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L  Number of segments 

u  Random jitter 

τ  Random time interval 

u+    Positive jitter 

𝜕  Random skipping interval in RSS 

Δ   Time Quantization Step 

qT    Temporal quantization factor 

q(t)   Probability of quantization 

Pi(t)   Cumulative density function 

pu(t)  PDF of the random jitter 

D   Deviation of the interval of support 

DU    Deviation in the unifrom distribution  

DG    Deviation in the Gaussian distribution 

Fm    Nyquist frequency 

Δf   frequency resolution 

T    total duration of the acquired signal x(t) 

𝑥𝑑(𝑓)   DTFT of x(tn) 

𝐸𝑆𝐷𝑥(𝑡𝑛)  Energy Spectral Density of x(tn) 

Rxs(k)   Discrete autocorrelation of xS(t) 

PSDxs(t) PSD of xs(t) 

PSDP(f) Periodogram of xs(t) 

PSDPm(f) Modified periodogram of  xs(t) 

PSDCBT(f) Correlogram of xs(t) 

𝜑u(f)  Characteristic function of the random jitter u 

𝜑τ(f)  Characteristic function of the random interval τ 

X̂ARS(f)  FT of xs(t) in ARS  

X̂JRS(f)  FT of xs(t) in JRS  

ϕx(f)  PSD of x(t) 

ϕs(f)  PSD of S(t) 

ϕxs(f)  PSD of  xs(t) 

n̂(f)   Apparition noise 



10 
 

Ns(t)  Primitive of S(t) 

N(t)  Noise term in time domain 

N(f)  Noise term in frequency domain 

Xsin(t)  Signal composed of sum of two sine waves 
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ABSTRACT   

 

Nowadays, machine monitoring and supervision became one of the most important domains of 

research. Many axes of exploration are involved in this domain: signal processing, machine 

learning and several others. Besides, industrial systems can now be remotely monitored because of 

the internet availability. In fact, as many other systems, machines can now be connected to any 

network by a specified address due to the Internet of Things (IOT) concept. However, this 

combination is challenging in data acquisition and storage. In 2004, the compressive sensing was 

introduced to provide data with low rate in order to save energy consumption within wireless sensor 

networks. This aspect can also be achieved using random sampling (RS). This approach is found 

to be advantageous in acquiring data randomly with low frequency (much lower than Nyquist rate) 

while guaranteeing an aliasing-free spectrum. However, this method of sampling is still not 

available by hardware means in markets. Thus, a comprehensive review on its concept, its impact 

on sampled signal and its implementation in hardware is conducted. In this thesis, a study of RS 

and its different modes is presented with their conditions and limitations in time domain. A detailed 

examination of the RS’s spectral analysis is then explained. From there, the RS features are 

concluded. Also, recommendations regarding the choice of the adequate mode with the convenient 

parameters are proposed. In addition, some spectral analysis techniques are proposed for RS signals 

in order to provide an enhanced spectral representation. In order to validate the properties of such 

sampling, simulations and practical studies are shown. The research is then concluded with an 

application on vibration signals acquired from bearing and gear. The obtained results are satisfying, 

which proves that RS is quite promising and can be taken as a solution for reducing sampling 

frequencies and decreasing the amount of stored data. As a conclusion, the RS is an advantageous 

sampling process due to its anti-aliasing property. Further studies can be done in the scope of 

reducing its added noise that was proven to be cyclostationary of order 1 or 2 according to the 

chosen parameters. 
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INTRODUCTION 

 

Rotating machinery, as one of the most common types of mechanical equipment, plays an important 

role in industrial applications [1]. The field of the rotating machinery goes back to 5000 years ago 

when the human invented the wheel, and is being developed until this moment [2]. This shows that 

this type of solution is irreplaceable in the engineering areas. Hence, much effort was, and is still 

being spent in evolving rotating machinery. 

Almost reaching the physical limitations, engineers are now pushing the complexity of the rotating 

machines to a different level. Not only the machines are getting more complicated, but also stricter 

constraints on the precision are demanded. This is making the fault at the same time, harder to 

analyze and more expensive. From this point, a strong demand for advanced fault diagnosis 

techniques has emerged and becomes more and more significant[3].  

Most of the used machinery operates by means of bearings, gears and other rotating parts. The 

nature of these components and the harsh environment where they are installed produce frequent 

faults. Average faults may cause decrease in the machine’s performance and on the long run a 

complete breakdown [4]. In order to keep the machine performing at its best and avoid personal 

casualties and economical loss, different methods of fault diagnosis have been developed and used 

effectively to detect and localize machine faults. These methods tend to detect defections as soon 

as possible in order to minimize the damage. One of the principal tools for diagnosing rotating 

machinery problems is the vibration analysis [5][6]. Through the use of some processing techniques 

of vibration signals, it is possible to obtain vital diagnosis information. These techniques are used 

to extract the fault features and then identify the fault patterns. In this context, many conventional 

methods such as spectral analysis and time-frequency analysis are studied in researches since their 

apparition and implemented in many applications [3]. On one hand, the most widely used tool in 

spectrum analysis is the power spectrum, yet some useful auxiliary tools for spectrum analysis are 

applied for condition monitoring as envelope analysis, side band structure analysis and spectral 

indicators like the spectral kurtosis. Despite the wide acceptance of power spectrum, other useful 

spectra for signal processing have been developed to offer advanced diagnosing, for instance, high-

order spectrum, like bispectrum or trispectrum. Bispectrum analysis has been shown to have wide 

application in machinery diagnostics for components as bearings and gears in rotating machines. 

In addition, some deduced techniques out of the spectral domain are also used for monitoring such 

as the Cepstrum obtained by the inverse Fourier transform. On the other hand, the time-frequency 
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domain analysis is advantageous in its ability to deal with stationary and non-stationary signals. Its 

main feature remains in visualizing the distribution of the frequency components within the 

dimension of time. Examples of methods using such approach are: Short Time Fourier Transform, 

Wigner-Ville Distribution, Wavelet Transform and the Empirical Mode Decomposition and its 

variants. 

Apart from the advanced diagnosis methods, a revolution is arising in the machine monitoring 

domain, as many others, due to the availability of the internet. The Internet of Things (IoT), wireless 

sensor networks (WSN) and many other concepts are being introduced to all types of industries. 

Consequently, the remote monitoring for machinery became available to respond to the needs of 

the diagnostic domain. In fact, distant surveillance is highly appreciated in industry for multiple 

reasons. One, it adds more flexibility in monitoring. Two, it provides safer environments for human 

resources. Three, it creates opportunities to profit from international expertise. Last but not least, it 

eases automating data collection and big data analysis. Hence, all these advantages participate 

intensely in increasing the productivity and decreasing the cost [7].  

Nonetheless, the listed advantages come with some challenges. The data offered by remote 

monitoring must be taken, delivered and processed “on time”. Otherwise, most of the advantages 

of this added complication are lost. This fact has led to tie these remote applications to the field of 

real-time systems. By definition, in a real-time system being a network, a collection of sensors, a 

collection of processors or a combination of all the mentioned, the correctness of a task relies not 

only on the logical result of the task but also delivering before the deadline. In such systems, the 

more tasks are assigned to the system, the higher the risk to meet the deadline becomes. Therefore, 

in industrial applications, a critical state might be reached, when the assigned tasks are numerous 

and each one is of high frequency [8].  

Besides, designs of such real-time embedded systems usually push the device capabilities to the 

bare minimum in terms of storage as well as processing in order to minimize the size, the power 

consumption and the latency [9]. To address the processing constraints, most of the effort in the 

researches was around optimizing the system architecture [10]. Some other researches tackled the 

issue using cloud computing services [11][12].  

As for the storage constraint, most of the recent researches were conducted to find the best 

distributed storage solution, whereas only few kept trying to find compressed storage solutions 

[13][14].  

But what if only a small subset of this data is really needed to fulfill the same goal? 
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In the context of machinery monitoring, a frequent probing task or a highly demanding processing 

job may overload the processor and the storage. This contradicts the basics of the real-time system 

designs. Though, in remote monitoring, many machines are to be surveyed to make a real profit 

from the installation of the remote system. Consequently, a critical issue appears in implementing 

remote monitoring within a real time management for a set of machinery where vibration signals 

are usually acquired at high rate frequencies within long period of time which demands large data 

storage. Although many researches are of subject to enhance the performance of real-time 

capabilities of embedded systems, only few has optimized the solution based on the type of data in 

the circumstances of remote monitoring for industrial machines specifically.  

For instance, in many applications where WSN are used, sensors are required to capture data at 

high frequencies which creates a major problem due to the high energy consumption and the 

demand of large data storage knowing that such sensors are of limited capacity. Consequently, the 

Compressive Sensing (CS) was invented to reduce the data storage and decrease the frequency of 

sampling [15]. The distinction introduced by such process of sensing resides in finding a way to 

capture just the important information from the object of interest. Though, this recently invented 

sampling mode is based on two essential principles counting on the sparsity of the signal, and on 

the use of random sensing matrices. 

Such invention was as a source of inspiration that lead to this thesis scope. In reality, RS, which 

presents common aspect of CS, is applied in many applications[16], [17] [18]. Due to its anti-

aliasing property, it may be inferred that within such process, sampling might be accomplished 

with low frequencies. But, as in CS, the signal to be acquired must be sparse in certain domain to 

achieve the advantage of low frequencies and low amount of data. Indeed, industrial machines are 

not of very high rotational speed, though the condition required by the Nyquist frequency imposes 

on the acquisition of vibration signals to be at the minimum double the highest frequency present 

in the corresponding spectrum. And consequently, to have better resolution, long signal are required 

in such conditions. These details, in addition to the sparse aspect in the frequency domain [19], 

make the probability of success in applying the RS on vibration signals very high and thus , the 

reduction of sampling frequency and amount of data is possible which helps in resolving already 

listed issues in remote monitoring.  

According to the literature, RS is a promising sampling process due to its anti-aliasing property 

within some defined conditions. Though, the question that must be answered is: are these conditions 

compatible with the circumstances of vibration analysis? In addition, according to same references, 

the eliminated aliases are replaced by an additive noise floor, which may affect the low peaks in 
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vibration signal spectrum. So, is the RS really efficient and worth to be used in machine 

monitoring? What are then its limitations and how it could be managed?? 

In the aim of responding on these questions and doubts this thesis is conceived, and the following 

contributions were accomplished during the thesis work: 

1. A very first real application of RS on vibration signals acquired from a normal gear and a 

bearing in normal and defected states, in order to evaluate the potential of RS in machine 

monitoring. 

2. Quantitative formulations that gives the user a clear guide to choose the number of samples, 

the mean sampling period and the standard deviation when applying RS within its different modes. 

3. A specific determination of the RS noise cyclostationarity order. 

4. An enhanced method for spectral analysis of RS signals based on the zero insertion and the 

periodogram of welch. 

This thesis begins in chapter 1 with a summary on the different sampling processes found in the 

literature to continue with the state of art on the already accomplished studies on RS within time 

domain with defining its different modes and different used probability distributions, to finally 

conclude with the temporal condition and stationarity condition that is essential for anti-aliasing 

property. In chapter 2, spectral analysis is reviewed for uniform sampling to continue in a consistent 

way with the spectral analysis for RS. The spectrum of randomly sampled signal is studied to 

conclude with the aspect of the added noise and the quantitative recommendations on the selection 

of the mean sampling frequency, the number of points and the standard deviation. After a review 

on the variety of techniques for spectral analysis for RS already present in the literature, the most 

adequate techniques are chosen to be applied on RS signals in simulation and on real acquired 

signals. In chapter 3, a verification of the results obtained in chapter 1 and 2 are verified by a 

simulation study, followed by a hardware implementation of RS done to verify the results on simple 

signals. Then, in chapter 4, a clear vision is presented on the most important features of vibration 

signals acquired from the essential machinery components: bearings and gears. To continue with 

the experimentation results obtained by the application of RS on a bearing in normal and defected 

state and a gear in normal state. A brief recapitulation on the achieved results is presented in the 

conclusion to evaluate the RS as a solution for the real-time monitoring of industrial machinery 

with a perspective on possible works that could be driven after this thesis. 
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1 Chapter 1: Random Sampling Definition 

 

1.1 Introduction 

In signal processing, the sampling process is the main step to pass from the continuous to the 

discrete time domain, in order to deal with numerical instead of analogical signals. This process 

may be applied in different ways according to the nature of the signal and the conditions of its 

environment. In this introduction the different sampling processes are overviewed. The comparison 

focuses on RS, in order to reveal the edge it has over the other sampling methods from the 

perspective of this thesis. 

 The generalized form of sampling is the Non-Uniform Sampling (NUS) or irregular sampling, 

where the acquired samples may be chosen arbitrarily, randomly or whenever the signal is available 

[20]. Although the instants of sampling are not evenly spaced in NUS, the sequence of these instants 

may be periodic leading to a periodic form of NUS. In Uniform Sampling, one of the most common 

sampling techniques in data acquisition, the samples are chosen at a constant rate without 

interruption and with period TS. Though, in cases where data is missed or unreached, the sampling 

is no longer uniform and is considered as NUS. In Figure 1.1, examples of the various sampling 

methods are shown. In Arbitrary Sampling, the instants of sampling are chosen without any 

previous assumption, while in RS the time inter-sample intervals follow a random distribution 

having a constant mean equal to TSm. In fact, the examples shown in Figure 1.1 are all clock-based 

sampling. However, there exist some samplings that are event-based and are considered as Random 

or Arbitrary Sampling [21]. One of the most used processes is the Level-Crossing Sampling, which 

is considered as a RS based on events instead of clock signals. Figure 1.2 illustrates the concept of 

this process: the Analog to Digital Converter (ADC) acquires a sample from the signal every time 

the latter is equal to any level of the predetermined amplitude levels. The acquired amplitudes and 

their corresponding instants of acquisition are saved as the randomly sampled signal with its time 

vector [22]. The analysis of such type of sampling is considered to be difficult and less used than 

periodic and clock based sampling [21], [23], thus this thesis is focused on sampling based on time 

clock signal. 

Hence, whether it is clock based or event-based, Non-Uniform Sampling is imposed in some cases 

due to inconvenient circumstances. One example is the unavailability of data at some instants like 

in astronomy, medicine, geophysical sciences and others [24]. Another example is the loss of some 

samples because of instrumentation malfunction or problems in communication [25], [26]. Besides, 
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in other cases, Non-Uniform Sampling is used on purpose in context of data compression, Digital 

Alias-free Signal Processing (DASP) and Compressed Sensing. In fact, when relating the sampling 

rate to the signal rate, the number of samples decreases when the signal varies slowly, which will 

lead to data compression [26], [27]. Moreover, RS, as a NUS process, is proposed in DASP in order 

to take advantage of its properties of anti-aliasing and sampling with low frequencies which are 

proven by Shapiro and Silverman in [27], [28]. Finally, a new way of sampling sparse signals is 

proposed to decrease the data storage and the sampling rate to minimize the energy consumption 

by sensors that are used in WSN [29]. This sampling process is known as the Compressed Sensing 

(CS), that is based on random sensing matrices [30] which is, somehow, equivalent to RS.  

 

Figure 1.1 Simple Example of Each Type of Sampling 
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Figure 1.2 Level-Crossing Sampling 

Consequently, CS and RS were applied in different domains and were the subject of many recent 

researches. On one hand, RS was first introduced as an intentionally used sampling by Shapiro and 

Silverman in [31] in 1960, and many publications were made then by Beutler and Leneman in the 

same period of time to study the spectral density of such process [32]–[34]. Later on, many 

theoretical studies were made, until 2000 when Wojtiuk explored the RS in simulation and 

suggested methods of practical implementation to use RS in radio communication [35]. This 

research was continued by Ben Romdhane in 2009 who gave more concise details of RS to be used 

in digitalization of multistandard signal[36]. Finally, Luo has elaborated a practical study of NUS, 

especially the RS with connecting it to the CS results, without determining the nature of signals to 

be sampled or their domain [37]. On the other hand, CS was first conceived in 2004. Since then, 

many applications of this process were studied in Computer Sciences, Astronomy, Medicine, 

Seismology, Radar and Telecommunication [38]. However, there was no application mentioned 

until the date of writing this thesis that indicates the use of RS or CS on vibration signals acquired 

from rotating machinery. Additionally, despite all these researches and studies, there are no sensors 

or devices manufactured to acquire samples at random instants in commercial markets.  

In conclusion, having advantages in eliminating alias and in reducing the sampling frequency and 

the storage of data, the RS is found to be worth studying and exploring when applied on vibration 

signals. In addition, some important notions found in CS are used in RS application and merit to 

be mentioned. So, in this chapter, a brief summary on CS is presented in section 1.2 to reveal its 
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important advantages that can be exported to RS process application on vibration signals. Then the 

RS properties in time domain are studied in details. At the beginning, the definition of RS and its 

condition of use are presented in section 1.3 to clarify the methodology of selection of the sampling 

process parameters. In section 1.4, the different modes of RS with the probability distributions are 

explored and discussed. In Section 1.4.4, the notion of time quantization is introduced, as an RS 

mode, to complete the study of RS in the numerical time domain, as all the applications of RS are 

implemented in digital devices which deal with discontinuous time vectors. In the conclusion, a 

brief summary on the mode and parameter selection of the RS is given. 

1.2 Compressed Sensing Theory 

The intent of this section is to briefly overview the basic theory of CS, in order to highlight the fact 

that randomness can lead to a very effective sensing mechanism. More details are presented in 

Appendix A.  

In fact, the CS was conceived for two major advantages: compressing data and managing the under-

sampling situations. The main contribution in data compression in such sampling technique is in 

directly acquiring a compact amount of data instead of acquiring and then compressing. Therefore, 

the CS is used in many different domains where the data compression is needed or the number of 

measurements is limited. For instance, CS is mainly a research subject in Medical Resonance 

Imaging (MRI) [39][40], in astronomy imaging [41], Microarray sequencing in Biology [42], 

seismic imaging, and modal identification within civil engineering [38] and in many WSN based 

solutions [29]. 

1.2.1 CS Definition 

CS is defined as a technique to acquire and represent compressible signals in a compressive way, 

at a rate significantly below the Nyquist rate. Foremost, the signal to be sampled or measured is 

x∈ ℝ𝑃, the observation of x designated by y is defined by (1.1). 

   𝑦 = Φ𝑥 (1.1) 

Where y∈ ℝ𝑁 and Φ ∈ ℝ𝑁×𝑃. Φ is defined as the sensing matrix, where {𝜑k}k=1…N are the sensing 

waveforms. The problem of CS is expressed by how to choose Φ in order to find an observation y 

of size N<<P with the ability to reconstruct x from y. Hence, the CS is based on two main principles: 

the sparsity and incoherence, where the first is a condition concerning the original signal x and the 

second is related to the sensing matrix Φ[43].  
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1.2.2 Sparsity and Incoherence Definition 

The sparsity is a property equivalent to the compressibility of the signal, and it is verified when 

there exists a basis Ψ (known also as a dictionary) where the projection of the signal x is k-sparse. 

This means that the majority of the coefficients of x in the basis Ψ are zeros except k elements. 

Thus, when applying the CS on a compressible signal x, it is essential to find the basis Ψ where the 

coefficients of x in Ψ, are of majority of zero. A variant of transformations is used to find a sparse 

expansion of x, like the Fourier, the Wavelet, the Curvelet and the Discrete Cosine Transform 

(DCT) [15], [34], [38],[41]. Finally, due to the representation of x in the Ψ domain, the relation 

between x and its observation y becomes (1.2), where a is the vector representing x in Ψ. 

   𝑦 = Φ𝑥 = ΦΨa = Αa (1.2) 

An example that clarifies this property is illustrated in Figure 1.3, where a signal acquired from a 

gear is compared to its Fourier transform (only single-sided amplitude spectrum), to show how the 

sparsity is increased in the frequency domain. The percentage of coefficients smaller than 10% of 

the highest amplitude is 23% in the time domain, while it is greater than 98% in the frequency 

domain. This example is considered as a simple evidence that vibration signals acquired from 

rotating machinery are sparse in the frequency domain.  

 

Figure 1.3 Vibration signal of a Gear in Time and Frequency Domain 

As the purpose of CS is to conceive efficient sampling protocols that acquire the essential content 

of the sparse signal and condense it into a minor amount of data, these protocols must be non-

adaptive and should capture the signal with a small number of fixed waveforms. Thus, these 

waveforms must be incoherent with the sparsifying basis Ψ. In other words, unlike the signal x, the 

sensing waveforms, that define the sensing matrix Φ, must have a dense representation in the Ψ 

domain. In one of the pioneers references in CS, [43], it was concluded that the random matrices 
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are largely incoherent with any fixed basis Ψ. So, random sensing/sampling matrices are used 

within CS to guarantee incoherence condition. Therefore, the efficiency of RS is proven within the 

context of CS, where the data is acquired compressively with low rate sampling and can be 

reconstructed without loss. 

1.2.3 Reconstruction in CS 

The Restricted Isometry Property (RIP) is conceived to guarantee a robust signal reconstruction 

within CS [Appendix A]. According to [15],[45] and [46], it was proven that the random sensing 

matrices satisfy the RIP with an overwhelming probability when the number of measurements 

verifies the condition in (1.3). 

 
 𝑁 = O(k log (

p

k
)) = Cte. k (1.3) 

The reconstruction in the CS context is to find the sparse solution ‘a’ that verifies the equation 

(1.2), the sparse solution s can be then expressed by (1.4). 

 

   𝑠 = min
𝑎: 𝐴𝑎=𝑦

‖𝑎‖𝑙𝑖 = 𝐴
𝑇(𝐴𝐴𝑇)−1𝑦 (1.4) 

Most of the reconstruction algorithms are based on this concept in finding the exact signal 

reconstructed, though, they differ in the criteria of minimization [Appendix A]. Greedy Iterative 

Algorithms are based on the l2 minimization like the Matching Pursuit, and the Convex 

optimization are based on the l1 minimization as the Basis Pursuit [43].  

In conclusion, the CS captures the information contained in the signal within its sparsifying domain 

by the random sensing/sampling process with the ability of reconstructing the original signal when 

the number of measurements is a multiple of the k-sparse elements. As the vibration signals are 

considered sparse in the frequency domain, it can be deduced that RS is a promising sampling 

process when applied on such signals. Thus, this thesis is conceived to evaluate the potential of 

such sampling in vibration analysis context.  

 

1.3 Random Sampling: Definition and Condition of Use 

The sampling process is a way to convert continuous analogical signal x(t) into discrete time  

samples xS(t). These samples are chosen from the original signal at different instants. The time 

interval separating these instants is the fundamental criteria which determines the aspect of the 

sampling process is uniform or not. In time domain, the sampling process of the signal x(t)  is 

modeled  by a simple multiplication between x(t) and the sampling signal S(t), where the model of 
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S(t) varies according to the sampling process type. When the sampling is uniform, S(t) is defined 

as in (1.5). 

 
S(t) = ∑ 𝛿(𝑡 − 𝑡𝑛)

+∞

𝑛=−∞

    (1.5) 

The nth instant of sampling is tn=nTS, where the sampling period TS is constant. The essential 

condition that must be respected in uniform sampling is the condition of Shannon or Nyquist: the 

sampling frequency FS (=1/TS) must be higher than twice the highest frequency within the signal 

x(t), to assure a spectrum without distortion, though, aliases remain and should be filtered . While 

in RS, conditions are declared to guarantee compatibility with real implementations and to provide 

a spectrum free of aliases. In order to explain these conditions, the notion of the Random Point 

Process must be introduced first to present the model of the sampling signal in NUS and to clarify 

the concept of the Stationary Point Process and all the outcomes that may result from its validation. 

Afterward, the temporal condition that permits the implementation of RS in practice is explained. 

1.3.1 Random point process  

As the sampling instants {tn } are considered points on the real timeline, they can be treated as a 

point process. As a statistical definition, a random point process is an ordered sequence of values 

along a time axis or a geographical space. In case of sampling signals, the random point process, 

which is used for samples’ acquisition from real measured signals, must be a simple point process, 

i.e., all the points of the process {tn} occur at distinct times [47]. 

 Let {θn}, n=0,±1,±2,…. , be the notation of the point process member : 

 

𝑡𝑛 =

{
  
 

  
 θ0 +∑θ𝑘                     𝑛 ≥ 1

𝑛

𝑘=1

θ0                                𝑛 = 0

θ0 −∑ θ𝑘                     𝑛 ≤ −1

−1

𝑘=𝑛

                   (1.6) 

   Where 0 < θ𝑛 ≤ ∞ for all n. 

 For all values of n excluding zero each θ𝑛 represents the time interval between tn and tn-1. For n = 

0 the representation of θ0 = t0 is of an initial time value, or initial phase, of the sequence {tn}. 

Figure 1.4 represents a simple example of a time process for n>=1. 
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Figure 1.4 Time Process for n>=1 

Most of the recent studies on RS are based on the theory developed by Frederic Beutler and Oscar 

Leneman in the 1960’s, where they concluded some important properties concerning the random 

point processes and their stationarity conditions [29]-[30]. Thus, they introduced the random 

impulse process as defined in (1.7).  

 
𝑆(𝑡) = ∑ 𝛼𝑛𝛿(𝑡 − 𝑡𝑛)

𝑛=+∞

𝑛=−∞

    (1.7) 

S(t) is the sampling signal in case of NUS. It contains two random processes: {𝑡𝑛} which is a 

stationary random time process, and 𝛼𝑛, a stationary random process independent of  {𝑡𝑛}. 𝛼𝑛is 

multiplying the Dirac Comb in order to include the concept of skipped (or missing) samples and 

amplitude errors’ sampling. This process formula is conceived to model all the possible forms of 

NUS. To generalize the model of random impulse process, ρ is defined as the correlation between 

two consecutive impulses to take in consideration cases where pairwise independency is not 

confirmed (1.8). 

   𝜌 = 𝐸[𝛼𝑛+𝑚𝛼𝑛] (1.8) 

1.3.2 Stationary point process 

On one hand, according to [33], a random process is defined as stationary if the number of points 

in a set of fixed time intervals is invariant under any time shift which preserves the length and 

spacing of those intervals. Following this definition, three theorems were deduced concerning the 

stationary point process (SPP) and the autocorrelation function of S(t), which will be discussed 

later in this chapter and in Chapter 2.  

On the other hand, Bilinksis and Mikelson in [28] defined the SPP as the probability of a sample 

occurrence is the same everywhere on the time axis. To clarify this definition, some notations must 

be given. ps(t), the sampling point density function, is the sum of all the individual probability 

density functions (PDF) pn(t), where pn(t) is the PDF of the nth instant of sampling (tn). Also, if θn 
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is the random time interval between the sampling instants tn-1and tn, TSm is the mean value of θn. 

Thus, the condition of stationarity of a random point process is defined by (1.9). 

 
𝑝𝑠(𝑡) = ∑𝑝𝑛(𝑡) =

1

𝑇𝑆𝑚

∞

𝑛=1

   (1.9) 

The convergence of the time sequence may be occurred after a certain time delay. So the authors 

also defined the stationarity time delay in (1.10).  

 
𝑇𝑠𝑑 =

0.4 𝑇𝑆𝑚
3

𝜎2
   (1.10) 

TSm and σ are the mean and the standard deviation of θn [28]. This delay depends on the type of 

sampling, the probability distribution of sampling instants and the initial conditions of the sampling 

sequence. If the sampling point process is stationary, the sampling point density function ps(t) is 

equal to 1/TSm after a delay of time equal to Tsd. Consequently, when a sampling process is proven 

to be stationary, there are some properties that can be guaranteed. According to [35], once the 

sampling process is verified as stationary, with the assumption that the original signal is wide sense 

stationary, then it can be ensured that the sampled signal conserves the wide sense stationarity. 

Thus, in case the mechanical signals to be sampled have an aspect of cyclostationarity with a 

stationary random process, it can be assured that this aspect is conserved after sampling. 

In [28], the authors define the SPP condition as the main origin of the anti-aliasing property of the 

RS. In fact, in the literature, many propositions where given to determine the circumstances that 

guarantee the alias-free aspect of RS. In [31], the authors explored the autocorrelation of the 

sampled signal and then deduced conditions on the autocorrelation of the sampling sequence, the 

latter autocorrelation function should be unique or belong to a limited family of functions to assure 

a unique spectrum for the sampled signal. In [48], these conditions were proved to be incomplete. 

The most sustaining condition is the one presented in [28], where the authors used the Fourier 

transform of periodic signals to prove that the RS applied by an SPP sequence leads to an alias free 

sampled signal. Moreover, in [36], the Fourier transform of aperiodic signals is used to prove the 

alias-free aspect of RS when verifying SPP condition. Due to the definition (1.9) where the sum of 

the PDF of n consecutive instants is equal to 1/ TSm, the calculation of the expectation of the Fourier 

transform Xs(f) of the sampled signal xs(t) lead to a non-periodic result which is an alias-free 

spectrum. 

And thus, according to the Alias-Free theorem, if the RS sequence verifies the SPP condition of 

Bilinskis and Mikelson, the spectrum of the analogic sampled signal is free of aliases. When the 

probability of acquiring a sample is the same on the whole time axis, there is a certainty in 

representing the signal in one realization without aliasing [28], [35]. 
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1.3.3 Temporal condition  

In [36], a study on the statistic parameters is introduced in order to measure the validity of the 

probability distribution to be used with RS within sampling real signals in practice. As mentioned 

before, the sampling instants {tn} are considered as a random process, that should be simple. Thus, 

all tn should be strictly increasing: 0 ≤ 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑖 < ⋯ < 𝑡𝑛 ,  where lim
𝑛→∞

𝑡𝑛 = +∞.  To 

fulfill such condition, limits in term of the mean sampling period are imposed on each instant ti, to 

verify the relation in (1.11).  

 
𝑖𝑇𝑆𝑚 −

𝑇𝑆𝑚
2
≤ 𝑡𝑖 < 𝑖𝑇𝑠𝑚 +

𝑇𝑆𝑚
2
 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛         (1.11) 

However, the relation in (1.11) proposed by [36] is not general enough to take in consideration all 

possibilities of ti that verify the increasing order condition. Thus, in this thesis, it is suggested that 

generally random instants ti must validate the relation in (1.12) to guarantee a simple random 

process.   

 𝑡𝑖−1 < 𝑡𝑖 ≤ 𝑡𝑖−1 + 2. 𝑇𝑆𝑚    𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  (1.12) 

   

To determine this condition or limitation for each distribution, the PDF of the random instant of 

sampling (ti) and its corresponding interval must be clarified. In fact, in RS, the random instant is 

generated in terms of a random variable. The expression of the random instant varies according to 

the RS mode. In each mode, the random variable may follow any probability distribution. The most 

usable distributions with RS in the literature are: the uniform, Gaussian and exponential  [35], some 

other distributions like Binomial and Bernoulli are used with RS to explore the missing data 

problem [37], which is not a studied case in this thesis. A brief summary on each distribution is 

presented in this section, in order to examine its validity with each mode of RS in the next section. 

A) Uniform distribution 

 The uniform distribution is defined by the end limits of its interval [a,b] and its PDF by (1.13). 

 
  𝑝𝑢𝑛𝑖𝑓(𝑡) =

1

𝑏 − 𝑎
            𝑎 < 𝑡 < 𝑏     (1.13) 

In this case of distribution, the mean μ and the standard deviation σ are deduced from the end limits 

a and b as in (1.14) and (1.15). 

 
  𝜇 =

𝑎 + 𝑏

2
 (1.14) 
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  𝜎 =

𝑏 − 𝑎

√12
   (1.15) 

Thus, according to (1.12) when the random variable follows a uniform distribution the probability 

pi(t) of the instant (ti), having an interval [ai,bi] and a mean μi, must verify (1.16).   

 
 𝜇𝑖 =

𝑎𝑖 + 𝑏𝑖
2

= 𝑡𝑖−1 + 𝑇𝑆𝑚 𝑎𝑛𝑑 𝑏𝑖 − 𝑎𝑖 = 2. 𝑇𝑆𝑚  (1.16) 

B) Gaussian Distribution 

In case of Gaussian distribution, the PDF is defined by the variance 𝜎2 and the mean μ: 

 
  𝑝𝑔𝑎𝑢𝑠𝑠(𝑡) =

1

√2𝜋𝜎
𝑒
− 
(𝑡−𝜇)2

2𝜎2  (1.17) 

The end points of the interval of the Gaussian distribution are not obvious as in the Uniform 

distribution. Considering a probability coverage of 99.7% is enough to represent the entire interval 

of distribution of a Gaussian random variable, the end points (minimum and maximum limits) of 

this interval can be deduced in term of σ and μ as in (1.18) and (1.19). 

       𝑚𝑖𝑛 = 𝜇 − 3𝜎  (1.18)  

  𝑚𝑎𝑥 = 𝜇 + 3𝜎     (1.19) 

    

Consequently, when the random variable in the random instant expression follows a Gaussian 

distribution, and having a mean μi and a support interval [mini,maxi], pi(t) must verify (1.20). 

   𝜇𝑖 = 𝑡𝑖−1 + 𝑇𝑆𝑚 𝑎𝑛𝑑 𝑚𝑎𝑥𝑖 −𝑚𝑖𝑛𝑖 = 6𝜎 = 2. 𝑇𝑆𝑚 (1.20) 

C) Exponential Distribution 

In case of Exponential distribution, the determination of the temporal condition in term of the 

distribution parameters get more complicated as the support of such distribution is [0,∞). The PDF 

of the Exponential distribution, known also as Poisson, is defined by (1.21), and its Cumulative 

Density Function (CDF) is defined by (1.22).  

