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Part I

Introduction



1
Motivations

Recent development in the field of computer algebra has left us with a handful of algorithms

for every sort of problems. These solutions are often based on different principles and

methodologies and may have different strong points as well as drawbacks. Three main

directions in the development of algorithms may be given:

- the optimization of the worst case asymptotic complexity; the theoretic importance

of such algorithms makes them reference points for other solutions; this can also

be seen as a perspective for treating larger data than applicable today; worst-case

asymptotic analysis is required;

- the optimization of the average running time; this often applies to Las Vegas and

Monte Carlo type probabilistic algorithms; such solutions are particulary suitable

for repetitive computations but probable performance is often regarded as granted

in practice, see remarks in [71]; probabilistic analysis of algorithms’ behavior is

required;

- the optimization of performance on certain class of inputs; if the class is large enough,

such solutions may provide the fastest way to obtain the result for most common

inputs; experimental evaluation is required;

With respect to these directions, a user might ask the following questions in order to

effectively solve his computational problem.

- is the size of my problem large enough to require running the state-of-the-art asymp-

totic algorithm?

- to what extend does my computation depend on ’luck’ if randomized algorithms are

run; is it robust to erroneous results of Monte Carlo subprocedures or to a failure

of Las Vegas subprocedure; will I repeat the algorithm for several inputs to enhance

the importance of the average complexity?

- does my problem belong to a special case, where a heuristic might work well?
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The answers might not be obvious or known to the users, yet the choice of the algorithm

will have profound implications on the computation. Therefore, the following question

arises. Can all the directions of development be included in one algorithm? If so, can it

still be given in an elegant form and kept as simple as possible? In this thesis we will argue

that the answer is affirmative and that such solutions can be given in the form of hybrid

and adaptive algorithms, see Sec. 1.4 for definition. We will focus on the design of adaptive

algorithms and their implementation using a middleware, which was LinBox library in our

case. We test thoroughly the performance and compare to other implementations in order

to show that we are able to achieve best running times.

1.1 Existing Solutions for Linear Algebra

Nowadays, algebraic computation can be performed at different levels. On the top level,

we have vast computer algebra systems such as Magma1 [9], Maple2, Mathematica 3 and

SAGE 4. In the case of numerical computation, Matlab 5 can be mentioned. They provide

users with the environment and tools for the whole process, starting with matrix (vector,

polynomial etc.) creation, by running the computation, and finishing with the presentation

of results. The interface is usually easy to use, which makes it convenient for dealing with

many small-size problems. But when it comes to big-scale computation, it becomes clear

that the environment might not be optimized for performance: design features and the

complexity of algorithms might prohibit us from completing the task.

On the lower level, the user may choose to implement the solution of his choice by himself.

This with no doubt requires spending a lot of time on implementation and testing apart

from actually running the algorithm. Dealing with technical details of implementations

can be seen as the biggest challenge of this approach.

Then in between there is the level of middleware. The general concept of a middleware is

explained for example on the web pages What is a middleware6 and Middleware Architec-

ture of Sacha Krakowiak 7. We will consider it on the example of LinBox 8.

LinBox is a library and, thus, does not propose an environment. Instead, it provides a set

of classes and procedures that can be use by the programmer. As a middleware, LinBox

can be characterized by the following properties:

- it allows the source code to be transferred between different hardware and architec-

tures and automatically deals with the required changes; this can be extended to the

1http://magma.maths.usyd.edu.au/magma/
2http://www.maplesoft.com/
3http://www.wolfram.com/
4http://www.sagemath.org/
5http://www.mathworks.com/
6http://middleware.objectweb.org/index.html
7http://sardes.inrialpes.fr/%7Ekrakowia/MW-Book/
8http://www.linalg.org
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case of parallel computations , where it can be combined with MPI9 and Kaapi 10

in the case of parallel computations;

- it provides a uniform interface for low level arithmetic procedures by providing wrap-

pers for low level libraries such as GMP11, Givaro12 or BLAS13, and, optionally,

NTL14 or Lidia 15; allows for transition of objects between the libraries;

- it offers ready to use high level solutions e.g. for determinant or system solving;

- it can be plugged into Maple and SAGE as an optional packages;

- it maintains a great level of abstraction thanks to generic programming;

See Sec. 1.3 and the references therein for more information.

1.2 Goals of Middleware

We motivate our interest in the use of LinBox by the following arguments. Firstly, the

use of its low level procedures simplifies the implementation of new algorithms, which can

later be included as high level solutions. Then on the other hand, LinBox library can be

plugged into a larger computational system such as Maple or SAGE, which means that it

can be used by a less experienced user and for less demanding computations as well. To

ensure the success of the library, we propose the following goals for the developers.

- to implement and experimentally evaluate new algorithms;

- to provide automated choices of the best algorithms i.e. hybrid and adaptive solu-

tions;

- to include problem specific solutions for most common problems, to build and verify

heuristics;

- to provide ”building blocks” i.e. optimized subprocedures that allow to easily imple-

ment new algorithms and result with simple code;

- to provide parallel solutions if parallel architectures are available;

9e.g. http://www.open-mpi.org/
10http://kaapi.gforge.inria.fr/
11http://gmplib.org/
12http://www-ljk.imag.fr/CASYS/LOGICIELS/givaro/
13http://www.netlib.org/blas/index.html, in particular ATLAS, ([5], http://math-atlas.

sourceforge.net/), GOTO (http://www.tacc.utexas.edu/resources/software/#blas) or LAPACK

(http://www.netlib.org/lapack/) libraries can be used
14http://www.shoup.net/ntl/
15http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/
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We would like to present recent developments in LinBox which are meant to deal with

these challenges. In particular we are going to focus on the implementation of adaptive

algorithms in LinBox. Then we are going to test the library on the exact computation

with rational numbers (i.e. rational algorithms).

We propose this test as we strongly believe that rational computation should be the next

step for exact linear algebra, due to its importance for the ill-conditioned matrix case,

for which exact computation should provide an alternative to numerical routines. As not

much is known on about rational computation apart from the fact that the problem size

makes it difficult, we are persuaded that adaptive solutions will prove useful here.

Finally, we will show that by including heuristics, LinBox is capable of dealing with large-

scale problems, such as the computation of Smith form and the rank for matrices of extreme

size.

1.3 Algorithms in LinBox

LinBox library was originated as a set of linear algebra procedures for black box matrices

see e.g. [126] and [31]. The design of the library itself, which uses the concepts of archetype

and diagramming modelling, is the subject of several papers see e.g. [33, 41]. In the

meantime, the library developed beyond the black-box case to include other sparse matrix

implementations and algorithms, as well as dense matrix case, see e.g. [109]. Engineered

algorithms implemented in LinBox are presented in [127].

1.3.1 Ring Implementations

LinBox provides a wrapper for several modular, integer and rational rings implementation:

this includes GMP, Givaro, NTL and LiDIA rings. The wrappers provide uniform access

to basic arithmetic procedures and in some cases add new functionality to the ring. Users

may also add their own implementation which fulfill the field archetype requirements.

Also, LinBox provides its own modular field implementation, for several modulus sizes

e.g. int, short-int etc. and specialized field modulo 2 and 232. Symmetric finite field

implementation is also available. The implementation of modular field using doubles is of

particular interest as it allows for effective BLAS computation, see [35, 36, 109].

1.3.2 Matrices

At its origins, LinBox library provided black-box matrices archetype, for which only defin-

ing a matrix-vector product was obligatory. During the evolution of the library, several

matrix implementation have been added, which include dense matrices (characterized by

O(1) access time to elements), Hankel/Toeplitz matrices, and several sparse matrix types

(where the storage is proportional to the number of non-zero elements), including the one

that enables parallelization.
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1.3.3 Algorithm Types

LinBox library focuses on Monte Carlo and Las Vegas type algorithms. In the case of

Monte Carlo algorithms, the outputted result is correct with a certain predefined prob-

ability 1 − ε, where ε is arbitrary small. On the contrary, Las Vegas algorithms always

return correct results, but their running time may vary or the computation may be inter-

rupted with a small probability. We require these algorithms to be probabilistically fast.

Las Vegas type algorithms may often output a probably correct result first and then turn

to a certification phase to confirm its correctness.

As the aim of LinBox is to provide the fastest solutions possible, a new class of algorithms

is emerging, namely the algorithms that are probabilistically fast and probabilistically

correct. This is the case of Monte Carlo type adaptive algorithms.

The value of ε might as well correspond to the probability that a cosmic ray would interfere

and change the result of a deterministic computation, which provokes a philosophical ques-

tion about the actual difference between deterministic and Monte-Carlo type algorithms.

In [71], some motivations of using probabilistic algorithms instead of deterministic one are

presented.

1.3.4 Modular Algorithms

In the case of modular computation the methods can be divided according to matrix type

into dense and sparse. Sparse methods can further by divided on Wiedemann-Krylov-

Lanczos type and elimination methods. The division is true for modular algorithms to

compute the rank, determinant, characteristic and minimal polynomial and for system

solving.

Dense methods are based on BLAS routines, see [35, 36, 109, 110]. The solution of the

above-mentioned problems can be reduced to finding the LU decomposition of a matrix.

Sparse elimination and Wiedemann-Krylov-Lanczos type methods are analyzed and com-

pared in [40]. Solutions to the above-mentioned problems can be obtained from the min-

imal polynomial (in the case of Wiedemann-Krylov-Lanczos type methods) or from the

triangular/diagonal form (in the case of elimination methods).

1.3.5 Integer Algorithms

The common idea of integer algorithms is to repeat modular computation.

In the case of the integer rank algorithm, the most effective approach consist of computing

the rank of the matrix modulo a random prime p. By repeating the choice of primes several

times from a sufficiently large set, we obtain a Monte Carlo type algorithm. If the matrix

is of full rank, one random choice of world-size prime could be sufficient to confirm it.

For the determinant and characteristic/minimal polynomial computation over in-

tegers and rationals, Chinese Remaindering Algorithm (CRA) offers a way to compute
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the integer result by using modular computation, see Chapter 10 for a survey. In the case

of integer system solving, another procedure is offered by LinBox, namely the p-adic

lifting, see [27].

In both CRA and p-adic lifting procedures, the principle is to get the result modulo

a sufficiently large number M . In the case of CRA, the result is computed modulo a

product of distinct primes; in the case of p-adic lifting, M is a power of a prime p.

In the case of rational computation, one additionally requires the rational reconstruction

procedure, which allows to reconstruct a fraction from its modular image. The procedure

is described in details in [70, Sec.5.10], see also Chapter 11.

1.3.6 New Additions

The work on this thesis included the following additions to the LinBox library.

- an adaptive determinant algorithm, which combines Chinese Remaindering with p-

adic lifting, see Ch. 8; the implementation of this high level algorithm uses template

subprocedures, which can be substituted by code submitted by other developers; in

this way new procedures can easily be incorporated in the algorithm;

- a generic implementation of Chinese Remaindering loop, which includes vector case,

early termination, rational reconstruction and preconditioning, see Ch. 10;

- the implementation of fast rational reconstruction of [131] and maximal quotient fast

rational reconstruction of [90], see Ch. 11;

- a new structure of a grid for sparse matrices, and a heuristic algorithm for the

computation of the Smith form and rank for exact sequences of matrices, see Ch.

16;

1.4 Hybrid and Adaptive Algorithms

In every domain of computation, whenever several algorithms can solve the same problem,

the choice of the right algorithm can be a way to obtain the best timing. Clearly, the prob-

lem space i.e. all problem instances, can be divided into regions, where given algorithms

perform best. We will call these regions domains of feasibility of the algorithms.

It is evident that this partition is not known beforehand in every detail. At the same

time, the average and worst case asymptotic complexities only give us a clue to identify

the best algorithm for a particular problem. The situation is even more complicated if the

running time of the algorithm depends heavily on unknown, sometimes output-dependent

properties of input and when the difference between worst case and average complexities

is significant.
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1.4.1 Origin of Hybrid Algorithms

Historically, this was the reason for the appearance of the first adaptive algorithm of Musser

[100], for sorting and search. ”Common knowledge” and practice show that quicksort, with

the average complexity of O(n log(n)) comparisons, is often the fastest sorting algorithm.

However, for every choice of the partition element in the recursive call to quicksort, a

counterexamples may be shown, on which the running time of the algorithm quadratic,

thus reaching its worst-case complexity. Any remedy known, such as calculating the actual

median of the series makes the algorithm impractical. On the other hand, heapsort, which

has the worst case complexity of O(n log(n)) comparisons, is in practice 2 up to 5 times

slower than quicksort on randomized data.

The idea of Musser was to combine both algorithms by limiting the number of recursive

calls to quicksort and turning to heapsort on the partially sorted data, when the unpromis-

ing case was detected. The resulting algorithm had the average complexity and running

time equal to that of quicksort (as it followed actually the same computational path) but

at the same time it claimed the same low worst case complexity as heapsort. The author

referred to his algorithm as introspective. Following the classification of [24] we would

prefer the term adaptive.

1.4.2 Definition of Hybrid Algorithms

Let us now recall the essential definition after [24].

Definition 1.4.1 (Hybrid Algorithm cf. [24]) An algorithm is called hybrid if it com-

bines the ideas of several existing algorithms to deliver a new solution. Every algorithm

included can solve the problem on its own.

The goal of this approach is to enhance the performance by giving higher priority to

algorithms experimentally proven to be fastest for randomized input. Then the average

and/or worst case complexity is boasted by including best asymptotic average and worst

case algorithms.

Ideally, a hybrid algorithm should perform at least as well as any of its components i.e.

its domain of feasibility should be equal to the sum of the domains of feasibility of its

components. In practice, we allow for small (of asymptotically lower or the same com-

plexity) additional cost of identifying and evaluating the switches and require that the

hybrid algorithm is fastest on a major part of the sum of the domains of feasibility of its

components.

1.4.3 Classification

A hybrid algorithm can also be found under the name of adaptive, tuned, engineered

and/or introspective algorithm. The names are used in different contexts by different

authors. We adapt the following classification after [24].



10 1. Motivations

Depending on the number of choices or switches between the algorithms, we distinguish

simple (for O(1) of choices) and baroque (for an asymptotically bounded number of choices)

hybrid algorithms. The algorithm is static or dynamic depending whether the choices are

defined before the execution or computed at the run time.

Depending on the type of information used we may define:

- tuned algorithms: if the choice depends on the architecture. In practice this means

that certain parameters are computed at installation or compilation time and de-

termine the computation path of the algorithm for every input instance. Thus,

tuned algorithms are static. The parameters are either predefined for architecture

types (for engineered algorithms) or automatically computed by the algorithm (for

self-tuned algorithms).

- adaptive algorithm: if the algorithm does not depend on architecture but takes into

account the availability of resources and, which is the key factor, input and output

properties. The algorithm might be called introspective if makes the choice based on

the information on timing of its components/subroutines. In what follows we would

mainly like to focus on this type of hybridization.

- oblivious algorithms: if it does not depend on input properties but only on the

availability of resources. It might be the case of parallel algorithms which are sensible

to the number of idle processors, or cache-sensible algorithms.

1.4.4 Examples

Hybrid algorithms are known to exist in computer algebra for a long time. Indeed, many

existing algorithms may be classified as such. Some of the examples were presented by the

authors in [24]. Here, we present some cases used in computer algebra libraries that best

illustrate the classification.

1. Matrix multiplication by BLAS routines is an example of a tuned algorithm. Hybridiza-

tion lies in the choice between recursive division on blocks and applying classic matrix

multiplication in the opposite case. The goal is to choose the best block size for which

to apply the switch. In the case of GOTO and ATLAS libraries this is done at the

moment of installation. The matrix multiplication algorithm is either engineered in the

case of GOTO library (as optimal parameters are provided for certain architectures)

or self-tuned in the case of ATLAS, where the comparison is done by actually running

both algorithm at the moment of installation. See [109] and the references therein. See

also [25] for further adaptive modifications.

2. In general, using different algorithms for smaller and bigger inputs is the simplest way

to introduce hybridization. Integer multiplication in GMP library is another example

of successful coupling of four algorithms with different worst-case complexities. See

[125] for discussion.
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3. Making a choice between sparse and dense versions of the algorithm is an example

of static hybridization and a simple hybrid algorithm. Passing a template parameter

is a convenient way of introducing a static switch. Actually, one may think of an

adaptive choice between dense and sparse matrix representation as it should be possible

to determined a threshold in terms of matrix density. In fact, due to fast matrix-

matrix and matrix-vector multiplication, dense algorithms usually outperform their

sparse variants, with exception to very sparse cases. The amount of memory available

is a limiting factor for the dense approach.

Another variant of the problem is the choice between matrix elimination and Wiedemann-

type algorithms for sparse matrices. A choice of parameters and some ideas of a hybrid

algorithm are given in [42] in the case of rank computation for {0, 1} matrices; see also

[40] for another timings comparison.

4. Combining numerical and exact algorithms is another way of of introducing hybridiza-

tion. As an example, adaptive algorithm for system solving of [128] can be given. For

well-conditioned matrices, the algorithm uses a numerical method to get the approxi-

mate result, which can then be corrected by symbolic methods. The algorithm detect

the case when the matrix is ill-conditioned and can use purely symbolic methods such

as p-adic solving of [27] instead the numerical one.

One of the most elaborated adaptive algorithms in up-to-date computer algebra is the

algorithm for the computation of the Smith Form, first presented by Eberly et al. in [44]

and then developed by Saunders and Wan in [112, 113, 127]. In Ch. 3 we will consider

this algorithm in detail. We will propose a new insight into its analysis in terms of the

expected and output-dependent complexity (see Ch. 2 for definitions) and provide some

further modifications to the algorithm.

1.4.5 Remarks on Classification

The above examples show that hybridization is present in many low level procedures

such as BLAS routines and integer multiplication. Same can be said about the use of

oblivious schemes of parallelization and cache management. Given a more complex hybrid

algorithm, which relies on calls to low level hybrid subprocedures, we restrict our interest

to its high-level strategic choices and classify it accordingly.

This is justified by the fact that low level procedures are often regarded as oracles - black

boxes that provide the answer in certain time. Often, more than one implementation of

low level procedures is possible. By doing so, we ignore the fact that any algorithm which

uses e.g. ATLAS/GOTO BLAS routines is tuned to some extend and as such, depends on

the architecture. Yet, we are persuaded that this does not lead to confusion.

Another ambiguity appears in the use of words engineered and introspective in the clas-

sification.In some cases, see e.g. [113], an adaptive algorithm is called engineered, as the

choices were designed by authors based on theory and experiments. In the same manner,

the term introspective might be associated with every algorithm which makes its decisions
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at any point, based on its performance so far. In a modified classification of [24] an algo-

rithm with a priori hand-designed choices could be referred to as engineered, contrary to

algorithms which make their choices based on timings, which are introspective.

1.5 Outline of Thesis

In the rest of Part I, we introduce the measures of performance for hybrid algorithm,

giving the notions of output-dependent and expected complexities in Chapter 2. We finish

the introduction by a case-study of the adaptive algorithm for Smith form computation of

[44, 112] in Chapter 3, for which we propose further modifications.

The thesis itself is divided into three parts. Part II of the thesis is consecrated to the

design and evaluation of the adaptive determinant algorithm. Chapter 5 introduces the

probabilistic properties of random integer matrices that will be applied in Chapter 8 to

produce the adaptive algorithm for the determinant (Alg. 8.4.1). Chapters 6 and 7

present other tools and theorems that will be used in order to construct the algorithm.

This algorithm proved very fast in the experiments and is adaptive in every detail, see Sec.

8.8. Its design and the complexity analysis depends strongly on the statistical properties

of integer matrices and probabilistic algorithms used.

Part III is consecrated to the rational computation. We start this part by a survey on

Chinese Remaindering Algorithm in Chapter 10. Then in Chapter 11 we discuss the

algorithms for fast rational reconstruction and present some experimental results. In

Chapter 12, the details of CRA and RationalReconstruction implementation in LinBox

are presented. In Chapter 13 and 14 we use the tools introduced earlier to construct

adaptive rational algorithms for problems including the computation of the determinant,

characteristic and minimal polynomial of a matrix and linear system solving. Experimental

results are given in Sec. 14.3.

Then Part IV presents the reduction/elimination algorithm for exact sequences of matrices

which is a generalized version of the concept of algebraic reductions of [73]. Algebraic

reductions were originally designed and applied for the computation of homologies of

cubical sets. In Sec. 16.2 we translate the concept to the language of matrices, which

allows for some generalizations in Thm. 16.2.2, 16.2.8. Using Alg. 17.2.1, we were able to

exactly compute the Smith form of matrices coming from the K-theory, which approach

2,000,000 in size, and compute the ranks of matrices representing cubical sets up to the

value 17,906,035. This makes it the biggest rank ever computed by LinBox.



2
Expected Complexity as a

Measure of Performance of

Complex Algorithms

The performance of an algorithm can be evaluated by estimating the number of operations

it performs in the worst case or on average, as a function of the input size. Some authors

propose to analyze the number of operations in the best case as well.

Worst case complexity bounds the maximal number of operations that the algorithm

has to perform for inputs of given size. In the case when input instances are given with

a probability distribution, the average number of operations can be computed over input

instances of the same size. This gives the average complexity.

Additionally, best case complexity can be given, as an approximate number of operations

which are sufficient in the case of particular inputs. This information alone is not of

particular interest but a more detail analyzes which determine propitious and/or malicious

inputs for the algorithm may provide a useful characterization.

When dealing with more complex adaptive algorithm, we would like to introduce other

measures of performance, which better reflect the subtle nature of adaptive algorithms,

namely output-dependent and expected complexity. In short, output-dependent com-

plexity will give the worst case or average number of bit operations, with respect to

parameters other than input size. Propitious inputs might be defined with respect to

these parameters. It is a way to express the worst case or average complexity of output-

dependent algorithms. Examples of its use are numerous, we refer e.g. to [75, 38, 39, 4]

for output-dependent early terminated CRA.

Assuming that input instances are given with a probability distribution, the expected

complexity will evaluate the average number of bit operations under some favorable

assumptions that correspond to the case of ’expected’ inputs of the algorithm. The notions

of expected and average complexity might seem close, but are equivalent only in a special

case. In general, we will consider the expected complexity as a way to express the best

(or propitious case) complexity. The expected complexity will give a valid estimation of
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the number of operations for a large class of inputs. In Sec. 2.3.3 we present examples of

the use of expected complexity so far, which inspired out approach. See [2, 44, 122].

The number of operations is usually approximated in terms of asymptotic big Oh notation

O. In Sec. 2.1 we recall the notion of soft Oh notation and generalize it to the notion of

semisoft Oh notation. We provide definitions in the case of one and several variables. For

example, to describe the size of an integer matrix A = [aij ]i,j=1..n, two parameters n and

‖A‖ can be used, where n is matrix size and ‖A‖ = max(|aij |) is matrix maximum norm.

As a result, meaningful complexity formulas should depend on these two parameters.

In computer algebra it is generally accepted to use the bit complexity model. This means

that the number of basic operations (additions, multiplications and shifts) on bits should

be counted. We will use the Random-Access Machine RAM model of computation, see e.g.

[23, 114]. See Sec. 2.2 for references on complexity theory. See Sec. 2.3 for the definitions

of output-dependent and expected complexities and Sec. 2.3.4 for a practical approach to

its computation.

2.1 Big Oh,Soft Oh and Semisoft Oh Notations

2.1.1 Introduction

Big Oh notation O(−) (know also as Landau, Bachmann-Landau or asymptotic notation)

has been used in the computational complexity theory from the beginning of modern

computer science. The fundamentals of the notation can be found in virtually any textbook

on algorithms and in most textbooks on mathematical analysis. We refer to [83, Sec.

1.2.11], [59, Ch. 9] or [23, Ch. 3] for some accessible references. The notion is usually

given for functions of one variable, yet the definition can easily be generalized to the several

variables case.

In order to perform a simplified analysis of the complexity of algorithms, Soft Oh notation

has been introduced by several authors, see e.g. [70, Def. 25.8]. Def. 25.8 of [70] states in

short that a function f(n) is O∼(g(n)) if there exists a constant α, such that

f(n) ∈ O (g(n) logα(g(n))) .

Notice, that the definition of O∼ implies conditions on a ’meaningful’ functions g. Indeed,

f(n) ∈ O∼(n log(n)) is equivalent to f(n) ∈ O∼(n) in terms of soft Oh notation and both

do not provide complete information on the logarithmic factors of f . In [70] the authors

remark that hiding logarithmic factors can be dangerous if practical applicability of the

algorithm is to be considered.

Indeed, on may think of several examples, where the use of soft Oh notation should be

avoided. First, given two n-bits integers, the complexity of their multiplication, M(n), and

gcd computation, B(n), by the state-of-the-art fast multiplication and fast gcd algorithms

is the same in terms of semisoft Oh notation, see Ex. 2.1.6. Experiments show that the
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running times of procedures differ significantly. The difference can be explained by the

fact that B(n) = O(M(n) log(n)) see e.g. [70] and [119].

Second, the article of Storjohann [122] bounds several matrix problems to matrix multi-

plication, thus resulting with several algorithms which all have O∼(nω) bit complexity,

where ω is the exponent of matrix multiplication. Yet the gradation in the difficulty of the

algorithms is still present e.g. the complexity of matrix multiplication is asymptotically

better than the complexity of solving a linear system of equations, which in turn is better

than the complexity of the determinant computation. In [122], Storjohann shows, that

the running times of these algorithm differ by several log(n) factors.

To cope with these problems we propose to introduce semisoft Oh notation, see Def.

2.1.5 and 2.1.8, which gives approximation of the complexity up to doubly logarithmic

log(log(−)) terms. We believe that this approach allows at the same time

- to keep the swell and complexity of expressions at bay,

- to describe the essential behavior of algorithms,

- to easily compare between algorithms given their complexities in terms of semisoft

Oh notation.

Examples 2.1.6 and 2.1.9 illustrate the use of soft and semisoft notations.

Notice, that log2(log2(N)) for N = 2, 000, 000 is less than 4.4, i.e a small constant. More-

over, N exceeds by far the size of inputs (matrix or integer size) on which exact compu-

tation is performed these days.

2.1.2 Classic Definitions

Let us recall the classic definitions. See e.g. [83, Sec. 1.2.11], [59, Ch. 9] or [23, Ch. 3],

[70, Ch. 25].

Definition 2.1.1 (Big Oh Notation cf. [59]) Let a ∈ R∪{−∞} and f, g : (a,+∞)→
R be two real-valued functions, g ≥ 0. We say that f ∈ O(g) (or f = O(g)) if there exist

constants N,C ∈ R, N > a,C > 0 such that for all n ≥ N

|f(n)| ≤ C · g(n).

Definition 2.1.2 (Big Oh in Several Variables cf. [59]) Let k ∈ N and ai ∈ R ∪
{−∞} for i = 1..k. Let F,G :

∏k
i=1(ai,+∞) → R be two real-valued functions of k

arguments, G ≥ 0. We say that F ∈ O(G) (or F = O(G)) if there exist constants

C,N1, N2 . . . Nk ∈ R, Ni > ai for i = 1, . . . , k, C > 0 such that for all ni ≥ Ni, i = 1, . . . , k

|F (n1 . . . nk)| ≤ C ·G(n1 . . . nk).
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2.1.3 Soft and Semisoft Oh Notation for Complexity Expressions

In the theory of complexity, the number of operations is often approximated as O(g) where

g is a complexity expression given in a form of a product

g(n) = nα1 logα2(n) . . . logαs (log(. . . log(n) . . . ))︸ ︷︷ ︸
s−1

for certain s ∈ N, s > 0, αi ≥ 0, i = 1, . . . , s, where log = log2 is the binary logarithm.

Hereby, we will assume that log denote the binary logarithm, although all logarithm bases

b > 1 are equivalent in big Oh notation i.e log(n) ∈ O(logb(n)) and logb(n) ∈ O(log(n)).

In some cases, it is convenient to forget the smallest logarithmic terms. In this way, big Oh

notation can be generalized to soft Oh and semisoft Oh notations. First, let us introduce

the following notation.

Definition 2.1.3 (Logarithmic Term) Let s ∈ N, s ≥ 0. We recursively define a func-

tion s log, called the logarithmic term of order s. For s = 0 we put a0 = 0 and

0 log : (a0,+∞) 3 n→ n ∈ R+.

Then for s > 0 we define as = min(a′ :s−1 log(a′) ≥ 1) and

s log : (as,∞) 3 n→ log(s−1log(n)) = log(log(. . . log(n) . . . ))︸ ︷︷ ︸
s

∈ R+.

For s1, s2 ∈ N 0 ≤ s1 < s2 we say that the logarithmic term s1 log is more significant

than s2 log.

We have the following definitions.

Definition 2.1.4 (Soft Oh Notation, cf. Def. 25.8 [70]) Let α ∈ R, α > 0 and s ∈
N, s ≥ 0. A function f : R 3 n→ f(n) ∈ R is O∼((slog(n))α) if there exists a parameter

γ ≥ 0, such that f(n) ∈ O((slog(n))α(s+1log(n))γ).

Definition 2.1.5 (Semisoft Oh Notation) Let α, β ∈ R, α > 0, β ≥ 0 and s ∈ N,

s ≥ 0. A function f : R 3 n → f(n) ∈ R is O≈((slog(n))α(s+1log(n))β) if there exists a

parameter γ ≥ 0, such that

f ∈ O((slog(n))α(s+1log(n))β(s+2log(n))γ).

In this way, soft Oh notation allows us keep only the most significant logarithmic term

while semisoft Oh notation requires keeping two most significant terms.
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Example 2.1.6 1. Fast integer multiplication

The cost of fast Schönhage & Strassen integer multiplication of two n bit integers is

M(n) ∈ O(n log(n) log(log(n))),

see [70, Tab. 8.6]. By definition 2.1.4 and 2.1.5 this is O≈(n log(n)) and O∼(n).

If the integers are bounded by N , the complexity is

M(log(N)) ∈





O(log(N) log(log(N)) log(log(log(N))))

O≈(log(N) log(log(N)))

O∼(log(N))

. (2.1)

2. Fast integer gcd

The cost of fast gcd algorithm for two n bit integers is

B(n) ∈ O(M(n) log(n)), (2.2)

see e.g. [119] and the references therein. By definition 2.1.4 and 2.1.5 this isO≈(n log2(n))

and O∼(n).

2.1.4 Soft and Semisoft Oh Notation for Complexity Expressions in
Several Variables

In the case of several variables, complexity expressions are usually given as a multivariate

polynomial G of logarithmic terms i.e.

G(n1, . . . nk) = P (s1 log(n1), . . . ,t1−1 log(n1), . . . ,sk log(nk),
tk−1 log(n1)),

where ti > si ≥ 0 for i = 1, . . . , k and P is a polynomial of
∑k

i=1(ti − si) variables.

As before, soft Oh and semisoft Oh allow us to keep, respectively, only one or two most

significant terms.

Definition 2.1.7 (Soft Oh in Several Variables, cf. Def. 25.8 [70]) Let k ∈ N. For

i = 1, . . . , k let si ∈ N be such that si ≥ 0. Let P (x1, . . . , xk) be a polynomial of k variables,

such that degxi(P ) > 0 for i = 1, . . . , k. Let G be a function such that

G(n1, . . . nk) = P (s1 log(n1), . . . ,sk log(nk)).

A function F : Rk 3 (n1, . . . nk)→ F (n1, . . . nk) ∈ R is O∼(G) if there exists a polynomial

P ′ of 2k variables, function G′ s. t.

G′(n1, . . . nk) = P ′(s1 log(n1),s1+1 log(n1), . . . ,sk log(nk),
sk+1 log(nk)),

P (x1, . . . xk) = P ′(x1, 1, . . . xk, 1)
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and

F (n1, . . . , nk) ∈ O(G′(n1, . . . , nk)).

Definition 2.1.8 (Semisoft Oh in Several Variables) Let k ∈ N. For i = 1, . . . , k

let si ∈ N be such that si ≥ 0. Let P (x1, y1, . . . , xk, yk) be a polynomial of 2k variables,

such that degxi(P ) > 0 for i = 1, . . . , k. Let G be a function such that

G(n1, . . . nk) = P (s1 log(n1),s1+1 log(n1), . . . ,sk log(nk),
sk+1 log(nk)).

A function F : Rk 3 (n1, . . . nk)→ F (n1, . . . nk) ∈ R is O≈(G) if there exists a polynomial

P ′ of 3k variables, such that

G′(n1, . . . nk) = P ′(s1 log(n1),s1+1 log(n1),s1+2 log(n1), . . . ,
sk log(nk),

sk+1 log(nk),
sk+2 log(nk)),

P (x1, y1, z1 . . . xk, yk, zk) = P ′(x1, y1, 1, . . . xk, yk, 1)

and

F (n1, . . . , nk) ∈ O(G′(n1, . . . , nk)).

Example 2.1.9 shows how the soft Oh and semisoft Oh notations can be used in complexity

considerations in order to

- to take into account the speedup resulting from fast integer multiplication and gcd

computation, see Ex. 2.1.6,

- to avoid the swell of complexity formulas due to less significant logarithmic terms.

Example 2.1.9 For the rest of this example, let A be an n×n integer matrix with entries

bounded by magnitude by ‖A‖ = maxi,j=1,...,n(|aij |) and let b be a n×1 vector, with entries

bounded in magnitude by ‖b‖ = maxi=1,...,n(|bi|). In what follows we may assume that

‖A‖ and ‖b‖ are related to each other e.g. both values are bounded by certain γ > 0.

The complexity of multiplication of two n× n matrices mod a word-size prime is O(nω),

where ω is 3 for the classical algorithm, and 2.38 for the Coppersmith-Winograd method,

see [22].

During the course of various linear algebra algorithms, some arithmetic operations in Z
may be performed on the numbers, whose size is O(log(det(A))) i.e O(n log(nγ)). This

motivates the following two examples.

1. Let us consider fast integer multiplication of two O(n log(nγ))) bit integers, where

n, γ > 0 are certain parameters. By Eq. (2.1) the complexity of multiplication is

M(n log(nγ)) ∈





O≈(n log(nγ)(log(n) + log(log(γ))))

O∼(n log(γ))

n×O∼(log(n) log(nγ))

. (2.3)
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PROOF It suffices to notice that log(n log(nγ)) = log(n) + log(log(nγ)) and

log(log(n log(nγ))) = O(log(log(n)) + log(log(log(nγ)))).

2. Let us consider fast gcd computation of two O(n log(nγ))) bit integers, where n, γ > 0

are certain parameters. By Eq. (2.2) the complexity of the gcd computation is

B(n log(nγ)) ∈





O≈(n log(nγ)(log2(n) + log2(log(γ))))

O∼(n log(γ))

n×O∼(log2(n) log(nγ))

. (2.4)

PROOF As before, log(log(n log(nγ))) = O(log(log(n)) + log(log(log(nγ)))). We have

log2(n log(nγ)) = log2(n) + 2 log(n) log(log(nγ)) + log2(log(nγ)) and

2 log(n) log(log(nγ)) ≤
{

2 log2(n) log(n) ≥ log(log(nγ))

2 log2(log(nγ)) log(n) < log(log(nγ))

which leads to a conclusion that log2(n log(nγ)) ∈ O(log2(n) + log2(log(nγ))).

This results may be used to evaluate the complexity of X-adic linear solvers that exist in

the literature.

3. Classis p-adic solver of Dixon [27]

Let us consider p-adic lifting algorithm of [27] for matrix A and vector b. The cost

of p-adic lifting is O
(
n3 log2(n‖A‖p) + n log2(‖b‖)

)
, see [97]. We assume that p is a

word-size prime i.e that log(p) ∈ O(1) and that log(‖b‖) ∈ O(n log(n‖A‖)). Then the

complexity of the algorithm is O∼(n3 log2(‖A‖)).

4. FastRationalSolver of [95]

Let us consider Alg. FastRationalSolver of [95] for matrixA and vector b, modulo q = ps,

where p is a word-size prime, p ∈ O(1), and s > 0. Suppose that ‖A‖ and ‖b‖ are both

bounded by γ. In [95, Lem. 5.7] the cost of the algorithm is O∼(n
3+3ω−ω2

4−ω log(γ)) in

the soft Oh notation. Let us compute the missing logarithmic factors.

Following [95, Lem. 5.7] let us assume that l = n
3−ω
4−ω and (nγ)l ≤ q < p(nγ)l, which

means that log(q) = O(l log(nγ)). The cost of the initialization phase is dominated

by the computation of B = A−1 mod q and integer matrix multiplication of BA. By

[124] the cost of inverse computation is O(nωB(log(q))), where B is the cost of gcd-like

operations, see Eq. (2.4). By Eq. (2.4) this is

O(nωB(l log(nγ))) = O≈(nωl log(nγ)(log(l) + log(log(γ))))

= O≈(nω+ 3−ω
4−ω log(nγ)(log(n) + log(log(γ)))).
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The cost of one lifting step is dominated by matrix multiplications, which by [95,

Eq. 6] gives O(
(
n
l

)2
lωM(log(nγ))) bit operations. The cost of remaining arithmetic

operations is O(B(n log(nγ))). There are O(nl ) steps in the lifting phase, which means

that the overall cost is bounded by

O(
(n
l

)3
lωB(log(nγ))) = O≈

(
n3+

(ω−3)(3−ω)
4−ω log(nγ) log(log(γ))

)
.

We comparing the complexities of the initialization and lifting phases we conclude that

the complexity of the algorithm is

n
3+3ω−ω2

4−ω ×O∼(log(n) log(nγ)),

and is dominated by the cost of inverse computation.

This illustrates the danger of using O∼(−) notation in application to the algorithm

design. As the result, the two parts of the algorithm of [95] are not well balanced and

in fact, the initialization phase dominates the cost, which could be counterintuitive to

some extend.

5. Fast-multiplication Rational Solver of [122, Sec. 9.1]

Let us consider rational solver from [122, Sec. 9.1] for matrix A and vector b. [122,

Thm. 37] gives the complexity of the algorithm equal to O(nω log(n)B(log(‖A‖) +

log(‖b‖)/n+ log(n))).

Let us assume that log(‖b‖) = O(n log(n‖A‖)). By Eq. (2.4), the complexity of the

algorithm is O≈(nω log(n) log(n‖A‖) log2(log(‖A‖))) bit operations which is also nω ×
O∼(log(n) log(n‖A‖)).

2.2 Computational Models

The first step in the theory of complexity is the choice of the computational model. There

are several possibilities that differ mostly in the level of formalism, which includes Random-

Access Machines (RAM) [23, 114] or different types of Turing Machines (deterministic,

non-deterministic, multi or single tape etc.), see [108, 114, 66, 111, 6, 57]. Additionally, in

the case of parallel computations, the PRAM model, see e.g. [114], should be mentioned.

See also [114] for a model of a simple CPU. We refer to [23, Sec. 2.2] for a brief introduction

to the RAM model and to [114] for a profound study of most widely used computational

models. A computational model allows to compute the number of operations performed

by the algorithm on a given problem instance. A function, which bounds the number of

operations for all inputs of given size is the worst case complexity.

According to Church-Turing Thesis [6, 111], virtually all ’reasonable’ computational mod-

els of algorithms are equivalent and lead to the same complexity classes. Non-equivalent

models can also be consider e.g. boolean circuits [114, 6, 57, 111], but this is behind the
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scope of this work. The study of computational models is of main importance in the theory

of decidability, see e.g. [66] and while considering the hierarchy of complexity classes e.g.

the famous NP vs. P problem. We refer to [51, 108, 115, 114, 66, 111, 6, 57] for definitions

and examples of problems.

Computational models allow to define the average complexity, as long as the problem is

distributional i.e. problem instances are given according to a probability distribution. See

[23, Ch. 5] for a simple introduction to the problem in the case of RAM. See also [8] for a

survey on average complexity of NP algorithms. Complexity classes can be defined as well

in the case of average complexity, although the definitions is not as natural as in the case

of worst case complexity. See [115, 6, 111, 56] for the approach of Levin [86] and [57] (cf.

typical average complexity) for another approach to the hierarchy of average complexity

classes.

For randomized algorithms we first refer to [67, 92] for a presentation of their design, ex-

amples and ideas for the analysis of performance. In particular [67, Ch. 2] presents models

of randomized algorithms and discuss the notions of worst case and average complexities in

this case. Following [67, Sec. 2.3] we propose to regard a randomized algorithm as a family

of probabilistically distributed algorithm instances and propose the following classification

of complexities:

- worst case complexity, which gives the upper bound on the number of operations

performed by any instances the algorithm on any input of the given size;

- worst case average complexity, which gives the upper bound on the number of oper-

ations performed by the algorithm on average (over all algorithm instances) on any

input of the given size;

- average worst case complexity, which gives the average number of operations (over

all inputs) for the worst case instance of the algorithm for inputs of the given size;;

- average complexity, which gives the average number of operations (over all algorithm

instances, over all inputs) for inputs of the given size;

See also [66, 6, 57] for the hierarchy of complexity classes in this case randomized algo-

rithms.

2.2.1 Practical Remarks

Computability, decidability and class hierarchy is behind the scope of this thesis. In fact,

through this thesis we will consider computable problems of mainly polynomial time and

space algorithms. In Sec. 2.3 we focus on providing meaningful expressions characterizing

the asymptotic performance of (polynomial) algorithms. Thus, we would like to present

two less standard ways of approximating the number of operations performed by the

algorithm.

First, we propose to relax the requirement that complexity is given solely in terms of the

input size, see Def. 2.3.2 of the output-dependent complexity. Second, we would like
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consider only a sufficiently large subclass of propitious inputs, see Def. 2.3.6. This is not

the (typical) average complexity of [57] as ignored input is not formally negligible. Still,

by Prop. 2.3.7, expected complexity can be seen as the output dependent complexity in

the expected case.

In order to define the output-dependent and expected complexities, we need a computa-

tional model of algorithm A for which the following concepts are defined.

- input: at the entrance of algorithm A, input x ∈ I is given;

- size: function size(x) gives the size of input x;

- operation counting: an operation counting function CA(x) gives the number of op-

erations performed by A on input x;

- input distribution: additionally, a distribution on I can be defined; then, inputs are

given according to the distribution;

- instances of randomized algorithms: If A is a randomized algorithm, it is given as

a family Aξ of algorithm instances given according to a probability distribution ξ;

Without loss of generality we may further assume that function size : I 3 x→ size(x) ∈ N
returns integer values. In a more general setting, size must define a partition of I e.g.

in the case of integer matrices, size(M) can be equal to a pair (n, ‖M‖), where n is

matrix dimension and ‖M‖ is the maximal entry in absolute value. However, if matrices

of word-size integers are considered, putting size(M) = n is sufficient for complexity

considerations.

2.3 Complexity of Adaptive Algorithms

2.3.1 Output-dependent Complexity

The notions of output dependent and expected complexities can be defined in any model

of computation and for any complexity type (worst case or average, or for parallel and

randomized algorithms). It make the complexity formulas depend on input parameter x.

This approach has been used for a long time, where relevant, see e.g. early terminated

CRA in [75, 38, 39, 4]. Let us give the following definitions.

Definition 2.3.1 (Output-dependent Trait) Let I be the set of inputs to algorithm

A. An output-dependent trait K on I is a function K : I 3 x → K(x) ∈ R+ which is

independent on the size of x. That is, for every n ∈ N there exist two inputs x1, x2 ∈ I
such that size(x1) = size(x2) = n and K(x1) 6= K(x2).

Definition 2.3.2 (Output-dependent Complexity) Let A be an algorithm with in-

put domain I. Let K be an output dependent trait on I.
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Then function CKA : N×R+ → N gives the output-dependent worst case [on K] com-

plexity of A if

CKA (n, k) ≥ CA(x) ∀x s.t. size(x) = n,K(x) ≤ k. (2.5)

Here, CA(x) denote the number of operations performed by A on input x.

If, additionally, entries of A are given according to a probability distribution, then function

CKA gives the output-dependent average [on K] complexity of A if

CKA (n, k) ≥ Ex:size(x)=n,K(x)≤kCA(x). (2.6)

Example 2.3.3 The determinant, rank, number of non-trivial invariant factors for a n×n
integer matrix A are examples of output-dependent traits.

Remark 2.3.4 In the case of randomized algorithms, worst case average output depen-

dent complexity can be defined by replacing CA(x) in Eq. (2.5) with the average number of

operations performed by the randomized algorithm A on x. Similarly, average worst case

and average complexities can be defined by extending Eq. (2.6) to the case of randomized

algorithms.

In the case of randomized algorithms, a trait may also be a function of algorithm instances

e.g. the relative error s̃n
sn

in is a trait for the randomized algorithm [2, Alg. LIF]. Here, sn
is the largest invariant factor of a matrix, and s̃n is its computed approximation.

Remark 2.3.5 The use of the term ”output” is well explain in the case where K is exactly

the problem for which algorithm A has been designed. More generally, K might be a by-

product of A, and eventually it may be computed by subroutines of K. Surely, all output

is ”input” depended and thus, output dependent complexity is just a restatement of the

worst case or average complexity.

2.3.2 Expected Complexity

To define the expected complexity, let us assume that a random distribution is defined on

the set of inputs I, and that a trait K, not necessarily output-dependent, is given.

Definition 2.3.6 (Expected Complexity) Let A be an algorithm with input domain

I. Let a random distribution be defined on the set of inputs I and let K be a trait on

I. Let K(n) ∈ R+ be the bound on the expected value Ex:size(x)=nK(x). Then ECKA (n) is

the expected complexity of algorithm A iff

∀x, size(x) = n : K(x) ≤ K(n)⇒ CA(X) ≤ ECKA (n)

In the case of randomized algorithms, K might be a function of randomized algorithm

instances as well, see Rem. 2.3.4. In short, the expected complexity describes the number

of operations in the case when randomly distributed elements of the algorithm perform

’as expected’. The use of a bound K(n) on the expected value is motivated by
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- the fact that usually only a bound on the expected value can be found;

- the requirement that the expected complexity should give the upper bound on the

number of operations for a large class of inputs; various theoretical results such as

Markov inequality of Chebyshev inequality can be used here;

- the possibility to use the bounds K(n) in the design of an adaptive algorithm, as we

will show in Ch. 8.

In the case, when both output dependent and expected complexities can be defined, we

have a simple relation.

Proposition 2.3.7 (Output-dependent vs. Expected Complexity) LetA be an al-

gorithm with input domain I. Let a random distribution be defined on the set of inputs

I and let K be an output dependent trait on of I. Suppose that there exist a constant

An such that

K(x) ≤ An ∀x ∈ I s.t. size(x) = n.

Then the expected complexity of A can be defined and is equal to ECK(n) = CK(n,Kn),

where Kn is such that Ex,size(x)=nK(x) ≤ Kn.

PROOF The expected value Ex,size(x)=nK is less than or equal to An. Therefore the ex-

pected complexity can be defined. Moreover, suppose thatKn is the bound on Ex,size(x)=nK.

Let us take x ∈ I, size(x) = n such that K(x) ≤ Kn. Then CA(x) is less than CK(n,Kn)

by the definition of output-dependent complexity, see Def. 2.3.2. By Def. 2.3.6 we may

set ECK(n) = CK(n,Kn).

2.3.3 First Appearance of the Notion of Expected Complexity

It is common in computer algebra that an algorithm contains a great number of calls to

randomized subroutines, which makes the average case analysis complicated. Often, the

algorithm depend on existing procedures and on previous results about its complexity and

probability of correctness.

One of the methods to compute the average complexity is to compute the expected values

for some random variables and to analyze the number of operations of the algorithm using

these values. The use of expected values is reflected in the name of the complexity, where

the word ’average’ is replaced by ’expected’. The confusion is due to the fact that the

word ’average’ is a synonym of the expected value. Consequently, the expected running

time is a generally accepted synonym of average complexity. In computer algebra, one

can find other terms such as average expected complexity ([2]) or expected cost ([44, 122])

and it is worth to consider what kind of complexity are the authors actually referring to

according to our classification.

Remark 2.3.8 In view of Def. 2.3.6, the use of the term ’average expected’ complexity

becomes redundant and should be depreciated. Averaging is required from definition for

the computation of expected complexity.
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Let A be randomized algorithm. One may compute

- worst case expected complexity - if the expected value is computed over random

algorithm instances Aξ according to the distribution ξ.

Examples include the LargestInvariantFactor or LIF algorithm of Abbott et al.

[2] or algorithms based on shifted number systems of Storjohann [122]. The de-

terminant algorithm of [2] has the expected output-dependent bit complexity of

O
(
nω log

(
|det(A)

sn
|
)

+ n3 log2(n‖A‖)
)
. This result uses the fact that the expected

value E
(
log
(
sn
s̃n

))
is O(1), where s̃n is the factor of sn obtained by LIF algorithm.

In [122] the expected number of calls to a randomized subroutine in order to obtain

a correct (certified) result is approximated by 2 ∈ O(1). In those cases, expected

complexity and average complexity are the same.

- expected worst case or expected complexity - assuming that a random distribution

is defined on input I, the expected value is computed over all input instances. This

has been done for example in [44], where the expected complexity was expressed in

terms of the expected number of non-trivial invariant factors.

2.3.4 Expected and Output-dependent Complexity in Practice

The expected complexity might depend on many traits. Practical approach to the expected

complexity is based on common practice for the computation of average complexity. First,

the expected outputs of subprocedures should be bounded (e.g. E
(
log
(
sn
s̃n

))
is O(1) in

[2]). Then, the expected values of parameters, which arise naturally during the course of

the algorithm (e.g. the number of non-trivial invariant factors in [44]) can be approxi-

mated.

At this point, the evaluation of expected complexity can be simplified when compared to

the average complexity. Contrary to the case of average complexity evaluation, according

to Def. 2.3.6, we are allowed to use the bounds as if they were the actual results (e.g.

consider the situation when the expected number of invariant factors is indeed smaller to

the bound of [44, Thm. 6.2]). The performance of the algorithm on inputs and instances,

which violate the expected value bounds, can simply be ignored and do not contribute

to the evaluation. In this way, the analysis of complex algorithms with many calls to

randomized subprocedures can be simplified.

Moreover, this allows us to use the bounds in the design of switches of the adaptive

algorithm, which results in non-linear dependency on the expected values. This approach

try to optimize the expected complexity. The switches can be re-evaluated and slightly

modified, using results such as Markov or Chebyshev inequalities to optimize the average

complexity, but the analysis is more complex in this case.

The computation of expected complexity is not equivalent the average complexity, unless

the dependency on the random variable is convex (recall that E(f(X)) ≤ f(E(X)) if

function f is convex), which usually makes it linear in the case of complexity functions.
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However, we can imagine more complex cases of adaptive algorithms where the relation

between average and expected complexity is not straightforward, in which case the ex-

pected complexity provides additional information. In Ch. 3 we give an example of an

algorithm which has better expected than average complexity.

At the same time, output dependent complexity provides vital information, as it describes

the actual number of operations a posteriori performed by the algorithm. On the other

hand, we believe that the strength of expected complexity lies in the elegance of its esti-

mation. This becomes essential and evident when it comes to adaptive algorithms.

The principle of adaptive algorithms is to take advantage of a priori slower (by means of the

worst case and average complexity) algorithms by detecting propitious inputs instances for

which the running time of the algorithms is faster. The motivation behind this approach

is that those propitious inputs occur very often for the inputs we are dealing with. At the

same time, all malicious inputs are detected and treated in the best possible (asymptotic)

way.

The applicability of adaptive algorithms can be estimated by relating propitious inputs

to the ’better than expected’ case. Namely, an adaptive algorithm should perform well

on the ’better than expected’ inputs, ideally on all of them. By Def. 2.3.6, this would be

reflected in the expected complexity of the algorithm. Therefore, it implies that this could

be a good measure of performance of adaptive algorithms.

In our work we have observed, that the analysis of worst case and average complexity

of an adaptive algorithm can often hide the idea that stands behind it. Although worst

case and average complexities traditionally characterize the algorithm, the knowledge of

the performance in the propitious cases seems at least as important. Therefore we would

suggest that adaptive algorithms should be compared in terms of output-dependent and

expected complexities.

In Ch. 3 we show how to analyze the output dependent and expected complexity on

the example of the adaptive Smith form algorithm of [44]. Based on this analysis, we

show some simple modifications that lead to better expected complexity estimations and

actually reduce the number of operations.
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Adaptive Smith Form Algorithm

of Eberly, Giesbrecht and Villard -

Case Study

The Smith form algorithm of [44] computes the Smith form and determinant of a square

invertible matrix by computing all of its invariant factors. It has been subject to modifi-

cations in [112, 113, 127]. In this chapter we show some small modification of the original

algorithm, which lead to better bounds on the expected complexity, see Def. 2.3.6.

3.1 Presentation of Algorithm cf. [44]

Let i, n ∈ N and let i ≤ n. Let us now assume that a n × n non-singular matrix A is

given at the input of the Smith form algorithm of [44]. Let ‖A‖ = maxi,j=1..n(|Aij |) be

the maximal entry in absolute value of the matrix. The algorithm requires the following

two procedures.

1. LargestInvariantFactor (or LIF), see [2, 44] and Alg. 6.3.1, which computes the largest

factor sn of a n×n non-singular matrix. It is a Monte Carlo type algorithm, that always

returns a divisor of the actual largest invariant factor. See [2, Lem. 1,2 ] and [44, Thm.

2.1] for some results on the probability of success of the LIF algorithm. Notice, that in

Thm. 6.3.2 we present some additional results for this problem.

2. OneInvariantFactor(i) (or OIF(i)), see [44], which computes the ith invariant factor

of the matrix. In [44, Lem. 3.1] the authors show that by preconditioning the input

matrix A a new matrix Ci = A + Bi can be obtained such that sn(Ci) divides si(A)

if Bi has rank n − i. By taking random preconditioners one obtains a Monte Carlo

type algorithm to compute OIF. The output is a multiple of the actual factor si as long

as LIF procedure used to compute sn(Ci) returns the correct value. In general, this

cannot be assumed.
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Once the LIF and OIF procedures have given us way to compute any invariant factor of A,

the authors propose to use the division property si | si+1 to limit the number of calls. This

property implies that whenever si(A) and sj(A) are equal, there is no need to compute

sk(A) for i < k < j as it the same value. The approach the authors propose is equivalent

to a binary search for different invariant factors. Therefore they are able to state in [44,

Thm. 4.2] that their algorithm outputs the Smith form with probability 0.5 using at most

O(n3.5 log2.5(n‖A‖) log2(n) bit operations in the worst case.

At the same time the bound on the expected number of non-zero invariant factors is

given in [44, Cor. 6.3], which leads to the average complexity O(n3 log2(n‖A‖) log2(n))

bit operations.

In [44] the authors assume that LIF computation is done for a dense matrix A by the

p-adic lifting of [27]. However, the use of other linear solvers can be envisaged. In general,

the worst case complexity of the algorithm is O(
√

log(|det(A)|)C(LIF ) log2(n)) bit op-

erations, where C(LIF ) stands for the cost of one linear system solving. Taking a p-adic

solver of [27] in the LIF computation results in C(LIF ) = O(n3 log2(n‖A‖)) and the total

cost of the algorithm is O(n3.5 log2.5(n‖A‖) log2(n)).

Let B(x) denote the cost of gcd-like operations on x-bit integers. The usage the best

worst-case complexity solver of [122] gives C(LIF ) = O(nω log(n)B(log(n‖A‖))) and the

cost of the algorithm becomes O(nω(log(n‖A‖))
√
| log(det(A)|) log3(n)).

The algorithm can also be applied to the sparse matrix case by using the sparse solver of

[43], which gives C(LIF ) = O(Ωn1.5 log(n‖A‖) +n2 log(n‖A‖) log(‖A‖)) if the matrix has

Ω ≥ n non-zero entries. The complexity of the algorithm becomes O((Ωn1.5 log(n‖A‖) +

n2 log(n‖A‖) log(‖A‖))
√
| log(det(A)|) log2(n)).

For well-conditioned matrices, adaptive solver of [128] provides another opportunity of

using combined symbolic-numerical methods to solve a system of equations.

3.2 Comparison with other Smith Form Algorithms

The complexities of other Smith Form algorithms are as follows. n is the matrix size and

‖A‖ = maxi,j=1...n(|aij |). See Sec. 2.1 for the definition of O∼ notation.

- O∼(n5 log2(‖A‖)) for the Iliopoulos [69] algorithm, if fast integer multiplication is

used; the computation is performed modulo the determinant or the largest invariant

factors which is bounded in size by O(n log(n‖A‖));

- O∼(nω+1 log(‖A‖)) for the Storjohann [121] algorithm; ω is the exponent for matrix

multiplication; fast integer multiplication can be used;

- O∼(sn3) [by elimination methods] orO∼(snΩ) [by black-box methods] for the valence

algorithm [39]; s is the number of primes dividing the valence; Ω is the number of

non-zero entries of the matrix; the algorithm is practical if s is small;
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3.3 Adaptive Modifications

The first adaptive modification is mentioned by the Eberly et al. in their original paper.

Other were introduced in a series of papers of Saunders and Wan, see [112, 113, 127].

1. The algorithm FastInvariantFactors of [44] consists of coupling the original Invariant-

Factors algorithm with the algorithm of Storjohann [121]. Thanks to this approach the

authors are able to deliver an algorithm with worst case complexity better than both

components. The complexity of this adaptive solution isO
(
n2+ω

2 log1.5(n‖A‖) log0.5(n)
)

.

2. In a series of papers [112, 113, 127] Saunders and Wan introduce even more adaptivity

to the Smith form algorithm. The improvements include a ”bonus” computation and

new multiplicative preconditioning. Then the authors suggest dividing the computa-

tion to smooth and dense part, which refer to the computation of local Smith forms

at smaller and bigger primes respectively. They combine the valence algorithm [39]

(which provides the small primes to consider) with local form computation (for each

small prime) and use the binary or backward search only to look for invariant factors

which include big primes. The valence and local Smith form algorithms are particulary

efficient on certain class of sparse matrices. The use of Iliopoulos [69] and Storjohann

[120] algorithm can also be envisaged in this approach.

The speed-up of [112] is mostly practical, as their approach allows first of all to reduce

the leading coefficient of the complexity, due to smaller number of iterations needed

to obtain the result with a sufficient probability of success compared to the original

algorithm. Moreover, the authors try explore all known and implemented algorithms,

which is the essence of adaptive programming.

3. In some cases, computing local Smith forms for a reasonable number of small primes

2, 3, 5, 7, . . . can be more efficient than the computation of valence. This is especially

true as algorithm of [39] depends heavily on the assumption that the valence is small.

The following paradox occurs: the more big primes divide the valence, the less informa-

tion we will use and the longest its computation. Additionally, taking into account that

rough factors are usually restricted to the largest invariant factor, see [44, Thm. 6.2]

and Cor. 5.3.3, this leads to a conclusion, that valence computation might be dropped

from the algorithm.

The computation of the smooth part by local form computation and the largest in-

variant factor computation are sufficient to produce the Smith form, that for random

dense matrices is correct with certain probability. The probability can be increased by

including more primes in the smooth part, leading to a Monte Carlo type algorithm.

The computation of the rough part (or to be precise, confirming that it is trivial) can

be seen as a certification of the Monte Carlo algorithm. We have used this modification

of [112] to perform computation for extremely large sparse matrices in [34] and 16.
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3.4 Expected and Output Dependant Complexity and Other

Modifications

In this section we will analyze the algorithm of [44] in the context of the output dependent

and expected complexities introduced in Sec. 2.3.1 and 2.3.2. This analysis yields that

it should be possible to change a log(n) factor in the expected complexity of [44] to

a log(log(n)). This would require a small modification in the algorithm and a careful

analysis.

In [44, Thm. 4.2] the authors analyze the worst case complexity of their algorithm which

is O(n3.5 log2.5(n‖A‖) log2(n)). The analysis yields

1. m = O(
√

log(det(A))) = O(
√
n log(n‖A‖)) factors have to be found among n elements.

This requires computing m log(n) factors1 in what is equivalent to a binary search

algorithm;

2. Each factor is computed by repeating OIF procedure 1 + dlog(n)e times;

In [44, Thm. 6.4], m log(n) is replaced by the expected number of non-trivial invariant

factors, which gives the expected complexity.

Here we would like to show, that while knowing the expected number of non-trivial invari-

ant factors we may slightly modify the algorithm in order to improve its expected and/or

average performance. Then we will show how to make the algorithm sensitive to the

number of non-trivial invariant factors and obtain a good output-dependent and expected

complexity. The essential observation is that if the number of invariant factors to evaluate

is small, less repetition of OIF is needed to obtain the same probability of success.

1. A simple modification to enhance the expected complexity

Let λ ∈ N, λ > 1. Let A be a n × n matrix with entries chosen uniformly and ran-

domly from the set of λ consecutive integers. Then the expected number of non-trivial

invariant factors is at most

N = 3(logλ (n)) + 32, (3.1)

see [44, Cor. 6.3]. This bound is in fact further improved in Thm. 5.3.10 but this is

not important in this considerations.

Assume that the number of non-trivial invariant factors is the expected i.e. it is bounded

by N . We can verify the hypothesis by computing the (n−N−1)th factor. If it is trivial,

the binary search should be done among N = O (logλ (n)) = O(log(n)) elements. There

are at most N factors to compute, which allows to lessen the number of repetitions for

1Care should be taken that no more than m different values of invariant factors are computed by the

algorithm. Theoretically, in the case of erroneous computation, OIF (i) for i = 1, . . . , n can be all different

from each other. This may violate the worst case complexity bounds. Finding more than m different values

of invariant factors means that the computation of the Smith Form is erroneous and that an error has to

be reported.
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the OIF procedure. If the number of non-trivial invariant factors is greater than N , we

run the original algorithm.

Thus, the expected complexity of the algorithm is

O
(
n3 log2(n‖A‖)N log(N)

)
= O≈

(
n3 log2(n‖A‖) log(n)

)
,

as the number of evaluated factors is at most N and the number of repetitions for each

OIF procedure is log(N).

If λ is now known beforehand and no additional information on A is given, we may still

anticipate the expected number of non-trivial invariant factors by putting λ = 2‖A‖.
The hypothesis is verified during the course of the algorithm, therefore our assumption

does not influence the correctness of the result of the algorithm. However, in the

propitious case when the expected number of non-trivial invariant factors is smaller

than we assume, the speed-up over the classic version of the algorithm is evident.

However, the expected complexity we give here cannot be considered as the average

complexity since we do not average over all possible inputs and the dependency on the

expected number of non-trivial invariant factors is not linear and is N log(N). Thus,

let us evaluate the average complexity in detail.

Let us assume that λ ∈ O(1). Let I(j) be the event that number of non-trivial invariant

factors is at least j. Then the average complexity of the above version of the algorithm

is less than

P(¬I(N + 1))O≈
(
n3 log2(n‖A‖) log(n)

)
+ P(I(N + 1))O(n3.5 log2.5(n‖A‖) log2(n))

The value of I(N + 1) can be computed thanks to [44, Cor. 6.3], which gives P(I(N +

1) ≤ λ−n+9
(

2
3

)N
+n3

(
1
λ

)N
. By Eq. (3.1), N is such that n3

(
1
λ

)N
= O(1). Therefore,

the average complexity is equal to the worst case complexity in this case.

Yet, we may improve the average complexity by replacing N by kN , where k > 1, and

validating that (n− kN − 1)th factor is trivial. This time the probability I(kN + 1) is

O(n3
(

1
λ

)
)kN = O(n−3(k−1)), which means that the average complexity is asymptotically

the same as the expected one.

As we can see, parameter k arises in the algorithm from purely probabilistic consider-

ations and is introduced to the algorithm in an arbitrary way. Yet its influence cannot

be neglected, as it increases the actual running time of the algorithm k-folds in the

propitious case.

2. Making algorithm output dependent

In Alg. 3.4.1 we would like to propose another modification of the algorithm, which do

not require the knowledge of the expected number of non-trivial invariant factors, but

allows to compute it during the course of the algorithm.

Theorem 3.4.1 (Complexity of Alg. 3.4.1) Let n ∈ N and let A be a n×n integer

matrix, such that log0.5(‖A‖n) log2(n)
n0.5 is O(1). Let N be the number of non-trivial invariant
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Algorithm 3.4.1 Output-dependent version of the Smith form Alg. of [44].

Require: a n× n matrix A,

Require: procedure OIF (j), to compute the jth invariant factor of A with probability

at least 0.5,

Ensure: Smith Form of A correct with probability at least 0.5;

1: Compute s1 = gcd(aij) and sn = OIF (n);

2: if s1 6= 1 then A = A/s1; sn = sn/s1;

3: i = 0, S = {n};
4: while sn−2i+1 6= 1 do

5: i = i+ 1;

6: if (n− 2i + 1 ≤ 1) then break;

7: Update sj for j ∈ S by running OIF (j) once;

8: Compute sn−2i+1 by running OIF (n− 2i + 1) once;

9: S = S ∪ {n− 2i + 1};
10: Update sn−2i+1 by running OIF (n− 2i + 1) i times;

11: end while

12: Find smallest j s.t. sn−2j+1 = 1 or j = dlog(n)e+ 1;

13: Do binary search for different invariant factors between sn−2j+1 and sn (by running

OIF (j + 1) times);

factors of A. Alg. 3.4.1 returns the Smith Form of A with probability 1/2 in the

(average) output dependent complexity of O(N log(N)C(OIF )) bit operations, where

C(OIF ) is the complexity of OIF procedure required by the algorithm.

PROOF If N is the number of non-trivial invariant factors then sn−N−1 = 1. Let

k = dlog(N)e + 1. Then sn−2k+1 = 1 as well and the loop stops as soon as sn−2k+1 =

1 is computed correctly. If this happens after k + l iterations, l = 0, 1, . . . , then

OIF (n − 2k + 1) procedure was already lanced (k + l) times and produced (k+l-1)

erroneous outputs. In total OIF procedure was lanced (k + l)(k + l + 1) times at this

stage. Therefore the average number of calls to OIF is at most

k(k + 1) +

∞∑

l=1

(k + l)(k + l + 1)

(
1

2

)k+l−1

≤ k(k + 1) + 14

This means that on average, the loop will stop after O(k2) iterations and that the

binary search has to determine at most (2k − k) remaining factors by repeating OIF

(k + 1) times for each of them. Then, the binary search requires (k + 1)(2k − k) calls

to OIF and the total average number of calls to OIF is O(k2k).

The case when sn−2k+1 is never computed correctly may occur with probability at

most
(

1
2

)log(n)
, as a break is forced in (dlog(n)e + 1)th iterations. The classic algo-

rithm of [44] is run in this case, which requires at most O(
√

log(| det(A)|) log2(n)) =

O(n0.5 log0.5(n‖A‖) log2(n)) calls to OIF.
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This forces us to

(
1

2

)log(n)

n0.5 log0.5(n‖A‖) log2(n)C(OIF ) = O(
log0.5(‖A‖n) log2(n)

n0.5
C(OIF )).

to the average complexity. The average running time is thus

O(k2kC(OIF ) +
log0.5(‖A‖n) log2(n)

n0.5
C(OIF )),

which is O(k2kC(OIF )) since log0.5(‖A‖n) log2(n)
n0.5 ∈ O(1) by assumption. The Smith form

is computed correctly with probability at least 1− 2k
(

1
2

)k+1
= 1

2 . Since log(N) + 2 >

k > log(N), the average output dependent complexity is O(N log(N)C(OIF )) bit

operations.

The expected complexity can easily be obtained by replacing N with the expected

number of non-trivial invariant factors. The condition on matrix A can be lessen and

becomes log0.5(‖A‖n) log(n)
n0.5 ∈ O(1). The expected complexity is O≈(C(OIF ) log(n)) by

Eq. (3.1).

The average complexity of the algorithm can be expressed be the formula

n∑

j=1

P(I(j + 1)\I(j))j log(j)n3 log2(n‖A‖),

which is by far more difficult to evaluate.

3.5 Summary

We presented two modifications which have better expected case complexity than the

original algorithm. The second leads to an output-dependent modification in Alg. 3.4.1.

We show that in order to obtain a good average complexity an unnatural modification of

parameters might be necessary, which leads to worse over-all performance. In general, we

feel that from the practical point of view it might be sufficient to optimize the expected

complexity instead of the average in view of the following;

- the expected values estimations are crude, see new approximations in Thm. 5.3.10

among others;

- once propitious cases are recognized, the expected complexity approximates the ac-

tual number of bit operations better than the average complexity;

- in the malicious cases, the reason of bad behavior is known and the worst case

complexity approximates the number of bit operations in this case; again average

complexity does not provide vital information in this case;
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Giving complexity bounds cannot change the actual running time and cannot replace the

experimental evaluation of the algorithms. However, we are persuaded that the analysis

of the expected and output-dependent complexity, coupled with the worst case complexity

considerations, yields more information on the performance of the algorithm than the

average complexity.



Part II

Adaptive Determinant Algorithm





4
Motivations

The problem of determinant computation is one of the best studied in modern computer

algebra. The wide availability of algorithms, which are based on many different ideas, as

well as the existence of many implementations and experimental evaluations makes it an

ideal target for the design of an adaptive algorithm.

We propose an adaptive algorithm, which combines different algorithms of various time

and space complexities. The algorithm is introspective, as it takes into account the actual

timing of its components and based on this comparison, it can emphasize a particular

variant. With the use of very fast modular routines for linear algebra, our implementation

is an order of magnitude faster than other existing implementations.

