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Résumé 
 

L'histologie tridimensionnelle (3D) est un nouvel outil avancé de cancérologie. L'ensemble du profil 

chimique et des caractéristiques physiologiques d'un tissu est essentiel pour comprendre la logique 

du développement d'une pathologie. Cependant, il n'existe aucune technique analytique, in vivo ou 

histologique, capable de découvrir de telles caractéristiques anormales et de fournir une distribution 

3D à une résolution microscopique. Nous présentons ici une méthode unique de microscopie 

infrarouge (IR) à haut débit combinant une correction d'image automatisée et une analyse ultérieure 

des données spectrales pour la reconstruction d'image 3D-IR. Nous avons effectué l'analyse 

spectrale d'un organe complet pour un petit modèle animal, un cerveau de souris avec une tumeur 

de gliome implantée. L'image 3D-IR est reconstruite à partir de 370 coupes de tissus consécutives et 

corrigée à l'aide du tomogramme à rayons X de l'organe pour une analyse quantitative précise du 

contenu chimique. Une matrice 3D de spectres IR 89 x 106 est générée, ce qui nous permet de 

séparer la masse tumorale des tissus cérébraux sains en fonction de divers paramètres anatomiques, 

chimiques et métaboliques. Nous démontrons pour la première fois que des paramètres 

métaboliques quantitatifs (glucose, glycogène et lactate) peuvent être extraits et reconstruits en 3D à 

partir des spectres IR pour la caractérisation du métabolisme cérébral / tumoral (évaluation de l'effet 

de Warburg dans les tumeurs). Notre méthode peut être davantage exploitée en recherchant 

l'ensemble du profil spectral, en distinguant différents points de repère anatomiques dans le cerveau. 

Nous le démontrons par la reconstruction du corps calleux et de la région des noyaux gris centraux 

du cerveau. 

 

 

 

 

 

 

 

 

 

Mot-clés: Imagerie IRTF, imagerie IR-QCL, imagerie chimique 3D, pathologie numérique, test 

Clinique 
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Abstract 
Three-dimensional (3D) histology is a new advanced tool for cancerology. The whole chemical 

profile and physiological characteristics of a tissue is essential to understand the rationale of 

pathology development. However, there is no analytical technique, in vivo or histological, that is 

able to discover such abnormal features and provide a 3D distribution at microscopic resolution. 

Here, we introduce a unique high- throughput infrared (IR) microscopy method that combines 

automated image correction and subsequent spectral data analysis for 3D-IR image reconstruction. I 

performed spectral analysis of a complete organ for a small animal model, a mouse brain with an 

implanted glioma tumor. The 3D-IR image is reconstructed from 370 consecutive tissue sections 

and corrected using the X-ray tomogram of the organ for an accurate quantitative analysis of the 

chemical content. A 3D matrix of 89 x 106 IR spectra is generated, allowing us to separate the 

tumor mass from healthy brain tissues based on various anatomical, chemical, and metabolic 

parameters. I demonstrate for the first time that quantitative metabolic parameters (glucose, 

glycogen and lactate) can be extracted and reconstructed in 3D from the IR spectra for the 

characterization of the brain vs. tumor metabolism (assessing the Warburg effect in tumors). Our 

method can be further exploited by searching for the whole spectral profile, discriminating different 

anatomical landmarks in the brain. I demonstrate this by the reconstruction of the corpus callosum 

and basal ganglia region of the brain.  
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Glossary 
2D – Two-dimensional 

3D – Three-dimenisional 

BBB – Blood brain barrier 

CT – Computed tomography 

DA – Discriminant analysis 

FOV – Field of view 

FPA – Focal plane array 

FTIR – Fourier transform infrared 

GFAP – Glial fibrillary acidic protein 

H&E – Hematoxylin and eosin  

IHC – Immunohistochemical 

IR – Infrared  

LDA – Linear discriminant analysis 

LPPC – Log-polar phase correlation 

MCT - Mercury-Cadmium-Telluride 

MRI – Magnetic resonance imaging 

MSI – Mass spectrometry imaging 

PCA – Principal component analysis 

QCL – Quantum cascade laser 

m/z – Mass to charge ratio 

SIFT – Scale invariant feature transform 

SNR – Signal to noise ratio 

SURF – Speeded up robust features 

XRF – X-ray fluorescence  
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INTRODUCTION 
 
This work was conducted within the ‘biophysics’ of vascular plasticity group in the research unit of 

the angiogenesis and the micro-environment of tumors, INSERM U1029 situated at the University of 

Bordeaux. The main theme of this research is to develop a 3D imaging methodology for chemical 

characterization of brain tumors. This is an area of cancer research that is currently not yet developed 

and has a potential of becoming very valuable in improving the existing diagnostic tool for brain 

tumors. 

 

Brain tumors due to their ability to exist even at a small size, thus making them extremely to diagnose 

and cure, are often considered as one of the highly destructive and lethal group of brain diseases. 

Surgery is usually difficult due to the delicate nature and function of the organ. Characterized with 

high morbidity and mortality, brain tumors often lead to progressive decline in physical, cognitive 

and emotional functions and are in many instances fatal. 

 

Brain tumors result from an uncontrolled proliferation of cells derived from neural tissue or structural, 

supportive tissue within the brain [1]. It is simply the formation of abnormal cells within the brain. 

Typically, the human brain completes its growth and development soon after birth and the vast 

majority of cells enter a resting state; they normally never divide again. However, one exception to 

this rule is when a brain tumor develops. The abnormal brain cells re-enter the “cell-cycle” because 

of alterations in any of a huge number of genes that control cell division and growth processes [2]. 

 

Depending on their behavior, tumors are generally classified into benign and malignant or cancerous 

tumors. Benign tumors are group of similar cells characterized with slow growth and do not invade 

surrounding tissues or spread to other organs. On the other hand, malignant or cancerous tumors are 

heterogeneous cells characterized with rapid growth and invasion into surrounding tissues and organs. 

Brain tumors can be further classified based on their origin and location in the brain. Brain tumors 

can be classified into primary and secondary tumors depending on their origin.  

 

Primary brain tumors originate from the brain, cranial nerves, pituitary gland or meninges. The largest 

and most aggressive group of primary brain tumors based on the location of their origin is the glioma. 

Gliomas make up 80% of all malignant primary brain tumors [3] and mainly affect the astrocytes 

(also oligodendrocyte). 
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The secondary brain tumors (metastases) originates from organs outside the brain or from primary 

tumors in the brain. Secondary brain tumors are always malignant and make up the majority of 

cancerous brain tumors. Typically, secondary brain tumors arise from primary tumor cells that 

migrate hematogenously or via direct invasion of adjacent tissue They usually start in one part of the 

body such as the lungs or breast and spread, or metastasize, to the brain through the blood brain barrier 

(BBB) [4]. 

 

Several therapeutic strategies have been proposed and are clinically available for brain tumor 

treatment. Resection is a common practice in brain tumor treatment. It aims at reducing the 

intracranial pressure by removing as much tumor as is safely possible to preserve neurological 

function [5]. Other strategies includes chemotherapy [6] [7], radiation therapy [8] [9], active 

surveillance [10] [11], supportive therapy [5]. 

 

However, the treatment of brain tumors remains a challenge as the mortality rate remains high in spite 

of the advances in the therapeutics of brain tumors. A study conducted in 2012 [12] shows that 

worldwide, approximately 256,213 new cases of brain and other CNS tumors were diagnosed, with 

an estimated 189,382 deaths. This represents approximately 74% mortality from the incidences 

reported.  

 

Therapeutics of brain tumors is highly dependent on the accurate characterization and consequently 

diagnosis of brain tumors. The choice of therapeutic strategy applied depends on the reliability of 

diagnosis which dictates the prognosis and consequently the therapy. Therapeutic strategy such as 

resection depends on accurate delineation of the tumor mass. Hence, accurate brain tumor diagnosis 

is a vital step in the treatment of brain tumors. 

 

Generally, brain tumor imaging is the first step in brain tumor diagnosis. Brain tumor imaging 

encapsulates a variety of methods and technologies used to either directly or indirectly obtain the 

image of the anatomy and physiology of the brain. Brain tumor imaging plays an important role in 

the diagnosis, treatment planning, and post-therapy assessment of brain tumors. It provides a visual 

representation of the brain which helps doctors to preoperatively visualize the morphology, location, 

size, grade and consequently the prognosis and treatment of brain tumors. 

 

Magnetic resonance imaging (MRI) method is clinically the gold standard for brain tumor imaging. 

MRI is based on the principle of nuclear magnetic resonance and uses radiofrequency waves to probe 
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soft tissue anatomy and physiology in vivo. It is a non-invasive technique, which provides good soft 

tissue contrast and is widely available in clinics. MRI makes it possible to produce markedly different 

types of tissue contrast by varying excitation and repetition times, which makes it a very versatile 

tool for imaging different structures of interest [13]. 

 

MRI was first reported as a viable tool for detecting brain tumor in 1984 [14] and has evolved to 

become the standard clinical routine in brain tumor examination. It provides neuro-oncologists with 

2D or 3D contrast images used to identify lesion, determine the lesion location, extent of tissue 

involvement, and resultant mass effect upon the brain, ventricular system, and vasculature [15].  

 

However, it is unable to reveal pathological objects, such as metastases or tumors with diameter less 

than 5–10 mm. This is due to the spatial resolution which cannot go below 1-mm at the best for human 

applications, 100-µm in small animals [16] [17] [18] and low sensitivity to some tumor types [19].  

In spite of the advances in MRI [15] [20], however, due to the limited spatial resolution which makes 

it impossible to characterize brain tumors at cellular resolution. MRI is mainly used clinically for 

preoperative analysis and to aid targeting of tumors for tumor excision [21]. 

 

Histopathological examination is the standard for brain tumor diagnosis [22]. Histopathological 

analysis is the standard procedure routinely used to reveal the amount of necrosis, proliferative 

regions, collagen and vascularity within the tumor area [23]. Histopathological techniques enable the 

analysis of the cellularity, nuclear atypia, metabolic pathways, mitotic activity, pleomorphism, 

vascular hyperplasia, and necrosis [21]. 

 

Historically, histopathological evaluation had been used by the World Health Organization (WHO) 

for the classification of brain tumors in the light of tumorigenesis; based on their microscopic 

similarities with different putative cells of origin and their presumed levels of differentiation. Recent 

updates in the WHO classification has incorporated both histological and molecular genetic features 

[22] in tumor classification. Analyses of the metabolic pathways involved in tumorigenesis may also 

provide useful information for brain tumor diagnosis and treatment.  

 

Hypoxia and metabolite deprivation are commonly observed in solid tumors and modulate the 

transcription of genes involved in several cellular processes, including malignant growth, 

angiogenesis, and metastasis [24]. Brain tumors also exhibit difference in their energy requirement, 

depending on the cell types considered, tumor grade and lesion locations. Thus, an accurate 
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determination of the spatial metabolic profile of tumors is required for a better diagnosis in order to 

adopt relevant therapeutic strategy. 

 

Traditionally, histopathological examination prepares sample tissues for microscopic study by 

histological staining. This is done in order to reveal cellular composition of tissues. Typically, a 

molecular target is determined and probed under a microscope with the aid of histological stains. 

Staining is a commonly used medical process in the diagnosis of tumors in which a dye color is 

applied on the posterior and anterior border of the sample tissues to locate the diseased or tumorous 

cells or other pathological cells [25]. More recently, immunostaining which binds antibodies to 

antigens in tissues have been used to stain particular protein, lipid and carbohydrate. 

 

Unfortunately, traditional histopathology imaging techniques are limited in brain tumor applications 

due to the limited known molecular information about brain tumors. Furthermore, multiple 

immunostaining cannot identify more than four different antigens on a same sample [26]. 

Alternatively, metabolic parameter can be used as complementary information for tumor diagnosis 

through techniques that allow access to the 3D organization of tissue contents along with their 

quantitative measurement, notably for chemical and cellular parameters can be utilized in histological 

examination.  

 

Spectroscopic technique such as mass spectroscopy can offer quantitative measurement of tissue 

contents. Combining a spectrometer and a microscope is called spectro-microscopy. These setups 

offer a global view of the sample chemical contents, which can be further analyzed for extracting 

relevant molecular parameters for diagnosis [27].  3D chemical imaging is achieved by several 

spectro-microscopic methods. These provide a quantitative analysis of tissue content and 

substructures with a depth of information that no other histological technique can determine from the 

same sample. However, they are currently underexploited despite their potential. 

 

An emerging spectro-microscopic technique for histopathological examination is IR spectro-

microscopy. As a result of the advent of powerful IR sources with quantum-cascade lasers (QCLs) in 

2014, IR spectro-microscopy can now produce millions of IR spectra per hour with high S/N. This 

innovation has led to new developments in IR image analyses for biosamples, such as 3D-IR image 

reconstructions for the quantitative analysis of metabolic or biochemical parameters [27]. 
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3D spectroscopy analysis rapidly faces the problem of big data management as spectra are 

characterized by large series of x, y data whose exploitation requires intense calculation means. 

Therefore, most of spectro-microscopy techniques are currently not appropriate on large samples, i.e. 

typically from the 1 mm3 to the 1 cm3 tissue volumes, such as a tumor biopsy or a small animal organ 

in which a pathology can be modeled.  

 

The term ‘big data’ in 3D chemical imaging holds a double meaning, since a 3D spectrum matrix is 

at the same time massive and contains complex chemical information. The massive nature of the 

information is due to the huge number of spectra. However, the complex nature of this information 

stems from the fourth dimension of the voxels, the spectral data, which require advanced data 

treatments to extract the ‘embedded’ chemical information (e.g., individual absorption bands in IR 

and Raman spectra by curve-fitting methods).  

 

Furthermore, analytics (i.e., the algorithms performing spectral data treatments to produce biological 

metadata) require major computing resources, combining CPU means for high-performance 

calculation with GPU cards for both parallelized calculations on spectra and visualization of 3D 

reconstructed results [28]. 

 

3D reconstruction is emerging in IR spectro-microscopy. Previously, acquisition of a 3D histological 

dataset was not feasible due to bottlenecks such as inability to maintain consistent S/N and relatively 

slow acquisition time for large samples. As the new frontier of 3D chemical imaging by IR is just 

opening up, there is currently no standard processing sequence or specialized algorithms for 3D 

reconstruction of IR slices. Thus, there is need to develop a standard processing sequence for 3D 

reconstruction of IR slices.  

 

In this thesis, advanced spectra data treatment methods were developed for the characterization of 

brain tumors. Also developed is an advanced processing sequence for 3D quantitative reconstruction 

of IR slices. An application of our developed methods is shown in a quantitative 3D reconstruction 

of tumor in a mouse brain based on the chemical characterization of tumor and normal tissue 

metabolism. Also presented in this thesis is the 3D reconstruction of the anatomy of mouse brain by 

using our advanced processing sequence for 3D quantitative reconstruction of IR slices.  
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This manuscript is organized as follows: 

 

The first part of this manuscript Part A, is dedicated to the understanding the state of the art within 

the domain of this work. In the first chapter, we introduce the concept of chemical characterization 

of brain tumor by infrared imaging. I define the biological and anatomical elements needed to 

understand our work as well as review on the biomarkers for chemical characterization of brain 

tumors. 

 

In the second chapter, we introduce the different techniques for 3D reconstruction of histological 

images. I present a comparative study of these methods and their application to 3D reconstruction of 

infrared images. 

 

In the second part of this manuscript Part B, we present the contributions made during the course of 

this work. In the third chapter, we introduce an advanced processing sequencing for the development 

of 3D IR imaging. This includes computational methods for extracting biological metadata from IR 

spectra and a hierarchical method for 3D reconstruction of IR metadata images. 

 

In the fourth chapter, we present the application of our proposed methods to 3D chemical imaging of 

tumors in a sample mouse brain. I discuss our experimental setup, sample preparation and data 

acquisition and a step by step detailed experiment of our proposed methods for chemical 

characterization of brain tumor. 

 

In the fifth chapter, we present an elaborate experiment to resolve the anatomy of the mouse brain 

vis-à-vis it’s chemical information in what is called 3D anatomo-chemistry of the mouse brain. I 

present the reconstruction of some anatomical landmark in the mouse brain in this chapter. 

In the last chapter, we make a general conclusion and a reflection on the perspectives that have been 

refined by this work. 

 
 
 

 
 

 



 

22 

 

CHAPTER 1: Brain tumor characterization 
and diagnosis 
 

1.1. General Description of brain tumors 
Brain tumors result from an uncontrolled proliferation of cells derived from neural tissue or 

structural, supportive tissue within the brain [1]. It is typically the formation of abnormal cells 

within the brain. The human brain completes its growth and development soon after birth and the 

vast majority of cells enter a resting state; they normally never divide again. However, a major 

exception to this rule is when a brain tumor develops.  

 

The abnormal brain cells re-enter the “cell-cycle” because of alterations in one or several genes that 

control cell division and growth processes [2]. Depending on their behavior, tumors are generally 

classified into benign and malignant or cancerous tumors. Benign tumors are group of similar cells 

characterized with slow growth and do not invade surrounding tissues or spread to other organs.  

 

On the other hand, malignant or cancerous tumors are heterogeneous cell phenotypes characterized 

with rapid growth and invasion into surrounding tissues and possibly metastasing to distant organs. 

Brain tumors can be further classified based on their origin and location in the brain.  

 

Brain tumors can be classified into primary and secondary tumors depending on their origin. 

 

 
Figure 1Brain tumor classification based on tumor location [29] 
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Primary brain tumors originate from the brain, cranial nerves, pituitary gland or meninges. The 

largest and most aggressive group of primary brain tumors based on the location of their origin is 

the glioma. Gliomas make up 80% of all malignant primary brain tumors [3].  

 

The secondary brain tumors (metastases) originates from organs outside the brain or from primary 

brain tumors. Secondary brain tumors are always malignant and make up the majority of cancerous 

brain tumors. Typically, secondary brain tumors arise from primary tumor cells that migrate via the 

blood system or through direct invasion of adjacent tissue They usually start in one part of the body 

such as the lungs or breast and spread, or metastasize, to the brain through the blood brain barrier 

(BBB) [4]. 

 

In most cases, a brain tumor is named for the cell type of origin. Some brain tumors are named 

according to their location. Today, most medical institutions use the World Health Organization 

(WHO) classification system to identify brain tumors [22].  

 

The WHO classifies brain tumors by cell origin and how the cells behave, from the least aggressive 

(benign) to the most aggressive (malignant). Some tumor types are assigned a grade, which signifies 

the rate of growth. There are variations in grading systems, depending on the tumor type.  

 

The classification and grading of an individual tumor characterizes the features of the tumor at a 

specific stage of growth. Although they may fall into a specific classification or category, brain 

tumors are specific to each individual. Brain tumors have vastly different characteristics and 

patterns of growth due to the molecular profile of the individual tumor.  

 

A series of criteria are used to make a diagnosis and grading. One important criterion is anaplasia, 

the manner in which tumor cells grow with the loss of normal form or structure. The degree of 

anaplasia helps to forecast a tumor’s growth potential. The most rapidly growing tumors have the 

highest degree of anaplasia. In addition to other criteria, some tumors are examined for their genetic 

traits to evaluate the nature of the tumor. 

 

Gliomas are the most common aggressive and the worst kind of primary brain tumors, which 

represent about 42% of all adult brain tumors [30] and approximately 50% in children. Gliomas are 

usually located in the deep white matter of the cerebral hemispheres [31], most frequently in the 

frontal lobe and mainly affect the astrocytes (also oligodendrocyte). 
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Depending on their shape and size, gliomas are classified from grade I (considered as benign) to 

grade IV (the most malignant). The grade I glioma are poorly aggressive tumors most common in 

children and youngsters. Grade II are diffuse or low-grade astrocytomas, grade III are high-grade 

anaplastic astrocytomas and grade IV are also called glioblastoma multiform (GBM) or malignant 

astrocytomas.  

 

Several therapeutic strategies have been proposed and are clinically available for glioma treatment. 

Resection is a common practice in brain tumor treatment. It aims at reducing the intracranial pressure 

by removing as much tumor as is safely possible to preserve neurological function [5].  

 

Other strategies includes chemotherapy [6] [7], radiation therapy [8] [9], active surveillance [10] [11], 

supportive therapy [5]. These strategies can also be combined in some cases to reduce the probability 

of a relapse.  

 

However, the treatment of glioma remains a challenge as the mortality rate remains high in spite of 

the advances in the therapeutics of brain tumors. A study conducted in 2012 [12] shows that 

worldwide, approximately 256,213 new cases of glioma and other CNS tumors were diagnosed, with 

an estimated 189,382 deaths. This represents approximately 74% mortality from the incidences 

reported.  

 

Therapeutics of brain tumors is highly dependent on the accurate characterization and consequently 

diagnosis of brain tumors. The choice of therapeutic strategy applied depends on the reliability of 

diagnosis which dictates the prognosis and consequently the therapy.  

 

Therapeutic strategy such as resection depends on accurate delineation of the tumor mass. Hence, 

accurate brain tumor diagnosis is a vital step in the treatment of brain tumors. 
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1.2.  Current Diagnostic Methods 
Clinical symptoms are usually indicators of the presence of glioma tumors in the brain. The 

observed symptoms depend on the anatomical site of the tumor. Brain glioma can cause headaches, 

nausea, seizures, vomiting and epilepsy, diminished consciousness, weakness or numbness, loss of 

vision, personality changes and loss of mental sharpness or difficulty in concentrating. Glioma of 

the optic nerve may cause visual loss. 

However, the standard procedure for diagnosing glioma is through brain imaging and 

histopathological examination of brain tissues. 

1.2.1. Brain Imaging 
Generally, brain tumor imaging is the first step in brain tumor diagnosis. Brain tumor imaging 

encapsulates a variety of methods and technologies used to either directly or indirectly obtain the 

image of the anatomy and physiology of the brain.  

 

Brain tumor imaging plays an important role in the diagnosis, treatment planning, and post-therapy 

assessment of brain tumors. It provides a visual representation of the brain which helps doctors to 

preoperatively visualize the morphology, location, size, grade and consequently the prognosis and 

treatment of brain tumors. 

  

1.2.1.1. Computed Tomography 

Computed Tomography (CT) Computed Tomography combines sophisticated x-ray scanner and 

computer technology. Unlike other medical imaging techniques, CT has the ability to show a 

combination of soft tissue, bone, and blood vessels in the final 2D or 3D images.  

 

CT is effective at examining bone and tissue calcification and haemorrhage. It can determine some 

types of tumours, as well as help detect swelling and bleeding. Usually, iodine is the contrast agent 

used during a CT scan. 

 

However, CT scans involve exposure to ionizing radiation. This is a concern for people who have 

multiple CT scans and for children, because they are more sensitive to radiation than adults.   

 

While high resolution CT allows the clear imaging of blood vessel of about 30–50 µm diameter, 

however, the x-ray dose used for acquisition increases as the quality and resolution of the final 
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image increases. Thus a compromise must be sought between the overall image quality and the size 

of tumours. This makes CT not suitable for imaging glioma metastases. 

 

1.2.1.2. Positron-emission Tomography  

Positron-emission tomography (PET) imaging uses positron-emitting radionuclides to label 

molecules such as glucose, water or ammonia which can be imaged inside the body. Although it has 

limited spatial resolution (3–4 mm), it can be preferred due to its higher specificity and sensitivity 

for in vivo imaging. It requires also probes such as fluoro-deoxy glucose (FDG) labeled with the 

positron emitted F having a half-life of 110 min.  

 

Due to the technique resolution and temporal limits, such label can be used only to locate the 

primary tumor site. PET is highly specific due to labeling molecules, but it limited when possible 

applications to small tumor specimens where long accumulation of contrast agent is required to 

obtain a signal.  

 

1.2.1.3.  Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI) An MRI is the standard imaging technique for suspected brain 

tumors. An MRI is a scanning device that uses magnetic fields and computers to capture images of 

the brain. It does not use x-rays and it provides pictures from various planes, which permits doctors 

to create a three dimensional image of the tumor. The MRI detects signals emitted from normal and 

abnormal tissue, providing clear images of most tumors.  

 

Magnetic resonance imaging (MRI) method is clinically the gold standard for brain tumor imaging. 

However, it is unable to reveal pathological objects, such as metastases or tumors with diameter less 

than 5–10 mm. This is due to the spatial resolution which cannot go below 1-mm at the best for 

human applications, 100-µm in small animals [16] [17] [18] and low sensitivity to some tumor 

types [19].   

 

In spite of the advances in MRI [15] [20], however, due to the limited spatial resolution which 

makes it impossible to characterize brain tumors at cellular resolution. MRI is typically used 

clinically for preoperative analysis and to aid targeting of tumors in biopsies [21]. 

The above mentioned imaging techniques are only effective for the localization of the bulk disease 

in vivo but does not allow the imaging of detailed anatomy and physiology of tumors as well as 
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metastases imaging. This is due to their limited spatial resolution which cannot go below 1-mm at 

their best for human and 100-µm in small animal applications.  

 

Consequently, it is necessary to use alternative ex-vivo histopathological examination of tissues for 

diagnosis of tumors. Histopathological examination is the standard for brain tumor diagnosis [22]. 

Histopathological procedures are routinely used to reveal the amount of necrosis, proliferative 

regions, collagen and vascularity within the tumor area [23].  

 

Thus, biopsies are performed to enable the analysis of the cellularity, nuclear atypia, metabolic 

pathways, mitotic activity, pleomorphism, vascular hyperplasia, and necrosis [21] of tumors in 

order to obtain pathological diagnosis and are also helpful to identify the tumor margins.   

 

1.2.2.  Biopsy & surgical excision 
A biopsy is a surgical procedure in which a small sample of tissue is taken from the tumor site and 

examined under a microscope. The results help the doctor diagnose the type of tumor. The biopsy 

will provide information on types of abnormal cells present in the tumor. There are two kinds of 

biopsy procedures: an open and a closed biopsy.  

 

An open biopsy is done during a craniotomy. A craniotomy is a surgical procedure that involves 

removing a piece of the skull in order to get access to the brain (excision).  A closed biopsy (also 

called stereotactic or needle biopsy) is performed when the surgeon wants to avoid removing 

healthy tissue from the area surrounding the tumor, or when the tumor is in an area of the brain that 

is difficult to reach.  

 

Guided by a CT or MRI that is performed prior to the procedure, the surgeon drills a small hole into 

the skull and passes a narrow, hollow needle through the hole into the tumor to remove a sample of 

tissue. Once a sample is obtained, a pathologist will examine the tissue under a microscope. Further 

examination or analysis may be performed on the tumor tissue in order to accurately diagnose the 

tumor.  

 

The pathologist diagnoses tumors by examining the histology and physiology of the tissue. This 

domain is referred to as histopathology. It involves the identification of tumors by light microscopy 

of pathognomonic histological and immunohistochemical (IHC) staining patterns. Hematoxylin and 
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eosin (H&E) is the standard stain used by histologists to highlight certain areas or molecules in 

tissues. Histological examination includes gradation of tumor cell density, vascularization, small-

cell, density and matrix loosening, and the presence of necrosis, atypia, mitoses, and endothelial 

proliferation. 

 

The pathologist typically uses some salient characteristics called biomarkers which characterize 

different types of tumors in order to determine the type and grade of the tumor. The biomarkers 

typically include; the morphology, molecular and chemical composition of the tumor tissue. For 

example, the degree of anaplasia, mitotic activity as well as endothelial proliferation and/or necrosis 

can be used to identify GBM. 

 

1.2.2.1.  Histological/Anatomo-pathological characterization 

Anatomo-pathology is one of the standard histopathological and clinical diagnostic criteria. The 

first published classification of brain tumors by the WHO was based purely on their morphological 

and histological features. Some brain tumors are well-differentiated and can be diagnosed solely 

based on their histopathological appearance [32]. 

Histologically, brain tumors were categorized as astrocytoma, oligodendroglioma, glioblastoma and 

oligoastrocytoma [33] [34] [35].  

 
Figure 2 Histological classification of brain tumors. A: Astrocytoma showing variable nuclear pleomorphism. B: Gliobastoma 

showing viable cells palisading necrotic areas. C: Oligodendroglioma showing unstained cytoplasm and a fine capilliary network. 

D: Oligoastrocytoma showing heterogeneous diffusive tumors [36]  
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Astrocytomas are typically invasive and do not form a solid mass or clear margins. Well-

differentiated tumor cells exhibit a moderate increase in the number of nuclei, variable nuclear 

pleomorphism, and a mesh-like network of glial fibrillary acidic protein (GFAP) processes. 

Necrosis and a florid microvascular proliferation usually indicate the presence of glioblastoma.  

   

Generally, oligodendrogliomas are diffusive tumors which are primarily made up of sheets of cells 

with spheroid nuclei surrounded by a clear halo (unstained cytoplasm) and a fine capillary network. 

The grading is determined by the increase in mitotic activities, nuclear anaplasia and cell density.   

 

For diffusive tumors, it is quite difficult to identify and associate to a specific family of tumors. 

Hence, the oligoastrocytoma category was created. However, poorly-differentiated tumor cells have 

been reported to have high rates of inter-observer variability which leads to misdiagnosis and 

inappropriate therapeutic treatment. 

 

This is justifying further molecular analysis of tumor cells, i.e., genes sequencing, in order to 

identify key prognostic markers and classify a tumor based on unique molecular and cytogenetic 

parameters. This is making a direct link between pathological evaluation of tumor biopsy and 

refining the diagnostic markers based on genomics. 

 

Furthermore, multiple immunostaining cannot identify more than four different antigens on the 

same sample. These bottlenecks give rise to the need for the development of novel or 

complimentary rapid and accessible techniques for brain tumor diagnosis. 

 

Also, the use of labels makes the standard techniques semi-quantitative at best due to different 

manual interventions during the imaging of tissues. This lack of quantitative information 

compromises automation and advanced data analytics that could potentially overcome the 

limitations of pathologist. 
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Figure 3 Overview of WHO standard tumor diagnostic tools. The use of MRI imaging as the gold standard for determining tumor 

site, followed by biopsy, histological imaging and molecular characterization. 

 

1.2.2.2.  Molecular characterization 

The recent WHO classification is the first to incorporate molecular parameters to further define 

gliomas in an objective manner [32]. Several molecular genetics studies have been conducted 

identifying consistent gene loci anomalies associated with particular types of cancer. Not only are 

these genetic markers used to classify tumor subtypes, but they also are often prognostic predictors 

of the course of the disease.  

 

For example, in gliomas, the most common mutations identified to date are in the IDH1/IDH2 

genes with IDH1 mutations identified in approximately 80% of grade 2/3 gliomas [22]. The most 

common mutation is a single amino acid missense mutation in IDH1 at arginine 132 (R132H), 

identified in 12% of samples [23]. Glioma survival is strongly associated with the IDH1/IDH2 

mutation, with IDH1 wild-type typically being associated with poorer outcomes [24,25].  

 

Another molecular marker identified is co-deletion of the 1p and 19q arms of their respective 

chromosomes [24]. Use of IDH1 mutation and 1p/19q co-deletion status has nearly eliminated the 

previous amorphous classification of oligoastrocytoma [26].  

 

Recent advances in sequencing along with the vast data from cancer genome atlas have enabled the 

classification of GBM into four distinct subtypes including classical, mesenchymal, proneural and 

neural [37]. This efficient classification has been reported to have resulted in the increase of the 

survival period for patients. 
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Figure 4 WHO molecular classification of brain cancer in adult, young adult and children. Showing the different grades of brain 

cancer; Grade I-IV, classified by the IDH1/IDH2 mutation [38]. 

However, a major bottleneck with molecular characterization is the running cost and the time 

required for complete screening of tissues. Also, the recognition of histologic heterogeneity within 

brain tumors containing multiple phenotypes are compelling reasons for developing more refined 

and accurate diagnostic techniques, which may help improve treatment outcomes [39]. 

