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I'd also like to thank China Scholarship Council (CSC) for funding. I sincerely thank my parents, my brother and all my family for their endless love and support in my life. I want to especially thank my fiancée Ting for being very understanding and considerable, for the beautiful memories of travelling and for the countless hours we have spent on the TGV between Rennes and Lyon every weekend. férents points de vue et de leurs cartes de profondeur associées. En utilisant le format MVD, seul un nombre limité de vues originales et leur carte de profondeur correspondante doivent être codés et transmis. Les vues virtuelles supplémentaires côté récepteur peuvent être synthétisées à partir des vues décodées et des profondeurs basées sur le rendu en profondeur par image (DIBR). En outre, des méthodes de compression efficaces: le codage vidéo multiview à haute efficacité (MV-HEVC) et le codage vidéo à haute efficacité (3D-HEVC) ont été développées par le groupe de normalisation sur le développement d'une extension de codage vidéo 3D (JCT-3V) pour compresser les données du MVD. Bénéficiant des méthodes de codage efficaces et du DIBR, MVD est devenu l'une des méthodes de présentation 3D les plus populaires.

Bien que le potentiel de DIBR soit élevé, les algorithmes actuels du DIBR peuvent introduire de nouveaux types de distorsions, bien différents de celles provoquées par la compression vidéo. La plupart des normes de codage vidéo reposent sur la transformation en cosinus discrète, qui entraîne des distorsions spécifiques, par exemple, "blur", "blockiness" et "ringing". Ces distorsions sont souvent dispersées sur l'ensemble de l'image, tandis que les artefacts synthétisés par DIBR sont pour la plupart locaux. Les artefacts de vue synthétisés par DIBR proviennent d'une compression avec pertes de profondeur et d'une synthèse de vue, et se produisent généralement dans les zones exclues. Étant donné que la plupart des mesures de qualité objective 2D couramment utilisées sont initialement conçues pour évaluer les distorsions de codage courantes, elles peuvent échouer dans l'évaluation de la qualité des images contenant des distorsions dues à la synthèse et à la compression.

Les contributions présentées dans cette thèse visent à améliorer l'évaluation de la qualité des vues synthétisées par le DIBR. Bien que plusieurs efforts aient été faits pour évaluer la qualité des vues synthétisées par le DIBR, celui-ci ne peut toujours pas aboutir à un résultat satisfaisant. La première contribution de cette thèse est la proposition de deux métriques No-reference (NR) et de deux métriques Full-reference (FR) pour des vues synthétisées par DIBR. Deuxièmement, lors de l'étude des métriques, il n'existait pas de base de données adéquate pour l'évaluation de la qualité des vues synthétisées par DIBR; une nouvelle base de données d'images DIBR est proposée.

Organisation de la thèse

La thèse est organisée comme suit. L'introduction générale de cette thèse est donnée dans ce chapitre, puis le chapitre 1 introduit le principe de la synthèse de vues 3D et analyse ses distorsions particulières. Ensuite, les principales contributions de cette thèse sont organisées dans les trois chapitres suivants. Le chapitre 2 présente deux mesures de qualité sans référence basées sur la morphologie; chapitre 3 présente les deux métriques FR proposées et le chapitre 4 est consacré à notre nouvelle base de données DIBR. Enfin, la conclusion et les perspectives sont présentées au chapitre 5.

Chapitre 1 Vue d'ensemble de la synthèse de vue 3D et de l'analyse de distorsion

Ce chapitre présente les bases de la synthèse de vues 3D. Tout d'abord, la perception de la vision 3D du Human Vision System (HVS) et les formats de représentation de contenu les plus couramment utilisés pour les vidéos 3D sont présentés en détail. Nous discuterons ensuite du principe de la synthèse de vues DIBR et de son influence particulière sur la qualité des vues synthétisées. Pour conclure, quelques métriques objectives de pointe dédiées à l'évaluation de la qualité des vues synthétisées par DIBR sont brièvement examinées.

Chapitre 2 Métriques Full-reference (FR) proposées pour l'évaluation de la qualité d'image

Ces dernières années, plusieurs métriques FR ont été proposées pour évaluer la qualité des vues synthétisées par le DIBR. Cependant, aucune d'entre eux n'a pu obtenir des performances satisfaisantes. Dans ce chapitre, deux métriques de qualité d'image FR axées sur la distorsion et la désocclusion géométriques dans les vues synthétisées par DIBR sont présentées. Tout d'abord, nous observons qu'il existe une grande quantité de distorsions géométriques et de décalage d'objet dans les vues synthétisées par DIBR que les métriques de qualité 2D traditionnelles ne peuvent pas évaluer. Cela est dû au fait que le système HVS est plus sensible aux artefacts locaux que le changement d'objet global. Ainsi, une approche SURF + RANSAC est utilisée pour compenser approximativement le changement d'objet global. Ensuite, dans le premier modèle de qualité FR SC-DM, nous utilisons un masque de désocclusion pour pondérer la différence entre l'image synthétisée et l'image de référence déformée. Il peut être utilisé avec n'importe quelle métrique de qualité basée sur les pixels. D'autre part, dans la deuxième métrique de qualité FR SC-IQA, une méthode de concordance de blocs multi-résolution est proposée pour compenser avec précision le décalage d'objet et pénaliser également la distorsion géométrique locale. En outre, une carte de saillance est également utilisée pour pondérer les distorsions finales. Les résultats expérimentaux montrent que le modèle de qualité SC-DM améliore considérablement les performances du PSNR et du SSIM. La métrique SC-IQA surpasse toutes les métriques de qualité testées de l'état de l'art, y compris les métriques FR, NR et RR.

Chapitre 3 Métriques No-reference (NR) proposées pour l'évaluation de la qualité d'image

différence significative entre les métriques dédiées à la vue synthétisées par DIBR.

Chapitre 4 Base de référence pour métriques d'évaluation de la qualité de la vue synthétisée DIBR Ce chapitre présente une nouvelle base de données d'images synthétisées par DIBR, qui se concentre sur les distorsions produites uniquement par différentes méthodes de synthèse de DIBR. Tout d'abord, nous donnons un aperçu des bases de données existantes du DIBR, puis nous présentons la contribution principale de ce travail. Par rapport aux bases de données existantes, nous testons des algorithmes plus nombreux et plus récents, notamment la synthèse entre vues et la synthèse à vue unique, ce qui exclut les distorsions «anciennes».

Chapitre 5 Conclusion et perspectives

Ce chapitre conclut l'apport de cette thèse: deux métriques de qualité NR, deux métriques de qualité FR dédiées aux vues synthétisées par DIBR et une nouvelle base de données d'images synthétisées DIBR accessible au public.

INTRODUCTION Objective and contributions of the thesis

The past decade has witnessed the fast increasement of the 3D CINEMA market size, cf. Fig. 2 . However, this stereoscopic video can only provide two viewpoint videos, the observer can not get a stereoscopic perception at another viewpoint. Nowadays, the customers are desiring the applications which can provide more immersive perception. 1 synthesizing virtual views in many other recent popular immersive multimedia applications, such as VR [START_REF] Rheingold | Virtual reality: exploring the brave new technologies[END_REF], Augmented Reality (AR) [2] and Light Field (LF) multi-view videos [START_REF] Sabater | Dataset and Pipeline for Multi-view Light-Field Video[END_REF], etc. For example, DIBR has already been used in a light field compression scheme where only very sparse samples (four views at the corners) of light field views are transmitted while the others are synthesized (cf. Fig. 4). This new scheme significantly outperformed High Efficiency Video Coding (HEVC) inter coding for the tested LF images [START_REF] Jiang | Light field compression using depth image based view synthesis[END_REF]. Another example concerns 360-degree and volumetric videos: two developing areas pointing to how video will evolve as VR/AR technology becomes the mainstream [START_REF]The Future of Video: Enabling Immersion[END_REF]. Current 360-degree videos allow viewers to look around in all directions, but only at the shooting location: they do not take into account the translation (changes in position) of the head. To achieve more immersive QoE, some companies propose to use DIBR to synthesize the non-captured views when users move from the physical camera's position, as proposed in Technicolor's volumetric video streaming demonstration [START_REF]Industrial demonstration[END_REF]. One similar approach 3 is proposed (see Fig. 5), where typical DIBR artifacts appear (around the contours) if users try to look at an object on the floor hidden behind the person. In the social and embodiment VR media applications, where a VR media designed for 360-degree videos mixed with real-time objects for multiple users, an eye-contact technique based on the DIBR [START_REF]Industrial demonstration[END_REF] can provide the users the viewpoint according to their eye positions, which gives the users a better interactive QoE.

As shown in Fig. 6 , there are two main kinds of DIBR view synthesis algorithms: the single view based synthesis and the interview synthesis: for the single view based synthesis, we use the one base view to synthesis another; for the interview synthesis, we use two base views to render the middle one. As it is well known that during the video compression or transmission, we should consider the quality of decompressed or decoded videos. When it comes to view synthesis, how about the quality of synthesized views?

Although DIBR has a great potential, current DIBR algorithms may introduce some new types of distortions which are quite different from those caused by image compression. Most compression methods can cause specific distortions [START_REF] Yuen | A survey of hybrid MC/DPCM/DCT video coding distortions[END_REF], eg. blur [START_REF] Zhou | Scale-aware edge-preserving image filtering via iterative global optimization[END_REF], blockiness [START_REF] Wang | Blind measurement of blocking artifacts in images[END_REF] and ringing [START_REF] Feng | Measurement of ringing artifacts in JPEG images[END_REF]. These distortions are often scattered over the whole image, while the DIBR-synthesized artifacts (caused by distorted depth map and imperfect view synthesis method) mostly occur in the disoccluded areas. Since most of the is dedicated to our new DIBR database. Finally, the conclusion and perspectives and presented in Chapter 5.

Chapter 1 Overview of 3D view synthesis and distortion analysis

This chapter presents the basis of 3D view synthesis. Firstly, the 3D vision perception of Human Vision System (HVS) and the most commonly used content representation formats of 3D videos are introduced in detail. Then, we discuss the principle of the DIBR view synthesis and its particular influence on the quality of synthesized views. After that, some state-of-the-art objective metrics dedicated to assess the quality of DIBR-synthesized views are briefly investigated.

Chapter 2 Proposed FR image quality assessment metrics

In recent years, several FR metrics have been proposed to assess the quality of DIBRsynthesized views. However, none of them could get a satisfactory performance. In this chapter, two FR image quality metrics focusing on the geometric distortion and disocclusion in the DIBR-synthesized views are presented. Firstly, we observe that there exist a large amount of object shift and geometric distortions in the DIBR-synthesized views which the traditional 2D quality metrics may fail to assess. This is due to the fact that the HVS is more sensitive to local artifacts compared to the global object shift. Thus, a Speeded Up Robust Features (SURF) + Random sample consensus (RANSAC) approach is used to compensate the global object shift roughly. Then, in the first FR quality model SC-DM, we use a dis-occlusion mask to weight the difference between the synthesized image and the warped reference image. It can be used with any pixel based quality metric. On the other hand, in the second FR quality metric SC-IQA, a multi-resolution block matching method is proposed to precisely compensate the object shift and penalize the local geometric distortion as well. In addition, a saliency map is also used to weight the final distortions. The experimental results show that the SC-DM quality model improves the performance of Peak signal-to-noise ratio (PSNR) and Structural similarity index (SSIM) significantly, the SC-IQA metric outperforms all the tested state-of-the-art quality metrics, including the FR, NR and Reduced-reference (RR) metrics.

Chapter 3 Proposed NR image quality assessment metrics

As introduced in Chapter 1, in some 3D applications, such as FVV, even with a very large number of views, it is still not possible to cover all the arbitrary viewpoints of a particular scene. That is to say, there is no reference image for the synthesized view in some circumstance. In this case, the NR quality metrics are in great need. In this chapter, we propose two completely NR image quality metrics (NIQSV and NIQSV+) for DIBR-synthesized views. These two metrics are both based on the assumption that the image with good quality is supposed to present sharp and regular edges, smooth values inside the object and large discontinuities at the object borders. Such images are insensitive to opening and closing morphological operations while some artifacts such as blurry regions around the object edges and crumbling in the synthesized views are sensitive to such morphological operations. Based on this property, NIQSV uses a pair of opening and closing operations to measure these distortions. As an extended version of NIQSV, NIQSV+ improves its performance by estimating the other two types of distortions: black holes and stretching. Then, the experimental results on the IRC-CyN/IVC DIBR image database show that the proposed NIQSV metric outperforms the traditional 2D metrics and approaches the performance of DIBR dedicated FR. The proposed NIQSV+ achieves the second place in all the DIBR dedicated metrics including FR and NR at the time of experiment, and there is no significant difference between the DIBR-synthesized view dedicated metrics.

Chapter 4 A benchmark of DIBR-Synthesized View Quality Assessment Metrics

This chapter presents a new DIBR-synthesized image database focusing on the distortions only produced by different DIBR synthesis methods. Firstly, we give an overview of the existing DIBR databases, and then the main contribution of this work is presented. Compared to the existing databases, we test more and newer algorithms including inter-view synthesis and single view based synthesis, which excludes the "old fashioned" distortions. CHAPTER 1

OVERVIEW OF 3D VIEW SYNTHESIS AND

DISTORTION ANALYSIS

The 3D vision perception allows the human to perceive the world in three dimensions. In this chapter, we firstly introduce the principle of 3D vision perception and the most widely used 3D content representation; then the DIBR view synthesis method and its particular distortions are analyzed; next we give an overview of the existing state-ofthe-art DIBR-synthesized view dedicated quality assessment metrics; this chapter is concluded in the last section.

3D vision perception

3D vision comes from the perception of depth. Depth perception arises from a variety of depth cues: the monocular cues and the binocular ones. The monocular cues can be extracted from a single two-dimensional image and be observed with just one eye, while the binocular cues are based on the receipt of sensory information in three dimensions from both eyes.

Monocular cues

By using only one image, we can still perceive the depth information. Here lists some monocular cues that we can use to help perceive the depth:

• Light and shadow: the objects near the light source are more brightly illuminated than those who are far away from the light source. Thus, the way light falls on objects and the amount of shading present can be an important monocular cue to tell the depth. cf. • Linear perspective: it refers to the fact that the parallel lines appears to converge in the distance. cf. • Aerial perspective: due to the light scattering of atmosphere, the object which are farther away always have lower luminance contrast and color saturation, they seem to be blurred or slightly hazy. cf. • Relative size: if there are two objects with the same known size, relative size cues can provide information about the relative depth of the two objects. The depth difference can be perceived based on the fact that the larger objects appear closer and the smaller objects appear farther away. cf. • Occlusion: it occurs when there is overlapping of objects. The occluded objects is considered farther away. cf. 
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• Motion parallax: it is a dynamic depth cue provided by motion. If we focus our eye on a certain object and then move our our head to the right side, the objects which are closer to us will move to the left while the objects farther away will move to the right. It gives the relative information about the distance to an object and expresses how close an object is from the certain one. It can come from moving objects or moving observers. 9. Source: https://isle.hanover.edu/Ch07DepthSize/Ch07Panum.html

Binocular cues

Generally, we perceive depth because of the two slightly different retinal images from the two eyes, which is known as binocular disparity. The binocular disparity is present because the human eyes are horizontally separated by 6.3 cm (on average) which provides each eye with a different viewpoint of the real scene. [START_REF] Ijsselsteijn | Human Factors of 3D Displays[END_REF] The retinal points from one eye's view are matched to corresponding points in the other eye's view, the point to point disparity variation provides the information of the relative distances of objects, the depth structure of objects, as well as the depth structure of surroundings. This perception of depth is referred to as "stereoscopic depth". [START_REF] Howard | Binocular vision and stereopsis[END_REF] Our nervous system fuses the two retinal images to a single image. As shown in Fig 1 .2, the points which have no disparity construct a line which is called "horopter" (when the eyes converge on the object). The points whose disparities are within a certain interval can be fused to a single experienced image. This small region around the "horopter" is named Panum's fusional area. The points lying out of this Panum's fusional area will not be fused and double images will be caused. The points which are closer or farther produce double images of crossed or uncrossed disparity respectively. Although the complex mechanisms of human vision system are not clearly understood, the use of monocular and binocular cues already enable creators and artists to impress the public by illusion of depth. In the next section, we will introduce some widely used 3D content representation formats.

3D content representation

Several applications have been developed to provide the observer immersive perception of 3D visual scene, such as 3D-TV, MVV and FVV. In these applications, at least two images from small different viewpoints are required for the stereoscopic visualization. Especially, for MVV and FVV, the images from more viewpoints are needed.

To provide the input for such 3D applications, various 3D content representation formats have been proposed for different applications.

