Section 4.3.2,
we classify these possible modifications according to the elements that affect:

1. Structural components: the sets Θ (basic tactics) and Γ (composed tactics) that define the
structure of tactics and how tactics will be combined and applied.
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2. Behavioral parameters: the set Π of parameters that helps defining the specific behavior
of the tactics, generally applied by functions of Δ set.

Note that changing any element from these sets can dramatically affect the solver performance.
We will thus have some structural rules to modify structural components and behavioral rules
to change values of behavioral parameters.

5.2.1 The Rules

Before formalizing how rules will be applied on strategies, we need to introduce classic term
notations. Given a term t ∈ T (Σ), Pos(t) is the set of the positions in t (labels of the nodes).
Positions are classically labeled by words on N (i.e., sequences of integers) as the following:

— �: the position of the root.

— p.i: the position of the ith argument of the function symbol at position p.

— t|p: the sub-term of t at position p.

— t(p) is the function symbol at position p.

— t[t�]p is the term obtained by replacing the sub-term t|p by t�.

This notation will be used to define rules as classic term rewriting rules [179]. We identify two
types of rules depending on the context of strategies: simple rules and specific rules.

5.2.1.1 Simple Rules

We present simple rules as perturbations applied to strategies regardless of the context of
themselves and the resulting strategies.

Definition 5.1 A simple rule, r, is defined as:

r : l → m

where l, m ∈ T (Σ), i.e., l, m are terms built from the initial signature. To apply a rule r over
a strategy st ∈ Strat, the following condition must be satisfied:

st
r−−→ st[m]p ⇐⇒ p ∈ Pos(st) | st|p = l

that is, the term l exist in the strategy st in the position p. In this case, the strategy st is
rewritten into the strategy st� defined by:

st� = st[m]p
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Note that, st� ∈ Strat is required in order to insure that rules are correct and generate only
valid strategies. ♦

Moreover, some additional constraints may be required in order to apply simple rules.

Definition 5.2 A constrained simple rule, rc, is defined as:

rc : l → m {C}

Note that rc rules inherit r rules requirements, but also must fulfil the following condition:

st
rc−−→ st� iff C is satisfied

that is, st, st�, l, and m must satisfy the constraint C. Note that the constraint may be used to
check some syntactical properties of st or to insure required semantical properties. ♦

5.2.1.2 Specific Rules

The application of some rules may sometimes be dependent of the context, i.e., the strategy
st on which the rule is applied or the resulting strategy st�. We call them specific rules.

Definition 5.3 A specific rule, rs, is defined as:

rs : st[l] → st[m] {Cs}

where Cs is a constraint that may involve the whole context, i.e., the entire resulting strategy,
as well as, sub-strategies contexts. Also, rs rules inherits r rules properties, and to apply a
rule rs over a strategy st, the following condition must be satisfied:

st
rc−−→ st� iff Cs is satisfied

Note that, we omit explicitly mention the position in the rules for simplicity, because the
origin (st[l] =⇒ st|p = l) and the result (st[m] = st[m]p) refer to the same place in the
strategy. Of course, when the context is not necessarily required, a specific rule is equivalent
to a constrained simple rule rc : l → m {C}. ♦

Moreover, some rules involve several strategies as inputs. Therefore we extend the previous
rule notation for multiples strategies.

Definition 5.4 A multiple specific rule, rms, is defined as:

rms : (st1[l1], . . . , stn[ln]) → (st1[m1], . . . , stn[mn]) {Cms}
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which is a tuple composed by n rules of type rs, restricted by a set Cms of Cs constraints
that must be satisfied. Therefore exists a tuple at positions (p1, . . . , pn) ∈ Pos(st1) × . . . ×
Pos(stn) such that ∀ 1 ≤ i ≤ n, sti|pi

= li and st[mi] = st[mi]pi
. ♦

5.2.1.3 Notations used for defining the rules

With regards to the Z3 strategy grammar and its basic components, the rules applied to
change strategies are defined using the following notation:

— st[]: a highlight of the context to the application of some rules, only if required.

— stn: a n-ary sequence of strategies, i.e., stn ∈ Stratn, stn = st1, . . . , stn

— γ/n: a combinator function of arity n, i.e., γ/n ∈ Γ

— δ: a parameter modifier function with arity 2, i.e., δ ∈ Δ

— s: a solver, i.e., s ∈ Solver

— h: a heuristic, i.e., h ∈ Heuristic

— p: a probe, i.e., p ∈ Probe

— π: a parameter vector, i.e., π ∈ Π

Any rule defined using these notations is thus a generic rule that can be instantiated to match a
given strategy st ∈ Strat by means of GZ3.

Example 5.1 Let be C the rule defined as:

C : and-then/n(stn) → or-else/n(stn)

This rule must be understood as a generic rule for any value of n and any sequence of
strategies stn.

1 (and-then
2 simplify
3 (try-for sat 100)
4 )

(a) Strategy T

1 (or-else
2 simplify
3 (try-for sat 100)
4 )

(b) Strategy T �

Figure 5.1 – Modifying Strategies using Rules: Applying Example 5.1 rule C in strategy T
generating strategy T �

As shows Figure 5.1, given the initial strategy T (Figure 5.1a) is possible to obtain the
resulting strategy T � (Figure 5.1b) by using the rule C:

T
C−−→ T �



72 CHAPTER 5. AUTOMATED GENERATION OF STRATEGIES

where n = 2 and st2 = h, δ(s, π). Note that in our context, for sake of simplicity, we do not
introduce variables nor substitution mechanisms as in classic rewriting systems. We rather
work on closed terms (i.e., strategies) and consider that our rules are almost meta generic
rules that can be instantiated to match the strategies to be improved. Rules may respect some
conditions before being applied, which are modeled as constraints. ♦

5.2.2 Constraints

Some important requirements are mandatory when rules are used to transform strategies.
Therefore, some constraints will ensure that these semantics requirements are satisfied when
a rule is applied in a given context. Next we explain the basic constraints in order to create
strategies.

5.2.2.1 Parameter Compatibility

The set of parameter vectors Π is built over all possible parameter vectors according to
parameter domains associated to basic tactics. Exchange a single parameter values, means the
initial and resulting vector must be compatibles, i.e., the exchanged value must be in the same
domain set, and the others values must remain unchanged.

Definition 5.5 Two parameter vectors π, π� ∈ Π are said to be compatible if

π, π� ∈ D1 × . . . × Dn ∧ ∃j | 1 ≤ j ≤ n, πj �= π�
j ∧ ∀i | 1 ≤ i ≤ n, i �= j, πi = π�

i

i.e., only one parameter value is changed. Thus, the constraint compatible(π, π�) checks
if π and π� parameters vectors are compatible. ♦

5.2.2.1.1 Time management

Note that one special case concerns time parameters, whose domains changes depending on
the strategy context. These parameters are managed at a global level such that the available time
is used optimally. There are two levels of available time: the total time available for the solver
and the available time for a tactic explicitly defined by the function try-for/2. Therefore,
once the try-for/2 values have been assigned, the remaining total time is distributed for
the remaining sub-strategies. The same process is thus recursively applied to reach the whole
strategy. For illustrate this, we define the Example 5.2.

Example 5.2 Let Tm be the strategy defined in Figure 5.2. If this strategy is used to solve a
SMT formula instance with a global time-limit of 1 second, i.e., 1000 milliseconds, the time
is distributed in tactics as follows:
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1 (and-then
2 simplify
3 (try-for qe-sat 200)
4 (and-then
5 qe
6 (try-for smt 300)
7

8 )
9 smt

10 )

Figure 5.2 – Example of Time management in Strategy Tm.

1. Time is assigned to children of the strategy root. Thus, the solver tactic qe-sat has
200 millisecond available. Then 800 milliseconds remains to be assigned.

2. As no more tactics, in the same level, have defined a try-for function, the distribu-
tion continues in sub-strategies. In this case, the only sub-strategy is defined between
lines 4 and 8.

3. The tactic smt (line 6), the unique element of the sub-strategy with try-for function
defined, has 300 milliseconds available. Therefore, 500 milliseconds remains to be
assigned.

4. Left unassigned tactics have not try-for function defined. Thus, the remaining
time is assigned to them in order of instatiation, i.e., from top to down. However, as
heuristics tactics proceeds in a negligible time, the solver smt (line 9) is assigned with
the 500 millisecond left. ♦

5.2.2.2 The Solver Constraint

Given the way generated strategies are applied (see Section 4.4.2) to solve SMT instances,
some requirements must be fulfilled:

1. Strategies must be well-formed with regards to Z3 strategy language.

2. Solvers (tactics) are required in the strategy in a particular position, generally defined by
the combinators functions used.

The first requirement is a basic restriction in order to generate correct strategies options to be
evaluated. Meanwhile, the second requirement ensure the use of a tactical able to solve SMT
instances. Note that, some syntactically correct strategies could not use solver tactics. However,
they are semantically incomplete to solve an SMT formula, especially in our case where the
default strategy is completely replaced. Therefore, at least one solver tactic must be present in
the generated strategies.
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Definition 5.6 The solver constraint function, solver_c(st), checks if solver tactics are
present in a correct position the strategy st, ensuring a syntactically and semantically correct
strategy. Therefore, solver_c(st) can be expressed by the following condition:

st(�) = and-then/n ⇒ solver_c(st|n)

st(�) = or-else/n ⇒ ∀i ∈ 1..n, solver_c(st|i)
st(�) = try-for/2 ∨ st(�) = using-params/2 ⇒ solver_c(st|1)
st(�) ∈ Probe ∪ Heuristic ⇒ False

st(�) ∈ Solver ⇒ True

♦
To illustrate the previous constraint some cases of well-formed and ill-formed strategies are

given in the following example, based in Figure 5.3.

Example 5.3 Let st1 and st2 be two syntactically well-formed strategies shown in Figure
5.3a and 5.3b respectively. The solver constraint checks them as follows:

— In st1, and-then/4 function is used as root. To satisfy solver_c(st1), the last tac-
tic (line 9) inside this strategy must be a solver, but it is a composed tactic, sub-strategy
st1a, with or-else/3 combinator as root. Then, solver_c(st1a) must be satisfied,
i.e., each tactic in st1a must be a solver. Lines 10 and 11 show two sub-strategies, st1a1

and st1a2 , in which try-for/2 is applied to different solvers (qe-sat and sat).
Therefore, solver_c(st1a1) and solver_c(st1a2) are evaluated to True. More-
over, last tactic (line 12) is a sub-strategy st1a3 uses as root the function and-then/2.
As st1a3 last tactic is a solver (smt), solver_c(st1a3) is set to True. Consequently,
solver_c(st1) is satisfied.

— In st2, or-else/4 function is used as root. To satisfy solver_c(st2), tactics in lines
2, 3, 4 and 12 must be solvers. Line 1 and 2 show two sub-strategies, st2a and st2b, in
which try-for/2 function is applied to different solvers (qe-sat and sat). There-
fore, solver_c(st2a) and solver_c(st2b) are evaluated to True. In line 4, a com-
posed tactic st2c is used with and-then/2 combinator as root, thus solver_c(st2c)

must be satisfied. Last tactic in st2c (line 10) is another nested sub-strategy, st2c1 ,
whose solver constraint must be also satisfied. As st2c1 strategy is another applica-
tion of try-for/2 in a solver (smt), both solver_c(st2c1) and solver_c(st2c)

are mapped to True. Last tactic (line 12) is a conjunctive sub-strategy, st2d, using
as root and-then/3 combinator. As the last st2d tactic is the solver smt (line 15),
solver_c(st2d) is set to True. Consequently, solver_c(st2) is satisfied.
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1 (and-then
2 simplify
3 propagate-values
4 (using-params
5 simplify
6 :pull_cheap_ite true
7 :local_ctx true
8 :local_ctx_limit 10000000
9 )

10 (or-else
11 (try-for qe-sat 1000)
12 (try-for sat 1000)
13 (and-then
14 qe
15 smt
16 )
17 )
18 )

(a) A well-formed strategy, st1, using and-then/4

function as root.

1 (or-else
2 (try-for sat 100)
3 (try-for qe-sat 500)
4 (and-then
5 (using-params
6 simplify
7 :pull_cheap_ite true
8 :local_ctx true
9 :local_ctx_limit 10000000

10 )
11 (try-for smt 500)
12 )
13 (and-then
14 solve-eqs
15 qe
16 smt
17 )
18 )

(b) A well-formed strategy, st2, using or-else/4

function as root.

1 (and-then
2 simplify
3 propagate-values
4 (using-params
5 simplify
6 :pull_cheap_ite true
7 :local_ctx true
8 :local_ctx_limit 10000000
9 )

10 (or-else
11 elim-uncnstr
12 (try-for sat 1000)
13 (and-then
14 qe
15 ctx-simplify
16 )
17 )
18 )

(c) An ill-formed strategy, st�1, using and-then/4

function as root.

1 (or-else
2 (try-for sat 100)
3 ctx-simplify
4 (and-then
5 (using-params
6 simplify
7 :pull_cheap_ite true
8 :local_ctx true
9 :local_ctx_limit 10000000

10 )
11 (try-for smt 500)
12 )
13 (and-then
14 qe
15 smt
16 solve-eqs
17 )
18 )

(d) An ill-formed strategy, st�2, using or-else/4

function as root.

Figure 5.3 – Examples of well-formed and ill-formed strategies with regards to solver_c(st)
constraint. Blue and red highlighted lines show tactics which satisfy and break, respectively,
the solver_c(st) constraint.
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Accordingly, both strategies, st1 and st2 are well-formed with respect to the solver con-

straint. Now, we define the following structural modification rules:

r1 : δ(s, π) → h

r2 : s → h

Let st�1 (Figure 5.3c) and st�2 (Figure 5.3d) be two strategies generated by modifying st1

and st2, respectively, by using rules r1 and r2 as follows:

st1
r1 (line 10)−−−−−→ st−1

r2 (line 14)−−−−−→ st�1

st2
r1 (line 2)−−−−−→ st−2

r2 (line 15)−−−−−→ st�2

The solver constraint check them as follows:

— In st�1, solver_c(st�1) is violated because some sub-strategy tactics are in a forbid-
den position. As explained for st1 strategy, tactic (line 9) must be a solver, but it
is a sub-strategy st�1a, with or-else/3 function as root. Then, each tactic in st�1a

must be a solver. But, in line 10, rule r1 introduced a heuristic (elim-uncnstr),
mapping solver_c(st�1a), and by consequence solver_c(st�1), to False. Same
analysis could be done with ctx-simplify heuristic exchanged by using rule r2

in line 14. This change breaks solver_c(st�1) and solver_c(st�1a) by setting
solver_c(st�1a3

) to False, because and-then/2 combinator (line 12) needs a
solver in that position.

— Strategy st�2 have similar problems to those shown in st�1. The violation of solver_c(st�2)

happens because of two components. In line 2, a solver must in that position, but
ctx-simplify was introduced using rule r1. Also, conjunctive strategy st�2d (line
12) should include a solver in its last position (line 15), to avoid global solver con-
strain breaking. However, r2 rule inserted the heuristic solve-eqs in that place,
thus solver_c(st�2d) is False.

Therefore, both modified strategies st�1 and st�2 are ill-formed with respect to the solver con-

straint. ♦

5.3 The Engine System

As rules defines how a strategy could be transformed, the engine system defines how to
apply them. Thus, our automated strategy generation process is an engine with various options

applied to a given class of SMT problems which found suitable strategies generated by the use
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of rules and improve SMT solver performance under certain solving conditions, and it could be
formalised as the following:

Engine[R, Is, Lspct, Ltopi, Ltb](Logic, Topi)

where, an Engine is indeed the main algorithm that applies rules for generating optimised
strategies (w.r.t. to an evaluation function); it also provides the best generated strategy as output.
The engine options (between square brackets [. . .]) are basic elements needed by the engine for
its funtionability. Meanwhile, the solving conditions (indicated between round brackets (. . .))
are necessary values for validate obtained results.

5.3.1 The Engines

In order to efficiently explore the search space for building strategies (see Section 5.1.1),
several local search algorithms are used as strategy generation engines based on evolutionary
computing [17] and local search [19] techniques. Note that this type of algorithms have specific
elements which allow us to consider several possible configurations of the strategy generation
process.

Algorithm 5.1: Evolutionary Algorithm Scheme
Input: a SMT-LIB logic set of instances,

an initial strategy Is,
a population size,
a set of evolution rules R,
a rule selection function selectR,
an individual selection function selectI ,
a fitness function fitness,
an ending criterion endC

Output: Optimised strategy st∗

1: Initialise population using Is
2: repeat
3: r ← selectR(R)
4: ar(r) = n
5: Indn ← selectI(n, population, f itness)
6: Indn →r Ind�n�

7: insert( Ind�n� ,population,fitness)
8: st∗ ← best(population)
9: until endC

10: return st∗

Thus, what we call an algorithmic engine is indeed a generic evolutionary process which is
instantiated by different components, being the most important the rules set to be applied (see
Section 5.2).
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From now on, we use the classic vocabulary of evolutionary computation [17] to distinguish
our different engines. Remind that our basic solutions or individuals are strategies correspond-
ing to trees. Basically, Genetic Programming [40, 41] and its grammar-based derived [44, 48]
aim at managing the structures of the trees, in particular applying crossover and mutation oper-
ators.

The mentioned generic evolutionary process is summarised in Algorithm 5.1. Here the
classic evolution loop is applied on individuals of the population. At each iteration, an evolution
rule is chosen. Then, the required number of individuals are selected and processed by the rules.
The resulting individual(s) are then classically inserted in the population. In the following
sections, we detail the components and setting of each algorithmic engine according to this
general scheme.

5.3.2 Engine Options

We classify the engine settings as components options and learning parameters of a selected
engines.

5.3.2.1 Components Options

We call components options to the basic elements that define the strategy design process.
We identify two main components options: the set of rules and the initial strategy.

1. Rules (R) is a set of rules that can be applied to strategies. These rules may modify the
structure of a strategy, as well as its behavioral parameters (see Section 5.2). Basically,
we consider variation rules to modify a strategy but we also consider recombinations of
strategies. The variation rules correspond to mutation operators in evolutionary computa-
tion, while some variation operators also include recombination operators, i.e., exchange
parts of strategies as classically performed in Genetic Programming [40, 41]. Here, vari-
ation rules aim at modifying a strategy by changing one of its elements and introducing
possible new values (w.r.t. Z3 strategy language), while recombination rules only use
existing strategies and values for creating new strategies.

Therefore, based on the of rules classification previously described, we have four subsets
of rules. Thus, as shown in Table 5.1, we consider a set of rules R that is partitioned into
structural variations rules (SV ), structural recombination rules (SR), behavioral variation
rules (BV ), and behavioral recombination rules (BR).

2. Initial Strategy (Is) is a starting strategy (or a set of starting strategies). Let us remind
that generating strategies from scratch is possible but rather intractable due to the size of
the search space. Therefore, it is better (and even sometimes necessary) to get default
strategies to initialise the process.
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Rules (R)

Evolutionary
operator Mutation Crossover

Structural
Rules (S)

Structural
Variation

(SV )

Structural
Recombination

(SR)

Behavioural
Rules (B)

Behavioural
Variation

(BV )

Behavioural
Recombination

(BR)

Table 5.1 – Rules classification: Categorizing by means of classic evolutionary operators.

5.3.2.2 Learning Parameters

We call learning parameters the options values that define the computational aspects of the
generation process. The engine system defines the following options:

— Learning Sample Percentage (Lspct) represents the size of subset from the complete
given set of instances used to learn and generate strategies. Note that some cases, use the
whole set of instances related to a SMT logic, could lead to an expensive computational
and/or time resource process.

— Learning Timeout per Instance (Ltopi) is the timeout that is used within the learning
process for evaluating the performance of the generated strategies for each instance of the
learning set. Note that some real-life execution conditions, e.g. SMT-COMP 40 minutes
per instance timeout, are impossible to use for generate strategies because generate an
excessive time consumption.

— Learning Time Budget (Ltb) is the total amount of time allowed for generating a new
strategy, i.e., an engine time-limit ending criteria.

5.3.3 Solving Conditions

Let us now define the validation phase by means of solving conditions applied over target
that includes a set of instances and timeout conditions.

— Logic corresponds to a set of instances for a selected SMT logic. The logics considered
in this work will be presented in Section 5.4.2.

