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Abstract

This thesis focuses on the study of image quality strategies in wireless communication

systems and the design of new quality evaluation metrics:

Firstly, based on statistical model in complex wavelet transform domain, a new reduced-

reference image quality metric has been proposed. The magnitude and the relative phase

information of the Dual-tree Complex Wavelet Transform coefficients is modelled by using

probability density function and the parameters of models served as the reduced-reference

features will be transmitted to the receiver. Then, the mapping relation between the reduced-

reference features and a objective score is constructed with a Generalized Regression Neural

Network approach.

Secondly, with the new metric, a new decoding strategy is proposed for a realistic

wireless transmission system, which can improve the quality of experience (QoE) while

ensuring the quality of service (QoS). For this, a new database including large physiological

vision tests has been constructed to collect the visual preference of people when they are

selecting the images with different decoding configurations, and a classifier based on support

vector machine or K-nearest neighboring is utilized to automatically select the decoding

configuration.

Finally, according to the specific property of distortions and people’s preference, an

improved metric has been proposed by combining global features with local features. It

is demonstrated that the improved metric performs well in optimization of the decoding

strategy.

The experimental results validate the effectiveness of the proposed image quality metrics

and the quality strategies.

Keywords: Image quality metric, Statistical feature, Dual-tree complex wavelet transform,

Kullback-Leibler divergence, Quality of experience, Decoding strategy, Machine learning,

Image transmission, Realistic wireless channel.





Résumé

Cette thèse porte sur l’étude des stratégies d’amélioration de la qualité d’image dans les

systèmes de communication sans fil et sur la conception de nouvelles métriques d’évaluation

de la qualité.

Tout d’abord, une nouvelle métrique de qualité d’image à référence réduite, basée sur

un modèle statistique dans le domaine des ondelettes complexes, a été proposée. Les

informations d’amplitude et de phase relative des coefficients issus de la transformée en

ondelettes complexes sont modélisés à l’aide de fonctions de densité de probabilité. Les

paramètres associés à ces fonctions constituent la référence réduite qui sera transmise au

récepteur. Ensuite, une approche basée sur les réseaux de neurones à régression généralisée

est exploitée pour construire la relation entre les caractéristiques de la référence réduite et le

score objectif.

Deuxièmement, avec la nouvelle métrique, une nouvelle stratégie de décodage est pro-

posée pour la transmission d’image sur un canal de transmission sans fil réaliste. Ainsi, la

qualité d’expérience (QoE) est améliorée tout en garantissant une bonne qualité de service

(QoS). Pour cela, une nouvelle base d’images a été construite et des tests d’évaluation subjec-

tive de la qualité de ces images ont été effectués pour collecter les préférences visuelles des

personnes lorsqu’elles sélectionnent les images avec différentes configurations de décodage.

Un classificateur basé sur les algorithmes SVM et des k plus proches voisins sont utilisés

pour la sélection automatique de la meilleure configuration de décodage.

Enfin, une amélioration de la métrique a été proposée permettant de mieux prendre en

compte les spécificités de la distorsion et la préférence des utilisateurs,. Pour cela, nous

avons combiné les caractéristiques globales et locales de l’image conduisant ainsi à une

amélioration de la stratégie de décodage.

Les résultats expérimentaux valident l’efficacité des métriques de qualité d’image et des

stratégies de transmission d’images proposées.

Mots-clés: Métrique de qualité d’image, Caractéristique statistique, Transformation en

ondelettes complexes à deux arbres, Divergence de Kullback-Leibler, JPEG2000 Wireless,

Qualité de l’expérience, Stratégie de décodage, Apprentissage automatique, transmission

d’image, canal sans fil réaliste.
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Chapter 1

Introduction

1.1 Context and motivation

Over the last two decades, the rapid development of multimedia wireless communication

technology has greatly promoted the multimedia services and devices, for example, digital

cameras, tablet and mobile smart-phones as well as the growth of wireless network facilities.

On the other hand, the popularity of high-quality multimedia services and devices, in turn,

requires the multimedia wireless communication system with better Quality of Service

(QoS) and better Quality of Experience (QoE). However, the better QoS and the better QoE

conflict with the well-known constraints in wireless transmission such as multipath frequency

selective fading due to multipath transmission, Doppler effect because of the mobility of the

users, and limited bandwidth. These challenges bring the research boom of communication

technologies including kinds of methods to exploit the time, space and frequency domain

diversity to overcome the constraints. However, all these technologies only consider the

transmission parameters to improve the QoS of systems and do not involve the QoE of

terminal users. It is highly desirable to introduce image quality assessment in the wireless

communication system to improve the QoE of users.

Image quality assessment (IQA) has become one of important research fields of image

processing, thanks to the explosive growth of images and videos as well as relevant ap-

plications since the beginning of the 21st century. Objective IQA method is a method to

assess image degradations by computer algorithms in a way analogous with the Human

Visual System (HVS), automatically. The method generally quantifies image degradations by

comparing the visual-relevant features extracted from the reference image and the distorted

one. According to the availability of a reference image, objective IQA methods can be

classified into Full Reference IQA (FR-IQA), Reduced Reference IQA (RR-IQA) and No

Reference IQA (NR-IQA) methods. The FR-IQA method needs full access to the reference
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image to evaluate the image quality. It is difficult to apply the FR-IQA metric for image

quality evaluation in a wireless communication system, since it is impossible to access the

reference image at the receiver in most cases. The NR-IQA metric is a good candidate but

NR-IQA metrics are usually designed for specific applications and they are only available for

few particular distortions [53, 77]. Another good candidate method is RR-IQA metric, which

evaluates image quality with partial statistical information and usually has a higher accuracy

and a better robustness than the NR-IQA method. Most of RR-IQA metrics [53, 77, 108]

are based on the statistical model in the wavelet domain to summarize the image features.

However, with the development of wavelet theory, the more efficient tool, complex wavelet

transform, has been proposed and widely used in image processing. In this study, we assume

that the RR-IQA metric in the complex wavelet domain will have better performance than the

one in the classic wavelet domain. Thus, in this thesis, we focus on the RR-IQA metric and

design new RR-IQA metrics in the complex wavelet domain to evaluate the image quality.

To improve the QoE of users, the RR-IQA metric will be embedded in the realistic wire-

less communication system to detect the distortions. A database is necessary for validating

the effectiveness of the RR-IQA metric. However, most of the existing public databases do

not contain the distort ion occurring in the wireless communication system. Although the

representative databases LIVE 2 [91] and TID2013 [71] contain the distortions occurring

in wireless communication systems, they were generated under a simulation environment

rather than a realistic environment. Therefore, to verify the effectiveness of the RR-IQA

metric, a new database including the distortions which occur in wireless communication will

be constructed in this study.

In the wireless communication systems, classical transmission strategies guarantee the

QoS by adjusting relevant system parameters. However, these strategies do not take into

account the QoE of users. In this thesis, we propose a quality transmission strategy to

improve the QoE by using RR-IQA metrics.

1.2 Purpose of the thesis

Based on the theories of image quality assessment, wavelet transform, computer vision

and wireless communication, the RR-IQA metric and its application in a realistic wireless

communication channel for optimizing the users’ QoE are investigated in the thesis. The

main purpose of the thesis are as follows:

1. Design of RR-IQA metric in the wavelet domain. By utilizing the advantages of

multi-scale and multi-direction of the complex wavelet transform (CWT), the new

RR-IQA metric will be designed to detect the distortions occurring in JPEG 2000
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wireless transmission (JPWL-transmission). For this, the influences of the magnitude

and the phase feature on image quality will be analyzed. Moreover, to summarize the

image information, some statistical models for the distributions of the magnitude and

the phase will be compared. Based on the information criterion, a strategy is designed

to reduce the modelling error.

2. Database construction based on the distortions occurring in wireless communication

channels. A new database including JPWL-transmission distortions and a large physio-

logical visual test will be constructed. The effectiveness of different RR-IQA metrics

will be verified based on the new database. The new database will provide a benchmark

to judge whether the IQA metric can improve the QoE in wireless communication

systems or not.

3. Investigation of the characteristics of JPWL-transmission distortions. Based on the

new database, the characteristics of JPWL-transmission distortions will be studied

and the relevant factors causing the characteristics will be revealed. According to the

characteristics of the distortions, a new feature based on the local-standard-deviation

map will be designed to detect the distortions.

4. Optimization decoding strategy with RR-IQA metric. The proposed RR-IQA metrics

will be embedded in the wireless communication system to optimize the decoding

strategy by selecting a better-quality image to improve the QoE. The performance and

the transmission cost of the metric will be analyzed and discussed.

1.3 Thesis organization

The thesis is arranged as follows: Chapter 2 provides background and state-of-the-art includ-

ing image quality assessment, classic wavelet transform and complex wavelet transform, and

properties and models of wireless channel.

Chapter 3 proposes a new RR-IQA metric based on the statistical model in the complex

wavelet domain. The metric utilizes the magnitude and the relative phase information of a

complex wavelet transform to detect the image degradation. The parameters of the models

of magnitude and relative phase serve as the crucial features, and the influence of image

degradation on the features is detailed. The machine learning method for the objective score

regression is also introduced in this chapter. The experimental validation and the summary

are presented at the end of the chapter.

Chapter 4 is about the optimization of JPWL decoding in realistic wireless transmission.

The motivation and the global scheme to apply the new RR-IQA metric are introduced. Then,
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a new database is constructed to provide an evaluation benchmark for the decoding strategy

and the details of the database construction are presented. Another new RR-IQA metric is

proposed to handle the specific distortions that occur in JPWL transmission. At the end of

the chapter, the comparative experiments are conducted to verify the performance of the

decoding strategy with the new RR-IQA metric.

The conclusion and the perspective are presented in Chapter 5.



Chapter 2

Background and state-of-the-art

Image quality assessment is an important research direction in the fields of image processing

and computer vision. How to assess the image quality automatically, accurately and efficiently

by an objective algorithm has been the target of the researchers for years. In the subsequent

chapters, we will investigate the image quality assessment metric based on the statistical

features and apply it to the wireless communication system to improve quality of experience

in a consistent way with users. This chapter first introduces the theoretical and technical basis

of image quality assessment, and then introduces the basic knowledge and crucial technical

indicators of wireless communication systems. Due to the limited space of the thesis, we

only briefly introduce the knowledge that is closely related to subsequent chapters.

This chapter is organized as follows: Section 2.1 introduces the subjective and the

objective IQA methods and the validation way. The wavelet transform and its main features,

i.e., the foundation of statistical IQA methods, are described in Section 2.2. The wireless

channel properties, indicators and corresponding technologies are introduced in Section 2.3.

The chapter summary is presented in Section 2.4.

2.1 Image quality assessment

Thanks to the rapid development of computer, communication and network technologies,

Image Quality Assessment (IQA) has become an important issue in many applications such

as image acquisition system, storage medium, processing system or transmission equipment.

Therefore, to maintain and control the quality of the image, it is important for IQA to be able

to identify and quantify image quality degradation.

IQA methods can be divided into two categories: subjective evaluation methods by

observers and objective evaluation methods by computer algorithms. The two kind of

categories will be introduced in this section.
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the image. However, such a method is not only time-consuming and labor-intensive but

also unable to be incorporated into the automatic image system. Therefore, it is desirable to

design objective quality evaluation methods to assess the quality of images automatically.

The subjective IQA methods currently are utilized to build the test database for studying the

performance of the objective IQA methods.

2.1.2 Objective IQA methods and the state-of-the-art

2.1.2.1 Categories of objective IQA methods

Objective IQA methods usually assess the image degradation by the computer algorithm,

automatically. Generally, the method quantifies the image degradation by comparing the

visual-relevant features extracted from the reference image and the distorted one. According

to the availability of a reference image, objective IQA methods can be classified into three

subcategories: (1) Full Reference IQA (FR-IQA) methods [14, 30, 89, 111, 116], in which

full information of the reference image should be available to evaluate the quality of distorted

images, (2) Reduced Reference IQA (RR-IQA) methods [53, 54, 101, 108, 112, 118], in

which only partial statistical information is required, and (3) No Reference IQA (NR-IQA)

methods [52, 63, 64, 80], by which one can evaluate the image quality without the reference

image.

In general, the FR-IQA has the best accuracy since it uses more information of the

reference image than the other two. However, its application is limited to the occasion where

a reference image can be obtained. RR/NR IQA has drawn more attention of researchers

due to the often-impractical requirement of providing the full reference image by FR-IQA,

particularly in communication applications [118]. We are quite interested in RR-IQA since

we believe that with further research, RR-IQA may approach the state-of-the-art FR-IQA in

view of the accuracy of image quality evaluation, particularly considering that the Human

Visual System (HVS) has visual redundancy and is more sensitive to the macroscopic features

of the image.

The RR-IQA methods are the practical and convenient tool for quality evaluation in

real-time visual communication over wired or wireless networks. They achieve high accuracy

with less information by extracting some reliable statistical features from the reference image

as a basis for quality assessment. A framework for the deployment of RR-IQA in real-time

visual communications is shown in Fig. 2.3. The system includes a feature extraction process

at the transmitter side, and a feature extraction and analysis process at the receiver side. The

extracted reduced-reference (RR) features have a much lower data rate than the image data

and are typically transmitted to the receiver by an auxiliary and robust channel. Therefore,
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contrast and structure in the fixed scale of space but did not consider the influence of the

distortions in different scales of space.

In the last three decades, scientists have found that neurons in the primary visual cortex are

well-modeled localized multiscale bandpass oriented filters (loosely referred to as “wavelets”)

that decompose images into multiple visual channels [15, 23, 24, 82]. This provides a

theoretical basis for the applications of multi-scale and multi-channel analysis in image

quality assessment. The second category of methods is based on a prior statistical model

in transform domains. The model parameters summarize the image information in an

efficient way and this leads to RR-IQA algorithms with low RR data rate. These methods are

considered more potential to be extended for general-purpose applications since the statistical

and perceptual features being employed are not restricted to any specific distortion process

[77]. In [108, 112], Wang et al. proposed a Wavelet-Based RR Method (WBRRM) utilizing

a two-parameter General Gaussian Distribution (GGD) to summarize the image information,

and the parameters served as RR features with a quite low data rate (around 0.05% of the

reference image). This RR-IQA method has a good performance in evaluating single type

of distortions but is of low accuracy and poor robustness in detecting mixed distortions.