We present our algorithm in a general form, suggesting that various ’building-block’ pro-

cedures can be used in order to obtain the final result. Modular determinant computation

and integer system solving are the main components of our algorithm. We propose sparse

and dense variants of the algorithms, whereas its applicability can also be envisaged in

the case of structured matrices. The algorithm is output dependent on the number of

non-trivial invariant factors, which leads to a good expected complexity in the case of

random dense matrices.

4.1 Existing Algorithms

Before we proceed with the description of our adaptive algorithm for the determinant

computation, let us recall the existing solutions and compare their complexities and re-

quirements.

Let n ∈ N, n > 0 and let A be a n × n integer matrix, ‖A‖ = maxi,j=1..n(|Aij |) be the

maximum norm of A. For simplicity, let us suppose that ‖A‖ ∈ O(1) and analyze the

asymptotic bit complexity of the algorithms in terms of matrix size n. We assume that A

is a dense matrix and that dense matrix multiplication over modular field can be performed

in O(nω) bit complexity. The value of ω is 3 for the classical algorithm, and 2.375477 for

the Coppersmith-Winograd method, see [22].
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Over a modular field, the computation of determinant is tied to that of matrix multiplica-

tion via block recursive matrix factorizations [68]. Therefore, using BLAS routines, such

as LU factorization, we obtain an optimal algorithm of O(nω) complexity.

A classical method to find an integer determinant det(A) is to use the Chinese Remainder-

ing (CR) Algorithm and reconstruct the result from its modular images using the Chinese

remaindering theorem, see e.g. [70, Sec.5.4,5.5] for the description of the algorithm. An

output-dependent CR algorithm has the complexity ofO∼(log(|det(A)|)nω) bit operations,

where log(|det(A)|) is O(n log(n)) in the worst case.

In [2] Abbott et al. give another variant of the algorithm in which a divisor D of det(A)

is computed, and the CRA loop is run to compute det(A)
D instead of det(A), which in a

propitious case may be significantly smaller. This requires adding a modular division in

the CRA loop. In [2] the authors propose to use the largest invariant factor of A, i.e.

sn, as the preconditioner D. The algorithm does not improve the worst case complexity

when compared to CRA, which remains O(nω+1 log(n)). The average complexity of the

algorithm is O(n3 log2(n) + nω log(| det(A)/sn|)), assuming that a p-adic solver of [27] is

used in the computation of sn. Yet, no convincing estimations of log(|det(A)/sn|) have

be made. However, the value seems to be O(1) in many cases, see [103]. See 6 for the full

analysis of the algorithm.

In Ch. 3 we presented the Smith form algorithm of [44], see also Sec. 3.1 for the complex-

ities. The worst case complexity of the algorithm is O(
√

log(|det(A)|)C(LIF ) log2(n),

where C(LIF ) is the cost of one integer system solving.

The authors propose to use the Smith form algorithm for the determinant computation

as det(A) is equal to
∏n
i=1 si(A), the product of invariant factors of A. From the point of

view of the determinant computation, the algorithm of [44] has considerable drawbacks.

First, all factors are computed at approximately the same cost independently of its size.

Secondly, the probability of correctness of the result is small, namely 0.5, and improving

the probability requires rerunning the algorithm. As the authors remark, there are ways

to falsify and/or certify the result. However, no possibility exists to correct the result by

integer CRA as in the case of Abbott’s algorithm [2], which in a way is a correction of

Pan’s algorithm [103]. Even if the computed result differs from the determinant by several

primes and is ”almost” correct, it may have additional (more often) as well as missing (in

an unlucky case) primes. An erroneous result can a priori be a factor or a multiple of the

determinant (or something in between).

The following algorithms have cubic or sub-cubic complexities, especially if fast matrix

multiplication is applied. First, a modified version of [44] algorithm, see Sec. 3.3, has

O
(
n2+ω

2 log2(n)
)

bit complexity.

Then, the division free algorithms developed by Kaltofen in [75, 78, 79] can be men-

tioned. For dense matrices, the algorithm has worst case complexity of O∼
(
n2.7

)
, which

is O∼
(
n3.2

)
without fast matrix multiplication, by [79]. The sensitivity of the algorithm

to the output properties can also be taken into account, see [75]. The algorithm has never

been experimentally evaluated.



4.2. Outline of this Part 39

On the other hand, Last Vegas type (certified) algorithm of Storjohann [122] uses an

expected number of O≈
(
nω log3(n)

)
bit operations, thus binding the integer determinant

computation to matrix multiplications. The algorithm requires a fast linear system solver,

which is also presented in [122] and requires O≈
(
nω log2(n)

)
bit operations. Up to date no

implementation of such solver has been presented and the algorithm seems to be a purely

theoretical improvement. While using a p-adic solver of [27], the determinant algorithm

reaches the complexity of O≈
(
n3 log2(n)

)
bit operations.

4.2 Outline of this Part

In order to design an adaptive algorithm, a study of probabilistic behavior of its input

should be performed, which allows to determine a large set of propitious inputs for the

algorithm. On the other hand, our algorithm will use several randomized procedures,

whose probabilistic behavior has to be analyzed. In Chapter 5 we present a study of

probabilistic properties of random matrices, that we will use in order to design and analyze

our algorithm.

We present the CRA and Abbott’s [2] ideas in Chapter 6, where we introduce a more

general concept of preconditioned CR loop and the necessary facts and notations. In Ch.

7 we look again on the ideas of [112, 113, 127] and generalize it to the concept of an

extended k-bonus. Finally, in Ch. 8 we present our adaptive algorithm and analyze its

performance based on complexity estimations and experiments.





5
Probabilistic Properties of

Random Matrices

In this chapter we provide a model and tools to analyze probabilistic properties of the

adaptive determinant algorithm, which we present in Ch. 8. In Sec. 5.1 basic tools and

the probabilistic model are presented. In Sec. 5.2 we compute the probability that a

rank mod p, where p-prime, is equal to a given r in the case of non-uniformly distributed

matrices. In Sec. 5.3 the result is applied to the computation of the expected number of

non-trivial invariant factors of an integer matrix. This result was first given in [44], here

we provide an asymptotically better bound and refer to results in the sparse case. We

finish the chapter by presenting the probability bound that ps divides the determinant of

an integer matrix in Sec. 5.4.

5.1 Basic Notions for Random Matrices

5.1.1 Introduction

In order to analyze probabilistic behavior of matrix algorithms, a distribution of matrices

and/or vectors given on input has to be considered. The distribution of matrices may

arise naturally given a distribution of its entries and assuming that all entries are chosen

independently of each other. These kinds of distribution have been considered by several

authors and in different contexts in recent years:

- in [10], the authors consider uniformly distributed random dense matrices over Zq,
q ∈ N and give probability characterization of rank and determinant of such matrices,

- in [2], the authors consider uniformly distributed random dense integer vectors and

the induced distribution over Zq, q ∈ N, which allows them to analyze the expected

performance of their LargestInvariantFactor algorithm,

- in [44], the authors consider uniformly distributed random dense integer matrices

and the induced distribution over Zp, for a prime p, which allows them to analyze

the probability of success of their OneInvariantFactor algorithm,
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- in [127], Wan presents a generalization of [44] in a form of non-uniform distribu-

tion over a field; he applies the results to another variant of OneInvariantFactor

algorithm,

- in [96, 133] random λ-sparse row and column matrices over a field are defined, these

matrices are used as random preconditioners for solving a sparse system of equations,

- in [28] random s, t-sparse matrices are defined, and an analysis of the complexity of

elimination method is performed.

Our presentation is based on [127], as we generalize the notion of non-uniformly distributed

variables to the case of Zq for composite q ∈ N, see Def. 5.1.2. We propose to refer to

the special case of non-uniform distribution induced on Zq by the uniform distribution

on S ⊂ Z as almost-uniform distribution, see Def. 5.1.4. Prop. 5.1.5 justifies the name.

The idea of random sparse distributions in Def. 5.1.6, is inspired by [96, 133, 28, 7] and

may give rise to object that are not commonly considered as sparse enough. In Sec. 5.1.3

definitions of random non-uniform, almost-uniform and sparse matrices are given.

Finally, let us refer to some other sources of random approach to matrix computation.

- Thm. 3 of [2] in Thm. 3 discuss uniform distribution of matrices with the same

Hadamard’s bound,

- in [11], symmetric random matrix, uniformly distributed over Zq, q ∈ N are discussed,

- [107] and [76] discuss uniformly distributed random Toeplitz matrices modulo a

prime p or q ∈ N, in [107] experimental statistics can be found;

However, structured matrices are not considered in this thesis.

5.1.2 Basic Notion

In this section we will consider random matrices over number rings.

Definition 5.1.1 (Number Ring) A number ring is equal to the rational field Q or the

integer ring Z, or the modular ring Zq, q ∈ N, q ≥ 2.

For every probability distribution Pξ we can define probability bounds α and β.

Definition 5.1.2 (Probability Bounds) Let 0 ≤ α ≤ β ≤ 1. Let Pξ be a discrete

probability distribution on a set R. We say that (α, β) are probability bounds for Pξ if

α, β, and Pξ fulfill the inequality:

α ≤ Pξ(x : x = x0) ≤ β ∀x0 ∈ R. (5.1)

Proposition 5.1.3 (Existence of Probability Bounds) Probability bounds always ex-

ist.
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PROOF Let Pξ be a discrete probability distribution on a set R and ξ : R → [0, 1] its

probability mass function. We may define (αξ, βξ) by the equations:

αξ = inf
x0∈R

(Pξ(x : x = x0)) = inf
x0∈R

(ξ(x0))

βξ = sup
x0∈R

(Pξ(x : x = x0)) = sup
x0∈R

(ξ(x0)) (5.2)

Then (αξ, βξ) are probability bounds for Pξ.

Probability bounds may contain essential information about the probability distribution.

This is the idea of Sec. 5.6.2.1 of the thesis of Z. Wan [127] in the case when R is a field.

As a special case, Wan introduces almost-uniform distribution modulo prime q, which we

present here in a more general case when q is composite, q ∈ N, q ≥ 2.

Almost Uniform Random Distribution Modulo q, cf. [127]

Definition 5.1.4 (Almost Uniform Distribution) Let S be a set of λ contiguous in-

tegers S = {a, a + 1, . . . , a + λ − 1}, where a ∈ Z and λ > 0. Let PS denote the discrete

uniform distribution on S. Let q ∈ N, q ≥ 2.

The almost uniform distribution (modulo q) is a distribution PS,q on Zq which is defined

by the probability mass function ξS,q:

ξS,q(x0) = PS(x ∈ Z : x = x0 mod q). (5.3)

The almost uniform distribution PS,q on Zq describes the probability of choosing an ele-

ment x from S such that its image modulo q is equal to a certain element x0 ∈ Zq. This

distribution is usually not uniform unless q divides λ. The name almost uniform is justified

by the fact that the distribution originates from a uniform distribution. Moreover, Prop.

5.1.5 shows that the difference between probability bounds is small enough.

Proposition 5.1.5 (Lem. 5.9 of [127]) Let S be a set of λ contiguous integers S =

{a, a + 1, . . . , a + λ − 1}, where a ∈ Z and λ > 0. Let q ∈ N and q ≥ 2. Let PS,q be the

almost uniform distribution on Zq. We define

αq =
1

λ
bλ
q
c, βq =

1

λ
dλ
q
e. (5.4)

Then (αq, βq) are probability bounds for PS,q.

Moreover, the probability distribution PS,q on Zq differs from the uniform distribution on

Zq by at most 1
λ i.e.

| PS,q(x = x0)− 1

q
| ≤ 1

λ
. (5.5)
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PROOF The proof of [127, Lem. 5.9] carry on to the case when q is not prime. Proving

the second part of the lemma requires a simple estimation. Let us notice that

PS,q(x = x0)− 1

q
≤ 1

λ
dλ
q
e − 1

q
≤ 1

λ
(
λ

q
+ 1)− 1

q
=

1

q
+

1

λ
− 1

q
=

1

λ
.

Analogously,

PS,q(x = x0)− 1

q
≥ 1

λ
bλ
q
c − 1

q
≥ 1

λ
(
λ

q
− 1)− 1

q
=

1

q
− 1

λ
− 1

q
= − 1

λ
.

Therefore

| PS,q(x = x0)− 1

q
| ≤ 1

λ
.

γ, ξ - sparse Distribution

Definition 5.1.6 (Sparse Distribution) Let R be a number ring. Let 0 < γ � 1 and

let Pξ be a discrete probability distribution on R and ξ : R → [0, 1] its probability mass

function.

γ, ξ - sparse probability distribution Pγ,ξ on R is given by its probability mass function

ηγ,ξ:

ηγ,ξ(x) =

{
1− γ + γξ(0) if x = 0

γξ(x) if x 6= 0.
(5.6)

In the γ, ξ - sparse probability distribution, the probability of choosing 0 is defined sepa-

rately from the probability of choosing a non-zero element. This allows to construct highly

non-uniform probability distributions, where the probability of choosing 0 is much larger

than for non-zero elements.

Proposition 5.1.7 (Probability Bounds for Sparse Distribution) LetR be a num-

ber ring. Let 0 < γ � 1 and let Pξ be a discrete probability distribution on R and

ξ : R → [0, 1] its probability mass function. Let Pγ,ξ be the γ, ξ - sparse probability

distribution on R.

The probability bounds for Pγ,ξ are

(αγ,ξ, βγ,ξ) = (γαξ, 1− γ + γβξ),

where (αξ, βξ) are probability bounds for Pξ.

PROOF Let (αξ, βξ) be the probability bound for Pξ. In particular this means that

αξ ≤ ξ(x) ≤ βξ ∀x ∈ R.
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We have

1− γ + γαξ ≤ 1− γ + γξ(0) ≤ 1− γ + γβξ

γαξ ≤ γξ(x) ≤ γβξ ∀x ∈ R, x 6= 0.

From definition of ηξ,γ in Eq. (5.6) we have

min(γαξ, 1− γ + γαξ) ≤ ηξ,γ(x) ≤ max(γβξ, 1− γ + γβξ).

Since

γαξ ≤ 1− γ + γαξ

γβξ ≤ 1− γ + γβξ,

we may conclude that (γαξ, 1− γ + γβξ) are probability bounds for ηξ,γ .

5.1.3 Random Matrices

A probability distribution Pξ on R induces a probability distribution on the set M(k, n,R)

which consists of k × n matrices over R. We give the following classic definition.

Definition 5.1.8 (Random Matrix) Let R be a number ring. Let a discrete probability

distribution Pξ be given. Let k, n ∈ N and let M(k, n,R) denote the set of all k×n matrices

over R.

We say that A ∈M(k, n,R) is a Pξ-distributed random k×n matrix over R if the entries

of A are randomly sampled from R according to probability Pξ, independently of each

other.

By M(k, n,R,Pξ) we will denote the set of all Pξ-distributed random k×n matrices over

R. Probability distribution Pξ induces a probability distribution on M(k, n,R), denoted

by Pξ, such that

Pξ(A : A = A′) =
k∏

i=1

n∏

j=1

Pξ(aij = a′ij) ∀A′ ∈M(k, n,R), (5.7)

where aij (resp. a′ij) denote the (i, j)th entry of matrix A (resp. A′). Let Aij,b denote

an event that the (i, j)th entry of a matrix is equal to b. By Eq. (5.7), events Aij,b and

Akl,b′ are independent of each other for (i, j) 6= (k, l). Therefore, a random matrix is an

element of M(k, n,R) given according to distribution Pξ. If it does not lead to ambiguity,

we will use the same notation Pξ for the distribution of elements of R and M(k, n,R), as

the distinction is clear from context.

Sometimes, it might be convenient to consider all probability distributions with the same

probability bounds at the same time. This motivates the following definition.



46 5. Probabilistic Properties of Random Matrices

Definition 5.1.9 ((α, β) Random Matrices) Let R be a number ring.

We say that A ∈M(k, n,R) is a (α, β)-random matrix over R, if there exists a probability

distribution Pξ, such that

- A is a Pξ-distributed random matrix over R,

- (α, β) are probability bounds for Pξ.

By M(k, n,R, α, β) we will denote the set of all k × n (α, β)-random matrices over R.

Remark 5.1.10 An element of M(k, 1, R) given according to distribution Pξ is called

a Pξ-distributed random vector. An element of M(k, 1, α, β) is called a (α, β)-random

vector.

Let us now introduce two important classes of matrices, namely almost-uniformly dis-

tributed dense and sparse random matrices.

Almost Uniformly Distributed Dense Matrices, cf. [127]

Let S be a set of λ contiguous integers S = {a, a + 1, . . . , a + λ − 1}, where a ∈ Z and

λ > 0. Let PS denote the discrete uniform distribution on S. Let q ∈ N and q ≥ 2.

Let k, n ∈ N and let A ∈ M(k, n,R,PS) be an uniformly distributed random integer

matrix. Let A(q) be the image of A modulo q. Then A(q) ∈M(k, n,Zq,PS,q) is an almost

uniformly distributed matrix over Zq. Indeed, if an entry aij of A is chosen from S with

uniform distribution, aij mod q is chosen with almost uniform distribution, see Def. 5.1.4.

Moreover, A(q) is a random (αq, βq) matrix over Zq, where

αq =
1

λ
bλ
q
c, βq =

1

λ
dλ
q
e,

see Def. 5.1.9 for a definition of random (αq, βq) matrix and Prop. 5.1.5 for the probability

bound for almost uniform distribution.

Sparse Matrices.

Definition 5.1.11 (Expected Number of Non-zero Elements) Let R be a number

ring. Let 0 < γ � 1 and let Pξ be a discrete probability distribution on R. Let Pγ,ξ be

the γ, ξ - sparse probability distribution on R.

Let k, n ∈ N, k, n > 0. Consider the set M(k, n,R,Pγ,ξ) of Pγ,ξ-distributed random

k × n matrices over R, together with the induced distribution Pγ,ξ, see Eq. (5.7). Let

A ∈ M(k, n,R,Pγ,ξ) and Ωγ,ξ(A) define a random variable on M(k, n,R,Pγ,ξ) equal to

the number of non-zero entries of matrix A. Then

Ωγ,ξ = EPγ,ξ(Ω)

is the expected number of non-zero elements of a Pγ,ξ-distributed random k × n matrix.
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Proposition 5.1.12 (Value of Ωγ,ξ) Let R be a number ring. Let 0 < γ � 1 and let

Pξ be a discrete probability distribution on R and ξ : R → [0, 1] its probability mass

function. Let Pγ,ξ be the γ, ξ - sparse probability distribution on R.

Let k, n ∈ N, k, n > 0. Let Ωγ,ξ be the expected number of non-zero elements of Pγ,ξ-
distributed random k × n matrices. Then Ωγ,ξ is less than or equal knγ.

PROOF The probability that an entry of a Pγ,ξ-distributed random k × n matrix A is

non-zero is

q =
∑

x 6=0

γξ(x) = γ(1− ξ(0)) ≤ γ

We can see the process of choosing the entries of a k × n matrix as a finite Bernoulli

process consisting of kn independent Bernoulli trails 1, where choosing a non-zero entry is

a ’success’ event and happens with probability q. The number of non-zero elements is equal

to the number of ’successes’ in kn trails and therefore has a binomial distribution. Thus,

the expected number of non-zero elements is equal to the expected number of successes in

kn trails for a binomial distribution and is knq ≤ knγ.

Definition 5.1.13 (Random Sparse Matrix) Let R be a number ring.

Let k, n ∈ N, and k, n > 0. Let γ : N2 3 (k, n)→ γ(k, n) ∈ [0, 1] be a function of k and n.

Let Pξ be a discrete probability distribution on R and ξ : R → [0, 1] its probability mass

function. Let Pγ,ξ be the γ, ξ - sparse probability distribution on R.

Let A ∈ M(k, n,R,Pγ,ξ) be a Pγ,ξ-distributed random k × n matrix over R. Let Ωγ,ξ be

the expected number of non-zero elements of Pγ,ξ-distributed random k × n matrices.

Then matrix A is a γ, ξ-sparse random matrix if Ωγ,ξ ∈ o(kn) i.e.

lim
k,n→∞

Ωγ,ξ

kn
= 0.

For other definitions of sparse matrices, see e.g. [96, 133, 28, 7].

Proposition 5.1.14 (Family of Sparse Matrices) Let R be a number ring.

Let k, n ∈ N, k, n > 0. Let γ : N2 3 (k, n) → γ(k, n) ∈ [0, 1] be a function of k and n.

Suppose that there exists ε > 0 such that γ(n, k) ∈ O(n−ε) (resp. O(k−ε)).

Let Pξ be a discrete probability distribution on R and ξ : R → [0, 1] its probability mass

function. Let Pγ,ξ be the γ, ξ - sparse probability distribution on R.

Let A ∈M(k, n,R,Pγ,ξ) be a Pγ,ξ-distributed random k × n matrix over R. Then A is a

random sparse matrix.

1A Bernoulli trail is an experiment that have two possible outputs: a ”success” with probability q and

a ”failure” with probability 1− q
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PROOF Let us consider the case where γ(n, k) = O(n−ε). There exist N,C > 0 such that

γ(n, k) ≤ Cn−ε for every k, n > N . By Prop. 5.1.12

Ωγ,ξ ≤ knγ(k, n)

Therefore

lim
k,n→∞

Ωγ,ξ

kn
≤ lim

k,n→∞
γ(k, n) ≤ lim

k,n→∞
Cn−ε = 0,

and the matrix is sparse, according to definition 5.1.13.

5.2 Rank of Random Matrices

Most of the known results for the rank of random matrices consider the case of uniform

distribution over a finite field Zp, where p is a prime. This is the case of [10], where the

rank modulo ps is considered2. For s = 1 this is a classic result, see e.g. [10, Thm. 1.1]

and the references therein. Also, [7] gives the estimation on the expected rank mod p for

sparse matrices, in which non-zero entries are uniformly distributed.

In our work, we will mostly consider integer matrices modulo a prime p, which results in

an almost uniform distribution of entries mod p, see Sec. 5.1.2, 5.1.3. This is an example

of a non-uniform distribution. This kind of distribution has already been considered in

the context of full rank, see [127, Sec. 5.6.2.1] and [95, Sec. 3].

The outline of the section is as follows. In Sec. 5.2.1 we show how to carry on probability

estimations in the case on non-uniform distribution. In Lem. 5.2.2 and 5.2.3 we give the

probability that the rank of a k×n matrix modulo p (or also over Q,Z) is r or is less than

r respectively, in the case when the matrix is given according to non-uniform distribution,

in the sense of Def. 5.1.8. We finish the section by comparison with the existing results

in Sec. 5.2.2.

5.2.1 Main Results

For a uniform distribution modulo p, where p is a prime, the problem has widely be

considered, see e.g. [10] and the references therein. Let Π0 = 1,Πi(q) =
∏k
l=1(1− ql)3, for

0 ≤ q < 1. We have the following result.

Theorem 5.2.1 (Thm. 1.1 of [10]) Let p be a prime. Let us set q = 1
p and Πk(q) =

∏k
i=1(1 − qi), for k ∈ N, Π0 = 1. Let k, n ∈ N and k, n > 0. Let A be a k × n matrix

over Zp with entries chosen randomly and uniformly from Zp, independently of each other.

Then the probability P that rank(A) is r, 0 < r ≤ min(k, n) is equal to

P (A : rankp(A) = r) = q(n−r)(k−r) Πn(q)Πk(q)

Πn−r(q)Πr(q)Πk−r(q)
. (5.8)

2Precisely, McKay rank mod ps is the size of the greatest non-zero minor.
3This is the q-Binomial Coefficient, or Gaussian Coefficient polynomial.
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PROOF See [10] and the references therein.

In the case of non-uniform distribution, we are able to obtain an analogous result.

Lemma 5.2.2 (Probability of rank(A) = r) Let R be a number field and let α, β ∈
R, 0 ≤ α ≤ β < 1 be given. Let k, n ∈ N, k, n > 0 and let A be a k × n (α, β)-random

matrix, see Def. 5.1.9.

Let k′ = min(k, n) and n′ = max(k, n). The probability P that rank(A) is r, 0 < r ≤ k′ is

less than or equal to

P (A : rankp(A) = r) ≤ β(n′−r)(k′−r) Πn′(α)

Πn′−r(α)

Πk′(β)

Πr(β)Πk′−r(β)
. (5.9)

PROOF Without loss of generality we may assume that k ≤ n i.e. k′ = k and n′ = n. In

the opposite case, the reasoning can be performed for matrix AT . For i = 1 . . . k let Ai
denote the submatrix of A consisting of i first rows of A.

The proof is inductive on k − r and r, n ≥ k is set.

1. Base cases.

(a) r = 0.

The fact that rank(A) = 0 means that all the entries of A are zero. Thus

P(rank(A) = 0) = Pξ(aij = 0,∀i = 1..k; j = 1..n) ≤ βnk.

Since Πn(α)
Πn(α) = 1 and Πk(β)

Π0(β)Πk(β) = 1 we have the required inequality.

(b) k − r = 0.

For every i = 2 . . . k, the fact that rank(Ai) = i implies that the rank of rank(Ai−1) =

i− 1. Therefore by the definition of conditional probability

P(rank(Ai) = i | rank(Ai−1) = i− 1) =
P(rank(Ai) = i ∧ rank(Ai−1) = i− 1)

P(rank(Ai−1) = i− 1)

=
P(rank(Ai) = i)

P(rank(Ai−1) = i− 1)
,

which for i = k gives

P(rank(Ak) = k) = P(rank(Ak) = k | rank(Ak−1) = k − 1) · P(rank(Ak−1) = k − 1),

= P(rank(A1) = 1)
k∏

i=2

P(rank(Ai) = i | rank(Ai−1) = i− 1)

To compute P(rank(Ai) = i | rank(Ai−1) = i − 1) we notice that the fact that

rank(Ai−1) = i − 1 means that there exist an (i − 1) × (i − 1) minor S of Ai−1,
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such that det(S) 6= 0. Let us now consider the choice of entries in the ith row.

Notice, that S consists of (i−1) columns of Ai−1 and let T be a (i−1)× (n− i+1)

submatrix consisting of the remaining columns. Let v be a 1 × (i − 1) row vector

of entries in the ith row corresponding to S and let w be a 1 × (n − i + 1) vector

corresponding to T .

To estimate the probability that rank(Ai) = i, we can notice, that the entries

of v can be chosen randomly and w needs to fulfill TS−1v 6= w. This gives the

probability

P(rank(Ai) = i | rank(Ai−1) = i− 1) = Pξ(v, w : TS−1v 6= w) ≤ (1− αn−i+1),

since w is a 1× (n− i+1) vector. Also, P(rank(A1) = 1) means that A1 6= 0, which

occurs with probability at most (1− αn).

In consequence

P(rank(Ak) = k) ≤
k−1∏

i=0

(1− αn−i) =
Πn(α)

Πn−k(α)
.

As Πk(β)
Πk−k(β)Πk(β) = 1 for r = k, we get the result.

2. Inductive step.

Let us consider the case where k − r = M > 0. In the inductive hypothesis let us

assume that for all (r̃, k̃) such that k̃ − r̃ < M or k̃ − r̃ = M and r̃ < r we have

P (A : rank(A) = r̃) ≤ β(ñ−r̃)(k̃−r̃) Πñ(α)

Πñ−r̃(α)

Πk̃(β)

Πr̃(β)Πk̃−r̃(β)
.

We will show that

P (A : rank(A) = r) ≤ β(n−r)(k−r) Πn(α)

Πn−r(α)

Πk(β)

Πr(β)Πk−r(β)
.

Let us consider the case P(rank(Ak) = r). By the law of alternatives we can write:

P(rank(Ak) = r) = P(rank(Ak) = r | rank(Ak−1) = r) · P(rank(Ak−1) = r)

+ P(rank(Ak) = r | rank(Ak−1) = r − 1) · P(rank(Ak−1) = r − 1),

as P(rank(Ak) = r | rank(Ak−1) = r′) = 0 for r′ < r − 1.

(a) Case P(rank(Ak) = r | rank(Ak−1) = r − 1)

To estimate P(rank(Ak) = r | rank(Ak−1) = r − 1), we repeat the reasoning

from 1b. Let S be a (r − 1) × (r − 1) non-zero minor of Ak−1 and let T be a

(r−1)× (n−r+1) submatrix which contains the same rows as S and all remaining
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columns. Let us consider the choice of entries in the kth row. Let v be a 1× (r−1)

row vector corresponding to the columns of S and let w be the 1×(n−r+1) vector

of remaining entries. Again, the entries of v can be chosen randomly and w needs

to fulfill TS−1v 6= w. This gives the probability

P(rank(Ak) = r | rank(Ak−1) = r − 1) = Pξ(v, w : TS−1v 6= w) ≤ (1− αn−r+1)

(5.10)

(b) Case P(rank(Ak) = r | rank(Ak−1) = r)

Let us now estimate P(rank(Ak) = r | rank(Ak−1) = r). This time, let S be a

r × r non-zero minor of Ak−1 and let T be a r × n − r submatrix which has the

same rows as S and the remaining columns. Let us consider the choice of entries

in the kth row. Let v be a 1× r row vector corresponding to the columns of S and

let w be the 1× (n− r) vector of remaining entries. Again, the entries of v can be

chosen randomly and w needs to fulfill TS−1v = w. This gives the probability.

P(rank(Ak) = r | rank(Ak−1) = r) = Pξ(v, w : TS−1 = w) ≤ βn−r (5.11)

By the inductive hypothesis

P(rank(Ak−1) = r − 1) ≤ β(n−r+1)(k−r) Πn(α)

Πn−r+1(α)

Πk−1(β)

Πr−1(β)Πk−r(β)
,

P(rank(Ak−1) = r) ≤ β(n−r)(k−1−r) Πn(α)

Πn−r(α)

Πk−1(β)

Πr(β)Πk−1−r(β)
.

Therefore

P(rank(Ak) = r) ≤ (1− αn−r+1) · β(n−r+1)(k−r) Πn(α)

Πn−r+1(α)

Πk−1(β)

Πr−1(β)Πk−r(β)

+ βn−r · β(n−r)(k−1−r) Πn(α)

Πn−r(α)

Πk−1(β)

Πr(β)Πk−1−r(β)

= β(n−r)(k−r) Πn(α)

Πn−r(α)

Πk−1(β)

Πr−1(β)Πk−1−r(β)

(
βk−r

1− βk−r +
1

1− βr
)

= β(n−r)(k−r) Πn(α)

Πn−r(α)

Πk−1(β)

Πr−1(β)Πk−1−r(β)

βk−r − βk + 1− βk−r
(1− βk−r)(1− βr)

= β(n−r)(k−r) Πn(α)

Πn−r(α)

Πk(β)

Πr(β)Πk−r(β)
,

which finishes the proof.

Let us consider the situation of Lem. 5.2.2. In order to compute the probability that the

rank is smaller than or equal to a given r, we can sum the probability P(rank(A) = j) for

j = 1..r. By Lem. 5.2.2, we obtain

P(rank(A) ≤ r) ≤
r∑

j=0

β(n′−j)(k′−j) Πn′(α)

Πn′−j(α)

Πk′(β)

Πj(β)Πk′−j(β)
. (5.12)
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A closed algebraic formula remain to be found for Eq. (5.12). In two particular cases we

obtain

- for α = β = q: P(rank(A) ≤ r) ≤∑r
j=0 q

(n′−j)(k′−j) Πn′ (q)Πk′ (q)
Πn′−j(q)Πj(q)Πk′−j(q)

;

- for α = 0: P(rank(A) ≤ r) ≤∑r
j=0 β

(n′−j)(k′−j) Πk′ (β)
Πj(β)Πk′−j(β) .

To bound the probability, without using Eq. (5.12), we propose the following reasoning.

Lemma 5.2.3 (Probability of rank(A) ≤ r) Let R be a number field and let α, β ∈
R, 0 ≤ α ≤ β < 1 be given. Let k, n ∈ N, k, n > 0 and let A be a k × n (α, β)-random

matrix, see Def. 5.1.9.

Let k′ = min(k, n) and n′ = max(k, n). The probability P that rank(A) is smaller than or

equal r, 0 < r < k′ is less than

(
β(n′−r)(k′−r) Πk′−1(β)

Πr(β)Πk′−r(β)

)
(1− β(r+1)(k′−r)) (5.13)

PROOF Without loss of generality we may assume that k ≤ n i.e. k′ = k and n′ = n.

In the opposite case, the reasoning can be performed for matrix AT . As in the previous

proof, let Ai denote the submatrix consisting of i first rows of A, for i = 1 . . . k.

For i = 1 . . . r we will denote by A ∈ Ak,r(i) the event that rank(Ak−i) ≤ r − i.By adding

a row we may increase the rank by 1 in the worst case, which implies the inclusions

Ak,r(i) ⊂ Ak,r(i− 1),

for i = 2 . . . r. Moreover P(Ak,r(0)) is the probability that rank(A) ≤ r that we are going

to estimate.

Notice, that Ak,r(0) can be represented as a sum of increasing sets

Ak,r(r) ⊂ Ak,r(r − 1) ⊂ · · · ⊂ Ak,r(1) ⊂ Ak,r(0).

Therefore Ak,r(0) is a sum of disjoint sets

Ak,r(0) = Ak,r(r) ∪
r−1⋃

i=0

(Ak,r(i)\Ak,r(i+ 1)).

Thus, we may compute P(Ak,r(0)):

P(Ak,r(0)) = P(Ak,r(r)) +
r−1∑

i=0

P(Ak,r(i) ∧ ¬Ak,r(i+ 1)). (5.14)



5.2. Rank of Random Matrices 53

1. P(Ak,r(r)) Computation

The fact that A ∈ Ak,r(r) means that the submatrix A[1..k− r][1..n] consisting of k− r
first rows is 0. Therefore

P(Ak,r(r)) ≤ Pξ(aij = 0, i = 1..k − r; j = 1..n) ≤ βn(k−r). (5.15)

2. P(Ak,r(i) ∧ ¬Ak,r(i+ 1)) Computation

Now let us compute P(Ak,r(i) ∧ ¬Ak,r(i + 1)). In terms of the rank, it is equivalent

to say that rank(Ak−i) ≤ r − i and rank(Ak−i−1) > r − i − 1 at the same time. This

implies that

r − i ≤ rank(Ak−i−1) ≤ rank(Ak−i) ≤ r − i

and therefore both the rank of Ak−i and Ak−i−1 are equal to r − i.
By the definition of the conditional probability we have that P(B∩C) = P(B)P(B | C),

for any events B and C. Thus

P(Ak,r(i) ∧ ¬Ak,r(i+ 1)) = P(rank(Ak−i) = rank(Ak−i−1) = r − i)
=P(rank(Ak−i) = r − i | rank(Ak−i−1) = r − i)P(rank(Ak−i−1) = r − i)

By Eq. (5.11) for k − i and r − i,

P(rank(Ak−i) = r − i | rank(Ak−i−1) = r − i) ≤ βn−r+i.

Then by Lem. 5.2.2 for α = 0

P(rank(Ak−i−1) = r − i) ≤ β(n−r+i)(k−r−1) Πk−i−1(β)

Πr−i(β)Πk−r−1(β)

≤ β(n−r+i)(k−r−1) Πk−1(β)

Πr(β)Πk−r−1(β)
.

Therefore

P(Ak,r(i) ∧ ¬Ak,r(i+ 1)) ≤ βn−r+iβ(n−r+i)(k−r−1) Πk−1(β)

Πr(β)Πk−r−1(β)

= β(n−r+i)(k−r) Πk−1(β)

Πr(β)Πk−r−1(β)
. (5.16)

3. Computation of P(Ak,r(0))
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From Eqs. (5.14), (5.15) and (5.16) we may compute

P(Ak,r(0)) ≤ βn(k−r) +

r−1∑

i=0

(
β(n−r+i)(k−r) Πk−1(β)

Πr(β)Πk−r−1(β)

)

=

r∑

i=0

(
β(n−r+i)(k−r) Πk−1(β)

Πr(β)Πk−r−1(β)

)
=

(
β(n−r)(k−r) Πk−1(β)

Πr(β)Πk−r−1(β)

) r∑

i=0

βi(k−r)

≤
(
β(n−r)(k−r) Πk−1(β)

Πr(β)Πk−r−1(β)

)
1− β(r+1)(k−r)

1− βk−r

which finishes the proof.

5.2.2 Comparison with Existing Results

In the situation of Lem. 5.2.2,5.2.3, let us consider n = k. In this case, we may apply

Theorem 5.14 of [127] and obtain two results

P(rank(A) = n) = P(det(A) 6= 0) ≥
∞∏

i=1

(1− βi).

P(rank(A) < n) ≤ 1−
∞∏

i=1

(1− βi) ≤
∞∑

i=1

βi ≤ β

1− β .

By Lem. 5.2.3 for r = k − 1, n ≥ k we get

β
1− β(r+1)(n−r)

1− βn−r ≤ β

1− βn−r .

Lemma 3.1 of [95] gives the same bounds as Lem 5.2.2 ours for a less general family of

distributions. We have

P(rank(A) = n) ≤
n∏

i=1

(1− αi).

Finally, let us consider [10, Thm 1.1] and let us assume that α = β = q. In this case

results of [10, Thm 1.1] and Lem. 5.2.2 coincide.

5.3 The Expected Number of Non-trivial Invariant Factors

The number of non-trivial invariant factors is one of the parameter that determine the

performance of the Smith form and determinant algorithms of [44]. In this section we will

give a new evaluation of the expected number of non-trivial invariant factors for random

matrices, which leads to an asymptotically better bound in the case of random dense
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matrices, see Thm. 5.3.10, Cor. 5.3.11. The ideas presented in this section are based on

and inspired by the article of [44].

The outline of the section is as follows. In Sec. 5.3.1 we compute the expected number

of invariant factors divisible by p for a random non-uniformly distributed (α, β) matrices,

see Def. 5.1.9. Lem. 5.3.2 gives the result. Then we apply this result to the case of

almost uniformly distributed random matrices, see Cor. 5.3.3. In Sec. 5.3 we give the

main result for integer matrices. In Thm. 5.3.10 we compute the expected number of

non-trivial invariant factors of an integer, almost uniformly distributed matrix. In Cor.

5.3.11 we prove that the probability that the number of non-trivial invariant factors in

considerably higher, is small. In Sec. 5.3.3 we analyze the case of sparse matrices.

We start by a definition of a non-trivial invariant factor.

Definition 5.3.1 (Non-trivial factor) Let R be a number field. Let k, n ∈ N, k, n > 0

and let A be a k × n matrix over R. Let SF (A) = diag(s1(A), . . . , smin(k,n)(A)) be the

Smith normal form of A over R. If si(A) 6= 1 then si(A) is a non-trivial invariant factor

of A.

5.3.1 Case Modulo p

In the first lemma we will consider the number of invariant factors divisible by p, where p

is a prime.

Lemma 5.3.2 (The Expected Number of Non-trivial Invariant Factors at p) Let

p be a prime. Let a discrete probability distribution P on Z be given and let 0 < β < 1 be

such that

P(x : x = x0 mod p) ≤ β ∀x0 ∈ Zp .

Let n ∈ N and n > 0. Let A be a n× n matrix over Z with entries chosen randomly with

the probability distribution P. Let S be the Smith normal form of A over Z.

The expected number of non-trivial invariant factors of S divisible by p, denoted Ep, is

less than or equal

Ep ≤
ln(1− β)

ln(β)
+

4

3
. (5.17)

PROOF Let Ij(p) denote the event, that at least j invariant factors of A are divisible by

p. This is equivalent to say that the rank of A mod p is at most n− j. This proves that

P (Ij (p)) = P (rank(A mod p) ≤ n− j).

By Eq. (5.3.2), A mod p is a (0, β)-random matrix over Zp. By Lem. 5.2.3 the latter is

less than or equal

P (rank(A mod p) ≤ n− j) ≤ min(1, βj
2

j∏

l=1

1

1− βl ).



56 5. Probabilistic Properties of Random Matrices

The expected number of invariant factors divisible by p verifies:

Ep =
n∑

j=0

j (P (Ij (p))− P (Ij+1 (p))) =
n∑

j=1

P (Ij (p)) = (5.18)

n∑

j=1

P(rank(A mod p) ≤ n− j) ≤
n∑

j=1

min(1, βj
2

j∏

l=1

1

1− βl ).

Let us determine a threshold J such that for j ≥ J βj
2 ∏j

l=1
1

1−βl ≤ 1.

A rough estimation gives βj
2 ∏j

l=1
1

1−βl ≤ βj
2
(

1
1−β

)j
. Let us solve the following inequality

for j ∈ N:

βj
2

(
1

1− β

)j
≤ 1 (5.19)

Notice that 0 < β < 1. We obtain that j ≥ ln(1−β)
ln(β) . Hence we can take

J = max(1, d ln(1− β)

ln(β)
e). (5.20)

Now the expected number of invariant factors divisible by p is bounded by

Ep ≤
J−1∑

j=1

1 +
n∑

j=J

βj
2

(
1

1− β

)j
≤ J − 1 +

n∑

j=J

βj
2

(
1

1− β

)j
. (5.21)

Let us now estimate the sum
n∑

j=J

βj
2

(
1

1− β

)j
. (5.22)

Let us put aj = βj
2
(

1
1−β

)j
and qj =

aj+1

aj
= β2j+1

1−β . Then for j ≥ J

aj ≤ 1 (5.23)

by Eq. (5.19). Also, Eq. (5.19) implies that βj
2 ≤ (1− β)j for j ≥ J , which gives

(qj)
j = βj

2+j βj
2

(1− β)j
≤(5.19) βj

2+j ≤(5.19) βj(1− β)j ≤
(

1

4

)j
.

Therefore we may conclude that

qj ≤
1

4
∀j ≥ J. (5.24)
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The sum (5.22) is equal to aJ +
∑n

j=J+1 ajqj−1 = aJ + aJqJ + aJqJqJ+1 + . . . This allows

us to evaluate the sum (5.22)

n∑

j=J

βj
2

(
1

1− β

)j
= aJ +

n∑

j=J+1

ajqj−1 ≤≤(5.23)(5.24)
n∑

j=J

(
1

4

)j−J 1

1− 1
4

≤ 4

3
. (5.25)

Finally let us evaluate Ep. By Eq. (5.21), Eq. (5.20) and Eq. (5.25) the expected number

of invariant factors divisible by p is less than or equal to

d ln(1− β)

ln(β)
e − 1 +

4

3
≤ ln(1− β)

ln(β)
+

4

3
,

which finishes the proof.

Let us now consider the case of almost uniform distribution, where the entries of the

matrix are uniformly sampled from a set of contiguous integers. For random dense and

sparse matrices we have the following corollaries.

Corollary 5.3.3 Let S be a set of λ > 1 contiguous integers, S = {a, a+1, . . . , a+λ−1},
for a certain a ∈ Z. Let p be a prime, s ∈ N, s > 0. Let n ∈ N and let A be a n×n integer

matrix with entries chosen randomly and uniformly from set S. The expected number of

non-trivial invariant factors of A divisible by p is at most

log2(3)

log2(3)− 1
+

4

3
for p = 2 (5.26)

1 + log(p)

log(p)− 1
+

4

3
for 2 < p < λ (5.27)

1− logλ(λ− 1) +
4

3
for p ≥ λ. (5.28)

PROOF The entries of A mod p are distributed according to almost uniform distribution

modulo p i.e. for each x0 ∈ Zp

P(x : x mod p = x0) ≤ β =
1

λ
dλ
p
e.

From Lem. 5.3.2 we know that the expected number of invariant factors divisible by p is

less that or equal

ln(1− β)

ln(β)
+

4

3
. (5.29)

Let us now estimate ln(1−β)
ln(β) in the case when β = 1

λdλp e. First, let us notice that for p < λ

β ≤ 2
p+1 . Indeed, if p < λ then λ ≥ p+ 1 and 1

λ ≤ 1
p+1 . Thus

β =
1

λ
dλ
p
e ≤ 1

λ

λ+ p− 1

p
≤ 1

p
+
p− 1

λp
≤ p+ 1 + p− 1

(p+ 1)p
≤ 2

p+ 1
.
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Therefore for 2 < p < λ:

1

1− β ≤
p+ 1

p− 1
≤ 2p

1
= 2p

1

β
≥ p+ 1

2
≥ p

2
.

We may compute

ln(1− β)

ln(β)
≤ logp(2p)

logp(
p
2)

=
logp(2) + 1

1− logp(2)
.

As logp(2) = 1
log(p) , where log = log2 is the binary logarithm, the latter transforms to

logp(2) + 1

1− logp(2)
=

1
log(p) + 1

1− 1
log(p)

=
1 + log(p)

log(p)− 1
.

In the case p = 2 we have ln(1−β)
ln(β) = log(1/3)

log(2/3) = log(3)
log(3)−1 .

For p ≥ λ, β is equal to 1
λ and ln(1−β)

ln(β) =
logλ(λ−1

λ
)

logλ( 1
λ

)
= 1− logλ(λ− 1).

The evaluation of ln(1−β)
ln(β) together with Eq. (5.29) gives the result.

Remark 5.3.4 Cor. 5.3.3 allows to estimate the expected number of invariant factors

as a function of p and λ. The sum (5.18) with β = 2
p+1 or β = 1

λ can also be evaluated

numerically. For p = 2 this gives a bound 2.22 for the expected number of invariant factors

divisible by 2. As the sum is decreasing with growing p, this is also an upper bound for

any prime p, p < λ. For λ ≥ 2 and p ≥ λ we obtain an analogous bound of 1.18.

Let us now consider sparse non-uniform distribution. By Lem. 5.3.2 we have the following

corollary.

Corollary 5.3.5 Let S be a set of λ > 1 contiguous integers S = {a, a+1, . . . , a+λ−1},
for a certain a ∈ Z. Let PS denote the discrete uniform distribution on S. Let p be a

prime and let n ∈ N and let A be a n× n matrix. Let 0 < ε ≤ 1 and C > 0 be given and

γ : N 3 n→ γ(n) ∈ (0, 1) be such that Cn−ε ≤ γ(n).

Suppose that the entries of A are distributed according to (γ(n),PS)-sparse distribution,

see Def. 5.1.6. The expected number of non-trivial invariant factors of A divisible by p is

at most

C−1nε
p+ 1

p− 1
(ε ln(n)− ln(C)− ln(

p− 1

p+ 1
)) +

4

3
(5.30)

PROOF Let us first consider the distribution mod p induced by (γ(n),PS)-sparse distribu-

tion. First, on S, the almost-uniform distribution PS,p is induced, which is a ( 1
λbλp c, 1

λdλp e)
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distribution. Therefore, the matrix A mod p is given according to (γ(n),PS,p)-sparse dis-

tribution. By Prop. 5.1.7 this means that

P(x : x = x0) ≤ 1− γ(n) + γ(n)
1

λ
dλ
p
e ∀x0 ∈ Zp .

From Lem. 5.3.2 we know that the expected number of invariant factors mod p is less

that or equal

ln(1− β)

ln(β)
+

4

3
,

where β = 1− γ(n) + γ(n) 1
λdλp e is the upper probability bound. As in the previous proof

we have to evaluate ln(1−β)
ln(β) . The function is increasing with growing β. Therefore its value

at 1− γ(n) + γ(n) 1
λdλp e is less than the value at 1− γ(n)(1− 2

p+1) and less than the value

at (1− Cn−ε(1− 2
p+1)). We have

ln(1− β)

ln(β)
≤

ln(Cn−ε(1− 2
p+1))

ln(1− Cn−ε(1− 2
p+1))

≤
ε ln(n)− ln(C)− ln(1− 2

p+1)

ln( 1
1−Cn−ε(1− 2

p+1
)
)

.

By Taylor expansion we know that

ln(
1

1− x) = x+

∞∑

i=2

1

i
xi ≥ x.

Therefore
ln(1− β)

ln(β)
≤ C−1nε

p+ 1

p− 1
(ε ln(n)− ln(C)− ln(

p− 1

p+ 1
)).

To conclude, the expected number of invariant factors is less than or equal

C−1nε
p+ 1

p− 1
(ε ln(n)− ln(C)− ln(

p− 1

p+ 1
)) +

4

3
.

Remark 5.3.6 In the asymptotic case, the condition γ(n) ≤ Cn−ε can be replaced by a

weaker asymptotic condition γ(n) ∈ O(n−ε).

5.3.2 Case of Dense Matrices

In what follows we would like to evaluate the expected number of invariant factors for the

integer Smith normal form. To do this, we have to put together the information on all

primes. The information on the Smith form at each prime p is encoded in the local Smith

form, see e.g. [39] for definition.
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Definition 5.3.7 (Local Smith Form [39]) Let p be a prime. Let k, n ∈ N, k, n > 0

and let A be a k × n matrix over Z. Let SF (A) = diag(s1(A), . . . , smin(k,n)(A)) be the

Smith normal form of A. Let l denote the number of non-zero invariant factors and let

ordp(x) denote the order modulo p of integer x.

The local Smith form SFp of A at p is a k × n diagonal matrix equal to

SFp(A) = diag(pordp(s1(A)), . . . , pordp(sl(A)), 0, . . . , 0).

Informally speaking, local Smith form contains all information on A at prime p, including

the rank(A) mod p and the Smith normal forms mod p for all s ∈ N, s > 0. The (integer)

Smith form of the matrix is equal to the product of its local Smith forms. Therefore the

number of non-trivial invariant factors of A is the maximum of the number of non-trivial

invariant factors of all local Smith forms of A at all primes p, which at its turn is equal

to the number of invariant factors divisible by p. However, the maximum of the expected

number of invariant factors divisible by p (given by Lem. 5.3.2) is not equal to the expected

number of non-trivial invariant factors, as it constitutes only a lower bound for this value.

Yet we may use the methods analogous to [44, Thm. 6.2] to treat all the primes at the

same time.

Before we prove the main result (Thm. 5.3.10) on the expected number of invariant factors

of an integer matrix, we need a lemma on prime summation.

Lemma 5.3.8 (Prime Summation) Let λ ∈ N and let j ∈ N, j > 1.

We have the following inequality

∑

p prime,8<p<λ

(
1

λ
dλ
p
e
)j
≤
(

1

4

)j−1

.

PROOF First, we may assume that λ > 11 as the sum is empty in the opposite case.

We will consider separately the primes which fulfill the condition

2k <
λ

p
≤ 2k+1 (5.31)

for k = 0, 1, . . . , kmax. Therefore the primes are divided into intervals

λ

2k+1
≤ p < λ

2k
, k = 0, 1, . . . kmax.

The value of kmax is computed as follows. As we require that p > 8 i.e p ≥ 11, we obtain

that kmax is the smallest integer to fulfill the condition

λ

2kmax+1
≤ 11.
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By eventually adding some intervals without primes, we compute kmax using the condition

λ

2kmax+1
≤ 8 <

λ

2kmax
(5.32)

and obtain kmax = dlog(λ)e − 4.

By Eq. (5.31), in the kth interval, dλp e is equal to 2k+1. In the interval there are at most

d λ
2k+1 e integers, thus dd λ

2k+1 e/2e = d λ
2k+2 e odd numbers.

From Eq. (5.32) we may conclude that 8
22 <

λ
2k+2 and consequently there are at least 3 odd

numbers in each interval, at least one of them is divisible by 3 and is therefore composite.

We may thus conclude that there are at most λ
2k+2 primes in the kth interval.

We may calculate:

∑

p prime,8<p<λ

(
1

λ
dλ
p
e
)j
≤
dlog(λ)e−4∑

k=0

λ

2k+2

(
2k+1

λ

)j
≤
dlog(λ)e−4∑

k=0

1

2

(
2k+1

λ

)j−1

=
1

2λj−1

dlog(λ)e−4∑

k=0

2(k+1)(j−1) =
1

2λj−1
2j−1 2(dlog(λ)e−3)(j−1) − 1

2j−1 − 1

≤ 1

2λj−1
2j−1 2(log(λ)−2)(j−1)

2j−2
=
λj−12−2(j−1)

λj−1
=

1

4j−1
.

which finishes the proof.

Remark 5.3.9 The method of evaluation showed in the previous proof may lead to an-

other inequalities of the same type. For example we obtain

∑

p prime,4<p<2l

(
1

2l
d2

l

p
e
)j
≤
(

1

4

)j−1

. (5.33)

if λ = 2l is a power of 2. Indeed, preserving the notations from the proof of Lem. 5.3.8

the condition on kmax becomes

2l

2kmax+1
≤ 4 <

2l

2kmax

and we obtain kmax = dlog(2l)e − 3 = l − 3. As λ = 2l, there are at least 2l

2k+2 = 2l−k−2

odd numbers in each interval and thus, at least 2l−k−2 primes. The final summation gives

∑

p prime,4<p<2l

(
1

2l
d2

l

p
e
)j
≤

l−3∑

k=0

2l−k−2

(
2k+1

2l

)j
=

l−3∑

k=0

2l−k−2+(k+1−l)j

= 2l−2+j−lj
l−3∑

k=0

2k(j−1) ≤ 2l−2+j−lj 2(l−2)(j−1) − 1

2j−1 − 1
≤ 2l−2+j−lj 2(l−2)(j−1)

2j−2

= 2l−2+j−lj+lj−l−2j+2−j+2 = 2−2j+2 ≤ 1

4j−1
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All powers of primes p are included in the following inequality.

∑

p prime,p>3

∑

l:8<pl<λ

(
1

λ
d λ
pl
e
)j
≤ 1

4j−1
(5.34)

The proof of Lem 5.3.8 carry on in this case, as by excluding p = 2, 3 once again it suffices

to count all odd numbers which are not divisible by 3.

The proofs are essentially the same as in 5.3.8 as we maintain the two conditions:

- in the kth interval there are at most λ
2k+2 numbers to include in the sum;

- the number of intervals kmax enables final evaluation.

Main Theorem

Let us now compute the expected number of non-trivial invariant factors for a random

dense almost uniformly distributed matrix. Previously known bound on the value for a

square n× n matrix is 29 + 3dlogλ (n)e, by [44, Thm. 6.2]. In Thm. 5.3.10 be are able to

give an asymptotically better result.

Theorem 5.3.10 (Expected Number of Non-trivial Factors) Let S be a set of λ >

1 contiguous integers S = {−dλ2 e + 1, . . . , bλ2 c}. Let k, n ∈ N and let A be a k × n

integer matrix with entries chosen randomly and uniformly from set S, independently of

each other. Let k′ = min(k, n) and n′ = max(k, n). The expected number of non-trivial

invariant factors is at most

max(2,
⌈√

2 logλ (k′)
⌉
) + 3.

PROOF Without loss of generality we may assume that k ≤ n i.e. k′ = k and n′ = n. In

the opposite case, the reasoning can be performed for matrix AT . The idea of the proof is

similar to that of [44, Thm. 6.2] but we improve some bounds.

Let Depi denote an event that the first i rows of A are linearly dependent (over rationals)

and MDepi (j), an event that the first i rows of A are modularly dependent and have

modular rank i− j i.e. that there exist at least one prime p such that rankp(Ai) ≤ i− j,
where Ai denote the submatrix consisting of first i rows of A.

Recall from [44, §6] that

P(Dep1) ≤ λ−n

P
(
Depi ∧¬Depi−1

)
≤ P

(
Depi | ¬Depi−1

)
≤ λ−n+i−1.

This gives P(Depi) ≤ 1
λn + · · ·+ 1

λn−i+1 which is less than 1
λn−i+1

λ
λ−1 .
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The fact that the number of non trivial invariant factors is at least j ≥ 1 (event Ij)

implies that either Depk−j+1 or MDepk−j+i(i) hold, for any i = 1 . . . j. The probability

P
(
MDepk−j+i(i) ∨Depk−j+1

)
can be transformed to

P
(
MDepk−j+i(i) ∨Depk−j+1

)
= P

(
(MDepk−j+i(i) ∧ ¬Depk−j+1) ∨Depk−j+1

)
,

and both P
(
MDepk−j+i(i) ∧ ¬Depk−j+1

)
and P

(
Depk−j+1

)
can be treated separately.

To estimate P
(
MDepk−j+i(i) ∧ ¬Depk−j+1

)
we will sum over all possible primes to obtain

P
(
MDepk−j+i(i) ∧ ¬Depk−j+1

)
≤

∑

p prime

P (rankp(Ak−j+i) ≤ k − j) .

Since Depk−j+1 does not hold, there exists a (k− j + 1)× (k− j + 1) non-zero minor, and

we have to sum over the primes which divide it. We will treat separately primes p < λ

and p ≥ λ.

We set βp = 2
p+1 for p < λ and βp = 1

λ for p ≥ λ. Then, let Bi,p denote

Bi,p =
i∏

l=1

1

1− βlp
.

We notice that Bi,p1 ≥ Bi,p2 for p1 ≤ p2 and that Bi,p ≤ ( 1
1−βp )i. By applying Lem. 5.2.3

for each prime p, we have

P(rankp(Ak−j+i) ≤ k − j) ≤ β(n−k+j)i
p Bi,p

and therefore for λ > 11

∑

p<λ

P(rankp(Ak−j+i) ≤ k − j) ≤ Bi,2β(n−k+j)i
2 +Bi,3β

(n−k+j)i
3 +Bi,5β

(n−k+j)i
5

+Bi,7β
(n−k+j)i
7 +

∑

8<p<λ

Bi,pβ
(n−k+j)i
p . (5.35)

Thanks to Lem. 5.3.8, for i ≥ 2 the sum
∑

8<p<λBi,pβ
(n−k+j)i
p can be bounded by

Bi,11

(
1
4

)(n−k+j)i−1
. Notice, that we include only those terms, for which p < λ. Therefore

for λ ≤ 11 the sum will contain less numbers. The bounds for
∑

p<λ P(rankp(Ak−j+i) ≤
k − j) are summarized in Tab. 5.1.

For primes p ≥ λ we should estimate the number of primes dividing the (k − j + 1)th

minor. By the Hadamard’s bound (notice that Depk−j+1 does not hold), the minors are

bounded in absolute value by
(

(k − j + 1)
(
λ
2

)2) k−j+1
2

. Therefore the number of primes

p ≥ λ dividing the minor is at most k
2 (logλ(k) + 2). This results in a bound

∑

p≥λ
P(rankp(Ak−j+i) ≤ k − j) ≤

k

2
(logλ(k) + 2)

1

λ(n−k+j)i

(
λ

λ− 1

)i
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λ
∑
p<λ P(rankp(Ak−j+i) ≤ k − j) is less than or equal

2 < λ ≤ 3 Bi,2β
(n−k+j)i
2

3 < λ ≤ 5 Bi,2β
(n−k+j)i
2 +Bi,3β

(n−k+j)i
3

5 < λ ≤ 7 Bi,2β
(n−k+j)i
2 +Bi,3β

(n−k+j)i
3 +Bi,5β

(n−k+j)i
5

7 < λ ≤ 11 Bi,2β
(n−k+j)i
2 +Bi,3β

(n−k+j)i
3 +Bi,5β

(n−k+j)i
5 +Bi,7β

(n−k+j)i
7

11 < λ Bi,2β
(n−k+j)i
2 +Bi,3β

(n−k+j)i
3 +Bi,5β

(n−k+j)i
5 +Bi,7β

(n−k+j)i
7 +Bi,11

(
1
4

)(n−k+j)i−1

Table 5.1: Bounds for
∑

p<λ P(rankp(Ak−j+i) ≤ k − j).

Summarizing,

P
((

MDepk−j+i (i) ∧ ¬Depk−j+1

)
∨Depk−j+1

)
≤
∑

p<λ

P(rankp(Ak−j+i) ≤ k − j)

+
k

2
(logλ(k) + 2)

(
λ

λ− 1

)i 1

λ(n−k+j)i
+

λ

λ− 1
λ−(n−j+1), (5.36)

where the bounds for
∑

p<λ P(rankp(Ak−j+i) ≤ k − j) are given in Tab. 5.1

We can now compute the expected number of non-trivial invariant factors.

Let us fix h = max(2,
⌈√

2 logλ (k)
⌉
). In particular, we have that P(Ij) is less than

P
(
(MDepk−j+h(h) ∧ ¬Depk−j+1) ∨ Depk−j+1

)
. We can check that h2 ≥ logλ (k) +

logλ (logλ (k) + 2) . This gives also

λh
2 ≥ k (logλ (k) + 2) (5.37)

1 ≥ k

2
(logλ (k) + 2)

(
λ

λ− 1

)h( λh

λh − 1

)
1

λh(h+1)
. (5.38)

The expected number of non trivial invariant factors is bounded by:

h∑

j=1

1 +
k∑

j=h+1

P
(
(MDepk−j+h (h) ∨ ¬Depk−j+1) ∧Depk−j+1

)
,

see Eq. (5.36). The sum is maximal in the case of a square matrix, for n− k = 0, and we

may continue the evaluation in this case. For λ > 11:

h+Bh,2
β
h(h+1)
2

1− βh2
+Bh,3

β
h(h+1)
3

1− βh3
+Bh,5

β
h(h+1)
5

1− βh5
+Bh,7

β
h(h+1)
7

1− βh7
+Bh,11

(
1

4

)h(h+1)−1 4h

4h − 1

+
1

λ

(
λ

λ− 1

)2

+
k

2
(logλ(k) + 2)

(
λ

λ− 1

)h 1

λh(h+1)

(
λh

λh − 1

)
≤(5.38) h+ f(h, λ) + 1.
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λ f(h, λ) bound

λ = 2 1
λ

(
λ
λ−1

)2

2

λ = 3 1
λ

(
λ
λ−1

)2

+Bh,2
β
h(h+1)
2

1−βh
2

1.61

λ = 4, 5 1
λ

(
λ
λ−1

)2

+Bh,2
β
h(h+1)
2

1−βh
2

+Bh,3
β
h(h+1)
3

1−βh
3

1.36

λ = 6, 7 1
λ

(
λ
λ−1

)2

+Bh,2
β
h(h+1)
2

1−βh
2

+Bh,3
β
h(h+1)
3

1−βh
3

+Bh,5
β
h(h+1)
5

1−βh
5

1.16

7 < λ ≤ 11 1
λ

(
λ
λ−1

)2

+Bh,2
β
h(h+1)
2

1−βh
2

+Bh,3
β
h(h+1)
3

1−βh
3

+Bh,5
β
h(h+1)
5

1−βh
5

+Bh,7
β
h(h+1)
7

1−βh
7

1.08

11 < λ 1
λ

(
λ
λ−1

)2

+Bh,2
β
h(h+1)
2

1−βh
2

+Bh,3
β
h(h+1)
3

1−βh
3

+Bh,5
β
h(h+1)
5

1−βh
5

+Bh,7
β
h(h+1)
7

1−βh
7

+Bh,11

(
1
4

)h(h+1)−1 4h

4h−1
0.4

Table 5.2: Bounds for f(h, λ).

Analogous bounds are obtained for λ ≤ 11, where the sum
∑

p<λ P(rankp(Ak−j+h) ≤ k−j)
contains less values. For λ > 11, f(h, λ) is equal to

f (h, λ) = Bh,2
β
h(h+1)
2

1− βh2
+Bh,3

β
h(h+1)
3

1− βh3
+Bh,5

β
h(h+1)
5

1− βh5

+Bh,7
β
h(h+1)
7

1− βh7
+Bh,11

(
1

4

)h(h+1)−1 4h

4h − 1
+

1

λ

(
λ

λ− 1

)2

≤ 0.4.

The function f(h, λ) is decreasing with h and λ. By taking minimal h = 2, betap = 2
p+1

and B2,p = 1
(1−βp)(1−β2

p)
and λ = 12, we obtain the bound. For λ ≤ 11 the sum contains

less numbers. Tab. 5.2 summarizes the value of f(h, λ) and the bounds for all cases of λ.

We may conclude that f(h, λ) ≤ 2.

For a rectangular matrix, n− k > 0, the result is even sharper.

Putting it together. The expected number of non-trivial invariant factors is less than or

equal h+ 3 = max(2, d
√

2 logλ ke) + 3.

Corollary 5.3.11 Let S be a set of λ > 1 contiguous integers S = {−dλ2 e+ 1, . . . , bλ2 c}.
Let n ∈ N and let A be a n×n integer matrix with entries chosen randomly and uniformly

from set S, independently of each other. Let h = max(2, d
√

2 logλ(n)e). The probability

that the number of non-trivial invariant factors is at least J = max(
√

3/2h+ 1, h+ 2) is

P(IJ) ∈ O(n−1)

PROOF Let us consider the notions of the proof of Thm. 5.3.10. Let Ai denote the

submatrix consisting of first i rows of A. Let IJ denote the event that at least J invariant

factors of A are non-trivial. Eq. (5.36) implies that for any i = 1 . . . J

P(IJ) ≤
∑

p<λ

P(rankp(An−J+i) ≤ n− J) +
n

2
(logλ(n) + 2)

(
λ

λ− 1

)i 1

λJi
+

λ

λ− 1
λ−(n−J+1).
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p βp BJ,p βJ
2

p BJ,p ≤
2 2

3
3J

(
2
3

)(J−2)2

3 1
2

2J
(

1
2

)(J−1)2

5 1
3

(
3
2

)J (
1
3

)(J−1)2

7 1
4

(
4
3

)J (
1
4

)(J−1)2

11 1
6

(
6
5

)J ( 1
6 )(J−1)2

( 1
4 )J

2−1

Table 5.3: Bounds for p = 2, 3, 5, 7, 11.

Let us take i = J . Then

P(IJ) ≤
∑

p<λ

P(rankp(A) ≤ n− J) +
n

2
(logλ(n) + 2)

(
λ

λ− 1

)J 1

λJ2 +
λ

λ− 1
λ−(n−J+1).

We will bound the terms separately.

By Eq. (5.35) for λ > 11

∑

p<λ

P(rankp(A) ≤ n− J) ≤ BJ,2βJ
2

2 +BJ,3β
J2

3 +BJ,5β
J2

5 +BJ,7β
J2

7 +BJ,11

(
1

4

)J2−1

,

where βp = 2
p+1 < 1 for p < λ and BJ,p =

∏J
l=1

1
1−βlp

. See Tab. 5.1 for the case λ ≤ 11.

We bound the terms in Tab. 5.3. The values for p assume that p < λ, otherwise, the

corresponding value is not included in the bound anyway. We have

(
2

3

)(J−2)2

≥
(

1

2

)(J−1)2

≥
(

1

3

)(J−1)2

≥
(

1

4

)(J−1)2

≥
(

1

6

)(J−1)2

.

For J = max(
√

3/2h+ 1, h+ 2), h = max(2, d
√

2 logλ(n)e), λ > 1 we obtain that

(
2

3

)(J−2)2

≤
(

2

3

)h2

≤
(

2

3

)2 logλ(n)

≤ n2 logλ( 2
3

) ≤ n−1

Therefore
∑

p<λ P(rankp(A) ≤ n− J) ∈ O(n−1).

Let us consider

n

2
(logλ(n) + 2)

(
λ

λ− 1

)J 1

λJ2

for J = max(
√

3/2h+ 1, h+ 2). By Eq. (5.37) n
2 (logλ(n) + 2) ≤ λh2

. Therefore

n

2
(logλ(n) + 2)

(
λ

λ− 1

)J 1

λJ2 ≤ λh
2

(
λ

λ− 1

)√3/2h+1 1

λ
3
2
h2+2
√

3/2h+1
≤ 1

λ
h2

2
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For h = max(2, d
√

2 logλ(n)e), λ > 1 this is less than or equal to

1

λ
h2

2

≤ 1

λ
2 logλ(n)

2

= n−1.

Hence n
2 (logλ(n) + 2)

(
λ
λ−1

)J
1

λJ2 ∈ O(n−1) as well.

Finally,

λ

λ− 1
λ−(n−J+1) ≤ λ−n/2 ∈ O(n−1)

Hence, we conclude that the sum (18) is O(n−1), which finishes the proof.

5.3.3 Case of Sparse Matrices

In [7] the authors consider a special case of sparse distributions modulo p, where the

probability of getting a 0 entry is considerably higher than the probability of getting

a nonzero entry and non-zero entries are uniformly distributed modulo p. Namely, for

0 ≤ γ ≤ 1 and a prime p they consider a probability distribution on Zp given by a density

function ξ

ξ(0) = 1− γ
ξ(x0) =

γ

p− 1
, x0 6= 0.

By putting γ = (p− 1)/p one obtains the uniform distribution on Zp. In [7, Cor. 2.3] the

authors prove, that the expected rank defect (i.e. the difference between the dimension

and the rank) for a square n × n matrix is finite, provided that γ ≥ ln(n)−c
n for some

constant c. Notice, that the defect is exactly the number of zero invariant for the Smith

form modulo p in this case. In other words, the defect modulo p is the number invariant

factors divisible by p.

The authors relate the defect of the matrix to the number of linear dependencies of the

rows of the matrix, which is an effective approach for this kind of distributions. The

expected number of linear dependencies M is

Eξ(M) =
n∑

i=1

(
n

k

)
(1− 1

p
)k

1

pn−k

(
1 + (q − 1)(1− pγ

p− 1
)k
)n

and by [7, Lem. 3.2] pn−rank(A) − 1 = M(A) for any n× n matrix A.

This leads to the following result on the expected number of non-trivial invariant factors

modulo a prime p for sparse matrices.
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Theorem 5.3.12 (Cor. 2.3. of [7]) Let n ∈ N and p be a prime. Let 0 ≤ c(n) ≤ log(n)

be a bounded function and let 1 ≥ γ > 0, γ ≥ log(n)−c(n)
n . Let M = [mij ] be a n×n matrix

over a finite field Zp with entries chosen randomly, independently of each other, with a

probability P such that

P(mij = 0) = 1− γ
P(mij = x0) =

γ

p− 1
, x0 6= 0.

for each entry. Then the expected number of non-trivial invariant factors ( mod p) of M

is O(1).