 

These conventional techniques used for diagnosis, are also prone to biased subjective interpretation 

by the histopathologists. This is because these processes are largely manual and depend on the 

pathologist's expertise for the interpretation of results. Conventional histology is also not suited for 

metabolic probe of tumors which is essential in tumor development. 

1.2.2.3.  Chemical characterization 

Alternatively, the chemical analysis of tissues can be also performed by label-free microscopies, 

such as those derived from spectroscopy. Combining a spectrometer and a microscope is called 

spectro-microscopy. These setups offer a global view of the sample chemical contents (lipids, 

proteins, carbohydrates and nucleic acids) which can be analyzed for extracting relevant molecular 

parameters for diagnosis.  

 

As a general features for spectro-microscopies, they allow qualitative and quantitative analysis of 

the basic components of tissues with a depth of information that no other histological technique can 

determine from the same sample. This is done without the use of histochemical stains before data 

acquisitions, thus ensuring to analyze the tissue with all its constituent unaltered.  
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Spectroscopies are quantitative by nature. They allow mapping potentially a wide range of chemical 

information in a non-supervised pattern, which is undoubtedly a major advantage for comparison 

between healthy and pathological tissue specimens without any a priori knowledge about the 

sample. 

 

1.3. Spectroscopies and brain tumor analysis 
Spectroscopies offer an invaluable opportunity to access chemical features of biological samples in 

a non-supervised way. The global chemical information they provide enables the exploitation of a 

large array of chemical species or parameters. Spectroscopic techniques such as Mass spectrometry, 

Raman, Mid-Infrared and X-ray fluorescence are the only currently available techniques that can 

quantitatively analyze tissue content (e.g., molecular concentrations) and substructures (e.g., cells or 

blood vessels).  

 

Figure 5 shows the physical principle of the mid-infrared, raman and mass spectroscopy methods. 

X-ray fluorescence (XRF) can be used to analyse trace elements and metal ions in biosamples, 

however, it is not discussed in this thesis due to its low relevance to cancer imaging. 

 

 
Figure 5  Physical Principles of Spectromicroscopy Methods Providing Global Chemical Information from Tissues. The infrared (IR) 

and Raman bands can be described by their position (l), intensity (i), full width at half height (FWHH), and Gaussian/Lorentzian 

fraction (h). The mass peaks are described by their intensity (i) at given mass:charge ratio (m/z). Therefore, mass spectra (MS) only 

require the identification or localization of the peaks and calibration of their intensity scale to extract quantitative information while 

IR and Raman require more sophisticated spectral data treatments will be more sophisticated. This is due to the large overlap 

between adjacent bands for complex biological sample spectra in IR and Raman, meaning that using the intensity at a given l is 

rarely characteristic of a single band. This phenomenon is even more pronounced for IR spectroscopy, which provides large 

absorption bands [28]. 
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1.3.1.  Mass Spectrometry Imaging 
Mass spectrometry is based on ionization of the samples and separation of ions according to their 

mass to charge ratio (m/z). Mass Spectrometry Imaging (MSI) techniques have two possible 

applications: the analysis of either inorganic or organic content through mass fractions. In general, 

MSI techniques include a spatially resolved ionization method to collect mass spectra from an array 

of positions across a sample [28]. 

 

Mass spectrometry has evolved over the years and has recently gained attention from the medical 

community as potential routine tool for medical diagnosis due to the new developments in ambient 

ionization techniques [40].  

 

The ambient ionization techniques offer a simple instrumentation and real-time assessment of tissue 

molecular information which has been a major bottleneck with MSI. A chemical mass spectrum 

displaying hundreds of compounds can be obtained from a selected region of a tissue sample placed 

under the ionization source in less than 1 second, depending on the choice of mass analyzer.  

 

A major strength of MSI is its high sensitivity and specificity, several molecular details can be 

obtained from MSI mass spectra. A trademark of MSI is its sensitivity to small molecules such as 

lipids and metabolites. Due to its sensitivity, MSI has been used to study the metabolomics, 

lipidomics and proteomics of glioblastoma(Figure 6) [41, 42].  

 

While the high sensitivity of MSI is of great diagnostic value, the current state of MSI technology 

poses some limitations to the clinical use of MSI for brain tumor diagnosis. Although major 

improvements have been reported, MSI general remains relatively slow for tissue imaging [43].  

 

MSI is also limited by the spatial resolution offered by the current instruments. While some MSI 

techniques allow imaging at sub-micrometer resolution, a compromise of acquisition time and 

sensitivity is usually required for such image acquisitions [43]. Depending on the m/z range set a 

priori in order to define the molecular parameters which are of interest for a tissue, MSI remains a 

supervised method and its spectral data are challenging to analyze [28]. 
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Figure 6 Necrotic and Glioblastoma tissues analysed by Mass Spectrometry (A) Optical images of a D43 section H&E stained after 

MSI analysis. Dotted lines on the section delineate areas of necrosis “N” and viable glioblastoma “GBM” tumor. (B) Negative ion 

mode mass spectrum acquired from the viable GBM area during MSI analysis (selected mass spectrum is indicated by an arrow in 

A). In red, m/z values corresponding to lipids species exclusively or preferentially detected in the GBM areas. Inset corresponds to a 

MSI ion image representing the repartition of an ion at m/z value 279.0. (C) Negative ion mode mass spectrum acquired from the 

necrotic area during DESI-MSI analysis (selected mass spectrum is indicated by an arrow in A). In red, m/z values corresponding to 

lipids species exclusively or preferentially detected in areas of necrosis. Inset corresponds to DESI-MSI ion image representing the 

repartition of ion at m/z value 572.7. [44] 
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1.3.2.  Raman spectroscopy 
Raman spectroscopy is based on irradiation of a sample by means of laser and recording of 

scattered radiation that arises from the molecular vibrations in the sample. Raman spectroscopy 

tests molecular vibration of asymmetric chemical bonds to detect the inelastic scattering of photons 

and therefore, provides information on the molecular structure and conformation of the target tissue 

[45]. 

 

Raman has the advantage of being insusceptible to water, which remains a problem for other 

spectroscopic techniques. But this is not anymore an advantage for the analysis of tissue sections in 

histological examinations.  

 

Nevertheless, since there are protein content differences between tumor tissue and normal tissue, 

Raman spectroscopy can distinguish them at molecular level [46, 47]. Furthermore, Raman spectra 

can be rapidly processed and a result can be offered in real-time during the surgery 

 

The main strength of Raman microscopy is its lateral resolution. Raman microscopy offers better 

spatial resolution (<1 µm) [48]. Another advantage of its high resolution is that it can be used to 

highlight subtle changes in small tissue substructures, such as vascular endothelial dysfunctions, 

abnormal inclusion of lipid droplets in cells [38], and so on. Raman has been used to investigate 

medulloblastoma (grade IV WHO), low-grade astrocytoma (grades I-II WHO), ependymoma and 

metastatic brain tumors [49] and the grading of astrocytomas [50]. 

In principle, the high resolution of Raman scattering should give a significant advantage to Raman 

spectro-microscopy for resolving small tissue substructures. However, this higher resolution is not 

easily exploitable.  

Raman microscopy is facing three major challenges which include; big data as a result of the high 

resolution, longer acquisition time causing changes in ambient conditions between the moment of 

the background acquisition and the degradation in signal-to-noise ratio (S/N) as the acquisition 

resolution increase [28]. 

Raman microscopy is also limited by its poor sensitivity. The most-advanced studies for the 

analysis of tissues show that Raman spectra could provide up to 30–40 bands if an appropriate 

curve-fitting method is used [51], thereby limiting that only a few bands can be extracted for 

quantitative analyses based on a linear signal [28]. 
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Figure 7 Discrimination of healthy and tumor tissues by Raman spectroscopy. (A) H&E staining of healthy brain tissue section.     

(B–D) H&E staining of glioma brain tissue sections. Raman maps E–H are based on 12-means cluster analysis on sections A–D, 

respectively. In E, the area associated to the spatial distribution of cluster 9 correlates with white matter tissue from the corpus 

callosum (CC). Tissue surrounding CC was encoded by cluster 12. Other clusters (1, 3, 8, and 10) described the cortex (Gray 

matter). Clusters 2 and 7 described blood and could be associated to the vascularisation. F to H show Raman maps of glioma brain 

tissues. Clusters assigned to tumor tissue are clusters 4, 5, 6, 8, and 11. All clusters associated with tumor shows a decrease in the 

intensity of the lipids bands at 700, 1062, 1128, and 1296 cm− 1 corresponding to cholesterol and phospholipids. In contrast, other 

bands were more pronounced in the tumor model such as bands at 782 and 826 cm− 1 attributed to DNA and/or RNA. [52] 

1.3.3. Mid-Infrared Spectroscopy  
 

Mid-Infrared (Mid-IR) spectroscopy is a technique based on the vibrations of molecules. An 

infrared spectrum is typically obtained by passing infrared radiation through a sample and 

determining what fraction of the incident radiation is absorbed at a particular energy. In complex 

biological systems, the IR spectrum is the sum of the contributions of the biomolecules present (e.g. 

proteins, lipids, sugars and nucleic acids) [53], creating a molecular fingerprint of the sample. The 

fingerprint of no two molecular structures produce the same infrared spectrum. 
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Mid-IR spectroscopy has an advantage of allowing rapid mapping of potentially a wide range of 

chemical information in a non-supervised pattern without prior sample labeling Mid-IR 

spectroscopy offers a higher signal-to-noise ratio (S/N) than Raman and thus more chemical 

parameters for analysis. While Raman has a higher spatial resolution than Mid-IR should be 

generally more stable than Raman because of its higher signal-to-noise-ratio. It also has the 

advantage of a relatively simple and affordable instrumentation [54]. 

 

Mid-IR microscopy is particularly well suited for tumor imaging as it provides high contrast 

between healthy and tumor tissues, which are  usually characterized by major redistributions 

between proteins and lipids contents [27]. The technique of FTIR spectral mapping is able to detect 

subtle chemical changes in tumors indicative of tumor progression and for identifying prognostic 

indicators [55]. Mid-IR microscopy has been used in the mapping of tumor progression in tissues 

[53] and to discriminate between malignant and normal tissues [56, 57]. 

 

While Mid-IR microscopy has shown a lot of promise and comparative advantage over other 

spectroscopies for brain tumor diagnosis, however, it is currently underexploited despite its 

potential. This is due to several limitations of current commercial Mid-IR instruments.  

 

These limitations include; relatively high spatial resolution compared to a technique like Raman 

spectroscopy which offers spatial resolution of <1-µm, relatively lower molecular details compared 

to a highly sensitive technique like MSI, the bottlenecks of using cooled IR detectors, long 

acquisition time for large tissue and the interpretation of spectra data.   
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Figure 8 FTIR comparison of healthy and glioma tissue. Photomicrography of HE stained healthy brain tissue (A) and glioma tissue 

(B) sections. (A) shows, particular structures can be recognised such as CC that appears as a “V” shape with the genu (apex) 

pointing medially, and CA. In figure B, the more intensely stained area, marked “T” represents tumor zone. The pseudo-color FTIR 

maps (C) and (D) were obtained from the measured areas marked with a black frame on the adjacent unstained healthy (A) and 

glioma (B) tissues, respectively. Pseudo-color FTIR maps were constructed on 8-means clusters. Each cluster (consisting of similar 

spectra) was assigned to one brain feature. Blue: denotes areas in the scan where no tissue was present; yellow, red, brown and 

cyan: Cortex areas; grey: CC and CA areas; green: tumor tissue area; pink: infiltrative zone. [58] 

Technique Penetration 

depth (𝝁𝒎) 

Lateral 

resolution 

(𝝁𝒎) 

Spectral 

interval, 

(resolution) 

Field of 

view 

(𝝁𝒎	×

	𝝁𝒎	) 

Tissue 

area 

covered 

/min 

(𝝁𝒎𝟐) 

Accessible 

chemical 

data  

Refs 

IR 30 5-10 500-4000 cm-

1, (2-8 cm-1) 

2000 x 

2000 

800 000 100-200 [27, 

59] 

Raman 50 4-32 100-4000cm-

1,(0.5-4 cm-1) 

Single 

point 

volume 

70 000 50-100 [60, 

61] 

MSI 0.01 10-100 500-10000 

m/z, (1-10 

m/z) 

Single 

point 

volume 

1 500 

000 

100-1000 [62, 

63] 

Table 1 Comparison of the analytical performance of micro-spectroscopic techniques. While analyzing frozen tissues, the main 

analytical performances vary by technique: IR (section thickness: 5–25 mm; best 3D resolution: 10 mm; ); Raman (section thickness: 

5–40 mm; best 3D resolution: 5 mm;); MS (section thickness: 5–50 mm; best 3D resolution: 10 mm) [28] 
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1.4. Mid-IR microscopy for cancer biology 
 

Around 1800, Harschel studied the spectrum of sunlight using a prism and measured the 

temperature of each color. He found that the highest temperature was just beyond the red, what we 

call now infrared. The electromagnetic spectrum of the IR region is conventionally divided into 

three parts  

 

 
Figure 9 Electromagnetic spectrum: Showing IR divided into the far, mid and near regions and their corresponding wavelengths 

 

Mid-IR spectroscopy basically deals with the mid-infrared region 4000–500 cm−1 (2.5–25µm 

wavelength) which is the most informative for biosamples since these reveal vibrations of 

molecular bonds from organic compounds, although the far-infrared approximately 400–10 cm−1 

(25–1000µm) and near-infrared 14,000–4000 cm−1 (0.75–2.5µm) have also provided some benefits 

[64]. 

 

Since the middle of 20th century, Mid-IR spectroscopy coupled to microscopy (IR micro-

spectroscopy) has been recognized as a non-destructive, label free, highly sensitive analytical 

method with many potential useful applications in different fields of biomedical research and in 

particular cancer research and diagnosis [65].  

 

The coupling of an IR spectrometer to an optical microscope offers the unique opportunity for 

studying biological samples with a spatial resolution limited by the near diffraction limit of infrared 

light (5-10µm). 
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1.4.1.  FTIR Spectrometer 
IR spectrometry has evolved from the use of dispersive instruments which were generally slow and 

did not allow the measuring of all infrared frequencies simultaneously. Fourier Transform Infrared 

(FTIR) spectrometry was developed in order to overcome the limitations encountered with 

dispersive instruments.  

 

A solution which employed a very simple optical device called an interferometer. It could measure 

all frequencies in a given spectral range, commonly 4000-500 µm for the mid-IR region, and with 

high spectral resolution, down to 1 cm-1 or better. 

 

Most interferometers employ a beamsplitter which takes the incoming infrared beam and divides it 

into two optical beams. One beam reflects off of a flat mirror which is fixed in place. The other 

beam reflects off of a flat mirror which is on a mechanism allowing it to move on a short distance 

(typically a few millimeters) away from the beamsplitter.  

 

The two beams reflect off of their respective mirrors and are recombined when they meet back at 

the beam splitter. Consequently, the path that one beam travels is a fixed length and the other is 

constantly changing as its mirror moves, the signal which exits the interferometer is the result of 

these two beams interfering with each other. 

 

The resulting signal is called an interferogram which has the unique property that every data point 

(a function of the moving mirror position) which makes up the signal has information about every 

infrared frequency which comes from the source. This means that as the interferogram is measured, 

all frequencies are being measured simultaneously. 

However, the measured interferogram signal cannot be interpreted directly because the analyst 

requires a frequency spectrum (a plot of the intensity at each individual frequency) in order to make 

an identification. A means of “decoding” the individual frequencies is required.  

 

This can be accomplished via a well-known mathematical technique called the Fourier 

transformation. This transformation is performed by the computer which then presents the user with 

the desired spectral information for analysis [66]. 
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All modern IR spectrometers use FTIR and are composed of the following common elements: an 

internal IR light source, the interferometer (basically a Michelson interferometer), and a single 

element detector connected with an amplifier and a computer [67].  

 

1.4.2.  FTIR Microscope Setup 
The FTIR microscope is basically a spectrometer coupled with a microscope.  The FTIR 

microscope is similar to visible light microscope but it does not employ glass refractive elements 

(glass is opaque to IR light of λ>∼5µm). For this reason, FTIR performed in transmission requires 

that probing samples are deposited on optical windows (e.g. ZnSe, CaF2, and BaF2 crystals) that do 

not absorb, or absorb very low mid-IR radiation and have very high values of transmittance within a 

wide range of frequencies in the mid-IR region. 

 

IR radiation from the spectrometer is focused onto a sample placed on a standard microscope x–y 

stage. After passing through the sample, the infrared beam is collected by a cassegrain objective 

which produces an image of the sample within the barrel of the microscope.  

 

In the first FTIR microscopes, a variable aperture is placed in this image plane produced by the 

cassegrain objective in order to define the area of analysis. The radiation is then focused on to a 

small-area detector by another cassegrain condenser.  

 

The microscope also included glass objectives to allow visual inspection of the sample. In addition, 

by switching mirrors in the optical train, the microscope can be converted from transmission mode 

to reflectance mode. 

 

In the early 1990s, FTIR microscopes were equipped with a single MCT detector. This enabled just 

the analysis of a single section, single spot, defined by the aperture of the microscope [68]. In order 

to get a high lateral resolution, the minimal aperture dimension is set to approximately 10µm x 

10µm. With this set-up it is possible to investigate spectroscopically single cells, which allows the 

classification of “normal” versus malignant cells in a medical diagnostic-like analysis [54, 68, 56]. 

 

The drawback of this procedure is that the investigation of larger sample areas, using a reasonable 

lateral resolution (between 10-40µm), is extremely time consuming (taking up to days for larger 

samples in the cm range analyzed at a lateral resolution of 10-40µm) [69]. 
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The breakthrough came for FTIR microscopes when array detectors became accessible [70, 71, 72]. 

The use of a focal plane array (FPA) detector instead of using a single MCT detector reduced the 

experimental time drastically for the investigation of a larger sample area. Additionally, using these 

detectors superior image fidelity was gained.  

 

FPAs are made of many small, individual pixels laid out in a grid pattern. FPAs are typically 

available in 64x64, 128x128 and 256x256 grids (larger arrays are currently proposed). The 

predominantly utilized MCT detector array size is 64 x 64 pixels, allowing the acquisition of 4096 

infrared spectra per experiment [65, 68]. 

 

Each small pixel functions as a single small detector. For the imaging setup, no apertures are 

necessary to define the analyzed sample area. The microscope images of the sample plane are 

directly projected onto the detector array, and thus simultaneously from each pixel of the FPA, 

spectral data are collected from a specific sample region within the field of view using the coupled 

spectrometer.  

 

This setup proved to be a cutting edge technology when it was introduced and enabled the 

successful application of FTIR to samples from a variety of cell lines [73], blood cells [74],  tissues 

[75], cervix [76], breast [77], prostate [78], lung [79], colon [80], brain [53, 81], skin [82], 

esophagus [83], liver [84], lymph system [85] and stem cells [86].  

 

The results of all those studies have clearly indicated that FTIR associated with the use of some 

appropriate statistical data analysis methods has an accuracy in classifying normal and malignant 

tissues/cells in the order of 80-100% [68]. 

 

However, in spite of its many advantages, the application of FTIR to cancer research and clinical 

diagnostics continues to be promising or immature and to the best of my knowledge, no FTIR 

microscope has been put in clinical trials for cancer screening or diagnosis to date. 

 

This is due to some bottlenecks associated with this setup have hindered the progression of FTIR to 

become a routine tool for clinical diagnosis. These bottlenecks can be summarized into three major 

problems which include, reproducibility of spectra at high S/N ratio, lack of standardized protocols 

for spectral data treatment and the suitability as a tool for 3D pathology [87]. 
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1.4.3.  High-throughput and Reliable IR System 
One major bottleneck associated with the FTIR system is the difficulty of maintaining and 

reproducing spectra with high S/N ratio for large tissues at the dimension of clinical biopsies 

(frequently 1cm2). At diffraction limited resolution, i.e. about 5-10µm for the mid-IR range, the 

acquisition of 1cm2 tissue area will be too long (hours) at sufficient spectral quality (S/N ³100) for 

routine cases [27]. 

 

In order to maintain high S/N ratio, as defined by the ratio of source power (SP) to the noise power 

(NP), in the FTIR setup, enough IR signal must be cumulated on the detector by performing a 

number of scans in continuous mode within the selected interval of wavenumbers (e.g. from 4000 

cm-1 to 600 cm-1) at a selected scanner velocity (e.g 40 kHz). 

 

Therefore, to increase S/N values, a possible solution is to modify the source power, SP, that is to 

increase the brightness or IR light source. 

1.4.3.1. IR Sources 

(a)   Globar Source 

The most common IR source is a Globar source. A silicon carbide rod 5–10 mm-wide and 

20–50mm long that can be electrically heated up to 1000–1650oC. Globars were introduced 

as IR sources inside FTIR equipment in the mid-1960s, but have not been modified further. 

They have been observed to have a weak photon flux [87]. This paved way for the use of 

synchrotron source for FTIR instruments.  

 

(b)  Synchrotron Source 

Since the 1980s, the lack of commercially available powerful IR sources has pushed 

spectroscopists to use the synchrotron radiation IR beam [87]. Synchrotron radiation FTIR 

provides a higher signal/ noise ratio at the highest spatial resolution because of its intense 

brightness [88], thereby permitting intracellular imaging of molecular chemical structure 

and compared to globar IR light sources [89]. 

 

However, a major bottleneck is that synchrotron light sources are extremely cost-intensive due to 

the high consumption of energy and it is not feasible to use the full power of synchrotron IR 

radiation without damaging the thin silicon-based film of IR detectors.  
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Also, in spite of synchrotron radiation having photon flux that is 2–3 orders of magnitude higher 

than Globar in transmission, this powerful source could not provide more than a 10–20% increase in 

S/N ratio [90]. A lack of correlation between increases in source power and signal level is partly 

due to the limited sensitivity of commercially available IR detectors [87]. 

 

Recently, in order to overcome this limitations of FTIR system, high-spectral-brightness, broadly 

tunable IR laser source with a large-format (480 × 480), uncooled microbolometer FPA detectors 

has been developed [91]. 

 

1.4.3.2. Quantum Cascade Laser IR 

Quantum cascade lasers (QCL) are semiconductor lasers that emit in the mid- to far- infrared 

portion of the electromagnetic spectrum. QCL provides higher spectral radiance than the 

synchrotron source and significantly more than the standard Globar source. In quantum cascade 

structures, electrons undergo inter sub-band transitions and photons are emitted. The electrons 

tunnel to the next period of the structure and the process repeats. 

 

Therefore, unlike IR interferometers, QCLs generate the mid-IR signal wavelength-by-wavelength 

in absolute values and the spectrum reconstruction does not require the Fourier transform anymore 

(thus reducing mathematical approximations in absorption calculations) [92], and provides absolute 

count of photons on detector, thus ensuring more accurate quantitative analysis of biosamples. 

 

 
Figure 10 Setup of different kind of IR microscope and their respective spectral brightness. a) FTIR microscope setup. (b) QCL-IR 

microscope setup. (c) Spectral brightness of globars, synchrotron IR source, and QCL 1403BOWbarreF2 lasers over the 7–12 µm 

(833–1430 cm-1) range difference in relation to the noise floors of commercial MCT and microbolometer FPAs [91] 
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Because of this wavelength-by-wavelength signals generation, obtaining a large spectral region may 

take time, but the development of pulsed lasers working in the ms range is compensating the 

periodic mode of signal generation [93]. 

 

QCL-IR microscope setup 

The main components of QCL-based IR microscopes, as shown in Figure 10, include multiple QCL 

modules, an optical multiplexer, a condenser, a switchable objective, an automated stage, and an 

uncooled large microbolometer FPA (480 × 480). The architecture enables a small footprint, 

currently about one third that of a commercial FTIR microscope. 

 

The laser source comprises multiple broadly tunable external cavity QCL modules that enable 

platform modularity and scalability. The high brightness of the QCL source takes advantage of the 

full dynamic range of commercial uncooled microbolometer FPAs having 14 times the number of 

pixels found in state-of-the-art FTIR microscopes. However, it is limited to a shorter spectral 

interval of 1800-830 cm-1. 

 

The QCL-IR and FTIR microscopes have been recently compared [27, 94]. The S/N ratio was 

found to be approximately 50% higher with a single scan using the QCL-IR system than with the 

best acquisition condition (1000 scans) for the FTIR system.  

 

The comparison is even more striking if we consider that the tissue area covered by a single FPA 

tile dimension acquisition, is 340 x 340 µm2 for the FTIR system (2.66 x 2.66 µm2/pixel) and 2000 

x 2000 µm2 for the QCL-IR system (4.3 x 4.3 µm2/pixel).  

 

The QCL-IR has also been observed that the QCL-IR could be up to 150x faster than FTIR in 

acquisition time of  a large tissue of 7mm diameter. However, it also observed that the coherence of 

laser sources modifies the shape of the spectral data resulting from sample measurements [27]. 
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Specification FTIR QCL-IR 

Resolution (cm_1)  1-16 4 and 8 

Spectral range (cm_1)  4000-400 1800-830 

Detector size (mm  40 x 40 17 x 17 

FPA type (pixels, condition)  

 

128 x 128 N2-cooled  

 

480 x 480 Uncooled  

 

FPA coverage (mm)  5.12 x 5.12 8.16 x 8.16 

Mag. levels  15X   36X 4X  12.5X 

Final pixel size (mm)  2.66 x 2.66 1.1 x 1.1  4.25 x 4.25  1.36 x 1.36  

FOV (mm)  

 

340 x 340  140 x 140  

 

2000 x 2000  650 x 650  

 
Table 2 Comparison of the basic specification of FTIR and QCL-IR microscopes showing the improved capabilities of the QCL-IR. 

The FTIR however offers a larger spectral range compared to the QCL. [28] 

The reduction in the acquisition time on large sample areas as well as the use of uncooled FPA 

detector enables the acquisition of reproducible, and thus reliable quantitative data from tissue 

samples and development of analytical techniques for diagnostics. This is giving to IR microscopy a 

unique advantage over other analytical techniques, notably for the ability to determine absolute 

concentrations of chemical and molecular species in biosamples. 

 

1.4.3.3. IR data treatment 

One of the challenges of spectroscopic techniques remains the complexity of spectra data for end 

users who are not specialists of their utilization, i.e. for clinicians and biologists. The data 

treatments developed for extracting chemical information from raw spectra remain in the domain of 

expertise of spectroscopists (interpretation of spectral data as biological information) or use 

multivariate statistics do not cross-match the usual standards of pathologists, i.e. recognizing 

anatomical features or labeling specific antigens on the tissue sections. Thus there is a need for the 

development of IR data treatment protocols that can be used by onco-pathologists for 

characterization and diagnosis of tumor. 
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The IR spectrum is defined by bands with an important overlapping between them in some spectral 

regions . The major marker peaks are the Amide I and Amide II characterizing the contents in 

proteins and polypeptides. Amide I band has a centered absorption at ∼1650 cm−1 and identifies 

primarily the C=O stretching modes, vC=O, associated with vibrations of a secondary amide, 

whereas Amide II band absorbing at ∼1550 cm−1 refers to the combination of both N-H bending and 

C-N stretching vibrations. Not only Amide I and Amide II identify protein molecule but their 

positions and shapes may reflect changes in the secondary protein structure [95]. 

 

In Table 3, we present the region of absorption of different biomolecules that have been identified 

and assigned as major spectral components by functional group analysis. Functional group analysis 

is particularly useful for the qualitative analysis of pure organic molecules since the IR spectrum of 

each molecule is unique and it can serve as a signature to distinguish among different molecules, for 

instance, proteins, nucleic acids, lipids and fatty acyl chains, and saccharides [65, 96]. 

 

However, an IR spectrum of a biosample contains a large number of bands, many of which will be 

impossible to confidently assign to the vibration of a particular functional group or to a given 

molecule. Moreover, cells contain many mid-IR active molecular constituents such as membrane 

lipids and phospholipids, glycolipids, proteins, glycoproteins, phosphoproteins, nucleic acids, 

carbohydrates and a variety of small metabolites that may concur to spectral features. Therefore, 

there is a need for advanced spectral data treatment such as spectral band decomposition and curve 

fitting [96] to isolate these bands individually. 
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Table 3 Major IR and Raman band assignments for Soft Tissues. [28] 

 

 

 

 

 

 

Vibrational mode (functional 
group)  

IR frequency (cm_1)  Molecular information  

Amide A, B  3300, 3100  Fermi resonance between N-H stretch and overtone of 
Amide II, sensitive to secondary structure  

n(-C1⁄4C-H) stretch  3010  Fatty acyl chains unsaturation  

nas(-CH3) stretch  2960  Predominantly due to proteins  

nas(-CH3) stretch  2875  Predominantly due to fatty acyl chains  

nas(>CH2) stretch  2924–2916  Predominantly due to lipid, frequencies qualitatively  

ns(-CH3) stretch  2870  Predominantly due to lipid, frequencies qualitatively  

ns(>CH2) stretch  2855–2848  Monitor acyl chain conformational order and packing  

n(>C1⁄4O)  1730–1760  Due to acid carbonyls  

n(>C1⁄4O)  1740–1720  Due to ester carbonyl, sensitive to hydrogen bonding  

Amide I  1685–1630  Predominantly due to C1⁄4O stretch, sensitive to secondary 
and tertiary structures  

n(>C1⁄4O)  1684, 1672, 1664, 1656, 1645, 1637, 
1625, 1610  

Proteins, b-turns, antiparallel b-sheets, parallel b-sheets, a-
helix, unordered structure, a-like triple helix, antiparallel b-
sheets, parallel b-sheets  

n(-C1⁄4C-)  Weak  Sensitive to conjugation  

Amide II  1550–1530  Predominantly due to N-H in-plane bend and C-N stretch, 
sensitive to secondary structure  

d(>CH2), d(-CH3)  1475–1460  Methylene modes in IR sensitive to acyl chain packing  

ns(>COO_)  1450–1400  Due to NMF components and amino acid side chains  

v(>CH2)  1337  IR marker for Pro in collagen  

t(CH2)   Trans acyl chain  

Amide III  1275–1235  C-N stretch and N-H in-plane bend, sensitive to secondary 
structure  

nas(P=O)  1227  Phosphates  
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1.4.3.4. IR Data Treatment Methods 

 

There are several different methods for the analysis of IR spectra for chemical information 

extraction: from the simple inspection to identify peaks to, chemometrics; where mathematical, 

statistical, and computer sciences methods are applied to improve the understanding of chemical 

information contained in typically broad and complex IR data. Here we discuss the different 

methods used for IR data treatment. 

(a) IR data pre-processing 

Pre-processing is required in order to reduce and correct interferences that may generate 

irrelevant variances such as atmospheric water vapour and carbon dioxide, variable background 

absorption profiles, and differences in sample thickness. Background intensity changes along 

the interval of wavenumebers that may alter the baseline are usually compensated by 

appropriate mathematical methods for baseline correction. 

Baseline Correction 

An infrared spectrum typically consist of chemical information, baseline and random noise [97]. 

In an ideal condition the baseline of a spectrum should be a flat line, however, most of the time, 

the baseline is not flat; it has a linear or nonlinear distortion [98]. It is important to correct 

baseline distortions because it varies more or less randomly between spectra in a IR spectrum 

matrix, which in turn creates problems for analytical comparison of spectra and visualization of 

chemical information due to the problem of vignetting that arises as a result of varying 

intensities across the spectrum matrix.  

The distortion in baseline also affects the spectral resolution and peak assignments. Baseline 

correction also helps to get rid of strong outlying artifact signals in the spectrum matrix. 

Mathematical methods such as polynomial fitting and rubberband method have been proposed 

for IR spectra baseline correction [97, 98, 99]. 

 
Figure 11 Baseline correction of IR spectra in order to make spectra data comparable and eliminate strong outlying artefact signals. 