 𝑝𝑒𝑥𝑝(𝑡) = λ𝑒
−λt (1.21) 

   𝑓𝑒𝑥𝑝(𝑡) = 1 − 𝑒
−λt  (1.22) 

The mean value in such distribution is 1/ λ. To have an estimation of the interval of the random 

variable that follows an exponential distribution, the CDF is used to calculate the value of t at which 

the cumulative probability in (1.22) is equal to 0.999. 
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  𝑡0.999 =

−ln (0.001)

λ
=
6.9078

λ
 (1.23) 

Considering t0.999 is the end point of the interval of support of the exponential distribution, this 

interval is [0 ,  
6.9078

λ
]. 

So, when the random variable in the random instant expression follows an Exponential 

distribution, pi(t), having a mean λi and a support interval [mini,maxi], must verify the relations in 

(1.24). 

 
  𝜆𝑖 = 𝑡𝑖−1 + 𝑇𝑆𝑚 𝑎𝑛𝑑 𝑚𝑎𝑥𝑖 −𝑚𝑖𝑛𝑖 =

6.9078

𝜆𝑖
= 2. 𝑇𝑆𝑚 (1.24) 

1.4 Random Sampling Modes 

All the RS modes are based on the random impulse process defined in (1.7).  The mode of RS is 

essentially declared by the definition of the process {tn}. The modeling of skip sampling, which 

can be added to the main mode of RS defined by {tn}, is an important effect contributed to the 

process {αn}. All the modes of RS mentioned in the literature are presented in this section, the most 

promising modes are explained and discussed to evaluate their potential to be used in real sampling 

and then be applied on mechanical vibration signals. In fact, to know how to choose the adequate 

mode of RS, and then how to choose the convenient distribution for random variables, the 

stationarity condition of RS (and thus the anti-aliasing property) and the time condition of the 

instants of sampling must be studied for each mode. 

1.4.1 Additive Random Sampling (ARS) 

The concept of the Additive Random Sampling (ARS) was first proposed by Shapiro and Silverman 

in [31] as a sampling method providing an alias-free processing for analogical signals. After 

defining the ARS process, discussing the validity of the temporal condition of this mode with the 

already mentioned probability distributions and verifying the stationarity condition in each case, an 

overview on its modified versions will be presented at the end of this section. 

A) Definition 

As the name indicates, the sampling instant in this mode is obtained by adding a random variable 

to its previous as declared in (1.25). 

   𝑡𝑛 = 𝑡𝑛−1 + 𝜏𝑛         𝑛 = 0,1,2,…                    (1.25) 

   

τn are independent and identically distributed (iid) variables, p(τ) is the probability distribution 

function (PDF) having a standard deviation σ and a mean μ. As mentioned in paragraph 1.3.3, the 
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mode of RS is defined by the expression of (tn) in term of a random variable. In this case, the inter-

sample time interval τn is the random variable to be generated. And, according to the random point 

process definition, the interval θn is equal to the generated random variable τn. Thus, the PDF pn(t)of 

the instant tn is deduced from the probability p(τ) by respecting the expression in 1.25, where each 

instant of sampling is the cumulative sum of all its previous, and thus the randomness in such 

process is cumulated till the end of the sampling sequence, and the distribution of the last instant 

of sampling (tN)  is certainly dependent on the first instant of sampling (t0). 

B) Temporal Condition 

According to paragraph 1.3.3, the instants ti must be chosen in a strictly increasing order. As a 

consequence to relation (1.12), the mean and the interval length of pi(t) are expressed in term of 

TSm in (1.16),(1.20) and (1.24), which will lead to the deduction of the mean and the interval of the 

random interval τ in the ARS mode. 

 

  𝑡𝑖 = 𝑡𝑖−1 + 𝜏𝑖 = 𝑡0 +∑𝜏𝑘

𝑖

𝑘=1

    (1.26) 

Ideally, t0 is a constant that must be equal to 0.  And, the intervals τk are iid variables. Then the 

expectations of these variables become: 

 

  𝐸[𝑡𝑖] = 𝐸 [∑ 𝜏𝑘

𝑖

𝑘=1

] ⇒ 𝐸[𝑡𝑖−1] + 𝑇𝑆𝑚 = 𝑖. 𝐸[𝜏] ⇒ 𝐸[𝜏] = 𝑇𝑆𝑚 (1.27) 

As the interval of pi(t) is equal to 2TSm the interval of the random variable τ in the ARS mode is  

[0; 2TSm]. This condition will be verified by comparing these intervals to the PDF’s supports of 

different possible distributions. 

B.1)  Uniform Distribution Condition 

In case of a uniform distribution, defined by its interval [a, b], a ratio, based on definition (1.14) 

and (1.15), between σ and μ (σ/μ ) can be deduced for the ARS mode with the uniform distribution 

in term of the interval end points.  As already deduced in the previous paragraph, the mean μ is 

equal to TSm, for a simple representation the ratio σ/μ is replaced by σ/ TSm. In case of the interval 

[0; 2TSm], the ratio σ/ TSm verifies (1.28) 

 
 𝜎 =

𝑏 − 𝑎

√12
≤
2𝑇𝑆𝑚

√12
 ⇒  

𝜎

𝑇𝑆𝑚
≤

2

√12
= 0.577    (1.28) 
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This ratio σ/TSm could be considered as an essential statistical parameter of the probability 

distribution used with RS mode, for the uniform distribution with ARS mode this parameter has a 

maximal value of 0.577 for the interval [0; 2TSm]. 

B.2) Gaussian Distribution Condition 

The statistical parameter of the Gaussian distribution can be deduced for ARS mode from (1.18). 

As the interval of support is [0; 2TSm], the ratio σ/ TSm verifies (1.29). 

 
 𝑚𝑖𝑛 = 𝜇 − 3𝜎 = 𝑇𝑆𝑚 − 3𝜎 ≥ 0 ⟹  𝑇𝑆𝑚 ≥ 3𝜎 ⟹ 

𝜎

𝑇𝑆𝑚
≤
1

3
= 0.333  (1.29) 

The same result can be verified by using the maximum limit formula (1.19). 

 
  𝑚𝑎𝑥 = 𝜇 + 3𝜎 = 𝑇𝑆𝑚 + 3𝜎 ≤ 2𝑇𝑆𝑚⟹   3𝜎 ≤ 𝑇𝑆𝑚⟹ 

𝜎

𝑇𝑆𝑚
≤
1

3
= 0.333 (1.30) 

B.3) Exponential Distribution Condition 

When used with the ARS mode, λ of the Exponential distribution should be chosen to be equal to 

1/TSm and the random interval must be in [0; 2TSm]. As the first end point in both interval is 0, the 

condition must be verified within the second end point; because λ = 1/TSm, the interval of support 

became [0; 6.9078 TSm] which is not compatible with the Temporal condition. Thus the ARS mode 

can’t be implemented in real applications with the exponential distribution.  

In conclusion, the limitation imposed by the temporal condition creates a relation between the mean 

sampling period TSm and the standard deviation σ of the chosen distribution with the ARS mode. 

Due to this condition, the Exponential distribution cannot be used in practical implementation of 

ARS. 

C) ARS Stationarity Condition 

In the aim of studying the stationarity of the ARS mode, the sampling point density function ps(t) 

or its limit when t tend to the infinity must be defined. Referring to the relation (1.26), it can be 

deduced that the instant of sampling tn is the sum of n independent random variables τn. then the 

PDF of the instant tn must verify the Central Limit Theorem, which is defined by: when independent 

random variables are added, their sum tends toward a normal distribution even if the original 

variables themselves are not normally distributed, but have the same mean μ and the same variance 

σ2. The mean of the sum is nμ and the variance is nσ2. As the random variables τn follow the same 

distribution, then they must have the same mean (TSm) and the same variance σ2. Consequently, the 

PDF of the instant tn, pn(t), can be directly determined by (1.31). 
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  𝑝𝑛(𝑡) =

1

√2𝜋𝑛𝜎2
𝑒
−(𝑡−𝑛𝑇𝑆𝑚)

2

2𝑛𝜎2     (1.31) 

In fact this result is verified by another probability theory, as by definition, the PDF of the sum of 

independent random variables is the convolution of the PDFs of these variables. So the PDF of the 

instant tn can be deduced from the n-fold convolution of p(τ) with itself [10]. 

    𝑝𝑛(𝑡) = 𝑝1(τ) ∗ 𝑝2(τ) ∗ … . 𝑝𝑖(τ)…∗ 𝑝𝑛−1(τ) (1.32) 

For example, if the interval τ follows a uniform distribution U[0,2], then μ=1  and σ2= 0.333. For 

N=25, the PDF of the instants t1, t2, t3, t7, t15 and t25 are shown in Figure 1.5. 

 

 

 

 

 

 

 

Figure 1.5 The PDF of the instants tn in the ARS mode with the Uniform distribution [0,2] 

Figure 1.6 The PDF of the instants tn in the ARS mode with a Gaussian distribution (1,1) 

Another example of ARS mode with Gaussian distribution having μ=1 and σ2=1 is shown in Figure 

1.6, also for N=25. It can be concluded from the PDF of the instants tn presented in Figures 1.5 and 



31 
 

1.6 that the probability distribution in the ARS mode tends to be a Gaussian distribution with a 

mean equal to nμ and a variance equal to nσ2, which verifies the result in (1.31).  So, in [36], the 

author used the characteristic function (CF) of pn(t), to transform CF of the point process probability 

ps(t) to the sum of CF of the instants tn, thus it becomes a sum of a geometric series of ratio rg 

defined in (1.3) 

   𝑟𝑔 = 𝑒
−𝑗2𝜋𝑓𝑇𝑠𝑚−2𝜋

2𝜎2𝑓2 (1.33) 

As f>0, the ratio |rg |<1, consequently the sum will converge, and by using the final value theorem, 

it can be concluded that the probability point process is stationary according to (1.34). 

 
  lim
𝑡→∞

𝑝(𝑡) =
1

𝑇𝑆𝑚
  (1.34) 

As a result, the ARS mode is proven to be stationary without any specification or limitation 

concerning the probability distribution. According to section 1.4.1 part B, in order to verify the 

temporal condition, the ARS mode can be used with both: uniform and Gaussian distribution.  

In Figures 1.7 and 1.8, a simple verification of the stationarity of the ARS mode with both 

distributions is presented. In addition, according to the Tsd definition, the delay is calculated in each 

case of ARS with uniform and Gaussian distributions and indicated for each plot. In some cases 

the Tsd can’t be shown on the figure so the exact values are all given in the tables 1.1 and 1.2. In 

fact, the sum of individual probabilities ps(t) already defined in (1.9) converges in all ARS cases, 

but the distribution and the standard deviation σ affect the delay of stationarity Tsd as declared in 

(1.10). So, in some cases when σ is small, the stationarity is reached after a longer delay of time 

and thus it requires a higher number of points. Actually, the best result can be achieved when the 

ratio σ/ TSm is equal to the maximum imposed by the temporal condition, as the stationarity delay 

is inversely proportional to σ when TSm is fixed. So, whenever the sampling period is determined, 

the value of σ can be directly deduced from the temporal condition. Thus, the number of samples 

must be increased due to the temporal condition limitation. As the limitation with the Gaussian 

distribution is more selective than limitation with the uniform, the ARS with Gaussian distribution 

is more demanding in number of samples. Consequently, in combining the result of both 

limitations: the temporal and the stationarity conditions, a clear relation between the mean TSm and 

the standard deviation σ is deduced.  
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Figure 1.7 ps(t) of ARS mode with Uniform distribution, where TSm=1, and σ varying to have 

multiple values of 
𝝈

𝑻𝑺𝒎
 and N=30 

 

  

Case Tsd(sec) 

U[0.8;1.2] 30 

U[0.7;1.3] 13.33 

U[0.6;1.4] 7.5 

U[0.5;1.5] 4.8 

 

Table 1.1 the Tsd for each case of the ARS with the Uniform distribution 
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Figure 1.8 p(t) of ARS with Gaussian distribution, TSm=1, N=30 and σ varying  

 

Case Tsd(sec) 

N(1;0.1) 40 

N(1;0.115) 30.2 

N(1;0.12) 27.8 

N(1;0.125) 25.6 

 

Table 1.2 the Tsd for each case of the ARS with the Uniform distribution 

In conclusion, the ARS with uniform and Gaussian distribution is a RS mode guaranteeing an alias-

free sampling due to its stationary aspect within the verification of the temporal condition which 

assures the ability of this mode to be implemented in hardware. To enhance this mode of sampling 

two variants were suggested by [49] to improve the alias suppression with the first one and reduce 

the number of calculation of the Discrete Fourier Transform (DFT) in the second. These two 

variants modes are briefly reviewed in the next two paragraphs. 
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D) Variants of ARS 

D.1) Correlated ARS 

A modified version of the ARS mode is proposed in [28], the Correlated Additive Random 

Sampling (CRS), to enhance the alias suppression. In fact, the condition of independency between 

the random intervals that separate samples, is not respected, and there exists a correlation between 

two adjacent sampling intervals. If it is positive, the RS sequence increases at a faster rate than the 

case of uncorrelated ARS, and thus reaches the stationarity more quickly. But, if the correlation is 

negative, the stationarity delay of the sampling sequence of CRS becomes longer [35]. A detailed 

study of the CRS spectrum is presented in [35] to explore all the effect of correlation on the ARS 

mode, where the main advantage remains in adding an “extra design parameter” that permits to 

shape the spectrum of the randomly sampled signal to fit particular applications. In conclusion, 

having a positive correlation between adjacent random intervals leads to stationarity and thus to an 

alias-free sampling, but the hardware implementation of such process is judged to be difficult [35] 

and not feasible [36]. 

D.2) Hybrid ARS 

Another modified version of ARS is introduced by Purvis in [49], it is called the Hybride Additive 

Random sampling (HARS). This mode has the same properties of the ARS, with the only 

modification of dividing the sampling sequence into an even number of sub-sequences, where each 

sequence is concatenated with its reverse, to simplify the calculation of the DFT of the randomly 

sampled signal. For a sampling of N points, and a number of sub-sequences equal 2, the instants of 

sampling are defined as in (1.35). 

 
   {
𝑡𝑛 = 𝑡𝑛−1 + 𝜏𝑛
𝑡𝑁−𝑛 = 1 − 𝑡𝑛    

 (1.35) 

Where t0=0, tN/2=0.5 and the total time of sampling is the unity in the normalized case. It is obvious 

in (1.35) that the first sub-sequence is exactly a sequence of an ARS mode. An example of a HARS 

sequence is shown in Figure 1.9 to clarify the concept of such mode. The property of Alias-Free 

sampling is conserved in this version. In addition, this reversed sub-sequence creates symmetrical 

terms in the DFT which simplifies the calculation and reduces the time of execution. Sufficient 

information on the HARS can be directly deduced by the exploration of the ARS mode as both 

have same properties. Thus, this thesis will be focused on the study of the ARS. 
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Figure 1.9 HARS mode the sequence after tN/2 is symmetric to the sequence before 

1.4.2 Jittered Random Sampling 

A) Definition 

The Jittered Random Sampling (JRS) is a type of sampling where a jitter (error) is applied to a 

uniform sampling grid. This jitter appears frequently in practical sampling systems because of 

uncertainty of sampling clocks due to hardware imperfections [50]. Specifically this error is caused 

by the phase noise of the sampling clock, which leads to a fluctuation in the phase. In many cases 

the effect of the jitter can be ignored, but in some other cases, it may be of large level that can have 

a deliberate effect [51]. In fact, the notion of the jitter was first introduced as a problem and appears 

to be treated for the first time in [51]. Though, in RS this notion is imitated and modeled to be used 

as a mode of RS known as JRS. The sampling model in this case can be described by (1.36). 

 

    𝑡𝑛 = 𝑛𝑇𝑠𝑚 + 𝑢𝑛   𝑇𝑆𝑚 > 0  𝑛 = 0,1,2,… . (1.36) 

Where TSm is the mean sampling period and un are iid variables with PDF p(u) having σ2 as a 

variance and a mean equal to zero. In case where the jitter is an error and should be ignored or 

eliminated depending on its level, the mean sampling period TSm should be respecting the Shannon- 

Nyquist condition, because the sampling in this case is uniform before the apparition of the jitter. 

While in JRS, the TSm is beyond the Shannon-Nyquist condition as the sampling is random and not 

uniform. 

In comparing the model of JRS with that of ARS, it can be inferred that the randomness in the first 

model is not cumulated as in the second, at each instant of sampling a random number is added to 

the constant uniform interval or period of sampling. Which means that the distribution of each 

instant of sampling (tn) is independent of any other instant, it depends only on the distribution of 
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its added jitter (un). This difference is confirmed by the modified model of ARS given by (1.37) 

that is based on the definition of ARS in (1.25), where τn is a random variable following a 

distribution having a mean equal to TSm (as it is an ARS mode) and a standard deviation σ. When 

replacing τn by a random variable τ0n following the same distribution with the same standard 

deviation but with a zero mean, the definition in (1.25) becomes as in (1.37). 

 
  𝑡𝑛 = 𝑡𝑛−1 + 𝜏𝑛 = 𝑡𝑛−1 + 𝜏0𝑛 + 𝑇𝑆𝑚 = 𝑛𝑇𝑆𝑚 +∑𝜏0𝑖

𝑛

𝑖=1

 (1.37) 

The sum of τ0i is the sum of independent random variables having all the same PDF with the same 

mean (=0) and the same standard deviation (σ). Referring to the Central Limit Theorem, this sum 

can be considered as a random variable γn following a Normal distribution Ν(0, √nσ). The formula 

in (1.37) becomes (1.38). 

   𝑡𝑛 = 𝑛𝑇𝑆𝑚 + 𝛾𝑛  (1.38) 

The reworded model of ARS in (1.38) is similar to the model of JRS in (1.36) with the only 

difference in the distribution of γn that is specified in the ARS mode, and the variance of this 

distribution that is proportional to n, which expresses the accumulation of randomness in the ARS 

case. 

B) Temporal Condition 

To evaluate the compatibility of the JRS mode with the different possible probability distributions 

for the real implementation, a study of the temporal condition is presented in this part. Due to 

condition (1.12) in paragraph 1.3.3, the mean and the interval length of pi(t) are expressed in term 

of TSm in (1.16), (1.20) and (1.24) which will lead to the deduction of the mean and the interval of 

the random jitter u in the JRS. As mentioned in (1.36) for n=i, it can be deduced: 

   𝑡𝑖 = 𝑖𝑇𝑆𝑚 + 𝑢𝑖  ⇒   𝐸[𝑡𝑖−1] + 𝑇𝑆𝑚 = 𝐸[𝑖𝑇𝑆𝑚 + 𝑢𝑖] ⇒ 𝑖. 𝑇𝑆𝑚 = 𝑖. 𝑇𝑆𝑚 + 𝐸[𝑢𝑖]            

⇒ 𝐸[𝑢𝑖] = 0 

 

(1.39) 

This relation confirms the definition of the JRS, where the jitter must be a zero mean random 

variable. In order to identify the interval of support of ui, the relation (1.12) is applied on the JRS 

case in (1.40). 

𝑡𝑖−1 < 𝑡𝑖 ≤ 𝑡𝑖−1 + 2. 𝑇𝑆𝑚  

⟹ (𝑖 − 1)𝑇𝑆𝑚 + 𝑢𝑖−1 < 𝑖𝑇𝑆𝑚 + 𝑢𝑖 ≤ (𝑖 − 1)𝑇𝑆𝑚 + 𝑢𝑖−1 + 2. 𝑇𝑆𝑚 

                                       ⟹−𝑇𝑆𝑚 + 𝑢𝑖−1 < 𝑢𝑖 ≤ 𝑢𝑖−1 + 𝑇𝑆𝑚                                                (1.40) 
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The best solution to respect the condition in (1.40) is to define the jitter u in [-0.5TSm; +0.5TSm] to 

keep the successive random variables iid. Thus the condition (1.11) already defined in [36] fits 

the JRS particularly while it limits many possibilities in ARS. 

B.1) Uniform Distribution  

With the uniform distribution which is defined by its interval limit [a,b] the temporal condition in 

JRS mode is defined in (1.41). 

 
  𝜎 =

𝑏 − 𝑎

√12
=
(0.5𝑇𝑆𝑚  + 0.5𝑇𝑆𝑚)

√12
   

  
𝜎

𝑇𝑆𝑚
= 0.2887  (1.41) 

Similarly to the ARS mode, the ratio σ/ TSm could be  considered as an essential statistical parameter 

of the probability distribution used with RS mode, for the uniform distribution with JRS this 

parameter has a maximal value of 0.2887 for the interval [-0.5TSm; +0.5TSm] [36]. 

B.2) Gaussian Distribution  

The statistical parameter of the jitter u in the Gaussian distribution can be deduced from the interval 

[-0.5TSm; +0.5TSm] in (1.42). 

 
 𝑚𝑖𝑛 = 𝜇 − 3𝜎 = 0 − 3𝜎 ≥ −0.5𝑇𝑆𝑚⟹   0.5𝑇𝑆𝑚 ≥ 3𝜎 ⟹ 

𝜎

𝑇𝑆𝑚
≤
1

6
= 0.167 (1.42) 

The same result is obtained by using the maximum limit formula: 

 
𝑚𝑎𝑥 = 𝜇 + 3𝜎 = 0 + 3𝜎 ≤ 0.5𝑇𝑆𝑚⟹  3𝜎 ≤ 0.5𝑇𝑆𝑚⟹ 

𝜎

𝑇𝑆𝑚
≤
1

6
= 0.167 (1.43) 

B.3) Exponential  Distribution 

In case of the exponential distribution, the jitter u can’t have negative values. In fact even if the 

interval of support within the JRS mode is defined only for a positive jitter u+ by [0; 2TSm], when 

choosing a λ=1/TSm, the interval of the exponential distribution can’t be limited by 2TSm as declared 

in (1.24). So it can be concluded that like the ARS mode, the JRS can’t be used with the exponential 

distribution. Although in theory and simulation it was proven that it guarantees an alias-free 

sampling [35], the exponential distribution can’t be used with RS modes in practice, as its support 

is positive and the interval of the distribution is not centered at the mean value, so it couldn’t verify 

the temporal condition and thus couldn’t assure an increasing time process. 
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After determining the limitations of temporal condition on the use of JRS, it is important to explore 

the stationarity condition that is needed to guarantee a spectrum free of aliases for the randomly 

sampled signal.  

C) JRS Stationarity condition 

As mentioned in paragraph 1.3.2, the definition of the stationarity condition in [33] introduced three 

theorems on stationary random processes, the second theorem concludes on the stationarity of the 

JRS process, this theorem can be summarized by: If {t’n } is a periodic SPP with period TSm, and 

{un} is a discrete time stationary random process with –T/2 ≤un≤T/2, then the new point process 

t’’n = t’n + un is also an SPP, which is referred as jittered SPP [34].An additional condition is 

declared in [28] about the delay of stationarity defined in (1.10), where the process reaches the 

stationarity after a delay determined by the probability distribution and its parameter. Thus, the 

stationarity of the JRS mode can’t be proved without the identification of the probability 

distribution of the random jitter un. As in (1.9) the SPP is defined by the sampling point density 

function ps(t), in [36] the PDF of the instant tn is conceived as in (1.44). In fact, from  (1.36) it can 

be concluded that the PDF of instant tn is of mean E[tn]=nTSm and standard deviation σ, and the 

PDF of the instant tn is the same of instant t1 translated by nTSm, as t0 is considered a constant with 

PDF equal to δ(t). 

   𝑝𝑛(𝑡) = 𝑝1(𝑡 − 𝑛𝑇𝑆𝑚)    2 ≤ 𝑛 ≤ 𝑁 (1.44) 

N is the total number of samples. Moreover, ps(t), the sum of all the PDF pn(t) cannot be previewed 

without the determination of the probability distribution p1(t). In Figure 1.10 pn(t) (n=1 to 7, n=15 

and 25) of a random instant in a JRS process with a uniform random jitter with TSm=1 and σ=0.2887. 

In Figure 1.11, pn(t) at the same instants of a JRS with a Gaussian distributed jitter following N(1,1). 

It is shown how the selection of the distribution parameters affects the sampling point density 

function ps(t). 

When a JRS is chosen with a uniform distribution, the sum of pn(t) is dependent on the variance of 

the jitter, if σ is small and the interval of the jitter is less than [-0.5TSm;0.5TSm] there will be a 

discontinuity in the sum of pn(t) as in Figure 1.12, which will lead to a divergent sum and thus the 

SPP condition is not verified. But when the jitter is defined in [-0.5TSm;0.5TSm] (σ=0.2887), the 

sum of pn(t) will be equal to 1/Tsm, like the example in Figure 1.13 of JRS with uniform 

distribution,  as: 

 
  𝑝𝑛(𝑡) =

1

𝑇𝑆𝑚
 ;  −

𝑛𝑇𝑆𝑚
2

≤ 𝑡𝑛 ≤
𝑛𝑇𝑆𝑚
2

 (1.45) 
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Consequently, the JRS with the uniform distribution is a stationary random process when the 

standard deviation σ is equal 0.2887 where the interval of support of the jitter u is [-0.5TSm;0.5TSm]. 

 

Figure 1.10 pn(t) of a JRS with uniform distribution (σ=0.2887)  at the instants 1 to 7 with 15 and 25 

      

Figure 1.11 pn(t) of a JRS mode with Gaussian distribution at the instants 1 to 7 with 15 and 25 

 

Figure 1.12 pn(t) of JRS with uniform distribution (σ=0.115) at the instants 1 to 7 with 15 and 25 
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According to [35] and [36] the stationarity of a JRS mode with Gaussian distribution is not reached 

until σ/TSm is 0.5 due to the stationarity delay, in Figure 1.13  the sum of pn(t) of the JRS mode with 

the Gaussian distribution having the same TSm and a varying σ is presented to evaluate the effect 

of σ/TSm on the SPP of this mode. This value is not within the temporal condition limitation when 

the jitter interval of definition is [-0.5 TSm; 0.5TSm].Thus, the JRS mode with the Gaussian 

distribution cannot verify the stationarity property when implemented in real applications.  

Figure 1.13 Ps(t) for the JRS with Gaussian distribution with TSm=1 and different values of σ 

In conclusion, the JRS mode must be used only with the uniform distribution to confirm both 

conditions: temporal and stationarity to be implemented in real hardware and assure anti-aliasing 

RS. As the ratio σ/TSm must be equal to the maximum determined by the temporal condition, the 

relation between these parameters is defined and whenever the value of the first is chosen, the value 

of the second is directly deduced. 

1.4.3 Random Skip Sampling (RSS) 

According to the definition of the random impulse process in (1.7), the main random modes are 

determined by the process {tn} which are the ARS and the JRS. While the process {αn} defines the 

existence of skip sampling that can be added to the main random modes, or to uniform sampling 

when {tn} is a uniform process, as the fact of skipping samples may occur with any mode of 

acquisition. In [34], a theorem was deduced from the definition of the SPP which will define the 

RSS clearly: If {tn } is an SPP, {yn } is a discrete time stationary random process that takes the value 

of {0,1} and is independent of {tn }, the new point process is formulated as follows: a new point 

process has a point at {tn } if yn = 1, but no point at {tn } if yn = 0, then the new point process {t’n } 

is also an SPP, referred as random skip SPP. The process {yn} is a particular form of {αn} that 

introduces the notion of skipping samples, while {αn} is a general process that represent also the 
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amplitude errors. Consequently, skipping samples conserves the stationary aspect of RS when 

imposed by discrete time stationary random process. 

On the other hand, RSS with uniform sampling can be defined in other way proposed by [52] as a 

missing data problem: 

  𝑡𝑘 = 𝑡𝑘−1 + 𝜕𝑘   (1.46) 

Where the random variable 𝜕𝑘 ∈ {𝑇𝑆, 2𝑇𝑆, 3𝑇𝑆, … }. This definition expresses the RSS or the 

missing data problem as a special case of the ARS mode. 

1.4.4 Time-quantized Random Sampling (TQRS) 

In general, the domain and the range of an analog signal x(t) are modeled as continuous, when 

transforming to digital signal with discrete domain and range, the process of digitizing the domain 

is called sampling and the process of digitizing the range is called quantization [53], [54].  Often, 

in uniform sampling, the quantization is restricted to the amplitude signal discretization, as it is not 

allowed to take on arbitrary values and it is limited to a finite number of levels. However, in RS 

the quantization is applied to both: the signal amplitude and the sampling instants, where the 

randomly chosen instants of sampling can’t take on arbitrary values as hardware constraints impose 

limitations on these instants whose values are consequently digitized and defined at discrete and 

finite time steps. In fact, this quantization is the result of two procedures. First, the random interval 

or jitter, is generated and saved on registers in the digital sampling device, which will create the 

first restriction on the random value that will be obviously discrete and limited. Second, the task of 

sampling is assigned to the ADC which is available at the rising edge of a clock generated by the 

processor. The period of this clock is called time step, which is considered the minimum spacing 

on the time axis. Accordingly, the generated random instant should be a multiple of this time step. 

This notion of quantization was first introduced by [35] as a sampling scheme and was explored, 

by simulation, as a sampling process in time and frequency domain to reveal its effect on randomly 

sampled signals. A detailed study on the statistical parameters after quantization was done in [36] 

and a clarification on the effect of quantization on the spectrum of the randomly sampled signal is 

given in [37]. In this paragraph a brief summary on the TQRS aspect in time domain is presented. 

According to [35], every interval τk separating two adjacent samples (τk = tk+1- tk ) when verifying 

the condition in (1.47) with the minimum time spacing Δ known also as the time granulation or 

time step, it will be quantized and replaced by τkq: 

 
  if  (𝑛 −

1

2
) ∆< 𝜏𝑘 ≤ (𝑛 +

1

2
)∆  , 𝜏𝑘𝑞 = nΔ      (1.47) 
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The mean sampling period TSm can also be expressed in term of Δ: 

 
  ∆=

TSm
qT
      (1.48) 

qT is the temporal quantization factor. To clarify the concept of time quantization, Figure 1.14 gives 

an example of TQRS for qT=3. 

In fact, the condition of quantification given in (1.47) is general and may be modified according to 

the hardware limitation imposed by the sampling device. In case where the RS is applied as a 

routine in a microcontroller where the order of sampling is executed by an interruption event, this 

order may occur at an instant where the ADC is not available, so the interruption will be held until 

the next period of ADC clock, so in such case, the condition of quantification is not exactly (1.47) 

it should be replaced by (1.49). 

                  if  (𝑛 − 1)∆< 𝜏𝑘 ≤ 𝑛∆, 𝜏𝑘,𝑞 = nΔ (1.49) 

 

 

 

 

 

 

 

 

This condition represents the TQRS mode in Hardware implementation (TQRSH), this mode is 

applied with both mode of sampling: ARS and JRS. In fact, only in [35] the mode TQRS is 

mentioned as a mode of RS, while in [36] and [37] the TQRS is considered as an additional aspect 

added to the RS modes to be used (ARS or JRS). In Figure 1.15, an explanation on how the 

quantification is applied within the TQRSH is presented. In [35] to [37] the PDF of the TQRS mode 

is given by (1.50). 

 

  𝑝1,𝑞(𝜏𝑘𝑞) = ∑ 𝑞(𝑛∆)𝛿(𝜏𝑘𝑞 − 𝑛∆)

𝑚−1

𝑛=0

 (1.50) 

Figure 1.14 Explication of TQRS for qT=3 
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p1(t) is the PDF of the RS mode as defined in 1.4.1 for ARS or 1.4.2 or JRS and P1(t) is its 

cumulative function. Having the probability of quantization within the condition (1.47), q(t) is 

defined by (1.51). 

 
  𝑞(𝑡) = 𝑃1 (𝑡 +

∆

2
) − 𝑃1(𝑡 −

∆

2
)      (1.51) 

Within condition (1.49): 

   𝑞(𝑡) = 𝑃1(𝑡) − 𝑃1(𝑡 − 𝛥) (1.52) 

   

With 𝑡 ∈ {𝑛∆, 𝑛 ∈ [0,𝑚 − 1]}, m is the number of possible values for n within the interval of 

support of p1(t) after quantization, P1 the cumulative density function is defined by: 𝑃1 =

∫ 𝑝1(𝜏)𝑑𝜏
𝑡

−∞
, and q(t) must verify the condition of discrete probability (1.53). 

  ∑ 𝑞(𝑛∆) = 1

𝑚−1

𝑛=0

 (1.53) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15 TQRSH for qT=3 
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From the formula of the PDF of the TQRS, the spectral density of a randomly sampled signal after 

time quantization can be deduced, in fact in the literature many studies were presented in [35] to 

[37]  to figure out the effect of time quantization on RS, which will be discussed in chapter 2. 

In [36] the definition of the standard deviation is used to conclude with the value of qT that 

conserves the maximum of the statistical parameter σ/TSm. 