Inspired by [108], Ma et al. proposed a DCT domain method using city-block distance

to measure the difference of the coefficients [57]. The algorithm reorganizes the DCT

coefficients of an image in an analogous way of wavelet image representation [115, 119], that

is to say, there are structural similarities between the sub-bands and the magnitude decays

towards the high-frequency sub-bands [57]. This confirms the effectiveness of the multi-

resolution of wavelet image representation. Further, Li et al. [53] proposed an improved

method for WBRRM, based on a nonlinear Divisive Normalization Transform (DNT) but

the improvement is limited (compared with the state-of-the-art FR-IQA). Moreover, the

computational complexity increases significantly, due to the use of DNT.

With the development and deepening of wavelet transform research, complex wavelet

transform has been proposed and proved to have advantages in many applications of image

processing, such as image coding [84], denoising [106], motion estimation [59], quality

measures [109], and image retrieval [105]. Several RR-IQA methods based on complex

wavelet transform have been proposed and these methods have higher accuracy and better

robustness compared with the DWT-based methods. In [54], Lin et al. presented an RR-IQA

method based on the Average Direction Information (ADI) in complex wavelet domain and

the method has been proved to outperform the DWT-based method WBRRM. The ADI is the

mean of the magnitude of the inter-coefficient product which is a decimated pyramid of the

wavelet coefficients [9]. Therefore, this RR-IQA method only uses the partial information

of the coefficients’ phase. Another RR-IQA metric based on the combination of relative
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phase (phase difference of adjacent point) and ADI has been proposed [55]. The method

makes full use of the phase information of complex wavelet transform and has been proved

to have better performance than most other RR-IQA methods. However, another important

information, e.g., the magnitude information has not been used. We assume that the method

combining magnitude information with phase information will have better performance than

the method only with phase information.

The third type of methods integrates features from spatial and transform domains and

usually has high accuracy in image quality estimation because of the combination of multiple

features. In [77], Rehman et al. proposed the RR-SSIM method based on the successful FR-

IQA method SSIM [111]. According to fast wavelet-based image sharpness map and local

standard deviation map, Zhang et al. [118] investigated the S4RR based on the FR method.

These RR methods have a high accuracy but with a high RR data rate (for example 4.88%

of the reference image for S4RR) which will lead to inconvenience for the communication

system.

Thus, the previous approaches are often subject to two restrictions: either the distortions

they can detect are few, or the accuracy is limited due to a small number of RR features. In this

study, we focus on the method based on the features of complex wavelet transform domain

to seek an RR-IQA method which can (1) detect various distortions, (2) be competitive with

state-of-the-art FR-IQA methods, and (3) summarize the image information with a low data

rate and a low computational complexity.

2.1.3 Evaluation of IQA method

2.1.3.1 Evaluation criteria

As more and more IQA algorithms have been proposed in last two decades, evaluation on

the pros and cons of these algorithms naturally becomes an important issue. To validate the

objective and the subjective methods of IQA and standardize the objective evaluation method,

in 1997, the Video Quality Expert Group (VQEG) was established in Turin, Italy, consisting

of a group of experts drawn from ITU-T and ITU-R Study Groups [78]. It mainly devotes

to advance the field of video/image quality assessment by evaluating new subjective and

objective methods for quality assessment, and recommends standard methods to the related

standardization organization.

For subjective IQA methods, to obtain accurate and reliable MOS/DMOS, a large psycho-

visual tests and a proper experimental methodology are necessary. Thus, the experimental

methodology and the number of participated subjects and reference images determine the

reliability of the database. The existing database like LIVE release 1/2 and TID2008/2013









2.1 Image quality assessment 15

The SSIM metric measures the image quality with the difference in luminance, contrast

and structural similarity. Given reference image x and its corresponding distortion image y,

the SSIM index is defined as

SSIM(x,y) = l(x,y) · c(x,y) · s(x,y)

=
2µxµy

µ2
x +µ2

y

· σxσy

σ2
x +σ2

y

· σxy

σxσy

=
(2µxµy +C1)(σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
,

(2.6)

where l(x,y), c(x,y) and s(x,y) denote the luminance, contrast and structural comparisons,

respectively, µ∗ represents the mean value, σ∗ denotes the variance, σxy is the covariance

between images x and y, and C1 and C2 are two constants to avoid the denominator equal

to 0. The range of the SSIM index is 0~1, the value 1 denotes that the image has a perfect

quality, and the smaller the value, the worse the image quality.

2.1.3.3 Subjective IQA database

To verify the performance of objective IQA metrics, many subjective IQA databases have

been established. In this thesis, we mainly introduce five extensively used IQA databases

including LIVE 2 [90], CSIQ [50], TID2008 [72], TID2013 [71] and Toyama [100].

The LIVE 2 database comprises 29 reference images and 779 distortion images. The types

of distortions are: white noise, Gaussian blur, JPEG compression, JPEG 2000 compression

and bit errors in JPEG 2000 bit stream (fast fading channel model). The database utilizes

DMOS to evaluate the image quality and the range is scaled to 0~100.

The CSIQ database consists of 30 reference images and 866 distortion images. The

database includes six distortions: additive white noise, additive pink Gaussian noise, JPEG

compression, JPEG2000 compression, Gaussian blur and global contrast decrements. The

subjective score is in the form of DMOS and the range is scaled to 0~1.

The TID2008 database contains 25 reference images and 1700 distortion images. The

distortion images generated from the reference images with 17 types of distortions at four

distortion levels. One can refer to [72] for the specific distortion types. The database utilizes

MOS to assess the image quality and the range is scaled to 0~8.

The TID2013 database is the updated version of TID2008, including 25 reference images

and 3000 distortion images. The distortion types are increased to 24 and each type has five

distorted levels. The database also adopts MOS to estimate the image quality and the range

is scaled to 0~8.
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The Toyama database comprises 14 reference images and 196 distortion images. The

database has two types of distortions: JPEG compression and JPEG2000 compression. The

quality ratings of images are quantified with MOS (range 1~5).

To form a comparison, Table 2.1 intuitively shows the main information of the five

databases. We will evaluate the new proposed RR-IQA metric based on these databases in

Chapter 3. However, they are not suitable for the classification problem in Chapter 4. The

reasons are two-fold: 1) all these databases are about the prediction of subjective scores and

this is a regression problem rather than a classification problem, 2) all the distortion images

of these databases are obtained in a simulated environment, not in a realistic environment.

Thus, it is necessary to construct a new database to provide a classification benchmark for

decoding strategy optimization.

Table 2.1 Information of five extensively used image databases

Database
Reference

images

Distortion

images

Distortion

types

Distortion

levels

Subjective evaluation

Score type Scale

LIVE 2 29 779 5 5-9 DMOS 0~100

CSIQ 30 866 6 4-5 DMOS 0~1

TID2008 25 1700 17 4 MOS 0~8

TID2013 25 3000 24 5 MOS 0~8

Toyama 14 196 2 6 MOS 1~5

2.2 Wavelet transform

2.2.1 Discrete Wavelet Transform

Since its emergence 30 years ago, the wavelet transform has been extremely successful in a

variety of signal processing applications, in the process, often redefining the state-of-the-art

performance. [104, 85, 96]. The Discrete Wavelet Transform (DWT) replaces the infinitely

oscillating sinusoidal-basis functions of the Fourier transform with a set of locally oscillating

basis functions called wavelets [85]. In the classical setting, the wavelet is a stretched and

shifted version of a basic real-valued bandpass wavelet ψ(t) [85]. When carefully selected

and combined with shifts of a real-valued low-pass scaling function φ(t), they form an

orthonormal basis expansion for one-dimensional (1-D) real-valued continuous-time signals

[26, 85]. Thus, given a finite-energy analog signal x(t), it can be represented by wavelets and
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scaling functions as

x(t) =
∞

∑
m=−∞

s(m)φ(t −m)+
∞

∑
j=0

∞

∑
m=−∞

w( j,m)2 j/2ψ(2 jt −m). (2.7)

The wavelet coefficients, w( j,m), and scaling coefficients, s(m), can be computed by the

inner products

w( j,m) = 2 j/2
∫ ∞

−∞
x(t)ψ(2 jt −m)dt, (2.8)

s(m) =
∫ ∞

−∞
x(t)φ(t −m)dt, (2.9)

where j is the scale factor and m is the translation. The DWT provides a time-frequency

analysis with wavelet coefficients and scaling coefficients. With well-designed filter banks,

the coefficients w( j,m) and s(m) will be efficiently computed with recursive filtering and

downsampling operations. For the 2D analysis, the decomposition of two dimensions will

form an approximation sub-band and three other sub-bands that are respectively horizontal,

vertical and diagonal sub-bands. In the last three decades, scientists have found that neurons

in the primary visual cortex are well-modeled localized multiscale bandpass oriented filters

(loosely referred to as “wavelets”) that decompose images into multiple visual channels

[15, 23, 24, 82]. With the localized multiscale bandpass oriented filter banks, the discrete

wavelet transform has very great advantages in signal and image processing.

However, the DWT suffers two main drawbacks: Lack of shift invariance and poor

direction selectivity [47]. This leads to the constraint within some applications. To overcome

the drawbacks of DWT, the Dual-Tree Complex Wavelet Transform has been proposed

[46], with advantages in approximate shift invariance, good direction selectivity, limited

redundancy and perfect reconstruction [47]. It was widely used in many applications such as

denoising, coding and quality assessment. This section mainly introduces the structure and

properties of the DT-CWT.

2.2.2 Dual-Tree Complex Wavelet Transform

The DT-CWT proposed by Kingsbury [46, 47] is an enhancement of the DWT. Its filters

employed in the two trees are designed in such a way that the aliasing in one branch in the

first tree is approximately cancelled by the corresponding branch in the second tree [105].

In [47], Kingsbury focused on designing of a dual-tree filter bank (FB) making filters in

tree a satisfying the half-sample phase delay condition with respect to filters in tree b, as

shown in Fig. 2.7, where filters h(n) and g(n) have the approximate Hilbert transform relation

(90◦ out of phase from each other). The Hilbert transform defined in the time domain is a
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convolution between the Hilbert transformer 1/(πt) and a function f (t). Given f̂ (t) as the

Hilbert transform of f (t), it is defined as

f̂ (t) =
1

πt
∗ f (t) =

1

π

∫ ∞

−∞

f (τ)

t − τ
dτ, (2.10)

where ∗ denotes the convolution and the integral is Cauchy principal value (ignoring the

singularity at τ = t and τ =± ∞).

The Hilbert transform will lead to the complex wavelet transform having the same

advantages of Fourier transform such as no oscillating, shift invariance and non-aliasing. The

scaling function and the wavelet described in Eq. (2.7)-(2.9) can be represented as

ψc(t) = ψr(t)+ jψi(t), (2.11)

φc(t) = φr(t)+ jφi(t), (2.12)

where j=
√
−1, ψr(t) and φr(t) are the real components, and ψi(t) and φi(t) are the imaginary

components. Moreover, ψr(t) and ψi(t), φr(t) and φi(t), respectively, are Hilbert transform

pairs, while ψc(t) and φc(t) are analytic signals and supported on positive of the frequency

axis [85]. The analytic signal at different scales could be a good strategy to model the

degradation in consistent with the HVS since scientists have found that neurons in the primary

visual cortex are well-modeled localized multiscale bandpass oriented filters [15, 23, 24, 82].

Then the complex wavelet coefficients can be computed by

wc( j,m) = wr( j,m)+ jwi( j,m). (2.13)

Thus, the magnitude and the phase are respectively

|wc( j,m)|=
√
[wr( j,m)]2 +[wi( j,m)]2, (2.14)

∠wc( j,m) = arctan
wi( j,m)

wr( j,m)
, (2.15)

when wr( j,m)> 0.

With the structure of the dual-tree FB, the DT-CWT has advantages of less aliasing for

sub-band, better shift invariance and better direction selectivity than the DWT. Directional

selectivity is achieved in the 2-D case by combining the outputs of the FB in such a way that

the equivalent complex filters have supports in only one quadrant of the frequency plane [46].
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Considering the support of the Fourier spectrum and the effect of Hilbert transform, we

can judge that this wavelet is orientated at −45◦.

The other directional wavelets have the similar expressions, therefore six real wavelets

can be formulated as [85]

ψi(x,y) =
1√
2
(ψ1,i(x,y)−ψ2,i(x,y)), (2.17)

ψi+3(x,y) =
1√
2
(ψ1,i(x,y)+ψ2,i(x,y)), (2.18)

for i = 1,2,3, where the two separable 2-D wavelet bases are defined in a usual manner [85]:

ψ1,1(x,y) = φh(x)ψh(y), ψ2,1(x,y) = φg(x)ψg(y), (2.19)

ψ1,2(x,y) = ψh(x)φh(y), ψ2,2(x,y) = ψg(x)φg(y), (2.20)

ψ1,3(x,y) = ψh(x)ψh(y), ψ2,3(x,y) = ψg(x)ψg(y). (2.21)

The normalization operator 1/
√

2 is employed to constitute an orthonormal operation for

sum and difference. The imaginary wavelet can be obtained in the same way. Thus, with the

real and imaginary wavelets, we can get complex wavelets of DT-CWT as well as magnitude

and phase information of each wavelet.

With six 2-D analytic wavelet sub-bands, for one scale, the DT-CWT has six pairwise

magnitude and phase information as features. They are widely applied in signal and image

processing, such as image denoising, compression, segmentation, texture retrieval and

quality evaluation. For 2-D image processing, magnitude information indicates the extent

of discontinuities, while phase information provides the locations of features [105]. The

combination of magnitude and phase in complex wavelet domain can represent the image

features better than the single magnitude in discrete wavelet domain. Thus, in this thesis, we

will use features both from magnitude and phase of DT-CWT to evaluate image quality.

2.2.2.1 Magnitude

The magnitude of DT-CWT wavelet is a crucial feature of the wavelet. The magnitude

information indicates the discontinuities and the mutability of the signal. As shown in Fig.

2.9 (a), the edges and textures of the image with the discontinuities and mutability can be

seen obviously.

For classic DWT, the real wavelet exhibits a certain statistical law that the marginal

distribution of the coefficients in individual wavelet sub-bands satisfies a generalized Gaussian
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rigid translation of image structures leads to a consistent phase shift [82]. Fig. 2.10. illustrates

the phase of DT-CWT coefficients can provide valuable information of image structure, for

example, the edge or the ridge information. However, it is difficult to obtain the statistical

property of phase directly since the Probability Density Function (PDF) of phase in some

decomposition scales is unregular [74]. The phase histogram tends to be unregular when

the decomposition scale larger than two, as illustrated in Fig. 2.10 (c). To make full use of

the features of phase, An [105] advised to extract the statistical property from relative phase

instead of from phase directly.