(a) IR spectra with uncorrected baselines. (b) Baseline correction of the purple spectrum by polynomial fitting.  
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(b) Derivative Spectra 

Numerical differentiation with respect to wavelength for qualitative analysis and for 

quantification. could also be performed on spectra.  

If a spectrum is expressed as absorbance, 𝐴, as a function of wavelength, 𝜆, such that 𝐴 =

𝑓(𝜆),  

The derivative spectra in the first order can be expressed as: 

 𝑑𝐴
𝑑𝜆

= 	𝑓- 𝜆 = 	
𝐴./∆. −	𝐴.

∆𝜆
 

(1) 

The second order derivative can be expressed as: 

 𝑑2𝐴
𝑑2𝜆

= 𝑓-- 𝜆 = 	
𝐴.3∆. −	2𝐴. +	𝐴./∆.

∆𝜆2
 

(2) 

The third order derivative can be expressed as: 

 𝑑6𝐴
𝑑6𝜆

= 𝑓--- 𝜆 = 	
𝐴.3∆. −	3𝐴. +	𝐴./∆. +	𝐴./2∆.

∆𝜆6
 

(3) 

The fourth order derivative can be expressed as: 

 𝑑8𝐴
𝑑8𝜆

= 𝑓---- 𝜆 = 	
𝐴.3∆. + 𝐴.32∆. −	4𝐴. +	𝐴./∆. 	+	𝐴./2∆.

∆𝜆8
 

(4) 

 

A first-order derivative is the rate of change of absorbance with respect to wavelength. A 

first-order derivative starts and finishes at zero. It also passes through zero at the same 

wavelength as 𝜆:;< of the absorbance band. Either side of this point are positive and 

negative bands with maximum and minimum at the same wavelengths as the inflection 

points in the absorbance band. This bipolar function is characteristic of all odd-order 

derivatives [100].  

 

The most characteristic feature of a second-order derivative is a negative band with 

minimum at the same wavelength as the maximum on the zero-order band. It also shows two 

additional positive satellite bands either side of the main band. A fourth-order derivative 

shows a positive band. A strong negative or positive band with minimum or maximum at the 

same wavelength as 𝜆:;< of the absorbance band is characteristic of the even-order 

derivatives [100]. 

 

Derivative techniques are widely used in spectra analysis for background correction and 

molecular specificity [100, 101, 102]. The spectral resolution is enhanced when the first 

derivative is computed since changes in the gradient are examined. Second derivative 
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spectrum is a technique widely used to enhances the separation of overlapping peaks and 

reveals the positioning of peaks [102]. 

 

 
Figure 12 Derivative of a spectrum showing the 1st, 2nd, 3rd and 4th derivative spectrum. The 2nd derivative is characterized with 

negative peak at the 𝜆:;< while the 1st derivative passes through zero at 𝜆:;<. The 3rd derivative shows the characteristic bipolar 

function of odd-order derivatives with positive and negative bands at either side of the 𝜆:;<.   

 

(c) Band Integration 

IR spectra can also be subjected to numerical integration. A spectrum consists of bands which 

are series of equally spaced wavenumbers in a regular sequence. A IR spectrum typically 

consists of well-defined bands such as amideI, amideII, lipids, phospholipids, carbohydrates.  

Mathematically, the area covered by these bands can be computed by performing numerical 

integration. This is useful to compute the distribution of these bands in the biosample. 
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Let 𝑓(𝑥) be an IR spectrum from a biosample, the integral of a band bounded by wavelengths 

[a, b] is defined as; 

 
𝑓 𝑥 𝑑𝑥
>

;
 

(5) 

 

Figure 13 IR band integral of the AmideI band. a) IR bands showing different bands in soft tissues.  (b)Integration of the AmideI 

band 	?@AB
?CDE  

(d) Multivariate Analysis  

Multivariate pattern recognition methods compare a large number of variables (e.g. absolute and 

relative intensity, the position, and the width of one or more absorptions) within a dataset. The 

IR spectra of biosamples are very complex since they consist of the overlapping absorption of 

the main biomolecules.  

 

In order to retrieve the significant and non-redundant information contained in the spectra, it is 

necessary to apply an appropriate multivariate analysis method which are able to process very 

high-dimensional data. Generally, multivariate classification with supervised or unsupervised 

pattern recognition can be applied to IR spectra [65].  

 

The popular multivariate analysis techniques are principal component analysis (PCA), principal 

component regression (PCR), partial least squares (PLS), discriminant analysis (DA), cluster 

analysis (CA). 

 

PCA is a non-parametric method for extracting relevant information from confusing data sets 

allowing to identify patterns in data and to highlight their similarities and differences [103]. 

PCA reduces the dimensionality of spectra data into principal components by maintaining as 



 

53 

 

much variance as possible [104]. Major benefit of PCA is that the large number of initial 

dimensions are condensed to only a few dimension (principal component), those reflecting the 

most relevant analytical information [105]. It can also be combined with discriminant analysis 

as PCA-LDA for classification into different categories. 

 

Figure 14 shows an example of classification of embryonic stem cell spectra of different 

differentiation days. This figure highlights the limitations of PCA as a spectrum can belong to 

multiple classes in poorly differentiated cells.  

 

 
Figure 14 PCA–LDA of Embryonic stem cell differentiating second derivative spectra. Clustering of second derivative spectra from 

1800 to 800 cm−1 is reported as 2D (A) and 3D (B) score plots. Clustering of second derivative spectra in the lipid absorption region 

from 3050 to 2800 cm−1: 2D (C) and 3D (D) score plots. On each PCA–LDA component, the percentage of the explained variance is 

reported. Represented data correspond to 4, 7, 9 and 14 days of differentiation. Clusters are represented as ellipses in the 2D plot 

and ellipsoids in the 3D. The semi-axes of ellipses/ellipsoids in the 2D/3D plots correspond to two standard deviations of the data. 

[106] 

PCR is a method used together with PCA. Once a set of k principal components has been 

obtained using the PCA method, they can be used as input variables for a multivariate 

regression analysis instead of the original data. By eliminating correlations in the original data, 

the PCR method allows to perform linear regression on spectra data. 
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PLS regression searches for a set of components that explain as much as possible the covariance 

between spectrum in the spectra data. In this way, compared to the PCR, the principal 

components contain more information about the relationships between predictors and dependent 

variables. For classification into different categories, the PLS method takes the name of partial 

least square discriminant analysis (PLS-DA) 

 

(e) Spectral decomposition 

Spectral Band decomposition and curve fitting is used to decompose and determine the 

quantitative values of underlying or narrow bands in heavily overlapped bands. While 

multivariate analysis provides useful information about the variance of spectra data, the nature 

of variance on global spectra does not reflecting individual molecular variations. Thus there is a 

need for a method which is able to decompose bands into individual  

 

Spectral Band decomposition and curve fitting helps to condense spectra data into few band 

parameters. This important for spectral feature extraction as it helps to approximate the 

quantitative value of smaller bands that have been merged into bigger ones. 

Band decomposition and curve fitting seeks to extract a series of bands as a Model M = {Bb,b 

∈ [1...N]} which is representative of all the chemical compound present in a sample. 

 

In order to define standard protocols for the interpretation and presentation of IR spectra and 

images, methods must be defined for extracting the distribution of different biomolecules and 

translating them into biological metadata that are within the domain of onco-pathologists. This is 

referred to as spectromics.  

 

Spectromics is defined as the ability to exploit any spectral information (or set of spectral 

information using any kind of mathematical procedure) for characterization of biosample (from 

chemical to molecular, biological, and anatomical tissue contents) [107]. 

 

The development of data treatment methods for quantitative IR microscopy and spectromics enables 

the reconstruction of a 3D quantitative chemical images of a biological tissue by IR spectro-

microscopy which opens the way to 3D digital pathology (Figure 15). 
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1.5. Towards large scale 3D pathology 
Three-dimensional (3D) microscopy is a powerful approach for imaging biological specimens and 

is the next frontier for modern histopathology.  It offers excellent spatial resolution and facilitates 

the observation of tissue sub-structures and content under physiological and pathological 

conditions.  

3D pathology is expected because tissue blocks are not naturally transparent, and they contain 

complex 3D networks (blood and lymph systems, membranes, nerves and other fibers, etc.), a 3D 

arrangement of different cell phenotypes that is not homogeneous, and an extracellular space that is 

composed of many other compounds and filamentous structures. From a geometric point of view, it 

is possible in principle to instantly visualize tissue abnormalities using 3D pathology and it has 

significant advantages compared to the usual 2D histology.  

 
Figure 15 3D IR image reconstruction for spectral-derived features of tissue sub-structures. (a): 2D IR image of single wavelength 

absorption (1424 cm–1) revealing blood vessels in a tissue section of mouse brain. (b-d): Stacked 3D IR images for 20 consecutive 

tissue section (10 µm thickness) showing the distribution of Amide I, lipids and  lipids/amideI(L/A) ratio. (e) curve-fitted spectrum 

showing extractable IR-bands and zoom on the 1750–1600 cm–1 spectral interval for selecting bands allowing to reconstruct the 

blood vessel network BV in (f) [26] 

Figure 15 shows the feasibility of the 3D reconstruction of the chemical parameters of tissue sub-

structures. However, this was done empirically by manual handling of the 3D reconstruction of IR 

images for only 20 consecutive slices of 10 µm thickness. To extend this empirical approach to 

scale in clinical applications, it means moving from few spectra to billions of spectra.  
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Computing the 3D volume of this big data is not trivial. Thus, the effort required becomes 

exponential compared to the reconstruction of blood vessel network of a region of interest in a small 

sample and thus requires the automation of the processes.   

For the new QCL-IR to be considered for use in clinical diagnosis of tumours, it must be developed 

for 3D imaging of tissues. Although IR microscopy is not suitable for direct tomographic 

measurements on biosamples because IR photons have limited depth of penetration in matter, 

biosamples also contain >60% of water with unmanageable absorptions, and the transmission 

measurements do not allow resolving absorptions in a true confocal geometry. However, its 

quantitative nature should allow the reconstruction of a 3D matrix of spectra of large samples [108]. 

As a result of a fast and high S/N level spectra acquisitions from several tissue slices, QCL-IR 

microscopy should allow reconstructing a large 3D matrix of IR spectra for tissue analyses. To 

achieve 3D reconstruction, spectral data treatment methods that allows discrimination of two 

objects (e.g. healthy vs. pathological tissue or sub-structures inside the same tissue volume) must be 

developed.  

Different spectral data treatment methods have been developed so far to extract chemical 

information from spectra using individual IR band or well-identified regions of the IR spectrum 

such as amide I region. The 3D reconstruction of these data might provide unique information about 

a tissue, with 3D resolved sub-structures correlated to biochemical or metabolic events [107].  

This would lead to the combination of morphological and molecular data into the same 3D image of 

a biosamples, thus comparable to the MRI/CT or PET/CT multimodal imaging methods, but with 

unique advantage of being quantitative and using a single technique to perform 3D reconstruction at 

the microscopic scale without the use of any label or imaging contrast agent, thus avoiding sample 

manipulations and alterations. 

 

Figure 16 shows a proof of concept for 3D reconstruction of brain tumors. This was achieved using 

20 consecutive tissue slices. The slices were manually aligned in order to visualize the spatial 

arrangement of the tumor in the mouse brain. In this thesis we will develop a processing sequence 

for automating the process of resolving billions of spectra at the scale of the whole mouse brain and 

computing 3D volume of tumors and tissue sub-structures. 
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Figure 16 Example of 3D reconstruction of mouse brain tumor using 20 brain tissue slices. The development of IR imaging for large 

scale 3D pathology would allow the reconstruction of the tumour in the whole mouse brain. 
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CHAPTER 2: Techniques for 3D 
reconstruction of histological images 
 

Three-dimensional (3D) histology is a powerful approach for microscopic imaging biological 

specimens and is the next frontier for modern histopathology. This is due to the inherent limitations 

of conventional 2D histology.  

 

Histology permits the observation of structures of the internal topography of a specimen which are 

invisible at macroscopic scale. Although it enables the investigation of tissues at a cellular level, it 

is invasive and breaks topology due to sectioning.  

 

Three-dimensional (3D) reconstruction of 2D histological slices was thus introduced to overcome 

the limitations of single-section studies in a dimensional scope. Three-dimensional (3D) 

reconstruction and examination of tissue at microscopic resolution have significant potential to 

enhance the study of both normal and disease processes, particularly those involving structural 

changes or those in which the spatial relationship of disease features is important [109]. 

 

In this chapter, we present a review of the development of 3D histology and the different image 

processing techniques required for 3D reconstruction histological images. 

 

2.1. From 2D to 3D Histopathology 
3D pathology is expected because tissue blocks are not naturally transparent, and they contain 

complex 3D networks (blood and lymph systems, membranes, nerves and other fibers, etc.), a 3D 

arrangement of different cell phenotypes that is not homogeneous, and an extracellular space that is 

composed of many other compounds and filamentous structures.  

 

From a geometric point of view, it is possible in principle to instantly visualize tissue abnormalities 

using 3D pathology and it has significant advantages compared to the usual 2D histology [110]. 

 

It offers excellent spatial resolution and facilitates the observation of tissue sub-structures and 

content under physiological and pathological conditions. In cancer application, tumour size, 
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including maximum tumour diameter and tumour volume may be more accurately measured in 3D 

compared to 2D for diagnostics.  

Visualization of 3D histology volume can also help the pathologist when they report the orientation 

of the tumour or when investigating the spatial relationship between the distributions of different 

disease biomarkers(Figure 17). 

 

 
Figure 17 3D reconstruction of mouse brain anatomy showing true location, structural and spatial arrangement of different 

anatomical features in 3D compared to a 2D view where no information about the location of the structures are known. A-B: 3D 

reconstruction of the mouse brain cortex. C-D: 3D reconstruction of the basal ganglia region. E-F: 3D reconstruction of the 

hippocampus region of the mouse brain. G-H: 3D reconstruction of the Thalamus region of the mouse brain [111]. 

3D histology also reduces significantly misinterpretation that occur in 2D assessment of complex 

networks such as microvasculature. Particularly in the setting of restructured microvasculature 

during disease, where vessel and network morphometry cannot be predicted.  

 

In contrast to large and medium-sized vessels that can be embedded and sectioned in specific 

directions, the orientation of arterioles and venules of the microvasculature cannot be determined 

from conventional 2D histological images [112]. 

 

In order to extend histological examinations from 2D to 3D, one faces a major problem of how to 

regain information of the structures in 3D from a series of 2D samples. Volume slicing breaks the 

spatial relations between structures and creates discontinuities which hamper intuitive 

representations in 3D and thereby, a full understanding of the sample anatomy. 
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Moreover, in 3D pathology, it is also mandatory to consider soft tissue distortions due to tissue 

removal by surgery or biopsy. The shape of the tissue is considerably altered via cryomicrotomy, 

and the final 3D reconstruction model that is created from serial 2D sections will be significantly 

distant from reality. 

 

In addition, tissue sub-structures are independently and randomly altered due to the current manual 

nature of cryomicrotomy. This may result in anatomically different structures looking similar in 

microscope slides and conversely, slicing may cause one same structure to have different views if 

not consistent. 

 

These alterations are collectively called as artefacts [113].  Artefacts include, loss of details, folds 

and wrinkles, cracks and holes. These alterations could result in misinterpretation of histological 

images as they are capable of altering the morphology tissue structures as well as result in 

inconsistent contrast of similar tissue structures (Figure 18). 

 

For quantitative analyses in 3D pathology, the determination of the molecular concentrations as 

well as the distribution of tissue sub-structures will be directly dependent on the recovery of the 

native 3D shape of the tissue. While current manual methods of histology make artefacts inevitable, 

however, they are surmountable. 

 
Figure 18 Problems associated with 2D histological images. (a) Tears and holes in tissue slice. (b) Global shape deformation of 

tissue slices. (c) Artefacts in and around tissue slice. (d) Glue deposited on sample slide. (e) Local misalignment of tissue 

substructures. (f) Vignette arising from difference of thickness around tissue edges.  
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In the light of these problems, several techniques have been proposed for 3D reconstruction of 

histological images [113]. These includes, techniques to solve major alterations in 2D histological 

images, combining non-invasive imaging with histology to relate macroscopic information to the 

underlying microscopic properties of tissues through the establishment of spatial correspondences 

and recovering of sectioning axis for 3D reconstruction. 

 

Typically, 3D reconstruction of histological slices follows a classical image processing pipeline to 

solve the problems listed above (Figure 18). This consists of 3 major processes which includes; 

image pre-processing to resolve the problems introduced by histological sample preparation, image 

information retrieval process where useful information such as anatomical landmark is determined 

and extracted in the histological images, post-process where the extracted anatomical landmarks are 

refined for reconstruction.  

 

 
Figure 19 Typical image processing pipeline for histological image processing. This pipeline includes methods for image pre-

processing such as grey scale level normalization, segmentation methods and image post-processing methods such as clustering to 

group into different intuitive classes. 

 

2.2. Image pre-processing techniques for 3D digital 

histopathology 
Image pre-processing techniques are required to solve the problem of artefacts  on histological 

slices before 3D reconstruction. Two major problems that can be addressed by image pre-

processing methods are the variation in intensity due to slight difference in tissue thickness and 

resolution of cracks, holes and tears in tissue sections. 
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2.2.1. Intensity normalization  
Ideally, the absolute colour of a slide reveals the biological component that a pathologist wishes to 

retrieve. For example, in the case of H&E, the colour value quantifies the amount of nucleic acids 

(blue-purple) hematoxylin has bound to, and the amount of proteins (in pink) Eosin has bound to. 

However, due to the presence of artefacts or because of optical aberration from microscope and the 

camera used for imaging [114] slides tend to exhibit different colours. 

 

In general, histology reconstruction methods require the use of greyscale images for intensity 

standardization (or the channel that provides the best contrast in an RGB image) across the series of 

2D histological images. This is due to the use of differences in intensity as one of the criteria used 

for identifying salient structures and finding correspondence between series of histological images. 

 

Histogram equalization [115, 116] method has been used to correct inhomogeneous intensity in a 

single  histological slice.  

 

Histogram Equalization 

A definition of image contrast is the difference in luminance (brightness) or colour that makes an 

object distinguishable. Histogram equalization is a technique used to enhance the contrast of images 

and correct inhomogeneous brightness by manipulating the distribution of intensities on the image 

histogram. 

 

This involves computing the histogram of the individual color channels and luminance values, as 

shown in Figure 20.  From this distribution, we can compute relevant statistics such as the 

minimum, maximum, and average intensity values.  

 

Histogram is the basis for numerous spatial domain image processing techniques and could be 

characterized by flat and bell shape (Figure 20). Bell shaped specification usually represents a 

normal distribution. This type of specification usually appears to have one cluster that much of data 

cluster around which results in inhomogeneous intensities. On the other hand, flat specification is 

indicative of a uniform distribution of intensities. 

 

Mathematically, to compute the equalized histogram of an image, the probability density function 

and cumulative density function of the input image histogram is computed. These functions are then 
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applied for modifying the input image intensity levels to generate a processed contrast enhanced 

image. 

 

Histogram equalization could however be subject to bias in the presence of extreme outliers. To 

correct the bias, methods that seek to normalize slices by using multiple slice references have also 

been proposed for normalizing intensity of serial histological sections [117, 118]. 

 

 
Figure 20 Histogram Equalization example. (a) Tissue sample with bell shaped closely clustered distribution of image intensities. (b) 

Contrast enhanced image by uniformly distributing the intensities. 

2.2.2. Tissue Alterations 
The problem of alterations such as tissue cracks, tears or holes within the tissue are more 

challenging to solve than the variations in intensities. This is particularly challenging because of the 

need to assert if the hole is an anatomical feature or an aberration due to histology. 

 

Consequently, manual delineation of the torn area is the standard procedure to identify torn parts of 

a tissue [119]. This is followed by the use of the image histogram to identify the intensity class of 

the surrounding tissue to fill up the missing parts. Depending on the geometry or size of the tear, 

different methods can be used to fill up the crack and holes. Like intensity normalization, holes and 

cracks can be corrected using a single image or multiple histological images. 
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For a single histological image with the assumption of the horizontality of tears, a manual 

contouring of the torn area and filled it by repeating pixel values of the contour along the columns 

of that region can be used to fill up the holes and cracks (Figure 21) [120]. Landmark 

correspondence could also be determined between multiple images to stitch cracks, holes and torn 

pieces in a slice [119]. 

 

 
Figure 21 Tissue hole correction example. (a) Tissue with manual delineation of hole region by the dotted red box. (b) Corrected 

hole using the average intensity of neighbouring pixels computed from the boxed region in the image histogram (c) Image histogram 

showing the pixel distribution of the boxed region in the image (a). 

 

2.3. Image segmentation techniques for histological 

images 
Image segmentation helps to understand histological images by extracting information from the 

image. In practice, it is often interested in some certain areas which have the same characteristic. 

Typically, an image segmentation algorithm is based on certain criteria to divide an input image 

into a number of the same nature of the category. 

  

An application for analysis of histological images is for both correction of aberrations during 

sample preparation such as glue deposit and for extracting meaningful information such as 

anatomical structures, delineating the border of disease in tissues, cell counting etc. 
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Segmentation methods could be based on simple global information of the image such as image 

histogram or more complex information such as topology, geometry and texture [121, 122]. 

Methods of segmentation such as thresholding [123] [124] [113], edge segmentation, segmentation 

using active contour [125] and segmentation using morphological operators [126] are relevant for 

histological image segmentation. 

 

One of the most common segmentation methods is the use of thresholds. It is a characterization of 

pixel intensities belonging to a specific object. It directly divides the histogram. Threshold method 

could be local or global in domain. The global threshold method divides the image into two classes 

of the background and foreground while the local threshold method uses multiple segmentation 

thresholds and divides the image into multiple target regions and backgrounds (Figure 22). 

 

An advantage of the threshold method is its low computation complexity. The disadvantage is that it 

is difficult to obtain accurate results for image segmentation problems where there is no significant 

intensity difference or a large overlap of the intensity values in the image [122].  

 

This is as a result of taking into account just the intensity information of the image without 

considering the spatial information of the image. It is sensitive to noise and grayscale unevenness, 

leading it often combined with other methods using morphological operators (such as opening, 

erosion or dilation) to refine the results of thresholding [126]. 

 

 
Figure 22 Threshold segmentation example. (a) Original image with histogram divided into 2 classes of white and black pixels. (b) 

Retrieving the tissue mask by thresholding the background pixels (class c1) and foreground pixels (class c2). (c) Using threshold 

segmentation to segment anatomical landmark from the whole tissue. 
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Generally, there is no ideal segmentation method, the choice of method depends on specific image 

requirement and targeted information. Below is a table comparison of different image segmentation 

methods and their application to histological image segmentation. 

 
Method Description Advantages Disadvantages Application 

Thresholding 

[127] 

Based on the histogram 

peaks of the image to 

find particular threshold 

values 

(1) It does not require 

prior information of 

the image. 

 

(2) Low computation 

complexity. 

(1) Does not work well 

for an image without any 

significant intensity 

difference. 

 

(2) Does not consider the 

spatial details, so cannot 

guarantee that the 

segmented regions are 

contiguous 

 

Tissue masking, 

Anatomy extraction, 

Contrast enhancement  

Edge 

detection 

[128] 

Based on the detection of 

discontinuity, normally 

tries to locate points with 

more or less abrupt 

changes in gray level. 

Intuitive and works 

well for images 

having good contrast 

between regions 

(1) Does not work well 

with images in which the 

edges are ill-defined or 

there are too many edges  

 

 (2) Less immune to 

noise than other 

techniques, e.g., 

Thresholding and 

clustering  

 

Tissue masking, 

Anatomy extraction, 

Disease Delineation, 

Cell counting 

Distance 

Clustering 

[128] 

Assumes that each 

region in the image 

forms a separate cluster 

in the feature space. Can 

be generally broken into 

two steps:  

(1) categorize the points 

in the feature space into 

clusters;  

(2) map the clusters back 

to the spatial domain to 

form separate regions. 

Straightforward for 

classification and 

easy for 

implementation  

 

 

 

(1) How to determine the 

number of clusters. 

(2) Does not utilize 

spatial information 

(3) Time consuming 

Tissue masking, 

Anatomy extraction, 

Tissue classification, 

Disease Delineation 
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Method Description Advantages Disadvantages Application 

Region 

based [129] 

Group pixels into 

homogeneous regions. 

Including region 

growing, region splitting, 

region merging or their 

combination 

Work best when the 

region homogeneity 

criterion is easy to 

define. They are also 

more noise immune 

than edge detection 

approach 

(1) Are by nature 

sequential and quite 

expensive both in 

computational time and 

memory  

 

(2) Region growing has 

inherent dependence on 

the selection of starting 

region and the order in 

which pixels and regions 

are examined 

Tissue masking, Tissue 

classification, Disease 

delineation 

Active 

Contour 

[130] 

Based on the use of 

image information to 

evolve a segmenting 

curve 

(deformable/smooth 

contours) which match to 

various object shapes 

and motions. 

(1) Useful to track 

and fit non-rigid 

shapes. 

 

(2) Can allow user 

interaction. 

(1) Cannot effectively 

handle intensity 

inhomogeneity. 

(2) Result dependent on 

the initial contour and 

parameters. 

(3) Long runtime 

 

Tissue masking, 

Anatomy extraction, 

Disease Delineation. 

Blob 

analysis 

[131] 

Based on the analysis of 

image topology for 

continuous connected 

components, holes and 

borders. 

(1) Can correctly 

segment the objects, 

even though a part of 

the boundary is 

missing or many 

noisy regions 

accompany the 

object. 

 

(2) Geometrical 

operations can be 

performed directly 

using shape 

information. 

Does not work well with 

images with complex 

shape network or when 

there are too many 

shapes. 

 

 

 

 

Tissue masking, 

Anatomy extraction,  

Disease Delineation, 

Cell counting, 

 

Table 4  Comparison of different segmentation methods and their applications for histological image [130, 127, 128, 129]. 
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2.4. Registration methods for 3D histology 

reconstruction 
The basic foundation of all histological reconstruction approach is image registration. Regardless of 

the approach chosen for reconstruction, image registration methods are needed to establish 

correspondence and spatially align the set of histological slices. 

 

Registration is the process of bringing two images, one usually referred to as “reference” and the 

other as “source” into spatial alignment and deforming the source image such that it looks like the 

reference image [113].  

 

The objective is to estimate the transformation that optimizes an energy function. It is usually made 

of two terms, one referred to as the matching criterion and a regulator which helps to control the 

extent and type of transformation applied. 

 

At its simplest, image registration involves estimating a mapping between a pair of images 

(reference and source images). The reference image is assumed to be spatially ‘stationary’ or 

‘correct’ and used as a reference image to which the source image is mapped.  

 

The mapping between both images can be considered as a function of a set of estimated 

transformation parameters of the image coordinate used to spatially align both images [132].  

 

2.4.1. Image Transformation Models 
The transformation model defines how the source image can be deformed to match the reference 

image; it characterizes the type and number of possible deformations [133]. A transformation model 

uses the coordinates of corresponding control points in two images to estimate the geometric 

relation between the images, which is then used to transform the geometry of source image to that 

of the other to spatially aligned the images [134].  

 

The most used transformation model is the rigid, affine and deformable transformation. Rigid and 

affine transformations are global transformation model, i.e. applied to the whole image. They are 

particularly useful in reconstruction of serial histological slices because they largely satisfy the rigid 
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body constraint. On the other hand, deformable transformation model corrects the local deformation 

of the source image. 

(a) Rigid Transformation 
 

Rigid transformation in two dimensions is defined by two parameters; translation and rotation. A 

translation moves every point of an image or a geometric space by the same magnitude in a given 

direction. If a point 𝒙 is to be translated by 𝒒 units, then the transformation is simply: 

 

 𝑦 = 𝑥 + 𝑞	 (6) 
  

Rotation is defined a motion of a certain space that preserves at least one point. It can be described 

as the motion of a rigid body around a fixed point. It differs from translation which is a motion that 

does not requires a fixed point. 

 

Consider an image rotated at point coordinate (𝑥, 𝑦), by an arbitrary angle 𝜃, translated on the 𝑥 −

𝑎𝑥𝑖𝑠 by a magnidute unit of 𝑞 and by a magnitude unit of 𝑘 on the 𝑦 − 𝑎𝑥𝑖𝑠. The rigid 

transformation of the image is expressed as:  

 

 			𝑋 = x cos 𝜃 − 	𝑦 sin 𝜃 + 𝑞 (7) 

𝑌 = x sin 𝜃 + 	𝑦 cos 𝜃 + 𝑘 

 

(b) Affine Transformation 
 

Affine transformation is an extension of rigid transformation and are typically used in instances of 

rigid body movement where the image scaling factors are unknown or suspected to be incorrect. 

 

In affine image registration global scaling (i.e. shrinkage and expansion) and global skewing are 

also allowed, but parallel lines remain parallel in the transformed image. Affine registration of 

histology images is therefore suitable for correction of shrinkage and expansion of the tissue 

sections. The matrix equation for affine transformation is similar to the rigid transformation with 

the addition of scale (𝑆) and skew (𝐾) factors to the function. 

 𝑆< cos 𝜃 −𝑘Z sin 𝜃 𝑡<
𝑘< sin 𝜃 𝑠Z cos 𝜃 𝑡Z .

𝑥
𝑦 = 	

𝑥𝑠< cos 𝜃 − 𝑦𝑘Z sin 𝜃 + 𝑡<
𝑥𝑘< sin 𝜃 + 𝑦𝑠Z cos 𝜃 + 𝑡Z  

 

(8) 
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(c) Deformable Transformation 
 

Deformable or non-rigid registration corrects the local deformation of the source image. 

Deformable registration finds a displacement field or a deformation map for the pixels of the source 

image and can vastly change the shape of the objects in the source image.  

 

Local deformation of tissue sections can be corrected in the histology images by using deformable 

registration techniques. There are different approaches to model the local deformation of tissue. 

 

 
Figure 23 Image transformation models. (a) Source image. (b) Rigid. (c) Affine (d) Deformable 

Several methods have been proposed for image registration of histological images and have been 

classified using different taxonomy based on certain criteria [135, 136]. Here we introduce some 

image registration methods that are used for histological images reconstruction classified based on 

their mechanism of establishing correspondence between images and volumes and the nature of 

their transformation. 

 

Here, we classify the methods for image registration into three categories; the rigid and affine 

transformation based methods which is used for global registration of histological slices, the feature 

based methods which uses salient features in histological slices for registration and local motion 

estimation methods which considers the pixel level displacement between histological slices. 

 

2.4.2. Rigid and affine transformation based methods 
Rigid and affine transformation based methods estimate the translation, rotational, scaling and skew 

parameters to align the source image. They are used for global registration, i.e. applied to the whole 

image. They are particularly useful in reconstruction of serial histological slices because they 

largely satisfy the rigid body constraint. These methods assume that an image is a rigid body that  

can be subject to motion within its geometric space. 
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(a) Phase Correlation 
 

The phase correlation method [137] is a frequency domain technique used to estimate the delay or 

shift between two copies of the same signal. This method has been easily extended to 2D and 3D 

images, and has been successfully applied in several image registration problems [138, 139]. 

 

Phase correlation provides straight-forward estimation of rigid translational motion between two 

images, which is based on the Fourier shift property [140]. The Fourier shift property states that a 

shift in the spatial domain of two images results in a linear phase difference in the frequency 

domain of the Fourier Transforms (FT). 

 

Given two 2D functions 𝑔(𝑥, 𝑦), ℎ(𝑥, 𝑦) representing two images related by a simple translational 

shift Δ𝑥 in horizontal and ∆𝑦 in vertical directions, and the corresponding Fourier Transforms are 

denoted 𝐺(𝑢, 𝑣) and 𝐻(𝑢, 𝑣). Thus, 

 𝐻 𝑢, 𝑣 = 𝐺(𝑢, 𝑣)𝑒3e(∆<f/∆Zg) (9) 

 

This means that the images have the same Fourier magnitude, while the phase difference is directly 

related to their spatial displacement. 