— Timeout per Instance (Topi) is the time allowed for solving one instance of the given
logic. Note that a generated strategy under certain timeout condition (Ltopi) could be
used in several execution conditions. The problem introduced the difference of time be-
tween learning and execution will be discussed later on.

Figure 5.4 provides an overview of the whole process. The above-mentioned parameters
and components are presented as well as their interactions with the algorithmic engine and the
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SMT Logic
(instances)

Learning
Parameters

Ltopi
Lspct
Ltb

Strategy Design
Components

Rules
R

Initial Strategy
Is

Algorithmic Engine

Specific Parameters

Fitness function
Population size

Selection function
Insertion function

Test
Conditions

Topi

SMT Solver
st∗

Strategy Design Solving

Figure 5.4 – Automated Generation of Strategies: methodology overview

solving process. On the left side of the figure, the learning phase is detailed. The right side
of the figure describes the validation phase. This figure also allows us to clearly highlight the
inputs (e.g., the options and the specific parameters) and outputs of the algorithmic engine.
Note also some engine specific parameters that we do not detailed above: the fitness function
to evaluate solving strategies, the size of the population used in the engine, the selection and
insertion functions of individuals in the population. These specific parameters will be described
later with regards to its corresponding engine.

5.4 Common Experimental Setup

Despite engines have several differences in their setup to perform, they also have also many
common setup elements. Meanwhile, the particular configuration of each engine is explained
in their corresponding chapters, we show up next the shared experimental configurations used
by all designed engines.

5.4.1 Strategy Language

As shown in Section 4.3.1, three sets of constant terminal symbols, i.e., basic SMT com-
ponents, are used to write strategies: Probe, Heuristic, and Solver. An explanation of
these sets and the basic tactics that compose them, are given below:
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— Probe set includes all property checkers for integer and real arithmetics (even those
mixing both theories), their various domains (e.g., linear, non-linear, quantifier free), and
the related theories (pseudo-Boolean, bit-vector) that could be obtained if some heuristics
are applied. Model checkers are used to ensure that (un)satisfiability proofs are provided
in the final result.

Probe={is-pb, is-unbounded, is-qflia, is-qflra, is-qflira, is-ilp,
is-qfnia, is-qfnra, is-nra, is-nia, is-nira, is-lia, is-lra, is-lira,
is-qfbv, produce-proofs, produce-model, produce-unsat-core}.

— Heuristic includes the most important techniques to propagate or reduce arithmetic
formulas. It also contains a set of tactics that may transform arithmetics SMT equations
into simple SAT instances.

Heuristic={simplify, propagates-values, ctx-simplify, solve-eqs,
elim-uncnstr, add-bounds, propagate-ineqs, normalize-bounds,
eq, lia2pb, pb2bv, max-bv-sharing, bit-blast, aig}.

— Solver includes the basic satisfiability verification techniques of Z3, as well as built-in
solvers for the selected quantifier free logics.

Solver={smt, sat, qe-sat, qflia, qflra}.

These sets take into account most values used by the default Z3 strategies for linear arithmetic
theories, including parameters vectors for behavioural engines. Let us also remark that if some
initial strategy, used by an engine, has tactics not included in these sets, they are automatically
incorporated to the corresponding set according to the Z3 documentation [180].

5.4.2 SMT Logics and Instances

For experiments, engines will focus on benchmarks issued from different logics from the
SMT-LIB database. We focus here on different variants of Linear Arithmetic logics. LRA

instances correspond to closed linear formulas in linear real arithmetic. The QF_LRA logic cor-
responds to quantifier free linear real arithmetic. These instances are boolean combinations of
inequations between linear polynomials over real variables. LIA instances are boolean combi-
nations of inequations between linear polynomials over integer variables. Again, QF_LIA are
quantifier free formulas.

These benchmarks are also classified according to the expected output results: known and
unknown instances. Known status corresponds thus to benchmarks whose satisfiability result
was defined at that time, meanwhile unknown status refers to not assessed results. Actually, in
SMT competitions, SMT solvers aim at classifying instances into sat or unsat instances when
they succeed to solve them and unknown when they are not able to produce a result.
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The selected instances were fully used in 2015 [165] and 2016 [164] SMT-COMP. In
2017 [163] and 2018 [162] SMT Competition, known and unknown instances were joined in
a unique set. Also, some instances have also been deleted. Concerning LRA, more than 2000
instances were added.

Logic
Instances

known unknown
Linear Integer Arithmetic (LIA) 210 189
Linear Real Arithmetic (LRA) 339 282

Quantifier Free LIA (QF_LIA) 5893 302
Quantifier Free LRA (QF_LRA) 1626 56

Table 5.2 – SMT-LIB Logics: Selected sets of instances characteristics.

Let us note that Linear Arithmetic logic family has many important SMT applications in sev-
eral computer science topics, particularly Search-Based Software Engineering problems. Fol-
lowing the SMT-LIB classification, instances that have already been solved are called known,
and the others unknown. Table 5.2 presents the characteristics of the different sets of bench-
marks.

5.4.3 Learning Parameters

Learning parameters have also common settings for engines. All engines have the same
maximum learning time budget (Ltb) of 2 days, which acts as one of the algorithm ending
criteria. This value is defined to allow a correctly learning procedure. We discuss this value
selection in the following Chapters. Meanwhile, the size of the learning sample (Lspct) depends
on two engine elements:

— Type of rules used to generate strategies.

— Hardness to completely solve a selected logic subset.

Thus, as summarised in Table 5.3, the learning process is achieved on the whole instance
(sub)set of logics if only Structural Rules are used, with exception of QF_LIA known and
QF_LRA known subsets. And, if the subset is hard to tackle, i.e., is not completely solved using
a engine generated strategy or is not easy learn from the entire set of instances, a 10% learning
sample alternative is also used in order to reduce resource and time consumption by iteration.
Last scenario also define Lspct values when Behavioural Rules are introduced. The learning
sample size corresponds to 10% of the instances set, if the same sample is the only option to
learn by using Structural Rules. Otherwise, learning sample corresponds to all instances in the
selected set.
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Lspct 100% set
Rules {S} {B, S ∪ B}

Logics

LIA ✓ ✓ ✓ ✓

LRA ✓ ✓ ✓ ✓

QF_LIA ✗ ✓ ✗ ✓

QF_LRA ✗ ✓ ✗ ✓

Lspct 10% set
Rules {S} {B, S ∪ B}

Logics

LIA ✗ ✗ ✗ ✗

LRA ✗ ✓ ✗ ✗

QF_LIA ✓ ✓ ✓ ✗

QF_LRA ✓ ✗ ✓ ✗

Subset known unknown known unknown

Table 5.3 – Learning Samples: Classifying by hardness of the selected instance set.

5.4.4 Time Conditions for Validation and Learning

We explain both time limit per instance options together, for learning and solving stages,
because they are intrinsically related. Of course, we consider as timeout per instance (Topi)
the amount used in the SMT-COMP from 2015 [162, 165] to solve instances: 40 minutes (2400
seconds). However, this value is too big to use it as learning timeout per instance (Ltopi), e.g.,
in LRA unknown, worst scenario it could take around seven days to solve the whole set of 282
instance. If we consider Z3 performance in 2016 SMT COMP, were 36 instances remained
unsolved, address the whole set would take around one day, allowing preform at most two
iterations per engine. Therefore, Ltopi for engines use reduced values that allow to perform
several iterations: 1 second or 10 seconds.

Ltopi
Topi

1[s] 10[s] 2400[s]

1[s] ✓ ✗ ✗

10[s] ✗ ✓ ✓

2400[s] ✗ ✗ ✗

Table 5.4 – Timeout per instance settings for learning and solving phases.

Thus, engines learn in a reduced timeout per instance budget to be then evaluated in SMT-
COMP conditions. Table 5.4 summarises the learning timeout per instance (Ltopi) used for
the generation strategies, and the timeout per instances (Topi) used for validate these strategies
according to the learning process.
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5.4.5 Fitness Function for Strategies

We evaluate strategy effectiveness through a fitness function over Z3 solver. This function
involves the number of solved instances and, as a second criterion, the time used for solving
these instances by using a selected strategy. We define our fitness function as:

f : PStrat �→ N × N

f(st) = (i(st), t(st))

where:

1. i(st): number of instances solved using the strategy st.

2. t(st): elapsed time for solving these instances.

Since this fitness function is defined on N × N, we use the lexicographic ordering �≡ (>, >)

in order to compare fitness values, i.e., given st, st� ∈ Strat, f(st) = (i, t), f(st�) = (i�, t�),
we have f(st) � f(st�) if and only if i > i�, or i = i� and t < t�.

As previously mentioned, some changes could alter the scope of the strategy, i.e., its abil-
ity to solve all the instances of a logic. Our fitness function aims at evaluating the solving
performances on the learning set and do not explicitly address the generality of the strategy.
Nevertheless, due to the learning process and the instance sets, generated strategies are efficient
in terms of solved instances. We focus indeed on specific strategies improvement, guided by
SMT competitions.

5.4.6 Workstation and Implementation

All our engines rely on a set of C programs which interact with Z3. Computations are
performed on cluster Taurus2 in LERIA (Laboratoire d’Etude et de Recherche en Informatique

d’Angers) in the Université d’Angers. The cluster have the following features:

— Processors: 18 × Intel(R) Xeon(R) E5-2670, 2.8 Ghz, 10 cores.

— Nodes: 7 available, with 20 threads each one, and support for 50 simultaneous job execu-
tion.

— RAM: 63 GB RAM per node.

Engines were generated using the gcc compiler version 4.8.2 and Z3 theorem prover stable
version 4.4.0.

5.5 Conclusions

In this chapter we formalise a scheme for automated generation of strategies. This frame-
work is based in two core elements, a rules approach and an engine system.
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The rules approach allows modify strategies using a set of rules based in evolutionary com-
puting operators. We introduce the notation for defining rules, how they perform over a known
strategy, and the set of constraints to be satisfied in order to generate well-formed strategies.

The engine system formalise the use of algorithms to apply the rules and sets the needed
configuration parameters for their performance. We detailed the architecture of the system, and
how the learning phase is related with the solving or validation stage.

Then, common settings for initialise performance of all engines was explained. Finally,
the computational context of the implementation of each algorithm subscribed to the developed
strategies generation framework was described.





6
Simple Evolutionary Programming
Engines

In this chapter, based on our Evolutionary Algorithm Scheme (see Algorithm 5.1 in Sec-
tion 5.3), we present two engines inspired by previous works of evolutionary programming and
parameter tuning [91, 92]. Each algorithm or engine focuses on a different type of modifying
rules, i.e., Structural and Behavioural sets of rules, respectively. We show the impact produced
by these types of rules on the generation strategy process, and consequently, on the perfor-
mance of Z3 solver. We also decide which kind of rules will lead to the construction of more
sophisticated engines.

6.1 Evolutionary Strategy Generator, StratGEN

Our first evolutionary programming engine is called, Evolutionary Strategy Generator or
StratGEN. It modifies a simple strategy, which contains a fixed amount of heuristics and solv-
ing tactics, using mostly mutation-based structural rules. The specific setting components of
this algorithm are explained in detail below.

6.1.1 Initial Strategy, Is

The starting point in StratGEN is a fixed skeleton strategy inspired by recurrent structures
and tactics present in Z3 default strategies for the given SMT logic (see Section 5.4.2).

87
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Strategy

CStrategy

and-then

Strategy

Tactic

Heuristic
h1

. . . Strategy

Tactic

Heuristic
h10

Strategy

CStrategy

or-else

Strategy

Tactic

Solver
s5

Strategy

CStrategy

try-for

t4Strategy

Tactic

Solver
s4

. . .Strategy

CStrategy

try-for

t1Strategy

Tactic

Solver
s1

Figure 6.1 – StratGEN initial strategy structure: a fixed skeleton, defining relation between
heuristics and solving tactics. It can be generated by using GZ3 derivation tree.

As shown in Figure 6.1, the main structure of the strategy is the conjunctive union of two
defined segments based on the and-then/11 function:

— A set of ten heuristics tactics:

hi ∈ Heuristic; i ∈ {1, . . . , 10}

These heuristics help to reduce and/or propagate original SMT formula before starting
the solving process. They are applied sequentially one after the other.

— A disjunctive sub-strategy (using the or-else/5 combinator) of five solving tactics and
their corresponding time limit (set by the try-for/2 function):

sj ∈ Solver; j ∈ {1, . . . , 5}

tj ∈ N; j ∈ {1, . . . , 5}

As solvers are disjunctively related, if one fails it is discarded and the next one tries to
tackle the SMT formula. This procedure is repeated until a solution to the formula (sat
or unsat), or the final result is not determined (unknown or timeout). Note that only
the last solver tactic has not a specific timeout parameter. This is because it uses all the
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remaining time available with regards to the global time constraint, thus there is no need
to specify its time limit.

6.1.1.1 Available Strategy Language

The mentioned structure uses elements from sets of commonly-used tactics in order to gen-
erate the initial strategy for StratGEN. These sets are:

— HeuristicSGEN ⊂ Heuristic, it contains ten eligible heuristics.

— SolverSGEN ⊂ Solver, it is composed by seven common solving tactics.

— ΠSGEN ⊂ Π, it represents all timeout parameter values for solving tactics.

Tactics

HeuristicSGEN

1 simplify 2 simplifymod 3 ctx-simplify
4 ctx-simplifymod 5 solve-eqs 6 elim-uncnstr
7 propagate-ineqs 8 split-clause 9 lia2sat

10 skip

SolverSGEN

1 qe-smt 2 sat 3 smt
4 qe-sat 5 qflia 6 qflra
7 fail

Table 6.1 – StratGEN Initial strategies: Heuristics and solvers tactic values.

Table 6.1 summarises the elements of HeuristicSGEN and SolverSGEN respectively. De-
spite of using common tactics and parameter values, it is necessary to explain the following:

— In heuristics values, simplifymod and ctx-simplifymod are modified versions of
simplify and ctx-simplify respectively. Both tactics modify a set of their own
default parameters values. Also, lia2sat is a composed tactic that joins a set of heuris-
tics by a conjunction. It is recurrently used in z3 default strategies for linear arithmetic
theories. Finally, skip is a void tactic.

— In solvers values, qe-smt is a tactic solver composed of heuristic qe and solver smt.
Tactics qflia and qflra are z3 built-in solvers for QF_LIA and QF_LRA respectively.
We selected them in order to check if they could be useful in the strategies generated
for quantified linear arithmetic logics (LIA and LRA respectively). Finally, fail is a
unknown result inducing tactic. It is useful as solver deleter in disjunction scenarios.

— Time-out parameters values in ΠSGEN must respect instance global timeout (Ltopi) con-
straint.

6.1.1.2 Initial strategy building

To generate the initial strategy using the mentioned structure and available components,
some constraints must be defined:



90 CHAPTER 6. SIMPLE EVOLUTIONARY PROGRAMMING ENGINES

1. No tactic is repeated. Two tactics with distinct parameter vectors, are considered as dif-
ferent elements.

2. Sub-strategies, i.e., composed tactics, are considered as single tactic. But, its components
can not be repeated inside itself.

3. Time parameter value will be equivalent for all solvers with regards to the learning time-
out per instance (Ltopi) limit.

4. Last solver will be qflia for LIA or QF_LIA logics, and qflra for LRA or QF_LRA
logics.

Then, heuristics and solver tactics are randomly chosen and placed in the structure. To illustrate
an Is designed for StratGEN, we introduce the Example 6.1.

1 (and-then
2 skip
3 simplify
4 (using-params
5 simplify
6 :pull_cheap_ite true
7 :local_ctx true
8 :local_ctx_limit 10000000
9 )

10 ctx-simplify
11 (using-params ctx-simplify :max_depth 30 :max_steps 5000000)
12 solve-eqs
13 elim-uncnstr
14 (and-then
15 normalize-bounds
16 lia2pb
17 pb2bv
18 max-bv-sharing
19 bit-blast
20 aig
21 )
22 propagate-ineqs
23 split-clause
24 (or-else
25 (try-for sat 200)
26 (try-for smt 200)
27 (try-for qe-sat 200)
28 (try-for
29 (and-then
30 qe
31 smt
32 )
33 200)
34 qflia
35 )
36

37 )

Figure 6.2 – StratGEN initial strategy example, IsLIA: Configuration used as Is for LIA or
QF_LIA logics, with Ltopi = 1 second.

Example 6.1 Let IsLIA the initial strategy used by StratGEN for LIA and QF_LIA logics
with a learning timeout per instance (Ltopi) of 1 second, as shown in Figure 6.2. Let us
remark the following aspects:
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— The tactical simplifymod is defined, between lines 4 and 9, as simplify (line 3)
with a different parameter vector π�

1 ∈ Π.

— The tactical ctx-simplifymod is defined, in line 11, as ctx-simplify (line 10)
with a different parameter vector π�

2 ∈ Π.

— The composed heuristic lia2sat is shown between lines 14 and 21. It is a conjunc-
tive sub-strategy, generated by and-then/6, which contains no repeated heuristics.

— The composed solver qe-smt is shown between lines 29 and 32. It is a smt based
tactic which applies qe before starting the solving procedure.

— The last solver in the strategy (line 34) is qflia, because the strategy is designed to
solve QF_LIA related logics.

— Time-out configuration is equal in each solver (lines 25 to 34), i.e., each binary func-
tion try-for/2 has the same time parameter value: 200 milliseconds. Note that
the last solver does not need an explicit try-for/2 declaration because its execution
time is bounded by the remaining time Ltopi − 800 = 200 milliseconds. ♦

6.1.2 Rules

In order to exchange initial strategy basic tactics, StratGEN relies on a set of rules, denoted
RSGEN . This set is mostly composed by mutation-based rules, i.e., Structural Variation rules
for exchanging strategy tactics components and Behavioural Variation rules are included for
time-handling. However, a set of Structural Recombinations rule is defined. Later we discuss
why we still classify StratGEN as an Evolutionary programming algorithm despite it is using a
crossover-based rule.

6.1.2.1 Structural Variation Rules

Let SVSGEN ⊂ RSGEN be the set of Structural Variation rules which modify tactical core
components of a strategy in StratGEN. This set is composed of two generic rules:

— Modify Heuristic: allows to change a heuristic tactic h by another h� at a selected position.
Let us remark that s, s� ∈ HeuristicSGEN ⊂ Heuristic.

MHSGEN : h → h�

— Modify Exchange: allows to change a solver tactic s by another s� at a selected position.
Let us remark that s, s� ∈ SolverSGEN ⊂ Solver.

MSSGEN : s → s�
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6.1.2.2 Behavioural Variation Rules

Let BVSGEN ⊂ RSGEN be the set of Behavioural Variation rules which exchange timeout
values for solvers in a strategy with StratGEN. Note that time limit constitutes an important
parameter for improving strategies, the management of the time allocated to the different tactics
is handled carefully, given the global learning timeout per instance Ltopi.

— Modify Time-out: allows to change a solver timeout value. Thus, let t be the kth compo-
nent of the parameter vector π of solver s (denoted as πk = t) which corresponds to the
solver time limit in a strategy of StratGEN.

MTSGEN : try-for/2(s, t) → try-for/2(s, t
�)

Note that the parameter vector π is turned into π�, where compatible(π, π�) is fulfilled
because t �= t�, i.e, the unique difference between π and π� is πk �= π�

k.

6.1.2.3 Structural Recombination Rule

Let SRSGEN ⊂ RSGEN be the set of Structural Recombination rules which generate a new
offspring from a set of strategies, i.e., a population. This set is composed of the following rules:

— Uniform recombination: inspired by Wheel-Selection Crossover [31] evolutionary oper-
ator, this rule generates a new strategy using tactics present in the population at some
specific position.

URSGEN : stn → ε(sti|1, . . . , sti||Pos(st)|) = st�

Note that ε :

n times� �� �
Strat× . . . × Strat → Strat, uses a set of randomly selected function

symbols sti|p in the new strategy st�, i.e., ε is such that ∀p | 1 ≤ p ≤ |Pos(st)|, ∃i | 1 ≤
i ≤ n, st�|p = sti|p.

