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General Introduction

Context

Graph vertex coloring problems are known to be very general and useful models to formulate
numerous practical problems [Lewis, 2015]. Given an undirected graph G = (V, E) with the
vertex set V = {1, 2, . . . , n}, the edge set E ∈ V × V, graph vertex coloring problems typically
involve assigning a color to each vertex of V such that two vertices linked by an edge must receive
different colors while optimizing a given optimization objective.

This thesis focuses on four generalized graph coloring problems, namely the graph color-
ing problem (GCP), the equitable coloring problem (ECP), the weighted vertex coloring problem
(WVCP) and the k-vertex critical subgraphs (k-VCS). The first one is the most basic graph coloring
problem. The ECP requires that the sizes of two arbitrary color classes differ in at most one unit
while the WVCP aims to minimize the sum of the largest weights of the vertices of each color
class. The k-VCS is to find a subgraph H of G with minimum vertices such that removing any
vertex from the subgraph H decreases its chromatic number.

These four problems are practically relevant since they have wide applications in real world
such as garbage collection, load balancing, timetabling, scheduling, operating system, manufac-
turing, etc.

From the perspective of computational theory, graph coloring problems belong to the class of
the NP-hard problems, meaning that optimal solutions cannot be found in polynomial time in the
general case. For solving large and challenging problem instances, heuristic and metaheuristic
approaches are commonly used with the purpose of finding sub-optimal solutions in reasonable
time. In this thesis, we investigate hybrid metaheuristic approaches to effectively solve the four
problems of interest aforementioned. Each proposed algorithm will be thoroughly documented
with extensive computational experiments.

Objectives

One of the main objectives of this thesis is to develop high-performance hybrid metaheuristic
algorithms that improve the state-of-the-art solutions for each problem considered. The main
objective can be further divided into several specific objectives:

— Develop an effective reduction approach based on a backbone coarsening operator.
— Devise feasible and infeasible search algorithms that allow search process to cross the fea-

sibility boundaries to explore the enlarged search space.
— Develop an adaptive mechanism to further control feasible and infeasible searches.
— Extend the removal strategy with backtracking mechanism to reconsider some removed

vertices and investigate a perturbation strategy to escape local optima traps.
— Evaluate the proposed algorithms on a wide range of benchmark instance and perform a

comprehensive comparison with the state-of-the-art algorithm.
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Contributions

The main contributions of this thesis are summarized below:
— For the graph coloring problem, we proposed a reduction-based memetic algorithm (RMA)

which integrates several original ingredients. First, we devise a backbone-based crossover
operator to merge certain vertices. This operator aims to reduce the current graph and
preserve common contributive objects that are shared by parent solutions. Second, to ex-
plore efficiently the search space around an offspring solution generated by the crossover
operator, we propose a weighted tabu search algorithm, Finally, we apply a perturbation
strategy to escape from the region of the local optimum. Experiment results on 39 popular
DIMACS and COLOR02-04 benchmark instances, which are commonly used to test graph
coloring algorithms in the literature, showed that RMA is competitive in terms of solution
quality and run-time efficiency compared with state-of-the-art algorithms in the literature.

— For the equitable coloring problem, we propose a feasible and infeasible search algorithm
(FISA). FISA combines an equity-feasible search phase where only equitable colorings are
considered and an equity-infeasible search phase where the search is enlarged to include
non-equitable solutions. To guide the equity-infeasible search phase (which is based on
tabu search), we devise an extended fitness function that uses a penalty to discourage can-
didate solutions which violate the equity constraint. A perturbation procedure is adopted
as a diversification method to help the algorithm explore new search regions. We assess
the performance of the FISA algorithm on the set of 73 benchmark instances from DIMACS
and COLOR competitions and present comparative results with respect to state-of-the-art
algorithms. Computational results showed that FISA performs very well by finding 9 new
upper bounds and matching the best-known results for the remaining instances except one
case. This study demonstrates the benefit of examining both equity-feasible and equity-
infeasible solutions for solving the ECP by using the mixed search strategy.

— For the weighted vertex coloring problem, we develop an adaptive feasible and infeasi-
ble search algorithm (AFISA). Like FISA, the proposed algorithm relies on a mixed search
strategy exploring both feasible and infeasible solutions. To prevent the search from going
too far away from the feasible boundary, we design an adaptive penalty-based evaluation
function that is used to guide the search for an effective examination of candidate solu-
tions, by enabling the search to oscillate between feasible and infeasible regions. To ex-
plore a given search zone, we rely on the popular tabu search meta heuristic [Glover, 1989;
Glover, 1990]. We assess the proposed algorithm on 111 benchmark instances from liter-
atures (one set of 46 instances from the DIMACS and COLOR competitions and two sets
of 65 instances from matrix-decomposition problems). We report especially 5 improved
best solutions (new upper bounds). We also present new results on an additional set of 50
larger instances.

— For the k-VCS problem, we propose an iterated backtrack-based removal (IBR) algorithm to
solve it. IBR adopts the popular removal strategy that reduces current graph by tentatively
moving vertices to the set of uncritical vertices. Although such an idea has been proved to
be very effective for finding a k-VCS for a given graph G, the status of some vertices are
sometimes irreversibly misclassified, leading to meaningless result. A backtracking mech-
anism is proposed to expand the current subgraph by adding back some vertices. We also
devise a perturbation strategy to reconsider some vertices that would have been incorrectly
identified as critical ones. Experiment results on 80 popular DIMACS and COLOR02-04
benchmark instances, which are commonly used to test k-VCS algorithms in the literature,
show that IBR is very competitive in terms of solution quality and run-time efficiency com-
pared with state-of-the-art algorithms in the literature. Specifically, the proposed algorithm
improves the best-known solution for 9 graphs (improves the lower bound for 6 instances,
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at the same k, IBR obtains a better solution (smaller size of k-VCS) for 8 instances), matches
the best results for other 70 instances, and obtains a slightly worse result only in one case.

Organization

The manuscript is organized in the following way:
— In the first chapter, we introduce the four graph coloring problems considered in this thesis,

i.e., graph coloring, equitable coloring, weighted vertex coloring and k-vertex-critical sub-
graphs. For each problem, we also provide a brief overview of solution methods, including
approximation algorithms, exact algorithms and heuristic/metaheuristic algorithms.

— In the second chapter, we present the RMA algorithm for the graph coloring problem.
We first describe in detail the main components of the proposed approach that integrates
a greedy initial procedure, a backbone-based coarsening operator, a weight-based tabu
search algorithm, an uncoarsening phase and the pool updating rule. Then, we present
experimental results and comparisons with the state-of-the-art algorithms to show the ef-
ficacy of the proposed algorithm and discuss the impacts of some key components.

— In the third chapter, we study the equitable coloring problem. This chapter begins with a
short introduction. After a detailed description of each component of the proposed FISA
algorithm, we show experimental studies on a set of 73 benchmark instances to assess the
effectiveness of the proposed FISA algorithm by comparing it with other best performing
algorithms. An analysis of the key ingredients is presented allowing us to understand the
behavior of all components in the proposed algorithm.

— In the fourth chapter, we consider the weighted vertex coloring problem and present the
adaptive feasible and infeasible search algorithm (AFISA) to solve it. After introducing
the main scheme of the proposed algorithm, we explain each of its internal components.
Computational comparisons with other algorithms and analysis of different components
are presented.

— In the last chapter, we present an iterated backtrack-based removal (IBR) heuristic to find k-
VCS for a given graph. We firstly describe in detail the main components of the proposed
approach including the removal strategy, a backtracking mechanism and a perturbation
strategy. Then, we provide an experimental study of the new algorithms, as well as com-
parisons with state-of-the-art algorithms. Finally, we study some key ingredients of the
proposed approach.
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1
Introduction

Graph coloring problems are a class of well-known NP-hard combinatorial optimization prob-
lems with a wide range of applications. In this chapter, four graph coloring problems that are
studied in this thesis are introduced: classic graph coloring, equitable coloring, weighted vertex
coloring and k-vertex-critical subgraphs. A brief introduction for each problem is given first and
then state-of-the-art approaches for solving these problems in the literature are reviewed.
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12 CHAPTER 1. INTRODUCTION

1.1 Graph coloring problem

1.1.1 Problem Introduction

Given a simple undirected graph G = (V, E) with vertex set V = {1, 2, . . . , n} and edge set
E ⊂ V × V, a legal k-coloring of G is a mapping c : V → {1, . . . , k}, such that c(i) 6= c(j) for
all edges (i, j) in E. The graph k-coloring problem (k-GCP) is to determine if a legal k-coloring
of G exists for a given k. The classical graph coloring problem (GCP) is to find the minimum
integer k (chromatic number χ(G)) for which a legal k-coloring of G exists. k-GCP is known to be
NP-complete while the optimization problem GCP is NP-hard [Garey and Johnson, 1979].

1

2

3

45

1

2

3

45

(a) A graph G = (V, E) (b) A 3-coloring solution for graph G

Figure 1.1 – A graph and its a 3-coloring solution

The leftmost of Figure 1.1 shows an undirected graph G with five vertices V = {1, 2, . . . , 5}
and a legal 3-coloring solution is shown in the rightmost. A graph coloring is to assign one color
to each vertex. In this example, vertices 1 and 4 are colored grey, 3 and 5 are colored green, and 2
is colored orange. This 3-coloring is the optimal coloring of G and the chromatic number for this
graph is 3.

The GCP can also be viewed as a grouping problem, in which a k-coloring corresponding to
a grouping of the set of vertices into k groups such that no adjacent vertices i and j belong to the
same group. For instance, the 3-coloring showing in the rightmost of Figure 1.1 can be represented
as a grouping, i.e.,{1, 4},{2},{3, 5}.

k-GCP is a very popular NP-complete problem in graph theory [Garey and Johnson, 1979] and
has attracted much attention from scholars. As one of the three target problems of several inter-
national competitions including the well-known Second DIMACS Implementation Challenge on
Maximum Clique, Graph Coloring, and Satisfiability, GCP also arises naturally in a wide vari-
ety of real-world applications, such as register allocation [Chaitin, 1982], timetabling [Burke et
al., 1994; de Werra, 1985], frequency assignment [Gamst, 1986; Hale, 1980], scheduling [Leighton,
1979; Zufferey et al., 2008]. Comprehensive reviews on graph coloring algorithms can be found in
[Galinier et al., 2013; Galinier and Hertz, 2006; Malaguti and Toth, 2010].

1.1.2 Exact algorithm

Exact algorithms for the graph coloring are often based on branch and bound/cut or branch
and price procedures with linear programming relaxations. There is a wide variety of such ap-
proaches for graph coloring. Table 1.1 summarizes eight encodings of graph coloring, together
with the corresponding integer programming formulations. Specifically, Coll et al. [Coll et al.,
2002], Zabala et al. [Méndez-Díaz and Zabala, 2006], and Méndez-Díaz et al.[Méndez-Díaz and
Zabala, 2008] used a natural assignment-type formulation. Lee [Lee, 2002] and Lee and Margot
[Lee and Margot, 2007] studied a binary encoded formulation. [Mehrotra and Trick, 1996] and
[Schindl, 2004; Hansen et al., 2009] have used formulations based on independent sets. [Williams
and Yan, 2001] studied a formulation with precedence constraints. Barbosa et al. [Barbosa et al.,
2004] experimented with encodings based on acyclic orientations. Campêlo et al. [Campêlo et al.,
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Table 1.1 – Integer programming formulations of graph coloring

Based on Variables Constraints references

Vertices (Standard) k|V| |V|+ k|E| Méndez-Díaz and Zabala [Méndez-Díaz and Zabala, 2008]
Zabala and Méndez-Díaz [Méndez-Díaz and Zabala, 2006]
Coll et al. [Coll et al., 2002]

Binary encoding dlog2ke |V| Exp. many Lee [Lee, 2002]
Max. independent sets Exp. many |V|+ 1 Mehrotra and Trick [Mehrotra and Trick, 1996]
Any independent sets Exp. many |V|+ 1 Hansen et al. [Hansen et al., 2009]
Precedencies O(|V|2) |E| Williams and Yan [Williams and Yan, 2001]
Acyclic orientations |E| Exp. many Barbosa et al. [Barbosa et al., 2004]
Asymmetric represent. O(|E|) O(|V||E|) Campêlo et al. [Campêlo et al., 2008]
Supernodes k|Q| |Q|+ k|E| Edmund K. Burke et al.[Burke et al., 2010]

2008; Campêlo et al., 2009] proposed a formulation based on asymmetric representatives. [Burke et
al., 2010] introduced a new approach using "supernodes". [Malaguti et al., 2011] proposed an exact
algorithm based on the well-known set covering formulation of the problem. Zhou et al. [Zhou
et al., 2014] investigated an exact algorithm with learning which exploits the implicit constraints
using propositional logic and presented very good computational results on DIMACS benchmark
instances.

There have also been some studies on graph coloring by analyzing the graph structure or by
decomposing the graph. For instance, [Rao, 2004] investigated the GCP by using a split decom-
position tree, in which a graph is recursively partitioned into smaller graphs until they cannot
be split anymore. Then, after coloring the prime graphs that cannot be split, solutions are com-
bined gradually to get the solutions for the graph. [Bhasker and Samad, 1991] researched clique-
partitioning for a graph based on the principle that graph coloring and clique partitioning are
equivalent to some extent and presented two methods to partition cliques, which perform more
effectively than some efficient graph coloring algorithms. [Lucet et al., 2006] presented an exact
graph coloring algorithm by linearly decomposing a graph, which can run faster than other exact
algorithms when the linear width is small.

Moreover, there are many studies on the chromatic polynomial and the number of best so-
lutions. [Read, 1968] got the chromatic polynomial by applying the traditional method "dele-
tion contraction" that utilizes characteristics of chromatic polynomial to do the operations to the
graph. [Lin, 1993] investigated an approximation algorithm to calculate the chromatic polynomial
after obtaining its upper bound and lower bound, and had good performance in time complexity.
[Martin, 2010] proposed Total solutions Exact graph Coloring algorithm (TexaCol), which can get
all graph coloring solutions as well as the chromatic polynomial. TexaCol algorithm is realized by
the way that the graph is decomposed into maximal cliques and the relationship between these
maximal cliques is analyzed to get all coloring solutions. [Guo et al., 2018] improved TexaCol by
proposing two exact graph coloring algorithms, Partial best solutions Exact graph Coloring algo-
rithm (PexaCol) and All best solutions Exact graph Coloring algorithm (AexaCol), which are able
to obtain a best solution subset and all best solutions respectively. Based on TexaCol, these two
algorithms adopt the backtracking method, in which only the best solution subset at each step is
chosen to continue the coloring until partial or all best solutions are obtained.

1.1.3 Heuristic algorithm

Exact algorithms can encounter difficulties in many situations, for which the use of heuristic
and metaheuristic techniques is necessary.

In what follows, we focus on some representative heuristic-based coloring algorithms.
Two well-known greedy algorithms DSATUR [Brélaz, 1979] and RLF [Leighton, 1979] employ

refined rules to dynamically determine the next vertex to color. These greedy heuristic algo-
rithms are usually fast. Consequently, they are often used as initialization procedures in hybrid
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algorithms.
[Hertz and de Werra, 1987] proposed tabu search which is one of the most popular local search

method for the GCP. The principle of the tabu search is to start from an initial solution and tries
to improve the coloring by operating local changes. However, local search algorithms are often
substantially limited by the fact that they do not exploit enough global information, and cannot
compete with hybrid population-based algorithms. [Galinier and Hertz, 2006] summarized the
local search algorithms for graph coloring. Thus, the tabu search is often used as a subroutine in
hybrid algorithms, such as hybrid evolutionary algorithms [Fleurent and Ferland, 1996; Lü and
Hao, 2010; Moalic and Gondran, 2015; Porumbel et al., 2010].

Population-based hybrid algorithms [Galinier and Hao, 1999; Lü and Hao, 2010; Moalic and
Gondran, 2015; Porumbel et al., 2010; Titiloye and Crispin, 2011] are among the most effective
approaches for graph coloring, which have reported the best solutions on most of the difficult DI-
MACS instances. Population-based hybrid approaches operate with multiple solutions by using
operators called recombination or crossover or modification operators. Besides, to maintain the
population diversity which is critical to avoid a premature convergence, population-based algo-
rithms usually integrate dedicated diversity preservation mechanisms which require the compu-
tation of a suitable distance metric between solutions [Lü and Hao, 2010; Porumbel et al., 2010].
Moreover, the success of hybrid algorithms mostly relies on the combination of a meaningful re-
combination operator, an effective local optimization procedure and a mechanism for maintaining
population diversity.

[Hao and Wu, 2012; Wu and Hao, 2013] proposed "Reduce and solve" approaches. The general
"Reduce and solve" framework typically combines a preprocessing phase and a coloring phase.
The pre-processing phase identifies and extracts some vertices (typically independent sets) from
the original graph and obtains a reduced graph. The coloring phase is then applied to deter-
mine a proper coloring for the reduced graph. Empirical results showed that "reduce and solve"
approaches achieve a remarkable performance on some large and very large graphs. Though "Re-
duce and solve" approaches perform well for solving large graphs, it is less suitable for small and
medium-scale graphs. Additionally, the success of those methods heavily depends on the vertices
extraction process and the underlying coloring algorithm.

Other approaches include a method that encodes the GCP as a boolean satisfiability prob-
lem [Bouhmala and Granmo, 2008], a modified cuckoo algorithm [Mahmoudi and Lotfi, 2015],
a grouping hyper-heuristic algorithm [Elhag and Özcan, 2015] a multi-agent based distributed
algorithm [Sghir et al., 2015] and a learning-based heuristic algorithm [Zhou et al., 2018], etc.

1.1.4 Summary

Given the NP-hardness of the GCP, exact algorithms are usually effective only for solving
small or easy graphs. In fact, some graphs with as few as 150 vertices cannot be solved optimally
by any exact algorithm [Malaguti et al., 2011; Zhou et al., 2014]. To deal with large and difficult
graphs, heuristic algorithms are preferred to solve the problem approximately. The first work
of this thesis is dedicated to developing an effective heuristic for handling the graph coloring
problem. For this purpose, we propose a reduction-based memetic algorithm which integrates a
greedy initial procedure, a backbone coarsening operator, a weighted tabu search algorithm, an
uncoarsening phase and a pool updating mechanism. Although the evolutionary framework has
been proved to be very useful for designing effective heuristics for the graph coloring problem, it
is adopted for the first time in the context of the reduction approach based on the backbone-based
coarsening operator.
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1.2 Equitable coloring problem

Given an undirected graph G = (V, E) with the vertex set V and the edge set E ⊂ V × V,
an independent set of G is a subset of V such that any pair of its vertices is not linked by an
edge of E. An equitable legal k-coloring of G is a partition of the vertex set V into k disjoint
independent sets (or stables) {V1, V2, · · · , Vk} such that ||Vi| − |Vj|| ≤ 1, i 6= j, 1 ≤ i, j ≤ k. This
last constraint is called the equity constraint of a coloring. The equitable coloring problem (ECP)
in graphs involves finding an equitable legal k-coloring with k minimum for general graphs. This
minimum k is called the equitable chromatic number of G and denoted by χe(G).

As a variant of the conventional graph coloring problem (GCP), the decision version of the
ECP is NP-complete. This can be proved by a straightforward reduction from graph coloring to
equitable coloring by adding sufficiently many isolated vertices to a graph and testing whether
the graph has an equitable coloring with a given number of colors [Furmanczyk and Kubale,
2004]. The ECP model has a number of practical applications related to garbage collection [Tucker,
1973], load balancing [Blazewicz et al., 1997], timetabling [Kitagawa and Ikeda, 1988], schedul-
ing [Meyer, 1973; Irani and Leung, 1996; Ding et al., 2015] and so on.
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(a) A graph G (b) An equitable coloring of a graph

Figure 1.2 – An example of equitable coloring of a graph

1.2.1 Theoretical Studies

Much effort has been devoted to theoretical studies of the ECP. For example, Meyer conjec-
tured that χe(G) ≤ ∆(G) for any connected graph except the complete graphs and the odd cir-
cuits, where ∆(G) is the maximum vertex degree of G [Meyer, 1973]. This conjecture has been
proved to be true for trees and graphs with ∆(G) = 3 [Chen et al., 1994], connected bipartite
graphs [Lih and Wu, 1996], graphs with the average degree at most ∆/5 [Kostochka and Nakpr-
asit, 2005] and outerplanar graphs [Kostochka, 2002]. Bodlaender and Fomin [Bodlaender and
Fomin, 2004] identified that the ECP can be solved in polynomial time for graphs with bounded
treewidth. Furmańczyk and Kubale investigated the computational complexity of the ECP for
some special graphs [Furmańczyk and Kubale, 2005]. Yan and Wang discussed the ECP for kro-
necker products of the complete multipartite graphs and complete graphs [Yan and Wang, 2014].

1.2.2 Exact approaches

From a perspective of solution methods for the ECP in the general case, several exact algo-
rithms have been proposed.

[Diaza et al., 2008] gave an integer programming formulation for the equitable coloring prob-
lem based on its polyhedral structure and developed a cutting plane algorithm. Experimental
results indicate that the performance on 234 randomly generated graphs (with 35 nodes) has been
improved compared to a pure Branch-and-Bound algorithm.
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[Bahiense et al., 2014] presented two new integer programming formulations based on repre-
sentatives to derive a Branch-and-Cut algorithm for the equitable coloring problem. The compu-
tational experiments were carried out on randomly generated graphs, DIMACS graphs and other
graphs from the literature. This algorithm outperforms the previously existing Branch-and-Cut
approach by finding optimum solutions for random graphs with up to 70 nodes and obtaining a
smaller average relative gap (UB-LB)/LB over all test instances.

[Méndez-Díaz et al., 2014] studied the polytope associated with a 0/1-integer programming
formulation for the equitable coloring problem, which found several families of valid inequalities
and derives sufficient conditions in order to be facet-defining inequalities. Computational results
show the efficacy of these inequalities used in a cutting-plane algorithm.

[Méndez-Díaz et al., 2015] proposed a Dsatur-based algorithm and presented computational
results for a subset of benchmark instances from the DIMACS and COLOR competitions. The
Dsatur-based algorithm uses a pruning rule based on arithmetical properties related to equitable
partitions, which has shown to be very effective. Experimental results show the effectiveness of
the proposed algorithm by obtaining better solutions than other algorithms in the literature.

1.2.3 Heuristic approaches

Given the computational challenge of the ECP, exact algorithms suffer from an exponential
time complexity and thus are only applicable to graphs of limited sizes (typically with less than
150 vertices). To handle larger graphs, heuristic algorithms are used to find sub-optimal solutions
in a reasonable time frame.

Two constructive heuristics called Naive and SubGraph are given in [Furmanczyk and Kubale,
2004] to generate greedily an equitable coloring of a graph.

The TabuEqCol algorithm [Díaz et al., 2014] is an adaptation of the well-known TabuCol algo-
rithm for the classical graph coloring problem [Hertz and de Werra, 1987; Galinier and Hao, 1999].
Computational experiments show good performances of TabuEqCol on the benchmark instances.

The BITS algorithm [Lai et al., 2015] improves TabuEqCol by embedding a backtracking scheme
under the iterated local search framework. BITS uses a backtracking scheme to define different k-
ECP instances, an iterated tabu search approach to solve each particular k-ECP instance for a fixed
k and a binary search approach to find a suitable initial value of k. Computational results show
that BITS is very competitive in terms of solution quality and computing efficiency compared
to the TabuEqCol algorithm. Specifically, BITS obtains new upper bounds for 21 benchmark in-
stances and matches the previous best upper bounds for the remaining instances.

The HTS algorithm [Wang et al., 2018] relaxes the equity constraint step by step and repairs the
infeasible result in the end. Based on three complementary neighborhoods, the algorithm alter-
nates between a feasible local search phase where the search focuses on the most relevant feasible
solutions and an infeasible local search phase where a controlled exploration of infeasible solu-
tions is allowed by relaxing the equity constraint. A novel cyclic exchange neighborhood is also
proposed in order to enhance the search ability of the hybrid tabu search algorithm. Evaluated
on graphs, the proposed algorithm is demonstrated to be highly effective. Additional analysis
shows the importance of the cyclic exchange operator and the feasible and infeasible local search
to the success of the proposed algorithm.

1.2.4 Summary

One can observe that unlike the popular graph coloring problem for which many heuristic
algorithms have been proposed, research on heuristics for the ECP is quite limited and is still in
its infancy. In particular, one important feature of the problem identified by its equity constraint is
little explored by the existing algorithms. On the other hand, it is well known that for constrained
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optimization problems (like the ECP), allowing a controlled exploration of infeasible solutions
may facilitate transitions between structurally different solutions and help discover high-quality
solutions that are difficult to locate if the search is confined to the feasible region [Glover and
Hao, 2011]. Thus, in this thesis, we investigate a feasible and infeasible search algorithm for the
ECP which enlarges the search to include equity-infeasible solutions. Furthermore, to prevent the
search from going too far away from the feasible boundary, we devise an extended penalty-based
fitness function to guide the search for an effective examination of candidate solutions.

1.3 Weighted vertex coloring problem

Graph vertex coloring problems can also concern weighted graphs where a weight (typically
a positive value) is associated to each vertex. The Weighted Vertex Coloring Problem (WVCP)
considered in this work is a typical example of this class of coloring problems. Informally, the
WVCP aims to find a legal coloring such that the sum of the costs of its stables is minimized,
where the cost of each stable is given by the maximum weight of a vertex (representative) in that
stable.

Given an undirected graph G = (V, E) with the vertex set V = {1, 2, . . . , n}, the edge set
E ∈ V × V, let W = {w1, w2, . . . , wn} be the set of positive weights associated to the vertices of
V. Recall that an independent set (a stable or a color class) of G is a subset of V such that any
pair of its vertices is not linked by an edge of E. A legal or feasible k-coloring of G is a partition
of the vertex set V into k disjoint independent sets {V1, V2, . . . , Vk}. Let s = {V1, V2, . . . , Vk} be a
partition of the vertex set V, the Weighted Vertex Coloring Problem can be stated as follows.

(WVCP)minimize f (s) =
k

∑
i=1

maxj∈Vi{wj} (1.1)

subject to ∀u, v ∈ Vi, {u, v} /∈ E, i = 1, 2, . . . , k (1.2)

where the constraints (1.2) ensure that partition {V1, V2, . . . , Vk} is a legal k-coloring (i.e., each
Vi (i = 1, 2, . . . , k) is a stable) and the objective (1.1) is to minimize the maximum weight of a
vertex (representative) in each of the k stables Vi (i = 1, 2, . . . , k). Notice that for a given graph,
the number of colors k is unknown before the optimal solution is discovered.

Figure 1.3(a) shows a graph G = (V, E) with 9 vertices whose weights are indicated next to
the vertices. Figure 1.3(b) shows a coloring with three stables, leading to an objective value of 14
+ 12 + 8 = 34, since the three stables have respectively a maximum weight of 14 (gray stable), 12
(orange stable) and 8 (green stable). Figure 1.3(c) illustrates an optimal solution with a minimum
objective value of 14 + 12 + 5 = 31.
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(a) A graph G = (V, E) (b) A feasible coloring (c) An optimal solution

Figure 1.3 – A graph, a feasible solution, an optimal solution
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One notices that an instance of the NP-hard vertex coloring problem can be conveniently re-
duced to an instance of the WVCP by defining a weight of 1 for each vertex. As a result, the
WVCP is NP-hard [Malaguti, 2009; Michael and David, 1979], and thus computationally chal-
lenging in the general case. From a practical perspective, the WVCP has a number of practical
applications in different fields and arises naturally in the context of buffer management in operat-
ing systems [Prais and Ribeiro, 2000; Ribeiro et al., 1989], batch scheduling [Gavranovic and Finke,
2000] and manufacturing [Hochbaum and Landy, 1997]. As a result, effective solution methods
for the WVCP can help to solve these practical problems.

1.3.1 Exact approaches

From a perspective of solution methods for the WVCP in the general case, several exact algo-
rithms have been proposed.

Specifically, a column generation approach combined with the general branch-and-bound
method was investigated in [Ribeiro et al., 1989]. Extensive computational experiments were re-
ported for the matrix decomposition problem encountered in satellite switching systems, showing
the effectiveness of this approach.

A branch-and-price approach based on column generation was presented in [Furini and Malaguti,
2012] and computational results were shown on a subset of benchmark instances from the DI-
MACS and COLOR competitions and two sets of instances from matrix-decomposition problems,
which shows excellent performances when compared with the best heuristic algorithms from the
literature.

In [Cornaz et al., 2017], the WVCP was solved as Maximum Weight Stable Set Problems on an
associated graph and this approach showed excellent results on the tested benchmark graphs.

The above review indicates that despite the theoretical and practical significance of the WVCP,
solution methods for the problem are quite limited and the WVCP benchmark instances are of
small sizes in comparison with those used for other graph coloring problems.

1.3.2 Heuristic approaches

Given that the WVCP is a NP-hard problem, several heuristic algorithms have also been inves-
tigated, which aim to provide high-quality solutions in acceptable computation time, but without
provable optimal guarantee of the attained solutions.

For example, a Greedy Randomized Adaptive Search Procedure (GRASP) was introduced in
[Prais and Ribeiro, 2000] in the context of a practical problem called TDMA traffic assignment
(an application of the WVCP). This algorithm iterates a mixed search strategy combining a ran-
domized greedy construction procedure followed by a local optimization procedure. Extensive
computational experiments indicate that the Reactive GRASP heuristic matches the optimal solu-
tion found by an exact column generation based branch-and-bound algorithm.

In [Malaguti et al., 2009], an effective 2_Phase algorithm was proposed, where in the first phase
a large number of independent sets is heuristically produced, and in the second phase the set
covering problem associated with these sets is solved by the Lagrangian heuristic algorithm in-
troduced previously in [Caprara et al., 1999]. These heuristics have reported interesting results
on a number of benchmark instances. However, one notices that these methods only examine
feasible solutions.

1.3.3 Summary

Our literature review given in Section 1.3.1 and 1.3.2 indicates that unlike the popular vertex
coloring problem for which numerous solution methods are available (see the reviews [Galinier
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and Hertz, 2006; Malaguti and Toth, 2010; Galinier et al., 2013]), research on algorithms for the
WVCP is still in its infancy with very few advanced methods.

In this work, we aim to fill the gap by investigating effective heuristics that can be used to find
high-quality approximate solutions for problem instances that cannot be solved exactly.

Our interest on heuristics for the WVCP is fully motivated by the hardness of the considered
problem. Indeed, unless P =NP , exact algorithms for the WVCP will inevitably have an exponen-
tial time complexity and can only be applied to solve problem instances of limited sizes or with
particular features.

