
THESE DE DOCTORAT DE

L'UNIVERSITE DE RENNES 1

COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : Informatique

Par

Rafail PSIAKIS

Performance Optimization Mechanisms for
Fault-Resilient VLIW Processors

Thèse présentée et soutenue à Rennes, le 21/12/2018
Unité de recherche : INRIA Rennes – Bretagne Atlantique et IRISA UMR 6074
Thèse N° :

	

Rapporteurs avant soutenance :

Alberto Bosio Professeur à l’Ecole Centrale de Lyon - INL
Arnaud Virazel Maître de Conférences HDR à l’Université de Montpellier - LIRMM

Composition du Jury :

Examinateurs :

 Alberto Bosio Professeur à l’Ecole Centrale de Lyon - INL
 Arnaud Virazel Maître de Conférences HDR à l’Université de Montpellier - LIRMM
 Sébastien Pillement Professeur à l’Université de Nantes - IETR
 Georgios Keramidas Chercheur à l'Université de Patras, Grèce
 Angeliki Kritikakou Maître de Conférences à l’Université de Rennes 1- IRISA

Directeur de thèse :
 Olivier Sentieys Professeur à l’Université de Rennes 1 – IRISA/INRIA

Titre : Mécanismes d'optimisation des performances des processeurs VLIW à tolérance de fautes.

Mots clés : tolérance aux fautes, VLIW processeurs, exploitation des ressources inactives, optimisation de
performance, injection de fautes, analyse de la vulnérabilité.

Résumé : Les processeurs intégrés dans des
domaines critiques exigent une combinaison de
fiabilité, de performances et de faible consommation
d'énergie. Very Large Instruction Word (VLIW)
processeurs améliorent les performances grâce à
l'exploitation ILP (Instruction Level Parallelism), tout
en maintenant les coûts et la puissance à un niveau
bas. L’ILP étant fortement dépendant de l'application,
les processeurs n’utilisent pas toutes leurs
ressources en permanence et ces ressources
peuvent donc être utilisées pour l'exécution
d'instructions redondantes. Cette thèse présente une
méthodologie d’injection fautes pour les processeurs
VLIW et trois mécanismes matériels pour traiter les
pannes légères, permanentes et à long terme
menant à quatre contributions. La première
contribution présente un schéma d’analyse du facteur
de vulnérabilité architecturale et du facteur de
vulnérabilité d’instruction pour les processeurs VLIW.

La deuxième contribution explore les ressources
inactives hétérogènes au moment de l'exécution, à
l'intérieur et à travers des ensembles d'instructions
consécutifs. La technique se concentre sur les
erreurs légères. La troisième contribution traite des
défauts persistants. Un mécanisme matériel est
proposé, qui réplique au moment de l'exécution les
instructions et les planifie aux emplacements inactifs
en tenant compte des contraintes de ressources. Afin
de réduire davantage le surcoût lié aux performances
et de prendre en charge l’atténuation des erreurs
uniques et multiples sur les transitoires de longue
durée (LDT), une quatrième contribution est
présentée. Nous proposons un mécanisme matériel
qui détecte les défauts toujours actifs pendant
l'exécution et réorganise les instructions pour utiliser
non seulement les unités fonctionnelles saines, mais
également les composants sans défaillance des
unités fonctionnelles concernées.

Title: Performance Optimization Mechanisms for Fault-Resilient VLIW Processors.

Keywords: fault tolerance, VLIW processors, idle resource exploitation, performance optimization, fault
injection, vulnerability analysis

Abstract: Embedded processors in critical domains
require a combination of reliability, performance and
low energy consumption. Very Long Instruction Word
(VLIW) processors provide performance
improvements through Instruction Level Parallelism
(ILP) exploitation, while keeping cost and power in
low levels. Since the ILP is highly application
dependent, the processors do not use all their
resources constantly and, thus, these resources can
be utilized for redundant instruction execution. This
dissertation presents a fault injection methodology for
VLIW processors and three hardware mechanisms to
deal with soft, permanent and long-term faults
leading to four contributions. The first contribution
presents an Architectural Vulnerability Factor (AVF)
and Instruction Vulnerability Factor (IVF) analysis
schema for VLIW processors.

The second contribution explores heterogeneous idle
resources at run-time both inside and across
consecutive instruction bundles. The technique
focuses on soft errors. The third contribution deals
with persistent faults. A hardware mechanism is
proposed which replicates at run-time the instructions
and schedules them at the idle slots considering the
resource constraints. In order to further decrease the
performance overhead and to support single and
multiple Long-Duration Transient (LDT) error
mitigation a fourth contribution is presented. We
propose a hardware mechanism, which detects the
faults that are still active during execution and re-
schedules the instructions to use not only the healthy
function units, but also the fault-free components of
the affected function units.

	

To my mother and father...

Résumé étendu en français

La conception des systèmes embarqués modernes est très complexe car ces systèmes doivent

simultanément satisfaire à un certain nombre de critères qui se contredisent généralement.

Les applications embarquées doivent généralement s’exécuter et fournir leur résultat dans

un délai déterminé, le temps total d’exécution est donc essentiel. Une défaillance dun

système embarqué peut avoir des conséquences fatales, la fiabilité est donc devenue un

facteur très important. D’autre part, l’industrie des circuits intégrés s’efforce de réduire les

coûts unitaires. La minimisation de la surface et de la puissance revêt donc une grande

importance.

L’augmentation de la fréquence d’horloge est une pratique courante pour améliorer les

performances du système et, par conséquent, le temps d’exécution de l’application. Cepen-

dant, en augmentant la fréquence d’horloge, la consommation d’énergie augmente également.

Une solution à ce problème consiste à faire évoluer les architectures mono-cur classiques

vers des architectures prenant en charge une sorte de parallélisme, telles que les processeurs

VLIW (Very Long Instruction Word) utilisés dans cette thèse. La figure 1 présente un

chemin de données VLIW simplifié pouvant exécuter jusqu’à quatre instructions simultané-

ment, prenant ainsi en charge l’exécution en parallèle via lILP (Instruction Level Paral-

lelism) du processeur. La phase dexécution a été amplifiée pour montrer le parallélisme

inhérent à de tels systèmes.

Pour réduire la consommation électrique, une autre pratique courante consiste à réduire

la tension et la fréquence de fonctionnement du système. Cependant, la réduction de la

tension de fonctionnement, associée à la taille décroissante des transistors, rend les systèmes

intégrés plus vulnérables aux erreurs et, par conséquent, moins fiables. Pour répondre à la

demande croissante de fiabilité, les systèmes embarqués sont généralement conçus avec des

capacités de détection et/ou de correction, atténuation et masquage des erreurs.

Cependant, augmenter la fiabilité implique généralement l’utilisation d’une forme de

i

F/D	

EX	

FU1	

FU2	

FU3	

FU4	

M/WB	

Figure 1: Architecture VLIW à quatre voies. Détail de la phase d’exécution avec ses quatre
unités fonctionnelles parallèles.

redondance, qu’elle soit spatiale ou temporelle, ayant un impact négatif sur la surface (et

donc le coût du système) et le temps d’exécution. Des techniques ont été développées pour

assurer la fiabilité du niveau du transistor jusqu’au niveau de l’application, en utilisant une

redondance matérielle (HW) ou logicielle (SW). La figure 2 présente schématiquement les

différences entre la redondance HW (Fig. 2.b) et SW (Fig. 2.c) dans un scénario utilisant

un processeur VLIW et un ordonnancement des calculs résultant dune compilation donnée

(Fig. 2.a). Les approches utilisant la redondance matérielle étendent le matériel du sys-

tème non protégé à lorigine en ajoutant des ressources supplémentaires pour exécuter les

instructions redondantes. D’autre part, les mécanismes de redondance logicielle réutilisent

les ressources disponibles pour ordonnancer des instances redondantes des instructions sur

le système d’origine.

Dans cette thèse, nous explorons des moyens efficaces pour fournir des systèmes in-

tégrés fiables grâce à la redondance logicielle, tout en limitant les surcoûts en surface et

temps d’exécution. Nous montrons que les méthodes de redondance logicielle permettent

daméliorer la fiabilité à moindre coût lorsqu’elles sont combinées à des architectures à re-

dondance inhérente, telles que les processeurs VLIW. Nous proposons trois mécanismes

matériels qui explorent les ressources inactives des processeurs VLIW. Nous effectuons tout

dabord une analyse sur plusieurs benchmarks pour obtenir leur ILP moyen. Cette analyse

montre que 1,51 ≤ ILP ≤ 2.85 pour la configuration à quatre voies. Pour la configuration à

8 voies, nous observons que 1.75 ≤ ILP ≤ 4.46. Cela implique que chaque cycle durant lexé-

ii

cution comporte un nombre suffisant de slots inactifs à exploiter. Une analyse temporelle

de dépendance entre les instructions a également été effectuée pour chaque application afin

de détecter les ressources inactives potentielles pouvant être exploitées pour la tolérance

aux fautes. Les résultats montrent que les cas avec zéro dépendance entre deux ensem-

bles (bundles) consécutifs du VLIW est supérieur à 50% et que le cas avec exactement une

dépendance est également assez fréquent (40%). Cela implique que les créneaux inactifs

peuvent également être exploités de façon temporelle entre séquences dinstructions.

ADD1,	NOP,	MUL11,	NOP	a)	

NOP	b)	

issue_0	 issue_1	 issue_2	 issue_3	

MUL11	 NOP	ADD1	 MUL11	 NOP	

extra	

issue_0	

extra	

issue_1	

extra	

issue_2	

extra	

issue_3	

NOP	ADD1	

ADD1	c)	 MUL1	 MUL1	ADD1	

issue_0	 issue_1	 issue_2	 issue_3	

Figure 2: Redondance SW/HW dans un scénario VLIW.

Cette thèse présente ensuite une méthodologie d’injection de fautes pour vérifier et

analyser la vulnérabilité des processeurs VLIW non protégés ainsi que les trois mécanismes

matériels exploitant les ressources inactives pour traiter les fautes transitoires, permanentes

et à long terme, ce qui mène aux trois contributions principales de la thèse.

La première contribution présente un environnement danalyse de lArchitectural Vul-

nerability Factor (AVF) et de lInstruction Vulnerability Factor (IVF) pour les processeurs

VLIW. Ces métriques définissent le facteur de vulnérabilité architecturale et micro-architecturale

d’un processeur, quelle que soit la fréquence des occurrences de fautes. Lobjet de létude

AVF et IVF dans cette thèse est de mettre en évidence les capacités de masquage de fautes

des processeurs VLIW de type RISC et de trouver les parties les plus critiques de la con-

ception qui doivent être protégées contre ces fautes. Pour cela, une méthodologie dinjection

de fautes au niveau de différentes structures de mémoire est proposée pour extraire les

capacités de masquage aux niveaux architecture et instruction du processeur. Un schéma

de classification des défaillances de haut niveau est présenté pour catégoriser la sortie du

processeur.

La deuxième contribution explore les ressources inactives hétérogènes au moment de

l’exécution, à l’intérieur dun ensemble et entre plusieurs ensembles d’instructions consé-

iii

cutifs. Pour ce faire, une technique dordonnancement des instructions optimisée pour le

matériel est appliquée en parallèle avec le pipeline afin de contrôler efficacement la réplica-

tion et lordonnancement des instructions. Suivant les tendances à la parallélisation crois-

sante, une conception ciblant les architectures VLIW clustérisées est également proposée

pour traiter les problèmes de passage à léchelle, tout en maintenant un surcoût en surface

et puissance raisonnable. La technique proposée accélère la performance de 43,68% avec

un surcoût en surface et en puissance de ∼10% par rapport aux approches existantes. Les

analyses AVF et IVF évaluent la vulnérabilité du processeur avec le mécanisme proposé.

Les résultats montrent quen raison du mécanisme proposé et de la technique de réplica-

tion appliquée, les instructions les plus vulnérables de larchitecture protégée, cest-à-dire

les opérations arithmétiques et mémoire en entier, sont jusqu’à 2,2x moins vulnérables que

celles de larchitecture non protégée.

La troisième contribution traite des défauts persistants. Un mécanisme matériel, qui

réplique au moment de l’exécution les instructions et les planifie aux emplacements inactifs

en tenant compte des contraintes de ressources, est proposé. Si une ressource devient

défaillante, l’approche proposée permet de réaffecter efficacement les instructions d’origine

et les instructions répliquées pendant l’exécution. Les premiers résultats dévaluation de

performance montrent un gain de performance jusquà 49% par rapport aux techniques

existantes.

Afin de réduire davantage le surcoût en performance et de prendre en charge latténua-

tion des erreurs simples et multiples de type transitoires longues (Long-Duration Transients

– LDT), une troisième contribution est présentée. Nous proposons un mécanisme matériel

qui détecte les défauts toujours actifs pendant l’exécution et réorganise les instructions pour

utiliser non seulement les unités fonctionnelles saines, mais également les composants sans

défaillance des unités fonctionnelles concernées. Lorsque le défaut disparaît, les composants

de l’unité fonctionnelle concernée peuvent être réutilisés. La fenêtre dordonnancement du

mécanisme proposé comprend deux ensembles d’instructions pouvant explorer des solu-

tions d’atténuation des fautes lors de l’exécution de l’ensemble dinstructions en cours et de

l’ensemble d’instructions suivant. Les résultats obtenus sur l’injection de fautes montrent

que l’approche proposée peut atténuer un grand nombre de fautes avec des surcoûts faibles

en performance, surface et puissance.

iv

Contents

1 Introduction and Motivations 1

1.1 VLIW Processors . 3

1.2 VLIWs and Fault Tolerance . 5

1.3 Motivations . 7

1.4 Dissertation Contributions . 8

1.5 Thesis Organization . 10

2 Background and state of the art 11

2.1 Fault Injection and Vulnerability Analysis 11

2.2 VLIW Processors Under Soft Errors . 14

2.3 VLIW Processors Under Permanent Faults 17

2.4 VLIW Processors Under Long-Term Faults 18

3 Architecture’s Vulnerability Analysis 21

3.1 Architectural Vulnerability Factor Analysis 22

3.2 Instruction Vulnerability Factor Analysis . 27

3.3 Conclusion . 30

4 Time and Space Instruction Rescheduling 33

4.1 Running example . 33

4.2 Overview of the proposed architecture . 36

4.3 Processing Components . 36

4.3.1 Replication Switch . 37

4.3.2 Voting Switch . 38

4.3.3 Voters . 39

4.4 Control Logic Components . 39

v

4.4.1 Information Extraction Unit . 39

4.4.2 Dependency Analyzer . 42

4.4.3 Replication Scheduler . 43

Pre-processing . 43

Bitwise Logic . 45

4.4.4 Voting Scheduler . 49

4.5 Cluster-based approach . 49

4.6 Experimental Results . 51

4.6.1 Performance . 52

4.6.2 Area and Power . 56

4.6.3 AVF and IVF analysis . 59

AVF analysis: . 59

IVF analysis: . 61

4.6.4 Conclusion . 62

5 Instruction Rescheduling for persistent errors 65

5.1 Coarse Grained Mitigation for Permanent Errors 65

5.1.1 Motivation example and overview . 65

5.1.2 Performance Evaluation . 68

5.2 Fine-Grained Mitigation for Multiple Long-Duration Transients 72

5.2.1 Overview and Motivating Example 72

5.2.2 Fault Checker . 73

5.2.3 Online fine-grained scheduler . 75

5.2.3.1 Extract part . 76

5.2.3.2 Processing part . 77

5.2.3.3 Control part . 78

5.2.4 Evaluation results . 79

5.2.4.1 Performance . 81

5.2.4.2 Area and power . 84

5.3 Conclusion . 84

6 Summary and Future Work 87

6.1 Thesis Summary . 87

6.2 Directions for Future Work . 88

vi

Acknowledgements 91

Publications 93

References 95

List of Figures 106

List of Abbreviations 107

List of Tables 111

vii

viii

Chapter 1

Introduction and Motivations

The design of modern embedded systems is very challenging, since these systems have to

simultaneously meet a number of criteria that usually contradict one another. Embedded

applications usually have to react and provide their result within a fixed delay, so the total

execution time is essential. A failure of an embedded system can have fatal consequences,

so reliability has become a very important factor. On the other hand, the Integrated Circuit

(IC) industry has been striving towards unit cost reduction, so area and power minimization

is of great importance.

Increasing the clock frequency is a common practise to increase system performance,

and, thus, the application execution time [86]. However, by increasing the clock frequency,

the power consumption is increased as well. A solution to this issue was the evolution of

the classic single-core architectures to architectures supporting a kind of parallelism. The

shrinking of the transistor size enables hundreds of millions transistors to be placed on a

single chip reducing manufacturing cost and increasing integration and computer process-

ing abilities. Three levels of parallel execution exist: a) Thread Level Parallelism (TLP),

where different tasks are executed in parallel on an architecture with several processing

elements (e.g. Multi-cores, Simultaneous multithreading (SMT) processors), b) Data Level

Parallelism (DLP), where parallelism arises from executing essentially the same code on

a large number of data (e.g. Single Instruction Multiple Data (SIMD) processors, vector

processors and Graphics Processing Units (GPUs)), and c) Instruction Level Parallelism

(ILP), where parallelism is explored by executing in parallel independent instructions (e.g.

Very Large Instruction Word (VLIW) processors and superscalars). Architectures exploring

TLP (such as General Purpose Processors (GPP)) are used in multi-application domains

1

where task parallelization is of critical importance and they introduce increased complex-

ity and cost [8]. Architectures exploring DLP introduce large area and power overhead

and they are useful only in case of applications with extensive data level parallelism (e.g.

rendering applications [35], etc.). Architectures exploring ILP can offer parallelism with

minimum complexity [68] being a very promising candidate for the domain of embedded

systems striving for performance, without introducing high area overhead (e.g. Hexagon

DSP [17], etc.).

To reduce power consumption, another common practise is to reduce the operating

voltage and frequency of the embedded system. However, reducing the operating voltage in

combination with the decreasing size of the transistors, makes the embedded systems more

susceptible to reliability violations and, thus, less reliable [42], [76]. Reliability violations

occur due to Process, Voltage, and Temperature (PVT) variations [74], circuit aging-wearout

induced by failure mechanisms, such as Negative-Bias Temperature Instability (NBTI), Hot

Carrier Injection (HCI) [49], radiation-induced Single-Event Effects (SEEs), such as Single-

Event Upsets (SEUs) and Single Event Transients (SETs) [7], clock skews [58], thermal

stress [79], electromagnetic interference, such as cross-talk and ground bounce [81], etc.

These phenomena can cause errors that may affect the embedded system temporarily (soft

errors), permanently (hard errors) or semi-permanently (intermittent errors) [13]. To satisfy

the increasing demand for reliability, embedded systems are usually designed with error

detection and/or error correction/mitigation capabilities.

However, to increase the reliability, it usually implies a form of redundancy, either spatial

or temporal, impacting in a negative way on the area and/or the execution time. Several

techniques have been developed to provide reliability from the transistor level up to the ap-

plication level, using either Hardware (HW) or Software (SW) redundancy [56]. Approaches

using HW redundancy extend the hardware of the original unprotected system by adding

spare resources. Then, the same instructions are executed several times on the extra re-

sources and their results are compared to provide error detection and/or correction [32]. As

the instructions are executed in parallel, normally no execution time overhead is observed.

However, the area overhead is significantly increased. On the other hand, SW redundancy

mechanisms introduce redundancy through software modifications on the application run-

ning on the original unprotected system. They reuse the available resources to execute the

fault tolerant instructions, and, thus, increasing the execution time [60].

In this dissertation, we explore efficient ways to provide reliability to the

2

embedded systems, while keeping the area and execution time overhead low. We

expect that SW redundancy methods are able to achieve reliability with less cost when they

are combined with architectures that have inherent redundancy, such as VLIW processors.

FtoDC		

F	

BR	

DC	

DC	

DC	

DC	

DCtoEx		

ALU	

MUL	

ALU	

MUL	

ALU	

WB	ALU	

WB	

MEM	

WB	

WB	

Stage	F	 Stage	DC	 Stage	EX/M-WB	

PC	

32bit	

IM	 DM	

IM[PC]	

2size_of(PC)	x	128bit	

Load	

Store	

2size_of(adr)	x	32bit	

RF	

64	Regs	x	32bit	

R
e
a
d
	 W

rite
	

4	Regs			x	32bit	 4	Regs			x	109bit	

Figure 1.1: VLIW architecture with 4 issues.

1.1 VLIW Processors

An example of a VLIW architecture (similar to VEX [20]) is presented in Fig. 1.1. The

figure depicts a processor’s data path with four issues. The data-path consists of a 3-stage

pipeline with Fetch (F), Decode (DC) and Execute/Memory-WriteBack (EX/M-WB) and,

thus, it does not require a bypass logic. The processor has one Instruction Memory (IM)

port, that fetches an n×32-bit word each cycle according to the current value of the Program

Counter (PC). Thus, it can issue up to n instructions per cycle, where n is the number of

issues of the architecture. These instructions are executed on:

• Memory units (MEM) that perform load and store instructions. There are as many

memory units as data cache memory ports connected to the processor. More precisely,

there should be at least ⌈n/4⌉ data cache ports to interact with the Data Memory

(DM). In the presented example there is one MEM in the second issue.

3

• Integer and logic units that execute the common set of integer, compare, shift and

logical instructions on registers or immediate operands. More precisely, the VLIW

FUs are either complex FUs, which are able to execute all types of operations and

simpler FUs, which cannot execute sophisticated operations, such as multiplications

and divisions. In this configuration, there are ⌈n/2⌉ simple FUs, including only ALUs

and ⌈n/2⌉ complex FUs, including ALUs and multiplication units. These FUs commit

their result in the registers of a Register File (RF) comprising of 64 general-purpose

32-bit registers.

• Single branch unit that executes control instructions based on conditional results

stored in registers. The control instructions can be conditional branches, unconditional

jumps, direct and indirect calls, and returns. In this configuration the BRanch (BR)

unit is only available in the first issue.

The Instruction-Set Architecture (ISA) considered in this dissertation follows the RISC

ISA implementation and encoding (similar to the ISA of RISC-V processor [84]). The

number of instructions executed in parallel per cycle depends on VLIW’s FU parallelization

capability (i.e. issue-width), the configuration of the VLIW (type of FUs used) and the

intrinsic ILP available in each application. The instructions, which are issued and executed

in parallel, form a bundle named instruction bundle. The VLIWs execute instructions in

parallel, based on a fixed schedule determined when the programs are compiled.

For instance, suppose that the following matrix multiplication operation needs to be

calculated:

A B

C D

×

E

G

 =

A× E +B ×G

C × E +D ×G

 (1.1)

As shown, for the calculation of this equation we need to perform four independent multi-

plications and two independent additions afterwards. Compilers can determine this paral-

lelization opportunity and exploit processor’s resources to obtain better performance, while

respecting dependencies (e.g. the addition must be executed after the calculation of the

multiplications, thus it is dependent from them). Fig. 1.2 schematically presents three con-

secutive instruction bundles Bi, Bi+1 and Bi+2 scheduled by the compiler targeting the

architecture of Fig. 1.1 for the computation of the above equation. The compiler has sched-

uled two multiplication instructions at issue 2 and issue 3 for the bundle Bi in order to

calculate the two multiplications needed, i.e. A × E and B × G, for the first element of

the output matrix. Two multiplication instructions are scheduled also at issue 2 and issue

4

3 for the bundle Bi+1 in order to calculate the two multiplications needed, i.e. C × E

and D × G, for the second element of the output matrix. In addition, the compiler also

schedules an addition instruction at issue 0 of Bi+1 in order to calculate the AE +BG. At

Bi+2, when the results of the two multiplications of Bi+1 are ready, an addition instruction

is scheduled to compute the last element (CE + DG) of the output matrix. In order to

perform this calculation, a normal processor without ILP exploitation capabilities would

require one cycle for each of these instructions, i.e. six cycles in total, while in our case the

cycles needed are only three.

NOP	 MUL11	

NOP	

Bi	

Bi+1	

ti	

ti+1	

ALU	

BR	

ALU	

MEM	

ALU	

MUL	

ALU	

MUL	

NOP	

issue_0	 issue_1	 issue_2	 Issue_3	

MUL12	

NOP	ADD2	

ADD1	

NOP	 Bi+2	ti+2	

MUL21	 MUL22	

NOP	

Figure 1.2: Three instruction bundles scheduled by the compiler for the computation of
Eq. 1.1.

Since the order of execution of instruction and the decision of which operations can be

executed simultaneously is handled by the compiler, any scheduling hardware (such as the

instruction queue, reorder buffer, dependency-checking) that is needed when using out-of-

order processors is avoided. Thus, VLIWs offer good computing power, high parallelization

and performance gain with reduced hardware complexity and power consumption. For this

reason VLIWs have been commercialized and used in several implementations during the

past years (e.g., Intel Itanium [75], Trimedia CPU64 [83], Hexagon DSP [17], etc.).

1.2 VLIWs and Fault Tolerance

In the context of VLIW processors, the compiler is not always able to fill the entire bundle

with instructions [1], because either there is no parallelism in the application or the proces-

sor configuration provides limited resources. Hence, idle slots are introduced in the form

of No OPeration instructions (NOP). These idle slots can be used to execute redundant

5

instructions. In this way, processor’s reliability increases since SW redundancy is applied,

while the execution time overhead, introduced by the instruction replication, decreases. The

SW redundancy approach applied on VLIWs can be implemented either in software or in

hardware.

Approaches following a software implementation insert redundant instructions during

design-time (i.e. applying a kind of redundancy in the original code itself) and/or during

compile-time (i.e. the compiler is programmed to apply a kind of redundancy during com-

pilation). They can efficiently explore the idle slots to schedule the redundant instructions

without additional hardware control. However, the code size, the storage requirements and

the power consumption are increased, whereas they cannot deal with dynamically changing

faulty environments. For instance, the compiler duplicates the operations and schedules

them in different FUs of a VLIW processor [11] or it exploits the idle FUs for soft error

mitigation by adding a new time slot, whenever the idle FU exploitation in the current time

slot is not possible [29]. For the comparison of the results of the replicated instructions extra

comparison instructions should be executed [10, 9]. To reduce the number of executed in-

structions, software-implemented approaches are combined with hardware implementations.