PROOF See [7, Cor 2.3]. See also Thm. 2.1, Thm. 2.2 and Thm. 6.1 of [7] for associated

results.

Now, let us consider a sparse integer matrix. We have the following corollary.

Corollary 5.3.13 Let n ∈ N and 1 ≥ γ > 0, γ ≥ log(n)−c(n)
n . Let S be a set of λ > 1

contiguous integers, S = {−dλ2 e + 1, . . . , bλ2 c}. Let us consider a random n × n integer

matrix A = [aij ] with entries chosen independently of each other, in such a way, that the

non-zero entries are with a probability P such that

P(aij = 0) = 1− γ
P(aij = x0) =

γ

λ− 1
, x0 ∈ S \ {0}.

for each entry. Then the expected number of invariant factors of A not divisible by p = 2

is O(1).

PROOF The distribution P of entries over Z induces a distribution of entries modulo 2

such that P(aij = 1 mod 2) = p1 = γbλ2 c ≥ γ and P(aij = 0 mod 2) = 1− p1.

Thm. 5.3.12 can be applied directly in this case and allows us to conclude that the expected

number of non-trivial invariant factors of A mod 2 is finite. This is equal to the expected

number of invariant factors of A divisible by 2.

The approach of [7] is indeed equivalent to the approach of Sec. 5.1.3. Namely, we can

define the probability density function η by

η(0) = 1− γ′ + γ′
1

p

η(x0) =
γ′

p
, x0 6= 0.

The two distributions η and ξ are equivalent for γ′ = γ p
p−1 . For p > 2 similar reasoning

as in [7] yields

Eξ(M) =
n∑

i=1

(
n

k

)
(1− 1

p
)k

1

pn−k

(
1 + (q − 1)(1− γ′)k

)n
.
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The sparse distribution naturally extends to the case of non-uniform (α, β) distributions

on Zp by

1− γ′ + γ′α ≤ ξ(0) ≤ 1− γ′ + γ′β

γ′α ≤ ξ(x0) ≤ γ′β, x0 6= 0,

where pβ ≥ 1. This lead to estimations of the expected number of linear dependencies by

the sum

Eξ(M) =

n∑

i=1

(
n

k

)
(1− 1

p
)k

1

pn−k

(
pβ + p(1− β)(1− γ′)k

)n
,

which diverges as n goes to infinity. This means that sparse distribution does not generalize

well to the non-uniform case. In [21, 20] some further analysis and asymptotic results are

presented, but it does not seem to generalize to the non-uniform case neither.

Instead, we will prove that the expected number of non-trivial invariant factors divisible

by p > 2 is less than or equal to the expected number of non-trivial invariant factors

divisible by 2.

We will need the following assumption, which seems natural yet might be difficult to prove

rigorously. In short, we require that the probability that a prime p divides the determinant

divisors of a random matrix A is decreasing as p increases.

Let ξ be a random distribution of integers. Let A be a ξ-distributed random matrix.

For i = 1, . . . , n, let di be the gcd of all i× i minors of A. Then for i = 1, . . . , n and

for primes p > p′, the probability

Pξ(p | di) ≤ Pξ(p′ | di). (5.39)

Theorem 5.3.14 Let ξ be a random distribution of integers. Let n ∈ N, n > 0 and let A

be n× n ξ-distributed random matrix. Let us assume that Eq. (5.39) holds. Let p > p′ be

two primes. Let Ip and Ip′ denote the number of non-trivial invariant factors divisible by

p and p′ respectively. Then the expected value of Ip − Ip′ is non-negative.

PROOF We have

E(Ip′ − Ip) =

n∑

i=−n
iP(Ip′ − Ip = i) =

n∑

i=1

P(Ip′ − Ip ≥ i)−
n∑

i=1

P(Ip − Ip′ ≥ i).

The event Ip′−Ip ≥ imeans that there exists k = 0, . . . , n−i−1 such that d1 = · · · = dk = 1

and p′ | dk+1 (i.e. p′ | sk+1 = dk+1), and p - dk+1, . . . , p - dk+i. We have

P(Ip′ − Ip ≥ i) = P(∃k = 0, . . . , n− i− 1 : d1 = · · · = dk, p
′ | dk+1, p - dk+1, . . . , p - dk+i).
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By Eq. (5.39) this is less than or equal to

P(∃k = 0, . . . , n− i− 1 : d1 = · · · = dk, p | dk+1, p
′ - dk+1, . . . , p

′ - dk+i) = P(Ip − Ip′ ≥ i).

Thus,

E(Ip′ − Ip) =

n∑

i=1

[P(Ip′ − Ip ≥ i)− P(Ip − Ip′ ≥ i)] ≥ 0,

which finishes the proof.

Corollary 5.3.15 Let n ∈ N and 1 ≥ γ > 0, γ ≥ log(n)−c(n)
n . Let S be a set of λ > 1

contiguous integers, S = {−dλ2 e + 1, . . . , bλ2 c}. Let us consider a random n × n integer

matrix A = [aij ] with entries chosen independently of each other, in such a way, that the

non-zero entries are with a probability P such that

P(aij = 0) = 1− γ
P(aij = x0) =

γ

λ− 1
, x0 ∈ S \ {0}.

for each entry. Then the expected number of invariant factors of A not divisible by a

prime p > 2 is finite, under the assumption that Eq. (5.39) holds for P.

PROOF Let Ip denote the number of non-trivial invariant factors divisible by p. Then

E(Ip) = E(I2)−E(I2 − Ip).

By Cor. 5.3.13, E(I2) is finite and by Thm. 5.3.14, E(I2 − Ip) is non negative. Hence,

E(Ip) is not greater than E(I2) and finite.

Cor. 5.3.13 and 5.3.15 are not sufficient to give a nice estimation on the expected number

of non-trivial invariant factors of a sparse integer matrix. Yet, under the assumption of Eq.

(5.39), they provide an important clue that the expected number of non-trivial invariant

factors is not extremely large in this case.

Notice, that the matrix cannot be too sparse. In the case when the expected number of

non-zero elements in row/colum is finite, the expected number of invariant factors modulo

2 is linear in n. Indeed, a row/column of a matrix with k non-zero entries is 0 mod 2 with

probability βk2 , if β2 is the probability that a non-zero entry is 0 mod 2. This leads to a

linear number of 0 rows modulo 2. This might be the case of diagonal and bi-diagonal etc.

matrices, which thus could have a significant number of non-trivial invariant factors.
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5.4 The Determinant of Random Almost Uniformly Dis-

tributed Matrices

In his thesis, Wan [127] gives some results on almost uniformly distributed variables modulo

p, where p is a prime. This allows him to use multiplicative preconditioning in the Smith

form adaptive algorithm of [44] and obtain a Monte Carlo type algorithm.

In what follows, we are going to follow the reasoning of [127] in order to characterize the

expected behavior of his preconditioning. The ultimate goal of this section is to bound

the probability that ps divides the determinant of a random matrix, see Thm. 5.4.5. To

prove this, we have to restate the results of Wan’s thesis in the case of almost uniformly

distributed variables modulo ps, where p is a prime and s ∈ N, s > 1. The major difference

between those cases is that Zp is a field, and Zps , for s > 1 is only a ring with several 0

divisors.

In the case where s = 1, the problem of the determinant modulo p has been consider

several times, see for example [127] and the references therein. He achieves the bound 3
p

for the probability that a prime p ≤ λ divides the determinant of a random integer matrix.

This bound will be the departure point in our consideration.

In the case of uniform distribution, Brent and McKay give in [10, Cor. 2.2] a bound that

the determinant is determined over ps, for s ∈ N. It is however not possible to transform

this result to the case of almost-uniform distribution without revisiting their proofs and

theorems. In fact, we performed our analysis independently of [10], it seems however that

the tools that we use are similar.

The setup for almost uniform distribution has been given in Sec. 5.1.2. The notion of

random matrices is detailed in Sec. 5.1.3.

The outline of this section is as follows. In Sec. 5.4.1 we present some preliminary results

that will allow us to proof Thm. 5.4.5 in Sec. 5.4.2. In Lem. 5.4.1 we restate the basic

results of [127] in the mod ps case for almost uniformly distributed vectors. Then in Lem.

5.4.3 and 5.4.4 we extend the result to almost uniformly distributed matrices to obtain

characterization that we need in the proof of Thm. 5.4.5. The proof of Thm. 5.4.5 is

given in section 5.4.2.

5.4.1 Preliminary Results

The following lemma gives analogues to lemmas 5.10, 5.11 in [127] in the case of ring

Zps . It proves in particular that the results of dot product and matrix-vector product are

almost uniformly distributed.

For the rest of this section let us assume that =p,s denote an equality mod ps. It requires

that all operations in the =p,s equation can be performed modulo ps, in particular, this is

the case of the inverse operation.

Lemma 5.4.1 (Distribution of t · x and Ax) Let S be a set of λ contiguous integers

S = {a, a+ 1, . . . , a+ λ− 1}, where a ∈ Z and λ > 0. Let p be a prime and s ∈ N, s > 0.
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Let PS denote the uniform distribution on S. Let P denote the distribution of vectors of

Sn such that the entries of the vector are chosen independently of each other according to

distribution PS . Let

αp,s =
1

λ
b λ
ps
c, βp,s =

1

λ
d λ
ps
e.

(i) cf. [127, Lem. 5.10] Let n ∈ N, n > 0. Let t ∈ Zn, t 6= 0 mod p and d ∈ Zps be given.

Then the probability that a random vector x ∈ Sn is chosen according to distribution

P, such that t · x = d mod ps is αp,s ≤ P(x : t · x = d mod ps) ≤ βp,s.

(ii) cf. [127, Lem. 5.11] Let r,m, n ∈ N,m, n ≥ r > 0. Let A ∈ Zm×n be a ma-

trix over Z such that the local Smith form of A at p is trivial i.e. that SFp(A) =

diag(1, . . . , 1︸ ︷︷ ︸
r

, 0, . . . , 0); let b ∈ Zmps be given. Then the probability that a random

vector x ∈ Sn is chosen according to distribution P, such that Ax = b mod ps is

αrp,s ≤ P (x : Ax = b mod ps) ≤ βrp,s.

PROOF For (i) the proof of 5.10 from [127] carry on as, by assumption on t it is possible

to choose an entry invertible mod ps.

For (ii) we slightly modify the proof of 5.11 from [127]. As Zps , s > 1 is no longer a field,

the proof is slightly more technical. Since A has a trivial Smith form modulo p there

exist two matrices L and R in Zm×mps and Zn×nps respectively, such that det(L),det(R) 6= 0

mod p and A =p,s L

[
Ir 0

0 0

] [
R′

R′′

]
, where R′ = [Rij ]i=1..r,j=1..n is a r× n upper minor

of R and R′′ is the (n− r)× n lower minor. We may therefore transform

P(x ∈ Sn : Ax =p,s b) = P(x ∈ Sn : R′x =p,s [L−1b]1..r)

Since the determinant of R is non-zero modulo p there exist a r× r minor R1 of R′, which

is non-zero modulo p. This means that we can find elements R1i1 . . . Rrir of R1, where ij
are pairwise distinct, j = 1 . . . r, such that Rjij are non-zero modulo p. Let d =p,s L

−1b.

The probability can further be rewritten:

P(x ∈ Sn : R′x =p,s [d]1..r) =

∑

y1,...,yr∈Zps
P


xi ∈ S,

i = 1..n,

i 6= ij ,

j = 1..r

:

R11x1 + . . .î1 +R1nxn =p,s y1

R21x1 + . . .î2 +R2nxn =p,s y2

. . .

Rr1x1 + . . .îr +Rrnxn =p,s yr




· P


xi1 ..xir ∈ S :

xi1 =p,s (d1 − y1)R−1
1i1

xi2 =p,s (d2 − y2)R−1
2i2

. . .

xir =p,s (dr − yr)R−1
rir


 . (5.40)
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We use . . .ĵ to denote that the element with index j is omitted in the sum, j = 1 . . . r.

As the entries xij are chosen independently of each other we have

P


xi1 ..xir ∈ S :

xi1 =p,s (d1 − y1)R−1
1i1

xi2 =p,s (d2 − y2)R−1
2i2

. . .

xir =p,s (dr − yr)R−1
rir


 =

r∏

j=1

PS(xij ∈ S : xij =p,s (dj − yj)R−1
jij

)

Moreover, by Prop. 5.1.5, uniform distribution PS on S induces almost uniform distribu-

tion mod ps on Zps . Therefore, notice that αps = αp,s and βps = βp,s, we obtain that

αp,s ≤ PS(xj : xj =p,s (dj − yj)R−1
jij

mod ps) ≤ βp,s

for j = 1 . . . r. As

∑

y1,...,yr∈Zps
P


xi ∈ S,

i = 1..n,

i 6= ij ,

j = 1..r

:

R11x1 + . . .î1 +R1nxn =p,s y1 mod ps

R21x1 + . . .î2 +R2nxn =p,s y2 mod ps

. . .

Rr1x1 + . . .îr +Rrnxn =p,s yr mod ps


 = 1,

we can bound the probability by

αrp,s ≤ P(x : Ax =p,s b mod ps) ≤ βrp,s.

which finishes the proof.

Remark 5.4.2 The distribution on Zps induced by the dot product t · x is not the same

as PS,ps . Yet, it has the same probability bounds αp,s, βp,s.

The following lemmas show that the entries of a preconditioned matrix LXR, where entries

of X are chosen from S, are almost uniformly distributed.

Lemma 5.4.3 (Distribution of LXR) Let S be a set of λ contiguous integers S =

{a, a+ 1, . . . , a+ λ− 1}, where a ∈ Z and λ > 0. Let p be a prime, s ∈ N, s > 0. Let PS
denote the uniform distribution on S. Let P denote the distribution of matrices of Sn×n
such that the entries of the matrix are chosen independently of each other according to

distribution PS . Let

αp,s =
1

λ
b λ
ps
c, βp,s =

1

λ
d λ
ps
e.

Let L,R ∈ Zn×n be matrices such that p - det (L) , p - det (R). Let I, J be any disjoint

subsets of {1 . . . n}2 (sets of index pairs). Let dij , (i, j) ∈ I (resp. Dkl, (k, l) ∈ J ) be

any values (resp. subsets) from Zps. We consider the probability of choosing a matrix
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X ∈ Sn×n, according to distribution P, such that (LXR mod ps)ij = dij for (i, j) ∈ I
subject to event (LXR mod ps)kl ∈ Dkl for (k, l) ∈ J . We have

α|I|p,s ≤ P
(

(LXR mod ps)ij = dij | (LXR mod ps)kl ∈ Dkl

)
≤ β|I|p,s.

PROOF By the definition of conditional probability we have

P((LXR)ij =p,s dij | (LXR mod ps)kl ∈ Dkl)

=
P((LXR)ij =p,s dij ∧ (LXR mod ps)kl ∈ Dkl)

P((LXR mod ps)kl ∈ Dkl)
(5.41)

Let D′ denote the set of all possible matrices [akl] ∈ Sn×n such that (akl mod ps) ∈ Dkl

if (k, l) ∈ J . Let D denote the set of matrices from D′ for which additionally akl =p,s dkl
if (k, l) ∈ I. Let L−1 and R−1 denote the inverse mod ps of L and R respectively. Then

Eq. (5.41) can be transformed to

P
(
X : (X mod ps) ∈ L−1DR−1

)

P (X : (X mod ps) ∈ L−1D′R−1)
,

where L−1DR−1 (resp. L−1D′R−1) is a subset of Zn×nps equal to {L−1MR−1 | M ∈ D}
(resp. {L−1MR−1 | M ∈ D′}). Notice, that as L,R are invertible, sets D and L−1DR−1

(resp. D′ and L−1D′R−1) have the same number of elements.

As every choice of X has the same probability, by the classic definition of probability it

suffices to count the number of elements in D and D′. The proportion is determined by

the number of possible choices of elements at the (k, l) ∈ I position. The entries at the

(k, l)th position, (k, l) ∈ I, of D are determined modulo ps and thus there are at least

b λps c and at most d λps e possible choices for each entry akl, (k, l) ∈ I. At the same time,

I ∩ J = ∅, therefore there are λ possibilities of choice for the corresponding entry for

elements of D′. Therefore the proportion of matrices is

α|I|p,s =

(
b λps c
λ

)|I|
≤ P

(
X : (X mod ps) ∈ L−1DR−1

)

P (X : (X mod ps) ∈ L−1D′R−1)
≤
(
d λps e
λ

)|I|
= β|I|p,s.

which gives the required inequality.

The methods used to prove Lemmas 5.4.1 and 5.4.3 can applied to prove the following

lemma.

Lemma 5.4.4 (Distribution of AXA′) Let S be a set of λ contiguous integers S =

{a, a+ 1, . . . , a+ λ− 1}, where a ∈ Z and λ > 0. Let p be a prime, s ∈ N, s > 0. Let PS
denote the uniform distribution on S. Let P denote the distribution of matrices of Sn×m
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such that the entries of the matrix are chosen independently of each other according to

distribution PS . Let

αp,s =
1

λ
b λ
ps
c, βp,s =

1

λ
d λ
ps
e.

Let n,m ∈ N, 0 < m ≤ n. Let A ∈ Zm×n be a matrix such that rank(A) = m and the local

Smith form of A at p is trivial i.e. SFp(A) = diag(1, . . . , 1). Let A′ ∈ Zn×n be a matrix

such that p - det(A′).

Let I, J be any disjoint subsets of {1 . . .m}2 (sets of index pairs). Let bij , (i, j) ∈ I
(Bkl, (k, l) ∈ J ) be any values (resp. subsets) from Zps. We consider the probability of

choosing a random matrix X ∈ Sn×m according to distribution P, such that (AXA′)ij = bij
mod ps for (i, j) ∈ I subject to event (AXA′ mod ps)kl ∈ Bkl for (k, l) ∈ J . We have

α|I|p,s ≤ P
((
AXA′

)
ij

= bij mod ps |
(
AXA′ mod ps

)
kl
∈ Bkl

)
≤ β|I|p,s. (5.42)

PROOF As in the proof of 5.4.1, A has a trivial Smith form modulo p and therefore there

exist two matrices L and R in Zm×mps and Zn×nps respectively, s.t. det(L), det(R) 6=p 0 and

A =p,s L
[
Im 0

] [ R′

R′′

]
,

where R′ = [Rij ]i=1..m,j=1..n is a m× n upper minor of R and R′′ is the (n−m)× n lower

minor. Moreover, matrix A′ is invertible modulo ps.

We have that AXA′ =p,s B ⇔ L

[
Im
0

]
RX =p,s A

′−1B ⇔ LR′X =p,s A
′−1B.

By taking A′−1B instead of B, we may assume without loss of generality that A′ = I.

As in the proof of 5.4.3, we construct the sets of matrices B, B′. Let B′ denote the set of all

possible matrices D ∈ Sm×m, D = [dkl]kl=1..n, such that (dkl mod ps) ∈ Bkl if (k, l) ∈ J .

Let B denote the set of matrices from B′ for which additionally dkl =p,s bkl if (k, l) ∈ I.

Let L−1 denote the inverse mod ps of L.

We have that P
(

(AX)ij =p,s bij | (AX mod ps)kl ∈ Bkl
)

is
P(R′X∈L−1B)
P(R′X∈L−1B′) .

As the entries are chosen independently of each other, we may consider the choice of each

column separately and obtain

P
(

(AX)ij =p,s bij | (AX mod ps)kl ∈ Bkl
)

=

∏
i=1...m P(R′Xi ∈ L−1Bi)∏
i=1...m P(R′Xi ∈ L−1B′i)

, (5.43)

where Xi denote the ith column of X and Bi(resp.B′i), the set of all possible ith columns

for matrices from B (resp. B′).
Let us consider the probability of choosing the ith column separately and let us set x =

Xi,b = L−1Bi, and b′ = L−1B′i. This puts us in the situation of Lem. 5.4.1 (ii). For the



76 5. Probabilistic Properties of Random Matrices

ith column, let us define sets Ii = {j : (j, i) ∈ I} and Ji = {j : (j, i) ∈ J }. As I ∩ J = ∅,
sets Ii and Ji are also disjoint for i = 1..m. Without loss of generality we may assume

that there exists 0 ≤ ki ≤ li ≤ m, such that Ii = {1, . . . , ki} and Ji = {ki + 1, . . . , li}.
Moreover, we have

∑m
i=1 ki = |I|. In the case of the ith column let us set k = ki and

l = li.

As before, since the determinant of R is non-zero modulo p there exist a m×m minor R1

of R′, which is non-zero modulo p. This means that we can find elements R1i1 . . . Rmim of

R1, where ij are pairwise distinct, j = 1 . . .m, such that Rjij are non-zero modulo p.

We obtain

P(x ∈ Sn : (R′x mod ps) ∈ b) =
∑

y1,...,yl∈Zps

P


xi ∈ S,

i = 1..n,

i 6= ij ,

j = 1..m

:

R11x1 + . . .î1 +R1nxn =p,s y1

R21x1 + . . .î2 +R2nxn =p,s y2

. . .

Rl1x1 + . . .îl +Rlnxn =p,s yl




· P



xi1 , . . . , xim ∈ S :

(xi1 mod ps) = (b1 − y1)R−1
1i1

. . .

(xik mod ps) = (bk − yk)R−1
kik

(xik+1
mod ps) ∈ (bk+1 − yk+1)R−1

k+1,ik+1

. . .

(xil mod ps) ∈ (bl − yl)R−1
lil



. (5.44)

We use . . .ĵ to denote that the element with index j is omitted in the sum, j = 1..m. As

the entries xi1 , . . . xim are chosen independently of each other, the probability is

P(x ∈ Sn :(R′x mod ps) ∈ b) =
∑

y1,...,yl∈Zps

P


xi ∈ S,

i = 1..n,

i 6= ij ,

j = 1..m

:

R11x1 + . . .î1 +R1nxn =p,s y1

R21x1 + . . .î2 +R2nxn =p,s y2

. . .

Rl1x1 + . . .îl +Rlnxn =p,s yl




·
k∏

j=1

PS
(
xij ∈ S : (xij mod ps) = (bj − yj)R−1

jij

)

·
l∏

j=k+1

PS((xij mod ps) ∈ (bj − yj)R−1
jij

).

Moreover, by Prop. 5.1.5, uniform distribution PS on S induces almost uniform distribu-

tion mod ps on Zps . Therefore, for j = 1 . . . k, we obtain

αp,s ≤ PS(xj : xj =p,s (bj − yj)R−1
jij

mod ps) ≤ βp,s. (5.45)
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By Eq. (5.45)

αkp,s ≤
∑

y1,...yk∈Zps
P


xi ∈ S,

i = 1..n,

i 6= ij ,

j = 1..m

:

R11x1 + . . .î1 +R1nxn =p,s y1

R21x1 + . . .î2 +R2nxn =p,s y2

. . .

Rk1x1 + . . .îk +Rknxn =p,s yk




·
k∏

j=1

PS
(
xij ∈ S : (xij mod ps) = (bj − yj)R−1

jij

)

︸ ︷︷ ︸
Prob

≤ βkp,s.

Let us denote the above expression by Prob. We have

αkp,s Prob ≤ P(x ∈ Sn : (R′x mod ps) ∈ b) ≤ βkp,s Prob .

As bj = b′j for j = k + 1..l, Prob is equal to P(x ∈ Sn : (R′x mod ps) ∈ b′) = Prob . as

well.

Therefore for the ith column (k = ki) we have the final evaluation

αkip,s ≤
P(R′Xi ∈ L−1Bi)
P(R′Xi ∈ L−1B′i)

≤ βkip,s.

Summarizing, by Eq. (5.43) and by the fact that
∑n

i=1 ki = |I| we have

α|I|p,s ≤ P
(

(AX)ij =p,s bij | (AX mod ps)kl ∈ Bkl
)
≤ β|I|p,s,

which finishes the proof.

5.4.2 The Determinant of a Random Matrix

Theorem 5.4.5 (Determinant Modulo ps) Let S be a set of λ contiguous integers

S = {a, a + 1, . . . , a + λ − 1}, where a ∈ Z and λ > 0. Let p be a prime, s ∈ N, s > 0.

Let PS denote the uniform distribution on S. Let P denote the distribution of matrices of

Sn×k such that the entries of the matrix are chosen independently of each other according

to distribution PS .

Let k, n ∈ N, 0 < k ≤ n. Let U be an k × n matrix, k ≤ n, such that the Smith form of

U is trivial and U has a full rank i.e. SF (U) = diag(1, . . . , 1). Let V be a n× n matrix,

such that p - det(V ). Let M be an n× k matrix chosen according to distribution P. Then

the probability that ps < λ divides the determinant det(UMV ) is at most 3
ps .
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Proof of Thm. 5.4.5

The proof is divided into several parts. First we present the LRE elimination mod ps algo-

rithm, see [38, 39], which we will use in our reasoning. Then we consider the distribution

of entries at each step of the algorithm. Last part is consecrated to the inductive proof

which is done with respect to matrix size k and prime power s.

The fact that ps divides the determinant det(UMV ) means that ordp(det(UMV )), the

order mod p, is greater than or equal to s. We may evaluate ordp(det(UMV )) by the LRE

algorithm of [38, 39]. The Algorithm, adapted to the order modulo p evaluation, is given

in Alg. 5.4.1.

1. LRE Algorithm

To check whether ordp (det (UMV )) ≥ s can run Alg. 5.4.1 with input M(0) = UMV ,

p and s. The algorithm consists of elimination and reduction steps. All operations are

performed modulo ps. At the rth elimination step, the next invertible entry, if it exists,

is placed in the (r, r) pivot position and the rth column and row are zeroed. Elimination

is done by the elementary row and column operations, which are encoded in L and R

matrices. Matrices L,R are invertible modulo ps and are determined by the entries of

M(0). Surely, the original values of M(0) can be reconstructed from M(i) = LM(0)R

and L,R. If no invertible entry is found, it means that all remaining entries are divisible

by p, so we proceed with a reduction step i.e. we consider the remaining (k − r, k − r)
submatrix divided by p. The problem now reduces to determining whether ordp of an

(k − r, k − r) matrix is greater than s− k + r.

Proposition 5.4.6 (Correctness of Alg. 5.4.1) Let k ∈ N and let M be a k × k
matrix of integers. Let p be a prime and s ∈ N, s > 0. Algorithm 5.4.1 stops after at

most d s2e steps of the while loop. It returns TRUE if and only if ordp(det(M)) ≥ s.

PROOF The algorithm stops if si+1 ≤ 0 or if the remaining submatrix is of size 0 or

1. Notice, that at each step of the while loop, except the last one, si is decremented

by at least 2 ≤ ki−1 − ri. Therefore after d s12 e steps si+1 ≤ s1 − 2d s12 e ≤ 0 and the

algorithm stops.

To proof the correctness of the algorithm notice, that in the ith step we have a recursive

formula

det(M(i− 1)) = pki−1−ri det(M ′i). (5.46)

Therefore ordp(det(M(i − 1))) ≥ si iff ordp(det(M ′i)) ≥ si+1. Let us analyze the

stopping conditions:

1. si > 0, ki−1 − ri = 0; M ′i is an empty matrix, ordp(det(M(i − 1))) = 0 < si. The

algorithm returns FALSE are required.

2. si > 0, ki−1 − ri = 1; M ′i = (LiM(i − 1)Ri)ki−1ki−1
is the last entry of the matrix.

ordp(det(M(i−1))) = ordp(M
′
i). The algorithm returns TRUE and FALSE correctly,

depending on ordp(M
′
i).
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Algorithm 5.4.1 LRE Algorithm of [39] for ordp(det(A))

Require: k × k matrix M ;

Require: prime p;

Require: integer s > 0;

Ensure: TRUE if ordp(det(M)) ≥ s, FALSE otherwise.

1: M(0) = M mod ps; k0 = k; s1 = s;i = 1;

2: while si > 0 do

3: Find ri ≥ 0;Li, Ri,∈ Zki−1×ki−1 ;M ′i ∈ Z(ki−1−ri)×(ki−1−ri),p |M ′i such that

LiM(i− 1)Ri = diag(1, . . . , 1︸ ︷︷ ︸
ri

,M ′i) mod psi #Elimination step;

4: ki = ki−1 − ri;
5: if ki = 0 then Return FALSE;

6: else if ki = 1 then

7: if psi | (M ′i)kiki then Return TRUE;

8: else Return FALSE;

9: else

10: si+1 = si − ki;
11: if si+1 ≤ 0 then Return TRUE;

12: M(i) = LiM(i− 1)Ri[ri + 1..ki−1, ri + 1..ki−1]/p; #Reduction step

13: i = i+ 1;

14: end while

3. si > 0, ki−1 − ri > 1; either si+1 < 0 ≤ ordp(det(M ′i)) and the algorithm returns

TRUE, or we recursively run the algorithm for si+1 = si − ki−1 + ri and M(i) to

determine whether ordp(det(M(i))) ≥ si+1. By the recursive formula (5.46) the final

answer is correct.

Let us now recover the relation betweenM(0), M ′i andM(i) from the recursive formulas.

First, we have

LiM(i− 1)Ri =

[
Iri 0

0 pM(i)

]
mod psi ,

which results in the following matrix equation for M(0).

[
I∑i−1

t=1 rt
0

0 Li

]
· · ·
[
Ir1 0

0 L2

]
L1M(0)R1

[
Ir1 0

0 R2

]
· · ·
[
I∑i−1

t=1 rt
0

0 Ri

]

=




Ir1
pIr2

. . .

pi−1Iri
M ′i




mod ps (5.47)
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For the ith elimination step to be completed we additionally require that M ′i = piM(i).

2. Distribution of entries at each step of the while loop

To determine the probability ordp(det(UMV ) ≥ s we need to run Alg. 5.4.1 for a

random input M . As every matrix UMV corresponds to matrices L1, R1 and vice

versa, we will use the law of total probability to sum over all possible choices of L1, R1

and then determine the possibility of each if branch. This requires a recursive call to

the algorithm to determine whether ordp(det(M(1))) ≥ s2, or, inductively, whether

ordp(det(M(i))) ≥ si+1, i = 1, . . . imax, subject to the event that M(i) is obtained.

Here, imax denote the total number of steps of the while loop. We need to prove that

the theorem can be applied recursively to matrix M(i), whose entries are distributed

according to the conditional probability, subject to the event that M(i) is obtained.

The detailed scheme of the inductive procedure is given in step 3. In the following

lemma we characterize the conditional distribution of entries of M(i).

Lemma 5.4.7 (Distribution of M(i) in Alg. 5.4.1) Let S be a set of λ contiguous

integers S = {a, a + 1, . . . , a + λ − 1}, where a ∈ Z and λ > 0. Let p be a prime, s ∈
N, s > 0. Let PS denote the uniform distribution on S. Let P denote the distribution

of matrices of Sn×k such that the matrix entries of are chosen independently of each

other according to distribution PS .

Let k, n ∈ N, 0 < k ≤ n. Let U be an k × n matrix, k ≤ n, such that the Smith form

of U is trivial and U has a full rank i.e. SF (U) = diag(1, . . . , 1). Let V be a n × n
matrix, such that p - det(V ).

Let M be an random element of Sn×k. Suppose that M(0) = UMV is given as an input

to Alg. 5.4.1. Let imax be the number of steps of the while loop in the algorithm and

let 0 < i ≤ imax be one of the steps. Let M(i − 1) be the matrix on which elimination

is performed in the ith step.

Let P i−1 denote the conditional probability distribution under the assumption that ma-

trix M(i−1) was obtained in the i−1th step of the algorithm and P i−1
L,R denote the condi-

tional probability that matrix M(i−1) was obtained and, additionally, that it is possible

to partially diagonalize the matrix mod psi by performing LM(i − 1)R (which is the

goal of the ith step). Notice that P i−1 = P i−1
I,I . Let ki−1 be the dimension of M(i−1), r

be the number of 1 at the beginning of the diagonal of LM(i−1)R and let ki = ki−1−r.
Let α ≤ si, I ⊂ {1, . . . , ki}2 be a set of index pairs and dtt′ ⊂ Zpα , (t, t′) ∈ I be a given

subset of Zpα.

We have that

P i−1
L,R((LM(i− 1)R)r+t,r+t′ = dtt′ mod pα, (t, t′) ∈ I) ≤





(
psi−1+1
psi+1

)|I|
α = 1

(
2
pα

)|I|
α ≥ 1

.
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PROOF First, let us suppose, that multiplication by L and R leads to the elimination

of r = ri rows, r ≥ 0. Then by Eq. (5.47) we can set

A =

[
I∑i−1

t=1 rt
0

0 Li

]
· · ·
[
Ir1 0

0 L2

]
L1U

A′ = V R1

[
Ir1 0

0 R2

]
· · ·
[
I∑i−1

t=1 rt
0

0 Ri

]
.

Then we can set

B =

[
Ir+

∑i−1
t=1 ri

0

0 L

]
A

B′ = A′
[
Ir+

∑i−1
t=1 ri

0

0 R

]
.

Matrices B,B′ fulfill the assumptions of Lemma 5.4.4 and BMB′ = B[∗]B′ mod ps,

where [∗] is the right-hand side of Eq. (5.47). C = B[∗]B′ mod ps is of the form




Ir1
pIr2

. . .

pi−1Ir
pi−1M ′



. (5.48)

We should remark that at this point it is not yet decided whether p | M ′ i.e. Li =

L,Ri = R or whether the elimination continues.

Let us consider the distribution modulo pi−1+α. Let us set J = {1..k}×{1..k} to be the

condition set of all index pairs, and let I ′ = {(t+r+∑i−1
j=1 rj , t

′+r+
∑i−1

j=1 rj), (t, t
′) ∈ I}.

Let us define Ctt′ mod pi−1+α:

Ctt′ =





{0}, t 6= t′, t ≤∑i−1
j=0 rj + r or t′ ≤∑i−1

j=0 rj + r

{pj}, ∑x
j=0 rj < t = t′ ≤∑x+1

j=0 rj+1, x = 0, . . . i− 1

{pi−1, . . . , pi−1(pα − 1)}, t, t′ >
∑i

j=1 rj

.

We want to compute the conditional probability P i−1
L,R((LM(i − 1)R)ki+t,ki+t′ = dtt′

mod pα, (t, t′) ∈ I). By Eq. (5.48) and using introduced notations this is equivalent to

the computation of the probability

P(Ctt = pi−1dtt′ , (t, t
′) ∈ I ′ | Cxx′ ∈ Cxx′ , (x, x′) ∈ J ). (5.49)
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However, we cannot use Lemma 5.4.4 directly to compute this probability as the condi-

tion set J = {1..k}× {1..k} contains all index pairs and I ′ ⊂ J . Yet in this particular

case, the idea of the proof carries on. First, we apply the definition of the conditional

probability and obtain

P(Ctt′ = pi−1dtt′ , (t, t
′) ∈ I ′ ∧ Ctt′ ∈ Ctt′ , (t, t′) ∈ J \ I ′)

P(Ctt′ ∈ Ctt′ , (t, t′) ∈ J )
.

As pi−1dtt′ ∈ Ctt′ we only need to estimate which fraction of cases corresponding to

Ctt′ ∈ Btt′ corresponds to Ctt′ = pi−1dtt′ , (t, t′) ∈ I ′. We will analyze the case when

I ′ consist of one element in detail. Then the result generalized to the case when the

elements of I ′ lie in one column, and to the general I ′, see the arguments in the proof

of Lem.5.4.4.

Suppose that I ′ has one element (t, t′). Cxx′ ∈ Cxx′ for (x, x′) ∈ J \ {(t, t′)} leave the

choice of only one entry of M free. Condition Ctt′ = 0 modulo pi−1 corresponds to a

choice of S equally spaced elements from S (see Eq. (5.44)) for this element. At most

d Spα e of those have a certain value dtt′ modulo pα. Therefore the fraction in Eq. (5.49)

is bounded by

1

S
d S
pα
e ≤ 1

pα
+
pα − 1

Spα
. (5.50)

We have that S = b λ
pi−1 c or S = d λ

pi−1 e. Therefore for i ≤ d s12 e we have

pα ≤ psi ≤ ps1−2(i−1) <
λ

p2(i−1)
≤ b λ

pi−1
c ≤ S.

This leads to a bound for 1
S ≤ 1

pα+1 and for α = 1 we obtain a better bound 1
S ≤ 1

psi+1 .

By including this bound in Eq. (5.50) we obtain

1

S
d S
pα
e ≤ 2

pα + 1

1

S
dS
p
e ≤ psi−1 + 1

psi + 1

3. Inductive proof

For the inductive scheme to work we will have to prove a generalized version of 5.4.5,

where the almost uniform distribution P of the entries of M is replaced by a distribution

P ′ such that

P ′(Mtt′ = dtt′ mod pα, (t, t′) ∈ I) ≤ β|I|p,α.

for any index set I, α, and a bound βp,α.
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By Lem. 5.4.7 this is the case of the conditional distribution P i−1
L,R of the entries of

M(i− 1), i = 1, . . . , imax, for any admissible matrices L,R, α ≤ si and

βp,α =

{
2

pα+1 α ≥ 1
psi−1+1
psi+1 α = 1

.

The following lemma suffices to prove Thm. 5.4.5.

Lemma 5.4.8 (Determinant mod ps of M(i− 1)) Let UMV be such as in Thm.

5.4.5. Suppose that UMV is the input to Alg. 5.4.1. Let us consider the notions of Alg.

5.4.1 i.e. let M(i−1) denote the ki−1×ki−1 matrix in the ith step of the algorithm, for

which the computation is performed modulo si. Let P i−1 be defined as in Lem. 5.4.7.

Then

P i−1(psi | det(M(i− 1))) ≤ 3

psi

for steps i = 1, . . . , imax − 1 of the while loop.

The proof is recursive. We will proof the theorem in several steps.

a) Initialization step si = 1, i = imax.

In this step we analyze the situation when the modulus psi is the smallest possible

i.e. si = 1. This has to be the last step, therefore we may assume that i = imax.

First, for si = 1, [127, Thm 5.13] gives

P i−1 (p - det (M(i− 1))) ≤
ki−1∏

t=1

(
1− βtp,1

)
.

This transforms to

P i−1 (p | det (M(i− 1))) ≤
ki−1∑

t=1

βtp,1 ≤
βp,1

1− βp,1
. (5.51)

Thus, the probability can be bounded by min

(
1,

2
p+1

1− 2
p+1

)
and therefore by 2

p−1 ≤ 3
p .

b) Initialization step ki−1 = 2, i = 1, . . . imax.

In this step we analyze the situation when the recursive call would be performed on

the smallest possible matrix i.e. ki−1 = 2.

i. Inner initialization step ki−1 = 2, si = 2, i = imax.

This has to be the last step, therefore we may assume that i = imax. For

ki−1 > 1 we will sum over all possible choices of Li and Ri. We will divide the

sum on the cases when applying Li and Ri to M(i− 1) leads to the elimination

of at least r rows/columns. We call such event Er.
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First, for ki−1 = 2, si = 2:

P i−1(p2 | det(M(i− 1)) ≤
∑

L,R∈E1

P i−1
L,R(p2|(LM(i− 1)R)22)P i−1(L,R ∈ E1)

+ P i−1(p|M(i− 1)tt′ , t, t
′ = 1, 2) ≤ βp,2 + β4

p,1 ≤
2

p2 + 1
+ (

2

p+ 1
)4 ≤ 3

p2

ii. Inner Induction Step ki−1 = 2, si > 2.

Now we suppose inductively that Pj (pα | det(M(j))) ≤ 3
pα for all α ≤ sj < si,

j = i+ 1, . . . , imax.

Then for ki−1 = 2, 2 < si,

P i−1 (psi | det(M(i− 1))) ≤
∑

L,R∈E1

P i−1
L,R (psi | (LM(i− 1)R)22)P i−1 (L,R ∈ E1)

+ P i−1
(
p|M(i− 1)tt′ , t, t

′ = 1, 2
)
P i−1
I,I

(
psi−2| det(M(i− 1))

)

As p | M(i − 1)tt′ for t, t′ = 1, 2, we go to step i + 1. In this case we have

M(i) = M(i− 1), si+1 = si − 2 and by the recursive argument the probability

P i−1
I,I

(
psi−2|det(M(i− 1))

)
= P i(psi+1 |det(M(i)) ≤ 3

psi+1
.

We may recursively bound the probability by

P i−1 (psi | det(M(i− 1))) ≤ βp,s + β4
p,1

3

psi−2
.

The latter is less than 3
psi when

β4
p,13p2 ≤ 1. (5.52)

With βp,1 ≤ 2
p+1 this means that 48

(1+1/p)2(p+1)2 = 48
(p+2+1/p)2 ≤ 1 which is

fulfilled for p > 3. For primes p = 2, 3 we have to use a sharper bound for

βp,1 ≤ psi−1+1
psi+1 ≤ p+1

p2+1
.

This allows us to prove the inequality (5.52) for p = 3 since
(

2
5

)4
27 < 0.7.

For p = 2 and si > 3 also
(

9
17

)4
12 < 0.95 . For the remaining case p = 2,

si = 3 we can bound P i−1
I,I (p | det (M (i))) by 1 and then one can prove that

βp,3 + β4
p,1 ≤ 2

9 +
(

5
9

)4
< 0.32 ≤ 3

8 .

c) Induction step ki−1 > 2

Again, let us suppose inductively that Pj (pα | det(M(j))) ≤ 3
pα for all α ≤ sj < si,

j = i+ 1, . . . , imax. Notice that, for j > i we have that kj−1 ≤ ki−1 and sj < si.
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We will consider ki−1 > 2. Again we can sum over all possible elimination and

reduction steps combinations. The resulting probability is, for si ≤ ki−1:

P i−1 (psi | det (M (i− 1))) ≤ P i−1
(
p|M (i− 1)tt′ ∀t,t′≤ki−1

)

+

ki−1−si∑

r=1

∑

L,R∈Er
P i−1
L,R

(
p| (LM (i− 1)R)tt′ ∀r<t,t′≤ki−1

)
P i−1 (L,R ∈ Er)

+

ki−1−2∑

r=ki−1−si+1

∑

L,R∈Er
P i−1
L,R

(
p| (LM (i− 1)R)tt′ ∀r<t,t′≤ki−1

)
·

P i−1 (L,R ∈ Er)P i−1
L,R

(
psi−ki−1+r|det (LM(i− 1)R)

)

+
∑

L,R∈Eki−1−1

P i−1
L,R

(
psi | (LM (i− 1)R)ki−1ki−1

)
P i−1

(
L,R ∈ Eki−1−1

)
≤

ki−1−si∑

r=0

β
(ki−1−r)2

p,1 +

ki−1−2∑

r=ki−1−si+1

∑

L,R∈Er
β

(ki−1−r)2

p,1 P i−1 (L,R ∈ Er)

· P i−1
(
psi−ki−1+r|det (LM(i− 1)R)

)
+ βp,si ,

and similarly for si > ki−1

P i−1 (psi | det(M(i− 1))) ≤
P i−1

(
p|M(i− 1)tt′∀t,t′≤k

)
P i−1
I,I

(
psi−ki−1 | det (LM(i− 1)R)

)

+

ki−1−2∑

r=1

∑

L,R∈Er
P i−1
L,R

(
p| (LM (i− 1)R)tt′ ∀r<t,t′≤ki−1

)
·

P i−1 (L,R ∈ Er)P i−1
L,R

(
psi−ki−1+r|det (LM(i− 1)R)

)

+
∑

L,R∈Eki−1−1

P i−1
L,R

(
psi | (LM (i− 1)R)ki−1ki−1

)
P i−1

(
L,R ∈ Eki−1−1

)

≤ βk
2
i−1

p,1 P i−1
(
psi−ki−1 | det (M (i− 1))

)
+ βp,si

+

ki−1−2∑

r=1

∑

L,R∈Er
βr

2

p,1P i−1 (L,R ∈ Er)P i−1
L,R

(
psi−ki−1+r| det (LM(i− 1)R)

)
.

For every r = 0, . . . , ki−1−2 for every choice of matrices L,R, the fact that p divides

(LM(i − 1)R)tt′ , for r < t, t′ ≤ ki−1 means that either si − ki−1 + r ≤ 0 and the

algorithm stops or we proceed to the i+ 1 step of the algorithm. In the latter case

we have M(i) = LM(i − 1)R, si+1 = si − ki−1 + r. By the recursive argument the

probability

P i−1
L,R

(
psi−2| det(LM(i− 1)R)

)
= P i(psi+1 |det(M(i))
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is less than 3
psi+1 . Therefore we can then bound both sums by

P i−1 (psi | det (M (i− 1))) ≤
∞∑

t=2

βt
2

p,1

3

psi−t
+ βp,si ≤

3β4
p,1

psi−2

1(
1− β5

p,1p
) + βp,si .

(5.53)

To prove the inequality P i−1 (psi | det (M (i− 1))) ≤ 3
psi , we have to consider several

cases. For p > 3 we use the bounds βp,1 ≤ 2
p+1 and βp,si ≤ 2

psi+1 .

Then we have

3 · 24p2 (p+ 1)

psi
(

(p+ 1)5 − p25
) +

2

psi + 1
<

2

psi
+

1

psi
48p2 (p+ 1)

(p+ 1)5 − (p+ 1) 24
<

2

psi
+

1

psi
48p2

(p+ 1)4 − 24

<
2

psi
+

1

psi
48p2

25p2 + 4 · 5p2 + 6 · p2 + 4 · 5 + 1− 16
<

2

psi
+

1

psi
48p2

51p2
<

3

psi
.

For p = 3 it can be explicitly checked that P i−1 (psi | det (M(i− 1))) < 3
psi using

the bound p+1
p2+1

for βp,1 (notice that si ≥ 2). In this case we get 1
3si

3( 2
5)

4
32

(
1−(3 2

5)
5
)+ 2

3si <

1
3si 2.75.

For p = 2 we have to consider 22, 23, 24 and 2si for si > 4 separately and use the

sharper bound βp,1 ≤ psi−1+1
psi+1 . Let us rewrite (3c) in this cases.

- si = 2:

P i−1
(
22 | det (M (i− 1))

)
≤

ki−1∑

t=2

βt
2

p,1 + βp,2 ≤ β4
p,1

1

1− β5
p,1

+ βp,2.

As βp,1 ≤ 2+1
4+1 we have 0.65 < 0.75.

- si = 3:

P i−1
(
23 | det (M (i− 1))

)
≤

k∑

t=3

βt
2

p,1 + β4
p,1 · 1 + βp,3

≤ β9
p,1

1

1− β7
p,1

+ β4
p,1 + βp,3.

As βp,1 ≤ 4+1
8+1 we have 0.33 < 0.375.

- si = 4:

P i−1
(
24 | det (M(i− 1))

)
≤

n∑

t=4

βt
2

p,1+ β9
p,1 · 1 + β4

p,1P i
(
22 | det (M(i))

)
+ βp,4

≤ β16
p,1

1

1− β9
p,1

+ β9
p,1 + β4

p,1

3

4
+ βp,4.

As βp,1 ≤ 8+1
16+1 we have 0.18 < 0.1875.



5.4. The Determinant of Random Matrices 87

- si > 4:

We use inequality (5.53) with βp,1 bounded by p4+1
p5+1

. We get that

P i−1 (2si | det (M (i− 1))) ≤

1

2si


 3

(
24 + 1

)4
22

(25 + 1)4
(

(25 + 1)5
)
− 2 (24 + 1)

+ 2


 < 2.92

1

2si
<

3

2s
.

We have thus proven that P i−1 (psi | det(M(i− 1))) ≤ 3
psi for every si > 0 and every

size ki−1 of M(i − 1). The recursive scheme is possible as while i increases, the size

ki−1 of matrix M(i− 1) gets smaller or stays the same and the power si decreases.

Thus, by induction, we conclude that P(ps| det(UMV )) is also less than or equal 3
ps .

5.4.3 Comparison with [10]

In the situation of Thm. 5.4.5 let us consider the case ps | λ i.e. the case when the

distribution is uniform. Let us take q = 1
p . Suppose that k = n and U, V = Id. In this

case we may apply [10, Cor. 2.2]. We obtain

P(rank(A) = n) =

n+s−1∏

i=s

(1− qi).

A simple inductive reasoning shows that

n+s−1∏

i=s

(1− qi) ≤
n+s−1∑

i=s

qi ≤ qs 1

1− q =
1

ps
p

p− 1
≤ 1

ps−1(p− 1)
.

Yet, it is not immediately visible how to generalize the result of [10] to the non-uniform

case. In particular, it is problematic whether recursion can be based on [10, Lem 2.2].





6
Preconditioned Chinese

Remaindering Algorithm for the

Determinant Computation

6.1 Classic Chinese Remaindering Algorithm

A classical method to find a large integer number x is to use the Chinese Remaindering

(CR) Algorithms and reconstruct the result from its modular images using the Chinese

remaindering theorem. If x is computed modulo several distinct primes pt, then its value

xt modulo Mt = p0 · · · pt in the symmetric range is reconstructed based on the Chinese

Remaindering theorem.

The value of x is thus found as soon as the product of pi exceeds 2|x|. We know that the

product is sufficiently big if it exceeds some upper bound 2H on this value, |x| ≤ H. This

leads to a certified algorithm, which returns x with surety.

Probabilistically, we may assume that x has been obtained, if the reconstructed result

remains identical for several successive additions of modula. The principle of this latter

early termination (ET) is thus to stop the reconstruction before reaching the upper bound,

as soon as the result remains the same for several steps, see [39]. This leads to a Monte

Carlo type algorithm, which returns x with high probability.

More details on the procedure can be found in [70, Sec.5.4,5.5]. In Chapter 10, a sur-

vey on CR Algorithm can be found, which is an attempt to summarize and generalize

existing results on this problem. In this chapter we restrict our interest to the case of

determinant computation and only provide the results that are necessary to introduce the

preconditioned CR Algorithm.

6.1.1 Requirements for CRA

The algorithm takes as input matrix A and the probability of error 0 ≤ ε < 1. If ε > 0

early termination strategy is used and the algorithm is Monte Carlo type. The result

returned is correct with a probability at least 1− ε.
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The algorithm requires the following functions: reconstruct(xt, y0, . . . , yt, p0, . . . , pt) and

terminated(ε, P,H) and iteration(yt, pt). In a CR Algorithm to compute x ∈ Z, H is a

bound such that |x| ≤ H. Additionally, the algorithm requires a set P of primes greater

than l for a given l ∈ R, and procedure to choose a prime from P randomly and uniformly

in negligible time.

The functions iteration, reconstruct and terminated fulfill the requirements

1. terminated(ε, P,H) returns true if xt = x with probability at least 1− ε.

2. iteration(yt, pt) returns yt = x mod pt.

3. reconstruct(xt, y0, . . . , yt, p0, . . . , pt) returns −d
∏t
i=0 pi
2 e + 1 ≤ xt ≤ b

∏t
i=0 pi
2 c such that

xt is the solution to the equation

y0 = x mod p0

. . .

yt = x mod pt;

By the Chinese Remaindering Theorem, xt exists and is unique.

One step of the CRA loop consist of

1. choosing a prime pt from the set P , coprime with
∏t−1
i=0 pi. We assume that this can be

done in O(1) bit operations.

2. computing yt = x mod pt by iteration(yt, pt).

3. reconstructing dt = x mod
∏t
i=0 pi by reconstruct(dt, y0, . . . , yt, p0, . . . , pt). This can

be realized in O(t log(t) log(log(t))) bit operations, assuming that previous results dt−1

and
∏t−1
i=0 pi are known.

4. checking for early termination by terminated(ε, P,H). This requires checking if dt =

dt−1 = · · · = dt−kmax or t > N , where kmax, N are computed depending on the param-

eters and current state of the algorithm. This can be done in O(1) bit operations.

CRA steps are run until terminated returns true.

In general, there are at most O(log(|x|)) steps of the CRA loop and the cost of the

algorithm is log(|x|) times the cost of one iteration.

6.1.2 Reconstruction and Termination in CRA

Let Mt =
∏t
i=0 p

i. Function reconstruct can be realized by the following incremental

formula:

dt = dt−1 − ((dt−1 − yt)pt(M−1
t−1)pt)pt ·Mt−1 (6.1)
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where (−)pt denote a computation modulo pt. We assume that all modular operations are

done in the symmetric range i.e. Zq = {−d q2e+ 1, . . . , b q2c}, q ∈ N. For the cost estimation

and other possibilities, see Sec. 10.4.

The following theorem gives the conditions for certification and early termination of the

CR loop.

Lemma 6.1.1 (Termination in CRA) Let x ∈ Z. Let l ∈ R, l > 1.

1. Suppose that distinct primes pi, i = 0, 1, . . . greater than l are sampled from a set of

primes P . Let t ∈ N and let xt be the value of x modulo p0 · · · pt computed in the

symmetric range. Then x equals xt if

2|x| <
t∏

i=0

pi (6.2)

and consequently

xt = x, if t ≥ N ′ =
{
dlogl(|x|)e if x 6= 0

0 if x = 0
. (6.3)

2. Let H ∈ R be such that |x| ≤ H. Let N = dlogl(H)e. Suppose that distinct primes

p0, . . . , pN greater than l are uniformly and randomly sampled from a set of primes P ,

where |P | > 2 logl(H). Denote by P the distribution of finite sequences p0, . . . , pN ∈ PN
such that pi 6= pj for i, j = 0, . . . , N, i 6= j.

Let xt be the value of x modulo p0 · · · pt computed in the symmetric range and let

0 < ε < 1. We have:

(i) suppose that t, k ∈ N, t+ k ≤ N ;

if xt = xt+1 = · · · = xt+k and

R′(R′ − 1) . . . (R′ − k + 1)

(|P | − t− 1) . . . (|P | − t− k)
< ε, (6.4)

where

R′ = blogl

(
H + |xt|
p0p1 . . . pt

)
c,

then P(xt 6= x) < ε.

(ii) suppose that t, k ∈ N, t+ k ≤ N ;

suppose that xt = xt+1 = · · · = xt+k and k ≥ kmax, where

kmax = d log(1/ε)

log(P ′)− log(logl(H))
e, (6.5)

and P ′ = |P | − blogl(H)c;
then P(xt 6= x) < ε.
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PROOF See Sec. 10.6 and Lem. 10.6.1 and Lem. 10.6.3 for the proof.

Lemma 6.1.1 defines N ′ = logl(|x|) ≤ N = logl(H) that should be used in terminated

provided that set P of primes fulfills certain requirements. Namely, l and P should be

such that |P | > 2 logl(H). From the implementational point of view, set P have to be

finite and it is convenient to include primes of the same bit size in the set. We will assume

that given H, l ∈ R can be determined, such that the set P of primes l < pi < 2l has the

cardinality |P | > 2 logl(H). We will also assume that it can be done in negligible time and,

for simplicity, that the resulting set contains word-size primes. This allows us to assume

that the time of modular arithmetic operations is O(1). Complexity considerations are

done subject to this condition.

Notice that, kmax can be updated ’on-the-fly’, by Eq. (6.4), resulting in an output-

dependent early termination. For more details on the termination of CR Algorithm see

Sec. 10.6

6.1.3 Modular Determinant Computation

Let us consider the choice of iteration and its complexity for the determinant computa-

tion. The CR Algorithm can be applied to the determinant computation which results in

a simple algorithm. The effectiveness of the algorithm is due to the fact that fast methods

exist for the computation of the determinant modulo a prime. Moreover, the use of early

termination techniques make the algorithm ideal for the computation of small determi-

nants. The CRA determinant algorithm is easy adjust to both sparse and dense matrix

cases.

Let n ∈ N, n > 0 and let us suppose that we are computing the determinant of a n × n
matrix A. Moreover, let ‖A‖ = maxi,j=1..n(|Aij |) denote the maximal entry of A in

absolute value.

In the dense case, the computation of determinant over a modular field is tied to matrix

multiplication via block recursive matrix factorizations [68]. Therefore, using BLAS rou-

tines we obtain an optimal algorithm for the modular determinant computation which has

the complexity of O(nω) bit operations, where ω is the exponent of matrix multiplication.

The value of ω is 3 for the classical algorithm, and 2.375477 for the Coppersmith-Winograd

method, see [22]. The additional cost of taking a modular image of a n × n matrix A,

whose entries are bounded in absolute value by ‖A‖ is O(n2M(log(‖A‖))). By M(x) we

denote the cost of multiplication of two x-bit integers. M(x) is equal O(x2) for the classic

multiplication and the best complexity by the fast multiplication algorithm of Schönhage-

Strassen is M(x) = O(x log(x) log(log(x))), see [70, Tab. 8.6].

In the sparse case, black box methods offer a space effective solutions of the computational

complexity O(Ωn), where Ω is the number of non-zero entries of a matrix, see [40, Table

4]. In some cases, elimination techniques offer faster solutions in the sparse case, see [40].

Adaptive solutions is suggested in [42]. The additional cost of taking a modular image of

A is O(ΩM(log(‖A‖))).
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6.1.4 The Number of Steps in the CRA Loop

In the case of determinant computation the bound H for the absolute value of the deter-

minant is computed with regards to matrix size and the maximal value of matrix entries.

Proposition 6.1.2 (Hadamard’s Bound, cf. [70]) Let n ∈ N, n > 0 and let A be a

n × n matrix. Let ‖A‖ denote the maximal entry of A in the absolute value i.e. ‖A‖ =

maxi,j=1..n(|Aij |). Then

det(A) ≤ H = n
n
2 ‖A‖n (6.6)

and H is called the Hadamard’s bound on A. Let log denote the binary logarithm. We

have

log(H) ∈ O(n log(n‖A‖)).

PROOF The theorem can be found for example in [70, Thm. 16.6].

Lemma 6.1.1 defines N = logl(H) as the upper bound on the number of iterations for

terminated function in the CR Algorithm for the determinant computation.

6.2 Preconditioned Chinese Remaindering Algorithm

The early terminated CRA scheme is optimal in the sense that the state-of-the art algo-

rithms offer optimal solutions for the modular determinant computation and early termi-

nation results in sensitivity to the actual output. Therefore a way to improve this scheme

lies in reducing the number of iterations, which can be done by reducing the value x that

is to be reconstructed. In the case of the determinant computation, this idea was first

developed by Abbott et al. in [2].

Let n ∈ N, n > 0 and A be a n × n integer matrix. Denote by sn the largest invariant

factor of A. The idea of [2] is to combine CRA with the approach of [103], i.e. to use

system solving to approximate the determinant by sn and recover only the remaining part

(det(A)
sn

) via Chinese remaindering.

This can be realized by means of preconditioned CRA loop. In addition to regular CRA

requirements, see Alg. 10.1.1, preconditioned CRA requires an integer preconditioner D,

such that it can be guaranteed that det(A)
D is integer. The behavior of the algorithm is

modified in only one place: the modular determinant yt returned by iteration(yt, pt) is

divided by D in modular arithmetics. Additional cost at this step is only that of modular

division.

Alg. 6.2.1 is an outline of a procedure to compute the determinant using CRA loops with

early termination, correctly with probability 1 − ε. The running time of the algorithm is

output dependent. The termination condition is computed on-the-fly and is also output-

dependent.
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Algorithm 6.2.1 Early Terminated Preconditioned CRA

Require: n× n integer matrix A,

Require: H - Hadamard’s bound (H = (
√
n‖A‖)n by Prop. 6.1.2),

Require: D > 0, such that det(A)/D ∈ Z,

Require: l > 1, a set P of primes greater than l and less than 2l, |P | > 2 logl(H/D),

Require: 0 ≤ ε < 1,

Require: Function iteration(yt, pt) which produce yt = det(A) mod pt,

Ensure: The integer determinant of A, correct with probability at least 1− ε;
1: t = 0;

2: repeat

3: Choose uniformly and randomly a prime pt from the set P ;

4: P = P\{pt} ;

5: Compute iteration(yt, pt);

6: yt = yt/D mod pt;

7: Compute reconstruct(xt, xt−1, yt, p0 · · · pt−1, pt) by Eq. (6.1);

8: k = max{s : xt−s = · · · = xt};
9: R′ = blogl

H/D+|xt|
p0p1...pt−k

c; # see 6.1.1(2i)

10: t = t+ 1;

11: until R′(R′−1)...(R′−k+1)
(|P |+k)...(|P |+1) < ε or

∏t−1
i=0 pi > 2H/D

12: Return D · xt−1;

A difference between preconditioned CRA loop for det(A) with preconditioner D and a

CRA loop for det(A)
D is minor and to some extent only lexical. The procedures differ in

the definition of iteration function and in the returned result (det(A) vs. det(A)
D ) but are

computationally equivalent. Therefore any statement that is true for the CR Algorithm

computing det(A)
D are true for the preconditioned CRA computing det(A). By putting

D = 1, we obtain in Alg. 6.2.1 the classic CR Algorithm for the determinant computation.

6.2.1 Correctness of the Algorithm

Theorem 6.2.1 (Correctness of Preconditioned CRA) Let n ∈ Z, n > 0, and A

be a n × n matrix. Let H be the Hadamard’s bound for A and let D > 0 be such that

det(A)/D ∈ Z. Let l > 1 and let P be a set of more than 2 logl(H/D) primes greater than

l. Suppose that primes are sampled randomly and uniformly from P .

Let 0 ≤ ε < 1. Let n,A,H,D, l, P and ε be the input of Alg. 6.2.1. Then Alg. 6.2.1

returns det(A) correctly with probability at least 1− ε.

PROOF Notice that t is changed to t+ 1 before the termination conditions are checked.

If ε = 0 i.e. no early termination is allowed, the algorithm stops if
∏t−1
i=0 pi is greater than

2H/D. This means that
∏t−1
i=0 pi fulfills Eq. (6.2), and therefore xt−1 = det(A)/D by Lem.

6.1.1 with probability 1.

If 0 < ε < 1 the termination is also possible as soon as R′(R′−1)...(R′−k+1)
(|P |+k)...(|P |+1) < ε, which

is consistent with Eq. (6.4), if we notice that the current size of P is updated by the
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algorithm. Therefore by Lem. 6.1.1 (2i) the probability that xt−1 = det(A)/D is at least

1− ε. Thus, the algorithm returns det(A) with the required probability.

6.2.2 The Complexity of the Algorithm

Let us now estimate the complexity of Alg. 6.2.1. We assume that the cost of constructing

l and P and the cost of generating random primes is negligible compared with the other

elements of the algorithm. We denote by M(x) the cost of multiplication of two x-bit

integers.

Theorem 6.2.2 (Cost of Preconditioned CRA) Let n ∈ Z, n > 0, and A be a n ×
n matrix. Let H be the Hadamard’s bound for A and let D be an integer, such that

det(A)/D ∈ Z. Let l > 1 and let P be a set of more than 2 logl(H/D) randomly distributed

primes greater than l and less than 2l. Let 0 < ε < 1. Suppose that Alg. 6.2.1 is run on

input A,H,D, l, P and ε.

We assume that l ∈ O(1) and that the cost of choosing a prime and updating P is also

negligible.

1. Suppose than A is a dense matrix and an algorithm of complexity MDet(A) = O(nω)

is used to compute det(A) mod p, p ∈ P in iteration.

Then the complexity of Alg. 6.2.1 is

O((log(| det(A)/D|) + log(1/ε))(n2M(log(‖A‖)) + nω).

2. Suppose that A is a sparse matrix with Ω entries and a black box algorithm of com-

plexity MDet(A) = O(nΩ) is used to compute det(A) mod p, p ∈ P in iteration.

Then the complexity of Alg. 6.2.1 is

O((log(| det(A)/D|) + log(1/ε))(M(log(D)) + ΩM(log(‖A‖)) + nΩ)).

PROOF Let us estimate the cost of one iteration.

By assumption, the cost of choosing pt and updating P is constant.

Computation of iteration(yt, pt) requires a computation of At = A mod pt and a compu-

tation of det(At) mod pt. The cost of modular image computation in the case of dense

matrix A is O(n2M(log(‖A‖))). In the case of sparse matrix, the cost is O(ΩM(log(‖A‖))).
The cost of determinant computation is O(nω)) or O(Ωn) respectively, see Sec. 6.1.3.

In step 6 we have to divide yt by D in the modular arithmetic. First, an image D

mod pt has to be computed, which costs O(M(log(D))) bit operations. As we assume

that l ∈ O(1), the cost of modular division can be ignored. As D ≤ H, this is less than

M(n log(n‖A‖)) ∈M(log(‖A‖))×O≈(n log(n)).

By Prop. 10.4.3, the cost of reconstruction of xt is O(M(t)), where t is the index of

iterations. As the product of primes used in the algorithm is at most 2H/D (see line 11),
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t is O(log(H)) in the asymptotically worst case. Therefore the cost of reconstruction is at

most M(n log(n‖A‖)) ∈M(log(‖A‖))×O≈(n log(n)).

Finally, we may assume that the cost of computing k is constant, as updating the maxi-

mum requires just one comparison, see 10.6.4. As R′ may be computed in floating point

arithmetics, we may also assume that the cost of its computation is O(1).

The total number of iterations needed to obtain det(A) is less than or equal dlogl(|det(A)
D |)e

by Lem. 6.1.1. However, additional kmaxd log(1/ε)
log(P ′)−log(logl(H/D))e = O(log(1/ε)) iterations

are needed to confirm the result with probability 1− ε, see Lem. 6.1.1(2ii).

Let us evaluate the cost of the algorithm in the dense and sparse case.

1. In the dense case the cost is dominated by the cost of iteration. Indeed, the cost of

division by D

O(M(log(D))) = O(n2M(log(‖A‖))),

and the cost of reconstruction

M(log(‖A‖))×O≈(n log(n)) ∈ O(n2M(log(‖A‖)))

is bounded by the cost of taking a modular image of A. Therefore the complexity is

O((log(| det(A)/D|) + log(1/ε))(n2M(log(‖A‖)) + nω).

2. In the sparse case analogous reasoning yields

O((log(| det(A)/D|) + log(1/ε))(M(D) + ΩM(log(‖A‖)) + nΩ)).

6.3 Preconditioning in Abbott’s at al. Algorithm

In [2] the authors propose to take D equal to the largest invariant factor of the matrix, or

to be explicit, its factor computed as the least common multiple of the denominators of

solutions to several linear systems.

6.3.1 Correctness of Preconditioner

Proposition 6.3.1 ensures that we will always obtain a divisor of the largest invariant factor

in this way.

Proposition 6.3.1 (Solution to a Linear System vs. sn) Let A be an invertible n×
n integer matrix. Let sn be the largest invariant factors of A. Let b ∈ Zn be an integer

vector. Let x be a solution to the system of equations Ax = b. Then sn · x ∈ Z.
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PROOF Let S = diag(s1, . . . , sn) be the Smith form of A. There exist invertible matrices

U and V , |det(U)| = | det(V )| = 1, such that A = USV , we can equivalently solve

SV x = U−1b for y = V x, and then solve the equation for x. As the determinants of U

and V are equal ±1, the least common multiple of the denominators of x and y, d(x) and

d(y) satisfies d(x) = d(y). Indeed,

yi =
n∑

j=1

Vijxj =
1

d(x)

n∑

j=1

Vijd(x)xj

and
∑n

j=1 Vijd(x)xj ∈ Z. Therefore the denominator of yi, d(yi) divides d(x) for every

i = 1..n, which means that d(y) | d(x). As V −1 is also an integer matrix, by repeating the

reasoning for x = V −1y we obtain that d(x) | d(y) at the same time. Therefore we may

conclude that d(x) = d(y).

As S is a diagonal matrix, yi, i = 1..n, can be computed explicitly as (U−1b)i
si

. U−1 is an

integer matrix and consequently (U−1b)i is integer. Therefore d(yi) | si and si | sn, for

every i = 1..n. We may conclude that d(y) | sn.

Finally we have that d(x) = d(y) | sn, which means that sn · x ∈ Z.

See also [2, Sec.2] for the proof.

6.3.2 Computation of Preconditioner

A method to compute sn for integer matrices was first stated by V. Pan [103] and later in

the form of the LargestInvariantFactor procedure (LIF) in [2, 44, 39, 112].

Algorithm 6.3.1 LIF cf. [2, 44, 39, 112]

Require: A n× n integer matrix A,

Require: Parameter β ∈ N, β > 1,

Require: A number of iterations r ∈ N, r > 0,

Require: A stream Sβ of random integers uniformly chosen from the set {−dβ2 e +

1, . . . , bβ2 c},
Require: Function Solver(x,A, b) which solves the equation Ax = b for x ∈ Qn,

Ensure: s̃n, a factor of sn;

s̃n equals sn with probability depending on r and β given by Thm. 6.3.2

1: s̃n = 1;

2: for i = 1 to r do

3: Generate bi a random vector of dimension n from the stream Sβ;

4: Run Solver(xi, A, bi);

5: d = lcm(denominators of entries of xi);

6: s̃n = lcm(s̃n, d);

7: end for

8: Return : s̃n.
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Algorithm 6.3.1 takes as input parameters β ∈ N, β > 1 and r ∈ N, r > 0 which are used

to control the probability of correctness; r is the number of successive solvings and β is

the size of the set from which the values of a random vector b are chosen, i.e. a bound

for ‖b‖. Theorem 6.3.2 characterizes the probabilistic behavior of the LIF procedure for

several choices of parameters. This theorem is a summary of known results and some new

evaluations.

6.3.3 Probability of LIF Algorithm

The idea behind the algorithm of Abbott et al. [2] is that it enables us to get the largest

invariant factor with high probability. Indeed, the authors are able to obtain quantitative

results, that enable then to conclude that the average complexity of their algorithm is

proportional to det(A)
sn

.

