N
N

N

HAL

open science

Reliability of changes in cloud environment at PaaS level

Xinxiu Tao

» To cite this version:

Xinxiu Tao. Reliability of changes in cloud environment at PaasS level. Hardware Architecture [cs.AR].

Université Grenoble Alpes, 2019. English. NNT: 2019GREAMO001 . tel-02143040

HAL Id: tel-02143040
https://theses.hal.science/tel-02143040
Submitted on 29 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-02143040
https://hal.archives-ouvertes.fr

| Communauté
g UNIVERSITE Grenoble Alpes

THESE

Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTE UNIVERSITE
GRENOBLE ALPES

Spécialité : Informatique
Arrété ministériel : 25 mai 2016

Présentée par

Xinxiu TAO

Thése dirigée par Fabienne BOYER, MCF, LIG / UGA
et codirigée par Noél DE PALMA, Professeur, LIG / UGA
et Xavier ETCHEVERS, Ingénieur de Recherche, Orange Labs

préparée au sein du Laboratoire LIG et de Orange Labs
dans I'Ecole Doctorale Mathématiques, Sciences et
technologies de I'information, Informatique

Fiabilisation des mises a jour dans le
Cloud au niveau Platform as a Service

Reliability of changes in cloud
environment at PaaS$S level

These soutenue publiquement le 29 janvier 2019,
devant le jury composé de :

Madame Frangoise Baude

Professeur, CNRS, Rapporteur

Monsieur Lionel Seinturier

Professeur, Inria, Rapporteur

Monsieur Daniel Hagimont

Professeur, IRIT/ENSEEIHT, Président

Monsieur Thomas Ledoux
Enseignant-chercheur, IMT Atlantique, Examinateur
Madame Fabienne BOYER

Maitre de Conférences, LIG/UGA, Directeur de these
Monsieur Noél de Palma

Professeur, LIG/UGA, Co-directeur de thése
Monsieur Xavier Etchevers

Ingénieur de Recherche, Orange Labs, Co-directeur de thése

Abstract

Microservice architectures are considered with much promises to achieve
DevOps in IT organizations, because they split applications into services
that can be updated independently from each others. But to protect SLA
(Service Level Agreement) properties when updating microservices, DevOps
teams have to deal with complex and error-prone scripts of management op-
erations to perform an update. More precisely, update scripts have to follow
particular strategies, such as the the well-known BlueGreen strategy [1] that
intends to update a microservice with zero downtime, but requires deploying
and starting all the new microservices before stopping and uninstalling the
old ones. In comparison, the Canary strategy [2] minimizes the resources
used at update time, at the expense of a reduced availability: microservices
are updated in-place (new instances taking the place of the old ones), in an
incremental manner to slowly transfer the load from the current to the new
version.

In this thesis, we propose an update framework [3, 4] that leverages an
architecture-based approach to provide an easy and safe way to update mi-
croservices and program strategies. Instead of scripts processing PaaS com-
mands, update strategies are defined as sequences of elementary changes
being applied on an architectural model of a microservice application. Sim-
ply put, this architectural model reflects how microservices are deployed on
PaaS sites and how they are configured.

Leveraging an architecture-based approach raises two main challenges:
(i) determining an architectural model encompassing microservices deployed
on heterogeneous PaaS sites and (ii) defining a strategy-driven update pro-
tocol relying on this architectural model.

The following of these document describes how these challenges were
addressed to provide an update framework that can add, remove, migrate,
split, or scale microservices as well as upgrade their code or change their
configuration across distributed and potentially heterogeneous PaaS sites.

Contents

1 Introduction

2 Problem Position
2.1 Microservices
2.2 Cloud Computing,
2.2.1 Resources Virtualization
2.2.2 Cloud Services Models
2.2.3 PaaS/CaaS8 layers and microservices
2.3 Continuous Delivery
2.4 Motivation and Objectives
2.5 Challenges L

3 State of the Art

3.1 Existing approaches for dynamic software updates

3.1.1 DSU
3.1.2 Components
3.1.3 Actors

3.2 Existing approaches for dynamic updates of Microservices . .
Comparison grid

3.2.1

3.2.2 Spinnaker L
3.2.3 IBM UrbanCode Deploy
3.2.4 AWS CodeDeploy
3.2.5 Push2cloud 0oL
3.2.6 Other related approaches for managing Microservices .
3.2.7 Summary

4 Proposition

4.1 Usage Principles
4.2 Architectural Model
Data-Structureo oo
Elementary Operations

4.2.1
4.2.2
4.2.3

Introspection and Reconfiguration of a Microservice

Applicationo

ii

Contents

4.3 Strategy-driven Updates
4.3.1 Update Process Overview
4.3.2 Strategy-driven Update Protocol

4.4 Strategy Programmingo oL
4.4.1 Strategy Design.
4.4.2 Didactic case: the BlueGreen Strategy

4.5 Update Robustness
4.5.1 Coreprincipleso
4.5.2 Identification of faults
4.5.3 Summary . . .o ..o

Evaluation

5.1 SLA protection oo
5.1.1 Lizard application
5.1.2 Account application L.

5.2 Robustness
5.2.1 Network faults
5.2.2 Update process faults
5.2.3 Erroneous strategy
5.2.4 Microservice faults

53 Easeofuse
5.3.1 Programming Strategies
5.3.2 Updating Microservices
5.3.3 Comparison with an imperative approach

Conclusion
6.1 Conclusions
6.2 Limitations and Future Works

Bibliography

iii

64
65
65
68
70
72
74
75
78
79
80
81
83

86
86
88

95

Chapter 1
Introduction

To facilitate agile development and operations (DevOps), many companies,
including established ones such as Netflix [5] and Uber [6], are switching to a
microservice architecture for their Cloud applications. For example, by 2020,
Orange aims at migrating about 50% of its production applications —that
serve 240 million customers worldwide— to the microservice architecture [7].
With the microservice approach, applications are designed as loosely-coupled
services deployed on distributed PaaS (Platform-as-a-Service) sites and run-
ning in their own full-stack [8].

The key property that is expected from microservices is the notion of
independent replacement and updatability. Especially, microservices exhibit
independent lifecycles: they can be deployed and updated independently
from each others. The objective is to favor reactivity of small development
teams, each team being in charge of developing and evolving its own set of
microservices through simple and fast processes.

Such an objective is attractive, but the reality is much more complex be-
cause microservices are often associated to SLA properties regarding avail-
ability, performances, and resource costs [9, 10]. To keep these properties
at update time, DevOps teams follow complex strategies. Typically, the
well-known BlueGreen strategy [1] intends to update a microservice with
zero downtime, but requires deploying and starting all the new microservices
before stopping and uninstalling the old ones. In comparison, the Canary
strategy [2, 11] minimizes the resources used at update time, at the expense
of a reduced availability: microservices are updated in-place (new instances
taking the place of the old ones), in an incremental manner to slowly transfer
the load from the current to the new version.

Using strategies to update microservices is considered relevant [12], but
so far, the process is managed manually or only automated through using
scripts [13]. Scripts provide flexibility but their imperative form limits their
ease of use. When DevOps teams are provided with application-independent
scripts, they have to determine what script can be applied to process a given
update. Furthermore, they must check that the current state of their appli-

Introduction

cation meets the requirements of the chosen script. This is cumbersome and
error-prone as most update scripts encompass complex pipelines of PaaS
commands. When update scripts are designed specifically for a given ap-
plication, they can be used in a much easier and safer way, but the price is
that DevOps teams have to compose these scripts, facing the usual coding
and debugging challenges.

This thesis advocates switching from a script-based to an architecture-
based approach to automate microservices updates: instead of scripts pro-
cessing PaaS commands, update strategies are defined as sequences of el-
ementary changes being applied on an architectural model of a microser-
vice application. Simply put, this architectural model (also known as
model@runtime [14]) reflects how microservices are deployed on PaaS sites
and how they are configured. Compared to scripts, the expected benefits of
the proposed approach are the following;:

e case of use: to update a microservice application, DevOps teams sim-
ply give as input the desired target architecture, along with the strat-
egy to follow, without having to deal with low-level PaaS commands.

e preview: any update can be processed on the architectural model with-
out being applied on the effective system, allowing to preview its result
in terms of architectural changes.

e control: all stages of an update can be observed on the architectural
model. Moreover, at any stage an update can be stopped and resumed
with a new target architecture and/or strategy.

e robustness: failures occurring at update time are supported.

The remaining of this document is organized as follow.

e Chapter 2 introduces the background of the problem, our objectives
and the main associated challenges.

e Chapter 3 reports on the related research works about dynamic up-
date, and compares current industrial solutions for managing the up-
dates of microservices application.

e Chapter 4 presents the proposed framework for updating microservices
application through an architecture-based approach.

e Chapter 5 presents the evaluation of our framework.

e Chapter 6 concludes this document by summarizing our main propo-
sitions and outlining future works.

Chapter 2

Problem Position

Contents
2.1 Microservices v v v vt i i e e 5
2.2 Cloud Computing 7
2.2.1 Resources Virtualization 7
2.2.2 Cloud Services Models 8
2.2.3 PaaS/CaaS layers and microservices 9
2.3 Continuous Delivery 11
2.4 Motivation and Objectives 13
2.5 Challenges., 15

Change management is nowadays a well-known term referring to the
action of evolving a software system towards a new version, such new ver-
sion integrating changes in the structure, the code or the configuration of
the system. The change management is becoming more and more crucial
in the application lifecycle, whatever software development methodology is
followed to design, develop and test applications.

The waterfall methodology [15] is a well-known linear software devel-
opment approach that splits the software development into several well-
known phases: analyze requirements, design, code, test and maintain. This
methodology promotes spending much time on the early phases to reduce
the risk of changes. Anyway, change requirements will appear over time and
will need to be managed with minimal impacts on the application.

Compared to the traditional waterfall approach, current popular Agile
methodologies [16] promotes embracing changes instead of reducing them.
By frequently delivering small changes to end clients, Agile development can
better fit to customers’ changing requirements, shortening the feedback loop
with customers and avoiding the risk inherent in big changes. In this thesis,
we address the change management in the specific case of Agile approaches,
but the principles of our proposal can be applied in a more general case.

Multiple paradigms help to enforce the Agile methodology:

Problem Position

e Microservices application architecture: by decoupling applications
into independently-deployable units, microservices intend to reduce
the cost of application changes.

e Cloud environments: they provide on-demand underlying infrastruc-
ture for deploying and executing microservices-based applications.

e Continuous delivery discipline: it implies that every change can be
automatically released into the production environments.

The rest of this section presents these main paradigms and then explicits
the challenges addressed in this thesis.

Problem Position

2.1 Microservices

As previously said, there is no standard definition for microservices, but
common guidelines influencing how distributed applications should be de-
signed, developed and managed. Thus, microservices can be considered as a
set of architectural patterns for designing applications, aiming at simplifying
their deployment and management.

In more precise terms, a microservice-based architecture constructs an
application as a set of loosely coupled units called microservice. Each mi-
croservice is associated to well-defined business capabilities (e.g., product
catalog management, order management). Based on this, each microservice
is responsible for managing the data and processing the requests associated
to its business capability. More precisely, each microservice may expose its
functionalities through provided services and may consume services provided
by others microservices (i.e. required services).

A very important aspect of microservices is their lifecycle independence.
Indeed, the microservices of a given application have independent lifecycles
in the sense that each microservice can be independently deployed, scaled
and updated [17]. To achieve this, each microservice is packaged as a self-
contained deployment and execution unit. Such a package encompasses
operating system, runtime, frameworks, libraries, and microservice artifact
(source code and configuration files).

The lifecycle independence of microservices favors their decentralized
governance, a key capability regarding Agile methodologies. Each microser-
vice can indeed be independently developed and operated by a specified
small team. Each team is responsible for the technical and technological
choices (e.g., programming language, database solution, test and delivery
tools) to build its own microservice and do not depend on any other exter-
nal decision.

To promote this lifecycle independence, three main design patterns are
used by microservice architectures:

e The data management in the microservice architecture is decentral-
ized. While monolithic applications prefer a single database for per-
sistent data, microservices prefer letting each service manage its own
database instance. Each microservice is in charge of encapsulating,
governing, and protecting its own database. This decomposition al-
lows each microservice to choose different data stores based on data
shape and read/write access patterns.

e Microservices communicate through lightweight protocols, such as
HTTP REST request-response or asynchronous messaging bus. When
a microservice instance starts running, it can publish its services as

Problem Position

Web services, and register its address and endpoints at a registry !,
such as Consul [18], Apache ZooKeeper [19] or Netflix Eureka [20].
The microservice instance is unregistered from the registry when it is
unavailable 2. Through the registry, clients of a microservice can know
at any time about the available instances of a microservice with the

address information allowing to access them.

e Microservices tolerate the unavailability of the services they consume
(i.e. accessed services). This capability relies on conforming to dedi-
cated patterns [21] (such as Circuit Breaker, Bulkhead, and Timeout)
when designing microservices. Several programming libraries (e.g.,
Hystrix [22], Finagle [23], Phantom [24]) are available to simplify the
development of these patterns. For example, the developer can easily
define a fallback function of its accessed service, so that the microser-
vice could get a fallback response when the accessed service is unavail-
able. In addition, the administrator of the microservice can deploy
multiple redundant and distributed instances and use smart proxies
to achieve high availability of the microservice. Smart proxies manage
the cases where an accessed service is unavailable. Most commonly,
depending on the SLA properties of the accessed microservice, a proxy
may either (i) select another service instance, (ii) wait for the service

to be restored, or (iii) produce a by-default reply.

Overall, through splitting the application into a set of independently
deployable services, the microservice architecture minimizes the impacts
of changes on a running application. With classical monolithic applica-
tions, applying a change to any single module often requires to redeploy
the entire application. Conversely, in the microservice-oriented approach,
single service changes only imply to redeploy the considered microservice.
In other words, the microservice architecture aims at decoupling the appli-

cation change cycle.

!The registry service is usually deployed and consumed by a specific application.

2Service registration and unregistration may be either managed by the microservice,
or automatically performed by the underlaying PaaS upon starting and stopping the mi-

croservice.

Problem Position

2.2 Cloud Computing

Cloud environments enable consumers to run their application in a centrally
managed data center. Instead of investing new physical hardware resources
to satisfy the requirements of an application, a consumer can only rent the
necessary compute, storage, and network resources from the Cloud provider.
Thanks to virtualization and autonomous management capabilities provided
by cloud environments, consumers can operate the deployment of their ap-
plication in a self-service manner. In addition, cloud environments help
consumers to construct a highly available and scalable application through
using redundancy and elasticity techniques at runtime [25].

This section starts by giving an insight of virtualization techniques and
technologies. It then introduces the different cloud service models, and
finally focuses on the Platform as a Service (PaaS) layer specifically, as this
layer targets is the one concerned with microservices.

2.2.1 Resources Virtualization

The key technology of cloud computing is virtualization. Through logically
separating physical resources into several virtual resources, virtualization
facilitates sharing hardware resources. There are currently two main virtu-
alization levels: virtual machine (VM) and container. In addition to dividing
system resources, these two techniques can also be used to package an ap-
plication into a portable self-contained unit. Especially, they are currently
both used for packaging and deploying microservices.

In the VM-based approach, hardware IT resources (i.e. compute, mem-
ory, storage) are packaged within software units (namely a virtual machine
or VM) whose behavior imitates a physical machine environment. The appli-
cation administrator can package the application running environment into
a VM, which contains a full software stack including the operating system
(OS), middleware, and the application binaries and configuration elements.
Then, the VM can be executed on any physical machine using a hypervi-
sor. Since the VM provides the virtualization at the hardware level, the
administrator has the same experience on a VM as on a dedicated physical
machine.

The container-based virtualization approach takes place at the operat-
ing system level. The OS kernel and possibly some middleware are shared
across all the containers running on a common host machine. Accordingly,
the application administrator packages only some specific middleware and
the application with the container. Therefore, the container includes a quite
reduced software stack and does not require a full system boot to be instan-
tiated. Due to their reduced software stack, containers are smaller in terms
of size and faster to start up compared to VMs. However, at the opposite,
VM-based approaches provide more security because of greater isolation and

Problem Position

fully self-contained. Thus, in order to benefit from the advantages of both
approaches, it can be relevant to combine them [26].

2.2.2 Cloud Services Models

According to the NIST’s definition [27], cloud environments are divided into
three standard service models based on the service abstraction level as shown
in Figure 2.1.

— Application
SaaS

— Middleware

PaaS
— Operating System

Virtualization

laasS Server

Storage

Networking

Figure 2.1: Cloud service models. Adapted from [28]

e Infrastructure as a Service (IaaS): at this level, the Cloud provider
offers virtualized hardware (e.g., virtualized machines, networks) to
the consumer. The control and the responsibility of the application
operation are fully given to the consumer. Some examples of TaaS
offers are Amazon Elastic Compute Cloud (Amazon EC2) [29], Google
Compute Engine (GCE) [30], OpenStack [31].

e Platform as a Service (PaaS): the Cloud provider offers the run-
ning environment of the application, the consumers providing only
their application code. It is the responsibility of the provider to in-
stall the OS and middleware layers for building the application envi-
ronment. Compared to the TaaS model, the consumer has less con-
trol on the infrastructure. Some examples of PaaS offers are Google
App Engine [32], AppScale [33], OpenShift [34], Heroku [35], Cloud
Foundry [36].

e Software as a Service (SaaS): the Cloud provider completely man-
ages the application. The consumer is the end user of the application.
Some examples of SaaS offers are Gmail and Dropbox.

In addition to these three classic service models, Container as a Ser-
vice (CaaS) offerings emerge, such as Google Kubernetes Engine [37],
Amazon EC2 Container Service (ECS) [38], Azure Container Service [39].

Problem Position

As a service model positioned between infrastructure-centric IaaS and
application-centric PaaS, CaaS is container-centric, meaning that it offers
containers as a running environment for an application.

As in PaaS, CaaS also contains orchestration tools (e.g., Kubernetes [40],
Apache Mesos [41], and Docker Swarm [42]) for the deployment and cluster
management of containers. Moreover, CaaS usually also provides a container
image registry and API support for facilitating the management of container
runtime. Anyway, unlike PaaS, the CaaS customers stay in charge of pack-
aging their application within containers. An advantage of this is that CaaS
doesn’t constrain application programming languages or frameworks.

2.2.3 PaaS/CaaS layers and microservices

PaaS and CaaS service layers are intrinsically linked to microservices because
they offer an easy way to deploy and run microservice. In the PaaS model,
the expected user experience is that PaaS customers are only in charge of
their code. In the CaaS layer, the customers have also the responsibility of
packaging their code, but the deployment is taken in charge by the CaaS
layer. Overall, both layers take the responsibility for installation, config-
uration, and operation (e.g., routing, monitoring, scaling) of applications
composed of microservices.

Typical elementary deployment operations provided by PaaS/CaaS lay-
ers are the following:

e create: install a microservice (downloading its code, etc.,.)
e compile: compile a microservice

e start: start a microservice (launching one or more microservice in-
stances)

e stop: stop a microservice (stopping one or more microservice instances)

e scale: scale a microservice (adding or removing one or more microser-
vice instances)

e change: change a microservice’s configuration (stopping and restarting
it if necessary)

e remove: uninstall a microservice

As previously said, a major functionality of PaaS/CaaS layers is to au-
tomate the application deployment. Currently, several PaaS solutions (e.g.,
Heroku, Cloud Foundry, OpenShift) provides a push-to-deploy capability.
That is, consumers can deploy their application with a single push com-
mand.

Problem Position

Especially, PaaS/CaaS customers can easily deploy multiple instances
of an application to achieve its high availability. During the execution of
applications, PaaS solutions are indeed in charge of maintaining the health
of deployed application instances. To this end, PaaS solutions monitor the
state of application instances and automatically heal the failed instances.
The monitoring mechanism depends on the application types. Web appli-
cation are classically monitored by sending periodic requests and expecting
the responses within a timeout. Applications without connections are mon-
itored by checking the running state of their processes. PaaS customers
can configure the healing policy (e.g., restart) for the detected unhealthy
instances.

Another common capability of PaaS/CaaS layers is to manage the scal-
ing of applications (while PaaS may manage the scalability in an autonomic
way, this is however not yet true for Caa$S layers). PaaS customers can hor-
izontally scale their application through configuring the instances number.
When the instance number is changed, the PaaS is in charge of deploying or
removing the instances. PaaS customers may also vertically scale the disk or
memory limit of all the instances. Several PaaS solutions (e.g., OpenShift,
GAE) support automatic scaling according to the application workload. The
scaling policy is usually based on a set of rules and some application metrics
(e.g., CPU utilization, request rate, response latency).

In addition, PaaS layers usually automates the network management
of the application. PaaS customers can configure one or multiple URLs
for accessing the application. PaaS solutions then take the responsibility
of routing the clients’ requests from these URLs to a running instance of
the corresponding application. PaaS solutions may also provide build-in
load balancing across multiple application instances. For example, Cloud
Foundry directs the requests in a round-robin * manner. To support more
complex routing policies, PaaS customers may use an external routing ser-
vice.

To sum up, although PaaS/CaaS solutions use different implementa-
tion technologies, several common capabilities (e.g., deployment, replication,
health check, scaling, and network management) are provided in most popu-
lar PaaS/CaaS solutions. They provide elementary operations for managing
each aspect (usually modeled as a microservice attribute) of a microservice.
Because microservices are managed by PaaS/CaaS layers, they naturally
benefit from these capabilities.

