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General Introduction

Many problems in modern industries involve the question: "what is the best design for
the shape of a certain object, regarding a given objective function, and taking into account
several physical constraints?”. The answer to the question is indispensable in the design
and construction of industrial structures. The goal of shape optimisation is to provide a
solid and applicable mathematical framework to answer this type of questions. Perhaps
the most notable example of shape optimisation in the context of fluid mechanics arises in
aeronautical engineering, in which the shape of the wings of an aircraft needs to be opti-
mised from the point of view of the drag, with a constraint on the lift (see, for instance [61],
chap. 9). Other examples of shape optimisation for aeronautical engineering can be found
in [26], [67], [60], [42], [45] and many others. In acoustic engineering, some problem exam-
ples are: designing a sound isolation room, building an acoustic horn (see [12]) and building
sound barrier in transportation noise reduction (see [51]). Finally, structural engineering was
probably the largest provider of both theoretical and practical problems in shape optimisa-
tion, and has driven the development most of the tools that we have used in this thesis. For
instance, the textbook of G. Allaire [2], often uses a flexibility minimisation problem for a
cantilever as an application of the shape optimisation tools presented.

1 The wave making resistance & ship design

The motivation for the study presented in this thesis is the reduction of the fuel consump-
tion of ships. This problem is of great importance from an economical standpoint, since, as
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General introduction

(a) (b)

Figure 1 – Water waves behind a ship [14] and a submarine [15]

specified in a 2010 report of the IMO1 [40] over 90% of the world’s trade is carried by sea.
Beside the purely economical aspect, efficiency is also associated to lower greenhouse effect
gaz emissions.

As stated by The American Bureau of Shipping [1], the fuel consumption can be reduced
by optimising size and capacity of the ship, by reducing the speed, and by minimising the
resistance of the ship. While the size, capacity and cruise speed are mostly constrained by
the desired amount of goods transported per unit of time, the resistance to motion of a ship
can be reduced by small modifications on the shape of its hull (see for instance [1, 32]).

The resistance of a ship is defined by the sum of all the forces exerted on the hull in
the direction of the motion. The wetted surface of the vessel raises a force called the viscous
drag or viscous resistance which has an opposite direction to the relative flow velocity and is
proportional to the wetted surface. In addition, when the ship moves, it generates a system
of waves on the water/air interface which we also call the called the free surface. In figure 1,
we show pictures of the famous v-shaped pattern of the wake behind a moving ship and a
submarine. The energy required to generate these waves is associated to a force developing
around the body. We call this force the wave-making resistance. This wave-making resis-
tance along with the viscous resistance and appendage resistance (such us eddy-making
resistance) compose the total resistance of the ship’s hull [1, 35].

Even though in fact these resistances cannot be separated from one another, for simpli-
fication and computational purposes, the calculation is usually considered independently.

1International Maritime Organisation, which is the United Nations regulatory agency for the maritime sec-
tor.
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General introduction

However, the contribution of the wave-making resistance to the total resistance of ship is
important and varies for different types of ships. Using TEU2 to measure a ship’s cargo car-
rying capacity, for a container ship with a capacity of respectively 4.500 TEU and 8.000 TEU,
called Panamax and Post-Panamax, the wave-making resistance are 23% and 18% respec-
tively of the total resistance [1]. The wave-making resistance increases with ship speed [1]
and even could give 50% of the total resistance of a high-speed ship and/or a ship with full
hull form [7]. Because of the potential gain described above and the important shape sensi-
tivity of the wave-making resistance (see [75], [7]), we will focus on this particular aspect of
ship hydrodynamics.

Besides the benefits of efficiency and low greenhouse effect gaz emissions, the reduction
of the wave-making resistance could also help prevent the damage caused by wash waves
on river banks in the context of fluvial transportation. The figure 2a shows the traveling
waves produced by a moving container ship in a British canal. In figure 2b, traveling waves
are also generated by a boat in Kapuas3 river. With time, these wash wave can have a de-
structive behaviour on the infrastructure built to facilitate navigation in the case of artificial
canals, or destroy habitats and hence endanger aquatic or semi-aquatic species in the case of
natural rivers.

Although the long term goal of the present research is to determine and optimise the
wave-making resistance of ships, this thesis will focus on a simpler two-dimensional sub-
merged body case. Many technical difficulties are associated to the case of ships. First, the
three dimensional nature of the problem make the calculations more difficult, and computa-
tionally expansive. Second, ships are surface piercing bodies, and this adds some difficulty
in the mathematical setting of the problem because it involves a triple line (solid/liquid/air
interface), on which the nature of the boundary conditions is not very clear. A remarkable
work on this topic can be found in [21] in which the author, not only obtains the wave-
making resistance of a ship in the full 3D case, but is also able to recover the lift and torques.
Unfortunately, for general shape optimisation, the matter is even more difficult. Although
our simplified approach cannot be applied directly for ship hydrodynamics, we will build
tools that we believe can be extended in the 3D surface-piercing case without too many
efforts.

2Twenty-Foot Equivalent Unit, 1 TEU is approximately 39 m3.
3West Borneo, Indonesia. Kapuas river is the longest river in Indonesia with 1143 km long. This river is a

fundamental waterway which can support cargo and passenger shipping in West Borneo while connecting the
center of the island and its western coast (see figure 3 for examples of water-crafts in Kapuas river)
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(a) A container in a British canal[52] (b) A boat in Kapuas river, Indonesia

Figure 2 – The waves generated by ship/boat in canal/river

Figure 3 – boats as watercrafts in Kapuas river, Indonesia [62]
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General introduction

2 Mathematical modelling of wake and resistance

2.1 A brief history of the ship waves problem

The problem of ship waves has been studied for several hundreds years. One of the first
study on this topic was conducted by Leonardo da Vinci (1458-1519) who examined the
movement of objects in water, in a qualitative manner. His descriptions and sketches under-
lined the fact that, free surface flows (as we call them today) seem to follow natural laws,
that, in his time, were far from reach. Later, in 1687, Isaac Newton developed the first theory
of water resistance of moving ships, and determined that the drag should be a quadratic
function of its velocity. His formula was obtained by deducing the drag from the impact of
a large amount of particles of water on the hull, each of them carrying some momentum.
His formula came 62 years before the first complete theory of perfect fluids was formulated
by Euler. An important contribution was provided in 1871 by William Froude which gave
a separation between viscous resistance (well described with Newton’s formula) and wave-
making resistance (that arises from Euler’s equations). He later discovered a criterion for the
description of ship waves which depends on the gravitational force, the depth of a body and
its velocity, this criterion was later coined as the Froude number. Hereinafter, Lord Kelvin,
in 1886, studied the hydrodynamic forces acting on an obstacle generating a stationary wave
pattern on the fluid surface. For a complete review of historical references on this topic, we
refer to [30].

In 1898 John Henry Michell put forward a theory of water resistance for thin ships in
an ideal fluid with infinite depth [53]. He deduced, from the theory of linear ship waves
developed by Kelvin, the first mathematical formula for the wave resistance of a ship that
takes into account an actual (supposed thin) hull shape. His formula writes:

Rw(f) = 4ρgν3

π

∫ ∞
1
|I(λ, f)|2 λ4

√
λ2 − 1

dλ , (1)

where:
I(λ, f) =

∫
ω
f(x1, x3) e−νλ2z eiνλx dx1dx3 . (2)

Here, f(x1, x3) denotes the half-width of the hull at a point (x1, x3) of the center-plane (the
plane that cuts the ship in half along its length). For this contemporaries, Michell’s formula
was considered impractical, because it consists of triple integrals that are difficult to obtain
for general values of f . With the advent of computers and numerical simulation, the cal-
culation of the wave-making resistance through Michell’s formula for general ship forms
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became accessible (see [44] for instance). Later, the development of sophisticated numerical
methods made possible the prediction of the wave resistance with more and more accurate
models, and today, Computational Fluid Dynamics (CFD) have developed to a point that
it is possible to test the full behaviour of a ship in what we call "virtual towing tanks" (in
analogy with virtual wind tunnels for aeronautics). Despite this, thin ship theory regained
some popularity recently (see for instance [56], [20] and [8]) as it provides with an insight of
the physics of the wave-making resistance that the Navier-Stokes equations (on which CFD
is based) fails to give.

2.2 Mathematical formulation in the 2D non-thin case

The thin ship theory is rigorous and powerful from a mathematical point of view, but it is
much more difficult to deal with ships which are not slender. There is no general formula
for the wave resistance in this case. Nevertheless, Havelock [35, 36] obtained an analytical
formula for an obstacle with a circular cylinder form. We use it in chapter III for a numerical
validation of the wave-making resistance. Havelock also obtained various results on the
wave-making resistance which can be found in his collection of papers [34].

We consider a fully submerged obstacle which is at rest in a fluid flow (see figure 4 for
the illustration of geometrical setting of the problem). The velocity of the fluid at infinity far
away from the obstacle is U∞e1 where e1 is the unit horizontal vector. Under the assumption
that the fluid is homogeneous, inviscid and incompressible, the Euler equations read:

∇ · U = 0 in Ω+ , (3)

∂tU + (U · ∇)U = 1
ρ
∇P − ge2 in Ω+ , (4)

where U is the velocity field of the fluid, Ω+ is the fluid domain, P is the pressure, ρ is the
density of the fluid and g is the acceleration of the gravity field. The Euler equations were
introduced by Euler in 1755, and, as we will see in chapter I, it can be derived from the (later
discovered) Navier-Stokes equations by neglecting the effect of viscosity.

Assuming that the initial velocity field is curl-free, it can be shown by taking the curl
of (4) (and assuming that the solution is regular enough) that the velocity field stays curl-
free for all times. By the Helmhotz-Hodge theorem, we can seek therefore U as the gradient
of a potential flow, namely

U = ∇Ψ in Ω+ . (5)
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S0

S

Ω−

Ω+

e1

e2

U∞e1
n

Figure 4 – Setting of the problem.

Then, (3) and (4) can be written:

∆Ψ = 0 in Ω+ , (6)

∂tΨ + 1
2 |∇Ψ|2 + gx2 = 1

ρ
(P − Patm) in Ω+ , (7)

where Patm is the pressure at the free surface. The equation (7) is known as Bernoulli’s equa-
tion. Further, in the case of the wave-making resistance, we have to deal with the boundary
constraint i.e the condition on the free surface. This problem has its own difficulty from a
mathematical point of view, because it deals with a partial differential equation which has
to be solved for both an unknown function U and an unknown domain Ω+. To overcome
this difficulty, by supposing that the waves have small amplitude, it is possible by linearisa-
tion to transfer the conditions on the free surface to the horizontal plane (denoted S0). This
technique has been applied for instance by Brard in [10] which proposed the linearization
of the free surface condition. By taking the steady state for the problem, we obtain the so
called Neumann-Kelvin problem (NK-problem) which reads:



∂2
11Φ + ν ∂2Φ = 0 , on S0 ,

∆Φ = 0 , in Ω+ ,

∂nΦ = −U∞n · e1 , on Γ ,

|∇Φ| → 0 , for |x| → ∞ .

(8)

Here, n is the normal to the boundary Γ pointing outwards of the obstacle, and Φ = Ψ−U∞x1

is the perturbed potential.
As stated in [9], the NK problem begins with the work of Rayleigh [64] and Kelvin [43]
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and also further by Russel [65]. They studied analytically the waves on the free surface
generated by the movement of an obstacle in the fluid. Further, the theory around the
Neumann-Kelvin problem is discussed and is used to formulate the resistance of a ship
(see for instance [21], [10], [22], [5], [6], [28]). Inspired by these works, in this study, we will
use the NK-problem to obtain the formula of the wave-making resistance which we want to
minimise. The method is introduced in next section.

3 The boundary integral method

Several methods have been used to deal with the steady state of the irrotational, inviscid and
incompressible fluid which is described by the NK-problem. Finite element methods (FEM)
have been examined by several authors to solve this problem, for instance [23] and [3]. FEM
is a numerical method to approximate the solutions of partial differential equations which
is characterized by a variational formulation. Since it needs an explicit representation of the
domain, hence it is less adapted to moving domains.

Another method in solving the problem is to use a boundary integral equation. In this
method, the solution of the wave problem is represented by an integral equation on the
boundary of the obstacle which also handles the condition at infinity. Numerical methods to
approximate this boundary integral equation are called boundary element methods (BEM).
They are used for instance by Noblesse [55] in the free surface potential flow. Brebbia [11]
compared the boundary element method with the finite element method in the case of a flow
around a cylinder between parallel plates; it shows that the BEM has a better computational
eficiency (less points and less computer time).

However, the BEM has its own difficulties. It is necessary to find the explicit fundamen-
tal solution which handles the free surface condition, and this isn’t always easy. In general,
the fundamental solution (also called Green’s function) depends on the problem and on the
contraints that have to be satisfied, hence the method gives a restriction on the generality
of the problem. However in the NK-problem, the result in finding the associated Green’s
function has been obtained for instance by Havelock [33], Ursell [72] and Wehausen and
Laitone [74] in different forms. In this present work we give a calculation of the fundamen-
tal solution that uses the exponential integral, a numerically well known special function.
This fundamental solution is equivalent with that in [50]. Once we find the Green’s func-
tion, we have the advantage of the method, i.e we only have to calculate the solution of
the problem by solving an integral equation where the unknown function is defined on the

8
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boundary. Hence, only the boundary of the domain needs to be discretized [16]. In addition,
the BEM can solve the exterior problem where the domain is unbounded (this is the case in
this study), as easily as the interior problem [16].

4 The shape optimisation method

We want to compute the shape of an obstacle which will minimise the wave-making resis-
tance for the NK-problem. In order to avoid a resistance going to zero, we assume that the
area of the obstacle is fixed.

Our idea is to use a standard descent gradient method for the minimisation problem.
However, we deal with a set of shapes which does not define a vector space. Following a
standard approach in shape optimisation, we use small deformations of the shape to de-
fine a notion of gradient of the wave-resistance functional with respect to the shape. This
computation of the shape gradient is based on a Lagrangian method; we also use a La-
grangian derivative to deal with the boundary integral equation. This idea of shape deriva-
tive was first introduced by Hadamard [31] in 1907 in application of elastic problems. Later
the method was developed by Murat and Simon in [54, 70], and Allaire [2]. More recent,
Costabel and Le Louër in [17] established the shape derivative using Gâteaux differentiabil-
ity analysis with application in electromagnetic scattering problems.

For numerical purposes, there are two major difficulties that we should overcome in this
work. Firstly, we need to calculate the solution of the boundary problem so that we can
calculate the wave-making resistance for a given shape. Secondly, we have to deal with the
minimisation problem with respect to the shape which includes a moving domain. For both
steps, we need to have an appropiate representation of the shape of the obstacle (in 2D case
it is a curve). To manage the first part, the calculation of the integration on the boundary
when we use the explicit parametrisation seems to be relatively more efficient because it
uses less data. On the other hand, when we meet a moving domain as it is the case in the
second part, we will meet a difficulty in the remeshing procedure. In contrast, if we use an
implicit representation of the curve, dealing with a moving domain is rather easy. Moreover
in this numerical issue, nowadays, the level set method has its superority, because it can be
used to solve problems where simulation of boundary evolutions is involved [58]. The first
contribution on this method started by the seminal work of Osher and Setian in [59]. Further,
the level set methodology can perform shape changes on a domain without remeshing [76]
because the method adds dynamics to implicit surfaces.
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General introduction

As we mentioned previously, in this thesis we couple the level set method with the
boundary integral formulation to obtain the solution of the minimisation wave-making re-
sistance problem with respect to the shape. Previous works on the level-set method to solve
boundary integral equations for moving boundary problems have been made for instance
by Garzon et al [29] in the context of wave breaking over a sloping beach, and Chen et al [13]
for the Mullins-Sekerka dynamics. Particularly, in this thesis, we deal with evolving do-
mains to obtain the shape minimising the wave-making resistance for a given depth and
velocity.

5 Outline of the thesis

In this thesis, we have contributed to a better knowledge of a geometric shape optimisation
for the wave-making resistance problem. The study will be presented as follows.

In the first chapter, we will present the formulation that is used in the calculation of the
wave-making resistance. Here, we start with giving the derivation the Neumann-Kelvin
problem from the Navier-Stokes equations. We also give the notes on the existence and
uniqueness of the solution to the problem from [50]. Then we describe the fundamental
solution of the problem which will be used in representing the problem in the form of an
integral boundary equation. From the knowledge of the solution of the boundary integral
equation, we will give the derivation of the wave-making resistance formula. Further, to
make it useful in the next chapter, we also give the notes and notation of several boundary
integral operators at the end of the chapter.

The second chapter is devoted to solving shape optimisation problems which involve
boundary integral equations. We begin with the introduction of the shape derivative and
shape gradient and with some useful lemmas that we will need on the boundary variation
method. Further, we explain the Lagrangian method and its application to the shape optimi-
sation of the wave making resistance. We give the formal calculation of the derivative of the
Lagrangian that will lead us to the "gradient" of the shape. Thus, we can use the obtained
shape gradient in a gradient descent method to obtain the optimal shape.

Chapter 3 is dedicated to the numerical features of the level-set method. We present a
general introduction on level-set methods in the first section, which begins with the rep-
resentation of curves and the signed distance function. We also give the explanation about
normal motion of the signed distance function. Further, we use level-sets and tubular neigh-
bourhoods of the boundary to obtain the numerical approximation of boundary integrals.

10



General introduction

Some simple tests are also given to enhance the explanation. Finally, in the last section we
give the procedure to apply the aforementioned method to a model boundary integral equa-
tion, namely the Neumann exterior problem.

In the last chapter, we present the numerical implementation on the shape optimisation
problem by combining the knowledge from the previous chapters. Having introduced some
useful notation in the first section, we describe the computation of the wave-making resis-
tance in the second section. In the third section, we give a detailed presentation of the shape
optimisation algorithm. The numerical results are discussed at the end of the chapter.

A general conclusion sums up this thesis and we give perspectives of future work.

11
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Chapter I

The Neumann-Kelvin problem

In this chapter we introduce the Neumann-Kelvin problem, which will be our model for the
calculation of the wave-making resistance. The goal is to predict the steady flow and wave
pattern around an obstacle placed just below the free surface placed in a uniform stream
(see figure I.1 below).

Many results from [50] will be cited extensively throughout the chapter as they will be
particularly useful for us. In particular, we rely on [50] for the existence results, and for the
expression of the wave-making resistance.

The chapter is organised as follows: first, we will explain how the Neumann-Kelvin
model can be obtained formally from the incompressible Navier-Stokes equation (section 1),
then the calculation of the fundamental solution associated to our problem will be presented
(section 2), which will lead to the boundary integral formulation of the problem (section) for
which the existence results from [50] and the idea begin their proof will be briefly presented
(section 3). Then we will explain how the wave-making resistance can be calculated once
the solution to the aforementioned boundary integral equation is known (section 4). Finally,
in section 5 we will present the expression of boundary integral operators (weakly singu-
lar, strongly singular, hypersingular) related to our problem which will be useful for later
purposes.

1 From Navier-Stokes to Neumann-Kelvin

Let us introduce the following notations (see figure I.1): Ω+ will denote the fluid domain,
Ω− will represent the interior of the obstacle. The boundaries of Ω+ are the free surface S

and the border of the obstacle, denoted Γ. The vector n = (n1, n2) denotes the inwards unit
normal vector of ∂+

Ω , and τ the tangent vector (oriented anticlockwise). We also denote S0 as
the straight horizontal line at the level of water far upstream.

13
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S0

S

Ω−

Γ

Ω+

e1

e2

Ue1
n

τ

Figure I.1 – Main notations for the geometrical setting of the problem.

1.1 Free-surface Navier-Stokes Equations

In their incompressible version, the Navier-Stokes equations read:

 ρ(∂tV + (V · ∇)V ) = ∇ · σ − ρge2 ,

∇ · V = 0 ,
in Ω+ (I.1)

where V : (t, x) 7→ V (t, x) accounts for the fluid’s velocity, and σ is the fluid’s stress ten-
sor, while ρ represents the fluid’s density and g the acceleration of the gravity field. For a
complete derivation of the incompressible Navier-Stokes system from the classical laws of
conservation of mass, momentum and energy, we refer to [4]. The stress tensor contains two
components:

• the Newtonian inner stress, proportional to the strain tensor,

• the hydrodynamic pressure, which value ensures the incompressibility everywhere
and for all times (the pressure P : (t, x) 7→ P (t, x) is hence an unknown of the problem).

The stress tensor hence reads :

σ = ν

(
∇V + t∇V

2

)
+ P Id , (I.2)

where ν stands for the fluid’s dynamic viscosity. On the free surface St, the normal stress
vanishes:

σ nS = 0 , on St , (I.3)

where nS is the outwards unit normal vector at the free surface. This condition is called the
"dynamic condition" for the free-surface. Of course, in such water-wave phenomena, the
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I.1 From Navier-Stokes to Neumann-Kelvin

free surface evolves in time. Let:

St = {x(t, s) ; s ∈ R} , (I.4)

then x satisfies the following equation:

ẋ(t, ·) = V (x(t, ·)) , (I.5)

where ẋ is the Lagrangian derivative of x with respect to t. This equation is called the
"kinematic condition" since it describes the motion of the interface, which is carried by the
fluid’s flow. The boundary condition on Γ have to ensure the impermeability of the obstacle,
which reads:

V · n = 0 , on Γ . (I.6)

For the Navier-Stokes equation, an other condition for the tangent component of the velocity
on the obstacle is required in order to avoid ill-posedness. The most common approach is to
impose a so-called "no-slip" condition: V · τ = 0.

1.2 The perfect fluid hypothesis : Euler’s equations

When the the viscosity is neglected (perfect fluid hypothesis), the stress tensor writes:

σ = P Id . (I.7)

By injecting the above stress tensor into the Navier-Stokes system (I.1), we obtain the free-
surface Euler’s equations :

 ρ(∂tV + (V · ∇)V ) = ∇P − ρge2 , in Ω+ ,

∇ · V = 0 , in Ω+ ,
(I.8)

The dynamic boundary free surface condition yields :

σ nS = P nS = 0 , (I.9)

which leads to the following boundary condition on the pressure:

P = 0 , on S . (I.10)
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Chapter I. The Neumann-Kelvin problem

1.3 The irrotational flow hypothesis : Bernoulli’s equations

In this section we introduce the irrotational flow hypothesis. We will first show that this
hypothesis is self-consistent, and then we will use this hypothesis to re-write the Euler equa-
tions and the boundary conditions in terms of a velocity potential. First, let us take the curl
of the conservation of momentum equation in (I.8) :

∂t∇× V +∇× ((V · ∇)V ) = 1
ρ
∇×∇(P − ρgx2) = 0 , (I.11)

by denoting ω = ∇× V , we remark that:

(V · ∇)V = 1
2∇|V |

2 − V × ω , (I.12)

hence:

∇× ((V · ∇)V ) = −∇× (V × ω) , (I.13)

= − ((∇ · ω)V − (∇ · V )ω + (ω · ∇)V − (V · ∇)ω) . (I.14)

Since∇ · V = 0 and ∇ · ω = 0, we have:

∇× (V · ∇)V = −(ω · ∇)V + (V · ∇)ω . (I.15)

Substituting (I.15) into (I.11), we obtain the vorticity equation :

∂t ω + (V · ∇)ω = (ω · ∇)V . (I.16)

From the above vorticity equation, and assuming ω and V are smooth, it is easy to prove
that, if ω = 0 at a given time, then ω = 0 for all times. In the rest of the manuscript we will
suppose that ω = 0.

The Helmholtz-Hodge theorem states that any curl-free smooth vector field can be ex-
pressed as the gradient of a potential. Hence, since ω = 0, there exists a potential Ψ such
that :

V = ∇Ψ , (I.17)

since V is also divergence-free in Ω+, the potential solves the Laplace equation:

∇ · ∇Ψ = ∆Ψ = 0 , in Ω+ . (I.18)
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I.1 From Navier-Stokes to Neumann-Kelvin

The momentum equation in (I.8), combined with (I.17), and the identity (I.12) yields:

∇
(
∂tΨ + 1

2 |∇Ψ|2 − 1
ρ
P + gx2

)
= 0 , in Ω+ , (I.19)

which leads to :
∂tΨ + 1

2 |∇Ψ|2 − 1
ρ
P + gx2 = c(t) , in Ω+ , (I.20)

where c is some function of time. The equation (I.20) is often referred in literature as the
equation of Bernoulli. In (I.20) the pressure is still unknown, except on S (where the dynamic
free-surface condition P = 0 applies), hence taking the trace of the above expression onto S

allows us to define the following dynamic free-surface condition for the potential:

∂tΨ + 1
2 |∇Ψ|2 + gx2 = c(t) , on S , (I.21)

Considering that Ψ is defined up to a function of time, we can take c independent of time
without any harm:

∂tΨ + 1
2 |∇Ψ|2 + gx2 = c , on S , (I.22)

The impermeability condition on Γ writes:

∇Ψ · n = 0 , on Γ . (I.23)

In the following section, we introduce a graph representation of the free-surface in order to
obtain a simpler formulation of the kinematic free-surface condition.

