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Introduction

Water, the liquid of life, displays countless remarkable properties. Among them, we can
cite: a large polarity, anomalously high melting and boiling temperatures, a liquid

phase denser than its solid one, characterized by a negative slope of the solid-liquid boundary
region in the (P ,T ) phase diagram, and a large dielectric constant. Such peculiar features
are due to the presence of a strong and well-structured H-bond network which significantly
stabilizes the liquid water [1]. Exploring the very rich phase diagram of water and providing
an accurate description of each ice or liquid state is indeed a very active field of research [2–6].

One of the most noticeable property is the very high proton mobility, which is approximately
five times the one of ions of similar size as H3O+ [7]. Understanding the mechanisms by which
hydronium H3O+ and hydroxyde HO− ions are transported through water has represented
both an experimental and a theoretical challenge for more than two centuries. The first ex-
planation ever attempted was given in 1806 by von Grotthus [8], who described the proton
diffusion phenomenon in terms of a large-scale relay in the hydrogen-bonded water network.
Thanks to the work of Eigen [9] on the one hand and Zundel [10] on the other hand, it has
been suggested that hydrated protons have two preferred structures in water. The first one,
the Eigen ion, tends to localize the excess proton on a single molecule, solvated by three sur-
rounding water molecules forming the H3O+-(H2O)3 or H9O+

4 complex. The Zundel complex
H5O+

2 or [H2O - H - H2O]+ is an entity where the excess proton is delocalized and evenly
shared between two side water molecules via a H-bond. These complexes are postulated to
be mutually exclusive: the presence of one of them rules out the presence of the other, and
they constitute long wires within the Grotthus approach.

Such a relay mechanism between donor and acceptor species is very difficult to probe both
theoretically and experimentally. Indeed, the typical timescale for aqueous proton trans-
port under ambient conditions is estimated to be about 1 picosecond [11], suggesting that the
involved activation barriers are tiny. Consequently, despite significant progress [12–15], a quan-
titative description of this problem is not at reach yet, as shown for example by the spread
of computed H+ mobilities using Density Functional Theory-based ab initio Molecular Dy-
namics simulations (AIMD) [16]. Probing proton transfer (PT) processes also constitutes an
experimental problem, but recent advances [17] challenge some theoretical descriptions. The
complexity of describing properly PT in water stems from the variety of ingredients implied
in such a process: the aqueous environment plays a key role, the involved H-bonds are very
strong, i.e. they have the same order of magnitude as covalent bonds, and due to the light
mass of the proton, Nuclear Quantum Effects (NQE) cannot be neglected. Going beyond
DFT is therefore necessary to provide a reliable microscopic description of PT in aqueous
system. The use of most advanced quantum chemistry methods that could address this issue
is however limited to relatively small systems, due to the poor scaling of these techniques with
the system size. The Quantum Monte Carlo (QMC) approach is thus a promising candidate
thanks to both its remarkable accuracy and mild scaling with the number of electrons [18].
Incorporating this method into a MD framework is nevertheless far from being trivial, as the

— 1 —



Introduction

corresponding computed ionic forces are noisy [19,20], due to the QMC stochastic nature [21].

In this thesis, our aim is twofold. First, we want to propose a novel approach, capable
to couple the highly accurate QMC description of the electronic properties with the fully
quantum treatment of ions (nuclei) via a Path Integral Langevin Dynamics. To address the
intrinsic noise affecting the QMC forces, specific algorithms must be devised. Second, we will
apply this very general methodology to study H+ defects in water clusters whose description
is more attainable by high-level methods, while keeping the main physical ingredients present
in liquid water. Indeed, the protonated water hexamer H13O+

6 is the simplest realistic system
to model PT in water as its IR spectrum shows that the Zundel and Eigen motifs coexist in
this cluster [22,23].

This thesis is organized as follows. In Chapter 1, we provide the necessary theoretical back-
ground to perform very accurate electronic structure calculations, starting from the resolution
of the Schrödinger equation. The use of ab initio calculations able to reach the chemical accu-
racy - defined by a few kcal/mol - is indeed necessary to provide a reliable description of PT
in water and aqueous systems. The electronic correlation is treated either by deterministic
techniques such as the Density Functional Theory (DFT) and quantum chemistry methods,
namely the Coupled Cluster (CC) and the Møller-Plesset (MP2) approaches, or within a
stochastic framework. The latter includes the QMC approach, used throughout this thesis,
as it provides highly accurate results, with a mild scaling with the number of electrons of the
system.

Chapter 2 is devoted to the introduction of the Molecular Dynamics (MD) method, which
is frequently employed in computer simulations to characterize the properties of any phys-
ical or chemical system in gas phase or in the bulk liquid. Since we aim at studying the
role of the temperature on the proton mobility in neutral or charged water clusters, using
MD simulations with noisy stochastic forces, we incorporate them into a Langevin Dynam-
ics framework. Another issue is related to the presence of significant NQE in water which
deeply affect the Potential Energy Surface (PES) on which the ions move. The Feynman Path
Integral (PI) approach is therefore introduced. This formalism can be recombined with the
Langevin approach (PILD method), and we detail some reference algorithms to integrate the
corresponding equations of motion.

In Chapter 3, we derive three novel algorithms (CMPC, PIMPC and PIOUD) to perform
LD or PILD simulations of any system with noisy QMC forces. A particular attention is de-
voted to control the simulation temperature, as it could in principle be biased by the intrinsic
QMC noise. We also introduce an original method to make the calculations with quantum
nuclei, but feasible with a computational burden comparable to the classical case. The de-
signed integrators are then tested and validated on both analytical (i.e. deterministic) and
stochastic force fields for a benchmark system: the protonated water dimer (H5O+

2 ). The
properties of this smallest water cluster are extensively studied in Chapter 4, by means of a
fully quantum dynamics at finite temperature. This is, to the best of our knowledge, the very
first time that such a level of accuracy is reached, on both the electronic structure and the
quantum description of ion dynamics. Despite the usefulness of the Zundel cation to validate
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novel methodologies, our understanding of this system, as far as the PT process is concerned,
is very limited, as the role of the solvent is not taken into account. In that perspective, we
plan to study in Chapter 6 the larger protonated water hexamer, i.e. the solvated Zundel
complex.

Before studying this cluster, Chapter 5 is devoted to the development of a QMC wave function
(WF) tested on the non-bonding and bonding water dimer. We show that our QMC WF is
accurate enough to recover a significant fraction of the water dimer binding energy, and more
generally to capture the Van der Waals (VdW) dispersive interactions in water at a moderate
computational cost.

Thanks to the tools developed in Chapter 3 and benchmarked in Chapters 4 and 5 on the
Zundel ion and the water dimer, respectively, we are firmly equipped to tackle the microscopic
mechanisms driving PT processes in a more realistic situation. In Chapter 6, we investigate
at an unprecedented level of accuracy the interplay between thermal and nuclear quantum
effects that determines the excess proton mobility inside the protonated water hexamer. In
particular, we confirm the idea that NQE play a key role into the remarkably high proton
diffusion in water. Moreover, we discover that the evolution of the PT rate with tempera-
ture is highly non trivial, as the excess proton mobility and the structural properties of the
protonated hexamer show a non-monotonic dependence with temperature. Proton transfer is
particularly efficient around ambient conditions, suggesting the presence of a sweet PT spot at
room temperature, i.e. precisely where it could be the most relevant for biology. To evaluate
the PT rate in the protonated water hexamer as a function of temperature, we introduce an
original method based on the instanton theory.

We believe that all the aforementioned developments constitute a huge step forward in the
understanding of the fundamental mechanisms underlying PT processes in water and in aque-
ous systems. Indeed, we are now able, by studying such reduced size clusters, to dissect each
molecular or thermal contribution to the overall physics of PT at any temperature, particu-
larly around ambient conditions, relevant for most chemical or biological systems.
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Chapter 1

Electronic structure calculations
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Proton transfer (PT) is an ubiquitous phenomenon occurring in strong and well-
structured hydrogen bond networks. The energies implied in PT and proton diffusion

are very small with barriers lower than the chemical accuracy, hereby defined as 1 kcal/mol.
Consequently, it requires the use of advanced electronic structure calculations which will be
reviewed in this Chapter. Indeed, to reach our goal to provide a reliable and quantitative
description of proton dynamics in water clusters, it is necessary to explicitly take into account
the electronic correlation. This quantity is defined as the difference between the exact energy
of the system and the Hartree-Fock (HF) energy obtained in the complete basis set (CBS)
limit

Ecorr = Eexact − E∞HF. (1.1)

In the HF approach, the electrons are treated as if they moved independently from each other
in a mean field generated by the other electrons: their motion is uncorrelated. This approach
is far from being true and it becomes necessary to include the electronic correlation between
electrons. First, each electron moves in a way so that it avoids locations in a close proximity
to the instantaneous positions of all other electrons. This type of correlation is called dynamic
correlation since it is directly related to electron dynamics.
The second component of Ecorr arises from the construction of the HF wave function (WF)
which is simply a Slater determinant (SD). That representation can be very poor to describe
properly a many-body state since some electronic states can only be described using a linear
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combination of nearly degenerated SD. The corresponding type of correlation is called static
correlation since it is not related to electron dynamics.

To include electronic correlation in our study, it becomes necessary to go beyond the HF
approximation. In this Chapter, we will review the different methods used to determine ac-
curately the electronic structure of the neutral or protonated water clusters studied during
this thesis. These methods will be incorporated into a Molecular Dynamics framework (MD)
discussed in the Chapter 2 to describe the PT in these clusters.

The common purpose of all electronic structure methods is to find approximate solutions
to the many-body Schrödinger equation:

Ĥ|Ψ〉 = E|Ψ〉. (1.2)

In this thesis, we will always assume the Born-Oppenheimer (BO) approximation to hold.
The Hamiltonian operator Ĥ of a system containing N electrons and Nat nuclei reads as

Ĥ = −1

2

N∑
i=1

∆ri +
1

2

N∑
i=1

N∑
j 6=i

1

|ri − rj |
−

Nat∑
a=1

N∑
i

Za
|qa − ri|

(1.3)

= K̂ + V̂ee + V̂ne,

where r (q) are the electronic (ionic) positions respectively and Za the atomic charges. K̂ is
the kinetic energy operator while V̂ee and V̂ne denote the electron-electron and electron-ion
interaction potential. We have used atomic units in Eq. (1.3) ( 1

4πε0
= e = ~ = me = 1) and

this convention is kept throughout this manuscript.

We first start by the presentation of the deterministic methods (Section 1.1) including the
Density Functional Theory (DFT) discussed in 1.1.1 and some modern quantum chemistry
methods listed in 1.1.2. The intrinsic limitations of these methods will be detailed and dis-
cussed. Afterwards, stochastic methods (Section 1.2), especially the Quantum Monte Carlo
(QMC) approach, at the core of this work, will be introduced in 1.2.1, 1.2.2, 1.2.3 and 1.2.4.
Finally, we will detail how to estimate forces (1.2.5) from QMC simulations, to incorporate
them into the MD framework used in the following Chapters.

1.1 Deterministic methods

In this Section, we focus on the deterministic methods for electronic structure calculations.
This implies that the results, accurate or not, relevant or not, can be obtained at the machine
precision without additional errors. As a consequence, there will be no error bars in the re-
ported results, at variance with those obtained via stochastic techniques.

Let us remind that one of the main goals of a theoretician is to acquire the knowledge of
the WF that contains all the useful information on the system. Indeed, some approaches di-
rectly involve the system WF such as quantum chemistry methods (Møller-Plesset perturba-
tion theory, Coupled-Cluster approaches) as discussed in Subsection 1.1.2 or QMC techniques
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(Section 1.2). Alternatively, DFT works with the electronic density of the system under study
as we will see in the following.

1.1.1 Density Functional Theory

Density Functional Theory, formulated in the early 1960s, is one of the most used approaches
to determine the electronic structure of physical or chemical systems. The main idea of DFT
is by construction fundamentally different than WF-based methods such as HF, post-HF or
QMC methods that will be described later. Instead of focusing on the ground-state WF
Ψ(r1, . . . , rN ), DFT works with a physical quantity that is measurable for example by X-ray
diffraction [24]: the electronic density ρ(r). This quantity is defined as

ρ(r) = N

∫
dr2 . . . drN |Ψ(r, r2, . . . , rN )|2, (1.4)

where N is the number of electrons in the system. The key idea of DFT is that any prop-
erty of a many-body system can be casted into a functional of the ground state electronic
density ρ0(r). In their seminal paper [25], Hohenberg and Kohn demonstrate that the external
potential V̂ne(r) is (to within a constant) a unique functional of the electronic density ρ0(r).
Reciprocally, ρ0(r) is uniquely defined by the electron-ion external potential V̂ne(r) that, in
absence of external fields, only depends on the considered atomic configuration. If one consid-
ers the contributions of the Hamiltonian of Eq. (1.3) independent from the external potential,
the above statement implies that it exists a universal density functional of the energy which
can be written as:

F [ρ(r)] = min
ρ
〈Ψ|K̂ + V̂ee|Ψ〉 = K[ρ] + Vee[ρ]. (1.5)

Eq. (1.5) is valid for any external potential V̂ne. Using the variational principle, the DFT
ground state energy E[ρ] = 〈Ψ|Ĥ|Ψ〉 for a given specific V̂ne is recovered via a global mini-
mization of F [ρ] with respect to the ground state electronic density ρ→ ρ0.
This very appealing approach is in principle exact but suffers from at least two limitations,
making its application to physical or chemical systems complex. First, there is no explicit
mathematical formulation of the DFT energy E[ρ] into well-known and controlled contribu-
tions. Second, despite the knowledge of the a priori exact electronic density of the ground
state that can be measured experimentally, there is no clear way to extract other meaningful
observables from ρ0.

Nevertheless, some of these issues can be overcome thanks to the Kohn and Sham method
described in Ref. 26. In this approach, one replaces the many-body problem with N electrons
to an equivalent set of N one-electron problems.This is achieved by considering a fictitious
system with a total electronic density equal to the physical one ρ(r). In this case, the electrons
of the fictitious system are assumed non-interacting or independent1.
We can thus describe each Kohn-Sham particle (KS) by a set of single-particle orbitals φi(r)

with i ∈ [1;Norb]. These orbitals are defined on the whole system and are named Kohn-Sham

1Within the KS formulation of the DFT, the N electrons move in an average potential generated by the
N − 1 other electrons, without quantum exchange interactions with the N − 1 electrons.
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1.1. Deterministic methods

orbitals. They can be expanded either on a delocalized plane-waves basis set with a cutoff for
the electronic kinetic energy (as in the Quantum Espresso suite of codes [27]) or on a localized
gaussian or Slater-type basis set (as in Molpro [28] or other quantum chemistry codes). Given
these orbitals, the electronic density of a spin-unpolarized system can be rewritten as

ρ(r) = 2
∑
i∈occ

|φi(r)|2, (1.6)

where the index i runs over the occupied orbitals. Exploiting the fact that KS particles have
the same electronic density as that of the physical system, we can write the functional in
Eq. (1.5) as a functional of the molecular orbitals φi(r):

F [ρ(r)] =

N/2∑
i

〈φi| −
1

2
∆r|φi 〉+

1

2

∫ ∫
drdr′

ρ(r)ρ(r′)

|r− r′|
+ EXC [ρ(r)] (1.7)

= KKS [ρ(r)] + EHa[ρ(r)] + EXC [ρ(r)].

Let us note that the molecular orbitals φi(r) are functionals of the electronic density ρ(r)

by applying the Hohenberg and Kohn theorem on a set of non-interacting electrons. The
first term in Eq. (1.7) is the electronic kinetic energy of the independent electron system
KKS [ρ(r)], the second one is the classical electron-electron repulsive term (also called the
Hartree term) EHa[ρ(r)], and the last term is, by definition, the exchange-correlation term:
EXC [ρ(r)] = Vee[ρ]−EHa[ρ(r)] +K[ρ(r)]−KKS [ρ(r)]. This term includes all the many-body
effects not related to the classical electrostatic repulsion: the two first components come from
the quantum particles indistinguishability, whereas the two other ones correspond to a kinetic
energy correction between the physical and the non-interacting system. If, in V̂ee − V̂ Ha, one
neglects the contribution due to the electronic correlation, and computes exactly the exchange
energy, DFT simply reduces to the HF approximation.

To find the corresponding KS ground state density of the system, Eq. (1.7) is minimized
according to a self-consistent procedure applied to solve a set of N single-particle equations
usually named the KS equations:

ĤKSφi(r) = εiφi(r). (1.8)

The KS Hamiltonian matrix is defined as ĤKS = δF [ρ(r)]
δρ(r) + V̂ne(r) and reads as

ĤKS = −1

2
∆r +

∫
dr′

ρ(r)

|r− r′|
+
δEXC [ρ(r)]

δρ(r)
+ V̂ne(r)︸ ︷︷ ︸

Veff(r)

(1.9)

= H1b + V Ha[ρ(r)] + V XC [ρ(r)]

where H1b includes one-body contributions, namely the electronic kinetic energy and the ex-
ternal electron/ion potential. The set of eigenvalues problem of Eq. (1.8) is the mathematical
transcription of the mapping between the true many-body problem and the fictitious particles
subjected to the effective potential Veff(r) whose electronic density is in principle the same as
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Chapter 1. Electronic structure calculations

the exact one.

The KS equations, constituting the core of the DFT approach, are solved self-consistently un-
til the electronic density difference between two iterations becomes lower than a user-defined
threshold. The resulting eigenvalues {εi}, i ∈ [1;N/2] are the electronic energy levels of the
system described by the ĤKS : their physical meaning is quite complex but the most of the
true electronic properties of the system are quite well reproduced by the KS solution2. When
the minimization procedure is finished, one can use the KS ground state electronic density
and orbitals to reconstruct the true density of the physical system using Eq. (1.6).

However, to apply the KS formulation of DFT in practice, we have to face a major issue al-
ready mentioned before: we do not have an explicit form of the exchange-correlation EXC [ρ(r)]

functional. Thus, an approximate form needs to be devised. Ideally, this expression should
completely take into account all the many-body effects starting from the quantum electro-
static potential to the long-range Van der Waals (VdW) effects (e.g. polarization, dispersion).

Historically, the first very successful exchange-correlation functional EXC [ρ(r)] is the Lo-
cal Density Approximation (LDA). Within this approximation, the dependence of EXC has
simply a local character, and is taken as the exchange-correlation energy of an homogeneous
electron gas of density ρ(r). The LDA exchange-correlation functional is

ELDA
XC [ρ] = ELDA

X [ρ] + ELDA
C [ρ] (1.10)

=

∫
drρ(r)ε0

X(ρ(r)) +

∫
drρ(r)ε0

C(ρ(r)).

The exchange energy ε0
X(ρ) is given by the HF formula (in atomic units) ε0

X(ρ) = −3
4(3/π)1/3ρ1/3.

The local correlation energy ε0
C(ρ) is usually obtained by fitting a set of QMC calculations on

the homogeneous electron gas model at different densities [29,30]. This is, in practice, one of the
first and most successful applications of QMC in electronic structure calculations. LDA works
surprisingly well for a wide range of systems, especially for solids and crystals. Concerning
water, LDA is a very poor approximation since it generally overestimates the binding energy
of the water clusters by a factor 2 (from the dimer to the 20-H2O molecules cluster) [31–33].
This overbinding arises from a spurious exchange attraction at large distances [31]. In this the-
sis, LDA will only be used in the study of the bonding and non-bonding water dimer (Chapter
5) to make a direct comparison with other much more accurate functionals or computational
methods.

A first possible improvement to LDA is to include inhomogeneity in the electron density
model. This can be done by including the gradient of the density ∇ρ(r) and its higher order
derivatives under the form of a Taylor expansion of the electronic density of the system. This
approach, called the gradient-expansion approximation does not actually improve significantly
the LDA results because the exchange-correlation hole defined by the expansion does not sat-
isfy the constraints of the physical exchange-correlation hole. However, these constraints can

2This is however not the case of the band gap in semiconductors, for instance.

— 11 —
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be fulfilled if one includes both the density ρ and its gradient ∇ρ, and specifies the magni-
tude of the local gradient by the so-called ’reduced gradient’ defined as the dimensionless
quantity x ≡ |∇ρ|/ρ4/3 or sometimes as s ≡ x/(2(3π2)1/3). Hence, the Generalized Gradient
Approximation (GGA) functionals have the following form:

EGGA
XC [ρ] = EGGA

X [ρ] + EGGA
C [ρ] (1.11)

=

∫
drfX(ρ(r), s(r)) +

∫
drfC(ρ(r), s(r)),

where fX and fC specify the local exchange and correlation parts respectively. We note
that the functional form of fX at large reduced gradient s is of paramount importance for
non-covalent interactions in molecular systems such as water, because exchange-overlap in-
teractions depend strongly on the behaviour of fX in the regions where the electron densities
overlap [34].
We now mention two GGAs that will be used during this thesis and we discuss their use for
water and aqueous systems. Let us start with the Perdew-Burke-Ernzerhof (PBE) functional
which has been widely used to study a large variety of systems, from crystals, to complex
molecular systems, and of course water. Another functional very often used in literature is
the BLYP functional that combines the B88 [35] and Lee-Yang-Parr [36] approximations for ex-
change and correlation, respectively.
These functionals give quite reasonable results of binding energy for water clusters in gas
phase, with an accurate value for the water dimer energy obtained with PBE functional com-
pared to CC and QMC calculations, as it will be shown. However, it is well-known that
these GGAs functionals tends to display a too low value of the first minimum position of
the oxygen-oxygen distribution function gOO of liquid water with respect to experiment, a
characteristic signature of the overstructuration of the liquid. Consequently, the correspond-
ing diffusion constant is too small (10 times smaller) and the average number of H-bonds is
too large [37]. Worse still, GGAs functionals predict that ice sinks in water, that is to say
water has a lower density than ice. Indeed, BLYP functional predicts a liquid density about
∼ 0.8 g/mL [38–40], which is much lower than the experimental value 1 g/mL. Santra and
co-workers [41] demonstrated that the overstructuration of liquid water actually comes from
an overbinding of single monomer molecules extracted from a MD simulation of liquid water
at ambient temperature. Indeed, BLYP and PBE predict dissociation energies that are too
large by 80 and 43 meV, respectively, compared to CCSD(T) calculations. This is inferior to
the performance of these functionals for the equilibrium water dimer and other water clusters
in the gas phase. It thus affects the strength of the H-bond in water dimers inside the liquid,
giving too large dissociation energies with respect to the gas phase results.

To make a further step in the functional improvement, one can add a fraction of exact HF
exchange energy defined as

EHF
X = −1

2

N/2∑
i,j

∫ ∫
drdr′φ∗i (r)φj(r)

1

|r− r′|
φi(r

′)φ∗j (r′). (1.12)
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Chapter 1. Electronic structure calculations

In this thesis, we will use the B3LYP exchange-correlation functional that involves a linear
combination of GGAs and LDA, defined as

EB3LYP
XC = a0E

HF
X + aXE

B88
X + (1− a0 − aX)ELDA

X + aCE
LYP
C + (1− aC)ELDA

C (1.13)

where EB88
X and ELYP

C are the exchange and correlation parts of the BLYP functional dis-
cussed above and a0, aX and aC are mixing coefficients.
As expected, the obtained binding energies of water clusters in both gas and condensed phases
are considerably improved by the use of hybrid functionals such as B3LYP or PBE0 (PBE
with 25% of exact HF exchange) and differ by a few meV per H-bond from the almost exact
quantum chemistry calculations that will be discussed in Subsection 1.1.2. Hybrid function-
als soften the structure of liquid water since they give slightly smaller number of H-bonds
than GGA functionals, but similar H-bond populations [42]. However, hybrid functionals still
slightly underestimate (by 0.45 kcal/mol for the B3LYP functional) the energy difference be-
tween non H-bonded geometries of the water dimer and its global minimum [43]. Small errors
(∼ 1.3 kcal/mol) in the predicted binding energies have also been observed in the protonated
water dimer, trimer and tetramer in Ref. 44. The binding energies of the six first neutral
water clusters are improved (by about 1.5 kcal/mol with respect to the B3LYP results) by
the use of meta-GGA functionals (GGA functional including Laplacian of the electronic den-
sity ∇2ρ into the exchange-correlation energy) with extended aug-cc-pV5Z Dunning basis set.
Unfortunately, these calculations rapidly become unaffordable from a computational point of
view, especially in a MD framework, even for moderate size clusters. It has also been re-
cently established that B3LYP functional works remarkably well for the study of geometrical
properties of protonated water clusters (from the protonated water dimer to the H+(H2O)8
cluster), in particular for the equilibrium oxygen-oxygen distance [45]. In the meantime, PBE0
geometries are erroneous but give very accurate anharmonic frequencies for the IR spectra of
these clusters. These observations suggest a major limitation of DFT to reach a quantitative
description of proton transfer and diffusion in water. There is no systematic way to improve
the description of fundamental properties such as equilibrium geometries, IR frequencies or
dipole moments for a given family of functionals, making this method hardly reliable for the
study of unknown new systems.

The fact that GGAs and hybrid functionals work reasonably well for clusters in gas phase
and quite poorly in condensed phase prove these functionals are missing many-body effects
such as VdW interactions or dispersion. Such interactions are essential in water because of
its large polarity. The VdW interactions are however one order of magnitude weaker than
the H-bonds. Moreover, they are nondirectional because of the spherical symmetry of the
dispersion forces existing at large OH distances.

To include dispersion, various approaches are possible: one can simply add an atom-atom
pair potential of the form −C/R6 between every pair of atoms and parametrize the con-
stant C for several choices of basis sets or functionals, from WF-based methods such as those
described later. This approach is known as DFT-D or DFT-D2 and has been extensively
developed by Grimme and coworkers [46]. In spite of its empirical character, the Grimme cor-
rections for dispersion significantly improve the description of liquid water with much more
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reasonable, although slightly overestimated, values for the obtained density (1.07−1.13 g/mL
for BLYP-D3 functional [47]).

Another approach, used in this thesis, is to include in the exchange-correlation functional
a non-local correlation term Enl

C depending explicitly on electron densities at spatially sepa-
rated positions. The resulting exchange-correlation functional, combined with the usual GGA
representation [48] reads as

EXC = EGGA
X + ELDA

C + Enl
C , (1.14)

with the general form often assumed for the non-local correlation

Enl
C =

∫
dr1dr2ρ(r1)Φ(r1, r2)ρ(r2). (1.15)

The kernel Φ, also named internal functional, is itself a functional of the density but is cal-
ibrated to ensure the correct asymptotic behavior of the dispersion interaction by falling off
as 1/|r1 − r2|6 at large distances [49]. In this thesis, we will use the rPW86-DF2 functional
named DF2 in the following.
As expected, the VdW-corrected functionals give very close results to nearly exact quantum
chemistry calculations for different configurations of the water hexamer [50]. An additional
softening compared with GGA results is also observed. This is characterized by a much lower
and broader first peak of the oxygen-oxygen radial correlation function, in much better agree-
ment with experimental data, although not yet perfect [51]. Indeed, this time, the liquid is
understructured [52]. However, DF2 is referenced as one of the most accurate functional ap-
proach for water since it obtains the quite good score of 68% of the scoring algorithm defined
by Gillan and colleagues [53]. The scoring scheme assigns a percentage score to any chosen ap-
proximation, according to its performance for the properties (e.g. binding energy, sublimation
energy, equilibrium distances and volumes) of the water monomer, the dimer, the hexamer,
and ice structures. In that paper, the major part of the technical issues about DFT approach
in water are reviewed, starting from the study of simple water clusters, to different ice struc-
tures in the perspective of using the most appropriate functional for the specific physical or
chemical problem we want to tackle. For information, we report here the obtained scores for
other usual functionals that will be used in this thesis. Only 14% for LDA, which is not a
surprise because of the roughness of this approximation. The PBE functional gets a much
more reasonable score of 56%, but far from being satisfactory to obtain quantitative results.
BLYP score is not a great success neither 42% but is significantly improved with dispersion
corrections: 66% for BLYP-D3, proving again the essential role played by VdW physics in
water. Unfortunately, B3LYP score is not given but we can reasonably assume it is close the
PBE0 one 62%.

Let us conclude this review of different functionals used to study water and aqueous systems
by mentioning the Strongly Constrained and Appropriately Normed (SCAN) functional. This
meta-GGA functional is, unlike most of GGA or hybrid functionals, not empirical since it sat-
isfies 17 exact constraints on semi-local exchange-correlation functionals. SCAN functional
displays a surprisingly good and quantitative agreement with quantum chemistry results for
the water hexamer configurations and water monomer properties [54], while VdW-corrected
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functionals are sometimes unable to make qualitative descriptions. Very recently, Chen and
coworkers performed ab initio MD simulations of liquid water at ambient conditions [55]. They
present SCAN as a very promising candidate to model liquid water since the obtained Radial
Distribution Functions (RDFs) are very close to X-ray and neutron scattering experiments.
There is still a slight overstructuration of the first peak of the gOO(r) while the first peak
of gOH(r) function is too narrow. This can be explained by the lack of Nuclear Quantum
Effects (NQE) of hydrogen, known to be very important to reach a quantitative description
of the structure and the dynamics of water. Such effects will be discussed in the Chapter 2,
where they will be accounted for within the Feynman discretized Path Integral (PI) approach.

In conclusion, simulating liquid water or gas phase clusters using DFT has been and is still a
very active field of research. Indeed, the interest of DFT is motivated by the very reasonable
scaling of this approach with the number of electrons of the system: O(N3). It thus con-
stitutes a very good compromise between accuracy and computational cost of ab initio MD
simulations driven by DFT forces. Despite its exact nature by construction, DFT in practice
will always suffers from the non-exact knowledge of the exchange-correlation functional. The
latter cannot be universal and transferred to a large variety of physical and chemical systems
because of - except the recent SCAN functional - empirical parametrization of the exchange-
correlation functional.
To reach a quantitative and reliable description of water and small protonated clusters beyond
the chemical accuracy, one has to make a step back and start from the Schrödinger equation
(1.2) to develop theories working with the system WF, as we will see in the following Subsec-
tion.

1.1.2 Quantum chemistry methods

In this Subsection, we will introduce the basic concepts of two advanced quantum chemistry
methods that will then be used to compare with the QMC results of this thesis:

• the second-order Møller-Plesset perturbation theory method also referred to as MP2;

• the Coupled-Cluster approach, with Single and Double excitations, with or without
Triple excitations added in a perturbative way, named CCSD or CCSD(T), respectively.
This method often constitutes the reference for direct comparison with other levels of
theory because of its extreme accuracy. It is thus considered as the "golden standard"
in quantum chemistry calculations.

1.1.2.1 Second-order Møller-Plesset perturbation theory

As suggested by its name, MP2 is a second-order perturbation theory in which the Schrödinger
equation (1.2) is rewritten in a perturbative way as follows

Ĥ|Ψi〉 = (Ĥ0 + λV̂ )|Ψi〉 = Ei|Ψi〉, (1.16)

where we know the exact eigenfunctions and the eigenvalues of the unperturbed Hamiltonian
Ĥ0 (this quantity will be detailed later). This approach is called the Rayleigh-Schrödinger

— 15 —



1.1. Deterministic methods

perturbation theory:

Ĥ0|Ψ(0)
i 〉 = E

(0)
i |Ψ

(0)
i 〉 or Ĥ0|i〉 = E

(0)
i |i〉, (1.17)

where we have denoted |Ψ(0)
i 〉 = |i〉 for compactness. λ is an ordering parameter representing

the perturbation which will be then set equal to unity. We now expand the exact eigenfunc-
tions and eigenvalues in Taylor series in λ

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + . . . (1.18)

|Ψi〉 = |i〉+ λ|Ψ(1)
i 〉+ λ2|Ψ(2)

i 〉+ . . . .

We denote here E(n)
i the nth-order energy. Since we are interested in the second-order per-

turbative terms and more specifically the second-order electronic energy, we will truncate the
Taylor expansions of Eq. (1.18) to the terms with λ2 as a prefactor. After some mathematical
manipulations and standard linear algebra that is detailed in Appendix A for the interested
reader, one obtains for the second-order energy

E
(2)
i =

∑
n6=i

〈i|V̂ |n〉〈n|V̂ |i〉
E

(0)
i − E

(0)
n

=
∑
n6=i

|〈i|V̂ |n〉|2

E
(0)
i − E

(0)
n

. (1.19)

In the case of MP2 theory, the unperturbed Hamiltonian is the shifted Fock operator F̂ , which
reads as

Ĥ0 ≡ F̂ + 〈Φ0|(Ĥ − F̂ )|Φ0〉, (1.20)

where the Fock operator for the i-th electron is given by

F̂ (i) = ĥ(i) +

N/2∑
j=1

[
2Ĵj(i)− K̂j(i)

]
. (1.21)

In the above expression, ĥ(i) is the one-electron Hamiltonian for the i-th electron, Ĵj(i) is the
Coulomb operator, defining the repulsive force between the i-th and j-th electrons and K̂j(i)

is the exchange operator between these two electrons. In Eq. (1.20), the perturbation term,
also called the correlation potential is

V̂ ≡ Ĥ − Ĥ0 = Ĥ − F̂ − 〈Φ0|(Ĥ − F̂ )|Φ0〉. (1.22)

In Eqs. (1.20) and (1.22), Ĥ is the usual electronic Hamiltonian defined in Eq. (1.3) and the
SD |Φ0〉 filled with HF orbitals ΨHF

i , is the lowest-energy eigenfunction of the Fock operator
F̂ :

F̂ |Φ0〉 = 2

N/2∑
i=1

εHFi

 |Φ0〉 (1.23)

Using Eq. (1.23), it follows that

Ĥ0|Φ0〉 = 〈Φ0|Ĥ|Φ0〉|Φ0〉 (1.24)
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so that the 0th-order energy is the expectation value of Ĥ with respect to |Φ0〉, that is to say,
the HF energy:

EMP0 = EHF = 〈Φ0|Ĥ|Φ0〉. (1.25)

Since the WF |Φ0〉 is optimal for both Ĥ and F̂ operators, it is clear from Eq. (1.22) that the
first-order MP energy is equal to

EMP1 = 〈Φ0|V̂ |Φ0〉 = 0. (1.26)

This result is known as the Møller-Plesset theorem: the correlation potential does not con-
tribute in first-order to the exact electronic energy. In other words, the lowest-order MP
correlation energy appears in second order.

In order to obtain the MP2 formula for a closed-shell molecule, we exploit the second or-
der energy given in Eq. (1.19) written in a basis of doubly excited SD determinants. Indeed,
the Brillouin theorem states that singly excited SD are orthogonal to the ground state WF
of the system so their contribution to the total energy is zero. After integrating out the spin,
the practical formula to compute the MP2 energy is given by

EMP2 = −
Norb∑
i,j

Nvir∑
a,b

2〈ΨHF
a (1)ΨHF

b (2)| 1
r12
|ΨHF

i (1)ΨHF
j (2)〉 − 〈ΨHF

a (1)ΨHF
b (2)| 1

r12
|ΨHF

j (1)ΨHF
i (2)〉

εi + εj − εa − εb

× 〈ΨHF
i (1)ΨHF

j (2)| 1

r12
|ΨHF

a (1)ΨHF
b (2)〉 (1.27)

where Norb is the number of occupied orbitals and Nvir is the number of virtual orbitals. The
indices i and j refer to the occupied orbitals while a et b are employed for virtual electronic
states.

Finally, within the MP2 approach, the total electronic energy of the system is given by the
HF energy plus the second-order MP contribution

E = EHF + EMP2 ≤ EHF. (1.28)

In this case, the correlation energy Ecorr, always negative by definition, is given by the MP2
energy Ecorr = EMP2. MP2 recovers a relatively large part of the dynamic correlation while
the presence of the HF ground state ensures the inclusion of exact nonlocal exchange. The
same perturbative treatment can be repeated by exploring higher order terms of the Rayleigh-
Schrödinger equation (1.16) to obtain the MP3 or even the MP4 energies.

Let us discuss now the use of MP2 theory to study properties of neutral or charged wa-
ter clusters, in gas or condensed phase. Concerning the elementary properties of clusters
in gas phase, it is well established that MP2 results are in excellent agreement with the al-
most exact Coupled-Cluster methods [56,57] that will be detailed in the forthcoming pages of
this manuscript. Indeed, the binding energies and geometries of each water cluster (H2O)n
(1 ≤ n ≤ 20) are very well reproduced (agreement within 0.05 kcal/mol with experimental
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data). Parkkinen and his colleagues used MP2 to explore geometries and stabilization energies
of the first 21 protonated water clusters, until the magical H+(H2O)21 known to minimize all
competing energy contributions simultaneously (prism, cage...) [58]. They concluded that the
global cluster energy was dominated by the geometry of the H9O+

4 Eigen complex. Indeed, its
flat geometry favours the polyhedral cages whereas the prismatic structures are less stable.

However, towards a description of water and aqueous systems, studies of neutral or charged
clusters in gas phase are used as toy models or benchmarks. Indeed, advanced electronic
structure calculations should provide correct measurements of water density or proton dif-
fusion towards an accurate description of interactions between water molecules in condensed
phase. That is why, in the last five years, several groups focused their efforts to perform the
first simulations of liquid water at ambient conditions. Del Ben and colleagues, by performing
a Monte Carlo (MC) simulation of liquid water with an MP2 evaluation of the energy between
a series of MC moves, proved the ability of MP2 to properly describe water in bulk liquid
since they obtained a very satisfactory density of 1.02 g/mL. Despite a too high first peak,
the generated gOO(r) are in very good agreement with experiments [59].

More recently, a MD simulation of liquid water at ambient conditions within MP2 and SCS-
MP2 frameworks (MP2 improvement in which a separate scaling of the correlation energy
contributions from antiparallel- "singlet" and parallel- "triplet" spin pairs of electrons is ap-
plied [60]) confirmed the good performances of this level of theory in describing water in con-
densed phase [61]. Researchers checked more critical observables such as the water self-diffusion
constant D ' 0.27 Å/ps2 being very close to the experimental value Dexp = 0.23 Å/ps2, IR
vibrational frequencies and dipole moments. The RDFs behave similarly that in Ref. 59 with
a too high first peak. A better agreement with experiment for SCS-MP2 approach was found,
suggesting that spin correlations could be important in water. These subtle effects will be
partially discussed in Chapter 5.

In 2017, Hirata’s group (already author of the aforementioned MP2 MD simulation of liq-
uid water) compared the properties of MP2-water and DFT-water. To keep the system into
the liquid phase during the MP2 simulations of water, the temperature has to be lowered to
250 K and a negative pressure of −0.6 GPa needs to be applied. Alternatively, PBE liquid
water exists at 440 K and 0.3 GPa, where it has a RDF and density close to experiments.
On the one hand, the polarizability has the greatest influence on the temperature needed in
the simulation to make water liquid, and is significantly greater in DFT/GGA than in MP2
or SCS-MP2. Consequently, MP2-water is "cooler" than DFT-water. On the other hand,
the smaller the dispersion interaction, the less dense the liquid water and the more positive
a pressure is needed to maintain the correct density of the liquid. This scenario corresponds
to the simulations with dispersionless DFT/GGA functionals, whereas VdW interactions are
naturally taken into account by MP2, that slightly overestimates dispersion effects in liquid
water, Therefore, MP2-water is "denser" than DFT-water [62].

Therefore, the MP2 approach can be considered as a serious candidate to tackle the prob-
lem of proton transfer in liquid water and other aqueous systems thanks to its robustness
regarding a large set of static (RDFs, density) and dynamical (self-diffusion, IR frequencies)
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properties. Nevertheless, the price to pay to reach that level of accuracy is quite expensive
and is estimated as O(N5) with N the number of electrons. This explains why Del Ben
and coworkers performed a large DFT pre-sampling between each MC iterations and why
the computed trajectory in Ref. 61, although reasonable, is short compared to MD standards
for the evaluation of dynamical quantities (11 ps of trajectory instead of 40-50 ps). In the
perspective of dealing with water as a solvent, the MP2 approach will unfortunately become
prohibitive and alternative solutions must be found.

1.1.2.2 Coupled-Cluster methods: CCSD and CCSD(T)

The Coupled Cluster (CC) approach is today considered as the "golden standard" for elec-
tronic structure and quantum chemistry due to its extreme accuracy for a large variety of
molecular systems. CC calculations will be used in this thesis as benchmark to validate our
calculations using other electronic structure methods. Here, we provide a basic introduction
to CC theory and we invite the interested reader to see Ref. 63 for further details about recent
methodological advances.

The CC theory mainly relies on the exponential ansatz for the CC WF

|ΨCC〉 = eT̂ |Φ0〉, (1.29)

where |Φ0〉 is the HF WF and T̂ is the cluster operator which is the sum of cluster operators
at different excitation levels

T̂ = T̂1 + T̂2 + · · ·+ T̂N . (1.30)

In Eq. (1.30), T̂1 is the cluster operator for the single excitations, which can be written, within
the second quantization formalism, as

T̂1 =

Norb∑
i

Nvir∑
a

tai âa
†âi. (1.31)

In the above equation, tai represents the amplitude of the corresponding single excitation pro-
moting an electron from the occupied orbital i to the virtual state a via the âi annihilation
and âa† creation operators. When the operator âa†âi acts on the HF WF, it creates the singly
excited determinant |Φa

i 〉 = âa
†âi|Φ0〉.

Similarly, T̂2 is the cluster operator for double excitations and is written as

T̂2 =
1

4

Norb∑
i,j

Nvir∑
a,b

tabij âa
†âb
†âiâj , (1.32)

where tabij are the double-excitations amplitudes. When the operator âa†âb†âiâj acts on the
HF WF |Φ0〉, it generates the doubly excited determinant |Φab

ij 〉 = âa
†âb
†âiâj |Φ0〉. And so on

up to the T̂N cluster operator for N -fold excitations.
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1.1. Deterministic methods

For the sake of simplicity, we will in the following restrict to the case of single and dou-
ble excitations, that is to say, we simply consider the operator T̂ = T̂1 + T̂2. This approach
is known as Coupled Cluster Single Doubles (CCSD). By applying a Taylor expansion of the
excitation operator T̂ , it can be demonstrated (see Appendix B for further details) that the
amplitude of the triple excitations can be estimated by products of single- tai and double- tabij
excitations amplitudes. Moreover, it is a reasonable approximation to consider that higher-
order excitations contributions to the correlation energy will be much smaller than single and
double ones. Indeed, CCSD WF recovers a large fraction of the correlation energy of the sys-
tem. CCSD(T) further improves upon CCSD, because also triple excitations are added, in a
perturbative way. Besides, thanks to the exponential form of the WF, truncated CC methods
are size-consistent, allowing for instance accurate studies of water clusters dissociation.

To determine the CC energy and the excitation amplitudes, one applies the projection method
in which CC WF must satisfy the Schrödinger equation (1.2) in the space spanned by the HF
determinant |Φ0〉 and excited determinants |Φa

i 〉, |Φab
ij 〉 and so on

〈Φ0|(Ĥ − E)|ΨCC〉 = 0 (1.33)

〈Φa
i |(Ĥ − E)|ΨCC〉 = 0

〈Φab
ij |(Ĥ − E)|ΨCC〉 = 0.

Using the orthonormality of the determinants, Eq. (1.33) directly gives the CC total energy

E = 〈Φ0|Ĥ|ΨCC〉 (1.34)

= 〈Φ0|Ĥ|Ψ0〉+

Norb∑
i

Nvir∑
a

cai 〈Φ0|Ĥ|Φa
i 〉+

Norb∑
i<j

Nvir∑
a<b

cabij 〈Φ0|Ĥ|Φab
ij 〉.

According to Slater’s rules, only first- and second-order excitations contribute to the electronic
energy. Since the first term of Eq. (1.34) is simply the HF total energy EHF = 〈Φ0|Ĥ |Φ0〉 and
since the second term vanishes thanks to the Brillouin theorem, we obtain the CC correlation
energy

Ecorr =

Norb∑
i<j

Nvir∑
a<b

cabij 〈Φ0|Ĥ|Φab
ij 〉 =

1

4

Norb∑
i<j

Nvir∑
a<b

(tabij + 2tai t
b
j) (1.35)

× (〈ΨHF
i (1)ΨHF

j (2)| 1

r12
|ΨHF

a (1)ΨHF
b (2)〉 − 〈ΨHF

i (1)ΨHF
j (2)| 1

r12
|ΨHF

b (1)ΨHF
a (2)〉.

Thus, this quite simple expression for the energy only involves single and double excitations
amplitudes and matrix elements. Finally, let us note that this way to evaluate the CC energy
is not variational, hence the obtained CC energy does not necessarily fall above the exact
ground-state energy, at variance with perturbation theories such as MP2.
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Chapter 1. Electronic structure calculations

As already mentioned in the previous Subsections, CC techniques (mainly CCSD/CCSD(T))
are considered as the most precise single reference methods one can use today for electronic
structure calculations. In the case of water, only small clusters in gas phase have been stud-
ied so far and the obtained results are in excellent agreement with experimental data for any
observed quantity: equilibrium geometries, IR frequencies, bond strengths, dipole moments
to cite a few [41,64]. However, despite its elegance and its extreme reliability, the application
of this method for extended system is ’nip in the bud’ because of its computational cost.
Indeed, the CCSD/CCSD(T) scaling laws with the number N of electrons are estimated to
be in O(N7), which is clearly prohibitive, without considering the additional problem of the
convergence of the calculations with the basis set size. Therefore, the two main tasks of CC
techniques are:

• perform benchmark calculations that can be then used for direct comparison with other
levels of theory to validate new methodological approaches. This is is exactly what we
will do in the Chapter 4 where CCSD(T) calculations will constitute our reference to
compare our QMC-MD results with;

• use CCSD/CCSD(T) reference calculations on a large set of geometries to generate very
accurate Potential Energy Surface (PES) of the corresponding small molecular system
under study. This approach has been used, for instance by the Bowman group, in the
2000s to build analytical potentials parametrized by fits of thousands of CCSD(T) ge-
ometries. They started with the neutral clusters [40,65–67] before focusing their efforts on
the charged dimer (Zundel ion) [65]. The latter PES will be used in this thesis (Chapter
4), as accurate force field to benchmark our new Molecular Dynamic algorithms. Polar-
izable potentials are also emerging, still obtained via CCSD(T) calculations on extended
Dunning basis sets [68–70] and reproduce quite fairly water properties in both gas and
condensed phases.

We have reviewed the principal deterministic methods to resolve, as precisely as possible,
the electronic structure of the systems we will study in this thesis, namely the neutral and
protonated water clusters. DFT is computationally cheap, but hardly reliable to predict new
physics on unexplored systems, while quantum chemistry techniques are by far more accurate,
but too expensive to be applied on larger systems in a close future. That is why, in the next
Section (1.2), we will introduce the stochastic methods, focusing on the QMC approach, which
looks to be a promising candidate to overcome the above issues.

1.2 Stochastic methods

In this Section, we will explain how it is possible to accurately determine electronic structures
of a large variety of physical and chemical systems by means of stochastic methods, focusing
especially on the Quantum Monte Carlo (QMC) approach. Monte Carlo refers to a set of
stochastic methods relying on repeating random samplings of a given quantity to obtain a
numerical estimation of it. The highly random character of this method motivated its naming,
by reference to the very famous borough of Monaco where casinos are numerous.
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1.2.1 The Quantum Monte Carlo approach

The problem we want to tackle here is still the same one as in Section 1.1, namely solving the
Schrödinger equation (1.2). This can be done within the QMC approach, that optimizes a
trial WF ΨT (r1, . . . , rN ) using the variational principle to find the best approximate solution
of Eq. (1.2). The QMC final WF is supposed to be very close to the exact ground state WF
of the system Ψ0, and must capture an important fraction of the correlation energy defined
in Eq. (1.1).

