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Résumé

Les interactions entre les processus tectoniques et l’érosion ont été peu étudiées à des échelles de temps

courtes (< 1000 ans). Cependant, les séismes peuvent activement contribuer à l’érosion des chaînes de

montagne en déclenchant de nombreux glissements de terrain. Des études récentes ont également montré que

ces grands événements érosifs pourraient engendrer des changements de contraintes suffisants à proximité

des failles actives pour modifier la sismicité régionale. Dans cette thèse, cette problématique a été abordée

via une approche numérique. Dans un premier temps, le développement d’un modèle simple de glissements

de terrain prenant en compte la topographie des versants a permis de démontrer le rôle des paramètres

mécaniques (cohésion et friction), et de la forme des versants sur la distribution de taille des glissements

de terrain. Ce modèle a été validé à l’aide de cas naturels de glissements de terrain co-sismiques Dans un

deuxième temps, le rôle de la forme finie des versants sur la probabilité de grands glissements de terrain a

été démontrée en se basant sur des données. Enfin, dans un troisième temps, le potentiel effet d’un grand

évènement érosif sur la sismicité a été exploré à l’aide d’un modèle numérique de cycle sismique dans lequel

ont été implémentées des variations temporelles de la contrainte normale sur la faille. Les résultats mettent

en évidence le rôle du volume de sédiments, mais aussi de leur temps d’export. En particulier, les paysages

caractérisés par une hauteur unstable des versants importante pourraient, en favorisant de grands glissements

de terrain, induire une érosion assez importante et rapide pour modifier de façon significative la sismicité

régionale.
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Abstract

Interactions between tectonic processes and erosion have been poorly investigated at short time-scales

(<1000 years). However, earthquakes can largely contribute to the erosion of mountain belts by triggering

widespread landsliding. Moreover, recent studies have shown that such large erosional events could induce

stress changes in the fault environment efficient enough to influence regional seismicity. In this thesis, this

problematic is tackled through a numerical approach. Firstly, the development of a simple mechanical

model accounting for the complexity and variability of natural hillslopes allowed to demonstrate the role of

mechanical parameters (cohesion and friction), and of hillslope shape in the probability density function of

landslide sizes. This model has been validated using natural cases of co-seismic landsliding. Secondly, the role

of unstable hillslope height on large landslide probability has been demonstrated based on natural data, and

the exponential distribution of this unstable height has been shown. Finally, the potential effect of a large

erosional event on seismicity has been explored with a numerical model of seismic cycle, in which has been

implemented temporal normal stress variations. The results emphasize the role of eroded sediment volume,

but also of the export time of sediments away from the mountain belt. In landscape with high unstable

hillslopes, large landslides are favored and in turn, could induce fast an important enough erosion to modify

regional seismicity.
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Résumé étendu

Ce manuscrit de thèse est rédigé intégralement en anglais. Le résumé étendu ci-après est écrit dans le but de

donner un aperçu du contenu de cette thèse à un lecteur non anglophone.

Chapitre 1 - Préambule

L’altitude et la forme actuelles des chaînes de montagnes résultent de l’action conjointe des processus qui

les élèvent et des processus qui les nivellent. Une large gamme de processus de déformation et d’échelles de

temps associées contribuent ainsi à l’évolution du paysage: d’une rupture sismique se propageant à plusieurs

mètres par seconde en quelques secondes à la construction de chaînes de montagnes par l’accumulation de

déformations tectoniques sur des millions d’années. Les processus d’érosion sont les processus de surface qui

transportent les sédiments hors des chaînes de montagne via les rivières, l’ablation glaciaire, les glissements

de terrains et autre processus gravitaires, l’altération chimique, etc. Ces processus contribuent à niveler les

chaînes de montagnes et interagissent avec les phénomènes tectoniques à toutes les échelles de temps. Dans

cette section, nous examinons brièvement les interactions entre la tectonique et l’érosion à des échelles de

temps géologiques (1 Myrs - 100 Myrs) et intermédiaires (10 000 ans - 1 Myrs). Nous nous concentrons

ensuite sur les interactions à des échelles de temps plus courtes (< 1000 ans) et leurs principales implications

pour la vie humaine ainsi que pour l’évolution des chaines de montagne.

Le fait que les processus d’érosion peuvent influencer la déformation des chaines de montagne à des échelles

de temps géologiques est désormais largement accepté. A des échelles de temps plus courtes (10 000 ans - 1

Myrs), l’érosion pourrait également jouer un rôle sur la sismicité régionale via le rebond isostatique. A des

échelles de temps plus courtes, ces interactions sont très mal contraintes. Cependant, elles ont de nombreuses

implications sociétales et géologiques :

• Les grands séismes peuvent engendrer de nombreux glissements de terrain qui représentent un risque

important pour les populations résidant dans des zones tectoniques à fort risque sismique;

• L’érosion co-sismique peut être aussi, voire plus importante, que le volume de roche élevé lors d’un

séisme; ainsi, les grands séismes pourraient, dans certaines circonstances, avoir un budget topographique

négatif;

• Enfin, les processus de surface peuvent significativement modifier la sismicité régionale. C’est le cas,

par example, des processus cycliques tels que les processus hydrologiques. On peut alors s’attendre à

ce que des épisodes érosifs ponctuels mais importants, comme l’érosion co-sismique, puissent également

modifier le jeu des failles actives au moins dans les premiers kilomètres de la croûte.
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Chapitre 2 - Introduction

Ce chapitre vise à décrire les concepts à la base de mon travail. Il commence par décrire la mécanique des

glissements de terrain et des séismes, en abordant les notions pertinentes pour comprendre leurs interactions

à l’échelle de temps du cycle sismique. Je décris ensuite les interactions entre ces deux processus, en me

basant principalement sur l’observation de cas naturels. Enfin, je me concentre sur les observations et les

explications physiques de la taille des séismes et des glissements de terrain.

Cet état de l’art soulève des problèmes auxquels je m’efforcerai de répondre au cours de cette thèse. Ces

questions en suspens sont résumées à la fin de chaque partie.

Mécanique des séismes et des glissements de terrain

Les tremblements de terre et les glissements de terrain sont deux manifestations de la déformation fragile

des roches lithosphériques. Les tremblements de terre se produisent lors du mouvement brusque de roches

le long de failles de la croûte terrestre, qui rompent parfois jusqu’à la surface de la Terre. Les glissements

de terrain sont caractérisés par la rupture catastrophique des versants, qui peuvent être déclenchées par un

facteur externe tel que le mouvement co-sismique du sol. Dans un cas statique, une rupture de la roche peut

survenir lorsque la contrainte motrice appliquée à une roche est supérieure à sa résistance à la rupture. Dans

cette section, je présente d’abord la notion de résistance des roches et le problème macroscopique de rupture

fragile. Je me concentre plus spécifiquement sur la mécanique des tremblements de terre dans une deuxième

section, puis sur la mécanique des glissements de terrain dans une dernière partie.

Questions en suspens :

- Quelle est la résistance des roches, à l’échelle du paysage, impliquée à des échelles de temps

pertinentes en géomorphologie ?

- Est-il possible de prédire la variabilité de la profondeur des glissements de terrain dans un modèle

de glissement de terrain restant simple d’un point de vue mécanique ?

- La prise en compte explicite de l’accélération co-sismique est-elle nécessaire pour modéliser les

glissements de terrain co-sismiques?

Interactions entre séismes et glissements de terrain

Dans la première section, j’ai montré que les tremblements de terre et les glissements de terrain peuvent

être déclenchés par des changements de contrainte dans leur environnement. En effet, les tremblements de

terre peuvent être déclenchés par le changement de contrainte statique dû à un séisme important, et les

glissements de terrain quant à eux peuvent être déclenchés par l’accélération due aux ondes sismiques. Cer-

taines observations montrent que les processus de surface peuvent modifier le champ de contrainte autour des

failles peu profondes, suffisamment pour déclencher des séismes. Cependant, les séismes ne provoquent pas

systématiquement de nombreux glissements de terrain, et les processus de surface ne modifient pas systéma-

tiquement la sismicité régionale. Dans cette section, je décris les observations 1) de la réponse du paysage

aux tremblements de terre et 2) des séismes déclenchés par les processus de surface, et je tente de montrer

ce que ces observations nous disent des mécanismes de déclenchement au cours du cycle sismique.

8



Questions en suspens :

- Les failles actives sont-elles sensibles aux événements d’érosion, qui sont transitoires, mais non

périodiques?

- Quelle est l’amplitude et la durée d’un événement d’érosion nécessaire pour augmenter significa-

tivement la sismicité régionale ?

- Un changement de contrainte transitoire est-il capable de changer la distribution des magnitudes

des tremblements de terre?

Taille des séismes et glissements de terrain

La distribution de taille des glissements de terrain et des séismes est un élément fondamental de l’évaluation

des risques. En outre, la distribution de taille des glissements de terrain est essentielle pour quantifier

l’érosion engendrée par un séisme de forte magnitude ou par des précipitations importantes. La taille des

glissements de terrain et des tremblements de terre présentent une distribution en loi de puissance qui est

observée dans de nombreux inventaires. Cependant, ces distributions varient dans le temps et dans l’espace.

En particulier, la prévision d’événements importants est difficile, parce qu’ils sont si rares qu’ils ne sont pas

toujours échantillonnés. Par exemple, le glissement de terrain du Langtang ou le tremblement de terre de

Tohoku et le tsunami qui l’a suivi ont été particulièrement importants par rapport aux prévisions basées sur

les inventaires historiques.

Dans cette section, je décris d’abord les distributions de tailles observées dans la nature pour les glisse-

ments de terrain et les séismes. Ensuite, je me concentre sur l’explication physique de leur distribution en

loi de puissance et les variations potentielles de leurs exposants. Enfin, nous verrons que le modèle de loi de

puissance ne décrit pas la distribution de taille des plus petits et des plus grands événements, et résumons les

connaissances actuelles sur les facteurs qui contrôlent la taille des petits et des grands événements de rupture.

Questions en suspens :

- Qu’est-ce qui contrôle la distribution de taille des glissements de terrain? Est-ce la mécanique de

la propagation de la rupture, ou bien l’hétérogénéité du système?

- Quelles sont les différences entre les mécanismes de rupture sismique et glissement de terrain qui

pourraient expliquer l’absence de rollover pour les tremblements de terre?

- Qu’est-ce qui contrôle la probabilité des grands glissements de terrain ? La probabilité d’un tel

événement destructeur est-elle prévisible?
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Chapitre 3 - Modélisation numérique de la distribution de taille des

glissements de terrain

Dans la première section de ce chapitre, je présente le modèle développé au cours de cette thèse sous la

forme d’un article soumis à Geophysical Research Letter. Dans ce papier, nous décrivons d’abord l’approche

développée pour modéliser la distribution de profondeur et d’aire des glissements de terrain. Ensuite, nous

validons ce modèle et calibrons les paramètres mécaniques (cohésion et friction) en utilisant six inventaires

de glissements de terrains existant, induits par des séismes ou des typhons. Enfin, nous utilisons ce modèle

pour mieux comprendre l’effet de la forme du paysage sur la distribution de taille des glissements de terrain,

en utilisant des topographies synthétiques.

La seconde partie de cette section est dédiée à deux implications de ce modèle. Dans une première partie,

j’utilise les résultats obtenus via mon modèle pour discuter de la résistance (cohésion et friction) effective

des paysages aux échelles de temps géomorphologiques. Dans une seconde partie, je présente un cas d’étude

à l’échelle d’un bassin versant qui met en évidence l’importance de la forme du paysage sur le volume total

de sédiments mobilisés par les glissements de terrain.

Dans ce chapitre, nous montrons qu’un modèle simple prenant en compte la forme des versants et un

critère de rupture statique de type Mohr-Coulomb peut tout à fait modéliser la distribution de taille des

glissements de terrain. Nous mettons en avant le rôle de la cohésion dans l’émergence du rollover pour les

petits glissements, et de la forme du paysage pour la distribution de taille des glissements les plus grands.

Nous montrons également que la propagation de la rupture en 2D contribue à l’émergence d’une loi de

puissance pour les glissements de terrain de taille moyenne.
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Figure 1 – PDF de l’aire des glissements de terrain observés (points rouges) et modélisés (carrés noirs) à

partir du MNT de Taiwan (C = 18 kPa, Φ = 30o et γ = 0.47). Les droites représentent la pente théorique

de la PDF contrôlée par la géométrie de la rupture en 2D (droite bleue) et par la forme du paysage (droite

verte).
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Chapitre 4 - Contrôle de la forme des versants sur la taille des

glissements de terrain

Dans le chapitre précédent, j’ai défini un modèle mécanique simple prenant en compte la topographie et la

résistance effective de la roche. A l’aide de ce modèle, j’ai clarifié la contribution respective de la friction,

cohésion, propagation de la rupture et géométrie des pentes sur la distribution de taille des glissements de

terrain. En particulier, j’ai démontré l’importance théorique de la longueur, de la hauteur et de la pente des

versants finis sur la probabilité de grands glissements de terrain. Mais dans quelle mesure la forme du paysage

contrôle-t-elle réellement la distribution de taille des glissements de terrain? Cette idée doit être comparée à

des données. En utilisant le cas du bassin de la Dajia à Taiwan, j’ai souligné que la distribution de taille des

glissements de terrain peut refléter la forme du paysage à l’échelle locale (au sein du même bassin versant).

Dans ce chapitre, je profite de plusieurs inventaires de glissements de terrain existants pour explorer le rôle

de la géométrie finie des pentes sur la distribution de la taille des glissements de terrain, en particulier pour

la probabilité de grandes glissements de terrain. Ce chapitre est constitué d’un article en préparation dans

lequel je compare la distribution de taille des glissements de terrain (pour plusieurs inventaires provenant

de différents endroits du globe) à la géométrie du paysage, en passant par une métrique intégrant l’altitude

maximale au-dessus de l’angle de friction. Je montre que cette métrique suit une distribution exponentielle,

dans une région donnée, mais également à l’échelle mondiale. Cet article est suivi d’une discussion dans

laquelle je propose d’approfondir mes recherches, via une approche analytique, sur le rôle de cette distribution

sur la distribution de la taille des glissements de terrain.

Chapitre 5 - Réponse d’une faille active à des événements érosifs

extrêmes

Dans les deux chapitres précédents, j’ai étudié les contrôles potentiels sur la distribution de la taille des

glissements de terrain et démontré le rôle fondamental de la géométrie du paysage. En particulier, les
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Figure 2 – a) Histogramme à deux variables représentant la probabilité des aires de glissement de terrain et

de la valeur de hC correspondante. b) PDF des aires de glissement de terrains, pour quatre classes de hC .

La légende indique les paramètres de la loi de puissance modélisée (α et Amin) pour chaque PDF. Les quatre

classes de hC , shown in the bottom of a), are chosen to have a constant number of landslides nL.
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paysages avec d’importante hauteurs instables sont capables de produire de grands glissements de terrain sous

un forçage donné. Ces zones correspondent aux zones de collision à haut risque sismique, dans lesquelles des

processus érosifs et tectoniques sont susceptibles d’être couplés. Par exemple, dans un travail en préparation

(Annexe A), nous soupçonnons que les nombreux glissement de terrain déclenchés par le typhon Morakot

a déclenché une sismicité superficielle et modifié la b-value des séismes pendant plusieurs années après le

typhon.
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Ces liens potentiels doivent être approfondis à travers une approche numérique. Par conséquent, dans ce

chapitre, j’ai utilisé deux modèles numériques du cycle sismique pour étudier le rôle de grands événements

d’érosion sur la sismicité. Je présente d’abord les méthodes numériques utilisés. Ensuite, je présente les

principaux résultats obtenus sous la forme d’un article qui sera soumis à une revue scientifique après la

soutenance. Dans cet article, j’ai modélisé les effets d’un événement d’érosion sur une seule faille avec des

propriétés frictionnelles hétérogènes. Ensuite, je compare les principaux résultats de cette étude avec le

comportement d’une faille homogène, et je présente enfin un travail en cours dans lequel je vise à étudier le

rôle d’un événement érosif sur un réseau de failles.

Dans ce chapitre, je montre que la réponse d’une faille active à un grand événement érosif peut être

significative, et dépend de la durée et de l’amplitude de cet événement. Je montre également que pour un

changement de contrainte suffisamment important, la magnitude des séismes change également significative-

ment, et la faille produit plus de petits séismes en proportion comparée à un cas où elle n’est pas perturbée. Je

montre également que ces résultats se retrouvent pour une faille homogène, mais avec une réponse moins im-

portante. Ces résultats devraient être étendus à une population de failles de différentes tailles, afin d’étudier

le changement de b-value engendré par un changement de contrainte du à un grand événement érosif.

Chapitre 6 - Conclusion

Ces travaux ont permis d’améliorer les connaissances actuelles sur les processus contribuant à façonner la

surface de la Terre à court terme (10-1000 ans). Notre approche, basée sur des études numériques, a conduit

aux résultats principaux suivants:

1) Un modèle mécanique très simple de glissements de terrain prenant en compte la géométrie des pentes

est capable de reproduire la distribution de taille des glissements de terrain. Ce modèle a mis l’accent sur

l’importance de la cohésion pour la distribution des petits glissements de terrain, sur la contribution de

la propagation de la rupture en 2D à la loi de puissance, et sur l’influence de la forme du paysage sur la

distribution de taille des grands glissements de terrain.

2) La géométrie des pentes a une importance fondamentale dans la distribution de taille des glissements

de terrain. Un critère simple mesurant la hauteur des pentes instables, hC , est reflété dans les inventaires de

glissements de terrain. Cette métrique est distribuée de manière exponentielle dans de nombreuses régions

du monde et contrôle la probabilité des grands glissement de terrain.

3) Les grands événements d’érosion peuvent potentiellement engendrer des séismes et modifier la distribu-

tion de taille des tremblements de terre lors de l’export des sédiments. La magnitude et la durée de l’érosion

sont deux paramètres fondamentaux pour évaluer la réponse des failles. Notre étude, basée sur une seule

faille, doit être étendue à une population de failles afin de quantifier le changement potentiel de b-value dû

à de grands événements d’érosion.
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Chapter 1

Preamble

The present elevation and shape of worldwide mountain ranges result from the balance between the processes

that build them and the processes that level them. A large range of deformation processes and associated time-

scales contribute to landscape evolution: from an earthquake rupture propagating at meters per second over

several seconds to the building of mountain ranges by accumulation of tectonic deformation over millions of

years. Erosional processes are the surface processes that remove material away from mountain ranges by river

sediment transport and erosion, glacial carving and ablation, landsliding and hillslope erosion, mechanical and

chemical weathering, etc. These processes contribute to erode mountain ranges and interplay with tectonic

uplift at all time scales. In this section, I briefly review the interactions between tectonics and erosion at

geological (1 Myrs-100 Myrs) and intermediate (10 000 yrs - 1 Myrs) time scales. I then focus on those

interactions at shorter time scales (< 1000 years) and their main implications for human life as well as for

mountain building.

1.1 From geological time scales to the seismic cycle time scale

At the beginning of the XIXth century, scientists started recognizing that climate could dramatically change

over geological time scales. Past continental glaciations had been recognized from their geomorphological

evidence, such as the erratic blocks founded in the Alpine valleys. But how to explain such a major cooling

that glaciers were extended enough to carry those blocks to the lowest parts of the valleys that are currently

ice-free?

During the mid-XIXth century, the link with mountain building emerged as the most possible explana-

tion. In his essay on Alpine glaciers, the German-Swiss geologist Jean de Charpentier observed the geometry

of moraines and deduced that those deposits were likely to have been formed after the rise of the Alps

(Charpentier, 1841). He proposed that orogenesis induced deep cracks and crevasses through which surface

runoff water entered the warm depths of the Earth and vaporized, contributing to moisturize and cool the

atmosphere (figure 1.1). Although the mechanism he proposed was incorrect, this was one of the first pub-

lished attempts to draw a link between surface processes and the rise of mountain ranges. Then, during one

century, several scientists (e.g., Dana, 1856, Lyell, 1875) took up and supported this novel idea, named the

"relief hypothesis" by Ramsay (1924), that mountain ranges cool the atmosphere and cause a temperature

decrease.

This theory was further investigated during the second half of the XXth century, together with the devel-

opment of paleoclimatology. Extensive ocean coring programs such as the Deep Sea Drilling Project (begun

in 1968) recovered a lot of Tertiary sediment cores well suited to investigate the Cenozoic evolution of global

climate. The common outcome of numerous paleobotanic investigations (e.g., Wolfe, 1978) and oxygen iso-

topes measurements (e.g., Savin, 1977) was that the continental glaciations inferred by Charpentier and his

contemporaries was the last step of a 50 Myr global cooling that temporally correlates with the late Cenozoic

16



rise of mountain belts such as the Himalayas or the Rocky Mountains. Further investigations have shown

that mountain building can significantly change the climate at geological time-scales through several mecha-

nisms. First, increasing mountain range elevation induces an increase of Earth’s albedo, by leading to longer

winters, increasing the area and duration of snow cover, and leading to the expansion of glaciers (Birchfield

and Wertman, 1983). Moreover, weathering rates and river fluxes can increase with increasing uplift rates.

This enhanced continental weathering would trap more CO2 in the ocean and decrease greenhouse effect

(Raymo et al., 1988). Mountain ranges can also dramatically change atmospheric flow, and favour cold

climate (Kutzbach et al., 1989). An elevated topography enhances precipitations on the wind side of the

mountain, and can induce strong monsoon in areas such as southern Asia. As mountain building enhances

precipitation, it is likely to enhance erosional processes, which are strongly linked to climate (Wilson, 1973,

Jansson, 1982). In climatological settings with efficient erosion, as in Taiwan (Suppe, 1981) or New Zealand

(Adams, 1980), the uplift rate can be balanced by the rate of erosion, leading to a steady-state topography

at geological time scales.

Figure 1.1 – Glacier du Rhônes, taken from "Essai sur les glaciers" by Jean de Charpentier. "Cette révolution

(l’orogenèse Alpine, N.D.A.) a occasionné des fentes et des crevasses, [...] dont un grand nombre devait

atteindre la profondeur où la température de la terre était assez élevée pour transformer l’eau (pluviale,

lacustre ou marine) en vapeurs. [...] Ces vapeurs, en amenant beaucoup d’humidité dans l’atmosphère et

en la refoidissant, durent occasionner une longue suite d’années pluvieuses et froides, qui, comme on le sait,

favorisent singulièrement le développement des glaciers." Jean de Charpentier, Essai sur les Glaciers, (1841),
p. 315-318.

However, since the end of the XXth century, geologists and geophysicists progressively changed their vision

of climate and erosion as passive processes responding to mountain building. Since plate tectonics theory

won general acceptance in 1967, and after the wartime boom in seismology research and the development

of satellite imagery, geologists dramatically improved their knowledge of the surface and crustal structure of

mountain belts. Over millions of years, mountains grow (at millimetres to centimetres per year) by thrusting

and thickening of the upper crust under the compressional forces due to plate motions. Under this frame,

17



geologists and physicists start thinking of mountain as a wedge (similarly to the wedge developing in front of

a bulldozer) that deforms until a critical slope is reached (Dahlen et al., 1984, Koons, 1990). In this model,

surface processes cannot be ignored; if some material is removed from the top of the wedge, it changes the

distribution of mass and stresses in the belt, and induces internal deformation that re-establishes the critical

taper. During the 90s, the advances in numerical modelling have highlighted that erosion is expected to

control the size, structure and pattern of deformation in several mountain belts (Koons, 1990, Willett, 1999,

Willett et al., 1993, Beaumont et al., 1996). A striking example is the Southern Alps of New Zealand, where

the asymmetry of rainfall, mainly coming from the west coast, is able to explain the asymmetric topographic

profile and the pattern of uplift (Willett, 1999). Climate, erosion and uplift are now commonly considered

as a series of feedbacks, and it is largely accepted that surface processes can strongly influence tectonic de-

formation over geological time scales (Whipple, 2009).

The increasing amount of geodetic data, the deployment of seismometer network, mainly in the Himalayas

(e.g., Pandey et al., 1999), and then the development of the Global Positioning System (GPS) during the

90s (Bilham et al., 1997, Larson et al., 1999, Jouanne et al., 1999) allowed geologists to look at mountain

deformation at shorter time scales. Long-term crustal thickening is mainly accommodated by slip along major

faults, but if we look at shorter time scales, faults do not slip continuously. Over periods of 100-1000 years,

they accumulate tectonic stress, and then release it during sudden, large ruptures (i.e., earthquakes). The

succession of loading (aseismic) and relaxation (seismic) phases are commonly known as the seismic cycles.

During the late XXth century, mountain building started being studied through seismotectonics (i.e., the

study of earthquakes as a tectonic component). Because erosion removes crustal material, it partly drives

continental rock uplift through isostatic rebound: the gravitational equilibrium between crust and mantle is

restored by land’s vertical motion. In a numerical model of long and short-term deformation of the Himalayas,

Cattin and Avouac (2000) showed that erosion, through isostasy, is likely to interplay with tectonics during

the interseismic period as well as during orogenic deformation. However, the role of erosion on fault slip is

easier to decipher in some particular places, where long-term deformation is so low that it is hardly detected

by GPS, and that yet experience seismic activity. It is the case in mountain ranges considered stable such as

the Pyrenees or the Western Alps (Vernant et al., 2013) or for intraplate earthquakes such as in New Madrid

(Missouri) (Calais et al., 2010). In those cases, fault slip is likely to be enhanced by the isostatic rebound

of the lithosphere caused by erosion, which induces a normal stress decrease in the upper crust sufficient to

unclamp pre-existing faults that are close to failure.

1.2 Why do we care about short-term interactions between tec-

tonics and erosion ?

At geological time scales, rock uplift and river incision contribute to steepening hillslopes until their mechan-

ical stability threshold is reached (Burbank et al., 1996, Mitchell and Montgomery, 2006), and the landscape

responds by landsliding (Korup et al., 2007, Larsen and Montgomery, 2012). However, the landsliding rate

in a mountain belt is not steady; the energy released during large earthquakes by seismic waves can cause

strong ground motion that induces almost instantaneously a large amount of slope failures, especially in

mountainous areas with steep topography. As recent examples of earthquakes that triggered tens of thou-

sands of landslides, we can mention the 2015 Gorkha earthquake in Nepal (Roback et al., 2017), the 2016

Kaikoura earthquake in New-Zealand, or the recent 2018 Hokkaido earthquake (Japan). Those catastrophic

landsliding events represent a major hazard for the populations living in seismically active settings. They

also have strong geomorphological implications, because they instantaneously convert a large volume of rock

to sediment that can be delivered to the rivers, and then mobilized (Yanites et al., 2010, Croissant et al.,

2017). Those large erosional events could also modify the regional seismicity, because of the sudden stress

18



change they induce in the shallow crust (Steer et al., 2014). In the next sections, I will look at all of those

three points.

1.2.1 Co-seismic landslides represent a major hazard for populations

Landslides triggered by earthquakes are a major hazard in seismically active regions. They can destroy

villages and cause hundred of injuries and fatalities (Marano et al., 2010, Petley, 2012, Catlos et al., 2016).

For example, between 20.000 and 100.000 fatalities due to the 2008 Wenchuan earthquake in China have

been attributed directly to landsliding (Huang and Fan, 2013). Coseismic landslides can also block roads and

railways, which is especially problematic in isolated, narrow and inhabitated valleys with limited accessibility.

They also deliver large volumes of sediments to rivers, modifying their dynamics, causing hydro-sedimentary

hazards such as river aggradation or landslide dams (Collins and Jibson (2015), figure 1.2 a). Landslides can

be the primary source of co-seismic damage to infrastructure (figure 1.2 b) and can prevent the functioning of

transportation. Therefore, they induce economic losses that can be even more important than those caused

by direct ground shaking (Bird and Bommer, 2004).

Large landslides in particular can be very destructive, such as shown by the Langtang landslide triggered

by the Gorkha earthquake, that destroyed an entire village and killed more than 200 people. In natural

hazard management, the size of such large and therefore destructive events is critical for the overall hazard

anticipation (Strauss et al., 1989, Sornette, 2006). Unfortunately, because large landslides are rare compared

to smaller ones, their occurrence is also the most difficult to predict (Geist and Parsons, 2014).
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Figure 1.2 – a) Landslides triggered by the 2015 Gorkha earthquake and the subsequent landslide dam in the

river. Top of scarp below village is approximately 400 m above river (after Collins and Jibson (2015)). b)

Damage induced to hydropower projects in Nepal by the Gorkha earthquake. The size of the symbols shows

the proximity to landslide. Data are plotted against peak ground acceleration (PGA) and river steepness

(after Schwanghart et al. (2018)).

1.2.2 Earthquakes and coseismic erosion shape the landscape

The last decades have shown the fundamental importance of seismic rupture in mountain range building.

Rocks move and uplift mainly during shallow earthquakes (Avouac, 2007), and the idea that seismic and

interseismic deformation do not balance, but accumulate to create topography and form permanent structures

(King et al., 1988), has been restored recently by observations (Le Béon et al., 2014) and numerical modelling

(Simpson, 2015).

Moreover, earthquakes contribute significantly to the erosion of mountain belts. The total volume of

coseismic landslides scales, at first order, with the earthquake magnitude (Keefer, 1994): during larger

earthquakes, a larger volume of rock is converted to sediments that can be transported away the mountain
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belt by rivers. Landslides therefore need to be considered in the mass balance of large earthquakes (i.e., the

mass that is uplifted by seismic rupture minus the mass that is removed by erosion). More and more accurate

estimates of the erosion induced by co-seismic landsliding have been possible during the last decades with

the development of high-resolution satellite imagery accessible for the scientific community. This has led to

many complete or nearly complete co-seismic landslide inventories (Tanyaş et al., 2017). Recent studies have

shown that the mass balance of large earthquakes can be variable. For example, the Chi-Chi earthquake

generated more uplift compared to landsliding volume (Hovius et al., 2011); however the topographic budget

of the Wenchuan earthquake was nearly neutral (Parker et al., 2011, Li et al., 2014). Recent numerical

modelling suggest that intermediate size earthquakes (Mw 6-7.3) may cause more erosion than uplift (Marc

et al., 2016a).

Moreover, the export time of landslide sediment is a debated question. If some studies suggest that rivers

need more than several centuries to adjust to large landsliding events (Stolle et al., 2018), other studies

propose an export time of several decades (Yanites et al., 2010, Howarth et al., 2012, Uchida et al., 2014,

Wang et al., 2015, Xie et al., 2018). Other studies (Hovius et al., 2011, Croissant et al., 2017) propose

an even shorter time scale (1-10 years) for the post-seismic export of landsliding sediments. These recent

observations and numerical modelling are challenging the well accepted idea that large earthquakes always

build topography.

Figure 1.3 – a) Total volume of landslides triggered by earthquakes of different magnitudes (Keefer, 1994).

Therefore, understanding what controls the volume of sediments that is generated and then removed

during and after an earthquake is fundamental to understand to what extent earthquakes build topography.

This requires documentation of the number of landslides triggered by a specific earthquake and their size.

Prediction of the total number of landslides remain challenging (Gorum et al., 2014) because landslide density

depends on many parameters linked to seismic rupture, wave propagation, topography and rock strength

(e.g., Massey et al., 2018). Moreover, the size distribution of landslides displays significant variations (Van

Den Eeckhaut et al., 2007, Tanyaş et al., 2017) that remain poorly understood. Therefore, current estimations

of the total volume of landslides remain challenging and predict total volume within a large error (Keefer,

1994, Marc et al., 2016b).
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1.2.3 Surface processes can trigger seismicity at human-life time scales

Surface processes, including sedimentation and erosion, involve the transfer of material (sediments, water) at

the Earth’s surface. Sediment and water transfers induce stress changes at depth, with various periods (one

day for tides, one year for the monsoon, to decades for co-seismic erosion). The amplitude of stress change

decreases with depth, but appears in some cases to be sufficient enough to trigger shallow seismicity (e.g.,

Bollinger et al., 2007, Bettinelli et al., 2008).

For example, figure 1.4 shows the annual variations of seismicity in Japan (Heki, 2003). Insets a and

b show that large earthquakes (magnitude > 7) are more frequent (∼4 times) during summer than winter,

with an annual periodicity. This is observed only in the area covered by snow during winter (fig. 1.4 c). The

author of this study have explained this observation by the cycle of surface loading and unloading due to

snow melt in spring and summer and snow cover in winter. Calculating the stress changes induced by this

cycle on the crustal faults located below gives values of a few kPa. To give an order of idea, this is a hundred

times smaller than the pressure of a bike tire.

Even though, the mechanisms of earthquake triggering by surface processes are not clearly understood

yet, it appears that the rupture of shallow crustal faults can be activated by very small stress changes, as we

also learned during the few last decades the triggered seismicity in the US (e.g., Chen and Talwani, 2001,

Ellsworth, 2013). Therefore, at the time-scale of a seismic cycle, erosion is likely to influence the seismicity of

active faults (Steer et al., 2014), and some feedbacks can be expected, for example between co-seismic erosion

induced by landslides and shallow earthquakes. Nevertheless, those interactions have been poorly studied,

and the conditions under which large erosional events can actually significantly interplay with seismicity

remain unclear.
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Figure 1.4 – Number of large (red) and small (white) earthquakes that occurred in 2-month intervals, within

(a) and outside (b) the snowy region of Japan. The epicenters are shown in b) together with the maximum

snow depth in winter. From Heki (2003).
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Chapter 2

Introduction

This chapter is written to give an overview of the concepts at the basis of my work. It starts with the notions

of landslide and earthquake mechanics that are relevant to understand their interactions at the time scale of

a seismic cycle. I then describe those interactions, mainly based on the observation of natural cases. Last, I

focus on the observations and physical explanations of earthquake and landslide sizes.

2.1 Earthquake and landslide mechanics

Earthquakes and landslides are two manifestations of the brittle deformation of Earth’s upper lithosphere.

Earthquakes occur by the sudden motion of rocks along crustal faults that sometimes ruptures up to the

Earth’s surface (figure 2.1a). Landslides are characterized by the gravity-driven catastrophic failure of hill-

slopes that can be triggered by an external factor such as co-seismic ground motion (figure 2.1b). In a static

case, rock failure can occur when the driving stress applied to a rock or to a fracture is greater than its resist-

ing stress, i.e. rock strength. In this section, I first introduce the notion of rock strength and the macroscopic

problem of brittle failure. In the second and the third sections, I focus more specifically on earthquake and

landslide mechanics, respectively.

BA

Figure 2.1 – Earthquakes and landslides, two manifestations of the brittle behavior of the Earth’s crust.

a) Picture taken by G.K. Gilbert near Bolinas, in Marin County, after the 1906 Mw 7.9 San Francisco

earthquake. The picture shows a fence that was offset about 8.5 feet along the trace of the fault (from

UC Berkeley Earthquake Engineering Research Center). b) Landslides triggered by the 6 September 2018

Hokkaido earthquake (Japan) Photo: Jiji Press.

22



a) b) c)

1 km 10 m 100 μm

Figure 2.2 – Natural fractures at all scales. a) Southern portion of the San Andreas fault, across the Carrizo

Plain in California. Credit : US Geological Survey. b) Cracks in a granitic cliff in western Jefferson County

(US). Photo by J. Cain, USGS. c) Microcracks in a naturally deformed plagioclase, from Kranz (1983).

2.1.1 Rock strength and brittle failure

How much stress a material can hold and the critical stress that will induce failure is a very old problem. It

is important for engineering, mining... The issue of interest to humans (for example landslide occurrence, or

the failure of a bridge) implies macroscopic failure. However, macroscopic failure implies brittle failures at

a wide range of scales, and involves two main modes of brittle deformation: crack propagation and sliding

along pre-existing fractures. I hereinafter explain why rock strength and brittle failure is a scale-dependent

problem; then I introduce rock friction, which is the macroscopic property controlling rock sliding; and finally

I give the commonly used description of the macroscopic failure of rocks.

2.1.1.1 A scale-dependent problem

The most common method of studying rock strength is the compression of a cylinder of rock with a press

(uniaxial compression, or tri-axial compression if the rock is confined). Strength measurements consist of

measuring the non-dimensional strain ε under stress σ. The obtained stress-strain curve usually shows that

the material first deforms elastically (equation 2.1) until a threshold is reached, inducing macroscopic failure

of the material :

σ = Eε (2.1)

where E is a constant called Young’s modulus, or elastic modulus.

In those experiments, the maximum stress the rock can hold is referred to as compressive rock strength.

Typical values of rock strength founded in the lab are about 10-100 MPa.

Our modern understanding of rock strength arises from the discrepancy between early empirical estima-

tions of rock strength, and analytical solution brought by the theory of matter. Orowan (1949) calculated

the theoretical stress σt necessary to separate two atoms with an inter-atomic distance a, across a lattice

plane :

σt =

(
Eγ

a

)1/2

(2.2)

where γ is the specific surface energy (the energy per unit area necessary to break the bonds) and E is

Young’s modulus. From this result, the typical stress necessary to break the atomic bonds in silicate rocks

would be 1-10 GPa, which is several orders of magnitude greater than the actual rock strength, showing that

the atomic scale is not appropriate to infer macroscopic rock strength.

So, what is a good scale to infer rock strength ? Experimental studies made on various rock types

(e.g., Bieniawski, 1968, Jahns et al., 1966, Pratt et al., 1972, Hoek and Brown, 1997) have shown that rock

sample strength decreases with increasing size. A theoretical explanation for this scale dependency was first
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proposed by Griffith and Eng (1921), Griffith (1924). They calculated that rocks yield with increasing scale

because they contain defects (cracks) which concentrate stress at their tips, allowing failure at stresses much

lower than the theoretical stress. However, the problem of macro failure can not be addressed simply by

the modelling of an expanding crack, because it involves several processes at all scales (Scholz, 2002). For

example, a fault could be at first order modelled by a linearly expanding crack. However, if we zoom on a

portion of this fault, we will notice a lot of complex features resulting from meter to decameter-scale fractures

(figure 2.2b). Those cracks create lower strength surfaces along which rock mass can slide under tectonic

stresses. At even smaller scale, rocks also contain micro-cracks (Kranz (1983), figure 2.2c) whose propagation

is involved in the micromechanics of what can be seen as frictional sliding at larger scales (Scholz, 2002).

Therefore, modelling macro failure events requires to use empirical or semi-empirical laws determined from

laboratory experiments (Hoek and Brown, 1980b), that integrate the variety of processes occurring at smaller

scales (Carpinteri, 1994, Senent et al., 2013). The two next sections focus on those macroscopic properties

and how they contribute to rock failure at the macroscopic scale.

2.1.1.2 Rock friction

Friction is the resistance to motion that occurs when a body slides tangentially to a surface on which it

contacts another body. When a fracture already exists, sliding is controlled by the frictional resistance, which

is a property of the interface more than a property of the material. Frictional strength acts in everyday life,

and reducing friction is an important problem in engineering for machines with moving parts. Therefore, its

first-order properties have been known since ancient times. The two main laws of friction were discovered by

Leonardo da Vinci, and formulated 200 years later by Amonton (Amonton, 1699):

• Amonton’s first law : the frictional force is independent of the size of the surfaces in contact

• Amonton’s second law : the frictional force Ff is proportional to the normal force Fn with a friction

coefficient µ0:

Ff = µ0Fn (2.3)

Byerlee (1978) compiled the shear stress necessary to slide a rock surface toward another from a variety of

experiments, using either carbonate or silicate rocks (figure 2.3). He found that µ0 (∼ 0.6) was independent

of lithology, and to first order, independent of velocity. Actually, at second order, friction slightly varies

according to sliding velocity (Byerlee, 1970) and time (Rabinowicz, 1951). This is why, during frictional

sliding, dynamic instability can occur (i.e, earthquakes). This arises from second-order frictional properties

(section 2.1.2.1); the friction described by Byerlee (1978) is the static friction.

2.1.1.3 Macroscopic failure of rock

The principal tools that are commonly used in engineering as well as Earth sciences to describe rock macro-

failure are the Coulomb criterion and Mohr circle analysis. The underlying idea is to define an empirical

failure criterion for a potential rupture plane, based on macroscopic strength of the material. This failure

plane can be a tectonic fault, or a potential landsliding plane characterized by a fracture, for example.

First, one can derive the relationship between normal and shear stresses acting on a plane submitted to

bidirectional principal stresses σ1 and σ3, and making an angle α with the direction normal to σ1 (figure 2.4

a). The shear stress τ and normal stress σn acting on this plane are (e.g., Jaeger et al., 2009):

σn = σn,1 + σn,3 = σ1cos2(α) + σ3sin2(α) − p (2.4)

τ = τ1 + τ3 = −σ1sin(α)cos(α) + σ3sin(α)cos(α) (2.5)
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Figure 2.3 – Shear stress plotted as a function of normal stress at the maximum friction for a variety of rock

types at normal stress to 20 kbar. (From Byerlee (1978)).

Using the trigonometric relationships :

sin(α)cos(α) =
sin(2α)

2
(2.6)

cos2(α) =
1 + cos(2α)

2
(2.7)

sin2(α) + cos2(α) = 1 (2.8)

we obtain :

τ =
σ1 − σ3

2
sin(−2α) (2.9)

σn =
σ̄1 + σ̄3

2
+

σ1 − σ3

2
cos(−2α) (2.10)

σ̄1 = σ1 − p and σ̄3 = σ3 − p are the effective stress, that is the stress applied minus pore pressure p.

Equation 2.10 and 2.9 represent the coordinates of a circle with center (σ̄1 + σ̄3)/2 and diameter σ1 − σ3

(Mohr circle). We note that moving an angle α in the physical space is equal to moving an angle −2α in the

Mohr circle (figure 2.4b).

The Coulomb criterion assumes that failure occurs if the shear stress exceeds the shear strength of the

material, which is induced by the frictional resistance (Heyman (1972), equation 2.5). Here it is important

to note that the stress necessary to rupture a bulk rock is higher than the stress necessary to induce sliding

on a pre-existing fracture. This supplementary strength (figure 2.4 b) is usually accounted for by adding

a "cohesion" strength (Mercier et al., 1999, Labuz and Zang, 2012) that we can see as the contribution of

the bonding between particles at molecular scale. We also note the contribution of pore pressure increase to

failure or frictional sliding enhancement : for an increase ∆p, the center of the circle will move toward the

left by ∆p. From the Mohr-circle criteria we can see that failure occur on two conjugate planes at angles θ :

θ =
π

4
−

φ

2
(2.11)
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This framework provides a basis to understand fault orientation under different tectonic conditions. In

an extensional context, σ1 is vertical, and failure is expected to occur at 60° with the horizontal considering

a frictional angle of 30°. Under a compressional regime, σ1 is horizontal, and failure is expected to occur at

30° with the horizontal. This corresponds to the global orientation of normal and reverse faults, respectively.