3Depending on the case, PaaS may migrate or restart a application instance
4Round-robin means that the router forwards each client request for a given route to
each application instance in turn.

10

Problem Position

2.3 Continuous Delivery

As a software development discipline, Continuous delivery designates the
ability to release every application changes into production °. In the agile
development, continuous delivery is a critical requirement. Without the
ability to deliver small and frequent releases to end clients, the benefits
of agile development cannot be fully realized. This requirement has lead
to the notion of DevOps teams, that are composed of a mix of developers
and administrators, or at least people that can do both work, for achieving
continuous delivery.

The complete delivery process involves building the deployable packages,
deploying and testing them in increasingly production-like environments,
and finally deploying into production. To improve time efficiency and avoid
human errors, DevOps teams need to automate this delivery process. The
current best practice is to model the delivery process into a deployment
pipeline [43]. Several popular tools are available for setting up deployment
pipelines, such as Jenkins [44], Concourse [45], GoCD [46].

The pipeline tool provides the utilities to construct a repeatable process
through defining the steps and the connections between these steps. Each
step is an elementary job with specified inputs, outputs, and properties.
The pipeline tools support multiple types of connection between steps. The
steps could be started either automatically as soon as the forward depending
steps are completed successfully, or manually after a human approval.

Figure 2.2 illustrates a typical deployment pipeline. This pipeline au-
tomatically detects the code change of an application, when the change is
detected, it retrieves the code from the Git server, build an image, executes
the automatic test, if the test passes, deploys the image to two PaaS sites
in parallel, and finally executes a manual test to valid the deployment.

push to
PaaS sitel

manual
test

detect code get code . automatic
——= build |
changed from git ut "1 test

push to
PaaS site2

Figure 2.2: An example of deployment pipeline

The pipeline tools give the DevOps teams the visibility and the control-
lability of the process execution. The pipeline usually provides a graphic
interface to visualize the progress of the process execution. In addition, it
shows whether the past steps have failed or succeeded. The DevOps teams
can start, pause, and stop the pipeline during its execution. The DevOps
teams can also define the automated behaviors in case of failures (e.g. stop

5Continuous deployment is a more constraining recommendation which requires that
every application changes are deployed automatically into production

11

Problem Position

the pipeline, retry the current failing step, and/or continue with the follow-
ing steps).

12

Problem Position

2.4 Motivation and Objectives

To highlight the motivations of this thesis, this section depicts the work that
DevOps teams have to achieve to update microservices. Then the objectives
of the thesis are described.

Let’s consider a common and easy case, updating the code of a single
microservice currently running on a PaaS site. As presented in Section 2.2.3,
each PaaS/CaaS © solution provides its elementary reconfigurations opera-
tions for playing a direct in-place update of a microservice. Therefore, based
on PaaS operations and the pipeline tools, automating such update requires
the following work: write a simple script to call the correct PaaS opera-
tions, specify the execution environment of the script in the pipeline tool,
and configure the pipeline to be triggered when it detects code changes. The
work is quite straightforward until now, relying on the basic reconfiguration
operations provided by PaaS solutions.

In the implementation of the update script, the DevOps teams needs to
pay attention to the fact that the configuration of a microservice will evolve
over time. The update script should not make specific assumption on such
configuration. Moreover, if possible, the update script may be used to up-
date various microservices. Thus, it is important to follow a good practice
consisting in carefully separating all the microservice-specific configuration
from the deployment scripts, so that the script is reusable for various mi-
croservices and easier to maintain.

After having implemented a script automating the update of a single
microservice on one site, the DevOps teams needs to consider updates en-
compassing multiple sites. One reason is that the DevOps teams may need
to deploy and test a change in multiple production-like environments before
deploying it into production. Besides, production environments usually con-
tains multiple sites to achieve high-availability and better performances. An
important point is that these sites may use heterogeneous PaaS solutions.
Deploying the microservices on heterogeneous PaaS avoids vendor lock-in
and allows each microservice to choose independently the most appropri-
ate platform. Therefore, the DevOps teams needs to be able to cope with
different PaaS solutions when updating microservices.

Meanwhile, the DevOps teams also needs to consider the updates of
multiple microservices on the different sites. Although microservices are
supposed to have an independent lifecycle, the reality sensitively differs. In
the evolution of applications, it is rarely the case that the contract between
microservices always stays unchanged. In addition, the automation of the
update of multiple microservices can facilitate the initial deployment and
the topology changes.

5The rest of the document uses the term PaasS to represent PaaS/CaaS for simplifying
the expression.

13

Problem Position

Additionally, there are two important and challenging requirements to
be taken into account at update time: deployment constraints and failure
repairs.

Any deployment or update may be subject to various functional (e.g., a
microservice supporting only a single instance running) and non-functional
(e.g., minimal downtime, limited resource cost) constraints. As mentioned
in Section 2.2.3, the reconfiguration operations provided by PaaS solutions
usually perform a direct in-place update of microservice, where the new
version takes the place of the old one. This concretely means that a mi-
croservice update goes through stopping the microservice instances running
the old version, installing the new code version, and re-deploying the new
version instances. Therefore, the microservice cannot serve any customers
requests during the update.

When the downtime is disallowed due to QoS constraints, the DevOps
teams follows complex deployment patterns to update a running microser-
vice These patterns are called update strategies, as previously mentioned in
this document. For example, to update with minimal downtime, the De-
vOps teams may choose BlueGreen strategy [1]. The BlueGreen strategy
updates a microservice with zero downtime through deploying the new mi-
croservice instances before removing the old ones. However, the BlueGreen
strategy consumes nearly double resource during the update. To decrease
the resource cost, the DevOps teams may choose the Canary strategy [2].
The Canary strategy requires no additional resources with a reduced mi-
croservice performance, through processing in-place updates incrementally
(e.g., instance by instance). In these strategies, through manipulating the
lifecycle, the accessibility, and the instance number of multiple versions of
the microservice, the DevOps teams controls the performance impact, the
cost, and the duration of the update. The DevOps teams trades off be-
tween these dimensions of non-functional constraints. In practice, although
it is not difficult for the DevOps teams to understand the idea of update
strategies and choose the proper one for their update, the implementation
of strategies is usually cumbersome. The implementation requires correctly
controlling and coordinating multiple microservices on multiple sites. Addi-
tionally, update processes, and therefore update strategies, have to address
the case of failures that occur at update time.

Overall, the work for DevOps teams depicted above demonstrates that
it is challenging and error-prone to implement and maintain the automa-
tion of updates through a per-application script-based approach. This the-
sis endeavors to automate update processes in an application-independent
manner. In other words, to facilitate implementing continuous delivery of
microservices, the objective of the thesis is to propose a framework for effi-
ciently and safely updating microservices deployed on heterogeneous PaaS
platforms. The framework aims at supporting various PaaS platforms, var-
ious update strategies, and various failure repair operations.

14

Problem Position

2.5 Challenges

As presented in Section 2.4, the thesis aims at proposing a framework to
automate the updates of microservices deployed on distributed PaaS sites.
The challenges to address mainly comes from the varieties of the update
process regarding four dimensions: change types, PaaS solutions, update
strategies, and failure cases.

The first challenge is to support all kinds of changes. Different kinds of
changes may be performed in the application updates, mainly: code, con-
figuration, architecture, or topology. The most common changes concern
the code and/or the configuration of a microservice. The DevOps teams
usually deliver several changes of code and/or configuration daily. Archi-
tectural changes mean to update the contract between microservices (such
as access interfaces). The delivery of architectural changes is infrequent but
more complicated. Such changes usually involve the updates of multiple
microservices, requiring coordination between the update operations. Topo-
logical changes are relative to the migration of the microservices between
different PaaS sites. Their processing involves the coordination between
sites.

A second challenge is to cope with heterogeneous PaaS solutions. Each
PaaS solution provides its specific microservice model and management op-
erations. Therefore, if the automation of update processes is directly based
on PaaS operations, it needs to be reimplemented for each PaaS solution.
Using a uniform PaaS interface makes the automation works reusable for dif-
ferent PaaS solutions. However, this option requires the proposed interface
to be compatible with various PaaS solutions.

In addition to deploying various changes on heterogeneous PaaS sites,
another challenge is to support arbitrary update strategies. The reason is
that different updates may impose different non-functional constraints. For
example, a security patch is required to be delivered as soon as possible,
while an experimental feature may be delivered slowly (e.g., first only deliv-
ered to small parts of customers and then propagated to the public). Thus,
in addition to providing existing popular strategies, the update framework
needs to allow DevOps teams to customize their own strategy.

Finally, the framework needs to properly help DevOps teams to manage
(i.e., detecting, fixing) failures during the update. When a failure occur
at the update time, the failed update process lets the microservices into
an arbitrary state. The difficulty there is to help DevOps teams fixing
the failure origin ((e.g., disconnected network, corrupt servers, or erroneous
microservice code), and to allow the impacted microservices to recover a
functional state rapidly. Although the magic of automatically fixing all the
failures is not attainable for the moment, the automation of common repair
operations can greatly accelerate the fix and reduce further human errors.

To sum up, the framework needs to automate the updates of multiple

15

Problem Position

microservices on multiple sites based on the PaaS-provided operations which
usually updates a microservice property on one site. In addition, the com-
plex update strategies and failures recovery processes need to be automated.
While providing a higher automation level, the framework should still leave
the necessary control of the update process to the DevOps teams. More-
over, the framework is expected to be adaptable and extensible for various
microservice changes, PaaS solutions, and update strategies.

16

Chapter 3

State of the Art

Contents

3.1 Existing approaches for dynamic software updates 18
3.1.1 DSU 18
3.1.2 Components 18
3.1.3 Actors 19

3.2 Existing approaches for dynamic updates of Mi-
CrOSEIVICES ¢ + v v v v v v v v v v v e e e e e e a e e 19
3.2.1 Comparison grid 19
3.2.2 Spinnaker oo 20
3.2.3 IBM UrbanCode Deploy 23
3.2.4 AWS CodeDeploy, 26
3.25 Push2cloud 27

3.2.6 Other related approaches for managing Microser-
VICES . .. 29
327 Summary . .. o.o. ... e 30

Changed customer requirements, fixed software bugs, or new security
patches, are all changes that require to adapt the software defining an ap-
plication, changing its code, its configuration, or the way its components
are linked together. Once the new version of the application is defined,
applications in production have to be updated accordingly.

To process these updates, an easy way is to shutdown the running old
version, then reinstall the new version. However, this imposes some down-
time, which does not fit with the requirements of many applications that
require 24x7 service availability. To avoid or reduce downtime, dynamic up-
date mechanisms have been considered, aiming at integrating the updates
while an application keeps running [47].

This chapter starts by summarizing some main approaches for dynamic
update. The objective of this first part is to explain why current approaches
for dynamic updates are not directly considered in the microservice world.

17

State of the Art

In a second part, this chapter presents the approaches that are currently
considered for the dynamic updates of microservices.

3.1 Existing approaches for dynamic software up-
dates

According to the targeting application type, the existing research works of
dynamic update can be categorized into four groups: DSU, components-
oriented, and actors-oriented.

3.1.1 DSU

Dynamic Software Update (DSU) refers to approaches allowing to upgrade
a running process (i.e., changing its code to a new version) without any
shutdown-restart cycle. Existing DSU techniques [48, 49, 50] rely on writ-
ing patches that manipulate core data-structures (e.g., stack, heap, registers)
and that rely on low-level capabilities provided by the operating system /run-
time to manage code unlinking and relinking.

Overall, such techniques are useful but their limitations prevent using
them for microservice updates. Firstly, they are often specific to a given
programming language and/or operating system. Secondly, they focus on
code upgrade (i.e., evolving the current code towards a new version). Finally,
DSU techniques apply for updating a single monolithic component while
microservices come with a distributed architecture.

3.1.2 Components

Product component-oriented platforms such as OSGi [51], Spring [52] or
Eclipse RCP [53] as well as research prototypes [54, 55, 56, 57, 58] pro-
mote applications built from gluing together software components providing
and requiring services. Most platforms support dynamic updates through
allowing components to be stopped/restarted, created/destructed, and un-
bound/rebound at execution time.

However, components are more coupled than microservices, potentially
sharing data-structures or code packages, and often not supporting the un-
availability of the services they depend on. Therefore, in contrast to mi-
croservices, components bound together have dependent lifecycles which
deeply impacts how updates may be carried out, due to the necessary
management of collateral impacts. So far, to the best of our knowledge,
component-based update mechanisms have not been adapted to program-
ming patterns of microservices.

18

State of the Art

3.1.3 Actors

Frameworks such as Erlang [59], Scala [60] or Akka [61] promote actors
that are small units supporting code updates at runtime through an ap-
proach called design for failure. This design allows any actor to be killed
and restarted at any time. Updating an actor simply goes through killing,
updating and restarting it. If other actors are impacted by the unavailability
of the updated actor, they can just be killed and restarted as well.

To gain this kill-restart capability, actors developers follow programming
patterns that are close to microservices patterns: actors should be stateless,
they should only communicate through messages and be memory isolated,
they should have an independent lifecycle.

However, actor frameworks impose a particular programming language
and runtime. Although a constraint, the benefit is that updating/restarting
an actor is fast (in the order of a few milliseconds). In contrast, microservices
are heavyweight since they run within their full stack, assembled on-demand
by the underlying PaaS platform, which imposes long update/restart times
(up to several minutes). Consequently, high-availability concerns require
more complex update strategies than a kill-restart approach.

3.2 Existing approaches for dynamic updates of
Microservices

Nowadays, several frameworks (mostly industrial ones) intend to help De-
vOps teams to update their microservice applications, mainly by automating
the update process. This section compares the approaches underlaying these
frameworks. Section 3.2.1 introduces the grid we will use for the comparison.
Then, the following sections presents four main existing automation frame-
works: Spinnaker (Section 3.2.2), IBM UrbanCode (Section 3.2.3), AWS
CodeDeploy (Section 3.2.4), and push2cloud (Section 3.2.5). Section 3.2.6
summarizes the current research works related to the management (deploy-
ment, update) of microservices. Finally, Section 3.2.7 summarizes the re-
lated work.

3.2.1 Comparison grid

To compare the usability of the considered frameworks, we analyze the usage
effort considering four aspects:

¢ automation level: The automation level reflects the required effort
for delivering an update, for the DevOps team. A high automation
level requires less effort.

o flexibility: Flexibility denotes the capability of the framework to be
extended to support specific needs of the DevOps team, especially in

19

State of the Art

terms of supporting new PaaS platforms, and considering new strate-
gies.

e reusability: As presented in Section 2.5, an update process depends
on various aspects (change types, PaaS solutions, and update strate-
gies). Reusability denotes the capability of the framework to support
updates different update cases.

e robustness: Failures inevitably occur during the update. We ana-
lyze the effort required to handle failures during the update with each
framework, for the DevOps team.

3.2.2 Spinnaker

Spinnaker is an open source continuous delivery platform that help DevOps
teams to automate the update of applications across multi-clouds.

Regarding the supported Cloud platforms, Spinnaker supports IaaS
providers (AWS EC2, Google Compute Engine, Microsoft Azure, and Open-
Stack), PaaS providers (Google App Engine), and container orchestrators
(Kubernetes, Google Container Engine).

Spinnaker enforces the principle of immutable infrastructure. Once the
application is deployed, any change is disallowed on its infrastructure (vir-
tual machines). An update process always deploys a new version of mi-
croservices on a new infrastructure. Therefore, Spinnaker does not support
in-place updates, where new versions of microservice take the place of older
versions.

Spinnaker models an update process as a pipeline. The pipeline consists
of a sequence of (reconfiguration) steps. A step, called as a stage in Spin-
naker, evolve an architectural aspect of a microservice (e.g., an attribute, a
number of instances, its lifecycle state, etc.,.). The DevOps team is in charge
of constructing the pipeline by composing the steps provided by Spinnaker.

Each step is more precisely either an elementary action or a composed
action. For each supported Cloud platform, Spinnaker provides specific el-
ementary actions allowing to deploy, destroy, resize, enable or disable one
microservice on one cloud platform . Spinnaker let the DevOps team con-
struct the necessary pipelines when multiple microservices across multiple
clouds have to be updated.

Besides elementary actions, an update process may also involve other
operations or events, which are called utility actions. Spinnaker provides
several utility actions (e.g., manual judgment, wait, run Jenkins job) to help
linking the microservice management actions when constructing the pipeline.

!The action enable (resp., disable) controls a microservice to start (resp., stop) receiv-
ing client requests.

20

State of the Art

For common action compositions, Spinnaker packages them as built-in up-
date strategies to make them easy to be reused in different pipelines. Re-
garding the update strategy, Spinnaker provides four update strategies:

e BlueGreen ?: deploy a new version, if health check passed, scale down
and disable old version.

e Highlander: deploy a new version, when it is up and healthy, all old
versions are removed automatically.

e RollingPush: gracefully delete old version instances, and replace them
by new version instances.

e Canary: deploy a new version, send a small part of traffic to the
new version, test the new version, if passed, scale up the new version.
Finally, disable and remove the old version.

Automation level

This section reports on the usage effort for delivering a specific update with
Spinnaker. Spinnaker requires the DevOps team to construct a pipeline for
automating an update process.

Let’s consider a DevOps team managing two microservices (M; and Ms)
on two sites (site; and siteg). The following part of the section reports on
how the DevOps team automates the process of updating the microservice
(M) deployed on two sites (site; and sitez) with the BlueGreen strategy.

In practice, the DevOps team first needs to create the model of the
microservice M) by specifying its metadata, such as name, code location (a
git repository), and cloud sites accounts. Then, the DevOps team creates a
pipeline as shown in Figure 3.1.

Deploy(BG) Destroy M1(old)
M1 Github M1 on site1 Human on site1
trigger verification
Deploy(BG) Destroy M1(old)
M1 on site2 on site2

Figure 3.1: Spinnaker example pipeline: update M; on site; and sites with
BlueGreen strategy

This pipeline includes a trigger step (M1 Github trigger) so that it can
be automatically started when M;’s code is updated. Then, the steps for
deploying M on site; and sites with BlueGreen (BG) strategy are specified
to be executed in parallel. After these steps, the DevOps team added a
step of human verification. Finally, the DevOps team added the steps for
removing the old version.

2The BlueGreen strategy is called as Red-Black in Spinnaker

21

State of the Art

Flexibility

As Spinnaker lets DevOps teams compose the update pipeline, DevOps
teams can orchestrate an update process in their own way. However, De-
vOps team have to compose the pipeline with the steps templates provided
by Spinnaker.

In terms of cloud platforms, it is a challenging work to support a new one
in Spinnaker. It requires the DevOps team to map the model of a microser-
vices application, implement the elementary actions and update strategies,
and integrate these with Spinnaker modules. Currently, Spinnaker does not
provide any documentation for supporting new cloud platforms.

Regarding extending the set of strategies, the DevOps team can define a
strategy by specifying a sequence of steps, but this sequence should target
one microservice on one site. Notice that currently, Spinnaker only supports
customized strategies on limited cloud platforms (Amazon Web Service and
Google Compute Engine). In addition, Spinnaker does not provide a com-
prehensive document for customizing a strategy.

Reusability

The previous pipeline (Figure 3.1) updates the code of the microservice M.
This pipeline also works in case of updating microservice configurations.
Thanks to the immutable principle, updating any changes requires the same
actions workflow. By simply modifying the configuration file ® specified in
the steps deploy(BG) in Figure 3.1 and starting the pipeline, the pipeline can
update M; to the new version of the configuration. Therefore, Spinnaker
pipelines can be reusable for various changes in case of updating the same
microservice on the same site.

However, the Spinnaker pipeline is hardly adaptable to various architec-
tural changes and topological changes. The architectural (resp. topologi-
cal) changes involve the update of multiple microservices (resp. sites). As
demonstrated, each step is in charge of updating a specific microservice on
a specific site. Therefore, the architectural changes and topological changes
require the DevOps team to construct specific pipelines. In addition, it is
complex to directly reuse a Spinnaker pipeline for another microservice, as
microservice-specifics and site-specifics parameters are integrated into each
step of the pipeline.

To sum up, a Spinnaker pipeline is hardly reusable across microservices
and sites. This disadvantage may be improved by a feature under devel-
opment: pipeline templates [63]. However, given that the definitions of
elementary actions are specific to each cloud provider, a reusable pipeline
across cloud providers will still be difficult to be implemented.

3Besides the static file, the DevOps team can also specify the microservice configuration
as a dynamic input of the pipeline [62].

22

State of the Art

Robustness

Spinnaker automates the rollback of a microservice update. It provides the
elementary step rollback by re-enabling the old version and disabling the
failed new version for a given microservice.

Moreover, Spinnaker supports re-triggering a failed step to fix some fail-
ures. For the failures which occur during a non-idempotent action (e.g.,
deploy), it is usually complex to automatically resume the process from an
intermediate state. In such cases, an easier solution is to perform a rollback,
then re-trigger the update pipeline.

Taken the previous example, the DevOps team can construct a more
robust update pipeline as shown in Figure 3.2. When the new version is
detected as failed in the step human verification, the microservice is auto-
matically rolled back to its old version.

{optional)

Deploy(BG = Raollback to M1{old)
e ‘5‘\.@" 7] on site1 & site?