One of the major advantages of stochastic techniques and QMC methods, compared with
its direct competitors for advanced electronic calculations, is its ability to deal with the high
dimensionality of electronic integrals at a reasonable computational cost. Furthermore, the
stochastic nature of QMC algorithms makes this class of simulations particularly adapted for
High Performance Computing (HPC) since random sampling can routinely be done within a
parallelization scheme. Considering the recent and coming advances on the development of
highly parallelized architectures such as the Tier-0 machines, the QMC approach looks very
promising and we thus expect it to become more widespread in the near future.

Indeed, the very first application of QMC dates back to the work on liquid helium by MacMil-
lan about fifty years ago [71]. In spite of a few major successes such as the seminal work of
Ceperley et al. [29] on the electron gas, it seems that the use of QMC methods is yet limited
to a quite restricted circle of experts. This can be partially explained by the fact that QMC
approaches are computationally demanding since a large amount of generations is necessary
to reach a reasonable target accuracy. Therefore, in spite of its milder theoretical scaling
with respect to the system size, between O(N3) and O(N4), compared with other advanced
electronic calculation methods, significant applications have been done only very recently.
Indeed, for small or moderate size systems, this apparent gain is hindered by the very large
statistical prefactor within the QMC approach, at variance with deterministic methods. For
instance, Dagrada and coworkers demonstrated that the water hexamer was the crossing point
between CCSD(T) and QMC calculations [72]: QMC becomes "cheaper" than CC techniques
for systems larger than (H2O)6. Thus, in the perspective of studying PT reactions in liquid
water or in biological systems, QMC methods are the only viable candidate for both large
and accurate calculations in the condensed phase.

In the following, we will discuss the form of the QMC WF in 1.2.2 and present the two
main families of QMC simulations:

• the Variational Monte Carlo (VMC) that optimizes the QMC trial WF ΨT through the
variational principle, minimizing the total energy of the system (Subsection 1.2.3);

• the Diffusion Monte Carlo (DMC) and Lattice Regularized Diffusion Monte Carlo (LRDMC)
that reinterpret the Schrödinger equation (1.2) into a diffusion equation of the trial WF
in the Hilbert space of the electronic parameters (Subsection 1.2.3).

The two above techniques evaluate the WF in the 3N -dimensional configurational space
spanned by the electronic coordinates, while other QMC techniques, that will not be detailed
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Chapter 1. Electronic structure calculations

here, rely on the random sampling of determinants such as Full Configuration Interaction
Quantum Monte Carlo (FCIMC) [73] or Auxiliary Field Quantum Monte Carlo (AFQMC) [74].

1.2.2 The Quantum Monte Carlo wave function

Let us now consider the typical form of the QMC WF which will be then used in this thesis.
In the following, we describe the N electrons of the system with the generalized coordinates
{xi = (ri, σi)}i=1...N grouping electronic positions ri and spins σi. For convenience, we re-
strict our derivation to the case of spin-unpolarized systems (N↑ = N↓ = N/2) and we refer
the interested reader to Refs. 75 and 76 for the spin-polarized case.

The WF used in our QMC calculations is defined by the product of two contributions as
follows

Ψ(x1, . . . ,xN ) = exp [−J (x1, . . . ,xN )]ΨD (x1, . . . ,xN ) , (1.36)

where J(x1, . . . ,xN ) is a bosonic (symmetric with respect to the exchange of two electrons)
factor called the Jastrow factor. On the contrary, ΨD(x1, . . . ,xN ) is a fermionic (antisymmet-
ric with respect to the exchange of two electrons) factor which ensures the entire WF being
antisymmetric in agreement with fermion statistics. It is generally referred as the determi-
nantal part of the WF since it can contain a single or a sum of determinants as we will see
in the following. The QMC WF is written in such a compact form with an exponential form
of the Jastrow factor to ensure a good convergence of the electronic energy with the size of
the parameters set λ defining the WF. Moreover, a direct comparison can be made with the
CC WF of Eq. (B.2) by making a Taylor expansion of the Jastrow factor that gives a series
of determinants modulated by J(x1, . . . ,xN ).

1.2.2.1 Antisymmetrized Geminal Power (AGP) part

First, let us focus on the determinantal part of the WF described in Eq.(1.36). The simplest
assumption is that ΨD(x1, . . . ,xN ) is described via a single Slater determinant (SD) which
reads as

ΨD(x1, . . . ,xN ) = det[χi(xj)], (1.37)

where χi(xj) = Ψi(rj) ⊗ Σi(σj) are spin-orbitals. The corresponding WF is thus called a
Jastrow-Slater-Determinant (JSD) WF and will mostly be used in Chapter 5. In this thesis,
we are going beyond the JSD ansatz, and use the more accurate Resonating Valence Bond
(RVB) approach whose QMC analogue is given by the Jastrow Antisymmetrized Geminal
Power (JAGP) WF [75,77]. This WF is at the heart of the TurboRVB code, used in this thesis.
The JAGP ansatz is

ΨAGP(x1, . . . ,xN ) = Â [Φ(x1,x2), . . . ,Φ(xN−1,xN )] , (1.38)

where Â is an antisymmetric operator and Φ(xi,xj) represents a geminal or a pairing function.
The geminals are antisymmetric functions of two electron coordinates written as a product of
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a spatial symmetric part and a spin singlet

Φ(xi,xj) = φ(ri, rj)
δ(σi, ↑)δ(σj , ↓)− δ(σi, ↓)δ(σj , ↑)√

2
. (1.39)

Consequently, one can consider the AGP as a generalization of the SD to electronic pairs by
choosing a determinant for the antisymmetrization operator Â:

ΨAGP(x1, . . . ,xN ) = det[Φ(xi,xj)]. (1.40)

In the TurboRVB code, Φ is expanded onto a localized gaussian basis set with atom-centered
functions. Defining q the ionic positions (see Chapters 2 and 3), the basis functions have the
following form

Gaµ(|r− qa|) ∝ |r− qa|le−ζl,n|r−qa|2Yl,m(Ωr−qa), (1.41)

where the exponents ζl,n are variational parameters. The quantum numbers m ∈ [−l; l] and
n ∈ [1;nl] describe the angular momentum, while nl represents the number of gaussians for
each angular momentum shell. Yl,m(Ω) are the cubic harmonics defined as real-values linear
combinations of spherical harmonics.

Once this localized gaussian basis set is specified, one can expand the AGP functions in
terms of atomic orbitals

Φ(ri, rj) =

Nat∑
a,b

Nbasis∑
µ,ν

λa,bµ,νΨAGP,a
µ (|ri − qa|)ΨAGP,b

ν (|rj − qb|), (1.42)

where ΨAGP,a
µ ≡ Gaµ (see Eq. (1.41)), and Nbasis is the number of elements constituting the

primitive basis of the AGP part of the WF. In the above equation, the Λ = {λa,bµ,ν} matrix
gives the strength of the valence bond between two atoms within the system restricted to a
specific element of the gaussian basis set, giving an accurate picture of the chemical bonds ex-
isting in the system. Moreover, it is clear that for an extended system, many matrix elements
of Λ will vanish, increasing the numerical efficiency of the QMC calculation by exploiting the
local nature of the basis set. This point is of paramount importance for this thesis and thus
will be discussed in more detail in Chapter 3.

Furthermore, it is also possible to perform a diagonalization of the AGP matrix Λ to ob-
tain an expression for the pairing functions Φ(ri, rj) involving the molecular orbitals of the
system:

Φ(ri, rj) =

NMO∑
k

λMO
k φMO

k (ri)φ
MO
k (rj). (1.43)

By retaining only the largest eigenvalues λMO
k , one captures the relevant electronic correla-

tions inside the system at a reasonable computational cost. It can also be proven that keeping
the first NMO = N/2 eigenvalues of the AGP matrix, the determinant of Eq. (1.40) reduces to
the SD WF. The uncorrelated HF ansatz is therefore contained within the AGP wavefunction
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as a special case.

Thus, the AGP part of the WF function can be seen either as a SD in its lowest level expan-
sion, or as a linear combination of SDs. The AGP ansatz is thus particularly suited to capture
the static electron correlation, whenever nearly degenerate low-lying orbitals are present in
the system.

1.2.2.2 The Jastrow factor

The Jastrow factor, in contrast to the AGP part of the WF, is a function of electron-electron
separation tailored to deal with the dynamical correlation of the electrons. Since this type
of correlation is mainly induced by charge fluctuations of the system, the Jastrow factor is
essential to include the VdW effects in the total electronic energy [78]. The role of the Jastrow
factor is also to strongly limit the double occupation of orbitals, accordingly with Pauli’s
exclusion principle. Moreover, it has to fulfill Kato’s cusp conditions at electron/ion and
electron/electron coalescence points [79].

The functional form of the Jastrow factor is often written as a product of three terms

J(r1, . . . , rN ) = J1J2J3, (1.44)

where the spin of electrons have been removed for simplicity (this case will be discussed later
in the thesis, in the Chapter 5). The one-body term J1 reads as

J1 = exp

− N∑
i

Nat∑
j

(2Zj)
3/4u

(
(2Zj)

1/4|ri − qj |
) , (1.45)

with Zj is the atomic charge, u(|r − q|) = 1−e−b|r−q|

2b and b is a variational parameter. This
form is chosen to satisfy the aforementioned electron-ion Kato cusp conditions, used to deal
appropriately with the diverging electron-nucleus Coulomb potentials at short distances. Dur-
ing this thesis, since we study only neutral or protonated water clusters, we keep the bare
Coulomb potential only for hydrogen, while for the oxygen atoms we replace it with the
Burkatzki-Filippi-Dolg (BFD) pseudopotential [80], which is smooth at the electron-ion coa-
lescence points. Thus, J1 is applied only to the hydrogen atom.

Similarly, the electron-electron cusp conditions for antiparallel spin electrons are dealt with
by the two-body Jastrow factor

J2 = exp

 N∑
i<j

u(|ri − rj |)

 , (1.46)

where u is a function of the same form as in Eq. (1.45), but with a different variational param-
eter. Finally, many-body correlations and thus VdW physics are included in the remaining
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part of the Jastrow factor

J3 = exp

 N∑
i<j

ΦJ(ri, rj)

 , (1.47)

with

ΦJ(ri, rj) =

Nat∑
a,b

N ′basis∑
µ,ν

ga,bµ,νΨJ,a
µ (ri − qa)Ψ

J,b
ν (rj − qb), (1.48)

where ΨJ,a
µ ≡ Gaµ (see Eq. (1.41)), and G = {ga,bµ,ν} is the mathematical equivalent of the

AGP matrix Λ for the Jastrow part of the WF. N ′basis is the number of primitive elements
constituting the basis set of the Jastrow. The impact of N ′basis and the selected basis set
elements on the interaction between water molecules in gas phase will be discussed in this
thesis in the Chapter 5. From Eq. (1.48), it is apparent that ΦJ(ri, rj) correlates electrons
sitting on different atoms a and b. In this way, interatomic-induced polarization effects are
included in the WF. Therefore, J3 is an essential ingredient to include rigorously polarizability
and dispersion contribution in the QMC trial WF. Let us also remark that there is a large
flexibility [81] on the way one decides to write the QMC WF in both Jastrow and determi-
nantal parts. The degree of sophistication of the WF must be a good compromise between
computational efficiency and target accuracy, required for the type of problem we want to
solve. Indeed, the WF evaluation is the most demanding task of the QMC approach. In our
case, we aim at resolving tiny energy differences (beyond the chemical accuracy) so we have
to be very cautious by systematically checking that our QMC WF provides relevant energies
and geometries compatible with the physics of PT in water clusters.

1.2.3 Variational Monte Carlo

Variational Monte Carlo (VMC) is one of the simplest QMC approach and has been applied
for the first time on fermionic systems in the seminal work of Ceperley et al. in the late 70s [82].
Let us consider again the QMC antisymmetric trial WF whose expression have been detailed
in the previous pages of this manuscript ΨT (r1, . . . , rN ). The electronic energy, defined as
the quantum expectation value of the Hamiltonian Ĥ given by Eq. (1.3) over the trial WF
ΨT reads as

〈Ĥ〉 = EVMC =

∫
dRΨ∗T (R)ĤΨT (R)∫

dR|ΨT (R)|2
, (1.49)

where R = (r1, . . . , rN ) represent the coordinates of the QMC walker in the space spanned
by electronic configurations and the spin has been omitted for simplicity. The variational
principle states that the VMC energy defined in Eq. (1.49) is an upper bound to the true
ground state energy of the system: EVMC ≥ E0. Eq. (1.49) can be then rewritten under the
following form
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EVMC =

∫
dR

|ΨT (R)|2∫
dR′|ΨT (R′)|2

ĤΨT (R)

ΨT (R)
(1.50)

=

∫
dRπ(R)eL(R) = 〈eL〉 ≥ E0,

where 〈.〉 denotes an equilibrium average. In the above equation, we demonstrate that it is
possible to compute the VMC energy EVMC as a statistical average of the local energy

eL =
ĤΨT (R)

ΨT (R)
(1.51)

thanks to walkers sampling the probability density π(R) = |ΨT (R)|2∫
dR′|ΨT (R′)|2 . This approach is

known as the importance sampling since it favors the QMC random walk into the electron
configurations space near regions where the amplitude of the QMC trial WF is high (|ΨT |2).

Let us notice that if the trial QMC WF ΨT is an exact eigenstate of the quantum Hamil-
tonian Ĥ, the local energy eL is a constant since it is equal to the ground state energy of
the system, independently of the configuration explored by walkers. Therefore, the closer the
trial WF ΨT to |Ψ0〉, the smaller the fluctuations of the estimated VMC energy EVMC. This
well-known phenomenon is called zero variance property and is extremely important to ensure
the efficiency of any QMC simulation. This implies that a very careful optimization of the
WF must be done before estimating the energy and other observables by a VMC calculation.

The probability density π(R) is sampled using the Metropolis-Hastings algorithm first in-
troduced by Metropolis in 1953 [83] and then generalized by Hastings 17 years later [84]. This
algorithm, also used in classical MC simulations, enables to sample any unknown probability
distribution by generating a memoryless process in the 3N -configurational space of electronic
positions. Such a random walk in which each new configuration only depends on the previous
one is called a Markov chain. In the TurboRVB code, at each step of the Markov process, a
new configuration is created by performing a single electron move. The move is then accepted
or rejected by application of the Metropolis’ rule [83]. In a practical way, the MC displacement
is calibrated to obtain an optimal acceptance ratio of the MC samples (about 60% of accepted
moves). The efficiency of the MC sampling can also be increased if the amplitude of the single
electron move depends on its distance with the nearest nucleus: if the electron is far from an
ion, it moves with a larger step than the one of an electron closer to a nucleus. Moreover,
when the system is composed by two distant fragments, as it will be the case in the Chapter
5 where the dissociation of the water dimer will be studied, instantaneous moves from one
fragment to the other one are allowed after a given number of MC samples. This avoids to
"freeze" the random walk into the configurational space of electronic positions in a confined
region of the space, thus alleviating ergodicity issues.

Finally, the VMC energy EVMC is straightforwardly computed as we accumulate statistics
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of its local estimator, namely the local energy, as defined in Eq. (1.50):

EVMC = 〈eL〉 =
1

Ngen

Ngen∑
i=1

eL(Ri), (1.52)

where we recall Ngen is the number of QMC generations. Analogously, any operator Ô repre-
senting a physical quantity (the oxygen-oxygen distance for instance) can be evaluated as in
Eq. (1.52)

OVMC = 〈OL〉 =
1

Ngen

Ngen∑
i=1

OL(Ri), (1.53)

with OL = ÔΨT
ΨT

being the local operator. By virtue of the central limit theorem, this estimator
of the true expectation value of Ô is totally free of biases. The corresponding unbiased
estimator of the variance σ2[OQMC] is given by

σ2[OQMC] =
τC
Ngen

σ2[OL] =
τC
Ngen

(〈O2
L〉 − 〈OL〉2), (1.54)

where σ2[OL] represents the statistical fluctuations of the local measurements of OL. τC is
the autocorrelation time of MC iterations, defined as

τC = 1 +
2

σ[OL]Ngen

∑
i<j

Cov(OL(Ri), OL(Rj)), (1.55)

where Cov(OL(Ri), OL(Rj)) = 〈(OL(Ri) − 〈OL〉)(OL(Rj) − 〈OL〉)〉 is the covariance. τC
is equal to the unit in the ideal case of completely uncorrelated measurements, which is in
practice never the case. We thus have to perform block averages (blocking technique) of the
Eq. (1.53) not only to obtain a reliable VMC estimation of the desired observable but also to
estimate correctly its variance by significantly reducing τC in Eq. (1.54).

As already mentioned, the major advantage of the QMC approach over deterministic methods
is thus its ability to cope with the high dimensionality of electronic integrals at a reasonable
computational cost. Indeed, the central limit theorem states that the intrinsic statistical er-
ror σ2

QMC (Eq. (1.54)) on the estimated integral is independent of the dimensionality of the
problem. This variance can be simply reduced by increasing the number of MC iterations to
reach the desired accuracy, and a compromise must be found between accuracy and savings
of computational resources.

To summarize, the guideline to perform accurate VMC calculations on physical and chemical
systems, such as water clusters, is extremely simple. The very first step consists in building the
WF. During this phase, we specify the mathematical form of Ψ (JSD or JAGP), the basis sets
for both the Jastrow and the determinantal parts of the WF, the geometry of the system and
the use of pseudopotentials for the heaviest atoms (oxygen in our case) [80]. Then, we perform
a DFT calculation, using the LDA functional, to fill the single or multiple determinants with
KS orbitals, which constitute a good starting point for the optimization of the WF. Then, the
QMC function is optimized using minimization procedures such as Stochastic Reconfiguration
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(SR) [85] and Stochastic Reconfiguration with Hessian accelerator (SRH) [86] methods. From
the practical point of view, this is the most delicate step in the QMC calculation. Technical
details about these minimization techniques are given in Appendix C. Finally, once the WF
is fully optimized and as close as possible to the ground state WF, |Ψ0〉, of the system, we
can estimate physical quantities by means of VMC statistical averages.

During the 2000s, VMC has been mostly used to study small and neutral water clusters
(from the monomer to the hexamer). Looking at Ref. 87, we have the confirmation that the
VMC energy of both the water monomer and dimer strongly depends on the quality of the
WF. Indeed, there is a significant gain of 26 mHa (16.3 kcal/mol) in the computed energy for
the water monomer when many-body corrections are included in the determinant. Sterpone
and his colleagues demonstrated the ability of VMC to reproduce properly the dissociation
energy curve of the bonding water dimer with a reasonable, albeit slightly underestimated
(about ∼ 0.5 kcal/mol), value of the dissociation energy De. Furthermore, thanks to the great
flexibility of the JAGP WF given in Eqs. (1.40) and (1.42), they have been able to estimate
the covalent (1.1(2) kcal/mol) and the correlated VdW fluctuations (1.5(2) kcal/mol) contri-
butions to the total binding energy [88].

More recently, Zen and coworkers made an extensive study on the role of the WF ansatz
and the basis set size to properly describe the properties of the water molecule [89]. They have
reported the following general hierarchy for the QMC WF JDFT < JSD < JAGP, which
clearly indicates that JAGP WF seems to be the more suitable to study water. The accuracy
of JAGP-VMC calculations for the dipole are in good agreement with CCSD results, but less
accurate than CCSD(T) as expected which suggests VMC is "between" these two approaches
for water. Protonated dimer, namely the Zundel ion H5O+

2 has been studied very recently in
our research team, which is the starting point of this thesis [72]. Indeed, it has been demon-
strated that obtained geometries for the Zundel complex at the VMC level are in excellent
agreement with reference CCSD(T) calculations and the proton static barriers computed by
VMC are slightly overestimated (about ∼ 0.7 kcal/mol for dOO = 2.7 Å) but reasonable.

To conclude, the VMC method is a simple stochastic method which has proven its efficiency to
describe a large variety of physical and chemical systems, including neutral or charged water
clusters, with an accuracy close to the most sophisticated quantum chemistry calculations.
Therefore, thanks to its milder scaling with the system size, VMC appears to be an ideal
candidate to give a correct enough PES to solve the PT problem in liquid water and this
point will be largely exploited in this thesis (see Chapters 4 and 6). However, we will see
in the following Subsection how to improve the VMC results via another stochastic method,
namely the Diffusion Monte Carlo (DMC).

1.2.4 Diffusion Monte Carlo and Lattice Regularized Diffusion Monte Carlo

1.2.4.1 Diffusion Monte Carlo

Contrary to VMC, DMC is a projector technique in which the trial QMC WF is projected on
the ground state WF of the system [90]. Indeed, one can obtain the exact ground state energy
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of the E0 via the following mixed estimator of the quantum Hamiltonian Ĥ:

E0 =
〈Ψ0|Ĥ|ΨT 〉
〈Ψ0|ΨT 〉

. (1.56)

However, the main issue arising from Eq. (1.56) is the need to know the exact ground state
WF Ψ0. Let us recall the time-dependent Schrödinger equation written in the imaginary time
t→ it

−∂Ψ(R, t)

∂t
= (Ĥ − Λ)Ψ(R, t), (1.57)

where Λ is an energy offset that is for the moment left arbitrary. It is straightforward to
obtain the formal solution of Eq. (1.57) given by

ΨG(R, t) = e−(Ĥ−Λ)tΨT (R, t). (1.58)

Using the spectral decomposition of the guiding WF ΨT , it is easy to show that the long-time
behavior of the projected WF ΨG is dominated by the Hamiltonian lowest-energy eigenstate
Ψ0 having a non zero overlap with the initial ΨT . Consequently, in the infinite time limit,
one can compute the DMC energy as the following mixed estimator

EDMC =
〈ΨG|Ĥ|ΨT 〉
〈ΨG|ΨT 〉

=

∫
dR

Ψ∗G(R, t)ΨT (R)∫
dR′Ψ∗G(R′, t)ΨT (R′)

ĤΨT (R)

ΨT (R)
(1.59)

=

∫
dRπ̄(R, t)eL(R) = 〈eL〉.

The above equation is the DMC version of Eq. (1.50) where we have operated the substi-
tution |ΨT |2 → Ψ∗GΨT and the importance sampling is made on the mixed density π̄ =

Ψ∗G(R,t)ΨT (R)∫
dR′Ψ∗G(R′,t)ΨT (R′)

. One can apply Eqs.(1.53) and (1.54) to evaluate the DMC observables
and their variance, since Eq. (1.59) also contains the zero variance property.

The only significant difference between DMC and VMC comes from the sampling of the
mixed density π̄(R, t) since it cannot be directly interpreted as a probability density because
of the sign of ΨGΨT (we consider real WF for simplicity without loss of generality). Indeed,
if one applies a naive sampling of π̄(R, t), the projected ΨG would be bosonic in the long
time limit. This would clearly violate Pauli’s antisymmetrization principle that imposes the
ground state WF of a quantum system to be fermionic. To solve that issue, we apply the
very efficient Fixed-Node approximation (FN) which consists in restricting the importance
sampling in a region of the space of electronic configurations where the ΨT and ΨG have the
same sign [29]. Such a region is called a nodal pocket and the tiling theorem ensures that they
all are strictly equivalent and contain all the necessary information about π̄(r, t) [91]. Within
the FN approximation, it is clear that the projected WF ΨG(R, t) will have the same nodal
structure that the guiding WF ΨT (R) which is by principle not exact because ΨT is not equal
to the ground state WF Ψ0. The systematic error induced by this hypothesis is the so-called
FN error and can be fortunately neglected in our thesis. Indeed, Caffarel et al. demonstrated
the ability of DMC to reproduce almost exactly the experimentally estimated ground state
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energy of the water molecule EH2O = −76.4389 Ha [92] since they obtained the striking value
of EH2O = −76.43894(12) Ha [93].

Let us denote f(R, t) = ΨG(R, t)ΨT (R) ≥ 0 ∀ {R, t} the unnormalized distribution we want
to sample within FN approximation. Its time evolution is dictated by the time-dependent
Schrödinger equation which reads as

−∂f(R, t)

∂t
= −∆R

2
f(R, t)︸ ︷︷ ︸

diffusion

+∇R.(vD(R)f(R, t))︸ ︷︷ ︸
drift

+

[
eL(R)−

(
1 +

∂

∂t

)
Λ

]
︸ ︷︷ ︸

branching

, (1.60)

where we denote drift velocity vD(R) = ∇ ln ΨT . The above equation can thus be interpreted
as a master equation driving the diffusion of QMC walkers in the configurational space of
electronic positions. The first term of the r.h.s of Eq. (1.60) is a purely diffusive contribution,
while the second term takes into account the drift impacting the random walk. Finally, the
last term governs the walkers’ population by deciding which walker will die or survive during
the Markovian dynamics via its branching ratio.

Afterwards, we express the analytical solution of f(R, t) in its integral form as follows

f(R, t) =

∫
dR′G(R; R′, t)f(R′, 0), (1.61)

where the propagator G(R; R′, t) is the Green function of Eq. (1.60) which fulfills the initial
condition G(R; R′, 0) = δ(R,R′). An explicit expression of this propagator can be derived by
simple application of the Trotter-Suzuki formula [94,95] for the time evolution of the exponen-
tial operator e−τĤ for small values of τ . This approximation leads to a time-step error that
will be discussed more extensively in a different context in Chapter 3.

From a practical point of view, the DMC simulation starts with a VMC thermalization of
the walkers where we set f(R, 0) = Ψ2

VMC. Then, we simulate the diffusion process described
in Eq. (1.60) and we regularly update the walkers’ dynamics by killing or generating new
walkers via the branching algorithm. The energy shift Λ is modulated on-the-fly to push the
random walk in the regions where the mixed probability density f(R, t) is large. We invite
the interested reader to the complete reviews [91,96] for further details.

The statistical estimation of physical quantities in DMC is a bit more complex than in VMC
since the used estimators are no longer pure, but mixed due to the sampling of the mixed
probability distribution π̄(R, t). Hence, one can rewrite the Eq. (1.53) for the mixed estimator
of a given observable O

Omix =
1

Ngen

Ngen∑
i=1

ÔL(Ri), (1.62)

where {Ri} are sampled configurations from the mixed distribution f(R). It can be shown
that this mixed estimator Omix coincides with the "pure" average O0 = 〈Ψ0|Ô|Ψ0〉

〈Ψ0|Ψ0〉 if and only
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if [Ô, Ĥ] = 0. Otherwise, it is possible to extrapolate the pure, hence the physical, average
via the following relation:

O0 ' 2Omix −OVMC +O(δΨ2). (1.63)

In the above equation, δΨ simply represents the difference between the true ground state WF
Ψ0 and the QMC trial WF ΨT . This implies that the applicability of the formula given in
Eq. (1.63) is limited by the quality of the trial WF ΨT which means that we have to do a
very careful VMC minimization of the WF to obtain satisfactory results.

From a practical point of view, DMC provides excellent results, always in agreement with
experimental data and advanced electronic structure calculations. Indeed, already in 1994,
DMC calculations carried on rigid water dimer gave reasonable value for both geometries and
energetics [97]. Rigid body DMC has then been used to study tunnelling splitting (i.e. energy
difference between two states of different symmetry) of the water dimer and trimer [98]. The
DMC dissociation energy of the water dimer is found to be between 5.03(7) and 5.47(9)
kcal/mol, which is in excellent agreement with the experimental value De = 5.44 ± 0.7

kcal/mol [87]. DMC calculations also predict good binding energies of excess electrons in the
(H2O)−6 cluster [99]. More recently, Gillan et al. studied in detail the six first water clusters
(H2O)n for n = 1, . . . , 6. They verified that DMC results are clearly superior to DFT results
(obtained with hybrid functionals), especially for the description of the various isomers of
water hexamer, always in good agreement with CCSD(T) results [100]. They conclude their
work by claiming that DMC can now be used as a benchmark for larger clusters and liquid
water.

1.2.4.2 Lattice Regularized Diffusion Monte Carlo

In spite of its extreme accuracy, the use of DMC is still quite limited in practice due to
its important computational cost. Indeed, its scale has been proven to be of the order of
O(Z5.5−6.5) with the atomic number Z for small and medium size systems [101,102]. To over-
come this bottleneck, the core electrons (of oxygen atoms in our case) need to be replaced by
cheap but accurate pseudopotentials. As already mentioned, we use pseudopotentials specifi-
cally designed for QMC simulations developed by Burzatki, Filippi and Dolg [80]. The use of
a pseudopotential for the core electrons has a direct impact on the many-body Hamiltonian
of the system Ĥ that now contains an effective contribution for the potential energy. The
latter is a semi-local (it contains both local and non-local parts) and angular momentum
dependent operator whose role is to reproduce the core-valence Coulombic repulsion and the
orthogonality between core and valence states.

Such an inclusion of non-local pseudopotentials into the quantum Hamiltonian Ĥ has a dra-
matic impact within the FN approximation since it seems impossible to constrain the non-local
contributions of the pseudopotential within a single nodal pocket. Consequently, one solution
consists in neglecting the non-local terms in the imaginary time equation (1.60) using the
locality approximation [103]. Nevertheless, the price to pay is the breaking of the variational
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principle since the local Hamiltonian eigenstate can have a lower energy than the true ground
state one. To solve that issue, Casula and his colleagues developed the Lattice Regularized
Diffusion Monte Carlo (LRDMC) that restaures the variational principle of standard DMC
algorithms [104,105].

In this approach, the Green function driving the propagation of the mixed distribution f(R, t)

in the imaginary time t → it is no longer solved by direct application of Trotter-Suzuki for-
mula at short times but is discretized on a grid with lattice parameter a. Hence, it is necessary
to discretize the non-local part of the Hamiltonian, which reads as

Ĥa
NL = −1

2

N∑
i=1

∆rai
(θi, φi) + V̂NL +O(a2), (1.64)

where ∆rai
(θi, φi) is the discretized Laplacian and V̂NL is the non-local contribution to the

potential coming from the use of a pseudopotential. At each update of the electronic position
during the diffusion process of the QMC walkers, the direction of the lattice is chosen with
random angles θ and ψ generated from a normal distribution. In this way, by repeating
this randomization procedure at each step, one explores continuously the space thus ensuring
ergodicity with the nearest neighbors.
So as to gain accuracy, we can also discretize the local part of the pseudopotential, the
electron-ion electrostatic interaction, by imposing the continuous and the discretized versions
of the local energy to be the same eaL(R) = eL(R). One obtains the following expression for
the local potential:

V̂ a
L (R) = V̂L(r)− (∆r −∆a

r)ΨT (R)

2ΨT (R)
, (1.65)

where V̂L is the local contribution to the pseudopotential. Finally, the full discretized quantum
Hamiltonian reads as

Ĥa = Ĥa
NL + V̂ a

L (R) + V̂ee +O(a2), (1.66)

where only the electron-electron Coulomb interaction is not discretized. The above equation
involves a lattice Hamiltonian defined on a continuous space, which is evaluated by a finite
number of matrix elements connecting two electron positions. The DMC time step error is
here replaced by the lattice space errors that increases quadratically with the lattice parameter
a (see Eq. (1.66)). The smaller the lattice parameter is, the more computationally expensive
but accurate the LRDMC simulation is. In practice, the exact result can be extrapolated by
performing several LRDMC calculations at various values of a and by taking the limit a→ 0.
Finally, the mixed average of the energy is evaluated using the discretized Hamiltonian

ELRDMC =
〈ΨG|Ĥa|ΨT 〉
〈ΨG|ΨT 〉

. (1.67)

As its DMC analogue, the reliability of the LRDMC approach has been assessed by Sterpone
et al., who demonstrated that the LRDMC extrapolated (a→ 0) value of the water monomer
dipole µLRDMC = 1.870(10) D is in better agreement with the experimental value µexp = 1.855

D than within VMC µ = 1.890(8) D. The LRDMC water dimer binding energy De,exp = 4.9±
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0.1 kcal/mol is also very close to reference quantum chemistry calculations: De,MP2 = 4.99

kcal/mol and De,CCSD(T) = 5.02 kcal/mol [88]. These results will be verified on both the
bonding and non-bonding water dimer in the Chapter 5 of this thesis. In the meantime, PT
static barriers estimated at various inter-oxygen distances in the Zundel complex are improved
in LRMDC with respect to VMC, albeit still slightly overestimated (about ∼ 0.3 kcal/mol
at dOO = 2.6 − 2.7Å) compared to CCSD(T) [72]. However, since we aim at performing MD
simulations of small water clusters, which require an important amount of QMC estimations
of the electronic energy to evaluate the ionic forces driving the system, the LRDMC approach
cannot be employed, due to its excessive computational cost. Consquently, during this thesis,
the electronic PES and forces will be evaluated by means of VMC, as it will be discussed in
the following Subsection.

1.2.5 Forces evaluation in Quantum Monte Carlo

We derive here the method to evaluate forces by means of QMC approach. Unlike in deter-
ministic DFT, obtaining forces within a stochastic framework is by far more difficult. Still
working within the BO approximation in which the ions move on a PES defined by the elec-
tronic energy of the system, one can define the 3Nat-dimensional force acting on all Nat atoms
of the system

f = −∇qEVMC[Ψ]. (1.68)

In the above equation, ∇q is the gradient relative to cartesian coordinates {q} of the nuclei
and EVMC[Ψ] is the variational energy already defined in Eq. (1.49). Being a functional of Ψ,
EVMC[Ψ] has both an implicit and explicit dependences arising from:

• the Hamiltonian Ĥ, defined in Eq. (1.3) that also explicitly depends on the nuclear
coordinates {q} as we will see in Chapter 2;

• the QMC WF Ψ that explicitly depends on a set of electronic parameters {λ} varying
implicitly with the ionic positions {q} through the use of a localized gaussian basis set
(Eq. (1.41)).

Consequently, the local energy eL(R; q) defined in Eq. (1.51) also depends on {q} through
both the Hamiltonian Ĥ and the WF Ψ. We can expand Eq. (1.68) into three contributions:

f = fHell-Fey + fPulay + fλ, (1.69)

with

fHell-Fey = −〈Ψ|∇qĤ|Ψ〉
〈Ψ|Ψ〉

,

fPulay = −2
〈Ψ|OqĤ|Ψ〉 − 〈Ψ|Oq|Ψ〉EVMC

〈Ψ|Ψ〉
; Oq|Ψ〉 = ∇q|Ψ〉,

fλ = ∇λEVMC.∇qλ. (1.70)

In principle, the term fλ is the most complicated because the derivatives∇qλ are very difficult
to evaluate. Fortunately, this contribution cancels out when the set of electronic parameters
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{λ} is fully optimized, as the energy of the system becomes minimal. The Hellmann-Feynman
(Hell-Fey) term, which is the only component of the QMC generalized force f in the deter-
ministic case, fHell-Fey is the only contribution which would survive if the Hell-Fey theorem
were applicable. This is not the case, because the WF is not an eigenstate of Ĥ. Nevertheless,
when the optimized WF approaches an eigenstate of Ĥ, the Pulay term gets smaller and the
HF term becomes dominant.

Since there is a systematic and intrinsic noise affecting the QMC calculations due to their
stochastic nature, it is clear that the Hell-Fey and the Pulay terms of the generalized QMC
force have a finite variance. Consequently, the simple computation of such terms by finite
differences of the electronic energies between two different ionic configurations is completely
inefficient. Indeed, one has to impose small ionic displacements δq to solve tiny energy dif-
ferences but unfortunately, the energy derivatives diverge as 1

δq as δq → 0. This is due to
the propagation of errors that make the obtained error on the energy difference has the same
amplitude that the ionic force we want to compute.

Computing the Hell-Fey and Pulay terms with finite variance in a fast way is of paramount
importance to make QMC-based MD simulations feasible. To overcome the aforementioned
issue, some technical improvements, such as the correlated sampling (CS) and the space warp
coordinate transformation (SWCT) [106], have been done. A further step in the evaluation of
efficient and accurate forces is the algorithmic differentiation (AD), recently introduced by
Sorella and Capriotti [107]. Thanks to the AD, computing all components of the ionic forces
is only four times more expensive than the cost of an energy calculation.

Thanks to all the techniques described above, we are able in this thesis to evaluate the
QMC forces f in an affordable computational cost with increasing system size. These forces
are however affected by an intrinsic noise that could bias the dynamics of the water clusters
under study. In the Chapter 2, we will explain the existing methods to incorporate and control
the finite variance of forces into a MD framework.

/
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Understanding the mechanisms by which hydronium H3O+ and hydroxyde HO− ions
are transported through water has represented both an experimental and a theoreti-

cal challenge for more than two centuries [108]. The theoreticians have the advantage to use
computer simulations to directly investigate, at the microscopic length scale and on very
short timescales, the proton motion inside clusters in the gas phase or the bulk liquid. Such
kinds of calculations, named Molecular Dynamics (MD) simulations, are performed by keeping
constant some selected thermodynamic parameters of the system, such as the temperature.
Thanks to the knowledge of the interactions driving the ion dynamics of the studied system,
we are able to generate representative configurations of protonated water clusters. Later, we
can extract physical observables that are the thermodynamic averages of the configurations
visited by the system.

In the perspective of describing quantitatively and accurately proton transfer in water, we
have gathered the first essential ingredient in the Chapter 1: the interactions between protons
and water molecules are very accurately described by means of ab initio methods. Since the
proton diffusion is very sensitive to the fluctuations of the H-bond network [109], controling the
temperature of the simulations is of paramount importance. Besides, in addition to thermal
fluctuations, one has to take into account the Nuclear Quantum Effects (NQE) due to the
light mass of the hydrogen atom. Such quantum effects for the nuclei are crucial, even at
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room temperature [110].

In this Chapter, we will provide the necessary framework to describe both thermal and nuclear
quantum effects in aqueous systems. First, we recall in Section 2.1 the general methodology to
perform MD simulations, with any force field. Then, we will focus on the Langevin Dynamics
(LD), which enables to perform MD simulations at constant temperature (Section 2.2), par-
ticularly with stochastic forces. Afterwards, we discuss the importance of NQE in water and
aqueous systems in Section 2.3. Finally, we demonstrate the possibility to combine together
the Feynman Path Integral (PI) approach (2.3.2) with the Langevin Dynamics to perform
Path Integral Langevin Dynamics (PILD) simulations in Subsection 2.3.3.

2.1 Molecular Dynamics simulations

Similarly to the classical Monte Carlo (MC) methods, the MD technique is a way to calculate
the equilibrium properties of a given system. Still working under the Born-Oppenheimer (BO)
approximation, let us write the classical Hamiltonian operator for the nuclei, which differs to
the electronic Hamiltonian given in Eq. (1.3):

H(p,q) =

Nat∑
i=1

p2
i

2mi
+ V (q). (2.1)

In the above expression, V (q) is the potential energy describing the interactions between
particles or ions. It can be described empirically using analytical functions of the interatomic
coordinates q, with adjustable parameters parametrized to reproduce at best the experimental
data for a given system. Such an approach is computationally cheap, but very system-specific.
This limits its application to a given class of problems. To be more general and transferable
to any physical or chemical system, it is by far better to evaluate the potential energy term
V (q) starting from the first principles of quantum mechanics. In the ab initio approaches, one
solves the many-body Schrödinger equation at fixed ionic positions q by means of the tech-
niques seen in Chapter 1, to obtain the electronic energy of the system Eelec(q). The latter
defines the PES in which the nuclei move during the dynamics, within the BO approximation.

In Eq. (2.1), we denote p ≡ (p1, . . . ,pNat) the particles momenta (pi = mivi with mi being
the mass of the atom i) and q ≡ (q1, . . . ,qNat) their coordinates. The 6Nat-dimensional space
in which these coordinates (p,q) evolve is referred to as the phase space.

2.1.1 Time and ensemble averages

The goal of any MD simulation is thus to generate enough ionic configurations to obtain a
full and satisfactory exploration of the phase space. In this case, the dynamics is ergodic and
one can compute the time average of a generic observable O

〈O〉t =
1

t

∫ t

0
dt′O(t′). (2.2)
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Eq. (2.2) corresponds to the Boltzmann formulation of statistical mechanics of time averages.
In practice, there is another way, mostly used in MC simulations, to compute ensemble av-
erages, which corresponds to the Gibbs’ version of statistical mechanics. Nevertheless, only
and only if the dynamics is ergodic, the ergodic theorem states that both approaches are
equivalent:

〈O〉 = lim
t→∞
〈O〉t = lim

t→∞

1

t

∫ t

0
dt′O(t′)

=

∫
dpdqρ(p,q)O(p,q). (2.3)

In the above equation, ρ(p,q) corresponds to a probability density (similar to π(R, t) in
the previous Chapter) that depends on the employed statistical ensemble for the simulation.
This point will be discussed more extensively in the next section (Section 2.2). Eq. (2.3) is
fundamental since it ensures the exact correspondance between time and ensemble averages,
leaving us the possibility to choose the most suitable approach for the considered problem. In
practice, the number of MD samples or steps Nsteps is finite and the computed averages are
approximated by

〈O〉 ' 1

Nsteps

Nsteps∑
i=1

O(p(ti),q(ti)), (2.4)

where O(p(ti),q(ti)) is the instantaneous value of the microscopic estimator of the macro-
scopic observable O we want to compute. Consequently, similarly to the MC case, the mea-
sures are affected by an error bar that decreases as the square root of the number of MD steps.

Therefore, the length of the MD trajectories must be adapted to the considered problem
for at least two reasons. First, the number of MD steps Nsteps must be large enough to ensure
a full visit of the accessible phase space by the system under study. This is characterized
by a convergence of the static properties, such as the Radial Distribution Functions (RDFs),
that will be discussed in the Chapters 4 and 6. Second, due to the variety of interactions
occurring in water (covalent bonds, H bonds, VdW interactions), intramolecular and inter-
molecular vibration modes of water clusters have very different energy and timescales. The
minimum number of MD iterations must be set to capture a significant number of "rare"
events, related to the softest vibration modes of the system, that can occur during the dy-
namics. The aforementioned reasons explain why we generated longer MD trajectories (about
a factor 1.5) for the protonated water hexamer than for the benchmark tests on the Zundel ion.

In practice, the question of the length of our MD simulations is very important since it
seems well established that about 50 ps trajectories are required to obtain converged thermal
averages for liquid water, simulating at least 32 water molecules [111]. Because of the compu-
tational cost for the evaluation of the electronic PES by QMC, all the MD simulations carried
out during this thesis will be shorter (about 20-25 ps). Therefore, we need to ensure that in
spite of the shortness of these trajectories, we do not miss any relevant physics. This issue
will be discussed in Chapters 4 and 6.
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2.1.2 Equations of motion and Liouvillian formalism

Going back to Eq. (2.4), it is clear that to compute any physical quantity, we only need to
explicitly know the momenta (or the velocities) p(ti) and the positions q(ti) of the ions at
each time interval ti during the dynamics. The phase space distribution ρ(p,q) defines the
probability dpdqρ(p,q) to find the system in the infinitesimal phase space volume dpdq. Its
time evolution is governed by the Liouville equation which reads as

∂ρ

∂t
= −{ρ,H}, (2.5)

where {., H} =
3Nat∑
i=1

(∇piH∇qi −∇qiH∇pi) denotes the Poisson bracket. The Liouville equa-

tion (2.5) can be rewritten in terms of the Liouville operator iL as follows

∂ρ

∂t
= −iLρ. (2.6)

The phase space volume is conserved during the dynamics and its symplectic nature is ensured
by the Liouville theorem. Therefore, the integration schemes we will develop in Chapter 3
must fulfill this fundamental property. The time evolution of the 6-Nat dimensional phase
space vector Γ = {pi,qi}i=1,...,Nat is given by

dΓ(t)

dt
= iLΓ. (2.7)

One can integrate the above equation and obtain its formal solution which reads as

Γ(t) = eiLtΓ(0), (2.8)

where Γ(0) = {pi(0),qi(0)}i=1,...,Nat corresponds to the initial conditions of the dynamics.
In the MD runs carried out in this thesis, we often take the zero temperature equilibrium
geometry as starting initial positions. The initial velocities are generated randomly with the
constraint that the total kinetic energy of the system must be compatible with the target
temperature of the simulation in agreement with the equipartition theorem. Such an initial-
ization is straightforward and routinely applied in our MD simulations, using the Box-Muller
algorithm [112].

Afterwards, the phase space vector Γ evolves according to the Hamilton equations of mo-
tion, given by

dpi
dt

= ṗi = −∇qiH = fi,

dqi
dt

= q̇i = ∇piH =
pi
mi

= vi. (2.9)

where fi are the ionic forces defined in Eq. (1.68) that derive from the PES. Such forces
can be either deterministic or stochastic as it will be the case in this thesis since they will be
computed by means of QMC methods. For the moment, let us consider for simplicity the more
usual deterministic case. In practice, the formal solution proposed in Eq. (2.8) can hardly be
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exploited to compute physical quantities since there is no exact mathematical solution to the
many-body (Nat atoms here) problem. As a consequence, we perform a number of numerical
approximations to the propagator eiLt. In the following, we will detail one typical integration
scheme of the Hamilton equations of motion.

2.1.3 The velocity-Verlet algorithm

We will here give a derivation of one of the most famous MD algorithms, namely velocity-
Verlet, using the Liouvillian formalism. This will serve as a guide when we will later derive an
original algorithm for Path Integral Langevin Dynamics (PILD). The Verlet algorithm [113] has
been widely used to perform MD simulations of any physical or chemical system, included
the water clusters in the early 1980s [114]. In the following, we present the velocity-Verlet
algorithm, a simple version of the Verlet algorithm relying on the Trotter-Suzuki break-up of
the Liouvillian propagator for small time intervals δt

eiLV δt = eiLpδt/2eiLqδteiLpδt/2 +O(δt2), (2.10)

where iLλ =
Nat∑
i=1

λ̇i∇λi , with λi a generic component of the momentum or the coordinate of

the particle i, The above equation (2.10) is then a product of translation operators that result
in the velocity-Verlet integration scheme, whose elementary steps are listed below:

1. update of the particle momenta after a half time step δt:

pi (t+ δt/2) = eiLpδt/2pi(t) = pi(t) +
δt

2
fi(t); (2.11)

2. update the ionic positions at δt:

qi(t+ δt) = eiLqδtqi(t) = qi(t) + δt
pi(t+ δt/2)

mi
; (2.12)

3. new evaluation of the ionic forces via fi(t+ δt) = −∇qiV (t+ δt), which represents the
most time-consuming part of the calculation, especially for ab initio MD simulations;

4. final update of the particle momenta after the full time step δt:

pi (t+ δt) = eiLpδt/2pi(t+ δt/2) = pi(t+ δt/2) +
δt

2
fi(t+ δt). (2.13)

The above steps are repeated Nstep times to generate a trajectory of total time ttraj = Nstepδt.
In deriving the velocity-Verlet algorithm from the Trotter-Suzuki break-up of the Liouvillian,
we have used the fact that ea∇xf(x) = f(x + a). The latter equality can be checked by
deriving both terms by algebra or by a Taylor expansion.