The stereoscopic video could be the simplest type of 3D data format. It contains a pair of conventional 2D videos for the left and the right eye respectively. One of the main drawback of this format is that the baseline distance depends on the video capture configuration, the parallax is limited. It can only be used for stereoscopic display, for the FVV or MVV, it is not suitable.

In order to improve the stereoscopic video format, many 3D content representation types have been proposed. Multi-view video format can be recognized as a simple extension of stereoscopic video since it consists of more views than the stereoscopic ones. However, the data size increases greatly as the number of views increases. Another approach is the video-plus-depth format, which is widely known as 2D+Z. This data presentation consists of only one 2D video sequence and its associated depth map, and the stereo pair can be synthesized based on Depth-Image-Based-Rendering (DIBR) [START_REF] Fehn | Depth-Image-Based Rendering (DIBR), compression, and transmission for a new approach on 3D-TV[END_REF]. Owing to the imperfect of DIBR technique, the baseline range of the synthesized stereopair videos are quiet limited.

To overcome these disadvantages, Multiview-Video-Plus-Depth (MVD) [START_REF] Merkle | Multi-View Video Plus Depth Representation and Coding[END_REF] has been proposed. It consists of multiple texture views from different viewpoints and their associated depth maps. Using the MVD format, only a limited number of original views and their corresponding depth map need to be encoded and transmitted. The additional virtual views on the receiver side can be synthesized from the decoded views and depths based on DIBR technique. In addition, efficient compression methods: Multiview High-Efficiency-Video-Coding (MV-HEVC) [START_REF] Tech | Overview of the multiview and 3D extensions of high efficiency video coding[END_REF] and 3D High-Efficiency-Video-Coding (3D-HEVC) [START_REF] Tech | Overview of the multiview and 3D extensions of high efficiency video coding[END_REF] have been developed by the Joint Collaborative Team on 3D Video Coding Extension Development (JCT-3V) to compress the MVD data. Benefiting from the efficient coding methods and DIBR, MVD has become one of the most popular 3D presentation methods.

3D view synthesis principles

Depth-image-based-rendering (DIBR) is one of the most popular methods to generate virtual views. As shown in Fig. 1.3, DIBR uses the captured texture images and depth maps to generate the novel view as if there were a virtual camera.

The DIBR is a process of generating novel views of a scene from original texture images and associated depth information. Firstly, the original texture image is re-projected into 3D world aided by the associated per-pixel depth data; then these 3D space points are projected into the image plane of a new virtual view position. This concatenation of 2D-to-3D re-projection and the subsequent 3D-to-2D projection is usually called 3D image warping in the Computer Graphics (CG) literature. As shown in Fig. 1.4, the DIBR view synthesis can be divided into two parts: 3D warping and hole

View synthesis distortion analysis

filling. During the 3D warping procedure, the pixels in the original view are warped to there corresponding positions in the target view. Owing to the changing of viewpoint, some objects which are invisible in the original view may become visible in the target one, which is called dis-occlusion and causes black holes in the synthesized view. Then, the second step is to fill the black holes, as shown in Fig. 1.4. The holes could be filled by typical image inpainting algorithms. Most of the image inpainting algorithms use the pixels around the "black holes" to search the similar regions in the same image, and then use this similar region to fill the "black holes". The distortions caused by the DIBR view synthesis method will be discussed in the next section.

View synthesis distortion analysis

Unlike the distortions induced by video compression, the distortions of DIBR-synthesized views mainly result from inaccurate depth map and view synthesis algorithms. They mainly happen in the dis-occluded regions which are non-visible in the previous view but become visible in the target view.

Owing to the lack of texture information of the dis-occluded regions, many inpainting methods have been developed to reduce these synthesis artifacts. But these processes may generate some new types of distortions and these distortions from image inpainting are specific and depending on the algorithm.

Another source of distortion may come from the depth map. Firstly, during the 3D warping process, a large number of errors can also be induced by the numerical rounding operations of pixel positions since the corresponding pixel positions in the target viewpoint may be not an integer. In addition, the lossy compression of the depth map may also lead to artifacts, for example, the blocking effects, blurry or quantization errors in the depth map can induce the pixels in the original viewpoint to be rendered to the wrong positions in the target viewpoint, which will lead to object shifting or crumbling the synthesized texture image. These distortions can be summarized as follows.

• Object shifting: object regions can be slightly shifted or resized in the synthesized view due to incorrect depth information produced by high-frequency noise or depth pre-processings including low-passing filters and depth encoding methods to smooth the object borders. As shown in Fig. 1.5, the right borders of the character's faces are slightly modified. • Ghosting effect: Fig. 1.6 also shows an example of ghosting effect. In this image, the depth map is distorted by a Gaussian noise. It could be observed that the object ("hand" in the image) of the two base views are rendered to the wrong pixel positions, causing a ghost in the synthesized view.

• Object warping: Fig. 1.7 gives an example of object warping caused by imperfect image impainting method. In this image, the Tela's image impainting method which in introduced in [START_REF] Telea | An image inpainting technique based on the fast marching method[END_REF] is used. It could be observed that the "newspaper" and the "girl's nose" are extremely stretched, and their shapes are greatly changed.

• Slight geometric distortion: a large number of slight geometric distortions can be induced by the numerical rounding operations of pixel positions and depth inaccuracy. This may not be noticeable to the human eye, but it could be overestimated by pixel-based metrics.

• Stretching: stretching errors mainly happen at the left or right side of the image where in-painting methods may fail to reconstruct. This type of distortion is shown in Fig. 1.8 (b).

• Blurry regions: some blurry regions may be produced by in-painting methods used to fill the disoccluded regions. They can be noticed at the foreground and background transitions. As shown in Fig 1.8 (d), blurry regions can be perceptible around the sculpture.

• Crumbling: the object edge may seem distorted in the synthesized view. This is mainly cased by quantization artifacts in depth data around strong discontinuities which appear like erosion as shown in Fig. 1.9 (c). It typically occurs when applying wavelet-based compression on depth maps.

• Flickering: pixels could be projected into an erroneous location due to the random errors happening in depth sequence. These pixel positions suffer slight changes. This is a temporal artifact which occurs in synthesized video sequences.

• Black holes: when the disoccluded areas are left unfilled after the 3D warping, they induce a strong visual artifact in the synthesized view, as shown in Fig. 1.9 (d).

As mentioned above, since the synthesis artifacts are far different from the compression artifacts, they are geometric distortions : the position of the pixel is modified, whereas classic metrics measure modification of pixel value, but assume no position modification. The traditional 2D IQA metrics do not work well on these types of artifacts.

Overview of the state-of-the-art quality assessment methods of DIBR-synthesized views

The objective Image quality assessment (IQA) metric can be divided into three categories relying on the amount of reference information used in the metric: FR metrics assess the quality of the distorted image by using the original undistorted image; RR metrics use reduced information extracted from the original undistorted image; NR or blind metrics can evaluate the quality of the distorted images without access to the original undistorted image.

In recent years, several methods have been proposed to assess the quality of DIBRsynthesized views, including FR, NR, RR and side view based FR metrics. Especially, the side view based FR metrics use the image at the original viewpoint as reference image. As shown in Fig. 1.10 . Table 1.1 classify the metric based on the approaches. Most of the metrics (VSQA, MP-PSNR, MW-PSNR, EM-IQA and CT-IQA) evaluate the quality of synthesized views by considering the contour or gradient degradation between the synthesized and the reference images which is one of the most annoying characterization of geometric distortion. While some metrics (DSQM, 3DSwIM) calculate the quality score by comparing the extracted perceptual features between the synthesized and the reference images. Especially, the APT metric uses a local image description model to reconstruct the image, and the use the reconstructed error to assess the quality of the synthesized views. These metric are introduced as follows. 

- - - - - - - - 3DSwIM - - - - - - - - MW-PSNR - - - - - - - MP-PSNR - - - - - - - CT-IQA - - - - - - - - EM-IQA - - - - - - - - PSPTNR - - - - - - - - VQA-SIAT - - - - - - - - 3VQM - - - - - - - - RR MP-PSNRr - - - - - - - MW-PSNRr - - - - - - - SV FR LOGS - - - - - - - DSQM - - - - - - - - NR APT - - - - - - - - CSC-NRM - - - - - - - -
The FR quality metrics:

• VSQA (View Synthesis Quality Assessment):

The main feature of the VSQA [START_REF] Conze | Objective view synthesis quality assessment[END_REF] proposed by Conze et al. is to apply three weighting maps on the SSIM distortion map [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]. The purpose of these three weighting maps is to characterize the image complexity in terms of textures, diversity of gradient orientations and presence of high contrast. These three weighting maps are calculated from three visibility maps.

Firstly, the texture-based visibility map is obtained as the mean of the gradient magnitude of a certain window N t × N t . As shown in Eq. 1.1

V t (i, j) = 1 N 2 t × i+[ N t 2 ] l=i-[ N t 2 ] j+[ N t 2 ] k=j-[ N t 2 ] w l,k grad[l, k] (1.1)
where, V t (i, j) indicates the texture-based visibility map, grad[] means the corresponding gradient map with a Sobel operator, w l,k is the gaussian weighting function and N t is the window size.

Except the gradient magnitude, the gradient orientation is also taken into consideration to form an orientation-based visibility map, due to the fact that the HVS is sensitive to local orientation features. The orientation-based visibility map is calculated as follows:

V o (i, j) = min q [ 1 N 2 o × i+[ No 2 ] l=i-[ No 2 ] j+[ No 2 ] k=j-[ No 2 ] w l,k [Lum(l, k) -Lum(i, j)]]] (1.2)
where Lum represents the luminance value, θ is the gradient orientation, which is obtained as Eq. 1.3:

θ(i, j) = tan -1 ( G y (i, j) G x (i, j) ) + π 2 (1.3)
where G x and G y indicates the horizontal and vertical gradient respectively.

The third visibility map corresponds to the image contrast, since the distortions at the pixels with significant luminance difference to their neighborhood are much more annoying. This contrast-based visibility map is computed by:

V c (i, j) = min q [ 1 N 2 c × i+[ Nc 2 ] l=i-[ Nc 2 ] j+[ Nc 2 ] k=j-[ Nc 2 ] w l,k min[(θ(l, k) -θ q ) 2 , (θ(l, k) + π -θ q ) 2 ]] (1.4) 
In order to get the overall quality score, a threshold is used on the distortion map to count the number of remained pixels after thresholding. The final results gives the quality score. The threshold is set according to the following equation.

th = min V SQA + p × max V SQA -min V SQA 100 (1.5)
where p is a positive parameter, max V SQA and min V SQA represent the maximum and minimum distortion values respectively.

The final weighting maps W x (i, j) x ∈ (t, o, c) are calculated by rescaling the value of the associated texture-based visibility maps to [0, 2]. cf. Eq. 1.6

W x (i, j) = 2 max(V x ) -min(V x ) × V x (i, j) - min(V x ) max(V x ) -min(V x ) , x ∈ (t, o, c) (1.6)
where t, o, c represent the texture, orientation and contrast respectively. This VSQA metrtic is reported that this method approaches a gain of 17.8% over SSIM in correlation with subjective measurements.

• 3DSwIM (3D Synthesized view Image Quality Metric):

In the 3DSwIM [4], the quality score is obtained by comparing the statistical features of the reference and the synthesized view in the wavelet transformed domain. The Kolmogorov-Smirnov distance between the histograms of the reference and distorted images in wavelet domain is measured as the quality index, as shown in Eq. 1.7.

d b = max(|F o b -F s b |) (1.7)
where Since the synthesis distortions mainly occur in the horizontal direction, only horizontal features are used. In addition, a registration step is performed as a preprocessing to align the content of the synthesized view and the reference one.

F
Then, the overall image distortion is extracted by normalizing the distortion of all the blocks, cf. Eq. 1.8.

d = 1 D 0 B b=1 d b (1.8) 35 
1.5. Overview of the state-of-the-art quality assessment methods of DIBR-synthesized views neighbourhood define by the structure element, as shown in the following equation:

D : dilation SE (f )(x) = max y∈SE f (x -y) (1.11) E : erosion SE (f )(x) = min y∈SE f (x + y) (1.12)
where f is a grayscale image and SE is binary structure element.

Then, they use the Mean Square Error (MSE) between the reference and synthesized image in all pyramids' sub-bands to quantifier the distortion. As shown in Fig. 1.11,during the decomposition, the dilation is used as reduce operation and the erosion is used as expand operation. Finally, the overall quality is calculated by averaging the MSE in all the sub-bands and transform it to PSNR.

M SE j = 1 N j × K j K j k=1 N j n=1 (x j (k, n) -y j (k, n)) 2 (1.13)
where x j and y j denote the reference and distorted image at scale j with size K j × N j . Multi-scale mean squared error MP-MSE is calculated as weighted product of MSE of all pyramid images with equal weights:

M P -M SE = M j=1 [M SE j ] β j (1.14)
where β j indicates a weight value parameter. Finally, the MP-PSNR score is calculated as:

M P -P SN R = 10 × log 10 ( R 2 M P -M SE ) (1.15)
where R is the maximum dynamic range of the image.

The MW-PSNR has been proposed and applied on free viewpoint videos [START_REF] Sandić-Stanković | Free viewpoint video quality assessment based on morphological multiscale metrics[END_REF] and still images [START_REF] Sandić-Stanković | DIBR synthesized image quality assessment based on morphological wavelets[END_REF] by the same authors. The idea of MW-PSNR is similar to MP-PSNR, the difference is that the MW-PSNR uses morphological wavelet filters for decomposition instead of dilation and erosion. Then a multi-scale wavelet mean square error (MW-MSE) is calculated as the average MSE of all sub-bands and finally the MW-PSNR is calculated from it.

• CT-IQA (Context Tree based Image Quality Assessment):

A variable-length context tree based image quality assessment [START_REF] Ling | Quality assessment for synthesized view based on variable-length context tree[END_REF] proposed by where the n c ref , n s ref represent the number of contours in the reference and synthesized views.

The final quality score is calculated by combining the above two measurements:

D CT = α × D ls + β × D cs (1.18)
where α and β are two weighing parameters which are set to 0.9 and 0.1 respectively.

• EM-IQA (Elastic Metric based Image Quality Assessment):

In [START_REF] Ling | Image Quality Assessment for DIBR Synthesized Views using Elastic Metric[END_REF], Ling et al. also proposed an elastic metric based image quality assessment metric by quantifying the deformation of curves in the local distortion regions. It firstly select the distortion region based on interest point matching, then extract the contour of both synthesized and reference image. Finally, the distortions in the synthesized image are measured by the distance between the extracted contours.

The contour is firstly defined as:

c : D → (x, y) ∈ R n , ( 1.19) 
where (x, y) represents the coordinate of each point in the curve, D = [0, 1]. Then it can be further represented by a square-roor velocity (SRV) function defined by

q : D →∈ R n : q(t) ≡ F ( ċ(t)) = ċ(t)/ ċ(t) (1.20)
where indicates the Euclidean 2-norm in R n and ċ = dc dt . The curve is obtained by:

c(t) = t 0 q(s) q(s) ds (1.21)
In order to quantify the deformation of the curves of synthesized views, the distortion of synthesized view is measured by measuring the distance of the curves in the synthesized and reference images:

D EM = D < 1 2 e 1 2 φ u 1 θ + e 1 2 φ υ 1 , 1 2 e 1 2 φ u 2 θ + e 1 2 φ υ 2 >= D ( 1 4 e θ u 1 u 2 + e θ < υ 1 , υ 2 >)dt (1.22)
where φ and θ are defined as follows:

φ(t) = ln( ċ(t) ) (1.23) θ = ċ(t)/ ċ(t) (1.24)
Finally, the overall quality score is calculated by summing out the distortions of all the curves:

S EM = D EM (c i ori , c j syn ) (1.25)
where

(c i ori , c j syn ) ∈ (C ori , C syn )
• PSPTNR (Peak Signal to Perceptible Temporal Noise Ratio):

Zhao et al. [START_REF] Zhao | A perceptual metric for evaluating quality of synthesized sequences in 3DV system[END_REF] PSPTNR metric to measure the perceptual temporal noise of the synthesized sequence. The temporal noise is defined as the the difference between inter-frame change in the processed sequence and that in the reference sequence:

T N i,n = ((P i,n -P i,n-1 ) -(R i,n -R i,n -1) 2 , ( 1.26) 
where T N indicates the temporal noise, P and R represent the distorted and reference sequence respectively.

Then the per-pixel Perceptible Temporal Noise (PTN) is obtained by filtering it with a Just Noticeable Distortion (JND) model.