Mohr-Coulomb analysis remains the principal tool that is used to understand long-term faulting, but also to

assess slope failure hazard.
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Figure 2.4 – a) Rock sample under bidirectional principal stresses, σ1 and σ3. A potential rupture plane is

shown in black, with angle α with the normal direction σ1. The normal and shear components of σ1 and σ3

are shown in red and green. b) Mohr circles under different stress conditions. A) shows the stress state of

a rupture plane that can reach the failure envelope if it is suitably oriented. B) shows the stress state of a

plane that could induce frictional sliding if it is suitably oriented. Under the same conditions, a pore pressure

increase can induce fracture (circle C).

2.1.2 Earthquake mechanics

Most of the time, earthquakes do not cause surface rupture and can be felt far from their hypocenter. For

those reasons, for millennia, human have experienced earthquakes without really understanding the origin of

those destructive events. From the late XIXth century, the faulting origin of earthquakes appeared thanks

to the advances in rock mechanics combined with observations of fresh scarps concomitant with earthquakes

(Gilbert, 1884, Kotô, 1893). After the observation of the ground surface displacement which accompanied

the 1906 San Francisco earthquake, the seismologist Henry Fielding Reid proposed in his "elastic rebound

theory" (Reid, 1910) that earthquakes result from strain release caused by sudden rock fracture along a fault

(figure 2.1 a).

Reid’s theory laid the foundations of our modern understanding of the faulting origin of earthquakes.

However, it was not able to explain the relatively low stress drop observed for large earthquakes, that are

10 to 100 times smaller than the stress drop induced in the lab by the fracturing of rocks (Chinnery, 1964).

Brace and Byerlee (1966) proposed to explain this discrepancy by the fact that earthquakes do not involve

the fracture of the crust, but the sliding on pre-existing faults. This idea seemed quite reasonable, especially

in seismically active regions where the crust is likely to be already weakened by faults created by previous

earthquakes.

Therefore, fault mechanics implies two time scales: over centuries to million of years, faults can be con-

sidered as quasi-static cracks with a frictional strength (this approach is explained in paragraph 2.1.1.3),
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growing by the succession of seismic cycles. At short time scales, from years to seconds, rupture propagates

dynamically along the fault, inducing sudden motion and generating seismic waves. Thanks to the develop-

ment of continuous GPS during the last decade, observations have highlighted another fault slip mode, called

’slow slip’, propagating from 0.5 km/h (Rogers and Dragert, 2003) to 1 km/day (SI et al., 2005).

In this section I focus on the mechanical properties implied in seismogenic behavior at short time scales,

known as rate-and-state frictional properties (Dieterich, 1979, Rice and Ruina, 1983, Ruina, 1983). Then I

will describe earthquake nucleation, and finally we will see how earthquakes interact with each other through

their stress field.

2.1.2.1 Static and dynamic friction

In their 1966 experiment, Brace and Byerlee (1966) introduced an artificial fracture in a rock sample and

compressed it. They observed that the motion was not regular but that jerky sliding occurred along the saw-

cut, each motion resulting in a low stress drop comparable to earthquake stress drop. They proposed that

this motion, called "stick-slip", was the process by which earthquakes occurred and that this was controlled

by the frictional properties of faults rather than by the bulk rock strength.

Frictional resistance arises from the fact that two surfaces in contact are never perfectly smooth but

contain irregularities (Bowdon and Tabor, 1950, Bowden and Tabor, 1964) that make the actual surface of

contact (asperities) smaller than the apparent contact area (figure 2.5 A and B). Following the work of Brace

and Byerlee (1966), a great deal of attention was focused on fault frictional properties, leading to the two

main following observations :

- the friction that needs to be overcome to initiate sliding (i.e, static friction) increases with the logarithm

of the time of contact between two surfaces;

- the friction during sliding (i.e, dynamic friction) evolves as a function of sliding velocity. This evolution

depends on temperature and material. When friction decreases with velocity, this dynamic weakening is able

to induce dynamic instability (i.e, an earthquake).

After those fundamental observations, attempts have been made to propose constitutive laws to model the

evolution of friction during stick-slip sliding experiments (e.g., Marone, 1998, Dieterich, 1994), the main issue

being how to link static and dynamic friction evolution in a single model. For that purpose, a critical distance

Dc was introduced (Rabinowicz, 1958, Dieterich, 1979). This characteristic distance is often interpreted as

the memory distance over which the population of contact area is renewed.

The modern form of the constitutive friction law which provides the best explanation for experimental

data (Marone, 1998), is:

τ = σ̄n ×

[

µ0 + a log

(
V

V0

)

+ b log

(
θV0

Dc

)]

(2.12)

where σ̄n is the effective normal stress, V0 is steady-state velocity, and a and b are frictional parameters

describing the velocity and state dependency, respectively.
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Figure 2.5 – Schematic diagram of contacting surface Ar in plan view (a) and section (b) of an interface of

area A. The dark regions in plan view represent the asperities. The total contact area is Ar. c) Typical

displacement-friction curve resulting for velocity stepping experiment after Dieterich (1994). d) Setup of a

spring-slider model. The slider is in contact with a frictional surface and loaded by a shear stress τ through

a spring with stiffness k, under a normal load σn. Adapted from Scholz (2002).

The state variable θ (Ruina, 1983) is the life time of contact asperities. Its time-derivative θ̇ is usually

described through an ageing law :

θ̇ = 1 −
V θ

Dc
(2.13)

The base friction coefficient µ0 represents the rock frictional strength described by the second Amonton’s

law (equation 2.3). This first-order frictional property is not involved in seismogenic behavior. The coeffi-

cients a and b represent the rate-dependence and state-dependence of friction, respectively. Therefore these

formulations are commonly called "rate-and-state friction laws". This rate and state dependency is commonly

seen as responsible for the seismic behavior that I will focus on.

2.1.2.2 Friction instability and seismogenesis

Stick-slip behavior is the result of nucleation (i.e, dynamic instability characterised by a phase of spontaneous

accelerating slip), fast propagation of the shear rupture, and arrest. Understanding what controls those three

steps of the seismic rupture, and in particular under what conditions dynamic instability can occur, is one

of the most important questions in seismology.

At first order, the seismogenic potential of a fault is given by the rate-and-state parameters a and b.

Indeed, from equations 2.12 and 2.13, we see that the friction at steady-state is :

τ = σ̄n ×

[

µ0 + (a − b) log

(
V

V0

)]

(2.14)

Therefore, if a - b > 0, µss increases with increasing velocity. This regime, called rate-strengthening,

is stable: an earthquake cannot nucleate under this condition because any acceleration will be stopped by

an increase in frictional resistance. If an earthquake propagates into a rate-strengthening region, it will

stop rapidly. If a - b < 0, µss decreases with increasing velocity. Under this regime, called rate-weakening,

dynamic instabilities, such as fast earthquakes, can propagate.
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Simple spring-slider models (figure 2.5 D) coupled with friction laws have been widely used to study what

gives rise to dynamic instability (Ruina, 1983, Gu et al., 1984). The main outcome of those studies is the

existence of a condition for instability under rate-weakening regime. This condition can be expressed either

as a critical normal stress σc (equation 2.15) or as a critical stiffness kc (equation 2.16).

σc =
kDc

−(a − b)
(2.15)

kc = −
σn(a − b)

Dc
(2.16)

Figure 2.6 a) shows the required velocity jump for instability as a function of the normal stress. If

σn > σc (or k < kc), the system is unstable even if their is no velocity jump, i.e, steady loading. If σn < σc,

or k > kc, the system is said to be conditionally stable because it needs a certain velocity jump to accelerate

dynamically. The implications for earthquake nucleation are the following: under steady loading (as tectonic

loading), earthquakes can nucleate only in the unstable region. If they propagate into a conditionally stable

region, inducing a high enough velocity jump, they can dynamically propagate.

Those simple considerations, derived only from spring-slider block models, allow definition of a first-order

seismogenic zone that is in good agreement with data (figure 2.6 b). In theory, seismogenic areas should have

rate-weakening rheology (a - b < 0) and be conditionally stable (σn > σc). The parameter (a - b) is a material

property that depends primarily on temperature (e.g., Blanpied et al., 1991). For a granite, it is negative

at low temperatures and become positive around 300°C, corresponding to the onset of crystal plasticity of

quartz. Then, a general statement would be that earthquakes can nucleate only above this transition. Near

the surface, faults favor stable slip because of the presence of gouge and other poorly consolidated materials

that are likely to be rate-strengthening (Marone et al., 1990).

The development of numerical methods allowed the exploration of the behavior of a continuous fault

embedded in an elastic medium, under tectonic loading and with rate-and-state friction laws (e.g., Rice,

1993, Lapusta et al., 2000). Numerous numerical experiments offered further insights into the nucleation

process (e.g., Rubin and Ampuero, 2005, Kaneko and Lapusta, 2008). Nucleation starts at a localized zone

of steady slip, and spontaneously evolves toward a state of accelerating sliding velocity, spreading out until

the instability reaches the length scale Lc (figure 2.6 c)). Currently relevant values of Lc are (Rubin and

Ampuero, 2005) :







Lc = 2 ∗ 1.13774 ∗ Lb for a/b > 0.3781

Lc = 2 ∗
Lb

π(1 − a/b)2 for a/b → 1
(2.17)

where Lb (often called the cohesive zone) gives the spatial length scale over which the shear stress drops

from its peak to residual values at the propagating rupture front (Palmer and Rice, 1973):

Lb =
EDc

bσn
(2.18)

Numerical models with rate-weakening patches smaller than Lc only produce creep or slow-slip events

(figure 2.6 c). However, the scaling of the key parameter Dc is not understood, and could span several orders

of magnitude, from µm in the lab to kilometres along natural faults (Dodge et al., 1996). The physical

significance of Dc and the size of nucleation zone for natural earthquakes are still open questions.
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Figure 2.6 – a) Stable and unstable regimes as a function of normal stress σn and velocity jump ∆V .

Nucleation (yellow star) is possible under unstable conditions, and can propagate in the conditionally stable

zone if the acceleration is high enough (green arrow), or arrest in the stable zone if the consequent stress drop

is too high (red arrow). b) Vertical profile of (a−b)σn showing the distribution of stability regimes with depth

(Scholz, 1988). For comparison the depth distribution of seismicity for a section of the San Andreas fault is

shown (Marone and Scholz, 1988). c) Simulation of a nucleation with Lc smaller than the rate-weakening

patch. Characteristic lengths Lc and Lb are shown in red and blue, respectively. Each line represents the

velocity at a time-step t, as a function of the distance along the fault. Adapted from Rubin and Ampuero

(2005).

2.1.2.3 Earthquake interactions

Observations show that many earthquakes do not occur as isolated events, but are part of a sequence (Gardner

and Knopoff, 1974). Earthquake sequences are observed either before (Jones and Molnar, 1979, Ellsworth

and Bulut, 2018) or after (Mendoza and Hartzell, 1988, Feng et al., 2017) a mainshock, i.e an earthquake of

significantly larger size. They are called foreshocks and aftershocks, respectively. Earthquakes sequences are

not always associated with a main shock (Klein et al., 1977, Toda et al., 2002); in this case, the sequence is

called a swarm.

Aftershock sequences are well documented because they are observed to follow almost all earthquakes

of significant size (figure 2.7a). The frequency decay of aftershocks was first described by the seismologist

Fusakichi Omori in 1894 following the observation of the rate of aftershocks after the 1891 Nobi earthquake.

He observed that the frequency of aftershocks roughly decreases with the inverse of time after the main shock.

Utsu (1971) modified this expression to introduce an exponent p, which is near one, and a constant c:

n(t) =
K

(c + t)p
(2.19)

where n(t) is the number of aftershocks in a time interval at time t after the mainshock, and K is a

constant.

Accurate understanding of earthquake triggering would need to constrain the actual fault slip velocity,

but also all the mechanical parameters such as frictional parameters and pore pressure, acting on each fault

in a certain environment. As this is impossible in practice, earthquake triggering is usually studied through

the static stress changes in fault environment.

The most simple way to model this effect is to consider the Coulomb failure stress (CFS), which is the

difference between the static shear stress in the potential slip direction τs and the frictional strength of the

fault. In the case of a CFS change, potential for slip can be enhanced (∆CFS > 0) or delayed (∆CFS < 0).

The Coulomb stress change ∆CFS, is simply defined by :

∆CFS = ∆τs − µ (∆σn − ∆p) (2.20)
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Figure 2.7 – a) Temporal variation in earthquake frequency after the 1993 Hokaido earthquake in Japan.

After Utsu (2002). b) Modelled Coulomb stress change induced by the 1979 Homestead Valley earthquake in

California. White line is the mainshock rupture and white symbols are aftershocks. From King and Cocco

(2001).

where ∆σn is the change in normal stress on the fault, ∆τs is the change in shear stress on the fault, and

∆p is the pore pressure change.

Spatial correlation between aftershock occurrence and ∆CFS show that static stress explains at first

order the location of seismicity following large ruptures (King et al., 1994, Hardebeck et al., 1998) . For

example, King and Cocco (2001) computed ∆CFS induced by the 1979 Homestead Valley earthquake and

found a spatial correlation between the aftershocks and the areas of increased Coulomb stress. On the

contrary, almost no earthquakes occurred in the stress shadow areas with a negative ∆CFS (figure 2.7b). It

is interesting to note that those static stress changes are lower than the typical earthquake stress drop (10

-100 bars).

However, Coulomb stress changes cannot explain the time delay observed after the mainshocks, some-

times very short (days to months) compared to tectonic loading. The first explanation is the non linearity

of earthquake nucleation (section 2.1.2.1). Moreover, Coulomb stress transfer is time-dependent and also

involves a relaxation time. The main mechanisms responsible for this time dependency are the poroelastic

effects (Peltzer et al., 1998, Cocco and Rice, 2002): in the case of an abrupt static stress change, the normal

stress change induces an immediate pore pressure change of the same sign and of comparable magnitude.

This is followed by pore pressure diffusion back to its previous value at a rate that is determined by the

diffusivity of the system. This process introduces an additional time delay to the time delay set by frictional

properties (Seeber et al., 1998).

Aftershock sequences are a natural laboratory to study fault response to a step-like stress change. This

has been widely investigated (e.g., Gross and Kisslinger, 1997, Toda et al., 2012) mainly through the rate-and-

state spring-slider model (Dieterich, 1994). However, since the last decade, advances in numerical modelling

suggests that finite faults are more sensitive than spring-slider models to such static stress changes (Kaneko

and Lapusta, 2008, Ader et al., 2014).
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2.1.3 Landslide mechanics

We have seen in the previous section that crustal material moves along faults either by creeping, slow slip, or

seismic ruptures, and that earthquakes represent the catastrophic part of this large slip spectra. In the same

way, hillslopes move permanently. Material moves downward either by diffusive processes, or slow creep, but

also through catastrophic ruptures that scar the landscape, called landslides. Therefore, similarly to faulting

and earthquakes, static mechanics allow understanding of landslide phenomenology at first order, and its

possible triggering. Landslide nucleation and rupture propagation must imply second-order mechanisms

such as rate-weakening friction. However, landslide occurrence depends to first order on the occurrence

and intensity of triggering events, such as earthquakes. Therefore, landslide dynamic properties are not

commonly considered in understanding when and how much landslides are going to happen. Landslides

include failure that involve only the regolith and occurs at the soil-rock transition (shallow landslides), and

bedrock landslides that involve bedrock failure. The volume of bedrock-landslide inventories is dominated

by fewer, but larger failures (Dussauge et al., 2003), more than inventories of shallow landslides. Based on

this common observation, bedrock landsliding has been thought to be the only hillslope processes capable of

keeping pace with the rapid uplift rate and river incision in active tectonic areas (Burbank, 2002).

In the following, I will focus on the simplest, static description of the problem of bedrock landsliding.

I first define the hillslope strength; then I describe the force balance at rupture; and finally, I show the

advantages and weaknesses of this force balance for understanding landslide potential triggering.

2.1.3.1 Hillslope strength

The problem of rock strength scale described in section 2.1.1.1 also arises in geomorphology. The actual

elevation of mountain ranges was conventionally attributed to the levelling operated by fluvial erosion (e.g.,

Whipple and Tucker, 1999). This conventional view was supported by simple hillslope stability analyses

showing that the theoretical height of cliffs, derived from rock strength measured on laboratory samples, are

much higher than the actual hillslope height (e.g., Schmidt, 1994).

Schmidt and Montgomery (1995) showed that landscape relief is well explained by landsliding, considering

rock strength at the hillslope scale. Their hypothesis was the following : as a landscape grows, its height

increases until the gravitational stress induced by rock material on a potential failure plane exceeds the shear

strength of the material. They applied the Culmann criterion (Culmann, 1875) to the problem of hillslope

height. In this approach, a failure block is modeled by a wedge. A simple force balance based on the Coulomb

failure criterion gives a limit relationship between the wedge height and slope (in other words, the maximum

height Hc that can reach a given slope β having a hillslope-scale friction Φ and a cohesion C) :

Hc =
4C

ρg

sin(β)cos(Φ)

[1 − cos(β − Φ)]
(2.21)

Schmidt and Montgomery (1995) showed evidence for this relationship between hillslope height and slope

for the Santa Cruz Mountains and the Cascade Range, and back-calculated cohesion values of 20-150 kPa,

up to 1000 times smaller than values derived from lab experiments for the same type of rocks. This demon-

strates that hillslope height is likely to be limited by landsliding, considering that hillslope strength decreases

dramatically with increasing scale.

This notion of threshold hillslopes, that adjust rapidly to fluvial incision by widespread landsliding, have

laid the foundations of the first physically-based landsliding numerical models (Densmore et al., 1998). It

has been supported by the observation that in various tectonic settings, the histograms of slope angles are

uniform (Burbank et al., 1996, Korup, 2008). This model is followed by the idea that cohesion plays a limited

role in maintaining hillslope elevation at geological time scales (Montgomery and Brandon, 2002).
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Figure 2.8 – a) Model of bedrock landsliding included in a landscape evolution model, from Densmore et al.

(1998). The algorithm is based on the Culmann criterion applied to the hillslope scale. b) An elastoplastic 3D

finite element hydromechanical model, applied to model the displacements of a slow landslide in Switzerland

(Commend et al., 2004) over a certain period. The model is used to test the evolution of the landslide after

several stabilization scenarios.

2.1.3.2 Force balance at rupture

The problem of hillslope stability has been largely addressed by geotechnical studies (e.g., Terzaghi, 1962,

Sidle et al., 1985). For engineering issues, and hazard assessment at the scale of one or a few hillslopes,

approaches allowing the computation of the stress field and the corresponding deformation of the whole hills-

lope are preferred (figure 2.8 b). Those approaches generally consider 3D elasto-plastic rheologies, sometimes

integrating dynamic-weakening processes (e.g., Brideau et al., 2006, Commend et al., 2004), and are therefore

computationally expensive.

Geomorphological studies have a different goal. In order to understand landscape evolution, landslide

modelling requires generation of thousands of landslides at the mountain range scale. For this purpose, static

approaches based on a simple stability criterion are often preferred, for their short computation time and

because they offer the simplest description of the problem (figure 2.8 a). In this section, for the purpose of

simply approaching the underlying mechanics of landslides and their possible triggering, I show this simple

description of hillslope stability.

Hillslope can be seen as a volume of material

lying on a dipping plane with a slope α (fig-

ure 2.9). This plane can be the rock-soil in-

terface (soil landslide, or shallow landslide) or a

low strength plane, or joint plane in the bedrock

(bedrock landslide). Failure occurs if the driv-

ing shear stress along this plane overcomes the

resisting stress to sliding. This balance can be

described by the factor of safety:

f∗ =
resisting forces

driving forces
=

resisting stress

driving stress
(2.22)

If f∗ ≥ 1, the considered plane is probably stable,

If f∗ < 1 the considered plane is probably unsta-

ble.

...

dx
dy

water ta
ble

d

h

α

Figure 2.9 – A slab of regolith of area dx*dy and thick-

ness h lying on a potential rupture plane dipping with an

angle α. Modified after Anderson and Anderson (2010).
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The expected driving force is the weight of landslide material acting over the considered area. If the

material behaves as a Coulomb material, the expected resisting force is a combination of cohesion (C) and

frictional stress, which is proportional to the stress normal to the plane σn :

Sr = σn ∗ tan(Φ) + C (2.23)

Then we can express the factor of safety :

f∗ =
[ρb g h cos(α) cos(α) − ρw g d cos(α)] tan(Φ) + C

ρb g h cos(α) sin(α)
(2.24)

where ρb is the bulk density of the material above the rupture plane, ρw is the water density and g is

gravitational acceleration, d is the water table height and Φ the internal friction angle. This expression shows

that the factors that favours hillslope instability are high slopes α, high water table, low cohesion and low

friction.

2.1.3.3 Landslide triggering

Several factors can destabilize hillslopes. Those factors either decrease the resisting stress to failure or increase

the driving stress, and include earthquakes (e.g., Harp et al., 1981, Harp and Jibson, 1995, Liao and Lee,

2000), heavy rainfall (Chang et al., 2014), and also rapid snowmelt (Cardinali et al., 2000). In this section I

focus on earthquake-triggered landslides, which are induced mainly by the transient effect of coseismic waves.

Moreover, seismic waves could induce reversible damage to the rocks, decreasing its bulk strength (Brenguier

et al., 2008).

Static approaches do not consider seismic acceleration. However, acceleration can be modelled, at first

order, by adding a static force to equation 2.24 induced by the seismic acceleration (Schmidt, 1994). If

we consider the horizontal component of seismic acceleration, which is proportional to the gravitational

acceleration by a factor Kh (for example, Khg = 0.2g), the equation reformulates as:

f∗ =
[(cos(α) − Kh sin(α)) − (ρw g d)/γb] tan(Φ) + C/γb

(sin(α) + Kh cos(α))
(2.25)

where γb = ρb g h cos(α).

Equation 2.25 shows that in this simple approach, the additional horizontal acceleration can decrease the

resisting stress and increase the driving stress. However, this approach is too simplified, because periodic

waves actually trigger either stabilization and destabilization cycles.

Because the case where f∗ < 1 happens over a short period of time and does not systematically induce

failure, static limit-equilibrium analysis are not well suited to predict co-seismic landsliding. A more accurate

method is to compute the permanent displacement of rock caused by coseismic ground acceleration, and take

this displacement as a limit for failure, as developed by Newmark (1976). Such a calculation requires a double

integration of the acceleration time history which is in practise impossible because it implies a very good

constraint of that history. Therefore, it is impossible to apply at regional time scale.

To overcome these difficulties, empirical relationships have been developed which describe the Newmark

displacement as a function of the ratio between PGA and the yield acceleration ay necessary to displace the

rock. ay comes from the expression of the safety factor :

ay = (f∗
− 1)gsin(α) (2.26)

with α the gradient of the hillslope.

Newmark displacements calculated from seismic records have been correlated to the landslide density for

historical events (Jibson et al., 2000), showing the accuracy of the method for the regional scale study of

coseismic landslides.
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2.1.3.4 Modelling landslides in landscape evolution

Many of the existing, physically-based landsliding models are rooted in the concept of threshold hilsllopes

and use the Culmann criterion to determine unstable points (Densmore et al., 1998, Egholm et al., 2013). In

the approach developed in Densmore et al. (1998), the probability of failure is calculated from equation 2.21,

and is the ratio between the local hillslope height H and the maximum stable hillslope height Hc (figure 2.8

a). The considered target cell is the lowest point above the channel at which the local slope β is greater than

the frictional angle Φ. The rupture plane angle, θ, is calculated following the analysis of Culmann (1875)

that predicts that failure occurs on a plane which is the bisector between slope angle and frictional angle :

βc =
α + Φ

2
(2.27)

The plane is projected outward and upward to the neighboring cells.

However, the concept of threshold hillslopes may apply only to deepseated landsliding, and the Culmann

criterion might not integrate the strength of the soil and bedrock that characterizes many near-surface envi-

ronments (Schmidt and Montgomery, 1995). Therefore, other approaches based on Newmark displacements

have been proposed to model co-seismic landslides. Such an approach was used for example by Gallen et al.

(2015), who performed an infinite-slope stability analysis based on Newmark displacements to model land-

slides triggered by the Wenchuan earthquake. They identified target cells that exceed a threshold surface

displacement, and inferred the 3D shape by undercutting the slope with different geometries. They found

that the best way to reproduce landslide area-frequency is to adapt a plane geometry for each individual

landslide, resulting on either planar or concave-up failures depending on the shape of the considered hillslope.

Landslide modeling implies several assumptions on rupture plane geometry. At the hillslope scale, the

Culmann criterion predicts that the rupture plane βc is the most unstable plane which is the bisector between

friction angle and actual slope (equation 2.27). Geotechnical models that apply a limit-equilibrium analysis

on a discretized hillslope predicts log-spiral failure shapes (e.g., Baker and Garber, 1978). Not enough ob-

servations of landsliding plane geometry are reported to derive general rules. For large bedrock landslides

the rupture geometry varies from one landslide to another because many factors control it, in particular the

geometry of pre-existing fractures (Lee et al., 2002, Sitar et al., 2005). Nevertheless, models of landsliding

applied to landscape evolution generally use simple assumptions for rupture geometry, such as planar failure

(e.g., Densmore et al., 1998) or sometimes concave-up rupture (Gallen et al., 2015); those geometries allow

at first-order to compute landslide sizes in agreement with observations.

Another important assumption is made about the rupture depth. Calculation of a safety factor requires

knowledge of the rupture depth to compute the lithostatic stress. The question of landslide depth can be

bypassed by considering a cohesion-to-thickness ratio (Gallen et al., 2015), or by considering that rupture

plane starts at the hillslope toe and propagates through a defined rupture plane (figure 2.8a; Densmore et al.

(1998), Stark and Guzzetti (2009)). However, bedrock landslides have a wide range of rupture depths (Larsen

et al., 2010). For instance, the probable variability of rupture depths and angle of bedrock landslides is not

fully considered in landslide modelling.

Outstanding issues

- What is the landscape strength that is involved at the time scales that are relevant in geomor-

phology ?

- Is it possible to predict the variability of landslide depth in a simple model ?

- Is accounting explicitly for co-seismic acceleration necessary to reproduce co-seismic landslides ?
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2.2 Interactions between surface processes and earthquakes at short

time scale (< 1000 years)

In the previous section I have shown that earthquakes and landslides can be triggered by stress changes in their

environment : earthquakes can be triggered by the static stress change due to large rupture, and landslides

can be triggered by the acceleration due to seismic waves. But both processes can also be the cause of stress

changes and not only a consequence; for example, observations show that surface processes can change the

stress field around shallow faults enough to trigger seismicity. However, earthquakes do not systematically

induce numerous landslides, and surface processes do not systematically change the regional seismicity. In

this section I describe the observations of 1) landscape response to earthquakes and 2) earthquakes triggered

by surface processes and what these observations tell us about the mechanism of triggering at seismic cycle

time scales.

2.2.1 Landscape response to earthquakes

Keefer (1994) compiled the total surface area affected by landsliding for several historical earthquakes, and

found that this area, and therefore the total volume of sediments, depends at first order on earthquake

magnitude (fig 1.3). For example, the volume of landslides following a Mw7 earthquake is around 30 times

greater than the volume produced by a Mw6 earthquake. This is pretty intuitive, as the surface rupture

area increases with earthquake magnitude. However, the scatter around the landslide volume-earthquake

magnitude relationship (figure 1.3) reaches one order of magnitude, as other second-order processes and

parameters (landscape slope, intensity of ground shaking...) influence landslide density (Marc et al., 2016b).

Landscape co-seismic and post-seismic evolution also depends on the evacuation of the sediments by the

rivers, and therefore on river dynamics (Yanites et al., 2010, Croissant et al., 2017, Fan et al., 2018) .

Here I expose 1) the parameters that control the landslide density and 2) the time scales involved in the

sediment evacuation.

2.2.1.1 Landslide density

Which parameter makes a given landscape more or less prone to landsliding is still an open question.

Having studied three specific cases of earthquake-triggered landslides, Meunier et al. (2007) suggested

that landslide density correlates with the pattern of seismic shaking (i.e the area of landslides per unit area):

Pls = αA(PGA − PGAcr) (2.28)

where PGAcr (critical peak ground acceleration) is the critical value below which no landslides are found,

and αA is an area sensitivity term that sets the hillslope likelihood to fail by landsliding for a given shaking.

In most landslide inventories, landslides are found within an area having experienced PGA greater than 0.1-

0.2 g (Roback et al., 2017, Tanyaş et al., 2017). The parameter αA varies significantly and probably reflects

the geomorphologic variability among landscapes, but also rock mechanics.

In some cases such as the 2015 Gorkha earthquake, landslide density correlates at first order with hillslope

gradient (e.g., Roback et al., 2017). Spatial analysis after the 2016 Kaikoura earthquake revealed that the

distance from the fault was the best parameter to explain landslide spatial distribution (Massey et al., 2018).

Actually, the parameters correlated to landslide density are intrinsically linked; for example, when decreasing

the distance to the fault rupture, high-frequency seismic waves are stronger, rock strength is likely to be

smaller because of previous failures, and hillslopes can be steeper.

Therefore, landslide density is a function of all the local conditions that affect PGA (such as site effects

and topographic amplification), but also of parameters such as slope, lithology and rock damage that controls

the hillslope propensity to fail (Massey et al., 2018).
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a)
b)

c)

Figure 2.10 – a) Landslides density (number per square kilometer) triggered by the Mw 7.8 Gorkha earthquake,

compared to peak ground acceleration (PGA). b) and c) represent landslide area density as a function of

PGA in a south-north (b) and west-est (c) profile. Modified from Roback et al. (2017).

2.2.1.2 Sediment export

Earthquakes transform hillslope rocks into sediment that can be mobilized and evacuated from the epicentral

area by rivers. Therefore, the implications of co-seismic landslides for the mass balance of large earthquakes,

or for hazard assessment, depend on the timing of sediment evacuation away from the mountain belt. This

process depends on landslide connectivity to the drainage network, which displays significant variation among

catchments (Li et al., 2016). It is also controlled by river dynamics (Hovius et al., 2011, Yanites et al., 2010,

Croissant et al., 2017), and the grain size distribution of landslide sediments (Sklar and Dietrich, 2006, Cowie

et al., 2008, Egholm et al., 2013).

The evolution of the suspended load after a large earthquake can be monitored using stream gauges, and

has been documented for a few large earthquakes (Hovius et al., 2011, Wang et al., 2015). Figure 2.11 shows

that the suspended load in the rivers draining the epicentral area after Chi-Chi earthquake increased up to

five times its background value, and relaxed over a characteristic period of 10 years.

Real-time monitoring of the bedload evolution following large earthquakes is more difficult to monitor

at the catchment scale; however, the sedimentary record left by past earthquakes can give insights on the

time scale needed for a landscape to recover from large landsliding events. A recent study conducted in the

Himalayas (Stolle et al., 2018) suggests that even highly erosive rivers need more than several centuries to

adjust to large landsliding events. Sedimentary records (Howarth et al., 2012) and landslide mapping (Uchida

et al., 2014) in particular settings have shown that rivers can evacuate landslide sediments within several

decades. Recent numerical modelling has found a post-seismic mean residence time of coarse sediments of

several years to a few decades (Croissant et al., 2017), one order of magnitude lower than expected from

previous theories (Yanites et al., 2010).

2.2.2 Seismic cycle response to surface processes

Surface processes (such as snow, erosion, tides) changes the stress field in the upper few kilometres of the

Earth’s crust. Those processes change the static stress around faults and can trigger or delay earthquakes
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Figure 2.11 – Time evolution of the suspended sediment concentration measured at four stations in the

Choshui River catchment (Taiwan) draining the epicentral area of the Chi-Chi earthquake. The red curve is

the best fit to the post-earthquake data. After (Hovius et al., 2011).

depending on the local stress conditions. Spatial and temporal correlations exist between surface processes

and seismicity changes, but the underlying mechanics is not well understood. During the last decade, triggered

seismicity, especially in the US, has become an important subject of political and scientific discussion because

of the development of hydraulic fracturing, or ’fracking’. But for decades, it has been recognized that

earthquakes can be triggered by human activity, such as impoundment of reservoirs, mining, extraction of

fluid and gas from the subsurface, and injection of fluid into underground formations (Scholz, 2002, Ellsworth,

2013). Human-induced seismicity affords further understanding of earthquake triggering not allowed in

natural cases, especially when a seismic network has been deployed before the starting of the triggering

period. From this natural lab, it has been observed that seismicity is commonly triggered by static stress

changes as low as 0.1 bar (e.g Reasenberg and Simpson, 1992), which is very low compared to typical values

of the earthquake stress drop. This low level of triggering stress suggests that many faults are very close

to their critical point of rupture within continental plates or near plate boundaries (Townend and Zoback,

2000), even if there is no tectonic activity, and that small stress changes can induce earthquakes.

In this section I focus on the observations of seismicity triggered by surface processes that are not induced

by human activities. In a second part, I address the implications of those observations for the potential effect

of erosion on seismicity at the seismic cycle time scale.

2.2.2.1 Observations

In various places, seismicity is potentially modulated with an annual periodicity (figure 2.12). This has been

noted in many active tectonic settings such as Japan, (Heki, 2001, 2003), the western US (Christiansen et al.,

2005, Gao et al., 2000), and the Himalayas (Bollinger et al., 2007, Christiansen et al., 2007, Ader and Avouac,

2013). A link between this periodicity and the hydrological cycle has been proposed in various settings. It

has been correlated either with annual variations of snow cover in Japan and in western US volcanic areas

(Heki, 2003, Christiansen et al., 2005), with seasonal variations of precipitation in the Himalayas (Bollinger

et al., 2007), or with atmospheric pressure changes in California (Gao et al., 2000).

Earthquake triggering is usually discussed in terms of static Coulomb stress change (equation 2.20). Sev-

eral mechanisms have been suggested to explain seasonal modulations : hydrological processes could modulate

seismicity through changes in static stress by elastic loading/unloading linked to snow load variations (Heki,

2003, Bollinger et al., 2007) or ground water recharge/discharge (Christiansen et al., 2005), but also by pore

pressure change through water infiltration to the fault surface (Bettinelli et al., 2008). Deciphering between

those different mechanisms is difficult because of the complex interplays between all hydrological processes at
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Figure 2.12 – a) Number of earthquakes in the Ganga Basin, India. The period over which the geometry of

the seismic network has not changed is in red. b) Water level measured in the rivers in the Gange basin over

the same period, modified from Bettinelli et al. (2008).

this time scale, but also because we do not fully understand the processes that control earthquake nucleation.

Despite that, those observations have led to two fundamental points about the mechanics of earthquake

triggering. The first is that limited static stress changes can efficiently to trigger seismicity at the seasonal

time scale. Indeed, the static stress changes induced by hydrological cycle are estimated to be about 1-5 kPa

(e.g., Bettinelli et al., 2008, Christiansen et al., 2007).

The second point comes from the fact that seismicity does not seem to systematically vary at a tidal

period (12 hours). Triggering of some shallow events by tides has been proposed in a few very specific places

where local tidal stress acts in the same direction as the tectonic stress (Tanaka et al., 2004), or along axial

ridges where there is a large ocean-loading component of tidal stress (Wilcock, 2001). However, no systematic

response of seismicity at the tidal period has been found (Vidale et al., 1998, Cochran et al., 2004), although

tides produce static stress changes (3-4 kPa) of the same order of magnitude as the hydrological cycle.

This observation suggests a period dependency of seismicity to such small stress variations, and earthquake

triggering implies a non-linear effect that cannot been simply described by static stress changes. Numerical

modelling (Ader et al., 2014) and laboratory experiments (e.g., Beeler and Lockner, 2003, Savage and Marone,

2007) have shown such a period dependency, even though their results are difficult to extrapolate at the real

seismic cycle time scale.

2.2.2.2 Potential effects of erosion on seismic cycle

We have seen in Chapter 1 that models suggest that erosion could trigger seismicity at the time scale of 10000

yr - 1 Myr through isostasy (Vernant et al., 2013). At the time scale of a seismic cycle, recent mechanical

modelling has shown that in active compressive orogens such as Taiwan, erosion rates that balance the rock

uplift rate can raise the Coulomb stress in the upper few kilometres of the crust by 0.1-10 bars during the

interseismic phase (Steer et al., 2014). Moreover, large erosional events, such as earthquake or rainfall-

induced landslides, trigger a large amount of sediments that can be moved away from the nearby faults

(section 2.2.1.2).

We have seen that faults respond to small stress change at certain periods; therefore, large erosional

events could trigger seismicity, depending on the magnitude of erosion and the rate at which sediment is

transported away by rivers. Few observations of seismicity triggered by a large landsliding event have been

made yet. One example is the 2009 Typhoon Morakot in Taiwan, which triggered more than 10000 landslides,
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Figure 2.13 – a) Earthquake frequency and b-value (see section 2.3.1.2) as a function of time, in all Tai-

wan (grey line) and inside the landsliding zone (blue line), for all the catalogue (thick line) and above the

magnitude of completeness (thin blue line). After Steer et al. (2018).

equivalent to 0.7 km3 of sediment. Because those landslides were well connected to the rivers (West et al.,

2011), the typhoon boosted sediment export that persisted over at least 2 years (Huang and Montgomery,

2013, Lee et al., 2015). In Steer et al. (2018) (Appendix A), we noticed an increase in both earthquake

frequency and proportion of small earthquakes compared to large ones, after the typhoon, that last at least

two years (figure 2.13). We suggest that the rapid unloading of the surface above active Taiwan faults have

triggered this change in earthquake statistics. However, the link between erosion and seismicity is not clari-

fied, and approaches such as developed by (Steer et al., 2014) are limited to a Coulomb analysis that do not

take into account fault dynamics. The use of numerical models of the seismic cycle is essential for a better

understanding of such links.

Outstanding issues

- Are active faults sensitive to erosional events, that are transient but non periodic ?

- What is the amplitude and duration of an erosional event that is necessary to trigger seismicity

?

- Is a transient stress change able to change the distribution of earthquake magnitudes ?
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2.3 Earthquake and landslide sizes

The size distribution of landslides and earthquakes is a fundamental component of hazard assessment. More-

over, the size distribution of landslides is pivotal to infer erosion following a large earthquake or rainfall

event. Both landslides and earthquakes display an incomplete power-law distribution that is observed in

many inventories. However, those distributions vary in time and space. In particular, prediction of large

events is difficult because they are so rare that they are not sampled in every inventory. For example, the

destructive Langtang landslide (Collins and Jibson (2015), figure 2.14a) or the Tohoku earthquake and the

consequent tsunami (Mori et al. (2011), figure 2.14b) were particularly large compared to predictions based

on historical inventories.

In this section I first describe the observed sizes of landslides and earthquakes in nature. Then, I will focus

on the physical explanation of their power-law distribution and the potential variations of their exponents.

Finally, we will see that the power-law model does not hold for smallest and largest events, and summarize

the current knowledge about the factors that control small and large rupture event size.

a) b)October, 2012

November, 2015

Figure 2.14 – a) Langtang village (Nepal) in October 2012 and in May 2015, one month after the Mw 7.8

Gorkha earthquake. The village was destroyed by a large landslide with a volume of 2.106 m3 (Collins

and Jibson, 2015)), resulting in more than 200 fatalities. Credit : David Breashears /Glacierworks. b)

Tsunami induced by the Mw 9.1 Tohoku-Oki earthquake of 11 March 2011 in Miyako City, Iwate Prefecture,

north-eastern Japan.
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2.3.1 Observations

2.3.1.1 Magnitude-frequency distribution of rupture events

To characterize the distribution of rupture events (earthquakes or landslides) of different sizes in an inventory,

it is required to know the empirical probability of events with size larger than A, where A is defined as landslide

area. This function is called the cumulative distribution function (CDF) :

cdf(A) = P (X > A) (2.29)

Size distribution can be also examined through the probability density function (PDF), which is the

derivative of the CDF :

pdf(A) =
dN(A)

NT OT

1

dA
(2.30)

where dN(A) is the number of events with a size between A and A+dA and NT OT is the total number of

events.

The frequency-magnitude relationship of rupture events, such as landslides and earthquakes, is usually

described by a power-law :

CDF (A) = CA−b+1 (2.31)

PDF (A) = C ′A−b (2.32)

where C, C’ and b are constants. In seismology, the exponent of the frequency-magnitude distribution of

earthquakes is called the b-value.

Power-law distributions are characterized by a slow decay for large events, which is also called a "heavy

tail". This means that the decay is slower than for exponential or Gaussian distribution and that large events

are more frequent than would be the case for such distributions. Power-laws are also free of characteristic

scales, or scale-invariant. Indeed, from equation 2.32 we see that the number of events with size xA , where

x is any positive number, will be the number of events of size A multiplied by a constant x−b, regardless of

the absolute size of the considered event:

PDF (xA) = C ′x−bA−b = PDF (A)x−b (2.33)

This property is also called self-similarity.

Another important property of the rupture size distribution is that deviation from the power-law behavior,

at small and large sizes, is usually observed. This can be modelled by a tapered Pareto distribution (Geist

and Parsons, 2014), which is a model that includes exponential decay at sizes greater than a critical size Ac,

(figure 2.15, red lines), or double-Pareto, which takes in account breaks in self-similarity at small and large

sizes (Stark and Hovius, 2001).

2.3.1.2 Earthquake sizes

The traditional measurement of earthquake size is the magnitude, which is a logarithmic scale based on the

energy released by an earthquake. The first measured magnitudes were based on the measurement of the

amplitude of certain seismic waves at specific periods, which offers a convenient way to measure earthquake

size from a seismogram. Many types of magnitudes have been employed (surface wave magnitude Ms, body

wave magnitude mb, local magnitude mL). However, those magnitudes are useful under different, specific

conditions. Moreover, for large earthquakes, they underestimate the seismic moment (figure 2.16 a), which

is a physical measure of seismic rupture :
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Figure 2.15 – Pure power-law distribution (blue), tapered (red) and truncated (green) Pareto distributions

for a critical size of 20 (dashed line) and 200 (solid lines). After Geist and Parsons (2014).

M0 = E∆uA (2.34)

where ∆u is the mean slip averaged over the rupture area A and E is the shear modulus.