The instruction duplication and scheduling is performed in the software by the compiler, but

the comparison is performed by the hardware. In case of an error, a simple HW instruction

rebinding takes place so as to re-execute the instruction at the next time slot [72].

Hardware mechanisms replicate the instructions at run-time. Existing approaches main-

tain the compiler’s result and explore the use of idle FUs in space, i.e., only inside the current

instruction bundle. For instance, in [63], the idle issue slots inside the current instruction

bundle are used for the execution of the duplicated instructions. If no idle slots exist, the

instructions are not duplicated, which reduces the reliability of the processor. In [64, 65]

the technique is extended by adding an extra time slot, so as to duplicate the instruction

bundles that have more that half of its issue-width filled with instructions. However, the

execution overhead is increased.

In this dissertation, we explore hardware mechanisms for SW redundancy, as

they can efficiently deal with dynamically changing faulty environments com-

pared to software implementations. We expect that by exploring the idle FUs of

VLIWs, not only in space, but also in time through rescheduling of independent instructions

of subsequent bundles, the reliability will be increased, while the execution time overhead

will decrease.

6

1.3 Motivations

To motivate the benefits of the design of such mechanisms, we need to reply to two main

questions:

1. How many of these resources are actually available to be used for fault

tolerance each cycle?

2. How many of each application’s instructions can be potentially rescheduled

to enable further idle FU exploitation?

In order to answer to these fundamental questions, we analyzed ten basic media bench-

marks from the MediaBench suite [36] with respect to their intrinsic parallelization capa-

bility. Similar media applications have been used by others in the literature to evaluate

fault tolerant approaches [65], [10], [43]. In order to perform our analysis we utilized the

VEX C compiler1 provided by HP to compile our benchmarks. Initially, we perform an

analysis of the binaries obtained by the VEX compiler in order to export the benchmarks’

characteristics. Table 1.1 illustrates the average number of instructions per bundle, ILP,

for the 4-issue and 8-issue VLIW configurations. We observe that 1.51 ≤ ILP ≤ 2.85 for

the 4-issue configuration. For the 8-issue configuration, we observe that 1.75 ≤ ILP ≤ 4.46.

This implies that in several bundles, there is a sufficient number of idle slots to be ex-

ploited. By duplicating the issue width, it does not imply a duplication of the ILP, because

of the limited parallelization capability of the applications. Therefore, more idle slots exist

in the 8-issue configuration. ILP metric provides us relevant information for the idle FUs

exploitation in space, meaning that only the idle FUs within one bundle are explored.

When idle FUs exploitation occurs also in time, meaning that the FUs exploitation is

performed among several bundles, we require to explore another metric, i.e. the percentage

of the dependency occurrences per application. In this way, we implicitly know how many

instructions are independent and, thus, they can be postponed in time so as to explore

idle FUs in upcoming bundles. We analyzed the benchmarks to identify the number of

1The VEX compiler is derived from the Lx/ST200 C compiler, which is a descendant of the Multiflow
C compiler. VEX compiler allows complex program compilation, custom instruction experimentation, and
scalability. It targets C language and concentrates on acyclic scheduling (no software pipelining is supported).
It supports partial predication and its only region shape is a trace (no superblocks nor treegions). It uses trace
scheduling as its global scheduling engine. A programmable machine model determines the configuration of
the target architecture. Some of the tuneable parameters that allow architecture exploration without having
to recompile the compiler are for instance the number of clusters, the number of execution units, the issue
width, and the latency of specific instructions.

7

the dependent instructions between two bundles. In Table 1.1 we present the dependency

occurrence (%) for each application for zero, one, two and three or more simultaneous de-

pendencies between consecutive bundles. As we observe, for most of the applications, the

Table 1.1: VEX Compiled Applications’ Profiling

Benchmark
4-issue 8-issue

ILP
Dep. Occurrence%

ILP
Dep. Occurrence%

0 1 2 3+ 0 1 2 3+

adpcm_dec 1,77 60,6 35,2 4,1 0 2,28 50,3 37,7 9,6 2,3

adpcm_enc 1,82 58,7 35,9 4,9 0,5 2,41 48,6 39 9 3,3

bcnt 2,49 36 54 10 0 3,62 27 43,5 5,1 24,3

dct 2,22 53,9 30,1 7,7 8,3 3,31 45,4 28,1 7,1 19,4

fft32x32s 2,85 62,6 17,2 20,2 0 4,19 60,8 6,8 6,5 26

huff_ac_dec 1,51 59,9 36,1 3,6 0,5 1,75 40,7 50,7 7,9 0,7

motion 1,94 57 29,1 11,6 2,3 2,39 47,1 30 18,6 4,3

fir 2,09 62,3 29,8 7,9 0 2,5 51,6 36,8 11,6 0

crc 1,76 29,8 65,6 4,5 0,1 1,8 28,2 64,8 6,9 0,1

matrix_mul 2,61 51,5 32,2 16,4 0 4,46 21,1 62,7 16,2 0

case of having zero dependencies between two consecutive bundles is more than 50%. The

case with exactly one dependency is also quite frequent (∼40%), whereas the case of mul-

tiple dependencies is rather rare (∼15%). Considering the limited ILP of the applications

and the limited number of dependent instructions between consecutive bundles, we assume

that the idle FU exploitation in time would be beneficial in terms of execution

time overhead improvement.

The need for increased reliability in combination with the above-mentioned findings re-

garding applications’ characteristics motivate the development of efficient hardware mech-

anisms that exploit idle resources both in space (limited ILP of the applications) and time

(independent instructions that can be postponed later). The next subsection presents an

overview of the contributions of this work which are all driven by the observation of several

idle resources in modern VLIW processors.

1.4 Dissertation Contributions

The main contributions of this dissertation with respect to the research topic of reliable

VLIW processors are the following.

8

• Vulnerability analysis through fault injection: A fault injection software methodol-

ogy is developed to test the vulnerability of the presented VLIW architecture. Both Archi-

tectural Vulnerability Factor (AVF) and Instruction Vulnerability Factor (IVF) analyses

are performed to motivate the need for increased reliability against faults occurring in

VLIW data paths. A high-level failure classification scheme is presented to categorize the

output of the processor.

• Time and space instruction rescheduling: We propose a hardware mechanism ca-

pable of i) replicating at run-time the original instructions to provide VLIW processors

with fault tolerance and ii) dynamically scheduling these original and replicated instruc-

tions to efficiently explore the idle FUs of current and upcoming bundles to improve

execution time overhead. To achieve that, a hardware-optimized scheduling technique is

proposed based on bit-wise logic. A cluster-based architecture is proposed, to support

larger VLIW configurations and scalability. The detailed hardware implementation of the

proposed mechanisms in the VLIW data path is presented and evaluated through exten-

sive results on performance, area and power consumption. The AVF and IVF analysis is

performed to evaluate the vulnerability factor of the VLIW architecture enhanced with

the proposed mechanisms. Early results of this work have been published in [Psi17a],

whereas an extended version has been submitted for publication in [Psi19b].

• Instruction rescheduling for persistent errors: When errors become persistent, the

number of available FUs is reduced, thus affecting the execution time of the applica-

tions. A coarse-grained mitigation mechanism is proposed, that replicates and binds the

instructions at run-time in order to provide error detection and mitigation. When a per-

manent error is detected, the instruction execution is modified to avoid the faulty FU.

Both instruction replication and binding explore the healthy FUs taking the limitations

on the type and the number of resources into account. A set of evaluation performance

experiments with respect to the execution time overhead are performed and show up to

49% performance gain over existing techniques. This work has been published in [Psi17b].

In order to further decrease the performance overhead, while supporting dynamic faulty

environments including single and multiple Long-Duration Transient (LDT) faults, we

propose a fine-grained mitigation mechanism that detects the active faults during exe-

cution and excludes only the faulty components of the affected FUs and for as long as

it is necessary. To achieve that, a fine-grained micro-architectural solution is proposed

9

that partitions an FU in components, where each component is an individual circuit that

executes a group of instructions. Each FU component is enhanced with a Built-In Cur-

rent Sensor (BICS) mechanism, so as to identify the exact location of the fault and the

duration that the fault is active. An online fine-grained instruction re-scheduling mecha-

nism is proposed that explores idle healthy FU components in the current and the next

instruction execution. Finally, we perform exhaustive fault injection simulations (214K)

varying the number of total faults, the number of concurrently occurring faults and the

fault duration. The obtained results show a minor performance degradation (∼ 9% for

four concurrent faults) even for several occurring multiple long duration faults. This work

has been accepted for publication in [Psi19a].

1.5 Thesis Organization

The dissertation is organized into six chapters including this one. Chapter 2 discusses the

state of the art research works w.r.t. fault resilient VLIW processors. Chapter 3 presents

the details of the VLIW architecture used in this dissertation, w.r.t. the architectural and

instruction vulnerability factor. In Chapter 4, we present the second contribution of this

dissertation, i.e. the time and space instruction rescheduling, whereas in Chapter 5 we

present our third contribution, i.e. the fine-grained instruction rescheduling. Finally, the

thesis concludes with an overview of the presented work and a discussion on future research

directions in Chapter 6.

10

Chapter 2

Background and state of the art

In the following sections we present the state of the art concerning fault injection and

fault mitigation methods on modern embedded architectures and more specifically VLIW

processors. We present the work related to the aforementioned research area split in four

sections. In the first section, we discuss the latest published works on fault injection and

vulnerability analysis on modern embedded processors. In the following sections, we discuss

about the state of the art techniques concerning transient, permanent, and long duration

fault detection and mitigation.

2.1 Fault Injection and Vulnerability Analysis

According to [87], the fault injection techniques can be classified as: 1) Hardware-based, 2)

Software-based, 3) Emulation-based, 4) Simulation-based, and 5) Hybrid methods.

Hardware-based fault injection techniques test processors in realistic experimental con-

ditions (e.g., radiation chambers, thermal stress experiments). In [23] an approach for SET

detection and measurement is proposed. Real fault injection experiments are performed

targeting a custom test chip, which is irradiated with heavy ions and pulsed lasers, while

it is triggered by random inputs. FIST5 [25], developed at the Chalmers University of

Technology in Sweden, uses heavy ion radiation to create transient faults at random loca-

tions inside a chip when the chip is exposed to the radiation and can thus cause single- or

multiple- bit-flips. Messaline [2], developed at LAAS-CNRS, in Toulouse, France, uses both

active probes and sockets to conduct pin-level fault injection. Messaline can inject stuck-at,

open, bridging, and complex logical faults. Although such approaches are very accurate,

a drawback is that they require the physical implementation of the device under test and

11

that the tested chip is heavily stressed, being defected after the experiment.

Software-based fault injection techniques are applied at the application level and mainly

focus on applications’ masking capabilities. Due to application-level fault masking (operation-

level fault masking, fault masking due to fault propagation, and algorithm-level fault mask-

ing), the manifested errors may have zero impact on the application outputs. In [26], an

application-level fault modelling is proposed. The proposed method models the behaviour

of the faults which have already been manifested in the application-level. In [67], software-

implemented fault injection is studied and a pitfalls interpretation is presented. The fault

probability is approximated using the Poisson distribution, which is used to inject single

errors in the memory. Ways to reduce the experiment effort are also studied using fault

sampling and defuse, and pruning analysis. A high-level fault injector for Intel Xeon Phi,

built upon GDB (the GNU debugger), is presented in [50]. Results show that 75% of the

injected faults do not generate an observable error. Software-based techniques cannot inject

faults into locations that are inaccessible to software and, thus, they have limited accuracy.

On the other hand, since they are applied at high level, they require minimum simulation

time and they can be easily implemented.

Emulation-based fault injection has been presented as an alternative solution for re-

ducing the time spent during simulation-based fault injection campaigns. It is based on

using Field Programmable Gate Arrays (FPGAs) for speeding-up fault simulation. This

technique allows the designers to study the actual behavior of the circuit in an application

environment, taking real-time interactions (e.g. I/Os) into account. However, when an

emulator is used, the initial architecture or algorithmic description must be synthesizable

to an FPGA design.

In simulation-based fault injection, there is a simulator that simulates the hardware as

well as the injected faults. For instance, in [57], the authors propose analytical equations

to model the propagation of a voltage pulse to flip flops. Random errors are injected at all

possible nodes of a circuit gate-level netlist in order to calculate the Soft Error Rate (SER).

Verification afterwards is performed using HSPICE. A tool for automated integration of

fault injection modules is presented in [78]. The gate-level netlist is enhanced with injection

modules after each gate and flip-flop. These modules are parametrized by the user for

various fault specifications. In [80] a gate-level fault injection methodology for logical and

electrical masking effects in case of reconvergent fanouts is presented. Delayed fault glitches

are generated in case of reconvergent fanouts. In [21] the authors propose a simulator

12

implemented fault injection tool, where faults are induced by altering the logical values

of the model elements during the simulation. They enhance MGSim [53] with a fault

injection capability, thus the fault injection is performed at component-level. In [44] the

relationship between glitches in the gates and latched errors in the flip flops is studied using

mathematical models. The results of the proposed method are compared with HSPICE’s

results. The work in [61] introduces faulty behavior signatures that are computed after

several gate-level injections. These signatures give the error occurrence probability of each

output vector and are used by a saboteur that injects faults on a high level representation

model of the tested design. This technique benefits from the high accuracy of the low-level

injection and the simulation speed of a high-level injection. In [18], the authors measure the

SER of a processor starting from a technology response model up to application masking.

Only the injected errors from lower levels, which were latched by a memory element, are

considered in the higher level and, thus, simulation time is reduced due to masking. In [52],

a Monte-Carlo-based fault injection technique is proposed, taking into account multiple

faults. In order to obtain accurate results, the injected nodes are selected according to their

proximity to the error source in the place and route diagram.

AVF (Architecture Vulnerability Factor) was proposed by [47]. It concerns the proba-

bility of a soft error to result in an error of the program visible output. AVF estimation

of modern microprocessors, using Statistical Fault Injection (SFI) for MBUs, is proposed

in [41]. The presented method partitions the design into various hierarchical levels and sys-

tematically performs incremental fault injections to generate vulnerability estimates. Fault

injection times are accelerated by 15x on average. A simulator-level fault injection frame-

work is proposed in [82] that targets the Multi2Sim simulator. It measures the AVF of

each application for a specific architecture, when single or multiple bit-flips into memory

structures occur. In [4], the authors propose a new reliability metric named as Instruction

Vulnerability Factor (IVF). Each instruction is tested with different operands in all the

stages of a processor’s pipeline under soft errors to measure the IVF. Results show that

the execution stage is the most vulnerable part of the tested processor according to the

average IVF of each stage. The study concludes with a technique for a fast and accurate

AVF estimation using the IVFs of running instructions. Fault injection experiments at

the Register Transfer Level (RTL) and Instruction Set Simulator (ISS) level are performed

in [19]. The results are compared in order to find a correlation between the two approaches.

Each application’s instruction diversity is measured (i.e., the number of different opcodes)

13

in order to detect which areas in the RTL are actually affected. The authors in [46] propose

a multi-level simulation that switches between ISS-level and RTL at run-time. The fault

injection is performed when the simulation has passed to the RT level, evaluating the im-

pact of soft errors in the pipeline of a RISC processor. The multi-level simulation benefits

from the accuracy of the RTL-level simulation and the fast simulation time of the ISS-level

simulation. Finally, simulation-based techniques provide accurate enough results, because

the simulation models have most of the low-level hardware information while the run-time

injection concept provides an accurate enough simulation of real scenarios. Additionally,

when using simulation-based fault injection techniques, there is no risk to damage the sys-

tem in use. A drawback of such approaches is the significant overhead in simulation and

development time.

Few hybrid techniques also exist. A method combining software-based and simulation-

based fault injection is presented in [27]. It uses pin-level forcing or generates interrupts to

activate software fault injection. Hybrid methods benefit from the the advantages of both

categories.

In this dissertation, we developed a simulation-based fault injection method-

ology and we used the AVF and IVF metrics to evaluate the VLIW architec-

ture and the proposed hardware mechanism. To the best of our knowledge, this is

the first AVF, IVF study on VLIW processors with heterogeneous issues. Valuable insights

are obtained from this analysis, concerning the masking capabilities and the vulnerability

characteristics of VLIW processors.

2.2 VLIW Processors Under Soft Errors

Software-based and hardware-based techniques have been proposed to take advantage of

the additional resources in statically scheduled processors with inherent resource redun-

dancy and to provide error detection and/or error correction. Software-based approaches

replicate and schedule the instructions at design-time and additional instructions are in-

serted for comparison of the results. Software error detection approaches apply the du-

plication of the instructions after the compilation of the code and, thus, they can control

where the original and replicated instructions are executed, e.g., in different function units.

For instance, the approaches presented in [10, 9] apply full duplication and full compari-

14

son at the compiled code, whereas the approach of [28] reduces the number of compared

instructions. CASTED [45] proposes a compiler-based technique to distribute error detec-

tion overhead across core/clusters applicable to tightly-coupled cores and clustered VLIWs.

To reduce the number of additional instructions, software-based approaches are combined

with hardware-based ones. The instructions duplication and scheduling is performed by

the compiler whereas the comparison is performed by the hardware [30, 29]. In [37], a

hardware/software-based technique is proposed, where the compiler encodes information in

the instructions and a hardware mechanism decodes the information to run-time duplicate

the instructions.

However, the aforementioned approaches do not provide any correction means. In

software-based techniques no additional hardware control is required, but code size, storage

and power consumption are increased. The code size increase has also a negative impact

on system reliability, as more bits are present in the system, leading to a higher soft error

rate [59]. Additionally, software-based techniques cannot deal with dynamic fault situa-

tions, meaning that they are not able to change the schedule according the current affected

unit. To avoid these limitations, hardware approaches replicate the instructions at run-time

using specific hardware mechanisms.

Hardware-based approaches eliminate the need of high storage requirements and addi-

tional instructions and are either applied to homogeneous or heterogeneous VLIWs. In [66],

a dynamically adaptive homogeneous processor design is proposed, which is capable of

reconfiguring the processor in order to achieve the best trade-off among fault tolerance,

performance, and energy consumption. The applied fault tolerance technique exploits the

spatial and temporal identical idle resources of a VLIW. In [15, 16], the authors propose

a common approach for short transient and permanent faults. The instructions are parti-

tioned in groups in order to be able to be directly compared, inserting one or two idle cycles

for each instruction bundle. Due to the increased performance overhead, the use of spare

function units is explored. Results are provided for one spare unit and homogeneous issues

with ALU FUs.

Combination of a software and a hardware approach is presented in [73]. The instruction

duplication and scheduling is performed by the compiler and the comparison of the instruc-

tions is performed by the hardware. In case of an error, re-execution takes place through

a simple HW operation rebinding that adds an additional slot and re-binds the operation

15

to another FU. However, the VLIW also consists of homogeneous issue slots with FUs that

can execute any type of operations.

Although hardware-based approaches that exploit the idle resources inside homogeneous

VLIWs introduce a less complex control logic, they cannot be applied for heterogeneous

VLIW data paths. In addition, their scalability is argued because an N -issue implemen-

tation would require N identical FUs, with N multipliers, N memory units, etc. On top

of that, homogeneity in FUs does not usually reflect to realistic VLIW processor configu-

rations with limited resources (e.g., [75]). Especially for architectures that employ floating

point units, the area and power overhead can be very high. Existing approaches for het-

erogeneous VLIWs do not explore dependencies and idle slots among instructions bundles,

adding unnecessary performance overhead.

In [63, 64, 65], one-to-one coupling of heterogeneous VLIW pipelines is applied and,

thus, the duplicated instructions can use the schedule of the original instructions given by

the compiler. In [63], error detection is applied through instruction duplication. If no idle

slots exist, the instructions are not duplicated. When an error is detected, instruction re-

execution is applied. In [64, 65], the technique is extended with ILP reduction. When a

VLIW bundle has more than half of its issue-width filled with instructions, the bundle is

divided into two and an additional time slot is added.

Compared with existing approaches, in this dissertation we propose a hardware-

based approach for heterogeneous VLIW data paths, which explores at run-time

the idle slots in space and time, i.e. both inside and among instruction bundles, to decrease

performance overhead. Restrictions due to both the number and the type of resources and

the dependencies are taken into account. The technique proposed in this thesis is applied

to a VLIW with a combination of simple and complex FUs, but it can be easily extended

to VLIWs supporting floating point arithmetic operations. Supporting floating point oper-

ations would require FUs with significant area/power overhead, where their replication to

achieve fault tolerance is forbidden when resources are limited. Thus, the proposed tech-

nique would have a more significant impact since it provides fault tolerance without adding

extra FUs.

16

2.3 VLIW Processors Under Permanent Faults

The approaches designed for permanent errors have to modify the execution of the program

to avoid the use of faulty units. As these methods focus on permanent faults, the detection of

the faulty unit is usually assumed to be done upfront. These approaches can be implemented

either off-line in software or on-line in hardware.

Several software approaches exist. For instance, the compiler duplicates the operations

and schedules them in different FUs of VLIW processors [11] or exploits the idle slots

for soft errors [29]. The authors in [45] propose a compiler based technique to distribute

error detection overhead to the available resources of architectures with abundant ILP, like

VLIWs. The software approach of [31] stores several versions of the scheduling, where

each scheduling is an alternative implementation for a given error. The permanent faults

are detected offline and the program memory is modified adequately, in case of an off-line

detected permanent fault. The work in [85] focuses on permanent faults in the registers

of the VLIW and proposes a recompilation technique with a register pressure control to

re-assign variables to fault-free registers. Concerning the software approaches, usually no

additional hardware control is required, but code size, storage and power consumption are

increased.

Several hardware approaches also exist. Few of them are capable of online identifying

and handling the permanent errors. The following techniques add spare hardware resources

for the error handling, thus the area and control overhead are increased. In [15], a spare

function unit is added for error detection in VLIW, whereas single errors of one type are

considered. In [16], spare function units are inserted to support Triple Modular Redundancy

(TMR) and when not enough resources exist and the recovery is performed by re-execution

of the faulty instruction. In [14, 51], a coarse-grained reconfiguration is proposed for a

single permanent fault for each hardware class of ASICs based on the partitioning of the

time and instruction bundle space. The technique has been extended for multiple faults by

assuming one fault at each band and each reconfiguration of the scheduling can isolate one

faulty unit. The fault detection is assumed to have been done in advance. In [77], the fault

is detected by adding smaller ALUs and a reconfiguration logic is inserted in the execution

stage to avoid the use of the faulty unit. Concerning the hardware approaches, usually no

software modifications are required, but area and power consumption are increased due to

extra hardware.

Some approaches combine software and hardware implementations. In [71], a software

17

repair routine modifies the instructions permanently in the memory. During start-up, a self-

test takes place to identify the faulty slots. This information is used to change the schedule

stored in the memory. If the repair routine fails, a simple hardware binding mechanisms

adds time slots and sequentially maps the instructions that cannot be assigned to other

slots. In [69], the approach is extended to cover pipeline registers, the register ports and

the bypass logic. In [70], the approach is combined with adaptive software-based self-test,

assuming though that the permanent errors have been already detected.

When permanent errors occur, either spare units have to be used or the executed pro-

gram has to be modified through self-repair routine or through the use of several stored

versions. However, these solutions introduce high area overhead for the additional re-

sources, time overhead for the execution of the repair algorithm and storage overhead of

the multi-versioning. To address these limitations, a hardware mechanism is pro-

posed (Chapter 5, Section 1) which at run-time replicates the instructions and

schedules them at the idle FUs considering the resource constraints. If a resource

becomes faulty, the proposed approach efficiently rebinds both the original and replicated

instructions during execution.

2.4 VLIW Processors Under Long-Term Faults

To the best of our knowledge, there is no technique targeting VLIW processors that deals

with Long-Duration Transient (LDT) faults. Few approaches exist that focus on LDTs

in general and they mostly focus on the error detection part at the transistor level using

Built-In Current Sensors (BICS). In [5], a comparison of different BISCs can be found.

Existing approaches usually stall the computation as long as the LDTs are valid or apply

re-execution of the faulty instruction to single instruction processors. In [39], a BICS is

proposed as a SET sensor connected directly to the bulk of transistors. In [6], a new lower

area BICS scheme is propose using a single circuit to monitor at the same time both CMOS

networks. When the SET is vanished, the computation restarts. In [38], a recomputing

instruction mechanism is combined with BICS for transient errors on a micro-controller.

In [33, 34], DMR is applied to detect any corruption of the application logic in a pipeline

processor and a new micro-rollback scheme is applied to correct long duration transients,

single event upsets and timing violation. Other approaches insert spare resources increasing

18

the area overhead. For instance, a fault tolerant technique with a double-mirror BISC is

proposed in [24], allowing the detection of abnormal current consumption. If a defect occurs,

redundant circuits are used.

Concerning VLIW processors, as most of the existing approaches are designed for tran-

sient and/or permanent errors, they are either not applicable or too pessimistic for LDTs.

As mentioned in the previous sections, several software-based and hardware-based tech-

niques have been proposed to take advantage of the abundant resources inside the VLIW

data paths in order to provide error detection and/or error correction.

Software-based approaches for transient errors apply duplication of the instructions at

the compilation time and. Thus, they can control where the original and replicated in-

structions are executed, i.e., in different function units, to support the detection of both

transient and permanent faults [10, 9, 28, 30, 29, 73]. Although these techniques could be

applied for LDTs, the performance overhead introduced by the continuous re-execution of

the faulty instructions because of the long duration faults is rather significant. Hardware-

based approaches for transient errors replicate the instructions at run-time using specific

hardware [64, 65, 54]. Since no restrictions are applied to the on-line schedule, these tech-

niques cannot detect persistent errors and, thus, they are not applicable to LDTs.