Definition 1 The relative phase is a phase difference of two adjacent complex wavelet

coefficients. For a spatial location (i, j) within a particular complex sub-band, the relative

phase is expressed as [105]

θ(i, j) = ∠y(i, j)−∠y(i, j+1) or θ(i, j) = ∠y(i, j)−∠y(i+1, j), (2.22)

where ∠y(i, j) is a phase value at position (i, j).

Property 1 The featured orientation α of an edge in the supported region of a sub-band

is linearly proportional to the relative phase of two adjacent complex wavelet coefficients,

which are located in the vicinity of the edge as [105]

α(i, j)≈ a+bθ(i, j), (2.23)

where a and b are constant and can be estimated for each sub-band.

With this property, the relative phase can represent the orientation feature very well.

An [105] applied the relative phase in texture retrieval and segmentation. Since some

degradations disturb the structure of the image information or the orientation of the details,

the relative phase can measure these degradations. In this thesis, the relative phase as a

feature is employed to evaluate image quality.
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2.3 Wireless channel

Over the last decades, with the development of communication and information technologies,

mobile communication and applications have become more important and popular. The

users’ demand on high-quality and high-definition image or video constantly increases

with the development of mobile applications. However, it conflicts with the well-known

constraints in wireless transmission such as multipath frequency selective fading due to

multipath transmission, Doppler effect because of the mobility of the users, and limited

bandwidth. In this section, we will introduce the properties of the wireless channel and the

corresponding technologies used to improve the transmission efficiency.

2.3.1 Channel properties

The major property of the wireless channel is that the channel strength varies with time and

frequency. The variation can be divided into three classes:

1. Path loss, also known as attenuation, referring to the loss caused by the propagation of

electromagnetic waves in space.

2. Large-scale fading, caused by shadows of large objects such as buildings and hills.

3. Small-scale fading, mainly produced by multipath propagation. The multipath propa-

gation is a mixed propagation of different paths such as direct, reflection, diffraction

and dispersion paths, as shown in Fig. 2.11.

The large-scale fadings and the small-fadings can be treated with the strategies such as

communication link design and cell-site planning. The fast fadings consist of time, frequency,

and space selective fadings. These fadings may form inter-symbol interference and lead to

degradation of communication system performance. How to overcome these fadings and

design a reliable and effective communication system has become an important research

focus of communication community.

Another important property of the wireless channel is the mobility of the terminal users,

which leads to the change in the frequency or wavelength of the electromagnetic wave relative

to the mobile users, namely the Doppler effect. The Doppler effect and fast fading effect

cause the time-varying characteristics of wireless channels. In transmission, the existence of

time-varying characteristics means time delay for the received signal in different paths, and

this may cause one waveform symbol to extend to another waveform symbol, resulting in an

Inter-Symbol Interference (ISI).
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outcomes by allowing random variation in one or more inputs over time. Generally, a

stochastic model utilizes one or more variables to estimate the potential responses of the

radio channel. It is usually suitable to model all fadings like the small-scale and large-scale

fadings. In the wireless local area networks, the small-scale fadings of the Non-Line-Of-Sight

(NLOS) and Line-Of-Sight (LOS) transmission have been demonstrated to follow Rayleigh

distribution and Rice distribution, respectively [93]. While the large-scale fading follows

log-normal distributions [10, 114].

2.3.2.1 Rayleigh fading model

For the NLOS transmission path, the Rayleigh fading model has generally been exploited to

model multipath fading. For the NLOS case, given a received signal amplitude µl , it satisfies

the Rayleigh distribution at any time [22]:

Pl(µl) =
µl

σ2
l

exp

(
− µl

2σ2
l

)
, 0 ≤ µl < ∞, (2.24)

where σl is the scale parameter.

The Rayleigh distribution is usually employed to simulate the degradation of a signal

within transmission channels, for example, in LIVE 2 database, the JPEG2000 transmission

error distortion is simulated by a Rayleigh distribution.

2.3.2.2 Rice fading model

For the direct LOS transmission path, the envelope of the channel complies with the Rice

fading model:

Pc(µc) =
µc

σ2
c

exp

(
−µ2

c +ρ2

2σ2
c

)
I0

(
µcρ

σ2
c

)
, 0 ≤ µl < ∞, (2.25)

where µc is the magnitude of envelope, σc is the scale parameter, ρ is the maximal value of

the main component (LOS component) of signal, and I0(·) is the Bessel function of the first

kind.

The Rice factor is defined as K = ρ2/(2σ2), i.e., the ratio of power of the LOS component

to the variance of all NLOS components. If ρ → 0 and K → 0, the Rice distribution gradually

approaches the Rayleigh distribution. Thus, the Rayleigh distribution can be regarded as the

Rice distribution without LOS component.
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2.3.2.3 Nakagami-m fading model

The Nakagami-m fading model is defined as [117]

Pn(µn) =
mmµ2m−1

n

Ωm
n Γ(m)

exp

(
−mµ2

n

Ωn

)
, 0 ≤ µn < ∞, (2.26)

where µn is the magnitude of the received signal, Ωn = µ2
n is the average power of fading, µn

is the scale parameter of Nakagami-m fading, and Γ(·) is the Gamma function. The parameter

m ∈ [1/2,∞) represents the extent of the fading. A smaller m indicates a severer fading

and vice versa. The Nakagami-m distribution will reduce to the Rayleigh and the one-side

Gaussian distributions when m respectively is 1 and 2. If m → ∞, the Nakagami-m fading

channel approximates a nonfading addative Gaussian noise channel[70, 114]. If m > 1, the

distribution can be mapped to a Rice distribution with their parmaters:

m =
(1+K)2

1+2K
, 0 ≤ K ≤ ∞, (2.27)

where K is the Rice factor. Therefore, the Nakagami-m distribution can be employed to

model an extensive range of multipath fading.

2.3.2.4 Log-normal fading model

It has been revealed the large-scale fading can be approximated by the Log-normal fading

model [88, 70]. Considering the mean power of the received signal is measured in dBW

νd = 10logE(µ2), the distribution can be defined as

Pνd
(νd) =

1√
2πσνd

exp

[
−(νd −µνd

)2

2σ2
νd

]
, (2.28)

where µνd
is the mean of νd and σνd

is the standard deviation, correspondingly. νd can be

derived from the mean path loss.

With the channel model, we can know the degradation condition of the transmitted signal.

There are also some technologies to improve the transmission efficiency and cope with the

degradation.

2.3.3 Deterministic models

The deterministic models simulate the physical propagation process such as reflection,

diffraction and refraction. They are usually employed to generate both the wideband and the
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2.3.4 Adaptive strategies to guarantee QoS

Over the last two decades, the rapid development of multimedia devices such as digital

cameras, computers and mobile smart-phones as well as the growth of networking facilities

has enabled a wide application of image and video communication. In turn, the popularity

of high-resolution multimedia devices are demanding higher-resolution images and better

QoS. However, it conflicts with the well-known constraints in wireless transmission system

introduced before. This brings the research boom of communication technologies including

kinds of methods to exploit the diversity in time, space and frequency domains.

The diversity in time domain can be exploited to conduct the redundant coding, for

example, Error-Correcting Code (ECC). ECC efficacy has been verified for a long duration

[58] and is involved in numerous telecommunication standards. The Orthogonal Frequency

Division Multiplexing (OFDM) modulation employs frequency diversity to overcome the

multipath phenomenon [48, 113]. Based on the multiple antennas at both transmitter and

receiver, the Multiple-Input-Multiple-Output (MIMO) technology efficiently exploits the

spatial diversity [2, 3, 80]. The combination of MIMO with OFDM (MIMO-OFDM) has

been demonstrated to improve the robustness greatly [97]. The MIMO-OFDM has been

adopted in serval telecommunication standards such as Wi-MAX IEEE802.11e [40], Wifi

IEEE802.11n [39] and Long-Term Evolution (LTE) [86].

For the image transmission in wireless channels, the key point is to ensure the QoS while

improving the QoE. To ensure the image quality service, the international standards of image

compression and transmission, e.g., JPEG 2000 [43] and JPWL [42] have specified, in an

extensible way, a set of methods and syntaxes for error protection and signaling such as

unequal error protection, forward error correction code, data partitioning and interleaving

[32].

Recently, to adjust the system parameters adaptively, the quality optimization strategies of

transmission systems have become sophisticated. An efficient way is to exploite the hierarchy

of image compression to protect more important data from distortion. As recommended by

the JPWL standard, the Unequal Error Protection (UEP) scheme was promptly applied in

wireless communication systems [4, 60] and experimental results demonstrated that these

schemes have a good improvement in QoS, compared with the equal error protection.

In a similar way, the Unequal Power Allocation (UPA) scheme has been proposed

[11], which divided the JPEG 2000 codestream into hierarchical packages transmitted with

different rates and powers. In contrast with the equal power allocation scheme, the scheme

obtained about 4 dB PSNR gain at low SNR of Rayleigh and an additive Gaussian white noise

fading channel. The advantages of MIMO technology and OFDM modulation technology

can be well used in UPA scheme. Sarbi proposed a UPA scheme for JPEG transmission over
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MIMO system [81], in which the images are classified into different-importance codestreams.

The codestreams are simultaneously transmitted by different antennas of different powers

with spatial multiplexing. The main idea is to reduce the distortions of more important data

at the cost of more distortions for less important data, thus reducing the overall distortions

[81]. The scheme has a PSNR gain of 14 dB under low SNR condition, as contrasted with

the equal power allocation scheme.

The Closed Loop (CL) MIMO system, based on Channel State Information (CSI),

provides a possibility for adaptive parameter adjustment. A series of CL-MIMO-OFDM

schemes with precoder designs have been proposed for the JPWL transmission over a realistic

MIMO channel [2, 3]. These adaptive schemes, by considering channel condition, adjust

the precoding coefficients and other parameters such as channel SNR, power allocation and

channel coding, leading to an improvement of robustness and QoS. However, these schemes

only take into account the specific system parameters to optimize transmission and improve

QoS, but does not incorporate the QoE of the users. QoE based on the perception of the HVS

can indicate the image quality more accurately than QoS. Thus, we propose to apply the

RR-IQA quality metric to improve the QoE for JPWL transmission. In Chapter 3, we will

propose an RR-IQA image quality metric and then apply it to improve the QoE of a wireless

transmission system, in Chapter 4.

2.4 Chapter summary

In this chapter, we first summarise the advantages and disadvantages of subjective and

objective IQA, and the validation methods. It is explained why we are interested in the

RR-IQA method. Then, we describe the wavelet transform and the extension to complex

wavelet transform, which is the foundation of statistical the RR-IQA methods. Finally,

we introduce the properties, indicators and relevant technologies of the wireless channel,

preparing a basis for the application of RR-IQA in wireless communication systems. The

relevant content introduced in this chapter provides theoretical support for the subsequent

chapters and also paves the way for the content-extension of the thesis.





Chapter 3

Proposed metric for image quality

assessment

As introduced in Chapter 2, we focus on designing a statistical feature-based RR-IQA metric

in the complex wavelet domain to evaluate the image quality. The RR-IQA method makes a

good trade-off between the amount of reference information and the prediction accuracy, in

comparison with FR-IQA and NR-IQA methods. The combination of magnitude and phase

features in the complex wavelet domain is suitable to detect multiple distortions frequently

encountered in communication systems. Thus, in this chapter, we propose a new RR-IQA

metric based on the statistical model in the dual-tree complex wavelet transform domain.

3.1 Motivation

Over the last few decades, the DWT has been used as one of the important decomposition

tools in signal and image processing. However, in recent years, it has been demonstrated

that the Complex Wavelet Transform (CWT) has a better performance than DWT, especially

in image processing [47, 85, 105]. In this section, we dedicate to devising an RR metric

based on statistical models in the CWT domain. The main advantages of CWT over DWT

are its shift invariant property and good directional selectivity [85]. The CWT is suitable for

many applications, such as image coding [84], image denoising [106], motion estimation

[59], quality measures [109], and image retrieval [105]. Some approaches to deploying CWT

have been proposed in the literature, for example Dual-Tree Complex Wavelet Transform

(DT-CWT) [46, 47], Pyramidal dual-tree directional filter banks [68], and uniform discrete

curvelet transform [67]. We choose the DT-CWT as a decomposition tool, which is a very

efficient numerical algorithm. Hereafter, we briefly introduce the DT-CWT.
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Although several RR-IQA methods based on DT-CWT have been proposed, these meth-

ods only used partial information, for example, the relative phase information or average

directional information i.e., mean magnitude of the inter-coefficient product. The comprehen-

sive method based on the fusion of the magnitude and the phase information of the DT-CWT

coefficients has not been proposed yet. It is mainly because the uniform distribution of phase

prevent us from extracting valuable features, and the magnitude distribution is difficult to

model with a low error. In [105] , it is indicated that the relative phase can be modelled and

applied to texture image segmentation and retrieval. The relative phase is a phase difference

with a clearer statistical characteristic than the phase itself. Inspired by [105], two RR-IQA

methods based on the relative phase [55] and the average directional information [54], re-

spectively, were proposed. However, another important information, the magnitude of the

DT-CWT was not considered in these methods. In our method, the magnitude of complex

wavelet coefficients will be used as a complement to the relative phase. Our conjecture

is because the magnitude is sensitive to some distortions (like white noise, Gaussian blur

and JPEG compression distortion) while the relative phase is sensitive to other distortions,

such as fast-fading distortion and JPEG 2000 compression distortion. Moreover, to reduce

the modelling error, we adopt the Information criterion (IC) to obtain a better model of the

information. The IC is used to build histogram to select the best PDF.

Therefore, the main contribution of the thesis is the propositions of an RR-IQA metric

based on the magnitude and the relative phase of DT-CWT coefficients, and the IC permits

one to propose a strategy to estimate the Kullback-Leibler Divergence (KLD). For this,

we first analyze how the magnitude and the relative phase information change with image

degradations. Secondly, we design a strategy based on the IC to optimally approximate the

distribution of the information. The strategy helps to reduce the modelling error and also

can be used in other RR-IQA metrics based on statistical models. Thirdly, we compare the

candidate models and select the appropriate models for the magnitude and the relative phase.

The models also can be applied to other image applications including texture segmentation,

image retrieval, and pattern recognition.

3.2 Framework of the RR-IQA metric FMRP

The new RR-IQA method is based on the statistical model in the complex wavelet domain.