Although using a crossover-based rule, we still classifying StratGEN as an Evolutionary
Programming engine. This is because the URSGEN operator could be seen as an union of
mutation-based variation operators given the fixed structure of StratGEN strategies, as shown
in Example 6.2

Example 6.2 Let Is be the initial strategy such that Is|p ∈ Heuristic with p ∈ Pos(st),
then ∀st ∈ Strat generated by StratGEN, st|p ∈ Heuristic. Thus, if Heuristicp is
the set of all heuristics present at position p in a set of strategies (i.e., population), each sub-
term st�|p of an offspring generated by URSGEN can be obtained by the following variation
rule:

MHSGEN : h → h�
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where h, h� ∈ Heuristicp ⊆ HeuristicSGEN . Note this could be extended for Solver
tactics and timeout parameter configurations. ♦

6.1.3 Strategy encoding

Since the strategies treated by StratGEN have a fixed structure and only the leaves of the
term grammar tree are modified, the solution could be represented as an ordered array contain-
ing real values, as shown in Figure 6.3.

h1 · · · h10 s1 t5s5

and-then/11
or-else/5

try-for/2

t1 · · ·

try-for/2

Figure 6.3 – StratGEN strategy encoding: An ordered array of real values representing ex-
changeable strategy values (leaves of GZ3 term grammar).

Note that a simple mapping is done for representing elements of HeuristicSGEN and
SolverSGEN using values shown in Table 6.1. Meanwhile, time values must ensure not to
exceeding the global learning timeout per instance (Ltopi). To address this problem, we map
time values into real values between 0 and 1, allowing to correctly handle time distribution
through proportion.

10

2 0.5

1 2 3 4 5 6 9 7 8

3 0.5 4 0.5 1 0.5 5 0.5

and-then/11

and-then/11
or-else/5
try-for/2

Figure 6.4 – StratGEN initial strategy encoded: Configuration used as Is for LIA or QF_LIA
logics, with Ltopi of 1 second.

Example 6.3 Let A be an ordered array of real values as shown in Figure 6.4 for representing
IsLIA of Example 6.1. Note we could read the array A from left to right to compose the
represented strategy given its fixed structure.

Thus, we know the first heuristic component (line 2 in Figure 6.2) is labeled with value
10 that encodes the skip tactic (see Table 6.1). We can continue until the last heuristic (line
23), which is tagged with the value 8 and it represents the split-clause tactic.
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The same procedure applies to the solvers, where the first (line 25) is encoded as number
2 matching with sat value, and the last solver (line 34) is labeled with value 5 corresponding
to qflia tactic.

Moreover, each solver execution time limit have the same treatment. However, its values
are obtained as the proportion with regards to Ltopi according to the [0, 1] values set in the
array A. Let t[0,1] be the mapping in the range [0, 1] of a solver time limit t. As each solver in
IsLIA has the same t[0,1] value, the corresponding time (in milliseconds) is obtained by the
proportion formula:

Ltopi × t
[0,1]
1�5

i=1 t
[0,1]
i

= 1000 × 0.5

5 × 0.5
=

1000

5
= 200 ♦

6.1.4 Population

Once defined the representation of a strategy as an ordered array of real values, we could
consider this strategy mapping as an individual of the StratGEN engine. Thus, the population is
a set of fixed structure strategies mapped as arrays. The population size parameter is automat-
ically configured as the maximum number of possible candidate values that a discrete strategy
component could have. In StratGEN, heuristics are the strategy component with biggest cardi-
nality in its domain set (given by HeuristicSGEN ), thus population size is set to 10.

The initial population is set up by assigning ordered values of its domain to all parameters
in each individual. For continuous domains, an initial discretisation must be performed. Thus,
timeout proportion values (range [0, 1]) are reduced to set {0.1, 0.2, . . . , 0.9, 1.0}.

Then, as shown in Algorithm 5.1, StratGEN population can evolve by using rules and in-
dividuals chosen by selection functions, and whose results are included to the population by
means of a fitness-based insertion function.

6.1.4.1 Selection functions

Selection functions are in charge of choosing (at some point of the evolution process, i.e.,
iteration) a rule from RSGEN and a set of individuals to be used with it.

Algorithm 6.1, shows how the selectR function works in StratGEN. It starts selecting a
uniform recombination rule (rr ∈ SRSGEN ), and then, in next generation, it picks a structural
or behavioural variation rule (rv ∈ SVSGEN ∪ BVSGEN ).

Meanwhile, the selectI function picks the whole population as the set of individuals for
applying a rule if the rule arity is equal to the population size, otherwise the last inserted pop-
ulation member (see Algorithm 6.2). Note that the arity of any specific rule rr ∈ BRSGEN is
ar(rr) = size, then uniform recombination rules will be performed over the whole population.
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Algorithm 6.1: StratGEN selectR function
Input: a set of rules RSGEN

Output: A rule r
1: if iteration number odd then
2: r ← random(SRSGEN)
3: else
4: r ← random(SVSGEN ∪ BVSGEN)
5: end if
6: return r

Algorithm 6.2: StratGEN selectI function
Input: an amount of individuals, n

a population, population
a fitness function fitness

Output: a set of individual indn

1: if n = size then
2: indn ← population
3: else
4: indn ← last_inserted(population)
5: end if
6: return indn

Consequently, the arity of rv ∈ SVSGEN ∪ BVSGEN is ar(rs) = 1, hence behavioural rules
will be performed over the last inserted member of the population, which corresponds to the
offspring of the last rr rule selected as shown below.

6.1.4.2 Insertion function

Once a new individual, i.e., a strategy, is generated, we need to insert it in the population.
StratGEN insertion function defines if a new individual will be part of the current population by
means of a given fitness function (see Section 5.4.5).

Algorithm 6.3 explains how insert function works in StratGEN. The offspring of a rr ∈
SRSGEN rule replaces the worst individual of the population. The result of a variation rule
rv ∈ SVSGEN ∪ BVSGEN replaces worst element of the population (different from the last rr

offspring inserted) if its fitness is better. Note that a complete complete cycle is done each two
generations, i.e., first a new strategy is generated using rr ∈ SRSGEN , to then modify with a
variation rule rv ∈ SVSGEN ∪ BVSGEN .
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Algorithm 6.3: StratGEN insert function
input: an individual set, Ind�n�

a population, population
a fitness function fitness

output: a new population generation
1: new ← best(Ind�n�)
2: if iteration number odd then
3: worst ← worst(population,fitness)
4: population ← replace(worst,new)
5: else
6: last ← last_inserted(population)
7: worst ← worst(population-last,fitness)
8: population ← replace(worst,new,fitness)
9: end if

10: return population

6.2 Evolutionary Strategy Tuner, StraTUNE

Our second evolutionary programming algorithm is called Evolutionary Strategy Tuner or
StraTUNE. It aims at setting automatically the parameter configuration vector of tactics in a
strategy through the uses of mutation-driven rules. In this scenario, strategy structure and tactics
values remain fixed during the whole evolution procedure. The specific engine components are
explained below.

6.2.1 Initial Strategy, Is

As StraTUNE looks to improve strategies by changing their parameter vector configuration,
it does not need to build or modify the structure, but to calibrate the behaviour of a strategy.
Thus, StraTUNE uses Is, the Z3 default strategy for a given logic, as the initial strategy.

Note that Z3 default strategies have several nuances depending on the related type of logic.
As shown in Figure 6.5, LIA and LRA default strategies (see Figure 6.5a) have a more complex
structure, tactics, and parameter vectors than QF_LRA default strategy (see Figure 6.5b) which
is composed of a single tactic with a specific parameter vector.

6.2.2 Rules

In order to calibrate strategy performance for a set of instances of a selected logic, a set of
rules (denoted as RSTUNE) is defined for modifying parameter vector values. This set is only
composed of Behavioural Rules, where mutation-based rules, i.e., variation rules, predominate.
However, as in StratGEN, a recombination rule set is defined. Despite of this, we still clas-
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1 (and-then
2 simplify
3 propagate-values
4 (using-params
5 ctx-simplify
6 :max_depth 30
7 :max_steps 5000000
8 )
9 (using-params

10 simplify
11 :pull_cheap_ite true
12 :local_ctx true
13 :local_ctx_limit 10000000
14 )
15 solve-eqs
16 elim-uncnstr
17 simplify
18 (or-else
19 (try-for smt 100)
20 (try-for qe-sat 1000)
21 (try-for smt 1000)
22 (and-then qe smt)
23 )
24 )

(a) Strategy for LIA and LRA logics.

1 (using-params
2 smt
3 :arith.greatest_error_pivot true
4 )
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

(b) Strategy for QF_LRA logic.

Figure 6.5 – Z3 default strategies

sify StraTUNE as an evolutionary programming engine because of the mutation nature of the
recombination rule set as explained later.

Note also that strategies involve many parameters. Indeed, most tactics have particular con-
figurations that determine their behaviors. When a tactic is involved several times in a strategy,
each copy/clone is managed independently (using its own parameter vector). Combinators func-
tions (Γ set symbols) also manage a global vector of parameters, which is the concatenation of
all parameters used in the sub-strategies. The total number of parameters may thus increase
significantly with regards to the size of the strategy.

When a tactic is used, default parameters values are invoked: they may not be explicitly
present in the strategy and thus, constitute implicit parameters. If a parameter value is explicitly
given (i.e., explicitly written) in the strategy, it overwrites the default value and becomes thus
an explicit parameter. This value appears in the strategy within using-params or try-for
functions.

Thus, if a parameter is explicitly defined in the strategy, we introduce a rule to change its
value according to its domain. We leave aside implicitly defined parameters in order to keep
a reasonable search space, i.e., we do not introduce new explicit parameters into the strategy.
Thus, let EW be the set of components of parameter vector πIs explicitly written in the initial
strategy Is. Moreover, we still manage carefully tactics timeout limits as in StratGEN (see
Section 6.1.3).
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6.2.2.1 Behavioural Variation Rules

Let BVSTUNE ⊂ RSTUNE be the set of Behavioural Variation rules which exchange pa-
rameter vector values of a strategy in StraTUNE. This set is composed of the following generic
rule:

— Modify Parameter: allows to change the value of the kth component of a tactic parameter
vector, πk ∈ EW .

MPSTUNE : δ(st, π) → δ(st, π�){compatible(π, π�) ∧ πk �= π�
k}

Note this modification implies π�
k ∈ EW .

6.2.2.2 Behavioural Recombination Rules

Let BRSTUNE ⊂ RSTUNE be the set of Behavioural Recombination rules which gener-
ates a new strategy parameter vector from a set of same structure strategies, i.e., StraTUNE
population. This set is formed by the following rule:

— Uniform recombination: as well as in StratGEN, based in Wheel-Selection Crossover [31],
this generic rule generates a new parameter configuration vector based on the current set-
tings of each individual in the population. As stn is a set of n strategies, then πn =

π1, . . . , πn is the set of parameter vectors of stn , where πi is the parameter vector of the
ith strategy.

URSTUNE : stn[πn] → st[υ(π1, · · · , πn)] = st[π�]

where υ :

n times� �� �
Π × · · · × Π → Π uses a set of randomly components πi

k for the new parameter
vector π�, i.e., υ is such that ∀k | 1 ≤ k ≤ |π|, ∃i | 1 ≤ i ≤ n, π�

k = πi
k.

Although we have a crossover-based rule, we still classify StraTUNE as an Evolutionary
Programming engine. This is because the URSTUNE operator could be explained as the simul-
taneous application of BVSTUNE rules, as shown in Example 6.4. Let us remark that when we
change parameter vector of a set of strategies their structure remains unchanged.

Example 6.4 Let Is be the initial strategy and πIs its parameter vector such that its kth

component πIs
k ∈ EW . Then, ∀st ∈ Strat generated by StraTUNE, πk ∈ EW . Thus, if

Πk is the set of the kth components in all parameters configuration (πn) over the population
(stn), the variation rule:

MPSTUNE : δ(st, π) → δ(st, π�){compatible(π, π�) ∧ πk �= π�
k}

can be used to obtain each parameter value π�
k of a offspring generated by URSTUNE , where

πk, π
�
k ∈ Πk. ♦
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6.2.3 Solution Encoding

Since the strategies treated by StraTUNE have the same structure and tactics components in
all engine generations, we could represent each strategy parameter vector as an ordered array
of real values. Note that the size of this array depends on the amount of explicit parameters
defined in the initial strategy Is.

Note that most parameters values found in Z3 documentation [180] are easily expressed
in real domain, but some must be mapped to this domain, e.g. boolean or categorical values.
As well as in StratGEN, we use a mapping in the [0, 1] range to proportionally distribute time
values ensuring not to exceed global timeout per instance (Ltopi), including the last solver
which exceptionally does not have an explicitly parameter value.

30 5×106 1 1 107 0.02 0.2 0.2 0.58

using-params/2
using-params/2

try-for/2 try-for/2

ctx-simplify

simplify

smt

qe-sat

smt

qe-smt

Figure 6.6 – StraTUNE initial strategy encoded: Configuration used as Is for LIA or LRA
logics, with Ltopi of 5 second.

Example 6.5 Let Is be (see in Figure 6.5a) the initial strategy for StraTUNE for LIA logic
with Ltopi = 5 seconds. Then, A (Figure 6.6) is the array representing the configuration of
explicitly written vectors in Is.

The first two slots of array A corresponds to the two explicit parameters, max_depth
and max_steps (line 6 and 7), associated to heuristic ctx-simplify (line 5). Then, we
have three explicit parameters of tactic simplify (lines 9 to 14): pull_cheap_ite,
local_ctx and local_ctx_limit. Note the first two parameters are truth values
mapped to classic integer set {0 = False, 1 = True}. Last four array members repre-
sent time limits of Is solvers (line 19 to 22), these values follow the same mapping principle
as in StratGEN. For example, the second smt instantation (line 21) timeout is mapped to the
real value 0.2. This value is the solver timeout proportion that respects all other solver values
and Ltopi:

Ltopi × t
[0,1]
3�4

i=1 t
[0,1]
i

= 5000 × 0.2

0.02 + 0.2 + 0.2 + 0.58
=

5000

5
= 1000 ♦
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6.2.4 Population

Once parameter vector representation is defined for Is, we can use it through the entire
evolutive process of StraTUNE. We use a specific real-value array as individual of the engine.
Then, the population is set to individuals representing several parameter configurations for the
same strategy. The size of the population is defined as the maximum number of possible values
that a parameter could have. Of course, we cannot consider parameter values whose domain
are continuous: a discretisation is performed by dividing the domain of this parameter in five
equiproportional parts of the maximum value. The exception to this is the discretisation process
for solver real range for timeout proportion, which is the same as explained in StratGEN (see
Section 6.1). Thus, depending on the selected SMT logic, StraTUNE population size moves
between ten and twelve individuals.

Then, as shown in Algorithm 5.1, StraTUNE population evolves by means of the rules and
individuals chosen by selection functions. New population members are also included into the
current population using a fitness-based insertion function.

6.2.4.1 Selection functions

Selection functions are in charge of choosing, at some point of the evolution process (i.e.,
iteration), a rule from RSTUNE and a set of individuals to generate a new parameter vector
configuration.

Algorithm 6.4: StraTUNE selectR function
Input: a set of rules RSTUNE

Output: A rule r
1: if iteration number odd then
2: r ← random(BRTUNE)
3: else
4: r ← random(BVTUNE)
5: end if
6: return r

As shown in Algorithm 6.4, the selectR function in StraTUNE chooses at first a uniform
recombination rule (rr ∈ BRSTUNE), and then, in the next generation, it picks a behavioural
variation rule (rv ∈ BVSTUNE).

The function selectI is equivalent to the one used in StratGEN (see Algorithm 6.2). Then,
for any rule rr ∈ BRSTUNE, ar(rr) = size, therefore uniform recombination rules will be
used over the whole population. On the other hand, the arity of a rule rv ∈ BVSTUNE is
ar(rs) = 1, that implies that behavioural variation rules will be applied to the last inserted
member population, which corresponds to the offspring of the last rr rule selected.
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6.2.4.2 Insertion function

Once a new individual (i.e., parameter vector) is created, we have to insert it in the popu-
lation. The StraTUNE insert function defines how to include a new individual on the current
population by using a fitness function (see Section 5.4.5). This function is equivalent to the one
used in StratGEN and shown in Algorithm 6.3.

The result of applying a rule rr ∈ BRSTUNE replaces the worst individual of the popula-
tion. Then, variation rule rv ∈ BVSTUNE output replaces the worst element of the population,
different from the last rr offspring inserted, if its fitness is better. Once again, the complete
procedure is done each two iterations, i.e., it generates a new strategy using rr ∈ BRSTUNE , to
then its modifies it with the variation rule rv ∈ BVSTUNE .

6.3 Experimental Results

After defining the background of both engines, we analyse the results of their best obtained
strategies and the difference between both learning processes.

Logic Subset Engine
(Ltopi[s], Topi[s])

(1,1) (10,10) (10,2400)
solved time[s] total[s] solved time[s] total[s] solved time[s] total[s]

Z3 201 2.10 2.10 201 1.86 1.86 201 1.80 1.80
StratGEN 201 1.44 1.44 201 1.57 1.57 201 1.85 1.85known
StraTUNE 201 1.84 1.84 201 1.83 1.83 201 1.94 1.94

Z3 180 5.89 14.89 182 8.09 78.09 185 2866.79 12466.79
StratGEN 189 4.62 4.62 189 5.09 5.09 189 6.00 6.00

LIA

unknown
StraTUNE 184 8.27 13.27 184 8.65 58.65 188 2864.14 5264.14

Z3 331 6.69 14.69 333 10.83 70.83 337 491.00 5291.00
StratGEN 333 18.90 24.90 337 48.84 68.84 339 288.15 288.15known
StraTUNE 328 6.11 17.11 335 21.14 61.14 337 644.90 5444.90

Z3 225 12.58 69.58 236 63.18 523.18 247 7324.12 91324.12
StratGEN 230 28.09 80.09 248 106.18 446.18 246 180.47 86580.47

StratGEN10 223 12.15 71.15 246 134.22 494.22 251 1798.06 76198.06

LRA

unknown

StraTUNE 228 21.58 75.58 245 76.72 446.72 251 5466.55 79866.55
Z3 2879 637.01 3597.01 4102 5319.20 22689.20 5617 126486.39 659286.39

StratGEN10 2927 659.73 3571.73 4195 8564.35 25004.35 5510 125338.72 914938.72known
StraTUNE10 2646 708.49 3901.49 4104 5844.00 23194.00 5508 134336.69 928736.69

Z3 81 37.82 258.82 110 200.39 2120.39 130 13230.82 426030.82
StratGEN 84 39.72 257.72 108 157.44 2097.44 127 10952.53 430952.53

StratGEN10 82 36.65 256.65 99 118.19 2148.19 131 29525.91 439925.91

QF_LIA

unknown

StraTUNE 168 78.40 212.40 197 135.68 1185.68 208 18393.09 243993.09
Z3 1054 71.62 643.62 1173 494.45 5024.45 1530 116198.57 346598.57

StratGEN10 1110 98.59 614.59 1257 746.96 4436.96 1582 59430.71 165030.71known
StraTUNE10 1029 71.39 668.39 1160 588.78 5248.78 1505 108981.88 399381.88

Z3 0 0.00 56.00 0 0.00 560.00 2 2886.58 132486.58
StratGEN 5 1.88 52.88 18 90.22 470.22 50 5793.71 20193.71

QF_LRA

unknown
StraTUNE 0 0.00 56.00 0 0.00 560.00 2 1986.23 131586.23

Table 6.2 – SMT-LIB Benchmarks: Solving selected logic instances set using strategies gener-
ated by evolutionary programming engines.
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6.3.1 Performance highlights

Table 6.2 summarises performance of Z3 solver over the selected logics by using its de-
fault strategy and the best strategies generated by StratGEN and StraTUNE. Let us remark the
following:

1. In each instance subset, i.e., known and unknown, the engine which triggers Z3 best global
result between all execution scenarios will be highlighted in bold.

2. Best result in each execution scenario will also be highlighted in bold.

3. An engine with a reduced learning set (Lspct = 10%) to tackle a logic subset will be
denoted with the number 10 as superscript of the engine, e.g., StraTUNE10.

Note also that we mention engines performance referring to the effects of their best generated
strategy in Z3 solver. The same principle applies to the engines that outperform Z3.

6.3.1.1 Z3 improvements

Z3 performance is improved in most scenarios, 22 of 24 execution cases, either using Strat-
GEN or StraTUNE generated strategies. In 1 of 8 logics sets, Z3 default configuration remains
as top performer: QF_LIA known. For this logic subset, Z3 has a strong expert-designed strat-
egy used to demonstrate the importance of The Strategy Challenge in SMT [10]. Therefore,
outperforming Z3 in this case is not a trivial task.