M1 Github M on site ™\ Frgman 5
trigger verificatiunm
) Deploy(BG) C‘Eeg«; a3l Destroy M1(old)

M1 on site? on site1 and site?

Figure 3.2: Spinnaker example pipeline: update M; on site; and sites with
automatic rollback

3.2.3 1IBM UrbanCode Deploy

IBM UrbanCode Deploy (UCD) is a proprietary commercial tool for au-
tomating application deployment on multiple clouds *. Regarding supported
cloud platforms, UCD supports both IaaS providers (IBM SoftLayer, Ama-
zon Web Services, Microsoft Azure, VMware vCenter, and OpenStack-based
clouds) and Paa$ providers (IBM Bluemix).

UCD provides a graphical flowchart tool to construct pipelines for au-
tomating update processes. Similar to Spinnaker, an update pipeline con-
sists of (reconfiguration) steps. The DevOps team is in charge of construct-
ing the pipeline by composing the steps.

In UCD, each step is either provided by the DevOps team (as a custom
script) or by third-party plug-ins. UCD provides a great number of plug-ins.
For example, Git plugin enables the DevOps team to automatically retrieve
microservice artifacts from a Git source-code management repository. The
Cloud Foundry plugin provides the Cloud Foundry command line utility to
manage a microservice on a target Cloud Foundry platform.

In terms of update strategies, UCD does not provide pre-defined strate-
gies.

4UCD calls a microservice as a component, a site as an environment

23

State of the Art

Automation level

We use the example described in Section 3.2.2 (updating M; on site; and
sites with BlueGreen strategy) to consider the usage effort for automating
a specific update process.

The DevOps team first needs to create the model for the microservice
M, by specifying its properties (e.g., name, source code repository). Then,
the DevOps team can construct the pipeline that updates M; with the
BlueGreen strategy, as shown in Figure 3.3. In this pipeline, the DevOps
team uses the steps provided by the UCD Cloud Foundry plug-in. This plug-
in provides Cloud Foundry operations for managing microservice attributes.

‘ start \

‘Deploy (M1_v2) with (test-route) on (site1)‘ ‘Deploy (M1_v2) with (test-route) on (siteZ)‘

Test (M1_v2) on (site1)| Test (M1_v2) on (site2)|
[success] [success]
' Map (M1_v2) to (public-route) on (site1) | Map (M1_v2) to (public-route) on (site2) |
' Remove M1(v1) on (site1) | ' Remove M1(v1) on (site2) |
finish

Figure 3.3: UCD example pipeline: update M; on site; and sites with
BlueGreen strategy

Flexibility

Similar to Spinnaker (presented in Section 3.2.2), UCD also lets the DevOps
team orchestrate the update process. Meanwhile, UCD makes it easier for
the DevOps team to define custom steps. Indeed, the DevOps team can
easily define a step as a script.

In terms of cloud platforms, UCD allows the DevOps team to support
a new platform by defining a dedicated plug-in. UCD provides documents
and examples for implementing such a plug-in.

Regarding update strategies, UCD lets the DevOps team define strate-
gies through the concept of process template. A process template is a se-
quence of steps taking the managed microservices and associated cloud sites
as dynamic input.

24

State of the Art

Reusability

UCD allows a process template to be reused in different pipelines. However,
as the steps definition is specific to a cloud solution, a process template is
not reusable across cloud solutions.

For example, taken the previous example pipeline (Figure 3.3), the De-
vOps team can define a process template as shown in Figure 3.4. This
process template updates a microservice on a site with the BlueGreen strat-
egy. It takes the model of the microservice to update and its associated
site as input. Based on this process template, the previous pipeline can be
simplified as shown in figure Figure 3.5.

BlueGreen update (M) on (site)

start

Deploy (M_new) with (M.test-route) on (site)
Test (M_new)
[success]

Map (M_new) to (M.public-route)

Remove (M_old)

finish

Figure 3.4: UCD example process template: update a microservice on a site
with BlueGreen strategy

Robustness

UCD helps the DevOps team to handle update failures through retry and
rollback mechanisms. The DevOps team can add automated tests in the
update process to verify if a step succeeded or failed. In addition, the
DevOps team can specify the steps to process in case of failure or success of
a previous step.

If a failed update leaves the microservices deployment into an intermedi-
ate state, the DevOps team can rollback the failed microservices, then re-run
the update process from the beginning. UCD provides two types of rollback

25

State of the Art

start

T

Process : BlueGreen Process : BlueGreen
update (M1) on (site1) update (M1) on (site2)

Ny

finish

Figure 3.5: UCD example pipeline based on the BlueGreen process template

steps: rollback to a snapshot or rollback a failed update. The process of
rolling back to a snapshot uses the snapshot to determine the microservice
versions to roll back to, and removes the microservice versions which are
not defined in the snapshot. The process of rolling back a failed update
redeploys the previous version of the microservice before the execution of
the update process.

3.2.4 AWS CodeDeploy

AWS CodeDeploy is a deployment service that automates microservice de-
ployment on Amazon EC2 instances. This is a solution specific to the Ama-
zon Web Service cloud.

AWS CodeDeploy supports three types of update strategies: in-place
update, rolling update, and BlueGreen. The in-place update strategy first
stops the old version instances then deploys the new version on the same
instances. The rolling update strategy enables the user to configure the num-
ber of instances to be in-place updated at a time. The BlueGreen strategy
creates new instances, deploys the new version on created instances, redirect
the client requests to the new version and removes the old instances.

In terms of flexibility, AWS CodeDeploy does not support customizing
strategies, neither extending the supported cloud platforms to extra cloud
providers.

Strategies involve elementary operations that manipulate microservices.
To deal with the specificities of each microservice, the DevOps team can
extend some operations such as the build, install, and start scripts. More
precisely, AWS CodeDeploy models an update process as a workflow consist-
ing of a set of events hooks: build, download, beforelnstall, install, afterin-
stall, start, validate, stop, beforeBlockTraffic, blockTraffic, afterBlockTraffic,
beforeAllowTraffic, allowTraffic, afterAllowTraffic. The DevOps team is in
charge of providing the scripts for the different hooks, if specific actions have
to be processed upon these events.

26

State of the Art

In case of failures, AWS CodeDeploy enables the DevOps team to stop
an update, and provides a rollback capability for the updates processed with
the BlueGreen strategy only.

3.2.5 Push2cloud

The framework push2cloud relies on an architecture-based approach for up-
dating multiple microservices deployed on one single PaaS site. Currently,
push2cloud only supports one PaaS platform: Cloud Foundry.

As with the previous frameworks, push2cloud models an update process
as a sequence of (reconfiguration) steps. However, update processes are not
defined by the DevOps teams, they are determined by a chosen strategy.
Indeed, the DevOps team only needs to provide the desired microservices
architecture and specify a chosen strategy to process an update.

Push2cloud provides DevOps teams with the following strategies:

e Simple: deploys all desired microservices. The strategy is used for the
initial deployment of the microservices application.

e Redeploy: removes all the current microservices and deploys the de-
sired microservices.

e BlueGreen: deploys the new version of the microservices while the
old versions running, after the new versions deployed, removes the old
versions.

Strategy are internally defined as JavaScript code files. Thus, the work-
flow of reconfiguration steps involved by a strategy are programmed as se-
quences of JavaScript instructions that update one or several microservices
on one PaaS site.

Automation level

We consider here the usage effort for updating the application described in
Section 3.2.2 (updating M; on site; and sitep with the BlueGreen strategy)
through the push2cloud framework.

The managed application consists of two microservices (M; and Ms) on
two sites (site; and sitez). The DevOps team first needs to describe the
desired architecture of the application. Push2cloud models a desired archi-
tecture as the combination of three models, expressed through three manifest
files: microservice manifests (attributes of each microservice), release man-
ifest (the microservices which compose the application), and deployment
manifest (deployment configuration of the PaaS site).

As previously said, push2cloud only updates microservices deployed on
one PaaS site. To issue an update on site;, the DevOps team first re-
quests push2cloud to generate the desired architecture A-sitel through

27

State of the Art

merging and normalizing the manifests (M;.json, Ma.json, app.json, and
siter.json). Then, the DevOps team can issue the update command by
specifying the desired architecture A-sitel and the strategy BlueGreen.
Updating sitey also requires processing these two commands.

During the execution of an update, push2cloud first identifies the up-
dated microservice (M), deploys the new version of Mj, verifies it running,
redirects client requests to the new version, and removes the old version as
specified in the strategy file bluegreen.js.

Flexibility

As said in Section 3.2.5, the DevOps team does not have to define the steps
of an update process. This simplifies the work of the DevOps team to process
an update. However, it also reduces the capacities of the DevOps team to
control the update process.

For instance, the DevOps team cannot integrate customized tasks during
an update process, such as human approval steps. Indeed, push2cloud au-
tomatically generates the update process from the given strategy and target
architecture, and runs the entire process from the beginning to the end.

To customize an update process, DevOps team may program their proper
strategy in JavaScript. Elementary reconfiguration operations wrapping
Cloud Foundry operations (e.g., create, upload, compile and start microser-
vice etc) are made available. However, push2cloud does not provide any
comprehensive documentation for this.

In terms of cloud platforms, push2cloud only supports the Cloud
Foundry PaaS, but it claims to be able to be extended to support other
platforms. Nevertheless, it is not an easy work. First, the microservices
architectural model defined by push2cloud is based on the Cloud Foundry
microservice model. The model may not be easily adaptable to other PaaS
solutions, as each PaaS solution defines its proper attributes. Second, all
the strategies needs to be re-implemented for other PaaS solutions, as the
current implementation of strategies is based on specific PaaS operations.
As it can be difficult to adapt these operations to other PaaS, the strategies
implementations can be considered as staying specific to each PaaS solution.

Reusability

The behavior of a push2cloud update process is defined by the chosen strat-
egy. A push2cloud strategy is microservice-independent. Taking the pre-
vious example, in case of updating another microservice My, the DevOps
team can directly reuse the BlueGreen strategy. In addition, a push2cloud
strategy is independent of the microservices application architecture.
However, push2cloud only allow to update microservices deployed on a
single PaaS site. Therefore, the management of updates across sites (e.g.,

28

State of the Art

migrating between two sites) is left to the DevOps team.

Robustness

Push2cloud provides configurable parameters (timeout, retry, grace period)
for all its provided operations. The parameter grace period refers to the du-
ration for checking a microservice health after it is started. The push2cloud
identifies an application as correctly deployed if no failures are detected
during the grace period.

When an update process is failed in the middle of the execution, the
microservices application is left into an intermediate state. Some strategies
(Simple and BlueGreen) cannot update the microservices from an interme-
diate state. In such cases, the DevOps team has three options:

e manually resumes the update process by directly using elementary
Cloud Foundry commands.

e manually rolls back to the previous state by removing the failed mi-
croservices through executing dedicated Cloud Foundry commands,
then re-issues the push2cloud update.

e re-issues the push2cloud update with the strategy Redeploy. The
strategy Redeploy can update the microservices from any interme-
diate state. However, it imposes microservice downtime because it
stops and undeploy all microservices before redeploying them.

3.2.6 Other related approaches for managing Microservices

Beside industrial frameworks, there are also a few on-going research works
related to microservices and their management.

Especially, [64] automates the configuration and the deployment of mi-
croservices. The proposed framework calculates an optimal target archi-
tecture satisfying user requirements and minimizing the number of used
virtual machines. Then, it generates the sequence of deployment actions for
automating the deployment of this target architecture on a IaaS provider.
Compared to the issue addressed in this thesis, this framework only manages
the initial deployment of microservices on single IaaS provider (i.e., Open-
Stack). The case of updating an existing deployment is not considered.

Inspired by [64], [65] proposes a similar approach which automates the
update of microservices deployment through a goal-oriented approach. The
proposed framework generates an optimal target architecture, then proceeds
to the deployment if the target is agreed by the DevOps team. A main lim-
itation of the approach is that it implies microservices to be programmed
in the particular language Jolie [66], and deployed on a particular IaaS
provider (i.e., Amazon AWS EC2). Although its deployment principle can

29

State of the Art

be extended to other microservices programming languages and cloud plat-
forms, the complexity of these varieties (i.e., deploying microservices written
in various languages and using heterogeneous operations provided by various
cloud solutions) is not considered. In addition, the proposed framework does
not consider update strategies. Therefore, its deployment process is simply
to remove old versions microservices, install new versions, and configure the
dependencies between deployed microservices.

Other works, [67, 68, 69] have introduced formalisms for automating
deployment processes, but they consider components having dependent life-
cycles and focus on the management of dependencies.

Finally, [70] investigates the problem of synthesizing a plan for deploying
a target architecture for cloud components, considering capacity constraints
and conflicts. It formalizes the problem of deploying a cloud application
as the problem of planning a sequence of actions reaching a given target
architecture. This work only considers the initial deployment of a cloud
application.

3.2.7 Summary

Update process All the previously considered frameworks aim at simpli-
fying the processing of microservices updates. Spinnaker and UCD manage
updates on multi-clouds, while AWS CodeDeploy and push2cloud only man-
age mono-site updates. In addition, the pipeline of AWS CodeDeploy only
updates a single microservice.

Both Spinnaker and UCD provide an imperative usage for the DevOps
team. That is, the DevOps team defines how to process each updates, in
terms of pipelines composed of a sequence of reconfiguration steps. Pre-
defined set of step templates are provided . AWS CodeDeploy adopts a
quite different approach, more event-based, through providing predefined
update pipelines associated to customizable hooks. Push2cloud provides a
declarative approach, allowing the DevOps team to only describe the target
architecture (multi-microservices but mono-site) and a strategy for updating
the application.

Automation level Each framework provides an interface exposing update
operations that work at a particular level of abstraction. The DevOps team
uses this interface to define specific update processes.

Figure 3.6 illustrates some different levels of interfaces. Figure 3.6(a)
shows an interface that is at the level of elementary PaaS operations, allow-
ing to manipulate a single attribute of a microservice on one PaaS site. The
interface shown in Figure 3.6(b) allows to manipulate a microservice as a
whole, automating the update of multiple attributes. The next level inter-
face targets multiple microservices on one PaaS site (shown in Figure 3.6(c))
or multi-microservices on multi-sites (shown in Figure 3.6(d)).

30

State of the Art

Legend : "ms" means a microservice
"mss" means microservices

add-ms add-ms

set-env set-env

unset-env unset-env

map-url map-url

P P change- | | change- change-
unmap-url unmap-url change-ms change-ms
mss mss architecture
scale scale

start-ms start-ms

stop-ms stop-ms
remove-ms remove-ms

(a) mono-attribute mono-site (b) mono-ms mono-site (c) multi-mss mono-site (d) multi-mss multi-sites

Figure 3.6: Example of framework interfaces with different automation levels
(different target entities)

Legend : "ms" means a microservice
"env" means an environment variable of the microservice

add-ms add-ms add-ms

set-env

>change-envs
unset-env

map-url
unr:g Lir | >change-urls
p-ur update-ms > change-ms
scale scale
start-ms
“change-running-state
stop-ms
remove-ms remove-ms remove-ms
(1) declarative (2) imperative (1) declarative (1) imperative
attribute-update attribute-update ms-update ms-update

Figure 3.7: Framework interfaces with different automation levels

Flexibility The DevOps team needs not only automation to easily deliver
updates, but also flexibility to satisfy specific needs.

To extend the supported cloud platforms, Spinnaker and UCD require to
program a new version of the reconfiguration steps according to the newly
considered PaaS. Push2cloud does not provide native support for extending
the set of supported PaaS.

To extend the supported strategies, Spinnaker allows the DevOps team
to customize strategies by defining new scripts composed of reconfiguration
steps. UCD also allows customizing strategies, through the concept of pro-
cess template. In push2cloud, customizing a strategy requires to program
the according update workflow based on elementary PaaS operations. AWS
CodeDeploy does not support extending the set of supported cloud platforms
and strategies.

Reusability In Spinnaker, the user-defined pipelines are application-

dependent and PaaS-dependent. Thanks to the immutable principle, the
defined pipelines can be adaptable to the changes of various attributes.

31

State of the Art

However, the architectural and topological changes requires to construct
specific pipelines. UCD makes the user-defined pipelines easier to be reused
through the feature of process template. However, it disallows to reuse
the pipelines across PaaS solutions. The update process defined in AWS
CodeDeploy is application-specific. As a declarative approach, the update
process of push2cloud is application-independent and change-independent.
To reuse the update process on other PaaS solutions is still challenging for
the moment.

Robustness Regarding failures, all the considered frameworks integrate
a retry capability to fix transient failures, such as a short-lived network
disconnection. Such failures are thus quite transparently managed for the
DevOps team. Non-transient failures, such as hardware or software crashes
(e.g., machine crash or microservice crash), are harder to manage. When
such failures interrupt an update process, the microservices are left into an
intermediate state. It should be noted here that script-based approaches
are usually not idempotent (except Spinnaker that adopts an immutable
approach), which prevents restarting an interrupted script after a failure. On
the contrary, failures often require either to rollback-restart the entire update
process, or to analyze the current state of the microservices to determine
how to continue. Thus, for non-transient failures, the DevOps team should
either manually continue the update process, or rollback to a previous stable
state and rerun the pipeline. Only Spinnaker, UCD and AWS CodeDeploy
automate the rollback process.

Conclusion Table 3.1 summarizes the considered update frameworks in
terms of the update process model, the automation level, the flexibility, the
reusability, and the robustness aspects.

To conclude, in terms of automation level and reusability, the
architecture-based approach proposed by push2cloud requires the less us-
age effort for the DevOps team, compared to imperative approaches used
by Spinnaker, UCD, and AWS CodeDeploy. However, push2cloud does not
fully exploit the potential of an architecture-based approach, mainly because
update processes are not defined at an architectural level. They are defined
as sequences of JavaScript instructions that do not follow any particular
programming model. Accordingly, push2cloud provides DevOps teams with
a low level of control or observability over update processes.

Apart from push2cloud, most existing frameworks adopt a script-based
approach to update a microservice application, where DevOps teams specify
a pipeline of low-level operations to execute. The main limitation is certainly
that script-based approaches are imperative, leading to the following limi-
tations or constraints:

e First, DevOps teams often have to compose the scripts, which faces

32

State of the Art

Table 3.1: Summary of automation frameworks

Spinnaker

UCD

Update Model

user-defined process
composed of pre-defined steps

user-defined process
composed of pre-defined steps

*k

*k

difficult to extend PaaS
partial support to extend strategies

Auto level imperative; imperative;
mono-attribute mono-site mono-attribute mono-site
customizable workflow customizable workflow

Flexibility pre-defined steps customizable steps

support to extend PaaS
support to extend strategies

Reusability

application-specific
PaaS-specific

application-specific
microservice-indep. templates
PaaS-specific

Robustness

retry; rollback-restart

retry; rollback-restart

AWS CodeDeploy

push2cloud

Update Model

pre-defined process
composed of user-defined steps

process delivering
user-defined target architecture

*

* K kK

disallow to extend PaaS
disallow to extend strategies

Auto level mono-microservice mono-site declarative;
multi-microservices mono-site
pre-defined workflow pre-defined workflow
Flexibility customizable steps pre-defined steps

difficult to extend PaaS
support to extend strategies

Reusability

application-specific
platform-specific

application-independent
PaaS-specific

Robustness

retry; rollback-restart

retry

the usual coding and debugging challenges.

e Second, they need to check that scripts are compatible with the current
state of the microservices to update.

e Third, they have to make sure that applying such scripts will produce
the desired target architecture.

e Fourth, in case of failures, script-based approaches are usually not
idempotent °, which requires either to rollback-restart the entire up-
date process, or to analyze the failure to determine how to restart
forward, potentially requiring to adapt the scripts.

5To gain such rollback capability without strongly increasing the complexity of scripts,
Spinnaker adopts an immutable approach. However, this induces unavoidable additional
resources cost at update time, preventing using any update strategy delivering a zero-cost
property.

33

Chapter 4

Proposition

Contents

4.1 Usage Principles 36
4.2 Architectural Model 38
4.2.1 Data-Structure 38
4.2.2 Elementary Operations 39

4.2.3 Introspection and Reconfiguration of a Microser-
vice Application 41
4.3 Strategy-driven Updates 45
4.3.1 Update Process Overview 45
4.3.2 Strategy-driven Update Protocol 46
4.4 Strategy Programming 49
4.4.1 Strategy Design. 49
4.4.2 Didactic case: the BlueGreen Strategy 51
4.5 Update Robustness 54
4.5.1 Core principles 54
4.5.2 Identification of faults 56
4.5.3 Summaryo 61

This chapter presents our proposition: an automation framework named
DMU (Declarative Microservices Update), allowing to update microservices
running on heterogeneous PaaS platforms, in an automatic manner. This
framework allows DevOps teams to launch update processes evolving a set of
microservices from their current architecture toward a desired target archi-
tecture given as input. The architectural changes supported by our DMU
framework include usual architectural changes, typically: code version, en-
vironment variables, instance number of one or multiple microservices (de-

tailed in Section 2.5).

The essential property of the DMU framework is that it integrates the
concept of strategies, aiming at taking care of the SLA properties of the

34

Proposition

microservices during the overall update process. Most microservices are
indeed subject to non-functional requirements (i.e., a specific SLA trade-
off) in terms of availability, performance and resource consumption and it
is important to keep these properties during an update session.