Our work focuses on investigating a feasible and infeasible search procedure and is driven
by the following consideration. The WVCP is a constrained combinatorial optimization prob-
lem where a feasible solution must satisfy the coloring constraint (i.e., two adjacent vertices must
receive different colors). Due to the presence of the coloring constraint, the feasible region can
be broken into several zones which are separated from each other by infeasible regions in the
search space. In this case, an algorithm searching only feasible solutions could be blocked in a
particular feasible zone, thus miss the global optima or high quality solutions located in other
feasible zones. On the other hand, as illustrated in numerous studies on constrained optimiza-
tion, e.g., [Chen et al., 2016b; Glover and Hao, 2011; Jin and Hao, 2016; Lai et al., 2018; Lin, 2013;
Martinez-Gavara et al., 2017; Sun et al., 2017; Wang et al., 2018], methods that are allowed to os-
cillate between feasible and infeasible regions constitute an appropriate means to cope with such
a situation. Indeed, allowing a controlled exploration of infeasible solutions may facilitate tran-
sitions between structurally different solutions and help discover high-quality solutions that are
difficult to locate if the search is limited to the feasible region. Based on previous studies of ex-
amining feasible and infeasible solutions for solving other constrained optimization problems,
we present in this thesis the first study that mixes both feasible and infeasible searches with the
context of the WVCP.

1.4 k-vertex critical subgraphs problem

1.4.1 Problem Introduction

A graph is a vertex-critical graph if removing any vertex from the graph decreases its chro-
matic number [Desrosiers et al., 2008]. Given an integer k, a k-vertex-critical subgraph (k-VCS) of
G is a vertex-critical subgraph H such that χ(H) = k. Note that each graph G contains at least one
k-VCS for 1 ≤ k ≤ χ(G). Finally, a subgraph H∗ is a minimum k-VCS if no other k-vertex-critical
subgraph with fewer vertices than in H∗ exists in G. The k-VCS problem (k-VCSP) is to find a
minimum k-vertex-critical subgraph of G. The k-VCSP is a NP-hard problem and thus computa-
tionally challenging [Desrosiers et al., 2008]. For simplicity, if H = (A, EA) is a k-VCS, we also
use its vertex set A to denote the k-VCS.

The k-VCS problem has important theoretical significance and large application potential. For
instance, The k-VCS problem helps to find lower bounds on the chromatic number of these graphs
and identify hard or unsolvable subproblems that help the tractability of satisfiability testing of
the real world applications [Herrmann and Hertz, 2002; Hu et al., 2011].

As an example, consider the graph G of Figure 1.4(a) with χ(G) = 4. Figure 1.4(b) shows
a 4-vertex-critical subgraph of G since removing any vertex decreases its chromatic number to
3. Moreover, this 4-VCS is also minimum since no other 4-critical subgraph can be found in G.
Note that k-VCS of G provides a means of determining lower bounds of χ(G), and a k-VCS with
a larger k thus leads to a better (tighter) bound (eg., the 4-VCS of Figure 1.4(b) corresponds to a
better lower bound with respect to any 3-VCS formed by a clique of size 3 like {1,2,7}).
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Figure 1.4 – An example for the 4-vertex-critical subgraph.

1.4.2 Exact approaches

In [Herrmann and Hertz, 2002], Herrmann and Hertz suggested a vertex removal algorithm
combined with an insertion algorithm to find the chromatic number of a graph. Computational
experiments on random graphs and on DIMACS benchmark problems demonstrate that the pro-
posed algorithm can solve larger problems than previous known exact methods.

1.4.3 Heuristic approaches

In the context of graph coloring, some approaches have been proposed to extract k-VCS in a
graph.

[Eisenberg and Faltings, 2003] presented two breakout algorithms to identify hard and un-
solvable subgraph in a graph. The first approach uses the breakout with backtracking (BOBT)
algorithm to solve constraint satisfaction problems or identify an unsolvable subproblem if it ex-
ists, the second algorithm is the breakout with backtracking for a smallest unsolvable subproblem
(BOBT-SUSP) that identifies a k-VCS. Evaluated on randomly generated graph 3-coloring prob-
lems, the proposed algorithm is demonstrated to be highly effective in discovering high quality
solutions.

[Desrosiers et al., 2008] proposed the neighborhood weight heuristic algorithm that is com-
bined with classical critical subgraph detection algorithms, leading to several effective k-VCS
detection heuristics including the Ins + h algorithm. Computational experiments are reported on
random and DIMACS benchmark graphs to compare the proposed algorithms, as well as to find
lower bounds on the chromatic number of these graphs. Computational testing shows that this
algorithm improves the best known lower bound for some of these graphs and is even able to
determine the chromatic number of some graphs for which only bounds were known previously.

1.4.4 Summary

Although many exact algorithms have been devised for the graph coloring, they can only
be used to solve small instances. Heuristics coloring algorithms can be used on much larger
instances, but only to get an upper bound on the chromatic number χ(G). Given that the removal
strategy is quite effective for this problem, the last work of this thesis is to design a removal
strategy with a backtracking mechanism and a perturbation procedure to solve the k-VCS in an
efficient way.



2
A reduction-based memetic algorithm for
GCP

In this chapter, we investigate a reduction-based memetic algorithm (RMA) to find a graph
coloring solution for a given graph G. Graph coloring is one of the most studied NP-complete
problems. Given a graph G = (V, E), the task is to partition the vertex set V into k disjoint sub-
sets, such that no edge has endpoints in the same subsets. In this work, we present a memetic
algorithm, which integrates a backbone-based coarsening operator (to preserve common infor-
mation and reduce the size of graph), a weighted tabu search procedure (to improves the quality
of the solution of the reduced graph) and a perturbation procedure (to escape from the region of
the local optimum). Extensive experimental studies on numerous benchmark instances from the
graph coloring problem show that the proposed approach, performs equally well as some best
existing graph algorithms in terms of solution quality.
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2.1 Introduction

Given a simple undirected graph G = (V, E) with vertex set V = {1, 2, . . . , n} and edge set
E ⊂ V × V, a legal k-coloring of G is a mapping c : V → {1, . . . , k}, such that c(i) 6= c(j) for
all edges (i, j) in E. The graph k-coloring problem (k-GCP) is to determine if a legal k-coloring
of G exists for a given k. The classical graph coloring problem (GCP) is to find the minimum
integer k (chromatic number χ(G)) for which a legal k-coloring of G exists. k-GCP is known to be
NP-complete while the optimization problem GCP is NP-hard [Garey and Johnson, 1979].

Since memetic algorithms have been proved to be very effective for solving coloring problems
[Galinier and Hao, 1999; Porumbel et al., 2010; Lü and Hao, 2010; Malaguti et al., 2008; Moalic
and Gondran, 2015], in this chapter, we introduce the Reduction-based Memetic Algorithm that
integrates the idea of multilevel optimization [Benlic and Hao, 2011; Walshaw, 2004] within the
memetic search framework.

In this work, we adopt for the first time the idea of reduction in a memetic algorithm for the
GCP. For this purpose, we address three relevant issues which are critical to make our approach
successful. First, we need to identify the previous common information of the parents which is
contained in high quality solutions. Second, we want to reduce the original graph to a smaller
graph through the common information, i.e., common fragment showed in the parents can be
merged into one vertex. Third, we wish to search effectively the reduced graph. RMA uses a
backbone-based group matching mechanism for identifying common information of the parents.
By incorporating this mechanism, RMA merges identical information fragment (with at least two
vertices) to form one vertex. The weighted tabu search algorithm examines the reduced graph to
further improve the solution.

Computational results on 39 benchmark graphs from the DIMACS and COLOR competitions
show that RMA competes favorably with state-of-the-art algorithms in the literature in terms
of solution quality. Specifically, RMA obtains the best-know results for 19 easy instances with
an improvement of the computation time and matches the best-known results for 13 difficult
instances.

The rest of the chapter is organized as follows. Section 2.2 describes the proposed algorithm
in detail. Section 2.3 presents computational results and comparisons with state of the art al-
gorithms. Section 2.4 analyzes the impact of some key components of the proposed algorithm.
Conclusions and future work are discussed in the last section.

2.2 Memetic algorithm for the GCP

The conventional GCP can be approximated by finding a series of legal k-colorings for de-
creasing k values[Galinier and Hertz, 2006; Galinier et al., 2013]. This process is repeated until
no legal k-coloring can be found. Therefore, we will only consider the k-coloring problem in the
rest of this section. To seek a legal k-coloring for a given k, we adopt the memetic search which
is a powerful framework that promotes the idea of combining evolutionary computing and local
optimization.

In this section, we propose a way of collapsing vertices based on common information and the
resulting RMA algorithm for solving k-GCP.

2.2.1 General approach

As shown in Algorithm 2.1, RMA starts from an initial solution Si generated by the greedy
procedure and further ameliorated by the iterated tabu search procedure described in Section
2.2.2. The initialization process repeats p times in order to generate the parent solutions (lines
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Algorithm 2.1: The RMA algorithm for solving the k-GCP
1: Input: Graph G = (V, E), number of colors k, population size p.
2: Output: the best k-coloring S∗ found so far
3: for i = 1, 2, . . . , N do
4: wi ← 1/ * Initialize the weight of each edge */
5: end for
6: for i = 1, 2, . . . , p do
7: S0 ← Greedy_Initial(G, k) /*Greedy Initialization, Section 2.2.2 */
8: Si ← Tabu_Search(G, S0, k) /* Tabu search, Section 2.2.2 */
9: Sbest ← Si /*Record the best legal solution at each loop */

10: end for
11: S∗ ← arg minF(Si), i = 1, 2, . . . , p /* Record the best solution S∗ found so far*/
12: while stop condition met do
13: S0 ← Adaptive_MultiParent_Crossover /*Initialize offspring solution S0, Section 2.2.3*/
14: Randomly choose 2 individuals solution Sm, Sn f rom parents set P
15: (G

′
, S0
′, w)← Backbone_Coarsening_Operator(Sm, Sn, G, S0) /* Section 2.2.4*/

16: S
′
best ←Weighted_Tabu_Search(G

′
, S
′
0, k, w) /*Section 2.2.5*/

17: (G, Sc)← Uncoarsening_Perturbation(G
′
, Sbest

′) /* Section 2.2.6*/
18: Sbest ← Tabu_Search(G, Sc, k) /* Future improve the solution, Section 2.2.6*/
19: if f (Sbest) < f (S∗) then
20: S∗ ← Sbest
21: end if
22: {S1, S2, . . . , Sp} ← Pool_Updating(Sbest, S1, . . . , Sp) /*Section 2.2.7*/
23: end while

6-10). After initializing the global variable best solution S∗ found so far (line 11), the search enters
into the evolution loop. It repeats an evolution process to improve the population until a prede-
fined stopping condition (typically a fixed number of generations) is verified or a legal coloring
is found. At each generation, the algorithm randomly selects two parent solutions Sm, Sn from
the population. Then, we obtain a coarsening graph G

′
from G with its corresponding coloring

S0
′ and the weight set w by using a backbone coarsening operator (line 15, Section 2.2.4). This

coarsening phase is followed by a weighted tabu search in order to improve the solution (line 16,
Section 2.2.5). The uncorsening phase, which recovers the initial graph G from G

′
with its cor-

responding coloring, uses a slight perturbation of the corresponding coloring to escape from the
local optimal solution (line 17, Section 2.2.6). This newly generated coloring is further improved
by the iterated tabu search process (line 18, Section 2.2.6). Finally, a quality-and-distance based
rule is applied to decide if the improved solution can be inserted into the population (line 22,
Section 2.2.7).

In the remainder of this section, we explain the main components of the proposed RMA al-
gorithm: the initial population generator, the iterated tabu search procedure, the backbone-based
coarsening operator, the weighted tabu search process and the population updating strategy.

2.2.2 Population initialization

The purpose of the initialization step is to generate an initial coloring with as few conflicts
as possible for the given k-GCP problem. This is achieved by two steps: the greedy algorithm
proposed in [Glover et al., 1996] and the tabu search in [Galinier and Hao, 1999].
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Figure 2.1 – Flow chart of RMA algorithm for solving the k-GCP.

Greedy initialization

RMA constructs an initial solution according to the greedy constructive heuristic (called DAN-
GER), which was first proposed in [Glover et al., 1996], and subsequently was used in several
studies [Lü and Hao, 2010].

To create each individual of the initial population, we assign a vertex from the set of unas-
signed vertices a color class at one time. Specifically, we firstly use a scoring function according
to the dynamic vertex danger measure to score the unassigned vertices. Given these scores, an
unallocated vertex with the highest score is probabilistically selected. Next, the scores of the col-
ors for the selected vertex are calculated according to the possibility that this colors are required
by neighboring vertices. Finally, a color is choosen probabilistically. This process is repeated until
all vertices are assigned a color.

Afterwards, in order to further optimize the solution constructed by the DANGER procedure,
we apply an iterated tabu search (Section 2.2.2), previously presented in [Galinier and Hao, 1999].
The refinement step is essential for our approach to improve progressively the quality of the initial
solution, which also helps the memetic algorithm to save some computational efforts during the
first generations of its search. This initialization procedure is iterated until the population is filled
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with p (population size) individuals (Algorithm 2.1, lines 6-10).

The iterated tabu search

(1) Search space and fitness function
Before presenting the ingredients of the tabu search process, we first define the search space

Ωk explored by the algorithm, the evaluation function f (s) to measure the quality of a candidate
solution and the solution representation used by the RMA algorithm.

For a given graph G = (V, E) with k available colors, the search space Ωk visited by RMA is
composed of all allocations of vertices to the k color class. In other words, the RMA algorithm
visits all the k-colorings. Then the search space is given by:

Ωk = {{V1, V2, · · · , Vk} : ∪k
i=1Vi = V, Vi ∩Vj = ∅} (2.1)

where i 6= j, 1 ≤ i, j ≤ k.
A candidate solution in Ωk can be represented by s = {V1, V2, . . . , Vk} such that Vi is the group

of vertices receiving the same color i. For any candidate solution s ∈ Ωk, its quality is evaluated
directly by the fitness function f (s), which is used to count the conflicting edges induced by s.

f (s) =
k

∑
i=1
|C(Vi)| (2.2)

where C(Vi) is the set of conflicting edges in color class Vi. Accordingly, a coloring s with f (s) = 0
corresponds to a legal k-coloring. The objective of RMA is to minimize f , i.e., the number of
conflicting edges to find a legal k-coloring in the search space.

(2) Move operators to explore the space Ωk
One of the most critical features of local search is the definition of its neighborhood. Typi-

cally, a neighborhoods is defined by a move operator which transforms a current solution s =
{V1, V2, . . . , Vk} to generate a neighboring solution by some local changes of s. To explore the
search space Ωk, the search phase employs one basic move operator to generate neighboring so-
lutions which displaces a conflicting vertex v from its current color class Vi to another color class
Vj. The neighborhood N(s) induced by this operator is given by:

N(s) = {s ⊕ < v, Vi, Vj >: v ∈ Vi ∩ C(s), 1 ≤ i, j ≤ k, i 6= j} (2.3)

where C(s) denotes the set of conflicting vertices of s, i.e., the vertices involved in a conflicting
edge.

Clearly N(s) is bounded by O(|C(s)| × k) in size. To effectively calculate the move gain that
identifies the change in the fitness function f (Equation (2.2)), we adopt the fast incremental eval-
uation technique of [Dorne and Hao, 1999; Fleurent and Ferland, 1996; Galinier and Hao, 1999].
The main idea is to maintain a matrix A of size n× k with elements A[v][q] recording the number
of vertices adjacent to v in color class Vq (1 ≤ q ≤ k). Then, the gain of each one-move in terms of
fitness variation can be efficiently calculated as

∆ f = A[v][j]− A[v][i] (2.4)

Each time a one-move operation involving the vertex v is performed, we just need to update a
subset of values affected by this move as follows. For each vertex u adjacent to vertex v, A[u][i]←
A[u][i]− 1, and A[u][j]← A[u][j] + 1.
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2.2.3 The adaptive multi-parent crossover procedure

The AMPaX operator is proposed in [Lü and Hao, 2010] which builds one by one the color
classes of the offspring. Firstly, we chose NUM = 2 + rand()%4 parents for the population pool.
Each time the color class with the maximal cardinality in all NUM parent individuals is chosen,
in order to transmit as more vertices as possible such that the number of unassigned vertices after
k transmitting steps is as small as possible. After one color class has been assigned, all the vertices
in this color class are removed from all parents. This process is repeated until all k color classes
are built. At the end of these k steps, some vertices may remain unallocated. These vertices are
randomly assigned to a color class. Thus, offspring solution S0 is constructed.

This crossover step of creating an offspring solution S0 is essential for our approach, which
helps the weight coloring algorithm to improve progressively the quality of the initial solution
and saves some computational efforts during its search (Section 2.2.5).

2.2.4 Backbone-based group matching

Algorithm 2.2: The backbone-based collapsing algorithm
1: Input: two parent solutions Sm = {Vm

1 , Vm
2 , . . . , Vm

k } and Sn = {Vn
1 , Vn

2 , . . . , Vn
k }.

2: Output: a matching scheme J
3: J ← ∅

/*Match the set of the vertices*/
4: Let H = {(Vm

i , Vn
j ) | i ∈ k, j ∈ k} denote the set o f all k× k group combinations o f Sm and Sn.

5: Compute the number o f common vertices f or each group combination (Vm
i , Vn

j ) ∈ H
6: repeat
7: Choose the combination {(Vm

i , Vn
j )} with the largest ωVm

i ,Vn
j

f rom H
8: J ← J ∪ {(Vm

i , Vn
j )}

9: H ← H \ {(Vm
i , Vn

j )}
10: Remove f rom E all combinations associated with Vm

i and Vn
j

11: until H = ∅

Our backbone-based coarsening operator is composed of two steps: backbone-based group
matching and coarsening phase, whose components are detailed in the following sections.

We introduce the following basic definitions which are helpful for the description of the pro-
posed approach. Let Sm = {Vm

0 , Vm
1 , ..., Vm

k } and Sn = {Vn
0 , Vn

1 , ..., Vn
k } be two parent solutions

respectively.

Definition 2.2.1. The set of common objects H denotes tthe set of common objects that has identical
object grouping of Sm and Sn , i.e., H = {(Vm

i , Vn
j )|i ∈ k, j ∈ k} denote the set of all k ∗ k group

combinations o f Sm and Sn.

Definition 2.2.2. The Backbone matching set J = {(Vm
i , Vn

j ), 1 ≤ i, j ≤ k} denotes the largest set
of common objects for each color of two parents Sm and Sn. We apply a fast greedy algorithm to
seek a near-optimal backbone matching.

At the first step, the algorithm randomly selects two parent solutions Sm, Sn from the pop-
ulation and matches them by using a backbone-based group matching operator, thus gets the
matching scheme J. According to the identical information set, we merge each identical informa-
tion fragment Ii = Vi ∩Vj, (Vm

i , Vn
j ) ∈ J, 1 ≤ i, j ≤ k to one coarsened vertex which ends up with

the coarsening graph G
′

(see Figure 2.4 for an illustrative example).
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Backbone-based group matching

Apart from the local optimization procedure, group matching is another key component for
our RMA algorithm. A successful group matching operator should be able to transmit the mean-
ingful features from parents to offspring and offer some diversity.

As described in Section 2.1, a solution can be regarded as a partition of N vertices into k classes.
It is more significant to manipulate classes of vertices than individual vertex when transmitting
useful information.

Preliminary experiments show that high quality local optimal solutions share many grouping
vertices. It is thus expected that vertices that always share the same color are very likely to be
part of a global optimum or a high quality solution. Following this observation, the general idea
of our proposed collapsing operator is to preserve the vertices groupings (backbone) of maximal
size from parent solutions and color the rest vertices randomly.

Sm Vm
1 Vm

2
. . . Vm

i
. . . Vm

k

Sn Vn
1 Vn

2
. . . Vn

j . . . Vn
k

(a) A complete bipartite graph H with an edge weight ω

Sm Vm
1

ωVm
i ,Vn

2

Vm
2

. . . Vm
i

. . . Vm
k

Sn Vn
1 Vn

2
. . . Vn

j . . . Vn
k

(b) Choose an edge with the largest ω and delete all edges incident to vertices

Sm Vm
1

ωVm
2 ,Vn

1

Vm
2

. . . Vm
k

Sn Vn
1

. . . Vn
j . . . Vn

k

(c) Repeat the last step until H = ∅

Figure 2.2 – The classes matching procedure by a complete bipartite graph H

Each vertex set (or color class) Vm
i from parent solution Sm that shares the most common

vertices typically corresponds to another set Vn
j of parent solution Sn. Therefore, in order to find

out the largest number of common vertices of two parent solutions, the first step is to match each
set in two parents.

This is achieved by finding a maximum weight matching in a complete bipartite graph H =
(VH , EH) (Figure 2.2(a)) where VH consists of k upside vertices and k downside vertices that cor-
respond respectively to the vertex sets of parent solutions Sm and Sn; each edge (Vm

i , Vn
j ) ∈ H

is associated with a weight ωVm
i ,Vn

j
, which is defined as the number of identical vertices in Vm

i of
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solution Sm and Vn
j of solution Sn.

The maximum weight matching problem can be solved by using the classical Hungarian al-
gorithm [Kuhn, 1955]. However, invoking this algorithm for each iteration would be too com-
putationally expensive (O(k3)). We apply a fast greedy algorithm [Chen and Hao, 2016] to seek
a near-optimal weight matching for the maximum weight matching problem. The main idea is
that at each step our greedy algorithm chooses an edge (Vm

i , Vn
j ) ∈ H with the largest ωVm

i ,Vn
j

,
keep this set (Vm

i , Vn
j ) in the group matching set J, i.e., J ← J ∪ {(Vm

i , Vn
j )} and delete it from the

graph H (H ← H \ {(Vm
i , Vn

j )}). All edges incident to vertex Vm
i and to vertex Vn

j are also deleted
in order to make it easier to identify the next match set, as showed in the Figure 2.2(b)-(c). This
procedure is repeated until H becomes empty (lines 4-11 of Algorithm 2.2), which occurs when
all vertex sets are matched.

To illustrate the main steps of the backbone-based matching operator, we use the case of Fig-
ure 2.3 as a working example. The example involves an instance of 5 vertices and 3 colors and
operates with two parent solutions Sm and Sn. In the first step, as showed in Figure 2.3, Sm and
Sn are matched using the fast greedy algorithm and the results are: Sm-Vm

1 matches Sn-Vn
1 , Sm-Vm

2
matches Sn-Vn

3 (randomly choice between Sm-Vm
3 and Sn-Vn

2 for equal weight) and the matching
set J = {(Vm

1 , Vn
1 ), (V

m
2 , Vn

3 ), (V
m
4 , Vn

2 )} .

1

2

3

45
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2 Vm
3

1
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3
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5

(a) Sm and Sn for a graph G = (V, E) (b) An example of classes matching

Figure 2.3 – two solutions for a graph coloring and its graph matching G
′

Algorithm 2.3: The coarsening phase
1: Input: Matching set J.
2: Output: the coarsener graph G

′

3: G
′ ← G/* Initial the coarsener graph G

′
*/

4: for each set (Vi, Vj) ∈ J do
5: Ii ← Vi ∩ Vj /∗Ii is the ith identical information fragment∗/
6: Collapse all vertices in the set Ii to form one vertex in the graph G

′

7: Update the weight of the edges in the graph G
′

8: end for
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Coarsening phase

Let G = (V, E) be the initial graph. Creating a coarsened graph G
′
= (V

′
, E
′
) from G consists

of finding an identical information set, merging each identical information fragment and then
collapsing those sets to one vertex to form a new vertex in G

′
. Any vertex that dose not belong to

any fragment is simply copied to G
′
.

The proposed coarsening phase is illustrated in Algorithm 2.3. Firstly, let the initial graph
G
′

as G and the edge weight of G be initialized to 1 (line 3, Algorithm 2.3). Then, we collapse
the identical vertices from parent solutions which are recorded in the backbone matching set J to
form one vertex (line 5-6, Algorithm 2.3). Finally, we update the weight of each edge of G

′
(line

7, Algorithm 2.3). To be specific, the weight of each edge of a coarsened graph G
′

equals the sum
of weights of the edges of the initial graph whose endpoints respectively belong to the vertices of
this edge of the coarsened graph. Therefore, the sum of the weights of the edges of the coarsened
graph equals the number of the edges of the initial graph G. Repeat this process until all the
identical vertices are collapsed.
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1

1
1

1

1
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1

1
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2
1

2

12

3

5

(a) Sm and Sn for a graph G = (V, E) (b) A coarsened graph G
′

Figure 2.4 – two solution for a graph coloring and its coarsened graph G
′

An example of the coarsened graph G
′

of an initial graph G with 5 vertices is provided in
Figure 2.4. Let v

′
1 of G

′
be vertex formed by collapsing {v1, v4} of G. These edges between {v1, v4}

and the vertices incident to vertices and {v1, v4} in the initial graph G are merged to form a new
edge with a weight that is set equal to the sum of the weights of the edges whose endpoints are
incident to v1 or v4, .i.e., W

′
1,5 = W1,5 + W4,5 = 2, W

′
1,3 = W1,3 + W4,3 = 2.

After coarsening the original graph G to G
′
, we apply a weighted tabu search to improve the

solution in the graph G
′
(see the Section 2.2.5). Normally, the quality of a solution for the graph

G
′

is worse than that of G because there is a less degree of freedom for refinement. However, this
phase helps the search quickly attain a promising search area.

2.2.5 Weight tabu search improvement

Recall that the purpose of the backbone based group matching phase is to obtain a coarsened
graph G

′
. In order to find a good initial solution S

′
0 for the graph G

′
, we simplify the solution

S0 (which is generated by the adaptive multi-parent crossover procedure), which means that if a
vertex is merged with another vertex, the color of this vertex is deleted; otherwise, we keep the
color of the vertex.

We apply a weighted iterated tabu search algorithm whose basic components are briefly de-
scribed in this section. We first define the search space and the evaluation function. For a given
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graph G
′
= (V

′
, E
′
) with k available colors, the search space contains all possible k-colorings (can-

didate solutions). A candidate solution in Ω
′
k can be represented by s = {V1, V2, . . . , Vk} such that

Vi is the set of vertices receiving the same color i.

Ω
′
k = {{V1, V2, · · · , Vk} : ∪k

i=1Vi = V
′
, Vi ∩Vj = ∅} (2.5)

where i 6= j, 1 ≤ i, j ≤ k.
The evaluation function f

′
(s) is used to count the sum of the weight of conflicting edges in-

duced by a coloring s.

f
′
(s) =

k

∑
i=1
|w(Vi)| (2.6)

where |w(Vi)| is the weight of conflicting edges in color class Vi. Accordingly, a coloring s with
f
′
(s) = 0 corresponds to a legal k-coloring.

Weighted graph coloring

The used optimization procedure is a version based on the weight of edge of the tabu coloring
procedure (TabuCol) proposed in [Dorne and Hao, 1998; Galinier and Hao, 1999].

Given a conflicting k-coloring solution s = {V1, V2, . . . , Vk}, the basic idea of the one move
neighborhood N(s) is to move a conflicting vertex v from its original vertices set Vi to another
subset Vj.

The move gain, which represents the change in the optimization objective, which is expressed
as follows

∆ f
′
= B[v][j]− B[v][i] (2.7)

According to incremental technique, each time a one-move operation involving vertex v is
performed, we just need to update a subset of values affected by this move as follows. For each
vertex u adjacent to vertex v, B[u][i]← B[u][i]− wv,u, and B[u][j]← B[u][j] + wv,u.

Weight TabuCol selects a best neighbor sNbest ∈ N(s) according to the move gain given by
Equation 2.7 and the tabu tenure such that either the move gain for the sNbest is the minimum
(sNbest is the best solution) not forbidden by the tabu list or is better than the best solution found
so far. If there is more than one vertex with the same move gain, we will choose one vertex
randomly.

2.2.6 Uncoarsening phase

The uncoarsening phase carries out the inverse of the coarsening phase and further improves
the solution. The details of the underlying steps are described as follows.

(1) Recover the initial graph G from the collapsed graph G
′

with its corresponding coloring.
As we mentioned, the quality of a solution for the graph G

′
is worse than that of G because there

is a less degree of freedom for refinement. Thus, The first step of the uncoarsening phase is to
recover from the collapsed graph G

′
the original graph G in order to explore the search space

further.
(2) Perturbation process. Since our tabu search procedure focuses its search only around con-

flicting vertices, it can get trapped in a local optimum. Therefore, we periodically apply a simple
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perturbation before the tabu search process. The perturbation consists of moving a fixed number
of vertices (is set in this chapter to 0.3 ∗ N) in the following way.

This perturbation adopts the one-move operator. To avoid a too strong deterioration of the
perturbed solution, a directed perturbation move takes into consideration the fitness value and
cannot move back to the original color. While a decent perturbation performs a one-move without
considering the tabu tenure. To combine these two types of perturbations, each type of pertur-
bation is determined probabilistically. The resulting solution from the perturbation procedure is
then used as the new starting solution of the next round of the search phase.

After the uncoarsening phase, we run the tabu search (see Section 2.2.2) to further improve the
solution.

2.2.7 Pool updating strategy

Maintaining a healthy diversity of the population is another key issue for population-based
al- gorithms. To decide whether the newly generated solution should be inserted into the pop-
ulation or be discarded, we consider not only the solution quality but also the distance between
individuals in population. Our algorithm adopts the idea presented in [Lü and Hao, 2010].

Distance measure: Given two k-colorings Sm and Sn, according to the well-known set-theoretic
partition distance [Gusfield, 2002], the distance between Sm and Sn is defined as the minimum
number of one-move steps needed to transform Sm to Sn, i.e., d(Sm, Sn) = |V| − sim(Sm, Sn),
where sim(Sm, Sn) represents the maximum number of elements of Sm that do not need to be
displaced to obtain the solution Sn.

Di,POP = min{di,j : Sj ∈ POP, j 6= i} (2.8)

We use the sim(Sm, Sn) identify the similarity (Sm, Sn) in Section 2.2.4.

Qi,POP = f (Si) + eβ/Di,POP (2.9)

where f represents its fitness in the equation 2.2. and β a parameter set to β = 0.08 ∗ |V|.
The pool updating strategy consists thus of three steps: for each individual Si, i ∈ POP,

calculating Di,POP and the corresponding Qi,POP score (lines 5 of Algorithm 2.4); identifying the
maximum score Qmax (lines 6 of Algorithm 2.4); and updating the pool (lines 10-15 of Algorithm
2.4). This pool updating strategy contributes to avoid premature convergence for population-
based algorithms. The pool updating procedure is described in Algorithm 2.4.

2.3 Experimental results and comparisons

This section is dedicated to an experimental assessment of the proposed RMA algorithm for
solving the GCP and comparisons with other state of the art methods. The study is based on
39 conventional benchmark instances which are commonly used in the literature and initially
proposed for the DIMCAS and COLOR competitions for graph coloring problems 1, 2.

1. http://www.dimacs.rutgers.edu/
2. http://www.cs.hbg.psu.edu/txn131/graphcoloring.html/
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Algorithm 2.4: Pool updating strategy
1: Input: Population POP = {S1, S2, . . . , Sp} and new solution S0.
2: Output: Updated population POP = {S1, S2, . . . , Sp}

/*Evaluate each solution*/
3: Tentatively add S0 to population POP = POP ∪ S0
4: for i =0,1,. . . ,p do
5: Calculate the distance Di,POP between any individual in POP according to the Equation 2.8
6: Calculate the goodness score Qi,POP according to the Equation 2.9
7: end for

/*Select the worst solution*/
8: Choose the k− coloring with the largest Q value
9: Sw ← arg maxQ(Si), i = 0, 1, . . . , p

/*Update the pool population*/
10: if Sw 6= S0 then
11: Replace Sw with S0 /*Replace the worst solution*/
12: else if rand(0, 1) < 0.2 then
13: Ssw ← arg maxQ(Si), i = 1, . . . , p
14: Replace the orignal pop worst solution Ssw with S0 /*Replace the second worst solution*/
15: end if

2.3.1 Benchmark instances

The 33 benchmark instances are classified into two categories: easy graphs and difficult graphs
according to [Galinier et al., 2013; Galinier et al., 2008]. Let BKV (the best-known value) represents
χ(G) (if known) or the best-known value in the literature.