 

The phase change 𝑄	(𝑢, 𝑣), is defined as the normalized cross power spectrum between 𝐺 and 𝐻, 

which is a matrix: 

 
𝑄 𝑢, 𝑣 = 	

𝐺 𝑢, 𝑣 𝐻(𝑢, 𝑣)∗

𝐺 𝑢, 𝑣 𝐻(𝑢, 𝑣)∗
= 		 𝑒3e(∆<f/∆Zg) 

(10) 

 

 

where ∗	denotes complex conjugate and 𝑄 𝑢, 𝑣  has the phase corresponding to the phase 

difference of the images. 

Thus, the translation shifts (∆𝑥, ∆𝑦) can be estimated in the spatial domain by taking the inverse 

Fourier transform of the phase difference. The inverse Fourier Transform of the phase difference is 

a delta function centered at the displacement, which in this case, is the point of registration (𝑥, 𝑦). 

The phase correlation 𝐶𝑜𝑟𝑟 𝑥, 𝑦  is given as: 

 𝐶𝑜𝑟𝑟 𝑥, 𝑦 = 	𝛿 𝑥 − ∆𝑥, 𝑦 − ∆𝑦  (11) 
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While phase correlation registration is mostly used to estimate translational shifts between images, 

it can, under certain limited conditions, also be used to estimate in-plane rotations and scales. If the 

frequency domain is presented in polar coordinates, then the rotation will be a shift on the axis 

corresponding to the angle. Therefore, a rotation angle can be derived by phase correlation based 

shift estimation in polar coordinates using the log-polar phase correlation method [141].  

 

 
Figure 24 Phase correlation registration example showing the usage of phase correlation to determine relative translative movement 

between two images corrupted by independent Gaussian noise. The image was translated by (30,33) pixels. Accordingly, one can 

clearly see a peak in the phase-correlation representation at approximately (30,33). [142]. 

(b) Log-polar phase correlation 
 

The log-polar transform is used for histological image registration due to its rotation invariant and 

scale invariant properties. The log-polar image geometry is used because of the fact that scaling and 

rotation in Cartesian domain corresponds to pure translation in log-polar domain. It is basically an 

extension of the phase correlation algorithm in polar coordinates. 

 

The polar coordinates is defined as	(𝜌, 𝜃) correspond to radial distance from the center and angle 

from the center respectively. Taking logarithm of radial distance 𝜌, we get log-polar coordinates. 

The log-polar transformation is a conformal mapping from the points on the Cartesian plane (𝑥, 𝑦) 

to points in the log-polar plane (𝑙𝑜𝑔(𝜌), 𝜃) [143].  

 

Considering a polar coordinate system, where 𝜌 is the radial distance from the center of the image 

say (𝑥p, 𝑦q) and 𝜃 denotes the angle. Any point (𝑥, 𝑦) can be represented in polar coordinates and it 

is given by: 
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𝜌, 𝜃 = 	 (𝑥 −	𝑥q)2 +	(𝑦 −	𝑦q)2 ,			tan3?

(𝑦 −	𝑦q)
(𝑥 −	𝑥q)

 
(12) 

 

 
Figure 25 Approximate mapping from Cartesian space to (ρ, θ) space. The black box shows that the pixels are at a constant angle 

with respect to the center. The boxes with cross marks are at a constant radial distance from the center. [144] 

In log-polar coordinates, logarithm of the radial axis is taken by: 

 𝜌, 𝜃 = (𝑙𝑜𝑔(𝜌), 𝜃) (13) 

 

Now if the image is scaled by a factor of say 𝛼, then the coordinates (𝑥, 𝑦) in Cartesian domain will 

become (𝛼𝑥, 𝛼𝑦). Introduction of logarithms will simplify the procedure, the coordinates in log 

domain will be reflected as: 

 (𝑙𝑜𝑔(𝛼𝑥), 𝑙𝑜𝑔 𝛼𝑦 ) 	= ( 𝑙𝑜𝑔𝛼	 + 	𝑙𝑜𝑔𝑥 , 𝑙𝑜𝑔𝛼	 + 	𝑙𝑜𝑔𝑦 ) (14) 

 

The equation 9 shows that scaling is represented as translation in log polar domain. The effects of 

distortions are expressed by log-polar image translation on 𝜌 axis and 𝜃 axis, respectively in the 

log-polar coordinates. However, when the original image is translated by (△ 𝑥,△ 𝑦), the 

corresponding log-polar coordinates is represented by: 

 𝜌′ = 	𝑙𝑜𝑔 (𝑒v cos 𝜃 − 	Δ𝑥)2 +	(𝑒v sin 𝜃 − 	Δ𝑦)2 (15) 

 
𝜃 ′ =	 tan3?

(𝑒v sin 𝜃 − 	Δ𝑦)
(𝑒v cos 𝜃 − 	Δ𝑥) 

(16) 

 

According to the above equations, the slight translation produces a modification of the log-polar 

image. Therefore, the log-polar image is not suitable for faithfully extracting translation parameters 

of images [145, 146, 147].  
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To overcome this limitation, the log-polar transform phase correlation algorithm first applies 

Fourier transform over the images and then applies the Log-Polar Transform (Figure 26) to the 

magnitude spectrum to recover scale and rotation by using phase correlation in log-polar space 

[143].  

 

This is due to the fact that the magnitude spectrums of the image and its translated counterpart are 

same; only their phase spectrums are different. 

 
Figure 26 Log-polar phase correlation registration example showing translation and rotation recovery of image (b) by log-polar 

transform [148].(a) Reference image (b) Rotated image (c) log-polar transform of (a) (d) log-polar transform of (b). (e) log-polar 

registration of (a) (f) log-polar registration of (b). 
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2.4.3. Feature based methods 
The feature based methods relies on the salient features of the images in order to achieve sub-pixel 

accuracy in image registration as opposed to the global alignment provided by rigid registration 

methods. The options ought to be distinct, unfold everywhere the image and with efficiency 

detectable in each picture. 

 

Feature-based approaches attempt to find the correspondence and transformation using distinct 

anatomical features that are extracted from images. These features include points, edges, corners 

(regions in the image with large variation in intensity in all the directions) and contours of 

anatomical structures [149].  Feature-based methods are typically applied when the local structure 

information is more significant than the information carried out by the image intensity. 

 

Feature based methods typically follow four fundamental steps(Figure 27), namely; feature 

detection and description, feature matching, transformation model estimation, image transformation 

and resampling [149]. 

 

 
Figure 27 Fundamental steps of feature based image registration. 
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Feature detection and description: Any salient and distinctive objects or features like closed-

boundary regions, edges, contours, line intersections, corners, etc. are detected using the various 

feature detectors. For further processing, these features can be represented by their point 

representatives center of gravity, line endings, distinctive points which are called control points 

(CPs) or with a vector called feature descriptor which describes the different parameters of the 

detected feature [150]. 

 

Feature Matching: In this step, the correspondence between the features detected in the sensed 

image and those detected in the reference image is established. Various feature descriptors and 

similarity measures are used for matching purpose. 

 

Transformation model estimation: The type and parameters of the mapping functions, aligning 

the sensed image with the reference image, are estimated. The parameters of the mapping functions 

are computed using the established feature correspondence in the previous step. Depending on the 

intended transformation, affine or deformable transformation can be applied to map the source and 

reference image.  

 

Image transformation and interpolation: The sensed image is transformed by means of the 

mapping functions. Image values in non-mapped coordinates are computed by the appropriate 

interpolation technique. The most generally used interpolation techniques are bilinear interpolation 

and nearest neighbor interpolation [4] 

 

The accuracy of entire feature-based image registration methods are typically evaluated based on 

the parameters like localization error, matching error, alignment error and computational time 

required [150]. 

2.4.3.1. Feature detection methods 

 

Below are some of the feature detection methods used for feature based histological image 

registration. 

(a) Harris corner detection 
 

Corners are regions in the image with large variation in intensity in all the directions. The Harris 

corner detector method was proposed to find whether a  point shows significant change in all 

direction or not [151]. If yes, then point is marked as a corner point.  



 

77 

 

Harris corner detector 𝐸 𝑥, 𝑦 , is based on the auto correlation function of the intensities. It 

basically finds the difference in intensity for a displacement of (∆𝑥, ∆𝑦) in all directions. This is 

expressed as below: 

 
𝐸 𝑥, 𝑦 = 	 𝑤 𝑥, 𝑦

yez{|y	}fzq~e|z

. 𝐼 𝑥 + ∆𝑥, 𝑦 + ∆𝑦
��e}~�{	ez~�z�e~Z

− 𝐼(𝑥, 𝑦)
ez~�z�e~Z

2

<,Z

 
(17) 

 

 

The window function is either a rectangular window or Gaussian window which assigns weights to 

pixels underneath.  

 

A Harris response function 𝑅 (see appendix) is then computed to determine if the point (𝑥, 𝑦) is a 

corner or not.  

The Harris corner detector is invariant to translation, rotation and illumination change [152]. This 

detector is most repetitive and most informative. The disadvantage of this detector is it is not 

invariant to large scale change [153]. 

 

(b) Scale invariant feature transform (SIFT) 
 

Scale invariance is an important factor in ensuring the reliability of extracted features in a series of 

2D histological slices. It is important that the features extracted can be detectable even under 

changes in image scale, noise and illumination. The deformation of tissue slices after histological 

sectioning contributes to the change of scale of salient features in successive tissue slices.  

 

The SIFT method is robust and invariant to scaling, orientation, illumination changes, and partially 

invariant to affine distortion. This is achieved by decomposing images into multiple resolutions and 

performing the registration from low resolutions to high resolutions, hierarchal registration speed, 

avoid local minima, and therefore improve registration performance [154]. 
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Figure 28 SIFT keypoint generation showing the four parameters of a SIFT keypoint: the key-point center coordinates x and y, its 

scale (the radius of the region), and its orientation (an angle expressed in radians) [155]. 

A SIFT key-point as shown in Figure 28 is an image region with an orientation. It is described by a 

geometric frame of four parameters: the key-point center coordinates x and y, its scale (the radius of 

the region), and its orientation (an angle expressed in radians) [155]. 

 

(c) Speeded up robust features (SURF) 
 

SURF as the name implies, is a speeded-up version of SIFT. In SIFT, Lowe [156] approximated 

Laplacian of Gaussian (LoG) with Difference of Gaussian for finding scale-space. SURF goes a 

little further and approximates Laplacian of Gaussian with Box Filter [157].  

 

SURF is based on multi-scale space theory and the feature detector is based on Hessian matrix and 

also rely on the determinant of Hessian matrix for both scale-space detection and key-point 

localization.  

 

Since Hessian matrix has good performance and accuracy. In image 𝐼(𝑥, 𝑦) is the given point, the 

Hessian matrix 𝐻(𝑋, 𝜎) in 𝑋 at scale 𝜎, it can be define as: 

 
𝐻 𝑋, 𝜎 = 	

𝐿<<(𝑋, 𝜎) 𝐿<Z(𝑋, 𝜎)
𝐿Z<(𝑋, 𝜎) 𝐿ZZ(𝑋, 𝜎)

 
(18) 

 

Where 𝐿<<(𝑋, 𝜎) is the convolution result of the second order derivative of Gaussian filter with the 

image I in point 𝑋, and similarly for 𝐿<Z(𝑋, 𝜎) and 𝐿ZZ(𝑋, 𝜎). 

 

SURF creates a ‘stack’ without 2:1 down sampling for higher levels in the pyramid resulting in 

images of the same resolution. Due to the use of integral images, SURF filters the stack using a box 



 

79 

 

filter approximation of second–order Gaussian partial derivatives as shown in figure (2). Since 

integral images allow the computation of rectangular box filters in near constant time [158]. 

2.4.3.2. Feature matching 

The problem of feature matching can be formulated as follows, suppose that 𝑝 is a point detected by 

a feature detector in an image associated with a descriptor 𝜙 𝑝  of 𝐾 dimension. 

 𝜙 𝑝 = 𝜙�(𝑃) 𝑘 = 1,2, … , 𝐾} (19) 

 

where for all 𝐾, the feature vector provided by the k-th descriptor is 

 𝜙� 𝑝 = (𝑓?�
�, 𝑓2�

�, … , 𝑓z��
� ) (20) 

 

The aim is to find the best correspondence 𝑞 in another image from the set of 𝑁 interest points 𝑄	 =

	{𝑞?, 𝑞2, . . . , 𝑞�}	by comparing the feature vector 𝜙�(𝑝) with those of the points in the set 𝑄. To this 

end, a distance measure between the two interest points descriptors 𝜙�(𝑝) and 𝜙�(𝑞) can be 

defined as 

 𝑑� 𝑝, 𝑞 = 	 𝜙� 𝑝 −	𝜙� 𝑞  (21) 

 

A match between the pair of interest points (𝑝, 𝑞) is accepted only if 𝑝 is the best match for 𝑞 in 

relation to all the other points in the first image and 𝑞 is the best match for 𝑝 in relation to all the 

other points in the second image.  

 

In this context, it is very important to devise an efficient algorithm to perform this matching process 

as quickly as possible. The nearest-neighbor matching in the feature space of the image descriptors 

in Euclidean norm can be used for matching vector based features [159]. 

 

2.4.4. Non-rigid registration methods 
 

A series of unregistered sequential histological slices can also be considered as a moving object in a 

visual scene caused by the relative motion between an observer and a scene. Image registration can 

thus be considered as an object motion estimate problem across frames in a visual scene. 

 

The purpose of local motion estimation methods is to compute a motion field representing the 

displacement of points in consecutive images. This enhances sub-pixel accuracy in registration as it 

tracks the displacement of each point across the histological image stack.  
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This problem can be addressed using a variational formulation by modeling the problem as 

minimization of an energy function. Generally, the function is composed by a data term and a 

regularization term.  

 

The data term is usually based on the conservation of some property during motion. A common data 

term is based on the brightness constancy assumption, which assumes that the object illumination 

does not change along its motion trajectory.  

 

The regularization term allows to define the structure of the motion field and ensures that the optical 

flow computation is well posed and this can be seen as ‘a priori’ term [160]. 

 

Optical flow method 

 

The notion of optical flow literally refers to the displacements of intensity patterns. This definition 

originates from a physiological description of the visual perception of the world through image 

formation on the retina.  

 

In that sense, while optical flow is necessarily caused by relative motion between the observer and 

the objects of the observed scene, it only represents motion of intensities in the image plane, and not 

necessarily accounts for the actual 3D motion in the physical scene [161].  

 

Computation of optical flow means computation of two vectors 𝑈 and 𝑉. Vector 𝑈 represents 

horizontal velocity of motion and 𝑉 represents vertical velocity of motion. Usually 𝑈 and 𝑉 are 

computed using the concepts of energy functional. And the main aim is to minimize this energy 

functional. Energy functional consists of two terms: data term and smoothness term [162]. 

 

To determine optical flow, there is need to track some properties of images. Two key problems in 

optical flow estimation are: 1) Determine what image property to track 2) Determine how to track it 

[162]. Some features of the images are assumed to stay constant among multiple frames during 

optical flow estimation.  
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The most common assumption used in optical flow estimation is the brightness constancy 

assumption. It states that the gray value of corresponding pixels in the two consecutive frames 

should be the same. 

 

Assume 𝐼(𝑥, 𝑦, 𝑡) is the center pixel in a n×n neighbourhood and moves by ∆𝑥, ∆𝑦 in time ∆𝑡 to 

𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡 + ∆𝑡). Since 𝐼(𝑥, 𝑦, 𝑡) and 𝐼(𝑥	 + ∆𝑥, 𝑦	 +	∆𝑦, 𝑡	 +	∆𝑡) are the images of the 

same point (and therefore the same) we have:  

 

 𝐼(𝑥, 𝑦, 𝑡) 	= 	𝐼(𝑥	 +	∆𝑥, 𝑦	 +	∆𝑦, 𝑡	 +	∆𝑡) (22) 

 

 

The choice of registration approach depends on the domain and scale of deformity in the set of 

histological images. The table below illustrates some deformation and the appropriate registration 

technique. 

 

 Rigid/Affine Feature Based Non-rigid 

Global 
rotation/translation 

	

✔ 
 

 
— 

 
— 

Sub-tissue 
rotation/translation 

 
— 

	

✔ 
 

 
— 

Global 
shrinkage/expansion 

	

✔ 
 

	

✔ 
 

	

✔ 
 

Sub-tissue 
shrinkage/expansion 

 
— 

	

✔ 
 

	

✔ 
 

 
Tears/missing parts 

 
— 

 
— 

	

✔ 
 

Table 5 Comparison of different registration techniques for histological images and their respective suitability for different kind of 

tissue aberrations. 
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2.5. 3D histology reconstruction techniques 
3D histology reconstruction methods aim to restore the loss of continuity due to volume slicing of 

tissues. They are based on the assumption that the shape of a biological specimen changes smoothly 

across sections, but suffers from the various artefacts that affect every section independently during 

preparation.  

 

While using 2D histological serial sections alone enables the reconstruction and representations of 

structures and their environment in 3D, which helps with subsequent segmentation and 

classification tasks [163], however, the original shape is unattainable without prior or external 

knowledge.  

 

The basic foundation of all reconstruction methods is image registration. Image registration consists 

of optimizing the spatial alignment of variously oriented 2D slices relative to each other, while 

being robust to artefacts following histological preparation.  

 

The most straightforward path to achieve 3D reconstruction of a series of 2D histological images is 

to register every slice with its direct neighbor and repeat the process with the following pairs. This 

is done by choosing a reference point to start from.  

 

This reference point is an arbitrary slice usually the first slice or the middle slice in the series. In 

this approach, reconstruction is achieved by stacking of the transformations between all pairs of 

adjacent sections.  

 

However, without any information about the original shape, volume reconstruction remains an ill-

posed problem i.e. there exists a solution, it is not unique and there is no mechanism of validation 

because the true shape is unknown; for example, changing the initial arrangement of slices relative 

to one another will lead to a different reconstruction. 

 

Thus, there is a need for a ground truth reference to regulate and validate the process of registration. 

The combination of non-invasive imaging with histology to relate macroscopic information to the 

underlying microscopic properties of tissues through the establishment of spatial correspondences 

in a multimodal framework has been studied for 3D reconstruction of the true shape of tissues and 

tissue substructures. 
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The multimodal framework for 3D reconstruction of serial histological sections can be grouped into 

three different approaches: 

This include slice based approach which considers each slice as an individual object, 

volume based approach which considers the set of serial sections as a whole volume and 

a hybrid approach [113]. 

 
Figure 29 Strategies to register histology with volumetric medical imaging (ex or in vivo alone). The three main approaches (slice-

based, volume-based and iterative) are presented. (*) In cases where ex vivo imaging is used as an intermediate modality, 

correspondences between ex vivo and histology are achieved through steps 2 and 3, and the mapping between histology and in vivo 

is completed via registration between ex and in vivo scans (extra step) [113]. 

2.5.1. Slice-to-slice registration (2D-2D) 
In this approach, every histological slice is considered as an individual object. This approach is 

generally preferred in cases where the histological dataset is too sparse or has too few slices. It 

consists of the use of 2D histological serial section dataset and a 2D reference dataset obtained from 

other modalities such as MRI or standard anatomical atlas. 
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The methods used in this approach assume that the cutting planes of histological slices and the 

acquisition planes of the reference set are parallel and that there always exists a histological section 

that has a counterpart in the set of MR slices. The problem therefore simplifies to a 2D-2D 

registration between every histological slice and its corresponding slice in the reference dataset 

[113]. 

2.5.2. Slice-to-volume registration (2D-3D) 
This approach extends the slice-to-slice approach by acknowledging that there is no certainty that 

the cutting plane of histological slices is parallel to the acquisition plane of the reference dataset. 

Likewise, there is no guarantee that the histological slices are parallel to each other. This implies 

that structures belonging to a tissue slice may extend over several slices in the reference dataset.  

 

This in turn suggests that the corresponding 3D reference slice can only be discovered through a 

slice-to-volume (2D-3D) registration. In 2D-3D volume registration, 3D point cloud is generated by 

detecting key features, matching points or intensities between a 2D histological slice and slices of a 

3D reference volume. This is done by mapping the 2D histological slice to the 3D plane of the 

reference dataset [164, 136].  

2.5.3. Volume-to-volume registration (3D-3D) 
The main drawback of slice-based approaches is their sensitivity to initialisation, the choice of the 

initial reference point affects the cost function and thus the convergence of the registration 

procedure. Other challenges involve the cost function selection and the optimisation strategy [165]. 

As a result, the performance of slice-to-volume registration shows greater dependence on the input 

images than 3D-3D registration [165]. Considering histological sections all together i.e., the 

histological dataset as a whole, allows overcoming such an issue.  

Volume-based approaches typically follow a sequential procedure. Firstly, a volume is 

reconstructed from the set of histological slices by serial pairwise linear registrations [166, 167] or 

simple stacking by alignment of tissue slices [168]. This is followed by a coarse, linear alignment of 

the geometries of both reference image volume and histological volumes, which may then be 

refined by non-linear registration. 

2.5.4. Hybrid approach 
The hybrid approach is similar to volume based approach except that both the serial arrangement of 

the histology stack (reconstructed volume) and its alignment relative to the reference image volume 

are jointly refined. 
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A 3D-3D registration, which updates the global alignment between the current estimate of the 

histological volume and the reference image volume is implemented alongside 2D-2D registrations, 

which affect the serial arrangement of slices relative to each other by aligning them with their 

current corresponding slice in the reference image volume used. This in turn provides a new 

histological volume which is used at the next iteration. This process is repeated until convergence.  

 

2.6. Assessment techniques for 3D histology 

reconstruction 
The validation of the accuracy and precision of 3D histology reconstruction is an ill-posed problem 

or impossible without the use of a reference model for comparison. Validation techniques seek to 

identify neuroanatomical structures that are recognizable after registration in the reconstructed 3D 

volume [113].  

Below are some of the methods that have been used for the validation of 3D reconstruction of 

histological slices.  

 

2.6.1. Visual Assessment. 
Visual assessment is an intuitive way of validating the reconstruction accuracy but must be carried 

out by experts and does not provide with any quantitative measure. Visual assessment is very 

practical when comparing one method of reconstruction against others [169, 170]. This can 

generally be done without the help of a reference 3D volume.  

 

In the case of histology reconstruction without the help of 3D reference volume, the criteria used to 

tell whether the reconstruction is successful include visually improved representations of small 

structures (subcortical nuclei, cortical areas) and smooth inner and outer borders [171]. 

 

When a 3D reference volume is available, visual assessment can be performed by cross-section 

comparison [166, 172] of the two volumes displayed in the same geometry or by superposition of 

adjacent sections [117, 120] in order to check for disparities. 

 



 

86 

 

2.6.2. Landmark-based validation 
This is the most widespread method [113] used for validation of 3D histological reconstruction. It 

consists of the automatic or manual extraction of corresponding anatomical landmarks or key 

features in the reconstructed volume and the reference volume [115, 165]. This is followed by the 

computation of the Euclidean norm between the corresponding landmark points extracted in the two 

images. This is also referred to as target registration error (TRE) [168, 173]. 

 

2.6.3. Measures of Image co-registration.  
Measures of image co-registration rely on regions of interest(ROIs) manually delineated by an 

expert in the registered histological 2D sections and the reference image. The Dice score or the 

Jaccard index are two measures that can be computed to quantify the amount of overlap between the 

two regions [117, 174, 175]. The Dice score was shown to be a reliable indicator of registration 

accuracy only for small and localized ROIs  in several locations in the image space [176]. 

 

2.6.4. Texture-based methods.  
Grey-level co-occurrence matrices(GLCM) [177] have been used to assess the quality of the 

histology reconstruction [178]. Such matrices were computed by calculating how often the pair 

made of a pixel of interest with a certain intensity and its immediate neighbour in the direction 

orthogonal to the cutting plane occurs in order to quantify the smoothness of the reconstruction 

[113]. 
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CHAPTER 3: From IR spectra to registrable 
metadata images for 3D pathology  
In this chapter, we propose a standard processing sequence or methodology for 3D chemical 

imaging of tissues by IR microscopy. The methodology combines the methods and approaches that 

have been discussed in Chapter 1 and 2 for IR spectra data treatment and 3D reconstruction of 

tissue samples. 

It has been demonstrated that IR spectrum matrix can be reconstructed in 3D by stacking of serial 

tissue sections [26]. Our proposed methodology is aimed at standardizing the protocols that have 

been used experimentally for chemical imaging by IR microscopy as well as define a standard 

routine that can be used clinically by pathologists for 3D chemical imaging of brain tumours. 

 

Figure 30From IR spectra to registrable metadata images for 3D pathology. (a) 3D reconstructed volume of the mouse brain. 

(b)Visible image of histological slices from mouse brain. (c) 2D IR mapping of spectral derived information. (d) 1D spectrum 

extracted from 2D IR map in (c).  

 

3.1. Introduction 
3D histology is a powerful approach for microscopic imaging biological specimens and is the next 

frontier for modern histopathology. They provide a 3D visualization of structures of the internal 

topography of a specimen which are invisible at macroscopic scale and are of diagnostic value. 

Although, clinical imaging techniques such as MRI and CT offer 3D visualization of organs, which 

can also depict anatomical features that are of diagnostic value, however, in smaller biosystems, 

such as cells, tissues, or small-animal organs, these techniques are limited by their sensitivity (MRI 

cannot go below 100-µm in small animals). Thus, there is a lack of reliable clinical standard 3D 

imaging solutions at the microscopic scale for use in biological analysis [111].  
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Conventional histological methods such as fluorescence-based confocal imaging have been 

demonstrated to perform 3D analyses on small biosamples, mostly cells and small tissue blocks, but 

their penetration depth is limited and the use of labels restricts the analytical value of the 3D images 

[179].  

This is a major frontier in biological research, where supervised techniques depending on labels or 

contrast agents can no longer satisfy the discovery appetite for biospecimens. Better-quality images 

of biosamples, at higher resolution, with higher contrast, and providing larger quantities of 

information, makes the addition of global chemical information more important. This is particularly 

true when several (or a multitude of) chemical compounds of tissues need to be revealed by 

histology [28]. 

While spectro-microscopies cannot rival fluorescence-based imaging techniques in terms of 

resolution and penetration depth. However, in terms of sample area scanned per unit of time (in 

minutes), IR and MS match the performance of multiphoton microscopy at appropriate resolutions.  

Thus, with appropriate 3D reconstruction methods, a 3D view can be achieved; the advantage of 

spectro-microscopies stems from their ability to provide many different chemical data compared 

with the two or three labels possible with multiphoton microscopy.  

Finally, the main advantages of spectro-microscopies are that they can provide extensive, if not 

global, quantitative chemical information about the sample without a priori supervision (compared 

with label-related histology).  

Mass spectrometry (MS) imaging was the first spectroscopic technique that was proved to provide a 

3D reconstruction of the chemical information of a tissue block [180]. In principle, mass spectra can 

provide thousands of signals recorded from each voxel of a 3D MS image.  

A wide variety of molecules can be imaged in this way, including proteins, peptides, lipids, and 

endogenous and exogenous metabolites, although they cannot be imaged all together. Thus, no 

global chemical information can be obtained from the sample (including proteins, lipids and 

sugars). 

IR microscopy on the other hand provides global chemical information of tissue samples. This 

implies that all chemical bonds present in the sample will raise absorption bands, notably for 

proteins and lipids, which exhibit intense absorptions, but also with major contribution from 

carbohydrates and nucleic acids to the final spectral information.  
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Also, because it is quantitative, it also allows mapping potentially a wide range of chemical 

information in a non-supervised pattern, which is undoubtedly a major advantage for comparison 

between healthy and pathological tissue specimens without any a priori knowledge about the 

sample. 

However, IR microscopy has been limited due to its relatively high spatial resolution compared to a 

technique like Raman spectroscopy which offers spatial resolution of <1-µm, relatively lower 

molecular details compared to a highly sensitive technique like MSI, the bottlenecks of using 

cooled IR detectors, long acquisition time for large tissue and the interpretation of spectra data 

IR microscopy is now ready for development of 3D histology due to the development of QCL 

microscopes; which means data acquisition can be done over a long period of time for large samples 

[27]. Thus, with appropriate data treatment methods and 3D reconstruction techniques, 3D 

quantitative chemical imaging of tissue samples can be achieved by IR microscopy. 

However, in order to introduce IR microscopy as a diagnostic tool for pathology, there is a need to 

develop standard routines for chemical imaging by IR microscopy. Several experimental methods 

[181, 65, 54, 53, 55, 24] have been proposed for IR data treatment and to the best of my knowledge 

no method have been processed for 3D reconstruction of IR chemical images. 

In this chapter, we introduce a processing sequence for 3D-IR microscopy. I propose a routine 

based on standard experimental techniques for IR data treatments and techniques that have been 

used for 3D reconstruction of histological images. I evaluate and extend the different methods for a 

routine application to 3D chemical imaging of tissues by IR microscopy.  

Our proposed processing sequence comprises of five major sequential phases which spans from 

sample preparation to 3D reconstruction of tissue slices. These phases include; 1- sample 

preparation, 2- data acquisition, 3- IR data treatment, 4- metadata extraction and 5- 3D 

reconstruction. 

 

Figure 31 3D chemical imaging by IR microscopy processing sequence. 
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The sample preparation phase consists of the histology protocols used for preparing tissue samples 

for IR imaging. 

The data acquisition phase consists of setup and protocols necessary for 3D chemical imaging by IR 

microscopy. The major feature of this phase is the setup of a high-performance computing 

environment for analysis and a data storage server. 

The data treatment step consists of routine computational methods that are implemented for 

quantitative analysis of the IR spectrum matrix. I define the basic mathematical operations required 

in order to aid interpretation of the 3D spectrum matrix of brain tissue samples. This is followed by 

the metadata production phase. This phase is the interpretation stage where specific chemical 

information is extracted to be mapped into derived 2D IR images from the IR spectrum matrix.  

The 3D reconstruction phase is the final step of our proposed methodology. In this phase we 

propose a new 3D hierarchical image registration method for 3D reconstruction of derived IR 

images. In this phase we use of image registration techniques to partition and realign the derived 2D 

IR images for 3D reconstruction of tissue slices. 

3.2. Sample preparation 
In order to obtain the 3D spectrum matrix of brain tissues, there are basic histological steps that 

precede the acquisition of tissue samples using an IR microscope. These sample preparation methods 

are conventional methods used in histology with the exception of preparing the sample for dying or 

immunohistochemistry.  

For IR microscopy sample preparation, the following steps are followed: 

1.  Sample extraction from micro environment. Could be a tissue sample from biopsy in clinical 

application or an organ extracted from an animal. 

2.  Embed the sample in optimal cutting temperature (OCT) compound. 

3. For analysis of healthy tissues, the instant freezing of the sample using Isopentane (2-

methylbutane) cooled at -80℃ (liquid N2) to guarantee that the degradation in cell and tissue 

contents as a result of being taken out of the microenvironment is limited. 

4. Otherwise, the sample is cooled at -80℃ (liquid N2) without Isopentane for pathological 

tissues where cracks in tissue structures might not be of great importance in tissue analysis. 

5. Continuous cryo-microtomy where the tissue sample is sectioned within the range of 4-20µm 

thickness. 

6. Fix sectioned tissues on a 2mm thick CaF2 window for acquisition. 
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The 4-20µm section thickness range is specified because 20-µm represents the thickness limit for 

imaging at cellular resolution. In addition, for example at 20-µm a mouse brain leads to 300-400 

sections while at 4-µm, it is 5 times more, which consequently makes obtaining good shaped tissues 

difficult as wells elongating the time for total image acquisitions.   

Also, 4-µm also raises the issue of  SNR and thus IR spectra data treatments will be compromised at 

this resolution. It represents the diffraction limit of IR radiation. 

 
Figure 32 IR microscopy sample preparation process. 