Best engine is StratGEN, whose generated strategies have the best performance in 6 of 8
instances sets and 19 of 24 execution scenarios. With regards to StraTUNE, it outperforms all
other engines in 1 of 8 logics: QF_LIA unknown. Despite of not being the best in the others
scenarios, it outperforms Z3 default configuration in many other cases as: LIA unknown and
the whole LRA instance set.

Major achievements include:

— StratGEN succeeds to solve entirely LIA unknown and LRA known subsets.

— StraTUNE dramatically outperforms Z3 in QF_LIA unknown logic subset solving 60%
more instances and reducing the total solving time 43%.

— StratGEN dramatically improves Z3 performance in QF_LRA unknown, solving up to
86% of instances in set. Note that Z3 default configuration only solves 3% of instances.
The time execution also is reduced 85%.

— StratGEN improves Z3 in LRA unknown and QF_LRA known logics. In the first logic,
up to 11% of unsolved instances are addressed reducing around 18% of time execution.
Meanwhile in the second case, up to 54% of unaddressed instances are solved in around
half the time used by Z3 with its default configuration.
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6.3.1.2 Initial Strategy factor

A great difference between StratGEN and StraTUNE is their initial strategy (Is) and the
role this element plays in each evolutionary process.

As Is of StratGEN (see Figure 6.2) is inspired by LIA/LRA Z3 default strategy (see Fig-
ure 6.5a), it is thus similar, and we expected to perform well in those logics, as well as, in
logics with a simpler strategies (e.g., QF_LRA). However, since StratGEN cannot change Is

structure to generate more complex strategies, then it fails to improve the hardest logic in the
set, QF_LIA.

For StraTUNE, its Is defines the size of the individuals, consequently the effectiveness of
the engine. This is the main factor in the success of this engine in QF_LIA unknown, because
Z3 default strategy includes an extensive explicitly defined parameter vector. On the other
hand, it also explains the failure of the engine addressing the entire QF_LRA set, which has the
simplest default strategy in Z3 (see Figure 6.5b).

Therefore, choosing an appropriate starting point must be carefully considered for the ef-
fectiveness of each engine.

6.3.1.3 Structural rules vs Behavioural rules

Despite the engine dependence on its initial strategy, we observe that Structural Rules have a
greater impact in the generation process than Behavioural Rules. This is given by better overall
performance of StratGEN with respect to StraTUNE. Therefore, complex engines should be
more focused on this type of rules, without leaving aside other alternatives.

Let us remark that we have defined a restricted set of both type of rules. While RSGEN

does not include rules for modify the skeleton of its Is, RSTUNE only includes rules to modify
explicitly written parameters. Then, new rules should be included to take more advantage of the
Is information in order to generate more suitable strategies by changing their structure.

6.3.2 Learning process

Our engines rely on a learning procedure for generating efficient strategies. Thus, we explain
how this phase supports obtained results.

6.3.2.1 Learning Sample Size

As explained in Section 5.4.3, a reduced learning sample may be used by the engines, de-
pending on the selected size of the set of instances or its complexity.

As shown in Table 6.2, the use of StraGEN10 was able to improve default Z3 performance,
and generate the best strategies for LRA unknown and QF_LRA known sets. Also, Z3 perfor-
mance was improved in the two basic execution scenarios in the hardest set QF_LIA known.
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Moreover, StratGEN10 slightly outperforms its full learning sample counterpart (StratGEN)
when both address the same logic subset. Regrettably, the use of a reduced learning sample
does not trigger good performances in StraTUNE engine.

Thus, using a reduced learning sample helps tackling a set of problems whose evaluation is
computationally expensive, or having an effective alternative for strategy generation process.

6.3.2.2 Learning Variability

A relevant feature of the designed engines is their stochastic procedure to select modifying
rules. Henceforth, engines were executed under different random seeds scenarios to check their
behaviour. Let us remark that the best found strategies results were discussed in Section 6.3.1.
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Figure 6.7 – Evolutionary Programming engine learning variability in the strategy generation
process according to SMT logics with Ltopi = 10 seconds. Z3 values correspond to default
execution with Topi = Ltopi.

Figure 6.7 shows performance variation of strategies generated by engines using different
random seeds. We could observe, the performance of strategies depends on how modifying
rules are selected. In this learning scenario (Ltopi = 10 seconds), the Z3 default configu-
ration is outperformed in every logic. Also, StratGEN have better overall performance than
StraTUNE. However, StraTUNE has less variability in all random scenarios, being more ro-
bust than StratGEN, whose performance is more affected by the selected random case, e.g., in
QF_LIA logic.

To measure the results of the learning phase, we use a Two-Tailed Student T Test for means
of paired samples with significance level of α = 0.05. This test shows statistically significant
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difference between mean performance of StratGEN and StraTUNE using ten executions with
different random seed values. Note, our test uses the number of instances solved as main data.
However, when both engines are completely tied in this metric, the analysis is done using time
execution information.

Logic Subset Type Diff. Mean RMSD t value p value better status
known time 0.43 0.02 27.26 <0.000001 StratGEN ✓

LIA
unknown instances -4.90 0.10 49.00 <0.000001 StratGEN ✓

known instances -1.10 0.31 -3.50 0.006745 StratGEN ✓
LRA

unknown instances -2.10 0.48 -4.36 0.001829 StratGEN ✓

known instances 142.50 50.91 2.80 0.020746 StraTUNE ✓
QF_LIA

unknown instances 90.90 2.34 38.84 <0.000001 StraTUNE ✓

known instances -76.60 4.060 -18.90 <0.000001 StratGEN ✓
QF_LRA

unknown instances -11.50 1.17 -11.57 <0.000001 StratGEN ✓

Table 6.3 – Student T Test: Statistical significance between StratGEN and StraTUNE engines
in the learning phase, with level α = 0.05.

Table 6.3 summarises the results of the statistic test. StratGEN has a significantly better
learning process in LIA, LRA, and QF_LRA sets. Meanwhile, StraTUNE has significantly
better learning performance in QF_LIA logic. This results match the performance shown in
Section 6.3.1.

6.4 Conclusions

In this chapter two evolutionary programming engines, driven by mutation-based rules, were
introduced and implemented: StratGEN and StraTUNE. The former uses mostly structural vari-
ation rules, and the later behavioural variation modifiers.

We introduce two initial strategies for our engines, and shown how they affect their perfor-
mance. We also discussed the importance of rules to generate more complex strategies, because
both StratGEN and StraTUNE were not designed to modify the structure (i.e., skeletons) of
their initial strategies.

Then, experimental results showed both engines succeeded to improve Z3 performance, but
a higher impact were achieved when structural-oriented rules are applied. However, behavioural
rules also help to generate efficient strategies.

Despite this, Z3 performance could not be improved in some scenarios, e.g., QF_LIA known

subset. This is because, the generated strategies where not complex enough to address the
instances in those sets.





7
StratEVO: Evolving SMT Strategies

In the previous chapter, we have seen how rules define the success of an engine, specially
in the case of fixed structure strategies. However, more efficient strategies can be obtained if
their basic structure is modified, i.e., allowing them to evolve. This argument, in addition to
the empirical guidelines inferred from the performance of designed evolutionary programming
engines, serves as a starting point for the construction of a more sophisticated engine which
allows to generate more complex strategies by evolving their structure.

7.1 StratEVO: A Tree-based Genetic Programming engine

Our third engine is a Tree-based Genetic Programming algorithm, called StratEVO. It aims
at building more complex strategies by evolving most components in the initial strategy struc-
ture, i.e., by generating several different strategy structures. Thus, the evolutionary process is
not restricted to terminal components as basic tactics or its parameters vectors. StratEVO is
based on classic concepts of Genetic Programming [40, 41] and Grammar-based Genetic Pro-
gramming [44, 45, 46], and relies on a complex set of modification, where Structural rules
preponderate over Behavioural rules.

7.1.1 Initial Strategy, Is

StratEVO could start its evolutionary process from two different starting points:

1. A basic structure strategy inspired by recurrent skeleton and tactics present in Z3 default
strategies. This strategy is used as Is by the StratGEN engine.

107
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2. The Z3 default strategy depending on the selected SMT logic. This initial strategy is used
in StraTUNE engine.

We refer the reader to Section 6.1.1 and Section 6.2.1 respectively, where both initial strategy
structures are explained in detail. Let us remark that StratEVO is able to change the structure
of both initial strategies for generating new complex ones. It can also starts from a single-tactic
strategy. This last process will be highly expensive because of the need of building a skeleton
from scratch. Thus, we avoid it by using well-known strategies.

7.1.2 Rules

StratEVO relies on a set of rules, RSEV O, composed of Structural and Behavioural rules,
where the first type predominates. This is the first engine that includes genuine structural
crossover over strategies, allowing to import and export sub-terms in order to generate dif-
ferent structure strategies. This operator is one of the core elements in the evolutionary process.
Moreover, the amount of generic rules increase considerably, thus we group them according to
their effects.

7.1.2.1 Structural Variation Rules

Let SVSEV O ⊂ RSEV O be the set of mutation-driven rules applied by StratEVO. This set
covers several scenarios that evolutionary programming engines do not, including basic struc-
ture modifications.

7.1.2.1.1 Variations on combinators

We use a set of four generic rules that may be applied in order to exchange strategy combinators
or to delete them, changing thus the global structure of the strategy.

— Change combinator: two straightforward rules that change a combinator for another one
of the same arity. Note that changing a and-then by a or-else changes the scope
of a strategy, by interchanging a conjunction by a disjunction or viceversa. After the
change, the strategy has a new scope, i.e., its semantics changed: it is able to address
logic instances in a new way, different from the previous strategies. However, we must
ensure that the strategy is still correct with regards to its own context. Therefore, resulting
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strategies must satisfy solver constraint (solver_c(), see Section 5.2.2) requirements.

CC1
SEV O : st[and-then/n(stn)] →st[or-else/n(stn)]

{solver_c(st[or-else/n(stn)])}
CC2

SEV O : st[or-else/n(stn)] →st[and-then/n(stn)]

{solver_c(st[and-then/n(stn)])}

— Delete nested combinator: a generic rule that removes a substrategy root, i.e., a combina-
tor, inside another combinator. It is clear that when both functions are and-then (resp.
or-else), the nested combinator can be flattened without modifying the semantics of
the strategy. However, when an and-then combinator is inside a or-else based com-
posed tactic (or vice-versa) applying the rule changes the scope and the semantics of the
strategy st.

DNSEV O : γ/n1+n2+1(st1
n1 , γ�

/n(stn), st2
n2) → γ/n1+n2+n(st1

n1 , stn, st2
n2)

— Add strategy in combinator: this rule enables to extend a sequence of strategies that
appears in a combinator. The semantics/scope of the strategy is thus changed with a
and-then and may be changed with a or-else.

ASSEV O : γ/n1+n2(st1
n1 , st2

n2) → γ/n1+n2+1(st1
n1 , st, st2

n2)

7.1.2.1.2 Variations on tactics

Several rules are used in order to exchange, modify, add, or delete tactics within the strat-
egy structure. This means that heuristics, solvers, and probes can be modified with respect to
syntactic constraints. Moreover, additional constraints must be checked, e.g., we must ensure
that at least a solver is executed in the strategy (otherwise, the only possible result would be
unknown), depending on the control structure induced by the combinators.

— Delete tactic in combinator: these three rules are similar and are used to either remove
a solver (in this case, we have to verify that the new strategy is still a valid strategy), a
heuristic, or a probe.

DT s
SEV O : st[γ/n1+n2+1(st1

n1 , s, st2
n2)] → st[γ/n1+n2(st1

n1 , st2
n2)]

{solver_c(st[γ/n1+n2(st1
n1 , st2

n2)]) ∧ n1 + n2 �= 0}
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DT h
SEV O : γ/n1+n2+1(st1

n1 , h, st2
n2) → γ/n1+n2(st1

n1 , st2
n2) {n1 + n2 �= 0}

DT p
SEV O : γ/n1+n2+1(st1

n1 , p, st2
n2) → γ/n1+n2(st1

n1 , st2
n2) {n1 + n2 �= 0}

— Modify tactic: basic generic rules, for changing basic tactics values (similar to StratGEN
variation rules).

MT s
SEV O : s → s�

MT h
SEV O : h → h

MT p
SEV O : p → p

— Exchange tactics: generic rules which exchange a heuristic by a solver and viceversa.
Note that, from a semantical point of view, only these changes are considered. Probes,
due to their nature, are not compatible with such changes. If a heuristic is turned into a
solver, the whole strategy satisfies solver constraint (solver_c(), see Section 5.2.2),
thus there is no need to check this condition. On the other hand, if a solver turns into
heuristic, it is strictly necessary to verify this property to avoid introducing ill-formed
strategies into the evolutionary process.

ET hs
SEV O : h → s

ET sh
SEV O : st[s] → st[h]{solver_c(st[h])}

7.1.2.2 Structural Recombination Rules

Let SRSEV O ⊂ RSEV O be the set of recombination exchange rules applied to sub-terms
as it is usually done in Genetic Programming [40, 41]. This set is composed of the following
generic rules:

— Term recombination: a sub-term of a strategy st1, is exchanged with a sub-term of another
strategy st2.

TRSEV O : (st1[l1], st2[l2]) → (st1[l2], st2[l1]) {solver_c(st1[l2], st2[l1])}

This generic rule generates an offspring of two new strategies, which generally have a dif-
ferent scope, i.e., semantic, with regards to his parents. Of course, offsprings must satisfy solver

constraint requirements, and include all possible subterm exchanges between two strategies.

7.1.2.3 Behavioural Variation (BV)

Let BVSEV O ∈ RSEV O be a set of simple behavioural rules used by StratEVO. As StraTUNE
(see Section 6.2), this set is driven by mutation based rules applicable over explicitly defined
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(i.e., written) parameters in a strategy. Let us remark that this explicit value appears in the strat-
egy within using-params or try-for modifier functions (set Δ), and their values, e.g.,
tactic time limits are carefully handled as in evolutionary programming engines. Also remem-
ber, EW is the set of parameters explicitly written in a strategy. This set is composed by two
generic rules:

— Modify parameters: allows to change the value of the kth component of a tactic parameter
vector, πk ∈ EW , as seen in StraTUNE.

MPSEV O : δ(st, π) → δ(st, π�){compatible(π, π�) ∧ πk �= π�
k}

Once again, note that this value modification implies π�
k ∈ EW .

— Restore default parameter vector: restores tactics configuration values to their default
parameter vector by removing their explicitly written parameters.

RDSEV O : δ(st, π) → st

Note that time limit parameter is handled in a different function (try-for) than other
parameters (using-params). Thus, this generic rule must be applied twice to com-
pletely reset a tactic to its default configuration.

7.1.3 Solution Encoding

Since StratEVO needs the whole information of a strategy, we use first-order terms, en-
coded as trees, to represent them. Term grammar GZ3 can generate each valid strategy using its
derivation tree (see Section 4.3.2). Thus, StratEVO can handle several type values existing in
the tactics as well as in the parameters.

Figure 7.1 shows how strategies are represented as trees. The example strategy S (Fig-
ure 7.1a) is represented as a tree (Figure 7.1b) where its components, following the correspond-
ing color notation, portray the following:

— Basic tactics (in blue), where cross-circle (
�

) are probes, circles (�) are heuristics and
squares (�) are solvers.

— Combinators functions (in orange) as triangles (�). These symbols map to tactics com-
posers, as or-else or and-then.

— Parameter modifier functions (in red) as diamonds (�). This includes the parameter
components (in green) as hexagons (�) modified by the function (using-params or
try-for).

Note that this representation allows to apply easily all different StratEVO rules explained above,
as shown in Example 7.1.
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1 (and-then
2 (or-else
3 (fail-if (not(is-ilp)))
4 simplify
5 (using-params
6 ctx-simplify
7 :max_depth 30
8 :max_steps 5000000
9 )

10 split-clause
11 )
12 (and-then
13 (try-for sat 100)
14 (using-params
15 smt
16 :random-seed 100
17 )
18 )
19 )

(a) User-defined strategy example. (b) Strategy example encoded as simple tree.

Figure 7.1 – StratEVO Solution Encoding: Representing strategies as simple trees.

Example 7.1 Let S1 and S2 be two identical strategies (shown in Figure 7.1), and the struc-
tural rules Term Recombination (TRSEV O) and Exchange Tactic (ET sh

SEV O).

The first rule can match any exchange of substrategies between st1 and st2. Thus, let
l1 be the heuristic simplify-ctx modified by using-params/2 shown in Figure 7.1a
(lines 5 to 9), and let l2 be the smt solver modified by try_for/2 shown in the same figure
(line 13). Then, the rule

TRSEV O : (st1[l1], st2[l2]) → (st1[l2], st2[l1]) {solver_c(st1[l2], st2[l1])}

is valid, and generates two well-formed offsprings with regards to the solver constraint. This
crossover procedure is shown in Figure 7.2.

The second rule can match any exchange of a solver by a heuristic, while the resulting
strategy is still well-formed and respects the solver constraint. Let s be the solver in st1

shown in Figure 7.1a (line 15). Then, the rule

ET sh
SEV O : st[s] → st[h]{solver_c(st[h])} ♦

is valid ∀ h ∈ Heuristic, generating valid strategies. This mutation procedure is shown
in Figure 7.3.
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Figure 7.2 – Structural Recombination rule application, i.e., crossover, in a tree encoded strat-
egy.

Figure 7.3 – Structural Variation rule application, i.e., mutation, in a tree encoded strategy.
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7.1.4 Population

As the tree representation is defined for all strategies, we could use it in the whole evolutive
process of StratEVO. Thus, an individual is a complete strategy represented as a tree. Then, the
population is a set of strategies, i.e., a set of trees. The population size is defined as the double
of the population size of StratGEN, i.e, 2×10 = 20 individuals.

The initial population is set up by applying indepently a set of randomly selected Structural
Variation rules (SVSEV O) over the initial strategy (Is). The amount of rules is equal to the
size of the population, i.e., 20 rules. Then, population can evolve following the Evolutionary
Algorithm scheme shown in Section 5.1.

7.1.5 Selection functions

Selection functions are in charge of choosing, at some point of the evolution process (i.e.,
iteration), a rule from RSEV O and a set of individuals to apply it, in order to generate a new
strategy which could differ dramatically from the structure of its parents or from the initial
population strategies.

Algorithm 7.1: StratEVO selectR function
Input: a set of rules RSEV O

Output: A rule set r
1: if iteration number odd then
2: r ← random(SRSEV O)
3: else
4: r ← random(SVSEV O ∪ BVSEV O, 2)
5: end if
6: return r

Algorithm 7.1 shows how the selectR function picks rules from RSEV O. First, it selects a
structural recombination rule (rr ∈ SRSEV O). Then, in the following generation, it chooses
two variation rules (rv ∈ SVSEV O ∪ BVSEV O).

Meanwhile, the selectI function (shown in Algorithm 7.2) chooses a set of individuals to
apply the selected rules. If the rule arity is two, individuals are selected by means of fitness us-
ing a classic tournament selection operator. Here, each individuals is selected from a semifinal
branch composed of four random individual members. Of course, individuals can only partici-
pate in one branch. Then, if the rule arity is one, the last inserted member of the population and
its sibling are selected.

Note that the arity of rr ∈ SRSEV O is always ar(rr) = 2. Then, tournament selection is
exclusively performed to choose the parents for crossover operation. Moreover, rv ∈ SVSEV O∪
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Algorithm 7.2: StratEVO selectI function
Input: an amount of individuals, n

a population, population
a fitness function fitness

Output: a set of individual indn

1: if n = 2 then
2: indn ← tournament_selection(population,fitness,2)
3: else
4: last ← last_inserted(population)
5: indn ← last,sibling(last)
6: end if
7: return indn

BVSEV O arity is ar(rv) = 1, therefore the variation rules will be exclusively applied to the
offspring of a recombination.

7.1.6 Insert function

Once a new strategy is generated, we need to insert it into the current population. The
StratEVO insert function integrates new strategies by means of fitness.