Theorem 6.3.2 (Probability of LIF Algorithm) Let n ∈ N, n > 0. Let A be a n× n
integer matrix, H its Hadamard’s bound, and let r > 0 and β > 1. Let Sβ be a stream of

random integers randomly and uniformly chosen from the set {−dβ2 e+ 1, . . . bβ2 c}. Denote

by P the distribution of results s̃n of Algorithm 6.3.1 with input A, β, r, Sβ.

Then the output s̃n of Algorithm 6.3.1 with input A, β, r, Sβ divides sn and is characterized

by the following properties.

(i) Thm. 2 of [2]

If r = 1, p is a prime, l ≥ 1, then P(pl| sns̃n ) ≤ 1
β d

β
pl
e;

(ii) Thm 2.1 of [44]

if r = 2, β = 6 + d2 log(H)e then sn = s̃n with probability at least 1/3;

(iii) if r = 2, β = dlog(H)e then E(log
(
sn
s̃n

)
) = O(1);

(iv) if r = dlog(log(H)) + log
(

1
ε

)
e, 2 | β and β ≥ 2 then sn = s̃n with probability at least

1− ε;

(v) Lem. 2 of [2]

if r = d2 log(log(H))e, β ≥ 2 then E(log
(
sn
s̃n

)
) = O(1);

PROOF By Prop. 6.3.1 the denominator den(xi) divides sn. Thus, s̃n is indeed a fraction

of sn.

The distribution P of s̃n results from the distribution of vectors b1, . . . , br, which are

sampled randomly and uniformly from Sβ.

The proofs of (i) and (v) are in [2, Thm. 2, Lem. 2]. The proof of (ii) is in [44, Thm. 2.1].
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To prove (iii) we adapt the proof of (ii). Let us notice that

E(log

(
sn
s̃n

)
) ≤

∑

p prime,p|sn

dlogp(sn)e∑

k=1

k log(p)P(ordp(
sn
s̃n

) = k)

=
∑

p prime,p|sn

dlogp(sn)e∑

k=1

k log(p)(P(ordp(
sn
s̃n

) ≥ k)− P(ordp(
sn
s̃n

) ≥ (k − 1)))

This transforms to

E(log

(
sn
s̃n

)
) ≤

∑

p prime,p|sn

dlogp(sn)e∑

k=1

log(p)P(ordp(
sn
s̃n

) ≥ k)

=
∑

p prime,p|sn

dlogp(sn)e∑

k=1

log(p)P(pk | sn
s̃n

)

By (i), taking into account that r = 2, this is less than or equal to

E(log

(
sn
s̃n

)
) ≤

∑

p prime,p|sn

dlogp(sn)e∑

k=1

log(p)

(
1

β
d β
pk
e
)2

As 1
β d

β
pk
e is bounded by 1

β + 1
pk

this can be further expressed as

∑

p prime,p|sn

dlogp(sn)e∑

k=1

log(p)

(
1

β
d β
pk
e
)2

≤
∑

p prime,p|sn

dlogp(sn)e∑

k=1

log(p)

(
1

β
+

1

pk

)2

≤
∑

p prime

∞∑

k=1

log(p)
1

p2k
+

2

β

∑

p|sn

∞∑

k=1

log(p)
1

pk
+

1

β2

∑

p|sn

blogp(sn)c∑

k=1

log(p) ≤

∑

p prime

log(p)
1

p2 − 1
+

2

β

∑

p|sn
log(p)

1

p− 1
+

1

β2

∑

p|sn
log(p) logp(sn)

≤
∑

p prime

log(p)
1

p2 − 1
+

2

β
log(sn) +

1

β2
log2(sn) ≤ 5 ∈ O(1).

The choice of β = dlog(H)e ≥ log(|det(A)|) ≥ log(sn) ensures that log(sn)
β ≤ 1. Moreover,

the sum
∑

p prime log(p) 1
p2−1

can numerically be bounded by 1.78. Therefore the expected

value is bounded by 5 ∈ O(1).

To prove (iv) we slightly modify the proof of (v) in the following manner. From (i) we

notice that for every prime p dividing sn, the probability that it divides the missed part

of sn satisfies:

P(p | sn
s̃n

) ≤
(

1

β
dβ
p
e
)r
≤
(

1

2

)r
.
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Indeed,

(
1

β
dβ
p
e
)r
≤





1
β
β
2 p = 2

2
p+1 2 < p < β
1
β p ≥ β ≥ 2

which is not more than 1
2 in every case.

As there are at most log(H) such primes, we get

P(sn = s̃n) ≥ 1− log(H)(1/2)r ≥ 1− log(H)2− log(log(H))−log( 1
ε ) = 1− log(H)

1

log(H)
ε.

6.3.4 Algorithm of Abbott et al.

To summarize this section let us describe the algorithm of Abbott et al. [2].

Let n ∈ N, n > 0, A a n × n integer matrix, H its Hadamard’s bound (see Prop. 6.1.2)

and ε be given. The determinant of A is computed by Alg. 6.3.2 with probability at least

1− ε.

Algorithm 6.3.2 The Algorithm of Abbott et al. [2]

Require: n× n integer matrix A;

Require: H - Hadamard’s bound (H = (
√
n‖A‖)n);

Require: 0 < ε < 1;

Require: Function Solver(x,A, b) which solves the equation Ax = b for x ∈ Qn;

Require: Function iteration(yi, pi) which produce yi = det(A) mod pi;

Ensure: The integer determinant of A, correct with probability at least 1− ε.
1: Set r = 2, β = dlog(H)e.
2: Run Alg. 6.3.1 for A, β, r, Sβ to obtains̃n.

3: Determine integer l > 0, set of random primes P such that l < pi < 2l, for every

pi ∈ P and |P | > 2 logl(H/s̃n).

4: Run Alg. 6.2.1 for A,H, s̃n, l, P and ε.

The algorithm requires a solver which allows to solve equation Ax = b in rational numbers

for an integer vector b (see requirements of Alg. 6.3.1) and a procedure iteration which

computes the determinant modulo a prime. The choice of iteration was already discussed

in section 6.1.3. We will discuss the choice of Solver in the following section.

6.3.5 Choosing a Solver

Let n ∈ N,n > 0 and let A be a n×n integer matrix, H its Hadamard’s bound (see Prop.

6.1.2), let b be an integer vector of size n such that the entries of b are bounded in absolute

value by β = dlog(H)e.
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By Thm. 6.3.2(iii), the choice of r = 2 and β = dlog(H)e ∈ O(n log(n‖A‖)) suffices to

obtain sn
s̃n
∈ O(1) by Alg. 6.3.1, where sn is the largest invariant factor of A. There exist

several algorithms, that can be used to solve the integer equation Ax = b for x ∈ Qn in

this case.

In the case of dense matrix, the most widely used algorithm is the p-adic solver of Dixon

[27]. The complexity of one linear solving by Dixon p-adic lifting is O(n3 log2(n‖A‖) +

n log2(β)) (see [97]), which for β ∈ O(n log(n‖A‖)) is O(n3 log2(n‖A‖)).

There exists also an early terminated version of p-adic solver, which has the output de-

pendent complexity of O(nω + Kn2 log(‖A‖n) + K log(β)) ∈ O(Kn2 log(‖A‖n)) if only

K terms of p-adic approximation of x are needed to reconstruct the result. However, an

erroneous answer s̃n - det(A) would force preconditioned CRA to loop until the maximal

number of iterations is reached. We regard this as a main drawback of the early termina-

tion strategy and would restrain from using this variant of solving in preconditioned CRA

algorithm.

Finally, the paper of Storjohann [122] gives a recipe for a linear solver of best theoret-

ical complexity of O(nωB(log(n‖A‖)) log(n)), see [122, Thm. 38]. B(x) is the cost of

gcd-like operations on x bit integers, see Ex. 2.1.6, for the complexity. B(log(n‖A‖) is

O∼(log(n‖A‖)). The possibility of using this algorithm could be consider in the theoretic

considerations. However, no implementation is available these days, which prevents us to

evaluate this possibility experimentally. Without using fast matrix multiplications, the

algorithm obtains the complexity of O(n3B(log(n‖A‖))) bit operations.

Let us now suppose that A is a sparse matrix with Ω entries. The classic approach of

Wiedemann [133] has the complexity O(n2Ω log(n‖A‖)), same as the determinant compu-

tation. A combination of Wiedemann’s method with the p-adic approach was studied in

[77] but does not lead to an improvement in terms of worst case complexity.

However, more recently, the sparse solver [43], which up-to-date has the best complexity

can be used solve a system of equations, and consequently to obtain sn at a lower cost

than the determinant computation. The cost of the solver, see [43, Thm. 3.3] is that of

O∼(n1.5 log(‖A‖+β)) matrix-vector products and O∼(n2.5 log(‖A‖+β)) additional arith-

metic operations. By similar reasoning as in [97], we are able to reduce this estimation to

O(n1.5 log(n‖A‖) +n0.5 log(β)) matrix-vector products and O(n2 log(n‖A‖)× (O∼(n0.5) +

log(‖A‖))+n2 log(β)(O∼(n0.5)+log(n‖A‖))+n log2(β)) additional arithmetic operations.

Indeed, the p-adic scheme of [43] requires O(n log(n‖A‖ + log(β))) iterations which cost

O(n(log(‖A‖)+log(β))+mµ(n)+nO∼(n0.5)) each. Here, the exact complexity of O∼(n0.5)

depends on the type of block projections used in the algorithm.

The cost of one matrix-vector product is O(Ω). Therefore for β ∈ O(n log(n‖A‖)) and

Ω ≥ n the cost of the solver is

O(Ωn1.5 log(n‖A‖) + n2 log(n‖A‖) log(‖A‖))

bit operations.



102 6. Preconditioned Chinese Remaindering Algorithm

In [128], the author presents another possibility, which could lead to better running times

in the case of well-conditioned matrices. In this case, numerical procedures can be used to

quickly approximate the solution, while symbolic methods such as rational reconstruction

allows to deduce the exact result from it. If ill-conditioned input is detected, one of the

above-mentioned exact algorithms can be run. The author remarks that the algorithm has

very good running times for well conditioned matrices. While the worst case complexity

of the algorithm is the same as for the exact algorithm, the use of this solver can be

considered for practical speed-up.

6.3.6 Complexity of the Determinant Algorithm of Abbott et al.

To sum up, let us now evaluate the average complexity of Abbott’s et al. algorithm in the

case of three solvers which are possible to be used. The p-adic algorithm of [27] is used

in most the implementation for the dense matrix case. The algorithm of Storjohann [122]

enables us to give the best worst case complexity. The algorithm of Eberly et al. [43] can

be used in the case of a sparse matrix.

Theorem 6.3.3 (Complexity of Abbott’s et al. Algorithm) Let n ∈ Z, n > 0, and

A be a n× n matrix. Let H be the Hadamard’s bound for A. Let 0 < ε < 1.

For the cost computation, let us assume that M(x) denote the cost of multiplication of two

x-bit integers and B(x) denote the cost of gcd-like operations on x-bit integers.

Let us consider Alg. 6.3.2 and let us specify functions Solver and iteration as below. Let

us assume that l and P in Alg. 6.3.2 can be found in O(1) and that the cost of prime

generation and the cost of updating P is also constant.

1. Suppose than A is a dense matrix and in iteration an algorithm of complexity

MDet(A) = O(nω) is used to compute det(A) mod p for p ∈ P . Suppose that

Dixon p-adic lifting algorithm [27] is used in Solver.

Then the average complexity of Alg. 6.3.2 is

O(n3 log2(n‖A‖) + (log(|det(A)

sn
|) + log(

1

ε
))(n2M(log(‖A‖)) + nω))

2. Suppose than A is a dense matrix and in iteration an algorithm of complexity

MDet(A) = O(nω) is used to compute det(A) mod p for p ∈ P . Suppose that

Storjohann’s algorithm [122] is used is used in Solver.

Then the average complexity of Alg. 6.3.2 is

O(nω log(n)B(log(n‖A‖))

+ (log(|det(A)

sn
|) + log(

1

ε
))(n2M(log(‖A‖)) + nω))
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3. Suppose that A is a sparse matrix with Ω entries and in iteration a black box algo-

rithm of complexity MDet(A) = O(nΩ) is used to compute det(A) mod p. Suppose

that the algorithm of [43] is used in Solver.

Then the average complexity of Alg. 6.3.2 is

O(Ωn1.5 log(n‖A‖) + n2 log(n‖A‖) log(‖A‖)

+ (log(|det(A)

sn
|) + log(

1

ε
))(M(log(sn)) + ΩM(log(‖A‖)) + nΩ)).

PROOF In Alg. 6.3.2 r is set to 2 and β is O(n log(n‖A‖)). Therefore the cost of Alg.

6.3.1 used in step 2 of the algorithm is

1. O(n3 log2(n‖A‖))

2. O(nω log(n)B(log(n‖A‖)))

3. O(Ωn1.5 log(n‖A‖) + n2 log(n‖A‖) log(‖A‖))

respectively.

By Thm 6.3.2(iii), the D = s̃n is such that the expected value E
(

log( sns̃n )
)

is O(1).

Therefore the expected value of log(det(A)
D ) is log(det(A)

sn
) +O(1). Moreover, D ≤ sn.

By Thm. 6.2.2 we obtain, that the cost of the preconditioned CRA algorithm is

1. O((log(|det(A)
sn
|) + log(1

ε ))(n
2M(log(‖A‖)) +nω)) in the dense matrix case (cases 1. and

2.)

2. O((log(|det(A)
sn
|)+ log(1

ε ))(M(log(sn))+ΩM(log(‖A‖))+nΩ)) in the sparse matrix case

(case 3.)

respectively. Putting all together, we obtain the result.

When compared with the original CRA loop algorithm one have potentially reduced the

average complexity of the algorithm in terms of n on the cost of rising the complexity in

terms of log(‖A‖). No gain is guaranteed in terms of the worst case complexity, as in the

worst case the value of det(A)
s̃n

can be det(A), and anyway, det(A)
sn
∈ O(n log(n‖A‖)).

The convincing analysis of det(A)
sn

has yet to be performed. However, experiments suggest

that it is often 1 or a small constant. The works of [2], [44], and our study on the expected

number of invariant factors try to overcome this problems.





7
Bonus and Extended Bonus Idea

In their article [44], Eberly, Giesbrecht and Villard proposed another way of computing

the determinant as a product of all invariant factors of a matrix. The main contribution

of the paper is a procedure OIF(i) to compute an arbitrary invariant factor si, i = 1, . . . , n

for a n× n matrix A. We describe this algorithm in Ch. 3.

Let A be a n×n matrix. For i < n, the output s̃i computed by OIF(i) can be larger than

the actual factors si. This prevents us from coupling Abbott’s preconditioned CRA, see

Ch. 6, and Eberly’s ideas directly i.e. computing consecutive factors s̃n−1, s̃n−2, . . . by

means of OIF algorithm and reconstructing only the remaining factors det(A)
snsn−1...

by means

of the CRA loop.

The problem has to some extend been solved by Saunders and Wan in [112], as they pro-

posed a way to compute an approximation of the penultimate factor s̃n−1 which is always

a factor of sn−1. Indeed, the authors introduce the idea of computing the penultimate

invariant factor (i.e. sn−1) of A while computing sn using two system solvings. The addi-

tional cost is comparatively small, therefore sn−1 is referred to as a bonus. The algorithm

is presented in [112, Alg. 1], [113, Alg. 2.1] and [127, Alg.4].

Here, we extend this idea to the computation of the product of k last invariant factors by

means of k linear system solvings. We start by remaindering the new preconditioning of

Saunders and Wan in Sec. 7.1, which leads to a different variant of OIF procedure. Then

starting from Sec. 7.2 we introduce the idea of an extended bonus.

7.1 New Preconditioning of Saunders and Wan

In a series of papers ([112, 113, 127]) D. Saunders and Z. Wan propose to use multiplicative

preconditioners to compute ith invariant factor of matrix A.

Lemma 5.26 of [127] states what follows.

Lemma 7.1.1 (Lemma 5.26 of [127]) Let n,m, k ∈ N, n,m ≤ k > 0. Let A be an

n×m matrix and let R (resp. L) be a m×k (resp. k×n) matrix. Then si divides si(AR)

(resp. si(LA)) for every i = 1, . . . ,min(n,m, k).
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7.1.1 Properties of Preconditioning

In [127, Thm. 5.8] the authors state that for random preconditioners L and R, sk(LAR)

equal sk(A) with high probability. More precisely, [127, Lem. 5.17] characterize cases when

the preconditioning is successful. For matrix M , k ∈ N, k > 0 we denote by µ(M) the

product µk = s1s2 · · · sk of k smallest invariant factors. In our context it will be essential

to improve [127, Lem. 5.17] in order to compare µk(A) with µk(AR) (resp. µk(LA).

First, let us recall that Thm. 5.4.5 gives the probability that ps divides the determinant

of a random matrix. We can use this result to prove the following theorem.

Theorem 7.1.2 (µk(A) vs. µk(AR)) Let n,m, k ∈ N, n,m ≥ k > 0 and let A be a

n ×m integer matrix such that the product µk(A) of k smallest invariant factors is non-

zero. Let R be a m × k matrix. Then there exist a k ×m matrix V1, which has a trivial

Smith form, such that for every prime p, s ∈ N, s > 0, we have an implication

If ordp

(
µk(AR)

µk(A)

)
≥ s then ordp(det(V1R)) ≥ s.

Let us now assume that S is a set of λ contiguous integers S = {a, a + 1, . . . , a + λ −
1}, where a ∈ Z and λ > 0. Let PS denote the uniform distribution on S. Let P
denote the distribution of matrices of Sm×k such that the entries of the matrix are chosen

independently of each other according to distribution PS . Let R be chosen according to

distribution P. Then

(i) if ps < λ:

P(ordp

(
µk(AR)

µk(A)

)
≥ s) ≤ 3

ps

(ii) if ps ≥ λ:

P(ordp

(
µk(AR)

µk(A)

)
≥ s) ≤ 3√

λ
.

PROOF Let U, V be matrices in Zn×n and Zm×m respectively, such that A = USV , where

S is the Smith form of A. Let us rewrite the equation AR = USV R in a block form. We

obtain:

U

[
S1 0

0 S2

] [
V1

V2

]
R = U

[
S1V1R

S2V2R

]

where S1, S2 are k×k and (n−k)× (m−k) matrices and V1, V2 are k×m and (m−k)×m
matrices respectively. Moreover, since |det(V )| = 1, V1 has a trivial Smith form.

We notice that the local Smith form at p of

[
S1V1R

S2V2R

]
is the same as the local Smith

form at p of AR.
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We have that det(S1V1R) = det(S1) det(V1R). On the other hand det(S1) = µk(A) and

µk(AR) divides det(S1V1R). Therefore

µk(AR) | µk(A) · det(V1R).

If ordp(
µk(AR)
µk(A) ≥ s) this implies that ordp(V1R) also has to be greater than s.

We notice that matrices V1 and R fulfill the requirements of Thm. 5.4.5. Then the

probability evaluation for ps < λ is a consequence of Thm. 5.4.5 for matrices V1 and R.

In the case when ps ≥ λ, P (ps| det (V1R)) is less than P
(
pmax(1,blogp(λ)c)| det (V1R)

)
.

By [127, Thm. 5.13] the bound on P (p | det (V1R)) for p ≥ λ is 1
λ−1 which is less than

1√
λ

.

For p < λ, the bound on P
(
pblogp(λ)c | det (V1R)

)
is 3

pblogp(λ)c by Thm. 5.4.5. We have

3

pblogp(λ)c ≤ 3 min(
1

p
,

1

plogp(λ)−1
) ≤ 3 min(

1

p
,
p

λ
)

This is less than 3√
λ

as well, which leads to the final result.

By symmetry, the dual of the theorem for a left-hand size multiplicative preconditioner L

is also true. By Thm. 7.1.2 we obtain [127, Lem.5.17] for free.

Lemma 7.1.3 (Lemma 5.17 of [127]) Let n,m, k ∈ N, n,m ≥ k > 0. Let A be a n×m
matrix. Let k be such that the kth invariant factor of A, sk, is non-zero. Let p be a prime.

Then there exists a full column ranked matrix M , such that for any i×n integer matrix L

p -
sk(LA)

sk
if det(LM) 6= 0( mod p).

PROOF Let us consider the dual of Thm. 7.1.2 for s = 1. Let V1 be the matrix given by

the theorem and let us set M = V1. We have the following statement.

If ordp

(
µk(LA)

µk(A)

)
≥ 1 then ordp(det(LM)) ≥ 1.

By transposition we have

If ordp(det(LM)) = 0 then ordp

(
µk(LA)

µk(A)

)
= 0.

µk(LA) (resp. µk(A)) is a product of s1 · · · sk(LA) (resp. s1 · · · sk(A)). By Lem. 7.1.1,

si(LA) divides si(A) for i = 1, . . . , k. Thus, also ordp

(
sk(LA)
sk(A)

)
= 0, which finishes the

proof.
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7.2 Extended Bonus Idea

Let n, k ∈ N, n, k > 0, and let A be a n × n invertible matrix. Let X be a (matrix)

rational solution of the equation AX = B, where B = [bi], i = 1, . . . , k, is a random

n × k matrix. Then the coordinates of X have a common denominator s̃n and we let

N = [ni], i = 1, . . . , k, denote the matrix of numerators of X. Thus, X = s̃−1
n N and

gcd (N, s̃n) = 1. Suppose that the Smith form of A is equal to S = diag(s1, . . . , sn).

Following Wan, we notice that snA
−1 is an integer matrix, the Smith form of which is

equal to

diag

(
sn
sn
,
sn
sn−1

, . . . ,
sn
s1

)
. (7.1)

Therefore, we may compute sn−k+1 when knowing sk
(
snA

−1
)
. The trick is that the

computation of A−1 is not required: we can perturb A−1 by right multiplying it by B.

Then, sk
(
snA

−1B
)

is a multiple of sk
(
snA

−1
)

by Lem. 7.1.1. Instead of M = snA
−1B

we would prefer to use s̃nA
−1B which is already computed and equal to N . The relation

between A and N is as follows.

Lemma 7.2.1 (Smith Form of N vs. Smith Form of A) Let n, k ∈ N, n, k > 0, and

let A be a n × n invertible matrix. Suppose that the Smith form of A is equal to S =

diag(s1, . . . , sn). Let X be a (matrix) rational solution of the equation AX = B, where

B = [bi], i = 1, . . . , k, is a n× k matrix. Suppose that X = s̃−1
n N , where gcd (s̃n, N) = 1.

Let L be k × n matrix. Then

s̃n
gcd (si (N) , s̃n)

∣∣∣∣ sn−i+1 and
s̃n

gcd (si (LN) , s̃n)

∣∣∣∣ sn−i+1, i = 1 . . . , k.

PROOF The Smith forms of snA
−1B and N are connected by the relation

sn
s̃n
si (N) = si

(
snA

−1B
)
,

i = 1, . . . , k. Moreover, si (N) is a factor of si (LN). We notice that sn
si(snA−1B)

equals
s̃n

si(N) , and thus, by Eq. (7.1). s̃n
gcd(si(LN),s̃n) is an (integer) factor of sn−i+1.

Remark 7.2.2 Taking gcd(si(LN), s̃n) and gcd(si(N), s̃n) is necessary as s̃n
si(LN) , s̃n

si(N)

may be rational numbers.

7.3 Last k Invariant Factors

Let n ∈ N, n > 0 and let A be a n × n matrix. In fact we are interested in computing

the product πk = snsn−1 · · · sn−k+1 of the k biggest invariant factors of A rather than the

factors itselves. Then, following the idea of [2], we would like to reduce the computation
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of the determinant to the computation of det(A)
π̃k

, where π̃k is a factor of πk that we have

obtained. Therefore in our application it is essential that π̃k is a divisor of πk.

Thanks to Lem. 7.2.1 we can propose the following procedure to approximate πk with

fulfills this requirement.

Algorithm 7.3.1 k-Bonus Algorithm

Require: n× n integer matrix A, k ∈ N,

Require: Parameter β ∈ N, β > 1,

Require: A number of iterations r ∈ N, r > 0,

Require: A stream Sβ of random integers uniformly chosen from the set {−dβ2 e +

1, . . . , 0, . . . , bβ2 c},
Ensure: π̃k, a factor of πk = snsn−1 · · · sn−k+1;

1: for i = 1 to r do

2: s̃n = 1;

3: Create a random n× k matrix Bi from stream Sβ;

4: Solve AX = Bi for a rational matrix Xi, represent Xi = 1
s̃n(i)Ni;

5: s̃n = lcm(s̃n, s̃n(i));

6: Create a random k × n matrix Li;

7: Compute Di = det(LiNi);

8: end for

9: Compute π̃k(i) = s̃kn
gcd(s̃kn,Di)

, i = 1, . . . , r;

10: Return π̃k = lcmi=1..r(π̃k(i));

7.4 Expected Overestimation

Let us consider Alg. 7.3.1. In the following lemmas we show that by repeating the choice

of random matrices Bi and Li twice (i.e. for r = 2), we will omit only a finite number of

bits in πk. Let us start with a preliminary result.

Lemma 7.4.1 (Expected Underestimation of πk) Let n, k ∈ N, n > 0, k > 1, let A

be an n × n integer matrix, H its Hadamard’s bound, and β > 1. Let Sβ be a stream of

random integers uniformly chosen from the set {−dβ2 e+ 1, . . . , 0, . . . , bβ2 c}. Let P denote

the distribution of n × k and k × n matrices, whose entries are sampled from the stream

Sβ. Let Bi and Ri be n× k (resp. k × n) matrices given by distribution P. Suppose that

the Smith form of A is equal to S = diag(s1, . . . , sn). Denote by µk the product s1 . . . sk of

the k smallest invariant factors and by πk the product of the k biggest factors of a matrix.

Then for M = snA
−1

E

(
log

(
πk(A)

skn
gcd(µk(L1MB1), µk(L2MB2), skn)

))
∈ O(1) +O(

k3 log4(H)

β
),

where the expected value is computed with respect to distribution P.
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PROOF First, notice that πk(A)
skn

= 1
µk(M) . Therefore the expected value is less than or

equal

E

(
log

(
πk (A)

skn
gcd

(
µk(L1MB1), µk(L2MB2), skn

)))

=
∑

p prime

∞∑

s=1

log (p) sP
(

ordp

(
gcd

(
µk(L1MB1), µk(L2MB2), skn

)

µk(M)

)
= s

)

=
∑

p prime

∞∑

s=1

log(p)P
(

ordp

(
gcd

(
µk(L1MB1), µk(L2MB2), skn

)

µk(M)

)
≥ s
)

≤
∑

p prime,p|sn

k log(sn)∑

s=1

log(p)Πi=1,2P
(

ordp

(
µk(LiMBi)

µk(M)

)
≥ s
)

≤
∑

p|sn

k log(sn)∑

s=1

log(p)Πi=1,2




s∑

j=0

P


 ordp

(
µk(MBi)
µk(M)

)
≥ j ∧

ordp

(
µk(LiMBi)
µk(MBi)

)
≥ (s− j)




 .

Thanks to Thm. 7.1.2 we can estimate this probability for every prime p and power s. We

only consider p|sn and powers ps < skn. We will divide the sum on two disjoint parts, for

p, s such that ps < β and ps ≥ β.

For ps < β we have

s∑

j=0

P
(

ordp

(
µj(MBi)

µj(M)

)
≥ j ∧ ordp

(
µj(LiMBi)

µj(MBi

)
≥ (s− j)

)
≤

s∑

j=0

P (Bi : ordp (det (V Bi)) ≥ j)P (Li : ordp (det (LiU)) ≥ j) ≤ (s+ 1)
3

ps
.

Now the expected size of the under-estimation is less than or equal to

log (2)

(
3 +

∞∑

s=4

(
(s+ 1)2 3

2s

)2
)

+ log (3)

(
2 +

∞∑

s=3

(
(s+ 1)

3

3s

)2
)

+ log (5)

(
1 +

∞∑

s=2

(
(s+ 1)2 3

5s

)2
)

+ log (7)

( ∞∑

s=2

(
(s+ 1)2 3

7s

)2
)

+
∑

10<p≤H

∞∑

s=1

log (p)

(
3(s+ 1)

ps

)2

≤ 14.36 + 2.24 + 1.14 + 0.77

+
∑

10<p≤H
log (p)

−27p2 + 36p4 + 9

(p− 1)3 (p+ 1)3 ≤ 8.51

+

∫ ∞

10
log (x)

−27x2 + 36x4 + 9

(x− 1)3 (x+ 1)3 dx ≤ 8.51 + 11.97 ≤ 21
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which is O (1). We use the estimation
∑∞

s=1

(
3(s+1)
ps

)2
= −27p2+36p4+9

(p−1)3(p+1)3 .

For ps ≥ β the expected size of the underestimation is

∑

p|sn

k logp(H)∑

s=dlogp(β)e
(s+ 1)2 log (p)

(
3√
β

)2

≤ 2
∑

p|sn

9 log (p)

β

(13

6
k logp (H) +

3

2

(
k logp (H)

)2

+
1

3

(
k logp (H)

)3 ) ≤ 3k log2 (H)
9

β

(
13

6
+

3

2
k log (H) +

1

3
k2 log2 (H)

)
≤ 36k3 log4 (H)

β
.

We use the estimation
∑N

i=1(s + 1) = 13
6 N + 3

2N
2 + 1

3N
3. This is O

(
k3 log4(H)

β

)
, which

gives the result.

7.5 Correctness of k-Bonus Algorithm

Theorem 7.5.1 (Expected Underestimation in Alg. 7.3.1) Let n, k ∈ N, n > 0, k >

1, let A be an n× n integer matrix, and H its Hadamard’s bound. Let r = 2 and let and

β = 36k3 log4 (H). Let Sβ be a stream of random integers uniformly chosen from the set

{−dβ2 e + 1, . . . , 0, . . . , bβ2 c}. Let P denote the distribution of n × k and k × n matrices,

whose entries are sampled from the stream Sβ.

Let A, k, β, r, Sβ be the input of Alg. 7.3.1. Then π̃k(i) | π̃k and divides πk. πk is the

product of k biggest invariant factors of A and π̃k(i), π̃k are the (partial) results of the

algorithm at step i = 1, . . . r. Moreover, the algorithm outputs π̃k such that the expected

value of log(πkπ̃k ) is O(k).

PROOF For i = 1, 2 let Li, Ni be defined as in the algorithm. By Lem. 7.2.1 we have

s̃n
gcd (sj (LiNi) , s̃n)

∣∣∣∣ sn−j+1, j = 1..k.

Therefore

s̃kn
πkj=1 gcd (sj (LiNi) , s̃n)

∣∣∣∣∣πk

We have that πkj=1 gcd (sj (LiNi) , s̃n) divides gcd(πk(LiNi), s̃
k
n) = gcd(det(LiNi), s̃

k
n) and

therefore s̃kn
gcd(det(LiNi),s̃kn)

divides πk. Therefore π̃k(i) divides πk and as a consequence

π̃k = lcm(π̃k(1), π̃k(2)) divides πk as well.

Let us now consider the expected overestimation. Notice that Ni = MBi. By Lem. 7.4.1

E

(
log

(
πk
skn

gcd
(

det(L1N1),det(L2N2), skn

)))
∈ O (1) .
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We have

E(log(
πk
π̃k

)) = E(log(
πk

lcm(π̃k(1), π̃k(2))
)) = E(log(

πk

lcm( s̃kn
gcd(s̃kn,det(L1N1))

, s̃kn
gcd(s̃kn,det(L2N2))

)
))

≤ E(log(
πk
s̃kn

gcd(s̃kn,det(L1N1),det(L2N2))))

≤ E(log(
πk
skn

gcd(skn,det(L1N1),det(L2N2)))) + kE(
sn
s̃n

)

The choice of β and r ensures that E( sns̃n ) ≤ 5 ∈ O(1), see 6.3.2(v) Therefore we may

conclude that

E(log(
πk
π̃k

)) ≤ 21 + 5k ∈ O(k).

Remark 7.5.2 Another method to compute the product µk of k first invariant factors of

a rectangular matrix N would be to compute several minors of the matrix and to take the

gcd of them. However, it is difficult to judge the impact of choosing only a few minors

(instead of all) in the gcd computation. Indeed, no result is known on the distribution

of entries of N . An experimental evaluation whether for random A and random B the

minors of N are sufficiently ”randomly” distributed remains to be done. The advantage of

this method would be to get rid of random matrix L and the overestimation it may cause.

7.5.1 Cost of Bonus Computation

Let us now estimate k for which the use of term ”bonus” is justified, i.e. the cost of

computing πk(i) once s̃n is known is considerably smaller than the cost of one solving.

Lemma 7.5.3 (Cost of Alg. 7.3.1) Let n, k ∈ N, n > 0, k > 1, let A be an n×n integer

matrix, and H its Hadamard’s bound. Let r = 2 and let and β = 36k3 log4 (H). Let Sβ
be a stream of random integers uniformly chosen from the set {−dβ2 e+ 1, . . . , 0, . . . , bβ2 c}.
Let P denote the distribution of n× k and k×n matrices, whose entries are sampled from

the stream Sβ.

Let A, k, β, r, Sβ be the input of Alg. 7.3.1. Let us assume that the cost of Solver proce-

dure is more than C1n
ω′M(n log(n‖A‖)), where ω′ is non-negative constant and ω′ ≥ ω

and M(x) is the cost of multiplication of x bit integers. Moreover, let us assume that

Determinant is used to compute det(LiNi) in Alg. k-Bonus and that the cost of this

algorithm is less than C2k
3n log(n‖A‖)M(n log(n‖A‖)).

Let us assume that

k ≤ 3

√
C1

C2

n
ω′−2

3

3
√

log(n‖A‖)
. (7.2)

The cost Alg. k-Bonus is k + 1 times the cost of Solver .
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PROOF For k ≤ 3

√
C1
C2

n
ω′−2

3

3
√

log(n‖A‖)
the cost of CR algorithm is less than or equal

C2
C1

C2

nω
′−2

log(n‖A‖)n log(n‖A‖)M(n log(n‖A‖)) ≤ C1n
ω′−1M(n log(n‖A‖)),

which, by assumption, is the cost of one Solver. Therefore the cost of the algorithm is at

most that of k + 1 solving by Solver.

Remark 7.5.4 Let us now explained where did the bound on k came from. Let us assume

that A is a n × n matrix with entries bounded in absolute value be ‖A‖. Suppose that

1 < k ≤ n, and k-Bonus, see Alg. 7.3.1, is to be computed and Let us adopt its notations.

Let us assume cost of one solving is more than C1n
ω′M(n log(n‖A‖)). The values ω′ is 3

for p-adic lifting and ω for [122]. As M(n log(n‖A‖)) ≤ B(n log(n‖A‖)) ≤ (n log(n‖A‖))2,

the bound also holds for the algorithm of [122] if fast multiplication M(x) = O≈(x log(x))

is used.

The cost of ”bonus” computation is the cost of matrix multiplication LiNi plus the cost

of determinant computation for matrix LiNi. The cost of certified CR Algorithm to

compute det(LiNi) is O(k2nM(log(k‖LiNi‖)) + k log(k‖LiNi‖)(kω + k2M(log(‖LiNi‖))),
which includes the cost of matrix multiplication and the cost of taking the modular image.

Let us now estimate ‖LiNi‖. Let us notice that ‖Li‖ ≤ β
2 , Ni = s̃n(i)A−1Bi, where

‖Ni‖ ≤ ‖snA−1Bi‖ and ‖Bi‖ ≤ β
2 . Therefore ‖Ni‖ ≤ nHβ

2 and ‖LiNi‖ ≤ n2Hβ2

4 ,

which implies that log(‖LiNi‖)) = O(n log(n‖A‖)). As k ≤ n and ω ≤ 3, we see that

the cost of imaging prevails in each CRA iteration and the complexity of the CRA is

O(k3n log(n‖A‖)M(n log(n‖A‖))) ≤ C2k
3n log(n‖A‖)M(n log(n‖A‖)) for some C2 > 0.

By comparing the complexities we get the bound on k.

Remark 7.5.5 Both C1 and C2 can roughly by approximated when the procedures Solver

and Determinant are run. Clearly, constants C1 and C2 are not important from the point

of view of the asymptotic complexity of the algorithm.





8
Adaptive Determinant Algorithm

In this section we would like to introduce an adaptive algorithm for the computation of

determinant of a dense matrix. The algorithm is dynamic, baroque, and introspective in

the sense of the classification of Sec. 1.4.3.

8.1 General Idea and Components of the Algorithm

The algorithm combines the ideas of the following algorithms

- the classic CRA algorithm with or without early termination, see [70, Sec.5.4,5.5];

- the idea of Abbott et al.[2] of using preconditioned ET CRA with early termination,

the idea of using sn and LIF algorithm to get the preconditioner, see Ch. 6;

- the idea of Eberly et al. [44] to compute the determinant as a product of invariant

factors and to estimate the expected number of those, see [44];

- the idea of Saunders and Wan [112, 127, 113] to compute a ”bonus” factor by ad-

ditional system solvings, developed by us to the computation of k last factors by k

system solvings in kBonus procedure, see Ch. 7;

- any algorithm of [78, 122] or other, which can be chosen to complete the algorithm;

The algorithm is a version of an adaptive preconditioned CRA loop (cf. Alg. 6.2.1,

Abbott’s algorithm [2]), in which the preconditioner can change during execution. In the

adaptive part of the algorithm we repeatedly run several CRA steps and approximate the

product of biggest invariant factors of A (denoted πk for k largest factors). Then the

preconditioned CRA loop is recomputed with the new bigger preconditioner at low cost.

Moreover, based on certain properties of the output that are detected on the run-time,

the algorithm may choose to stop updating the preconditioner, therefore emphasizing the

CRA part. We suppose that the product of at most rmax factors can be computed (by

rmax-Bonus algorithm), where rmax is chosen in a way to control the total probability of

the adaptive part of the algorithm.
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We prove that in the average case, the preconditioned CRA loop early terminates before

rmax is achieved, which results in a good expected case complexity of the algorithm.

Moreover, we are able to detect cases when CRA loop may take to long to terminate and

turn to the asymptotically better algorithm (e.g. [2, 44, 78, 122] or any other) in this case,

thus keeping the worst case complexity at bay.

The algorithm is dynamic, as the top level procedures do not depend on the architecture.

However, we allow for the lower level subroutines, e.g. FFLAS matrix multiplication or

integer multiplication to depend on it.

The algorithm is adaptive, as the switches between the running the CRA and updating

the preconditioner (cf. the LIF alg. 6.3.1 and k-Bonus alg. 7.3.1) are computed at the

runtime. It is introspective, as the timing comparison between the two parts is taken into

account while deciding between k-Bonus computation and running CRA iterations.

The algorithm is baroque as there are possible O(rmax) switches, where rmax is the bound

on the number of invariant factors as a function of matrix size n. In order to obtain

good expected complexity, we require that rmax is greater than O(
√

log(n)) i.e. greater

the expected number of non-trivial invariant factors for a random dense matrix, see Thm

5.3.10. Moreover, the choice of rmax have to ensure, that the adaptive part of the algorithm

does not exceed the worst case complexity bound imposed by the last switch (worst case)

algorithm.

8.2 Requirement of the Algorithm

The algorithm inherits its requirements from the components. As input, it requires

- n× n integer matrix A,

- 0 < ε < 1, the error tolerance of the algorithm.

As a variant of early terminated preconditioned CRA loop it requires

- H = (
√
n‖A‖)n, which is a bound for the determinant

- l ∈ N, l > 1, P a set of primes, such that |P | > 2 logl(H) and l < p < 2l, ∀p ∈ P ,

primes are randomly and uniformly sampled from P ;

- functions iteration, reconstruct, terminated as defined in Sec. 6.1

- kmax = d log(1/ε)
log(P ′)−log(dlogl(H)e)e, where P ′ = |P | − blogl(H)c, see Eq. (6.5). This is the

maximum bound on the number of iterations needed to early terminate

For the computation of the preconditioner by LIF and k-Bonus algorithms, it requires

- integer rmin > 0, which denotes the minimal number of repetition needed to ensure

the computation of π̃k ≈ πk with sufficient probability; the choice rmin = 2 suffices

in our case, see Thm. 7.5.1;
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- integer β > 1, such that entries of random matrices are uniformly sampled from the

set {−dβ2 e + 1, . . . , 0, . . . , bβ2 c}; the choice β = 36r3
max log4 (H) suffices in our case,

see Thm. 7.5.1;

- Function Solver(x,A, bi) to solve equation Ax = bi; one may choose between variants

of p-adic lifting [27, 95] and fast solver of [122].

- Function Determinant(0,M) to compute the determinant of a i × i matrix M ,

i ≤ rmax with certainty; if rmax is sufficiently small, classic CRA algorithm may be

used, see Lem. 7.5.3.

In order to finish the algorithm, an implementation of Determinant(ε, A) has to be avail-

able. The particular implementation may take into account the partial results obtained

so far.

During the course of the algorithm we separate the rmin × rmax solving of rmax-Bonus

computation by several CRA steps. Therefore we introduce variables kapp(i), i = 1..rmin,

which store the number of solvings computed so far in the ith iteration of rmax-Bonus

algorithm.

8.2.1 Evaluation of rmax - the Number of Iterations

Let us finish this section by the evaluation of rmax. In order to make the algorithm

applicable to a large class of generic matrices, we will require that rmax is greater than the

expected number of non-trivial invariant factors of a random dense matrix. Precisely, we

consider dense n× n matrices here, with entries chosen randomly and uniformly from the

set of consecutive integers {−dλ2 e + 1, . . . , 0, . . . , bλ2 c} for which the expected number of

invariant factors is bounded by max(2,
⌈√

2 logλ (n)
⌉
)+3 by Thm. 5.3.10. In no additional

information on the distribution of input is provided, this prompts us anyway to set

rmax ≥
⌈√

2 log2‖A‖ (n)
⌉

+ 3.

To keep the cost of bonus computation at bay, we decide to take

rmax ∈ O
(

n
ω′−2

3

3
√

log(n‖A‖)

)
,

where ω′ is the exponent of n in the complexity of Solver, see Lem. 7.5.3. This choice

ensures that the product π̃k is updated at the cost of 2 Solvers at each iteration, see the

complexity section Sec. 7.5.1 for details.

Still, we need to compare the cost of the adaptive part, which takes at most the time of

O(rmin × rmax) Solvers with the cost of the last step algorithm. In fact, the worse the

complexity of the last step Determinant(ε, A) algorithm, the bigger bound on rmax we
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may take. In the case of [122] algorithm, the Solver and Determinant differ only by a

O(log(n)) factor, which is the smallest possible value for the algorithms currently in use.

Therefore, O(log(n)) Solvers may be run in the adaptive part.

We propose to set the value of rmax to

rmax = max(log(n),
⌈√

log2‖A‖ (n)
⌉

+ 3).

which allows to keep the asymptotic complexity of the adaptive part below the com-

plexity of the worst case algorithm. This value can be increased in the case when slower

Determinant algorithm is used in the worst-case part. This requires a comparison (asymp-

totic or exact) between complexities of the Determinant algorithm and the Solver.

8.2.2 Summary - Parameters of the Algorithm

To summarize, let us recall all parameters of the algorithm.

- n ∈ N - the size of the matrix,

- A ∈ Zn×n - the integer matrix,

- ‖A‖ = maxi,j=1..n(Aij) - the maximum norm of the matrix,

- 0 < ε < 1 - probability of correctness of the algorithm,

- H = (
√
n‖A‖)n, - the bound for the determinant of the matrix,

- l ∈ N - the size of primes used in the CRA part,

- P - a set of primes used in the CRA part,

- kmax = d log(1/ε)
log(P ′)−log(dlogl(H)e)e, - the threshold for early termination in CRA part,

- β = 36r3
max log4(H) - the bound on random matrix/vector entries in k-Bonus part,

- kapp(i) = 0, i = 0, 1..rmin - the current number of invariant factors computed in each

repetition,

- rmin = 2 - the number of iterations in k-Bonus part,

- rmax = max(log(n),
⌈√

2 logλ (n)
⌉

+ 3) - the maximum number of invariant factors

to compute,

The algorithm will use the following subroutines.

• iteration(A, p) - to compute the modular determinant;

• reconstruct(xt, y0, . . . , yt, p0, . . . , pt) - to perform reconstruction based on Chinese

Remaindering Theorem, see Eq. (6.1);
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• terminated(ε, P,H) - to check for early termination in the CRA part, see Alg. 6.2.1;

• Solver(x,A, b) - to solve Ax = b over rational field, see Sec. 6.3.5;

• Determinant(ε, A) - one of existing algorithms to compute the determinant with

probability at least 1− ε, see Sec. 4.1

8.3 Main Parts of Algorithm

The algorithm is divided in three main parts.

1. The CRA part consist of several repeated CRA loop steps i.e. given tmin and tmax and

given the preconditioner D we perform operations as in Alg. 8.3.1.

Algorithm 8.3.1 CRA part of Adaptive Determinant Algorithm 8.4.1

1: for t = tmin to tmax − 1 do

2: if dt not stored then

3: Choose uniformly and randomly a prime pt from the set P ;

4: Run iteration(dt, pt) to get dt = det(A) mod pt; store dt;

5: yt = dt/D mod pt
6: Run reconstruct(xt, y0, . . . , yt, p0, . . . , pt)

7: if terminated(ε,H) then

8: Return D · xt;
9: end for

The CRA part is performed every time D is updated or the bounds tmin, tmax are

changed. tmax may not be known in advance, it may be computed based on partial

timings of the algorithm.

2. The LIF&Bonus part consists of solving one system of equations of a form Ax = b, where

b is a random vector; at the ith execution of LIF&Bonus we use the last results together

with the results of previous i− 1 calls to LIF&Bonus to compute an approximation π̃i
of the product πi of i biggest invariant factors. Our approximation is always a divisor

of πi; in order to obtain π̃i sufficiently close to πi, we have to repeat i-Bonus scheme

rmix times and take π̃i = lcmi=1..rmin(π̃i(j)), where π̃i(j) is the result of jth repetition

of the procedure, j = 1..rmin.

Let us assume that i, j ∈ N, i, j > 0 and let us consider the ith call to LIF&Bonus in

the jth repetition of the procedure, assume that the results of previous i − 1 calls of

the jth procedure are x1(j), . . . , xi−1(j). The operations are shown in Alg. 8.3.2.

The LIF&Bonus part is executed at most rmax times and intertwines with the CRA

part. The aim of this part is to update the preconditioner D needed by the CRA part,

by putting D ≈ πi (see Alg. 8.4.1 for details). If D is not changed by the procedure

it might be either due to a possible underestimation of the product π̃i or to the fact

that the ith invariant factor sn−i+1 is trivial i.e. equal to 1. To rule out a possible
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Algorithm 8.3.2 LIF&Bonus Part of Adaptive Determinant Algorithm 8.4.1

1: Generate bi a random vector of dimension n from the stream Sβ;

2: Run Solver(xi(j), A, bi) to solve Axi(j) = bi;

3: Update s̃n(i) = lcm(s̃n(i), den(xi(j))), where den(xi(j)) is the common denominator

of the entries of xi(j);

4: Set Nk = s̃n(i)xi(j), k = 1..i, N = [Nk]k=1..i

5: Generate i× n matrix L from the stream Sβ;

6: d = Determinant(0, LN) to get det(LN) with certainty;

7: Return π̃i(j) = s̃n(i)k

gcd(d,s̃n(i)k)
.

underestimation, one need to ensure that the whole scheme is repeated at least rmin
times before a conclusion is made.

3. The Worst Case part consists of running a determinant algorithm Determinant(ε, A)

chosen by the user. The complexity of Determinant will determines the worst case

complexity of the algorithm. This is consider as the exceptional case or ”failure” of the

adaptive scheme.

8.4 Procedure

Formally, the adaptive determinant algorithm is as follows. The requirement and param-

eters of the algorithm are given in Sec. 8.2.

8.5 Correctness of Algorithm

Theorem 8.5.1 (Preconditioning in Alg. 8.4.1) During the course of Alg. 8.4.1, the

preconditioner D is always a divisor of the determinant det(A).

PROOF Let us first notice, that if det(A) = 0 then the algorithm may stop after first

kmax iterations by early termination principle. Therefore any system solving is performed

on a non-singular matrix.

Preconditioner D is updated at each iteration by the LIF&Bonus part. All iterations of

LIF&Bonus part put together are equivalent to the k-Bonus algorithm, therefore Thm.

7.5.1 may be applied. For iterations i, j, i = 1..rmin, j = 1..rmax in the LIF&Bonus part,

π̃j(i) is computed. Therefore we may conclude that D is a divisor of the determinant.

Theorem 8.5.2 (Correctness of Alg. 8.4.1) Algorithm 8.4.1 correctly computes the

determinant with probability 1− ε.

PROOF Termination is possible only by the early terminated CRA loop, see Alg. 8.3.1, or

by the determinant algorithm used in the last step. The choice of kmax from Lem. 6.1.1(2ii)

and the choice of the worst case determinant algorithm ensures that 1 − ε probability is

obtained.
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Algorithm 8.4.1 Introspective Determinant Algorithm

Ensure: det(A) correct with probability at least 1− ε.
1: tmax = kmax + 1;

2: Run CRA part for t = 0..tmax − 1;

3: Compute the time t1 of one step of CRA;

4: repeat

5: for j = 1 to rmin do

6: for i = kapp(j) + 1 to rmax do

7: Run LIF&Bonus part for π̃i(j);

8: Compute the time t2 of previous call;

9: kiter = max(d 5
rmin log(l)e, t2/t1);

10: if i = 1 then kiter = kiter + d 21
rmin log(l)e;

11: π̃i = lcm(π̃i, π̃i(j));

12: D = lcm(D, π̃i);

13: if π̃i = π̃i−1 and kapp(j) ≥ kapp(j − 1) then

14: Run new iterations of CRA for t = tmax..tmax + kiter − 1 iterations, update

tmax = tmax + kiter;

15: kapp(j) = i;

16: if j = rmin then

17: kapp(j) = rmax for all j = 1..rmin;

18: kiter = (rmax − i)× t2/t1;

19: Run new iterations of CRA for t = tmax..tmax+kiter−1 iterations, update

tmax = tmax + kiter; ;

20: break;

21: else

22: Rerun CRA for t = 0..tmax − 1;

23: Run new iterations of CRA for t = tmax..tmax + kiter − 1 iterations, update

tmax = tmax + kiter;

24: end for

25: end for

26: until kapp(j) = rmax for all j = 1..rmin
27: Return Determinant(ε, A)
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8.6 Expected Behavior of Algorithm

Thm. 7.5.1 states that the expected underestimation of π̃k is at most 21 + 5k ∈ O(k).

This result may be used to analyze the ”expected” behavior of Alg. 8.4.1.

During the course of the algorithm, in the LIF&Bonus part, we try to compute a divisor of

the determinant, namely the product of rmax largest invariant factors πrmax . The idea of

the algorithm is to approach πrmax gradually, by computing the products π̃1, π̃2, . . . etc.,

which approximate π1, π2, . . . etc. This is implemented in the innermost for loop of the

algorithm. The middle-lever for loop is conceive to update the products by repeating the

computation with new left and right-hand side preconditioners.

The idea is to first, add new factors, and then, to correct the products by repeating the

computation. In this way we may detect cases, when πk = πrmax for k < rmax. We can

also detect the cases when πk is sufficiently close to the determinant. As it can be seen on

the example of Pan [103] and Abbott’s et al. [2] algorithms, sometimes π1 = sn may be a

sufficient.

The idea is purely heuristic, but by Thm. 7.5.1 some rigorous evaluations can be made.

First, suppose that the repeat loop of the algorithm finishes. If we ignore all CRA steps

that occur during the course of the algorithm, we obtain a procedure equivalent to the

rmax-Bonus computation. By Thm. 7.5.1 we obtain πrmax up to O(rmax) bits.

Notice, however, that we performed rmin × rmax × kiter iterations of the CRA part, and

compute at least log(l) bits of the determinant in each iteration. This allows us to obtain

at least rmax × 5 + 22 bits of the determinant, see the definition of kiter in Alg. 8.4.1.

This is exactly the expected under-estimation of πrmax .

Remark 8.6.1 In general, if the number of non-trivial invariant factors is k ≤ rmax,

the innermost for loop will break at i ≤ k. Some erroneous computation may lead the

innermost for loop to break earlier i.e. when i < k. However, incrementing j in the middle-

level for loop ensures that the computation is repeated. Therefore the error is corrected

up to O(k) bits as soon as j achieves rmin. Indeed, if kapp(i) ≥ k for all i = 1..rmin (see line

13 of Alg. 8.4.1) ensures, that we have computed at least log(πk) bits of the determinant.

Therefore, once k equals to the number of non-trivial invariant factors, we get all bits of

the result. The choice of kmax at the beginning of the algorithm ensures that CRA part

should early terminate with probability at least 1− ε.

Thm. 5.3.10 states that the expected number of invariant factors for random integer

matrix with entries chosen uniformly and randomly from set of λ > 1 consecutive integers

S = {−dλ2 e+ 1, . . . bλ2 c} is at most

max(2,
⌈√

2 logλ (n)
⌉
) + 3.

The choice of rmax, greater than the expected number of non-trivial invariant factors,

together with the above result ensures that ”for an average matrix” the algorithm will stop

in the adaptive part.

We will use this fact in the complexity considerations in the next section.
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8.7 Complexity of Algorithm

We will consider the complexity of the adaptive algorithm.

8.7.1 Output Dependent Complexity

Suppose that the parameters Alg. 8.4.1 are defined as in Sec. 8.2.2.

Theorem 8.7.1 (Output-dependent Complexity of Alg. 8.4.1) Let A be a n × n

integer matrix with entries bounded by ‖A‖ in absolute value. Suppose that A has k non-

trivial invariant factors. Let the parameters for Alg. 8.4.1 be as in Sec. 8.2.2

Denote by C(Solver(n, ‖A‖)) the complexity of Solver procedure. The expected output

dependent complexity of Alg. 8.4.1 is

O (nω log (1/ε) + C(Solver(n, ‖A‖))k)

as long as k ≤ rmax.

PROOF For a matrix A, with kmax defined as in Eq. (6.5), the complexity of initial CRA

iterations is O (nω log (1/ε)).

The cost of the remaining part of the algorithm is the cost of all calls to LIF&Bonus part

8.3.2, the cost of updating D in line 12, the cost of re-running the CRA loop in line 23,

and the cost of all CRA iterations.

The cost of updating D by lcm is negligible in each iteration. To rerun the CRA loop, we

need to recompute modular result dt/D mod pt and reconstruct det(A)/D mod
∏tmax
i=0 .

By using fast integer reconstruction of [70, Ch.10.3], as det(A)/D = O(n log(n‖A‖)) in

the worst case, this can be done in negligible cost.

If k ≤ rmax, the algorithm is expected to stop when k factors are computed in line 14 when

i = k, j = rmin in the worst case. See remark 8.6.1 for explication. It is not expected

to enter the CRA loop in line 19, as CRA iterations performed so far are expected to

compensate for underestimation of π̃k before it happens.

At each iteration (i, j), either a O(1) number of CRA iteration is run, or, the overall time

of CRA iterations is bounded by C(Solver(n, ‖A‖)) by a direct timing comparison, see the

definition of kiter in Alg. 8.4.1. As the complexity of modular determinant computation

of iteration is asymptotically less than C(Solver(n, ‖A‖)) in both cases, the summarized

complexity of CRA iterations is O(C(Solver(n, ‖A‖))) at each iteration of the inner-most

for loop.

Finally, the choice of rmax in Sec. 8.2.1 ensures that the cost all calls to LIF&Bonus part

is at most that of rmin(k + 1)C(Solver(n, ‖A‖)), see Lem. 7.5.3.

Thus, the expected output dependent complexity is O (nω log (1/ε) + kC(Solver(n, ‖A‖)))
as required.
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8.7.2 Expected Complexity

We may now estimate the expected complexity of the algorithm.

Theorem 8.7.2 (Expected Complexity of Alg. 8.4.1) Let A be a random n× n in-

teger matrix with entries chosen uniformly and randomly from the set S of λ consecutive

integers, S = {dλ2 e − 1 . . . bλ2 c. Let the parameters for Alg. 8.4.1 be as in Sec. 8.2.2.

Denote by C(Solver(n, ‖A‖)) the complexity of Solver procedure. Then the expected com-

plexity of Alg. 8.4.1 is

O
(
nω log (1/ε) + C(Solver(n, ‖A‖))

√
logλ(n)

)

PROOF By Theorem 5.3.10 O(
√
logλ(n)) is the bound on the expected number of invari-

ant factors, and this value is less than or equal to rmax, see Sec. 8.2.1. Let us assume that

the number of non-trivial invariant factors of A is as expected. Then in Thm. 8.7.1 we

may take k = O(
√
logλ(n)) and the result follows.

The expected running time on a particular given random matrix can be re-estimated once

s̃n is known. The trick is to approximate the expected number of invariant factors again,

using the factorization of s̃n and following the proof of Thm. 5.3.10.

To compute the average complexity rigorously it not sufficient to replace it with the

expected-case complexity. One should take into account the impact of all less proba-

ble cases. First, CRA iterations may fail to compensate for the k-bonus errors. This

possibility can be excluded with hight probability by analysis in the spirit of Theorems

[127, Thm. 5.8], 7.5.1 or 7.1.2. To obtain a good average complexity for the compensation

may require increasing the values of rmin and/or β. The exact analysis is overwhelmed

with technical details and in our opinion will not improve our understanding of Alg. 8.4.1

and its behavior. Instead, we try ro computing as many CRA as possible without time

handicap. Notice, that if kiter is set to t2
t1

, it is asymptotically at least O(log(n)), which

should be more than necessary to compensate for even a significant under-approximation,.

Therefore even a highly erroneous computation of π̃k could be compensated by the CRA

steps and this case should not contribute to the average complexity.

It is more instructive to consider the impact of bigger number of non-trivial invariant

factors on the algorithm. By 5.3.11, the probability that the number of invariant factors

is greater than max(
√

3/2h + 1, h + 2), where h = max(2,
√

logλ(n)) (i.e. about 1.23

times the expected value) is O(n−1). If rmax > max(
√

3/2h + 1, h + 2), the complexity

of reaching Determinant in line 29 is compensated by its low probability and the average

complexity of the algorithm is equal to the expected one, provided that we can assume

that the approximation of πk is sufficiently exact.

8.7.3 Worst Case Complexity

Finally, we may estimate the worst case complexity of the algorithm.



8.8. Experimental Evaluation 125

Theorem 8.7.3 (Worst Case Complexity of Alg. 8.4.1) Let A be a n × n integer

matrix with entries bounded by ‖A‖ in absolute value. Let the parameters for Alg. 8.4.1

be as in Sec. 8.2.

Denote by C(Determinant(ε, n, ‖A‖) the complexity of Determiant algorithm used in the

worst-case part. The worst case complexity of Alg. 8.4.1 is

O (nω log (1/ε) + C(Determinant(ε, n, ‖A‖))) .

PROOF The choice of rmax in Sec. 8.2.1 is done in a way, that ensures the running time

of the adaptive phase is asymptotically equal to the running time of the worst-case part

(i.e. C(Determinant(ε, n, ‖A‖))). By adding the cost of initial CRA iterations we get the

result.

8.8 Experimental Evaluation

Algorithm 8.4.1 is implemented in the LinBox in ”linbox/algorithms/hybrid-det.h”.

In the implementation, we have relaxed some of the requirements, setting kmax = 3,

rmin = 1 and rmax = 1 or 2. We are using word-size primes in CRA part of the algorithm,

which permits fast matrix multiplication in FFLAS routines, see [35, 36, 109]. We use

LU factorization for iteration procedure. For Solver procedure we use p-adic lifting, see

[27]. Random vectors and random matrices in the LIF&Bonus part are sampled from a

stream of word-size integers, i.e. we assume β ∈ O(1). The Determinant algorithm in the

last, worst case, part is the Abbott’s preconditioned CRA algorithm [2]. Yet, using this

simplified setup, we were able to obtain timings, that are better than the state-of-the-arts

for a wide class of matrices.

8.8.1 Generic Case

By Thm. 8.7.2 our adaptive algorithm claims the best up-to-date complexity for random

dense matrices. This result is proved by our experimentations.

For a generic case of random dense matrices our observation is that the bound on the

expected number of non-trivial invariant factors is quite crude. Indeed, for random dense

matrices, the algorithm nearly always stopped with early termination after one system

solving, which corresponds to the case log
(

det(A)
sn

)
∈ O(1), or more precisely log

(
det(A)
s̃n

)
∈

O(1), where s̃n is the result of the LIF algorithm, see Alg. 6.3.1. This together with fast

underlying arithmetics of FFLAS [35] accounted for the superiority of our algorithm as

seen in figure 8.1 and 8.2 where comparison of timings for different algorithms is presented.

Let us focus on the comparison between our adaptive algorithm (see Hybrid algorithm

in Fig. 8.1) an the state-of-the-art of [122], which claims currently the best theoretical

complexity (see Storjohann-Giorgi-Olesh in Fig. 8.1). Our algorithm beats both the

uncertified (Monte Carlo) and certified version of the algorithm. See [123] for the results
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Figure 8.1: Comparison of our algorithm with other existing implementation. Tested

on random dense matrices of the order 400 to 10000, with entries {-8,-7,. . . ,7,8} Using

fast modular routines puts our algorithm several times ahead of the others. Scaling is

logarithmic.

of algorithm [122]. The implementation of the algorithm does not use the fast rational

solver, and nor is ours.

As it can be seen in figure 8.2, our algorithm is asymptotically better than the classic CRA

algorithm. Moreover, our implementation is faster that Abbott’s et al. algorithm [2] by a

constant factor. This is due to the fact, that our implementation can make use of a priori

erroneous output s̃n and therefore, in a generic case, needs less executions of p-adic lifting

than the algorithm of [2].

8.8.2 Malicious Matrices

Thanks to the introspective approach our algorithm can detect the cases when the number

of invariant factors is small and equal to k < rmax, see Sec. 8.6, and has good complexity

in this case, see Thm. 8.7.1. To test the ability of our algorithm to detect propitious

cases, we have run it on various sets of structured and engineered matrices. The adaptive

approach allowed us to obtain very good timings which motivates us to encourage the use

of this algorithms in the situations which go further beyond the random dense matrix case.

In Figure 8.3 we present the results of the determinant computation for sparse matrices of

N. Trefethen1, which have a relatively high number of non-trivial invariant factors. Our

algorithm gives the best timings for this class of matrices.

In what follows we choose to evaluate our algorithm in the case of matrices, for which the

number of non-trivial invariant factors is even bigger. In Table 8.1 we give the timings

for our algorithm with rmax = 1 (equivalent [2]) and 2. The algorithms was run on a set

of specially engineered matrices which have the same Smith form as diag{1, 2 . . . , n} and

the number of invariant factors of about n
2 . We notice that the algorithm with rmax = 1

1http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Matrices/Trefethen/
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Figure 8.2: Comparison of our algorithm with early terminated Chinese remaindering

algorithm (LU) and the algorithm of Abbott et al. [2] (LIF). Tested on random dense

matrices of the order 40 to 1000, with entries {-100,-99,. . . ,99,100}. When matrix size

exceeds 80 the adaptive algorithm wins. Scaling is logarithmic.

n rmax = 1 rmax = 2 n rmax = 1 rmax = 2

100 0.17 0.22 300 5.65 5.53

120 0.29 0.33 350 9.76 9.64

140 0.48 0.55 400 14.99 14.50

160 0.73 0.78 600 57.21 54.96

180 1.07 1.16 800 154.74 147.53

200 1.49 1.51 1000 328.93 309.61

250 2.92 3.00 2000 3711.26 3442.29

Table 8.1: Comparison of the performance of Alg. 8.4.1 with rmax set to 1 and 2 on

engineered matrices.

runs better for small n i.e. the computation of sn−1 in this case, despite the fact that

sn−1 > 1. This motivated us to develop an even more adaptive approach, which we

describe in Section 8.9.

The results encouraged us to construct a sparse variant of our algorithm, which we shortly

describe in Section 8.10.1. Figure 8.3 gives a comparison of the performance of sparse

and dense variants. We used the sparse solver of [43] and a sparse modular determinant

algorithm implemented in LinBox. Using the algorithm with the dense solver outperforms

using the sparse solver by a factor of 3.3 to 2.3, and decreasing with the matrix size

n. Thanks to the space-efficiency of the sparse algorithm we are able to compute the

determinant for 20000 × 20000 matrix for which the dense solver resulted in memory

trashing.

In figure 8.4 we compare the performance of dense and sparse variants of the algorithm

with the CRA algorithm (sparse variant) for random sparse matrices. The matrices are

very sparse (20 non-zero entries per row). To ensure that the determinant is non-zero
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Figure 8.3: Comparison of sparse and dense variants of our determinant algorithm for

Trefethen’s matrices. Scaling is logarithmic.
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Figure 8.4: Comparison of sparse and dense variants of our determinant algorithm with

the CRA algorithm for random sparse matrices. Scaling is logarithmic. The running time

of the CRA algorithm has been approximated based on the timings for one iteration

we put 1 on the diagonal. Both dense and sparse variants of the algorithm have better

running times than the CRA, which proves that we can detect propitious cases for sparse

matrices. Furthermore, sparse variant is best for bigger matrices and again lets us solve

the problem when the dense variant fails due to insufficient memory.

8.9 Further Introspective Modifications of Algorithm

We start with a simple remark. For every matrix, with growing i, the size of sn−i de-

creases whilst the cost of its computation increases. In Table 8.1, this accounts for better

performance of Abbott’s algorithm (rmax = 1), which computes only the last factor sn, in

the case of small n. For bigger n calculating the penultimate factors sn−1 starts to pay

out. The same pattern could repeat for sn−1 and sn−2 etc. as matrix size increases.
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The switch between winners in Table 8.1 can be explained by the fact that, in some

situations, obtaining sn−i by CRA (which costs log(sn−i)
log(l) × t1, where t1 is the time of

LU) outperforms system solving. Then, this also holds for all consecutive factors and the

algorithm based on CRA wins. The condition can be checked a posteriori by approximating

the time of LUs needed to compute the actual factor. We can therefore construct a

condition that would allow us to turn to the CRA loop in the appropriate moment. This

can be done by changing the condition in line 13 (π̃i = π̃i−1) to

log

(
πi
πi−1

)
≤ t1
t2

log (l) ,

if the primes used in the CRA loop are greater than l and t1, t2 are the times of the Solver

and LU. This would result with a performance close to the best and yet flexible.

If, to some extend, sn−i, i > 0 could be approximated a priori, this condition could be

checked before the computation of sn−i. This would require a partial factorization of

sn−i+1 and probability considerations as in Thm. 5.3.10 and [44]. This method cannot

however by applied to better approximate sn.

Notice, that at least one system of linear equations has to be solved during the course of

the algorithm in order to approximate sn. This means that the minimal and inevitable

cost of the algorithm, for an n× n matrix with entries bounded by ‖A‖ in absolute value,

is O(n3(log2(n‖A‖))2) for the p-adic lifting of [27]. In the [27] algorithm, this cost does

not depend on the computed size of the solution, but an output dependent solver, which

uses early terminated rational reconstruction, can be envisaged, see Sec. 11.3 and Sec.

11.6.2 for experiments.

The p-adic solver could find s̃n in roughlyK ∼ 2e logp(s̃n)e iterations of O∼(n2 log(‖A‖n)+

log(β)) bit operations each, assuming that logp for the vector of numerators of the solution

vector is less than or equal to e logp(s̃n)e as well, see Sec. 11.3. Depending on the size

of output on early termination, we may either run the CRA loop or continue the p-adic

solver until certification if necessary. While considering the use of early terminated p-adic

lifting, one should be aware of using the uncertified output as preconditioner D might

violate D | det(A) condition.

A direct comparison of times of one modular LU and one lifting step can thus heuristically

be used to decide whether to perform the first solving. Informally speaking, one LU

iteration mod p gives us logp bits of det(A), whereas one p-adic step gives us logp /2

bits. Thus, early terminated p-adic lifting would recover s̃n quicker than the CRA scheme

provided that the time t3 is less than t1
2 , where t1 denote the time of one modular LU .

This reasoning ignores the time of integer and rational reconstruction in CRA and p-adic

lifting, hence, in practice, condition should be rather be of a form t3 <
t1
α for α > 2. Notice

however, that in the asymptotic case and for dense matrices, we expect t3 � t1. We recall

here, that the problem of rational reconstruction and early termination in p-adic lifting is

much more complex than the integer reconstruction in CRA. We will discussed this in Ch.

10 and Ch. 11.
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8.10 Beyond Random Dense Matrices - Application to Struc-

tured Matrices

Structured matrices has to be consider from two different points of view in the case of

Alg. 8.4.1. First, dense implementations may be used for structured matrices. Thm. 8.7.1

gives the output-dependent complexity in this case, but we need expected complexity to

evaluate how often adaptive approach pays out. Therefore, there is a need for probabilistic

analysis on the number of non-trivial invariant factors in the case of a particular structure.

Secondly, other linear solving and determinant algorithms dedicated to structured matri-

ces can be used, which implies new evaluation for both output-dependent and expected

complexities.

In this manner we will analyze the case of structured matrices on the example of sparse

matrices.

8.10.1 Sparse Case

Sparse matrices are matrices, which have more entries equal to 0 than average matrix.

Therefore, we introduce a parameter Ω - the number of non-zero factors and require that

Ω is considerably smaller than n2 for n × n matrices. In the implementation, only the Ω

non-zero entries are stored. The basic operation on this type of matrices is matrix-vectors

product, which costs O(ω).