We name it as Feature of Magnitude and Relative Phase (FMRP) since it extracts features

from both the magnitude and the relative phase of the complex wavelet coefficients.

As illustrated in Fig. 3.1, the reference image I is first decomposed by the DT-CWT.

Secondly, the magnitude and the relative phase for each scale are modelled, and the IC is
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Fig. 3.1 Framework of the proposed RR-IQA method for a wireless system.

employed to reduce the error between the model and the distribution. The parameters of the

PDF of the distribution serve as the crucial feature, i.e., RR feature X . Next, the image I and

the RR features X will be transmitted to the receiver via a wireless transmission channel and

an auxiliary channel, respectively. Generally, the transmission channel introduces distortions

and the auxiliary channel is assumed to be distortion-free (for this, we can use error-correcting

code and low order modulation). At the receiver, the feature Y is extracted from the received

image Î with the same processing as used in the reference image. Finally, the features X and

Y are compared to quantify the distortion and a Generalized Regression Neural Network

(GRNN) is utilized to map the difference of two RR features into the objective score.

In the next sections, we will demonstrate how the magnitude and the relative phase allow

one to detect image degradation, introduce the IC to build the optimal histogram of the

DT-CWT coefficients, and detail each process of the FMRP metric. Moreover, we will give

some examples to demonstrate some phenomena and processes. All the test images, as shown

in Fig. 3.2, are from the LIVE database 2.
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P(x) and P̂(x)

d(P∥P̂) =
∫

P(x) log
P(x)

P̂(x)
dx (3.2)

The relation between KLD and log-likelihood function has been found and was used

to compare images in the applications of image classification, image retrieval and image

evaluation [27, 31, 112]. As described above, the KLD between the sub-band coefficients of

the distorted image and the reference one is computed as the basis of objective score.

The magnitudes and the relative phases are the extraction sources of RR features. The

way is to fit the PDFs with the parameterized models and the parameters serve as the RR

features. However, the magnitude has some near-zero values, after the filtering operation of

filter banks in DT-CWT. These near-zero coefficients are caused by the uniform area and may

lead to difficulty and error in modelling PDF (because the numerical estimation of the phase

value is inconsistent). It occurs frequently for natural scenery images. These images often

contain some scenes with the same pixel intensity such as the sky, grass and sea. As shown

in Fig. 3.3, a natural scene image in (a) has uniform areas such as sky and grass ((b) and

(c) are respectively their histograms of the magnitude and the relative phase of DT-CWT).

From the histograms, it can be seen an abrupt change located at the near-zero value of the

horizontal axis, which is caused by the uniform area (sky and grass) in the original image.

Considering that this abrupt change may lead to difficulty in modelling, we should remove

these near-zero values.

Therefore, a thresholding process is designed to eliminate these coefficients in magnitude

and relative phase. The purpose of the thresholding is to remove the near-zero coefficients

while keeping the image information as much as possible. Therefore, we studied the coeffi-

cients of all the images in the LIVE database 2 and found that the threshold increases with

the decomposition scales. For example, for the 1-scale, 2-scale and 3-scale decompositions,

the thresholds are respectively around 10−6, 10−4 and 10−2 since the DC gain factor of low

filter bank is larger than one. The process to determine the threshold is as follows:

1. Dividing the images into two groups: images with and without uniform areas.

2. Performing the DT-CWT and sorting all the elements of the coefficients.

3. After sorting, the near-zero coefficients will cluster together and it is easy to determine

the threshold.

For the uniform areas, the relative phase values of the DT-CWT coefficients are equal to

zeros. Thus, it is easy to select zero as the threshold of the relative phase. We just need to

remove the zeros.
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the parameterized model and the real distribution, the information criteria (IC) is exploited to

obtain the optimal histogram and then some candidate models are compared. The parameters

of the selected models will be regarded as RR features.

3.4.1 Optimizing the histogram by IC

The IC is introduced to build an optimal histogram for the distribution and reduce the

model error. Since the maximum likelihood criterion does not converge, it would lead to

an overestimation of the number of free parameters of models [25]. Motivated by literature

[13, 101], we use the IC to obtain the optimal number of bins of histograms. The purpose is

to find a histogram that best summarizes the coefficients’ PDF regarding IC. With a histogram

of equal-width bins, the criterion is expressed as [101]

IC(k) =
k

∑
j=1

n j logn j −n logk+ kcn, (3.3)

k̂ = argminIC(k), with k = 1, ...,(2
√

n−1), (3.4)

where n j, j = 1, ...,k is the number of realizations of coefficients into the corresponding bin

j, k is the number of histogram bins, n is the number of data coefficients by sub-band, cn is

the penalty function, and k̂ is the estimation of the number of histogram bins in the sense of

information criteria.

The first two terms in Eq. (3.3) are the log-likelihood terms. It is also the reason why

IC is regarded as a penalized log-likelihood criterion. Different cn values mean different

IC, for example cn = 2 defines the AIC [5] which is the earliest IC. This criterion will bring

about an over-parameterization. Two other criteria respectively named BIC and ϕβ are

developed to overcome the inconsistency of AIC. The BIC criterion proposed by Schwarz

[83] is strongly consistent, which is based on the Bayesian justification with cn = logn.

The ϕβ criterion was proposed by Matouat and Hallin [34], where cn = nβ log logn. It is a

strongly consistent criterion when 0 < β < 1. On the basis of the ϕβ penalty it is possible

to obtain the penalties associated with the BIC and the AIC criteria: βBIC is such that

nβBIC log logn = logn, and βAIC is such that nβAIC log logn = 2 [6]. In addition, a refined

condition: βmin = log logn
logn

< β < 1 allows to adjust β according to the number of data

coefficients by sub-band [6, 45]. Furthermore, it is noted that the optimal values of β must

be between βmin and 1, and the values of βAIC are not in the interval [βmin,1] [87, 101]. It

confirms that the inconsistency of AIC is contrary to BIC with βBIC in [βmin,1].

Motivated by [101], we utilize the criterion ϕβ with β = βBIC to estimate the optimal

number of bins of histograms. Fig. 3.4 shows a comparison of the histograms using and
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large and there are too many parameters. We propose to model the magnitude by the Inverse

Gaussian Distribution (IGD) [21] which has smaller errors and fewer parameters than MRD.

The comparison between MRD and IGD is performed by an experimental method. The

mathematical expressions of MRD and IGD are respectively,

R(x) = k1
x

σ2
1

exp

(−x2

2σ2
1

)
+ k2

x

σ2
2

exp

(−x2

2σ2
2

)
, (3.5)

where σ1, σ2 are the scale parameters of the MRD, and k1, k2 are the weighting factor,

I(x) =

(
λ

2πx3

) 1
2

exp

[
−λ (x−µv)

2

2µ2
v x

]
, (3.6)

where λ is the sharp parameter, and µv is the mean (v is a subscript to distinguish other mean

values).

To obtain the optimal parameters of models, we first use the maximum likelihood criterion

to construct the cost function, namely, the KLD between the model and the wavelet sub-bands’

PDF of the reference image. Then, the Nelder-Mead simplex method [49] is employed to

minimize the cost function and determine the optimal parameters.

To find a better model, we compare the KLDs between the original distribution and two

models. The model with smaller KLD will be selected. For this purpose, we take all the

images in LIVE database 2 and calculate the KLDs for the two models. The results are

compiled in Table 3.1, where the KLD of 5 single images and average KLD of all images are

listed. Furthermore, Fig. 3.5 intuitively shows the fitting performance of the two candidate

models, taking the image "Bikes" as an example.

Table 3.1 Comparison of KLD of the models MRD and IGD.

Image Size Sub-bands MRD IGD

Bikes 768×512 18 0.0466 0.0110

Caps 768×512 18 0.0257 0.0076

Cemetry 627×482 18 0.0463 0.0037

Buildings2 640×512 18 0.0296 0.0239

Womanhat 480×720 18 0.0256 0.0017

... ... ... ... ...

Average(all images) 18 0.0414 0.0157

The experimental results show that the average KLD of MRD (a four-parameter model)

is around 0.04 and the average KLD of IGD (a two-parameter model) is about 0.01. Thus,

we chose IGD as the model of magnitude.
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where A1 =
1

σg

√
Γ(3/α)
Γ(1/α) and A2 =

A1α
2Γ(1/α) , α > 0 is the sharp parameter, σg is the standard

deviation, µg is the mean, and Γ(·) is the Gamma function.

Note that the histogram of the relative phase of a natural image is usually a concave

curve, not a bell curve, and the relative phase values are defined between −π and π . Thus,

by considering that the GGD model is aperiodic symmetry, it is necessary to shift before

building the histogram. Considering that the relative phase is periodic and the range of the

relative phase value is [−π,π], we can add 2π to the data in range [−π,0] and then obtain

the relative phase in range [0,2π].

The shifting processing and a curve fitting example for image "Bikes" are shown in Fig.

3.6, where (a) is the original histogram and the curve fitting of WCD model (WCD model is

periodic symmetry), (b) and (c) are the π-shift histograms, and respectively fitting by WCD

and GGD models.

Table 3.2 Comparison of KLD of the GGD and WCD models.

Image size sub-bands GGD WCD

Bikes 768×512 18 0.0055 0.0048

Caps 768×512 18 0.0049 0.0045

Cemetry 627×482 18 0.0046 0.0020

Buildings2 640×512 18 0.0038 0.0012

Womanhat 480×720 18 0.0042 0.0024

... ... ... ... ...

Average (all images) 18 0.0042 0.0025

To select a more suitable model, we compare the two models in the same way as in

Subection 3.4.2. The experimental results are shown in Table 3.2, where the average KLD of

WCD is smaller than that of GGD. Thus, we will select WCD as the model of the relative

phase.

In summary, we have selected the IGD model for the magnitude and the WCD model for

the relative phase, respectively. The IGD model has two parameters, i.e., the sharp parameter

λ and the mean µv. The WCD model also has two parameters: the sharp parameter ρ and

the mean µw. Next, we will demonstrate the influence of image degradation on RR features

and the implementation of FMRP metric.
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The similar variation of PDF in the DWT-decomposed image has previously been ob-

served and used for DWT-based quality assessment [108, 112]. Thus, we extract the features

from the distribution models of the magnitude and the relative phase, and the parameters of

the models are transmitted as the RR features in the real-time communication system.

As defined in Section 3.3, the KLD between the sub-band distributions of the distorted

image and the reference one serve as the basis of the image quality evaluation. The KLD

is symmetric and always positive. To make an effective estimation, the histograms of the

DT-CWT coefficients for both images must be available. The histogram, P̂(x), is easy to

compute from the distorted image but it is impossible to obtain the histogram of the reference

image at the receiver side. However, we have verified that the histograms of the DT-CWT

coefficients of the reference image can be estimated from the parameters of the well-selected

models (namely IGD and WCD). Thus, we just need to transmit the parameters of the models

to the receiver side. The parameters serve as RR features for the image quality evaluation.

Motivated by [7], we compute the KLD between the PDFs of the original image and that

of the distorted image:

d̂(P∥P̂) =
∫

Pm(x) log
P(x)

P̂(x)
dx = d(Pm∥P̂)−d(Pm∥P), (3.10)

where Pm(x) is the density function model, d(Pm∥P̂) is the KLD between the model and

the distortion image, and d(Pm∥P) is the KLD between the model and the original image,

namely modelling error calculated at the transmitter side. The modelling error should be

sent to the receiver side as the RR features to define a more precise estimation. In this thesis,

we don’t exploit the direct expression of the KLD for the IGD distributions or the WCD

distributions but we propose to estimate it with a sampling of the KLD computation. To

define a "sampling" rate, we propose to take the IC concept. Thus, d(Pm∥P) is computed in a

discretization form as

d(Pm∥P) =
N

∑
n=1

Pm(n) log
Pm(n)

P(n)
, (3.11)

where n is the number of histogram bins of the PDF and N is the maximum number of bins.

N can be optimized with the IC introduced in Subsection 3.4.1. d(Pm∥P̂) is computed in the

same way.

Finally, the objective scores are computed by a machine learning regression method

according to the features of the distorted images. To obtain an appropriate range of values

for the training model, we normalize the value of the features with a logarithmic function.

Mi or Ri = log10(1+ kd̂i(Pi∥P̂i)) (3.12)
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where i = 1, ...,18 is the index of the features, Mi and Ri are respectively the magnitude and

the relative phase of the sub-bands of the distorted image, d̂i(Pi∥P̂i) is calculated according to

Eq. (3.10), and k taking 1000 is a constant to control the scale of the distortion metric. The

image is decomposed with a three-scale six-orientation DT-CWT. Therefore, we can extract

36 features from 18 sub-bands, including 18 magnitude and 18 relative phase features.

3.6 Machine learning method for regression

After obtaining the features from the magnitude and the relative phase, the next step is to

map the features into subjective scores. The goal is to find a function f (·) that uses the

calculated indices as inputs and predicts an objective score S0 for each image. The function

f (·) expressed:

S0 = f (M1,R1;M2,R2; ...;M18,R18) (3.13)

where Mi and Ri are respectively KLDs of the magnitude and the relative phase between the

distortion image and the reference one for i-th sub-bands, referring to section 3.5 and Eq.

(3.12).

In recent years, researchers have tended to employ machine learning methods to develop

regression function, such as Support Vector Regression (SVR) [16, 30] and general regres-

sion neural network (GRNN) [52, 54, 55, 73]. Considering the time consumption and the

complexity of implementation, we select GRNN as a regression tool.

GRNN is a kind of Radial Basis Function (RBF) neural network that is often used for

function approximation based on a linear or non-linear regression. Its main function can be

represented as [95]

Ŷ (x) =
∑

n
i=1Yi exp

(
D2

i

2σ2

)

∑
n
i=1 exp

(
− D2

i

2σ2

) (3.14)

where D2
i = (X −X i)T (X −X i), D2

i is the squared Euclidean distance between the measured

value X and the sample observation X i, Y i is the score associated with X i, n is the number of

sample observations of training database, and σ is the standard deviation of radial kernal (a

larger σ may bring a smoother regression surface but less accuracy while a smaller one may

provide higher approximation accuracy but a worse smooth surface [94]).

We implement the GRNN by the Matlab function newgrnn(). The only parameter involved

is the spread parameter p ∈ [0,2], linked with the standard deviation σ described previously.

To set this parameter, we optimize the value of p with the 10-fold method. The process of

the 10-fold method is as follows:
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1. Dividing the database into 10 sub-sets according to the 10-fold method.