1. The first category, easy graphs, contains 19 instances that can be colored with BKV colors by
a basic coloring algorithm like DSATUR [Brélaz, 1979] (thus by numerous algorithms).

2. The second category contains 20 instances that are hard graphs that can only only be achieved
by a few advanced coloring algorithms.

2.3.2 Experiment settings

The proposed algorithm was programmed in C++ and compiled by GNU g++ 4.1.2 with -O3
flag (option). The experiments were conducted on a computer with an Intel Xeon E5-2670 proces-
sor (2.5 GHz and 2 GB RAM) running Ubuntu 12.04. Without using a compiler optimization flag,
it requires respectively 0.46, 2.68 and 10.70 seconds to solve the well-known DIMACS machine
benchmark graphs r300.5, r400.5 and r500.5 on our machine.

Parameters

Since our algorithm is built up on the memetic algorithm proposed in [Lü and Hao, 2010],
we adopt the parameters in [Lü and Hao, 2010], as the default setting of the RMA algorithm,
as shown in Table 2.1. We use the default setting of Table 2.1 to report the experimental results
shown in the rest of this chapter.

Table 2.1 – Settings of important parameters

Parameters Description Value

p size of population 20
β maximum number of iterations for the tabu search methods 10000
P0 probability for accepting worse solution 0.2
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Reference algorithms

To evaluate the performance of the proposed algorithm, ten state-of-the-art heuristic algo-
rithms in the literature are used as the main reference algorithms, including (1) Iterated local
search algorithm (IGrAl) [Caramia and Dell Olmo, 2008] (a 2.8 GHz Pentium 4 processor and a
cut off time of 1 hour); (2) Variable space search algorithm (VSS) [Hertz et al., 2008] (a 2.0 GHz
Pentium 4 processor and a cut off time of 10 hours); (3) Local search algorithm using partial solu-
tions (Partial) [Blöchliger and Zufferey, 2008] (a 2.0 GHz Pentium 4 and a time limit of 10 hours
together with a limit of 2 ∗ 109 iterations without improvement); (4) Probability learning based lo-
cal search (PLSCOL) [Zhou et al., 2018] (Intel Xeon E5-2760 2.8 GHz processor and 2 GB RAM with
a cutoff of 5 hours); (5) Hybrid evolutionary algorithm (HEA) [Galinier and Hao, 1999] (the pro-
cessor used is not available for this oldest algorithm and the results were obtained with different
parameter settings); (6) Adaptive memory algorithm (AMA) [Galinier et al., 2008] (the proces-
sor applied is not available and the results were obtained with different parameter settings); (7)
Two-phase evolutionary algorithm (MMT) [Malaguti et al., 2008] (a 2.4 GHz Pentium processor
and a cut off time of 6000 or 40000 seconds); (8) Evolutionary algorithm with diversity guarantee
(Evo-Div) [Porumbel et al., 2010] (a 2.8 GHz Xeon processor and a cut off time of 12 hours); (9)
Memetic algorithm (MACOL or MA) [Lü and Hao, 2010] (a 3.4 GHz processor and a cutoff time
of 5 hours); (10) Distributed quantum annealing algorithm (QACOL or QA) [Titiloye and Crispin,
2011; Titiloye and Crispin, 2012] (a 3.0 GHz Intel processor with 12 cores and a cut off time of 5
hours); (11) The newest parallel memetic algorithm (HEAD) [Moalic and Gondran, 2015] (a 3.1
GHz Intel Xeon processor with 4 cores used to run in parallel the search processes with a cut off
time of at least 3 hours).

Stopping condition

Despite the extremely vast literature on graph coloring, there is no uniform experimental stop-
ping criteria to assess a coloring algorithm. This is mainly because the difficult DIMACS instances
are really challenging, the best-known solutions for these instances can be found only by few most
powerful algorithms which were implemented with different programming languages and exe-
cuted under various computing platforms and different stopping conditions (maximum allowed
generations, maximum allowed fitness evaluations, maximum allowed iterations or maximum
allowed time limit).

On the other hand, these reference algorithm were tested on different CPU frequency, it would
be quite difficult to compare CPU times of the compared algorithms.

To make a relatively fair comparison of the runtime, we use the best solution (i.e., the smallest
number of used colors) for this comparative study. This experimental conditions of the compared
algorithms are not equivalent, since the computing time of each algorithm is not only influenced
by the processor, but also by some inaccessible factors such as the operating systems, compliers,
the comparison is just intended to show the relative performance of the proposed algorithm.

One can observe that the majority of the reference algorithms allowed large run time limits
of at least 5 hours (the cut off limit for our experiments). Additionally, our Intel Xeon E5-2670
2.5 GHz processor is almost the same with those used by the reference algorithms. Thus, we use
the stopping criterion of 5 hours to investigate the ehavior of our RMA algorithm on the set of 39
instances. For each instance, our algorithm was executed 20 times independently. As a result, our
adopted stopping conditions can be considered as reasonable with respect to those used by the
reference algorithms.
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2.3.3 Comparison with state-of-the-art algorithms

2.3.4 Comparative results on easy instances

Table 2 reports the results of our RMA algorithm on the first set of 19 DIMACS/COLOR in-
stances commonly used in the literature, together with the results of 10 state-of-the-art coloring
algorithms in the literature. We focus on the criterion of solution quality in terms of the smallest
number of colors used to find a legal coloring. The first column indicates the name of each in-
stance. The second column shows the best-known value (BKV) reported in the literature [Caramia
and Dell Olmo, 2008; Hertz et al., 2008; Blöchliger and Zufferey, 2008; Galinier and Hao, 1999;
Galinier et al., 2008; Malaguti et al., 2008; Porumbel et al., 2010; Lü and Hao, 2010; Titiloye and
Crispin, 2011; Titiloye and Crispin, 2012; Moalic and Gondran, 2015]. The following three columns
report the best results (Best), the success rate (SR) to achieve the best result over 10 runs and the
computation time obtained by the reference algorithms. The next four columns show the results
of RMA for each instance: the best result (i.e., the smallest number of colors used) over 20 in-
dependent runs (Best), the success rate (SR) to achieve the best result over 20 runs, the minimal
computation time (t(s)Min) and the average computation time (in seconds) of the successful runs
to obtain the best result (t(s)Avg ).

Additionally, the rows #Better, #Equal and #Worse indicate respectively the number of in-
stances for which an algorithm performs better, equally well or worse compared to the best-
known values (BKV). Finally, an entry with ∗ indicates the optimal objective value.

Table 2.2 – Comparative results of RMA with state-of-the-art algorithms MACOL and PLSCOL
on 19 easy benchmark instances. Improved upper bounds are indicated in bold.

Instance BKV
MACOL PLSCOL RMA

Best SR t(m)Avg Best SR t(m)Avg Best SR t(s)Min t(s)Avg
DSJC125.1.col 5 5* 10/10 1 5* 10/10 < 1 5* 20 0 0.014
DSJC125.5.col 17 17 10/10 3 17 10/10 < 1 17 20 0.03 0.263
DSJC125.9.col 44 44 10/10 4 44 10/10 < 1 44 20 0.01 0.027
DSJC250.1.col 8 8 10/10 2 8 10/10 < 1 8 20 0.01 0.0615
DSJC250.9.col 72 72 10/10 3 72 10/10 < 1 72 20 0.28 2.911
R125.1.col 5 5 10/10 2 5 10/10 < 1 5 20 0 0.002
R125.1c.col 46 46 10/10 5 46 10/10 < 1 46 20 3.11 6.147
R125.5.col 36 36 10/10 1 36 10/10 < 1 36 20 0.05 1.7565
R250.1.col 8 8 10/10 5 8 10/10 < 1 8 20 0 0.0075
R250.1c.col 64 64 10/10 4 64 10/10 1 64 20 0.06 19.9475
DSJR500.1.col 12 12 10/10 4 12 10/10 < 1 12 20 0.04 0.1385
R1000.1.col 20 20 10/10 2 20 10/10 < 1 20 20 0.25 0.2735
le450_15a.col 15* 15* 10/10 2 15* 10/10 < 1 15* 20 0.12 0.3605
le450_15b.col 15* 15* 10/10 2 15* 10/10 < 1 15* 20 0.09 0.2195
le450_25a.col 25* 25* 10/10 4 25* 10/10 < 1 25* 20 0.04 0.0475
le450_25b.col 25* 25* 10/10 3 25* 10/10 < 1 25* 20 0.04 0.0475
school1.col 14 14 10/10 6 14 10/10 < 1 14 20 0.03 0.043
school1_nsh.col 14 14 10/10 1 14 10/10 < 1 14 20 0.03 0.0425
flat300_20_0.col 20* 20* 10/10 4 20* 10/10 < 1 20* 20 0.05 0.0855
#Better 0/19 0/19 0/19
#Equal 19/19 19/19 19/19
#Worse 0/19 0/19 0/19

Table 2.2 reports the comparative results with MACOL [Lü and Hao, 2010] which is respec-
tively one of the most powerful population-based coloring algorithms in the literature and PLSCOL,
which is the most recent heuristic algorithm [Zhou et al., 2018]. We can observe that for these 19
easy instances, the MACOL algorithm was run on a PC with 3.4 GHz CPU and 2G RAM and the
results of the PLSCOL is obtained on a computer equipped with 2.8 GHz and 2G RAM ( against
2.5 GHz and 2 GB RAM for our computer). Table 2.2 indicates that all MACOL, PLSCOL and
RMA can easily find the best-known results with a 100% success rate. However, RMA can attain
the best-known solutions more quickly, i.e., RMA uses less time (at most 20s) to find its best re-
sults while MACOL needs 1 to 5 minutes to achieve the same results and the PLSCOL uses less
than60s.
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2.3.5 Comparative results on difficult instances

Table 2.3 presents the comparative results of RMA with state-of-the-art algorithms on the 20
difficult instances. In this table, column 2 recalls the chromatic number or best-known value
(BKV) in the literature. The next four columns show the results of the local search algorithm for
each instance. The following 10 columns report the best results obtained by the 4 reference local
search algorithm and 7 reference population-based algorithms. The last column is the best result
obtained by RMA.

Additionally, in order to show the performance of RMA, we use the rows #Better_compareRMA,
#Equal_compareRMA and #Worse_compareRMA to indicate respectively the number of instances
for which an algorithm performs better, equally well or worse compared to the best-known values
of RMA (Best). As we observe from Table 2.3, RMA competes favorably with the reference algo-

Table 2.3 – Comparative results of RMA with state-of-the-art algorithms MACOL and PLSCOL
on 20 difficult benchmark instances. The best results are in bold.

Instance BKV
Local search algorithms Population-based algorithms

IGrAl VSS Partial PLSCOL HEA AMA MMT Evo-Div MA QA HEAD RMA
2008 2008 2008 2018 1999 2008 2008 2010 2010 2011 2015 Best

DSJC250.5.col 28 29 - - 28 - 28 28 - 28 28 28 28
DSJC500.1.col 12 12 12 12 12 12 12 12 12 12 12 12 12
DSJC500.5.col 47 50 48 48 48 48 48 48 48 48 48 47 48
DSJC500.9.col 126 129 126 127 126 126 126 127 126 126 126 126 126
DSJC1000.1.col 20 22 20 20 20 20 20 20 20 20 20 20 20
DSJC1000.5.col 82 94 86 89 87 83 84 84 83 83 83 82 83
DSJC1000.9.col 222 239 224 226 223 224 224 225 223 223 222 222 223
DSJR500.1c.col 85 85 85 85 85 - 86 85 85 85 85 85 85
DSJR500.5.col 122 126 125 125 126 - 127 122 122 122 122 - 122
le450_15c.col 15* 16 15* 15* 15* 15* 15* 15* - 15* 15* - 15*
le450_15d.col 15* 16 15* 15* 15* 15* 15* 15* - 15* 15* - 15*
le450_25c.col 25* 27 25* 25* 25* 26 26 25* 25* 25* 25* 25* 25*
le450_25d.col 25* 27 25* 25* 25* 26 26 25* 25* 25* 25* 25* 25*
flat300_26_0.col 26* - - - 26* - 26* 26* - 26* - - 26*
flat300 28 0.col 28* - 28* 28* 30 31 31 31 31 29 31 31 29
flat1000_76_0.col 81 - 85 87 86 83 84 83 82 82 82 81 83
R250.5.col 65* - - 66 66 - - 65 65* 65* 65* 65* 65*
R1000.1c.col 98 - - - 98 - - 98 98 98 98 98 98
R1000.5.col 234 238 245 238 254 255 - 234 238 245 238 245 254
latin_square_10.col 97 100 - - 99 - 104 101 100 99 98 - 98
#Better 0/14 0/14 0/16 0/20 0/12 0/17 0/20 0/16 0/20 0/19 0/15 0/20
#Equal 2/14 9/14 8/16 11/20 5/12 7/17 13/20 9/16 13/20 13/19 13/15 13/20
#Worse 12/14 5/14 8/16 9/20 7/12 10/17 7/20 7/16 7/20 6/19 2/15 7/20
#Better_compareRMA 0/14 1/14 2/16 1/20 0/12 0/17 1/20 2/16 2/20 3/19 4/15 -
#Equal_compareRMA 2/14 9/14 8/16 13/20 8/12 8/17 14/20 12/16 17/20 15/19 9/15 -
#Worse_compareRMA 12/14 4/14 6/16 7/20 4/12 9/17 5/20 2/16 1/20 1/19 1/15 -

rithms. In order to facilitate comparisons, we divide these reference algorithms into three groups.
The first group contains 3 algorithm, MA, PLSCOL and MMT, which has the complete experi-
mental results for the 20 difficult instances. Observes that RMA attains 13 best known values
while PLSCOL, MA and MMT obtains 11, 13 and 13 respectively. RMA, MA and MMT perform
similarly, while the differnce between RMA and PLSCOL is significant.

The second category contains algorithms IGrAI, Partial, HEA, AMA and Evo-Div, which does
not contain all 20 corresponding resluts. However, RMA competes favorably with those algo-
rithm since it can obtain less values in the row of #Worse, which means RMA at least can domi-
nate those algorithms. In detail, RMA is worse than BKV for 7 instances out of 20 instances, while
IGrAI, Partial, HEA, AMA, Evo-Div are worse than BKV for 12, 8, 7, 10 and 7 respectively.

The third category cantains the last three algorithms (VSS, QA and HEAD), whose values of
the row of #Worse are smaller than the value of the row of #Worse of RMA. which also misses
some corresponding resluts in the 20 difficulty instances. When comparing RMA with VSS, one
observes that RMA also performs very well. Specifically, RMA improves the best results of VSS
for 4 instances while matching the best results of RMA for other 9 instances. Only in one case,
f lat300_28_0, RMA obtains a slightly worse results. Additionally, when comparing to the best
results obtained by QA, RMA obtains 3 worse results, 1 better results and matches the remaining
instances. Finally, RMA obtains 5 worse results and 1 better result compared with the results of
HEAD.
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2.4 Analysis

This section performs additional experiments to gain understanding of some important ingre-
dients of the proposed RMA approach: the number of parents for RMA, the strategy of the group
matching and the perturbation strategy.

2.4.1 Effectiveness of the number of parents for RMA

To assess the influence of the number of parents in the proposed algorithm, we create a algo-
rithmic variant (called RMAmutiparents) in which multi-parents are used in the backbone match-
ing process ( Section 2.2.4) when collapsing vertices. In detail, those vertices whose colors are
identical should also be allocated to the same color in all chosen parents. For this experiment, we
select 16 instances which are relatively difficult according to the results reported in Tables 2.3.

We ran 10 times both algorithms to solve each selected instance with a cutoff time of 9000
seconds (2.5 hour). The comparative results of this experiment are presented in Table 2.4 with the
same information as before.

The rows #Better/#Equal/#Worse indicate the number of instances for which each algorithm
attain a better, equal and worse results compared to the other algorithm in terms of the best
objective value found by RMA.

Table 2.4 reports that RMA dominates the RMAmutiparents algorithm on the 16 instances
tested by both algorithm, by obtaining better results for 12 instances and the same results for the
remaining 4 instances.

Table 2.4 – Assessment of different number of the parents. The better results are in bold.

Instance BKV
RMA RMAmutiparents

Best SR t(s)Min t(s)Avg Best SR t(s)Min t(s)Avg
DSJC1000.1.col 20 20 8 1456.91 2919.92 21 10 1.23 8.177
DSJC1000.5.col 84 84 4 3140.62 6015.84 88 848.9 4703.63 9
DSJC1000.9.col 224 224 9 3073.77 5248.5 226 4937.8 5406.56 2
DSJC500.5.col 48 48 10 568 952.641 >48 - - -
DSJC500.9.col 126 126 9 356.77 831.989 >126 - - -
DSJR500.1c.col 85 85 9 51.52 1439.14 >85 - - -
DSJR500.5.col 123 123 4 2568.1 5904.71 127 555.21 3787.49 5
flat300_28_0.col 29 29 2 915.63 1109.07 30 3 2382.55 3375.8
latin_square_10.col 99 99 6 1818.46 4148.19 >99 - - -
le450_15c.col 15 15 10 1471.31 2386.74 15 5 0 2826.1
le450_15d.col 15 15 9 1885.01 3457.61 16 10 0.29 6.986
le450_25c.col 25 25 4 252.26 4844.03 25 7 1984.45 4842.53
le450_25d.col 25 25 5 2106.12 4861.31 25 3 3004.16 6340.4
r1000.1c.col 98 98 10 137.6 275.987 98 10 225.45 1767.97
R1000.5.col 256 256 3 6672.23 7708.9 >256 - - -
R250.5.col 65 65 10 374.91 2273.22 >65 - - -
#Better 12/16 0/16
#Equals 4/16 4/16
#Worse 0/16 12/16

2.4.2 Effectiveness of the different matching strategies for RMA

The group matching procedure (Section 2.2.4) allows the information of the parents to be pre-
served during the coarsening process. In this section, we discuss how those group matching
coarsening processes contribute to the overall performance of our RMA algorithm.

For this study, we create RMA_maxmatch, which is a RMA variant where we replace line
15 of Algorithm 2.1 with the group comparison procedure of MACOL. We ran RMA_maxmatch
under the same stopping condition as before in Section 2.4.1 if a legal k-coloring is found or the
maximum allowed run time of 2.5 CPU hours is reached. Each tested instance was solved 10
times.

Table 2.5 displays the comparative results between RMA and RMA_maxmatch, based on
the same indicators adopted in Table 2.4. From this table, we observe that RMA outperforms
RMA_maxmatch, achieving better values for 5 out of 16 instances and equal results for the re-
maining 11 instances. Moreover, for the 11 instances where both algorithms achieve the same
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Table 2.5 – Assessment of different strategies. The better results are in bold.

Instance BKV
RMA RMA MAXmatch

Best SR t(s)Min t(s)Avg Best SR t(s)Min t(s)Avg
DSJC1000.1.col 20 20 8 1456.91 2919.92 21 10 2.46 14.068
DSJC1000.5.col 84 84 4 3140.62 6015.84 88 9 848.9 4703.63
DSJC1000.9.col 224 224 9 3073.77 5248.5 224 2 4084.86 4715.52
DSJC500.5.col 48 48 10 568 952.641 48 9 1363.79 2810.19
DSJC500.9.col 126 126 9 356.77 831.989 126 10 1240.1 2592.08
DSJR500.1c.col 85 85 9 51.52 1439.14 85 8 2.07 54.64
DSJR500.5.col 123 123 4 2568.1 5904.71 123 4 2670.3 6493.06
flat300_28_0.col 29 29 2 915.63 1109.07 30 7 844.3 3754.1
latin_square_10.col 99 99 6 1818.46 4148.19 >99 - - -
le450_15c.col 15 15 10 1471.31 2386.74 15 9 291.87 1370.87
le450_15d.col 15 15 9 1885.01 3457.61 15 9 1997.77 3779.21
le450_25c.col 25 25 4 252.26 4844.03 25 4 1569.42 1912.22
le450_25d.col 25 25 5 2106.12 4861.31 25 1 7432.84 7432.84
r1000.1c.col 98 98 10 137.6 275.987 98 10 115.79 193.373
R1000.5.col 256 256 3 6672.23 7708.9 257 5 2355.7 7083.36
R250.5.col 65 65 10 374.91 2273.22 65 9 449.22 1642.08
#Better 5/16 0/16
#Equal 11/16 11/16
#Worse 0/16 5/16

best objective values, RMA obtains a high successful rate than RMA_maxmatch for 6 instances
and equal successful rate for 4 instances. These observations confirm the usefulness of the group
matching procedure for the RMA algorithm.

2.4.3 Effectiveness of the perturbation operation

As shown in Section 2.2.6, the proposed algorithm uses a perturbation strategy as an addi-
tional means of diversification. To assess this strategy, we compare RMA with a RMA variant
(denoted as RMA

′
) where the perturbation strategy is disabled. We ran 10 times both algorithms

to solve each selected instance with a cutoff time of 9000s. Table 2.6 presented the results of

Table 2.6 – Analysis of the influence of the perturbation on the performance of the RMA algorithm.
The better results are in bold.

Instance BKV
RMA RMA

′

Best SR t(s)Min t(s)Avg Best SR t(s)Min t(s)Avg
DSJC1000.1.col 20 20 8 1456.91 2919.92 20 1 4844.62 4844.62
DSJC1000.5.col 84 84 4 3140.62 6015.84 84 4 2673.52 4360.01
DSJC1000.9.col 224 224 9 3073.77 5248.5 224 3 4904.07 5699.28
DSJC500.5.col 48 48 10 568 952.641 48 10 357.43 658.692
DSJC500.9.col 126 126 9 356.77 831.989 126 10 199.17 1085.46
DSJR500.1c.col 85 85 9 51.52 1439.14 85 6 41.24 346.385
DSJR500.5.col 123 123 4 2568.1 5904.71 123 5 2885.95 5967.13
flat300_28_0.col 29 29 2 915.63 1109.07 30 4 2143.44 4007.43
latin_square_10.col 99 99 6 1818.46 4148.19 99 2 4489.02 5026.55
le450_15c.col 15 15 10 1471.31 2386.74 15 10 1271.21 2255.93
le450_15d.col 15 15 9 1885.01 3457.61 15 9 1877.32 3262.46
le450_25c.col 25 25 4 252.26 4844.03 25 2 4396.54 4906.53
le450_25d.col 25 25 5 2106.12 4861.31 25 2 4079.44 5885
r1000.1c.col 98 98 10 137.6 275.987 98 10 94.2 244.228
R1000.5.col 256 256 3 6672.23 7708.9 256 5 4657.43 6093.6
R250.5.col 65 65 10 374.91 2273.22 65 10 215.27 1632.82
#Better 1/16 6/15 0/16 3/16
#Equal 15/16 6/15 15/16 6/15
#Worse 0/16 3/15 1/16 6/15

this experiment with the same statistics as before. One can observe that RMA dominates the
RMA variant (RMA

′
) just in one instances (flat300_28_0) and achieves the same values for other

instances. For these same results, the SR of RMA is higher than RMA
′
. This experiment demon-

strates the interest of the perturbation strategy, which enables the algorithm to get rid of local
optimal traps in certain instances.

2.5 Conclusions

The graph coloring problem (GCP) is an NP-hard problem with a number of practical appli-
cations. In this Chapter, we presented RMA for this well-known problem.
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The proposed algorithm uses the evolutionary framework that integrates several procedures
such as greedy initialization and backbone-based collapsing operator to generate a coarsened
graph G

′
, the weighted iterated tabu search to explore the search region, an uncoarsening process

to recover the original graph, a perturbation to escape local optima traps, a tabu search to explore
the search region when the solution is near the optimal solution and a diversity-based population
updating rule to maintain a healthy population.

We assessed the performance of the RMA algorithm on popular DIMACS challenge bench-
mark graph instances that are commonly used in the literature and the experiment results showed
that the proposed algorithm competes favorably with the state of the art coloring algorithms.

For future work, several directions could be followed. First, it would be interesting to inves-
tigate whether using a more powerful coloring algorithm instead of the TabuCol algorithm leads
to even better results.

Second, it would be interesting to adopt other approaches for collapsing vertices with the
feature of graphs.

Third, the way of collapsing vertex could be promising in solving a number of grouping prob-
lems such as bin packing [Nicholson, 1998], quadratic multiple knapsack problem [Chen and Hao,
2016] and graph partitioning [Benlic and Hao, 2011; Galinier et al., 2011].





3
On feasible and infeasible search for ECP

In this chapter, we propose a feasible and infeasible search algorithm for the ECP which en-
larges the search to include equity-infeasible solutions. The resulting algorithm relies on a mixed
search strategy exploring both equitable and inequitable colorings unlike existing algorithms
where the search is limited to equitable colorings only. We present experimental results on 73
DIMACS and COLOR benchmark graphs and demonstrate the competitiveness of this search
strategy by showing 9 improved best-known results (new upper bounds). The content of this
chapter is based on an article published in the In Proceedings of the Genetic and Evolutionary
Computation Conference 2017 [Sun et al., 2017].
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3.1 Introduction

In this chapter, we present a feasible and infeasible search algorithm (FISA) for the equitable
graph coloring problem which enlarges the search to include equity-infeasible solutions. Recall
that an equitable legal k-coloring of an undirected graph G = (V, E) is a partition of the vertex set
V into k disjoint independent sets, such that the cardinalities of any two independent sets differ
by at most one (this is called the equity constraint). As a variant of the popular graph coloring
problem (GCP), the equitable coloring problem (ECP) involves finding a minimum k for which
an equitable legal k-coloring exists.

The proposed FISA algorithm relies on two search phases (see Sections 3.3.2 and 3.3.3) to en-
sure a rapid and effective examination of the search space. The first phase examines only the
space of equity-feasible colorings to seek a legal (i.e., conflict-free) k-coloring, which is based on
the basic tabu search procedure of the BITS algorithm [Lai et al., 2015] which is the most effective
equity-feasible algorithm for the ECP. The first phase is repeated until legal k-coloring is found is
found or the best solution found so far cannot be improved after a number of consecutive itera-
tions. If a legal k-coloring is found, the k-ECP problem is solved with the current k value and we
continue with the new k-ECP problem by setting k = k− 1. If the first phase fails to find a legal
k-coloring in the equity-feasible space, the second phase is called to search the enlarged space
include equity-infeasible colorings by using an extended fitness function to guide the search pro-
cess. If the search is trapped in a deep local optimum, the perturbation phase applies a operator
to definitively lead the search process to a distant region from which a new round of the search
procedure starts. The second phase is repeated until the stopping condition met.

The proposed FISA algorithm includes the following original features. First, before the infea-
sible search, the proposed FISA algorithm adopts a feasible tabu procedure to quickly attain a
promising search area. This combination prevents the search procedure from running the more
expensive infeasible tabu search procedure in an unpromising area and thus helps to increase the
search efficiency of the algorithm. Second, to prevent the search from going too far away from the
feasible boundary, we devise an extended penalty-based fitness function which is used to guide
the search for an effective examination of candidate solutions.

We show computational results on a set of 73 benchmark graphs from the DIMACS and
COLOR competitions to assess the interest of the proposed approach. These results include espe-
cially 9 improved best solutions (new upper bounds) which can be used to assess other algorithms
for the ECP.

The chapter is organized as follows. Section 3.2 introduces some preliminary definitions. Sec-
tion 3.3 is dedicated to the description of the proposed algorithm. Section 3.4 presents computa-
tional results and comparisons with state of the art algorithms. Section 3.5 analyzes the impact of
some key components of the proposed algorithm. Conclusions and future work are discussed in
the last section.

3.2 Basic definitions

We introduce the following basic definitions which are useful for the description of the pro-
posed approach. Let G = (V, E) be a given graph.

Definition 3.2.1. A candidate coloring of G is any partition of the vertex set V into k subsets
V1, V2, . . . , Vk, where each Vi is called a color class.

Definition 3.2.2. A legal coloring is a conflict-free coloring composed of independent sets, i.e., any
pair of vertices of any color class are not linked by an edge in E. Otherwise, it is an illegal or
conflicting coloring.
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Definition 3.2.3. An equitable coloring or equity-feasible solution is any candidate coloring satisfying
the equity constraint, i.e., the cardinalities of any two color classes differ by at most one. Other-
wise, it is an equity-infeasible solution.

3.3 Feasible and infeasible search algorithm for ECP

3.3.1 General approach

The equitable coloring problem (ECP) involves finding the smallest number of colors k such
that an equitable legal k-coloring exists for a given graph G. Like for the conventional GCP [Galin-
ier et al., 2013], the ECP can be approximated by finding a series of equitable legal k-colorings for
decreasing k values. To seek an equitable legal k-coloring for a given k, one typically explores the
space of equity-feasible colorings while minimizing a fitness function f which counts the number
of conflicting edges [Díaz et al., 2014; Lai et al., 2015]. The ECP problem with a given k is called
the k-ECP problem.

This study follows this general approach of solving a series of k-ECP problems. However for
each fixed k, our algorithm explores candidate solutions which include both equity-feasible and
equity-infeasible colorings. For this, our feasible and infeasible search algorithm (FISA) intro-
duces an extended fitness function F which is employed to measure the quality of any candidate
solution.

The proposed FISA algorithm is composed of two search phases (see Sections 3.3.2 and 3.3.3).
The first phase examines only the space of equity-feasible colorings to seek a legal (i.e., conflict-
free) k-coloring. If a legal k-coloring is found, the k-ECP problem is solved with the current k value
and we continue with the new k-ECP problem by setting k = k− 1. To be effective, the first phase
is based on the basic tabu search procedure of the BITS algorithm [Lai et al., 2015]. If the first
phase fails to find a legal k-coloring with the equity-feasible space, the second phase is invoked to
enlarge the search to include equity-infeasible colorings. To explore the enlarged search space, this
second phase relies on the extended fitness function F to guide the search process. The infeasible
search terminates if an equitable coloring is found or if the best solution found so far cannot
be improved after a number of consecutive iterations. The pseudo-code of the FISA algorithm
is given in Algorithm 3.1. The algorithm starts with an initial equity-feasible solution which is
generated with a simple greedy heuristic presented in [Lai et al., 2015]. In the next sections, we
explain the search strategies of both phases of the FISA algorithm.