Probability Revisited

The definition of random sparse matrices is given in Sec. 5.1.3. In Sec. 5.3.3 it is proven

that in the case of integer sparse matrices the expected number of invariant factors divisible

by 2 is finite, see Cor. 5.3.13, and that, under some additional assumptions, the expected

number of invariant factors divisible by p > 2 is finite for every prime p separately, see

Cor. 5.3.15. Another weaker characterization is also given in Cor. 5.3.5.

In particular, Cor. 5.3.5 implies that the number of invariant factors can be quite big.

This is clearly visible in the case when ε = 1, i.e. when the expected number of non-zero

entries in a row of the matrix is finite. The expected number of non-zero invariant factors

is O(n) at each prime p in this case. Indeed, Cor. 5.3.13,5.3.15 exclude this case.

Intuitively, larger number of invariant factors divisible by a prime p is due to occurrence of

rows (resp. columns) which are divisible by p. Such columns might be detected beforehand

by row (resp. column) gcd computation. Let gi denote the gcd of all entries in a row (resp.

column). Notice, that gi divides the determinant in this case. Thus, Alg. 8.4.1 can be

considered for a new matrix Ã = Adiag( 1
gi

) (resp. diag(gi)A), which will have lower

number of non-trivial invariant factors. Some results for modular rank in this case are

presented in [20]. The question of the expected number of invariant factors for a sparse

matrix in this case remains open.
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Algorithms Revisited

To apply Alg. 8.4.1 we need a dedicated sparse methods for modular determinant computa-

tion and system solving. Additionally, we need a dense routine to compute the determinant

of a small at most rmax × rmax matrix with entries bounded in size by O(n log(n‖A‖).
Instead of the dense LU, sparse elimination can be used in practice e.g. for extremely sparse

matrices [40]. In general, black box method are preferred. The idea is to precondition

the matrix so that its characteristic polynomial equals its minimal polynomial [45, 14];

and then to compute the minimal polynomial via Wiedemann’s algorithm [133]. The

complexity of the sparse modular determinant computation is then O (nΩ) [40, Table 4].

Adaptive solutions is suggested in [42].

For solving a sparse system of linear equations the solver of [43] can be used. By similar

reasoning as in [97], the cost of one solving is that of O(n1.5 log(n‖A‖)+n0.5 log(β)) matrix-

vector products and O(n2 log(n‖A‖)(n0.5 + log(‖A‖)) + n2 log(β) log(n‖A‖) + n log2(β))

additional arithmetic operations.

Let us now analyze the existing integer determinant algorithms, that can be used in the

worst-part switch. Possible solutions include a CR and preconditioned CR Algorithm,

which has the worst-case complexity of about O (Ωn log (| det (A) |)) bit operations, see

Thm. 6.3.3. Also, the algorithm of [44] can by adapted to the sparse case, by using the

sparse solver of [43] in the LIF procedure. In this way, we obtain an algorithm with com-

plexity O
(
n1.5Ω log(n‖A‖) log (‖A‖) log2 (n)

√
log(| det(A)|)

)
, which, unfortunately, does

not improve the complexity of CRA scheme.

Let us now analyze the choice of rmax in the adaptive Algorithm 8.4.1. By analyzing the

complexities of subprocedures, as in Sec. 8.2.1 and Lem. 7.5.3 we obtain that rmax should

fulfill the following conditions.

By comparing the cost of one system solving and the cost of ”bonus” computation i.e. the

determinant of rmax × rmax matrix LN , where ‖LN‖ ∈ O(n log(n‖A‖)), LN is a dense

matrix, we obtain the condition:

r2
maxnM(n log(n‖A‖)) + rmax log(rmax‖LN‖)(rωmax + r2

maxM(‖LN‖))
∈ O

(
n1.5Ω log(n‖A‖) log (‖A‖)

)

where M(x) is the cost of multiplication of two x-bit integers.

By comparing the cost of the adaptive part with the cost of computing the determinant

in the worst case, we obtain

rmaxn
1.5Ω log(n‖A‖) log (‖A‖) ≤ n2Ω log(n‖A‖)

This allows us to take

rmax = min

(
3

√
Ω

n0.5 log(n) log(n‖A‖) ,
n0.5

log(‖A‖

)
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In the propitious case, when the number of non-trivial invariant factors is smaller than rmax
we obtain an algorithm with the running time better than currently known algorithms. In

the malicious case when this condition is not fulfilled, the running time of the algorithm

is the same as for the worst case CRA algorithm. Additionally, adaptive modifications

of Sec. 8.9 may help us obtain satisfactory running time in this case as well. This is

suggested by good experimental results, see Fig. 8.4.

Practical Speedup

In fact, by the adaptive modification of Sec. 8.9 we only need to consider the number of

”big” invariant factors, i.e. the number of invariant factors which are bigger than a certain

parameter C. The parameter has to be chosen in a way, that the product of all smaller

factors can be computed by modular CRA loop quicker than another rational solution

of a system of equation. We could exploit here the difference in complexity between

system solving and one modular routine which is O(n1.5Ω) to O(Ωn) in the case of sparse

procedures. This could enable us to recover O(n0.5) bits of the determinant by running

modular routines without exceeding the cost of one linear system solving, see the definition

of kiter in line 9 of Alg. 8.4.1.

Memory Usage

One of the reason of using the sparse variants of the algorithm is the reduced memory usage.

In the case of our algorithm, the memory used is dominated by the ”bonus” computation,

where storing matrix LN takes O(rmaxn
2 log(n‖A‖)) bits.

8.10.2 Toeplitz and Hankel Matrices

Definition 8.10.1 (Toeplitz and Hankel Matrices) Let n ∈ N, n > 0. Let A =

[ai,j ]i,j=1..n be a n× n matrix. We say that A is a

1. Toeplitz matrix, if ai,j = ai−1,j−1 for all i, j = 2..n.

2. Hankel matrix, if ai,j = ai−1,j+1 for all i, j = 2..n.

The analysis of this case is similar to the sparse case. The main feature of Toeplitz and

Hankel matrices (for fixed ‖A‖) is that the cost of matrix-vector product is O∼(log(n)). In

[104, 106, 105, 107] a rational solver of complexity O(n2 log2(n)) is proposed and possible

determinant algorithms are discussed. Experiments suggest, that the expected number of

invariant factors might be significant in this case, see [107] for the study of modular rank

degeneration.
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Motivations

To our knowledge, the problem of the exact solution to linear algebra problems for rational

matrices (i.e a matrix with rational entries) has not been widely studied so far. In general,

exact algorithms can be used everywhere where large precision is required. For example,

the determinant can be too close to 0 or ±∞ and thus cannot be computed by floating

point precision algorithms. In the case of ill-conditioned matrices, symbolic methods can

be preferred as rounding errors can spoil the computation.

Standard linear algebra routines often fail in the case of ill-conditioned matrices. As a

remedy, the use of other methods such as interval arithmetics or multiple-precision floating

point computation has been proposed. The other possibility is the use of exact methods,

which would perform the computation on arbitrary precision integers or rational numbers

(treated as a pair consisting of a numerator and a denominator).

One should notice here that floating point representation allows to represent exactly only

the fractions with denominators being a power of 2. Rational field implementations would

allow us to represent exactly all fractions, and therefore any real-life values such as mea-

surement results (decimal fractions). better to our problem. This is an opportunity

that should not be sneezed at, as ill-conditioned problem are sensitive to data modifica-

tions. Another interesting possibility might be to compare the decimal/binary fractions

approximation of our real-valued data with continued fractions approximation. Continued

fractions are the best approximants with small denominators, see [70, Ch. 4].

Rational field arithmetics is implemented in GMP1 and Givaro2 libraries. In general,

rational numbers are difficult to treat from exact computation point of view. Mainly,

the size of numerator and denominator can increase very quickly with every addition and

multiplication. When we add or multiply two fractions with numerators and denominators

bounded by M , the numerator and denominator of the result are bounded by O(M2).

Moreover, one addition requires 3, and one multiplication requires 2 integer products, as

well as a gcd computation. Therefore, the cost of an exact matrix-vector or matrix-matrix

product can be prohibitive in practice. This prohibits the use of the rational field Q in most

exact linear algebra algorithms which rely on matrix-matrix or matrix-vector products. In

1http://gmplib.org/
2http://www-ljk.imag.fr/CASYS/LOGICIELS/givaro/
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particular, algorithms might be correct for matrices over a field, but not practical for

matrices over Q. For example, this is the case of elimination-based algorithms.

9.1 Matrix Storage

To perform computations on a rational matrix A =
[aij
bij

]
, bij > 0 the problem of matrix

representation for storage has to be considered. First, a matrix of rational numbers can

be stored, where entries are elements of the GMP or Givaro rational field. Yet, there exist

also other possibilities.

Suppose that A =
aij
bij

. We call D(A) the common denominator of all entries of A i.e.

D(A) = lcm(bij). Then, matrix A can be stored as a pair (A′, D(A)), where

A′ = D(A) ·A (9.1)

is an integer matrix. Let ‖A‖r = max(‖aij |, bij) be the largest absolute value of a numer-

ator or denominator of A. When the entries of A are decimal or binary fractions, D(A)

can be set to a small power of 10 or 2, and ‖A′‖ is close to ‖A‖r. Unfortunately, if we

only assume that the values |aij |, bij are less than M , both D(A) and ‖A′‖ are bounded

by O(Mn2
) and storage of A′ requires more memory.

Instead of taking the common denominator of all matrix entries, we may take the common

denominators by rows (columns). We define Di(A) = lcm(bij) and Ej(A) = lcm(bij).

Then, diagonal matrices D̃ = diagDi(A) and Ẽ = diagEi(A) can be formed and we

define integer matrices

Ã1 = D̃A, Ã2 = AẼ. (9.2)

A can be represented by a pair of matrices (D̃, Ã1) or Ẽ, Ã2. In what follows, we will use

the notion Ã to denote either of the preconditioning Ã1 or Ã2 if distinction between the

two is not necessary and both cases may be analyzed at the same time.

This representation is equivalent to the previous one if and only if Di(A) = D(A) (Ei(A) =

D(A) resp.) for all i. However, contrary to multiplying by D(A), multiplying by a diagonal

matrix can disturb matrix structure (for example symmetric, Hankel or Toeplitz). In

general, if we assume that the values |aij |, bij are less than M , then ‖Ã‖ is O(Mn), thus

less than ‖A′‖.
In this chapter, we will ignore the cost of generation of A′ and Ã from A. We will assume

that one of the representation A, (D(A), A′), (D̃, Ã) is given at the input of the algorithm.

In practice, representations might be computed while data are read at relatively small cost

when compared to the main algorithm.

9.2 Modular Computation for Rational Matrices

The cost of computing the modular image of a fraction a
b , where a, b are of moderate size,

should be comparable with the cost of computing the modular image of a large integer
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number. This allows us to compute the modular image of a rational matrix A as well as

for its representations by A′ and Ã at comparable cost.

In past decade modular linear algebra routines have undergo major enhancements so

that they are nowadays quite as fast as numerical routines see e.g. [36]. This is mostly

due to the effective memory management. It has been demonstrated with the BLAS

and LAPACK development [29, 5] that this can be the key factor in the performance

of algorithms. BLAS and LAPACK routines have been successfully applied to the exact

modular computation see e.g. [35, 36, 109], thus making matrix multiplication in LinBox

practically subcubic and fast. The same is not yet the case for multiprecision or interval

arithmetics. This motivates our concentration on exact linear algebra as a solution to

numerical ill-conditioned applications.

Considering the good performance of modular routines, this encourages us to use repeat-

able modular computation in order to perform rational computation. Chinese remainder-

ing algorithm coupled with rational reconstruction has long been considered e.g. in the

case of solving a system of linear equations with rational coefficients, see e.g [12], or for

polynomial gcd computation, see [19]; in these situations the input is usually integer but

the result is rational, however, the method carry on to rational input as well.

In this part of the thesis we would like to revisit this concept and evaluate its practical

applicability. We will consider the problem of system solving, determinant, characteristic

and minimal polynomial computation for dense and sparse rational matrices. Our analysis

takes into account recently developed ideas such as preconditioning for CRA, see Chapter

6. We will consider the applicability of fast rational reconstruction, which was first given

by X. Wang and Pan [131], in 2002 and first implemented by Lichtblau, [88] in 2005. We

will focus on early termination techniques for CRA, which were first given by P.S. Wang

in [129, 130] and, recently by Monagan, [90] in 2004.

A number of possible variants of the algorithm is large and includes treating matrices

A,A′, Ã. This, eventually makes the use of integer algorithms envisageable, depending on

the problem. As the ultimate goal of this part, we would like to propose an adaptive,

introspective strategy, which would try to choose the best variant for a particular input

instance.

9.3 Outline of this Part

We will approach the problem of rational computation in a generic manner. In order to

do that, in Ch. 10 we present a generic Chinese Remaindering Algorithm and present the

state-of-the-art implementation of its components, with a special emphasis on the scalar

and vector case. In Ch. 11 we use the fast rational reconstruction ideas of [131] and provide

its implementation. Then we change the algorithm in order to be able to apply the early

termination technique of [90], which we evaluate experimentally. The implementation of

Monagan’s [90] strategy has been done in the case of polynomials, see [82], but to our

knowledge, has not been performed in the case of integers.
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Then in Ch. 13 we analyze the preconditioning strategies for rational matrices, which can

be used for a particular problem. In Ch. 14 we present possible strategies which leads to

the construction of an adaptive rational algorithm. In Sec. 14.2 we analyze the complexity

of the algorithms and evaluate it experimentally in Sec. 14.3.



10
Chinese Remaindering Algorithm

- Survey

The Chinese Remaindering Algorithm is a core procedure for many integer and rational

algorithms. For example, CRA coupled with rational reconstruction could be the first

choice for the computation of the determinant of a rational matrix, for solving a system

of linear equations with rational coefficients etc. The rational case seems more difficult

than the integer one, as the number of iterations of the CRA loop might be by far more

significant. Therefore in this chapter we would like to analyze the existing state-of-the-art

approaches to the CR Algorithm in a most general setting. Our analysis includes early

terminated and certified variants of the algorithm, together with the probability consider-

ations, scalar and vector case analysis and parallel implementation among other problems.

For a presentation of basic ideas of the CR algorithm we refer to [70, Sec.5.4,5.5,10.3].

The problem of (integer) early termination has also been considered in [75, 38, 39, 4].

10.1 CR Algorithm

In Alg. 10.1.1 we would like to present a generic ET CR Algorithm for computation with

rational matrices. Let n,m ∈ N, n > 0 and let A - a n×m matrix over Q, be given at the

input of the algorithm1. Let 0 ≤ ε < 1 be the probability of error of the algorithm. Let

X be the computational problem that we would like to solve i.e. we are looking for the

value of a rational function X(A). As an examples, X can be the determinant, minimal

or characteristic polynomial or a solution to equation Ax = b, for a given vector b ∈ Qm.

Suppose that X(A) is a vector of size s ≥ 1 and let ‖X(A)‖ be its maximum norm. Let

Den(X(A)), Num(X(A)) be the vectors of numerators and denominators of X(A). In the

preliminaries, we start with an estimation of a bound H = H(A) ∈ Z which is such that

‖X(A)‖r = ‖X(A)‖ ≤ H if X(A) ∈ Zs

‖X(A)‖r = max(Den(X(A)), |Num(X(A))|) ≤ H if X(A) ∈ Qs .

1Analogously, other object such as polynomials might be considered here
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Moreover, CRA algorithm requires a subset of primes P and function get prime(p), which

chooses a prime out from P and removes it. In the case when ε > 0, get prime generates a

random element of P . Additionally, a preconditioned D ∈ Qs
+ might be given. We define

D−1 as a vector of inverses of elements of D, and · ∗ − defines a piecewise multiplication.

We assume that the following functions are given and fulfill the requirements:

1. get prime(p), which chooses p ∈ P and updates P by setting P = P \ {p};

2. image(Ap, A, p), which returns Ap = A mod p for a prime p ∈ P ;

3. iteration(y,Ap), which returns y = X(A) mod p for a prime p ∈ P ;

4. reconstruct(xt, y0, . . . , yt, p0, . . . , pt), which either returns xt = X(A) mod
∏t
i=0 pi or

false. If reconstruct returns an integer value it computes

−d
∏t
i=0 pi
2
e+ 1 ≤ xt ≤ b

∏t
i=0 pi
2
c

such that xt is the solution to the equation

y0 = X(A) mod p0

. . .

yt = X(A) mod pt;

By the Chinese Remaindering Theorem, xt exists and is unique. In the when false

is returned, there reconstruct might perform partial integer reconstruction and store

results in a structure. By returning false, reconstruct incorporates scheduling for

integer reconstruction;

5. get rational(dt, xt,
∏t
i=0 pi), which returns a rational dt, such that dt = xt mod

∏t
i−0 pi

or false if reconstruction fails. If it can be proven that X(A) ∈ Z, this function should

be skipped.

6. terminated(ε, P,H), which returns true if xt = x with probability 1− ε.

The algorithm is given in a general form in Alg. 10.1.1.

The cost of get prime, image, iteration, terminated is the same for each iteration of Alg.

10.1.1. The cost of reconstruct, get rational increases with each iteration.

Let us now discuss the implementation of functions image, iteration, reconstruct and

get rational, and terminated. We need to distinguish between the cases when X(A) is a

scalar or a vector.
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Algorithm 10.1.1 ET CRA to compute X(A) ∈ Qs

Require: n×m rational matrix A,

Require: H ∈ R, |X(A)|r ≤ H,

Require: 0 ≤ ε < 1 the probability of failure of the algorithm,

Require: P a subset of primes,

Require: D ∈ Qs a preconditioner,

Ensure: X(A) ∈ Qs with probability at least 1− ε;
1: t = 0;

2: repeat

3: get prime(pt);

4: image(Apt , A, pt);

5: iteration(yt, Apt);

6: yt = D ∗ yt;
7: if reconstruct(xt, y0, . . . , yt, p0, . . . , pt) then

8: get rational(dt, xt,
∏t
i=0 pi)

9: t = t+ 1;

10: until terminated(ε, P,H)

11: Return X(A) = D−1 ∗ get rational(dt−1, xt−1,
∏t−1
i=0 pi);

10.2 Image of a Rational Matrix

Let us define the cost of image procedure as a function Im(A, p), where p = max(P ) is

the maximal prime used in Alg. 10.1.1.

Let us consider the case of rational matrices. Let n,m ∈ N and let A = [
aij
bij

] be a n ×m
rational matrix, with a Ω non zero entries. If A is a dense matrix, Ω = nm may be

taken. Let us consider matrix representations (D(A), A′), (diag(Di), Ã) be (diag(Ei), Ã)

from Sec. 9.1 given by Eq. (9.1), (9.2). Recall that ‖A‖r = max(|aij |, |bij |) is the bound

for entries of A, D(A) = lcm(bij) is the common denominator and Di (resp. Ei) are

common denominators for of each row (resp. column) of A.

The complexity of modular imaging depends on the matrix representation chosen. It is

expressed in terms of p,Ω, ‖A‖r, D(A), ‖A′‖, Di and ‖Ã‖, see Lem. 10.2.1. The structure

of matrices A,A′, Ã should be also taken into consideration. These parameters are known

in the course of the algorithm so the choice of the best representation can be made either

by comparison of the derived complexities or by direct comparison of imaging times for

each representation. The following lemma gives the cost of image computation.

Lemma 10.2.1 (Cost of Image) Let p be a prime. Let n,m ∈ N and let A = [
aij
bij

] be a

n×m rational matrix, with a Ω non zero entries. Let (D(A), A′) and (diag(Di), Ã), where

Ã = diag(Di)A be its representations. Let EEA stand for the cost of Extended Euclidean

Algorithm, where EEA(p) = O(log(p) log2 log(p) log(log(log(p)))) if the fast Euclidean al-

gorithm is used.

1. The complexity of image(A, p) for a rational matrix A is O(Ω log(‖A‖r)) operations

modulo p + O(Ω EEA(p)) bit operations;
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2. The complexity of image(A, p) for a rational matrix (D(A), A′) is O(Ω(log(‖A′‖)) +

log(D(A))) operations modulo p. In the worst case D(A) = ‖A′‖ = O(‖A‖Ωr ).

3. The complexity of image(A, p) for a rational matrix (diag(Di), Ã) is O(Ω(log(‖Ã‖))+∑
i log(Di)) operations modulo p. In the worst case D(A) =

∏
iDi and ‖Ã‖ = ‖A‖mr .

PROOF For a matrix without a pattern we compute an image for all Ω entries. For a

rational fraction the cost is O(log(‖A‖r)) for the computation of the modular image of

the numerator and denominator and EEA(p) for the modular inverse computation. In

the case of integer matrices A′, Ã, the cost is that of modular image computation for the

entries, which is O(Ω log(‖A′‖)) and O(Ω log(‖Ã‖)) respectively. Additionally the cost of

taking D(A), Di modulo p has to be considered.

In the worst case, D(A) might be ‖A‖Ωr as a lcm of Ω co-prime numbers; also
∏
Di = D(A)

in this case. At the same time, ‖A′‖ = ‖D(A)A‖ might be about the same value as D(A).

As Di is a lcm of all row denominators it is the lcm of at most m numbers. The maximal

entries of DiAi for the row Ai of A might therefore be integers reaching ‖A‖mr .

In view of Lem. 10.2.1, the cost of division in the modular imaging of A has to be compared

to the cost of taking modular images of possibly many times larger integers of A′, Ã. The

relation between the cost depends heavily on the particular matrix instance. Moreover,

whereas A′ in general preserves matrix structure, some favorable properties (symmetry,

Hankel/Toeplitz type) may be lost while considering Ã. Due to this many factors and

taking into account that image procedure is repeated at each iteration, we suggest that a

direct timing comparison might be the best way of choosing the optimal imaging scheme.

Some experimental result are presented in Sec. 14.3.1.

10.3 Iteration in CRA

Let us define the cost of iteration procedure as a function It(A, p), where p = max(P ) is

the maximal prime used in Alg. 10.1.1.

We will present the cost estimations in term of modulo p operations for the linear algebra

problems that we will consider later on. In the following subsections we will analyze the

cost of system solving, minimal and characteristic polynomial and determinant computa-

tion for dense and sparse matrices over a modular field.

Let A be a m×m matrix over a field and let b be a vector of size m. We consider modulo

p computations of the determinant, minimal/characteristic polynomial or linear system

solution. The complexities are expressed in the number of modulo p operations.

1. Characteristic and Minimal Polynomial

In his Ph.D. thesis [109] Pernet gives a throughout description of the existing algo-

rithms to compute the modular minimal polynomial in the case of dense and sparse

matrices. The work covers both Krylov-Lanczos approaches for dense matrices and
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black box approach of Wiedemann [133] for sparse matrices. The complexity of the

algorithm is O(mω) in the dense case and O(mΩ) in the sparse case. See [109] and

the references therein for results.

2. System Solving

Let us consider a system of m linear equations Ax = b. If A is dense, then the

solution can be computed from the LU factorization of A, where L and U are lower

and upper triangular matrices. The complexity of computing the factorization is

O(mω), as BLAS matrix multiplication might be used. In the case of a sparse

matrix, one can compute the minimal polynomial for Ab, i.e. a minimal polynomial

pAb(x) =
∑d

i=0 cix
i such that pAb(A)b = 0. Then the solution x is given by

x = −
d∑

i=1

ciA
i−1b.

The complexity for the minimal polynomial computation is O(mΩ), where Ω is the

number of nonzero entries of the matrix.

For the case of non-square matrices, see e.g. [97, 98, 95, 96]

3. Determinant

As in the case of system solving, LU factorization can be used to compute the deter-

minant in the dense case. In the sparse case, the computation of the characteristic

polynomial is necessary. The complexity is thus O(mω) or O(mΩ) for dense and

sparse matrix respectively.

In [35, 36, 109] the authors show how to incorporate fast matrix multiplication in exact

algorithms and evaluate the computation of LU factorization and other decompositions

experimentally. Results suggest that sub-cubic complexities are reached for matrices of

average size matrices.

To sum up, for the problems considered in this chapter, It(A, p) is O(mω) or O(mΩ) for a

dense or sparse general matrix. For structured matrices Hankel/Toeplitz type the cost can

be significantly smaller e.g. O(n2 log2(n)) for linear solving and determinant computation,

see [104, 106, 105, 107].

10.4 Reconstruction in CRA

Let p = max(P ) be the maximal prime used in Alg. 10.1.1. Let us define the cost

of reconstruct procedure at iteration t as a function rec(p, t) and the overall time of

reconstruction Rec(p, t) =
∑t

i=0 rec(p, t). First, we will consider rec(p, t) and Rec(p, t) in

the scalar case. In Sec. 10.4.3 the modifications for the vector case are considered.

Proposition 10.4.1 (Reconstruction in CRA) Let x be an integer. Let t, s > 0 and

p0, . . . , pt+s be distinct primes. Let Mi denote the product
∏i
j=0 pj and M ′s =

∏t+s
j=t+1 pj .
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Let xt ∈ ZMt , ys ∈ ZM ′s be such that xt = x mod Mt and ys = x mod M ′s. Suppose

that Mt > M ′s and 2 - M ′s. Then the value of xt+s ∈ ZMt+s , xt+s = x mod Mt+s can be

computed by the formula

xt+s = xt + ((ys − xt)M ′s(M−1
t )M ′s)M ′s ·Mt

where (−)M ′s denote a computation modulo M ′s. We assume that all modular operations

are done in the symmetric range i.e. in Zq = {−d q2e+ 1, . . . , b q2c}, q ∈ N.

PROOF One can easily check that

x′t+s = xt + ((ys − xt)M ′s(M−1
t )M ′s)M ′s ·Mt (10.1)

is equal to ys mod M ′s and xt mod Mt. Therefore, by the Chinese Remaindering Theorem

x′t+s equals x modulo Mt+s = MtM
′
s. We have

−dMt

2
e+ 1 ≤ xt ≤ b

Mt

2
c

(−dM
′
s

2
e+ 1)Mt ≤ ((ys − xt)M ′s(M−1

t )M ′s)M ′s ·Mt ≤ b
M ′s
2
cMt

Thus

−dMt

2
e+ 1 + (−dM

′
s

2
e+ 1)Mt ≤ x′t+s ≤ b

Mt

2
c+ bM

′
s

2
cMt.

After evaluation we obtain

−dMt+s

2
e+ 1 ≤ x′t+s ≤ b

Mt+s

2
c.

Therefore xt+s = x′t+s ∈ ZMt+s .

Remark 10.4.2 As a modification to Prop. 10.4.1 one may also consider the situation

where −dMt
2 e+1 ≤ xt ≤ bMt

2 c (i.e. x is evaluated modulo Mt in the symmetric range) but

all results modulo M ′s are obtained in the positive range, as used in many implementations

of word-size modular fields. In this case from Eq. (10.1) we have

−dMt

2
e+ 1 ≤ x′t+s ≤ b

Mt

2
c+ (M ′s − 1)Mt.

We obtain

−dMt+s

2
e+ 1 ≤ x′t+s ≤Mt+s − d

Mt

2
e.

In order to obtain xt+s equal to x mod Mt+s in the symmetric range we eventually have

to correct x′t+s by eventually subtracting Mt+s.
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The reconstruction proposed in Prop. 10.4.1 is the optimal use of Chinese Remaindering

Theorem in the case of CR Algorithm. It allows directly to compute xt+s in the required

range, without using mod Mt+s operations. Let us evaluate the cost of the reconstruction.

Proposition 10.4.3 (Cost of Reconstruction) Let p, t, s > 0 be integers, t > s. Let

xt, ys,Mt,M
′
s be integers, such that

0 < Mt < pt+1,

−dMt

2
e+ 1 ≤ xt ≤ b

Mt

2
c,

0 < M ′s < ps,

−dM
′
s

2
e+ 1 ≤ ys ≤ b

M ′s
2
c.

The cost of computing xt+s by Eq. (10.4.1) is

O≈((t+ s) log(t+ s) log(p) + (t+ s) log(p) log(log(p)) + s log(p)(log2(s) + log2(log(p)))).

bit operations.

PROOF Let x′t+s be defined as in Eq. (10.1). Let us consider all operations involved in

the computation of x′t+s.

x′t+s = xt +(1) ((ys − xt)(2)
M ′s

(M−1
t )

(3)
M ′s

)
(4)
M ′s
·(5) Mt

(1) is an addition of two integers bounded in absolute value by pt+1

2 and pt+s+1

2 .

(2) is a subtraction modulo M ′s; additionally xt mod M ′s has to be computed.

(3) is an inverse modulo M ′s; additionally Mt mod M ′s has to be computed.

(4) is a multiplication modulo M ′s

(5) is a multiplication of two integers bounded in absolute value by ps

2 and pt+1.

The cost of operations is as follows. By M(x) we denote the cost of multiplication of two x-

bit integers. M(x) is equal O(x2) for the classic multiplication and the best complexity by

the fast multiplication algorithm of Schönhage-Strassen is M(x) = O(x log(x) log(log(x))),

see [70, Tab. 8.6].

(1) O((t+ s) log(p)) for addition of integers,

(2) O(M(t log(p))) for image computation and O(s log(p)) for subtraction,

(3) O(M(t log(p))) for image computation and O(M(s log(p)) log(s log(p))) for the inverse,

(4) O(M(s log(p))) for modular multiplication,
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(5) O(M((t+ s) log(p))) for integer multiplication.

By using fast integer multiplication we may obtain that the cost of computation of x′t+s is

O((t+ s) log(p) log((t+ s) log(p)) log(log((t+ s) log(p)))

+ s log(p) log2(s log(p)) log(log(s log(p))))

= O≈((t+ s) log(t+ s) log(p) + (t+ s) log(p) log(log(p)) + s log(p)(log2(s) + log2(log(p)))).

in the doubly soft Oh notation. The eventual additional cost of computing xt from x′t is

O((t+ s) log(p)) and does not change the asymptotic complexity.

10.4.1 Incremental Reconstruction

The ET strategy allows for optimal termination if the reconstruction is performed at each

addition of a new modulus i.e. when s = 1 in Prop. 10.4.1. This can be done if the cost

of the reconstruction given by Prop. 10.4.1 is negligible compared to the cost Im(A, p) +

It(A, p). Let us consider the notation of Prop. 10.4.1. We may implement function

reconstruct(xt, y0, . . . , yt, p0, . . . , pt) recursively, as reconstruct(xt, xt−1, yt,Mt−1, pt). The

result xt of this function is given by Eq. (10.4.1) of Prop. 10.4.1 with s = 1. By Prop.

10.4.3, the cost of rec(p, t) is O(M(t)) = O≈(t log(t)), if p ∈ O(1). The cost Rec(p, t) of

all calls to reconstruct needed to compute xt in t iterations is thus O≈(t2 log(t)).

10.4.2 Delayed Reconstruction

In the case of certified CRA with ε = 0 it is not necessary to reconstruct the result at every

step. Instead, the modular results x0, . . . , xt should be stored and fast reconstruction can

be performed at the end of the algorithm.

In [70, Sec. 10.3] fast integer reconstruction of the final result from t modular results is

described. Using the Lagrangian interpolation formula and a tree-like evaluation scheme,

the cost Rec(p, t) can be reduced to O(t log2(t) log log(t)) if p ∈ O(1).

Delayed reconstruction can also be carried out by means of a radix list. This is a classic

approach for computing the amortized cost of a multistep incremental operation, see e.g.

[23, Ch. 17]. The approach is characterized by the following properties.

1. At iteration t, t = 0, 1, . . . , partial results are stored in a list of length l = blog(t +

1)c+ 1 in such a way that for t+ 1 =
∑l−1

i=0 ci2
i, where ci ∈ {0, 1}, only cells indexed

by i s.t. ci = 1 are occupied.

2. The result C[i, t] stored in cell i at iteration t is bounded by p2i

2 . C[l − 1, t] is equal

to x mod p0 . . . p2l−1−1 and for i = 0, . . . , l − 1 s.t. c[i] = 1

C[i, t] = x mod p∑l−1
j=i+1 cj2

j . . . p−1+
∑l−1
j=i cj2

j .
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3. In iteration t + 1, result yt+1 is inserted in the list as follows. If C[0, t] is free,

then C[0, t + 1] = yt+1 and C[i, t + 1] = C[i, t] for i = 1, 2 . . . . Otherwise, let

C[i, t] be the free cell of lower index. Then z0 = yt+1, z1 = x mod ptpt−1, z2 = x

mod ptpt−1pt−2pt−3, . . . , zi = x mod pt . . . pt−2i+1 can gradually be reconstructed

from zi−1 and C[i − 1, t]. We set C[0, t + 1] = · · · = C[i − 1, t + 1] = empty,

C[i, t + 1] = zi and C[i + 1, t + 1] = C[i + 1, t], . . . , C[l − 1, t + 1] = C[l − 1, t].

By Prop. 10.4.3 (notice, that s = t) the cost of the reconstruction in this step is

O≈(
∑i−1

j=0 2j log2(2j)) = O≈(2i log2(2i)).

4. The amortized cost Rec(p, 2l−1 − 1) is O≈(
∑l−2

i=0 2l−2−i2i log2(2i)) = O≈(2ll3), as in

iterations 0, 1, . . . , 2l−1 − 1, cell i is the first cell free 2l−2−i times; thus, R(p, t) =

O≈(t log3(t)) = O∼(t).

10.4.3 Reconstruction in Vector Case

The reconstruction of a vector X(A) of size s takes s times the reconstruction of a scalar,

which makes it prohibitive to reconstruct the whole vector at each iterations. Instead, the

reconstruction of the vector should be delayed until the CR loop terminates. Then, vector

reconstruction is performed once by the method of Sec. 10.4.2. The question remains as

how to decide on the early termination.

In e.g. [4] the following method is proposed. Let r be a random vector of size s. CR

Algorithm can be run concurrently in order to compute X(A) and the scalar product

r · X(A). The value r · X(A) should be computed in the standard way for scalar CRA

and all vector entries at primes p0, p1 . . . should be stored (e.g. in a radix list). When

termination is detected for r ·X(A) at iteration t, X(A) mod
∏t
i=0 pi is reconstructed and

checked for early termination. In case of failure, CRA is recalculated for a new random

vector r′ and resumed. In the case when the entries X(A) alternate in sign, several random

vector might be required.

An alternative method would be to check for termination of only one entry of X(A)

at a time. If termination is detected, another entry is reconstructed and checked for

termination, until all entries are reconstructed with a sufficient probability, see Sec. 10.6.3.

10.5 Getting Rational Result

In the case when X(A) is not integer, reconstruction by reconstruct of X(A) mod
∏t
i=0 pi

will generally return a different answer for each t. In this case, rational reconstruction is

necessary in order to detect early termination, see Sec. 10.6.2. In Ch. 11 we discuss

the algorithms for rational reconstruction in details. In general, rational reconstruction

is slower than integer reconstruction. For each iteration i = 0, . . . , t it is an independent

problem and ’incremental’ reconstruction as in the case of integer reconstruction in Sec.

10.4.1 cannot be envisaged.
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Let rat(p, t) denote the cost of get rational in the tth iteration, and Rat(p, t) denote

the overall time of rational reconstruction in iterations 0, 1, . . . , t. By fast rational re-

construction algorithm of [131], rat(p, t) is asymptotically equal to O≈(t log2(t)) which is

comparable to Rec(p, t) by the delayed reconstruction of [70, Sec. 10.3], see Sec. 10.4.2.

Due to the cost of rational reconstruction, a scheduling has to be introduced by reconstruct

returning false. Indeed, in [15] the authors suggest that rational reconstruction could be

performed only in iterations numbered 1, 4, 9, 16, 25 etc. Others approaches consider using

radix lists and performing full (integer) reconstruction only on iterations 1, 2, 4, 8, 16, 32,etc.

We return to this problem in Sec. 10.7.

10.6 Termination in CR Algorithm

In this section we will give the stopping condition for certified and early terminated CRA

loop by terminated. We start by the scalar integer case. Then in Sec. 10.6.3 and Sec.

10.6.2 we discuss the modifications in the vector case and in the case of rational compu-

tation.

Here, we propose an output dependent early termination, which does not only depend on

the static parameters of the algorithm such as the bound H, but also involves the size of

output xt and modulus
∏t
i=0 pi at iteration t. In Sec. 10.6.4 we discuss the case when the

bound is not known i.e. H =∞.

The problem of early termination of the CRA algorithm was treated in [75, 38, 39, 4].

Lemmas 10.6.1,10.6.3 summarize the known results.

10.6.1 Termination in Scalar Case

Lemma 10.6.1 (Certified Termination in CRA) Let x ∈ Z. Let l ∈ R, l > 1. Sup-

pose that distinct primes pi greater than l are sampled from a set of primes P . Let t ∈ N
and let xt be the value of x modulo p0 · · · pt computed in the symmetric range. We have

that x equals xt if

2|x| <
t∏

i=0

pi (10.2)

and consequently,

xt = x, for t ≥ N =

{
dlogl(|x|)e if x 6= 0

0 if x = 0
. (10.3)

PROOF In the case when x is positive, the prove is given in [38, 39]. To prove Eq.

(10.2),(10.3), notice that

−dp0 · · · pt
2
e+ 1 ≤ xt < b

p0 · · · pt
2
c
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and xt = x mod p0 · · · pt. If 2|x| <∏t
i=0 pi we have

−dp0 · · · pt
2
e+ 1 ≤ −d2|x|+ 1

2
e+ 1 ≤ x

and

x ≤ b2|x|
2
c ≤ bp0 · · · pt

2
c.

Therefore x mod
∏t
i=0 pi equals x.

With l being the lower bound for pi, in order to fulfill Eq. (10.2) it suffices that lt+1 ≥ 2|x|,
which transforms to t ≥ logl(2|x|)− 1 when x 6= 0. To fulfill this equation it suffices that

t ≥ dlogl(|x|)e.

Corollary 10.6.2 (Certified CRA cf. [39]) Let x ∈ Z, H ∈ R such that |x| ≤ H. Let

l ∈ R, l > 1 and let N = dlogl(H)e. Define P as a finite set of primes greater than l,

such that |P | > N . Suppose that get prime picks up a prime from P . Let us define

terminated(0, P,H) as a condition

if 2H <
t∏

i=0

pi then break;

Then the terminated(0, P,H) is well defined. Moreover, the repeat loop of Alg. 10.1.1

for x = X(A) performs ar most N + 1 steps.

PROOF In Eq. (10.2) let us replace |x| by the bound H. As 2|x| < 2H, by Eq. (10.2), xt
is equal x. Therefore terminated(0, P,H) is defined as required. By Eq. (10.3), at most

p0, . . . , pN ,should be taken at most, i.e. N + 1 primes are sufficient.

The following lemma gives the basis for constructing terminated(ε, P,H) for ε > 0.

Lemma 10.6.3 (Early Termination in CRA) Let x ∈ Z, H ∈ R such that |x| ≤ H.

Let l ∈ R, l > 1 and let N = dlogl(H)e.
Suppose that distinct primes p0, . . . , pN greater than l are uniformly and randomly sampled

from a set of primes P , where |P | > 2 logl(H). Denote by P the distribution of finite

sequences p0, . . . , pN ∈ PN such that pi 6= pj for i, j = 0, . . . , N, i 6= j.

Let xt be the value of x modulo p0 · · · pt computed in the symmetric range and let 0 < ε < 1.

We have:

(i) suppose that t, k ∈ N, t+ k ≤ N ;

if xt = xt+1 = · · · = xt+k and R′(R′−1)...(R′−k+1)
(|P |−t−1)...(|P |−t−k) < ε, where

R′ = blogl

(
H + |xt|
p0p1 . . . pt

)
c,

then P(xt 6= x) < ε.
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(ii) suppose that t, k ∈ N, t+ k ≤ N ;

suppose that xt = xt+1 = · · · = xt+k and k ≥ kmax, where

kmax = d log(1/ε)

log(P ′)− log(logl(H))
e, (10.4)

and P ′ = |P | − blogl(H)c. Then P(xt 6= x) < ε.

PROOF Let us suppose that x = xt mod
∏t
i=0 pi and let us estimate the number of

primes pt+1 coprime with
∏t
i=0 pi such that xt = xt+1.

There exists K ∈ Z, such that

x = xt +Kp0 · · · pt (10.5)

and it suffices to estimate the number of primes greater than l dividing K. We have

K =
x− xt
p0 · · · pt

.

As the primes in P are greater than l, the number of primes is bounded by

R = blogl

( |x− xt|
p0 · · · pt

)
c,

which is less than or equal to

R′ = blogl

(
H + |xt|
p0p1 . . . pt

)
c.

For (i) we notice that k primes pt+1, . . . pt+k have to be chosen from P \ {p0, . . . pt} among

primes dividing K. There are at most R′ of those and the probability is bounded by

(
R′
k

)
(|P |−(t+1)

k

) =
R′(R′ − 1) . . . (R′ − k + 1)

(|P | − t− 1) . . . (|P | − t− k)
< ε. (10.6)

For (ii) suppose that condition
∏t+k
i=0 pi > 2H does not hold which implies that t + k <

logl(H) ≤ N . In the opposite case, xt+k = x by Lem. 10.6.1 and we are done. We want

to find k such that
R′(R′ − 1) . . . (R′ − k + 1)

(|P | − t− 1) . . . (|P | − t− k)
< ε,

where R′ = blogl

(
H+|xt|
p0p1...pt

)
c. We have that |P | − t− k is greater than or equal

|P | − t− k ≥ |P | − blogl(H)c = P ′.
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Therefore

R′(R′ − 1) . . . (R′ − k + 1)

(|P | − t− 1) . . . (|P | − t− k)
≤
(
R′

P ′

)k
.

Moreover, the fraction R′
P ′ is less than 1. Indeed,

R′ = blogl

(
H + |xt|
p0p1 . . . pt

)
c ≤ blogl

(
2H

lt+1

)
c ≤ logl(H) ≤ 2 logl(H)− blogl(H)c < P ′.

Solving for k the inequality
(
R′
P ′

)k
< ε gives

k >
log(ε)

log
(
R′
P ′
) =

log
(

1
ε

)

log(P ′)− log(R′)
≥ log

(
1
ε

)

log(P ′)− log(logl(H))
.

Therefore we may take

kmax = d log(1/ε)

log(P ′)− log(logl(H))
e.

Corollary 10.6.4 (Early terminated in CRA) Let x ∈ Z, H ∈ R such that |x| ≤ H.

Let l ∈ R, l > 1 and let N = dlogl(H)e. Define P as a finite set of primes greater than

l, such that |P | > 2 logl(H). Suppose that get prime randomly and uniformly picks up

a prime from P , and let P ′ = |P | − blogl(H)c. Denote by P the distribution of finite

sequences p0, . . . , pN ∈ PN such that pi 6= pj for i, j = 0, . . . , N, i 6= j.

For i = 0, . . . , N , let xi be the value of x modulo p0 · · · pi computed in the symmetric

range. Let us consider the tth step of the CRA loop, see Alg. 10.1.1. Let 0 < ε < 1 and

let kmax = d log(1/ε)
log(P ′)−log(logl(H))e.

We may define terminated(ε, P,H) as follows: The last if may be replaced by the output-

if 2H <
∏t
i=0 pi then break;

k = max{s : xt−s = · · · = xt};
if k ≥ kmax then break;

dependent condition: The cost of calling terminated(ε, P,H) in Alg. 10.1.1 if O(1) at

R′ = blogl
H+|xt|

p0p1...pt−k
c

if R′(R′−1)...(R′−k+1)
(|P |+k)...(|P |+1) < ε then break;

each iteration t.

PROOF This definition of terminated(ε, P,H) ensures that Lemma 10.6.3 can be applied.

The two variants of termination corresponds to (i) and (ii) cases of the lemma. Notice,

that the size of P is updated in the algorithm by get prime. To estimate the cost of

termianted(ε, P,H) notice, that the value of maximum k(t) at tth iteration is k(t− 1) + 1

if xt = xt−1 or 0 otherwise, therefore it may be computed at O(1) cost, if the results from

previous iteration are available.
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Remark 10.6.5 Function reconstruct and terminated might be run for a set of several

preconditoners {D1, . . . , Di} at the same time. Lem. 10.6.3 ensures 1 − ε probability of

correctness as soon as early termination happens for one of the preconditioners.

10.6.2 Early Termination in Rational Case

In Ch. 11 we compare the early termination schemes of P.S. Wang [129] and Monagan

[90], which can be applied to the case of p-adic lifting. Yet in the case of CR Algorithm

another termination strategy is possible. One can ignore the assumptions on which the

early termination schemes of [129, 90] rely and accelerate the convergence rate, based on

the concept of preconditioned CRA loop.

Lem. 10.6.3 induces the following corollary.

Corollary 10.6.6 (Early termination in rational CRA) Let x = a
b ∈ Q, H ∈ R

such that |x|r ≤ H. Let l ∈ R, l > 1.

Suppose that distinct primes p0, p1, . . . greater than l are uniformly and randomly sampled

from a finite set of primes P . Denote by P the distribution of permutations of P i.e. finite

sequences p0, p1, . . . , p|P | such that pi ∈ P, pi 6= pj for i, j = 0, . . . , N, i 6= j.

Let xt = at
bt
, at, bt ∈ Z, bt > 0 be the value of x modulo p0 · · · pt computed by rational

reconstruction and let 0 < ε < 1. We have:

(i) if xt = xt+1 = · · · = xt+k and R′(R′−1)...(R′−k+1)
(|P |−t−1)...(|P |−t−k) < ε, where

R′ = blogl

(
H(|at|+ bt)

p0p1 . . . pt

)
c,

then P(xt 6= x) < ε.

(ii) suppose that t, k ∈ N are such that xt = xt+1 = · · · = xt+k and |P | − t − k >

log(logl(H
2));

suppose that k ≥ kmax, where

kmax = d log(1/ε)

log(|P | − t− k)− log(logl(H
2))
e,

then P(xt 6= x) < ε.

PROOF The idea of this proof is the same as in Lem. 10.6.3.

Let us suppose that a
b = at

bt
mod

∏t
i=0 pi and let us estimate the number of primes pt+1

coprime with
∏t
i=0 pi such that at = at+1, bt = bt+1.

There exists K ∈ Z, such that

abt = bat +Kp0 · · · pt (10.7)
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and it suffices to estimate the number of primes greater than l dividing K. We have

K =
abt − bat
p0 · · · pt

.

As the primes in P are greater than l, the number of primes is bounded by

R′ = blogl

(
H(|at|+ bt)

p0p1 . . . pt

)
c.

As in Lem. 10.6.3 we notice that k primes pt+1, . . . pt+k have to be chosen from P \
{p0, . . . pt} among primes dividing K. There are at most R′ of those and the probability

is bounded by
(
R′
k

)
(|P |−(t+1)

k

) =
R′(R′ − 1) . . . (R′ − k + 1)

(|P | − t− 1) . . . (|P | − t− k)
< ε.

For (ii), the proof of Lem. 10.6.3(ii) carries on.

Cor. 10.6.6 ensures that whenever a result reoccurs, the probability of its correctness can

be treated as in the case of integer CRA. Now, suppose that dt = at
bt

is the reconstructed

result in the tth iteration. Let ε be the required error tolerance of the rational reconstruc-

tion scheme. Let us consider a procedure which solves the problem modulo a prime. Let

us set the preconditioner D = b
a and let us run preconditioned CRA scheme for the pre-

conditioned problem of computing DX(A). Supposing that the result a
b is correct, CRA

will terminate with result 1. If dt is different from X(A) then, in general, DX(A) is ratio-

nal, and no early termination occurs. Lemma 10.6.3 and Cor. 10.6.6 tells us that a small

number of repetitions of 1 is needed to confirm the result with probability 1 − ε as long

as the set of primes is large enough. With each repetition the probability of correctness is

improved, and the convergence is fast.

10.6.3 Early Termination in Vector Case

In Sec. 10.4.3 we describe two ways to anticipate early termination of the CRA for the

computation of vector X(A). Namely, a scalar CRA can be run in order to compute

r · X(A), where r is a random vector, or to compute X(A)1, i.e one entry of X(A). In

both cases, even the successful computation of r ·X(A) or X(A)1 resp. at iteration t does

not guarantee that X(A) can be reconstructed in the same iteration.

Thus, the early termination with probability of success 1 − ε is only guaranteed if all

entries of the vector X(A) are reconstructed with probabilities of error ε1, . . . , εs such that∑s
i=0 εi < ε. For each entry, εi can be computed by counting the number of repetitions

and evaluating Eq. (10.6), see also [39, Lem. 3.1]. The repeat loop of Alg. 10.1.1 must

continue until
∑s

i=0 εi < ε.
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Suppose that X(A) is a vector of size s. In the worst case, this requires that each entry

is computed with the probability of error at most 1 − ε
s . By Lem. 10.6.3(ii), this means

that a

d log(s/ε)

log(P ′)− log(logl(H))
e ∈ O(log(

s

ε
)) (10.8)

repetitions have to occur for each entry of the vector.

10.6.4 Extremely High Number of Iterations

Apart from the growing cost of reconstruction, the enormous number of steps forces us

to provide a large set P of possible primes which affects the choice of l, and thus, the

size of primes. Suppose that P consist of primes of the same bit size i.e. l < p < 2l for

p ∈ P . The number of primes less than 2l is given by the prime counting function π(2l),

which is asymptotically 2l
ln(2l) . Therefore log(2l) should be equal O(ln(H)), where H is the

bound for X(A) ∈ Z. In the worst case for large H, this means that using all word-size

primes may not be sufficient for the CRA to terminate. Although modular algorithms are

generally not optimized for the performance on bigger primes, their asymptotic complexity

change only by a log(2l) factor.

The case, when the bound is not known, i.e. the value of H is ∞, requires a slightly

different approach. The difficulty lies in the fact, that the size of set P , and thus, l,

cannot be computed beforehand. With no other information, we may assume that P = P1

consists of primes p of the same bit size i.e. l < p < 2l, where l = 2k for k ∈ N. Yet, we

may use all primes and the same result xt = xt+1 might not reoccur.

Still, a new set P = P2 of primes of size 2l < p < 4l and etc. can be constructed. Current

results are kept. When early termination happens, i.e. xt = xt−1 = · · · = xt+k, the output

of the algorithm may be characterized as a follows.

Lemma 10.6.7 (Probability of Unbounded CRA) Let x ∈ Z, M ∈ N, N > 0, l ∈
R, l > 1 and let P be a set of primes p such that l < p < 2l for p ∈ P . Let p0, . . . , pN be a

random permutation of primes from P . Denote by P the distribution of the permutations.

Let xt be the value of x modulo Mp0 · · · pt computed in the symmetric range. Suppose

that xt = · · · = xt+k. Let α ∈ R be such that blogl(
α|xt|∏t
i=0 pi

)c < |P | − t − k. Then either

|x| > (α− 1)|xt| or the probability that x = xt is at least 1−
(
blogl(

α|xt|∏t
i=0

pi
)c

|P |−t−k

)k
.

PROOF For the proof, repeat the reasoning of 10.6.3 (i) and (ii).

10.7 In Search for Ideal Reconstruction Strategy

The idea of early termination is to stop the reconstruction shortly after the minimal

number of steps has been reached. Suppose s ∈ N and the searched value X(A) is a vector
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of size s. If X(A) ∈ Z we define ‖X(A)‖ as the maximal absolute value of its entries.

Then Eq. (10.3) says that the minimum number of N = O(logl(‖X(A)‖)) is needed, plus

additional log(s)kmax steps to confirm early termination, see Eq. (10.4) and (10.8) for the

maximal number of steps in the scalar and vector case, depending on ε.

Analogously, if X(A) ∈ Q, let us define D(X(A)) as the maximal denominator and

N(X(A)) as the maximal numerator of |X(A)|. Then, the minimal number of steps is

about N = O(logl(D(X(A)) ·N(X(A)))), see [70, Sec. 5.10] plus the additional cost due

to termination detection, see Sec. 11.3 for more information.

Without loss of generality we will assume that log(s)kmax ∈ O(N). In the ideal situ-

ation, the cost of early terminated CRA, in the case where N steps suffice should be

O(N(Im(A, p) + It(A, p)) +Rec(p,N) +Rat(p,N). The cost O(N(Im(A, p) + It(A, p)) is

inevitable whereas the cost Rec(p,N) + Rat(p,N) depends on how often we perform the

reconstruction.

For X(A) ∈ Zs, the lower bound on cost of reconstruction is O≈(sN log2(N)), which is the

cost of fast delayed reconstruction and the upper bound is O≈(N2 log(N) + sN log(N)),

which is the cost of incremental reconstruction, see Sec. 10.4.

For X(A) ∈ Qs an additional cost of rational reconstruction has to be included. The lower

cost bound is asymptotically O≈(sN log2(N)) using fast arithmetics and O(sN2) in stan-

dard arithmetics, which corresponds to performing one (successful) rational reconstruction

in the Nth iteration only.

As long as the cost of integer and rational reconstruction at step t is smaller than the

cost of Im(A, p) + It(A, p), the reconstruction can be performed at each step with-

out any asymptotic handicap. This results with optimal termination and complexity

O(N(Im(A, p) + It(A, p))). Yet in general, this cannot be assumed and a scheduling of

integer and rational reconstruction should be envisaged. The scheduling function might

be determined a priori, see Sec. 10.5.

Here, we propose another approach which generalizes to the abstract situation when

the cost of reconstruction dominates the cost of iteration and image. Our introspec-

tive scheduling performs the reconstruction as often as possible in order to enable op-

timal early termination. We will require that at most Ñ = O∼(N) iterations are per-

formed, where N is the minimal number of iterations needed. At the same time, in-

trospective reconstruction scheduling algorithm balances the cost of all reconstructions

Rec(p, Ñ) + Rat(p, Ñ) in such a way that at the end, the cost of CR Algorithm is

O≈(Ñ(Im(A, p) + It(A, p)) + sÑ log2(Ñ)).

At the same time, the experiments in Ch. 14.3 show that indeed, scheduling of rational

reconstruction can improve the performance in the case of rational computation.

Let us analyze Alg. 10.1.1. The idea is to measure the time time1(t) = t(Im(a, p) +

It(A, p)) of operations image and iteration computed in steps 0, 1, 2, . . . , t−1, t and com-

pare it to time2(t−1) of reconstruct and get rational computed in iterations 0, 1, 2, . . . , t−
1. If time1(t) > time2(t − 1), reconstruct and get rational are computed so that xt is

known. This allows us to check for termination.
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Let Ñ be the iteration in which early termination was reached and let N1, N2 be the

iterations in which reconstruct and get rational were computed before. To see that we

have the required complexity, it suffices to notice that all reconstruction costs except the

last one are absorbed in time1(Ñ − 1) = O(Ñ(Im(A, p) + It(A, p))). Then, the additional

cost of the last reconstruction is O≈(Ñ log2(Ñ)).

Now, it rests to prove that the number of steps Ñ is indeed O∼(N). The reasoning is

as follows. Assuming that early termination was detected in step Ñ , this means that

Ñ > N2 ≥ N > N1. From the time estimations we may conclude that N2 = N1 +

O( time2(N1)−time2(N1−1)
Im(A,p)+It(A,p) ). Analogously, Ñ = N2 + O( time2(N2)−time2(N2−1)

Im(A,p)+It(A,p) ). This means

that N2 = O∼(N1) and Ñ = O∼(N2) which allows us to conclude that Ñ = O∼(N).

10.8 Parallel CRA

In the attempt to provide parallel routines for the LinBox library, providing a parallel CRA

loop is of particular interests. A CRA parallel implementation using MPI2 is available in

LinBox. Also, parallel implementation using an adaptive scheduling library Kaapi3 is

included in LinBox. The Work stealing idea of Kaapi, makes integrating the libraries an

good place of development, see [52, 26] for some ideas. Optimization of parallel CRA in

terms of parallel time and equivalent sequential time, is an on-going work. See also [13]

for perspectives of parallelization in LinBox.

2e.g. http://www.open-mpi.org/
3http://kaapi.gforge.inria.fr/



11
Rational Reconstruction

The goal of this chapter is the comparison of early termination strategies for rational

reconstruction and the evaluation of fast rational reconstruction algorithm of [131]. In

Sec. 11.1 we shortly introduce the problem and comment on the existing algorithms in

Sec. 11.2. In Sec. 11.3 we discuss the applicability of rational reconstruction to p-adic

lifting and CR Algorithm.

Then in Sec. 11.4 we solve implementational issues of the algorithm of [131], which in-

cludes fixing of an important bug. In Sec. 11.5 we show how to adapt this algorithm to

Maximal Quotient Rational Reconstruction of [90]. In Sec. 11.6 experimental comparison

of strategies of [129] and [90] is given.

11.1 Problem of Rational Reconstruction

A modular image of a rational number a
b mod p can be computed by taking the modular

images of a and b and applying the modular division. This fact can be written as

a

b
= umod p⇔ a = bumod p. (11.1)

It should be noticed is that the opposite procedure can also be performed. One can

reconstruct the fraction a
b where gcd(a, b) = 1, b > 0 from it modular image u. The

solution is usually not unique but if we impose a bound q and additionally require that

|a| < q
2 , b ≤ p

q , then there exists at most one solution, see [70, Sec. 5.10].

This operation is called rational reconstruction and is a core procedure for exact compu-

tation where rational results are expected, such as e.g. solving a linear system of integer

equations. The concept of (integer) rational reconstruction was first developed by P.S.

Wang in [129, 130]. For a description of the problem, see [70, Sec. 5.10].

11.2 Existing Algorithms for Rational Reconstruction

The solution to the rational reconstruction problem can be computed by applying the

extended Euclidean algorithm EEA which searches for the gcd of p and u. Let us set
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r0 = p, r1 = u, s0 = 1, t0 = 0, s1 = 0, t1 = 1. In the (i − 1)th step of the algorithm, i > 1

we determine ri = ri−2 mod ri−1 and si, ti such that sir0 + tir1 = ri. Indeed, every pair

(a, b) = (sgn(ti)ri, |ti|) fulfills Eq. (11.1).

The procedure Ratrec(a, b, u, p, q,D) takes as the input modulus p, u ∈ Z and the bounds

q and D, and returns a fraction a
b = umod p such that |a| < q, b < D or FAIL if no such

solution exists.

The worst case complexity of Ratrec is thus the same as for the EEA algorithm i.e. O
(
k2
)
,

with k = log(p) for the classical algorithm. It has been show by [131] that the fast

Euclidean algorithm, which have the complexity of O(k log2(k) log(log(k))), can also be

adapted for the rational reconstruction. In Sec. 11.4 we show how to correct and implement

the algorithm and comment on its practical applicability. To our knowledge, this is the

first implementation of [131]. We are aware of only one other implementation of fast

rational reconstruction algorithms, which claims the same complexity in [88]. In [90], the

author recalls the algorithm of Steel, which uses fast integer multiplication to speed up

the reconstruction.

We should also notice that there exist other algorithms for rational reconstruction, such

as [90], which do not need bounds q,D in order to perform rational reconstruction. The

algorithm given in [90] is restricted to the classic Euclidean algorithm, thus having the

complexity of O(k2). In [82] the authors shown how to adapt the idea to the polynomial

case and mention that the use of fast integer Euclidean algorithm would require more

work. In Sec. 11.5 we show that this can indeed be done and show how to adapt the

algorithm [131] to the maximal quotient reconstruction of [90].

In Sec. 11.6 we present the experimental result to compare deterministic, P.S. Wang’s

early terminated and Monagan’s early terminated strategies with and without using fast

rational reconstruction.

11.3 Rational Reconstruction in CR Algorithm and p-adic

Lifting

In many application, the cost of rational reconstruction is usually small compared with

the cost of computing u and p. The general scheme for the computation of x = a
b is to

recursively compute uk,Mk, where uk = x mod Mk and Mk = p1p2 · · · pk (in Rational

Chinese Remaindering scheme) or Mk = pk (in p-adic lifting scheme, see [27]) until Mk >

2|a|b and then to apply the rational reconstruction. If bounds q and D for a and b, we

have the classic version of the reconstruction scheme. However, early terminated version

of the schemes would be of particular interest in our case.

The idea is to look for the ’best’ pair of possible candidates for a and b, where by

’best’ we refer to the one that minimizes the product |a|b. Two probabilistic algo-

rithms are known that can solve the problem. First, the strategy of [129] point us to

run Ratrecon(a, b, uk,
√

Mk
2 ,
√

Mk
2 ). Second, the Maximal Quotient algorithm of [90] tells

us to pick a pair that correspond to the maximal (or sufficiently large) quotient in the
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Euclidean algorithm. If this pair is sufficiently ’small’ it is a solution to the problem with

certain probability, see [90, Alg. MQRR].

Let us shortly compare these approaches. First, for input u, p, if both Wang’s and Mon-

agan’s algorithms are based on the same Extended Euclidean Algorithm, then Wang’s

algorithm could take significantly less time to compute, as it only needs to obtain approxi-

mately half of quotients. This can be compensated by the fact, that the Maximal Quotient

Rational Reconstruction requires less steps in CRA/p-adic scheme. Indeed, if a
b is the re-

sult, then early termination strategy of Wang requires p to be greater than 2 max(a2, b2).

On the other hand, the strategy of Monagan requires Mk to be only a moderate number

of bits greater than 2|a|b on average. Yet, in the worst case, Monagan’s scheme in only

guaranteed to terminate when Mk > 9a2b2. The authors claim that this is a rare situation.

A purely heuristic improvement to the Wang’s algorithm is to use the bounds
√

Mk
2

q
D ,

√
Mk
2
D
q instead of

√
Mk
2 , if the bound q,D for the numerator and denominator are known.

Also, if a vector of elements with similar denominators is to be reconstructed, the number

of entries that need to be reconstructed can also be reduced by preconditioning, see remark

in e.g. [102]. This leads to the case when the numerator can be significantly bigger than

the denominator, making it suitable to apply Maximal Quotient algorithm.

11.3.1 Probability of Early Termination

To determine the probability of correctness of the termination of CRA/p-adic scheme

using Wang’s and Monagan’s approach, random distribution on u is assumed. This leads to

estimated 6/π2 probability of correctness in the case of Wang’s algorithm, see [19]. In [90],

Monagan presents asymptotic and experimental claims about his strategy. Experiments

and practice show the assumption might not be correct for a particular problem. Measures

can be taken to improve the probability, including taking bounds q and D smaller that√
Mk/2. For another approach in the case of rational CR Algorithm, see Sec. 10.6.2.

11.4 Fast Rational Reconstruction - Implementation

In this section we will present details on the implementation of the algorithm of [131].

Another algorithm for fast rational reconstruction was presented in [88]. Unfortunately,

the algorithm, as it is presented in [131, Alg.1] is not correct, which we will show in Ex.

11.4.5. Yet it is easy to correct the algorithm, which we will try to clarify now.

Let us first introduce the notations that are used in the paper of Pan and Wang [131]. At

the input of the Fast Extended Euclidean Algorithm FEEA we are given a pair of integers

r0, r1, r0 > r1 ≥ 0. For i = 1, . . . , l we define ri+1 = ri mod ri−1 and qi = b ri−1

ri
c, until

rl+1 = 0. Moreover, a matrix Qi =

[
ai bi
ci di

]
is computed such that

(
r0

r1

)
= Qi

(
ri
ri+1

)
. (11.2)
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Additionally, we define Q0 = Id and Ql+1 =

[∞ ∞
∞ ∞

]
. Recalling the notations of [70, Sec.

5.10], we have that Q−1
i =

[
si ti
si+1 ti+1

]
, where si, ti, i = 0, . . . , l are the resultants of the

extended Euclidean Algorithm i.e.

sir0 + tir1 = ri.

Notice, that Eq. (11.1), a = sgn(ti)ri, b = ti, i = 0, . . . , l is one of the solutions to the

rational reconstruction problem defined by Eq. (11.1).

Remark 11.4.1 Other authors e.g. [70, 88, 90], prefer to use the dual notation in their

presentation of extended Euclidean algorithm, by computing Q−1
i . The aim of this section

being the experimental validation of [131] algorithm and its extension points us to adapt

his notions instead.

In [131, Def 2.3] the definition of matrices Qi is given.

Definition 11.4.2 (Def. 2.3 of [131]) Let r0 ≥ r1 > 0 be integers and let qi, i = 0, . . . , l

be the quotient sequence in the Euclidean algorithm for r0, r1. Define Q0 = Id and

Ql+1 =

[∞ ∞
∞ ∞

]
and Qi = Qi−1

[
qi 1

1 0

]
. Then Qi is the matrix sequence for r0, r1.

In [131, Thm. 2.6] the authors show how to obtain the next and the previous matrix

Qi−1, Qi+1 from matrix Qi, i = 1, . . . , l − 1. We cite the theorem in 11.4.3. Notice that

part (ii) of the theorem was corrected in the border cases for i = 0, 1, 2.

Theorem 11.4.3 (Thm. 2.6 of [131]) Let ri, i = 0, . . . , l be the remainder sequence of

the Euclidean Algorithm, let Qi =

[
ai bi
ci di

]
be the matrix sequence for r0, r1. We have

(i) bi = ai−1, di = ci−1 for i = 1, . . . , l.

(ii) ai = ai−1qi+ai−2 and ci = ci−1qi+ci−2 for i = 2, . . . , l. Moreover a1 ≥ a0, ai > ai−1

for i = 2, . . . , l and c2 ≥ c1 > c0, ci > ci−1 for i = 3, . . . , l.

(iii) ai−2 = ai mod ai−1, ci−2 = ci mod ci−1 for i = 3, . . . , l.

(iv) a0 > c0, a1 ≥ c1, ai > ci for i = 2, . . . , l.

PROOF In [131] no proof of Thm. 2.6 is given as it is considered basic. Due to the issue

in part (ii) of the theorem and for sake of completeness we would like to include it here.

Part (i) follows directly from Def. 11.4.2 as are the formula for ai and bi in part (ii).

Moreover, a0 = 1 ≤ q1 = a1 and c0 = 0 < c1 = 1 ≤ q2 = c2. Hence ai > ai−1 and ci+1 > ci
for i = 2, . . . , l. Equations in part (iii) follow as soon as ai−1, ci−1 > 1 thus for i = 3, . . . , l

as claimed. Also a0 = 1 > 0 = c0, a1 = q1 ≥ 1 = c1 and ai > ci for i = 2, . . . , l.
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Remark 11.4.4 Part (iii) of Thm. 11.4.3 allows us to compute Qi−1 from Qi for i =

3, . . . , l. As equalities between a1 and a0, c1 and c2 and a1 and c1 cannot be ruled out,

several cases are possible in the computation of Q1 from Q2, see Alg. 11.4.1. The case

when i = 1 can easily be detected by checking whether di = 0, which points us to take

Qi−2 = Id in this case.

Theorem 11.4.3 gives raise to two procedures: PrevEuclideStep(Q) in Alg. 11.4.1 and

NextEuclideStep(Q, ri, ri+1) in Alg. 11.4.2.

Algorithm 11.4.1 PrevEuclideanStep

Require: Q =

[
a b

c d

]
, an element of the matrix sequence, Q 6= Id.

Ensure: Q′ =
[
a′ b′

c′ d′

]
the element previous to Q in the matrix sequence.

a′ = b; , c′ = d;

if b = 1 and d = 1 then b′ = 1; d′ = 0; return; ;

q = bab c;
b′ = a− qb, d′ = c− qd;

Q′ =
[
a′ b′

c′ d′

]
;

Return Q′;

Algorithm 11.4.2 NextEuclideanStep

Require: integers ri > ri+1 ≥ 0,

Require: Q =

[
a b

c d

]
an element of the matrix sequence for r0, r1, Q 6=

[∞ ∞
∞ ∞

]
,

Ensure: Q′ =
[
a′ b′

c′ d′

]
the element next to Q in the matrix sequence.

b′ = a, d′ = c;

if ri+1 > 0 then

q = b ri
ri+1
c

ri+2 = ri − qri+1

a′ = aq + b, c′ = cq + d;

else a′ = b′ = c′ = d′ =∞
Q′ =

[
a′ b′

c′ d′

]

Return (Q′, ri+1, ri+2)

Let us now recall the original algorithm 4.1 of [131].

Alg. 4.1 of [131] is as follows. On the input, we have integers 0 < r1 ≤ r0, h ≥ 0,

d = blog(r0)c. On output, we get the unique index k such that matrix Qk from the matrix

sequence for r0, r1 fulfills Qk ≤ 2h < Qk+1.
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1. If h ≤ bd/2c − 1 then recursively apply the algorithm to r∗0 = b r0
2d−2h−1 c, r∗1 = b r1

2d−2h−1 c
in order to obtain matrix Q∗i from the matrix sequence Q∗i for r∗0, r

∗
1. Then perform 2

reverse Euclidean steps in order to obtain Qi−2 = Q∗i−2. Perform a finite number of

forward Euclidean steps in order to find Qk, Qk+1.

2. If bd/2c ≤ h ≤ d− 1, apply the algorithm to r0, r1, bh/2c in order to obtain matrix Qi
from the matrix sequence Qi for r0, r1. Then apply the algorithm again to ri, ri+1, bh/2c
in order to obtain matrix Q̃j from the matrix sequence Q̃j for ri, ri+1. Set Qi+j = QiQ̃j
and compute Qk, Qk+1 in a finite number of forward Euclidean steps.

3. If k ≥ d, apply the algorithm to r0, r1, d − 1 in order to obtain matrix Qi from the

matrix sequence Qi for r0, r1. Then compute Qk, Qk+1 in a finite number of forward

Euclidean steps.