Algorithm 7.3: StratEVO insert function
input: an individual set, Ind�n�

a population, population
a fitness function fitness

output: a new population generation
1: new ← best(Ind�n�)
2: if iteration number odd then
3: worst ← worst(population,fitness)
4: population ← replace(worst,new)
5: else
6: last ← last_inserted(population)
7: worst ← worst(population-last,fitness)
8: population ← replace(worst,new,fitness)
9: end if

10: return population

Algorithm 7.3 shows how the insert function proceeds. If new strategies were generated by
means of recombination rules, the best offspring replaces the worst population member. But,
if those strategies are generated using mutation-driven rules, the best one replaces the worst
individual (different from the last inserted) if fitness is better. Note that a complete sequence of
crossover and mutation is done every two generations.
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7.2 Experimental results

After defining the background of StratEVO, we analyse the results of the best strategies
obtained by the engine using two different initial strategies. Then, the difference of the learning
processes between both version is discussed.

7.2.1 Performance highlights

As shown in Table 7.1, we analyse the performance of Z3 solver over the selected logics
using its default strategy and the best strategies generated by StratEVO. We also include the
best performer engine so far from previous chapters. Let us remark the following:

1. In each logic subset, i.e., known and unknown, the engine which triggers Z3 best global

Logic Subset Engine
(Ltopi[s], Topi[s])

(1,1) (10,10) (10,2400)
solved time[s] total[s] solved time[s] total[s] solved time[s] total[s]

Z3 201 2.10 2.10 201 1.86 1.86 201 1.80 1.80
StratGEN 201 1.44 1.44 201 1.57 1.57 201 1.85 1.85

StratEVOFS 201 1.43 1.43 201 1.39 1.39 201 1.40 1.40
known

StratEVOZ3 201 1.38 1.38 201 1.37 1.37 201 1.37 1.37
Z3 180 5.89 14.89 182 8.09 78.09 185 2866.79 12466.79

StratGEN 189 4.62 4.62 189 5.09 5.09 189 6.00 6.00
StratEVOFS 189 4.90 4.90 189 4.85 4.85 189 4.83 4.83

LIA

unknown

StratEVOZ3 189 4.51 4.51 189 4.47 4.47 189 4.47 4.47
Z3 331 6.69 14.69 333 10.83 70.83 337 491.00 5291.00

StratGEN 333 18.90 24.90 337 48.84 68.84 339 288.15 288.15
StratEVOFS 333 7.24 13.24 337 26.98 46.98 339 199.26 199.26

known

StratEVOZ3 333 6.96 12.96 337 23.94 43.94 339 193.25 193.25
Z3 225 12.58 69.58 236 63.18 523.18 247 7324.12 91324.12

StratGEN10 223 12.15 71.15 246 134.22 494.22 251 1798.06 76198.06
StratEVOFS 231 16.50 67.50 250 126.56 446.56 265 7635.47 48435.47
StratEVO10

FS 211 7.99 78.99 216 43.52 703.52 219 138.54 151338.54
StratEVOZ3 235 17.62 64.62 251 207.56 517.56 265 8621.53 49421.53

LRA

unknown

StratEVO10
Z3 228 14.18 68.18 248 123.41 463.41 262 6243.20 54243.20

Z3 2879 637.01 3597.01 4102 5319.20 22689.20 5617 126486.39 659286.39
StratEVO10

FS 2913 646.29 3572.29 3975 4725.65 23365.65 5612 158508.51 703308.51known
StratEVO10

Z3 2975 674.71 3538.71 4220 6767.21 22957.21 5536 104462.86 831662.86
Z3 81 37.82 258.82 110 200.39 2120.39 130 13230.82 426030.82

StraTUNE 168 78.40 212.40 197 135.68 1185.68 208 18393.09 243993.09
StratEVOFS 82 38.82 258.82 109 193.58 2123.58 128 16597.24 434197.24
StratEVO10

FS 82 37.83 257.83 137 252.94 1902.94 169 9303.60 328503.60
StratEVOZ3 197 33.25 138.25 198 41.21 1081.21 210 13617.78 234417.78

QF_LIA

unknown

StratEVO10
Z3 197 24.99 129.99 197 339.17 1389.17 207 11974.85 239974.85

Z3 1054 71.62 643.62 1173 494.45 5024.45 1530 116198.57 346598.57
StratGEN10 1110 98.59 614.59 1257 746.96 4436.96 1582 59430.71 165030.71

StratEVO10
FS 1108 98.93 616.93 1288 881.52 4261.52 1583 44576.55 147845.73known

StratEVO10
Z3 1110 100.15 616.15 1255 762.34 4472.34 1578 54312.23 169512.23

Z3 0 0.00 56.00 0 0.00 560.00 2 2886.58 132486.58
StratGEN 5 1.88 52.88 18 90.22 470.22 50 5793.71 20193.71

StratEVOFS 16 15.84 55.84 38 140.29 320.29 38 1890.02 45090.02

QF_LRA

unknown

StratEVOZ3 0 0.00 56.00 1 4.14 554.14 34 20165.82 72965.82

Table 7.1 – SMT-LIB Benchmarks: Solving selected logic instances set using strategies gener-
ated by StratEVO.
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result between all execution scenarios will be highlighted in bold.

2. The best engine from previous chapter will be highlighted in italic.

3. The best result in each execution scenario will also be highlighted in bold.

4. As StratEVO has two choices for the initial strategy, we use Z3 to denote the Is as the
default Z3 strategy for a given logic, or FS if the StratGEN fixed skeleton initial strategy
is chosen. This will be noted as subscript of the engine, e.g. StratEVOFS .

5. If an engine with a reduced learning set (Lspct = 10%) for a logic subset, it will be
denoted with the number 10 as superscript of the engine, e.g., StratEVO10

Z3.

6. Despite the addition a set of behavioural variation rules, we still consider StratEVO as
a structural-based algorithm. Therefore, we use structural rules execution scenario (see
Section 5.4.3).

Note also that we mention engines performance referring to the effects of their best generated
strategy in Z3 solver. The same principle applies to the engines that outperforms Z3.

7.2.1.1 Z3 improvements

StratEVO turns to be the best engine in 6 of 8 scenarios, and it also improves Z3 perfor-
mance in 22 of 24 selected execution cases, outperforming most of StratGEN and StraTUNE
improvements. The two logics for which StratEVO could not improve the current best results
are QF_LIA known and QF_LRA unknown logic subsets. The former is a complex case to
address, which demonstrates the huge knowledge inverted by Z3 developers to show the impor-
tance of The Strategy Challenge in SMT [10]. The later represents the best output generated by
the StratGEN engine, which StratEVO could not match despite of the amount of cases covered
by its rules.

Major achievements include:

— A considerable time reduction in sets completely solved. In LIA set time consumption is
reduced by up to 25% with regards to StratGEN. Meanwhile, in LRA known this amount
reaches 33%.

— LRA unknown best performer is StratEVO. StratEVO considerably outperforms Strat-
GEN, solving 45% of their unaddressed instances. This represents 4% of the total in-
stances in the set. The execution time is also reduced, by around 36%.

— It obtains first competitive result in hardest logic set, QF_LIA known. StratEVO is
slightly worse than the best performer in the set, solving only 1% less instances.

— It slightly outperforms best engine in QF_LIA unknown and QF_LRA known sets, solving
up to 2% of unresolved instances, and reducing execution time up to 11%.
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7.2.1.2 Initial Strategy factor

Initial strategy also plays a great role in StratEVO performance, but not in every scenario as
in evolutionary programming engines, i.e., StratGEN and StraTUNE.

Both initial strategies allows to reach good configurations, and this helps Z3 to solve the
same amount of strategies in LIA and LRA sets. There exist a slight difference in time con-
sumption (between 2% and 7%) using Z3 default strategies as starting point instead of the fixed
skeleton strategy.

These behaviour changes in the remaining benchmarks set. In QF_LIA, the use of Z3
default strategies allows StratEVO to generate more efficient strategies by leading in 5 of 6
execution cases, and being dramatically different in the unknown set. This is because Z3 default
strategy contains much more information than the StratGEN fixed skeleton strategy to support
the engine. But in QF_LRA, the opposite happens. In this case, the Z3 default strategy lacks of
knowledge to be exploited, and therefore its evolutive procedure is more expensive and weaker.

Thus, the initial strategy is still an important issue to address in order to generate more
sophisticated strategies.

7.2.2 Learning process

As StratEVO relies on a learning procedure to generate efficient and complex strategies, we
explain how this phase supports obtained results.

7.2.2.1 Learning sample size

The reduced learning sample proves to be a great alternative for StratEVO, especially in
cases when starting strategies provide or contain relevant information for the evolutive process.
For example, in QF_LIA unknown set, StratEVO10

Z3 outperforms the best evolutionary engine
performance, and is slightly worse than StratEVOZ3. With regards to StratEVOFS , the use of
reduced learning sets help dramatically to improve performance. Note that StratEVOFS could
not even outperform Z3 default strategy, meanwhile StratEVO10

FS solves 41 more instances,
representing an improvement of 32%.

In scenarios where only reduced size sample is used, i.e., QF_LIA known and QF_LRA

known, StratEVO outperforms the best results previously founded in Chapter 6.
Thus, using a reduced learning sample still helps addressing scenarios whose evaluation is

computationally expensive, or having an effective alternative for the strategy generation process.

7.2.2.2 Learning variability

StratEVO is a stochastic procedure in which rules are selected randomly. Thus, the engine
learning phase was executed several times with different random seeds values.
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Figure 7.4 shows the variability of the learning phase using StratEVO. We observe that in
most cases, the use of Z3 default strategies implies a more robust engine procedure with regards
to the stochastic engine component, i.e., random seed, and an overall better performance than
Z3 default configuration. On the other hand, the use of the StratGEN fixed skeleton strategy is
considerably unstable as shown in the whole LRA logic and QF_LIA known benchmark sets,
and is outperformed in most scenarios.
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Figure 7.4 – StratEVO learning variability in the strategy generation process according to SMT
logics with Ltopi of 10 seconds. Z3 values correspond to default execution with Topi = Ltopi.

We use a Two-Tailed Student T Test for means of paired samples, with significance level
of α = 0.05, to measure the average performance of the two StratEVO versions: StratEVOZ3

and StratEVOFS . This test stands statistically significant difference between the performance
of both alternatives, being executed ten times with different random seed values. Note that our
test mainly uses instance solving data. However, when both engines are completely tied in this
metric, the analysis is done using time execution information.

Table 7.2 summarises the results of the statistic test, where StratEVOZ3 has a significantly
better learning phase in the cases it wins with exception for LIA known where no difference
could be statistically stated. Meanwhile, StratEVOFS cannot be stated as significantly better
than its counterparts in QF_LRA logic. This analysis matches with the performance shown in
Section 7.2.1.
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Logic Subset Type Diff. Mean RMSD t value p value better status
known time 0.17 0.56 2.20 0.055497 StratEVOZ3 ✗

LIA
unknown time 0.96 10.76 2.77 0.021747 StratEVOZ3 ✓

known instances -3.7 98.10 -3.54 0.006275 StratEVOZ3 ✓
LRA

unknown instances -19.6 1418.40 -4.94 0.000805 StratEVOZ3 ✓

known instances -310.3 1682208.10 -2.27 0.049390 StratEVO10
Z3 ✓

QF_LIA
unknown instances -36.9 15784.90 -2.79 0.021182 StratEVOZ3 ✓

known instances 5.6 6210.40 0.67 0.517162 StratEVO10
FS ✗

QF_LRA
unknown instances 6.2 1039.60 1.82 0.101420 StratEVOFS ✗

Table 7.2 – Student T Test: Statistical significance between initial strategies of StratEVO in the
learning phase, with level α = 0.05.

7.2.2.3 Learning progress

Engines have a parameter that defines a maximum learning time, called Learning time bud-

get (Lbt), which is arbitrary set in 2 days. We analyse StratEVO behaviour in order to check if
this limit restricts the engine potential or if it is overestimated.
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Figure 7.5 – StratEVO learning progress in QF_LIA unknown.
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Figure 7.5 shows StratEVO learning progress in QF_LIA unknown logic subset, one of
the most improved benchmarks set with regards to Z3 default performance. Here, we could
observe improvements occurring during most the learning procedure, specially between the
twelfth and the fortieth second hour of learning. Thus, the Ltb bound allows to obtain most
relevant improvements of engines which usually occurs during the second day of the learning
phase.

7.3 Conclusions

In this chapter we presented StratEVO, a Tree-based Genetic Programming engine which
generates complex SMT strategies for the Z3 solver.

It relies on a big set of rules which covers several ways for modifying strategies structures,
based on classic Genetic Programming operators, i.e., mutation and crossover.

By repairing Z3 default and StratGEN initial strategies, StratEVO is able to outperforms
the current best engines in most scenario. Regrettably, Z3 default configuration is still the best
available for QF_LIA known set. However, a first competitive result is obtained by means of
StratEVO.

Learning configuration was also discussed, proving that a reduced learning set is a viable
alternative to generate efficient strategies. Most of the strategies improvement occurs between
the twelfth and the fortieth second hour of the learning process, thus also validating two days
learning budget time.





8
Revisiting StratEVO: Cooperative
Schemes for Evolution

In this chapter, we analyse some schemes for cooperation between behavioural rules and
structural rules in order to add them in StratEVO. In the previous chapters, the engines were
driven by one type of rules, and when both types were available one of them was randomly
selected.

8.1 Rules

Modifying rules are the main component defining our cooperative schemes. Thus, we define
the set of rules to be applied. Let RCOOP be the set of rules used for cooperative engines. Rules
are classified according to some types presented previously in Chapter 5.

— Structural Variation Rules: let SVCOOP ⊂ RCOOP be a set of mutation-driven rules used
to change strategy structure components. This set covers modification scenarios used by
StratEVO and, consequently, StratGEN. We refer the reader to Section 7.1.2.1 for detailed
rule explanations.

— Structural Recombination Rules: let SRCOOP ⊂ RCOOP be the set of recombination
exchange rules applied between sub-terms as it is usually done in Genetic Program-
ming [40, 41]. This set is composed by the rule Term Recombination presented in Strat-
EVO. We refer the reader to Section 7.1.2.2 for a detailed formalisation.

123
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— Behavioural Variation Rules: let BVCOOP ∈ RCOOP be a set of simple behavioural rules
that allow to modify tactics parameter vectors. This set is composed by the same rules
defined for StratEVO in Chapter 7. Thus, we refer the reader to Section 7.1.2.3 for a
complete explanation.

— Behavioural Recombination Rules: let BRCOOP ⊂ RCOOP be a set of generic Be-
havioural Recombination rules which generates a new strategy parameter vector. This
set is composed by the same rule (i.e., Uniform Recombination) defined for StraTUNE.
Thus, we refer the reader to Section 6.2.2.2 for a detailed explanation. Let us remark that
URStraTUNE can be interpreted as a union of mutation operators in each parameter, i.e.,
behavioural variation rules. Then, URStraTUNE can be applied to a single individual in
a population of strategies with different structures by using the domain of the explicitly
written parameters of the strategy.

8.2 Cooperative Schemes

In order to integrate Structural and Behavioural rules in a hybrid environment, we define
several cooperative schemes.

Figure 8.1 – Cooperative Schemes for Modifying Rules.

As Figure 8.1 shows, we can classify these schemes in two categories: Off-line Collabora-
tion and On-line Collaboration.

8.2.1 Off-line Collaboration

We call off-line collaboration the process of using two different sets of rules in different
environments, i.e., engines. This category has only one available scheme: Sequential Coopera-
tion. By means of this work, the outputs of our different engines, must be chained. Therefore,
classic schemes as Parallel Collaboration are discarded.
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8.2.1.1 Sequential Cooperation

Our first collaborative scheme aims at integrating sequentially the process of two engines,
managing different types of rules.

Engine 1 Engine 2Is2 st∗2st∗1 = Is2

R1 R2

Figure 8.2 – Off-line Sequential Cooperative Scheme.

Figure 8.2 shows the procedure of this off-line sequentialisation. A predefined engine gen-
erates an optimised strategy st∗1 with regards to a set of rules R1 ⊂ RCOOP . Then, a second
engine uses st∗1 as an initial strategy to generate an improved strategy st∗2 by means of a rule set
R2 ∈ RCOOP . Note that R1 ∪ R2 = RCOOP and R1 ∩ R2 = ∅, and thus for our scope we have
two options:

1. The first engine uses rules from R1 = SVCOOP ∪ SRCOOP , consequently the second
engine uses rules from R2 = BVCOOP ∪ BRCOOP .

2. The first engine uses rules from R1 = BVCOOP ∪ BRCOOP , consequently the second
engine uses rules from R2 = SVCOOP ∪ SRCOOP .

We discard the second scenario, because if behavioural rules are applied first their effects can
be considerably reduced by changing the strategy structure, and thus the tactics semantics. This
problem does not occur in the first sequential case, where an optimised structure is calibrated
without risking the change of its structure.

8.2.2 On-line Collaboration

We call on-line collaboration the process of using two different sets of rules in the same
environment, i.e., engine. This category has three available schemes: Sequential, Segmented
and Adaptive Cooperation.

8.2.2.1 Sequential Cooperation

In this scheme, the sequentialisation of rules occurs inside an engine. Thus, the type of rules
are equally distributed between both sets.

Figure 8.3 shows the procedure of this on-line sequentialisation. A predefined engine gen-
erates an optimised strategy st∗ by applying sequentially rules from R1 and R2 (R1, R2 ⊂
RCOOP ) starting from a initial strategy Is. Indeed, this sequentialisation is applied several times
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R1 R2

Is st∗

Engine

Figure 8.3 – On-line Sequential Cooperative Scheme.

inside the engine because of their iterative nature. Once again, let us remark that R1 ∪ R2 =

RCOOP and R1 ∩ R2 = ∅. Therefore, as well as in their off-line counterpart, there are two
options (see Section 8.2.1.1), and we select the following case:

— First we apply rules from R1 = SVCOOP ∪ SRCOOP , consequently we apply rules from
R2 = BVCOOP ∪ BRCOOP .

Let us remark, if behavioural rules are applied first, their effects can be considerably reduced
by changing strategy structure, thus tactics semantics.

8.2.2.2 Segmented Cooperation

The second scheme, uses a segmented sequence of rules. Thus, one kind of rules is applied
during a certain number of times, then a second type of rules is used for another amount of
times.

R1 R2

Is st∗

Engine

α β

Figure 8.4 – On-line Segmented Cooperative Scheme.

The segmented sequentialisation procedure is shown in Figure 8.4. An engine generates
an optimised strategy st∗ by applying sequentially rules from R1 and R2 (R1, R2 ⊂ RCOOP )
starting for an initial strategy Is. The first stage is to apply α times rules from R1, and then
apply β times rules from R2 in β times. In both stages, rules are randomly selected. Of course,
this sequentialisation is applied several times inside the engine because of their iterative nature.
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Once again, let us remark that R1 ∪R2 = RCOOP and R1 ∩R2 = ∅. Therefore, as well as with
past schemes, we are still working with the same sequentialisation:

— First we apply rules from R1 = SVCOOP ∪ SRCOOP , then we apply rules from R2 =

BVCOOP ∪ BRCOOP .

In this thesis, α and β values are configured to give 60% priority to Structural Modification
rules. Therefore, we set α = 3 and β = 2.

8.2.2.3 Adaptive Cooperation

Our last online cooperative scheme is an adaptive procedure. In this, given a probability, a
certain type of rule is applied. Then, depending on their effects, the chance of selecting another
rule of the same type, increases or decreases.

R1 R2

Is st∗

Engine

ρ

ρ ← γ

Figure 8.5 – On-line Adaptive Cooperative Scheme.

As shown in Figure 8.5, an engine generates an optimised strategy st∗ by applying sequen-
tially rules from R1 and R2 (R1, R2 ⊂ RCOOP ) starting from an initial strategy Is. Given a
probability ρ, a rule from R1 is selected. Otherwise, a rule from R2 is chosen. Depending on
the rule impact in the strategy generation process, the value of ρ variates as follows:

— If a rule from R1 triggers an improvement of the best solution, ρ value increases of γ;
otherwise it decreases of γ.

— If a rule from R2 triggers an improvement of the best solution, ρ value decreases of γ;
otherwise it increases of γ.

Once again, let us remark that R1 ∪ R2 = RCOOP and R1 ∩ R2 = ∅. In this thesis, ρ value
is configured to give 60% priority to Structural Modification rules at the beginning, while in-
crease/decrease variation corresponds to 5% of chance change. Therefore, we set ρ = 0.6 and
γ = 0.05.
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8.3 SequencEVO: Off-line Sequential Cooperation Engine

Our first engine called, SequencEVO, use off-line sequential cooperation to evolve. It com-
bines previously designed engines StratEVO (see Chapter 7) and StraTUNE (see Section 6.2).