Unlike its standard Verlet version, velocity-Verlet algorithm is able to provide simultane-
ously both positions and momenta (or velocities) of the system at each time interval ti, which
is necessary to compute observables depending explicitly on both q and p, as in Eq. (2.4). Let
us notice that this numerical propagation of the phase space vector Γ(t), although accurate,
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is not exact and suffers from a time step error which is quadratic (see Eq. (2.10)). In practice,
it is desirable to work with the largest possible time step δt to optimize the phase space ex-
ploration in the fewest number of MD iterations, so as to save computational resources when
the force evaluations are very demanding. Nevertheless, we are limited by the fact that the
chosen time step δt has to be smaller than the characteristic period of vibration of the softest
(intermolecular) modes and by the intrinsic numerical stability of our integrator. Typically,
for classical or ab initio MD simulations, the employed time step is about δt = 0.5 − 1 fs.
These considerations will have their importance in our thesis, especially in Chapter 3 when we
develop novel integration schemes to perform fully quantum dynamics simulation with QMC
forces.

Thanks to the knowledge of the propagator of the equations of motion, we are now able
to obtain complete MD trajectories where both momenta and positions are evaluated at each
elementary MD iteration, as described above. To generate dynamics sampling representative
configurations Γ(t) of the true physical system, the forces fi acting on each ion must be spec-
ified. They are computed as conjugated gradients of the Potential Energy Surface and their
reliability strongly depends on the accuracy of the PES. In standard classical MD calculations,
the PES is often given by an empirical potential that is parametrized to reproduce at best
the experimental behavior of the system. Below, we quickly review some of these force fields.

2.1.4 Analytical force fields for water

Numerous force field approaches have been developed for water since more than half a century.
Among them, we can cite the Lennard-Jones [115] and the Coulomb-Buckingham [116] poten-
tials, that describe the dispersion and repulsion forces between particles. These potentials
are the starting point of the simplest water models, where water molecules are considered to
be rigid with partial charges attributed to oxygen and hydrogen atoms because of the large
electronegativity of the oxygen atom (Single Point Charge or SPC model [117]). Various flavors
have then been designed, for example, by improving the Coulomb contribution to the potential
by creating fictitious charges on various sites such as TIP3P/TIP4P [118] or TIP5P [119]. The
five-sites model TIP5P predicts very good water densities ρ for temperatures ranging from
235 to 370 K. These non-polarizable force fields give quite reasonable values of the dipole
moment µ, the average density ρ, and the self-diffusion constant D. The RDFs are how-
ever not very well reproduced (understructuration) and the dynamics are faster than in the
experiments [120]. Therefore, these models are not accurate enough to provide a satisfactory
description of water and proton transfer in gas or condensed phase.

A straightforward improvement to these quite simplistic models is to include polarizabil-
ity and flexibility into the empirical functional describing the interaction potential between
water molecules. This is the case of the SPC/E and flexible SPC models that gives the best
bulk water dynamics and structure among these empirical models [120]. Such explicit repre-
sentations of the water can already be computationally expensive for very large system made
of thousands of atoms evolving along very long trajectories (more than 10 ns). To solve that
issue, hybrids models with an implicit description of the surrounding water molecules can be
applied, but will not be detailed here. We invite the interested reader to read the complete
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and recent review of Skyner et al. for further details [121].

In this thesis, we do not aim at studying very large aqueous systems to model chemical
or biological processes. On the contrary, we make the choice to restrict our study to small
neutral or protonated water clusters. Indeed, in such finite systems, there is no further bias
due to possible finite-size errors made during a MD simulation, as it could be the case at the
hydrodynamic limit of liquids [122]. Besides, small water clusters have the significant advan-
tage to reduce the number of possible scenarios for PT, making possible a clearer and more
detailed analysis of each elementary process driving an effective PT. Finally, the energetics
and PT barriers are very subtle to capture because of the flatness of the electronic PES for
such a phenomenon. Therefore, using advanced electronic structure calculations detailed in
the first Chapter is mandatory. In this case, the ionic forces fi are evaluated in a rigorous way
from first principles calculations during the so-called ab initio MD. By construction, they are
much more accurate and reliable, but also more computationally expensive, especially in the
QMC case. Thus, for the time being, this class of MD simulations is limited to small systems
(about 50 atoms maximum) with rather short trajectories (maximum 100 ps).

To summarize, MD simulations constitute an intuitive and efficient tool to characterize at
the microscopic scale the elementary steps of the PT mechanism on a large variety of chem-
ical or biological systems. Such calculations are complementary to experiments since they
can confirm the experimental data and they are also able to predict the behavior of a system
that has not been investigated experimentally under specific conditions. This is, for instance,
the case of gas phase water clusters, where it can be difficult to perfectly isolate the desired
clusters one wants to analyze. Indeed, they are often weakly bonded to rare gases such as
neon to make easier the IR spectrum detection [123]. Moreover, experiments are usually car-
ried out at room temperature. Computer simulations have a greater flexibility in choosing the
thermodynamic parameters. This is an advantage for the theoreticians who can explore more
easily the phase diagram of the system, by choosing which thermodynamic parameters should
be kept constant during the MD simulation. This arbitrary choice defines the thermodynamic
ensemble in which we will sample the probability density ρ(p,q) given in Eq. (2.3). In the
following Section, we will describe the case where the temperature of the system is supposed
to be constant along the MD trajectory.

2.2 Finite temperature simulations

Constant temperature MD simulations are routinely used to predict the microscopic behavior
of biological or chemical systems as a function of the temperature. This implies the use of a
thermostat that regulates the temperature of the system during the dynamics. Many ther-
mostating methods have been developed so far and we have to select the more appropriate
strategy for the problem we want to tackle. This point is far from being trivial because each
thermostat has its own advantages and drawbacks and their relative impact on equilibrium
or non equilibrium properties is still discussed [124].

Fixing the temperature of the system is not sufficient to fully determine its thermodynamic
properties using statistical mechanics. Indeed, three thermodynamic parameters are required
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to characterize the thermodynamic state of the system and they define the thermodynamic
ensemble in which the system evolve. In this thesis, we aim at simulating isolated water
clusters in the gas phase. In this case, the most appropriate ensemble is the canonical one,
which is by far the most used ensemble for MD simulations of any chemical systems. For the
specific case of water, it appears to be more reliable than the microcanonical ensemble [125].
Its associated thermodynamic potential is the Helmholtz free energy F (Nat, T ) = U − TS.
We will detail in the following Subsection (see 2.2.1) the expression of its probability density
ρ(Γ) and the technique we will employ to sample it.

2.2.1 The canonical ensemble

The canonical ensemble assigns the following probability density

ρ(Γ) =
e−βH(Γ)

Q(Nat, T )
, (2.14)

where β = 1
kBT

is a thermal prefactor and Q(Nat, T ) is the partition function of the system,
defined by

Q(Nat, T ) =

∫
dΓe−βH(Γ). (2.15)

The canonical partition function Q(Nat, T ) is related to the Helmholtz free energy via

F (Nat, T ) = −kBT lnQ(Nat, T ). (2.16)

Using Eq. (2.16), it is straightforward to obtain the thermodynamic properties or the system,
such as its internal energy U , through the following thermodynamic derivative

U = − ∂

∂β
Q(Nat, T ). (2.17)

Response functions, such as the heat capacity Cv can be easily deduced by deriving Eq. (2.17)
with respect to the temperature of the system.

In the following, we will detail the employed method, used in this thesis, to control the
temperature of our MD simulations, Since we employ a stochastic method to compute the
forces fi acting on the ions during their dynamics, there is a further bias of the system tem-
perature arising from the intrinsic error of the QMC forces. This point thus requires attention
in the choice of the thermostating method that will be adopted.

2.2.2 The Langevin thermostat

Many thermostating schemes have been developed so far to control the temperature of MD
simulations with deterministic forces. Among them, we can cite the Andersen [126], the
Berendsen [127], and the Nosé-Hoover [128,129] thermostats. Let us also mention the very effi-
cient Stochastic Velocity Rescaling (SVR) thermostat developed by Bussi and coworkers [130],
also adapted to perform isothermal-isobaric (Nat, P, T ) simulations [131]. These thermostating
strategies have been widely used to perform MD simulations of bulk water at constant tem-
perature [132,133] within a deterministic framework.

— 44 —



Chapter 2. Ion dynamics

As already mentioned, the ionic forces driving the dynamics of the ions are computed by
QMC, implying that they are stochastic by nature. Consequently, the aforementioned ther-
mostats can no longer be used, since they are not built to compensate the intrinsic noise
affecting the ionic forces and the temperature of the system would be biased. Incorporating
noisy forces into a MD framework is not trivial, and stochastic dynamics must be employed.

The main representative of this class of MD simulations is the Langevin approach. From
the beginning, this strategy relies on the idea that a physical or chemical system is, in prac-
tice, never isolated. Therefore, the particles constituting the system stochastically interact
with neighboring atoms composing the solvent and are consequently driven by a Brownian
motion. The Langevin approach is based on the mathematical idea that one can construct a
mapping between this many-body problem and a Langevin Dynamics (LD) where the degrees
of freedom related to the solvent have been replaced by a stochastic (Wiener) process. In
our case, we use LD for other purposes since we plan to simulate isolated water clusters in
gas phase. However, this framework turns out to be the more appropriate to deal with the
intrinsic noise affecting the ionic forces computed by QMC, keeping the system at a constant
temperature. The Langevin equation is given by

ṗi(t) = − γpi(t)︸ ︷︷ ︸
dissipation

+fi(q(t)) + ηi(t),︸ ︷︷ ︸
fluctuation

q̇i(t) =
pi
mi
. (2.18)

This equation is slightly more complex than the Hamilton equations of motion (see Eq. (2.9)
since it contains two additional terms. Indeed, to include the temperature of the system dur-
ing the dynamics, it is necessary to account for thermal fluctuations of the particles that may
collide each other. Therefore, this dissipative contribution is compensated by the presence of
random forces ηi(t) that stochastically drive the ion dynamics.

The Langevin damping matrix, γ = {γij}i,j=1,...,Nat can be either diagonal or non diago-
nal, depending on the complexity of the process we are studying. For an isotropic system
constituted by identical particles moving under the action of deterministic forces, the fric-
tion matrix can be described via a single constant γ. On the contrary, when the ionic forces
are computed within a stochastic approach, as it is the case in this thesis, the form of the
damping matrix is more complex. Consequently, the integration of the Langevin equations
of motion defined in Eq. (2.18) is far from being trivial and these mathematical issues will
be discussed in the next Subsection 2.2.3 and in Chapter 3, dedicated to the development of
novel LD integrators. To ensure a correct sampling of the equilibrium properties, the random
forces ηi(t) must satisfy 〈ηi(t)〉 = 0. Its time autocorrelation function, however, depends on
the nature of the noise applied to the system. In most cases, the random forces are taken
δ-correlated, according to a gaussian stationary process which verifies

〈ηi(t)ηi(t′)〉 = giδ(t− t′), (2.19)
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where gi is a constant. Eq. (2.19) thus defines a white noise driving the LD of the system. The
value of g, which depends on the Langevin friction γ and the temperature T of the system is
imposed by the fact that the fluctuations generated by the action of the random forces ηi(t)
must compensate the dissipative term encoding the collisions of the system with the heat bath.
This mathematical relationship is the Fluctuation-Dissipation Theorem (FDT) [134], given by:

ρ(ω) = 〈ηi(ω)ηi(−ω)〉 =
kBTmiγ

π
, (2.20)

where ρ(ω) is the power spectrum1 of the random force. Taking the Fourier transform of
Eq. (2.19) and using Eq. (2.20), one obtains

gi = 2mikBTγ (2.21)

for the constant prefactor in random force autocorrelations. Let us remark that one is free to
apply a colored noise thermostat to the system, by modifying the mathematical laws ruling
the dynamics of the random forces ηi(t).

As water is the solvent of a countless number of chemical or biological reactions [135], the
optimal theoretical framework to model the solvation effects of water is represented by the
LD, which have thus been widely used in aqueous systems. For instance, LD calculations are
used to characterize the solubility and the dynamics of organic molecules in bulk water [136,137]

or to study protein folding and dynamics [138,139]. Nevertheless, LD simulations can also be
used to study small neutral or protonated water clusters in gas phase since they provide an ac-
curate and efficient sampling of the canonical probability density, without any considerations
about the environment. Indeed, the LD approach is an ideal candidate for our QMC-driven
MD simulations since the stochastic nature of the dynamics compensates the intrinsic error
affecting the VMC forces. By incorporating directly the QMC noise into the random forces
within a LD framework accordingly to the FDT, we can control the temperature of our MD
simulations.

However, standard integration schemes such as the velocity-Verlet algorithm (see Subsection
2.1.3) cannot be used for the integration of stochastic equations of motion. Consequently,
specific algorithms must be devised and will be detailed in the following Subsection.

2.2.3 Classical Langevin Dynamics integration schemes

In this Subsection, we will present two examples of LD algorithms to familiarize ourselves
with this fascinating equation bringing a lot of perspectives for mathematicians, physicists,
chemists and biologists. Indeed, since its derivation by Paul Langevin in 1908, this stochastic
differential equation has been widely studied to derive an efficient integrator of the Langevin
equation of motion [140–145]. Designing an efficient Langevin algorithm is of paramount impor-
tance in our case since, due to the cost of QMC evaluations of the PES, we are compelled to
work with a large time step δt to limit at most the number of LD iterations Nsteps.

1white in this case.
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2.2.3.1 The Bussi algorithm

In Ref. 143, Bussi and his colleagues derived an efficient algorithm to propagate the Langevin
equations of motion, solving the damping problem even in the difficult case of the high friction
limit. We derive it here to familiarize with the integration of the Langevin equations of motion,
as the core of this propagator will be used in Chapter 3 to devise novel quantum algorithms. In
the following, we will consider, for the sake of simplicity and without loss of generality, that all
the particles have the same physical mass m. Including the expression given in Eq. (2.21) into
the Langevin equation (2.18), one obtains the following system for the Langevin dynamics:

ṗi(t) = −γpi(t) + fi(q(t)) +
√

2mkBTγηi(t),

q̇i(t) =
pi(t)

m
. (2.22)

In the above system fi(q(t)) is a deterministic force while ηi(t) is a normalized Wiener white
noise. These coupled equations can be formulated in terms of the probability density P (Γ, t)

that evolves according to the Fokker-Planck equation [146]

∂P (Γ, t)

∂t
= iLFPP (Γ, t), (2.23)

where the Fokker-Planck Liouvillian operator iLFP is naturally written as a sum of three
contributions

iLFP = iLp + iLq + iLγ . (2.24)

The two first components iLp and iLq have already been introduced in Eq. (2.10). The last
part of the Fokker-Planck Liouvillian reads as

iLγ = −γ
(
∇pp +

m

β
∇2

p

)
(2.25)

The Fokker-Planck equation (2.23) can be similarly solved formally to Eq. (2.8). Then, one can
apply a double Trotter break-up, analogously to the velocity-Verlet algorithm (see Eq. (2.10)),
to obtain the full propagator

eiLFP = eiLγ
δt
2 eiLp

δt
2 eiLqδteiLp

δt
2 eiLγ

δt
2 . (2.26)

Of course, as we will see in the following, this choice of the Liouvillian splitting is not unique
and can be adapted to each specific situation. The separation applied in Eq. (2.26) is correct,
even in the high friction limit γ → +∞, provided the MD time step δt is small enough. After
some algebra, it is straightforward to demonstrate that the elementary steps of the proposed
integrators are:

1. update of the particle momenta, under the action of the thermostat, after a half time
step δt (Bussi’s scheme):

pi(t
+) = eiLγ

δt
2 pi(t) = c1pi(t) + c2ξ1(t); (2.27)
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2. update the ionic positions at δt:

qi(t+ δt) = eiLp
δt
2 eiLqδtqi(t) = qi(t) +

pi(t
+)

m
δt+

fi(qi(t))

m

δt2

2
; (2.28)

3. new evaluation of the ionic forces via fi(t+ δt) = −∇qiV (t+ δt);

4. second update of the particle momenta to conclude the deterministic part of the dy-
namics:

pi(t
− + δt) = eiLp

δt
2 pi(t

+) = pi(t
+) +

δt

2
(fi(qi(t)) + fi(qi(t+ δt)) ; (2.29)

5. final update of the particle momenta, under the action of the thermostat, after the full
time step δt:

pi(t+ δt) = eiLγ
δt
2 pi(t

− + δt) = c1pi(t
− + δt) + c2ξ2(t+ δt), (2.30)

and so on. In the above thermostating steps 1 and 5, ξ1(t) and ξ2(t+ δt) are two independent
gaussian numbers with unitary variance, and the coefficients c1 and c2 are:

c1 = e−γ
δt
2

c2 =

√
(1− c2

1)
m

β
. (2.31)

To summarize, this integration scheme is very intuitive since the combination of the two
inner stages in Eq. (2.26) is a simple velocity-Verlet while the outermost components of the
propagator correspond to the action of the thermostat. Indeed, pi(t

+) in Eq. (2.27) represents
the instantaneous momentum of the particle i just after the action of the thermostat which
implies that the temperature of the system should be estimated just before the half thermostat
iteration giving pi(t

+). This strategy is very efficient for deterministic forces. In the case of
stochastic (QMC) forces, another algorithm has been proposed by Attaccalite and Sorella.

2.2.3.2 The Attaccalite-Sorella algorithm

In the following, we derive the Attaccalite-Sorella algorithm because it is the very first algo-
rithm specifically devised for the integration of the Langevin equation of motion with noisy
QMC forces. At variance with the previous algorithm, it is not based on the Liouvillian for-
malism. Indeed, the momenta and the positions are evolved in a single operation, thanks to
the use of momentum-position correlators. This approach will also be used in Chapter 3 to
design the novel classical algorithm.

As described in Chapter 1, due to the stochastic nature of the QMC method, the QMC
forces fi(q) are affected by an intrinsic error bar. This finite variance, in principle, bias the
temperature of the simulation. Let us rewrite the FDT, given by Eq. (2.20), as follows

γij =
αij

2mikBT
, (2.32)
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with kB the Boltzmann constant, and

αijδ(t− t′) = 〈ηi(t)ηj(t′)〉 (2.33)

is the force covariance matrix which simply reduces to a diagonal form for deterministic
forces [147,148]. Indeed, in this case, the ionic forces fluctuations are completely uncorrelated
(〈δfiδfj〉 = 0 for i 6= j) and a white noise is applied to the system. On the contrary, due to
their finite variance, the QMC forces are correlated between different (particles) components
(〈δfQMC

i δfQMC
j 〉 6= 0 for i 6= j). Consequently, the force covariance and the Langevin damping

matrices have non-trivial off-diagonal elements: this situation corresponds to QMC-correlated
noise. We point out this spatially correlated noise is white because of the Markovian nature
of the QMC approach. It thus differs from the more frequently used colored noise, which is
time correlated.

The dynamics generated by the stochastic differential equation (2.18) is Markovian, as the
noise fluctuations are locally (i.e. are non zero only for i = j) correlated in time. Indeed,
the number of MC samples to evaluate the electronic energy at each nuclear iteration is large
enough to fully decorrelate the updated ionic forces fi(q(t+ δt)) from the older ones fi(q(t)).
Therefore, the Langevin approach can naturally deal with noisy QMC forces, as already shown
by Sorella and coworkers in the classical MD framework [149–151]. Hereafter, we are going to
use transformed variables, more convenient to handle, achieved by the following mass scaling:

qi = q0
i

√
mi

pi =
p0
i√
mi

ηi = η0
i

√
mi

fi =
f0
i√
mi
, (2.34)

where
{
q0
i , p

0
i , η

0
i , f

0
i

}
i=1,..,3Nat

are the original coordinates and {qi, pi, ηi, fi}i=1,..,3Nat
denote

the transformed ones. After applying the above transformation to Eq. (2.18), the correspond-
ing second order Langevin dynamics reads as:

ṗ = −γp + f(q) + η(t) (2.35)

q̇ = p, (2.36)

Eq. (2.35) belongs to a general class of Stochastic Differential Equations (SDEs), whose so-
lution is explicit whenever both the friction matrix and the force are independent of q [152]

p(t′) = e−γ(t′−t)p(t) +

∫ t′

t
ds eγ(s−t′) (f(s) + η(s)) . (2.37)

Starting from this form, Attaccalite et al. [149] proposed to use this integration algorithm in a
QMC-based MD, because in short time interval t′− t = δt the q−dependence of the force and
the friction can be neglected and can be assumed to remain at their initial values f(t) and
γ(t), leading to an explicit integration of the LD at discrete equally spaced times tn = nδt:

pn+1 = e−γnδtpn + Γ(fn + η̃) (2.38)

qn+1 = qn + pnδt, (2.39)
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where the time evolution has been discretized with time step δt, and the subscripts refer to
the corresponding time slice, such that pn = p(tn), qn = q(tn), and fn = f(q(tn)). In the
above equations, the Γ matrix is defined as

Γ = γ−1
n (1− e−γnδt), (2.40)

and it multiplies the forces f under the approximation that δt is small enough to disregard
the time dependence of f(q) in Eq. (2.37). In the same interval δt, the time dependent
stochastic noise η(t) is integrated, leading to the stochastic variable η̃, whose mean and
variance-covariance are

〈η̃〉 = 0,

〈η̃Tη̃〉 = kBTγ
2
n coth

(
γn
δt

2

)
, (2.41)

respectively. These relations have been derived directly from the FDT (2.32), with the hy-
pothesis that the fluctuations (2.33) are local in time.

The time step δt and the friction matrix γ are algorithmic parameters to be defined in order
to carry out the classical LD based on this scheme. If the forces are deterministic, γ can
take a diagonal form, such that γij = γBOδij , where γBO is a value appropriately chosen to
optimize the efficiency of the canonical sampling, as we will see in Chapter 3. According to
Eq. (2.41), this implies a diagonal 〈η̃Tη̃〉, i.e. a non-correlated noise. In the case of noisy
forces, η̃ can be separated into a contribution δf (already included in the QMC forces f) and
η̃ext. The latter contribution has to be explicitly added in Eq. (2.38), such that its covariance
added to the external noise variance satisfies:

〈(η̃ext)Tη̃ext〉+ 〈δfTδf〉 = 〈η̃Tη̃〉, (2.42)

where 〈η̃Tη̃〉 is given by Eq. (2.41) and 〈δfTδf〉 is the QMC force covariance, which will
have in general non-zero off-diagonal matrix elements. Thus, if the forces are noisy, γ is non-
diagonal, as already mentioned. In that case, one has to rotate the momenta and positions
in the frame which diagonalizes γ, in order to perform numerically the Markov iteration in
Eqs. (2.38) and (2.39).

The previous standard algorithm for QMC-LD dynamics has been further developed in Ref.
150 and later in Ref. 151, to improve the integration of the positions q in Eq. (2.39), by taking
into account the evolution of p(t) during the time interval δt. We will detail in Chapter 3 an
alternative derivation of these algorithms in the case of both classical and quantum particles
and their efficiency will be compared with standard LD integrators. The presented integrator
is, however, already computationally efficient since, in 2015, Zen and coworkers performed
the very first QMC-driven LD simulation of bulk water. They simulated 32 molecules into a
cubic box with periodic boundary conditions moving in an electronic PES estimated by VMC
calculations. The obtained RDFs display a very good agreement with X-ray and neutron
scattering experiments, particularly concerning the position of the oxygen-oxygen peak in the
radial distribution function, at variance of previous DFT attempts [151].
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2.2.4 Validation of the Langevin thermostat

To further justify the choice to work with a Langevin thermostat, we will compare the effi-
ciency of this thermostating strategy to the Nosé-Hoover thermostat in the specific case of
water clusters.

First, let us recall how the temperature of system can be evaluated along a MD simula-
tion. Using the equipartition theorem, the instantaneous temperature can easily be related
to the kinetic energy of the system as follows

T (t) =
2Ec(t)

GkB
. (2.43)

kB is the Boltzmann constant and G is the number of degrees of freedom of the system (it
is equal to G = 3Nat in the absence of holonomic constraints). The classical kinetic energy
Ec(t) is simply

Ec(t) =

Nat∑
i=1

pi(t)
2

2mi
=

Nat∑
i=1

1

2
mivi(t)

2, (2.44)

and combining Eqs. (2.43) and (2.44), we obtain the following relation for the temperature

T (t) =

Nat∑
i=1

mivi(t)
2

3NatkB
. (2.45)

As already mentioned, the above equation can be inverted to generate initial velocities in
agreement with the desired temperature of the simulation.

We have tested the Nosé-Hoover thermostat for the (Nat, T ) simulation of the classical Zundel
ion with forces computed from the analytic PES, parametrized via CCSD(T) calculations [65].
The obtained distribution of the instantaneous temperatures T (ti), imposing the constant
target temperature Ttarget, is represented in Figure 2.1 (black curve). The result is compared
with a LD generated using a second-order integration scheme [142]. The red curve corresponds
to the Langevin result with the same force field, while the blue curve, more noisy, is the
obtained result with QMC forces on a quite small sample. The green curve is the analytic
result of the probability P (T |Ttarget) to measure the instantaneous temperature of the system
T (ti) at T when the temperature of the thermostat is Ttarget. The corresponding distribution
is

P (T |Ttarget) ∝
√
T

3Nat−2
e
− 3NatT

2Ttarget , (2.46)

where Nat = 7 for the Zundel complex.

It is clear from Figure 2.1 that the Nosé-Hoover thermostat keeps the Zundel ion at the cor-
rect ambient temperature on average, but fails to describe properly thermal fluctuations. This
result looks independent from the mass of the thermostat (hence the strength of the coupling
with the heat bath) and comes from the non ergodicity of the Nosé-Hoover thermostat. This
deficiency has been pointed out, even in the case of simple systems such as the harmonic os-
cillator [153]. This problem can however be solved by the use of chains of thermostats [154]. On
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Figure 2.1 – Histograms of the probability distribution to find the Zundel cation at the instantaneous
temperature T (ti), imposing a constant target temperature Ttarget = 300 K for various thermostats.
The analytic distribution P (T |Ttarget) (see Eq. (2.46)) is represented in green.

the contrary, the Langevin simulations, either with deterministic or with stochastic forces,
give satisfactory results. Therefore, this approach appears to be a promising candidate to
perform MD simulations in the canonical ensemble of clusters and finite systems in the gas
phase, without a major bias on the dynamics.

To put it in a nutshell, we have demonstrated the ability of the LD framework to perform
accurate and efficient constant MD simulations of finite systems at finite temperature, with
or without stochastic forces. Within this framework, we are thus able to make an accurate
study of the impact of thermal effects in PT mechanisms inside neutral or charged water clus-
ters, using advanced electronic structure calculations to properly probe the energetics of such
phenomena. Nevertheless, to obtain quantitative results for the proton dynamics in water
clusters, a key ingredient is missing. Indeed, due to its very light mass, the quantum nature
of the proton must be taken into account, as we will see in the Section 2.3.

2.3 Dealing with quantum nuclei

In order to better understand the reason that justifies the possible significance of the quantum
effects within a given system, one has to go back to the definition of the thermal de Broglie
wavelength. Indeed, this quantity denoted Λ(T ) roughly defines the average de Broglie wave-
length of the gas particles in an ideal gas at the specified temperature:

Λ(T ) =

√
h2

2πmkBT
, (2.47)
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where h is the Planck constant and m the mass of the considered particle. Using Eq. (2.47),
one finds, at room temperature:

Λ(H,T = 300 K) = 1 Å

Λ(O,T = 300 K) = 0.25 Å. (2.48)

When the thermal de Broglie wavelength Λ is comparable or larger than the characteristic
length of the potential confinement, the system behaves quantum mechanically. For water,
hydrogen atoms are subjected to sensible variations of the potential for very small displace-
ments (about 0.1 Å). To give a simple macroscopic manifestation of NQE, the heavy water
D2O2 has higher freezing (Tf = 276.98 K or 3.82 ◦C) and boiling (Tb = 374.5 K or 101.4
◦C) points than the pure water [155]. Therefore, it is clear that Nuclear Quantum Effects
(NQE) of proton in water cannot be neglected, even at room temperature. We will detail in
the following how these effects can be described theoretically and be incorporated into a LD
framework.

2.3.1 Zero Point Energy and Nuclear Quantum Effects

At variance with classical mechanics, the lowest state of quantum systems has a finite energy
because of the Heisenberg incertitude principle. The most common definition of the molecular
Zero Point Energy (ZPE) is the energy difference between the vibrational ground state and
the lowest point on the Born-Oppenheimer (BO) potential energy surface [156]. In theoretical
calculations, ZPE can be estimated by a direct calculation of the vibrational frequencies of
the system since one has

ZPE =
~ω0

2
, (2.49)

where ~ = h
2π is the reduced Planck constant and ω0 is the frequency of the lowest vibration

energy mode. In the case of the hydronium and hydroxyde water clusters, there is some spec-
ulation that the lowest vibrational state might lie above the PT barrier [157,158]. This suggests
that, in these systems, ZPE effects tend to provide the required energy to overcome the PT
static barrier. Within the transition state theory, it is then possible to directly measure the
impact of the ZPE effects on reaction rates for fast PT transfers (about 10-40 fs) over small
barriers [159]. The impact of the ZPE and thermal effects on the kinetics of PT transfer on
the protonated water hexamer will be discussed in Chapter 6.

Afterwards, there is another noticeable consequence of the quantum nature of the proton:
proton tunneling between two adjacent sites. The two available donor and acceptor sites,
i.e. oxygen atoms in our case, are bounded by a double well potential whose shape, width
and height depend on the considered system. It has been established that the probability
for a particle to tunnel is inversely proportional to its mass and the width of the potential
barrier. A proton is about 2000 times more massive than an electron, so it has a much lower
probability of tunneling compared to an electron. Nevertheless, proton tunneling still occurs

2mD = 2mH , hence Λ(D) = Λ(H)/
√

2.
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especially at low temperatures and high pressures where the potential barrier is very thin.

Proton tunneling is usually associated to H-bonds that are shared between two proton donor
and acceptor water molecules. This is equivalent to a proton resting in one of the wells of
a double well potential, as described above. When proton tunneling occurs, the H bond
and covalent bonds of the considered complex are switched. The same proton has the same
probability of tunneling back to its original site provided that the double well potential is
symmetrical. Proton tunneling has been first characterized in high pressure ices, in particular
in the ice ’VII’ phase, which is non molecular but symmetric [160].

Quantum tunneling has also been observed in small water clusters such as the cyclic wa-
ter trimer, whose chiral structure is composed by six different enantiomers. Proton tunneling
enables conformational changes of this cyclic cluster [161] and has been confirmed in larger
clusters such as (H2O)4 or (H2O)5 [162]. The physical interpretation of the mechanisms imply-
ing proton entanglement and tunneling is still a fascinating, but delicate task for the scientific
community. Indeed, let us remind that the Grotthus mechanism suggests that PT reactions
are concerted [163] and it might be difficult to fully distinguish all the necessary conditions
to obtain fast and efficient PT reactions. This is particularly true in the case of biological
systems, where proton tunneling is known to be crucial to improve the understanding of en-
zymatic reactions [164], or DNA base pairs interactions [165,166].

Zero Point Energy and proton quantum tunneling effects are characteristic signs of the so-
called NQE. These effects must be taken into account since they deeply affect the PES and
the energetics of PT phenomenon. It is necessary to explicitly include them into our method-
ology since, by omitting them, one would spoil all the efforts made to improve the electronic
description of the problem, as we have seen in Chapter 1. Indeed, the lack of NQE necessarily
imply deficiencies in the good description of liquid water RDFs. In Ref. 167, it is demon-
strated that, with NQE, the obtained RDFs of liquid water are significantly improved, even
with a GGA functional for the electronic part (BLYP). In this thesis, NQE are included via
the Feynman Path Integral (PI) approach which is the most used tool to describe such effects
in the liquid state.

2.3.2 The Path Integral approach

We present here the Path Integral (PI) method that will be used in this thesis to take into
account NQE. Based on the Feynman PI formulation of quantum mechanics, it has experi-
enced a significant interest in the last twenty years. Indeed, this approach enables a rigorous
evaluation of the quantum partition function Z(Nat, T ) defined as:

Z(Nat, T ) = Tr
[
e−βH

]
. (2.50)

Tr[.] represents the trace of the operator inside the squares and H is the Hamiltonian given
in Eq. (2.1). One can rewrite Eq. (2.50) as

Z(Nat, T ) =

∫
d3Natq〈q|e−βH |q〉, (2.51)
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where 〈q|e−βH |q〉 are diagonal matrix elements in the coordinates space. In the case of quan-
tum particles, the kinetic energy K and potential energy V operators do not commute, im-
plying that we have to apply a Trotter-Suzuki break-up to evaluate these matrix elements.
Indeed, using the same factorization as in Eq. (2.10) applied P times, one obtains

e−βH = e−β(K+V ) = lim
P→+∞

[e−βV/2P e−βK/P e−βV/2P ]P . (2.52)

To simplify the derivation, we introduce an operator ξ = e−βV/2P e−βK/P e−βV/2P . Combining
Eqs. (2.51) and (2.52) and inserting P −1 times the identity operator I =

∫
dx|x〉〈x| between

the P factors of ξ, the quantum partition function reads as

Z(Nat, T ) = lim
P→+∞

∫
d3q2 . . . d

3qP 〈q|ξ|qP 〉〈qP |ξ|qP−1〉 . . . 〈q2|ξ|q〉. (2.53)

The interaction potential V only depends on the atomic coordinates and is consequently
diagonal in the coordinate basis. The matrix elements in Eq. (2.53) can be evaluated as

〈qj+1|ξ|qj〉 = e−βV (qj+1)/2P 〈qj+1|e−βK/P |qj〉e−βV (qj)/2P , (2.54)

for j = 0, . . . , P −1. The matrix element implying the kinetic energy operator K is less trivial
to evaluate since one has to work in the momentum basis, as follows

〈qj+1|e−βK/P |qj〉 =

∫
dp〈qj+1|p〉〈p|qj〉e−βp

2/2mP

〈qj+1|e−βK/P |qj〉 =
1

2π~

∫
dpeip(qj+1−qj)/~e−βp

2/2mP , (2.55)

where we have used once again the identity operator I and the knowledge of 〈q|p〉 = 1/
√

2π~eipq/~.
The above equation is simply a gaussian integral and combining it with Eq. (2.54), one obtains

〈qj+1|ξ|qj〉 =

(
mP

2πβ~2

)
e
− mP

2β~2 (qj+1−qj)2e−
β
2P

(V (qj+1)+V (qj)). (2.56)

By inserting the above equation into Eq. (2.53), we finally have the expression of the quantum
partition function

Z(Nat, T ) = lim
P→+∞

(
mP

2πβ~2

)(P2 ) ∫
d3fq exp

−1

~

P∑
j=1

[
Nat∑
i=1

mP

2β~
(q

(j+1)
i − q(j)

i )2 +
β~
P
V (qi)

],
(2.57)

with f = PNat and the cyclic boundary condition q
(P+1)
i = q

(1)
i for each particle i. One

can interpret the above formula as an exact evaluation of the quantum partition function
Z(Nat, T ) via a discretized cyclic path which depicts the quantum delocalization of the nu-
clei. We can notice that in the high temperature limit (β → 0), one recovers the expression
of the classical canonical partition function Q(Nat, T ) given in Eq. (2.15). Thus, the high
temperature limit of the PI formalism is strictly equivalent to the classical limit.

In practice, the number of slices P is finite and the expression in Eq. (2.57) is approximated
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using the quantum-to-classical isomorphism [168]. This property states that the description of
a true quantum system can be replaced by a fictitious classical path in the quantum imaginary
time τ = β

P which reproduces the quantum behavior of the system. This idea is at the basis
of the so-called Path Integral Molecular Dynamics (PIMD) and Path Integral Monte Carlo
(PIMC) techniques. In this case, the quantum partition function can be evaluated as

Z(Nat, T ) =

(
1

2π~

)P ∫
dfΓe−τHP (Γ), (2.58)

where HP (Γ) is the quantum-to-classical isomorphism Hamiltonian, given by

HP (Γ) =

3Nat∑
i=1

P∑
j=1

(
1

2mi
[p

(j)
i ]2 +

1

2
ω̃2
P

(
q

(j)
i − q

(j−1)
i

)2
)

+
P∑
j=1

V (q
(j)
1 , .., q

(j)
3Nat

). (2.59)

In other words, the quantum nuclei are replaced by fictitious classical ring polymers whose
beads are connected to each other by harmonic springs with frequency ω̃P = P

β~ . The lower
the temperature, the more spatially extended the necklace, as intuitively drawn3 in Figure
2.2.

Figure 2.2 – Intuitive representation of the classical ring polymer as a function of the simulation
temperature T .

The PIMD method is a way to calculate quantum mechanical properties using the recipes from
classical statistical mechanics with a modified Hamiltonian containing an additional quantum
kinetic term (see Eq. (2.59)). Starting from the definition of the quantum average of a generic
observable O given by,

〈O〉 =
1

Z
Tr
[
e−βHO

]
, (2.60)

it is straightforward to evaluate the potential energy of the system:

〈V 〉 ' 1

(2π~)fZ

∫
dfΓe−τHP (Γ)VP (q), (2.61)

where VP (q) = 1
P

P∑
j=1

V (q
(j)
1 , .., q

(j)
3Nat

) is the bead-dependent potential averaged over all the

3In principle, the number of beads P remains the same for each temperature T but is modified here for the
sake of representability.
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replicas. The quantum kinetic energy can also be evaluated according to

〈T 〉 ' 1

(2π~)fZ

∫
dfΓe−τHP (Γ)TP (q), (2.62)

where TP (q) can be either chosen to be the centroid primitive estimator4,

TP,pri(q) =
3NatP

2β
− 1

P

P∑
j=1

1

2

(
q

(j)
i − q

(j−1)
i

~τ

)2

, (2.63)

or the more often employed centroid virial estimator,

TP,vir(q) =
Nat

2β
+

1

2P

3Nat∑
i=1

P∑
j=1

(
q

(j)
i − q̄i

)
∂
q
(j)
i

Ṽ , (2.64)

with q̄i = 1
P

P∑
j=1

q
(j)
i , ∂

q
(j)
i

≡ ∂
∂
q
(j)
i

and Ṽ =
P∑
j=1

V (q
(j)
1 , .., q

(j)
3Nat

) = PVP .

It is clear from Eq. (2.63) that the primitive estimator is more unstable and less conve-
nient to use than the virial because of the possible presence of negative contributions in the
quantum kinetic energy. This apparent drawback actually provides a stringent test for the
path sampling since one should obtain 〈T 〉vir = 〈T 〉pri for fully converged calculations in the
limit δt→ 0 for any value of P . In practice this is almost never met exactly and it is partic-
ularly difficult to fulfill it for large P . Indeed, two constraints limit the choice of P . On one
side, P must be large enough to recover all quantum properties of the physical system; on the
other side, P should not be too large, otherwise the quantum imaginary time τ = β

P would
become too small and, for example, too large fluctuations in the primitive energy evaluation
would appear.

PIMD simulations have been widely used to study the impact of NQE in water clusters
and liquid water. To the best of our knowledge, the first PI simulation of liquid water and
the three first water clusters has been performed in 1985 with an empirical force field [170].
Later, Marx and coworkers used PIMD simulations to demonstrate that the hydrated proton
forms a fluxional defect in the H-bond network, rather than any individual idealized hydration
state such as Zundel or Eigen along the water chain. They also established that the quantum
tunneling of the proton is negligible and the transition state theory does not apply. Proton
diffusion looks however defined by the thermally-induced H-bond breaking and formation of
the second solvation shell [13]. Many other PIMD calculations of charged water clusters or
liquid water have been carried out so far, [109,110,171–173] and they all confirm the importance
of NQE, even at room temperature to describe PT in such systems. Nevertheless, the precise
role of NQE in PT mechanisms is not fully elucidated yet since it can be significantly different
from one system to another, and such effects are still under discussions. We refer the inter-
ested reader to the recent reviews of Ceriotti [174] and of Markland [175] for the latest advances
in the theoretical treatment of NQE in water and aqueous systems.

4We refer the reader to the Ref. 169 for a complete derivation of the primitive energy.
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In this thesis, we have the key advantage that our study of NQE will a priori not suffer
from a bias coming from the electronic description of the problem thanks to the use of ad-
vanced QMC methods. QMC-MD driven simulations will be, as we have previously discussed,
incorporated into a LD framework to control the QMC intrinsic noise on the computed ionic
forces. Thus, we have to combine together PI and LD methodologies to perform PILD sim-
ulations of small water clusters. In the following, we will describe a reference algorithm to
perform such calculations.

2.3.3 Path integral Langevin Dynamics

To perform our PIMD simulations using the quantum-to-classical mapping between the quan-
tum nuclei and the fictitious classical ring polymers, we adopt here the choice of Parrinello and
Rahman to set the physical masses for each necklace bead. We are thus using the Ring Poly-
mer Molecular Dynamics (RPMD) approximation to real quantum correlation functions [176],
although real-time properties are lost when a thermostat is applied to the system, as we will
do in the following. Various choices are available for the thermostat, ranging from the more
conventional Nosé-Hoover chain [154] to stochastic thermostating in its simple Path Integral
Langevin equation (PILE) form. In the following, we will detail the PILE algorithm [177] as it
will constitute the basis of our novel algorithm to perform fully quantum dynamics simulation
within QMC-PILD approach (see Chapter 3).

Within the PI framework, the Langevin equations of motion for each bead should in princi-
ple contain an additional harmonic force, coming from the interbead coupling. To make the
problem easier to integrate, it is very convenient to use the normal modes transformation that
rotates the bead momenta p(j)

i for j = 1, . . . , P into p̃(k)
i . In the normal mode representation,

the LD of of each mode of the free ring polymer is that of an uncoupled harmonic oscillator
which reads as

˙̃p
(k)
i = −miω

2
kq̃

(k)
i − γ

(k)p̃
(k)
i +

√
2miγ(k)P

β
ξ

(k)
i (t)

˙̃q
(k)
i =

p̃
(k)
i

mi
, (2.65)

where ξ(k)
i (t) represents a gaussian white noise, as in Eq. (2.27) and ωk = 2ω̃P sin

(
(k−1)π
P

)
is

the frequency of the k-th harmonic mode. To integrate the equation (2.65), Ceriotti and his
colleagues proposed the following split operator propagator

eiLδt = eiLγ
δt
2 eiLp

δt
2 eiL0δteiLp

δt
2 eiLγ

δt
2 , (2.66)

where iLp and iLγ have been defined in Eqs. (2.10) and (2.25), respectively. The Liouvillian
operator iL0 is associated to the kinetic part of the classical isomorphism Hamiltonian given
in Eq. (2.59). In other words, the step implying iL0, at the core of the PILE algorithm,
corresponds to the exact propagation of the quantum harmonic modes without thermostat.
A single PILD iteration is generated via the following steps:
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1. apply a back and forth normal modes transformation and thermalize each free bead
according to the Bussi scheme [143]:

p
(j)
i

normal modes−−−−−−−−→ p̃
(k)
i

p̃
(k)
i (t1) = eiLγ

δt
2 p̃

(k)
i (t) = c

(k)
1 p̃

(k)
i (t) +

√
miP

β
c

(k)
2 ξ

(k)
i

p
(j)
i

real coordinates←−−−−−−−−− p̃(k)
i , (2.67)

with

c
(k)
1 = e−

δt
2
γ(k)

c
(k)
2 =

√
1− [c

(k)
1 ]2 ; (2.68)

2. update the momenta according to the velocity-Verlet algorithm:

p
(j)
i (t2) = eiLp

δt
2 p

(j)
i (t1) = p

(j)
i (t1) +

δt

2
f

(j)
i ; (2.69)

3. apply a back and forth normal modes transformation to propagate exactly the quantum
harmonic modes, without the thermostat.

p
(j)
i

normal modes−−−−−−−−→ p̃
(k)
i

(
p̃

(k)
i (t3)

q̃
(k)
i (t3)

)
= eiL0δt

(
p̃

(k)
i (t2)

q̃
(k)
i (t2)

)
=

(
cos(ωkδt) −miωk sin(ωkδt)

[1/miωk] sin(ωkδt) cos(ωkδt)

)(
p̃

(k)
i (t2)

q̃
(k)
i (t2)

)

p
(j)
i

real coordinates←−−−−−−−−− p̃(k)
i ; (2.70)

4. update the ionic forces fi(t+ δt);

5. repeat the second and the first steps to terminate the symmetric propagation in Eq. (2.66).

Looking at Eq. (2.65), it appears that, within PILE algorithm, one has to specify the damping
γ(k) of each fictitious harmonic mode. In the normal modes representation, the optimal choice
for γ(k) turns out to be [177,178]

γ(k) =

{
1/τ0 k = 0

2ωk k > 0,
(2.71)

where the τ0 is a separate thermostat time constant for the centroid5. The damping γ(k) can
be large, particularly when the ring polymer is stiff, as it is the case of the low temperature

5Indeed, by using γ(0) = 2ω0 = 0, this mode would not be thermalized since it evolves according to a
Hamiltonian dynamics.
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limit. Consequently, the aforementioned choice of γ(k) causes technical issues that will be dis-
cussed in Chapter 3. Let us also notice that the choice of the propagator given in Eq. (2.66),
also referred as OBABO algorithm6 in the LD community, is not unique. It has been recently
established that a permutation of the elementary Liouvillian operators, in the BAOAB order,
give additional stability to PILD simulations of water [179], especially in the high friction limit.

Path Integral simulations can also be coupled with the Generalized Langevin Equation (GLE) [177,180,181],
where the noise is colored to simulate quantum effects and accelerate the convergence of the
PIMD with the number of beads, at the price of breaking the validity of the FDT. This is not
the case of the Quantum Thermal Bath (QTB) approach, where the power spectral density
of the colored noise follows the quantum FDT. In practice, QTB give very reasonable results
for structural properties of physical or chemical systems that behave harmonically [182,183].
Nevertheless, the QTB approach has at least two major drawbacks. First, it is not able to
capture strongly anharmonic effects [184] so we do not expect this method to be accurate for
the PT problem tackled in this thesis. Second, this technique is prone to ZPE leakage, like
any other method based on classical trajectories. This drawback, arising at large Langevin
damping γ values, is difficult to control and makes complex a rigorous analysis of the dynam-
ical properties of the system [185].

In our case, the correlated noise will naturally emerge from the intrinsic QMC noise on
the estimated ionic forces fi(t) which are physical. Therefore, we can legitimately hope to
capture the whole physics of PT in water clusters within a QMC-PILD approach. The price
to pay is however dramatic: the Langevin damping matrix γ is non diagonal within the QMC
framework. Consequently, it does not longer commute with the matrix describing the har-
monic coupling between beads, which seriously complicates the integration of the Langevin
equations of motion. To address that problem, novel algorithms have thus to be devised, and
such methodological developments will be at the heart of this thesis (see Chapter 3).