Algorithm 3.1: Main Scheme of the FISA algorithm for the ECP
1: Input: Graph G; k colors
2: Output: An equitable legal k-coloring if found
3: s0 ← greedy_initial(G, k) /∗ Generate an initial equity-feasible k-coloring ∗/
4: s1 ← f easiable_search(s0) /∗ Section 3.3.2 ∗/
5: if f (s1) = 0 then
6: return(s1) and stop
7: end if
8: while stopping condition is not met do
9: s2 ← in f easiable_search(s1) /∗ Section 3.3.3 ∗/

10: if F(s2) = 0 then
11: return(s2) and stop
12: end if
13: s1 ← perturbation(s2)
14: end while
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3.3.2 Searching equity-feasible solutions

The first phase of the proposed FISA algorithm searches the space of candidate solutions
which verifies the equity constraint and tries to find a legal k-coloring. This is achieved by min-
imization of the number of conflicting edges of candidate equitable k-colorings, an edge is con-
flicting if its endpoints belong to the same color class.

Equity-feasible space and fitness function

We define the equity-feasible space Ωk to be the set of all candidate colorings verifying the
equity constraint. Formally, Ωk is given by

Ωk = {{V1, V2, · · · , Vk} : ||Vi| − |Vj|| ≤ 1,∪k
i=1Vi = V, Vi ∩Vj = ∅} (3.1)

where i 6= j, 1 ≤ i, j ≤ k.
To assess the quality of a candidate solution s in Ωk, the evaluation or fitness function counts

the number of conflicting edges in the color classes of s. Specifically, let s = {V1, V2, . . . , Vk} ∈ Ωk
be a candidate solution, let C(Vi) denote the set of conflicting edges with both endpoints in Vi.
The fitness function f (which is to be minimized) is given by

f (s) =
k

∑
i=1
|C(Vi)| (3.2)

Therefore, a solution s with f (s) = 0 is an equitable legal k-coloring satisfying both the equity
and coloring constraints. When such a solution is found, the associated k-ECP problem is solved.

The feasible search phase of the FISA algorithm uses this fitness function to guide its search
process to visit solutions of Ωk in order to obtain a solution s with f (s) = 0.

Move operators to explore space Ωk

To explore the space Ωk, the feasible search phase applies two move operators to generate
neighboring solutions from the current solution. Let s = {V1, V2, . . . , Vk} be the current solution.
Let C(s) denote the set of conflicting vertices involved in the conflicting edges of s.

1. One-move operator: It transfers a conflicting vertex v from its current color class Vi to a
different color class Vj ensuring that the equity constraint is always respected, i.e., |Vi| >
bn

k c, |Vj| < dn
k e. Let < v, Vi, Vj > denote such a move. We use s⊕ < v, Vi, Vj > to denote

the neighboring solution generated by applying the move to s. Then the neighborhood N1
induced by this move operator contains all possible solutions obtained by applying “one-
move” to s, i.e.,

N1(s) = {s ⊕ < v, Vi, Vj > : v ∈ Vi ∩ C(s)} (3.3)

where 1 ≤ i, j,≤ k, i 6= j, |Vi| > bn
k c, |Vj| < dn

k e.
Note that the one-move operator is not applicable if bn

k c = d
n
k e. In this case, the neighbor-

hood N1 is empty.
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2. Swap operator: It exchanges a conflicting vertex v of color class Vi with another vertex u of
color class Vj (i 6= j). Let swap(v, u) denote such a move. The neighborhood N2 induced by
the swap operator is composed of all possible solutions obtained by applying “swap” to s
(recall that C(s) is the set of conflicting vertices of s).

N2(s) = {s⊕ swap(v, u) : v ∈ Vi, u ∈ Vj, i 6= j, {v, u} ∩ C(s) 6= ∅} (3.4)

Since this operator does not change the cardinality of any color class, a neighboring solution
generated by this operator is always equity-feasible (given that the current solution is an
equitable k-coloring).

Exploration of the space Ωk

Starting from an equitable (conflicting) k-coloring of Ωk, the first phase of FISA iteratively im-
proves the solution according to the tabu search method [Glover and Laguna, 2013]. Specifically,
the basic tabu search procedure (TS0) described in [Lai et al., 2015] is applied to find a conflict-free
k-coloring. At each iteration, a best admissible candidate solution is taken among the neighbor-
ing solutions of N1 and N2 to replace the current solution. The underlying move (< v, Vi, Vj > for
one-move or swap(v, u)) is recorded in the so-called tabu list in order to forbid the reverse move
for a fixed number of next iterations. This tabu search process continues until either a solution s
with f (s) = 0 is found in which case, the current k-ECP problem is solved, or the current solution
is not improved during a fixed number of consecutive iterations in which case the FISA algorithm
moves to the second search phase.

3.3.3 Searching equity-infeasible solutions

When the first phase fails to identify an equitable legal k-coloring within the equity-feasible
space Ωk, the FISA algorithm invokes the second phase to explore an enlarged space Ω+

k including
both equity-feasible and equity-infeasible solutions.

Equity-infeasible space and extended fitness function

The enlarged search space Ω+
k explored by the second phase contains all possible partitions of

the vertex set V into k disjoint subsets as follows.

Ω+
k = {{V1, V2 : · · · , Vk} : ∪k

i=1Vi = V, Vi ∩Vj = ∅} (3.5)

where i 6= j, 1 ≤ i, j ≤ k.
We note that this enlarged search subsumes the equity-feasible space Ωk and additionally

includes the equity-infeasible solutions.
To evaluate the quality of the solutions of Ω+

k , we devise an extended penalty-based fitness
function F. For this purpose, we first introduce some notations.

Let W+ = dn/ke and W− = bn/kc, which represent respectively the theoretical cardinality of
the largest and smallest color classes in an equitable k-coloring. Then for an equitable k-coloring
s = {V1, V2, · · · , Vk}, W− ≤ |Vi| ≤ W+ (i = 1, · · · , k) holds. Let s = {V1, V2, · · · , Vk} be a
candidate solution in Ω+

k , we define the penalty ρi (i = 1, · · · , k) for each color class Vi of the
solution s to be the gap between |Vi| and the theoretical cardinalities as follows.
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ρi =

{
|Vi| −W+, i f |Vi| ≥W+

W− − |Vi|, i f |Vi| ≤W− (3.6)

Following the general idea of penalty function for constrained optimization [Michalewicz and
Schoenauer, 1996], we introduce an extended evaluation function F to asses both feasible and
infeasible solutions of Ω+

k , which enriches the objective function f (Equation (3.2)) with a penalty
function P = ϕ ∑k

i=1 ρi.

F(s) =
k

∑
i=1
|C(Vi)|+ ϕ

k

∑
i=1

ρi (3.7)

where C(Vi) is the set of conflicting edges in color class Vi and ϕ (a parameter with ϕ ≥ 1) is
the penalty coefficient which is used to control the importance given to the penalty function (see
Section 3.5.1 for an analysis of ϕ). According to this definition, a candidate solution violating
strongly (weakly) the equity constraint will be penalized more harshly (slightly). Since in general
the number of conflicting edges (the first term) of F decreases quickly when the search progresses,
the penalty term has the desirable property of helping the search process to avoid infeasible solu-
tions which are too far from the feasibility boundaries. Note that the penalty term of an equitable
coloring equals 0.

Therefore, a partition s ∈ Ω+
k with F(s) = 0 corresponds to a equitable and legal k-coloring,

i.e., satisfying both the equity and coloring constraints and is thus a solution to the k-ECP problem.

Move operators to explore the space Ω+
k

To explore the search space Ω+
k , the infeasible search phase also applies two move operators to

generate neighboring solutions. Let s = {V1, V2, . . . , Vk} be the current solution. Let C(s) denote
the set of conflicting vertices of s, i.e., the vertices involved in a conflicting edge.

1. One-move operator: Like for the first search phase, this operator displaces a conflicting ver-
tex v from its current color class Vi to another color class Vj. However, the equity constraint
is no more considered. This leads to the following enlarged neighborhood.

N+
1 (s) = {s ⊕ < v, Vi, Vj > : v ∈ Vi ∩ C(s), 1 ≤ i, j ≤ k, i 6= j} (3.8)

Clearly N+
1 is bounded by O(|C(s)| × k) in size. To effectively calculate the move gain which

identifies the change in the fitness function F (Equation (3.7), we adopt the fast incremental
evaluation technique of [Lai et al., 2015]. The main idea is to maintain a matrix A of size
n × k with elements A[v][q] recording the number of vertices adjacent to v in color class
Vq (1 ≤ q ≤ k). Another n× k matrix B is maintained with elements B[v][q] representing the
penalty value of vertex v assigned to color class q in the current solution. Then, the move
gain of each one-move in terms of extended fitness variation can be conveniently computed
by

∆F = A[v][j]− A[v][i] + ϕ(B[v][j]− B[v][i]) (3.9)

where ϕ is the penalty coefficient used in the extended fitness function F.
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Each time a one-move operation involving vertex v is performed, we just need to update
a subset of values affected by this move as follows. For each vertex u adjacent to vertex v,
A[u][i] ← A[u][i]− 1, and A[u][j] ← A[u][j] + 1. For any vertex w, B[w][j] ← ∑k

i=1 ρi, 1 ≤
j ≤ k. B[w][j] = B[u][j], if w and u belong to the same color class.

2. Swap operator: The same swap operator as for the first phase is applied to exchange a
pair of vertices (u, v) from different color classes where at least one of them is a conflicting
vertex. However, there is an important difference. Since the second search phase operates
in the enlarged space Ω+

k instead of Ωk, the equity-feasibility of a neighboring solution fully
depends on the current solution. That is, if the current solution is equity-infeasible (equity-
feasible), application of swap leads to an equity-infeasible (equity-feasible) solution. The
resulting swap-based neighborhood is thus given as follows.

N+
2 (s) = {s⊕ swap(v, u) : v ∈ Vi, u ∈ Vj, i 6= j, {v, u} ∩ C(s) 6= ∅} (3.10)

where C(s) is the set of conflicting vertices of s. Notice that the swap operation has no
impact on the penalty value of the neighboring solution and can only change the number of
conflicting edges. Then the fitness gain of a swap operation can be computed by

∆F = A[u][i]− A[u][j] + A[v][j]− A[v][i]− 2ev,u (3.11)

where ev,u = 1 if v and u are adjacent vertices, otherwise ev,u = 0.

Exploration of the enlarged space Ω+
k

To explore the enlarged space Ω+
k , we apply again the tabu search method. Specifically, each

iteration of tabu search selects the best admissible solutions among the neighboring solution of
N+

1 and N+
2 . The procedure makes transitions between various k-coloring while minimizing the

extended fitness function F with the purpose of attaining a solution s with F(s) = 0.

3.3.4 Perturbation of infeasible search

The tabu list used by the equity-infeasible exploration phase helps the search process to go
beyond some local optima. Yet, this mechanism may not be sufficient to escape deep traps. To
overcome this problem, we apply a perturbation procedure inspired by the procedure of [Lai et
al., 2015]. This operator follows the perturbation scheme of breakout local search [Benlic and Hao,
2013] and combines directed and random applications of the one-move and swap operators. To
avoid a too strong deterioration of the perturbed solution, a directed perturbation move takes into
consideration the fitness variation and performs the most favorable move (i.e., deteriorating the
solution the least). In contrary, a random perturbation performs a one-move or swap operation
without considering the fitness deterioration. To combine these two types of perturbations, the
number of performed moves dynamically varies in an adaptive way while the application of each
type of perturbation is determined probabilistically. The random and directed perturbations are
applied with a probability of p ∈ [0, 1] and 1− p, respectively. In this paper, we take the p = 0.3,
The length of the perturbations L = 500 ∗ F (F is the objective function as shown in equitation
3.7)). The resulting solution from the perturbation procedure is then used as the new starting
solution of the next round of the infeasible search phase.
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3.4 Experimental results and comparisons

In this section, we assess the performance of the proposed FISA algorithm on the set of 73
benchmark instances which are commonly used in the literature and were initially proposed for
the DIMCAS and COLOR competitions for graph coloring problems 1, 2.

3.4.1 Experiment settings

The proposed algorithm was coded in C++ and compiled by GNU g++ 4.1.2 with -O3 flag
(option). The experiments were conducted on a computer with an Intel Xeon E5-2670 processor
(2.5 GHz and 2 GB RAM) running Ubuntu 12.04. When solving the DIMACS machine benchmark
procedure ‘dfmax.c’ 3 without compilation optimization flag, the run time on the computer is 0.46,
2.68 and 10.70 seconds for graphs r300.5, r400.5 and r500.5, respectively.

For our comparative study, we use the most recent heuristic algorithms [Díaz et al., 2014; Lai et
al., 2015] as our references. The TabuEqCol algorithm (2014) [Díaz et al., 2014] was run on an Intel
i5 CPU with 750 2.67 GHz and tested under a time limit of 1 hour. The BITS algorithm (2015) [Lai
et al., 2015] was run on an Intel Xeon E5440 CPU with 2.83 GHz and 2 GB RAM and tested under
a time limit of 1 hour and a relaxed limit (104 seconds for the instances with up to 500 vertices
and 2 × 104 seconds for larger instances with more than 500 vertices). As shown in [Lai et al.,
2015], the computational results of the more recent BITS algorithm dominate those of TabuEqCol.
We also include the lower and upper bounds reported in [Méndez-Díaz et al., 2014; Méndez-Díaz
et al., 2015] which were obtained by exact methods under various test conditions. These bounds
provide useful information when they are contrasted with the results (upper bounds) obtained
by the compared heuristic algorithms (TabuEqCol, BITS and FISA).

The FISA algorithm requires the tuning of some parameters related to tabu search and the
extended fitness function F. Since our tabu search procedures are adaptations of the basic tabu
search procedure of [Lai et al., 2015], we adopted the parameter settings used in the original paper.
As to the penalty coefficient ϕ of the extended fitness function F, we provide an analysis in Section
3.5.

Following [Díaz et al., 2014; Lai et al., 2015], we present a first experiment where we ran our
FISA algorithm only once per instance with a cutoff time of 3,600 seconds (1 hour). Like [Lai et
al., 2015], we carried out a second experiment where we ran FISA 20 times to solve each instance
under the extended stopping condition – 104 seconds for the instances with up to 500 vertices
and 2 × 104 seconds for larger instances with more than 500 vertices. We note that, our Intel
Xeon E5-2670 2.5 GHz processor is slightly slower than those used by the reference algorithms.
As a result, our adopted stopping conditions can be considered as reasonable with respect to
those used by the reference algorithms. Finally, as shown in [Lai et al., 2015], the more recent
BITS algorithm fully dominates the TabuEqCol algorithm. So the results of BITS have the most
significant reference value.

3.4.2 Comparison with state-of-the-art algorithms

From Table 3.1, we can see that FISA shows a remarkable performance compared to the TabuE-
qCol and BITS algorithms under both stopping conditions. Under the 1 hour condition, FISA
dominates TabuEqCol (Columns 5 and 8) on the 50 instances tested by both algorithms, by obtain-
ing better results for 30 instances and the same results for the remaining 20 instances. Compared

1. http://www.dimacs.rutgers.edu/
2. http://www.cs.hbg.psu.edu/txn131/graphcoloring.html/
3. dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique/
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to the most recent BITS algorithm, FISA obtains better solutions for 14 instances (see negative
entries in Column ∆(k1)), the same best results for other 58 instances and one worse result.

When comparing FISA with BITS under the long time condition (the results of TabuEqCol un-
der this condition are unavailable), one observes that FISA also performs very well. Specifically,
FISA improves the best results of BITS for 9 instances (see negative entries in Column ∆(kbest)
while matching the best results of BITS for other 63 instances. Only in one case, FISA obtains a
slightly worse result.

Finally, when comparing to the upper bounds obtained by exact algorithms (Column 4), it is
clear that the bounds of FISA (Column 9) are much better. Contrasting the current best lower
bounds (Column 3) obtained by exact approaches of [Méndez-Díaz et al., 2014; Méndez-Díaz et
al., 2015] and the best upper bounds of FISA (Column 9), we observe there is still potential for
further improvement.

3.5 Analysis

This section performs additional experiments to analyze the proposed FISA algorithm: the
penalty coefficient ϕ and the perturbation strategy. These experiments were performed on a se-
lection of 26 instances which are computationally relatively difficult to solve.

3.5.1 Analysis of the penalty coefficient ϕ

This section investigates the influence of the penalty coefficient ϕ on the performance of the
proposed algorithm. For this purpose, we tested FISA with 3 different values of ϕ = 1, 2, 3 (larger
values lead to worse results). We ran 20 times the algorithm with each ϕ value to solve each
selected instance with a cutoff time of 1 hour.

The experimental results are presented in Table 3.2. The first column shows the names of
instances, and the second column indicates the best results (k∗1) obtained in this experiment. The
results of FISA with different ϕ values are respectively listed in columns 3 to 5. The rows #Equal
and #Worse respectively indicate the number of instances for which each ϕ values attains an equal
and worse result compared to k∗1. We note that the best results were obtained with ϕ = 1. This
justifies the setting of this parameter used in our previous experiments.

3.5.2 Impact of the perturbation operation

As shown in Section 3.3.4, the proposed algorithm uses a perturbation strategy to ensure a
global diversification within the enlarged search space Ω+

k . In order to assess this strategy, we
compare it with a traditional restart strategy ( denoted as REST), where each restart begins its
search with a new equitable k-coloring generated by the greedy procedure mentioned in Section
3.3. The two algorithms were run 20 times on the 26 selected instances with a time limit of 1 hour
per run.

The results of this experiment are shown in Table 3.3. Column 1 lists the names of instances.
Column 2 indicates the best results (k∗best) obtained in this experiment. The best results (kbest) and
the average results (kavg) of FISA and REST are respectively listed in columns 3 to 6. The rows
#Equal and #Worse respectively indicate the number of instances for which FISA and REST attain
an equal and worse result compared to k∗best. It is clear that FISA dominates the REST variant by
obtaining 12 better results out of the 26 tested instances and no worse result. This experiment
confirms thus the interest of the adopted perturbation strategy.
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Table 3.1 – Comparative results of FISA with state-of-the-art algorithms on the 73 benchmark
instances.

TabuEqCol BITS FISA
Instance |V| LB UB k1 k1(pre) kbest(pre) k1 kbest kavg SR tavg ∆(k1) ∆(kbest)

DSJC125.1.col 125 5 5 5∗ 5∗ 5∗ 5∗ 5∗ 5 20/20 0.617 0 0
DSJC125.5.col 125 9 18 18 17 17 17 17 17 20/20 428.281 0 0
DSJC125.9.col 125 43 45 45 44 44 44 44 44 20/20 0.094 0 0
DSJC250.1.col 250 5 8 8 8 8 8 8 8 20/20 3.619 0 0
DSJC250.5.col 250 12 32 32 32 29 29 29 29.35 13/20 5235.95 -3 0
DSJC250.9.col 250 63 83 83 72 72 72 72 72 20/20 892.236 0 0
DSJC500.1.col 500 5 13 13 13 13 13 13 13 20/20 3.569 0 0
DSJC500.5.col 500 13 62 63 57 56 53 52 53.25 1/20 8197.02 -4 -4
DSJC500.9.col 500 101 148 182 130 129 131 130 131 3/20 6269.63 1 1
DSJR500.1.col 500 12 12 12∗ 12∗ 12∗ 12∗ 12∗ 12 20 /20 0.38 0 0
DSJR500.5.col 500 120 131 133 126 126 126 126 126.5 10/20 4459.5 0 0
DSJC1000.1.col 1000 5 22 22 22 21 21 21 21 20/20 1866.63 -1 0
DSJC1000.5.col 1000 15 112 112 112 101 98 95 96.1 2/20 15698.6 -14 -6
DSJC1000.9.col 1000 126 268 329 254 252 253 252 252.2 16/20 2240.02 -1 0
R125.1.col 125 - - - 5 5 5 5 5 20/20 0.0025 0 0
R125.5.col 125 - - - 36 36 36 36 36 20/20 0.6745 0 0
R250.1.col 250 - - - 8 8 8 8 8 20/20 0.0045 0 0
R250.5.col 250 - - - 67 66 67 66 66.9 2/20 3041.22 0 0
R1000.1.col 1000 - - - 20 20 20 20 20 20/20 2.244 0 0
R1000.5.col 1000 - - - 269 250 251 250 250.45 11/20 11564.2 -18 0
le450_5a.col 450 5 5 - 5∗ 5∗ 5∗ 5∗ 5 20/20 30.1971 0 0
le450_5b.col 450 5 5 7 5∗ 5∗ 5∗ 5∗ 5 20/20 44.2914 0 0
le450_5c.col 450 - - - 5 5 5 5 5 20/20 16.391 0 0
le450_5d.col 450 5 8 8 5∗ 5∗ 5∗ 5∗ 5 20/20 14.0655 0 0
le450_15a.col 450 15 15 - 15∗ 15∗ 15∗ 15∗ 15 20/20 2.993 0 0
le450_15b.col 450 15 15 15∗ 15∗ 15∗ 15∗ 15∗ 15 20/20 2.4125 0 0
le450_15c.col 450 - - - 15 15 15 15 15.2 16/20 553.786 0 0
le450_15d.col 450 15 16 16 15∗ 15∗ 15∗ 15∗ 15.85 3/20 638.127 0 0
le450_25a.col 450 25 25 - 25∗ 25∗ 25∗ 25∗ 25 20/20 0.41 0 0
le450_25b.col 450 25 25 25∗ 25∗ 25∗ 25∗ 25∗ 25 20/20 0.46 0 0
le450_25c.col 450 - - - 26 26 26 26 26 20/20 86.9035 0 0
le450_25d.col 450 25 27 27 26 26 26 26 26 20/20 95.845 0 0
wap01a.col 2368 41 46 46 43 42 42 42 42.95 1/20 4544.77 -1 0
wap02a.col 2464 40 44 44 42 41 42 41 41 2/20 2538.33 0 0
wap03a.col 4730 40 50 50 46 45 46 45 45.7 6/20 20201.8 0 0
wap04a.col 5231 - - - 46 44 46 44 44.45 11/20 15614.2 0 0
wap05a.col 905 - - - 50 50 50 50 50 20/20 99.2625 0 0
wap06a.col 947 - - - 42 41 42 41 41.9 2/20 9340.42 0 0
wap07a.col 1809 - - - 43 43 43 43 43.05 19/20 4077.71 0 0
wap08a.col 1870 - - - 43 43 43 43 43.1 10/20 4872.74 0 0
flat300_28_0.col 300 11 36 36 35 34 33 32 33.6 1/20 4910.48 -2 -2
flat1000_50_0.col 1000 - - - 112 101 96 94 94.7 6/20 17321.4 -16 -7
flat1000_60_0.col 1000 - - - 112 101 97 94 94.8 5/20 10488.8 -15 -7
flat1000_76_0.col 1000 14 112 112 112 102 98 94 95.15 2/20 15246.4 -14 -8
latin_square_10.col 900 90 130 130 129 113 105 104 104.55 10/20 12666.2 -24 -9
C2000.5.col 2000 - - - 202 201 198 183 183.4 13/20 19702.3 -4 -18
C2000.9.col 2000 - - - 504 502 503 493 495.21 2/20 21163.9 -1 -9
mulsol.i.1.col 197 49 49 50 49∗ 49∗ 49∗ 49∗ 49 20/20 44.3365 0 0
mulsol.i.2.col 188 34 39 48 36 36 36 36 36.95 2/20 1914.22 0 0
fpsol2.i.1.col 496 65 65 78 65∗ 65∗ 65∗ 65∗ 65 20/20 1723.52 0 0
fpsol2.i.2.col 451 47 47 60 47∗ 47∗ 47∗ 47∗ 47.2 17/20 2357.15 0 0
fpsol2.i.3.col 425 55 55 79 55∗ 55∗ 55∗ 55∗ 55 20/20 1310.01 0 0
inithx.i.1.col 864 54 54 66 54∗ 54∗ 54∗ 54∗ 56.9 7/20 3356.31 0 0
inithx.i.2.col 645 30 93 93 36 36 36 36 38.8 5/20 3275.5 0 0
inithx.i.3.col 621 - - - 38 37 38 37 39.85 4/20 2891.78 0 0
zeroin.i.1.col 211 49 49 51 49∗ 49∗ 49∗ 49∗ 49.6 8/20 1088.94 0 0
zeroin.i.2.col 211 36 36 51 36∗ 36∗ 36∗ 36∗ 36 20/20 123.876 0 0
zeroin.i.3.col 206 36 36 49 36∗ 36∗ 36∗ 36∗ 36 20 /20 129.445 0 0
myciel6.col 95 7 7 7∗ 7∗ 7∗ 7∗ 7∗ 7 20/20 0.0035 0 0
myciel7.col 191 8 8 8∗ 8∗ 8∗ 8∗ 8∗ 8 20/20 0.0185 0 0
4_FullIns_3.col 114 7 7 - 7∗ 7∗ 7∗ 7∗ 7 20/20 0.0005 0 0
4_FullIns_4.col 690 6 8 8 8 8 8 8 8 20/20 0.12 0 0
4_FullIns_5.col 4146 6 9 9 9 9 9 9 9 20/20 0.12 0 0
1_Insertions_6.col 607 3 7 7 7 7 7 7 7 20/20 0.1655 0 0
2_Insertions_5.col 597 3 6 6 6 6 6 6 6 20/20 0.056 0 0
3_Insertions_5.col 1406 3 6 6 6 6 6 6 6 20/20 0.3525 0 0
school1.col 385 15 15 15∗ 15∗ 15∗ 15∗ 15∗ 15 20/20 0.932 0 0
school1_nsh.col 352 14 14 14∗ 14∗ 14∗ 14∗ 14∗ 14 20/20 1.774 0 0
qg.order40.col 1600 40 40 40∗ 40∗ 40∗ 40∗ 40∗ 40 20/20 3.437 0 0
qg.order60.col 3600 60 60 60∗ 60∗ 60∗ 60∗ 60∗ 60 20/20 14.534 0 0
ash331GPIA.col 662 4 4 4∗ 4∗ 4∗ 4∗ 4∗ 4 20/20 0.7755 0 0
ash608GPIA.col 1216 3 4 4 4 4 4 4 4 20/20 0.249 0 0
ash958GPIA.col 1916 3 4 4 4 4 4 4 4 20/20 10.887 0 0
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Table 3.2 – Comparative results of the FISA algorithm with 3 different values of ϕ on the 26
instances. The best results are in bold.

Instance k∗1 k1,ϕ=1
1 k1,ϕ=2 k1,ϕ=3

C2000.5.col 198 198 200 199
DSJC1000.1.col 21 21 21 21
DSJC1000.5.col 98 98 100 101
DSJC1000.9.col 253 253 254 254
DSJC125.5.col 17 17 17 17
DSJC250.1.col 8 8 8 8
DSJC250.5.col 29 29 29 29
DSJC250.9.col 72 72 72 72
DSJC500.5.col 53 53 53 53
DSJC500.9.col 130 131 131 130
DSJR500.5.col 126 126 126 126
flat1000_50_0.col 96 96 98 99
flat1000_60_0.col 97 97 98 99
flat1000_76_0.col 98 98 99 101
flat300_28_0.col 32 33 32 32
fpsol2.i.1.col 65 65 65 65
fpsol2.i.2.col 47 47 47 47
inithx.i.2.col 36 36 37 54
inithx.i.3.col 37 38 37 57
latin_square_10.col 105 105 114 115
mulsol.i.2.col 36 36 36 36
R1000.5.col 250 251 251 250
R250.5.col 66 67 66 67
zeroin.i.1.col 49 49 49 49
zeroin.i.2.col 36 36 36 36
zeroin.i.3.col 36 36 36 36

#Equal 21 16 16
#Worse 5 10 10

1 k1,ϕ=1,k1,ϕ=2,k1,ϕ=3 respectively indicates the
best results of FISA with different ϕ values ob-
tained under 1 hour condition in this experi-
ment.

Table 3.3 – Analysis of the influence of the perturbation on the performance of the FISA algorithm.

FISA REST
Instance k∗best kbest kavg kbest kavg

C2000.5.col 198 198 199.55 201 201
DSJC1000.1.col 21 21 21 21 21
DSJC1000.5.col 98 98 99.45 102 102.15
DSJC1000.9.col 253 253 254.35 253 254.3
DSJC125.5.col 17 17 17 17 17
DSJC250.1.col 8 8 8 8 8
DSJC250.5.col 29 29 29.8 29 29.95
DSJC250.9.col 72 72 72.1 72 72.1
DSJC500.5.col 53 53 53.35 54 55.15
DSJC500.9.col 131 131 131.6 131 131.7
DSJR500.5.col 126 126 126.85 126 127.05
flat1000_50_0.col 96 96 97.4 101 101.5
flat1000_60_0.col 97 97 97.9 101 101.75
flat1000_76_0.col 98 98 98.65 101 101.95
flat300_28_0.col 33 33 33.85 33 34.3
fpsol2.i.1.col 65 65 65 77 79.4
fpsol2.i.2.col 47 47 47.25 56 73.05
inithx.i.2.col 36 36 38.8 60 63.85
inithx.i.3.col 38 38 39.05 57 64.85
latin_square_10.col 105 105 106.1 105 106.5
mulsol.i.2.col 36 36 36.95 37 37.75
R1000.5.col 251 251 253.9 252 255.35
R250.5.col 67 67 67 67 67.05
zeroin.i.1.col 49 49 49.75 55 55.9
zeroin.i.2.col 36 36 36 39 42
zeroin.i.3.col 36 36 36 38 43.05

#Equal 26 14
#Worse 0 12
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3.6 Conclusions

The equitable coloring problem (ECP) is an NP-hard problem with a number of practical ap-
plications. In addition to the conventional coloring constraint (i.e., adjacent vertices must receive
different colors), a solution of the ECP must satisfy the equity constraint (the cardinalities of the
color classes must differ by at most one). In this work, we investigated for the first time the ben-
efit of examining both feasible and infeasible solutions with respect to the equity constraint. The
resulting algorithm (called FISA) combines an equity-feasible search phase where only equitable
colorings are considered and an equity-infeasible search phase where the search is enlarged to
include non-equitable solutions. To guide the search procedure (which is based on tabu search),
we devised an extended fitness function which uses a penalty to discourage candidate solutions
which violates the equity constraint. A perturbation procedure was also used as a diversification
means to help the algorithm to explore new search regions.

We assessed the performance of the FISA algorithm on the set of 73 benchmark instances from
DIMACS and COLOR competitions and presented comparative results with respect to state of the
art algorithms. The comparisons showed that FISA performs very well by discovering 9 improved
best results (new upper bounds) and matching the best-known results for the remaining instances
except one case. The new bounds can be used for assessment of other ECP algorithms. This study
demonstrates the benefit of the mixed search strategy examining both equity-feasible and equity-
infeasible solutions for solving the ECP.

For future work, several directions could be followed. First, the penalty term of the extended
fitness function could be improved by introducing adaptive techniques like [Chen et al., 2016a;
Glover and Hao, 2011] to enable a strategic oscillation for transitioning between feasible and
infeasible space. Second, other search operators (rather than those used in this work) can be
sought to further improve the performance of the search algorithm. Finally, the proposed algo-
rithm could be advantageously integrated into a hybrid population-based method (e.g., memetic
search, path-linking) as a key intensification component.