 

  𝜎 = √
1

𝑚
∑ (𝑗∆ − (

1

𝑚
∑ 𝑗∆

𝑚−1

𝑗=0

))

2
𝑚−1

𝑗=0

= ∆√
𝑚2 − 1

12
  

⟹
𝜎

𝑇𝑆𝑚
=
1

𝑞𝑇
√
𝑞𝑇
2 − 1

12
   

(1.54) 

The formula deduced in (1.54) is conceived in order to express the maximal value of the ratio σ/TSm 

in term of qT to deduce the best quantization factor to be used, thus the calculations in [36] was 

based on two conditions: 

1) The random intervals are defined on an interval of support with length equal to TSm,so  the 

number of possible quantized intervals m is equal to qT. 

2) The possible values of these random intervals are uniformly distributed and thus the 

probability of each is 1/m. 

These conditions are too particular which makes the formula in (1.54) specific for the uniform 

distribuiton cases with an interval of defintion equal to [0.5TSm; 1.5TSm]. To generalize the formula 

of the ratio σ/TSm after quantization, the standard deviation σ is calculated according to its 

definition in (1.57) by applying the summation within the interval of support after quantization 

[aq,bq], (aq= a/Δ bq=b/Δ). If D is the deviation of the interval of support defined by (1.55). Then 

the ratio R is defined by (1.56). 

 
 𝐷 = 𝑏 − 𝑎 ⟹ 𝐷𝑞 = 𝑏𝑞 − 𝑎𝑞 = 

𝑏 − 𝑎

∆
 (1.55) 

 
    𝑅 =

𝐷

𝑇𝑆𝑚
=
𝐷𝑞
𝑞𝑇

  (1.56) 

The ratio σ/TSm (after quantization) of a sequence following a uniform distribution with any 

deviation is then concluded by (1.57), the details of calculation are presented in Appendix B. 
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  𝜎 = √
1

𝐷𝑞
∑ (𝑗∆ − (

1

𝐷𝑞
∑ 𝑗∆

𝑏𝑞

𝑗=𝑎𝑞

))

2
𝑏𝑞

𝑗=𝑎𝑞

⟹
𝜎

𝑇𝑆𝑚
=
1

𝑞𝑇
√𝑅

2𝑞𝑇
2
− 1

12
 (1.57) 

Consequently, the relation between the ratio σ/TSm and qT is defined within the ratio R of the 

uniform continuous distribution interval determined before quantization. Figure (1.16) shows the 

variation of σ/TSm with qT for different R. For example for R=1, the maximum value of 
𝜎

𝑇𝑆𝑚
 is 

0.2887, which can be reached for qT=8 with an error less than 1% [36], when the ratio is R=2  the 

maximum is 0.577 which can be reached for qT=7 with same percentage of error. While in case of 

R=0.5 the maximum is not reached until qT is equal 16. Thus, the effect of quantization is higher 

on distributions with narrow intervals than on those with larger interval of support, which will 

impose on distributions with low R to use high frequency clocks having small time steps. In fact, 

the reason behind is that the quantization reduces the number of possible values within the interval 

of definition of the random instants, so when the interval of support is already restricted the 

quantization will affect the randomness more than for large interval of support.  

Besides, for Gaussian distribution the same procedure of calculations cannot be followed, as its 

PDF is defined by σ and cannot be expressed in a discrete way. Therefore, a relation between the 

ratio σ/TSm of the Gaussian distribution in term of the same ratio in uniform distribution is 

conceived in order to define it in term of qT. In RS, when the random jitter or interval is defined on 

a certain interval [a,b], this interval remains the same whether it is a uniform or Gaussian 

distribution. Thus for the same TSm it can be concluded that: 

 
 
𝐷𝑈
𝑇𝑆𝑚

=
𝐷𝐺
𝑇𝑆𝑚

 

 

(1.58) 

Where DUand DG are the deviations in the unifrom distribution and the Gaussian distribution 

respectively. Each deviation is expressed in term of σ of its own distribution: 

  𝐷𝑈 = 𝜎𝑈. √12  𝑎𝑛𝑑 𝐷𝐺 = 6. 𝜎𝐺 (1.59) 

Consequently the relation between σG and σU is deduced by: 

 
 
𝜎𝐺
𝑇𝑆𝑚

=
𝜎𝑈. √3

3. 𝑇𝑆𝑚
 (1.60) 

In conclusion, the ratio σ/TSm in case of Gaussian distribution after quantization is defined by the 

same formula of the ratio in case of uniform distribution divided by √3. Hence, the effect of the 



46 
 

quantization on the Gaussian distribution support is the same of its effect on the uniform 

probability. 

  

Figure 1.16 Quantized standard deviation variation in term of qT 

1.5 Conclusion 

Among multiple types of sampling, the RS was chosen to be studied in order to reveal its potential 

of use in real applications especially on mechanical vibration signals. First, a temporal condition is 

considered to be the main limitation to assure the possibility of implementation in real hardware. 

Then, the definition of the SPP condition is presented, as it is the essential condition for 

guaranteeing a sampling free of aliases which permits the use of low sampling frequency beyond 

the Shannon- Nyquist condition. After reviewing all the modes of RS with all possible random 

distributions to be used with, the most promising modes are the ARS and the JRS. The ARS with 

both distributions uniform and Gaussian verifies the SPP condition within respecting the temporal 

condition, while the JRS can verify both conditions with the uniform distribution only, it can be 

considered a stationary process with the Gaussian distribution disregarding the temporal 

limitation.As a conclusion, the ARS and the JRS with the uniform distribution and the ARS with 

Gaussian distribution are chosen to be studied in simulation and in practice to evaluate the 

possibility of their use in real applications. Before proceeding with the simulation, the study of the 

RS in spectral domain is a must to reveal all its properties. In addition, a revision on all the possible 

spectral analysis used with RS is presented to choose how to explore the randomly sampled signals 

in the frequency domain. Thus, the spectral analysis study is discussed in Chapter 2.  
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2 Chapter 2: Spectral Analysis of Random Sampling 

 

2.1 Introduction 

In general, the observation of signals in time domain is important, though, its content doesn’t reveal 

all the needed information. Besides, electronic devices and automated systems are usually more 

responsive to the power and the frequency of signals, which makes the representation in the 

frequency domain more significant. Hence, the spectral analysis of the RS is essential to observe 

its impact on the sampled signal regardless the signification of this latter. In fact, the best way to 

evaluate such process is by comparing it to the classical method usually used: uniform sampling. 

As declared in Chapter 1 the sampled signal is the product of the analogical signal x(t) with the 

sampling signal S(t) which can be simply defined by the relation (2.1). 

 𝑥𝑠(𝑡) =  𝑥(𝑡). 𝑆(𝑡) (2.1) 

In signal processing, the spectral analysis approach varies according to the aspect of the signal to 

be sampled x(t), and to the form of  the sampling signal S(t) which is imposed by the process type 

of sampling whether it is uniform or random. In this chapter, a brief review on the spectral analysis 

of uniform sampling for deterministic and random analogical signal (x(t)) is presented first. Second, 

a detailed study on different spectral analysis methodologies used for randomly sampled signals 

with both aspects deterministic or stochastic. A comparison between the analysis of both sampling 

processes is shown in order to explore the differences and reveal the effect of RS on the resulting 

signal.  

2.2 Spectral Analysis in Uniform Sampling 

2.2.1 Fourier Transform of Deterministic Signal 

According to the definitions already mentioned in chapter 1, in the time domain the sampled signal 

is defined by (2.2). 

 
𝑥𝑠(𝑡) = ∑ 𝑥(𝑛𝑇𝑠)𝛿(𝑡 − 𝑛𝑇𝑠)

𝑛=+∞

𝑛=−∞

 (2.2) 

Due to the Poisson summation formula applied on the Dirac comb function defined in (2.2), it can 

be confirmed that the Fourier transform (FT) of the Dirac comb in time domain is also a Dirac 

comb in the frequency domain, scaled with 1/TS as declared in (2.3). 
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�̂�(𝑓) =

1

𝑇𝑆
∑ 𝛿(𝑓 −

𝑛

𝑇𝑆
)

𝑛=+∞

𝑛=−∞

  (2.3) 

So the FT of the uniformly sampled signal deduced by the application of Plancherel theorem is 

defined by (2.4) [55]. 

𝑥𝑠(𝑓) = 𝑥(𝑓) ∗ �̂�(𝑓) =
1

𝑇𝑆
. 𝑥(𝑓) ∗ ∑ 𝛿(𝑓 −

𝑛

𝑇𝑆
)

𝑛=+∞

𝑛=−∞

 

 
 𝑥𝑠(𝑓) =  

1

𝑇𝑆
∑ 𝑥(𝑓 −

𝑛

𝑇𝑆
)

𝑛=+∞

𝑛=−∞

 (2.4) 

Therefore, the FT of the uniformly sampled signal xs(t) is a periodic function with period FS equal 

to 1/Ts. In Figure 2.1 a simple example is shown to illustrate the impact of uniform sampling on 

the sampled signal spectrum. In fact the spectrum of x(t) is limited between -Fm/2 and + Fm/2, the 

other repetitions each FS  are the replicas of the spectrum of x(t) that appear due to the discretization 

of x(t) at a constant period Ts. 

 

Figure 2.1 An example of a signal x(t) with its FT before and after uniform sampling 

The example shown in Figure 2.1 clarifies the main condition set by the sampling theorem known 

by Shannon-Nyquist theorem (cited also by some references as Whittaker-Kotelnikov theorem), 

that imposes a limitation on the sampling period defined by (2.5). 

 
𝐹𝑠 ≥ 𝐹𝑚 = 2. 𝐹𝑚𝑎𝑥 ⇔ 𝑇𝑠 ≤

2

𝐹𝑚𝑎𝑥
 (2.5) 
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Fm/2 is the maximal frequency Fmax in the signal spectrum 𝑥(f). This condition is essential for 

preventing the spectrum of the sampled signal from distortion as shown in Figure 2.2 where the 

sampling frequency FS is taken lower than 2Fmax. And for eliminating the aliases, low-pass filters 

are used, but due to their low orders in real applications, it is recommended to choose FS strictly or 

even highly greater than 2Fmax.  In addition, further condition on the frequency resolution is needed 

for a clear representation in the frequency domain [56]. 

 
∆𝑓 ≤

1

𝑁𝑇𝑠
=
1

𝑇
 (2.6) 

Δf is the frequency resolution, N is the number of samples of x(t) taken in the time domain and T 

is the total duration of the acquired signal x(t). 

 

Figure 2.2 Uniform sampling with a period FS<2Fmax 

For a deterministic signal x(tn), the Discrete Time Fourier Transform (DTFT) is defined by: 

 
𝑥𝑑(𝑓) = ∑ 𝑥(𝑛𝑇𝑠)𝑒

−𝑖2𝜋𝑓𝑛𝑇𝑠

+∞

𝑛=−∞

 (2.7) 

And thus, the Energy Spectral Density of x(tn) is defined by [57] 

 𝐸𝑆𝐷𝑥(𝑡𝑛) = |𝑥𝑑(𝑓)|
2 (2.8) 

According to the Wiener-Kintchin theorem[58], the Power Spectral Density (PSD) of a signal is 

the FT of its autocorrelation function. The autocorrelation Rxs(τ) of xs(t) is defined by (2.9), thus 

from the relation (2.10), the relation between the ESD and the PSD of a deterministic signal can be 

deduced by (2.11)  and then by (2.12). 

 
𝑅𝑥𝑠(𝜏) = ∑ 𝑥𝑠(𝑡)𝑥𝑠

∗(𝑡 − 𝜏)

∞

𝑡=−∞

 (2.9) 
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As xs(t) is discretized and is composed of N samples, the discrete autocorrelation Rxs(k) is defined 

in (2.10). 

                                        𝑅𝑥𝑠(𝑘) =
1

𝑁
∑ 𝑥(𝑛𝑇𝑆)𝑥

∗(𝑛𝑇𝑆 − 𝑘)

𝑁−1

𝑛=0

 
𝐹.𝑇
→  𝑃𝑆𝐷𝑥𝑠(𝑡)                              (2.10) 

 

𝑃𝑆𝐷𝑥𝑠(𝑡) =
1

𝑁
∑∑ 𝑥(𝑛𝑇𝑆)𝑥

∗(𝑛𝑇𝑆 − 𝑘)𝑒
−𝑗2𝜋𝑓𝑛𝑇𝑠𝑒−𝑗2𝜋𝑓(𝑛𝑇𝑠−𝑘)

𝑁−1

𝑛=0

𝑁−1

𝑛=0

=
1

𝑁
[∑ 𝑥(𝑛𝑇𝑠)𝑒

−𝑗2𝜋𝑓𝑛𝑇𝑠

𝑁−1

𝑛=0

] [∑ 𝑥(𝑐)𝑒−𝑗2𝜋𝑓𝑐
𝑁−1

𝑛=0

]

∗

  

(2.11) 

 
𝑃𝑆𝐷𝑥𝑠(𝑡) =

|𝑥𝑑(𝑓)|

𝑁

2

=
𝐸𝑆𝐷𝑥𝑠(𝑡)

𝑁
     (2.102) 

2.2.2 Spectral Analysis for Random Signals 

In fact, the importance of the spectral analysis resides in this part for determining or estimating the 

spectrum of random signals, as in most of the applications the sampled signal is not deterministic, 

it may have some known characteristics or some predictable features, but due to the noise and the 

wide variety of possible values, the acquired signal is considered as a random sequence of data. In 

order to treat this data and reveal its content, the spectral analysis techniques were conceived to 

estimate its spectrum and thus deduce the needed information. In Figure 2.3 the classification of 

the spectral analysis methods for random signals sampled uniformly is presented, including the 

most used techniques in the literature [22], [57]. As already mentioned, the spectral analysis is 

developed in purpose of estimating how the total power is distributed over frequency. On one hand, 

the Classical or Non-Parametric methods are based on the estimation of the spectrum after filtering 

the signal to extract the frequency band of interest. On the other hand, the parametric methods 

assume a model for the data which makes the spectrum parameterized, the fact that deviates the 

purpose of estimation to the parameters of the postulated model [22], [57]. 

A) Non-Parametric Methods 

As presented in Figure 2.3, non-parametric methods are also divided into two major categories 

according to the way of estimating the spectrum: the Periodogram and the Correlogram [57]. In 

fact, these methods are conceived to calculate the spectrum according to the PSD definition. Thus, 

by referring to the relations (2.10) and (2.12), the PSD of the random signal is expressed by (2.13). 

From equation (2.13) both methods are defined: the periodogram-based methods conclude the 
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spectrum from the squared DTFT of the signal divided by the number of samples, while the 

Correlogram-based methods count on the FT of the autocorrelation of  xs(t) [22]. 

𝑃𝑆𝐷𝑥𝑠(𝑡) = ∑ 𝑅𝑥𝑠(𝑘)

+∞

𝑘=−∞

𝑒−𝑖2𝜋𝑓𝑛𝑇𝑠 = lim
𝑁→∞

𝐸 [
1

𝑁
|∑ 𝑥(𝑛𝑇𝑠)𝑒

−𝑖2𝜋𝑓𝑛𝑇𝑠

𝑁−1

𝑛=0

|

2

] (2.13) 

 

 

Figure 2.3 Methods of Spectral Analysis for Random Signals in Uniform Sampling 

A.1) The Periodogram 

The Periodogram is known also as the Schuster periodogram referring to its inventor [59]. This 

spectrum estimator is defined by (2.14) and has been used for determining the hidden periodicities 

in time series, which verifies its name.  

 

𝑃𝑆𝐷𝑃(𝑓) =
1

𝑁
[∑ 𝑥(𝑛𝑇𝑠) 𝑒

−𝑖2𝜋𝑓𝑛𝑇𝑠

𝑁−1

𝑛=0

]

2

 (2.14) 

Apparently, the periodogram can be directly deduced from the DTFT of the sampled signal. In 

order to reduce the computational complexity and thus the time of execution, the periodogram can 

be easily calculated by the mean of the Fast Fourier Transform algorithm (FFT) [57]. Many analysis 

were established on the periodogram estimator in order to qualify its performance. Therefore, 

statistical parameters as the variance and the bias were used [60]. In fact, the essential reason behind 

the difference between the estimator and the real spectrum is that the signal is acquired during a 

limited duration. This limitation can be seen as a truncation by a rectangular window that multiplies 

the signal in time domain. In the frequency domain, the estimator is convoluted with a sinc function. 

It was proven that the bias of the periodogram estimator is decreased when the number of sampled 

point is increased. Thus, it is considered as an asymptotically unbiased estimator, while it is 
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inconsistent due to its fluctuation around the real spectrum. Furthermore, problems like leakage 

and smearing appears in the periodogram when the spectrum to be estimated is peaky [57]. Thus, 

several modified periodograms were proposed, the modifications are based on the replacement of 

the signal truncation by a window apodization. Basically, these modified periodograms have the 

same concept but differ in the technique. The modified periodograms can be defined by (2.15). 

 

𝑃𝑆𝐷𝑃𝑚(𝑓) =
1

𝑁𝑈
[∑ 𝑤(𝑛)𝑥(𝑛𝑇𝑠) 𝑒

−𝑖2𝜋𝑓𝑛𝑇𝑠

𝑁−1

𝑛=0

]

2

 (2.15) 

 𝑤𝑖𝑡ℎ 𝑈 =
1

𝑁
∑|𝑤(𝑛)|2
𝑁−1

𝑛=0

 

The first modified periodogram is proposed in [61] in the aim of reducing the variance of the 

periodogram. Thus, its concept is based on splitting up the signal (N samples) into multiple 

segments of M samples and averaging the resulting periodograms of all the segments to obtain the 

new estimated periodogram with less fluctuations. Although the variance is reduced by a factor 

equal to 1/L, where L=N/M, the resolution is also reduced by a factor of L compared to the original 

periodogram. This compromise is then resolved according to the application and the intentions of 

the user. On the same concept of the Bartlett periodogram, further modifications were added to 

conceive the Welch periodogram introduced in [62]. The segmentation is applied by window 

apodization with an overlapping between segments. Figure 2.4 illustrates the common and the 

different points between Bartlett and Welch periodograms.  

 

 

 

 

 

 

 

 

Figure 2.4 The application of Bartlett and Welch modifications 
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A.2) The Correlogram 

According to the equation in (2.13) the correlogram estimator is considered as an alternative to the 

periodogram, though, it is based on the FT of the autocorrelation Rxs(k) of the signal x(n). Similarly 

to the periodogram, the correlogram is considered of high variance even in case of large signals. 

Thus, for same reasons, the Blackman-Tukey spectral estimate was proposed [63], based on 

weighted averaging in order to make the correlogram smoother and reduce the variability. The 

definition of such estimator can be expressed by (2.16). 

 

𝑃𝑆𝐷𝐶𝐵𝑇(𝑓) = ∑ 𝑤(𝑘)𝑅𝑥𝑠(𝑘)

𝑀−1

𝑘=−(𝑀−1)

𝑒−𝑖2𝜋𝑓𝑘𝑇𝑠   (2.16) 

B) Parametric Methods 

As its name indicates, parametric methods are based on estimating parameters of the signal 

spectrum model instead of its whole spectrum. The difference between these methods resides 

essentially in the model assumed. Multiple Signal Classification (MUSIC) introduced by [64] is 

based on considering the signal a sum of exponential terms. When the signal x(n) is predictable and 

can be concluded from anterior samples, its model is the Auto-Regressive (AR), and when it is a 

linear combination of uncorrelated samples it is considered as Moving Average (MA). A 

combination of both models AR and MA can be also used, it is the generalized ARMA model [22]. 

Another variant of parametric methods can be found in Capon method introduced by [65], which 

is based on narrow band filters applied on multiple frequencies, where the aspect of the filters is 

data-dependent [57]. 

2.3 Spectral Analysis for Random Sampling 

In order to apply the RS on vibration signals in machine monitoring context, the spectral analysis 

of this type of sampling must be studied to observe its impact on the spectrum of acquired signals 

as the vibration analysis of rotating machinery is usually conducted in the frequency domain [3]. 

Thus, the spectral analysis of the RS is essential for exploring this process in order to qualify its 

performance according to the mode of sampling and the probability distribution and in terms of the 

parameters of the sequence such as the mean sampling period (TSm), the standard deviation σ and 

the number of points N. By following the same procedure of the spectral analysis for uniform 

sampling, the direct application of the FT on the deterministic sampled signal in case of RS is 

presented in (2.17). 
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∑ 𝛿(𝑡 − 𝑡𝑛)

∞

𝑛=−∞

𝐹.𝑇
→ ∑ 𝑒𝑖2𝜋𝑓𝑡𝑛

∞

𝑛=−∞

= 𝐺(𝑓)  (2.17) 

According to [55] the value of G(f) is not known in general, which makes the interpretation of the 

FT of the randomly sampled signal (xs(t)) ambiguous and depends on the point process {tn}. In fact, 

in [28]and later on in [36], some calculations were made in the aim of estimating the FT of xs(t) 

only in case where the used sampling point process is stationary and they obtained (2.18) for both, 

periodic and aperiodic signals (x(t)). 

 
�̂�𝑠(𝑓) = 𝐸 [ ∑ 𝑥(𝑡𝑛)𝑒

−𝑖2𝜋𝑓𝑡𝑛

+∞

𝑛=−∞

] =
1

𝑇𝑆𝑚
𝑋(𝑓)    (2.18) 

As a result, the deduced form in (2.18) confirms the anti-aliasing property of the stationary random 

process but the exactitude is not guaranteed due to the use of the expectation of the signal, and it 

can’t give further information on the spectrum of xs(t). Consequently, the direct application of the 

FT on xs(t) is not much profitable. In reality, the spectral analysis of the randomly sampled signal 

has been the subject of many researches since this process of sampling appeared. In addition, the 

focus of these researches was on the calculation of the PSD of xs(t) rather than its FT, until the 

research in [36] conceived the FT inspired from the work in [35] where the final forms of the PSD 

of xs(t) sampled by different modes of RS were conceived and verified. Hence, the FT of the signal 

xs(t) within both modes of RS is presented to deduce the basic properties of RS, then a brief review 

is shown on the researches done for developing the PSD formula of the randomly sampled signal 

within the different mode of RS. The link between the FT and the PSD is verified at the end to 

guarantee the equivalence between both representations. A detailed analysis is then done for the 

PSD of both RS modes with the different possible distributions.  

2.3.1 FT of the Deterministic Signal 

Inspired by the results of [32] and [35], the author of [36] deduced the FT of the deterministic 

randomly sampled signal in order to deduce the ESD of xs(t). The procedure of calculations is 

presented in both cases ARS and JRS.  

A) FT of Deterministic Signal Sampled by ARS 

In [36], the calculations were started by (2.19), where the sampling signal is defined by the Dirac 

distribution for the instant t0 whose value is deterministic, in addition to the sum of PDF of the 

random instants {tn}. As declared in (1.26) in chapter 1, the instant tn is the sum of all the previous 

random intervals τi, thus according to (1.32) the PDF of tn is the n-fold convolution which. So, by 

applying the FT as in (2.20), the result is obtained by (2.21). 
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𝑥𝑠(𝑡) = 𝑥(𝑡) [𝛿(𝑡) +∑𝑝𝑛(𝑡)

+∞

𝑛=1

]     (2.119) 

Thus the FT of the PDF of the random instants becomes: 

 
𝑇𝐹[𝑝𝑛(𝑡)] = 𝑇𝐹[⊛𝑖=1

𝑛 𝑝(𝜏𝑖)] =∏𝜑𝜏(−𝑓)

𝑛

𝑖=1

 (2.20) 

 
�̂�𝐴𝑅𝑆(𝑓) =

1

𝑇𝑆𝑚
𝑋(𝑓) + 𝑋(𝑓)⊛

1

[1 − 𝜑𝜏(−𝑓)]
  (2.12) 

In the formula (2.21), the elimination of the aliases is obvious which verifies the results declared 

in chapter 1, where it was concluded that in case of an ARS the random point process is stationary 

independently from the probability distribution of the random interval τ, so, the anti-aliasing 

property is always verified. Consequently, the low-pass filtering for anti-aliasing is not needed and 

the mean sampling period is not restricted by a maximum value as in the uniform sampling case 

due to the absence of aliasing. The second term in the addition of (2.21) is the additive noise 

resulting from the application of the RS. Finally, the ESD of xs(t) is defined by:  

 𝐸𝑆𝐷𝑥𝑠 = |�̂�𝐴𝑅𝑆(𝑓)|
2

 (2.13) 

B) FT of Deterministic Signal Sampled by JRS 

In the same methodology, the calculation begins with (2.23) a similar expression to (2.19),  where 

the PDF pn(t) of the random instant tn is expressed by the PDF of the random jitter with a translation 

of nTSm as already declared in (1.44) of chapter 1. By applying the FT as in (2.24), the FT of the 

JRS sampled signal is deduced in (2.25), where X(f) is the FT of x(t) and 𝜑u(f) is the CF of the 

jitter u whose PDF is pu(t). 

  

𝑥𝑠(𝑡) = 𝑥(𝑡) [𝛿(𝑡) + ∑ 𝑝𝑛(𝑡)

+∞

𝑛=−∞
𝑛≠0

]  = 𝑥(𝑡) [𝛿(𝑡) + ∑ 𝑝𝑢(𝑡 − 𝑛𝑇𝑆𝑚)

+∞

𝑛=−∞
𝑛≠0

]    
(2.14) 

 

�̂�𝐽𝑅𝑆(𝑓) = 𝑋(𝑓) ∗ 𝑇𝐹 [𝛿(𝑡) + ∑ 𝑝𝑢(𝑡 − 𝑛𝑇𝑆𝑚)

+∞

𝑛=−∞
𝑛≠0

]     (2.154) 

 
�̂�𝐽𝑅𝑆(𝑓) =

1

𝑇𝑆𝑚
{𝑋(𝑓) ∗ [1 − 𝜑𝑢(−𝑓)] + ∑ 𝑋(𝑓 −

𝑛

𝑇𝑆𝑚
)𝜑𝑢 (−

𝑛

𝑇𝑆𝑚
)

+∞

𝑛=−∞

}     (2.165) 

As the CF of the jitter u is either for uniform distribution or Gaussian distribution, its shape is 

similar to a low pass filter, thus, it can be deduced from the FT of xs(t) in (2.25),  that the periodic 
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repetitions of X(f) within the second term of the summation in (2.25) are eliminated by the CF of 

the jitter [50]. The elimination of these replicas is dependent on the shape of CF which is determined 

by the parameters of the random jitter distribution. Hence, the results of chapter 1 are confirmed 

concerning the anti-alias property for the JRS which is dependent on the chosen distribution of the 

jitter u. The first term of (2.25) indicates the presence of an additive noise caused by the RS process. 

Similarly to the ARS case, the ESD of xs(t) is defined by (2.26). 

 𝐸𝑆𝐷𝑥𝑠 = |�̂�𝐽𝑅𝑆(𝑓)|
2

 (2.26) 

2.3.2 PSD of xs(t) 

In order to define the PSD of xs(t), the start must be with its definition in term of x(t) and S(t).  As 

the sampling process is modeled in time domain by the relation (2.1) declared at the beginning of 

this chapter and as the analogic signal x(t) and the sampling signal S(t) are independent, the 

autocorrelation of xs(t) (Rxs(τ)) is equal to the product of the autocorrelation of x(t) (Rx(τ)) with the 

autocorrelation of S(t) (RS(τ)). According to the Wiener-Kintchin theorem [58], the PSD of a signal 

is the FT of its autocorrelation function.  Thus, the relation between the corresponding PSD in the 

frequency domain can be expressed by (2.27). 

 Φ𝑥𝑠(𝑓) = Φ𝑥(𝑓) ⊛Φ𝑆(𝑓) (2.27) 

Where Φxs(f), Φx(f) and ΦS(f) are the PSD of the sampled signal, the analogic signal and the 

sampling signal respectively [32], [35], [37]. Thus, to explore the effect of RS on the sampled 

signal, it is crucial to determine the spectrum of the sampling sequence and deduce the spectrum of 

sampled signal by applying the convolution of the spectrum of the analogic signal with the spectrum 

of the sampling sequence. 

The most reliable spectral analysis of RS was originally introduced by Beutler and Leneman, as 

they were the first authors to conceive the definition of the random impulse process in [34], they 

continued their study by determining the condition of stationarity in [33], and then by establishing 

the definition of the autocorrelation function and the PSD of the RS signal S(t) in [32]. 

In fact, many analyses were proposed in this concern by many different authors, since 1960. When 

introducing the ARS mode for the first time, Shapiro and Silverman proceeded in determining the 

power spectrum of this process in their early study in [31] to verify its free-aliasing aspect, 

especially when used with the exponential distribution whose statistical parameters doesn’t verify 

the temporal condition as proved in Chapter 1. The power spectrum of an ARS sampled signal 

proposed in [31] is defined by (2.28). 
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Φ𝑥𝑠(𝑓) = ∫ Φ𝑥(𝑓)

+∞

−∞

𝑅𝑒 {
1 + 𝑒𝑖2𝜋𝑓𝜑(𝑧)

1 − 𝑒𝑖2𝜋𝑓𝜑(𝑧)
}𝑑𝑧 (2.28) 

With the condition of having an iid random interval with a PDF p(t) and a CF 𝜑(f). In their study 

of NUS as an advanced topic in sampling theory, Marvasti in [55] discussed the RS as a part of 

NUS and continued in determining the power spectrum of the randomly sampled signal in different 

RS modes. For ARS with exponential or uniform distribution the spectrum is defined by (2.29). 

 Φ𝑥𝑠(𝑓) = λ
2Φ𝑥(𝑓) + 𝜆𝜂𝑥(0) (2.29) 

𝜂x(0) is the total power of x(t) and λ is the mean of the random interval. 

For RSS the power spectrum is defined by (2.30). 

 
Φ𝑥𝑠(𝑓) = Φ𝑥(𝑓) +∑Φ𝑥 (𝑓 −

𝑛

𝑇𝑆𝑚
)

𝑛≠0

+
𝑇𝑆𝑚(1 − 𝑝)

𝑝
𝜂𝑥(0) (2.30) 

p is the probability of having a sampling pulse (the complement of the skipping probability). 

For JRS the sampled signal has a power spectrum expressed in (2.31). 

 
Φ𝑥𝑠(𝑓) = Φ𝑥(𝑓) +∑Φ𝑥 (𝑓 −

𝑛

𝑇𝑆𝑚
)

𝑛≠0

𝜑 (
𝑛𝜗

𝑇𝑆𝑚
) + 𝑇𝑆𝑚{𝜑 (

𝑛𝜗

𝑇𝑆𝑚
) − |𝜑 (

𝑛𝜗

𝑇𝑆𝑚
)|
2

⊛Φ𝑥(𝑓)} 

(2.31) 

𝜑(f) is the CF of the jitter and ϑ is he pulse width. 

In addition, Martin in his thesis [66] on the theory and techniques of analyzing irregulary sampled 

signals developed the power spectrum of randomly sampled signals by starting with the results of 

Shapiro and Silverman in [31] to conclude for the ARS by (2.32). 

 
Φ𝑥𝑠(𝑓) = Φ𝑥(𝑓)⊛ {

1

𝑇𝑆𝑚
𝛿(𝑓) + 𝐶𝑜𝑛𝑡 𝑅𝑒 {

1 + 𝜑𝜏(𝑓)

1 − 𝜑𝜏(𝑓)
}

+ ∑ ℎ𝛿𝛿(𝑓 − 𝑓𝛿)}

𝑓𝛿≠𝑓

 

 

(2.32) 

hδ is the strength of the impulse. The term “Cont” is used to emphasize the continuity of Re{.} in 

the limit as f tend to fδ. And for the JRS, the spectrum is expressed by: 

 
Φ𝑥𝑠(𝑓) = Φ𝑥(𝑓)⊛ {1 − |𝜑𝑢(𝑓)|

2 + |𝜑𝑢(𝑓)|
2∑𝛿(𝑓 −

𝑛

𝑇𝑆𝑚
)

𝑛∈𝑍

} (2.33) 
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However, the suggested definitions were judged to be contradicting or incompatible. Due to the 

absence of simulations or real measurements in these studies, it was hard to identify which model 

to consider. In his study of applying the RS in radio design, Wojtiuk developed in first place the 

power spectrum of random process in the JRS mode and then deduced the spectrum of the ARS. 

After verifying with simulations in [35], it was found out that the power spectrum definition 

originally proposed by Beutler and Leneman in [32] is the most accurate to be used. Thus, a brief 

review on the calculation method of the PSD in [32] is presented with the verification of the link 

between the FT and the PSD of the randomly sampled signal. 

The sampling process S(t) is already declared in chapter 1 by (2.34). 

 
𝑆(𝑡) = ∑ 𝛼𝑛𝛿(𝑡 − 𝑡𝑛)

𝑛=+∞

𝑛=−∞

 (2.34) 

Which is the definition of the random impulse process defined by Beutler and Leneman. For S(t), 

the autocorrelation RS(τ) is defined by (2.35). 

 
𝑅𝑠(𝜏) = 𝐸[𝑆(𝑡)𝑆(𝑡 + 𝜏)] = lim

𝑇→∞

1

2𝑇
∫ 𝑆(𝑡)𝑆(𝑡 + 𝜏)𝑑𝑡
𝑇

−𝑇

 (2.35) 

And thus, the PSD of S(t) is the FT of RS(τ) and is defined by (2.36). 