6In this terminology, O≡ iLγ , B≡ iLp and A≡ iL0.
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Quantum Monte Carlo (QMC) techniques constitute a promising approach to study
aqueous systems, since the scalability of the method (O(N3−4)) makes the simulations

of very large systems computationally affordable with a much greater accuracy than Density
Functional Theory (DFT) in most cases. Recently, it has been demonstrated that QMC tech-
niques provide results as accurate as the basis set converged CCSD(T) for small neutral or
charged water clusters [100,186]. Consequently, QMC can now be used as a benchmark method
and certainly benefits from its intrinsically parallel formulation in modern supercomputers.
The price to pay here is the systematic statistical uncertainty arising from the stochastic
nature of the QMC approach. Some strategies have thus been developed to incorporate the
intrinsic QMC noise into a classical statistical mechanics framework of nuclei at finite tem-
perature T . For instance, the Coupled Electron Ion Monte Carlo (CEIMC) method relies on
the Born-Oppenheimer (BO) approximation for treating finite temperature ions coupled with
ground state electrons. The Boltzmann distribution function of the ionic degrees of freedom
is sampled at fixed temperature via a Metropolis MC simulation based on the electronic ener-
gies computed during independent ground state QMC calculations [187,188]. Another strategy,
that will be employed here, is to resort to a Langevin MD approach to correlate the noise
driving the Langevin Dynamics (LD) of the system by the QMC forces covariance. In that
case, the wave function (WF) parameters are optimized by Variational Monte Carlo (VMC)
calculations along the Molecular Dynamics (MD) path such that the electronic solution has
always energies and forces as close as possible to the true BO surface [149,150].
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In 2014, Zen and coworkers applied the latter method to perform the very first QMC-based
MD simulation of bulk liquid water at ambient conditions using 32 water molecules in a cubic
cell with periodic boundary conditions [151]. By obtaining a better position of the first peak
of the oxygen-oxygen radial distribution function compared with most advanced functionals,
they demonstrated the ability of QMC to tackle this kind of problems. However, the authors
had to make some approximations: they expanded the WF over a small basis set and, more
importantly, a classical description of the nuclei was adopted. Indeed, it is well known that
Nuclear Quantum Effects (NQE) play a crucial role in the description of water or ice by deeply
affecting the Radial Distribution Functions (RDFs) and distorting hydrogen bonds because of
quantum disorder [167,189–194]. In this Chapter, we propose to extend Zen’s pioneering work by
including a nuclear quantum description within the QMC-driven dynamics. This is achieved
within a Path Integral Langevin Dynamics (PILD) approach which, to the best of our knowl-
edge, has never been used in the case of non-deterministic forces.

The Chapter is organized as follows. In Section 3.1, we derive three original algorithms to inte-
grate the Langevin equations of motion for both classical and quantum particles. The designed
algorithms, namely CMPC (Classical Momentum-Position Correlator), PIMPC (Path Integral
Momentum Position Correlator) and PIOUD (Path Integral Ornstein-Uhlenbeck Dynamics),
are very general since they can be used to propagate both deterministic and stochastic forces.
A study of the numerical stability of the new path integral integrators is done in Subsection
3.1.4 for deterministic forces, where a direct comparison with existing PILD algorithms is
possible. We then provide the necessary tools to perform fully quantum LD of protonated
water clusters with stochastic QMC forces in Section 3.2. A bead-grouping approximation
is introduced in Subsection 3.2.2, to save a significant amount of computational resources.
The QMC-noise correction scheme is detailed in Subsection 3.2.3, which yields an unbiased
sampling of the canonical quantum partition function, even in the presence of stochastic er-
rors. The numerical stability analysis of the new integrators with noisy QMC forces is finally
reported on Subsection 3.2.4.

3.1 Derivation of novel Langevin Dynamics integrators

In this Section, we provide two novel algorithms to integrate the Langevin equations of motion
in the presence of either deterministic or stochastic forces for both classical and quantum
particles. Two of these integrators (CPMC and PIOUD) have been published in Ref. 195.

3.1.1 The Classical Momentum-Position Correlator (CMPC) algorithm

The basic integration scheme developed by Attacalite et al. [149], introduced in the previous
Chapter, to perform QMC-driven MD simulations at finite temperature has been further
developed in Refs. 150 and 151. In the latter scheme, dubbed as Classical Momentum-
Position Correlator (CMPC) algorithm, the Langevin dynamics is driven by a correlated noise
affecting both momenta and positions. To set up the formalism that we will be exploiting in
the quantum path integral case, we provide here an alternative derivation, based on the joint
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momentum-position coordinates

X =

(
p

q

)
, (3.1)

where X is a 6N -dimensional vector. Analogously, we extend the definition of the ionic and

random force vectors to be F =

(
f

0

)
and E =

(
η

0

)
, respectively. In this extended basis,

Eqs. (2.35) and (2.36) can be rewritten into a generalized SDE, which reads as

Ẋ = −γ̂X + F + E, (3.2)

where in this notation the matrix γ̂ represents a generalized friction that couples both mo-
menta and positions by:

γ̂ =

(
γ 0

−I 0

)
, (3.3)

with the "physical" friction γ being the same 3N × 3N matrix introduced in Eq. (2.35), and
I is the identity matrix. The formal solution of Eq. (3.2) is provided by

X(t′) = e−γ̂(t′−t)X(t) +

∫ t′

t
ds eγ̂(s−t′) (F(X(s)) + E(s)) . (3.4)

Using joint coordinates would be of little use, if we were not be able to evaluate the exponential
e−γ̂δt in a closed analytic form. This is possible because the block matrix γ̂ can be more
conveniently rewritten in terms of Pauli matrices σx, σy, σz, as follows:

γ̂ =
γ

2
⊗ I− I

2
⊗ σx + i

I

2
⊗ σy +

γ

2
⊗ σz. (3.5)

Then, the exponentiation can be straightforwardly obtained by using standard Pauli matrices
algebra, and the solution can be given in a closed form:

pn+1 = e−γδtpn + Γ (fn + η̃) (3.6)

qn+1 = qn + Γpn + Θ
(
fn + ˜̃η

)
, (3.7)

where the time evolution has been discretized with time step δt, and the subscripts refer to
the corresponding time slice, such that pn = p(tn), qn = q(tn), and fn = f(q(tn)). In the
above equations, the other symbols are defined as

Γ = γ−1(1− e−γδt),
Θ = γ−2(−1 + γδt+ e−γδt),

η̃ = Γ−1

tn+1∫
tn

dteγ(t−tn+1)η(t),

˜̃η = (Θγ)−1

tn+1∫
tn

dt(1− eγ(t−tn+1))η(t). (3.8)

We immediately notice that the CMPC algorithm differs from those previously developed
in literature [140–145], since momenta and positions are propagated simultaneously in a single
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iteration thanks to the use of momentum-position correlation matrices. In particular, accord-
ing to Eqs. (3.6) and (3.7), not only the momenta but also the positions are affected by the
integrated Langevin noise, η̃ and ˜̃η whose properties are detailed in Appendix D.1.

It is interesting to note that the momentum-position correlator formalism correlates the inte-
grated noise, even without dealing with non-diagonal α matrices (Eq. 2.32), as we will do in
the QMC case (Section 3.2). We also remark that in order to derive the integrated equations
of motion (3.6) and (3.7), we disregarded the q-time dependence of f in Eq. (3.4) in the time
interval δt. For deterministic forces, where α is position independent, it is the only approxi-
mation left in the discretized classical Langevin dynamics driven by Eqs. (3.6) and (3.7).

For deterministic f , γij = γBOδij , while the definition of γ is more general for noisy QMC
forces (see Subsection 3.2.3). Once γ and δt have been set, the numerical evolution is per-
formed according to Eqs. (3.6) and (3.7) in the frame which diagonalizes γ.

3.1.2 Path Integral Momentum-Position Correlator (PIMPC) algorithm

In the following, we will extend the CMPC algorithm, described in the previous Subsection,
to the quantum case. As already mentioned, this framework will allow us to incorporate
noisy QMC forces in the equations of motion, by using an appropriately tailored Langevin
noise without breaking the FDT, as it is explained in Section 3.2. Moreover, in our quantum
algorithms, which make use of a Trotter break-up [94] between the harmonic and the physical
modes, the quantum harmonic part is integrated exactly together with the Langevin thermo-
stat for the harmonic frequencies.

We start by applying the same idea as of our classical algorithm with momentum-position
correlators to the quantum-to-classical mapping Hamiltonian HP described in Eq. (2.59).
The equations of motion corresponding to HP coupled to a Langevin thermostat are those
in Eq. (3.2), provided X is now interpreted as a 6NP -dimensional vector, the thermal noise
η lives in the 3NP -dimensional space, and the generalized γ̂ must be redefined in order to
include the harmonic couplings between the beads. γ̂ is now a 6NP × 6NP matrix, which
reads as

γ̂ =

(
γ K

−I 0

)
, (3.9)

where K is 3NP × 3NP matrix defined as follows:

K
(j)(k)
ih = ω̃2

P δih

(
2δ(j)(k) − δ(j)(k−1) − δ(j)(k+1)

)
. (3.10)

In the above definition, we have used lower indices to indicate the particle components, the
upper ones (in parenthesis) indicate the bead components, while δij (δ(i)(j) for the bead in-
dices) is the usual Kronecker delta. The K matrix is diagonal in the particle sector, as the
harmonic springs in the fictitious HP of Eq. (2.59) couple different replicas only for the same
particle components. Cyclic conditions are implicitly applied in Eq. (3.10) to the matrix
boundaries in the bead sector (i.e. (0) = (P )), as the polymers are necklaces.
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As we have done in Eq. (3.5) for the classical case, we expand γ̂ of Eq. (3.9) in Pauli matrices,
as follows:

γ̂ =
γ

2
⊗ I +

K− I

2
⊗ σx + i

K + I

2
⊗ σy +

γ

2
⊗ σz. (3.11)

Moreover, we require that [K,γ] = 0, which is fulfilled when the forces f are deterministic.
Indeed, γ obeys the FDT (2.32) in the extended 3NP dimensional space. For deterministic
forces, γ is bead independent, while for noisy forces the matrix α could be correlated according
to the force covariance 〈δf (j)

i δf
(k)
h 〉, and γ could acquire a bead dependent contribution to

fulfill the FDT. For the time being, let us assume γ to be bead independent, which implies
that K and γ commute. We will see in Section 3.2 how to recover this condition even in
the case of QMC forces. Then, Eq. (3.11) and [K,γ] = 0 allow one to evaluate e−γ̂δt in a
closed analytic form for each (upper and lower) block component of the SDE formal solution
in Eq. (3.4). The related algebra is quite tedious and we refer the reader to the Appendix
D.3. The resulting integrated equations of motions lead to the following Markov chain:

pn+1 = Λ1,1pn + Λ1,2qn + Γη̃, (3.12)

qn+1 = Λ2,1pn + Λ2,2qn + Θ˜̃η, (3.13)

with the integrated 6NP -dimensional noise (Eint) and force (Fint) which are, respectively,

Eint =

(
Γη̃

Θ˜̃η

)
=

tn+1∫
tn

dteγ̂(t−tn+1)

(
η

0

)
, (3.14)

Fint =

(
Γfn
Θfn

)
=

tn+1∫
tn

dteγ̂(t−tn+1)

(
fn
0

)

= γ̂−1
(
I− e−γ̂δt

)(fn
0

)
. (3.15)

The expressions for Λ, Γ and Θ matrices are quite complex, so they are given in Appendix
D.3. Using this integration scheme, one is in principle able to work with large time steps for
the dynamics since all the high frequency vibrations are substantially damped in this type
of dynamics. Similarly to the classical case, we can compute the noise correlation matrix by
using its definition:

〈ET
intEint〉 =

0∫
−δt

dteγtα̂eγ
†t, (3.16)

where

α̂ =

(
α 0

0 0

)
. (3.17)

Once again, we refer the reader to the Appendix D.3 for the analytic expression of the noise
correlators in the quantum case.

After setting up the general formalism, we need to define the γ matrix in order to fully
determine the numerical scheme, as we have done for the CMPC algorithms (Subsection
3.1.1). In the quantum case γ is a 3NP × 3NP matrix. Moreover, we want that [K,γ] = 0.
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Let us first introduce γBO as a 3N × 3N matrix which is bead independent and defined as in
the classical case, namely γBOij = γBOδij for deterministic forces, with γBO a free parameter,
to be optimized. In the case of noisy forces, γBO will have off-diagonal elements, as we have
anticipated for the classical algorithm. This will be explained in Subsection 3.2.3. Therefore,
γBO should retain all optimal damping properties related to the physical BO forces f (i) acting
on each replica (i). We assume that the physics within each replica does not change from one
bead to another, thus the optimal γBO can safely be taken as bead independent.

The additional complication of the quantum case is represented by the harmonic matrix
K, coupling the beads to each other, whose eigenvalues are λk = ω2

k for k = 1, . . . , P , where

ωk = 2ω̃P sin

(
(k − 1)π

P

)
for k = 1, . . . , P . (3.18)

The energy scale set by K can be much larger than the one of the BO potential energy surface.
In the case the BO forces f are set to zero, one can compute analytically the relevant autocor-
relation time τH (using H as operator in Eq. (3.28)) of the related Langevin dynamics. It has
been shown [177,178] that the optimal damping which minimizes τH is given by γ(k)

harm = 2ωk,
for each harmonic eigenmode k.

We would like γ to be optimal for both BO and harmonic dynamics. A way to define such a
matrix is to exploit the commutator [K,γ] = 0, which implies that γ and K share a common
set of eigenvectors. Thus, we can work in a rotated frame which diagonalizes both γBO (bead
independent) and K (particle independent). In this frame γ is diagonal, with eigenvalues:

γ
(k)
i = γBOi + γ

(k)
harm (3.19)

for the set of eigenvectors of both γBO (lower index) and K (upper index). This uniquely
defines the full matrix γ, as it can be reconstructed from its eigenvectors and eigenvalues.
For noisy forces the γBOi spectrum will be non trivial, while for deterministic forces we have
γBOi = γBO ∀ i. Thus, even in the quantum case which mixes harmonic with physical modes,
the only parameter left to tune is γBO, as the optimal damping for harmonic forces is fully
determined by Eq. (3.18).

To summarize, we have introduced here an algorithm which is able to integrate simulta-
neously both the physical molecular and the fictitious ring polymer vibration modes in a
single time step δt. This could be appealing, but it turns into a disadvantage, as we will
see in the tests reported in Subsection 3.1.4. Indeed, the compromise between physical and
harmonic modes made for the friction in Eq. (3.19) does not seem optimal. That choice leads
to overdamped dynamics with lower diffusion. Moreover, we recall that in Eq. (3.13) we made
the approximation of constant BO forces f during the time step δt. This condition is hard
to meet for fast vibrational modes driven by K. The resulting algorithm turns out to be less
stable as a function of the number of beads P and the time step δt. We are going to improve
it, by resorting to a Trotter breakup in order to separate the harmonic part from the BO one.
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3.1.3 Path Integral Ornstein-Uhlenbeck Dynamics (PIOUD)

The previous PIMPC algorithm can be improved by starting from the Fokker-Planck Liouville
operator given in Eq. (2.24). With no assumption on the form of the Langevin damping matrix
γ1, it is defined as

iLFP =
3NP∑
i=1

Fi∇pi + pi∇qi −
3NP∑
j=1

γij
(
∇pipj + kBTP∇pi∇pj

) (3.20)

in mass-scaled coordinates. iLFP is built upon the Hamiltonian propagation, driven by the
first two terms, and the Langevin thermostat, represented by the last two, deriving from
the Fokker-Planck equation. For the sake of readability, i and j run here over all particles
and beads indexed together. In Eq. (3.20), Fi ≡ fBOi + fharmi is the generalized force, com-

prising the BO and harmonic contributions, where fBOi ≡ −∇qi Ṽ and Ṽ =
P∑
j=1

V (q
(j)
1 , .., q

(j)
3N ).

As we have seen in the previous Subsection, the quantum-to-classical isomorphism Hamil-
tonian in Eq. (2.59) includes very different energy scales. For instance, if one works with a
large number of beads P , the ring polymer vibration modes can become much stiffer than the
molecular vibrations arising from the BO potential. For the PIMPC algorithm, introduced
in Subsection 3.1.2 and tested in Section 3.1.4, we found that propagating simultaneously all
these modes is not optimal since soft modes will be overdamped and the phase space sam-
pling will be less efficient. To overcome this problem, we would like to split the Liouvillian
in Eq. (3.20) into just two operators, one containing only the physical (BO) modes, the other
depending exclusively on the fictitious (harmonic) modes. To do so, we first separate the
friction matrix into two contributions, in a way analogous to Eq. (3.19):

γ = γBO + γharm. (3.21)

We can then rewrite the total Liouvillian as the sum of two terms, iLFP = iLBO + iLharm,
where

iLharm =
∑
i

fharmi ∇pi + pi∇qi −
∑
j

γharmij

(
∇pipj + kBTP∇pi∇pj

) , (3.22)

iLBO =
∑
i

fBOi ∇pi −∑
j

γBOij
(
∇pipj + kBTP∇pi∇pj

) , (3.23)

in such a way that we can break up the evolution operator via Trotter factorization [94]. In
order to preserve the reversibility of the process and reduce at most the time step error, we
approximate the propagation using a symmetric form [196,197]:

eiLδt ' eiL
BOδt/2eiL

harmδteiL
BOδt/2. (3.24)

The equations of motion corresponding to iLharm are those in Eq. (3.2) with the generalized γ̂
of Eq. (3.9) where F = 0. They are linear in both p and q, thus exactly solvable in an analytic

1This matrix used to be diagonal in the Bussi derivation introduced in Chapter 2.
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closed form. They describe an OUP, and their algebra and properties have been exploited in
the GLE framework, where they are used to propagate external auxiliary variables together
with the physical momenta in order to generate a colored noise with a corresponding effective
memory kernel. In the present algorithm we are going to use the OUP to integrate directly the
SDE for both p and q, together with the Langevin noise, namely without further splitting the
Langevin thermostat in iLharm. The resulting evolution is given by the coupled equations in
Eqs. (3.12) and (3.13), but with the notable difference of fn set to zero, as the BO component
of the total force has been loaded in the iLBO Trotter factors. As we mentioned in the
previous Subsection, dropping the time dependence of fn was the only approximation made in
the PIMPC case. Here, there is no time dependence either in fn or in γharm, and thus eiL

harmδt

is applied exactly. γharm is defined as in Subsection 3.1.2, namely it is the optimal damping
for the dynamics driven by a harmonic H in its normal modes representation. However, in
this case there is no low-energy damping for small frequencies in γharm. Thus, we need to
introduce another one, γ0, specific to iLharm, such that in the normal modes representation
γharm is diagonal and reads as:

γ
(k)
harm =

{
2ωk if 2ωk ≥ γ0

γ0 otherwise,
(3.25)

for k = 1, . . . , P . In other words, the thermostat controlled by the friction γ0 is mainly applied
to the centroid rototranslational modes which would not be thermalized otherwise because
their frequency is zero. Contrary to the other free quantum harmonic modes, the optimal
damping γ0 is not general and has to be optimized for the system under study. A reasonable
value of this parameter, also present in the PILE method, can be found by performing short
preliminary simulations with any accurate force field [68,69,198,199].

The equation of motion corresponding to iLBO is given by [19]

p(t) = eγ(t0−t)p(t− δt/2) +

t∫
t0

dt′eγ(t′−t)(f(t− δt/2) + η(t′)), (3.26)

with the initial time t0. Indeed, only the momenta are evolved in iLBO. Therefore, no
Momentum-Position Correlator (MPC) algorithm is needed, and the resulting equations are
equal to those of the simple classical Langevin algorithm introduced in Ref. 149, restricted to
p, which in the present case is a 3NP -dimensional vector. The corresponding γBO is taken
block diagonal according to the bead index, and possibly bead dependent. This is very use-
ful for QMC noisy forces, as the statistics of the QMC force covariance matrix is genuinely
bead dependent, because the WF is sampled independently for each bead (see Section 3.2).
In the QMC case, γBO is fundamental to correct the intrinsic QMC noise affecting the BO
forces. However, for deterministic BO forces, the corresponding γBO can be taken equal to
zero, and the corresponding time-discretized solution will result in a simple velocity update
pn+1 = pn + δt

2 fn. In fact, any additional damping in the BO modes will turn into a slower
algorithmic diffusion, as the thermalization is already guaranteed by the Langevin thermostat
integrated in iLharm. In this limit, iLBO will reduce to iLp.

To summarize, a single PIOUD iteration is generated via the following steps:
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1. update the particles momenta according to the Eq. (3.26) (eiL
BOδt/2), in either the real

coordinate space (deterministic forces) or in the frame that diagonalizes the Langevin
damping matrix γ (stochastic forces);

2. apply a back and forth normal mode transformation to both propagate and thermalize
the free quantum ring polymers according to the Eqs. (3.12) and (3.13) (eiL

harmδt);

3. new evaluation of the ionic forces via f(t+ δt) = −∇qV (t+ δt);

4. final update of the particles momenta as in step 1, by applying again the operator
eiL

BOδt/2.

The main difference between PILE [177] and our PIOUD algorithm [195] is that, within PILE,
iLharm is split into iL0, which propagates the motion of the harmonic oscillators in their nor-
mal modes representation, and iLγ (the part proportional to γharm

ij in Eq. (3.22), iL0 being
the remaining part in the first line of the same equation), which corresponds to the Langevin
thermostat acting on the normal modes. Such a splitting of the two aforementioned Liouvil-
lian operators is not applied within PIOUD, as the exact integration of quantum harmonic
forces coupled to a Langevin thermostat is applied via iLharm. Apart from the additional
Trotter break-up, in the sequence of operators given in Eq. (2.66) the Langevin thermostat on
the normal modes is the outermost part of the Liouvillian decomposition, for a better control
of the target temperature. Our algorithm in Eq. (3.24) performs better than the solution
proposed in Eq. (2.66), since in our case iLharm = iL0 + iLγ corresponds to an exact propa-
gator including both the coordinates change and the thermalization of the free quantum ring
polymers. As a consequence, one Trotter factorization is saved which in principle enables us
to work with a larger time step δt or more quantum replicas P . Indeed, the Trotter break-up
is obviously exact if the two operators involved commute. The split of iLharm proposed by
Ceriotti and his colleagues has the drawback that choice as the commutator of [iL0, iLγ ] is
dominated by the term γharmij fharmj ∇pi which diverges as P 3 for large P , as it can be easily
seen by the exact expression of the harmonic forces and the choice of the optimal friction.
This argument suggests that our method, involving commutators at most diverging as P 2,
should have a time step error much better behaved for large P .

To conclude, we have presented two novel algorithms to perform LD simulations of small
water clusters, with either deterministic or stochastic forces. In particular, by saving a Trot-
ter break-up in the propagator with respect to the PILE algorithm, our PIOUD integrator
should exhibit further stability with respect to the time step δt and the number of beads P .
This improvement will be tested and discussed in the next Section.

3.1.4 Algorithm stability with deterministic forces

We test the robustness of the two algorithms, namely PIMPC and PIOUD, detailed in the
previous Section, by comparing them with PILE. We perform PILD simulations on the Zundel
ion with almost exact deterministic forces which are simply computed by finite differences of
the CCSD(T) PES provided by Huang and coworkers [65]. Since our only aim here is to test
the different integration schemes, the number of MD iterations Nsteps = 105 is quite small
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to visit the entire phase space but sufficient to identify some possible weakness of the propa-
gators. We recall that PIMPC denotes the propagator corresponding to the Eqs. (3.12) and
(3.13) since positions and velocities evolve jointly, whereas the PIOUD integrator corresponds
to Eq. (3.24), in which we separate the physical from the fictitious vibration modes of the
system.

A robust PILD algorithm must be stable with both large time step δt and large number
of quantum replicas P . Indeed, the collective modes of a large ring polymer become very
stiff, so much more difficult to control, especially if the integration time step is large. Close
values of the virial TP,vir(q) (Eq. 2.64) and the primitive TP,pri(q) (Eq. 2.63) kinetic energy
estimators point that we are sampling properly both positions and momenta of all particles.

Beside temperature and kinetic energy, other observables will also be used here to quantify the
numerical efficiency of the tested algorithms. A very stable propagation of the equations of
motion can for instance be due to an overcautious (too small δt) integration of the dynamics,
which does not constitute a real improvement since the phase space will be poorly visited. To
this purpose, Ceperley introduced the algorithmic diffusion constant D which reads as [200]

D =

〈[δt 3N∑
i=1

M∑
j=1

(
q

(j)
i (t+ δt)− q(j)

i (t)
)]2

Titer

〉
. (3.27)

Titer is the total amount of CPU time spent for one single MD iteration at a given time
step δt. Since Titer is almost equal for the three algorithms under study, the algorithmic
diffusion can be interpreted as the usual diffusion of quantum particles in the position space.
Furthermore, we will also focus our attention on the potential autocorrelation time known to
be very sensitive to Langevin damping since the softest vibration modes are sometimes very
long to sample. This useful quantity has the following expression

τV =
1

〈V 2 〉 − 〈V 〉2

Nstepsδt∫
0

dt〈δV (0)δV (t)〉, (3.28)

with δV = V − 〈V 〉 the fluctuation of the potential energy. τV needs to be minimized to
obtain an optimal production run and this is achieved by working with the largest possible
time step δt. Simultaneously, an optimal centroid damping γ0 has to be found to minimize
τV , as we will detail later.

3.1.4.1 Stability with respect to the number of beads P

We report the obtained results for the three different integration schemes (PIMPC, PILE and
PIOUD) at low temperature (T = 50 K) in Figure 3.1 and at room temperature (T = 300 K)
in Figure 3.2, as a function of the number of quantum replicas P . In each case, the four key
observables (virial versus primitive kinetic energy, average temperature, algorithmic diffusion
constant and potential autocorrelation time) described a few lines above are compared. We
perform simulations working with an increasing number of beads P = 4, 8, 16, 32, 64, 128 and
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256, using a reasonable but not-so-small time step δt = 0.5 fs.

The quantum kinetic energy estimators are known to be useful tools to determine the number
of beads required at a given temperature to capture NQE. However, other quantities such as
the algorithmic diffusion constant and the potential autocorrelation time can also be used to
diagnose the good convergence of the quantum kinetic energy. Indeed, these observables keep
increasing (quantum kinetic energy and diffusion) or decreasing (potential autocorrelation
time) when the number of beads increases until they reach a plateau value. In the case of
the Zundel ion, P = 128 quantum replicas are enough to fully recover the quantum kinetic
energy at low temperature (see Figure 3.1), whereas only P = 32 beads are required at room
temperature, according to Figure 3.2. We note that these values are consistent with those
frequently used in the literature for this system [13,172,201].

A rapid inspection of Figures 3.1 and 3.2 shows that the PIMPC approach, in which all
operations are propagated into one single block without any mode separation during the dy-
namics, is by far less efficient and stable than the other two. Indeed, the primitive energy
estimator (see Eq. (2.63)) becomes unstable for P = 256 at 50 K and for P ≥ 32 at room
temperature, showing that this algorithm is not able to handle the stiffest vibration modes
of the ring polymer. The asymptotic value of the algorithmic diffusion constant is also dra-
matically reduced and even slightly decreases at room temperature for very large number of
quantum replicas. Indeed, by working in a mixed space were all the physical and fictitious
vibration modes are propagated during a single iteration, one has to deal with very different
energy scales, spanning various orders of magnitude. This leads to an overdamping of the
softest intermolecular modes which are strongly penalized because of the presence of very
high frequency modes. This also explains why the potential autocorrelation time is slightly
larger for this algorithm while the simulation temperature seems to be rather well-controlled.
The performances of the PIOUD propagator of Eq. (3.24) and the PILE algorithm are much
closer to each other. Looking at the algorithmic diffusion constant and the potential auto-
correlation time, the PILE and PIOUD algorithms have the same computational efficiency.
This is expected because the same normal mode transformation is applied in both approaches.

We notice that PILE exhibits a built-in stability of the average simulation temperature with
respect to the number of beads. On the contrary, our algorithms (both PIMPC and PIOUD)
display a natural and small time step error on the target temperature which tends to vanish
when the number of beads increases. This temperature difference can be easily explained by
the fact the instantaneous velocities (and so the temperature) are measured just after the
thermalization step iLγ in the PILE integration scheme, whereas they are evaluated after
the iLBO operator in our propagations. Since iLBO includes the propagation according to
the ionic forces, that are not harmonic and therefore not exactly integrated, it is reasonable
to expect a larger error in this case. We remark however that an artificially small error in
the target temperature is not at all important, because the temperature depends only on the
velocities that have a trivial (i.e. Boltzmann) distribution. It is much more important to
have the correct distribution for the coordinates q, regardless what is the distribution of the
velocities. Nevertheless, when one increases the number of beads, the error made on the target
temperature (which is already less than 1%) decreases. Indeed, for large P , the propagation
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3.1. Derivation of novel Langevin Dynamics integrators

driven by iLharm becomes dominant over the BO forces. This implies a more effective control
of the temperature, because iLharm corresponds to an exact integration. When looking at the
top left panels of Figures 3.1 and 3.2, we notice that the PIOUD algorithm displays an almost
perfect control of the kinetic energy operators at each temperature. On the contrary, the
PILE algorithm exhibits a significant instability of the primitive energy for a large number of
beads (P ≥ 64) at room temperature. The contrast between the perfect average temperature
and the quantum kinetic energy instabilities demonstrates that a good control of the veloci-
ties does not necessarily imply an accurate sampling of the positions. The robustness of our
approach mainly relies on a simultaneous control of both positions and velocities during the
dynamics via momentum-position correlation matrices.
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Figure 3.1 – Evolution of the quantum kinetic energy estimators 〈Tvir/pri〉 (top left panel), the
temperature T (top right panel), the algorithmic diffusion constant D (bottom left panel) and the
potential autocorrelation time τV (bottom right panel) as a function of the number of quantum replicas
P evolving at T = 50 K. Solid lines correspond to the virial estimator of the kinetic energy whereas the
primitive estimator curves are dashed. The color code indicates each algorithm: black for the PIMPC
algorithm, blue for the PILE propagator and red for the PIOUD algorithm. The time step and the
friction are respectively set to δt = 0.5 fs and γ0 = 1.46 10−3 a.u. (γBO for the PIMPC algorithm).
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Figure 3.2 – Evolution of the quantum kinetic energy estimators 〈Tvir/pri〉 (top left panel), the
temperature T (top right panel), the algorithmic diffusion constant D (bottom left panel) and the
potential autocorrelation time τV (bottom right panel) as a function of the number of quantum replicas
P evolving at T = 300 K. Solid lines correspond to the virial estimator of the kinetic energy whereas
the primitive estimator curves are dashed. The color code indicates each algorithm: black for the
PIMPC algorithm, blue for the PILE propagator and red for the PIOUD algorithm. The time step
and the friction are respectively set to δt = 0.5 fs and γ0 = 1.46 10−3 a.u. (γBO for the PIMPC
algorithm).
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In summary, the PIOUD propagator appears to be more efficient than PIMPC and PILE as
the positions are better controlled, which enables us to work with a larger number of quantum
replicas at a fixed time step δt.

3.1.4.2 Stability with respect to the time step δt

Thanks to the preliminary analysis discussed above, we know how many quantum replicas
should be used to generate an efficient and converged PILD simulation of the Zundel ion at
a given temperature. Moreover, stability for rather large time steps is crucial in the perspec-
tive of performing PILD calculations on larger systems using a PES evaluated by accurate
but computationally demanding ab initio methods. We report here CC-PILD simulations at
room temperature with P = 32 beads using different values of δt = 0.1, 0.2, 0.3, 0.5, 0.75 and
1 fs. The behavior of the observables used to evaluate the algorithm efficiency are plotted in
Figures 3.3 and 3.4 as a function of the time step at 50 K and 300 K, respectively.

Similarly to the previous figures, the PILE propagator exhibits a remarkably stable aver-
age temperature when one increases the time step. On the contrary, our PIMPC and PIOUD
algorithms are suffering from a time step error O(δt3) arising from the Trotter factorization in
the propagation of the equations of motion. In the PILE algorithm instead, the temperature
is measured just after the iLγ step so it is not contaminated by the time step error yet.

In order to quantify the bias induced by the time step error, we check the difference |〈T 〉P,vir−
〈T 〉P,pri| which gives us direct information on the accuracy of the positions sampling. Like
in the previous tests, the PIOUD algorithm shows the smallest difference thanks to a good
control of the primitive energy, due to the separation of the Liouvillian in physical and har-
monic modes.. The difference between these two kinetic energy estimators is more spectacular
at room temperature. Indeed, the fluctuation-dissipation contributions in iLharm, related to
damping and random forces in the dynamics, become more important as the temperature
increases, while the BO forces are not so strongly affected by thermal effects.

The diffusion constant shows a very similar behavior as a function of time step for the PILE
and the PIOUD propagators. As expected, the potential autocorrelation time decreases sig-
nificantly with increasing the time step without relevant differences between the PILE and
the PIOUD algorithms.

To conclude, we have derived a novel algorithm to efficiently integrate the Langevin equations
of motion. The PIOUD integrator has been validated on an analytic (deterministic) CCSD(T)
force field for the Zundel complex. Indeed, it has proven to be remarkably stable with respect
to both the number of beads P and the time step δt without losing computational efficiency.
We now wish to go further by applying the previous formalism to the case of stochastic PES
and forces, such as the ones computed in a QMC framework, without reducing the efficiency
of the phase space sampling.
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Figure 3.3 – Evolution of the quantum kinetic energy estimators 〈Tvir/pri〉 (top left panel), the
temperature T (top right panel), the algorithmic diffusion constant D (bottom left panel) and the
potential autocorrelation time τV (bottom right panel) as a function of the time step δt at T = 50

K. Solid lines correspond to the virial estimator of the kinetic energy whereas the primitive estimator
curves are dashed. The color code indicates each algorithm: black for the PIMPC algorithm, blue for
the PILE propagator and red for the PIOUD algorithm. P = 128 quantum replicas are used and the
friction is set to γ0 = 1.46 10−3 a.u. (γBO for the PIMPC algorithm).
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Figure 3.4 – Evolution of the quantum kinetic energy estimators 〈Tvir/pri〉 (top left panel), the
temperature T (top right panel), the algorithmic diffusion constant D (bottom left panel) and the
potential autocorrelation time τV (bottom right panel) as a function of the time step δt at T = 300

K. Solid lines correspond to the virial estimator of the kinetic energy whereas the primitive estimator
curves are dashed. The color code indicates each algorithm: black for the PIMPC algorithm, blue for
the PILE propagator and red for the PIOUD algorithm. P = 32 quantum replicas are used and the
friction is set to γ0 = 1.46 10−3 a.u. (γBO for the PIMPC algorithm).
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Chapter 3. Development of fully quantum dynamics

3.2 Extension to the stochastic case: correlating the noise by
Quantum Monte Carlo

In this thesis, our goal is to perform fully quantum LD simulations of small water clusters,
with ionic forces computed by QMC. Due to the stochastic nature of the QMC approach,
such forces are intrinsically noisy. We have tackled in the previous Section the integration
of the Langevin equations of motion in the presence of VMC noisy forces, with an adapted
break-up of the elementary operators of the Fokker-Planck Liouvillian. However, the question
of controlling the temperature of the QMC-driven CPMC or the PIOUD simulations remains
now to be solved. More generally, we will detail the employed procedure to perform QMC-
driven LD simulations. In particular, we explain the various approximations employed to
evaluate the WF between each nuclear iteration at an affordable computational cost.

3.2.1 Evolution of the Quantum Monte Carlo wave function

To describe the Zundel ion (Chapter 4) or the protonated water hexamer (Chapter 6), we
use a Jastrow Antisymmetrized Geminal Power (JAGP) WF, whose expression is given in
Eq. (1.36)2. The JAGP WF is expanded over a localized gaussian basis set (Eq. (1.41)) for
both the Jastrow and the AGP parts. In this thesis, we start from the optimal WF devised by
Dagrada et al. for the Zundel ion at zero temperature and further technical details concerning
the variational WF can be found in Ref. 72. We simply mention that we have employed the
geminal embedding scheme [202] to obtain Nhyb < Nbasis geminal embedding orbitals filling the
AGP matrix. This strategy significantly reduces the total number of parameters describing
the QMC WF. This point is very important, because in the present optimization meth-
ods [77,203,204], the involved matrices in the iterative procedure have linear dimension equal to
the number p of involved parameters. The used number of QMC samplings to stochastically
characterize a p × p matrix should be much larger than p. Otherwise the matrix is biased
if not rank deficient, and the QMC optimization methods no longer work. Thus, it is clear
that the reduction of the number of parameters is very much needed at present, because it is
roughly proportional to the computational cost of the QMC optimization.

Here, we use the O[8]H[2] hybrid basis set which has been proven to be the best compro-
mise between accuracy and computational cost, due to a limited number (571) parameters
describing the determinantal part of the WF [72]. During the dynamics, the gaussian type
orbitals exponents ζl,n (see Eq. (1.41)) in both the Jastrow and the AGP parts of the WF
are kept frozen to make the simulation stable. At each new ionic configuration, the WF
must be reoptimized. This is done by means of the Stochastic Reconfiguration (SR) [77,203],
or the optimization method with Hessian acceleration (SRH) [204] (see Appendix C). As the
ionic positions are smoothly connected to those of the previous MD time step, also the WF
parameters will evolve continuously. After each nuclear iteration, the WF is optimized by few
(five in our simulations of the Zundel ion) SR or SRH steps on the electronic parameters to
ensure that the system is close enough to the BO surface, before continuing the propagation
of the ion dynamics. Due to the continuity of the nuclear trajectories, the number of SR steps
is significantly smaller than the one required for a WF optimization from scratch.

2ΨD = ΨAGP in this case.
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3.2.2 Bead-grouping approximation

Another advantage of our framework is represented by the local, ion-centered, basis set. We
start from the observation that the most relevant dependence of the WF on the ionic positions
q comes directly (and explicitly) from the basis set, while the dependence of the electronic
variational parameters is generally weaker. This is particularly true in quantum MD calcula-
tions, where each particle is represented by an P -bead necklace. In the first approximation, a
necklace could share the same WF parameters, while the full q dependence is provided by the
basis set only, a dependence coming from the atomic centers -different in each bead- defining
the basis set at each different (quantum) time slice. This approximation can be very effective
to reduce the computational burden, because the main drawback encountered in PIMD and
PILD calculations with respect to their classical counterparts is the factor-of-P increase of
variational parameters (P × p if no approximation is employed). Conversely, if the number of
variational parameters is restricted to the same number as the classical simulation, no compu-
tational overhead is expected to work with P > 1 in QMC. Indeed, the evaluation of the ionic
forces can be done with a number of samples inversely proportional to P 3, as the temperature
in each time interval is increased by P and the Langevin equations require statistically less
accurate -but nevertheless unbiased- forces, so that increasing P becomes essentially cost-free
in QMC [188].

When instead forces are computed with deterministic methods - e.g. DFT - the compu-
tational burden is necessarily proportional to P , and therefore several techniques have been
recently developed to decrease the number of evaluations of the ionic forces by about an
order of magnitude without missing any significant NQE. This is done by achieving smart
interpolations and groupings of different possible paths [205,206] or by applying a Ring Polymer
Contraction (RPC) scheme [207–209]. Otherwise, the number of quantum replicas can be re-
duced by working with a GLE including a colored noise mimicking the quantum fluctuations
of the nuclei [180,181,210,211].

Although these methods could be effectively incorporated into our QMC framework, we are
forced to explore another approach, because, as we have discussed, in QMC the problem is
just the large number of variational parameters, and not the large value of P . We introduce
therefore a method which takes advantage of the explicit WF representation of the electronic
problem. Indeed, each bead at each iteration has its own optimal WF |Ψ(k)

q 〉, for k = 1, . . . , P ,
which minimizes the variational energy at the nuclear configuration q(k). Consequently, we
need to find the best variational parameters set {λ(k)} =

{
g
a(k),b(k)
µ,ν , λa

(k),b(k)
µ,ν , b(k), ζ

(k)
l,n , . . .

}
for each WF. Despite the availability of efficient QMC optimization algorithms, that task
is still computationally demanding and would limit the application of our method to very
small systems. To overcome this major difficulty, we exploit the local nature of the gaussian
basis sets used in the expansion of both the Jastrow and AGP factors as discussed above. As
anticipated, we make the approximation of defining Ngroups groups of neighboring beads and
constraining the WF parameters to be equal for all beads in the same group. Since a group
shares the same parameters, the corresponding energy gradients are then averaged over the

3Provided that the samples are independent, it is equivalent to generate Ngen samples to evaluate the ionic
forces on a unique WF or P × Ngen

P
samples (inversely proportional to P ) on P WF describing each bead.
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quantum replicas constituting the group. In this way, we improve the statistics by a factor
of P/Ngroups. We obtain less noisy parameters even though the resulting WF is not exactly
optimized for each quantum replica. We mention that this is a controllable and systematically
improvable approximation. Indeed, if one takes Ngroups = P , the electronic result is exact,
whereas Ngroups = 1 constitutes the roughest approximation. In the latter case, one performs
a fully quantum dynamics with almost the same statistics as the one with classical nuclei. We
are going to test and validate this approximation for the Zundel ion in the following Chapter.
In the case of the simple hydrogen molecule the approximation with Ngroups = 1 allows one
to recover 90% of the Zero Point Energy (ZPE).

3.2.3 Quantum Monte Carlo ionic forces and noise correction

In our approach, the potential energy landscape and thus the ionic forces acting on each par-
ticles are evaluated by VMC, according to Eq. (1.68). As we have seen at the very end of the
Chapter 1, the expression of the QMC force (Eqs. (1.69) and (1.70)) is quite complex because
it contains the implicit and explicit dependence of V (q) on both the nuclear positions q and
the electronic parameters set {λ}. Computing these forces with finite variance and in a fast
way is of paramount importance to make a QMC-based MD and PIMD possible. This has
become feasible, thanks to recent improvements, that have been discussed in the Chapter 1.

Another issue related to the stochastic nature of this method is the control of the statis-
tical noise introduced into the dynamics. The latter must be kept under control if we want
to have an unbiased sampling of the phase space during the propagation of the trajectory.
Fortunately, the methodology described in the previous sections is particularly suited for
this situation, as it deals with the most general case, where the friction γ and covariance α
matrices are not diagonal. This corresponds to the inclusion of a correlated noise into the
dynamics, in contrast to the more usual white noise case. By construction, we can now make
the assumption that there exists also a QMC contribution to the covariance matrix which
becomes position-time dependent [149]

α(q) = αBOI + ∆0α
QMC(q). (3.29)

αBO = 2kBTγBO is the white noise contribution and ∆0 is a tunable parameter which is
mainly set to make the covariance (and thus the friction) matrix positive definite4. α and γ
are linked by the FDT, while αQMC is the QMC-force covariance matrix defined by

αQMC
ij = 〈δfiδfj〉, (3.30)

where δfi = fi−〈fi〉 is the fluctuation of the i-th ionic force. Previous works have established
that the QMC covariance matrix is roughly proportional to the dynamical matrix (it is exactly
proportional for harmonic forces). Therefore, it carries information on the vibrational prop-
erties of the system [19]. As a consequence, one could take advantage of an apparent drawback
of the QMC approach by using the intrinsic noise to drive a dynamics in the phase space with
nearly optimal sampling.

4To keep the covariance matrix positive definite in practice, the condition ∆0 ≥ δt must be fulfilled. [149]
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However, to fulfill the FDT, the QMC noise has to be disentangled from the total Langevin
noise in the following way:

ηi = ηexti + ηQMC
i (3.31)

such that αQMC
ij = 〈ηQMC

i ηQMC
j 〉, namely ηQMC

i is the noise already present in the i−th QMC
force component. Therefore, by using that the external noise is independent of the QMC one,
we obtain

〈ηexti ηextj 〉 = αij − αQMC
ij . (3.32)

The above equation is valid at the time instant t. However, in the schemes devised in Sub-
sections 3.1.1, and 3.1.3, the equations of motion are discretized and integrated over a finite
time step δt, and also the Langevin noise η̃ appearing in those equations is integrated over
the same δt. This will slightly change the form in Eq. (3.32), leading to the following one:

〈η̃exti η̃extj 〉 = α̃ij − αQMC
ij , (3.33)

where α̃ is the integrated noise correlator matrix, reported in Eq. (D.1) for the CMPC algo-
rithm. αQMC does not need to be modified, as the expectation value of the variance-covariance
QMC-force matrix in Eq. (3.30) is evaluated in this case during the time step δt while sampling
the electron coordinates. Since the r.h.s. of Eq. (3.33) is a positive definite matrix, it defines
a corrected external noise which is compatible with the solution of the Langevin dynamics in
both classical and quantum cases, as long as |qn+1−qn| remains small, regardless of how large
the friction is. As already mentioned, the proposed MPC schemes yield a correlated noise
also affecting the conjugate variables (i.e. the nuclear positions q). Therefore, the relation in
Eq. (3.33) must be extended in the joint momentum-position coordinates. The full expression
for the noise correction in the classical CPMC integration algorithm is detailed in Appendix
D.2.

In the quantum PIOUD algorithm, the QMC noise correction must be applied exclusively in
the BO step iLBO, where only the momenta are evolved according to the QMC ionic forces.
Therefore, the external noise acts only on the momentum sector, and its variance-covariance
is simply given by Eq. (3.33). Contrary to the CPMC case, there is no need to extend this
relation to the position sector. In the harmonic step iLharm, the harmonic forces are noiseless,
therefore the external noise coincides with the full noise (ηQMC

i = 0), and no correction is
needed. The momentum and position components of the noise (η̃ and ˜̃η, respectively) are
correlated according to Eqs. (D.12) and (D.13), reported in Appendix D.3.

3.2.4 Algorithm stability with QMC forces

In the following, we will present some calibration runs carried out with the PIOUD algorithm
in the VMC framework, which will help us set the proper simulation parameters (γ0, δt) and
show the remarkable stability of the quantum dynamics even with noisy VMC forces for large
δt and large P . The results are obtained by performing QMC-PILD short tests (about 8.5 ps
of dynamics) of the Zundel ion in the gas phase at room temperature (300 K). Hereafter, the
additional PIOUD parameter γBO is set to zero, to avoid overdamping in the BO propagator.
The Langevin thermostat in the iLBO part plays solely the role of correcting the BO dynamics
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Figure 3.5 – PIOUD evolution of the quantum kinetic energy estimators 〈Tvir/pri〉 (top panel), the
temperature T (middle panel) and the potential autocorrelation time τV (bottom panel) as a function
of the input friction γ0. Solid lines correspond to the virial estimator of the kinetic energy whereas
the primitive estimator curves are dashed. Deterministic forces are represented in black whereas the
noisy QMC forces are in red. The time step and the number of quantum replicas are respectively set
to δt = 1 fs and P = 32.
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3.2. Extension to the stochastic case: correlating the noise by Quantum Monte
Carlo

for the intrinsic VMC noise. As we have already seen, for deterministic forces iLBO reduces
to iLp, i.e. it is a simple velocity step.

For each MD step we have evaluated forces and all the energy derivatives with ≈ 3.3 × 105

MC samples, much larger than the total number of variational parameters (p ≈ 2.4× 103) of
the WF. This allows reaching an accuracy of 1.5 mHa (0.94 kcal/mol) in the total energy per
VMC energy minimization step. Between two MD steps, five QMC energy minimizations are
performed with the Hessian (SRH) algorithm, in order to sample the correct BO surface. As
already mentioned in Section 3.2.1, all variational parameters are evolved during the dynam-
ics, except for the GTO exponents, which are kept frozen.