To overcome the discrepancies between different magnitude scales and the saturation problem, the magni-

tudes scales were unified under the concept of moment magnitude Mw (Kanamori, 1977, Hanks and Kanamori,

1979). Considering the energy balance of a dynamically expanding shear crack, they derived analytical expres-

sion to link energy released by an earthquake and the seismic moment, providing an expression of earthquake

magnitude based on static source parameters that can therefore be accurately determined from geodetic

and/or fault length data. Moment converted to moment magnitude is:

Mw =
2

3
log(M0) − 6.07 (2.35)

The frequency-magnitude distribution of earthquakes is known as the Gutenberg-Richter law (Gutenberg

and Richter (1955), figure 2.16 b). In any region, at a given period the number of earthquakes N(M0) with

a magnitude M ≥ M0 tends to follow the relation (Gutenberg and Richter, 1944)

log10(N) = a − bM0 (2.36)

where the parameter a varies in time and space and is representative of seismic activity. The b-value gives

the relative scaling of large versus small earthquakes. Over long time periods and large regions, it is close to

one, and displays significant spatial (Scholz, 2015) and temporal variations at smaller temporal and spatial

scales. For example, a temporal b-value decrease within a few years has been observed in Japan (e.g., Imoto,

1991, Cao and Gao, 2002) and in Sumatra (Nuannin et al., 2005). These b-value decreases often precede

large earthquakes and therefore are commonly seen as main shock precursors (e.g., Imoto, 1991, Smith, 1981,

Nuannin et al., 2005).

Another important earthquake scaling relationship that has been noted for decades is that their stress

drop seems at first order constant, and independent of rupture size (e.g Aki, 1972, Kanamori and Anderson,

1975). Seismic moment determined from long-period waves scales with fault area to the power 3/2 (figure

2.16 c)). This has been interpreted as a constant stress-drop of 10-100 bars (Chinnery, 1969, Aki, 1972),
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Figure 2.16 – a) Seismic spectra for surface waves, calculated from a theoretical model of earthquakes (Aki,

1967). The magnitude MS is usually measured at 20 s. The spectra are flat above a corner frequency. For

small earthquakes enough, Ms scales with the moment (M0 ∼ Mw), so the moment can be deduced directly

from the wave amplitude. But for earthquakes so large that f0 is longer than 20 seconds, surface wave

magnitudes underestimate the moment: the magnitude scale is said to saturate. b) Cumulative (N>M) and

discrete N(M) distribution of earthquake magnitude in California from 1990 to 2010, from Amitrano (2012).

c) Relation between fault surface area (S) and M0 (seismic moment). The straight lines give the theoretical

relation for constant stress drop (∆σ) for circular cracks (Kanamori and Anderson, 1975).
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which is consistent with simple models of theoretical stress drop (Brune, 1970) showing that the moment of

a circular crack with diameter a scales with a3 :

M0 =
16

7
∆σa3 (2.37)

This constant stress drop actually displays significant variations, showing that equation 2.37 may not hold

in every case. Actually, the moment of small earthquakes grows faster than the moment of large earthquakes.

Those different regimes can be explained by the fact that a small patch can extend in every directions,

whereas a patch reaching the seismogenic zone depth can only extend in one direction with a constant width

(Shaw, 2013).

2.3.1.3 Landslide size

Landslide inventories are currently the basis for statistical studies of landslide size (figure 2.17a). They

provide precious information to study landslide mechanics but also to infer landslide hazard maps.

On the first landslide inventory maps (e.g Morimoto, 1951, Plafker et al., 1971), only the location of land-

slides were indicated. Then, aerial photography and manual mapping coupled with ground-based field work

led to inventories with landslides depicted as polygons with a defined area (e.g., Harp et al., 1981, Harp and

Jibson, 1996), allowing landslide size inventories. Such maps are now produced using high-resolution satellite

imagery, sometimes coupled with ground-based field work. To overcome the problem of manual mapping,

which is very time-consuming, some algorithms have been developed to automatically map landslides, but

they face the problem of amalgamation: if two landslides are too close from each other and considered as one

landslide, it can lead to overestimating the landslide area and volume (Marc and Hovius, 2014). Therefore,

modern studies still prefer a manual method (e.g., Roback et al., 2017) or an automatic method coupled to

manual check.

A common outcome of studies based on such inventories is that the PDF of landslide area follows a

power-law scaling for intermediate to large landslides. Simple power-laws have been proposed (Hergarten,

2003), although double-Pareto (Stark and Hovius, 2001) or three parameter inverse-gamma (Malamud et al.,

2004a)) distributions have also been suggested; nevertheless, all those studies consider that landslide size

distribution is heavy-tailed. This power-law behavior holds whether it is the scar area (Hovius et al., 2000)

or the total disturbed area including runout (Pelletier et al., 1997, Roback et al., 2017) that has been mapped,

and for a long period of time or a single triggering event (Malamud et al., 2004a) (figure 2.17 b). According

to recent reviews of 30-40 worldwide landslides inventories, (Van Den Eeckhaut et al., 2007, Tanyaş et al.,

2017), the typical power-law exponent varies between 1.42 and 3.36, with a central tendency of 2.3-2.5.

Another important landslide scaling relationship is their volume-area relationship (figure 2.17c). Esti-

mating the volume of landslides is a more difficult task than estimating their area because it requires a

third dimension and cannot be directly derived from satellite imagery. Measurements of individual land-

slide volumes requires the comparison between pre and post-landslide digital elevation models, obtained by

field mapping (e.g., Rice et al., 1969), and latterly by LiDAR data, satellite images or photogrammetry

(Whitehouse, 1983, Martin et al., 2002, TAI, 2009), sometimes completed by field measurements.

A general observation is that the volume of landslides scales with area with an exponent γ (Larsen et al.,

2010):

V = αV Aγ (2.38)

The exponent γ is critical for volume assessment; small variations lead to strong variations in the to-

tal landslide volume (Larsen et al., 2010). Guzzetti et al. (2009) analyzed an inventory of 677 landslides

worldwide, caused by different triggers in different environments, and found γ = 1.45. They concluded that

volume-area scaling is not significantly influenced by the properties of failed rock. Larsen et al. (2010) anal-

ysed more than 4000 individual landslides and found γ values significantly different for soil and bedrock

45



10-5 10-4 10-3 10-2 10-1 100

10-4

10-5

10-3

10-2

10-1

100

101

102

103

p
ro

b
ab

il
it

y
 d

en
si

ty
, 

p
 (

k
m

-2
)

landslide area, AL (km2)

10-1 101 103 105

landslide area, AL (m2)
107 109 1011

10-1

100

101

103

105

107

108

109

1010

1011

la
n
d
sl

id
e 

v
o
lu

m
e 

(m
3
)

bedrock landslides

soil landslides

undifferentiated landslide

mean depth

0.1 m

1 m

10 m

Northridge earthquake

Umbria snowmelt

Guatemala rainfall

Inverse Gamma

12° 26' 0'' E 12° 27' 0'' E

4
2
° 

5
1
' 0

'' 
N

4
2
° 

5
0
' 0

'' 
N

12° 27' 0'' E12° 26' 0'' E

1 km 

A B

C

Figure 2.17 – a) Subset of two landslide inventories (Stark and Guzzetti, 2009) in Collazone, Umbria, central

Italy. b) PDF of landslide areas triggered by three different events (Malamud et al., 2004a). c) Volume-Area

scaling from a compilation of > 4000 soil and rock landslides (Larsen et al., 2010).

landslides. For soil landslides, γ varies between 1.1 and 1.3 and for bedrock landslides, it varies between

1.3 (in the Himalayas) and 1.6 (in the Alps and Apennines). This difference between shallow and bedrock

landslides can be explained by the soil-rock transition that confines shallow landslides to a certain depth,

allowing them to extend only in their horizontal dimensions.

2.3.2 Physical meaning of power-law distribution and b-value variations

The theories explaining why rupture events follow power-laws and the spatial and temporal variations of the

exponent are tightly linked. This problem has been addressed through several perspectives coming from the

contributions of either mathematics or physics. I present three main explanations for power-law behavior

of rupture events and b-value variations : the first one, which is not physically based, results from sandpile

models and provide an interesting framework to think about system criticality. The two last are based on

rupture physics and consider a geometric and dynamic origin of the power-law behaviour, respectively.
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2.3.2.1 Self-organised criticality

During the 90s, the sandpile model was largely compared to the behaviour of brittle rupture events such as

landslides and earthquakes. This model is discretized into cells that initially contain a random number of

grains. A constant input of grains drive the cells to instability when a threshold number of grains is reached;

then the critical cell redistributes the grains to its neighbours, which can in turn become unstable and form

avalanches of a certain size depending of the number of cells involved. In this very simple model, the size

of avalanches follows a power-law distribution. The analogy between this result and the size distribution of

rupture events have led to numerous attempts to model the behaviour of hillslopes using sandpile models (e.g.,

Noever, 1993, Densmore et al., 1997), or the behaviour of faults using a network of slider blocks connected

by springs (e.g., Olami et al., 1992). A common outcome of those models, belonging to the family of cellular

automata models, is the spontaneous emergence of a fractal distribution for the size of rupture events. The

concept of self-organised criticality has been introduced (Bak et al., 1988) to characterize the behaviour of a

sandpile model, and therefore of other rupture phenomena leading to similar behaviours.

This concept is well illustrated by the example of a nuclear chain reaction (Hergarten, 2003). Let us

consider a fissioning nucleus releasing two neutrons, which in turn can cause other nucleii to fission with a

certain probability q. The probability distribution of the chain reaction size (figure 2.18 a) strongly depends

on q. When q = 1/2, meaning that there is the same density of fissionable and non-fissionable material in the

considered space, the size distribution of avalanche is a power-law. This is called the critical point. If q < 1/2,

the system is said to be sub-critical, and the probability of large avalanches decreases rapidly, leading to a

higher apparent b-value. If q > 1/2, it is over-critical. Hergarten (2003) used this model to propose that

landscapes are in a critical state which depends on a balance between hillslope steepening through erosion

and uplift, and landslides that relaxes hillslope angles (figure 2.18b).

However, cellular automaton models only lead to a limited understanding of the size distribution of

failure event, because they bypass the physical processes of the rupture. They also tend to overestimate the

number of large events compared to the small ones. Nevertheless, they show that with only two ingredients,

elastic interactions (modelled for example by the addition of sand grains) and initial heterogeneous media,

the model evolves naturally toward a critical state characterized by a power-law distribution for the size of

rupture events, independent of the initial conditions.

2.3.2.2 Geometric origin of b-value

Landslide and earthquakes can be considered, in a static approach, as a rupture occurring when the shear

stress acting over the rupture plane overcomes the shear resistance of the interface. Then, it is quite intuitive

to suggest that the size of landslides and earthquakes is linked either to the size of low-strength areas (in

the landscape or in the Earth’s crust), or to the size of areas with rapidly increasing shear stress. Early

experiments on brittle rocks suggested that the power-law behavior of earthquakes comes from fracture

heterogeneities, with a low heterogeneity leading to a low b-value (Mogi, 1967). This idea is supported by

measurements of fracture length in the Earth’s crust at a wide range of scales, suggesting that fracture sizes

are power-law distributed (Bonnet et al., 2001).

Moreover, factors that contribute to decrease hillslope stability include high pore pressure and high slope

(section 2.1.3.2). Pelletier et al. (1997) observed a power law distribution of moisture patch sizes in the

landscape, and Frattini and Crosta (2013) showed a fractal distribution of high slope patches in mountainous

area. Both linked this low strength heterogeneity to the power-law behavior of landslides. Katz and Aharonov

(2006) applied vibrations in a sandbox in different directions. Vertical accelerations led to fractures of different

scales, and a power-law distribution of landslide sizes. Horizontal accelerations did not induce fractures and

led to a characteristic size of landslides, linked to the sandbox size. They concluded that the formation of

low strength heterogeneity was fundamental to induce rupture events with a power-law distribution.

Thus, observations and laboratory experiments support the link between material heterogeneity and the

size distribution of rupture events at the landscape and at crustal scale. However, the observations that the
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Gutenberg-Richter law is applicable on a single fault led to the suggestion that b-value is controlled by the

dynamics of interacting rupture (Burridge and Knopoff, 1967). The purely geometric explanation seems to

be actually a chicken-and-egg problem, because fractures grow with the propagation of rupture events.

2.3.2.3 Dynamic origin of b-value

The b-value has been shown to be higher for normal faults than for reverse and strike-slip faults (Schorlemmer

et al., 2005), and decreases with depth (Scholz, 2015). This suggests a link between b-value and differential

stress, because stress is higher at depth (Scholz, 2015), and thrust faults tend to be under higher stress than

normal faults (Schorlemmer et al., 2005). Such a b-value stress dependency have been investigated in the lab

with acoustic emission experiments. Early work showed that for rocks samples compressed in the laboratory,

the b-value decreases when the applied differential stress increases (Scholz, 1968). Lab experiments also

showed that the b-value increases with fault roughness and decreasing stress localization (Goebel et al.,

2017). Those experimental and natural observations have been reconciled in the general idea that there

is a link between stress increase, strain localization, apparent or real b-value decrease, and the approach

of a macro-failure event (Scholz, 1968, Locknet and Byerlee, 1995, Amitrano, 2012). This can explain the

observation that b-value decreases in the years preceding a large earthquake (e.g., Imoto, 1991, Smith, 1981,

Nuannin et al., 2005).

The fact that increase in differential stress leads to b-value decrease is now supported by numerous

observations (Scholz, 2015) and laboratory experiments (Johnson et al., 2013, Goebel et al., 2017, Rivière

et al., 2018). However, few numerical models have attempted to address this issue. Numerical solutions

that simulate brittle failure at a large range of scales in elastic media (Amitrano, 2003, Girard et al., 2010)

include very simple damage rules that do not capture earthquake mechanics. On the contrary, because of

the current limitation of numerical methods, the use of existing models of the earthquake cycle to produce

a wide range of magnitudes that allows statistically robust b-values in a reasonable amount of time is still

challenging (Rice, 1993, Hillers et al., 2007, Aochi and Ide, 2004).

Same attempts have been made to link landslide size distribution to rupture mechanics. Stark and

Guzzetti (2009) showed analytically that a power law distribution of landslide sizes arises from rupture

propagation that behaves as a stochastic process: the probability of large rupture is the product of the

probabilities of small ones coalescing to a large failure. Numerical modelling has also suggested that the

b-value of landslide sizes increases with increasing rate of temporal weakening (Alvioli et al., 2014, Liucci

et al., 2017), or with cohesive strength (Stark and Guzzetti, 2009). This could also suggest a link between

increasing stress, decreasing strength, progressive clustering of the damage, and b-value decrease. But despite

those observations and experiments, the origin of the power-law behavior of earthquake and landslide sizes

and the reasons for temporal and spatial variations in the b-value are globally poorly understood.
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in a nuclear chain reaction for different values of probability q. A power law occurs for the critical point q =

1/2. The colors are chosen to allow comparison with panel b). After (Hergarten, 2003). b) Probability density
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landscapes.

2.3.3 Upper and lower limits to rupture size

Observations show that neither earthquake nor landslide catalogues have a power-law distribution over all

event sizes. Frequency-magnitude plots display a rollover at small sizes (below a certain size, the probability

decreases with decreasing size), and a deviation from power-law at large sizes (probability decreases faster

than the power-law). I herein examine the possible explanations for both observations.

One of the possible reasons for rollover at small event sizes is the undersampling of small rupture events

in the inventory. For example, the size of the smallest mapped landslide is set by the resolution of the original

data sources (Stark and Hovius, 2001). Moreover, the life span of landslides in the landscape increases with

their size; small landslides are removed quickly by erosional processes, or obscured by vegetation growth

(Guzzetti et al., 2002). Earthquake catalogues also are complete above a completeness magnitude Mc, set by

instrumental detection (Rydelek and Sacks, 1989). Several earthquake catalogues follow a power-law scaling

for negative magnitudes (Reyes et al., 1975), and it is getting clearer that below Mc, a fraction of events

is missed only due the limit of detection of the seismic network (Wiemer and Wyss, 2000, Woessner and

Wiemer, 2005).

With the increasing resolution and quality of available landslide data sources, it is getting clearer that,

contrary to earthquake catalogues, rollover is an intrinsic feature of landslide size distributions. We can

rewrite the expression of the factor of safety (equation 2.24) in a way that isolates the cohesion-to-thickness

ratio (we consider for simplification that shallow landslides do not involve the saturated zone of soil) :

f∗ =

C
ρb g z cos(α) + tan(Φ)cos(α)

sin(α)
(2.39)

From this expression we easily see that when landslide thickness decreases, cohesive force increases and

controls hillslope stability at small depths. Thus, there must be a critical area and/or depth for landsliding,

below which a landslide becomes too small to overcome the cohesive forces resisting sliding (Milledge et al.,
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2014). A common outcome of several landslide numerical models is the emergence of the rollover due to the

contribution of cohesion to hillslope instability (Stark and Guzzetti, 2009, Frattini and Crosta, 2013).

It is also often observed that the PDF of landslide or earthquake size displays a cut-off in power-law

scaling which can be modelled by a Pareto distribution (figure 2.15). The more intuitive explanation for this

is that each catalogue has an upper limit, which is the theoretical maximum rupture size. The idea that

landslides cannot be larger than the hillslope seems intuitive; earthquake magnitude is limited by the size of

the biggest fault. However, Geist and Parsons (2014) have shown that the size distribution of earthquakes

has a lower limit than the one predicted from the system size, because the size of catalogues of rupture events

is finite, and limited by the rate allowed by the triggering events. Therefore, the cut-off at large sizes can

also result from the undersampling of the theoretical distribution.

Outstanding issues

- What controls the landslide size distribution ? Is it rupture propagation, system heterogeneity,

or some other factors ?

- What are the differences between earthquake and landslide rupture mechanisms that could explain

the absence of rollover for earthquakes ?

- What controls the probability of large landslides ? Is the probability of such destructive events

predictable ?
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This overview of earthquakes and landslide mechanics, interactions, and size distribution raises several

outstanding issues that I will try to answer in the following chapters.

My thesis research is part of the ANR project EROQUAKE (2014-2019) that aims to investigate the

relationships between tectonics and surface processes at short time scales. The project focuses particularly

on the possible link between extreme climatological and landsliding events and earthquakes. My work was

supervised by Philippe Steer (Géosciences Rennes), Dimitri Lague (Géosciences Rennes) and Nadaya Cubas

(ISTEP, Paris VI). I also had the opportunity to work with Philippe Davy (Géosciences Rennes) and Har-

sha Bhat (ENS Paris). This manuscript is build around three publications resulting from this work. I also

collaborated on two other publications, that are included in the appendix of this manuscript.

In chapter 3, I will present a simple, 1D numerical model that I have developed, taking into account

the variability of landslide depth and rupture angle. I will use this model to understand the role of cohesion,

friction, rupture propagation and landscape shape on landslide size distribution. The main outcome of this

model is the role of cohesion in controlling the size distribution of small landslides, and the fundamental role

of hillslope geometry in controlling the size distribution of large landslides.

This work resulted in a publication, Jeandet et al. (2019), accepted to Geophysical Research Letters.

The idea at the basis of this work emerged from discussion with the three co-authors. I have led the writing

of this article, that have benefited from advice and rereading from Philippe Steer, Dimitri Lague and Philippe

Davy.

In chapter 4, I look into the data to focus on the role of finite hillslope geometry in setting landslide size

distribution. I take advantage of existing complete landslide inventories to show that the height of unstable

hillslope controls the size distribution of landslides, and in particular the probability of large events. I show

that this unstable height, which is exponentially distributed, leaves signatures in landslide inventories.

The manuscript Impact of finite hillslope geometry on large landslide probability by Louise

Jeandet1, Philippe Steer1, Dimitri Lague1 and Philippe Davy1 will be submitted during 2019. I have led

the writing of this article, that have benefited from advice, discussion and rereading from the other authors.

In chapter 5, I use a numerical model of the earthquake cycle to explore the response of a finite fault

to normal stress perturbations due to one large erosional event. I show that the duration and magnitude of

such erosional event controls the seismicity response, and that such events are able to increase earthquake

rate and the proportion of small earthquakes if the sediments are evacuated in a short enough period time.

I have modified and run the codes and led the writing of the manuscript Response of a single fault

to transient normal stress change, and implications of the effect of large erosional events on

the seismic cycle by Louise Jeandet1, Nadaya Cubas2, Harsha Bhat3 and Philippe Steer1, that will

be submitted to Journal of Geophysical Research. This article, based on an idea of Philippe Steer, have

benefited from discussion with Nadaya Cubas and Harha Bhat who introduced me to the numerical codes

used in this study.

Finally, in chapter 6, I sum up the main results of this thesis, and I step back to examine some com-

mon features of landslides and earthquakes, and discuss the implications of my results for landscape evolution.
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At the end of the manuscript, I present as supplementary material two articles I have contributed to, that

are currently in revision.

The article Earthquake statistics changed by typhoon-driven erosion, by Philippe Steer1, Louise Jean-

det1, Nadaya Cubas2, Odin Marc4, Patrick Meunier3, Martine Simoes5, Rodolphe Cattin6, J. Brue H. Shyu7,

Maxime Mouyen1, Wen-Tzong Liang8, Thomas Theunissen9, Shou-Hao Chiang10 and Niels Hovius4,5, have

been submitted to Nature Geosciences. I helped with the mechanical and statistical interpretation of the

earthquake catalog and contributed to the writing of this manuscript.

The article Modulation of post-seismic sediment evacuation by landslide dynamic connectivity, by Thomas

Croissant1,11, Philippe Steer1, Dimitri Lague1, Philippe Davy1, Louise Jeandet1 and Robert G. Hilton11,

have been submitted to Geomorphology. I have contributed to the modeling of ground shaking induced by

earthquakes, following the development of co-seismic landsliding models that I have calibrated during mas-

ter’s thesis (Jeandet et al., 2016).

1 Univ Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
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Paris, France.
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75005, France
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7 Department of Geosciences, National Taiwan University Taipei, Taiwan
8 Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan
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10 Center for Space and Remote Sensing Research, National Central University, Taoyuan City 32001,

Taiwan
11 Department of Geography, Durham University, Durham, DH1 3LE, UK
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Chapter 3

Modelling landslide size distribution

3.1 Overview

The first section of this chapter presents the landsliding model developed during this PhD (Jeandet et al.,

2019). I first describe the approach developed to model the distribution of landslide depths and area. Then

I validate our model and calibrate the mechanical parameters by applying it to six landslide inventories

triggered by typhoons or earthquakes. I finally use this model to investigate the effects of landscape shape

on landslide size distribution, using synthetic, idealized topographies.

The second section of this chapter is dedicated to two outcomes of our model. In a first part, I use our

modelling results to discuss the effective landscape strength at geomorphological time scales. In a second

part, I present a case study at the catchment scale that emphasizes the fundamental importance of landscape

shape on the total volume of sediments mobilized by landsliding.
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3.2 Coulomb mechanics and relief constraints explains landslide

size distribution

3.2.1 Introduction

In mountainous areas, the numerous landslides triggered by earthquakes or storms, represent a major hazard

and contribute significantly to surface erosion (Malamud et al., 2004b, Keefer, 1994). Assessment of the total

volume of such landslides is required to quantify the topographic changes in response to large earthquakes

or rainfall events (Li et al., 2014, Hovius et al., 2011, Parker et al., 2011, Marc et al., 2016a). The frequency

distribution of landslide area is a basic requirement for estimating large-scale landslide erosion using non-

linear empirical relationships between landslide area and volume (Larsen et al., 2010). This distribution,

generally characterized by a negative power-law for landslide areas larger than a given threshold, and a

rollover for smaller landslides (Malamud and Turcotte, 1999, Stark and Hovius, 2001, Korup, 2005a, Guzzetti

et al., 2002), is considered a universal property of natural systems regardless of the geological setting or

triggering mechanism (Malamud et al., 2004a). However, the origin of the power-law behavior for large

bedrock landslides and what controls variations in the inferred power-law exponent, ranging from -1.42 to -3.36

(Van Den Eeckhaut et al., 2007), remain unclear. Several studies suggested that mechanical heterogeneities,

such as the size distribution of moisture patches (Pelletier et al., 1997) or fractures (Katz and Aharonov,

2006), control the frequency distribution of landslide size and its power-law exponent. However, previous

numerical studies (Stark and Guzzetti, 2009)) reproduced the power law distribution of landslide sizes using

homogeneous materials. (Stark and Guzzetti, 2009) shown that landslide size power-law scaling is an emerging

feature of a simple mechanical model where landslide rupture and propagation behave as stochastic survival

processes. However, in order to reproduce the observed Probability Density Function (PDF) of landslide

areas, they needed to incorporate significant variations in both the initial rupture depth and area. Frattini

and Crosta (2013) and Liucci et al. (2017) suggested that topography cannot be ignored when modelling

landslide size distribution. The fractal distribution of areas of high slope is advocated to control the power-

law scaling of landslide area (Frattini and Crosta, 2013). Cellular automaton models applying a stability

criterion to natural topographies (Alvioli et al., 2014, Liucci et al., 2017) managed to reproduce realistic

landslide size statistics, implying topography has an important role in controlling landslide size. However, as

sliding only occurs at soil-rock transition in these cellular automaton models, they are only appropriate to

simulate shallow landsliding and not for deep-seated landslides that require to account for the influence of

the whole hillslope shape in the distribution of landslide size. Thus, it remains unclear how rock mechanics

and landscape geometry influence the overall distribution of bedrock landslide sizes. In this paper, we focus

on the distribution of the whole range of potential rupture depths for a given landscape. Our goals are to

1) define a simplistic yet robust 1D mechanical model of landslide rupture accounting for the influence of

hillslope geometry and reproducing the size distribution of natural landslides and, 2) use this new model to

determine the respective contributions of mechanical parameters and landscape geometry in controlling the

landslide size distribution in various mountainous areas.

3.2.2 Methods

We developed a simple 1D probabilistic method to infer distributions of landslide depths in a given Digital

Elevation Model (DEM), and then upscale the results to area distribution via a scaling argument. In the

following, we assume rocks and soil behave as Mohr-Coulomb materials and consider that failure occurs only

if the shear strength acting on potential rupture surfaces exceeds the resisting shear strength of the material,

set by the frictional angle Φ and cohesion C. This static formalism is often used as its rapid computation

time allows us to generate substantial landslide inventories (Stark and Guzzetti, 2009). The novelty in our

approach results from combining a local stability mechanical criterion with topographic constraints. The un-

derlying idea is that every plane is a potential landslide rupture plane regardless of the plane’s depth and the

corresponding dip angle, given the following conditions: 1) the plane is locally unstable under Mohr-Coulomb
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Figure 3.1 – Modelling approach used in this study. a) Mohr circle (top) and schematic hillslope of length

l and height h (bottom) showing the range of potential rupture planes (in grey) at a certain depth z. τ⋆

and σ⋆ are shear and normal stress, normalized by σ1. αm is the minimum rupture angle with FR > 0 and

αt is the maximum rupture angle merging from the topography. b) Rupture factor as a function of rupture

angle α and depth for an idealized 50o slope of 500 m height (C = 5 kPa and φ = 30o). c) PDF of rupture

depths computed from b). For p = 1, two ways of calculating z are represented: vertical maximum depth,

and orthogonal to the surface mean depths (z̄B). d) Examples of sampling a DEM, showing two points (red

dots) and the corresponding extracted profiles. The insets show the corresponding unstable zones.

laws (mechanical criterion) and, 2) the plane intersects the topographic surface in the downslope direction of

the instability (topographic criterion) (figure 3.1). Previously developed models that integrated landsliding in

landscape evolution models (Densmore et al., 1998) used a stability mechanical criterion based on finite slope

mechanics and propagated the most unstable failure plane upslope, starting from the hillslope toe (figure

3.6). Because many landslide do not initiate at the hillslope toe, our model integrates all potential failure

depths and angles in a landscape, which has not been attempted yet. Landslides triggered by earthquakes

follow a complex spatial distribution that depend on many parameters such as Peak Ground Acceleration

(PGA) (Meunier et al., 2007), slope pattern (Roback et al., 2017), or the distance from the fault (Massey

et al., 2018). The objective of our paper is not to develop a predictive approach that would infer landslide

spatial distribution, but to develop a simple and robust mechanical framework capable of deciphering the role

of topography and mechanics on landslide size distribution. Then, the introduction of triggering parameters

is beyond the scope of this study. We now describe the different methodological steps of our landsliding model.

Mechanical criterion - We propose that below a certain point (x,y) of the topography, a potential

rupture plan Pl(x,y,z,α), characterized by a local depth z and a dipping angle α, is mechanically unstable

if locally the driving stress Sd(z,α) exceeds the failure resistance stress Sr(z,α) (figure 3.1a). This is usually

expressed as a factor of safety (e.g., Duncan and Christopher, 2004). Here we define a rupture factor:

FR(α, z) =
Sd(α, z)

Sr(α, z)
− 1 (3.1)

We only consider the largest component of the stress tensor σ1, that we assume to be vertical and to depend

simply on rock mass σ1(z) = ρr g z, with ρr the rock density and g the gravitational acceleration. τ(α, z)

and σn(α, z) are the parallel and normal components of σ1(z) with respect to the failure plane, respectively.

The resisting strength to failure is proportional to σn : Sr(α, z) = C + tan(Φ) σn(α, z). Assuming that
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Sd(α, z) = τ(α, z) we can write the rupture factor :

FR(α, z) =
sin(α)

C
ρr g z cos(α) + tan(Φ)cos(α)

− 1 (3.2)

Equation 3.2.2 emphasizes the contribution of cohesion to shallow plane stability. At greater depths, the

resistance to failure is almost frictional and FR approaches the rupture factor of a cohesionless material :

FR(α, z) = FR(α) =
tan(α)

tan(Φ)
− 1 (3.3)

Previous stability analyses included a depth-dependent cohesion profile (Milledge et al., 2014, Frattini

and Crosta, 2013) or fluid pressure (Stark and Guzzetti, 2009, Alvioli et al., 2014). Those alternate formu-

lations imply a pre-existing soil/rock boundary or an unsaturated/saturated transition. We choose not to

introduce depth-dependent complexity in the model to isolate the contribution of hillslope geometry, friction

and cohesion in the distribution of potential rupture depths.

Topographic criterion - For each sampled point (x,y), we extract the downslope hydrological profile

to the river using a steepest slope algorithm (Schwanghart and Scherler, 2014) and we define a topographic

rupture factor TR(x, y, z, α):

• TR(x, y, z, α) = 1 if the plane(α,z) intersects the topography

• TR(x, y, z, α) = 0 otherwise

The geometry of rupture is an open question in landscape-scale landslide modelling (Gallen et al., 2015)

and observations show it depends on many factors such as the geometry of pre-existing fractures (Lee et al.,

2002, Sitar et al., 2005). Here we take in account any unstable plane if its local tangent delights above the

river. We assume planar failure to compute the geometric criteria, because it provides the simplest shape and

so does not require additional parameters. As the probability of intersecting with the topography decreases

with depth (figure 3.1a and 3.7), this criterion reduces the probability of deep rupture planes. Without this

constraint, the planes that are deep enough so cohesion do not control their stability factor would have the

same rupture probability (equation 3).

Rupture probability - To test the model sensitivity to the distance to failure, we introduce a parameter

p. Relative to FR, the rupture probability can be independent (p = 0), linearly dependent (p = 1), or

non-linearly dependent (p > 1). We thus define the chance of rupture PR(x, y, z, α) by

PR(x, y, z, α) = max(FR, 0)p
× TR(x, y, z, α) (3.4)

We use the word ’chance’ instead of ’probability’ at this stage because their integral over the unstable

domain does not necessarily equal one. The grouping of possible landsliding planes at one location (x,y) can

be represented in a Mohr Circle using a range of potential rupture angles (figure 3.1a) for a given depth z.

This defines an ’angle-depth’ unstable domain (figure 3.1b) where the right and left boundary are set by the

topographic slope angle and the mechanical parameters (frictional angle and cohesion), respectively.

Landscape-scale PDF of unstable depths

Local chances of rupture are computed for nsample = 10000 points randomly sampled in the same DEM.

We integrate the chances of rupture to obtain the total chances of ruptures for the DEM:

PR,DEM (α, z) =

∫

x

∫

y

PR(x, y, z, α) dxdy (3.5)

We finally compute the PDF of unstable depths by integrating over all possible angles and normalizing :
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PDF (z) =

∫ π/2

0
PR,DEM (α, z) dα

∫ zmax

zmin

∫ π/2

0
PR,DEM (α, z)dα dz

(3.6)

Correction from oversampling - Equation 6 does not provide the number of landslides but the num-

ber of points potentially included in landslides. Since large landslides include several points in the same

slope failure, we systematically overestimate the number of large landslides compared to smaller landslides.

We demonstrate in the supplementary material (S1) that using the empirical relationship between landslide

depth and area z = αAγ (Larsen et al., 2010), with γ an exponent varying between 0.3 and 0.6, we can

deduce the PDF of landslides depth from the PDF of triggered points by dividing the latter by z1/γ . We

also demonstrate that applied to a theoretical, straight hillslope, this normalization introduces a power-law

scaling PDF (z) ∝ z−γ in the landslide depth PDF.

Landslide area PDF - Since measured natural landslide inventories are compiled as a distribution of

landslide area and not depth, we use the scaling between depth and area to convert the modelled PDF of

unstable depths to a PDF of landslide area, resulting in a scaling PDF (A) ∼ Aγ−2 (supplementary ma-

terial S2). Interestingly, this predicts that the power-law exponent on the PDF(A) without any geometric

constraint and cohesion effect should vary between -1.7 to -1.4,. This is consistent with the most heavy

tailed distribution of landslides observed in nature, but predicts a probability of large landslides compared

to intermediate one much larger than typically observed pdf with exponents down to -3 (Van Den Eeckhaut

et al., 2007).

Model parameters - We moved this paragraph to the methods section for clarity. Among the model

parameters (ρr, g, C, Φ, p and γ), the last four are not well constrained. Cohesion is a scale-dependent

parameter, spanning several orders of magnitude in natural geosystems (Sutcliffe et al., 2004, Sidle and

Ochiai, 2006). Lab experiments define rock frictional angle that ranges from 20o and 45o (Hoek and Brown,

1997). The depth-area coefficient γ varies regionally from 0.3 to 0.6 for bedrock landslides (Larsen et al.,

2010). Finally, p is an ad-hoc parameter that we introduce to test the effect of the distance from rupture

on the PDFs. Varying p from 0.001 to 10, we found the best fit to the data assuming a linear dependency

between Fr and the rupture probability (figure 3.10). Consequently, we set p = 1 and run the model with

Φ varying between 10 and 60o, C between 5 and 100 kPa, and γ between 0.2 and 0.7 (figure 3.3). We ran

the model on six DEMs (figure 3.4) corresponding to catalogues of landslides triggered by the 1999 Mw 7.6

Chi-Chi earthquake (Liao and Lee, 2000), the 2004 Mw 6.6 Niigata earthquake (GSI, 2005), the 2008 Mw 7.9

Wenchuan earthquake (Xu et al., 2014), the 2015 Mw 7.8 Gorkha earthquake (Roback et al., 2017), the 1994

Mw 6.7 Northridge earthquake (Harp and Jibson, 1995) and the 2009 Morakot typhoon (Chang et al., 2014,

Marc et al., 2018). To optimize the three unknown parameters values (C, Φ and γ), we compute the mean

absolute distance between the logarithms of modelled and observed PDF of landslide areas, dF IT .

3.2.3 Results

Figure 3.2a) shows the PDF of landslide area computed by applying the model to the digital elevation model

(DEM) of Taiwan (SRTM 30 m), in the area affected by the Mw 7.6 Chi-Chi earthquake (1999). We use C =

18 kPa, Φ = 30o and γ = 0.47, corresponding to best-fitting parameters. To first order, the modelled PDFs

reproduce the observed PDF with a rollover behavior for small landslides, a power-law decay for medium and

large landslides and cut-off at large area. The correction from oversampling introduces a power-law scaling

PDF (A) ∝ Aγ−2 (supplementary material S2) that holds for medium landslides (5.103 - 105 m2). The

distribution deviates from this scaling over several orders of magnitude (105-107 m2). Figure 3.2b), c) and d)

shows the impact of mechanical parameters on the modelled PDF. Cohesion is necessary for the emergence

of a rollover (figure 3.7), as it increases shallow plane stability (equation 2). Increasing cohesion shifts the
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location of the rollover toward larger area or depth values (Figure 3.2b). For a constant frictional angle of

30o, cohesion between 15-20 kPa is required to match the observed rollover positions ranging from 100 to

1000 m2 (Malamud et al., 2004a). Increasing the frictional angle decreases the probability of large landslides

(Figure 3.2c). Decreasing γ produces larger landslides and shifts the rollover toward larger values (Figure

3.2d).

Having determined the role of mechanical parameters on the shape of the PDFs of landslide size for

selected topographies, we now explore the influence of geometric, hillslope-scale parameters: the slope S,

the length L and the concavity. We run the model on a series of uniform triangular prisms (figure 3.8), the

simplest shape which allows us to explore the role relative importance of these three parameters. We set C

= 10 kPa and Φ = 35o, corresponding to typical mechanical parameters. First, we set a constant slope of

45o (Figure 3.2e) and vary L. The modelled distribution follows a classical PDF of landslide area. Increasing

the hillslope size (length, and so height) extends the maximum depth of the modelled landslides and the tail

of the modelled PDF has higher probability for larger landslide areas. Second, we set L to 960 meters and

vary S (Figure 3.2f). An increase in the hillslope gradient (and so height) results in a shift of rollover values

towards lower values and the tail of the modelled PDF implies higher probabilities for larger landslide areas.

The range of modelled landslide areas reduces when reducing S. We also run the model with different slope

geometry configurations (concave, convex, and straight in Figure 3.2g). The addition of concavity or convexity

to the slope cause the rollover shifting towards lower landslide depth or area values. Convex and concave

slope geometries respectively generate greater and smaller probabilities of large landslides. This shows the

necessity of applying the model to real topographies in order to find accurate mechanical parameters.

Figure 3.3a) shows dF IT in the case of Chi-Chi earthquake as a function of cohesion and friction for γ =
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Figure 3.2 – a) Observed (red dots) and modelled (dark squares) PDF of landslide areas from Taiwan DEM

with C = 18 kPa, Φ = 30o and γ = 0.47. Blue line shows the theoretical slope of the PDF arising from 2D

landslide geometry and green line shows the slope of the part of the PDF mostly controlled by landscape

shape. Panels b), c) and d) show the influence of changing the cohesion, the friction angle or the landslide

area-depth scaling exponent γ, respectively, with the values used in panel a) for the two constant parameters.

e), f) and g) show the PDF of landslide area computed on synthetic triangular prisms with a slope of 45o

and various height (e), unique length of 960 meters and various slopes (f) or the same height and length but

with different concavities (g). C = 10 kPa, Φ = 35o and γ = 0.42.
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0.47 (the best-fitting γ value). Setting dF IT ≤ 0.2 as the range of acceptable models, we found the cohesion

and the frictional angle to range between 15-21 kPa and 22o-34o, respectively. Figure 3.3b) shows a synthesis

of the misfits for the six studied cases. We calculate the range of admissible parameters with dF IT ≤ 0.2.

The narrow range of best fit values for γ is striking (between 0.47 for Chi-Chi and 0.56 for Wenchuan). The

cohesion range are 3 kPa (Niigata), 7-15 kPa (Northridge), 8-18 kPa (Gorkha), 12-20 kPa (Wenchuan), 15-21

kPa (Chi-Chi), and 22-35 kPa (Morakot). The ranges for the frictional angles for the tested scenarios were

sometimes broad: 10o (Niigata), 17-35o (Northridge), 35-52o (Gorkha), 29-41o (Wenchuan), 22-34o (Chi-Chi),

and 10-25o (Morakot).

3.2.4 Discussion and concluding remarks

Our proposed 1D model is capable of generating realistic PDFs of landslide depth and area. We reproduced

the rollover for small landslides, the power-law decay for medium and large landslides and an upper bound

in power-law scaling for large areas. It is possible to isolate the contribution of the model assumptions

to the generated PDF (Figure 3.2a). The rollover at small depth and area arises from the contribution of

cohesion to hillslope stability (equation 2). The correction from oversampling we apply to the raw PDF of

landslide depths introduces a powerlaw trend that dominates the scaling relationship for medium landslides.

This correction, based on the scaling relationship between landslide depth and area (Larsen et al., 2010), is

necessary to take in account the fact that a deep landslide is statistically larger than a shallow landslide and

has in turn more chances to be sampled because of its 2D extension. The scaling argument, γ, integrates

how rupture propagates in two dimensions. This correction thus captures the physics of lateral rupture

propagation that our model does not directly compute. It shows that rupture propagation itself produces

the emergence of a power-law behavior, as already suggested (Stark and Guzzetti, 2009). Nevertheless, this

effect holds only for a limited range of magnitudes when the model is applied to a real landscape as the

shape of sampled hillslopes plays a larger role by controlling the tail of the distribution for medium to large

landslides. For larger landslides, the distribution deviates from this power-law scaling toward a distribution

that reflects the sampled landscapes geometry. The use of the geometric criterion in our model and the finite

size of hillslopes induces a cut-off in the landslide size distribution (figure 3.7). We sum up the contribution

of cohesion, scaling argument, and hillslope geometry to the modelled PDF in figure 3.2a.

b)a) d

wenchuan
gorkha
morakott

chichi
niigata
northridge

Figure 3.3 – a) Distribution of dF IT for Chi-Chi landslide, as a function of friction and cohesion, (γ = 0.47).

The best fit values are : γ = 0.47, Φ = 30o and C = 18 kPa. b) Best-fit values of cohesion and friction for

the six studied cases, for the best-fit γ value (dF IT = 0.2 contour).

Our model reproduces the first-order sensitivity of rollover location to cohesion (Stark and Guzzetti, 2009,

Frattini and Crosta, 2013)). There are other potential explanations for this rollover such as the likely under-

sampling of small landslides (Hovius et al., 1997, 2000, Stark and Hovius, 2001) or the existence of potential

59



cohesion gradients with depth, in particular at the transition between soil and rock (Frattini and Crosta,

2013, Milledge et al., 2014). However, we also reproduce both the rollover and the power-law behavior of the

observed PDF of landslide area without using a depth-dependent change in cohesion or friction assumption.

The range of best-fit values of the depth-area scaling exponent γ, is narrow (0.47< γ <0.56) compared

to the initial specified range (0.2-0.7) and consistent with natural data, (Larsen et al., 2010). Friction and

cohesion show strong dependence on γ, as shown in figure 3.12. Indeed, increasing γ has similar effects on

the PDF as decreasing cohesion or increasing friction (figure 3.2). This explains why best-fit friction and γ

are negatively correlated while cohesion and γ are positively correlated. For example, changing the γ value

by 10% would lead to a change of 10o in the inferred friction angle. This trade-off demonstrates the need for

a better calibration of γ in different regions in order to reproduce the observed distributions.