1.4 Graph representation of the free-surface

From now on, we will consider that S is represented with a function describing the election
of the free surface with respect to a reference level (say, x2 = 0). Hence:

St = {(x1, η(t, x1)) ; x1 ∈ R} . (I.24)

Let us consider an arbitrary point (x1(t), x2(t)) on the free surface, carried by the flow. From
the kinematic free-surface condition we have:

d

dt
x1(t) = V1(t, x1(t), x2(t)) , (I.25)

d

dt
x2(t) = V2(t, x1(t), x2(t)) . (I.26)
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By the definition of η, we have x2(t) = η(t, x1(t)), hence:

V2(t, x1(t), η(t, x1(t))) = d

dt
η(t, x1(t)) = ∂tη(t, x1(t)) + d

dt
x1(t) ∂1η(t, x1(t)) , (I.27)

= ∂tη(t, x1(t)) + V1(t, x1(t), η(t, x1(t))) ∂1η(t, x1(t)) .
(I.28)

This equation can be rewritten as the kinematic boundary condition:

∂tη(t, x1) + V1(t, x1, η(t, x1)) ∂1η(t, x1) = V2(t, x1, η(t, x1)) , (I.29)

where t ∈ R+,∗ and x1 ∈ R. With this representation of the interface, the Bernoulli system of
equations for water-waves writes:



∂tΨ(t, x1, η(t, x1)) + 1
2 |∇Ψ(t, x1, η(t, x1))|2 = −gη(t, x1) + c , for x1 ∈ R ,

∂tη(t, x1) + ∂1Ψ(t, x1, η(t, x1)) ∂1η(t, x1) = ∂2Ψ(t, x1, η(t, x1)) , for x1 ∈ R ,

∆Ψ = 0 , in Ω+ ,

∂nΨ = 0 , on Γ .

(I.30)

Note that nothing ensures that the graph representation is consistent over time. The well-
known phenomenon of wave-breaking indicates that a graph representation is not always
possible, at least in some conditions.

Up to now we haven’t described the behaviour of the solution at infinity. Far away from
the obstacle, the velocity is assumed to be uniform and horizontal:

V → Ue1 , for |x| → ∞ . (I.31)

Which can be translated as :

∇Ψ→ Ue1 , for |x| → ∞ . (I.32)

For the sake of the presentation, we introduce the perturbation potential:

Φ = Ψ− Ux1 . (I.33)
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The perturbation potential satisfies:



∂tΦ(t, x1, η(t, x1)) + 1
2 |∇Φ(t, x1, η(t, x1)) + Ue1|2 = −gη(t, x1) + c , for x1 ∈ R ,

∂tη(t, x1) + (∂1Φ(t, x1, η(t, x1)) + U) ∂1η(t, x1) = ∂2Φ(t, x1, η(t, x1)) , for x1 ∈ R ,

∆Φ = 0 , in Ω+ ,

∂nΦ = −Un · e1 , on Γ ,

|∇Φ| → 0 , for |x| → ∞ ,

(I.34)

with c = U2 by consistency. In the following section we present a linearised version of the
above model, for waves of small amplitude and impulsion.

1.5 The linearised equations of water-waves

Our goal is to expand formally all the terms of (I.34), at first order with respect to (η,Φ). We
remark that:

Φ(t, x1, η(t, x1)) = Φ(t, x1, 0) + η(t, x1)∂2Φ(t, x1, 0) + o(|η|) , (I.35)

= Φ(t, x1, 0) + o(|(η,Φ)|) , (I.36)

= Φ|S0 + o(|(η,Φ)|) , (I.37)

where S0 = {(x1, x2) ∈ R2 ; x2 = 0}. Injecting the above equation into (I.34), we obtain the
following system by keeping only first order terms:



∂tΦ + U∂1Φ = −gη , on S0 ,

∂tη + U∂1η = ∂2Φ , on S0 ,

∆Φ = 0 , in Ω+ ,

∂nΦ = −Un · e1 , on Γ ,

|∇Φ| → 0 , for |x| → ∞ .

(I.38)

The Neumann-Kelvin problem consists in finding a steady-state for (I.38). Formally, by
setting ∂tΦ = ∂tη = 0 in the two first equations of (I.38), we obtain:

U∂1Φ = −gη , on S0 ,

U∂1η = ∂2Φ , on S0 ,
(I.39)
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Taking the derivative with respect to x1 in the first equation, and substituting the second
equation, we get the free surface boundary condition as:

∂2
11Φ + ν ∂2Φ = 0 , on S0 , (I.40)

where ν = g/U2. The others equations in (I.38) remain the same (except for the last one),
as they do not contain any time derivative. However, the boundary condition |∇Φ| → 0 for
|x| → ∞, contains a difficulty in the two-dimensional case because of the (unidirectional,
non-damped) train of waves generated by the obstacle downstream. As explained in [50], it
is only possible to impose:


|∇Φ| = O(1) , for |x| → ∞ ,

|∇Φ| → 0 , for x1 → −∞ ,

|∇Φ| → 0 , for x2 → −∞ .

(I.41)

which is less than the previous condition, since we don’t ensure |∇Φ| → 0 for x2 → +∞
(downstream). This condition cannot guarantee the uniqueness of the solution, even up to a
constant. A so-called radiation condition can be imposed downstream to recover uniqueness
results, however, as stated in [50] this condition cannot be completed until the problem is partly
solved. One approach is to add some dissipation in the model, in order to damp the waves
downstream and to keep the condition |∇Φ| → 0 for |x| → ∞:



∂2
11Φ + ν ∂2Φ = ε ∂1Φ , on S0 ,

∆Φ = 0 , in Ω+ ,

∂nΦ = −Un · e1 , on Γ ,

|∇Φ| → 0 , for |x| → ∞ ,

(I.42)

where ε accounts for the damping which is often called the "Rayleigh dissipation". One can
solve this problem by defining the problem’s fundamental solution, and then, taking ε→ 0,
we can recover the appropriate set of conditions at infinity by studying the behaviour of the
solution far away from the obstacle. In the next section we present the calculation of the
fundamental solution of the Neumann-Kelvin problem we have described above.
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2 Fundamental Solution of the Neumann-Kelvin problem

In ship hydrodynamics, the fundamental solution, also known as Green’s function, is an
important tool both from the theoretical and from the numerical standpoint (see for instance
[21] and [63] for numerical simulations) as it the base ingredient for the boundary integral
reformulation of the problem. For our simplified 2D problem, we rely on the same tools as
those used in ship hydrodynamics since our long-term goal is to use the same methods for
the actual 3D problem.

The main problem here is to obtain a Green’s function that satisfies the linearised free-
surface condition (I.40), as well as the right behaviour at infinity (logarithmic behaviour
upstream and deep, and bounded downstream). This will prove to be very useful in the
next section, since, though a single-layer representation of the solution, the only condition
that will be left to impose will be (I.32), which only involves the boundary of the obstacle.

The Green’s function for the Neumann-Kelvin problem is already known in literature
and appears in various equivalent forms: Havelock [33], Wehausen and Laitone [74] pre-
sented the Green’s function as a double integral, while Kuznetsov in [50] used a single in-
tegral to express the Green’s function. Rahman in [63] replaced the Green’s function with
double integral in [74] by a single integral using the complex exponential integral. On this
particular topic, references in literature rarely give an insight on how this function is ob-
tained. For this reason, in the following section, we detail the calculation of the Green’s
function.

2.1 Calculation of the Green’s function

For the Neumann-Kelvin problem (I.38), the Green’s function Gy for a source y fully sub-
merged (y ∈ R× R−,∗) should satisfy (at least):

∆Gy = δy , in R× R−,∗

∂2
11Gy + ν ∂2Gy = 0 , on S0 ,

(I.43)

where δy is the Dirac distribution supported on {y}, and hence the first equation has to
be understood in the sense of distributions. In the following, we introduce the following
lifting function to get rid of the Dirac distribution on the right-hand side of the first equation
of (I.43):

Gy(x) := 1
2π ln(|x− y|) + 1

2π ln(|x− y|) , (I.44)
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where y = (y1,−y2) is the symmetric of y with respect to the free surface. This function is
known to satisfy ∆Gy = δy thanks to the first term (Green’s function of the Laplace equation),
while the second term ensures, by symmetry, that ∂2Gy = 0 on S0, which will be useful for
later. Let us write Gy using this lifting:

Gy(x) = 1
2π ln(|x− y|) + 1

2π ln(|x− y|) + Hy(x). (I.45)

The function Hy that we need to obtain solves:

∆Hy = 0, (I.46)

and:
∂2

11Hy(x1, 0) + ν∂2Hy(x1, 0) = −∂2
11Gy(x1, 0). (I.47)

since ∂2Gy = 0 on S0 as we have seen earlier.
By taking the Fourier transform of (I.46) with respect to x1, we obtain

∆̂Hy(k, x2) = −k2Ĥy(k, x2) + ∂2
22Ĥy(k, x2) = 0 , (I.48)

which is a second order differential equation with respect to the variable x2. This equation
has solutions of the form:

Ĥy(k, x2) = Ae|k|x2 +Be−|k|x2 . (I.49)

where A and B are real functions of k that we will determine below. First, for the Green’s
function to be bounded for x2 → −∞, we require that B = 0, which leads to

Ĥy(k, x2) = Ae|k|x2 . (I.50)

In order to find A, we take the Fourier transform of (I.47) with respect to x1, we get:

−k2Ĥy(k, 0) + ν∂2Ĥy(k, 0) = −F[∂2
11Gy(·, 0)](k), (I.51)

where F stands for the Fourier transform. We hence have to get the Fourier transform of:

∂2
11Gy(x1, 0) = 1

π

[
−(x1 − y1)2 + y2

2
((x1 − y1)2 + y2

2)2

]
. (I.52)
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The Appendix B shows how this Fourier transform is obtained. We have:

F[∂2
11Gy(·, 0)](k) = |k|e−iky1e−|k||y2| . (I.53)

Hence, since in our case y2 < 0, we have, from (I.53) and (I.51):

−k2Ĥy(k, 0) + ν∂2Ĥy(k, 0) = −|k|e−iky1e|k|y2 . (I.54)

Further, we get the following value of A by using equation (I.50) and (I.54):

A = e−(iky1)+|k|y2

|k| − ν
(I.55)

Further, we substitute (I.55) into equation (I.50):

Ĥy(k, x2) = e−iky1+|k|(y2+x2)

|k| − ν
(I.56)

In order to recover Hy, we have to take the inverse Fourier transform of (I.56).

Hy(x) = 1
2π

∫
R

e−iky1+|k|(y2+x2)

|k| − ν
eikx1 dk (I.57)

Let us denote:

u(k) = e−iky1+|k|(y2+x2)

|k| − ν
eikx1 .

We remark that u(−k) = u(k), hence:

Hy(x) = 1
2π

∫
R
u(k)dk = 1

2π

(
2 Re

∫
R+
u(k) dk

)
(I.58)

= 1
π

Re
∫
R+

e−ik(y1−x1)+k(y2+x2)

k − ν
dk. (I.59)

Let us denote:
ω(x, y) = (y1 − x1) + i(x2 + y2). (I.60)

We obtain

Hy(x) = 1
π

Re
∫
R+

e−ikω(x,y)

k − ν
dk. (I.61)

It is clear that the integral (I.61) is an improper integral. This problem is related to the
lack of decay of the solution at infinity downstream. It is however possible to give a meaning
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R

iR

ν

l−ε

Figure I.2 – Path of integration for z 7→ e−izω

z − ν
in [50]

to (I.61) by avoiding the singularity from below, with a half-circle of center ν and radius ε
(see figure I.2), where ε is meant to vanish:

Hy(x) = 1
π

lim
ε→0

Re
∫
l−ε

e−ikω(x,y)

k − ν
dk. (I.62)

where l−ε is a complex path of integration described in I.2.

Remark 1. The choice we made for the path of integration might seem arbitrary, and there could be
lots of other ways to give a meaning to (I.61) with a limiting process. For instance we could consider
the Cauchy principal value of this integral, or avoiding the singularity from above. We will see later
that the choice we have made will imply that the Green’s function we obtain satisfies physically sound
conditions at infinity (both upstream and downstream). Moreover, taking the "below" path can be
shown to be equivalent to consider a vanishing Raleigh dissipation in the model (see Appendix A).

The formula (I.62) gives us an expression for the Green’s function, but it is rather imprac-
tical for the numerical point of view, as it involves the limit in ε. Fortunately, as it will be
shown in the next subsection, this limit can be related to the exponential integral function,
which is well known, and for which series expansions exists.

2.2 Relation with the exponential integral function

The exponential integral function we consider is defined by:

E1(a) =
∫
R++ a

e−z

z
dz, (I.63)

where the a ∈ C, and hence the path of integrations goes from a to infinity parallel to the real
axis (see figure I.2). This function is well known, from its behaviour at infinity to numerical
approximations (see for instance [57]).
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−iνω −iνω + R

Pε

R

iR

−iνω −iνω + R
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Figure I.3 – Paths of integration for z 7→ e−z/z in (I.65) and (I.66). On the left: Im(−iνω > 0), which
implies that y1 < x1 (the point of observation x is downstream of the source y). On the right: Im(−iνω <
0), which implies that y1 > x1 (the point of observation x is upstream of the source y).

Let us show that (I.62) can be rewritten as the integral of e−z/z on a certain path Pε (see
figure I.3) which is built from P = {iω(k−ν); k ∈ R+}, and avoids the singularity (at 0) from
below:

∫
P

e−z

z
dz =

∫
R+

e−iω(k−ν)

iω(k − ν)iω dk = eiων
∫
R+

e−iωk

k − ν
dk. (I.64)

Now let us rewrite the integral over P as an integral on −iνω + R by making use of the
Cauchy’s integral theorem. As seen on figure I.3, there are two cases:

• If (y1 − x1) < 0 (downstream, see figure I.3 left), we close the path with an arc going
from Pε to −iνω + R, and use the decay at infinity for the positive real part of e−z/z,
and we remark that the path encloses the singularity at z = 0. The Cauchy’s integral
theorem yields:

∫
Pε

e−z

z
dz =

∫
−iνω+R

e−z

z
dz + 2πiRes(z → e−z

z
, 0) = E1(−iνω) + 2πi (I.65)

• If (y1 − x1) > 0 (upstream, see figure I.3 right), by the same arguments, and noticing
that this time the integral is outside of the interior of the path of integration, we have:

∫
Pε

e−z

z
dz = E1(−iνω) (I.66)

25



Chapter I. The Neumann-Kelvin problem

Summing up (I.64), (I.65), and (I.66), we have:

Hy(x) = 1
π

 Re{e−iνωE1(−iνω)}, if: y1 > x1

Re{e−iνω[E1(−iνω) + 2πi]}, if: y1 < x1
(I.67)

Thus from (I.45) and (I.67) our Green’s function of the Neumann-Kelvin problem writes:

Gy(x) = 1
2π ln(|x− y|) + 1

2π ln(|x− y|)

+ 1
π


Re{e−iνωE1(−iνω)}, if: y1 > x1

Re{e−iνω[E1(−iνω) + 2πi]}, if: y1 < x1

(I.68)

In the rest of the chapter, we will denote G(x, y) = Gy(x) for the sake of presentation.

2.3 Asymptotic behaviour of the Green’s function

In this section we study the behaviour of the Green’s function (I.68) far away from the source.
This will show that the choice of path of integration we have made to give sense to (I.61)
ensures that waves are propagated downstream. We first recall the following asymptotic
formula, which can be found in [57]:

ez E1(z) = O

(
1
|z|

)
, for z 6∈ R− . (I.69)

This leads, along with (I.68) to the asymptotic formula:

Gy(x) = r(x, y) + 1
π

ln(|x− y|) + 2


0 if: y1 > x1

eν(x2+y2) sin(ν(y1 − x1)) if: y1 < x1

(I.70)

where : r = O(1/|x − y|) and ∇r = O(1/|x − y|2). This formula can also be found in
[50], albeit in a different form. From (I.70), we remark that the asymptotic behaviour of the
Green’s function downstream (i.e. for y1 < x1) is periodic, with a period of 1/ν. The figure I.4
shows a plot of the Green’s function (I.68), along with the asymptotic approximation (I.70)
(neglecting the rest r), and their difference.
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Figure I.4 – Plot of the Green’s function, along with its asymptotic approximation, and their difference,
for ν = g/U2 = 0.5 and a source at (0,−2).
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3 Boundary integral formulation of the problem

Let us recall the Neumann-Kelvin problem:

∆Φ = 0 , in Ω+ ,

∂2
11Φ + ν ∂2Φ = 0, on S0 ,

∂nΦ = −Un · e1 , on Γ ,

|∇Φ| = O(1) , for |x| → ∞ ,

|∇Φ| → 0 ,
for x1 → −∞ (unif. w.r.t. x2),

and x2 → −∞ (unif. w.r.t. x1).

(I.71)

(I.72)

(I.73)

(I.74)

(I.75)

The idea behind the boundary integral formulation of such a problem is to replace the
boundary condition (I.73) on Γ by a source term in (I.71), considered on the whole half-space
R× R−, consisting in a single layer distribution carried by Γ:

< slα, ϕ >D′,D=
∫

Γ
α(xs)ϕ(xs) ds ,

where α ∈ C(Γ) is the (yet unknown) weight function associated with the distribution of
sources. Since the support of this distribution is Γ, solving ∆Φ = slα on R × R−, will imply
that ∆Φ = 0 on both Ω+ and Ω−. When x ∈ Ω+∪Ω−, we obtain a solution of (I.71) and (I.72):

Φ(x) =
∫

Γ
G(x, y)α(y)dsy , (I.76)

where G is the Green’s function previously defined in section 2, designed in such a way that
it solves (I.72). The unknown α should be determined in such a way that (I.73) is satisfied.
Note that ∂nΦ in (I.73) has to be understood as the trace of ∇Φ · n onto Γ from the exterior
(we will denote it γ+

Γ [∇Φ]). Using (I.76), the condition (I.73) becomes:

γ+
Γ

[
z 7→ n(z) · ∇z

∫
Γ
G(z, y)α(y) dsy

]
(x) = −Un(x) · e1 , ∀x ∈ Γ . (I.77)

Furthermore, it is possible to show that (see [46] for example), when Γ is of class C2:

γ+
Γ

[
z 7→ n(z) · ∇z

∫
Γ
G(z, y)α(y) dsy

]
(x) =

∫
Γ
∂n(x)G(x, y)α(y) dsy −

1
2α(x) . (I.78)
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which leads to the following boundary integral equation for α:

1
2α(x)−

∫
Γ
∂n(x)G(x, y)α(y) dsy = Un(x) · e1 , ∀x ∈ Γ . (I.79)

Remark 2. In principle, the singularity of the kernel ∂n(x)G(x, y) which is of the type :

∂n(x)G(x, y) = (x− y) · n(x)
|x− y|2

+ o(1) in the limit y → x

should be a priori non integrable (like y 7→ 1/y on R) and hence the integral should be understood as
a Cauchy principal value. However, in two dimension of space (as it is the case here) it turns out that
when the boundary is C2, we have (see [48]):

(x− y) · n(x)
|x− y|2

= 1
2H(x) + o(dΓ(x, y)) , (I.80)

where H(x) denotes the curvature of Γ at the point x. Hence the kernel in (I.79) is in fact continuous
in our case and the integral has to be understood in the usual sense.

3.1 Asymptotic behaviour of solutions

The following theorem, found in [50] ensures that a solution defined by (I.76) satisfies the
conditions (I.74)-(I.75), when α solves (I.79).

Theorem 1. Let Γ be a C2 boundary, let Φ be defined given by (I.76), with α ∈ C(Γ). Then we have:

Φ(x) = c+R(x) + Q ln(|x|) +

 0 if: x1 < 0

Im
[
C e−iνx1+νx2

]
if: x1 > 0

(I.81)

where R(x) = O(1/|x|) and ∇R(x) = O(1/|x|2), and:

Q = 1
π

∫
Γ
α(y) ds (I.82)

C = 2
∫

Γ
α(y)eiνy1+νy2 ds (I.83)

The proof uses the asymptotic behaviour of the Green’s function. Combining (I.76)
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Chapter I. The Neumann-Kelvin problem

and (I.70), we have:

Φ(x) =
∫

Γ
r(x, y)α(y) dsy + 1

π

∫
Γ

ln(|x− y|)α(y) dsy

+ 2


0 if: x1 < 0∫

Γ
eν(x2+y2) sin(ν(y1 − x1))α(y) dsy if: x1 > 0

(I.84)

From the continuity of α, and the behaviour of r at infinity, he have:

∫
Γ
r(x, y)α(y) dsy = R1(x) (I.85)

where R1(x) = O(1/|x|) and ∇R1(x) = O(1/|x|2). The second term writes:

∫
Γ

ln(|x− y|)α(y) dsy = ln(|x|)
∫

Γ

ln(|x− y|)
ln(|x|) α(y) dsy (I.86)

= ln(|x|)
∫

Γ
α(y) dsy +

∫
Γ

ln
(
|x− y|
|x|

)
α(y) dsy (I.87)

Elementary calculations show that, for y given in the lower half plane:

ln
(
|x− y|
|x|

)
= O

(
1
|x|

)
, (I.88)

∇ ln
(
|x− y|
|x|

)
= O

(
1
|x|2

)
, (I.89)

hence: ∫
Γ

ln(|x− y|)α(y) dsy = Q ln(|x|) +R2(x) (I.90)

where R2(x) = O(1/|x|) and ∇R2(x) = O(1/|x|2). Finally:

∫
Γ
eν(x2+y2) sin(ν(y1 − x1))α(y) dsy = Im

[
2
∫

Γ
eiν(y1−x1)+ν(x2+y2) α(y) dsy

]
, (I.91)

= Im
[
C e−iνx1+νx2

]
. (I.92)

Stating that R = R1 +R2 completes the proof of the theorem.

Remark 3. If α moreover solves (I.79), we have Q = 0, and hence we recover the conditions at
infinity (I.74)-(I.75) for Φ defined as in (I.76).

This comes from the following identity, that can be found in [46], which is a consequence
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I.3 Boundary integral formulation of the problem

of the jump relations for solutions of Laplace equation represented with single or double
layer potentials:

∫
Γ
∂n(x)G(x, y) dsx =


−1 if y ∈ Ω− ,

−1/2 if y ∈ Γ ,

0 if y ∈ Ω+ .

(I.93)

Integrating (I.79) over Γ leads to:

∫
Γ

(1
2α(x)−

∫
Γ
∂n(x)G(x, y)α(y) dsy

)
dsx =

∫
Γ
Un(x) · e1dsx = 0 , (I.94)

from the flux-divergence theorem. The left-hand side can be rewritten as:

∫
Γ

(1
2α(x)−

∫
Γ
∂n(x)G(x, y)α(y) dsy

)
dsx = 1

2

∫
Γ
α(x) dsx −

∫
Γ
α(y)

∫
Γ
∂n(x)G(x, y) dsx dsy ,

(I.95)
by exchanging the order of integration on the second term. Now, using (I.93), we have:

∫
Γ

1
2α(x)−

∫
Γ
∂n(x)G(x, y)α(y) dsy dsx =

∫
Γ
α(x) dsx , (I.96)

hence, from (I.94), we obtain Q = 0.

3.2 Existence of solutions and uniqueness

In this section we recall the existence and uniqueness results that were obtained in [50]
for the Neumann-Kelvin problem, and give a brief account of the main ideas behind the
proofs of these results. We recall that the mathematical formulation of the Neumann-Kelvin
problem reads: find Φ ∈ C2(Ω+) such that



∆Φ = 0 , in Ω+ ,

∂2
11Φ + ν ∂2Φ = 0 , on S0 ,

∂nΦ = −U∞n · e1 , on Γ ,

sup
Ω+
|∇Φ| <∞ and |∇Φ| → 0 as x1 → −∞ .