In step 1 the authors apply [131, Thm. 3.3] in order to prove that Qi−1 = Q∗i−2, and that

Qk can be found in 2 reverse steps and at most 4 forward steps. In this step the actual

reduction in size of the input entries is performed. Most of the computation is done on

integers r∗0, r
∗
1 of reduced size. Similarly, in step 3 at most 4 forward steps are needed to

find Qk.

In step 2 the decomposition on two smaller size tasks is performed. The authors claim

that Qi+j+2 > 2h−1. Unfortunately, this claim is not true, as the following example shows.

Example 11.4.5 Let r0, r1, h, h > 3 be the input in the 2 step of [131, Alg. 4.1]. Let

Q1 =

[
1 1

1 0

]
,

Q2 =

[
1 1

1 0

][
2b

h
2
c + 1 1

1 0

]
,

Q3 =

[
1 1

1 0

][
2b

h
2
c + 1 1

1 0

] [
1 1

1 0

]

and for i = 4, 5, . . . ,

Qi = Qi−1

[
1 1

1 0

]

be the elements of the matrix sequence for r0, r1. The first recursive call to FEEA outputs

Q1 as for Q2, a2 = 2b
h
2
c+2 > 2b

h
2
c and the second recursive call to FEEA outputs Q̃0 = Id

as Q̃1 =

[
2b

h
2
c + 1 1

1 0

]
. Yet

Q3 =

[
2b

h
2
c + 3 2b

h
2
c + 2

2b
h
2
c + 2 2b

h
2
c + 1

]
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is less than 2h−1.

Still worst, Θ(h) forward Euclidean steps are required in order to find Qk. Indeed, let

f0 = 0, f1 = 1 and fi+1 = fi + fi−1 for i = 1, . . . , define the Fibonacci sequence. Then for

s > 1 [
1 1

1 0

]s
=

[
fs+1 fs
fs fs−1

]
.

Thus,

Q2+s =

[
2b

h
2
c + 2 1

2b
h
2
c + 1 1

] [
fs+1 fs
fs fs−1

]
.

We need to solve the inequality

(2b
h
2
c + 2)fs+1 + fs > 2h

As fi ≤ 2i−2, for i ≤ 2, s is greater than dh2 e. As fi increases exponentially, s is Θ(h) as

claimed.

Also, in the worst case ri = r0 so same input is given to the second recursive call to FEEA.

Therefore, Thm. 4.2 of [131] does not hold for [131, Alg. 4.1].

We might suspect that the erroneous conclusion of [131] might be due to the false assump-

tion that Qi+j+2 6= Qi+1Q̃j+1. At the same time, this means that the algorithm can easily

be corrected. In Alg. 11.4.3 we present the correct version of the algorithm.

Before proving the correctness of Alg. 11.4.3 let us first recall two key result of [131]

Corollary 11.4.6 (Cor. 2.8 of [131]) Let ri, i = 0, . . . , l be the remainder sequence

of the Euclidean Algorithm, let Qi =

[
ai bi
ci di

]
be the matrix sequence for r0, r1. Then

|Qi| ≥ |Qi−1|+ |Qi−2| for i = 2, . . . , l.

PROOF The inequality follows from Thm. 11.4.3 part (ii).

Theorem 11.4.7 (Thm. 3.3 of [131]) Let λ > 0 and λ ≤ r1 ≤ r0. Suppose that r∗0 =

b r0λ c, r∗1 = b r1λ c. Let K > 0 be such that r∗0 ≥ 2K2. Let Q∗i be the element of the matrix

sequence for r∗0, r
∗
1 such that |Q∗i | ≤ K < |Q∗i+1|. Let Qj be the matrix sequence for r0, r1.

Then Q∗i−2 = Qi−2 and |Qk| ≤ K < |Qk| for index k which fulfills i− 2 ≤ k ≤ i+ 2.

PROOF See [131, Thm. 3.3].

Now, let us prove the correctness of our algorithm.

Theorem 11.4.8 (Rational Reconstruction by Alg. 11.4.3) Let 0 < u < p be inte-

gers, let K > 0. Let Q = FEEA(u, p, blog(K)c) be the output of Alg. 11.4.3. Then
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Algorithm 11.4.3 Fast Extended Euclidean Algorithm FEEA cf. [131]

Require: r0, r1, h ∈ Z, r0 > r1 > 0, h ≥ 0,

Ensure: Qk =

[
ak bk
ck dk

]
an element of the matrix sequence for r0, r1, s.t. ak ≤ 2h < ak+1.

1: if r0 = r1 then Return

[
1 1

1 0

]
;

2: if r1 = 1 then

3: if r0 ≤ 2h then Return

[
r0 1

1 0

]
;

4: else Return

[
1 0

0 1

]
;

5: q1 = b r0r1 c;
6: if h = 0 then

7: if q1 > 1 then Return

[
1 0

0 1

]
;

8: else q2 = b r1
r0−r1 c; Return

[
q2 + 1 1

q2 1

]
;

9: Q = Id;T = 1; d = blog(r0)c;
10: if r0 ≥ T then

11: if d− 2h− 1 > 0 then {***** This is step 1 *****}
12: r∗0 = b r0

2d−2h−1 c,r∗1 = b r1
2d−2h−1 c;

13: if r∗1 > 0 then

14: Q∗ = FEEA(r∗0, r
∗
1, h);

15: Q = PrevEuclideanStep(Q∗); Q = PrevEuclideanStep(Q);

16: else {***** This is step 2 *****}
17: Q = FEEA(r0, r1, bh2 c);

18:

(
ri
ri+1

)
= Q−1

(
r0

r1

)
;

19: if ri < 0 then ri = −ri, ri+1 = −ri+1;

20: (Q+, ri+1, ri+2) = NextEuclideanStep(Q, ri, ri+1);

21: if |Q+| ≤ 2h then

22: if ri+2 > 0 then

23: h′ = blog(|Q+|)c;
24: Q̃ = FEEA(ri+1, ri+2, h− h′ − 2); Q = Q+Q̃;

25: else Return Q+

26: else Return Q

27:

(
ri
ri+1

)
= Q−1

(
r0

r1

)
;

28: if ri < 0 then ri = −ri, ri+1 = −ri+1;

29: (Q+, ri, ri+1) = NextEuclideanStep(Q, ri, ri+1);

30: while |Q+| ≤ 2h do

31: Q = Q+; (Q+, ri, ri+1) = NextEculideanStep(Q+, ri, ri+1);

32: end while
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1. Q = FEEA(u, p, blog(K)c);(
ri
ri+1

)
= Q−1

(
r0

r1

)
;

if ri < 0 then ri = −ri, ri+1 = −ri+1;

repeat

Q = Q+, (Q+, ri, ri+1) = NextEculideanStep(Q+, r1, r0 − r1q1);

until |Q+| ≤ 2h

outputs Q =

[
a b

c d

]
, Q+ such that |Q| ≤ K < |Q+| after at most 2 steps of the while

loop.

2. (x, y) = (ua−pc, a) is the solution to the rational reconstruction problem x
y = u mod p

with the condition |x| < p/K, y ≤ K.

PROOF 1. First, let us prove that for integers 0 < r1 ≤ r0, h ≥ 0 , FEEA(r0, r1, h)

correctly finds Q,Q+ such that |Q| ≤ 2h < |Q+|. Indeed, the first part of the algorithm

correctly find Q in the degenerated cases when r1 = 1, r0 = r1 and h = 0. Also, the

recursive calls to FEEA procedure are correct as the condition r0 > 1 is verified and

dealt accordingly. The recursion ends if r1 = 1 or h = 0. In step 1, r1 is reduced at least

twice, and in step 2, h is reduced at least two times. This proves that the algorithm

terminates.

Step 1 of Alg. 11.4.3 is the same as in the original algorithm of [131]. As r∗0 = br0/λc,
blog(r∗0)c = blog(r0)c − d + 2h + 1 = 2h + 1, Thm. 11.4.7 can be applied. At the end

of step 1, Q is an element of the matrix sequence for r0, r1 and at most 4 steps of the

while loop are needed to output the correct result.

We changed Step 2. of Alg. 11.4.3 compared to the algorithm of [131]. Let us analyze

the impact it has on the algorithm. First call to FEEA returns Q = Qi, which is an

element of the matrix sequence for r0, r1. We have

|Qi| ≤ 2bh/2c < |Qi+1|.

Eq. (11.2) allows us to compute ri and ri+1. If |Qi+1| > 2h or |Qi+2| = ∞ the step

finishes, else FEEA is called again with input ri+1, ri+2, h − blog(|Qi+1|)c − 2, where

blog(|Qi+1|)c = h′ ≥ bh/2c. At the output to this call Q̃ = Q̃j is the jth element of

the matrix sequence for ri+1, ri+2 such that |Q̃j | ≤ 2h−h
′−2 < |Q̃j+1|. Now, Qi+1+j =

Qi+1Q̃j and |Qi+1+j | ≤ 2 · 2h′+12h−h
′−2 = 2h. Moreover, Qi+1+j+1 = Qi+1Q̃j+1 and

|Qi+1+j+1| ≥ 2h
′
2h−h

′−2 = 2h−2. As |Qi+j+6| ≥ 4|Qi+j+2|, we need at most 5 steps of

the while loop.

This proves that at the end of the FEEA call, we get outputQi from the matrix sequence

of r0, r1, such that |Qi| ≤ 2blog(K)c < |Qi+1|. By Cor. 11.4.6, K < 2blog(K)c+1 <

|Qi+1|+ |Qi+2| ≤ |Qi+3|. Thus, at most 2 steps of the while loop allows us to find the

result.
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2. For the proof, see [131, Sec. 5]. In short, as Q−1
i =

[
si ti
si+1 ti+1

]
we notice that

ai = |ti+1|. Moreover for r0 = p, r1 = u, sgn(ti+1)ri+1 = uai − pci.

To estimate the bit complexity of Alg. 11.4.3 we are looking for the asymptotic up-

per bound on the number of operations for input parameters (d, h). We will consider

functions f(d, h) which are increasing in each variable. Let M(x) denote the cost of

multiplying/dividing two integers of size x. If fast integer multiplication is used M(x) =

O(x log(x) log(log(x))). Analyzing the recursive calls as in [131, Thm. 4.2] we may observe

that f has to fulfill

f(d, h) ≤
{
f(2h+ 1, h) , d− 2h− 1 > 0

f(d, bh2 c) + f(d− h′, h− h′ − 2) , d− 2h− 1 ≤ 0
+O(M(d)),

where h′ is defined as in Alg. 11.4.3 and f(d, 0) = O(M(d)). In fact f(d, h) ≤ f(2h +

1, h) + O(M(d)). Indeed, in step 1 this is due to the recursive call. In step 2, we have

that d − 2h − 1 ≤ 0, thus d ≤ 2h + 1 and the inequality follows by our assumption on

monotonicity. Let us now compute f(2h+ 1, h). As 2h+ 1− 2h− 1 = 0 this falls to step

2. Moreover, h′ ≥ bh2 c. Hence h− h′ − 2 ≤ bh2 c and

f(2h+1, h) ≤ f(2h+1, bh
2
c)+f(2h+1−h′, h−h′−2)+O(M(h)) ≤ 2f(2bh

2
c+1, bh

2
c)+O(M(h))

From this recursive inequality we obtain that f(2h+ 1, h) ≤ O(M(h) log(h)). Hence

f(d, h) ≤ f(2h+ 1, h) +O(M(d)) ≤ O(M(h) log(h) +M(d))

A well balanced fast Euclidean algorithm should intertwine steps 1 and 2. Indeed, in

the recursive call in step 1, Alg. 11.4.3 goes to step 2 or recursion stops. The inverse is

not generally true, as the first recursive call in step 2 might be to step 2 again. Indeed,

h < d− 1 implies that d− 2dh2 e − 1 > h+ 1− 2dh2 e − 1 ≥ 0. As we need only to consider

h ≤ d+ 1 this covers most of the cases. Moreover, nothing can be said about the second

recursive call in Step 2. An introduction of Step 3 as in [131, 4.1] might helps balance the

algorithm from this point of view but does not affect the overall complexity.

The asymptotic complexity of Alg. 11.4.3 is better than that of classic extended Euclidean

algorithm (which consists of a while loop of consecutive calls to NextEuclideanStep in

Alg. 11.4.3). Yet for smaller output, the classic algorithm may have better running

time. In particular, for word-size integer entries, one may assume that the cost of integer

multiplication is constant, which implies that the number of word-size operations is linear

in the size of input in this range. In an adaptive algorithm, the value of T can increased

to include this case. T could be set experimentally (see Sec. 11.6), but setting T to the

maximal word-size integer value would be a safe choice.
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While comparing the cost of classic rational reconstruction and fast rational reconstruction,

classic reconstruction has another advantage, as only the upper half of the matrix sequence

(i.e. ai, bi) has to be computed. From the point of view of the adaptive algorithm, this

would imply that an upper lever switch between the algorithms should additionally be

considered.

In the actual implementation of the algorithm several other issues have to be consider to

avoid re-computation of some values in the algorithm. In particular, this is connected with

the computation of the reverse Euclidean steps in Step 1 as well as with the computation

of the remainders ri, ri+1 and matrix Q+ in some cases. This can be solved by storing and

passing information between the calls whenever applicable. This is a technical issue, for

details, we refer the reader to our implementation in LinBox library.

11.5 Maximal Quotient in Fast Rational Reconstruction

In [82] the authors show how to adapt fast Euclidean algorithm to the Maximal Quotient

Rational Reconstruction in the case of polynomials. The algorithm of [131] can be used to

obtain Maximal Quotient Fast Rational Reconstruction in the case of polynomials. Indeed,

for d = blog(r0)c, h = d + 1, Alg. 11.4.3 computes all the quotients of the Euclidean

algorithm, its speedup being due to the fact that it operates on smaller operands.

The difference between integer and polynomial algorithm lies in step 1 of Alg. 11.4.3,

where an adjustment in a form of at most two reverse Euclidean steps might be necessary.

This makes the task of finding the maximal quotient more difficult than in the polynomial

case. The maximal quotient cannot be computed until the last quotients computed in the

recursive calls in step 1 are corrected or confirmed.

After s recursive calls to step 1, this leads to 2s quotients which have not yet been confirmed

and might all be incorrect in an unlucky case. As a solution, we propose to store these

quotients in a queue-like structure (first in first out) of limited length, which depends on

the depth of recursion.

To perform rational reconstruction, one also need to store the elements of matrix sequence

for r0, r1 corresponding to the quotients. This gives raise to another difficulty in Step

2, where the matrix sequence for ri+1, ri+2 has to be left multiplied by Qi+1 in order

to obtain the matrix sequence for r0, r1. As more than one quotient is store, this may

lead to a considerable amount of additional work. Therefore we postulate to delay the

multiplication stage and to store a sequence of matrices. At the end of the algorithm

these matrices have to be multiplied in order to obtain the final matrix from the matrix

sequence of r0, r1, and to solve the rational reconstruction as in Thm. 11.4.8, part 2.

We store the quotients and matrices in a structure of TruncatedQueue. The structure

consists of size delimiter L.size ≥ 0, a list L.list of at most L.size elements, an elements

emax which is equal to the maximal element that has been to the queue through its

history. In our case element consist of an integer (a quotient qi, and the corresponding list

of matrices QListi). It permits the following operations.



168 11. Rational Reconstruction

- changeSize(int s′) - changes the size of TruncatedQueue from current L.size to

s′ and returns L.size − s′ last elements of L.list, if L.size > s′, updates emax if

applicable;

- pushpop(Element e) - adds e to the top of TruncatedQueue; returns and deletes the

last element from the structure, if the number of elements increases the size delimiter

L.size, updates emax if applicable;

- pop() - returns the first element from TruncatedQueue and deletes it from the struc-

ture, does nothing on an empty queue;

- merge(TruncatedQueue L1) - merges the current TruncatedQueue with the new one

by repeating pushpop() operation; updates emax if applicable;

- leftmultiply(Q) - adds Q to the list of matrices for every element of the queue and

emax;

- multiplyall() - which multiplies the list of matrices for emax;

Alg. 11.5.1 presents the maximal quotient algorithm combined with the fast reconstruc-

tion.

Algorithm 11.5.1 Fast Maximal Quotient Rational Reconstruction

Require: 0 < u < p,

Ensure: a pair (n, d) such that ud = n mod p.

1: L = TruncatedQueue(); L.size = 0;

2: L.emax = (0, {Id});L.list = empty;

3: MaxQ FEEA(L, u, p, blog(p)c);
4: Q = L.multiplyall(); amax−1 = Q11;

5:

(
rmax−1

rmax

)
= Q−1

(
r0

r1

)
;

6: if rmax−1 < 0 then rmax−1 = −rmax−1, rmax = −rmax;

7: Return (amax−1, rmax).

Alg. 11.5.2 is the recursive procedure called by Alg. 11.5.1. As in Alg. 11.4.3, Alg. 11.5.2

receives integers r0, r1, h and stops when k is found such that for Qk from the matrix

sequence for r0, r1, |Qk| ≤ 2h < |Qk+1|. Additionally, it receives a TruncatedQueue L, not

necessarily empty, with the size delimiter L.size.

At the end of the algorithm emax = (qmax, QMaxList) and L are updated as follows. If k is

greater that s = L.size then qmax is set to max(qmax, L.list.q, q1, . . . , qk−s), where qmax is

the input value and L.list.q are quotients of the input list L.list. QMaxList contains the

corresponding list of matrices.L.list contains s lately computed quotients and matrices,

namely (qk, {Qk−1}), (qk−1, {Qk−2}), . . . , (qk−s+1, {Qk−s}). If k is less than s then k last

elements of L.list are quotients and matrices (qk, {Qk−1}), (qk−1, {Qk−2}), . . . , (q1, {Q0})
and emax is the maximum of: the input qmax and s− k last elements of L.list.q, together

with the corresponding list of matrices.
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Algorithm 11.5.2 MaxQ FEEA
Require: TruncatedQueue L of size L.size, r0, r1, h ∈ Z, r0 > r1 > 0, h ≥ 0,

Ensure: Updates L as specified;

Ensure: Qk =

[
ak bk
ck dk

]
an element of the matrix sequence for r0, r1, s.t. ak ≤ 2h < ak+1.

1: if r0 = r1 then L.pushpop((1, {Id})); Return

[
1 1

1 0

]
;

2: if r1 = 1 then

3: if r0 ≤ 2h then L.pushpop((r0, {Id})); Return

[
r0 1

1 0

]
;

4: else Return

[
1 0

0 1

]
;

5: q1 = b r0r1 c;
6: if h = 0 then

7: if q1 > 1 then Return

[
1 0

0 1

]
;

8: else

9: L.pushpop((q1, {Id})); q2 = b r1
r0−r1 c; L.pushpop((q2, {

[
q1 1

1 0

]
}));

10: Return

[
q2 + 1 1

q2 1

]
;

11: Q = Id;T = 1; ri = r0; ri+1 = r1; d = blog(r0)c;
12: if r0 ≥ T then

13: if d− 2h− 1 > 0 then {***** This is step 1 *****}
14: r∗0 = b r0

2d−2h−1 c,r∗1 = b r1
2d−2h−1 c; L.size = L.size+ 2;

15: if r∗1 > 0 then

16: Q∗ = MaxQ FEEA(L, r∗0 , r
∗
1 , h);

17: (q,Q) = L.pop(); (q,Q) = L.pop(); L.changeSize(L.size− 2);

18: else {***** This is step 2 *****}
19: Q = MaxQ FEEA(L, r0, r1, bh2 c);

20:

(
ri
ri+1

)
= Q−1

(
r0
r1

)
; if ri < 0 then ri = −ri, ri+1 = −ri+1;

21: (Q+, ri+1, ri+2) = NextEuclideanStep(Q, ri, ri+1);

22: if |Q+| ≤ 2h then

23: L.pushpop((b ri
ri+1
c, {Q}));

24: if ri+2 > 0 then

25: h′ = blog(|Q+|)c; L̃.size = L.size;

26: Q̃ = MaxQ FEEA(L̃, ri+1, ri+2, h− h′ − 2);

27: L̃.leftmultiply(Q+); L.merge(L̃); Q = Q+Q̃;

28: else Return Q+;

29: else Return Q;

30:

(
ri
ri+1

)
= Q−1

(
r0
r1

)
; if ri < 0 then ri = −ri, ri+1 = −ri+1;

31: L.pushpop((b ri
ri+1
c, {Q})); (Q+, ri, ri+1) = NextEuclideanStep(Q, ri, ri+1);

32: while |Q+| ≤ 2h do

33: L.pushpop((b ri
ri+1
c, {Q})); Q = Q+;

34: (Q+, ri, ri+1) = NextEculideanStep(Q+, ri, ri+1);

35: end while
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11.5.1 Correctness and Additional Cost of Alg. 11.5.1

Let us now analyze the correctness of the algorithm in Thm. 11.5.1.

Theorem 11.5.1 (Rational Reconstruction by Alg. 11.5.1) Let integers p, u, p >

u > 0 be input to Alg. 11.5.1. Alg. 11.5.1 outputs the fraction corresponding to the

maximal quotient in the quotient series for r0, r1.

PROOF The Algorithm returns Qk such that Qk ≤ 2blog(p)c+1 ≤ Qk+1, as the path of the

algorithm is the same as in the case of 11.4.3. This implies that Qk+1 =

[∞ ∞
∞ ∞

]
and thus

Qk = Ql is the last matrix of the matrix sequence for u, p. At the same time, this means

that all the quotients q1, . . . ql of the quotient series have been computed and entered to

the TruncatedQueue at some point of the algorithm. By the definition of merge operation

and taking into account that L.size = 0 at the end of the algorithm, this means that the

maximum qmax has been determined at some point, and the corresponding sequence of

matrices QMaxList, after multiplication (see step 2), corresponds to Qmax−1. Therefore,

after [90], the pair (amax−1, rmax) is the solution to the rational reconstruction problem

corresponding to the maximal quotient.

In Lem. 11.5.2, let us analyze the depth of recursion of Alg. 11.5.1 and consequently,

maximal size of TruncatedQueue L throughout the algorithm.

Lemma 11.5.2 (Depth of Alg. 11.5.1) Let p, u be integers, p > u > 0.

1. Let blog(p)c + 1 ≥ h > 0 be integer. Let p, u, h be input to Alg. 11.4.3. Let us

consider the recursion tree for the algorithm. The depth of the tree is O(log(h)). In

particular, step 1 (resp. step 2) is run at most log(h) + 2 times in each branch of

the recursion tree.

2. Let p, u be input to Alg. 11.5.1. The number of elements in the TruncatedQueue in

the recursive call to MaxQ FEEA procedure does not exceed log(log(p) + 1) + 2.

PROOF Step 2 results with two branch, in which the third parameter is equal to bh/2c
or h−h′− 2 ≤ bh/2c, as h′ ≥ bh/2c resp. In the recursive call to FEEA procedure in step

1, step 2 always follow and thus the third parameter is at least halved. Thus, the third

parameter is at least halved in at most 2 recursive calls to FEEA procedure. Recursion

stops when the parameter reaches 0. Thus, the overall depth of the recursion is at most

2(log(h) + 2), which is O(log(h)). At most half of the steps in each branch are step 1, and

there are at most log(h) + 2 calls to step 2 (branches), which gives the result.

Alg. 11.5.1 follow the same path of computation as Alg. 11.4.3 with h = blog(p)c + 1

which by previous reasoning means that step 1 is run at most log(log(p) + 1) + 2 times.

As the size of TruncatedQueue is increased only in this step, this gives the result.

By Lem. 11.5.2, additional structure of TruncatedQueue in Alg. 11.5.1 compared to Alg.

11.4.3 requires additional storage of at most s = log(log(p)+1)+2 quotients and matrices,

some of which may not belong to the quotient/matrix sequence of the input parameters.

The following lemma allows us to bound the size of matrix entries.
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Lemma 11.5.3 (Cor. 2.6 of [131]) Let r0, r1 be integers r0 > r1 > 0. Let q1, . . . , ql be

the quotient series, r0, . . . , rl be the remainder series and Q0, . . . , Ql be the matrix series

for r0, r1. Then

qi+1|Qi| ≤ qi+1ri+1|Qi| ≤ ri|Qi| ≤ r0

for i = 0, . . . , l − 1.

PROOF The claim that ri|Qi| ≤ r0 can be found in [131, Cor. 2.6]. The rest of inequalities

follow easily. See also [90].

We have the following theorem.

Theorem 11.5.4 (Additional Cost of Alg. 11.5.1) Let p, u be integers, p > u > 0.

Let p, u be input to Alg. 11.5.1.

1. Throughout Alg. 11.5.1, TruncatedQueue L requires at most O(log(log(p)) log(p))

bits of memory.

2. The cost of operations on TruncatedQueue is M(log(p)).

PROOF Let p, u be input to Alg. 11.5.1.

1. From Lem. 11.5.3 it follows directly, that the cost of storing a correct quotient and

matrix list (q,QList) from quotient series of p, u is log(p) as q·|multiplyall(QList)| ≤
p. At the same time, in the recursive call in step 1, r∗i ≤ p and q·|multiplyall(QList)| ≤
r∗i ≤ p for, possibly, uncorrect quotients as well. Since at most s = O(log(log(p)))

pairs (q,QList) are stored, the overall additional storage is O(log(log(p)) log(p)).

2. As elements are entered to the TruncatedQueue one by one, the maximal quotient is

updated in O(1) at most l = O(log(p)) times. At the end of the call to MaxQ FEEA

the L.emax.QMaxList is a list of 2×2 matrices that have to be multiplied. By Lem.

11.5.2 there are at most s = O(log(log(p))) matrices in the list and all matrices have

only non negative entries. The result of the multiplication is en element Qmax−1

of matrix sequence for p, u and thus its entries are less than p. Hence, the cost

of multiplication is O(M(log(p))), where M(log(p)) is the cost of multiplication of

integers of size log(p).

11.6 Rational Reconstruction - Experimental Results

Algorithms 11.4.3 and 11.5.1 are implemented in the LinBox exact linear algebra library

in file ”linbox/algorithms/fast-rational-reconstruction.h”.

In this section we present the experimental evaluation of Alg. 11.4.3. In Sec. 11.6.1 we

present the estimation of threshold T , which can be used to speed up Alg. 11.4.3 and

Alg. 11.5.1 by turning to classic Euclidean algorithm for smaller inputs. In Sec. 11.6.2
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log(p) \ log(T ) ∞ 32 64 128 256 384 448 512

2236 0.00061 0.00267 0.00200 0.00100 0.00133 0.00100 0.00083 0.00083

4024 0.00161 0.00433 0.00333 0.00200 0.00167 0.00233 0.00183 0.00200

5367 0.00256 0.00667 0.00500 0.00433 0.00333 0.00267 0.00300 0.00283

6699 0.00339 0.00900 0.00533 0.00433 0.00400 0.00417 0.00367 0.00350

7586 0.00400 0.00900 0.00567 0.00533 0.00433 0.00417 0.00417 0.00417

8932 0.00556 0.01200 0.00767 0.00667 0.00600 0.00500 0.00533 0.00517

9819 0.00650 0.01400 0.01000 0.00800 0.00683 0.00583 0.00617 0.00617

11154 0.00800 0.01500 0.01067 0.00867 0.00717 0.00633 0.00683 0.00667

12473 0.00972 0.01700 0.01333 0.01100 0.00867 0.00800 0.00833 0.00800

14262 0.01300 0.01867 0.01367 0.01067 0.00983 0.00900 0.000883 0.00867

16028 0.01633 0.02033 0.01533 0.01267 0.1083 0.01000 0.01100 0.01000

19571 0.02389 0.03033 0.02333 0.01867 0.01583 0.01483 0.01533 0.01433

23553 0.03433 0.03733 0.02833 0.02300 0.01983 0.01817 0.01883 0.01800

28402 0.04811 0.04233 0.02966 0.02766 0.02267 0.02133 0.02100 0.02267

Table 11.1: Evaluation of optimal T in Alg. 11.4.3. Average times in seconds for Alg.

11.4.3 with T = 2log(T ) are given. The values of log(p) are listed in the table, averaging is

done for 10 random u. log(T ) = ∞ corresponds the classic algorithm. In bold: at about

this value of p and T , fast rational reconstruction beats the classic algorithm (log(T ) =∞).

we present the comparison of Wang’s [129, 130] and Monagan’s [90] early termination

strategies for rational CRA. The comparison is express in terms of the number of iterations

and timings.

All experiments in this section were performed Intel(R) Core(TM)2 Duo 2.66GHz CPU

with 4Gb memory, running Linux.

11.6.1 Computation of Threshold

In Alg. 11.4.3 and Alg. 11.5.1 threshold T , which implements the switch between fast and

classic extended Euclidean algorithm, is set to 1. However, we remark that setting T to

MAX INT value should result in better performance. In fact, optimal threshold T could

be even bigger. Here, we are going to evaluate the threshold experimentally. We run Alg.

11.4.3 and with h = b
√
p/2c (see Wang’s strategy) and compare the timings with classic

rational reconstruction, which computes resultants si and ti (i.e. T = ∞), see Sec. 11.2.

We ran the algorithms for random inputs (u, p), u < p and various thresholds T . Tab.

11.1 presents some of the results. For full comparison see Fig. 11.1.

From Tab. 11.1 and Fig. 11.1 we may conclude, that for log(T ) = 384, 448, 512 comparable

and best timings can be obtained. Thus, we decided to take the smallest threshold T =

2384 in our experiments. We can see that T = 2384 performed better for big inputs.

Notice, that in this case fast rational reconstruction beats classic rational reconstruction

for log(p) ' 9000.

In Fig. 11.2 we present the comparison of timings for classic rational reconstruction (EEA)

and fast rational reconstruction (FEEA, see Thm. 11.4.8) for a benchmark example of two

consecutive Fibbonacci numbers Fn−1 and Fn. We reconstructed the fraction(a/b = Fn−1

mod Fn), where |a| <
√
Fn/2 and b <

√
Fn/2 using the classic algorithm and using Alg.

11.4.3. Alg. 11.4.3 is definitely better than the classic algorithm for n ∼> 6500 which

corresponds to the Fibbonacci number Fn, s.t. log(Fn) ∼> 4500, which is by half less than

it the previous experiment with random numbers.
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Figure 11.1: Evaluation of optimal T in Alg. 11.4.3. Average times in seconds for Alg.

11.4.3 with T = 2log(T ) are given. The values of log(p) are listed in the table, averaging is

done for 10 random u. log(T ) = ∞ corresponds the classic algorithm. In bold: at about

this value of p and T , fast rational reconstruction beats the classic algorithm (log(T ) =∞).

11.6.2 Comparison of Wang’s and Monagan’s Strategies

In [90], Monagan claims that his Maximal Quotient Rational Reconstruction Algorithm

can reduces the number of reconstructions in the case of early terminated CRA and p-adic

schemes when compared to Wang’s [129] termination strategies.

We designed the following experiments to evaluate this claim experimentally. We re-

call that the number of iterations in certified p-adic lifting for solving equation Ax = b,

where A is a n × n, is logp(H(A)) + logp(H(A, b)) + 1 where H(A) is given by Eq. (6.6)

and H(A, b) = nn/2‖A‖n−1‖b‖, see e.g. [27]. The early termination strategies of Wang

and Monagan would need about 2 logp(max(Num(x), Den(x))) or logp(max(Num(x))) +

logp(max(Den(x))) + c, where c is a small constant, and Num(x), Den(x) denote the

vector of numerators and denominators of x respectively, see [129, 90] and Sec. 11.3.

1. Evaluation of Wang’s and Monagan’s termination for p-adic lifting with matrices Dn,

such that SF (Dn) = diag(1, 2, . . . , n). Matrices were obtained by performing 2n ran-

dom row and column elementary operations on diag(1, 2, . . . , n).

This is the same example of malicious matrices as in Sec. 8.8.2. From previous ex-

periments, see Tab. 8.1, we knew that the largest invariant factor sn of An is only a

small factor of the denominator. Thus, we suspected that the number of iterations in

certified p-adic lifting might be largely overestimated and wanted to evaluate the gain

of early termination strategies in terms of the number of iterations and timings.

Tab. 11.2 presents the number of iterations for two variants of Wang’s strategies,

the strategy of Monagan and certified solving. Fig. 11.3 presents the timings for the

same data and Fig. 11.4 shows which fraction of time was consecrated to rational

reconstruction. It can be seen that early termination allowed us greatly reduce the

number of iterations to 15%, for the smallest matrix and 7% for the biggest matrix,
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Figure 11.2: Comparison of timings for classic and FEEA rational reconstruction for two

consecutive Fibbonacci numbers Fn−1, Fn. Times in seconds.

n dlogp(N)e dlogp(d)e Wang(1) Wang(2) Monagan Certified

100 9 7 13 [17.33%] 17 [22.67%] 11 [14.67%] 75 [100%]

200 17 15 27 [15.88%] 35 [20.59%] 18 [10.59%] 170 [100%]

300 23 22 34 [12.50%] 48 [17.65%] 25 [ 9.19%] 272 [100%]

400 31 30 49 [12.89%] 63 [16.58%] 34 [ 8.95%] 380 [100%]

600 47 45 76 [12.71%] 89 [14.88%] 48 [ 8.03%] 598 [100%]

800 60 59 67 [ 8.08%] 119 [14.35%] 63 [ 7.60%] 829 [100%]

1000 74 72 84 [ 7.79%] 154 [14.29%] 77 [ 7.14%] 1078 [100%]

Table 11.2: The number of iterations in p-adic lifting for solving equation Dnx = b, with

random vector b of word-size integers. Prime p s.t. log(p) = 20 was used. The result x

was x = N
d , where N is a vector of numerators and d is the common denominator. The

number of iterations is is given for four strategies: Wang(1) which implements Wang[129]

strategy and reconstructs ni
di

for every coordinate, Wang(2) which implements Wang[129]

and reconstructs n1
d1

, and then preconditions the remaining entries to reconstruct d1n2
d2

etc., Monagan which implements MQRR algorithm of [90] (preconditioning is used as in

Wang(2)) and Certified p-adic lifting [27]. Percentage result in brackets.
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solving equation Dnx = b, with random vector b of word-size integers. Four strategies are
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di

for every

coordinate, Wang(2) which implements Wang[129] and reconstructs n1
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, and then d1n2
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etc., Monagan which implements MQRR algorithm of [90] and Certified p-adic lifting [27].

Reconstruction was performed at every step of p-adic lifting. Scaling is logarithmic.
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in the case Monagan and Wang(1) strategies. Results were checked for correctness.

Strategy of Monagan resulted in smallest number of iterations and best timing for all

examples tested.

In Wang(1), all vector entries were reconstructed independently, whereas in the re-

maining strategies the denominator of the first reconstructed entry was used as a pre-

conditioner for the rest of computation. As mentioned in e.g. [102] this is a common

approach used in numerous libraries. Interestingly, the number of iterations in Wang’s

strategy was almost twice smaller if preconditioning was not used (in Wang(1)). This

might be explained by the fact, that Dn is obtained from a diagonal matrix in a small

number of row and column additions. Thus, denominators di in the solution vector

x = [ni/di] are not well mixed and might correspond to entries (1, 2, . . . , n) in the di-

agonal matrix. This phenomena is not expected to happen in the case of generic dense

matrices.

Still, by comparing times in Fig. 11.3 we can see that Wang(2) performs better than

Wang(1) for smaller matrices Dn. This can be explained by the fact that rational

reconstruction of almost ’integer’ fractions dni
di

= ut mod Mt, where d = lmc(dj), j =

1..i, takes only a few iterations of the Euclidean algorithm, whereas the reconstruction

of fraction ni
di

= us mod Ms takes more time even if modulus Ms is much smaller than

Mt. For D200 the time of Wang(1) was even worse than for the Certified method.

In Monagan’s strategy, Alg. [90, Alg. MQRR] returned a fraction corresponding to a

large quotient q > log(Mt) + c, where c = 5 was taken. The probability of correctness

for this constant was sufficient, as the whole vector had to be reconstructed correctly.

Results were the same if the true maximal quotient was returned, yet the timings in

this case were prohibitive, never better and often over 3 times slower than in the case

of certified solving.

The number of iterations in Monagan’s strategy was always smallest on the examples

tested, even though preconditioning might eventually have introduce the same problem

as for Wang(1) and Wang(2) strategies. This can be explained by the following rea-

soning. Suppose that n1
d1

was reconstructed correctly, which implies that 2n1d1 > Mt

for current modulus Mt in step t of p-adic lifting. Let d′ = gcd(d1, d2). Instead of n2
d2

,

fraction
n2

d1
d′

d2
d′

is to be reconstructed next. We have

2n2
d1

d′
d2

d′
= 2n2d2

d1

d′2
.

Thus, the fraction will be reconstructed as soon as d1

d′2
≤ 1 i.e. as soon as gcd(d1, d2)

has at least half the number of bits of d1. On the contrary for Wang’s strategy with

preconditioning, the number of iterations can often increase. Indeed it suffices that

n2 > d2 to obtain that

2 max((n2
d1

d′
)2, (

d2

d′
)) ≥ 2 max(n2

2, d
2
2).
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To conclude, as it was suspected, applying early termination greatly improved the

performance of p-adic lifting for both the case of the number of iterations and time.

Strategies of Wang(1),Wang(2) and Monagan performed all better than Certified lifting,

with strategy of Monagan being slightly ahead. Yet the improvement in the number

of iterations does not correspond to the improvement in terms of time. This is due to

the fact, that rational reconstruction was performed at each step and, by percentage,

was a big time factor in the case of early terminated strategies, see Fig. 11.4. Thus,

for certified lifting the relative cost of rational reconstruction fades with time, whereas

for early termination strategies of Wang(2) and Monagan it increases fast. In Wang(1),

reconstruction generally takes long, but the performance improves in the asymptotic

case.

The probability of correctness of early terminated lifting seems to be acceptable and it

should be possible to apply early terminated lifting in the adaptive determinant Alg.

8.4.1.

For the p-adic lifting, a random prime p s.t. log(p) = 20 was used in the experiments.

Thus from Tab. 11.2, it can be deduced that the sizes of numerators and the common

denominator were small and did not exceed 1500 bits for the biggest matrix. Thus,

only classic rational reconstruction algorithms were considered.

2. Evaluation of Wang’s and Monagan’s termination for p-adic lifting for random matrices

with integer entries chosen uniformly in the range [−99, . . . , 99].

Let A be a random matrix with entries chosen uniformly in the range [-99,. . . ,99]. In

Sec. 8.8.1 we confirmed experimentally, that sn is usually different from det(A) by

only a few bits, see also Thm. 5.3.10 for a theoretical result in this case. In [2, Tab.

1] the authors evaluate experimentally the overestimation log( H(A)
det(A)), where H(A) is

the Hadamard’s bound for matrix A and det(A) is its determinant. The results in [2,

Tab.1] and 11.3 imply that the number of iterations in certified p-adic lifting is about

5-10% overestimated.

In Tab. 11.3 it can be seen that the number of iterations in the case of all early

terminated strategies is similar, and slightly better in the case of Monagan’s strategy,

and slightly worse in the case of Wang(1) strategy (without preconditioning). In Fig.

11.5, it can be seen, that the time for preconditioned reconstruction is significantly

better, see also Tab. 11.4 for a percentage result. This implies that in the case of random

matrices, preconditioning in the reconstruction of the solution vector is beneficial, as

it reduces the number of iterations and improves the time of rational reconstruction.

Small difference in the number of iterations of Wang’s and Monagan’s strategies implies

that in the case of random systems of equations, numerators and denominators of result

are roughly the same size, thus for x = N
d , max(max(N)2, d2) ' 2 max(N)d. The size of

numerators and denominators suggest that fast rational reconstruction by Alg. 11.4.3

might be considered for bigger matrices.

Yet the comparison of timings in Fig. 11.5 shows that certified algorithm always per-

formed best and even 2.5 times better than the second best strategy of Monagan. This

can be explained by Tab. 11.4 which shows, that rational reconstruction accounted

for up to 68.08%,78.61% and 90.16% of the time for Monagan’s, Wang(2) and Wang(1)



178 11. Rational Reconstruction

n log(N) log(D) Wang(1) Wang(2) Monagan Certified

100 871 849 93 [0.98%] 90 [0.95%] 89 [0.94%] 95

200 1808 1785 183 [0.92%] 187 [0.94%] 185 [0.93%] 200

300 3268 3246 341 [0.95%] 339 [0.94%] 339 [0.94%] 359

400 3669 3647 386 [0.95%] 380 [0.94%] 377 [0.93%] 405

600 5678 5655 591 [0.93%] 591 [0.93%] 586 [0.92%] 634

800 7723 7699 801 [0.93%] 801 [0.93%] 781 [0.91%] 859

1000 9809 9786 1012 [0.94%] 1006 [0.93%] 1000 [0.93%] 1077

Table 11.3: The number of iterations in p-adic lifting for solving equation Ax = b, where

A is a n × n random matrix with integer entries chosen uniformly in the integer range

[−99, . . . , 99] and b is a random vector of word-size integers. Prime p s.t. log(p) = 20

was used. The result x was x = N
d , where N is a vector of numerators and d is the

common denominator. The number of iterations is is given for four strategies: Wang(1)

which implements Wang[129] strategy and reconstructs ni
di

for every coordinate, Wang(2)

which implements Wang[129] and reconstructs n1
d1

, and then preconditions the remaining

entries to reconstruct d1n2
d2

etc., Monagan which implements MQRR algorithm of [90]

(preconditioning is used as in Wang(2)) and Certified p-adic lifting [27]. Percentage result

in brackets.
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Figure 11.5: Time [in sec.] of early terminated and certified p-adic lifting procedure for

solving equation Ax = b, where A is a n × n random matrix with integer entries chosen

uniformly in the integer range [-99,. . . ,99] and b is a random vector of word-size integers.

Four strategies are compared Wang(1) which implements Wang[129] strategy and recon-

structs ni
di

for every coordinate, Wang(2) which implements Wang[129] and reconstructs
n1
d1

, and then d1n2
d2

etc., Monagan which implements MQRR algorithm of [90] and Certified

p-adic lifting [27]. Reconstruction was performed at every step of p-adic lifting. Scaling is

logarithmic.
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n Wang(1) [%] Wang(2) Monagan Certified

100 0.17s [74.67] 0.04 [66.31] 0.03 [55.13] 0.01s [22.99]

200 1.07s [81.09] 0.29 [72.94] 0.15 [58.27] 0.03s [22.49]

300 2.40s [87.69] 1.22 [78.61] 0.69 [68.08] 0.09s [22.54]

400 3.54s [85.25] 1.73 [73.84] 0.94 [60.57] 0.14s [20.24]

600 10.91s [85.90] 5.63 [75.44] 2.76 [60.65] 0.70s [23.09]

800 26.23s [86.72] 13.01 [76.70] 6.3 [61.99] 0.74s [16.33]

1000 68.03s [90.16] 26.03 [78.28] 12.23 [63.08] 1.32s [15.22]

Table 11.4: Time of rational reconstruction [in sec. and as the percentage of the time

of the whole p-adic lifting] for random matrices. Four strategies are compared Wang(1)

which implements Wang[129] strategy and reconstructs ni
di

for every coordinate, Wang(2)

which implements Wang[129] and reconstructs n1
d1

, and then d1n2
d2

etc., Monagan which

implements MQRR algorithm of [90] and Certified p-adic lifting [27]. Reconstruction was

performed at every step of p-adic lifting.

strategies compared to 23.0% in the case of certified solving. In fact rational reconstruc-

tion in early terminated strategies alone took longer than the whole certified solving.

This shows that scheduling of rational reconstruction is necessary if we want to obtain

comparable performance in the generic case.

Four main strategies might be envisaged:

- incremental scheduling with threshold T, which schedules the reconstruction to

iterations i = Tk, k = 1, 2, . . . ;

- quadratic scheduling, which schedules the reconstruction to iterations i = k2, k =

1, 2, . . . , see [15];

- geometric scheduling, which schedules the reconstruction to iterations i = 2k, k =

1, 2, . . . ;

Notice, that geometric scheduling can effectively be combined with fast polynomial

interpolation of xmodp2k by a divide and conquer method, as in the certified p-adic

lifting. Thus, geometric scheduling can be considered the default method.

Still, a quick glance at Tab. 11.3 and a comparison of the numbers of iterations for

early terminated and certified strategies reveals that it is debatable whether scheduled

rational reconstruction can decrease the number of steps of p-adic lifting in the generic

case.

Our experiments have confirmed that the MQRR strategy of Monagan [90] performs better

than Wang’s early termination [129]. Its is also well suitable for the vector preconditioning

strategy used in LinBox and other numerous libraries. Thus, it should also bring reasonable

benefits in the case when several linear system are solved for the same matrix A and the

denominator of the first solution s̃n can be used as preconditioning for the next lifting.

This is the case of Alg. 6.3.1 and 7.3.1. Thm. 6.3.2 implies that there are reasonable

chances that s̃nA
−1b is an integer vector.
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n 50 100 200 300 500

Monagan’s 16 28 49 71 118

Wang’s 26 49 92 136 224

α 1.63 1.75 1.88 1.92 1.90

Table 11.5: Comparison of the number of iterations N of rational CRA loop, which used

Wang’s [129] or Monagan’s [90] strategies. The task consisted of solving a linear system of

rational equations Hnx = b, where b was a random rational vector and Hn was a Hilbert

matrix. Rational reconstruction is performed at each step. Wang’s strategy performs α

times more iterations than Monagan’s.

Let us continue with another example.

3. Solving rational equations Hnx = b, where Hn is the Hilbert matrix by Rational

CRA .

In Tab. 11.5 we compare the number of iterations of the rational CRA loop in the

case of solving a rational system of linear equations Hnx = b, where b is a random

rational vector and Hn is a Hilbert matrix, see Eq. (13.3) for definition. In is a

well known fact see e.g. [17], that the determinant of the Hilbert matrix is equal

to 1
an

, where an =
∏
k = 1n−1(2k + 1) ·

(
2k//k

)2
. Thus, 1

det(Hn) is integer and

the denominator of the result vector x is a factor of Den(b). Thus, we expect the

solution x = N
d to consist of a relatively large numerator N and a small denominator

d, which means that Monagan’s termination strategy is a good candidate.

Results in Tab. 11.5 were computed assuming that rational reconstruction was

performed at each step, which allowed to evaluate the optimal number of iterations

independently of scheduling. Experiments prove that the number of iterations needed

in the case of Wang’s strategy was over 1.5 and almost 2 times bigger than in the

case of Monagan’s strategy. The ratio is visibly increasing even though the number

of iterations is asymptotically O(log(an)) in both cases.
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Implementation of CRA and

Rational Reconstruction in LinBox

In this chapter we will present the implementation of the Chinese Remaindering and

Rational Reconstruction loop in LinBox. This is the continuation of the work of J.-G.

Dumas, on generic Chinese Remaindering design in the scalar and vector case, for integer

and rational computation. We have contributed to the implementation by adding the

idea of preconditioned CRA with variable preconditioner and by modifying the setting

for rational reconstruction to include both Wang’s [129] and Monagan’s [90] termination.

Check Ch. 10 for a survey on (preconditioned) CRA and Ch. 11 for the discussion on

rational reconstruction and early termination schemes. See Sec. 11.6 for experimental

evaluation.

In what follows, we will present the content and hierarchy of structures in LinBox that re-

alize integer CRA in Sec. 12.1.2, rational CRA in Sec. 12.1.1and Rational Reconstruction

12.1.3.

Trivial and technical parts of the code (e.g. constructors,destructors) were dropped; some

template parameter were added to simplify the presentation. The final versions of files in

LinBox might differ in details.

12.1 Integer CRA

The main loop of integer CRA is realized by the following structure. See ”linbox/-

algorithms/cra-domain.h” for the source code.

template<class CRABase>

struct ChineseRemainder {

protected:

CRABase Builder_;

public:

/*
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* Runs scalar CRA scheme using functions provided in Builder_ and Iter.

*/

template<class Int, class Function, class PrimeIter>

Int& operator() (Int& res, Function& Iter, PrimeIter& p) {

while ( ! Builder_.terminated() ) {

++p; //gets new random prime

check (! Builder_.noncoprime(*p)); //checks if *p is coprime

CRABase::Domain D(*p); //Creates D=Z_p

Builder_.progress(D, Iter(r, D)); //Computes r = iteration(r,p)

}

return res = Builder_.getResult(res);

}

/*

* If (k >=0), resumes CRA for at most k iterations,

* If (k < 0), resumes CRA until termination occurs,

* Sets res to the current result at the end of execution,

* Returns true if termination occurs.

* To implement: replaced <while> by a <for> loop

*/

template<class Int, class Function, class PrimeIter>

bool operator() (const int k, Int& res, Function& Iter, PrimeIter& p);

/*

* Analogous functions in the vector case.

*/

template<class Int, template<class> class Vect, class Function, class PrimeIter>

Vect<Int> & operator() (Vect<Int>& res, Function& Iter, PrimeIter& p);

template<class Int, template <class> class Vect, class Function, class PrimeIter>

bool operator() (const int k, Vect<Int>& res, Function& Iter, PrimeIter& p);

/*

* Changes the preconditioner for Builder_.

*/

template<class Prec>

bool& changePrecondtioner(const Prec& P);

};

Assume that, according to specification in Sec. 10.1:

- structure Iter implements operator(), computing image and iteration mod *p;

- ++p realizes get prime i.e. returns random primes from P ;

- Builder .progress() implements reconstruct and deals with iteration-independent ;

Alg. 10.1.1 can be realized by calling
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Int res; Function Iter(); PrimeIterator p;

cra(res,Iter,p);

Alg. 10.1.1, for which the preconditioner is set and can change during execution can be

realized by

Int res; Function Iter(); PrimeIterator p;

repeat {

Prec P = newPrecondtioner(P); //computes the new preconditioner

int k = numberOfIters(k); //set the number of iterations

cra.changePrecondtioner(P);

} until ( cra(k, res, Iter, p) )

12.1.1 Rational CRA

In the rational case, a similar structure of RationalRemainder is defined, which additionally

includes the rational reconstruction. See ”linbox/algorithms/rational-cra.h” for the source

code.

template<class CRABase, class RatRecon>

struct RationalRemainder {

protected:

CRABase Builder_;

RatRecon RRec_;

size_t IterCounter;

public:

/*

* Runs scalar CRA scheme using functions provided in Builder_ and Iter.

* and rational reconstruction scheme implemented by RRec_

*/

template<class Int, class Function, class PrimeIter>

Quotient operator() (Int& num, Int& den, Function& Iter, PrimeIter& p) {

CRABase::Prec P_in = Builder_.getPreconditioner(P_in);

while ( ! Builder_.terminated() ) {

++p; //gets new random prime

check (! Builder_.noncoprime(*p)); //checks if *p is coprime

++IterCounter;

CRABase::Domain D(*p); //Creates D=Z_p

Builder_.progress(D, Iter(r, D)); //Computes r = iteration(r,p)

if (RRec_.scheduled(IterCounter)) {

Int m = Builder_.getModulus(m);

Int u = Builder_.getResidue(u);

RRec_.reconstructRational(num,den,u,m); //rational reconstruction

Builder_.changePreconditioner(P_in*Quotient(den,num));

}

}
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CRABase::Prec P = Builder_.getPreconditioner(P);

Int& res = Builder_.getResult(res);

num = Num(res*P^{-1}*P_in); den = Den(res*P^{-1}*P_in);

return Quotient(num, den);

}

template<class Int, template<class> class Vect, class Function, class PrimeIter>

Vect<Int> & operator() (Vect<Int>& num, Int& den, Function& Iter, PrimeIter& p)

{

CRABase::Prec P_in = Builder_.getPreconditioner(P_in);

while ( ! Builder_.terminated() ) {

++p; //gets new random prime cf. get_prime

check (! Builder_.noncoprime(*p)); //checks if *p is coprime

++IterCounter;

CRABase::Domain D(*p); //Creates D=Z_p

Builder_.progress(D, Iter(r, D)); //Computes r = iteration(r,p)

if (RRec_.scheduled(IterCounter)) {

Int m = Builder_.getModulus(m);

if (! Builder_.terminated() )

Int u = Builder_.getResidue(u); //gets scalar residue

Int n,d; RRec_.reconstructRational(n,d,u,m); //rational reconstruction

else {

Vect<Int> u = Builder_.getResidue(u); //gets vector residue

Vect<Int> d; Vect<Int> n;

RRec_.reconstructRational(n,d,u,m); //rational reconstruction

}

Builder_.changePreconditioner(P_in*Quotient(d,n));

}

}

CRABase::Prec P = Builder_.getPreconditioner(P);

Int& res = Builder_.getResult(res);

num = Num(res*P^{-1}*P_in); den = Den(res*P^{-1}*P_in);

return Quotient(num, den);

}

/*

* Analogous functions as in the integer case

*/

template<class Int, class Function, class PrimeIter>

bool operator() (const int k, Int& num, Int& den, Function& Iter, PrimeIter& p);

template<class Int, template <class> class Vect, class Function, class PrimeIter>

bool operator() (const int k, Vect<Int>& num, Int& den, Function& Iter, PrimeIter& p);

//template<class Prec>

//bool& changePrecondtioner(const Prec& P)

};

A standard call to Rational CRA would be
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Int den, Int num; Function Iter(); PrimeIterator p;

cra(den,num,Iter,p);

12.1.2 Implementations of CRABase

In ”linbox/algorithm/cra-early-single.h”and ”linbox/algorithms/cra-full-multip.h”two base

structures for CRABase are implemented, namely EarlySingleCRA and FullMultipCRA.

template <class Domain>

struct EarlySingleCRA {

protected:

Integer primeProd_=1; // product of all but last primes

Integer nextM_=1; // lately added prime

Integer residue_=0; // remainder to be reconstructed

unsigned int occurrence_ =0; // number of occurrences of last residue_

const unsigned int EARLY_TERM_THRESHOLD;

public:

void clear() {primeProd_=1;nextM_=1;residue_=0;occurrence_ =0;}

Integer& getResult(Integer& res) {return res=residue_;}

Integer& getModulus(Integer& M) {return M=primeProd_*nextM_;}

Integer& getResidue(Integer& r) {return residue_;}

bool noncoprime(const Integer& p) {

return ( (gcd(p, nextM_) != 1) || (gcd(p, primeProd_) != 1) );

}

/*

* Implements early termination strategy,

*/

bool terminated() {return occurrency_ > EARLY_TERM_THRESHOLD;}

/*

* Implements integer reconstruction,

*/

Integer& progress(Integer& D, Integer& e) {

Integer u0 = residue_ % D; Integer u1 = e % D;

Integer m0 = primeProd_*next_M ; Integer m1 = D;

if ((m1 > m0) || (m1%2==0)) { //swap

Integer& tmp = u0; u0 = u1; u1 = tmp;

tmp = m0; m0 = m1; m1 = tmp;

}

primeProd_ =m0; nextM_ = m1;

if (u0 == u1) ++occurrence_;

else {

occurrence_ = 1;

inv(m0, m0, m1); // m0 <-- m0^{-1} mod m1

u0 = [(u1 - u0)*m0] % m1;

u0 *=primeProd;

residue_ += u0; //residue_ = u0 + [(u1-u0)*m0^{-1}]%m1 * m0
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}

}

/*

* Same as Integer& progress(Integer& D, Integer& e), when D=Z_p, p is word-size

* Domain D implements Z_p arithmetics

* This is a specialization for incremental reconstruction

*/

Integer& progress(Domain& D, Domain::Element e);

Integer& getPreconditioner(Integer& P) {return P=1;}

bool changePreconditioner(const Integer& P) {}

};

See Prop. 10.4.1 for the formula of integer reconstruction in progress(). See Lem. 10.6.3

for the choice of EARLY_TERMINATED_THRESHOLD.

Structure FullMultipCRA implements the delayed reconstruction in the vector case. For

the time being, no specialized structure for FullSingleCRA is given, but it may be realized

as FullMultiplCRA given a vector of size 1. Triples (residue, modulus, log(modulus))

are stored in table RadixList, see Sec. 10.4.2 and [23] for the description and ”linbox/-

algorithms/cra-full-multip.h”, ”linbox/algorithms/lazy product.h” for the source code.

template <class Domain, class RadixList, template<class> class Vect>

struct FullMultipCRA {

protected:

/*

* RadixList stores partial residues and prime products

*/

RadixList RList_;

RList::modula_iterator modIter_;

RList::residua_iterator resIter_;

double LOGARITHMIC_UPPER_BOUND;

public:

/*

* getResult is costly

* should be called after termination() returnes true;

* reduces the size of RList_ to one;

*/

Vect& getResult(Vect& res) {RList_.getFrontResidue(res);}

/*

* getModulus and getResidue are costly

* require a call to getResult()

* getResidue(Integer) is not implemented

*/

Integer& getModulus(Integer& M) {

Vect res;

getResult(res);
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Figure 12.1: Hierarchy for CRABase

RList_.getFrontModulus(M);

}

Integer& getResidue(Vect& r) {

Vect res;

return getResult(res);

}

bool noncoprime() {return RList_.noncoprime();}

bool terminated() {return RList_.productSize() > LOGARITHMIC_UPPER_BOUND;}

Integer& progress(Domain D, Vect<Domain::Element> e) {

return RList_.add(D.characteristic, e, log(D.characteristic));

}

Prec& getPreconditioner(Prec& P) {return P=1;}

bool changePreconditioner(const Integer& P) {}

};

Other structures may be constructed as children of the base structures. Fig. 12.1 shows

the hierarchy for the presented structures of CRABase.

EarlyMultipCRA implements early terminated CRA in the vector case, as in [4], with a
simplified termination technique for easy use, see ”linbox/algorithms/cra-early-multip.h”.

template <class Domain, class RadixList, template<class> class Vect >

struct EarlyMultipCRA: public EarlySingleCRA<Domain>,

FullMultipCRA<Domain, RadixList,Vect> {

protected:

Vect< unsigned long > randv_ = rand();

public:

Vect<Integer>& getResult(Vect<Integer>& res) {

return res = FullMultipCRA<Domain>::getResult(res);

}
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Integer& getModulus(Integer& M) {

return EarlySingleCRA<Domain>::getModulus(M);

}

Integer& getResidue(Integer& r) {EarlySingleCRA<Domain>::getResidue(r);}

Integer& getResidue(Vect& r) {FullMultipCRA<Domain>::getResidue(r);}

bool noncoprime(const Integer& p) {

return EarlySingleCRA<Domain>::noncoprime(p);

}

/*

* Checks for termination of randv_*res only.

*/

bool terminated() {return EarlySingleCRA<Domain>::terminated();}

Integer& progress(Integer& D,Vect& e) {

Integer& z = dot(randv_,e) %D; //dot product

EarlySingleCRA<Domain>::progress(D,z);

FullMultipCRA<Domain>::progress(D,e);

}

/*

* This is a specialization for incremental reconstruction

*/

Integer& progress(Domain& D,Vect& e);

bool changeVector() {

EarlySingleCRA<Domain>::clear();

randv_ = rand();

RadixList::residua_iterator resIter_ = FullMultipCRA<Domain>::resIter.begin();

RadixList::modula_iterator modIter_ = FullMultipCRA<Domain>::modIter.begin();

for (;resIter != FullMultipCRA<Domain>::resIter.end(); ++resIter; ++modIter; ) {

Integer& z = *resIter_*randv_ % *modIter;

EarlySingleCRA<Domain>::progress(*modIter, z);

}

return (EarlySingleCRA<Domain>::terminated()) ? true : false;

}

Prec& getPreconditioner(Prec& P) {return P=1;}

bool changePreconditioner(const Integer& P) {}

};

Notice that the probability of correctness can not be estimated if ChineseRemiander::operator()

is called with EarlyMultipCRA. The reoccurrence of vector entries is not checked, see

Sec. 10.6.3 for discussion. A proper early termination should separate early termination

of randv_*res and check the early termination for each entry of the vector separately.

Chances of correct termination are also better if several random vectors are used, thus the

addition of function changeVector.

Let us now present structure VarPrecEarlySingleCRA which can be used to performed

CRA with variable preconditioner and should be used with RationalRemainder. The

structure is implemented in ”linbox/algorithms/varprec-cra-early-single.h”.
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/*

* Default RadixList and Vect templates are used for FullMultipCRA<Domain>

* Used to store vectors of size 1 (cf. FullSingleCRA )

*/

template<class Domain, class Prec>

struct VarPrecEarlySingleCRA : public EarlySingleCRA<Domain>,

FullMultipCRA<Domain,RadixList,Vect> {

protected:

Prec precond_;

public:

Integer& getResult(Integer& res) {

if (FullMultipCRA<Domain>::terminated()) {

FullMultipCRA::Vect v;

return res = FullMultipCRA<Domain>::getResult(v)->front();

} else {

return res = EarlySingleCRA<Domain>::getResult(res) * precond_^{-1};

}

Integer& getModulus(Integer& M) {return EarlySingleCRA<Domain>::getModulus(M);}

Integer& getResidue(Integer& r) {return EarlySingleCRA<Domain>::getResidue(r);}

bool noncoprime(const Integer& p) {return EarlySingleCRA<Domain>::noncoprime();}

bool terminated() {

return (EarlySingleCRA<Domain>::terminated()

|| FullMultipCRA<Domain>::terminated();

}

Integer& progress(Integer& D,Integer& e) {

FullMultpiCRA<Domain>::progress(D,Vect(e));

Integer z = e*precond_ % D;

return EarlySingleCRA<Domain>::progress(D,z);

}

/*

* This is a specialization for incremental reconstruction

*/

Integer& progress(Domain& D,Domain::Element& e);

Prec& getPreconditioner(Prec& P) {return P=precond_;}

bool changePreconditioner(const Prec& P) {

EarlySingleCRA<Domain>::clear();

RadixList::residua_iterator resIter_ = FullMultipCRA<Domain>::resIter.begin();

RadixList::modula_iterator modIter_ = FullMultipCRA<Domain>::modIter.begin();

for (;resIter != FullMultipCRA<Domain>::resIter.end(); ++resIter; ++modIter; ) {

Integer z = *resIter_->front()*precond_ % *modIter->front();

EarlySingleCRA<Domain>::progress(*modIter, z);

}

return (EarlySingleCRA<Domain>::terminated()) ? true : false;

}

};

Analogously, a structure VarPrecEarlyMultipCRA can be defined, which combines the

ideas of EarlyMultipCRA and VarPrecEarlySingleCRA. It could be used by RationalRe-

mainder in the vector case.
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/*

* Default RadixList template is used for FullMultipCRA<Domain>

*/

template<class Domain, class Prec, template<class> class Vect>

struct VarPrecEarlyMultipCRA : public EarlySingleCRA<Domain>,

FullMultipCRA<Domain, RadixList, Vect>

protected:

Vect< unsigned long > randv_ = rand();

Prec precond_;

public:

Vect<Integer>& getResult(Vect<Integer>& res) {

if (FullMultipCRA<Domain>::terminated()) {

return res = FullMultipCRA<Domain>::getResult(res);

} else {

Vect<Integer> v; FullMultipCRA<Domain>::getResult(v);

Integer M = EarlySingleCRA<Domain>::getModulus(M);

res = v*precond_ % M; //preconditioned result in vector case;

return res = res*precond_^{-1}; // real result;

}

Integer& getModulus(Integer& M) {return EarlySingleCRA<Domain>::getModulus(M);}

Integer& getResidue(Integer& r) {return EarlySingleCRA<Domain>::getResidue(r);}

Vect<Integer>& getResidue(Vect<Integer>& r) {

r = FullMultipCRA<Domain>::getResidue(r) * precond_ ;

Integer M = getModulus(M);

return r = r % M;

}

bool noncoprime(const Integer& p) {return EarlySingleCRA<Domain>::noncoprime();}

bool terminated() {

return (EarlySingleCRA<Domain>::terminated()

|| FullMultipCRA<Domain>::terminated();

}

Integer& progress(Integer& D, Vect<Integer>& e) {

FullMultpiCRA<Domain>::progress(D,e);

Integer z = dot(rand_v,(e*precond_)) % D; //dot product

return EarlySingleCRA<Domain>::progress(D,z);

}

/*

* This is a specialization for incremental reconstruction

*/

Integer& progress(Domain& D,Domain::Element& e);

Integer& getPreconditioner(Prec P) {return P=precond_;}

bool changePreconditioner(const Prec P) {

EarlySingleCRA<Domain>::clear();

RadixList::residua_iterator resIter_ = FullMultipCRA<Domain>::resIter.begin();

RadixList::modula_iterator modIter_ = FullMultipCRA<Domain>::modIter.begin();

for (;resIter != FullMultipCRA<Domain>::resIter.end(); ++resIter_; ++modIter_; ){

Vect<Integer> z = *resIter_*precond_ % *modIter;

EarlySingleCRA<Domain>::progress(*modIter, dot(randv,z));

}
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return (EarlySingleCRA<Domain>::terminated()) ? true : false;

}

bool changeVector() {

EarlySingleCRA<Domain>::clear();

randv_ = rand();

RadixList::residua_iterator resIter_ = FullMultipCRA<Domain>::resIter.begin();

RadixList::modula_iterator modIter_ = FullMultipCRA<Domain>::modIter.begin();

for (;resIter != FullMultipCRA<Domain>::resIter.end(); ++resIter; ++modIter; ) {

Vect<Integer> z = *resIter_*precond_ % *modIter;

EarlySingleCRA<Domain>::progress(*modIter, dot(randv,z));

}

return (EarlySingleCRA<Domain>::terminated()) ? true : false;

}

};

12.1.3 Implementation of RatRecon

The scheme of repeating rational reconstruction is realized by the following structure. The

structure implements scheduling methods (here, INCREMENTAL,QUADRATIC and GEOMETRIC)

and calls RRBase to perform the actual rational reconstruction.

template <class RRBase, class Method>

struct RReconstruction {

protected:

RRBase RR_;

int RecCounter_=0;

const Method M_;

const size_t THRESHOLD_;

public:

bool scheduled(int i) {

if (M_==INCREMENTAL) {

if (RecCounter_%THRESHOLD_==0 ) return true;

else return false;

}

else if (M_ == QUADRATIC) {

if (RecCounter_*RecCounter_ == i) return true;

else return false;

}

else if (M_ == GEOMETRIC) {

if ((1 << RecCounter_) == i) return true;

else return false;

}

else return true;

}
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/*

* Returns a/b=x mod m by the default method of RRBase

*/

bool reconstructRational(Element& a, Element& b,

const Element& x, const Element& m) const{

++RecCounter_;

Element x_in(x);

if (x<0) {

if ((-x)>m) x_in %= m;

if (x<0) x_in += m;

} else if (x>m) x_in %= m;

//Now, 0 < = x_in < m

return _RR.reconstructRational(a,b,x_in,m);

}

/*

* Returns a/b=x mod m s.t. |a| < a_bound, b>0

*/

bool reconstructRational(Element& a, Element& b,

const Element& x, const Element& m,

const Element& a_bound) const {

++RecCounter_;

(...)

//Now, 0 < = x_in < m analogously

return _RR.reconstructRational(a,b,x_in,m,a_bound);

}

/*

* Returns a/b=x mod m s.t. |a| < a_bound & 0< b < b_bound

*/

bool reconstructRational(Element& a, Element& b,

const Element& x, const Element& m,

const Element& a_bound, const Element& b_bound) const {

++RecCounter;

(...)

//Now, 0 < = x_in < m analogously

Element bound = x_in/b_bound;

_RR.reconstructRational(a,b,x,m,(bound>a_bound?bound:a_bound));

bool res= (b > b_bound)? false: true;

return res;

}

};

Currently, four classes are given for RRBase. Fig. 12.2 shows the class hierarchy for

RRBase.

In ”linbox/algorithms/classic-rational-reconstruction.h”, ClassicRationalReconstruction is

implemented, which uses classic extended Euclidean algorithm and Wang’s [129] bounds



12.1. Integer CRA 193

Figure 12.2: Hierarchy for RReconstructionBase

to implement the default method. Namely, the implementation the default reconstructRa-

tional is

reconstructRational(Element& a, Element& b, const Element& x, const Element& m) {

reconstructRational(Element& a, Element& b,

const Element& x, const Element& m, sqrt(m/2));

return (b < sqrt(m/2));

}

The classic procedure for reconstructRational(Element& a, Element& b, const Element&

x, const Element& m, a_bound) is realized by the classic extended Euclidean algorithm

EEA, see e.g. [70].

Class ClassicMaxQRationalReconstruction reimplements reconstructRational(Element&

a, Element& b, const Element& x, const Element& m) using the condition of Mon-

agan [90]. That is, it computes the pair corresponding to sufficiently large quotient in the

quotient sequence for (m,x). In our implementation, reconstructRational(Element&

a, Element& b, const Element& x, const Element& m) outputs pair (a, b) correspond-

ing to quotient q > m.bitsize() + 5, see Sec. 11.6.2 for experimental evaluation. It

returns false if no such quotient is found.

In ”linbox/algorithms/fast-rational-reconstruction.h”, class FastRationalReconstruction and

its child FastMaxQRationalReconstruction are implemented. The definitions of the de-

fault rationalReconstruction are analogous as for classic reconstructions. Fast rational

reconstruction algorithm of [131] is used, see Alg. 11.4.3,11.5.1,11.5.2 and Ch. 11 for

discussion.





13
Preconditioning for Rational

Computation

The aim of this chapter is to present the preconditioning methods that are available for

the computation with rational matrices in the case of linear system solving, determinant

and characteristic or minimal polynomial computation.