P T N i,n =    T N i,n abs(P i,n -P i,n-1 ≥ JN D S-T,i,n &i ∈ staticarea 0 else (1.27)
where abs() is the absolute function, JN D is the used Just Noticeable Distortion model.

The final perceptible temporal noise is calculated by measuring the filtered noise in the region of higher motion in the synthesized view:

P SP T N R n = 10 × log 10 ( K × 255 2 K i=1 P T N i,n ) (1.28) P SP T N R = 1 N -1 N n=2 P SP T N R n (1.29)
• VQA-SIAT (Video Quality Assessment metric of Shenzhen Institute of Advanced Technology):

In [START_REF] Liu | Subjective and objective video quality assessment of 3D synthesized views with texture/depth compression distortion[END_REF]. Liu et al. proposed a synthesized Video Quality Assessment (VQA) framework to measure flickering which is the most annoying temporal distortion of synthesized sequences. Firstly, A temporal gradient vector is defined as follows:

▽I temporal x,y,i = I(x, y, i) -I(x ′ , y ′ , i -1), (1.30) 
where (x ′ , y ′ ) is the coordinate in frame i corresponding to (x, y) along the motion trajectory in previous frame i -1.

A Spatio-Temporal tube (S-T tube) and a Quality Assessment Group of Pictures (GA-GoP) were generated to measure the annoying variations of pixel luminance which act as flickering distortion in the synthesized sequences. The flickering distortion can be measured along the motion trajectory as below:

DF x i ,y i = i+N n=i-N +1 φ(x n , y n , n) × ▽(x n , y n , n) 2N , (1.31) 
where 2N + 1 is the length of QA-GoP. φ and ▽ are used to detect the potential sensible flicker distortion and the strength of the distortion. Which are defined as follows: 

φ(x n , y n , n) =                ▽I temporal x,y,n × ▽ I temporal x,y,n ≤ 0 1 and ▽ I temporal x,y,n = 0 and |I(x, y, n) -I(x, y, n)| > µ 0 else (1.32) ▽ (x, y, n) = ( ▽I temporal x,y,n -▽ I temporal x,y,n | ▽I temporal x,y,n + C| ) 2 (1.
DF tube = w x=1 h y=1 DF x,y w × h , ( 1.34 
)

DF GoP = 1 N W k∈W DF tube k , (1.35) DF Seq = 1 K K m=0 DF GoP m (1.36)
where w and h represent the wide and height of the image respectively. W denotes the worst 1% DF tube in the QA-GoP, K is the number of QA-GoPs in the sequence.

Besides, the distortions induced by video compression were measured by detecting the activity in GA-GoP and S-T tube. Firstly, the spatial gradient value of the pixel can be computed as:

▽I spatial x,y,n = | ▽I spatial_h x,y,n | 2 + | ▽I spatial_v x,y,n | 2 (1.37)
where ▽I spatial_h

x,y,n and ▽I spatial_v

x,y,n represent the horizontal and vertical gradient vector respectively. Then, the spatial-temporal activity is computed by measuring the mean and standard deviation value of the spatial gradient:

▽I spatial tube = i+N n=i-N yn+h y=yn xn+w x=xn ▽I spatial_h x,y,n w × h × (2N + 1) (1.38) σ tube = i+N n=i-N yn+h y=yn xn+w x=xn (▽I spatial tube -▽I spatial tube ) 2 w × h × (2N + 1)
(1.39)

Γ tube =    σ tube σ tube > ǫ ǫ else (1.40)
where ǫ is a threshold. After that, the overall distortion of spatial-temporal activity of S-T tube, GoP and sequence are computed as:

DA tube = |log 10 ( Γ tube Γ tube )| (1.41) DA GoP = 1 N W k∈W DA tube k (1.42) DA Seq = 1 K m=0 DA GoP m (1.43)
where, similarly, W denotes the set with the worst 1% DA tube in the GoP.

The overall quality scores were obtained by integrating these two features:

D = DA × log 10 (1 + DF ). (1.44)
The VQA-SIAT metric takes flickering, the most annoying temporal distortion of DIBR-synthesized videos and the distortion of compression into consideration. However, the other geometric distortion which could happen in the synthesized view have been ignored.

• 3VQM (3D Vision-based Quality Measure):

Solh et al. proposed a full reference metric 3VQM [START_REF] Solh | 3VQM: A vision-based quality measure for DIBR-based 3D videos[END_REF] to evaluate synthesized view distortions by deriving an "ideal" depth map from the virtual synthesized view and the reference view at a different viewpoint. "Ideal depth" is the depth map that would generate the distortion-free image given the same reference image and DIBR parameters. The calculation of "ideal" depth map can be divided into three steps. Firstly, the horizontal coordinate vector Xv of the synthesized view is calculated from the reference view Xr by using the 3D warping function:

Xv = Xr + s F × B Z + h, (1.45)
where F , B and Z represent the focal length, baseline distance and depth value respectively. s is a direction symbol, s = -1 when the synthesized view is to the left while s = 1 when the synthesized view is to the right.

Similarly, the horizontal coordinate vector Xo can be calculated by the "ideal" depth map:

Xo = Xr + s F × B Zideal + h (1.46)
After that, the "ideal" depth map can be computed as follows:

Zideal = sF B ( Xo -Xv ) + s F B Z (1.47)
It has been shown that the sum of squared differences (SSD) of the original video frame and its horizontal translations is linear. Hence, a small horizontal shift can be estimated in terms of intensity. As a result, the "ideal" depth map can be estimated as follows:

Zideal = sF B α( Īo -Īv ) + s F B Z (1.48)
where Īo and Īv ) represent the synthesized and the original view respectively.

Then, three distortion measures, spatial outliers, temporal outliers and temporal inconsistency are then integrated into a final quality measurement.

SO = ST D(△Z)

(1.49)

T O = ST D(△Z t+1 + △Z t ) (1.50) T I = ST D(Z t+1 + Z t ) (1.51)
where SO, T O and T I denotes the spatial outliers, temporal outliers and temporal inconsistencies respectively. △Z is the difference between the "ideal" depth map and the distorted depth map. t is the frame number.

The final 3V QM quality score is obtained from pooling the above three measurements:

3V QM = K(1 -SO(SO ∩ T O) a )(1 -T I) b (1 -T O) c (1.52)
where K is a constant.

This metric assume that the horizontal shift of the synthesized view and the original view is small, but when the baseline distance increase, this metric would not work well.

RR quality metrics:

• MP-PSNRr and MW-PSNRr (reduced version of MP-PSNR and MW-PSNR) In [START_REF] Sandic-Stankovic | DIBR-synthesized image quality assessment based on morphological multi-scale approach[END_REF], the same authors also proposed the reduced version of MP-PSNR, and MW-PSNR. They use only detail images from higher decomposition scales to measure the difference between the synthesized image and the reference image. The reduced version achieved significant improvement than the original FR metrics with lower computational complexity.

The Side view based FR quality metrics:

• LOGS (Local Geometric and global Sharpness):

Li et al. proposed a side view based FR metric for DIBR-synthesized views by measuring local geometric distortions in disoccluded regions and global sharpness (LOGS) [START_REF] Li | Quality Assessment of DIBR-Synthesized Images by Measuring Local Geometric Distortions and Global Sharpness[END_REF]. This metric consists of three parts. Firstly, it detects the disocclusion region by using SIFT-flow based warping, the absolute difference between the synthesized view I syn and the warped reference view I w ref is computed followed by an additional threshold is used to exclude the small value in the difference map.

Then the distortion size and strength in the local dis-occlusion regions are combined to obtain the overall local geometric distortion. The distortion size is measured by the number of pixels in the dis-occluded regions; the distortion strength is defined as the mean value of the region in the whole difference map M :

e i = 1 s i (x,y)∈Ω i M (x, y) (1.53)
where e i is an obtained distortion strength, Ω i is a dis-occluded region, s i is a size of dis-occluded regions, M is the difference map.

After that, the quality of dis-occluded regions is calculated as follows:

Q R = K i=1 w i e i K i=1 w i (1.54)
where w i represents the weight of which dis-occluded region, which is defined below:

w i = log 2 (1 + Rank i K ), i = 1, 2, ..., K (1.55)
where Rank i denotes the ranking index of the ith dis-occluded regions.

The next part is to measure the global sharpness by using a reblurring-based method. In this part, the synthesized image is firstly blurred by a Gaussian smoothing filter:

G(x, y, σ) = 1 2πσ 2 e -(x 2 +y 2 )/2σ 2 (1.56)
where σ is denotes the standard deviation. The sharpness is measured block by block, both the synthesized image and its reblurred version are divided into Z blocks. The sharpness of each block is calculated by its textural complexity, which is represented by their variance σ 2 . Then, the overall sharpness score is computed by averaging the textural distance of all blocks:

Q S = Z i=1 |σ 2 1i -σ 2 2i | Z (1.57)
where σ 2 1i and σ 2 2i represent the standard deviations of the ith blocks in the synthesized image and the reblurred image.

Finally, the local geometric distortion and the global sharpness are pooled to generate the final quality score:

Q = Q α S Q β R + c (1.58)
where α and β are two parameters used to balance the relative contributions of local dis-occluded regions and global sharpness, and c is a small constant to stable the division.

• DSQM (DIBR-Synthesized image Quality Metric):

Proposed by Farid et al. in [START_REF] Shahid Farid | Perceptual quality assessment of 3D synthesized images[END_REF]. A block matching is firstly used to match the content in the reference image and the synthesized image by using the following normalized cross-correlation:

γ(x, y) = µ,ν (p(µ, ν) × I s (x + µ, y + ν)) µ,ν p(µ, ν) 2 × µ,ν I ν (x + µ, y + ν) 2 (1.59)
where I s is the synthesized image, p indicates the patch in the reference image.

µ, ν denote the index of searching block and x, y represent the index of pixel in the reference image.

Then the difference of Phase congruency (PC) in these two matched blocks is used to measure the quality of the block in the synthesized image, which is defined as follows:

P C(x) = max φ(x)∈[0,2π] n A n cos(φ n (x) -φ(x)) n A n (1.60)
where A n and φ n (x) represent the amplitude and the local phase of the n-th denote its location index as i and its value as x i . the relationship between this pixel and its neighborhood can be expressed as the following formula:

x i = ω θ (x i )s + d i (1.64)
where ω θ (x i ) denotes a vector which includes its neighborhood pixels in the

√ θ + 1 × √ θ + 1 patch.
As shown in Fig. 1.13, the red refers to the current pixel to be processed, it and its neighbourhood 8 pixels constitute the local

√ θ + 1 × √ θ + 1 patch. In this metric, θ is set to 8.
Then, the least square method is used to estimate the reliable vector of autoregression parameters.

ŝ = arg min s x -X s 2 (1.65)
where x and X denotes the processed pixels and their surrounding pixels respectively. After that they solve this linear system via least square method and infer the best estimation of the vector of autoregression parameters to be

ŝ = (X T X) -1 X T x (1.66)
Note that the size of X and x is set to 48, which indicates that the relationship that is built upon the current pixel is assumed to exist for adjacent 48 pixels in the local 7 × 7 patch.

The reconstructed error between the input synthesized image and the predicted image is used to detect the geometric distortions. In addition, a saliency weighting and a thresholding are added to obtain the final quality measurement. Due to its computational complexity, it owns a high time cost. The convolutional sparse coding (CSC), which is defined in Eq. 1.67, is used to learn the local interactions via convolution operations.

min d,z 1 2 y - K k=1 d k × z k + β K k=1 z k 1 , s.t. d k ≤ 1 (1.67)
where y is the observed samples, z k indicates the sparse feature maps and d k is the convolution kernel. K is the number of convolution kernels and β is a positive scalar parameter. The convolutional kernels learning step is done by solving the following optimization problem:

min {d k } = 1 2 y - K k=1 d k × Z k , s.t. d k 2 2 ≤ 1 (1.68)
where Z i denotes the convolution operators with feature maps z i . During the feature extraction step, all the kernels are set and the features are extracted by minimizing over the feature maps:

min z 1 2 y -D z 2 + β z 1 (1.69)
where D represents the operators consists of convolutions with K kernels, Z is the feature map vector. Then, the CSC vector is obtained as follows:

v csc = (f act(1),...,fact(Z K ) ) (1.70)
where f act is the activated function which is defined as:

f act (Z K ) = M i=1 N j=1 1(Z K (i, j) > ǫ) M × N (1.71)
where 1(x) is logical function which equals 1 when x is true, and ǫ is a threshold. Finally, the obtained CSC vectors are used to predict the overall image quality score via support vector regression (SVR).

We list 9 FR, 2 RR, 2 side view based FR and 2 NR metrics above. Among which PSPTNR, VQA-SIAT and 3VQM take the temporal distortion into consideration, they are dedicated in Video Quality Assessment (VQA); the other metrics are Image Quality Assessment (IQA) metrics.

Performance evaluation of objective quality metrics

The reliability of objective metrics can be evaluated by their correlation with subjective test scores with respect to three aspects of their ability to estimate subjective assessment of video quality: prediction accuracy, prediction monotonicity and prediction consistency. The prediction accuracy is the ability of the model to predict the observers' ratings (subjective scores) with a minimum error on average. The Pearson Linear Correlation Coefficients (PLCC) and Root-Mean-Square-Error (RMSE) are the two commonly used metrics to measure the average error. The higher PLCC value indicates a lower average error; on the contrary, a lower RMSE value refers to a lower average error. Ideally, the objective scores should be totally monotonic in their relationship to the subjective values. This monotonicity can be measured by the Spearman Rank-Order Correlation Coefficients (SROCC) between the objective and subjective scores. A higher SROCC values relates to a better monotonicity. The PLCC, RMSE and SROCC are defined as follows:

P LCC(X, Y ) = n i=1 (X i -X)(Y i -Ȳ ) n i=1 (X i -Ȳ ) 2 n i=1 (Y i -Ȳ ) 2 (1.72) RM SE(X, Y ) = 1 m m i=1 (X i -Y i ) 2 (1.73) SROCC(X, Y ) = 1 - 6 d 2 i n(n 2 -1) (1.74)
where d i indicates the difference of ranking of X and Y .

The prediction consistency relates to the objective quality model's ability to provide consistently accurate predictions for all the tested sequences and not fail excessively for a subset of sequences. It can be measured by the number of outlier points (defined as having an error greater than a given threshold such as one confidence interval) as a fraction of the total number of points (Outlier Ratio). Which can be presented as follows:

OutlierRatio = T otalN oOutliers N (1.75)
where T otalN oOutliers indicates the total number of outlier points and N is the number 1.6. Performance evaluation of objective quality metrics of samples. An outlier point is a point which yields the following condition:

|P error(i)| > K2 × γ(DM OS(i)) √ N sub (1.76)
where K2 equals 1.96 for 95% confidence interval for a Gaussian distribution, N sub is the number of viewers. P error() represents the difference between the objective and subjective scores. A lower Outlier Ratio indicates that the objective quality model holds a better consistency. Normally, the Differential Mean Opinion Score (DMOS, the MOS difference between the distorted and the reference image) is used as subjective scores. The calculation of DMOS in different databases may be different, it depends on the subjective experiment. For instance, in IRCCyN/IVC DIBR image database [START_REF]IRCCyN/IVC DIBR image database[END_REF], [START_REF] Bosc | Towards a new quality metric for 3-D synthesized view assessment[END_REF], the DMOS was calculated following the equation:

DM OS = M OS syn -M OS ref + 5 (1.77)
where M OS syn and M OS ref represent the MOSs of the synthesized image and the reference image (as introduced in [27]). The +5 in this equation is to avoid the negative scores which do not appear in this case. Before calculating PLCC, RMSE, SROCC and Outlier Ratio, the objective scores need to be fitted to the so-called predicted DMOS, which are noted as DM OS p to remove the nonlinearties due to the subjective rating processing and to facilitate compar-51 ison fo the models in a common analysis space, as shown in Fig. 1.14 (a). The Video Quality Expert Group (VQEG) Phase I FR-TV [27] has recommended several nonlinear mapping functions for this fitting step, here two widely used regression functions are listed:

• The 4-parameter cubic polynomial function:

DM OS p = β 1 • scores 3 + β 2 • score 2 + β 3 • score + β 4
(1.78)

• The 5-parameter logistic function:

DM OS p = β 1 • (0.5 - 1 (1 + exp(β 2 • (score -β 3 ))) ) + β 4 • score + β 5 (1.79)
where score is the score obtained by the objective metric and β 1 , β 2 , β 3 , β 4 , β 5 are the parameters of these regression functions. They are obtained through regression to minimize the difference between DM OS p and DM OS.