3.3. Data acquisition 
To perform data acquisition of a prepared sample, the sample is mounted on the sample stage of the 

IR microscope. Typically, IR microscopes comes with a proprietary software to simplify the data 

acquisition process. On the software, the area of interest in the sample is defined, the range of 

wavenumbers to probe is also defined. A repository to store the data is defined and the acquisition is 

launched. The duration of the acquisition depends on different factors such as the type of IR 

microscope, spectral resolution, pixel size and the size of the sample. 

 

I propose a setup for reliable and replicable IR data acquisition. This setup consists of the instrument, 

data repository and analytical node. In order to ensure proper data management. we propose the use 

of this high-performance computing setup and data storage for IR samples. This is important as the 

separation of concerns allows a fault tolerant system that can be easily traced for errors. 
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Figure 33 Data acquisition setup for 3D IR microscopy 

In the figure above, the 3-tier architecture proposed enables the separation of the point of 1- data 

acquisition, 2- storage and processing node in order to achieve a secure and fault tolerant system for 

3- IR data processing. It is a major requirement to separate the data storage node and the processing 

node from the point of acquisition because the processing of IR data is computationally intensive and 

the data size is huge depending on the size of the tissue. 

 

Similarly, performing computation on this huge data requires huge computational capacity. For 

example, given the problem of spectra decomposition, a 32-cores CPU would require approximately 

½ day to compute IR-band decomposition of one tile (230,400 spectra) of the sample tissue. Hence, 

this big data also requires a high performance computing node for high-throughput computation. 

 

In Figure 33, the architecture also defines a secure pathway for data collection and information 

retrieval. There is no direct access to retrieve data from the storage server. This ensures that the IR 

data is secured and can only be modified through access to the data storage server. The computations 

and information retrieval is processed on the HPC node which provides a fast access to relevant 

information.   
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3.4. IR data treatment 
Raw IR spectra like other measurements derived from analytical instruments, typically consist of 

chemical information, baseline and random noises [182]. These random noises and different 

baselines contribute to varying intensities across tissue samples and make quantitative spectral 

information incomparable. 

IR data treatment methods are used to correct raw IR spectra for baseline distortions, irregular 

intensities in order to make IR spectra ready for quantitative analysis. Data treatments can also 

enhance qualitative spectral information in terms of visualization due to the correction of irregular 

intensities arising from distorted baselines. 

In this section, we propose a routine data treatment process for correcting raw IR spectra. These 

includes an automated baseline correction method and a method to remove histological artefacts by 

analyzing spectra data. 

 

3.4.1. Automated Baseline Correction 
Raw IR spectra must be corrected for enhancing the quantitative aspect of spectral information and 

make them comparable through baseline correction. Typically, the corrections of baseline offset or 

distortions are performed to avoid further artifacts in spectral data treatments. Sub-routines must be 

applied to all spectra with the same thresholds, intensity levels... etc. to avoid quantitative change 

between spectra [26]. 

 

Several baseline corrections exist in the literature and have been applied for IR spectra baseline 

correction [97, 183]. However, these techniques are manual, thus not practical for use over large 

dataset with hundreds of tissue sections.   

Thus, we propose a simple automated baseline correction procedure defined by Bobroff et al [26] for 

large dataset of tissue sections. To automate the correction of baseline, we apply the following 

procedure:  

1. For FTIR systems, the correction of ambient absorption (CO2 and water vapor) by the removal 

of the 2400- 2300 cm-1 (ν(CO2)) band. 

2. Iterate through the spectrum to determine the lowest absorbance value 

3. Apply an offset of baseline inducing negative absorption values are corrected so that the whole 

spectrum curve is raised by the lowest absorbance value; 
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4. Alternatively, correct baseline by applying an offset with the lowest absorbance value set to 

zero. 

 

 
Figure 34 Baseline correction for enhancing quantitative and qualitative spectral information. (a) Example of spectrum taken from 

different regions of a pathological mouse brain tissue showing quantitatively incomparable baselines for each anatomical region. (b) 

Automated baseline correction showing corrected baseline by rasing the whole spectrum curve with  the lowest absorption value. (c) 

IR image before baseline correction. (d) IR image after baseline correction. 

 

 

3.4.2. Automated Spectra Cleaning 
Spectra cleaning is a process used in the removal of artefacts such as holes and glues that arise from 

histological sample preparation (Figure 35). While this can also be achieved on spectra derived 

images of tissue slices to enhance visualization by using image processing techniques such as 

thresholding and segmentation, cleaning at spectra data level offers two significant advantages.  
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It enhances the speed of computation on spectra data because of the removal of spectra that arises 

from artefacts. It also enhances comparative analysis between spectra due to the elimination of 

irregular spectra that arise from artefacts, thus eliminating baselines associated with these spectra. 

 

 
Figure 35 Untreated mouse kidney sample tissue spectra showing spectrum corresponding to surrounding glue and tissue. The 

spectra corresponding to glue shows irregular absorption pattern and baselines. 

The aim of an automated IR spectra cleaning algorithm is to define a function 𝑓(𝑠) which compares 

the IR spectra in a 3D spectrum matrix and returns a modified 3D spectrum matrix where irregular 

IR spectra are nulled.  

 
Figure 36 Spectra cleaning algorithm result showing the removal of surrounding glue from the spectrum matrix. 

This generally requires an iteration strategy, metric of comparison and a threshold to validate a 

spectrum. There are several methods that can be employed to achieve this depending on the 

complexity of artefacts on the tissue sample. 
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(i) Unsupervised Clustering 

The automated spectra masking function 𝑓(𝑠) could be defined as an unsupervised clustering task, 

where the set of 𝑠 spectra is grouped into 𝑘 clusters. 

𝑓 𝑠 = 	min
�

𝑥 − 𝜇e 2

<∈��

�

e�?

 

𝜇e represents a feature vector whose class is either an artefact, slide background, a tissue region or 

myelinated tissue structure. 

 
Figure 37 Spectra cleaning by segmentation. (a) A sample mouse brain tissue showing different components of the spectra matrix 

differentiated by colour. (b) Segmentation result creating 3 clusters, of slide background, tissue area and myelinated structures. 

(ii) Principal Component Analysis  

The automated spectra masking function 𝑓(𝑠) could also be defined as a task of retrieving orthogonal 

components of the 3D spectrum matrix. The data could be subjected to Principal Component Analysis 

(PCA) to obtain more detailed information about sources of variance in the 3D spectrum matrix. 

Typically, the first principal component is expected to contain only tissue related spectra (unless more 

than 50% of the IR image is occupied by glue, then the 1st PC will be related to it), thereby eliminating 

the artefacts. 
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Figure 38 Spectra cleaning by principal component analysis of a sample brain tissue. The 1st and 2nd  principal component contains 

tissue related spectra only, thereby elimenating the artefacts present in the tissue slice 

(iii) Peak Ratio (Supervised Cleaning)  

Supervised masking as the name implies this method is derived after an experiment on the spectrum 

of different types of artefacts. The ratio of the n(P-O-C) stretch peak (1088 cm-1) and Amide I peak 

(1652cm-1) can be used to remove regular artefacts that arise from glues surrounding the tissue.  

This is a fast alternative to unsupervised clustering and PCA as it does not require multiple iteration 

(unless the 1088 cm-1 peak is low due to weak absorption of glue or contribution from tissue 

molecular contents). 
Typically, the Amide I peak is absent in tissues, this is used as the threshold to filter out the spectra 

corresponding to artefacts.  

 

 
Figure 39 Spectra collected from glue samples. Showing the 1088 cm-1 peak and the absence of the Amide I peak. 
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The table below shows a simple performance comparison of the above listed techniques for automated 

spectra cleaning. 

 

Method Speed Accuracy Tissue Size 

Clustering (2 classes) Moderate High Medium 

PCA (2 principal 

components) 

Slow Very High Small 

Peak ratio Fast Normal Large 
Table 6 Performance comparison of spectra cleaning techniques using a mouse brain sample of 591,667,200 spectra..  

  

 

3.5. Metadata extraction from IR spectra  
The metadata extraction phase involves the manipulation of quantitative spectral information to 

extract specific biological markers from tissue sample. Metadata can be extracted directly from 

treated raw spectra or from advanced spectral data processing technique like band deconvolution or 

curve fitting [26, 24, 184, 185, 2]. 

 

The task of extracting all possible metadata from IR spectra is too large and out of the focus of this 

thesis. In this section, we focus on two major metadata for brain pathology application that can be 

extracted directly from treated raw IR data. These are the anatomical regions of the brain and the 

metabolic aberrations of a tumor.  

 

We propose the use of standard spectral data treatments (integration of absorptions bands on raw 

spectra, peak-picking on secondary derivative spectra, etc.) to reveal the anatomy of the brain based 

on chemical contents variations between regions. Importantly, we could also calibrate several 

metabolic concentrations (glucose, glycogen, lactic-acid) in tissue samples using this approach [186]. 

 

3.5.1. Anatomy 
The anatomy of tissues can be extracted from IR spectrum matrix based on the chemical profile of 

different anatomical structures.  For example, for brain histology applications, the anatomy of brain 

tissues can be extracted by exploiting the global chemical profile of the brain. 
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The brain is a lipid-rich organ. The white matter of the brain contains well-defined long myelinated 

fiber tracts. On the other, the gray matter houses numerous neuronal cell bodies which are rich in 

different proteins for neurotransmission, among other purposes. Thus, exploiting the lipid and protein 

information for IR spectra can lead to distinguishing different anatomical features in the gray and 

white matter. 

 

The protein information can be extracted by computing the spatial distribution of protein using the 

numerical integration of the band region 	?@AB
?8BA while the lipid information can be extracted by 

computing the spatial distribution of lipids from the integration of the 	?862
?6EA , 	?@C2

?@2A and 	6A2A
2BAA (for 

FTIR systems) bands. To further distinguish between the gray and white matter anatomical 

structures, the ratio of the integration of the protein band and lipid band can be taken( 	?@AB
?8BA /

	?862
?6EA ).   

 

 
Figure 40 Mouse brain tissue sample using lipid and protein information from spectra to highlight different regions in the slice. 
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3.5.2. Metabolism 
Metabolism is broadly defined as the sum of biochemical processes in living organisms that either 

produce or consume energy [187]. Metabolic alterations are a hallmark of an ischemic or hypoxic 

condition of brain, which occurs during stroke, cancer growth and generally in neuro-degenerative 

disease. 

 

Conventional histology at best offers a semi-quantitative histochemical glycogen analysis without 

information about glucose and lactate. Thus, IR microscopy offers a unique advantage in the area of 

metabolic analysis due to the ability to resolve glycogen, glucose and lactate stores in tissue samples 

from spectra data [188]. 

 

In order to reveal the metabolic information from IR spectra, the second derivative of the spectrum 

matrix is taken to reveal underlying band peaks in the carbohydrate band region of the IR spectrum . 

Most of the peak positions in the carbohydrate band are easily found in the second derivative spectra.  

 
Figure 41 Second derivative spectra of a pathological mouse brain showing the peak position of glucose, glycogen and lactate in the 

spectrum from tumor site and healthy tissue [186]. 

 

The peak position of glucose is revealed at 1031cm-1, glycogen is revealed at band peak 1024 cm-1 

and 1162 cm-1. Lactate is revealed at band peak position 1127 cm-1. Figure shows an example of 

metabolism analysis of a pathological mouse brain by IR microscopy. The figure shows the depletion 
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of glucose-glycogen store and consequently the increase of lactate, thus showing the presence of an 

increase in glycolysis. 

 

 
Figure 42 Metabolic analysis showing increase in glycolysis in the tumor region resulting in increase in lactate distribution and the 

depletion of glucose-glycogen store 

3.6. 3D Reconstruction 
In this section, we present a general methodology for reconstruction of 3D volume of IR metadata 

images. In line with the objective of this thesis, we focus on brain imaging application. Thus our 

experimental strategy is demonstrated on the 3D reconstruction of mouse brain metadata images.  

 

Several methods have been proposed for the 3D reconstruction of tissue blocks, but the tissues were 

first stained or block-face photographic volume registration was used with MRI to help correct the 

shape in the soft tissue images [113, 189]. However, the use of labelling and staining methods or 

gadolinium injections for MRI prevent further “unaltered” chemical analysis.  

 

Our methodology overcomes such a bottleneck, providing both an image registration and correction 

method for reconstructing 3D tissue blocks, and can determine the molecular concentrations in 3D at 

microscopic resolution. The key advantage is the development of a genuine combination of in vivo 

3D imaging with quantitative spectro-microscopy for producing a 3D quantitative chemical image of 

a tissue block [186]. 
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Our strategy is a multimodal approach based on the combination of in vivo acquisition of the 3D 

image of the mouse brain in the skull with metadata images from infrared (IR) spectro-microscopy 

for the histological analysis.  

 

This is a Volume-to-Slice based approach for 3D reconstruction of histological images. Virtual tissue 

sections from the X-ray tomogram allows the correction of the shape distortions in 2D-IR image. 

Consequently, we could obtain a 3D patch of corrected 2D-IR images, constituting a 3D-IR spectrum 

matrix for the quantitative chemical analysis of native brain contents. 

 
Figure 43 Pipeline for 3D reconstruction of IR metadata images. This includes the acquisition of x-ray tomographic data, pre-

processing by denoising, smoothing and artefact correction, tomographic reconstruction by iterative methods, post-processing 

methods such as segmentation, deformable registration with IR data and visualization methods such as shape analysis and chemical 

analysis of reconstructed volume.  

This methodology is divided into two major parts. The reference model acquisition which entails X-

ray tomographic reconstruction of different x-ray projections of the mouse brain skull and the 

hierarchical image registration method for 3D reconstruction of 2D-IR images.  

 

3.6.1. Reference Model Acquisition 
3D reconstruction of tissues generally is an ill-posed problem with many possible solutions in the 

absence of a real model to validate the stacking of tissues. Thus as detailed in Chapter 2, we propose 

the use of a reference model for guiding the 3D reconstruction of mouse brain tissues. 

 

The heads of the mouse can be analysed with and without brain inside the skull to obtain the actual 

brain volume by subtraction of segmented 3D images. This can be achieved by micro-radiology using 

X-ray imaging.  

 

The objective is to obtain a 3D image of the brain without altering its contents due to X-rays, and the 

choice of X-ray microscopy is also to avoid the use of contrast agents or labelling methods (as for 

MRI), which modify the chemical contents of the tissues.  
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The volume rendering from 3 axial absorption projections allows to obtain a reconstructed realistic 

CT shape of the mouse brain which can be used to virtualize all tissue sections and create a 2D mask 

of their planar limits. 

X-ray Tomographic Reconstruction 
The goal of tomographic reconstruction is to recover the interior structure of a body using external 

measurements from many different projections (directions), and tomography is based on deep pure 

mathematics and numerical analysis as well as physics and engineering.  

 

To reconstruct the X-ray images obtained at different angles of the skull into a 3D volume, we use 

the knowledge of the principle of tomodensitometry which is also used in CT imaging. 

Tomodensitometry measures the attenuation of the radiation going through an object in an X-ray line.  

 

As X-rays travel from the X-ray source through an object to an X-ray detector, they are attenuated by 

the material on the x-ray line (neglecting scatter and diffraction).  In monochromatic X-rays, the linear 

attenuation coefficient is proportional to the density of the object; thus, if we are able to estimate the 

attenuation, we can recover the density of the object [190]. 

So, let 𝑓 ∶ 	ℝ2 → 	𝑅 be the density of the object. Mathematically, the goal of X-ray CT is to recover 

𝑓 from the attenuation measurements. Given a point 𝑥 in an object, according to Beer’s Law, if 𝐼(𝑥) 

is the number of X-ray photons in the beam when it arrives at 𝑥, then the intensity in a small segment 

of length ∆𝑥 is decreased by the multiplicative factor 𝑓(𝑥)∆𝑥.  

 

This is a classical Radon transform(Appendix) problem and is given as: 

 
𝑅� 𝜌 = 	 𝑓 𝑥, 𝑦 𝛿(𝜌 − 𝑥 cos 	𝜃 − 𝑦 sin 𝜃)𝑑𝑥𝑑𝑦

¥

3¥

¥

3¥

 
(23) 

 

To reconstruct 3D volume of an object from the x-ray attenuation measurements, the classical 

algorithm used in CT image reconstruction from different projections is the filter back projection 

algorithm. However, this algorithm is ill-posed and requires a lot of projections for accurate 3D 

reconstruction. This is not practical for our application due to the risk of burning of the mouse brain 

sample from heat of x-ray radiation.  
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The iterative reconstruction algorithm shows more advantages than conventional filtered back 

projection (FBP) algorithm in dealing with the reconstruction problem with incomplete projection 

[191]. The iteration process can be initiated with an empty image estimate or using prior information, 

for example, a standard FBP reconstruction or a volume of a similar object. In general, the better the 

prior images match the final images, the faster the process converges towards a stable solution. 

 

 
Figure 44 Iterative tomographic reconstruction algorithm process. 

Iterative reconstruction methods consist of three major steps which are repeated iteratively as shown 

in Figure 44. First, a forward projection of the volumetric object estimate creates artificial raw data 

which, in a second step, are compared to the real measured raw data in order to compute a correction 

term. In the last step the correction term is back projected onto the volumetric object estimate [192].  

 

The iterative process is finished when either a fixed number of iterations is reached, or the update for 

the current image estimate is considered small enough or when a predefined quality criterion in the 

image estimate is fulfilled. 
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Figure 45 X-ray tomographic reconstruction of the mouse skull from x-ray projections.(a) 12 x-ray projections of the mouse skull 

used for the tomographic reconstruction of the mouse skull volume in (b). 

3.6.2. 3D Hierarchical image registration method for 3D 

reconstruction of 2D-IR metadata images 
I propose a novel 3D reconstruction method for 2D-IR stack. Our method is a hybrid approach 

which combines volume-to-volume and slice-to-slice registration methods for 3D reconstruction.  

 

The volume-to-volume registration is applied to achieve a global alignment between the 3D volume 

of IR stack and the reference image volume obtained by x-ray tomography. This is done together 

with a slice-to-slice registration to correct large and small anatomical structures in the IR stack. 

 

Our proposed method can be divided into three serial steps implemented in a hybrid CPU/GPU 

model to high performance and to improve computation speed. The first step is the global alignment 

of the 2D-IR stack, this is followed by registration of the tissue stack using virtualized section from 

the x-ray reference model on the GPU server and then a final refinement is done by locally 

deforming similar anatomical structures to using optical flow method. 

 

(i) Global alignment of slices 

The step of our proposed method is a global alignment of the 2D-IR stack. I propose a rigid 

transformation method to correct the translation and rotational differences between slices. As 

discussed in, log polar phase correlation method offers an accurate rigid transformation parameters 

estimation. 
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The accuracy of the global registration depends on the initializing slice. I propose a manual selection 

of a ‘correctly’ oriented slice chosen as the center slice. In an iterative manner, all slices are aligned 

in conformity to this slice by estimating the rotation and translation difference from the center slice. 

(ii) Global registration with X-Ray model 
The global registration with X-ray model step is to correct the global shape of tissue slices. The x-ray 

tomogram is virtually sectioned to the number of tissue slices and a mask of each virtual section is 

obtained. 

This is followed by a simple shape matching algorithm to estimate the virtual mask that corresponds 

to each tissue slice. An affine transformation is performed to deform teach tissue slice to its 

corresponding virtual slice.   

 

(iii) Local registration of brain sub-structures 

Local registration is done to correct the deformity between similar anatomical structures in serial 

tissue sections. As discussed in section 2.4. Registration methods for 3D histology reconstruction, 

we propose the use of optical flow estimation with deformable transform to estimate and correct 

motion changes between similar anatomical structures in between tissues. 

 

 

 
Figure 46 Global and local alignment of sample mouse brain dataset. (a) 3D volume obtained after rigid alignment tissue slices 

showing global shape deformity. (b) Virtual sections created from X-ray model. (c)  Mapping and deforming IR metadata image to x-

ray virtual section. (d) Local motion correction of tissue substructures. (e) 3D reconstructed volume of mouse brain. 
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Below is a detailed step of our proposed 3D hierarchical image registration for 3D reconstruction of 

2D-IR metadata images.  

 

Algorithm 

Input: set of unaligned 2D-IR metadata images S = {1,…n}, 3D x-ray reference model M 

Output: 3D reconstructed IR metadata volume 

 

1. Let 𝑺𝟎 be an arbitrary slice manually selected as the center slice. 

2. Compute the rigid transformation parameter of all slices of each slice with respect to 𝑺𝟎. 

3. Apply affine transformation on all slices to align them to 𝑺𝟎. 

4. Virtually section 𝑴 into a set of virtual sections 𝑽. 

5. ∀	𝒗 ∈ 𝑽, compute the mask 𝒗𝒎 of the virtual section slice.   

6. ∀	𝒗𝒎 ∈ 𝑽𝒎, find the most correlated slice 𝒔 ∈ 𝑺 

7. Compute the deformable transform that deforms 𝒔 to correspond to 𝒗𝒎 

8. ∀	𝒔 ∈ 𝑺, estimate the optical flow of 𝒔𝒊/𝟏 and 𝒔𝒊3𝟏 which are the section that preceded and 

follow 𝒔 

9. Apply a deformable transformation to correct motion changes in 𝒔 

10. Stack the globally aligned and local motion images in S to obtain a 3D reconstructed volume 

of the sample.       
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CHAPTER 4: 3D Chemical Imaging of 
Tumors in Mouse brain 
 

In this chapter, we introduce a direct application of our proposed methods for 3D imaging by IR 

microscopy. I demonstrate the application of our methods to investigate to precision a specific 

anatomical structure in the mouse brain. I applied our proposed methods to the chemical imaging of 

tumors in the mouse brain. Our aims can be summarized as follow: 

 

a. To demonstrate that 3D chemical imaging using IR spectro-microscopy can be used for the 

3D pathological investigation of large tissue blocks and the comparative advantage over 

classical histology. 

b. To demonstrate that quantitative metabolic parameters can be extracted from the IR spectra 

for the characterization of the brain metabolism vis-a-vis tumor metabolism (assessing the 

Warburg effect in tumors). 

c. To demonstrate that 3D IR spectro-microscopy can achieve a quantitative molecular analysis 

of tissues 

Here, we present the methods used in our experiments and thereafter the results and perspectives 

drawn from our experiments using a mouse brain in which glioma tumor cells had been implanted to 

grow a tumor in 28 days before the acquisition of 3D in situ and 2D histological images. 

 

4.1. Methods 
Below are the methods used in our experiments from sample preparation to 3D quantitative molecular 

analysis of tumors in the mouse brain: 

4.1.1. Sample preparations 
The 3D image model of the mouse brain used for 2D and 3D IR image corrections has been obtained 

on healthy animals (10 to 12-week-old male rag-g2C-/- immunodeficient mice). A series of 12 animals 

were used for acquisition of the head 3D image after dissection. The dissection consisted in the 

removal of the skin, eyes, tongue, teeth, etc. as to obtain the skull and the brain sample.  
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The X-ray tomographic images were obtained in sequence with and without the brain (360 projections 

over 180 degrees, providing a 2-µm resolution meshing of the brain). For skull imaging, the brain 

was aspirated through the occipital hole. The internal part of the skull was further cleaned from 

possible tissue remains by enzymatic digestion (Liberase TL, Roche ref 05401020001) for 20 minutes 

at 37°C.  

 

The low-dose X-ray images of the brain further used for IR analyses were obtained using 3 projections 

(-90, 0, and 90 degrees) in same conditions as the 360 projection high resolution images, thus limiting 

the x-ray dose to negligible amount (not heating the brain before histological analyses). The aim was 

to reconstruct the 3D model of the brain with limited 2D projections by using the high-resolution X-

ray tomographic images as references. 

 

The mouse brains prepared for 3D histological analyses had been xenografted with NCH421K glioma 

tumor spheroids (proneural, stem-like cells). Briefly,  primary tumor-derived NCH421K spheroids (5 

spheroids of 10.4 cells per mouse) were implanted into the right cerebral cortex using a Hamilton 

syringe fitted with a needle (Hamilton, Bonaduz, Switzerland) and following the procedure already 

described [24].  

 

Animals were anesthetized using Imalgene 1000 (Ketamin 10 g/100 ml) injected intraperitoneally. 

Mice were fixed using a stereotaxic alignment instrument. Injections were realized in the striatum 

(2.2 mm on left from bregma 0 and 3 mm of depth) using Hamilton syringe. An analgesia is realized 

(Buprenorphine 0.1mg/kg) before and after brain implations according to the ethical criteria.  

 

Full brains (with xenografted tumor on one lobe and healthy brain on the other lobe) were removed 

from sacrificed mice after 28 days of tumor growth. The sample holder with brain were inserted in a 

plastic tube and plunged into liquid N2 for instant freezing. The frozen brain was deposited in the 

upright position (with cerebellum on the bottom) on cooled glue (polyvinyl alcohol for cryostat, -

20°C) to avoid tissue embedding. The total duration from the death of animal to the complete freezing 

of brain was always less than two minutes, what guaranty that degradation in brain cell and tissue 

contents was limited.  

 

After freezing, additional glue was used to homogenize the sample as a regular block intended for 

cryosections (Cryostat CM1900, Leica-Microsystems, France). A complete sectioning of the brain 

was performed at 20-µm thickness. A total of 340-385 sections was obtained depending on the brain 
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dimensions (the sectioning was stopped in the cerebellum mass). In the example of 3D brain 

reconstructions shown in the results, 1 section was reserved for histology (deposited on gelatin-coated 

slides) and the following section was reserved for IR microscopy (deposited on CaF2 windows having 

the same dimension as histological slides), and so on alternatively for the complete series of sections.  

 

For histological imaging, all tissue sections were incubated with antibodies against human vimentin 

antigens (Santa Cruz 6260) and a green fluorescent secondary antibody (goat anti-mouse 488 

antibody, Interchim FP-SA4010). Imaging was carried out by using a Nikon eclipse E600 

microscope. 

 

4.1.2. X-ray image acquisitions 
Microradiology was performed with unmonochromatized (white) synchrotron X-rays emitted at the 

01-A beamline wavelength shifter of the National Synchrotron Radiation Research Center (NSRRC, 

Hsinchu, Taiwan). The photon energy ranged from 4 keV to 30 keV with critical energy at ~12 keV; 

the beam current was kept constant at 360 mA with the top-up operation mode all over acquisition 

periods.  

 

To obtain 4.59×3.43 mm images X-rays were converted into visible light using a CdWO4 single 

crystal scintillator and then detecting the photons with an optical microscope equipped with a 1600 × 

1200 pixel CCD camera (model 211, Diagnostic Instruments). I reduced the radiation dose by 

attenuating the X-ray beam with two 550 µm silicon wafers. The dose was 33.9 Gy per 100 ms for a 

specimen thickness of 1 cm placed before the sample. The sample-scintillator distance was 5 cm. I 

used a 2× lens in the optical microscope to obtain the desired field of view; the pixel size in the final 

image was 2×2 µm².  

 

A simple background flattening image filter was used for large area micro-radiology images. The 

conceptual details of synchrotron-based microtomography, including absorption and phase contrast, 

have been discussed in previous study53. The high-resolution tomographic images were captured with 

360 angles over 180 degrees. The low resolution (and low X-ray dose) images were captured with 3 

angles (-90, 0, 90 degrees) and reconstructed using the high-resolution models. 
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4.1.3. IR acquisitions for 20-µm spatial resolution imaging 
I analyzed the mouse brain tissue sections by IR microscopy. The QCL-IR microscope (Spero®, 

DaylightSolutions, CA, USA) is equipped with 4 IR lasers providing wavelengths every 4 cm-1 along 

the 1800-900 cm-1 spectral interval, thus 225 absorption values. The microscope is constantly purged 

with dry air and sample compartment is isolated from ambient air by a plastic box. The detector is a 

non-N2-liquid frozen focal plane array (FPA) detector with 480x480 elements.  

 

The acquisition of IR images was setup for a final 21-µm resolution (the closest dimension with 

respect to the 20-µm tissue sectioning thickness), although the raw images had a 4.2-µm lateral pixel 

size (using the low magnification optics). The 20-µm pixel size was obtained after acquisition by 

binning 5x5 pixels. IR image acquisitions lasted up to 2 hours per section at the largest tissue section 

dimensions, ~6x8 mm). 

  

A total of 170-190 IR images was obtained per brain for the 3D-IR image reconstruction (same 

number for the corresponding histological image providing a comparison between tumor volumes). 

The microscope was installed in a thermally controlled room (20°C) for standardizing the ambient 

conditions during acquisitions over the total duration of acquisitions (2 months). Raw IR image data 

were stored on server and duplicated for saving a set of 2D-IR images at ~20-µm resolution. 

 

4.1.4. 3D IR and 3D histological images reconstruction 
For the 2D- and 3D-IR images presented here, we used a mouse brain from which 370 sections were 

obtained by continuous cryomicrotomy. Therefore, 185 2D-IR images were obtained and represented 

a matrix of 9.4-million IR spectra and 140 Gb of raw data on a storage server (after processing the 

5x5 pixel binning).  

 

The same number of histological sections was obtained, alternatively to the IR sections during the 

continuous cryomicrotomy. The visible images of IR and histological sections, obtained right after 

sectioning on a transmission optical microscope (Nikon AZ100M), were merged into a full set of 

reference images of the mouse brain. These visible images were coupled to the 2D masks of virtual 

brain sections extracted from the 3D X-ray tomogram of the mouse brain for further corrections and 

resizing.  
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The resizing of 2D-histological images was done by edge-guided image interpolation. The first and 

last images corresponding to the actual set of tissue sections (histological and IR – 370 images) are 

defined according to the optical (visible) images took immediately after cryomicrotomy. The 2D-

mask of each image is extracted from the actual volume of the mouse brain (respecting a 20-µm 

distance between 2D-masks to match the thickness of histological sections).  

 

The lacking 2D-masks (370 sections vs. 100 images in the Allen brain atlas) are completed for 

correction of all tissue sections. Histological images were corrected for shape alterations by edge-

guided image interpolation with their corresponding 2D-mask for reference.  

 

The IR images were corrected by re-pixelation and redistribution of the full spectral absorbance at 

the 2D image level. A pixel grid at resolution of the IR image (here 21-µm lateral resolution) covers 

the 2D-mask that the 2D-IR image must match. The IR spectra contained in IR image pixels are 

redistributed in the pixel grid of the 2D-mask.  

 

The total spectral absorbance of the 2D-IR image is calculated before and after IR spectra 

redistribution to ensure that the chemical information of the tissue section remains unchanged. The 

185 histological images are positioned in the actual volume model of the mouse brain for 3D 

alignment and patching.  

 

The alignment is performed by anatomical pattern recognition with respect to the Allen brain atlas 

images and the 2D-masks. Typical anatomical features are salient angles found at the surface of brain 

volume, such as the longitudinal cerebral fissure, the lobes-cerebellum interfaces, etc.). The 185 2D-

IR images are also aligned and patched according to the same procedure as for histological images. 

 

4.1.4. Brain metabolic assays 
In a series of 10 mice with 18-23 days of tumor development in the right hemisphere, brains were 

harvested for dissection of the left hemisphere (healthy tissue). Tissues were immediately weighted 

and brain homogenates were obtained by sonication in 10% wt/vol of 0.1 N NaOH and 0.01% SDS 

and centrifuged for 15 min at 16,000 g at 4°C.  

 

The supernatant was acidified and diluted with 0.03 N HCl. Glycogen and glucose were measured by 

a fluorescence enzymatic assay using the amyloglucosidase method39. Glycogen was digested with 
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amylo-α-1,4-α-1,6-glucosidase (AG) (Sigma). The glucose levels were determined with hexokinase 

and glucose-6-phosphate dehydrogenase (Sigma) through formation of NADPH from the reduction 

of NADP+.  