(I.97)

This problem is extensively studied in [50] for a general right-hand side f instead of
−U∞n · e1 in the third equation above. A central idea is to relate this problem to the integral
formulation (I.79). We sum up the main results and ideas.
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Chapter I. The Neumann-Kelvin problem

Theorem 2. Assume that Ω− is a bounded and simply connected domain of the lower half-plane
with C3 boundary Γ, and such that Ω− is included in the (open) lower half-plane. Then the integral
equation (I.79) has a unique solution α ∈ C0(Γ) for all ν > 0 with a possible exception for a finite
number of values. Moreover, α belongs to C1,θ(Γ) for all θ ∈ (0, 1), and the Neumann-Kelvin
problem (I.97) is solvable for all ν > 0 with a possible exception for a finite number of values.

We first note that the function −U∞n · e1 belongs to C2(Γ), and we can apply the results
in [50]. Any solution α ∈ C1,θ(Γ) of (I.79) provides a solution Φ of the Neumann-Kelvin
problem (I.97) thanks to formula (I.76). We note that at this point, this solution Φ of (I.97)
may not be unique.

Now, the idea is that (I.79) is a Fredholm equation of the second kind that we denote:

(Id + Tν)α = f . (I.98)

First, It can be shown that this Fredholm equation has a unique solution in C0(Γ) for ν = 0
and ν = ∞, as it consist in solving the Laplace equation with respectively a Dirichlet and a
Neumann boundary condition at S0, as it can be observed formally on (I.97). By continuity,
for ν > 0 small enough and ν > 0 large enough, (I.98) is uniquely solvable.

Moreover, the Fredholm operator (Id + Tν) depends analytically on ν with values in
L(C0(Γ)), the Banach space of continuous linear operators from C0(Γ) into itself. By the
principle of isolated zeros, combined with the Fredholm alternative, the unique solvability
of (I.98) can be lost for a finite values of ν ∈ (0,∞) at most.

Uniqueness of solution to the Neumann-Kelvin problem (I.97) can be proved in some
cases. In particular, we have :

Theorem 3. Let the assumptions of Theorem 2 hold, and assume moreover that x ·n ≥ 0 on Γ. Then
problem (I.97) and the integral equation (I.79) are equivalent in the following sense. Any solution
of (I.97) has a unique representation in the form (I.76) (up to a constant term), where α satisfies (I.79).
Conversely, subsituting any solution α of (I.79) into (I.76), one obtains a solution of (I.97).

The geometric condition x · n ≥ 0 on Γ is satisfied for instance if Γ is split by the axis
x1 = 0 into two parts that can be specified explicitly: x1 = g±(x2). In the case of a ball, it

has also been shown that the Neumann-Kelvin problem (I.97) has a unique solution (up to
a constant term) for all values of ν.
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I.4 The wave-making resistance

4 The wave-making resistance

In this section, we explain how the wave-making resistance is determined from the knowl-
edge of the solution of the Neumann-Kelvin problem. Moreover, by making use of the be-
haviour of the potential far away from the obstacle, we will introduce the so-called "energy
method" for the calculation of the wave-making resistance.

4.1 Integration of the normal stress

The forces exerted by the fluid on the obstacle is the result of the integration of the normal
stress on the surface of the obstacle:

F = −
∫

Γ
σ n ds . (I.99)

As we have seen in section 1, we have σ = P Id, hence:

F = −
∫

Γ
P n ds . (I.100)

This force has two components: the horizontal component is called the drag or resistance
and the vertical component is called the lift. Our interest focus on the resistance, which is
the quantity we will seek to minimise later. Since all these forces are zero in the absence of a
free-surface (because of d’Alembert’s paradox, see [4]), the resistance is only caused by the
production of waves behind the obstacle. For this reason, the horizontal force will be called
the wave-making resistance:

Rw = −
∫

Γ
P n1 ds , (I.101)

where n1 = n · e1. Using Bernoulli’s formula (I.20), at steady-state, we have:

P = c+ ρgx2 − ρ
|V |2

2 . (I.102)

Hence:

Rw = −
∫

Γ

[
c+ ρgx2 − ρ

|V |2

2

]
n1 ds . (I.103)
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First, we remark that:

Rw = −
∫

Γ
(c+ ρgx2)n1 dΓ = −

∫
Γ

c+ ρgx2

0

 · n ds (I.104)

= −
∫

Ω−
∇ ·

c+ ρgx2

0

 dx = 0 . (I.105)

Finally:

Rw = ρ
∫

Γ

|V |2

2 n1 ds . (I.106)

Describing the velocity in terms of the perturbation potential V = ∇Φ + Ue1, we have:

Rw = ρ
∫

Γ

[
|∇Φ|2

2 + U∂1Φ
]
n1 ds . (I.107)

Now we will show that the wave-making resistance can be expressed as a function of the
amplitude of the waves downstream rather than integrating the pressure on the boundary.

4.2 The energy method

First, we give a description of the behaviour of the solution of the Neumann-Kelvin problem
at infinity in all directions. Let Φ be a solution of the Neumann-Kelvin problem, then we
have, as a consequence of Theorem 1:

∇Φ(x1, ·) = O(|x|−2) uniformly as x1 → −∞ , (I.108)

∇Φ(·, x2) = O(|x|−2) uniformly as x2 → −∞ , (I.109)

∇Φ(x1, x2) = ν Re
C

−i
1

 e−i(νx1+π
2 )+νx2

+O(|x|−2) uniformly as x1 → +∞ , (I.110)

where the complex amplitude reads:

C = 2
∫

Γ
Φ∂nE− ∂nΦE ds , (I.111)

with:
E(x) = eν(ix1+x2) . (I.112)

Following [50], we start by showing that the wave-making resistance can be calculated
using the asymptotic behaviour of the solution described above. Following [50], we intro-
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duce the rectangle:
Ra,b =]− a, a[×]− b, 0[ ,

with a and b large enough for the rectangle to enclose the obstacle Ω−. On one hand, we
have: ∫

Ra,b∩Ω+
∆Φ ∂1Φ dx = 0 , (I.113)

on the other hand, integrating by parts, we have:

∫
Ra,b∩Ω+

∆Φ ∂1Φ dx =
∫
∂(Ra,b∩Ω+)

∂ñΦ ∂1Φ ds−
∫
Ra,b∩Ω+

∇Φ · ∂1∇Φ dx , (I.114)

=
∫
∂(Ra,b∩Ω+)

∂ñΦ ∂1Φ ds−
∫
Ra,b∩Ω+

∂1
|∇Φ|2

2 dx , (I.115)

=
∫
∂(Ra,b∩Ω+)

∂ñΦ ∂1Φ− |∇Φ|2
2 ñ1 ds , (I.116)

where ñ is the outwards unit normal vector of Ra,b ∩ Ω+. The boundary ∂(Ra,b ∩ Ω+) is the
union of Γ and the border ∂Ra,b of the rectangle. Note that on Γ, we have ñ = −n (as it was
defined before). We deduce from the above that:

∫
Γ
∂nΦ ∂1Φ− |∇Φ|2

2 n1 ds =
∫
∂Ra,b

∂ñΦ ∂1Φ− |∇Φ|2
2 ñ1 ds (I.117)

The left-hand side writes:

∫
Γ
∂nΦ ∂1Φ− |∇Φ|2

2 n1 ds =
∫

Γ
−Un1 ∂1Φ− |∇Φ|2

2 n1 ds = −Rw , (I.118)

hence:
Rw =

∫
∂Ra,b

|∇Φ|2
2 ñ1 − ∂ñΦ ∂1Φ ds . (I.119)

Let us denote ta,b, ba,b, la,b, ra,b respectively the top, bottom, left and right parts of ∂Ra,b. We
denote by T , B, L and R the corresponding integrals, so that Rw = T +B + L+R. First, we
have:

B =
∫
ba,b

|∇Φ|2
2 ñ1 − ∂ñΦ ∂1Φ ds =

∫ a

−a
∂2Φ(x1,−b) ∂1Φ(x1,−b) dx1 , (I.120)

and:

L =
∫
la,b

|∇Φ|2
2 ñ1 − ∂ñΦ ∂1Φ ds = 1

2

∫ 0

−b
|∂2Φ(−a, x2)|2 − |∂1Φ(−a, x2)|2dx2 . (I.121)
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Thanks to the asymptotic formula (I.108)-(I.109), we can see easily that the two terms above
vanish as a→∞ and b→∞. Let us now investigate the other terms:

T =
∫
ta,b

|∇Φ|2
2 ñ1 − ∂ñΦ ∂1Φ ds =

∫ a

−a
−∂2Φ(x1, 0) ∂1Φ(x1, 0) dx1 . (I.122)

Using the free-surface boundary condition, we obtain:

T =
∫ a

−a
ν−1 ∂2

11Φ(x1, 0) ∂1Φ(x1, 0) dx1 = 1
2ν

(
∂1Φ(a, 0)2 − ∂1Φ(−a, 0)2

)
, (I.123)

Using (I.108)-(I.110), we get:

T = ν

2 Re
[
C e−iνa

]2
+O(a−1) . (I.124)

The remaining term writes:

R =
∫
ra,b

|∇Φ|2
2 ñ1 − ∂ñΦ ∂1Φ ds = 1

2

∫ 0

−b
|∂2Φ(a, x2)|2 − |∂1Φ(a, x2)|2dx2 . (I.125)

Again, using the asymptotic formula (I.110), we get:

R = ν2

2

{
Re
[
C e−iνa−i

π
2
]2
− Re

[
C e−iνa

]2} ∫ 0

−b
e2νx2 dx2 +O(a−1) . (I.126)

The limit b→∞ yields:

R = ν

4

{
Re
[
C e−iνa−i

π
2
]2
− Re

[
C e−iνa

]2}
+O(a−1) . (I.127)

By summing T , B, L and R we have:

Rw = ν

4

{
Re
[
C e−iνa−i

π
2
]2

+ Re
[
C e−iνa

]2}
+O(a−1) , (I.128)

= ν

4

{
Im
[
C e−iνa

]2
+ Re

[
C e−iνa

]2}
+O(a−1) (I.129)

= ν

4
∣∣∣C e−iνa∣∣∣2 +O(a−1) = ν

4 |C|
2 +O(a−1) (I.130)

Hence, taking the limit a→∞, we get that:

Rw = ν

4 |C|
2 . (I.131)
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This formula shows that the wave-making resistance is proportional to the square of the
amplitudes of the waves generated by the obstacle downstream. Recalling the value of C,
from (I.83), we obtain that:

Rw = ρ ν

4

∣∣∣∣∫
Γ
αΓ(x)E(x)dsx

∣∣∣∣2 . (I.132)

5 Traces of some boundary integral operators

In the following section we detail the expression of several boundary integral operators
which will be useful for later purposes. The proofs are not given in detail here, these results
being well known for the Green’s function of the Laplace equation [39]. We only show how
to adapt these results in our case. Let us denote, for x ∈ Ω+ ∪ Ω−:

S[u](x) =
∫

Γ
G(x, y)u(y) dsy, (I.133)

D1[u](x) =
∫

Γ
∂n(x)G(x, y)u(y) dsy, D2[u](x) =

∫
Γ
∂n(y)G(x, y)u(y) dsy, (I.134)

H1[u](x) =
∫

Γ
∇2
xxG(x, y)n(x) · n(x)u(y) dsy, H2[u](x) =

∫
Γ
∇2
xyG(x, y)n(y) · n(x)u(y) dsy,

(I.135)

where ∇2
xx = ∇x∇T

x and ∇2
xy = ∇x∇T

y . Let us now define the traces from Ω+ of these
functions as operators on u:

S[u] = γ+
Γ [z 7→ S(u)(z)] , (I.136)

D1[u] = γ+
Γ [z 7→ D1(u)(z)] , D2[u] = γ+

Γ [z 7→ D2(u)(z)] , (I.137)

H1[u] = γ+
Γ [z 7→ H1(u)(z)] , H2[u] = γ+

Γ [z 7→ H2(u)(z)] . (I.138)

The kernel in S being weakly singular, we have classically:

S[u](x) =
∫

Γ
G(x, y)u(y) dsy. (I.139)
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The singularity of G(x, y) comes from the term (2π)−1 ln(|x− y|) in (I.68), so, exactly as in the
Laplace equation (see [46] or [39]), we get :

D1[u](x) =
∫

Γ
∂n(x)G(x, y)u(y) dsy −

1
2u(x) , (I.140)

D2[u](x) =
∫

Γ
∂n(x)G(x, y)u(y) dsy + 1

2u(x) . (I.141)

Let us now calculate the traces on Γ, from Ω+ of:

H1[u](x) =
∫

Γ
∇2
xxG(x, y)n(x) · n(x)u(y) dsy , (I.142)

H2[u](x) =
∫

Γ
∇2
xyG(x, y)n(y) · n(x)u(y) dsy . (I.143)

Using the following identity on 2× 2 matrices:

Au · v = [tr(A)Id− AT ]Ru ·Rv (I.144)

where R is a π/2 rotation matrix and tr(A) is the trace of the matrix A, we obtain:

∇2
xxG(x, y)n(x) · n(x) =

[
tr(∇2

xxG(x, y))Id−∇2
xxG(x, y)

]
τ(x) · τ(x) , (I.145)

∇2
xyG(x, y)n(y) · n(x) =

[
tr(∇2

xyG(x, y))Id−∇2
yxG(x, y)

]
τ(y) · τ(x) . (I.146)

The Green’s function (I.68) of the Neumann-Kelvin problem has the form:

G(x, y) = g(x− y) + h(x− y) , (I.147)

where ∆g = 0 and ∆h = 0 on R2 \ {0}. Firstly, we have:

tr(∇2
xxG(x, y)) = ∆g(x− y) + ∆h(x− y) = 0 , (I.148)

since x 6= y and x 6= y, for x ∈ Ω+. Secondly, we have:

tr(∇2
xyG(x, y))Id−∇2

yxG(x, y) = −∇2
xy(g(x− y)− h(x− y)) . (I.149)
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This leads to :

∇2
xxG(x, y)n(x) · n(x) = −∇2

xxG(x, y)τ(x) · τ(x) , (I.150)

∇2
xyG(x, y)n(y) · n(x) = −∇2

xyG
∗(x, y)τ(y) · τ(x) . (I.151)

where G∗(x, y) = g(x− y)− h(x− y). On one hand, we have:

∇2
xyG

∗(x, y)τ(y) · τ(x) = ∂τ(x)∂τ(y)G
∗(x, y) (I.152)

On the other hand:

∂τ(x)∂τ(x)G(x, y) = ∇x(∇xG(x, y) · τ(x)) · τ(x) (I.153)

= (∇x∇T
xG(x, y) τ(x) +∇xτ(x)T ∇xG(x, y)) · τ(x) (I.154)

= ∇2
xxG(x, y) τ(x) · τ(x) +∇xG(x, y) · (∇xτ(x)T )T τ(x) . (I.155)

We have:

(∇τT )T τ =
∂1τ1 τ1 + ∂2τ1 τ2

∂1τ2 τ1 + ∂2τ2 τ2

 , (I.156)

=
 ∂1n2 n2 − ∂2n2 n1

−∂1n1 n2 + ∂2n1 n1

 , (I.157)

= 1
2∇(|n|2)−∇ · nn = −∇ · nn = −H n , (I.158)

where we recall that H denotes the curvature of Γ. This leads to :

∇2
xxG(x, y) τ(x) · τ(x) = ∂τ(x)∂τ(x)G(x, y) +H(x)∇xG(x, y) · n(x) . (I.159)

Gathering (I.152) on one hand and (I.159) on the other hand, we obtain, for x ∈ Ω+:

H1[u](x) = −∂τ(x)∂τ(x)

∫
Γ
G(x, y)u(y) dsy −H(x)

∫
Γ
∂n(x)G(x, y)u(y) dsy (I.160)

H2[u](x) = −∂τ(x)

∫
Γ
∂τ(y)G

∗(x, y)u(y) dsy = ∂τ(x)

∫
Γ
G∗(x, y) ∂τu(y) dsy . (I.161)

since Γ is a closed smooth curve. Taking the trace of both the expression above leads to, for
x ∈ Γ:

H1[u](x) = −∂τ(x)∂τ(x)

∫
Γ
G(x, y)u(y) dsy −H(x)

∫
Γ
∂n(x)G(x, y)u(y) dsy + 1

2H(x)u(x) , (I.162)
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and:
H2[u](x) = ∂τ(x)

∫
Γ
G∗(x, y) ∂τu(y) dsy . (I.163)

Hence the form:

H1[u] = −∂2
τ,τS[u]−H D1[u] , (I.164)

H2[u] = ∂τ S̃[∂τu] , (I.165)

where:
S̃[u](x) =

∫
Γ
G∗(x, y)u(y) dsy . (I.166)
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Chapter II

Shape Optimisation

In this chapter, we will give a presentation of the boundary variation method for shape opti-
misation along with its applications to the wave-making resistance problem. The boundary
variations method consists in studying the influence (at first order) of small deformations of
a domain (bounded open set with a smooth boundary) on a quantity (e.g. the surface area,
the perimeter,...) that depends on the shape of the aforementioned domain. Typically, for
applications in physics and engineering, the quantity of interest depends on the solution of
a partial differential equation which, in turn, is posed on the domain we wish to optimise.

Our general presentation will follow the main ideas that can be found in [2] and [38], and
we will briefly recall some of the results that can be found in these two textbooks. As stated
in [38], the first occurence of this method can be traced back to the 1907 article of Jacques
Hadamard called Mémoire sur le problème d’analyse relatif á l’équilibre des plaques élastiques en-
castrées [31]. Remarkably, in this long article, the problem is studied using a boundary inte-
gral formulation of involving a Green’s function, exactly as it will be the case here.

This chapter is organised as follows: in the first section, we will recall the principle of the
boundary variation method, and introduce the main notations and the concept of "shape
derivative" and "shape gradient", on which we will rely for the future algorithm. In the sec-
tion 2 we will present some useful lemmas on the calculation of various shape derivatives,
which we will use as building blocks for our application. The Lagrangian method which
allows an easy formal calculation of the shape gradient of a quantity depending on the so-
lution of a partial differential equation posed on the variable domain will be presented in
section 3. After recalling how the method works for partial differential equations formu-
lated as variational problems, we propose an adaptation for the case of boundary integral
equations. Finally, the last section of this chapter is dedicated to the calculation of the shape
gradient of the wave-making resistance as it was defined in chapter I.
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Chapter II. Shape Optimisation

1 Presentation of the boundary variation method

Le us now consider a problem of minimisation:

min
Ω∈O

J(Ω) , (II.1)

where O is the set of open, non-empty bounded domains with a smooth boundary. In gen-
eral, for optimisation, it is useful to define derivatives of the objective function with respect
to variable of interest. First it provides a necessary optimality condition (the derivative of the
optimal function at the optimal value has to be zero), and also, in some cases, this derivative
can be used in optimisation algorithms such as the gradient descent method or Newton’s
method. Let us recall the notion of Fréchet derivative of a function in Banach space:

Definition 1 (Fréchet differentiability, Fréchet derivative). Let E and F be two Banach spaces
and V an open subset of E. Let us consider f , a continuous mapping from V to F . We say that
f is Fréchet differentiable at x ∈ V , if and only if there exists a linear and continuous mapping
gx : E → F , called the derivative of f at x, satisfying:

‖f(x+ h)− f(x)− gx(h)‖F = o(‖h‖E) (II.2)

where:
lim
‖h‖E→0

o(‖h‖E)
‖h‖E

= 0 (II.3)

The set of admissible domains involved in our problem is not adapted to this definition,
since it is not even a vector space. The idea behind the boundary variations method is to restrict
the admissible domains to domains that can be obtained through the image of a reference
domain Ω0 with a smooth and reversible (with a smooth inverse) deformation. The classical
presentation of the method in [2] makes use of the space W 1,∞ to define diffeomorphisms:

Oad =
{
T (Ω0) ; (T − Id) ∈ W 1,∞(R2,R2) and (T−1 − Id) ∈ W 1,∞(R2,R2)

}
, (II.4)

where W 1,∞(R2,R2) denotes the set of L∞(R2,R2) functions with L∞ first order distribu-
tional derivatives, which is a Banach space when equipped with the norm:

‖u‖1,∞ =
∑
|k|≤1
‖Dku‖∞ . (II.5)

In (II.4), T will be called the placement function, and θ = T − Id, will be called the displace-
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II.1 Presentation of the boundary variation method

ment field (see figure II.1).

x T (x)
θ(x)

Ω0 T (Ω0)

Figure II.1 – Illustration of the displacement field θ and the placement function T .

The set of admissible shape (II.4) can be rewritten as:

Oad =
{

(Id + θ)(Ω0) ; θ ∈ W 1,∞(R2,R2) and ((Id + θ)−1 − Id) ∈ W 1,∞(R2,R2)
}
, (II.6)

Now that the set of domains is parametrised with the function θ, it is natural to rewrite our
objective function in terms of θ:

J((Id + θ)(Ω0)) = J̌Ω0(θ) , (II.7)

and to compute derivatives with respect to θ. Unfortunately, the set of smooth deformation
fields that induce a smooth and reversible transformation is not a vector space either. For
instance, if we define θ(x1, x2) = (0,−1

2x2), then we have θ ∈ W 1,∞(R2,R2), also (Id + θ) is
inversible and:

((Id + θ)−1 − Id)(x1, x2) = (0, x2) (II.8)

which belongs to θ ∈ W 1,∞(R2,R2). Now, if we consider the transformation induced by 2θ,
we obtain that:

(Id + 2θ)(x1, x2) = (x1, 0) , (II.9)

which is non-inversible. Luckily, the following lemma, that can be found in [2] ensures that if
a given smooth deformation field is small enough, then it induces a bijective transformation
with a smooth inverse:

Lemma 1. Let θ ∈ W 1,∞, satisfying ‖θ‖W 1,∞ < 1 then, (Id + θ) is bijective and ((Id + θ)−1− Id) ∈
W 1,∞(R2,R2).

The consequence of this lemma is that, on a neighbourhood of 0, it is sufficient to consider
θ ∈ W 1,∞(R2,R2), which equipped with the norm (II.5) is a Banach space. Hence it is possible
to define the derivability of J̌Ω0 , at least at θ = 0:
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Chapter II. Shape Optimisation

Definition 2 (shape derivative). We say that a function J of the domain is shape differentiable at
Ω0 ∈ O, when J̌Ω0 defined in (II.7) is Fréchet differentiable at 0. We call the shape derivative the
linear and continuous form J ′Ω0 of W 1,∞ satisfying:

J̌Ω0(θ) = J(Ω0) + J ′Ω0(θ) + o(‖θ‖W 1,∞) . (II.10)

We denote the shape derivative J ′(Ω0) = J̌ ′Ω0(0). Also, from now on, we will denote: ‖θ‖W 1,∞ = ||θ||.

The next proposition, that can also be found in [2] shows that of shapes derivatives ap-
plied to a displacement field θ depend only on the normal component of θ on the boundary
Γ0 of the reference domain.

Proposition 1. Let Ω be an open bounded domain of R2. Let J : Oad 7→ R be a shape differentiable
function. If (θ1, θ2) ∈ (W 1,∞(R2,R2))2 are such that θ1 − θ2 ∈ C1(R2,R2) and θ1 · n = θ2 · n, on
Γ0∂Ω0 with θ · n = θn, then

J ′Ω(θ1) = J ′Ω(θ2). (II.11)

Remark 4. As a consequence of the previous lemma, we will replace J ′(Ω0)(θ) by J ′(Ω0)(θn n) in the
following calculations, where θn = θ · n, and n is a vector field of R2 that coincides with the exterior
normal vector of Ω0 on Γ0.

The shape derivative we defined above as a linear form is a rather abstract object, how-
ever, in all the calculations below, it can be associated with a displacement field of the bound-
ary, though the L2(Γ) dot product.

Definition 3 (shape gradient). Let J : Oad 7→ R be a shape differentiable function. Assume that:

J ′(Ω0)(θ) =
∫

Γ
θ(x) · wΩ0(x) ds (II.12)

then, wΩ0 is called the shape gradient, and denoted∇ΩJΩ0 .