The optimal input friction γ0 is chosen to minimize the potential autocorrelation time τV
(Eq. (3.28)), and generate the most efficient phase space sampling during the dynamics. We
will give a general protocol to find this optimal value in the case of stochastic VMC forces,
where the situation can be more complicated since the FDT is now sensitive to the QMC
intrinsic noise. In our initial tests, the time step is set to 1 fs, a large value, which guarantees
a quick and effective exploration of the phase space. Moreover γBO = 0 and ∆0 = δt, as we
discovered that the most efficient simulation is the one which minimizes the damping in the
BO sector. ∆0 is taken as the minimal value which provides a positive definite γBO. In the
top panel of Figure 3.5, we first observe that in the VMC case, the virial and the primitive ki-
netic energy estimators deteriorate when the applied input friction is too large (> 0.02×10−3

a.u.). In this situation, the additional QMC noise makes the coupling between the system
and the thermostat too large to be fully controlled for such time step values (δt = 1 fs). On
the other extreme, at very small γ0, we see that the presence of a QMC-correlated noise tends
to flatten the sharp and deep minimum of the potential autocorrelation time obtained with
deterministic CCSD(T) forces (bottom panel). This indicates that, contrary to the determin-
istic case where there is a clear advantage to set the input friction γ0 to its optimal value,
there is more freedom to choose this parameter in VMC. Indeed, the autocorrelation time
divergence shown in the CCSD(T) case for small values of γ0 disappears with VMC forces.
This is due to the implicit low-value cutoff in the γ matrix provided by the intrinsic QMC
noise, once the QMC-force covariance matrix is converted into an effective friction, according
to Eqs.(2.32) and (3.29). In practice however, the value of γ0 cannot be too small either, in
order to avoid too cold temperatures shown in the middle panel of Figure 3.5. Consequently,
we need to take the largest γ0 before the increase of the potential autocorrelation time τV due
to the soft-modes overdamping. This will also let us recover an acceptable target temperature
(see middle panel). Therefore, γ0 = 1.46× 10−3 a.u seems to be a very good compromise be-
tween autocorrelation time τV , effective temperature, and quality of the phase space sampling
revealed by the kinetic energy estimators. All subsequent runs will be performed with that
value. It is interesting to remark that this is optimal for both deterministic and stochastic
forces. Similarly to the tests performed in Subsection 3.1.4 with analytic CCSD(T) forces,
we check here the robustness of our novel PIOUD algorithm with respect to the time step
δt and to the number of quantum replicas P in the presence of noisy QMC forces. In the
upper panel of Figure 3.6, the difference between the virial and the primitive kinetic energy
estimators remains very reasonable with increasing values of the time step δt, even though the
time step error is more important in the stochastic case once compared to the deterministic
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Figure 3.6 – PIOUD evolution of the quantum kinetic energy estimators 〈Tvir/pri〉 as a function
of the time step δt (top panel) and the number of quantum replicas P (bottom panel). Colors and
symbols are the same as in Figure 3.5. The input friction was set to γ0 = 1.46 × 10−3 a.u. fs. The
default values of the time step and the number of quantum replicas are respectively δt = 1 fs and
P = 32.

one. The PIOUD propagator exhibits a smaller difference between these two estimators with
QMC forces than the PILE algorithm in the deterministic case. The superior performances
of PIOUD will allow us to use large time steps δt.

Finally, we also check the stability of the PIOUD integration scheme with increasing number
of quantum replicas P . As we can see in the bottom panel of the Figure 3.6, the difference
between the kinetic and the primitive energy estimators is well controlled up to P = 64 beads
in the stochastic case. On the contrary, the PILE propagator already exhibits signs of in-
stability at this value with deterministic forces (see upper left panel of Figure 3.2). This is
a further proof of the robustness of the PIOUD integrator, which we thus recommend when
one wants to perform a PILD simulation with a large number of beads with any force field,
deterministic or not.

Thanks to the technical developments presented in this Chapter, we have paved the way
to perform fully quantum simulations of small protonated water clusters, with highly accu-
rate ionic forces evaluated within the VMC approach. The very last step before performing
such calculations on realistic systems such as the protonated water hexamer, is to check the
reliability of our novel methodology on a benchmark system, as we will do in the next Chapter.
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Chapter 4

The Zundel ion: a benchmark system
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One of the main issues which sets back from a complete understanding of proton trans-
fer (PT) in water, is related to the very sensitive thermal behavior of PT. The re-

quired Potential Energy Surface (PES) precision, of the order of a few tenths of kcal/mol, has
been reached only recently by state-of-the-art computational methods beyond DFT, such as
MP4 [212], Coupled Cluster (CC) [213] or multi-reference configuration interaction (MRCI) [214]

methods. They are however characterized by a much poorer scalability with respect to DFT,
and therefore they do not allow simulation of sufficiently large molecular clusters. In the pre-
vious Chapter, we have set the stage to perform efficient Path Integral Langevin Dynamics
(PILD) simulations of such systems with accurate and noisy Quantum Monte Carlo (QMC)
forces, exploiting the mild scaling of the VMC approach with the system size.

To validate our methodological developments, we first apply them to H5O+
2 , namely the

Zundel ion [215], widely used as a benchmark system. Indeed, it is the smallest charged water
cluster to exhibit a non trivial proton transfer and its reduced size makes a comprehensive
and systematic study of the problem easier. More importantly, there is a huge amount of data
to compare our results to, because the description of excess proton in water has been widely
studied both theoretically and experimentally in the last fifty years. On the one hand, the
fast development of spectroscopical instruments allowed to probe experimentally vibrational
properties of ionic species and therefore many studies have been published [17,216] on the H5O+

2

ion. On the other hand, several accurate theoretical works have appeared on the Zundel ion
to study its structure and energetics [110,216–225]. We can cite for instance the extremely accu-
rate Potential Energy Surface (PES) generated by Bowman and coworkers from almost exact
CCSD(T) calculations [65], the MS-EVB methods [218,219,226,227], or more recently the LEWIS
model developed by Herzfeld [228]. Moreover, because of the great importance of the Nuclear
Quantum Effects (NQE) in the Zundel cation, the latter is almost always used to test and
validate new approaches [229,230].
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4.1. Zero temperature results

In this Chapter, we first assess the ability of the QMC approach to accurately describe both
the energetics and the geometric properties of the protonated water dimer in Section 4.1.
Later, we perform in Section 4.2 benchmark calculations at finite temperature to ensure that
our QMC-based methodology provides an accurate description of the Zundel ion. To that
purpose, we compare our results to classical or quantum Molecular Dynamics simulations
carried out with an analytical CCSD(T) force field to ensure the QMC intrinsic noise does
not spoil the protonated water dimer dynamics. In Section 4.3, we finally investigate the
impact of the temperature and NQE on the PT processes occurring in the Zundel cation.

4.1 Zero temperature results

The protonated water dimer, represented in Figure 4.1, is constituted by an excess proton H+

surrounded by two neighboring water molecules. The nature of the minimum energy structure
of the H5O+

2 ion has been debated in the literature. There are two candidates with competing
energies: a C2 symmetric structure (left hand side of Figure 4.1), commonly known as the
Zundel configuration, with the proton evenly shared between the two oxygen atoms, and a
Cs-Inv one (right hand side of Figure 4.1) with the proton slightly closer to one H2O molecule.
Accurate highly correlated studies [65,222–224] have confirmed that the global minimum is C2

symmetric. In this Section, we will explore the zero temperature properties of the protonated
water dimer using different computational methods. In particular, we focus on the description
of the PES and the geometric properties which are of paramount importance to predict the
possible configurations the H5O+

2 ion may adopt at finite temperature.

Figure 4.1 – QMC optimized geometries for global C2 minimum (left) and for Cs-Inv local minimum
(right) of the Zundel ion [72]. Atom labels for the analysis of the Zundel properties are also indicated.

4.1.1 Potential energy landscape

In order to explore the protonated water dimer PES, we compute the H5O+
2 electronic energy

as a function the central inter-oxygen distance dO1O2 (atom labels are given in Figure 4.1). The
results are plotted in Figure 4.2, where different electronic structure methods are compared.
The solid curves are obtained using DFT (dark green for PBE and magenta for DF2), while
the QMC results are respectively represented by blue triangles (VMC with pseudopotential),
brown squares (VMC all electron calculations) and black squares (LRDMC). Finally, the
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quantum chemistry calculations, performed using the triple zeta (TZ) basis set, are represented
by red triangles (MP2) and orange circles (CCSD(T)).
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Figure 4.2 – Potential energy curve (kcal/mol) of the Zundel ion projected on the central OO
distance. Comparison between different computational methods. Structural relaxation is performed
at each level of theory, except CCSD(T). Each curve has its minimum as reference point.

First of all, we notice that the PBE functional tends to overestimate the electronic energy
by about 1 kcal/mol in both the short (∼ 2.25 Å) and large (∼ 2.7 Å) OO distance regions.
Moreover, the PBE functional predicts a slightly too large dO1O2 distance (by about 0.02
Å) for the minimum geometry configuration. Therefore, we do not expect this functional
to be accurate enough to describe properly the PT physics in the protonated water dimer.
The accuracy of the DF2 functional is even worse than the PBE approach since DF2 un-
derestimates by 1.5 kcal/mol the electronic energy for large dO1O2 values (2.7 − 2.9 Å). The
DF2 functional certainly overestimates the polarizability of the Zundel ion when one stretches
the OO distance. Besides, the whole PES obtained by DF2 is remarkably shifted to larger
inter-oxygen distances, suggesting that this functional might attribute a too large number of
Cs-Inv configuration during the Zundel dynamics. Consequently, the DF2 functional cannot
provide the necessary accuracy to correctly describe the PT process in the H5O+

2 ion. For
the QMC simulations, we used the Jastrow Antisymmetrized Geminal Power wave function
(JAGP WF, in Eqs. (1.38) and (1.40) devised by Dagrada and coworkers [72]. This QMC WF
is built as follows. On the one hand, the basis set describing the AGP matrix contains 12
hybrids orbitals: 8 for the oxygen atoms and 2 for the hydrogen atoms. On the other hand,
the orbitals in the Jastrow factor are developed on a primitive basis set, with 9 basis functions
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4.1. Zero temperature results

for the oxygen atoms and 3 for the hydrogen atoms. A detailed description of the WF will
be provided in Section 5.1, to study the water dimer. We checked first the quality of the
Burkatzki-Filippi-Dolg (BFD) pseudopotential [80] of the oxygen atom which is, similarly to
the norm-conserving pseudopotentials used in DFT, used to reduce the computational cost
of our calculations. To that purpose, we carried out some VMC energy optimizations of the
JAGP WF either taking into account explicitly all the electrons of the Zundel ion or using
the BFD pseudopotential. The agreement between these two approaches further assesses the
quality of the pseudopotential that will be safely used for all the subsequent QMC calculations.
The VMC results are close to (within 1 kcal/mol) the reference CCSD(T) calculations, despite
a slight underestimation of the slope of the curve for large OO distances (≥ 2.55 Å). We em-
phasize that this deviation of the VMC method with respect to the reference CCSD(T) result
is observed in a region that will be rarely explored during the Zundel dynamics, with no major
consequences on the description of PT. The LRDMC approach, which yields the best QMC
correlation energy, shows a remarkable agreement with the state-of-the-art CCSD(T) values
which all are in the range of ∼ 0.3 kcal/mol, hence very close to the targeted chemical accu-
racy. The MP2 approach is also, as expected, in very good agreement (within 0.5 kcal/mol)
with the CCSD(T) energy estimates for any oxygen-oxygen distance. We highlight that, at
variance with the DFT results, all these highly correlated techniques predict the same value
of the equilibrium OO distance, indicating that the region around 2.39 Å is very sensitive
to the electronic correlation of the system. Therefore, it is clear that an extremely accurate
description of the electronic correlation is required to properly describe the PT physics in the
protonated water dimer, and by extension, of water clusters and the bulk liquid as well.

We have demonstrated the ability of the QMC approach, and more particularly its VMC
variant, to describe accurately the potential energy landscape of the protonated water dimer
as a function of the inter-oxygen distance. This is not the case of the DFT approach where the
position of the minimum energy configuration is not correctly predicted with any employed
functional. The next step is to ensure that beyond the good description of the Zundel PES,
the QMC approach is also able to properly describe the geometric properties of this cation.

4.1.2 Equilibrium geometries

The slope of the potential energy curve presented in Figure 4.2 is related to the behavior of
the excess proton H+ in the Zundel ion. We elucidate this property by performing a series of
structural optimizations at various oxygen-oxygen distances dO1O2 using different electronic
structure methods.

The results are reported in Figure 4.3 where we represent the separations between the excess
proton and the two central oxygen atoms O1 and O2 (atom labels are indicated in Figure 4.1.
The solid curves represent the DFT geometries obtained with the PBE (dark green) and DF2
(magenta) functionals, respectively. The QMC geometries, obtained at the VMC level, are
represented by blue circles, while the quantum chemistry configurations are indicated by black
crosses and red squares for the MP2 and the CCSD(T) methods, respectively. First of all,
let us emphasize that all the employed theories, including the DFT approach, predict a fully
symmetric C2 minimum for the Zundel cation. Nevertheless, as previously mentioned, the
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predicted values of the equilibrium oxygen-oxygen distance dO1O2,eq strongly depends on the
quality of the treatment of the electronic correlation present in the system. Indeed, the blue,
red and black vertical dashed lines indicating the equilibrium oxygen-oxygen distance dO1O2

almost superimpose while the dark green and magenta ones are shifted to larger OO distances.

Using Figure 4.3, let us interpret the shape of the curves describing the geometry of the H5O+
2

ion when one shortens or stretches the oxygen-oxygen distance dO1O2 around its equilibrium
value. At short OO distances, the repulsive Coulomb interaction between the excess proton
and its neighboring oxygen atoms is large, leading to an increase of the total electronic energy
of the system. Anyway, to minimize this unfavorable interaction, the central proton leaves
out of the straight line defined by the two oxygen atoms. This explains the slower decrease
of the corresponding oxygen-proton distances O1H+ and H+O2 around dO1O2 = 2.1 − 2.2

Å. On the contrary, when the oxygen-oxygen distance OO reaches a critical value dc, the
excess proton is no longer evenly shared between its two oxygen neighbors. In this situa-
tion, the localized proton is covalently bound to the O1 or the O2 atom and the cluster no
longer belongs to the C2 symmetry group. Indeed, at large OO distances (≥ 2.55 Å), the
protonated water dimer is appropriately described by a H3O++H2O complex which is Cs-Inv.

The key point is the dependence of the value of the critical distance dc, defining the frontier
between the C2-symmetric Zundel and the H3O++H2O regions, with the employed level of
theory for the electronic description of the problem. The PBE functional overestimates the
correct critical oxygen-oxygen distance dc by about 0.1 Å with respect to the CCSD(T) result,
due to an overestimation of the PES slope at such OO distances. We therefore expect this
functional to underestimate the PT rate in water clusters and aqueous systems. Including
Van der Waals (VdW) and dispersions effects via the DF2 functional improves the protonated
water dimer geometries, with a more accurate value of dc,DF2 = 2.46 Å. The PBE deficiencies
are however not fully recovered by the DF2 functional.

For accurate highly correlated methods such as MP2, QMC, and CCSD(T) approaches, the
obtained geometries are in excellent agreement for any oxygen-oxygen distance, even in the
critical region OO = 2.4−2.45 Å defining the transition between the Zundel complex and the
hydrated hydronium ion. In particular, the QMC (JAGP) and the CCSD(T) perfectly match
to each other and both theories predict the critical oxygen-oxygen distance dc = 2.39 Å. We
also performed a series of VMC structural relaxations with the simpler JSDWF (Eq. (1.37)) to
verify that the accurate QMC description of the protonated water dimer geometric properties
does not significantly depend on the QMC WF form. The MP2 approach, although accurate,
displays very minor discrepancies (≤ 0.03 Å) with respect to the QMC and the CCSD(T)
results for OO = 2.4− 2.45 Å. It thus confirms that the QMC approach constitutes the most
promising candidate to provide a correct description of the H5O+

2 geometric properties at a
moderate computational cost.

In Table 4.1, we report the equilibrium oxygen-proton OH+ and the oxygen-hydrogen in-
tramolecular OH distances for various levels of theory. For some of them (PBE- and BLYP-
DFT, MP2 and CCSD(T)), we compare the results with those obtained in literature to ensure
the reliability of our structural optimizations. We first stress that all tested methods, included
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4.1. Zero temperature results

Figure 4.3 – Separations (Å) between the two central oxygen atoms and the excess proton as a
function of the reaction coordinate dO1O2

for different computational methods. Vertical dashed lines
indicate the equilibrium dO1O2

for each method.
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the DFT approach, predict a C2-symmetric minimum for the protonated water dimer, with
an excess proton evenly shared between its two neighboring oxygen atoms. We also note that
all our results are in very close agreement (within 0.01 Å) with previous studies, making us
confident in the accuracy of our electronic structure calculations. To further verify the con-
vergence of quantum chemistry calculations (DFT, MP2 and CC) with the basis set size, we
carried out a series of structural relaxations at the DFT level with the quadruple zeta (QZ)
basis set. In this case, no noticeable difference with the TZ results has been found (distances
are all converged within 0.0001 Å). The very minor discrepancies between our calculations
and the ones reported in the literature can thus presumably be attributed to the different
geometric structure optimization algorithms.

As already mentioned, the equilibrium O1O2 distances predicted by DFT are overestimated
by about 0.02 Å, 0.035 Å and 0.045 Å, for the PBE, BLYP and DF2 functionals, respec-
tively. We remark that the minimum geometry computed using the B3LYP functional is
in an overall better agreement with the reference CCSD(T) result if compared to the other
functionals. This result is however less accurate than those obtained with more advanced
techniques employed to deal with the electronic correlation, such as the QMC and the MP2
methods. Indeed, the latter ones display an excellent agreement with the CC golden stan-
dard, in particular for the equilibrium oxygen-oxygen distance O1O2 whose values coincides
with the CCSD(T) estimate, within a 0.005 Å error. The intramolecular OH distances are
also accurately reproduced in the QMC and MP2 approaches, while they tend to be slightly
overestimated in the DFT calculations, except for the DF2 functional.

Theory O1O2 O1H+ H+O2 O1H1 O1H2

DFT-PBE [72] 2.4111 1.2074 1.2074 0.9697 0.9691
DFT-PBE 2.4093 1.2061 1.2061 0.9738 0.9732
DFT-DF2 2.4315 1.2166 1.2166 0.9673 0.9668

DFT-BLYP [223] 1.2172 0.9784 0.9778
DFT-BLYP 2.4216 1.2121 1.2121 0.9761 0.9755
DFT-B3LYP 2.3973 1.1997 1.1997 0.9676 0.9669

QMC JAGP with pseudo [72] 2.3847(5) 1.1930(5) 1.1942(8) 0.9605(8) 0.9650(8)
QMC JAGP all electron [72] 2.3905(4) 1.1944(6) 1.1989(5) 0.9630(7) 0.9628(6)

CCSD 2.3802 1.1918 1.1918 0.9646 0.9640
CCSD(T) [65] 2.3864 1.1950 1.1950 0.9686 0.9682
CCSD(T) 2.3853 1.1945 1.1945 0.9672 0.9667
MP2 [223] 1.1934 0.9706 0.9701
MP2 2.3859 1.1949 1.1949 0.9676 0.9670

Table 4.1 – Geometric properties (distances in Å) of the C2-symmetry minimum of the protonated
water dimer, comparison between different computational methods.

To go further with the geometry analysis, we also report in Table 4.2 the characteristic angles
of the protonated water dimer, namely: the intermolecular ∠ O1H+O2, the intramolecular ∠
H1O1H2 and the two dihedral ω-H1O1H+O2 and ω-H2O1H+O2 angles. Similarly to the DF2
functional, the B3LYP calculation predicts a too large value for the intermolecular ∠ O1H+O2

angle. Since this angle is clearly related to the position of the excess proton with respect to
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the straight line defined by the two oxygen atoms, it suggests that the effective Coulomb
interaction might be overestimated. We therefore expect the B3LYP functional to exhibit a
too large slope of its PES for short oxygen-oxygen distances, as for the DF2 functional. The
intramolecular ∠ H1O1H2 angles are correctly reproduced within the DF2 approach, except
the BLYP/B3LYP functionals. A good agreement (within 0.3◦) with the reference CCSD(T)
result is also found for both the MP2 and the QMC techniques. The observables that depend
the most on the employed theory to describe the electronic structure of the protonated water
dimer are the dihedral angles ω-H1O1H+O2 and ω-H2O1H+O2. Indeed, such quantities are
related to the soft vibration modes of the system than can strongly differ from one theory to
another. In particular, the DF2 functional predicts dihedral angles that are dramatically too
large, making this functional unreliable for a correct description of the geometric properties
of the H5O+

2 ion around its minimum energy configuration. Similarly to PBE and other GGA
functionals such as BLYPP, DF2 cannot be used to provide an accurate picture of the PT
physics in the protonated water dimer and larger water clusters. The dihedral angles predicted
within a QMC framework are quite accurate, if compared to the DFT results, with respect
to the CCSD(T) benchmark values. We attribute this discrepancy to the intrinsic noise that
affects the structural relaxation in the QMC approach which biases the correct sampling of
the softest vibration modes of the system. However, the overall ground state geometry of the
Zundel ion is appropriately described by QMC techniques and better than using DFT.

Theory ∠O1H
+O2 ∠H1O1H2 ω-H1O1H

+O2 ω-H2O1H
+O2

DFT-PBE [72] 173.661 109.161 295.690 163.809
DFT-PBE 174.359 109.887 297.562 161.459
DFT-DF2 175.7947 109.243 307.593 177.981

DFT-BLYP [223] 173.6
DFT-BLYP 174.694 110.161 298.863 160.642
DFT-B3LYP 175.214 110.525 300.118 159.303

QMC with pseudo [72] 174.71(7) 109.16(9) 293.5 158.5
QMC all electron [72] 174.43(9) 109.40(7) 296.6 162.0

CCSD 173.949 109.143 296.648 162.718
CCSD(T) [65] 173.730 108.8 295.3 163.6
CCSD(T) 173.6780 108.850 295.731 163.507
MP2 [223] 173.7
MP2 173.5157 108.815 295.780 163.445

Table 4.2 – Geometric properties (angles in ◦) of the C2-symmetry minimum of the protonated water
dimer, comparison between different computational methods.

To summarize, we have demonstrated that at variance with DFT, the QMC approach is able to
accurately describe not only the energetic properties but also the evolution of the protonated
water geometry as a function of the oxygen-oxygen distance. Indeed, a very close agreement
with the reference CCSD(T) results is observed, particularly in the critical region defining the
frontier between the C2-symmetric Zundel complex and the asymmetric one. Despite giving
very satisfactory results, the MP2 theory exhibits a poorer scaling with the system size than
the VMC approach, for a comparable accuracy. In the following, we will therefore use the
VMC framework to study the PT processes at finite temperature in the protonated dimer,

— 94 —



Chapter 4. The Zundel ion: a benchmark system

and later in the hexamer (Chapter 6).

4.1.3 Accuracy of the Quantum Monte Carlo approach

In the previous Subsections, we have established that the accuracy of the QMC approach is
certainly very close to the reference CCSD(T) method. Nevertheless, at some points such as
the description of the two dihedral angles, the QMC estimates are far from being perfect. Our
goal is now to objectively determine the place of the QMC approach in the hierarchy of the
advanced electronic structure methods for the specific case of the water clusters.

To assess the accuracy and the reliability of the QMC geometries with respect to those ob-
tained via the PBE and the DF2 functionals, we decided to carry out a series of CCSD and
CCSD(T) energy gradient estimations, keeping the geometry of the system frozen. In princi-
ple, when one performs such a calculation on the equilibrium geometry of the corresponding
theory (CCSD or CCSD(T) geometries in our case), the obtained gradients should be equal
to zero1. Therefore, the finite values of the computed gradients give us precious information
on the quality of the input configuration. The more accurate the geometry, the lower the
energy gradients. The PBE, DF2 and QMC optimal geometries employed to perform such
CC calculations are chosen within the range dO1O2 = 2.25 − 2.65 Å, which corresponds to
the very large majority of the configurations that will be explored by the H5O+

2 ion during
its dynamics. The computed CCSD (top) and CCSD(T) (bottom) gradients are reported in
Figure 4.4. We isolate in the left panels the gradient module acting on the excess proton
whereas the average of the gradient module applied on each atom, excluding the two oxygen
atoms, of the Zundel cation is represented in the right panels. In practice, the energy gra-
dients are estimated numerically thanks to an option of the MOLPRO suite of codes that
generates symmetric displacements of each considered atom. Then, the energy gradients are
straightforwardly computed, using finite differences, namely:

∂E

∂q
=
E(q + δq)− E(q)

δq
, (4.1)

with the user-specified2 elementary displacement is set to δq = 0.01 Å. In Figure 4.4, the dark
green curves are the obtained gradients with some PBE geometries, while the DF2 results are
plotted in black and the QMC ones in red.

When looking at the upper panels of Figure 4.4, it is clear that, working at the CCSD level
of theory, the QMC geometries are much more accurate than the configurations predicted by
the PBE and the DF2 functionals. Indeed, the energy gradients computed using the QMC ge-
ometries never exceed 1 mHa/Å (0.6 kcal/mol/Å) for the excess proton and 3.5 mHa/Å (2.2
kcal/mol/Å) for the other atoms, which is particularly small. As expected, PBE geometries
lead to larger values of the CCSD energy gradients than those obtained in DF2, confirming
the QMC > DF2 > PBE hierarchy already established in the previous Subsection.

1at full convergence.
2We verified on a single geometry that the result remains unchanged by setting δq = 0.005− 0.2 Å.
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The analysis of the bottom panels of Figure 4.4 is interesting since it tells us that the aforemen-
tioned hierarchy is completely shaken within the CCSD(T) approach. Indeed, the CCSD(T)
energy gradients computed on the QMC geometries are no longer the smallest ones, at variance
with the CCSD result. The average QMC gradients values are larger than the ones computed
within the DFT framework, by about 3 mHa/Å(1.9 kcal/mol/Å) per atom. Nevertheless, the
PBE, DFT and QMC excess proton gradients display very similar values (bottom left panel),
indicating that the major bias in the QMC geometries certainly comes from the description of
the intramolecular OH distances. To justify this remark already reported during the analysis
of Table 4.1, we argued that this discrepancy with the reference CCSD(T) result might come
from the size of the employed basis to perform CCSD(T) calculations.
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Figure 4.4 – Excess proton (left) and average (right) gradients calculated for the Zundel ion at the
CCSD (top) or CCSD(T) (bottom) level of theory for various oxygen-oxygen distances dO1O2 . Results
are obtained with the TZ basis set.

To verify this assumption, we performed a series of CCSD and CCSD(T) energy estimations
of the obtained QMC and DF2 geometries at dO1O2 = 2.65 Å with increasing the basis set
size from the TZ3 to the larger Quintuple Zeta (5Z). The computed energy gradients are

3We recall to the reader that when it is not specified, the TZ basis set is the one we employed to carry out
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plotted in Figure 4.5 as a function of the basis set size, growing from TZ to 5Z. First of all, we
remark that the gradients applied to the excess proton or to the other atoms (except for the
two oxygen atoms which are pinned) tend to vanish for the QMC geometry when the basis
set size increases for both CCSD and CCSD(T) calculations. The behavior of the computed
gradients on the DF2 geometry is opposite to its QMC counterparts, the CCSD and CCSD(T)
gradients being larger with an increasing number of gaussians. It is clear from the left panel
of Figure 4.5 that the predicted position of the central proton is better predicted within the
QMC approach than using the DF2 approach, as already discussed in the previous Subsection.
Moreover, when inspecting the right panel of Figure 4.5, we notice that, in the complete basis
set limit, the configurations predicted by the QMC approach are certainly closer to both
CCSD and CCSD(T) geometries than the DF2 ones. This suggests once again that, despite
its slightly less accurate description of the intramolecular OH distances, the QMC approach
is trustable to accurately describe PT in water since it provides here an excellent description
of the proton localization. Last but not least, we remark that at variance with the DF2
results, the CCSD(T) gradients on the QMC geometry at dO1O2 = 2.65 Å are larger than
the CCSD values. We can deduce that the QMC geometries are closer to the CCSD ones
than to those obtained by CCSD(T). Based on this result together with Tables 4.1 and 4.2,
we can thus establish that the VMC method provides a very accurate description of the
geometric properties of the protonated water dimer, with very close agreement to reference
CCSD/CCSD(T) calculations. As we will see in Chapter 6, this accuracy is preserved when
one increases the cluster size, making the VMC approach a promising candidate to study
liquid water or aqueous systems.
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Figure 4.5 – Excess proton (left) and average (right) gradients calculated for the Zundel ion at
the CCSD/CCSD(T) levels of theory with various basis sets. For the two tested geometries, the
oxygen-oxygen distance is dO1O2

= 2.65 Å.

To summarize, thanks to a detailed energy gradients analysis, we have confirmed that the
QMC - and more specifically the VMC - approach provides an accuracy close, or almost
equivalent to the golden reference CC method, with a milder scaling with the system size.
Using to this very significant advantage of the QMC approach and the methodological de-

all our quantum chemistry calculations.
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velopments introduced in Chapter 3, we are now almost ready to explore the impact of both
thermal and nuclear quantum effects on the proton mobility in small protonated water clus-
ters. Indeed, the very last step before carrying out finite temperature Langevin simulations
of such systems, with noisy ionic QMC forces, consists in checking that this intrinsic noise
does not bias the dynamics.

4.2 Benchmark calculations

In this Section, we apply the methodology developed in Chapter 3 to perform QMC-based
Langevin Dynamics (LD) or Path Integral LD (PILD) simulations of the Zundel complex in
the gas phase at low (T = 50 K) and room (T = 300 K) temperature, with and without NQE.
A schematic representation of our approach is given in Figure 4.6. We emphasize that we
perform here two distinct stochastic dynamics within the same system: the first one concerns
the electrons whose positions are sampled by a QMC random walk in the configurational space
of the electronic coordinates (blue points). The ions (oxygen atoms in red and hydrogen atoms
in white) also move on the electronic PES according to a Markovian (Langevin) Dynamics to
keep the system at a constant temperature T.

Figure 4.6 – Intuitive representation of the QMC-driven (Path Integral) Langevin Dynamics devel-
oped in this thesis and applied to the Zundel ion. The electronic configurations adopted by the QMC
walkers are depicted by the blue points, while the oxygen and the hydrogen atoms are represented by
red and white spheres, respectively.

To benchmark our results, we first carried out Classical Momentum-Position Correlator (CPMC)
and Path Integral Ornstein Uhlenbeck (PIOUD) calculations using the analytical CCSD(T)
PES provided by Huang et al. [65]. In that case, the ionic forces are computed as finite dif-
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ferences of the potential energy, with an increment δq = 10−4 Bohr in the geometry. The
dynamics, with either QMC forces or CCSD(T)-parametrized PES, is propagated with a time
step δt = 1 fs until we obtain fully converged atomic distributions. As previously discussed
(Section 3.2.4), the input friction (γBO for CMPC, γ0 for PIOUD) is set to 1.46×10−3 a.u., in
order to both ensure a good thermalization of the system and minimize the potential energy
autocorrelation time τV . Consequently, that value also maximizes the diffusion of the nuclei
between two subsequent LD iterations, and guarantees an efficient phase space sampling. We
use P = 128 beads at low temperature whereas P = 32 beads are enough to fully recover
NQE at room temperature, which is in agreement with Ref. 201. We stopped the production
run after 20 ps of dynamics, which is the minimum required to obtain converged static prop-
erties [111]. At the end of each simulation, the average temperature, the virial and primitive
kinetic energy estimators, the energy fluctuations, and the evolution of the energy gradients
with respect to the electronic parameters are checked to ensure the reliability of the simula-
tion. In the electronic QMC part, the correct BO PES is provided by the full convergence
of the WF parameters at each ionic configuration. On the other hand, to follow as close as
possible the PES during the ion dynamics, the values of the energy gradients with respect to
the WF parameters must be lower than 3-4 times their standard deviation.

4.2.1 Validation of the classical dynamics

We first start with the simpler case of the classical Zundel. We present in Figure 4.7 the nor-
malized oxygen-oxygen (gOO) (top panels) and oxygen-(excess) proton (gOH) (bottom panels)
distributions as a function of the inter-oxygen distance. These Radial Distribution Functions
(RDFs) are obtained at low (left panels) and room (right panels) temperature for classical
nuclei. Both the VMC and benchmark CCSD(T) results are shown.

We observe a good overall agreement4 between the Pair Correlation Functions (PCFs) gOO
and gOH obtained with the reference CCSD(T) calculations and our VMC-based simulations
at the two considered temperatures, proving that our simulations are free of biases. This is
very encouraging in the perspective of simulating larger systems for which there is no available
parametrized PES on highly accurate quantum chemistry calculations. This is for instance the
case of the protonated water hexamer whose fascinating properties will be studied in Chapter
6 at an unprecedented level of accuracy.

Looking at Figure 4.7, we notice a broadening of the oxygen-oxygen and oxygen-proton RDFs
when the temperature of the Zundel ion increases. Indeed, at low temperature (T = 50 K),
the protonated water dimer is almost frozen and moves a little around its minimum energy
configuration, leading to high and sharp peaks in the gOO and gOH RDFs. On the contrary,
at room temperature, the thermal energy brought to the system is transformed into kinetic
energy. Therefore, the molecular vibrations are more important and the motion of all the
atoms constituting the H5O+

2 ion, in particular the excess proton, is enhanced. This is char-
acterized by a more diffuse peak in the gOO and gOH RDFs. We also remark that the peak of
the oxygen-(excess) proton RDF gOH is symmetric at T = 50 K, which is no longer the case

4We are aware that the agreement could however be improved, especially as regards as the gOH distributions,
because of the shortness of the QMC-MD trajectories.
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around ambient conditions (T = 300 K). This suggests that, within a classical picture, the
central proton is localized near an oxygen atom, and the protonated water dimer is better de-
scribed as a H3O++ H2O complex (hydrated hydronium) than by a Zundel complex. We will
see in the following that this description is not complete, since one should take into account
NQE to properly understand the temperature-induced behavior of the excess proton in this
system.

Finally, we highlight that in the classical case, the intrinsic noise present in the QMC forces
tends to spoil the sampling of the instantaneous oxygen-oxygen and oxygen-proton distances,
which has to be accurate because the resulting distributions are extremely sharp. This ex-
plains the presence of small but noticeable discrepancies between the RDFs extracted from
VMC-driven LD simulations and those obtained via CCSD(T) forces. To reach a perfect
agreement, one should in principle prolongate the MD trajectories on large timescales (about
ttraj = 50 ps). We did not generate such long LD trajectories to save computational resources5

to study more complex systems, such as the protonated hexamer (Chapter 6), with a richer
and unexplored physics than in the already well-understood Zundel ion.

Our methodological development to perform QMC-driven classical LD passed the stringent
test to provide almost exactly the same RDFs as those extracted from reference simulations
with an analytical CCSD(T) PES. The following step is to ensure that the machinery (both
the PIOUD algorithm and the bead-grouping technique) set in Chapter 3 to perform fully
quantum simulations of any water cluster with QMC forces also produces the correct distri-
butions.

4.2.2 Validation of the quantum dynamics

In this Subsection, we will focus our attention on two issues. The first one, is to ascertain
that our novel PIOUD integrator works efficiently with the noisy ionic QMC forces, with no
irreversible biases in the ion dynamics, as we did in the classical case for the CMPC inte-
grator. Afterwards, we will discuss the validity of the bead-grouping technique. Indeed, this
approximation to reduce the computational cost of our QMC-driven simulations, has only
been validated on a simple system, the H2 molecule, and needs to be verified on a system
with different chemical elements. To that purpose, we performed an additional simulation at
low temperature (T = 50 K) by taking Ngroups = 16. As explained in Subsection 3.2.2, this
implies that instead of considering P distinct WFs Ψλav(R; q(k))k=1,...,P whose electronic pa-
rameters {λav} are averaged over the P = 128 beads constituting the necklace, the quantum
system is described by averaging the parameters {λ(l)

av}l=1...Ngroups describing each QMC WF
among Ngroups = 16 different groups of 8 beads. The corresponding dynamics is in principle
more accurate but also more noisy with respect to the Ngroups = 1 case, so probably less
convenient to exploit, disregarding the fact that, in this case, the computational cost is about
Ngroups = 16 times larger.

In Figure 4.8 we present the normalized oxygen-oxygen gOO (top panels) and oxygen-(excess)

5Computational expenses to generate such QMC-driven trajectories are discussed at the very end of the
next Subsection.
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Figure 4.7 – Normalized oxygen-oxygen (top) and oxygen-(excess) proton (bottom) distributions
obtained by CMPC-LD simulations at low temperature T = 50 K (left) and T = 300 K (right).
The black curves represent the distributions obtained with analytic CCSD(T) forces, whereas the red
curves correspond to VMC-LD dynamics. The friction is set to γBO = 1.46× 10−3 a.u.
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proton gOH (bottom panels) distributions as a function of the inter-oxygen distance, as in the
classical case. These RDFs are obtained at low (left panels) and room (right panels) temper-
ature for quantum nuclei. We first notice that at T = 50 K, the quantum effects significantly
broaden the gOO and gOH RDFs. Consequently, the gOO distribution is renormalized by a
factor of 3, while the height of the gOH peak is divided by 2 with respect to its classical
counterpart. The NQE have thus a huge effect in the oxygen-oxygen distribution function
because the classical system is almost frozen around its zero temperature equilibrium config-
uration, whereas the ZPE leads to strong quantum fluctuations even at low temperature. At
T = 300 K, even though NQE are much less significant for the oxygen-oxygen distribution,
they are still very important for the oxygen-proton correlation function, where the shapes of
the distributions obtained in the classical and in the quantum case are very different. Indeed,
the classical gOH distribution is asymmetric around the equilibrium distance, whereas the
quantum correlation function is symmetric with much longer tails, indicating the possibility
of instantaneous proton hops by quantum tunneling. On the contrary, NQE are less dramatic
at room temperature for the gOO radial distribution, as expected from the greater mass of
the oxygen atoms which shortens its thermal de Broglie wavelength (Eq. (2.47)).

Our benchmark system is ideal also to check out the quality of the bead-grouping technique
described in Subsection 3.2.2 for the electronic parameters in ab initio VMC-PIOUD simu-
lations. At room temperature the bead-grouping with Ngroups = 1 works very well, giving
results on the top of the CCSD(T) reference. At low temperature, the agreement between
the CCSD(T) reference and the VMC-PIOUD results with Ngroups = 1 is still good, although
some minor discrepancies appear in the tails of the oxygen-oxygen and oxygen-proton dis-
tributions. The strongest bias, though still quantitatively acceptable, is present in the gOH
function, as this pair distribution is the most sensitive to quantum delocalization effects. By
increasing Ngroups to 16, we improve the peak positions of both gOH and gOO, and the error
made in their tails is significantly reduced. This can be simply interpreted by considering
the quantum-to-classical isomorphism of Eq. (2.59): hydrogen atoms have a light mass, so
the corresponding ring polymers are much more spread than the ones mimicking the quan-
tum nuclei of oxygen atoms. Consequently, the bead-grouping approximation on the optimal
electronic parameters {λ(l)

av}l=1,...,Ngroups is more severe for hydrogen than for oxygen. The
resulting potential energy landscape is thus affected, and displays a larger curvature around
its minimum, due to the energy penalty given by the non fully-optimized WFs, being the
worst for those beads which are the farthest from the centroid. This effect is apparent in
the slightly shorter tails of the PCF, since the corresponding ionic configurations are less
visited as they have higher energies. Therefore, a compromise must be found by minimizing
the total amount of CPU time spent for a simulation and the desired target accuracy on
the structural and static properties of the system. While at 50 K an Ngroups > 1 should be
chosen, at 300 K Ngroups = 1 gives very accurate results. Thus, at room temperature we are
able to carry out a reliable and very accurate fully-quantum dynamics of the Zundel cation
in almost the same CPU time as for classical nuclei. More generally, since the hydrogen atom
is the lightest chemical element with the strongest NQE because of its very short thermal de
Broglie wavelength, we claim that the bead-grouping technique can reasonably be used for the
simulation of any extended system with heteroelements (e.g. carbon or nitrogen to cite a few).
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We also remark that, at variance with the classical case, the QMC intrinsic noise is here
helpful in improving the quantum delocalization of the nuclei in the desired regions of the
phase space. The phase space sampling efficiency seems to be enhanced in the quantum
case with respect to the classical one. The quantum results are unexpectedly easier to con-
verge, and they yield radial distributions with reduced error bars compared to their classical
counterparts.
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Figure 4.8 – Normalized oxygen-oxygen (top) and oxygen-(excess) proton (bottom) distributions
obtained by PIOUD-LD simulations at low temperature T = 50 K (left) and T = 300 K (right). The
black curves represent the distributions obtained with analytic CCSD(T) forces, whereas the red and
blue curves correspond to VMC-PILD dynamics with Ngroups = 1 and Ngroups = 16, respectively.
Quantum simulations are performed with P = 128 beads at T = 50 K, and P = 32 beads at T = 300

K. The friction is set to γ0 = 1.46× 10−3 a.u.

Last but not least, we discuss the computational cost of our VMC-(PI)LD simulations. The
CPU time required on HPC Marconi at CINECA (2.3 GHz 2 x 18-cores Intel Xeon E5-2697 v4
processors) to carry out a 20 ps trajectory of the Zundel ion using our VMC-(PI)LD approach
is about 270k core hours. There is no significant difference between classical and quantum
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simulations, as long as the path integral dynamics is performed with the bead-grouping ap-
proximation with Ngroups = 1. The target statistics has been detailed in Chapter 3 and is
enough to have stable and converged simulations in both electronic and ionic parts. At the
given target statistics, relaxing the bead-grouping approximation in the quantum case implies
a total computational time increased by a factor 1 ≤ Ngroups ≤ P with respect to the fastest
case of Ngroups = 1. In the perspective of applying our novel methodology to larger protonated
water clusters such as the protonated water hexamer in Chapter 6, it is worth mentioning
that for single-point calculations of equilibrium geometry at zero temperature, it has been es-
timated [72] that the six-molecule complex represents a crossing point in the relative efficiency
between VMC and CCSD(T) methods. By considering the excellent performances of QMC
for parallel computations, this technique is already competitive for small systems as far as
the elapsed computational time is concerned. Moreover, it is obvious that a further increase
in the cluster size would make the QMC approach considerably favored even in terms of total
computational demand, thanks to its milder scaling with the system size.

To conclude, we have made a step forward in the development of a fully quantum dynamics of
small protonated water clusters since we demonstrated the ability of our method to properly
reproduce accurate results obtained with the most modern quantum chemistry techniques,
such as the CCSD(T) method, at a reasonable computational cost. Indeed, a good agreement
in the computed RDFs by means of QMC or CCSD(T) approaches is found, for both a clas-
sical and a quantum description of the nuclei. We did not however study in detail the impact
of thermal and nuclear quantum effects on the excess proton mobility in the Zundel cation
yet. This point is discussed in the following Section.

4.3 Proton transfer in the Zundel ion

It is interesting to quantify NQE versus thermal effects, by observing the evolution of the
PCFs at increasing temperature or when the quantum delocalization of the nuclei is taken
into account. To investigate the proton mobility in the very high temperature regime, we de-
cided to perform two supplemental simulations at T = 900 K, with the analytical CCSD(T)
PES provided by Bowman and his colleagues [65]: one with classical ions using the CMPC al-
gorithm and a quantum trajectory generated for P = 4 beads thanks to the PIOUD algorithm.

A direct comparison of the evolution of the gOO and gOH RDFs as a function of the tem-
perature is reported in Figure 4.9 for both a classical and a quantum description of the nuclei.
For classical particles, there is a clear broadening of the gOO and gOH distribution with in-
creasing temperature, as we can see on the left panels of Figure 4.9. Indeed, the entropy
is increased and the instantaneous oxygen-oxygen and oxygen-proton distances are subject
to enhanced fluctuations. This is confirmed by examining the upper left panel of Figure
4.10, where we plot the oxygen-proton distance for the two oxygen sites as a function of the
inter-oxygen distance. At T = 50 K, the classical proton remains extremely localized around
the C2-symmetry geometric minimum which leads to a very sharp distribution, reported in
the top panels of Figure 4.7. At T = 300 K, the system has more thermal energy to visit
asymmetric configurations with longer oxygen-oxygen distance and the excess proton sitting
closer to one oxygen than to the other. This is represented by the two branches in the middle
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left panel of Figure 4.10. Even in this situation the symmetric configurations are more often
explored than the phase regions forming the two wings. In the very high temperature limit (T
= 900 K), the thermal energy is so important that the protonated water dimer is sometimes
close to the dissociation limit, at large OO distances (bottom left panel).

On the contrary, thermal effects are much less important when NQE are taken into account,
as apparent from the right panels of Figures 4.9 and 4.10, which show very similar correla-
tion functions at T = 50 K and T = 300 K. Indeed, quantum fluctuations make the proton
able to easily jump to a neighbor oxygen site by quantum tunneling and Zero Point Energy
(ZPE), recovering a more symmetric behavior. This is characterized by longer tails in the
gOH distribution function compared with the classical ones at T = 300 K, and by the absence
of wings in Fig. 4.10. Moreover, the 2D distributions are nearly the same at low and room
temperature, as we can see in the top right and middle right panels of Figure 4.10. These
conclusions are in agreement with previous studies on this system [172,201]. Interestingly, when
one increases further the cluster temperature up to T = 900 K, thermal effects start to be
significant. Indeed, inspecting the right panels of Figure 4.9, we observe that the RDFs are
no longer similar to their low- and room temperature counterparts. More particularly, the
quantum gOH RDF is no longer symmetric at T = 900 K, indicating that the proton is now
localized near its closest oxygen neighbor, as in the classical picture. Indeed, the quantum
gOH RDF is very similar to its classical counterpart in the very high temperature limit. This
is also confirmed looking at the oxygen-oxygen and oxygen-protons bidimensional distribu-
tions obtained at T = 900 K, represented in the bottom panels of Figure 4.10, whose shape
is very similar for classical and quantum ions. This last observation confirms that NQE are
essential to fully understand the microscopic mechanisms involving the proton dynamics in
liquid water at ambient conditions.

To put it in a nutshell, thanks to the methodological developments introduced in Chapter 3,
we have been able to propose a complete investigation of the PT physics in the Zundel ion.
Indeed, we have confirmed the paramount importance of NQE to properly describe the excess
proton mobility, especially around ambient conditions, which are the most frequent ones in
chemical or biological systems. At higher temperatures, the proton tends to be localized
by forming a covalent bond with its closest oxygen neighbor. However, despite its utility to
benchmark novel approaches as we did in this Chapter, the Zundel ion is not a realistic system
to model PT in the bulk water or in aqueous systems. Indeed, this cation is isolated and there
is no solvation effects due to the presence of surrounding water molecules. To make a further
step in the comprehension of PT in water, we should apply our methodology to larger and
more realistic systems, such as the protonated hexamer. The latter, that will be extensively
studied in Chapter 6, is composed by a Zundel-like core and 4 solvating molecules forming 4
H-bonds with the inner part of the complex. To first provide an accurate description of the
interaction between the core and the solvation shell, we will study the water dimer in the next
Chapter.
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Figure 4.9 – Evolution of the oxygen-oxygen (lop) and oxygen-(excess) proton (bottom) distributions
as a function of the temperature for the classical (left) or the quantum (right) Zundel ion.
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Figure 4.10 – Bidimensional oxygen-oxygen and oxygen-proton distributions obtained by QMC-
or CCSD(T)- driven CMPC-LD (left) and PIOUD (right) simulations at T = 50 K (top), T = 300

K (middle) and T = 900 K (bottom). The black circles correspond to the equilibrium geometries of
the Zundel ion at zero temperature obtained by CCSD(T) calculations [72]. Quantum simulations are
performed with P = 128 beads at T = 50 K, P = 32 beads at T = 300 K and P = 4 beads at T = 900

K. The friction is set to γ0 = 1.46× 10−3 a.u.
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Interlude: the water dimer
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As a central prototype for hydrogen bonding, the water dimer (H2O)2 has been
one of the most studied molecular clusters by quantum chemistry calculations since

1968 [231]. Various electronic structure methods (Hartree-Fock, Density Functional Theory,
Møller-Plesset and Coupled Cluster approaches to cite but a few) have been used to ob-
tain both the geometry and the Potential Energy Surface (PES) of the dimer. In partic-
ular, the computed geometric parameters have been compared with reported experimental
results [232–234]. High-level electronic structure benchmarks are often used to assess the ac-
curacy of lower scaling methods such as new DFT functionals. One of the main thrusts of
these theoretical investigations was to estimate the hydrogen bond energy and its decomposi-
tion into different components (polarization, exchange, induction and dispersion). The water
dimer stationary points and PES are of critical importance in the development of transferable
many-body potentials for water. We refer the reader to the reviews of Mukhopadhyay et al.
for more information about recent experimental [235] and theoretical advances [236] on this topic.