 
Φ𝑠(𝑓) = ∫ 𝑅𝑆(𝜏)

∞

−∞

𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 (2.36) 

In [32] the autocorrelation function of S(t) was deduced from the autocorrelation of its primitive 

Ns(t), which is a stationary increment stochastic process, the calculations made in [32] are resumed 

in the Appendix C. The autocorrelation of S(t) is expressed by (2.37) within the third theorem 

deduced from the SPP condition  already mentioned in Chapter 1. 

 
𝑅𝑆(𝜏) = 𝐸[𝑠(𝑡)𝑠(𝑡 + 𝜏)] =

1

𝑇𝑆𝑚
𝜌(0)𝛿(𝜏) +

1

𝑇𝑆𝑚
∑𝜌(𝑛)𝑝∂𝑛(|𝜏|)

∞

𝑛=1

 (2.37) 

Where 1/TSm is considered as the average number of points per unit time interval, and ρ(n) is the 

correlation function for the process {αn}, ρ(n) is defined by (2.38). 

 𝜌(𝑛) = 𝐸[𝛼𝑢+𝑛𝛼𝑢]   ∀𝑢 (2.38) 

p∂n(t) is the PDF of ∂n which is the sum of n consecutive time intervals. By referring to the definition 

of the time process {tn} in Chapter 1, it can be deduced that 𝑡𝑛 = ∂n, which means that p∂n(t) =pn(t) 

in case when the n consecutive intervals are taken from the beginning of the sequence. 
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The expression of Rs(τ) in (2.37) is considered as the essential definition upon which is based all 

the theory of RS conceived and developed in successive studies. In this thesis the correlation 

between random instants is not taken in consideration which simplifies the definition of Rs(τ) to be 

replaced by (2.39). 

 
𝑅𝑠(𝜏) = 𝐸[𝑠(𝑡)𝑠(𝑡 + 𝜏)] =

1

𝑇𝑆𝑚
𝛿(𝜏) +

1

𝑇𝑆𝑚
∑𝑝∂𝑛(|𝜏|)

∞

𝑛=1

 (2.39) 

The definition of (2.39) is the autocorrelation of any sequence of RS, the selection of the mode and 

the distribution gives further details and thus makes the function more specific. In next paragraphs, 

the PSD of each mode is deduced with the verification of the link between the FT and the PSD. 

A) ARS Case 

To find the PSD of the ARS mode, the expression of p∂n(t) can be simply defined in term of the 

PDF of the random interval τ by the n-fold convolution of the PDF the n consecutive intervals. As 

in the term (2.39) the summation of p∂n is from n=1, it can be confirmed that p∂n(t) =pn(t). Thus, the 

autocorrelation of the sampling signal is then deduced by (2.40). 

 
𝑅𝑠(𝜏) =

1

𝑇𝑆𝑚
{𝛿(𝜏) +∑𝑅𝑝(𝜏)

+∞

𝑛=1

+∑𝑅𝑝(−𝜏)

+∞

𝑛=1

} =
1

𝑇𝑆𝑚
{𝛿(𝜏) +∑𝑝𝑛(𝜏)

+∞

𝑛=1

+∑𝑝𝑛(𝜏)

+∞

𝑛=1

}

=
1

𝑇𝑆𝑚
{𝛿(𝜏) +∑⊛𝑖=1

𝑛 𝑝(𝜏𝑖)

+∞

𝑛=1

+∑⊛𝑖=1
𝑛 𝑝(−𝜏𝑖)

+∞

𝑛=1

} 

 

(2.40) 

The expression in (2.40) is the continuation of (2.39), where the term of 𝑅𝑝(𝜏) can be directly 

assumed by (2.41). 

 
𝑅𝑝(𝜏) = ∫ 𝑝0(−𝑡)𝑝𝑛(−𝑡 − 𝜏)𝑑𝑡

∞

−∞

= ∫ 𝛿(−𝑡)𝑝𝑛(𝑡 + 𝜏)𝑑𝑡
∞

−∞

= 𝑝𝑛(𝜏) (2.41) 

In fact, the second term of summation in (2.40) is added to complete the summation from -∞ to +∞, 

by considering the ARS sequence is composed of two sequences, the first goes in the positive time 

direction, the second goes in the negative time direction and both meet at the common origin t0.  As 

already declared in (1.32) the PDF function 𝑝𝑛(τn) is equal to n-fold convolution of all the random 

intervals τn, so by applying the FT on Rs(τ), the PSD of S(t) is expressed by (2.42). 

Φ𝑠(𝑓) =
1

𝑇𝑆𝑚
{1 +∑𝜑𝜏

𝑛(𝑓)

∞

𝑛=1

+∑𝜑𝜏
𝑛(−𝑓)

∞

𝑛=1

} 



60 
 

 
        =

1

𝑇𝑆𝑚
{1 +∑𝜑𝜏

𝑛(𝑓)

∞

𝑛=1

+∑𝜑𝜏
∗𝑛(𝑓)

∞

𝑛=1

} (2.42) 

The sum of 𝜑𝜏
𝑛(𝑓)  is considered as the sum of a geometric series with reason equal to 𝜑τ(f), which 

can be expressed as a Poisson kernel which will lead to the expression in (2.43) with resolving the 

singularity for f=0, by adding the δ(f) function that recovers the spectrum of x(t) [35]. In fact, by 

proceeding with the autocorrelation of the expression of (2.19), and deducing 𝑅𝑝(𝜏) by (2.41) and 

continuing with applying the FT to obtain the PSD in (2.43), the direct link between the FT of ARS 

with its PSD is confirmed. 

 
Φ𝑥𝑠(𝑓) =

1

𝑇𝑆𝑚
2 Φ𝑥(𝑓) +

1

𝑇𝑆𝑚
Φ𝑥(𝑓)⊛ 𝑅𝑒 {

1 + 𝜑𝜏(𝑓)

1 − 𝜑𝜏(𝑓)
} (2.43) 

Thus same conclusions deduced from the FT can be revealed from the PSD according the aliasing, 

more properties can be observed by defining the CF of possible distributions which will be 

presented in the next section after deducing the JRS PSD. 

B) JRS Case 

As already mentioned, the autocorrelation definition is expressed in term of the PDF of ∂n, in case 

of the JRS this probability can be deduced from the PDF of the jitter by using its definition.  

   𝑡𝑛 = 𝑛𝑇𝑠𝑚 + 𝑢𝑛 (2.44) 

The interval between two consecutive samples in JRS is then: 

 𝜏𝑛 = 𝑡𝑛 − 𝑡𝑛−1 = 𝑛𝑇𝑆𝑚 + 𝑢𝑛 − (𝑛 − 1)𝑇𝑆𝑚 − 𝑢𝑛−1 = 𝑇𝑆𝑚 + 𝑢𝑛 − 𝑢𝑛−1 (2.45) 

So the sum ∂n can be expressed by (2.46). 

 

∂𝑛 = ∑ 𝜏𝑚 =

𝑛+𝑙−1

𝑚=𝑙

𝑛𝑇𝑆𝑚 + 𝑢𝑛+𝑙−1 − 𝑢𝑙−1       ∀𝑙 (2.46) 

The term nTSm is deterministic. The variables 𝑢𝑛+𝑙−1and 𝑢𝑙−1 are random jitters that follow the 

same distribution having pu(t) as PDF, thus the PDF of ∂n is deduced by (2.47) as the PDF of the 

sum of variables is the convolution of their PDF: 

 𝑝∂n(𝑡) = 𝛿(𝑡 − 𝑛𝑇𝑆𝑚)⊛ 𝑝𝑢(𝑡) ⊛ 𝑝𝑢(−𝑡) (2.47) 

In fact, by definition, the autocorrelation Ry(t) of any signal y(t) is expressed by the convolution of 

y(-t) with y(t), then: 

 𝑅𝑝𝑢(𝜏) = 𝑝𝑢(−𝑡) ∗ 𝑝𝑢(𝑡) ⇒ 𝑝∂n(𝑡) = 𝑅𝑝𝑢(𝑡 − 𝑛𝑇𝑆𝑚) (2.48) 
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Where Rpu(τ) is the autocorrelation of the PDF of the jitter u. Which means that the PDF 𝑝∂n(𝑡) is 

in reality the autocorrelation of the JRS sampling sequence by comparing it to the expression of 

xs(t)  in (2.23),  thus the autocorrelation of the sampling signal in JRS is expressed by (2.49). 

 
𝑅𝑠(𝜏) =

1

𝑇𝑆𝑚
𝛿(𝜏) +

1

𝑇𝑆𝑚
∑𝑅𝑝𝑢(𝜏 − 𝑛𝑇𝑆𝑚)

𝑛≠0

 (2.49) 

 This autocorrelation, as it can be directly deduced from (2.23) confirms the relation between the 

FT of RS and its PSD that can be concluded from it. 

The FT of Rpu(τ)  gives the PSD of the PDF:  

 Φ𝑝(𝑓) = 𝜑𝑢(−𝑓) × 𝜑𝑢(𝑓) = 𝜑𝑢
∗(𝑓) × 𝜑𝑢(𝑓) = |𝜑𝑢(𝑓)|

2 (2.50) 

𝜑u(f) is the characteristic function of the PDF of the jitter which is a real function, so 𝜑u(f)  is an 

Hermitian function.  

 Consequently the FT of Rs(τ) is concluded by (2.51). 

 
Φ𝑠(𝑓) =

1

𝑇𝑆𝑚
(1 − Φ𝑝(𝑓)) +

1

𝑇𝑆𝑚
∑ Φ𝑝(𝑓)𝑒

−𝑖2𝜋𝑓𝑛𝑇

∞

𝑛=−∞

 (2.51) 

By replacing Φ𝑝(𝑓) by its value, and by using the Poisson summation to replace the exponential 

in the second term by a dirac comb, the PSD of s(t) becomes (2.52). 

 
Φ𝑠(𝑓) =

1

𝑇𝑆𝑚
(1 − |𝜑𝑢(𝑓)|

2) +
1

𝑇𝑆𝑚
∑ |𝜑𝑢(𝑓)|

2𝛿 (𝑓 −
𝑛

𝑇𝑆𝑚
)

∞

𝑛=−∞

 (2.52) 

The PSD of xs(t) is then deduced in (2.53). 

               Φ𝑥𝑠(𝑓) = Φ𝑥(𝑓)⊛Φ𝑠(𝑓)

=
1

𝑇𝑆𝑚
{Φ𝑥⊛ [1 − |𝜑𝑢(𝑓)|

2] +
1

𝑇𝑆𝑚
∑ |𝜑𝑢 (

𝑛

𝑇𝑆𝑚
)|
2

∞

𝑛=−∞

Φ𝑥 (𝑓 −
𝑛

𝑇𝑆𝑚
)} 

 

(2.53) 

The PSD of the JRS sequence in (2.53) elucidates the impact of JRS on the sampled signal. The 

impact remains in the first continuous part considered as an added noise floor and in the second 

discrete part defined by a pulse train modulated with the characteristic function of the random jitter. 

After the convolution with the analogical signal x(t), these pulses turn into aliases. The shape of 

the characteristic function may contribute in eliminating these aliases, which gives the JRS a 

potential to be an alias-free sampling. 
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After the verification of the link between the FT and the PSD of the randomly sampled signal xs(t), 

further analysis can be done by exploring the PSD in both modes of RS using different distributions, 

with the ability to identify the origin of each term in the PSD. Hence, a detailed study of the RS 

impact within its multiple versions is presented in next section. 

2.3.3 RS Impact 

A) ARS 

A.1) PSD of ARS with Uniform Distribution 

When considering the random interval τ varying in the interval [TSm(1-r); TSm(1+r)], the CF of the 

uniform distribution becomes (2.54) 

 
𝜑𝑢𝑛𝑖𝑓(𝑓) =

𝑒𝑖2𝜋𝑓𝑏 − 𝑒𝑖2𝜋𝑓𝑎

𝑖2𝜋𝑓(𝑏 − 𝑎)
= 𝑒𝑖2𝜋𝑓𝑇𝑆𝑚𝑠𝑖𝑛𝑐(2𝜋𝑓𝑟𝑇𝑆𝑚) (2.54) 

After replacing the CF of the uniform distribution in (2.53), and by using the notion of the Poisson 

Kernel the PSD of the ARS with the Uniform distribution becomes: 

 Φ𝑥𝑠(𝑓) = Φ𝑥(𝑓)

⊛ {
1

𝑇𝑆𝑚
2 𝛿(𝑓)

+
1

𝑇𝑆𝑚

1 − (𝑠𝑖𝑛𝑐(2𝜋𝑓𝑟𝑇𝑆𝑚))
2

1 − 2𝑠𝑖𝑛𝑐(2𝜋𝑓𝑟𝑇𝑆𝑚) cos(2𝜋𝑓𝑇𝑆𝑚) + (𝑠𝑖𝑛𝑐(2𝜋𝑓𝑟𝑇𝑆𝑚))
2} 

 

(2.55) 

As the ARS is an aliasing-free sampling, the PSD in case of ARS with the uniform distribution is 

free of impulses causing replicas, though, the noise floor is not flat and it will affect the signal. In 

order to explore the effect of this noise and find the conditions to reduce it, the second term 

convoluting Φx(f) in the PSD, N(f), is plotted in Figures (2.5) to (2.7) by varying r and TSm. 

According to the temporal condition discussed in Chapter 1 the value of r must not be greater than 

1, and according to the stationarity condition, the best value of r is the maximum 1 ( which 

correspond to the ratio σ/TSm= 0.577) as the maximum limit imposed by the temporal condition 

tends to have the minimum stationarity delay Tsd. This choice is confirmed in Figures 2.5 and 2.6,  

where for a fixed TSm=10s, N(f) is figured for different values of r. In Figure (2.5) the best value to 

choose is r=0.5 having the smallest variance, while in Figure (2.6) the function maxima at the 

aliasing frequencies (1/TSm and its multiple) are the most reduced in case of r=1. In comparing both 
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cases, r=0.5 is found to be better to choose, though, the effect of TSm may enhance the shape of the 

function in r=1 to make it convenient. 

Figure 2.5 The noise term N(f) in ARS with uniform distribution for different values of r<0.5 and 

TSm=10s 

 

Figure 2.6 The noise term N(f) in ARS with uniform distribution for different values of r>0.5 and 

TSm=10 



64 
 

 

 

A.1.1)  Recommendation for TSm 

In case of r=0.5, the maximum of N(f) is reached at f=3/(2TSm), the variation of TSm affect  then the 

loaction of this maximum and the width of the side lobe. While in case of r=1, the maximum is 

reached at f→0 (as there exists a singularity in N(f) for f=0) and when TSm is decreased the width 

of the main lobe increases. In fact, in this case the N(f) function has the form of a low pass filter 

with a cutting frequency proportional to 1/TSm. To view the effect of this term on the whole 

spectrum an example of xsin(t) composed of the sum of two sines at F1=50Hz and F2=100Hz with 

                 Figure 2.7 The noise term N(f) in ARS with uniform distribution for different values of TSm 

with r=0.5 (left) and r=1(right) 

 

         Figure 2.8 The spectrum Φxs(f) in ARS with uniform distribution for different values of TSm 

with r=0.5 (left) and r=1(right) 
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amplitudes A1=20 and A2=40 is taken, the spectrum Φ𝑥𝑠(𝑓) is shown in figure 2.8 for both values 

of r (0.5 and 1) and for different values of TSm. The noise in this case is eventually the sum of N(f) 

repetitions located at the frequencies F1 and F2 of the signal x(t). In case of r=0.5 the noise is reduced 

between the two impulses while for r=1 the noise reach its maximum. In the aim of reducing the 

noise added by the RS, r is preferred to be 0.5 ( which correspond to the ratio σ/TSm= 0.2887)  and 

TSm is chosen to be decreased to enlarge the distance between the two side lobes as in figure of N(f) 

and thus minimize the noise around the signal impulses. In fact the distance between the borders of 

the two side lobes is approximately 2FSm, so FSm must be equal or greater than the distance between 

two peaks which is the difference (F2-F1). This can be generalized for any spectrum having the 

highest frequency Fm, for the best noise reduction Fsm must be equal or greater than Fmax, which 

means TSm<Tm. In fact this condition is not crucial, it is just a recommendation to reduce the noise 

resulting from RS. 

A.1.2) Recommendations for N 

According to [35], [37] in order to examine the effect of the number of points in practical 

implementations, the noise term in the spectrum of xs(t) is normalized by 1/NTSm. Considering xa(t) 

is an analytical signal defined by, with Amin is the minimal amplitude in xa(t). In worst cases where 

TSm is chosen higher than Tm and the function N(f) is convoluted with the spectrum Φ𝑥(𝑓) and thus 

located at the frequencies fk and multiplied at each frequency by its corresponding amplitude Ak, 

so the maximum value in the noise term after normalization is (2.57) the term g multiplying the 

amplitudes is the maximum of the function N(f) before convolution. The maximum of the whole 

noise term must be lower than the minimum amplitude |Amin|2/T2
Sm of the signal xa(t) by a certain 

ratio C determined within the constraint of the application using the ARS in sampling. This 

condition is expressed by (2.58) to simplify the notation and to find a minimal limitation of N, all 

the amplitudes Ak are considered to be equal to the minimum Amin, which will leads to the final 

form of the condition of N in (2.59). This relation between the number of samples N taken randomly 

with an ARS process and the number of peaks K of the original signal xa(t) in the frequency domain 

where it is considered as K-sparse is very similar to the result of CS concerning the number of 

points captured in term of the sparse elements of the original signal as already mentioned in Chapter 

1. 

 
𝑥𝑎(𝑡) =∑ 𝐴𝑘

𝐾

𝑘=1
𝑒𝑗2𝜋𝑓𝑘𝑡  (2.56) 

 
max(𝑁(𝑓)⊛Φ𝑥(𝑓)) =

∑ |𝑔. 𝐴𝑘|
2𝐾

𝑘=1

NT𝑆𝑚
2  (2.57) 



66 
 

 
𝐶.
∑ |𝐴𝑘|

2𝐾
𝑘=1

𝑁. 𝑇𝑆𝑚
2 =

|𝐴𝑚𝑖𝑛|
2

𝑇𝑆𝑚
2 ⟹𝑁 = 𝐶.

∑ |𝐴𝑘|
2𝐾

𝑘=1

|𝐴𝑚𝑖𝑛|
2
  (2.58)  

 𝑁 ≥ 𝑔. 𝐶. 𝐾 (2.59) 

According to Figure 2.9, for a fixed value of r the maximum of N(f) is nearly constant, in case of 

r=0.5 it is perfectly constant for all the values of TSm as shown in Figure 2.9, g is then equal to 1.53 

(3.7 in dB). By continuing with the same way, it can be deduced that N must verify (2.59) to 

minimize the noise added by the RS effect. In case of r=1, g=3.289(10.34 in dB) which makes this 

case less advantageous and more requiring than r=0.5, which makes the ratio σ/ TSm =0.2887 is the 

better choice. 

In conclusion, in the aim of reducing the noise added by the RS two limitation values for the mean 

sampling period and for the number of randomly sampled point are proposed as recommendations 

for ARS with an anti-aliasing property guaranteed and a reduced additive noise.  

 

Figure 2.9 The Maximum of N(f) in term of TSm for r=0.5 and r=1 

A.2) PSD of ARS with Gaussian Distribution 

With ARS mode, the mean of the random interval is TSm and the standard deviation is σ so the CF 

of Gaussian distribution in this case is expressed by (2.60). 

 𝜑𝑔𝑎𝑢𝑠𝑠(𝑓) = 𝑒
𝑖2𝜋𝑓𝑇𝑆𝑚𝑒−2𝜋

2𝑓2𝜎2 (2.60) 

By applying the notion of Poisson kernel P(ρ,θ) on the CF: ρ =𝑒−2𝜋
2𝑓2𝜎2 and 𝜃 = 2𝜋𝑓𝑇𝑆𝑚 the 

spectrum of the randomly sampled signal becomes (2.61). 
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Φ𝑥𝑠(𝑓) =
1

𝑇𝑆𝑚
2 Φ𝑥(𝑓) +

1

𝑇𝑆𝑚
Φ𝑥(𝑓)⊛ [

1 − (𝑒−2𝜋
2𝑓2𝜎2)

2

1 − 2(𝑒−2𝜋
2𝑓2𝜎2) cos(2𝜋𝑓𝑇𝑆𝑚) + (𝑒

−2𝜋2𝑓2𝜎2)
2] (2.61) 

It can be deduced from (2.61) that the PSD in case of ARS with the Gaussian distribution is free  

of aliases, but the noise floor is not flat and it will disturb the signal. The term causing this noise is 

the function N(f) convoluting the the spectrum Φx(f) in the second element of addition of the 

spectrum Φxs(f). As in previous cases, this function is presented in figures 2.10 and 2.11 with the 

variation of the parameters TSm and σ to view their impacts and conclude with the best values to 

obtain a resulting spectrum with minimum of noise. According to the discussions in chapter 1, the 

temporal condition imposed on the ratio σ/TSm a maximum value equal to 0.333, and according to 

the condition of stationarity and the definition of the delay of stationarity, it was deduced that this 

maximum value is the best to choose. In figure 2.10, it can be apparently verified that with σ/ TSm 

equal to 0.167 and 0.33, N(f) has the minimum variance and its maxima at the aliasing frequencies 

are the most reduced. Thus, for these ratios, N(f) is shown for different values of TSm to view its 

effect and conclude with the best value to choose. 

A.2.1) Recommendation for TSm 

In both cases presented in figure (2.12) the maximum of side lobes is reached at 1/TSm,  so the value 

of TSm directly affects the width of the gap at f=0, the distance between side lobes maxima is 2/TSm. 

The same example of xsin(t) taken in the ARS with uniform distribution case (F1=50Hz and 

F2=100Hz; A1=20 and A2=40) is used the case of Gaussian distribution. Similarly, the noise is the 

sum of N(f) repetitions located at the frequencies F1 and F2 of the signal xsin(t). But, in this case, 

the wider is the gap of N(f) at f=0, the more is the noise reduced around the signal impulses. Thus 

         Figure 2.10 The Noise Term Convoluting Φx(f) for Different Values of σ with TSm=1 
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the decreased values of TSm are appreciated. It can be deduced from this figure, that if FSm is equal 

or greater than the difference (F2-F1), both gaps of the repeated N(f) will be joined in one wider 

gap, which will reduce the noise to the minimum between both impulses. This can be generalized 

for any spectrum having the highest frequency Fm, for the best noise reduction FSm must be equal 

or greater than Fmax, which means TSm<Tm. 

 

Figure 2.11 The Spectrum Φxs(f) for Different Values of TSm with σ=0.167TSm(left) and 

σ=0.333TSm(right) 

 

Figure 2.12 The Noise Term Convoluting Φx(f) for TSm=0.1with σ=0.167, TSm(left) and 

σ=0.333TSm(right) 
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A.2.2) Recommendations for N  

By applying the same example with the same methodology followed in the ARS with uniform 

distribution case, and referring to figure (2.13) the recommendation for N is expresssed in (2.62). 

 𝑁 > 𝑔′. 𝐶. 𝐾 (2.62) 

Where g’ is 1.3 (2.3 in dB) in case of σ=0.333TSm and 3.7(11.4 in dB) in case of σ=0.167TSm, which 

make the latter case more demanding in number of points to be sampled. 

 

Figure 2.13 The Maximum of N(f) in term of TSm for σ=0.333 and σ=167 

A.3) The Nature of Noise in ARS 

After the study of each mode’s PSD, it can be concluded that in both cases of ARS, with uniform 

and Gaussian distribution, the noise term origin is the function N(f) which is convoluting the 

spectrum Φx in the second element of addition in Φxs(f). In order to identify the cause of the noise 

in the ARS mode, the origin of this term must be identified in the time domain by following the 

link between the PSD and the FT of the ARs mode. The main term responsible of the apparition of 

the noise is expressed in (2.63). 

 
�̂�(𝑓) = 𝑅𝑒 {

1 + 𝜑𝜏(𝑓)

1 − 𝜑𝜏(𝑓)
} (2.63) 

In fact, this term is resulting from the FT of  𝑝𝑛(𝑡) in the autocorrelation function in (2.40),  which 

is equivalent to 𝑝𝑠(𝑡)  as defined in (2.64). 

 
𝑛(𝑡) = ∑𝑝𝑛(𝑡) = 𝑝𝑠(𝑡)

+∞

𝑛=1

 (2.64) 
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As the second summation added for negative t is suggested for continuing the ARS sequence in 

time domain with the same distribution. As already mentioned in Chapter 1, that ARS sequences 

are always stationary without specifying the distribution having the sum ps(t) tending towards 

1/TSm, thus: 

 

∑ 𝑝𝑛(𝑡)

−1

𝑛=−∞

=
1

𝑇𝑆𝑚
 (2.65) 

So, the noise term in the time domain is expressed by (2.66). 

 

𝑁(𝑡) = 𝑥(𝑡) [𝛿(𝑡) + ∑ 𝑝𝑛(𝑡)

+∞

𝑛=−∞
𝑛≠0

] (2.66) 

As the signal x(t) is independent from the sampling sequence distribution then the expectation of 

their product is equal to the product of expectations defined in (2.67). 

 

𝐸[𝑁(𝑡)] = 𝐸[𝑥(0)] + 𝐸[𝑥(𝑡)] × 𝐸 [ ∑ 𝑝𝑛(𝑡)

+∞

𝑛=−∞
𝑛≠0

] = 𝑐𝑡𝑒 + 𝐸[𝑥(𝑡)] ×
2

𝑇𝑆𝑚
 (2.67) 

 

Thus, if x(t) is a periodic, N(t) within the ARS sampling process is cyclostationary of order 1. 

B) JRS mode 

B.1) PSD of JRS with Uniform Distribution 

 The CF of the uniform distribution in term of the interval limits [a,b] is defined by (2.68). 

 
𝜑𝑢𝑛𝑖𝑓(𝑓) =

𝑒𝑖2𝜋𝑓𝑏 − 𝑒𝑖2𝜋𝑓𝑎

𝑖2𝜋𝑓(𝑏 − 𝑎)
 (2.68) 

In case of a zero mean random jitter (un) the interval is [-a;a] so the CF becomes: 

 
𝜑𝑢𝑛𝑖𝑓(𝑓) =

𝑒𝑖2𝜋𝑓𝑎 − 𝑒𝑖2𝜋𝑓(−𝑎)

𝑖2𝜋𝑓(2𝑎)
=
𝑠𝑖𝑛2𝜋𝑓𝑎

2𝜋𝑓𝑎
= 𝑠𝑖𝑛𝑐(2𝜋𝑓𝑎) (2.69) 

By replacing the CF of the uniform distribution in the expression of the JRS PSD (2.53), the PSD 

of JRS with the uniform distribution becomes (2.70). 

Φ𝑥𝑠(𝑓) =
1

𝑇𝑆𝑚
{Φ𝑥(𝑓) ⊛ [1 − |𝑠𝑖𝑛𝑐(2𝜋𝑓𝑎)|2] +

1

𝑇𝑆𝑚
∑ |𝑠𝑖𝑛𝑐 (

2𝜋𝑎𝑛

𝑇𝑆𝑚
)|
2∞

𝑛=−∞

Φ𝑥 (𝑓 −
𝑛

𝑇𝑆𝑚
)} (2.70) 
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The parameter a is usually chosen as a ratio of TSm: a=rTSm. Then, the module of the function sinc, 

which is modulating the impulse train that is causing aliases, can be expressed by (2.71). 

                                             |𝑠𝑖𝑛𝑐 (
2𝜋𝑟𝑇𝑆𝑚𝑛

𝑇𝑆𝑚
)| = |𝑠𝑖𝑛𝑐(2𝜋𝑟𝑛)|                                       (2.71) 

Knowing that the sinc function is null at all the multiple of π, in the expression of Φ𝑥𝑠(𝑓), the 

aliases are eliminated whenever r is equal to 1 or 1/2. But according to the temporal condition 

discussed in Chapter 1, r can’t be greater than ½ (because σ/ TSm=<0.2887). Thus in JRS with the 

uniform distribution the random jitter should be defined in the interval [-TSm/2; +TSm/2] to guarantee 

an alias-free sampling. 

 Thus, the spectrum Φ𝑥𝑠(𝑓) in case of the zero mean jitter can be expressed by (2.72). 

 
Φ𝑥𝑠(𝑓) =

1

𝑇𝑆𝑚
{𝛷𝑥(𝑓)⊛ [1 − |𝑠𝑖𝑛𝑐 (

𝜋𝑓𝑇𝑆𝑚
2

)|
2

] +
1

𝑇𝑆𝑚
𝛷𝑥(𝑓)} (2.72) 

Eventually, the spectrum of x(t) is recovered by the second term of the addition, while the first is 

considered as the added noise caused by the effect of RS. In fact, due to the elimination of aliases 

in this RS mode the Shannon-Nyquist condition on the sampling frequency can be ignored, though, 

the intention of eliminating the added noise will impose some restrictions on the mean sampling 

period and on the number of points to sample from the signal.  

 
Figure 2.14 Noise term convoluting Φx (f) with a cutting frequency 1/TSm  
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B.1.1) Recommendations for TSm 

The noise term N(f)is just the spectrum of x(t) convoluted with a function having a high pass filter 

form [50] with a cutting frequency equal to 1/TSm. In Figure 2.14, the term N(f) is presented for 

different values of TSm to view its effect. The value of TSm imposes the cutting frequency of N(f) 

the high pass filter form function, and thus it determines the width of the gap created by this 

function at the frequency 0. To view the effect of this term on the whole spectrum the same example 

of xsin(t) is taken ( F1=50Hz and F2=100Hz ; A1=20 and A2=40 ). The spectrum Φ𝑥𝑠(𝑓) is shown 

in Figure 2.16 for different values of TSm. Similarly, the noise in this case is the sum of N(f) 

repetitions located at the frequencies F1 and F2 of the signal xsin(t) .In fact, the wider is the gap of 

N(f) at f=0, the more is the noise reduced around the signal impulses. Thus, the decreased values 

of TSm are appreciated. It can be deduced from this figure, that if FSm is equal or greater than the 

difference (F2-F1), both gaps of the repeated N(f) will be joined in one wider gap, which will reduce 

the noise to the minimum between both impulses. This can be generalized for any spectrum having 

the highest frequency Fm, for the best noise reduction FSm must be equal or greater than Fmax, which 

means TSm<Tm. In fact, as in previous cases, it is just a recommendation to reduce the noise resulting 

from JRS. 

 

B.1.2) Recommendations for N 

Proceeding with same methodology followed in the ARS case with both distribution, and taking 

the sampled signal is the analytical signal xsin(t), the maximum of the noise term after normalization 

Figure 2.15 The Spectrum Φxs (f) of xsin(t) in case of JRS with uniform distribution for different TSm 

Values 
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is deduced by (2.73) which is similar to the maximum of the noise in the ARS case with the only 

difference of replacing g by 1,as here in the JRS case, N(f) is with a maximum equal to unity. 

 
max(𝑁(𝑓)⊛Φ𝑥(𝑓)) =

∑ |𝐴𝑘|
2𝐾

𝑘=1

NT𝑆𝑚
2  (2.73) 

 𝑁 ≥ 𝐶. 𝐾 (2.74) 

In comparing the JRS with uniform distribution to the ARS case, both modes have the same 

recommendation for TSm, but for the number of points, ARS is more demanding due to the added 

noise. 

B.2) PSD of JRS with Gaussian Distribution 

The CF of the Gaussian distribution with a mean μ and variance σ2 is defined by (2.75). 

 𝜑𝑔𝑎𝑢𝑠𝑠(𝑓) = 𝑒
𝑖2𝜋𝑓𝜇𝑒−2𝜋

2𝑓2𝜎2  (2.75) 

In case of a random jitter, the mean μ is equal to 0 so the CF becomes (2.76). 

 𝜑𝑔𝑎𝑢𝑠𝑠(𝑓) = 𝑒
−2𝜋2𝑓2𝜎2  (2.76) 

Consequently the PSD of xs(t) in JRS with the Gaussian distribution becomes (2.77). 

 

Φ𝑥𝑠(𝑓) =
1

𝑇𝑆𝑚
{𝛷𝑥(𝑓)⊛ [1 − |𝑒−2𝜋

2𝑓2𝜎2|
2
] +

1

𝑇𝑆𝑚
∑ |𝑒

−2𝜋2
𝑛

𝑇𝑆𝑚
2

2
𝜎2

|

2∞

𝑛=−∞

𝛷𝑥 (𝑓 −
𝑛

𝑇𝑆𝑚
)} (2.77) 

Figure 2.16 Module of the CF of Gaussian distribution in JRS Mode with TSm=1 for different σ 

values 
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According to the temporal condition for the zero mean jitter, the ratio σ/TSm can be at maximum 

equal to 0.167. Though, in Figure 2.16 the CF of the Gaussian distribution multiplying the periodic 

repetitions of Φx(f) is plotted in term of the ratio  σ/TSm varying from 0.1 to 0.5, where TSm is equal 

to 1. In fact, this function can reduce the aliases located at the multiple of 1/TSm but for σ/TSm>=0.5 

the elimination is complete, this ratio value is nothing else than the minimum for having a stationary 

process in the sampling sequence. Though, this value is beyond the temporal condition in case of 

JRS with Gaussian distribution, which is a verification to the results already obtained in Chapter 1. 