4
Adaptive feasible and infeasible search for
WVCP

This chapter presents the adaptive feasible and infeasible search for solving the NP-hard
weighted vertex coloring. The proposed algorithm employs the heuristic algorithm that relies
on a mixed search strategy exploring both feasible and infeasible solutions. We show extensive
experimental results on a large number of benchmark instances and present new upper bounds
that are useful for future studies. We assess the benefit of the key features of the proposed ap-
proach. The chapter is based on an journal article published in Information Sciences [Sun et al.,
2018b].
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4.1 Introduction

The weighted vertex coloring problem of a vertex weighted graph is to partition the vertex set
into k disjoint independent sets such that the sum of the costs of these sets is minimized, where
the cost of each set is given by the largest weight of the vertices assigned to that set.

We summarize the main contributions of this work as follows.
First, the adaptive feasible and infeasible search algorithm (AFISA) presented in this work is

the first heuristic method that explores both feasible and infeasible solutions for the WVCP. To
prevent the search from going too far away from the feasible boundary, we design an adaptive
penalty-based evaluation function that is used to guide the search for a fruitful examination of
candidate solutions, by enabling the search to oscillate between feasible and infeasible regions.
To ensure an effective exploration of both feasible and infeasible regions, we adopt the popular
tabu search meta-heuristic [Glover, 1997] and design specific search components to cope with the
particular features of the considered coloring problem.

Second, we assess the proposed algorithm on 111 conventional benchmark instances from the
literature (one set of 46 instances from the DIMACS and COLOR competitions and two sets of 65
instances from matrix-decomposition problems). We report especially 5 improved best solutions
(new upper bounds). We also present results on an additional set of 50 (larger) DIMACS instances.
These results and the proposed algorithm can serve as a new reference to assess future WVCP
algorithms and can be useful for the design of effective exact algorithms as well.

The remainder of the chapter is organized as follows. Section 4.2 presents the proposed al-
gorithm. Section 4.3 is dedicated to the description of computational results and comparisons
with state-of-the-art algorithms. Section 4.4 analyzes the impact of some key components of the
proposed algorithm. Conclusions and future work are discussed in the last section.

4.2 Adaptive feasible and infeasible search for the WVCP

In this section, we present the adaptive feasible and infeasible search algorithm for solving
the WVCP. We first show the general approach and then explain in detail the components of the
proposed algorithm including the search space, the evaluation function, the neighborhood, the
tabu search procedure, the adaptive mechanism to control feasible and infeasible searches and
the perturbation strategy.

4.2.1 General approach

Unlike existing methods for the WVCP [Malaguti et al., 2009; Prais and Ribeiro, 2000] that
only consider feasible colorings, the adaptive feasible and infeasible search algorithm (AFISA)
proposed in this work enlarges the search to include both feasible and infeasible colorings. In-
deed, as explained in the introduction, methods that are allowed to oscillate between feasible
and infeasible regions can help to attain solutions of high-quality that would not be discovered
otherwise. Specifically, we first generate an initial feasible solution with a greedy procedure (Sec-
tion 4.2.2). Then, we improve the solution by enlarging the search to include infeasible solutions.
To enable the search to oscillate between feasible and infeasible regions, we devise an extended
evaluation function F that combines the objective function of Eq. (1) with a penalty function (Sec-
tion 4.2.3). To control the importance given to the penalty function, we introduce an adaptive
parameter that is dynamically adjusted according to the search context (Section 4.2.4). To explore
the search space, we use a tabu search procedure that relies on a neighborhood induced by the
one-move operator and that is guided by the penalty-based evaluation function (Section 4.2.4).
Finally, to escape local optimum traps, we introduce an adaptive perturbation strategy to gener-
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ate a new starting solution for the next round of tabu search (Section 4.2.5). The pseudo-code of
the proposed algorithm is presented in Algorithm 4.1.

Algorithm 4.1: Main scheme of the AFISA algorithm for the WVCP
1: Input: Graph G
2: Output: The best solution found
3: s0 ← greedy_initial(G) /∗ Generate an initial feasible k-coloring, Section 4.2.2 ∗/
4: sbest ← s0 /∗ Record the best legal solution ∗/
5: γ← 0 /* γ is the counter for consecutive non-improving local optima */
6: s1 ← s0
7: L← L0/* Initialize the depth of perturbation, Section 4.2.5 */
8: ϕ← 1 /∗ Initialize penalty coefficient of the extended evaluation function, Sections 4.2.3 and 4.2.4 ∗/
9: while stopping condition is not met do

10: s2 ← tabu_search(s1) /∗ Section 4.2.4 ∗/
11: if F(s2) < F(sbest) and F(s2) = f (s2) then
12: sbest ← s2 /∗ Record the best legal solution ∗/
13: L← L0 /∗ Reinitialize the depth of perturbation */
14: γ← 0 /∗ Reset the counter for consecutive non-improving local optima */
15: else
16: γ← γ + 1
17: end if
18: if γ = T then
19: L← Lmax /* Increase the depth of perturbation if the best solution is not updated during T

consecutive tabu search runs */
20: end if
21: ϕ← adaptive_parameter(s2, ϕ) /∗ Adjust penalty coefficient, Section 4.2.4 ∗/
22: s1 ← perturbation(s2, L) /∗ Section 4.2.5 ∗/
23: end while
24: return sbest

4.2.2 Initial solution

The purpose of the initialization step is to generate an initial feasible solution of acceptable
quality. This is achieved by adopting the greedy procedure of [Prais and Ribeiro, 2000] that it-
eratively assigns the vertices to a suitable color class (Algorithm 4.2). Let {V1, V2, . . . , Vk} be the
current partial solution with k color classes (initially k is set to 1, V1 = ∅), we choose an unas-
signed vertex v (Algorithm 4.2, line 6) and assign it to the color class Vi, 1 ≤ i ≤ k such that the
objective function f is minimized while the coloring constraint is met. If no suitable color class
Vi, 1 ≤ i ≤ k exists for vertex v, we create a new color class Vk by setting k ← k + 1 and assign
the vertex v to this new color class (Algorithm 4.2, line 15-16). This process is repeated until all
vertices are assigned to a color class.

This initialization procedure provides thus the AFISA algorithm with a legal k-coloring of
certain quality, which will be further improved during the tabu search phase of the algorithm.

4.2.3 Search space and penalty-based evaluation function

To further improve the initial solution provided by the above initialization procedure, the
search phase of the AFISA algorithm explores an enlarged space Ω including both feasible and
infeasible solutions. In other words, the space Ω is composed of the partitions of the vertex set V
into k disjoint subsets.
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Algorithm 4.2: Greedy initialization for the WVCP
1: Input: Graph G = (V, E)
2: Output: A legal k-coloring s
3: U ← V /∗ U is the set of unassigned vertices ∗/
4: i = 1, k = 1, Vi = ∅
5: while U 6= ∅ do
6: choose a vertex v from U with maximum weight
7: assign = 0 /* assign is a flag indicating if vertex v is assigned a color */
8: for i = 1, 2, . . . , k do
9: if there is no edge between v and any vertex o f Vi then

10: Vi ← Vi ∪ {v} /∗ v is assigned to color class Vi ∗/
11: assign = 1 /∗ v is now assigned a color ∗/
12: end if
13: end for
14: if assign = 0 then
15: k← k + 1
16: Vk ← Vk ∪ {v} /∗ Create a new color class Vk to hold v ∗/
17: end if
18: U ← U \ {v}
19: end while
20: return s = {V1, V2, . . . , Vk} /∗ s is a legal or feasible k-coloring ∗/

Ω = {{V1, V2, . . . , Vk} : ∪k
i=1Vi = V, Vi ∩Vj = ∅, 1 ≤ k ≤ |V|} (4.1)

where i 6= j, 1 ≤ i, j ≤ k.
Then we define our extended fitness function F (to be minimized) as a linear combination

of the basic fitness function f (Equation (1.1)) and a penalty function P as follows. Let s =

{V1, V2, . . . , Vk} be a candidate solution in Ω, we define its penalty P(s) as P(s) = ∑k
i=1 |C(Vi)|

where C(Vi) counts the number of pair of conflicting vertices in color class Vi that are linked by
an edge. In other words, P(s) indicates the number of conflicts in the candidate solution s. There-
fore, for the candidate solution s, if the penalty P(s) equals 0, then s corresponds to a feasible
k-coloring satisfying the coloring constraint. Otherwise (i.e., P(s) > 0), the solution includes at
least two adjacent vertices violating the coloring constraint, i.e., belonging to a same color class.

Then the quality of the solution s = {V1, V2, . . . , Vk} is given by the following extended evalu-
ation function:

F(s) = f (s) + ϕP(s) (4.2)

where f (s) is the objective function value and ϕ ≥ 1 is a parameter that is used to control the
relative importance given to the penalty function.

Since F is to be minimized, increasing ϕ augments the value of F, making thus the infeasible
solution under consideration less attractive. Inversely, decreasing ϕ lowers the evaluation value,
making the solution more attractive. By varying ϕ, we can control the transition between feasible
and infeasible regions. We explain in Section 4.2.4 the adaptive technique to dynamically tune ϕ
according to the search situation. We investigate in Section 4.4.2 the impact of the ϕ parameter.

Using the extended evaluation function F, we assess the relative quality of two candidate
solutions x and y as follows: x is better than y if F(x) < F(y).
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4.2.4 Searching feasible and infeasible solutions with tabu search

Neighborhood and its evaluation

The AFISA algorithm examines the search space Ω by making transitions from the current
solution to one neighboring solution. A neighboring solution is generated by using the popular
“one-move" operator. Give a solution s = {V1, V2, . . . , Vk}, the one-move operator displaces a
vertex v from its current color class Vi to a different color class Vj (i 6= j, j ∈ {1, 2, . . . , |V|}),
leading to a neighboring solution designated by s ⊕ < v, Vi, Vj >. The one-move neighborhood
is then given by:

N(s) = {s ⊕ < v, Vi, Vj > : v ∈ Vi, 1 ≤ i ≤ k, 1 ≤ j ≤ |V|, i 6= j} (4.3)

This neighborhood allows a vertex to be moved to a currently empty color class Vj with j > k
(thus the number of color classes can increase). Inversely, a color class can also become empty and
thus be removed when its last vertex is transferred to another existing class (thus k is decreased).
As a result, search algorithms using this neighborhood like the tabu search procedure presented
in Section 4.2.4 typically visit solutions whose number of color classes varies during the search.

Notice that this neighborhood is different from the one-move neighborhood used for other
coloring problems (e.g., conventional vertex coloring [Galinier and Hertz, 2006; Malaguti and
Toth, 2010] and equitable coloring problem [Lai et al., 2015; Sun et al., 2017; Wang et al., 2018],
because 1) in these studies the vertex v ∈ Vi to be displaced must be a conflicting vertex (i.e.,
there exists in Vi at least another vertex u such that v and u are adjacent in the graph), and 2) the
number of color classes k remains fixed.

Finally, one important issue concerns the evaluation of the neighborhood that impacts signif-
icantly the computational efficiency of any local search algorithm. In our case, we employ an
incremental evaluation technique that is similar to the evaluation technique designed for another
graph coloring problem (i.e., equitable coloring) [Lai et al., 2015; Sun et al., 2017]. With this tech-
nique, the objective variation of each neighbor solution can be conveniently obtained in constant
time. We refer the readers to [Lai et al., 2015; Sun et al., 2017] for more details of this evaluation
technique.

Tabu search

To explore the above neighborhood, the proposed AFISA algorithm uses the well-known tabu
search (TS) meta-heuristic [Glover, 1989; Glover, 1990] that has been applied to many difficult
combinatorial optimization problems [Glover, 1997]. In particular, TS is known to be quite suc-
cessful in solving several different graph coloring problems such as general graph coloring [Galin-
ier and Hao, 1999; Hertz and de Werra, 1987], minimum sum coloring [Jin and Hao, 2016] and
equitable coloring [Lai et al., 2015]. As a general meta-heuristic, TS has some attractive features.
First, it can be adapted to graph coloring problems rather easily. Moreover, TS offers simple
strategies to promote a suitable and necessary search balance between intensification (with the
best-improvement principle to explore a given neighbourhood) and diversification (with a tabu
list).

In our case, the tabu search procedure make transitions between various k-colorings guided
by the extended evaluation function F of Section 4.2.3. Our TS procedure is based on the popular
TabuCol algorithm for the conventional Vertex Coloring Problem [Hertz and de Werra, 1987] and
adopts the improvements presented in [Galinier and Hao, 1999]. For the sake of completeness, we
show the pseudo-code of the tabu search procedure in Algorithm 4.3 and provide the following
description.
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The tabu search procedure iteratively replaces the current solution s by a neighboring solution
s′ taken from the one-move neighborhood N(s) defined in Section 4.2.4 until a stopping condition
is met. At each iteration, TS examines the neighborhood and selects a best admissible neighboring
solution s′ (see below) to substitute s. After each iteration, the associate one-move is recorded
on the tabu list to prevent the search from revisiting s for the next tt iterations (tt is called the
tabu tenure). To tune the tabu tenure, we use tt = Random(A) + αF where F stands for the
extended evaluation function, the function Random(A) returns a random number in {0, . . . ,A-1}
(A is set to 10 in this work) and α is a parameter set to 0.6. Meanwhile, the best solution found is
updated if the new solution is better than all previous visited solutions. A neighboring solution s′

is considered to be admissible if it is not forbidden by the tabu list or if it is better (according to the
extended evaluation function F) than the best solution found. If the best solution is not updated
during β consecutive iterations (β is called the depth of tabu search), then the current tabu search
process is considered to be stagnating and stops.

Algorithm 4.3: Tabu search algorithm
1: Input: initial solution s, depth of tabu search β
2: Output: The best solution sb found during the tabu search process
3: sc ← s /* sc is the current solution */
4: sb ← sc /* sb is the best solution found */
5: d← 0 /* d counts the consecutive iterations during which sb is not updated */
6: repeat
7: Choose a best admissible neighboring solution s′ ∈ N(sc)

/* s′ is admissible if it is not forbidden by the tabu list or better than sb */
8: sc ← s′

9: /* Update the best solution */
10: if F(sc) < F(sb) then
11: sb ← sc
12: d← 0
13: else
14: d← d + 1
15: end if
16: until d = β
17: return sb

Adaptive mechanism to control feasible and infeasible searches

The AFISA algorithm uses the extended evaluation function F (see Section 4.2.3) combining
the objective function f and the penalty function P to assess the quality of candidate solutions
and guide the search process. By varying the penalty coefficient ϕ of F, we can change the search
trajectory according to the search situation. Basically, a large (small) ϕ value strongly (weakly)
penalizes infeasible solutions and incites the search process to give more importance to feasible
(infeasible) solutions. To allow the search process to go back and forth between feasible and
infeasible zones, we devise an adaptive mechanism to dynamically adjust ϕ such that a suitable
diversification-intensification balance can be reached. This adaptive mechanism relies on known
ideas proposed for continuous optimization like those reviewed in [Hamida and Schoenauer,
2000].

The adaptive adjustment mechanism is shown in Algorithm 4.4. According to whether the
solution s (obtained from the last round of tabu search) is a feasible k-coloring, we adjust ϕ to
influence the search trajectory of the next round of tabu search. Specifically, if P(s) 6= 0 (i.e.,
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F(s) 6= f (s)) (Algorithm 4.4, line 3), which means solution s is an infeasible k-coloring, we in-
crease ϕ to penalize more strongly the infeasible solutions. As such, if the tabu search procedure
always ends up with an infeasible solution during several consecutive runs, the search is consid-
ered to perform enough exploration in infeasible zones and thus encouraged to move towards
feasible regions to intensify its search during the next round of tabu search. Inversely, if P(s) = 0
(i.e., F(s) = f (s)), the solution returned by the last round of tabu search is a feasible k-coloring,
indicating that the search just examined a feasible region. In this case, we decrease ϕ to raise the
chance of visiting infeasible regions during the next tabu search run and thus diversify the search.
The computational results of Section 4.3 show that the AFISA algorithm equipped with this adap-
tive mechanism of exploring feasible and infeasible solutions reaches a high performance.

Algorithm 4.4: Adaptive adjustment mechanism for penalty coefficient ϕ

1: Input: Penalty coefficient ϕ, the best solution from the last round of tabu search s
2: Output: Adjusted penalty coefficient ϕ
3: if F(s) 6= f (s) then
4: ϕ = ϕ + 1 /* Increase the penalty term to guide the search toward feasible regions */
5: else
6: ϕ = ϕ− 1 /* Decrease the penalty term to increase the chance of visiting infeasible solutions */
7: end if
8: if ϕ ≤ 0 then
9: ϕ = 1

10: end if

4.2.5 Perturbation strategy

As illustrated in Section 4.2.4, the tabu procedure ends up with a local optimal solution. To
enable the search to move to new search zones, we apply a perturbation strategy to modify the
last local optimum that is then used as the new starting solution of the next round of tabu search
(line 22, Algorithm 4.1). To make the perturbation strategy as effective as possible, we borrow
ideas from breakout local search [Benlic and Hao, 2013] whose perturbation strategy relies on
two factors: the jump magnitude L (also called depth of perturbation) and the perturbation type.

The jump magnitude L indicates the number of perturbation moves to be applied and in our
case, is set to a small value (L0) in the beginning (line 7, Algorithm 4.1). If the search is observed
to be stagnating (i.e., no better feasible solution can be found during T consecutive tabu search
runs), L is increased to a large value (Lmax) to enable a stronger diversification (line 19, Algorithm
4.1). Then each time the search moves to a new promising search zone by discovering a better
feasible solution, L is switched to L0 again (line 13, Algorithm 4.1).

To perform a perturbation, two types of moves, both being based on the one-move operator
(see Section 4.2.4), are applied according to a probability P0. The first type of perturbation, called
tabu-based perturbation, relies on the tabu principle and selects a one-move < v, Vi, Vj > that
minimizes the objective degradation while considering the tabu list, as in Section 4.2.4. Starting
from an empty tabu list, each time a perturbation move is performed, the move is recorded in the
tabu list and will not be considered during the current perturbation procedure (this is achieved
by setting the tabu tenure to ∞). The second type of perturbation, called direct perturbation, also
chooses a one-move that leads to the least objective degradation, but without considering any
tabu restriction (this is achieved by setting the tabu tenure to 0). Finally, during the perturbation
procedure, if a feasible solution that is better than the best solution found from the start of the
search is reached, the best recorded solution is updated accordingly.
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4.2.6 Connections with existing studies

For the WVCP considered in this work, one notices that existing heuristic algorithms [Malaguti
et al., 2009; Prais and Ribeiro, 2000] visit only feasible solutions while ignoring infeasible solutions.
As such, these algorithms could encounter difficulties when the feasible solutions are scattered
in different zones that are separated by infeasible zones. In this work, we explore for the first
time the idea of searching both feasible and infeasible solutions for solving the WVCP. Indeed, as
illustrated in other settings, e.g., [Chen et al., 2016b; Martinez-Gavara et al., 2017; Sun et al., 2017;
Wang et al., 2018], such a mixed search strategy is highly effective for solving several difficult
problems (e.g., capacitated arc routing, capacitated clustering and equitable coloring). Among
these studies, two of them [Sun et al., 2017; Wang et al., 2018] are worthy of a special mention,
because they consider the related equitable coloring problem (ECP). Given that the WVCP stud-
ied in this work and the ECP considered in [Sun et al., 2017; Wang et al., 2018] are two different
coloring problems, our work posses several particular features that distinguish itself from these
studies.

First, the proposed AFISA algorithm incorporates search components (dedicated neighbor-
hood, specific penalty-based evaluation function, perturbation technique...) that are customized
to the WVCP. Second, unlike [Sun et al., 2017; Wang et al., 2018] where different algorithms are
designed to search separately feasible and infeasible solutions, AFISA uses the same tabu search
procedure to exploit both types of solutions, making the algorithm simpler in design and imple-
mentation. Third, AFISA integrates an adaptive mechanism to dynamically control the feasible
and infeasible searches by the self-tuned parameter ϕ. Such a mechanism is missing in the stud-
ies mentioned above. Fourth, unlike [Sun et al., 2017; Wang et al., 2018], AFISA does not solve a
series of k-coloring problems where each coloring problem is defined for a fixed number of colors
k. Instead, the number of colors k varies during the search of our algorithm as explained in Sec-
tion 4.2.4. Finally, as we show in Section 4.3, the proposed algorithm integrating these features
competes very favorably with the state of the art methods for the WVCP in the literature.

4.3 Experimental results and comparisons

This section is dedicated to a large experimental assessment of the proposed AFISA algorithm
for solving the WCVP and comparisons with other state of the art methods. The study is based
on 111 conventional benchmark instances in the literature as well as 50 new (large) instances from
the DIMACS and COLOR competitions.

4.3.1 Benchmark instances

Test instances. We consider 111 instances from the literature on the WCVP [Cornaz et al., 2017;
Malaguti et al., 2009; Prais and Ribeiro, 2000] and 50 additional instances from the DIMACS and
COLOR competitions initially proposed for the conventional graph coloring problems 1, 2. We
classify these instances into four sets.

1. The first set contains 46 (small) instances from the DIMCAS/COLOR competitions. Graphs
of this set have DSJC∗, GEOM∗ or R∗ in their name with up to 125 vertices. The exact
algorithm (MWSS) [Cornaz et al., 2017] is able to find the optimal solutions for 40 instances
in this set. These instances are tested in [Cornaz et al., 2017; Malaguti et al., 2009], whose
results will be used as our references.

1. http://www.dimacs.rutgers.edu/
2. http://www.cs.hbg.psu.edu/txn131/graphcoloring.html

http://www.dimacs.rutgers.edu/
http://www.cs.hbg.psu.edu/txn131/graphcoloring.html
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2. The second set contains 35 instances from matrix-decomposition problems. These graphs
named as pxx have up to 138 vertices and 1186 edges. The exact algorithm (MWSS) [Cornaz
et al., 2017] is able to find the optimal solutions for all graphs in this set. These instances are
tested in [Cornaz et al., 2017; Malaguti et al., 2009; Prais and Ribeiro, 2000], whose results
will be used as our references.

3. The third set contains 30 rxx instances proposed in [Prais and Ribeiro, 2000] from matrix-
decomposition problems. These instances have the same structure as the pxx instances, but
are larger, having up to 301 vertices and 4122 edges. These instances are tested in [Cornaz
et al., 2017; Prais and Ribeiro, 2000] and the exact algorithm (MWSS) [Cornaz et al., 2017] is
able to find the optimal solutions for all graphs in this set.

4. The fourth set contains 50 additional larger instances (with at least 120 vertices) 3. These in-
stances are created by adding random vertex weights between 1 to 20 to DIMACS/COLOR
graphs.

4.3.2 Experimental settings

The proposed algorithm was coded in C++ and compiled by GNU g++ 4.1.2 with -O3 flag
(option). The experiments were conducted on a computer with an Intel Xeon E5-2670 processor
(2.5 GHz and 2 GB RAM) running Ubuntu 12.04. When solving the DIMACS machine benchmark
procedure ‘dfmax.c’ 4 without compilation optimization flag, the run time on the computer is 0.46,
2.68 and 10.70 seconds for graphs r300.5, r400.5 and r500.5, respectively.

Parameters. The setting of the parameters is given in Table 4.1, which was determined by a
preliminary experiment. For this, we first identify a rough range of values for each parameter. To
identify the default value of a particular parameter, we test different values from the range while
fixing the other parameters to their default values (typically those of Table 4.1). As to the penalty
coefficient ϕ of the extended evaluation function F, it is tuned adaptively as explained in Section
4.2.4. We use the default setting of Table 4.1 to report the experimental results shown in the rest
of this chapter, though fine-tuning some parameters could lead to improved results.

Table 4.1 – Settings of important parameters

Parameters Description Value

L0 , Lmax Small and large jump magnitude 0.05*N, 0.5*N
T Max number of non-improving local optima visited before strong perturb 50
P0 Probability for applying tabu-based or direct perturbation 0.7
β Depth of tabu search 100,N < 50

10000, N > 50

Reference algorithms. For our comparative study, we use the most recent heuristic algorithms
[Malaguti et al., 2009; Prais and Ribeiro, 2000] as our references. The GRASP algorithm [Prais
and Ribeiro, 2000] was run on an IBM 9672 model R34 mainframe computer under a limit of
1000 iterations. The 2_Phase algorithm [Malaguti et al., 2009] was run on a PIV 2.4 MHz with
512 MB RAM under Windows XP and tested by stopping phase 1 after 500 iterations and phase
2 after 75 seconds. When solving the DIMACS machine benchmark procedure ‘dfmax.c’, the
run time on the instance r500.5 reported in [Malaguti et al., 2009] for this machine is 7 seconds
(against 10.7 seconds for our computer). We also include the lower and upper bounds reported
by the exact algorithm MWSS in [Cornaz et al., 2017]. The results of MWSS were obtained on
a computer equipped with an Intel Xeon E3-1220 at 3.10 GHz with 8 GB RAM, which spent 4.5

3. These new instances are available at:
http://www.info.univ-angers.fr/~hao/wvcp.html

4. dfmax:ftp://dimacs.rutgers.edu/pub/dsj/clique/

http://www.info.univ-angers.fr/~hao/wvcp.html
dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique/
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seconds to solve the benchmark instance r500.5 (this computer is roughly 2 times faster than our
computer). These bounds provide useful information when they are contrasted with the results
(upper bounds) obtained by the compared heuristic algorithms (GRASP, 2_Phase and AFISA).

Following [Barr et al., 1995], we show computational results in terms of solution quality and
computation time. Since computation time can be greatly biased by many factors like comput-
ing platform, programming language, data structures and so on, solution quality is the primary
criterion while timing information is provided only for indicative purposes.

Stopping condition. Following [Malaguti et al., 2009; Prais and Ribeiro, 2000], we ran our
AFISA algorithm 20 times for the instances from the first, second and fourth sets with a cutoff
time of 1 hour per run. For the rxx instances of the third set, a cutoff time of 4 hours is used in
[Cornaz et al., 2017] used on their computer (Intel Xeon E3-1220 processor, 3.10 GHz and 8 GB
RAM), which roughly corresponds to 8 hours on our computer. We set a cutoff time of 2 hours
for the instances with up to 200 vertices and 4 hours for larger instances for our AFISA algorithm
(longer times do not lead to significantly improved results). Finally, note that for 8 instances of
the first set that cannot be solved by MWSS [Cornaz et al., 2017] in 1 hour, a large time limit of
10 hours was allowed (marked with ~ in Table 4.2), leading to optimality proof of two instances
(R100_1g and R100_1gb).

4.3.3 Computational results and comparisons with state-of-the-art algorithms

Table 4.2 – Comparative results of AFISA with state-of-the-art algorithms on the 46 DIMACS
benchmark instances. Improved upper bounds are indicated in bold.

Instance |V| |E| BKV
AFISA MWSS 2_Phase

∆1 ∆2Best SR Avg t(s) Best t(s) Best t(s)
DSJC125_1g.col~ 125 736 24 23 2 24.0 3016.32 25 36000.0 24 152 -2 -1
DSJC125_1gb.col~ 125 736 95 90 1 92.5 402.57 95 36000.0 95 170 -5 -5
DSJC125_5g.col~ 125 3891 76 71 2 72.3 216.04 78 36000.0 76 180 -7 -5
DSJC125_5gb.col~ 125 3891 251 243 1 250.2 369.34 263 36000.0 251 182 -20 -8
DSJC125_9g.col 125 6961 169∗ 169∗ 3 169.9 16.00 169∗ 0.3 169∗ 162 0 0
DSJC125_9gb.col 125 6961 604∗ 604∗ 3 605.5 443.96 604∗ 0.4 605 237 0 -1
GEOM100.col 100 547 65∗ 65∗ 20 65.0 0.81 65∗ 3.8 65∗ 131 0 0
GEOM100a.col 100 992 89∗ 89∗ 10 89.5 110.42 89∗ 2.4 89∗ 112 0 0
GEOM100b.col 100 1050 32∗ 32∗ 1 33.1 59.11 32∗ 3.8 32∗ 15 0 0
GEOM110.col 110 638 68∗ 68∗ 20 68.0 33.81 68∗ 59.5 69 172 0 -1
GEOM110a.col 110 1207 97∗ 97∗ 6 97.8 176.76 97∗ 12.9 97∗ 111 0 0
GEOM110b.col 110 1256 37∗ 37∗ 14 37.9 130.85 37∗ 5.0 37∗ 5 0 0
GEOM120.col 120 773 72∗ 72∗ 20 72.0 33.14 72∗ 157 72∗ 157 0 0
GEOM120a.col 120 1434 105∗ 105∗ 1 106.3 156.00 105∗ 7.0 105∗ 136 0 0
GEOM120b.col 120 1491 35∗ 35∗ 7 37.3 67.72 35∗ 16.5 35∗ 14 0 0
GEOM30b.col 30 81 12∗ 12∗ 20 12.0 0.02 12∗ 0.0 12∗ 0 0 0
GEOM40b.col 40 157 16∗ 16∗ 20 16.0 0.03 16∗ 0.1 16∗ 1 0 0
GEOM50b.col 50 249 18∗ 18∗ 20 18.0 0.02 18∗ 0.1 18∗ 0 0 0
GEOM60b.col 60 366 23∗ 23∗ 20 23.0 0.22 23∗ 0.5 23∗ 0 0 0
GEOM70.col 70 267 47∗ 47∗ 20 47.0 4.99 47∗ 0.3 47∗ 96 0 0
GEOM70a.col 70 459 73∗ 73∗ 20 73.0 4.42 73∗ 0.4 73∗ 3 0 0
GEOM70b.col 70 488 24∗ 24∗ 20 24.0 12.03 24∗ 0.9 24∗ 6 0 0
GEOM80.col 80 349 66∗ 66∗ 20 66.0 2.11 66∗ 1.1 66∗ 0 0 0
GEOM80a.col 80 612 76∗ 76∗ 19 76.1 137.1 76∗ 1.1 76∗ 102 0 0
GEOM80b.col 80 663 27∗ 27∗ 5 27.8 66.8 27∗ 2.5 27∗ 90 0 0
GEOM90.col 90 441 61∗ 61∗ 16 61.2 88.92 61∗ 2.0 61∗ 166 0 0
GEOM90a.col 90 789 73∗ 73∗ 3 74.0 512.41 73∗ 4.8 73∗ 157 0 0
GEOM90b.col 90 860 30∗ 30∗ 19 30.1 67.38 30∗ 1.7 30∗ 11 0 0
R100_1g.col~ 100 509 21∗ 21∗ 1 22.0 113.77 21∗ 28788.5 22 155 0 -1
R100_1gb.col~ 100 509 81∗ 81∗ 1 83.8 3.04 81∗ 9362.2 - 171 0 -
R100_5g.col~ 100 2456 59 59 5 60.1 6.97 59 36000.0 - 179 0 -
R100_5gb.col~ 100 2456 225 221 1 224.1 186.81 225 36000.0 - 179 -4 -
R100_9g.col 100 4438 141∗ 141∗ 15 141.3 21.36 141∗ 0.1 - 123 0 -
R100_9gb.col 100 4438 518∗ 518∗ 1 549.3 1152.83 518∗ 0.3 - 127 0 -
R50_1g.col 50 108 14∗ 14∗ 20 14.0 0.14 14∗ 0.8 14∗ 0 0 0
R50_1gb.col 50 108 53∗ 53∗ 20 53.0 0.24 53∗ 1.6 53∗ 95 0 0
R50_5g.col 50 612 37∗ 37∗ 20 37.0 0.95 37∗ 1.4 37∗ 167 0 0
R50_5gb.col 50 612 135∗ 135∗ 14 135.3 3.72 135∗ 1.5 137 145 0 -2
R50_9g.col 50 1092 74∗ 74∗ 20 74.0 0.74 74∗ 0.0 74∗ 36 0 0
R50_9gb.col 50 1092 262∗ 262∗ 20 262.0 12.61 262∗ 0.0 262∗ 33 0 0
R75_1g.col 70 251 18∗ 18∗ 12 18.4 10.96 18∗ 132.8 19 154 0 -1
R75_1gb.col 70 251 70∗ 70∗ 19 70.1 2.46 70∗ 192.2 72 166 0 -2
R75_5g.col 75 1407 51∗ 51∗ 12 51.4 0.08 51∗ 1056.0 53 172 0 -2
R75_5gb.col 75 1407 186∗ 186∗ 2 189.0 19.42 186∗ 989.3 190 173 0 -4
R75_9g.col 75 2513 110∗ 110∗ 20 110.0 2.65 110∗ 0.0 110∗ 79 0 0
R75_9gb.col 75 2513 396∗ 396∗ 12 396.4 145.89 396∗ 0.0 399 50 0 -3
#Better 5/46 0/46 0/41
#Equal 41/46 43/46 32/41
#Worse 0/46 3/46 9/41
p_value - 2.5e-2 3.1e-4

Table 4.2 reports the results of our AFISA algorithm on the first set of 46 DIMACS/COLOR
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instances commonly used in the literature, together with the results of the reference algorithms
MWSS [Cornaz et al., 2017] and 2_Phase [Malaguti et al., 2009]. The first 3 columns indicate for
each instance its name, the number of vertices and the number of edges. The fourth column shows
the best-known value (BKV) reported in the literature [Cornaz et al., 2017; Malaguti et al., 2009;
Prais and Ribeiro, 2000]. The next four columns show the results of the AFISA algorithm for
each instance: the best result (i.e., the smallest objective function value) over 20 independent runs
(Best), the success rate (SR) to achieve the best result over 20 runs, the average result (Avg) and
the average computation time (in seconds) of the successful runs to obtain the best result (t(s)) (0
is given if the time is less than 0.009 second). The following four columns report the results and
the computation time obtained by the reference algorithms (MWSS and 2_Phase). For MWSS, the
indicated time corresponds to the time of 1000 iterations. For 2_Phase, the time is the sum of the
time of 500 iterations of phase 1 and the time of phase 2. The last two columns (∆1,∆2) indicate the
difference between our result (Best) and the result of MWSS and 2_Phase. To verify the statistical
significance of the comparisons between AFISA and each reference algorithm, we show in the row
"p-values" the results from the non-parametric Friedman test applied to the best values of AFISA
and each compared algorithm, and a p-value smaller than 0.05 implies a significant difference
between two compared results.