2. Computing the prediction score with p = 0 : 0.1 : 2.

3. Computing the correlation coefficients between the prediction score and subjective

one, and comparing the mean values of 10 sub-sets for different spread parameters.

4. Obtaining the spread parameter that maximizes the correlation coefficient as the optimal

value.

The experimental results show that the optimal p is 0.8. Thus, we set the spread parameter

to 0.8 in the next step.

Another important issue is to design the training and testing subsets. Four classical

databases are utilized to test the performance of the proposed image quality metric and two

commonly adopted strategies are employed to design training and testing subsets, as detailed

in Section 3.7.

Since the proposed metric maps the RR features into the objective score with GRNN, the

objective score will vary with the subjective score provided by the database. If the subjective

score is MOS, the objective score will also be MOS. In addition, if the subjective score is

DMOS, the objective score will be DMOS. The MOS measures the similarity of the distorted

image and the reference one (larger MOS means less distortion) while the DMOS measures

the difference (larger DMOS means larger distortion). Suppose we take the LIVE database 2

(DMOS as subjective score) as the training set, the objective score will be DMOS. Fig. 3.8

shows the objective scores of FMRP of image "Buildings" in LIVE database 2, where DMOS

is the subjective score of the database, and FMRP is the objective score of FMRP metric.
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3.7 Test results

3.7.1 Test databases and evaluation criteria

To evaluate the performance of the proposed image quality metric, four publicly available

image databases, including LIVE database 2 [91], CSIQ [50], TID2013 [71] and Toyama

[100], are selected. The characteristics of these four databases are shown in Table 3.3. Note

that CSIQ and TID2013 include some distortions, such as contrast change, change of colour

saturation and intensity shift, which are designed to test the FR-IQA metrics and usually

do not occur in communication systems. Thus, we remove these types of distortions from

CSIQ and TID2013, remaining 5 types of distortions in CSIQ (6 in total) and 18 types of

distortions in TID2013 (24 in total), and call them CSIQ*1, TID2013*2, respectively.

Table 3.3 Information of the image databases.

Database
Distortion

types

Reference

images

Distorted

images

Distortion

levels

Subjective evaluation

Score type Scale

LIVE database 2 5 29 982 5-9 DMOS [0, 100]

CSIQ* 5 30 750 5 DMOS [0, 1]

TID2013* 18 25 2250 5 MOS [0, 8]

Toyama 2 14 196 6 MOS [1, 5]

According to the suggestion given by the Vide Quality Experts Group [44], we employ

three evaluation criteria to quantify the performance of our metric. The first one is the

Pearson linear correlation coefficients (PLCC) used to evaluate the prediction accuracy. The

second one is the Spearman rank-order correlation coefficients (SROCC) used to evaluate

the prediction monotonicity. The last one is the outlier ratio (OR) to evaluate the prediction

consistency. The definition of the three evaluation criteria is introduced in Section 2.1.

3.7.2 Decomposition scales and the features

As introduced in Section 3.5. the influences of the image degradation mainly lie on the

first three decomposition scales of the DT-CWT. Table 3.4 lists the prediction accuracy of

different decomposition scales for all images of the LIVE database 2. Obviously, a 3-scale

decomposition is better than a 2-scale one and almost with the same accuracy as a 4-scale one.

1CSIQ* includes 5 types of distortions in CSIQ with the "Contrast" distortion removed.
2TID2013* is generated from TID2013 by removing 6 kinds of distortions including "Non eccentricity

pattern noise", "Local block-wise distortions of different intensity", "Mean shift", "Contrast change", "Change

of colour saturation", "Chromatic aberrations" distortions.
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Thus, the 3-scale DT-CWT is selected to decompose the image, which is the best trade-off

between the accuracy and the size of transmitted information.

Table 3.4 Prediction accuracy of 2, 3 and 4 decomposition scales.

Scales PLCC SROCC OR

2 scales 0.9498 0.9308 0.0096

3 scales 0.9731 0.9638 0.0035

4 scales 0.9738 0.9640 0.0045

To analyze the reliability of RR features on detecting the image distortion, the RR features

from a group of images with different distortion levels (JPEG 2000 compression distortion)

are compared. The results are shown in Tables 3.5 and 3.6, where "Distortion 1,...,4" denotes

4 different levels of distortions of JPEG 2000 compression sorted in increasing DMOS, and

KLD is the Kullback-Leibler Divergence between the distributions of the reference image and

the distorted one. One can see that the KLDs in three scales vary significantly with different

levels of degradations, and the variation decreases with the increase in the number of scales.

The observation illustrates that the features can detect the distortion very well and the image

degradation usually affects the high frequency signals (scale 1), which holds information of

textures and edges in an image. With the increase of the decomposition levels, the influence

of degradation on the features of the image decreases progressively and consequently, the

variation of KLDs and the information of textures and edges decrease correspondingly. This

confirms a decomposition just with three scales is acceptable.

Table 3.5 KLD of the sub-bands of the magnitude (from image "Building2" of LIVE database

2).

Distortion 1 Distortion 2 Distortion 3 Distortion 4

25.4774 31.5596 48.0727 69.2985

Sub-band KLD

Scale 1, 75 deg. 0.0347 0.0692 0.1820 0.3884

Scale 1, 15 deg. 0.0389 0.0751 0.1170 0.2665

Scale 1, 45 deg. 0.0356 0.1151 0.3753 0.2792

Scale 2, 75 deg. 0.0054 0.0157 0.0496 0.1842

Scale 2, 15 deg. 0.0068 0.0107 0.0514 0.1874

Scale 2, 45 deg. 0.0096 0.0183 0.0581 0.2679

Scale 3, 75 deg. 0.0010 0.0005 0.0127 0.0457

Scale 3, 15 deg. 0.0012 0.0011 0.0137 0.0435

Scale 3, 45 deg. 0.0004 0.0028 0.0115 0.0369
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Table 3.6 KLD of the sub-bands of the relative phase (from image "Buildings2" of LIVE

database 2).

Distortion 1 Distortion 2 Distortion 3 Distortion 4

25.4774 31.5596 48.0727 69.2985

Sub-band KLD

Scale 1, 75 deg. 0.0167 0.0502 0.1961 0.2400

Scale 1, 15 deg. 0.0164 0.0583 0.1747 0.2188

Scale 1, 45 deg. 0.0041 0.0069 0.0246 0.0416

Scale 2, 75 deg. 0.0017 0.0075 0.0672 0.1436

Scale 2, 15 deg. 0.0022 0.0108 0.0802 0.1936

Scale 2, 45 deg. 0.0013 0.0095 0.0787 0.1174

Scale 3, 75 deg. 0.0005 0.0009 0.0073 0.0298

Scale 3, 15 deg. 0.0005 0.0018 0.0074 0.0692

Scale 3, 45 deg. 0.0006 0.0004 0.0020 0.0216

To further analyze how the magnitude and the relative phase features vary with distortion

types, we take magnitude and relative phase as independent metrics respectively and compare

them with the features of DWT [112]. The experimental results are illustrated in Table 3.7,

where we utilize LIVE database 2 as test database, including JPEG compression, JPEG2000

compression, Gaussian blur, white noise and fast fading distortions. The PLCC of the

prediction scores and the subjective scores serve as a quantifiable criteria for performance.

One can see that the features of magnitude and relative phase of DT-CWT have a better

performance than those of the DWT. It mainly because of the advantages of the DT-CWT,

including shift invariance, non-oscillations, multi-directions and phase information. Another

reason is the use of GRNN in the mapping between RR features and objective scores, which

performs better than the logistic function. Moreover, Table 3.7 shows that the magnitude

feature is sensitive to JPEG compression, white noise and Gaussian blur distortions, and

the relative phase feature is sensitive to JPEG 2000 compression and fast-fading distortions.

Therefore, to take full advantage of the two features, we combine them to form a new image

quality metric, i.e., FMRP. The FMRP metric has the highest accuracy in detecting five

distortions of LIVE database 2 and the best robustness in detecting all mixed distortions.
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Table 3.7 Comparison of the features of DWT and DT-CWT.

Quantifiable

criteria
Feature source JP2K JPEG WN BLUR FADING ALL

PLCC

Feature of DWT 0.9651 0.9407 0.9488 0.9465 0.9306 0.8478

Magnitude 0.9690 0.9629 0.9719 0.9866 0.9545 0.9300

Relative phase 0.9725 0.9566 0.9589 0.9825 0.9596 0.9500

Combination 0.9768 0.9730 0.9804 0.9836 0.9689 0.9731

3.7.3 Comparison with other metrics

To assess the detection performance of the mixed distortions, we compare the FMRP metric

with six other metrics, including two FR metrics: SSIM [111], MS-SSIM [110] and four

RR metrics: Wang Z. et al.’s RR method [112] (we call it DWT), ADI [54], QWT [101]

and Lin Z. et al.’s RR method [55] (we call it RP). The implementation code of the SSIM,

MS-SSIM and Wang Z. et al.’s methods are available at the Waterloo IVC Code Repository

[107]. According to the algorithms in [54, 55, 101], we respectively have implemented the

other metrics. To have a robust evaluation of the metric, two strategies are employed to

design subsets.

Strategy 1: Two-thirds of data are randomly picked out for training, while the remaining

data are for testing. The final result is the mean of 1000 replicates of the process.

Strategy 2: A 10-fold cross-validation style. The database is randomly partitioned into

10 equally sized subgroups. A single subgroup is selected as the testing data, while the

remaining 9 subgroups are used as training data. This process is repeated in such a way that

each of the 10 subgroups is selected just once as the validation (testing) data.

All the performances of these metrics are summarized in Table 3.8. We utilize Strategy

1 for set-partitioning in this step. To increase the readability of the results, we mark the

first-best and the second-best metrics in bold. It is shown that the proposed metric FMRP

performs quite well for the four databases. It provides a better prediction accuracy (with

higher PLCC), better prediction monotonicity (with higher SROCC) and better prediction

consistency (with lower OR) than most other metrics. Compared with other RR metrics, the

FMRP metric achieves the best results on all the databases. Compared with the representative

FR metric MS-SSIM, it also performs quite well, with a higher accuracy in LIVE database

2 and a very close accuracy in the other databases. By recalling that the proposed metric

FMRP is an RR metric, it uses less information in image evaluation than the FR metrics. The

experimental results verify that the proposed metric FMRP is a useful and reasonable RR

metric.



54 Proposed metric for image quality assessment

Table 3.8 Performance comparison of the objective quality metrics.

Objective quality metrics

Database Criteria SSIM MS-SSIM DWT ADI QWT RP FMRP

LIVE

PLCC 0.9274 0.9424 0.8478 0.9334 0.9126 0.9487 0.9731

SROCC 0.9047 0.9387 0.8349 0.9201 0.8845 0.9314 0.9638

OR 0.0173 0.0041 0.3646 0.0217 0.0314 0.0110 0.0035

Toyama

PLCC 0.8851 0.9349 0.8231 0.9188 0.8035 0.8712 0.9322

SROCC 0.8862 0.9304 0.8283 0.9164 0.8124 0.8760 0.9313

OR 0.0223 0.0000 0.1071 0.0199 0.1526 0.0494 0.0093

CSIQ*

PLCC 0.8199 0.9109 0.7336 0.8591 0.7826 0.8371 0.9114

SROCC 0.8304 0.9183 0,7484 0.8703 0.7683 0.8210 0.9085

OR 0.1080 0.0267 0.1440 0.0719 0.1236 0.0748 0.0307

TID2013*

PLCC 0.7033 0.8544 0.6511 0.7565 0.7583 0.7394 0.8504

SROCC 0.7178 0.8574 0.6097 0.7458 0.7512 0.7283 0.8549

OR 0.1480 0.0560 0.2093 0.1243 0.1157 0.1261 0.0686

Further, we compare the FMRP with three other RR metrics to test their performances

for different types of distortions. The results are illustrated in Table 3.9, where we list the

major distortions appearing in communication systems. It is obvious that the FMRP metric

performs better for most distortions, such as compression, transmission error, and additive

noise distortions. It can be interpreted by the good perception and the robustness of the

magnitude and the relative phase. For additive Gaussian noise and Gaussian blur distortions,

the ADI metric performs best. As introduced before, it is an energy-based method in the

wavelet transform domain and sensitive to changes in the magnitude.
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Table 3.9 Performance comparison of RR metrics for different distortions.

Distortion type Database
PLCC

DWT ADI RP FMRP

JPEG compression

LIVE 0.9407 0.9068 0.9474 0.9730

Toyama 0.8915 0.9110 0.8919 0.9306

CSIQ* 0.8758 0.9079 0.8978 0.9185

TID2013* 0.8541 0.8729 0.8638 0.8934

JPEG 2000 compression

LIVE 0.9651 0.9447 0.9552 0.9768

Toyama 0.9469 0.9222 0.9438 0.9475

CSIQ* 0.9326 0.9322 0.9308 0.9330

TID2013* 0.9335 0.9201 0.9084 0.9254

Additive Gaussian noise

LIVE 0.9488 0.9877 0.9081 0.9804

CSIQ* 0.8126 0.8857 0.8851 0.8865

TID2013* 0.6789 0.8851 0.8446 0.8214

Gaussian blur

LIVE 0.9465 0.9719 0.9684 0.9836

CSIQ* 0.8806 0.9086 0.9218 0.9090

TID2013* 0.9158 0.9736 0.9552 0.9296

JPEG 2000 trans. error
LIVE 0.9306 0.8702 0.9439 0.9731

TID2013* 0.7721 0.7054 0.7263 0.8127

JPEG trans. error TID2013* 0.8793 0.8922 0.8277 0.9060

Additive pink noise CSIQ* 0.7925 0.8454 0.8427 0.8864

3.7.4 Robustness and cross-validation

The proposed method is based on machine learning regression techniques, so its performance

depends upon the training sets to some extent. To evaluate the robustness of the proposed

FMRP metric, two strategies for designing the training and testing subsets (detailed in the

previous subsection) are utilized.

The test is divided into two parts: cross-validation and cross-database validation. For the

cross-validation, we utilize Strategy 1 and Strategy 2 for set-partitioning of the databases and

then conduct the training and testing process for each database. The experimental results

of cross-validation in databases are given in Table 3.10. The numerical values of the three

evaluation criteria are very close. It shows that the proposed RR image quality metric is not

sensitive to the original choice of training subset.

Moreover, to perform a cross-database validation, we integrate all the images of four

databases and convert different objective scores for different databases to unify objective

scores by linear scale-functions. With the integration, we have around 4200 images in
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Table 3.10 Performance of cross-validation for FMRP.