2 Useful lemmas

In this section we present the a few lemmas on the calculation of the shape derivative of
various functions of the domain, which be useful in the next section.
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2.1 Integrals on ∂Ω

Let us recall that, in chapter I, the wave-making resistance (which will be our objective func-
tion) is written as an integral on the boundary of the obstacle. Hence it is useful to get the
integral of functionals of the type:

U(Ω) =
∫
∂Ω
f ds . (II.13)

The following proposition, can be seen in [2] for instance, in a general form. We give a
simpler form and a simple proof in 2D involving a parametrisation of the boundary:

Lemma 2 (change of variables in a boundary integral). Let Ω0 be a smooth domain of R2, and
Ω = T (Ω0), with T = Id + θ, and θ ∈ W 1,∞(R2,R2). We have:

∫
∂Ω
f ds =

∫
∂Ω0

f ◦ T J(θ) ds (II.14)

with: J(θ) = |τ + ∇θT τ |, where we recall that τ is the (positivly oriented) tangent vector of ∂Ω0,
and∇θ = (∂iθj)

Let us introduce x : I → R2, a natural parametrisation of Ω0. Let us define:

x̃(s) = x(s) + θ(x(s)) . (II.15)

From the definition of Ω, it is clear that x̃ is a parametrisation of ∂Ω. Hence:

∫
∂Ω
f ds =

∫
I
f(x̃(s))|x̃′(s)|ds . (II.16)

Substituting x̃ in (II.15) into the equation (II.16) leads to:

∫
Ω
f ds =

∫
I
f(x(s) + θ(x(s)))

∣∣∣∣∣ dds(x+ θ(x))(s)
∣∣∣∣∣ ds . (II.17)

First we recognise that x(s) + θ(x(s)) = T (x(s)), and then, we obtain by the chain rule that:

d

ds
(x+ θ(x)) = x′ +∇θT (x)x′ . (II.18)

Finally, since x is a natural parametrisation of ∂Ω0, we have that x′ = τ(x) and |x′| = 1.
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Gathering (II.17) and (II.18), we get:

∫
∂Ω
f ds =

∫
I
f(T (x(s)))

∣∣∣τ(x(s)) +∇θT (x(s))τ(x(s))
∣∣∣ ds =

∫
Ω0
f ◦ T

∣∣∣τ +∇θT τ
∣∣∣ ds . (II.19)

The following lemma will be used a lot in the following sections:

Lemma 3 (derivative of J). Let J be defined as in lemma 2. We have:

J ′0(θ) = Hθn (II.20)

where H denotes the curvature of ∂Ω0. Note that J ′0 represents the Fréchet derivative of θ 7→ J(θ) at
θ = 0.

We expand J at first order with respect to θ:

J(θ) = |τ +∇θT τ | , (II.21)

=
√

1 + 2τ · ∇θT τ + o(|∇θ|) , (II.22)

= 1 + τ · ∇θT τ + o(|∇θ|) . (II.23)

Hence: J ′0(θ) = τ · ∇θT τ = τ · ∇θτ . Using the proposition 1, we have:

J ′0(θ) = τ · ∇(θn n)τ , (II.24)

= τ · (∇θnnT + θn∇n)τ . (II.25)

On one hand we have, nT τ = 0, on the other hand, we use the following identity (only true
in 2D):

τ · ∇nτ = n · (tr(∇n)− (∇n)T )n , (II.26)

to obtain (since∇nn = 0 as we have seen before in section 5 of chapter I):

τ · ∇nτ = tr(∇n) = ∇ · n = H , (II.27)

by definition of the curvature in two dimension of space. Finally gathering (II.25) and (II.27),
we get:

J ′0(θ) = θnH . (II.28)
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(Id + θ)Ω Ω x (Id + θ)Γ Γ x x+ θ(x)

Figure II.2 – On the left: for a small enough deformation, regardless of the direction of this deformation,
any interior point x belongs to both Ω and (Id + θ)Ω, since Ω is open. On the right: when x ∈ Γ, then
no matter how small the (non-zero) displacement field is, it is impossible to ensure x ∈ (Id + θ)Γ, for all
directions of deformation.

2.2 Derivative of a function that depends on the domain

As mentioned before, shape optimisation problems often involve functions which depend
on the domain or its boundary (for instance, the boundary potential α for the wave-making
resistance).

First, we explain how we can define the shape derivative of a function UΩ : Ω → R by
comparing UΩ and U(Id+θ)Ω pointwise:

Definition 4 (Eulerian derivative). Let x ∈ Ω, the Eulerian derivative of UΩ is defined at x if
J(Ω) = UΩ(x) is shape differentiable according to the definition (2). It is hence defined by the linear
and continuous mapping on W 1,∞, which maps θ to ∂EΩUΩ satisfying:

U(Id+θ)Ω(x) = UΩ(x) + ∂EΩUΩ(θ)(x) + o(‖θ‖). (II.29)

Remark 5. Since x does not belong to (Id + θ)Ω in general, U(Id+θ)Ω(x) has no meaning in gen-
eral. However, for θ small enough, we can ensure x ∈ (Id + θ)Ω provided that Ω is open, hence
equation (II.29) being an asymptotic formula, the Eulerian derivative is well defined (see figure II.2,
left).

Let us now consider a function VΓ : Γ 7→ R, where Γ is the boundary of a bounded open
set Ω. In this case Γ is closed, hence the Eulerian derivative VΓ has no a-priori meaning (see
figure II.2, left). If x ∈ Γ, no matter how small the (non-zero) deformation θ we consider, it is
impossible to ensure x ∈ (Id + θ)Γ for all directions of deformation. One solution is to make
the point of observation "follow" the domain as it is deformed. Let us define the pulled back
on Γ version of VΓ:

V̌θ(x) = V(Id+θ)Γ(x+ θ(x)) (II.30)
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Comparing VΓ and V̌θ for θ small leads to the following definition:

Definition 5 (Lagrangian derivative). Let x ∈ Γ, we say that the Lagrangian derivative of VΓ is
well defined at x when θ 7→ V̌θ(x) is Fréchet differentiable at θ = 0. Hence the Lagrangian derivative
is defined by the linear and continuous mapping: θ 7→ ∂LΓVΓ(θ)(x) satisfying:

V̌θ(x) = VΓ(x) + ∂LΓVΓ(θ)(x) + o(‖θ‖). (II.31)

Remark 6. The Lagrangian derivative of VΓ(θ) is the derivative of V(Id+θ)Γ at point (Id + θ)x pulled
back to Γ at θ = 0. It writes:

∂LVΓ(θ)(x) = ∂θV̌θ|θ=0(θ)(x). (II.32)

One example of such a function defined only on the boundary of the domain is the nor-
mal vector. The next section describes the details of the calculation of the Lagrangian deriva-
tive of both normal vector nΓ and tangent vector τΓ.

2.3 The normal and tangent vector

In this subsection, we detail the calculation of the Lagrangian derivative of both the normal
and tangent vector associated to the boundary of a domain. Let us compute the Lagrangian
derivative of tangent vector. Let Γ be the reference domain, the deformed domain is Γ′ =
(Id + θ)Γ. As before, we consider x : I → R2, a natural parametrisation of Γ. Again, the
tangent vector at the point x(s) can be written as:

τΓ(x(s)) = x′(s)
‖x′(s)‖ = x′(s). (II.33)

As we have seen before, s 7→ x(x) + θ(x(s)) defines a parametrisation of Γ′. The pulled-back
on Γ tangent vector of Γ′ writes:

τ̌θ(x(s)) = (x+ θ(x))′(s)
‖(x+ θ(x))′(s)‖ . (II.34)

Our goal is now to expand (II.34) at first order. In subsection 2.1, we already obtained:

(x+ θ(x))′(s) = τΓ(x(s)) +∇θT (x(s)) τΓ(x(s)) , (II.35)

and
‖(x+ θ(x))′(s)‖ = 1 + τΓ · ∇θT (x(x))τΓ(x(s)) + o(‖θ‖). (II.36)
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Further,
1

‖(x+ θ(x))′(s)‖ = 1− τΓ · ∇θT (x(s))τΓ(x(s)) + o(‖θ‖). (II.37)

Summing up equations (II.35) and (II.37), we obtain:

τ̌θ = τΓ +∇θT τΓ −
(
τΓ · ∇θT τΓ

)
τΓ + o(‖θ‖) (II.38)

= τΓ +
(
∇θT τΓ · nΓ

)
nΓ + o(‖θ‖). (II.39)

From the equation (II.39), we recognise that the shape derivative of the tangent vector is:

∂LΓ τΓ(θ) =
(
∇θT τΓ · nΓ

)
nΓ (II.40)

From now on, and for the sake of simplicity, we denote n = nΓ and τ = τΓ, since there is no
ambiguity possible anymore. We hence rewrite equation (II.40):

∂LΓ τ(θ) =
(
∇θT τ · n

)
n . (II.41)

We now use the fact (the proposition (1)) that any shape differentiable quantity depends, at
first order, only on the normal component of the deformation field:

∂LΓ τ(θ) = ∂LΓ τ(θnn). (II.42)

Hence we obtain:

∂LΓ τ(θ) =
(
∇(θnn)T τ · n

)
n (II.43)

=
[(
n∇θTn + θn∇nT

)
τ · n

]
n (II.44)

=
[
n∇θTn τ · n

]
n+

[
θn∇nT τ · n

]
n (II.45)

Since t∇θnτ = ∇θn · τ = ∂τθn and ∇nT τ · n = τ · ∇nn = 0, we have:

∂LΓ τ(θ) = ∂τθnn. (II.46)
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The normal vector is obtained by rotation−π
2 of the tangent, hence we obtain the Lagangian

derivative of normal vector:

∂LΓn(θ) =R(−π
2 ) ∂LΓ τ(θ) (II.47)

=∂τθnR(−π
2 )n (II.48)

=− ∂τθnτ. (II.49)

2.4 The boundary integral operator

In this subsection we present the calculation of the shape derivative of the boundary integral
operator that appears in (I.79). Let us recall the double layer operator in section (5), for x ∈ Γ:

D1[αΓ](x) = γ+
Γ[D1[αΓ]] (x) = γ+

Γ

[
z 7→

∫
Γ
∇zG(z, y) · nΓ(z)αΓ(y) dsy

]
(x). (II.50)

Where the boundary potential αΓ is supposed to solve (I.79) (it hence depends intrinsically
on Γ). Hence D1[αΓ] depends on Γ in several ways: first it is the trace of an integral on
Γ, involving nΓ, then it also depends on αΓ. In this section our focus will be on the first
dependence. The main idea is to see D1[αΓ] as a function that depends on Γ and to get the
shape derivative of this function. Since D1[αΓ] is defined only Γ, we will try to obtain its
Lagrangian derivative. The first step is hence to introduce a deformation T = Id + θ of Γ,
and to pull back (II.50) written for T (Γ) onto Γ:

D1[αT (Γ)] ◦ T = γ+
T (Γ)

[
z 7→

∫
T (Γ)
∇zG(z, y) · nT (Γ)(z)αT (Γ)(y) dsy

]
◦ T. (II.51)

Using the fact that γ+
T (Γ)(f) ◦ T = γ+

Γ (f ◦ T ) for f continuous in Ω+, such that f can be
continuously extended in Ω+ as it is the case for D1[αΓ], we obtain:

D1[αT (Γ)] ◦ T = γ+
Γ

[
z 7→

∫
T (Γ)
∇zG(T (z), y) · nT (Γ)(T (z))αT (Γ)(y) dsy

]
(II.52)

Let us write it in the term of Γ and θ, using the change of variable formula (II.14), we get:

D1[αΓ] ◦ T =γ+
Γ

[
z 7→

∫
Γ
∇zG(T (z), T (y)) · nT (Γ)(T (z))αT (Γ)(T (y)) J(θ)(y) dsy

]
(x) (II.53)

=γ+
Γ

[
z 7→

∫
Γ
∇zG(z + θ(z), y + θ(y)) · ňθ(z) α̌θ(y) J(θ)(y) dsy

]
(x) , (II.54)
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by using the pulled-back function notation introduced in the subsection 2.2. In the follow-
ing, we consider (II.54) this as a pulled-back operator Ď1, θ applied to the pulled-back bound-
ary potential α̌θ. Hence, given any continuous function v defined on Γ, Ď1, θ[v] reads:

Ď1, θ[v] = γ+
Γ

[
z 7→

∫
Γ
∇zG(z + θ(z), y + θ(y)) · ňθ(z) v(y) J(θ)(y) dsy

]
, (II.55)

Here v does not depend on θ, but as stated before, in this section, our efforts are focused on
the shape-dependence of D1, and not on its argument αΓ. We will see in the next section that
the calculation of the shape derivative of αΓ is of few importance from a practical point of
view.

Let us now calculate the Fréchet derivative of Ď1, θ[v] with respect to θ at 0. To this end,
we define Ď1, θ[v]:

Ď1, θ[v](x) =
∫

Γ
∇xG(x+ θ(x), y + θ(y)) · ňθ(x)v(y)J(θ)(y) dsy. (II.56)

We then have: Ď1, θ[v] = γ+
Γ

[
Ď1, θ[v]

]
. Let us now expand (II.56) at first order with respect to

θ. We have (recalling that we denoted n = nΓ):

• From Taylor’s formula:

∇xG(x+ θ(x), y + θ(y)) = (∇xG)(x, y) +∇2
xxG(x, y)n(x) θn(x)

+∇2
xyG(x, y)n(y) θn(y) + o(‖θ‖). (II.57)

• Form the subsection 2.3:

ňθ(x) = n(x)− τ(x) ∂τθn(x)τ(x) + o(‖θ‖) . (II.58)

• From the subsection 2.1:

J(θ) = 1 +H(y) θn(y) + o(‖θ‖) . (II.59)
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Combining (II.57), (II.58) and (II.59), we get:

Ď1, θ[v](x) = Ď1,0[v](x) + θn(x)
∫

Γ
∇2
xxG(x, y)nΓ(x) · n(x) v(y) dsy +∫

Γ
∇2
xyG(x, y)nΓ(y) · nΓ(x) θn(y) v(y) dsy − ∂τθn(x)

∫
Γ
∇xG(x, y) · τΓ(x) v(y) dsy +∫

Γ
∂n(x)G(x, y)H(y) θn(y) v(y) dsy + o(‖θ‖). (II.60)

Recalling the definition of S,D1,H1, and H2 in equations (I.133), (I.134), and (I.135), the
equation (II.60) can be written as:

Ď1,θ[v] = Ď1,0[v] + θnH1[v](x) + H2[θnv]− ∂τθn ∂τS[v] + D1[Hθnv] + o(‖θ‖). (II.61)

Further, let us take the trace of Ď1, θ[v](x) using the result in chapter I, section 5, equa-
tions (I.136), (I.140), (I.166), and (I.165):

Ď1,θ[v] = Ď1,0[v]− θn ∂2
τ,τS[v]− θnH D1[v] + ∂τ S̃[∂τ (θnv)]− ∂τθn ∂τS[v] +D1[Hθnv]

+ o(‖θ‖). (II.62)

Hence:

∂θ(Ď1,θ[v])|θ=0(θ) = −θn ∂2
τ,τS[v]− θnH D1[v] + ∂τ S̃[∂τ (θnv)]− ∂τθn ∂τS[v] +D1[Hθnv] (II.63)

3 The Lagrangian method

In this section we detail a method to obtain the shape derivative of a quantity involving
a state equation, in which the shape derivative of the state equation is not required. In
particular, we adopt it to our case which involves the boundary integral equations.

3.1 The "classical" case

We consider a shape optimisation problem consisting in finding an open bounded domain Ω
minimising some function U(Ω) = G(Ω, uΩ), where uΩ is a solution in a space VΩ of functions
defined on Ω to some variational problem:

aΩ(uΩ, v) = bΩ(v) , for all v ∈ VΩ . (II.64)
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II.3 The Lagrangian method

The Lagrangian method consists in defining the so-called "Lagrangian functional":

L(Ω, u, v) = G(Ω, u) + aΩ(u, v)− bΩ(v) (II.65)

Clearly, when u is replaced by uΩ in the above expression, the second term vanishes:

L(Ω, uΩ, v) = G(Ω, uΩ) = U(Ω) (II.66)

Hence, applying the chain rule :

U ′(Ω) = ∂ΩL(Ω, uΩ, v) + 〈∂uL(Ω, uΩ, v) , ∂EΩuΩ〉 (II.67)

where ∂EΩuΩ denotes the Eulerian shape derivative of uΩ at Ω, which is defined as the only
linear mapping on the set of W 1,∞ deformation fields satisfying, for all x ∈ Ω:

u(Id+θ)Ω(x) = uΩ(x) + ∂EΩuΩ(θ)(x) + o(|θ|W 1,∞) . (II.68)

Remark 1. Note that the consistence of the above expression is not obvious since it consists in com-
paring at the same point x ∈ Ω the function uΩ with a function u(Id+θ)Ω which is defined on a different
set. We could argue that for θ given, this comparison cannot be performed, at least for some points of
Ω. Fortunately Ω is an open set and so, it is always possible to find a small-enough deformation field
θ such that x belongs to both Ω and (Id + θ)Ω.

Remark 2. The existence of ∂EΩuΩ is assumed here, but it is a fact that should be proved beforehand.

The calculation ∂EΩuΩ is tedious, and if we could find vΩ such that ∂uL(Ω, uΩ, vΩ) = 0, it
would not be necessary, since, then:

U ′(Ω) = ∂ΩL(Ω, uΩ, vΩ) (II.69)

The calculation of vΩ satisfying the above condition involves solving a so-called "adjoint
equation" which is obtained by nulling out ∂uL.
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3.2 The case of boundary integral equations

Consider now that our objective function is in the form U(Γ) = G(Γ, uΓ) where uΓ, defined
on VΓ a set of functions defined on Γ, solves a variational problem of the form:

aΓ(uΓ, v) = bΓ(v) for all v ∈ VΓ (II.70)

Like before, we could define a Lagrangian:

L(Γ, u, v) = G(Γ, u) + aΓ(u, v)− bΓ(v) (II.71)

and the following would still be true for any v ∈ VΓ:

U(Γ) = L(Γ, uΓ, v) (II.72)

However, it is in this case not possible to formally apply the chain rule as before to obtain
U(Γ), since the Eulerian derivative of uΓ is not defined at all (because Γ is a closed set).

As defined, one workaround is to pull everything back onto the domain Γ around which
the shape derivative is being evaluated. Let us recall:

ǔθ = u(Id+θ)Γ ◦ (Id + θ) (II.73)

then, ǔθ is defined on Γ and it solves the following variational problem:

ǎθ(ǔθ, v) = b̌θ(v) for all v ∈ VΓ (II.74)

where : ǎθ(u, v) = a(Id+θ)Γ(u ◦ (Id + θ)−1, v) and b̌θ = b(Id+θ)Γ. Also, if we denote Ǧ(θ, u) =
G((Id + θ)Γ, u ◦ (Id + θ)−1), we have that :

U((Id + θ)Γ) = Ǧ(θ, ǔθ) (II.75)

Hence, defining the Lagrangian:

Ľ(θ, u, v) = Ǧ(θ, u) + ǎθ(u, v)− b̌θ(v) (II.76)

we clearly have:
U((Id + θ)Γ) = Ǧ(θ, ǔθ) = Ľ(θ, ǔθ, v) . (II.77)
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Since U ′(Γ) is in fact the derivative of U((Id + θ)Γ) with respect to θ at θ = 0, we have:

U ′(Γ) = ∂θĽ(0, ǔ0, v) + 〈∂uĽ(0, ǔ0, v) , ∂θǔ0〉 . (II.78)

Remark 3. In literature (see for instance [2]), ∂θǔ0 is in fact oftenly referred as the "Lagrangian
derivative" or "material derivative" of uΓ with respect to the shape of Γ.

Hence, if we can find the function v0 that nulls out ∂uĽ(0, ǔ0, v), that is, v is a solution to
adjoint equation, then :

U ′(Γ) = ∂θĽ(0, ǔ0, v0) (II.79)

where ǔ0 solves:
ǎ0(ǔ0, v) = b̌0(v) for all v ∈ VΓ (II.80)

which is in fact the same as :

aΓ(ǔ0, v) = bΓ(v) for all v ∈ VΓ (II.81)

4 Application to the wave-making resistance problem

Wrapping up (I.132) and (I.79), our shape optimisation problem reads : find the domain Γ
that minimises:

Rw(Γ) = ρ ν

4

∣∣∣∣∫
Γ
αΓ(x)E(x)dsx

∣∣∣∣2 , (II.82)

where αΓ solves:

1
2αΓ(x)−

∫
Γ
∂nΓ(x)G(x, y)αΓ(y) dsy = U∞ nΓ(x) · e1 , for all x ∈ Γ , (II.83)

or equivalently:
D1[αΓ] = −U∞ nΓ · e1 , on Γ . (II.84)

To make notations easier, for the rest of the section, we drop the constant ρ ν/4. In the next
section we describe the shape optimisation method that we used, based on the calculation
of the shape gradient.

Following the approach mentioned above, we first rewrite (II.82) and (II.84) in terms of
θ. First (II.82) becomes:

Rw((Id + θ)Γ) =
∣∣∣∣∣
∫

(Id+θ)Γ
α(Id+θ)Γ(x)E(x)dsx

∣∣∣∣∣
2

. (II.85)
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Using the change of variable formula for integral over curves (or surfaces) (lemma 2), we
have:

Rw((Id + θ)Γ) =
∣∣∣∣∫

Γ
α̌θ(x)E(x+ θ(x)) Jθ(x) dsx

∣∣∣∣2 . (II.86)

Similarly, pulling back both sides of (II.83), we have:

Ď1,θ[α̌θ] = −U∞ ňθ · e1 , (II.87)

Let us define the Lagrangian:

Ľ(θ, α, q) =
∣∣∣∣∫

Γ
α(x)E(x+ θ(x)) Jθ(x) dsx

∣∣∣∣2 +
∫

Γ
q(x)

[
Ď1 θ[αθ](x) + U∞ ňθ(x) · e1

]
dsx (II.88)

As explained in subsection 3.2, the derivation of this Lagrangian with respect to α will pro-
vide with the adjoint equation.

4.1 Determination of the adjoint equation

In this section, let us calculate the adjoint equation by nulling out ∂αĽ(0, α̌0, q). Remarking
that Ď1,0 = D1, we write (II.88) for θ = 0:

Ľ(0, α, q) =
∣∣∣∣∫

Γ
α(x)E(x) dsx

∣∣∣∣2 +
∫

Γ
q(x) [D1[α](x) + U∞ n(x) · e1] dsx (II.89)

Let us compute the derivative of L with respect to α by expanding it with respect to α:

Ľ(0, α + α̃, q) =
∣∣∣∣∫

Γ
(α + α̃)(x)E(x) dsx

∣∣∣∣2 +
∫

Γ
q(x) [D1[α + α̃](x) + U∞ n(x) · e1] dsx (II.90)

= Ľ(0, α, q) + 2Re
(∫

Γ
αE ds

∫
Γ
α̃E ds

)
+
∫

Γ
qD1[α̃] ds+ o(‖α‖) (II.91)

Further, we recognize:

〈∂αĽ(0, α, q) , α̃〉 = 2
∫

Γ
α̃(y)

∫
Γ

Re
(
E(x)E(y)

)
α(x) dsxdsy +

∫
Γ
q(x)D1[α̃](x)dsx . (II.92)

By identifying a L2 scalar product in second term and denoting D∗1 the adjoint of D1, we get:

〈∂αĽ(0, α, q) , α̃〉 =
∫

Γ
α̃(y)

2
∫

Γ
Re
(
E(x)E(y)

)
α(x) dsx +D∗1[q](y)

dsy , (II.93)
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where:
D∗1[q](y) =

∫
Γ
∂n(x)G(x, y) q(x) dsx −

1
2q(y) . (II.94)

Considering that q0 ensure 〈∂αĽ(0, α̌0, q0) , α̃〉 = 0 for ∀α̃ ∈ C0(Γ), means that, knowing α̌0

from equation (II.83):
D1[α̌0] = −U∞n(x) · e1, (II.95)

q0 solves the adjoint equation:

D∗1[q0](y) = −2
∫

Γ
Re
(
E(x)E(y)

)
α̌0(x) dsx . (II.96)

4.2 Calculation of the derivative of the Lagrangian with respect to θ

We calculate ∂θĽ(0, u, v) by separating (II.88) into 3 terms:

Ľ1(θ, α, q) =
∣∣∣∣∫

Γ
α(x)E(x+ θ(x)) Jθ(x) dsx

∣∣∣∣2 , (II.97)

Ľ2(θ, α, q) =
∫

Γ
q(x) Ď1,θ[α](x) dsx , (II.98)

Ľ3(θ, α, q) =
∫

Γ
q(x)U∞ ňθ(x) · e1 dsx . (II.99)

Noting that :
E(x+ θ(x)) = E(x) + θn(x) ∂nE(x) + o(|θ|) , (II.100)

and:
Jθ(x) = 1 + θn(x)H(x) + o(|θ|) , (II.101)

where H represents the curvature of Γ, we have:

Ľ1(θ, α, q) =
∣∣∣∣∫

Γ
α(x) (E(x) + θn(x) ∂nE(x)) (1 + θn(x)H(x)) dsx

∣∣∣∣2 + o(|θ|) ,

=
∣∣∣∣∫

Γ
α(x)E(x)dsx +

∫
Γ
θn(x)α(x) (H(x)E(x) + ∂nE(x)) dsx

∣∣∣∣2 + o(|θ|) ,

= Ľ1(0, α, q) + 2
∫

Γ
θn(x)α(x)

∫
Γ
α(y) Re

((
H(x)E(x)

+ ∂nE(x)
)
E(y)

)
dsydsx + o(|θ|) .