In conclusion, the JRS with Gaussian distribution is not recommended for sampling with an anti-

aliasing property as compared to JRS with uniform distribution which within predetermined 

conditions can radically delete the aliases.  

C) The Nature of Noise in JRS 

After examining the spectrum of the randomly sampled signal by the JRS with both distributions, 

it can be deduced that the CF of the distribution is the responsible term of eliminating the aliases 

in the spectrum. Thus the alias-free property is related to the jitter distribution and its parameters. 

In fact, when the jitter does not verify the conditions needed for this property the CF function 

multiplying the repetitions of the spectrum Φ𝑥 , although it is not zero, but decreases their 

amplitudes similarly to the low-pass filtering effect. Hence, the essential term in the spectrum 

Φ𝑥𝑠(𝑓) is the element of n=0 in the second term of the summation in (2.53) which is the recovery 

of Φ𝑥, all the remaining terms are considered as the added noise caused by the RS. In order to 

identify the origin of this noise, it is suggested to go back to the time domain definitions using the 

link between the PSD and the FT. The spectrum of S(t) expressed in (2.52) can be rewritten in 

(2.78). 

 
Φ𝑠(𝑓) =

1

𝑇𝑆𝑚
(1 − Φ𝑝(𝑓)) +

1

𝑇𝑆𝑚
∑ Φ𝑝(𝑓)𝑒

−𝑖2𝜋𝑓𝑛𝑇

∞

𝑛=−∞
𝑛≠0

+
1

𝑇𝑆𝑚
Φ𝑝(𝑓) (2.78) 

Where the last term is the term of recovering Φ𝑥, then the autocorrelation function in (2.49) is 

rewritten in (2.79). 

 
𝑅𝑠(𝜏) =

1

𝑇𝑆𝑚
(𝛿(𝜏) − 𝑅𝑝(𝜏)) +

1

𝑇𝑆𝑚
∑𝑅𝑝(𝜏 − 𝑛𝑇𝑆𝑚) +

1

𝑇𝑆𝑚
𝑅𝑝(𝜏) 

𝑛≠0

 (2.79) 

 Consequently, the noise in time domain is obtained by the multiplication of x(t) with the expression 

of Sn(t) deduced from RS(τ) without the term of recovering the spectrum of x(t): 
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𝑁(𝑡) = 𝑥(𝑡) [𝛿(𝑡) − 𝑝𝑢(𝑡) + ∑ 𝑝𝑛(𝑡 − 𝑛𝑇𝑆𝑚)

+∞

𝑛=−∞
𝑛≠0

] (2.80) 

As the signal x(t) is independent from the sampling sequence distribution then the expectation of 

their product is equal to the product of expectations as in (2.81). 

 

𝐸[𝑁(𝑡)] = 𝐸[𝑥(0)] − 𝐸[𝑥(𝑡)] × 𝐸[𝑝𝑢(𝑡)] + 𝐸[𝑥(𝑡)] × 𝐸 [ ∑ 𝑝𝑛(𝑡 − 𝑛𝑇𝑆𝑚)

+∞

𝑛=−∞
𝑛≠0

]  (2.81) 

The expectations of x(0) and pu(t) are constants, and the expectation of the last term in (2.80) is the 

sum ps(t) of the PDF of the random instants {tn} already defined in Chapter 1 in (1.9) which 

determines the SPP condition of the sampling sequence. Thus, if x(t) is a periodic signal, the aspect 

of N(t) is related to the stationarity of the JRS sampling process: 

 If the process is stationary then the sum is constant and equal to 1/ TSm, the noise 

is then cyclostationary of order 1. 

 If the process is not stationary, in the JRS case the sum will be periodic as figured 

in paragraph of Chapter 1, the noise is then cyclostationary of order 2. Which is 

verified by the Taylor expansion applied to the transfer function of the JRS 

sampling in [50]. 

In conclusion after reviewing the PSD of both modes with the different possible distributions the 

table 2.1 is concluded to be the guide in applying the RS and choosing the parameters ultimately. 

Mode Distribution Anti-

Aliasing? 

Noise 

Aspect 

Best Interval  

( σ/ TSm) 

FSm N 

JRS Uniform conditionally CS.1/CS.

2 

[-0.5 TSm;0.5 TSm] 

(0.2887) 

>Fm >C.K 

Gaussian no CS.2 --- ---- ---- 

ARS Uniform yes CS.1 [0.5 TSm;1.5 TSm] 

(0.2887) 

>Fm >g.C.K 

Gaussian yes CS.1 [0; 2 TSm ] 

(0.333) 

>Fm >g’.C.K 

Table 2.1 Summary on RS modes features and parameters selection 

Where g=1.5 and g’=1.3. 
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In comparing the conditions of the different modes, it can be deduced that the JRS with uniform 

distribution is the less requiring mode in number of points. However, all the RS modes are able to 

apply sampling with low frequency rate and a considerably reduced number of points. Although 

FSm must be greater than Fm (which is half the condition of Nyquist), this condition is not considered 

to be crucial, it is a recommendation in order to reduce the noise that could be reduced by the mean 

of increasing the number of data, which is the classical compromise that is resolved according to 

the application constraints.  

2.3.4 Time Quantization Effect on RS PSD 

The RS PSD already discussed and studied are expressed in continuous time domain. However, in 

practical applications the time is quantized and the PSD of the different modes of RS should be 

observed in discrete time domain to preview its performance in real implementations. Based on the 

PDF of the TQRS defined in (1.50) in Chapter 1, its corresponding CF is deduced by (2.82). 

 

              𝜑𝑞(𝑓) = ∑ 𝜑(𝑓 −
𝑘

∆
) 𝑠𝑖𝑛𝑐(𝜋(𝑓∆ − 𝑘))                    

𝑚−1

𝑘=0

 (2.82) 

Where φ(f) is the CF of the distribution of random variables (jitter or interval according to the mode 

on which the TQRS is applied). It is clear that discretization has introduced a periodicity to the 

sampling sequence, which will affect the spectrum of the sampled signal. The CF of the quantized 

interval τq becomes periodic of 1/Δ, so is the PSD. In the interval [-1/(2Δ);+1/(2Δ)] no alias caused 

by the time quantization will occur[37]. For clarification, the impact of TQRS is examined by using 

its CF within the JRS and the ARS spectrums in next paragraphs.  

A) PSD of TQARS 

In order to simplify the representation of the TQARS, the PSD expression to be used is (2.53). By 

replacing the CF by the quantized CF the PSD of TQARS is deduced by (2.83). 

 

Φ𝑥𝑠𝐴𝑅𝑆(𝑓) =
1

𝑇𝑆𝑚
2 Φ𝑥(𝑓) +

1

𝑇𝑆𝑚
Φ𝑥(𝑓)⊛ 𝑅𝑒 {

1 + ∑ 𝜑𝜏 (𝑓 −
𝑘
∆) 𝑠𝑖𝑛𝑐

(𝜋(𝑓∆ − 𝑘))
𝑞𝑇
𝑘=0

1 − ∑ 𝜑𝜏 (𝑓 −
𝑘
∆) 𝑠𝑖𝑛𝑐

(𝜋(𝑓∆ − 𝑘))
𝑞𝑇
𝑘=0

} (2.83) 

In case of ARS with Uniform distribution 𝜑𝜏 (𝑓 −
𝑘

∆
) is replaced by (2.84). 

 
𝜑𝑢𝑛𝑖𝑓,𝑞(𝑓) = 𝑒

𝑖2𝜋𝑇𝑆𝑚(𝑓−
𝑘
∆
) 
𝑠𝑖𝑛𝑐(2𝜋𝑟𝑇𝑆𝑚 (𝑓 −

𝑘

∆
)) (2.84) 
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As TSm=qT∆, the spectrum of the TQARS with uniform distribution is defined by (2.85). 

 
Φ𝑥𝑠𝐴𝑅𝑆(𝑓) =

1

𝑇𝑆𝑚
2 Φ𝑥(𝑓) +

1

𝑇𝑆𝑚
Φ𝑥(𝑓)

⊛ 𝑅𝑒 {
1 + ∑ 𝑒𝑖2𝜋(𝑓∆−𝑘) 𝑠𝑖𝑛𝑐(2𝜋𝑟(𝑓∆ − 𝑘))𝑠𝑖𝑛𝑐(𝜋(𝑓∆ − 𝑘))

𝑞𝑇
𝑘=0

1 − ∑ 𝑒𝑖2𝜋(𝑓∆−𝑘) 𝑠𝑖𝑛𝑐(2𝜋𝑟(𝑓∆ − 𝑘))𝑠𝑖𝑛𝑐(𝜋(𝑓∆ − 𝑘))
𝑞𝑇
𝑘=0

} 

 

 

 

 

(2.85) 

With the same methodology the spectrum of TQARS with Gaussian distribution is expressed by 

(2.86). 

 Φ𝑥𝑠𝐴𝑅𝑆(𝑓)

=
1

𝑇𝑆𝑚
2 Φ𝑥(𝑓) +

1

𝑇𝑆𝑚
Φ𝑥(𝑓)

⊛ 𝑅𝑒 {
1 + ∑ 𝑒𝑖2𝜋(𝑓∆−𝑘) 𝑒−2𝜋

2𝜎2(𝑓−
𝑘
∆
)2𝑠𝑖𝑛𝑐(𝜋(𝑓∆ − 𝑘))

𝑞𝑇
𝑘=0

1 − ∑ 𝑒𝑖2𝜋(𝑓∆−𝑘) 𝑒−2𝜋
2𝜎2(𝑓−

𝑘
∆
)2𝑠𝑖𝑛𝑐(𝜋(𝑓∆ − 𝑘))

𝑞𝑇
𝑘=0

} 

 

 

 

 

(2.86) 

Although the impact of quantization affects only the noise term N(f), the aliasing at the step of 1/Δ 

is applied on Φ𝑥(𝑓), as N(f) is convoluted with the spectrum of the sampled signal. When Δ is 

decreased the aliases are repeated at high frequencies and the terms multiplying the CF of the 

distributions tend towards 1 which will eliminate the effect of quantization. Further illustrations are 

given in next paragraph while examining the TQJRS case. 

B) PSD of TQJRS 

In the PSD of the JRS, the CF of the jitter φu is replaced by the CF of the TQRS φu,q to obtain (2.87). 

 
Φ𝑥𝑠𝑄𝐽𝑅𝑆(𝑓) =

1

𝑇𝑆𝑚
{Φ𝑥(𝑓)⊛ [1 − |𝜑𝑢,𝑞(𝑓)|

2
]

+
1

𝑇𝑆𝑚
∑ |𝜑𝑢,𝑞 (

𝑛

𝑇𝑆𝑚
)|
2

∞

𝑛=−∞

Φ𝑥 (𝑓 −
𝑛

𝑇𝑆𝑚
)}

=
1

𝑇𝑆𝑚
{𝛷𝑥(𝑓) ⊛ [1 − |∑ 𝜑𝑢 (𝑓 −

𝑘

∆
) 𝑠𝑖𝑛𝑐(𝜋(𝑓∆ − 𝑘))

𝑚−1

𝑘=0

|

2

]

+
1

𝑇𝑆𝑚
∑ |∑ 𝜑𝑢 (

𝑛

𝑞𝑇∆
−
𝑘

∆
) 𝑠𝑖𝑛𝑐 (𝜋(

𝑛

𝑞𝑇
− 𝑘))

𝑚−1

𝑘=0

|

2∞

𝑛=−∞

𝛷𝑥 (𝑓 −
𝑛

𝑇𝑆𝑚
)} 

 

 

 

 

 

 

 

(2.87) 
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In the term of sinc, TSm is replaced by qT∆. It can be deduced that in the TQJRS mode the aliases 

are repeated at the multiples of two frequencies 1/TSm and 1/∆. Hence, the JRS with uniform 

distribution with the anti-aliasing property is the most recommended within TQJRS. The PSD of 

the JRS with a uniformly distributed jitter within the interval [-TSm/2; +TSm/2] after the quantization 

becomes (2.88). 

 

Φ𝑥𝑠𝑄𝐽𝑅𝑆(𝑓) =
1

𝑇𝑆𝑚
{𝛷𝑥(𝑓)⊛ [1 − |∑ 𝑠𝑖𝑛𝑐 (

𝜋𝑇𝑆𝑚
2
(𝑓 −

𝑘

∆
)) 𝑠𝑖𝑛𝑐(𝜋(𝑓∆ − 𝑘))

𝑚−1

𝑘=0

|

2

]

+
1

𝑇𝑆𝑚
𝛷𝑥(𝑓)} 

 

 

 

 

 

(2.88) 

 

 

 

 

Φ𝑥𝑠𝑄𝐽𝑅𝑆(𝑓) =
1

𝑇𝑆𝑚
{𝛷𝑥(𝑓)⊛ [1 − |∑ 𝑠𝑖𝑛𝑐 (

𝜋𝑞𝑇
2
(𝑓∆ − 𝑘)) 𝑠𝑖𝑛𝑐(𝜋(𝑓∆ − 𝑘))

𝑚−1

𝑘=0

|

2

]

+
1

𝑇𝑆𝑚
𝛷𝑥(𝑓)} 

(2.89) 

Obviously the term recovering the spectrum of x(t) is not affected, thus the study of the impact of 

TQRS is limited to the term of noise N(f) convoluting Фx(f). In figure (2.17) the function N(f) after 

quantization  (Nq(f)) is shown for TSm=10 and qT=10 (Δ=1).  

Figure 2.17 Nq(f) in case of TQJRS with uniform distribution over the interval [0; 10 Δ] 
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Figure 2.17 shows the effect of aliasing produced by the quantization at the frequency 1/Δ, figure 

2.18 presents the effect of the value of qT on the shape of the term N(f). it can be obviously seen 

how the increasing value of qT decreases the modification of N(f). Conforming the result of chapter 

1, for qT equal or higher than 8 the effect of quantization is easily neglected.  

Figure 2.18 Nq(f) in Case of TQJRS with Uniform Distribution Over almost one Period Δ 

After exploring the PSD of RS within its different modes with different probability distributions, 

and revealing the impact of all the parameters included in such process, an overview on the variety 

of techniques used in the literature to analyze the randomly sampled data in the frequency domain 

is presented to conclude with the means that are compatible with the study in this thesis. 

2.3.5 Spectral Analysis Techniques for Randomly Sampled Signals 

A) Review  

Spectral analysis methods are highly developed and frequently abound with new innovated 

techniques, though non-uniformly sampled data can’t profit from this evolution due to the variable 

time step between successive samples. Thus, spectral analysis for NUS signals became the subject 

of many researches. In fact, a wide variety of techniques is found in the literature originally 

conceived from different domain of application. Some methods are directly deduced from the 

analysis used in uniform sampling, while others are introduced within the signal reconstruction 

phase as in CS and DASP. 
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In first place, Non-Parametric and Parametric methods, the main two categories of uniform 

sampling spectral analysis already defined in paragraph (2.2.2) of this chapter, are studied to be 

applied on NU sampled signals [20]. The major difference in calculating the DTFT and the Schuster 

periodogram is replacing the constant time-period nTS by the random instants chosen for the 

sampling acquisition tn. 

 The definitions in (2.14) and (2.15) are then modified to meet the NUS conditions by: 

 
�̂�𝑑𝑟(𝑓) = ∑ 𝑥𝑛𝑒

−𝑖2𝜋𝑓𝑡𝑛

+∞

𝑛=−∞

 (2.90) 

 

𝑃𝑟𝑠(𝑓) =
1

𝑁
[∑ 𝑥𝑛 𝑒

−𝑖2𝜋𝑓𝑡𝑛

𝑁−1

𝑛=0

]

2

 (2.91) 

Dealing with numerical signals, obviously, the DTFT is replaced by the DFT. In non-uniform 

sampling, calculating the DFT at random instants is known as Point Rule NUT-DFT [67]. This 

method is enhanced by relying on linear interpolation between samples as in Trapezoidal method 

or on second order interpolation as in the Simpson method [68]. Similarly, the Lomb and Scargle 

(LS) periodogram and its modified version the Real-valued Iterative Adaptive Approach (RIAA) 

were introduced to improve the periodogram of Schutser [20]. Actually, between the two Non-

parametric methods, only the periodogram was found to be applied in NUS, while the correlogram 

had never been proposed in such context. Besides, parametric methods conserve their concept as 

in uniform sampling, as they are applied in NUS after an exact signal reconstruction by using 

interpolation, slotted resampling or continuous time models [20].  

In second place, as seen in Chapter 1, the CS was proposed in order to capture the signal in a 

compressed way by profiting of its sparse representation in, usually, the frequency domain. Hence, 

the reconstruction of the signal is accomplished by recovering its spectrum and then returning to 

time domain by the inverse FT. The spectrum recovery is done by either the Basis Pursuit or the 

Matching pursuit that rely respectively on l1 and l2 minimizations. In other application, as the DASP 

techniques, after the zero insertion, an iterative algorithm is executed in order to estimate all the 

signal components within a thresholding criteria [69]which is a similar approach of the CLEAN 

method based on deducing the signal spectrum from its ‘dirty’ version directly calculated by 

neglecting its non-uniform aspect [70]. 

Obviously, the majority of already cited methods counts on the signal reconstruction due to two 

essential reasons. According to the introduction of Chapter 1, NU sampled data results from loss 

or unavailability in many applications, thus the spectral analysis techniques were conceived as a 
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way for resolving such issue, which makes the signal reconstruction a crucial phase. In addition, in 

domains where the RS or CS are not imposed, the final acquired or compressed signal must meet 

human perceptions such as images, videos and sounds. Consequently, the spectral representation 

cannot be the final result, the signal exact recovery is vital. However, these conditions are not 

confronted in this thesis, as the RS is intentionally proposed and the spectral estimation is a 

contenting result to be processed for machinery diagnostic. Therefore, non-parametric methods are 

the best matching techniques for spectral analysis within the scope of this thesis.  

A) Lomb and Scargle 

According to the literature one of the most promising spectral analysis is the LS periodogram and 

its variants. In fact, this method was first introduced by Lomb and Scargle [71][72], where the 

technique is to detect the presence of periods in unequally sampled time series data and their 

significance is measured to level of significance calculated by the False Alarm Probability and the 

error is minimized by the least square fitting [73]. This method was enhanced and optimized to be 

easily developed within MATLAB [74]and then it becomes a built in function named “Plomb” in 

MATLAB 2015. Briefly, the LS method is based on finding an estimation of the signal periodogram 

in term of the periodic functions sinus and cosine, the first step is then to find a time delay τLS at 

which the pair of sinusoids would be mutually orthogonal at samples times tu [75]: 

 
tan 2𝜋𝑓𝜏𝐿𝑆 =

∑ sin 2𝜋𝑓𝑡𝑢𝑢

∑ cos 2𝜋𝑓𝑡𝑢𝑢
 (2.92) 

And thus the periodogram at the frequency f is estimated by (2.93). 

 
𝑃𝐿𝑆(𝑓) =

1

2
(
[∑ 𝑥𝑢cos2𝜋𝑓(𝑡𝑢 − 𝜏𝐿𝑆)𝑢 ]2

∑ 𝑐𝑜𝑠2 2𝜋𝑓(𝑡𝑢 − 𝜏𝐿𝑆)𝑢
+
[∑ 𝑥𝑢 sin2𝜋𝑓(𝑡𝑢 − 𝜏𝐿𝑆)𝑢 ]2

∑ 𝑠𝑖𝑛2 2𝜋𝑓(𝑡𝑢 − 𝜏𝐿𝑆)𝑢
) (2.93) 

Similarly to periodograms in uniform sampling, the LS periodogram suffers from both local and 

global leakage problems or as already called smearing and leakage. Local leakage is due to the 

width of the main lobe of the spectral window, and it is what limits the resolution capability of the 

periodogram. Global leakage is due to the side lobes of the spectral window, and is what causes 

spurious peaks to occur (which leads to “false alarms”) and small peaks to drown in the leakage 

from large peaks (which leads to “misses”). Thus it is recommended to increase the number of 

samples and choose the frequencies, at which the periodogram is calculated, with high resolution. 

Besides, the authors of [20] went on to introduce a new enhanced method for spectral analysis of 

non-uniformly sampled data sequences called RIAA. The new method can be interpreted as an 

iteratively weighted LS that makes use of a data-dependent weighting matrix built from the most 

recent spectral estimate. Actually, this method was used and successfully applied on simulated 
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signals, but when applied on real signals acquired randomly, the results were not satisfying, because 

of the initial weights given at the first iteration must be suggested by the user, and should be adapted 

to the signal of interest. Thus in the majority of cases, the algorithm diverged and couldn’t reach 

the best estimation. For more details regarding RIAA, the original paper and some applications are 

found in [76], [77].  

B) Zero Insertion & Peridogram of Welch 

In fact, as considered the basic method to transform the signal from time to frequency domain, the 

DFT in shape of the Schuster periodogram is used in the simulation phase to evaluate the RS effect 

on sampled signals as a first step of study. But, as the number of samples must be increased to 

enhance the quality of acquisition, the calculation cost becomes a real matter as the complexity of 

the algorithm is O (N2). Hence, in practical acquisitions the LS periodogram is preferred on the 

Schuster as its algorithm developed within MATLAB (Plomb) is of lower computational cost O(N 

logN) [78]. However, the existence of noise in real signals rises the probability of occurrence of 

leakage problem in LS and increasing the number of samples may not be a sufficient solution. In 

[36], [37] fast practical ways are proposed to calculate the spectrum of randomly sampled signals 

based on the use of the FFT, where in signal, skipped samples are replaced by zeros (zero insertion) 

at the smallest time step Δ and calculate then the FFT is calculated with taking the sampling 

frequency equal to 1/Δ. In [36] the noise introduced by the zero insertion is minimized by 

averaging, while in [37] the spectrum is enhanced by the least square fitting. Before adopting such 

methodology, it was a must to explore the effect of the zero insertion on the randomly sampled 

signal by proposing an expression that demonstrates the apparition of noise when inserting zeros 

to the signal. In (2.94) the signal x(t) is expressed after applying TQRS and the zero insertion.  

 𝑥𝑠𝑞𝑧(𝑡) = 𝑥(𝑡)∑ 𝛿(𝑡 − 𝑛𝑟∆)
𝑛𝑟

+ ∑ 𝛿(𝑡 − 𝑚∆)
𝑚

× [1 −∑ 𝛿(𝑡 − 𝑚∆)
𝑚

] (2.94) 

The first term of the addition is simply the randomly sampled signal after quantization, nr represents 

the random number multiplying Δ to obtain a random instant of sampling, while the second term is 

the model of inserting zeros at the constant time step Δ in the resulting signal [79]. The expression 

in (2.94) is general, in real applications, the signal is sampled during a limited period of time T 

which will lead to a limited number of samples N, (2.95) is then deduced, it should be mentioned 

that M=T/Δ the number of samples as if the sampling was uniform with a constant period= Δ. 

 

𝑥𝑠𝑞𝑧(𝑡) = 𝑥(𝑡) ∑ 𝛿(𝑡 − 𝑛𝑟∆)

𝑁−1

𝑛𝑟=0

+ ∑ 𝛿(𝑡 − 𝑚∆)

𝑀−1

𝑚=0

× [𝑅𝑒𝑐𝑡(𝑡) − ∑ 𝛿(𝑡 − 𝑚∆)

𝑀−1

𝑚=0

] (2.95) 

Where Rect(t) is defined by (2.96). 
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 𝑅𝑒𝑐𝑡(𝑡) = {
1  0 ≤ 𝑡 ≤ 𝑇
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (2.96) 

To explore the effect on the spectrum of the sampled signal, the FT is applied on (2.95) to obtain 

(2.97). The FT of the TQRS signal is not detailed in this part in the aim of exploring the added part 

caused by the insertion of zeros. 

 �̂�𝑠𝑞𝑧(𝑓) = �̂�𝑅𝑆𝑞(𝑓)

+
1

∆
∑ 𝛿 (𝑓 −

𝑚

∆
)⊛ [𝑇𝑠𝑖𝑛𝑐(𝜋𝑓𝑇) −

1

∆
∑ 𝛿 (𝑓 −

𝑚

∆
)

𝑀−1

𝑚=0

]

𝑀−1

𝑚=0

 
(2.97) 

According to section 1.4.4 in chapter 1 because of the effect of quantization, the observation of the 

spectrum is usually limited to the interval [0;1/ Δ]; Hence within this interval the expression of 

�̂�𝑠𝑞𝑧(𝑓) is limited to m=0 which is expressed by (2.98). 

 
�̂�𝑠𝑞𝑧(𝑓) = �̂�𝑅𝑆𝑞(𝑓) +

𝑇

∆
 𝑠𝑖𝑛𝑐(𝜋𝑓𝑇) −

1

∆2
𝛿(𝑓) (2.98) 

Therefore, to reduce the effect of the function sinc resulting from the rectangular interval where the 

insertion of zero is applied, a proposition is suggested of adding zeros at the end of the signal known 

as zero-padding, in order to increase T (which becomes TZ after zero padding) and thus decrease 

1/T to 1/ TZ which makes the function reduced to a narrow peak at f=0. Finally, it can be deduced 

that the noise added by the zero-insertion operation is additive and can be reduced by the zero 

padding extension. 

By consequence, the application of zero insertion provides the possibility of profiting from the 

spectral analysis techniques of uniform sampling, as the time step between the resulting signal 

points becomes constant. Thus, in the aim of enhancing the spectrum by reducing its variance, the 

leakage problem and the effect of noise added by the quantization and the zero insertion, the chosen 

method to estimate the spectrum of the randomly sampled signal is the Periodogram of Welch. 

As a result, inspired by the method performed by [36], [37], an enhanced method is conceived 

within this thesis by applying the zero insertion on the randomly sampled signal and then the 

spectrum estimation is accomplished by the Welch method. 

2.1 Conclusion 

In this chapter, after reviewing the basic parts of US study, with a similar methodology, a detailed 

review on the RS is presented in order to clarify all the important details that should be known on 

this distinct sampling process. After presenting the FT of the different mode of RS, the PSD is 

deduced and studied in details to conclude with some recommended limitations that help the user 
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to obtain the best results of RS. Recommendations on the selection of the sampling frequency and 

the number of points are offered to reduce the noise added by the RS to the minimum. This noise 

is proved to be cyclostationary of order 1 or 2 according to the mode of sampling. Although the 

JRS with Gaussian distribution was proven to be not recommended due to the unverified SPP, in 

this chapter the PSD of this mode confirmed this fact. As in the practical application the time is 

quantized, the effect of quantization is shown to explain how the quantization step must be chosen 

without defecting the results. At the end, a brief review on the spectral analysis methods used within 

NUS to explore the unevenly sampled signals in the frequency domain, and thus deducing the most 

convenient procedure to reveal the spectrum of RS signals within the context of this thesis. In first 

place, the DFT is used for analyzing simulation data as it is considered the basic spectral study, 

then due to high complexity, it is replaced by the LS and the Welch periodogram which is preceded 

by a step of zero insertion in order to fill gaps between random samples. 
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3 Chapter 3: Simulation and Hardware Implementation 

 

3.1 Introduction 

The main purpose of this Chapter is to verify, by simulation, the results already obtained in previous 

chapters in order to have a clear procedure to follow when any user attempts to apply RS in his 

application. Then, a brief study on the possibilities of RS hardware implementations is presented 

in order to introduce the simple application done on signals acquired from function generator. Many 

questions can be asked on the methodology of choosing parameters that define the RS process: the 

mode, the distribution, the mean sampling period, the standard deviation and the number of points. 

Although their significance is simple to understand, their value selection is not obvious as they 

have direct impact on the resulting signal as already seen. Hence, few examples will be shown to 

observe the direct influence of different parameters on the signal spectrum. To have more 

generalized conclusions, a simulation on the modes of RS is driven on a simulated signal with 

multiple frequencies with varying parameters values and figuring the results in few curves to have 

more clarified illustration. The outcomes are then verified in a simple practical study on signals 

from a function generator before applying RS on vibration signals within its different modes. 

As this section is the transitional phase from theoretical studies to application and real 

implementation, the first issue to clarify is the impact of quantization introduced by Δ. Second, 

after defining the procedure of conceiving the RS process, some examples of simple sinusoidal 

signals that are randomly sampled with particular modes of RS are shown. This is used to prove 

that the apparition of noise is caused only by the application of RS, and to evaluate the impact of 

TSm and N on the shape of the spectrum. Third, an explanation of the simulation driven is presented, 

to deduce the most important criteria in the RS modes: ARS and JRS with different distributions: 

uniform and Gaussian. The results are calculated by the DFT as already mentioned in Chapter 2. 

However, in real applications, the DFT is replaced by the LS periodogram and the Welch 

peridogram which is applied on the randomly sampled signal after the zero insertion step. Thus, a 

simple evidence is shown to prove the zero insertion reduced effect on the spectrum of the sampled 

signal with a brief review on the selection of parameters used in the Welch periodogram. After the 

recapitulation on all the results obtained by the simulation study, the transition to the hardware 

implementation is summarized by, first, a review on the already applied methods of RS in the 

literature, second, an explanation of the chosen technique to perform RS in practice and third, the 

results of the first application of RS on simple signals acquired form function generator. 
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3.2 Impact of Time Step Quantization Δ 

As already discussed in Chapter 2, the time quantization affects the randomly sampled signals in 

two ways: the shape of the noise term N(f) and the aliasing at the frequency 1/ Δ. Though, according 

to the relations (1.54) and (1.57) in Chapter 1 and to figure 2.18 in Chapter 2, it was concluded that 

for a value of qT=8, the ratio σ/TSm reaches its maximum and the shape of N(f) is totally recovered. 

Hence, a simple example is done by simulation of a sine wave having two frequencies: 100 and 

150 Hz to prove the limitation introduced by Δ in having alias in randomly sampled signals. 

Similarly to uniform sampling, where the spectrum is repeated at each multiple of the sampling 

frequency, the spectrum of the signal in quantized or discrete RS is repeated every 1/Δ. In the 

bottom of Figure 3.1, as the frequencies of the signal are 100 and 150 Hz, and the quantization step 

is 0.003 (1/∆=333.3Hz), the repetitions of 100Hz are at 433.3Hz (333.3+100)  and at 766.7 Hz 

(2*333.3+100) and the repetitions of 150Hz are at 483.3Hz (333.3+150) and at 816.7 Hz 

(2*333.3+150). The other aliases are the opposite frequency (negative frequencies of the sine) of 

the replicas relative to the reference, for example,  233.3Hz is the opposite of 433.3Hz relative to 

333.3 (=1/∆) :233.3=-100+333.3. Thus, the whole replied spectrum is found within the interval [-

1/(2Δ);+1/(2Δ)] that is centered at 1/∆, which means [1/(2∆);3/(2∆)]=[166.7;500]. The same 

concept is shown for ∆=0.006 with the only difference that distance between replicas is shorter.  

 

According to Figure 3.1 and the previous discussions on the value of qT, small values of Δ compared 

to TSm are recommended in order to eliminate the replicas from the signal spectrum. For instance, 

Figure 3.1 Two Simulations of a Signal (100 Hz and 150Hz) with a Quantization Step = 0.006 at the Top 

and Step=0.003 at the Bottom 
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when TSm is equal to 0.1s, Δ is recommended to be 12.5ms. In the following sections, a very low 

value of Δ is picked to reduce the effect of quantization and focus on the impact of RS on the 

resulting signals. 

3.3 Procedure of RS and Simulation of Simple Examples 

The process of choosing the parameters of the RS is based on the mode, the distribution and its 

parameters and the number of points. In case of the uniform distribution, the limits of the interval 

of support [a;b] must be defined; whereas in case of the Gaussian distribution, the mean and the 

standard deviation must be declared. Thus, according to the mode chosen, the parameters of the 

distributions are deduced according to the relations (1.28) to (1.30) for the ARS mode and (1.41) 

to (1.43) for the JRS mode. In fact, these conditions are essential to verify the temporal limitation 

that is crucial for real implementations. Also, the stationarity condition is recalled for both modes 

ARS and JRS in paragraphs 1.4.1 and 1.4.2. For ARS, it was recommended to choose the highest 

ratio σ/TSm allowed by the temporal condition to have a small delay of stationarity. As for JRS with 

uniform distribution, it was imposed to choose the highest ratio σ/TSm to have the stationarity 

verified, while with Gaussian distribution the stationarity is reached beyond the temporal condition. 

In Chapter 2, these conditions are verified in the study of RS impact by analyzing the PSD of each 

mode in section 2.3.3. From these conditions and analysis, concise relations between the parameters 

of the probability distribution and limitations of RS can be concluded. To simplify and unify the 

notations for both distributions and modes, the relations are expressed in terms of the Deviation D 

and the ratio R already defined in (1.56) in Chapter 1. 

In ARS with Uniform distribution the best conditions are proven for: 

 
𝑅 =

𝐷

𝑇𝑆𝑚
=
𝑏 − 𝑎

𝑇𝑆𝑚
= 1 (3.1) 

In ARS with Gaussian distribution, the best conditions are met for σ/TSm=0.333 and 0.167 which 

corresponds to R=2 and 1.In JRS with Uniform distribution, the best performance is reached for 

R=1, and for Gaussian distribution the elimination of aliases may be reached for R=2. 