First, based on the ideas in Sec. 9.1, we propose matrix preconditioners, that allow us to

deal with integer instead of rational matrices. In Sec. 13.1 we discuss relations between

the solutions to the initial rational problem and its preconditioned integer variant in the

before-mentioned cases. In Sec. 13.2 we discuss the increase in norm, which might be

caused by preconditioning.

Then in Sec. 13.3 we present preconditioners for the results, which allow us to run (pre-

conditioner) CR Alg, 10.1.1 for integer instead of rational value. Therefore we do not need

to use rational reconstruction, which often leads to simpler early termination strategy in

lower number of iterations, compared to the rational variant of the algorithm.

The idea of the preconditioned CRA in the general case has been presented in Ch. 10. In

Ch. 6,8 we have shown how to apply it to the computation of the integer determinant.

Contrary to Alg. 8.4.1, in the case of rational computations we will need multiplicative

preconditioners.

In Sec. 11.3 we discussed the problem of rational CRA and remarked that efficient com-

bination of rational reconstruction an early termination in CRA is more difficult than

in the integer case. In particular, scheduling of rational reconstruction is necessary to

limit the cost, which comes at the expense of early termination. We recall here that by

scheduling the reconstruction, we obtain asymptotically optimal early termination, in the

sense of Sec. 10.7. In the case of geometric scheduling, the number of steps can be twice

the optimal, whereas incremental integer reconstruction leads to early termination with

probability 1− ε after O(log(1/ε)) ∈ O(1) supplementary steps. Thus, while computing a

result of the same size by integer and rational CRA, we expect integer CRA to perform

better in practice.

Sec. 13.3.1 is a case study of result preconditioners for linear system solving, determinant

and characteristic or minimal polynomial computation. The aim of preconditioning is
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to approximate the denominator of the result. For sake of completeness, in Sec. 13.3.2

we present the bounds on numerators as well. In Sec. 13.4 we evaluate the quality of

approximations experimentally.

13.1 Obtaining Integer Matrices by Preconditioning

In Sec. 9.1 we proposed representing rational matrixA =
[
aij
bij

]
as (D(A), A′), (diag(Di), Ã1)

or (diag(Ei), Ã2), see Eq. (9.1), (9.2). Recall that D(A) is the common denominator of

entries of A and Di and Ej are common denominators of the entries in the ith row and

jth column respectively; ‖A‖r = max(|aij |, |bij |) is the (rational) norm of A.

Matrices A′, Ã1, Ã2 are constructed by multiplying A by a scalar or a diagonal matrix.

Hence, we will say that they have been obtained by (scalar, matrix) preconditioning of A,

or simply that these are preconditioned. For short, we will use the notion Ã to refer to

either Ã1, Ã2 if the distinction between the two is not necessary.

The following propositions explain how to obtain solutions for problems with A by per-

forming computation on preconditioned matrices A′,Ã1, Ã2. In Prop. 13.1.1 we analyze

the problem of determinant computation and linear system solving and in Prop. 13.1.2

we do the same for the minimal and characteristic polynomial.

Proposition 13.1.1 (Matrix Preconditioning) Let A be a rational m × m matrix.

Let (D(A), A′), (diag(Di), Ã), (diag(Ei), Ã) be matrix representations defined in Eq. (9.1),

(9.2). Then

1. A′ and Ã are integer matrices. If A is symmetric (resp. Hankel, Toeplitz etc.), then A′

is symmetric (resp. Hankel, Toeplitz etc.).

2.

det(A) =
det(Ã1)∏

iDi)
=

det(Ã2)

det(
∏
iEi)

=
det(A′)
D(A)m

. (13.1)

Let b = [bi] ∈ Q[m] be a rational vector of size m, D(b) denote the common denominator

of its entries and Di(b) denote the denominator of bi. Let D′ = diag(Di(b)). For rational

matrix X, let X̃1(2) denote the matrix obtained by left (right) matrix preconditioning of

X as in Eq. (9.2). Then

3. The solution x to the equation Ax = b is given by

x =
D(A)

D(b)
x′, (13.2)

where x′ is the solution to the system A′x′ = b′, b′ = D(b)b.
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4. Suppose that x1 is the solution to the integer system (̃D′A)1x1 = D1b
′, where D1 is the

diagonal matrix of common denominators for the rows of D′A, b′ = D′b. Then x = x1

is the solution to the rational system Ax = b.

5. Suppose that x2 is the solution to the integer system (̃D′A)2x2 = b′ and D2 is the

diagonal matrix of common denominators for the columns of D′A, b′ = D′b. Then

x = D2x2 is the solution to the rational system Ax = b.

PROOF 1. In the three cases, all matrix entries are multiplied by a multiple of the de-

nominators. In the case of A′, notice that multiplying by a scalar preserves matrix

structure.

2. The determinant of a product of matrices is the product of denominators. Notice that

det(diag(Di)) =
∏
iDi, det(diag(Ei)) =

∏
iEi and det(diag(D(A))) = D(A)m. Thus,

Eq. (13.1) follows.

3. We have

A′x′ = b′ ⇔ D(A)Ax′ = D(b)b⇔ A
D(A)

D(b)
x′ = b⇒ x =

D(A)

D(b)
x′.

4. We have (̃D′A)1 = D1D
′A. Thus,

(̃D′A)1x1 = D1b
′ ⇔ D1D

′Ax1 = D1D
′b⇒ x1 = x.

5. We have (̃D′A)2 = D′AD2. Thus,

(̃D′A)2x2 = b′ ⇔ D′AD2x2 = D′b⇒ D2x2 = x.

In the case of characteristic or minimal polynomial computation the situation is more

interesting. We have the following theorem

Proposition 13.1.2 (PA vs PA′) Let m ∈ N and let A be a m×m rational matrix. Let

D(A) be the common denominator of entries of A and let A′ = D(A) · A. Let l, l′ be the

degrees of the characteristic (minimal) polynomials of A and A′ respectively. Suppose that

PA(x) =
∑l

i=0 aix
i where ai ∈ Z, and PA′(x) =

∑l′
i=0 bix

i are the characteristic (minimal)

polynomials of A and A′ respectively. Then l = l′ and ai = bi
D(A)l−i .

PROOF We set d = D(A). Let us consider the case of the characteristic polynomial. We

know that the characteristic polynomials of A and dA have the same degree l = l′ = m and

are unique. From PA′(A
′) = 0 we may deduce that PA′(dA) = 0. Therefore 1

dmPA′(dA) = 0

and 1
dmPA′(dx) is unitary. By uniqueness we may conclude that 1

dmPA′(dx) = PA(x) and

so bi
dm−i = ai.

Let us now consider the case of minimal polynomial. By the same reasoning, for minimal

polynomial PA, we may conclude that PA(x) | 1
dl′
PA′(dx). Similarly, from PA(A

′
d ) = 0 we

may deduce that PA′(dx) | dlPA(x) and so both polynomials have the same degree l = l′

and are in fact equal. We obtain bi
dm−i = ai as in the previous case.
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Unfortunately, multiplying by diagonal matrix might change the minimal and characteris-

tic polynomial. Thus, computation of the characteristic or minimal polynomial of Ã1, Ã2

does allow us to recover the characteristic or minimal polynomial of A.

13.2 Increase in Norm Due to Preconditioning and Related

Problems

Preconditioning of A comes at a cost. After preconditioning, the norm of A′, Ã can be

much bigger than ‖A‖r. Prop. 13.2.1 gives the worst case bounds on ‖Ã‖ and ‖A′‖.

Proposition 13.2.1 (Norms of Ã, A′) Let A be a m×m rational matrix with Ω non-

zero entries1, and M ∈ R be such that ‖A‖r ≤M .

1. Suppose that m < M (resp. Ω < M). Then ‖Ã‖ ≤Mm+1 (resp. ‖A′‖ ≤MΩ+1).

2. Suppose that m < M (resp. Ω < M). Then log(‖Ã‖) ∈ O(m log(M)) (resp.

log(‖A′‖) ∈ O(Ω log(M))).

3. Suppose that m ≥ M (resp. Ω ≥ M). Then ‖Ã‖ ≤ M · lcm(1, 2, . . . ,M) (resp.

‖A′‖ ≤M · lcm(1, 2, . . . ,M)).

4. Suppose that m ≥ M (resp. Ω ≥ M). Then log(‖Ã‖) ∈ O(M) (resp. log(‖A′‖) ∈
O(M)).

PROOF With no loss of generality we assume that Ã = Ã1 = diag(Di)A, where Di are

the common denominators for entries in ith row of A. Recall that D(A) is the common

denominator of entries of A.

In the case when Ω < M , D(A) is the least common multiple of at most Ω denominators

and can be as much as MΩ. Multiply this by one numerator (in the case of each entry) to

obtain the bound on ‖A′‖. Similarly, if m < M , Di, is the lcm of at most m denominators2

and can reach Mm. The bound on ‖Ã‖ follows. The bounds in terms of Big-Oh notation

are a direct consequence.

In the case when Ω ≥ M or m ≥ M resp., D(A) and Di are the lcm of at most M

different denominators and do not exceed LCMM = lcm(1, 2, . . . ,M). log(LCMM ) is

asymptotically O(M), which gives the required bounds.

In the general case, when the denominators of matrix entries are randomly sampled, Prop.

13.2.1 gives pessimistic bounds on the norms of preconditioned matrices. An increase in

size by a factor of min(m, M
log(M)) (resp. min(Ω, M

log(M))) in the case of Ã (resp. A′) is

possible.

However, in applications we often encounter matrices, whose entries are of the same type.

Often, we deal with decimal or binary fraction of certain precision, where virtually every

1This may be replaced by Ωr, the number of non-integer fractions in the matrix.
2m can be replaced by Ωr(i), the number of non-integer fractions in the ith row
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entry has the form
aij
10k

or
aij
2k

. Then it might happen that ‖Ã‖, ‖A′‖ and ‖A‖r are more

or less of the same size.

A great difference in the approach to rational algorithms is expected in the two cases. In

the case of matrices with a wide range of different denominators, the increase in norm

caused by preconditioning might prohibit us from using preconditioned matrices Ã, A′ in

the computation, limiting the possibilities to rational solutions. On the contrary, in the

case of decimal or binary fractions, we can use integer algorithms for A′, Ã without a

handicap.

Thus, in order to design rational algorithms, we have to bear in mind the differences

between the two classes. Also, the analysis of the algorithms has to be performed in the

two cases separately as the asymptotic performance may vary significantly. In Ch. 14 we

will propose adaptive algorithms that are meant to distinguish between the two classes in

order to switch between the strategies. By applying adaptive approach we expect to be

able to treat the intermediate cases as well.

We start the analysis by presenting the results on norm growth for random matrices in

Sec. 13.2.1 in order to be able to define a general trend. Then we analyze a large set of

interesting problems for rational computation in Sec. 13.2.2, chosen from BasisLIB collec-

tion of Dan Steffy3 [118] and some matrices of Matrix Market4 Harwell-Boeing collection.

We choose Hilbert matrices [17] and Lehmer matrices as a benchmark example of rational

matrices with very different denominators.

13.2.1 Case of Random Matrices

In this section we will analyze the growth in norm due to preconditioning for random

rational matrices. Following the setup of Sec. 5.1, we start with the definition of the

distribution of entries.

We start with the case of rational matrices, which potentially have very different denomi-

nators. Let us take λ > 0 and define I as the set of all (positive) fractions with numerator

and denominator bounded in absolute value by λ i.e. I = Iλ = {pq : 0 < p ≤ λ, 0 < q ≤
λ, gcd(p, q) = 1}. For the norm computation, we can restrict ourselves to positive entries.

At first glance, it might seem natural to consider the uniform distribution on I. Yet, it

might be difficult to obtain it experimentally, as the computation of |I| seems a challenging

problem itself. That is, the number of elements in I can be bounded by:

λ∑

i=1

φ(i)bλ
i
c ≤ |I| ≤

λ∑

i=1

φ(i)dλ
i
e,

3http://www2.isye.gatech.edu/ dsteffy/rational/, see also http://ljk.imag.fr/membres/Jean-

Guillaume.Dumas/Matrices/BasisLIB/
4http://math.nist.gov/MatrixMarket/
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where φ(i) denote the Euler’s totient function. That is, for each denominator i = 1, . . . , λ,

we count the number of numerators ni coprime with i, which is φ(i). Then we consider

all numbers ni + ik, k = 0, . . . , bλi c, dλi e s.t. ni + ik ≤ λ. Asymptotically we have

|I| ≈ λ
λ∑

i=1

φ(i)

i
= λ2(

6

π2
+O(

log(λ)

λ
)) ≤ 0.6λ2.

It might also be debatable, whether matrices encountered in experiments can be approxi-

mated by this distribution.

Therefore, let us focus on a simplified ’almost’ uniform distribution on I. The distribution

is defined in two steps. In the first step, choose a numerator and denominator randomly

and uniformly from {1, . . . , λ}. Then, form a fraction and normalize it if necessary. Return

the resulting fraction.

We will denote this distribution by Rat. Notice, that the denominator are not uniformly

distributed in this case i.e. for random fraction n
d : P(d = λ1) 6= P(d = λ2) for λ1 6= λ2.

The distribution of denominators modulo p in the asymptotic case can be expressed by

the following proposition.

Proposition 13.2.2 (Distribution of Denominators for Rat) Let p be a prime. Sup-

pose that the numerator a and denominator b of fraction q = a
b are uniformly and ran-

domly sampled from the set {1, 2, . . . , pk}. Then, fraction is normalized if necessary, so

that q = a′
b′ and gcd(a′, b′) = 1. Let us consider the probability apl,k that the denominator

b′ is divisible by pl, 0 < l ≤ k. Then apl,k → 1
pl+pl−1+···+1

if k →∞.

PROOF For l = k, pl has to divide b and p cannot divide a. In this case, apl,l = p−1
pl+1 . For

l < k, we have the following possibilities:

- pl - b, which occurs with probability pl−1
pl

;

- pl | b and p - a, which occurs with probability p−1
pl+1 ; this is the favorable case;

- pl | b and p | a, which occurs with probability 1
pl+1 ; in this case, fraction has to be

normalized;

In the last case, let a1 = a
p , b1 = b

p denote the numerator and denominator of q after 1 step

of normalization i.e. division by p; a1 and b1 are uniformly distributed in {1, 2, . . . , pk−1}.
Thus, recursively, the probability that p divides b′ is apl,k−1.

We have the following recursive formula:

apl,k =
p− 1

pl+1
+

1

pl+1
apl,k−1, apl,l =

p− 1

pl+1
.

Thus, apl,k converges and the limit limk→∞ apl,k = p−1
pl+1−1

= 1
pl+pl−1+···+1

.
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A uniform distribution of denominators might also be considered on set I ′ = I ′λ = {pq : 0 <

q < λ, 0 < p < q, }. To construct a fraction, we first randomly choose a denominator d for

the set {1, . . . , λ} and then randomly choose a numerator for the set {1, . . . , d}, co-prime

with d. We will denote this distribution by RatUni. Notice, that ‖A‖ < 1.

The number of elements in I ′ = I ′λ = {pq : 0 < q ≤ λ, 0 < p < q, } is
∑λ−1

i=1 φ(i) in this

case, and it is possible to effectively simulate this distribution. This is a slightly different

approach than the previous one. Intuitively, large composite denominators occur with

bigger probability, small prime denominators with smaller and large prime denominators

with the same probability as in the previous case. Thus, the distribution of lcm of m

random denominators might differ in both cases. Yet, we expect that the trends of Prop.

13.2.1 would be confirmed for both distributions.

In the experiments, we analyzed the average growth of log(‖Ã‖)
log(‖A‖r) and log(‖A′‖)

log(‖A‖r) for random

rational matricesA of sizem = 100, 200, . . . , 1000 for λ = 100, 10000 and both distributions

Rat, RatUni. In each case, average of 5 results for 5 different random matrices was taken.

Additionally, we computed the results for random matrices A of size m = 100, . . . , 500

for λ = MAX INT and both distributions. Fig. 13.1 presents the dependencies we have

found.

In Fig. 13.1 it can be seen, that the results are similar for both distributions Rat and

RatUni. This confirms that the asymptotic evaluation of Prop. 13.2.1 is valid, despite the

fact that it uses a pessimistic bound on the lcm of m numbers.

In fact, contrary to implications of Prop. 13.2.2, the growth in norm for distribution

RatUni, is smaller than for Rat by a constant close to 1, for all cases except the case of

A′ and λ = MAX INT . This might be explained by the fact, that in the case of small

‖A‖r, the difference in size of numerators influence the result more than the difference in

the distribution of denominators. In the case of λ = MAX INT , it might be possible

that difference in the distribution of denominators started to play a role.

In the case of λ = 100 i.e. λ ≤ m, ‖Ã‖ and ‖A′‖ are equal starting from m = 200. The

ratio stabilizes at 20.4 for Rat distribution and 19.4 for RatUni. The result of Prop. 13.2.1

yields blog(lcm(1, . . . , 100))/ log(100)c = 50 in the worst case.

In the case of λ = 10000 i.e. m < λ, λ ≤ m2 the ratio stabilizes for A′ for m = 300 at value

1032.8 for Rat and 1031.7 for RatUni distributions. For Ã the ratio grows as a function

of m from 0.56m for m = 100 to 0.29m for m = 1000. This presents, how the accuracy of

approximations of Prop. 13.2.1 fades if the ratio between m and ‖A‖r gets smaller.

In the case of λ = MAX INT i.e. m � λ, both ratios grow in the considered range of

m. For Ã the ratio grows from 0.84m for m = 100 to 0.73m for m = 500, so the growth

is close to linear in m in this case. For A′ the ratio grows from 0.57m2 for m = 100 to

0.42m2 for m = 500 which approximates O(m2) less accurately.

For the case of matrices consisting of decimal fractions, we consider random matrices

with entries being random decimal fractions from [0,1) of certain precision k. Given

such distribution, A′ is equivalent to a random integer matrix with entries randomly and

uniformly sampled from the set {0, 1, . . . , 10k − 1}. Thus, results from Ch. 5 apply.
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Figure 13.1: The average ratio of log(‖Ã‖)
log(‖A‖r) and log(‖A′‖)

log(‖A‖r) for random rational matrices A,

given according to distribution Rat or RatUni, for cases ‖A‖r = 100, 10000,MAX INT .

For ‖A‖r = 100, 10000 average of 5 result was computed.

Moreover, Ã is different from A′ in an unlikely case, when some rows (resp. columns) of A

are reduced when decimal fractions are normalized. Notice, that this is an unlikely case.

Indeed, the probability that a all entries in a row of a m ×m random integer matrix A′

are divisible by 2 is
(

1
2

)m
. Thus, the probability that A′ 6= Ã is m

(
1
2

)m
.

It is also possible, even less likely that ‖A′‖ is less than ‖A‖r = 10k. Indeed, this requires

that all generated entries are less than 10k/2, which occurs with probability
(

1
2

)m2

.

To confirm that this is indeed the case, we generated matrices of decimal fractions of size

100,200,. . . ,1000, for precision k − 1 = 5 and 16 decimal places. For each case, 5 matrices

were generated. Experimental results confirmed that the size of ‖A‖, ‖Ã‖ and ‖A′‖ was

the same for all examples tested. Therefore, experimental results confirmed that this a

much easier case.



13.2. Increase in Norm Due to Preconditioning 203

 0

 500

 1000

 1500

 2000

 2500

 3000

 100  200  300  400  500  600  700  800  900  1000

lo
g 

(|
H

’ n
|)

 a
nd

 lo
g 

(|
di

ag
(D

i)H
n|

) 

n

The size of norms of preconditioned Hilbert matrices

log (|H’n|)
log (|diag(Di)Hn|)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100  200  300  400  500  600  700  800  900  1000

lo
g(

|d
ia

g(
D

i)L
n|

)

n

The size of norm of preconditioned Lehmer matrices

log (|diag(Di)Ln|)

Figure 13.2: Growth of norm for preconditioned Hilbert and Lehmer matrices

13.2.2 Examples of Rational Matrices - Experimental Evaluation

In this section we will analyze the growth in norm due to preconditioning for a wide

range of rational matrices, which might be interesting for exact computation. First, let us

consider two benchmark examples of ill-conditioned matrices, namely the Hilbert matrices

and Lehmer matrices.

The n× n Hilbert matrix Hn is defined by the equation

Hn =

[
1

i+ j − 1

]

i,j=1..n

. (13.3)

It is a Hankel-type matrix. The denominators in every row form a set of n consecutive

numbers. The rational norm ‖Hn‖r is equal to 2n − 1. In Fig. 13.2 (left), we show the

functions log(‖H̃n‖) and log(‖H ′n‖) as a function of matrix size n. Dependency is linear.

In the considered range n = 100, . . . , 1000, functions log(‖H̃n‖) and log(‖H ′n‖) differ by a

small value c = 7, . . . , 10.

The n× n Lehmer Ln matrix is given by the equation

Ln =

[
min(i, j)

max(i, j)

]

i,j=1..n

. (13.4)

The denominators in every row are smaller than n. The rational norm ‖Ln‖r is equal to

n. For Lehmer matrices our experiments suggest that, ‖Ln‖ = ‖L′n‖. In Fig. 13.2 (left),

we show the functions log(‖L̃n‖) as a function of matrix size n. Dependency is linear in n.

In the considered range n = 100, . . . , 1000 functions log(‖H̃n‖) and log(‖H ′n‖) were equal.

Next, we would like to confront real-live computational examples, with particular empha-

sis to sparse matrices. Most of the data e.g. in the MatrixMarket collection, consists

of matrices with entries being decimal or binary fractions. However, a collection of rea-

sonable size of 157 truly rational matrices BasisLib was recently made available by Dan

Stuffy. These matrices arise form problems in linear programming, and some of them are

numerically nonstable. For the description of the set see [118]. In some cases, only a few

entries are not integer.
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Figure 13.3: Sparsity [in %] and the ratio of non-integer elements to non-zero elements for

matrices of BasisLib+ Collection.

In order to make sure that matrices of decimal fractions are represented as well, we

added 11 ill-conditioned matrices from the Matrix Market 5 Harwell-Boeing collection,

sets: Grenoble, Astroph and Bcsstruc3. Unfortunately, we were not able to compute the

norms for 10 biggest matrices due to memory shortage. We refer to the modified collection

as BasisLib+.

Fig. 13.3 presents the sparsity of matrices in the collection and the number of rational

entries as a function of sparsity. Matrices are very sparse, with 47.8% of the collection

having less than 1% non-zero entries, 75.47% less than 2% and 94.34% less than 5%. Only

one matrix has 29.45% non-zero entries. For almost 20% of matrices, most of the non-zero

entries (i.e. > 90%) are truly rational. At the same time, for 8.81% of matrices less than

10% of entries are rational, which makes them almost integer. Thanks to this sparsity, we

expect that preconditioning might be useful here.

Fig. 13.4 presents norm growth for matrices of BasisLib+ collection. For 19 matrices,

‖Ã‖ = ‖ diag(Di)‖A was actually smaller than ‖A‖r, which is only possible if ‖A‖ < 1.

For a majority of matrices, the ratio log(‖Ã‖)
log(‖A‖r) was 1 or smaller than 2. Then for 97.5%

matrices, the ratio was less than 16. The growth in norm is definitely less significant than

in the case of random matrices. At the same time for 52 instances, the size of entries of Ã

was bigger than 64. In 48 of those cases, numerators and denominators of A are wordsize.

The ratio log(‖A′‖)
log(‖A‖r) is presented in the right part of Fig. 13.4. The increase in norm is

much more significant, although the ratio is still less than 2 for 62.9% of matrices. In the

worst case, log(‖A′‖) was 7244, 1591 and 642 bigger than log(‖A‖r).

Based on the ratios, we divided the BasisLib+ collection on three subsets:

1. Easy: for which ‖A‖r ≥ ‖Ã‖: Total of 76 examples 6. For 28 of matrices, ‖A‖r = ‖A′‖.
5http://math.nist.gov/MatrixMarket/
6List of files: 80bau3b,UMTS, baxter, bcsstk21.mtx, bnl2, car4, cont4, cr42, dano3mip.pre,

dano3mip, danoint, delf000, dfl001.pre, dfl001, ganges, gen2, gre_1107.mtx, gre_216a.mtx,

gre_216b.mtx, gre__115.mtx, gre__185.mtx, gre__343.mtx, gre__512.mtx, greenbea, green-

beb, iiasa, large000, maros-r7, mcca.mtx,model11, model9, modszk1, momentum2, msc98-ip,

nemspmm1, neos1, neos7, p010, p05, p19, qiu, qiulp, r05, rat1, rat5, rat7a, rd-rplusc-21,

rentacar, roll3000, route, sc205,scagr7-2r-864, scfxm1-2b-16, scfxm1-2b-4, scfxm1-2c-4,
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range. Left: ratio log ‖Ã‖/ log(‖A‖r). Right: ratio log(‖A′‖)/ log(‖A‖r).

2. Intermediate: for which ‖A‖r < ‖Ã‖ = ‖A′‖: Total of 11 examples7.

3. Difficult: for which ‖A‖r < ‖Ã‖ < ‖A′‖: Total of 71 examples8.

We have also identified 11 most difficult examples for which the ratio log(‖Ã‖)
log(‖A‖r) was greater

than 12. We summarize the parameters in Tab. 13.1. A high ratio of rational elements

to non-zero elements is a common features of the examples. It was also observed that

log(D(A)) ≈ log(‖A′‖) and max(log(Di)) ≈ log(‖Ã‖).

In their paper, see [118], the authors considered the problem of solving a linear system

Ax = b, where A was a matrix from BasisLib collection and b was a rational vectors, which

can also be found in BasisLib. Exact methods were applied to integer matrices obtained

from rational one by scaling of entries. Details of scaling were not given, but scaled integer

matrices are provided, which leads to conclusions that scaling followed Prop. 13.1.1 (4).

Same approach was considered in [117] for Hilbert and Lehmer matrices.

The authors did experience norm swell in the process which affected the exact computation.

The norm growth for the matrix of Prop. 13.1.1 (4) was definitely more important than

for Ã, see Fig. 13.5. The difference was due to the choice of vector b, the denominators

of which had to be considered as well. This motivates our interest in methods other than

matrix preconditioning, which we will consider in the next section.

scfxm1-2r-16, scfxm1-2r-27, scfxm1-2r-32, scfxm1-2r-4, scfxm1-2r-64, scfxm1-2r-8, scfxm1-

2r-96, scfxm2, scfxm3, scorpion, scrs8-2c-64, scrs8-2r-128, scrs8-2r-256, scrs8-2r-32,

scrs8-2r-512, scrs8-2r-64, self, small000, south31, stair, stocfor2, stocfor3. For examples

in itallic, additionally, ‖Ã‖ = ‖A′‖.
7List of files: gosh, gran, l30.pre, l30, mkc, mkc1, nemsemm2, stat96v4, watson_1.pre, wat-

son_2, woodw.
825fv47, arki001, bandm, baxter.pre, bcsstk19.mtx, bcsstk20.mtx, bnl1, boeing1, capri,

ch, co5, co9, cq5, cq9, cycle, d2q06c, de063155, de063157, de080285, dsbmip, ge, gen1,

gen4.pre, gen4, gesa2_o, gesa3, gesa3_o, grow15, grow22, grow7, jendrec1, l9, maros,

mcfe.mtx, mod2.pre, mod2, model10, model2, model3, model4, model5, model6, model7, mo-

mentum1, momentum3, nemspmm2, nemswrld, nesm, newman, newman2, newman3, nl, orna1, perold,

pilot.ja, pilot, pilot.we, pilot4, pilot4i, pilot87.pre, pilot87, pilotnov, pldd000b, pro-

gas, scrs8, scsd8, slptsk, stat96v1, stat96v5, ulevimin, world.
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Matrix n Ω
n2 [%] Ωr

Ω
[%] log(D(A))

max(log(Di))
log(‖A‖r) log(‖Ã‖) log(‖Ã‖)

log(‖A‖r)
log(‖A′‖)

gen1 329 10.18 97.33 56.55 56 1576 28.14 89116

gen4.pre 367 6.92 98.05 3.87 30 1061 35.37 4111

gen4 375 6.34 97.90 4.33 30 926 30.87 4009

jendrec1 1779 1.08 100.0 478.67 45 687 15.27 325983

nemspmm2 949 0.72 69.22 3.61 40 603 15.08 2194

nemswrld 2205 0.27 68.48 3.47 38 506 13.32 1740

pilot.ja 567 1.18 78.79 7.9 57 856 15.02 6670

pilot4 289 3.36 88.70 11.24 48 737 15.35 8185

pilot87.pre 1540 1.3 95.19 19.13 44 634 14.41 12101

pilot87 1625 1.19 94.81 17.77 41 634 15.46 11241

slptsk 2315 0.64 100.0 39.59 40 652 16.3 25696

Table 13.1: Parameters for 11 most difficult examples of collection BasisLib+ based on

the ratio log(‖Ã‖)
log(‖A‖r) .
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Figure 13.5: Number of instances of scaled integer matrices from BasisLib Collection, for

which the growth of norm size (as a ratio of log(‖A‖r)) was in the given range. Matrices

were used for system solving, the growth depends on rational vector for which solving was

performed. Matrices and vectors are distributed in BasisLib Collection.

13.3 Preconditioning of Result - Case Study

Even if we do not choose to precondition the matrix we may still try to deduce some infor-

mation on the rational solution just by looking at matrix denominators and numerators. If

a multiple of denominator is known, the CRA of p-adic scheme can be applied to look for

an integer value, which leads to easier termination strategies and often to lower number

of iterations.

Assume that n
d is the fraction which we are going to reconstruct and that D is a multiple of

d. CRA and p-adic lifting scheme will find the result after at least logp(2nd) steps if primes

greater than p are used. This can be realized by the use of early termination strategy of

Monagan, [90]. However, Wang’s [129] termination strategy requires logp(2 max(n2, d2))

steps.
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Instead, we may apply the schemes to look for the integer value D
d n. CRA and p-adic

lifting will require logp(2
D
d n) steps in order to reconstruct the result. The new number of

steps is no more than the number of steps in the previous case provided that D
d ≤ d. That

is, preconditioned strategy can preform better if at least half of bits of the preconditioner

is used to approximate d. Additionally, we may skip the rational reconstruction and use

a simple termination technique of Lem. 10.6.3.

In the case of system solving, the multiple of denominator cannot be found, but we may

compute a preconditioner D′, such that gcd(D′, d) is large. Most of the fraction D′
d is

then reduced i.e. D′
d = D′/ gcd(D′,d)

d/ gcd(D′,d) Then, CRA and p-adic lifting schemes will require

logp(2
d

gcd(D′,d)
D′

gcd(D′,d)n steps, which is not worse than in the non-preconditioned variant,

provided that

d

gcd(D′, d)

D′

gcd(D′, d)
≤ d⇔ D′ ≤ (gcd(D′, d))2.

Analogously as in the case of integer preconditioning, preconditioned strategy is superior

if at least half of bits of D′ is used to approximate d. Notice, that only the termination

strategy of Monagan [90] can be used to early terminate the CRA and p-adic schemes in

this case, as Wang’s termination strategy may in fact take longer to find the result.

13.3.1 Approximating Denominators

The following proposition gives the approximation of denominators in the case of deter-

minant and characteristic polynomial computation.

Proposition 13.3.1 (Preconditioning of Denominators) Let A = [
aij
bij

]i,j=1...m be a

rational m ×m matrix. We define the row (resp. column) common denominators Di =

lcmj(bij) (resp. Ej = lcmi(bij)) in the usual way and we set

D = gcd(
m∏

i=1

Di,
m∏

i=1

Ei). (13.5)

Then

D · det(A) ∈ Z,
D · PA ∈ Z,
D · pA ∈ A,

where det(A) is the determinant of A, PA is the characteristic polynomial of A and pA is

the minimal polynomial of A.

PROOF For the determinant, the result follows immediately from the Gauss formula. In

the case of the characteristic polynomial PA =
∑m

i=0 cix
i we may also use the formulae

for the coefficients, which says that for i = 0, . . . ,m, cm−i is the sum of all principle i× i
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minors. D is the common multiple of the denominators of all principle minors, hence,

DPA is an integer polynomial. The case of minimal polynomial follows from Thm. 13.3.3

that we are going to present next.

For the minimal and characteristic polynomial, the result can further be improved.

Theorem 13.3.2 (Preconditioning for PA and pA) Let A be a rational matrix. Let

D be defined as in Eq. (13.5) and D(A) be the common denominator of entries of A. Let

PA =
∑m

i=0 cix
i be the characteristic polynomial of A and pA =

∑l
i=0 c

′
ix
i be its minimal

polynomial. Then

gcd(D(A)m−i, D)ci ∈ Z, for i = 0, . . . ,m; (13.6)

gcd(D(A)l−i, D)c′i ∈ Z, for i = 0, . . . , l. (13.7)

PROOF Let us set d = D(A). Prop. 13.1.2 implies that dm−ici ∈ Z and dl−ic′i ∈ Z. From

Prop. 13.3.1 Dci ∈ Z and Dc′i ∈ Z as well. Thus, Eq. (13.6) follow.

The result on minimal polynomial is slightly more technical and is subject to Thm. 13.3.3,

which we present here. In particular, the same claim might not necessarily be true for any

factor p of rational polynomial P , see Ex. 13.3.9. We thank to J.-G. Dumas for pointing

the proof of Thm. 13.3.3 to us. We have the following theorem.

Theorem 13.3.3 Let PA and pA be respectively the minimal and characteristic polynomial

of a rational matrix A. Let d ∈ Z be such that dPA ∈ Z[X]. Then dpA ∈ Z[X] as well.

Before we give the proof to Thm. 13.3.3, we have to introduce the following definitions

and lemmas.

Definition 13.3.4 (Primitive Polynomial, Content and Primitive Part) 1. A poly-

nomial in Z[X] is primitive iff the gcd of its coefficients is equal to 1.

2. The content, Cont(P ) ∈ Q, and primitive part, PP(P ) ∈ Z[X] of P ∈ Q[X] are the

unique positive rational and integer polynomial such that P = Cont(P )PP(P ) and

PP(P ) is primitive.

Lemma 13.3.5 (Gauß’lemma) The product of two primitive polynomials is primitive.

PROOF See e.g. [89, III.4.2]

Lemma 13.3.6 (Content and Primitive Part) Content and primitive part are well

defined.

PROOF Suppose that pairs (d1, P1) and (d2, P2) are content and primitive part of a

polynomial P ∈ Q[X]. We have d1P1 = d2P2, which implies that d1
d2
P1 = P2 ∈ Z[X].

This means that the denominator D(d1
d2

) must divide every coefficient of P2 and therefore

their gcd. Since P2 is primitive, the gcd is one, and this proves that D(d1
d2

) = 1. Thus,
d1
d2
∈ Z. By the same reasoning, d2

d1
∈ Z as well. Therefore d1

d2
= ±1. As d1, d2 are both

positive, we may conclude that d1 = d2 and, consequently, P1 = P2.
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Lemma 13.3.7 (Content of Unitary Polynomial) Let P = Xm +
∑m−1

i=0 qiX
i be a

unitary polynomial with rational coefficients qi = ai
bi

, ai, bi ∈ Z, bi > 0, gcd(ai, bi) = 1 for

0 = 1, . . . ,m− 1. Let us set b = lcmi(bi). Then Cont(P ) = 1
b .

PROOF b = lcmi(bi) is the smallest positive integer such that bP ∈ Z. Thus, Cont(P ) = a
b

for certain a ∈ Z, a > 0. We have PP(P ) = 1
Cont(P )P , which in the case when P is unitary

means that PP(P ) = b
aX

m + . . .. The condition PP(P ) ∈ Z[X] implies that a = 1 and

thus, Cont(P ) = 1
b .

Lemma 13.3.8 Let P be a polynomial with rational coefficients and d ∈ Z be such that

dP ∈ Z[X]. Then dCont(P ) ∈ Z as well.

PROOF Let us introduce the following notation. For polynomial F ∈ Z[X], F =
∑m

i=0 fiX
i,

define gcd(X) = gcdi fi.

Define h = gcd(dP ). Then dP = hP ′, where P ′ ∈ Z[X] and gcd(P ′) = 1. Thus, by

uniqueness, P ′ = PP(P ). Additionally, uniqueness implies that Cont(P ) = h
d . Therefore

dCont(P ) = h ∈ Z.

Finally, we are ready to prove Thm. 13.3.3.

PROOF (Thm. 13.3.3) From linear algebra we know that the characteristic and minimal

polynomials PA and pA of A have the same irreducible unitary factors Pi, i = 1, . . . , s.

Namely, there exist powers ei, fi ∈ N, ei ≥ fi such that

PA(X) =
∏

(Pi(X))ei ,

pA(X) =
∏

(Pi(X))fi .

By lemma 13.3.7, we can find bi ∈ N such that 1
bi

= Cont(Pi). By lemma 13.3.5, primitive

part of a product of polynomials is the product of primitive parts of the composites. Thus,

we have

PA =
∏

P eii =
∏

(
1

bi
PP(Pi))

ei =
∏

(
1

beii

∏
PP(Pi)

ei ,

pA =
∏

P fii =
∏

(
1

bi
PP(Pi))

fi =
∏

(
1

bfii
)
∏
PP(Pi)

fi ,

with 1 ≤ fi ≤ ei.
By Lem. 13.3.8, dPA ∈ Z[X] implies that dCont(PA) ∈ Z, that is,

∏
beii | d. But as ei ≥ fi

for all i, we have that
∏
bfii |

∏
beii | d. This proves that dpA ∈ Z[X].

In fact, in Thm. 13.3.3 it is essential that both the characteristic and minimal polynomials

are unitary. Indeed, for the general case of rational polynomials P, p, p | P , counterexam-

ples can be given if P or p are not unitary.
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Example 13.3.9 1. Let P = X2 − 5
6X + 1

6 and p = 1
2X − 1

4 . Then p | P and 6P ∈ Z[X]

but 6p /∈ Z[X].

2. Let P ′ = 2X2 − 5
3X + 1

3 and p′ = X − 1
2 . Then p′ | P ′ and 3P ′ ∈ Z[X] but 3p′ /∈ Z[X].

Indeed, we have P = (x− 1
2)(x− 1

3), p = 1
2(x− 1

2), so that p | P but 6p /∈ Z[X]. Also, we

have P ′ = 2(x− 1
2)(x− 1

3), p′ | P ′ but 3p′ /∈ Z[X].

System Solving

To finish this section, let us consider the problem of solving a linear system of rational

equations. In the case of solving Ax = b, the denominator of the solution vector x cannot

be approximated in advance, i.e. no multiple can be given. Yet, some heuristics might be

derived nevertheless, which could help the computation.

We recall that xi =
det([Ai b])

det(A) , where [Ai b] is equal to matrix A with the ith column

replaced by b. Let N(−) and D(−) denote the numerator and denominator of a normalized

fraction. Then x is equal to

xi =
D(det(A))

N(det(A))

N(det([Ai b]))

D(det([Ai b]))
. (13.8)

From Prop. 13.3.1 we may deduce that D(det(A)) divides D and that D(det([Ai b])

divides lcm(D,D(b)). Recall that D is given by Eq. 13.5 and D(b) is the common denom-

inator for vector b. If the approximations are ’close’, the fraction D(det(A))

D(det([Ai b]))
is about

1
gcd(D,D(b)) . Notice that we do not consider this as an approximation in the numerical sense,

but we want to say that only a small number of prime factors is missing in the denom-

inator and numerator of 1
gcd(D,D(b)) compared to the normalized fraction D(det(A))

D(det([Ai b]))
.

According the notion of bitsize9 of [118, 117] this means that the bitsize of

D(det(A))

D(det([Ai b]))
· gcd(D,D(b))

is small.

In general, no division relation has to exist between the two denominators. Still, assuming

that most of the fraction D(det(A))

D(det([Ai b]))
is reduced, xi is approximated by:

xi ≈
N(det([Ai b]))

N(det(A)) gcd(D,D(b))

9In [117, 118], bitsize( p
q
) = log(p) + log(q).
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in the sense of small bitsize of the defect. This would mean that the number of iterations

needed to reconstruct x in CRA or p-adic schemes is better than the worst case estimations.

Indeed, in the case when b is a random vector, we may justify that the denominators of

x = A−1b can be used to well approximate the denominators of solutions A−1c, where c is

another integer vector. Indeed, as in Prop. 13.1.1 let us define A′ = D(A)A, b′ = D(b)b.

Then, instead of Ax = b, we may equivalently solve A′x′ = b′ and return x = D(A)
D(b) x

′.

If b is a random vector, then b′ = D(b)b is a random integer vector and the com-

mon denominator s̃n(A′) = D(x2) is a factor of sn(A′). By Thm. 6.3.2, it is ’close’

to sn(A′) and both values are probabilistically equal. Precisely, Thm. 6.3.2 requires

that at least 2 random vectors are used, but experiments in Sec. 8.8 suggest that one

solving gives sufficient approximation. Thus, denominator of D(xi) of the ith coeffi-

cient of x is a multiple of D(b)
gcd(D(A),D(b))

s̃n(A′)
gcd(D(A),s̃n(A′)) , which is a ’close’ approximation

of D(b)
gcd(D(A),D(b))

sn(A′)
gcd(D(A),sn(A′)) .

For given b, A, d = D(b)
gcd(D(A),D(b) can effectively by computed. It is a product of primes,

which appear in D(b) but do not appear in D(A). Thus, given a solution x = A−1b, we

can derived the approximation of the denominator of x′′ = A−1c for another systems as

D(x′′) ≈ D(c)

gcd(D(A), D(c)

D(x)

gcd(D(x), d)
. (13.9)

Notice, that for integer vector b, the exact denominator s̃n
gcd(D(A),s̃n) , which approximates

sn(A′)
gcd(D(A),sn(A′)) can be reconstructed from D(x). The error in this case is solely due to the

choice of b and results from Thm. 6.3.2.

By Prop. 13.1.1, the preconditioned matrix Ã1 = diag(Di)A can be used to solve Eq.

Ã1x = diag(Di)b, which is an integer system as long as diag(Di)b is integer. Recall that

Ã1 is given by Eq. (9.2) and Di are common row denominators. Thus, we will heuris-

tically assume that sn(Ã1) approximates the denominator D(x). This leads to heuristic

approximation of D(x′′) as

D(x′′) ≈ D(c)

gcd(D(A), D(c)
sn(Ã1), (13.10)

where sn(Ã1) is approximated by Alg. 6.3.1 with one integer system solving.

The approach presented for approximating the denominator of a solution to rational system

of equations by Eq. (13.10) is based on several heuristic assumptions. This may cause the

computed preconditioner to have no division relation with the actual denominator. That

is, it is a priori neither its factor or a multiple of the denominator. In Sec. 13.4 we will

evaluate the quality of preconditioning on numerous examples, thus proving that it can

be used in practice.
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Remark 13.3.10 In this thesis, we focus on the influence of approximating denominators

in the case of CRA and p-adic lifting schemes. It seems however possible, that precondi-

tioning can speed up mixed numeric-symbolic methods as well. This should be the case

for the adaptive integer solver of [128] and its rational variant, described in [117]. The

observation is based on the fact, that preconditioning reduces the precision to which the

result has to be approximated. Still, the system has to be numerically stable in order to

apply algorithms of [128, 117].

13.3.2 Bounds on Numerators

The difficulty of finding rational solutions lies in the numerator computation. In order to

certify the output of CRA or p-adic schemes, bounds on the numerators and denominators

are necessary. In general, if N,D are bounds for the numerator and denominator of the

solution, certified scheme requires O(log(ND) iterations. Bounds on the numerators can

be computed by combining the bounds for denominators given in Sec. 13.3.1 with the

classic results from linear algebra.

Let N(−) and D(−) denote the numerator and denominator of a normalized fraction. We

have the following proposition.

Proposition 13.3.11 (Bounds on Numerators) Let A be a m × m rational matrix

and let H = m
m
2 ‖A‖m be its Hadamard bound see Prop. 6.1.2.

Let D(A) be the common denominator of entries of A and D be defined by Eq. (13.5).

1. We have: |N(det(A))| ≤ H|D(det(A))| ≤ HD.

2. Additionally, let b be a rational vector of size m, and D(b) denote the common de-

nominator of b. Let H ′ be the Hadamard bound for [Ai b]. Let x = N(x)
D(x) , D(x) ∈

N, N(x) ∈ Zm, be the solution to the rational equation Ax = b. We have

D(x) ≤ HD2D(b), (13.11)

‖N(x)‖ ≤ H ′D2D(b), (13.12)

(13.13)

where ‖N(x)‖ denote the maximum norm for vector N(x).

3. Let PA =
∑m

j=0 cjX
j be the characteristic polynomial of A. Then

log(|N(cj)|) ≤ HP + log(gcd(D(A)m−j , D)), (13.14)

where HP = m
2 (log(m) + log(‖A‖) + 0.21163175).

4. Let pA =
∑t

j=0 c
′
jX

j be the minimal polynomial of A and t be its degree. Then

log(|N(c′j)|) ≤ Hp + log(gcd(D(A)t−j , D)), (13.15)

where Hp = t
2 max(log(t) + log(β), 2 log(β)) and β is the spectral radius of A.
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PROOF 1. By Prop. 6.1.2 det(A) ≤ H and by Prop. 13.3.1 D(det(A)) ≤ D. The result

follows.

2. Eq. (13.8) gives the formula for coefficient xi. It implies that the common denomi-

nator D(x) is a divisor of N(det(A))D(det([Ai b])) and the numerators are less than

D(det(A))N(det([Ai b])). We have

D(det(A)) ≤ D
N(det(A)) ≤ HD

D(det([Ai b])) ≤ DD(b)

N(det([Ai b])) ≤ DD(b)H ′.

Thus, D(x) ≤ HD2D(b) and N(x) ≤ H ′D2D(b).

3. In [109, Lem. 9.1] we are given the bound HP for the coefficients ci:

log(|cj |) ≤ HP =
m

2
(log(m) + log(‖A‖) + 0.21163175).

Thm. 13.3.2 gives the bound gcd(D(A)m−j , D) on the denominator of the jth coefficient

of PA. Thus, the bound on the numerator follows.

4. For the minimal polynomial pA we can use the ovals of Cassini, see [39], and obtain

log(|c′j |) ≤ Hp =
t

2
max(log(t) + log(β), 2 log(β)), (13.16)

where β is the spectral radius of A. By Thm. 13.3.2, the bound on the denominator is

given by gcd(D(A)t−j , D). Thus, the bound on the numerator follows.

The quality of approximating the determinant by the Hadamard’s bound has been ex-

perimentally studied in [2, 3] in the case of integer matrices. In the case of determinant

and minimal/characteristic polynomial computation in the rational case, the precision can

be even worse, as the bounds on denominators are obtained heuristically. An eventual

miss-approximation carry on to the estimation of the numerators and is repeated twice,

when the number of iterations of CRA of p-adic scheme is estimated. In Sec. 13.4 we will

attempt to evaluate the approximation experimentally.

In the case of linear system solving, both bounds can be over-estimated by a factor of D2

as we actually expect that a great part of the fraction could get reduced. Yet, in the worst

case, this cannot be assumed. In [118], the authors confirmed experimentally that the

bound on the number of iterations of p-adic lifting is indeed significantly over-estimated

in the case for rational matrices.

All in all, this implies that early termination is the preferred tool to solve the problems.

We refer to Sec. 10.6 and Sec. 11.3 for early termination strategies available. See also

[16, 117] for the case of system solving.
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13.4 Quality of Preconditioners

In the case when early termination techniques are used in CRA and p-adic solving, the

termination of the algorithm is independent of the bound H,H ′, HP and Hp defined in

Prop. 13.3.11. Yet the choice of matrix/result preconditioning will directly affect early

termination, as it changes the size of numbers that are being reconstructed.

In this section, we are going to experimentally evaluate the quality of the preconditioners

which have been introduced in Sec. 13.1, 13.4. That is, we need to evaluate the following

values.

1. In the case of determinant computation, the ratio log(D(det(A))/ log(D), where D is

defined in Eq. (13.5) has to be evaluated. In our setting, we will start by evaluating

the ratio log(D(det(A))/ log(D), where D =
∏
i(Di) and Di is the common denom-

inator of the ith row. This gives the upper bound on the required value. Then, we

will see if it is possible to improve D.

2. In the case of characteristic polynomial computation, the same ratio log(D(det(A))

to log(D) can be used, which describes the approximation of the first and presum-

ably largest coefficient c0; we assume that the reconstruction of c0 dominates the

computation. Thus, same ratio will be used to characterizes the approximation in

the case of minimal polynomial.

3. In the case of rational system solving, we are going to approximate the largest

invariant factor sn(diag(Di)A) ≈ D(z) first, by solving an integer system of equations

diag(Di)Az = b with random integer vector b. We will compare D(z) to N(det(A)).

Then, we are going to solve a random system Ax = c with rational vector c and

check if the approximation D(x) ≈ D(c)
gcd(D(A),D(c))D(z) (see Eq. (13.9)) is justified.

Recall that, D(A) (resp. D(c), D(z)) denote the common denominator of entries of

A (resp. c, z).

Remark 13.4.1 Notice that D(c)
gcd(D(A),D(c))D(z) might be ’close’ to D(x) even in the case

when sn(diag(Di)A) ≈ D(z) does not approximate N(det(A)) well. This is because

det(diag(Di)A) = D
D(det(A))N(det(A)) and consequently sn(diag(Di)A), which divides

det(diag(Di)A), contains factors of N(det(A)) and D
D(det(A)) . Thus, the quality of ap-

proximation depends on the quality of approximating D(det(A)) and the structure of

diag(Di)A. Experiments are necessary to evaluate the dominant behavior in this case.

For normalized fraction p
q , denote by bs(q) the bitsize of quotient q,

bs(q) = blog(p)c+ blog(q)c+ 1. (13.17)

Thus, for p ∈ Z, bs(p) = blog(p)c + 1. Recall that N(−), D(−) denote the numerator

and denominator of a fraction. For given matrix A, in the case of solving a random

system Ax = c, c was a random rational vector given according to distribution Rat with

‖c‖r = 100.
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We recall that D(A) is the common denominator of entries of matrix A, Di is the common

denominator for the ith row, A′ = D(A)A and Ã = diag(Di)A. For integer matrix X, let

s̃n(X) denote the approximation of sn(X) by Alg. 6.3.1, obtained by solving one random

system of equations. We will use those notations in the remaining part of this section.

We are going to evaluate the following values:

- Derr = bs(D(det(A))
D ) = bs( D

D(det(A))) = blog( D
D(det(A)))c + 1; Dapp = D =

∏
iDi is

taken to approximate D(det(A)). See Prop. 13.1.1 and 13.3.1.

- Nerr = bs(N(det(A))

s̃n(Ã)
); Napp = s̃n(Ã) is taken to approximate N(det(A)).

- Dxerr = bs(D(x) gcd(D(c),D(A))
D(c)Napp

; Dxapp = D(c)
gcd(D(c),D(A))Napp is taken. See Eq. 13.10

and the related discussion.

13.4.1 Case of Random Matrices

We start with the analysis of the quality of preconditioners for random matrices. We

will consider random matrices introduces in Sec. 13.2.1, given according to distributions

Rat, RatUni or by random decimal fractions. See Sec. 13.4 for notations and definition of

approximations we are going to evaluate. The error Dxerr is evaluated by solving a system

Ax = c for random vector c, ‖c‖r < 100, where c was given according to Rat distribution.)

1. Matrices of decimal fractions

We start with the case of random matrices of decimal fractions. We have evaluated the

approximations for 5 random matrices of size 100, 200, . . . , 1000 in the case of fraction

having 5 and 16 decimal places. Thus, the total set consisted of 100 matrices.

Fig. 13.6 presents the average errors Derr, Nerr and Dxerr. The approximations are

very close to the actual values, as the bitsize of the error is never bigger than 9,8 and 8

respectively for all of 100 examples tested. The error is unnoticeable, compared to the

size of N(det(A)) and D(det(A)).

No correlation with matrix size m or matrix norm ‖A‖r has been found, as the average

error is constantly small for all matrices tested. Good results of experiments agree with

the theoretical evaluation. Indeed, as we remarked in Sec. 13.2.1, A′ is equivalent to a

random integer matrix with entries chosen uniformly in the range {0, . . . , 10k − 1}. In

our experiments k = 6, 17 and consequently, D(A) = 106, 1017 was taken. With high

probability, Di = D(A) for all rows. Thus D = D(A)m with high probability.

By Prop. 13.1.1, det(A) = det(A′)
D(A)m . Thus, the error D(A)m

D(det(A)) occurs in the case, when

the determinant of A′ is divisible by 2 or 5. By Thm. 5.4.5, this leads to an error of

small size. Indeed, by Thm. 5.4.5, the probability P(pl | det(A′)),l > 0 is less than or

equal to ≤ 3
pl

. Thus,

log

(
D(A)m

D(det(A))

)
≤
∞∑

l=1

(
3

2l
+

3

5l
) ≤ 4,
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Figure 13.6: Average bitsize of errors Derr, Nerr and Dxerr. For each matrix size m =

100, . . . , 1000, average result for 5 random m × m matrices with entries being decimal

fraction with 5 (left) and 16 (right) decimal places is given. Napp is equal to s̃n(Ã).

and the expected error D
D(det(A)) is at most this big.

In the case when D = D(A)m, the numerator of N(det(A)) is approximated by s̃n(A′),
which is the output of Alg. 6.3.1 for A′. For random matrix A′, experiments in Sec.

8.8.1 suggest, that this is close to det(A′) by a few bits, even if only one random system

is solved in Alg. 6.3.1. Experiments have confirmed that s̃n(A′) can have supplementary

as well as missing factors compared toN(det(A)). Supplementary factors can be present

if D(A)m

D(det(A)) > 1 and missing factors can occur if det(A′)
s̃n

> 1. Both cases were observed

during the experiments, and the under-estimation occurred more often.

In the case of solving a system Ax = c of equations, experimental results have confirmed

that the heuristics from Sec. 13.3.1 are correct in the case of random matrices of decimal

fractions.

2. Matrices with random entries

In the case of random matrices with different denominators, we have analyzed distri-

butions Rat and RatUni, defined in Sec. 13.2.1. We have evaluated the approximations

for 5 random matrices of size 100, 150, . . . , 600 in the case ‖A‖r = 100, 2 random ma-

trices for sizes 50, 100, . . . , 250 in the case ‖A‖r = 10000 and 1 random matrix for sizes

20, 40, . . . , 100 in the case ‖A‖r = MAX INT . This restriction is due to long running

times of the determinant computation, which prevented us to obtain more results in

the case when ‖A‖r was bigger. The sets of random matrices consisted of 110 files in

the case of ‖A‖r = 100, and 20 matrices in the case ‖A‖r = 10000 and 10 matrices in

the case ‖A‖r = MAX INT .

Fig. 13.7,13.8 and 13.9 present the average errors of approximations Derr and Nerr of

D(det(A)) and N(det(A)) relative to the size of D(det(A)) and N(det(A)) resp. (top)

and the average error of approximation as a function of matrix size m (bottom). No

significant difference between the two distributions has been found and both absolute

and relative errors have comparable values.

Napp is always a factor of N(det(A)) for the examples tested. The relative error

Dxerr/bs(D(x)) is approximately equal to the relative errorNerr/ bs(N(det(A))). D(x)
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Figure 13.7: Top row: average bitsize of the error Derr, Nerr, Dxerr; Bottom row: average

bitsize of the error relative to the size of D(det(A)), N(det(A)), D(x). A is a random

matrix given according to Rat (left) or RatUni (left) distribution. ‖A‖r=100.

is often a factor of the approximation, except for 6 out of 110 cases when ‖A‖r = 100

and 1 case when ‖A‖r = MAX INT .

a) Case ‖A‖r = 100

Fig. 13.7 presents the evaluation of errors for ‖A‖r = 100 and distributions Rat and

RatUni. The results for random matrices are substantially different from the case of

random matrices of decimal fractions. First of all, the error is a function of matrix

size, reaching its maximum at m = 200. Derr is over 11 times greater than Nerr in

this case (resp. 11.9 and 11.3 times for Rat and RatUni distribution). With growing

m, the ratio decreases, reaching 2.5 and 1.5 resp for m = 600. The absolute error

decreases as well, reaching the average of 60 and 38 bits (in the case of Derr and

Nerr resp.)

The relative error decreases with m from 8.72 % (resp. 8.8 %) for m = 100 to 0.13%

(resp. 0.07%) for m = 600 in the case of Rat (resp. RatUni) distributions. This

means that asymptotically, the error is insignificant, as it can be recovered by small

number of CRA iterations.

Preconditioning by a diagonal matrix has implications on the structure of Smith

form of Ã. It can be notice, that size of the product µm−1(Ã) of (m − 1) smallest

invariant factors of Ã is equal the difference Derr − Nerr. This is small compared

to det(Ã) =
DappN(det(A))
D(det(A)) but could be enough to enforce bonus computation in

algorithm Alg. 8.4.1.
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Figure 13.8: Top row: average bitsize of the error Derr, Nerr, Dxerr; Bottom row: bitsize

of the error relative to the size of D(det(A)), N(det(A)), D(x). A is a random matrix given

according to Rat (left) or RatUni (left) distribution. ‖A‖r = 10000

The structure of Ã might be influenced by the existence of columns for which the

gcd is nontrivial. This might have be caused by choice of numerators of A or by

preconditioning. Thus, we propose to correct Ã in the following way.

For j = 1, . . . ,m, let Fj denote the gcd of the jth column of Ã. Let F = diagj(Fj).

Then we can set ˜̃A = ÃF−1. The fraction
Dapp

det(F ) is a preconditioner of det(A) i.e.
Dapp

det(F ) det(A) ∈ Z. D̃app =
Dapp

gcd(Dapp,det(F )) is the new determinant approximation.

Heuristically, we can set Ñapp = s̃n( ˜̃A) det(F )
gcd(Dapp,det(F )) and D̃xapp = D(b)

gcd(D(A),D(b))N
′
app.

The exact algorithm for correcting Ã is given in Alg. 14.1.3. See also Prop. 14.1.2

for details.

We have rerun the experiments for the corrected matrix ˜̃A and concluded, that the

approximations are better by 5 to 47 % in the case of Derr (better for bigger m)

and 0 to 15 % in the case of Nerr. Thus, we are going to adopt the correction as the

default method and refer to ˜̃A as Ã for the rest of this section. We will also skip

additional ĩn the notions of errors and approximations.

b) Case ‖A‖r = 10000

Fig. 13.8 presents the evaluation of the errors for ‖A‖r = 10000 and distributions

Rat and RatUni. The size of errors is increasing with m. Derr increases from 1150

(resp. 985) to 22666 (resp. 21728) in the case of Rat (resp. RatUni) distribution.

Nerr increases from 545 (resp. 512) to 4769 (resp. 4309). Dxerr increases from

531 (resp. 489) to 4744 (resp. 4306). The growth seems quadratic for Derr and

approximately O(m log(m)) for Nerr and Dxerr. Derr is 2 to 5 times greater than

Nerr and Dxerr, the ratio is increasing with m.
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Figure 13.9: Top row: average bitsize of the error Derr, Nerr, Dxerr; Bottom row: bitsize

of the error relative to the size of D(det(A)), N(det(A)), D(x). A is a random matrix given

according to Rat (left) or RatUni (left) distribution. ‖A‖r = MAX INT

The relative error is increasing in the case Derr and decreasing in the case of Nerr

and Dxerr. The ratio Derr
bs(D(det(A))) is in the interval [6.25, 7.15] (resp. [5.9,7.03])

for the Rat (resp. RatUni) distribution. The ratio Nerr
bs(N(det(A))) and Dxerr

bs(D(x)) is in

the interval [1.48, 2.83] (resp. [1.44,2.89]). The relative error is small but must be

considered relatively important in the case of Derr.

c) Case ‖A‖r = MAX INT

Fig. 13.9 presents the evaluation of the errors for ‖A‖r = MAX INT and distribu-

tions Rat and RatUni. The size of errors is increasing with m. Derr increases from

170 (resp. 173) to 4161 (resp. 4162) in the case of Rat (resp. RatUni) distributions.

Nerr increases from 121 (resp. 111) to 1602 (resp. 1629) in the case of Rat (resp.

RatUni) distributions. Dxerr increases from 109 (resp. 106) to 1595 (resp. 1621) in

the case of Rat (resp. RatUni) distributions. As before, growth seems quadratic for

Derr but in this case it is also better approximated O(m
√
m) for Nerr and Dxerr.

Derr is 1.5 to 2.5 times greater than Nerr and Dxerr, the ratio is again increasing

with m.

The relative errors seems relatively stable in all cases of Derr, Nerr and Dxerr. The

ratio Derr
bs(D(det(A))) is in the interval [1.46, 1.96] (resp. [1.42,1.79]) for the Rat (resp.

RatUni) distribution. The ratio Nerr
bs(N(det(A))) and Dxerr

bs(D(x)) is in the interval [0.63, 1.13]

(resp. [0.67,1.03]). This means that the errors are relatively insignificant in the case

when ‖A‖ = MAX INT .

Results for random matrices indicate, that the quality of preconditioning should be good

in the generic case of dense matrices. In general, approximating the denominator of det(A)
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is the challenging problem. The worst relative error that we have obtained in this case

was less than 10% for all experiments considered. Therefore, we would like to classify the

quality of denominator as :

1. applicable, if Derr < bs(D(det(A))); this results with the preconditioned CRA

scheme being superior to rational CRA;

2. good, if Derr <≤ 0.1 bs(D(det(A))); this corresponds to the 10% bound obtained for

random rational matrices in the best case; the error of preconditioning can often be

considered negligible in this case;

Additionally, notice that worst results have been obtained when matrix size m is correlated

with the norm ‖A‖r of the matrix.

Interestingly, the approximation ofN(det(A)) is often better than approximation ofD(det(A)).

This partially answers the problem posed in Remark. 13.4.1. Namely, the Smith form of Ã

seems to have a non-trivial structure, which means that only a small factor of D
D(det(A)) is

included in Napp. This might however cause unexpected behavior if Alg. 8.4.1 is considered

to compute the determinant of Ã.

13.4.2 Examples of Rational Matrices - Experimental Evaluation

We will consider examples of matrices from Sec. 13.2.2. We have completed the experi-

ments for Hilbert matrices of size 50 to 1000, Lehmer matrices of size 50 to 400, and most

of the matrices of BasisLib+ collection. Unfortunately, the computation was not finished

for bigger matrix sizes in the case of Lehmer matrices and for another 10 biggest matri-

ces of BasisLib+ collection. This includes matrices jendrec1,nemswrld,slptsk identified as

difficult in Sec. 13.2.2. Consequently, BasisLib+ is represented by 147 matrices in this

section.

1. Case of Hilbert matrices

For Hilbert matrices, N(det(A)) = 1 and a the formula for D(det(A)) is known,

yielding bs(D(det(A))) = O(n2), see e.g. [17]. Thus, we will not consider the

relative error of N(det(A)) approximation. We will also skip the analysis of Dxerr,

as it depends mostly on denominators of c and not on matrix Hn.

Fig. 13.10 presents the evaluation of errors for Hilbert matrices Hn as a function of

matrix size n. The relative error Derr/bs(D(det(Hn))) stabilizes around the value

8.2 with growing n. The size of error Derr grows like O(n2) and the size of error

Nerr like O(n). Thus, the ratio of errors Derr/Nerr is O(n) and approximately 0.11n

by our estimations. This leads to a very interesting conclusion on the structure of

the Smith form of H̃n. As Nerr = s̃n(Ã) in this case and Derr = bs(det(Ã)), this

implies that H̃n has at least 0.11n non-trivial invariant factors.

2. Case of Lehmer matrices
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Figure 13.10: Left: bitsize of the error Derr, Nerr for Hilbert matrices as a function of

matrix size n; Right: bitsize of the error Derr relative to the size of D(det(Hn)), scaling
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In the case of Lehmer matrices, the formula for the inverse matrix L−1
n can be given,

and it is known to be a symmetric tridiagonal matrix, see e.g. [87, Ex. 7] and the

references therein.

Fig. 13.11 presents the evaluation of the errors for Lehmer matrices Ln as a function

of matrix size n. The relative error Derr/bs(D(det(Ln)))) grows linearly with n, and

the ratio reaches high values from 11 to 60 in the tested range of n. The relative error

Nerr/ bs(N(det(Ln))) stabilizes around the value of 2, which is still over acceptable

point. However, the relative error Dxerr/bs(D(x)) stabilizes at an acceptable value

of 0.5.

This is the only optimistic point in this experiment, as Lehmer matrices proves not

only to be numerically unstable, but additionally do not have preconditioners of good

quality for exact computation. Both Dxapp and Napp were multiples of the actual

results.

As in the case of Hilbert matrices, the ratio (bs(N(det(A))) + Derr)/Nerr is linear

in n and equal to 0.27n by our estimations. This implies that L̃n has at least 0.27n

non-trivial invariant factors.

3. Case of collection BasisLib+
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bs(D(x) of was in the given range.

As can be seen in Fig. 13.12, the relative error of approximationDerr/ bs(D(det(A))))

vary greatly on the matrices of BasisLib+ collection. The approximation is good (ra-

tio < 0.1) for 24% of the collection and acceptable (ratio < 1) for 63%. For 29% the

ratio was still less than 10, whereas for another 6 examples it was between 10 and

100, and for 5 cases greater than 100. This gives a total of 87% of matrices, for which

preconditioning could induce higher number of iterations of preconditioned integer

CRA compared to the rational variant. Correction of Ã was necessary to obtain

the results. In the design of rational algorithms, we will have to take measures to

identify this cases and act accordingly.

Contrary to that, the quality of approximation of N(det(A)) was acceptable (with

the exception of one result of ratio 1.11) and good for 27 % of the collection. The

quality of D(x) approximation was very good, as Dxerr was less than 10% for all

instances, see Fig. 13.13. In fact, the error Derr was at most 32 bits for 83% of

matrices.
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A m bs(N) bs(D) bs(D(x)) Nerr Derr Dxerr
rd-rplusc-21 148 332 29 167 170 (168,3) 454 10 (4,7)

scrs8-2c-64 168 100 9 13 92 (91,2) 145 2 (2,1)

gen4 375 11281 10972 11201 4163 (137,4027) 192454 3971 (1,3971)

gen4.pre 367 11026 10736 10980 4234 (109,4126) 203266 4063 (1,4063)

route 339 180 1 78 104 (104,1) 20 7 (3,5)

msc98-ip 2897 1103 1 191 912 (912,1) 22 7 (1,7)

scrs8-2r-32 128 75 1 12 71 (70,2) 107 3 (3,1)

scrs8-2r-128 192 112 1 9 108 (107,2) 160 1 (1,1)

scrs8-2r-64 256 149 1 12 145 (144,2) 213 2 (2,1)

scrs8-2r-256 416 242 1 6 238 (237,2) 346 1 (1,1)

scrs8-2r-512 992 576 1 10 573 (572,2) 824 1 (1,1)

Table 13.2: Errors and relative errors for 11 most difficult examples of collection BasisLib+

based on the ratio Derr
bs(D(det(A))) . For brevity, N stands for N(det(A)) and D for D(det(A)).

In the case of bs(pq ), the sizes dlog(p)edlog(q)e are given in parentheses.

Let us now analyze the 11 worse cases of denominator approximation, for which

the ratio Derr/ bs(D(det(A)))) was greater than 10. Tab. 13.2 gives the errors and

relative errors for matrices in this case.

For 7 out of 11 examples, big ratio is due to the fact that the determinant of the

rational matrix is integer. This proves that this exceptional event can indeed be the

case for rational problems that we might be given. The size of matrices varies from

128 to 2897 those examples. Surely, the ratio Derr/ bs(D(det(A))) = Derr is very

large in this case.

Given the size of the numerator, the number of steps of the integer CRA compared

to the rational variant is bigger by approximately 11% in the case of route, only 2%

in the case of msc98-ip, but almost 2.5 times larger for scrs8-2r series of matrices.

In the next 2 cases, the denominator is small, which leads to similar conclusions.

Notice, that we have also failed to approximate the numerator N(det(A)) correctly,

ending up with a bad underestimation. However, this has almost no influence to

the case of approximating D(x) in the case of system solving, as the approximation

Dxapp was correct up to a few bits. Based on the data, we could also conclude,

that the corresponding matrices Ã have non-trivial Smith form, with over 0.2m

non-trivial invariant factors in the case of scrs8-2r series. The number of invari-

ant factors is estimated as bs(det(Ã))
Napp

, which can be computed using data from Tab.

13.2 as bs(N(det(A)))−Nerr(1) +Nerr(2), where Nerr(1) and Nerr(2)) are given in

parentheses next to Nerr.

The two remaining cases of gen4 and gen4.pre are actually instances of the same

computational problem. The results are substantially different in his case, as the

size of numerator and denominator is large and comparable. The numerator is

relatively well approximated by s̃n(Ã), with the relative error of resp. 0.38 and 0.37,

and is in fact mostly overestimated. The error Dxerr is comparable to Nerr. Notice,

that matrices gen4 and gen4.pre were identified in Tab. 13.1 as difficult when the

growth in norm due to preconditioning is considered. Indeed, both matrices consist
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of fractions with very different denominators. Also, we have estimated the number

of non-trivial invariant factors of Ã as over 13 an 14 respectively.

The emphasis of this section is being put on approximating the denominators for deter-

minant, minimal/characteristic polynomial computation and system solving . Whereas

the quality of approximation is generally satisfactory, for certain examples it is completely

misguiding. Therefore in Ch. 14 our goal would be to construct an adaptive algorithm

that will be able to identify such cases and act accordingly.