Concretely, a strategy determines the path of intermediate architectures
that will be followed to update microservices while maintaining some non-
functional requirements. For instance, considering an update migrating a set
of microservices from site S, to site Sy, a first strategy, focusing on minimiz-
ing resource consumption, may remove the microservices on site S, before
recreating them on site S,. Another strategy, favoring the service availabil-
ity, may create new microservice instances on site Sy before removing old
instances on site S,.

Overall, the proposed DMU framework allows a DevOps team to update
microservices through simply giving as input: 1) a desired target architecture
and 2) a chosen strategy. The target architecture defines how microservices
instances are to be spread over the PaaS sites and what are their expected
configuration (attributes values). The strategy determines how to reach the
target architecture such as to preserve some SLA properties.

In the following of this chapter, we will describe in details how the DMU
framework supports such strategy-driven updates. The organization is as
follows. Section 4.1 presents the usage principles of the framework. Sec-
tion 4.2 presents the architectural model of the DMU framework, used to
express a target architecture for a microservice application to update. Sec-
tion 4.3 defines the concept of strategy, and describes an update protocol
integrating such concept. Section 4.4 presents the strategy programming
model. Finally, Section 4.5 addresses the robustness aspect, explaining how
the DMU framework handles faults that may occur at update time.

35

Proposition

4.1 Usage Principles

Three main kinds of users may interact with the DMU framework, reflect-
ing the three main roles involved: the microservice manager, the strategy
programmer and the PaaS connector programmer.

e The microservice manager refers to the DevOps team that uses the
DMU framework to deploy and update microservices on a set of dis-
tributed PaaS platforms. For any microservice to update, the mi-
croservice manager specifies the target architecture along with the
chosen strategy. In the following of this document, we may use indif-
ferently the terms microservice manager or DevOps team.

e The strategy programmer refers to the developer of update strategies.
The DMU framework provides a set of predefined update strategies,
that can be extended over time and/or specialized for the account of
dedicated applications. New strategies may be defined to take into
account new SLA constraints, or to deal with the specificities of a par-
ticular microservice application. Strategies are programmed as Java
classes following some particular programming patterns, that will be
described in the following of this chapter.

e The PaaS connector programmer refers to the person in charge of in-
tegrating new PaaS platforms as back-ends of the DMU framework, in
order to allow updating microservices running on heterogeneous PaaS
platforms. As for strategies, the DMU framework supports a prede-
fined set of PaaS platforms (Cloud Foundry, Heroku), that can be ex-
tended over time. Integrating a new PaaS platform goes through defin-
ing the mapping between the PaaS specific commands and a generic
canonical PaaS interface that is described in the following of this chap-
ter.

Figure 4.1 schematizes these roles. The right side of the figure illustrates
distributed PaaS platforms hosting microservices that the microservice
manager wish to deploy or update with the DMU framework.

From an operational point of view, the microservice manager that wants
to update a microservice application should firstly launch the DMU frame-
work. This can be done on any host as the DMU framework is a stan-
dalone execution unit. The only constraint to care about is that the DMU
framework requires a network connection towards the PaaS sites hosting the
microservices to update.

Through the DMU framework, the microservices manager can invoke
two main commands:

36

Proposition

Strategy Programmers

A

[») PR

o A g ‘

g - = ||

PaaS site A
microservice operations - - -

Q “ pull / push command (PaaS API/CLI) » ‘

1 1 1

Microservices PaaS site B

Manager

Framework NV

‘o “EEE
g)

PaaS site C

PaaS Interface
Programmers

Figure 4.1: Involved roles around the DMU framework (operational view)

e a pull command allowing to get the current architecture of an appli-

cation,

e a push command updating an application towards a given target ar-
chitecture, following a given strategy.

Each time the push command is triggered, an update process is launched.
The microservices manager may then follow the processing of this process,
step by step, if desired. (S)he may observe the evolution of the architectural
state of the microservices. This architectural state is expressed through a
dedicated microservice architecture model, that is presented in the following

section.

37

Proposition

4.2 Architectural Model

This section defines the notion of microservice architecture that is central to
the DMU framework. For simplicity, we simply use the term architecture in
the following of the document. Section 4.2.1 describes how we modelise an
architecture in terms of data-structure. Then, Section 4.2.2 presents the el-
ementary operations allowing to manipulate an architecture data-structure.
Finally, Section 4.2.3 proposes a basic protocol relying on these elemen-
tary operations, allowing a DevOps team to introspect and/or reconfigure a
microservice application.

4.2.1 Data-Structure

Listing 4.1 shows the data structure that models the architecture of a mi-
croservices application. Overall, this data-structure specifies how microser-
vices are deployed on PaaS sites and how they are configured (Listing 4.11).

More precisely, in the given data-structure, the microservices belongs
to an application whose identifier is app;q (we assume that any application
is uniquely identified). Each site architecture corresponds to a Paa$S site,
uniquely identified as well (site;q). A site architecture specifies how to access
the site and which microservices are deployed on the site. Typically, the site
accessInfo contains the url of site endpoint and the user credentials for
accessing the site.

Architecture = (String app;q, Set<Site>);
Site = (String site;q, Set<String attr, String val> accessInfo, Set<Microservice>);
Microservice = (String ms;q, Set<String attr, String val>);

Listing 4.1: Architecture model

A microservice architecture describes a given microservice deployed on
a given PaaS site. We assume that any microservice is uniquely identified
(ms;q identifier). We also assume that the current architectural state of such
microservice can be expressed as a set of (attribute, value) pairs, includ-
ing both PaaS-common and PaaS-specific configuration attributes. PaaS-
common attributes include attributes that we identified as being common
to existing PaaS platforms [36, 35, 34, 32, 40]. These common attributes
mainly correspond to the following ones:

1. name - symbolic name of the microservice.

2. code - link to the place where the code 2 of the microservice can be found.

L appia, siteiq and ms;q respectively identify a microservice application, a Paa$ site,
and a microservice.

2The code here means not necessarily the source code of the microservice. It can be
any package format required to be uploaded to PaaS for deploying the microservice. For
example, in case of a microservice on Kubernetes, the attribute describes the container
image of the microservice.

38

Proposition

3. state - lifecycle state for the microservice:

e creATED: the microservice is created.
e runNING: the microservice is running.

e rarLeD: the microservice is failed.

4. nblnstances - number of instances of the microservice.

Figure 4.2 illustrates an application architecture composed of two mi-
croservices (mj and mg) deployed both on two heterogeneous sites (site;
and sites) and a third microservice ms only deployed on sitey. Notice that
the architecture of the microservice m; is different across different sites (e.g.,
site; and sites) in terms of the attribute value (e.g., the value of instances)
and the attributes definition (e.g., memory on sites).

name: ml

name: ml . .
. . code: https://github.com/usr/ml.git

Codte I‘ltt”pss//glthub.com/usr/ml.glt instances: 3

HStAnCes: state: RUNNING

state: RUNNING

memory:512M

name: m2
code: https://github.com/usr/m2.git
instances: 3

name: m2
code: https://github.com/usr/m2.git

instances: 2
state: RUNNING s
state: RUNNING
sitel memory:512M
name: m3

code: https://github.com/usr/m3.git
instances: 9

state: RUNNING

memory:1G

site2

Architecture

Figure 4.2: An example of microservices architecture

As previously said, the set of key-value pairs describing a microservice is
extensible. Especially, each PaaS solution can extend pre-defined attributes
with additional ones in the model. For example, only the PaaS solution
of sites in the example requires the attribute memory which specifies the
memory quota of each microservice instance, while site; does not require
this information.

A last important point to precise regarding the data-structure modeling
a microservice is that this data-structure is used both to portray the current
and the target architectures of a microservice.

4.2.2 Elementary Operations

To manipulate microservices, the DMU framework relies on the operations
provided by PaaS sites (through their API and/or CLI). Although different

39

Proposition

PaaS platforms provide syntactically different operations, they mostly share

a common semantics. We abstract this semantics through a set of canonical

PaaSOperations allowing to manipulate a microservice architecture. Follow-

ing a CRUD (Create, Read, Update, Delete) approach [71], this canonical

(Listing 4.2) allows to add, get, modify and remove microservices .
Specifically, the canonical operations behave as follows:

e get: returns the architecture of the microservices currently deployed
on the given PaaS site and associated to the application app;q.

e add: deploys a new microservice for the account of the application
appid-

e remove: deletes an existing microservice for the account of the appli-
cation app;q.

e modify: evolves the attributes of a microservice deployed for the ac-
count of the application app;q. This operation takes as input the cur-
rent and target attributes of the microservice to modify.

For each PaaS platform managed by the DMU framework, the PaaS-
specific implementation of this canonical interface (called PaaS connector)
should be defined. Currently, we provide the implementations of the PaaS
connector for the Cloud Foundry, Heroku, and Kubernetes PaaS platforms
in the open-source prototype of the DMU framework [72]. As an illustration,
we explain here the implementation of Kubernetes and Cloud Foundry PaaS
connectors.

Regarding the PaaS Kubernetes, the PaaSconnector interface is in fact
directly mapped on Kubernetes configuration commands: create, delete, re-
place and get, such commands being based on a CRUD approach as our
canonical interface.

Regarding the PaaS Cloud Foundry, it is a bit less direct. For the canon-
ical operations get, add, and remove, Cloud Foundry provides correspond-
ing operations. The operation modify is a bit more complex to implement

interface PaaSOperations{
Set<Microservice> get(String app;q);
int add(String app;4, Microservice m);
int remove(String app;q, Microservice m);
int modify(String app;q, Microservice m, Microservice mnexzt); ¢

}

Listing 4.2: Architecture manipulation (PaaSOperation interface)

“To ensure m and Mmnpez: describe the same microservice, m.id is enforced to be equal
tO Mneqt.id at the beginning of the function.

40

Proposition

because Cloud Foundry provides distinct operations to update specific at-
tribute(s). Therefore, depending on the change to apply on the microservice,
the operation modify requires different Cloud Foundry operations work-
flows. The following pseudo-code (Listing 4.3) shows the implementation
of the modify operation. By comparing the attributes’ value between the
current (m) and desired (mye,¢) microservice architecture, it determines the
sequence of Cloud Foundry operations to process.

CloudFoundryConnector.modify (m, mnest) {

Workflow modifyWF = new SerialWorkflow();

IF (dif(m, mneaxt, code)):
modifyWF.addStep(uploadCode(m.id, mpeqt.code));
m.code = Mpegt.code;
m.state = UPLOADED;

boolean needRecompile = false;

IF (dif(m, mpext, €nv)):
modifyWF.addStep(updateEnv(m, mneat));
m.env = Mpeyt.€NV;

IF (dif(m, mnext, services)):
modify WF.addStep(updateServices(m, mnezt));
M.Services = Mpyext.S€rVices;

IF (needRecompile AND isCompiled(m)):
modifyWF.addStep(recompile(m));
m.state = STAGING;

Set<Route> addedRoutes = mpyeqt.routes \ m.routes;

IF (addedRoutes NOT EMPTY):
modify WF.addStep(addRoutes(addedRoutes));
m.routes = m.routes U addedRoutes;

Set<Route> removedRoutes = m.routes \ mpezt.routes;

IF (removedRoutes NOT EMPTY):
modify WF.addStep(removeRoutes(removedRoutes));
m.routes = m.routes \ removedRoutes;

IF (dif(m, mnezt, nblnstances)):
modifyWF.addStep(scaleNbInstances(m, mnezt));
m.nblnstances = Mmneqz+.nblnstances;

IF (dif(m, mnext, state)):
modifyWF.addStep(updateState Automaton(m, mnext));
m.state = mpeqzt.state;

return modify WF;

Listing 4.3: CloudFoundry modify operation

4.2.3 Introspection and Reconfiguration of a Microservice
Application

Relying on the PaaSOperations interface, the DMU framework defines two
main introspection and reconfiguration functions:

o introspect(app;q, List < Site >): retrieve the current architecture of
a given microservice application deployed on the given PaaS sites.

e reconfigure(app;q, arch): reconfigure a given microservice application
towards the given architecture (arch). This reconfigure function is

41

Proposition

strategy-unaware, meaning that it reconfigures the application towards
the given architecture arch through the most direct path, without
trying to protect any SLA properties.

The function introspect is implemented as shown in Listing 4.4. It re-
trieves the currently existing microservices on each site by calling the get
function of the PaaSOperations interface.

introspect(app;q, List<Site> sites) {

// create an empty architecture model

Architecture Acurrent = new Architecture();

// get the microservices on each site

for (PaaSSiteAccess site : sites) {
// get the PaaSOperation implementation class based on the type of site
PaaSOperations op = Class.forName(site.type).newlnstance(site);
// retrieve the microservices currently managed by a site
List<Microservice> microservices = op.get(app;q);
Acurrent.add(site, microservices);

return Acurrent;

Listing 4.4: Core introspect protocol

The function recon figure is defined as shown in Listing 4.5 3. For each
site, the reconfigure function firstly computes an architectural diff [54]
between the target and current architecture, determining the set of mi-
croservices to reconfigure (i.e. added, removed, or modified). For each mi-
croservice to reconfigure, the corresponding canonical operation (from the
interface PaaSOperation) is added to a per-site workflow. These workflows
are finally processed, on all sites in parallel.

Any canonical operation that is processed on a given PaaS site is trans-
lated into its PaaS-specific version. For instance, let’s consider the usecase
illustrated by(Figure 4.3). To upgrade the microservice m to the next code
version (modeled as m’) deployed on two PaaS sites S, (Cloud Foundry)
and S, (Heroku), the recon figure function behaves as follows:

e First, for the site S,, it compares the microservices on S, in the model
of the target architecture (i.e., m’) and the current architecture (i.e.,
m); it finds that changeSet contains only a modified microservice.

e Since changeSet does not contain any added or removed microservices,
it only adds the operation CloudFoundry.modify(m,m’).

e The previous steps are executed similarly for Sp, adding the operation
Heroku.modify(m,m’).

3Notice that, when processing a get operation, the concerned PaaS may be processing
another operation. For consistency purposes, a PaaS connector implementation should
ensure to get a stable snapshot of the microservice architecture (i.e., wait for in-processing
operations to finish).

42

Proposition

reconfigure(Architecture Acurrent, Architecture Atarget) {

// create an empty parallel workflow to store the reconfiguration workflow

Workflow reconfigure = new ParallelWorkflow();

// get the reconfiguration workflow for each site

for (PaaSSiteAccess site : desired Architecture.listPaaSSites()) {
// create an empty parallel workflow to store the workflow for reconfiguring the site
Workflow reconfigSite = new ParallelWorkflow();
// compare the microservices on the site in current and target architecture
ChangeSet changeSet = diff(Acurrent[site], Atarget|site]);
// get the PaaSOperation implementation class based on the type of site
PaaSOperations op = Class.forName(site.type).newlInstance(site);
// call the add operation for all added microservices
for (Microservice addedMs : changeSet.addedMs()) {

reconfigSite.addStep(op.add(addedMs));

// call the remove operation for all removed microservices
for (Microservice removedMs : changeSet.removedMs()) {
reconfigSite.addStep(op.remove(removedMs));

// call the modify operation for all modified microservices
for (Entry<Microservice, Microservice> modifiedMs : changeSet.modifiedMs()) {
reconfigSite.addStep(op.modify (modifiedMs.getKey(), modifiedMs.getValue()))

)

// add the site reconfiguration workflow to the entire reconfiguration workflow
reconfigure.addStep(reconfigSite);

// execute the reconfiguration workflow
reconfigure.exec();

Listing 4.5: Core reconfigure protocol

e These two operations are added to the workflow recon figure.

e During the execution of the workflow, the CloudFloundry and Heroku
connectors respectively invoke the sequence of PaaS specific operations
corresponding to the modify operation.

e Finally, the reconfigure function waits for the result of these PaaS
operations and returns.

Thus, so far, the DMU framework provides an introspect and a reconfig-
ure operations. One can ask why updating a microservice application is not
just reconfiguring the application towards a desired target architectures, as
shown in Listing 4.6. We call such update as a strategy-less update (shown
in Figure 4.4). The reply is the following: reconfiguring a microservice appli-
cation relies on processing add, remove and modify canonical operations on
the concerned microservices. Regarding the modify operation that allows to
change the configuration of a running microservice m, most PaaS, including
Cloud Foundry and Heroku, imply to follow the following three main steps:

e (1) stopping m (m should indeed be stopped before updating its code),

e (2) uploading the code of m/,

43

Proposition

m
name: m
code: vl.zip

siteq (CloudFoundry)

recon figure

m
name: m
code: vl.zip

sitey(Heroku)

m/

name: m
code: v2.zip

siteq (CloudFoundry)

m/

name: m
code: v2.zip

sitep(Heroku)

Current Architecture Target Architecture

Figure 4.3: An example recon figure for upgrading microservice code

e (3) starting m/'.

Such processing, taking several minutes in average (because of the code
downloading), introduces a significant downtime for the updated microser-
vice m. To upgrade m toward m’ without downtime, the proposed way
consists in using strategies (presented in section Section 4.3).

push(Architecture Atarget) {
// retriving current architecture of the app app;q
Architecture Acurrent = introspect(Atarget.app;q, Atarget.sites);
// updating the app app;q towards Atarget
reconfigure(Acurrent, Atarget);

}

Listing 4.6: Strategy-less update protocol

R — —_ —_ = —

" current architecture 7target architecture |

_reconfigure

strategy-less update

Figure 4.4: The Overview of Strategy-less Update (architecture-based)

44

Proposition

4.3 Strategy-driven Updates

This section presents how the DMU framework takes into account the need
to protect SLA properties when performing an update, through the concept
of strategy. It is organized as follows. First, Section 4.3.1 introduces the
principles of "strategy-driven” updates. Then, Section 4.3.2 presents the
implementation of an update protocol taking into account strategies.

4.3.1 Update Process Overview

A strategy aims at allowing to update microservice applications while pro-
tecting their SLA properties throughout the update process, as illustrated
in Figure 4.5.

— — 7 7 — — — — — — — — — - —
|current architecture target architecture |
strategy-less update
A,l— — — — — = == — —» A

| - |
- N - 4 _ _

~ — — — — — — — 7 7 7/

< intermediate architectures | strategy-driven
| update

A > A A

Figure 4.5: Update Process Overview

To this end, a strategy determines a path of intermediate architectures
that will be followed to reach the target architecture while protecting some
SLA properties (e.g., availability, performances, resource usage). Let’s con-
sider that the strategy computes a path Iy, I, .., I, of intermediate archi-
tectures, the last intermediate architecture I,, matching the target archi-
tecture. The DMU framework will then reconfigure the microservices in n
steps, reaching the next intermediate architecture at each step.

In order to give a concrete example of a strategy-driven update process,
let’s consider a previously mentioned update case consisting of migrating
some microservices from a PaaS site to another. Figure 4.6 shows the differ-
ent paths of intermediate architectures corresponding to various strategies
that can be used to process such update. In this figure, large boxes show
PaaS sites (named site; and sites), and the microservices deployed on them.

e Using a RemoveAdd strategy (Figure 4.6a): This strategy minimizes
resource consumption. The microservices are firstly removed to get
to the intermediate architecture Ay, then deployed on the new site to
arrive at the target architecture.

e Using a AddRemove strategy (Figure 4.6b): This strategy favors ser-
vice availability. Until the microservices arrives at the architecture A}

45

Proposition

Acurrent A1 Atarget
—»
site1 site2 site1 site2 site1 site2

(a) remove then create (favor frugality)
A1 Atarget

5
] T [

site2 site1 site2

Acurrent

.

site1

E.
N —_
H.

site1 site2

(b) create then remove (favor availability)

Acurrent Atarget

m1 m1

m2 m2

site1 site2 site1 site2

(c) create and remove in parallel (favor speed)

Figure 4.6: The example of migrating microservices m; and mo from site;
to siteg with three strategies

where the microservices are co-running on both two sites, they are not
removed from the old site.

e Using a Straight strategy (Figure 4.6¢): Besides the two presented
strategies, if the DevOps team prefers to finish the migration as soon as
possible, and cares less about the consumed resource and the imposed
downtime during the update, it can choose a Straight strategy to
deploy microservices on the new site while removing them on the old
site in parallel.

Notice that the DMU framework allows to launch an update process in a
preview mode, simulating an update without applying it to the real system.
The preview mode can help the DevOps team to decide between different
strategies. The strategy programmer can also use the preview mode to
debug and test the strategy.

4.3.2 Strategy-driven Update Protocol

With the previously presented introspect and reconfigure functions, the
DMU framework evolves a given application toward a given target in the
most direct way, without going through intermediate architectures. In other

46

Proposition

words, with only introspect and recon figure functions, only strategy-less
updates can be processed by the DMU framework.