Consequently, in order to validate these conditions, it is easier for the user to configure the 

parameters of the distribution in terms of R and TSm. For the ARS with uniform distribution: 

 
𝑎 = 𝑇𝑆𝑚 (1 −

𝑅

2
)𝑎𝑛𝑑 𝑏 = 𝑇𝑆𝑚 (1 +

𝑅

2
) (3.2) 

With Gaussian distribution: the mean μ= TSm and σ=R.TSm/6. In the JRS case with uniform 

distribution: 
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𝑏 = −𝑎 = 𝑅.

𝑇𝑆𝑚
2

 (3.3) 

And for Gaussian distribution: mean μ= 0 and σ=R.TSm/6.  

Therefore, due to these relations, the parameters of the probability distribution can be directly 

deduced whenever the features of the RS process are conceived. Besides, the generation of the time 

vector is determined according to the RS mode. The time vector in ARS mode is produced by 

adding the random variables generated within the selected distribution. While in the JRS mode, the 

generated random jitter is added to the constant clock of period TSm. 

In order to verify the conclusions conducted from the discussion on the RS impact in section 2.3.3 

of chapter 2, a simple sinusoidal signal, composed of two sines at the frequencies F1=1000 Hz and  

F2 =1100Hz, with respective amplitudes A1=10 and A2=5, is used. The signal is taken without any 

noise addition to view the impact on RS clearly. In Figure 3.2, the PSD of the sampled signal by 

the ARS mode with the Gaussian distribution is presented. The number of samples N is 39, the 

sampling period is 0.1s and the standard deviation is taken equal to TSm/6. As the original signal is 

simulated without any noise addition, it can be obviously seen that the additive noise floor was 

added by RS. However, as the used sampling process is the ARS with Gaussian distribution, which 

verifies the anti-aliasing property, it can be directly confirmed that the spectrum of the resulting 

signal is empty of aliases. Thus, it can be also deduced that this added noise is cylco-stationary of 

order 1. According to the recommendations delivered in section (2.3.3), the value of TSm should be, 

in this example, lower than 0.0009s (=1/1100Hz). The example in Figure 3.3 for TSm=0.01s is 

shown to verify the shape around the impulses similar the PSD shown in Figure 2.13 of Chapter 2. 

The peaks that appear around the signal’s impulse result from shape of the noise term of the PSD 

the sampled signal. While in Figure 3.4, the reduction of noise reaches its maximum due to the 

mean sampling period value that is greater than the difference between the signal impulses and near 

to the lowest period of the signal Tm=1/Fm. 
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Figure 3.2 The PSD of the signal xsin(t) in ARS with Gaussian for N=39 TSm=0.1s 

and R=1 

 

 

 

 

 

 

 

Figure 3.3 The PSD of the signal xsin(t) in ARS with  Gaussian for N=39 TSm=0.01s and R=1 

 

 

 

 

 

 

 

 

 

     Figure 3.4 The PSD of the signal Xsin(t) in ARS with Gaussian for  N=100 TSm=0.001s and R=1 
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In Figure 3.5, the number of samples is increased to 390. According to paragraph 2.3.3, when the 

mode of RS is ARS with Gaussian distribution with R=2, the constant g’ is equal to 1.3. As the 

amplitudes are 10 and 5, their sum is considered as 3*Amin; thus, to have the ratio between the 

maximum of noise and the minimum amplitude in the signal equal to 10, the number of points must 

be greater than 390. A comparison between cases of R=1 and R=2 verifies that the case of R=1 

requires a higher number of samples as g’ in this case is equal to 3.7. 

3.4 Simulation Study of RS 

The purpose of this study is to evaluate the RS and explore its impact on a sampled noisy signal to 

consequently learn how to choose the sampling parameters in real applications. As the main 

objective of this thesis is to apply the RS on vibration signals, which is usually represented in the 

frequency domain by multiple peaks and their harmonics, the proposed signal model to be 

simulated is a sine wave having 4 frequencies with different amplitude for each. A zero mean 

Gaussian noise, or white noise, ‘wn’ is added to the signal having a variance equal to 5, the resulting 

expression is (3.4). 

𝑆 = 10. sin(2𝜋. 1000. 𝑡) + 3. sin(2𝜋. 1100. 𝑡) + 5. sin(2𝜋. 1500. 𝑡) + 7. sin(2𝜋. 1510. 𝑡) + 𝑤𝑛 

 

 

(3.4) 

    

Figure 3.5 The PSD of the signal xsin(t) with ARS mode and Gaussian distribution: N=390 TSm=0.01s 

with R=1 (left) and R=2(right) 
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The time vector for sampling is generated by two methods: ARS and JRS. The intervals in ARS 

are random variables that follow a uniform distribution in the first case, and a Gaussian distribution 

in the second case. JRS is studied mainly with the uniform distribution. It is as well briefly studied 

with the Gaussian distribution to prove the presence of aliasing in such RS process. After 

determining the mode and the distribution with its parameters, the number of samples N or the 

length of the sampled signal must be determined. Multiple signal lengths are tested to analyze the 

effect of the samples’ number on the resulted randomly sampled signal. In Table 3.1 all the tested 

values of TSm, R and N are shown. To have a clear view of the impact of each parameter, for every 

value of TSm, the ratio R and the number of samples are changed from their minimum to their 

maximum. 

TSm(sec)    0.002         0.005 0.0067 0.01 0.02 0.05 0.1 0.01 

N(pts) 25           50 80 100 150 200 400 800 

R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

Table 3.1 Different simulated values of TSm, N and R 

To have the ability of comparing the different modes and different distributions, the same values 

of these parameters are repeated in every case: ARS with uniform, ARS with Gaussian and JRS 

with Uniform. The JRS with Gaussian distribution is evaluated for identifying the possibility of 

having an anti-aliasing property. In fact, in the ARS mode the interval of support for all distributions 

may be taken with R=2 and less due to the corresponding temporal condition. While the JRS is 

limited for R=1 because of the same condition. However, in this part of study the ratio R is taken 

from 0.1 to 2 to all modes of RS with all distributions, as it is just a simulation without real 

implementation, to prove the anti-aliasing property and to choose the best value of R to be used in 

practice.  The time quantization step is taken equal to 5 microseconds to focus on the influence of 

RS.  To evaluate the sampled signals, each case of RS (same mode, same distribution and same 

parameters) is generated 50 times. Each time, the DFT of the signal is calculated and squared to 

obtain the periodogram of the generated signal, and then, the average of all the periodograms of the 

50 signals is taken to represent the case studied (the mode, the distribution and the chosen 

parameters) and thus analyzed to explore the results. 

3.4.1 Impact of R 

First, to observe the anti-aliasing property of RS, the Amplitude/Alias (A/A) ratio is examined with 

the variation of the ratio R. This A/A ratio observation is proposed in all the researches that discuss 

the RS process [35][36]. In fact, R measures the “randomness” of the sampling process; so, this 
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analysis is done to study the effect of randomness on the anti-aliasing property. For both ARS and 

JRS with Uniform Distribution, the interval of support is changed to have a different R. The test is 

repeated for all frequencies, and in each case, same results are obtained. The case of mean 

frequency of 10Hz is presented. Since the number of points can have an influence on the results, 

the most significant cases of N are shown. In Figures 3.6 to 3.9, the variation of A/A ratio in term 

of R is shown for all tested N in all RS modes: ARS and JRS with uniform and Gaussian 

distribution. 

 

Figure 3.6 Amplitude/Alias variation in term of R in ARS+ Uniform  

To have a satisfying anti-aliasing property, the A/A ratio must be higher enough than 1. In Figure 

3.6, it can be seen how the A/A ratio decreases when R is decreased and how the number of points 

increases the A/A ratio but cannot avoid the impact of R diminution. However, in this mode (ARS 

with Uniform distribution), a value of R that is greater than 0.4 can provide a satisfying anti-aliasing 

property. This means that the length of the interval of the random variable must be higher than 40% 

the mean sampling period. 

Same conclusions concerning the impact of R and number of points on the A/A ratio can be said 

on the ARS with Gaussian distribution according to figure 3.7. However in this case, to have a good 

anti-aliasing, the ratio R must be greater than 0.7, which is a limitation for such sampling mode 

concerning the anti-aliasing property. In fact the most suitable value of R in this case is 1 as it is 

already deduced in chapter 2 that ARS with Gaussian distribution is less requiring in number of 

samples. 
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Figure 3.7 Amplitude/Alias variation in term of R in ARS +Gaussian 

 

Figure 3.8 Amplitude/Alias variation in term of R variation in JRS+uniform 

In case of JRS with uniform distribution, it is quite obvious how this mode is verifying the anti-

aliasing property exactly at the ratio R=1, which is so compatible with the SPP condition verified 

for R=1 and with the PSD of this mode which is free of aliasing in the same case. Other values of 

R as 0.9 and 1.1 are somehow acceptable, though only 0.9 can be implemented in real applications. 
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Figure 3.9 Amplitude/Alias variation in term of R variation in JRS+Gaussian  

Finally, compared to other modes, the JRS with Gaussian distribution is the most prone to aliasing 

the best cases in anti-aliasing are far beyond the temporal condition, which is considered the clearest 

evidence to eliminate this mode from considerations of using RS for anit-aliasing feature. 

In conclusion, the ARS with uniform distribution is approved to be the most competent mode of 

RS for its ability of anti-aliasing within multiple values of R. However ARS with Gaussian and 

JRS with uniform verify also this feature with less possibilities. In fact, although the ARS mode 

validates the temporal condition for R=2, the real implementation of random time interval with 

such ratio is not trivial, as some generated values may be too small (~0) and the acquisition at such 

small time steps is too demanding and difficult to apply in real-time processing which is highly 

contradicting with the final goal of this thesis. Thus, in the remaining part of this study, R is mostly 

taken near to 1 as it is the most convenient value for all modes of RS.  

3.4.2 Impact of N  

After the examination of the anti-aliasing property in term of the variation of R, the objective of 

this section is to observe the impact of RS on the ability to separate the sampled signal from the 

noise. In fact, the noise in the randomly sampled signal is not only the additive part ‘wn’ that is 

added in (3.4). Another part is introduced by the RS process, as discussed in Chapter 2, with a 

cyclo-stationary aspect as the sampled signal is periodic. 

In Figures 3.10 to 3.12, the value of the smallest amplitude is compared to the highest value of the 

noise in order to examine how much the noise is eliminable in each case of anti-aliasing RS: ARS 
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with Uniform distribution, ARS with Gaussian distribution and JRS with Uniform distribution, and 

explore the impact of varying the mean sampling frequency (or period) and the number of samples 

taken. This comparison between the amplitudes is deduced from the definition of the Spurious Free 

Dynamic Range (SFDR) that measures the difference between the amplitude of the original signal 

and the noise caused by the mode of sampling [80]. In each figure, the color of the plot represents 

the result for a specified frequency. For the same frequency, two lines are drawn: the continuous 

line represents the value of the smallest amplitude of the signal and the dashed line represents the 

highest value of noise.  

These curves (continuous and dashed) show the variation of corresponding amplitudes with the 

variation of the number of samples in the signal. In fact, the simulation is done for all of the already 

mentioned mean sampling periods (or frequencies) but only the most significant results are shown, 

for mean frequency equal to 500 Hz, 200Hz, 150 Hz and 50 Hz. The ratio R in these tests is fixed 

and is equal to 1. 

It can be obviously seen that, in ARS with Uniform, the signal is easily distinguished from noise 

for a number of samples greater than 50 for all the mean frequencies. The smallest amplitude of the 

signal is perfectly reconstructed and way greater than the noise for a mean frequency of sampling 

that equals 50 Hz, a value that is much smaller than the Nyquist frequency. In fact, when going 

back to the recommendation given for N in the PSD analysis of this mode with the same 

distribution, it can be concluded that N must be greater than 1.3*C*K. Considering that the highest 

amplitude in the noise must be 10 times lower than the minimal amplitude of the signal, and by 

expressing the amplitudes of the peaks of the signal in term of the smallest amplitude, K is assumed 

Figure 3.10 Comparison of the smallest amplitude of the signal to the noise in ARS with uniform 

distribution 
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to be equal to 8, and the number of samples N must be greater than 1.3*10*8=104. By observing 

the curves in Figure 3.10, this relation is clearly satisfied. 

In ARS with Gaussian distribution, the signal can be easily separated from noise for a number of 

points greater than 100. Also in this mode, the mean sampling frequency can be way smaller than 

Nyquist rate but with a limitation on number of samples that should be greater than 100. As the 

comparison is done between the different modes of RS for R=1, this limitation on the number of 

points is caused by the constant g’ which is equal to 3.7 for R=1 in ARS with Gaussian. Similarly 

to the ARS with uniform case, the limitation on the number of points in this mode with this 

distribution is given by: g’*C*K=3.7*10*8=296. Thus for N greater than 296, the ratio between 

the smallest amplitude of the signal and the highest amplitude of noise must be 10, which is 

obviously verified in Figure 3.11.  

In JRS with the uniform distribution, in Figure 3.12, if each signal amplitude (continuous line) is 

examined with its corresponding noise maximum (dashed line having same color), it can be 

deduced that for a number of points equal or greater than 50, the signal is easily separated from the 

noise. As for other cases, the number of samples, when increased, enhances the signal and reduces 

the noise to its minimum, for low and high mean sampling frequencies. The recommendation for 

N already mentioned in Chapter 2 is easily verified in Figure 3.12 as N must be greater than 

C*K=10*8 for the same considerations taken in previous cases. 

 

Figure 3.11 Comparison of the smallest amplitude of the signal to the noise in ARS with Gaussian 

distribution 
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Finally, it can be concluded from the comparison of these three ways of RS that the number of 

samples increases the performance and the low frequency can be easily used. However, for R=1, 

the ARS with Gaussian distribution is advantageous for a number of points greater than in ARS 

and JRS with uniform distribution which is verified by the higher value of g’ (=3.7) in this case. 

So, for cases where there is no limitation on data storage, the ARS with Gaussian distribution can 

be used for R=1. In addition, the results of JRS and ARS with uniform distribution confirms the 

recommendations already declared in Chapter 2, which can give a clear guide for the user on 

choosing the length of the signal when applying the RS on sparse signals with a good  estimation 

of the number of sparse components. 

After the verification of all the results already obtained in Chapter 1 and 2 concerning the different 

aspect of RS affected by the selection of its different parameters, hardware implementations can be 

conducted to validate and verify these conclusions in real applications. As the DFT used in the 

spectral analysis of RS signals in simulation, is of high complexity and consumes long durations in 

execution, the LS and Welch periodograms were proposed as convenient solutions for the spectral 

study of real signals acquired with RS, as they perform with reduced complexity and run within 

short period of time. The LS can be applied directly on raw RS signals, it simply requires the 

sampled data, the time vector containing the instants of sampling and the high limit frequency for 

the resulting spectrum. While the Welch periodogram must be preceded with a stage of zero 

insertion between random samples at each time step Δ. A simple proof on the impact of zero 

Figure 3.12 Comparison of the Smallest Amplitude of the Signal to the Noise in JRS with Uniform 

Distribution 
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insertion on the signal spectrum is presented, then a brief explanation on choosing the Welch 

periodogram parameters to enhance its performance and reduce noise. 

3.5 Zero Insertion Impact 

According to the last section of Chapter 2, the effect of zero insertion in the randomly sampled 

signal adds some noise that can be reduced by extending the signal with Zero Padding, and by 

averaging the signal to reduce the noise variance. In order to verify the reduced impact of zero 

insertion with zero padding, a simple example is taken by randomly sampling the same signal used 

in the previous simulation by an ARS with uniform distribution process. At first, the DFT is 

calculated for both cases: randomly sampled signal with and without zero insertion. The resulting 

spectral representation is presented in figure 3.13. Both DFT are very similar, though the amplitude 

of the DFT is reduced due to the added zeros to the signal. In order to verify the similarities of both 

spectrums, the correlation is calculated for the PSD of both signals which are presented in figure 

3.14. The high correlation between both PSD indicates that the impact of zero insertion can be 

handled and reduced by the application of zero padding and the averaging by the periodogram of 

Welch. Thus, the selection of the corresponding parameters is of high importance in increasing its 

performance by reducing noise and remediating leakage problems that may occurs in LS. 

 Figure 3.13  DFT of the RS signal before and after zero insertion 
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3.5.1 Selection of Welch Parameters 

As already mentioned in chapter 2, the enhancement of the spectrum estimation by Welch is done 

by averaging, where finer resolution requires longer data segments and thus fewer number of 

segments. In addition, the percentage of overlapping determines the final number of segments 

obtained from the original signal, where a higher percentage of overlapping increases the number 

of segments and, after averaging, it reduces the error variance of the PSD final resolution. Thus 

the selection of the length of segments, the overlapping percentage and the type of apodization 

window is of high impact on the resulting periodogram. As the aim of using the Welch method is 

to reduce the noise added by the Zero insertion to the spectrum of the randomly sampled signal, 

in this section, the methodology in choosing the parameters in this estimation to accomplish such 

role is clarified. 

 Figure 3.14 PSD of the signal before and after zero insertion and the correlation between both PSD 
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Examples of used windows for apodization within Welch periodogram estimation are shown in 

Figure 3.15. More than a dozen of windows are proposed in the literature to be used for the signal 

segmentation within Welch periodogram estimation. The width of the main lobe, the height of sides 

lobes and the maximum amplitude error are the main criteria on which the selection of the window 

is based [57], [81].  The main lobe bandwidth is generally chosen according to the spectrum aspect 

of the signal of interest. Due to the width of the window in the frequency domain, each frequency 

bin collects its corresponding noise with adjacent bin noise, though, the effective noise bandwidth 

is corrected by dividing the result within averaging. Thus, for applications where the spectrum 

analysis is based on peaks detection and avoiding smeared peaks is required, selective windows are 

recommended for their narrow main lobes. The height of side lobes is obviously preferred to be 

reduced, according to [81] the reduction of side lobes level increases the bandwidth for a specific 

chosen window. Therefore, a compromise must be found between both criteria in the selection of 

the window and its parameters. 

The maximum amplitude error emax, which is the maximal amplitude of the window function 

reached at f=0, expresses the maximal error in the amplitude estimation of a sinusoidal signal. Flat-

Top windows are thus proposed for having low emax, but at the expense of wider bandwidth. Such 

windows are preferable if the amplitude of the signal must be estimated from the results. In [64] a 

study was made on the different types of windows by exploring their bandwidths and side lobes 

level, emax and other criteria as the Side Lobe Drop Rate and the Normalized Equivalent Noise 

Bandwidth to conclude with Kaiser and Flat-Top windows as good compromising choices. From 

figure 2.5 it can be deduced that Kaiser and Flat-top windows are preferred for having the low side 

lobes levels, however, the Flat-top is advantageous in having the lowest level and a minimum emax 

while the Kaiser is chosen for its narrow bandwidth. 

 

Figure 3.15 Apodization windows in time and frequency domains    
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The maximum of chosen overlapping is usually less than 75% due to two main reasons: the first 

one is the calculation cost, since more overlap means more calculation, the second is the fact that 

averaging reduces the error variance when averaged samples are considered uncorrelated, when the 

overlapping is higher than75% the samples are essentially the same and thus averaging cannot 

reduce error variance anymore[82]. 

Due to the simulation study, all the features of the RS are examined and tested by the variation of 

all of its parameters. After the effect of Δ is shown, a guide on the procedure to choose the different 

parameters of RS then, simple examples are driven to show the direct impact of the RS on the PSD 

of the randomly sampled signal. These examples verified the recommendations on TSm and N 

already given in Chapter 2 within the discussion on the RS impact. Further results are obtained by 

an extended simulation of RS on signals composed of multiple sines. The main conclusions of this 

simulation are perfectly compatible with the results of first and second chapters concerning the 

anti-aliasing properties of each mode, the reduced sampling frequency and the limitations on the 

number of points N. More verification and validations are to be shown in the next Chapter where a 

hardware implementation is developed on Arduino with experimentation on vibration signals. 

In this chapter, the study of the hardware implementation of RS began with the review of some 

already applied methods for acquiring data at a non-constant rate used in CS architectures. Thus, a 

deduced technique is implemented on Arduino to evaluate the RS on simple signals at first place, 

then on vibration signal in second step. 

3.6 Hardware Implementation 

After reviewing the different features of RS in theory and simulation, an experimentation is 

conceived to apply the RS on real signals. In first place, a brief review on the already tested RS 

implementations is presented. Then, the proposed system to execute a random acquisition within 

this thesis is presented. Simple acquisitions are tested at the beginning in order to explore the 

process and enhance the performance. In the aim of conducting an experimentation on the random 

acquisition of vibration signals, a brief summary on the aspect of such signals is presented. A 

description of the practical application is presented followed by the results with a detailed analysis 

and study.  

3.6.1 Review 

Although, CS and RS had witnessed an increased interest recently with a high demand for fast, 

efficient and in-expensive signal processing algorithms, applications and devices, hardware 

implementation of both sampling process remains a subject of research and doesn’t exist in the 
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market yet [15]. Thus on of the goals of this thesis is to find an adequate way for implementing the 

RS and apply it on vibration signal of rotating machines in a context of monitoring and fault 

detection. As a first step of research, few ways of CS implementation were overviewed in order to 

deduce the most convenient method that meets with the intention of this thesis. As the CS is used 

in different domains, multiple techniques of implementation where proposed in the literature: 

Random Demodulator and its variants, Random Sampling Slope ADC and the Non-Uniform 

Sampler. A brief summary on the concepts of these methods is presented to conclude with the 

method used in the application accomplished within this work. 

A) Random Demodulator and Its Variants 

One of the first random acquisitions applied within CS architectures, the Random Demodulator 

was first introduced in 2006 to test the new sampling design in communication application. The 

concept is based on a first stage demodulator whose input signal x(t) is multiplied by a continuous 

time sequence of pseudo-random  numbers Pc(t) to obtain a continuous time demodulated signal 

z(t) . Starting with a sequence of pseudo random numbers that take values of +1 and -1 with an 

equal probability, it is used to create a continuous chipping sequence. This (ideal) demodulation 

signal takes values of +1 and -1 over each time frame and switches between the levels randomly at 

or faster than the Nyquist rate of the input signal x(t) . The final stage is a standard ADC to sample 

the signal at a low rate. A low-pass filter is used prior to ADC to prevent aliasing. In fact, the 

purpose of the demodulation is to spread the frequency content of the signal so that it is not 

destroyed by the second stage of the system. And, the chipping sequence must alternate between 

values at or faster than the Nyquist frequency of the input signal. In order to decrease the coherence 

in the sensing matrix within the CS implementation, many variants were proposed as the Random 

Demodulator Pre-Integrator and the Spread Spectrum Random Modulator Pre-Integrator to 

decrease the coherence and the sampling rate of the sampling ADC by acquiring data via multiple 

parallel channels [80][83]. However, this architecture is complex and not easily implemented and 

requires high rate frequencies for the generation of random sequences which is controversy with 

the intentions of this thesis. 

B) Random Sampling Slope ADC 

In [7] a new approach to acquire signals that are sparse in the frequency domain using RS. This 

solution comprises a very simple sampling hardware and a slightly adapted CS reconstruction to 

be applied in cognitive radio design. In particular, the ADC is based on a small modification of the 

well-known slope ADC and achieves a 100% hardware utilization to maximize the number of 

unequally-spaced samples that can be acquired without adding complexity to the sampling process. 
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The principle of a slope ADC is very simple: A linear voltage slope is generated as a reference 

signal and is compared to the input voltage. A counter measures the time until the reference slope 

reaches the level of the signal. The reference slope is periodically reset to its baseline [84].The 

advantage of this architecture is its simplicity in hardware. Basic building blocks are only a current 

source, a capacitor, a comparator, and a counter. The Disadvantages are its slow speed, especially 

for high resolutions, and its concept is only compatible with event-based sampling, as the clock-

based sampling can’t be produced by such device. 

C) Non-Uniform Sampler 

A Non-Uniform Sampler is suggested in [40] for wideband spectrally sparse environment where it 

is used as a receiver for a GSM channel. It is basically formed by a time generator (TG) that controls 

the Sample and Hold (SH) units. An external pattern generator is used to provide a NUS pattern 

based on a repeating Pseudo-Random Bit Sequence (PRBS), the NUS pattern is then re-clocked by 

the TG with a high frequency clock, called in the corresponding reference as Nyquist clock, to 

synchronously activate the SH unit that capture the sample from the analogical signal. The 

restriction in such process is the compatibility of the generated clock with the ADC rhythm. Thus, 

the resulting pulse width spacing must not be smaller than the clock period of the ADC. In a similar 

methodology, the RS is practically implemented on an Arduino microcontroller in the aim of 

examining its performance on simple signals in a first step, then on a variety of vibration signals in 

a second step to evaluate the worth of applying RS in machine monitoring. In next section, the 

hardware implementation of different mode of RS is explained followed by the results on simple 

signals.  

3.6.2 Acquisition of Signals from Function Generator 

In order to apply RS on real signals, a program was developed on Arduino microcontroller1.  

The main idea of the program is to generate random instants at which the samples are acquired by 

the ADC, both modes are applied: ARS with both distributions and JRS with the uniform 

distribution.  

The algorithm is based on generating a random variable by using the concept of PRBS, when the 

probability distribution chosen is the Uniform, while in case of Gaussian distribution, the random 

variables are previously generated and saved on a file that is charged on an SD memory card so the 

microcontroller can access the random values by reading them from the memory card. According 

to the chosen mode this variable is either considered a time interval in case of ARS or a jitter in 

                                                           
1 Arduino & Genuino Products, https://www.arduino.cc/en/main/arduinoBoardUno 

https://www.arduino.cc/en/main/arduinoBoardUno
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case of JRS. In fact the generated time is saved in a timer register that when this time is up, an 

interruption is generated to enable the ADC to capture a sample. Thus, this value is considered as 

the time interval between two consecutive samples. So, in case of ARS the generated random 

variable is directly transmitted to the timer register, while in JRS case, the value sent to the timer 

is composed of the random jitter value added to TSm with the subtraction of the previous generated 

jitter, which is conform with the formula (2.45) in Chapter 2 where the interval is expressed in term 

of jitter in the JRS case. When the interruption occurs, the ADC is enabled, but the acquisition 

doesn’t take place until the clock of the ADC is at a rising edge, which causes the time quantization 

creation. In addition, the ADC has a time for processing the current sample, so if the interruption 

of the successive sample capture occurs an error is generated and the current sample is lost. The 

ADC acquires inputs between 0 and 5V and saves the value of the sample on 10 bits, the 

microcontroller clock is 16 MHz, with a possibility to be divided by a Prescaler, so the time step Δ 

could be increased and the clock rate of the ADC is decreased. This Prescaler is used in purpose of 

reducing the speed of the clock and thus makes the ADC slower, so the TSm may be tested for high 

values. Thus, in case of uniform distribution, the user must define the mean sampling period in 

term of clock period which is: qT= TSm/Δ. The deviation Dq also must be declared to limit the values 

generated by the PRBS, so the random variable is limited to the interval [qT-Dq/2; qT+Dq/2], thus 

the random variable can’t take negative values. Thus, for the JRS case, the results are figured for 

the positive jitter. Before proceeding with the code execution, the user must declare the value of qT, 

Δ, Dq and N according to the features of sampling that he attempts to use. 

At the beginning, multiple tests were applied on a triangular waveform with a frequency of 1kHz 

and an amplitude of 2.5 V with an offset of 2.5V to be compatible with the ADC input, to reveal 

the impact of RS in practice. So, the time quantization step Δ is determined by the ADC and by the 

clock of the microcontroller, when the clock has a low rate, large time granulation, the second and 

third harmonics were difficult to be detected due to the increased noise floor.  Thus, small values 

of Δ are used to focus on RS influence. Many tests were done for different values of qT, Dq and N. 

Due to hardware limitations the ratio R couldn’t have an exact value of 1, it is slightly greater than 

0.8.  The samples of the signal with their instants of sampling are saved, so the DTFT is calculated 

for the randomly sampled signal within Matlab, similarly to the simulation study. The offset of the 

signal is eliminated before calculating the transformation to the frequency domain. 

A uniformly sampled triangular waveform, with a frequency of 1 kHz, an amplitude equal to 2.5 

and an offset of 2.5, is simulated on Matlab without noise. It has a spectrum with peaks on 1 kHz 

and its odd multiples as in Figure 4.1, and the fundamental has the highest amplitude while the 
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other harmonics have reduced amplitudes (the offset is eliminated before calculating the FFT). To 

observe the two harmonics at 3 kHz and 5 kHz, the uniform sampling frequency is taken 10.2 kHz, 

the length of the signal is 2040 points. The acquisition of the already mentioned triangular signal 

was done with different values of  TSm(qTΔ), Dq and number of points, one of the most important 

results is shown in Figure 4.2, the DFT of the triangular signal sampled with ARS and JRS with 

the uniform distribution having same parameters are compared. The mean frequency is 

approximately 200Hz, where the period is 4.99 ms and the ratio R is 0.8 (couldn’t be greater due 

to hardware limitation). The number of samples taken is 4000 points. 

 

 

 

 

 

 

 

 

  

 

 
Figure 3.16  FFT of the triangular waveform with uniform sampling 

 

Figure 3.17 Comparison between two DFT of a triangular signal having a frequency of 1 kHz and sampled using a 

JRS (on the left) and an ARS (on the right) 
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On one hand, when comparing both results, it can be seen that the aliases appears in the JRS mode, 

as the mean frequency of sampling is 200Hz , aliases appears around the fundamental with a 

distance of 200 Hz and its multiple, while in ARS no aliases appears. 

This aliasing is due to two reasons: the uniform distribution of the jitter is not perfect enough so 

the condition of stationarity is not satisfied as in 1.4.2 and the ratio R (deviation/Ts) is not greater 

than 80% as deduced from simulation. On the other hand, the main fundamental and its first 

harmonic appears in both cases, the second harmonic has a very low amplitude that can be easily 

covered by the noise due to hardware conditions and RS noise. Consequently, the ARS mode with 

uniform distribution is able to detect the peaks of the signals with a low frequency without aliasing 

with no limitations as in the JRS with Uniform distribution which requires a random sequence with 

a ratio higher than 0.8. 

The whole research on RS and its different modes was done to study the possibility of its application 

on vibration signals in order to reduce the frequency of sampling and decrease the amount of data 

to be captured. After the test of RS in simulation and on simple signals (triangular waveform), it 

was concluded that the ARS mode with the uniform distribution is the combination with less 

limitations to be applied on real signals, plus, the time granulation should be the smallest possible 

value, and the ratio R should be higher than 0.5. In case of ARS with Gaussian distribution, for 

R=1, N must be higher than the number acquired by the ARS with uniform, while for R=2, N 

shouldn’t be higher, but the generation of such random sequence is more challenging. And in case 

of JRS, the generated sequence must be accurate with a ratio R=1 or 0.9. Though, in all these cases, 

the frequency can be smaller enough than the Nyquist frequency but around the maximal frequency 

of the signal and the number of points is recommended to be increased to have better result with 

less noise, in fact, these parameters are determined by the context of each application. These 

conclusions clarify the manner of choosing the RS mode, the corresponding distributions, the 

parameters of distributions including the sampling period and the number of points according to 

the aspect of the signal of interest. Thus, a brief review on the aspect and the techniques of analysis 

of vibration signals for both elements: Bearing and Gear is presented to choose the convenient 

mode of RS with adequate parameters in order to profit from RS and enhance its performance in 

such context.  
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4 Chapter 4: Application on Vibration Signals 

 

4.1 Introduction 

After exploring RS in simulation and practical implementation, deducing the most promising 

modes and concluding the best ranges for selecting its different parameters, this sampling process 

is applied on machinery vibration signals to evaluate its potential in conserving these vibrations 

aspect in the aim of monitoring and diagnosing rotating machines. In fact, Gears and bearings are 

important components of almost every machinery used in the industry. Hence, they were the subject 

of many recent researches to provide the needed tools for keeping them monitored and detect their 

defection whenever it appears or even before. Most of these techniques are based on the vibration 

analysis [85], thus the RS was chosen to be applied on the vibration signals acquired from these 

two elements. In this chapter, a brief study on the bearings and gears is presented first in order to 

have a clear view on their functionality and the impact of defections on their vibration signature. 

Then, an application of RS in its different modes and within the range of multiple parameters values 

is performed on each component in two separated experimentations. Actually, the RS application 

on bearing elements was done within a simple test bench where the bearing vibration signature 

appeared clearly, while the gears couple under test was part of a more complicated structure. Thus, 

multiple spectral analysis were used for the signal processing in each case according to its 

complexity, whether by the mean of the Welch or the LS periodogram. Both modes of RS are 

applied: the ARS with uniform and Gaussian distribution and the JRS with the uniform distribution. 

In each combination many sampling periods and numbers of samples were tested in order to 

enhance the result of RS to deduce the best values and compare them to those proposed in the 

theory. 

4.2 Bearing  

In this section, the bearing is described by defining its constituents, then the different possible 

defections are cited, to end with an overview on the most used techniques for diagnosing such 

element. In fact, this review is presented to justify the choice of the bearing defection and the 

method of monitoring in the application of RS on bearing vibrations. 
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4.2.1  Definition  

A bearing is a component used to enable rotational or linear movement, while reducing friction and 

handling stress, it is composed basically from an outer and inner race with rolling elements in 

between like balls or rollers contained in a cage set as shown in figure 4.3. Whether in rotating or 

sliding, the continuous interaction between these different components generates a complex 

vibration signature even in normal conditions. However, the apparition of faults significantly 

increases the vibration levels. Fatigue, corrosion, poor lubrication and faulty installation or design 

are all possible factors to cause premature bearing failures. The identification of the defection is at 

the same level of importance of its detection in monitoring and repairing such component. Thus, 

many techniques were developed for detecting and localizing bearing faults.  