In this Chapter, we present some properties (PES and geometric parameters) of the water
dimer using different techniques such as the Density Functional Theory (DFT), the Coupled
Cluster (CCSD/CCSD(T)) method or the Quantum Monte Carlo (QMC) approach. More
particularly, we will benefit from the reduced size of this system to perform, at a very reason-
able computational cost, a number of tests to improve the quality of the QMC wave function
(WF) in the perspective of simulating larger clusters. The results presented here are nec-
essary to build a reliable QMC WF that is simple enough to be employed on larger scales
calculations, at it will be done in Chapter 6.

The Chapter is organized as follows. First, we will check the ability of QMC methods to
describe accurately the PES of the non-bonding water dimer depicted in Figure 5.1a. Second,
the accuracy of various QMC WF will be tested in the prototypical bonding water dimer (Fig-
ure 5.1b). In particular, the role of the mathematical form of the QMC WF and the selected
basis sets to describe both Jastrow and determinantal parts of the WF will be discussed.
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5.1. Non-bonding water dimer

(a) (b)

Figure 5.1 – Different configurations of the water dimer (H2O)2. (a) non-bonding water dimer. (b)
Bonding water dimer.

5.1 Non-bonding water dimer

In the non-bonding water dimer (Figure 5.1a), there is no significant stabilization of the clus-
ter due to the presence of chemical (covalent or H-) bonds between the two water molecules
of the dimer. Therefore, only Van der Waals (VdW) and dispersion interactions remain, mak-
ing the non-bonding water dimer an interesting system to benchmark the ability of various
electronic structure methods to properly capture such effects. As already mentioned, we need
to verify that the QMC approach is able to describe properly the VdW interactions in water,
in the perspective of simulating larger waters clusters, or even the bulk liquid.

To that purpose, we perform a series of structural relaxations of the non-bonding water
dimer at various oxygen-oxygen distances OO for various computational methods. Being
aware that, by essence, this configuration is not the more stable one of the (H2O)2 complex,
we need to apply to the system some constraints during the structural optimization. At a
given oxygen-oxygen distance OO, we imposed the position of the 4 hydrogen atoms to be
symmetric with respect to the inversion point of the water dimer, defined by the midpoint
of the OO distance. This symmetry choice is not unique, as Lin and coworkers studied the
non-bonding water dimer VdW properties by imposing the ∠ OHO angles to be equal to 180◦

and calculating electronic energies at various oxygen-oxygen distances OO [237].

In Figure 5.2, we represent the binding energy Ebind as a function of the oxygen-oxygen
distance OO. The water dimer binding energy, a key quantity in this Chapter, is defined as

Ebind = Edimer − 2Emonomer, (5.1)

where Edimer and Emonomer are the water dimer and monomer energies, respectively. The
LDA binding energy, represented by the black solid line, confirms that this functional pro-
vides a very severe overstructuration of the water dimer, as already discussed in the first
Chapter. Even worse, this functional gives a very poor position of the non-bonding dimer
minimum OOLDA ' 3.2 Å more than 0.5 Å shorter than the converged reference CCSD(T)
value OOCCSD(T) = 3.8 Å (brown curve). The PBE result, given by the dark green plot, is
in remarkable agreement with the reference CCSD(T) calculation whereas the a priori more
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sophisticated B3LYP functional underestimates the binding energy by a few (∼ 0.2) kcal/mol.
We mention that we verified the convergence of our DFT calculations with the basis set size
by performing the same analysis using a quadruple zeta (QZ) basis set. The results, not
shown here, superimpose with the curves obtained with the triple zeta (TZ) basis set, still
used as our reference basis set in this thesis.

We want to investigate here the ability of the QMC approach to capture the VdW and
dispersion interactions in the water dimer, disregarding the possible deficiencies arising from
an eventual simplification of the WF. Consequently, we performed several VMC calculations
using either a JSD WF expanded on a primitive basis set, which is composed of:

• 9 (6+3) basis functions for the Jastrow part, being: 3s, 2p, 1d for the oxygens and 2s, 1p

for the hydrogens;

• 18 (12+6) basis functions for the determinantal part, being: 5s, 5p, 2d for the oxygens
and 4s, 2p for the hydrogens.

We point out that this primitive basis set is exactly the same one as we employed to build
the JAGP WF describing the Zundel ion in the two preceding Chapters. As in Chapter 3,
we also applied the Geminal embedding scheme [202] on the determinantal part of the QMC
WF to reduce its number p of parameters. According to the Ref. 72, the best compromise
between accuracy and computational cost is found to use 8 hybrid orbitals for the oxygen
atoms1 and only 2 for the hydrogen atoms. Looking at Figure 5.2, the agreement of the VMC
binding energies computed on a primitive JSD WF2 (red points) and the CCSD(T) reference
values is excellent. As expected, the JSD WF with hybrid orbitals in its Slater determinant
is slightly less accurate, with binding energies that are underestimated by about ∼ 0.1− 0.2

kcal/mol (blue points), within the error bar. Even tough this QMC WF is less sophisticated
than the primitive one, it is already as accurate as that of the hybrid functionals, such as
B3LYP (magenta). This last remark further proves the ability of the QMC approach, via
the use of a Jastrow term in the QMC WF (Eq. (1.36)), to properly take account for VdW
contributions, at variance with most of the DFT functionals.

Once again, we have verified the robustness of the QMC approach, that is able to correctly
describe the non-bonding water dimer PES, at any oxygen-oxygen distance. A very good
agreement with the CC calculations is found, at variance with most functionals (LDA and
B3LYP). We also stress that the PBE functional works remarkably well for the description of
the non-bonding water dimer energetics. Although interesting as test case, the non-bonding
dimer is not the most representative configuration of the (H2O)2 complex in the bulk water
or in aqueous systems. Indeed, due to the presence of a well-structured H-bond network, the
bonding water dimer is a much more frequent configuration. Its properties will be investigated
in the following Section.

1instead of 12 primitive gaussian type orbitals (GTOs), as described a few lines above.
2for the sake of simplicity, we name ’primitive’ a WF whose orbitals are expanded over a primitive basis

set.
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the OO distance. Comparison between different computational methods. Structural relaxation is
performed at each level of theory.
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5.2 Bonding water dimer

In this Section, we focus our attention on the bonding water dimer properties (Figure 5.1b).
As discussed in Chapter 1, the binding properties of this prototypical system have already
been studied by means of QMC methods [88,89]. Indeed, Sterpone et al. first proved the
ability of the QMC approach, and more specifically its LRDMC variant, to properly reproduce
the dissociation energy curve of the bonding (H2O)2 complex. They found the LRDMC
binding energy to be close to the experimental value, albeit slightly underestimated (by about
∼ 0.5 kcal/mol) [88]. Zen and his colleagues have then proposed a complete and systematic
convergence study of the bonding water dimer properties as a function of the chosen ansatz
and basis sets to describe the QMC WF. In the following, our goal is not to reproduce such a
detailed analysis but we aim at testing some QMC WF that could be employed for the study
of other water clusters and aqueous systems, such as the protonated hexamer.

5.2.1 Binding energy

We first start with the exploration of the bonding water dimer PES as a function of the
oxygen-oxygen distance OO. The results of our structural optimizations are presented in
Figure 5.3, where different functionals are tested within the DFT framework (left panel). The
QMC dissociation energy curves, obtained by both VMC and LRDMC, are plotted in the
right panel for two different WFs.

Let us start with the discussion of the DFT results. As we already noticed in the case
of the non-bonding water dimer, we confirm that the LDA functional (black) significantly
overestimates the water dimer binding energy. We found Ebind,LDA = 8.74 kcal/mol, in cor-
rect agreement with Ebind,LDA = 9.02 kcal/mol, predicted in Ref. 43. The observed minor
discrepancy can be explained by the coarse oxygen-oxygen distance grid used in the disso-
ciation energy calculations (left panel of Figure 5.3). The GGA and the hybrid functionals
such as PBE (dark green) and B3LYP (magenta) provide much more accurate dissociation
curves of the bonding water dimer, the results being significantly closer to the reference
CCSD(T) calculations. To be more quantitative, we found Ebind,PBE = 5.28 kcal/mol and
Ebind,B3LYP = 4.66 kcal/mol, in very close agreement with the tabulated values in literature
(5.2 and 4.57 kcal/mol, respectively [43]). The predicted CCSD(T) binding energy is slightly
too large (5.2 against 5.02 kcal/mol in Ref. 43). This can be attributed to the fact that
we took the B3LYP geometries for our CCSD(T) energy calculations without relaxing the
geometry at the same level of theory.

In the right panel of Figure 5.3, we report the binding dimer PES as a function of the oxygen-
oxygen distance OO, computed using the two QMC WFs tested in the previous Section, by
both VMC and LRDMC. We notice that the QMC approach is able to properly reproduce the
dissociation curve of the binding water dimer, giving correct values of the binding energy at
any oxygen-oxygen distance OO. As expected, the LRDMC result is even more accurate that
its VMC counterpart, with an overall agreement within ∼ 0.3 kcal/mol with the reference
CCSD(T) curve. A more accurate and detailed study of the QMC binding energies will be
presented in Table 5.1.
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Figure 5.3 – Binding energy (kcal/mol) of the bonding water dimer (H2O)2 as a function of the
OO distance. Comparison between different computational methods. Left panel: DFT results. Right
panel: QMC results. Structural relaxation is performed at each level of theory, except for the CCSD(T)
and the LRDMC approaches. The LRDMC lattice parameter is set to a = 0.125.

In the perspective of simulating larger water clusters such as the protonated water hexamer in
Chapter 6, we need to tackle the problem of the number of variational parameters p defining
the QMC WF. Indeed, as discussed in Chapter 3, the computational time spent for a single
QMC evaluation of the electronic energy is roughly proportional to p. Therefore, we plan
to apply also the Geminal embedding scheme to the orbitals in the Jastrow factor. To the
best of our knowledge, this is the very first time that such a strategy is employed for the
Jastrow part of the QMC WF in water. We applied 3 distinct contractions schemes, referred
as O[m]H[n], with the integers m and n defining the number of employed hybrid orbitals for
each atom. For instance, the O[4]H[1] WF is the most simplified one, since it contains only 4
hybrid orbitals defining the oxygen atom in the Jastrow, whereas a single orbital is used for
the hydrogen atom. As one can see in the second column of Table 5.1, the Geminal embed-
ding scheme, applied to both the Jastrow and the determinantal part of the WF, drastically
reduces the number of parameters p describing the QMC WF. Indeed, only 1283 parameters
are required for the O[6]H[2] QMC WF, against 6303 for the fully primitive WF (both in the
Jastrow and the determinantal parts). Therefore, the statistical gain on the subsequent QMC
calculations is at least of a factor 5 and may be even more important in larger systems such
as the protonated water hexamer.

We need however to ensure that this increase of computational efficiency of the QMC calcu-
lations is not obtained at the price of a significant deterioration of the QMC WF, losing for
instance a significant proportion of the QMC binding energy. To address that issue, we per-
formed a series of structural relaxations of the bonding water dimer at the VMC level, using 3
different contraction schemes for the Jastrow orbitals, namely O[4]H[1],O[6]H[1] and O[6]H[2].
The corresponding results are represented in Figure 5.4, where the binding energies obtained
for each QMC WF are given in the insert. We highlight that the computed binding energy
the O[4]H[1] and O[6]H[1] hybrid WFs are affected by a significant basis set superposition
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error (BSSE). Indeed, we applied a correction3 of 0.68 and 0.2 kcal/mol per water molecule
to the O[4]H[1] and O[6]H[1] WFs, respectively. At variance with the two aforementioned
hybrid WFs, the BSSE of the O[6]H[2] WF is reduced to 0.01 kcal/mol and can reasonably be
neglected. As we can observe in Figure 5.4, the O[6]H[2] contraction scheme seems to be the
most adapted to properly describe the overall PES of the bonding water dimer at a moderate
computational cost. Indeed, a correct agreement (within ∼ 0.3 kcal/mol) is found with the
primitive JSD result.
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Figure 5.4 – Binding energy (kcal/mol) of the bonding water dimer (H2O)2 as a function of the
OO distance. Comparison between different Jastrow contraction schemes of the QMC WF. Structural
relaxation is performed for each employed basis set.

To pursue our discussion on the binding properties of the water dimer, we report in Table
5.1 the values of the water dimer, monomer and binding energies for various QMC WFs. The
number of parameters p describing the QMC WF is also given in the second column. We
first emphasize that the value of the primitive binding energy is presumably not converged,
since it represents roughly only 86% of the correct value. In the meantime, the simpler WF
with hybrid orbitals in the Slater determinant (SD) recovers 85% of the reference CCSD(T)
binding energy, as it is slightly less accurate than the primitive JSD. When the geminal em-
bedding scheme is applied to both the Jastrow and the SD, the corresponding binding energy
is found to be 4.05(8) kcal/mol, which is very reasonable (∼ 78% of accuracy), considering the

3The correction is defined as the energy difference between twice the energy of a single molecule and the
water dimer calculated at a very large distance.
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reduced number of parameters employed to describe the QMC WF. To go beyond the VMC
approach and try to recover a more important fraction of the overall binding energy of the
water dimer, we carried out some LRDMC calculations. In LRDMC, the lattice parameter
a = 0.125 gives unbiased Fixed-Node (FN) energy differences4. We will employ this value for
all LRDMC calculation carried out in this thesis. The LRDMC binding energy is estimated
around 4.7− 4.8 kcal/mol, in agreement with the value provided by Sterpone in Ref. 88. The
LRDMC value is close to the reference CCSD(T), proving once again its remarkable accuracy.

We also tested another analytic form of the QMC WF, by taking an Antisymmetric Geminal
Power matrix (AGP) instead of a SD to describe the fermionic part of the QMC WF. We find
that the JAGP WF is, for a given basis set, less accurate that its JSD counterpart to describe
the energetics of the bonding water dimer. Indeed, the JAGP binding energy is about ∼ 0.7

kcal/mol lower than the one predicted with the JSD WF. We have however to investigate the
quality of the water dimer geometric parameters, as it will be done in the following Subsec-
tion, before claiming that the JSD WF is more accurate than the JAGP one, or vice versa.

Last but not least, when one includes spin terms in the Jastrow factor, the binding en-
ergy is significantly improved (by about ∼ 0.6 kcal/mol) for both JSD and JAGP WF. This
significant improvement of the water dimer binding energy suggests that the spin-charge and
spin-spin correlations are not so small in water, and should be taken into account. To the best
of our knowledge, this is the first time that the possible influence of the spin on the binding
interactions between water molecules is discussed so far. This remark is however preliminary
and further analysis should be done to confirm the role of spin-spin correlations in water.

Method p Edimer (Ha) Emonomer (Ha) Ebind (kcal/mol)
VMC JSD primitive 6303 −34.50372(8) −17.24823(4) 4.46(8)

VMC JSD hybrids det 2089 −34.50337(9) −17.24818(5) 4.40(8)

VMC JSD hybrids Jas + det 1283 −34.49876(8) −17.24615(5) 4.05(8)

VMC JSD hybrids det + spin 5713 −34.51471(9) −17.25390(4) 4.34(8)

VMC JSD hybrids Jas + det + spin 1953 −34.51069(7) −17.25184(4) 4.40(7)

VMC JAGP hybrids Jas + det 1283 −34.50689(9) −17.25089(7) 3.21(9)

VMC JAGP hybrids Jas + det + spin 1953 −34.51713(6) −17.25551(5) 3.83(8)

LRDMC JSD primitive (a = 0.25) 6303 −34.5341(1) −17.26360(8) 4.3(1)

LRDMC JSD primitive (a = 0.125) 6303 −34.5333(1) −17.2629(1) 4.7(2)

LRDMC JSD hybrids det (a = 0.125) 2089 −34.5336(1) −17.2630(1) 4.78(9)

Table 5.1 – Water dimer, water monomer and binding energies for various QMC WF. The number
of parameters p of the WF employed for the calculations is also indicated.

To summarize, we have demonstrated that the QMC binding energies of both the non-bonding
and the bonding water dimer are in good agreement with reference CCSD(T) calculations,
albeit they are slightly underestimated. Indeed, describing such binding energies at the QMC
level is a complex task since a subtle compromise must be found between extreme accuracy

4The corresponding simulation is more time-consuming (by a factor ∼ 2) than if one sets a = 0.25, which
leads to partially converged results.
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and computational efficiency. Thanks to an original application of the Geminal embedding
scheme to the Jastrow orbitals, we have devised a robust QMC WF that properly describes
the water dimer energetics (80% of the CCSD(T) binding energy5), with a moderate number
of parameters. This development allows us to use such a WF to study larger water clus-
ters, such as the protonated water hexamer (Chapter 6). However, we have to ensure that
this encouraging result is accompanied by an accurate description of the (H2O)2 equilibrium
geometry.

5.2.2 Geometric properties

In this Subsection, we provide a detailed analysis of the bonding water dimer geometric pa-
rameters of its minimum energy configuration for various QMC WFs. The results are reported
in Tables 5.2 and 5.3, where DFT and references CCSDTQ [238] values are also indicated for
comparison. A particular attention will be dedicated to the two most sensitive geometric
parameters to properly describe the bonding water dimer minimum, namely: the oxygen-
oxygen distance O1O2, a key parameter for the proton localization in any water cluster (see
Chapters 4 and 6), and the oxygen-(central) proton distance O1H2. The correct description
of the two aforementioned parameters is of paramount importance since it implies an accurate
treatment of the electronic structure around the H- and covalent bonds in which the central
proton is involved. For the sake of readability, these quantities are reported in bold characters.

By inspecting Table 5.2, we notice that the QMC approach predicts an accurate equilib-
rium oxygen-oxygen distance O1O2 which is found to be 0.005 Å larger for the JSD WF, with
respect to the reference CCSDTQ geometry [238]. Looking at this observable, the JAGP WF
is much less accurate than its JSD counterpart, as the O1O2 parameter is overestimated by
∼ 0.04 Å. This is also in relation with a weaker binding energy (Table 5.1). On the other
hand, the QMC values of the O1H2 distances are all compatible with the reference CCSDTQ
result, within a 0.004 Å error bar, at variance with DFT results which predict too large
oxygen-(central) proton distance. We notice that the geminal embedding scheme applied to
the orbitals describing the Jastrow factor does not significantly spoil the overall description
of the water dimer geometry. We also highlight that the inclusion of spin terms into the
Jastrow factor improves the results obtained by the JAGP WF, as the oxygen-oxygen dis-
tance shortens, and the oxygen-(central) proton gets very close to the CCSDTQ value. This
improvement, is much less noticeable in the case of the JSD WF, suggesting that only the
JAGP WF should be employed to capture spin-spin correlations in the water dimer, and thus
in the bulk liquid.

Looking at Table 5.3, the ∠ H1O1H2 and ∠ H3O2H4 are very accurately described by the
QMC approach, as their values remain very close (within a 0.2◦ error) to the reference CCS-
DTQ values [238] for any QMC WF. The inclusion of spin terms in the Jastrow factor does not
significantly modify the intramolecular angles, even though the ∠ H3O2H4 is slightly better
described in this case. We are however convinced that the spin-spin correlations in water are
not so small, looking at the obtained water dimer binding energies when the spin is taken

5The CCSD(T) and VMC binding energies are in agreement within 0.5 kcal/mol, less than 1 kBT at T
= 300 K.
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5.2. Bonding water dimer

Theory O1O2 O1H1 O1H2 O2H3 O2H4

PBE-DFT 2.9105∗ 0.9657 0.9772 0.9682 0.9682

B3LYP-DFT 2.9105∗ 0.9596 0.9685 0.9616 0.9616

QMC JSD primitive 2.9105∗ 0.9536(2) 0.9600(2) 0.9561(2) 0.9547(2)

QMC JSD hybrids det 2.9165(4) 0.9539(2) 0.9614(2) 0.9553(2) 0.9557(2)

QMC JSD hybrids Jas + det 2.9232(4) 0.9537(2) 0.9602(2) 0.9553(2) 0.9549(2)

QMC JSD hybrids det + spin 2.9197(4) 0.9543(2) 0.9622(2) 0.9563(2) 0.9556(2)

QMC JSD hybrids Jas + det + spin 2.9271(4) 0.9539(2) 0.9616(2) 0.9550(2) 0.9558(2)

QMC JAGP hybrids Jas + det 2.9600(2) 0.9535(2) 0.9606(2) 0.9557(2) 0.9558(2)

QMC JAGP hybrids Jas + det + spin 2.9535(4) 0.9543(2) 0.9626(2) 0.9563(2) 0.9562(2)

CCSDTQ [238] 2.90916 0.95685 0.96414 0.95843 0.95843

Table 5.2 – Geometric properties (distances in Å) of the bonding water dimer minimum, comparison
between different computational methods. The ∗ indicates that we kept the distance O1O2 constant
during the structural optimization.

Theory ∠ H1O1H2 ∠ H3O2H4

PBE-DFT 105.148 105.037

B3LYP-DFT 105.807 105.649

QMC JSD primitive 105.145(5) 105.006(5)

QMC JSD hybrids det 105.101(5) 104.968(5)

QMC JSD hybrids Jas + det 104.979(5) 105.015(5)

QMC JSD hybrids det + spin 104.973(5) 104.950(5)

QMC JSD hybrids Jas + det + spin 105.004(5) 104.865(5)

QMC JAGP hybrids Jas + det 104.694(5) 104.729(5)

QMC JAGP hybrids Jas + det + spin 104.509(5) 104.810(5)

CCSDTQ [238] 104.854 104.945

Table 5.3 – Geometric properties (angles in ◦) of the bonding water dimer minimum, comparison
between different computational methods.
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Chapter 5. Interlude: the water dimer

into account in the Jastrow factor. We initiated the analysis of other molecular properties,
such as the charge density, the dipole moment and their fluctuations with or without spin
correlations in the QMC WF. They suggest that the spin-correlations tend to increase the
water dimer dipole, by increasing the partial charges of each oxygen atoms but this analysis
remains very qualitative and at a too early stage to provide clear conclusions.

To conclude, we have demonstrated throughout this Chapter, the ability of the QMC method
to accurately reproduce both the energetics and the geometry of the bonding water dimer,
at a reasonable computational cost. Furthermore, the preliminary study of the non-bonding
water dimer also proved that the QMC approach is able to capture subtle VdW effects. By ap-
plying a novel embedding scheme to the orbitals filling the Jastrow factor, we also provided a
useful simplification of the QMC WF, without significantly deteriorating its overall accuracy,
as the water dimer bonding energy and its geometric parameters are correctly reproduced.
This technical development will allow us to use such a WF to perform larger scale calcula-
tions to study more realistic problems, starting with the protonated water hexamer that will
be studied in the next Chapter. Finally, we stress that despite the remarkable accuracy of
the JSD WF to describe the water dimer properties, we keep using the JAGP WF to study
charged water clusters (as we did for the Zundel ion in Chapter 4). Indeed, this WF ansatz
allows larger charge fluctuations in the system, and is therefore more appropriate to describe
the creation of charge defects in water clusters such as the protonated hexamer.
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The protonated water hexamer
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For more than 200 years and the seminal work of von Grotthus [8], the correct molec-
ular description of the properties of the aqueous or hydrated proton H+

(aq) has intrigued
the scientific community [108,239]. Despite significant advances, the exact role of the solvated
proton in proton transfer (PT) reactions in chemical and biological systems is not fully eluci-
dated yet. The common picture is that the hydrated proton exists as the classical hydronium
cation H3O+ but it looks more appropriately described as a delocalized electronic charge de-
fect between multiple molecules. The spread of this charge defect blurs the identity of the
excess proton among two limiting structures, namely the Zundel [10] and the Eigen [9] ions.
Indeed, the hydrated proton infrared (IR) spectrum displays a combination of few discrete
absorption bands on top of a continuous broad absorption across the entire IR spectrum. Nei-
ther the symmetrically solvated hydronium ion H9O+

4 (Eigen), nor the equally shared proton
in the H5O+

2 (Zundel) ion models involving fast interconversions between these two configu-
rations [240] can individually rationalize this characteristic IR fingerprint.

To deal with this issue, Stoyanov et al. [241] have introduced the stable H+(H2O)6 (or equiv-
alently H13O+

6 ) species, which is Zundel-type in the sense that the excess proton is equally
shared between two water molecules. There is however more charge delocalization and, con-
sequently, the core of the cluster is characterized by an unusually long central oxygen-oxygen
distance. On the other hand, recent Molecular Dynamics (MD) simulations suggest the exis-
tence of a distorted, nonsymmetric Eigen-type cation, remaining at the heart of a dynamical
electronic charge defect spanning multiple water molecules [242]. This justifies our choice to
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study the protonated water hexamer during this thesis, since it represents the smallest pro-
tonated water cluster for which both of these characteristic binding motifs coexist [22,23]. The
two main protonated hexamer configurations are represented in the left and right panels of
Figure 6.1 for the Zundel-like and the Eigen-like forms, respectively.

(a) (b)

Figure 6.1 – Different configurations of the protonated water hexamer H13O+
6 . (a) Zundel-like

configuration with a Zundel center (H5O+
2 , green dashed line) and its first solvation shell (4 H2O). (b)

Eigen configuration with an Eigen cation (H9O+
4 , blue dashed line) on the left accompanied by two

solvating water molecules (2 H2O) on the right.

The protonated hexamer Potential Energy Surface (PES) has been partially explored by IR
spectroscopic measurements [216,243,244] and electronic structure calculations performed within
the DFT and the MP2 approaches [22,216,243,245], confirming that the two structures presented
above are the lowest energy isomers. Nevertheless, to the best of our knowledge, there is no
extensive study of the proton dynamics in the protonated hexamer at finite temperature. Fur-
thermore, the rare theoretical investigations attempting to model the PT in water clusters are
mostly performed with classical particles evolving in a PES evaluated at the DFT level [242,246].

Thanks to the tools described in the previous Chapters, we are now able to perform the
very first fully quantum dynamics of the protonated hexamer, with almost exact ionic forces
computed within a QMC framework. In this Chapter, we hope to shed some light on the
fundamental mechanisms that drive the dynamical behavior of the hydrated proton in water
clusters. It is organized as follows. First, we study the zero temperature properties of the
protonated water hexamer in Section 6.1. In particular, several electronic structure methods
are compared for the description of the PES (Subsection 6.1.1) and the geometry of the system
(Subsection 6.1.2). Their ability to predict the correct static barriers for proton transfer (PT)
are also discussed in Subsection 6.1.3. Afterwards, we present the results obtained for the
dynamics of the H13O+

6 ion with classical particles in Section 6.2. They are later compared
with those obtained in the quantum case (Section 6.3), where the competition between ther-
mal and Nuclear Quantum effects (NQE) is investigated (Subsection 6.3.3). In the last part
of the Chapter, we attempt to quantify the proton jumps occurring during the protonated
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Chapter 6. The protonated water hexamer

water hexamer dynamics in both classical and quantum cases (Section 6.4).

6.1 Zero temperature results

Analogously to the case of the Zundel ion (see Chapter 4), exploring the zero temperature
properties of the protonated water hexamer is of paramount importance. This constitutes a
preliminary step to predict the possible proton transfer scenarios which may occur at finite
temperature. Indeed, the physics of PT is certainly richer in the H13O+

6 ion than in the
Zundel cation. As we can see in Figure 6.2, this is due to the presence of a solvation shell
that interacts with a Zundel-like core, and a priori modifies its preferred configurations.

We will explore the impact of the solvation on the static properties (PES, equilibrium ge-
ometries and proton transfer static barriers) of the protonated water hexamer, using various
computational methods to describe its electronic structure. The results will be compared
to those obtained in Chapter 4 for the Zundel ion to accurately evaluate the impact of the
solvation on the equilibrium properties of small water clusters.

6.1.1 Potential energy landscape

In order to explore the protonated water hexamer PES, we compute the H13O+
6 electronic

energy as a function the central inter-oxygen distance dO1O2 (atom labels are given in Figure
6.2) similarly to the calculations carried out on the Zundel ion. The results are plotted in
Figure 6.3, where different electronic structure methods are compared together. The solid
curves are obtained using DFT (dark green for PBE and magenta for DF2), while the QMC
results are respectively represented by blue triangles (VMC) and black squares (LRDMC). Fi-
nally, the quantum chemistry calculations, performed using the triple zeta (TZ) basis set, are
represented by red triangles (MP2), brown squares (CCSD) and orange circles (CCSD(T)).
Except for CCSD/CCSD(T) calculations, the structural relaxations to find the equilibrium
geometries are performed at each level of theory. The Coupled-Cluster calculations require
much memory (more than 7 Gigabytes per core), which make them quite complex to per-
form. As a consequence, we decided to compute the CCSD/CCSD(T) energies using the
MP2 geometries which, as we will see in the next Subsection, seem to provide an accurate
description of the system. Let us emphasize that carrying out structural relaxations using
CC techniques is already extremely complex, even for moderate size clusters such as H13O+

6 .
This again proves that, despite their remarkable accuracy, it is not possible to employ such
calculations, at the present stage of development, to perform CC-driven MD simulations of
extended systems such as the bulk liquid. It thus further motivates to use the QMC approach
to deal with this issue because of its mild scaling with the system size.
The obtained results are qualitatively similar to those obtained for the Zundel complex. In-
deed, the PBE functional tends to overestimate the slope of the PES by about 2 kcal/mol in
the Coulombic repulsion regime, for short OO distances. For larger values of dO1O2 , there is
a good agreement with accurate quantum chemistry or QMC results. However, PBE predicts
a slightly too large dO1O2 distance (by about 0.05 Å) for the minimum geometry configura-
tion, that could spoil the description of PT in the hexamer. The DF2 functional provides
a less accurate description of the PES than PBE. Indeed, it underestimates by 2 kcal/mol

— 125 —



6.1. Zero temperature results

Figure 6.2 – Atom labels employed for the analysis of the protonated water hexamer properties.
This cation is composed of a Zundel-like core with 4 surrounding water molecules in the solvation
shell.
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Figure 6.3 – Potential energy curve (kcal/mol) of the protonated water hexamer projected on the
central OO distance. Comparison between different computational methods. Structural relaxation
is performed at each level of theory, except for CCSD/CCSD(T). Each curve has its minimum as
reference point.
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6.1. Zero temperature results

the electronic energy for large dO1O2 values, presumably because it overestimates the cluster
polarizability. Even worse, the whole PES obtained by DF2 is remarkably shifted to larger
inter-oxygen distances, indicating that this functional might overestimate the OO distances in
larger aqueous systems such as bulk water. Consequently, the DF2 functional cannot provide
the necessary accuracy to capture all the PT physics in the protonated water hexamer. The
VMC results are, within the error bar, in good agreement with the reference CC calculations.
Nevertheless, even though it is more accurate than the DF2 functional, the VMC approach
also slightly overestimates the dispersion effects at large OO distances. Furthermore, the
LRDMC results, which are simply an improvement of the VMC ones since they are obtained
with the same wave function (WF), are in perfect agreement with CCSD(T) results for the
long-range part. However, for short OO distances, the QMC (both VMC and LRMDC) ener-
gies are too large. This indicates that the orbitals of the QMC WF are probably too diffuse,
which leads to an overestimation of the Coulomb repulsion between the central proton and
its two surrounding water molecules.
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Figure 6.4 – Potential energy curve (kcal/mol) of the protonated water hexamer projected on the
central OO distance. Comparison between different computational methods for various relaxed ge-
ometries and basis sets. Each curve has its minimum as reference point.

This last hypothesis should however be verified since, in such small systems, the electronic
energy strongly depends on the geometry of the system. To that purpose, we decided to
perform several calculations where we do not necessarily select the same level of theory for
the structural relaxation and the electronic energy evaluation. The corresponding results are
plotted in Figure 6.4, where CCSD(T) calculations on DF2 geometries are represented by
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dark green circles, while the magenta triangles are the obtained results on QMC geometries
and the red squares are the reference MP2 calculations. At dO1O2 = 2.2 Å, the obtained
values differ each other by 1 kcal/mol, confirming the sensibility of such results with respect
to the employed geometry. We also performed VMC calculations on MP2 geometries and the
black squares are close to the red ones, indicating that a good agreement is recovered between
MP2 and VMC energy profiles. Last but not least, we tested the influence of the basis set
size (double zeta or triple zeta) for the CCSD(T) calculations. The obtained values with the
double zeta (orange circles) basis set are in very good agreement with those computed using
the TZ one, meaning that basis set size effects can be neglected as a source of discrepancy.

To summarize, we have demonstrated that the PBE and DF2 functionals do not accurately
describe the protonated hexamer PES along the reaction coordinate OO, the situation being
worse for the DF2 functional. We have also verified the accuracy of the QMC approach for
the protonated hexamer energetics. Indeed, the QMC energies are in good agreement with
reference quantum chemistry calculations as soon as they are performed on the same geome-
tries. The quality and the accuracy of the protonated hexamer geometries is discussed in the
following Subsection.

6.1.2 Equilibrium geometries

We have established in Chapter 4 that an accurate description of the equilibrium geometries
is essential to provide a good localization of the excess proton during its dynamics. In partic-
ular, PT processes are known to be very sensitive to the inter-oxygen distance between water
molecules [242]. Indeed, the central proton can hop, more or less frequently, from one water
molecule to another, depending on the average distance OO.

In the Figure 6.5, we report the separations between the excess proton H+ and the two
central oxygen atoms O1 and O2, to directly compare the results with those obtained for the
Zundel ion. The solid curves represent the DFT geometries obtained with the PBE (dark
green) and DF2 (magenta) functionals, respectively. The QMC geometries, obtained at the
VMC level, are represented by blue circles whereas the red triangles indicate the MP2 results.
First of all, at variance with the Zundel cation, the protonated water hexamer minimum
energy structure is asymmetric1.This fundamental symmetry modification of the system is
due to the presence of the 4 solvating molecules, which tend to stabilize the hexamer into its
Eigen-like configuration (right panel of Figure 6.1). This result is in agreement with Ref. 247
that predicts an Eigen structure for the hydrated proton. The PBE functional however pre-
dicts a Zundel-like symmetric minimum, which is erroneous. More generally, this functional
gives a poor description of the proton location when one stretches the OO distance. Despite
its reasonable accuracy for the protonated hexamer energetics, the PBE functional cannot be
used to accurately probe PT processes in water clusters, and more generally in the bulk liquid.
When one includes dispersion effects using the DF2 functional, the geometric properties of the
hexamer are significantly improved, displaying a better agreement with the reference quan-

1As we have seen in Chapter 4, an asymmetric structure is characterized by a noticeable difference between
the O1H+ and H+O2 distances in the cluster, at variance with the C2-symmetric cluster where O1H+ =

H+O2.
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tum chemistry calculations. Nevertheless, the predicted equilibrium oxygen-oxygen distance
is too large, which leads to an overly asymmetric cluster. Therefore, we expect the DF2 PT
static barriers to be inaccurate, which is problematic in the perspective of studying PT at
finite temperature. By contrast with the DFT, the QMC geometries are in excellent agree-
ment with those obtained via MP2, especially around dO1O2 = 2.4 Å. Indeed, it is crucial to
accurately describe this critical region since it represents the frontier between the symmetric
Zundel-like, and the asymmetric Eigen-like configurations discussed in this Chapter. Let us
also note that Figure 6.5 is very similar to Figure 4.3, meaning that despite the presence of
solvating molecules, the hierarchy between the different levels of theory is preserved. Indeed,
we have seen in Chapter 1 that the positions of the oxygen-oxygen or oxygen-proton RDFs
peaks in the bulk water are more accurate within a QMC framework than using MP2 or DFT.

Figure 6.5 – Separations (Å) between the two central oxygen atoms and the excess proton as a
function of the reaction coordinate dO1O2 for different computational methods. Vertical dashed lines
indicate the equilibrium dO1O2 for each method.

We provide in the following a more detailed analysis of the geometries, focusing first on the
core (Tables 6.1 and 6.2) and later on the solvation shell (Table 6.3). Detailed QMC geome-
tries are also given in the Appendix E (Sections E.1 and E.2 for the equilibrium geometry and
other configurations, respectively). To further explore the accuracy of the DFT functionals,
we also performed structural relaxations using the BLYP and B3LYP functionals. To help the
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reader to visualize the overall symmetry of the protonated hexamer at each level of theory,
we employ a color code. Red values refer to a fully symmetric cluster, with a Zundel core
surrounded by a symmetric solvation shell (PBE functional). The blue data indicate a par-
tial asymmetry of the cluster, composed of a Eigen-like core and an almost symmetric outer
shell (BLYP and B3LYP functionals). Finally, when both the core and the solvation shell
of the H+(H2O)6 ion are asymmetric, no coloration is employed (DF2 functional, MP2 and
VMC). We emphasize that the lowest energy configuration of the protonated water hexamer
is asymmetric according to the most accurate electronic structure theories (MP2; VMC and
CCSD/CCSD(T)).

In Table 6.1, we report the equilibrium OH distances for various levels of theory, where
atoms labels are indicated in Figure 6.2. First of all, the PBE results strikingly differ from
those obtained with other methods since the core of the system has a C2-symmetry, as in
the Zundel complex. Indeed, the OH intramolecular distances are perfectly equal in the left
and right parts of the cluster, which is not the case for all the other theories. This errors
does not come from the equilibrium O1O2 distance since the B3LYP functional predicts a
shorter O1O2 value and displays an asymmetric geometry at the minimum. The B3LYP re-
sults are in rather good agreement with reference MP2 calculations, in spite of a 0.02 Å error
on the equilibrium O1H2 distance, which spoils the excess proton localization. The BLYP
results compare with those obtained with the PBE functional but the cluster asymmetry at
its minimum is well-recovered. As already mentioned, the predicted minimum by the DF2
functional is too asymmetric, due to an exceedingly large OO distance. While this functional
provides a quite accurate description of the global geometry of the cluster for dOO = 2.2−2.9

Å, it should not be employed to probe the geometric properties around the zero temperature
minimum. The VMC minimum geometry is in very good agreement with the one obtained
in MP2, with an accurate description of the excess proton localization, as previously seen
in Figure 6.5. In particular, the VMC and MP2 equilibrium oxygen-oyxgen distances O1O2

are in excellent agreement with the experimental value O1O2exp = 2.39 ± 0.02 Å measured
by X-ray diffraction [248]. The OH intramolecular distances are however slightly too short in
VMC, as already noticed in the case of the neutral and protonated water dimer (Chapters
4 and 5). This error is attributed to the reduced basis sets and the contraction schemes to
simplify the QMC wave function and can be neglected because it does not affect the rest of
the whole geometry.

Finally, let us note that, except for the OH intramolecular distances that are slightly elon-
gated due to the presence of the solvation shell, the geometric parameters are very close to
those reported in Table 4.1. This suggests that, in spite of a subtle change of the cluster
symmetry due to solvation effects, the core of the water hexamer can be considered as a
distorted Zundel complex.

To go further with the geometry analysis, we report in Table 6.2 the obtained ∠HOH angles
for the 2 water molecules surrounding the excess proton in the Zundel-like complex. We
report also the values of the ∠O1H

+O2 angle, that indicates whether the central proton
belongs or not to the straight line defined by the O1 and O2 atoms. Looking at the ∠HOH
angles, the cluster asymmetry at its minimum energy configuration is less clear, except for
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Theory O1O2 O1H+ H+O2 O1H1 O1H2 O2H3 O2H4

DFT-PBE 2.4156 1.2078 1.2078 0.9935 0.9935 0.9935 0.9935
DFT-DF2 2.4541 1.1196 1.3346 0.9913 0.9911 0.9797 0.9797
DFT-BLYP 2.4271 1.2061 1.2210 0.9982 0.9982 0.9973 0.9973
DFT-B3LYP 2.4025 1.1894 1.2131 0.9879 0.9879 0.9866 0.9866

VMC 2.3930(5) 1.1555(5) 1.2375(5) 0.9800(8) 0.9798(8) 0.9752(8) 0.9748(8)
MP2 2.3867 1.1690 1.2188 0.9877 0.9878 0.9847 0.9848

Table 6.1 – Geometric properties (distances in Å) of the core of the protonated water hexamer
minimum, comparison between different computational methods.

the DF2 functional. These parameters seem to be less impacted by the presence of the
surrounding water molecules, as they increase only slightly with respect to the values obtained
in the Zundel case (Table 4.2). Still comparing to the Zundel cation, ∠HOH angles are also
generally (apart from the PBE functional) overestimated in the DFT approach while they are
very well reproduced within the QMC framework. The situation for the ∠O1H

+O2 angle is
completely different since its average value spectacularly changes when the Zundel complex
is solvated. Indeed, except for the MP2 approach, the protonated hexamer core is found
to be flat, since the central proton remains in the plane defined by its 2 neighboring oxygen
atoms (∠O1H

+O2 ∼ 180◦). The protonated hexamer is certainly less flexible than the Zundel
cation, due to the presence of more numerous H-bonds between the core and the solvation shell
that strongly structure the cluster. Consequently, the 2 central H-bonds involving the central
proton are more directional, preventing it to leave from the O1O2 straight line. The MP2
exception might come from an underestimation of the Coulomb repulsion between electrons,
since the slope of the MP2 electronic PES is softer for short OO distances (see Figure 6.3).

Theory ∠O1H
+O2 ∠H1O1H2 ∠H3O2H4

DFT-PBE 180 109.6 109.6
DFT-DF2 179 110.7 109.3
DFT-BLYP 179.9 110.3 110.1
DFT-B3LYP 179.8 110.6 110.4

VMC 179.7(1) 109.2(2) 108.6(2)
MP2 176.6 109.4 109

Table 6.2 – Geometric properties (angles in ◦) of the core of the protonated water hexamer minimum,
comparison between different computational methods.

To conclude our study of the geometric properties of the protonated water hexamer, we report
in Table 6.3 the OO distances between the two core oxygen atoms and those belonging to
the surrounding water molecules. We first note that the obtained distances are about 0.25

Å larger than the typical value of the oxygen-oxygen distance O1O2 in the Zundel core.
This implies that there is a priori no other possible PT scenarios that could occur inside
the protonated hexamer. Indeed, one could think that the protons involved in the H-bonds
between the side water molecules of the core might, in principle, jump to the lone pair of
the neighboring oxygen atom of the solvation shell. In practice, this phenomenon is never
observed here since the corresponding final state would be completely unstable. If one is eager
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to multiply the possibilities of proton hopping between the Zundel-like core and its shell, an
additional set of water molecules should be added to the cluster, to form another solvation
shell stabilizing the edifice. The (erroneous) full-symmetry predicted by the PBE functional
is confirmed here, where all the OO distances are equal, and similar to the MP2 result. The
DF2, BLYP and B3LYP functionals predict, as expected, the correct cluster asymmetry, with
shorter OO distance on the left part of the system with respect to the right one. Indeed, the
central proton is slightly closer to the left oxygen atom O1, which must be compensated by
the surrounding water molecules that move closer to the left part of the core. Let us also
remark that for the BLYP and B3LYP functionals, O1O3 = O1O4 and O2O5 = O2O6, which
is not the case for the DF2 functional, neither for the QMC and MP2 approaches. These
functionals do not reproduce the exact chemical environment around the hydrated proton, so
cannot be used to perform quantitative calculations to evaluate PT rates in water. The QMC
approach still gives satisfactory results, in spite of a non-negligible overestimation by ∼ 0.05

Å of the OO distances. As already mentioned, it comes from the employed WF to carry out
the structural relaxations at the QMC level. Fortunately, the H13O+

6 core is well-reproduced
within the QMC framework, and no significant physics should be missed.

Theory O1O3 O1O4 O2O5 O2O6

DFT-PBE 2.6594 2.6594 2.6594 2.6594
DFT-DF2 2.6765 2.6771 2.7487 2.7523
DFT-BLYP 2.6889 2.6890 2.6947 2.6949
DFT-B3LYP 2.6698 2.6696 2.6790 2.6792

VMC 2.6926(6) 2.6873(6) 2.7167(6) 2.7204(6)
MP2 2.6485 2.6465 2.6645 2.6667

Table 6.3 – Geometric properties (distances in Å) of the solvation shell of the protonated water
hexamer minimum, comparison between different computational methods.

To put it in a nutshell, we have demonstrated the ability of the QMC method to properly
capture subtle geometry changes for the protonated water hexamer with respect to the simpler
Zundel case. Indeed, this cluster adopts a distorted Zundel configuration at its minimum,
where the hydrated proton is no longer delocalized, but trapped by a static barrier. The
latter represents the energy one should provide to the H13O+

6 ion to make the central proton
freely hop from one side water molecule to another, as in the Zundel picture. The PT static
barrier value thus strongly depends on the selected method to describe the protonated hexamer
PES, as we will see in the next Subsection.

6.1.3 Proton transfer static barriers

In the perspective of probing the microscopic rearrangements triggering PT processes within
the protonated water hexamer at finite temperature, it is necessary to fully determine the
relationship between the zero temperature PES and the geometric properties of the system.
In the first two Subsections of this Chapter, we have established that the protonated hex-
amer minimum energy configuration is asymmetric, where the hydrated proton is not equally
shared between the 2 central water molecules. Consequently, its motion from one side water
molecule to another is conditioned by the necessary energy it should acquire to go across the
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PT static barrier. In practice, this energy is provided by the molecular vibrations that cause
fluctuations of the covalent and H-bonds network. Thus, the height of the barrier gives us an
indication about the temperature at which we expect to observe significant thermal effects on
the hydrated proton dynamics, in both the classical and quantum cases.

To that purpose, we have performed a novel series of structural relaxations of the proto-
nated hexamer, where we imposed the central proton to be situated exactly at the middle
of the central oxygen-oxygen distance O1O2. We have decided to work with O1O2 = 2.45 Å
and 2.5 to go far beyond typical oxygen-oxygen distances observed in Zundel-type structures
(OO = 2.39−2.42 Å) [248–250]. Indeed, there is the experimental evidence that the centrosym-
metric H13O+

6 ion can be elongated (OO = 2.57 Å) [251], due to the environment. Looking at
Figure 6.5, the variation of the cluster asymmetry as a function of the OO distance is pro-
nounced in the 2.45− 2.5 Å region, indicating the trapping of the hydrated proton. We then
evaluate the electronic energy of the symmetric-constrained structures obtained at the same
level of theory, except for the CCSD/CCSD(T) calculations where we use the MP2 geometries.

We estimate the PT static barrier as the energy difference between the fully relaxed structure
and the one with the symmetrized proton at the same OO distance. The barriers are reported
in Table 6.4 for each level of theory. Values are given in Kelvin, to directly show the minimal
required temperature the cluster should have to exhibit spontaneous PT processes inside its
core.

dO1O2 (Å) 2.45 2.50
PBE-DFT 0 96
DF2-DFT 39 483

MP2 85 327
VMC 195 ± 25 562 ± 27

LRDMC 222 ± 56 389 ± 64
CCSD 211 592

CCSD(T) 141 431

Table 6.4 – Static symmetrization barriers (in Kelvin units) of the protonated water hexamer
at different dO1O2

for various computational methods. Results are computed as energy differences
between the true minimum energy configuration and the symmetrized one.