The range of inferred cohesion, 10 to 35 kPa, is roughly comparable with those previously inferred using

other landsliding models applied to landslide inventories (Frattini and Crosta, 2013, Gallen et al., 2015).

However, the cohesion values obtained are low and are more consistent with typical values obtained for soils

with resisting roots 10-30 kPa (Sidle and Ochiai, 2006), rather than for fractured or weathered bedrock ∼ 100

kPa to 1 MPa (Sutcliffe et al., 2004). In contrast, the best-fit frictional angles, 20-45o (except for Niigata), are

in agreement with experimental measurements (Hoek and Brown, 1997). Overall, the cohesion and friction

angles we found reflect the fact that we did not explicitly incorporate some static and dynamic processes, such

as static fluid pressure, dynamic reduction of friction (Viesca and Rice, 2012), and also pore pressure change

or passing seismic waves in the case of landslides triggered by storms or large earthquakes, respectively.

Thus, we can interpret the inferred parameters only in terms of effective friction and cohesion related to

one triggering event. Nevertheless, using median values found in this study (10-35 kPa for the cohesion and

20-45o for friction), one could assess first-order prediction of landslide area distribution in a given landscape

following an earthquake or storm event with more reliability than using higher, classical cohesion values.

Interestingly, different triggering events in the same region can produce landslides with very different rollover

position, as the landslides induced by the Chi-Chi earthquake and Toraji typhoon in the Dajia river basin

(Huang and Montgomery, 2014). In that case, typhoon-triggered landslides display a rollover shifted toward

largest areas, meaning, according to our model, a greater cohesion. Possible explanation would be that pore

pressure increase following a typhoon is mechanically equivalent to a reduction in frictional strength, whereas

co-seismic peak ground acceleration would be equivalent to a reduction in effective cohesion (Marc et al.,

2015). Modelling of more typhoon-induced triggered landslides is required to validate this hypothesis, which

is in agreement with the low friction values inverted in this paper from Morakot dataset (figure 3.3).

Our results also illustrate the two major influences (figure 3.2e, f and g) of landscape shape on the PDFs

of landslide depth or area. First, the available volume above the friction angle must increase to increase

the probability of deeper landslides. This can be achieved in three ways: 1) increasing the hillslope length

while keeping a constant slope; 2) increasing the slope while keeping a constant length; and 3) increasing

convexity. Second, since cohesion controls the shear strength at shallow depths, mechanical instabilities can

only occur for steep planes associated with higher shear stress (figure 3.1). As only the planes less steep

than the topographic surface can meet the topographic criterion, steep slopes within the model favors the

occurrence of shallow and small landslides. Our results are consistent with the idea that the PDF of landslide

area is strongly influenced by the availability of high slope patches and that rheological mechanical properties

modulates the power-law exponent (Frattini and Crosta, 2013). We extend this idea by showing that not

only the local slopes, but also the entire hillslope slope, height, length and concavity control landslide size

distribution, especially for large landslides.

Then, our 1D model, which integrates mechanics and landscape geometry, explains the observed PDFs

of landslide areas. It is fully capable of isolating the relative contributions of mechanical processes and

landscape geometry to landslide size distribution: at first order, cohesion is fundamental for the emergence of

the rollover, 2D rupture propagation leads to a power-law scaling for intermediate landslides, and landscape

geometry controls the size distribution of large landslides. To further understand how mechanical processes,

especially 2D landslide geometry, controls landslide size distribution, three-dimensional numerical modelling

60



(e.g., Moon et al., 2017), would be a natural development of this work.

Our results have important geomorphological implications for landslides triggered in landscapes with

different geomorphological properties. Interestingly, the PDFs of all landslide areas triggered by Chi-Chi and

Morakot are very similar despite different triggering mechanisms (figure 3.5). Both inventories cover a surface

area of 10000-20000 km2, without marked differences in terms of topography. However, at the catchment

scale, the PDF of landslides triggered by Toraji typhoon and Chi-Chi earthquake displays different tail,

with the probability of landslides > 105 m2 much larger for the typhoon-triggered landslides (Huang and

Montgomery, 2014). This could be explained by differences in hillslope geometry, between the lowest part

of the basin impacted by the earthquake and the highest and steepest part impacted by the typhoon. Both

observations supports the idea that landscape geometry exerts a first-order control on the landslide size

distribution. Therefore, the same mechanical triggering acting in different geomorphological settings should

induce landslides with different size distribution. In turn, landscape geometry properties is likely to exert a

first order control on the volume of material produced by landslides. This could explain the large variability of

total landslide volume observed for earthquakes of similar magnitudes (Keefer, 1994, Marc et al., 2016a), and

the presence of extremely large paleo-landslides (> 0.1 km3) in regions characterized by high relief with long

and steep slopes (Korup et al., 2007). Consequently, accounting for landscape shape is essential to improve

hazard assessment, particularly in regions characterized by high relief and slope where large landslides may

occur with high probability.
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3.3 Supplementary material

In this section, I first present the six studied datasets. Then I provide supplementary information regarding

the method employed and the role of model parameters and assumptions on the final modelled PDF of

landslide depth and area. I finally present best-fitting results for each studied case.

Datasets

a)

b) c) d)

e) f) g)

Northridge Niigata

Chi-Chi

& Morakot

Gorkha

Wenchuan

NorthridgeGorkha

Wenchuan NiigataMorakot

Chi-Chi

Figure 3.4 – Shaded DEM (SRTM 30) used to model the distribution of landslide areas. Landslides are

represented as red polygons, except for Morakot, where the size of the round is proportional to landslide

area. The red line shows the area used to sample the hillslope profiles. The red stars show the location of

the epicenter of the triggering earthquake.
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Figure 3.5 – PDFs of the landslide area data used in this study, considered above 90 m2.
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slope β and the friction angle Φ.
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We describe here the method used to correct the PDF from oversampling and compute the landslide area

PDF

We call PDFP (z) the PDF given by equation 6 in the main text, i.e the number of points x,y that belong

to a landslide of depth z. We are looking for the PDF of landslides having a depth z, PDFG(z). Because

we sample the landscape randomly, the chances to select each point of the DEM are equal. Then, the

number of points included in landslides of a certain size is higher than the number of landslides of this size,

and increases with the landslide area. Then PDFG(z) is proportional to PDFP (z) divided by the area of

landslides of thickness z :

PDFG(z) ∝
PDFP (z)

A(z)
(3.7)

We assume a power-law scaling between depth and area A(z) = α z1/γ , with γ between 0.3 and 0.6

(Larsen et al., 2010). Then we have :

PDFG(z) = C ∗
PDFP (z)

z1/γ
(3.8)

where C is a rescaling constant used to insure that the integral of PDFG is equal to one. Then, in a case

of cohesionless material without topographic criteria, (equally probable depths, as shown in figure 3.7), the

scaling of the corrected PDF of landslide depths would be PDF (z) ∝ z−1/γ .

We compute the PDF of landslide areas from the relationship :

PDF (A) dA = PDF (z) dz (3.9)

From the empirical scaling between A and z (Larsen et al., 2010) we have :

PDF (A) ∼ PDF (Aγ)
d(Aγ)

dA
(3.10)

If the scaling of the previously computed PDF(z) is PDF (z) ∼ z−1/γ (S1), we have

PDF (A) ∼ (Aγ)−1/γ Aγ−1 (3.11)

The theoretical scaling of the PDF of landslide areas, if all the depths at all points were equiprobable,

would be PDF (A) ∼ Aγ−2 (see figure 3.7e).
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How model assumption influences model outputs
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Figure 3.7 – Effect of the basic assumptions of the model on the PDF of landslide depth and area. We use

a single hillslope with a downslope profile of length L = 500 meters and a slope S = 45o, γ = 0.42 and Φ =

35o, with either cohesive or cohesionless material and with or without topographic criterion. a) Raw PDF of

the maximum unstable depths. b) Maximum rupture angle (topographic limit) as a function of depth (blue

line). The dashed lines show the hillslope slope and the friction angle. c) Rupture factor considering the

rupture angle shown in panel b) as a function of depth, for either a cohesive (red line) or cohesionless (blue

line) material. d) Same as a) but showing the PDF of depths after correction for oversampling. The dotted

lines show the expected slope after correcting the PDF from oversampling. e) Same as b) after converting

the depth PDF into area PDF. The dotted lines show the expected slope.
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Design of the synthetic landscapes used to infer hillslope length, slope and con-

cavity on landslide size distribution

b - convex slopea - straight slope
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Figure 3.8 – Two synthetic landscapes of L = 1200 m and S = 45o, with a linear shape (a) or concave shape

(b).

Influence of model parameters on the PDFs
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Figure 3.9 – Influence of real landscape shape on landslide size distribution. We show here the PDF modelled

on the six DEMs, with constant mechanical parameters (C = 10 kPa, Φ = 30o, γ = 0.5).
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Figure 3.10 – Influence of p on the modelled PDFs from the Taiwan DEM for C = 18 kPa, Φ = 30o and γ

= 0.47. When p increases, the probability of a rupture plane different from the most unstable one tends to

zero, and the distribution tends to a characteristic size rather than a power-law.

67



area (m
2
)

102 104 106

P
D

F
 (

m
-2

)

10-12

10-10

10-8

10-6

10-4

10-2

depth (m)

100 101 102

P
D

F
 (

m
-1

)

10-6

10-4

10-2

100

mean orthogonal depth

maximum vertical depth

-1/γ

-1/γ

depth (m)

100 101 102 103

P
D

F
 (

m
-1

)

10-4

10-3

10-2

depth (m)

100 101 102

P
D

F
 (

m
-1

)

10-6

10-4

10-2

100

synth. landscape - 1 sample

synth. landscape - 1000 samples

Taiwan DEM - 1000 samples

-1/γ
γ-2

γ-2

depth (m)

100 101 102

P
D

F
 (

m
-1

)

10-4

10-3

10-2

a) c)b)

d) f)e)

area (m
2
)

102 104 106 108

P
D

F
 (

m
-2

)

10-12

10-10

10-8

10-6

10-4

10-2

Figure 3.11 – Modelled PDFs of raw landslide depth (a,d), landslide depth corrected from oversampling (b,e)

and area (c,f). We either compute landslide depth with one single point on a synthetic, idealised slope such

as in figure 3.7 (green squares), 1000 samples within same synthetic landscape (blue dots) and Taiwan DEM

(red dots). a, b and c show the influence of the way we calculate the depth. We consider either the vertical

depth below the sampled point (brown diamonds) or the mean depth orthogonal to the rupture plane, from

the failure point to the point where the rupture plane daylight (green squares). d, e and f show the influence

of sampling. Dotted black lines show the theoretical slope of the distribution considering the simplest case in

figure 3.7. The number of samples do not strongly change the results, but the sampling of a real landscape

introduces a deviation for the theoretical slope at medium depths and areas.
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Figure 3.12 – Mean absolute distance distance between the logarithm of modelled and observed PDFs of

landslide areas for the best-fitting γ (left panels), the best-fitting Φ (center panels), and the best-fitting

cohesion (right panels). We keep only the models covering the whole range of observed landsliding areas.
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Figure 3.13 – PDF of landslide areas for the best fit model (red line) compared to the PDF of landslide area

data (black squares), for the six studied cases.
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3.4 General discussion

3.4.1 What is landscape strength ?

Quantifying near-surface rock strength at a time and spatial scale that is meaningful for landscape evolution

remains difficult (Hoek and Brown, 1980a, 1997), and cannot be derived from laboratory sample strength

(Gallen et al., 2015). The idea that hillslopes steepen until their mechanical threshold is reached and adjust

to tectonic uplift and fluvial erosion through pervasive landsliding is a starting point for numerous landslide

modelling studies (Schmidt and Montgomery, 1995, Gallen et al., 2015). This implies the long-term contribu-

tion of friction and cohesion to hillslope stability, modulated by time-temporal weakening (Densmore et al.,

1998). The role of cohesion in hillslope stability is still debated; the observation that the slope distribution is

modal and roughly identical within similar geological settings has mainly supported the concept of hillslopes

as defining a repose angle that should reflect the landscape-scale frictional strength (e.g., Burbank et al.,

1996, Korup, 2008). However, considering the modal value of slope distribution as an indicator of rock mass

strength has been questioned by Anderson et al. (1980).

In this section, we examine what can be learned about landscape strength and its role in landscape shape

from our modelling approach, which is based on the idea that every plane in the landscape is a priori unstable.

We compare the best-fitting effective friction angles found from our approach with the landscape slope

distribution in the six studied cases (figure 3.14). We compute the DEM slopes using a steepest downward

gradient algorithm. The slopes of landsliding hillslopes are taken as the local slope of the sampled unstable

points (i.e., the points where at least one rupture plane is unstable).

The range of effective friction is equal to or greater than the modal slope for the Wenchuan, Northridge and

Gorkha earthquakes, and is equal to the modal slope for the Chi-Chi earthquake. Because of the geometric

assumptions of our model, landslides occur only on hillslopesthat are stepper than the effective friction angle.

The fact that landslides are located on slopes higher than the modal slope is a common feature of earthquake-

triggered landslide inventories, such as those from the Gorkha (Roback et al. (2017), figure 3.16), Finisterre

Mountains, (Meunier et al., 2008), Northridge (Parise and Jibson, 2000), and Wenchuan (Dai et al., 2011)
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Figure 3.14 – Slope distribution for the six studied DEMs, plotted with the range of inverted best-fit friction
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Figure 3.15 – Percentage of unstable points as a function of friction angle and cohesion for the six studied

cases, plotted with the range of inverted best-fit friction angles and cohesion.

earthquakes. On the contrary, the inferred friction angles are higher, equal (Chi-Chi), or lower (Morakot

and Niigata) than the landscape modal slope for the different inventories. This shows that the potential link

between rock strength and modal slope (Burbank et al., 1996, Korup, 2008) is not straightforward.

Interestingly, the same slope distribution for Chi-Chi and Morakot is observed but a lower friction angle

is required to reproduce the typhoon-induced landslides, resulting in landsliding on lower slopes, than for the

earthquake-induced landslides (figure 3.14). We suggest a mechanical cause to this difference. Indeed, the

frictional strength τf depends on pore pressure p, normal stress σn and the friction coefficient Φ:

τf = tan(Φ)(σn − p) (3.12)

An increase in pore pressure due to rainfall results in a decrease in the apparent frictional strength.

Because we did not include pore pressure in our model, we need a lower effective friction angle Φ to account

for this process. From equation 2.24, we can calculate the ratio between apparent friction (that integrates

pore pressure) and expected friction without pore pressure. This ratio depends on the angle of rupture, α.

If we consider that the medium is saturated, taking a rock density of 2.7, and α between 20 and 40 °, we

find that we underestimate tan(Φ) by 30-50%. Typically, with rupture angle α = 30°, the apparent frictional

angle is 16°. This could explain why we find low friction values for the Morakot inventory.

We would need to apply our model to more typhoon-triggered landslide inventories to validate this hy-

pothesis. Nevertheless, our results imply that effective rock strength in a given setting evolves through time,

as a function of the transient and static stress changes induced by the hillslopes. For example, Lin et al.

(2004) have shown that before the Chi-Chi earthquake, landsliding occurred mainly on slopes of 20-30 °,

and 40-60° in the years following the earthquake. They interpreted this as the result of numerous extension

cracks generated on hillslopes during ground shaking.

We have emphasized that the inferred cohesion and friction angles do not necessarily reflect landscape

strength. Here, we try to infer landscape strength, i.e., the strength for which no landslide occurs. We run

our model for a large range of cohesion (10 kPa to 5000 kPa) and friction angles (5 to 80°) and count the

number of unstable points (i.e., the number of points for which one or more unstable plane exists).
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-

Figure 3.16 – Histogram of mean slope of Gorkha landslides (blue) compared to the entire landscape (red).

Symbols indicate the mean values ± the standard deviation. After Roback et al. (2017).

Figure 3.15 shows the percentage of unstable points for each DEM. As expected, it decreases with both

increasing friction angle and cohesion. As a landsliding of zero never happens in nature, we have to define

a minimum threshold in terms of the fraction of landslides for which cohesion and friction angle can be

considered as representative of the rock strength, without any external forcing. This percentage represents

the proportion of the surface included in a potential landslide and then can be directly compared to the

landslide density as computed for example in Meunier et al. (2007), who defined the landslide density as the

landslide surface area divided by the whole surface area. They found landslide density between 1 and 5% for

landslides triggered by the Chi-Chi and Northridge earthquakes, and up to 10% for the Finisterre earthquake;

Roback et al. (2017) found landslide density between 0 and 2% for the Gorkha earthquake. We arbitrarily

set that a density of unstable points 10-100 times smaller than those values (i.e., between 0.01 and 1%) is

representative of the "background" landslide fraction. Considering a standard friction angle of 30°, we find

cohesion values between 500 and 1500 kPa for Chi-Chi, Morakot and Wenchuan, 1500-2500 kPa for Gorkha,

100-500 kPa for Northridge and 50-200 kPa for Niigata. Those values are one to two orders of magnitude

above the effective values inferred by our model for triggering events. We also find similar results using a

different friction angle between 20 and 40°. Those values are close from the ones derived from laboratory

experiments for sedimentary rock strength (1000 to 20000 kPa after Hoek and Bray (1981)). This implies the

fundamental role of cohesion in long-term hillslope stability. On the other hand, we show that the effective

cohesion at the onset of landsliding is orders of magnitude lower than landscape strength, suggesting again

that rock strength evolves through time. My assumption is that hillslopes behave as cohesive over geological

time-scales, maintaining a "stock" of potential landsliding planes that fall catastrophically under an effective

cohesion decrease induced by rapid and intense events, such as earthquakes or rainfall events.

Interestingly, the landslide density expected for the inverted effective parameters in the case of the Chi-

Chi and Niigata earthquakes (> 20 %) and Morakot (> 50 %) are far too high compared to observations

(Meunier et al., 2007). This can be explained by several reasons. Firstly, it is observed that within the years

following large earthquake, the landsliding rate is maintained at higher than its background value, suggesting

that damaged hillslope gradually fails. Therefore, it is possible that all possible failures do not occur at the

same time (Marc et al., 2015). This temporal dimension, that we do not include in our model, may cause

this bias. Moreover, in our model, we consider that a rupture plane is unstable if the shear stress exceeds the

shear strength, i.e, if the rupture factor FR is positive. However this criterion is empirical, and the choice

of a threshold for the factor of safety involves a lot of uncertainty (Duncan, 2000). In our case, we defined
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Figure 3.17 – a) Shaded DEM of the Dajia river basin, Taiwan, from SRTM 30 m. The drainage network

for drainage areas > 0.5 km2 is shown in blue. b) Slope map computed with a eight-neighbors algorithm. c)

Simplified geological map, from the National Central University (http://gis.geo.ncu.edu.tw). d) Horizontal

distance to the drainage network shown in panel a), computed from a steepest descent algorithm.

as unstable all the points for which at least one plane has a rupture factor > 1. This include the points

for which only one unstable plane at depth z and angle α can emerge from the topography. Therefore, in

our case, the use of a higher rupture factor (1.5, or 2) in order to prevent those limit cases would give more

realistic results in term of the number of unstable points.

3.4.2 Consequences for landsliding volumes

This section provides an illustration of the effect of hillslope height and slope on the PDFs of landslide areas

and the resulting landsliding volume. It is based on the observations published in Huang and Montgomery

(2014) and mentioned in section 3.2. Two landslide inventories within the Dajia river catchment in Taiwan

have been studied: one triggered by the Chi-Chi earthquake, and the other by the 2001 Typhoon Toraji.

Earthquake-induced landslides were smaller than rainfall-induced landslides : the authors noted that 90%

of the earthquake-induced landslides were smaller than 4000 m2, whereas this was true of only 20% of the

landslides triggered by the typhoon. This difference is also expressed through marked differences between

respective the respective PDFs of landslide area (figure 3.18a) : for the typhoon-triggered landslides, the

rollover is shifted toward larger sizes and the tail extends to larger landslides (1.106 m2, against 2.104 m2 for

earthquake-triggered landslides).

The fact that typhoon-triggered landslides are significantly larger than earthquake-triggered landslides

was attributed in Huang and Montgomery (2014) to the amalgamation of several landslides in the original

mapping of the former. In addition, they proposed that the long runout distances of some rainfall-triggered

landslides may contribute to the greater mapped size of the landslides induced by Toraji.

Here we explore the potential effect of landscape shape within the catchment on the probability of large

landslides. This is encouraged by the observation that earthquake-triggered and typhoon-triggered landslides

are located in different parts of the Dajia catchment (figure 3.18a). Most earthquake-triggered landslides

occurred in the lower part of the catchment, characterized by lower and flatter topography than the upper

part of the catchment (figure 3.17 a and b). On the contrary, landslides triggered by the typhoon occurred

in the middle part of the catchment, displaying significantly higher slopes (figure 3.17b). Hillslope length
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Figure 3.18 – a) Shaded DEM of the Dajia river basin (Taiwan), with the area where landslides were triggered

by Typhoon Toraji (blue) and the Chi-Chi earthquake (red). The inset shows the frequency of landslide areas

for both events, after (Huang and Montgomery, 2014). The dotted black lines show the best-fitting solutions

with Φ = 30° and γ = 0.5 and cohesion as a free parameter. b) Normalized volume of landslides computed on

a smoothing window. Volume of landslides computed for a fixed number of landslides on a sliding window,

divided by the volume of landslides in the in pixel 1. The inset shows the PDFs of landslide area at tree

selected pixels 1, 2 and 3, pointed by the dark lines. We used for all the simulations C = 40, Φ = 30° and γ

= 0.5.

(figure 3.17d) is quite homogeneous within the whole catchment. This results in high relief in the middle

part of the basin, where hilltops are located up to 1500 meters above the river (figure 3.17a).

First, to infer potential differences in effective parameters, we apply our model to the areas affected by the

typhoon and the earthquake, respectively, and find the cohesion that allows a best fit to the area frequency

data published by Huang and Montgomery (2014). We set the friction angle to 30° and γ to 0.5, correspond-

ing to classical values. We only vary cohesion here to run this first-order test, because it is the parameter

that most likely explains the two orders of magnitude difference in rollover position between both inventories.

We find C = 5 kPa for Chi-Chi and C = 75 kPa for Toraji, which reflects differences in effective cohesion

potentially linked to the different triggering events. Nevertheless, such a cohesion difference does not explain

the one order of magnitude difference in the size of the largest landslides of both inventories. In our model,

higher cohesion shifts the rollover position toward larger sizes but does not change the maximum size in the

inventory, because it does not control the probability of large landslides. One could argue that the difference

between the two PDFs can be explained by lithological differences. The Dajia river flows through Tertiary
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sediments; in the lowest part of the basin, rocks are younger and less consolidated than the Oligocene and

Eocene series constituting the upper part of the basin (figure 3.17c). However, pristine rock strength is not

likely to be reflected in the PDFs of landslides areas, as shown in section 3.2. If effective cohesion can explain

the difference in the observed rollover position, we propose that the differences observed for large landslide

probability can be explained by the differences in landscape shape between the two areas impacted by both

triggering events.

To investigate the role of landscape shape within the catchment, we sample the DEM using a 3 kM

square moving window and we apply our model on each sampled inventory (2000 sampled points) with fixed

mechanical parameters: C = 40 kPa (which is a mean of the best-fitting cohesion for both events), Φ =

30° and γ = 0.5. We compute the PDF of landslide volumes using the scaling relationship between volume

and area (Larsen et al., 2010) and compute a unitary volume. This represents the total volume of landslides

following such a PDF, divided by the number of landslides in the inventory :

V ⋆ =

∫

V

PDF (V ) ∗ dV ∗ V (3.13)

Figure 3.18b) shows the landsliding volume V ⋆ divided by V ⋆ computed for the pixel 1 in figure 3.18.

V ⋆ displays significant variations across the basin, up to 1.4 order of magnitude. It is higher in the central,

steepest part of the catchment and lower in the upper part and lower part. This results shows that under

similar mechanical parameters, and for the same number of landslides, landsliding volume produced in the

steepest part of the basin is up to 25 times higher than in other parts. This comes from the higher probability

of large landslides due to higher and steeper landscape. Because the number of landslides is usually higher

in steepest slopes (Parise and Jibson, 2000, Dai et al., 2011), this effect would be even more significant

considering a variable number of landslides. This suggests the first-order role of landscape shape on landslide

volume and may have strong implications for hazard assessment or topographic budget of large earthquakes

in different geomorphological contexts.
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Chapter 4

How hillslope shape controls landslide

size

4.1 Overview

In the previous chapter, I have defined a simple mechanical model that takes into account topography

and effective rock strength. I have clarified with this modelling approach the respective contribution of

effective friction angle, cohesion, rupture propagation and hillslope geometry on landslide size distribution.

In particular, I have demonstrated the theoretical importance of finite hillslope length, height and slope

for the probability of large landslides. But to what extent does landscape shape actually control landslide

size distribution? This idea needs to be compared to landslide data. Using the case study of the Dajia

river basin in Taiwan, I have pointed out that landslide size distribution may reflect landscape shape at

a local scale (within the same catchment). In this chapter, I take advantage of several existing landslide

inventories to explore the role of the finite geometry of hillslopes on landslide size distribution, especially

for the occurrence of large landslides. This chapter consists of an article in preparation, in which I compare

landslide size distribution from worldwide inventories to landscape geometry, through a metric that integrates

the maximum elevation above the friction angle. I show that this metric follows an exponential distribution,

within a given region but also at the worldwide scale. This article is followed by a discussion in which I

propose to investigate further, thought analytic calculation, the control of this distribution on the landslide

size distribution.
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4.2 Impact of finite hillslope geometry on large landslide proba-

bility

4.2.1 Introduction

In mountainous areas, landslides triggered by earthquakes or storms are important actors of surface erosion

(Keefer, 1994, Marc et al., 2016a), and represent a major hazard to human societies (Bird and Bommer, 2004).

In particular, large landslides (> 108 m3) contribute significantly to the denudation of mountain belts (Korup

et al., 2007, Korup, 2005b), represent the largest source of sediments for the fluvial networks (Croissant et al.,

2017) and are especially devastating (Kargel et al., 2016). Assessing the size of the largest landslides triggered

during a large earthquake or rainfall event is therefore critical in natural hazard management (Sornette, 2006,

Strauss et al., 1989).

Large landslide hazard assessment relies on landslide size distributions obtained from previous events and

catalogues. A landslide area distribution is commonly described by heavy tails distribution, sch as a double

Pareto distribution with a power-law scaling for intermediate to large landslides and cutoffs at large and

small areas (Guzzetti et al., 2002, Stark and Hovius, 2001, Malamud and Turcotte, 1999). This distribution

holds for different triggering mechanism and geological settings (Malamud et al., 2004a), while displaying a

strong variability of the power-law exponent (Van Den Eeckhaut et al., 2007, Tanyaş et al., 2017), ranging

at least from 1.7 to 3.3. While numerous studies have focused on explaining the exponent of the power-law

(Frattini and Crosta, 2013, Alvioli et al., 2014, Stark and Guzzetti, 2009), very few have investigated what

controls the upper limit of landslide size distribution. Theoretically, each catalogue has an upper limit which

is set by the maximum size of the system (Geist and Parsons, 2014), although in practice this limit could be

much lower because the size of the catalogues of rupture events is finite and limited by the rate allowed by

the triggering mecanism. Based on the study of natural event catalogues, including earthquakes, floods and

tsunamis, Geist and Parsons (2014) proposed that the upper limit, and therefore the large event probability,

is impossible to predict based on historical precedent.

Over the last decade, observations have shown that giant landslides are concentrated in a small portion

of mountain belts, where mean local relief (i.e, elevation difference between river and hilltop) and slope are

highest (Korup et al., 2007). Some mountain ranges, such as the Karakoram Mountains, have experienced

numerous giant landslides compared to other mountain belts (Hewitt, 2009, Korup et al., 2010). In these

regions, Blöthe et al. (2015) proposed that the occurence of large landslides correlates spatially with high

excess topography, i.e., the height of material between the topographic surface and an idealized, threshold

hillslope.

Those spatial correlations suggest a potential causal relationship between the first-order geometrical

properties of landscapes and the probability of large landslides. Frattini and Crosta (2013) proposed that

the power-law scaling of landslide area is controlled by the availability of high slope patches at all scales.

Jeandet et al. (2019) showed through a simple stability model applied to synthetic hillslopes that their finite

dimensions should strongly control the distribution of landslide size, especially at large areas. However, how

such hillslope finite geometry affects large landslide probability is still poorly understood.

Here, we define hC , a simple geometrical and mechanical criterion that quantifies the maximum height of

hillslopes above a frictional stability plane. Compared to Blöthe et al. (2015), the originality of our approach

is to consider the finite geometry of hillslopes, by considering only the horizontal and vertical distance in

between the lowest (i.e., rivers) and highest (i.e., hilltops) boundaries of hillslopes. This metric is easy

to extract from a Digital Elevation Model (DEM). We therefore compare its spatial distribution to large

landslide occurrence in several landslide inventories, and find that the probability of large landslides spatially

correlates with high hC hillslopes. We find that the hC values are exponentially distributed, and that the

mean hC in several landscapes is likely to control the size distribution of landslide depth, in particular for

deep landslides, and therefore the probability of large landslides.
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4.2.2 Methods

We introduce h, a metric that characterizes the height of material above a frictional stability plane (figure

4.1 a). For a simplified, straight hillslope of length L and slope S, the maximum value of h, that we call hC ,

is located above the crest and is simply :

hC = L(tan(S) − tan(Φ)) (4.1)

where Φ is the friction angle.

In order to test to what extent hC controls the occurrence of large landslides, we extract hC values of a

landscape for which we have a complete landslide inventory. We choose to focus on the Gorkha earthquake

for which a complete landslide inventory is available (Roback et al., 2017). Moreover, landslide scars and

runout have been mapped separately, avoiding potential bias in landslide location and area induced by long

landslide runout.

We use the Matlab Topotoolbox (Schwanghart and Scherler, 2014) to map the hilltops and to compute

hC from elevation data (SRTM 30 m). We extract the river network using a critical drainage area of 0.5

km2 and we define hilltops, or crest points, as the intersecting edges of drainage basins at all stream orders,

following Hurst et al. (2012) and Grieve et al. (2016) (figure 4.1b). At each point of the DEM, we compute
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Figure 4.1 – a) Shaded relief DEM of the catchment of one tributary of the Trishuli River, Nepal. The inset

shows a schematic representation of a hillslope with length L, slope S and friction angle Φ. At each point

(green dot), we extract the horizontal distance to drainage network (x) and the vertical distance to drainage

network (y). h is the height above the friction angle. Its maximum value, hC , is located at the crest. Only

positive values of hC are shown. b) Zoom showing the drainage network (blue lines) and the crests (dark

lines). c) Zoom on a portion of the hillslope shown in b). Grey polygons represent landslide scars. Red dots

show the pixels used in the calculation of the landslide drainage area (purple area). The crest points are

shown in black. d) Distribution of hC of that crest points in the area struck by Gorkha earthquake. The red

line is an exponential fit.
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(α and Amin) are shown for each PDF. The four hC classes, shown in the bottom of a), are chosen to have

a constant number of landslides nL.

the vertical (y) and horizontal distance (x) along the flowpath to the nearest river, and an idealized slope

S, which is simply tan(S) = y/x. The local h value is x(tan(S) - tan(Φ)), with Φ = 30°; in the following

analysis, we will consider only the values of h located on crest points, hC .

We then attribute to each landslide the corresponding crest points. We consider that the upslope portion

of the hillslope including a landslide is the area draining toward the landsliding scar (figure4.1c). To avoid

potential bias due to the landslide area, we define landslide scar area as the 8-neighboring pixels of landslide

scar center. In doing so, we avoid the discrimination of small landslides, for which drainage area would have

less chance to reach a crest point. For each landslide, we extract all the crest points included in this drainage

area and compute the hC mean value of those crest points. We call hC,ls the hC values corresponding to

landslides. We then bin the landslide inventory as a function of their hC values, and compute the PDF of

landslide areas in each bin. We fit a power-law to each sub-inventory for areas greater than an area Amin,

following Clauset et al. (2009). The fitting procedure works as follows: 1) for each possible choice of Amin, we

estimate the power-law exponent α via the method of maximum likelihood; 2) we compute the corresponding

Kolmogorov-Smirnov goodness-of-fit statistic D; and 3) we then select as our estimate of Amin, the value

that gives the minimum value D over all values of Amin.

4.2.3 Results

Figure 4.1 a) illustrates the spatial pattern of h in the catchment of one tributary of the Trishuli River, in

Nepal. We only show the positive h values, i.e., where S is higher than the assumed frictional angle. 87% of

the landslides occurred on hillslopes with positive h (figure 4.6). Values of hC (h extracted along the crest

points) of the Trishuli catchment follow a negative exponential distribution, characterized by a mean value

of 140 m (figure 4.1d). The hC values corresponding to landslides follow similar distribution, with a mean of

106 meters (figure 4.6).

Figure 4.2b) shows the PDF of landslide areas in the four bins of the inventory that we separated as a

function of their hC values. The four PDFs display significant differences despite having the same number

of samples included in each class. The fitted power-law exponent α varies from 2.21 for the smallest hC,ls

bin to 2.4 for the third bin. The Amin value increases with the hC,ls class, from Amin = 2.2x102 m2 to

Amin = 1.5x103 m2. The probability of large landslides is significantly higher for the bin with the largest

hC,ls. The joint probability distribution for landslide area and hC,ls values (figure 4.2a) is characterized by

an upper limit showing a positive relationship between the largest landslide area and hC,ls value. The size of

the smallest landslides, on the contrary, is not related to hC,ls, except for large hC,ls for which the absence of
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Figure 4.3 – a) PDFs of landslide areas triggered by Chi-Chi (nL = 9509) and Niigata (nL= 10526) earth-

quakes. The dark line shows the best-fitting power-law for area greater than Amin. b) d(PDF)/d(Area) for

the same inventories. The grey line shows the exponent α of the best-fitting power-law for area greater than

Amin. c) Mean area of the 1% largest landslides of the catalogues as a function of the mean hC . Black line

shows the best-fit (least square) linear regression on the logarithmic values, and dotted lines show the 95%

confidence interval. d) Amin as a function of the mean crest hC .

smallest landslides is likely due to undersampling. Based on the analysis of the Gorkha earthquake landslide

inventory, we find that large landslides are preferentially located on high hC hillslopes. This suggests that

the distribution of hC within a landscape strongly controls the overall distribution of landslide sizes.

To test this idea, we fit a power law following the same method on several landslide inventories triggered

by earthquakes or storms. The 14 inventories display strong variations in there Amin and α value.

For example, figure 4.3 a and b show the PDF of landslide areas for the landslides triggerred by the Chi-

Chi and Niigata earthquakes. For the Niigata earthquake, the minimum area for the best-fitting power-law

(480 m2) is just above the area corresponding to the rollover position. Amin for the Chi-Chi earthquake is

located at least one order of magnitude greater than the rollover position, at 6.5.104 m2, and the power-law

holds for only one order of magnitude. The resulting values of α are significantly different. For each inventory,

we extract the mean hC value on the area impacted by the triggering event and we compute the mean area

of the 1% largest landslides in the inventory. Figure 4.3 c and d shows that both the mean area of largest

landslides and the Amin value tend to increase with increasing hC , albeit with a large variability around the

mean trend. This relationship is independent of the number of landslides in the inventory, which varies from

517 (Aisen) to 184106 (Wenchuan).

Therefore, hC is likely to indicate at first order the landscape potential to host large landslides. We

have thus extracted hC on each available SRTM tile (at 90 m resolution) and map the worldwide mean

hC (figure 4.4). Interestingly both the global distribution of worldwide hC and the distribution for selected

orogens (Taiwan, New Zealand Southern Alps, European Alps, and Patagonian Andes) follow an exponential
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distribution (figure 4.4a). Some areas display high values of hC compared to the rest of the world, and

correspond, not surprisingly, to orogens where high relief is found: the Himalayas, the European Alps, the

New Zealand Southern Alps, the Andean Belt (the Patagonian Andes and Cordillera Blanca), and the Alaska

Ranges. This exponential distribution does not change according to the threshold area defining the rivers

(figure 4.8 b). However, it is influenced by the chosen frictional angle (figure 4.8 a). This is expected from

the hC calculation method, lower values of Φ leading to higher values of hC (equation 4.1).

4.2.4 Discussion and concluding remarks

We have defined a metric, hC , characterizing the maximum height above the friction angle. Spatial analysis

of landslides triggered by the Gorkha earthquake suggests that hC actually controls the size distribution

of landslides, with a higher probability of large landslides on large hC hillslopes. In the Gorkha landslide

inventory, the area threshold above which landslide area follows a power-law increases with increasing hC . hC

integrates hillslope length and slope, and therefore, we could suspect that both metrics controls the potential

for large landslides. However, interestingly, this dependency is found for hillslope slope (figure 4.5b), but not

for hillslope length (figure 4.5b).

Those observations seem to hold for several worldwide landslide inventories, for which both the area

of the largest landslides and the threshold Amin increase with increasing hC . This observation displays a

large variability. The first cause of such variability could be the number of samples in the inventory, a

higher number of samples leading to an increasing chance of sampling large events. However, the number

of samples here does not correlate to the hC value (figure 4.4c and d). Our hC metric criteria does not

include the full hillslope shape, and masks differences in concavity and convexity, which can influence large

landslide probability (Jeandet et al., 2019). It does not include local slope variations either, which have been

suggested to control the landslide size distribution (Frattini and Crosta, 2013). We have assumed a constant

friction angle, but it is expected that the shape of the PDF and large landslide probability will depend on this

mechanical parameter (Stark and Hovius, 2001, Jeandet et al., 2019). Further work using the effective friction

angle inverted from landslide size distributions (Jeandet et al., 2019) may help in refining our approach.

Those results question the validity of the power-law model for landslides with area greater than the

rollover. In certain cases (for example Chi-Chi, Gorkha, Morakot), the threshold area Amin is several

orders of magnitudes larger than the rollover and the power-law holds for a reduced range of areas. This

observation, which holds for landscapes characterized by high hC , confirms the results of (Jeandet et al.,

2019), who proposed that the landscape shape sets the power-law distribution for landslides larger than

a certain threshold, and below which smaller landslides result from the contribution of cohesion to plane

stability, and from the physics of 2D rupture propagation. Our results confirm that such a threshold area

and the power-law tail for large landslides above it is related to the landscape geometry. The hC exponential

distribution seems universal, as we show with the worldwide distribution (figure 4.4). Interestingly, even if

hC directly depends on the hillslope slope and length, none of the above metrics display clear exponential

distributions (figure 4.7). However, a full understanding of how the hC distribution controls the shape of the

landslide size distribution requires further investigations.

Our results suggest that the distribution of hC in a landscape influences the whole PDF of landslide size

and is setting the lower and upper limits for power-law scaling. This extends the idea that increasing the

height of material above a friction angle favors the occurrence of large landslides, as already suggested (Korup

et al., 2007, Blöthe et al., 2015). Despite the fact that the upper bound for natural hazard must be difficult

to predict (Geist and Parsons, 2014), we show that the first-order geometric properties of landscapes leave

signatures in landslide inventories. This encourage further examination of the links between landscape shape

and landslide size inventories, in order to better assess giant landslide probability in regions characterized by

high hC and high seismic hazard.
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Map of mean hC computed on each SRTM 90 m tile.

4.3 Supplementary material

Figure 4.5 shows the same results as figure 4.2, but binning the landslides as a function of hillslope length (a-

b), hillslope slope (c-d) and hillslope height (e-f). Our classes are chosen to contain the same number of landslides.

Hillslope length does not influence significantly the PDF of landslide areas. In contrast, for higher slope and height,

the probability of larger landslides is higher.

Figure 4.6 shows the area distribution of the studied landslides compared to the whole landslide inventory. For 87%

of the landslides, positive values of hC are found in their corresponding drainage area. For 56% of the landslides, crest

points are located in their drainage area. Therefore, we can extract a hC value for 43% of the landslides. All PDF are

very similar, we thus consider that using a reduced set of landslides does not bias our main results.

Figure 4.7 shows the distribution of slope gradient S, length L and hC for the Taiwan DEM. Among those four

metrics, only hC follows an exponential distribution. Slope distribution is also exponential above a threshold that is

close to the frictional angle I used, which is likely to exert an important control on hC distribution.

Figure 4.8 shows the distribution of slope gradient S, length L and hC for the Taiwan DEM, with different values

of friction angle (a) and critical drainage area (b).
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4.4 General discussion

In this section, I calculated an analytic solution for the distribution of unstable depths in a simplified hillslope

model. I show that this solution depends only on hC . Further work is planned to link this model to

landslide data presented in 4.2, and to demonstrate the control of landscape hC distribution on landslide size

distribution. In a second part, I present implications of the worldwide distribution of hC for landslide hazard

assessment and erosion in seismically active regions.

4.4.1 Linking model and landslide data

We consider a simplified and straight hillslope (figure 4.9 a) of length L and slope angle S. We aim at assessing

the probability of unstable depth in this wedge, given simple geometric assumptions. At a coordinate x

located in this wedge, we assume that any plane, defined by its local depth z and dipping angle α, is a

potential rupture plane if 1) α is greater than the internal frictional angle Φ and 2) it intersects the surface

topography upstream of the base of the hillslope. All planes meeting the two conditions in this wedge have

the same rupture probability, i.e., we do not consider that rupture probability increases with increasing shear

stress/shear strength ratio. Compared to Jeandet et al. (2019) who used a Mohr-Coulomb criterion, we

neglect cohesion because that was found to mostly influence the stability of shallow and small landslides.