 

Figure 4.1 Bearing Components 

4.2.2 Possible Defections 

To simplify the task of monitoring, bearing defects are divided in two categories according to their 

causes [85]: 

a) Distributed Defections 

They are mainly caused by imperfections or errors in manufacturing or installation. So, the 

contact force between the bearing elements varies the vibration aspect. Thus, the vibration 

analysis in such cases is used for quality inspection and condition monitoring for the 

enhancement of bearing reliability. 
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b) Localized Defections 

   The dominant type of such defection is Spalls that may appear and develop over rolling 

surfaces when fatigue crack begins and propagates until the material fails and leave 

localized defection. According to [86] 90% of faults in bearings occur in the inner or outer 

race due to such type of imperfections. In these cases, the direct contact between the faulty 

element and the surface of its mating produces pulses of short duration [85]. These pulses 

produce vibration which can be monitored. The vibration signal generated by the faulty 

bearing can be analyzed in time and frequency domain [87]. Hence, in the rest of this study 

the scope of work is focused on faults localized on inner races.  

In fact, whether the local fault appears on one of the rolling elements or on one of the two races   ( 

inner or outer), the fault is stroke by the mating rolling surface in contact which will introduce a 

shock that excites high frequency resonances of the whole structure between the bearing and the 

response transducer. These shocks excite series of broadband bursts that are featured by an 

amplitude modulation caused by two factors: 

1. The strength of the bursts founds on the load endured by the rolling element(s), 

and this is normally modulated by the rate at which the fault is driven through the 

load zone. 

2. Where the defection is moving, the transfer function of the transmission path 

changes with respect to the static placement of response transducers [88].   

Hence, due to the existence of multiple components in the bearing, multiple faults may occur and 

the resulting signal contains then an impulse frequency that corresponds to the faulty component. 

These fundamental frequencies depend on the bearing characteristics as its geometry and its 

rotational speed, thus they are defined for each component by an expression in term of these 

characteristics [89]. For instance the Ball-pass Frequency of the Inner Race (BFIR) is defined by 

(4.1), so in case of defected inner race, in the spectrum, the frequency of rotation appears and the 

BFIR with their harmonics. The Ball-pass Frequency of the Outer Race (BFOR), the cage speed or 

the Fundamental Train Frequency (FTF) and the Rolling element Spin Frequency (RSF) are given 

in (4.2) to (4.4) [88]. 

                            𝐵𝐹𝐼𝑅 =
𝑛𝑏

2
𝑓𝑟 (1 +

𝑑𝑏

𝑑𝑝
cos𝜑)                                  (4.1) 
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                         𝐵𝐹𝑂𝑅 =

𝑛𝑏
2
𝑓𝑟 (1 −

𝑑𝑏
𝑑𝑝
cos𝜑)                                (4.2) 

 
                            𝐹𝑇𝐹 =

𝑓𝑟
2
(1 −

𝑑𝑏
𝑑𝑝
cos𝜑)                                 (4.3) 

 
                         𝑅𝑆𝐹 =

𝑑𝑝
2𝑑𝑏

{1 − (
𝑑𝑏
𝑑𝑝
cos𝜑)

2

}                                 (4.4) 

   

Where nb=number of balls or rolling element, db= ball diameter, dp=bearing pitch diameter, 

𝜑=bearing contact angle, fr=rotor frequency. 

The expressions in (4.1) to (4.4) are defining the kinematic frequencies of different possible errors 

within the assumption of absence of slip. In fact, each rolling element has particular effective 

properties, as the diameter db and the contact angle 𝜑, which will make each element rolling at a 

different speed. Although the presence of the cage decreases the deviation of these rolling elements 

from their mean position, slip appears in random aspects and the bearing frequencies change of 1-

2% [88]. 

4.2.3 Diagnostic Methods 

In the literature, many tools were proposed for monitoring machines components like bearings and 

gears, on one hand some applications were based on the acoustic emission for diagnosing or pattern 

recognition using artificial intelligence. On the other hand, many researches focused on vibration 

analysis and considered it the most efficient method for diagnosing such components in rotating 

machinery [5][6]. However, the vibration analysis may be applied in different ways within different 

possible domains, they are divided into three main categories [85] [90]:  

1) Time Domain: where the analysis is based on many indicators calculated from the time 

signal as the root mean square (RMS), the Kurtosis, the Crest factor and many others. 

These time-domain features can be used alone or in combination with others. A popular 

time-domain analysis approach is time synchronous average (TSA), used to enhance 

the signal components of interest by using the ensemble average of the raw signal over 

a number of evolutions in an attempt to reduce noise and effects from other sources. 

More advanced approaches of time-domain analysis apply time series models to 

waveform data. The main idea of time series modelling is to fit the waveform data to 

a parametric time series model and extract features based on this parametric model ( 

like ARMA. AR or MA).  
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2) Frequency Domain: the advantage of frequency-domain analysis is the ability to easily 

identify and isolate certain frequency components of interest. The most widely used 

spectrum analysis is processed by means of FFT. While the most commonly used tool 

in this analysis is the power spectrum. Some useful auxiliary tools for spectrum 

analysis are frequency filters, envelope analysis (EA) and side band structure analysis. 

Hilbert transform, which is a useful tool in EA, has also been used for machine fault 

detection and diagnostics. Despite the wide acceptance of power spectrum, other useful 

spectra for signal processing have been developed and have been shown to have their 

own advantages over FFT spectrum in certain cases. For instance, high-order spectrum, 

i.e., bispectrum or trispectrum, can provide more diagnostic information than power 

spectrum for non-Gaussian signals. Bispectrum analysis has been shown to have wide 

application in machinery diagnostics for components as gears in rotating machines.  

 

3) Time-Frequency Domain: this analysis is advantageous in its ability to deal with 

stationary and non-stationary signals. Its main feature remains in visualizing the 

distribution of the frequency components within the dimension of time. Examples of 

methods using such approach are: Short Time Fourier Transform (STFT), Wigner-

Ville Distribution (WVD) and Wavelet Transform (WT) [85][90][91]. In addition, an 

enhanced transform is introduced in the context of machinery diagnostic is the 

Empirical Mode Decomposition (EMD). 

Consequently, as the mostly used, and as the study in this thesis is limited to simple cases of bearing 

signals rotating at a constant speed (thus stationary) the vibration analysis used in this work for 

bearing monitoring is based on the EA in the frequency domain. In fact, due to structure resonance, 

the bearing vibrations are carried to higher frequencies, thus according to [88] one of the earliest 

bearing diagnostic studies proposed searching for faults in the resonance region of high frequencies 

(multiple of 10 kHz), then, in the same period of time, synchronous averaging was performed on 

rectified envelope signal to explore local defections in bearings, to finally obtain the High 

Frequency Resonance Technique or EA that is developed as a demodulation of the vibration signal 

to separate it from the resonant carrier so the frequency analysis of bearing is shifted to a lower 

frequency range and thus fault frequencies are analyzed with good resolution. Hence, the new 

concept, at that time, led to multiple bearing diagnostic methods introduced by bearing companies. 

In these methods, the resonance of the accelerometer was considered as a carrier, so the bandpass 

filtering, used in the EA, was determined according to the structure of the accelerometer 

implemented in the corresponding device. Consequently, one of the most important issues in the 
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EA was the selection of the bandpass filtering which is followed by the demodulation phase. Thus, 

three recommendations were proposed for this selection: the first one is based on searching for 

peaks at high frequencies assuming that these peaks are created by the bearing faults, the second 

relies on hammer tap to explore the bearing resonances, while the third is based on choosing the 

region of biggest dB change between the examined and the original condition spectrums, which 

requires the acquisition of vibration signals for the bearing in good states as reference records [88].  

In conclusion, EA has been considered for long as a powerful technique for diagnosing bearings 

rolling at constant speed. Typically, its first step consists of a bandpass filtering around a frequency 

band where the impulsive excitation is amplified, and the second step is based on a demodulation 

that extracts the signal envelope. The spectrum of the envelope is expected to contain the desired 

diagnostic information, including the repetition rate of the fault and potential modulations. 

According to [92] it has been shown that the squared envelope (SE) is preferable to use instead of 

the envelope which may introduce misleading peaks in the envelope spectrum. Thereafter, due to 

its low complexity and computational cost, the squared envelope spectrum (SES) becomes the 

standard technique for bearing diagnostics.  

However, the application of EA within the US mode may encounter some difficulties when 

implemented in real-time remote monitoring for a set of rotating machinery. As mentioned 

previously, the bandpass filtering or the exploration of faults frequencies in high resonance regions 

are applied around multiple of tens of kHz, which requires a minimum sampling frequency higher 

than the double of the frequency of interest according to Shannon-Nyquist condition in US, hence 

the sampling rate may reach hundreds of kHz with an acquisition of a large amount of data in order 

to guarantee a satisfying resolution and clear results. Besides, the vibration signature of bearings 

and gears are known to be sparse in the frequency domain, as shown in chapter 1 and declared in 

[19], thus the main contribution in this thesis is to explore the effect of RS on such signals in order 

to evaluate its potential in reducing the sampling frequency and the amount of data.  

4.3 Gear 

In this part, after defining and describing the gear component, a brief review on its possible 

defections is presented to conclude with the diagnostic tools used for monitoring such element. 

This overview is needed to clarify the decisions made in the RS application on the gear vibration 

signature. 
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4.3.1 Definition 

By definition, the gear is an assembly that performs a transmission configuration 

in machinery. It is composed of a toothed part such as a wheel or cylinder that meshes with 

another toothed part to transmit motion by changing the speed value or direction. Gears are 

a crucial part of many motors and machines, they help in increasing torque output by providing 

gear reduction and in adjusting the direction of rotation like the shaft to the rear wheels of 

automotive vehicles. Many types of gears are used in the industry: Spur, Helical, Planetary, Bevel 

and others. Each specific design has a determined functionality, thus it is chosen according to the 

needs of the application. The most commonly used are the spur gears especially in series for large 

gear reductions. The teeth on spur gears are straight and are mounted in parallel on different shafts, 

an example of a couple of two gears is shown in figure 4.4, where the direction is inversed and the 

speed is reduced as the ratio Gf is defined by (4.5). Spur gears are used in washing machines, 

screwdrivers, motors, pumps, and other devices. They are particularly loud, due to the gear tooth 

engaging and colliding. Each impact makes loud noises and causes vibration, and the teeth 

experience a large amount of stress [93]. 

 

Figure 4.2  A Pair of Gears with a ratio Gf 

 
𝐺𝑓 =

𝑍2
𝑍1
  (4.5) 

All the gears in the same gearbox mesh at the same time with their respective pinions which results 

in sliding of each tooth on other thereby generating vibrations. Due to the variable stiffness in this 

meshing process, all these gear vibrations are governed by the gear mesh frequency and its 
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harmonics [94]. Thus, for a pair of rotating gears in fixed-axis gearboxes, rotation frequencies 

emerge symmetrically as sidebands around the meshing frequency and its harmonics in the 

spectrum. In addition, signals are usually acquired from accelerometers attached on a structure 

housing several meshing gears. Due to structure resonance, similarly to the bearing case, the gear 

vibrations are convoluted with the structure transfer function. And, in some cases, several type of 

rotating components are packed with gears, as bearings, shaft and others. Hence, the useful 

characteristics are masked due to strong noise background which will require denoising strategies 

[95]. Indeed, the distinctive frequencies of a pair of gear is composed of the meshing 

frequency surrounded by rotation frequencies of both gears to form sidebands. In case of 

defection, these frequencies and their harmonics are affected by fault. The identification of 

defection is related to the occurrence of the characteristic frequency linked to the given 

fault. Therefore, the primary objective in vibration analysis is to detect the meshing 

frequency with its sidebands which helps in detecting the fault when occurred. The 

meshing frequency is defined by the features of the pair of gear and is expressed by (4.3) 

[96].  

 𝐹𝑚𝑒𝑠ℎ = 𝐹1𝑍1 = 𝐹2𝑍2 (4.6) 

where F1 and F2 are the rotation frequencies of gear A and gear B respectively, and Z1 and Z2 are 

the numbers of teeth of gear A and gear B respectively. 

4.3.2 Possible Defections 

 The possible defections that might occur in the gear component include fatigue failure, impact 

fracture, wear and stress rupture. In fact, fatigue is the most frequent type of defection, where tooth 

bending and surface contact exhaustion are two of the most common consequences of fatigue 

failure found in gears. Poor design of the set, improper assembly or misalignment of the gears, 

overloading, inadvertent stress raisers or subsurface faults appearing in critical areas, and the use 

of inappropriate materials and heat treatments are all factors that might cause the fatigue failure 

[97]. Consequently, the fatigue failure is the most interesting mode to be explored, and thus, its 

corresponding vibration signature must be analyzed. According to [98], if the gear has a local 

defection as a fatigue crack, then changes will occur in the vibration as the affected teeth mesh with 

the other gear. These changes can be represented by an amplitude and phase modulation. The 

magnitude of the high-order sidebands will depend on the form of the modulation and also on the 

magnitude of the relevant meshing harmonic. Hence, as the main objective of this thesis is to apply 

the RS on vibration signals within the diagnostic context, performing RS in acquiring the signature 
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of a normal gear and detecting its meshing frequency with the corresponding sidebands is 

considered satisfying as a preliminary step in applying RS on the gear vibration signal. 

4.3.3 Diagnostic Methods  

Many advanced techniques have been employed to detect representative features of the gear 

conditions. As mentioned in paragraph 4.2.3 these techniques are either based on time, frequency 

or time-frequency analysis. For instance, in [99] a new time-domain approach based on dynamic 

time warping and correlated kurtosis is introduced for local fault detection in gears. Besides, since 

gear motion is often rotational, periodicity is regarded as an important characteristic of its vibration 

signature. Thus, many techniques are based on or related to periodic analysis, such as spectral 

analysis, bispectrum, WT, time–frequency distribution, cyclostationary approach and EMD [theo]. 

According to the same reference, analyzing gear signals is often obscured by the presence of noise, 

including random noise and uninteresting vibration associated components. However, the main 

objective of using any technique of diagnosing is the detection of the meshing frequency and its 

sidebands that correspond to a particular gear component in the studied system. Due to the 

complexity of applying most advanced techniques in a varying time step conditions within RS, the 

proposed analysis in this study for gear signals is the Welch and the LS periodograms in the aim of 

detecting the meshing frequency and the sidebands as a first step. 

Finally, on one hand, the bearing while rolling in order to reduce friction and handle stress, is 

mostly susceptible to race faults which appear in its vibration signature as a peak in the frequency 

domain. Thus, among multiple techniques the EA is considered the most reliable method to analyze 

the vibration signal in the spectral domain to identify the bearing condition. On the other hand, the 

gear is prone to many defections whose the most frequent is fatigue failures. However, these 

failures impact affects the amplitude and the phase of the spectrum of the gear vibration. Hence, a 

spectral analysis that could detect the meshing frequency with the corresponding rotation 

frequencies sidebands is considered satisfying in condition monitoring. In fact the most 

complicating issue in analyzing vibrations of both components is the structure resonance, 

uninteresting vibrations arising from other components in addition to random noise. Thus, the 

application of RS on bearing and gear is performed in different conditions in order to have a clear 

observation. In the first step of experimentation, the RS is applied on a normal bearing implemented 

in a very simple test bench that contains the rotating motor and the studied bearing only, in order 

to obtain a simple spectrum without a need to any filtering. The second step is based on acquiring 

vibrations from a defected bearing replacing the normal one in the same test bench. Both steps are 

conducted in the aim of examining the ability of RS in distinguishing between bearing in normal 
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and faulty states. The third step is in applying RS in acquiring vibrations form a couple of spur gear 

mounted back to back with three other couples. In this case the spectrum of the vibration signal is 

much more complicated due to the convolution of the structure transfer function with the vibrations 

issued from all rotating components. Actually, the purpose of this step is to identify the ability of 

detecting the meshing frequency of the gear of interest and the corresponding sidebands in the RS 

context. 

4.4 RS Application  

The RS application is presented in two phases, the first when applied on the bearing, the second 

when applied on the gear. In both cases, the results are presented in the same methodology; after 

viewing the vibrations in time and frequency domain in case of US, the effect of the sampling 

frequency and the number of samples on resulting spectra are presented in order to evaluate the 

most adequate values in each RS mode, and finally the best spectrum of each mode is shown to 

verify its conformity with the US results. Thus, randomly sampled signals (squared in case of 

bearing) are transformed to the frequency domain by the mean of two methods. The first by 

applying zero insertion and using the Welch periodogram, the second by using the LS periodogram. 

So, the main purpose of this part is to evaluate the most adequate parameters and modes of RS with 

a qualification of the chosen spectral analysis in this context.  

4.4.1 Bearing 

The experiment is done in LASPI, on a rotating motor shown in Figure 4.3, attached to the bearing 

6205 RS manufactured by MTM, with two possible cases: normal and defected inner race. The 

rotation speed was approximately 37 Hz. Vibration signals are acquired by an accelerometer placed 

radially to the bearing as in Figure 4.4.  

Figure 4.3  The bench containing the rotating motor with 

bearing 
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The output of the accelerometer is wired to a conditioner circuit connected to the Arduino 

microcontroller, so the signals can be sampled randomly. the conditioner circuitry is needed as The 

output of the accelerometer is limited between -1V and +1V with a sensitivity equal to 100mV/g, 

so it should be amplified and added to an offset to be compatible with the ADC input of the used 

microcontroller, which should be limited between 0V and 5V. 

 

Figure 4.4 The accelerometer acquiring vibration signals from the bearing 

After the samples and their corresponding instants are collected, the data is uploaded to Matlab in 

order to estimate the spectrum of the vibration signal. According to paragraph 4.2.1 the spectrum 

in case of normal or defected bearing contains the characteristic frequencies of rotation and 

defection as peaks according to 4.1 and 4.4 with their harmonics, the SES of this signal is able to 

reveal these frequencies in order to accomplish the task of diagnosing. Thus, the spectral analysis 

applied in this test is based on the spectrum of the squared envelope deduced from the acquired 

signal. As already declared, the spectral representation of randomly sampled signal in this study is 

done by a phase of zero insertion and zero padding, to calculate then the spectrum by the FFT or 

the Welch periodogram method. In order to enhance this spectrum estimation, the window chosen 

in Hamming with a number of segments equal to 8 and an overlapping percentage equal to 50%. 

In addition the LS periodogram of the squared envelope is calculated by the mean of “Plomb” 

function built in Matlab. 

A) Normal Bearing Case with US 

 In first place, using National Instrument DAQ device, an acquisition of the vibration within 

uniform sampling is done at a frequency of 51.2 kHz, from the same accelerometer used in RS. The 

acquired signal is processed also in Matlab. In this study, as the test bench is simply based on a 

rotating motor attached to the rolling bearing, resulting vibrations are neither prone to high level 

noise nor a large number of uninteresting vibrations, thus all acquired signals, randomly or 

uniformly sampled, are explored without any pre-processing or filtering. 
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First, in case of normal bearing, the frequency to detect is the rotation frequency. In uniform 

sampling, the signal in time domain is shown in Figure 4.5 (a). Due to the use of a high frequency 

of sampling, the signal within 4 seconds is very dense so, only 1000 points of the signal are plotted 

in  figure 4.5 b, which lay in approximately 0.02 seconds.  

 

Figure 4.5 The uniformly sampled signal of the normal bearing in time domain 

 within 4 seconds (a) and 0.02 seconds (b) 

To detect the frequency of rotation, the FFT of the envelope is calculated, and the corresponding 

Welch periodogram is also presented to reduce the noise level and to compare it to the periodogram 

of the randomly sampled signal. Both are presented in figure 4.6 for a uniformly sampled signal of 

100 000 points. It is obvious how in the FFT and in the periodogram, the rotation frequency is 

clearly detected with its harmonics. 

 

Figure 4.6 The FFT (a) and the Welch periodogram (b) of the envelop of the uniformly sampled 

signal of a normal bearing 
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B) Normal Bearing Case with RS 

Multiple tests are performed in acquiring the vibration of the normal bearing with RS in order to 

evaluate the effect of each mode and each parameter. The evaluation is based on comparing the 

amplitude of the rotation frequency with the amplitude of the noise maximum level. As the RS is 

applied in the TQRS mode, it is a must to identify the best value of Δ in first place. As the JRS with 

uniform distribution is the most liable mode to have aliasing in the resulting spectrum, a comparison 

between the highest noise value and the amplitude at 36.9 Hz are compared (according to the SFDR 

definition) with the variation of Δ to view the impact of quantization on RS. In figure 4.7 the 

amplitudes are shown for the JRS with uniform with a fixed TSm=0.02 s, the number of samples is 

6000 point and R is almost 1. The amplitudes are extracted for the normalized LS periodogram.  

 

Figure 4.7 Variation of amplitudes in term of Δ (sec) 

It can be inferred from Figure 4.9 that the best value to choose for Δ is the minimum; however, the 

amplitude of the rotation is high enough to be detected in all cases of Δ. Thus, in the majority of 

the tests, Δ is taken equal to 4 or 0.5 μs. 

In order to evaluate the effect of TSm, the application of all the possible modes of RS is done within 

same conditions. The results of the Welch periodogram are presented in Figure 4.8, where the 

amplitude of the rotation frequency peak is compared to the highest noise amplitude. In this test, Δ 

is fixed to 4 μs, the ratio R is approximately equal to 1, and the number of points is 6000. In figure 

4.9 the same comparison is presented for the LS periodogram. In order to compare both methods 

of spectral analysis. 

 



120 
 

According to both figures, obviously, the ARS with uniform distribution provide the best noise 

reduction within same conditions. However, for the frequencies equal or higher than 20 Hz, ARS 

with Gaussian can give fairly acceptable results. Thus, the ARS mode with uniform results is 

presented in Figures 4.10 and 4.11 in time and frequency domains as it is having fewer limitations 

than other modes. As the rotation of the bearing is at a low frequency signal, the chosen mean 

frequency is 25 Hz, the ratio R equal to 0.8 and the number of acquired samples is 6000.  

As the sampling frequency is low, acquired signal within 4 seconds (figure 4.10 (a)) is not 

representative enough, a longer signal is then presented in figure 4.10 (b) to visualize 1000 samples 

that take 40 seconds to be acquired. Thus, in comparing US and RS signals in time domain, it is 

preferred to fix the number of samples instead of the time interval as the sampling frequencies are 

far different in values. The Welch and the LS periodogram of the envelope are presented in Figure 

4.11. 

 
 

 

Figure 4.8 The variation of amplitudes in term of FSm (Hz) in Welch periodogram 

Figure 4.9 The variation of amplitudes in term of FSm (Hz) in LS periodogram 
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It can be deduced from Figure 4.11 that with a low sampling frequency and a moderate number of 

samples, the rotation frequency can be detected by using the ARS with uniform distribution. 

Although, the LS periodogram is preferred, having better noise reduction, both spectrum compared 

to welch periodogram of the US signal in figure 4.8 are considered acceptable as they reveal the 

most important information.  

 

 

   

Figure 4.10 The Welch (a) and the LS (b) periodogram of the envelop of the randomly sampled signal in ARS with 

unifrom of the normal bearing 

Figure 4.11 The randomly sampled signal of the normal bearing in time domain within 4 seconds (a) and 40 

seconds (b) 
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C) Defected Bearing Case with US 

In case of defected bearing, the defection is situated in the inner race. According to the bearing type 

and its characteristics, the BFIR characteristic frequency defined by (4.1) is 199.4 Hz. So, the most 

important peaks to be detected are: 37 Hz and 199.4 Hz. As in the previous case, the uniformly 

sampled signal is presented with its spectrum to have a reference of the information that should be 

detected, then the randomly sampled signal will be shown with its spectrum to compare the result 

and evaluate the effect of RS. 1000 samples of the uniformly sampled signal in time domain are 

plotted in Figure 4.12, as the frequency of sampling remains in this part equal to 51.2 kHz. The 

calculated FFT (a) and Welch periodogram (b) of the envelope are shown in Figure 4.13.  

Figure 4.13 The uniformly sampled signal of defected bearing time domain 

 

Figure 4.12 The FFT (a) and the Welch periodogram (b) of the envelop of the uniformly sampled signal of 

defected bearing 
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From Figure 4.13, it can be seen how the rotation frequency and the defection frequency appear 

both in the FFT and in the periodogram with their harmonics. The purpose of applying the RS on 

the vibration signal is to obtain such results with lower frequency and moderate number of samples. 

D) Defected Bearing Case with RS 

 Multiple tests were driven to explore the effect of parameters on the resulting spectrum by 

observing the ampliudes at 36.9 Hz and 199.4 Hz which are the most important frequencies. In first 

place, for the same value of TSm (FSm=100 Hz), multiple value of R are tried within the JRS with 

uniform mode, as this mode anti-aliasing property is very critical, N is equal 6000 and Δ is 0.5 μs. 

In Figure 4.14 the amplitudes extracted from the welch periodogram are shown with the variation 

of R. the frequency of this maximal noise is confirmed to be 300Hz, which is the alias of the 

defection frequency situated at a distant equal to the sampling frequency. 

With the same methodology followed in the normal bearing case, the application of RS in the 

acquisition of defected bearing signals is performed by testing different values of TSm and N in each 

mode, and the evaluation is done by plotting the amplitudes of characteristic frequencies (rotation 

and defection) with the noise maxima in both periodograms Welch and LS of the signal envelop. 

Then, best results are examined by presenting their corresponding spectrum to verify their 

conformity with US spectrums and analyze the used parameters to confirm the recommendations 

declared in chapter 3. 

 

Figure 4.14 The amplitudes of characteristic frequencies compared to noise amplitude in term of R in 

case of JRS+Unif in Welch periodogram 
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In the second test, the different modes of RS are applied with the same Δ (4 μs), N (6000points), 

and R (approximately equal 1) while FSm is varying from 10 to 200 Hz. The results are presented in 

both normalized periodograms in figures 4.15 to 4.17 ((a) for the Welch periodogram and (b) for 

the LS). The enhancement of the spectrum is obviously proportional to the frequency of sampling, 

the best amplitudes of the defection frequency are provided by the ARS with uniform distribution. 

However the JRS with same distribution presents a better noise reduction due to the shape of noise 

added in this mode of sampling and to its low requirement towards the number of points, thus a 

further test is made in order to view the effect of the number of points on the noise reduction in the 

next step. By comparing the results of the Welch periodogram with the LS, the consistency in the 

noise reduction with the increasing sampling frequency can be obviously revealed in the LS more 

than the Welch, while the amplitude variation is approximately the same. 

The third test is performed by varying the number of sampled data in each mode of RS. The results 

are shown in figures 4.18 to 4.20, (a) for the Welch periodogram and (b) for the LS, where the 

FSm=50Hz , Δ = 0.5 μs and R ~1. According to these results, the increased number of samples 

enhances the spectrum by reducing the noise level to the minimum in all the RS modes. Though, 

the amplitudes of peaks in the ARS with uniform distribution are higher than other modes. In 

addition, the distinction of the rotation amplitude, which is lower than the defection peak, from the 

noise is easier in the LS periodogram than the Welch. The best spectrums to be presented are the 

ones corresponding signals acquired with ARS and JRS with uniform distribution with FSm=200Hz, 

Δ = 4 μs, R ~1 and N=6000. The signal in time domain shown in figure 4.21 is for the ARS case, 

where 1000 samples are acquired within 5 seconds. The Welch and LS periodograms of the 

envelope are plotted in figures 4.22 and 4.23 ((a) and (b) respectively). 

By comparing these periodograms to the resulting spectrum of the same state with US, it can be 

deduced that within RS, almost same result is obtained as the bearing defection can be easily 

detected due to its corresponding peak at its characteristic frequency. It can be inferred from the 

comparison between figures (a) and (b) (in 4.22 and 4.23) that the high order harmonics are lost in 

the noise in the LS earlier than in the Welch due to the feature of the latter in reducing noise by 

averaging and overlapping.  The examination of spectrums of both modes ARS and JRS lead to the 

appreciation of ARS due the amplitude recovery. 
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Figure 4.15 The variation of the amplitudes in term of  FSm (1/TSm) in ARS+Unif 

Figure 4.16 The variation of amplitudes in term of  FSm (1/TSm) in ARS+Gauss 

Figure 4.17 The variation of amplitudes in term of  FSm (1/TSm) in JRS+Unif 
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                  Figure 4.18 The variation of amplitudes in term of N in ARS+Unif 

                        Figure 4.19 The variation of amplitudes in term of N in ARS+Gauss 

                          Figure 4.20 The variation of amplitudes in term of N in JRS+Unif 
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Consequently, the best results are obtained in RS are for FSm equal to 200Hz and N equal to 6000, 

which are perfectly respecting the recommendations already declared in chapter 2, as the noise is 

reduced to the minimum when the sampling frequency is almost equal to the peak frequency to be 

detected (frequency of defection 199.4 Hz) and the number of samples is proportional to the number 

of harmonics detected (in the ARS 6 harmonics are appearing clearly).  In conclusion, the RS 

application in acquiring bearing vibrations conserves the state condition of this component in the 

resulting spectrum by preserving the corresponding characteristic frequencies which guarantees the 

fault detection whenever it occurs. This acquisition is highly appreciated for its low frequency rate 

and reduced amount of data used. 

 

Figure 4.21 The randomly sampled signal of the defected bearing within ARS+Unif  in time domain 

Figure 4.22 The Welch (a) and the LS (b) periodograms of the randomly sampled signal    envelop of 

the defected bearing in ARS+Unif 
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Figure 4.23 The Welch (a) and the LS (b) periodograms of the randomly sampled signal envelop of 

the defected bearing in JRS+Unif 

4.4.2 Gear 

After the successful results obtained by the application of RS on bearing signals in a simple test 

bench, further tests were conducted to apply different modes of RS on gear vibrations. At the 

beginning, the same procedure followed in the first experimentation was repeated on the gear test 

bench by using the Arduino microcontroller with the same codes and same accelerometers. In 

figures 4.24 and 4.25 the test bench containing multiple gears and its kinematic scheme are shown, 

in 4.24 the accelerometer appears placed on the housing structure and positioned directly above the 

pair of gears under test. In fact the test bench contains 4 couples of spur gears mounted back to 

back to offer a speed reducer with a factor of reduction equal to 139.74. In order to simplify the 

task, the pair placed directly under the accelerometer is the only one taken in consideration. 

According to paragraph 4.3, the characteristic frequencies are deduced from the geometric 

properties of the gear. The studied pair is composed of two gear with Z1=23 and Z2=62, which 

makes the ratio Gf=2.69. Hence, in case of the first rotation speed, F1 is equal 25Hz, the meshing 

frequency Fmesh is deduced according to (4.6) and is equal to 575Hz. The second rotation frequency 

is then F2=575/62=9,27Hz. So, the objective within applying the RS is to detect the meshing 

frequency Fmesh and the rotation frequencies emerged around as sidebands.  
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A) Gear Case with US 

In a similar way of the bearing experiment, the first step in the gear test is to acquire the 

corresponding signal at a constant frequency to explore the spectrum of the vibration to be 

captured randomly with RS in the next step. By using the DAQ device, the vibration signature 

 

Figure 4.24 Gear test bench with an accelerometer directly above the gear under test 

 

Figure 4.25 Gear test bench kinematic scheme 
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of the gear is acquired at 51.2 kHz with N=200000 points. In the aim of exploring the 

characteristic frequencies of the tested gear, the FFT of the acquired signal is calculated, yet, 

the obtained spectrum is hardly interpreted due to its high complexity resulting from the 

apparition of vibrations coming from other components mounted in the same bench in addition 

to the noise and to the effect of the structure resonance. Nevertheless, by zooming around the 

meshing frequency, it appears clearly with the sideband frequencies of the corresponding 

rotations F1 and F2. This part of spectrum is shown in figure 4.26.  

 

              Figure 4.26 The FFT of the uniformly sampled gear vibration around Fmesh 

Thus, in order to reduce the noise within conserving peaks at the characteristic frequencies, Welch 

periodogram is used for the spectrum estimation. The chosen apodization window is Kaiser due to 

its selective aspect  and its high rejection property [81] that are illustrated in figure 3.15 in chapter 

3. The number of segments and the percentage of overlapping are moderately chosen in order to 

reduce the noise without suppressing the characteristic peaks. A comparison between the variety of 

Welch peridodogram trials is shown in Figures 4.27 to 4.29 in order to illustrate the important part 

of spectrum that must be detected and verify the decision in choosing Welch parameters. According 

to figure 4.27, many window types are tested on the gear spectrum, owing to its selective aspect, 

the Kaiser window conserves the characteristic peaks and prevents them from suppression or 

smearing as in other spectrum obtained with other windows. In Figure 4.28 and 4.29 the windows 

having best spectrums (Kaiser and Hamming) in 4.27 are chosen to be tested with different number 

of segments (L) to qualify the best window to choose, the same methodology is also applied for the 

overlapping percentage. Consequently, the Kaiser window with L=16 and overlapping =50% is 

approved to be the best combination as it is able to conserve the most critical peak 582 Hz. 
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However, in all these spectrum estimations the peak around 585Hz remains with high amplitudes 

which disturb the detection of the characteristic frequencies which is a result to the harsh 

environment that surrounds gears. 