Criteria Subsets selection LIVE Toyama CSIQ* TID2013*

PLCC
Strategy 1 0.9731 0.9322 0.9114 0.8504

Strategy 2 0.9751 0.9435 0.9067 0.8583

SROCC
Strategy 1 0.9638 0.9313 0.9085 0.8549

Strategy 2 0.9643 0.9333 0.8966 0.8593

OR
Strategy 1 0.0035 0.0093 0.0307 0.0686

Strategy 2 0.0025 0.0066 0.0301 0.0654

total and then carry out the training and testing with Strategy 1. To form a comparison of

performance, two other RR-IQA methods based on machine learning, ADI [54] and RP [55],

are compared with the proposed FMRP method. The results are presented in Table 3.11,

where stdCC and stdSR are respectively the standard deviations of 1000 PLCCs and SROCCs

(1000 iterations for the training and testing process). Since the database TID2013 including

some exotic distortions such as image color quantization with dither distortion, additive noise

in color component, which are a challenge for most image quality metrics, the accuracy of

the cross-database validation is lower than that of other databases. However, the proposed

RR image quality metric, FMRP, still performs better than the ADI and the RP metrics in

cross-database validation evaluation and has a significant improvement in accuracy. This

comfirms the combination of the magnitude and the relatvie phase features outperforms the

single magnitude feature or the single relative phase feature in detecting mixed distortions

(as described previously, the RP method is mainly based on relative phase feature and the

ADI is an energy-based method).

Table 3.11 Performance of cross-database validation for FMRP and two other RR metrics.

Database Metric PLCC SROCC OR stdCC stdSR

merge of 4

database

FMRP 0.8826 0.8806 0.0482 0.0114 0.0121

RP 0.8047 0.7964 0.0976 0.0210 0.0221

ADI 0.7705 0.7581 0.1143 0.0198 0.0225

3.7.5 Complexity and two inaccurate examples

For complexity analysis, we enumerate memory cost and computation time of all the metrics

used in the previous section, as shown in Tables 3.12 and 3.13, respectively. The extracted

parameters are quantized to an 8-bit finite precision. As introduced in section 3.4, compu-

tation of each feature of the FMRP metric involves three parameters, so 36 features cost
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36× (8+8+8) = 864 bits, i.e., 0.27% of the reference image, as shown in Table 3.12. It is

a proper memory cost for the communication system. In addition, the memory cost of the

FMRP metric is independent on the image size.

Table 3.12 The size of features of different metrics.

Metrics SSIM MS-SSIM DWT ADI QWT RP FMRP

Bits to transmit (bit) 3145728 3145728 144 96 360 1248 864

Percentage (%) 100.00 100.00 0.05 0.03 0.11 0.40 0.27

The calculation of objective scores involves two steps: (1) Calculation of the similarity

or specific distance between the distorted image and the reference one, (2) Transferring from

the similarity or the specific distance to objective scores by a regression function. Since most

of the metrics employ the same regression function and the time of this step is quite short, we

compare the time of step (1) of all the metrics, as shown in Table 3.13. The test is performed

on a PC with 2.7 GHz Intel Core i7 CPU and 8.00 GB RAM, and the development platform

is Matlab R2016a. The computation time of the FMRP is 1.3618 seconds, which is slightly

more than that of the DWT metric.

Table 3.13 Time consumption of different metrics.

Metrics SSIM MS-SSIM DWT ADI QWT RP FMRP

Time (sec.) 0.8972 0.9123 1.2454 0.2972 2.1269 1.3435 1.3618

Two inaccurate examples of the FMRP metric are illustrated in Fig. 3.9, where the

objective scores of the FMRP are not agreed with the assessors’ MOS. Taking Fig. 3.9 (a)

and (b) as the first example, the MOSes of theirs are in a decreasing order, but the FMRP

scores are in an increasing order. The second example shown in Fig. 3.9 (c) and (d) reveals

as the same information as Fig. 3.9 (a) and (b). The distortion resulting in the phenomenon

often is the JPEG transmission error in database TID2013. For this type of distortions, the

changes of the magnitude and the relative phase in the wavelet domain are quite small, which

triggers bad perception to the distortion. Moreover, the distortion occurs in some partial

blocks (we call it local distortion), as shown with the black rectangular box in Fig. 3.9. The

local distortion is a challenge to most metrics, especially for the metrics with global statistical

features. We will study this issue in the next chapter.
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3.8 Chapter summary

In this chapter, an RR-IQA metric based on the statistical model in the dual-tree complex

wavelet domain is proposed. The features are extracted from the magnitude and the relative

phase of the image DT-CWT coefficients. Moreover, a strategy based on IC is designed

to find a statistical model to capture the magnitude or the relative phase information in the

complex wavelet domain. The parameters of these models are used as RR features. Thus, the

metric is named as feature of magnitude and relative phase (FMRP).

It is demonstrated that the magnitude feature is sensitive to JPEG compression, white

noise and Gaussian blur distortions, while the relative phase feature is sensitive to JPEG

2000 compression and fast-fading distortions. These features offer additional information for

the evaluation of the degradation of image quality. The degradation measure is obtained with

the computation of the Kullback-Leibler Divergence between the sub-bands of the distorted

image and the reference one. Finally, to clarify the relation between the features (the KLD

measures) and subjective scores, a general regression neural network is introduced.

Compared with the representative FR-IQA metrics and the other RR-IQA metrics, the

proposed reduced-reference image quality metric performs well in prediction accuracy,

prediction monotonicity, prediction consistency and robustness among various distortion

types, and demonstrates that the features are quality-aware and the metric is highly correlated

with the human visual system. Moreover, the experimental results indicate our strategy is

independent on the used database for the training process.

Therefore, the proposed FMRP metric is in line with the expectation: (1) detecting various

distortions encountered in communication systems such as JPEG compression, JPEG2000

compression, JPEG transmission error, JPEG 2000 transmission error and white noise, (2)

being competitive with the state-of-the-art FR-IQA methods, (3) summarizing the image

information in a low data rate and a low computational complexity. The proposed RR image

quality metric is very suitable to be applied in communication systems for evaluating the

image quality. Next, we will utilize it to optimize the image decoding strategy in a wireless

communication environment.





Chapter 4

Optimization of JPWL decoding in

realistic wireless transmission

The rapid development of communication technologies has enabled high-quality multimedia

services and wide applications of high-quality devices. In turn, the popularity of high-quality

multimedia services and devices are demanding the image or video communication system

with better Quality of Service (QoS) and better Quality of Experience (QoE). In this chapter,

we devote to applying the RR-IQA metric (FMRP proposed in Chapter 3) into a realistic

wireless communication system to improve the QoE while ensuring the QoS. The features

of this metric are employed to automatically optimize the decoding strategy by selecting

an image with better quality in consistent with users. To this end, a new image database

has been constructed to collect the preference of users when they are selecting different

decoding images. Based on the new database, experimental comparison demonstrates the

decoding strategy with the FMRP metric has a significant improvement than the typically

classic decoding strategies.

The chapter is organized as follows: Section 4.1 introduces the motivation of taking the

RR-IQA metric to optimize the decoding strategy and the database construction. The global

scheme and the classifier design will be presented in Section 4.2. The database construction

details including experimental methodology, simulation environment and raw data processing

are described in Section 4.3. The performance of the decoding strategy with the FMRP metric

is validated in Section 4.4. A new metric FMRP-LSD used to detect the local distortion is

proposed in Section 4.5. The chapter summary is presented in Section 4.6.
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QoS, but does not consider the QoE of the terminal user. For the HVS, the high QoS, in a

certain case, does not mean a high-quality experience, as shown in Fig. 4.2, where (b) and (d)

have a better QoS but do not have a better QoE. The reason is because the resource allocation

is made under the constraint of a target BER according to the channel state checked before

the transmission. Nevertheless, the channel state may turn bad due to the mobility of the

terminal and the change of channel state lead to the highest-indexed subchannel has not

enough power and thus has not enough protection to reach the target BER, after allocation

of the power and data rate on the lower-indexed subchannels. Moreover, at the receiver

side, the robust JPWL decoder does not prevent the decoding of the highest-indexed layer

since the code stream errors are limited and the content of the layer is helpful to the image

quality improvement. Actually, for the terminal users, the layer with a few errors may lead to

degradation or improvement for image quality, as shown in Fig 4.3 (a) and (c) respectively.

Thus, in some cases, an l-layer decoding configuration may not be an optimal selection, but

an (l−1)-layer decoding configuration may be.

The influences on images of two different decoding configurations are shown in Fig.

4.3, where (a) and (c) are decoded with l−1 layers, namely partial-decoding, (b) and (d)

are decoded with l layers, namely full-decoding (the value of l is determined by the state

of the channel). Generally, the image decoded with l layers has a better quality than the

one decoded with l−1 layers since l is the number of quality layers and more quality layers

signify higher quality, referring to (a) and (b). However, in some cases, the image decoded

with l−1 layers has a better quality than that decoded with l layers, as illustrated in (c) and

(d). Since the l-th layer is attacked by channel noises and parasitic oscillations are caused by

false coefficients during the reconstruction.

Thus, a new decoding strategy to improve the QoE while ensuring the QoS is desirable.

The solution is to exploit an image quality metric to evaluate the image quality and to

determine the decoding configuration automatically. The most appropriate IQA method is an

RR-IQA method since an RR-IQA method (referring to Chapter 3) provides a good balance

between the prediction accuracy and the size of the required reference information. The

new RR-IQA metric FMRP proposed in Chapter 3 will be embedded in the codec system to

evaluate the image quality and select the decoding configuration automatically.

To optimize the decoding strategy according with the HVS, we need a database to collect

people’s preference when selecting two images decoded by different decoding configurations.

During the last few years, some representative image databases like LIVE, TID2013, CSIQ

and Toyama have been built to evaluate IQA metrics. These databases contain numbers of

images and large physiological vision test, and provide a reliable benchmark for assessing

IQA algorithms. However, these databases are not suitable to assess whether the FMRP
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For the realistic error-prone environment, we utilize a 3D-ray tracer validated by ex-

perimental comparison [2, 20]. To improve the robustness of the system, the JPWL coder

decomposes the image content into b hierarchical layers and extracts the FMRP features

(the crucial parameters of models) of the whole image. Corresponding to the b hierarchical

layers, the system generates b code-streams sorted in a descending magnitude order, and the

precoder solutions decouple an MIMO channel into hierarchical, parallel and independent

sub-channels of different magnitudes and sorted in a descending SNR order. Therefore,

the image can be transmitted by the hierarchical layers (1st layer by 1st sub-channel, 2nd

layer by 2nd sub-channel, etc.) and a quality-variable version of the transmitted image will

be obtained even under channel perturbation. The UPA and UEP strategies are applied to

guarantee partial or total reception of the image depending on the channel state [81]. During

the JPWL coding process, a small amount of data, extracted from the original image and

called Reduced-reference (RR) is embedded in the code-stream by the image quality assess-

ment system FMRP. At the decoding side, the system is jointly used with a robust JPWL

decoder [1] to provide the best decoding configuration to the user by exploiting the embedded

information. To ensure the embedded information is not distorted in the transmission, the

Error Protect Block (EPB) [33] is used in the JPWL decoder.

4.2.2 Classifier deployment

To decide the decoding configuration automatically, a classifier is necessary, which can select

a better-quality image in the same manner with users. The input of the classifier can be the

objective score or the crucial features of image quality metric. For the classic quality metrics,

the objective score is obtained by a nonlinear mapping through a logistic function. Since

the logistic function is a single-input and single-output function, the multiple features of the

metric usually are integrated into a quality index in a fixed manner. For machine-learning-

based metrics, the mapping relationship is determined by machine learning tools such as

the neural network and support vector regression. The multiple features of the metric are

transformed to an objective score, directly, by machine learning tools. Moreover, according

to different databases, the mapping relation can be adjusted to suit different applications

to achieve more accurate predictions. To test the second strategy that allows one to tune

according to different applications, the multiple features of the metric are used as the input

of the classifier.

The classifier trained by the database is utilized to automatically select the optimal

decoding configuration in line with the HVS, as illustrated in Fig. 4.5. The output of the

JPWL decoder is two images decoded with l and l−1 layers and the RR features of FMRP

metric for the original image. Then, the features of FMRP metric for two images are extracted
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for vision problems, and people with poor eyesight (corrected eyesight) were forbidden to

take part in the experiment. Each assessor was individually briefed about the goal of the test

and given a demonstration of the experimental procedure.

Table 4.2 The demographic data of subjective assessors

Items
Nationality Age Gender

French Chinese Indian 19-29 30-45 46-55 Male Female

Percentage(%) 15.38 81.54 3.07 46 50 4 66.67 33.33

4.3.3 Post-processing and properties

4.3.3.1 Post-processing of raw data

To reduce the accidental errors, we utilized a simple algorithm to conduct outlier detection

and assessor rejection, according to the suggestion given by VQEG [16]. The points satisfying

the Eq. (4.1) is defined as the outlier points.

|c− cmean|> 2σ , (4.1)

where c is the classification value of the image given by an assessor, cmean and σ are

respectively the average classification value and the standard deviation given by all assessors

for an image. For assessor rejection, we considered a similar solution used in LIVE database

[17]. For any set, all quality evaluations of an assessor were rejected if more than 16.67% of

his evaluations are outliers. Overall, a total of 5 assessors were rejected, and about 4.67%

of the difference values were rejected as being outliers (we took all data points of rejected

assessors as outliers).

After the outlier detection and assessor rejection, a majority rule is exploited to select

the classification value, which most frequently occurs, as the final classification value. The

classification statistics of the database is shown in Table 4.3, where for the pairwise images,

Label −2, Label 0 and Label 2 respectively denote that partial-decoding image with a better

quality, two images have the same quality and full-decoding image has a better quality. It

is obvious that the samples with the label of 2 are very few. Since the test images were

selected randomly and most partial-decoding images have the same or a better quality than

the full-decoding ones.

To analyze the relation of classification label and the transmission channel states, Fig.

4.9 illustrates that the distribution of classification labels varies with the channel states. In
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2000 wireless transmission error distortion. The new database reveals the properties of the

distortions encountered in the wireless communication system, and the preference of the

HVS when selecting two types of distortion images, as summarized as follows:

1. The main distortions encountered in the JPWL transmission system are JPEG 2000

Compression Distortion (JP2K-CD) and JPEG 2000 Transmission Error Distortion

(JP2K-TED) as well as their mixture.