Therefore, the rupture factor at a depth z and rupture angle α is purely frictional:

FR(z, α) =
α

Φ
(4.2)
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b) PDF of unstable depths in a wedge characterized by a hC = 10 m (blue line), 100 m (red line) and 500

m (yellow line). The dark lines show the PDF of unstable depths given exponential distributions of hC with

means of 50 m (solid) and 140 m (dashed).
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For simplicity, I assume that the rupture probability at depth z and rupture angle α is:

PR = 1 if FR(z, α) > 1

PR = 0 if FR(z, α) ≤ 1

I further add a topographic constraint, assuming that a rupture plane should emerge above the hillslope

toe. The maximum rupture angle at depth z and coordinate x is then αmax(z, x) = S – (z/x). Therefore, the

rupture probability at depth z and coordinate x is:

pR(x, z) =

∫ αmax

Φ

PR(z, α)dα = S − Φ −
z

x
(4.3)

A rupture plane of depth z can exist only at x > xmin(z), and at each point x there is a maximum local

depth h, that can be expressed as : xmin(z) = z/(S-Φ) and h(x) = x(S-Φ). Integrating pR(x,z) over the

wedge gives:

p(z) =

∫ L

z/(S−Φ)
pR(z, x)dx

∫ L

0

∫ x(S−Φ)

0
pR(z, x)dzdx

(4.4)

The numerator of equation 4.3 is :

∫ L

z/(S−Φ)

(S − Φ)(L −
z

S − Φ
) − z(ln(S − Φ) − ln(z)) (4.5)

The denominator is :

∫ L

0

∫ x(S−Φ)

0

(S − Φ) −
z

x
dzdx =

∫ L

0

x(S − Φ)2

2
=

L2(S − Φ)2

4
(4.6)

We call hC the maximum depth above friction angle, giving:

PDF (z) = 4

[
hC − z − z(ln(z))

hC
2

]

(4.7)

Under such simple mechanical and geometrical assumptions, the PDF of rupture depth is constant at

small depths, due to the lack of cohesion stabilizing shallow planes in my simplified model, and decreases

at large depths toward a cut-off at hC (figure 4.9 b). In turn, the length and slope of a hillslope set the

maximum depth and size of potential landslide ruptures occurring on it.

Figure 4.9b) also shows the theoretical probability density function of depth z for a given exponential

distribution of hC :

∫

pdfhC
(z) ∗ pdf(hC)dhC (4.8)

where pdfhC
(z) is the probability density function of z at a given hC given by equation 4.7 and pdf(hC)

is the probability density function of an exponential distribution.

This work in progress will allow further investigation of how the mean hC value strongly controls the

probability of deep, and therefore large (Larsen et al., 2010), landslides, but also the overall PDF of landslide

areas.

4.4.2 Implications for large landslide hazard in seismically active regions

The probability of large landslides is likely to be explained by 1) landscape morphometry (Blöthe et al.

(2015), Korup et al. (2007), and this study) and 2) the frequency of triggering, which increases the chance

to sample the tail of the landslide size distribution (Geist and Parsons, 2014). Therefore, I examine here in

which parts of the Earth’s surface those two conditions most likely be.

I have shown that hC is likely to indicate the potential of a given landscape to experience large landslides.

The highest hC values are located, not surprisingly, along the collision zones, in mountain belts with high

relief. Here, I compare the hC world map with the Global Seismic Hazard Map (Giardini et al., 1999). This
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Figure 4.10 – hC map from our study (top) and Global Seismic Hazard Map (bottom). The hazard is depicted

as peak ground acceleration(PGA) with 10% probability of exceedence in 50 years, corresponding to a return

period of 475 years (Giardini et al., 1999).

map shows the seismic hazard as peak ground acceleration(PGA) with 10% probability of exceedence in 50

years, corresponding to a return period of 475 years.

If we consider that a PGA of 2 ms−2 is required to trigger landsliding (Meunier et al., 2007), we see that

some areas with high hC are prone to high enough ground motion to trigger landslides, such as the Andean

chain, the Southern Alps of New Zealand or the Himalayas. In other places such as the Northern Island

of New Zealand, even if the seismic hazard is high, mean hC values are below 40 m. Other areas are not

subjected to high enough seismic hazard, such as the Northern European Alps or Alaska range. However,

numerous giant landslides are found in the European Alps (Korup et al., 2007). This illustrates that going

further in large landslide hazard assessment at the global scale, would require considering all the potential

triggering, such as typhoon or snowmelt.

The comparison of those two maps shows that landscapes that favors large landslides are also prone to

high seismic hazard in many parts of the world. Therefore, in those areas, the probability of large landslides

is increased by frequent seismic triggering. In the next chapter, I examine to what extent such large erosional

events could, in turn, influence regional seismicity.

89



Chapter 5

Modelling the response of active

faults to large erosional events

5.1 Overview

In the two previous chapters, I have investigated the potential controls on landslide size distribution and I

have demonstrated the fundamental role of landscape geometry. In particular, landscapes with high values

of unstable height are able to produce large landslides under a given forcing. Those areas correspond to

collision zones with high seismic hazard, in which erosional and tectonic processes are likely to be coupled.

For example, in a work in preparation (Appendix A), we suspect that the large landsliding event triggered by

the typhoon Morakot have triggered shallow seismicity, and changed the earthquake b-value during several

years after the typhoon. Those potential links need to be investigated further through a numerical modelling

approach. Therefore, in this chapter, I used two numerical models of the seismic cycle to investigate the role

of large erosional events on seismicity. I first introduce the numerical methods. Then, I present my results

of numerical modelling of the effects of one erosional event on a single fault with heterogeneous frictional

properties. Then, I compare the main results of this study with the behaviour of one homogeneous fault, and

I finally present a work in progress in which I aim to study the role of one erosional event on a fault network.

5.2 General presentation of the methods

To study fault response (in terms of both seismicity rate and b-value) to time-dependent normal stress, there

are several hindrances to overcome. The major challenge is to simulate earthquake cycles with sufficient

variability in earthquake magnitudes to infer meaningful b-value. Such a variability implies an increasing

number of cells in the modelled fault (see section 5.2.2), leading to an increase in the computational time.

The second challenge was to find a compromise between the range of modelled earthquake magnitudes and

the computation time. Finally, in the existing models of earthquake cycles (e.g., Lapusta and Liu, 2009, Luo

et al., 2017), the normal stress is implemented as a constant parameter in time and space; the last technical

issue is to change the implementation of normal stress as a time-variable parameter. During this work, I have

explored the potential of several existing numerical codes to address those issues.

This part of my PhD work began with the use of BiCycle, a numerical code developed by Lapusta

et al. (2000) and Lapusta and Liu (2009) that models the seismic cycle on a single fault embedded in an

elastodynamic medium under tectonic loading. Such full dynamic simulations compute the wave-mediated

stress transfer. Because this effect is inertial, it implies a convolution integral in time that takes into account

slip rate and its history (Perrin et al., 1995, Lapusta et al., 2000, Thomas et al., 2014) and is computationally

expensive. Other quasi-dynamic approaches (Rice, 1993, Hillers et al., 2006, Ziv and Cochard, 2006) ignore

this term and account for inertial effects through a static radiation damping term, saving significant amounts
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of simulation time.

Wave-mediated stress transfer is important to study the dynamics of rupture propagation, because it

concentrates stress at the tips of the rupture (Lapusta et al., 2000, Lapusta and Liu, 2009) and allows

supershear ruptures (e.g., Xia et al., 2004, Dunham, 2007). However, numerical simulations based on the

quasi-dynamic and dynamic approaches results in the same qualitative slip pattern (Thomas et al., 2014).

The differences lie in the slip velocity and rupture arrest during earthquakes, which are not critical for the

purpose of studying the fault response at the seismic cycle time scale. Therefore, I switched to a quasi-

dynamic approach. The next section describes the two quasi-dynamic codes I used during this work.

5.2.1 Presentation of the two numerical models

The first model I used, QDYN v1.1, (Luo et al., 2017) has been developed by Yingdi Luo et al. at the

California Institute of Technology and released in 2017. The second model I used, FastCycle, is the outcome

of the PhD work of Pierre Romanet (Romanet et al., 2018) at the Institut de Physique du Globe (Paris). Both

models are based on the same physical approach. Their major difference lie in the acceleration algorithms

implemented in FastCycle, which allow modelling of to model a population of faults with potentially complex

geometries, instead of one planar fault.

5.2.1.1 Physical ingredients

Both QDYN and FastCycle are based on the same physical recipes : they model a 1D fault under tectonic

loading, embedded in a 2D elastic medium, which is storing energy before it is released during an earthquake.

The resistance of the interface to sliding is characterized by a rate-and-state friction law.

• The loading

The loading is done either by a global stress rate field (in FastCycle) or by a loading velocity (in QDYN).

In QDYN, the loading velocity is used to compute the elastic stress changes (second term in the

equation 5.6). The fault is slipping in mode II (in plane), i.e the direction of rupture is parallel to the

slip direction. In FastCycle, the loading rate is used to compute the background shear traction on the

fault (first term of equation 5.6). The studied faults are slipping in mode III (out of plane), i.e the

rupture is perpendicular to the slip direction.

• The elastic medium

The stress change along the fault due to sliding comprises 1) the stress redistribution after a certain

amount of slip (i.e, the static stress transfer) and 2) the wave mediated stress redistribution (elastody-

namic stress transfer). The dynamic radiation away from the fault is accounted for using a radiation

damping term (i.e the instantaneous shear stress drop in the medium due to sliding) :

τrad = −
G

2cs
V (5.1)

where G is the shear modulus of the medium, V the slip velocity and cs the shear wave speed of the

medium.

• The friction law

Frictional strength of the fault τfr is proportional to the normal stress σn with a friction coefficient,

µ(t) :

τfr = σn × µ(t) (5.2)
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The friction evolution through time is modelled by the rate-and-state friction law in its modern form

proposed by (Marone, 1998).

τfr = σn ×

[

µ0 + a log

(
V

V0

)

+ b log

(
θV0

Dc

)]

(5.3)

We use an ageing law to describe the evolution of the state variable :

θ̇ = 1 −
V θ

Dc
(5.4)

5.2.1.2 Governing equations

The stress acting on the fault τf is the sum of the far-field loading stress τload, the elastic stress τel and the

radiation damping term τrad.

τf = τload + τel + τrad (5.5)

In this formulation, the most computationally expensive part is the second term, i.e the shear stress

resulting from elastic interactions.

Assuming that the shear stress acting on the fault is equal to the frictional resistance and differentiating

with respect to time leads to the equation that is used to solve for velocity at each time step and at each

point of the fault :

V̇ =

far field loading
︷︸︸︷

τ̇load +

static stress

change due to slip
︷︸︸︷

τ̇el +

normal stress

variations
︷ ︸︸ ︷

σ̇nµ(t) −

static friction changes
︷ ︸︸ ︷

σn
b

θ
θ̇

G

2cs
︸︷︷︸

radiation damping

+
aσn

V
︸︷︷︸

direct effect

(5.6)

The two codes consider constant normal stress through time, so the third term is not implemented in

QDYN and FastCycle. I implemented the temporal normal stress change due to erosion in this equation, by

changing σn at each time step and adding the normal traction rate term.

5.2.1.3 Numerical methods

The elasticity response (second term of equation 5.6) is solved using the boundary elements method (Tada,

1996, Tada and Madariaga, 2001) : contrary to finite element methods, the elasticity problem is solved in

the form of an integral only along the fault, where displacement and stress are known at each cell. This

method has the advantage that only the fault has to be discretized. However, it is computationally expensive

as the computation time grows as the square of the number of cells on the fault N. To overcome this issue,

acceleration algorithms have been implemented in FastCycle, reducing the computation time from the order

of N2 to N log(N), while keeping excellent precision. This allows the resolution of the problem for several

faults, potentially with different geometries (Romanet, 2017).

An usual issue in earthquake cycle modelling is to cover the multiple time scales involved in the seismic

cycle. A time step that is too large would not capture seismic ruptures, but a time step too small would

lead to a huge number of useless data computed during interseismic phases. This problem is solved using

an adaptive time-step solver algorithm following (Bulirsch and Stoer, 1966). It allows efficient computation

through the inter-seismic periods (using long time steps) while keeping a good accuracy during earthquakes

(using short time steps).
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Figure 5.1 – Seismic cycle modelled with QDYN (a) and with Fastcycle (b, c and d), on one single fault (a

and c) and on two faults separated by the tenth of their nucleation size (b and d). The horizontal axis shows

the fault length normalized by the nucleation size. Velocity is plotted at each time-step and color-coded as

a function of dynamic (> 10−3 ms−1), quasi-dynamic (> 10−6 ms−1) or aseismic (< 10−7 ms−1) values.

5.2.2 How to model earthquakes of different sizes ?

The first quasi-dynamic model I used, QDYN, inherently produces a regular seismic cycle with periodic

earthquakes of similar magnitudes. To overcome this difficulty, several methods exist, which are described

in section 5.2.2.1. However, this lead to an increase in computational time which can become problematic

when it comes to model earthquakes with several orders of magnitude (section 5.2.2.2 ).

5.2.2.1 Spatio-temporal complexity in earthquake cycle

In quasi-dynamic simulations, well discretised faults with constant friction parameters do not lead to any

complexity (Rice, 1993). As an example, figure 5.1a shows a typical earthquake cycle modelled with QDYN,
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Figure 5.2 – Number of cells N needed in simulations with heterogeneous Dc as a function of the ratio (a/b)

and the ratio between maximum and minimum values of Dc. Approximative computation times are indicated

in red. Red box shows the simulation parameters (a/b = 0.7,
Dc,max

Dc,max
= 17) chosen for QDYN simulations

detailed in section 5.3.

on a fault with standards and homogeneous friction parameters. In the figure, velocity is plotted as a function

of the position along the fault (x axis) and the time-step (y axis). In this type of plot, we use the time-step

number to plot velocity instead of time, which is non-linear because of the adaptive time-stepping procedure.

Therefore, the seismic events are stretched and the interseismic periods are compacted. In figure 5.1a, the

fault ruptures periodically, producing the same event that ruptures the whole fault.

In order to introduce some variability in the earthquake sequence, two types of methods have been

previously used in quasi-dynamic simulations. The first uses a multiscale heterogeneous distribution of

frictional properties (Hillers et al., 2006, 2007, Ide and Aochi, 2005). This can generate earthquake frequency-

size statistics spanning several orders of magnitude. The other type of method is to use a spatially discrete

model, i.e., a model where the computational cell is oversized compared to the nucleation size predicted

by the rate-and-state parameters (Ziv and Cochard, 2006). This method has been criticized because of the

problem of reproducibility, as the results are very sensitive to numerical errors in this approach (Rice, 1993).

Therefore, I choose to implement a self-similar spatial variation of Dc following Aochi and Ide (2004), Ide

and Aochi (2005) to model several earthquake magnitudes.

5.2.2.2 The issue of computational time

To produce earthquakes, the fault must be long enough so the rupture can reach seismic velocities. This

length is determined by the nucleation length Lc (I recall here equation 2.17 for a/b > 0.38) :

Lc = 2 ∗
Lb

π(1 − a/b)2 (5.7)
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In practice, a ratio of ∼ 10 between fault length and nucleation size is enough to model seismic ruptures.

Moreover, to correctly solve earthquake nucleation, the cell size must be smaller (7-10 times) than the cohesive

zone Lb (equation 2.18) :

Lb =
EDc

bσn
(5.8)

For computational reasons, the number of cells must be a power of 2. Therefore, the number of cells N in

a fault is the next power of 2 of n = R ∗ L/Lb (with L the fault length and R the resolution, i.e. the number

of Lb units in one cell). The size of the minimum cohesive zone is dependent of the minimum Dc value, and

the maximum nucleation size depends on the maximum Dc value. Then, n is expressed as :

n = R ∗ L⋆
∗

2

π
∗

1

(1 − a
b )2

∗
Dc,max

Dc,min
(5.9)

Obviously, n increases with L⋆ (the ratio between fault length and the maximum nucleation size), and

model resolution. Equation 5.9 also shows that the number of cells increases with increasing (a/b) ratio and

with the ratio between smallest and largest critical distance Dc. Because getting several orders of magnitudes

requires several orders of Dc, and because the computation time increases as the square of n, we can see dif-

ficulty in simulating a significant range of magnitudes (figure 5.2). In the simulations conducted with QDYN

and presented in the next section, we set a ratio Dc,max/Dc,min of 17, which is a good compromise between

computation time (approximately one week of simulation for 45 earthquakes) and the ratio between smallest

and largest earthquake moment (∼20). Therefore, those simulations do not allow to make statistically robust

b-values. However, they provide qualitative insights on the changes in earthquake size distribution under

normal stress variations (section 5.3).

95



5.3 Response of a single fault to transient normal stress change,

and implications of the effect of large erosional events on the

seismic cycle

5.3.1 Introduction

Over geological time scales, mountain belts classically grow through the thrusting and thickening of the

Earth’s crust under tectonic forces (e.g., Dahlen et al., 1984, Davis et al., 1983). This long-term building

process is the result of deformation by viscous, ductile and brittle processes and by slip along major faults,

leading to rock uplift over a succession of seismic cycles (King et al., 1988, Le Béon et al., 2014). Mass

transfers at the Earth’s surface due to erosional processes imply stress changes at depth. Based on numerical

modelling results, these stress changes can influence the size of mountain ranges and their long-term defor-

mation (Willett, 1999, Whipple, 2009) and even enhance fault slip over one to several interseismic periods

(Cattin and Avouac, 2000, Calais et al., 2010, Vernant et al., 2013). However, the influence of erosion on

seismicity at short time scales (100-1000 years) is poorly understood.

A seasonal modulation of seismic activity is observed in many tectonically active settings such as the

Himalayas (Bollinger et al., 2007), Japan (Heki, 2003) or California (Gao et al., 2000). These seasonal

changes correlate well with static stress changes due to the annual variations of snowload (Christiansen

et al., 2007, Heki, 2003), annual precipitation (Bollinger et al., 2007) or atmospheric pressure changes (Gao

et al., 2000). In turn, these surface processes are suggested to modulate seismicity, despite their relative low

magnitude (1-5 kPa) compared to earthquake stress drops or to tectonic loading.

Numerical studies suggest that documented erosion rates in active tectonic settings such as Taiwan are

high enough to induce static stress changes in the vicinity of shallow faults of 0.25 to 2 bars during the

interseismic phase (Steer et al., 2014). Moreover, in mountainous areas, hillslopes experience catastrophic

landsliding events due to either large earthquakes or rainfall. Those episodic events mobilize a large volume

(up to several km3) of sediments (Keefer, 1994, Marc et al., 2016a, Steer et al., 2018) that are ultimately

evacuated by rivers. The time-scale of this evacuation is poorly constrained; however, measurements suggest

a time scale of one year to decades for suspended load (Hovius et al., 2011), and recent numerical studies

suggest similar time scales for coarse sediments (Croissant et al., 2017). Therefore, such large erosional

events are likely to induce sufficiently large static stress changes in the shallow crust to modify the activity

of the neighboring crustal faults. For example, Steer et al. (2018) reported a change in earthquake statistics

in Taiwan following the 2008 Typhoon Morakot, which triggered 10000 landslides and removed 0.7 km3 of

sediments from the hillslopes (Lee et al., 2015, Huang and Montgomery, 2013). They noticed an increase in

both earthquake frequency and b-value (i.e., an increase in the proportion of small earthquakes compared to

large ones) directly following the typhoon and lasting at least 2.5 years. However, no other direct observation

of erosion-induced seismicity change has been made at this time scale.

Understanding the potential effects of large erosional events on earthquake cycle requires understanding

of fault response to transient shear stress increase or normal stress decrease (Steer et al., 2014). To address

this question, it is necessary to account for the time-dependency of fault friction, simple static stress change

calculations offering limited comprehension of the problem (Ader et al., 2014). How fault respond to stress

changes have been investigated through numerical modelling studies either for continuous periodic stress

perturbations (Perfettini et al., 2001, Ader et al., 2014) or for static stress steps (Dieterich and Kilgore, 1994,

Kaneko and Lapusta, 2008), but never for one single but transient event.

Fault response to periodic normal (Perfettini et al., 2001) or shear stress variations (Ader et al., 2014)

have been derived. In such studies, the fault is simplified to a spring-slider block with a rate-and-state

friction law (Dieterich, 1979, Rice and Ruina, 1983). Those models show a dependency of fault response

to the perturbation period. Using a numerical model to study finite fault response to such periodic stress
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Figure 5.3 – Numerical setup used in this study. a) Schematic of the simulated fault. Slip weakening acts

over the central portion of the fault, of length 10 Lc. The fault is loaded at velocity Vpl = 3 cm/yr and

a constant normal stress σn acts over the whole fault. b-c) Along-strike distribution of friction parameters

(b) and critical distance Dc (c). d) Normal stress rate temporal variation implemented in QDYN to model

one large erosional event, and the corresponding variation of normal stress (e). Before the landsliding event,

the normal stress is constant and has a background value σn0. Erosion begins at time tb. A quantity ∆σ is

removed over a period Tero until a new background value of normal stress is reached at te.

variations, Ader et al. (2014) demonstrated that finite faults are highly sensitive compared to rate-and-state

spring slider models. Kaneko and Lapusta (2008) and Ader et al. (2014) found similar conclusions studying

a finite fault response to static shear stress step.

In this paper, we use a numerical model that considers a single fault embedded in an elastic medium,

obeying rate-and-state friction laws (Dieterich, 1979, Rice and Ruina, 1983, Ruina, 1983), to investigate the

effects of one large erosional event on seismic cycle. We model the effects of erosion by a decrease in normal

stress and study the fault response in term of seismicity rate and earthquake size distribution.

5.3.2 Methods

We study the behavior of a one-dimensional fault embedded in an elastic medium, as shown in figure 5.3.

For that purpose, we used QDYN (Luo et al., 2017), a boundary element software that simulates fault slip

under the quasi-dynamic approximation (i.e., quasi-elasticity with radiation damping). The adaptive time-

stepping implemented in QDYN allows simulation of earthquake cycles including seismic and aseismic slip.

The friction acting on the fault interface obeys a rate-and-state friction law (Marone, 1998) :

τ = σn ×

[

µ0 + a log

(
V

V0

)

+ b log

(
θV0

Dc

)]

(5.10)

where τ is the shear stress, σn is the applied normal stress, µ0 is the value of the friction coefficient

corresponding to the reference slip rate V0, θ is the state variable, and Dc is the characteristic slip for state

variable evolution. The parameters a and b describe the rate and state dependencies, respectively. The state

variable varies according to an ageing law (Ruina, 1983):

θ̇ = 1 −
V θ

Dc
(5.11)
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The modelled fault is infinite in one direction and includes a seismogenic patch with rate-weakening

properties (a-b < 0) surrounded by rate-strengthening areas (a-b > 0) (figure 5.3a and b). The steady-

state frictional properties are constant along the fault (µ0 = 0.6 and V0 = 1.10−9 m.s−1). The value of

b is 0.014 and a varies from 0.02 in the rate-strengthening domain to 0.01 in the seismogenic zone, where

a/b = 0.7 corresponding to rate-weakening properties. The fault is loaded at velocity Vpl = 3 cm/yr, the

applied normal stress is 10 MPa, corresponding to a depth around 1-5 km (Suppe, 2014), and the medium

has a shear modulus of G = 30 GPa. In such quasi-dynamic simulations, seismogenic patches with constant

frictional properties produce one characteristic, repeating event (Rice, 1993). Spatio-temporal complexity

can be obtained by varying in space the critical distance Dc by several orders of magnitude (Hillers et al.,

2006, 2007, Ide and Aochi, 2005). To generate earthquakes with various magnitudes, we thus vary Dc along

the strike of fault following a self-similar pattern in the rate-weakening zone (figure 5.3c) that we repeat in

the rate-strengthening zone. The size of the cohesive zone Lb (Rice, 1993, Lapusta and Liu, 2009) is defined

as:

Lb =
GDc

bσn
(5.12)

and the characteristic length for nucleation (Rubin and Ampuero, 2005) is :

Lc = 2 ∗
Lb

π(1 − a/b)2 (5.13)

These need to be chosen in order to correctly capture the model response. We set the length of the

seismogenic patch to 10 Lc in order to get dynamic events. Cell size is set by the minimum cohesive zone,

which is in turn set by the minimum Dc value. The seismogenic patch length is set by the maximum

nucleation size, which depends upon the maximum Dc value. Therefore, the number of cells in the model

depends directly on the ratio between maximum and minimum Dc. Here we vary Dc between 2.10−5 and

3.4.10−4 m in the seismogenic patch, so the minimum Lb value is 4.2 meters, and the maximum Lc = 561 m.

This ratio of 17 between minimum and maximum Dc values allows us to model seismic moments covering

one order of magnitude within a reasonable computation time (one week for a typical simulation of 30 years).

The modelled fault is discretized into 32768 cells, ensuring at least 8 cells per minimum Lb unit.

To model the effects of an erosional event, we here assume that erosion leads mostly to change in the

normal stress of a fault. The amplitude, duration and functional relationship of the change in normal stress

need to determined. Using an elastic half-space model, Steer et al. (2014) showed that co-seismic erosion in

active mountain belts such as Taiwan can raise the Coulomb stress on a fault by 0.01-1 MPa in the first few

kilometres of the crust. In our model, this corresponds to 0.1-10% of the imposed background normal stress.

The duration of erosion depends on many factors such as the landslide connectivity to the drainage network,

which often displays significant variation among catchments (Li et al., 2016). It is also controlled by the river

dynamics (Croissant et al., 2017, Yanites et al., 2010), and the grain size distribution of landslide sediments

(Sklar and Dietrich, 2006, Cowie et al., 2008, Egholm et al., 2013). The inferred residence times of landslide

sediments varies between 1-10 years (Hovius et al., 2011, Croissant et al., 2017), several decades (Howarth

et al., 2012) to several centuries (Yanites et al., 2010, Stolle et al., 2018). Compared to the duration of a

100 to 1000 years seismic cycle, about (Sieh et al., 1989, Shimazaki and Nakata, 1980, Chen et al., 2007), it

leads to a ratio between erosion duration and seismic cycle ranging between 10−3 and 10. For the functional

relationship describing erosion or normal stress through time, we vary the normal stress in time following the

observation of Hovius et al. (2011), who showed a sharp increase in erosion rate just after the earthquake,

followed by a linear decrease down to its background value. Following this pattern, we implement a sudden

change in normal stress rate (figure 5.3d) followed by a linear increase that lasts a certain period Tero. The

total removed normal stress integrated over Tero is ∆σn (figure 5.3). We test different scenarios, with ∆σn

varying between 0.01 and 1 MPa and Tero between 10−3 and 10 times the duration of one modelled seismic

cycle. This corresponds to mean normal stress rate of 6.34 Pa/s (∆σ = 1 MPa, Tero = 0.01 years) to 1.5.10−5

Pa/s (∆σ = 0.01 MPa, Tero = 20.48 years), corresponding to 5000 to 0.01 times the background loading rate
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Figure 5.4 – Cumulative slip along strike for a) the undisturbed fault and b) the fault under ∆σn= 1 MPa

and Tero = 0.08 years. Aseismic slip (V < 10−6 m/s) is plotted in black, slow slip (10−3 m/s > V > 10−6

m/s) in green, and seismic slip (V > 10−3 m/s) in red. The along-strike value of Dc is plotted in inset c and

d, and the rate-strengthening (RS) and rate-weakening (RW) areas are shown in red and green, respectively.

e – f) Maximum velocity on undisturbed (e) and disturbed (f) fault between 10 and 18 years. The red dots

show the temporal interval used to plot cumulated slip in a) and b), respectively. The erosion is applied a t

= 11.3 years; its duration is shown by the blue line.

imposed by the plate velocity (∼1.2.10−3 Pa/s). We implement the onset of the normal stress perturbation

during the interseismic period once the cycle is stabilized (i.e., produces regular events). In the following,

the term ’erosion’ refers to normal stress decrease.

To construct the earthquake catalogue, we compute a linear moment rate (equation 5.15) by integrating

the velocities over the seismogenic patch :

Ṁ0(t) = GZ

∫

V (x, t)dx (5.14)

where V(x,t) is the velocity at the location x on the fault at time t, G is Young’s modulus and Z is

the fault width that we set to Z = 10 km. We then isolate seismic events using a threshold of M0,lim =

108 dyn.cm−2.s−1, corresponding to the onset of seismic slip in a typical simulation. Changing the moment

rate threshold, for example to 109 dyn.cm−2.s−1, will slightly change individual earthquake magnitudes but

does not change the main results of this study. We integrate the moment rate over earthquake duration to

compute the moment magnitude:

Mw =
2

3
log(M0) − 6.07 (5.15)

Results

Figure 5.4 a) shows a typical seismic cycle without any normal stress perturbation. A sequence of three

characteristic earthquakes repeats with a period of ∼ 2.2 years. The sequence is composed of one first

earthquake of intermediate size, which initiates in the lowest Dc value area and expands over half of the

seismogenic zone. It is followed by another earthquake that ruptures the entire rate-weakening patch, and

then by a small earthquake initiating again on the area of low Dc. The magnitudes of those three typical

events are 4.85, 5.20 and 4.18, respectively (figure 5.8). Figure 5.4b) shows fault slip in the case of a normal
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Figure 5.5 – a) Frequency of earthquakes during the erosion period, with ∆σ = 1 MPa. The grey bars show
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two cases (Tero = 0.01 year and 20.48 years), compared to the undisturbed fault (black crosses). The period

of erosion is shown by the red box. The horizontal dotted lines show the edges of the bins used in a). d)

Cumulative number of earthquakes shown for Tero = 0.01 year and 20.48 years, and for undisturbed fault

(black dots).

stress perturbation with Tero = 0.08 years and ∆σn = 1 MPa. The seismicity rate increases during the erosion

period. The first earthquake is a large one, Mw = 5.34, that ruptures the entire patch and is followed by a

succession of earthquakes with various magnitudes between 4.01 and 5.22 that are not always characteristic of

the sequence shown in figure 5.4a). Particularly, nucleation of small events occurs on the right-hand portion

of the fault, which is not characterized by small Dc values.

To characterize the size distribution of earthquakes, we bin the earthquake inventory into two categories:

Mw > 4.5 and Mw < 4.5, corresponding to our arbitrary definitions of large and small ruptures. We compute

the relative frequency of large and small earthquakes during Tero. Figure 5.5 shows two typical examples

of simulations displaying different response in term of earthquake size. For Tero = 20.48 years, earthquake

frequency increases by a factor close to two during around ten years, and then progressively goes back

to its background value (figure 5.5b). The characteristic sequence is advanced in time without changing

the magnitude of events. For Tero = 0.01 years, earthquake size variability increases (figure 5.5c), with a

proportion of small events increased by 60% (figure 5.5a).

These observations illustrated in figure 5.4 and 5.5 are summed up in figure 5.6. For each model, we

compute the number N of earthquakes during erosion, and earthquake frequency over erosion (i.e., N/Tero).

We plot earthquake statistics during the erosional event, as a function of Tero normalized by the duration of

the seismic cycle of the undisturbed fault (Tcycle) or by the nucleation time of a typical earthquake (Tnuc).

For all values of ∆σn, we show an increase in earthquake frequency (figure 5.4a) that depends at first order

on the total removed normal stress. It increases by a factor of 1-2 for ∆σn = 0.01 MPa, 1-100 for ∆σn=0.1

MPa and 1-10000 for ∆σn = 1 MPa.

Earthquake frequency also increases with decreasing Tero. For Tero > 2 Tcycle, earthquake frequency

is almost constant, and consequently the number of earthquakes decreases with decreasing erosion period

(figure 5.6a). When erosion acts over a time that is shorter than the duration of a seismic cycle, earthquake
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frequency increases significantly. It increases at least by a factor of 2 for Tero lower than 2 Tcycle with ∆σn

= 1 MPa, and 0.3 or 0.5 Tcycle with ∆σn = 0.01 or 0.1 MPa, respectively. In the case of ∆σn = 0.01 to

0.1 MPa, this increase in earthquake frequency with decreasing Tero stops at Tero = 0.1 Tcycle and Tero =

8.10−3 Tcycle, respectively. In the case of faster erosion, the normal stress decrease happens over a too short

time scale to trigger seismic rupture, and no earthquake happens during that time (figure 5.6b). In the case

with ∆σn = 1 MPa, earthquake frequency increases with decreasing Tero for all the values tested. Figure

5.6c) shows the cumulative moment over Tero for all the simulations for which at least one earthquake occurs

during erosion. At first order, it depends on ∆σn and is two orders of magnitude higher for ∆σn = 106

MPa than for ∆σn = 104 MPa. In the models noted ’aseismic slip’ in figure 5.6c), the decrease in normal

stress triggers an acceleration which aborts when erosion stops, before reaching seismic velocity. We show in

figure 5.7 the time evolution of maximum slip velocity for two of these cases. In the case ∆σn = 0.1 MPa,

Tero = 0.014 years, the normal stress decrease triggers an acceleration that reaches seismic velocity after the

erosion stops (figure 5.7 b). The following seismicity rate is not changed significantly after this triggering

(figure 5.7a), but the seismic cycle is advanced in time, and erratic during at least 5 years. In the case ∆σn

= 0.01 MPa, Tero = 0.04 years, the normal stress decrease triggers an acceleration that ceases shortly after

the end of the erosion period (figure 5.7d). The small moment release causes a delay in the next earthquake

compared to the case with no perturbation (figure 5.7c), with no major changes in the following earthquake

cycle.

Figure 5.6d) shows cumulative moment over seismic slip normalized by the cumulative moment over

all erosion. It is higher than background value for all models, and tends to be higher for smallest ∆σn,

showing that aseismic slip represents a higher part of overall slip in the case of largest ∆σn. Figure 5.6e

shows the proportion of large (Mw > 4.5) and small (Mw < 4.5) earthquakes during erosion (∆σn = 1

MPa). For all models, the proportion of large and small earthquakes is lower and greater, respectively, than

in the undisturbed case. This is not the case for ∆σn = 0.1 and 0.01 MPa (figure 5.11). In these cases,

the distribution of event sizes does not change significantly. For ∆σn = 1 MPa and Tero > Tnuc, the size

distribution of earthquakes does not vary with Tero. However, for Tero < 5-10 Tnuc the proportion of small

events increases and become larger than the proportion of large ones (see figures 5.9 and 5.10).

5.3.3 Discussion and concluding remarks

We have implemented a transient normal stress variation in a quasi-dynamic model of the earthquake cycle to

mimic the effect of a large, erosional event of amplitude ∆σn during a certain time Tero. The large erosional

event results in an increase in earthquake frequency. Indeed, earthquake frequency raises with decreasing

Tero and with increasing ∆σn. Earthquake frequency increases by at least a factor 2 for ∆σn between 0.01

and 1 MPa, (0.1 to 10% of the background normal stress), when Tero is smaller than the typical duration of

the earthquake cycle. For ∆σn = 0.01 to 0.1 MPa, this effect holds for Tero greater than a critical period

for which the erosion applies at too short of a time scale to increase seismicity rate. This critical period

corresponds to 0.5 (∆σn = 0.1 MPa) to 5 (∆σn = 0.01 MPa) times the nucleation time.

Such an amplitude and period-dependency of fault response to environmental stress changes has already

been documented. For example, static stress changes below 0.01 MPa were observed to be insufficient to

trigger seismicity (Reasenberg and Simpson, 1992, Hardebeck et al., 1998). Seismicity does not systematically

display variations at tidal periods (Vidale et al., 1998, Cochran et al., 2004), despite the similar magnitude of

static stress change induced by Earth’s tides and the hydrological cycle. Period-dependency and amplitude-

dependency of fault response to periodic stress variations have also been inferred from laboratory experiments

(Lockner and Beeler, 1999, Beeler and Lockner, 2003, Savage and Marone, 2008) and numerical studies (Ader

et al., 2014). In laboratory experiments, (Savage and Marone, 2007) showed that at high period, the fault

response is amplitude-dependent and at short period, it also increases with increasing frequency; the transition

corresponds to the time necessary to displace the critical distance Dc. Such a frequency-dependence was also

suggested by Ader et al. (2014), who demonstrates the existence of a resonance in fault response to harmonic

stress perturbation.
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Here we show that such a period-dependency is also implied in fault response to one transient stress

change. There is a range of erosion periods for which normal stress variations of 0.1 to 1% of the background

normal stress can significantly trigger seismicity in our modelled fault. This range is set by the typical time-

scales of the seismic cycle and earthquake nucleation. In nature, such time scales are about 100-1000 years

for a seismic cycle (Sieh et al., 1989, Shimazaki and Nakata, 1980, Chen et al., 2007). Even if it could be as

long as centuries (Yanites et al., 2010, Stolle et al., 2018), landscape response to large erosional events is likely

to occur at much smaller time scales, from 1-10 years (Hovius et al., 2011, Croissant et al., 2017) to several

decades (Howarth et al., 2012). Moreover, it is over the first years that sediment export is expected to be the

most intense and significantly exceed background rates of erosion or sediment export (e.g., Hovius et al., 2011,

Croissant et al., 2017). The nucleation time of earthquakes is less constrained. Extrapolation of laboratory

experiments to the Earth’s crust suggests that nucleation of natural earthquakes could last several months

(Savage and Marone, 2007) to one year (Beeler and Lockner, 2003), which is shorter than the time needed

to evacuate a large amount of sediments in most of the geomorphological settings. Therefore, extrapolated

to natural seismic cycle and erosional process time-scales, our results suggest that one large erosional event

is likely to increase seismicity at least by a factor of two, if it produces a normal stress decrease of at least

0.1% of the background normal stress. However, these results are likely to depend on the loading rate (Ader

et al., 2014) and therefore should change quantitatively depending on the far-field relative velocity.

We also show that under high and rapid normal stress variations, the size distribution of events produced

by one fault is likely to change toward more numerous small ruptures, relative to large ones. In our model, this

observation can be explained by the fact that earthquakes always nucleate at the boundaries of the seismogenic

patch (figure 5.4a), which includes the lowest Dc values (figure 5.3 b-c). However, such observations have

also been made with homogeneous faults. For example, (Ader et al., 2014) noted a change in the distribution

of events following a step-like increase in shear stress, with a significant number of earthquakes smaller than

the smallest earthquake than the fault can produce. In the case of ∆σ = 1 MPa, the fault response is quite
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simple: earthquake frequency increases with decreasing perturbation duration. For smaller ∆σ, our results

illustrate the complexity of fault response to transient stress changes. For example, stress variation with low

magnitudes (∆σ = 0.01 MPa) occurring within too short a period can trigger transient aseismic slip (figure

5.7c-d), which relieves stress in the nucleation zone and postpones the subsequent earthquake, consistent

with the results of (Kaneko and Lapusta, 2008). If the same total normal stress is removed over a longer

period, an earthquake is triggered during erosion. Erosion can also trigger aseismic slip that accelerates and

results in a seismic event, even if the erosion is finished (figure 5.7 a-b). In those models, the small number

of triggered earthquakes does not allow us to make any robust statistical inference. However, it suggests that

within a population of faults close to their critical state, even small normal stress variations such as those

illustrated in figure 5.7 could trigger numerous earthquakes within or in the years following a large erosional

event.

The normal stress variation due to erosion is different from a sudden static shear stress induced by other

earthquakes, because it is likely to be transient. However, contrary to hydrological, tidal or atmospheric

forcing, surface processes such as erosion and sedimentation are not periodic. Therefore, the induced stress

changes are likely to accumulate over time. Our results confirm previous calculations based on static stress

changes (Steer et al., 2014), showing that erosion can significantly trigger seismicity at a seismic cycle time-

scale, and suggest that such cumulative processes, including large erosional events, but also glacial melting,

or human-induced water extraction, may have the potential to significantly contribute to the long-term

deformation of the shallow crust.
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5.5 Comparison of homogeneous and heterogeneous fault response

The early observations that natural faults are heterogeneous at a wide range of scales (Brown and Scholz, 1985,

Power et al., 1987, 1988) have been reinforced during the last decade together with the recent development

of terrestrial LIDAR (Candela et al., 2009, Bistacchi et al., 2011, Thom et al., 2017). Fault plane roughness

is thought to control many aspects of fault mechanics and seismic rupture, such as frictional strength and

critical slip distance (Scholz, 2002), nucleation process (Tal et al., 2018), and static stress drop (Candela

et al., 2011). In the previous section, I have run QDYN on a single fault with heterogeneous frictional

properties. This choice was motivated by the purpose of modelling different earthquake magnitudes, to

study how earthquake size varies under a normal stress change. However, comparing those results with the

behaviour of a homogeneous fault can provide an insight into the role of fault heterogeneities in fault response

to transient stress changes.

Here I compare the main results of this study with the same model applied to a fault with the same

parameters, within the same medium and under the same loading, but with homogeneous frictional properties

(Dc = 10−4 meter along all the fault). The ratio between asperity length and nucleation size is also 10. The

nucleation size of this fault is 160 meters (equation 5.13), and so the length of this fault is 1.6 km. Because of

its constant Dc value, the fault does not need to be as finely discretized as the one modelled in section 5.3 and

includes N = 2048 points. In this section, we compute only a linear magnitude Mw,lin, (or ’1D magnitude’).

It corresponds to the magnitude computed in section 5.3 but without introducing a fault depth equal to 10

km, which would not make sense for such a tiny fault. This does not change the results qualitatively, the

introduction of a depth in the Mw calculation only being useful to expand the range of magnitudes.

This simple fault produces, as expected, a regular earthquake cycle with events of magnitude 2 repeating

every ∼ 2 years (figure 5.12a). We introduce the normal stress variations at t = 10.4 years (during an

interseismic period). For example, a variation of ∆σ = 1 MPa, Tero = 0.01 years (figure 5.12b) produces

three earthquakes during Tero, with magnitudes slightly below that of the characteristic event.

Similarly to what was done in section 5.3, we bin the earthquake catalogue, separating the events larger

and smaller than Mw,lin = 1.9. Figure 5.13a) shows the results as a function of Tero for ∆σ = 1 MPa (for

smaller ∆σ, no change in earthquake magnitude with respect to our binning is observed). For Tero larger than

twice the nucleation time, no change occurs in earthquake magnitude, and the fault always produces events

larger than Mw,lin = 1.9. For Tero smaller than twice Tnuc, the catalogue includes a significant proportion

(∼ 25-75%) of small earthquakes. This observation is similar to the one made with the heterogeneous fault

in the previous section. It confirms that in such models, faults under rapid and large enough normal stress

decrease produce smaller earthquakes, even if their mechanical properties a priori do not allow them to

produce ruptures of different sizes. This shows that, in the case of the heterogeneous fault, the location of

small Dc areas with respect to the tips of the rate-weakening zone is not the only cause of small earthquake

triggering.
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Figure 5.14 – Earthquake rate (a) and number of earthquakes (b) during erosion period, for the case of the

simple fault (stars) and the fault with heterogeneous Dc (circles). The grey box shows the range of Tero for

which no simulation was done in the case of the simple fault.

The simple fault qualitatively displays the same response in term of earthquake rate as the heterogeneous

one (figure 5.14). However, the background seismicity is increased by a higher factor in the case of the

heterogeneous fault. For ∆σ = 1 MPa, the ratio between seismicity rate during erosion and background rate

is ∼ 5 times larger in the case of the heterogeneous fault. Those results suggest that faults with heterogeneous

properties are more sensitive to normal stress changes than homogeneous, idealized faults.