Taking into account strategies goes through providing a dedicated con-
cept allowing to define them. Concretely, we modelize a strategy as a pro-
grammable unit providing one main feature: computing the next interme-
diate architecture to reach in order to update a microservice application
towards a given target. As we place our framework in an object-oriented
environment, a strategy is naturally mapped on a class defining a next
method:

e Strategy.next(Acurrent, Atarget): computes the next intermediate ar-
chitecture to reach based on the current architecture of the application,
the desired target architecture (A¢qarget)

To evolve from the current architecture to a desired target one —while
conforming to a given strategy—, the DMU framework invokes next and re-
configure sequentially and iteratively (Listing 4.7 4). In other words, the
update protocol is now defined as a fiz-point parameterized by a strategy.
At each step, the fix-point requests the strategy to compute the next ar-
chitecture to reach, then reconfigures the microservices towards this next
architecture, and repeat these two steps until reaching the target architec-
ture.

push(Architecture Atarget, Strategy strategy) {
Architecture Acurrent, Anext;
Acurrent = introspect(Atarget.app;q, Atarget.sites);
// fiz-point, updating app;q towards Atarget
while (Acurrent.differ(Atarget)) {
// compute next intermediate architecture Anext
Anext = next(Acurrent, Atarget, strategy);
if (Anext == null) exit(”target unreachable”); *x
// to reach the next architecture Anext
reconfigure(Acurrent, Anext);
Acurrent = introspect(app;q, Atarget.sites);

Listing 4.7: Strategy-driven update protocol (fix-point)

There is one main reason why the update protocol is defined as a fix-
point instead of calculating the whole sequence of intermediate architectures
at the beginning. This reason is to allow the DevOps team to modify the
strategy and/or the target architecture at each step. This feature may be
especially useful when considering failures occurring at update time (see
Section 4.5).

Similarly to the update protocol, the preview protocol (Listing 4.8) also
invokes the next function iteratively for computing the next architecture for

“The line tagged with ** represents an error case that is discussed in Section 4.4.1.

47

Proposition

arriving at the final architecture Asq,ger. However, the preview protocol ac-
cumulates the sequence of architectures (archSequence) instead of invoking
the reconfigure function, so that effective microservices are not impacted.
The returned archSequence allows to visualize the path of intermediate
architectures that will be followed when processing the update.

List<Architecture> preview(Architecture Ainitial, Architecture Atarget, Strategy
strategy) {
Architecture Acurrent, Anext;
List<Architecture> archSequence;
Acurrent = Ainitial;
archSequence.add(Acurrent);
// fiz-point, calculating intermediate architectures towards Atarget
while (Acurrent.differ(Atarget)) {
// compute next intermediate architecture Anext
Anext = strategy.next(Acurrent, Atarget);
if (Anext == null) exit(”target unreachable”); s
// add the Anext into the sequence of architectures
archSequence.add(Anext);
Acurrent = Anext;

}

return archSequence;

Listing 4.8: Strategy preview protocol

Regarding the termination, the update fix-point (Listing 4.7) stops either
when the target architecture has been reached, or when the strategy has
no more changes to process. In case the target has not been reached °,
the DevOps team may simply restart an update with an adapted strategy
and/or target architecture (explained in Section 4.5).

In the case where a strategy is badly programmed, especially when transi-
tions generate opposite changes on the architecture, the fix-point may never
terminate. To manage such case, the DevOps team can pre-check the ter-
mination of an update by using the preview mode.

5This case corresponds to the line tagged with ** in Listing 4.7.

48

Proposition

4.4 Strategy Programming

Section 4.4.1 presents the programming model allowing to program strate-
gies. We used this programming model to provide a set of predefined strate-
gies with the proposed DMU framework, some of these strategies being
presented in this chapter as a didactic case. In particular, Section 4.4.2 illus-
trates the strategy programming model through the well-known BlueGreen
strategy.

4.4.1 Strategy Design

A strategy provides one main feature: computing the next architecture to
reach according to the current and target architectures.

To achieve this, the DMU framework naturally models a strategy as an
ordered list of transition elements (described in Listing 4.9). A transition
manages an elementary update that may participate in an overall update
process. To compute the next intermediate architecture, a strategy processes
its transitions incrementally, until finding one having changes to apply on
the current architecture.

abstract class Strategy {
// List of transitions (to define in subclasses)
List<Transition> transitions = new List();

// compute the next intermediate architecture to reach
Architecture next(Architecture Acurrent, Architecture Atarget) {
// process transitions until finding one having changes
// to perform on the current architecture
for each Transition tr in transitions {
Architecture Anext = tr.process(Acurrent, Atarget);
if (Anext != null) return Anext;
}
return null;
}
}

interface Transition {
// deliver a (not null) next architecture if the transition has changes to process
Architecture process(Architecture Acurrent, Architecture Atarget);

}

Listing 4.9: Strategy model

Pragmatically, a transition provides a process() method that 1) deter-
mines if its elementary update is relevant to get closer (i.e., go forward)
to the target and 2) delivers a next architecture in accordance. For in-
stance, a transition T'add managing the adding of microservices behaves as
follows (Listing 4.10). Comparing the current and target architectures, it
firstly determines if new microservices have to be deployed. If no, it simply
returns null. If yes, it delivers a next architecture containing the current
microservices plus the new microservices to deploy. Symetrically, a transi-

49

Proposition

tion Tremove determines if there are microservices to undeploy. If yes, it
delivers an architecture containing the current microservices minus those to
undeploy.

class AddRemoveStrategy extends Strategy {
// manages addings and removings of microservices,
// processing addings then removings
transitions = new List(Tadd, Tremove);

}

class Tadd implements Transition {
Architecture process (Architecture Acurrent, Architecture Atarget) {

// get microservices added in Atarget compared to Acurrent

List<Microservice> addings = Atarget.minus(Acurrent);

if (addings != null) {
// return an architecture including current microservices plus the ones to add
Architecture Anext = Acurrent.clone();
Anext.add(addings);
return Anext;

} else return null;

}

class Tremove implements Transition {
Architecture process (Architecture Acurrent, Architecture Atarget) {

// get microservices removed in Atarget compared to Acurrent

List<Microservice> removings = Acurrent.minus(Atarget);

if (removings != null) {

// return an architecture including current microservices minus the ones to remove
Architecture Anext = Acurrent.clone();
Anext.remove(removings);
return Anext;

} else return null;

}

Listing 4.10: Implementation of the example strategy AddRemove and its
transitions

Figure 4.7 illustrates using the AddRemoveStrategy (Listing 4.10) to
update an elementary application composed of two microservices (M, My)

deployed on a site S,. The target architecture only contains the microservice
M3 on Sp.

current architecture intermediate architecture target architecture
M1 transition M1 M3 transition M3
Tadd Tremove
M2 —» || m2 —
Site Sa Site Sb Site Sa Site Sb Site Sa Site Sb

Figure 4.7: Update case with AddRemove strategy

e At the first step, the update fix-point processes the first transition
(T'add) of the strategy, that delivers the intermediate architecture (A)

20

Proposition

composed of the current microservices plus M3 deployed on Sy. The
application is then reconfigured towards this intermediate architecture

A.

e At the second step, the fix-point processes again the transition Tadd,
that has no more changes to perform. It then processes the next tran-
sition (Tremove), that removes microservices not appearing in the
target architecture (M; and Ms on S,). The application is then recon-
figured towards this architecture and the fix-point terminates because
the target has been reached.

Notice that one can define different strategies by changing the order of
transitions. In the previous update case, the reverse sequence of transitions
(i.e., (Tremove,Tadd) instead of (Tadd,Tremove)) would generate a dif-
ferent path of intermediate architectures, removing M; and M> first, then
adding Ms3.

Notice also that transitions may apply changes over several steps of the
fix-point. Let’s consider a transition scaling up microservices horizontally
(i.e., growing their number of instances) as follow. For each microservice
to scale, new instances should be deployed and started one by one °. Each
time it is processed, this transition returns a next architecture in which
every microservice to scale has one more instance. When all microservices
reach their target number of instances, it simply returns null.

4.4.2 Didactic case: the BlueGreen Strategy

As a representative case, we explain how to program the BlueGreen strategy
that updates an application without downtime — through installing, starting
and testing the new version (the green one) before uninstalling the current
version (the blue one). Once the green environment is ready, incoming
requests should be routed to it.

We define such strategy through a simple sequence composed of four
transitions (Listing 4.11).

class BlueGreen implements Strategy {
List<Transition> = new List(Tadd, Tupdate, Tswitch, Tremove);
}

Listing 4.11: BlueGreen Strategy

These transitions perform the following changes.

e Tadd: deploys microservices defined in the target architecture but
undefined in the current architecture.

5This pattern is required for microservices that do not support having several instances
started concurrently.

51

Proposition

e Tupdate: deploys the green version of the microservices that are up-
dated in the target architecture (associating them to a temporary route
(url) for testing purposes).

e T'switch: switches from temporary route to regular route for green
microservices deployed at the previous step.

e Tremove: removes microservices entities that are undefined in the
target architecture but defined in the current architecture.

The implementation of the transitions T'add and Tremove are quite sim-
ilar to the code given in Listing 4.10. We show hereafter the code of the
transitions Tupdate (Listing 4.12) and T'switch (Listing 4.13).

class Tupdate implements Transition {
Architecture process(Acurrent, Atarget) {
Architecture Anext;
// get microservices updated in At compared to Ac
List<Microservice> updates = Ac.updated(At);
if (updates != null) {
Anext = Ac.clone();
for each Microservice m in updates {
// deploy green version for the microservice to update
Microservice mgreen = m.clone();
mgreen.set(’route”, mt.get(”temporary—route”));
mgreen.set(’role”, “green”);
Anext.add(mgreen);

}

return Anext;
} // end of process method

Listing 4.12: Implementation of the transition Tupdate

class Tswitch implements Transition {
Architecture process(Acurrent, Atarget) {
Architecture Anext;
// get green versions of microservices in current architecture
List<Microservice> greens = Ac.greens();
if (greens != null) {
Anext = Ac.clone();
for each Microservice m in greens {
// assign the regular route to green versions of microservices
m.set(”route”, m.get(”regular—route”));
m.set(”role”, 7blue”);

}

return Anext;
} // end of process method

Listing 4.13: Implementation of the transition Tswitch

To illustrate how the DMU framework process an update with the imple-
mented BlueGreen strategy, let’s consider the case described in Figure 4.8.

92

Proposition

To upgrade M; towards M{ and remove M3, the DevOps team makes the
following request to the DMU framework: push(A;, BlueGreen).

removed
m/crose/wces
initial architecture architecture 1 architecture 2 N target architecture
| M1(r,2) | M1(r,2)| | M1(r,2) M1(r,2)|
|Mm| = [ve0c0] [reoc2)]
D[|M2e| | [Metx) (stop 2| 20 1) ()S,e,,3- (x,2)
—> —> —> ||
M3(y, 1) 1' M3(y,1) M1'(r,2)
v,
MI't2)}) W@E M1'(r2)
sa sb fSa_) sa
added mlcroser\//ces route c\hanged
associated to temporary route to regular one
The microservice M is deployed, Highlight a change compared
Legend: | M(xy) | itis associated to the route x to precedent architecture
and it has y instances running

Figure 4.8: Processing the transitions of the BlueGreen strategy

The DMU framework starts by getting the current architecture (let’s call
it A.) for the application A and enters the update fix-point. It processes the
first transition Tadd, that has no changes to perform as A; does not include
additional microservices compared to A.. It then processes the second tran-
sition (T'update) that delivers the architecture 1 shown in Figure 4.8. In this
architecture, My is deployed both in its current version of code and in its
new (green) version (M7). Then, the framework reconfigures the application
towards architecture 1 by calling the add operation of the two sites (S,and
Sp) in parallel. Notice that external client requests continue to be routed to
M so far, as M is assigned a temporary route.

At the second step of the fix-point, transitions are processed again. The
first and second transitions have no more changes to perform. The third
transition (T'switch) computes the architecture 2 where M is now associated
to the regular route, and the old version of M; has been removed. The
recon figure protocol calls the modify operation (changing the route of Mj)
on the two sites to deliver architecture 2.

Once the application is reconfigured towards architecture 2, the frame-
work restarts processing the transitions. Only the last transition (T'remove)
has some changes to process, producing the architecture 3. The recon figure
protocol calls the remove operation for M; and M3 in parallel to deliver ar-
chitecture 3. Finally, the architecture 3 matches the target, leading to the
completion of the update fix-point.

93

Proposition

4.5 Update Robustness

In this section, we consider faults occurring during an update process. Sec-
tion 4.5.1 presents the core principles underlying the management of such
faults. Section 4.5.2 details various types of faults that may impact an up-
date and how to handle such faults. Finally, Section 4.5.3 summarizes how
the DMU framework helps the DevOps team to handle each type of faults.

4.5.1 Core principles

Automating the update of microservice applications requires to consider
the faults that may occur during an update. Before explaining how we
address faults, let’s recall that nowadays, there are millions of DevOps teams
that (manually) perform daily updates of their microservice applications,
through the Command Line Interface provided by PaaS sites. To process
such updates, DevOps teams send several commands to one or more PaaS
sites, each command being entirely processed on a PaaS site before the next
command is sent.

During such manual update processes, faults may occur: a microservice
may fail to process some command, a PaaS site may crash, the network
connecting a PaaS site to the host used by the DevOps team may face some
disconnection. However, Paas$ sites follow a fail-stop failure model [73] that
enforces the consistency of the microservices they host. This means that
once a PaaS site is up and reachable, the microservices it hosts can be
introspected and reconfigured. Thus, if a PaaS site crashes during an update,
it should be relaunched, but once this is done, the DevOps team can always
issue the necessary CLI commands to pursue the update.

Going back to our framework, we do not provide a better level of robust-
ness regarding faults, we just rely on the consistency property ensured by
PaaS sites. In other words, as with PaaS sites, when using our framework,
DevOps teams have the guarantee that their microservice applications stay
consistent, thereby manageable. Nevertheless, if we do not provide a better
level of robustness, the fact that we automatize updates allows to simplify
the work of the DevOps team in the presence of faults. We will explain how
this is achieved in the next sections.

Going one step further, it is important to understand that the consis-
tency property provided by PaaS sites allows to leverage a kill-restart
capability at the level of our framework. Indeed, whatever the moment
when an update is interrupted, either due to a fault or due to a voluntarily
interruption from the DevOps team, a new update process can always be
started. Overall, the kill-restart capability relies on the following three main
properties.

e PaaS consistency. Whatever the current architectural state for a mi-
croservice application, it is a regular state for the PaaS sites hosting

54

Proposition

it, meaning that microservices can always be introspected and/or re-
configured.

o Stateless framework. The DMU framework does not keep any
model@runtime for the managed microservices, a data-structure that
is especially difficult to maintain in the presence of faults. The rea-
son for the difficulty is that the data should stay consistent with the
effective microservices architectures. Instead, the DMU framework
dynamically gets the current architecture of microservices to update,
using introspection capabilities provided by PaaS sites.

o Update idempotence. Following an architecture-based approach, tran-
sitions compare the current and target architectures to determine the
changes to perform. Once a change has been applied, the DMU frame-
work does not redo it again. Thus, restarting an update that was
previously issued does not cause side effects.

Notice that in any case, the DevOps team is free to either pursue a
failed update update towards the initial target through the initial strategy,
or change the target and/or the strategy. Changing the target architecture
offers a way to fix some microservice configuration. It also offers a way to
roll-back an entire update, by defining the new target architecture as the
initial architecture that the microservices had when launching the update.
Figure 4.9 illustrates an update that fails, the DevOps team deciding to
pursue the update with a new strategy S’ and a new target architecture At’.

(1) push(At, S)

Tu Tv

Figure 4.9: Management of failures at update time by adapting the strategy
and the target

Upon a failure, the DevOps team may intend to pursue the previously
interrupted update towards the given target. To this end, it may just re-
issue the initial push command if the used strategy is versatile (Figure 4.10a).
We consider a strategy as versatile if it does not make assumptions on the
initial architecture of the microservice application to update. That is, the

95

Proposition

strategy accepts any architecture as the initial architecture of the update.
A typical versatile strategy is the Straight one, that updates a microservice
application towards a given target through the most direct path, without
going through intermediate architectures.

Let’s consider a fault occurring during the transition between the archi-
tecture A; and the architecture A;11. If the used strategy is not versatile,
the DevOps team may then issue a push command with the Straight strat-
egy (a versatile one) and the next architecture (4;41) given as target (Fig-
ure 4.10b). 7 Once done, the DevOps team may then re-issue the initial
push command, with the initial strategy and the initial target architecture
given as input.

(1) push(At, S)

(2) push(At, S)

a) in case of a versatile strategy s

(1) push(At, S) (3) push(At, S)

v éwtrategy S

T Tj Tk T
; Al *A—b Arl ——» . ——— B Ak > At
| 5

(2) push(Ai+1, Straight)
b) in case of a non-versatile strategy s

Figure 4.10: Management of failures at update time by pursuing the inter-
rupted update

4.5.2 Identification of faults

Before classifying the faults that may occur during the update, we recall
here the overview of the DMU framework (Figure 4.11). Three actors are
involved during the update: the DevOps team, the DMU framework, and the
PaaS sites. During the update, the DMU framework translates the DevOps
team’s commands into the operations sending to the PaaS sites which host
the microservices.

Based on this operational architecture, and following the literature on

"This next architecture can be retrieved from the DMU framework execution log.

o6

Proposition

PaaS
connectors
~ Framework PaaS
R - = .
strategies

DevOps team

DMU Framework

Figure 4.11: The operational architecture of the DMU Framework

faults [74], the faults to consider can be classified into three non-exclusive
groups %

e development faults: we consider here the software faults introduced
during the development of the DMU framework (such as null deref-
erences), leading to either an interruption or an exception raising at
execution time.

e physical faults: we consider here the faults originated in hardware (in-
cluding the framework servers, the PaaS servers and network devices),
such as electric power outage or hardware damage.

e interaction faults: we consider here the faults originated outside the
DMU framework, including the user mistakes (e.g., an erroneous input)
and faults propagated from the external components which interact
with the DMU framework (e.g., a PaaS site failure).

All these kinds of faults force an update to be interrupted. When an
update is interrupted due to faults, the following steps are required to recover
the faults:

1. identify the fault origin
2. fix the faulty components (hardware and software)

3. repair the failed update to evolve the microservices architecture to the
target
Development faults

This section discusses the development faults of the DMU framework. The
DMU framework implementation contains three parts: the framework core,

8 According to the literature [74], the faults can be classified from eight criteria. In all
the 256 combined fault classes, there are 31 likely combinations. All these combined faults
belong to three overlapping groups: development faults, physical faults, and interaction
faults.

o7

Proposition

the PaaS connectors, and the strategies implementation. The framework
core is made of code that is stable, thus we consider that this code can be
checked and verified. The PaaS connectors evolve with the PaaS API, which
is also usually stable (i.e., backward-compatible). Thus, we believe that it is
reasonable to assume a bug-free implementation of the framework core and
the PaaS connectors.

As the part most probably to be customized by the DevOps team, the
strategy implementation is not fully trusted. The following part of the
section focuses on presenting how the DMU framework helps to handle the
software faults in the strategy implementation.

During the development of a strategy, the strategy programmer can
take advantage of the preview mode (Listing 4.8) provided by the DMU
framework to test the correctness of the strategy. The preview mode can
take mock inputs (i.e., initial and target architectures) to calculate the out-
put (i.e., a sequence of intermediate architectures) produced by a strategy.
Therefore, the strategy programmer can test the strategy by simply speci-
fying the expected intermediate architectures for each typical case of initial
and target architectures. The more inputs covered in the test, the fewer
bugs hidden in the delivered strategy.

During the execution, the DMU framework handles an update request
by iteratively calculating and applying the next intermediate architectures
until reaching the target (Listing 4.7) as presented in Section 4.3.2. At each
step, the strategy is in charge of producing the expected next architecture.
A badly programmed strategy will either :

e raise an exception because it performs a bad action (e.g., null pointer
exception) or lead to an interruption of the running update process
(e.g., division by zero). In this case, the ongoing update is automati-
cally stopped.

e produce an incorrect intermediate architecture, that cannot be applied
by PaaS sites (e.g., the architecture contains two microservices with
duplicate id). This invalid architecture is automatically detected by
PaaS sites while applying the architecture.

e produce an endless sequence of intermediate architectures. This case
may be automatically detected by the framework by processing the
preview protocol (Listing 4.8) at the beginning of each update request.
Moreover, an update request will be automatically stopped if it lasts
more than a given delay, if such delay is given by the DevOps team °.
In addition, the maximum number of intermediate architectures can

also be given.

9The timeout value is configurable for each update request.

o8

Proposition

When a strategy is identified as having an erroneous behavior while pro-
cessing a given update, the update is automatically stopped and, thanks to
the kill-restart capability, the DevOps team is invited to restart the update
with an adapted strategy and/or target architecture.

In summary, during the development, the preview mode of the DMU
framework facilitates the debug of the strategy implementation. During the
execution, the DMU framework also helps to detect the software flaws of
strategies by catching the exceptions and pre-checking whether the speci-
fied target is attainable for the strategy. The framework follows a fail-fast
principle [75] once detected any faults. That is, the framework stops the
execution as soon as any unexpected error occurs. A stopped update can
then be pursued through the kill-restart capability of the DMU framework.

Physical faults

This section discusses the physical faults during the update in terms of
their types, their detection, and their repair. Physical faults encompass
faults that can occur at any hardware involved in the update: the PaaS
infrastructure, the DMU framework infrastructure, and the network
connecting the framework to the PaaS sites. Based on the location of the
faults with respect to the system boundary, such faults can be classified
into two groups: external faults and internal faults (Figure 4.12). External
faults originates outside of the framework (i.e., at PaaS sites or at the
network connecting the framework to the PaaS sites). Internal faults arise
inside the underlying infrastructure of the DMU framework.