StratEVO StraTUNE
Is2 st∗2st∗1 = Is2

SVCOOP ∪ SRCOOP BVCOOP ∪ BRCOOP

Figure 8.6 – SequencEVO: Off-line sequential cooperative scheme.

Figure 8.6 shows how SequencEVO works. From an initial strategy previously defined for
the StratEVO engine (see Section 7.1.1), i.e., the Z3 default strategy or the StratGEN fixed
skeleton strategy, then the evolutionary process is performed twice. First, StratEVO is in charge
of generating an optimised structure strategy, to then calibrate the parameter vector of the best
found strategy by means of StraTUNE.

Note that both StratEVO and StraTUNE remain practically unchanged, with an exception
for the rules used by StratEVO. In SequencEVO, StratEVO is only used for applying Structural
Modification rules, leaving Behavioural Variation rules BVCOOP to be exclusively applied by
StraTUNE.

8.4 HybridEVO, On-line Cooperative Engines

We modify the StratEVO engine, in order to include different on-line cooperative schemes
in their evolutive process. These engines, named HybridEVO, are explained below. Let us
remark that most StratEVO components remain unchanged, but the Evolutionary Algorithm
Scheme (see Algorithm 5.1) functions are modified.

8.4.1 HybridEVO-1: On-line sequential cooperative engine

Our first engine, HybridEVO-1, is a modification of the StratEVO engine, shown in Fig-
ure 8.7, where behavioural modification rules are applied sequentially after using structural
modification rules.

8.4.1.1 Selection functions

Selection functions are in charge of choosing, at some point of the evolution process (i.e.,
iteration), a rule from RCOOP and a set of individuals to apply it in order to generate a new
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SVCOOP ∪ SRCOOP BVCOOP ∪ BRCOOP

Is st∗

StratEVO

Figure 8.7 – HybridEVO-1: On-line sequential cooperative scheme.

strategy. Through this functions we assure to follow the sequential pattern previously explained.
Algorithm 8.1 shows how, through the selectR function, rules from RCOOP are selected

in HybridEVO-1. First, a structural recombination rule (rr ∈ SRSEV O) is chosen. Then,
in the following generation, it picks two variation rules (rv ∈ SVSEV O). Moreover, in the
next iteration, it selects a behavioural recombination rule (br ∈ BRCOOP ) and a behavioural
variation rule (bv ∈ BVCOOP ).

Algorithm 8.1: HybridEVO-1 selectR function
Input: a set of rules RCOOP

Output: A rule set r
1: if first iteration in turn then
2: r ← random(SRCOOP )
3: else if second iteration in turn then
4: r ← random(SVCOOP , 2)
5: else
6: r ← random(BRCOOP )+random(BVCOOP )
7: end if
8: return r

As Algorithm 8.2 states, the selectI function chooses a set of individuals to apply the se-
lected rules. If the rule arity is two, a couple of individuals are selected by means of fitness
using a classic tournament selection operator, such as in StratEVO. If the rule arity is one, the
last member inserted in the population and its sibling are selected. Otherwise, the best from the
two last individuals inserted in the population is selected.
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Algorithm 8.2: HybridEVO-1 selectI function
Input: an amount of individuals, n

a population, population
a fitness function fitness

Output: a set of individual indn

1: if n = 2 then
2: indn ← tournament_selection(population,fitness,n)
3: else if n = 1 then
4: last ← last_inserted(population)
5: indn ← last,sibling(last)
6: else
7: mutated ← apply(last,sibling(last), rv)
8: indn ← best(mutated)
9: end if

10: return indn

Note that the arity of rr ∈ SRCOOP is always ar(rr) = 2, then a tournament selection is
exclusively performed to choose the parents for crossover operation. Also, rv ∈ SVCOOP arity
is ar(rv) = 1, therefore the variation rules will be exclusively applied to the offspring of a
recombination. Moreover, br ∈ BRCOOP and bv ∈ BVCOOP arity is always ar(br + bv) ≥ 2,
therefore behavioural rules are applied separately over the best result obtained by means of the
rv rules used in the previous generation.

8.4.1.2 Insert function

Once a new strategy is generated, we need to insert them into the current population. The
HybridEVO-1 insert function integrates new strategies by means of fitness in the actual gener-
ation.

Algorithm 8.3 shows how HybridEVO-1 inserts candidate strategies into the population.
If new strategies were generated by means of recombination rules, the best offspring replaces
the worst population member. Then, if those strategies are generated using mutation-driven
structural rules, the best one replaces the worst individual different from the last inserted, if
its fitness is better. Moreover, if those strategies were generated by behavioural rules (either
recombination or variation rules), the best generated individual replaces the worst of the latest
two inserted members if its fitness is better. Thus, a complete cycle of HybridEVO-1 is done
every three generations.
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Algorithm 8.3: HybridEVO-1 insert function
input: an individual set, Ind�n�

a population, population
a fitness function fitness

output: a new population generation
1: new ← best(Ind�n�)
2: if first iteration in turn then
3: worst ← worst(population,fitness)
4: population ← replace(worst,new)
5: else if second iteration in turn then
6: last ← last_inserted(population)
7: worst ← worst(population-last,fitness)
8: population ← replace(worst,new,fitness)
9: else

10: last ← last_inserted(population,2)
11: worst ← worst(last,fitness)
12: population ← replace(worst,new,fitness)
13: end if
14: return population

8.4.2 HybridEVO-2: On-line segmented cooperative engine

Our second StratEVO variation, called HybridEVO-2, applies rules from the both Struc-
tural and Behavioural sets as shown in Figure 8.8. It main difference with regards to HybridEVO-
1 is the way they are applied. As explained in Section 8.2.2.2, this engine segments the appli-
cation of rules: first it focuses on Structural Modification rules for a defined amount of time,
and then it changes to Behavioural Modification rules for another time period. As well as in
HybridEVO-1, StratEVO main configuration remains unchanged with the exception of the evo-
lutionary selection and insertion functions.

SVCOOP ∪ SRCOOP BVCOOP ∪ BRCOOP

Is st∗

StratEVO

α β

Figure 8.8 – HybridEVO-2: On-line segmented cooperative scheme.
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8.4.2.1 Selection functions

Selection functions are in charge of choosing rules from RCOOP and the individuals related
to them in order to generate new strategies. Through these functions, we assure to follow the
segmented pattern previously explained.

HybridEVO-2 engine, as shown in Algorithm 8.4, has two limit values: α and β, which
define how the selectR function works. The α value indicates how many time rules from
SRCOOP ∪ SVCOOP are performed, and after, β value indicates the amount of times rule from
BRCOOP ∪BVCOOP are applied. Therefore, α+β is the total amount of rules applied in a com-
plete cycle of a single segmented sequentialisation. Then, several cycles are iteratively applied
until reaching ending criteria.

Algorithm 8.4: HybridEVO-2 selectR function
Input: a set of rules RCOOP

Output: A rule set r
1: if generation ≤ α then
2: if first iteration in turn then
3: r ← random(SRCOOP )
4: else if second iteration in turn then
5: r ← random(SVCOOP , 2)
6: end if
7: else
8: r ← random(BRCOOP )+random(BVCOOP )
9: end if

10: return r

Note that in the structural modification stage, this function acts as in StratEVO, i.e., a struc-
tural recombination rule (rr ∈ SRCOOP ) is selected. In the next generation, two structural
variation rules (rv ∈ SVCOOP ) are selected. If the engine process is in the behavioural modifi-
cation stage, a behavioural recombination rule (br ∈ BRCOOP ) and one behavioural variation
rule (bv ∈ BVCOOP ) are chosen.

As well as for rule selection, the selectI function is also segmented. Algorithm 8.5 shows
how this function proceeds. If the current segment corresponds to the application of Structural
Modification rules, the individual selection acts equally as in original StratEVO engine. That
is, if a structural recombination rule is chosen, it will be applied over two parents selected by
means of classic tournament selection. Otherwise, mutation-based rules will be applied over
the offspring of the last crossover of the population.
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Algorithm 8.5: HybridEVO-2 selectI function
Input: an amount of individuals, n

a population, population
a fitness function fitness

Output: a set of individual indn

1: if generation ≤ α then
2: if first iteration in turn then
3: indn ← tournament_selection(population,fitness,n)
4: else
5: last ← last_inserted(population)
6: indn ← last,sibling(last)
7: end if
8: else if α < generation ≤ α + β then
9: indn ← best(population)

10: end if
11: return indn

However, if the current segment corresponds to Behavioural Modification rules, the best
individual of the population is selected to modify, separately, its parameter vector by means of
both selected behavioural recombination and variation rules.

8.4.2.2 Insert function

Once a new strategy is generated, we need to insert it into the current population. The
HybridEVO-2 insert function integrates new strategies by means of fitness in the current gener-
ation.

The insert function in HybridEVO-2 (shown in Algorithm 8.6) is also segmented. If the
engine is in the α stage, the function acts as in StratEVO. That is, the best result of a structural
recombination rule replaces the worst individual of the population, and the best result obtained
applying structural variation rules replaces the worst element of the population different from
the last inserted, with regards to fitness. But, if the engine is in β segment, the best result
obtained of using both Behavioural Modification rules replaces the worst population member.
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Algorithm 8.6: HybridEVO-2 insert function
input: an individual set, Ind�n�

a population, population
a fitness function fitness

output: a new population generation
1: new ← best(Ind�n�)
2: if generation ≤ α then
3: if first iteration in turn then
4: worst ← worst(population,fitness)
5: population ← replace(worst,new)
6: else if second iteration in turn then
7: last ← last_inserted(population)
8: worst ← worst(population-last,fitness)
9: population ← replace(worst,new,fitness)

10: end if
11: else
12: worst ← worst(population,fitness)
13: population ← replace(worst,new)
14: end if
15: return population

8.4.3 HybridEVO-3: On-line adaptive cooperative engine

The last cooperative schema, named HybridEVO-3 and shown in Figure 8.9, aims at choos-
ing rules depending on their performances in an adaptive procedure. As for other on-line co-
operative engines, StratEVO main configuration remains unchanged with the exception of the
evolutionary selection and insertion functions.

SVCOOP ∪ SRCOOP BVCOOP ∪ BRCOOP

Is st∗

StratEVO

ρ

ρ ← γ

Figure 8.9 – HybridEVO-3: On-line adaptive cooperative scheme.
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8.4.3.1 Selection functions

Selection functions are in charge of choosing rules from RCOOP and the individuals related
to them, in order to generate new strategies. Through these functions, we assure to follow the
adaptive pattern previously explained by using ratios whose values change depending on the
success of the rule application.

As Algorithm 8.7 shows, HybridEVO-3 engine selects only one type of rules, depending
on a flexible two-side ratio ρ. If ρ probability is satisfied, HybridEVO-3 acts as StratEVO, i.e.,
a structural recombination rule (rr ∈ SRCOOP ) is selected. Then, in the next generation, two
structural variations rules (rv ∈ SVCOOP ) are selected. But, if ρ is not satisfied, a behavioural
recombination rule (br ∈ BRCOOP ) and one behavioural variation rule (bv ∈ BVCOOP ) are
chosen.

Algorithm 8.7: HybridEVO-3 selectR function
Input: a set of rules RCOOP

Output: A rule set r
1: if random < ρ then
2: if first iteration in turn then
3: r ← random(SRCOOP )
4: else if second iteration in turn then
5: r ← random(SVCOOP , 2)
6: end if
7: else
8: r ← random(BRCOOP )+random(BVCOOP )
9: end if

10: return r

The selectI function depends on the ρ adaptive ratio. As shown in Algorithm 8.8, if ρ

succeeds, the function acts as in StratEVO, i.e., if a structural recombination rule is chosen, it
will be applied over two parents selected by means of classic tournament selection. Otherwise,
mutation-based rules will be applied over the offspring of the last crossover of the population.
But, if ρ does not succeeds, the best population individual will be selected to separately calibrate
its parameter vector by means of a behavioural recombination rule and a behavioural variation
rule.
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Algorithm 8.8: HybridEVO-3 selectI function
Input: an amount of individuals, n

a population, population
a fitness function fitness

Output: a set of individual indn

1: if random < ρ then
2: if first iteration in turn then
3: indn ← tournament_selection(population,fitness,n)
4: else
5: last ← last_inserted(population)
6: indn ← last,sibling(last)
7: end if
8: else
9: indn ← best(population)

10: end if
11: return indn

8.4.3.2 Insert function

Once a new strategy is generated, we need to insert them into the current population. The
HybridEVO-3 insert function (as shown in Algorithm 8.9) integrates new strategies by means
of fitness in the actual generation.

The insertion of new individuals in the population, also depends on the ρ ratio. If the
ratio succeeds, the insert function works as in StratEVO, i.e., the best result of a structural
recombination rule replaces the worst individual of the population, and the best result obtained
by applying structural variation rules replaces the worst element of the population (different
from the last inserted) with regards to fitness. But, if the ratio does not succeed, the best result
obtained using both Behavioural Modification rules replaces the worst population member.

The insert function also includes the instructions for changing the values of the ρ ratio. Thus,
if a structural modification improves strategy quality, the ratio is incremented of γ. Otherwise,
it is reduced of γ. The inverse occurs when behavioural modification rules are used, i.e., the
ratio is decreased of γ if these rules generate a better strategy. Otherwise, it is increased of γ.

Let us remark that while ρ increases, the possibility of applying structural rules also in-
creases. In the other hand, if ρ decreases, the possibility of applying behavioural rules is bigger.
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Algorithm 8.9: HybridEVO-3 insert function
input: an individual set, Ind�n�

a population, population
a fitness function fitness

output: a new population generation
1: new ← best(Ind�n�)
2: if random < ρ then
3: if first iteration in turn then
4: worst ← worst(population,fitness)
5: population ← replace(worst,new)
6: else if second iteration in turn then
7: last ← last_inserted(population)
8: worst ← worst(population-last,fitness)
9: population ← replace(worst,new,fitness)

10: end if
11: if new =best(population) then
12: ρ ← ρ + γ
13: else
14: ρ ← ρ− γ
15: end if
16: else
17: worst ← worst(population,fitness)
18: population ← replace(worst,new)
19: if new =best(population) then
20: ρ ← ρ− γ
21: else
22: ρ ← ρ + γ
23: end if
24: end if
25: return population
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8.5 Experimental results

After defining the background of all cooperative engines, we analyse the results of their best
strategies obtained using two different initial strategies. Later, the difference of the learning
processes between both version is discussed.

Logic Subset Engine
(Ltopi[s], Topi[s])

(1,1) (10,10) (10,2400)
solved time[s] total[s] solved time[s] total[s] solved time[s] total[s]

Z3 201 2.10 2.10 201 1.86 1.86 201 1.80 1.80
StratEVOZ3 201 1.38 1.38 201 1.37 1.37 201 1.37 1.37

SequencEVOFS 201 1.29 1.29 201 1.33 1.33 201 1.36 1.36
SequencEVOZ3 201 1.42 1.42 201 1.26 1.26 201 1.49 1.49

HybridEVO-1FS 201 1.35 1.35 201 1.17 1.17 201 1.31 1.31
HybridEVO-1Z3 201 1.44 1.44 201 1.35 1.35 201 1.31 1.31
HybridEVO-2FS 201 2.06 2.06 201 1.55 1.55 201 2.29 2.29
HybridEVO-2Z3 201 1.91 1.91 201 1.43 1.43 201 2.09 2.09
HybridEVO-3FS 201 1.74 1.74 201 1.70 1.70 201 1.66 1.66

known

HybridEVO-3Z3 201 1.66 1.66 201 1.39 1.39 201 1.75 1.75
Z3 180 5.89 14.89 182 8.09 78.09 185 2866.79 12466.79

StratEVOZ3 189 4.51 4.51 189 4.47 4.47 189 4.47 4.47
SequencEVOFS 189 7.85 7.85 189 4.47 4.47 189 6.20 6.20
SequencEVOZ3 189 6.71 6.71 189 5.12 5.12 189 6.87 6.87
HybridEVO-1FS 189 5.69 5.69 189 5.07 5.07 189 5.64 5.64
HybridEVO-1Z3 189 5.44 5.44 189 5.19 5.19 189 5.44 5.44
HybridEVO-2FS 189 10.25 10.25 189 5.13 5.13 189 11.42 11.42
HybridEVO-2Z3 189 10.49 10.49 189 5.09 5.09 189 11.15 11.15
HybridEVO-3FS 189 6.04 6.04 189 5.48 5.48 189 6.29 6.29

LIA

unknown

HybridEVO-3Z3 189 6.22 6.22 189 5.38 5.38 189 6.16 6.16
Z3 331 6.69 14.69 333 10.83 70.83 337 491.00 5291.00

StratEVOZ3 333 6.96 12.96 337 23.94 43.94 339 193.25 193.25
SequencEVOFS 333 9.13 15.13 337 24.72 44.72 339 206.10 206.10
SequencEVOZ3 328 7.52 18.52 337 28.98 48.98 339 223.24 223.24
HybridEVO-1FS 330 7.04 16.04 337 31.76 51.76 339 197.81 197.81
HybridEVO-1Z3 331 7.72 15.72 338 40.37 50.37 339 278.93 278.93
HybridEVO-2FS 329 8.74 18.74 337 31.92 51.92 339 269.34 269.34
HybridEVO-2Z3 329 8.29 18.29 337 27.38 47.38 339 385.97 385.97
HybridEVO-3FS 327 4.06 16.06 337 34.82 54.82 337 33.39 4833.39

known

HybridEVO-3Z3 331 8.03 16.03 337 31.07 51.07 336 22.91 7222.91
Z3 225 12.58 69.58 236 63.18 523.18 247 7324.12 91324.12

StratEVOFS 231 16.50 67.50 250 126.56 446.56 265 7635.47 48435.47
SequencEVOFS 212 15.93 85.93 252 145.56 445.56 266 6951.99 45351.99
SequencEVO10

FS 208 14.18 88.18 216 43.34 703.34 219 136.22 151336.22
SequencEVOZ3 200 7.10 89.10 252 257.45 557.45 265 5715.46 46515.46
SequencEVO10

Z3 224 27.91 85.91 248 105.51 445.51 262 9212.89 57212.89
HybridEVO-1FS 201 9.91 90.91 250 170.96 490.96 264 6477.16 49677.16
HybridEVO-1Z3 199 5.43 88.43 249 153.37 483.37 264 8472.22 52672.22
HybridEVO-2FS 199 8.81 91.81 250 140.07 460.07 263 9003.18 54603.18
HybridEVO-2Z3 199 10.76 93.76 251 211.71 521.71 266 9061.85 47461.85
HybridEVO-3FS 197 10.11 95.11 250 255.40 575.40 264 7563.36 50763.36

LRA

unknown

HybridEVO-3Z3 201 7.20 88.20 249 237.07 567.07 265 7357.86 48157.86

Table 8.1 – SMT-LIB Benchmarks: Solving LIA and LRA logic instances set using strategies
generated by different cooperative engines.
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Logic Subset Engine
(Ltopi[s], Topi[s])

(1,1) (10,10) (10,2400)
solved time[s] total[s] solved time[s] total[s] solved time[s] total[s]

Z3 2879 637.01 3597.01 4102 5319.20 22689.20 5617 126486.39 659286.39
SequencEVO10

FS 2826 637.19 3650.19 3973 4651.05 23311.05 5615 148255.40 685855.40
SequencEVO10

Z3 2382 702.07 4159.07 4097 6948.00 24368.00 5598 115216.42 693616.42
HybridEVO-1FS 2893 625.46 3571.46 3984 4656.49 23206.49 5615 145628.75 683228.75
HybridEVO-1Z3 2828 625.46 3636.46 4209 4656.49 20956.49 5630 131832.62 633432.62
HybridEVO-2FS 2681 694.56 3852.56 3964 5019.21 23769.21 5599 180485.94 756485.94
HybridEVO-2Z3 2856 741.61 3724.61 4168 5534.55 22244.55 5578 140204.41 766604.41
HybridEVO-3FS 2482 529.45 3886.45 3998 6644.98 25054.98 5617 141935.57 674735.57

known

HybridEVO-3Z3 2889 612.70 3562.70 4102 5314.11 22684.11 5605 148997.18 710597.18
Z3 81 37.82 258.82 110 200.39 2120.39 130 13230.82 426030.82