Conclusion

In this chapter, we reviewed the basic principle of human depth perception and various 3D content formats. Considering their advantages and drawbacks, the MVD format could be the most suitable one for most 3D applications. Next, the principle and the specific distortion of DIBR view synthesis along with the existing state-of-the-art DIBR quality metrics are discussed. Most of the metrics introduced above are FR metrics, however in some 3D applications, there is only a limited number of viewpoints which are captured, coded and transmitted, there is a large number of views which do not have reference views need to be synthesized. And none of these metrics can achieve a satisfactory performance on the existing databases. As a result, the efficient and NR quality assessment tools are in great need. In the chapter 2 and 3, we present two NR, two FR quality metrics. CHAPTER 2

PROPOSED FULL-REFERENCE IMAGE

QUALITY ASSESSMENT METRICS

As introduced in the chapter 1, several FR metrics have been proposed to evaluate the quality of DIBR-synthesized views in the past few years, they still can not achieve a satisfactory result on the existing databases. In this chapter, we propose two FR metrics to handle the geometric distortions in the DIBR-synthesized views. First of all, a SURF+RANSAC homography approach is used to roughly compensate the global geometric shift. Then, in the first FR quality model, we use a dis-occlusion mask to weight the final distortions in the synthesized view since the synthesis distortions mainly happen in the dis-occluded areas. While in the second FR quality metric, a multi-resolution block matching method is used to precisely compensate the object shift and penalize the local geometric distortion as well. In addition, a visual saliency map is used as a weighting function. To calculate the final overall quality scores, only the worst blocks are utilized since the biggest distortions have the most effects on the overall perceptual quality.

This study is presented in 4 sections. The first two sections present the FR quality model Shift Compensation and Dis-occlusion based Model (SC-DM) and the FR metric SC-IQA in detail; the experimental results are shown in the third section; finally, the conclusion is drawn in section 4.

SC-DM: Shift Compensation and Dis-occlusion based

Model

According to recent research [START_REF] Anush | Visual importance pooling for image quality assessment[END_REF], Human Visual System (HVS) is more sensitive to local artifacts compared to the global object shift. However, the global shift in DIBRsynthesized views can be easily penalized by most pixel-wise quality metrics, eg. PSNR, SSIM. In this section, we propose a full-reference quality assessment model for 3D synthesized views by firstly compensating the global object shift, and then use a disparity map as a mask to weight the final distortion. This model can be combined with any pixel based FR metrics. In this work, we test it on the commonly used FR metrics PSNR and SSIM. This method can be divided into two parts: global shift compensation and dis-occlusion mask weighting. 

Global shift compensation

Fig. 2.1 (a) gives an example of the SSIM map between the synthesized image and the reference image in the adopted database [START_REF] Bosc | Towards a new quality metric for 3-D synthesized view assessment[END_REF], it can be observed that there exists great global shift between the synthesized image and the reference image.

In this part, the global geometric shift is compensated roughly by a SURF [5] + RANSAC [START_REF] Martin | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[END_REF] homography approach. Firstly, SURF feature points in the reference and synthesized images are detected and matched. Then, to be robust, the RANSAC algorithm is used to refine the matching and estimate the homography matrix H. After that, the pixels of the synthesized image are warped to the corresponding positions in the reference image by H. The SSIM map before transform, the matched feature point pairs and the SSIM map after transform are shown in Fig. 2.1.

We can observe that the global shift between the synthesized and the reference images has been roughly compensated since only a limited number of regions gets very low SSIM value (the black regions in Fig. 2.1(c)). Compared to the SSIM map before transform (Fig. 2.1(a)), the SSIM map after transform Fig. 2.1(c) shows that most of the ghost effect in the SSIM map has been removed.

Dis-occlusion Mask

In this section, we use a dis-occlusion mask to weight the difference between the synthesized image and the reference image. As introduced in Chapter 1, the major problem of the DIBR method is the dis-occlusion: regions which are occluded in the captured views become visible in the virtual ones. Due to the lack of original texture information, a synthesized image often contains dis-occlusion holes which significantly degrade the quality. Thus, we utilize a dis-occlusion mask to weight the final distortion. The depth map in the original view-point (Depth o ) is used to calculate the dis-occlusion mask. In a rectified configuration, 3D warping process, the horizontal disparity which is the horizontal displacement for each pixel can be obtained by Eq. (2.1):

d = f × l Z (2.1)
where f , l, Z represent the camera focal length, the baseline distance between these two views and the depth value of this pixel respectively.

The depth map in the synthesized view-point (Depth s ) given initial value to -1, then the depth map in the original view-point (Depth o ) is warped to the synthesized viewpoint by Eq. (2.2):

Depth s (i + d, :) = Depth o (i, :); (i + d), i ∈ [1, W ] (2.2)
where W is the image width, the colon ":" indicates all subscripts in this array dimension.

The dis-occluded mask dis_mask can then be obtained by extracting all the pixels with value -1 in Depth s , which is shown in Fig. 2.2. This mask is a binary image, the while pixel's value equals "1", while the dark pixel's value equals "0". 

Weighted PSNR and Weighted SSIM

Generally speaking, the dis-occlusion mask dis_mask, can be integrated into any existing full-reference metric as a weighting mask since the DIBR view synthesis distortion mainly occur in the dis-occluded regions. We propose and test the weighted P SN R (P SN R ′ ) and SSIM (SSIM ′ ) as defined in the following equations:

M SE ′ = (i,j)∈I (I syn (i, j) -I ref (i, j)) 2 • dis_mask(i, j) (i,j)∈I dis_mask(i, j) (2.
3)

P SN R ′ = 10 • log 10 ( 255 × 255 M SE ′ ) (2.4) SSIM ′ = (i,j)∈I SSIM (i, j) • dis_mask(i, j) (i,j)∈I dis_mask(i, j) (2.5)
where I syn and I ref denote the the compensated synthesized image and the reference image respectively; dis_mask denotes the obtained disocclusion mask; SSIM denotes the SSIM map between the compensated synthesized image and the reference image.

The experimental results of this model will be presented in section 2.3.

SC-IQA: Shift compensation based image quality assessment

As mentioned in the previous section, the Human Visual System (HVS) is more sensitive to the local artifacts compared to the global object shift. However, the local object shift within small distance is acceptable to the observer. In the previous model SC-DM, the global shift has not been compensated precisely, in this section, we propose an FR shift compensation based image quality assessment metric (SC-IQA) for DIBR-synthesized views by using a multi-resolution block matching method. Besides, it does not need the depth map. The block diagram is shown in Fig. 2.3, in addition to the SURF + RANSAC homography transform, a multi-resolution block matching is proposed to precisely compensate the object shift and penalize the local artifacts. Besides, a saliency map is used as a weighting function to improve the performance. The final overall quality scores are obtain by measuring the γ% worst blocks since human observers are more sensitive to poor quality regions rather the good ones.

Multi-resolution block matching

In this part, a multi-resolution block matching algorithm is used to precisely compensate the shift and also to detect the large geometric distortions. We will see bellow on an example why a regular block-matching would not be adequate. In the first step, we use a large block N 1 × N 1 (N1 = 64) for primary matching; then we use a small block N 2 × N 2 (N2 = 8) for final matching. The matching process can be described by the 

(d).

There exists little difference between these two red blocks, so the geometric distortion will not be penalized. On the contrary, if we use the proposed multi-resolution block matching method, the matched block is the green one, this geometric distortion will be surely penalized. The multi-resolution approach is thus more efficient to find the real physically matching block, and detect wether there is local distorsion within this block..

Saliency weighting

In addition, a saliency detection [START_REF] Jiang | Salient object detection: A discriminative regional feature integration approach[END_REF] is also used as a weighting map to improve the performance of the proposed metric. The distortion of each N 2 × N 2 block is measured by averaging the weighted mean square errors between the blocks of the synthesized and the reference images, as shown in:

M SE B = (i,j)∈B (syn(i, j) -ref (i, j)) 2 × Sal_map(i, j) (i,j)∈B Sal_map(i, j) (2.7)
where B means the matched N 2 × N 2 blocks; (i, j) denotes the pixel in the block; syn and ref represent the blocks in the synthesized image and reference image respectively; Sal_map represents the saliency map in this block.

Quality pooling

Since humans tend to perceive poor regions in an image with more severity than the good ones [START_REF] Anush | Visual importance pooling for image quality assessment[END_REF][START_REF] Liu | Subjective and objective video quality assessment of 3D synthesized views with texture/depth compression distortion[END_REF], we only use the blocks with the worst quality to calculate the final quality as shown in Eq. 2.8.

M SE W = 1 N W i∈W M SE B (i) (2.8)
where W represents the set of the worst γ% blocks in the image, N W is the number of items in the set W. The final quality score is computed as the following equation:

Score SC-IQA = 10 × log 10 (255 × 255/M SE W ) (2.9)
where a higher quality score indicates a better quality.

Experimental results

This section describes and discusses the validation experiments of the proposed FR quality model and SC-IQA metric on MCL-3D database [START_REF] Song | MCL-3D: A database for stereoscopic image quality assessment using 2D-image-plus-depth source[END_REF] and IVC database [START_REF]IRCCyN/IVC DIBR image database[END_REF].

Performance on IVC database

The performance of SC-IQA is tested on the IRCCyN/IVC DIBR database [START_REF]IRCCyN/IVC DIBR image database[END_REF], which consists of 84 synthesized views generated by seven different DIBR view synthesis algorithms and their associated 12 reference views along with the subjective scoresmean opinion score (MOS). The obtained PLCC, RMSE and SROCC values are given in table 2.1. It can be noticed that the proposed weighted PSNR (P SN R ′ ) and SC-IQA (γ = 1) perform significantly better than the other tested metrics (including 8 FR, 2 RR, 2 sides view based FR and two NR quality metrics, these metrics have been presented in detail in chapter 1) in terms of PLCC and SROCC. The PLCC gain of P SN R ′ achieves 36.85% compared to the PSNR. The weighted SSIM (SSIM ′ ) achieves a gain of PLCC 13.33% compared ratio increases, however even the lowest scores are still superior to most of the stateof-the-art metrics in Table I. This shows the robustness of the proposed metric. It shows that the proposed SC-IQA still performs the best among all the tested quality metrics. However, the proposed weighted PSNR (PSNR') and weighted SSIM (SSIM') perform not as good as they do on IVC database, and even worse than the original PSNR and SSIM. The main reason could be that the PSNR' and SSIM' focus on the distortions caused by DIBR view synthesis, but the main distortions in MCL-3D database are the conventional distortions in texture and depth map. The scatter plot of the predicted scores versus the subjective scores are shown in Fig. Fig. 2.8 and Fig. 2.9. This result shows that the P SN R ′ and SSIM ′ fail to assess the low quality images while the and SC-IQA succeed in assessing the high quality images.

Conclusion

In this chapter, we proposed two full-reference quality metrics for DIBR-Synthesized views. The great advantage of the proposed metrics is their simplicity. The idea of the first FR quality model is to improve the existing simple 2D metrics by addressing two issues: 1) compensating the global significant shift in the synthesized view (by an SURF+RANSAC homography); 2) putting more weight on the distortions occurring in the dis-occluded regions (which are estimated using the depth map here). In the second FR quality metric SC-IQA, we focus on the object shift in the DIBR-Synthesized views. The same as the first FR quality model, we use an SURF + RANSAC homograhy approach to compensate the global shift in the synthesized image. Then, a multiresolution block matching method is used to compensate the object shift and penalize the local geometric distortion as well. In addition, a saliency map is used to weight the final distortions in the synthesized view. Experimental results show that the proposed weighted PSNR (P SN R ′ ) greatly improves the performance compared to the original PSNR (gain of 36.85% in terms of PLCC). The weighted SSIM (SSIM ′ ) earns also a gain of 13.33% (PLCC) compared to its 2D version. The proposed SC-IQA metric and weighted PNSR (P SN R ′ ) significantly outperform the tested state-of-the-art 3D synthesized view dedicated metrics: 3DSwIM, MP-PSNR, MW-PSNR, VSQA, CT-IQA and EM-IQA.

CHAPTER 3

PROPOSED NO-REFERENCE IMAGE

QUALITY ASSESSMENT METRICS

The major limitation of the Full-Reference metrics is that they always need the reference view which may be unavailable in some circumstances. In other words, there is no ground truth for a full comparison with the distorted synthesized view. To this end, in this chapter, we propose two novel No-Reference image quality assessment metrics for DIBR-synthesized views (called NIQSV and NIQSV+). These blind metrics are based on mathematical morphology. They can evaluate the quality of synthesized views by measuring the typical synthesis distortions with access to neither the reference image nor the depth map. (These contributions have been published in [START_REF] Tian | NIQSV: A NO REFERENCE IMAGE QUALITY ASSESS-MENT METRIC FOR 3D SYNTHESIZED VIEWS[END_REF][START_REF] Tian | NIQSV+: A No-Reference Synthesized View Quality Assessment Metric[END_REF])

This chapter is organized as follows: firstly, the mathematical morphology in image processing is introduced in Section 2.1; then the proposed metrics NIQSV and NIQSV+ are presented in detail in the second and third sections, followed by the experimental results and discussion in the fourth section; finally the conclusion is draw in the fifth section.

Introduction of mathematical morphology in image processing

Apart from the convolution based filters, the mathematical morphology in image processing is a collection of non-linear operations related with object shape. 1 It uses a template, which is called Structural element (SE), to probe the image. Some typical SE are shown in Fig 3 .1. The red blocks form the origin of SE, while the black blocks present the origin of SE. The origin indicates the processed pixel in the morphological operation, which is generally set to the centroid of SE. pixels on the edges. Both operations conserve the object shape in the image. One of the simplest application of these operations is that the edge image can be obtained by subtracting the erode image from dilated image cf. The opening and closing operations are defined as the combinations of erosion and dilation operations with the same SE cf. Eq. 3.5, Eq. 3.6. As shown in Fig. 3.2 (e), (f), the opening operation opens the gap between the objects with thin connections. The closing operation removes the small holes between the objects while keeping the original object's size.

Opening : I • SE = (I ⊖ SE) ⊕ SE (3.5) Closing : I • SE = (I ⊕ SE) ⊖ SE (3.6)

Morphological operations on gray level images

The morphological operations are firstly developed for binary images, and then extended to gray level images. The binary morphology can be recognized as the gray level morphology applied on binary images. The morphological operations on gray level images are the calculations of maximum or minimum values in the neighbourhood of the processed pixel. The two basic morphological operations on gray level images are defined in Eq. 3.7 and Eq. 3.8. The opening and closing operation in gray level image are the same as that in Eq; 3.5 and Eq. 3.6. shows some examples of morphological operations on gray level images. In image (b), we add some 'salt and pepper' noise. From the image (c), (d), it can be observed that the erosion operation can remove white noise pixels while the dilation operation can remove the black noise. So we use a opening and a closing operation on the noisy image respectively. The results show that the opening removes most of the while noise pixels, but left some black noise pixels. While the closing operation fills the black noise pixels, but has no influence on the white pixels in the image. In the image (g) and (h), we use a closing operation followed by an opening operation or an opening operation followed by a closing operation, the results show that they perform well on removing the white noise pixels and filling the black noise pixels at the same time. Based on shapes, mathematical morphology is widely used in image processing, such as removing the noise while keeping the object's shape.

Erosion

Proposed metric NIQSV

In this section, we propose a new No-reference quality assessment model to evaluate the quality of 3D synthesized views, called NIQSV (No-reference Image Quality assessment of Synthesized Views). It is based on the following image model: a good quality image is assumed to present sharp and regular object borders, smooth values inside the object and large discontinuities at the object borders. Such "perfect" images are insensitive to opening and closing morphological operations while some artifacts such as blurry regions around the object edges and crumbling in the synthesized views are sensitive to such morphological operations. The crumbling is small-sized artifacts which can be easily detected by the morphological operations with Structural Element (SE) larger than their size, as shown in Figure 4; the blurry regions change much more significantly after the opening and closing morphological operations compared to the good quality images with sharp edges and flat areas. Thus, these properties could be used to detect these artifacts.

The principle of NIQSV is the following: it quantifies the distortions in luminance component Y and chrominance components U, V using a set of morphological operations. Then the 3 obtained distortions are pooled into 1 global distortion by a weighted average. Furthermore, an edge image is utilized to weight the final distortion since the distortions of synthesized views mainly happen around object edges. The block scheme is presented in Fig 3. 

I ′ X = (I X • SE o ) • SE c , X ∈ (Y, Cb, Cr) (3.9) D X = |I ′ X -I X |, X ∈ (Y, Cb, Cr) (3.10)
where D X denotes the difference of each color component, I X is the corresponding color component of the synthesized image, SE o is the SE used for opening and SE c is the SE used for closing. In this paper, the shape of SE o and SE c is a circle, the size of SE o and SE c is 3 and 8 respectively. In order to obtain the overall distortion, the distortions of all components are integrated as in Eq 3.11:

D = (1 -w c ) • D Y + w c 2 • (D Cb + D Cr ) (3.11)
which is a weighted sum of the distortions computed on each color component where the weight is related to the parameter w c . The value of w c is set to 0.5 which means that the distortion in luma component weights 50% in the overall distortion.