57



Chapter II. Shape Optimisation

Hence, the derivative with respect to θ of Ľ1 writes:

∂θĽ1(0, α, q)(θ) = 2
∫

Γ
θn(x)α(x)

∫
Γ
α(y) Re

((
H(x)E(x) + ∂nE(x)

)
E(y)

)
dsydsx . (II.102)

Let us now move on the second term. From the derivative of Ď1, θ with respect to θ we have
determined in subsection 2.4, we have:

∂θĽ2(0, α, q)(θ) =
∫

Γ
q(x) (D1[Hθnα](x)− θnH(x)D1[α](x)) dsx

−
∫

Γ
q(x)∂τ

(
θn(x)∂τS[α](x)− S̃[∂τ (θnα)](x)

)
dsx . (II.103)

Integrating by parts the second term, we obtain:

∂θĽ2(0, α, q)(θ) =
∫

Γ
q(x) (D1[Hθnα](x)− θnH(x)D1[α](x)) dsx

+
∫

Γ
∂τq(x)

(
θn(x)∂τS[α](x)− S̃[∂τ (θnα)](x)

)
dsx. (II.104)

Finally, we compute the expansion of the Ľ3(θ, α, q)(θ) by using the shape derivative of the
normal vector obtained in subsection 2.3, we obtain:

Ľ3(0, α, q)(θ) = Ľ3(0, α, q)(θ)− U∞
∫

Γ
∂τθn(x) q(x) τ(x) · e1 dsx + o(‖θ‖). (II.105)

Hence we have:

∂θĽ3(0, α, q)(θ) = −U∞
∫

Γ
∂τθn(x) q(x) τ(x) · e1 dsx , (II.106)

= U∞

∫
Γ
θn(x) ∂τ (q(x) τ(x) · e1) dsx , (II.107)

= U∞

∫
Γ
θn(x) ∂τq(x) τ(x) · e1 dsx + U∞

∫
Γ
θn(x) q(x) ∂τ (τ(x) · e1) dsx .

(II.108)

By using the fact that ∂ττ = −Hn as in equation (I.158), we obtain:

∂θĽ3(0, α, q)(θ) = U∞

∫
Γ
θn(x) ∂τq(x) τ(x) · e1 dsx − U∞

∫
Γ
θn(x) q(x)H(x)n(x) · e1 dsx .

(II.109)
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Further, summing (II.102), (II.104) and (II.109), we obtain the derivative of Lagrangian Ľ:

∂θĽ(0, α, q)(θ) =2
∫

Γ
θn(x)H(x)α(x)

∫
Γ
α(y) Re

(
E(x)E(y)

)
dsydsx (II.110)

+2
∫

Γ
θn(x)α(x)

∫
Γ
α(y) Re

(
∂nE(x)E(y)

)
dsydsx (II.111)

+
∫

Γ
q(x) (D1[Hθnα](x)− θnH(x)D1[α](x)) dsx (II.112)

+
∫

Γ
∂τq(x)

(
θn(x)∂τS[α](x)− S̃[∂τ (θnα)](x)

)
dsx (II.113)

+U∞
∫

Γ
θn(x) ∂τq(x) τ(x) · e1 dsx − U∞

∫
Γ
θn(x) q(x)H(x)n(x) · e1 dsx .

(II.114)

We can simplify the above expression by noticing that :

∫
Γ
q(x)D1[αH θn](x) dsx =

∫
Γ
α(x)H(x) θn(x)D∗1[q](x)dsx (II.115)

which leads to:

∂θĽ(0, α, q)(θ) =
∫

Γ
θn(x)H(x)α(x)

(
D∗1[q](x) + 2

∫
Γ
α(y) Re

(
E(x)E(y)

)
dsy

)
dsx (II.116)

−
∫

Γ
q(x)H(x) θn(x)

(
D1[α](x) + U∞n(x) · e1

)
dsx (II.117)

+2
∫

Γ
θn(x)α(x)

∫
Γ
α(y) Re

(
∂nE(x)E(y)

)
dsydsx (II.118)

+
∫

Γ
∂τq(x)

(
θn(x)∂τS[α](x)− S̃[∂τ (αθn)](x)

)
dsx (II.119)

+U∞
∫

Γ
θn(x) ∂τq(x) τ(x) · e1 dsx . (II.120)

When α and q solve respectively the equation of state (II.95) and the adjoint equation (II.96),
it is not difficult to see that the two first terms are canceled (we get rid of them already for
the sake of simplicity). Moreover, we notice that

∫
Γ
∂τq(x)S̃[∂τ (αθn)](x) dsx = 〈∂τq, S̃[∂τ (αθn)]〉L2(Γ)

= 〈S̃∗[∂τq], ∂τ (αθn)〉L2(Γ)

=
∫

Γ
∂τ(y)(α(y)θn(y)) S̃∗[∂τq](x) dsy ,

59



Chapter II. Shape Optimisation

where S̃∗[u](x) =
∫

Γ
G∗(x, y)u(x)dsx. By integrating by parts, we obtain:

∫
Γ
∂τq(x)S̃[∂τ (αθn)](x) dsx = −

∫
Γ
θn(y)α(y)∂τ S̃∗[∂τq](x)dsy (II.121)

Hence, we have the derivative of Lagrangian with respect to θ as follows:

∂θĽ(0, α, q)(θ) =2
∫

Γ
θn(x)α(x)

∫
Γ
α(y) Re

(
∂nE(x)E(y)

)
dsydsx (II.122)

+
∫

Γ
θn(x) ∂τq(x) ∂τS(α)(x)dsx +

∫
Γ
θn(x)α(x)∂τ S̃∗[∂τq](x)dsx (II.123)

+U∞
∫

Γ
θn(x) ∂τq(x) τ(x) · e1 dsx . (II.124)

From the derivative of Lagrangian with respect to θ in equation (II.124), we write the
shape derivative of the wave-making resistance as:

R′w(Γ)(θ) =
∫

Γ
θn(x)

(
2α̌0(x)

∫
Γ
α̌0(y) Re

(
∂nE(x)E(y)

)
dsy + ∂τq0(x) ∂τS(α̌0)(x)

+ α̌0(x)∂τ S̃∗(∂τq0)(x) + U∞ ∂τq0(x) τ(x) · e1

)
dsx , (II.125)

where, we recall, α̌0 and q0 solve:

1
2 α̌0(x)−

∫
Γ
∇xG(x, y) · n(x) α̌0(y) dsy = U∞ nΓ(x) · e1 , for all x ∈ Γ, (II.126)

1
2 q0(y)−

∫
Γ
∇xG(x, y) · n(x) q0(x) dsx = 2

∫
Γ

Re
(
E(x)E(y)

)
α̌0(x) dsx , for all y ∈ Γ (II.127)

Moreover, identifying a L2(Γ) scalar product in the equation (II.125), we obtain the fol-
lowing expression for the shape gradient:

∇ΓRw(x) = n(x)
{
α̌0(x)

∫
Γ
α̌0(y) Re

(
∂nE(x)E(y)

)
dsy + ∂τq0(x) ∂τS(α̌0)(x)

+ α̌0(x)∂τ S̃∗(∂τq0)(x) + U∞ ∂τq0(x) τ(x) · e1

}
. (II.128)

4.3 Shape gradient descent method and constraints

In this subsection, we describe the principle of the numerical method that we used to obtain
a local minimizer of Rw. We present also the volume constraint that we imposed to prevent
a trivial solution i.e. the obstacle shrink and continue to shrink. We want to avoid the
minimum wave resistance is reached whenever there is no obstacle in the fluid.
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Here we use the gradient descent method to find numerically a shape which is a local
minimizer of Rw. The idea of the shape gradient descent method is to transform Γ for each
step of the method with a deformation field θ chosen in such a way that Rw((Id + θ)Γk) is
minimal for a given step size ‖θ‖.

Definition 6. Let the boundary of our shape be Γ such that ∇ΓRw 6= 0. A descent direction for
Rw(Γ) is a vector field θ ∈ W 1,∞ ensuring:

Rw((Id + θ)Γ) < Rw(Γ) (II.129)

for θ is a sufficiently small in order to ensure Id + θ is a W 1,∞ diffeomorphism.

Further, let us find a descent direction of the method. Let us recall the expansion of Rw:

Rw((Id + θ)Γ) = Rw(Γ) + 〈∇ΓRw(Γ) , θ〉L2 + o(‖θ‖) . (II.130)

From there, it is clear that taking θ = −δr∇ΓRw(Γ), for a given δr > 0, is a descent direction,
provided that δr is small enough. To show that, let us replace θ by the shape gradient in the
above expression:

Rw((Id + θ)Γ) = Rw(Γ)− δr‖∇ΓRw(Γ)‖2
L2 + o(δr) . (II.131)

Since −δr‖∇ΓRw(Γ)‖2
L2 + o(δr) < 0 for δr small enough, we have that Rw((Id + θ)Γ) < Rw(Γ),

hence θ is a descent direction. It is moreover clear from (II.130) that∇ΓRw(Γ) is the "steepest"
descent direction for Rw. The algorithm 1 exploits this idea by deforming step by step a
given initial domain according to its local shape gradient.

Remark 7. It is not clear at all from (II.128) that ∇ΓRw(Γ) belongs to W 1,∞. One could argue that
this depends on the regularity of αΓ and qΓ, which in turn depend on the regularity of Γ, which might
change over the iterations of the algorithm 1. Moreover, we do not give here any information on how
δr should be chosen, and it is quite possible that the value δr ensuring the condition that (Id + θ) is
a W 1,∞ diffeomorphism might vanish to 0 as the algorithm iterates. These theoretical questions are
rather difficult, and beyond the scope of this thesis. From a practical point of view, we will proceed
empirically for the determination of δr (it is hence considered provided here).

As many optimisation problems, the wave-making resistance problem should be en-
dowed with some constraints. Two situations should be avoided:

i) a sequence of smaller and smaller obstacles for which Rw(Γn)→ 0,
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Data: The initial shape Γ0, a step δr, a velocity U∞, a tolerance Tol.
Result: The final shape Γf .

err := 1
R0 := Rw(Γ0)
Γ := Γ0
n := 1
while err > Tol do

Get α̌0 by solving: D1[α̌0] = −U∞n · e1

Get q0 by solving D∗1[q0] = −2
∫

Γ Re(E(·)E(y))α̌0(y) dsy
Get∇ΓRw(Γ) from (II.128), knowing α̌0, and q0

Deform the domain in the gradient direction: Γ := (Id− δr∇RW (Γ))Γ
Rn := Rw(Γ)
err := |Rn −Rn−1|

n := n+ 1
end

Γf := Γ
Algorithm 1: Shape gradient descent algorithm
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II.4 Application to the wave-making resistance problem

ii) a sequence of deeper and deeper obstacles for which Rw(Γn)→ 0 also.

Clearly, the first situation can be addressed by adding to the problem the constraint µ(Ω−) =
v where µ is the measure of the surface area of Ω− and v > 0 is given. The second situation
can be avoided by setting the center of gravity of the domain:

∫
Ω− x2dx = d where d is a

constant. However, we will see in the numerical results that it is not necessary to enforce
this condition since local minima of finite depth will be found.

In order to enforce the measure constraint, our approach consists in "projecting" the
shape of the obstacle after each step on the set of shapes of measure v by applying a normal
displacement with a magnitude awhich is determined numerically. Let κ(Γ) be a measure of
the domain enclosed by Ω−. The algorithm 2 explains how this deformation can be obtained
numerically.

Data: A shape Γ̃, a tolerance ε, a target surface area v and a step δ.

Result: The "projected" Γ = (Id + an)Γ̃, where a is such that µ(Ω−) = v.

a := 1
while |κ(Γ)− v| > ε do

Normal displacement: Γ := (Id + a n)Γ̃
Correction of the step: a := a− δ(κ(Γ)− v)

end

Algorithm 2: Algorithm for the projection on the constant measure constraint

Both the step of the gradient descent method and the projection involve a normal dis-
placement of the curve Γ which defines the shape of the obstacle. As we will see in the
next chapter, from a numerical standpoint, this operation can be difficult when we consider
the discretisation of a parametrised curve. Luckily, this operation is straightforward if we
choose to use the level-set method.
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Chapter III

The Level-set Method

In this chapter, we give a presentation of the level-set method that we will use to implement
numerically the algorithm presented at the end of chapter II. Our presentation is focused on
the main ingredients that we need : deforming the boundary, and solve boundary integral
equations.

As much as it is possible, this presentation is self-contained and we will often refer to [58]
(in particular in section 1), which contains all the numerical methods we will use to represent
and displace the boundary (and also shows some very useful applications in computational
physics and imaging). For the calculation of boundary integrals and the approximation of
solutions of boundary integral equations that we present in sections 2 and 3, we follow the
work of C. Kublik and R. Tsai, in particular [48] [49] [25].

1 General introduction to level-set methods

1.1 Explicit and implicit representation of curves

In general, there are two ways to represent curves and surfaces: explicitly or implicitly. The
explicit representation considers the curve Γ as given by the image of a mapping γ : I ⊂
R→ R2 called the parametrisation of Γ:

Γ = {γ(s) | s ∈ I} . (III.1)

As an example we have, for instance C(0, 1) = {(cos(s), sin(s)) | s ∈ [0, 2π[}. Wherever γ
is differentiable, and the derivative is non-zero (we say that γ is non-stationary), the unit
tangent vector is given by:

τ(γ(s)) = γ′(s)
|γ′(s)| . (III.2)
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The unit normal vector is obtained by rotating τ by −π/2 (considering that γ runs on Γ anti-
clockwise). This parametrisation is called explicit because the points of Γ are given explicitly
by γ. From a numerical standpoint, we build parametric curves from a collection of control
points (xi)i=1..N , and the curve between these points is defined using linear, quadratic or
cubic interpolation (see figure III.1). Among all possible parametrisations of Γ, one is called
the natural parametrisation and satisfies |γ′(s)| = 1. This type of representation of curves
was already used in chapter II, for instance in the calculation of the shape derivative of the
normal and tangent vectors.

Now let us move on the implicit representation of curves of the plane. In the implicit
representation, the curve is given by the inverse image of a single value (by convention 0)
through a function φ : R2 → R. The function φ is then called the level-set function, and Γ
writes:

Γ = {x ∈ R2 | φ(x) = 0} . (III.3)

As before, we have, for example C(0, 1) = {x ∈ R2 | |x| − 1 = 0}. Considering a smooth
and non-stationary explicit representation γ of the curve, we clearly have φ(γ(s)) = 0 for all
s ∈ I , hence:

d

ds
φ(γ(s)) = γ′(s) · ∇φ(γ(s)) = 0 , (III.4)

which implies (assuming that the gradient of φ, denoted ∇φ, does not take zero as a value
anywhere on Γ) that the gradient of the level-set function is orthogonal to the tangent vector
on Γ, hence, co-linear to the normal vector. Furthermore, if we impose that φ < 0 in Ω− and
φ > 0 in Ω+, we have that the gradient of φ points outwards. We then have:

n = ∇φ
|∇φ|

on Γ . (III.5)

This representation is called implicit because in order to obtain the points of Γ we need to
solve the equation φ(x) = 0. From a numerical stand point, since Φ is a function of R2, it is
necessary to give a discretisation of the region of R2 that contains the curve. This mesh is
not necessarily body fitted for Γ, and the usual practice is to use cartesian meshes because
of their simplicity. Let us consider the points (xij) i=1..N1

j=1..N2
of a cartesian mesh of a square

region containing Γ. Let φij be the values of the level-set function on these nodes, then
the interpolation (bilinear, cubic, ...) of φ between the node points provides a piece wise
construction of the curve on the mesh (figure III.1).

At first glance, is seems that the explicit representation of curves is more natural, since,
numerically, it involves less data. As an example, let us consider that we want to represent
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Figure III.1 – Explicit and implicit representation of curves, from the point of view of numerical approx-
imations. Top: different parametric curves given by the same set of nodes, using different interpolations
(linear, spline and piecewise cubic). Bottom: different implicit curves given by the same set of discrete
values for the level-set function (in red), using two different interpolations (bilinear and cubic).
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Figure III.2 – Data required for the explicit and implicit representations for a circle. In black, we repre-
sented the points of a discrete parametric curve, the mesh of the level-set function for a similar accuracy
is represented in blue. In red are represented the "useful" mesh elements.

a circle of center 0 and radius 1 with Np points for the explicit representation (2Np data in
2D). If we want to represent the same circle with a similar accuracy with a level-set function,
that would require (LNp/π)2 mesh points (where L is the length of the square enclosing
the circle). Therefore, the implicit representation requires O(N2

p ) data, while O(Np) data is
required for the explicit representation. The reason behind this discrepancy is the very large
amount of "useless" data considered in the implicit representation. Indeed, the only values
of the level-set function that matter are the ones for which a neighbour node has a different
sign. Considering only those points, we recover O(Np) data for the implicit representation
(see figure III.2).

The main advantage of the implicit method lies in the numerical treatment of moving
surfaces that will be described later in section 1.3. Before that, we present a particular kind
of level-set functions which are analogous to the "natural" parametrisation of curves in the
sense that their gradient is of norm 1.

1.2 The signed distance function

Let us now focus on the implicit representation of curves. Let us consider our curve as a
boundary Γ of an open bounded domain Ω−, as before let us denote Ω+ the exterior domain.
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Figure III.3 – Plotting of the two exemples of the signed distance function given in (III.7) and (III.8). In
red, we represent the level set 0.

We define the signed distance function d as:

d(x) =


0, for x ∈ Γ ,

−minx0∈Γ |x− x0| for x ∈ Ω− ,

minx0∈Γ |x− x0| for x ∈ Ω+ .

(III.6)

The function d gives the closest distance between x and the boundary, with a positive sign
in the exterior domain, and a negative sign in the interior domain. Let us give two examples
of such a function:

• For the circle of center 0 and radius one (figure III.3, left):

d(x) =
√
x2

1 + x2
2 − 1 . (III.7)

• For the square of center 0 and side two see (figure III.3, right):

d(x) =

max(|x1|, |x2|)− 1 , for |x1| ≤ 1 or |x2| ≤ 1 ,√
(|x1| − 1)2 + (|x2| − 1)2 , elsewhere.

(III.8)

Le us show that, in general, the signed distance function defined in (III.6) satisifies an
Hamilton-Jacobi equation called the eikonal equation. Let us consider x ∈ Ω+ such that the
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projection of x onto Γ, denoted ΠΓ(x), exists and is unique1.

x

Γ

d(x)

εu
ΠΓ(x)

Figure III.4 – Depiction of x and its projection ΠΓ(x)

Hence:
d(x) = |x− ΠΓ(x)| (III.9)

First let us prove that∇d is colinear to:

u = ΠΓ(x)− x
|ΠΓ(x)− x| . (III.10)

In order to find the direction of the gradient of d we seek the direction of steepest descent of
d. Let us solve the minimisation problem:

min
|θ|=ε

d(x+ θ) . (III.11)

First, we prove that d(x+ θ) ≥ |x− ΠΓ(x)| − ε. We have:

d2(x+ θ) = (x+ θ − ΠΓ(x+ θ)) · (x+ θ − ΠΓ(x+ θ)) , (III.12)

= |x− ΠΓ(x+ θ)|2 + ε2 + 2θ · (x− ΠΓ(x+ θ)) . (III.13)

From Cauchy-Schwartz inequality we have that:

θ · (x− ΠΓ(x+ θ)) ≥ −|θ| |x− ΠΓ(x+ θ)| = −ε |x− ΠΓ(x+ θ)| , (III.14)

1this does not happen in general, and is the reason behind the lack of smooth solution for the eikonal
equation (even for smooth domains), as we will see later.
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which, combined with (III.13) leads to:

d2(x+ θ) ≥ |x− ΠΓ(x+ θ)|2 + ε2 − 2ε |x− ΠΓ(x+ θ)| , (III.15)

≥ (|x− ΠΓ(x+ θ)| − ε)2 (III.16)

If ε is small enough then we have:

d(x+ θ) ≥ |x− ΠΓ(x+ θ)| − ε . (III.17)

By the definition of the projection we have that: |x − ΠΓ(x + θ)| ≥ |x − ΠΓ(x)|, hence, the
following estimate holds for d(x+ θ):

d(x+ θ) ≥ |x− ΠΓ(x)| − ε . (III.18)

Now, we give a particular value of θ for which the equality holds. A simple geometrical
argument (see figure III.4) shows that,

d(x+ εu) = |x− ΠΓ(x)| − ε . (III.19)

and so that the minimum of d(x + θ) is attained for θ = εu. We deduce from this that the
steepest descent direction is u, hence, the gradient of d at x is colinear to u. Now, let us
calculate |∇d| by evaluating a variation in the direction u:

∇d(x) · u = lim
ε→0

d(x+ εu)− d(x)
ε

(III.20)

From figure III.4 we can see that: ΠΓ(x+ uε) = ΠΓ(x), hence:

d(x+ εu) = |x+ uε− ΠΓ(x)| = |x− ΠΓ(x)| − ε = d(x)− ε , (III.21)

from the co-linearity of x− ΠΓ(x) and u. Then we have:

d(x+ εu)− d(x)
ε

= d(x)− ε− d(x)
ε

= −1 . (III.22)

Then the gradient of d in the direction u writes:

∇d(x) · u = −1 . (III.23)
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Recalling the∇d(x) is co-linear to u, which is of norm 1. We finally have:

|∇d(x)| = 1 , (III.24)

for x ∈ Ω+. Doing the same in Ω−, in order to get d from Γ we need to solve the system:

|∇d(x)| = 1 , for x ∈ Ω+ ∪ Ω− ,

d(x) = 0 , for x ∈ Γ ,
(III.25)

also known as the eikonal equation. From (III.25) and III.5, the normal vector at x ∈ Γ can
be written:

n(x) = ∇d(x)
|∇d(x)| = ∇d(x). (III.26)

Furthermore, we define the curvature of the boundary as the divergence of the normal vec-
tor. Hence, we have:

H(x) = ∇ · n(x) = ∆d(x). (III.27)

Even though III.25 provides an equation for the signed distance function, it is difficult
to solve or even prove that solutions exists. In particular, one cannot expect solutions in
the classical C1 sense, since the signed distance function is not continuously differentiable in
general. As an example we can cite the case of the square defined in (III.8) for which:

lim
h→0±

∇d(h, 0) = ±e1 , lim
h→0±

∇d(0, h) = ±e2 . (III.28)

Luckily, these "accidents" of non-derivability only happen on regions of zero measure. Know-
ing that, we could search for generalised solutions that are only Lipschitz continuous and
solve the eikonal equation almost everywhere (i.e. everywhere but for a set of zero Lebesgue
measure). Looking for such generalised solutions, we obtain an infinite amount of solutions,
which is not a satisfactory situation either (see for instance [66]). It is however possible to
select among all these solutions the one that actually defines the signed distance function.
This solution is called the viscosity solution. It is obtained by solving the modified equation:

−ε∆dε + |∇dε(x)| − 1 = 0, for x ∈ Ω+ ∪ Ω− ,

dε(x) = 0 for x ∈ Γ ,
(III.29)

which is solvable in the classical sense. Then, passing to the limit ε → 0, we obtain the
viscosity solution. This limit is very difficult to obtain in the general case. A more practical

72



III.1 General introduction to level-set methods

approach was introduced by S.N. Kruz̃kov for the eikonal equation in which the "gener-
alised solution" is only required to have all its discrete second derivatives (in all directions,
for all steps) bounded from below (in addition to all the previous requirements). Such a
solution has been proven to be the same as the aforementioned viscosity solution (see [47]).
This notion of viscosity solutions has then been extended to the general case of first or-
der Hamilton-Jacobi equations by M.C. Crandall and P.-L. Lions. in their famous article of
1981 [18]. In a later section we will show how to obtain an numerical approximation of the
viscosity solution of (III.25).