5.6 Perspective - modelling a fault network under normal stress

change

The release of FastCycle (Romanet, 2017) provided the opportunity to model several faults leading to earth-

quakes with different magnitudes without increasing dramatically the computation time, which is a great

step forward in earthquake cycle modelling. The work of Romanet et al. (2018) has shown that interactions

between simple, homogeneous faults lead to complex spatio-temporal slip. A simple example is shown in

figure 5.1. Figure 5.1c) shows a fault similar to the one in figure 5.1a) but modelled with FastCycle. As

expected, the fault ruptures periodically, producing the same characteristic earthquake. If we add a second

fault identical to the first one, separated by a distance small enough compared to their nucleation size (figure

5.1b and d), we can see a rich complexity merging from the interactions between the two faults, with seismic

and aseismic slip, and ruptures of different sizes. The next step in this part of my work is to use FastCy-

cle to model a fault network spanning several orders of fault size, leading to several orders of earthquake

magnitudes.
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Figure 5.15 shows the result of a first attempt to design a fault network capable of producing different

earthquake magnitudes, following the procedure developed by Mercury (2018). The modelled network in-

cludes 90 faults of five different sizes. Their cumulative distribution follows a power-law with an exponent of

-2 (figure 5.15 a), and the ratio between the largest and the smallest fault size is 10. They are distributed

randomly around a large, central fault (figure 5.15 c). Because the number of cells in each fault depends on

Dc, the fault Dc is adapted to the fault length. The proportion Lfault/Dc is linearly distributed and increases

with fault length. For the largest fault, it is twice the value of the ratio Lfault/Dc for the smallest fault. This

allows to reduce the number of points in the network, and to significantly save computation time (Mercury,

2018).

Running FastCycle on this setup during 300000 iterations (∼ 4 days), I obtained a catalogue of about 2000

slow and fast ruptures, including 1251 dynamic events. The magnitude distribution of those earthquakes is

shown in figure 5.15 b). It follows a power-law over at least one order of magnitude, with a b-value of -1.34.

The next step is to implement a time-dependant normal stress variation on such a fault network to study

the b-value changes induced by this perturbation. This step is still ongoing, because of the need to solve

numerical issues related to the implementation of the normal stress rate.
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Chapter 6

Discussion

6.1 Main results

This work has allowed improvement of our current knowledge on the processes contributing to shape the

Earth’s surface at short time scales (10-1000 years). My approach, based on numerical studies, has led to

the following results :

1) A very simple mechanical model of landslides, taking into account hillslope geometry, is able to repro-

duce landslide size distribution. This model has emphasized the importance of cohesion for small landslide

distribution, the contribution of 2D rupture propagation for the power-law scaling, and the influence of land-

scape shape for large landslide size distribution.

2) Hillslope geometry has a fundamental importance in setting the landslide size distribution. A simple

criterion measuring the height of unstable hillslopes, hC , is reflected in landslide inventories. This metric

is exponentially distributed in many regions of the world and appears to control the large landslide probability.

3) Large erosional events have the potential to significantly trigger seismicity and change the size distri-

bution of earthquakes during sediment export. Constraining the magnitude and duration of the erosion event

is fundamental to evaluate the fault response. Our study, modelled on one single fault, must be extended to

a population of faults in order to quantify the potential b-value change due to large erosional events.

6.2 Rupture processes during the seismic cycle

I have discussed the results of my PhD, presented in the format of scientific papers, in each chapter of my

thesis. These results were focused on explaining the role of hillslope mechanical and geometrical properties

in controlling landslide size distribution (chapter 3), on the distribution of the unstable height of hillslopes

and its influence on landslide maximum size (chapter 4) and on modeling the impact of surface unloading

by erosion on the seismicity of faults (chapter 5). I therefore here only examine some common features

of landslides and earthquakes, such as their size distributions, and discuss their differences based on my

experience acquired during this thesis.

6.2.1 Size of rupture events

6.2.1.1 Small events

At small magnitudes, the magnitude-frequency distribution inferred from earthquake catalogues departs from

power-law scaling, which is classically characterized by a constant b-value close to 1. This break in the power-

law scaling occurs below a threshold in magnitude. This threshold magnitude, referred to as the completeness
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magnitude (Mc), is traditionally attributed to the detection threshold of the seismic network. Alternatively,

some studies suggest there are actually fewer earthquakes of small magnitude than self-similarity predicts

(Aki, 1987). However, several earthquake catalogues follow a power-law scaling for very small (Brune and

Allen, 1967), and even negative magnitudes (Reyes et al., 1975). The fact that the b-value characterizing

microseismicity is in agreement with the b-value characterizing larger earthquakes supports the idea of a scale-

invariant rupture process even for small earthquakes (Abercrombie and Brune, 1994). Since instrumental

detection threshold is improving, it is now well established that below Mc, a fraction of events is missed only

due the limit of sensitivity of the seismic network (Wiemer and Wyss, 2000, Woessner and Wiemer, 2005),

and that, in turn, Mc does not reflect deviation from self-similar scaling.

On the contrary, for landslide inventories, the fact that the rollover at small areas is not a detection

artifact (as it was for instance proposed by Stark and Hovius (2001)), but a robust feature, has become the

dominant view. This is supported by the observation of a rollover for recent landslide inventories obtained

from satellite imagery with a resolution lower than the characteristic scale of the rollover (Malamud et al.,

2004a).

There is therefore a now well established difference between the frequency-magnitude distribution of

earthquakes and landslides. At a first order, landslides and earthquakes roughly consist of dynamic ruptures

along a possibly existing surface that is favored when the resisting forces (friction and cohesion) are exceeded

by the driving forces (elastic force in the tangential direction). In my work, I have demonstrated the major

role of cohesion for shallow plane stability and in controlling the existence of a rollover, as also proposed

by Stark and Guzzetti (2009). Therefore, one might argue that earthquakes should also follow a rollover at

low magnitudes, as they roughly respond to similar physical processes. The differences between landslide

and earthquake size or magnitude distribution for small events could result from the role of cohesion in both

processes. Indeed, cohesion values, despite their large variability ranging at least from a few kPa to a few

MPa, probably become more and more negligible compared to frictional strength, that depends on normal

stress, when reaching large stresses at depth. Because landslide rupture occurs at shallow depths, from a

few millimeters to hundred meters, compared to earthquakes, I suggest that this might explain the lack of a

rollover for earthquake distributions. This is also supported by the general thinking that earthquakes occur

along pre-existing faults that can grow during the rupture, with probably very low cohesion (depending on

interseismic strengthening processes such as fault healing, (e.g., Muhuri et al., 2003), while landslides are

thought to occur on weakened but not fully ruptured surfaces (e.g., Stark and Guzzetti, 2009) that may still

be characterized by significant cohesion.

6.2.1.2 Large events

The role of the size distribution of faults on earthquake size have been proposed for decades. For example,

Scholz (1997) demonstrated that taking into account the size distribution of faults in nature could explain

simply the frequency-magnitude variation of large earthquakes. Interestingly, it has also been noticed that

small and large earthquakes (i.e., that do or do not rupture the full depth of the seismogenic zone) exhibit

different power-law frequency-magnitude distributions (Pacheco et al., 1992, Triep and Sykes, 1997), with

a break in self-similarity at earthquake size corresponding to the depth of seismogenic zone. Earthquakes

larger than this size follow a power-law with an exponent higher than for smaller earthquakes. It has also

been noticed that this is the case when considering a population of faults, but not when considering a single

fault or plate boundary (Wesnousky et al., 1983, Schwartz and Coppersmith, 1984, e.g.,).

Even if this break in self-similarity has been suspected to result from statistical artifacts (Main, 2000),

those ideas deserve to be compared to the problem of understanding landslide size distributions. It was

proposed that small earthquakes, that are not limited in space, growth according to self-similar scaling;

on the contrary, large earthquake, that grows along the fault length, have a frequency-magnitude scaling

that depends on the size distribution of natural faults (Scholz, 1997). Our first simulations conducted with

FastCycle (chapter 5) also show that the size distribution of natural faults could control the b-value exponent.
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Figure 6.1 – a) Schematic representation of the seismogenic zone, with a small earthquake of diameter a and

a large earthquake of width w and length L, that can expand only in one direction. After Pacheco et al.

(1992). b) Magnitude-frequency relationship observed for a population of faults. A break in self-similarity

is observed for a size corresponding to the width of the seismogenic zone. After Scholz (1997). c) Schematic

representation of two hillslopes with a given frictional angle that sets the size of the unstable zone. Small

landslides can growth in all directions. On the contrary, when landslides are large enough, they start to

be limited by the length of the hillslopes. d) Observed and modelled PDF of landslide areas for Chi-Chi

earthquakes (chapter 3). The medium landslide distribution is controlled by the 2D rupture geometry, and

the scaling for large landslides is controlled by the landscape shape.

In the light of this earthquake literature and the results of my work, we can think of landslide size

distribution as the result of the size distribution of hillslopes (figure 6.1). We have shown that the maximum

height of unstable hillslopes strongly influences the size distribution of large landslide sizes. We have also

demonstrated (chapter 3) that the PDF of landslide sizes was controlled by the 2D aspects of rupture

propagation for medium landslides, and mostly controlled by the landscape shape for large landslides. This

suggests that small landslides, that are not limited in space, can grow only according to rupture processes.

On the contrary, large landslide size distribution seems the be controlled by the availability of unstable

hillslope height. The idea that the distribution of unstable slopes (i.e. high slope) patches in the landscape

sets the power-law scaling for landslide size distribution has been proposed by Frattini and Crosta (2013).

Similarly to studies that have linked fault surface heterogeneity to the earthquake size distribution (Mogi,

1967, Goebel et al., 2017), they proposed that landslide scaling arises from the heterogeneity of low strength

(or high stress) zones. But the role of finite size of hillslopes have not been investigated in landslide size

distribution. I have demonstrated that this finite size (quantified by hC) is exponentially distributed, and

varies spatially. The results of my work shows that this finite size should be taken into account for a better

understanding of large landslide probability.

My modelling approach reveals that the scaling of 2D rupture is also important for the size distribution

of landslides at least for a certain range of sizes. However, we cannot investigate this aspect further only
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with a 1D approach. We could think, however, that the geometry of the hillslopes may set a limit to the

landslide width, and not only to the landslide height. Those aspects would need to be investigated through

3D modelling.

6.2.2 Implications for interaction between landslides and earthquakes at short

time-scales

I have shown that the distribution of the unstable height of hillslopes is likely to constrain the large landslide

probability. However, large landslide occurrence depends also on the frequency of triggering events (Geist

and Parsons, 2014) such as earthquakes or rainfall. I have illustrated in chapter 4 that the areas with high

values of hC correlate at first order with tectonically active areas, where seismic hazard is likely to be high.

This has many implications for co and post-seismic landscape evolution.

First, because the small number of large landslides often dominates the total area and volume of sediment

that is produced (e.g., Hovius et al., 2000), the hillslope size is likely to constrain the total volume of eroded

material. I have shown that despite its exponential distribution which seems universal, the mean hC value

displays a lot of variation among landscapes. This could partially explain why so much variability is found

in landslide volumes induced by earthquakes of same magnitude (Keefer, 1994, Marc et al., 2016b). A high

total volume of sediment is likely to induce greater stress variations near the shallow faults, and therefore to

induce stress variations high enough to trigger shallow seismicity.

However, I have also demonstrated in chapter 5 that the time scale of erosion is fundamental in controlling

fault response to stress changes, and that landslides need to be evacuated rapidly to trigger seismicity. The

idea that large landslides remain for a long time in the landscape has been widely supported. This was

based on the idea that the time needed by the rivers to export landslide sediment was simply depending on

the ratio between landslide volume and river transport capacity. Therefore, large landslides were thought

to remain for centuries (Yanites et al., 2010) or even millennia (Berryman et al., 2012) in the landscape.

Recently, Croissant et al. (2017) founded that for landslides with high enough volume, a dynamic narrowing

of the alluvial channel occurs and increases river transport capacity. This allows to speed up coarse sediment

export, leading to export time for large landslides of about ten years.

Moreover, large landslides have long runout (Lucas et al., 2014), and tend to be more connected to the

river network (Li et al. (2016), Roback et al. (2017), and figure 6.2a). If the evacuation of one landslide by the

river network depends mainly on river geometry and discharge, and on sediment grain size (Croissant et al.,

a) b)

Figure 6.2 – a) Landslide-channel connectivity (in %) as a function of landslide area. From Li et al. (2016).

b) Temporal evolution of the landslide volume for different connection velocities, for Mw 8 earthquake simu-

lations. After Croissant et al. (2018) (see Appendix B for complete article in preparation). The case where

all landslides are connected to the river is shown by the dotted line.
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2017), the evacuation of a population of landslides depends on the proportion of landslides connected to the

drainage network (i.e., landslide connectivity), and on the rate at which landslides migrate and connect to

the drainage network (Li et al., 2016, Roback et al., 2017). The temporal evolution of landslide connectivity

remains an open question (Zhang et al., 2016). In an article in preparation (Croissant et al., 2018), we explore

the evacuation of a population of landslides. The approach combines an empirical description of co-seismic

landslide clusters with the physical processes involved in landslide removal during the post-seismic phase.

Our results show that landslide connectivity impacts the amplitude and duration of sediment remobilization

rates. For example, the volume of sediments in the rivers decreases slowly, linearly, during thousands or

years if landslide material slowly migrates from hillslopes to rivers (figure 6.2b). However, if the landslides

are initially connected to the river, the total landslide volume decreases dramatically in a very short time

(Croissant et al., 2018).

Therefore, because it can constrain the probability of large landslides, the height of unstable hillslopes

is able to control the co-seismic and post-seismic landscape evolution by 1) increasing the total amount of

produced sediments; 2) inducing changes in rivers dynamics that can boost the transport of large landslide

sediments, and 3) increasing landslide connectivity, and therefore reducing the timing for sediment evacuation.

The potential different modes of landslide evacuation illustrated in figure 6.2b) imply different modes for

normal stress decrease induced by erosion following large landsliding event. In chapter 5, I have assumed

a linearly decreasing erosion rate with time, following the few natural observations that we have (Hovius

et al., 2011). However, because it has been monitored only for a few specific cases of post-seismic landslide

evacuation, the functional relationship between time and landslide volume is still poorly known.

To illustrate this, I implemented a constant normal stress rate, instead of the linearly increasing normal

stress rate used in section 5.3. For comparison, the removed total normal stress ∆σn is the same, over

the same erosional period Tero. Figure 6.3 shows the temporal evolution of maximum fault velocity, and

illustrates that when the sediment is evacuated at a constant rate, the seismicity increases and maintains a

constant rate during the erosion period. On the contrary, when the erosion rate is greater at the beginning
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Figure 6.3 – a) Maximum fault velocity as a function of time in the case of undisturbed fault. b) Same as

a) but with a normal stress decrease of amplitude ∆σn = 1 MPa and Tero = 10.24 years, with an erosion

rate decreasing linearly in time as modelled in section 5.3. c) Same as b) but with an erosion rate constant

in time, with same duration of erosion Tero = 10.24 years and total normal stress removed ∆σn = 1 MPa.
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and then decreases linearly, the seismicity rate is also greater during the beginning of erosion.

This illustrates the need for a better understanding of the mode and timing of export of a population of

landslides, in order to constrain the potential effects of large erosional events on seismicity rate. Nevertheless,

it appears that such large erosional events have the potential to boost the regional seismicity, especially in

areas characterized by high topography. This can explain why, in areas with high relief such as Taiwan, we

could observe an increase in earthquake frequency after a large erosional event (Steer et al. (2014), Appendix

A). Relief grows, in turn, by the succession of shallow earthquakes (Avouac, 2007). Because the effects of

such erosive events are likely to accumulate over time, we can expect some feedbacks between erosion and

tectonic at short time scales that may be fundamental to take into account in the evolution of landscapes

over geological time.
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SUMMARY PARAGRAPH: 
Tectonics and climate-driven surface processes govern the evolution of Earth’s surface 1 

topography1,2. Topographic change in turn influences lithospheric deformation3-5, but the 2 

elementary scale at which this feedback can be effective is unclear. Here we show that it operates 3 

in a single weather-driven erosion event. In 2009, typhoon Morakot delivered ~3 m of 4 

precipitation in southern Taiwan, causing exceptional landsliding and erosion6,7. This event was 5 

followed by a step increase in the shallow (< 15 km depth) earthquake frequency lasting at least 6 

2.5 years. Also, the scaling of earthquake magnitude and frequency underwent a sudden 7 

increase in the area where mass wasting was most intense. These observations suggest that the 8 

progressive removal of landslide debris by rivers from southern Taiwan has acted to increase 9 

the crustal stress rate to the extent that earthquake activity was demonstrably affected. Our 10 

study offers the first quasi-real-time observation of the impact of a single weather-driven 11 

erosion event on tectonics. 12 

TEXT: 



 

2 

 

 

Theoretical predictions and numerical models suggest that changes of surface topography due 13 

to erosion and sedimentation can promote tectonic deformation over geological times3,4 (1–10 Myr), 14 

enhance fault slip over intermediate time scales8-11 (1 kyr–1 Myr), and induce sufficient static stress 15 

changes over a seismic cycle (1-1000 yr) to trigger earthquakes12. However, the influence of ongoing 16 

surface processes on tectonics has not been directly observed. Here we ask if a single erosional event 17 

can have a discernable effect on seismogenic processes, which dominate deformation of the Earth’s 18 

upper crust. Extreme rainfall events can trigger instantaneous and widespread landsliding, driving the 19 

export of millions of tons of sediment from mountain areas over periods of months to years2,13. At 20 

these time-scales, geophysical methods allow monitoring of changes in earthquake activity associated 21 

with erosional perturbations. 22 

For an example of an erosional perturbation, we consider typhoon Morakot, which made 23 

landfall in Taiwan from 7 to 9 August 2009. It delivered up to 3 m of precipitation in 3 days (Fig. 1), 24 

the largest recorded rainfall event in Taiwan in the past 50 years14. The typhoon triggered more than 25 

10.000 landslides (see Methods) in mountainous southwest Taiwan, where cumulative rainfall 26 

exceeded ~1 m (Fig. 1 and Extended Data Fig. 1). In this area of ~7000 km2 (hereafter the landsliding 27 

zone), that accounts for ~99% of the 0.7 km3 of total landslide volume, the landslide spatial density 28 

ranges between 4 and 22 km-2 (see Methods and Extended Data Fig. 2). The equivalent average 29 

erosion induced by these landslides is ~10 cm, which corresponds to 10-100 years of erosion at the 30 

decadal average rate2. Most triggered landslides were connected to the river network15, which has led 31 

to a sharp increase of suspended sediment export after Morakot6,7. Consistent with geomorphological 32 

observations after the 1999 Mw 7.6 Chi-Chi earthquake16, enhanced sediment removal persisted for 33 

>2 years6,7, although export of the coarse fraction of landslide debris may take about a decade17. The 34 

exact volume of sediment export is difficult to estimate, but the landsliding zone must have undergone 35 

a progressive surface mass unloading after one of the largest weather-driven erosion events on record.  36 

The landsliding zone belongs to a tectonically active region and is bounded in the east and 37 

west by several identified active thrust faults18. Thrust faults located in the western foothills have a 38 
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dip angle between 10 and 30° and merge at depth, probably around ~10-15 km, into a basal 39 

decollement beneath the range18,19. In the east, the Longitudinal Valley fault has a dip angle ~45-60°. 40 

Together, these faults accommodate ~40 mm.yr-1 of slip rate, that is about half of the total convergence 41 

rate across the Taiwan plate boundary20. In addition, less well constrained faults are located beneath 42 

the range, as testified by the frequent and potentially shallow seismicity observed in Central Taiwan. 43 

To determine how the erosional unloading due to typhoon Morakot has impacted fault 44 

dynamics, we analyze the evolution of shallow (<15 km) seismicity in Taiwan after it made landfall. 45 

Because the expected stress change is small compared to tectonic loading at seismogenic depth12, we 46 

focus on detecting changes in the statistics of recorded seismicity, such as the earthquake frequency, 47 

seismic moment rate and the b-value of the Gutenberg-Richter earthquake size distribution (see 48 

Methods), rather than on individual events. We use the seismicity catalogue of the Central Weather 49 

Bureau of Taiwan, which includes >340,000 earthquakes during the period 1995-2015 over Taiwan 50 

island.  51 

First, we assess the time evolution of earthquake statistics using a temporal sliding window of 52 

1001 earthquakes (see Methods). Results show a step-wise increase of the frequency of shallow (<15 53 

km) earthquakes in the landsliding zone after Morakot (Fig. 2 and Extended Data Fig. 3). Although 54 

this frequency increase is orders of magnitude lower than after the Chi-Chi earthquake, it is observed 55 

both for earthquakes with magnitude above the completeness magnitude (from ~0.8 to ~2 earthquakes 56 

per day) and for all recorded earthquakes (from ~5 to ~10 earthquakes per day). The increase of 57 

earthquake frequency during the 2.5 yr after Morakot has a probability of 1 (see Methods and 58 

Extended Data Fig. 4). The probability is still significant, in the 90% confidence interval, when 59 

considering a frequency increase by a factor ~1.2-1.5. Except for Chichi earthquake, this is the only 60 

significant and probable increase in earthquake frequency, over a period of 2.5 yr, observed over the 61 

investigated period (1994-2013).  62 

Moreover, the increase in earthquake frequency after Morakot is associated with an increase 63 

in the b-value from 1.18±0.1 to 1.28±0.1 (Fig. 3 a). Both increases have a step-like shape, which lasts 64 
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for at least 2.5 years (Extended Data Fig. 5 and 6) and does not correspond to an Omori-type inverse 65 

law, which describes the temporal evolution of aftershock sequences. Because the seismometer 66 

network used to detect earthquakes remained similar in the time period January 2007 to December 67 

2011 (see Methods and Extended Data Fig. 7), we restrict our comparison to the time period from 2.5 68 

years before to 2.5 years after Morakot. More instruments were added, mainly in North Taiwan, at 69 

the beginning of 2012, which could explain why the frequency of earthquakes remains high in the 70 

landsliding zone after 2012, despite a decrease of the b-value towards its pre-Morakot value. The 71 

increase of the b-value in the landsliding zone after Morakot is found for different fitting methods of 72 

the Gutenberg-Richter law and sampling methods associated with the sliding time window (see 73 

Methods and Extended Data Fig. 5 and 6) and therefore deemed robust.  74 

In addition, considering all earthquakes during the 2.5 years before and after Morakot gives 75 

b-value estimates of 1.17±0.03 and 1.31±0.04 (Fig. 2c), respectively, similar to the values obtained 76 

by averaging the temporal b-value signal (Fig. 3a). We observe that the increase in earthquake 77 

frequency and b-value in the landsliding zone after Morakot coincides with an increase (~30% for 78 

peak-to-peak change) in the number of shallow earthquakes at depths <10 km (Fig. 3 b). However, 79 

the rate of seismic moment release remains low after typhoon Morakot, and potentially lower than 80 

before (Extended Data Fig. 3). Crucially, earthquakes outside the landsliding zone do not show a 81 

significant temporal evolution of their frequency and b-value after Morakot. 82 

These temporal changes in earthquake statistics after Morakot are determined from an 83 

undeclustered earthquake catalog. However, using a declustered catalog (see Methods) also lead to 84 

similar changes in earthquake frequency and in its associated probability, b-value and depth-85 

distribution after Morakot (Extended Data Fig. 9). This demonstrates that these seismicity changes 86 

are not associated to triggering processes by large mainshocks. In addition, based on comparisons 87 

between the observed earthquake catalog and synthetic catalogs that share the same average 88 

properties, we demonstrate that the observed changes in earthquake frequency and b-value after 89 

Morakot depart statistically from random temporal changes in seismicity in the landsliding zone 90 
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(Extended Data Fig. 11).  91 

Previous intense erosional events associated with Chi-Chi earthquake (1999), and typhoons 92 

Herb (1996) and Toraji (2001) did not induce any detectable change of seismicity. This may be 93 

because these events had less erosion, the total volume of ~0.45 km3 of landslides triggered by Chi-94 

Chi earthquake21 being by far the largest, and because most landslides triggered by these events 95 

deposited debris distant from rivers13. Besides, the high rate of aftershocks after Chi-Chi prevents 96 

detection of a change in earthquake frequency or b-value associated with erosion due to Chi-Chi or 97 

Toraji, if there was any.  98 

To assess how the chosen delimited area affects our results, we compute the change in the 99 

spatial pattern of the frequency and b-value of shallow (<15 km) earthquakes from before to after 100 

Morakot. For this, we use a sliding window in space with a radius of 30 km, which allows us to detect 101 

large-scale features not affected by small sub-samples of events (see Methods). It is applied separately 102 

to earthquakes in the 2.5 years before and after Morakot, respectively. Consistent with the temporal 103 

evolution of earthquake frequency, results show an increase in the number ܰ of earthquakes after the 104 

typhoon over the landsliding zone (Fig. 4 and Extended Data Fig. 8). This increase is observed for 105 

earthquakes with magnitudes above the completeness magnitude and also for all recorded 106 

earthquakes. It is not limited to the vicinity of the landsliding zone, but it also occurred in northeast 107 

Taiwan. However, outside the landsliding zone, changes in the b-value appear not to be associated to 108 

changes in the number of earthquakes. We note that the spatial correlation between earthquake 109 

statistics change and the landsliding zone is less resolved and less robust (see Methods) than the 110 

temporal correlation. 111 

Non-erosional causes of the observed changes in earthquake statistics in SW Taiwan are 112 

possible but appear unlikely. Earthquakes can be triggered by stresses induced by tectonics, in 113 

general, but also by other earthquakes22. In March 2010, the Mw 6.3 Jiashian earthquake occurred 114 

within the landsliding zone, close to its western limit, and was followed by many aftershocks. 115 

However, this earthquake and most aftershocks are located at 15-25 km depth, as shown by 116 
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seismological records23 and further confirmed by the declustering process, which mostly removes 117 

events below 15 km depth, (Extended Data Fig. 10). Therefore, the Jiashian earthquake does not 118 

affect shallow earthquake statistics and cannot be responsible for the increase of the b-value after 119 

Morakot (Extended Data Fig. 10). Hydrological triggering of seismicity after the heavy rainfall during 120 

typhoon Morakot, either by surface loading or by pore pressure diffusion24, could be an alternative 121 

mechanism. Indeed, on the east coast of Taiwan, where landslide erosion was limited, borehole water 122 

levels rose by 4 m after typhoon Morakot, and a volumetric contractional strain was observed25,26. 123 

However, both signals decayed in ~6 months and their amplitudes and temporal evolutions do not 124 

depart from the mean seasonal trends observed from 2006 to 2011. Moreover, pore pressure diffusion 125 

along permeable faults after large rainfall events generally leads to episodic increases of seismicity27 126 

and not to prolonged changes as observed in our case. 127 

The temporal and spatial collocation of intense landsliding triggered by typhoon Morakot and 128 

the observed increase of shallow earthquake frequency and b-value suggest a potential mechanistic 129 

link. Direct physical modeling of the impact of erosion during and after Morakot on seismicity is 130 

beyond our reach because the location and rate of sediment export from the landsliding zone are not 131 

reliably constrained. Despite this, simple elastic models show that large erosional events with rapid 132 

sediment export can induce static stresses at depth, sufficient to overcome tectonic stresses on the 133 

shallower (<5-10 km) parts of faults12. Removing 10 to 100% of the landslide volume in 2.5 years, 134 

equivalent to about 1 to 10 cm of erosion over the landsliding zone, would lead to a Coulomb stress 135 

increment on a nearby thrust fault of about 0.5 10-2 to 0.5 10-1 bar at 5 km depth12, using a thrust dip 136 

angle of 30° and a friction of 0.6. These stress increments are roughly similar to the ones induced by 137 

seasonal hydrologic loading in the Himalaya, ~0.2-0.4 10-1 bar, which are suggested to lead to a 138 

seasonal modulation of earthquake frequency28. 139 

In addition, spring-slider models29 and 2D elasto-dynamic models of seismogenic faults30 with 140 

rate-and-state friction laws31,32 show that the rate of seismicity can increase linearly or more than 141 

linearly due to a positive, step-like stress perturbation. It is also observed that shallow earthquakes 142 
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generally have smaller magnitudes and larger b-values than deeper earthquakes33 possibly because 143 

they nucleate at lower differential stresses34.Our observations suggest that the intense and prolonged 144 

sediment export and surface unloading after typhoon Morakot could have acted as a succession of 145 

step-wise increase of stresses on the shallow parts of underlying thrust faults12, giving rise to a similar 146 

increase of shallow earthquake frequency and b-value in Southwest Taiwan.  147 

This result offers new perspectives on the links between climate, erosion and tectonics4,5 at 148 

the time scale of elementary processes. While numerous studies have shown that earthquakes and 149 

storms can trigger landslides2,13,16,21, this is to our knowledge the first direct evidence of the ongoing 150 

influence of erosion on seismicity. Because the mechanical link between erosion and stresses is 151 

promoted by crustal elasticity12, crustal deformation is sensitive not only to extreme weather-driven 152 

erosion but also to the cumulative effects of smaller but numerous erosion events. More frequent 153 

extreme rainfall under a warmer climate35 could result in accelerated sediment transport7 and in turn 154 

in more frequent shallow earthquakes. The shallow but small-magnitude seismicity induced by 155 

erosion is not likely to trigger new landslides, and the seismic moment rate would not be affected. 156 

Hence, we do not expect a significant feedback of this additional deformation on erosion. However, 157 

our results do call for a new generation of process-based models coupling landscape dynamics17 and 158 

fault dynamics30 at scales relevant to natural hazards and societal issues. In these models, storms, 159 

floods, mass wasting, river sediment transport, elastic stress transfer, seismicity and seismic wave 160 

propagation should all be represented to account for the complexity of the links between climate, 161 

erosion and tectonics.  162 
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METHODS: 
 

Morakot rainfall data: 

The map of cumulated rainfall during Morakot was obtained by natural-neighbor interpolation of 

cumulated hourly rain gauge measurements over the period 7 to 9th of August 2009. Data from 377 
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stations across Taiwan were used from the Data Bank for Atmospheric Research at the Taiwan 

Typhoon and Floods Research Institute.  

Morakot landslide catalogue: 

Mapped landslides were delineated manually by comparing surface reflectivity and morphology on 

pre- and post-event FORMOSAT-2 satellite images36 (2 m panchromatic and 8 m multi-spectral). To 

cover most of the islands we mosaicked multiple cloud-free pre-event (01/14, 05/08, 05/09, 05/10, 

06/06) and post-event (08/17, 08/19, 08/21, 08/28, 08/30, 09/06) images taken in 2009. For parts of 

the inventory, especially east of the main divide, landslides were first mapped automatically and then 

edited manually. For both approaches, the scar, runout and deposit areas are not differentiated. We 

did not consider debris flow transport areas and excluded gentle slopes (<20°) from mapping to avoid 

confusion with human activity. Special attention was given to the separation of individual landslides, 

which had common transport or deposit areas but independent initiation points37. The robust and 

conservative estimation of landslide surface area is especially important for the estimation of 

landslide volume38.  

Estimation of landslide volume: 

The landslide volume was estimated based on landslide area, following the method of ref. 37. Briefly, 

we assumed constant size ratios between scar and deposit areas of 1.1 and 1.9 for mixed and bedrock 

landslides, respectively38. Then, we converted the scar area into volume using a power law with 

different prefactor (�) and exponent (�) for mixed and bedrock landslides, with � = Ͳ.ͳͶ͸ and � =ͳ.33ʹ for �௦௖௔௥ < ͳ݁ͷ m2 and � = Ͳ.ʹ3Ͷ and � = ͳ.Ͷͳ for �௦௖௔௥ > ͳ݁ͷ m2, respectively37. Recent 

studies have proposed a regional scaling relationship for the south of Taiwan, based on measurement 

of large landslides caused by typhoon Morakot39. With these parameters (� = Ͳ.ʹͲʹ, � = ͳ.ʹ͸ͺ), 

and without scar correction, we obtain volumes ~3 times larger for intermediate size (mixed) 

landslides and twice smaller volume for very large (bedrock) landslides. Overall this would not 

change the order of magnitude of erosion nor the results discussed in this study.   

Earthquake catalogue of Taiwan:  
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We extracted earthquakes at shallow depths (<15 km) from the earthquake catalogue of the Taiwan 

Central Weather Bureau40 for the period 1995-2015 over the emergent part of Taiwan. This catalogue 

is accessible through the Taiwan Central Weather Bureau (http://gdms.cwb.gov.tw).  The monitoring 

network includes short-period and broadband seismographic systems stations. The location and 

number of seismic stations changed during the period 1995-2015. The configuration of the seismic 

network in the south of Taiwan and in the landsliding zone remained relatively similar over the period 

January 2007 to December 2012 (see Extended Figure 8), but after 2012, 2.5 years after Morakot, the 

number of stations was increased mostly in North Taiwan. This has caused a decrease of the measured 

completeness magnitude over all of Taiwan, including in the landsliding zone (see Extended Figure 

2). We therefore do not interpret changes in the frequency of earthquakes occurring after 2.5 years 

after Morakot (beginning of 2012).  

Characterization of earthquake size distribution:  

The Gutenberg-Richter distribution is classically used to characterize the relation of the number of 

earthquakes above a given magnitude, ݊ሺ≥ �ሻ = ͳͲ௔−௕ெ, to the magnitude �, where a and b are 

parameters related to the number of earthquakes and to the slope of the relationship, respectively. 

This relationship is verified only for magnitudes above the completeness magnitude, �௖, of the 

catalogue. �௖ is determined by a modified version of the simple but robust maximum curvature 

method41, where �௖ is equal to the maximum of the first derivative of the frequency-magnitude curve, 

plus 0.5. We compute a maximum likelihood estimate42 of the b-value, � = ଵ଴݁�݋� ሺ� − �௖ሻ⁄  and 

of its uncertainty, � = � √݊ሺ≥⁄ �௖ሻ, where � is the mean magnitude of the considered earthquakes 

with � ≥ �௖. Note that the number of earthquakes considered has a strong control on the b-value 

estimate and its uncertainty43, and that only relative spatial or temporal changes of the b-value should 

be interpreted.  

Time evolution of earthquake statistical properties:  

We use a temporal sliding window to subsample the earthquake catalogue and to assess time 

variations of earthquake statistical properties. Because uncertainty on the b-value strongly depends 
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on the number of considered events, and because larger samples give better estimates, we use a sliding 

window of ܰ =1001 events to prevent undue statistical bias. The window is centred on a given 

earthquake and the corresponding b-value and earthquake frequency are determined for the 500 

earthquakes that occurred immediately before and immediately after this event. Earthquake frequency 

is computed by dividing ܰ by the temporal length of the sliding window. Among the 1001 

earthquakes, only those with magnitude above �௖ are used to estimate the b-value. We assess the 

effect of changing the sampling method of the temporal window, by considering an a priori value of �௖ = ʹ.ʹͷ, and considering a fixed number of earthquakes with a magnitude > �௖ ranging from ܰ =101 to ܰ =1001 (Extended Data Fig. 5 and 6). We find a consistent increase of b-value in the 2.5 

years after Morakot for ܰ ranging from 101 to 501, as all these earthquakes occurred within a time 

window duration lower than 2.5 years. For ܰ = ͹ͷͳ or ܰ =1001 the window duration is equal to or 

greater than 2.5 years (about 3 years for ܰ =1001), which leads to over-smoothing of the signal, and 

prevents detection of changes occurring on shorter time-scales. It is also notable that changing the 

fitting method from maximum likelihood to least-square, which is generally considered less reliable, 

does not significantly change the relative variation of the b-value in time (Extended Data Fig. 5). This 

includes the changes occurring after Morakot. 

Probability of earthquake frequency change with time: 

Following ref. 44, we compute the probability P that the earthquake frequency increases by a factor 

greater than r between a period 1 and 2,  

� (�ଶ�ଵ > �) = ͳ − ͳଶܰ! ଵܰ! ∫ ݁−�∞
଴ Ȟ ( ଶܰ + ͳ, �� ȟ�ଶȟ�ଵ) �ே1  ݀� 

where Ȟሺ݊, �ሻ = ∫ ݁−௧ �௡−ଵ ݀�∞଴  is the incomplete Gamma function, ܰ is the number of earthquake 

over a certain period ȟ� and � = ܰ ȟ�⁄  is the earthquake frequency. The subscripts 1 and 2 refer to 

the time periods 1 and 2. We first apply this approach to determine the probability of earthquake 

frequency change between the 2.5 yr before and after Morakot, in the landsliding zone (Extended 

Data Fig. 4 a). We find a probability 1 for an increase of earthquake frequency (i.e. with � = ͳ), when 
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considering all the earthquakes or only earthquakes above the completeness magnitude. The 90% 

confidence interval, Ͳ.Ͳͷ < � < Ͳ.ͻͷ, of an earthquake frequency change is found for ͳ.ʹ3 < � <ͳ.ͶͲ, when considering only the earthquakes above the completeness magnitude, and ͳ.Ͷͷ < � <ͳ.ͷʹ for all magnitudes. This demonstrates that the change of earthquake frequency after Morakot is 

significant with a ratio of 1.23, at least. We then apply the same analysis to the entire catalog by using 

a double sliding window of period 2.5 yr after and before the center time (Extended Data Fig.4 b). 

Except for Chichi, Morakot represents the only event associated with a significant and positive change 

of earthquake frequency over a period of 2.5 yr since 1994. 

Spatial variations of earthquake statistical properties: 

We use a common spatial sliding window to subsample the earthquake catalogue and to assess 

variations of earthquake statistical properties in space45 between the 2.5 years before and after 

typhoon Morakot. We use a radius of 30 km for the sliding window, which enables sampling of a 

sufficiently large number of earthquakes at a length scale that is smaller than that of the landslide 

zone of 7000 km2. The sampling window effectively corresponds to a disk shape extending to a depth 

of 15 km. The b-value is determined for the recorded earthquakes in each disk volume by maximum 

likelihood estimation. This method has an inherent statistical bias as the number of sampled 

earthquakes changes significantly depending on the local rate of seismicity. The minimum number of 

events for the determination of the b-value is set arbitrarily at 50. Our method can give rise to small-

scale shapes in the maps of b-value, such as disk and rod shapes, that are not the focus of this study. 

We use a disk shape kernel with a radius of 15 km, convolved with the initial b-value map to blur the 

mapped patterns and to isolate features with longer wavelengths. More sophisticated methods exist 

to compute spatial variations of b-value, including a penalized likelihood-based method46 and a 

distance-dependent sampling algorithm47.  

Declustering and seismicity changes after Morakot:  

Several studies investigating potential earthquake frequency changes use declustered earthquake 

catalogs. However, declustering is an ill-posed problem that does not have a unique solution48 and 
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that will lead to method-dependent results. Yet, to test the impact of potential earthquake clustering 

on our results, we have applied the traditional Reasenberg declustering algorithm49, obtained from 

the ZMAP toolbox50, to the CWB earthquake catalog. This deterministic algorithm aims to remove 

earthquake sequences, defined as chains of connected earthquakes in space and time, leaving only the 

initial earthquake in a given sequence. We use standards parameters48 adapted for Taiwan with τ௠�௡ =ͳ and τ௠௔� = ͳͲ, the minimum look-ahead time for not clustered events , τ௠௔� = ͳͲ,  the maximum 

look-ahead time for clustered events, p௖௟௨௦௧ = Ͳ.ͻͷ, a confidence probability, x௠௘௙௙ = ʹ.Ͳ, the 

effective lower cutoff magnitude chosen here to be consistent with the CWB catalog,  x௞ = Ͳ.ͷ, the 

increase in lower cutoff magnitude during clusters, and  r௙௔௖௧ = ͳͲ, the number of crack radii 

surrounding each earthquake within new events considered to be part of the cluster. We emphasize 

here that declustering has been performed over the entire catalog, without any regional selection of 

the seismicity (i.e. not only in the landsliding zone and not only above 15 km of depth), to prevent 

potential declustering biases associated to earthquake censoring.  

Extended Data Fig. 9 shows the influence of declustering on earthquake frequency, b-value, depth 

distribution and the probability of earthquake frequency change after Morakot in the landsliding zone 

(< 15 km depth). We observe that declustering mainly leads to a decrease of earthquake frequency 

over the 2.5 years before typhoon Morakot, and to very minor changes after. It results that declustering 

even slightly enhances the probability of an increase in earthquake frequency after Morakot. In 

addition, declustering does not significantly changes the time variation in b-value nor the depth-

distribution of seismicity. We note that Reasenberg declustering approach is well-suited to remove 

earthquake sequences that lead to significant changes (e.g. an aftershock sequence after a large 

mainshock) and less-adapted to remove earthquake sequences over relatively quiet period48. Under 

this potential limitation, this analysis demonstrates that earthquake clustering is not the reason for the 

observed changes after typhoon Morakot. 

Yet, we are confident that large and deep mainshocks occurring in the landsliding zone, below 15 km, 

such as Mw 6.3 Jiashian earthquake in 2010, are not the cause for the observed seismicity changes. 
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Indeed, declustering is efficient to remove most of the aftershocks caused by the Jiashian earthquake, 

which appear to be concentrated at depth between 15 and 30 km (Extended Data Fig. 10).  

Seismicity temporal variation: random hypothesis versus significant regional seismicity change 

versus local earthquake interactions 

Having a declustered catalog implies that all the earthquakes are seismically independent from each 

other. In turn, earthquakes should be randomly distributed in time, unless a non-seismic process 

triggers them. Here we test this hypothesis by comparing the observed changes, in earthquake 

frequency and b-value after Morakot, obtained from the “true” declustered catalog with those from 

200 “synthetic” earthquake catalogs over the period 2006-2015. Each synthetic catalog is generated 

using the exact same earthquakes than the true declustered catalog, including their magnitudes, but 

the time of occurrence of each earthquake is randomly sampled over the period of interest (2006-

2015) using a time step of 1 s. It results that each synthetic catalog has the exact same magnitude 

distribution and average earthquake frequency than the true one, but the temporal distribution of 

earthquakes is randomly distributed. For each catalog (true or synthetic), the probability of frequency 

change and the change in b-value after Morakot are computed by comparing the earthquakes 

occurring in the 2.5 years after and before Morakot (see Extended Data Fig. 11). The probability of a 

frequency change after Morakot for all the synthetic catalogs drops around a ratio 0.8-1.2, centered 

around 1, meaning there is no significant frequency change. This clearly departs from the frequency 

change observed using the true catalog that drops around a ratio of 1.3-1.6. In addition, the change in 

b-value of the true catalog is significantly greater than the changes of all the synthetic catalogs. 