Since the artifacts mostly happen around the edges, the image edges must be taken into consideration. To reduce computational complexity, the edge image is firstly extracted by a pair of morphological operators as described in Eq. 3.12. Then, they are normalized to [0, 1] using Eq. 3.12:

E = (I Y ⊕ SE) -(I Y ⊖ SE) (3.12) e = E/V max; V max = 255, e ∈ (0, 1) (3.13)
where SE is the structural element used for erosion and dilation, the symbols ⊕ and ⊖ denote the morphological dilation erosion operation respectively. The shape of SE is a circle and its diameter is set to 4. E/V max (where Vmax is the maximum value that an edge-detector may provide for 8-bit images: 255) is used as the edge weight. The final edge weight e is used to weight the overall difference D in the whole image.

The pixels with higher edge value have more weight on the distortion map. Especially, for the pixels with no edge, the distortion on it will not be considered.

Finally, the overall image quality score N IQSV is computed as follows:

M SE ′ = (i,j
)∈I e(i, j) • D(i, j) 2 (i,j)∈I e(i, j)

(3.14) N IQSV = 10 • log 10 ( 255 × 255 M SE ′ ) (3.15) 
Fig. 3.5 shows the processed images of one synthesized view in the "Newspaper" sequence as an example.

Proposed metric NIQSV+

This section presents the details of the proposed metric (NIQSV+). As an extended version of NIQSV, it is also based on the assumption that the images with good quality are composed of flat regions separated by sharp and regular edges.

A block diagram of the proposed method is presented in Fig. 3.6. The proposed method can be divided into three parts. Part A is designed to detect the blurry regions and crumbling around the object edges, which has been introduced in the previous section NIQSV; part B is related to the unfilled black holes in the dis-occluded areas; and part C is the detection of stretching distortion which always occurs in the left or right side of the synthesized view. 

Detection of black holes

In this part, the distortion of unfilled black hole pixels is taken into consideration. Normally, most natural images do not contain pixels with 0 luminance value. Thus, we use the proportion of black hole pixels in the whole image to measure this type of distortion, as defined in Eq. 3.16:

Zrate = N umof BHpixels/(W × H) (3.16)
where N umof BHpixels denotes the number of black hole pixels in the whole images, W and H are the width and the height of the image.

Detection of Stretching

The stretching may happen around the left or right side of the image due to lack of the corresponding texture information, as shown in In this part, a stretching measurement is defined to estimate the level of stretching in the synthesized image. The stretching is detected by measuring the crash of horizontal gradient in the stretching area. Firstly, the horizontal and vertical gradients are calculated with the Sobel operator.

         ∇ ver = I y * G ver ∇ hor = I y * G hor (3.17)
where I y is the Y component of the synthesized image, G hor and G ver denote the Sobel horizontal and vertical gradient operator. The Average Horizontal / Vertical gradient ( ḡH / ḡV ) in column are defined in Eq. 3.18.

         ḡH = H j=1 ∇ hor /H ḡV = H j=1 ∇ ver /H (3.18)
where H denotes the height of the image. Since stretching mainly happens in the horizontal direction, the average horizontal gradient in the column can be used to detect the stretched regions. where S is a index to mark the stretching areas. Since the stretching artifacts only occur in the left or the right side of the image, 0.1 × W and 0.9 × W are used to take into account only the side portions of the image.

S =    1, ḡH < ε 0, else (3.20)
where ε is a threshold used to extract the stretching regions, its value is set to 50% of the mean value of ḡH . However, even with the same stretching width, the percep-tual annoyance could be different in different textures. In order to handle this issue, a Stretching Rate (R s ) is defined by comparing the average gradient in the stretching regions and those in the adjacent non-stretching regions with the same width, as shown in Fig. 3.7. The more similar these two regions are, the less the stretching will be perceptible. Since the mean horizontal gradient of these two regions is quite different, we only compare the vertical gradients.

R s = ∇ ref -∇ str ∇ ref (3.21)
where ∇ str presents the average ḡV value in the stretching area, ∇ ref is the average ḡV value in the adjacent non-stretching regions with the same width. When the ∇ str and ∇ ref values are closer, this type of distortion is less significant, and the SR value is lower. The final stretching distortion is calculated as follows:

S_index = (log 10 (W s + 1) + 1) × (R s + 1) (3.22)

Overall quality measurement

Finally, the integrated overall quality score is computed as Eq. 3.23 since higher stretching and black hole rate indicate bad image quality.

N IQSV + = N IQSV S_index × (1 + k z × Zrate) + C (3.23)
where k z denotes the weight of black hole distortion to the final measurement. Since the black hole pixels hold a very low proportion in the whole image, k z should be a large value. C is a constant used to adjust the difference between the images with "black hole" or "stretching" artifacts and those without. The dependency of these two parameters (k z , C) are discussed in Section 2.3. The evaluation of the NIQSV and NIQSV+ proposed metrics is presented in the next section.

Results and discussions

This section evaluates the performance of proposed metrics: NIQSV and NIQSV+. In the following, we will firstly introduce the used database, and then present the perfor-mance comparison with other state-of-the-art metrics.

Database

The performances of the metrics are evaluated using IRCCyN/IVC DIBR image database [START_REF]IRCCyN/IVC DIBR image database[END_REF][START_REF] Bosc | Towards a new quality metric for 3-D synthesized view assessment[END_REF]. It contains the frames from 3 different MVD sequences: Book Arrival (1024×768, 16 cameras with 6.5 cm spacing), Lovebird1 (1024×768, 12 cameras with 3.5 cm spacing) and Newspaper (1024×768, 9 cameras with 5 cm spacing). For each sequence, there are four virtual views generated from another viewpoint using the following seven DIBR synthesis algorithms A1-A7:

• A1 [START_REF] Fehn | Depth-Image-Based Rendering (DIBR), compression, and transmission for a new approach on 3D-TV[END_REF]: the depth map is filtered to remove depth discontinuities; borders are cropped and then the image is interpolated to reach its original size. This may lead to shifting and global radial artifacts.

• A2: the depth map is pre-processed in the same way as in A1, and the borders are in-painted as described in [START_REF] Telea | An image inpainting technique based on the fast marching method[END_REF] instead of being cropped. This may induce blurring and geometry distortions around the object discontinuities since the depth map is pre-processed by a low-pass filter.

• A3: Tanimoto et al. [START_REF] Mori | View generation with 3D warping using depth information for FTV[END_REF] proposed a 3D view generation system which is adopted as a reference software by the MPEG 3D video group. The blended mode was not used, thus meaning only one image was used to interpolate the virtual view. The in-painting method [START_REF] Telea | An image inpainting technique based on the fast marching method[END_REF] is also used in A3, which may induce blur into the disoccluded regions.

• A4: Muller et al. [START_REF] Mueller | View synthesis for advanced 3D video systems[END_REF] proposed a hole filling method aided by depth information.

The corresponding depth values at the hole boundary are examined row-wise to find background color samples to be copied into the hole. This may fail to reconstruct the vertical or oblique structures and complex textures. Some foreground color may be propagated into the hole owing to the depth estimation errors.

• A5: Ndjiki-Nya et al. [START_REF] Ndjiki-Nya | Depth image based rendering with advanced texture synthesis[END_REF] used a patch-based texture synthesis method to fill the missing part in the virtual view. Since the used patches are rectangular, which may lead to block artifacts and only straight edges could be accurately reconstructed. • A6: Koppel et al. [START_REF] Köppel | Temporally consistent handling of disocclusions with texture synthesis for depth-image-based rendering[END_REF] extended A5 by a background sprite which takes the temporal information into consideration to improve the synthesis.

• A7: holes in virtual views are left unfilled.

For each of the synthesized viewpoints a reference view is available as the chosen virtual viewpoints conrrespond to viewpoints also acquired with a real camera. Fig. 3.9 gives some example results of the proposed NR metrics on the reference image and synthesized images. We can easily observe that the obtained score of the proposed NR quality decreases along with the decrease of image quality (MOS).

PLCC, RMSE and SROCC Performance Comparison

In order to evaluate the performance of the proposed objective IQA method for DIBRsynthesized views, the following methods are also tested for comparison. As a preliminary study, here we only focus on still synthesized images. Thus we did not test the VQA metrics proposed in [START_REF] Zhao | A perceptual metric for evaluating quality of synthesized sequences in 3DV system[END_REF][START_REF] Liu | Subjective and objective video quality assessment of 3D synthesized views with texture/depth compression distortion[END_REF][START_REF] Solh | 3VQM: A vision-based quality measure for DIBR-based 3D videos[END_REF] which include temporal analysis. Due to the lack of depth map in the tested database, the IQA metric proposed in [START_REF] Solh | A no-reference quality measure for DIBR-based 3D videos[END_REF], which uses a depth map is not compared in this study either. Below, the proposed metrics NIQSV and NIQSV+ are compared with four full-reference 3D (synthesized view dedicated) metrics, five full-reference 2D metrics and three no-reference 2D metrics. Besides the other metrics introduced in Chapter 1, we compare the proposed metrics with some state-of-the-art 2D image quality metrics, which are presented as follows:

Tested NR 2D metrics include:

• BIQI: Blind Image Quality Index, a Blind/NR objective IQA method proposed by Moorthy et al. in [START_REF] Anush | A two-step framework for constructing blind image quality indices[END_REF].

• BliindSII: BLind Image Integrity Notator using DCT Statistics -II, a Blind/NR objective IQA method proposed by Saad et al. in [START_REF] Saad | Blind image quality assessment: A natural scene statistics approach in the DCT domain[END_REF].

• NIQE: Natural Image Quality Evaluator, a Blind/NR objective IQA method proposed by Mittal et al. in [START_REF] Mittal | Making a completely blind image quality analyzer[END_REF].

Tested FR 2D metrics include:

• SSIM: Structure SIMilarity, a widely used objective FR IQA metric calculating the structure similarity between the tested image and the reference image proposed by Wang et al. in [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]. 

NIQSV+ A1 A6 A5 A4 A2 A3 A7 NIQSV A1 A4 A5 A2 A6 A3 A7 APT A1 A2 A4 A3 A5 A6 A7 FR 3D metrics 3DSwIM A1 A4 A5 A6 A3 A2 A7 MP-PSNR A4 A5 A6 A3 A2 A1 A7 MP-PSNRr A4 A5 A6 A3 A2 A1 A7 MW-PSNR A4 A5 A6 A2 A3 A1 A7 MW-PSNRr A4 A5 A6 A2 A3 A1 A7 VSQA A6 A5 A4 A3 A2 A7 A1 FR 2D metrics PSNR A6 A5 A4 A3 A2 A7 A1 SSIM A3 A4 A5 A6 A2 A7 A1 MS-SSIM A3 A4 A5 A6 A2 A7 A1 IW-PSNR A6 A5 A4 A3 A2 A7 A1 IW-SSIM A4 A6 A5 A3 A2 A7 A1 NR 2D metrics BIQI A1 A2 A5 A4 A6 A3 A7 BliindSII A1 A2 A3 A4 A5 A6 A7 NIQE A1 A2 A3 A4 A5 A6 A7
from which we can see that the NIQSV metric performs much better than PSNR and SSIM and achieves very closely to the other three full-reference metrics: 3DSwIM, MW-PSNR and MP-PSNR, the SROCC value is even a little better than 3DSwIM. And compared to NIQSV, the extended version NIQSV+ improves the performance a lot with additional steps (detection of black holes and stretching).

Here, the proposed metric NIQSV+ and APT have the best performances in terms of PLCC, RMSE and SROCC, which indicates that they have the best accuracy and monotonicity estimation compared to FR metrics, even though they are NR metrics. APT performs a little better than our proposed method (PLCC 0.019 higher), but the proposed method executes much faster cf. Table 3 

Ranking performance comparison

In order to further compare the performance of these image quality metrics, we also noted the ranking of the synthesis algorithms according to the DMOS and the objective metric scores in this database. The ranking is based on the average quality score of the views synthesized by the corresponding algorithm (from A1 to A7). As shown in Table 3.3, the first two lines offer the rankings according to DMOS which can be Table 3.6: Statistical significance table based on residuals between model predictions DM OS p and DM OS, The symbol "1" indicates that the statistical performance of the IQA metric in the row is significantly superior to the one in the column, the symbol "-1" means the opposite, while "0" indicates that there is no significant difference between the metrics in the row and in the column. The metrics A-Z indicate NIQSV+, NIQSV, APT, 3DSwIM, MP-PSNR, MP-PSNRr, MW-PSNR, MW-PSNRr, VSQA, PSNR, SSIM, IW-PSNR, IW-SSIM, NIQE, BIQI and BliindS2 respectively.

Metric A B C D E F G H I J K L M N O P A 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 B 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 C 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 E 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 F 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 G 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 H 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 I 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

J -1 0 -1 -1 -1 -1 0 -1 0 0 0 0 0 0 0 K -1 -1 -1 -1 -1 -1 0 -1 0 0 0 0 0 0 0 L -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 M -1 0 -1 -1 0 -1 0 0 0 0 0 0 0 0 0 N -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 O - 1 
0 -1 -1 0 -1 0 0 0 0 0 0 0 0 0 P -1 0 -1 -1 0 -1 0 0 0 0 0 0 0 0 0 regarded as the ground truth and the average DMOS score of each algorithm, and the following lines give the rankings based on the tested objective metrics. The green colored algorithms indicate that the changing of ranking position is acceptable; the blue ones are medium; and the red ones are non acceptable. It can be noticed that the proposed metric NIQSV ranks very closely to DMOS scores except A5/A4 and A6/A2, the proposed metric NIQSV+ ranks the most closely to DMOS except for A6, compared to the rankings of the other tested metrics. Since one of the most important roles of the IQA metric is to provide the same rank order as a human does among different image processing algorithms, this result shows the proposed method has a desirable character as an IQA metric.

Statistical significance test

An F-test is used to examine the statistical significance between each tested IQA method. It is based on the residuals between model predictions DM OS p and the DM OS values, as described in

Res(i) = DM OS p (i) -DM OS(i) (3.24) 
where Res(i) denotes the residual of each IQA metric. Table 3.5 gives the variances of residuals. The statistical significance results are shown in Table 3.6. The symbol "1" indicates that the statistical performance of the IQA metric in the row is significantly superior to the one in the column, the symbol "-1" means the opposite, while "0" indicates that there is no significant difference between the metrics in the row and in the column.

It can be noticed that the proposed IQA method is significantly superior to all the 2D metrics both FR and NR, and has no significant difference compared to the tested 3D FR and NR methods.

Analysis of failure cases

It can be noticed in the scatter plot of the proposed method that some images with very low DM OS obtain a high objective quality score by the proposed method, while some images with very high DM OS obtain relatively low predicted scores. Fig. 3.10 gives two examples of these images, where the positions of these synthesized images in the scatter plot are marked by a red circle and a red triangle.

The main distortions of the image in (b) of Fig. 3.10 are stretching on the left side, object shifting of the posters on the wall and crumbling around the the chair leg. One reason for its extremely high subjective score could be that the subjects focused on the center and foreground objects of the image, thus they did not notice these distortions.

Considering the image in (c) of Fig. 3.10, its main distortions are stretching and some thin distortions around the object edges. While these thin distortions around the edges can be easily detected by opening and closing operations, the stretching with similar texture to that of a complex occluded area (eg. clothes and hair) is hard to detect without a reference image.

Conclusion

In this chapter, we proposed two totally No-reference IQA metrics NIQSV and NIQSV+ for 3D synthesized views by measuring the blurry regions, crumbling, black holes and stretching. The experimental results show that the proposed metric NIQSV outperforms the traditional 2D metrics and approaches the results of 3D synthesized view aimed full reference metrics very closely. The metric NIQSV+ significantly outperforms the widely used FR 2D IQA metrics (SSIM, PSNR and MS-SSIM), the NR 2D IQA metrics (BIQI, BliindSII, NIQE). Compared to the state-of-the-art DIBR dedicated FR and NR metrics, the proposed NIQSV+ comes in the second place (slightly less favorable than the APT) in terms of PLCC, RMSE and SROCC, while there is no significant difference between the DIBR dedicated metrics. Compared to NIQSV, the proposed metric achieves a gain of 7.68% in correlation with subjective measurements (PLCC). In terms of their approximation of human ranking, the proposed metric achieves the best performance in the experimental test. Moreover, since the morphological operators only contain integer operations, while black hole counting and stretching detection only contain pixel operations, the proposed metric bears very low computational complexity. That is why it is much faster than the APT. All these characteristics of the proposed method make it promising not only for the benchmark application but also for the algorithm optimization application (eg. it can be integrated into the 3D image compression schema for a better perceptual rate-distortion control). In this chapter, we do not consider all the distortions which may occur in the DIBR applications, only blurry regions, crumbling and stretching are taken into account, it still can not achieve a satisfactory results. In the next chapter, we propose two FR quality metrics which achieve much better results. 