1.3 Normal motion

We recall that one of the most important ingredients in the algorithms 1 and 2 described at
the end of chapter II is the displacement in the normal direction of the boundary of the ob-
stacle. Let Γk be the initial obstacle, and Γk+1 the deformed obstacle though the deformation
field θnn, we have:

Γk+1 = (Id + θnn)Γk . (III.30)

Using a parametrisation γk for Γk, we obtain a new parametrisation for Γk+1 with:

γk+1 = γk + θn(γk)R(−π/2) γ
′
k

|γ′k|
, (III.31)

Now, using a level-set function φk for Γk, we get a new level-set function for Γk+1 by solving
for φk+1 the equation:

φk+1 ◦ (Id + θnn) = φk . (III.32)

where, we recall n = ∇φ/|∇φ|. In principle, θn is given only on Γk, but it is possible to extend
it in Ω+∪Ω−. As we will see below, when φk is a signed distance function and θn is extended
in a constant-along-normals manner φk+1 can be obtained easily. First, since φk is a signed
distance function, we have (far away from the caustics):

φk(x+ θn(x)n(x))− φk(x) = θn(x) , (III.33)

which can be rewritten:

φk(x+ θn(x)n(x))− θn(x) = φk(x) . (III.34)
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Since θn is constant along normals, we have θn(x) = θn(x+ n(x)θn(x)). Hence:

(φk − θn)(x+ θn(x)n(x)) = φk(x) . (III.35)

Comparing (III.32) and (III.35), we get:

φk+1 = φk − θn , (III.36)

provided φk is a signed distance function and θn is constant along normals. Unfortunately,
φk+1 is not a signed distance function (unless θn is constant), and it will be necessary to apply
a redistancing procedure in order to obtain a signed distance function from φk+1. This pro-
cedure, along with the construction of a constant-along-normals θn function, will be detailed
in subsection 1.4.

1.4 Redistancing and extension along normals

In this subsection we detail how it is possible to obtain a signed distance function d and
a constant-along-normals function a from an initial level-set function d0 and non-constant-
along normal a0. Recall from subsection 1.2, that d and a have to solve:

|∇d| = 1 , in Ω , (III.37)

∇d · ∇a = 0 , in Ω , (III.38)

d = 0 , on Γ , (III.39)

a = a0 , on Γ , (III.40)

where Γ = d−1
0 ({0}), and Ω a bounded open domain enclosing Γ. We consider that Ω =

]0, 1[×]0, 1[ and Γ ⊂ Ω, without loss of generality. There are several methods to achieve this
goal (see for instance [58], for a general review of these methods and [68] for more details on
the Fast Marching Method). Our approach follows [71] in which (III.37)-(III.40) are solved
by solving their time dependent counterpart:

∂td+ sign(d0)(|∇d| − 1) = 0 , in R+ × Ω , (III.41)

∂ta+ sign(d0)∇d · ∇a = 0 , in R+ × Ω , (III.42)

d(0, x) = d0(x) , for x ∈ Ω , (III.43)

a(0, x) = a0(x) , for x ∈ Ω . (III.44)
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It is clear that the steady state of (III.41)-(III.44) solves (III.37)-(III.40). The idea behind this
particular formulation is that, both (III.41) and (III.42) are equations of the form:

∂tu+H(·, u,∇u) = 0 , in R+ × Ω , (III.45)

u(0, x) = u0(x) , for x ∈ Ω . (III.46)

We consider a discretisation of space on a Cartesian grid : (x1
i,j, x

2
i,j) for i = 1..N1 and

j = 1..N2, where x1
i,j = ih1, and x2

i,j = jh2, with h1 = 1/(N1 − 1) and h2 = 1/(N2 − 1).
Following [58], we approach (III.45) with:

un+1
i,j = uni,j − δt H̃

(
xi,j, u

n
i,j, (∂+

1 u)ni,j, (∂−1 u)ni,j, (∂+
2 u)ni,j, (∂−2 u)ni,j

)
, (III.47)

where uni,j represents the approximation of u(tn, xi,j), and (∂+
k u)ni,j (r.p. (∂−k u)ni,j) represents

the right (r.p. left) approximation of the space derivative of u in the direction k at time tn
and point xi,j . These left and right derivative approximations are obtained in our case using
a WENO52 scheme, as it is presented in [58] and initially in [69]. The possible choices of
a discrete Hamiltonian H̃ is also explained in details in [58], and here we have chosen the
Godunov scheme, which for (III.41) writes:

H̃(III.41)

(
x, d, d+

1 , d
−
1 , d

+
2 , d

−
2

)
=

σ(x)
(√

max(−min(d+
1 , 0),max(d−1 , 0))2

+ max(−min(d+
2 , 0),max(d−2 , 0))2 − 1

)
if d ≥ 0 ,

σ(x)
(√

max(−min(d−1 , 0),max(d+
1 , 0))2

+ max(−min(d−2 , 0),max(d+
2 , 0))2 − 1

)
if d < 0 ,

(III.48)

where σ(x) is a smooth approximation of sign(d0(x)), given by:

σ(x) = d0(x)
|∇d0|2

√
d0(x)2 + h2

2Weighted Essentially Non-Oscillatory discretisation of order 5 accuracy.
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for h = min(h1, h2). For (III.42) the same Godunov scheme gives the classical upwind-type
discretisation:

H̃(III.42)

(
x, a, a+

1 , a
−
1 , a

+
2 , a

−
2

)
=

 min(σ(x)d−1 a−1 , σ(x)d+
1 a

+
1 ) if a−1 ≤ a+

1

max(σ(x)d−1 a−1 , σ(x)d+
1 a

+
1 ) if a−1 > a+

1

+

 min(σ(x)d−2 a−2 , σ(x)d+
2 a

+
2 ) if a−2 ≤ a+

2

max(σ(x)d−2 a−2 , σ(x)d+
2 a

+
2 ) if a−2 > a+

2

(III.49)

where, in (III.49), d±k , for k = 1, 2 are obtained from the (supposedly already computed)
signed distance function approximation di,j .

We illustrate this method with a simple text case where Γ is the zero level-set of:

d0(ρ, θ) = 1− ρ− 1
2 cos(2θ) , (III.50)

and the scalar function a0 we wish to extend in a constant-along normals fashion is:

a0(x) = sin(6πx2) . (III.51)

The figure III.5 shows the evolution of the scheme (III.47) for the redistancing procedure
and the extension procedure. We remark that the information is propagated from Γ and
outwards at a rate of δt/h units of space per iteration. Note that it is required that δt/h < 1
for the stability of the scheme (Courant-Freidrichs-Lewy condition), hence the information
propagates of at most h units of space per iteration. Hence, in principle, O(

√
N) iterations

are required to achieve convergence (where N is the number of points in the mesh). Hence,
the complexity of the algorithm is N2. In comparison, the Fast-Marching method has a com-
plexity of N log(N). However, this is of little importance, since the only values of (d, a) we
need for our applications are values in a small neighbourhood of Γ. If this neighbourhood T

has a thickness mh for m ∈ N, then, by the above argument, approximately m iterations are
required to obtain (d, a) satisfying (III.37)-(III.38) on T.

1.5 Normal motion: implicit v.s. explicit

In order to illustrate the above method, we consider the sequence of shapes defined by:

Γk+1 = (Id + θn n)Γk , (III.52)
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Figure III.5 – Illustration of the redistancing and extension procedures (iterations 1, 100, 250). First row:
evolution of the signed distance function according to (III.47)-(III.48). Second row: evolution of the scalar
function a according to (III.47)-(III.49). In red: zero level-set of d0. Domain Ω =] − 2, 2[×] − 2, 2[, grid
resolution: 128× 128.

where:
θn(x) = α

[
((x2 − 1

2)− x2
1)2 +

√
(x2 − 1

2)2 + x2
1 − 2

]
, (III.53)

with α = 10−2 (see figure III.6). For this normal velocity, we expect the sequence Γk to
converge towards a U-shaped curve (see figure III.6, red). As an initial shape, we set Γ0 =
C(0, 1).

Let γki be an explicit discretisation of Γk, then, using Euler’s explicit scheme, we have:

γk+1
i = γki + θn(γki )n(γki ) . (III.54)

Let dk be the signed distance function of Γk, then, using the method described in subsec-
tion 1.3, we have:

d̃k+1 = d̃k + θ∗n , (III.55)

where θ∗n is the constant-along-normals extension of θn|Γk , obtained with the method de-
scribed in section 1.4. Finally, dk+1 is obtained by redistancing d̃k+1 (see section 1.4 again).

The figure III.7 shows the comparison between the explicit and implicit representations,
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Figure III.6 – Normal velocity plot from (III.52), in red we represented the zero level of θn.
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Figure III.7 – Comparison of the evolution of the curve determined with (III.52)-(III.53) with the numer-
ical explicit and level-set representations. In black: explicit representation ; in blue: zero-level of dk ; in
red: zero-level of θn (expected steady-state).

at starting time of the sequence Γk, and steady state. The mesh steps were chosen in such a
way that the accuracy of the implicit and explicit numerical representations of Γ0 are similar.
We can see that the explicit representation fails to capture the steady state fully, even though
all the control points seem to lie on the expected curve. The main issue here is the fact that
these control points are concentrating in some areas and rarefying in others.

The method we used for the evolution of the explicit curve is rather naive, and for the
sake of fairness we mention that some numerical methods exist to prevent this issue. For
instance the ALE3 method (see [24] for a review on these methods) applies a tangential
motion to the points in such a way that the spacing between the control points of the curve

3Arbitrary Lagrangian-Eulerian method
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Γ

Γη

η

TΓ(x)

x

Figure III.8 – Parallel curves Γη and the projection mapping

is regulated.

2 Boundary integrals & level-set representations

Beside the evolution of the curve though deformation, the other key ingredient of the shape
optimisation algorithm is the resolution of boundary integral equations, and hence the cal-
culation of boundary integrals. Kublik et al. in [48] proposed a formulation for constructing
boundary integral methods to solve Poisson’s equation with a level-set method. One of the
perks of this method is to provide boundary potentials (and hence a shape gradient) that are
readily constant along normals.

2.1 Thickening of Γ

In this section we present a method, initially presented in [48], which will allow us to ap-
proach an integral of the type:

I =
∫

Γ
fds , (III.56)

from the knowledge of the signed distance function d of Γ. We start by defining parallel
curves Γη:

Γη = (Id + ηn)Γ (III.57)

where η ∈ R, and small enough for Id + ηn to be one-to-one (see figure III.8). The inverse
mapping then writes Id− ηn.
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Denoting Tη = Id− ηn, we have from the change of variable formula in subsection 2.1 of
chapter II:

∫
Γ
f ds =

∫
Γη
f ◦ Tη Jη ds , (III.58)

where, in 2D:
Jη = |τ − η∇nT τ | (III.59)

From chapter I, we recall that:

∇nT τ · τ = H , (III.60)

∇nT τ · n = τ · ∇nn = 0 , (III.61)

hence,∇nT τ = Hτ . This leads to:
Jη = 1− η H , (III.62)

which is non-zero for η smaller than the minimum radius of curvature of Γ, that we will call
η∗ from now on. Since d− η is the signed distance function of Γη, we have:

Jη = 1− d∆d . (III.63)

Let us now we compute the average of (III.58) for η ∈ [−η∗, η∗]. Let δ be a function R→ R,
supported in [−η∗, η∗], satisfying the moment conditions:

∫ η∗

−η∗
δ(η)dη = 1, (III.64)

and: ∫ η∗

−η∗
δ(x)x dx = 0. (III.65)

By the moment condition (III.64), we obtain:

I =
∫

Γ
fds

∫ η∗

−η∗
δ(η)dη =

∫ η∗

−η∗

(∫
Γη
f ◦ Tη Jηds

)
δ(η)dη

Recalling that, Γη = d−1(η), Tη = ΠΓ and Jη = 1− d∆d, and denoting f ∗ = f ◦ ΠΓ we have:

I =
∫ η∗

−η∗

∫
d−1(η)

f ∗ (1− dH) δ(d) dsdη . (III.66)
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III.2 Boundary integrals & level-set representations

Using the co-area formula, we obtain:

I =
∫
R2
f ∗ (1− d∆d) δ(d(x)) |∇d| dx.

Finally, since |∇d| = 1, we obtain:

∫
Γ
fds =

∫
R2
f ∗(x) (1− d(x)∆d(x)) δ(d(x)) dx . (III.67)

Remark 8. Our presentation, in particular the calculation of Jη has been simplified by the fact that
we considered smooth curves of the plane. Extensions to 3D curves and surfaces, with possibly
corner and end-points exist, and can be found in [49]. However, the particular case presented here is
sufficient for what we need.

2.2 Numerical methods

In this section, we give the numerical methods to approximate the integral on boundary in
section 2.1 i.e. equation (III.67).

We denote by R a rectangular domain enclosing the obstacle Γ. As in subsection 1.4 this
domain is discretised using a cartesian grid xij = (x1

i , x
2
j), for i = 1..N1 and j = 1..N2, where

the discrete values x1
i and x2

j are respectively evenly spaced with the step h1 and h2. For any
function of R, say f , we will denote fij an approximation of f(xij). We will also denote the
centred finite-difference operator:

∇hfij = fi+1,j − fi−1,j

2h1
e1 + fi,j+1 − fi,j−1

2h2
e2 . (III.68)

Finally, we denote the 5-points centered finite difference laplacian operator:

∆hfij = fi+1,j − 2fij + fi−1,j

h2
1

+ fi,j+1 − 2fij + fi,j−1

h2
2

. (III.69)

The projection of a grid point xi,j onto Γ reads:

ΠΓ(xi,j) = xi,j − di,j∇hdi,j , (III.70)

which is not a grid point. Hence in order to obtain an approximation of f ∗(xi,j), that we
denote f ∗i,j , one solution could be to approximate f at ΠΓ(xi,j) by using 2D interpolation,
which are conveniently implemented in Matlab. Another solution would be to extend f
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in a constant-along normals manner, as explained in subsection 1.4. Further, we use the
averaging kernel as in [48]:

δ(x) =


1

2η∗ (1 + cos(πx
η∗

)) if |x| ≤ η∗

0, else.
(III.71)

Finally the integral (III.67) is approximated using the Riemann sum as follows:

∫
Γ
fds ∼ h1h2

N1∑
i=1

N2∑
j=1

f ∗i,j δ(di,j) Ji,j . (III.72)

where Ji,j = 1 − di,j∆hdi,j . Since δ is supported in [−η∗, η∗], it is clear that the values δ(di,j)
are non zero only for a certain amount of indices i and j. We denote

N = {(i, j) | δ(di,j) 6= 0} . (III.73)

Denoting mk for k = 1..NN the elements of N, we have:

∫
Γ
fds ∼ h1h2

NN∑
k=1

f ∗mk δ(dmk) Jmk , (III.74)

which we will rewrite, with a small abuse of language:

∫
Γ
fds ∼ h1h2

NN∑
k=1

f ∗k δ(dk) Jk . (III.75)

2.3 Convergence of the integration method

Let us denote:
g(x) = f ∗(x)δ(d(x))(1− d(x)δd(x)) (III.76)

then, from (III.67), we have that
∫
R g =

∫
Γ f , and so, from the fact that the method of rect-

angles approaches the integral on R with a second order accuracy with respect to the mesh
size h (we consider h = h1 = h2 here for the sake of simplicity), we have:

∣∣∣∣∣∣
∫

Γ
f ds− h2

NN∑
k=1

f ∗k δ(dk) Jk

∣∣∣∣∣∣ ≤ c h2 ||D2g||∞ , (III.77)
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III.2 Boundary integrals & level-set representations

where c is a positive constant, and D2g is a matrix made of all second order derivatives of
g (see appendix for the details). So, it is clear that the approximation (III.75) is (at least) of
second order accuracy with respect to h. However we remark that x 7→ δ(d(x)) depends on
the thickness 2η∗ of the tubular neighborhood of Γ considered (see equation (III.71)). For this
reason, the above statement holds only when η∗ is given and fixed, so the number of points
involved in the calculation of (III.75) grows like N2.

In order to reduce the computational cost of the method, it is interesting to investigate
the case where η∗ is scaled with the mesh size h. We then have no guarantee that (III.77) will
ensure even the convergence of the method, since, as we can deduce from (III.71), we have
δ′′ ∼ h−3 in this case.

The seminal article of Engquist et al. [25] provides an interesting insight of this phe-
nomenon. The authors consider the simple test case of the calculation of the length of a
straight line that is not necessary parallel to the grid axes. This length correspond to the
calculation of the integral:

I =
∫

Γp,q
1 ds , (III.78)

where Γp,q = Span((p, q)) ∩ R, and (p, q) ∈ N2 have no other common denominator than 1.
The signed distance function writes in this case:

d(x) = −px1 + qx2√
p2 + q2 . (III.79)

Since ∆d = 0, the approximation of I with (III.75) writes:

Ĩ = h2
NN∑
k=1

δ(d(xk)) . (III.80)

In this particular case, when we set η∗ = βh, the authors of this article prove that the
sum (III.80), converges to the correct value of I only when:

β = p+ q√
p2 + q2 , (III.81)

in other words, when β = |∇d|1. The general case remains an open problem to our knowl-
edge, but the following tests shows that this result is robust to situations where Γ is not a
straight line.
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2.4 A simple test

Here we describe an example of calculating a perimeter of circle with radius 1 and center 0.

I =
∫
C(0,1)

ds . (III.82)

We have here f(x) = 1. We take R = [−
√

2,
√

2] × [−
√

2,
√

2] (to avoid points of Γ lying
exactly on the mesh nodes), and denote N and h respectively the number of points in each
direction and the mesh element size. The signed distance function reads:

d(x) =
√

(x2
1 + x2

2)− 1 , (III.83)

We follow the method in section 2.2 to compute the numerical approximation of the length
of the circle. The approximate value of the integral then writes:

Ĩ = h2
NN∑
k=1

Jk δ(dk) , (III.84)

where k is the index of the points that lie in the chosen tubular neighbourhood of Γ with a
thickness η∗. Since I = 2π, the relative error of the approximation III.84 writes:

E = |Ĩ − 2π|
2π . (III.85)

We present here the convergence results for different thicknesses of the tubular neighbour-
hood. We consider three cases: η∗ = constant, η∗x1,x2 = 2h|∇d(x1, x2)|1 and η∗ = 2h (see
Figure III.9 for an illustration of how the thickness of the tubular neighborhood changes
with h).

The figure 2.3 represent the convergence results for these three different cases. We no-
tice that the best result is obtained when we set η∗ constant (first case), where the conver-
gence rate is better than second order. For fairness, this case should be set aside since is
computational cost is not comparable to the two others. We remark that in the second case
η∗ = 2h|∇d|1 we recover a fairly clean first order convergence, while in the third case η∗ = 2h
the trend is not very clear. This confirms the intuition of Engquist et al., and shows that one
should in principle choose η∗ = 2h|∇d|1 to have both efficient and accurate approximation
of boundary integrals with (III.75).
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3 Application to boundary integral equations

In this section we present an application of the method presented in section 2 to the res-
olution of the Laplace equation with boundary integral equations. To be consistent with
the application we are aiming for (the Neumann-Kelvin problem), we choose the exterior
Neumann problem as our example. Note that this application was already presented in [48]
and [25] notably (albeit for interior problem, but the difference is minor). We consider the
Neumann problem:



∆ux = 0 , in Ω+ ,

∂u(x)
∂nx

= g(x) , on Γ ,

lim
|x|→∞

u(x) = 0,

(III.86)

(III.87)

(III.88)

where Ω+ is the exterior domain which boundary is Γ which is smooth, say Γ ∈ C2. An
additional condition is mandatory for solvability:

∫
Γ
g ds = 0 . (III.89)

As in chapter I section 3, equation (I.76), we introduce a boundary integral representation of
the solution:

u(x) =
∫

Γ
α(y)G(x, y) dsy, for x ∈ Ω = Ω+ ∪ Ω− , (III.90)

where α is the single layer boundary potential and E is the Green’s function for the Laplace
equation on R2:

G(x, y) = 1
2π log |x− y| . (III.91)

Using the same argument as in chapter I, (see for instance [39, 46])), α has to solve the
boundary integral equation:

∫
Γ
α(y) ∂n(x)G(x, y) dsy −

1
2α(x) = g(x), for all x ∈ Γ, (III.92)

where:
∂n(x)G(x, y) = x− y

|x− y|
· n(x) (III.93)

Further, we use the equation (III.90) to recover u in Ω.
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3.1 Numerical approximation

We consider the same notations as in subsection 2.2, and introduce the points (xk)k=1..NN

of the grid that lie inside the tubular neighborhood of thickness η∗. We also denote x∗k the
projection of x onto Γ obtained with:

x∗k = xk − dk∇hdk (III.94)

The approximation of α(x∗k) will be denoted dk. Following (III.75), the boundary integral
equation (III.92) is approached by:

h1h2

NN∑
k=1

αk (∂n(x)G)m,k Jk δk − 1
2 αm = gm , (III.95)

where gm = g(x∗m), and δk = δ(dk). The kernel Hm,k should be, in principle given by (we
recall that n = ∇d):

(∂n(x)G)m,k = x∗m − x∗k
|x∗m − x∗k|

· ∇hdk . (III.96)

However, when |x∗m − x∗k| becomes close to zero, the evaluation of III.96 involves ratios of
quantities which are of the same order as the truncation error of the method (it is even
undefined for k = m). To circumvent this issue the authors of [48] expanded H(x, ·) at first
order around x, to obtain the following approximation:

∂n(x)G(x, y) ∼ 1
4πH(x) , for x ∼ y , (III.97)

and replace H by its approximation when |x∗m − x∗k| is smaller than a fraction of h:

(∂n(x)G)m,k = 1
4π∆∗hdk , for |x∗m − x∗k| < ε (III.98)

Now we rewrite (III.95) as a linear system:

Dα = g , (III.99)

where:

D = (h1h2Hm,k Jk δk)m=1..NN
k=1..NN

− 1
2 INN

, α = (αm)m=1..NN
, g = (gm)m=1..NN

, (III.100)
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where INN
is the identity matrix of size NN. The system III.99 is then solved using an itera-

tive method called the bi-conjugate gradient method, which is a variation of the conjugate
gradient method that allows the matrix of the system to be non-symmetric (see [73] for more
details on iterative methods). Note that, because of the strong diagonal component of the
matrix D, the system is well-conditioned. This is the reason behind the choice of a single-
layer representation of the solution in (III.90), which leads to the resolution of a Fredholm
equation of the second kind (III.92).

Now, once α is known, if we want to recover an approximation of the solution u at a
given point x, we simply approach (III.90) with:

u(x) = h1h2

NN∑
k=1
αkG(x, x∗k) Jk δk . (III.101)

In practice, for the following section, we will recover the solutions at the nodes xi,j of the
same grid that was used for the definition of the level-set function, but note that this is not
mandatory, and we can request any point of the domain Ω+ with (III.101).

3.2 Validation tests

We consider a particular test-case in which Γ = C(0, 1), and

g(θ) = −n cos(nθ) . (III.102)

for n ∈ N. The solution of the exterior Neumann problem for this case is known from the
method of separation of variables:

u(r, θ) = r−n cos(nθ) . (III.103)

Using the method detailed in subsection 3.1, we obtain results which we present in Fig-
ure III.11. In these figures, we plot the numerical, and exact solution for points of the grid
in the exterior domain, along with their difference (in logarithmic scale). We remark that we
have a fairly good agreement between the exact and approached solution. Let us also note
that when n = 1, the solution we get is exactly the solution to the potential flow problem on
a circular cylinder (see the Figure III.11, first row), since in this case g = n · e1.