The approaches designed for permanent errors have to modify the execution of the pro-

gram to avoid the use of faulty units. Approaches based on the modification of the execution

of the program can be implemented either off-line in software or on-line in hardware. Soft-

ware approaches such as [31, 71, 69, 70] assume that the detection of the faulty unit is done

upfront, which is not possible in the case of LDTs. Few hardware approaches are capable

of online identifying the permanent errors [55, 77, 15, 16], and, thus, could be applied for

LDTs. However, the exclusion of the faulty unit is permanent leading to pessimistic results

for LDTs.

To eliminate the performance overhead due to the re-execution or due to

the pessimistic FU exclusion for LDTs on VLIW processors, we propose a fine-

grained mitigation hardware mechanism combined with BISC FUs (Chapter

5, Section 2). During execution, this mechanism characterizes the components of each

FU, identifies LDTs, reschedules the faulty instructions to the healthy FU components, and

temporarily excludes the faulty ones. When LDTs vanish, the faulty FU components can

be reused once again.

19

20

Chapter 3

Architecture’s Vulnerability

Analysis

Today’s increased demand for reliable systems rises questions such as:

1. Given a processor’s architecture with a given fault masking capability, what is the

frequency of the errors a system experiences from its environment?

2. Is it necessary to incorporate a mitigation technique inside a given design, or the

probability of a fault propagated to the user level is rather negligible (fault masking)?

3. Which part(s) of an architecture should be protected the most?

4. Which is the most suitable mitigation technique to be adopted?

Although the first question is not always easy to be answered since it depends on external to

the system factors (e.g., radiation, PVT), the research community found a way to respond

to the second and third questions by introducing two new metrics. These metrics define the

architectural and micro-architectural vulnerability factor of a processor, regardless of the

frequency of the fault occurrences. In the following sections, we explore the Architectural

Vulnerability Factor (AVF) and the micro-architectural / Instruction Vulnerability Factor

(IVF) of the VLIW architecture used in this dissertation, in order to point out its fault

masking capabilities and find the most critical parts of the design that should be protected

against faults.

21

3.1 Architectural Vulnerability Factor Analysis

A structure’s architectural vulnerability factor (AVF) is the probability that a fault in a

processor will result in a visible error in the final output of a program [4, 47]. For instance,

an error in the offset part of a NOP instruction has zero impact to the executed application,

it is considered as masked and, thus, it reduces the overall AVF of the processor. The AVF

is measured only for the storage cells (bits) of an architecture. Adopting the classification

of [4, 47] the important bits are the Architecturally Correct Execution (ACE) bits, while

the remaining bits are un-ACE bits. The AVF is defined as the portion of the important

bits, which are required for the correct calculation of the final output of a program, to the

total number of bits and it is given by

AV F =
ACE storage bits

Total storage bits of the processor
. (3.1)

Since the processor changes its state at each cycle, the ACE bits also change. Therefore,

the AVF is calculated per cycle.

We define the following six classes that refer to the application’s output and the proces-

sor’s state after the complete execution of a program with one fault injected, as compared

to the golden values obtained from an execution without faults:

1. Correct: The program is executed correctly. The program’s output and processor’s

internal states (registers, stack memory, PC, etc.) match with the golden values.

2. Execution Time Violation (ETV): The output and processor’s internal states are

as expected, but the program finishes later than expected.

3. Crash: Execution finishes unexpectedly. An exception is raised and the processor

crashes.

4. Hang: Execution enters in an infinite loop.

5. Application Output Mismatch (AOM): The program exits correctly, but its

output does not match with the golden one.

6. Processor’s State Failure (PSF): The output of the program is correct, but there

is(are) mismatch(es) in processor’s internal state (registers, stack memory, PC, etc.).

22

When a fault occurs in the ACE bits, the result of the execution is either Crash, Hang or

AOM. On the other hand, faults in the un-ACE bits result in Correct, ETV or PSF outputs.

A processor’s simulator that simulates the behaviour of the VLIW architecture was

developed during this thesis. The processor’s model is developed in C++ and it is capable

of executing vex binaries. The simulator is enhanced with: a) a non-synthesizable fault

injection function, which injects faults at user specified injection points and random time-

stamps, and b) a function which checks the output of the application and the state of the

processor, compares them with the golden values, and categorizes the result in one of the six

presented classes. The injection points can be in all the storage structures of the processor.

The memory units (IM and DM) are excluded for better simulation performance under the

assumption that ECC codes or similar techniques have been used for their protection.

The fault injection experiment is presented by Alg. 1. We execute once the binary

file with our simulator without injecting faults to obtain the golden output values of the

application and the golden state of the processor (line 1). Having the information about

the cycles needed for one complete execution, we decide the number of cycles we will inject

faults on (inj_cycles). Then, at each iteration, we choose randomly one unique cycle inside

the valid range where the fault will be injected (line 3). For each of these cycles we iterate

over all issues, all memory structures and all bits of each structure (lines 4,5,6).

Algorithm 1 AVF Fault Injection Experiment Algorithm

1: ./vliw "binary_file" > gold_log

2: for (i = 0, i < inj_cycles, i++) do
3: c[i] = unique_random(max_cycles, c, size_of(c))

4: for each issue ($is) do
5: for each struct ($s) do
6: for each bit ($b) do
7: ./vliw "bin" "gold_log" $is $s $b $c > inj_log

8: end for
9: end for

10: end for
11: end for

For the VLIW architecture used here we have four issues; the structures and their bits are

shown in Table 3.1 (refer to Fig. 1.1). Thus, in every iteration, we inject one fault (modelled

as bit-flip) to one bit of one of the FtoDC, DCtoEx, PC and RF registers. The results are

compared with the golden ones from the gold_log file and a report is generated and stored

into the inj_log file, categorizing each injection to one of the six presented categories.

23

Table 3.1: Bit composition for the used VLIW architecture.

FtoDC DCtoEx
PC RF

instr dataa datab datac dest opcode
issues x

struct_bits
4 x 32 4 x 32 4 x 32 4 x 32 4 x 6 4 x 7 32 64 x 32

Fig. 3.1 presents the per cycle AVF of the processor when it executes a matrix multi-

plication application, calculated from Equation 3.1. The whole execution of the application

takes 30228 cycles, thus an exhaustive fault injection simulation injecting faults at each

cycle would require several days. Small intervals, such as one cycle difference, leads to a

more accurate estimation with the AVF being more sensitive to the instantaneous behaviour

of the application. On the other hand, when the interval length is too large, a lot of AVF

variations may be lost. To tackle this issue and decrease the simulation time, we randomly

choose 1000 unique cycles to inject faults at. The periodic behaviour of the AVF observed

in Fig. 3.1 with instantaneous changes from max to low values shows the existence of loops

in the executed code. The average AVF of the matrix multiplication application is 0.0534.

0 5000 10000 15000 20000 25000 30000
Cycles

0.00

0.02

0.04

0.06

0.08

0.10

A
V
F

Figure 3.1: Per cycle AVF for VEX processor when executing a matrix multiplication

Fig. 3.2 presents the categorization of processor’s AVF according to the aforementioned

six classes when executing the matrix multiplication application. The results are normalized

24

in order to be independent from the ILP and are presented in logarithmic scale. We observe

that for most of the structures, the output of the application is rarely affected. This is

because of:

a) application masking (e.g. fault injection to a register that is not used by the applica-

tion),

b) architectural masking (e.g. the MSBits of the output of a multiplication instruction are

affected, but the executed instruction passes only the LSBits to the output registers),

c) logical masking (e.g. an AND operation between ’0’ and ’0’ has the same result as an

AND operation between ’1’ and ’0’).

instr dataa datab datac dest opcode RF PC
10-4

10-3

10-2

10-1

100

(O
cc

u
re

n
ce

s
p
e
r

st
ru

ct
u
re

)/
(T

o
ta

l
b
it

s
o
f

st
ru

ct
u
re

)
(L

o
g
)

ETV

Crash

Hang

AOM

PSF

Class instr dataa datab datac dest opcode RF PC

ETV 0.025 0.019 0.014 0.0 0.014 0.015 0.006 0.221

Crash 0.01 0.0 0.0 0.0 0.0 0.0 0.012 0.74

Hang 0.017 0.005 0.003 0.001 0.023 0.008 0.014 0.012

AOM 0.009 0.0 0.0 0.0 0.013 0.001 0.031 0.027

PSF 0.028 0.102 0.001 0.0 0.031 0.015 0.506 0.016

Figure 3.2: Error occurrences per storage structure for the matrix multiplication (Normal-
ized)

We observe that ETV is more prominent in PC error injections. That is because ETV

refers to these cases where the execution is correct, but there is a cycle violation. An

25

example of ETV is a bit flip in a counter causing a drawback to a previous value or a bit

flip in PC which drives the program to a previous stage of the execution which happens to

be idempotent with the current one.

In our architecture, Crash errors are mostly frequent because of segmentation faults,

and, thus they are more prominent in PC injections as well. Infinite loop errors or Hang

errors usually happen when there is a violation in a checking condition of a loop. We observe

that it is mostly fault injections in structures such as the PC, the instr, the RF and the dest

that cause these types of errors. AOM and PSF errors refer to mismatches in the output

of the application and the state of the processor respectively, and, they are more prominent

in case of faults injected in the RF.

The goal of this analysis is to identify the most vulnerable parts of the VLIW archi-

tecture. We observe that the PC is the most vulnerable part of the architecture, but since

it is only a 32-bit register, it can be easily protected with negligible hardware cost (e.g.,

ECC codes, radiation hardening). The next candidate for protection is the RF, which has

the biggest number of AOM and PSF errors among all the other structures. PSFs are not

considered as errors, since they do not affect the executed program, but they potentially

corrupt other program’s data, thus they should not be ignored. Errors in the RF might be

either because of a direct fault injected in this storage structure or because of a transient

error occurring in the execution stage and committed to the RF. Although error correction

methods for memory elements of embedded processors have been studied thoroughly the

past years [48, 22, 12], there is not much work regarding the faults occurring in the execu-

tion stage of (VLIW) processors.

To identify the most vulnerable parts of a processor, except of the vulnerability factor of

each tested structure, one should also consider the probability of an error occurring in this

particular structure. According to the empirical model provided in [76], this probability in

case of soft errors is proportional to:

a) the neutron flux with energy > 1 MeV,

b) the area of the circuit sensitive to particle strikes,

c) the critical charge, and

d) the charge collection efficiency of the device.

Consequently, in order to measure this probability, we compare the logic area of each FU

26

of each pipeline stage, as depicted in Table 3.2. We observe that the area coverage of the

execution stage components, including both simple and complex FUs, in comparison with

the area coverage of all the stages of this architecture is greater than 70%. This observa-

tion in combination with the aforementioned findings, motivate the focus of the proposed

approaches of this dissertation on the protection of the execute stage. Consequently, in the

remaining chapters, we present novel techniques to mitigate errors mainly in the execution

stage of VLIW processors.

Table 3.2: Area of pipeline stages (µm2).

DC DC_BR ALU ALU_MUL WB MEM_WB Issue_Total
issue_0 × 2,530 1,533 × 11 × 4074
issue_1 250 × 1,533 × × 358 2141
issue_2 250 × × 3,843 11 × 4104
issue_3 250 × × 3,843 11 × 4104

FU_Total 750 2530 3066 7686 33 358 14423

3.2 Instruction Vulnerability Factor Analysis

A processor’s Instruction Vulnerability Factor (IVF) is the probability that a fault in a

processor’s pipeline register will result in a visible error in the final output of the instruction

under study [4]. For instance, an error in the offset part of a LOAD instruction will result

in a wrong memory address calculation and, thus, in a wrong memory read. The IVF of

this particular LOAD instruction is consequently decreased. A counter paradigm is a fault

occurring in a value which is used by a logical operation (e.g., AND, OR, XOR). In Table 3.3

presented in [3], PM shows the masking probability of a soft error occurring in one of the

inputs of an logic gate. For example, when both inputs are 0, errors in each of the inputs

of an OR or XOR gates are never masked. The IVF of these particular instructions is

consequently high. PF shows the error propagation probability to the outputs of a gate and

is calculated by

PF = 1−

∑

2n

i=1
PMi

2n
, (3.2)

where n is the number of inputs of the each gate.

Adopting the classification of [4] for IVF, the bits which are involved in the execution

of an instruction are divided into two groups: Correct Execution of Instruction (CEI) and

Un-CEI. If a fault in a pipeline register bit causes incorrect instruction output or abnormal

27

Table 3.3: Logical masking for three logic gates [3].

Inputs AND OR XOR

in1 in2 out PM out PM out PM

0 0 0 1 0 0 0 0

0 1 0 0.5 1 0.5 1 0

1 0 0 0.5 1 0.5 1 0

1 1 1 0 1 1 0 0

PF 0.5 0.5 1

behaviour (e.g., segmentation fault), then the bit is classified as CEI. Otherwise the bit is

an Un-CEI one. The IVF is defined as the portion of the CEI bits of the each pipeline stage

to the total number of bits of the processor and it is given by

IV F =
CEI storage bits of stage

Total storage bits of the processor
. (3.3)

We define the following four classes that refer to instruction’s output and processor’s

state after the execution of an instruction with one fault injected, as compared to the golden

values obtained from an execution without faults.

1. Correct: The instruction is executed correctly. The output and processor’s internal

states (registers, stack memory, PC, etc.) match with the expected golden values.

2. Crash: Execution finishes unexpectedly. An exception is raised and the processor

crashes.

3. Application Output Mismatch (AOM): The instruction is executed, but its out-

put does not match with the golden one.

4. Processor’s State Failure (PSF): The output of the instruction is correct but there

is(are) mismatch(es) in processor’s internal state (registers, stack memory, PC, etc.).

The faults in the CEI bits are responsible for Crash and AOM errors. Faults in un-ACE

bits result in Correct or PSF outputs.

Similarly to the AVF experimental setup, we developed a processor’s simulator to sim-

ulate the behaviour of the VLIW architecture when it executes vex binaries of individ-

ual instructions. Since the IVF experiment is performed for one instruction at the time,

28

the VLIW pipeline is reduced to one issue. The simulator is enhanced with: a) a non-

synthesizable fault injection function which injects faults at user specified injection points

into the pipeline registers, and b) a function which checks the output of the instruction and

the state of the processor, compares them with the golden values and reports in which class

the output belongs to.

The fault injection experiment is presented by Alg. 2. For each valid opcode of the In-

struction Set Architecture (ISA) we generate rest_n0 random numbers from 0 to max_rest

for the rest part of the instruction (line 2, 3). The DM and RF are also initialized with

random values. The experiment is executed several times for the same opcode with a ran-

domized instruction and processor configuration in order to test different input scenarios

and, thus, avoid IVF miscalculation because of using specific inputs. Next step is to run

our simulator for this particular generated instruction and this particular processor con-

figuration and register the golden output values into a log file (line 5). For each of these

generated instructions and configurations we iterate over all the pipeline storage structures

(FtoDC, DCtoEx) and all the bits of each structure (lines 6, 7) and we inject one fault

in the corresponding stage during the instruction execution (Fetch in cycle 0, Decode in

cycle 1). The results are compared with the golden values from the gold_log file and a

report is generated and stored into a log file (inj_log) categorizing each injected fault to

one of the four above-mentioned categories.

Algorithm 2 IVF Fault Injection Experiment

1: for each opcode ($op) do
2: for (i = 0, i < rest_n0, i++) do
3: r = random(max_rest)

4: randomize(DM,RF)

5: ./vliw $op $r > gold_log

6: for each struct ($s) do
7: for each bit ($b) do
8: ./vliw "gold_log" $op $r $s $b > inj_log

9: end for
10: end for
11: end for
12: end for

For each instruction and for each bit of each structure of the VLIW architecture we

generate 1000 test cases in order to create a uniform distribution of the input masking

probability. For each injected stage the IVF is calculated from Equation 3.3.

Table 3.4 presents the IVF of each instruction of each stage of the processor. The table

29

depicts the IVF of all the logical, multiplication, memory, control and integer arithmetic

operations of the ISA of a RISC processor (similar to the ISA of RISC-V processor [84]).

For all the instructions, the IVF of the fetch stage is greater than the IVF of the decode

stage, meaning that the decode stage is more vulnerable than the fetch stage. This is

because the registers of the decode stage are more than the registers of the fetch stage and,

thus, there are more bits and more fault injection points, which affect the correct execution

of the instruction. The logical masking effect, which was discussed in this section and

analyzed for specific instructions in Table 3.3, is prominent enough for the XOR instructions

(PM = 0, ∀ (in1, in2) and PF = 1) which have the lowest IVF among all the other logical

operations. We observe that integer arithmetic and memory operations have a lower IVF

in the decode stage than other instructions (e.g. from the logical operations). This is

explained because: a) these instructions use most of the pipeline registers in order to perform

computations between registers and/or immediate values (integer arithmetic operations)

or for the computation of the memory addresses (memory operations), and b) there is no

logical masking in integer arithmetic operations, thus errors are usually propagated to the

output. The multiplication operations are implemented in the same way, but since only a

part of the multiplication result (Hi or Low) passes as a result of the operation, there is some

masking introduced which increases the IVF when errors are injected into the decode stage

registers. The control operations change the PC and redirect the execution to the desired

position inside the program. They operate in the decode stage, thus any fault injected into

the decode stage registers has zero effect to the output of these operations, thus the IVF is

always one.

3.3 Conclusion

In order to identify the most vulnerable parts of the adopted processor architecture, a fault

injection methodology has been developed for VLIW processors. For that, we performed

experiments to measure the Architectural Vulnerability Factor (AVF) and the Instruction

Vulnerability Factor (IVF) of the processor. Vulnerability factor analysis results in com-

bination with measurements for the logic area of each FU of each pipeline motivated the

focus of the proposed approaches of this dissertation (Chapters 4 and 5) on the protection

of the execute stage.

30

T
ab

le
3.

4:
P

er
st

ag
e

IV
F

fo
r

al
l

op
er

at
io

n
s

of
th

e
IS

A

L
o

g
ic

a
l

O
p

e
ra

ti
o

n
s

O
P

C
O

D
E

F
e
tc

h
D

e
c
o

d
e

C
M

P
E

Q
0.

88
25

69
0.

80
03

58

C
M

P
G

E
0.

88
01

46
0.

83
77

37

C
M

P
G

E
U

0.
88

57
30

0.
84

26
06

C
M

P
G

T
0.

87
86

86
0.

84
08

91

C
M

P
G

T
U

0.
88

05
26

0.
84

32
41

C
M

P
L

E
0.

88
04

38
0.

84
15

62

C
M

P
L

E
U

0.
87

98
91

0.
84

23
43

C
M

P
L
T

0.
87

50
88

0.
83

33
07

C
M

P
L
T

U
0.

87
54

96
0.

83
43

65

C
M

P
N

E
0.

88
41

39
0.

80
14

53

C
M

P
E

Q
i

0.
90

55
33

0.
91

28
61

C
M

P
G

E
i

0.
91

24
31

0.
89

76
28

C
M

P
G

E
U

i
0.

91
24

53
0.

89
77

59

C
M

P
G

T
i

0.
91

24
45

0.
89

76
35

C
M

P
G

T
U

i
0.

91
24

38
0.

89
76

64

C
M

P
L

E
i

0.
91

24
16

0.
89

74
60

C
M

P
L
T

i
0.

90
51

53
0.

89
04

60

C
M

P
L
T

U
i

0.
90

51
53

0.
89

03
14

C
M

P
N

E
i

0.
90

52
04

0.
91

24
75

A
N

D
0.

81
97

88
0.

69
09

34

A
N

D
i

0.
81

53
28

0.
75

17
08

A
N

D
C

0.
88

51
17

0.
70

44
53

A
N

D
C

i
0.

90
65

55
0.

77
60

95

O
R

0.
81

98
10

0.
67

40
73

O
R

i
0.

81
51

02
0.

60
97

74

O
R

C
0.

87
07

52
0.

69
00

58

O
R

C
i

0.
89

77
01

0.
76

51
02

N
O

R
0.

81
75

55
0.

67
13

14

N
O

R
i

0.
81

40
88

0.
60

63
50

N
O

T
0.

86
13

65
0.

67
88

32

N
O

T
i

0.
86

13
65

0.
67

88
32

X
O

R
0.

81
95

77
0.

44
89

93

X
O

R
i

0.
76

66
06

0.
44

54
01

M
u

lt
ip

li
c
a
ti

o
n

O
p

e
ra

ti
o

n
s

O
P

C
O

D
E

F
e
tc

h
D

e
c
o

d
e

M
P

Y
L

L
0.

88
50

80
0.

70
44

53

M
P

Y
L

L
U

0.
88

49
64

0.
70

44
53

M
P

Y
L

H
0.

89
41

61
0.

71
34

09

M
P

Y
L

H
U

0.
88

49
64

0.
70

44
53

M
P

Y
H

H
0.

88
50

80
0.

70
44

53

M
P

Y
H

H
U

0.
89

22
92

0.
71

16
72

M
P

Y
L

0.
89

21
46

0.
71

16
50

M
P

Y
L

U
0.

87
78

98
0.

69
72

55

M
P

Y
H

0.
88

69
78

0.
69

90
15

M
P

Y
H

U
0.

89
94

45
0.

71
88

47

M
P

Y
H

S
0.

89
22

63
0.

71
16

50

M
e
m

o
ry

O
p

e
ra

ti
o

n
s

L
D

W
0.

76
64

23
0.

43
79

56

L
D

H
U

0.
77

02
04

0.
44

15
84

L
D

H
0.

77
00

36
0.

44
16

72

L
D

B
U

0.
77

04
60

0.
44

35
47

L
D

B
0.

77
07

01
0.

44
36

06

S
T

W
0.

76
64

31
0.

24
81

75

S
T

H
0.

76
64

23
0.

36
49

71

S
T

B
0.

76
66

35
0.

42
34

53

C
o

n
tr

o
l

O
p

e
ra

ti
o

n
s

C
A

L
L

R
0.

90
51

17
1.

00
00

00

B
R

0.
81

75
18

1.
00

00
00

B
R

F
0.

97
81

02
1.

00
00

00

R
E

T
U

R
N

0.
81

02
19

1.
00

00
00

G
O

T
O

0.
82

48
18

1.
00

00
00

G
O

T
O

R
0.

90
51

24
1.

00
00

00

C
A

L
L

0.
81

02
19

1.
00

00
00

S
T

O
P

0.
94

89
05

1.
00

00
00

In
te

g
e
r

A
ri

th
m

e
ti

c
O

p
e
ra

ti
o

n
s

O
P

C
O

D
E

F
e
tc

h
D

e
c
o

d
e

A
D

D
0
.8

1
7
5
1
8

0
.4

4
5
2
5
5

A
D

D
i

0
.7

6
6
5
3
3

0
.4

4
5
3
8
7

S
U

B
0
.8

1
9
5
5
5

0
.4

4
8
9
5
6

S
U

B
i

0
.7

6
6
6
2
8

0
.4

4
5
3
6
5

S
R

L
0
.8

2
9
6
4
2

0
.7

6
4
2
0
4

S
R

L
i

0
.8

3
8
2
3
4

0
.7

6
7
7
1
5

S
R

A
0
.8

2
9
8
7
6

0
.7

6
3
5
6
9

S
R

A
i

0
.8

3
8
3
8
7

0
.7

6
7
9
2
7

S
L

L
0
.8

2
0
5
9
1

0
.7

5
7
1
2
4

S
L

L
i

0
.8

2
9
7
2
3

0
.7

6
0
1
3
1

S
H

1A
D

D
0
.8

1
7
5
1
8

0
.4

4
5
2
5
5

S
H

2A
D

D
0
.8

1
7
5
1
8

0
.4

5
2
5
5
5

S
H

3A
D

D
0
.8

1
7
5
1
8

0
.4

5
9
8
5
4

S
H

4A
D

D
0
.8

1
7
5
1
8

0
.4

6
7
1
5
3

S
H

1A
D

D
i

0
.7

6
6
5
7
7

0
.4

3
8
0
2
2

S
H

2A
D

D
i

0
.7

8
1
0
2
9

0
.4

5
2
5
5
5

S
H

3A
D

D
i

0
.7

7
3
8
1
0

0
.4

4
5
3
3
6

S
H

4A
D

D
i

0
.7

7
3
7
3
7

0
.4

4
5
2
5
5

Z
X

T
H

0
.8

7
7
9
6
4

0
.6

9
7
2
7
7

Z
X

T
B

0
.8

7
8
1
3
1

0
.6

9
7
4
9
6

S
X

T
H

0
.8

8
5
3
4
3

0
.7

0
4
6
7
9

S
X

T
B

0
.8

7
7
9
3
4

0
.6

9
7
2
5
5

Z
X

T
H

i
0
.9

0
8
5
0
4

0
.7

7
6
0
9
5

Z
X

T
B

i
0
.9

0
8
7
0
8

0
.7

7
6
2
3
4

S
X

T
H

i
0
.9

1
4
0
9
5

0
.7

8
1
7
3
0

S
X

T
B

i
0
.9

0
8
5
0
4

0
.7

7
6
0
9
5

M
O

V
I

0
.7

8
8
3
2
1

0
.7

1
5
3
2
8

N
O

P
0
.9

5
1
4
0
2

0
.9

4
9
6
2
0

31

32

Chapter 4

Time and Space Instruction

Rescheduling

We propose a hardware mechanism that combines the benefits of the software redundancy

and the hardware mechanisms for heterogeneous VLIW data-paths. The proposed mech-

anism is capable of both replicating at run-time the original instructions to achieve fault

tolerance and dynamically scheduling them to efficiently explore the idle slots in time and

space to improve performance, while preserving reliability. The scheduling exploration win-

dow is two instruction bundles and their potential additional time slots. To support the

scheduling decisions, a hardware dependency analysis takes place between the two original

instruction bundles. The independent instructions can use the idle slots of the next bundle

and the potential time slots added for the execution of its replicated instructions. As the

instruction scheduling is flexible, a more efficient idle slot exploitation takes place.