Additionally, the rows #Better, #Equal and #Worse indicate respectively the number of in-
stances for which an algorithm performs better, equally well or worse compared to the best-
known values (BKV).

Finally, an entry with ∗ indicates the optimal objective value. A bold entry highlights an im-
proved upper bound, i.e., an improved result over the current best-known value. Entries with "-"
mean that the corresponding results are not available in the literature.

Table 4.3 – Comparative results of AFISA with state-of-the-art algorithms on the 35 pxx bench-
mark instances. Improved upper bounds are indicated in bold.

Instance |V| |E| BKV
AFISA MWSS 2_Phase GRASP

∆1 ∆2 ∆3Best SR Avg t(s) Best t(s) Best t(s) Best t(s)
p06.col 16 38 565∗ 565∗ 20 565.0 0 565∗ 0.0 565∗ 0.4 565∗ 1.1 0 0 0
p07.col 24 92 3771∗ 3771∗ 20 3771.0 0.02 3771∗ 0.0 3771∗ 0.1 3771∗ 4.0 0 0 0
p08.col 24 92 4049∗ 4049∗ 20 4049.0 0.17 4049∗ 0.0 4049∗ 1.3 4049∗ 1.3 0 0 0
p09.col 25 100 3388∗ 3388∗ 16 3388.2 0.95 3388∗ 0.0 3388∗ 0.1 3388∗ 3.0 0 0 0
p10.col 16 32 3983∗ 3983∗ 20 3983.0 0.68 3983∗ 0.0 3983∗ 0.1 3983∗ 4.5 0 0 0
p11.col 18 48 3380∗ 3380∗ 20 3380.0 0.01 3380∗ 0.0 3380∗ 0.1 3380∗ 4.7 0 0 0
p12.col 26 90 657∗ 657∗ 20 657.0 0 657∗ 0.0 657∗ 0.1 657∗ 3.8 0 0 0
p13.col 34 160 3220∗ 3220∗ 17 3221.1 0.68 3220∗ 0.0 3225 2.3 3230 7.8 0 -5 -10
p14.col 31 110 3157∗ 3157∗ 20 3157.0 0 3157∗ 0.0 3157∗ 0.1 3157∗ 10.1 0 0 0
p15.col 34 136 341∗ 341∗ 20 341.0 1.81 341∗ 0.0 341∗ 0.1 341∗ 4.7 0 0 0
p16.col 34 134 2343∗ 2343∗ 20 2343.0 0.76 2343∗ 0.0 2343∗ 0.5 2343∗ 14.5 0 0 0
p17.col 37 161 3281∗ 3281∗ 7 3322.2 2.72 3281∗ 0.0 3281∗ 1.4 3281∗ 5.5 0 0 0
p18.col 35 143 3228∗ 3228∗ 20 3228.0 0.05 3228∗ 0.0 3228∗ 0.2 3228∗ 10.4 0 0 0
p19.col 36 156 3710∗ 3710∗ 20 3710.0 0.36 3710∗ 0.0 3710∗ 0.1 3710∗ 14.6 0 0 0
p20.col 37 142 1830∗ 1830∗ 13 1841.0 4.86 1830∗ 0.0 1830∗ 1.3 1860 20.0 0 0 -30
p21.col 38 155 3660∗ 3660∗ 19 3660.5 0.75 3660∗ 0.0 3660∗ 0.2 3660∗ 18.4 0 0 0
p22.col 38 154 1912∗ 1912∗ 18 1912.2 0.29 1912∗ 0.0 1912∗ 0.2 1912∗ 20.0 0 0 0
p23.col 44 204 3770∗ 3770∗ 3 3793.0 0.28 3770∗ 0.1 3770∗ 1.4 3810 21.4 0 0 -40
p24.col 34 104 661∗ 661∗ 20 661.0 0 661∗ 0.0 661∗ 0.1 661∗ 27.9 0 0 0
p25.col 36 120 504∗ 504∗ 20 504.0 0.28 504∗ 0.0 504∗ 0.1 504∗ 23.9 0 0 0
p26.col 37 131 520∗ 520∗ 20 520.0 0.11 520∗ 0.0 520∗ 0.1 520∗ 28.3 0 0 0
p27.col 44 174 216∗ 216∗ 20 216.0 0.08 216∗ 0.1 216∗ 0.2 216∗ 7.8 0 0 0
p28.col 44 174 1729∗ 1729∗ 14 1735.1 2.56 1729∗ 0.1 1729∗ 0.1 1729∗ 44.5 0 0 0
p29.col 53 254 3470∗ 3470∗ 20 3470.0 0.10 3470∗ 0.1 3470∗ 65.7 3470∗ 65.7 0 0 0
p30.col 60 317 4891∗ 4891∗ 20 4891.0 53.79 4891∗ 0.2 4891∗ 2.1 4891∗ 56.6 0 0 0
p31.col 47 179 620∗ 620∗ 20 620.0 3.69 620∗ 0.1 620∗ 0.1 620∗ 70.9 0 0 0
p32.col 51 221 2480∗ 2480∗ 20 2480.0 0.35 2480∗ 0.1 2480∗ 0.0 2480∗ 70.9 0 0 0
p33.col 56 258 3018∗ 3018∗ 7 3029.7 0.43 3018∗ 0.3 3018∗ 0.1 3018∗ 62.3 0 0 0
p34.col 74 421 1980∗ 1980∗ 19 1980.5 3.05 1980∗ 0.6 1980∗ 0.1 1980∗ 131.9 0 0 0
p35.col 86 566 2140∗ 2140∗ 15 2145.0 4.48 2140∗ 0.6 2140∗ 0.1 2140∗ 135.0 0 0 0
p36.col 101 798 7210∗ 7210∗ 12 7385.0 0.13 7210∗ 1.4 7210∗ 0.1 7210∗ 163.1 0 0 0
p38.col 87 537 2130∗ 2130∗ 1 2139.5 9.54 2130∗ 1.2 2130∗ 0.4 2130∗ 231.8 0 0 0
p40.col 86 497 4984∗ 4984∗ 1 5016.6 5.05 4984∗ 1.0 4984∗ 0.2 4984∗ 224.2 0 0 0
p41.col 116 900 2688∗ 2688∗ 2 2688.1 0.10 2688∗ 3.2 2688∗ 0.1 2688∗ 313.7 0 0 0
p42.col 138 1186 2466∗ 2466∗ 4 2671.2 930.96 2466∗ 3.2 2509 2.8 2480 405.8 0 -43 -14
#Better 0/35 0/35 0/35 0/35
#Equal 35/35 35/35 33/35 31/35
#Worse 0/35 0/35 2/35 4/35
p-value - - 1.6e-1 4.6e-2

From Table 4.2, we observe that AFISA reaches a remarkable performance on the first set of
46 DIMACS/COLOR instances. Compared to the most recent exact algorithm MWSS, AFISA
attains all known optimal results (40 cases). For 5 out of the 6 remaining instances whose optimal
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Table 4.4 – Comparative results of AFISA with state-of-the-art algorithms on the 30 rxx bench-
mark instances. Improved upper bounds are indicated in bold.

Instance |V| |E| BKV
AFISA MWSS GRASP

∆1 ∆2Best SR Avg t(s) Best t(s) Best t(s)
r01.col 144 1280 6724∗ 6724∗ 8 6727.8 49.57 6724∗ 17.6 6724∗ 887 0 0
r02.col 142 1246 6771∗ 6771∗ 3 6780.6 85.33 6771∗ 11.3 6771∗ 1041 0 0
r03.col 139 1188 6473∗ 6473∗ 10 6490.8 190.19 6473∗ 10.4 6475 966 0 -2
r04.col 151 1406 6342∗ 6342∗ 1 6403.2 467.37 6342∗ 11.4 6342∗ 989 0 0
r05.col 142 1266 6408∗ 6408∗ 1 6466.3 71.68 6408∗ 12.3 6409 904 0 -1
r06.col 148 1381 7550∗ 7550∗ 4 7555.9 29.24 7550∗ 10.3 7550∗ 899 0 0
r07.col 141 1253 6889∗ 6889∗ 3 7555.9 34.76 6889∗ 13.7 6889∗ 6889 0 0
r08.col 138 1191 6057∗ 6057∗ 1 6080.3 311.66 6057∗ 4.1 6076 810 0 -19
r09.col 129 1027 6358∗ 6358∗ 1 6393.8 395.24 6358∗ 9.5 6424 868 0 -66
r10.col 150 1409 6508∗ 6508∗ 1 6519.3 461.98 6508∗ 13.1 6525 1048 0 -17
r11.col 208 2247 7654∗ 7654∗ 1 7710.6 259.25 7654∗ 57.2 7669 2423 0 -15
r12.col 199 2055 7690∗ 7691 1 7710.4 9542.18 7690∗ 53.7 7691 2267 1 0
r13.col 217 2449 7500∗ 7521 1 7558.3 619.53 7500∗ 105.2 7524 2365 21 -3
r14.col 214 2387 8254∗ 8254∗ 1 8283.9 8044.07 8254∗ 65.3 8254∗ 2342 0 0
r15.col 198 2055 8021∗ 8021∗ 1 8126.8 2559.06 8021∗ 25.1 8021∗ 2395 0 0
r16.col 188 1861 7755∗ 7755∗ 2 7789.2 195.53 7755∗ 26.7 7755∗ 2696 0 0
r17.col 213 2392 7979∗ 7979∗ 2 8030.3 855.38 7979∗ 79.3 8025 3175 0 -46
r18.col 200 2079 7232∗ 7232∗ 1 7278.9 868.19 7232∗ 58.2 7232∗ 1902 0 0
r19.col 185 1803 6826∗ 6840 1 6868.1 395.5 6826∗ 32.7 6858 2082 14 -18
r20.col 217 2447 8023∗ 8023∗ 1 8102.0 1028.5 8023∗ 104.1 8027 3452 0 -4
r21.col 281 3554 9284∗ 9284∗ 1 9384.5 4588.72 9284∗ 390.0 9287 4948 0 -3
r22.col 285 3684 8887∗ 8887∗ 1 8959.3 12911 8887∗ 302.6 8887∗ 5603 0 0
r23.col 288 3732 9136∗ 9136∗ 1 9267.9 3251.96 9136∗ 375.3 9145 5887 0 -9
r24.col 269 3284 8464∗ 8464∗ 1 8572.9 13142.6 8464∗ 201.7 8464∗ 4997 0 0
r25.col 266 3177 8426∗ 8468 1 8560.8 874.75 8426∗ 225.6 8504 5139 42 -36
r26.col 284 3629 8819∗ 8819∗ 1 8927.9 14225.1 8819∗ 439.6 8819∗ 5462 0 0
r27.col 259 3019 7975∗ 7975∗ 1 8019.7 14074.9 7975∗ 248.1 7975∗ 5064 0 0
r28.col 288 3765 9407∗ 9407∗ 1 9599.4 8691.00 9407∗ 222.7 9407∗ 5874 0 0
r29.col 281 3553 8693∗ 8693∗ 1 8743.7 7613.14 8693∗ 388.0 8693∗ 4923 0 0
r30.col 301 4122 9816∗ 9816∗ 1 10003.2 8838.59 9816∗ 346.9 9816∗ 6145 0 0
#Better 0/30 0/30 0/30
#Equal 26/30 30/30 16/30
#Worse 4/30 0/30 14/30
p-value - 4.6e-2 3.2e-4

Table 4.5 – Comparative results of FISA with CPLEX on the additional set of 50 larger DI-
MACS/COLOR instances. Improved upper bounds are indicated in bold.

Instance |V| |E|
AFISA CPLEX

∆Best SR Avg t(s) UB LB status
miles250.col 128 387 102∗ 8 102.7 56.61 102∗ 102∗ Optimal 0
miles500.col 128 1170 260 1 261.3 48.46 - - - -
miles1000.col 128 3216 432 1 444.7 480.02 437 31.692 Feasible -5
miles1500.col 128 5198 587 1 644.3 32.31 - - - -
mulsol.i.5.col 186 3973 367.0 20 367.0 416.91 360 109.034 Feasible 7
queen10_10.col 100 2940 166 3 169.2 68.43 - - - -
queen11_11.col 121 3960 178 1 182.3 55.24 - - - -
queen12_12.col 144 5192 194 1 198.6 92.7 208 47.000 Feasible -14
queen13_13.col 169 6656 204 2 207.5 199.85 - - - -
queen14_14.col 196 8372 224 2 227.4 360.05 316 23.000 Feasible -92
queen15_15.col 225 10360 237 1 241.2 183.44 - - - -
queen16_16.col 256 12640 253 2 256.3 300.85 365 22.033 Feasible -112
zeroin.i.1.col 211 4100 518 20 518.0 0 - - - -
zeroin.i.2.col 211 3541 336 3 337.6 440.84 300 26.103 Feasible 36
zeroin.i.3.col 206 3540 299 2 301.7 139.64 - - - -
DSJC250.1.col 250 3218 140 1 141.9 48.94 - - - -
DSJC250.5.col 250 15668 415 1 428.1 269.23 - - - -
DSJC250.9.col 250 55794 925 1 942.7 856.25 - - - -
DSJC500.1.col 500 12458 210 1 215.6 426.64 - - - -
DSJC500.5.col 500 125248 778 1 845.1 159.27 - - - -
DSJC500.9.col 500 224874 1790 1 1854.5 831.07 - - - -
DSJR500.1.col 500 3555 169 1 175.4 458.86 - - - -
DSJC1000.1.col 1000 99258 359 4 362.9 430.54 - - - -
DSJC1000.5.col 1000 499652 1357 1 1430.9 371.65 - - - -
DSJC1000.9.col 1000 898898 3166 1 3231.0 490.2 - - - -
inithx.i.1.col 864 18707 587 5 587.9 527.46 - - - -
inithx.i.2.col 645 13979 341 8 341.6 0.03 - - - -
inithx.i.3.col 621 13969 352 11 355.6 0.01 - - - -
le450_15a.col 450 8168 241 1 247.1 288.37 - - - -
le450_15b.col 450 8169 239 2 245.1 368.35 - - - -
le450_15c.col 450 16680 313 1 320.8 432.95 - - - -
le450_15d.col 450 16750 306 2 314.1 113.7 - - - -
le450_25a.col 450 8260 317 1 329.9 362.26 - - - -
le450_25b.col 450 8263 318 1 325.8 285.88 - - - -
le450_25c.col 450 17343 378 1 387.9 359.37 - - - -
le450_25d.col 450 17345 375 1 385.3 254.76 - - - -
flat1000_50_0.col 1000 245000 1289 1 1315.7 981.77 - - - -
flat1000_60_0.col 1000 245830 1338 1 1354 201.98 - - - -
flat1000_76_0.col 1000 246708 1314 1 1337.6 2396.63 - - - -
C2000.5.col 2000 999836 2400 1 2425.1 3133.97 - - - -
C2000.9.col 2000 1799532 6228 1 6284.0 2798.3 - - - -
latin_square_10.col 900 307350 1690 1 1900.0 780.26 - - - -
wap01a.col 2368 110871 638 1 653.1 1133.51 - - - -
wap02a.col 2464 111742 637 1 638.1 3270.46 - - - -
wap03a.col 4730 286722 687 1 707.5 2901.51 - - - -
wap04a.col 5231 294902 698 1 709.0 4.79 - - - -
wap05a.col 905 43081 598 1 610.9 1574.52 - - - -
wap06a.col 947 43571 599 1 607.6 65.32 - - - -
wap07a.col 1809 103368 680 1 692.5 384.82 - - - -
wap08a.col 1870 104176 663 1 673.4 2627.2 - - - -
#Better 47/50 2/7
#Equal 1/50 1/7
#Worse 2/50 4/7
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values are still unknown, AFISA improves the current best upper bounds (see negative entries
in column ∆1). AFISA also dominates the 2_Phase algorithm on the 41 instances tested by both
algorithms, by obtaining better results for 13 instances (see negative entries in column ∆2) and the
same results for the remaining 28 instances. The small p-values (< 0.05) indicates that there is a
significant difference between our best results and those of the two reference algorithms MWSS
(p-value=2.5e-2) and 2_Phase (p-value=3.1e-4).

Table 4.3 reports the comparative results on the first set of 35 pxx instances from matrix-
decomposition problems with one more reference algorithm (GRASP) [Prais and Ribeiro, 2000].
One observes that AFISA performs very well on these pxx instances. AFISA attains always the
known optimal values of MWSS, while 2_Phase and GRASP miss 2 and 4 instances respectively.
The difference between AFISA and 2_Phase is however not statistically significant (p-value of
1.6e-1), while the difference between AFISA and GRASP is significant with a p-value of 4.6e-2.

Table 4.4 shows the results of AFISA on the second set of 30 rxx instances from matrix-
decomposition problems, along with those of MWSS and GRASP. Table 4.4 indicates that AFISA
finds the optimal solutions for 26 out of the 30 rxx instances, which were previously obtained
by the exact algorithm MWSS. Among the four cases where AFISA misses the optimal solution,
the gap to the optimal value is no more than 0.498% (instance r25). Compared to the reference
heuristic algorithm GRASP, AFISA (Column 4) dominates GRASP by attaining 13 better and 17
equal results. The p-value of 4.6e-2 between AFISA and MWSS indicates that there is a slight
difference and the p-value of 3.2e-4 between AFISA and GRASP indicates that there is significant
difference between the results of AFISA and GRASP.

Notice that according to [Malaguti et al., 2009], 2_Phase is able to find (in comparable com-
puting times) 3 solutions better than those of GRASP reported in [Prais and Ribeiro, 2000], 9
solutions of equal quality and 18 worse solutions. However the detailed results of 2_Phase on the
rxx instances are not available.

Finally, Table 4.5 summarizes our results on the set of 50 additional (larger) DIMACS/COLOR
instances. Since these instances are not tested previously by any WVCP method, we use the
general MIP solver CPLEX (version 12.6) as our reference method. We run CPLEX, with a cutoff
limit of one hour, to solve the 0/1 ILP model shown in Appendix 5.6. Entries with − in Table 4.5
indicate that no feasible solution is found by CPLEX within the time limit and this happens for
43 out of the 50 instances. The last column (∆) indicates the difference between our best result
and the upper bound of CPLEX (a negative value implies thus a better result). We observe that
only one instance can be solved to optimality by CPLEX within the one hour time limit. For the
six instances for which CPLEX reaches a feasible solution, but fails to find the optimal solution,
its upper bounds are worse than the bounds of AFISA in four cases. Due to the small number of
instances solved by CPLEX, we omit the statistical test.

To sum up, this computational assessment indicates that AFISA performs very well on the
four sets of benchmark instances. The new upper bounds (5 for the first set and the results for the
fourth set) established by AFISA can serve as valuable reference values to evaluate future algo-
rithms for the WVCP. Meanwhile, AFISA failed to attain the optimal values for four instances of
the third set, indicating there is room for further improvement. Finally, this experimental study
confirms that like for many NP-hard problems, both exact and heuristic algorithms are comple-
mentary and can be used to solve problem instances of different sizes and different characteristics.
These approaches can even be combined to create powerful hybrid algorithms.

4.4 Analysis

This section performs additional experiments to analyze the benefits of three important in-
gredients of the proposed AFISA algorithm: the penalty coefficient of the extended evaluation
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Figure 4.1 – Influence of the increment/decrement value of the penalty efficient

function, the strategy of visiting both feasible and infeasible solutions and the perturbation strat-
egy.

4.4.1 Impact of the penalty coefficient

AFISA uses the extended evaluation function F defined in Section 4.2.3 to explore both feasi-
ble and infeasible solutions. The oscillation between feasible and infeasible zones is adaptively
controlled by increasing or decreasing the penalty coefficient ϕ (≥ 1). In this study, we analyze
the impact of the increment/decrement value used to adjust ϕ and for this purpose, we test the
following increment/decrement values: 1,2,3,4 (larger values make the search oscillate too much
between feasible and infeasible zones).

Box and whisker plots of the results on 4 representative instances from the four benchmark sets
(which are relatively difficult according to Tables 4.2-4.5) are shown in Figure 4.1, where the X-axis
indicates the tested increment/decrement values and the Y-axis indicates the objective values. As
a supplement, we also compute the p-value for each tested instance. The results are based on 20
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independent runs for each instance with a cutoff time of 300 seconds per run. One observes that
the performance of the AFISA algorithm is significantly influenced by the increment/decrement
value on the instances DSJC125_5gb (p-value = 1.4e-2) and queen16_16 (p-value = 1.2e-4). This is
less the case for the instances p42 (p-value = 2.0e-1) and r05 (p-value = 7.6e-1). Furthermore, the
AFISA algorithm with the increment/decrement value of 1 gives the best performance compared
to other values. This explains why we adopt 1 as the default increment/decrement value in this
study. Finally, one notices that the outcome of this experiment remains coherent with the intuitive
understanding that the search will go back and forth more frequently between feasible and infea-
sible regions with a large increment/decrement value than with a small value. This implies that a
large increment/decrement value may make the search leave each newly discovered (feasible or
infeasible) zone too early before the search zone is sufficiently exploited.

4.4.2 Benefit of searching both feasible and infeasible solutions

Table 4.6 – Assessment of searching both feasible and infeasible solutions. The better results are
in bold.

Instance |V| |E|
AFISA Tabu_Feasible

∆
Best SR Avg t(s) Best SR Avg t(s)

DSJC1000.1.col 1000 99258 359 4 362.9 430.54 354 1 358.9 450.15 5
DSJC1000.5.col 1000 499652 1357 1 1430.9 371.65 1354 1 1371.3 84.75 3
DSJC1000.9.col 1000 898898 3166 1 3231.0 490.2 3166 1 3231.1 490.2 0
DSJC125_1g.col 125 736 23 2 24.0 3016.32 23 4 23.8 1467.63 0
DSJC125_1gb.col 125 736 90 1 92.5 402.57 91 1 94.6 30.09 -1
DSJC125_5g.col 125 3891 71 2 72.3 216.04 71 1 72.5 199.14 0
DSJC125_5gb.col 125 3891 243 1 250.2 369.34 246 3 250.9 292.08 -3
DSJC125_9g.col 125 6961 169 3 170.0 16 169 4 170.2 42.1 0
DSJC125_9gb.col 125 6961 604 3 605.0 443.96 606 2 608.7 18.24 -2
DSJC250.1.col 250 3218 140 1 141.9 48.94 140 4 142.1 57.37 0
DSJC250.5.col 250 15668 415 1 428.1 269.23 421 1 431.2 318.86 -6
DSJC250.9.col 250 55794 925 1 942.7 856.25 948 1 965.8 365.4 -23
DSJC500.1.col 500 12458 210 1 215.6 426.64 212 1 215.3 84.83 -2
DSJC500.5.col 500 125248 778 1 845.1 159.27 780 1 796.1 450.89 -2
DSJC500.9.col 500 224874 1790 1 1854.5 831.07 1791 1 1869.2 345.13 -1
DSJR500.1.col 500 3555 169 1 175.4 458.86 170 2 171.9 272.89 -1
GEOM100.col 100 547 65 20 65.0 0.81 65 20 65.0 9.86 0
miles1500.col 128 5198 587 1 644.3 32.31 797 4 798.6 0.13 -210
p13.col 34 160 3220 17 3221.1 0.68 3220 16 3221.5 0.83 0
p20.col 37 142 1830 13 1841 4.86 1830 16 1835.5 0.76 0
p42.col 138 1186 2466 4 2671.2 930.96 2646 1 2659.7 12.51 -180
queen12_12.col 144 5192 194 1 198.6 92.7 196 2 199.0 96.04 -2
queen14_14.col 196 8372 224 2 227.4 360.05 225 1 227.7 129.47 -1
queen16_16.col 256 12640 253 2 256.3 300.85 250 1 254.8 14.15 3
r03.col 139 1188 6473 10 6490.8 190.19 6487 1 6536 119.3 -14
r05.col 142 1266 6408 1 6466.3 71.68 6495 1 6525.6 143.13 -87
R100_1g.col 100 509 21 1 22.0 113.77 21 3 21.9 533.65 0
R100_5g.col 100 2456 59 5 60.1 6.97 59 2 60.3 2.56 0
R100_5gb.col 100 2456 221 1 224.1 186.81 222 1 224.7 1362.52 -1
R100_9g.col 100 4438 141 15 141.3 21.36 141 11 141.5 2.43 0
R100_9gb.col 100 4438 518 1 549.3 1152.83 518 13 518.5 21.25 0
R50_5gb.col 50 612 135 14 135.3 3.72 135 18 135.3 0.11 0
R75_1g.col 70 251 18 12 18.4 10.96 18 10 18.5 32.89 0
R75_1gb.col 70 251 70 19 70.1 2.46 70 17 70.3 6.58 0
R75_5g.col 75 1407 51 12 51.4 0.08 51 7 51.7 5.11 0
R75_5gb.col 75 1407 186 2 189.0 19.42 186 2 189.2 31.93 0
R75_9gb.col 75 2513 396 12 396.4 145.89 396 9 396.7 4.35 0
zeroin.i.2.col 211 3541 336 3 337.6 440.84 336 13 336.4 0.91 0
#Better 16/38 24/38 3/38 12/38
#Equal 19/38 2/38 19/38 2/38
#Worse 3/38 12/38 16/38 24/38
p_value - - 2.9e-3 4.6e-2

To assess the strategy of oscillating between feasible and infeasible regions of the proposed
algorithm, we create a algorithmic variant (called Tabu_Feasible) in which the search visits only
feasible solutions. For this, we set the penalty coefficient ϕ of the extended evaluation function
(Eq. (4.2), Section 4.2.3) to a large value in order to penalize strongly any infeasible solution. In
our case, ϕ is set to the largest weight of vertices of the given graph. For this experiment, we
select 38 instances that are relatively difficult according to the results reported in Tables 4.2-4.5,
i.e., their best-known results cannot consistently be attained by all algorithms. We ran 20 times
both algorithms to solve each selected instance with a cutoff time of 1 hour.

The comparative results of this experiment are presented in Table 4.6 with the same informa-
tion as before. The rows #Better/#Equal/#Worse indicate the number of instances for which each
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algorithm attain a better, equal and worse result compared to the other algorithm in terms of the
best objective value found. The last column indicates the difference between the best results of
AFISA and Tabu_Feasible. We observe that even if both algorithms obtain 19 equal results, AFISA
achieves 16 better results (against 3 for Tabu_Feasible). The small p-values (< 0.05) in terms of
Best and Avg confirm the statistical significance of the reported differences between AFISA and
Tabu_Feasible. This experiment shows that searching both feasible and infeasible solutions en-
ables the algorithm to reach a better performance.

4.4.3 Impact of the perturbation operation

Table 4.7 – Assessment of the perturbation strategy. The better results are in bold.