A BENCHMARK OF DIBR-SYNTHESIZED VIEW QUALITY ASSESSMENT METRICS

Several objective quality metrics have been presented in the previous chapters, now we focus on a new DIBR database to better benchmark the existing DIBR-synthesized view quality assessment quality. In this chapter, we firstly introduce the existing DIBR related databases, then we present a new DIBR-synthesized image database with the associated subjective scores. This work focuses on the distortions only induced by different DIBR synthesis methods which determine the quality of experience (QoE) of these DIBR related applications. Seven state-of-the-art DIBR algorithms, including inter-view synthesis and single view based synthesis methods, are considered in this database. The quality of synthesized views was assessed subjectively by 41 observers and objectively using 14 state-of-the-art objective metrics. Subjective test results show that the interview synthesis methods, having more input information, significantly outperform the single view based ones. We also conduct a relatively complete bench marking of the state-of-the-art objective metrics for DIBR-synthesized image quality assessment on this database. Correlation results between the tested objective metrics and the subjective scores on this database reveal that further studies are still needed for a better objective quality metric dedicated to the DIBR-synthesized views.

This chapter is organized as follows. The existing DIBR databases are firstly introduced in the Section 4.1. Section 4.2 states briefly the main contributions of this database. Section 4.3 introduces the seven DIBR algorithms used in this database in detail. The subjective experiments and the objective metrics performance study are described in Section 4.4 and Section 4.5 respectively. In the end, the conclusions are drawn in Section 4.6.

Introduction to existing DIBR databases

There exist several DIBR related databases, as shown in Table 4.1. Each database has its own focus. The IVC databases focus on the distortions caused by different DIBR synthesis algorithms, the MCL-3D and SIAT database investigate the influence of traditional 2D distortions of original texture and depth map on the DIBR-synthesized views.

IRCCyN/IVC DIBR image and video databases

Bosc et al. proposed the IRCCyN/IVC DIBR image database [START_REF]IRCCyN/IVC DIBR image database[END_REF][START_REF] Bosc | Towards a new quality metric for 3-D synthesized view assessment[END_REF] and IRCCyN/IVC DIBR video database [START_REF] Bosc | Visual quality assessment of synthesized views in the context of 3D-TV[END_REF]. The source content of these two database is extracted from 3 different MVD sequences: BookArrival, Lovebird1 and N ewspaper. For each sequence, four virtual views are synthesized by seven DIBR view synthesis algorithms [START_REF] Fehn | Depth-Image-Based Rendering (DIBR), compression, and transmission for a new approach on 3D-TV[END_REF][START_REF] Telea | An image inpainting technique based on the fast marching method[END_REF][START_REF] Mori | View generation with 3D warping using depth information for FTV[END_REF][START_REF] Mueller | View synthesis for advanced 3D video systems[END_REF][START_REF] Ndjiki-Nya | Depth image based rendering with advanced texture synthesis[END_REF][START_REF] Ndjiki-Nya | Depth image-based rendering with advanced texture synthesis for 3-D video[END_REF][START_REF] Köppel | Temporally consistent handling of disocclusions with texture synthesis for depth-image-based rendering[END_REF]. That is to say, there are 84 synthesized images or videos in each database. For each synthesized virtual image or video, the image/video captured by a real camera on the same viewpoint is used as reference. One big issue is that several DIBR algorithms tested in this database introduce some "old-fashioned" artifacts (such as "black holes") which no longer exist when the state-of-the-art DIBR algorithms are used.

MCL-3D database

Song et al. proposed a publicly accessible stereoscopic 3D Database (MCL-3D database) for the quality assessment of DIBR-synthesized stereoscopic images in [START_REF] Song | MCL-3D: A database for stereoscopic image quality assessment using 2D-image-plus-depth source[END_REF]. The DIBR technology is used to generate the left and the right views by using the 2D-imageplus-depth source. Many types of distortions are considered in this database, such as Gaussian blur, additive white noise, down-sampling blur, JPEG and JPEG-2000 (JP2K) compression and transmission error. These distortions are applied on either the original texture images or the depth images before the view synthesis. Nine MVD sequences are collected, among which Kendo, Lovebird1, Balloons, P oznanStreet and P oznanHall2 are natural images; Shark, M icroworld, GT F ly and U ndodancer are Computer Graphics images. Four DIBR view synthesis algorithms ( [START_REF] Fehn | Depth-Image-Based Rendering (DIBR), compression, and transmission for a new approach on 3D-TV[END_REF][START_REF] Telea | An image inpainting technique based on the fast marching method[END_REF][START_REF] Solh | Hierarchical hole-filling for depth-based view synthesis in FTV and 3D video[END_REF] plus DIBR without hole filling) were used. This database contains various types of distortions, but distortion types directly related to DIBR algorithms are very limited. The tested DIBR algorithms also produce some "old-fashioned" artifacts.

SIAT DIBR video database

The SIAT Synthesized Video Quality Database [START_REF] Liu | Subjective and objective video quality assessment of 3D synthesized views with texture/depth compression distortion[END_REF] proposed by Liu et al. focused on the distortions introduced by compressed texture and depth images. For each of the ten different MVD sequences, 14 different texture/depth quantization combinations were used to generate the texture/depth view pairs with compression distortions. Then, the virtual videos are synthesized using the VSRS-1D-Fast software implemented in the 3D-HEVC [START_REF] Gary | Standardized extensions of high efficiency video coding (HEVC)[END_REF] reference software HTM. Here, only compression distortions are evaluated.

IVY stereoscopic database

Jung et al. proposed another IVY stereoscopic 3D image database to assess the quality of DIBR synthesized stereoscopic images [START_REF] Ju | Critical binocular asymmetry measure for the perceptual quality assessment of synthesized stereo 3D images in view synthesis[END_REF]. A total of 7 sequences are selected from four Middlebury datasets [START_REF] Damiel Scharstein | Middlebury stereo datasets[END_REF] (Aloe, Dolls, Reindeer, and Laundry) and three MVD sequences (Lovebird1, N ewspaper and Bookarrival). 84 stereo image pairs are synthesized by four DIBR algorithms [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF], [1], [START_REF] Tanimoto | Reference softwares for depth estimation and view synthesis[END_REF], [START_REF] Soo | Inter-view consistent hole filling in view extrapolation for multi-view image generation[END_REF] in this database. Note that in this database, virtual views were only generated by view extrapolation.

Contribution of our proposed database

In this work, the proposed image database focuses on the distortions only caused by DIBR algorithms (like the IRCCyN/IVC DIBR database), but with state-of-the-art DIBR algorithms. The "view" or stimuli in this subjective test indicates an individual synthesized image. In total, we tested seven DIBR algorithms, including both the interview synthesis and the single view synthesis methods. We selected those DIBR algorithms which produce no longer "old-fashioned" artifacts and of which the code sources were provided by their authors. Note that the SIAT database focuses on the effect of texture and depth compression on the synthesized views and it contains only one DIBR algorithm. Compared to the MCL-3D and the IVY databases, the proposed new database (1) includes not only virtual views generated by view extrapolation, but also by view interpolation; (2) tests more and newer DIBR algorithms; (3) shows the views on a 2D display to avoid the 3D display settings and configurations influences (same approach was used in the IRCCyN/IVC DIBR database). The IRCCyN/IVC DIBR database also focuses on the comparison of different DIBR algorithms, but it contains some "oldfashioned" DIBR artifacts (eg. black holes) and it contains less source images than ours. The proposed database can be used along with the IRCCyN/IVC database for this type of usage. To sum up, the main contributions with the proposed DIBR database are: (1) a new publicly accessible DIBR synthesized image quality database with more recent DIBR algorithms; (2) a relatively complete bench marking of the state-of-the-art objective metrics for DIBR synthesized image quality assessment.

Tested DIBR algorithms

In this section, the tested DIBR algorithms are introduced. As introduced in Chapter 1, due to the lack of original texture information, a synthesized image often contains disocclusion holes which significantly degrades the quality. The processing of these disocclusion holes plays an important role in generating a synthesized view of high quality.

Here, both inter-view interpolation and single view synthesis methods are taken into consideration. The interview DIBR algorithm uses the two neighboring views to synthesize the virtual viewpoint, while the single view synthesis methods only use one neighboring view to extrapolate the synthesized view.

Criminisi's Examplar based inpainting

Criminisi et al. proposed a new algorithm for image inpainting. As shown in Fig. 4.1, it employs an exemplar-based texture synthesis technique [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF]. A conf idence is used to compute patch priorities, and to optimize the fill order of the target regions according to their priorities. The actual color values are computed using exemplar-based synthesis. After the target patch has been filled with new values, the conf idence in this patch is updated. The conf idence in the synthesized pixel values is propagated in a manner similar to the propagation of information in inpainting. 

LDI

Jantet et al. proposed an object-based Layered Depth Image (LDI) representation to improve the quality of virtual synthesized views [START_REF] Jantet | Object-based Layered Depth Images for improved virtual view synthesis in rate-constrained context[END_REF]. As shown in Fig. 4.2, they firstly segment the foreground and background based on a region growing algorithm, which allows organising LDI pixels into two object-based layers. Once the extracted foreground is obtained, an inpainting method is used to reconstruct the complete background image on both depth and texture images. Several inpainting method can be chosen, for example, Navier-Stoke based method [START_REF] Bertalmio | Navier-stokes, fluid dynamics, and image and video inpainting[END_REF], Telea method [START_REF] Telea | An image inpainting technique based on the fast marching method[END_REF] and Gautier method [START_REF] Le Meur | Examplar-based inpainting based on local geometry[END_REF]. In this work, the Gautier inpainting method is used in the LDI.

Ahn's method

Ahn et al. proposed a depth based disocclusion filling method using patch-based texture synthesis [1]. Firstly, a median filtering is applied to texture and depth images to remove the small cracks caused by rounding errors in the 3D warping process. In order to handle the ghost effect due to mismatch of the boundaries of the foreground objects in the texture and depth image, a ghost effect removal method is added in the 3D warping process. During the disocclusion inpainting procedure, the Criminisi's method is improved by optimizing the filling priority and the patch-matching measure. The new priority term uses the Hessian matrix structure tensor which is robust to noise and reflects the overall structure of an image area. The optimized matched patch is selected through the data term on the background regions which were extracted using warped depth map. The filling of disoccluded holes in a depth map is conducted simultaneously with filling holes in the texture image. The block diagram of Ahn's view synthesis method is shown in Fig. 4.3.

Luo's method

Luo et al proposed a hole filling approach for DIBR systems based on background reconstruction [START_REF] Luo | A hole filling approach based on background reconstruction for view synthesis in 3D video[END_REF]. As shown in Fig. 4.4, in order to extract the foreground, the depth map is firstly preprocessed by a cross-bilateral filter and morphological operations. Then the Canny's edge detection is employed to extract the initial seeds for random walker, and the foreground is finally extracted from the depth map by random walker segmentation. After the removal of foreground, the temporal correlation information in both the 2D video and its corresponding depth map is exploited to construct a background video based on motion compensation and modified Gaussian Mixture model. Finally, the reconstructed background video is warped to the virtual viewpoint to eliminate the disocclusion holes.

HHF-Hierarchical hole-filling

Solh et al. proposed two pyramid-like approaches, namely Hierarchical Hole-Filling (HHF) and Depth Adaptive Hierarchical Hole-Filling, to eliminate the disoccluded holes in DIBR synthesized views [START_REF] Solh | Hierarchical hole-filling for depth-based view synthesis in FTV and 3D video[END_REF]. The block diagram of HHF is shown in Fig. 4.5, which can be divided into four steps. Firstly, a sequence of images R 0 ,..., R N are low-pass filtered using a pseudo Gaussian plus zero elimination filtering operation (reduce), in which the original 3D warped image is marked as R 0 . R 1 is the reduced version of R 0 , and so on. The Gaussian pyramid is generated by this reduce operation when the holes do not influence the calculations. Secondly, they start from the highest level of this pyramid R N , an Expand operation is utilized to get an interpolated image E N -1 , whose size is equal to R N -1 . Then, this interpolated image E N -1 is used to fill the disoccluded holes in R N -1 to obtain the filled image F N -1 . Finally, the filled image in each scale, F N -1 , ... , F 0 can be obtained by repeating the operations upon, and F 0 is the final inpainted result. The DAHHF method adds a depth adaptive preprocessing before the reduce and expand operations. Since the disoccluded regions are more likely to be the background regions, a depth map is employed to assign higher weights to the pix-els belonging to the background. The following steps are similar to HHF except that the starting image is the preprocessed image and the depth weight must be considered during the F ill operations.

VSRS-View Synthesis Reference Software

Tanimoto et al. proposed a DIBR method [START_REF] Mori | View generation with 3D warping using depth information for FTV[END_REF] which has been adopted by the MPEG 3D video Group, known as View Synthesis Reference Software (VSRS) [START_REF] Tanimoto | Reference softwares for depth estimation and view synthesis[END_REF]. The depth discontinuity artifacts are solved by performing a post-filter on the projected depth map. Then, the inpainting method proposed in [START_REF] Telea | An image inpainting technique based on the fast marching method[END_REF] is used to fill the holes in the disoccluded regions. This approach is primarily used in the inter-view synthesis applications which have just small holes to be filled, but it can also be used in single view based rendering cases. In this paper, both the interview mode (VSRS2) and the single view based mode (VSRS1) are used.

Zhu's method

Zhu et al. proposed a novel depth-enhanced hole filling approach for DIBR view interpolation [START_REF] Zhu | Depth image based view synthesis: New insights and perspectives on hole generation and filling[END_REF]. Instead of inpainting the warped images directly, they focus on the use of the occluded information to identify the relevant background pixels around the holes. Firstly, the occluded background information is registered in both texture and depth during the 3D warping process, and the background pixels around the holes are found. Then, the unoccluded background information around the holes is extracted based on the depth map. After that, a virtual image is generated by integrating the occluded background and unoccluded background information. The disoccluded holes are filled based on this generated image with the help of a depth-enhanced Criminisi's inpainting method and a simplified block-averaged filling method. Finally, the pre-stored foreground information is recovered in the virtual synthesized image.

Among the DIBR algorithms mentioned above, Zhu's method is an interview synthesis method, VSRS is used both as interview synthesis and single view based synthesis (marked as VSRS2 and VSRS1 recpectively in this paper), the others are only single view based synthesis methods. 

Subjective Experiment

Subjective Test Methodology

There are several subjective testing methods to obtain the perceived quality scores, such as the subjective assessment methodology for video quality (SAMVIQ) [START_REF] Blin | New quality evaluation method suited to multimedia context: Samviq[END_REF], the absolute categorical rating (ACR), etc. In this test, we choose to follow the SAMVIQ protocol because of its stability, reliability and relatively higher discriminability. The SAMVIQ results have a greater accuracy than the ACR scores for the same number of observers (on average 30% fewer observers were required for SAMVIQ than ACR for the same level of accuracy) [6].

In the SAMVIQ protocol, there is much more freedom for the observers who can view each image several times and correct the notation at any time they want. The observers can compare the degraded versions with each other, as well as with the explicit reference. In each trial, there is also a hidden reference which helps to evaluate the intrinsic quality of the reference when the perceived quality of the reference is not perfect. A continuous quality rating scale ranging from 0 to 100 is used during the test. It can be categorized according to the five quality levels: Bad, Poor, Fair, Good and Excellent. (See Table 4.4) The experiment was conducted on a NEC MultiSync PA322UHD monitor with resolution 3840 × 2160. The environment of the subjective experiment was controlled as recommended in the ITU-R Rec. BT.1788 [START_REF] Iturbt Itu | Methodology for the subjective assessment of video quality in multimedia applications[END_REF].

Altogether, 42 naive observers (28 males and 14 females with an age varying from 19 to 52 years old) participated in the subjective assessment experiment. All the observers have no prior knowledge of the view synthesis methodology domain. Prior to the test, the observers were screened for normal visual acuity on the Snellen chart, and for normal colour vision using the Ishihara chart. A training session was conducted before the test session. The observers could have a rest at any time they want during the test. The total duration of the experiment varied from 30 to 45 minutes for each observer.