4.1 Running example

In this section we present the proposed approach through a running example. Fig. 4.1

depicts the proposed approach on the 4-issue VLIW of Fig. 1.1 with one Arithmetic Logic

Unit (ALU) and one Branch unit (BR) in the Issue_0, one ALU and one Memory function

unit (MEM) in the Issue_1, and one ALU and one Multiplication unit (MUL) in Issue_2

and Issue_3. Fig. 4.1a is the compiler’s original schedule to the VLIW issues. Three

consecutive instruction bundles of the original code are depicted, Bi−1, Bi and Bi+1. Bi−1

has two instructions (ADD1 , MUL1) and two idle slots (NOP). Bi has also two instructions

33

NOP	 ADD1	 MUL1	 NOP	

NOP	 MUL2	NOP	 SUB2	

Bi-1	

Bi	

ALU	

BR	

ALU	

MEM	

ALU	

MUL	

ALU	

MUL	

NOP	 NOP	NOP	OR3	 Bi+1	

ADD1:			ADD(r2,r1,r3)	

MUL1:			MUL(r4,r2,r3)	

SUB2:				SUB(r5,r1,r3)	

MUL2:			MPYL(r3,r5,r1)	

OR3:						OR(r1,r5,r3)			

Avail.	

FUs	

Issue_0	 Issue_1	 Issue_2	 Issue_3	

Assembly	Instruc;ons	

(a) Compiler’s original schedule.

Bi-1	

Bi	

ti-1	 ADD1	 ADD1	 MUL1	 MUL1	

SUB2	ti	 MUL2	ADD1	 MUL1	

MUL2	SUB2	 MUL2	ti+1	 SUB2	

OR3	 NOP	ti+2	 OR3	 Bi+1	OR3	

1	2	

3	

1	 2	

3	3	

3	

3	

2	2	2	2	

3	3	

x	 :	applied	priority	

(b) Schedule of the proposed approach.

Figure 4.1: Scheduling running example on an 4-issue VLIW.

34

(SUB2 , MUL2) and two idle slots, while Bi+1 has one instruction (OR3) and three idle slots.

The upper box of the Fig. 4.1a presents the corresponding assembly instructions with their

implied registers. For instance, ADD1 is an instruction that adds the values of the registers

r1 and r3 and stores the result to the register r2 .

Fig. 4.1b describes our approach for idle slot exploitation in consecutive bundles. We

assume that the applied fault tolerance technique is the triplication of the instructions and,

thus, every instruction has to be executed three times. The light blue boxes represent

original instructions and the dark blue ones represent the replicated instructions. Initially,

an instruction dependency analysis takes place (implementation details in Sections 4.4.1

and 4.4.2) between the instructions of two consecutive original bundles. If no dependency

exists, the instructions that do not fit in the current bundle are allowed to be scheduled to

the potential idle slots of the next bundle. In our example, when our approach is applied to

the bundle Bi−1, none of the instructions (ADD1 , MUL1) uses as destination register one

of the source or destination registers of the instructions of the bundle Bi (SUB2 , MUL2).

Hence, no dependency exists. On the other hand, concerning the bundles Bi and Bi+1, the

instruction OR3 reads the registers r5 and r3 , which are also used as destination registers

by SUB2 and MUL2 of Bi. Hence, there is a dependency between the instructions of Bi

and the instruction of Bi+1. Therefore, a potential parallel execution of these instructions

is forbidden.

The dependency analysis results are used by the replication scheduler (implementation

details in Section 4.4.3), which is responsible for the dynamic scheduling of the original and

duplicated instructions. The scheduler operates according to three priorities in the following

order: 1⃝ instructions of a previous bundle have a higher priority than instructions of the

current bundle, 2⃝ the dependent instructions have a higher priority than the independent

ones, and 3⃝ the first copy of an instruction has a higher priority than the second copy of

an instruction. These three priorities applied by the hardware scheduler to the considered

instructions are illustrated in Fig. 4.1b by their respective encircled number.

In Fig. 4.1b, for ti−1 , one copy of each of the ADD1 and MUL1 is placed along with

the original instructions occupying the two available idle slots, due to priority 3⃝. At ti ,

the scheduler is applied on the bundle Bi and the remaining instructions of the previous

bundle are scheduled first (due to priority 1⃝). Then, the original dependent instructions

of the bundle Bi are scheduled (priority 2⃝). Due to the dependency explained above, no

exploration of the idle slots of Bi+1 can take place and a new time slot has to be added.

35

At this new time slot ti+1 , the same scheduling policy is applied, filling the complete slot

with the remaining dependent redundant instructions of Bi (priority 2⃝). At ti+2 , there

are not any remaining instructions from the previous bundle, thus OR3 and its replicas are

scheduled according to priority 3⃝.

4.2 Overview of the proposed architecture

We use the 4-issue VLIW data-path of Fig. 1.1 and the triplication as fault tolerant method

to illustrate the proposed approach. Fig. 4.2 depicts the original VLIW data path in blue

color. The yellow color highlights the hardware components added to implement our ap-

proach. It is important to mention that the relative size of the blue and yellow boxes in

the figure is not representative of the relative size of the actual hardware. The control

components of the proposed fault tolerant mechanism are: 1) the information extraction

unit, 2) the dependency analyzer, 3) the replication scheduler, and 4) the voting scheduler.

The processing components are: 1) the replication switch, 2) the voting switch, and 3) the

voters. The information extraction unit performs an early decoding in the F stage pro-

viding the necessary information to the dependency analyzer and the replication scheduler.

The dependency analyzer is the component responsible for analyzing two subsequent bun-

dles in order to identify potential dependencies. The replication switch allocates previously

decoded instructions (from the ReplicRes register) and the currently decoded instructions

(from the decoders) to the pipeline DCtoEX register following the schedule provided by

the replication scheduler. The voting switch allocates and groups the results of the previ-

ously executed instructions (from the VotingRes register) as well as the currently executed

instructions (from the FUs) to the voters for correction following the schedule provided by

the voting scheduler. As our main goal is to reduce the performance overhead, the pro-

cessing components required to be added in the VLIW data-path are strategically placed,

whereas all the control components of our architecture are designed to run in parallel with

the main data path of the processor, so as to not affect the clock frequency.

4.3 Processing Components

To enable the dynamic scheduling of the instructions, our approach requires two switches

and a voter to be added in line with the VLIW data path, as shown in Fig. 4.2. In the rest

of the chapter, n will represent the number of the issues.

36

sel_v

FtoDC	

Reg		

F	

DC	

BR	

DC	

DC	

DC	

DCtoEx	

Reg		

ALU	

MUL	

ALU	

MUL	

ALU	

WB	

ReplicRes	

Reg	

Vo0ng	

scheduler	

ALU	

Vo2ngRes	

Reg	

Replic.	

Switch	
Vo0ng	

Switch	

Voter1	

WB	

MEM	

Voter2	

WB	
Voter3	

WB	Voter4	

Stage	F	 Stage	DC	 Stage	EX/M-WB	

Internal

signals

Replica0on		

scheduler	

Info	extr.		

unit	

Dep.	

analyzer	

sel_r

stall

b
u
ff
e
r	

issue_0	

issue_1	

issue_2	

issue_3	

Figure 4.2: Original VLIW datapath (blue) enhanced with the proposed fault tolerant
mechanism (yellow).

4.3.1 Replication Switch

The replication switch selects some of the 2 × n possible inputs – i.e., the output of the

decoders and the ReplicRes register – and places them to the n inputs of the pipeline

register DCtoEX. The ReplicRes register stores an exact copy of the decoders’ output in

the previous cycle. Each input/output of the switch consists of 109 bits, i.e., the size of the

decoded instruction. The decoded instruction is depicted in Fig. 4.3. Therefore, the input

signal has a width of 109 × 2n bits, while the output has a width of 109 × n bits. For the

switch implementation, n× (2n-to-1) multiplexers are required and the selection signal has

n × log2(2n) bits. Fig. 4.4 presents the implementation of the switch for a 4-issue VLIW.

Data	from	RF	 Data	from	RF	/	or	Immed.	 Data	for	storing	instr.	 Opc	Dest	

Adr.	

Figure 4.3: Decoded instruction

The input signal has a width of 109× 8 = 872 bits. The circuit has 4× 8-to-1 multiplexers

and a 4 × 3-bit selection signal is required. The output is connected to the 4 × 109 bits

37

pipeline register DCtoEX shown in Fig. 4.2.

Issue	1	

8:1	

MUX	
Issue	0	

Issue	2	

Issue	3	

ReplicRes[0]	

DCtoEX[0]	

ReplicRes[1]	

ReplicRes[3]	
ReplicRes[2]	

8:1	

MUX	

DCtoEX[1]	

sel_r[0]

sel_r[1]

8:1	

MUX	

DCtoEX[2]	

8:1	

MUX	

DCtoEX[3]	

sel_r[2]

sel_r[3]

Issue	1	

Issue	0	

Issue	2	

Issue	3	

ReplicRes[0]	
ReplicRes[1]	

ReplicRes[3]	
ReplicRes[2]	

Figure 4.4: Replication switch implementation details

4.3.2 Voting Switch

This switch is placed after the FUs and it is responsible for the grouping of the results of the

replicated instructions: a) into the voters and b) into the VotingRes register. The results of

the instructions, whose replicated instructions have not been executed yet, are stored to the

VotingRes register (Fig. 4.6b). The voting scheduler is responsible for the correct storing of

the results in the VotingRes register. The results of the two instances of the same instruction

are stored in adjacent positions in the VotingRes register, i.e., in the even position for the

first instance and in the odd position for the second instance. Using this configuration, the

first input of a voter, Voter[i][0], is required to be connected only to the FUs. The second

input, Voter[i][1], is connected either to the FUs or to the VotingRes[2i] and the third input,

Voter[i][2], to either the FUs or the VotingRes[2i+1] register, ∀i ∈ {0, .., n− 1} (Fig. 4.6a).

In this way the switch complexity and its corresponding area are reduced.

In case of the 4-issue VLIW, the switch is presented in Fig. 4.6. Each individual input

and output has a size of 78 bits and it is structured as in Fig. 4.5. Fig. 4.6b depicts the

38

FU	result	 Data	to	store	in	Memory	 WB	

Ena	

Opc	Dest	

Adr.	

Figure 4.5: Voting switch I/O instruction.

part of the switch that stores back the results at the VotingRes register. It has 4 inputs

(from the FUs outputs) that have to be connected to a register of 8 positions (VotingRes[0]

to VotingRes[7]). Fig. 4.6a depicts the part of the switch required for one voter. It has 12

inputs (4 coming from the FUs outputs and 8 from the VotingRes register outputs), which

have to be connected to 12 voters inputs. Finally, the select signal is 96 bits.

4.3.3 Voters

The voters are similar to the majority voters like the ones used in [40]. These voters

detect and correct errors between the values that were grouped by the Voting switch. The

voters compare the three 32-bit results of the EX stage, either coming from the FUs or the

VotingRes register. They can be also easily extended to compare the rest of the values in

the registers in order to provide fault tolerance for the control flow (opcode comparison)

and the register address (destination register comparison).

4.4 Control Logic Components

4.4.1 Information Extraction Unit

The information extraction unit is depicted in Fig. 4.8. It reads each instruction from the F

stage and extracts the opcode, the destination, and the source registers. This early decoded

information is stored in an intermediate internal register (Info register). The outputs are

read from the dependency analyzer and the replication scheduler. To implement both the

scheduling of the instructions to the replication switch and the grouping of the instruction

to be voted in the voting switch, we need to introduce a logic that associates an instruction

with an identifier. An Instruction Identifier (ID) corresponds to an instruction currently

in the data path. These IDs provide the required information about the inputs of the

replication switch in order to decide its output, through the selection signal vector sel_r of

39

4:1	

MUX	

Issue	0	
Issue	1	
Issue	2	
Issue	3	

Vo#ngRes[i]	

Voter[i][0]	

Voter[i][1]	

2:1	

MUX	

Vo#ngRes[i+1]	

Voter[i][2]	
2:1	

MUX	

4:1	

MUX	

4:1	

MUX	

sel_v[i][0]

sel_v[i][2]

sel_v[i][4]
sel_v[i][7]

sel_v[i][6]

sel_v[i][1]

sel_v[i][3]

sel_v[i][5]

(a) Part of the voting switch required for one voter.

4:1	

MUX	

Issue	0	

Issue	1	

Issue	2	

Issue	3	

4:1	

MUX	

sel_v[i][22]
sel_v[i][23]

Vo#ngRes[0]	

sel_v[i][8]
sel_v[i][9]
.
.
.

Vo#ngRes[7]	

.

.

(b) Part of the voting switch for storing back to
VotingRes register.

Figure 4.6: Implementation of the voting switch.

the replication switch. They also provide the information to the voting scheduler in order

to decide the grouping of instruction in the voting switch through the signal vector sel_v.

Each of the four registers, FtoDC, ReplicRes, DCtoEX and VotingRes, is associated with

an array of IDs, as depicted in Fig. 4.7.

The coding of the ID is depicted in Table 4.1. An ID value uses 5 bits. The 3 Most

Significant Bits (MSBs) indicate the position of the instruction: the first bit indicates if the

instruction belongs to the previous or to the current bundle and the next two bits show the

original position of the instruction inside a bundle. Hence, the values from 0−3 (000−011)

are assigned for the previous bundle and 4 − 7 (100 − 111) for the current bundle. The

2 Least Significant Bits (LSB) carry the information about the instruction type: NOP,

40

ALU	

MUL	

Vo(ng	

Switch	

ALU	

MUL	

Rem	

FtoDC	

Reg				

F	

DC	

BR	

DC	

DC	

DC	

ALU	

ReplicRes	

Reg	

ALU	

Replic.	

Switch	

ID	 ID	

Vo)ngRes	

00000	

00111	

01010	

01100	

11011	

00111	

01010	

11110	

00111	

00111	

00000	

00000	

01010	

01010	

00000	

00000	

3	

1	

1	

3	

ReplicRes	 DCtoEX	

DCtoEX	

Reg				

Vo2ngRes	

Reg	

ID	
Rem	ID	

10000	

10100	

11011	

11110	

3	

3	

3	

3	

FtoDC	

Dep	

0	

0	

1	

1	

Figure 4.7: ID , Rem and Dep arrays of illustration example from Fig. 4.1b at time ti.

memory, multiplication and ALU operations.

Table 4.1: ID encoding in the information extraction unit.

Bundle Issue Number Instructions

b4 b3 b2 b1 b0 Type

Bi−1

0 0 0 0 0 NOP
0 0 1 0 1 MEM
0 1 0 1 0 MUL
0 1 1 1 1 ALU

Bi

1 0 0 0 0 NOP
1 0 1 0 1 MEM
1 1 0 1 0 MUL
1 1 1 1 1 ALU

Two additional register arrays are used to store the remaining instructions that need

to be scheduled, i.e., the FtoDC_rem and ReplicRes_rem. For the bundle currently in the

DC stage, the values of the FtoDC_rem are initialized to 3, since instruction triplication is

applied as fault tolerance method. During scheduling, some of the instructions are executed

on the FUs of the VLIW datapath. Therefore, the values of the ReplicRes_rem are updated

to depict the new number of the unscheduled instructions.

41

In Fig. 4.7 we illustrate the ID and the Rem arrays of our running example presented

in Fig. 4.1b at time ti. The FtoDC_ID array is related to the current bundle Bi: the first

element (10000) and the second one (10100) indicate that the instructions in the first and

second slot of the current bundle are NOPs, the third element (11011) stands for an ALU

operation and the last one (11110) stands for a MUL operation. The array FtoDC_rem is

initialized to 3, meaning that each of the corresponding instructions have to get triplicated.

The ReplicRes_ID array is related to the remaining instructions from the previous bundle

Bi−1: the first element (00000) indicates that the first slot is a NOP , the second one (00111)

stands for an ALU instruction, the third one (01010) stands for a MUL operation and the

last one (01100) stands for a NOP . At the time ti−1 two ADD1 and two MUL1 instructions

have been scheduled (Fig. 4.1b), so the ReplicRes_rem array has been updated accordingly

by setting the corresponding values to 1.

4.4.2 Dependency Analyzer

The dependency analyzer in Fig. 4.8 decides about the dependencies between two subsequent

bundles. To do so, it reads the opcode, the destination and the sources of each instruction

of each bundle. Three possible dependency cases may exist: 1) Read After Write (RAW), 2)

Write After Read (WAR) and 3) Write After Write (WAW). RAW and WAW are taken care

by the dependency analyzer. However, WAR never occurs as it is prevented by architecture

design: The proposed mechanism may move the ’read’ instruction in the next bundle and,

thus, it will be executed in parallel with the ’write’ instruction. However, as the rescheduling

occurs after the decode stage, the read instruction has already obtained the correct value

from the register file. For the RAW and WAW cases, the dependency analyzer reads the

destination of each instruction from the Info register and compares it with the sources and

destination values of the instructions currently extracted from the information extraction

unit. If they are the same, the corresponding outputs of the vector signal FtoDC_Dep are

set to one to inform the replication scheduler for the detected dependency.

In Fig. 4.7 we illustrate the Dep array of our running example at time ti (refer to

Fig. 4.1b), where both instructions of the current bundle (Bi) are dependent on the memory

instruction of the next bundle (Bi+1), thus the corresponding FtoDC_Dep positions are

set to 1.

42

Dest

Sources
Info	

extr.	

unit	

Dep.	Analyzer	

Info	Reg	

FtoDC_Dep	

ID

Sources

Instr

FtoDC_ID	

FtoDC_Rem	

Dest

Rem

F	

Figure 4.8: Information extraction unit and Dependency analyzer.

4.4.3 Replication Scheduler

The replication scheduler is responsible for the scheduling of the inputs of the replication

switch, represented by ReplicRes_ID and FtoDC_ID, to the output of the switch, rep-

resented by DCtoEX_ID. The scheduling priorities are given in the following order: 1)

whichever instruction remains in the ReplicRes register has the highest priority, 2) only

the dependent instructions in the FtoDC register are scheduled and 3) the independent

instructions from FtoDC register are scheduled.

Pre-processing In order to reduce the overhead of the replication scheduler, our approach

works on instruction occupation vectors instead of the ID arrays. Following the above

priority rules we introduce the three following vector groups: 1) ReplicRes for the previous

instructions, 2) FtoDC_dep for the dependent current instructions and 3) FtoDC for the

independent current instructions. Each group includes two vectors: 1) instr, which indicates

the existence of instructions in the slots and, 2) mul, which indicates if the instructions are

multiplications based on the current VLIW configuration. Thus, each element of the vector

instr has a size of n, while each element in mul has a size equal to the number of issues

with MUL FUs. Concerning the memory operations, as their execution is performed after

the EX/VOTE switch, the voting scheduler is responsible for their correct scheduling.

Table 4.2 presents the transformation required to obtain the instr vector: Each bit

of the vector is set, if at least one of the two LSBs of each ID[i] is not zero and there

43

Original	

First	copy	

0			0			0			0	

0			0			0			0	

0			1			1			0	

ReplicRes	

10000	

10100	

11011	

11110	

3	

3	

3	

3	

rem	

FtoDC	

ID	

rem	ID	

	

00000	

00111	

01010	

01100	

3	

1	

1	

3	

ReplicRes	

Second		
copy	

instr	

0			0			1			1	

0			0			1			1	

0			0			1			1	

1		0	

1		0	

1		0	

mul	

FtoDC_dep	

0		1	

0		1	

0		1	

									0				1			2			3						2			3	

0	

0	

1	

1	

dep	
0			0			0			0	

0			0			0			0	

0			0			0			0	

FtoDC	

instr	

0		1	

0		1	

0		1	

mul	

instr	 mul	

I

II

III	

IV

V

VI

VII

VIII

IX

Slots	Priority	

Figure 4.9: Pre-processing of IDs to occupation arrays.

are enough remaining instructions (rem[i]), where i is the issue number and j a variable

corresponding to the execution of the original, the first or the second copy of the instructions.

For the FtoDC_dep and FtoDC groups, the instructions must be also dependent (dep[i])

and independent (!dep[i]), respectively.

Table 4.2: ID to instr vector transformation.

Group Transformation
ReplicRes (ID[i][0] ∥ ID[i][1]) & (rem[i] ≥ 3− j)

FtoDC_dep (ID[i][0] ∥ ID[i][1]) & (rem[i] ≥ 3− j) & dep[i]
FtoDC (ID[i][0] ∥ ID[i][1]) & (rem[i] ≥ 3− j) & !dep[i]

The mul vector for each group is obtained by checking whether the IDs in the positions

with a multiplication unit (i.e., i ∈ {2, 3}) belong to a multiplication instruction or not

(ID[i][0] & !ID[i][1]).

Fig. 4.9 illustrates the input occupation vectors for the running example of Fig. 4.1b at

time ti. The instructions in slots 1 and 2 of the ReplicRes need to be executed one more

time (ReplicRes_Rem[1]=1, ReplicRes_Rem[2]=1). Therefore, the second and third bits

of the ReplicRes_instr[2] are set. The instruction in slot 2 is a multiplication, while the

instruction in slot 3 is a NOP. Thus, the vector mul is set to 10 for all its entries. The

44

FtoDC_dep_instr, FtoDC_dep_mul, FtoDC_instr and FtoDC_mul are constructed in a

similar way.

Bitwise Logic Based on the scheduling priorities, the occupation arrays are explored in

the order depicted by Fig. 4.9 (Latin numbers in red). For each occupation array, two

scheduling mechanisms are applied: 1) direct assignment, i.e., the issue where the instruc-

tions are originally scheduled is not modified and, thus, no verification of the type of FUs

is required, and 2) circular exploration, which is applied after the direct assignment in

case there are still instructions to be scheduled. These instructions are scheduled to the

remaining idle slots taking into account the type of the FUs.

Direct assignment: This scheduling mechanism has two inputs: 1) the occupation vector

for the instructions to be scheduled (instr) and 2) the current occupation of the issues

(issues), and has three outputs: 1) the updated occupation of the issues (issues_up), 2) the

scheduled instructions at this step (fit) and 3) the remaining ones to be scheduled (rest).

The mathematical representation of the direct assignment algorithm is defined as:

issues_up[j] = instr[j] ∥ issues,

fit[j] = issues_up[j]⊕ issues,

rest[j] = instr[j]⊕ fit[j], j ∈ {0, .., 2}.

(4.1)

The scheduling is performed through a bitwise OR operation between the instr[j] and the

issues vectors. The issues_up[j] result is compared (bitwise XOR) with the initial output

vector issues to decide which of the instructions can be mapped directly to the output

(fit[j]). According to the fit[j], the ID and rem arrays are modified as follows: a) if fit[j][i]

= 1, then Rem[i] = Rem[i] - 1, b) DCtoEX_ID[i] = ID[i]. The sel_r vector signal is

also updated: sel_r[i] = i + n for the ReplicRes group and sel_r[i] = i for the others.

To obtain the instructions that could not be scheduled directly, rest[j], the vector fit[j] is

compared with the initial input vector instr[j]. If the vector rest[j] is zero, it means that all

the instructions were scheduled and the next input vector can be explored for scheduling.

The fig. 4.10 shows how the direct assignment technique is applied to the running ex-

ample. Initially, the issues vector is initialized to zero. We start by testing the ReplicRes

vectors. Since instr[0] and instr[1] are both zero, no instruction exists to be scheduled.

Then, instr[2] is assigned to the binary value 0110. The output fit[2] is the same as the

input instr[2], meaning that all instructions can be scheduled (rest[2] = 0000). Accord-

45

Figure 4.10: Direct assignment algorithm on the running example.

ing to the fit[2], the ID and rem arrays are modified as follows: a) ReplicRes_Rem[1] =

0, b) ReplicRes_Rem[2] = 0, c) DCtoEX_ID[1] = ReplicRes_ID[1], d) DCtoEX_ID[2] =

ReplicRes_ID[2]). We also update the sel_r vector signal as sel_r[1] = 5 and sel_r[2] =

6.

The next vectors to be checked are the FtoDC_dep vectors. The new issues is the

previous issues_up[2] and the input vector is instr[0]. The output fit[0] is not the same

as the input instr[0], meaning that some instructions cannot be scheduled (rest[0] = 0010).

Finally issues_up[0] is the updated issues occupation vector. According to fit[0] we update

the IDs and sel_r as we did above. As the rest signal is not zero and the bits in issues_up

are not all set, there are still empty FUs that could be potentially used to schedule the rest

instructions by applying the following circular exploration mechanism.

Circular exploration: This mechanism takes three inputs: 1) the occupation vector for

the instructions to be scheduled (instr[j]) initialized with the vector rest[j] from the direct

assignment, 2) the current occupation of the issues (issues) initialized with the issues_up[j]

result coming from the direct assignment, and 3) the mul[j]. The output is the assignment

signal assign[i]. This signal holds the configuration values for each decided assignment.

Algorithm 3 presents the most representative cases of the circular exploration mecha-

nism. The first two cases represent the situations when only one instruction needs to be

scheduled. When instr[j] = 1000 the instruction cannot be a multiplication, whereas in case

instr[j] = 0010 the instruction can be a multiplication. In the first case, the instruction can

be tested in any available issue. In the second case, two possibilities exist: a) whatever the

46

Algorithm 3 Representative cases of the circular exploration mechanism.