First of all, let us point out that the PBE functional does not not predict any barrier at
O1O2 = 2.45 Å since the corresponding cluster equilibrium geometry remains fully symmet-
ric. It thus leads to a severe underestimation of the PT static barrier for oxygen-oxygen
distances close to the equilibrium geometry. This observation is consistent with the result
obtained by Dagrada and coworkers who found a vanishing value of the PBE barrier for
O1O2 = 2.47 Å in the Zundel complex [72]. Therefore, we expect the PBE functional to over-
estimate the proton diffusion the bulk water, which has been recently confirmed in Ref. 16.
The DF2 functional also underestimates the barrier by about 150 K (0.3 kcal/mol) at O1O2 =

2.45 Å by comparison with the CCSD(T) result, but the agreement is significantly improved
at 2.5 Å. This functional is able to provide a quite accurate description of the PT barrier at
large OO distances. Unfortunately, the weight of the distorted Zundel configuration is cer-
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tainly larger since it corresponds to the physical minimum of the cluster. The DF2 functional
can however be used if one wants to obtain a not-so-rough estimation of the proton diffusion
in aqueous systems at a moderate computational cost.

The biggest surprise comes from the MP2 result. This theory systematically underestimates
the PT static barrier by about 100 K (0.2 kcal/mol) compared to the CCSD(T) predictions
performed on the same geometries. In absolute, this energy difference is very small, but can
be prohibitive in the perspective on reaching an accurate description of PT physics in water
and aqueous solutions.

Last but not least, we notice that the static barriers predicted within the QMC framework
(both VMC and LRDMC) are, within the error bar, in very good agreement with the reference
CCSD(T) results, at least for O1O2 = 2.45 Å. Indeed, the VMC barrier is only 100 K (0.2
kcal/mol) larger than the CCSD(T) estimate when the oxygen-oxygen distance is stretched
(2.5 Å). This slight overestimation by the VMC approach is consistent with previous observa-
tions for the Zundel cation, where the VMC PT barrier is 140 K at O1O2 = 2.47 Å, only 30

K larger than the CCSD(T) estimate [72]. The agreement is even better between the LRDMC
and the CCSD(T) results, but this method is unfortunately too computationally demanding
to be incorporated into a MD framework.

At fixed OO distance, the predicted barriers are larger in the H13O+
6 ion than in the Zun-

del cation. This is consistent with the idea that one should pay an additional price for the
rearrangement of the molecules in the solvation shell during the PT process. Indeed, such
a process creates a charge redistribution inside the cluster whose geometry is readjusted for
stability.

To conclude, we have highlighted the weaknesses of the DFT approach to properly describe
both the protonated water hexamer PES and geometries. We have also verified that the QMC
approach, especially its VMC variant that we will use in the following, provides an accurate
an reliable description of the H13O+

6 PES, the equilibrium geometries and static barriers, in
agreement with the most advanced electronic structure methods. Therefore, using the tools
developed in this thesis, we can confidently explore the finite temperature dynamics of the
protonated hexamer.

6.2 Classical hexamer dynamics

In this Section, we investigate the impact of thermal effects on the protonated hexamer
dynamics in the classical case. We are aware that we should take into account the quantum
nature of the protons to obtain a realistic description of the PT processes occurring inside
the cluster. Nevertheless, the analysis of the elementary mechanisms driving the proton
diffusion in such systems is not trivial when NQE are taken into account, as they compete
with thermal effects. Consequently, the analysis of the protonated hexamer behavior in the
(simpler) classical case will provide precious indications about the exact role played by the
temperature in the hydrated proton dynamics. This information will be later used to fully
understand the results presented in the quantum Section.
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6.2.1 Radial distribution functions

Firstly, we focus our attention on the equilibrium, or the static properties of the H+(H2O)6
ion. The latter are obtained by performing QMC-driven Langevin Dynamics using the Clas-
sical Momentum-Position Correlator (CMPC) algorithm introduced in Chapter 3. However,
since the protonated hexamer in much larger than the Zundel ion, its WF is more complex
and one cannot straightforwardly apply the same strategy employed to carry out CPMC-LD
simulations of the Zundel cation. Indeed, the number of electronic WF parameters increases
linearly with the system size. In practice, if one uses exactly the same JAGP WF employed
to describe the Zundel ion in Chapter 4, 15763 parameters should be optimized between
each LD step, against only 2391. Consequently, the part dedicated to the WF optimization,
which is the most time-consuming, would be multiplied at least by a factor of 5. We have
the further constraint that the generated MD trajectories should be long enough to display
several spontaneous PT proceses inside the cluster, implying that they should last at least
20-25 ps. Therefore, using the JAGP WF of Ref. 72 is not viable in a reasonable amount of
computational time.

To solve that issue, we apply a Geminal embedding scheme [202] to the Jastrow factor (this
technique has already been used for the AGP part of the WF), using the O[6]H[2] contraction
described in Chapter 5. In this way, a significant fraction of the water dimer binding energy
is recovered, with a reasonable number of electronic parameters. Thanks to this strategy, we
have reduced the number of electronic parameters to 6418, representing a significant gain.
Furthermore, since the Hilbert space of the electronic parameters is larger than in the Zundel
case, the WF optimization, using the SRH method, is less stable and one should reduce the
acceleration of the electronic parameters δtpar = 0.3 (see Eq. (C.9)). We also increased the
number of MC samples to ' 4.0 × 105 to provide an accurate evaluation of the ionic forces
and energy derivatives at each MD step. These choices allow reaching an accuracy of 3 mHa
(1.9 kcal/mol) in the total energy per VMC energy minimization step. Thus, the statistical
error on the Born-Oppenheimer (BO) surface sampling is slightly larger than the Zundel one,
but is sufficient not to spoil the quality of the protonated hexamer dynamics.

To quantify the impact of thermal effects on the proton dynamics in the H+(H2O)6 clus-
ter, we decided to generate 5 trajectories of 25 ps, propagated using the CPMC algorithm at
various temperatures ranging from 200 to 400 K. This choice is motivated by the fact that
very often PT reactions occur at room temperature, in chemical or biological systems. The
Langevin damping γBO and the time step δt employed to propagate the CMPC-LD dynamics
are the same that those employed for the study of the Zundel ion (Chapter 4). We verified
that the average simulation temperature is compatible with the target temperature of the
considered calculation, within a 1% error. This result ensures that the sampling of the BO
surface remains correct during the dynamics.

We represent in Figure 6.6 the normalized RDFs gOO for the two central oxygen atoms O1

and O2 for various temperatures ranging from 200 to 400 K. The vertical lines indicate the
average distance 〈dO1O2〉 for each simulation. If we compare the protonated hexamer gOO
with those extracted from MD simulations of the Zundel cation at room temperature (upper
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right panel of Figures 4.7 and 4.8), we notice that the shape of the function is almost identical,
but the peak position is shifted by about ∼ 0.05 Å. For instance, the average O1O2 distance
is equal to 〈dO1O2〉 = 2.447(5) Å at room temperature (T = 300 K), being ∼ 0.054 Å larger
than the zero temperature result. Consequently, going back to Figure 6.5, it seems that at
room temperature, the H+(H2O)6 cluster mainly adopts an Eigen-like configuration, where
the hydrated proton is covalently bound to one side water molecule. Therefore, the presence
of solvating water molecule drastically reduces the mobility of the hydrated proton, which is
much more localized with respect to the Zundel case, where it freely oscillates between the 2
neighboring water molecules.

The evolution of the shape of the gOO functions when one increases the temperature is some-
what expected. Indeed, the low-temperature (T = 200 K) distribution is sharper than the
high-temperature (T = 400 K) one, which displays longer tails in the large OO distances
region. This systematic broadening can be interpreted as follows. We provide more thermal
energy to the system, thus increasing its kinetic energy and the average velocity of the par-
ticles. Consequently, the amplitude of the intra- and intermolecular vibrations is enhanced
and larger values of the oxygen-oxygen distance are obtained. This is also consistent with
the strongly anharmonic shape of the protonated hexamer PES (Figure 6.3) that becomes
very flat for large O1O2. Finally, we emphasize that the temperature dependance of the
oxygen-oxygen RDFs is monotonic and saturates at 350 K, confirming that thermal effects
are straightforward to interpret.

From now on, we will analyze the temperature-dependence of the normalized oxygen-proton
RDFs gOH that are plotted in Figure 6.7. At variance with the gOO, the protonated water
hexamer gOH are completely different from the computed RDFs of the Zundel ion (bottom
panels of Figures 4.7 and 4.8). Indeed, they are characterized by the presence of two distinct
peaks around dOH = 1.1 Å and dOH = 1.35 Å , corresponding to a localized proton, covalently
bound to its closest neighbor. We thus confirm that the more representative configuration
of the protonated hexamer in the classical case is Eigen-type contributing to the long-range
tails in the gOO. Looking closer to Figure 6.7, we notice that the height of the two peaks
decreases with the temperature, and the distributions are broadened. Indeed, from T = 350

K, the second maximum around dOH = 1.35 Å , starts to disappear. This suggests that at
this temperature, the ambient thermal energy is large enough to trigger spontaneous proton
jumps inside the core of the protonated hexamer. Such proton hops involve the presence
of a fully Zundel-like reaction intermediate, explaining the little increase of the gOH around
dOH = 1.2 Å . Furthermore, we notice that the low-temperature (T = 200 K) gOH displays
a first peak at slightly larger OH distance, compared with higher temperature RDFs where
the peak position remains unchanged. This can be related to an enhanced proton mobility at
higher temperatures.

To complete the analysis of the static properties of the classical protonated hexamer, we now
analyze the bidimensional oxygen-oxygen and oxygen-proton probability distributions ρ2D,
represented in Figure 6.8. This probability distribution provides a graphical representation
of the protonated hexamer PES at finite temperature projected along the reaction coordinate
O1O2. To further analyze the impact of thermal effects on the phase space configurations
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that may be visited by the hydrated proton, we also plot the equilibrium geometries obtained
by VMC at T = 0 K (black circles).

First of all, we notice that the global shape of the distributions ρ2D is very similar to those
obtained for the Zundel cation, forming two wings that stretch along the equilibrium geome-
tries for large OO distances. This expected result confirms that the presence of the solvation
shell does not drastically impact the global core geometry with no proton hopping from the
Zundel core to the outer shell. At low temperature (T = 200 K), the configurations in the
range dO1O2 = 2.38− 2.45 Å are predominantly visited, while this region becomes larger and
larger when one increases the cluster temperature: dO1O2 = 2.38− 2.53 Å at T = 300 K and
dO1O2 = 2.35 − 2.58 Å at T = 400 K), in agreement with the gOO. However, the striking
difference with the Zundel case is the depletion of the density ρ2D in the short OO distances
region at low and room temperature. This stems from the quasi absence of symmetric or
Zundel-like configurations, confirming again that, in the presence of classical particles, the
protonated hexamer is described by an Eigen-like motif. However, when looking at the high-
temperature distribution (T = 400 K), the density depletion, although still present, is less
noticeable. The thermal energy is thus large enough to enable PT processes inside the core of
the hexamer, confirming that the hydrated proton can classically cross the static barrier. The
proton jumps are certainly less easy than in the Zundel complex since they imply a concerted
rearrangement of the solvating molecules, which is more constraining.

The study of the structural properties of the classical protonated hexamer enabled us to stress
the critical role played by the temperature to trigger spontaneous PT processes. Indeed,
at low temperature, the hydrated proton is frozen around its Eigen-like minimum energy
configuration. When the temperature becomes higher than the ambient one, the covalent
and H-bonds fluctuations are large enough to enable proton jumps within the core, implying
the hexamer goes through a symmetric Zundel-like transition state. These conclusions are
however based on thermal equilibrium distribution functions, and must be confirmed by the
analysis of the time-dependent properties of the system.

6.2.2 Proton displacement

In this Section, we study some dynamical properties of the protonated water hexamer, fo-
cusing our attention on the localization of the hydrated proton. We thus need to find clear
indicators of the presence or the absence of PT processes occurring in the Zundel-like or
Eigen-like core of the cluster.

The first intuitive observable that comes in mind is the proton displacement d defined as

d = d1/2 = d̃O1/2H+ − dO1O2

2
, (6.1)

with d̃O1/2H+ the distance projected onto the O1O2 segment. In the above equation, the O1/2

notation suggests that the choice of the reference oxygen atom is arbitrary. Indeed, if the
generated MD trajectory is long enough, the hydrated proton dynamics is ergodic and its
residence time near the left O1 or right O2 oxygen atoms is a priori the same. Unfortunately,
due to the computational cost of such calculations, our CMPC-LD trajectories are too short
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Figure 6.8 – Bidimensional oxygen-oxygen and oxygen-proton distributions obtained by QMC-
driven CMPC-LD simulations at low temperature T = 200 K (upper left panel), room temperature
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to ensure the full ergodicity of proton dynamics. Consequently, the obtained distributions
with the simple application of the Eq. (6.1) would be asymmetric, which is not in agreement
with the expected behavior of the cluster.

To solve that issue, we apply Eq. (6.1) taking each central oxygen atom as reference and
we symmetrize the distribution by binning both the d1 and d2 distances. As we can see in the
left panel of Figure 6.9, the obtained distributions are symmetric but not smooth because of
the limited number of sampled classical configurations. The dark green curve, corresponding
to a low-temperature (T = 200 K) simulation, displays two sharp peaks that confirm the trap-
ping of the hydrated proton around its minimum energy Eigen-like configuration. When one
increases the temperature, the position of the two peaks migrates to the larger values of |d|,
which confirms the larger amplitude of the proton fluctuations. We also notice that one can
directly relate the height of the central part (|d| < 0.05 Å) of the histograms to the number
of times the protonated cluster has adopted its Zundel-like configurations, suggesting that
spontaneous PT happened. It is clear that the higher the temperature, the more numerous
are the Zundel-like configurations. The greater number of visited Zundel-like configurations
when the cluster temperature increases is in agreement with Figure 6.8. The proton hopping
is more frequent at higher temperatures.

We present in the right panel of Figure 6.9 another observable that can help to understand the
nature of the configurations adopted by the H+(H2O)6 cluster: the sharing proton coordinate,
denoted δ. It corresponds to

δ = |dO1H+ − dH+O2
|, (6.2)

and has been used in previous studies of aqueous proton defects in condensed phase [246,252,253].
This observable, strongly correlated to the proton displacement d, gives us precious informa-
tion about the symmetry of the cluster core. Indeed, when the considered configuration is
symmetric or Zundel-like, the proton sharing displacement δ vanishes2 because it is equally
shared between its two neighboring water molecules. On the contrary, when the hydrated
proton forms a covalent bond with its closest neighboring oxygen atom, δ takes finite values
(up to δ ∼ 0.8 Å) which are the signature of Eigen-like states. Inspecting the right panel of
Figure 6.9. we can notice that the larger the temperature, the larger the average sharing pro-
ton coordinate δ. This confirms that thermal effects enhance the amplitude of the hydrated
proton fluctuations. In the meantime, the high-temperature distributions (T = 350 − 400

K) exhibit a plateau in the δ ∼ 0 region, corresponding to Zundel-like configurations. This
further proves that the hydrated proton is less trapped at these temperatures and can more
easily jump from one oxygen atom to another.

To pursue this configurational analysis, we would like to estimate, as quantitatively as possible,
the weights of Zundel- and Eigen-like configurations from the distributions of the proton
displacement d. To that purpose, we decided to fit the probability distribution P (d) according

2as the proton displacement d does.
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the following 3-gaussian, or 2-species model:
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︸ ︷︷ ︸
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]
︸ ︷︷ ︸

Eigen configurations

, (6.3)

where λE , dE , σE and σZ are tunable parameters. The fitting function P (d) of Eq. (6.3) is
built to fulfill the normalization condition

∫
P (d) = 1 and to reproduce at best the signal

observed in Figure 6.9. At least 2 of the 4 fitting parameters have a meaningful physical inter-
pretation: λE simply represents the weight of Eigen-like configurations within the 2-species
model, whereas dE quantifies the distortion of the hydrated proton along the oxygen-oxygen
distance.

The results of the fitting procedure are reported in Figure 6.10 and Table 6.5 for the 5
studied temperatures, ranging from T = 200 K to T = 400 K. The fitting parameters are
given in Table F.1 of the Appendix F. We first note that, despite the noisy shape of the pro-
ton displacement distributions extracted from CMPC-LD simulations, due to the shortness
of their trajectory, a good agreement with the fitting function P (d) is found. The relevance
of the 2-species model is further validated by the stable behavior of the 4 fitting parameters
when one increasing the temperature. In particular, the parameters related to the Eigen-like
configuration, namely λE , dE and σE tend to increase with the temperature. This further
proves that thermal effects tend to enhance the asymmetry of the protonated hexamer core,
localizing the hydrated proton on a side water molecule.

It is also clear from Table 6.5, that the number of spontaneous proton jumps and charge
rearrangements occurring inside the water hexamer core increases with the cluster tempera-
ture. Indeed, the weight of the symmetric Zundel-like transition states is multiplied by a factor
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3 between the low- (T = 200 K) and the high- (T = 400 K) temperature regimes. This implies
that the proton diffusion is enhanced by thermal effects, due to a greater proton mobility.
This point will be later discussed in the Section 6.4. Let us also notice that, within a classical
picture, the hydrated proton remains extremely localized since the Eigen-like structure still
dominates the Zundel-like one at ambient conditions.
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Figure 6.10 – Comparison of the P (d) distributions obtained from QMC-driven CMPC-LD simu-
lations (blue) and fitted using Eq. (6.3) for T = 200, 250, 300, 350, 400 K.

To conclude, we have elucidated the impact of thermal effects on the hydrated proton dynam-
ics in the protonated water cluster. Indeed, in the low-temperature regime (up to T = 200

K), the proton is chemically inert since it is trapped around its minimum energy configura-
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T (K) % Zundel % Eigen
200 13 87
250 20 80
300 20 80
350 18 82
400 38 62

Table 6.5 – Species proportions obtained by fitting distributions of the proton displacement with
the 3-gaussian model of Eq. (6.3) in the classical particles case.

tion, which is Eigen-like. At room conditions, the proton trapping is found to remain quite
important and the predicted majority configuration of the H13O+

6 is still Eigen-like, which
is in contradiction with recent experimental data [17,247]. Indeed, these works emphasize the
paramount importance of the Zundel complex as transition state for the hydrated proton
dynamics in water and aqueous solutions. As we have seen in Chapter 4, NQE dominate
over thermal effects, especially at ambient conditions: their essential role must be taken into
account, as we will do in the following Section.

6.3 Quantum hexamer dynamics

Here, we follow exactly the same route taken in the previous Section but within a quantum
framework. Indeed, NQE are known to be crucial in water and one cannot expect to provide a
quantitative description of PT in bulk liquid without caring about them. Within the Feynman
Path Integral (PI) framework, we will analyze the impact of such effects on the structural and
dynamical properties of the H+(H2O)6 cluster at finite temperature. In the last Subsection
(6.3.3), the competition between NQE and thermal effects will be investigated.

6.3.1 Radial distribution functions

We performed a series of QMC-driven Langevin Dynamics using the Path Integral Ornstein
Uhlenbeck (PIOUD) algorithm introduced in Chapter 3 at five various temperatures ranging
from 200 to 400 K. The simulation parameters, and more specifically the temperature, are
taken to be the same as those employed for the propagation of the classical trajectories, to
enable a direct comparison of the observables extracted from the LD. Within the PI approach,
one must also specify the number P of beads that will be used to describe the quantum par-
ticles, particularly the hydrated proton. This number is deduced from the convergence of the
quantum kinetic energy of the Zundel complex (upper left panel of Figures 3.1 and 3.2), which
is justified by the similarity between the two considered clusters. Consequently, we choose
P = 64, for the lowest temperature simulation (T = 200 K) while we used the value of P = 32

for the other calculations.

We represent in Figure 6.11 the quantum oxygen-oxygen RDFs gOO of the protonated wa-
ter hexamer at various temperatures. As already observed in the Zundel cation, there is a
broadening of the gOO due to the presence of NQE, which is significant at all temperatures
taken into account in our study. Let us however note that at T = 200 K, the peak of the
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quantum gOO is shifted to larger OO distances, with respect to the classical case. In the high-
temperature limit, the shape of the quantum RDFs gOO is also modified: the peak position is
decreased and the Pair Correlation Functions (PCFs) display longer tails, especially at large
OO distances (dO1O2 ∼ 2.55 − 2.6 Å). This suggests that thermal effects start to take over
NQE, leading to larger fluctuations of the oxygen-oxygen distance. We thus expect to find a
larger weight of classical Eigen-type configurations, following the classical high-temperature
limit of quantum systems.
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Figure 6.11 – Oxygen-oxygen RDFs obtained by QMC-driven PIOUD-LD simulations at various
temperatures ranging from 200 K to 400 K. The vertical lines indicate the 〈dO1O2

〉 for each simulation.

Although this gives some useful information on the structural properties of the H+(H2O)6
cluster, the analysis of the quantum oxygen-oxygen RDFs is far from being sufficient since
NQE are moderate for the oxygen atoms. On the contrary, such quantum effects are spectac-
ular for the proton, and one should inspect the oxygen-proton RDFs gOH to gather further
information on the hydrated proton localization. The protonated hexamer gOH are represented
in Figure 6.12 for various temperatures. First of all, let us notice that the quantum RDFs
gOH (and gOO) are smoother and less noisy than their classical counterparts. To improve the
statistics during the computation of these observables, we decided to consider all the beads
instead of retaining the configurations of only one arbitrary bead as we did for the Zundel ion3.

3Even though the bead positions are correlated within a necklace, keeping all of them in the quantum
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Second, at variance with the oxygen-oxygen RDFs, the protonated hexamer gOH are more
similar to those obtained for the Zundel complex. Indeed, the gOH displays here a unique
peak. This suggests that the trapping of the quantum hydrated proton is considerably re-
duced since it can spontaneously jump from one side water molecule to the other, leading to
a much more important weight of the Zundel-like configurations during the cluster dynamics.
Therefore, it looks that the Zero Point Energy and quantum tunneling effects are essential to
help the hydrated proton to go across the static PT barrier, leading to an increased proton
mobility. Another consequence of NQE is the delocalization of the nuclei that leads to much
faster rearrangements of the solvation shell, making instantaneous proton jumps much easier.
We also notice that the low and room temperature (T = 200 − 300 K) oxygen-proton RDFs
almost superimpose, while the higher temperatures (T = 350 − 400 K) gOH are broadened
and present larger tails, especially in the large OH distance limit. This seems to be linked
to the already mentioned modification of the gOO at these temperature, as discussed above.
This can be attributed to thermal effects that likely start to dominate over NQE, pushing the
hydrated proton to form strong covalent bonds with its neighboring oxygen atoms.
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Figure 6.12 – Oxygen-proton RDFs obtained by QMC-driven PIOUD-LD simulations at various
temperatures ranging from 200 K to 400 K.

To pursue our analysis of the static properties of the quantum protonated hexamer, we rep-
resent the bidimensional oxygen-oxygen and oxygen-proton probability distributions ρ2D in
Figure 6.13. We also plot this quantity in Figure 6.14 for the centroid, whose coordinates are
defined by

averages improves the statistics.
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pcentro
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pi

qcentro
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j=1

qi, (6.4)

for i = 1 . . . Nat (Nat = 19 for the H+(H2O)6 cluster). The centroid analysis is a useful
tool since it gives information about the average position of the ring polymer, disregarding its
spatial extension that can blur the signal. Indeed, if we look at the low and room temperature
ρ2D in the quantum case, we merely observe a characteristic spread distribution, corresponding
to a strongly delocalized proton, with no major difference between the two distributions.
Nevertheless, the situation is different for the centroid: at T = 200 K, we notice a slight
depletion of ρ2D in the symmetric region (O1O2 = 2.35 Å), while the symmetric region is
correctly explored at T = 300 K. Once again, it proves that, despite the evidence, the hydrated
proton remains partially trapped at low temperature, explaining the observed shift of the gOO
to larger oxygen-oxygen distances. At room temperature, the bidimensional distribution ρ2D
takes larger values around OO = 2.4 Å, indicating the release of Zundel-like configurations
during the protonated hexamer dynamics. In the classical case, the central proton is stil
trapped, proving that NQE are a priori essential to provide a good proton diffusion at ambient
conditions. In the high-temperature limit, the shape of ρ2D is no longer the same and the
cluster starts to behave similarly to the classical case. The centroid ρ2D at T = 400 K is quite
similar to the classical ρ2D at the same temperature, confirming that thermal effects start to
take over NQE in the high-temperature limit.

To summarize, we have demonstrated once again the paramount importance of NQE to prop-
erly describe the microscopic mechanisms underlying the PT processes in water clusters.
Indeed, at variance with the classical case, the Zundel-like configuration is certainly the most
representative structure of the H13O+

6 ion at finite temperature, where the hydrated proton
mobility is strongly enhanced. This is in agreement with Ref. 247, where the experimental
evidence of fast nonoscillatory proton-dynamics in a Zundel-type solvation structure has been
found at Texp = 293 K. The Eigen-like configuration of the hydrated proton is however still
present, especially in the low- and high- temperature regimes. Nevertheless, these consider-
ations remain qualitative, and must be confirmed by a more focused analysis on the proton
displacement properties of the protonated water hexamer.

6.3.2 Proton displacement

We have introduced in Subsection 6.2.2 two useful observables to evaluate the hydrated proton
localization inside the Zundel- or Eigen-like core of the H+(H2O) cluster, namely the proton
displacement d and the proton sharing coordinate δ. We plot these quantities as a function
of the temperature in the left and right panels of Figure 6.15, respectively.

Looking at the histograms of the proton displacement d, we can see that, except at low
temperature (T = 200 K), the quantum distributions do not have the same symmetry as their
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Figure 6.13 – Bidimensional oxygen-oxygen and oxygen-proton distributions obtained by QMC-
driven PIOUD-LD simulations at low temperature T = 200 K (upper left panel), room temperature
T = 300 K (upper right panel) and high-temperature (bottom panel). The black circles correspond
to the zero temperature equilibrium geometries of the protonated hexamer.
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Figure 6.14 – Centroid bidimensional oxygen-oxygen and oxygen-proton distributions obtained
by QMC-driven PIOUD-LD simulations at low temperature T = 200 K (upper left panel), room
temperature T = 300 K (upper right panel) and high temperature T = 400 K (bottom panel). The
black circles correspond to the zero temperature equilibrium geometries of the protonated hexamer.
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classical counterparts (bottom left panel of Figure 6.9). Indeed, at T = 200 K, the proton
displacement presents two maxima around |d| = 0.1 Å, typical of the partial trapping of the
hydrated proton when a centroid analysis or running averages are carried out (bottom left
panel). When one increases the simulation temperature close to ambient conditions, the total
amount energy, coming from the sum of the ZPE with the thermal energy, is larger than the
PT static barrier. This is characterized by the merging of the peaks into a single maximum
at d = 0 Å, corresponding to a majority of symmetric (or Zundel-like) configurations. This
temperature transition between an asymmetric to a symmetric structure of the protonated
hexamer core is consistent with the change of the centroid ρ2D discussed above. We also notice
that the height of the distribution at d = 0 is maximal around ambient conditions, suggesting
that the presence of the Zundel-like configuration is favored in the T = 250 − 300 K region.
Consequently, we expect the hydrated proton mobility to be optimal near room temperature.
Indeed, it corresponds to the best compromise between acquiring enough energy to go across
the static barrier and, in the meantime, controlling the amplitude of the chemical (covalent
or H-) bonds fluctuations that might trap the proton. Indeed, when the temperature is again
increased (T = 350 − 400 K), there is a significant broadening of the proton displacement
histograms to larger values of |d| ∼ 0.3−0.4 Å, which corresponds to the emergence of Eigen-
like configurations. The latter ones tend to localize the hydrated proton around its closest
neighboring oxygen atom, reducing its mobility.

The configurational transition between a Zundel-like to an Eigen-like dynamics of the proto-
nated hexamer cluster around T= 350 K is also characterized by the broadening of the proton
sharing coordinate δ distributions (right panel of Figure 6.15). Nevertheless, we are not able to
distinguish the low-temperature (T = 200 K), where the hydrated proton is partially trapped,
from the ambient temperature (T = 250− 300 K) distributions, where the excess proton mo-
tion is enhanced. This is simply due to a different processing of the MD trajectories4 during
the evaluation of the d or δ histograms. Indeed, we performed running averages using a
trun = 200 fs time window to disregard the proton rattling defined as fluctuations in which
the proton returns to the original oxygen atom after a series of PT events within a Zundel-like
state [254]. Moreover, our choice is further justified by recent absorption spectrum experiments
which established that within the lifetime of a particular hydration geometry (about ∼ 1 ps),
the proton explores a multitude of positions on a sub-100-femtosecond time scale [17]. Con-
sequently, performing such running averages looks appropriate since we aim at isolating the
different hydrations geometries of the quantum proton, that strongly depend on the temper-
ature of the H+(H2O)6 cluster. We also point out that without the use of running averages,
we would not have been able to distinguish the partial trapping of the hydrated proton in the
low-temperature regime (top left panel of Figure 6.15).
To evaluate the weight of the Zundel and Eigen species during the protonated hexamer dynam-
ics as a function of the temperature, we decided to fit the proton displacement distributions
according to the 2-species model P (d) given in Eq. (6.3). This fitting function, efficiently
used for the classical description of the cluster, is however not able to faithfully reproduce
the quantum distributions because they do not have the same shape, especially in the low-
temperature regime. Indeed, we highlight that, using running averages, we detected a partial

4This was also the case for classical particles, but this discussion was irrelevant since there was no clear
temperature-induced configurational transition of the classical protonated hexamer.
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Figure 6.15 – Left panels: quantum distributions of the proton displacement d with respect to
the midpoint of the oxygen-oxygen distance with (bottom) or without (top) running averages. Right
panels: quantum (top) and centroid (bottom) distributions of the proton sharing coordinate δ.
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trapping of the hydrated proton at T = 200 K. However, looking at the bottom right panel
of Figure 6.15, the symmetry of the protonated hexamer core differs from the usual Zundel-
and Eigen-like configurations. This suggests the presence of a third species that needs to be
identified. To solve the fitting problem, we propose on the basis of the previous remark, a
novel 3-species model, where the fitting function is composed by 5 distinct gaussians:

Q(d) =
(1− λE − λEZ)√

2πσ2
SZ

e
− d2

2σ2
SZ︸ ︷︷ ︸

Short Zundel configurations

+
λEZ

2
√

2πσ2
EZ

[
e
− (d−dEZ )2

2σ2
EZ + e

− (d+dEZ )2

2σ2
EZ

]
︸ ︷︷ ︸

Elongated Zundel configurations

+
λE

2
√

2πσ2
E

[
e
− (d−dE)2

2σ2
E + e

− (d+dE)2

2σ2
E

]
︸ ︷︷ ︸

Eigen configurations

,

(6.5)
where λE , λEZ , dE , dEZ , σE , σEZ and σSZ are tunable parameters. The 5 gaussians of the
above equation describe the populations of 3 distinct species, namely: the short Zundel (SZ),
the elongated Zundel (EZ) and the Eigen (E). ’Short’ and ’Elongated’ refer to the value of the
corresponding oxygen-oxygen distance that, as already discussed in the previous Subsection,
strongly depends on the temperature of the system. On the one hand, the short Zundel cor-
responds to the usual representation of the Zundel ion, which is by definition fully symmetric:
the cluster core belongs to the C2 symmetry group and the hydrated proton is located at the
middle of the inter-oxygen distance. On the other hand, the elongated Zundel is also C2-
symmetric but the excess proton is no longer equally shared between the two sides molecules
and is softly localized on one neighboring oxygen atom. One could criticize this choice that
seems arbitrary but it is justified by the difference of behavior of these two species when they
interact with the Eigen cation. Indeed, as we will see in the last Section of this Chapter (6.4),
the short Zundel exhibits much more numerous and efficient PT processes with the Eigen ion
than the elongated Zundel. Indeed, the existence of a short oxygen-oxygen distance is crucial
to enable a large hydrated proton mobility via the Grotthuss or Eigen-Zundel-Eigen (EZE)
mechanism [13,163].

The proton displacement distributions extracted from QMC-driven PIOUD simulations and
obtained by fitting the Q(d) function given is Eq. (6.5) are compared in Figure 6.16, for var-
ious temperatures ranging from 200 to 400 K. The agreement between the simulated and the
fitted distributions is excellent, validating the 3-species model described above.

To pursue our species analysis, we report the estimated percentages of the three distinct
configurations that the protonated hexamer takes during its dynamics in Table 6.6. The
detailed evolution of the fitting parameters is given in Table F.2 that can be found in Appendix
F. At low temperature (T = 200 K), the protonated hexamer is almost exclusively in its
elongated Zundel configuration. The hydrated proton is thus trapped around its minimum
energy configuration which is asymmetric. Nuclear Quantum Effects, particularly the ZPE,
delocalize the proton which is no longer covalently bonded to one of the neighboring oxygen
atoms, at variance with the Eigen configuration. Instead, it shares two distorted H-bonds
with its oxygen neighbors. Due to the greater impact of thermal effects, the weight of the
elongated Zundel diminishes when the cluster temperature increases, indicating the onset of
PT processes at near ambient conditions. Interestingly, in the high-temperature regime, the
ratio between the overall Zundel-like and Eigen-like species is found to be 1:1, in agreement
with the EZE mechanism for the proton transfer in bulk water. However, at variance with
the classical case, we do not expect the proton mobility to linearly increases with the cluster
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Figure 6.16 – Comparison of the Q(d) distributions obtained from QMC-driven PIOUD-LD simu-
lations (blue) and fitted using Eq. (6.5) for T = 200, 250, 300, 350, 400 K.
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temperature because of the PT process between the Eigen and the short Zundel species is
less efficient than between the short and elongated Zundel. Indeed, these two configurations
belong to the same symmetry group and it thus costs less energy to the solvation shell to
react during the charge rearrangements. Strickly speaking, we can refer to a ’proton jump’
or the PT process occurring between a Zundel- and an Eigen-type species whereas the term
’proton shuttling’ or ’special pair dance’ should be employed for the short-to-elongated Zundel
process and vice versa [255].

T (K) % Short Zundel % Elongated Zundel % Zundel % Eigen
200 3 95 98 2
250 14 70 84 16
300 13 71 84 16
350 31 20 51 49
400 31 20 51 49

Table 6.6 – Estimated species proportions obtained by fitting distributions of the proton displace-
ment with the 5-gaussian model in the quantum particles case.

To conclude, we learned from the analysis of the dynamical properties that NQE dramatically
change the hydrated proton picture in the protonated water hexamer, and by extension in the
bulk liquid. Indeed, NQE naturally increase the hydrated proton mobility which is predicted
to be optimal near ambient conditions. Indeed, within the 3-species model, the excess proton
mobility seems to be strongly related to the nature of the species present in the cluster.
The (short) Zundel complex is identified as a true configurational state of the system, and
should no longer be considered as a short-lived transition state, in agreement with recent
spectroscopic studies [17]. The subtle competition between NQE and thermal effects is thus
of paramount importance to fully understand the extreme mobility of the hydrated proton
around ambient conditions.

6.3.3 Thermal effects versus Nuclear Quantum Effects

In 2017, Wilkins et al. established that, at room temperature, NQE accelerate by ∼ 13% the
water dynamics compared to a classical description of the ions [256], performing both classical
and quantum MD simulations with the flexible q-TIP4P/F potential [257]. They also assess
NQE do not change the jump amplitude distributions and no significant tunneling is found.
The faster jump dynamics of water is quantitatively related to a less structured gOO, when
NQE are included. In this Section, we investigate their role in the protonated hexamer, es-
pecially their importance when the temperature varies.

To that purpose, we go back to the bidimensional oxygen-oxygen and oxygen-proton distribu-
tion functions ρ2D that are represented in Figures 6.8, 6.14 and 6.13 for classical, centroid and
quantum particles, respectively. We have suggested in the two previous Sections that thermal
effects tend to increase the hydrated proton mobility in a classical description, while the quan-
tum case seems to be more complex. To pursue the analysis, we plot the differences between
the bidimensional distributions ρ2D calculated at a higher temperature with the obtained sig-
nal at a lower temperature, for three cases: ρ2D(T = 300 K)−ρ2D(T = 200 K) (upper panels)
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to study the low-temperature regime, ρ2D(T = 400 K)− ρ2D(T = 300 K) (central panels) for
the high-temperature limit, and finally ρ2D(T = 400 K) − ρ2D(T = 200 K) (bottom panels)
to have a complete view of the temperature-dependence of NQE.

Let us start with the interpretation of the low-temperature regime. For the classical pro-
tonated hexamer, it is clear that thermal effects tend to stretch the average oxygen-oxygen
distance, which leads to the onset of PT processes at room temperature via the special pair
dance (red wings around dO1O2 = 2.5 Å). The hydrated proton remains however trapped at T
= 200 K, as indicated by the blue central distribution at dO1O2 = 2.4 Å), because of the PT
static barrier. The scenario is strikingly different for both the centroid and quantum particles
that display positive values of ρ2D(T = 300 K)− ρ2D(T = 200 K) for shorter oxygen-oxygen
distances (dO1O2 < 2.4 Å). This indicates that NQE shorten the average oxygen-oxygen
distance, that consequently make the protonated hexamer core symmetric or Zundel-like.
Looking at the quantum particles case (upper right panel), we see no clear shape difference
between the red and the blue distributions, confirming there is no deep structural change
between the majority low-temperature species, namely the elongated Zundel and the short
Zundel which dominates near ambient conditions. We point out that our naming of ’short’
and ’elongated’ for the two aforementioned species becomes now obvious. In the centroid
description, we note that the low-temperature negative signal is situated inside the region
defined by the zero temperature asymmetric branches (black circles) while the positive region
mainly locates outside of it. This further tells that, in spite of the presence of NQE, the
hydrated proton is yet partially trapped at T = 200 K while the combination of NQE and
thermal effects provide it enough energy to freely move inside the protonated hexamer core.

In the high-temperature limit, the classical distribution difference also becomes slightly pos-
itive for short oxygen-oxygen distances (dO1O2 = 2.3 − 2.4 Å), indicating that the weight of
fully symmetric or short-Zundel configurations increase with the temperature, in agreement
with Table 6.5. Therefore, the hydrated proton is much more mobile at high temperature
because the solvation shell moves fast enough to redistribute the charge within the core of the
cluster during the PT process. Moreover, we notice the appearance of the red wings at large
oxygen-oxygen distances (dO1O2 = 2.5 − 2.7 Å), which are the signature of the presence of
Eigen-like states, with a strongly localized proton even in the quantum case. This is related to
the disappearance of the elongated Zundel configurations, indicated by the blue distribution
around dO1O2 ∼ 2.4 Å, confirming that the Eigen-like state is favored at high temperature.
We merely note that the frontier between the (elongated) Zundel-like and the Eigen-like re-
gions is very clear within this representation, suggesting that their structures significantly
differ from each other. Therefore, when the overall symmetry of the protonated hexamer is
modified, it costs a lot of thermal energy (T∼ 200 K, the PT static barrier) to the solvation
shell to rearrange during the charge transfer.

The above discussion can be summarized looking at the plots at the bottom of Figure 6.17,
representing the ρ2D(T = 400 K) − ρ2D(T = 200 K) difference. In a classical description,
the H+(H2O)6 cluster is mainly asymmetric or Eigen-like, with a localized hydrated proton
than can hop according to a EZE mechanism when the cluster temperature is large enough
(T > 350 K). On the other hand, we can distinguish two regimes in the quantum case. Under
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low-temperature conditions (T = 200 K), the hydrated proton is partially trapped, despite its
delocalization due to NQE. When one increases the cluster temperature, the central oxygen-
oxygen significantly shortens thanks to the combination of NQE and thermal effects which
give to the cluster just the necessary energy to enable proton shuttling within its core. At
higher temperature, the thermal energy brought to the system is even larger, making the hy-
drated proton hop to side water molecules, via the special pair dance or the EZE mechanism.
The simultaneous disappareance of the elongated Zundel species and appearance of the Eigen-
like configurations is clearly noticeable examining ρ2D(T = 400 K)− ρ2D(T = 200 K) for the
centroid. Finally, let us note that the spatial extension of the wings is the same along the
OO distribution for both classical, centroid and quantum particles, indicating that there is no
significant change in the proton jumps amplitude, in agreement with recent water studies [256].
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Figure 6.17 – Difference between bidimensional oxygen-oxygen and oxygen-proton distributions
obtained by QMC-driven LD simulations for classical (left panels), centroid (central panels) and
quantum (right panels) particules. Upper panels: ρ2D(T = 300 K)− ρ2D(T = 200 K). Middle panels:
ρ2D(T = 400 K) − ρ2D(T = 300 K). Bottom panels: ρ2D(T = 400 K) − ρ2D(T = 200 K). The black
circles correspond to the zero temperature equilibrium geometries of the protonated hexamer.
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To conclude, we confirmed that NQE deeply impact the nature and the dynamics of the
hydrated proton in the protonated water hexamer. Indeed, there is a subtle competition
between NQE and thermal effects than can be only understood within the 3-species model
that we designed. The classical hydrated proton is Eigen-like, whereas it displays a Zundel-like
symmetry in the quantum case because of its delocalization due to NQE. The average oxygen-
oxygen distance plays a critical role for the proton mobility in the cluster since the elongated
Zundel configuration, existing at dO1O2 = 2.4 − 2.5 Å, is the essential species to strongly
enhance PT in the protonated hexamer. Indeed, it has a large cooperativity with the short
Zundel configurations of the clusters, at variance with the Eigen that is inert. Nevertheless,
this species analysis does not provide a quantitative description of the existing proton hopping
within the Zundel- or Eigen-like core of the protonated hexamer. Therefore, there is need to
find new observables to quantify the PT rate in this system, as we will do in the following.

6.4 Proton transfer in the protonated hexamer

In this Section, we aim at evaluating PT rate in the protonated water hexamer as a function
of temperature, for both classical and quantum nuclei, by our QMC-driven LD simulations.
The results will be compared together to refine our understanding of the interplay between
NQE and thermal effects which governs the hydrated proton mobility at finite temperature.

6.4.1 Classical counting

We start with the simpler case of the classical H+(H2O)6 cluster. When the ions, and more
particularly the hydrated proton, are described within a classical picture, tracing their time
evolution during the dynamics is trivial. Therefore, to evaluate the classical PT rate, we
simply consider again the proton displacement d with respect to the midpoint of the O1O2

distance. If this quantity changes its sign, a PT process might have happened because it
indicates that the closest oxygen neighbor has changed. Similarly to the static properties, we
are thus compelled to perform running averages to disregard the proton rattling between the
two side oxygen atoms whose typical timescale is about 180 fs. By taking a time window of
200 fs, we ensure that the time evolution of the proton displacement d is representative of
the different configurations (Zundel- or Eigen-like) that are adopted by the H13O+

6 ion during
its dynamics. Nevertheless, this quantity is not self-sufficient since it does not provide any
information about the geometry and the charge redistribution of the solvation shell when the
hydrated proton jumps from one oxygen atom to another.

For this reason, we decided to evaluate, in a simple way, the value of the electrostatic potential
on the left (O1) and right (O2) oxygen atoms. To that purpose, we attribute effectives charges
to the oxygen and the hydrogen atoms in the solvation shell, by analogy with the SPC model
for water [117]. Within this approach, the partial charges are: ZO = −0.82 e and ZH = −0.41 e

since the oxygen has a greater electronegativity than the hydrogen. The same values are
employed in this work. The electrostatic potential is evaluated by taking into account the
effective interaction between one oxygen atom in the core and its neighboring particles in the
solvation shell. Indeed, the core potential can be considered as a constant offset since it does
not significantly modify the value of the overall electrostatic potential during the PT process.
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6.4. Proton transfer in the protonated hexamer

The electrostatic potential is evaluated according to

Vleft/right =
∑

i∈left/right shell

ZO1/2
ZOi

|qO1/2
− qOi |

+
∑

j∈left/right shell

ZO1/2
ZHj

|qO1/2
− qHj |

, (6.6)

where Vleft/right is the calculated potential on the left/right part of the protonated hexamer.
We have seen in the previous Sections that the global symmetry of the cluster is modified when
it goes from a symmetric Zundel-type geometry to an asymmetric Eigen-type configuration.
To visualize simply this structural change implying a charge redistribution inside the cluster
during the PT process, we thus compute the electrostatic potential difference, which reads as

∆V = Vleft − Vright, (6.7)

where we employ the Eq. (6.6) to evaluate each component of the r.h.s. of the above equa-
tion. ∆V can be either positive or negative, depending on the location of the hydrated proton
and the local arrangement of the solvation shell. Calculations based on the EVB-MD model
argued that the collective electric field in the proton transfer direction is the appropriate
coordinate to describe the creation and relaxation of these Zundel-like transition states. [258].
The molecular electrostatic potential thus constitutes a good theoretical descriptor of PT
processes in water and aqueous systems, and has been recently used to characterize excited
state acidity [259].

We represent in Figure 6.18 the time evolution of the proton displacement d (black solid
curve) and the scaled electrostatic potential difference C∆V 5 (red solid curve) for a CMPC-
LD simulation of the H+(H2O)6 cluster at room temperature (T = 300 K). The blue dashed
line is a eye guide that defines the limit between positive and negative values of d and C∆V .
The proton displacement d fluctuates around d = 0.4 a.u. and d = −0.4 a.u., with persistence
periods of 4−5 ps. This confirms that, within a classical description, the protonated hexamer
core is mainly in its Eigen-like configuration, where the hydrated proton is strongly localized.
We notice that, at room temperature, the PT processes are not so frequent ( ∼ 5 for a 20 ps
trajectory), confirming the proton trapping predicted by the study of the static properties. We
can count the number of proton hops occurring along the dynamics if the following criterion
is satisfied: the sign of both the proton displacement d and the scaled electrostatic potential
C∆V changes during the proton jump. This method enables us to take into account those
PT processes that imply a full charge rearrangement in the cluster and disregard shorter time
scales processes, such as the proton rattling.

In Table 6.7, we report the number of PT that are directly counted from the QMC-driven
CMPC-LD trajectories and we define the PT rate as kPT = NPT/ttraj. We can evaluate
the characteristic time constant for the proton transfer τPT = 1/kPT as a function of the
temperature. Disregarding the low-temperature (T = 200 K) case, we confirm that thermal
effects naturally increase the proton mobility since the proton jumps are more and more
numerous at higher temperatures. This monotonic effect can be related to the Arrhenius law
where the PT rate is given by kPT = A exp

(
− Ea
RT

)
where Ea is the activation energy, which is

5with C an applied constant to make the d and C∆V signals almost superimpose.
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Figure 6.18 – Time evolution of the proton displacement and the electrostatic potential difference
in the classical protonated water hexamer at room temperature (T = 300 K).

related to the PT static barrier in our case6. The T = 200 K result is special situation since
the proton is normally trapped by the static barrier because it has not enough kinetic energy
to spontaneously escape from its neighboring oxygen atom. However, as we have seen in
Figure 6.3 and Table 6.4, the height of the PT barrier strongly depends on the oxygen-oxygen
distance. At low temperature, the average distance 〈O1O2 is close to the equilibrium one,
enabling PT despite the lack of thermal (kinetic) energy of the hydrated proton. By the way,
this low-temperature analysis is irrelevant without considering NQE which largely take over
thermal effects, as we noticed for the Zundel complex (Chapter 4). Finally, the typical time
constant for the proton relaxation is found to be around τPT = 1.9 ps, being in agreement
with the Car-Parrinello MD result of Tuckerman and his colleagues who found, disregarding
the proton rattling, τjump = 1.68 ps in liquid water, with the BLYP functional [254].