 

Glucose levels obtained from samples without AG were subtracted from samples with AG to 

determine glycogen levels. Glycogen and glucose were expressed both as micromoles per gram of 

fresh brain tissue (µmol/g). The effects of SD were evaluated by t-tests. For lactate, brain 

homogenates (20 mg) were added to 100 µl of ice-cold 3 M perchloric acid, homogenized using a 

homogenizer, and then centrifuged at 1,000 g for 5 min at 4°C. The resulting supernatant was mixed 

with buffer containing glycine, hydrazine, and NAD and then added to LDH.  

 

The fluorescence measurements were taken at 350 nm excitation and 450 nm emission. The lactate 

concentration was calculated from a standard curve. For comparison with IR spectral data, statistical 

tests were considered significant if P < 0.04. 

 

4.1.6. IR spectra data treatments 
(a)  IR image post-processing:  

The corrected 2D-IR images were cropped to remove pixels (and thus IR spectra) out of the brain 

section (containing OCT glue and other features that could bring artefactual data after spectra data 

treatments, and thus alter the quality of the final 3D images derived from the 3D IR spectrum matrix) 

and the 3D-IR image was patched as a 3D spectrum matrix of the brain only.  

All IR spectra were baseline corrected using a standard procedure (elastic correction based on null 

absorption at 1800 cm-1). Absorbance spectra were first used to check that spectral intensity scale was 

consistent between IR images. 

 

(b)  3D-IR image reconstruction:  

The ʃ(1800-900 cm-1) spectral intensity integration was calculated for all IR spectra and the 3D image 

was reconstructed (full spectral intensity 3D image of the brain). The full spectral intensity typically 

ranges between 0 and 300, and this scale was applied to all 2D-IR images before 3D reconstruction.  

 

The 3D patch of 2D-IR images was first performed with uncorrected 2D-IR images (figure 2) to show 

the mediocre volume rendering induced by the multiple tissue sections shape alterations due to 

surgery, sample deposition on sample holder, and cryomicrotomy.  
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The same 3D patch performed with corrected 2D-IR images by X-ray imaging allowed to align 

properly each 2D-IR image according to observable external anatomical details as explained above. 

Therefore, although the spectra data treatments were applied on 2D-IR images, the positioning of 

each 2D-IR image in the 3D alignment was fixed for all volume renderings. 

 

(c)  Tumor volume:  

Importantly, the positioning of the 3D-IR image of the brain inside its skull was used to check that 

all 2D-IR image resizing and corrections could accurately recover the internal anatomy of the brain, 

which also resizes the tumor.  

 

I performed the segmentation and meshing of the tumor volume after a classical spectroscopic 

analysis, i.e., by calculating the protein-to-lipid absorption ratio ʃ(1700-1480 cm-1)/ʃ(1760-1710 cm-

1). The mesh of the tumor volume is extracted as an independent volumetric image for shape 

comparison with its 3D-histological image.  

 

The meshed tumor volumes, IR and histological, were subtracted as polysurfaces to check the 

relevance at using the protein-to-lipid absorption ratio to reveal a glioma tumor in the brain. The 

difference between IR and histological meshed volumes was measured and expressed as a percentage 

of the histological (reference) volume.  

 

The difference between meshed volumes of the tumor from uncorrected and corrected 3D-IR and 3D-

histological images was also calculated to show the effect of 2D image corrections on tumor volume 

rendering. 

(d) Anatomical regions:  

 

To exploit the full spectral intensity 3D-IR image of the brain, anatomical regions were directly 

segmented from intensity scale manipulation. In 2D images, many different anatomical regions 

appear as a color gradient respective to the intensity scale rendering.  

 

For every 2D-IR image, we segmented the color gradients and checked for anatomical regions 

reconstructions in 3D from the 3D-IR image (where successive segmented 2D images provide 

continuous 3D structures).  
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To that end, we selected 10, 25 or 50 color gradients, depending on the refinement expected in 2D 

images, depending on its complexity. I used a standardized min-max intensity scale on all 2D-IR 

images with rainbow-related rendering: blue-green-yellow-red-white. The same color gradient 

scaling was used for all 2D- and 3D-chemical images presentations.  

 

Once an anatomical structure could be highlighted and meshed in 3D, it was extracted and saved as 

an independent image for separated analysis. The full 3D-IR image of the brain could be used again 

for determining other anatomical regions using other levels of color gradients on intensity scale, and 

so on. The anatomical regions were systematically compared to the existing anatomical atlases of the 

mouse brain, the Allen brain atlas for example. 

 

(e) Quantitative metabolic analyses:  

 

Several metabolic parameters (glucose, glycogen, lactate) were quantified in 2D-IR images and the 

distribution of concentrations was determined as follows: 

1- Second derivative IR spectra were calculated for the whole 3D spectrum matrix of the mouse 

brain. IR spectra of the left hemisphere (healthy tissues) and for the tumor (from its meshed 

volume) were analyzed separately. 

2- The absorptions of glucose (1031 cm-1) [53], glycogen (1024 and 1162 cm-1), and lactate 

(1127 cm-1) [188] were measured by integrating band areas on second derivative spectra 

(glucose: 1040-1027 cm-1; glycogen: 1027-1018 and 1167-1157 cm-1; lactate: 1135-1114 cm-

1 – expressed in a.u.² x10-4); 

3- Since there is no histological method to determine the concentration of these metabolic 

molecules on histological sections, the calibration of molecular concentrations was 

established considering the average value of their absorptions as equivalent to the values of 

metabolic assays on the brain homogenates obtained in parallel with another batch of 10 mice 

(same sex, age and experimental conditions, with a glioma tumor implanted the same day as 

for mice used on histological/IR experiments). The calibration was performed using only the 

left hemisphere part of the 2D-IR images (healthy tissues not affected by the tumor). The 

scaling of molecular concentrations was done according to the distribution of IR absorption 

for each molecular absorption (a.u.² .10-4 ± SD vs. µmol/g → µmol/g ± SD). The normal 

distribution of absorptions (mean ± 3x SD, in a.u.² .10-4 - data not shown) was calculated for 

the left hemisphere of the brain and for the tumor volume to reveal the heterogeneity of 

metabolic parameters between anatomical regions (mean ± 3x SD, in µmol/g). 
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4- The IR spectra corresponding to the anatomical regions meshed from the left hemisphere (cf. 

“Anatomical regions” paragraph) were analyzed separately  to reveal the mean ± SD values 

of metabolic parameters and plotted  

5- 3D-plots of molecular concentrations in the whole mouse brain were produced with volume 

rendering. The double intensity label (a.u.² .10-4 and µmol/g) is provided. 

 

4.2. Results 
The results shown in this thesis are related to a mouse brain in which glioma tumor cells had been 

implanted to grow a tumor in 28 days before acquisition of 3D in situ and 2D histological images. 

The presence of a tumor in the brain was the perfect challenge for a quantitative chemical analysis of 

tissues: tumors are highly different from healthy tissues in terms of chemical composition (usually 

with higher protein and lower lipid contents [193]) and metabolism [194]. I achieved to show these 

differences with a quantitative chemical analysis of the mouse brain using the following 

methodology: 

 

4.2.1. Acquisition of the actual 3D shape of the brain 
I first used mice heads for X-ray tomographic analysis of the brain volume. Heads were analyzed 

with and without brain inside the skull to obtain the actual brain volume by subtraction of segmented 

3D images. The segmentation method we used allowed to obtain the meshing of brain with a 2-µm 

accuracy.  

 

The high-resolution images were used as models for resizing the low-dose 3-projections X-ray 

images. The objective was to obtain a 3D image of the brain without altering its contents due to X-

rays, and the choice of X-ray microscopy is also to avoid the use of contrast agents or labeling 

methods (as for MRI [195], PET/SPECT [196], intravital imaging [197], mass-spect imaging [198], 

etc.), which modify the chemical contents of the tissues.  

 

It would have thus affected the chemical analyses by IR microscopy after histology. The volume 

rendering from 3 axial absorption projections allowed to obtain a realistic CT shape of the mouse 

brain that was used to virtualize all tissue sections and create a 2D mask of their planar limits. 

 

The main issue following the acquisition of a brain volume from 3 axial absorption projections was 

to determine the beginning and ending point of brain sectioning as well as the actual axis of 
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sectioning. This issue was solved by using an available anatomical atlas of the mouse brain, the Allen 

Developing Mouse Brain Atlas [199].  

 

I resized the atlas with respect to the actual volume of the mouse brain. I used a graph-theoretic slice-

to-slice reconstruction with a global histology-to-CT reconstruction to achieve high accuracy, both in 

the alignment of features between slices and in the 3D shape of the reconstructed brain. 

 

4.2.2. Acquisition of a 3D IR spectrum matrix of the brain 
After acquisition of the three X-ray projections for volume rendering of the brain, the organ was 

removed from skull and deposited in the upright position (with cerebellum on the bottom) on sample 

holder for continuous cryomicrotomy at a 20-µm thickness. A series of 340-385 sections could be 

obtained depending on the organ size.  

 

Alternatively, one section was reserved for conventional histology (named histological images) and 

one section was reserved for IR microscopy analysis (named IR images). The goal was to obtain a 

series of histological sections sufficiently representative of the whole brain for comparative analyses 

between IR microscopy and histology, and for 3D image reconstructions.  

 

An example of 2D IR image of the mouse brain with typical IR spectra from different anatomical 

regions is shown in Figure 47. 

 

 
Figure 47 3D-IR reconstruction of mouse brain. a) Sample IR image of the full spectral absorbance. (b) Sample spectra from 

infrared image. (c) 3D reconstruction of uncorrected IR image stack. 
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Figure 47 show a 3D-IR image obtained from a mouse brain: 

A.  The 2D-IR image of the section shown is approximatively located at Bregma -4.04 mm / 

internaural -0.24 mm. The mouse brain has been sectioned at 20-µm thickness (370 sections). 

The IR image is shown as a full spectral absorbance (in a.u.²). 

B. The IR spectra in corresponding to the 1-4 positions marked in (A) are shown in the central 

panel. They show important absorbance intensity variations throughout the spectral interval 

(1800-900 cm-1, also called the fingerprint region). These absorbance intensity variations 

allow recognizing the major anatomical regions of the mouse brain, which can be used for 

proper alignment using anatomical atlas of the brain (such as the Allen Developing Mouse 

Brain Atlas).  

C. For the 3D-IR image reconstruction, the full spectral absorbance intensity scale was set free 

(set at 0 for artefactual pixels in 2D images, <1.5% of pixels for all images) for the 185 raw 

2D-IR images obtained from mouse brain sectioning. The 3D patch shows that many tissue 

shape alterations where present on 2D-IR images. 

 

IR spectra from different regions of the brain show quite different absorption profile, thus confirming 

that variations of chemical contents are significant. For individual 2D-IR images, the ʃ(1800-900 cm-

1) intensity scale ranged 0-192 to 0-331 for the whole set of 185 images.  

 

The intensity scale was set free for the 3D-IR image reconstruction. The first reconstruction of the 

3D-IR image from 2D raw IR images (without any planar shape correction) was just center-aligned 

using the central axis between lobes as anatomical reference.  

 

As shown in Figure 48, the general shape of the 3D-IR image of the brain contains numerous 

distortions. They came from organ shape alterations during surgery (due to the relapse of the brain 

volume once extracted from the skull, which exerts a pressure on brain tissues, and also due to the 

gravity-related collapse of this very soft tissue at deposition on the sample holder).  

 

This is also due to the well-known tissue alterations during cryomicrotomy, where tears, bends, 

cracks, etc. appear at the tissue sectioning or deposition process. This is showing clearly the relevance 

of using a 3D in situ (or in vivo) imaging method for obtaining a realistic volume rendering of the 

mouse brain before histological analyses. This is also a critical to ensure further quantitative chemical 

analysis from the 3D-IR image.  
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4.2.3. Correction of the 2D histological images from 3D X-ray 

tomogram 
The IR and histological images were corrected for shape alterations using the X-ray tomogram and 

the 100 virtual slices (from 100 images - Figure 48) given by the Allen Mouse Brain Atlas.  

 

I first compared anatomical images with the IR and histological images to define the sectioning plan 

effectively used while obtaining all histological sections. The anatomical images are resized 

according to the actual 3D volume of the mouse brain. They serve as reference for comparing 

anatomical regions observed on visible, histological, and IR images.  

 

Importantly, they allow defining the first and last sections obtained on a mouse brain by 

cryomicrotomy, which number is variable according to the size of the organ and some potential loss 

of sections at extremities. They are also used for proper alignment and 3D patching after shape 

corrections, as shown in Figure 48. 

 
Figure 48 Schematic of the shape corrections process for 2D images and 3D volume reconstructions. 

Figure 48 shows a detailed overview of the shape correction process.  

A. The actual volume model of the mouse brain is used to resize the anatomical images of the 

Allen Mouse Brain Atlas. The first and last frames corresponded to the limits of the full set 

of tissue sections obtained by continuous cryomicrotomy (histological and IR – 370 sections). 

B. The virtual 2D masks of the 370 images are extracted from the actual volume of the mouse 

brain.  
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C. The histological images are corrected by edge-guided image interpolation.  

D. The IR images are corrected by re-pixelation and redistribution of the full spectral absorbance. 

The total spectral absorbance of the 2D IR image is calculated before and after IR spectra 

redistribution for validation of the image correction process. 

E. The 185 histological images are positioned in the actual volume model of the mouse brain for 

3D alignment and patching. The alignment is performed by anatomical pattern recognition 

with respect to the Allen brain atlas images in (A) and the 2D masks obtained in (B).  

F. The 185 IR images are also aligned and patched according to the same procedure.  

G. 3D reconstructions of the Allen brain atlas. 

H.  3D-IR image resized to match the actual dimensions of the mouse brain. 

I. 3D-IHC image resized to match the actual dimensions of the mouse brain. 

 

The sets of IR and histological images (185 images for each set) were used for a brain volume 

rendering and the 3D histological image was segmented to highlight the tumor. I can observe that the 

reconstructed 3D images of the brain perfectly match the actual volume of the brain defined in by X-

ray tomogram.  

 

I applied a classical IR spectroscopy analysis to highlight the tumor from the 3D chemical image, i.e., 

the protein-to-lipid ratio defined by absorption ratio ʃ(1700-1480 cm-1)/ʃ(1760-1710 cm-1), or the 

absorption ratio between amide I and lipid esters [2]. This analysis highlights the tumor mass, 

containing higher concentration in proteins and lower concentration of lipids than its surrounding 

tissues. 

 

4.2.4. Anatomy of the brain based on 3D chemical data 
An important objective of our study was to demonstrate that 3D chemical imaging by IR spectro-

microscopy can be used for the 3D pathological investigation of large tissue blocks. I segmented the 

tumor mass based on a simple spectral analysis to compare it with tumor volume rendering from the 

3D histological image.  

 

As expected, the IR spectra extracted from the tumor and at a similar location in the left hemisphere 

show important differences for most of absorption regions. The shape of tumor volume was found 

very similar between IR and histological analyses, the calculation of Hausdorff distances between the 
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two volumes showing only marginal differences (3D-IR = 9.39 mm3; 3D-IHC = 12.24 mm3; 

difference ~30%).  

 

The ability to extract the 3D spectrum matrix of the tumor mass is important to analyze specifically 

its chemical contents. This is also true for the healthy brain tissues (at least the left hemisphere, which 

is not affected by the tumor metabolism and the mechanical pressure it exerts on the surrounding 

tissues).  

 

Figure 49 shows examples of segmentation performed on the mouse brain 3D-IHC and 3D-IR images, 

both for the tumor mass extraction and for defining anatomical structures from chemical analyses on 

the 3D IR image.  

 

This segmentation can be based on absorption profiles extracted from spectra (as for the tumor mass 

with the lipid/protein contrast). It is noteworthy that healthy brain tissues and anatomical entities can 

be successfully separated directly from IR spectra (also using the important absorption differences 

shown in spectra of Figure 47).  

Therefore, an anatomical atlas of the mouse brain might be developed from its 3D quantitative 

chemical image. 

 

 
Figure 49 Segmentation of brain regions based on chemical contents. 
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Figure 49 shows the results obtained after the segmentation of different brain regions based on their 

chemical composition.  

A. The 3D-IR image of the mouse brain in the skull highlighting the tumor mass using the 

[ʃ(1760-1710 cm-1)/ʃ(1700-1592 cm-1)*100] absorption ratio (L/P as indicated in figure scale 

legend). 

B.  3D-IR image of the tumor mass extracted from whole brain by segmentation of the voxels 

presenting the chemical profile of the tumor (full spectral absorbance).  

C. Tumor mass in the skull 

D. Tumor mass extracted from the 3D-histological image by green channel segmentation. 

E.  Representation of the Hausdorff distances between the 3D-histology (reference) image of the 

tumor mass and its 3D-IR counterpart (both sides of the tumor mass).  

F. Illustration of the tumor growth mechanics as revealed by the segmentation of 3D-IHC and 

3D-IR images of the tumor volume with respect to the brain regions invaded. 

The Hausdorff distance calculation shows very interesting features. The 3D-IHC tumor image is 

showing the tissue volume occupied by tumor cells while the 3D-IR tumor image is showing the 

tissue volume which chemistry is significantly altered by tumor.  

 

The 30% difference between the two volumes represents the tissue volume where tumor cells are 

present but where they did not alter yet significantly the chemical composition of the tissue (i.e. tissue 

areas where tumor cells are dispersed).  

 

The Hausdorff distance calculation between these two volume renderings of the same tumor informs 

us about the way the tumor developed: on one side, in front of the cortex, the 3D-IHC to 3D-IR 

differences are limited or null, thus the tumor was blocked by a cortex barrier (except along the 

“tunnel” formed by the needle when implanting the tumor cells); on the other side, the differences 

are larger, showing that the tumor had easier way to invade the parenchyma through the caudate 

putamen region.  

 

This result illustrates the importance of 3D histology for understanding the anatomical-mechanical-

chemical features that drive the development of a pathology. 
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4.2.4. Quantitative 3D metabolic images based on 3D chemical data 
The last major objective of this study was to demonstrate that 3D IR spectro-microscopy will develop 

3D pathology as a new avenue for biological research, notably by providing quantitative chemical 

analyses that no other technique had achieved till now.  

 

With the example of a solid glioma tumor, the challenge was to analyze major metabolic parameters 

of the brain [200], the glycogen stores and the glucose-lactate metabolism through the concentration 

of these molecules. They collectively allow to address the so-called Warburg effect in tumor [194].  

 

To obtain a quantitative analysis, we performed an absorption integration from the glucose [53] (1031 

cm-1), glycogen [188] (1024 and 1152 cm-1), and lactate (1127 cm-1) most specific IR bands on all IR 

spectra of the 3D IR image of the brain after calculating their second derivative, a standard procedure 

for a fast IR spectral data extraction38.  

 

From 2nd derivative spectra, the 3D mapping of molecular concentrations in the brain was found 

consistent between tissue sections and thus no major contrast aberration came to alter the visual 

rendering of these analyses as shown in Figure 50. 

 
Figure 50 Quantitative metabolic analysis of the brain showing the distribution of glucose, lactate and glycogen in a pathological 

mouse brain. 
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From the 2nd derivative of the 3D spectrum matrix, the glucose, glycogen and lactate IR absorptions 

are quantified and mapped for the whole brain. The 3D volume renderings with molecular 

concentrations have been determined according to the healthy brain (left hemisphere) as a reference. 

Images are scaled with equivalent absorption (a.u.² .10-4) and concentration (µmol/g) values. 

 

To achieve a quantitative analysis of molecular concentrations by IR spectro-microscopy, our strategy 

was to use the intensity scales of the glucose, glycogen and lactate IR absorptions from spectra of the 

left-brain hemisphere.  

 

I first compared the molecular concentrations between enzymatic assays and IR spectra data analyses. 

A group of 10 mice with similar tumor mass in the right hemisphere were sacrificed to analyze their 

left hemisphere.  

 

Fluorescence enzymatic essays [201] were made on tissue homogenates and provided a 2.2 ± 0.7 

µmol/g of glucose, 4.1 ± 1.7 µmol/g of glycogen, and 1.2 ± 0.5 µmol/g of lactate. These results are 

consistent with other studies on mice [202, 203, 204] that have been reported from similar enzymatic 

assays. Interestingly, the regional distributions of glucose [202] in mice brain have been found 

varying with a 3-fold amplitude, and 2-fold for lactate [205] and glycogen.  

 

Such concentration variations per brain region were also found in our 3D IR images. When we 

considered the distribution of absorption intensities for glucose, glycogen, and lactate IR absorptions, 

we observed that 95% of spectra ranged within a 2-3-fold intensity scale values.  

 

Extreme values were rejected from calculations (notably the 0 values, representing 86% of rejected 

spectra, probably due to noisy signal or to distorted baseline preventing the use of 2nd derivative 

spectra absorptions).  

 

Spectra included in this study (>95% for each anatomical region) allowed to define a distribution of 

concentrations in accordance with enzymatic assays performed on brain regions, glucose scale 

ranging 1.3 to 3.5 µmol/g, glycogen 3.6 to 8.4 µmol/g, and lactate 0.7 to 1.9 µmol/g (basically, each 

metabolite has a 2.5-fold concentration variation in the brain).  
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These concentration variations in the mouse brain are thus consistent with previous studies [202], 

although not fully comparable since microscopic studies of metabolic concentrations in brain have 

never been done previously on fresh – snap-frozen only - tissues.  

 

It is also important to note that the tumor exhibited a significantly lower glucose (0.8 ± 0.1 µmol/g; 

P<0.05) and glycogen (1.2 ± 0.1 µmol/g; P<0.05) concentrations compared to the healthy tissue 

counterpart in left hemisphere (considering similar locations), while the lactate concentration was 

much higher (2.4 ± 0.2 µmol/g; P<0.05).  

 

With respect to the healthy brain tissues, these metabolic changes in tumor mass are typical of a 

Warburg effect, where glycolysis is increased and thus depletes the glucose-glycogen stores and 

consequently raises the production of lactate as a by-product [206]. However, the distributions of 

metabolic concentrations in the tumor mass were found very homogeneous, which is also 

characteristic for that size of glioma solid tumor [207].  

 

Importantly, a direct quantitative visualization of brain metabolism could be achieved by 3D-IR 

imaging, where internal anatomy and quantitative molecular concentrations were revealed through a 

transparent-based 3D volume rendering. 

 

4.3. Discussion 
A classical view of the advantage of 3D pathology over standard 3D histological examinations is that 

it allows a direct visualization tissue features, particularly those involving structural changes or those 

in which the spatial relationship of disease features is important. But, this is restrictive since tissues 

are not only defined by structures; their chemical contents play a major role in the homeostasis of 

organs, notably within extracellular space.  

 

3D pathology will thus make sense once the anatomical (or sub-structure networks) and chemical 

features of a tissue block are revealed jointly. However, analyzing the chemical parameters of the 

tissue (which can be translated as molecular, biochemical, etc. parameters) would require developing 

a quantitative method for 3D reconstruction and visualization on a common intensity scale. 

 

Until now, the use of 3D pathology has not been routine in research and clinics due to technical 

difficulties in reconstructing 3D tissue blocks from 2D images of seriated sections. Others have 
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developed methods for a 3D reconstruction of tissue blocks, but these ones were first stained [109] 

or used block-face photographic volume registration [110] with MRI to help maintain the shape of 

very soft tissues, such as brain.  

 

But still, the use of labeling and staining methods or gadolinium injections for MRI prevent further 

“unaltered” chemical analysis. I thus developed a new methodology to overcome such bottleneck, 

providing both an image registration and correction method for reconstructing 3D tissue blocks, and 

achieving to determine molecular concentrations in 3D at microscopic resolution.  

 

The key advantage was the development of a genuine combination of in vivo 3D imaging with 

quantitative spectro-microscopy for producing a 3D quantitative chemical image of a tissue block, 

here a mouse brain. Our technique requires only a fresh-frozen tissue block to obtain a 3D image 

made extremely rich of chemical information thanks to the spectral data it contains. And the use of 

high-resolution X-ray tomograms of the mouse head to reconstruct a brain volume intended to 

histological analyses from only 3 projections ensured to limit the X-ray dose to the minimum.  

 

Other in vivo techniques might be used for obtaining similarly the actual shape of the brain without 

the use of imaging contrast agents [195], but µCT is well known and accessible to most of modern 

research laboratories and pathology services. Furthermore, since we are not using either labeling and 

staining procedures for histology or contrast agents for in vivo imaging, the chemical contents of the 

tissue are not altered [90], which is the mandatory condition to expect further quantitative chemical 

analyses. 

 

I first demonstrated that the 3D spectrum matrix formed by patched 2D-IR images can be used for 

many different data extractions from the same dataset. I used the Allen brain atlas as a worldwide 

recognized reference for the mouse brain anatomy.  

 

Using the full spectral intensity 3D image of the brain, we could segment and mesh many different 

anatomical regions. It is noteworthy that the full spectral intensity images of the brain were already 

delineating many different brain regions comparable to what is usually observed from coloration of 

IHC images (hippocampus, cerebral cortex, hippocampal regions, cerebellum lobules, hypothalamus 

and thalamus, etc.).  
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I separated the right (with tumor) and left (healthy) hemispheres to segment anatomical regions only 

based on spectral data and that was perfectly matching the reference atlases for the mouse brain. The 

3D spectrum matrix of the tumor could be also extracted and its chemical contents analyzed 

separately.  

 

It is therefore possible to separate tissue regions, analyze their chemical content variations, changes 

induced by borders or interface between anatomical regions, compare healthy and pathological 

specimens, and many more. 

 

The second major objective of this methodology development for 3D pathology was to extract and 

reconstruct quantitative chemical information from relevant tissue parameters. To date, quantitative 

histology has remained limited to the quantitation of objects [208] and sub-structures [209] in tissue 

sections, but not to its chemical contents [87]. I demonstrated that a 3D quantitative chemical image 

provided by IR spectro-microscopy is able to solve one of the most limiting aspect of conventional 

histological methods: the lack of quantitative analysis of molecular contents in tissues.  

 

I focused on tissue metabolic parameters which regulation is deeply altered by growing tumors [194, 

200], such as gliomas. I first calibrated the absorption values for glucose, glycogen, and lactate using 

their 2nd derivative spectra with respect to biochemical assays performed on brain homogenates 

obtained in parallel.  

 

I used well-known procedures for extraction of IR absorptions [193, 2] that we could translate as 

concentrations [210]. The variations in metabolic molecule absorptions are consistent with the 

literature [188], where a 2-3-fold concentration change can be observed for these metabolic 

parameters between regions. The brain regions exhibit important glucose concentrations changes 

[202].  

 

Therefore, we used the meshed anatomical regions of the brain as previously defined to determine 

their glucose, glycogen, and lactate concentration variations. Our results were found very similar to 

the few other studies available, i.e., which analyzed brain tissue areas separately (by microdissection 

[201, 202, 205]) and used quantitative methods (enzymatic assays).  

 

Interestingly, the tumor volume exhibited more homogeneous metabolic concentrations, but with 

glucose and glycogen 60-70% lower and lactate 110% higher than the brain healthy tissues 
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counterpart. This example of quantitative anatomo-metabolic analysis shows the potential of the 

method for 3D pathology in general. 

 

I have thus combined an efficient anatomical rendering of the mouse brain with a quantitative 

chemical analysis of its contents from the same dataset. The 3D volume renderings for anatomical, 

chemical and metabolic contents of the mouse brain with a tumor reached an incomparable level of 

information for a 3D microscopy analysis.  

 

It was also shown that co-registration between in vivo and histological analyses could be enriched by 

existing anatomical atlases. The quantitative volume rendering with transparency allows a direct 3D 

visualization of internal anatomy of the brain with concurrent quantitative analysis of its molecular 

concentrations.  

 

This new methodology opens a new era for histology since two major features can be developed now: 

the 3D study of tissues/organs and their quantitative chemical analysis for an infinite range of 

possibilities, as much as chemical information can be produced from IR spectral data to create 

relevant metadata.  

 

I can assert that this methodology is the first realistic candidate for the development of 3D pathology 

as a routine for biomedical research, and possibly also for clinical applications. Indeed, all the steps 

of the image acquisition and data treatments can be automated for a standardized output of results.  

 

Thanks to the chemical information that IR spectroscopy provides, it will be feasible to extract many 

different features of a tissue block, such as the blood vessel network [26], its biochemistry, its 

metabolism, for instance. The development of sophisticated spectral data treatments will allow 

defining the chemical (spectral) profile of these tissue features for 3D reconstruction at microscopic 

resolution.  

As we demonstrated for anatomical and metabolic features of a mouse brain, the exploitation of the 

whole spectral information, called ‘spectromics’, from a tissue block will expand tremendously the 

possible applications of this methodology. This is also opening the way to multimodal data 

treatments, where machine learning algorithms will be able to cross-correlate events from different 

sources: anatomical, metabolic and biochemical, with omics to improve my knowledge in health and 

disease. 
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CHAPTER 5: 3D Anatomo-Chemistry of 
mouse brain 
 

In this chapter, we introduce a broader application of our methodology in the reconstruction of the 

anatomy of mouse brain. I propose the use of IR imaging to reconstruct the anatomy of the mouse 

brain based on the chemical composition of different anatomical regions.  

 

As demonstrated in the previous chapter, our methods can be used to resolve anatomical structures in 

mouse brains based on their chemical profile. However, resolving the whole anatomy of the mouse 

brain comes with a lot of complexity due to subtler chemical variations between anatomical regions, 

thus leading to more accurate internal segmentation, which in turn requires more accurate corrections 

of anatomical modifications induced by organ extraction from skull, sectioning/deposit procedures, 

and signal intensity normalization over the 3D spectrum matrix. 

 

While resolving a full anatomical atlas of the mouse brain based on the chemical profiles of different 

anatomical region is feasible, however, it was out of the scope of this study due to the constraint of 

time.  It remains an elusive task due to the complexity of resolving to precision every subtle difference 

in chemical profile identified, thus leading to more accurate internal segmentation, which in turn 

requires more accurate corrections of anatomical modifications induced by organ extraction from 

skull, sectioning/deposit procedures, and signal intensity normalization over the 3D spectrum matrix. 

 

Our willingness was rather to demonstrate that we could analyze a large tissue block at the scale of 

an organ like the mouse brain. Consequently, we present in this chapter, the results of resolving salient 

anatomical regions based on their chemical profile.  

 

Figure 51 shows the overview of our experiment. I aim to resolve spectra data to anatomical sections 

and thereafter reconstruct the whole the anatomical structures in 3D.  

Our aim can be summarized as follow: 

a. To demonstrate that 3D chemical imaging using IR spectro-microscopy can be used to 

investigate large tissue blocks. 

b. To demonstrate that 3D chemical imaging using IR spectro-microscopy can be used to 

differentiate anatomical regions in the mouse brain based on their chemical profile. 
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Figure 51 Overview of 3D anatomo-chemistry of mouse brain [111] 

Here, we present the methods used in our experiments and thereafter the results and perspectives 

drawn from our experiments using a healthy mouse brain. 

 

5.1. Methods 
Below are the methods used in our experiments from sample preparation to 3D reconstruction of 

anatomical regions of the mouse brain: 

5.1.1. Sample preparations 
Full brains were removed from sacrificed mice. The sample holder with brain were inserted in a 

plastic tube and plunged into liquid N2 for instant freezing. The frozen brain was deposited in the 

upright position (with cerebellum on the bottom) on cooled glue (polyvinyl alcohol for cryostat, -

20°C) to avoid tissue embedding.  

 

The total duration from the death of animal to the complete freezing of brain was always less than 

two minutes, which guaranty that degradation in brain cell and tissue contents was limited.  
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After freezing, additional glue was used to homogenize the sample as a regular block intended for 

cryosections (Cryostat CM1900, Leica-Microsystems, France). A complete sectioning of the brain 

was performed at 20-µm thickness. A total of 224 sections was obtained and were deposited on CaF2 

windows. 