‘ I
I ‘ |
\ B v
| X Paa$ site A |
\ ’ T T T R
,-:l:jfﬁ'," e \
‘ ‘ network S B S
| | Paas$ site B |
‘ Framework ‘ ‘ :; ; :; ‘
| X A |
R | ‘ - :aaisiteﬁ L
internal system external systems

Figure 4.12: The classification of physical faults based on the location

To deal with physical faults, the DMU framework should firstly detect
them. As previously said, PaaS sites are assumed to follow a fail-stop failure
model [73], where any fault occurring at a PaaS site P leads to automatically
stopping PS while ensuring the consistency of the micro-services P manages.

99

Proposition

At the level of the framework, PaaS site faults are detected through using
timeouts when issuing PaaS commands. Network faults are also detected
through timeouts.

Regarding internal faults, we assume as well that the DMU framework
follows a fail-stop failure model. Therefore, internal faults obviously cause
the framework execution to be interrupted.

To recover from such faults when they occur at update time, the DevOps
team needs to relaunch and continue the update process, relying again on
the kill-restart capability of the DMU framework.

Interaction faults

Interaction faults are faults which occur at the elements interacting with the
DMU framework during the update. As shown in Figure 4.13, an update
process involves three actors: the DevOps team, the DMU framework, and
the PaaS sites. The DevOps team issues the update command to the DMU
framework. The DMU framework translates the update command into a
sequence of PaaS operations. The PaaS sites apply the PaaS operations
requested by the DMU framework. The interaction faults include the failures
of the external systems (i.e., PaaS sites) and the mistakes of the user (i.e.
the DevOps team).

~
Atarget, strategy PaaS operations
Q “ > F DMU K P —_p| PaaS
ramewor sites

DevOps team

Figure 4.13: Involved software components in an update command

The failures of PaasS sites caused by hardware faults (i.e., external phys-
ical faults) have already been discussed in Section 4.5.2. The user mistakes
are the operational mistakes conducted by the DevOps team during the up-
date. These mistakes include the harmful human actions and the erroneous
inputs.

o Harmful human actions are the DevOps team’s actions which cause
the update to be interrupted before reaching the target. These actions
include starting or stopping the update command at the wrong time.
In practice, it corresponds to the scenario of concurrently updating a
microservice or accidentally stopping an ongoing update process.

Notice that the detection of concurrent updates is not under the charge
of the DMU framework. In practice, each microservice is managed by
a specific DevOps team, which has its proper operator in charge of
updating the microservice. Therefore, the organization and the op-
erational disciplines of microservices can avoid the concurrent access.
Regarding the harmful action of stopping an unfinished update, it does

60

Proposition

not require the extra detection, as the framework execution is already
stopped.

Overall, to repair the faults caused by harmful actions, a DevOps team
simply needs to re-issue the same update command.

e The user inputs include the target microservices architecture and the
strategy choice. Therefore, the erroneous inputs includes the following
cases: an erroneous microservices architecture, flawed microservices
codes or configurations, or a wrong strategy choice which does not
deal with the specified update.

Some inputs errors can be detected at the beginning of an update
when processing the preview mode (e.g., an invalid target architec-
ture). Others inputs errors will be detected when processing PaaS op-
erations (e.g., a microservice unable to be started). Such errors leave
the microservices into an intermediate architectural state that does not
correspond to the target architecture. In any case, the DevOps team
can exploit the kill-restart capability to pursue the interrupted update.
Then, there are two possible choices here to pursue the update process.
The first choice is to roll-back to the initial microservices architecture.
In this case, the DevOps team simply specifies the initial architecture
as target in the new update command. For such roll-back update, the
strategy Straight is usually chosen. Otherwise, the DevOps team can
change the strategy and/or roll-forward to a new target architecture.

4.5.3 Summary

The previous analysis involves three criteria of faults: the origin based on
the system boundary (internal or external), the origin phase (development
or operational), and the nature (hardware or software). Figure 4.14 shows
the likely combinations of fault classes. Specifically, the origin of faults
can be classified into three categories(Figure 4.15): the user (A), the DMU
framework (B), and the external systems (C) 1.

All these faults eventually cause the interruption of the update !, let-
ting the updated application in an arbitrary architectural state, although
consistent.

The DMU framework helps the DevOps team to repair these faults
through its kill-restart capability. The faults at the external systems (#3,
#4) and the hardware faults at the DMU framework (#2) can be repaired
by re-issuing the same update command (presented in Section 4.5.2 and Sec-
tion 4.5.2). Regarding the software faults at the DMU framework (#1), we
concentrate on discussing the faults in the strategy implementation, which

10We separate the user from the external system, because the faults caused by the
user-made mistakes usually requires specific repair methods (i.e. change user inputs).
" The faults detection is presented in the previous detailed analysis.

61

Proposition

Faults
system boundary : inte|rnal exte-|rnal
]
originating location : DMU fra|mework external systems user
ﬁlﬁ
originating phase : development operational opera|ti0nal 0pera|tional
]

nature : software hard|ware hardware software soft|ware

#1 #2 #3 #4 #5

Development Faults Physical Faults Interaction Faults

Figure 4.14: The classes of combined faults

can be repaired by re-issuing the update command with an alternate strategy
(presented in Section 4.5.2). In terms of the faults caused by user mistakes
(#5), depending on the fault reason (actions or inputs), it can be repaired
by resuming, rolling-back, or rolling-forward the update (presented in Sec-
tion 4.5.2). It is important to notice that all these repair processes can be
applied by re-issuing another update command with the appropriate target
architecture.
A B C

Qe
v -
DevOps team

(user)

network

DMU Framework PaaS sites

internal system external systems

Figure 4.15: Origins of update faults

To sum up, whichever the type of faults, after it triggers the update
to be interrupted, the DevOps team can exploit the kill-restart capability
to repair the failed update. In the overall process of faults recovery, the
faults still need human intervention to identify the fault origin, fix the error
(e.g., correct the execution environment or the update command input),
and decide the repair method. Once this is done, the DevOps team just
has to relaunch the update process without questioning oneself. Due to
the idempotency property, changes that have already been processed will
not be processed again, and changes that have not yet been processed will
now be processed, unless additional faults occur in which case the same

62

Proposition

repair process will be applied again. This is how the DMU framework helps
DevOps team to manage faults.

By comparison, when DevOps teams process manual updates and face a
fault, they have to determine what changes have already been processed and
compute what are the additional changes that need to be processed to reach
the given target architecture. As the update of multiple microservices on
multiple PaaS sites usually contains multiple operations executed in parallel,
such manual repairs are exhausting and error-prone.

63

Chapter 5

Evaluation

Contents
5.1 SLA protection 65
5.1.1 Lizard application 65
5.1.2 Account application 68
52 Robustness 0 00000 70
5.2.1 Network faults 72
5.2.2 Update process faults 74
5.2.3 Erroneous strategy 75
5.2.4 Microservice faults L. 78
53 Easeofuse00, 79
5.3.1 Programming Strategies 80
5.3.2 Updating Microservices 81
5.3.3 Comparison with an imperative approach 83

This chapter evaluates the proposed DMU framework from three aspects:
the SLA protection, the robustness, and the ease of use.

64

Evaluation

5.1 SLA protection

This section reports on how the DMU framework protects SLA constraints
through two use-cases: a production microservices application Lizard and
an open-source microservices application Account.

5.1.1 Lizard application

Lizard is a cross-canal order capture application composed of four microser-
vices (Shop Front, Catalog, Eligibility and Basket). Figure 5.1 shows the
architecture of Lizard. The application is about 10000 lines programmed
in Java / Angular.

REST
ar

Catalog
Service

Mobile app

REST
#1 | Eligibility
- Service

Browser ; .
REST

AR Basket

Service

Figure 5.1: The architecture of the use case Lizard

We use the DMU framework to update a complete clone of Lizard in live
production at Orange, focusing on the simultaneous update of two microser-
vices ((C)atalog and (E)ligibility) that are deployed redundantly over three
distributed CloudFoundry PaaS$ sites (S,, S, and S.). The update to per-
form includes a code upgrade for the Catalog microservice and configuration
changes for the FEligibility microservice.

Cloud Foundry is used in version 2.75.0, running on the Cloudwatt
cloud [76] on top of the OpenStack IaaS [31], under VMs with medium flavor
(2vCPUs, 4GB RAM, 50GB disk). The update framework is launched from
a remote computer (Intel i7-7820HQ @ 2.90 GHz, 16GB RAM, 500GB SSD
disk).

Four strategies are experimented to process such update, comparing their
behavior and impacts (in terms of time efficiency, financial cost, and mi-

65

Evaluation

croservices availability). The strategies impacts are measured with the fol-
lowing metrics:

e time efficiency: the duration of the whole update process

e financial cost: the additional resource consumption (representative of
the billing costs ') for the update.

e microservices availability: the rate of rejected microservices requests
during the update. During the update, we monitor the microservices
performance under their anticipated peak load condition (10000 re-
quests per minute) with Apache Jmeter.

Each experiment is repeated 30 times to get the average data. Results are
given in Figure 5.2.

duration (min)
10.21

o 7.36 7.57
6
4
3 -
0
)

errorRate (%
30 29.71

0 0 0

additional resource consumption (GB-min)
108.91

34.02

0 0

BlueGreen Canary Mixed Straight
strategy

Figure 5.2: Update metrics of the Lizard application use-case

The Canary strategy (whose behavior is shown in Figure 5.3) does not
involve an additional cost in terms of resource usage. It ensures that any
deployment of a new microservice instance is preceded by the removal of a
current one. In the version we used, the first new instance being deployed
is associated with a temporary route to allow testing before continuing the
update. Notice that although not visible in the figure, some client requests
are not correctly served (about 0.007%), as the experiments are performed
under the peak load condition and the microservices have one less instance
running during the update. Overall, this strategy involves 21 intermediate

n the experiments, the resource cost is calculated by multiplying the number of
instances by their memory size (in GB) by total duration (in minutes), as it is the billing
model used by most Cloud Foundry services.

66

Evaluation

architectures to reach the target, 7 per site, sites being updated sequentially.
Its processing took about 10 minutes.
current architecture A1 A2 A3

@lcms)”cu,s)l c(r2) |C(r,3> ”C(r,s)l c(r2) |C(r.3)||C(r.3)|
N I@l E(r,3) ” E(r,3) |) E(r2) | E(r,3) ” E(r,3) | . E(r2) | E(r,3) ” E(r,3) |
Sa Sb Sc S Sb Sc

c'(t1)
instance-number / (|ewn
changed

_added

5 . Sa Sb Sc / Sb Sc
microservices
routé changed to
regular one
A7 A6 A5 A4
ra 2
| C(r.3) ” C(r.3) | c(o | c(r.3) ” c(r3) | c(r1) | c(r.3) | | c(r.3) | 1)l
| E(r3) ” E(r3) | E(d 0 | E(r,3) ” E(r,3) | E(r1) | E(r3) | | E(r3) | E(r) 1)] E(r3) | E(r3) |
A —
m& c'rl2 c'e)
o) X

v
Sa

The microservice M is deployed, Highlight a change compared
Legend : | M(x.y) | jtjs associated to the route x O to%rei]:edent a,c?,,-,ec,u,’;
and it has y instances running

Sa

Sa

Figure 5.3: Real application update through the Canary strategy

In comparison, the BlueGreen strategy (Figure 5.4) updates the two
microservices through creating the three new (green) instances before re-
moving the three current (blue) ones, on all sites in parallel. Accordingly, it
ensures the same availability but consumes nearly the double resource dur-
ing the update. The duration is about 7 minutes, corresponding to the time
required to create the new microservices instances (which includes uploading
their code), to switch their route, and remove the three blue instances, on
one site. In the practice, BlueGreen strategy also brings another benefit:
enabling the DevOps team to perform load tests on the new version when
arriving the first intermediate architecture Aj.

A2 target architecture

current architecture
N C(r,3) 7

E(r,;3)

C\(r3)

EX r,B)
Sa Sa

=

The microservice M is deployed, iahli
Legend : O Highlight a change compared

M(x,y) | it is associated to the route x to precedent architecture
and it has y instances running

Figure 5.4: Real application update through the BlueGreen strategy

The Mixed strategy (Figure 5.5) updates microservices instance by in-

67

Evaluation

A1 A2 target architecture
current architecture cr3) | cr3) | |
E(r,3) E(r,3)
> | —_— —» rAY
c'(rt,1) c'\r.9)
E'(n,1)> E'\r,
e —— i <
Sa Sa
Sb Sb
Sc Sc l

The microservice M is deployed, Highlight a change compared
Legend : | M(x,y) | itis associated to the route x to precedent architecture
and it has y il running

Figure 5.5: Real application update through the Mixed strategy

stance, creating a new instance before removing an old one, across all
sites in parallel. This strategy takes approximately the same duration as
BlueGreen, with no downtime. It further limits the update cost in terms
of resource usage since it uses only one extra instance for each microservice
while the BlueGreen doubles the number of instances per site. However,
the DevOps team cannot load test the new version microservice with the
Mized strategy.

Finally, the Straight strategy delivers the shortest update duration (4
minutes), as it reaches the target without going through intermediate ar-
chitectures. The duration corresponds to the time needed to update both
microservices on one site, the three sites being updated in parallel. This
strategy does not consume any additional resources but induces the largest
downtime (29.71% requests failed) as the microservices are stopped before
their new version is uploaded, recompiled, and restarted.

5.1.2 Account application

Another use case is an open-source microservices-based application named
Account [77]. As shown in Figure 5.6, the application consists of two mi-
croservices: web and account. The microservice web is deployed with 120
instances, and account with 150 instances over three Cloud Foundry sites.
We experiment through updating the code of the microservice account with
various strategies.

During the experiments, we find that the Straight strategy and the
BlueGreen strategy cannot properly update the microservice account in
our experiment environment. The update either takes several hours or never
succeeds to start all the instances. The reason is that our Cloud Foundry
platforms limit the number of concurrently starting instances, as they have
limited resource. According to Cloud Foundry documentation [79], if too
many instances are starting concurrently, they are slow to start or do not
start successfully at all.

Both the Straight strategy and the BlueGreen strategy contain a step

68

Evaluation

Registration-
Service (Eureka)

Looks for Registers as
“account-service”, “account-service”

Account-
\ Service \
RESTful Requests JPA/SQL

@eCnes

Figure 5.6: The architecture of the use case Account. Reprinted from [78]

that concurrently start 150 instances on each site, which causes the Cloud
Foundry platforms failing to start all the instances within a reasonable du-
ration. Therefore, this application needs to be updated with the strategy
Canary or Miz, that incrementally starts the new instances. We configure
these strategies to incrementally update 20 instances each time.

Figure 5.7 shows the experiments result for the update with the strategy
Canary and Mized. As shown, these two incremental update strategy can
correctly perform the update within 30 minutes. Similar to the experiments
with the use case Lizard, the strategy Canary consumes more resource
comparing to the strategy Mized at the cost of slightly reduced availability.

duration (min)
20.096

20 17.258
15
10

5

o

errorRate (%)
0.008 0.008

0.006
0.004-
0.002
0.000- g

additional resource consumption (GB-min)
800 746.573

600
400
200
0 0

Canary Mixed
strategy

Figure 5.7: Update metrics of the use case Account with two strategies

69

Evaluation

5.2 Robustness

This section evaluates our DMU framework under faults. For each type of
faults that may be encountered, we experiment a typical fault scenario.

The faults can originate from three locations (shown in Figure 4.15):
the user, the DMU framework, or the external systems. The (end) user
of the DMU framework is the DevOps team that issues update requests to
manage microservices. The DMU framework includes both the framework
software and its underlying infrastructure. The external systems include
the PaaS sites involved in the update and the network connecting the DMU
framework to the PaaS sites.

Table 5.1 presents the different faults, the way we triggered them in our
experiments, and the expected handling behaviors for each type of faults.
Typically, the external system faults are exemplified by the outage of the
network between the DMU framework and the PaaS sites. The general
handling behavior is, for the DMU framework, to detect the fault, stop the
update execution (i.e., follow the fail-stop failure model), and then accept
new update requests to repair the fault.

The internal faults (i.e., faults at the DMU framework) are divided into
hardware faults and software faults, as they require different recovery pro-
cesses. As presented in Section 4.5.2, the internal hardware faults naturally
stop the execution of the DMU framework. They are expected to be re-
covered by resuming the interrupted update, through re-issuing the same
update request. In the following experiments, the internal hardware faults
are triggered by killing the process of the DMU framework during the up-
date.

The internal software faults refer to the development faults of the DMU
framework. As presented in Section 4.5.2, the framework core and the PaaS
connectors can be considered as trusted code in the DMU framework soft-
ware, while the strategies (except the predefined ones) cannot. Therefore,
the internal software faults are experimented with an erroneous strategy.
To handle internal software faults, the DMU framework first needs to detect
the faults and stop the execution. Then the DevOps team is supposed to
be able to roll-forward the update by issuing an update request with an
adapted strategy.

As presented in Section 4.5.2, the user faults can be categorized into
two types: erroneous user inputs and harmful human actions. The input
of the DMU framework update request contains the target microservices
architecture and the chosen strategy. The erroneous user inputs are shown
with a common scenario: an incorrect microservice configuration, which
leads to an inability to start it. Two recovery methods (roll-back and roll-
forward) for this fault are both experimented. The harmful human actions
are experimented with the killing of an update process, which is expected
to be fixed by resuming the interrupted update.

70

Evaluation

Table 5.1: experimented faults scenario

Fault class Example scenario Framework Expectation
external system faults (#3, #4) | network outage E?iels-tslﬁz)+ kill-restart
internal hardware faults (#2) kill the update process l((;gs:ﬁrsl?)wt
internal software faults (#1) badly programmed strategy Ej:)ll-ls- tlerr)wzrlc;i)ll-restart
erroneous user inputs (#5) erroneous microservice code E?i)ll_ls- ;)Oailj_ olsiilc;fl??ct)ji:ard)
harmful human actions (#5) kill the update process l((jgs_iizgrt

In the following experiments of faults, we perform the same update re-
quest on the production application Lizard as the SLA experiments in Sec-
tion 5.1. The faults experiments use the strategy Mized (Figure 5.5). The
Mixed strategy performs a complex update workflow to satisfy the require-
ment on both availability and resource consumption. It can be seen as a
typical user-defined strategy.

Similarly to the SLA experiments environment, the microservices are
deployed on three Cloud Foundry sites in the following experiments. The
DMU framework is executed on a VM (2 vCPUs, 7.8GB RAM, 50GB SSD
Disk) on the Cloudwatt cloud [76] with the monitoring processes and the
faults simulation processes.

To evaluate the behavior of the DMU framework in case of failures,
we firstly verify whether the microservices deployment architecture stays
reconfigurable through our framework, which allows to reach the desired
target at the end (assuming this architecture is not an erroneous one).

In addition, we will check whether the update process satisfies its SLA
constraints in our experiments, but it is important to recall that the SLA
constraints of an application may be unsatisfied when facing failures at up-
date time. To check SLA constraints, we monitor the microservice perfor-
mances and its resource consumption during the whole update 2. In each
fault experiment, the average update duration is measured and compared
to the case without faults. As the experiments run in the real production
environment, the execution time of each PaaS operation is uncontrollable.
Therefore each experiment is performed 10 times to get the average execu-
tion time of the update process.

The following sections evaluate the DMU framework in the four typical
fault scenarios. Section 5.2.1 experiments the update under the network
faults. Section 5.2.2 kills the framework process during the update. Sec-
tion 5.2.3 performs the update with an example erroneous strategy. Sec-

2In the experiments, the intended update request (update the microservices application
Lizard with the strategy Mized) requires the following SLA: no downtime and less than
24 GB memory consumption.

71

Evaluation

tion 5.2.4 experiments the update with erroneous microservice code.

5.2.1 Network faults

This section evaluates how the DMU framework resists network faults. As
presented in Section 4.5.2, the network faults are supposed to interrupt the
framework execution. After the failure of this update request, the DMU
framework is supposed to be able to resume the update by re-processing the
same update request.

We have experimented the network faults in two modes : a single fault
or recurrent faults. The single fault only appear once during an experi-
ment. The recurrent faults keep occurring until the experiment finishes.
Besides the occurring mode (single or recurrent), the behavior of the fault
simulation process also depends on two parameters: the fault-free duration
and the fault duration (Figure 5.8). The fault simulation process waits for
the fault-free duration before cutting the network. Then, it waits for the
fault duration before reconnecting the network. Note that, the parameters
(fault-free duration and fault duration) values remain unchanged during an
experiment of recurrent faults.

trigger stop
fault fault

fault-free fault
duration duration
\ | J
(a) single fault

trigger stop trigger stop trigger stop

fault fault fault fault fault fault
fault-free L fault L fault-free fault fault-free L fault i
duration duration duration duration duration duration

\ | | | [| |
(b) recurrent faults

Figure 5.8: The parameters of the network faults experiments

In the experiment implementation, the faults simulation process is
started once the update request is issued. To simulate the network faults,
the command iptables is used to cut the network connection of the DMU
framework. The fault duration takes three values (1s, 15s, 60s). To trigger
the fault at an arbitrary moment during the update, the fault-free duration
takes a random value between one second and six minutes, because 95%
of the update process takes less than six minutes in the case of no fault 3.
Once we detect that the update process is stopped with failures, we wait

3In the data of final experiments, we remove the cases in which the fault occurs after
the update finishes.