StratEVOZ3 197 33.25 138.25 198 41.21 1081.21 210 13617.78 234417.78
SequencEVOFS 81 39.43 260.43 109 204.39 2134.39 128 16459.01 434059.01
SequencEVO10

FS 74 44.27 272.27 99 195.26 2225.26 126 13736.21 436136.21
SequencEVOZ3 198 15.46 119.46 203 41.21 1031.21 210 15370.77 236170.77
SequencEVO10

Z3 155 85.63 232.63 206 339.17 1299.17 214 21722.32 232922.32
HybridEVO-1FS 76 39.61 265.61 109 199.37 2129.37 131 16909.19 427309.19
HybridEVO-1Z3 159 74.07 217.07 199 157.69 1187.69 209 14872.01 238072.01
HybridEVO-2FS 77 42.19 267.19 109 201.76 2131.76 127 15714.89 435714.89
HybridEVO-2Z3 149 64.70 217.70 199 163.88 1193.88 206 6088.18 236488.18
HybridEVO-3FS 81 43.56 264.56 109 188.02 2118.02 124 12818.97 440018.97

QF_LIA

unknown

HybridEVO-3Z3 83 41.50 260.50 199 342.72 1372.72 211 16431.27 234831.27
Z3 1054 71.62 643.62 1173 494.45 5024.45 1530 116198.57 346598.57

StratEVO10
FS 1108 98.93 616.93 1288 881.52 4261.52 1583 44576.55 147845.73

SequencEVO10
FS 1095 92.48 623.48 1264 828.97 4448.87 1575 70625.39 193052.39

SequencEVO10
Z3 1097 79.72 608.72 1253 796.49 4526.29 1578 76233.34 191433.34

HybridEVO-1FS 1047 95.80 674.80 1255 994.32 4704.32 1551 56922.05 236922.05
HybridEVO-1Z3 1093 91.99 624.99 1240 746.86 4606.86 1577 57974.16 175574.16
HybridEVO-2FS 988 79.40 717.40 1246 1116.63 4916.63 1553 94832.95 270032.95
HybridEVO-2Z3 1080 99.74 645.74 1232 779.18 4719.18 1570 74811.89 209211.89
HybridEVO-3FS 1032 57.72 651.72 1254 954.03 4674.03 1556 49519.42 217519.42

known

HybridEVO-3Z3 1102 94.30 618.30 1259 768.26 4438.26 1571 52974.65 184974.65
Z3 0 0.00 56.00 0 0.00 560.00 2 2886.58 132486.58

StratGEN 5 1.88 52.88 18 90.22 470.22 50 5793.71 20193.71
SequencEVOFS 0 0.00 56.00 4 33.43 553.43 23 6544.05 85744.05
SequencEVOZ3 0 0.00 56.00 1 4.95 554.95 31 19865.59 79865.59
HybridEVO-1FS 0 0.00 56.00 5 30.00 540.00 14 4600.29 105400.29
HybridEVO-1Z3 0 0.00 56.00 1 3.91 553.91 3 3085.20 45090.02
HybridEVO-2FS 0 0.00 56.00 6 44.16 544.16 6 1477.97 121477.97
HybridEVO-2Z3 0 0.00 56.00 0 0.00 560.00 0 0.00 134400.00
HybridEVO-3FS 0 0.00 56.00 14 38.50 458.50 20 4617.79 91017.79

QF_LRA

unknown

HybridEVO-3Z3 0 0.00 56.00 1 7.35 557.35 36 22096.20 70096.20

Table 8.2 – SMT-LIB Benchmarks: Solving QF_LIA and QF_LRA instances set using strate-
gies generated by different cooperative engines.
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8.5.1 Performance highlights

As shown in Table 8.1 and Table 8.2, we analyze the performance of the Z3 solver over the
selected logics by using its default strategy and the best strategies generated by our cooperative
engines. We also include the best performer engine so far from previous chapters. Let us remark
the following:

1. In each logic subset, i.e., known and unknown, the engine which triggers Z3 best global
result between all execution scenarios will be highlighted in bold.

2. The best engine from previous chapter will be highlighted in italic.

3. The est result in each execution scenario will also be highlighted in bold.

4. As engines are based on StratEVO, they share the two available options for initial strategy.
We use Z3 to denote the use of the default Z3 strategy, or FS if the fixed skeleton strategy
is selected. This will be noted as subscript of the engine, e.g., HybridEVO-1Z3.

5. SequencEVO engine can use a reduced learning set (Lspct = 10%) to address a logic sub-
set, it will be denoted with the number 10 as superscript of the engine, e.g., SequencEVO10

FS .

Note that we mention engines performance referring to the effects of their best generated strat-
egy for the Z3 solver. The same principle applies to the engines that outperform Z3.

8.5.1.1 Z3 improvements

Engines including cooperative schemes win in 5 of 8 scenarios, i.e., 13 of 24 cases, be-
ing slightly better than the best found so far, specially in learning conditions, i.e., Topi =

Ltopi = 10 seconds. However, the success in the learning phase does not mean an improve-
ment under SMT-COMP conditions (Topi = 2400 seconds) as happens in the logics which are
completely solved: LIA unknown and LRA known. In these scenarios, cooperative engines are
outperformed by StratEVO in terms of execution time. Moreover, cooperative engines could
not match the best solver performance in the whole QF_LRA logic set.

Despite those cases, the use of the cooperative schemes reaches some interesting milestones
for the hardest set of instances. HybridEVO-1 is the first engine which outperforms Z3 default
strategies in all scenarios and cases, including being the first solving process for the QF_LIA
logic set.

Major achievement includes:

— HybridEVO-1 outperforms Z3 default performance in QF_LIA known, solving around
5% of its unaddressed instances.

— SequencEVO outperforms the best engine in QF_LIA unknown, addressing around 5%
of the unsolved instances and reducing of 1% the execution time.
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— SequencEVO outperforms the best engine in LRA unknown by solving around 5% of
unsolved instances and shrinking 7% of the processing time.

8.5.1.2 Initial Strategy factor

The selection of the initial strategy still plays a great role in engine performance. But, these
differences are dramatically reduced for engines using cooperative schemes, with some few
exceptions as the QF_LIA instance set. We also observe that the improvement ratio of some
generated strategies is not reproducible, and it drastically varies, when they are used under
SMT-COMP rules.

No major difference between the best result obtained using Z3 default and StratGEN fixed
skeleton strategies could be seen for LIA and LRA benchmarks. However, the use of Z3 default
strategy as starting point leads to the best engines performances for QF_LIA logic, specially
in the unknown subset with a difference of 67% more solved instances. In the QF_LRA logic,
the engines perform slightly better in the learning phase by using fixed skeleton strategy, but
this behaviour is not reproducible in SMT-COMP conditions. The same behaviour is also seen
in QF_LIA known with regards to the Z3 default strategy, and it was previously stated as an
important fact to improve the engine strategy generation process.

8.5.1.3 Off-line vs On-line cooperative schemes

Both types of engines have different peaks of performance depending on the given SMT
logic. Thus, SequencEVO slightly outperforms HybridEVO engines in four logics subsets: LIA
unknown, LRA unknown, QF_LIA unknown and QF_LRA known. Meanwhile, HybridEVO en-
gines slightly outperform SequencEVO in the remaining four logic sets. However, the behaviour
between both types of engines are very similar, with the exception of QF_LIA known in favor
of HybridEVO.

In spite of this analysis, note that SequencEVO completely executes two different engines
(one for each type of rules), i.e., it has a double learning budget time: 2+2 = 4 days. Therefore,
HybridEVO engines match SequencEVO performance in half time, by including both rules in
the execution environment of a single engine.

With regards to engines based on on-line cooperative schemes, HybridEVO-1 has better
performance in 5 of 8 scenarios, followed by HybridEVO-3 obtaining the best results in 3 of 8.
Hence, HybridEVO-2 is the worst performer between this types of engines.

8.5.2 Learning process

As well as all designed engines, they performance rely on a learning phase defined in our
framework for automated generation of strategies. Thus, we explain here how this phase sup-
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ports obtained results.

8.5.2.1 Learning sample size

As cooperative engines are based on StratEVO, they work over different learning samples
to generate efficient and complex strategies. SequencEVO uses the same samples as StratEVO,
but the HybridEVO engines uses only one type of samples for each logic. For more information
see Section 5.4.3.

As in StratEVO, using a learning sample of 10% of the whole benchmark is very useful for
generating optimised strategies by means of less consumption of computational resources. Note
that, in the QF_LIA known subset and the QF_LRA set, HybridEVO engines use exclusively
a reduced learning sample. In the QF_LIA known logic, it allows to outperform for the first
time the Z3 default performance, meanwhile in QF_LRA known it generates slightly worse
alternatives with a difference of less than 1% of instances. With regards to SequencEVO, the use
of a reduced learning sample allows to outperform the best result so far in QF_LIA unknown.

Consequently, the initial strategy has demonstrated, through all designed engines, that it is a
relevant component of algorithm design that allows to generate more complex and sophisticated
strategies which outperform the default performance of the Z3 solver.

8.5.2.2 Learning Variability

Our cooperative engines, based on StratEVO, have a stochastic process for selecting rules.
Thus, the engine learning phase was executed several times with different random seeds values.

As shown in Figure 8.10, SequencEVO generation of strategies is less sensitive to random
seed values. On the other hand, HybridEVO engines have mixed variability depending on the
selected initial strategy Is. Thus, if the fixed skeleton strategy is chosen, the performance is
considerably variable. Meanwhile, if the Z3 default strategy is picked, the engine performance
is more stable and similar to SequencEVO (with exception for QF_LIA unknown). Note that
the SequencEVO stability is heavily influenced by its total learning time of four days. However,
HybridEVO can obtain similar stable performance in half of this time.

With regards to the initial strategy, we observe a huge difference in the learning phase be-
tween the Z3 default and the fixed skeleton strategies. Hence, if the fixed skeleton strategy is
chosen, the generated strategy have lower quality.
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Figure 8.10 – Cooperative engines learning variability in the strategy generation process ac-
cording to SMT logics with Ltopi = 10 seconds.

However, the differences between off-line and on-line collaborative schemes are not very
significant. Table 8.3 summarises a set of Two-Tailed Student T Test for means of paired sam-
ples, with significance level of α = 0.05. They measure the average performance of the two
best engines based on off-line and on-line cooperative schemes (one of each). These tests stand
statistically significant difference between the performance of both alternatives, being executed
ten times with different random seed values. Once again, our tests mainly use data of instance
solving. However, when both selected engines are completely tied in this metric, the analysis is
done using time execution information.

We could check that no statistical significant difference exists in 5 of 8 cases. Meanwhile,
the significative differences are given in unknown subsets of LIA, LRA and QF_LIA logics.

Logic Subset Type Diff. Mean RMSD t value p value better status
known time -0.10 0.42 -1.38 0.199712 HybridEVO-1FS ✗

LIA
unknown time -0.69 0.97 -6.64 0.000095 HybridEVO-1FS ✓

known instances -0.10 2.90 -0.56 0.591051 SequencEVOFS ✗
LRA

unknown instances -4.40 42.40 -6.41 0.000124 SequencEVOFS ✓

known instances 3.60 1816.40 0.80 0.443575 HybridEVO-1Z3 ✗
QF_LIA

unknown instances -40.00 12860.00 -3.35 0.008574 SequenceEVO10
Z3 ✓

known instances -0.50 34.50 -0.81 0.440158 HybridEVO-1Z3 ✗
QF_LRA

unknown instances 1.60 70.40 1.81 0.103888 HybridEVO-2FS ✗

Table 8.3 – Student T Test: Statistical significance between best off-line and on-line cooperative
engines in the learning phase of each logic, with level α = 0.05.
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8.6 Conclusions

In this chapter we presented several engines based on StratEVO: the SequencEVO and the
HybridEVO engines. They add different cooperative schemes for integrating two types of rules:
Structural and Behavioural modification rules. These engines are capable to evolve and outper-
form Z3 default configuration performances in all scenarios. Also, some of them outperform
the currently best engine in many scenarios.

The most relevant improvement occurs in the hardest SMT logic selected for this thesis
(QF_LRA) where through the use of cooperative schemes better results are achieved. Specially
in the known subset, where for the first time, the Z3 default configuration is outperformed.

Moreover, the learning phase of these new engines are analysed. The variability between
them is slightly different, with several engines performing at same level in several logics, as
LIA, LRA and QF_LRA logics.

The next step of this work is to propagate the behaviour generated strategies to different
execution contexts, in order to improve their overall efficiency.



9
Expanding Strategies Semantics

In this chapter, we address the semantics gap obtained on optimised strategies when they
are used under SMT-COMP competition rules. Through the definition and use of a new set of
rules, we try to expand the behaviour of generated strategies to any execution scenario.

9.1 ExpandEVO: Expanding Time Semantics

An observed behaviour in several strategies generated by different engines is the inability
to sustain its performance in scenarios with greater time-out per instance (Topi) budget. Let
us remark that (as explained in Section 5.4.4) our engines generate strategies using a defined
time-out per instance (Ltopi = Topi) of ten seconds in the learning phase. Meanwhile, the
validation is done over SMT-COMP rules with forty minutes limit per instance. Note that the
difference of execution time is about two thousand three hundred and ninety seconds.

9.1.1 Strategy Semantics

Based on classic semantics concepts in Evolutionary Computing (shown in Section 2.1.2.2),
we define the concept of semantics of the strategy:

The ability of a strategy to performs proportionally

equal in different execution scenarios

That is to say, it generates the same performance level (i.e., fitness variation proportion) under
different time-out per instance cases. We also we refer to this as the meaning of a strategy.

145
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Example 9.1 Let be S10, shown in Figure 9.1, a strategy generated by means of an engine
using a learning time-out per instance of 10 seconds. Under learning conditions, i.e., Ltopi =

Topi = 10 seconds, this strategy equally distributes the available time between all solving
tactics: 2.5 seconds for each solver (between lines 9 and 15), corresponding to 25% of the
global time. When using S10 under SMT-COMP conditions, i.e., 2400 seconds, this balanced
distribution, as well as any distribution, will be dramatically modified with regards to the
available execution time. Thus, the semantic of the strategy is also modified.

1 (and-then
2 simplify
3 (using-params ctx-simplify :max_depth 30 :max_steps 5000000)
4 solve-eqs
5 elim-uncnstr
6 propagate-ineqs
7 split-clause
8 (or-else
9 (try-for sat 2500)

10 (try-for smt 2500)
11 (try-for qe-sat 2500)
12 (and-then
13 qe
14 smt
15 )
16 )
17

18 )

Figure 9.1 – Example of generated strategy, S10, with Ltopi = 10 seconds.

Note that solvers with explicitly written time limits, i.e., defined by using try-for

function, will not change their values, but the proportion drastically changes with regards to
the time-out per instance (Topi). Meanwhile, solving tactics with no try-for functions,
will change both time limit and proportion with regard to global time execution (Topi).
Thus, for S10 under SMT-COMP limits, the first three solvers (lines 9 to 11) still having a
time budget of 2.5 seconds, but each of these limits corresponds to 0.1% of total time. On
the other hand, last solving tactic (lines 12 to 15) has a time limit of 2932.5 seconds, i.e.,
99.7% of the total time limit. ♦

Naturally, a question arises: How to adapt a strategy to different execution scenarios?. We
define ExpandEVO, a modification of the best learning performance engines which includes a
new set of rules that handle time limit components to expand the semantics of strategy obtained
in the learning phase to different execution scenarios.

9.1.2 Rules

In order to modify time components of a generated strategy, a set of expansion rules,
EREEV O is defined to it with regards to semantics aspects (i.e., time management). These rules
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are applied after generating an optimised strategies. Indeed, our framework can also include
modification rules acting outside the learning phase. Thus, this set of rules includes Structural
and Behavioural variation rules, which are used depending on the method to expand the seman-
tics, i.e., the amount of time in the strategy. We define and use two simple methods: direct
proportion and classic linear regression models.

9.1.2.1 Direct Proportion

The first alternative to expand the semantics of a strategy, is a simple and straightforward
method: a proportionally mapping for time components into the new time limits (i.e., execution
scenario). Thus, the original time proportion of the generated strategy will be hold in any
scenario. Hence, we define the following rule:

— Proportional Expanded Time-out: it allows to proportionally expand a tactic timeout into
another execution scenario. Thus, let t be the kth component of the parameter vector π of
a strategy st, denoted as πk = t, which corresponds to the solver time limit of a tactic.

PTEEV O : try-for/2(st, t) → try-for/2(st, t
�)

�
t

Ltopi
=

t�

Topi

�

where t ∝ Ltopi and t� ∝ Topi. Note that the parameter vector π is turned into π�, where
compatible(π, π�) is fulfilled because t �= t�, i.e, unique difference between π and π�

is πk �= π�
k.

9.1.2.2 Regression Models

The second alternative is to expand the semantics of the strategy by using different simple
regression models for estimate time limit values according to a defined time-out per instance
(Topi). Of course, these models need a sample of optimised strategies for several Topi values.

— Regression Expanded Time-out: it allows to expand a tactic timeout into another execu-
tion scenario by using a regression model function. Thus, let t be the kth component of the
parameter vector π of a strategy st, denoted as πk = t, which corresponds to the solver
time limit of a tactic.

RTEEV O : try-for/2(st, t) → try-for/2(st, t
�) {f(Topi) = t�}

where f is the regression function to obtain the new value of try-for/2 limit with re-
gards to the global time-out per instance (Topi). Note that the parameter vector π is
turned into π�, where compatible(π, π�) is fulfilled because t �= t�, i.e, unique differ-
ence between π and π� is πk �= π�

k.
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9.1.2.2.1 Regression functions

Let be st ∈ Strat a strategy containing m tactics related to try-for modifier functions. To
obtain the values of their time limits, we define a classic regression model function as:

f̂(t) = ât + b̂

where t is the independent input variable corresponding to the time-out per instance (Topi) to
use with st, and f(t) the value of the dependent variable representing the time limit parameter
component. Indeed, this function is a vector of m regression functions for each try-for in
strategy st. Thus the regression functions and its components are:

f̂(t) = [f1(t), f2(t), . . . , fm(t)]

â = [a1, a2, . . . , am]

b̂ = [b1, b2, . . . , bm]

where:
fi(t) = ait + bi; ∀i ∈ {1, . . . , m}

Through the use of diverse mapping, we define the following linear regression functions
∀i ∈ {1, . . . , m}:

— Simple linear regression: It relates the input variable and its output value in a direct linear
combination.

fi(t) = ait + bi

— Inverted regression: It relates the input variable and its output value in a inverted linear
combination.

fi(t) =
ai

t
+ bi

— Exponential regression: It relates the independent variable with the dependent value in a
exponential power relation.

fi(t) = eait bi

Through the use of logarithm operations, this combination could be linearly expressed as:

f �
i(t) = ait + b�i

where f �
i(t) = ln(fi(t)) and b�i = ln(bi).

— Power regression: It relates the independent variable with the dependent value in a power
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relation.
fi(t) = tai bi

Through the use of logarithmic properties, this combination could be expressed as:

f �
i(t) = ait

� + b�i

where f �
i(t) = ln(fi(t)), t� = ln(t), and b�i = ln(bi).

— Polynomial regression: It relates input variable with the dependent output by means of a
polynomial relation.

fi(t) = ai0t
0 + ai1t

1 + · · · + aintn

Note that the extension of the length of the polynomial depends on the degree used. While
higher the polynomial degree, the greater is the fit to the sample. We used quadratic and
fifth degree polynomials.

Note that, we need several pairs (t, f(t)), in order to obtain values of vectors â and b̂. Also,
despite of using non-linear methods, the regression models are still linear. This is because, the
expressions on the right hand side of each fi(t) function are linear with regards to the parameters
ai and bi.

9.1.2.3 Strategy Semantics Equivalence

From the three type of basic tactics (see Section 4.2.2), i.e., terminal symbols of a strategy,
only solvers are affected by time configuration. Remaining components, both heuristics and
probes, are straightforward process whose time consumption is irrelevant with regards to the
total time. Thus, we could generate semantically equivalent strategies by applying the following
structural modification rules:

— Add time limit to solver tactics: Adds a specific time limit to solving tactics that does not
have explicitly defined a try-for modifying function.

ATEEV O : s → try-for/2(s, t)

— Delete time limit into non-solving tactics: Removes time configuration values in tactics
that not belong to Solver set.