1: Inputs:instr[j], issues_up[j], mul[j]
2: Outputs:assign[]
3: procedure switch

4: switch instr[j] do
5: case ...
6: case 1000 :
7: if (issues_up[j][2] = 0) then
8: assign[1]← 0;
9: else if (issues_up[j][1] = 0) then

10: assign[2]← 0;
11: else if (issues_up[j][0] = 0) then
12: assign[3]← 0
13: end if
14: case 0010 :
15: if (issues_up[j][0] = 0) then
16: assign[3]← 2;
17: else if (mul[j][1] = 0) then
18: if (issues_up[j][2] = 0) then
19: assign[1]← 2;
20: else if (issues_up[j][3] = 0) then
21: assign[0]← 2;
22: end if
23: end if
24: case 0011 :
25: if (mul[j] = 10) then
26: if (issues_up[j][2] = 0) then
27: assign[1]← 3;
28: else if (issues_up[j][3] = 0) then
29: assign[0]← 3;
30: end if
31: else if (mul[j] = 01) then
32: if (issues_up[j][2] = 0) then
33: assign[1]← 2;
34: else if (issues_up[j][3] = 0) then
35: assign[0]← 2;
36: end if
37: else if (mul[j] = 00) then
38: if (issues_up[j][3] = 0) then
39: assign[0]← 2;
40: else if (issues_up[j][2] = 0) then
41: assign[1]← 3;
42: end if
43: end if
44: case ...
45: end procedure

47

value of mul[j][1], the instruction can be potentially executed in issues_up[j][0] and b) oth-

erwise, the instruction can be potentially executed in any possible position, if and only if this

instruction is not a multiplication (mul[j][1] = 0). In the third case, two instructions need

to be scheduled (case 0011). Because of their position we have to check if the instructions

are multiplications. Three possibilities exist: a) mul[j][1] = 1 and mul[j][0] = 0, b) mul[j][1]

= 0 and mul[j][0] = 1 and c) mul[j][1] = mul[j][0] = 0. No available scheduling exists for

both instructions being multiplications due to resource restrictions. For a) and b) cases,

the multiplication instruction cannot move, since the remaining untested issues do not have

a multiplication FU. Only non-multiplication instructions can be scheduled. For c) case,

no multiplication instruction exists, thus the instructions can be scheduled in any available

slot. The case in which there are three instructions to be scheduled (case 1101, 1110, etc.)

has the least complexity. Since all three instructions have been tested and failed to be

scheduled in their current position by the direct assignment technique, the only legitimate

action is to potentially schedule the non-multiplication instructions (instr[j][2], instr[j][3])

(e.g. 1101 → 1011). In any of the aforementioned cases, if an instruction is scheduled, the

signal assign[i] is updated with the original scheduled position of the instruction, where i

is the new issue where the instructions is currently scheduled. According to the assign[i]

signal, we update the issues_up[j] vector, the ID arrays and the signal sel_r.

For instance, in Fig. 4.10 after the direct assignment of the instr[0] of the FtoDC_dep,

the rest[0] = 0010. Since mul[0][1] = 0, issues_up[0][0] = 1, issues_up[0][2] = 1 and

issues_up[0][3] = 0, the condition of line 11 in Algorithm 3 is met and, thus, assign[0] ← 2.

Consequently we have: a) issues_up[0][3] = 1, rem[2] = rem[2] - 1 and b) DCtoEX_ID[0]

= FtoDC_ID[2]. The sel_r vector signal is updated to sel_r[0] = 2. Finally, the issues

is updated to 1111 for the next direct assignment, as depicted in Fig. 4.10, and, thus, no

further scheduling exploration can be performed.

Time-slot insertion decision: After the instruction scheduling phase, the replication

scheduler decides whether there is a need to stall the fetch and decode stages. The stalling

decision occurs when: a) there are still unscheduled instructions in the ReplicRes (Repli-

cRes_rem ̸= 0), or b) there are still unscheduled dependent instructions in the FtoDC

(FtoDC_rem ̸= 0).

48

4.4.4 Voting Scheduler

This scheduler decides the scheduling of the currently executed instructions either to the vot-

ers and the commit/memory phase or to the VotingRes register to be stored. It has two in-

puts: 1) DCtoEX_ID and 2) VotingRes_ID, which are concatenated to form an array named

unGrouped_ID. A comparison-based sorting algorithm is applied to group the instructions

with the same IDs in order to form triplets respecting the memory resource constraint. The

output is a sorted array named Grouped_ID. The way the instructions have been sorted

in triplets determines the values of the signal sel_v, which configures the voting switch.

For instance, if a triplet is formed in the three first places of the Grouped_ID array, i.e.,

there are instruction IDs in Grouped_ID[0], Grouped_ID[1] and Grouped_ID[2], the corre-

sponding instructions are sent to the first voter. In case of an incomplete triplet in the first

places of the Grouped_ID, i.e., IDs only in Grouped_ID[0] and/or in Grouped_ID[1], the

corresponding instructions are stored to the VotingRes[0] and VotingRes[1] registers. Mem-

ory instructions are grouped only in Grouped_ID[3], Grouped_ID[4] and Grouped_ID[5] in

order to be scheduled to the second voter that is connected to a memory unit.

4.5 Cluster-based approach

The proposed architecture follows an n-issue configuration. Based on the experimental

results with respect to the area overhead (Fig. 4.14 in the Exmperimental Results Section

4.6 page 57), the most dominant components are the switches. Therefore, with the increase

of the number of issues n, we expect a non-linear increase of the area and an increase in

the delay, since the switch complexity has a non-linear increase, as shown in Table 4.3. To

avoid this limitation, we propose a cluster-based approach based on multiple instances of a

VLIW with smaller issue number. For instance, for a n × 4 cluster approach we employ n

parallel 4-issue components, that ideally each handles the 1/n of the instructions, as shown

in Fig. 4.11 for n = 2. In this way, the area grows in a linear way since the hardware needed

for a n× 4 approach is n times the hardware needed for the 4-issue approach. In addition,

the delay of the data path is preserved no matter how much we scale the design since there

is zero scaling of the switches.

However, following the cluster-based approach, the exploitation of the idle slots is re-

stricted only within a cluster. The compiler usually schedules the instructions as dense as

possible in order to occupy less area in the memory and, thus, it tries to first fit the instruc-

49

ALU	

ALU	

ALU	

MUL	 WB	

WB	

MEM	

b
u
ff
e
r	

sel_v1

FtoDC	

Reg1		

DC	

BR	

DC	

DC	

DC	

DCtoEx	

Reg1		

ALU	

WB	

ReplicRes	

Reg1	

Vo5ng	

scheduler

1	

ALU	

Vo3ngRes	

Reg1	

Replic.	

Switch	

1	

Vo5ng	

Switch	

1	

WB	

MEM	

WB	

Stage	DC	 Stage	EX/M-WB	

Internal

signals

Replica5on		

scheduler	

1	

Info	extr.		

unit1	

Dep.	

analyzer1	

sel_r1

stall

sel_v2

FtoDC	

Reg2		

DC	

DC	

DC	

DC	

DCtoEx	

Reg2		

ALU	

MUL	

ALU	

MUL	

WB	

ReplicRes	

Reg2	

Vo5ng	

scheduler

2	

Vo3ngRes	

Reg2	

Replic.	

Switch

2	

Vo5ng	

Switch

2	
WB	

WB	

Internal

signals

Replica5on		

scheduler	

2	

Info	extr.		

unit2	

Dep.	

analyzer2	

sel_r2

stall

Voter1	

Voter2	

Voter3	

Voter4	

Voter5	

Voter6	

Voter7	

Voter	

b
u
ff
e
r	

CLUSTER_1	

CLUSTER_2	

ALU	

MUL	

ALU	

Fetched	

Shuffled	Bundle	

ALU	
MUL	

ALU	
MUL	

ALU	
BR	

ALU	
MEM	

ALU	
MUL	

ALU	
MEM	

ALU	
MUL	

Stage	F	

Figure 4.11: Example of a cluster-based 2× 4 VLIW configuration.

Table 4.3: Implementation complexity of the Replication switch (Fig. 4.4) for different n-
issue configurations.

Configuration
Size Complexity

In Out (No. of 2:1 mux)

4-issue 8 4 28

8-issue 16 8 120

16-issue 32 16 496

32-issue 64 32 1952

50

tions to the first cluster. Because of this behaviour, the instructions are not assigned to

the other clusters and the potential idle slots cannot be exploited resulting in unnecessary

stalling of the processor. To deal with this limitation, we propose a shuffling approach,

where we provide the compiler with a shuffled FU VLIW configuration so as to generate

instruction bundles, where the instructions are more uniformly distributed. To avoid in-

serting additional area overhead, a static de-shuffling according to the real VLIW cluster

configuration is performed during the fetch stage. An example of such case is depicted in

Fig. 4.11, where the fetched bundle of this 2x4 configuration is shuffled in a random way and

a static de-shuffling is performed in order to drive the instructions to their corresponding

VLIW issues.

In addition, the real VLIW cluster configuration is defined in such a way to allow a

better FU exploitation: the multiplication (or memory) function units are gathered in the

same cluster. With this configuration the FUs of the same type are grouped, allowing the

exploitation of the FUs of a specific type. Fig. 4.11 illustrates a 2 × 4-issue VLIW with 1

branch unit, 8 ALUs, 4 multiplication units and 2 memory units. A global fetch occurs that

distributes the 8 shuffled fetched instructions to the two 4-issue clusters. The stall signal

(stall) generated by the hardware scheduler of each cluster has to be global for the whole

architecture; the fetch and decode stages of all clusters are stalled, if at least one of them

needs an extra time slot.

4.6 Experimental Results

In this section we discuss about performance, area and power results of our approach. We

employ the VEX VLIW processor [20] under two different VLIW configurations (based on

realistic commercial VLIWs, e.g., Intel Itanium [75]):

1. 4-issue width (4 ALUs, 2 Mult, 1 Mem, 1 Br)

2. 8-issue width (8 ALUs, 4 Mult, 2 Mem, 1 Br)

The VEX processor has been modified and enhanced with the proposed approach. Both the

original unprotected processor and the components of our approach have been developed in

C++ and synthesized using the Catapult High Level Synthesis (HLS) tool. Following this

approach, we are capable of both simulating the processor and synthesizing a functional RTL

design. However, it should be highlighted that modern HLS tools still fail to produce the

51

same high quality results as hand written RTL code [62]. This especially holds for complex

irregular designs with algorithms that have a highly data dependent behavior, such as our

schedulers. Therefore, the obtained results provide an upper bound in the area and power

overhead.

4.6.1 Performance

We compare the behaviour of the proposed approach (TMRi) with: a) the unprotected

architecture (Unprotected), b) the architecture that triplicates the FUs and votes for the

result (FU triplication), and c) the architecture which exploits the idle slots in space, i.e.

only inside the current bundle (TMR), without the dependency exploitation. For the per-

formance metric, both the unprotected architecture and the FU triplication architecture

have the same performance results.

In Table 1.1 in the first chapter, we have presented the dependency occurrence (%) for

each application for 0, 1, 2 or 3+ number of simultaneous dependencies between consecutive

bundles. As we observe, for most of the applications the case of having zero dependencies

between two consecutive bundles is more than 50%, pointing out a high potential benefit

for our approach. The case with exactly one dependency is also quite frequent (∼30%).

Our approach exploits these cases as dependent instructions are prioritized before the in-

dependent ones. Thanks to this prioritization policy our technique can benefit even in case

there are more dependent instructions simultaneously in one bundle.

Fig. 4.12 depicts the execution cycles of the 10 benchmarks executed on a processor with

the 4-issue configuration. The proposed TMRi architecture has a performance speed-up

from 13.47% for the matrix_mul benchmark up to 43.68% for the huff _ac_dec benchmark

compared with the TMR architecture. The average speed-up that our architecture achieves

for the 4-issue configuration is 30.15%.

Fig. 4.13 depicts the execution cycles of the benchmarks with the 2× 4-issue configura-

tion. Compared with the TMR architecture, we observe a speed-up from 7.62% for the crc

benchmark up to 27.61% for the adpcm_dec benchmark. The average speed-up that our

architecture achieves for the 2×4-issue configuration is 19.84%. We observe that in general

the speed-up for the 4-issue is slightly higher than for the 2× 4-issue. This occurs because

of the following reasons:

1. The average ILP of the applications compiled for an 2 × 4-issue configuration is low

and, thus, there are more idle slots in the current bundles than the idle slots in a 4-issue

52

0	 500	 1000	 1500	 2000	 2500	 3000	 3500	 4000	

344	

1101	

569	

1288	

478	

409	

386	

546	

1336	

1282	

2404	

976	

652	

613	

821	

2372	

1654	

3779	

1264	

1066	

998	

Cycles	

TMR	 TMRi	 Unprotected/FU	triplica=on	

38,58%	

38,84%	

22,78%	

36,39%	

22,49%	

43,68%	

33,50%	

0	 5000	 10000	 15000	 20000	 25000	 30000	 35000	

11142	

12228	

6852	

26647	

17823	

11714	

30795	

22601	

16890	

30,65%	

21,14%	

13,47%	

Figure 4.12: 4-issue performance results.

53

0	 500	 1000	 1500	 2000	 2500	

280	

951	

400	

872	

333	

323	

302	

383	

1090	

856	

1623	

700	

493	

443	

500	

1525	

1006	

2144	

764	

662	

612	

Cycles	

TMR	 TMRi	2x4	 Unprotected/FU	triplica>on	

27,61%	

25,53%	

8,38%	

24,30%	

14,91%	

28,52%	

23,40%	

0	 2000	 4000	 6000	 8000	 10000	 12000	 14000	 16000	 18000	

6533	

11955	

5709	

14053	

14745	

8291	

16408	

15962	

10877	

Cycles	

23,77%	

7,62%	

14,35%	

Figure 4.13: 8-issue performance results.

54

configuration for both techniques to exploit. For the TMR, the threshold – after which

we need to add an extra time slot – is one instruction for the 4-issue configuration

and two instructions for the 2× 4-issue configuration. Concerning the 4-issue, where

the ILP is ∼ 2, in most cases additional time slots are needed, whereas in the case of

2 × 4-issue, where the ILP is ∼ 2.5, the probability of needing an extra time slot is

decreased. The crc benchmark for the 2× 4-issue configuration is a paradigm of this

case. It has the lowest observed speed-up because the ILP of the crc changes slightly

from the 4-issue configuration to the 2× 4-issue configuration, and, thus, both TMRi

and TMR approaches have the required idle slots available in the current bundle.

2. The speed-up also depends on the code structure of each application. For instance,

an application with consecutive bundles full of instructions has a similar behavior in

both TMR and TMRi. Both techniques have no idle slots to exploit neither in the

current nor in the next bundle. A paradigm of such an application is the matrix_mul ,

which achieves the lowest performance speed-up for the 4-issue configuration.

3. A third reason is the number of dependencies. If there are idle slots to be exploited

in the next bundles, but the instructions to be scheduled are dependent, then no idle

slot exploitation is allowed and new time slots have to be added. However, in most

of the cases, there are less than two dependent instructions (see Table 1.1) and the

remaining independent instructions can use the idle slots of the next bundle. This is

the reason why the crc benchmark for the 4-issue configuration has high performance

speed-up even though 70% of the bundles have one or two dependent instructions.

4. The last reason is the scheduling of the memory instructions. In our approach, these

instructions can be scheduled in any issue, since the voting switch leads them correctly

to the appropriate functional unit that implements the memory operations. In TMR,

the memory instructions are scheduled from the beginning only in the issues supplied

with a memory unit. A paradigm of this case is the huff _ac_dec benchmark, which

has a low ILP and a lot of bundles with just one memory instruction. In this case,

TMRi rarely adds time slots, whereas TMR requires each time two additional time

slots in order to triplicate a memory instruction, given the VLIW configuration with

only one memory unit.

55

4.6.2 Area and Power

All the techniques have been synthesized using Catapult HLS tool (University Version

10.0b/273613) to obtain the RTL design. The last step of generating the gate-level netlist

was handled by Design Compiler (Version J-2014.09-SP5-7) from Synopsys using a 28-nm

ASIC library. Area and power results obtained with a target frequency of 200MHz are

shown in Table 4.4. Note that the power analysis of each approach, provided by Design

Compiler, is based on a statistical activity factor estimation with the assumption that every

net toggles 10% of the time. In Table 4.5 we present the overhead of each of the techniques

when they are compared with the unprotected architecture.

Table 4.4: Area footprint and power estimation results.

Approach
4-issue 8-issue

area(µm2) power(mW) area(µm2) power(mW)

Unprotected 50843,82 6,48 79661,02 7,36

TMR 58818,67 8,01 95257,57 9,03

TMRi 2x4 62812,26 8,61 103597,9 9,77

FU triplication 73522,58 8,81 124136,94 11,88

Table 4.5: Area and power overhead to the unprotected approach.

Approach
4-issue 8-issue

area(%) power(%) area(%) power(%)

TMR 15,68 23,61 19,58 22,69

TMRi 2x4 23,54 32,87 30,05 32,74

FU triplication 44,60 35,96 55,83 61,41

We observe that the FU triplication architecture implies an area overhead up to 55,83%

and a power overhead up to 61,41%. The TMRi has less overhead, i.e. up to 30,05% for

area and up to 32,74% for power. The TMRi has the lower overhead, i.e. up to 19,58% and

up to 22,69% for the power overhead. However, TMRi can provide a performance speed-up

up to 43,68% with an area/power overhead of ∼ 10% over the TMR approach.

Finally, we explore the participation of each component of the proposed TMRi architec-

ture in the area overhead of our approach. Fig. 4.14 depicts graphically the area coverage

of each of the basic components of our design. The area of the switches dominates the area

of our design with the 76,2% of the total area overhead. The other components (the sched-

ulers, the voters and the rest of the logic) contribute to the remaining 23,8%. Concerning

56

Voters	

9.7%	

Replic.	Switch	

18.9%	

Vo6ng	Switch	

57.3%	

Info	extr.	unit	

0.4%	

Dep.	Analyzer	

1.5%	

Replic.	

scheduler	

8.3%	

Vo6ng	scheduler	

4.0%	

Figure 4.14: Area coverage of each of our technique’s components.

the delay of the components inserted inside the VLIW data path (replic. switch, voting

switch and voters), they add a rather low amount of delay (0,16ns, 0,33ns and 0,27ns, re-

spectively). The largest delay is given by the replication scheduler (2,19ns), which, however,

does not affect the clock speed of the processor, since it is strategically placed in parallel

with the data path.

According to the obtained results for the 4-issue and the 8-issue configurations, we give

an extrapolation on how the proposed approach scales. Fig 4.15a illustrates the extrap-

olated area estimations, while Fig. 4.15b presents extrapolated estimations for the power

consumption. As we observe TMRi is growing slower than the FU triplication, making

it a better candidate if area is a design constraint. Same observations are performed for

the power, where we observe that the slope of the FU triplication is steeper , making our

approach a good candidate if power is also a constraint.

57

50.84	

79.66	

136.61	

250.78	

62.81	

103.60	

184.48	

346.52	

73.52	

124.14	

229.89	

435.23	

0k	

50k	

100k	

150k	

200k	

250k	

300k	

350k	

400k	

450k	

500k	

0	 4	 8	 12	 16	 20	 24	 28	 32	 36	

Unprotected	 TMRi	 FU	tripl.	

8x4	 Config.	4x4	2x4	

No.	Cells	

(a) Area scaling (µm2).

6.48	
7.36	

9.04	

12.84	

8.61	

9.77	

12.91	

19.05	

8.81	

11.88	

18.38	

31.02	

0	

5	

10	

15	

20	

25	

30	

35	

0	 4	 8	 12	 16	 20	 24	 28	 32	 36	

Power	(mW)	

8x4	 Config.	4x4	2x4	

(b) Power scaling (mW).

Figure 4.15: Scaling of the proposed approach

58

4.6.3 AVF and IVF analysis

We perform an AVF and IVF analysis similar to the analysis presented in Chapter 3, so as

to explore the behaviour of the proposed architecture.

AVF analysis: Fig. 4.16 presents the per cycle AVF of the proposed 4-issue TMRi ar-

chitecture (i.e. the original processor enhanced with our technique’s components) when it

executes a matrix multiplication application. The whole execution of the application takes

315291 cycles. An exhaustive fault injection simulation injecting faults at each cycle would

require several days of simulation. Additionally, although for a precise calculation of the

AVF we should inject faults to all the storage structures of our architecture, in this study

we inject faults only in the following storage elements: a) FtoDC, b) DCtoEx, c) Register

File and d) PC, same as for the original architecture. The storage elements added by our

mechanism are assumed to be protected (e.g. with ECC codes). This assumption was made

in order to keep the simulation time cost low, since an exhaustive fault injection scheme

would require significantly long simulation time. We inject faults at the exact same unique

0 5000 10000 15000 20000 25000 30000
Cycles

0.00

0.02

0.04

0.06

0.08

0.10

A
V
F

Figure 4.16: Per cycle AVF for VEX processor

1The execution cycles needed are different from the cycles in section 4.6.1 because a different matrix
multiplication implementation has been used.

59

cycles randomly chosen in Chapter 3 for the AVF analysis. The same simulation scenario is

applied here (i.e. exactly the same registers as injection points and same injection cycles)

in order to have exactly the same faults injected, so as to be able to compare the pro-

posed TMRi approach with the Unprotected one. We observe that the AVF of the TMRi

(Fig. 4.16) is similar to the AVF of the unprotected original architecture (Fig. 3.1) and the

average AVF is 0.0533. This can be explained as follows: The AVF calculation as well as the

fault injection experiment itself are mainly dominated by injections in the registers of the

RF (32x64 = 2048 bits over a total of 2644). Since our technique does not protected the RF

directly from errors happening in the registers, it does not improve to the AVF value con-

tributed by the RF. On the other hand our technique protects the RF from indirect errors

happening inside the data path and being propagated to the registers of the RF. Another

reason why the AVF of the TMRi is similar to the unprotected one is because according to

Fig. 3.2 the masking capabilities of the unprotected architecture, when an error is injected

in the DCtoEX register are quit high (∼ 99%).

Fig. 4.17 presents the categorisation of processor’s output running a matrix multiplica-

tion for the fault injection experiment according to the classes presented in Chapter 3. The

results are presented in logarithmic scale. Since TMRi applies an instruction triplication

scheme before the DCtoEx register, we are able to detect and correct errors occurring in

these registers. In the current implementation the voters compare only the obtained results

of the operations after the EX stage and, thus, only the errors in DCtoEX_dataa and DC-

toEX_datab are always guaranteed to be corrected. Errors in DCtoEX_dest are corrected

only in case the result chosen by the voters is the correct one. On the other hand most of

the times errors in DCtoEX_opcode are corrected, since an execution of another instruction

instead of the original one will result in a different calculated result, which can be detected

and corrected in the voters. Hang errors in case of injections in the DCtoEX_opcode occur

rarely and in cases such as: A triplicated LDB instruction, which loads an 8-bit value, re-

sides in the DCtoEX register and one bit of the DCtoEX_opcode register changes, referring

to instruction LDW, which loads an 32 bit value. After the execution stage the result will

be the same for all three copies of the instruction, so the voters will not detect the error.

Therefore, they will commit the faulty instruction, which will load a value with a different

size into a register. In case this register is used to evaluate a loop condition, this error may

lead to a hang error.

60

instr dataa datab datac dest opcode RF PC
10-4

10-3

10-2

10-1

100

(O
cc

u
re

n
ce

s
p
e
r

st
ru

ct
u
re

)/
(T

o
ta

l
b
it

s
o
f

st
ru

ct
u
re

)
(L

o
g
)

ETV

Crash

Hang

AOM

PSF

Class instr dataa datab datac dest opcode RF PC

ETV 0.026 0.0 0.0 0.0 0.019 0.0 0.005 0.219

Crash 0.009 0.0 0.0 0.0 0.0 0.0 0.012 0.741

Hang 0.018 0.0 0.0 0.001 0.022 0.005 0.014 0.013

AOM 0.004 0.0 0.0 0.0 0.009 0.0 0.031 0.026

PSF 0.028 0.0 0.0 0.0 0.033 0.0 0.504 0.015

Figure 4.17: Error occurrences per storage structure for the matrix multiplication (Normal-
ized)

IVF analysis: For each instruction opcode and for each bit of each of the structures (

FtoDC, DCtoEx, Register File and PC) of TMRi, we generate 1000 different test cases with

random inputs in order to create a uniform distribution of the input masking probability.

Table 4.6 presents the IVF of each instruction of each stage of the VLIW processor. For

all the instructions, the IVF of the decode stage is greater than the IVF of the fetch stage,

because of the applied fault tolerant technique. More precisely, the Table 4.6 presents the

IVF of all the logical, multiplication, memory, control and integer arithmetic operations

of the Instruction Set Architecture (ISA). Because of the proposed triplication mechanism,

the most vulnerable instructions of the unprotected architecture, i.e. the integer arithmetic

and memory operations (see Table 3.4) are now up to 2.2x less vulnerable compared to the

integer arithmetic and memory operations of Table 4.6. In case of an implementation with

voters checking for errors in the both the opcode and destination registers, the IVF of all

61

the instructions in the decode stage would be one.

4.6.4 Conclusion

In this chapter, a hardware-initiated approach for heterogeneous VLIW data-paths was

proposed to reuse the idle slots to provide fault tolerance. The proposed approach explores

the idle slots in the current and next bundles and prioritizes dependent instructions. The

result is a more compact schedule for both original and replicated instructions. In order to

keep the hardware cost low while still providing with full rescheduling flexibility, a hardware-

friendly instruction scheduler is proposed. In addition, for scalability purposes, a cluster-

based approach is presented and evaluated to avoid area and power overhead with a small

decrease in performance. The processor is tested with 10 different media benchmarks and

the obtained results show a 43.68% maximum speed-up with both area and power overheads

to be ∼10% with respect to existing approaches. Finally, we performed an AVF and IVF

analysis of the proposed architecture, in order to evaluate its vulnerability and compare it

with the unprotected original architecture.

62

T
ab

le
4.

6:
P

er
st

ag
e

IV
F

fo
r

al
l

op
er

at
io

n
s

of
th

e
IS

A

L
o

g
ic

a
l

O
p

e
ra

ti
o

n
s

O
P

C
O

D
E

F
e
tc

h
D

e
c
o

d
e

C
M

P
E

Q
0.

88
35

6
9

0.
97

41
60

6

C
M

P
G

E
0.

88
02

4
8

0.
97

40
00

0

C
M

P
G

E
U

0.
88

48
6
1

0.
97

43
50

4

C
M

P
G

T
0.

87
85

7
7

0.
97

34
30

7

C
M

P
G

T
U

0.
88

08
3
9

0.
97

41
38

7

C
M

P
L

E
0.

88
06

6
4

0.
97

38
75

9

C
M

P
L

E
U

0.
88

02
1
2

0.
97

42
77

4

C
M

P
L
T

0.
87

54
0
9

0.
97

36
56

9

C
M

P
L
T

U
0.

87
58

5
4

0.
97

42
55

5

C
M

P
N

E
0.

88
49

5
6

0.
97

39
34

3

C
M

P
E

Q
i

0.
90

56
7
9

0.
97

45
18

2

C
M

P
G

E
i

0.
91

24
6
7

0.
97

44
01

5

C
M

P
G

E
U

i
0.