 

Figure 4.27 The Welch periodogram of gear vibration with different apodization windows 

around Fmesh 

 

                        Figure 4.28 the Welch periodogram of gear vibration with Kaiser window for different 

L 
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         Figure 4.29 the Welch periodogram of gear vibration with Hamming window for different L 

 

Figure 4.30 the Welch periodograms of the gear vibration and the structure transfer function 

Furthermore, to have a clear view on the gear vibration with a significant interpretation, the 

spectrum of this signal and the structure transfer function are estimated by the Welch peridogram 

with already cited parameters and shown in figure 4.30. As declared in part 4.2 of this chapter, the 

structure transfer function can be obtained by the vibration acquired from the housing while a 

hammer tap is applied. In general, the comparison between these two spectra is necessary to observe 

the effect of resonance, and deduce the bandpass filtering if needed. In case of RS, this step is 

required to reveal the highest frequency of interest in the spectrum of the signal under test to deduce 
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the sampling frequency. As the characteristic frequencies are detected by simple zooming, the 

analysis of vibration signals in following steps is performed without filtering.  

B) Gear Case with RS 

Continuing with the same procedure followed in the bearing experiment, the next step in this test 

is to apply RS on gears vibration. In fact, the first trial was by the execution of the Arduino code 

of acquiring signals from accelerometer via the ADC. Unfortunately, all the conducted tests with 

low frequencies were ended by failure, which is verified by the fact of the existence of too many 

peaks in the spectrum which will increase the number of impulses convoluting the noise term N(f) 

in the PSD of the signal as discussed in the section (2.4.5) in Chapter 2. Thus, the mean sampling 

frequency must be increased to reach the highest frequency in the spectrum of the structure transfer 

function to reduce the noise to enhance the results. However, the ADC performance is limited by 

the time needed by the ADC to accomplish the conversion of one sampling. In the used Arduino 

microcontroller, the conversion process duration is 250μs, which can limit the sampling frequency 

to 500Hz when R is higher than 1. Consequently, another implementation of RS was used with 

better features and higher performance. Yet, the description of this implementation is not presented 

due to confidential reasons. Hence, many tests were done in applying RS within its different modes 

on the gear vibration. The same methodology used in the bearing case is followed in evaluating the 

success of RS application, by varying the RS parameters and exploring their effect on the resulting 

vibration spectrum. In this test, the amplitudes compared to the noise maxima are that 

corresponding to the meshing frequency and to the sideband frequencies Fmesh-F2 and Fmesh+F1 as 

they are the lowest. As in the spectrum in US case some noise appeared around 585 Hz, the 

maximum of noise is not considered as a sufficient criteria to evaluate the resulting spectrum, thus, 

the mean of the noise is calculated in addition to its deviation in order to observe the variation of 

noise clearly in each mode of RS. Similarly to the bearing case, the spectrum is estimated by two 

methods: zero insertion with Welch periodogram and LS periodogram. However, in gear case the 

estimation is applied on the raw vibration signal. 

The first test in this phase of experimentation is based on varying FSm from 500 Hz to 5000Hz with 

N equal to 50000 points, Δ equal to 40 μs and R equal to 1. In figures 4.31 to 4.33 the results of 

different RS modes are presented, the Welch periodogram is shown in (a) and the LS is shown in 

(b). 

By comparing the results of the LS with the Welch periodogram, it can be deduced that the LS is 

more reliable due to the presented consistency in noise reduction with the sampling frequency. The 
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results of Welch periodogram reveal the weakness of this estimation in RS in case of dense spectra 

due to the problem of smearing. The LS results show the effect of the sampling frequency in 

reducing the noise maxima and deviation with an enhancement of the meshing peak amplitude 

recovery, which lead to higher SFDR in all modes of RS.  

The second test is based on varying the number of samples acquired in order to evaluate its effect 

on RS result, FSm is fixed to 5000Hz with Δ equal to 40 μs and R equal to 1. In figures 4.34 to 4.36 

the results of different RS modes are presented, the LS periodogam is used for the spectral 

estimation as it was proven to be more reliable in case of gear vibration analysis. It can be inferred 

from these figures that the number of data is important for noise reduction, as the noise maxima 

and the mean added to the noise deviation are decreasing clearly with the increasing number of 

samples while the meshing peak amplitude is barely modified with the variation of N. In addition, 

all modes of RS present satisfying results for FSm equal to 5000 Hz from N equal to 20 000points 

and up. Hence, the LS periodograms resulting from applying all the modes of RS in the gear 

vibration acquisition are presented in figures 4.37 to 4.39 around the meshing frequency. 

 

                 Figure 4.31 Amplitudes and noise variation with FSm in Welch and LS periodograms of the   

gear vibration in ARS+Unif 
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Figure 4.32 Amplitudes and noise variation with FSm in Welch and LS periodograms of the gear vibration in 

ARS+Gauss 

Figure 4.33 Amplitudes and noise variation with FSm in Welch and LS periodograms of the gear vibration 

in JRS+Unif 
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Figure 4.34 Amplitudes and noise variation with N in LS periodogram of the gear vibration in 

ARS+Unif 

 

 

Figure 4.35 Amplitudes and noise variation with N in LS periodogram of the gear vibration in 

ARS+Gauss 
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Figure 4.36 Amplitudes and noise variation with N in LS periodogram of the gear vibration in 

JRS+Unif 

 

 

Figure 4.37 LS periodogram around Fmesh of the gear vibration in ARS+Unif 
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Figure 4.38 LS periodogram around Fmesh of the gear vibration in ARS+Gauss 

 

Figure 4.39 LS periodogram around Fmesh of the gear vibration in JRS+Unif 

According to figures 4.37 to 4.39, the meshing frequency is obviously detected in all RS modes 

with both sideband peaks located at Fmesh-F1 and Fmesh+F1. However, peaks at Fmesh-F2 and Fmesh+F2 

are barely detected. The comparison of these spectra with the gear vibration spectrum in US case, 

reveals that the problem remains in the amplitude recovery in RS, where the ARS with uniform 

distribution offers the best recovery among all RS modes. Because of the dense spectrum studied 

in this case and the additive noise arising from RS application, small amplitudes, like those of 

sideband peaks of Fmesh±F2, are surpassed by the noise level which makes them hardly 



139 
 

distinguishable. Thus, noise filtering is a must for a high efficiency of RS. As it is already deduced 

on the cyclostationarity aspect of the noise added by RS, cyclic filters can play an important role 

in reducing RS disadvantages in such case of heavy spectra. 

Finally, it can be inferred that the RS is applicable on bearing and gear vibrations, with more 

limitations in the second case caused by intervention of uninteresting vibrations, noise and structure 

resonance. However, by comparing the resulting spectrum to the US case with taking in 

consideration the frequency of sampling (5kHz in RS and 51.2 kHz in US) and the amount of 

acquired data (20 000pts in RS and 200 000 pts in US) it can be easily concluded how much the 

potential of RS is convincible and advantageous to be used as a solution for the issue of the real-

time remote monitoring for industrial machinery. 

4.5 Conclusion 

The main objective of this chapter was to apply the different modes of RS on vibration signals 

acquired from rotating machinery components. As considered of the mostly used elements in the 

industry, rolling bearing and spur gear were the subject of a brief review at the beginning of this 

chapter, where they were defined, described and presented in their different possible state of 

defection. In addition a short overview on the different methods of diagnostic of such components 

is given to justify the use of spectral analysis techniques in processing vibration signals acquired 

within RS in the second part of this chapter. The application of RS is conducted in multiple tests as 

it is the first contribution of RS in condition monitoring of rotating components. 

 The first test is about acquiring vibrations from a normal bearing set in a simple test bench, the 

second is based on sampling vibration from a defected bearing implemented in the same bench. 

The results obtained from both tests are presented in the SES estimated by the Welch and the LS 

periodograms, where all the characteristic frequencies are clearly detected in both state conditions 

of the bearing, which approve the use of RS on bearing vibration signal. The LS results are slightly 

more enhanced than those of the Welch periodogram, though, both are reliable despite using low 

sampling frequencies and low amount of data. In fact, the sampling frequency in both tests almost 

didn’t overpass the highest frequency of interest in the studied spectra, and all the modes presented 

satisfying results, but the ARS with uniform distribution is distinguished by its high quality in 

recovering amplitudes. Consequently,  when aiming to acquire the vibrations of a bearing, from its 

specifications, all the corresponding characteristic frequencies can be easily deduced, thus the 

highest frequency in the signature vibration is known and should be chosen as the mean sampling 

frequency pf the RS mode. As for the number of samples, it should be selected proportionally to 

the number of harmonics needed to be shown.  
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The third test is on applying the RS in acquiring vibration from a couple of spur gears mounted 

back to back with other couples of gears in a test bench a way more complicated than the first one. 

The main purpose of this experimentation was to detect the meshing frequency with its 

corresponding sidebands in the estimated spectrum despite the structure resonance, the high level 

noise and the uninteresting vibrations.  Due to the exploration of the structure transfer function, the 

highest frequency in the spectrum of vibration is deduced. Many acquisitions were performed using 

all the RS modes with different values of FSm and N. The results of the Welch periodogram were 

disappointing because of the smearing problem and thus merging important frequencies with noise 

peaks. However, the spectral analysis offered by the LS periodogram revealed all the characteristic 

frequencies of interest especially the meshing frequency with some deficiencies in the amplitude 

recovery caused by the high noise level arising from the harsh industrial environment and the 

additive cyclostationary noise coming from the RS process, the fact that encourages for future work 

on applying cyclic filtering. In this test, the ARS with uniform distribution, again, presents the best 

results in recovering peaks amplitudes. In all RS modes, best results are for FSm equal to the highest 

frequency in the structure transfer function spectrum and for N higher than 20 000 points, which 

are much less than the values chosen in US. As a conclusion, for components implemented in a 

housing structure, as in US case where it is recommended to identify the structure transfer function 

by acquiring the vibration while applying a hammer tap, the same is recommended in RS to identify 

the highest frequency in the spectrum of interest and thus conclude the mean sampling frequency. 

The important difference between both sampling, is that in US the acquisition must be at a rate 

equal to the multiple of the highest frequency while in RS the rate will be sufficiently equal or less.  
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5 Conclusion & Perspective  

 

Instead of using high performance devices and looking for ultra-advanced technologies to find 

solutions for alleviating the duty on the real-time processor in managing operations of excessively 

high frequency and dealing with large amount of redundant data, the RS is proposed, by an 

inspiration from the CS concept, to acquire a reduced quantity of data at a low frequency rate. Due 

to its anti-aliasing property, the RS potential remains in capturing the needed information within 

few reasonable conditions expressed with simple practical requirements.  

The RS and CS are recently used in many different application domains, which facilitates the 

procedure of searching for theoretical and practical studies. However, some critical gaps were 

worth to be completed to provide for any user a clear guide to apply RS in new fields. Thus, a 

detailed review on RS in time domain is presented by defining all its available modes and by 

studying the major possible probability distributions that may be used, with a clear strategy that 

may be followed in studying any other distributions. As a consequence, the condition of an 

advantageous RS are summarized in two concepts: Temporal Condition and Stationarity of the 

Sampling Process. Where the first imposes limitations on some distributions and prevents them 

from being used in real applications like the Exponential distribution and the second defines the 

essential origin of anti-aliasing sampling, that in some cases is verified beyond the temporal 

condition which makes such mode out of interest as the JRS with Gaussian distribution. According 

to these conditions, it can be inferred that the consistency in the randomness is needed within a 

strictly increasing time sequence to guarantee an RS process able to be implemented in real systems 

with no aliasing in resulting signal spectrum. As the RS is planned to be applied in real applications, 

a generalized study is proposed to analyze the effect of time quantization in order to reduce it to 

the minimum. In fact, by quantizing the time, the interval of support of the chosen distribution 

becomes with less possibilities in generating the sampling sequence, an adequate time step must be 

selected to keep a good number of possibilities to be chosen which conserves the randomness 

needed for the anti-aliasing property.  

The research and the study of new processes must be usually based on the study of similar classical 

ones to provide the ultimate guide and make an efficient comparison that leads to clear conclusions. 

Thus, a summary on the US concepts is presented to remind of the origin of the Shannon-Nyquist 

frequency which is essential for preventing the spectrum from distortion by keeping the replicas 

away from the original spectrum, and consequently how long data is required for high resolution 
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spectra. The spectral analysis study represented by the FT of deterministic signals and the PSD of 

random signals, are reviewed in US to identify the basic techniques used in transforming the signal 

from time to frequency domain. And, the most used methods of spectrum estimations are 

overviewed within a clarified structure to recognize the basics in spectral analysis techniques that 

are conceived to meet a variant of needs within different application contexts. Consequently, the 

spectral analysis study of RS is established in the same methodology of US and based on the already 

conceived theory. In order to find the origin of the noise added by the impact of RS, the link 

between the FT of the randomly sampled signal and its PSD, where the noise term is explicitly 

defined, is conceived. When expressed in time domain, the noise term is identified as of 

cylostationary aspect according to the used sampling sequence. The PSD analysis is developed in 

details in order to study the impact of RS within its different modes to conclude with concise 

formulations that determine the condition of high performance. Some recommendations are 

provided to enhance the RS behavior and reduce its additive noise to the minimum. The value of 

the recommended frequency for RS is half the frequency imposed by Shannon-Nyquist, the first is 

to guarantee a maximum reduced noise while the second is to prevent form major distortion. Plus, 

the recommendation on the number of points for the same reason of noise reduction, gives an 

additional expectation of a beneficial aspect of RS. Although the study of RS is based on its PSD, 

the chosen techniques of spectral estimations are based on the concept of periodogram, as there 

were no correlogram conceived for RS signals in the literature, and the link between the FT and the 

PSD provides the evidence of the equivalence between both estimators. All the spectral estimations 

present in the bibliography are concluded from US methods, which facilitates the decision made in 

choosing the most convenient for the RS applied on vibration signals. Three periodograms were 

chosen, each one for a different reason. The Schuster is selected for its basic theoretical concept to 

be used for the evaluation of RS in simulation. The LS for its reduced complexity, and the Welch 

periodogram for its noise reduction and prevention from leakage, both are used in the analysis of 

signals acquired in real applications. 

The objective of simulation, in addition to the validation of the theoretical conclusions, is to find a 

way to pass smoothly from pure theory to real practice. Few simple examples are figured to directly 

view the impact of RS on the shape of the signal, and to validate the recommendations already 

stated. Then, a more extended simulation was driven on a signal that modestly represents a 

spectrum of vibration signals which contains multiple impulses that should be detected to identify 

the status of the studied component. To avoid redundancy in presenting results, the most 

meaningful are presented. Consequently, the modes having anti-aliasing properties were definitely 

identified to be used in practical implementations, while others are viewed to justify the reason of 
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eliminating them from practical trials. In addition, all the recommendations on TSm, R and N are 

verified. Previous implementation of RS were driven in CS architecture, however the concept of 

randomly choosing samples from the signal is the same. Thus, from the literature of CS some 

example of practical implementations are presented, to conclude with the most convenient concept. 

Before, the application on vibration signal many tests were done on simple signals to preview the 

behavior of RS in real applications and enhance the acquisition to meet with high performance.  

For the same reason, a short summary on gears and bearings is figured to predict how to deal with 

such signals and to avoid probable issues. In the experimentation of acquiring signals form bearing, 

the objective was mainly to evaluate the RS in the diagnosis context, so the acquisition was made 

from two bearings: normal and inner race defected. The spectrum in both cases are recovered 

perfectly in all RS modes, each one within its predetermined conditions, with low frequency and 

reduced amount of data, which validates the success of RS in diagnostic applications for bearings. 

In the experimentation on the gear, whose vibration aspect is known for its complexity, the intention 

was limited to detect the sidebands around the meshing frequency. Further requirements were 

needed in this case, due to the demand of higher frequencies, however, the meshing frequency and 

the sidebands are successfully detected in case of frequencies much lower than the Nyquist 

frequency, but the amplitude recovery imposes some additional enhancement of the spectral 

analysis in RS especially in filtering the added cyclostationary noise. Although the number of data 

is not reduced, compared to the amount used in US the result is much satisfying. In tests based on 

simple components, the results of Ls and Welch were very similar while in complicated cases, the 

estimated spectrum of LS is preferred on the Welch due to smearing appeared in the latter. The fact 

that opens the perspective on two possibilities, the first in enhancing the spectra by filtering noise 

added by RS, the second in searching for possible techniques based on spectral indicators that might 

be added to the RS application in the machine monitoring domain, in order to go further in advanced 

automated systems that are able to communicate with remote monitoring devices responsible of 

collecting data, and then taking decision without human intervention. The RS in such context 

contributes in dramatically reducing the processing complexity and remediating the big data 

problem. These propositions are to be ignored if the RS is not strongly immune against noise 

intervention. Hence, the additive noise caused by the RS impact must be eliminated in first place. 

Due to its aspect of cylco-stationarity, cyclic filters may accomplish such task. Thus, further studies 

may be proposed to be driven in order to find best solutions in eliminating noise in RS to profit 

from its potential to the extreme limits.  
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In conclusion, the research on RS and its study in time and frequency domain to conclude with the 

conditions and limitations on the mode, the distribution and the different parameters within 

quantitative relations followed by a simulation study and practical experimentation are all 

accomplished in the aim of proving its potential in resolving the real-time challenge in frequency 

and data storage in the context of condition monitoring for rotating machinery. Although the 

amount of data captured by RS is much reduced than the amount acquired usually in US, this 

reduction can be improved and increased by the application of CS in the same context of machine 

monitoring due to the promising sparsity of the corresponding vibration spectra. In fact, the 

contribution of applying RS in the diagnostic domain with the satisfying results encourage future 

works on profiting from CS in the same field. In addition, beside the guide provided for the 

application of RS on vibration signals, a methodology that could be easily followed in any other 

domain with any possible addition or modification is delivered. Finally, adding to its verified profit, 

the RS is proven to be quiet promising in resolving modern concerns.  
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Appendix A: Compressed Sensing Review 

A.1 Compressed Sensing Theory 

The intent of this section is to overview the basic theory of Compressed Sensing (known also as 

Compressive Sampling) (CS), present the key mathematical ideas underlying this theory and survey 

a couple of important results in this field, in order to highlight the fact that randomness can lead to 

very effective sensing mechanism. In fact, the CS was conceived for two major advantages: 

compressing data and managing the under-sampling situations. The main contribution in data 

compression in such sampling technique is in directly acquiring a compact amount of data instead 

of acquiring and then compressing, a process that requires a large data storage and higher energy 

consumption. Moreover, CS is considered as a solution for situations where under-sampling is 

imposed, where the number of sensors is limited, the measurements are expensive or even 

unreachable in some circumstances. The CS was developed to give an accurate reconstruction of 

the original signal from the available measurements sampled in a compressive way [15]. Therefore, 

the CS is used in many different domains where the data compression is needed or the number of 

measurements is limited. For instance, in Medical Resonance Imaging (MRI), the sensing process 

is slow and the object may be measured only few times. Thus, many research corporations within 

hospitals payed close attention to CS in MRI [39][40]. Besides, CS is mainly a research subject in 

astronomy imaging [41], Microarray sequencing in Biology [42], seismic imaging, and modal 

identification within Civil engineering [38] and in many other fields. In fact, CS is advantageous 

for any application using wireless sensor networks, due to decreasing the number of measurements 

acquired by the sensors and thus decreasing the energy consumed and the amount of transmitted 

data [29]. 

 

A.2  CS Definition 

CS is defined as a technique to acquire and represent compressible signals in a compressive way, 

at a rate significantly below the Nyquist rate. It employs non-adaptive linear projections that 

preserve the structure and the properties of the signal; the signal is then reconstructed from these 

projections or measurements using an optimization algorithm [43]. 

Foremost, the signal to be sampled or measured is x∈ ℝ𝑛, the observation of x designated by y is 

defined by: 
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   𝑦 = Φ𝑥 (a.1) 

Where y∈ ℝ𝑚 and Φ ∈ ℝ𝑚×𝑛. Φ is defined as the sensing matrix, where {𝜑k}k=1…m are the sensing 

waveforms. 

The problem of CS is expressed by how to choose Φ in order to find an observation y of size m<<n 

with the ability to reconstruct x from y. Although the CS theory can be developed for continuous 

signals, in the literature the main established studies were conceived for discrete signals and 

focused on reducing the number of measurements from n to m [15], [45]. 

Hence, the CS is based on two main principles: the Sparsity and Incoherence, where the first is a 

condition concerning the original signal x and the second is related to the sensing matrix Φ. These 

two conditions are judged to be indispensable for the reconstruction of x from its compressed 

observation y.  

 

A.3 Sparsity Definition 

This property is equivalent to the compressibility of the signal, and it is verified when there exists 

a basis Ψ (known also as a dictionary) where the projection of the signal x is k-sparse. This means 

that the majority of the coefficients of x in the basis Ψ are zeros except k elements. Thus, when 

applying the CS on a compressible signal x, it is essential to find the basis Ψ where ai, the 

coefficients of x in Ψ, are of majority of zero, so x can be expressed by: 

 
 𝑥 = Ψa =∑𝑎𝑖𝜓𝑖

𝑛

𝑖=1

  (a.2) 

Where {ψi}i=1..n are the column vectors of the matrix Ψ that forms an nxn basis matrix that is 

assumed orthonormal for simplicity. Hence, x and a are equivalent representations of the original 

signal: x in the time domain and a in the Ψ domain. A variant of transformations is used to find a 

sparse expansion of x, the selection of this transformation is based on the nature of the signal that 

is related to the application domain. The Fourier, the Wavelet, the Curvelet and the Discrete Cosine 

Transform (DCT) are examples of these transformations that are used within CS in [15], [38], [41]. 

The result of this conversion is the nx1 vector a, that is k-sparse having k large coefficients and 

many small coefficients that are considered as zeros [45]. In case of using the Fourier basis, the 

vectors {ψi} are defined by: 

 

 
  𝜓𝑖(𝑡) =

1

√𝑛
𝑒𝑗2𝜋𝑖𝑡/𝑛 (a.3) 

Finally, due to the representation of x in the Ψ domain, the relation between x and its observation 

y becomes: 
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   𝑦 = Φ𝑥 = ΦΨa = Αa (a.4) 

 

A.4 Incoherence 

As mentioned before, this property defines the aspect of the sensing matrix Φ. Going back to the 

main issue, the purpose of CS is to conceive efficient sampling protocols that acquire the essential 

content of the sparse signal and condense it into a minor amount of data. These protocols must be 

non-adaptive and should capture the signal with a small number of fixed waveforms. These 

waveforms must be incoherent with the sparsifying basis Ψ. In other words, unlike the signal x, the 

sensing waveforms, that define the sensing matrix Φ, must have a dense representation in the Ψ 

domain. 

By definition, the coherence between two orthobasis, Φ and Ψ of ℝ𝑛 is expressed by: 

 

   𝜇(Φ,Ψ) = √n. max
1≤𝑘,𝑗≤𝑛

|〈𝜑𝑘 , 𝜓𝑗〉| (a.5) 

Thus, the coherence measures the largest correlation between any two elements of Φ and Ψ, if their 

elements are correlated their coherence is high and tend to √n, otherwise, it is low and tend to 1. In 

CS, the coherence between Φ (the sensing matrix) and Ψ (the representation matrix) must be as low 

as possible (equal to 1) [15]. However, In [43] one of the pioneers references in CS, it was 

concluded that the random matrices are largely incoherent with any fixed basis Ψ. So, random 

sensing/sampling matrices are used within CS to guarantee incoherence condition. Therefore, the 

efficiency of RS is proven within the context of CS, where the data is acquired compressively with 

low rate sampling and can be reconstructed without loss. 

 

A.5 Restricted Isometry Property 

To find a general property that guarantees a robust CS, the Restricted Isometry Property (RIP) is 

defined for the k-sparse vector a with the constant δk as: 

 

   (1 − 𝛿𝑘)‖𝑎‖𝑙2
2 ≤ ‖𝐴𝑎‖ 𝑙2

2 ≤ (1 + 𝛿𝑘)‖𝑎‖𝑙2
2 (a.6) 

 

The isometry constant δk is defined as the smallest number that verifies the property (1.6). The 

matrix A is verifies the RIP when δk is not too close to one. Although, this verification is hard to be 

validated, as considered a non-deterministic polynomial-time problem, it was proven, according to 

[15][45][46], that the random sensing matrices satisfy the RIP with an overwhelming probability 

when the number of measurements is: 
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 𝑚 = O(k log (

n

k
)) = Cte. k (a.7) 

Finally, the main conditions of data reconstruction within CS are summarized by: the Sparsity of x 

in a certain basis Ψ, a random sensing matrix and a number of measurements m respecting (1.7). 

A.6 Reconstruction in CS 

The reconstruction in the CS context is to find the sparse solution ‘a’ that verifies the equation 

(1.4), the sparse solution s can be then expressed by: 

 

   𝑠 = min
𝑎: 𝐴𝑎=𝑦

‖𝑎‖𝑙𝑝 = 𝐴
𝑇(𝐴𝐴𝑇)−1𝑦 (a.8) 

Most of the reconstruction algorithms are based on this concept in finding the exact signal 

reconstructed, though, they differ in the criteria of minimization. The most interesting to cite are 

the l2 and l1 minimizations defined by their corresponding norm where the norm of a vector v 

composed of N elements: 

 

  ‖𝑣‖𝑙𝑝 = √∑|𝑣𝑖|
𝑝

𝑁

𝑖=1

 (a.9) 

On one hand, the algorithms based on the l2 minimization, known also as the least square solution, 

are categorized as the Greedy Iterative Algorithms. In an iterative way, the solution of (1.8) is found 

by minimizing the least square error between the proposed solution and y. The most known 

algorithms are the Matching Pursuit and its derivative the Orthogonal Matching Pursuit, other 

variants of these methods are also used, they differ only in the stopping condition.  

On the other hand, the algorithms based on the l1 minimization are known by Convex optimization. 

They find the solution of (1.8) by linear programming. The most used one is the Basis Pursuit. 

These algorithms are advantageous in their exact reconstruction from small number of 

measurements, though their computational complexity is high. While, the Greedy Iterative 

Algorithms are of low implementation cost and high speed recovery in case of sparse signals. For 

interested readers, more details and other categories of algorithm and their variants are explained 

in [44].Consequently, there exists a wide variety of methods in Spectral Analysis for random 

signals uniformly and irregularly sampled. In this section a brief review on the methods of 

analyzing the random signals that are uniformly sampled only, the ones conceived for the randomly 

sampled signals are discussed in later paragraphs. In fact, the windowing technique permits to 

control the bias/resolution property, and the overlapping reduces the variance by increasing the 

number of segments to be averaged. 
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Appendix B: Calculation of σ/TSm in TQRS  

In this appendix the summary of σ/TSm calculation is presented. The purpose is to find a general 

formula of this ratio for different values of R. In fact, the start is with the general formula of σ (b.1) 

in case of a uniform distribution with a quantized interval [aq,bq]. 

                                           𝜎 = √
1

𝐷𝑞
∑ (𝑗∆ − (

1

𝐷𝑞
∑ 𝑗∆

𝑏𝑞

𝑗=𝑎𝑞

))

2
𝑏𝑞

𝑗=𝑎𝑞

                                                    (𝑏. 1) 

To simplify the calculations the limits of summation aq and bq are replaced by 0 and Dq, as σ is the 

same as the deviation of the new interval is remaining equal to Dq. The formula (b.1) becomes 

(b.2). 

                                           𝜎 = √
1

𝐷𝑞
∑(𝑗∆ − (

1

𝐷𝑞
∑𝑗∆

𝐷𝑞

𝑗=0

))

2
𝐷𝑞

𝑗=0

                                                    (𝑏. 2) 

The first step is to calculate the summation of jΔ in (b.3). 

                                               
1

𝐷𝑞
∑𝑗∆

𝐷𝑞

𝑗=0

=
∆

𝐷𝑞
∑𝑗

𝐷𝑞

𝑗=0

=
∆(𝐷𝑞 + 1)

2
                                                     (𝑏. 3) 

By replacing the result of (b.3) in (b.2), the expression of σ becomes (b.4). 

    𝜎 = √
1

𝐷𝑞
∑(𝑗∆ −

∆(𝐷𝑞 + 1)

2
)

2
𝐷𝑞

𝑗=0

=     √
∆2

𝐷𝑞
∑{𝑗2 +

(𝐷𝑞 + 1)

4

2

− 𝑗(𝐷𝑞 + 1) }

𝐷𝑞

𝑗=0

                    (𝑏. 4)                

 

 

After calculating the summation of each term in (b.4) the expression of σ becomes (b.5). 
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                              𝜎 = √
∆2

𝐷𝑞
×
𝐷𝑞(𝐷𝑞

2 − 1)

12
= ∆√

(𝐷𝑞
2 − 1)

12
                             (𝑏. 5) 

Thus, by replacing Dq by R.qT, the ratio σ/TSm is finally defined by (b.6). 

                  
𝜎

𝑇𝑆𝑚
=
∆

𝑇𝑆𝑚
√(𝑅

2𝑞𝑇
2
− 1)

12
=
1

𝑞𝑇
√𝑅

2𝑞𝑇
2
− 1

12
                     (𝑏. 6) 
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Appendix C: PSD calculation of Beutler and Leneman 

In [32] the autocorrelation function of S(t) was deduced from the autocorrelation of its primitive 

Ns(t), which is a stationary increment stochastic process defined by (c.1). Since {αn} is stationary, 

the moments of Ns(t) depends only on m but not on k. 

 

𝑁𝑠(𝑡) = ∑ 𝛼𝑛   

𝑘+𝑚−1

𝑛=𝑘

 

 

(c.1) 

Then, the Random Impulse Process S(t) is simply deduced by: 

 
𝑠(𝑡) =

𝑑𝑁𝑠(𝑡)

𝑑𝑡
 (c.2) 

 

Consequently, the variations in Ns(t) turns into impulses in s(t). These impulses are expressed by 

delta functions whose intensity is determined by the corresponding αn. This differentiation is 

illustrated in Figure A.1. 

 

Figure 0.1 Relationship between Ns(t) and s(t) 
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In order to determine the expressions of the moments of Ns(t), some parameters should be defined. 

β is the average number of points per unit time interval, and ρ(m) is the correlation function for the 

process {αn}, ρ is defined by: 

 𝜌(𝑚) = 𝐸[𝛼𝑢+𝑚𝛼𝑢]   ∀𝑢 (c.3) 

And fσn is the PDF of σn: the sum of n consecutive time intervals, its primitive Fσn is the repartition 

function, the characteristic function is the defined by: 

 
𝜑σ𝑛(𝑓) = ∫ 𝑓σ𝑛(𝑡)𝑒

𝑖2𝜋𝑓𝑡
∞

−∞

𝑑𝑓 (c.4) 

 This definition gives a property for negative indices: 

                                             𝜑σ(−𝑛)(𝑓) = 𝜑σ𝑛(−𝑓) (c.5) 

The second order moment of Ns(t) is developed and determined by: 

 
𝐸[𝑁𝑠

2(𝑡)] = 𝛽𝜌(0)𝑡 + 2𝛽∫ ∑𝜌(𝑛)𝐹σ𝑛(𝑢)𝑑𝑢

∞

𝑛=1

𝑡

0

 (c.6) 

From (c.6) the autocorrelation of Ns(t) is deduced by: 

 𝐸[𝑁𝑠(𝑡)𝑁𝑠(𝑡 + 𝜏)]

=  𝛽𝜌(0)  

+ 𝛽 {∫ ∑𝜌(𝑛)𝐹σ𝑛(𝑢)𝑑𝑢

∞

𝑛=1

𝑡

0

+∫ ∑𝜌(𝑛)𝐹σ𝑛(𝑢)𝑑𝑢 

∞

𝑛=1

𝑡+𝜏

0

−∫ ∑𝜌(𝑛)𝐹σ𝑛(𝑢)𝑑𝑢

∞

𝑛=1

|𝜏|

0

} 

 

 

 

 

 

(c.7) 

The autocorrelation function of s(t) is the derivative of the autocorrelation of Ns(t), thus the 

autocorrelation of s(t) is deduced by (c.8) according to theorem 3 deduced from the SPP condition 

of [31] and already mentioned in Chapter 1: 

 
𝑅𝑠(𝜏) = 𝐸[𝑠(𝑡)𝑠(𝑡 + 𝜏)] = 𝛽𝜌(0)𝛿(𝜏) + 𝛽∑𝜌(𝑛)𝑓σ𝑛(|𝜏|)

∞

𝑛=1

 (c.8) 

The PSD is then concluded by the derivative of (c.8) 

 
Φ𝑠(𝑓) = 𝛽 ∑ 𝜌(𝑛)𝜑σ𝑛(𝑓)

∞

𝑛=−∞

 

 

(c.9) 
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By adopting the convention of ϕ0(f)=1, and by taking ρ(n)=ρ(-n) the PSD of s(t) is finally 

determined by [32]. 

 
Φ𝑠(𝑓) = 𝛽{𝜌(0) +∑𝜌(𝑛)[𝜑σ𝑛(𝑓) + 𝜑σ𝑛(−𝑓)]}

∞

𝑛=1

 (c.10) 

 

 