DTEEV O : try-for/2(st, t) → st {st /∈ Solver}

The idea is to attach the time configuration specifically to each basic solver tactic, even if it
originally does not have an explicit try-for function defined. This implies to also remove
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time components related to composed or not solving basic tactics. Then, strategy semantics can
be easily expanded by means of behavioural modifications.

9.1.3 Engines

As previously explained, ExpandEVO extends designed engines by adding rules to expand
it semantics. Next, we define a set engines to be expanded for the addressed SMT logics of this
work.

Subset known unknown

Logics

LIA HybridEVO-1Z3 StratEVOZ3

LRA StratEVOZ3 SequencEVOFS

QF_LIA HybridEVO-1Z3 SequencEVO10
Z3

QF_LRA StratEVO10
FS StratEVOFS

Engines

Table 9.1 – Expanded Engines Examples: Best StratEVO based engines for selected instance
set.

9.1.3.1 Expanded Engines

We select the best StratEVO-based performers in each logic to expand its semantics. This is
because, most of them have great performance in the learning phase, but some of them cannot
hold the same performance level under SMT-COMP rules. Thus, others engines reach similar or
superior performances, as shown in Chapter 7 and Chapter 8. Table 9.1 summarises the selected
engines.

9.1.3.2 Sample Engines

In order to apply the expansion rules based in regression models, we need to define a sam-
ple. To generate this sample, we use StraTUNE engine (see Section sec:StraTUNE) over fifty
different time-out per instance (Topi) values. The Topi values are equally distributed from val-
ues between one and one hundred twenty five seconds. Then, this sample represents a set of
fifty optimised strategy configuration in different execution scenarios.

Of course, for this task, StraTUNE engine is constrained to work only over time limit con-
figurations. Also, global time budget (Ltb) is set to half a day (twelve hours) and with a new
iteration limit of one hundred generations. Moreover, learning sample size used is twenty five
instances, with exception of QF_LRA unknown set which uses ten instances.
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9.2 Results

Next, we present the performances of strategies obtained by selected engines after expand-
ing its time configuration semantics.

9.2.1 Performance highlights

We analyze the performance of time processed strategies generated by the selected engines,
and we compare with it original form as well as Z3 default configuration output. For these
results, let us consider the following:

1. We focus on logics which are not completely addressed, thus we let aside LIA and LRA
known sets.

2. We test them two scenarios: a reduced learning sample size (of 25 instances) and the
whole instance set.

3. In each logic subset, i.e., known and unknown, the best engine global result between all
execution scenarios will be highlighted in bold.

4. Selected engine for expansion will be highlighted in italic.

5. Best result in each execution scenario will also be highlighted in bold.

9.2.1.1 Z3 improvements

9.2.1.1.1 Adapting originally generated strategies

As shown in Table 9.2, the use of rules for time semantics expansion allows to improve LRA
unknown and QF_LIA logic sets. In LRA unknown subset, the improvement is limited, solving
one more instance than the best strategy configuration. This improvement imply a time effort
increase of 4.4%. However, the improvements on QF_LIA logic set are remarkable. In the
known subset, the use of expansion rules outperforms StratEVO by solving the double of its
improvements. It also reduce in 2.5% of execution time. For unknown subset, the use of ex-
pansion rules allows solve 23% of unaddressed instances and reduce the computation time in
15.4%. Regrettably, this success cannot be replicated in any QF_LRA logic subset.

With regards to the different types of rules expansion, only proportional projection and
power regression rules allows to improve strategies efficiency. Thus, data is not modelable by
others type of linear regression and/or the information used to relate the variables is insufficient
implying a low correlation.

1. This sample has a size of 10 instances instead of 25 instances.
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Logic Subset Engine/Rules
Instances Set

25 instances All instances
solved time[s] total[s] solved time[s] total[s]

Z3 22 775.56 7975.56 247 7324.12 91324.12
SequencEVOFS 22 27.17 7227.17 266 6951.99 45351.99

Proportion 23 489.34 5289.34 267 11361.79 47361.79
Linear Reg. 15 38.91 24038.91 216 3620.87 162020.87

Exponential Reg. 17 2346.99 21546.99 219 6943.16 158143.16
Power Reg. 23 2202.86 7002.86 264 19031.47 62231.47

Quadratic Polynomial Reg. 16 942.18 22542.18 215 2328.66 163128.66

LRA unknown

Fifth Polynomial Reg. 15 80.25 24080.25 213 1188.56 166788.56
Z3 24 509.52 2909.52 5617 126486.39 659286.39

HybridEVO-1Z3 24 553.76 2953.76 5630 131832.62 633432.62
Proportion 24 2268.57 4668.57 5645 23465.04 618665.04
Linear Reg. 23 679.27 5479.27 5508 171311.76 1095311.76

Exponential Reg. 23 696.55 5496.55 5448 136744.97 1204744.97
Power Reg. 24 604.24 3004.24 5637 212016.26 826416.26

Quadratic Polynomial Reg. 24 1667.70 4067.70 5622 271631.68 922031.68

known

Fifth Polynomial Reg. 22 215.69 7415.69 5511 167898.61 1084698.61
Z3 10 37.46 36037.46 130 13230.82 426030.82

SequencEVO10
Z3 17 634.10 19834.10 214 21722.32 232922.32

Proportion 15 11.13 24011.13 215 15085.10 223885.10
Linear Reg. 17 506.79 19706.79 232 31275.28 199275.28

Exponential Reg. 17 517.08 19717.08 231 25903.12 196303.12
Power Reg. 17 499.22 19699.22 234 33958.77 197158.77

Quadratic Polynomial Reg. 17 308.27 19508.27 226 15728.95 198128.95

QF_LIA

unknown

Fifth Polynomial Reg. 17 381.62 19581.62 220 9442.84 206242.84
Z3 23 1416.68 6216.68 1530 116198.57 346598.57

StratEVO10
FS 24 278.14 2678.14 1583 44576.55 147845.73

Proportion 24 280.01 2680.01 1574 64031.96 188831.96
Linear Reg. 24 261.59 2661.59 1562 49710.43 203310.43

Exponential Reg. 24 258.62 2658.62 1565 54018.87 200418.87
Power Reg. 24 284.96 2684.96 1574 63347.34 188147.34

Quadratic Polynomial Reg. 24 168.58 2568.58 1528 30318.40 265518.40

known

Fifth Polynomial Reg. 24 280.14 2680.14 1551 42550.80 222550.80
Z3 0 0.00 24000.00 2 2886.58 132486.58

StratEVOFS 3 963.53 17763.53 38 1890.02 45090.02
Proportion 4 308.74 14708.74 10 9896.14 120296.14
Linear Reg. 6 4802.12 14402.12 33 31179.45 86379.45

Exponential Reg. 6 3831.27 13431.27 31 25175.13 85175.13
Power Reg. 6 7035.78 16635.78 31 37965.05 97965.05

Quadratic Polynomial Reg. 4 1079.84 15479.84 26 23559.23 95559.23

QF_LRA

unknown1

Fifth Polynomial Reg. 4 1551.30 15951.30 19 13518.63 102318.63

Table 9.2 – SMT-LIB Benchmarks: Expanding time configuration semantics of strategies gen-
erated by means of best StratEVO based engines.
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Logic Subset Engine/Rules
Instances Set

25 instances All instances
solved time[s] total[s] solved time[s] total[s]

Z3 22 775.56 7975.56 247 7324.12 91324.12
SequencEVOFS 22 27.17 7227.17 266 6951.99 45351.99

Proportion 23 991.92 5791.92 260 6914.78 59714.78
Linear Reg. 18 2619.40 19419.40 221 8666.31 155066.31

Exponential Reg. 23 1927.38 6727.38 266 26064.41 64464.41
Power Reg. 23 1792.30 6592.30 259 13452.95 68652.95

Quadratic Polynomial Reg. 23 2523.77 7323.77 262 18317.41 66317.41

LRA unknown

Fifth Polynomial Reg. 18 2998.21 19798.21 220 7444.92 156244.92
Z3 24 509.52 2909.52 5617 126486.39 659286.39

HybridEVO-1Z3 24 553.76 2953.76 5630 131832.62 633432.62
Proportion 24 917.14 3317.14 5628 219010.56 855010.56
Linear Reg. 23 486.37 5286.37 5472 191810.62 1202210.62

Exponential Reg. 23 508.91 5308.91 5417 140565.11 1282965.11
Power Reg. 24 624.05 3024.05 5632 204151.44 830551.44

Quadratic Polynomial Reg. 24 1370.91 3770.91 5612 281428.58 955828.58

known

Fifth Polynomial Reg. 23 971.11 5771.11 5511 168366.78 1085166.78
Z3 10 37.46 36037.46 130 13230.82 426030.82

SequencEVO10
Z3 17 634.10 19834.10 214 21722.32 232922.32

Proportion 16 233.24 21833.24 214 4250.08 215450.08
Linear Reg. 17 346.84 19546.84 232 29402.82 197402.82

Exponential Reg. 17 524.76 19724.76 232 28355.58 196355.58
Power Reg. 15 9.72 24009.72 204 5204.16 240404.16

Quadratic Polynomial Reg. 16 137.90 21737.90 216 11590.54 217990.54

QF_LIA

unknown

Fifth Polynomial Reg. 17 625.50 19825.50 232 29095.26 197095.26
Z3 23 1416.68 6216.68 1530 116198.57 346598.57

StratEVO10
FS 24 278.14 2678.14 1583 44576.55 147845.73

Proportion 24 241.20 2641.20 1556 46578.85 214578.85
Linear Reg. 24 143.54 2543.54 1564 52218.49 201018.49

Exponential Reg. 24 276.15 2676.15 1566 55489.33 199489.33
Power Reg. 24 272.38 2672.38 1575 63826.95 186226.95

Quadratic Polynomial Reg. 24 276.08 2676.08 1575 63826.95 186226.95

known

Fifth Polynomial Reg. 24 283.58 2683.58 1576 66608.38 186608.38
Z3 0 0.00 24000.00 2 2886.58 132486.58

StratEVOFS 3 963.53 17763.53 38 1890.02 45090.02
Proportion 4 3340.28 17740.28 10 12417.28 122817.28
Linear Reg. 3 3700.78 20500.78 23 23698.23 102899.23

Exponential Reg. 7 6978.05 14178.05 33 30344.69 85544.69
Power Reg. 5 2183.37 14183.37 10 6014.63 116414.63

Quadratic Polynomial Reg. 0 0.00 0.00 1 2151.41 134151.41

QF_LRA

unknown1

Fifth Polynomial Reg. 0 0.00 0.00 1 2163.37 134163.37

Table 9.3 – SMT-LIB Benchmarks: Expanding time configuration semantics of semantically
equivalent strategies generated by means of best StratEVO based engines.
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9.2.1.1.2 Adapting semantically equivalent strategies

The use of semantically equivalent strategies also allows to improve strategies performance in
some SMT logics. As Table 9.3 summarises, expand time semantics in these strategies allows to
slightly improve instance solving in QF_LIA logic set, despite not triggering same performance
as the original strategies. In QF_LIA known, expanded strategies correctly address around 1%
of unsolved instances, with a bigger effort of 31% more computation time. In its unknown

counterpart, the use of the expanded strategy allows to solve 21% of unaddressed instances
using 16% less execution time, being this last scenario very similar to the use of time expanded
original strategies. Pitifully, these kind of expanded strategies have more struggles with SMT
logics. Therefore, it cannot improve performance in LRA unknown and QF_LRA logic subsets.

As well as time expanded original strategies, power regression based rules allows to improve
strategies efficiency. Also, exponential regression enhance solver performance. The remaining
types of linear regression, and thus the dependant variable information, are insufficient to im-
prove Z3 performance.

9.2.2 Expanded Strategies: Original vs Semantically Equivalent

In order to evaluate how different are the original expanded strategies with regards to the
semantically equivalent strategies, we evaluate their performance by using the different expand-
ing rules. Table 9.4 summarises a set of Two-Tailed Student T Test for means of paired samples,
with significance level of α = 0.05. They measure the average performance of the strategies
generated in each logic after being modified by the different expansion rules. Thus, we compare
the average performance depending on the initial strategy, that is to say, the original or semanti-
cally equivalent expanded strategy. These tests stand statistically significant difference between
the performance of both alternatives using instance solving outputs.

In the mentioned Table, we could check that, with exception of QF_LIA known subset,
there is no significance difference between the output of generated by both type of expanded
strategies. Therefore, the equivalence rules applied to the original strategy do not change its
semantics.

Logic Subset Type Diff. Mean RMSD t value p value better status
LRA unknown instances 15.67 3093.33 1.54 0.183512 Equivalent ✗

known instances -16.5 1037.50 -2.81 0.037736 Original ✓
QF_LIA

unknown instances -4.67 1015.33 -0.80 0.458870 Original ✗

known instances 9.17 2386.83 1.03 0.351221 Equivalent ✗
QF_LRA

unknown instances -11.83 654.83 -2.54 0.052350 Original ✗

Table 9.4 – Student T Test: Statistical significance between expanded strategies, with level
α = 0.05.
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9.3 Conclusions

In this Chapter, we extended the set of rules used to generate strategies outside evolutionary
process of the selected engines. We included rules that allows to map the time semantics of the
original generated strategies into other execution environment, specially for the SMT-COMP
scenario. Obtained results imply that mapping time configuration semantics allows to improve
Z3 solver performance in some SMT logic, e.g. QF_LIA logic where we outperformed all
existent configurations.

Also, we propose the use of semantically equivalent strategies as alternative. The time
semantics of these strategies could be easily expanded, thus the focus is on the components
whose performance depends on the strategy time configuration. Despite not having better results
as the original expansion, these are capable of outperforms some of best known results, as
QF_LIA logic set.

However, the use of simple expanding and regression models, bounds the potential of these
approaches in some SMT logics, e.g. QF_LRA logic. Hence, the use of multivariated regression
analysis can lead to more successful performances and better semantic expansion. Moreover,
these expansion procedure could be focused in other strategies components, as combinators or
others parameter configurations.





10
Conclusions and Perspectives

In this chapter we summarise and conclude over contributions of this thesis. Also, we
discuss and define steps to follow for future works and related fields.

10.1 Research Contributions

In this thesis, we introduced a framework for the automated generation of strategies for
SMT solvers. This procedure relies on a set of rules to modify and generate new strategies. The
rule system acts as an intermediate layer, between well-known algorithms and strategies. Thus,
our scheme allows to apply different engines without the need of adapting or modifying them
structurally.

Through the empirical use of this framework, we shown that it suits as an autonomous search
tool for evaluating and selecting different algorithms in order to generate optimised strategies
by means of rules applications.

The main contributions of this research are:

— A framework for automated generation of strategies: We build a framework that de-
fines several components and stages necessaries to generate optimised strategies. These
elements includes core components, learning components, and execution components.
Core components includes a set of rules and an initial strategy. Rules act as an interme-
diate layer between algorithms and the initial strategies, and define how algorithms will
modify and generate new strategies. This intermediate layer also allows apply different
type of algorithms without need of modify their structure or create complex versions of

157
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them. Learning components includes a learning sample, i.e., set of instances, to train and
generate strategies, a learning time-out per instance, and a global learning budget. We
highlight the used of reduced learning samples in order to generate efficient strategies as
alternative for logics whose benchmarks are hard to address, i.e., numerous or complex,
reducing computational resources. Execution components allow to validate the models
and results obtained in the learning process.

— Address the Strategy Challenge in SMT [10] with a autonomous procedure: Through
the application of our framework in an autonomous environment, i.e., an empirical algo-
rithm selection process for strategy optimisation in Z3, we shown that end-users could
exert strategic control over core heuristic aspects of high-performance SMT solvers with-
out need of expert knowledge. Note that the framework implementation was achieved
using several evolutionary approaches, modification rules, and SMT logics. Specifically,
modification rules, the core of the framework, were designed according to the syntax
of Z3 strategies. This design did not include in-depth analysis of strategies components
effects.

— Address the “Search for strategies rather than instances" challenge [2] in Search-
based Software Engineering: Improving SMT solvers performance through generating
optimised strategies, builds more reliable systems. This have a direct impact on the trend
of mapping software engineering problems as SMT instances, i.e., search problems, be-
cause more classes of Search-based Software Engineering (SBSE) problems could be
addressed with a single technique. Therefore, our framework allow to improve the res-
olution of several classes of SBSE problem, by reducing it to a single class of SBSE
problem: Software Improvement.

— Introduce SMT [4] as useful systematic search system for Combinatorial Optimi-
sation: The design and use of a hybrid approach that includes SMT solvers and meta-
heuristics have been successfully to improve Z3 performance. Solved SMT instances and
benchmarks include several SBSE problems which are commonly expressed as search
problems, i.e., combinatorial optimisation problems. This fact demonstrates that SMT
tools could address well-known and classic Combinatorial Optimisation problems, i.e.,
search problems, which are generally view as outside the scope of SMT development.

10.2 Future Work

Building upon this research, there are several projection of this work to the future. We
discuss some of them below.

— Include more semantic-based rules for the strategy generation process. While, we demon-
strated that some semantics rules for time selection improved generated strategy effi-
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ciency, there are other several sources to infer this kind of rules, including: valid syntax
construction with no solving impact and/or empirical inference from generated strategies.

— Apply strategies generation framework in SMT instance concerning another first-order
logics related to software development, as bit-vector, array and pseudo-boolean logics.
These logics covers several software engineering and computer science topics, including
several problems which could be mapped as search instances.

— Address the construction of strategies for complex SMT logics by using the information
of those that composes them. Several SMT problems include logics which are interre-
lated, e.g. QF_ALIA includes theory of arrays and linear integer arithmetics, use the
information of their components as engine starting points should be useful for generate
more robust strategies.

— Propagate rule selection framework to be used with other metaheuristics procedures and
different class of problems. The context of the Strategy Challenge in SMT [10] of gen-
erating a strategies driven by a well-known language, helped to easily apply evolutionary
approaches as Genetic Programming. However, other several metaheuristic tools could be
used as engine of this framework, e.g. bio-inspired algorithms or single-solution search
techniques. Moreover, this framework aims to be applied in several different context, and
should be proven in several combinatorial optimisation problems.

— Finally, use and evaluate SMT as systematic and complete tools for solve well-known
Combinatorial Optimisation Problems. Actually, classic complete search techniques as
SAT solving and Constraint Programming procedures have been widely used to address
optimisation problems, specially in constraint satisfaction problems. SMT should be con-
sidered an efficient alternative to address these problem in a standalone environment, but
also in hybrid systems where complete search tools interact and cooperate with incom-
plete and local search tools.

10.3 Scientific Publications

The scientific contributions achieved during this thesis has been constantly published in
diverse scientific journals, international conferences and workshops. Our goal is to spread our
research in order to expand the efforts done in the field. The novel way as our framework and
engines are exposed, the contributions achieved and the promising results obtained show that
there is still several work to be done and there are many possibilities to innovate and create new
knowledge. To date, our list of scientific publications is the following:

— Journal Articles:
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1. Improving complex SMT strategies with learning by Nicolás Gálvez Ramírez,
Eric Monfroy, Frédéric Saubion and Carlos Castro. In International Transaction in

Operational Research. IFORS. Wiley. 2018. (submitted on June 15th, 2018) [181].

— International Conferences:

1. Optimizing SMT Solving Strategies by Learning with an Evolutionary Process
by Nicolás Gálvez Ramírez, Eric Monfroy, Frédéric Saubion and Carlos Castro. In
International Conference on High Performance Computing & Simulation : PACOS

2018. Orléans, France. 2018 [182].

2. Evolving SMT Strategies by Nicolás Gálvez Ramírez, Youssef Hamadi, Eric Mon-
froy and Frédéric Saubion. In 2016 IEEE 28th International Conference on Tools

with Artificial Intelligence (ICTAI). San Jose, CA, USA. 2016 [183].

3. Towards Automated Strategies in Satisfiability Modulo Theory by Nicolás Gálvez
Ramírez, Youssef Hamadi, Eric Monfroy and Frédéric Saubion. In Genetic Pro-

gramming. EuroGP 2016. Porto, Portugal. 2016 [184].

— International Workshops:

1. Generation and Optimization of SMT Strategies by Nicolás Gálvez Ramírez,
Eric Monfroy, Frédéric Saubion and Carlos Castro. In Workshop on Optimization

and Learning: Challenges and Applications - OLA. Alicante, Spain. 2018 [185].
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