T (K) ttraj (ps) NPT τPT (ps)
200 20.5 14 1.5
250 24.2 6 4.0
300 22.7 12 1.9
350 26.5 16 1.7
400 20.5 24 0.9

Table 6.7 – Estimated number of proton jumps and its corresponding time constant τjump as a
function of the temperature, for the classical protonated hexamer

To put it in a nutshell, within a classical description, we confirm the Arrhenius behavior
of the proton diffusion when one increases the cluster temperature. Nevertheless, although
the obtained PT time constants have the correct order of magnitude, they are certainly not

6and A is a statistical prefactor.
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physical since NQE deeply change the temperature-dependance of the PT physics in water
clusters, and more generally in the bulk liquid.

6.4.2 Quantum counting: the instanton theory

We repeat here the same counting of the PT processes that occur inside the protonated hex-
amer during the dynamics, by analyzing the different QMC-driven PIOUD-LD trajectories at
different temperatures, as we did in the last Subsection for classical particles. Nevertheless,
within the PI framework, the ions and thus the hydrated proton, are strongly delocalized.
Indeed, the calculated giration radius of the ring polymer [260] is RG ∼ 0.15 Å for the T
= 300 K simulation, which makes impossible the analysis of the proton displacement d of a
single bead7, as we did in the classical case. We could consider taking the centroid proton
displacement to overcome this issue, but the result would be approximate.

A much more accurate solution is to apply the instanton theory to describe the dynamics
of the hydrated proton, within the PI formalism. The instanton describes the dynamics of a
chemical reaction at low temperature when tunnelling effects become dominant, and provides
a generalization of the transition-state theory for anharmonic quantum systems [261], such as
the protonated water hexamer (Figure 6.3). Instanton theory has been very recently applied
in a QMC framework [262,263], where it has been demonstrated that QMC simulations effi-
ciently recover the scaling of ground-state tunneling rates due to the existence of an instanton
path, which always connects the reactant state with the product. Within the PI approach, the
geometry of the beads at the transition state on the ring-polymer potential surface describes
a finite-difference approximation to the instanton path. This is the minimal action trajectory,
periodic in the quantum imaginary time τ = β~ [264], which links both reactants and products
minima.

In our case, the instanton theory can thus be applied to estimate the quantum PT rate kQPT by
identifying the occurrence of the instantons [265]. A quantitative way to find them during the
dynamics is to compute the central proton ring-polymer fraction F , defined as F = 100Nbeads

P
8

(Nbeads is the number of beads making part of the instanton), that is situated on the left or on
the right with respect to the midpoint of the central oxygen-oxygen distance. The instanton
then corresponds to a configuration where F = 50 because the PT barrier separates two sym-
metric minima in this cluster. The time evolution of the ring-polymer fraction that is situated
on the left part of oxygen-oxygen distance is represented by the black solid curve in Figure
6.19, for a simulation at ambient conditions (T = 300 K). We also report on the same plot the
scaled electrostatic potential difference C∆ + 50 (red solid curve) for beads at the centroid,
where we applied an offset to superimpose its signal with the instanton. We thus consider that
a PT process occurs in the protonated hexamer when the ring-polymer fraction gets larger or
lower than 50%, indicating that the proton crossed the static PT barrier, either by quantum
tunneling or by a classical jump. We notice that the correlation between the instanton and
the electrostatic potential is still present, altough less neat than between the classical proton
displacement and the classical electrostatic potential difference. Indeed, the quantum beats

7arbitrarily chosen since within PI, the equilibrium properties are trace-invariant.
8P is the total number of beads, defining the entire instanton path.
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of the hydrated proton are not necessarily accompanied with a charge rearrangement of the
solvation shell. The quantum tunnelling can be evinced by a delay between the instanton cross
and the sign flip of the electrostatic potential. Thus, NQE significantly increase the PT rate
kQPT because they enable PT via this tunneling mechanism, at variance with the classical case.

Similarly to the classical case, we report on Table 6.8 the number of PT processes occurring
inside the H+(H2O)6 core within the instanton theory at various temperatures ranging from
200 to 400 K. We also give the corresponding values of the PT time constant τQPT = ttraj/N

Q
PT,

which is inversely proportionnal to the quantum PT rate kQPT. We first stress that, for trajec-
tories of comparable length, the PT processes are more numerous in the quantum protonated
hexamer than in the classical one, thanks to NQE which provide to the hydrated proton the
necessary energy to easily go across the PT barrier. Moreover, the latter is probably smaller
in the quantum case since the charge defect is naturally delocalized and more rapidly redis-
tributed between the four solvating water molecules. Finally, we remark that the quantum
PT rate kQPT is not monotonic when one increases the temperature. Indeed, it is maximal
near ambient conditions, with a typical timescale of τQPT = 1 ps, which is consistent with the
lifetime of the Zundel species [17]. Such a non monotonic behavior manifestation of NQE has
already been observed in DNA base pairs, where the H-bonds strength are counterintuitively
less influenced by NQE at low temperature that around ambient conditions [266].
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-50
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Figure 6.19 – Time evolution of the proportion of the ring-polymer located on the left of dO1O2

2 and
the electrostatic potential difference in the quantum protonated water hexamer at room temperature
(T = 300 K).

Last but not least, we compare in Figure 6.20 the evolution fo the classical kPT and the
quantum kQPT PT rate of the protonated water hexamer as a function of the temperature. As
already discussed, the classical PT rate increases with the temperature, in agreement with the
Arrhenius law. Indeed, thermal effects increase the amplitude of the H-bond fluctuations and
accentuate the special oxygen-oxygen pair dance, making the EZE mechanism more efficient
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T (K) ttraj (ps) NQ
PT τQPT (ps)

200 23.1 12 1.9
250 23.9 16 1.5
300 21.9 21 1.0
350 18.5 14 1.3
400 23.0 18 1.3

Table 6.8 – Estimated number of proton jumps and its corresponding time constant τjump as a
function of the temperature, for the quantum protonated hexamer

thus giving to the hydrated proton a greater mobility. On the other hand, the non monotonic
temperature behavior of the quantum PT rate is surprising. Indeed, the proton mobility is
maximal around ambient conditions, making the T = 250−300 K temperature interval a sweet
spot. This optimal PT rate stems from the subtle interplay between NQE and thermal effects.
Indeed, NQE allow the hydrated proton to cross the barrier, with controlled fluctuations and
to shuttle from one neighboring oxygen atom to another in the (short) Zundel-like core. When
the cluster temperature is too high, the amplitude of the H-bond fluctuations is so important
that the proton is sometimes trapped into a largely distorted Eigen-like configuration, that
is less cooperative than its Zundel counterpart for the proton diffusion. This behavior is
strongly correlated to the average oxygen-oxygen distance that is ∼ 0.02 Å smaller around
ambient conditions than in the high-temperature limit. This spectacular result needs to be
verified in the bulk liquid water, but is of paramount importance for the understanding of the
fundamental mechanisms that governs the proton motion in water and aqueous systems.
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Figure 6.20 – Evolution of the classical kPT and the quantum kQPT PT rate of the protonated hexamer
as a function of the temperature.
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In this thesis, we have shed light on the microscopic mechanisms underlying the proton
transfer (PT) process in water by taking the protonated water hexamer as a model. Thanks

to the use of a novel Quantum Monte Carlo-driven Path Integral Langevin Dynamics frame-
work, we have been able to investigate, at the highest level of accuracy, the impact of thermal
and Nuclear Quantum Effects (NQE) on the hydrated proton localization in the protonated
water dimer (Zundel cation) and hexamer. More specifically, we have demonstrated that
NQE are significant for temperatures up to T = 900 K in the Zundel cation H5O+

2 , while they
are still noticeable at T = 400 K in the protonated water hexamer H13O+

6 . Moreover, NQE
largely prevail over thermal effects for temperatures below the ambient conditions, allowing a
faster diffusion of the proton by tunneling and Zero Point Energy (ZPE). We found that the
PT characteristics are non monotonic with the temperature in the H+(H2O)6 complex, with
an optimal PT rate around room temperature. This striking result raises many fundamental
questions about the critical role played by the temperature and NQE on all chemical reactions
where PT plays a crucial role, such as acid/base reactions occurring in complex chemical or
biological systems.

Detecting such a subtle impact of the temperature on the hydrated proton mobility would
not have been possible without the very high accuracy of the Quantum Monte Carlo (QMC)
approach. This highly correlated method, based on a variational ansatz that has been intro-
duced in Chapter 1, is a direct competitor of the most advanced quantum chemistry techniques
such as the Møller-Plesset (MP2) and the Coupled Cluster (CCSD/CCSD(T)) approaches.
Indeed, we have estimated the Variational Monte Carlo (VMC) accuracy be close to CCSD
and the CCSD(T) methods for the evaluation of the Potential Energy Surface (PES) and the
geometry of the Zundel cation (Chapter 4). Despite its stochastic nature that can compli-
cate at the first sight its use for routine Molecular Dynamics (MD) simulations, the QMC
approach exhibits the main advantage of a milder scaling with the system size, with respect
to its quantum chemistry competitors. Moreover, the embarrassingly parallel formulation of
its algorithms gives an additional appeal to this method, as its efficiency will keep increas-
ing with the development of supercomputers. We therefore expect this electronic structure
technique to be much more widely used in the next decades. At this stage of development,
QMC methods remain however quite computationally demanding, even for the small neutral
or charged water clusters studied in this thesis.

In this thesis, we have brought QMC to a wider level of applicability. Indeed, we have
explored the possibility to incorporate the noisy QMC forces into a MD framework, via the
Langevin Dynamics (LD) approach. Usually, the extension to the quantum nuclei is achieved
by combining this MD with the Feynman Path Integral (PI) formalism. As a fundamental
methodological development, we have paved the way to perform unbiased, accurate and ef-
ficient (PI)LD simulations of any physical or chemical system with either deterministic or
stochastic (noisy) forces. First, the simulation temperature is controlled by an explicit correc-
tion of the total noise incorporated into the LD to fulfill the fluctuation-dissipation theorem.
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Second, three original integration schemes, namely CMPC, PIMPC and PIOUD, based on
the use of joint momentum-position coordinates have been devised to propagate efficiently
the ions, using a large time interval between each nuclear iteration. To be more precise, the
PIOUD algorithm provides an exact integration of the ring-polymer harmonic modes whose
thermalization is ensured within one single operation, at variance with previous published
algorithms. The remarkable stability of the PIOUD algorithm thus enables us to work with
a large time step, leading to an efficient exploration of the phase space despite the shortness
or our QMC-MD trajectories. We also introduced the bead-grouping approximation, a useful
trick to make the computational cost of the quantum simulations almost equivalent to their
classical counterparts. The aforementioned technical developments have been first validated
on an analytical PES parametrized from CCSD(T) calculations and later with noisy QMC
forces.

In Chapter 4, we provided a detailed study of the zero and finite temperature properties
of the protonated water dimer H5O+

2 . This complex displays a centrosymmetric minimum
with a proton evenly shared between its two neighboring oxygen atoms. When thermal fluc-
tuations are important, the Zundel cation can be distorted as the oxygen-oxygen distance
increases, leading to a partial localization of the excess proton close to an oxygen atom. This
picture is particularly true within a classical description of the nuclei, as the Zero Point Energy
(ZPE) and NQE tend to delocalize the proton by quantum tunneling. At ambient conditions,
the PT physics in the Zundel ion is completely governed by NQE and one has to increase the
cluster temperature up to T = 900 K to notice significant thermal effects. Although useful
to validate our novel methodology, the Zundel ion does not constitute a realistic system to
investigate PT in water and aqueous systems since solvation effects are missing. The natu-
ral continuation of this preliminary study is thus to incorporate 4 solvating water molecules
around the Zundel core, defining the protonated water hexamer studied in Chapter 6.

Before studying such a large systems, simplifying the QMC wave function (WF) is needed. In-
deed, based on the Jastrow-Slater (JSD) or Jastrow Antisymmetrized Geminal Power (JAGP)
ansatz introduced in Chapter 1, the quality of the QMC WF is of paramount importance since
it should be able to retain the major, if not the whole part, of the total correlation energy, at
the lowest possible computational cost. Therefore, the JAGP WF, already used in Chapters
3 and 4 is revisited in Chapter 5, where contraction schemes to simplify the WF basis sets
are applied. Testing the QMC WF on a simple system, namely the water dimer, allowed us
to build a WF with a reasonable number of variational parameters and properly describe the
bonding and non bonding interactions of the (H2O)2 complex. We also noticed the potential
significance of the spin-spin correlations on the overall binding energy of the bonding water
dimer, suggesting that such interactions should also be taken into account to obtain a fully
satisfactory description of the water dimer, and thus of the bulk liquid water.

Using the JAGP WF designed in Chapter 5, we studied the protonated water hexamer follow-
ing the same route as in Chapter 4. We emphasize that the presence of solvating molecules
tends to make the protonated hexamer PES more anharmonic than in the Zundel case (top
panel of Figure 6.21). On the other hand, the nature of the minimum energy configuration
is radically changed as the minimum of the H13O+

6 complex is asymmetric, with an excess
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proton that is located closer to an oxygen atom than the other (bottom panel of Figure 6.21).
Consequently, the PT static barriers, corresponding to a classical activation temperature of
hundredths Kelvin degrees higher than in the Zundel ion, are at the origin of the observed
partial trapping of the hydrated proton in the low-temperature limit. To describe this situa-
tion, we propose a 3-species model, involving two different Zundel-like complexes, namely the
short (ambient) and the elongated (cold) Zundel. The former one, essential for an efficient
proton diffusion in water, is favored around ambient conditions, due to the subtle combina-
tion of both thermal and quantum effects. When the cluster temperature is too large, the
Eigen complex, with a fully localized proton, starts to take over and the proton only diffuses
according to a Eigen-Zundel-Eigen (EZE) mechanism, with no more quantum tunneling.

The methodological advances presented in this thesis pave the way for simulations of larger
and more realistic system exhibiting PT processes. Indeed, we restricted our study to finite
size clusters in gas phase, whose behavior certainly differs from water in condensed phase. The
natural extension of this thesis is to perform a QMC-driven PIOUD simulation of 64 or 128
water molecules in a cubic cell, with periodic boundary conditions. The radial distribution
functions and the proton or water self-diffusion constants should be computed and compared
to experimental data. Simulating larger systems, such as protein environments is, at this stage
of QMC development, out of reach. One can however develop mixed approaches coupling the
QMC technique with a cheaper computational method such as the DFT to generate MD tra-
jectories with a limited number of configurations (for instance, 1 out of 10) evaluated at the
QMC level. We also point out that the tools designed in this thesis do not allow the compu-
tation of dynamical quantities, such as the IR spectrums of the gas phase clusters. Therefore,
an effort should be done in this direction, which will lead to a more direct comparison with
the experimental data. This further development would be the final bridge between theory
and experiment, allowing on the one hand a microscopic interpretation of the experimental
results and on the other hand, more stringent tests and validations for new theories.
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Appendix A

Derivation of the MP2 energy

In this Appendix, we derive the explicit expression of the second order energy given in
Eq. (1.19), starting from Eq. (1.18). Let us first take the WF of Ĥ0 to be normalized, i.e.
〈i|i〉 = 1 and then choose the normalization of Ψi such that 〈i|Ψi〉 = 1 (this choice is always
possible in practice unless |i〉 and |Ψi〉 are orthogonal). Consequently, multiplying Eq. (1.18)
by 〈i|, one obtains

〈i|Ψi〉 = 〈i|i〉+ λ〈i|Ψ(1)
i 〉+ λ2〈i|Ψ(2)

i 〉 = 1 (A.1)

The above equation holds for all values of λ; therefore the coefficients of λn;n = 0, 1, 2 on
both sides must be equal. Hence, 〈i|Ψ(n)

i 〉 = 0 ;n = 0, 1, 2. By substituting Eq. (1.18) into
Eq. (1.16) and equating coefficients of λn;n = 0, 1, 2, we find:

n = 0 : Ĥ0|i〉 = E
(0)
i |i〉 (A.2)

n = 1 : Ĥ0|Ψ(1)
i 〉+ V̂ |i〉 = E

(0)
i |Ψ

(1)
i 〉+ E

(1)
i |i〉

n = 2 : Ĥ0|Ψ(2)
i 〉+ V̂ |Ψ(1)

i 〉 = E
(0)
i |Ψ

(2)
i 〉+ E

(1)
i |Ψ

(1)
i 〉+ E

(2)
i |i〉.

We then multiply each line of Eq. (A.2) by 〈i| and using the orthogonality relation 〈i|Ψ(n)
i 〉 =

0 ;n = 0, 1, 2, we obtain the following expressions for the energies until the second order:

E
(0)
i = 〈i|Ĥ0|i〉 (A.3)

E
(1)
i = 〈i|V̂ |i〉

E
(2)
i = 〈i|V̂ |Ψ(1)

i 〉.

All that remains is to solve the set of Eqs. (A.2) for |Ψ(n)
i 〉 ;n = 0, 1, 2 and then determine

the nth-order energy using (A.3). We recall the equation which determines the first order WF
|Ψ(1)

i 〉 extracted from Eq. (A.2) a few lines above:

Ĥ0|Ψ(1)
i 〉+ V̂ |i〉 = E

(0)
i |Ψ

(1)
i 〉+ E

(1)
i |i〉. (A.4)

The previous equation can be rewritten as

(E
(0)
i − Ĥ0)|Ψ(1)

i 〉 = (V̂ − E(1)
i )|i〉 = (V̂ − 〈i|V̂ |i〉)|i〉. (A.5)

One way to solve this integro-differential equation is to expand the first order WF |Ψ(1)
i 〉 in

terms of eigenfunctions of Ĥ0 which are taken to be complete

|Ψ(1)
i 〉 =

∑
n

c(1)
n |n〉. (A.6)
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The eigenfunctions of Ĥ0 are orthonormal by definition, thus multiplying Eq. (A.6) by 〈n|,
one obtains

c(1)
n = 〈n|Ψ(1)

i 〉. (A.7)

Using the fact that 〈i|Ψ(1)
i 〉 = 0 ;n = 0, 1, 2, it is clear that c(1)

i = 0, so we can write

|Ψ(1)
i 〉 =

∑
n6=i
|n〉〈n|Ψ(1)

i 〉. (A.8)

Now, let us multiply Eq. (A.5) by 〈n| and still using the orthogonality of the zeroth order
WF, we have

(E
(0)
i − E

(0)
n )〈n|Ψ(1)

i 〉 = 〈n|V̂ |i〉. (A.9)

Using the expression (A.8) in Eq. (A.3) for the second order energy, one obtains

E
(2)
i = 〈i|V̂ |Ψ(1)

i 〉 =
∑
n6=i
〈i|V̂ |n〉〈n|Ψ(1)

i 〉 (A.10)

and hence, combining with Eq. (A.9), we finally obtain the desired explicit expression for the
second order energy in the framework of the perturbation theory

E
(2)
i =

∑
n 6=i

〈i|V̂ |n〉〈n|V̂ |i〉
E

(0)
i − E

(0)
n

=
∑
n6=i

|〈i|V̂ |n〉|2

E
(0)
i − E

(0)
n

. (A.11)

Higher order terms can be obtained following the same procedure than described above, but
pushing the Taylor expansion of Eq. (1.18) to the order we want to stop.
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Appendix B

Calculation of excitation amplitudes
within CC approach

In this Appendix, we exploit the CC WF function ansatz to obtain an explicit expression of
the CC WF and the amplitudes of first-, second- or higher-order excitations. Let us start
with a simple Taylor expansion of the eT̂

eT̂ = 1 + T̂ +
T̂ 2

2!
+ . . . (B.1)

= 1 + Ĉ1 + Ĉ2 + . . .

We have rearranged in the above equation the operators in terms of excitation levels: Ĉ1 = T̂1

generates the single excitations whereas Ĉ2 = T̂2 +
T̂ 2
1
2 generates double excitations and so on.

Hence, double excitations can be generated in two ways: by a simultaneous excitation of two
electrons (T̂2) or by exciting simply two independent single electrons ( T̂

2
1
2 ).

The whole CC WF function can thus be written as

|ΨCC〉 = |Φ0〉+

Norb∑
i

Nvir∑
a

cai |Φa
i 〉+

Norb∑
i<j

Nvir∑
a<b

cabij |Φab
ij 〉+ . . . (B.2)

with coefficients related to the cluster amplitudes by

cai = tai , (B.3)

cabij = tabij + tai ? t
b
j ,

cabcijk = tabcijk + tai ? t
bc
jk + tai ? t

b
j ? t

c
k

and so on. In the Eq. (B.3), ? implies an antisymmetric product making the resulting coef-
ficient properly antisymmetric with respect to any exchange of two occupied orbitals or two
virtual orbitals (i.e. tai ? t

b
j = tai t

b
j − taj tbi).

Consequently, it is clear from Eq. (B.3) that the coefficients of triple excitations cabcijk are
fully determined by only products of single- and double-excitation amplitudes tai and tbcjk, and
similarly for the coefficients of all higher-level excitations. Presumably, higher-order excita-
tion amplitudes are smaller than the double-excitation amplitudes tabij and can be reasonably
neglected, as it is done in CCSD or CCSD(T) approaches.
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The CC WF contains all the excited determinants and one can easily choose at which or-
der the WF truncation must be done. According to Slater’s rule, third- and higher-order
excitations of the HF WF |Φ0〉 do not directly contribute to the correlation between elec-
trons, which justifies the very frequent choice to limit the expansion until the second-order.
In this thesis, we also apply this choice by performing CCSD or CCSD(T) calculations.
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Appendix C

Wave function optimization methods

In this Appendix, we detail the two main techniques we used in this thesis to optimize the
QMC WF of the water clusters we studied, namely the Stochastic Reconfiguration (SR) [85]

and the Stochastic Reconfiguration with Hessian Accelerator (SRH) [86].

C.1 Stochastic Reconfiguration

The SR technique is a method that takes benefit from the direct knowledge of the trial QMC
WF ΨT to converge as fast as possible. Considering that ΨT (λ0) depends on a set of p
variational parameters {λk}k=1,...,p and by applying an elementary perturbation δλk to each
parameter, the variational parameters then read as

λk = λ0
k + δλk. (C.1)

Thus, the corresponding perturbed WF can be written

Ψ′T (λ) = ΨT (λ0) +

p∑
k=1

δλk
∂

∂λk
ΨT (λ0). (C.2)

Let us introduce local operators defined on each electronic configuration R = (r1, . . . , rN ) as
logarithmic derivatives with respect to the variational parameters

Ôk =
∂

∂λk
ln ΨT (R), (C.3)

where we set Ô0 = 1 for convenience. Using Eq. (C.3) in Eq. (C.2), one obtains a more
compact form for Ψ′T

Ψ′T =

p∑
k=0

δλkÔ
kΨT . (C.4)

For a generic trial WF ΨT , it is possible to obtain iteratively an updated WF closer to the
ground state of the system by simply applying the shifted Hamiltonian operator (Λ− Ĥ) that
gives

|ΨP
T 〉 = (Λ− Ĥ)|ΨT 〉, (C.5)

with Λ large enough (in practice, we work in the limit Λ→ +∞) and |ΨP
T 〉 the projected WF.
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C.2. Stochastic Reconfiguration with Hessian accelerator

To make the perturbed WF Ψ′T as close as possible to the projected WF ΨP
T in the sub-

space generated by the vectors Ôk|ΨT 〉, we impose the following SR conditions

〈ΨT |Ôk |Ψ′T 〉 = 〈ΨT |Ôk |ΨP
T 〉 for k = 0, . . . , p. (C.6)

Eq. (C.6) can be rewritten in a linear system

p∑
l=1

δλlSlk =
1

2
fk, (C.7)

where Slk = 〈(Ôl − 〈Ôl〉)(Ôk − 〈Ôk〉)〉 defines the covariance matrix S ≡ {Slk}. fk =

2(〈Ôk〉〈Ĥ〉−〈ÔkĤ〉) is the generalized QMC force introduced in Eq. (1.70) of the manuscript.
By simple inversion of the covariance matrix S, the linear system in Eq. (C.7) can be rewritten

δλ =
1

2
S−1f , (C.8)

where the covariance matrix S and the forces acting on each parameter f are stochastically
evaluated within a QMC framework. Once the solution of the linear problem described in
Eq. (C.8) is found, one can update the variational parameters according to

λ′ = λ+ δtparδλ = λ+
δtpar

2
S−1f , (C.9)

where δtpar is a parameter modulating the acceleration of electronic parameters for a given
SR step. Its value should be set up small enough to ensure a minimization of the electronic
energy expectation value. Indeed, in that case, it can be easily shown the energy variation
∆E between two SR steps is negative by taking the limit

∆E = −δtpar
p∑

k=1

f2
k +O(δt2par). (C.10)

Consequently, the SR method converges to the lowest energy when the electronic forces fk
disappear. To obtain a stable minimization procedure for WF containing a rather large
number of electronic parameters (∼ 2 − 8.103 in this thesis), the acceleration of electronic
parameters δtpar has to be dramatically reduced, making the WF optimization procedure
computationally cumbersome and inefficient. To solve this issue, one can use an improvement
of the SR method: the Stochastic Reconfiguration with Hessian accelerator (SRH).

C.2 Stochastic Reconfiguration with Hessian accelerator

As mentioned above, SRH technique is used to fasten the convergence of the WF optimiza-
tion by using the information contained in the second order derivatives of the electronic energy.

Using this minimization procedure, the variation of the energy for a single change of the
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variational parameters is very similar to the formula obtained within SR approach with an
additional second order term

∆E = −
p∑

k=1

δλkfk +
1

2

p∑
k,k′

δλkδλk′Bkk′ (C.11)

where Bkk′ = ∂2E
∂λk∂λk′

defines the Hessian matrix of the energy with respect to the electronic
parameters B ≡ {Bkk′}. By imposing ∂E

∂λk
for each k = 1, . . . , p, we approximate the value of

the minimum energy E substituting all the electronic parameters λ by their relative variation
δλ. Within this approximation, the linear system equivalent to Eq. (C.8) for SRH is thus

δλ = B−1f . (C.12)

In other words, the knowledge of the Hessian matrix B helps to update the electronic pa-
rameters λ in the "right" direction, that is to say, closer to their equilibrium value which
minimizes the energy of the QMC trial WF. The SRH minimization procedure is much more
stable than SR, especially during the optimization of the variational parameters defining the
exponents of the atomic or molecular orbitals of the system. This allows us to use larger values
of the parameter driving the acceleration of the electronic parameters, δtpar. However, the
Hessian matrix B is more delicate to compute without bias and has required some technical
developments, such as Algorithmic Differentiation (AD) [107].
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Appendix D

Noise correction and quantum
integration scheme

In this Appendix, we provide the useful formulæ to understand the algorithmic developments
introduced in the Chapter 3. In particular, we provide explicit expressions for the noise
correlators employed in the CMPC algorithm. We also explain how to correct the intrinsic
QMC noise to keep the dynamics free of biases. Finally, we detail the mathematical derivation
of the PIOUD algorithm to perform PILD simulations, with quantum particles.

D.1 Noise correlators in the CMPC algorithm

We report the variance-covariance properties which define the time integrated noises η̃ and
˜̃η for momenta and positions, respectively. Their variance-covariance can be computed by
imposing the FDT (2.32) to be fulfilled, under the hypothesis that the α matrix is q-time
independent (as we have done in Chapter 3, Subsection 3.1.1), and by exploiting that [α,γ] =

0. One finds:

α̃11 = 〈η̃Tη̃〉 = kBTγ
2 coth

(
γ
δt

2

)
,

α̃22 = 〈˜̃ηT˜̃η〉 = kBT
(
2Θ− Γ2

)
Θ−2,

α̃12 = 〈η̃T ˜̃η〉 = α̃21 = 〈˜̃ηTη̃〉 = kBTγΓΘ−1, (D.1)

while the mean of η̃ and ˜̃η is zero.

D.2 Quantum Monte Carlo noise correction in the CMPC al-
gorithm

We provide the noise correction which needs to be applied if one wants to include the QMC
noise into the Langevin dynamics without inducing a bias on the final target temperature.
Analogously to the equation (3.31), the integrated noise can be written

η̃i = η̃exti + η̃QMC
i ,

˜̃ηi = ˜̃ηexti + ˜̃ηQMC
i . (D.2)
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Therefore, still assuming that the external noise is independent from the QMC noise, we
obtain very similar relations to Eq. (3.33):

〈(η̃ext)Tη̃ext〉 = α̃11 −αQMC,

〈(˜̃ηext)T˜̃η
ext〉 = α̃22 −αQMC,

〈(η̃ext)T˜̃η
ext〉 = α̃12 −αQMC, (D.3)

where the explicit expressions of the α̃ matrix components have been given in the main text
in Eq. (D.1). By simply computing the square root of this 2 × 2 matrix which is positive
definite by construction, we are able to evaluate explicitly the exact integrated external noise
to propagate the dynamics.

D.3 Quantum integration scheme

We detail in this section the mathematical derivation of the PIOUD integrator described in
Chapter 3, Subsection 3.1.3 and the explicit formulas of the Λ, Γ and Θ matrices. For the
following algebra, it is useful to evaluate the inverse of the matrix γ̂

γ̂−1 =

(
0 −I

K−1 K−1γ

)
, (D.4)

where we replaced γharm of Eq. (3.9) by γ, for the sake of readability. In order to solve the
differential system in Eq. (3.4) for a generic time step δt in the quantum case, we need to
exponentiate the matrix γ̂. Using the fundamental assumption [K,γ] = 0 previously justified
in the manuscript, we consider each common eigenvector of K and γ that can correspond
to a joint momentum and coordinate mode. In this two-fold basis, the matrix γ̂ is a simple
2 × 2 block matrix where as K and γ are just numbers. The block matrix γ̂ can be more
conveniently rewritten in terms of the Pauli matrices σx,σy,σz:

γ̂ =
γ

2
I + x

x =

( γ
2 K

−1 −γ
2

)
=

K − 1

2
σx + i

K + 1

2
σy +

γ

2
σz.

(D.5)

Then, the exponentiation can be straightforwardly obtained, by using standard Pauli matrices
algebra

eγ̂δt = e
γδt
2

{
cosh(|x|δt)I + x

|x| sinh(|x|δt) for γ2 ≥ 4K

cos(|x|δt)I + x
|x| sin(|x|δt) for γ2 < 4K

(D.6)

where |x| =
√
|γ2/4−K|. Recombining Eq. (D.4) and Eq. (D.6) one obtains:

γ̂−1(I−e−γ̂δt) =

(
e−

γδt
2

sinh(|x|δt)
|x| −(1− e−

γδt
2 cosh(|x|δt)) + γe−

γδt
2

sinh(|x|δt)
2|x|

1− e−
γδt
2

cosh(|x|δt)
K − γe−

γδt
2

sinh(|x|δt)
2K|x| γ(1− e−

γδt
2

cosh(|x|δt))
K + (1− γ2

2K )e−
γδt
2

sinh(|x|δt)
|x|

)
(D.7)
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for γ2 > 4K, while for γ2 ≤ 4K:

γ̂−1(I−e−γ̂δt) =

 e−
γδt
2

sin(|x|δt)
|x| −(1− e−

γδt
2 cos(|x|δt)) + γe−

γδt
2 sin(|x|δt)

2|x|
1−e−

γδt
2 cos(|x|δt)
K − γe−

γδt
2 sin(|x|δt)
2K|x|

γ(1−e−
γδt
2 cos(|x|δt))
K + (1− γ2

2K ) e
− γδt2 sin(|x|δt)

|x|

 .

(D.8)
Finally, for the case γ2 > 4K, we obtain:

Γ = e−
γ
2
δt sinh(|x|δt)

|x|

Θ =
1− e−

γδt
2 cosh(|x|δt)
K

− γe−
γδt
2 sinh(|x|δt)
2K|x|

Λ = e−
γδt
2

(
cosh(|x|δt)− γ

2
sinh(|x|δt)
|x| −K sinh(|x|δt)

|x|
sinh(|x|δt)
|x| cosh(|x|δt) + γ sinh(|x|δt)

2|x|

)
,

(D.9)

while for γ2 ≤ 4K, we have:

Γ = e−
γ
2
δt sin(|x|δt)

|x|

Θ =
1− e−

γδt
2 cos(|x|δt)
K

− γe−
γδt
2 sin(|x|δt)
2K|x|

Λ = e−
γδt
2

(
cos(|x|δt)− γ

2
sin(|x|δt)
|x| −K sin(|x|δt)

|x|
sin(|x|δt)
|x| cos(|x|δt) + γ sin(|x|δt)

2|x|

)
.

(D.10)

To evaluate the time-integrated noise covariance matrix α̃ in the quantum case, defined by
Eq. (3.16), namely α̃ ≡ 〈ET

intEint〉, it is useful to introduce the following integral:

Γz =

0∫
−δt

dtezt =
1− e−zδt

z
. (D.11)

By using Eq. (D.6), it is straightforward to carry out the integrals to obtain

α̃ =
Γγ+2|x| + Γγ−2|x| + 2Γγ

4
α̂

+
xα̂x†

|x|2
Γγ+2|x| + Γγ−2|x| − 2Γγ

4

+
α̂x† + xα̂

|x|
Γγ+2|x| − Γγ−2|x|

4
(D.12)
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for γ2 ≥ 4K, whereas for γ2 ≤ 4K we obtain a very similar formula where |x| is replaced by
i|x|:

α̃ =
Γγ+2i|x| + Γγ−2i|x| + 2Γγ

4
α̂

− xα̂x†

|x|2
Γγ+2i|x| + Γγ−2i|x| − 2Γγ

4

− i
α̂x† + xα̂

|x|
Γγ+2i|x| − Γγ−2i|x|

4
. (D.13)

α̂ has been defined in Eq. (3.16). In order to conclude the analytic derivation of the quantum
integration scheme, we also give the explicit expression of the two matrix products appearing
in the Eq. (D.12) and Eq. (D.13):

xα̂x† =

(
γ2α

4 −γα
2

−γα
2 α

)
,

α̂x† + xα̂ =

(
γ −α
−α 0

)
. (D.14)
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Appendix E

Protonated hexamer geometries

In this Appendix, we provide the obtained geometries for the protonated hexamer at the VMC
level for various oxygen-oxygen distances dO1O2 (see Figure 6.2). Results are given in atomic
units.

E.1 Minimum geometry

O1 0.0507882315187001762 0.000709729258697364292 0.285378811112213804

H1 −0.588908309572161781 −1.50916427426181143 1.14553358618697887

H2 −0.594542041413769762 1.50841288801772544 1.13644136895695169

H+ 2.24518427383086694 0.00669502090316738581 0.0200749585936824959

O3 −1.65980132332560193 4.26597184961100861 2.47433767465341825

H −3.01280788761494556 5.25378600003923157 1.79611713827810826

H −1.53311715628076772 4.73830248178763469 4.21400571902787124

O4 −1.65103670216086962 −4.27103150563844292 2.47327243060715496

H −3.01959943643830719 −5.23873631958746167 1.79456467107910389

H −1.52586019854693311 −4.75056777770878380 4.20775945789407313

O2 4.54182071095368922 0.00114072825318341556 −0.251859090320561640

H3 5.20104667377932106 1.50615576559710007 −1.09483876564196247

H4 5.20693218110539213 −1.48927734882025198 −1.10970177150247218

O5 6.32015005426037391 −4.28087841192594709 −2.43540083233940585

H 6.24018546662413698 −4.79741171253304444 −4.16604952053338096

H 7.67145094281254813 −5.23519780246613120 −1.69871359284725520

O6 6.31384117894622943 4.29130875981402671 −2.42770929861173901

H 7.70020569151150269 5.22262043109420127 −1.73976512929067662

H 6.20794585000182231 4.78378826156620907 −4.16197743530833808

E.2 Other geometries

dO1O2 = 2.2 Å

O1 0.000000000000000000 0.000000000000000000 0.000000000000000000

H1 −0.743586267341124318 −1.48775917683513570 0.805360324563675789

H2 −0.734532372670881450 1.49766666964075545 0.794865339656707248

H+ 2.07703452489563567 −0.00782795162408958696 0.00254865012463290942

O3 −1.78090480055100198 4.23306705176871034 2.30522925399525302

H −3.16370670078231386 5.25062598844431072 1.73940304026091130
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E.2. Other geometries

H −1.47868190021890644 4.70190938058996544 4.02155876930897005

O4 −1.77590858265049611 −4.22111737753139238 2.31351303736293223

H −3.08254178027425274 −5.30682478279973857 1.70696553489168079

H −1.53399434683936420 −4.67220210939131597 4.05007081541536262

O2 4.15740999999999961 0.000000000000000000 0.000000000000000000

H3 4.90998605451964298 1.49225096384235001 −0.781804092125152672

H4 4.91923494404092754 −1.48827754867483963 −0.780761814665269283

O5 6.05659840543499062 −4.20373264521914525 −2.25935023805129687

H 5.82071624009628952 −4.69135833238366651 −3.98156235020776306

H 7.36818104980110355 −5.27499584156926904 −1.61872564663338214

O6 6.02609721101799600 4.21365583963911661 −2.24399518443713442

H 7.39757384723865652 5.23453508977235327 −1.66029744465594686

H 5.78598346522806395 4.66863418980124223 −3.97912920400652004

dO1O2 = 2.3 Å

O1 0.0000000000000000000.000000000000000000 0.000000000000000000

H1 −0.672231861277311049 −1.48943177887905009 0.865941443068235950

H2 −0.671965088430154012 1.49840679620850992 0.854385371302619046

H+ 2.21095942438598980 −0.00583325830061789691 −0.011460583322823939

O3 −1.66599922669396006 4.22977903652838005 2.36659617936467992

H −3.06315210669202020 5.22086015507950041 1.78974191469109001

H −1.45739527989850992 4.65213336428948043 4.11038567801618004

O4 −1.64223778290977007 −4.22630965541418036 2.37857885680366010

H −3.02836007492444992 −5.22007667073768022 1.76163285829786997

H −1.48564871407700005 −4.64586700491449012 4.12791486339451019

O2 4.34637000000000029 0.000000000000000000 0.000000000000000000

H3 5.04286999999999974 1.49404799571396008 −0.833589179192546048

H4 5.04434000000000005 −1.48653180168575005 −0.851189702118658964

O5 6.16173000000000037 −4.19605933331070968 −2.35451065023932005

H 6.00002999999999975 −4.69066854269435041 −4.08045575777784997

H 7.47946000000000044 −5.23585562792101999 −1.67700285709634000

O6 6.13734000000000002 4.21663188798901967 −2.32391321244980009

H 7.52583000000000002 5.19509452834735974 −1.70869148193543996

H 5.96028000000000002 4.66095132700209991 −4.06439644607784967

dO1O2 = 2.45 Å

O1 0.000000000000000 0.000000000000000 0.000000000000000

H1 −0.649457870422531 −1.51146344938398 0.867787711652323

H2 −0.660679410743838 1.51140859782633 0.861427111666774

H+ 2.06874378590135 −0.001330665292651613 −0.01970565869139078

O3 −1.70483674995470 4.15060127420642 2.32625655857781
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Appendix E. Protonated hexamer geometries

H −3.06258085513488 5.19412570007702 1.74680438752827

H −1.41713939716088 4.64156957966311 4.04615145212262

O4 −1.68934538969044 −4.15613617640511 2.34230769674381

H −3.01333586569087 −5.22777368640082 1.73340024612704

H −1.44537686678492 −4.61155584226275 4.07305794546894

O2 4.62983000000000 0.000000000000000 0.000000000000000

H3 5.34677865916538 1.48153237558591 −0.823025465736171

H4 5.35654404724709 −1.46989314295902 −0.825051323370663

O5 6.45657539876186 −4.27891433461566 −2.34761469008447

H 6.33785949003679 −4.73171126037798 −4.09306736602237

H 7.79348171662438 −5.28280624617687 −1.67042450612108

O6 6.42418694520445 4.27987934901450 −2.31200193818929

H 7.84050536187695 5.22541461297016 −1.71377537671137

H 6.26654800927304 4.69491721093731 −4.06173936702921

dO1O2 = 2.5 Å

O1 0.000000000000000 0.000000000000000 0.000000000000000

H1 −0.641260237936665 −1.51625786457856 0.883096970942756

H2 −0.638857029826591 1.52299050583927 0.870034370192830

H+ 2.01891648967164 −0.001847164175086084 −0.02209527303551334

O3 −1.69432397251871 4.11789829981312 2.31211154516694

H −3.04276676427100 5.16315879403155 1.71512443618780

H −1.38857712555825 4.62420535634594 4.01951550969670

O4 −1.69504176009187 −4.11177582288520 2.32756676382287

H −2.99533858703151 −5.19629594287010 1.69764975238922

H −1.42149457338607 −4.60060227817583 4.04365809746370

O2 4.72432000000000 0.000000000000000 0.000000000000000

H3 5.45038458079236 1.47555549113125 −0.809558616819048

H4 5.45258594765357 −1.46304849451531 −0.831884240828586

O5 6.52962153333428 −4.33415288580668 −2.34931764280799

H 6.46823037378107 −4.74395550102890 −4.11193518066912

H 7.89882377593056 −5.30313252484014 −1.68501039376993

O6 6.53656634943420 4.31654271578474 −2.31844333505248

H 7.96805288968467 5.24602998234402 −1.72509731159944

H 6.38750607873918 4.73308804209213 −4.07256862525548

dO1O2 = 2.65 Å

O1 0.000000000000000 0.000000000000000 0.000000000000000

H1 −0.621758275069062 −1.52695489268690 0.900167471796610

H2 −0.626740828989495 1.54190046473686 0.864412633985831

H+ 1.94907961776403 0.001091654668240812 −0.02752992948223971

O3 −1.68130339455875 4.08858096846665 2.28155182199791
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E.2. Other geometries

H −3.03111941645082 5.14042006554552 1.69783501428546

H −1.35803365626228 4.59179761863472 3.99259094858927

O4 −1.70092072249403 −4.05762416427756 2.32171432981653

H −2.96888543111223 −5.16749026629747 1.66379259604977

H −1.40704936660107 −4.57932016918384 4.02895923050992

O2 5.00778000000000 0.000000000000000 0.000000000000000

H3 5.68787643744101 1.48257180050759 −0.831649926466367

H4 5.69372246002546 −1.45020056158041 −0.872941144756767

O5 6.65155229716932 −4.38576346609515 −2.38216462717774

H 6.57892754205484 −4.82100983771418 −4.13248451371152
H 8.04215984421512 −5.33451314014360 −1.71724733186054

O6 6.62332329609797 4.41124152301511 −2.34134717242466

H 8.07169230052394 5.31759990724924 −1.75612379923995

H 6.53243475516271 4.75763503292777 −4.10818763501353
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Appendix F

Protonated hexamer fitting
parameters

In this Appendix, we report the obtained parameters by fitting the proton displacement
probability distribution of the protonated hexamer, for both classical and quantum particles.
Results are given in atomic units.

F.1 Classical fit: the 2-species model

T (K) λE dE(a.u.) σ2
E(a.u.) σ2

Z(a.u.) χ2

200 0.873 0.216 0.003673 0.0146 0.00561229
250 0.801 0.275 0.00472 0.0315 0.0285128
300 0.80 0.291 0.00555 0.0314 0.0185303
350 0.819 0.281 0.0102 0.029 0.0089176
400 0.623 0.294 0.00762 0.0326 0.0119708

Table F.1 – Fitting parameters obtained by fitting distributions of the proton displacement with
the 3-gaussian model of Eq. (6.3) in the classical particles case.

F.2 Quantum fit: the 3-species model

T (K) λE dE(a.u.) σ2
E(a.u.) λEZ dEZ(a.u.) σ2

EZ(a.u.) σ2
SZ(a.u.) χ2

200 0.023 0.307 0.0297 0.946 0.153 0.0112 0.00162 0.000499472
250 0.165 0.307 0.0047 0.691 0.153 0.0102 0.00611 0.0010972
300 0.160 0.307 0.0114 0.708 0.153 0.0126 0.00920 0.000745683
350 0.492 0.310 0.0115 0.204 0.149 0.0046 0.00963 0.00112696
400 0.495 0.368 0.0184 0.203 0.189 0.0079 0.01612 0.00100822

Table F.2 – Fitting parameters obtained by fitting distributions of the proton displacement with
the 5-gaussian model of Eq. (6.5) in the quantum particles case.
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Résumé
Il n’existe encore aucune théorie aujourd’hui capable de proposer une description précise
et quantitative du transfert de proton en solution. En effet, la complexité de ce problème
provient de la grande diversité des interactions existant dans l’eau liquide, à savoir : des
interactions non liantes de type Van der Waals, des liaisons faiblement covalentes et des
liaisons hydrogènes remarquablement fortes. Ces dernières sont à l’origine des nombreuses
propriétés fascinantes de l’eau à l’échelle macroscopique. À cela s’ajoutent les effets quantiques
nucléaires dus à la faible masse de l’hydrogène, qui modifient profondément la nature de
la surface d’énergie potentielle et les effets thermiques. Dans cette thèse, nous proposons
une approche tout quantique basée sur une description quasi exacte de la fonction d’onde
électronique par l’utilisation de méthodes Monte Carlo Quantique (QMC). Notre nouvelle
technique combine le QMC avec une dynamique moléculaire de type Langevin en utilisant le
formalisme des intégrales de chemin de Feynman. Ceci permet de faire des simulations tout
quantique avec une précision inédite de systèmes de taille relativement grande en phase gaz ou
en solution, à température finie. Nous appliquons notre approche à des agrégats d’eau neutres
ou protonés pour apporter de nouveaux éclaircissements sur les phénomènes microscopiques
régissant la diffusion du proton dans de tels systèmes. En particulier, nous avons étudié
l’hexamère d’eau protoné comme modèle décrivant un proton en excès en solution aqueuse.
Nous avons découvert que le taux de transfert de proton est optimal pour des températures
proches des conditions ambiantes, du fait de la compétition subtile entre les effets thermiques
et quantiques nucléaires.

Abstract
There is no theory up to now able to provide an accurate and quantitative description of the
proton transfer (PT) yet. Indeed, the complexity of this problem stems from the large diversity
of the existing interactions in liquid water, namely: non bonding Van der Waals interactions,
weakly covalent bonds and remarkably strong H-bonds. The latter ones are at the origin of
the numerous fascinating properties of water at the macroscopic scale. In addition to such
interactions, the nuclear quantum effects arising from the hydrogen light mass deeply modify
the potential energy surface and thermal effects, and must be taken into account. In this thesis,
we propose a fully quantum approach based on an almost exact description of the electronic
wave function by means of Quantum Monte Carlo (QMC) methods. Our novel technique
combines QMC with a Langevin-based Molecular Dynamics and the Feynman path integral
formalism. This allows one to perform fully quantum simulations with an unprecedented
level of accuracy of moderate size systems in gas or condensed phase, at finite temperature.
We apply our approach to neutral or charged protonated water clusters to shed light on the
microscopic phenomena driving the proton diffusion in such systems. In particular, we have
studied the protonated water hexamer as a model describing an excess proton in aqueous
solution. We discovered that the proton hopping is optimal for temperatures close to ambient
conditions, due to the subtle competition between thermal and nuclear quantum effects.