91
24

8
2

0.
97

35
83

9

C
M

P
G

T
i

0.
91

24
6
7

0.
97

37
15

3

C
M

P
G

T
U

i
0.

91
24

6
0

0.
97

36
49

6

C
M

P
L

E
i

0.
91

24
5
3

0.
97

37
73

7

C
M

P
L
T

i
0.

90
51

7
5

0.
97

38
83

2

C
M

P
L
T

U
i

0.
90

51
7
5

0.
97

44
89

1

C
M

P
N

E
i

0.
90

52
6
3

0.
97

43
21

2

A
N

D
0.

81
99

1
2

0.
97

42
84

7

A
N

D
i

0.
81

47
3
7

0.
97

38
83

2

A
N

D
C

0.
88

49
3
4

0.
97

51
75

2

A
N

D
C

i
0.

90
58

9
8

0.
98

10
29

2

O
R

0.
81

99
2
7

0.
97

39
56

2

O
R

i
0.

81
57

1
5

0.
97

38
61

3

O
R

C
0.

87
05

4
0

0.
97

44
89

1

O
R

C
i

0.
89

69
0
5

0.
98

04
89

1

N
O

R
0.

81
75

4
7

0.
97

40
58

4

N
O

R
i

0.
81

32
7
0

0.
97

45
98

5

N
O

T
0.

86
14

2
3

0.
97

41
89

8

N
O

T
i

0.
86

14
2
3

0.
97

40
65

7

X
O

R
0.

81
95

3
3

0.
97

45
10

9

X
O

R
i

0.
76

65
8
4

0.
97

32
19

0

M
u

lt
ip

li
c
a
ti

o
n

O
p

e
ra

ti
o

n
s

O
P

C
O

D
E

F
e
tc

h
D

e
c
o

d
e

M
P

Y
L

L
0.

88
48

47
0.

97
33

43
1

M
P

Y
L

L
U

0.
88

47
45

0.
97

32
77

4

M
P

Y
L

H
0.

89
38

91
0.

97
42

62
8

M
P

Y
L

H
U

0.
88

47
45

0.
97

38
02

9

M
P

Y
H

H
0.

88
48

47
0.

97
50

58
4

M
P

Y
H

H
U

0.
89

20
88

0.
97

50
07

3

M
P

Y
L

0.
89

19
42

0.
97

48
75

9

M
P

Y
L

U
0.

87
76

50
0.

97
40

21
9

M
P

Y
H

0.
88

67
01

0.
97

52
84

7

M
P

Y
H

U
0.

89
92

41
0.

97
52

77
4

M
P

Y
H

S
0.

89
20

44
0.

97
44

16
1

M
e
m

o
ry

O
p

e
ra

ti
o

n
s

L
D

W
0.

92
70

15
0.

97
33

79
6

L
D

H
U

0.
91

97
30

0.
97

31
38

7

L
D

H
0.

91
97

30
0.

97
32

62
8

L
D

B
U

0.
91

97
08

0.
97

22
19

0

L
D

B
0.

91
97

08
0.

97
22

77
4

S
T

W
0.

76
64

23
0.

97
54

08
8

S
T

H
0.

76
64

23
0.

97
52

26
3

S
T

B
0.

76
66

72
0.

97
48

68
6

C
o

n
tr

o
l

O
p

e
ra

ti
o

n
s

C
A

L
L

R
0.

90
51

10
1.

00
00

00
0

B
R

0.
81

75
18

1.
00

00
00

0

B
R

F
0.

97
81

02
1.

00
00

00
0

R
E

T
U

R
N

0.
81

02
19

1.
00

00
00

0

G
O

T
O

0.
82

48
18

1.
00

00
00

0

G
O

T
O

R
0.

90
51

24
1.

00
00

00
0

C
A

L
L

0.
81

02
19

1.
00

00
00

0

S
T

O
P

1.
00

00
00

1.
00

00
00

0

In
te

g
e
r

A
ri

th
m

e
ti

c
O

p
e
ra

ti
o

n
s

O
P

C
O

D
E

F
e
tc

h
D

e
c
o

d
e

A
D

D
0.

81
75

18
0.

97
40

58
4

A
D

D
i

0.
76

65
47

0.
97

39
48

9

S
U

B
0.

81
95

40
0.

97
38

24
8

S
U

B
i

0.
76

66
06

0.
97

39
85

4

S
R

L
0.

83
00

73
0.

97
35

76
6

S
R

L
i

0.
83

82
12

0.
97

43
43

1

S
R

A
0.

83
00

15
0.

97
35

98
5

S
R

A
i

0.
83

83
80

0.
97

44
52

6

S
L

L
0.

82
07

52
0.

97
37

59
1

S
L

L
i

0.
82

89
42

0.
97

44
01

5

S
H

1A
D

D
0.

81
75

18
0.

97
46

93
4

S
H

2A
D

D
0.

81
75

18
0.

97
45

03
6

S
H

3A
D

D
0.

81
75

18
0.

97
44

81
8

S
H

4A
D

D
0.

81
75

18
0.

97
42

40
9

S
H

1A
D

D
i

0.
76

65
69

0.
97

40
94

9

S
H

2A
D

D
i

0.
78

10
22

0.
97

38
39

4

S
H

3A
D

D
i

0.
77

38
18

0.
97

35
83

9

S
H

4A
D

D
i

0.
77

37
23

0.
97

41
82

5

Z
X

T
H

0.
87

77
81

0.
97

46
86

1

Z
X

T
B

0.
87

79
64

0.
97

42
55

5

S
X

T
H

0.
88

52
04

0.
97

44
96

4

S
X

T
B

0.
87

77
37

0.
97

40
07

3

Z
X

T
H

i
0.

90
78

54
0.

98
01

97
1

Z
X

T
B

i
0.

90
80

51
0.

98
03

94
2

S
X

T
H

i
0.

91
34

82
0.

98
02

19
0

S
X

T
B

i
0.

90
78

54
0.

98
04

16
1

M
O

V
I

0.
78

83
21

0.
97

43
79

6

N
O

P
1.

00
00

00
1.

00
00

00
0

63

64

Chapter 5

Instruction Rescheduling for

persistent errors

We propose a coarse-grained mitigation mechanism that takes advantage of the idle

issue slots of VLIW instruction bundles to: 1) execute original and replicated instructions

in order to provide fault tolerance and 2) rebind instructions in case of permanent errors. It

can be combined with several fault tolerant techniques, i.e. duplication and triplication of

instructions supporting error detection and mitigation, and it is applicable for any VLIW

structure, i.e. any issue width and number and type of FUs.

In order to further decrease the performance overhead introduced by the coarse grained

mitigation mechanism and also to support single and multiple Long-Duration Transient

(LDT) faults a fine-grained mitigation mechanism is proposed. This mechanism detects

the active faults during execution and temporally excludes only the faulty components of

the affected FUs for as long as it is necessary.

5.1 Coarse Grained Mitigation for Permanent Errors

5.1.1 Motivation example and overview

Fig. 5.1 illustrates the output of the proposed approach using duplication of instructions

and one permanent error. It shows the scheduled operations for an instruction bundle,

the assembly instructions of which are shown inside the box on the top of the figure. The

VLIW data path consists of three stages F, DC and EX/MEM/WB and it is depicted in

fig. 5.2. The available FUs for an 8-issue VLIW configuration are: 8 Arithmetic and Logic

65

ADD1	 ADD2	 MUL1	 ADD3	 NOP	 NOP	 NOP	 NOP	a)	

ALU	

BR	

ALU	

MEM	

ALU	

MUL	

ALU	

MUL	

ALU	

BR	

ALU	

MEM	

ALU	

MUL	

ALU	

MUL	

ADD1	 ADD2	 MUL1	 ADD3	 ADD1	 ADD2	 MUL1	 ADD3	b)	

ADD1	 ADD2	 ADD3	 ADD1	 ADD2	 NOP	 ADD3	

NOP	 NOP	 MUL1	 NOP	 NOP	 MUL1	 NOP	

c)	

ADD1	 ADD2	 ADD3	 MUL1	 ADD1	 ADD2	 MUL1	 ADD3	d)	

ADD1:			ADD(r2,r1,r3) 	ADD2:			ADD(r4,r2,r3)	

MUL1:			MPYL(r5,r1,r3) 	ADD3:			ADD(r3,r5,r1)			

Assembly	Instruc/ons	

Figure 5.1: Illustration of the proposed approach

Units (ALUs), 4 Multipliers (MULs), 2 Memory operation units (MEMs) and 1 Branch

unit (BR). The schedule of the original instruction bundle is depicted in Fig. 5.1(a) and the

instruction bundle with the duplicated instructions in Fig. 5.1(b). In case of a permanent

error detected in the multiplication unit of the third slot, existing hardware techniques re-

execute the instruction scheduled at the third slot to another FU of another time slot, as

depicted in Fig. 5.1(c). Consequently, the execution time increases.

To improve performance, the proposed approach explores at run-time the rebinding of

original and replicated instructions to explore the existing FUs, as depicted in Fig. 5.1(d).

In this example, the instruction ADD3 is moved to the third slot, whereas the instruction

MUL1 is moved to the fourth slot without adding a new time slot. In case there is a need

for an extra time slot, the instructions that fit in the first time slot are scheduled, while the

remaining ones are scheduled in the next time slot.

Fig. 5.2 depicts the two hardware components added to the VLIW data path: the

Instruction Replication and Binding (IRB) and the fault detector. The IRB takes the decode

stage result, the mode, and the faulty information as input, and has the binding info and the

fetch stall as output. The mode is defined by the designer and it defines which fault tolerance

technique is implemented: i) duplication of instructions, ii) triplication of instructions, or iii)

duplication and re-execution. Depending on the mode, the IRB duplicates or triplicates the

66

F/DC	

F	

DC	

BR	

DC	

DC	

DC/EX	

ALU	

DC	

WB	

MEM	

WB	

WB	

WB	

F
a
u
lt
	d
e
te
ct
o
r	

In
st
ru
c7
o
n
	R
e
p
li
ca
7
o
n
		

&
	B
in
d
in
g
		 ALU	

MUL	

ALU	

MUL	

ALU	

DC	

DC	

DC	

ALU	

DC	

WB	

MEM	

WB	

WB	

WB	
ALU	

MUL	

ALU	

MUL	

ALU	

Mode	

Binding	info	

Faulty	info	
Fetch	stall	

Figure 5.2: Hardware components inserted in the VLIW pipeline.

instructions and binds them in the idle slots of the instruction bundle taking into account

the limitations on the number and the type of resources. In case not enough idle slots or FUs

exist, a new time slot is added by stalling the fetch of new instruction bundles. The stall of

the fetch stage is performed by propagating the fetch stall command to the fetch stage. The

faulty information is used by the IRB in case of detected errors. When duplication with

re-execution is selected as mode and a temporary error occurs, the IRB stalls the pipeline

and re-executes the faulty instruction in a different FU. If a permanent error is detected,

the IRB updates the state of the FUs and explores the idle slots and the available FUs to

bind efficiently the original and replicated instructions. The binding information is sent to

the fault detector to inform how the instruction binding has been performed. The fault

detector uses this binding information to decide which results are ready to be compared

and committed. When an error is detected, it is initially assumed to be a temporary error.

If a number of sequential instructions continue to indicate that the FU is faulty, then the

fault detector decides that the error is permanent and sends this information to the IRB to

update the status of the FUs. If the selected mode is triplication, the fault detector corrects

the error and propagates the corrected value for commit.

67

5.1.2 Performance Evaluation

We have performed a set of experiments to evaluate the performance gain of the proposed

approach. For the experimental part, we have used basic media benchmarks extracted from

MediaBench [36] and the VEX VLIW processor [20] with HP VEX compiler. The VLIW

is configured based on realistic configuration of resources used by commercial VLIWs, e.g.

Intel Itanium [75], as depicted in Fig. 5.2. A simulation tool is developed to calculate the

execution cycles of each application compiled with the HP VEX compiler (see fig. 5.3). In-

termediate files (.cs.c) from compiled simulator step are instrumented with a code enhancing

script, in order to provide us with processor’s execution instruction sequence traces when

they are linked and compiled with GCC compiler. Our tool parses these traces to calculate

the processor’s execution cycles and, thus, estimates the performance of each approach. We

GCC	Compiler	

Log	File	

VEX	HP	Compiler	

MediaBench	

kernels	(C)	
VLIW	configuraBon	

Intermediate	files	(.cs.c)		

Code	

enhancing	

Script	

Processor	traces’	file	

Trace	

Analyzing	

Script	

Figure 5.3: Simulation tool flow for performance evaluation results.

perform experiments by applying two fault tolerance techniques with our approach: dupli-

cation and triplication of the instructions. We provide performance results for one up to

five concurrent permanent errors occurring in any combination of the four different types

of FUs of the VLIW. Each time, at least one non-faulty FU exists for each type of required

FUs. Otherwise the processor is declared as "out of service", as it is not able to execute

every instruction anymore.

Fig. 5.4 depicts the execution cycles estimated for running the applications on the un-

68

protected original code (N) and on the proposed VLIW approach with duplication (DMR)

and triplication of the instructions (TMR) for p = 0, . . . , 5 permanent errors. With our

method, the overhead of DMR and TMR with p = 0 permanent errors is in most of the

cases less than 100%. This occurs as the proposed approach efficiently explores the idle

FUs.

NN

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

E
x
e
cu
&
o
n
	c
y
cl
e
s	
(K
)	

0	 1	 2	 3	 4	 5	

N DMR	 TMR	

mo0on	

N DMR	 TMR	

huff	

N DMR	 TMR	

532x32	

N DMR	 TMR	

dct	

N DMR	 TMR	

bcnt	

N	 DMR	 TMR	

adpcm_enc	

N DMR	 TMR	

adpcm_dec	

0	

5	

10	

15	

20	

25	

30	

35	

E
x
e
cu
&
o
n
	c
y
cl
e
s	
(K
)	

0	 1	 2	 3	 4	 5	

DMR	 TMR	 DMR	 TMR	 DMR	 TMR	

matrix_mul	 fir	 crc	
N

Figure 5.4: Performance comparative results for p = 0, . . . , 5 permanent errors

Table 5.1 depicts the impact of the multiple permanent errors in the performance of our

approach implementing DMR and TMR. The performance overhead of DMR (TMR) with

p = 1, . . . , 5 permanent errors is calculated relatively to DMR (TMR) with no errors (p =

0). For the DMR, the performance overhead for motion, huff and crc remains quite small,

up to 27%, even for 5 concurrent permanent errors. As these applications have a relatively

small number of memory and multiplication instructions, the impact in performance is low

when errors occur in MEM and MUL units. A similar overhead exists for most of the

remaining benchmarks with up to 2 permanent errors. We observe that the concurrent

permanent errors affect the performance of matrix_mul, with a maximum overhead of 75%

in the case of 5 errors. This overhead, in contrast to the aforementioned cases, occurs

69

because matrix_mul intensively uses the multiplication FUs, and, thus, the lack of these

resources due to errors leads to high performance overhead. The last row shows the average

overhead over all the benchmarks.

Table 5.1: DMR (TMR) performance overhead (%) for the proposed approach with respect
to DMR (TMR) without faults.

Benchmark
DMR TMR

1 2 3 4 5 1 2 3 4 5

motion 11 14 17 21 27 7 9 12 17 23
huff 11 14 15 19 21 7 8 10 12 14
fft 16 23 35 47 59 9 13 22 33 42
dct 21 28 37 48 58 13 17 23 32 39
bcnt 21 26 31 39 49 11 13 16 22 28
adpcm_enc 21 26 34 42 47 12 16 23 30 33
adpcm_dec 23 28 35 43 47 12 16 23 30 32
matrix_mul 36 40 54 66 75 14 21 34 46 51
fir 16 20 27 34 38 10 14 20 26 30
crc 3 4 7 12 20 2 3 5 11 18

average 18 22 29 37 44 10 13 19 26 31

Table 5.2: Performance gain (%) estimation of the proposed approach over existing ap-
proaches for multiple permanent errors.

Benchmark
DMR TMR

1 2 3 4 5 1 2 3 4 5

motion 44 43 42 40 37 46 46 44 41 38
huff 45 43 42 41 39 47 46 45 44 43
fft 42 39 33 27 21 46 43 39 34 29
dct 40 36 32 26 21 44 41 38 34 30
bcnt 39 37 35 30 25 44 43 42 39 36
adpcm_enc 39 37 33 29 27 44 42 39 35 34
adpcm_dec 38 36 32 29 26 44 42 39 35 34
matrix_mul 32 30 23 17 12 43 40 33 27 24
fir 42 40 36 33 31 45 43 40 37 35
crc 49 48 46 44 40 49 49 48 45 41

average 41 39 35 31 28 45 43 41 37 34

Existing hardware approaches are applicable for single permanent errors [73]. Extending

them for multiple permanent errors means that all the instructions scheduled by the compiler

on a permanently faulty unit have to be re-executed to another unit by adding an extra

time slot, like in Fig. 5.1(c). Similarly, hybrid approaches re-execute the instruction that

can not be assigned to a slot of the current bundle [71]. The performance overhead of these

approaches can be estimated as the execution cycles of the fault tolerance technique, taking

70

into account the effect of the re-execution each time the instructions have been scheduled

by the compiler to permanently faulty units.

Table 5.2 depicts the performance gain of the proposed approach over the existing ap-

proaches that re-execute the faulty instructions adding extra cycles. For our approach using

the DMR, we observe that for all the benchmarks we achieve a high performance gain even

for 5 multiple concurrent permanent errors, as depicted in the left part of Table 5.2. The

highest gains have been observed for the crc benchmark, from 49% for one permanent error

up to 40% for 5 permanent errors and the smallest gains for matrix_mul from 32% for 1

permanent error up to 12% for 5 permanent errors. In the case where our approach uses

TMR, it has also achieved a high performance gain for all the benchmarks, as depicted in

the right part of Table 5.2. We observe that for up to 2 permanent errors we have high

gains for all the benchmarks, whereas for the matrix_mul, which has high ILP, the gains

are slightly reduced for 3, 4 and 5 permanent errors. The gains of the TMR compared to

the DMR are higher, even for the instructions with high ILP. This occurs because due to

the triplication of the instructions, more time slots are required to be added, which also

increases the number of idle issues. As the proposed approach efficiently explores these idle

issues and the available FUs, it provides higher gains.

71

5.2 Fine-Grained Mitigation for Multiple Long-Duration Tran-

sients

In order to further decrease the performance overhead introduced by the previous technique

and also to support single and multiple Long-Duration Transient (LDT) faults we extend

our approach with a new fine-grained hardware mechanism. This mechanism detects the

active faults during execution and temporally excludes only the faulty components of the

affected FUs for as long as it is necessary. A fine-grained micro-architectural solution is

proposed that partitions an FU into components, i.e. an individual circuit that executes a

group of instructions. Each component is enhanced with a Built-In Current Sensor (BICS)

mechanism to identify the exact location of the fault and the duration that the fault is

active. The online fine-grained instruction scheduling mechanism excludes only the faulty

FU components for as long as they are affected and reschedules the instructions onto the

remaining healthy FU components exploring mitigation solutions in the current and the

next instruction execution.

5.2.1 Overview and Motivating Example

We use the 4-issue heterogeneous VLIW data-path of Fig. 5.5 to schematically illustrate our

approach. The components in blue color correspond to the basic architecture, whereas we

highlight the hardware components added or modified by our approach with yellow color.

The proposed approach focuses on LDT faults occurring in the arithmetic FUs, as they have

the largest area footprint of the system combinatorial components based on our experiments

in Table 3.2. The faults in the storage components, e.g., register file, memory and pipeline

registers, are assumed to be protected with other methods, such as Error Correction Codes

(ECC).

Before describing in details the two main components of the proposed mechanism, i.e.

the fault checker and the online fine-grained scheduler, we illustrate through an example

the main idea of this work. Fig. 5.6-a depicts the original schedule of two consecutive

instruction bundles, Bk−1 and Bk, obtained by the compiler. Based on the instruction type,

the instructions are assigned to different FU components, as depicted in Fig. 5.6-b. Assume

that, at cycle k-1, one fault that lasts at least two cycles affects the first and the third FU

components of the first issue, FU[0], as depicted in Fig. 5.6-c. The proposed mechanism

decides the instruction rescheduling at cycle k − 1 for the instructions to be executed at

72

sel_DC/EX

F/DC	

F	

DC	

BR	

DC	

DC	

DC	

DC/EX	

FU0	

Stage	F	 Stage	EX/MEM/WB	

MEM

WB	

0	

	

1	NOP	

FU1	
WB	

0	

	

1	

FU2	
WB	

0	

	

1	

FU3	
WB	

0	

	

1	

Reserve_DC/EX	 Stage	DC	

DC[0]	
DC[1]	
DC[2]	
DC[3]	

DC/EX[0]	
DC/EX[1]	
DC/EX[2]	
DC/EX[3]	

DC[0]	

DC[1]	

DC[2]	

DC[3]	

0	

	

	

	

1	

Reserve_DC	

f[0]

sel_EX/MEM

f[1]

f[2]

NOP	

NOP	

NOP	f[3]

status

occur

DC/EX	

Switch	

info

dep
Processing	

part	
Control	

part	

sel_MUX

Extract	

part	

Online-fine	grained	scheduler	

sel_MUX

F/DC_stall

Fault	checker	

Fault	

occurrence	

input

flag

status

Figure 5.5: VLIW enhanced with the proposed mechanism.

cycle k. In the example of Fig. 5.6-iii, the scheduling of the Bk−1 instructions is decided

at cycle k − 2. As no fault is detected during execution at cycle k − 2, the VLIW executes

the compiler’s original schedule. During execution at cycle k-1, the mechanism detects two

– just occurred – faults. To have a correct execution, the faulty Bk−1 instructions must be

re-executed at the next cycle avoiding the currently faulty FU components. Therefore, the

A1 instruction must be stored in order to be re-executed at cycle k. At cycle k, although

the LDTs persist and the corresponding components have not yet recovered, the mechanism

succeeds in executing the remaining instruction A1 thanks to the re-scheduling of the Bk

instructions. This action is allowed, if the instruction A1 is independent from the Bk

instructions.

5.2.2 Fault Checker

The fault checker keeps the faulty status of the FU components, identifies new fault oc-

currences and takes care of miscalculated results. To achieve a fine-grained use of the

73

A1	

k	

k+1	

k-1	

FU[0]	 FU[1]	 FU[2]	 FU[3]	

C1	 C2	 A2	

C2	

A3	

Bk-1	 A1	 C1	 C2	 A2	

Bk	 A3	 B1	 Nop	 B2	

Comp	3	 Comp	2	 Comp	1	

A1,	A2,	A3	 B1,	B2,	B3	 C1,	C2	

B1	

Cycle	

Components	required	by	instruc:ons	a)	 b)	Original	schedule	by	the	compiler	

c)	 Schedule	for	the	execu:on	stage	by	the	proposed	mechanism	

A1	

A2	

C1	

Comp:	8		7		6		5		4		3		2		1	 8		7		6		5		4		3		2		1	 8		7		6		5		4		3		2		1	 8		7		6		5		4		3		2		1	

B2	

Figure 5.6: Illustration example of the proposed mechanism

components of an FU, each FU is internally enhanced with BICS. Both complex and simple

FU types are analyzed to identify the individual circuits. In our architecture, we consid-

ered a complex FU as a simple FU enhanced with a multiplication operator. The complex

(simple) FU has 15 (14) different FU operations and 8 (7) individual circuits. The circuits

are grouped based on the instruction opcode. For instance, the circuit that performs the

addition of two registers (ADD operation) is partially shared with the circuit that calcu-

lates the address of a memory operation (MEM operation) and the circuit that performs

ADDSHIFT operations. As they partially share the same execution path, they are grouped

to the same individual circuit. Fig. 5.7 depicts the final obtained individual circuits for

the complex FU. The individual circuits for the simple FU are the same without compo-

nent 5. Each individual circuit and the final multiplexer, which selects the result of the

executed operation according to the opcode, is an FU component that is enhanced with a

BICS sensor [5]. A BICS is attached to a group of transistors. During normal operation,

the current in the bulk of these transistors is approximately zero. Only the leakage current

flows through the biased junction, which is still very low compared to the current generated

by energetic particles. When an energetic particle generates a current in the bulk, the bulk-

BICS captures that a transient fault occurs. The bulk-BICS has a reset mechanism that

allows the fault detection to be active only as long as it takes to dissipate the transitory

energy pulse. When the fault is vanished, the affected transistors can be used once again.

The output of each BICS sensor is combined into a fault status signal, signal f, with a

size of 9 (8) bits for complex FU (simple FU). Then, the f signals of each FU are combined

74

Comp	1:	MEM/ADD/ADDSHIFT	

FU[i]	

R
e
g
is
te
r	
In
p
u
ts
	(
2
x3
2
b
it
)	

O
p
c	

D
e
st
	

Comp	4:	CMP/SUB	

Comp	7:	SRA	

Comp	5:	MUL	

Comp	6:	SRL	

Comp	3:	OR/NOR/XOR	

Comp	2:	AND/NAND/ZEROEXT	

Comp	8:SLL	

R
e
su
lt
	(
3
2
b
it
)	

O
p
c	
(7
b
it
)	

D
e
st
	(
6
b
it
)	

DC/EX[i]	

BICS	

BICS	

BICS	

BICS	

BICS	

BICS	

BICS	

BICS	
BICS	

f[i]	(9bit)	

Comp	0:		

MUX	

Figure 5.7: Components of complex FU enhanced with BICS.

to a global signal, status, with a size equal to the number of the VLIW issues. The signal

status represents which components of the FUs are currently affected by a fault, if the

corresponding bit is set. In case of one or more active faults at cycle k − 1, the results of

corresponding instructions – currently residing in the execution stage – are miscalculated,

and, thus, they must not be committed. For this purpose, each VLIW issue is enhanced

with a multiplexer controlled by the signal sel_EX/Mem (with a size equal to the number

of VLIW issues) computed by the fault checker. When a bit in sel_EX/Mem is set, the

corresponding multiplexer passes a NOP result (instead of the miscalculated result) and

the WB and MEM enable of the corresponding issue is disabled. The fault checker stores

the status signal at cycle k − 1 to be compared with the status signal at cycle k. The

comparison identifies the just occurred faults (one bit signal occur). Both status and

occur signals are passed to the online fine-grained scheduler to be used to mitigate faults

by re-scheduling the instructions.