2. The JP2K-CD is manifested with blur and ringing, as shown in Fig. 4.10. The blur in an

image is the loss of spatial details, which is related to the filtering or data compression.

The ringing is caused by the quantization or truncation of the high-frequency transform

coefficients resulting from DCT- or wavelet-based coding [62]. This will lead to

oscillations or ripples around edges and contours in the image, which is also called the

Gibbs phenomenon [103, 62]. The distortion can be well detected by the wavelet-based

IQA metric for example, WBRRM [109] and FMRP proposed in Chapter 3.

3. The JP2K-TED is a local and random distortion since the distortion occurs in local

areas and the locations of distortions are unpredictable. The distortion is a challenge to

most IQA metric because of its locality and randomicity.

4. The local and random distortion resulting from the noise oscillation usually cause a

large variation of the luminance in the location (the luminance oscillates greatly with

the frequency of noise), as illustrated in Fig. 4.11.

5. The HVS has a preference when comparing the image quality of two types of distor-

tions. Most subjects prefer the uniform distributed distortion namely JP2K-CD, and

are sensitive to the local and high luminance distortions, i.e., JP2K-TED.
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The K-NN is a simple yet popular approach for classification. For a given new example,

it classifies the example into the class of the nearest training example to the observation.

It is easy to implement and has 2 parameters to set. Here we set the K to 5 and choose

the Euclidian distance as the basis of classification. The K-NN is a lazy algorithm without

training and sensitive to noises. It is easy to implement and less time-consuming. However,

this method is a non-parametric method that requires all training data to be stored for a new

classification. It is inconvenient for practical application. Therefore, the classification results

of the K-NN method are only used as a comparison with that of SVM.

The SVM is a binary classifier which can be extended to a multiclass classifier by using

multiple classifiers. The standard approach is to learn k individual binary classifiers c1, ...,ck,

one for each class ( k denotes the number of classes ). Here we use another advanced

approach which taking an ECOC as the representation of k classes and utilize n individual

binary classifiers (n = k(k−1)/2 = 3, k = 3, for error correcting). With ECOC, the SVM

algorithm is robust with respect to changes in the size of the training samples, the assignment

of distributed representations to particular classes and the application of overfitting avoidance

techniques such as decision-tree pruning [7, 29]. Considering that the feature vector has a

large dimension (36) and samples of the database are few (210 in total), we select the Radial

Basis Function (RBF) as the kernel function of SVM.

For the design of machine learning set, we employ a 5-fold cross-validation style. The

database is randomly partitioned into 5 equally sized subgroups. A single sub-group is

selected as the test data, and the remaining 4 subgroups are used as training data, then

switching the testing and the training data. Each of the 5 subgroups is selected just once as

the validation (test) data.

4.4.2 Effectiveness validation

To form a comprehensive evaluation, 7 other representative image quality metrics were

used, including 4 FR metrics: PSNR, SSIM [1], MS_SSIM [2] and FSIM [3], and three

RR metrics: Wang Z. et al.’s RR method [14] (we call it WBRRM), ADI [15] and Lin Z. et

al.’s RR method [16] (we call it RP). The implementation codes of the SSIM, MS_SSIM,

Wang Z. et al.’s RR and FSIM methods are provided by the authors of [17, 18]. For the

other metrics, we implemented them according to the algorithms in [15, 16, 19]. For the

machine-learning-based metrics such as ADI, RP and FMRP, the crucial features of the

metric serve as the input of the classifier. For the other classic metrics, the objective scores

of the metric is employed as the input of the classifier.

The performance indicators are the ratio of right classified samples and overall samples,

and the standard deviation. All the performances of the metrics are summarized in Table
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To show the classification performance more intuitively, classification results based on

HVS, PSNR and FMRP are shown in Fig. 4.13, where all the points correspond to classifi-

cation label −2. Noted that the number of points of HVS, PSNR and FMRP classifications

are different from each other and they are 160, 204 and 158, respectively. Moreover, the

isolated points show the difference and the coincide points show the consistency. Fig. 4.13

intuitively shows that the isolated points of the PSNR classification are much more than that

of the FMRP classification. Thus, the classification result of the FMRP metric is closer to the

classification result of the HVS, as compared with that of the PSNR metric.

After the comprehensive evaluation, one can see that the FMRP metric has a good perfor-

mance to classify the images in consistent with the HVS. The performance in optimizing

decoding configuration needs to be evaluated now. Since there are three classification labels

and two decoding configurations, the three labels should be converted to two categories.

Label −2 should be assigned to (l−1)-layer configuration and label 2 should be assigned to

l-layer configuration. The point labelled with 0 means the two images have the same quality

and denotes the optimal configuration is either (l−1)–layer configuration or l-layer configu-

ration. If the two images are in the same quality and it is sure that l-layer configuration has

more details than (l−1)-layer configuration, we assign the label 0 to l-layer configuration.

Table 4.5 shows the performances of four decoding strategies including classic strategy

(l-layer decoding configuration), strategy with PSNR metric, QIP metric [66] and FMRP

metric. The performances are measured with a ratio between the samples consistent with

the HVS classification and the total samples. The QIP metric is an RR-IQA metric based

on the points of interests and the objects’ saliency of color images [66], which utilizes the

change of numbers of interest points in different salient areas to measure the image quality.

Based on the QIP metric, J. Abot et al. proposed an optimization scheme of decoding

configuration over a realist MIMO channel [1]. The scheme has been proved to have a good

improvement for image quality but the performance validation is measured by the PSNR

metric, not the real perception of users, and the validation of QIP effectiveness is only based

on the JPEG compression and JPEG 2000 compression distortions. Therefore, to verify the

effectiveness of the decoding strategy suitable for the HVS, we proposed to construct the

JPWL-RWC database and present the FMRP metric. With the new JPWL-RWC database, the

comprehensive validation based on the real perception of users is carried out. Compared with

the classic strategy, all the three strategies based on IQA metric can improve the experience

of image quality and this indicates the new decoding strategies with IQA metric is necessary.

Further, from the comparison, one can see that the decoding strategy with FMRP metric

performs best for all channel states. The improvement of all strategies for good channel state
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is lower than that for other two states. Thus, the qualities of two images are good and very

close, and this necessarily cause difficulty for IQA to detect the difference.

Table 4.5 Performances of decoding strategies (ratio of correct classification samples based

on the HVS)

Decoding strategy

Channel state Classic(%) With PSNR(%) With QIP(%) With FMRP(%)

Bad state 18.21 78.95 78.95 84.21

Average state 15.54 84.95 86.02 90.32

Good state 32.65 67.35 75.51 77.51

4.4.3 Inaccurate samples analysis

Although the classifiers with FMRP metric can provide the right classification for most of the

samples, there are about 6 or 7 misclassified samples for each subset (42 samples) of training-

testing procedure (5-fold cross-validation style introduced before). These misclassified

samples are associated with local random distortions. The samples are very difficult to right-

classify by the objective IQA metric since the same distortion in different areas may cause

different perceptions of the HVS. As shown in Fig. 4.14, there are very slight distortions

in (b) and (d) but the distortion areas are different, where the distortions of (b) occur in

the apparent area and the distortions of (d) occur in the non-significant area. Although the

distortions of images are very similar, the classification labels of the HVS are completely

different, where the classification label of the first pair of images is −2, and for the second

pair of images, the classification label is 0. Anyway, for these samples, the distortion is

very slight and if in the image sequence or video, it is difficult for the HVS to detect the

distortions. In the next section, we propose to detect the local random distortions effectively

and design a new RR-IQA metric with other features.
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PDFs of reference image and distortion image. As shown in Fig. 4.15 (c), (d), (e) and (f),

the KLDs of magnitude and relative phase of two images are very close. The numerical

comparison of KLDs is demonstrated in Table 4.6, where KLDs of (a) are larger than that of

(b). Since the image (a) loses a quality layer compared with the image (b), most of the pixels

in the former have a larger variation than that in the latter. For the global statistical measure

FMRP, the KLD value of (a) is larger than that of (b), although some pixels in the partial

area of (b) have a larger variation than that of (a). Thus, the FMRP feature cannot detect the

local distortions well and a new feature to measure local distortions should be developed.

Table 4.6 KLDs of six sub-bands of images (a) and (b)

Magnitude Relative phase

Sub-bands image (a) image (b) image (a) image (b)

1 0.0514 0.0110 0.0178 0,0236

2 0.0607 0.0195 0.0350 0.0297

3 0.1081 0.0301 0.0111 0.0178

4 0.0525 0.0102 0.0256 0.0283

5 0.0823 0.0195 0.0466 0.0389

6 0.1916 0.0338 0.0179 0.0254
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As mentioned earlier, it is necessary to introduce the local measure. Since the local

features in the CWT domain will cost a large transmission binary bits, it is difficult to deploy

them in communication systems. Then, after a study of literature, we found that the Local

Standard Deviation (LSD) map in the spatial domain is sensitive to the local distortion. The

LSD map is a matrix consisting of the standard deviation of image sub-blocks, which has

been used in many image applications such as contrast enhancement [19], noise estimation

[36] and image quality evaluation [37, 118]. In [37], Gore et al. applied a local standard

deviation (LSD) map to image quality estimation for JPEG and JPEG 2000 compression,

but the method needs a full access to the original image, which usually is impossible for the

communication system. Zhang et al. proposed an RR-IQA method which reduces reference

information by calculating the LSD of each block of the original image of a 12× 12 size

[118]. However, the method still involves a 4.88% binary cost of the original image and the

RR size will increase with the image size. Therefore, we try to find a briefer way to apply the

LSD map into image quality estimation. In this section, the local distortions will be coped

with a LSD map in the spatial domain since the LSD map in the wavelet domain will cost

a lot for transmission (18 sub-bands with real and imaginary parts). The local and random

distortions mean a large change of luminance in the local areas caused by the parasitic

oscillations, as illustrated in Fig. 4.11 in Section 4.3. Thus, the local standard deviation in a

neighboring area can indicate the distortion well. Considering the FMRP feature is sensitive

to the global distortions and LSD feature is sensitive to the local distortions, we combine

these two features to improve the accuracy in both regression and classification applications

in the thesis.

The scheme of the new metric is shown in Fig. 4.16. As it combines the FMRP feature

with the LSD feature, we name it the FMRP-LSD metric. The FMRP features are extracted

from the DT-CWT decomposition of the reference and the distortion images by the same

method in Chapter 3. The LSD map consists of the local standard deviation of blocks,

as shown in Fig. 4.17. The local feature, i.e., LSD feature, is computed from the linear

correlation coefficients between the LSD map of the reference and the distortion images.

With the FMRP features and the LSD ones, the FMRP-LSD metric can well detect the JP2K-

CD and JP2K-TED distortions frequently encountered in the wireless channel. According to

different application scenarios, regression or classification algorithm will be utilized to obtain

the mapping relation or the classification basis and then objective scores or classification

labels will be obtained.
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Fig. 4.16 Block diagram of new metric.

According to the size of most local distortions and the binary cost for transmission, we

partition the image into 12 blocks and calculate the local standard deviation of luminance

value for each block, as shown in Fig. 5.3. Different from the method adopted in [37, 118],

we proposed to measure the local distortion with the Pearson linear correlation coefficient

(PLCC) of the LSD of all blocks since the FMRP features already have good ability to detect

the overall distortion in our metric. The PLCC of the LSD map of the reference and the

distortion images can well detect the local distortions within the blocks and the structure

change of the overall image. Formally, the PLCC of blocks is defined as

CC =
∑

N
i=1(Ai −µA)(Bi −µB)√

∑
N
i=1(Ai −µA)2

√
∑

N
i=1(Bi −µB)2

, (4.2)

where N is the number of blocks, set as 12, Ai, Bi are block standard deviation vector of

reference image and distortion one, respectively, and µA, µB are the mean values of Ai, Bi.

As a feature juxtaposed the FMRP feature (KLDs between the wavelet sub-bands of the

reference and the distortion images), CC should be normalized in the same way as the KLD.

Thus, the difference of CC is utilized to measure the degradation of the image quality, rather

than using CC directly. Formally, the difference of CC is defined as

DCC = log10[k(1−CC)+1] (4.3)

where k is a constant to adjust the scope of the feature.

The new feature DCC can detect the local and the random distortions very well. Fig.

4.18 illustrates some pairs of images with different KLD, DCC and S values, where KLD is

the mean of all sub-bands (after the normalization of Eq. (3.12)), DCC is the new feature

for detecting local distortions, the larger the values of KLD and DCC, the worse the image
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4.5.2 Transmission binary cost

As an RR-IQA method used in wireless communication system, the binary cost of trans-

mission is also an important performance indicator. In Chapter 3, we roughly assign 8-bit

for quantization of each parameter and the total quantization cost for the FMRP features is

36×3×8 = 864 bits. In this subsection, we will determine the quantization bits for both

FMRP and FMRP-LSD metrics by a numerical method.

4.5.2.1 Relation between feature reduction and accuracy

In Chapter 3, we proposed an RR-IQA method named FMRP, which comprises 36 fea-

tures extracted from the magnitude and the relative phase of the DT-CWT. The image is

decomposed by a 3-scale 6-direction DT-CWT and thus there are 18 wavelet sub-bands with

magnitude and relative phase features after the decomposition. We have demonstrated that

the 3-scale decomposition obtains the best trade-off between the accuracy and the size of the

transmitted information, referring to Subsection 3.7.3. In this subsection, we mainly analyze

the influence of directions on accuracy.