Processing of Subjective Scores

The subjective scores were firstly processed using the observer screening method recommended in the ITU-R Rec. BT.1788 [START_REF] Iturbt Itu | Methodology for the subjective assessment of video quality in multimedia applications[END_REF]. In this experiment, only one observer marked by red circles, the interview synthesis methods (c), (d) works better than the single view based ones (a), (b) in generating the object texture.

A statistical analysis (student T-test here) was also made over the obtained DM OS scores, to show the statistical equivalence information of the tested algorithms. The scores of single view based methods are obtained by averaging the scores of the two images synthesized from the viewpoints at the two sides. As shown in Table 4.5, the view interpolation methods (VSRS2 and Zhu's), which use the two neighboring views as reference views, perform much better than the single view based methods. Among the single view based approaches, VSRS1 and Ahn's methods are significantly superior to the others. Table 4.5: Student T-test with obtained DM OS scores, where the symbol 1 indicates that the DIBR synthesis method in the row is significantly superior to the one in the column, the symbol -1 means the opposite, while 0 indicates that there is no significant difference between the DIBR synthesis methods in the row and in the column.

VSRS2 Zhu Cri. Luo HHF LDI VSRS1 Ahn VSRS2 0 1 1 1 1 1 1 1 Zhu - 0 1 1 1 1 1 1 Cri. - - 0 0 -1 1 -1 -1 Luo - - - 0 -1 1 -1 -1 HHF - - - - 0 1 -1 -1 LDI - - - - - 0 -1 -1 VSRS1 - - - - - - 0 1 Ahn - - - - - - - 0 

Objective Measurement

In this section, we compare the performances of several existing objective image quality assessment metrics on the proposed database.

Objective Metrics

In addition to the DIBR-synthesized image dedicated quality metrics which has already been introduced in Chapter 1, to be robust, we also test the following state-of-the-art 2D image quality metrics: The Full-Reference (FR) 2D metrics include:

BookArrival V S R S 2 Z h u C ri m in is i L L u o L H H F L L D I L V S R S 1 L A h n L C ri m in is i R L u o R H H F R L D I R V S R S 1 R A h n R 0 
V S R S 2 Z h u C ri m in is i L L u o L H H F L L D I L V S R S 1 L A h n L C ri m in is i R L u o R H H F R L D I R V S R S 1 R A h n R 0 
V S R S 2 Z h u C ri m in is i L L u o L H H F L L D I L V S R S 1 L A h n L C ri m in is i R L u o R H H F R L D I R V S R S 1 R A h n R 0 
c) GT Fly Lovebird1 V S R S 2 Z h u C ri m in is i L L u o L H H F L L D I L V S R S 1 L A h n L C ri m in is i R L u o R H H F R L D I R V S R S 1 R A h n R 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 DMOS (d) Lovebird1 Newpaper V S R S 2 Z h u C ri m in is i L L u o L H H F L L D I L V S R S 1 L A h n L C ri m in is i R L u o R H H F R L D I R V S R S 1 R A h n R 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 DMOS (e) Newspaper PozanHall2 V S R S 2 Z h u C ri m in is i L L u o L H H F L L D I L V S R S 1 L A h n L C ri m in is i R L u o R H H F R L D I R V S R S 1 R A h n R 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 DMOS (f) PoznanHall Pozan Street V S R S 2 Z h u C ri m in is i L L u o L H H F L L D I L V S R S 1 L A h n L C ri m in is i R L u o R H H F R L D I R V S R S 1 R A h n R ( 
g) Pozan Street Shark V S R S 2 Z h u C ri m in is i L L u o L H H F L L D I L V S R S 1 L A h n L C ri m in is i R L u o R H H F R L D I R V S R S 1 R A h n R ( 
h) Shark Balloons V S R S 2 Z h u C ri m in is i L L u o L H H F L L D I L V S R S 1 L A h n L C ri m in is i R L u o R H H F R L D I R V S R S 1 R A h n R ( 
i) Balloons Kendo V S R S 2 Z h u C ri m in is i L L u o L H H F L L D I L V S R S 1 L A h n L C ri m in is i R L u o R H H F R L D I R V S R S 1 R A h n R ( 
V SRS2, Zhu, Criminisi L , Luo L , HHF L , LDI L , V SRS1 L , Ahn L , Criminisi R , Luo R , HHF R , LDI R , V SRS1 R ,
• SSIM: Structure SIMilarity, a widely used objective FR IQA metric calculating the structure similarity between the tested and the reference images proposed by Wang et al. in [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF].

• MS-SSIM: Multi-Scale Structure SIMilarity, a multi-scale approach of SSIM proposed by Wang et al. in [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF].

• PSNR: Peak Signal to Noise Ratio, a widely used pixel-based metric.

• IW-PSNR, IW-SSIM: Information content Weighted FR IQA Metric based on PSNR and SSIM separately, proposed by Wang et al. in [START_REF] Wang | Information content weighting for perceptual image quality assessment[END_REF].

• UQI: Universal Quality Index proposed by Wang et al. in [START_REF] Zhou | A universal image quality index[END_REF], models the image distortions by integrating loss correlation, luminance distortion and contrast distortion.

• PSNR-HVS: based on PSNR and UQI, takes the Human Vision System (HVS) into account [19] [66].

The No-Reference (NR) 2D metrics include:

• BIQI: Blind Image Quality Index, a NR IQA metric proposed by Moorthy et al. in [START_REF] Anush | A two-step framework for constructing blind image quality indices[END_REF].

• BliindSII: BLind Image Interfrity Notaor using DCT Statistics-II proposed by Saad et al. in [START_REF] Saad | Blind image quality assessment: A natural scene statistics approach in the DCT domain[END_REF].

• NIQE: Natural Image Quality Evaluator, a NR IQA metric proposed by Mittal et al. in [START_REF] Mittal | Making a completely blind image quality analyzer[END_REF].

Correlation between the objective and subjective measurements

As introduced in the previous chapters, the performance of objective quality assessment metrics can be evaluated by their correlations with the subjective test results. These correlations methods compare the performance of each metric by calculating their correlations with the subjective results, however they just take the mean value of subjective scores into consideration, the uncertainty of the subjective scores has been ignored. In addition, the quality scores need to be regressed by a regression function cf. Eq. 1, that is not the way they are exactly used in real scenarios. Thus, we further conduct a statistical test proposed by Krasula et al. in [START_REF] Krasula | On the accuracy of objective image and video quality models: New methodology for performance evaluation[END_REF] which does not suffer from the drawbacks of the above methods. The performances of objective metrics are evaluated by their classification abilities.

PLCC, RMSE, SROCC performance comparison

The obtained PLCC, RMSE, SROCC values are given in Table 4.6. It can be noticed at once that the performances of these metrics on the presented database are quite bad (no PLCC value more than 70%). Among which, the proposed metrics P SN R ′ (SCDM), SC-IQA and the side view based FR metric LOGS perform the best in terms of the PLCC on this database. Especially for NIQSV+, NIQSV, NIQE and BliindS2 NR metrics, they show weak correlations with the subjective results.

In Table 4.6, we use the parameters provided by the authors, which make the algorithms achieve their best performance on the IVC DIBR database. In Table 4.7, we investigate the performance dependency of MWPSNR and MPPSNR on decomposition level and structural element size. It shows that these parameters can be fitted to achieve better performance on the proposed database, but they still cannot get satisfactory results. In addition, we think that a high degree of generality is a desirable feature for a good quality metric. That means a metrics performance cannot be judged only on its best performance on a selected database. This is also why the cross-validation is usually needed for the validation of a metric.

The scatter plot of each IQA metric is shown in Fig. 4.11. It seems that all methods are incapable of predicting worse qualities (bigger DMOS value indicates worse quality), which is however consistent with the results shown in Table 4.6 where no metric has a PLCC value higher than 0.7. While some of them do sometimes succeed in their prediction of high qualities in Fig. 4.11 (consistent with their PLCC values bigger than 0.5). Be similar to the results in Table 4.6, the NR metrics NIQSV+, NIQSV, NIQE and BliindS2 show little correction with the subjective results, there is large empty regions in the corresponding scatter plots (consistent with their PLCC values smaller than 0.3). In the first different/similar analysis, the AUC values of most metrics are within [0.5, 0.6], of which the metric P SN R ′ (SCDM) (metric 8 in the figure, the FR quality model introduced in Chapter 3) performs the best. There even exit some metrics whose AUC values are under 0.5.

In the second better/worse analysis, the metric P SN R ′ (SCDM), MW-PSNR and SC-IQA performs significantly better than the other metrics. Similar to the the first different/similar analysis, the last two metrics (NIQE and BliindS2) have little correlation with the subjective results, and there is no metric whose AUC value is higher than 0.85, which is consistent with results in Table 4.6 and Fig. 4.11 that none of the metrics can achieve a satisfactory correlation with the ground truth. Especially, the better/worse analysis results are quite consistent with the SROCC values, which give the mono- correct classification rate and AUC value. Among these the tested metrics, the proposed P SN R ′ (SCDM), SC-IQA and NIQSV+ perform the best along with the APT metric. They achieved an AUC value higher than 0.85, especially the AUC values of P SN R ′ (SCDM), SC-IQA are even higher than 0.9. Similar to the results on IETR dataset, the 2D FR and NR metric perform not well on the DIBR databases. The results are consistent with the correlation results in Tab. 2.1 and 3.2. Based on the above analysis, it could be referred that:

1. The 2D metrics (including FR and NR) show weak correlation with subjective results on DIBR-synthesized view databases, the main reason could be that the 2D metrics are trained and focus on the traditional artifacts, such as blurry, additive white noise, jpeg etc. they cannot well assess the quality of DIBR synthesized views.

2. The test DIBR-synthesized view dedicated quality metrics (including FR and NR) perform much better on IVC database than on the proposed IETR database. Among which, the performance of NR metrics decrease the most, which is consistent with the results in Tab. 4.6. One reason of this cross datasets performance decrease could be that the DIBR NR metrics NIQSV, NIQSV+ and APT tried to optimize their performances on the IRCCyN/IVC DIBR database where "oldfashioned" artifacts exist. On the new proposed IETR database, they cannot get a good performance when the "old-fashioned" are excluded.

Conclusion

DIBR is widely used in FVV, VR, AR, and other popular topics considered as the next generation of 3D broadcasting applications, in order to provide a better QoE to users. In this chapter, a new DIBR-synthesized image database which focuses on the distortions induced by different state-of-the-art DIBR view synthesis algorithms is presented.

Ten MVD sequences and seven state-of-the-art DIBR view synthesis algorithms are selected to generate the virtual view images. The subjective experiment is conducted following the SAMVIQ protocol in a controlled environment as recommended by ITU-R Rec. BT.1788 [START_REF] Iturbt Itu | Methodology for the subjective assessment of video quality in multimedia applications[END_REF]. Results show that the inter-view synthesis methods, which have more input information, significantly outperform the single view based synthesis algorithms. Furthermore, several objective measurements were used to assess the quality of synthesized images on this database. Their performance results indicate that further work has to be done to exploit deeply the characteristics of these specific distortions, for new objective metrics with a better correlation with subjective scores. However, in the current database, only the MPEG MVD source images are included; in the future work, more source images, such as the images from Middlebury database [START_REF] Damiel Scharstein | Middlebury stereo datasets[END_REF], will be considered to make the experiment results more benchmark.

All the data of this presented database, including images, the ground truth depth maps and their associated DMOS, is publicly accessible (https://vaader-data.insa-rennes. fr/data/stian/ieeetom/IETR_DIBR_Database.zip), for the improvement of the QoE of DIBR related applications. contain integer operations, our metric holds a very low computational complexity. Published in IEEE ICASSP conference [START_REF] Tian | NIQSV: A NO REFERENCE IMAGE QUALITY ASSESS-MENT METRIC FOR 3D SYNTHESIZED VIEWS[END_REF].

2. An extended NR quality metric (NIQSV+) of the NIQSV (detailed in Chapter 2).

NIQSV+ improves the original NIQSV by considering more distortion types: "black hole" and "stretching". The experimental resuls show that it achieves a gain of 7.68% in correlation with subjective measurement (PLCC) compared to the original NIQSV, and even outperforms the widely used FR and NR 2D IQA metrics. Published in IEEE Transactions on Image Processing [START_REF] Tian | NIQSV+: A No-Reference Synthesized View Quality Assessment Metric[END_REF].

3. A FR quality model for DIBR-synthesized views (SC-DM) (detailed in chapter 3). This model can be used on any pixel based quality assessment metric. The performance improvements of PSNR and SSIM are 36.85% and 13.33% respectively in terms of PLCC. Besides, the improved PSNR outperforms all the tested DIBR quality metrics including NR and FR significantly. Published in IS&T EI conference [START_REF] Tian | A full-reference Image Quality Assessment metric for 3D Synthesized Views[END_REF]. 5. A new DIBR-synthesized image database and a benchmark of existing DIBRsynthesized view dedicated quality metrics (detailed in Chapter 4). Compared with the existing DIBR databases, firstly, we tested more and newer DIBR algorithms including interpolation and extrapolation; secondly, all the tested images are showed on a 2D display to avoid the 3D display settings and configurations influences, thirdly, some "old fashioned" DIBR artifacts (eg. "black hole" in IVC database) have been excluded in the proposed database. In addition, we conducted a relatively complete bench-marking of the state-of-the-art objective metrics for DIBR-synthesized view quality assessment. Published in IEEE transactions on Multimedia [START_REF] Tian | A benchmark of DIBR Synthesized View Quality Assessment Metrics on a new database for Immersive Media Applications[END_REF].

6. A performance comparison of existing quality metrics on free-viewpoint videos with different depth coding algorithms. The results show that the DIBR dedicated metric performs better than the conventional 2D quality metrics generally, but none of these metrics can achieve a satisfactory correlation with the ground truth.

There is certainly room for the improvement of quality assessment method of freeviewpoint videos with compressed depth maps. Published in SPIE SPIE Optical Engineering + Applications conference [START_REF] Tian | Performance comparison of objective metrics on freeviewpoint videos with different depth coding algorithms[END_REF].

So far, our research work resulted in 6 Publications (2 journal papers and 4 conference papers), which are given below: trained better and better, the discriminative network is also trained to better discriminate the generated image with various distortions. At the same time, many efforts have been made to use the deep neural network to learn the multi-view representation and generate novel virtual views [START_REF] Zhou | Stereo Magnification: Learning view synthesis using multiplane images[END_REF][START_REF] Tian | CR-GAN: learning complete representations for multi-view generation[END_REF][START_REF] Zhao | Multi-view image generation from a single-view[END_REF]. So, one possible way could be that using the generative network to generate virtual views with various distortions which may help solve the problem of size limit of existing database, and then use the discriminative network to evaluate the virtual view's quality. 
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4 .

 4 A FR Shift Compensation based Image Quality Assessment (SC-IQA) metric (detailed in chapter 3). Focusing on the geometric distortion in the DIBR-synthesized views, we use a two step shift compensation method to compensate the global shift and penalize the local geometric distortion at the same time. The experiment results show that the proposed SC-IQA outperforms all the tested DIBR quality metrics including NR and FR significantly. Published in IEEE VCIP conference[START_REF] Tian | SC-IQA: Shift compensation based image quality assessment for DIBR-synthesized views[END_REF].

Table 1 .

 1 

	1: Overview of the existing metrics. The features in the first column indicate
	frequency domain feature (FF), contour/gradient (C/G), JND, Multi-scale decomposi-
	tion (MSD), local image description (LID), depth estimation (DE), dis-occlusion Region
	(DR), Reblurring (RB), ML (Machine Learning).
	Metric	Approach FF C/G JND MSD LID DE DR RB ML
		VSQA
	FR	

Table 2 .