Instance |V| |E|
AFISA AFISA−

∆
Best SR Avg t(s) Best SR Avg t(s)

DSJC1000.1.col 1000 99258 359 4 362.9 430.54 384 10 385.5 0.08 -25
DSJC1000.5.col 1000 499652 1357 1 1430.9 371.65 1427 10 1434.5 0.07 -70
DSJC1000.9.col 1000 898898 3166 1 3231.0 490.2 3291 10 3302.5 0.04 -125
DSJC125_1g.col 125 736 23 2 24.0 3016.32 33 6 33.7 0 -10
DSJC125_1gb.col 125 736 90 1 92.5 402.57 120 13 122.8 0 -30
DSJC125_5g.col 125 3891 71 2 72.3 216.04 87 14 88.5 0 -16
DSJC125_5gb.col 125 3891 243 1 250.2 369.34 293 20 293.0 0.01 -50
DSJC125_9g.col 125 6961 169 3 170.0 16 186 12 188.8 0 -17
DSJC125_9gb.col 125 6961 604 3 605.0 443.96 652 10 668.0 0 -48
DSJC250.1.col 250 3218 140 1 141.9 48.94 168 10 170.5 0.01 -28
DSJC250.5.col 250 15668 415 1 428.1 269.23 472 8 476.5 0 -57
DSJC250.9.col 250 55794 925 1 942.7 856.25 1039 11 1060.0 0 -114
DSJC500.1.col 500 12458 210 1 215.6 426.64 242 10 243.0 0.02 -32
DSJC500.5.col 500 125248 778 1 845.1 159.27 853 8 856.0 0.03 -75
DSJC500.9.col 500 224874 1790 1 1854.5 831.07 1937 20 1937.0 0.01 -147
DSJR500.1.col 500 3555 169 1 175.4 458.86 184 10 191.5 0.01 -15
GEOM100.col 100 547 65 20 65.0 0.81 74 9 74.6 0.01 -9
miles1500.col 128 5198 587 1 644.3 32.31 799 8 809.8 0 -212
p13.col 34 160 3220 17 3221.1 0.68 3568 7 3764.3 0 -348
p20.col 37 142 1830 13 1841.0 4.86 2270 20 2270 0.01 -440
p42.col 138 1186 2466 4 2671.2 930.96 2880 12 2887.2 0 -414
queen12_12.col 144 5192 194 1 198.6 92.7 229 9 230.0 0 -35
queen14_14.col 196 8372 224 2 227.4 360.05 254 14 255.5 0 -30
queen16_16.col 256 12640 253 2 256.3 300.85 280 9 282.2 0 -27
r03.col 139 1188 6473 10 6490.8 190.19 6603 1 6687.3 376.19 -130
r05.col 142 1266 6408 1 6466.3 71.68 6495 2 6637.7 0 -87
R100_1g.col 100 509 21 1 22.0 113.77 30 8 30.6 0 -9
R100_5g.col 100 2456 59 5 60.1 6.97 72 10 73.5 0 -13
R100_5gb.col 100 2456 221 1 224.1 186.81 260 1 264 0 -39
R100_9g.col 100 4438 141 15 141.3 21.36 153 9 157.4 0 -12
R100_9gb.col 100 4438 518 1 549.3 1152.83 548 9 551.5 0 -30
R50_5gb.col 50 612 135 14 135.3 3.72 152 8 156.8 0 -17
R75_1g.col 70 251 18 12 18.4 10.96 24 7 25.2 0 -6
R75_1gb.col 70 251 70 19 70.1 2.46 88 11 89.4 0 -18
R75_5g.col 75 1407 51 12 51.4 0.08 63 20 63.0 0 -12
R75_5gb.col 75 1407 186 2 189.0 19.42 231 11 233.7 0 -45
R75_9gb.col 75 2513 396 12 396.4 145.89 425 12 428.2 0.01 -29
zeroin.i.2.col 211 3541 336 3 337.6 440.84 337 13 337.7 0 -1
#Better 38/38 38/38 0/38 0/38
#Equal 0/38 0/38 0/38 0/38
#Worse 0/38 0/38 38/38 38/38
p-value - - 7.1e-10 7.1e-10

As shown in Section 4.2.5, the proposed algorithm uses a perturbation strategy as an addi-
tional means of diversification. To assess this strategy, we compare AFISA with a AFISA variant
(denoted as AFISA−) where the perturbation strategy is disabled (i.e., by removing line 22 in Al-
gorithm 4.1). This experiment is based on the 38 instances used in Section 4.4.2. We ran 20 times
both algorithms to solve each selected instance with a cutoff time of 1 hour.

The results of this experiment are shown in Table 4.7 with the same statistics as before. We
observe that AFISA dominates, in terms of Best and Avg, the AFISA− variant by obtaining a
better result for each instance. The small p-values confirm the dominance of AFISA over AFISA−.
This experiment demonstrates the interest of the adopted perturbation strategy as a meaningful
means of diversification that enables the algorithm to better explore the search space.
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4.5 Conclusions

The weighted vertex coloring problem (WVCP) considered in this work is a generalization
of the conventional vertex coloring problem with a number of practical applications. Motivated
by the observation that existing methods limit their search to feasible solutions, we investigated
for the first time the benefit of examining both feasible and infeasible solutions for solving the
problem. The resulting AFISA algorithm oscillates between feasible and infeasible search zones
guided by an extended evaluation function that combines the initial objective function and an
adaptive penalty function. To explore feasible and infeasible spaces, we introduced a tabu search
procedure enhanced by a dedicated perturbation strategy to escape local optima traps.

We assessed the performance of the AFISA algorithm on three sets of 111 instances commonly
tested in the literature and an additional set of 50 (large) DIMACS and COLOR instances ini-
tially proposed for graph coloring problems. We presented 5 improved best results (new upper
bounds) among the 111 instances of the literature and the first upper bounds for the new set of 50
instances. These new bounds can serve as valuable references to assess future WVCP algorithms
and might be used by a branch-and-bound algorithm as high-quality initial bounds. This study
demonstrates the benefit of the search strategy examining both feasible and infeasible solutions
for solving the WVCP. The computational results on different types of benchmark instances also
confirm that exact and heuristic algorithms are complementary solution approaches that can be
advantageously employed to handle instances of different sizes with particular features.

For future work, several directions could be followed. First, other penalty-based evaluation
functions could be devised to enable a better strategic oscillation between feasible and infeasible
spaces. Second, other neighborhoods (rather than the one-move based neighborhood used in
this work) can be sought to further improve the performance of the search algorithm. Third, the
proposed algorithm could be advantageously integrated into a hybrid population-based method
(e.g., memetic search, path-linking) as a key intensification component. Fourth, this work uses
tabu search to explore candidate solutions. Other meta-heuristics can be investigated to ensure
this task while reusing most algorithmic components of AFISA. Finally, few exact algorithms
are available for the WVCP, there is thus much room for research in this direction. In this context,
AFISA could be used to generate high-quality initial bounds or to obtain upper bound estimations
of subproblems during the search process.





5
Iterated backtrack removal search for finding
k-VCS

In this chapter, we propose an iterated backtrack-based removal (IBR) heuristic to find k-VCS
for a given graph. IBR extends the popular removal strategy with two new search components
– a backtracking mechanism to reconsider some removed vertices and a perturbation strategy to
escape local optima traps. Computational results on 80 benchmark graphs show that IBR is very
competitive in terms of solution quality and run-time efficiency compared with state-of-the-art
algorithms in the literature. Specifically, IBR improves best-known solutions for 9 graphs and
matches the best results for other 70 instances. An article describing IBR is published in Journal
of Heuristics [Sun et al., 2018a].
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5.1 Introduction

This chapter is dedicated to the k-vertex-critical subgraphs problem which was introduced in
Chapter 1. Recall that given an undirected graph G = (V, E) and a positive integer k, a k-vertex-
critical subgraph (k-VCS) of G is a subgraph H such that its chromatic number equals k (i.e.,
χ(H) = k), and removing any vertex causes a decrease of χ(H). The k-VCS problem (k-VCSP) is
to find the smallest k-vertex-critical subgraph H∗ of G. We extend previous studies by proposing
an Iterated Backtrack Removal Search (IBR) for finding k-VCS in a graph. IBR reinforces the
classical removal procedure [Chinneck, 1997b; Chinneck and Dravnieks, 1991; Desrosiers et al.,
2008; Herrmann and Hertz, 2002] with a backtracking scheme and a perturbation strategy. The
basic idea of our approach is as follows. The removal procedure reduces the current graph by
tentatively moving vertices to the set of uncritical vertices (see Section 5.3.2). This process is
repeated until the subgraph induced by set of critical vertices is such that its chromatic number
equals k. If the current subgraph does contain a k-VCS (the chromatic number of the current
subgraph less than k), which means some critical vertices were removed to the set of uncritical
vertices in error, the backtracking procedure is invoked. The backtracking procedure expands the
current subgraph by adding back some vertices which are in the set of the uncritical vertices until
the chromatic number of the current subgraph increases to k again. The perturbation procedure
provides a means of reconsidering some vertices which would have been incorrectly identified as
critical ones (see Section 5.3.5). This phase terminates once the stop condition is met.

We assess the proposed IBR algorithm on 80 popular DIMACS and COLOR02-04 benchmark
instances which are commonly used to test k-VCS algorithms in the literature . The experimental
results show that our IBR algorithm competes favorably with the state-of-the-art results. Specif-
ically, the proposed algorithm improves best-known solutions for 9 graphs (improves the lower
bound for 6 instances, at the same k, IBR obtains a better solution (smaller size of k-VCS) for 8
instances) and matches the best results for other 70 instances. Only in one case, IBR obtains a
slightly worse result.

The chapter is organized as follows. Section 5.2 introduces some useful notations. Section
5.3 presents the components of the IBR algorithm, including the basic removal algorithm, the
backtrack-based removal algorithm and the perturbation procedure. Section 5.4 shows computa-
tional evaluation and comparisons with state-of-the-art results. Section 5.5 investigates the key
components of the proposed algorithm, followed by conclusions in Section 5.6.

5.2 Notations

Let G = (V, E) be an input graph, we introduce the following notations, which are useful for
the description of the proposed approach.

We define three working sets of vertices A, B and C that are used by the algorithm. For each
vertex of V, we first define its status (critical, unknown, uncritical).

A critical vertex is a vertex that belongs to a k-VCS. We use A to denote the set of critical vertices
that have been detected. A is also called the critical set.

An unknown or undetected vertex is a vertex whose status is still unknown. We use B to denote
the set of unknown vertices, which is also called the unknown set.

An uncritical vertices refers to a vertex that does not belong to a k-VCS. We use C to denote the
set of uncritical vertices, which is also called the uncritical set.

Given the critical set A and the unknown set B, the subgraph induced by A, H = GA =
(A, EA) (EA = A× A ∩ E), is called the critical subgraph of G. The subgraph induced by A ∪ B,
GA∪B = (A ∪ B, EA∪B) (EA∪B = ((A ∪ B)× (A ∪ B)) ∩ E), is the remaining subgraph of G.

As explained in the next section, the proposed approach operates on these three sets of ver-
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tices, which are initially set as A = ∅, B = V, C = ∅. Then the algorithm searches a k-VCS
by moving vertices from one set to another according to the temporarily identified status of each
vertex.

For any vertex i, we also associate a weight w(i), which is defined as follows:

w(i) =


|E|, i f i ∈ A.
1, i f i ∈ B;
0, i f i ∈ C;

(5.1)

At the beginning of the search, we set w(i) = 1 for each vertex i of V (since A = ∅, B = V, C =
∅). The weight of a vertex is updated each time the vertex changes its status (critical, unknown,
uncritical) (see Section 5.3). The weight information is mainly used by the removal algorithm for
vertex selection.

5.3 The Iterated Backtrack-based Removal Algorithm

In this section, we present the iterated backtrack-based removal algorithm (IBR) for detecting
k-VCS in a graph. IBR extends the classical removal algorithm with a backtracking scheme and a
perturbation procedure.

5.3.1 General structure of the IBR algorithm

Given a graph G = (V, E) and an integer k ≤ K (K being χ(G) or the smallest number of colors
for which a k-coloring exists), the proposed IBR algorithm (see Figure 5.1 and Algorithm 5.1) aims
to find a small k-VCS, i.e., a small set of critical vertices A ⊆ V such that the induced subgraph
H = (A, EA) has a chromatic number of χ(H) = k, and removing any vertex from H decreases
χ(H).

The IBR algorithm operates with three working sets of vertices, initialized as A = ∅, B =
V, C = ∅. Basically, according to the coloring results on the remaining graph provided by a
heuristic coloring algorithm, IBR uses three main procedures to move vertices among these sets
in order to find a k-VCS.

Recall that each graph G contains at least one k-VCS for 1 ≤ k ≤ χ(G). Furthermore, a graph
G is (k− 1)-colorable if and only if G does not contain a k-VCS. Note that the problem of deciding
whether a graph G is (k − 1)-colorable is itself NP-hard. For this reason, we adopt a heuristic
coloring algorithm Color (see Section 5.3.3) to judge whether G is (k− 1)-colorable.

1. The removal procedure inspects, one by one, the vertices of set B of unknown vertices to de-
termine their status (Algorithm 5.1, lines 7-16). Specifically, at each iteration, a vertex i from
B is first moved to C (i.e., i is supposed to be uncritical, line 8). If the graph GA∪B after
removing i does not contains a k-VCS any longer, i.e., becomes (k− 1)-colorable, (checked
with a heuristic coloring algorithm, see Section 5.3.3), then vertex i is identified as critical
and moved from C to A (lines 9-10, see Section 5.3.2). We check again with the heuristic col-
oring algorithm whether the graph GA∪B contains a k-VCS (line 12). If the graph GA∪B after
adding i back still does not contain a k-VCS, then certain critical vertices were incorrectly
classified into the uncritical set C, a backtracking procedure is invoked (line 12). This process
is repeated until the subgraph induced by set A of critical vertices is such that its chromatic
number equals k (line 7).

2. Since the algorithm used to judge whether the remaining graphs GA∪B contains a k-VCS is
not an exact algorithm (see Section 5.3.3), a critical vertex can be incorrectly classified into
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Algorithm 5.1: The IBR algorithm for solving the k-VCSP
1: Input: Graph G = (V, E), integer k ≤ K (K being χ(G) or the smallest number of colors for which a

k-coloring exists), R maximum allowed perturbations.
2: Output: H the smallest k-colorable subgraph

/*Initialization*/
3: H1 = ∅, · · · , HR = ∅ /* each Hr records a detected candidate k-VCS*/
4: A = ∅, B = V, C = ∅, H = (A, EA) /*A is set of critical vertices, B is set of unknown vertices, C is set

of uncritical vertices*/
5: r = 0 /*r is the number of performed perturbations*/
6: while r < R do
7: while H does not contains a k-VCS do
8: Choose a vertex i ∈ B, move i from B to C /*vertex removal, Section 5.3.2*/
9: if GA∪B does not contains a k-VCS then

10: move i from C to A /*i is detected as a critical vertex*/
11: H = (A, EA)

/*Backtracking, Section 5.3.4*/
12: while GA∪B does not contains a k-VCS do
13: Choose a vertex l ∈ C, move l from C to B
14: end while
15: end if
16: end while
17: r = r + 1
18: Hr = H

/*Perturbation operator for the critical subgraph*/
19: H′ ← Perturbation(Hr) /*Section 5.3.5*/

/*Update the set A, B and C*/
20: {A, B, C} ← Update_set(H′) /*Section 5.3.6*/
21: H = (A, EA)
22: end while
23: H ← the smallest k-colorable subgraph
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Begin

Choose a vertex i ∈ B, move i from B to C

GA∪B contains a k-VCS Move i from C to A

GA contains a k-VCS GA∪B contains a k-VCS

Choose a vertex l ∈ C, move l from C to BHr = GA

H′ ← Perturbation(Hr)

{A,B,C}← Update_set(H′)

r < R
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Figure 5.1 – Flow chart of the iterated backtrack-based removal algorithm for finding k-VCS in a
graph.

the uncritical set C. To remedy this problem, we introduce a backtracking procedure which
reconsiders the vertices of C (i.e., moving them back to the unknown set B, see Section 5.3.4).
This procedure extends the removal procedure by continually moving uncritical vertices
from C to B until the chromatic number of GA∪B increases to k again (lines 12-14, see Section
5.3.4). Once χ(GA∪B) = k (which means the graph GA∪B once again contains a k-VCS), the
backtracking phase stops and returns to the removal phase. Otherwise, one repeats this
backtracking phase.

3. The perturbation procedure is used to remedy the problem of some misclassified critical ver-
tices moves vertices from set A to B (line 19, see Section 5.3.5) and updates the sets A, B and
C and the subgraph H (lines 20-21, see Section 5.3.6). Then, the removal algorithm is applied
on the graph G with the updated sets. This phase terminates once the allowed number of
perturbations is reached (line 6).

We note that Algorithm 5.1 becomes the conventional removal algorithm of [Desrosiers et al.,
2008] when the backtrack procedure (lines 12-14) and perturbation procedure (lines 17-21) are
disabled.

In the remainder of this section, we explain the main procedures of the IBR algorithm: the
removal procedure, the heuristic coloring procedure, the backtracking procedure and the pertur-
bation procedures.
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5.3.2 The removal algorithm

Our removal procedure is based on the removal heuristic algorithm presented in [Desrosiers
et al., 2008], which can be conveniently described using the notion of critical, unknown and un-
critical sets of vertices.

After initialization, B = V, A = ∅, C = ∅, H = (A, EA). We note that GA∪B = G is not
(k− 1)-colorable, thus contains a k-VCS (see Section 5.3.1 and Algorithm 5.1). In each iteration,
the removal algorithm tentatively moves one vertex i from the unknown set B to the uncritical
set C. If GA∪B without vertex i is always not (k− 1)-colorable (i.e., GA∪B contains a k-VCS), the
removed vertex i is considered as an uncritical vertex and is kept in C. Otherwise, if GA∪B without
vertex i becomes (k− 1)-coloring (i.e., GA∪B does not contain a k-VCS), vertex i is considered as a
critical vertex and thus transferred from set C to set A. In both cases, we update the sets A, B, C,
the graphs H, GA∪B and the weights of vertices accordingly. The removal algorithm repeats this
process until χ(H) increases to k, which occurs when a k-VCS is detected.

In the removal algorithm, the rule used to select the next vertex from B impacts the critical
subgraphs generated. In order to favor small critical subgraphs, the removal algorithm adopts
the neighborhood weight heuristic strategy proposed in [Desrosiers et al., 2008], which uses infor-
mation contained in the weights of vertices.

Recall that when a vertex i is placed in the set A, B and C, its weight is set as |E|, 1 and 0
correspondingly. The neighborhood weight W(i) of a vertex i is defined as the sum of the weights
of the vertices that are adjacent to this vertex. When all weights of vertices are equal to 1 (e.g.,
after initialization), the neighborhood weight of a vertex equals its degree and can be considered
as an indicator on the density of the region surrounding this vertex. The neighborhood weight
heuristic strategy moves the vertices with the smallest neighborhood weight firstly, and preserves
the denser ones. This strategy proved to be effective to detect a k-VCS with a small size [Desrosiers
et al., 2008].

5.3.3 Heuristic coloring algorithm

We adopt a heuristic coloring algorithm Color to judge whether a graph G is (k− 1)-colorable
(i.e., whether G contains a k-VCS). The removal algorithm can guarantee that the extracted sub-
graph H = (A, EA) is a k-VCS when the coloring algorithm Color is an exact algorithm (i.e., able
to verify that the given remaining graph is colorable with a given k). However, given that the gen-
eral k-coloring problem is itself NP-complete, exact methods can be too time consuming even for
graphs of relatively small sizes (with several tens of vertices). For this reason and like [Desrosiers
et al., 2008], we adopt a heuristic coloring algorithm (i.e., TabuCol [Hertz and de Werra, 1987;
Dorne and Hao, 1999; Galinier and Hao, 1999]). Contrary to an exact algorithm, the heuristic
algorithm may fail to find a legal coloring with a given k, even if such a coloring exists.

Recall that at each iteration of the removal procedure, we move one unknown vertices i from
B to C. Then, one needs to know whether there is a legal (k− 1)-coloring on graph H = (A, EA)
(the stopping condition is met or not) and on graph GA∪B = (A∪ B, EA∪B) (the last moved vertex
is critical or not).

To solve the (k − 1)-coloring problem, TabuCol iteratively explores partitions of V in k − 1
classes. Each partition c is attributed to a fitness value f (c) which is equal to the number of
edges of the graph that have both endpoints in the class. Therefore, if f (c) = 0, the partition c
corresponds to a proper (k − 1)-coloring. The purpose of the tabu search coloring algorithm is
then to minimize the fitness function f . The tabu coloring process stops when f (c) = 0 or the
fitness function cannot be improved within a given number of iterations.



5.3. THE ITERATED BACKTRACK-BASED REMOVAL ALGORITHM 77

Removal

--Unknown vertex

--Critical vertex

--Uncritical vertex

A CBACB

Removal

8

1

12

4

10

5

7

6

11

3

9

2

8

1

12

4

10

5

7

6

11

3

9

2

1

3

5

7

9

11

2

4

6

8

10

12

1

5

7

4

6

3

9

11

2

8

10

12

Figure 5.2 – Removal procedure.

5.3.4 Backtrack-based removal approach

The purpose of the backtracking phase is to cope with the problem caused by the heuristic col-
oring algorithm, that some critical vertices may be mistakenly moved to C. This situation happens
as follows. When a critical vertex i is moved from B to C, Color should find a legal (k− 1)-coloring
in GA∪B with fA∪B = 0 (Algorithm 5.1, line 9), and the vertex i should be moved from C to A (Al-
gorithm 5.1, line 10). However, since our coloring algorithm is not an exact method, it may fail to
find a (k− 1)-coloring in GA∪B. In this circumstance, the critical vertex is unexpectedly classified
to set C and χ(GA∪B) decreases to k − 1. To alleviate this problem, we calls for a backtracking
scheme. When we find a legal (k− 1)-coloring for graph GA∪B, we invoke the backtrack proce-
dure, i.e., we move vertices from C to set B, until χ(GA∪B) increases to k again. The key issue
concerns the way to select vertices of C that are moved back to the unknown set B.

To make the choice, we consider two strategies: (1) according to the reverse order by which the
vertices have been moved from the set B to the set C; (2) according to the non-increasing order of
neighborhood weights (see Section 5.3.2). Experiments indicated that the first strategy performs
quite well and is thus used in this chapter (see Section 5.5.3 for a computational analysis). This can
be explained by the removal heuristic algorithm which prefers vertices with a small neighborhood
weight. Thus, the last moved vertex (with a larger sum of neighborhood weights) has more chance
to be a critical vertex compared to a vertex that was moved since long time. While in rare cases,
there are also erroneous movements such that some uncritical vertices are moved to the critical
set A.

To illustrate the procedure, we consider the graph G of Figure 1.4(a) (χ(G) = 4) and a 4-VCS
shown in Figure 1.4(b) (with vertices {1, 2, 3, 4, 5, 6, 7}). Figure 5.2 shows a possible situation in
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Figure 5.3 – Backtrack-based removal procedure.

the removal procedure: suppose that the coloring algorithm Color fails to find a legal 3-coloring
for GA∪B when the vertices 2, 3 were moved to the uncritical set C, then the vertices 2, 3 are re-
tained in the set C. In this case, A = {1, 4, 5, 6, 7}, B = ∅, C = {2, 3, 8, 9, 10, 11, 12}. Suppose that
after adding back the last removed vertex 6 to the graph GA∪B, we detected that GA∪B becomes
3-colorable (GA∪B does not contain a 4-VCS) using the heuristic coloring algorithm, the backtrack-
ing phase is invoked. This involves moving vertices from set C to set A according to the reverse or-
der by which the vertices have been moved from set B to set C, until χ(GA∪B) increases to 4 again
(GA∪B contains a 4-VCS again). Figure 5.3 illustrates this backtracking procedure for the given
graph G. However, if the uncritical vertex 11 is moved before the last critical vertex was moved,
the uncritical vertex 11 will also be moved into the critical set A. Thus A = {1, 2, 3, 4, 5, 6, 7, 11},
B = ∅, C = {8, 9, 10, 12}. We note that this backtracking procedure is effective for repairing the
misjudgments that misclassify critical vertices as uncritical vertices. Meanwhile, this procedure
may unfortunately classify uncritical vertices into the critical set A.

5.3.5 Perturbation operator of backtrack-based removal algorithm

As illustrated in Section 5.3, the backtrack-based removal procedure ends up with a k-VCS
(Algorithm 5.1, lines 6-16). However, it may happens that some uncritical vertices are misclas-
sified as critical vertices (always due to the use of a heuristic coloring algorithm). To overcome
this problem, we introduce a perturbation procedure, which partially reconfigures A, B and C
by moving some vertices from set A to set B. This procedure also provides new opportunities of
finding k-VCS of smaller sizes.

The perturbation procedure (Algorithm 5.2) is inspired by the techniques proposed by [Lü and
Hao, 2009; Glover et al., 2010], which is decomposed into two parts:
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Algorithm 5.2: Perturbation
1: Input: a k-critical-vertex-subgraph H, a probability threshold p
2: Output: a perturbed solution H′ /*Score the vertices in the set A*/
3: for i ∈ A do
4: calculate score(i) with Equation 5.2
5: end for
6: A

′← η vertices with the highest scores
7: A

′← sort A
′
in descending order of the scores /*Choose and move the perturbed vertices*/

8: for i ∈ A
′
do

9: i is the jth element in A
′
, calculate the possibility Pj using Equation 5.3

10: if Pj > p then
11: move i from A to B
12: end if
13: end for
14: H′ = (A, EA)

(1) Scoring the vertices in set A. We define a function score(i) to score each vertex i. Let
FlipFreq(i) be the number of times vertex i has been displaced among sets A, B and C, EliteSol =
[H1, · · · , HR] a set of R critical subgraphs discovered so far (R is the size of EliteSol), EliteFreq(i)
the total number of times vertex i appears in EliteSol, the scoring function is then defined as:

sorce(i) = EliteFreq(i)(r− EliteFreq(i))/r2 + (1− FliteFreq(i)/Max_Freq) (5.2)

where 1 ≤ r ≤ R and Max_Freq = maxi∈{1...,|V|}{FlipFreq(i)}.
(2) Choosing and moving the perturbed vertices. We sort all vertices in non-increasing or-

der according to their scores and then choose probabilistically certain vertices from set A. The
possibility of the jth highly-scored vertex being selected is given by:

Pj =
j−1

∑
η
z=1 z−1

(5.3)

where η is usually set as |A|/2. Then we move the chosen vertices from set A to set B and
update the sets A, B and C (see Section 5.3).

As an example, we consider the graph in Figure 5.4 with a chromatic number of 4 and one
4-VCS, i.e., {1, 2, 3, 4, 5, 6, 7}. Following Section 5.3.4, after the backtrack-based removal proce-
dure, A = {1, 2, 3, 4, 5, 6, 7, 11} as critical vertices and other ones are uncritical vertices (C =
{8, 9, 10, 12}, B = ∅}), while the vertex 11 is mistaken for a critical vertex. The perturbation
procedure moves certain vertices from set A to set B according to Algorithm 5.2. Figure 5.4(a)
and Figure 5.4(b) respectively present two situations where uncritical vertex 2 and the uncritical
vertex 11 are moved from the set A to the set B by the perturbation procedure.

5.3.6 Update procedure

Before invoking a next round of the backtrack-based removal procedure after the perturbation
operation, an additional update operation is applied (Algorithm 5.3). According to whether the
perturbed solution contains a k-VCS, we use different strategies to update sets A, B and C. If the
subgraph H′ = (A, EA) does not contain a k-VCS (see Algorithm 5.3, line 4), which means certain
critical vertices are misclassified in set B or even in set C, we move all vertices of C to B in order
to re-examine each vertex of B ∪ C in the next step. Otherwise, we come to the conclusion that
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(a) Case 1 for the perturbation procedure.
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(b) Case 2 for the perturbation procedure.

Figure 5.4 – Perturbation procedure.
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Algorithm 5.3: Update_Set
1: Input: a perturbed graph H′ ;
2: Output: a update set A, B, C
3: fH′ = Color(H′, k− 1)
4: if fH′ = 0 then
5: move all vertices from C to B /*in order to re-detect each vertex of (B ∪ C) is uncritical or not*/
6: else
7: move all vertices from B to C /*all the vertices in set B are uncritical vertices*/
8: move all vertices from A to B /*in order to rejudge each vertex of A is critical or not*/
9: end if

all vertices in set B are uncritical and move all vertices from B to C. Then, in order to determine
whether the vertices of set A are uncritical or not, we move all vertices of A to B.

Following Figure 5.4, after the backtracking procedure and the perturbation procedure, two
cases are possible according to whether the subgraph H′ = (A, EA) contains a 4-VCS. As shown
in Figure 5.5(a), H′ = (A, EA) does not contain a k-VCS. Then the update procedure moves all
vertices from C to B in order to re-consider each vertex in B∪C in the next step. Accordingly, A =
{1, 3, 4, 5, 6, 7, 11}, B = {2, 8, 9, 10, 12} and C = ∅. Figure 5.5(b) shows a subgraph H′ = (A, EA)
that contains a 4-VCS. In this case, the update procedure moves all vertices from B to C and all
vertices from A to B, leading to A = ∅, B = {1, 2, 3, 4, 5, 6, 7} and C = {8, 9, 10, 11, 12}.

5.4 Experimental results and analysis

In this section, we assess the performance of the proposed IBR algorithm on a collection of
benchmark graphs from the DIMACS 1 and COLOR02/03/04 competitions 2.

5.4.1 Experiment settings

The proposed algorithm was programmed in C and compiled by GNU g++ with the ’-O3’ flag
(option). The experiments were conducted on a computer with Xeon E5440 (2.83GHz CPU and
2GB RAM) and Ubuntu Linux system 12.04. Running the DIMACS machine benchmark program
dfmax.c 3, our computer requires 0.23, 1.42 and 5.42 seconds to solve graphs r300.5, r400.5, and
r500.5, respectively.

For our comparative study, we used the best performing heuristic algorithm Ins+ h [Desrosiers
et al., 2008] as our main reference. The Ins+ h algorithm was run on an Athlon processor (1.6 GHz
and 512 Mb of RAM). The comparison was performed mainly by considering the quality criterion
of the solutions found. We note that our processor is about 1.8 times faster than that used by the
reference algorithm. Thus, in all the experiments, our recorded CPU times were multiplied by
2 in order to make a reasonable comparison. Given that the compared algorithms were tested
on different computing platforms and the runtime of an algorithm depends also on other factors
(programming language, data structures, etc), it is difficult to strictly compare the runtimes. Thus,
timing information was just provided for indicative purposes.

1. http://www.dimacs.rutgers.edu/
2. http://www.cs.hbg.psu.edu/txn131/graphcoloring.html/
3. dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique/
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Figure 5.5 – Update procedure.
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5.4.2 Instances and experimental settings

Test instances. We considered the set of 80 popular benchamrk graphs which were tested in
[Desrosiers et al., 2008]. These graphs are divided into four categories.

1. The first category contains 17 instances that are probably critical themselves. Graphs having
myciel∗, mug∗ or Insertions∗ in their name fall into this category. The reference algorithm
(Ins + h) extracts the minimum k-VCS for all graphs in this category at k = χ(G).

2. The second category contains instances which have cliques as minimum k-VCS, for k =
χ(G). This category of graphs includes le450∗, f pso∗, inithx∗, mulsol∗, zeroin∗, school1∗,
miles∗, anna, david, homer, huck, jean graphs. The Ins + h algorithm also detects the opti-
mum k-VCS at k = χ(G) for all graphs in this category.

3. The third category contains the instances which have DSJC in their name. According to
[Desrosiers et al., 2008], these graphs are harder than other graphs for which a k-VCS is
difficult to detect. In fact, the Ins + h algorithm fails to find a k-VCS for most of graphs in
this category.

4. The last category is composed of all the instances falling in none of the above three cate-
gories.

Parameters. Following [Desrosiers et al., 2008], we ran our IBR algorithm 5 times to solve each
instance, and reported the best values of the successful runs.

Stopping condition. The IBR algorithm stops once the number of the perturbation reaches the
given limit R = 20.

Quality criteria. The experiments have two goals. The first one is to compare the quality
of the detected k-VCS for the given k. In this case, a smaller k-VCS represents a better solution.
The second goal concerns the quality of the lower bound of χ(G) that an algorithm can reach
[Desrosiers et al., 2008]. In this case, we try to find k-VCS with increasing k values (so a k-VCS
with a larger k is better, which corresponds to a tighter lower bound of χ(G)).

Finally, like [Desrosiers et al., 2008], we verify the validity of a candidate k-VCS returned by
the IBR algorithm with an exact coloring algorithm. Indeed, since the returned k-VCS is usually of
small size, its chromatic number can be determined exactly by a modern exact coloring problem
within a time frame of several hours. In our case, we used the recent algorithm presented in
[Zhou et al., 2014].