72

Evaluation

one minute (ensuring the network recovered) then re-issue the same update
request. Note that, in case of recurrent faults, the re-issued update can also
encounter faults. An experiment is marked as failed if unable to deliver the
target architecture within ten times of restarting the update.

The experiment results are presented in Table 5.2. The table summarizes
the key metrics compared to the case without fault. In this case, the mi-
croservices provide nearly no downtime and consume a maximum of 24 GB
resources during the update. This means that the Mized strategy correctly
satisfies the SLA requirements even in the case of network faults.

All the experiments with single faults reach at the target architecture.
However, the experiments with recurrent faults fail to reach the target ar-
chitecture in the case where the fault-free duration is less than one minute.
That is, the update cannot be completed in the case of too frequent faults.
After analyzing the failing messages, the failed updates block at the mi-
croservice code upload operation. Because the upload operation takes 67
seconds on average, this operation can not finish in these cases. It blocks
the advance of the update. In such an environment where fault-free duration
is always shorter than an operation execution time, it is impossible to finish
the update. These faults cases require the DevOps team to fix the hardware
execution environment.

As shown in Table 5.2, the overall update process takes 6 minutes 19
seconds on average in the case of the single fault and 6 minutes 51 seconds
in the case of recurrent faults. Compare to the case without fault (5 minutes
50 seconds), it takes approximately less than one minute to repair the fault.

Table 5.2: experiment result of updating with network faults

no fault | single net fault | recurrent net fault
_ average percentage of 0.009% | 0.017 % 0.024 %
rejected microservices requests
maximum microservices 94 GB 94 GB 24 GB
memory consumption
percent of experiments 100% 100% 93.3 %
correctly reach Atarget
average execution duration 5Mb50S 6M19S 6M51S

Figure 5.9 and Figure 5.10 show the update execution time when the
fault occurs at different moments and takes different durations. In the case
of the single fault, both the fault occurring moment and the fault dura-
tion do not impact much on the execution time. In the case of recurrent
faults, more frequent the faults occur (shown as smaller fault-free duration
in Figure 5.10), more time the update takes.

To conclude, the DMU framework can resist the network faults when
the execution environment still leaves enough fault-free duration for each
PaaS operation. Through the kill-restart capability, the DMU framework
can correctly repair the failed update caused by the network faults.

73

Evaluation

update execution time with net fault

=]
'

3 . . . fail_duration
H . 1
E
E » 15
E" »
E * * &0
= -
B .
.
4 7. e EUCCESS
. . " TRUE
- -
L]
-
L] - O -
. . .
L] I . b ! 5 -
- .

2

fault moment

Figure 5.9: Update execution time in the case of single network fault

5.2.2 Update process faults

This section considers both internal hardware faults (e.g., the server running
the DMU framework has a power outage during the update) and harmful
human action faults (e.g., the user accidentally stops the DMU framework
during the update). To experiment with such faults, we add a process in
charge of killing an update process at a random moment. The faults trigger
pattern is similar to the network faults (shown in Figure 5.8), except that the
fault duration is considered to be negligible. Once an update is interrupted,
the DevOps team is supposed to be able to resume the update through
re-issuing the same update request.

Table 5.3 shows the experiment result. The update process works cor-
rectly (reached the target at the end, no downtime, limited resource con-
sumption) in the case of only killing the framework process once. Similar to
the network faults, the experiment fails to reach the target architecture in
the case of frequent recurrent faults.

Figure 5.11 and Figure 5.12 show the update execution time when the

74

Evaluation

update execution time with net fault

=]
'

. fail_duration
1
s 15
&0

==

exec time(min)

SUCCESS
= FALSE
+ TRUE

100 200 300

fault-free duration

Figure 5.10: Update execution time in the case of recurrent network faults

fault occurs at different moments and takes different durations. In the case
of the single fault, the fault occurring at the first half of the update may take
longer execution time. The reason is that the longest operation (microservice
code upload) executes in the first half of the update. Killing the update
process during the upload operation causes it to be stopped, and requires it
to be restarted from the beginning in the following update request. In the
case of recurrent faults, the update failed to reach the target architecture in
the case of the frequent faults, as the same reason presented in Section 5.2.1.

To conclude, the DMU framework supports the fail-stop process faults,
as long as the intervals between the faults leave enough time for progressing
in the update.

5.2.3 Erroneous strategy

The section experiments with two erroneous strategies:

o MixedErrorl that returns an invalid next architecture

75

Evaluation

Table 5.3: experiment result of killing the update process during the update

no fault | single fault | recurrent faults
_ average percentage of 0.009% | 0.012% 0.021%
rejected microservices requests
maximum microservices 24 GB 24 GB 24 GB
memory consumption
percent of experiments 100% 100% 70 %
correctly reach A¢arget
average execution duration 5Mb50S 6M11S 6M23S

update execution time with killing process fault

SUCCEES
TRUE

exec time(min)

100 200 300

fault moment

Figure 5.11: Update execution time in the case of single killing process fault

o MixedError2 that outputs intermediate architectures that never
reach the target

As presented in Section 4.5.2, the DMU framework should detect the
fault and interrupt the update process. After update interruption, the DMU
framework is supposed to allow the DevOps team to reissue an update re-
quest with another strategy and/or another target architecture.

In the first experiment, we use an erroneous strategy MizxedErrorl that
accidentally specifies the same id for two versions of a microservice. At

76

Evaluation

update execution time with Killing process fault

SUCCess
FALSE
= TRLE

exec time(min)
-

100 200 300

fault-free duration

Figure 5.12: Update execution time in the case of recurrent killing process
faults

update time, this fault is detected by the PaaS platform. Then, another
update request is re-issued by the DevOps team with a correct strategy (the
Mized one), which allows to reach the target architecture.

The erroneous strategy MizedError2 returns an endless sequence of
intermediate architectures as shown in Figure 5.13 that causes the update
process to fall into an endless loop. The framework simply detects the error
while processing the preview protocol (unable to reach the target within the
limited number of iterations) at the beginning of the update request.

Table 5.4 presents the experiments results. As shown, all the experiments
finally reach the target architecture. Compared to the experiments without
faults, the additional execution time of the experiments with MixedErrorl
(11s on average) and MixedError2 (13s on average) is spent on executing
the erroneous update request, which includes retrieving the current archi-
tecture and detecting the error. In these two specific faults, as the faults are
detected before applying PaaS operations, the erroneous strategy does not

77

Evaluation

A1 A2 expected A3

initial architecture

C(r, ¥

E(r,(3)

c'crl1)

E'(rf1)

Figure 5.13: Update through the erroneous strategy MizedError2 (endless
loop)

impact the microservices deployment architecture and its SLA properties.

Table 5.4: experiment result: update with an erroneous strategy

no fault | invalid Anext endless loop
percent of experiments 100% 100% 100%
correctly reach A¢arget
_ average percentage of 0.009% | 0.012% 0.005%
rejected microservices requests
maximum microservices 24 GB 24 GB 24 GB
memory consumption
average execution duration 5M50S 6MO1S 6MO03S

5.2.4 Microservice faults

We consider here erroneous microservices configurations in the target ar-
chitecture, making microservices unable to start. The DevOps team has
two options to repair such a fault: roll-back to the initial architecture or
roll-forward to another target architecture. Section 5.2.4 demonstrates the
roll-back remedy, and Section 5.2.4 illustrates the roll-forward remedy.

Roll-back the update

This section evaluates how the framework allows to roll-back the update
in the case of an erroneous target architecture. In the experiment, the
DevOps team first issues an update request with an erroneous microservice
configuration for the microservice Eligibility *. The erroneous configuration
causes the microservice to fail when starting on both three sites, interrupting
the update process.

To roll-back to the initial architecture, the DevOps team just re-issue
another update request which specifies the initial architecture as the target,
and chooses the Straight strategy as the roll-back workflow.

4As presented in Section 5.1, the experimented microservices application contains two
microservices: Catalog and FEligibility

78

Evaluation

As shown in Table 5.5, this request correctly evolves the microservices
architecture to its initial state. The overall update-rollback process takes
4 minutes 29 seconds on average. During the process, the remedy process
(roll-back) takes 19.23 seconds on average.

Table 5.5: Result of the experiment: roll-back from the microservice error

update-rollback
final architecture Ainitial
average percentage of
rejected microservices requests 0.0001%
maximum microservices
memory consumption
total execution duration (average) | 4M29S
average remedy duration 19.23S

24 GB

Roll-forward the update

Similarly to the roll-back experiment, this section reports on using a rollfor-
ward approach in case of an unreachable architecture.

The initial erroneous update request and its detection is the same as with
the roll-back experiment. Upon the interruption of the update process, the
DevOps team re-issue another update request with a new target architecture,
and still chooses the Mized strategy.

As shown in Table 5.6, the update process correctly reaches this new
target. The overall update-rollforward process takes 5 minutes 47 seconds
on average. During the process, the remedy process (roll-forward) takes 1
minutes 53 seconds on average. Comparing to the case of roll-back then
restart which takes 6 minutes 9 seconds, the roll-forward remedy is about 3
times faster.

Table 5.6: Roll-forward from the microservice error

update-rollback
0.026%

average percentage of
rejected microservices requests
maximum microservices
memory consumption
total execution duration (average) | 5M47S
average remedy duration 1M53S

24 GB

5.3 FEase of use

As presented in Section 4.1, the update management involves three roles
(microservices manager, strategy programmer and the PaaS connector pro-
grammer). Usually, the DevOps team only plays the role of microservices
manager which issues update requests daily. In case of specific SLA require-
ments, the DevOps team may also play the role of strategy programmer.

79

Evaluation

In this section, we report on using the DMU framework, mainly eval-
uating (1) the ease of programming strategies (Section 5.3.1) and (2) the
ease of updating distributed microservices applications (Section 5.3.2). Sec-
tion 5.3.3 compares the DMU framework with a script-based approach.

5.3.1 Programming Strategies

The DMU framework is adaptable to any strategy. This section evaluates
the required efforts for programming strategies with the DMU framework.

The strategy programmer can define his/her proper strategies through
implementing the strategy interface (Listing 4.9), as demonstrated in Sec-
tion 4.4.1. Besides programming a strategy from scratch, the strategy pro-
grammer can also customize the existing strategies.

In particular, one possibility is to play with the order of transitions.
For instance, the update case shown in Figure 4.6a can be easily imple-
mented based on the AddRemove strategy (Listing 4.10). By just in-
verting the transitions ordering (i.e., transitions is then set to the se-
quence newList(Tremove, Tadd)), the strategy programmer implements a
new strategy RemoveAdd. In the previously considered scenario of migra-
tion, the RemoveAdd strategy generates a different path made up with two
intermediate architectures: the first one aims at removing m; and meo on
siteq while the second one purposes to add mi; and msg on sites.

Moreover, new strategies can also be defined through changing the tran-
sitions they use. For example, we defined a BlueGreenByGrp variant of the
BlueGreen strategy. The BlueGreenByGrp strategy splits the microservices
to update on each site into groups, updating groups incrementally in or-
der to limit the number of microservices being simultaneously deployed per
site. To program this new strategy, we only had to implement an alternate
Tupdate transition, updating at most k microservices per site at each step.
The other transitions (T'add, Tswitch, Tremove) can be directly reused.

In addition to customizing the transitions order, the DevOps team can
also define the order of updating sites. For instance, through configuring the
order as [[site1], [sites, sites], [sitey, sites]], the framework waits the update
finished at site;, then updates sites and sites in parallel, finally updates
sitey and sites in parallel. The implementation of customizing sites or-
der is based on the sub-architecture. A sub-architecture is a part of the
microservices architecture containing some site(s). The DMU framework
performs the update fix-point (i.e., processing the transitions) on each sub-
architecture. Therefore, the DevOps team can easily customize a strategy
which updates the site in the specified order.

Additionally to the presented strategy (e.g., BlueGreen), we pro-
grammed a dozen of other strategies which are the most popular ones in
the industry, summarized in Table 5.7. These strategies are composed of
a few transitions (from 1 to 6, see the column named T'r.). Altogether,

80

Evaluation

they require programming about fifteen transitions (some listed in Table 5.8
below).

Overall, programming transitions is easy and short in terms of the num-
ber of lines: (i) all transitions are programmed the same way, comparing
the current and target architectures to determine the next architecture to
reach, (ii) all transitions are programmed in about 5 to 20 lines of code.

Table 5.7: Some strategies programmed

Name Description No. Tr.

Straight reach target directly (no intermediate architecture) 1

Deploy deploy all in target, one microservice at a time 1

DeployBySite deploy all in target, site by site, all microservices in | 1
parallel on a site

CleanRedeploy remove all in current, deploy target, one microservice | 2
at a time

BlueGreen reach target, creating green versions then removing old | 4
(blue) versions for microservices to update

BlueGreenByGrp as BlueGreen, but processes k microservices at a time | 4
per site

Canary reach target, incrementally stopping and restarting in- | 6
stances for microservices to update, site by site

CanaryBySite as Canary, but all instances in parallel on a site 3

CanaryBylInst as Canary, but all sites in parallel 6

Mixed reach target, creating one new instance for any mi- | 5
croservice to update (for test pupose) before applying
Canary strategy for pending instances

Table 5.8: Some transitions programmed

Name Description LOC

Tremove undeploys microservices removed in target 10

Tadd deploys microservices added in target 13

Tupdate deploy green versions for microservices updated in tar- | 15
get

Tupdate-inc as Tupdate, k microservices at a time 16

Tupdate-ip update microservices in place (stopping then restarting | 8
them)

Tswitch switch green microservices from temporary routes to | 16
regular ones

Tscale scale microservices 11

Tclean remove all microservices in current 3

Tdeploy deploy all microservices in target 6

5.3.2 Updating Microservices

This section evaluates the required management effort of updating a mi-
croservices application with the DMU framework during the lifecycle of a mi-
croservices application. Taken the previous example described in Figure 4.8,
we report here three update cases: the initial deployment (Figure 5.14a), the
update (Figure 5.14b), and the step-by-step update (Figure 5.14c).

At first, the DevOps team of this microservices application A needs to
deploy the application as A;,;+ described in Figure 5.14a. To perform the

81

Evaluation

The microservice M is deployed, Highlight a change compared
Legend : M(x,y) | it is associated to the route x to precedent architecture
and it has y instances running
Aempty
push(Ainit, Straight)
>
Sa Sb

(a) initial deployment of the application

removed
- microservices
Alnlt — At

Howr

I M1(r,2) |

IMz(x.Z)

push(At, BlueGreen) l M2(x1) | | M2(x2)

((mre2)

Sb

/
updated microservices

(b) update with BlueGreen strategy

removed
microservices

initial architecture architecture 1 architecture 2 —_target architecture

-

M1(r,2)|

M1(r,2) M1(r,2)|

M2(x,2) M2(x,1)

M2(x,2)

|M2(x,2

push-step(At,BG push-step(At,BG)[M2(x.1)
Em— e

push-step(At,BG)
—_—

M3(y,1)| tm((r)zi M1'(r,2)|
A4
i M1'(r,2)|
Sb Sa Sb
/s N/
added microservices, route changed
associated to temporary route to regular one

(c) step by step update with BlueGreen strategy

Figure 5.14: Updating with the BlueGreen strategy

initial deployment of this application, we simply use the push command
with the Straight strategy, giving as target the architecture A;p;;. This
initial architecture A;,;; specifies that A is composed of two microservices
M and M to deploy on two (Cloud Foundry, version 2.75.0) PaaS sites Sa
and Sb. Additionally, a microservice M3 should be deployed on Sa. After
describing the initial architecture, the DevOps team simply needs to launch
the following command:push(A;n;t, Straight).

Then, the DevOps team decides to use the BlueGreen strategy for
updating the application A to the target architecture (A;) shown in Fig-
ure 5.14b. Similarly, the DevOps team simply defines the target architecture
A; and makes the following request: push(A;, BlueGreen).

82

Evaluation

In addition, the DevOps team may also play the update in the "step by
step” mode (Figure 5.14c). The "step by step” mode pauses the update after
delivering each intermediate architecture. This mode allows the DevOps
team to manually control update progress in each step. For example, the
DevOps team may wish to process the last transition (Tremove) only after
they have checked that DNS changes have been propagated, meaning that
the urls used to access the old microservices will no more be used. The "step
by step” mode fulfills this checking need. After having done the necessary
checks, the DevOps team can easily resume the update execution by re-
issuing the same push command.

5.3.3 Comparison with an imperative approach

This section compares the proposed DMU framework with an imperative
automation approach. We compare the two approaches with regard to the
ease of programming a strategy and the ease of updating a microservices
application.

The complexity of the update automation depends on the supported
update cases. Therefore, our evaluation starts with a specific use case, then
discusses more general cases.

In the following of this section, we automate the strategy Mized with two
approaches. The strategy Mized (presented in Table 5.7) first creates one
instance of the new version, then gradually replace the old version instances
with the new version, all sites being updated in parallel.

We start from the simplest case: updating the code (a specific change
type) of two microservices (a specific microservices application) deployed on
two Cloud Foundry sites (a specific PaaS solution).

The easiest implementation of the imperative approach is to write a
script with some knowledge of the microservice application. That is, mi-
croservices architecture (which microservices are deployed on which sites)
and some microservices properties (e.g., microservice name, route) are hard
coded in the script. In this case, the script needs to construct an update
workflow with the Cloud Foundry operations °. Currently, the imperative
approach has nearly 40 lines of code.

Then, we want to update the microservices across various PaaS solu-
tions. For example, the use case now involves two sites: Cloud Foundry
and Kubernetes. The script needs to identify the PaaS solution for each
site and to call the corresponding operations for the five steps of the update
workflow. In this case, the script needs nearly 70 lines of code.

Next, we want to make the script reusable across various microservices
applications. Therefore, the script needs to separate all the application-
dependent parameters. As it involves many parameters (e.g., name, route

5This update process involves five steps (seven Cloud Foundry operations) for each
microservice on each site.

83

Evaluation

and instance number of each microservice), the script needs to parse the
description file of the microservices architecture, so that it can be easily
used in the daily update. It takes nearly 110 lines of code.

Finally, we want the update script to support various change types (e.g.,
architectural changes, code changes, configuration changes). The script
needs to retrieve the current architecture, compare the difference with the
target architecture, and decide the PaaS operations for each change type.
The script does not necessarily need to automate all the changes cases. It
can automate only the common cases and return with error messages for un-
treated cases. These untreated cases are left to be handled during the daily
update. Depending on the choice of the DevOps team, the script needs
about 140 to 210 additional lines of code.

With the DMU framework, the strategy programmer first needs to
identify the needed transitions (T'add, Tupdate, Tswitch, Tscale, and
Tremove). As the strategy Mixed behaves similarly as the existing strategy
Canary, the strategy programmer can simply extend the strategy Canary to
reuse four of its transitions: T'add, Tupdate, T switch, and Tremove. Then
the strategy programmer only needs to implement the transition 7'scale,
which is in charge of scaling down the old version instances and scaling up
the new version. The strategy Mixed implementation takes only 28 lines of
code.

Strategies defined with the DMU framework are PaaS-independent and
architecture-independent. That is, they are reusable across various PaaS
solutions, various microservices applications, and various change types.

Table 5.9 summarizes the comparison of the two methods. Regarding
the programming effort, the script-based approach needs to produce longer
code compared to the DMU framework, especially when assuming a same
level of functionality. The additional complexity is strongly due to the fact
that the script programmer has to manage by itself the heterogeneity of
PaaS operations in its script. Especially, the script programmer needs to
find the corresponding PaaS operations for each step, then compose them
into parallel or serial workflows according to the previous specification.

Table 5.9: Comparison of the ease-of-use between the DMU framework and
the script

DMU framework

script (specific)

script (indep. PaaS)

script (indep. app)

script (indep. change)

required
knowledge

strategy workflow;
strategy prog. model;

strategy workflow;
script prog.;

CF operations;
multi-process prog.

strategy workflow;
script prog.;

CF operations;
multi-process prog.;
K8s operations;

strategy workflow;
script prog.;

CF operations;
multi-process prog.;
K8s operations;
parse description file;

strategy workflow;
script prog.;

CF operations;
multi-process prog.;
K8s operations;
complex change
cases managing;

lines of code

28

40

70

110

140 - 210

The framework implementation contains three parts:

core, the PaaS connector, and the strategy implementation.

the framework

Table 5.10

shows the lines of code of each part. Supporting an additional PaaS solu-

84

Evaluation

tion only requires to implement a PaaS connector. Customizing a strategy
only requires to code a strategy. The framework core is always reusable for
any update case.

Table 5.10: Framework Prototype lines of code

module lines of code
core 1992

PaaS connector (CF) 834
strategy implementation (average) | 39

To sum up, we have evaluated our approach from three aspects: SLA pro-
tection, robustness, and ease of use. We have conducted experiments to
show: 1) how the DevOps team can use various strategies to conform to
different SLA requirements. 2) how the framework can help the DevOps
team to handle various faults through its kill-restart capability. Finally, we
considered the required effort for using the proposed framework. As a result
of our experiments, we believe that the proposed framework is easy to use
for processing updates and programming strategies.