 2 1: Performance comparison of the proposed method with the state-of-the-art metrics on IVC database

	Metric	PLCC RMSE SROCC
	FR 2D metrics	PSNR SSIM	0.4557 0.5927 0.4417 0.4348 0.5996 0.4004
		3DSwIM	0.6864 0.4842 0.6125
		VSQA	0.6122 0.5265 0.6032
		MP-PSNR	0.6729 0.4925 0.6272
		MW-PSNR	0.6200 0.5224 0.5739
	FR 3D metrics	CT-IQA	0.6809 0.4877	-
		EM-IQA	0.7430 0.4455	-
		PSNR'(pro)	0.8242 0.3771 0.7889
		SSIM'(pro)	0.5681 0.5479 0.5475
		SC-IQA(γ = 1) 0.8496 0.3511 0.7640
	RR 3D metrics	MP-PSNRr MW-PSNRr	0.6954 0.4784 0.6606 0.6625 0.4987 0.6232
	SV FR metrics	SIQE DSQM	0.7650 0.5382 0.4492 0.7430 0.4455 0.7067
	2			

.3.2 Performance on MCL-3D database Besides

  , we test the proposed FR metrics on MCL-3D database. This stereoscopic 3D database uses DIBR technology to synthesize the left and the right views from image-plus-depth source. Nine MVD sequences are collected, among which Kendo, Lovebird1, Balloons, P oznanStreet and P oznanHall2 are natural images; Shark, M icroworld, GT F ly and U ndodancer are Computer Graphics images. Many types of distortions are considered in this database, such as Gaussian blur, additive white noise, downsampling blur, JPEG and JPEG-2000 (JP2K) compression and transmission error. These distortions are applied on either the original texture images or the depth images before the view synthesis. In addition, the distortion caused by imperfect DIBR algorithms are also considered in this database. Four DIBR view synthesis algorithms ([START_REF] Fehn | Depth-Image-Based Rendering (DIBR), compression, and transmission for a new approach on 3D-TV[END_REF] [94][START_REF] Solh | Hierarchical hole-filling for depth-based view synthesis in FTV and 3D video[END_REF] plus DIBR without hole filling) were used.

Table 2 .

 2 2: Performance comparison of the proposed method with the state-of-the-art metrics on MCL-3D database

	Metric	PLCC RMSE SROCC
	FR 2D metrics	PSNR SSIM	0.7852 1.6112 0.7915 0.7331 1.7693 0.7470
		3DSwIM	0.6519 1.9729 0.5683
		VSQA	0.5078 2.9175 0.5120
		MP-PSNR	0.7831 1.6179 0.7899
	FR 3D metrics	MW-PSNR	0.7654 1.6743 0.7721
		PSNR'(pro)	0.7166 1.8141 0.7197
		SSIM'(pro)	0.6000 2.0814 0.5451
		SC-IQA(γ = 1) 0.8194 1.4913 0.8247
	RR 3D metrics	MP-PSNRr MW-PSNRr	0.7740 1.6474 0.7802 0.7579 1.7012 0.7665
	SV FR metrics	SIQE DSQM	0.6734 1.9233 0.6976 0.6995 1.8593 0.6980

Table 2 .

 2 2 gives the obtained PLCC, RMSE and SROCC coefficient values on the MCL-3D database.

Table 3 .

 3 

	2: PLCC, RMSE and SROCC between DMOS and objective metrics. (The best
	three results are marked in bold), NIQSV+_s means NIQSV with stretching detection,
	NIQSV+_b means NIQSV with black hole detection Metric PLCC RMSE SROCC
		NIQSV+	0.7114 0.4679 0.6668
		NIQSV+_s 0.6886 0.4828 0.6497
	NR 3D metrics	NIQSV+_b 0.6423 0.5103 0.4806
		NIQSV	0.6346 0.5146 0.6167
		APT	0.7307 0.4546 0.7157
		3DSwIM	0.6864 0.4842 0.6125
		MP-PSNR 0.6729 0.4925 0.6272
	FR 3D metrics	MP-PSNRr 0.6954 0.4784 0.6606 MW-PSNR 0.6200 0.5224 0.5739
		MW-PSNRr 0.6625 0.4987 0.6232
		VSQA	0.6122 0.5265 0.6032
		PSNR	0.4557 0.5927 0.4417
		SSIM	0.4348 0.5996 0.4004
	FR 2D metrics	MS-SSIM 0.5406 0.5602 0.5021
		IW-PSNR 0.3608 0.6210 0.3460
		IW-SSIM	0.5337 0.5631 0.4795
		NIQE	0.4022 0.6096 0.3673
	NR 2D metrics	BIQI	0.5273 0.5657 0.3555
		BliindSII	0.5331 0.5633 0.1800

Table 3 .

 3 3: Ranking of view synthesis algorithms according to DMOS and objective metrics. The green colored algorithms indicate that the changing of ranking position is acceptable; the blue ones are medium; and the red ones are non acceptable.

	Metric		Ranking of synthesis algorithms	
	DMOS	A1 3.	A5	A4	A6	A2	A3	A7

57 3.49 3.40 3.32 3.31 3.15 2.28

  

	NR 3D metrics

Table 3 .

 3 .4. 4: Execution time of each IQA metric normalized base on PSNR. The metrics A-Z indicate NIQSV+, NIQSV, APT, 3DSwIM, MP-PSNR, MP-PSNRr, MW-PSNR, MW-PSNRr, VSQA, PSNR, SSIM, IW-PSNR, IW-SSIM, NIQE, BIQI and BliindS2 respectively.

	Metric	A	B	C	D	E	F	G	H
	time	21 18 13k+ 90 100 35 12.4 9.6
	Metric	I	J	K	L	M	N	O	P
	time 140 1	7.4 75 75 45 67.5 6.8

Table 3 . 5

 35 

	Metric	A	B	C	D	E	F	G	H
	Residual Variance 0.222 0.268 0.212 0.237 0.246 0.232 0.276 0.2112
	Metric	I	J	K	L	M	N	O	P
	Residual Variance 0.281 0.356 0.364 0.390 0.321 0.376 0.324 0.321

: Variance of residuals between DM OS and DM OS p . (Res. Var. denotes Residual Variance), the metrics A-Z indicate NIQSV+, NIQSV, APT, 3DSwIM, MP-PSNR, MP-PSNRr, MW-PSNR, MW-PSNRr, VSQA, PSNR, SSIM, IW-PSNR, IW-SSIM, NIQE, BIQI and BliindS2 respectively.

Table 4 .

 4 

	1: Summary of existing DIBR related database

Table 4 .

 4 Gt F ly are computer animation images, as shown in Fig.4.8. The characteristics of the sequences are summarized in Table4.2.For each single view based DIBR algorithm, a single virtual viewpoint is extrapolated from the neighboring two views separately. For the interview DIBR algorithms, the virtual viewpoint is synthesized based on both the two neighboring views, as shown in Table4.3. We consider thus for each reference image, 2 virtual views synthesized by 2 interview synthesis algorithms and 12 virtual views synthesized by 6 single view based DIBR algorithm, which leads to 14 degraded images.

		2: Introduction of the tested MVD sequences	
	Sequence	Resolution	Frame No. View ref. Position View sys. Position	SI
	BookArrival Lovebird1 Newspaper Balloons Kendo Undo Dancer 1920 × 1088 1024 × 768 1024 × 768 1024 × 768 1024 × 768 1024 × 768 GT Fly 1920 × 1088 Poznan street 1920 × 1088 Poznan Hall2 1920 × 1088 Shark 1920 × 1088	58 80 56 6 10 66 150 26 150 220	8, 10 4, 8 2, 6 1, 5 1, 5 1, 9 1, 9 3, 5 5, 7 1, 9	9 6 4 3 3 5 5 4 6 5	60.2348 64.9756 61.1012 47.6410 48.6635 64.1033 55.5549 61.3494 23.5174 48.6635
		Table 4.3: Type of DIBR method	
		DIBR method inter-view or single view (extrapolation)	
		VSRS2		inter-view	
		Zhu's		inter-view	
		Criminisi's	single view (extrapolation)	
		Luo's	single view (extrapolation)	
		HHF	single view (extrapolation)	
		LDI	single view (extrapolation)	
		VSRS1	single view (extrapolation)	
		Ahn's	single view (extrapolation)	

Table 4 .

 4 

	4: Comparison scale for SAMVIQ
	10	Bad
	30	Poor
	50	Fair
	70	Good
	90 Excellent

Table 4 .

 4 6: PLCC, RMSE and SROCC between DMOS and objective metrics, where "SV FR metric" indicates the side view based FR metric

	Metric	PLCC RMSE SROCC
		PSNR	0.6012 0.1985 0.5356
		SSIM	0.4016 0.2275 0.2395
		MS-SSIM	0.6162 0.1957 0.5355
	FR 2D metrics	IW-PSNR	0.5827 0.2019 0.4973
		IW-SSIM	0.6280 0.1933 0.5950
		UQI	0.4346 0.2237 0.4113
		PSNR-HVS 0.5982 0.1991 0.5195
		MP-PSNR 0.5753 0.2032 0.5507
		MP-PSNRr 0.6061 0.1976 0.5873
		MW-PSNR 0.5301 0.2106 0.4845
	FR 3D metrics	MW-PSNRr 0.5403 0.2090 0.4946
		VSQA	0.5576 0.2062 0.4719
		PSNR' (pro) 0.6685 0.1844 0.5903
		SC-IQA	0.6856 0.1805 0.6423
	SV FR metric	LOGS	0.6687 0.1845 0.6683
		NIQSV	0.1759 0.2446 0.1473
	NR 3D metrics	NIQSV+	0.2095 0.2429 0.2190
		APT	0.4225 0.2252 0.4187
		NIQE	0.2244 0.2421 0.1360
	NR 2D metrics	BLiindS2	0.2225 0.2422 0.1329
		BIQI	0.4348 0.2237 0.4328

Table 4 .

 4 7: Performance dependency of MP-PSNR and MWPSNR, where "SE" indicates .2000 0.5319 0.5571 0.2059 0.4928 identify the image of higher quality in the pair.

	Structural Element size	MW-PSNR	MW-PSNRr
	level SE PLCC RMSE SROCC PLCC RMSE SROCC
	0.5500 0.2070 0.5199 0.5602 0.2054 0.5235
	0.5389 0.2088 0.4875 0.5383 0.2089 0.4953
	0.6132 0.1958 0.5598 0.6095 0.1965 0.5634
	0.5981 0.1987 0.5353 0.6014 0.1981 0.5240
	level SE	MP-PSNR	MP-PSNRr
	7 0.6037 0.1976 0.5578 0.5659 0.2044 0.5402
	5 0.6284 0.1929 0.5737 0.5889 0.2004 0.5794
	3 0.6312 0.1923 0.5914 0.6023 0.1979 0.5745
	2 0.6134 0.1958 0.5601 0.5945 0.1993 0.5443
	7 0.6190 0.1947 0.5809 0.5841 0,2012 0.5570
	5 0.6294 0.1927 0.5951 0.6160 0.1953 0.5870
	3 0.6246 0.1936 0.5860 0.6314 0.1922 0.5855
	2 0.6163 0.1952 0.5497 0.6009 0.1982 0.5313
	7 0.6170 0.1951 0.5909 0,6023 0.1979 0.5569
	5 0.6230 0.1939 0.5796 0,6247 0.1936 0.5678
	3 0.6170 0.1951 0.5619 0.6106 0.1963 0.5470
	2 0.5911 0	

Comme indiqué au chapitre 1, dans certaines applications 3D telles que FVV, même avec un très grand nombre de vues, il n'est toujours pas possible de couvrir tous les points de vue arbitraires d'une scène donnée. C'est-à-dire qu'il n'y a pas d'image de référence pour la vue synthétisée dans certaines circonstances. Dans ce cas, les métriques de qualité NR sont nécessaires. Dans ce chapitre, nous proposons deux métriques de qualité d'image complètement NR (NIQSV et NIQSV+) pour les vues synthétisées par DIBR. Ces deux métriques reposent toutes deux sur l'hypothèse que l'image de bonne qualité est supposée présenter des contours nets et réguliers, des valeurs lissées à l'intérieur de l'objet et des discontinuités importantes aux limites de l'objet. De telles images sont insensibles aux opérations morphologiques d'ouverture et de fermeture, tandis que certains artefacts tels que les zones floues autour des bords de l'objet et l'effritement dans les vues synthétisées sont sensibles à de telles opérations morphologiques. Sur la base de cette propriété, NIQSV utilise une paire d'opérations d'ouverture et de fermeture pour mesurer ces distorsions. En tant que version étendue de NIQSV, NIQSV+ améliore ses performances en estimant les deux autres types de distorsions: trous noirs et étirement. Ensuite, les résultats expérimentaux de la base de données d'images IRCCyN / IVC DIBR montrent que la métrique NIQSV proposée surpasse les métriques 2D traditionnelles et se rapproche de la performance du FR en mode DIBR dédié. Le NIQSV+ proposé occupe la deuxième place dans toutes les métriques dédiées au DIBR, y compris FR et NR, et il n'existe aucune

Source: https://developer.att.com/blog/shape-future-of-video

This chapter concludes the contribution of this thesis: two NR quality metrics, two FR quality metrics dedicated to DIBR-synthesized views and a new publicly accessible DIBR synthesized image database. Besides, some directions for future work are also given in this chapter.
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• MS-SSIM: Multi-Scale Structure SIMilarity, a multi-scale approach of SSIM proposed by Wang et al. in [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF].

• PSNR: Peak Signal to Noise Ratio, a widely used pixel-based metric.

• IW-PSNR, IW-SSIM: Information content Weighted FR IQA Metric based on PSNR and SSIM separately, proposed by Wang et al. in [START_REF] Wang | Information content weighting for perceptual image quality assessment[END_REF]. For the implementation of these metrics, we used the source code provided in [START_REF] Battisti | 3DSwIM Source Code[END_REF], [START_REF] Sandic-Stankovic | [END_REF], [START_REF] Wang | IW-SSIM Source Code[END_REF], [START_REF]LIVE Software Releases[END_REF], respectively. The execution time of each metric is normalized based on PSNR as shown in Table 3.4.

Table 3.1 gives the performance dependency of NIQSV+ on k z and C. It shows that the performances of NIQSV+ are optimal when k z equals 200 and C equals 1. For a fair comparison with the other metrics, we use a cross-validation scenario to obtain the performance of the proposed metric: the adopted database is partitioned into two non-overlapping sets with randomly selected 50% images as a training set and the other 50% as a test set. This random train-test procedure was repeated 100 times and the average performance on the test set across the 100 iterations was reported as the performance of our proposed method. Compared to the best results given in Table 3.1, the results of cross-validation are less favorable (PLCC 0.016 lower), but they are more realistic.

The scatter plots of the DM OS versus the fitted score DM OS p of all the tested IQA metrics are shown in Fig. 3 The primary quality scores of the tested image are obtained as the difference between the score of the hidden reference image and the score of the tested image as shown in Eq. (4.1):

where S i,j denotes the primary quality score of the ith tested synthesized image, Score hr and Score i denote the score of the hidden reference and the ith tested synthesized image respectively, and the subscript j denotes the jth observer.

Then, the primary quality scores are normalized to z-score per person cf. Eq. 4.2.

where µ j and σ j denotes the mean value and variance value of the jth observer respectively. To make the data more intuitive, the normalized zscores are scaled to (0,1).

The final quality score differential mean opinion score (DMOS) is calculated by averaging the normalized z-scores of all the observers, as shown in Eq. 4.3:

where DM OS i denotes the final subjective quality score of the ith tested synthesized image, S i,j is the obtain primary quality score in Eq. (4.1), and N is the number of observers.

The obtained DM OS score distributions and their confidence intervals are shown in Fig. 4.9. Generally, the interview synthesis methods outperform the single view based synthesis methods in most sequences. However in some sequences, such as BoolArrival, the VSRS1 get better results than VSRS2 and Zhu's methods, but not very significantly according to the corresponding confidence intervals. One reason could be that, owing to the inaccuracy of depth map, the same object in the two base views are rendered to different positions which results in a "ghost" effect in the synthesized view. However, this situation does not happen in single view based synthesis method VSRS1. As shown in Fig. 4.10, there exists a "ghost" effect of the "chat flow" on the board marked by red blocks in (c) and (d); but according to the synthesized content CHAPTER 5

CONCLUSION AND PERSPECTIVES

Brief summary

As the needs of the visual experience increase, applications that can provide more immersive perception of 3D visual scene, have gained an exceptional increase in public interest and curiosity in the past decade. As a fundamental technology to synthesis virtual view, DIBR is widely used in 3D applications. It can help to reduce the transmission cost. However, this DIBR process produces new types of distortion, which are far different from those distortions induced by 2D video compression. Therefore, the quality assessment of DIBR-synthesized views is of great importance for a high quality immersive experience. This thesis is dedicated to assess the quality of 3D synthesized views objectively and subjectively. After a careful analysis of the existing state-of-the-art quality metrics for DIBR-synthesized views, we propose two no-reference and two full-reference image quality assessment metrics for DIBR-synthesized views respectively. Then, we present a novel DIBR image database.

Contributions and list of publications

The main contributions and novelties of this thesis are:

1. A totally NR quality assessment metric for DIBR-synthesized views (NIQSV) (detailed in Chapter 2). It uses a set of morphological operations to detect the typical distortions in DIBR-synthesized views: "thin distortion", "blurry region" and "crumbling". The experimental results show that the proposed NIQSV metric outperforms traditional 2D metrics and ranks among the best of dedicated 3D synthesized and full reference metrics. Moreover, as the morphological operators only