5.1.2. X-ray image acquisitions 
Microradiology was performed with unmonochromatized (white) synchrotron X-rays emitted at the 

01-A beamline wavelength shifter of the National Synchrotron Radiation Research Center (NSRRC, 

Hsinchu, Taiwan). The photon energy ranged from 4 keV to 30 keV with critical energy at ~12 keV; 

the beam current was kept constant at 360 mA with the top-up operation mode all over acquisition 

periods.  

 

To obtain 5.59×3.43 mm images X-rays were converted into visible light using a CdWO4 single 

crystal scintillator and then detecting the photons with an optical microscope equipped with a 1600 × 

1200 pixel CCD camera (model 211, Diagnostic Instruments). I reduced the radiation dose by 

attenuating the X-ray beam with two 550 µm silicon wafers.  

 

The dose was 33.9 Gy per 100 ms for a specimen thickness of 1 cm placed before the sample. The 

sample-scintillator distance was 5 cm. I used a 2× lens in the optical microscope to obtain the desired 

field of view; the pixel size in the final image was 2×2 µm².  

 

A simple background flattening image filter was used for large area micro-radiology images. The 

conceptual details of synchrotron-based microtomography, including absorption and phase contrast, 

have been discussed in previous study53.  

 

The high-resolution tomographic images were captured with 360 angles over 180 degrees. The low 

resolution (and low X-ray dose) images were captured with 3 angles (-90, 0, 90 degrees) and 

reconstructed using the high-resolution models. 

 

5.1.3. IR acquisitions for 20-µm spatial resolution imaging 
I analyzed the mouse brain tissue sections by IR microscopy. The QCL-IR microscope (Spero®, 

Daylight Solutions, CA, USA) is equipped with 4 IR lasers providing wavelengths every 4 cm-1 along 

the 1800-900 cm-1 spectral interval, thus 225 absorption values.  
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The microscope is constantly purged with dry air and sample compartment is isolated from ambient 

air by a plastic box. The detector is a non-N2-liquid frozen focal plane array (FPA) detector with 

480x480 elements.  

A total of 214 IR images was obtained for the 3D-IR image The microscope was installed in a 

thermally controlled room (20°C) for standardizing the ambient conditions during acquisitions over 

the total duration of acquisitions (4 months).  

 

Raw IR image data were stored on server and duplicated for saving a set of 2D-IR images at ~20-µm 

resolution. The 214 2D-IR images were obtained and represented a matrix of 10.9-million IR spectra 

and 248 Gb of raw data on a storage server.  

 

5.1.4. IR spectra data treatments 
(a) IR image post-processing:  

The corrected 2D-IR images were cropped to remove pixels (and thus IR spectra) out of the brain 

section (containing OCT glue and other features that could bring artefactual data after spectra data 

treatments, and thus alter the quality of the final 3D images derived from the 3D IR spectrum matrix) 

and the 3D-IR image was patched as a 3D spectrum matrix of the brain only. 

 

All IR spectra were baseline corrected using a standard procedure (elastic correction based on null 

absorption at 1800 cm-1). Absorbance spectra were first used to check that spectral intensity scale was 

consistent between IR images. 

 

 (b) Anatomical regions:  

As stated in the aim of our experiments, we do not seek to resolve the whole anatomy of the mouse 

brain. Thus, we chose to resolve large myelinated anatomical regions of the mouse brain. In order to 

resolve these regions, we performed the segmentation of anatomical regions after a classical 

spectroscopic analysis, i.e., by calculating the protein-to-lipid absorption ratio ʃ(1700-1480 cm-

1)/ʃ(1760-1710 cm-1). Due to the high lipid composition of myelin, these regions are well delineated 

and can thus be extracted by segmentation.  

 

To extract the different salient regions obtained after spectroscopic analysis, we exploit the intensity 

scale to initially eliminate smaller regions and thereafter perform a topographical analysis to segment 
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the different regions. For every 2D-IR image, we performed a topographical analysis to identify 

discrete anatomical structures with the anatomical regions and this is followed by a parameterized 

shape segmentation procedure in order extract each structure as an independent shape as well as 

control the minimum size of anatomical structures resolved.  

 

Once an anatomical structure could be highlighted, it was extracted and saved as an independent 

image for separate analysis. The anatomical structures extracted from each 2D-IR image were 

systematically compared with each other to establish correlation between similar structures in 

subsequent structures. When a correspondence is established, the similar structures are assigned the 

same color for proper visualization. 

 

 5.1.5. 3D-IR image reconstruction:  
I applied our hierarchical 3D reconstruction method for the 3D reconstruction of the extracted 

anatomical structures. This procedure is divided into 3 major parts, the global volume correction, 

global slice corrections and local structures correction. 

 

The ʃ(1800-900 cm-1) spectral intensity integration was calculated for all IR spectra and the 3D image 

was reconstructed (full spectral intensity 3D image of the brain). The full spectral intensity scale 

typically ranges between 0 and 300, and this scale was applied to all 2D-IR images before 3D 

reconstruction.  

 

The 3D patch of 2D-IR images was first performed with uncorrected 2D-IR images (Figure 48) to 

show the mediocre volume rendering induced by the multiple tissue sections shape alterations due to 

surgery, sample deposition on sample holder, and cryomicrotomy. 

 

To correct the shape aberrations due to surgery, sample deposition on sample holder, and 

cryomicrotomy, firstly, we performed a slice-slice registration in order to correct global alignment 

problems. The aligned 2D-IR images were then reconstructed to show that this procedure only solves 

the global alignment problem that results from cryomicrotomy. However, the problem of relaxation 

and shape loss due to sample extraction from its micro environment still persists. Thus the need for a 

global shape correction by X-ray imaging is highlighted. 
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The X-ray images of the skull were reconstructed into a 3D volume and this is followed by virtually 

sectioning the X-ray tomogram in order to correct the global shape of each 2D-IR image. The mask 

of the shape of each 2D-IR image was matched with a virtual section of the x-ray tomogram.  

 

A threshold of 98% correlation was set to ensure the best match is selected for each section. In cases 

of no appropriate match, the correlation between preceding and subsequent 2D-IR image was 

computed and the virtual section corresponding to the best correlated image was used.  

 

The mask of each 2D-IR image was subsequently mapped to the corresponding virtual section from 

the x-ray tomogram. Each 2D-IR image was then fitted into the new mask, thereby adjusting the 

internal structures proportionately to the difference between the old mask and the new mask.   

 

The same 3D patch was then performed with the corrected 2D-IR images by X-ray imaging allowing 

to align properly each 2D-IR image and recovering the distorted global shape of the sample due to 

sample preparation. However, the problem of alignment of anatomical regions and structures is 

highlighted at this stage due to the innate aberrations from sample preparation and now magnified by 

the global corrections in the previous step. 

 

Finally, to correct the anatomical structure aberrations, a local correction is performed on each slice 

while preserving the global shape correction by introducing a constraint with the mask of the global 

shape. Each anatomical structure was corrected from slice to slice; the structures were corrected for 

alignment and shape mismatch.     

 

5.2. Results 
Below is a step by step presentation of the results of our experiments on a healthy mouse brain for 

3D reconstruction of anatomical structures based on their chemical profile. 

 

5.2.1. Acquisition of the actual 3D shape of the brain 
I first used mice heads for X-ray tomographic analysis of the brain volume. Heads were analyzed 

with and without brain inside the skull to obtain the actual brain volume by subtraction of segmented 

3D images. The segmentation method we used allowed to obtain the meshing of brain with a 2-µm 

accuracy.  
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The high-resolution images were used as models for resizing the low-dose 3-projections X-ray 

images. The objective was to obtain a 3D image of the brain without altering its contents due to X-

rays, and the choice of X-ray microscopy is also to avoid the use of contrast agents or labeling 

methods (as for MRI), which modify the chemical contents of the tissues.  

 

It would have thus affected the chemical analyses by IR microscopy after histology. The volume 

rendering from 3 axial absorption projections allowed to obtain a realistic CT shape of the mouse 

brain that was used to virtualize all tissue sections and create a 2D mask of their planar limits. 

 

The main issue following the acquisition of a brain volume from 3 axial absorption projections was 

to determine the beginning and ending point of brain sectioning as well as the actual axis of 

sectioning. This issue was solved by using an available anatomical atlas of the mouse brain, the Allen 

Developing Mouse Brain Atlas29.  

 

I resized the atlas with respect to the actual volume of the mouse brain. I used a graph-theoretic slice-

to-slice reconstruction with a global histology-to-CT reconstruction to achieve high accuracy, both in 

the alignment of features between slices and in the 3D shape of the reconstructed brain. 
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Figure 52 X-ray tomographic reconstruction of the mouse skull from 12 different projections 

 

   

5.2.2. Acquisition of a 3D IR spectrum matrix of the brain 
After acquisition of the three X-ray projections for volume rendering of the brain, the organ was 

removed from skull and deposited in the upright position (with cerebellum on the bottom) on sample 

holder for continuous cryomicrotomy at a 20-µm thickness.  

An example of 2D IR image of the mouse brain with typical IR spectra from different anatomical 

regions is shown in Figure 53. 
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Figure 53 Mouse brain anatomy IR metadata image showing different labelled anatomical regions. 

 

Figure 53 show a 3D-IR image obtained from a mouse brain: 

A.  The 2D-IR image of the section shown is approximatively located at Bregma -5.04 mm / 

internaural -0.24 mm. The mouse brain has been sectioned at 20-µm thickness (370 sections). 

The IR image is shown as a full spectral absorbance (in a.u.²). 

B. The IR spectra in corresponding to the 1-4 positions marked in (A) are shown in the central 

panel. They show important absorbance intensity variations throughout the spectral interval 

(1800-900 cm-1, also called the fingerprint region). These absorbance intensity variations 

allow recognizing the major anatomical regions of the mouse brain, which can be used for 

proper alignment using anatomical atlas of the brain (such as the Allen Developing Mouse 

Brain Atlas).  

C. For the 3D-IR image reconstruction, the full spectral absorbance intensity scale was set free 

(set at 0 for artefactual pixels in 2D images, <1.5% of pixels for all images) for the 185 raw 

2D-IR images obtained from mouse brain sectioning. The 3D patch shows that many tissue 

shape alterations where present on 2D-IR images. 

 

IR spectra from different regions of the brain show quite different absorption profile, thus confirming 

that variations of chemical contents are significant. For individual 2D-IR images, the ʃ(1800-900 cm-

1) intensity scale ranged 0-192 to 0-331 for the whole set of 214 images.  

 

The intensity scale was set free for the 3D-IR image reconstruction. The first reconstruction of the 

3D-IR image from 2D raw IR images (without any planar shape correction) was just center-aligned 

using the central axis between lobes as anatomical reference.  
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As shown in Figure 48, the general shape of the 3D-IR image of the brain contains numerous 

distortions. They came from organ shape alterations during surgery (due to the relapse of the brain 

volume once extracted from the skull, which exerts a pressure on brain tissues, and also due to the 

gravity-related collapse of this very soft tissue at deposition on the sample holder).  

 

This is also due to the well-known tissue alterations during cryomicrotomy, where tears, bends, 

cracks, etc. appear at the tissue sectioning or deposition process. This is showing clearly the relevance 

of using a 3D in situ (or in vivo) imaging method for obtaining a realistic volume rendering of the 

mouse brain before histological analyses. This is also a critical to ensure further quantitative chemical 

analysis from the 3D-IR image. 

 

5.2.3. Anatomical Region Extraction 
An important objective of our study was to demonstrate that 3D chemical imaging by IR spectro-

microscopy can be used to differentiate different anatomical regions in the mouse brain. However, it 

was out of the scope of this study due to the constraint of time to extract all the possible anatomical 

regions and structures in the mouse brain.  

 

To this end, we chose to resolve large myelinated anatomical regions of the mouse brain. In order to 

resolve these regions, we performed the segmentation of anatomical regions after a classical 

spectroscopic analysis, i.e., by calculating the protein-to-lipid absorption ratio ʃ(1700-1480 cm-

1)/ʃ(1760-1710 cm-1). Due to the high lipid composition of myelin, these regions are well delineated 

and can thus be extracted by segmentation. 

To extract the anatomical structures, a topological analysis is made in order to determine connected 

components. Figure 54 shows the extraction of the possible anatomical structures in the 2D IR-Image  
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Figure 54 Extraction of anatomical structures from IR metadata image of protein(ʃ(1700-1480 cm-1)) to lipid ʃ(1760-1710 cm-1) ratio 

by topographical analysis. 

 

Once an anatomical structure could be highlighted, it was extracted and saved as an independent 

image for separate analysis.  

 
Figure 55 Consistent extraction of different anatomical structures come consecutive slices in the dataset with a color code assigned 

to each structure.. 

The anatomical structures extracted from each 2D-IR image were systematically compared with 

each other to establish correlation between similar structures in subsequent structures. When a 
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correspondence is established, the similar structures are assigned the same color for proper 

visualization. 

 
Figure 56 Similar structures extracted to establish correspondence and assign similar color codes for visualization. 

5.2.5. 3D-IR image reconstruction:  
The ʃ(1800-900 cm-1) spectral intensity integration was calculated for all IR spectra and the 3D image 

was reconstructed (full spectral intensity 3D image of the brain). The full spectral intensity scale 

typically ranges between 0 and 300, and this scale was applied to all 2D-IR images before 3D 

reconstruction.  

The 3D patch of 2D-IR images was first performed with uncorrected 2D-IR images (Figure 57) to 

show the mediocre volume rendering induced by the multiple tissue sections shape alterations due to 

surgery, sample deposition on sample holder, and cryomicrotomy. 
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Figure 57 3D reconstruction of unaligned tissue slices. 

 

To correct the shape aberrations due to surgery, sample deposition on sample holder, and 

cryomicrotomy, firstly, we performed a slice-slice registration in order to correct global alignment 

problems. The aligned 2D-IR images were then reconstructed to show that this procedure only solves 

the global alignment problem that results from cryomicrotomy. However, the problem of relaxation 

and shape loss due to sample extraction from its micro environment still persists. Thus the need for a 

global shape correction by X-ray imaging is highlighted. 

 
Figure 58 3D reconstruction after global tissue shape alignment 
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The X-ray images of the skull were reconstructed into a 3D volume and this is followed by virtually 

sectioning the X-ray tomogram in order to correct the global shape of each 2D-IR image. The mask 

of the shape of each 2D-IR image was matched with a virtual section of the x-ray tomogram.  

 
Figure 59 Virtual section from 3D x-ray reference model 

A threshold of 98% correlation was set to ensure the best match is selected for each section. In cases 

of no appropriate match, the correlation between preceding and subsequent 2D-IR image was 

computed and the virtual section corresponding to the best correlated image was used.  

 

The mask of each 2D-IR image was subsequently mapped to the corresponding virtual section from 

the x-ray tomogram. Each 2D-IR image was then fitted into the new mask, thereby adjusting the 

internal structures proportionately to the difference between the old mask and the new mask.   
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Figure 60 Global shape correction using x-ray model. (a) Mask of virtual section from x-ray model. (b) IR metadata image mapped 

and deformed to fit virtual section mask. (c) Reconstructed volume after correction using x-ray model. 

 

The same 3D patch was then performed with the corrected 2D-IR images by X-ray imaging allowing 

to align properly each 2D-IR image and recovering the distorted global shape of the sample due to 

sample preparation. However, the problem of alignment of anatomical regions and structures is 

highlighted at this stage due to the innate aberrations from sample preparation and now magnified by 

the global corrections in the previous step. 

 

Finally, to correct the anatomical structure aberrations, a local correction is performed on each slice 

while preserving the global shape correction by introducing a constraint with the mask of the global 

shape. Each anatomical structure was corrected from slice to slice; the structures were corrected for 

alignment and shape mismatch.     
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Figure 61 Local aberration correction showing the correction of some local shape distortion on the tissue slice in (b). (a) and (c) are 

reference slices used for the correction of (c). 

To reconstruct specific anatomical structures, we perform segmentation on the global shape and local 

aberrations corrected IR metadata images. Segmentation is performed using a topological analysis 

segmentation. The tissue slices are segmented into different shapes based on the variations of 

absorption intensity.  

 

Similar structures are then matched to assign the same color code for visualization before stacking 

into a 3D volume. Figure 62 shows an example of extracting and reconstructing the corpus callosum 

and the basal ganglia region of the mouse brain. 
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Figure 62 3D Reconstruction of the corpus callosum and basal ganglia region of  mouse brain. (a) IR metadata image of the protein 

to lipid absorption ratio ʃ(1700-1480 cm-1)/ʃ(1760-1710 cm-1). (b) Segmentation of the corpus callosum and basal ganglia based on 

the topological analysis of tissue slices. (c) Different views of the 3D reconstructed corpus callosum and the basal ganglia region of 

the mouse brain.    

5.3. Discussion 
3D histology is a powerful approach for imaging biological specimens is the next frontier for 

modern histopathology. 3D histology offers a significant advantage over 2D because tissue blocks 

are not naturally transparent, and they contain complex 3D networks (blood and lymph systems, 

membranes, nerves and other fibers, etc.), a 3D arrangement of different cell phenotypes that is not 

homogeneous, and an extracellular space that is composed of many other compounds and 

filamentous structures. From a geometric point of view, it is possible in principle to instantly 

visualize tissue abnormalities using 3D histology. 

3D anatomo-chemistry as the name implies aims to combine the study of the anatomy of bio 

samples in relation to their chemical compositions. Until now, the anatomy and quantitative 

chemical composition of biological samples have been studied independently. To the best of my 

knowledge, this is because there is no in-vivo imaging method able to resolve the anatomy and 

quantitative chemical composition of biological samples simultaneously.  

3D IR spectro-microscopy offers a unique advantage due to its ability to resolve the anatomy and 

chemistry of biological samples. The use of a stain-free method such as IR microscopy is essential 

for 3D anatomo-chemistry as it leave the chemistry of the tissues unaltered. The 3D spectrum 
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matrix provides a molecular ‘fingerprint’ from spectra that can be used to delineate different 

anatomical regions. 

The key advantage was the development of a genuine combination of in vivo 3D imaging with 

quantitative spectro-microscopy for producing a 3D quantitative chemical image of a tissue block, 

here a mouse brain. Our technique requires only a fresh-frozen tissue block to obtain a 3D image 

made extremely rich of chemical information thanks to the spectral data it contains. And the use of 

high-resolution X-ray tomograms of the mouse head to reconstruct a brain volume intended to 

histological analyses from only 3 projections ensured to limit the X-ray dose to the minimum.  

 

Other in vivo techniques might be used for obtaining similarly the actual shape of the brain without 

the use of imaging contrast agents, but µCT is well known and accessible to most of modern 

research laboratories and pathology services. Furthermore, since we are not using either labeling 

and staining procedures for histology or contrast agents for in vivo imaging, the chemical contents 

of the tissue are not altered31, which is the mandatory condition to expect further quantitative 

chemical analyses. 

I first demonstrated that the 3D spectrum matrix formed by patched 2D-IR images can be used for 

many different data extractions from the same dataset. Using the full spectral intensity 3D image of 

the brain, we could segment and mesh many different anatomical regions.  

It is noteworthy that the full spectral intensity images of the brain were already delineating many 

different brain regions comparable to what is usually observed from coloration of IHC images 

(hippocampus, cerebral cortex, hippocampal regions, cerebellum lobules, hypothalamus and 

thalamus, etc.).  

 

The second objective of this methodology was to demonstrate that we can extract anatomical 

structures of interest from the 3D spectrum matrix formed by 2D-IR images. IR micro-spectroscopy 

is able to segment tissue block based on their chemical profile. I showed this by extracting myelinated 

structures from the mouse brain using well-known procedures for extraction of IR absorptions in 

order to segment the lipid rich myelinated regions of the brain. 

 

As expected, we were able to resolve lipid rich fibre tracts such as the corpus callosum and big 

anatomical regions of the mouse brain such as the basal ganglia, hippocampus and thalamus. I have 

also demonstrated that these anatomical structures of interest can be reconstructed in 3D by using a 

combination of quantitative chemical analysis and in-vivo x-ray imaging.  
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I showed that we can resolve some of the bottlenecks associated with 3D histology thereby achieving 

3D reconstruction similar to the ones obtainable by in-vivo techniques such as MRI. I have thus 

combined an efficient anatomical rendering of the mouse brain with a quantitative chemical analysis 

of its contents from the same dataset.  

 

This new methodology opens a new era for histology since two major features can be developed now: 

the 3D study of tissues/organs and their quantitative chemical analysis for an infinite range of 

possibilities, as much as chemical information can be produced from IR spectral data to create 

relevant metadata.  

 

While we were unable to resolve all the possible anatomical structures in the brain due to the constrain 

of time, this methodology is readily applicable for use in 3D pathology which does not require 

resolving all the complex anatomy of the brain. 

 

I can assert that this methodology is the first realistic candidate for the development of 3D pathology 

as a routine for biomedical research, and possibly also for clinical applications. This methodology 

can be easily adapted to extract any anatomical structure including pathological structures. Indeed, 

all the steps of the image acquisition and data treatments can be automated for a standardized output 

of results in clinical applications.  

 

Thanks to the chemical information that IR spectroscopy provides, it will be feasible to extract many 

different features of a tissue block, such as the blood vessel network2, its biochemistry, its 

metabolism, for instance. The development of sophisticated spectral data treatments will allow 

defining the chemical (spectral) profile of these tissue features for 3D reconstruction at microscopic 

resolution. 
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Conclusion and Perspectives. 
 

3D histology offers a powerful approach for imaging biological specimens and is the next frontier 

for modern histopathology. It offers a significant advantage over 2D because tissue blocks are not 

naturally transparent, and they contain complex 3D networks (blood and lymph systems, 

membranes, nerves and other fibers, etc.), a 3D arrangement of different cell phenotypes that is not 

homogeneous, and an extracellular space that is composed of many other compounds and 

filamentous structures. From a geometric point of view, it is possible in principle to instantly 

visualize tissue abnormalities using 3D histology. 

A classical application of 3D histology is in the area of pathology where it allows a direct visualization 

of tissue features, particularly those involving structural changes or those in which the spatial 

relationship of disease features is important. But, this is restrictive since tissues are not only defined 

by structures; their chemical contents play a major role in the homeostasis of organs, notably within 

extracellular space. 

 

3D pathology will thus make sense once the anatomical (or sub-structure networks) and chemical 

features of a tissue block are revealed jointly. However, analyzing the chemical parameters of the 

tissue (which can be translated as molecular, biochemical, etc. parameters) would require developing 

a quantitative method for 3D reconstruction and visualization on a common intensity scale. 

 

Until now, the use of 3D pathology has not been routine in research and clinics due to technical 

difficulties in reconstructing 3D tissue blocks from 2D images of serial sections. Others have 

developed methods for a 3D reconstruction of tissue blocks, but these ones were first stained [109] 

or used block-face photographic volume registration [110] with MRI to help maintain the shape of 

very soft tissues, such as brain.  

 

Consequently, the use of labeling and staining methods or gadolinium injections for MRI prevent 

further “unaltered” chemical analysis. These conventional methods are also ‘blind’ to the spatially 

ordered metabolic dynamics within tissues. Furthermore, multiple immunostaining cannot identify 

more than four different antigens on a same sample [26]. Thus, it is important to develop techniques 

which are able to analyse simultaneously the chemical and anatomical features tissue blocks. 
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Spectroscopic techniques offer quantitative measurement of tissue contents. Combining a 

spectrometer and a microscope is in a setup called spectro-microscopy. These setups offer a global 

view of the sample chemical contents, which can be further analyzed for extracting relevant molecular 

parameters for diagnosis [27].  3D chemical imaging is achieved by several spectro-microscopic 

methods. These provide a quantitative analysis of tissue content and substructures with a depth of 

information that no other histological technique can determine from the same sample. However, they 

are currently underexploited despite their potential. 

 

An emerging spectro-microscopic technique for histopathological examination is IR spectro-

microscopy. As a result of the advent of powerful IR sources with quantum-cascade lasers (QCLs) in 

2014, IR spectro-microscopy can now produce millions of IR spectra per hour with high S/N. This 

innovation has led to new developments in IR image analyses for biosamples, such as 3D-IR image 

reconstructions for the quantitative analysis of metabolic or biochemical parameters [27]. 

 

3D reconstruction was previously unnecessary in IR spectro-microscopy. Acquisition of a 3D 

histological dataset was not feasible due to bottlenecks such as inability to maintain consistent S/N 

and relatively slow acquisition time for large samples. As the new frontier of 3D chemical imaging 

by IR is just opening up, there is currently no standard processing sequence or specialized algorithms 

for 3D reconstruction of IR slices. Thus, there is need to develop a standard processing sequence for 

3D reconstruction of IR slices.  

 

The objective of this thesis was to develop IR microscopy for 3D pathology and consequently use 

these methods for 3D chemical imaging of tumors in the brain. However, in order to develop IR 

microscopy for 3D chemical imaging, we identified the need to develop an advanced processing 

sequence for 3D chemical imaging by IR microscopy. This is necessary in order to standardize 

experimental methods in IR data treatment and 3D image reconstruction of tissues for routine use in 

clinics.  

 

I thus developed a new processing sequence for 3D chemical imaging by IR microscopy. This 

processing sequence covers the process of sample preparation, data acquisition of tissue samples, IR 

data treatment methods, metadata extraction methods and the 3D reconstruction of tissue slices. Our 

proposed 3D reconstruction technique was a combination of in vivo 3D imaging with quantitative 

spectro-microscopy. 
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The key advantage of this approach was the development of a genuine combination of in vivo 3D 

imaging with quantitative spectro-microscopy for producing a 3D quantitative chemical image of a 

tissue block, here a mouse brain. Our technique requires only a fresh-frozen tissue block to obtain a 

3D image made extremely rich of chemical information thanks to the spectral data it contains. And 

the use of high-resolution X-ray tomograms of the mouse head to reconstruct a brain volume intended 

to histological analyses from only 3 projections ensured to limit the X-ray dose to the minimum.  

 

Other in vivo techniques might be used for obtaining similarly the actual shape of the brain without 

the use of imaging contrast agents [16], but µCT is well known and accessible to most of modern 

research laboratories and pathology services. Furthermore, since we are not using either labeling and 

staining procedures for histology or contrast agents for in vivo imaging, the chemical contents of the 

tissue are not altered [87], which is the mandatory condition to expect further quantitative chemical 

analyses. 

 

Consequently, we first demonstrated that the 3D spectrum matrix formed by patched 2D-IR images 

can be used for many different data extractions from the same dataset. I used the Allen brain atlas as 

a worldwide recognized reference for the mouse brain anatomy.  

 

Using the full spectral intensity 3D image of the brain, we could segment and mesh many different 

anatomical regions. It is noteworthy that the full spectral intensity images of the brain were already 

delineating many different brain regions comparable to what is usually observed from coloration of 

IHC images (hippocampus, cerebral cortex, hippocampal regions, cerebellum lobules, hypothalamus 

and thalamus, etc.).  

 

I separated the right (with tumor) and left (healthy) hemispheres to segment anatomical regions only 

based on spectral data and that was perfectly matching the reference atlases for the mouse brain. The 

3D spectrum matrix of the tumor could be also extracted and its chemical contents analyzed 

separately.  

 

It is therefore possible to separate tissue regions, analyze their chemical content variations, changes 

induced by borders or interface between anatomical regions, compare healthy and pathological 

specimens, and many more. 
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In addition, we demonstrate that we can extract and reconstruct quantitative chemical information 

from relevant tissue parameters. To date, quantitative histology has remained limited to the 

quantitation of objects [208] and sub-structures [209] in tissue sections, but not to its chemical 

contents [90]. I demonstrated that a 3D quantitative chemical image provided by IR spectro-

microscopy is able to solve one of the most limiting aspect of conventional histological methods: the 

lack of quantitative analysis of molecular contents in tissues.  

 

I focused on tissue metabolic parameters which regulation is deeply altered by growing tumors [194, 

200], such as gliomas. I first calibrated the absorption values for glucose, glycogen, and lactate using 

their 2nd derivative spectra with respect to biochemical assays performed on brain homogenates 

obtained in parallel.  

 

I used well-known procedures for extraction of IR absorptions [193, 2] that we could translate as 

concentrations [210]. The variations in metabolic molecule absorptions are consistent with the 

literature [188], where a 2-3-fold concentration change can be observed for these metabolic 

parameters between regions. The brain regions exhibit important glucose concentrations changes 

[202].  

 

Therefore, we used the meshed anatomical regions of the brain as previously defined to determine 

their glucose, glycogen, and lactate concentration variations. Our results were found very similar to 

the few other studies available, i.e., which analyzed brain tissue areas separately (by microdissection 

[201, 202, 205]) and used quantitative methods (enzymatic assays).  

 

I showed that the tumor volume exhibited more homogeneous metabolic concentrations, but with 

glucose and glycogen 60-70% lower and lactate 110% higher than the brain healthy tissues 

counterpart. This example of quantitative anatomo-metabolic analysis shows the potential of the 

method for 3D pathology in general while also assessing the well-studied Warburg effect in tumors. 

 

I have thus combined an efficient anatomical rendering of the mouse brain with a quantitative 

chemical analysis of its contents from the same dataset. The 3D volume renderings for anatomical, 

chemical and metabolic contents of the mouse brain with a tumor reached an incomparable level of 

information for a 3D microscopy analysis.  
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It was also shown that co-registration between in vivo and histological analyses could be enriched by 

existing anatomical atlases. The quantitative volume rendering with transparency allows a direct 3D 

visualization of internal anatomy of the brain with concurrent quantitative analysis of its molecular 

concentrations.  

 

 

Finally, we showed that our methodology can be extended beyond tumors to analyse the anatomy of 

the mouse brain. I attempted to develop what we called the 3D-anatomo chemistry of the brain. 3D 

anatomo-chemistry as the name implies aims to combine the study of the anatomy of bio samples in 

relation to their chemical compositions.  

Until now, the anatomy and quantitative chemical composition of biological samples have been 

studied independently. To the best of my knowledge, this is because there is no in-vivo imaging 

method able to resolve the anatomy and quantitative chemical composition of biological samples 

simultaneously.  

I demonstrated that we can extract anatomical structures of interest from the 3D spectrum matrix 

formed by 2D-IR images. IR microscopy is able to segment tissue block based on their chemical 

profile. I showed this by extracting myelinated structures from the mouse brain using well-known 

procedures for extraction of IR absorptions in order to segment the lipid rich myelinated regions of 

the brain. 

 

As expected, we were able to resolve lipid rich fibre tracts such as the corpus callosum and big 

anatomical regions of the mouse brain such as the basal ganglia, hippocampus and thalamus. I also 

demonstrated that these anatomical structures of interest can be reconstructed in 3D by using a 

combination of quantitative chemical analysis and in-vivo x-ray imaging.  

 

I showed that we can resolve some of the bottlenecks associated with 3D histology thereby achieving 

3D reconstruction similar to the ones obtainable by in-vivo techniques such as MRI. I have thus 

combined an efficient anatomical rendering of the mouse brain with a quantitative chemical analysis 

of its contents from the same dataset.  

 

While we were unable to resolve all the possible anatomical structures in the brain due to the constrain 

of time, this methodology is readily applicable for use in 3D pathology which does not require 

resolving all the complex anatomy of the brain. 
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As we demonstrated for anatomical and metabolic features of a mouse brain, the exploitation of the 

whole spectral information, called ‘spectromics’, from a tissue block will expand tremendously the 

possible applications of this methodology. This is also opening the way to multimodal data 

treatments, where machine learning algorithms will be able to cross-correlate events from different 

sources: anatomical, metabolic and biochemical, with omics – to improve my knowledge in health 

and disease. 

 

This new methodology opens a new era for histology since two major features can be developed now: 

the 3D study of tissues/organs and their quantitative chemical analysis for an infinite range of 

possibilities, as much as chemical information can be produced from IR spectral data to create 

relevant metadata.  