5.2.3 Online fine-grained scheduler

The instructions in the F/DC register are decoded at cycle k− 1 and the scheduler at cycle

k − 1 decides the instructions to be executed at cycle k based on the status of the faulty

75

FU components. The decoded instructions that couldn’t be scheduled at cycle k, due to

insufficient FUs or instruction dependencies, are stored to the Reserve_DC shadow register.

At the same time instance, the EX/MEM/WB stage executes the instructions scheduled for

execution at cycle k−1 (scheduling decision occurred at cycle k−2). The Reserve_DC/EX

shadow register keeps the instructions executed at cycle k − 1 in case a fault occurs during

their execution. The instructions to be scheduled at cycle k − 1 can potentially come from

three inputs: 1) the decoded instructions at cycle k− 1 (DC) 2) the remaining instructions

not scheduled at cycle k − 2 (Reserve_DC register) and 3) the executed instructions at

cycle k − 1 (Reserve_DC/EX register).

In order to allow the scheduling of the instructions in different issues than the ones de-

fined by the compiler’s original schedule, a switch has to be inserted to the VLIW data-path.

However, if the switch implements all combinations between the three instruction inputs

(DC, Reserve_DC, and Reserve_DC/EX) to the VLIW issues, the switch complexity is

significantly increased. In contrast, the design of our online hardware mitigation mecha-

nism reduces this overhead. A 2n to n switch, DC/EX switch, passes the instructions from

one of the shadow registers and the decoded instructions DC to the main pipeline DC/EX

register. A 2n to n multiplexer is used to decide which shadow register to be used as an

input to the switch (signal sel_MUX).

The online fine-grained hardware scheduler is implemented by three components. The

first component extracts the required information (info signal) from the F stage and the

instruction dependencies (dep signal). The second component is the scheduler processing

part that schedules the input (one of the three potential instruction inputs) to the output

of the DC/EX switch using bit masks and taking into account the status of the faulty

components. The third component is the scheduler control part that decides which of the

three input signals (DC, Reserve_DC, and Reserve_DC/EX) has to be used as input to

the processing part (input signal) based on occurrence of new faults (signal occur) and

the type of the scheduled instructions (signal flag). Finally, the output of the processing

part is the signal sel_DC/EX that controls the DC/EX switch. The rest of this subsection

describes in details the three scheduler components.

5.2.3.1 Extract part

It performs an early decoding of the instructions at the Fetch stage to create the info

signal, which consists of the opcode, the destination registers and the source registers of

76

DC_ID[i]	

Res_DC_ID[i]	

Res_DC/EX_ID[i]	

FU	component	

0	1	2	3	4	5	6	7	8	 Rem	 Dep	

Status_ID[j]	

0	1	2	3	4	5	6	7	8	 Occup	

FU	component	

bit	0	bit	1	bit	2	bit	3	bit	4	bit	5	bit	6	bit	7	bit	8	bit	9	bit	10	

bit	0	bit	1	bit	2	bit	3	bit	4	bit	5	bit	6	bit	7	bit	8	bit	9	

Figure 5.8: ID coding

each instruction (similarly to the information extraction unit of chapter 4). The info signal

at cycle k − 1 is locally stored in order to be compared with the info signal of the next

fetched instruction at cycle k, so as to identify instruction dependencies. The destination

of each instruction of the info signal at cycle k − 1 is compared with the destination and

source registers of each instruction of the info signal at cycle k. If they are the same, the

corresponding outputs of the vector signal dep are set.

5.2.3.2 Processing part

This part is implemented based on bit masks, called IDentifiers (IDs). Each potential in-

struction input to the DC/EX switch is represented by a table (Res_DC/EX_ID, Res_DC_ID

and DC_ID) that has a size equal to the number of VLIW issues. Each table element is

an ID that corresponds to the instruction scheduled at position i either by the compiler

(Res_DC_ID[i] and Res_DC_ID[i]) or by the proposed mechanism (Res_DC/EX_ID[i]).

Fig. 5.8 shows the table element and the 11 bits are coded as follows: a) bits 10 to 2: when

a bit is set, its position shows the FU component (Fig. 5.7) required for the instruction ex-

ecution, b) bit 1: when it is set, it is a remaining instruction, i.e. it has not been scheduled

yet, and c) bit 0: when it is set, the instruction has a dependency with at least one of the

instructions of the next bundle. For instance, the ID="00000001110" is decoded as: the

operation requires the 1 FU component, i.e. it can be a MEM/ADD/ADDSHIFT operation

(bit 3=1), the final multiplexer (0 FU component) is required (bit 2=1) and the instruction

has not been scheduled yet (bit 1=1). The status of all FUs components is represented

by the table status_ID, where each element is the f signal of a FU enhanced by with an

additional bit that is set when the FU is occupied.

The scheduling procedure is given by Alg. 4. The inputs are: 1) the ID of the input signal

77

to be scheduled, Input_ID (each time equal to one of the Res_DC/EX_ID, Res_DC_ID

and DC_ID), and 2) the status_ID. The outputs are: 1) the control signal sel_DC/EX of

the DC/EX switch, 2) the updated ID of the input signal and 3) the updated status_ID.

The procedure is as follows: For all the instructions i of the Input_ID (line 3) and for each

issue j described by Status_ID (line 6), if the instruction i has not been scheduled (line 5)

and the FU in the j issue is unoccupied (line 6), check if the required component is available

(line 7). If this is true, the occupied bit of the corresponding Status_ID is set (line 8), the

remaining bit of the Input_ID is cleared, since the instruction is scheduled (line 9), and the

signal sel_DC/EX instructs the switch to pass the instruction currently at issue i to issue

j (line 10) and the next instruction is explored (line 11).

Algorithm 4 SCH procedure

1: Inputs: Input_ID, Status_ID
2: Outputs: Input_ID, Status_ID, sel_DC/EX
3: for i ∈ {0, n} do ▷ for each instruction in Input_ID
4: for j ∈ {0, n} do ▷ for each issue in Status_ID
5: if (Input_ID[i][1]) then ▷ if the instruction is not scheduled
6: if Status_ID[j][0] then ▷ if the issue is not occupied
7: if (Input_ID[i][2 : 10] & Status_ID[j][1 : 9]) then
8: Status_ID[j][0] = 1; ▷ The Status_ID is set to occupied
9: Input_ID[i][1] = 0; ▷ The Input_ID is set to scheduled

10: sel_DC/EX[i] = j; ▷ Instruction at position i pass to issue j
11: break;
12: end if
13: end if
14: end if
15: end for
16: end for

5.2.3.3 Control part

The last part controls the inputs and the execution of the scheduler processing part depend-

ing on the fault occurrence (occur signal) and the type of the scheduled instructions (signal

flag). The state machine diagram of Fig. 5.9 describes its functionality, where i ∈ [0, n]

and n is the number of issues.

(S1-S2) One (more) faults occurred at cycle k− 1 (occ = 1): The executed instructions

on the faulty FU components at cycle k− 1 (which reside in Reserve_DC/EX register) are

not committed and they must be scheduled again for execution at cycle k. Whether or not

the Fetch and Decode stages must be stalled (F/DC_stall) depends on whether the faulty

instructions are decoded instructions at cycle k − 2 (flag=0) or at cycle k − 3 (flag=1).

78

!occ

S0	S2	 S3	

S4	

F/DC_stall=1

flag

C2

F/DC_stall=1
sel_MUX=1

SCH(Res_DC_ID,	status_ID)
SCH(DC_ID,	status_ID)

C3

C4

C3

Reserve_DC=DC
Reserve_DC/EX=DC/EX

C1:(Res_DC/EX_ID[i][1]==0)&&(DC_ID[i][0]==0)	
C4:(Res_DC_ID[i][1]==1)||(DC_ID[i][0]==1)	C2:(Res_DC_ID[i][1]==0)&&(DC_ID[i][0]==0)	
C3:Res_DC/EX_ID[i][1]==0	

Condi.ons	hold						i					[0,n]:	∈∀

S1	

SCH(Res_DC/EX_ID,	status_ID)

!
f
l
a
g

C1

SCH(DC_ID,	status_ID)

occ

sel_MUX=1

!occ

SCH(Res_DC/EX_ID,	status_ID)

SCH(Res_DC_ID,	status_ID)
SCH(DC_ID,	status_ID)

Figure 5.9: Control part.

In the first case (S1), no stall is required and these instructions are the first to be executed

at cycle k (Input_ID=Res_DC/EX_ID). Then, the decoded instructions at cycle k − 1

are explored (Input_ID=DC_ID). An example of this case is Fig. 5.6, where two faults

occur during the execution of the instructions of bundle Bk−1 at cycle k − 1. During the

scheduler decision for execution at cycle k, the remaining instruction A1 is scheduled at

issue 1 and, then, the decoded instructions of Bk are scheduled. In the second case (S2),

the stall signal is activated (F/DC_stall=1) and a new cycle is inserted for the re-execution

of the Reserve_DC/EX instructions. The process is repeated until no instructions are left

in the Reserve_DC/EX (guaranteed by condition C2).

S3-S4) No fault occurred at cycle k−1 (occ=0): If no FU component is affected by a new

fault at cycle k− 1, the mechanism schedules first the remaining decoded instructions from

cycle k−2 (that now reside in Reserve_DC) for execution at cycle k, and, then, the current

decoded instructions. If there are still instructions inside the Reserve_DC and/or if there

is any dependent instruction in current decoded instructions DC that cannot be scheduled

(condition C4), the F/DC_stall signal is activated to stall the Fetch and the Decode stage

for one cycle. During this inserted cycle, the mechanism schedules these instructions.

5.2.4 Evaluation results

For the experimental results we used the VEX VLIW processor [20] with two heterogeneous

configurations: i) 4-issue configured with 2 complex FUs, 2 simple FUs, 1 memory FU

79

Table 5.3: Performance comparison (execution cycles) under several multiple faults and
average performance overhead (%).

B
e
n

ch
m

a
rk

s
4

-i
ss

u
e

O
ri

g
in

al
F

in
e-

gr
ai

n
ed

m
ec

h
an

is
m

C
oa

rs
e-

gr
ai

n
ed

m
ec

h
an

is
m

N
u
m

.
fa

u
lt

s
0

1
2

3
4

1
2

3
4

a
d
p

cm
_

d
ec

38
6

38
8

39
0

39
1

39
7

41
2

43
6

46
4

57
1

a
d
p

cm
_

en
c

40
9

41
3

41
3

42
5

42
6

46
2

46
9

50
4

61
4

b
cn

t
47

8
47

9
48

0
48

0
48

2
47

9
78

4
78

5
11

59

ff
t3

2x
32

56
9

58
0

58
7

59
1

66
9

66
7

77
5

93
0

13
71

m
o
ti

on
34

4
35

0
35

0
35

8
36

8
39

1
39

2
40

7
59

8

h
u
ff

1,
10

1
1,

11
1

1,
11

7
1,

11
9

1,
15

8
1,

13
6

1,
13

7
1,

17
6

1,
48

8

d
ct

1,
28

8
1,

31
4

1,
31

5
1,

45
6

1,
45

8
1,

35
3

1,
62

7
1,

84
6

2,
60

6

fi
r

6,
85

2
6,

85
3

6,
85

4
6,

90
1

7,
33

3
7,

69
3

8,
59

3
8,

71
4

11
,5

99

cr
c

12
,2

28
12

,2
29

12
,2

29
12

,2
31

12
,2

32
12

,2
74

12
,2

75
14

,8
51

20
,9

69

m
at

_
m

u
l

11
,1

42
11

,1
43

12
,4

23
13

,0
10

15
,0

11
15

,0
15

16
,0

39
16

,3
58

21
,5

93

A
v
er

ag
e

ov
er

h
ea

d
%

0.
8

2.
2

4.
6

9.
3

10
.6

24
.1

33
.5

82
.7

B
e
n

ch
m

a
rk

s
8

-i
ss

u
e

O
ri

gi
n
a
l

F
in

e-
gr

ai
n
ed

m
ec

h
an

is
m

C
oa

rs
e-

gr
ai

n
ed

m
ec

h
an

is
m

N
u
m

.
fa

u
lt

s
0

2
4

6
8

10
2

4
6

8
10

ad
p

cm
_

d
ec

30
2

30
4

31
1

33
5

39
3

40
1

31
4

36
6

44
2

47
1

56
6

ad
p

cm
_

en
c

32
3

32
4

32
6

41
2

41
5

42
0

33
9

43
7

48
3

49
4

63
3

b
cn

t
33

3
33

5
33

6
33

8
33

9
39

7
33

5
52

7
54

5
58

0
1,

08
5

ff
t3

2x
3
2

40
0

40
2

40
3

43
9

44
7

48
3

42
4

52
0

72
8

83
5

1,
42

8

m
ot

io
n

28
0

28
1

28
2

28
5

28
7

30
2

28
2

28
4

36
3

37
7

61
9

h
u
ff

95
1

95
2

95
4

95
7

95
8

99
0

95
9

96
1

1,
07

2
1,

07
4

1,
46

6

d
ct

87
2

87
7

91
2

95
3

95
4

99
2

95
1

1,
32

2
1,

36
9

1,
54

4
2,

57
8

fi
r

5,
70

9
5,

71
0

5,
71

2
6,

01
2

6,
23

5
6,

74
0

6,
07

0
7,

09
2

7,
21

3
8,

10
5

11
,8

20

cr
c

11
,9

55
11

,9
56

11
,9

59
11

,9
60

11
,9

89
12

,2
45

11
,9

56
11

,9
58

12
,2

17
15

,1
07

20
,9

64

m
a
t_

m
u
l

6,
53

3
6,

53
5

6,
53

8
6,

53
9

7,
10

2
8,

11
2

6,
53

4
10

,9
51

11
71

9
20

,3
33

20
,3

73

A
v
er

a
ge

ov
er

h
ea

d
%

0.
3

1.
1

6.
7

10
.3

17
.3

3.
3

29
.1

44
.9

69
.7

11
0.

6

80

(MEM) and 1 branch unit (BR), and ii) 8-issue configured with 4 complex FUs, 4 simple

FUs, 2 MEM and 1 BR. The processor has been enhanced with the proposed approach.

Both the original unprotected VLIW processor and the VLIW with the proposed online

fine-grained mitigation mechanism have been developed in C++ and synthesized using the

Catapult High Level Synthesis (HLS) tool to obtain the RTL design. The gate-level netlist

was generated by the Design Compiler of Synopsys using 28 nm ASIC library. Following this

approach, we can both simulate the processor and synthesize a functional RTL design. To

evaluate our approach, we use the same ten benchmarks from the MediaBench suite [36],

which were used to evaluate the architectures proposed in the previous chapters. The

benchmarks are compiled with VEX compiler for each configuration.

5.2.4.1 Performance

We compare the performance of the fine-grained mitigation mechanism with the coarse-

grained mitigation approach. In the coarse-grained approach, when a fault occurs in: i)

a complex FU, the part that is still healthy – either the simple FU part or the additional

multiplication operator – is used and the faulty part is permanently excluded, or ii) a simple

FU, the FU is permanently excluded. In contrast, the fine-grained approach explores the

FUs in a fine-grained way and applys temporal exclusion.

1)Fine-grained FU exploration: In the first experimental part, we evaluate the benefit

of our approach only due to the proposed fine-grained FU exploration. To do so, we ran-

domly injected multiple faults during the benchmarks’ execution and we consider them as

permanent, i.e. they last for the rest of the execution. Table 5.3 shows the cycles required to

execute the ten benchmarks considering: i) 0 faults (Original), ii) 1 up to 4 multiple faults

for the 4-issue configuration and iii) 2 up to 10 multiple faults for the 8-issue configuration.

In this experimental part, we have to limit the number of injected faults to 4 and 10 for

the 4-issue and 8-issue configuration, respectively, since this is the maximum number of

concurrent faults that the coarse-grained approach can sustain. The performance results

are obtained by taking the mean value of 20 simulations running the same benchmark,

but the faults are injected at random cycles for each simulation. When no faults occur,

both approaches have the same performance, i.e. the original execution cycles. From the

Table 5.3, we observe that: 1) the proposed approach inserts significantly lower overhead

than the coarse-grained approach, and 2) in several benchmarks our performance is very

close to the original one, i.e. without faults, even for several multiple faults. In contrast

81

to the coarse-grained approach, the gain of the fine-grained mechanism is achieved because

whenever a persistent fault is detected, the proposed approach is capable of still utilizing

the healthy FU components in the current and the next instruction bundle.

2)Error duration and fault stressing: In the second experimental part, a fault injec-

tion simulation framework has been developed that explores the behaviour of the proposed

approach under a wide range of faulty scenarios. A script which simulates scenarios with

several faults in the FUs is applied to the processor simulator in order to evaluate the perfor-

mance of the architecture using the proposed mechanism. Depending on the total number

of original cycles needed per benchmark, we group them and we stress them under differ-

ent faulty scenarios. The tuned parameters are depicted in Table 5.4, where Group 1 has

bcnt, adpcm_enc, adpcm_dec, fft benchmarks and Group 2 has huff and dct benchmarks.

Note that up to 5 new faults can simultaneously occur in a cycle, but the architecture may

already suffer from previously occurred, but still active, faults.

Table 5.4: Tuned parameters (Min, Max, Step) for each group.

Bench. Total Fault Parallel Total

Group injected faults duration occ. faults simulations

1 (4-issue) 0, 310, 10 0, 100, 1 0, 5, 1 15,500

1 (8-issue) 0, 260, 10 0, 100, 1 0, 5, 1 13,000

2 (4-issue) 0, 1000, 10 0, 200, 1 0, 5, 1 100,000

2 (8-issue) 0, 850, 10 0, 200, 1 0, 5, 1 85,000

Out of 214,000 simulations performed, we show the obtained results for the fft bench-

mark. This benchmark has been selected as it has a steeper slope compared to the rest.

Since it has a higher average ILP (4-issue: 2.85, 8-issue: 4.19) than the rest benchmarks,

it introduces less idle slots, and, thus, it further stresses the proposed approach, especially

for the 4-issue configuration. The 3-dimensional scatter diagram of Fig. 5.10 is plotted by

randomly selecting 1,500 simulations from the total number of experiments. Each dot shows

the execution cycles of one complete execution with the proposed approach with respect

to the number of injected faults and the fault duration. Generally, we observe that for all

the benchmarks with a reasonable amount of injected faults and regardless their duration,

the performance degradation is rather negligible. This is because the proposed mechanism:

a) is capable of partially utilizing FUs even if they are severely damaged, and b) exploits

opportunities in the next instruction bundles, when no sufficient healthy FUs components

82

Total errors50 100 150 200 250 300Error duration (cycles)
20

40
60

80
100

Ex
ec

ut
io

n
cy

cl
es

1000

1500

2000

(a) 4-issue

Total errors50 100 150 200 250Error duration (cycles)
20

40
60

80
100

Ex
ec

ut
io

n
cy

cl
es

500

600

700

800

900

1000

(b) 8-issue

Figure 5.10: Proposed mechanism performance for fft benchmark under different number
of faults and fault duration

83

exists in the current instruction bundle. From the experimental results, we observe that

the proposed approach is capable of dealing with large numbers of injected faults, even for

scenarios that the existing approaches are not applicable.

5.2.4.2 Area and power

Table 5.5 shows the area and power results of the implementation of the proposed mechanism

with a target frequency of 200MHz. Compared to the unprotected version, the proposed

approach implies an area and a power overhead of up to 34% and 33%, respectively. The

overhead of the coarse grained approach is expected to be comparable, since both tech-

niques require a switching mechanism and a re-scheduling logic, which are the most costly

components of the design.

Table 5.5: Area footprint and power estimation.

Approach
4-issue 8-issue

area(µm2) power(mW) area(µm2) power(mW)

Unprotected 50,844 6.48 79,661 7.36

Proposed 62,314 7.92 107,258 9.89

5.3 Conclusion

In this chapter we proposed a coarse-grained hardware mechanism for permanent errors in

order to replicate and schedule the instructions at run-time, thus exploring the idle slots

under constraints in the FU number and type. When permanent errors occur, less FUs

are available and the proposed approach efficiently rebinds the original and the replicated

instructions based on the available resources and idle slots.

In order to protect embedded processors with several FUs against transient faults with

a long duration, while also further improving the coarse-grained hardware approach, we

proposed an online fine-grained hardware mechanism with low performance, area and power

overhead. The FUs of the processor are enhanced with Built-In Current Sensors (BISC) for

fine-grained multiple Long Duration Transient (LDT) fault detection and correction. An

online rescheduling of the faulty and the current decoded instructions has been proposed that

temporarily excludes the faulty FU components. From the obtained results, the proposed

84

approach can sustain several multiple faults even with very long duration with significant

reduction in the performance, area and power overhead.

85

86

Chapter 6

Summary and Future Work

6.1 Thesis Summary

Technology scaling and harsh environments have significantly increased the error occur-

rences in embedded systems making fault tolerance an essential topic for a wide range of

domains, especially the safety critical ones. Errors can harm processors temporarily, perma-

nently and semi-permanently. To satisfy the increasing demand for reliability, the systems

are designed with error detection and/or error correction capabilities. At the same time,

modern systems have to meet the increasing demands in performance, energy, and area

efficiency. Very Long Instruction Word (VLIW) processors excel in this category because

they offer high performance through Instruction Level Parallelism (ILP) exploitation, while

keeping cost and power in low levels.

This dissertation is motivated by the fact that ILP exploitation is not always possible

due to applications’ fluctuating ILP, thus the available resources of a VLIW processor are

not always used. In order to prove this statement benchmarks were analyzed and the results

showed that the average ILP is less than 2.85 and 4.46 for a 4-issue and 8-issue configura-

tions, respectively. In order to identify the most vulnerable part of the VLIW architecture

used, a fault injection mechanism was also developed that evaluates the Architectural Vul-

nerability Factor (AVF) and the Instruction Vulnerability Factor (IVF) of the processor.

Extensive simulations with fault injections on a simulator software representation of the

adopted processor showed that the execution stage takes significant area and it should be

prioritized compared to other stages. The findings from the benchmark experiments and

the vulnerability analysis in conjunction with the need for fault resilient execution led us

87

to propose three hardware mechanisms for reliable execution on VLIW processors.

Initially, a hardware rescheduling mechanism for heterogeneous VLIW data-paths was

proposed to reuse the idle slots and to provide fault tolerance. The proposed approach

explores the idle slots in the current and next bundles and prioritizes dependent instructions.

The result is a more compact schedule for both original and replicated instructions. In

order to keep the hardware cost low while still providing with full rescheduling flexibility,

a hardware-friendly bit-wise instruction scheduler was proposed. In addition, to support

scalability, a cluster-based approach is presented and evaluated to avoid area and power

overhead with a small decrease in performance. The processor is tested with 10 different

media benchmarks and the obtained results show a 43.68% maximum speed-up with an area

and power overhead of ∼10% with respect to existing approaches.

A second hardware mechanism was proposed that focuses on permanent error mitigation.

The technique replicates and schedules the instructions at run-time, thus exploring the idle

slots under constraints in the FU number and type (coarse-grained exploration). When

permanent errors occur, less FUs are available and the proposed approach efficiently rebinds

the original and the replicated instructions based on the available resources and idle slots.

Early evaluation results for an 8-issue VLIW processor prove that the proposed method

is able to sustain up to 5 concurrent permanent errors with a significant, though logical

performance penalty of up to ∼ 350% compared to other approaches that are not applicable.

In order to further reduce this penalty and enable the FU recovery in case of single/-

multiple Long Duration Transient (LDT) errors, a fine-grained hardware mechanism was

proposed. During execution, this mechanism characterizes the components of each FU by

using Built In Current Sensor (BICS) circuits; it reschedules the faulty instructions to the

healthy FU components, and temporarily excludes the faulty ones. From the obtained re-

sults, several multiple faults even with very long duration are mitigated with significant

reduction in the performance, area and power overhead.

6.2 Directions for Future Work

There are several directions of research that can be followed based on the techniques pro-

posed in this dissertation.

Concerning the AVF analysis performed in Chapter 3, an exhaustive AVF analysis for

the proposed technique can be considered in order to obtain a more accurate AVF estima-

88

tion. An even more accurate fault injection framework can be developed taking the SETs

occurring in the combinational logic of the various stages of the pipeline into account. The

goal is a modelization for high-level fault injection from gate-level exhaustive fault injection.

Concerning the second contribution, it would also be interesting to explore the imple-

mentation of the proposed technique to other systems with multiple function units, such as

the Coarse Grained Reconfigurable Arrays (CGRAs).

Concerning the third contribution, a hardware implementation of the rebinding tech-

nique applying different fault mitigation techniques (DMR, TMR etc.) could be explored.

The improved technique is applied for Long Duration Transient (LDT) errors with the

assumption that Built-In Current Sensors (BISC) exist. The BICS enhanced FUs could

be physically implemented and the obtained SoC could be tested under realistic radiation

stressing conditions.

For all the proposed mechanisms different application domains other than media appli-

cations can be tested to see if the performance improvement would be as significant. The

emerging domains of approximate computing, cryptographic algorithms, machine learning

etc., may be the interesting choices to explore for both performance and energy efficiency.

89

90

Acknowledgements

To my life-coach, my mother, Margarita who has always been there for me in the most

difficult and yet happy moments of my academic life. Thanks a lot for teaching me that

life is all about fighting and never giving up, and that happiness is a state of mind. To my

father, Marios, who helped me discover and love science, by stimulating my childish brain.

To my sister, Georgiana, my grandma, Anastasia and the rest of my family for their love

and support throughout all these years of my studies. Many many thanks and love!! I am

also grateful to my friends who have supported me along the way. I also want to thank the

God for giving me courage and hope in these moments when everything else has failed!!