5.4.3 Comparison with state of the art algorithm

Tables 5.1, 5.2, 5.3 and 5.4 summarize the computational results of our IBR algorithm on the
four categories of DIMACS benchmark graphs, respectively. In these tables, the first 4 columns
show the name of each instance, the number of vertices V, the number of edges E and the best-
known upper bound k_UB of the chromatic number reported in the literature. Values followed
by an asterisk ∗ indicate that they correspond to χ(G). The following four columns indicate the
results of the Ins + h algorithm [Desrosiers et al., 2008]: the k value for which a k-VCS is detected
(i.e., lower bound of χ(G)), the number of vertices and the number of edges of the detected k-VCS,
and the CPU time in seconds needed to find the k-VCS. The last four columns show the results
obtained by our IBR algorithm. In Table 5.3, we show some improved lower bounds obtained by
the IBR algorithm compared to the lower bounds obtained by the Ins + h algorithm. For each of
these cases, we list the best lower bound that IBR can achieve and its corresponding k-VCS in an
additional row.

Table 5.1 displays the results of Ins + h and the results of IBR for the 17 instances of the first
category, which are probably critical graphs themselves [Desrosiers et al., 2008]. Both algorithms
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Table 5.1 – Comparative results of IBR with state-of-the-art algorithm on the first category of
instances.

Instance Ins + h [Desrosiers et al., 2008] IBR
name |V| |E| k_UB k |V| |E| time(s) k |V| |E| time(s)

myciel5 47 236 6∗ 6∗ 47∗ 236∗ 0.1 6∗ 47∗ 236∗ 0.00
myciel6 95 755 7∗ 7∗ 95∗ 755∗ 0.2 7∗ 95∗ 755∗ 0.01
myciel7 191 2360 8∗ 8∗ 191∗ 2360∗ 30.65 8∗ 191∗ 2360∗ 11.46
mug88_1 88 146 4∗ 4∗ 88∗ 146∗ 0.05 4∗ 88∗ 146∗ 0.03
mug88_25 88 146 4∗ 4∗ 88∗ 146∗ 0.05 4∗ 88∗ 146∗ 0.02
mug100_1 100 166 4∗ 4∗ 100∗ 166∗ 0.05 4∗ 100∗ 166∗ 0.03
mug100_25 100 166 4∗ 4∗ 100∗ 166 0.05 4∗ 100∗ 166∗ 0.03
1_Insertion_4 67 232 5∗ 5∗ 67∗ 232∗ 0.05 5∗ 67∗ 232∗ 0.3
1_Insertion_5 202 1227 6 6 202 1227 0.05 6 202 1227 0.23
1_Insertion_6 607 6337 7 7 607 6337 49.85 7 607 6337 390.24
2_Insertion_4 149 541 5 5 149 541 0.15 5 149 541 0.04
2_Insertion_5 597 3936 6 6 597 3936 8.0 6 597 3936 14.67
3_Insertion_3 56 110 4∗ 4∗ 56∗ 110∗ 0.2 4∗ 56∗ 110∗ 0.02
3_Insertion_4 281 1046 5 5 281 1046 0.4 5 281 1046 0.58
3_Insertion_5 1406 96,957 6 6 1406 96, 957 257.4 6 1406 96, 957 1580.37
4_Insertion_3 79 156 4 4 79 156 0.3 4 79 156 0.02
4_Insertion_4 475 1795 5 5 475 1795 0.75 5 475 1795 0.95

can obtain the optimal subgraphs, but IBR is faster than Ins + h for 10 graphs. The same obser-
vation can be made for the 39 instances of the second category which have maximum cliques as
minimum k-VCS for k = χ(G).

Table 5.2 – Comparative results of IBR with state-of-the-art algorithm on the second category of
instances.

Instance Ins + h [Desrosiers et al., 2008] IBR
name |V| |E| k_UB k |V| |E| time(s) k |V| |E| time(s)

le450_5a 450 5714 5∗ 5∗ 5∗ 10∗ 5.35 5∗ 5∗ 10∗ 2.24
le450_5b 450 5734 5∗ 5∗ 5∗ 10∗ 7.7 5∗ 5∗ 10∗ 2.48
le450_5c 450 9803 5∗ 5∗ 5∗ 10∗ 8.9 5∗ 5∗ 10∗ 2.33
le450_5d 450 9757 5∗ 5∗ 5∗ 10∗ 8.35 5∗ 5∗ 10∗ 3.67
le450_15a 450 8168 15∗ 15∗ 15∗ 105∗ 5.4 15∗ 15∗ 105∗ 1.39
le450_15b 450 8169 15∗ 15∗ 15∗ 105∗ 3.0 15∗ 15∗ 105∗ 1.4
le450_15c 450 16680 15∗ 15∗ 15∗ 105∗ 22.25 15∗ 15∗ 105∗ 6.8
le450_15d 450 16750 15∗ 15∗ 15∗ 105∗ 14.65 15∗ 15∗ 105∗ 5.39
le450_25a 450 8260 25∗ 25∗ 25∗ 300∗ 7.2 25∗ 25∗ 300∗ 3.34
le450_25b 450 8263 25∗ 25∗ 25∗ 300∗ 6.6 25∗ 25∗ 300∗ 3.14
le450_25c 450 17343 25∗ 25∗ 25∗ 300∗ 9.1 25∗ 25∗ 300∗ 4.07
le450_25d 450 17425 25∗ 25∗ 25∗ 300∗ 8.95 25∗ 25∗ 300∗ 6.65
school1 385 19,095 14∗ 14∗ 14∗ 91∗ 6.25 14∗ 14∗ 91∗ 1.94
school1_nsh 385 19,095 14∗ 14∗ 14∗ 91∗ 15.1 14∗ 14∗ 91∗ 1.19
miles250 128 387 8∗ 8∗ 8∗ 28∗ 0.1 8∗ 8∗ 28∗ 0.04
miles500 128 1170 20∗ 20∗ 20∗ 190∗ 0.1 20∗ 20∗ 190∗ 0.09
miles750 128 2113 31∗ 31∗ 31∗ 465∗ 1.05 31∗ 31∗ 465∗ 0.41
miles1000 128 3216 42∗ 42∗ 42∗ 861∗ 1.5 42∗ 42∗ 861∗ 1.33
miles1500 128 5198 73∗ 73∗ 73∗ 2628∗ 1.6 73∗ 73∗ 2628∗ 0.64
anna 138 493 11∗ 11∗ 11∗ 55∗ 0.15 11∗ 11∗ 55∗ 0.07
david 87 406 11∗ 11∗ 11∗ 55∗ 0.15 11∗ 11∗ 55∗ 0.04
homer 561 1629 13∗ 13∗ 13 78∗ 0.4 13∗ 13∗ 78∗ 0.23
huck 74 301 11∗ 11∗ 11∗ 55∗ 0.1 11∗ 11∗ 55∗ 0.04
jean 80 254 10∗ 10∗ 10∗ 45∗ 7.1 10 10∗ 45∗ 0.09
games120 120 638 9∗ 9∗ 9∗ 36∗ 0.2 9∗ 9∗ 36∗ 0.07
fpsol2.i.1 496 11654 65∗ 65∗ 65∗ 2080∗ 104.95 65∗ 65∗ 2080∗ 21.93
fpsol2.i.2 451 8691 30∗ 30∗ 30∗ 435∗ 10.0 30∗ 30∗ 435∗ 3.33
fpsol2.i.3 451 8691 30∗ 30∗ 30∗ 435∗ 26.25 30∗ 30∗ 435∗ 4.34
mulsol.i.1 197 3925 49∗ 49∗ 49∗ 1176∗ 2.2 49∗ 49∗ 1176∗ 0.47
mulsol.i.2 188 3885 31∗ 31∗ 31∗ 465∗ 3.2 31∗ 31∗ 465∗ 0.5
mulsol.i.3 184 3916 31∗ 31∗ 31∗ 465∗ 3.25 31∗ 31∗ 465∗ 0.47
mulsol.i.4 185 3946 31∗ 31∗ 31∗ 465∗ 3.4 31∗ 31∗ 465∗ 0.37
mulsol.i.5 186 3973 31∗ 31∗ 31∗ 465∗ 3.45 31∗ 31∗ 465∗ 1.86
zeroin.i.1 211 4100 49∗ 49∗ 49∗ 1176∗ 2.2 49 49∗ 1176∗ 0.45
zeroin.i.2 211 3541 30∗ 30∗ 30∗ 435∗ 5.7 30∗ 30∗ 435∗ 1.69
zeroin.i.3 206 3540 30∗ 30∗ 30∗ 435∗ 2.8 30∗ 30∗ 435∗ 1.68
inithx.i.1 864 18707 54∗ 54∗ 54∗ 1431∗ 448.85 54∗ 54∗ 1431∗ 38.13
inithx.i.2 645 13979 31∗ 31∗ 31∗ 465∗ 5.1 31 31∗ 465∗ 0.99
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inithx.i.3 621 13969 31∗ 31∗ 31∗ 465∗ 7.1 31∗ 31∗ 465∗ 1.9

Table 5.3 – Comparative results of IBR with state-of-the-art algorithm on the third category of
instances. Improved results are indicated in bold.

Instance Ins + h [Desrosiers et al., 2008] IBR
name |V| |E| k_UB k |V| |E| time(s) k |V| |E| time(s)

DSJC125.1 125 736 5∗ 5∗ 10 26 0.4 5∗ 10 26 2.29
DSJC125.5 125 3891 17∗ 14 70 1341 46.35 14 66 1266 11.69

15 82 1862 35.4
DSJC250.1 250 3218 8 6 64 362 27.65 6 51 290 21.45

7 120 983 134
DSJC250.5 250 15,668 28 14 74 1505 59.6 14 50 836 32.54

16 75 1742 43.92
DSJC500.1 500 12,458 12∗ 6 65 369 73.15 6 32 159 48.23

7 79 617 353.06
DSJR500.1 500 3555 12∗ 12∗ 12∗ 66∗ 1.9 12∗ 12∗ 66∗ 41.23
DSJR500.1C 500 121,275 85∗ 80 84 3477 710.75 80 80 3160 153.96

83 83 3403 1280.19
DSJR500.5 500 58,862 122 90 90 4005 373.6 90 90 4005 15.78

119 119 7,021 29.08

Table 5.4 – Comparative results of IBR with state-of-the-art algorithm on the fourth category of
instances. Improved results are indicated in bold.

Instance Ins + h [Desrosiers et al., 2008] IBR
name |V| |E| k_UB k |V| |E| time(s) k |V| |E| time(s)

queen6_6 36 290 7∗ 7∗ 22 119 0.8 7∗ 24 140 1.24
queen8_8 64 728 9∗ 9∗ 54 538 12.6 9∗ 53 519 2.6
queen9_9 81 2112 10∗ 10∗ 74 897 13.8 10∗ 72 869 920.45
ash331GPIA 662 4185 4 4 9 16 1.6 4 7 12 287.08
1-FullIns_3 30 100 4 4 7 12 0.1 4 7 12 0.09
1-FullIns_4 93 593 5 5 15 43 0.25 5 15 43 0.32
1-FullIns_5 282 3247 6 6 31 144 7.3 6 31 144 2.10
2-FullIns_3 52 201 5 5 9 22 0.1 5 9 22 0.09
2-FullIns_4 212 1621 6 6 19 75 0.25 6 19 75 0.58
2-FullIns_5 852 12,201 7 7 39 244 13.3 7 39 244 22.4
3-FullIns_3 80 346 6 6 11 35 0.15 6 11 35 0.15
3-FullIns_4 405 3524 7 7 23 116 1.25 7 23 116 3.38
3-FullIns_5 2030 33,751 8 8 47 371 78.6 8 47 371 396.26
4-FullIns_3 114 541 7 7 13 51 0.2 7 13 51 0.25
4-FullIns_4 690 6650 8 8 27 166 12.3 8 27 166 15.35
5-FullIns_3 154 792 8 8 15 70 1.2 8 15 70 0.47

The most interesting results concern the 8 random instances of the third category. When com-
paring IBR and Ins + h for this category, one observes that IBR improves the lower bound for
6 instances (DSJC125.5, DSJC250.1, DSJC250.5, DSJC500.1, DSJR500.1c, DSJR500.5). Moreover,
at the same k, IBR obtains a better solution (smaller size of k-VCS) for 5 instances (DSJC125.5,
DSJC250.1, DSJC250.5, DSJC500.1, DSJR500.1c). IBR is also faster than Ins + h on all instances
when using the same k.

The results on the instances of the fourth category are shown in Table 5.4. One observes that
IBR improves the best-known results for 3 instances while matching the best-known results for
other 12 instances. Only in one case, IBR obtains a worse result.

5.5 Analysis and discussions

This section performs additional experiments to analyze the proposed IBR algorithm: the
backtrack strategy and the perturbation operator. These experiments were performed on a se-
lection of 13 representative instances.
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5.5.1 Effectiveness of different backtrack strategies for k-VCS detection

This section compares the backtracking strategy adopted by IBR (i.e., using the reverse order
by which the vertices were moved from the set B to the set C) and the backtracking rule according
to the non-increase order of the sum of neighborhood weights of the vertices in the current graph.
We use IBR1 to denote the IBR variant using the second backtracking strategy. We ran both IBR
and IBR1 5 times to obtain the k-VCS of each instance.

Table 5.5 – Comparative results of the IBR algorithm with two different backtrack strategies. Im-
proved results are indicated in bold.

Instance IBR1 IBR
name |V| |E| k_UB k |V| |E| time(s) SR k |V| |E| time(s) SR

DSJC125.5 125 3891 17 15 83 1,898 1.3 2/5 15 82 1854 35.4 5/5
DSJC250.1 250 3218 8 7 116 995 30.57 1/5 7 120 983 133.56 1/5
DSJC250.5 250 15,668 28 16 77 1675 73.37 1/5 16 75 1742 43.92 1/5
DSJC500.1 500 12,458 12 7 83 671 276.58 1/5 7 79 617 353.06 1/5
DSJR500.1C 500 121,275 85 83 83 3403 1255.93 1/5 83 83 3403 1280.19 5/5
DSJR500.5 500 58,862 122 119 119 7,021 21.91 5/5 119 119 7,021 29.08 5/5
queen6_6 36 290 7 7 24 140 1.0 2/5 7 24 140 1.24 1/5
queen8_8 64 728 9 9 54 542 14.92 1/5 9 53 519 2.6 1/5
queen9_9 81 2112 10 9 9 36 0.35 2/5 9 9 36 0.35 5/5

10 72 869 920.45 5/5
ash331GPIA 662 4185 4 4 7 12 132.55 3/5 4 7 12 287.08 2/5
1-FullIns_5 282 3247 6 6 31 144 3.07 1/5 6 31 144 2.10 2/5
2-FullIns_5 852 12,201 7 7 39 244 53.07 2/5 7 39 244 22.4 5/5
3-FullIns_5 2030 33,751 8 8 48 374 800.85 1/5 8 47 371 396.26 2/5

The experimental results are presented in Table 5.5, including the lower bound k, the number
of vertices and edges of the k-VCS found, and the success rate (SR) to obtain the k-VCS over 5
runs. When comparing the k-VCS obtained by IBR and IBR1, one observes that IBR obtains better
solutions for 5 instances at the same k and improves the lower bound for 1 instance. This justifies
the backtracking strategy used in our previous experiments.

5.5.2 Effectiveness of perturbation for k-VCS detection

Table 5.6 – Analysis of the influence of the perturbation on the performance of the IBR algorithm.
The BR algorithm is obtained by replacing the perturbation procedure of the IBR algorithm with
a restart strategy. Improved results are indicated in bold.

Instance BR IBR
name |V| |E| k_UB k |V| |E| time(s) SR k |V| |E| time(s) SR

DSJC125.5 125 3891 17 15 82 1858 24.98 1/5 15 82 1854 35.4 2/5
DSJC250.1 250 3218 8 7 116 1010 51.2 1/5 7 120 983 133.56 3/5
DSJC250.5 250 15,668 28 16 75 1740 42.75 1/5 16 75 1740 42.75 1/5
DSJC500.1 500 12,458 12 7 91 767 318.41 1/5 7 79 617 353.06 1/5
DSJR500.1C 500 121,275 85 80 80 3160 153.96 1/5 80 80 3160 153.96 5/5

83 83 3403 1280.19 5/5
DSJR500.5 500 58,862 122 119 119 7,021 46.56 5/5 119 119 7,021 57.1 5/5
queen6_6 36 290 7 7 24 140 1.03 2/5 7 24 140 1.24 3/5
queen8_8 64 728 9 9 54 542 14.92 1/5 9 53 519 2.6 1/5
queen9_9 81 2112 10 9 9 36 0.35 2/5 9 9 36 0.35 5/5

10 72 869 920.45 5/5
ash331GPIA 662 4185 4 4 9 16 11.86 5/5 4 7 12 287.08 2/5
1-FullIns_5 282 3247 6 6 31 144 1.48 1/5 6 31 144 2.10 2/5
2-FullIns_5 852 12,201 7 7 39 244 27.89 1/5 7 39 244 22.4 5/5
3-FullIns_5 2030 33,751 8 8 47 371 833.14 1/5 8 47 371 396.26 2/5

As shown in Section 5.3.5, the proposed algorithm uses a perturbation strategy to reconfigure
the sets A, B and C. In order to show the effect of the perturbation procedure, we compare IBR
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Table 5.7 – Influence of the backtracking procedure on the performance of the IBR algorithm. IR
is obtained by disabling the backtracking procedure. Improved results are indicated in bold.

Instance IR IBR
name |V| |E| k_UB k |V| |E| time(s) SR k |V| |E| time(s) SR

DSJC125.5 125 3891 17 14 67 1299 21.22 1/5 14 66 1266 11.69 5/5
15 82 1854 35.4 5/5

DSJC250.1 250 3218 8 6 57 335 8.23 1/5 6 51 290 21.45 1/5
7 120 983 133.56 3/5

DSJC250.5 250 15,668 28 13 38 478 1095.26 1/5 13 35 434 947.51 1/5
16 75 1742 43.92 1/5

DSJC500.1 500 12,458 12 6 39 196 73.5 1/5 6 32 159 48.23 3/5
7 79 617 353.06 1/5

DSJR500.1C 500 121,275 85 80 80 3160 153.96 1/5 80 80 3160 153.96 5/5
83 83 3403 1280.19 5/5

DSJR500.5 500 58,862 122 119 119 7,021 31.71 5/5 119 119 7,021 57.1 5/5
queen6_6 36 290 7 7 26 163 0.05 5/5 7 24 140 1.24 1/5
queen8_8 64 728 9 9 54 542 14.92 1/5 9 53 519 2.6 1/5
queen9_9 81 2112 10 9 9 36 0.35 2/5 9 9 36 0.35 5/5

10 72 869 920.45 5/5
ash331GPIA 662 4185 4 4 9 16 3.52 5/5 4 7 12 287.08 2/5
1-FullIns_5 282 3247 6 6 40 220 2.29 1/5 6 31 144 2.10 2/5
2-FullIns_5 852 12,201 7 7 39 244 46.31 1/5 7 39 244 22.4 5/5
3-FullIns_5 2030 33,751 8 8 47 371 275.60 1/5 8 47 371 396.26 2/5

with a traditional restart strategy (denoted as BR) where each restart begins its search with an
initial configuration A = ∅, B = V, C = ∅, H = (A, EA). The two algorithms were run 5 times on
the 13 selected instances and the results are provided in Table 5.6.

From Table 5.6, we observe that IBR significantly outperforms BR. IBR dominates BR by find-
ing improved lower bounds for two instances, smaller k-VCS sizes for 6 instances at the same k
and no worse result. This experiment confirms the interest of the adopted perturbation operator.

5.5.3 Effectiveness of backtrack for k-VCS detection

This section evaluates the influence of the backtracking scheme on the performance of the pro-
posed algorithm. For this purpose, we compare it with an IBR variant without the backtracking
strategy (named IR). We ran both algorithms 5 times on the 13 selected instances. The experimen-
tal results are presented in Table 5.7. Compared with IR, IBR obtains smaller k-VCS for 8 instances
at the same given k, 6 better lower bounds, and no worse result. This experiment confirms the
value of the backtracking strategy.

5.6 Conclusion

This chapter presented the iterated backtracking removal search for identifying small k-vertex-
critical subgraph in a general graph. This method extends the previous removal algorithm by
integrating a backtracking strategy and a perturbation procedure. These extensions provide two
complementary ways to alleviate the problem of misclassifying vertices caused by the use of a
heuristic coloring algorithm.

We assessed the performance of the IBR algorithm on the set of 80 benchmark instances from
DIMACS and COLOR competitions and presented comparative results with respect to the state-
of-the-art results. The comparisons showed that IBR performs very well by discovering several
improved best results (8 smaller size of k-VCS for a given k and 6 new lower bounds for unfixed
k) and matching the best-known results for the remaining instances except one case. This study
demonstrates the benefit of the backtracking scheme and the perturbation procedure for solv-
ing the k-VCS. The idea of this work could be applied to other problems related to irreducibly
inconsistent systems.





General Conclusion

Conclusions

This thesis concerns four NP-hard graph coloring problems, graph coloring, equitable col-
oring, weighted vertex coloring and k-vertex-critical subgraph. These problems are extensively
studied in the literature not only for their theoretical intractability, but also for their real world
applications in many domains. In this thesis, we adopted heuristic and meta-heuristic methods
to find sub-optimal solutions in a reasonable time frame for large graphs.

In chapter 2, we treated the basic GCP model and proposed a reduction-based memetic algo-
rithm to solve it. RMA reduces the current graph by tentatively merging vertices to one vertex
if the vertices are always in the same color class of parent solutions. The weighted tabu search
algorithm was proposed to improve the quality of the solution, Finally we devised a perturba-
tion strategy to escape local optimum traps. We assessed the performance of the proposed RMA
approach and compared our results with the state-of-the-art algorithms on 39 popular DIMACS
and COLOR02-04 benchmark instances, which are commonly used to test graph coloring algo-
rithms in the literature. The computational results showed that RMA is competitive in terms of
solution quality and run-time efficiency compared with the state-of-the-art algorithms. Specially,
RMA consistently attains the best-known solutions with a 100% success rate for all 20 small sized
instances. For the set of 19 hard instances, RMA finds 13 best-known results, which dominates
all 4 local search algorithms (IGrAL, VSS, partial, PLSCOL) and 4 population based algorithms
(HEA, AMA MMT, Evo-Div). For the 3 recent algorithms, MA, QA and HEAD, RMA is slightly
worse than them.

In chapter 3, we considered a feasible and infeasible search algorithm (FISA) for solving the eq-
uitable coloring problem (ECP). The proposed FISA algorithm is based on two different searches
phases namely equity-feasible colorings (first phase) and the equity-infeasible colorings (second
phase). The first phase adopts a feasible tabu procedure to examine only the space of equity-
feasible colorings to seek a legal (i.e., conflict-free) k-coloring, which is based on the basic tabu
search procedure of the BITS algorithm [Lai et al., 2015]. If the first phase fails to find a legal
k-coloring in the equity-feasible space, the second phase is invoked to search the enlarged space
including equity-infeasible colorings by using an extended fitness function to guide the search
process. The perturbation phase is applied as a means of strong diversification to get out of
deep loal optimum traps. We conducted experiments on a set of 73 benchmark graphs from the
DIMACS and COLOR competitions to assess the interest of the proposed FISA approach. Exper-
imental results showed that the proposed approach obtains significantly better results including
especially 9 improved best solutions (new upper bounds).

In chapter 4, we proposed an adaptive infeasible search algorithm (AFISA) for the weighted
vertex coloring problem. The proposed algorithm again relies on a mixed search strategy explor-
ing both feasible and infeasible solutions. First, AFISA is the first heuristic method that explores
both feasible and infeasible solutions for the WVCP. To prevent the search from going too far
away from the feasible boundary, we designed an adaptive penalty-based evaluation function
that is used to guide the search for an effective examination of can- didate solutions, by enabling
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the search to oscillate between feasible and infeasible regions. To explore a given search zone,
we relied on the popular tabu search metaheuristic. We assessed the proposed algorithm on 111
benchmark instances from literatures (one set of 46 instances from the DIMACS and COLOR
competitions and two sets of 65 instances from matrix-decomposition problems). We reported
especially 5 improved best solutions (new upper bounds). We also presented new results on an
additional set of 50 larger instances.

In the last chapter, we studied the k-VCS problem and proposed an iterated backtrack-based
removal (IBR) algorithm to solve it. For the k-VCS, the classic removal strategy that reduces cur-
rent graph by tentatively moving vertices to the set of uncritical vertices is not so effective since the
status of some vertices is sometimes irreversibly misclassified. Therefore, we developed a repair
mechanism for the misclassified status of vertices. For this purpose, we devised a backtracking
mechanism to expand the current subgraph by adding back some vertices. Finally, we devised
a perturbation strategy to reconsider some vertices that could have been incor- rectly identified
as critical ones. Computational results on 80 popular DIMACS and COLOR02-04 benchmark in-
stances, which are commonly used to test k-VCS algorithms in the literature, show that IBR is
very competitive in terms of solution quality and run-time efficiency compared with state-of-the-
art algorithms in the literature. Specifically, the proposed algorithm is able to discover improved
best solutions for 9 graphs (improves the lower bound for 6 instances, at the same k, IBR obtains
a better solution (smaller size of k-VCS) for 8 instances), matches the best results for other 70
instances, and obtains a slightly worse result only in one case.

Perspectives

In this thesis, we consider algorithms and experimental validations for four graph coloring
problems. For future work, several directions could be followed.

— Extend to solve other problems. First, our proposed feasible and infeasible search methods
are general-purpose, which could be applied to solve a wide family of constrained prob-
lem. For example, we adopted this method to the ECP (in the Chapter 3) and the WVCP (in
the Chapter 4). It would be reasonable to apply FISA to solve other graph coloring prob-
lems, such as minimum sum coloring. Second, our k-VCS problem is also called the MUC
(Minimal Unsatisfiable Core) in the SAT problem, or the IIS (irreducible infeasible subset)
problem in the CSP, it would be interesting to adjust the IBR algorithm to these problems.

— Improve the performance of the proposed algorithms. First, the penalty term of the ex-
tended fitness function of the ECP could be improved by introducing adaptive techniques
like [Chen et al., 2016b; Glover and Hao, 2011] to enable a strategic oscillation for dynami-
cally transitioning between feasible and infeasible spaces. Second, the evaluation function
of the problem should be able to discriminate solutions of equal quality by taking into ac-
count all additional information. Third, the high and robust performance of the proposed
algorithms depends critically on a set of good parameters, whose optimal settings are usu-
ally instance independent. However, parameter tuning is normally a hard task, especially
when a number of sensitive parameters exist. Hence, developing an automatic parameter
tuning method based on the characteristics of the current instance to be solved could be a
very valuable.

— Improve the algorithm in order to solve still larger instances. The instances tested in this
work are based on the conventional DIMACS coloring benchmark graphs. These graphs
can be considered as being limited in size with respect to massive graphs obtained from
a number of modern applications like complex networks and biological networks. Con-
trary to DIMACS graphs, these massive graphs are typically very sparse with very low
edge density. It would be interesting to investigate the ideas of this work in the context of
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Appendix

ILP formulation of the WVCP

In this section, we describe the 0-1 integer linear programming (ILP) model for the WVCP
proposed in [Malaguti et al., 2009], extended with a symmetry breaking constraint. This model is
used for the computational experiment presented in Section 5.4.3. Firstly, we define the following
decision variables:

— Let s = {V1, V2, . . . , Vk} be a candidate solution.
— xvk ∈ {0, 1} is a binary decision variable that is equal to 1 if and only if vertex v is part of

set Vk, 0 otherwise for all v ∈ V and for all k ∈ {1, . . . , N}.
— Wk is a positive decision variable that is equal to the weight of stable Vk, for all k ∈
{1, . . . , N}.

We obtain the following ILP model for the WVCP:

f (s) = min
N

∑
k=1

Wk (4)



N

∑
k=1

xvk = 1 ∀v ∈ V

xvk + xuk ≤ 1 ∀(u, v) ∈ E, ∀k ∈ {1, . . . , N}
xvkwv ≤Wk ∀(v, k) ∈ V × {1, . . . , N}
Wk ≥Wk+1 ∀k ∈ {1, . . . , N − 1}
Wk ≥ 0 ∀k ∈ {1, . . . , N}
xvk ∈ {0, 1} ∀(v, k) ∈ V × {1, . . . , N}

The objective function (4) is to minimize the sum of the weights of the stables used. The first
constraints ensures that each vertex belongs to exactly one set. The second constraints enforces
that the same color cannot be assigned to adjacent vertices. The third constraints sets Wk to the
weight of the maximum weight vertex in the k-th set. The fourth constraint partially breaks sym-
metry by enforcing that the stables are ordered by decreasing order of their sizes.
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Résumé : Cette thèse concerne quatre 
problèmes de coloration de graphes NP-
difficiles, à savoir le problème de coloration 
(GCP), le problème de coloration équitable 
(ECP), le problème de coloration des sommets 
pondérés et le problème de sous-graphe critique 
(k-VCS). Ces problèmes sont largement étudiés 
dans la littérature, non seulement pour leur 
difficulté théorique, mais aussi pour leurs 
applications réelles dans de nombreux 
domaines. Étant donné qu'ils appartiennent à la 
classe de problèmes NP-difficiles, il est difficile 
de les résoudre dans le cas général de manière 
exacte.  

Pour cette raison, cette thèse est consacrée au 
développement d'approches heuristiques pour 
aborder ces problèmes complexes. Plus 
précisément, nous développons un algorithme 
mémétique de réduction (RMA) pour la 
coloration des graphes, un algorithme de 
recherche réalisable et irréalisable (FISA) pour 
la coloration équitable et un réalisable et 
irréalisable (AFISA) pour le problème de 
coloration des sommets pondérés et un 
algorithme de suppression basé sur le retour 
en arrière (IBR) pour le problème k-VCS. Tous 
les algorithmes ont été expérimentalement 
évalués et comparés aux méthodes de l'état de 
l'art. 
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Keywords : Combinatorial optimization, Graph coloring problems, Feasible and infeasible search 
strategies, Heuristics and metaheuristics. 

Abstract : This thesis concerns four NP-hard 
graph coloring problems, namely, graph coloring 
(GCP), equitable coloring (ECP), weighted 
vertex coloring (WVCP) and k-vertex-critical 
subgraphs (k-VCS). These problems are 
extensively studied in the literature not only for 
their theoretical intractability, but also for their 
real-world applications in many domains. Given 
that they belong to the class of NP-hard 
problems, it is computationally difficult to solve 
them exactly in the general case.  

For this reason, this thesis is devoted to 
developing effective heuristic approaches to 
tackle these challenging problems. We develop 
a reduction memetic algorithm (RMA) for the 
graph coloring problem, a feasible and 
infeasible search algorithm (FISA) for the 
equitable coloring problem, an adaptive 
feasible and infeasible search algorithm 
(AFISA) for the weighted vertex coloring 
problem and an iterated backtrack-based 
removal (IBR) algorithm for the k-VCS problem. 
All these algorithms were experimentally 
evaluated and compared with state-of-the-art 
methods. 
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