85

Chapter 6

Conclusion

Contents
6.1 Conclusions i v v vt it 86
6.2 Limitations and Future Works. 88

6.1 Conclusions

Current agile development promotes to release software application updates
at a daily frequency. With such shorter release cycles, DevOps teams get
faster feedback from the customers, thereby reducing the risk of changes.
However, processing updates at such level of frequency is challenging because
any update is in itself a complex and tedious task. This is especially true
when considering medium to large-size applications in which an update may
impact many software components.

The microservices architecture helps reducing the complexity of process-
ing software application updates, mainly because microservices split appli-
cations into services that can be updated independently from each others.
But this advance is not enough to gain an easy-to-use way of updating appli-
cations, because to protect SLA (Service Level Agreement) properties when
updating microservices, DevOps teams have to use complex and error-prone
scripts of management operations.

Among the different strategies that are used to update microservices, the
well-known BlueGreen strategy aims at updating a microservice with zero
downtime, through deploying and starting all the new microservices before
stopping and uninstalling the old ones. In comparison, the Canary strategy
minimizes the resources used at update time, at the expense of a reduced
availability: microservices are updated in-place (new instances taking the
place of the old ones), in an incremental manner to slowly transfer the load
from the current to the new version.

86

Conclusion

To follow strategies when updating their microservice applications, De-
vOps teams manipulate scripts composed of complex sequences of manage-
ment operations. Management operations refer to the elementary operations
exposed by the Paa$S platforms (Platform as a Service) hosting microservices,
allowing to control their lifecycle.

In addition to being complex, the scripts based on elementary PaaS
operations are often specific to the type of change to process (code version,
number of running instances, ...) and to the PaaS hosting the microservices
to update.

The objective of the work proposed in this thesis is to make the work of
the DevOps teams simpler and safer when these have to process updates.
To this end, we propose an update framework that advocates switching from
a script-based to an architecture-based approach to automate microservices
updates: instead of scripts processing PaaS commands, update strategies
are then defined as sequences of elementary changes being applied on an
architectural model of a microservice application.

Such architecture-based approach allows to gain simplicity for the De-
vOps teams: a DevOps team can update a microservice application by only
giving as input the desired target architecture along with the strategy to
follow, without having to deal with low-level PaaS commands.

Strategies are defined through an architecture-based programming
model, that make them easy to understand and easy to extend. Impor-
tantly, strategies are programmed independently of PaaS operations as well
as independently of a particular microservice application. In other words,
with our framework, a strategy describes a pattern of the update processes
which is adaptable to various applications, change types, and PaaS plat-
forms.

In addition to providing a higher level of automation, the proposed
framework does not damage the flexibility of the update process. Thanks to
its architecture-based character, our framework allows the DevOps team to
execute an update process step by step, so that the DevOps team can easily
integrate their proper actions during the update.

Finally, the proposed framework also helps the DevOps team to gain
more safety in processing updates. First, the DevOps team can preview the
path of intermediate architectures that will be followed to process a partic-
ular update, before effectively processing the update. Second, as previously
said, the proposed framework provides a kill-restart capability. This means
that the DevOps team can voluntarily or involuntarily stop the framework
execution at any time during the update of a microservice application. Once
stopped, the DevOps team can re-issue any update request to resume, roll-
back, or roll-forward the update of the application.

87

Conclusion

6.2 Limitations and Future Works

As a first point, we would like to say that although our experimentations
have given encouraging results regarding the easiness of programming strate-
gies, there are still work to do to finalize the conclusions regarding this as-
pect. In the next future, we plan to conduct a more complete analysis on
the effort of strategy programming, considering a more large spectrum of
microservice applications.

Regarding the limitations of our proposition, a main point that we only
consider the update of microservices, not the update of the external ser-
vices they may use (e.g., database, messaging, logging, or routing). Most
PaaS solutions provide basic lifecycle operations (i.e., create, bind, unbind,
and delete) to link microservices to external services through a broker API.
With our framework, microservices that use external services may be up-
dated without problem, but the update may only concern the microservices,
not the external services they use. For example, our framework does not
automate the update of a microservice along with upgrading its external
database linked to the microservice. Supporting such updates constitutes a
perspective of our work.

Regarding the other perspectives of our proposal, we would like to start
with a main consideration: helping the DevOps team to choose the right
strategy being given an application to update and the necessary SLA prop-
erties to maintain. For the future steps, we would like to investigate how
the update framework could help the DevOps team to choose the most ap-
propriate strategy for each particular update request.

To go one step in this direction, let’s recall that our framework already
enables the DevOps team to preview the path of intermediate architectures
that will be followed by an update process. This preview functionality pro-
vides a basis to predict how well a strategy will protect SLA properties
during the update. Especially, it is possible to identify in this path the
moments where a microservice is fully stopped, the moments when a mi-
croservice run with less or more instances than before starting the update,
etc.,.

Additionally, by instrumenting the different updates processed for a
given application and by keeping persistent the instrumented data collected
over time, we may predetermine more quantitative factors, such as the total
downtime or the total resource costs of an update.

Finally, to conclude on this aspect, it may also be interesting to consider
using formal techniques to precisely express the SLA constraints that have
to be ensured during an update, as well as using verification techniques to
predict whether a strategy can protect these invariants.

88

Bibliography

1]

2]

Bluegreen update strategy. [Online]. Available:
https://martinfowler.com/bliki/BlueGreenDeployment.html

Canary update strategy. [Online|. Available:
https://martinfowler.com/bliki/CanaryRelease.html

F. Boyer, X. Etchevers, N. De Palma, and X. Tao,
“Architecture-based automated updates of distributed microservices,”
in International Conference on Service-Oriented Computing.
Springer, 2018, pp. 21-36.

F. Boyer, X. Etchevers, N. de Palma, and X. Tao, “Poster: A
declarative approach for updating distributed microservices,” in 2018
IEEE/ACM 40th International Conference on Software Engineering:
Companion (ICSE-Companion). TEEE, 2018, pp. 392-393.

T. Mauro, Adopting Microservices at Netflix: Lessons for
Architectural Design. [Online]. Available: https://goo.gl/DyrtvI

T. Hoff, Lessons Learned From Scaling Uber To 2000 Engineers, 1000
Services, and 8000 Git Repositories. [Online|. Available:
https://goo.gl/IMRvoT

Orange is migrating to microservices architecture. [Online]. Available:
https://www.altoros.com/blog/
orange-labs-test-massive-cloud-migration- with-elpaaso-add-on-to-cf/

M. Amundsen, M. McLarty, R. Mitra, and I. Nadareishvili,
Microservice Architecture - Aligning Principles, Practices, and
Culture. O’Reilly Media, 2016.

S. Fowler, Production Ready Microservices. O’Reilly, 2016.

C. Carnero, Microservices from day one: build robust and scalable
software from the start. Apress, 2016.

89

https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/CanaryRelease.html
https://goo.gl/DyrtvI
https://goo.gl/1MRvoT
https://www.altoros.com/blog/orange-labs-test-massive-cloud-migration-with-elpaaso-add-on-to-cf/
https://www.altoros.com/blog/orange-labs-test-massive-cloud-migration-with-elpaaso-add-on-to-cf/

Conclusion

[11]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

22]

23]
[24]

A. Tarvo, P. F. Sweeney, N. Mitchell, V. Rajan, M. Arnold, and

I. Baldini, “Canaryadvisor: A statistical-based tool for canary testing
(demo),” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ser. ISSTA 2015. ACM, 2015, pp.
418-422. [Online]. Available:
http://doi.acm.org/10.1145/2771783.2784770

J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation, 1st ed.
Addison-Wesley Prof., 2010.

A. R. Sampaio, H. Kadiyala, B. Hu, J. Steinbacher, T. Erwin,

N. Rosa, I. Beschastnikh, and J. Rubin, “Supporting microservice
evolution,” 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 539-543, 2017.

N. Bencomo, R. France, B. Cheng, and U. Alimann, Models@run.time:
Foundations, Applications, and Roadmaps. springer, 01 2014, vol.
8378.

B. W. Boehm, “A spiral model of software development and
enhancement,” Computer, vol. 21, no. 5, pp. 61-72, 1988.

K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt,
R. Jeffries et al., “Manifesto for agile software development,” 2001.

Martin Fowler’s article on Microservices. [Online]. Available:
https://martinfowler.com/articles /microservices.html

HashiCorp Consul Service Discovery. [Online]. Available:
https://www.consul.io/

Apache ZooKeeper. [Online]. Available: https://zookeeper.apache.org/
Netflix Eureka. [Online]. Available: https://github.com/Netflix/eurcka

M. Nygard, “Release it!: Design and deploy production-ready software
(pragmatic programmers),” Pragmatic Bookshelf, 2007.

Netflix Hystrix. [Online|. Available:
https://github.com/Netflix /Hystrix

Twitter Finagle. [Online]. Available: https://twitter.github.io/finagle/

Phantom. [Online|. Available: https://github.com/flipkart/phantom

90

http://doi.acm.org/10.1145/2771783.2784770
https://martinfowler.com/articles/microservices.html
https://www.consul.io/
https://zookeeper.apache.org/
https://github.com/Netflix/eureka
https://github.com/Netflix/Hystrix
https://twitter.github.io/finagle/
https://github.com/flipkart/phantom

Conclusion

[25]

A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, and I. Stoica, “Above the clouds: A berkeley
view of cloud computing,” Dept. Electrical Eng. and Comput.
Sciences, University of California, Berkeley, Rep. UCB/EECS,

vol. 28, no. 13, p. 2009, 2009.

R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs
containerization to support paas,” in Cloud Engineering (IC2E), 201}
IEEE International Conference on. IEEE, 2014, pp. 610-614.

P. Mell and T. Grance, “The nist definition of cloud computing,”
Communications of the ACM, vol. 53, no. 6, p. 50, 2010.

Cloud Service Levels. [Online|. Available: https:
//commons.wikimedia.org/wiki/File:Niveaux _de_service_cloud.png

Amazon Elastic Compute Cloud. [Online|. Available:
https://aws.amazon.com/ec2/

Google Compute Engine. [Online]. Available:
https://cloud.google.com/compute/

OpenStack. [Online]. Available: https://www.openstack.org/

Google App Engine. [Online]. Available:
https://cloud.google.com/appengine/

AppScale. [Online]. Available: https://www.appscale.com/
OpensShift. [Online]. Available: https://www.openshift.com/
Heroku. [Online]. Available: https://www.heroku.com/
CloudFoundry. [Online]. Available: https://www.cloudfoundry.org/

Google Kubernetes Engine. [Online|. Available:
https://cloud.google.com/kubernetes-engine/

Amazon EC2 Container Service. [Online]. Available:
https://aws.amazon.com/ecs/

Azure Container Service . [Online]. Available:
https://azure.microsoft.com/en-us/services/container-service/

Kubernetes. [Online]. Available: https://kubernetes.io/
Apache Mesos. [Online]. Available: http://mesos.apache.org/

Docker Swarm. [Online|. Available:
https://docs.docker.com/engine/swarm/

91

https://commons.wikimedia.org/wiki/File:Niveaux_de_service_cloud.png
https://commons.wikimedia.org/wiki/File:Niveaux_de_service_cloud.png
https://aws.amazon.com/ec2/
https://cloud.google.com/compute/
https://www.openstack.org/
https://cloud.google.com/appengine/
https://www.appscale.com/
https://www.openshift.com/
https://www.heroku.com/
https://www.cloudfoundry.org/
https://cloud.google.com/kubernetes-engine/
https://aws.amazon.com/ecs/
https://azure.microsoft.com/en-us/services/container-service/
https://kubernetes.io/
http://mesos.apache.org/
https://docs.docker.com/engine/swarm/

Conclusion

[43]

[44]
[45]
[46]

[47]

[48]

[49]

Martin Fowler’s article on Deployment Pipeline. [Online]. Available:
https://martinfowler.com/bliki/DeploymentPipeline.html

Jenkins. [Online|. Available: https://jenkins.io/
Concourse ci. [Online]. Available: https://concourse-ci.org/
Gocd. [Online|. Available: https://www.gocd.org/

M. E. Segal and O. Frieder, “On-the-fly program modification:
Systems for dynamic updating,” IEEFE software, no. 2, pp. 5365,
1993.

S. Subramanian, M. Hicks, and K. S. McKinley, “Dynamic Software
Updates: A VM-centric Approach,” in PLDI’09: Proc. of the ACM
SIGPLAN conf. on Programming Language Design and
Implementation, Dublin, Ireland, 2009, pp. 1-12.

A. Gregersen, M. Rasmussen, and B. Jgrgensen, “Dynamic software
updating with gosh! - current status and the road ahead.” in ICSOFT,
J. Cordeiro, D. A. Marca, and M. van Sinderen, Eds. SciTePress,
2013, pp. 220-226. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/icsoft /icsoft2013.html#GregersenRJ13

M. Pukall, A. Grebhahn, R. Schroter, C. Kédstner, W. Cazzola, and
S. Gotz, “Javadaptor: Unrestricted dynamic software updates for
java,” in Proc. of the 33rd Int. Conference on Software Engineering,
ser. ICSE ’11. New York, NY, USA: ACM, 2011, pp. 989-991.
[Online]. Available: http://doi.acm.org/10.1145/1985793.1985970

OSGi Service Platform Core Specification, Release 5, Last retrieved
July 2016., http://www.osgi.org/Specifications/HomePage. [Online].
Available: http://www.osgi.org/Specifications/HomePage

Springcloud. official website. [Online]. Available:
http://projects.spring.io/spring-cloud/

Eclipse, “Eclipse RCP, http://www.eclipse.org, 2008.”

J. Kramer and J. Magee, “The Evolving Philosophers Problem:
Dynamic Change Management,” IEEE TSE, vol. 16, no. 11, pp.
1293-1306, 1990.

E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani,
“The fractal component model and its support in java,” Softw., Pract.
Ezper., vol. 36, no. 11-12, pp. 12571284, 2006.

92

https://martinfowler.com/bliki/DeploymentPipeline.html
https://jenkins.io/
https://concourse-ci.org/
https://www.gocd.org/
http://dblp.uni-trier.de/db/conf/icsoft/icsoft2013.html#GregersenRJ13
http://dblp.uni-trier.de/db/conf/icsoft/icsoft2013.html#GregersenRJ13
http://doi.acm.org/10.1145/1985793.1985970
http://www.osgi.org/Specifications/HomePage
http://projects.spring.io/spring-cloud/

Conclusion

[56]

[57]

[65]

F. Boyer, O. Gruber, and D. Pous, “Robust reconfigurations of
component assemblies,” in 85th International Conference on Software
Engineering, ICSE 13, San Francisco, CA, USA, May 18-26, 2013,
D. Notkin, B. H. C. Cheng, and K. Pohl, Eds. TEEE Computer
Society, 2013, pp. 13-22. [Online]. Available:
https://doi.org/10.1109/ICSE.2013.6606547

B. Morin, O. Barais, G. Nain, and J.-M. Jezequel, “Taming
dynamically adaptive systems using models and aspects,” in Proc. of
the 31st IEEE Int. Conf. on Software Engineering (ICSE’09),
Washington, DC, USA, 2009, pp. 122-132.

G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee,

J. Ueyama, and T. Sivaharan, “A generic component model for
building systems software,” ACM Transaction on Computer Systems,
vol. 26, no. 1, pp. 1-42, 2008.

J. Armstrong, Programming Erlang: Software for a Concurrent
World. Pragmatic Bookshelf, 2013.

M. Odersky, L. Spoon, and B. Venners, Programming in Scala:
Updated for Scala 2.12, 3rd ed. USA: Artima Incorporation, 2016.

J. Allen, Effective Akka. O’Reilly Media, Inc., 2013.

Spinnaker pipeline parameters. [Online]. Available: https://www.
spinnaker.io/guides/user /pipeline-expressions/#pipeline-parameters

Spinnaker developing feature pipeline templates. [Online]. Available:
https://github.com/spinnaker /pipeline-templates

R. Di Cosmo, A. Eiche, J. Mauro, S. Zacchiroli, G. Zavattaro, and
J. Zwolakowski, “Automatic deployment of services in the cloud with
aeolus blender,” in Proceedings of the 13°th International Conference
on Service-Oriented Computing, ser. ISOC ’15, 2015, pp. 397-411.

M. Gabbrielli, S. Giallorenzo, C. Guidi, J. Mauro, and F. Montesi,
“Self-reconfiguring microservices,” in Essays Dedicated to Frank De
Boer on Theory and Practice of Formal Methods - Volume 9660. New
York, NY, USA: Springer-Verlag New York, Inc., 2016, pp. 194-210.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-30734-3_14

Jolie. Official Web Site. [Online]. Available:
http://www.jolie-lang.org/

T. A. Lascu, J. Mauro, and G. Zavattaro, “A planning tool supporting
the deployment of cloud applications,” in Proceedings of the 2013
IEEE 25th International Conference on Tools with Artificial

93

https://doi.org/10.1109/ICSE.2013.6606547
https://www.spinnaker.io/guides/user/pipeline-expressions/#pipeline-parameters
https://www.spinnaker.io/guides/user/pipeline-expressions/#pipeline-parameters
https://github.com/spinnaker/pipeline-templates
http://dx.doi.org/10.1007/978-3-319-30734-3_14
http://www.jolie-lang.org/

Conclusion

[68]

Intelligence, ser. ICTAI '13. Washington, DC, USA: IEEE Computer
Society, 2013, pp. 213-220. [Online]. Available:
http://dx.doi.org/10.1109/ICTAI.2013.41

J. Fischer, R. Majumdar, and S. Esmaeilsabzali, “Engage: A
deployment management system,” in Proceedings of the 83rd ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’12. New York, NY, USA: ACM, 2012,
pp. 263-274. [Online|. Available:
http://doi.acm.org/10.1145/2254064.2254096

X. Etchevers, T. Coupaye, F. Boyer, N. D. Palma, and G. Salaiin,
“Automated Configuration of Legacy Applications in the Cloud,” in
Proc. of UCC’11. TEEE Computer Society, 2011, pp. 170-177.

R. Di Cosmo, M. Lienhardt, J. Mauro, S. Zacchiroli, G. Zavattaro,
and J. Zwolakowski, “Automatic Application Deployment in the
Cloud: from Practice to Theory and Back ,” in Proceedings of 26th
International Conference on Concurrency Theory (CONCUR 2015),
ser. Leibniz International Proceedings in Informatics (LIPIcs), vol. 42.
Madrid, Spain: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Sep. 2015, pp. 1-16. [Online|. Available:
https://hal.inria.fr/hal-01233426

J. Martin, Managing the Data Base Environment, 1st ed. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1983.

Open-source prototype of the proposed DMU framework. [Online].
Available: https://github.com/tao-xinxiu/prototype-template-engine

F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys (CSUR),
vol. 22, no. 4, pp. 299-319, 1990.

A. Avizienis, J.-C. Laprie, and B. Randell, “Dependability and its
threats: a taxonomy,” in Building the Information Society. Springer,
2004, pp. 91-120.

J. Shore, “Fail fast [software debugging],” IEEE Software, vol. 21,
no. 5, pp. 21-25, 2004.

Cloudwatt. The public Orange cloud. [Online]. Available:
https://www.cloudwatt.com

Open-source microservices application Account. [Online]. Available:
https://github.com/paulcd /microservices-demo

94

http://dx.doi.org/10.1109/ICTAI.2013.41
http://doi.acm.org/10.1145/2254064.2254096
https://hal.inria.fr/hal-01233426
https://github.com/tao-xinxiu/prototype-template-engine
https://www.cloudwatt.com
https://github.com/paulc4/microservices-demo

Conclusion

[78] The architecture of the open-source microservices application
Account. [Online|. Available: https://github.com/paulc4/
microservices-demo/blob/master/mini-system.jpg

[79] Too many instance replacements can cause a cascading failure on
Cloud Foundry. [Online]. Available:
https://docs.cloudfoundry.org /adminguide /diego-cell-upgrade.html

95

https://github.com/paulc4/microservices-demo/blob/master/mini-system.jpg
https://github.com/paulc4/microservices-demo/blob/master/mini-system.jpg
https://docs.cloudfoundry.org/adminguide/diego-cell-upgrade.html

	Introduction
	Problem Position
	Microservices
	Cloud Computing
	Resources Virtualization
	Cloud Services Models
	PaaS/CaaS layers and microservices

	Continuous Delivery
	Motivation and Objectives
	Challenges

	State of the Art
	Existing approaches for dynamic software updates
	DSU
	Components
	Actors

	Existing approaches for dynamic updates of Microservices
	Comparison grid
	Spinnaker
	IBM UrbanCode Deploy
	AWS CodeDeploy
	Push2cloud
	Other related approaches for managing Microservices
	Summary

	Proposition
	Usage Principles
	Architectural Model
	Data-Structure
	Elementary Operations
	Introspection and Reconfiguration of a Microservice Application

	Strategy-driven Updates
	Update Process Overview
	Strategy-driven Update Protocol

	Strategy Programming
	Strategy Design
	Didactic case: the BlueGreen Strategy

	Update Robustness
	Core principles
	Identification of faults
	Summary

	Evaluation
	SLA protection
	Lizard application
	Account application

	Robustness
	Network faults
	Update process faults
	Erroneous strategy
	Microservice faults

	Ease of use
	Programming Strategies
	Updating Microservices
	Comparison with an imperative approach

	Conclusion
	Conclusions
	Limitations and Future Works

	Bibliography