I would like to thank my supervisors, Professor Olivier Sentieys and Assistant Professor

Angeliki Kritikakou, for the patient guidance, encouragement and advice they provided

throughout my time as their student. I consider myself lucky to have such supervisors who

cared so much about my work, and who responded to my questions and queries so promptly.

In particular, I am extremely thankful and indebted to my co-supervisor Angeliki Kritikakou

for sharing expertise, and sincere and valuable guidance and encouragement extended to

me. Her help and guidance has been so valuable that I would not be able to reach here

without them.

A very special gratitude goes out to the whole Cairn team of the Inria research center,

which accommodated and supported me all these 3 years of my PhD research. With a

special mention to Simon Rokicki, who provided me with valuable help with his technical

expertise. I will miss our brainstorming sessions my friend!! I am also grateful to our

beloved team assistant, Nadia Derouault, for her unfailing support and assistance.

Last but by no means least, a special thanks goes to University of Rennes 1 for funding

this PhD research and providing me with everything needed for its completion.

Thanks a lot for all your support and encouragement!

91

92

Publications

[Psi17a] R. Psiakis, A. Kritikakou, O. Sentieys, “NEDA: NOP Exploitation with Depen-

dency Awareness for Reliable VLIW Processors,” IEEE Computer Society Annual Sym-

posium on VLSI (ISVLSI), July 2017.

[Psi17b] R. Psiakis, A. Kritikakou, O. Sentieys, “Run-Time Instruction Replication for Per-

manent and Soft Error Mitigation in VLIW Processors,” 15th IEEE Int. NEW Circuits

And Systems Conference (NEWCAS), June 2017.

[Psi19a] R. Psiakis, A. Kritikakou, O. Sentieys, “Fine-Grained Hardware Mitigation for

Multiple Long-Duration Transients on VLIW Processors,” IEEE/ACM Design Automa-

tion and Test in Europe (DATE), 2019, Accepted.

[Psi19b] R. Psiakis, A. Kritikakou, O. Sentieys, “HW initiated idle resource exploitation

for heterogeneous fault tolerant VLIW processors,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 2019, Under Review.

93

94

References

[1] Shail Aditya, Scott A. Mahlke, and B. Ramakrishna Rau. Code size minimization and

retargetable assembly for custom epic and vliw instruction formats. ACM Trans. Des.

Autom. Electron. Syst., 5(4):752–773, October 2000.

[2] J. Arlat, Y. Crouzet, and J. . Laprie. Fault injection for dependability validation of

fault-tolerant computing systems. In [1989] The Nineteenth International Symposium

on Fault-Tolerant Computing. Digest of Papers, pages 348–355, June 1989.

[3] A. Azarpeyvand, M. E. Salehi, and S. M. Fakhraie. Civa: Custom instruction vulnera-

bility analysis framework. In 2012 IEEE 15th International Symposium on Design and

Diagnostics of Electronic Circuits Systems (DDECS), pages 318–323, April 2012.

[4] Ali Azarpeyvand, Mostafa E. Salehi, Seid Mehdi Fakhraie, and Saeed Safari. Fast and

accurate architectural vulnerability analysis for embedded processors using instruction

vulnerability factor. Microprocessors and Microsystems, 42:113 – 126, 2016.

[5] R. P. Bastos, J. M. Dutertre, and F. S. Torres. Comparison of bulk built-in current

sensors in terms of transient-fault detection sensitivity. In 2014 5th European Workshop

on CMOS Variability (VARI), pages 1–6, Sept 2014.

[6] R. P. Bastos, F. S. Torres, J. M. Dutertre, M. L. Flottes, G. Di Natale, and B. Rouzeyre.

A single built-in sensor to check pull-up and pull-down cmos networks against tran-

sient faults. In 2013 23rd International Workshop on Power and Timing Modeling,

Optimization and Simulation (PATMOS), pages 157–163, Sept 2013.

[7] R. C. Baumann. Radiation-induced soft errors in advanced semiconductor technologies.

IEEE Transactions on Device and Materials Reliability, 5(3):305–316, Sept 2005.

95

[8] G. Blake, R. G. Dreslinski, and T. Mudge. A survey of multicore processors. IEEE

Signal Processing Magazine, 26(6):26–37, November 2009.

[9] D. M. Blough and A. Nicolau. Fault tolerance in super-scalar and vliw processors. In

Proceedings of 1992 IEEE Workshop on Fault-Tolerant Parallel and Distributed Sys-

tems, pages 193–200, 1992.

[10] C. Bolchini. A software methodology for detecting hardware faults in vliw data paths.

IEEE Transactions on Reliability, 52(4):458–468, Dec 2003.

[11] C. Bolchini and F. Salice. A software methodology for detecting hardware faults in

vliw data paths. In DFT, pages 170–175, 2001.

[12] T. Calin, M. Nicolaidis, and R. Velazco. Upset hardened memory design for submicron

cmos technology. IEEE Transactions on Nuclear Science, 43(6):2874–2878, Dec 1996.

[13] Victor Castano and Igor Schagaev. Resilient Computer System Design. Springer Pub-

lishing Company, Incorporated, 2015.

[14] Wah Chan and A. Orailoglu. High-level synthesis of gracefully degradable asics. In

EDTC, pages 50–54, Mar 1996.

[15] Yung-Yuan Chen et al. An integrated fault-tolerant design framework for vliw proces-

sors. In DFT, pages 555–562, Nov 2003.

[16] Yung-Yuan Chen and Kuen-Long Leu. Reliable data path design of vliw processor

cores with comprehensive error-coverage assessment. MICPRO, 34(1):49 – 61, 2010.

[17] L. Codrescu, W. Anderson, S. Venkumanhanti, M. Zeng, E. Plondke, C. Koob, A. In-

gle, C. Tabony, and R. Maule. Hexagon dsp: An architecture optimized for mobile

multimedia and communications. IEEE Micro, 34(2):34–43, Mar 2014.

[18] M. Ebrahimi, A. Evans, M. B. Tahoori, E. Costenaro, D. Alexandrescu, V. Chandra,

and R. Seyyedi. Comprehensive analysis of sequential and combinational soft errors in

an embedded processor. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 34(10):1586–1599, Oct 2015.

[19] Jaime Espinosa, Carles Hernandez, Jaume Abella, David de Andres, and Juan Carlos

Ruiz. Analysis and rtl correlation of instruction set simulators for automotive microcon-

96

troller robustness verification. In Proceedings of the 52Nd Annual Design Automation

Conference, DAC ’15, pages 40:1–40:6, New York, NY, USA, 2015. ACM.

[20] Joseph A Fisher, Paolo Faraboschi, and Cliff Young. Embedded computing: a VLIW

approach to architecture, compilers and tools. Elsevier, 2005.

[21] Jian Fu. A fault tolerance framework in a concurrent programming environment. PhD

thesis, University of Amsterdam, 10 2014.

[22] B. Gill, M. Nicolaidis, F. Wolff, C. Papachristou, and S. Garverick. An efficient bics

design for seus detection and correction in semiconductor memories. In Design, Au-

tomation and Test in Europe, pages 592–597 Vol. 1, March 2005.

[23] M. Glorieux, A. Evans, D. Alexandrescu, C. Boatella-Polo, K. Sanchez, and V. Ferlet-

Cavrois. Damsel?dynamic and applicative measurement of single events in logic. IEEE

Transactions on Nuclear Science, 65(1):354–361, Jan 2018.

[24] Badi Guibane, Belgacem Hamdi, Abdellatif Mtibaa, and Brahim Bensalem. Fault tol-

erant system based on iddq testing. International Journal of Electronics, 105(6):1025–

1035, 2018.

[25] U. Gunneflo, J. Karlsson, and J. Torin. Evaluation of error detection schemes using fault

injection by heavy-ion radiation. In [1989] The Nineteenth International Symposium

on Fault-Tolerant Computing. Digest of Papers, pages 340–347, June 1989.

[26] Luanzheng Guo, Hanlin He, and Dong Li. Application-level resilience modeling for hpc

fault tolerance. 04 2017.

[27] J. Guthoff and V. Sieh. Combining software-implemented and simulation-based fault

injection into a single fault injection method. In Twenty-Fifth International Symposium

on Fault-Tolerant Computing. Digest of Papers, pages 196–206, June 1995.

[28] John G. Holm and Prithviraj Banerjee. Low cost concurrent error detection in a vliw

architecture using replicated instructions. In ICPP, 1992.

[29] J. S. Hu et al. Compiler-directed instruction duplication for soft error detection. In

DATE, March 2005.

97

[30] Jie Hu, Feihui Li, Vijay Degalahal, Mahmut Kandemir, N. Vijaykrishnan, and Mary J.

Irwin. Compiler-assisted soft error detection under performance and energy constraints

in embedded systems. ACM Trans. Embed. Comput. Syst., 8(4):27:1–27:30, July 2009.

[31] R. Karri et al. Computer aided design of fault-tolerant application specific pro-

grammable processors. TC, 49(11):1272–1284, Nov 2000.

[32] J.S. Klecka, W.F. Bruckert, and R.L. Jardine. Error self-checking and recovery using

lock-step processor pair architecture, 2002.

[33] E. Koser and W. Stechele. Tackling long duration transients in sequential logic. In 2016

IEEE 22nd International Symposium on On-Line Testing and Robust System Design

(IOLTS), pages 137–142, July 2016.

[34] E. Koser and W. Stechele. A long duration transient resilient pipeline scheme. IEEE

Transactions on Device and Materials Reliability, 17(1):12–19, March 2017.

[35] Jens Krüger and Rüdiger Westermann. Linear algebra operators for gpu implementa-

tion of numerical algorithms. ACM Trans. Graph., 22(3):908–916, July 2003.

[36] Chunho Lee et al. Mediabench: a tool for evaluating and synthesizing multimedia and

communications systems. In MICRO, pages 330–335, Dec 1997.

[37] Jongwon Lee, Yohan Ko, Kyoungwoo Lee, Jonghee M. Youn, and Yunheung Paek.

Dynamic code duplication with vulnerability awareness for soft error detection on vliw

architectures. ACM Trans. Archit. Code Optim., 9(4):48:1–48:24, January 2013.

[38] F. Leite, T. Balen, M. Herve, M. Lubaszewski, and G. Wirth. Using bulk built-in cur-

rent sensors and recomputing techniques to mitigate transient faults in microprocessors.

In 2009 10th Latin American Test Workshop, pages 1–6, March 2009.

[39] C. A. Lisboa, F. L. Kastensmidt, E. Henes Neto, G. Wirht, and L. Carro. Using built-

in sensors to cope with long duration transient faults in future technologies. In 2007

IEEE International Test Conference, pages 1–10, Oct 2007.

[40] R. E. Lyons and W. Vanderkulk. The use of triple-modular redundancy to improve

computer reliability. IBM J. Res. Dev., 6(2):200–209, April 1962.

98

[41] M. Maniatakos, M. Michael, C. Tirumurti, and Y. Makris. Revisiting vulnerability

analysis in modern microprocessors. IEEE Transactions on Computers, 64(9):2664–

2674, Sept 2015.

[42] J. W. McPherson. Reliability challenges for 45nm and beyond. In DAC, pages 176–181,

July 2006.

[43] Mojtaba Mehrara, Mona Attariyan, Smitha Shyam, Kypros Constantinides, Valeria

Bertacco, and Todd Austin. Low-cost protection for ser upsets and silicon defects. In

Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’07,

pages 1146–1151, San Jose, CA, USA, 2007. EDA Consortium.

[44] Natasa Miskov-Zivanov and Diana Marculescu. Mars-c: Modeling and reduction of soft

errors in combinational circuits. In Proceedings of the 43rd Annual Design Automation

Conference, DAC ’06, pages 767–772, New York, NY, USA, 2006. ACM.

[45] Konstantina Mitropoulou, Vasileios Porpodas, and Marcelo Cintra. Casted: Core-

adaptive software transient error detection for tightly coupled cores, 2013.

[46] D. Mueller-Gritschneder, M. Dittrich, J. Weinzierl, E. Cheng, S. Mitra, and U. Schlicht-

mann. Etiss-ml: A multi-level instruction set simulator with rtl-level fault injection

support for the evaluation of cross-layer resiliency techniques. In 2018 Design, Au-

tomation Test in Europe Conference Exhibition (DATE), pages 609–612, March 2018.

[47] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Reinhardt, and

Todd Austin. A systematic methodology to compute the architectural vulnerability

factors for a high-performance microprocessor. In Proceedings of the 36th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 36, pages 29–,

Washington, DC, USA, 2003. IEEE Computer Society.

[48] M. Nicolaidis. Design for soft error mitigation. IEEE Transactions on Device and

Materials Reliability, 5(3):405–418, Sept 2005.

[49] F. Oboril and M. B. Tahoori. Extratime: Modeling and analysis of wearout due to

transistor aging at microarchitecture-level. In Proceedings of the IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks (DSN 2012), pages 1–12, June

2012.

99

[50] Daniel Oliveira, Vinicius Frattin, Philippe Navaux, Israel Koren, and Paolo Rech.

Carol-fi: An efficient fault-injection tool for vulnerability evaluation of modern hpc

parallel accelerators. In Proceedings of the Computing Frontiers Conference, CF’17,

pages 295–298, New York, NY, USA, 2017. ACM.

[51] A. Orailoglu. Microarchitectural synthesis of gracefully degradable, dynamically recon-

figurable asics. In DFT, pages 112–117, Oct 1996.

[52] G. I. Paliaroutis, P. Tsoumanis, N. Evmorfopoulos, G. Dimitriou, and G. I. Stamoulis.

Placement-based ser estimation in the presence of multiple faults in combinational logic.

In 2017 27th International Symposium on Power and Timing Modeling, Optimization

and Simulation (PATMOS), pages 1–6, Sept 2017.

[53] R. Poss, M. Lankamp, Q. Yang, J. Fu, I. Uddin, and C. R. Jesshope. Mgsim - a

simulation environment for multi-core research and education. In 2013 International

Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation

(SAMOS), pages 80–87, July 2013.

[54] R. Psiakis, A. Kritikakou, and O. Sentieys. Neda: Nop exploitation with dependency

awareness for reliable vliw processors. In 2017 IEEE Computer Society Annual Sym-

posium on VLSI (ISVLSI), pages 391–396, July 2017.

[55] R. Psiakis, A. Kritikakou, and O. Sentieys. Run-time instruction replication for per-

manent and soft error mitigation in vliw processors. In 2017 15th IEEE International

New Circuits and Systems Conference (NEWCAS), pages 321–324, June 2017.

[56] Georgia Psychou, Dimitrios Rodopoulos, Mohamed M. Sabry, Tobias Gemmeke, David

Atienza, Tobias G. Noll, and Francky Catthoor. Classification of resilience techniques

against functional errors at higher abstraction layers of digital systems. ACM Comput.

Surv., 50(4):50:1–50:38, October 2017.

[57] R. Rajaraman, J. S. Kim, N. Vijaykrishnan, Y. Xie, and M. J. Irwin. Seat-la: a soft

error analysis tool for combinational logic. In 19th International Conference on VLSI

Design held jointly with 5th International Conference on Embedded Systems Design

(VLSID’06), pages 4 pp.–, Jan 2006.

[58] P. Ramanathan, K. G. Shin, and R. W. Butler. Fault-tolerant clock synchronization

in distributed systems. Computer, 23(10):33–42, Oct 1990.

100

[59] G. A. Reis, J. Chang, N. Vachharajani, S. S. Mukherjee, R. Rangan, and D. I. Au-

gust. Design and evaluation of hybrid fault-detection systems. In 32nd International

Symposium on Computer Architecture (ISCA’05), pages 148–159, June 2005.

[60] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I. Au-

gust. Swift: Software implemented fault tolerance. In CGO, CGO ’05, pages 243–254.

IEEE Computer Society, 2005.

[61] R. Robache, J. . Boland, C. Thibeault, and Y. Savaria. A methodology for system-level

fault injection based on gate-level faulty behavior. In 2013 IEEE 11th International

New Circuits and Systems Conference (NEWCAS), pages 1–4, June 2013.

[62] Simon Rokicki, Erven Rohou, and Steven Derrien. Hardware-accelerated dynamic

binary translation. In Proceedings of the Conference on Design, Automation & Test in

Europe, DATE ’17, pages 1062–1067, 3001 Leuven, Belgium, Belgium, 2017. European

Design and Automation Association.

[63] A. L. Sartor et al. A novel phase-based low overhead fault tolerance approach for vliw

processors. In ISVLSI, pages 485–490, July 2015.

[64] A. L. Sartor et al. Adaptive ilp control to increase fault tolerance for vliw processors.

In ASAP, pages 9–16, July 2016.

[65] Anderson L. Sartor et al. Exploiting idle hardware to provide low overhead fault

tolerance for vliw processors. JETC., 13(2):13:1–13:21, January 2017.

[66] Anderson L Sartor, Arthur F Lorenzon, Sandip Kundu, Israel Koren, and Antonio CS

Beck. Adaptive and polymorphic vliw processor to optimize fault tolerance, energy

consumption, and performance. In ACM International Conference on Computing Fron-

tiers. sn, 2018.

[67] H. Schirmeier, C. Borchert, and O. Spinczyk. Avoiding pitfalls in fault-injection based

comparison of program susceptibility to soft errors. In 2015 45th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, pages 319–330, June

2015.

[68] Michael Schlansker, B Ramakrishna Rau, Scott Mahlke, Vinod Kathail, Richard John-

son, Sadun Anik, Santosh G Abraham, and HPL PlayDoh. Achieving high levels of

instruction-level parallelism with reduced hardware complexity. 1997.

101

[69] Mario Schölzel. Fine-grained software-based self-repair of VLIW processors. In DFT,

pages 41–49, 2011.

[70] Mario Schölzel et al. A comprehensive software-based self-test and self-repair method

for statically scheduled superscalar processors. In LATS, pages 33–38, April 2016.

[71] Mario Schölzel and S. Muller. Combining hardware- and software-based self-repair

methods for statically scheduled data paths. In DFT, pages 90–98, Oct 2010.

[72] M. Schözel. Hw/sw co-detection of transient and permanent faults with fast recovery

in statically scheduled data paths. In DATE, pages 723–728, March 2010.

[73] M. Schözel. Hw/sw co-detection of transient and permanent faults with fast recovery

in statically scheduled data paths. In DATE, pages 723–728, March 2010.

[74] S. Sengupta, K. Saurabh, and P. E. Allen. A process, voltage, and temperature compen-

sated cmos constant current reference. In Proceedings of the 2004 IEEE International

Symposium on Circuits and Systems (IEEE Cat. No.04CH37512), volume 1, pages

I–325–I–328 Vol.1, May 2004.

[75] H. Sharangpani and H. Arora. Itanium processor microarchitecture. MICRO, 20(5):24–

43, 2000.

[76] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler, Doug Burger, and

Lorenzo Alvisi. Modeling the effect of technology trends on the soft error rate of

combinational logic. In DSN, pages 389–398, Washington, DC, USA, 2002. IEEE

Computer Society.

[77] Smitha Shyam, Sujay Phadke, Benjamin Lui, Hitesh Gupta, Valeria Bertacco, and

David Blaauw. Voltaire: Low-cost fault detection solutions for vliw microprocessors.

In Workshop on Introspective Architecture, 2006.

[78] A. Simevski, R. Kraemer, and M. Krstic. Automated integration of fault injection

into the asic design flow. In 2013 IEEE International Symposium on Defect and Fault

Tolerance in VLSI and Nanotechnology Systems (DFTS), pages 255–260, Oct 2013.

[79] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D. Tarjan.

Temperature-aware microarchitecture: Modeling and implementation. ACM Transac-

tions in Architecture and Code Optimisation, 1(1):94–125, March 2004.

102

[80] M. Slimani and L. Naviner. A tool for transient fault analysis in combinational circuits.

In 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS),

pages 125–128, Dec 2015.

[81] T. Sudo, H. Sasaki, N. Masuda, and J. L. Drewniak. Electromagnetic interference (emi)

of system-on-package (sop). IEEE Transactions on Advanced Packaging, 27(2):304–

314, May 2004.

[82] R. Ubal, D. Schaa, P. Mistry, X. Gong, Y. Ukidave, Z. Chen, G. Schirner, and D. Kaeli.

Exploring the heterogeneous design space for both performance and reliability. In 2014

51st ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, June 2014.

[83] J. T. J. van Eijndhoven, F. W. Sijstermans, K. A. Vissers, E. J. D. Pol, M. I. A. Tromp,

P. Struik, R. H. J. Bloks, P. van der Wolf, A. D. Pimentel, and H. P. E. Vranken.

Trimedia cpu64 architecture. In Proceedings 1999 IEEE International Conference on

Computer Design: VLSI in Computers and Processors (Cat. No.99CB37040), pages

586–592, 1999.

[84] A. Waterman, Y. Lee, R. Avizienis, H. Cook, D. Patterson, and K. Asanovic. The

risc-v instruction set. In 2013 IEEE Hot Chips 25 Symposium (HCS), pages 1–1, Aug

2013.

[85] W. Xu. Software-based Permanent Fault Recovery Techniques Using Inherent Hardware

Redundancy. University of Massachusetts Amherst, 2007.

[86] Zhiyi Yu. Towards high-performance and energy-efficient multi-core processors. In

K Iniewski, editor, CMOS Processors and Memories, pages 29–51. Springer, 01 2010.

[87] H. Ziade, R. Ayoubi, and R. Velazco. A survey on fault injection techniques. Interna-

tional Arab Journal of Information Technology, Vol. 1, No. 2, July:171–186, 2004.

103

104

List of Figures

1 Architecture VLIW à quatre voies. Détail de la phase d’exécution avec ses

quatre unités fonctionnelles parallèles. ii

2 Redondance SW/HW dans un scénario VLIW. iii

1.1 VLIW architecture with 4 issues. 3

1.2 Three instruction bundles scheduled by the compiler for the computation of

Eq. 1.1. 5

3.1 Per cycle AVF for VEX processor when executing a matrix multiplication . 24

3.2 Error occurrences per storage structure for the matrix multiplication (Nor-

malized) . 25

4.1 Scheduling running example on an 4-issue VLIW. 34

4.2 Original VLIW datapath (blue) enhanced with the proposed fault tolerant

mechanism (yellow). 37

4.3 Decoded instruction . 37

4.4 Replication switch implementation details 38

4.5 Voting switch I/O instruction. 39

4.6 Implementation of the voting switch. 40

4.7 ID , Rem and Dep arrays of illustration example from Fig. 4.1b at time ti. . 41

4.8 Information extraction unit and Dependency analyzer. 43

4.9 Pre-processing of IDs to occupation arrays. 44

4.10 Direct assignment algorithm on the running example. 46

4.11 Example of a cluster-based 2× 4 VLIW configuration. 50

4.12 4-issue performance results. 53

4.13 8-issue performance results. 54

4.14 Area coverage of each of our technique’s components. 57

105

4.15 Scaling of the proposed approach . 58

4.16 Per cycle AVF for VEX processor . 59

4.17 Error occurrences per storage structure for the matrix multiplication (Nor-

malized) . 61

5.1 Illustration of the proposed approach . 66

5.2 Hardware components inserted in the VLIW pipeline. 67

5.3 Simulation tool flow for performance evaluation results. 68

5.4 Performance comparative results for p = 0, . . . , 5 permanent errors 69

5.5 VLIW enhanced with the proposed mechanism. 73

5.6 Illustration example of the proposed mechanism 74

5.7 Components of complex FU enhanced with BICS. 75

5.8 ID coding . 77

5.9 Control part. 79

5.10 Proposed mechanism performance for fft benchmark under different number

of faults and fault duration . 83

106

List of Tables

1.1 VEX Compiled Applications’ Profiling . 8

3.1 Bit composition for the used VLIW architecture. 24

3.2 Area of pipeline stages (µm2). 27

3.3 Logical masking for three logic gates [3]. 28

3.4 Per stage IVF for all operations of the ISA 31

4.1 ID encoding in the information extraction unit. 41

4.2 ID to instr vector transformation. 44

4.3 Implementation complexity of the Replication switch (Fig. 4.4) for different

n-issue configurations. 50

4.4 Area footprint and power estimation results. 56

4.5 Area and power overhead to the unprotected approach. 56

4.6 Per stage IVF for all operations of the ISA 63

5.1 DMR (TMR) performance overhead (%) for the proposed approach with

respect to DMR (TMR) without faults. 70

5.2 Performance gain (%) estimation of the proposed approach over existing ap-

proaches for multiple permanent errors. 70

5.3 Performance comparison (execution cycles) under several multiple faults and

average performance overhead (%). 80

5.4 Tuned parameters (Min, Max, Step) for each group. 82

5.5 Area footprint and power estimation. 84

107

108

List of Abbreviations

ACE Architecturally Correct Execution.

AOM Application Output Mismatch.

AVF Architectural Vulnerability Factor.

BICS Built-In Current Sensor.

BR BRanch.

CEI Correct Execution of Instruction.

DC Decode.

DLP Data Level Parallelism.

DM Data Memory.

DMR Dual Modular Redundancy.

ECC Error Correction Codes.

ETV Execution Time Violation.

EX Execute.

F Fetch.

GPP General Purpose Processors.

HCI Hot Carrier Injection.

109

HLS High Level Synthesis.

HW Hardware.

IC Integrated Circuit.

ID Instruction Identifier.

ILP Instruction Level Parallelism.

IM Instruction Memory.

IRB Instruction Replication and Binding.

ISA Instruction-Set Architecture.

ISS Instruction Set Simulator.

IVF Instruction Vulnerability Factor.

LDT Long-Duration Transient.

LSB Least Significant Bits.

MEM Memory.

NBTI Negative-Bias Temperature Instability.

NOP No OPeration instructions.

PC Program Counter.

PSF Processors State Failure.

PVT Process, Voltage, and Temperature.

RAW Read After Write.

RF Register File.

SFI Statistical Fault Injection.

SIMD Single Instruction Multiple Data.

110

SMT Simultaneous Multithreading.

SW Software.

TLP Thread Level Parallelism.

TMR Triple Modular Redundancy.

VLIW Very Long Instruction Word.

WAR Write After Read.

WAW Write After Write.

111