 

I can assert that this methodology is the first realistic candidate for the development of 3D pathology 

as a routine for biomedical research, and possibly also for clinical applications. Indeed, all the steps 

of the image acquisition and data treatments can be automated for a standardized output of results.  

 

Thanks to the chemical information that IR spectroscopy provides, it will be feasible to extract many 

different features of a tissue block, such as the blood vessel network [26], its biochemistry, its 

metabolism, for instance. The development of sophisticated spectral data treatments will allow 

defining the chemical (spectral) profile of these tissue features for 3D reconstruction at microscopic 

resolution. 
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APPENDIX 
 

Harris corner detection 
Corners are regions in the image with large variation in intensity in all the directions. The Harris 

corner detector method was proposed to find whether a  point shows significant change in all 

direction or not [151]. If yes, then point is marked as a corner point.  

Harris corner detector is based on the auto correlation function of the intensities. It basically finds 

the difference in intensity for a displacement of (∆𝑥, ∆𝑦) in all directions. This is expressed as 

below: 

𝐸 𝑥, 𝑦 = 	 𝑤 𝑥, 𝑦
yez{|y	}fzq~e|z

. 𝐼 𝑥 + ∆𝑥, 𝑦 + ∆𝑦
��e}~�{	ez~�z�e~Z

− 𝐼(𝑥, 𝑦)
ez~�z�e~Z

2

<,Z

 

 

The window function is either a rectangular window or Gaussian window which assigns weights to 

pixels underneath.  

 

By the definition of corners, in approximate the intensity variation in a given window, the local 

maxima of the function 𝐸(𝑢, 𝑣) can be approximated. This can be done by applying Taylor 

expansion as follow: 

 

Let 𝐼< and 𝐼Z be the partial derivatives of I, such that; 

 

𝐼 𝑥 + ∆𝑥, 𝑦 + ∆𝑦 ≈ 𝐼 𝑥, 𝑦 +	𝐼< 𝑥, 𝑦 ∆𝑥 +	𝐼Z 𝑥, 𝑦 ∆𝑦 

Thus, 𝐸(𝑥, 𝑦) can be approximated as: 

 

𝐸 𝑥, 𝑦 ≈ 	 𝑤 𝑥, 𝑦 . (𝐼< 𝑥, 𝑦 ∆𝑥 +	𝐼Z 𝑥, 𝑦 ∆𝑦)2	
<,Z

		 

 

This can be rewritten in matrix form as: 

𝐸 𝑥, 𝑦 = [∆𝑥 ∆𝑦]𝑀 ∆𝑥
∆𝑦  

Where 
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𝑀 = 𝑤 𝑥, 𝑦
𝐼<𝐼< 𝐼<𝐼Z
𝐼<𝐼Z 𝐼Z𝐼Z

 

A Harris response function is then computed to determine if the point (𝑥, 𝑦) is a corner or not. The 

Harris response function is defined as: 

 

𝑅 = det 𝑀 − 	𝑘 𝑡𝑟𝑎𝑐𝑒 𝑀 2 = 	𝜆?𝜆2 − 		𝑘(𝜆? +	𝜆2)2 

 

where k is an empirically determined constant; 𝑘 ∈ 	 [0.04,0.06], 

𝜆?	𝑎𝑛𝑑	𝜆2	are the eigen values of 𝑀 

 

When	 𝑅  is small, which happens when 𝜆? and	𝜆2 are small, the region is considered flat. 

When	𝑅 < 0, which happens when 𝜆? ≫ 𝜆2 or vice versa, the region is considered an edge. 

When	𝑅 large, which happens when 𝜆? and	𝜆2 are large and 𝜆?~𝜆2 , the region is considered a 

corner. 

The Harris corner detector is invariant to translation, rotation and illumination change [152]. This 

detector is most repetitive and most informative. The disadvantage of this detector is it is not 

invariant to large scale change [153]. 

 

Scale invariant feature transform (SIFT) 
 

Scale invariance is an important factor in ensuring the reliability of extracted features in a series of 

2D histological slices. It is important that the features extracted can be detectable even under 

changes in image scale, noise and illumination. The deformation of tissue slices after histological 

sectioning contributes to the change of scale of salient features in successive tissue slices.  

 

The SIFT method is robust and invariant to scaling, orientation, illumination changes, and partially 

invariant to affine distortion. This is achieved by decomposing images into multiple resolutions and 

performing the registration from low resolutions to high resolutions, hierarchal registration speed, 

avoid local minima, and therefore improve registration performance [154]. 

 

A SIFT key-point as shown in (figure) is a circular image region with an orientation. It is described 

by a geometric frame of four parameters: the key-point center coordinates x and y, its scale (the 

radius of the region), and its orientation (an angle expressed in radians) [155]. 
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There are four main steps in SIFT feature extraction: 

 

Scale-Space Extrema Detection 

The first stage of key-point detection is to identify locations and scales that can be assigned under 

differing views of the same object. Detecting locations that are invariant to scale change of the 

image can be accomplished by searching for stable features across all possible scales, using a 

continuous function of scale known as scale space [211]. It has been shown that under a variety of 

reasonable assumptions the only possible scale-space kernel is the Gaussian function [212, 213]. 

 

Therefore, the scale space of an image is defined as a function, 𝐿(𝑥	, 𝑦, 𝜎), that is produced from the 

convolution of a variable-scale Gaussian, 𝐺(𝑥	, 𝑦, 𝜎) , with an input image, 𝐼(𝑥	, 𝑦) : 

𝐿 𝑥	, 𝑦, 𝜎 = 	𝐺 𝑥	, 𝑦, 𝜎 ∗ 	𝐼(𝑥, 𝑦) 

where ∗ is the convolution operation in x and y, 

𝐺 𝑥	, 𝑦, 𝜎 = 	
1

2𝜋𝜎2
𝑒3(<¶/	Z¶) ·¶ 

 

To efficiently detect stable key-point locations in scale space, Lowe [156] proposed using scale-

space extrema in the difference-of-Gaussian function convolved with the image, 𝐺 𝑥	, 𝑦, 𝜎  which 

can be computed from the difference of two nearby scales separated by a constant multiplicative 

factor 𝑘: This scale space extrema is computed from the expression: 

𝐷 𝑥	, 𝑦, 𝜎 = (𝐺 𝑥	, 𝑦, 𝑘𝜎 − 	𝐺 𝑥	, 𝑦, 𝜎 ) ∗ 	𝐼(𝑥, 𝑦) 

𝐷 𝑥	, 𝑦, 𝜎 = 𝐿 𝑥	, 𝑦, 𝑘𝜎 − 	𝐿 𝑥	, 𝑦, 𝜎  

It is a particularly efficient function to compute the smoothed images 𝐿 in any case for scale space 

feature description. And 𝐷 can therefore be computed by simple image subtraction. As shown in 

Fig. 2* for each octave (eight pixel area?) of scale space, the initial image is repeatedly convolved 

with Gaussians to produce the set of scale space images shown on the left. Adjacent Gaussian 

images are subtracted to produce the difference-of-Gaussian images on the right. After each octave, 

the Gaussian image is down-sampled by a factor of 2, and the process repeated. 

 

Keypoint Localization 

In order to detect the local maxima and minima of 𝐺(𝑥	, 𝑦, 𝜎), each sample point is compared to its 

eight neighbors (pixels) in the current image and nine neighbors in the scale above and below (Fig. 

5). It is selected only if it is larger than all of these neighbors or smaller than all of them. The 
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images shown in the Fig. 5 are detected by comparing a pixel (marked with X) to its 26 neighbors in 

3 × 3 regions at the current and adjacent scales (marked with circles). Once a key-point candidate 

has been found by comparing a pixel to its neighbors, the next step is to perform a detailed fit to the 

nearby data for location, scale, and ratio of principal curvatures. This information allows points to 

be rejected that have low contrast (and are therefore sensitive to noise) or are poorly localized along 

an edge. Fig. 6 shows some of the detected key-points from tested image [212]. 

 

Orientation Assignment 

By assigning a consistent orientation to each key-point based on local image properties, the key-

point descriptor can be represented relative to this orientation and therefore achieve invariance to 

image rotation. This approach contrasts with the orientation invariant descriptors of [1], in which 

each image property is based on a rotationally invariant measure. The disadvantage of that approach 

is that it limits the descriptors that can be used and discards image information by not requiring all 

measures to be based on a consistent rotation. 

The scale of the key-point is used to select the Gaussian smoothed image, 𝐿, with the closest scale, 

so that all computations are performed in a scale-invariant manner. For each image sample,𝐿(𝑥, 𝑦), 

at this scale, the gradient magnitude𝑚(𝑥, 𝑦), and orientation, 𝜃(𝑥, 𝑦), are computed using pixel 

differences [156]. 

 

Feature Description  

To generate a vector that describes a SIFT key-point, orientation histograms are created over 4x4 

sample regions. The figure shows 8 directions for each orientation histogram with the length of each 

arrow corresponding to the magnitude of that histogram entry [214]. A gradient sample on the left 

can shift up to 4 sample positions while still contributing to the same histogram on the right. So, 

4×4 array location grid and 8 orientation bins in each sample. That is 128-element dimension of key 

point descriptor [155]. 
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Speeded up robust features (SURF) 
SURF as the name implies, is a speeded-up version of SIFT. In SIFT, Lowe [156] approximated 

Laplacian of Gaussian (LoG) with Difference of Gaussian for finding scale-space. SURF goes a 

little further and approximates LoG with Box Filter [157].  

 

SURF is based on multi-scale space theory and the feature detector is based on Hessian matrix and 

also rely on the determinant of Hessian matrix for both scale-space detection and key-point 

localization.  

 

Since Hessian matrix has good performance and accuracy. In image 𝐼, 𝑋	 = (𝑥, 𝑦) is the given 

point, the Hessian matrix 𝐻(𝑋, 𝜎) in 𝑋 at scale 𝜎, it can be define as: 

𝐻 𝑋, 𝜎 = 	
𝐿<<(𝑋, 𝜎) 𝐿<Z(𝑋, 𝜎)
𝐿Z<(𝑋, 𝜎) 𝐿ZZ(𝑋, 𝜎)

 

 

Where 𝐿<<(𝑋, 𝜎) is the convolution result of the second order derivative of Gaussian filter with the 

image I in point 𝑋, and similarly for 𝐿<Z(𝑋, 𝜎) and 𝐿ZZ(𝑋, 𝜎). 

 

SURF creates a ‘stack’ without 2:1 down sampling for higher levels in the pyramid resulting in 

images of the same resolution. Due to the use of integral images, SURF filters the stack using a box 

filter approximation of second–order Gaussian partial derivatives as shown in figure (2). Since 

integral images allow the computation of rectangular box filters in near constant time [158]. 

 

Due to the use of box filters and integral images, we do not have to iteratively apply the same filter 

to the output of a previously filtered layer, but instead can apply box filters of any size at exactly the 

same speed directly on the original image and even in parallel. Therefore, the scale space is 

analyzed by up-scaling the filter size rather than iteratively reducing the image size [157]. 

 

For orientation assignment, SURF uses the Haar wavelet responses in 𝑥 and 𝑦 direction within a 

circular neighbourhood of radius 6𝑠 around the interest point, with 𝑠 the scale at which the interest 

point was detected. The sampling step is scale dependent and chosen to be 𝑠. In keeping with the 

rest, also the size of the wavelets are scale dependent and set to a side length of 4𝑠.  

Only six operations are needed to compute the response in x or y direction at any scale. Once the 

wavelet responses are calculated and weighted with a Gaussian (𝜎 = 	2𝑠) centred at the interest 
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point, the responses are represented as points in a space with the horizontal response strength along 

the abscissa and the vertical response strength along the ordinate. The dominant orientation is 

estimated by calculating the sum of all responses within a sliding orientation window of size º
6
, see 

Fig. 10.  

The horizontal and vertical responses within the window are summed. The two summed responses 

then yield a local orientation vector. The longest such vector over all windows defines the 

orientation of the interest point. The size of the sliding window is a parameter which had to be 

chosen carefully. Small sizes fire on single dominating gradients, large sizes tend to yield maxima 

in vector length that are not outspoken. Both result in a misorientation of the interest point [157]. 

 

In order to describe SURF features, the first step consists of constructing a square region centered 

around the interest point and oriented along the orientation selected in previous section. The size of 

this window is 20s. Examples of such square regions are illustrated in Fig. 11 [157]. The region is 

split up regularly into smaller 4x4 square sub-regions. This preserves important spatial information. 

For each sub-region, the horizontal (𝑑<) and vertical (𝑑Z)Haar wavelet responses at 5x5 regularly 

spaced sample points is computed.  

Then, the wavelet responses 𝑑< and 𝑑Z are summed up over each sub-region and form a first set of 

entries in the feature vector. In order to bring in information about the polarity of the intensity 

changes, the sum of the absolute values of the responses is also extracted, 𝑑<  and 𝑑Z . Hence, 

each sub-region has a 4D descriptor vector 𝑣 for its underlying intensity structure; 

𝑣 = (Σ	𝑑<, Σ	𝑑Z, Σ	 𝑑< , Σ	 𝑑Z ) 

Concatenating this for all 4x4 sub-regions, this results in a descriptor vector of length 64. The 

wavelet responses are invariant to a bias in illumination. Invariance to contrast (a scale factor) is 

achieved by turning the descriptor into a unit vector. 

 

Feature matching 

The problem of feature matching can be formulated as follows, suppose that 𝑝 is a point detected by 

a feature detector in an image associated with a descriptor 

𝜙 𝑝 = 𝜙�(𝑃) 𝑘 = 1,2, … , 𝐾} 

where for all 𝐾, the feature vector provided by the k-th descriptor is 

𝜙� 𝑝 = (𝑓?�
�, 𝑓2�

�, … , 𝑓z��
� ) 

The aim is to find the best correspondence 𝑞 in another image from the set of 𝑁 interest points 𝑄	 =

	{𝑞?, 𝑞2, . . . , 𝑞�}	by comparing the feature vector 𝜙�(𝑝) with those of the points in the set 𝑄. To this 
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end, a distance measure between the two interest points descriptors 𝜙�(𝑝) and 𝜙�(𝑞) can be 

defined as 

𝑑� 𝑝, 𝑞 = 	 𝜙� 𝑝 −	𝜙� 𝑞  

A match between the pair of interest points (𝑝, 𝑞) is accepted only if 𝑝 is the best match for 𝑞 in 

relation to all the other points in the first image and 𝑞 is the best match for 𝑝 in relation to all the 

other points in the second image. In this context, it is very important to devise an efficient algorithm 

to perform this matching process as quickly as possible. The nearest-neighbor matching in the 

feature space of the image descriptors in Euclidean norm can be used for matching vector based 

features [159]. 

 

Optical flow method 
 

The notion of optical flow literally refers to the displacements of intensity patterns. This definition 

originates from a physiological description of the visual perception of the world through image 

formation on the retina. In that sense, while optical flow is necessarily caused by relative motion 

between the observer and the objects of the observed scene, it only represents motion of intensities 

in the image plane, and not necessarily accounts for the actual 3D motion in the physical scene 

[161].  

 

Computation of optical flow means computation of two vectors 𝑈 and 𝑉. Vector 𝑈 represents 

horizontal velocity of motion and 𝑉 represents vertical velocity of motion. Usually 𝑈 and 𝑉 are 

computed using the concepts of energy functional. And the main aim is to minimize this energy 

functional. Energy functional consists of two terms: data term and smoothness term [162]. 

 

To determine optical flow, there is need to track some properties of images. Two key problems in 

optical flow estimation are: 1) Determine what image property to track 2) Determine how to track it 

[162]. Some features of the images are assumed to stay constant among multiple frames during 

optical flow estimation. Generally used constancy assumptions are discussed below: 

 

Brightness Constancy Assumption 

The most common assumption used in optical flow estimation is the brightness constancy 

assumption. It states that the gray value of corresponding pixels in the two consecutive frames 

should be the same. 
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Assume 𝐼(𝑥, 𝑦, 𝑡) is the center pixel in a n×n neighbourhood and moves by 𝛿𝑥, 𝛿𝑦 in time 𝛿𝑡 to 

𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡). Since 𝐼(𝑥, 𝑦, 𝑡) and 𝐼(𝑥	 + 	𝛿𝑥, 𝑦	 + 	𝛿𝑦, 𝑡	 + 	𝛿𝑡) are the images of the 

same point (and therefore the same) we have:  

𝐼(𝑥, 𝑦, 𝑡) 	= 	𝐼(𝑥	 + 	𝛿𝑥, 𝑦	 + 	𝛿𝑦, 𝑡	 + 	𝛿𝑡) 

 

This can also be extended to 3D applications. Given a small 3D n × n × n block at (𝑥, 𝑦, 𝑧) at time 𝑡 

moving by (𝛿𝑥, 𝛿𝑦, 𝛿𝑧) to (𝑥	 + 	𝛿𝑥, 𝑦	 + 	𝛿𝑦, 𝑧	 + 	𝛿𝑧) over time 𝛿𝑡”  

𝐼(𝑥, 𝑦, 𝑧, 𝑡) 	= 	𝐼(𝑥	 + 	𝛿𝑥, 𝑦	 + 	𝛿𝑦, 𝑧	 + 	𝛿𝑧, 𝑡	 + 	𝛿𝑡) 

Gradient Constancy Assumption 

The brightness constancy assumption has one decisive drawback: It is quite susceptible to slight 

changes in brightness, which often appear in natural scenes. Therefore, it is useful to allow some 

small variations in the grey value and help to determine the displacement vector by a criterion that 

is invariant under grey value changes. Such a criterion is the gradient of the image grey value, 

which can also be assumed not to vary due to the displacement. 

I can perform a 1st order Taylor series expansion about 𝐼(𝑥, 𝑦, 𝑡) in the brightness constancy 

equation to obtain: 

𝐼 𝑥 + 𝛿𝑥, 𝑦 + 	𝛿𝑦, 𝑡	 + 	𝛿𝑡 = 	𝐼 𝑥, 𝑦, 𝑡 +	
𝜕𝐼
𝜕𝑥
	𝛿𝑥 +	

𝜕𝐼
𝜕𝑦
		𝛿𝑦	 +	

𝜕𝐼
𝜕𝑡
		𝛿𝑡	 + 	𝐻. 𝑂. 𝑇. 

where H.O.T. are the Higher Order Terms, which we assume are small and can safely be ignored. 

Using the above two equations we obtain: 
ÀÁ
À<
	𝛿𝑥 +	 ÀÁ

ÀZ
		𝛿𝑦	 +	 ÀÁ

À~
		𝛿𝑡 = 0 or 

ÀÁ
À<
	Â<
Â~
+	 ÀÁ

ÀZ
		ÂZ
Â~
	+ 	 ÀÁ

À~
		 Â~
Â~
�?

= 0 and finally, 

𝜕𝐼
𝜕𝑥
	𝑢< +	

𝜕𝐼
𝜕𝑦
		𝑣Z 	+	

𝜕𝐼
𝜕𝑡
	= 0 

Here 𝑢< = 	
Â<
Â~

 and 𝑣Z = 	
ÂZ
Â~

 are the 𝑥 and 𝑦 components of image velocity or optical flow and ÀÁ
À<

 

,	ÀÁ
ÀZ

 and ÀÁ
À~

 are image intensity derivatives at (𝑥, 𝑦, 𝑡).  

These partial derivatives are normally written as: 

 𝐼< = 	
ÀÁ
À<

 ,𝐼Z = 	
ÀÁ
ÀZ

 and 𝐼~ =
ÀÁ
À~

 

Thus, the gradient constancy equation could be rewritten as: 

𝐼<𝑢< +	𝐼Z𝑣Z 	+	𝐼~ 	= 0 
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The optical flow constraint has one inherent problem: it yields only one constraint to solve for two 

variables. It is well known that such an under-determined equation system yields an infinite number 

of solutions. For every fixed 𝑢< a valid 𝑣Z can be found fulfilling the constraint. This is as a result 

of an optical flow problem called the aperture problem. 

The aperture problem defines that there is usually insufficient local image intensity structure to 

measure full image velocity, but sufficient structure to measure the component normal to the local 

intensity structure. 

Smoothness Assumption 

The smoothness term stands for the assumption that the neighboring regions belong to the same 

object and thus these regions have similar depth. The main role of the smoothness term is the 

redistribution of the computed information and smoothing of depth outliers. In case we get no 

reliable information from the data term, the smoothness term will realize its smoothing effect by 

filling in the problem region with data, calculated from neighboring regions.  
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Résumé 
Ce travail a été mené au sein du groupe ‘biophysique’ de plasticité vasculaire de l’unité de 

recherche de l’angiogenèse et du micro-environnement des tumeurs, l’INSERM U1029 situé à 

l’Université de Bordeaux. L'objectif principal de cette recherche est de développer une 

méthodologie d'imagerie 3D pour la caractérisation chimique des tumeurs cérébrales. Il s'agit d'un 

domaine de recherche sur le cancer qui n'est pas encore développé et qui pourrait devenir très utile 

pour améliorer l'outil de diagnostic existant pour les tumeurs cérébrales. 

 

L'histologie tridimensionnelle (3D) est un nouvel outil avancé de cancérologie. L'ensemble du profil 

chimique et des caractéristiques physiologiques d'un tissu est essentiel pour comprendre la logique 

du développement d'une pathologie. Cependant, il n'existe aucune technique analytique, in vivo ou 

histologique, capable de découvrir de telles caractéristiques anormales et de fournir une distribution 

3D à une résolution microscopique.  

 

Nous présentons ici une méthode unique de microscopie infrarouge (IR) à haut débit combinant une 

correction d'image automatisée et une analyse ultérieure des données spectrales pour la 

reconstruction d'image 3D-IR. Nous avons effectué l'analyse spectrale d'un organe complet pour un 

petit modèle animal, un cerveau de souris avec une tumeur de gliome implantée. L'image 3D-IR est 

reconstruite à partir de 370 coupes de tissus consécutives et corrigée à l'aide du tomogramme à 

rayons X de l'organe pour une analyse quantitative précise du contenu chimique. Une matrice 3D de 

spectres IR 89 x 106 est générée, ce qui nous permet de séparer la masse tumorale des tissus 

cérébraux sains en fonction de divers paramètres anatomiques, chimiques et métaboliques.  

 

Nous démontrons pour la première fois que des paramètres métaboliques quantitatifs (glucose, 

glycogène et lactate) peuvent être extraits et reconstruits en 3D à partir des spectres IR pour la 

caractérisation du métabolisme cérébral / tumoral (évaluation de l'effet de Warburg dans les 

tumeurs). Notre méthode peut être davantage exploitée en recherchant l'ensemble du profil spectral, 

en distinguant différents points de repère anatomiques dans le cerveau. Nous le démontrons par la 

reconstruction du corps calleux et de la région des noyaux gris centraux du cerveau. 

 

Dans cette thèse, des méthodes avancées de traitement des données spectrales ont été développées 

pour la caractérisation des tumeurs cérébrales. Une séquence de traitement avancée est également 

développée pour la reconstruction quantitative 3D de coupes IR. Une application de nos méthodes 
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développées est montrée dans une reconstruction 3D quantitative d'une tumeur dans un cerveau de 

souris basée sur la caractérisation chimique de la tumeur et du métabolisme des tissus normaux. 

Cette thèse présente également la reconstruction 3D de l'anatomie du cerveau de souris à l'aide de 

notre séquence de traitement avancée pour la reconstruction quantitative 3D de coupes IR. 

 

Nous avons d’abord démontré que la matrice spectrale 3D constituée d’images 2D-IR patinées peut 

être utilisée pour de nombreuses extractions de données différentes à partir du même jeu de 

données. Nous avons utilisé l'atlas du cerveau Allen comme référence mondialement reconnue pour 

l'anatomie du cerveau de souris. 

 

En utilisant l'intégralité de l'image 3D d'intensité spectrale du cerveau, nous pourrions segmenter et 

mailler de nombreuses régions anatomiques différentes. Il est à noter que les images d'intensité 

spectrale complète du cerveau délimitaient déjà de nombreuses régions du cerveau comparables à 

ce que l'on observe habituellement à partir de la coloration d'images IHC (hippocampe, cortex 

cérébral, régions de l'hippocampe, lobules de cervelet, hypothalamus et thalamus, etc.). 

 

Nous avons séparé les hémisphères droit (avec la tumeur) et gauche (en bonne santé) pour 

segmenter les régions anatomiques uniquement sur la base de données spectrales, ce qui 

correspondait parfaitement aux atlas de référence du cerveau de souris. La matrice spectrale 3D de 

la tumeur pourrait également être extraite et son contenu chimique analysé séparément. 

 

Il est donc possible de séparer les régions tissulaires, d'analyser leurs variations de contenu 

chimique, les modifications induites par les frontières ou l'interface entre les régions anatomiques, 

de comparer des échantillons sains et pathologiques, et bien d'autres. 

 

De plus, nous démontrons que nous pouvons extraire et reconstruire des informations chimiques 

quantitatives à partir de paramètres tissulaires pertinents. À ce jour, l'histologie quantitative est 

restée limitée à la quantification d'objets [208] et de sous-structures [209] dans des coupes de tissus, 

mais pas à son contenu chimique [87]. Nous avons démontré qu'une image chimique quantitative 

3D fournie par spectroscopie IR permettait de résoudre l'un des aspects les plus limitants des 

méthodes histologiques conventionnelles: le manque d'analyse quantitative du contenu moléculaire 

dans les tissus. 
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Nous nous sommes concentrés sur les paramètres métaboliques des tissus, dont la régulation est 

profondément altérée par la croissance des tumeurs [194, 200], tels que les gliomes. Nous avons 

d’abord calibré les valeurs d’absorption du glucose, du glycogène et du lactate en utilisant leurs 

spectres de 2ème dérivé par rapport aux essais biochimiques réalisés sur des homogénats de cerveau 

obtenus en parallèle. 

 

Nous avons utilisé des procédures bien connues d'extraction des absorptions IR [193, 2] que nous 

pourrions traduire par concentrations [210]. Les variations d'absorption des molécules métaboliques 

sont conformes à la littérature [188], où un changement de concentration de 2 à 3 fois peut être 

observé pour ces paramètres métaboliques entre les régions. Les régions du cerveau présentent 

d'importants changements dans les concentrations de glucose [202]. 

 

Par conséquent, nous avons utilisé les régions anatomiques maillées du cerveau telles que définies 

précédemment pour déterminer leurs variations de concentration en glucose, glycogène et lactate. 

Nos résultats ont été trouvés très similaires aux quelques autres études disponibles, c.-à-d. Qui 

analysaient séparément les zones du tissu cérébral (par microdissection [201, 202, 205]) et 

utilisaient des méthodes quantitatives (dosages enzymatiques). 

 

Nous avons montré que le volume de la tumeur présentait des concentrations métaboliques plus 

homogènes, mais avec du glucose et du glycogène inférieurs de 60 à 70% et un lactate de 110% 

supérieur à celui des tissus sains pour le cerveau. Cet exemple d'analyse anatomo-métabolique 

quantitative montre le potentiel de la méthode pour la pathologie 3D en général tout en évaluant 

l'effet Warburg bien étudié sur les tumeurs. 

 

Nous avons donc associé un rendu anatomique efficace du cerveau de souris à une analyse 

chimique quantitative de son contenu à partir du même ensemble de données. Les rendus 

volumiques 3D de contenus anatomiques, chimiques et métaboliques du cerveau de souris 

présentant une tumeur ont atteint un niveau d'informations incomparable pour une analyse par 

microscopie 3D. 

 

Il a également été démontré que le co-enregistrement entre analyses in vivo et analyses 

histologiques pouvait être enrichi par des atlas anatomiques existants. Le rendu quantitatif en 

volume avec transparence permet une visualisation 3D directe de l'anatomie interne du cerveau avec 

une analyse quantitative simultanée de ses concentrations moléculaires. 
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Enfin, nous avons montré que notre méthodologie pouvait s’étendre au-delà des tumeurs pour 

analyser l’anatomie du cerveau de souris. Nous avons tenté de développer ce que nous avons appelé 

la chimie anatomo-3D du cerveau. L'anatomo-chimie 3D comme son nom l'indique vise à combiner 

l'étude de l'anatomie des échantillons biologiques en relation avec leurs compositions chimiques. 

Jusqu'à présent, l'anatomie et la composition chimique quantitative d'échantillons biologiques ont 

été étudiées indépendamment. À notre connaissance, cela est dû au fait qu’il n’existait pas de 

méthode d’imagerie in vivo capable de résoudre simultanément l’anatomie et la composition 

chimique quantitative des échantillons biologiques. 

Nous avons démontré que nous pouvons extraire des structures anatomiques d’intérêt à partir de la 

matrice de spectre 3D formée d’images 2D-IR. La microscopie IR permet de segmenter le bloc de 

tissu en fonction de leur profil chimique. Nous avons montré cela en extrayant des structures 

myélinisées du cerveau de souris en utilisant des procédures bien connues d'extraction d'absorptions 

IR afin de segmenter les régions myéliniques riches en lipides du cerveau. 

 

Comme on pouvait s'y attendre, nous avons pu résoudre des faisceaux de fibres riches en lipides tels 

que le corps calleux et de grandes régions anatomiques du cerveau de souris telles que les noyaux 

gris centraux, l'hippocampe et le thalamus. Nous avons également démontré que ces structures 

anatomiques d’intérêt peuvent être reconstruites en 3D en combinant analyse chimique quantitative 

et imagerie par rayons X in vivo. 

 

Nous avons montré que nous pouvions résoudre certains des goulots d'étranglement associés à 

l'histologie 3D, réalisant ainsi une reconstruction 3D similaire à celle pouvant être obtenue par des 

techniques in vivo telles que l'IRM. Nous avons donc associé un rendu anatomique efficace du 

cerveau de souris à une analyse chimique quantitative de son contenu à partir du même ensemble de 

données. 

 

Bien que nous n’ayons pas été en mesure de résoudre toutes les structures anatomiques possibles 

dans le cerveau en raison de la contrainte de temps, cette méthodologie est facilement applicable 

pour une utilisation en pathologie 3D qui ne nécessite pas de résoudre toute l’anatomie complexe du 

cerveau. 

 



 

167 

 

Comme nous l’avons démontré pour les caractéristiques anatomiques et métaboliques d’un cerveau 

de souris, l’exploitation de l’ensemble de l’information spectrale, appelée «spectromique», à partir 

d’un bloc de tissu élargira énormément les applications possibles de cette méthodologie. Cela ouvre 

également la voie aux traitements de données multimodaux, où les algorithmes d’apprentissage 

automatique seront capables de mettre en corrélation des événements provenant de différentes 

sources: anatomique, métabolique et biochimique, avec l’omique - afin d’améliorer nos 

connaissances en matière de santé et de maladie. 

 

Cette nouvelle méthodologie ouvre une nouvelle ère pour l'histologie dans la mesure où deux 

caractéristiques principales peuvent maintenant être développées: l'étude 3D des tissus / organes et 

leur analyse chimique quantitative pour une gamme infinie de possibilités, autant d'informations 

chimiques pouvant être produites à partir de données spectrales IR créer des métadonnées 

pertinentes. 

 

Nous pouvons affirmer que cette méthodologie est le premier candidat réaliste au développement de 

la pathologie 3D en tant que routine pour la recherche biomédicale, et éventuellement aussi pour 

des applications cliniques. En effet, toutes les étapes de l'acquisition d'images et des traitements de 

données peuvent être automatisées pour une sortie normalisée des résultats. 

 

Grâce aux informations chimiques fournies par la spectroscopie IR, il sera possible d'extraire de 

nombreuses caractéristiques différentes d'un bloc tissulaire, telles que le réseau de vaisseaux 

sanguins2, sa biochimie, son métabolisme, par exemple. Le développement de traitements de 

données spectrales sophistiqués permettra de définir le profil chimique (spectral) de ces 

caractéristiques tissulaires pour une reconstruction 3D à une résolution microscopique. 
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