Overall, these results mean that both the frequency change and the b-value increase after Morakot are 

robust features, that depart from random changes. In addition, because we performed these tests using 

the declustered catalog, that should only include independent earthquakes, this means that these 

robust and non-random changes should not be associated to the occurrence of large mainshocks. We 

also note that potential earthquake interactions in a local subset of the landsliding zone51 can not 

explain the increase in earthquake frequency after Morakot (Extended Data Fig.12) 
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Figure 1│Morakot-driven rainfall and landslides in Taiwan. a) Hillshaded map of cumulative 
rainfall during typhoon Morakot (7-9 August 2009), obtained by interpolation of data from local 
weather stations (colored dots). b) Digital elevation model of Taiwan with location of mapped 
landslides triggered by typhoon Morakot. Circle size and color indicate the surface area of a landslide, 
while the magenta line delimits the area with highest spatial density of landslides (see Methods and 
Extended Data Figure 2). Solid and dashed red lines indicate active thrust and strike-slip or normal 
faults, respectively18. Other less well identified faults exist inside the range23. c) Probability density 
distribution of the surface area of landslides triggered by typhoon Morakot for areas greater than 10 
m2. 
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Figure 2│Time evolution of seismicity in Taiwan relative to typhoon Morakot. a) Time evolution 
of frequency of shallow (<15km) earthquakes. The light blue line indicates the frequency of 
earthquakes greater than the completeness magnitude.  b) Time evolution of the b-value of the 
Gutenberg-Richter law inside (heavy blue line) and outside (light grey line) the landsliding zone (see 
Methods and Extended Figure 1). c) Gutenberg-Richter law fits over the distributions of cumulative 
earthquake numbers in the landsliding zone as a function of earthquake magnitude during the 2.5 
years before (yellow) and after (green) typhoon Morakot (see Methods). 
 

 

 

 

 

 

 

 
Figure 3│Change in b-value and depth of earthquakes after typhoon Morakot. a) Notched 
whisker plots of b-value estimates for 2.5 years before (yellow) and after (green) typhoon Morakot 
inside the landsliding zone show the median (red line), mean (dot), 25th and 75th percentiles (box 
limits), whisker lengths (dashed lines) and outliers (purple crosses) of the b-value. Notches display 
the variability of the median between samples. b) Histograms of earthquake depth during the 2.5 
years before (yellow) and after (green) typhoon Morakot in the landsliding zone. Solid and dashed 
lines indicate depth-distribution for earthquakes of all magnitudes and magnitudes greater than the 
completeness magnitude, respectively.  
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Figure 4│Changes in seismicity after typhoon Morakot. a) Map of difference of shallow (<15 km) 
earthquake numbers, ∆ܰ , during the 2.5 years after and before typhoon Morakot. Only earthquakes 
greater than the completeness magnitude were considered. For readability, ∆ܰ values lower than 101.5 
are shown in white. Red and blue circles locate earthquakes greater than magnitude 5 after and before 
typhoon Morakot, respectively. b) Change in b-value, ∆� (red-blue colormap), and uncertainty,  

(gray circles) of b-value estimates (see Methods and Extended Figure 3). 
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Extended Figure 1│Influence of rainfall on landsliding during Morakot. Probability density 
functions (pdf) of cumulated rainfall P (blue line) in the landsliding zone and of cumulated rainfall 
at the location of the landslides (red line) during Morakot typhoon (7th to 9th of August 2009). Rainfall 
at the location of each landslide was obtained by natural-neighbor interpolation from local weather 
stations (see Methods). 
 

 

 

 
Extended Figure 2│Morakot-driven landslides. a) Digital elevation model of Taiwan with location 
of the detected landslides triggered during Morakot typhoon. Circle size and color indicate the surface 
area of the landslides, while the magenta line bounds the area with a high spatial density of landslides 
(see Methods). b) Landslide spatial density estimated by dividing the number of landslides by the 
surface area of 1 km2 pixels. The landsliding zone is bounded by the magenta contour line. 
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Extended Figure 3│ Time evolution of seismicity in Taiwan relative to Morakot. Temporal 
evolution of shallow (<15 km) earthquake a) seimic moment rate, b) frequency, c) b-value of the 
Gutenberg-Richter law, d) maximum magnitude and e) completeness magnitude inside (heavy blue 
line) and outside (light grey line) the landsliding zone in time relative to Morakot. The light blue line 
on panel a and b indicates the moment seismic rate or frequency of earthquakes greater than the 
completeness magnitude. e) Rainfall associated to large typhoons over the same time period. 
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Extended Figure 4│Probability of earthquake frequency change. a) Probability P of an 
earthquake frequency change of a ratio greater than r in the 2.5 yr after Morakot considering 
earthquakes of all magnitudes (∀�, dashed black line) or only earthquakes above completeness 
magnitude (≥ �௖, solid black line). Red and blue dots indicate the bounds of the 90% confidence 
interval (Ͳ.Ͳͷ < � < Ͳ.ͻͷ). b) Time variation of the 90% confidence interval on r. Except for Chichi, 
Morakot (dashed vertical line) the only event associated with a significant and positive change of 
earthquake frequency over a period of 2.5 yr since 1994. The grey zone indicates the time when the 
analysis integrates events occurring simultaneously with Morakot. 
 

 

 

 

 

 
Extended Figure 5│Sensitivity of b-value estimates to sampling and fitting methods. a) The 
temporal sliding window sample either a fixed number of earthquakes considering earthquakes of all 
magnitudes (ܰሺ∀�ሻ = ͳͲͲͳ events, blue line, same than the one on Fig. 1) or only earthquakes 
above completeness magnitude (ܰሺ≥ �௖ሻ = ͳͲͲͳ or ʹͲͳ events, red and green lines, respectively). 
b) Increasing the number of samples events increases the time duration T of the sliding window and 
smooths out temporal variations at high frequencies. c) In one method, the completeness magnitude �௖ is determined from the sampled events (blue line) and varies with time, while in the other one the 
completeness magnitude is chosen a priori, here to 2.25 (red and green lines). On panel a) solid and 
dashed lines represent b-values obtained by maximum likelihood MLE or least-square LS fitting, 
respectively. 
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Extended Figure 6│Sensitivity of b-value change after Morakot to sampling methods. Change 
in b-value estimate (∆� = �ሺ�ெ௢௥௔௞௢௧ + ∆�/ʹ ሻ − ሺ�ெ௢௥௔௞௢௧ − ∆�/ʹ ሻ) when comparing b-value at 
the date of Morakot �ெ௢௥௔௞௢௧ plus ∆�/ʹ and minus ∆�/ʹ. The temporal sliding window samples either 
a fixed number of earthquakes considering earthquakes of all magnitudes (ܰሺ∀�ሻ = ͳͲͲ events, 
black bold line, same than the bold blue line on Fig. 1) or only earthquakes above completeness 
magnitude (ܰሺ≥ �௖ሻ = ͳͲͳ to ͳͲͲͳ events, red to blue lines, respectively). For the latter, �௖ is 
chosen at 2.25. 
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Extended Figure 7│Seismic network configuration and evolution. The location of seismic 
stations is shown by colored squares for 2007 (black), 2009 (red), 2011 (blue) and 2013 (green). 



 

25 

 

 
Extended Figure 8│Changes in seismicity after Morakot. Maps of the of shallow (<15 km) 
earthquake number that have occurred during the 2.5 years a) before Morakot (݊௕௘௙௢௥௘), b) after 
Morakot (݊௔௙௧௘௥) and c) of the difference (∆݊ = ݊௔௙௧௘௥ − ݊௕௘௙௢௥௘). Only earthquakes greater than 
the completeness magnitude were considered. d-f) Same than a-c) but for the b-value d) before 
Morakot (�௕௘௙௢௥௘), e) after Morakot (�௔௙௧௘௥) and f) the difference (∆݊ = ݊௔௙௧௘௥ − ݊௕௘௙௢௥௘). 
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Extended Figure 9│Influence of earthquake declustering on seismicity change after Morakot. 
Temporal evolution of shallow (<15 km) earthquake a) frequency and b) b-value of the Gutenberg-
Richter law for the declustered (blue line) and undeclustered (black line) catalogs in the landsliding 
zone. c)  Probability P of an earthquake frequency change of a ratio greater than r in the 2.5 yr after 
Morakot considering earthquakes of all magnitudes (∀�, dashed black line) or only earthquakes 
above completeness magnitude (≥ �௖, solid black line). Same color convention for the declustered 
(blue line) and undeclustered (black line) catalogs. d) Histograms of earthquake depth during the 2.5 
years before (yellow) and after (green) typhoon Morakot in the landsliding zone. Solid and dashed 
lines indicate undeclustered and declustered catalog, respectively, while the bold or light lines 
indicate the use of all magnitudes or only magnitudes greater than the completeness magnitude, 
respectively.  
 

 

 

 

 



 

27 

 

 
Extended Figure 10│Impact of declustering on shallow and deep seismicity. Temporal evolution 
of shallow (<15 km; in blue) and deep (15-30 km; in red) earthquake frequency using declustered 
(solid lines) or undeclustered (dashed lines) catalogs in the 2.5 years after and before Morakot. 
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Extended Figure 11│Seismicity changes versus random changes. a) Probability P of an 
earthquake frequency change of a ratio greater than r in the 2.5 yr after Morakot (compared to the 2.5 
years before) using the true declustered catalog (blue line) or 200 synthetic ones (grey lines) that 
share the same average statistical properties. B) b-value change in the 2.5 yr after Morakot using the 
true declustered catalog (blue dot) or the synthetic ones, shown by a whisker plot. 
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Extended Figure 12│Earthquake interactions versus regional seismicity change. Temporal 
evolution of b) all, a) shallow and c) deep earthquake frequency in the landsliding zone (A), in Chan 
& Wu (2012) zone51 (B) and in A minus B zone (A-B). Declustered (dashed lines) or undeclustered 
(solid lines) catalogs are indicated. d) Locations of the A and B zones. “After” and “before” relate to 
Morakot typhoon. Chan & Wu (2012) studied earthquakes statistics bounded to zone B and suggested 
that the temporal variability of the seismicity in this area was due to the interaction of three M≥5.5 
earthquakes: Jiashian (2010), Taoyuan (2010) and Wutai (2012). They claim that this interaction is 
the consequence of local stress increase. However, when excluding zone B from our statistics 
(bounded to zone A), our results remain unchanged. Therefore, the increase of seismicity and b-value 
changes that we evidenced in this study cannot be explained by local earthquake interactions, which 
are restricted to zone B. 
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Abstract 11 

In active mountain ranges, landslides triggered by large earthquakes mobilise large 12 

volumes of sediment that affect river dynamics. This sediment delivery can cause downstream 13 

changes in river geometry and transport capacity that affect the river efficiency to export this 14 

sediment out of the epicentre area. The subsequent propagation of landslide deposits in the 15 

fluvial network has implications for downstream hazards management and for landscape 16 

dynamics at the timescale of the seismic cycle. However, a full understanding of the processes 17 

and time scales associated to landslide sediment removal by bedload transport is still lacking in 18 

a post-seismic context. Here, we propose an upscaling approach in which results for reach scale 19 

are used to inform a larger scale modelling. First, we explore the river morphodynamic 20 

response to a landslide occurrence at the reach-scale using a 2D modelling approach. We use a 21 

simplified bedrock channel to systematically study the influence of the landslide volume (Vls) 22 

and channel transport capacity (QT) on the export time of landslides. Two regimes are 23 

identified: (i) the export time is linearly related to Vs/QT when the sediment pulse does not 24 

significantly affect river hydrodynamics for low Vs/QT and (ii) the export time is a non-linear 25 

function of Vs/QT when the pulse undergoes significant morphodynamic modifications during 26 

its evacuation for high Vs/QT. In the latter, the active narrowing of the river within the landslide 27 

deposit is responsible to the significant increase of the transport capacity, resulting in faster 28 

evacuation times than predicted by theory. Secondly, we propose a nested numerical approach 29 

to quantify evacuation times of earthquake-triggered landslide clusters at the scale of a 30 

mountain range in the context of a Mw 7.9 earthquake occurring on the Alpine Fault, New 31 

Zealand. Our approach combines an empirical description of co-seismic landslides clusters with 32 

the physical processes involved during the post-seismic phase. In particular, the role of landslide 33 

connectivity on the modulation of post-seismic sediment fluxes is explored. We also show the 34 

capacity of this approach to estimate sediment fluxes at longer timescales (i.e. several seismic 35 

cycles) and its potential to be coupled to a 2D landscape evolution model. 36 

 37 

Key words: landslide, earthquake, river morphodynamics, landscape evolution, extreme events. 38 
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1. Introduction  39 

Large earthquakes impact the landscapes of active mountain by mobilizing massive volumes 40 

of sediment through widespread landsliding (Malamud et al., 2004b; Ouimet, 2011) (Fig. 1). These 41 

clusters of landslides deliver large volumes of sediment to the fluvial network and affect its dynamics 42 

on estimated periods lasting from decades to centuries (Croissant et al., 2017; Hovius et al., 2011; 43 

Wang et al., 2015; Wang et al., 2017; Yanites et al., 2010). If numerous studies have focused on the 44 

co-seismic response of hillslopes to large earthquakes (e.g. Gallen et al., 2015; Keefer, 1984, 1999; 45 

Malamud et al., 2004a; Marc et al., 2016; Meunier et al., 2007, 2008), very few have investigated the 46 

post-seismic evolution of landscapes and sediment transport (e.g. Yanites et al., 2010; Hovius et al., 47 

2011; Croissant et al., 2017). This probably results, on one hand from the extensive datasets 48 

constraining co-seismic landsliding and sediment production (Keefer, 1999; Larsen et al., 2010; Li et 49 

al., 2014; Malamud et al., 2004a; Odin Marc et al., 2016; Tanyaş et al., 2017, 2018), and on the other 50 

hand from the difficulty to monitor post-seismic sediment fluxes and topographic changes on the field 51 

over tens of years. Most of the observations relate to suspended sediment concentration data (Dadson 52 

et al., 2004; Hovius et al., 2011; Wang et al., 2015; Wang et al., 2017) completed with analytical and 53 

numerical models of bedload evacuation (Croissant et al., 2017; Yanites et al., 2010).  54 

Investigating how the fluvial system digest these abrupt and large sediment pulses is critical 55 

to understand intra-catchment sediment transfers (Benda & Dunne, 1997), bedrock incision patterns in 56 

landslide-dominated mountain ranges (Lague, 2010; Yanites et al., 2011), anticipate hydro-57 

sedimentary hazards in alluvial fans (Croissant et al., 2017; Robinson & Davies, 2013) and even 58 

quantify the feedbacks of surface processes on fault stress loading (Steer et al., 2014). On short-times 59 

scales (i.e. < 1000 years), the downstream propagation of sediment pulses has been studied principally 60 

at the reach scale using flume experiments and 1D numerical modelling (Cui et al., 2003; Cui & 61 

Parker, 2005; Lisle et al., 2001; Sklar et al., 2009; Sutherland et al., 2002). However, these studies 62 

have focused primarily on the end-member case of a low amplitude sediment supply compared to the 63 

transport capacity of the river. Croissant et al, [2017] proposed a 2D morphodynamic approach that 64 

extends these approaches to high-amplitude sediment supplies compared to the river transport 65 

capacity. In this latter case, the critical role of dynamic river narrowing in accelerating the removal of 66 

landslide-driven sediments has been identified. Despite these recent efforts, a full understanding of 67 

post-seismic sediment fluxes at a mountain range scale is still lacking.  68 

Locally, post-seismic sediment export is controlled by the sediment supply and by the 69 

transport capacity of the river stream receiving the landslide. As such, the quantity of sediment 70 

transported by the river is strongly dependent on the degree of connectivity of sources (landslides) to 71 

the fluvial network at the initial stage and through time. Several studies provide a quantification of the 72 

initial percentage of landslide connected to the drainage network (Dadson et al., 2004; Li et al., 2016). 73 

However, work on the temporal evolution of connectivity along time remains an open question 74 
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(Zhang et al., 2016). On the first hand, landslides connecting directly to the river network inject an 75 

almost instantaneous sediment load into the river. This departs from landslides resting on the hillslope 76 

that will deliver the same sediment volume but in a more progressive manner, depending also on post-77 

seismic meteorological and hydrological conditions (inducing surface runoff) (Fan et al., 2018). Once 78 

a landslide reaches the river channel, its export time depends mostly on the river geometry and 79 

discharge and on sediment grain size (Croissant et al., 2017). If the evacuation of one landslide has 80 

already received attention, no work has been dedicated to the evacuation of seismically-triggered 81 

clusters of landslides. 82 

Landslides are not only individual morphological features, and their distribution can 83 

statistically inform on the dynamics of connectivity and subsequent export by river transport. For 84 

instance, old landslides, older than several seismic cycles and persisting in the landscapes have been 85 

argued to indicate a low efficiency of sediment export (ref). However, such inference cannot be made 86 

solely based on individual and old landslides, which represent, by definition, outliers of the whole 87 

cluster of landslides triggered by earthquakes or rainfall events. Understanding the triggering and 88 

export of landslide clusters over several seismic cycles is required to assess the topographic budget of 89 

large earthquakes (R. N. Parker et al., 2011), the role of aftershocks relatively to mainshocks, 90 

sediment fluxes at the range scale (ref), the geochemical signature of these extreme events (Frith et 91 

al., 2018; Wang et al., 2016), or the impact and risks associated to these natural hazards (Croissant et 92 

al., 2017; Keefer, 1999). 93 

 94 

 95 

Figure 1 | Illustration of the geomorphic impact of landslides at different spatial scales a. Aerial 96 

image of the Hapuku river landslide dam (taken the 5th Dec. 2016) triggered by the 2016 Kaikoura 97 

earthquake, New Zealand (photo credit: Townsend, GNS) b. Satellite image of the area affected by 98 

the Kaikoura earthquake that triggered thousands of landslides (source: Google Earth). 99 

 In this study, we develop a nested numerical approach to simulate the temporal and spatial 100 

distributions of earthquakes over several seismic cycle, the triggering of landslides, their dynamic 101 

connectivity to the fluvial network and the subsequent sediment transport. The nested model 102 

integrates sediment export times defined at the reach scale, using the Eros river morphodynamic 103 

model (e.g. Davy et al., 2017; Croissant et al., 2017), in a statistical model generating earthquakes and 104 
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landslides at the mountain range scale, refered to as Quakos. The paper is divided in three sections. 105 

First, at the reach-scale, we investigate the impact of one or a series of landslides on the 106 

morphodynamic response of a river, the efficiency of sediment export and the persistence of 107 

downstream deposits. Second, we focus on embedding the fine-scale model outcomes into the large-108 

scale model. We define a reduced-complexity model that accounts for the different processes driving 109 

the sediment export of landslide debris that can be applied to clusters of landslides triggered by 110 

earthquakes. We apply this model to the case of a hypothetical Mw 8 earthquake occurring in the 111 

Southern Alps of New Zealand. Third, at the mountain range scale, we investigate the morphological 112 

impact of series of earthquakes on landscape dynamics. We focus specifically on the role of landslide 113 

dynamic connectivity and of runoff that modulate river transport capacity. Our results illustrate how 114 

the model parametrization impacts the number and volume of triggered landslides, their time 115 

persistence, the sediment fluxes leaving the range and the evolution of landslide-size distributions. 116 

Our approach is deliberatively simplified to put forward the challenges that emerge when trying to 117 

answer the post-seismic sediment evacuation problematic. We also propose new elements of 118 

reflection about this problem without necessarily answering it definitively as it remains highly 119 

complex.  120 

 121 

2. Morphodynamic modeling of landslide sediment export 122 

 In this section, we explore the fine-scale dynamics of sediment export of a river that is 123 

impacted by a cascade of landslides. We first describe the 2D morphodynamic model Eros that we use 124 

to quantify the evacuation of individual landslides at the reach scale in a bedrock channel setting 125 

(Croissant et al., 2017; Davy et al., 2017). Following Croissant et al. (2017), we start by presenting 126 

the mechanisms controlling the downstream propagation of a single landslide deposited in a bedrock 127 

river reach. We then explore the impact of a cascade of landslides on sediment export by introducing 128 

several landslides along the same river channel. On top of evidencing the morphodynamic evolution 129 

of the landslides, the results from this section will be used in the Quakos study to tackle the 130 

problematic of landslide clusters evacuation. 131 

 132 

 2.1 Model description 133 

 This study is placed in the context of a bedrock river experiencing a high amplitude sediment 134 

forcing that causes perturbations of the river geometry including its width and slope. Therefore, an 135 

accurate quantification of landslides removal at the reach scale requires a model containing the 136 

physical processes allowing for the feedbacks between river erosion, transport capacity, flow, 137 

geometry and sediment supply. Here, we use Eros (Davy et al., 2017), a particle-based model that is 138 

well-suited to simulate the evolution of river submitted to large sediment supplies (Croissant et al, 139 

2017a, b). The particles referred as precipitons are elementary volumes of water that moves on the top 140 
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of the topography and interact with it along their downstream path by entraining, transporting or 141 

depositing sediment. This model is composed of: 142 

- A hydrodynamic model that predicts water depth and flow velocity patterns on high 143 

resolution topographies (Davy et al, 2017). This model resolves a reduced form of the shallow-water 144 

equations under the stationary assumption.  145 

- A vertical and horizontal sediment transport and deposition model that is coupled with the 146 

hydrodynamic model. In the following, we only briefly describe the constitutive equations of 147 

sediment entrainment, transport and deposition, as a more detailed description can be found Davy et 148 

al., [2017]. The sediment entrainment rate is defined by the bedload transport law of Meyer-Peter and 149 

Muller [1948]: 150 

 ݁̇ = �ሺܧ − �௖ሻଵ.ହ (1) 

with ܧ a constant, �, the shear stress and �௖ the critical shear stress. The sediment deposition rate ݀̇ is 151 

a function of the sediment specific discharge ݍ௦ and transport length, � (Davy & Lague, 2009): 152 

 ݀̇ = �௦ݍ  (2) 

In the morphodynamic simulations, � is set to 2 m to insure a bedload transport regime where the flow 153 

is close to at-capacity conditions in non-supply-limited cases. The model also includes horizontal 154 

sediment dynamics. The lateral erosion of the neighbor cells is described by: 155 

 ݁̇௟௔௧ =  �௘ܵ௬݁̇ (3) 

with �௘ a dimensionless coefficient (here set at 0.05) and ܵ௬ the slope in the transverse direction. The 156 

lateral sediment deposition ݍ௦௟ is defined as: 157 

௦௟ݍ  = �ௗݍ௦ܵ௬ (4) 

with �ௗ  a constant (here set to 0.5).  158 

 The model allows for marginal instabilities to emerge and to be sustained (i.e. the river flow 159 

to converge in a self-formed width) when the local sediment flux is non-linearly correlated with the 160 

river discharge. Using a bedload transport equation, this condition is met only when the local shear 161 

stress is close from the threshold of sediment motion (Davy et al, 2017). Far from this threshold, this 162 

condition is not reach as the sediment flux is a function of ܳ଴.9. On simulations presenting a simple 163 

tilted bed as initial topography and no sediment input, Eros shows that the river width that emerges 164 

scales with discharge at a power 0.5 which is similar than the one measured on natural cases and 165 

flume experiments (Métivier et al., 2017).  166 

 167 

2.2 Initial topography and boundary conditions 168 

The model setup is similar to the one used in Croissant et al., [2017]. The initial topography is 169 

a 3 km long bedrock channel. Its transport capacity is set by its width and slope (Fig. 2a). The water 170 

enters through the upstream boundary condition at a constant effective discharge. The landslide 171 

deposit is introduced near the upstream end of the bedrock channel. It has a Gaussian shape in the 172 
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longitudinal direction and is described by its volume, length and median grain size. Bedrock incision 173 

is neglected as we assume that the morphological changes induced by the landslide export at short 174 

times scale (i.e. a seismic cycle) do not significantly affect the river transport capacity. In the 175 

following, we also investigate the evacuation of several landslides introduced along the same channel. 176 

In these cases, the bedrock channel is stretched to accommodate each landslide based on the inter-177 

landslide distance that ranges from 0 to 1 km (Fig. 2b). 178 

 179 

 180 

Figure 2 | Eros model set up. a. The case of a single landslide (in brown) evacuated in a bedrock 181 

channel (in beige). This snapshot illustrates an advances staged of one simulation where the river 182 

incise the deposit with a reduced width. b. The case of landslide cascade deposited in the same 183 

channel. 184 

  185 

2.3 Sediment evacuation of a cascade of landslides 186 

Here, we investigate the export dynamics of a landslide deposits in a bedrock river. To fully 187 

understand the mechanisms controlling landslide export, we run 80 simulations exploring the 188 

parameter space governing the bedrock transport capacity (i.e. width slope, river discharge) and 189 

landslides properties (i.e. median grain size, volume) (Fig. 2a). In a previous work, Croissant et al 190 

[2017] identified two end-members in terms of landslide evacuation which depends on the ratio 191 

between the landslide volume ௟ܸ௦ and the river initial transport capacity ܳ�.   192 

- For low ௟ܸ௦/ܳ�, the width of the alluvial cover remains equal to the width of the bedrock 193 

river and the morphodynamic adaptation of the alluvial cover occurs mainly in slope. The 194 

landslide is removed by the river at the rate set by the initial bedrock river transport 195 

capacity. 196 

- For high ௟ܸ௦/ܳ�, the model predicts an acceleration of the evacuation of a large part of 197 

the landslide (50 to 70%) compared to the case where the landslide would be exported at a 198 
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constant rate. This acceleration is induced by the dynamic narrowing of the alluvial river 199 

inside the landslide deposit. The remaining volume of sediment (30-50%) is removed 200 

during a latter phase of lateral erosion. This phase is less efficient than vertical incision to 201 

mobilize sediments as the lateral entrainment rate is only a fraction of the vertical one (eq. 202 

3).  203 

However, after large earthquakes, rivers are likely to receive sediments incoming from 204 

multiple co-seismic landslides. Here, we investigate the impact of several landslides, referred to as a 205 

cascade of landslides affecting the same channel on the sediment transport and evacuation. Two 206 

scenarios are explored. In the first one, the total volume of sediment introduced in the river remains 207 

constant (i.e. 2.106 m3) but is distributed along stream in a cascade of 1 to 4 landslides separated by 208 

the same apex to apex distance. In the second one, we investigate the effect of the distance separating 209 

two individual landslides on the sediment evacuation dynamics. In both cases, sediment export is 210 

evaluated at the outlet of the most downstream landslide.  211 

 212 

Figure 3 | Morphodynamic evolution of a reach evacuating several landslides. a. Snapshots of 213 

different stages of the Eros simulation. This is the case of 2 landslides of Vs = 1.106 m3 separated by a 214 

distance of d = 500 m. b. Evolution of the remaining sediment volume upstream of the ‘gauging 215 

station’ at constant total volume but for different number of landslides. Nls is the number of landslides 216 

c. Evolution of the remaining sediment volume upstream of the ‘gauging station’ for different distance 217 

(d) between the landslides. 218 

In terms of morphodynamic evolution, the simulations with a cascade of landslides (Fig. 2b 219 

and 3a) share similarities with the ones with single landslides. During the first stages, the landslides 220 

are large enough to create partial or total landslide dams. The lakes forming in between two deposits 221 

have zero transport capacity. Regressive erosion lead to the progressive and simultaneous incision of 222 

each landslide deposits with a river narrower than the bedrock channel width. While sediments eroded 223 

from the downstream landslide are rapidly evacuated downstream, similarly to the simulation with 224 
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one landslide, sediments from the upstream landslide enter the lake and form a prograding delta that 225 

lasts until the lake is drained. The river eventually incises vertically both deposits until it reaches the 226 

bedrock surface and then removes the remaining volume of sediment by lateral erosion. 227 

Figure 3b shows the evolution of the sediment volume stored upstream of the last landslide 228 

(see gauging station in Fig. 3a) for the same total volume of sediment distributed equally in one to 229 

four landslides. The cases where the number of landslides Nls ≥ 2 display similar export rates. The 230 

principal differences arise when these cases are compared with the evacuation of a single large 231 

landslide. In the latter, the landslide evacuation is more efficient until ~70% of the deposit is 232 

evacuated. The period of river increased efficiency (i.e. when the alluvial river width is less than 40% 233 

the one of the bedrock width) is also longer (Croissant et al, 2017). We then vary the inter-landslide 234 

distance ݀ to 0, 250, 500 and 1000 m. The results show that the distance between successive 235 

landslides play only a minor role in the efficiency of sediment evacuation.  236 

 An important result from this section is that our modelling results show that downstream 237 

landslides are not impacted by upstream sediment delivery emerging from other landslides. This 238 

observation allows us to treat landslides independently from each other, which is a critical step in 239 

building an upscaling approach where thousands of landslides can be triggered simultaneously in the 240 

river stream.  241 

 242 

3. A reduced-complexity model for landslide sediment export 243 

Earthquakes generally trigger numerous landslides that will eventually reach the fluvial 244 

network at locations that present varying local transport capacity. As such, a cluster of landslides can 245 

be described as a distribution of the ratio ௟ܸ௦/ܳ� (Croissant et al., 2017) spanning the studied end-246 

members in the previous section. While morphodynamic modelling provides useful information on 247 

the mechanisms of landslide removal at the reach scale, it is still too computationally demanding to 248 

apply it a whole mountain range over hundreds to thousands of years and accounting for thousands or 249 

more landslides. Therefore, we aim here at defining a reduced-complexity model to describe the post-250 

seismic evolution of landslide volume for any value of ௟ܸ௦/ܳ� using the results obtained with the 251 

already wide range of 80 simulations performed in the previous section for the single landslide 252 

scenario.  253 

Using these simulations, we compute the time ௘ܶ�௣ needed to export 20 to 90% of the initial 254 

௟ܸ௦ as a function of ௟ܸ௦/ܳ� at a 10% percent interval (Fig. 4a). As described in Croissant et al, 2017, 255 

the export time computed for each interval follows a trend with ௟ܸ௦/ܳ� that can be fitted with a 256 

function of the form: 257 

 ௘ܶ�௣,� = �ߜ (�� ௟ܸ௦ܳ�) [ͳ + ( ௟ܸ௦ܳ�)��]ሺ�−1ሻ��
 (5) 
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with ߜ and � two constants, � a curvature parameter, ߚ an exponent (here fixed at 0.1) and � 258 

corresponds to the studied percent interval. The values of these parameters are found by a least-square 259 

fitting using equation 5 on each percent interval (Fig. 4a, Table 1).  260 

We obtain a discrete description of the evolution of a landslide volume for any value of 261 ௟ܸ௦/ܳ� (Fig. 5b,c). The continuous description is obtained by interpolating linearly between the 262 

points. 263 

Figure 4b and c shows the reconstruction of the temporal evolution of landslide evacuation 264 

using the results from the previous step for two values of ௟ܸ௦/ܳ� encompassing the two end-members 265 

behaviours. Comparing with outputs from Eros shows the reduced-complexity method performs well 266 

to reconstruct the export of landslide volume for any given ௟ܸ௦/ܳ� value. Simulations presenting a 267 

high ௟ܸ௦/ܳ� ratio never succeed to evacuate 100% of the initial volume of sediment as a small 268 

fraction of sediment remains captured in lateral terraces. Therefore, to reconstruct fully the landslide 269 

export we assume that the last 10% of sediment volume is exported at the same rate than the one 270 

estimated for the last 20% to 10%. However, this might lead a slight over-estimation of the sediment 271 

transport efficiency during the lateral erosion phase.  272 

This reduced-complexity method provides an efficient way to appraise the post-seismic 273 

sediment evolution of landslide clusters. It also presents the advantage of implicitly accounting for the 274 

evolution of the width and slope of the river. This reduced-complexity description of sediment export 275 

can therefore be applied at a larger spatial scale (i.e. a mountain range) provided that the distribution 276 

of ௟ܸ௦/ܳ�  is known. In the next section, we combined this method with our newly developed large-277 

scale model, Quakos, which determines clusters of earthquake-triggered landslides, including their 278 

volume and the transport capacity of the river they are connected to.   279 

 280 

 281 
Figure 4 | Predicting the dynamic evacuation of landslides using Eros results. a. Series of fitting 282 

functions applied to predict the landslide export when x% of it has been evacuated. b. and c. 283 

Comparison between our predictions (yellow dots, green line) and Eros output (grey line) for 2 values 284 

of ௟ܸ௦/ܳ�. 285 
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4. Upscaling to sediment fluxes at the mountain range scale during several 286 

seismic cycles 287 

 Here, we propose a statistical approach to quantify post-seismic sediment fluxes at the 288 

mountain ranges scales. Quakos is composed of three main components that can be used 289 

independently (Fig. 5a): i. a statistical earthquake generator; ii. a landslide generator that predicts the 290 

2D distribution of co-seismic landslides using empirical laws; iii. a sediment evacuation model based 291 

on the reduced-complexity method described in previous section. The values of the parameters used in 292 

this section can be found in Table 2.   293 

 294 

4.1. Model description 295 

4.1.1. Study area 296 

 In the following, we consider a hypothetical failure of the Alpine Fault in the Southern Alps, 297 

New Zealand as a case study (Fig. 5). Indeed, the Southern Alps formation and recent morphologic 298 

evolution has occurred under extreme tectonic and climatic forcing. The high tectonic activity is 299 

expressed by frequent large magnitude earthquakes (Mw > 7.5) with a recurrence time of 263 ± 68 300 

years occurring along the Alpine Fault (Berryman et al., 2012; Cochran et al., 2017; Howarth et al., 301 

2012). The range of the Southern Alps extends on ~450 km from southwest to northeast and rises up 302 

to 3724 m at Mount Cook. It forms a natural barrier to western winds that leads to high precipitation 303 

rates up to 13 m.yr-1 along the west coast (Tait & Zheng, 2007). Landscapes in the Southern Alps are 304 

characterized by steep hillslopes with modal values averaging at 35° (Korup et al., 2010) and are 305 

prone to landsliding even during aseismic period (Hovius et al., 1997). Thousands of landslides are 306 

expected to be triggered in the next large seismic event, potentially mobilizing ~1 km3 of sediment 307 

(Odin Marc et al., 2016; Robinson et al., 2016). 308 

 309 

4.1.2 Fault, earthquakes and peak ground acceleration 310 

Here, we design a thrust fault of length FL = 400 km and width FW = 19 km with a dipping 311 

angle of 60° that approximatively mimics the geometry of the Alpine Fault (Robinson et al., 2016). 312 

Earthquakes, including mainshocks and aftershocks, are generated on this fault. When mainshocks are 313 

generated their ruptures cover the entire fault width, which leads to earthquakes of magnitude Mw = 314 

7.9. The position of each mainshock is randomly sampled along the fault plane. Each mainshock 315 

triggers a series of aftershocks, which location, date and magnitude are determined using the BASS 316 

model (Turcotte et al., 2007). The aftershocks series needs to be described along with three criterion:  317 

- The difference between the mainshock magnitude and its largest associated aftershock 318 

(∆Mw = 1.25) using a modified version of the Båth’s law (Shcherbakov et al., 2004). 319 



11 

 

- The rate of aftershocks is submitted to a temporal decay described by a generalized form 320 

of Omori’s law (Shcherbakov et al., 2004). Parameters from this law are the exponent p = 321 

1.25 and offset c = 0.1 days. 322 

- The spatial distribution of aftershocks is given by a spatial form of the Omori’s law 323 

(Helmstetter & Sornette, 2003) with the exponent q = 1.35 and offset d = 4 meters. 324 

All the parameter values defined are taken from Turcotte et al., [2007] and are constant for all the 325 

simulations performed in this paper.  326 

The range of simulated magnitudes is bounded by fault dimensions, for the largest magnitude, 327 

and by the spatial discretization of the fault, for the smallest magnitude. Simulated earthquakes have 328 

magnitudes ranging from 2.5 to 7.9. For each earthquake (mainshocks and aftershocks), the associated 329 

rupture length (ܴ�) and width (ܴ�) are estimated as a function of seismic moment, �ை following a 330 

consistent set of scaling laws based on empirical observations determined for strike-slip faults 331 

(Leonard, 2010): 332 

 ܴ� = ቆ �ை�ܥଵଷ ଶ⁄ ଶቇఉܥ
 (6) 

 333 

 ܴ� =  ଵܴ�ఋ (7)ܥ 

where � = 33 GPa is the shear modulus and ܥଶ = 3.6.10-5, ܥଵ, ߚ and ߜ are constants which value 334 

depends on the rupture length:  335 

- ܴ� < 5 km: ܥଵ = 1, 1/3 = ߚ and 336  .1 = ߜ 

- 5 km < ܴ�< 45 km: ܥଵ = 15, 2/5 = ߚ and 337  .2/3 = ߜ 

- ܴ� > 45 km: ܥଵ = FW, 2/3 = ߚ and 338  .1 = ߜ 

To determine the appropriate set of parameters for each seismic event, the range can be found a priori 339 

rewriting eq. 6 and replacing ܴ� by the values of the range limits.  340 

For a given earthquake, a synthetic peak ground acceleration (PGA) map is computed as a 341 

function of earthquake magnitude, ruptured fault geometry (rake, dip, dimension), fault mechanism, 342 

lithological controls and site effects (Fig. 5b) (Campbell & Bozorgnia, 2008). The theoretical 343 

framework that derive from this work is quite extensive, we then refer the reader to equations 1 to 12 344 

in Campbell & Bozorgnia, [2008]. Here, we consider the sediment depth Z2.5 = 0 m, a S-wave velocity 345 

in the first 30 m of the crust Vs,30 = 180 m.s-1 and a reference PGA at Vs = 1100 m.s-1, A1100 = 0.10 g 346 

(Robinson et al., 2016). For other parameter values, we refer to Table 2 in Campbell & Bozorgnia, 347 

[2008]. 348 
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 349 

 350 

Figure 5 | Quakos workflow used to predict landsliding pattern at the mountain range scale. a. 351 
Quakos workflow. b. PGA pattern predicted by the model for a Mw 8 scenario on the Alpine Fault, 352 

New Zealand. c. Map of the landslide density. d. Landslide pattern predicted by Quakos. The view is 353 

focused on catchments located on the Central Southern Alps. Yellow dots indicate landslides, their 354 

sizes are a function of landslide area. White dots outside of the considered catchments only represent 355 

landslides location.  Notation: Vls, landslide volume. 356 

 357 

4.1.3 Landslide triggering by earthquakes 358 

 Modelled PGA maps are then used to infer the spatial density of triggered landslides, i.e. the 359 

number of landslides by unit area. Some studies have demonstrated that the density of earthquake-360 

triggered landslides is linearly dependent on the PGA (Meunier et al., 2007; Yuan et al., 2013): 361 

 �௟௦ = �௣��� −  ௣ (8)ߚ
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with �௣  and ߚ௣, two empirical parameters that controls respectively the maximum landslide density 362 

and its spatial repartition. The parameter ߚ௣ is a critical PGA value under which no or very few 363 

landslides are triggered. The values of these parameters are highly dependent on the studied case and 364 

the choice of their value is explained in the result section. Following the work of Meunier et al., 365 

[2007], locations where the local slope is inferior to 20% are not affected by landsliding. In our case 366 

study, this prevents landslides from being triggered on alluvial fans and large river valleys (Fig. 5c, 367 

d). 368 

  The distribution of earthquake-triggered landslides areas is commonly given by an inverse 369 

gamma probability density function:  370 

ሺ�௟௦ሻ݂݀݌  = ͳ��ሺ�ሻ [ ��௟௦ − ଵ+�[ݏ ݌�݁ [− ��௟௦ −  (9) [ݏ

with � a parameter controlling the position of the pdf maximum, ݏ a parameter controlling the roll-371 

over for small landslides and � is a positive exponent controlling the tail of the pdf (Malamud et al., 372 

2004a). The area of each landslide belonging to a landslide cluster is determined by randomly 373 

sampling ݂݀݌ሺ�௟௦ሻ. The locations of landslides are then determined according to the landslide density 374 

map (Fig. 5d). Individual landslides areas are converted to volume ௟ܸ௦ by using an empirical scaling 375 

law: 376 

 ௟ܸ௦ = ��௟௦ఊ
 (10) 

with � and � are set to 0.05 and 1.5 (Hovius et al., 1997; Larsen et al., 2010), values that are well-377 

suited for estimating the volume of deep-seated bedrock landslides that dominate the volume budget 378 

of a population of triggered-landslides. 379 

 380 

4.1.4 Post-seismic landslide sediment evacuation 381 

 After the triggering of a cluster of landslides by an earthquake, the prediction of post-seismic 382 

landslide evacuation depends mostly on: i. the sediment supply rate to the channel network, i.e. the 383 

transfer of material from hillslopes to channels and ii. the rate of sediment transport by the river. 384 

Several studies have pointed out the importance of the initial and dynamic connectivity of 385 

landslides to the channel network on post-seismic sediment fluxes (Li et al., 2016; Roback et al., 386 

2018). While this process only has a limited impact on suspended load fluxes, it is suggested to 387 

control the transfer of coarser sediments (Li et al., 2016). Several studies provide an estimation of 388 

initial connectivity ranging from 8% to 43 % (Dadson et al., 2004; Li et al., 2016). Based on the data 389 

of Li et al [2016] and Roback et al., [2018], the initial landslide-channel connectivity ܥ of each 390 

landslide is determined as a function of its area �௟௦: 391 

ܥ  = ݉�௟௦,௕�௡�  (11) 

where ݉ is an empirical constant and � an empirical exponent (see Supplementary Figure S3). 392 

Equation (11) applies for landslides presenting an area lower than 1.106 m2. Above this threshold, we 393 
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assume that landslides are always initially connected to the drainage network. This assumption is 394 

supported by empirical data and by the fact that larger landslides usually present a longer run out 395 

(Lucas et al., 2014).  Here, ܥ gives the percentage of connected landslide in the considered bin of 396 

landslide area (�௟௦,௕�௡) on a logarithmic scale. 397 

The loose material composing the cluster of non-initially-connected landslides is destined to 398 

reach the fluvial network with a velocity that likely depends on the climatic and meteorological 399 

context, the frequency of earthquakes and local topography. However, studies aiming at quantifying 400 

the post-seismic mass transfer from hillslopes to channel are scarce due to the difficulties to measure 401 

it on the field or using remote sensing (Fan et al., 2018; Zhang et al., 2016).  402 

We therefore develop a simplified approach to account for the dynamic connectivity of 403 

landslides to rivers. This approach finds the distance (݀) between the landslide and the closest river 404 

connection point using a steepest descent algorithm. The timing of connection is obtained by setting a 405 

constant and arbitrary connectivity velocity (ݑ௖௢௡) to each landslide. The connection time is then 406 

computed as �௖௢௡ =  ௖௢௡ . Once the landslide is connected to the river network we assume that the 407ݑ/݀ 

whole volume is connected, i.e. completely available to be removed by the river. 408 