First, the experiments are based on the LIVE database 2 to analyze the relation between

the accuracy and the feature dimension of the FMRP metric. The feature dimension is

reduced gradually from 36 to 6 to observe its influence on accuracy. Since the feature

dimension is determined by the wavelet direction, the variation in the number of directions

is also listed, as shown in Table 4.7, where the direction 1,2,3,4,5,6 respectively denote the

wavelet sub-bands −75◦,−15◦,−45◦, 75◦, 15◦, 45◦. The performance indicators, PLCC,

SROCC and OR, described in Chapter 3 are employed to evaluate the accuracy. From Table

5.2, one can see that the accuracy decreases slowly as the dimension decreases but even with

only one direction left, there is still relatively high accuracy. It is because the distortions in

LIVE database 2 are isotropic, that is to say, most distortions are global distortions. Therefore,

the reduction in the number of directions does not result in a significant drop in accuracy. In

this case, the dimension of the FMRP metric can be reduced. To make a balance between the

accuracy and the dimension of features, the best strategy is to keep 3 directions namely 18

features, for example, directions 1,2,3, or 4,5,6 or 1,3,5 in Table 5.2. However, if only the

accuracy is considered, all directions (namely 36 features) should be retained.
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Table 4.7 Variation of accuracy with feature dimensions

Directions Feature number PLCC SROCC OR

1,2,3,4,5,6 36 0.9751 0.9643 0.0025

2,3,4,5,6 30 0.9720 0.9631 0.0000

3,4,5,6 24 0.9689 0.9608 0.0000

1,2,3 18 0.9657 0.9557 0.0051

4,5,6 18 0.9654 0.9548 0.0051

1,3,5 18 0.9665 0.9525 0.0051

1,2 12 0.9512 0.9442 0.0102

1,4 12 0.9432 0.9299 0.0102

1,5 12 0.9510 0.9467 0.0102

1 6 0.9360 0.9178 0.0102

2 6 0.9364 0.9206 0.0102

3 6 0.9346 0.9128 0.0102

4 6 0.9328 0.9246 0.0102

5 6 0.9356 0.9212 0.0102

6 6 0.9319 0.9044 0.0153

Table 4.8 Classification accuracy varies with feature dimensions

Directions Feature number Classification accuracy(%)

1,2,3,4,5,6 36 83.24

2,3,4,5,6 30 82.38

3,4,5,6 24 80.48

1,2,3 18 79.33

4,5,6 18 80.38

1,3,5 18 81.90

1,2 12 81.88

1,4 12 78.38

1,5 12 81.62

1 6 80.48

2 6 78.57

3 6 76.57

4 6 80.29

5 6 81.52

6 6 75.24
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Second, based on the JPWL-RWC database, the effect of dimension reduction of the

FMRP metric on classification accuracy will be investigated. The similar procedure used in

the previous experiment is employed to reduce the FMRP metric’s dimensions or directions.

The performance indicator is the classification accuracy namely the rate between the right

classification labels and total labels. The experimental results are shown in Table 4.8. Unlike

the results in Table 5.2, the accuracy decreases quickly as the dimension decreases, and the

classification accuracies of all directions are different from each other. For example, the

accuracy of direction 1 is 80.48% but that of direction 6 is only 75.24%. The local and random

distortion of JP2K-TED in JPWL-RWC database cause this. The JP2K-TED distortions are

anisotropic and thus the wavelet sub-bands in different directions have different accuracies.

To detect the local and random distortions in different directions more comprehensively, all

the 36 features of FMRP metric are kept. Next, the quantization bits cost will be discussed.

4.5.2.2 Quantization bits of parameters

The FMRP-LSD metric comprises FMRP and LSD features. The FMRP feature is the

relevant parameters of the magnitude and the relative phase model, and the LSD feature

includes a local standard deviation map with 12 blocks. As summarized in Subsection 3.4.3,

the IGD model of the magnitude has two parameters, i.e., the sharp parameter λ and the

mean µv. The WCD model of the relative phase has the sharp parameter ρ and the mean µw.

In addition, including the modeling errors of the two models, thereby the total parameters

are six. To determine the quantization bits for each parameter, the quantization error should

be considered. The quantization error is decided by the quantization interval, that is, the

smaller the quantization interval, the less the error. However, the extra binary transmission

will increase and thus the balance between the quantization bits and the quantization error

should be taken into account.

The balance is determined as follows:

1. Taking all reference images of the LIVE database 2 as research objects and listing

maximal, minimal and median values of all parameters, as shown in Table 4.9.

2. The median value of KLD error is selected as the threshold to determine whether the

parameter variation will cause many errors or not. Since the median value of KLD

errors of the magnitude and the relative phase are respectively 0.0086 and 0.0016, the

error within these values is not supposed to make a large error for the modeling.

3. We change one parameter in turn while fix other parameters, observing whether

the relevant parameter variation will affect the model error apparently or not. If
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Table 4.10 The quantization bits of each parameter

Iterm
Magnitude Relative phase

λ µv KLD error ρ µw KLD error

Quantization bits 8 10 6 8 9 6

The specific quantization bits for all parameters are compiled in Table 4.10, where the six

parameters are quantized with 8, 10, 6, 8, 9 and 6 bits, respectively. For the FMRP features,

the total quantization bits are 18×(8+10+6+8+9+6) = 846 bits, if all the directions are

retained. Since one pixel intensity of an image is usually represented with an 8-bit integer,

hence, each block standard deviation of the LSD map can be determined as 8 bits. Thus, for

the LSD feature, the transmission of the LSD map will cost 12×8 = 96 bits in total. The

new FMRP-LSD metric will cost 846+96 = 942 bits in parameter transmission, which is

0.3% of the cost of image transmission. It is slightly larger than that of the cost of the FMRP

metric (0.27%) and far less than another RR-IQA metric SB44 (4.88%) [118].

4.5.3 Improvement for decoding strategy

In this section, we will verify the effectiveness of the new metric for optimizing the decoding

strategy. The FMRP-LSD metric is deployed in the JPWL decoder in the same way as FMRP

metric, as shown in Fig. 4.5 in Chapter 4. The difference is the FMRP-LSD metric costs

more for RR transmission since the LSD map of the reference image is transmitted along

with the FMRP features. The LSD map will take 12 bytes of additional cost (details will be

discussed in the next section). The FMRP features and LSD feature of the reference image

and the distortion one serve as the classification basis and the input of the classifier. Then,

after the training of JPWL-RWC database, the classifier selects the better-quality image as

the decoding output to optimize the decoding configuration.

To validate the performance, the decoding strategies with FMRP, DCC and FMRP-LSD

metrics are compared in Table 4.11, where the experiment utilizes a 5-fold cross-validation

and the numbers "1" to "5" denote five subsets of 210 samples, respectively. The experimental

results demonstrate that the decoding strategy with FMRP-LSD metric could greatly improve

the ratio of the correctly classified samples. Moreover, two wrongly classified samples of

decoding strategy with FMRP are shown in Fig. 4.20, where (b) and (d) have obvious local

distortions in some areas, which are not detected by the FMRP metric, but they are detected

by the FMRP-LSD metric. For the HVS, the classification lables of the two pairs of images

are both −2, which means (a) and (c) have a better quality than (b) and (d), respectively.

However, for the FMRP metric, (b) and (d) have a better quality, which is opposite to the
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Table 4.11 Comparison of decoding strategies with FMRP, DCC and FMRP-LSD

Ratio of correctly classified samples

Decoding strategy 1 2 3 4 5

with FMRP 82.86 83.81 82.86 83.81 82.86

with DCC 76.19 76.19 76.19 76.19 76.19

with FMRP-LSD 88.10 89.05 87.62 87.62 88.57

4.5.4 Validation on comprehensive database

Furtherly, the new metric is validated based on the comprehensive IQA evaluation database

TID2013*, which keeps 18 types of distortions of TID2013 and does not contain six exotic

distortions that will not occur in the communication system (details illustrated in Subsection

3.7.1). For one single distortion type, there are 125 distortion images and thus the 5-fold

cross-validation is utilized. For all 18 distortion types, there are 2250 distortion images and

thus the 10-fold cross-validation is used. To compare the performances, PLCC, SROCC and

OR are employed to evaluate the prediction accuracy, the prediction monotonicity and the

prediction consistency, as shown in Table 5.3. Obviously, the FMRP-LSD metric performs

better for most distortion types such as JPEG compression and JPEG 2000 compression,

JPEG and JPEG 2000 transmission error, and Blur and White noise distortions. Moreover,

the metric also has an obvious improvement for the mixture of all distortions in the TID2013*

database. This demonstrates that the LSD feature is effective to detect the image degradation

and can improve the accuracy of the FMRP metric. The only one type of distortions without

higher accuracy than FMRP metric is JPEG-TE, which is associated with global blur and

ringing at the edges. These distortions indeed cannot be detected well by the local LSD

feature, however they can be well detected by the FMRP feature. Thus, the FMRP metric

performs well in detecting this kind of distortions. In summary, the FMRP-LSD metric could

improvement for the objective score prediction.

Table 4.12 Comparison between FMRP and FMRP-LSD metrics on TID2013* database

Metric Criteria All JPEG JP2K JPEG-TE JP2K-TE Blur White noise

FMRP PLCC 0.8504 0.8934 0.9254 0.9060 0.8127 0.9296 0.8214

SROCC 0.8549 0.8478 0.8873 0.8130 0.8065 0.9354 0.8036

OR 0.0686 0.0413 0.0140 0.0327 0.0927 0.0073 0.0900

FMRP-LSD PLCC 0.8812 0.9238 0.9268 0.9030 0.8340 0.9493 0.8314

SROCC 0.8820 0.8657 0.8902 0.8124 0.8256 0.9491 0.8119

OR 0.0504 0.0203 0.0087 0.0227 0.0805 0.0027 0.0717
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4.6 Chapter summary

In this chapter, we proposed an optimization strategy for decoding configuration over a

realistic wireless transmission. The strategy utilizes the RR-IQA metric FMRP to select a

better-quality image and determine a decoding configuration. It improves the users’ QoE

while ensuring the system’ QoS.

To validate the decoding strategy, we constructed a new database named JPWL-RWC

which comprises 480 images with JP2K-CD and JP2K-TED distortions and contains a large

physiological vision test of around 100 people from three countries (France, China and India).

The database reveals properties of JP2K-CD and JP2K-TED distortions and thus is helpful to

understand and analyze these two distortions. The final purpose of the database construction

is to provide a benchmark for optimization of decoding configuration.

According to the properties of JP2K-CD and JP2K-TED distortions, a new metric FMRP-

LSD has been proposed. The metric detects the global distortions with the FMRP feature

and detects the local distortions with the LSD feature.

The experimental results demonstrate that the decoding strategies with FMRP and FMRP-

LSD metrics can greatly improve the QoE, as compared with the classic decoding strategy

and the decoding strategy with other quality metric, in various kinds of channel states.





Chapter 5

Conclusion and perspective

5.1 Summary of thesis

The image quality assessment based on the visual features is a popular research topic in image

processing field. This thesis proposed two new reduced reference image quality assessment

metrics and applied them into optimization of the decoding configuration over a realistic

wireless communication channel. The main contributions are as follows:

Firstly, we have proposed a new reduced-reference image quality metric, FMRP, which is

based on statistical models in the complex domain. The metric exploits the multi-scale and

multi-direction features of the DT-CWT decomposition to detect the image degradation. The

features are extracted from statistical models of the magnitude and the relative phase and the

parameters serve as the reduced-reference information. The Kuallback-Leibler divergence

between models of the reference image and the distortion image is utilized to quantify the

image quality and then the objective score is obtained by a generalized regression neural

network approach. Usually, the magnitude information is sensitive to the energy change

while the phase information is sensitive to the structure change. The existing metrics in

the wavelet domain either utilize the magnitude of the DWT real-value wavelet or utilize

the phase information of the CWT. This leads to a limited accuracy and lack of robustness.

The FMRP metric utilizes advantages from both the magnitude and the phase, and thus

has a higher accuracy and a better robustness. The effectiveness has been demonstrated by

experiments based on the large public databases.

Secondly, with the new FMRP metric, a new decoding strategy has been proposed

for a realistic wireless transmission channel, which can improve the quality of experience

while ensuring the quality of service. For this, a new database including 420 distortion

images and large physiological vision tests of around 100 people from three countries,

has been constructed to collect the visual preference of different decoding configurations.
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Then, a classifier based on support vector machine or K-nearest neighboring is exploited

to automatically select the decoding configuration. The classical transmission strategies

guarantee the quality of service by adjusting the system parameters but do not consider

the quality of experience of users. The new strategy improves the quality of experience by

applying the quality metric FMRP to measure the image quality. Comparative experiments

verify the effectiveness of the decoding strategy in the improvement of image experience.

Moreover, the new database reveals the characteristics of the distortions encountered in the

wireless communication system, which helps to develop new methods to detect distortions.

Thirdly, according to the specific characteristics of the distortions in realistic wireless

channel, a new quality metric FMRP-LSD has been proposed, which is based on the global

statistical feature in the wavelet domain and the local statistical feature in the spatial domain.

The global feature in wavelet domain is utilized to detect the global distortion such as blur

and ringing while the local feature is exploited to detect the local random distortion caused

by the noise oscillation. The experimental results verify the effectiveness of the FMRP-LSD

metric in the applications of image quality assessment and optimization of decoding strategy.

5.2 Future research

In the thesis, the image quality evaluation technology and the optimization of decoding

strategy in wireless communication systems have been studied and some methods have been

proposed. However, with the continuous development of multimedia technology, there are

still many new applications and problems in the field of image quality evaluation. According

to the experience in the research process, we believe that the following research directions or

technologies deserve further study.

1. Image quality metric for 3D application scenarios. The FMRP and the FMRP-LSD

metrics proposed in this thesis can be applied to evaluate the image quality of both left

and right views. Then, if we can find a well-designed weighting coefficient to balance

the effects of the degradations of left and right views on total image quality, the 3D

image quality metric will be obtained.

2. Image quality evaluation based on a multi-feature fusion. Usually, the image distortions

are caused by different variations such as variations in luminance, contrast, color,

structure and texture. The metric with multi-feature of different types and different

measurement distances can evaluate the image quality in a more comprehensive way.

The FMRP metric proposed in Chapter 3 evaluates the image with multi-scale and

multi-direction features but they are all statistical features based on the PDF model. It
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performs well for global distortions but badly for local distortions. The FMRP-LSD

metric proposed in Chapter 5 combines the global feature with local feature and thus

has a better performance than FMRP metric. In the future, we may develop a more

robust and comprehensive image quality metric by utilizing more features that measure

the quality in different ways.

3. No-reference image quality metric. The thesis does not involve the research of no-

reference image quality metric but it has a prominent advantage due to its evaluating

image without access to the reference image. Although it is difficult to design a

no-reference image quality metric suitable for multiple distortions, the no-reference

metric has drawn much attention of researchers, recently. With the development of

human-visual-system research and the in-depth understanding of various distortion

characteristics, it is possible to design no-reference image quality metrics for specific

distortions are possible.

4. Image quality metric based on deep neural network. We did not adopt the deep neural

network-based IQA metric since the JPWL-RWC database only includes 210 samples,

which is too small for deep neural network training. In the future, we can extend the

database and introduce the deep neural network-based IQA metric to optimize the

decoding strategy.

5. Application of the metrics for other communication systems. We can also extend the

FMRP and the FMRP-LSD metrics to other communication systems with different

compression and transmission standards.
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