In order to give a validation of the method, we compare the exact value of α with the
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numerical values. Our error criterion reads:

E =

NN∑
k=1
|α(x∗k)− αk|

NN∑
k=1
|αk|

(III.104)

The exact value comes from the definition of α using the jumps relations:

α(θ) = ∂ru
+(1, θ)− ∂ru−(1, θ) = 2n cos(n θ) , (III.105)

where u+ is the solution to the exterior Neumann problem, and u− is the solution of the
interior problem, which was also obtained by the method of separation of variables. Here
we chose to validate the method by calculating the error on the boundary potential α rather
than on the solution u as it is usually done. The reason behind this is that in the following
chapter, the shape gradient that we are going to use is defined directly by α. The main
drawback is that we cannot get a manufactured solution for α as easily as it is the case
for u. This is the reason behind the particular choice of Γ and g we have made in (III.102)
and (III.103).

In the tables III.1, III.2 and III.3, we present the error E as a function of the resolution of
the grid on which the level-set function is defined, for different thicknesses of the tubular
neighborhood, and different values of N . As expected, the case η∗ = 2h|∇d|1 converges with
a clean second order convergence rate. Surprisingly, the rate of convergence of the error for
the case where η∗ is fixed is lower than in the other cases. Also the case η∗ = 2hwhich should
not be convergent shows a second order convergence. All these unexpected results might
be a consequence of the choice of the test-case, in which the solution α is an eigenvalue of
the boundary integral operator (g and α are colinear). Even though the solution is not an
eigenvalue for the discrete operator, this particular choice (motivated by the knowledge of
the exact solution) might be the cause of the strange phenomena observed.
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Table III.1 – Error and local order of convergence in the exterior Neumann problem for n = 1.

η∗ = 2h |∇d|1 η∗ = 4h η∗ = 0.01
N E (10−3×) order E (10−3×) order E (10−4×) order

256 0.2917 - 0.5256 - 0.7769 -
512 0.0806 1.8551 0.1263 2.0573 0.3239 1.2624

1024 0.0211 1.9352 0.0323 1.9651 0.1268 1.353
2048 0.0055 1.9397 0.0079 2.0322 0.0508 1.3203

Table III.2 – Error and local order of convergence in the exterior Neumann problem for n = 3.

η∗ = 2h |∇d|1 η∗ = 4h η∗ = 0.01
N E (10−3×) order E (10−3×) order E (10−4×) order

256 0.3624 - 0.4995 - 0.7449 -
512 0.0919 1.9794 0.1232 2.0199 0.3192 1.2226

1024 0.0232 1.9859 0.0319 1.9468 0.1256 1.3456
2048 0.0059 1.9753 0.0079 2.0233 0.0505 1.3145

Table III.3 – Error and local order of convergence in the exterior Neumann problem for n = 5.

η∗ = 2h |∇d|1 η∗ = 4h η∗ = 0.01
N E (10−3×) order E (10−3×) order E (10−4×) order

256 0.3448 - 0.4739 - 0.7166 -
512 0.0896 1.9436 0.1201 1.9809 0.3143 1.1892

1024 0.0229 1.9667 0.0316 1.928 0.1244 1.3365
2048 0.0058 1.9715 0.0078 2.0143 0.0502 1.3102
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Chapter III. The Level-set Method

Figure III.11 – Comparison between the exact and the computed solution for our test-case. The rows
represent different values of n (respectively 1, 3, 5), the first column is the numerical solution, the second
column is the exact solution, and the third is the log of their differences.
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Chapter IV

Numerical implementation and results

In this final chapter, all the mathematical and numerical methods presented previously are
combined for the purpose of implementing the shape optimisation algorithm 1 presented
in chapter II. We start by introducing some notation for the discretisation of the problem.
Then we present a validation of the numerical method used to solve the boundary integral
formulation of the Neumann-Kelvin problem in a particular case where the exact solution
is known. Various technical issues related to the actual implementation of the method are
presented along with a full description of the algorithm. Finally we show some results
obtained with this algorithm and discuss their relevance for practical applications.

1 General notation

We start by recalling the notation of chapter III for the discretisation of the problem. Let
R be a rectangular domain containing the boundary Γ of the obstacle. Let (xi,j) i=1..N1

j=1..N2
be a

Cartesian mesh of R, with spacings h1 and h2 (sometimes referred as h when h1 = h2). The
approximation of a function f : R→ RM (for M ∈ R) at point xi,j will be denoted fi,j .

Let N = {(i, j) ∈ N2 | |di,j| ≤ η∗}, where d is the signed distance function of Γ, and η∗ is
the thickness of the tubular neighbourhood considered. Typically, as explained in chapter III,
we will take η∗ = 2h. We note that for the Neumann-Kelvin problem we did not observe a
big difference between the choices η∗ = 2h and η∗ = 2h|∇d|1. Let (mk)k=1..NN

be the sequence
of couples of indexes of N (for some ordering). For the sake of simplicity we will denote fk
for fmk (no ambiguity remains here because only one index appears).

Recall from chapter I the boundary integral operators involved in the wave-making re-
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sistance problem:

S : u 7→
∫

Γ
G(·, y)u(y) dsy , (IV.1)

D : u 7→
∫

Γ
∂n(x)G(·, y)u(y) dsy − 1

2 u , (IV.2)

D∗ : u 7→
∫

Γ
∂n(x)G(x, ·)u(x) dsx − 1

2 u , (IV.3)

We introduce their numerical counterparts S, D, and D∗ defined by the numerical method
presented in section 3 of chapter III:

S = (h1h2 Gm,k Jk δk)m=1..NN
k=1..NN

, (IV.4)

D = (h1h2 (∂nG)m,k Jk δk)m=1..NN
k=1..NN

− 1
2 INN

, (IV.5)

D∗ = (h1h2 (∂nG)k,m Jk δk)m=1..NN
k=1..NN

− 1
2 INN

, (IV.6)

where Gm,k and (∂nG)m,k are evaluations of the Green’s function associated with the Neumann-
Kelvin problem (see section 2 of chapter I) and its derivative at the points (x∗m, x∗k), that we
regularise for |x∗m − x∗k| < ε as in chapter III section 3.

Further, we recall that:

nk = ∇hdk , τk = R(π2 )nk , Hk = ∆∗hdk . (IV.7)

Where we recall that ∆∗hu is the interpolation of ∆huk at point x∗k. For various purpose, it
might be useful to calculate the tangent derivative of a function defined on Γ. Let u be such
a function, and u ◦ΠΓ its "thickened" version on the neighbourhood of Γ. Then we approach
the tangent derivative of u at xk with:

∂τ,hvk = τk · ∇∗h(u ◦ Π)k , (IV.8)

where, again, we recall that ∇∗hvk is the interpolation of ∇hvk at point x∗k. Also in all the
following presentation, we identify the linear mapping (vk)k=1..NN

7→ (∂τ,hv)k=1..NN
with its

matrix by a small abuse of notations.
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IV.2 Calculation of the wave-making resistance

2 Calculation of the wave-making resistance

The goal of this section is to present how the aforementioned numerical method can be
used in order to calculate the wave making resistance of an arbitrary (smooth) obstacle in
a constant flow by using the Neumann-Kelvin model. We recall from chapter I that the
wave-making resistance reads:

Rw(Γ) = ρ ν

4

∣∣∣∣∫
Γ
αΓ(x)E(x)dsx

∣∣∣∣2 , (IV.9)

where the boundary potential α solves:

D[α] = −U∞n · e1 , (IV.10)

and:
E(x) = eν(ix1+x2) . (IV.11)

Using the numerical method from chapter III, and the notation from section 1, we obtain the
following approximation for the wave-making resistance:

Rw(Γ) ∼ ρ ν

4

∣∣∣∣∣∣h1h2

NN∑
k=1

αk Ek Jk δk

∣∣∣∣∣∣
2

, (IV.12)

where Ek = E(x∗k), and α = (αk)k=1..NN
solves the linear system:

Dα = −U∞n1 , (IV.13)

where n1 = (nk · e1)k=1..NN
, and D is given by equaiton (IV.5).

Let us consider the case where the obstacle is a circular cylinder of radius a and depth
f , and compute the wave-making resistance vs Froude number profile. Here the Froude
number serves as a dimensionless version of the velocity, and it is defined by:

Fr = U∞/
√
gf , (IV.14)

so the chosen reference space scale is the depth of the obstacle. We have at our disposal
an exact formula for the wave-making resistance in the Neumann-Kelvin model in the case
of any submerged circular cylinder. Remarkably, this solution was discovered more than
a century ago by Sir Thomas Henry Havelock [36]. The "recipe" for the calculation of the
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wave-making resistance through Havelock’s solution is presented in appendix C.

Let us now compare the exact and the numerical profiles obtained with (IV.12) and (IV.13)
for a circular cylinder of depth 0.7m and radius 0.5m (to be consistent with the examples
given in the historical article of T.H. Havelock). To this end, we introduce the level-set
function

d(x) = |x+ f e2| − a , (IV.15)

and consider a rectangular domain:

R =
]
−
√

5
2 a,

√
5

2 a
[
×
]
−
√

5
2 a− f,

√
5

2 a− f
[
, (IV.16)

enclosing the circular boundary, which will be discretised using a 128 × 128 grid. The fig-
ure IV.1 presents these Rw vs Fr profiles (left exact, right numerical). We recover a classical
feature of the wave-making resistance, that is, its preeminence in the regime Fr = 0.3 ∼ 1.5.
The figure IV.1 also shows the good agreement between the exact and numerical approxima-
tion with a relative error less than 0.2% at its maximum (the errors shown here are relative
errors).

Further, we investigate the rate of convergence of our numerical method with respect to
h, for different values of the velocity. The convergence results shown in table IV.1 show a
reasonable rate of convergence of the method, with a fairly good overall accuracy of around
2% in the worst case.

Fr = 0.3 Fr = 0.9 Fr = 1.3
N Error Order Error Order Error Order
32 0.0214 − 0.0176 − 0.0164 −
64 0.0070 1.6042 0.0071 1.3086 0.0066 1.3048
128 0.0016 2.1056 0.0004 4.0390 0.0002 5.3313
256 0.0004 2.0862 0.0002 1.2454 0.0001 1.4025

Table IV.1 – Convergence results for our numerical method on the wave-making resistance on the case
of a circular cylinder of depth 0.7m and radius 0.5m, for three different values of the Froude number.

For practical purposes, besides the wave-making resistance, it might be useful to recover
the velocity potential Φ in the exterior domain Ω+ and the free-surface deformation function
η. Recall from chapter I that:

Φ(x) =
∫

Γ
G(x, y)α(y) dsy , (IV.17)
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Figure IV.1 – Comparisons of the wave-making resistance vs Froude number profiles. Top left: exact
value from T.H. Havelock’s solution; top right: computed value with (IV.12) and (IV.13); bottom: relative
error.

and:
η(x1) = U

g
∂1Φ(x1, 0) , (IV.18)

which, using the numerical method previously described translates as:

Φ(x) ∼ h1h2

NN∑
k=1

G(x, xk)αk Jk , (IV.19)

and:

η(x1) ∼ h1h2
U

g

NN∑
k=1

∂x1G((x1, 0), xk)αk Jk . (IV.20)

Note that here the "query point" x (respectively x1) can be any element of Ω+ (respectively
R). The figure IV.2 shows the velocity potential obtained with (IV.19) on a cylinder of depth
0.7 and radius 0.5, for four different values of the Froude number: 0.6, 0.8, 1, 1.2. We also
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Chapter IV. Numerical implementation and results

represent the streamlines obtained from this potential. The figure IV.3 shows the plot of the
free-surface deformation obtained with (IV.20), for the same cylinder and the same values of
the Froude number. The query points chosen for Φ, are defined by a 200× 50 Cartesian grid
of [−6, 2] × [−2, 0]. This grid is hence independent of the one chosen to compute α, and is
also represented on figure IV.3. For η, we chose 300 values evenly spaced between −9 and 3.

These illustrations show the characteristics of the wake, in which both the amplitude
and the wave-length of the wake depend on the Froude number. Note that the free surface
deformation in figure IV.3 does not represent the actual upper boundary of the fluid domain
Ω+ which is flat because that we used a linearised model of water-waves. The free surface η
has hence to be seen just as a function that "lives" on this flat upper bound. For this reason,
it can happen that the free surface represented crosses the obstacle without causing any
problem in the model (both from the theoretical and numerical point of view), as long as the
obstacle chosen is not piercing the top of Ω+.

98



IV.2 Calculation of the wave-making resistance

Figure IV.2 – Plots of the flow around a circular cylinder, for four different values of the Froude number
(from top to bottom 0.6, 0.8, 1, 1.2). The velocity potential was obtained with (IV.19). The colours indicate
the value of the velocity potential Φ, the black lines are streamlines, and the red line is the boundary of
the obstacle.
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Figure IV.3 – Plots of the free surface, for four different values of the Froude number (from top to bottom
0.6, 0.8, 1, 1.2). The value of the free-surface elevation was obtained with (IV.20).
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3 Implementation of the methods

In this section we give a presentation of the shape optimisation algorithm we designed from
the methods and techniques developed in all the previous chapters. Recall the expression of
the shape gradient from chapter II:

∇ΓRw(x) = n(x)
{

2α(x)
∫

Γ
α(y) Re

(
∂nE(x)E(y)

)
dsy + ∂τq(x) ∂τS(α)(x)

+ α(x)∂τ S̃∗(∂τq)(x) + U∞ ∂τq(x) τ(x) · e1

}
, (IV.21)

where α and q solve respectively:

D[α] = −U∞ n · e1 , (IV.22)

D∗[q] = −2
∫

Γ
Re
(
E(y)E(·)

)
α(y) dsy . (IV.23)

We also recall that the principle of the shape gradient descent method is to change, step-by-
step the boundary with:

Γn+1 = (Id + δr θ) Γn , (IV.24)

where δr is a step parameter that has to be chosen small enough to ensure the stability of
this process, and the deformation "direction" θ is chosen opposite to the shape gradient:
θ = −w n, where:

w = 2αRe
(
∂nE

∫
Γ
αE ds

)
+ ∂τq ∂τS[α] + α ∂τ S̃

∗[∂τq] + U∞ ∂τq τ · e1 . (IV.25)

When dn is the (supposedly known) signed distance function of Γn, a level-set function d̃n+1

of Γn+1 can be obtained with:
d̃n+1 = dn − δr w∗ (IV.26)

where w∗ is the constant-along-normals extension of w around Γk. Once d̃n+1 is known
with (IV.26), it is possible to obtain a signed distance function by solving the eikonal equation
|∇dn+1| = 1 with the boundary condition dn+1|(d̃n)−1(0) = 0, as explained in the section 1.4 of
chapter III.
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3.1 Discretisation of the problem

Let us now explain how the normal displacement w is approached from the knowledge of
approximate values (dk)k=1..NN

of the signed distance function d. We start by approaching
the state and adjoint equations (IV.22)-(IV.23), the same way as in section (2):

Dα = −U∞n1 , (IV.27)

D∗q = M1α , (IV.28)

where:
M1 =

(
−2 Re(EmEk) Jk δk

)
m=1..NN
k=1..NN

. (IV.29)

Again using the integration method described in chapter III, we obtain, from (IV.25)

w = α ∗M2α+ ∂τ,hq ∗ ∂τ,hS[α] +α ∗ ∂τ,hS̃∗[∂τ,hq] + U∞ ∂τ,hq ∗ τ1 . (IV.30)

where ∗ denotes the element-by-element product, and:

M2 =
(
2 Re[(∂nE)m Ek] Jk δk

)
m=1..NN
k=1..NN

. (IV.31)

The state α and adjoint state q are obtained by solving (IV.27) and (IV.28) and the approxi-
mation of the operator S̃ defined in equation (I.166) in chapter I, reads:

S̃∗ = (h1h2 G
∗
k,m Jk δk)m=1..NN

k=1..NN

. (IV.32)

Finally we recall that ∂τ,h is the approximation operator for the tangent derivative (see sec-
tion 1).

3.2 Grid resizing

In all the above, we supposed that the rectangular domain R enclosing Γ that we use for
discretisation is fixed. However, in our algorithm the shape of the obstacle evolves, and it is
difficult (and a poor choice) to anticipate the size of the final obstacle and to define R such
that Γn ⊂ R for all n ∈ N.

For this reason, we will change R over the iterations of our algorithm in such a way that
it always encloses Γn as tightly as we will require. In order to avoid additional interpolation,
the changes we will apply to R will consist in adding or removing mesh elements layers on
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the right, left, top and bottom sides of R. These element are added and removed in such a
way that the set of points of the tubular neighbourhood associated with our evolving curve
Γ is at a distance of at least ph and at most (p + 1)h to the border of the box, where the
parameter p ∈ N defines the thickness of the "safe zone" chosen.

The figure (IV.4) shows the evolution of the computational domain though this process,
on a particular case of the evolution of a curve with a normal displacement given by:

θn(x) = 4− (8x2
1 + x2

2) , (IV.33)

and starting from a circle. In this case the steady state (plotted in black) is expected to be an
ellipse, which cannot be represented properly with the initial cartesian mesh (first picture
on the left). Through the iterations of this normal motion, our method adds elements on
the top and bottom and removes elements on the right and the left so that the safe zone (in
magenta) is tightly respected.

Figure IV.4 – Iterative normal motion of a curve using (IV.33) as a normal displacement functon. In
magenta we represent the "safe zone" for p = 2, in red are the elements whose center belongs to the
tubular neighbourhood of Γ.

3.3 Measure constraint

We recall the algorithm defined in chapter II that we will use to enforce the measure con-
straint on the obstacle:
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Data: A shape Γ̃, a tolerance ε, a target surface area v and a step δ.

Result: The "projected" Γ = (Id + an)Γ̃, where a is such that µ(Ω−) = v.

a := 1
while |κ(Γ)− v| > ε do

Normal displacement: Γ := (Id + a n)Γ̃
Correction of the step: a := a− δ(κ(Γ)− v)

end

Let us now suppose that the signed distance function d of Γ is known. The constant
normal displacement "Γ := (Id + a n)Γ̃" can be translated in terms of d as "d := d̃ + a". We
hence simply modify d by adding a constant that has to be chosen in such a way that the
measure of the domain it encloses has the required value. The most notable feature of this
is that, after this modification, d remains a signed distance function. Further, we compute
µ(Ω−) by using a smooth approximation of the indicator function of the domain:

µ(Ω−) ∼ µ̃(d) = h1h2

N1∑
i=1

N2∑
j=1

1
2

[
1− erf

(
d(xi,j)
h

)]
(IV.34)

where erf denotes the error function. With all that, we obtain a new projection algorithm in
which Γ is implicitly represented by d:

Data: A signed distance function d̃, a tolerance ε, a target surface area v and a step δ.

Result: The signed distance function d = d̃+ a, where a is such that µ̃(d) = v.

a := 1
while |µ̃(d)− v| > ε do

Normal displacement: d := d̃+ a

Correction of the step: a := a− δ (µ̃(d)− v)
end

Algorithm 3: Projection algorithm for the measure constraint: level-set version
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3.4 The full algorithm

The figure IV.5 presents a complete depiction of the implementation of the shape optimisa-
tion algorithm 1, using the level-set representation of the obstacle boundary Γ. Our algo-
rithm uses a stopping criterion Crit that compares the current signed distance function d
with the one obtained at the previous iteration (denoted dold). The idea is to compare the
value of the wave-making resistance computed with d and dold. If their difference is smaller
than a tolerance value TOL, then the algorithm is stopped. The value of TOL is scaled
on the initial wave-making resistance. To be complete, we specify that this criterion is in
fact averaged on several steps (in our case 1000 steps) to prevent the algorithm to stop just
because two consecutive steps gave values for the wave-making resistance that are too close.

The input parameters for this algorithm are the grid step sizes h1 and h2, the initial shape
Γ0, the velocity U∞, the deformation step δr. The initial shape will be a circle of center (−f, 0)
and radius a. The parameter of importance here is the ratio f/a. The reason behind this is
that the Neuman-Kelvin model is invariant with respect to the Froude number:

Fr = U∞√
gf

(IV.35)

As an illustration, let us consider a situation in which both f and a are multiplied by 2 (both
are multiplied in order to keep the ratio constant), then the solution of the Neumann-Kelvin
system obtained with a velocity of U∞/

√
2 will be the same (up to a multiplicative constant).

Hence, since the relevant parameter is f/a, in all the following simulations, we will keep
a = 0.5m, and change the depth f and the upstream velocity U∞. The initial grid resolution
is 128×128, and is motivated by a balance between the computational cost and the accuracy
(for an idea of the accuracy, we refer to the table IV.1). Finally, the step δr is changed at each
iteration, and we choose δr = 10−2 h/max(w), which means a displacement of at most 10−2h

per iteration. The constant 10−2 that we used here was obtained empirically.
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initialise R, h1, h2, d

Adapt R as in subsection 3.2

Compute n, τ , H and δ
with (III.26), (III.27) and (III.71)

Define the neighbourhood indices
N = {(i, j) ∈ N2 | δi,j 6= 0}

(BIE solving block)

Assemble D and D∗
from (IV.5)-(IV.6)

Assemble M1 and M2
from (IV.29)-(IV.31)

Assemble S and S̃∗
from (IV.4)-(IV.32)

Solve Dα = U∞n1 with a
BICGSTAB iterative method

Solve D∗q = M1α with a
BICGSTAB iterative method

Compute w with (IV.30)
(depends on α, q, S and S̃∗)

(Level-set displacement block)

Displacement of the do-
main with: d̃ = d + δrw

Redistancing procedure
(section 1.4, chapter III)

Projection procedure
(section 3.3 above)

Crit(d,dold)
< TOL ?

ENDno yes

Figure IV.5 – Flow chart of the shape optimisation algorithm
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4 Presentation of the results

Let us first study the influence of the velocity on the optimal shapes obtained with the algo-
rithm that we outlined in figure IV.5, and by using the parameters defined in section 3.4. The
depth is fixed at 0.7m, we recall that the radius of the initial shape is 0.5m, and the velocities
are calculated in such a way that the values of the Froude number (defined by (IV.35)) are
10 values evenly spaced between 0.3 and 1.4, which is the range of values for which the
wave-making resistance phenomena are the most important.

The figure IV.6 presents the results of the shape optimisation algorithm for some chosen
values of the Froude number : 0.4222, 0.6667, 0.9111, 1.0333, 1.2778. As an indicator of
the wave-making resistance, we also plot the wake generated by these obstacles (we recall,
from (I.131) that the wave-making resistance is proportional to the square of the amplitude
of the wake far downstream). We compare the initial shape/wake in blue with the final
shape/wake, in red. The reduction in the wake amplitude is quite remarkable: in many
cases, the wake downstream is indistinguishable from a flat profile. The ratio between the
wave-making resistance for the final shape and the wave-making resistance for the initial
shape is presented in the table IV.2, and we notice that in almost all cases, the wave-making
resistance is reduced by several orders of magnitudes (one in the worst case, more than six
in the best case).

Let us now consider the Froude number to be fixed, and let us take four different values
of the depth : 0.7000, 0.8444, 0.9889, 1.2778, and Fr = 0.6667. In figure IV.7 we plot our results
the same way as in figure IV.6, with these new parameters. As it was the case in figure IV.6,
we remark that the choice of the depth has an influence on the typical length of the obsta-
cle, though the influence of the depth seems less important than the influence of the Froude
number.

Fr 0.3000 0.4222 0.5444 0.6667 0.7889
Rw ratio 0.0870 1.9188e-06 8.8098e-07 5.6949e-06 3.9373e-05

Fr 0.9111 1.0333 1.1556 1.2778 1.4000
Rw ratio 8.1079e-05 6.8562e-05 9.1518e-04 8.7941e-04 9.2692e-05

Table IV.2 – Table showing the reduction of the wave-making resistance obtained with the shape opti-
misation algorithm, for f = 0.7, and for 10 evenly spaced values of the Froude number between 0.3 and
1.4.
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To finish, we present in figure IV.8 a summary of all the optimised shape we obtained,
presented on an array of parameters conveniently chosen: the depth for the y-axis, and
(U2
∞/g)(= Fr2/f) on the x-axis, the later being the typical wave-length for the wake in a flow

predicted with the Neumann-Kelvin model. Each shape with a different colour represents a
run of the shape optimisation algorithm with parameters given by its position on the grid.