 Once a landslide reaches the closest stream, its subsequent evacuation depends on the ratio 409 

between its volume ௟ܸ௦ and the river local transport capacity ܳ� and follows Equation 5. If the 410 

landslide volume is determined for each landslide using Quakos, the transport capacity needs to be 411 

computed. The along-stream transport capacity of bedrock rivers is set by its geometry (width and 412 

slope), local river discharge and sediment grain size. The bedrock river width (ܹ), slope (ܵ) and 413 

mean discharge (ܳ̅) are expressed as a function of the local drainage area (�) as: 414 

 { ܹ = �௪௡�଴.ହܵ = �௦௡�−଴.ସହܳ̅ = �̅�  (12) 

with �௪௡ the normalized width index, �௦௡ the normalized steepness index and �̅ mean annual runoff 415 

(Lague, 2014). Here, the critical drainage area used to extract the drainage network is equal to 0.5 416 

km2.  417 

To be in the same context than Eros simulations, the river transport capacity is described 418 

using an effective daily discharge (Qeff) presenting a return time of one year which is a good 419 

compromise between frequency of occurrence and the amount of geomorphic work of such events. 420 

The bedload transport capacity (Meyer-Peter & Müller, 1948) is then computed as: 421 

 ܳ� = ܹ� ቆ�௪� (݊ܳ௘௙௙ܹ )଴.଺ ܵ଴.଻ − ሺ�௦ − �௪ሻ��௖∗ܦହ଴ቇଵ.ହ
 (13) 

with �௖∗  the critical Shields stress, �௪ the water density, �௦ the sediment density, ݊ the Manning 422 

friction coefficient and � the gravitational constant. For simplicity, the grain size distribution of 423 

landslide is reduced to the median grain size descriptor (ܦହ଴) and will be uniform for all landslides.  424 
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To compute the value of Qeff, we assume that the range of daily discharges experienced at any 425 

point along the river follows an inverse-gamma probability density function: 426 

ሺܳሻ݂݀݌  = �௞+ଵ�ሺ� + ͳሻ ݌�݁ ቆ− �ܳ/ܳ̅ቇ ሺܳ/ܳ̅ሻ−ሺଶ+௞ሻ (14) 

with � the gamma function and � a parameter linked to the variability of the hydrological forcing, 427 

here, fixed at k = 1, based on empirical data (Croissant et al., 2017; Lague et al., 2005). This 428 

assumption is supported by empirical data, that demonstrate that the runoff of rivers located along the 429 

West Coast of New Zealand present a high variability (k = 1) (Croissant et al, 2017b). From this 430 

distribution, the return time (�௥) of a particular daily discharge can be assessed using:  431 

 �௥(ܳ௘௙௙) = �ሺ�/ܳ௘௙௙, � + ͳሻ−ଵ (15) 

Using this equation, the value of Qeff can be computed.  432 

Computations involving operations on digital elevation models have been performed using 433 

TopoToolbox (Schwanghart & Scherler, 2014).  434 

 435 

4.2 Landslide triggering and sediment export over a seismic cycle 436 

4.2.1 The volume of triggered landslides by earthquakes on the Alpine Fault 437 

To assess Quakos outputs, we compare them to natural observations and existing analytical 438 

models (Keefer, 1999; Odin Marc et al., 2016). We plot the total volume of landslide clusters as a 439 

function of earthquake magnitude (Fig. 7). Consistent with Marc et al, [2016], Quakos leads to a 440 

threshold magnitude, here ~4.5, under which no landslide is generated. This threshold emerges from 441 

the fact the landslides are only generated if a critical PGA is reached (eq. 6; see Supplementary Movie 442 

S1). Above this threshold, the total landslide volume triggered by an earthquake increases with 443 

magnitude and shows a sensitivity to the depth of earthquake nucleation. The variability of total 444 

landslide volume for earthquakes of equal magnitude results from earthquake depth but also from the 445 

variability of the topography impacted by landsliding, including the proportion of the topography with 446 

local slope greater than 20%. For low magnitudes, total landslide volume becomes strongly sensitive 447 

to earthquake depth. Indeed, the width extent of the rupture is small compared to fault width, and 448 

earthquake depth becomes the controlling factor to generate PGA above the critical value for 449 

landsliding. This mostly explains the spread in the distribution of total landslide volume as a function 450 

of magnitude, for earthquakes with magnitude lower than ~6.5. Larger earthquakes are less prone to 451 

this spread in total landslide volume as their rupture width becomes closer to fault width. We also 452 

note that Quakos outputs asymptotically tend, for large magnitudes, towards the analytical model 453 

from Marc et al, [2016] for R0 = 15 km, independently from Quakos earthquake depth. This results 454 

from the PGA model in Quakos which depends on rupture extent (Campbell & Bozorgnia, 2008), 455 

covering the entire fault width for the largest earthquakes, and not on earthquake depth. Whereas 456 

Marc et al. [2016] only considers the depth of the sources of seismic waves, and not the rupture 457 
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extent. Total landslide volume is also sensitive to the parameters in equations 8 and 9, which control 458 

the number of triggered landslides for a given PGA and their volume distribution (see supplementary 459 

Figure S2).  460 

For a Mw 7.9 earthquake occurring on the Alpine Fault, without considering aftershocks, the 461 

total number of landslides generated is Nls,tot = 13960 landslides with a total volume of sediment Vls,tot 462 

= 0.8 km3 (Fig. 6). There is no empirical constraint allowing for a more accurate estimation of the 463 

characteristics of a future earthquake on the Alpine Fault. However, the total number of landslides is 464 

of the same order of magnitude than most of the natural cases documented in Tanyaş et al., [2017] and 465 

the total volume matches the one estimated from two independent studies (Odin Marc et al., 2016; 466 

Robinson et al., 2016).  467 

 468 

 469 

Figure 6 | Relationship between the total volume of landslides triggered by earthquakes and 470 

their magnitude, in the case of a strike-slip fault. Quakos results (circles) are coloured as a function 471 

of the depth of the earthquake compared to the surface (R0). Quakos output are compared to two 472 

empirical models from Marc et al, [2016] and Keefer, [1999]. 473 

 474 

4.2.2 Sediment export over a seismic cycle 475 

Here, we explore the dynamic of sediment export over a single seismic cycle that follows a 476 

Mw 7.9 earthquake. We focus on the role of landslides initial and dynamic connectivity to the fluvial 477 

network, characterized by its velocity ݑ௖௢௡, in controlling post-seismic sediment evacuation. Based on 478 

the morphodynamic modelling results, we assume that landslides located in the same river reach are 479 

evacuated independently of each other. 480 

At the initial stage, ~41% of the total sediment volume is connected to the drainage network 481 

leading to a fast evacuation of the landslide deposits with 43, 50 and 96% of the total volume 482 

evacuated over 263 years, the average duration of a seismic cycle, for ݑ௖௢௡ equals to 0.1, 1 and 10 483 
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m.yr-1, respectively. The ‘full connectivity’ case leads to the highest sediment transport rates with 484 

70% of the landslide mass evacuated in less than 10 years (Fig. 7a). This value matches the order of 485 

magnitude of the predictions of Croissant et al, [2017] for high mean annual runoff and runoff 486 

variability and for which the full population of landslides was assumed fully connected. After 2000 487 

years, most of the sediment volume is removed for ݑ௖௢௡ ≥ ͳ m.yr-1, while the rivers are starving of 488 

sediments due to the absence of new connected landslides for ݑ௖௢௡ = Ͳ.ͳ m.yr-1. This illustrates, that 489 

landslide connectivity can become the limiting factor of sediment evacuation after the triggering of 490 

landslides by a large earthquake. In turn, landslide connectivity is critical to assess the likelihood of 491 

evacuating sediments over a duration smaller than a seismic cycle. 492 

 493 

 494 

Figure 7 | Temporal evolution of the Mw 8 earthquake simulations with different connectivity 495 
properties. a. Temporal evolution of the landslide volume for different connection velocities. b. 496 

Temporal evolution of the number of landslides. c. Sediment remobilization fluxes. d Temporal 497 

evolution of the number of active landslides, i.e. landslide that are being connected to the drainage 498 

network and being actively evacuated by the river. Note: The grey area indicates the estimated return 499 

time of a Mw 8 earthquake on the Alpine Fault.  500 

Interestingly, the number of active landslides, i.e. connected landslides with remaining 501 

sediments, do not exactly follow the volume evolution. This occurs because the volume of landslide is 502 

controlled by the largest landslides. For low values of ݑ௖௢௡, model predictions show that a large 503 

proportion of the initial landslide population can be preserved within the mountain range while having 504 

evacuated a moderate to large proportion of the volume of earthquake-produced sediment (Fig. 8b).  505 

Connectivity also impacts the amplitude and duration of sediment remobilization rates (Fig. 506 

8c). The full connectivity case present rates at least one order of magnitude greater than any other 507 
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model during the first years after the earthquake. However, this rate drops abruptly by 3 orders of 508 

magnitude in less than a century. On the contrary, for ݑ௖௢௡ < 10 m.yr-1, the remobilization rate 509 

oscillates around a steady average during the first 200 years before decreasing progressively. The 510 

different rates are controlled by the sediment supply from hillslope to the channels (Fig. 8d). A low 511 

value of ݑ௖௢௡ ensures a progressive and near-constant release of sediment with a steady number of 512 

landslides being active during the first 200 years.  513 

 514 

 515 

Figure 8 | Probability density function of landslide volumes at different time steps. a. For the Full 516 

connectivity case. b. For the case ݑ௖௢௡ = 10 m.yr-1. c. For the case ݑ௖௢௡ = 1 m.yr-1. 517 

 518 

The velocity of connection has also an impact of the evolution of the distribution of landslide 519 

volume (Fig. 8). We here account for the volume changes as landslide are being evacuated by river 520 

sediment export. The temporal evolution of the probability density function (pdf) of landslide volume, 521 

pdf(Vls), for the full connectivity case shows that landslide presenting an volume inferior to 103 m3 522 

disappear from the distribution after only five years as they preferentially present  ௟ܸ௦/ܳ௧ < 1 year. For 523 

longer duration, the remaining landslides tend towards the largest areas and the distribution shrinks 524 

towards these largest areas. There is however no change in the scaling of the tail of the pdf(Vls). The 525 ݑ௖௢௡ = 10 m.yr-1 case show that the shape of the pdf is preserved during 50 yr until the largest 526 

landslides start to dominate the long-term signal. Moreover, the slope of the tail of the pdf changes 527 

with time and get less steep. This occurs due to the parametrization of the initial connectivity in 528 

Equation (11) that favors the connection of large landslides and tend to preserve small landslides. The 529 

cases with ݑ௖௢௡  ൑ 1 m.yr-1 show a different dynamic. The shape of the pdf is always preserved with 530 

time. As the connection velocity is uniform between landslides they are preserved within the 531 

mountain range. 532 

 533 

4.3 Upscaling to several seismic cycles 534 

In this section, we extend model duration to several seismic cycles. The scenario is chosen to 535 

mimic the behaviour observed on the Alpine fault, i.e. a temporal series of 12 Mw = 7.9 mainshocks 536 
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separated by recurrence period randomly sampled in the 263 +/- 68 years range (Fig. 9). The co-537 

seismic landslides production is slightly different for each mainshocks, with a total volume ranging 538 

from 8.6 to 8.9.108 m3 and an average total number of landslides of 14500.  539 

Each mainshock is followed by a series of aftershocks which magnitude vary between 2.5 and 540 

7.5, some of which mobilise an additional volume of sediment. In most cases, the contribution of 541 

aftershocks is generally lower than that of mainshocks for two reasons: 1. they mobilize sediment 542 

volumes inferior by 1 to 5 orders of magnitude (Fig. 9a) and 2. most of landslide-triggering 543 

aftershocks events are quasi-synchronous of their associated mainshocks and therefore the total 544 

sediment delivery is dominated by the one of the mainshock. However, aftershocks occurring between 545 

two mainshocks can have a visible impact on the sediment delivery as highlighted by the Mw 7.5 546 

earthquake at ~2000 years it mobilises sediment volumes comparable to the mainshocks.  547 

 548 

 549 

Figure 9 | Temporal upscaling over several seismic cycles. a. Times series of earthquakes 550 

generated on the faults. It is characterised by a series of mainshocks of Mw = 7.9 followed by their 551 

aftershocks sequences. The dot size and color are a function of the total volume of the landslide 552 

population (Vls,tot). The grey dots indicates the earthquakes that have not triggered any landslides. b. 553 

Evolution of the remobilization fluxes. c. Evolution of the total volume of sediment mobilized by the 554 

successive earthquakes. The grey lines represent the mean sediment thickness that would be deposited 555 

on the total area affected by landsliding. d. Evolution of the number of landslides in the mountain 556 

range.  557 

Over the 12 seismic cycles, the rivers are never able to export the totality of the sediment (Fig. 558 

9c). This results in the persistence of sediment storage within the mountain range reaching a minimum 559 

of 10-20% of one Mw 7.9 earthquake worth of sediment for ݑ௖௢௡ > 10 m.yr-1. However, for these 560 
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cases, most of the landslides are evacuated within the seismic cycles reaching a minimum of 20-50 561 

landslides remaining in the catchments (Fig. 9d). Scenarii with ݑ௖௢௡  ൑ 1 m.yr-1 show a different 562 

evolution of the total landslide volume. Over several seismic cycles, the earthquake-produced 563 

sediment piles-up inside the mountain range until an equilibrium situation is reached in which a 564 

certain percentage of the newly triggered population is removed. In these cases, the sediment volume 565 

that is stored within the mountain range at the end of each seismic cycle is equivalent to 120% (ݑ௖௢௡ 566 

= 1 m.yr-1) to 600% (ݑ௖௢௡ = 0.1 m.yr-1) of the average value of earthquake-triggered initial landslide 567 

volume. These cases are also characterized by the persistence of several thousands of landslides in the 568 

mountain range.  569 

  570 

 571 
Figure 10 | Landslide generations. a. For the Full connectivity case. b. For the case vcon = 1 m.yr-1. 572 

Notation: Ms: mainshocks. 573 

 574 

Figure 10 shows the repartition of landslides generation at each mainshocks occurrence. For 575 

any case, the number of landslides generated by the mainshocks dominates are its time of occurrence.  576 

The full connectivity case shows that even if the majority of the first 11 mainshocks-triggered 577 

landslides are removed when the twelfth earthquake occurs, there is still a small amount of landslide 578 

remaining in the mountain range belonging to the previous generations. In this case, the connection 579 

velocity is not involved in the post-seismic sediment evolution meaning that landslides presenting a 580 

very low ௟ܸ௦/ܳ௧ can persist for a long time. On the contrary, the low velocity of connection tends to 581 

preserve a large amount of landslides as mainshocks occurs as shown by the wide diversity of all 582 

generations of landlsides when the last mainshocks occurs. 583 
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 584 

Figure 11 | Time necessary to evacuate a landslide cluster as a function of mean annual runoff 585 
and connection velocity. The time here is normalized by the average value of a seismic cyle (i.e. 263 586 

year) 587 

  Based on the results of Figure 9, we aim at defining an index that could described a 588 

priori the mountain range response to a large earthquake. This index is based on the two intrinsic 589 

timescales that are in involved in these simulations. One is the time necessary to transport the 590 

landslides sediment by the river network and the other the transfer time of landslide material from 591 

hillslopes to channels. The former is computed as the time necessary to remove of 90% of the total 592 

landslide volume for different mean annual runoff intensity under the assumption that all the landslide 593 

are connected. The latter is computer as the mean connection time (�௖௢௡̅̅ ̅̅ ̅) of the whole landslide 594 

cluster: 595 

 �௖௢௡̅̅ ̅̅ ̅ =  ∑ ௟ܸ௦,��௖௢௡,�ே���=ଵ∑ ௟ܸ௦,�ே���=ଵ  (16) 

Figure 11 shows that for a mean annual runoff superior to 3 m.yr-1, results shows a higher 596 

sensitivity to the connection velocity. When the mean annual runoff decreases under 3 m.yr-1, the 597 

predicted shear stress of the effective discharge is closer to threshold of sediment motion and the 598 

export time display more sensitivity to its value. This figure highlight the presence of critical 599 

connection velocity ~ 2 m.yr-1 above which the mountain range is a connectivity-limited regime, i.e. 600 

the landslide evacuation is controlled by the transfer rates of material from hillslopes to channels. In 601 

this regime, the landslide population is never entirely evacuated over one seismic cycle. Below this 602 

critical value, the mountain range is in a transport-limited regime where the evacuation time is 603 

dependent on the transport capacity of the rivers. 604 

 605 
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5. Discussion 606 

5.1 Limitations of the approach 607 

 5.1.1 The reach scale 608 

The morphodynamic simulations performed with Eros contain the necessary processes 609 

description to account for the feedbacks between rivers flow, river geometry and transport capacity. 610 

More importantly in this context, how the sudden introduction of large volume of sediment affects 611 

these feedbacks. However, as any numerical model, Eros contains some simplifications. For instance, 612 

the description of the landslide deposit evolution could be augmented with additional processes 613 

description that could lead to a boost of the lateral erosion efficiency during the landslide evacuation:  614 

1. As the river cuts through the landslide deposit, gravitational effects could lead to a more 615 

efficient lateral delivery. 616 

2. The water seepage through the landslide deposit could potentially play a role to 617 

structurally weaken the deposit and lead to a higher efficiency of the lateral erosion 618 

during the last phase of the landslide removal.   619 

The case of the landslide cascade is interesting as it allows to estimate the impact of several 620 

discrete sediment supply distributed alongstream of the dynamic of system. This case is still idealize 621 

as the bedrock reach present the same characteristic alongstream but on distances inferior to 5 km this 622 

assumptions can hold. To fully appreciate the sediment cascade problematic, the problem should be 623 

tackled using a real catchment geometry coupled with a realistic landslide population. This is 624 

described in the next section. 625 

 626 

 5.1.2 The mountain range scale 627 

The upscaling to the mountain range makes the application of a 2D morphodynamic model 628 

remains to date highly computationally expensive. For this reason, we have proposed a reduced-629 

complexity approach with the simplifications that it entails. As such, QUAKOS does not provide 630 

‘real’ sediment fluxes as the assumption implied in the treatment of sediment evacuation is similar 631 

than the detachment-limited one, i.e. once the sediment is entrained it is systematically exported out 632 

of the catchment. This has the effect to neglect the entrain/transport/deposition of coarse sediments 633 

that occur within the catchment but that is still too computationally heavy to consider at the mountain 634 

range scale. A higher accuracy in the quantification of the sediment transfers intra-catchment and 635 

from catchments to the alluvial fans would necessitate the application of a 2D morphodynamic model 636 

to a high resolution DEM (cell size inferior to 5 m) that still seems out of reach for now.   637 

As shown by our results, the quantification of post-seismic fluxes highly depend on the 638 

description of the sediment supply rates from hillslopes to river channels. However, empirical studies 639 

aiming at investigate which processes control the evolution of loose sediment masses resting on 640 

hillslopes are still rare. In addition, the post-seismic sediment masses evolution cannot be estimated at 641 
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more than a decade as technologies allowing scientist to do it have been only developed recently. The 642 

diversity of factor that could influence the dynamic is discussed in the next section.   643 

QUAKOS depends on two aspects: a statistical framework informed by empirical laws and the 644 

topography of the studied domain. The latter exerts a control on different parts of the workflow and 645 

cannot be bypassed: i. the computed slopes gives  646 

However, the use of DEM could be pushed forward to improve for instance the location of 647 

landslides instead of using a random allocation. i.e. the impact of hillslope size, upslope area, … 648 

and ii. the lack of empirical data to describe physically the processes in play on post-seismic 649 

landslide evacuation. 650 

Other extreme events such as dam breaks, debris flows and glacial lake outbursts are 651 

frequently happening in mountain ranges affected by intense landsliding. These events are extremely 652 

efficient to entrain and transport large quantity of sediment downstream. However, the numerical 653 

reproduction of these events is to date a very complicated task to achieve, especially at long spatial 654 

and time scales. 655 

 656 

 5.2 The role of dynamic connectivity 657 

At the landscape scale, our results highlight the predominant role of dynamic connectivity on 658 

modulating the sediment mobilization fluxes. As such, all the conditions that control this process are 659 

to take into account. For instance, our case of study, the West Coast of the Southern Alps of New 660 

Zealand contains several properties that would promote a high degree of initial connectivity and a 661 

rather high connection velocity. These properties are high intensity and frequent runoff events, a slope 662 

distribution displaying a high modal value (~ 35°) and most of the rivers are incised in a narrow bed 663 

promoting a high availability for the river to access and transport this landslide-derived material. This 664 

could be corroborated by the fact that traces of the last large magnitude earthquake are not observable 665 

in the landscape, i.e. there is not large thicknesses of sediment on low order stream riverbeds and the 666 

hillslopes seem to have recover from their last disturbance. However, large sediment deposits can be 667 

observed in high order river valley that have not completely recovered from the last glacial maximum 668 

(i.e. presenting large valley, implying a low transport capacity). The behaviour of the western side of 669 

the Southern Alps can be contrasted by the one expected from the Eastern side as runoff events have a 670 

lower intensity and large glacial valleys. The latter implies that even if a landslide deposit would 671 

reach the rivers is would be still be difficult for the river to reach it. Its subsequent export would 672 

depend on the lateral mobility of the river and of the frequency of river lateral erosion. These 673 

observations could also be applied on other mountain ranges presenting a wide range of climatic, 674 

tectonic and topographic properties. For instance the Andes (dry climate in the Central part), Taiwan 675 

(typhoons) and Himalaya (monsoons + subject to GLOFs). 676 
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Constraining the connection velocity on empirical datasets remains a difficult. This calls for a 677 

better understanding of the processes in play in the material transfers between hillslopes and the 678 

rivers. This task is not straightforward as most of mountain ranges experiences heavy co-seismic 679 

landsliding are also the site of intense and frequent high magnitude precipitations events (monsoon, 680 

typhoon, and storm) that can make transfer rates hard to decipher. These events frequently trigger new 681 

landslides populations and have the potential to re-activate existent ones (Zhang et al, 2016). As 682 

demonstrated in the recent work of Fan et al, [2018], the vegetation growth on deposit plays a role in 683 

stabilizing landslide deposit reducing their activity during the first years following an earthquake. 684 

However, the inclusion of this processes could be complex as the model would have to account of the 685 

frequency of the deposit mobilisation that could prevent the vegetation from developing. As shown by 686 

Fan et al, [2018], a more accurate way of describing hillslope to channel transfer rate will be 687 

dependent on upslope drainage (+ surface runoff) area and local slope  688 

 689 

6. Future directions 690 

During the last decades, the research effort has been mainly focused of co-seismic slope processes 691 

and the post-seismic evolution of fine sediment. We are now confronted to a gap of knowledge 692 

concerning the post-seismic evacuation of coarse sediment that has paradoxically the most influence 693 

on long-term landscape evolution and geomorphic hazards. In this section, we propose different ideas 694 

on where the research effort could be focused to significantly increase our understanding of the short 695 

to medium-scale landscape dynamic over one to several seismic cycles and hydro-sedimentary 696 

hazards management.  697 

 698 

6.1 Empirical data collection to quantify post-seismic landslide evacuation 699 

The study of post-seismic sediment fluxes is confronted to a lack of empirical data documenting 700 

the evolution of coarse material fluxes during the inter-seismic period. Until now, the data collected to 701 

improve our understanding of the geomorphic impact of large earthquakes have been focused on the 702 

co-seismic landslide production via manual and/or semi-automatic mapping on satellite images (Odin 703 

Marc et al., 2017) and the evolution of the post-seismic sediment masses have been investigated 704 

mainly in regard with the fine sediment. This problem would have also to be tackled at different 705 

scales to understand how local processes control the overall evacuation of the whole landslide 706 

population triggered in a given catchment.  707 

To fully characterize the problem, empirical data gathering would have to be focus on:  708 

i. The processes controlling the transfer of material from hillslopes to river channels, i.e. 709 

local slope, surface runoff, vegetation growth, water infiltration. 710 

ii. The partitioning between the production of fine and coarse sediment and its implication 711 

on the subsequent sediment evacuation. 712 
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iii.  The tracking of the sediment mass evolution at different spatial scales i.e. from the reach 713 

to the catchment. 714 

Given the spatial scale of the problem (i.e. several hundreds of kilometres) and the difficulties to 715 

measure coarse material fluxes, remote sensing is probably one of the central tools for future work to 716 

track the macro-evolution of the sediment masses. With increasing technological power and a more 717 

systematic acquisition of high resolution datasets with a variety of techniques (photogrammetry, laser 718 

scanning and tri-stereo satellite imagery) we can tend toward a finer quantification of the system 719 

evolution (Fan et al., 2018). Notably concerning the local processes controlling material transfer rates 720 

from hillslope to channel and thus the evolution of connectivity between different parts of the 721 

catchment. While remote sensing is a sensible tool to track sedimentary masses evolution, a full 722 

understanding of the processes involved would also require field-based data such a precipitation 723 

patterns, river discharge and grain size distributions. Additionally, in the same spirit as numerical and 724 

flume studies developed to understand which processes dictates the evolution of sediment pulses in 725 

rivers, similar experiments could be applied to loose deposits resting on hillslopes. The study of the 726 

influence of GSD, runoff and slope could be a good starting point. 727 

The partitioning between fine and coarse particles within a landslide remains an open question as 728 

well as the grain size organisation within the deposit (at the surface but also in the deeper layers). This 729 

question is a critical importance as we can expect different timescales of sediment export associated 730 

with bedload or suspended load. This factor will also be important to quantify precisely transport rates 731 

as fine particles can either hide in the subsurface layers or facilitate the entrainment of coarser grains 732 

on the surface of the layer. However, measurements of GSD could be a complex and extensive 733 

endeavour on the field. Using complex GSD In numerical approaches would lead to the use of more 734 

detailed sediment transport laws that accounts for i. the feedback between subsurface sand 735 

composition and entrainment rate, ii. the hiding effects and iii. the assignment of transport rates for 736 

each classes of grain size (Parker, 1990; Wilcock & Crowe, 2003). However, the use of such 737 

description of sediment transport would have the advantage to trigger the emergence of natural 738 

processes such as armoring. Accounting for the impact of a complete GSD produced by landslides on 739 

sediment transport requires coupling the model with a stochastic hydrologic description to generate a 740 

cyclicity between armoring and armor breaching. This would obviously lead to a substantial higher 741 

level of complexity. This would need to be addressed in the future to fully appreciate the whole 742 

processes in play in landslide evacuation. 743 

Given the return time of large earthquakes (classically several hundred years) our observation 744 

timescale would be one seismic cycle. However, it would inform a lot on the processes in play to 745 

upscale them on several seismic cycles using numerical modelling. In the meantime, numerical and/or 746 

analogical approaches are still a useful tool to understand the mechanisms and processes controlling 747 

the transient dynamic of landslide export and at the same time give information on where the 748 

empirical data collection could be focused. 749 
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6.2 Mountain ranges dynamics on several seismic cycles (103-104 year) 750 

Landscape evolution is controlled by the actions and feedbacks between tectonic, surface processes 751 

and climate (Dadson et al., 2003; Whipple & Meade, 2006). While mountain ranges building and 752 

decay have been studied over long timescales (i.e. > 105 years) (Whipple & Tucker, 1999) it still 753 

remains complex to investigate their dynamics at shorter time scales. As such, only a few studies have 754 

accounted for the effect of stochastic large sediment supplies at the mountain range scale (Benda & 755 

Dunne, 1997; Egholm et al., 2013). However, a successful application of such modelling approach 756 

would give clues on how to answer to several fundamental questions concerning the inter-seismic 757 

behaviour of mountain ranges. 758 

- For larger timescales, bedrock incision could be accounted for to identify how erosion 759 

patterns are affected by the antagonist effect of large sediment supplies, i.e. the shield 760 

effect and the tools abundance to identify key periods of bedrock incision effectiveness. 761 

In that sense, the sediment supply rates from hillslope to channel plays a critical part as 762 

for instance low velocity can slowly release the material with time thus enhancing the tool 763 

effect. On the contrary, a high increase of sediment supply could lead to massive 764 

aggradation rates inhibit the vertical erosion of the bedrock but could however, increase 765 

the lateral erosion. The effect of the sediment supply intensity on knickpoint retreat could 766 

be studied. 767 

- Moreover, the comparison of the landslide population export time and the recurrence 768 

interval of large earthquakes would give valuable information on the timescale of incision 769 

inhibition phase triggered by an intense and widespread alluviation of the fluvial network. 770 

- Several authors have hypothesised a potential destructive role of earthquakes, i.e. the 771 

erosive action of a seismic event could be superior to the material influx brought by 772 

surface uplift. However, this effect can only be fully accounted for if the post-seismic 773 

timescale of sediment evacuation is known. As of now, because of the scarcity of studies 774 

on the matter, the evacuation time of landslide is generally set to immediate to compute 775 

the lithospheric flexural response to massive landsliding (Densmore et al., 2012; O. Marc 776 

et al., 2016). 777 

- How rare high amplitude events participate in alluvial fans dynamics to decipher recent 778 

sedimentary archives and help understand the dynamics of mountains ranges.  779 

The last decades have seen the development of a wide diversity of morphodynamic models that 780 

can model landscape evolution spanning large spatial and time scales (Tucker & Hancock, 2010). The 781 

scale of the problem generally determines the complexity of the processes that need to be accounted 782 

for in the model. To answer the problematic of post-seismic mountain range evolution, numerical 783 

approaches would have to face several challenges.  784 
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1. The fluvial processes description, morphodynamic model accounting for width and slope 785 

modification. However, only a handful of models contain the necessary elements that allow 786 

for a dynamic width to emerge as a function of the different forcing that the river experiences 787 

(discharge and sediment supply). 788 

2. The former putting a constraint on the grid cell size that should be used in the model, i.e. it 789 

has to be small enough to describe the river cross section accurately with several pixels. This 790 

would increase the computational power and time. 791 

3. Dislocations at the fault trace location disrupting the river profile to create knickpoints (Steer 792 

et al, in prep). 793 

4. A bedrock incision model must account for the complex pattern of spatialized sediment 794 

delivery.  795 

In addition, a successful application of numerical model would depend on the quality of the 796 

description of the processes governing the, and importantly here the transport laws. As of now, the 797 

processes are poorly constrained and the previously described empirical data collection would greatly 798 

help to constrain and ‘feed’ numerical approached therefore leading to more accurate landscape 799 

evolution predictions. 800 

 801 

6.3 Hydro-sedimentary hazards in alluvial fans 802 

The downstream propagation of coarse material derived from the numerous landslides can inject 803 

large volumes of sediment in alluvial fans, inducing a series of potential hydro-sedimentary hazards. 804 

Several studies have documented cases of riverbed aggradation, river avulsion, increased frequency of 805 

inundation and bank erosion (Robinson & Davies, 2013). Most of the hydro-sedimentary hazards 806 

emerge from the sediment deposition patterns on the active river bed that gives the river freedom to 807 

explore laterally the fan surface. Alluvial fans response to large sediment supply is sensitive to the 808 

intensity of sediment flux and total volume of sediment feeding the fan (Croissant et al, 2017b). 809 

Therefore, an accurate quantification of coarse material mass movement is critical to anticipate intra-810 

catchment and alluvial plain hazard.  811 

Our results shows that the connectivity would play a role in modulating the amplitude of sediment 812 

masses that would be available to be transported out from the catchments to the alluvial plains. 813 

However, the first-order response of the alluvial in the post-seismic period would be to the 814 

proportions of landslides initially connected to the rivers. These landslides are generally the largest 815 

ones of the total co-seismic distribution and present risks from two main reasons: i. in confined river 816 

sections they have the ability to block efficiently the channel forming natural dams (Costa & Schuster, 817 

1988). These dams are highly hazardous as their failures are generally causing tremendous damages 818 

and geomorphic changes in their downstream pathway including alluvial fans (Hancox et al., 2005). 819 

ii. large landslide usually present a high  ௟ܸ௦/ܳ௧ which evacuation of the first half of their volumes is 820 
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greatly accelerated by dynamic river width reduction (Croissant et al., 2017). Whereas the initial 821 

proportion of connected landslide could impact the short term sediment supply rate to alluvial fans the 822 

connection velocity of the remaining part of the landslide cluster would control the fan dynamic over 823 

longer timescale. For instance, a high velocity of connection would promote high sediment fluxes 824 

over short-timescales. In this scenario, the river transport capacity at the transition between the 825 

catchment and the alluvial fans is generally not large enough to transport the landslide-derived 826 

sediment leading to large aggradation rates. A lower connection velocity would promote a slower 827 

sediment delivery to the alluvial fans potentially preventing the emergence of hydro-sedimentary 828 

hazards.  829 

Another aspect to account for when assessing the impact of large sediment deliveries on 830 

hydro-sedimentary hazards is the transport distance between the source of the sediment supplies and 831 

the at-risk areas. As demonstrated by Dingle et al [2017], abrasion is an efficient process to limit the 832 

extent of hazardous region in large catchments. For transport distances reaching several hundreds of 833 

kilometers, the population of gravel decreases its size until only sand reaches the outlet. In these 834 

cases, abrasion is an efficient process to limit the risks of channel aggradation in alluvial fans. 835 

However in other settings such as Taiwan and New Zealand, catchments have the particularity to be 836 

shorts, i.e. 80% of the streams measure less than 40 km long (see supplementary). On these distances, 837 

most of the coarse sediment can be transported downstream without losing a significant mass (Dingle 838 

et al., 2017). An accurate prediction of sediment remobilization within the catchment is therefore 839 

mandatory to full assess potential hazards in alluvial plains. 840 

 841 

Conclusion 842 

 In this paper, we study the post-seismic dynamics of rivers and mountain range during the 843 

aftermath of large sediment volume injection. More particularly, we build on reach scale 2D 844 

modelling results to develop a regional scale model of landslide clusters evacuation. This reduced-845 

complexity approach is justified by the high computational cost of numerical simulation on large time 846 

and spatial scale. 847 

 Our 2D morphodynamic modeling results shows simulations of cascades of landslides shows 848 

that the evacuation of downstream deposits are not affected by the upstream sediment feed resulting 849 

from the evacuation of an upstream deposit. We then use Eros modeling results to develop a generic 850 

way to predict landslide evacuation for any ௟ܸ௦/ܳ௧ value. This result is critical to account for sthe 851 

morphodynamic adaptation of river to the injection of landslide without having to describe 852 

analytically their width and slope evolution. 853 

At the mountain range scale, our statistical model Quakos, shows that the landslide dynamic 854 

connectivity to the drainage network is a critical element in the modulation of post-seismic sediment 855 

transfers. Indeed, two regimes are identified based on the simulations results:  856 



29 

 

- a transport-limited regime in which the connectivity velocity only affects the transient 857 

sediment evacuation but where the state of the mountain range in the same than the full 858 

connectivity case at the end of a seismic cycle. In this regime, the timing of landslide 859 

evacuation only relies on the capacity of rivers to transport the sediment. 860 

- a connectivity-limited regime in which and the connection velocity is large enough to 861 

delay the sediment delivery to the rivers that in turn can reach several seismic cycles. 862 

 Overall, one of the main result of the paper point towards the lack of information and robust 863 

description of the processes in play during the post-seismic phase of a landscape notably concerning 864 

the transfer of sediment from hillslope to the channels. We then propose a series of arguments on 865 

where future research could focus in order to push forward how understating of the role of large 866 

earthquakes on mountain ranges evolution. 867 
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Table 1 : Value of the parameters of equation 5. 1095 

Texp delta mu phi beta 

20% 4 0.02 1.05 0.1 

30% 7 0.02 1 0.1 

40% 7 0.033 1.01 0.1 

50% 10.8 0.033 1 0.1 

60% 13 0.033 0.95 0.1 

70% 17 0.033 0.93 0.1 

80% 23 0.033 0.79 0.1 
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Table 2 | Parameters used in QUAKOS 1097 

 1098 

Parameter Notation Values Units 

Tectonic    

Fault length FL 400 km 

Fault width FW 19 km 

Fault dip FD 60 ° 

Fault rake FR 172 ° 

    

Earthquake rupture – Strike-slip    

Shear modulus μ 33 GPa 

Exponent ȕ 0.66 / 

Constant C1 15 / 

Constant C10 FW / 

Constant C11 1 / 

Constant C2 3.6.10-5 / 

    

Landsliding    

Min. landslide area Als,min 50 m2 

Max. landslide area Als,max 2.106 m2 

pdf(Als) roll-over position a 2000 m2 

pdf(Als) roll-back  s -200 m2 

pdf(Als) tail exponent ρ 1.4 / 

Volume-Area prefactor α 0.05 / 

Volume-Area exponent Ȗ 1.5 / 

PGA-Pls coefficient αp 4 / 

PGA-Pls coefficient ȕp 0.5 / 

Connectivity parameter m 0.87 / 

Connectivity exponent ω 0.34 / 

    

River transport capacity    

Critical drainage area Ac 0.5 km2 

Steepness index ksn 180 / 

Width index kwn 0.008 / 

Median grain size D50 0.3 m 

Mean annual runoff �̅ 7.5 m.yr-1 

Discharge variability k 1 / 

Manning coefficient n 0.035 s.m-1/3 

Transport capacity parameter K 1.5.10-5 / 

Shields number θc 0.035 / 
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Supplementary methods 
 

1. Initial properties of landslide clusters as a function of the pdf(Als) shape 

 

 
Figure S1 | Influence of the pdf(Als) parameters (tail slope (ρ) and roll-over position (a)) on the 
initial properties of the randomly generated landslide cluster average over 100 simulations. a. The 

total number of generated landslides. b. The percentage of initially connected landslides within the 

cluster. c. The percentage of sediment volume initially available for fluvial transport. 

As a increases, rho decreases or both, the landslide clusters are characterised by more abundant large 
landslides that present a higher probability to be initially connected to the drainage network resulting 
to a more initial efficient sediment delivery.  

 

 

 

 

 



 
Figure S2 | Connectivity value as a function of landslide area for 2 empirical datasets, namely the 
Wenchuan and Gorkha earthquake (Li et al, 2016; Roback et al, 2018). The value of connectivity 

is assigned to binned data of landslide areas on a logarithmic scale.  

 

 

 

 

 

 

 

 

 

 
Figure S3 | Relationship between the total volume of landslides triggered by earthquakes and their 

magnitude, in the case of a strike-slip fault for different value of maximum of landslide density. Quakos 

output are compared to two empirical models from Marc et al, [2016] and Keefer, [1999]. 



 

 

 
Figure S4 | a. Landslide frequency as a function of stream order (Sthraler definition). b. Scaling 

between the total number of landslides triggered in each catchment. c. Scaling between the total volume 

of landslides triggered in each catchment. (in grey: data from the 50 simulations, in black: average and 

associated standard deviation). 

 

 

 

 

 

 

 

 

Supplementary movies 
 

Movie S1 | QUAKOS, PGA predictions as a function of earthquake magnitude and depth. 

 

Movie S2 | QUAKOS, Post-seismic evolution of a landslide cluster, full-connectivity scenario. 

 

Movie S3 | QUAKOS, Post-seismic evolution of a landslide cluster, vcon = 10 m.yr-1 scenario. 

 

 

 

 



[...]



[...]



 

 

Titre : Modélisation numérique des liens entre séismes et glissements de terrain au cours du cycle    
sismique : processus déclencheurs, distributions de tailles et implications géologiques.    

Mots clés : glissements de terrain, séismes, cycle sismique, érosion, modélisation numérique 

Résumé : Les interactions entre les processus 
tectoniques et l’érosion ont été peu étudiées à 
des échelles de temps courtes (< 1000 ans). 
Cependant, les séismes peuvent activement 
contribuer à l’érosion des chaînes de montagne 
en déclenchant de nombreux glissements de 
terrain. Des études récentes ont également 
montré que ces grands événements érosifs 
pourraient engendrer des changements de 
contraintes suffisants à proximité des failles 
actives pour modifier la sismicité régionale. Dans 
cette thèse, cette problématique a été abordée 
via une approche numérique. Dans un premier 
temps, le développement d’un modèle simple de 
glissements de terrain prenant en compte la 
topographie des versants a permis de démontrer 
le rôle des paramètres mécaniques (cohésion et 
friction), et de la forme des versants sur la 
distribution de taille des glissements de terrain. 
Ce modèle a été validé 

à l’aide de cas naturels de glissements de 
terrain co-sismiques Dans un deuxième temps, 
le rôle de la forme finie des versants sur la 
probabilité de grands glissements de terrain a 
été démontrée en se basant sur des données. 
Enfin, dans un troisième temps, le potentiel 
effet d’un grand évènement érosif sur la 
sismicité a été exploré à l’aide d’un modèle 
numérique de cycle sismique dans lequel ont 
été implémentées des variations temporelles de 
la contrainte normale sur la faille. Les résultats 
mettent en évidence le rôle du volume de 
sédiments, mais aussi de leur temps d’export.  
En particulier, les paysages caractérisés par 
une hauteur unstable des versants importante 
pourraient, en favorisant de grands glissements 
de terrain, induire une érosion assez importante 
et rapide pour modifier de façon significative la 
sismicité régionale.  
 

 

Title: Numerical modeling of the links between earthquakes and landsliding during the seismic cycle:  
triggering processes, size distribution, and geological implications. 

Keywords : landslides, earthquakes, seismic cycle, erosion, numerical modelling 

Abstract: Interactions between tectonic 
processes and erosion have been poorly 
investigated at short time-scales (<1000 years). 
However, earthquakes can largely contribute to 
the erosion of mountain belts by triggering 
widespread landsliding. Moreover, recent 
studies have shown that such large erosional 
events could induce stress changes in the fault 
environment efficient enough to influence 
regional seismicity. In this thesis, this 
problematic is tackled through a numerical 
approach. Firstly, the development of a simple 
mechanical model accounting for the complexity 
and variability of natural hillslopes allowed to 
demonstrate the role of mechanical parameters 
(cohesion and friction), and of hillslope shape in 
the probability density function of landslide 
 

sizes. This model has been validated using 
natural cases of co-seismic landsliding. 
Secondly, the role of unstable hillslope height 
on large landlside probability has been 
demonstrated based on natural data, and the 
exponential distribution of this unstable height 
has ben shown. Finally, the potential effect of a 
large erosional event on seismicity has been 
explored with a numerical model of seismic 
cycle, in which has been implemented 
temporal normal stress variations. The results 
emphasize the role of eroded sediment 
volume, but also of the export time of 
sediments away from the mountain belt. In 
landscape with high unstable hillslopes, large 
landslides are favored and in turn, coud induce 
fast an important enough erosion to modify 
regional seismicity.     
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