The triangular symbols mark parameters (f,Fr) for which the algorithm fails to converge,
and the sequence of obstacles obtained is a sequence of deeper and deeper obstacles. We
refer to these cases as "sinking cases". This is a situation that was anticipated in chapter II,
subsection 4.3 in which we remarked that the wave-making resistance should go to 0 as the
depth of the obstacle goes to∞. Also, as we can see in the algorithm depicted in figure IV.5,
the measure constraint is taken into account to avoid shrinking obstacles, but nothing is
done to prevent the obstacle from sinking. It is all the more surprising to find cases where
the algorithm actually converges. We will try to give a tentative explanation for the existence
of these local minima that remain close to the surface in subsection 5.2.
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Figure IV.6 – Plots of the obstacles and corresponding free surface deformations. The blue curves repre-
sents the initial situation, the red curves represent the wake and obstacle at the end of the shape optimi-
sation process. The horizontal dashed line represents the zero water level. The depth is fixed at 0.7; from
top to bottom, we have: Fr = 0.4222, 0.6667, 0.9111, 1.0333, 1.2778
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Figure IV.7 – Plots of the obstacles and corresponding free surface deformations. The blue curves repre-
sents the initial situation, the red curves represent the wake and obstacle at the end of the shape optimi-
sation process. The horizontal dashed line represents the zero water level. The Froude number is fixed at
0.6667; from top to bottom, we have: f = 0.7, 0.8444, 0.9889, 1.2778
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Chapter IV. Numerical implementation and results

5 Discussion

In this section we discuss the results presented in section 4, and try go give an explanation
for the optimal shapes we obtained.

5.1 The length of the obstacles

When examining figure IV.8, one striking feature of the optimal shapes is that their typical
length seem to fit linearly with the typical wave-length U2

∞/g. This can be seen in figure IV.9,
in which each point represents the length of an optimal obstacle obtained for a different
value of the Froude number. We recall U2

∞/g = Fr2/f , hence the influence of the Froude
number on the length of the obstacle we obtain is quadratic.
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Figure IV.9 – Plot of the lengths of the optimal obstacles shown in figure IV.8 as a function of U2
∞/g.

We try to give an explanation for this by using an analogy with the idea of the Rank-
ine body. It is a classical result of fluid mechanics that, when we consider a 2D potential
flow in an infinite domain, it is possible to imitate an obstacle by considering a couple of
source/sink placed on an axis parallel to the flow at infinity (see for instance [4], pp. 458-
460). Further, the strength of this sink/source couple determines the volume of the body.
The "virtual" obstacle thus obtained is called a Rankine Body. In this case, the velocity po-
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tential perturbation is the sum of two Green’s functions, one for each source position:

Φ(x) = s (G(x, y + 1
2 le1)−G(x, y − 1

2 le1)) , (IV.36)

where s is the strength associated with the source/sink couple, and l is the length separating
the source and the sink, and of course, G is the Green’s function of the Laplace equation. We
plot in figure IV.10 an instance of such a flow. It is important to note that this idea does not
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Figure IV.10 – Example of a flow given by a source/sink distribution. In black we show the streamlines,
in red, a particular streamline that outlines the shape of the Rankine body, and the source/sink positions
are represented in blue and magenta.

hold in general for a flow with a free-surface. Let us however consider a Rankine "pseudo-
body" produced by a source and a sink in the Neumann-Kelvin problem:

Φ(x) = s (G(x, y + 1
2 le1)− G(x, y − 1

2 le1)) . (IV.37)

The figure IV.11 shows the instance of such a flow (there is no closed streamline in this
case). From (IV.37), we could try to find which value of l would produces the minimal
wave-making resistance. As we have seen in equation (I.131) of chapter I, the wave-making
resistance is proportional to the square of the amplitude of the waves far away downstream.
Luckily, for the case of a flow produced by a source (or a sink), the behaviour of the solution
at infinity is known (see (I.84)), and, by linearity, the contribution of the source and the
sink can be subtracted. From (I.84), we obtain that behaviour of the free surface elevation

113



Chapter IV. Numerical implementation and results

-0.5 0 0.5 1 1.5 2 2.5

x
1
 (m)

-0.5

-0.4

-0.3

-0.2

-0.1

x
2
 (

m
)

Figure IV.11 – Example of a flow given by a source/sink distribution in the Neumann-Kelvin model. In
black we show the streamlines, and the source/sink positions are represented in blue and magenta.

η(x) = −(U∞/g)∂xΦ(x1, 0) for such a Rankine pseudo-body, far away downstream is:

η∞(x1) = 1
U∞

(
cos(ν(x1 + 1

2 l))− cos(ν(x1 − 1
2 l))

)
= − 2

U∞
sin(νx1) sin(ν 1

2 l) . (IV.38)

Hence, the wave-making resistance is proportional to: sin(ν 1
2 l)

2, and the smallest length for
which this resistance is equal to zero is:

l = 2 π
ν

= 2π
(
U2
∞
g

)
. (IV.39)

While this relation does not fit what we observe in IV.9, it could explain the apparent linear
relation observed between the length of the obstacle we obtain, and the parameter U2

∞/g.
The discrepancy between the slopes could be explained by the fact that the length of such
a Rankine pseudo-body is not equal to the distance between the source and the sink, and
depends on the strength s (it is in fact difficult to even define properly).

5.2 The sinking cases

In this section we attempt to give an explanation for the fact that our algorithm finds locally
optimal shape of finite depth. In order to simplify the situation, we will consider a shape
optimisation problem in which the only degree of freedom available is the depth. Starting
with a circle, the shape remains a circle, and so the wave-making resistance in this case can
be obtained with the formula of Havelock. The figure IV.12 shows a plot of the wave-making
resistance for a circle of radius 0.5m as a function of the depth an the aforementioned pa-
rameter U2

∞/g. We remark that, for some values of U2
∞/g, there is a depth for which the

wave-making resistance is maximal. This means that starting above this maximal, the gra-
dient descent method should move the circle closer to the surface, while starting below will
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lead to a "sinking" sequence of domains.

Figure IV.12 – Wave making resistance of a circular cylinder as a function of the depth and the parameter
U2
∞/g. The white line joins the maxima of Rw with respect to f , for different values of U2

∞/g.

This interpretation is not entirely satisfactory because the two distinct regions above do
not fit with what we see in figure IV.8. This is mainly due to the fact that despite the initial
shape is a circle, it quickly deforms into a very different shape for which our analogy does
not hold anymore. A better solution would be to allow linear deformations such as exten-
sions along the horizontal axis. We also note that this dichotomy between optimal shapes
that remain close to the surface and "sinking" shapes has already been observed in [19], on
a 3D version of the Neumann-Kelvin with a "slender" approximation of the shape.

5.3 Wave making resistance vs Froude profiles

We start by remarking that each shape that was previously obtained is designed to be opti-
mal for a given value of the Froude number, that we will call here Fr∗. We expect the value of
the wave-making resistance to be minimal for Fr∗, but we have no information on how each
optimal obstacle behave for other values of Fr. In particular, for ship design (the 3D surface
piercing case), it is interesting to know wether the optimal regime Fr∗ can be reached starting
from 0 without experiencing a peak of resistance that would be too difficult to overcome.

The figure IV.13 shows plots of the wave-making resistance vs Froude number profiles
for different optimal obstacles that were obtained for f = 0.7 and different values of Fr∗. Two
regimes can be observed: below a critical value Fr∗ 0.8, the optimal regime shows no large
peak before Fr∗; above this critical value, a very high peak of resistance has to be passed
before reaching Fr∗. Again, this type of behaviour is consistent with what was observed
in [20] with "slender"-type models.
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Figure IV.13 – Plots of the Rw vs Fr profiles, for optimal shapes with different values of the "target"
Froude number Fr (indicated with a dot). The redline is the profile for the optimal shape, the blue line
indicates the profile for the initial shape. Left column: Fr∗ < 0.8; right column Fr∗ > 0.8.
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5.4 Applicability for the analogue gravity experiments

As stated in the introduction of this manuscript, despite the fact that the main motivation
for the study of this problem comes from ship design, the problem we studied here is two
dimensional, and cannot be transposed immediately to naval engineering. However, we
hope that the methods developed here can be extended in 3D without too many efforts.
Despite all this, there is an application in physics for which our work could be relevant:
analogue gravity experiments. In these experiments, the behaviour of water-waves in spatially
variable currents are used as an analogue for the propagation of light in a region of space-
time deformed by the presence of a black-hole. In particular, G. Rousseaux, L.-P. Euvé and
collaborators (see [27]) at the Institut Pprime (CNRS/Université de Poiters/ENSMA/ENSIP),
have recently observed an analogue of the Hawking effect1 in an observation of the blocking
of waves generated downstream of a variable current. Here, the variation of the current is
obtained by the presence of an obstacle in the flow. One of the many technical challenges is
to design an obstacle that produces a large enough and well controlled change of velocity,
but for which the wake is as small as possible. The reason for this is to reduce the interaction
between the wake and the waves that are purposely produced downstream.

The figure IV.14 shows a complete view of the flow around the obstacle previously ob-
tained by fixing the initial depth at 0.7m, and changing the Froude number (see figure IV.14).
First, we remark that the wake is indiscernable, as is was shown in the previous pictures.
Also, in each case, an acceleration of the fluid around the obstacle can be observed. At the
free surface, an increase of about 20% of the velocity is observed just above the obstacle. The
obstacle shapes we obtained hence seem like good candidates for this application.

1The Hawking effect is a radiation theoretically emitted by black-holes that was predicted by S. Hawking
in 1974 [37], and is also known by the name: black hole evaporation. This effect is so tenuous that is was never
observed directly. This has motivated the design of analogue experiments using water-waves or acoustic
waves.

Fr 0.4222 0.6667 0.9111 1.0333 1.2778
Vmax/Vmin 1.2535 1.2716 1.2270 1.1948 1.1650

Table IV.3 – speed ratio at the free surface in the cases presented in figure IV.14.
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(a)

(b)

(c)

(d)

(e)

Figure IV.14 – plot of the flow for the optimal shapes previously examined in figure IV.6. The colours
represent the speed. The colour axis are purposely chosen between 0 and the maximum speed at the
surface.
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General conclusion

In this study, we computed numerically several 2D shapes which minimise the wave-making
resistance of a moving obstacle fully submerged in a fluid with a free surface.

We considered an object immersed in a homogeneous, inviscid and incompressible fluid
with a free surface and which moves at a constant velocity. The flow around the object was
described by the Neuman-Kelvin (NK) equations, a well-known problem [50] which can be
derived from the irrotational Euler equations with a free surface by a linearisation technique.
We used a single layer formulation to represent the NK-problem; in this approach, the fun-
damental solution handles the Laplace equation and the linearised free surface boundary
condition. Using an energy method, we obtained a formula which gives the wave-making
resistance as an integral on the boundary of the domain. This formula allowed an accurate
computation of the wave-making resistance. Moreover, it showed that the value of this resis-
tance is proportional to the square of the amplitude of the waves generated by the obstacle
downstream.

In order to find a local minimum of the wave resistance (for a shape with a given area, in
order to avoid degeneracy), we used a gradient descent method. The gradient with respect
to the shape is obtained by computing the derivative of the Lagrangian of the problem in a
“pulled-back” form through the boundary variation method.

For the computation of the boundary integrals which appear in the formulation of the
NK-problem and in the wave-making resistance, we implemented a level-set method. Such
a method is very interesting when dealing with moving boundaries as we do in our shape
optimisation method. Level-set methods can be greedy, but we managed to reduce the com-
putational cost by working on a tubular neighbourhood of the boundary of the object.

The sequence of shapes given by our shape gradient descent method converged for sev-
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eral given depths and velocities. We found that there is a huge reduction of the wave-making
resistance between the initial shape and the final shape, with a ratio varying between 1 and 6
orders of magnitude in the best case. One striking feature of the (converged) optimal shapes
is that their typical length seems to fit linearly with the typical wave length of the problem.

By imposing the area of the shape, we prevented the obstacle to shrink. But we did not
impose the center of gravity of the object, so that in several cases, our algorithm produced a
sequence of shapes going down far away from the surface, with a wave-making resistance
going to zero (these are what we called the sinking cases). It was all the more surprising to
obtain optimal shapes not far away from the free surface.

A shape which is optimal for a given velocity is not necessarily optimal for all velocities.
By considering the wave resistance vs velocity, we observed that sometimes, the optimal
regime cannot be reached without experiencing a peak of resistance. This can be a serious
limitation in application to ship hydrodynamics.

Perspectives

After the shape optimisation for the wave-making resistance problem that we presented
in this thesis, we propose several tasks which could be done to enhance the theory, the
numerical approach, as well as the applications related to this problem.

From a theoretical point of view, it would be interesting to prove the existence of an
optimal shape for our problem. This looks like a difficult question. Indeed, for a given
obstacle, existence and uniqueness of the potential holds only except for a finite number of
velocities. It require smoothness of the boundary and there are topological constraints. A
possibility could be to start with the case of thin obstacles, by seeking a formula similar to
Michell’s.

We note that we calculated a shape derivative by a Lagrangian method which is a formal
computation [2]. It would be interesting to give a functional setting for this computation.

From a numerical point of view, we would like to extend the method presented in this
thesis to the 3D setting, in the case of a surface-piercing body. This would be closer to ap-
plications in ship design. We could start from the fundamental solution of the NK-problem
given by Delhommeau in his thesis [21]. We could also study first the easier case of a 3D
fully submerged body, or the 2D problem with a surface-piercing body. For a given obstacle,
the NK-problem has been studies for these last two situations in [50].

In view of applications to analogue gravity experiments, it would also be interesting to
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work with the full Navier-Stokes equations instead of the Neuman-Kelvin problem. For
instance, we could integrate a shape descent method to the 2D level-set code developed by
James (see for instance [41]).
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Appendix

A The Rayleigh dissipation and complex integration

The goal of this appendix is to prove that considering

Hy(x) = 1
π

lim
ε→0

Re
∫
l−ε

e−ikω

k − ν
dk (1)

as in equation (I.62) is equivalent to consider the Neumann-Kelvin model with a vanishing
Rayleigh dissipation (see equation (I.42)).

Starting from equation (I.47) with the modified free-surface condition

∂2
11H̃y(x1, 0) + ν∂2H̃y(x1, 0)− ε∂1H̃y(x1, 0) = −∂2

11Gy(x1, 0) + ε∂1Gy(x1, 0) . (2)

We split H̃y into two parts,
H̃y = H̃y,1 + H̃y,2 (3)

where H̃y,1 solves

 ∂
2
11H̃y,1(x1, 0) + ν∂2H̃y,1(x1, 0)− ε∂1H̃y,1(x1, 0) = −∂2

11Gy(x1, 0)

∆H̃y,1 = 0 .
(4)

and H̃y,2 solves

 ∂
2
11H̃y,2(x1, 0) + ν∂2H̃y,2(x1, 0)− ε∂1H̃y,2(x1, 0) = ε∂1Gy(x1, 0)

∆H̃y,2 = 0 .
(5)
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We introduce Fy = ∂1H̃y,2, then Fy solves:

 ∂
2
11Fy(x1, 0) + ν∂2Fy(x1, 0)− ε∂1Fy(x1, 0) = ε∂2

11Gy(x1, 0)

∆Fy = 0 .
(6)

Using the same methods and notations as in chapter I subsection 2, we get:

H̃y,1(x) = 1
π

Re
∫
R+

e−ikω(x,y)

k − ν − iε
dk (7)

Fy(x) = − ε
π

Re
∫
R+

e−ikω(x,y)

k − ν − iε
dk . (8)

Let us denote:

I =
∫
R+

e−ikω

k − ν − iε
dk . (9)

We apply the change of variables k ← k − iε, then:

I = e−iεω
∫
R+−iε

e−ikω

k − ν
dk (10)

Let us note in the equation (10) above, when ε → 0, then the term e−iεω tends to 1. Hence,
we have:

H̃y,1(x) = 1
π

Re
∫
R+

e−ikω(x,y)

k − ν
dk (11)

(12)

Recalling equation (I.62) (without writing the limit), and coupling with equations (11), we
obtain:

H̃y,1(x)−Hy(x) = 1
π

Re
[∫

R+−iε

e−ikω

k − ν
dk −

∫
l−ε

e−ikω

k − ν
dk
]

(13)

Using the Cauchy’s integral theorem (see the path of integration in figure A.1), we have:

H̃y,1(x)−Hy(x) = 1
π

Re
∫ −iε

0

e−ikω

k − ν
. (14)

When ε→ 0, ∫ −iε
0

e−ikω

k − ν
→ 0
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Figure A.1 – Path of integration for z 7→ e−izω

z − ν
in equation (13)

. Hence, in the limit ε→ 0, we have:

H̃y,1(x) = Hy(x). (15)

Moreover, from the finiteness of I when ε → 0, we obtain that Fy(x) → 0 as ε → 0.
Hence, H̃y,2(x) = c for any arbitrary constant is a solution for H̃y,2. The Green’s function we
calculate being defined up to a constant, by choosing c = 0, we have, in the limit ε→ 0:

H̃y(x) = Hy(x). (16)

In conclusion, integrating k 7→ e−ikω

k−ω on P−ε for ε→ 0 in equation (I.62) gives the same result
as considering an evanescent Rayleigh dissipation.

125



B Fourier transform of −(x−a)2+b2
((x−a)2+b2)2

Let us consider:
f(x) = −(x− a)2 + b2

((x− a)2 + b2)2 . (17)

The Fourier transform of f is given by the integral:

f̂(k) =
∫
R
f(x)e−ikx dx =

∫
R

−(x− a)2 + b2

((x− a)2 + b2)2 e
−ikx dx . (18)

First, we apply the change of variables x ∈ x+ a:

f̂(k) =
∫
R

−x2 + b2

(x2 + b2)2 e
−ik(x+a) dx,

= e−ika
∫
R

−x2 + b2

(x2 + b2)2 e
−ikx dx.

Let us denote:
g(x) = −x2 + b2

(x2 + b2)2 e
−ikx. (19)

We first notice that g, when seen as a complex-valued function, is holomorphic on C\{i |b| ,−i |b|}.
Moreover, the decay of g at infinity along the imaginary axis depends on the sign of k.

First let us consider k > 0. In this case, we have
∣∣∣e−ikx∣∣∣ ≤ 1 for Im(x) ≤ 0 Let us consider

a path P−R consisting in the boundary of the intersection of a disc of center −i |b| and radius
R and the negative imaginary half-plane, oriented clockwise (see figure A.2).

From the theorem of residues, we have:

∫
P−R

g(x) dx = −2πiRes(g,−i |b|) . (20)

On one hand we have:

∫
P−R

g(x) dx =
∫ R cosα

−R cosα
g(x) dx+

∫
A−R

g(x) dx, (21)

where A−R denotes the arc of the circle of center −i |b| and radius R, between the angles α
and −π − α, paramatrized by:

x = Re−iθ − i |b| for θ ∈ [−α, π + α] . (22)
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Figure A.2 – Path of integration P−R for g (clockwise orientation).

We also have:

g(x) = −R
2 + 2 |b|2

R4 e−ikx . (23)

So, it is clear that |g(x)| = O( 1
R2 ) on A−R. Hence, taking the limit R→∞,

∣∣∣∣∣
∫
A−R

g(x) dx
∣∣∣∣∣ ≤ c

R2

∣∣∣A−R∣∣∣
≤ c′

R
→ 0.

This leads to, since α→ 0 for R→∞:

lim
R→∞

∫
P−R

g(x) dx =
∫
R
g(x) dx . (24)

On the other hand, we have, since g has a double pole at −i |b|:

Res(g,−i |b|) = lim
z→−i|b|

d
dz [g(z)(z + i |b|)] . (25)

A simple, yet tedious calculation gives:

lim
z→−i|b|

d
dz [g(z)(z + i |b|)] = ik2e

−k|b| . (26)
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Hence, for k > 0, we have: ∫
R
g(x) , dx = πke−k|b|. (27)

For k < 0, we proceed in a similar manner, by integration on P+
R, which is the symmetric

of P−R with respect to the real axis. Again, using the theorem of residues, we have:

∫
P+
R

g(x) dx = 2πiRes(g, i |b|) . (28)

The same way as before, we have:

lim
R→∞

∫
P+
R

g(x) dx =
∫
R
g(x) dx . (29)

and
Res(g, i |b|) = ik2e

k|b|. (30)

Hence, for k < 0, we have: ∫
R
g(x) dx = −πkek|b| (31)

Gathering(27) and (31) leads to:

∫
R
g(x) dx = π |k| e−|k||b| . (32)

Finally, we have:
f̂(k) = π |k| e−|k||b| e−ika . (33)
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C Havelock’s solution for a circular cylinder

As we discuss in chapter I, we present the condition of the fluid flows through a submerged
body under a free surface condition with a uniform velocity that is called the Neumann-
Kelvin problem (NK problem). Let us recall this problem in equations (I.42):



∂2
11Φ + κ0 ∂2Φ = ε ∂1Φ , on S0 ,

∆Φ = 0 , in Ω+ ,

∂nΦ = −U∞n · e1 , on Γ ,

|∇Φ| → 0 , for |x| → ∞ ,

(34)

with κ0 = g/U2
∞.

Sir Thomas Havelock in [36] gave the analitical value of the solution for the two dimen-
sional problem (34) with Γ is a circular cylinder. He writes the wave reistance in the form of
infinite series of parameters.

Rw = 4π2κ2
0a

4f(κ0) f ∗(κ0)e−2κ0f , (35)

where f is the depth of the obstacle, a is the radius of obstacle, f(κ) is given by:

f(κ) = b0 + b1(κa) + b2

2! (κa)2 + b3

3! (κa)3 + · · · , (36)

and b0, b1, b2, · · · is obtained as the solution of the system:

(1 + q1γ
2)b0+ q2γ

3b1+ q3γ
4

2! b2+ q4γ
5

3! b3+ · · · = 1

q2γ
3

2! b0+
(

1 + q3γ
4

2!

)
b1+ q4γ

5

2!2! b2+ q5γ
6

2!3! b3+ · · · = 0

q3γ
4

3! b0+ q4γ
5

3! b1+
(

1 + q5γ
6

2!3!

)
b2+ q6γ

7

3!3! b3+ · · · = 0

· · · = 0,
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when we put

qn = rn − i s,

rn = n!
αn+1 + 2

(
(n− 1)!
αn

+ (n− 2)!
αn−1 + · · ·+ 1

α
− e−αli(eα)

)
,

s = 2πe−α,

α = 2κ0f,

γ = κ0a,

with li is the logaritmic integral.
The surface elevation is given also by Havelock in [36] for x far from the source:

η = Im(−4πκ0a
2f ∗(κ0)e−iκ0x−κ0f ), (37)

with f ∗(κ0) denotes a complex conjugate of f(κ0).
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Résumé

Dans cette thèse, nous calculons la forme d’un objet immergé d’aire donnée qui minimise la
résistance de vague. Le corps, considéré lisse avance à vitesse constante, sous la surface libre
d’un fluide qui est supposé parfait et incompressible. La résistance de vague est la trainée,
c’est-à-dire la composante horizontale de la force exercée par le fluide sur l’obstacle. Nous
utilisons les équations de Neumann-Kelvin 2D, qui s’obtiennent en linéarisant les équations
d’Euler irrotationnelles avec surface libre. Le problème de Neumann-Kelvin est formulé
comme une équation intégrale de frontière basée sur une solution fondamentale qui intègre
la condition linéarisée à la surface libre. Nous utilisons une méthode de descente de gra-
dient pour trouver un minimiseur local du problème de résistance de vague. Un gradient
par rapport à la forme est calculé par la méthode de variation de frontières. Nous utilisons
une approche level-set pour calculer la résistance de vague et gérer les déplacements de la
frontière de l’obstacle. Nous obtenons une grande variété de formes optimales selon la pro-
fondeur de l’objet et sa vitesse.

Mots clés : optimisation de forme, résistance de vague, problème de Neumann-Kelvin, équa-
tion intégrale de frontière, méthode level-set.

Abstract

In this thesis, we compute the shape of a fully immersed object with a given area which
minimises the wave resistance. The smooth body moves at a constant speed under the free
surface of a fluid which is assumed to be inviscid and incompressible. The wave resistance
is the drag, i.e. the horizontal component of the force exerted by the fluid on the obstacle. We
work with the 2D Neumann-Kelvin equations, which are obtained by linearising the irrota-
tional Euler equations with a free surface. The Neumann-Kelvin problem is formulated as a
boundary integral equation based on a fundamental solution which handles the linearised
free surface condition. We use a gradient descent method to find a local minimiser of the
wave resistance problem. A gradient with respect to the shape is calculated by a boundary
variation method. We use a level-set approach to calculate the wave-making resistance and
to deal with the displacements of the boundary of the obstacle. We obtain a great variety of
optimal shapes depending on the depth of the object and its velocity.

Keywords : shape optimisation, wave-making resistance, Neumann-Kelvin problem,
boundary integral equation, level-set method.
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