14
Adaptive Rational Algorithms

The algorithms for computation with rational matrices are based on the ideas described

in Ch. 10 and 13. We may distinguish three main strategies.

1. First, rational matrix A is given and CR Algorithm 10.1.1 is run to reconstruct

rational result X(A) using early terminated strategy for the rational case. Also, any

strategy which computes preconditioner D but cannot guarantee that D ·X(A) ∈ Z
is classified here. This is the pure rational variant;

2. Second, rational matrix A is given and we define vector of preconditioners D such

that D ·X(A) ∈ Z. Alg. 10.1.1 is run with preconditioner D to reconstruct integer

value D ·X(A). No rational reconstruction is needed in In Alg. 10.1.1. This is the

case of result preconditioning;

3. Finally, instead on A, computation is performed for preconditioned matrix B =

diag(Di)A or B = Adiag(Ei) or B = D(A)A, see Sec. 13.1. Any integer algorithm

can be run to compute X(B), which in particular permits p-adic lifting, which does

not carry on to the integer case. Then, X(A) is derived from X(B) by using Prop.

13.1.1, 13.1.2 etc. This is the case of matrix preconditioning;

Strategies might be run in parallel in a form of an adaptive algorithm. The solution is

obtain as soon as one of the strategies terminates. The choice of available and applicable

strategies depends on the problem. In the following sections we will discuss the case of

system solving, determinant and characteristic/minimal polynomial computation.

14.1 Adaptive Rational Algorithms - Case Study

The algorithms that we are going to present are variants of Alg. 10.1.1. As such, they

requires functions image(Ap, A, p) and iteration(y,Ap) to be defined, where image com-

putes matrix Ap = A mod p over Zp, and iteration computes X(Ap), see Sec. 10.2 and

10.3.

In Sec. 9.1, representations
[
aij
bij

]
, (D(A), A′), (diag(Di), Ã1) or (diag(Ei), Ã2) are pro-

posed for rational matrix A. Recall that D(A) is the common denominator of entries of
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A and Di and Ej are common denominators of entries in the ith row and the jth column

respectively. Moreover D = gcd(
∏
Di,
∏
Ei)) is defined in Eq. (13.5).

For integer or rational matrix X, we will distinguish between two cases of image(X)

representation. We will set image(X) = RatIm(Y ) if X is represented as a ratio-

nal matrix Y and image(X) = IntIm(Z) if X is represented by an integer matrix Z.

Through this chapter, we consider the representations of rational matrix A as
[
aij
bij

]
,

(D(A), A′), (diag(Di), Ã1) or (diag(Ei), Ã2). Reciprocally, matrix Ã1 can be represented

e.g. by (diag(D−1
i ), A) or (diag( Di

D(A)), A′) if the situation requires. Thus, rational ma-

trix can be represented by its integer preconditioned variant, and reciprocally the integer

matrix can be represented by its rational counterpart. Representations of A′, Ã2 can be

considered accordingly.

Best imaging scheme can be determined by explicit image computation for random prime,

or, by a simplified method, which will compute the image of one or several entries.

We will assume that function ChooseImage(X) returns the best representation. Unless

ChooseImage(X) is explicitly called, the default integer/rational representation is used;

Integer reconstruction can generally be defined incrementally by Eq. (10.4.1), although de-

layed reconstruction, see Sec. 10.4.2 or adaptive strategy of Sec. 10.7 might be considered

as well. We use a boolean function UseRatrec to denote the scheduling of rational recon-

struction in purely rational variant. Scheduling can be incremental, quadratic, geometric

or adaptive, see Sec. 10.5 and 10.7.

Finally, two termination strategies should be available, namely IntET and RatET which

correspond to early termination condition in the cases of rational and integer reconstruc-

tion. IntET and RatET ensure that the result is correct with a probability at least 1− ε,
where ε > 0 is given on input, whenever one of strategies returns true. A size P of primes

and function gen prime should fulfill the requirements of Lem. 10.6.1, 10.6.3 and Cor.

10.6.6. In the case of the reconstruction of a vector, see Sec. 10.6.3.

14.1.1 System Solving

In the case of system solving, we will provide an additional argument c which is a rational

vector of size m given at the right-hand side of the equation Ax = c. In addition to

notations introduced earlier in the section, let us recall the notations of Prop. 13.1.1.

Recall that D(c) is the common denominator entries of c and Di(c), the denominator of

the ith entry. Additionally, we set D′ = diag(Di(c)).

Only purely rational variant or matrix preconditioning can be used, as no multiple of de-

nominator for resulting vector A−1c is known beforehand. Heuristic preconditioner defined

in Eq. (13.10) can be used to enhance early termination. Matrix preconditioning variant

is based on Prop. 13.1.1. The bounds D and N for the denominators and numerators of

A−1x are given in Prop. 13.3.11. The bounds and preconditioners depend on c.

If one entry of vector x is found, it might be used as preconditioner for other entries, which

should reduce the time of vector reconstruction. This strategy is often adapted in linear
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algebra softwares, see e.g. [16]and [118, Sec. 3.2.3] for description. As remarked in Sec.

13.3, early termination seems necessary in order to effectively solve a rational system of

equations.

In the case of integer system of equations, rational CRA was historically the first algo-

rithm, see [12]. The algorithm carries on to the rational case without a change. By using

an early termination strategy of Wang [129, 130] or Monagan [90], one can obtain the

output-dependent complexity O∼(K) i.e. linear in K, where K is the number of iterations

needed to obtain the residue which is sufficiently large to reconstruct the result and early

terminate. Let A−1c be the solution of the system and D(A−1c) and N(A−1c) its maximal

denominator and numerator respectively. Then K is equal to

a) K = O(max(log(D(A−1c)), log(N(A−1c)))) for the Wang’s strategy,

b) K = O(log(D(A−1c)) + log(N(A−1c))) for the Monagan’s strategy.

See Sec. 11.6.2 for the experimental comparison of Wang’s and Monagan’s early termina-

tion strategies. The CR algorithm can be applied to solving the original system as well as

the preconditioned integer systems.

Other algorithms for integer system solving, based on p-adic lifting were described in Sec.

6.3.5. See also [27, 122, 43]. The complexity of an early terminated strategy for Dixon

p-adic lifting is O (mω) +O
(
m2K log(m‖A‖)

)
+O∼(K). K is the number of steps and is

the same as in the case of rational CRA.

The terms stand for the cost of inverse mod p computation by LU (applied to a dense

m ×m matrix), the cost of K lifting steps (which is dominated by integer matrix-vector

product Av, where ‖v‖ ≤ p), and the cost of rational reconstruction. The latter can be

made O∼(K) if fast rational reconstruction of [131] (see Alg. 11.4.3,11.5.1) is applied, and

rational reconstruction is well scheduled, see Sec. 10.5. Ideas of Sec. 10.7 apply as well.

Using the classic Euclidean algorithm and geometric scheduling, the cost becomes O(K2).

See also [117, Thm. 11] for more details. p-adic based algorithms can be applied only to

integer systems.

In general, scheduling is necessary in order to obtain good complexity and good running

times of rational CRA and p-adic schemes.

Remark 14.1.1 (Adaptive Algorithm of Wan [128]) In his work [127, 128], Wan

has proposed a different approach for solving well conditioned integer systems, by ap-

plying a combination of numerical and symbolic methods. This approach can be carried

on to the rational case, by matrix preconditioning, see [118, Alg.2],[117, Alg. 4]. It is

not our intention to go into details of this algorithm, we prefer to focus on rational meth-

ods that can be applied in the case of ill-condition matrices. We would like, however,

to emphasize some similarities between the algorithm of [128] and p-adic lifting, that are

essential from our point of view.

The algorithm of [128] starts with a numeric computation of the inverse of a matrix. Then,

K ′ iterations are performed, which consist of matrix-vector a product Av, where v has word
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size entries (cost O(m2 log(m‖A‖))). Additionally, rational reconstruction is performed at

the end. K ′ is determined in the adaptive way, and algorithm runs until required precision

is obtained. The precision is related to the maximal size of the denominator and thus to the

bounds of Prop. 13.3.11. Experiments of [118, 128] suggest, that the method is generally

faster but comparable to early terminated p-adic lifting at the same time. In [128, Sec.

3.1], Wan points out, that this is due to the fact, that more bits of the solutions are

recovered by numerical solver for well conditioned matrix, than for a p-adic solver which

uses BLAS routines.

Thus, although we do not explicitly consider the solver of [128, 117, 118] in the rest of

this chapter, we feel free to remark, that our discussion can be carried on to the case. In

particular, the running time of both Wan’s algorithm and p-adic lifting is proportional

to the cost of one matrix-vector product. Consequently, conditions that we design later

on in Alg. 14.1.1 and 14.1.4 can be adjusted to the of Wan’s algorithm by eventually

normalizing the time of one iteration by the number of bits recovered.

In [128], the author remarked that the algorithms does not have to be completed in order

to obtain the result with certain precision. Bearing this in mind, it seems plausible, that a

scheduled rational reconstruction can be incorporated in the main loop of the algorithm,

which could lead to early termination. In this case, preconditioning by Dxapp could be

applicable, as intuitively, it reduces the precision to which the denominator has to be

approximated. The probability of success of early termination and the performance of

Wan’s algorithm in this case remains to be tested. The number of steps of such approach

should be asymptotically equal to K, for the case of Wang’s and Monagan’s termination

strategies.

Choice of Solver

Denote by p the upper bound on primes used in CRA and p-adic lifting. Assume that in

both cases, primes of the same size can be used.

By Prop. 13.1.1, the following systems can be solved:

- Ax = c; by rational CRA,

- A′x′ = D(c)c; by rational CRA or p-adic solving,

- (̃D′A)1x = D1D
′c, where (̃D′A)1 = D1D

′A; by rational CRA or p-adic solving,

- (̃D′A)2y = D′c, where (̃D′A)2 = D′AD2, x = D2y; by rational CRA or p-adic

solving;

In the case of CRA and p-adic solving the same scheduling of rational reconstruction can

be envisaged. In the case of computation of x, the same number of iterations (i.e. LU

modular routines or lifting steps) is expected. Consequently, the performance of rational

CRA and p-adic solving depends on the cost of one iteration. As the bitsize of y might

be bigger or smaller than the bitsize of x, the number of iterations for the last solver can



14.1. Adaptive Rational Algorithms - Case Study 229

be different. In the most general case, bs(y) = bs(x) ± log(‖D2‖), see Eq. 13.17 for the

definition of bitsize.

For integer matrix X, the complexity of one p-adic lifting step is O(m2 log(m‖X‖)) bit

operations. For one iteration of CRA, the complexity is O(m2 log(‖X‖) + mω). Thus,

p-adic lifting is always better in the asymptotic case. For a particular matrix instance,

this can also be confirmed experimentally, by explicitly comparing the times of computing

one matrix-vector product Xv (where v is a random integer vector and ‖v‖ ≤ p) and

computing one CRA iteration.

The choice between integer matrices A′, (̃D′A)1 and (̃D′A)2 can easily be made, as the

time of one iteration increases with matrix norm. Thus, we may consider only the matrix

with the smallest norm. Notice, that we might require to modify this approach if matrix A′

is structured and consequently easier to manipulate. We will further assume that integer

matrix A is chosen based on the norms and structure comparison. Thus, we are left with

the choice between rational CRA for rational matrix A and p-adic lifting for A.

The norms of A and A can differ greatly for particular matrix instances, see Sec. 13.2.

A bunch of algorithms, including hybrid solutions can be used in the case rational and

integer arithmetics, see e.g. [125]. Even more algorithm can be used in the case of CRA

and p-adic iterations, which includes running sparse procedures in both or just one case.

This makes the asymptotic complexity analysis quite complicated. Our algorithm can

made a choice depending on the actual implementation, by explicit comparing the timings

and choosing the fastest solution. Independently of the choice, for the asymptotic analysis

we may assume, that the algorithm with best asymptotic complexity was chosen.

We propose that a procedure ChooseSolver(A,A), see Alg. 14.1.1, is run in order to de-

termine the faster solver. More generally ChooseSolver(A,A′, Ã1, Ã2) can be considered,

which additionally determines A by evaluation of norms.

Algorithm 14.1.1 ChooseSolver Procedure

Require: : A ∈ Qm×m, A ∈ Zm×m, p prime;

Ensure: : Matrix Â and method M ∈ {CRA, p-adic}, whichever is faster;

1: Run ChooseImage(A) and find the best representation for A;

2: Compute A mod p; Compute A−1 mod p; Store timing in TA;

3: Generate a random vector v ∈ Zp;
4: Compute Av ∈ Z; Store timing in TA;

5: if TA > TA then Return (A, p-adic);

6: else Return (A, CRA);

In the case when rational CRA have been chosen, A−1 mod p computed by ChooseSolver

can be used to calculate the first residue. In the case when p-adic lifting has been chosen,

A
−1

mod p can be determined by multiplying A−1 mod p by diagonal matrices mod p.

Thus, ChooseSolver can be computed at the initialization phase at a small additional cost

of one random Av product computation. Surely, the computation of Av can be interrupted

if the time limit TA is reached.
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CRA and p-adic lifting are methods to obtain the solution modulo a large modulus M .

Once this is done, rational reconstruction might be used to recover x = D2y or y = D−1
2 x.

Thus, we terminate in a number of steps proportional to min(bs(x),bs(y)) by scheduling

rational reconstruction on x and y at the same time.

Preconditioning

The approximation Dxapp of denominator D(x) can be found by solving an integer system

of equations Ã1z = b, see Eq. (13.10). The results of experiments presented in Sec. 13.2.2

suggest, that the norm of ‖Ã1‖ can be considerably smaller than the norm of ‖(̃D′A)1‖ or

‖A′‖, see Fig. 13.5 for a particular choice of vector b. Experiments in Sec. 13.4 suggest

that the quality of approximation Dxapp = D(c)
gcd(D(c),D(A)D(z), see Eq. (13.9) is very good,

and Dxapp · x is often a vector of fractions with small denominators.

The approximation Dxapp is provided by Eq. (13.9) after one solving has been done for A

by any method. If this is not the case, we might choose to solve a random integer system

of equations Ã1z = b first, before solving Eq. Ax = c with preconditioning by a method

determined in ChooseSolver.

The part D(c)
gcd(D(c),D(A) of preconditioner can be computed at low cost. Computation of

the remaining part D(z) is costly, as it requires another system solving. Let us now

evaluate the case, in which it is worth trying. We will heuristically assume that the size of

numerator N(z) is approximately the same as the size of denominator D(z) in the case of

random system of equations Ã1z = b. Secondly, we will assume that D(z) approximates

a factor of D(x), i.e. D(x)
D(z) has a small denominator. This is fulfilled in particular if the

approximation is good.

Let TÃ be the time of computing Ãv for a vector v, ‖v‖ ≤ p. Then, the computation

od D(z) takes at least 2α log(D(z))TÃ by p-adic lifting, where α ≈ 1
log(p) depends on the

prime p used. We can ignore the time of inverse computation, as the inverse can later

be used while solving Ax = c. We can ignore the time of rational reconstruction, as it

is the same for the same number of iterations, performed while solving Ax = c. We may

assume that computing z takes at most is 4α log(D(z))TÃ, if geometric scheduling is used

for reconstruction. Therefore, we can compute D(z) in about 4α log(D(z))TÃ.

Let T
Â

be the time of one iteration of solving Ax = b by the method determined in

ChooseSolver. Computing D(z) bits of solution x would take α log(D(z))T
Â

time. As-

suming that D(z) ’almost’ divides D(x), this means that we have gained in time as soon

as

4α log(D(z))TÃ < α log(D(z))T
Â
⇔ TÃ ≤

T
Â

4
. (14.1)

The bound for the ratio
TÃ
T
Â

can be adjusted to another value between 0.25 and 0.5, if we

assume that early termination occurs faster for random vector b and random prime p in

geometric scheduling. Procedure ChoosePrec(Â, Ã) evaluates Eq. (14.1) and returns true

if preconditioner should be computed.
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Algorithm

The adaptive rational algorithm for system solving is defined in Alg. 14.1.2. We keep the

notions introduced earlier in this section.

Algorithm 14.1.2 System solving

Require: m×m matrix A.

Require: c - a m×m rational vector,

Require: ChooseImage to choose best representation for imaging,

Require: ChooseSolver to choose best solver, see Alg. 14.1.1

Require: ChoosePrec to determine if preconditioner should be computed,

Ensure: x - solution to Ax = b.

1: Compute D′ = diagDi(c), A
′, (̃D′A)1, (̃D

′A)2;

2: Compute D2, D(A), D(c); # See Prop. 13.1.1

3: (Â,M) = ChooseSolver(A,A′, (̃D′A)1, (̃D
′A)2);

4: Dxapp = D(c)
gcd(D(A),D(c)) ;

5: if ChoosePrec(Â, Ã) then

6: Generate random vector b ∈ Zm;

7: Solve Ãz = b;

8: Dxapp = Dxapp ·D(z);

9: if M = p-adic then

10: Run p-adic solver for Â, early terminate for Dxappx or x or y = D−1
2 x or Dxappy;

11: else

12: ChooseImage(Â);

13: Run rational CRA for Â, early terminate for Dxappx or x or y = D−1
2 x or Dxappy;

14: Return x;

14.1.2 Determinant

All three strategies can be used in the case of determinant computation. For result pre-

conditioning strategy, D, given by Eq. (13.5) provides a multiple of the denominator

D(det(A)), see Prop. 13.3.1. In the case of matrix preconditioning, see Prop. 13.1.1, we

can use any of matrices A′, Ã1, Ã2 and recover det(A) by Eq. (13.1). Notice, that det(A′)
is the biggest of all integer matrices, therefore A′ can only be envisaged as representation

for imaging in the case of structured matrices.

The evaluation of quality of preconditioning in Sec. 13.4 leads to the conclusion, that the

error of approximation often do not exceed the actual denominator i.e. bs( D
D(det(A))) <

bs(D(det(A))). This is definitely true for the generic case of random matrices, see Fig.

13.6,13.7,13.8, 13.9. This has also been the case for most of other interesting examples

we have encountered, see 13.10,13.12. However, preconditioning might lead to overesti-

mations, see Fig. 13.11 and Tab. 13.2. In this case, purely rational variant could provide

solution quicker than preconditioned algorithms.
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Correction of Ã

Matrices Ã1, Ã2 can be corrected by finding column and row gcds, as remarked in Sec.

13.4.1. This leads to the procedure Correction(Ã) given in Alg. 14.1.3. Alg. 14.1.3

changes matrix Ãin in situ and returns corrected matrix Ãout and integer d ∈ N such that:

- det(Ã)out = det(Ã)in
d ;

- the gcds of every column and row of Ã is 1;

Algorithm 14.1.3 Correction Procedure

Require: : Ã ∈ Zm×m;

Ensure: : Matrix Ã, s.t. gcd of every row and column is 1;

Ensure: : d, s.t. det(Ã)out = det(Ã)in
d ;

1: modified = true; d = 1;

2: while modified do

3: modified = false;

4: for j = 1 to m do

5: g = gcd(Ã[1..m][j]);

6: if g > 1 then

7: Ã[1..m][j] = Ã[1..m][j]/g;

8: d = d · g;modified =true;

9: end for

10: for i = 1 to m do

11: g = gcd(Ã[i][1..m]);

12: if g > 1 then

13: Ã[i][1..m] = Ã[i][1..m]/g;

14: d = d · g;modified =true;

15: end for

16: end while

Proposition 14.1.2 (Correction of Ã) Let A be a m×m rational matrix and let Ã1 =

diag(Di)A and Ã2 = Adiag(Ei), where Di (resp. Ei) are common row (resp. column)

denominators of A. Define D = gcd(
∏
Di,
∏
Ei), see Eq. (13.5). Suppose that Ã1, Ã2 are

modified by Alg. 14.1.3 and let d1, d2 be the values outputted by Alg. 14.1.3 respectively

for Ã1, Ã2. Define

D′ = gcd(

∏
Di

gcd(
∏
Di, d1)

,

∏
Ei

gcd(
∏
Ei, d2)

) (14.2)

N ′ = lcm(
d1

gcd(
∏
Di, d1)

,
d2

gcd(
∏
Ei, d2)

).

Then D(det(A)) | D′ | D, and N ′ | N(det(A)).
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PROOF Without loss of generality, it suffices to show that D(det(A)) |
∏
Di

gcd(
∏
Di,d1) and

d1
gcd(

∏
Di,d1) | N(det(A)) for Ã1, d1.

Let Ã1,in denote matrix Ã1 at the input to Alg. 14.1.3 and Ã1,out, the matrix at the

output. Then det(Ã1,in) = ddet(Ã1,out), by m-linearity of the determinant. By Prop.

13.1.1, we have

det(A) =
det(Ã1,in)∏

Di
=

det(Ã1,out)d1∏
Di

.

Let g1 = gcd(d1,
∏
Di). Then

det(Ã1,out)d1∏
Di

=
det(Ã1,out)

d1
g1∏

Di
g1

=
αxd1

g1

αD(det(A))
,

for certain x ∈ Z. Thus, D(det(A)) divides
∏
Di
g1

and d1
g1

divides N(det(A)). The case of

Ã2, d2 is analogous. Hence, D′, N ′ can be defined as the gcd and lcm respectively.

Choice of Integer Algorithm

Preconditioned rational matrices Ã1, Ã2 provide good benchmark cases for testing Alg.

8.4.1. As remarked in conclusions to Sec. 13.4.1 and in Sec. 13.4.2, the Smith form of

preconditioned matrix Ã could be non-trivial. Moreover, log(‖Ã‖) can be large, see 13.2,

which means that ideas of Sec. 8.9 gain on importance, with a special emphasis to a priori

estimation of sm(Ãi), i = 1, 2 and early termination for p-adic lifting in Alg. 6.3.1.

Therefore, in Alg. 14.1.5 we propose to use the evaluation similar as in ChooseSolver

(see Alg. 14.1.1) and ChoosePrec, in order to decide, whether invariant factors should

be computed. Recall that invariant factors are computed by solving equation Ãx = b

for random vector b, see Alg. 6.3.1, Alg. 7.3.1. For integer matrix Ã, p-adic solving is

asymptotically preferred. Then, sm(Ã) is approximated by D(x). We will assume for the

analysis that D(x) is close to sm(Ã).

Analogously as in the case of ChoosePrec computation, recovering log(sm(Ã)) bits of

det(Ã) by CRA requires α log(sm(Ã)) steps, where α ≈ 1
log(p) depends on the bound p

on primes used in CRA. In order to solve the system, we have to compute N(x), and

terminate a scheduled rational reconstruction. Assuming that log(N(x)) ≈ log(D(x)),

and that geometric scheduling is used for rational reconstruction, this means that up to

4 times more iterations of p-adic lifting are necessary in order to compute sm(Ã). We

ignored the time of rational reconstruction, which could lead to the even worst ratio in

terms of time. Thus, we propose procedure ChooseLIF in Alg. 14.1.4 which returns true,

if it evaluates that the computation of sm(Ã) by p-adic lifting is cheaper.

The result det(Ã) mod p can be added to the CR loop of Alg. 8.4.1. Thus, the only

additional cost of ChooseLIF procedure is that of random Ãv product computation.

Surely, the computation of Av can be interrupted if the time limit 4TCRA is reached.
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Algorithm 14.1.4 ChooseLIF Procedure

Require: : Ã ∈ Zm×m, p prime;

Ensure: : true, if sm(Ã) should be computed; false otherwise;

1: Run ChooseImage(Ã) and find the best representation for Ã;

2: Compute Ã mod p; Compute det(Ã) mod p; Store timing in TCRA;

3: Generate a random vector v ∈ Zp;
4: Compute Ãv ∈ Z; Store timing in TLIF ;

5: if 4TCRA > TLIF then Return true;

6: else Return false;

Algorithm

The adaptive rational algorithm for determinant computation is defined in Alg. 14.1.5.

We assume that A is a m×m matrix.

Define matrices Ã1, Ã2 as output to procedure Correction on diag(Di)A, Adiag(Ei) resp.,

c.f. Alg. 14.1.3. Let d1, d2 be the values returned by the algorithm in this case and define

D′1 =
∏
Di

gcd(
∏
Di,d1) and D′2 =

∏
Ei

gcd(
∏
Ei,d2) , N ′1 = d1

gcd(
∏
Di,d1) , N

′
2 = d2

gcd(
∏
Ei,d2) , see Prop.

14.1.2. By Prop. 14.1.2, we have that D′
N ′ det(A) ∈ Z, where D′ = gcd(D′1, D

′
2) and

N ′ = lcm(N ′1, N
′
2).

The following determinant computations can equivalently be performed:

- det(A); by rational CRA,

- det(A); by preconditioned integer CRA with multiplicative preconditioner D′
N ′ , where

D′, N ′ are defined in Eq. (14.2) (or, D′ = D,N ′ = 1 if Correction is not run).

- det(Ãi), i = 1, 2; by integer determinant algorithm; det(A) =
N ′i
D′i

det(Ãi) is returned;

See Sec. 4.1 and 8.10.1 for references on integer determinant algorithms. See also [2,

122, 44, 79] among others. We will consider the use of out adaptive algorithm Alg. 8.4.1

(see also Alg. 8.3.1, 8.3.2) for Ã = Ã1, Ã2. Alg .8.4.1 combines the ideas of algorithms

[2, 122, 44, 79], see Part. II.

Alg. 14.1.5 intertwines the above-mentioned variants of computation. We refer by RatDet -

to the part which corresponds to running rational CRA. By PrecDet we refer to running

preconditioned integer CRA for A. In the case when integer algorithm is run for Ãi, we

will refer to the case when sm(Ã) is computed as PrecBonus. In the opposite case, integer

CRA could be run on matrix Ãi. However, it is known beforehand, that preconditioned

integer CRA is looking for smaller value, thus possibly terminating in smaller number

of iterations. The choice of optimal imaging scheme for A (c.f procedure ChooseImage)

could lead to the actual computation being performed on Ãi anyway.

Alg. 14.1.5 is a variant of CRA, with dual integer or rational (case RatDet) termination

condition, with or without preconditioning. Variable preconditioner is used in the case of

PrecBonus strategy.
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Algorithm 14.1.5 Determinant

Ensure: x - the determinant of A.

1: Compute diag(Di), diag(Ei); P1 = det(diag(Di)), P2 = det(diag(Ei));

2: Ã1 = diag(Di)A, Ã2 = Adiag(Ei);

3: for i = 1, 2 do

4: di = Correction(Ãi); Compute ‖Ãi‖;
5: Compute D′i = Pi

gcd(Pi,di)
, N ′i = di

gcd(Pi,di)
;

6: end for

7: if ‖Ã1‖ < ‖Ã2‖ then i = 1 else i = 2;

8: D = gcd(D′1, D
′
2);

9: ChooseImage(A);

10: π = 1, k = m;

11: repeat

12: if ChooseLIF (Ãi) then

{PrecBonus}
14: Run Alg. 8.3.2 to compute s̃k ≈ sk(Ãi); k = k − 1;

15: N ′i = s̃k ·N ′i ;
16: N = lcm(N ′1, N

′
2);

{PrecDet}
18: Run some steps of Alg. 10.1.1 on A with preconditioner D

N to compute x = det(A);

{RatDet}
20: if UseRatrec then Try to reconstruct x by rational reconstruction;

21: if IntET or RatET then Return x;

22: until IntET or RatET

The idea of using π ≈∏ sk(Ãi) in the determinant computation is explained in Ch. 8, see

Sec. 8.5. π is approximated in the way, that ensures that π | det(Ãi). Thus, it ensures

that D
N det(A) ∈ Z, where D,N are defined in the algorithm, see Prop. 14.1.2.

Technical details presented in Ch. 8 include determining the number of CRA steps that

should be performed at each iteration of the while loop and adding a worst-case switch

to another integer algorithm of better asymptotic complexity. See Alg. 8.4.1 for details.

For sake of simplicity, we omit these details in Alg. 14.1.5.

In Sec. 14.2 we analyze the complexities of strategic choices RatDet, PrecDet and Prec-

Bonus in detail, depending on matrix type. We analyze two main cases: matrices where

the common denominator of all entries, the common denominator of the rows (columns)

and the norm of A are of the same order i.e. D(A) = O(Di) = O(‖A‖) and matrices with

entries given as fractions with different denominators. We will also evaluate the strategic

choices RatDet, PrecDet and PrecBonus experimentally in Sec. 14.3.

Alg. 14.1.5 can also be run for integer matrix A. In this case, at the input of the algorithm,

A = Ã1 = Ã2 and Alg. 14.1.5 presents a variant of Alg. 8.4.1, for which CRA is run in the

worst case. Alg. 14.1.5 improves Alg. 8.4.1 by introducing the following modifications.
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- Correction(A) is performed. It has been conjectured in Sec. 8.10.1, that such

procedure might improve the expected number of non-trivial invariant factors of a

sparse matrix; experiments in Sec. 14.3 have confirmed better running times.

- It introduces early terminated p-adic lifting to the algorithm. By checking for ter-

mination of RatDet, the algorithm is robust to errors of early termination of p-adic

lifting, but runs with the worst case complexity in this case;

- Combined with early terminated p-adic lifting, it allows for a prior evaluation of

sm(A), which is postulated in Sec. 8.9;

14.1.3 Minimal and Characteristic Polynomial

Let p(A) =
∑d

i=0 cix
i be the characteristic/minimal polynomial of A that we are going to

compute. All three strategies are available. Yet, only A′ can be used as preconditioned

matrix, see Prop. 13.1.2. Then the coefficients c′i of p(A′) are equal to D(A)d−ici. Only

CR Algorithm is available in the integer case, see [109].

Theorem 13.3.2 gives a vector preconditioner defined by Eq. (13.6) as D = [Dapp(i)],

where

Dapp(i) = gcd(D(A)d−i, D) for i = 0, . . . , d, (14.3)

and D is given in Eq. (13.5). It is easy to see, that D can be replaced by D′, defined in Eq.

(14.2). The coefficients of D · [ci]i=1..d that we are going to reconstruct are never larger

that the coefficients of p(A′), see Prop. 13.1.1. This implies that matrix preconditioning

is impractical in the case of minimal/characteristic polynomial computation and A′ can

only by used for imagining purposes. Both matrices Ã1, Ã2 can be used for imaging as

well, but the original matrix A mod p has to be reconstructed from Ãi mod p.

The algorithm for computation of minimal and characteristic polynomial is equivalent to

Alg. 10.1.1 for given set of vector preconditioners D = {D, [1]i=0..d}, using integer/rational

termination strategy respectively. We expect that the quality of preconditioner D will

be good for most of the entries, see Sec. 13.4, for the results on quality of Dapp(0) = D

approximation. We will validate this experimentally in Sec. 14.3.3. Preconditioner [1]i=0..d

will work well in the very unlikely opposite case, when all coefficients of p(A) are integer.

Notice, that minimal polynomial computation is an example of vector CRA, where the

entries of the reconstructed vector [ci] are possibly different in bitsize. Preconditioners Di

scale accordingly. This means that reconstruction the entries of the vector one by can be

better than reconstructing a random linear combination r · [ci], see Sec. 10.6.3.

If we start by reconstructing cm−1 (the trace), which is presumably the smallest and would

be reconstructed first, its denominator D(cm−1) can be used to approximate D(cm−2). In-

ductively, D(ci−1) can be used to approximate D(ci). This is based on the heuristic

assumption, that the denominators of p(A) are correlated, even if the preconditioner D is

erroneous. Notice, that once cm−1, . . . , ci−1 are reconstructed, the quality of precondition-

ing can be quite well evaluated. In this case, three separate rational reconstruction can
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be carried out, for Dici, D(ci−1)ci and ci. We will evaluate this approach experimentally

in Sec. 14.3.3.

Reciprocally, we may start the reconstruction by the biggest entry, which is c0 (the de-

terminant). In this case, we may heuristically assume, that once c0 is reconstructed, the

modulus is large enough for the rest of coefficients as well.

14.1.4 Correctness of Rational Algorithms

Proposition 14.1.3 (Correctness of Rational Algorithms) Suppose that termina-

tions strategies IntET and RatET are defined for the Chinese Remaindering Algorithm

and p-adic lifting, which ensure 1 − ε probability of correctness of the result. Then, Alg.

14.1.2, Alg. 14.1.5 and the introspective minimal/characteristic polynomial algorithm in

14.1.3 terminate and return the result, which is correct with probability 1− ε.

PROOF Termination of CRA is defined independently of preconditioning, based on re-

occurrence of residue, see Lem. 10.6.3. Lem. 10.6.1 ensures that integer CRA finally

terminates. Wang’s [129, 130] and Monagan [90] strategies ensure that rational recon-

struction terminates in the case of CRA and p-adic lifting. During the course of Alg.

14.1.2, Alg. 14.1.5 and the algorithm of Sec. 14.1.3 at least one of the results thatare

reconstructed by CRA or p-adic is not affected by variable preconditioning, thus ensuring

termination.

Correctness of CRA is defined in Lem. 10.6.1 by reoccurrence of the residue. Several CRA

steps might also be used certify the result of early terminated p-adic lifting and rational

CRA with 1−ε probability of correctness, see 10.6.2. Reoccurrence of residue ensures that

it is correctly computed over Z with 1− ε probability. The actual result is recovered from

the residue by inverting the preconditioning, and thus has the same 1 − ε probability of

correctness.

14.2 Complexity Analysis of Alg. 14.1.5

In this section we study the complexity of strategies RatDet, PrecDet and PrecBonus -

of Alg. 14.1.5. Without loss of generality, we assume that N ′i , computed in line 5 of

Alg. 14.1.5 are qual to 1. Then, we divide Alg. 14.1.5 into steps that are necessary for

each strategy and assume that termination happens for the corresponding value det(A)

by RatET or D det(A) and D
π det(A), π =

∏
s̃k by IntET respectively.

In subsection 14.2.1 we present the analysis of the general case, where we assume that the

entries of the matrix are fractions with numerators and denominators bounded by ‖A‖r.
Then, in subsection 14.2.2, we will focus on two special cases i.e. matrices of decimal

fractions, Hilbert and Lehmer matrices.

Matrices of decimal fractions represent the propitious case, in which the growth in norm

and the quality of preconditioning is good. Hilbert matrices represent the case, in which
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the growth in norm is significant but the quality of preconditioning is good. Lehmer

matrices represent the most difficult case, when the growth in norm is significant, and

the quality of preconditioning is poor in both the case of denominator and numerator

approximations. See Sec. 13.2 and 13.4 for experimental evaluation of preconditioning.

Introspective choices in Alg. 14.1.5 ensure that the asymptotic complexity of Alg. 14.1.5

will be equal the minimal complexity of the components. The additional cost is negligible,

which we explain in Thm. 14.2.2.

The complexity of the strategies RatDet, PrecDet and PrecBonus of Alg. 14.1.5 depends on

the number of iterations required by the CRA loop. Then, depending on the strategy, we

have to include the cost of computing modular image of the matrix, the cost of the rational

reconstruction or the cost of p-adic lifting. We use the early termination condition, and

thus, the number of steps required for the computation of det(A) depends on the values:

- m - the size of the matrix;

- n, d - the real values of the numerator and denominator of det(A);

- D - approximation of d, given in Eq. (13.5) (or, in Eq. (14.2) in the case when

Correction is run), and sm(Ã), the approximation of n.

The cost of imaging depends on the number of non-zero and rational elements, and the

maximum norm of matrices i.e. ‖A‖r = max(‖aij‖, bij) and ‖Ã‖ = ‖diag(Di)A‖, see Lem.

10.2.1.

We will give the complexities in the case of dense matrices, assuming that fast matrix

multiplication in O(mω) bit operations is implemented. Analogous results can be obtained

for sparse variants of algorithms.

14.2.1 General case

Lemma 14.2.1 (Cost of Strategies of Alg. 14.1.5) Let A =
[
aij
bij

]
be a m×m dense

rational matrix with numerators and denominators bounded by ‖A‖r in absolute value. Let

D =
∏
Di, where Di = gcd(bij). Assume that det(A) = n

d and matrix Ã = diag(Di)A

is chosen in line 7 of Alg. 14.1.5. Suppose that random primes pi less that p are used

in the algorithm and that EEA(p) denote the upper bound on the complexity of inverse

computation in Zpi. The complexities of strategies RatDet, PrecDet and PrecBonus for

computing det(A) are

1. O∼
(
k(m2 min(log(‖Ã‖), EEA(p) log(‖A‖r)) +mω)

)
for RatDet, where k = O(log(n)+

log(d)) in the worst case;

2. O∼
(

log(Dnd )(m2 min(log(‖Ã‖), EEA(p) log(‖A‖r)) +mω)
)

for PrecDet in the worst

case;
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3. O∼
(
k′m2 log(‖Ã‖)

)
+O∼

(
log(Dnds )(m2 min(log(‖Ã‖), EEA(p) log(‖A‖r)) +mω)

)
, for

PrecBonus, where s = sm(Ã) and k′ = O(log(s))+O∼(log(m log(‖Ã‖))) is the maximal

number of iterations needed to compute s by early terminated p-adic lifting in Alg. 6.3.1.

This is the expected complexity1.

PROOF First, notice that the complexity of RatIm is O∼(log(p)m2 log(‖A‖r)EEA(p)) by

Lem. 10.2.1. Analogously, the complexity of IntIm is O∼(log(p)m2‖Ã‖) for Ã. Procedure

ChooseImage determines the best imaging scheme for matrices A, Ã, and thus the com-

plexity of imaging is asymptoticallyO
(

log(p)m2(min(log(‖Ã‖), EEA(p) log(‖A‖r)))
)

. The

time of modular determinant computation is O(log(p)mω), using modular LU decomposi-

tion.

In the case of RatDet, early termination is possible after O(logp(n) + logp(d)) steps us-

ing Wang’s [129] or Monagan [90] strategies, see Sec. 11.3. By using ideal scheduling

strategy of 10.7, the number of steps of the CRA loop is O∼(k) and the cost of final

rational reconstruction is O∼(k) as well. Analogously, the number of steps in PrecDet is

at most O∼p (log(Dnd )). Running procedure Correction in line 4 of Alg. 14.1.5 can im-

prove the number of steps slightly. Prop. 13.1.1,13.3.1, 14.1.2 ensure that we are always

reconstructing an integer value less than Dn
d .

The complexity of PrecBonus has to be analyzed in the average case, assuming that the

expected value sm(Ã)
s̃m

is O(1), where s̃m is the output of Alg. 6.3.1. p-adic lifting is run

to solve Eq. Ãx = b for random vector b s.t. ‖b‖ = O(m log(m‖Ã‖)), see Thm. 6.3.2.

Thus, the bitsize of x is O(2 log(s) + log(m log(m‖Ã‖))) in the expected case, which gives

the required asymptotic estimation of k′. Prop. 14.1.2 ensures that we are reconstructing

an integer value less than Dn
ds̃m

, which is Dn
ds in the expected case, assuming that 2 random

systems of equations are run and the results of early terminated p-adic lifting are correct.

The design of Alg. 8.4.1 ensures that the worst case complexity of PrecBonus is at most

O∼(k′m2 log(‖Ã‖)) +O∼(log(Dd
n
s )(m2 log(min(‖A‖r, ‖Ã‖)) +mω)), as the cost of all solv-

ings except the first one is dominated by CRA iterations.

Special care should be taken if we consider the use of Alg. PrecBonus. As log(‖Ã‖) can

potentially be O(m log(‖A‖r)) and, by taking pessimistically k′ = O(m log(m‖Ã‖)), the

worst case complexity is about O∼(log(m5)), which is worse than for the CRA computa-

tion. If this is the case, it should be detected by procedure ChooseLIF .

The gain of computing sm(Ã) can be significant, as it is the case of Alg. 8.4.1. Experiments

in Sec. 13.4 confirm, that sm(Ã) approximates well the numerator n. Worse results have

been obtained for Lehmer matrices, but the relative error was O(1) nonetheless.

We summarize the result for Alg. 14.1.5 in the following theorem.

Theorem 14.2.2 (Cost of Alg. 14.1.5) Let A =
[
aij
bij

]
be a m×m dense rational ma-

trix with numerators and denominators bounded by ‖A‖r in absolute value. Suppose that

1See Def. 2.3.6; additionally we assume that the results of p-adic lifting are correct; we do not detect

errors in PrecBonus strategy.
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random primes pi less that p are used in the algorithm and that EEA(p) denote the upper

bound on the complexity of inverse computation in Zpi. Assume that det(A) = n
d and the

value of D is computed in line 8 of Alg. 14.1.5. Furthermore, assume that π = sm(Ãi) is

computed in line 14 and is such that O(log(π)) ∈ O(log(n)+log(d)). Then, the complexity

of Alg. 14.1.5 is O∼(Init + kIter) where k is equal to min((log(n) + log(d)), log(Dnd )).

The cost of Init and Iter are

Init = m2 max(log(‖Ã‖), EEA(p) log(‖A‖r)),
Iter = m2 min(log(‖Ã‖), EEA(p) log(‖A‖r)) +mω.

PROOF Construction of Ãi, i = 1, 2 is dominated by m computations of lcm of m

numbers. The size of lcm can reach m log(‖A‖r) in the worst case. Thus, the cost is

O∼(m2 log(‖A‖r)) if fast gcd algorithm is used. The cost of Correction in line 4 of

Alg. 14.1.5 is dominated by m2 computations of gcd of numbers at most O(log(‖Ã‖)
in size and is O∼(m2 log(‖Ã‖)). Notice, that in terms of O∼ notation, it is equivalent

to the cost of one modular imaging on A and Ã resp. The cost of ChooseImage is

O∼(log(p)m2 max(log(‖Ã‖), EEA(p) log(‖A‖r))) as images of A and Ã have to be evalu-

ated, see Lem. 10.2.1. This corresponds to the Init part of the cost.

The time of running function ChooseLIF , see Alg. 14.1.4, is bounded by the cost of five

modular CRA iterations, as the computation of Ãiv can be interrupted if this time limit

is exceeded, and negative answer is given in this case.

In the case of strategies PrecDet and RatDet, Alg. 14.1.5 stops, if an integer value less

than Dn
d or a rational value n

d is reconstructed, whichever occurs first. That is, Alg. 14.1.5

runs at most min((logp(n) + logp(d)), logp(
Dn
d ) steps of complexity log(p)Iter in the case

when strategy PrecBonus is not used, see Lem. 14.2.1. We now need to show, that in the

case when O(log(π)) ∈ O(log(n) + log(d)), the asymptotic number of steps is the same.

We have remarked in Lem. 14.2.1, that only the first solving for π = sm(Ãi) is problematic,

as time limits are imposed for the consecutive solvings. The use of PrecBonus strategy

introduces the following difficulties.

- the result of p-adic lifting is incorrect; in this case, certification conditions for

Wang’s and Monagan’s strategies ensure, that at most O(k′) p-adic steps, where

k′ = O(logp(π)) + O∼(logp(m log(‖Ã‖))), have been performed; later in the algo-

rithm, this case can be identified by a few modular CRA iterations; in this case, π

is set back to 1;

- if the result is correct; it has been computed faster than by O(logp(π)) steps of CRA,

thanks to the choice we have made by ChooseLIF ; hence, the time of PrecBonus is

less than the time of PrecDet;

- still, during the computation of π, CRA is paused; thus, the residue used for rational

reconstruction in RatDet is computed only once π is evaluated; this means that Alg.

14.1.5 has already performed O(log(π))Iter bit operations; If logp(n) + logp(d) �
logp(π)), this means that we may fail to terminate by RatDet in O(logp(n)+logp(d))

iterations of CRA.
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By requiring that log(π) = O(log(d) + log(n)), we ensure this cannot happen and that

the asymptotic cost is indeed that of O(k) iterations of CRA, where k = min((logp(n) +

logp(d)), logp(
Dn
d )).

Remark 14.2.3 Experiments in Sec. 13.4 suggest, that the error Nerr = bs(nπ ) is usually

small, so that rational reconstruction of n
πd might occur faster than the reconstruction of

n
d . We may thus attempt to reconstruct both values in RatDet.

14.2.2 Complexity in Special Cases

By the precedent remarks it is visible, that the analysis of the strategies should be divided

into two main cases, following the evaluation of norms of A and Ã in Sec. 13.2. One would

consist of matrices, whose entries are given by decimal fraction, or more generally, where

the common denominator of all entries, the common denominator of the rows and the

norm of A are of the same order i.e. D(A) = O(Di) = O(‖A‖r). In the other case, matrix

entries are given as fractions with different denominators. We will study the complexity

of the algorithms on the example of Hilbert and Lehmer matrices.

In the case of matrices of decimal fractions, let us further assume that ‖A‖r is O(1). This

would be the case of numerous ill-conditioned matrices emerging from different applications

in science and engineering.

Corollary 14.2.4 (Case ‖A‖ = ‖Ã‖ = O(1)) The worst case average complexity of

Alg. 14.1.5 in the case when ‖A‖r = O( ˜‖A‖) = O(1) is O∼(log(s)m2) +O∼(kmω), where

k = min((log(n) + log(d)), log(Dnds ) and s = sm(Ã). Moreover, in the case of matrices

of decimal fractions, Alg. 14.1.5 is likely to terminate by PrecBonus and has the same

expected complexity as Alg. 8.4.1, see Sec. 8.7.

PROOF The theorem is a straightforward consequence of Lem. 14.2.1 if we notice, that

one iteration of p-adic solver has better complexity than one iteration of CRA. Thus, s

will be computed in the asymptotic case. Notice, that IntIm will rather be chosen.

The equivalence with the case of random matrices has been explained on p. 201. The

implications of the equivalence to the quality of preconditioning have been explained on

p. 215. Putting it together, we may conclude, that the algorithm is likely to terminate by

applying strategy PrecBonus, and thus is equivalent to Alg. 8.4.1 for A′.

The other group consists of matrices with rational entries given by fractions with very

different denominators. As a model case we can consider Hilbert matrices. Hilbert matrices

are the matrices of the formHm = [ 1
i+j−1 ]i,j=1..m. They are benchmarks examples for many

numerical methods. The formula for the determinant of a Hilbert matrix is well known

and is given by the equation

1

det(Hm)
= Πm−1

k=1 (2k + 1)

(
2k

k

)2

. (14.4)
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Corollary 14.2.5 (Case of Hilbert Matrices) The complexity of Alg. 14.1.5 in the

case of Hilbert matrices is O(m2+ω). In the asymptotic case, termination is achieved by

PrecDet.

PROOF For Hilbert matrices, Eq. (14.4) implies that log(d) = O(m2) and n = 1. The

size of entries of Hm is log(‖Hm‖r) = O(log(m)) and log(‖H̃m‖) = O(m), see Fig. 13.2.

The value of log(Dd ) is 0.08 log(d), see Fig. 13.10. Thus, in Thm. 14.2.2, k = O(m2)

and is smaller for preconditioned strategies PrecDet or PrecBonus. Complexity of Init

is O(m3). Complexity of Iter is O(m2EEA(p) + mω) = O(mω) if image = RatIm

is chosen. Complexity of one lifting step is O(m3) compared to O(mω) in the case of

modular iteration, thus, strategy PrecBonus is not chosen in the asymptotic case. This is

however not a problem, as log(sm(H̃m) = O(m), as we have experimentally showed on p.

220, that the number of invariant factors of Hm is linear in m. Thus, we do not expect

strategy PrecBonus to be asymptotically faster than PrecDet.

Corollary 14.2.6 (Case of Lehmer Matrices) The complexity of Alg. 14.1.5 in the

case of Lehmer matrices is O(m1+ω log(m)). In the asymptotic case, termination is

achieved by RatDet.

PROOF For Lehmer matrix Lm and det(Lm) = n
d , our experiments have shown that d is

asymptotically O(m log(m)) and n is O(m). The size of entries is log(‖Lm‖) = O(log(m))

and log(‖L̃m‖) = O(m), see Fig. 13.2. The value of log(Dd )/ log(d) is O(m), which

means that log(Dd ) = O(m2 log(m)), see Fig. 13.11. Thus, termination happens by Rat-

Det in k = O(m log(m)) steps. Complexity of Init is O(m3). Complexity of Iter is

O(m2EEA(p) +mω) = O(mω) if image = RatIm is chosen. The complexity of one lifting

step is O(m3) compared to O(mω) in the case of modular iteration, thus, strategy Prec-

Bonus is not chosen in the asymptotic case. For smaller m, if PrecBonus is run, this may

result with a slowdown of the algorithm, compared to the optimal RatDet variant. Still,

by Thm. 14.2.2 we obtain the required complexity.

14.3 Experiments

In this section we will present the results of timing comparison for various problems dis-

cussed in Ch. 14. We will perform experiments on sets of random matrices considered in

Sec. 13.2 and Sec. 13.4. That is, we will consider random matrices of decimal fractions

and random matrices given according to distributions Rat and RatUni as well as par-

ticular examples of matrices, namely Hilbert matrices, Lehmer matrices and BasisLib+

Collection.

We start by the evaluation of imaging schemes in Sec. 14.3.1 i.e. we analyze the output of

ChooseImage procedure. This provides information complementary to Sec. 13.2, where

the growth in norm has been evaluated.

Then in Sec. 14.3.2, we focus on the computation of the determinant of rational matrices.

We start by running Alg. 8.4.1 on matrix Ã1 = diag(Di)A, where Di is the common
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denominator of the ith row. This corresponds to strategy PrecBonus and provides infor-

mation supplementary to [118, 117], where system solving for similar classes of matrices

(in particular, for Hilbert, Lehmer and BasisLib+) has been considered.

Based on the results of Sec. 13.4, we have identified a subclass of problems, for which

strategy PrecBonus is not optimal, as the error introduced by preconditioning overcomes

the actual result, see Sec. 13.4 for discussion. For those matrices, we run rational CRA, see

Sec. 12.1.1 and compare the timings with previous results. This corresponds to strategy

RatDet.

Finally, we run the full introspective algorithm of Alg. 14.1.5, which implements Choose-

Image, Correction (c.f. Alg. 14.1.3) and ChooseLIF (c.f. Alg. 14.1.4). We analyze the

choices made by the algorithm and compare the timings with strategies PrecBonus and

RatDet.

We finish the section by the evaluation of the introspective algorithm for the rational

characteristic polynomial in Sec. 14.3.3. It implements ChooseImage procedure and

preconditioning defined by Eq. (13.6). Integer precondition CRA is run for preconditioned

polynomial coupled with geometrically scheduled rational reconstruction. In the case of

rational reconstruction, coefficients are reconstructed one by one, starting with cm−1. After

successful reconstruction of ci, its denominator D(ci) is used to precondition ci−1, see Sec.

14.1.3. We compare both preconditioning strategies and point out differences with the

determinant computation.

Algorithms evaluated in this section are implemented in the LinBox, in files ”linbox/-

algorithms/charpoly-rational.h” and ”linbox/algorithms/det-rational.h”. We used dense

matrix implementation and apply BLAS routines available in LinBox. For some examples,

this resulted with memory trashing, thus we consider using the sparse variant of the

algorithm in future. For some examples of larger size we were obliged to interrupt the

computation after several hours of running. Unless otherwise stated, the experiments

presented in this section were performed Intel(R) Core(TM)2 Duo 2.66GHz CPU with

4Gb memory, running Linux.

14.3.1 Homomorphic Imaging

In this section we will compare rational imaging RatIm and IntIm. That is, for rational

m × m matrix A = [
aij
bij

]i,j=1..m we will consider the cost of taking modular images
aij
bij

mod p = (aij mod p) · (bij mod p)−1, i, j = 1..m. This corresponds to RatIm imaging.

Then we will consider preconditioned matrix [ãij ]i,j=1..m = Ã = (diagDi)A, where Di is

the common denominators of the ith row, and consider the cost of taking modular images

(ãij mod p), i, j = 1..m, for integer entries ãij . This corresponds to IntIm.

The average timing of modular imaging has been evaluated based on the average of 100

image computations for different primes of the same bitsize. The size of primes has been

chosen depending on matrix dimension in such a way, that it enables BLAS routines to be

run for the matrix, see [35, 109, 36].
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Figure 14.1: Ratio of imaging times RatIm/IntIm for random Rat and RatUni-type

rational matrices. Left: ‖A‖=100; Right: ‖A‖ = 10000.

1. Case of random matrices

Average time for 5 matrices has been computed, matrix sizes are 100, 200, . . . , 1000.

a) In the case of random matrices of decimal fractions, the ratio RatIm/IntIm of

rational to integer imaging is constant.It is equal to 4.7 on average for matrices

with entries given by fractions of 5 decimal places and 10.09 in the case of 16

decimal places precision. This is the cost of redundant division, as the denominator

is inverted for each entry separately, despite the fact that it is equal 10k, k = 6, 17

for most entries.

b) In the case of random matrices, ‖A‖ = 100, the ratio RatIm/IntIm of rational to

integer imaging decreases slightly with m and eventually stabilizes, see Fig. 14.1

(left). This corresponds to the slight growth of log(‖Ã‖) with m, which can be

observed in Fig. 13.1. Notice however, that the ratio of timings stabilizes for bigger

dimensions than the norm ratio, which is natural, as the norm depends on one

maximal entry, and imaging on all of them. The ratio is 1.75 to 1.57 for distribution

Rat and 4 to 2.54 for distribution RatUni.

The ratio of imaging times for Rat and RatUni in the case of the same matrix size

is 1.43 (1.31 to 1.5) on average for RatIm and 2.35 (2.04 to 3.00) for IntIm, i.e.

Rat gives worse results. Notice, that the norm ratio is 1.05 on average and thus the

norms are almost the same. This is in fact the most significant difference between

the distributions we have been able to identify.

c) In the case of random matrices, ‖A‖ = 10000, the ratio of timings is definitely

decreasing, see Fig. 14.1 (right), from 0.62 to 0.15 (resp 0.79 to 0.13) in the case of

Rat to RatUni distributions.

Smaller ratio has been obtained in the case of Rat distribution for smaller m, and

for RatUni distribution for bigger m. This can be explained by the fact, that bigger

denominator occur with bigger probability in RatUni distribution, which means that

the entries of Ã are on average bigger for RatUni distribution, despite the fact that

the maximum norm ‖Ã‖ is smaller by 5% in this case.

Thus, RatIm can result in even bigger gain than in the case of RatUni distribution.

Notice, that the norm ratio log(‖Ã‖)/ log(‖A‖r) is smaller for RatUni distribution

and comparison of norms does not lead to such conclusion. The norm ratio is
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eventually bigger for RatUni for ‖A‖ = MAX INT . This also means that the

comparison of norms is not enough to determine the best imaging scheme.

We have run some examples in the case of random matrices, ‖A‖ = MAXINT . The

ratio RatIm/IntIm is even smaller, ranging from 0.29 in the case of m = 100 to

0.08 for m = 400.

2. Case of Hilbert and Lehmer matrices

Fig. 14.2 presents the ratio RatIm/IntIm in the case of Hilbert (left) and Lehmer

(right) matrices. At first, integer imaging is better, but with growing matrix size m

the ratio decreases and rational imaging starts to win. The threshold occurs at about

m = 150 for Hilbert matrices and m = 300 for Lehmer matrices.

3. Case of Collection BasisLib+

We have computed imaging times for 153 matrices. For all cases, rational imaging is

slower than integer imaging. The ratio RatIm/IntIm is 4.74 on average, which agrees

well with the average found for random matrices of decimal fractions with 5 decimal

places. In fact, 39 % of matrices in BasisLib+ are represented by decimal fractions.
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The distribution of ratio is presented in Fig. 14.3. For the ’easiest’ example of car4, the

ratio RatIm/IntIm is equal to 8.14. The ratio log(‖Ã‖)/ log(‖A‖r) is 0.8 for this exam-

ple. The difficult examples, for which the ratio is smallest, include gen1 (1.37),gen4

(2.34),gen4 (2.47). The ratio is given in the parentheses. Those examples have also

been identified in Tab. 13.1 as hardest. Matrices have rational entries of relatively big

bitsize, and the denominators come from a wide range of numbers. The ratio of other

examples pilot4,jendrec1 from Tab. 13.1, is also below 4.

14.3.2 Determinant Computation

In this section, we will present the experimental evaluation of the introspective ratio-

nal determinant algorithm, which is given in Alg. 14.1.5. We have compared the new

implementation of the rational algorithm, which can be found in ”linbox/algorithms/det-

rational.h”, with other existing implementations in LinBox i.e. with our implementation

of Alg. 8.4.1, see Sec. 8.8, and rational determinant computation by rational CRA, see

Sec. 12.1.1. This corresponds to strategies PrecBonus and RatDet of Alg. 14.1.5 respec-

tively. Rational CRA has been run in the cases, when we have detected that the quality

of preconditioning is not satisfactory.

For Alg. 8.4.1, rational matrix is represented by Ã = diag(Di)A, where Di, i = 1..m, is the

common denominators of the ith row. Integer imaging IntIm and integer early termination

condition IntET is used through the algorithm. We will refer to this algorithm as Prec-

Bonus . In the case of rational CRA, rational imaging RatIm and termination condition

RatET for rational reconstruction is used. We will refer to this algorithm as RatDet.

In the implementation of Alg. 14.1.5, which we denote by IntroRatDet, we have im-

plemented the Correction procedure by Alg. 14.1.3, the choice of imaging scheme by

ChooseImage, and the choice between strategies PrecBonus and PrecDet, see Alg. 14.1.4.

Decisions are made based in timings, which results in an introspective algorithm.

The choice between PrecDet and PrecBonus is made base on decision, whether the largest

invariant factor of Ã should be computed by p-adic lifting. We assume that primes of the

same size are used in the case of p-adic lifting and CRA, and the size is such that it allows

for BLAS routines to be run, see [35, 109, 36].

This is however not always the case as taking bigger primes might be necessary in the

asymptotic case, when the result is large, in order early terminated with the required

probability, see e.g. [75] and Sec. 10.6.4. In our experiments, we did encounter cases, when

the number of primes of the size we have chosen for CRA was not enough to complete the

computation. We terminated the computation in this case and returned an error.

For the complexity of p-adic lifting with respect to p, see e.g. [97]. In some versions

of p-adic lifting, see e.g. [95], primes of bigger size are used in order to obtain better

asymptotic complexity bounds. By using bigger primes, we reduce the number of iterations



14.3. Experiments 247

but increase the cost of one iteration. Thus, normalized times TCRA and TLIF have to be

computed in Alg. 14.1.4. The normalized time is given by formula

T =
Tp

log(p)
,

where Tp is the time of one iteration for prime p, for both p-adic and CRA schemes.

1. Case of random matrices

Random matrices of decimal fractions and rational fractions are considered, see Sec.

13.2.1 and Sec. 13.4.1. Matrices of random rational fractions are given according to

Rat and RatUni distributions, see 13.2.1 for definition.

The quality of preconditioning for all types of random matrices is generally good. There-

fore, RatDet is not considered in this case, as we are able to conclude beforehand

that other strategies are better. The challenge for the introspective algorithm in this

case is to determine the best imaging scheme by ChooseImage and to choose between

PrecDet and PrecBonus, see ChooseLIF . We can also evaluate the gain of applying

Correction by Alg. 14.1.3.

a) In the case of random matrices of decimal fractions, the quality of preconditioning is

especially good, see Fig. 13.6, where the average number of additional bits induced

by the preconditioning is presented. The approximation of numerator by sm(Ã) is

good as well. Thus, we have concluded that strategy PrecBonus give best results,

see Cor. 14.2.4. For comparison, we have also run IntroRatDet in this case. Fig.

14.4 presents the average timing for both algorithms.

In the case of PrecBonus strategy, Correction has not been applied to Ã. Thus,

introspective algorithm is quicker for matrices with 16 decimal places and has com-

parable running times for bigger matrices of 5 decimal places. This means that

even in this simple case of matrices, applying Correction can be beneficial. Integer

imaging IntIm has been correctly chosen by IntroRatDet. Termination occurred by

IntET as expected.

b) In the case of random matrices of rational fraction, where ‖A‖ = 100, the quality

of preconditioning is acceptable, see Fig. 13.7 and integer imaging IntIm is better,

see Fig. 14.1 (left). The quality of approximation of the numerator is good as

well, which implies that strategy PrecBonus should give best results. We compare

the timings obtained by strategy PrecBonus with the times of the introspective

algorithm IntroRatDet.

Fig. 14.5 presents the average timing for both algorithms in the case of Rat and

RatUni distributions. Better timings have been obtained for RatUni distribution.

This is consistent with the findings for imaging times, see Sec. 14.3.1 and for pre-

conditioning, see Sec. 13.4. Adaptive algorithm is faster by up to 5% for bigger

matrices, which corresponds to the gain of Correction procedure. Integer imag-

ing IntIm has been correctly chosen by the introspective algorithm. Termination

occurred by IntET as expected.
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fractions for ‖A‖ = 100. Matrices are given according to Rat and RatUni distribution.

Average times [in sec.] for at least 5 random matrices have been computed. Strategy

PrecBonus and IntroRatDet are compared.

c) In the case of random matrices of rational fractions, where ‖A‖ = 10000 and

‖A‖ = MAX INT , rational imaging RatIm performs better in experiments, see

Fig, 14.1 (right). The quality of approximating the denominator and numerator of

det(A) is good. We have obtained results by PrecBonus for matrices of dimension

50, 100, . . . , 300 for ‖A‖ = 10000 and dimensions 20, 40 for ‖A‖ = MAX INT .

IntIm is eventually chosen by our implementation in the case m = 50,‖A‖ = 10000

and RatIm is always chosen for bigger matrix sizes.

In the case ‖A‖ = MAX INT , m ≥ 60, our implementation makes a choice not to

perform the p-adic lifting. However, this prevented us form obtaining the results,

as the CRA scheme has been interrupted when too many coprime primes have been

found. We have used the primes of size 23-24 bits.

2. Case of Hilbert matrices
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Figure 14.6: Times of rational determinant computation for random matrices of rational

fractions for ‖A‖ = 10000. Matrices are given according to Rat and RatUni distribution.

Average times [in sec.] for at least 2 random matrices have been computed. Strategy

PrecBonus and IntroRatDet are compared.

In the case of Hilbert matrices, the quality of preconditioning is satisfactory. Fast

growth in norm with matrix dimension leads to conclusion, that RatIm is better start-

ing from dimension of about 150, see Fig. 14.2 (left). Also, in the asymptotic case,

PrecBonus has worse complexity, see Cor. 14.2.5 for details. The goal of IntroRatDet is

to correctly identify the best imaging scheme for given matrix dimension and to judge

whether strategy PrecBonus should be applied.

Both RatIm and IntIm has been applied for matrix sizes m = 50, 100, 150, which

means that the running time for modular determinant computation using both imag-

ing schemes is comparable in this range. From m = 200 onwards RatIm is chosen.

Termination occurred by IntET condition. PrecBonus is run up to size m = 600,

which means that PrecDet is chosen as the best strategy for m = 700, 800, 900, 1000.

Fig. 14.7 presents the running times of Alg. IntroRatDet for m = 50, . . . , 1000. The

time for PrecBonus is given for m = 50, . . . , 500, and the running time is approximated

from partial results for bigger matrix sizes. We estimate that by using RatIm we are

over two times faster. Also, we estimate that by skipping p-adic lifting for bigger matrix

sizes, we can gain additional 8% of time for m = 1000, when compared to PrecDet with

RatIm.

3. Case Lehmer matrices

In the case of Lehmer matrices, preconditioning completely fails, see Fig. 13.11 for

both the denominator and numerator of det(A). Thanks to strategy RatDet we have

been able to compute the results for matrix sizes up to 1000. Strategy PrecDet and

PrecBonus have both worse complexities. The complexity of determinant computation

in this case is given by Cor. 14.2.6. The goal of IntroRatDet is be to correctly identify

the best imaging scheme, which is RatIm from dimension 300 onwards, see Fig. 14.2.

Also, in the asymptotic case, strategy PrecBonus has worse complexity and should

not be applied. However it is not clear beforehand if this is the case for the range of

dimensions being tested. We have also conjectured in Cor. 14.2.6, that computation

of sm(Lm) by PrecBonus does not pay off, and we may obtain worse running times in

this case, compared to pure rational strategy RatDet.
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Figure 14.7: Times of rational determinant computation for Hilbert matrices. Times [in

sec.] of strategy PrecBonus for m = 50, . . . , 500 are given, and approximated for m > 500.

Average time algorithm IntroRatDet is given.

Alg. IntroRatDet used integer imaging IntIm for matrix sizes m < 400 and rational

imaging RatIm for m ≥ 400. It made the choice to compute sm(Lm) for all matrices in

the range m = 50..900. In multiple runs for m = 1000, we encounter the algorithm to

skip running the p-adic solver only once. Thus, the average and minimal running time

are in fact slower than in the case of strategy RatDet, as the results of computations

are not used later on in the algorithm. The difference grows in time as the running

time of p-adic solver gets worse.

Still, both timings are much better than in the case of strategy PrecBonus. Fig. 14.8

presents the minimal timings for both RatDet and IntroRatDet. Minimal timings

represent the case when rational reconstruction is successful at the same optimal step l

for both RatDet and IntroRatDet. Thus, it shows the additional cost of IntroRatDet -

compared to RatDet in the optimal case. Average timings favor RatDet even more.

In IntroRatDet, scheduling in p-adic lifting affects the average timing. Minimal of 10

timings has been chosen.

Several steps can be observed in Fig. 14.8. This is due to geometric scheduling of

reconstruction. Steps correspond to cases, when rational reconstruction could not ter-

minated at step 2l and thus, 2l+1 steps are run for the first time. Additionally, a bigger

jump for m = 600 is caused by the decrease in size of primes used, from 24 to 23 bits.

The decrease is required for optimization of BLAS routines, see [35, 109, 36]. In the

case of IntroRatDet, geometric scheduling affected both CRA and p-adic lifting, which

results with a non-direct correspondence of the steps.

4. Case of BasisLib+ collection

We have computed the determinant for a total of 147 files. Fig. 14.9 presents the

distribution of the running times [in sec.] for strategy PrecBonus. 5 matrices can be

classify as trivial, as the running times are below 0.1s in this case. 13 matrices are

particulary difficult, as the running time is over 1000 seconds. The parameters for
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Figure 14.9: Distribution of timings [in sec.] for the rational determinant computation by

strategy PrecBonus for BasisLib+ Collection.

those matrices are given in Tab. 14.1. We recall that the computation has not been

completed for 10 matrices of the original set BasisLib.

We have identified 61 matrices as suitable for RatDet strategy, based on the condition

that the error of denominator approximation Derr is greater than log(D det(A)). We

have obtained the results for 60 matrices by RatDet and run out of primes in the case

of bcsstk20. Fig. 14.10 presents the distribution of the running times [in sec.] (left)

for RatDet strategy and the distribution of the ratio of times T(RatDet) / T(Prec-

Bonus) (right). The ratio is concentrated in the interval [0.5,1.5], which corresponds

to the relative error Derr/ log(D(det(A)) less than 2. Given such values of the ratio,

the actual difference between the algorithms depends mostly on quick termination of

rational reconstruction (in both p-adic solver and rational CRA). Thus, both algorithms

can win, which is confirmed by the distribution of results.
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Figure 14.10: Left: distribution of timings [in sec.] for the rational determinant computa-

tion by strategy RatDet for BasisLib+ Collection. Right: the distribution of the ratio of

timings T(RatDet) / T(PrecBonus); if the ratio is > 1, strategy RatDet is better.

We have obtained better timings for RatDet for 54% of instances, but only for 3 prob-

lems where the ratio Derr/ log(D(det(A))) is less than 2. The average speed up is 2.06

in this case. We have obtained worse timings for 46% instances, but only for 3 examples

for which the ratio Derr/ log(D(det(A))) is more than 2. The average slowdown is 0.6

in this case. This might be due to the following issues of RatDet

- rational imaging RatIm is used, which slower than integer imaging IntIm for the

BasisLib+ Collection, see Fig. 14.3; this effect should however be negligible, as

determinant computation dominates the cost of one iteration.

- geometric scheduling is used for the rational reconstruction; suppose that K is the

optimal iteration, on which the rational determinant can be reconstructed for the

first time; then, we will attempt to reconstruct the result in iteration 2dlog(K)e; this

means that 2 > Derr/ log(D(det(A))) > 1 might be not sufficient to terminate by

rational reconstruction in smaller number of iterations than in the preconditioned

variant; moreover, the success of reconstruction is subject to the method used;

both Wang [129] and Monagan [90] strategies might fail on iteration 2dlog(K)e with

some probability.

- the size of residue which needs to be computed depends on the sizes of denominator

and numerator; thus, if the size of the numerator is much larger than the size

of the denominator and the error, the gain of RatDet is lost in the scheduling;

additionally, if the numerator is reasonably well approximated by Ã, it can be

computed faster by p-adic lifting; for example, the gain for matrix scrs8-2r-512,

which have D(det(A)) = 1 and the error is 824 bits, the gain is only 2.72.

The latter issue seems most significant in our case. Indeed, for two examples on which

Derr/ log(D(det(A))) > 2 but RatDet performed slower and file bcsstk20, for which

RatDet has failed, the ratio log(N(det(A)))/ log(D(det(A))) is 7,11 and 17 respectively.

sm(Ã) is a big factor of the numerator and can computed faster by p-adic lifting in Prec-

Bonus.

We have run the introspective rational algorithm IntroRatDet to see how it copes with

the challenges. For a few smaller matrices, the algorithm could choose both RatIm

and IntIm, indecisively, this happened for 7 of 147 files. This is due to small cost
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for BasisLib+ Collection. Right: distribution of the ratio of timings T(RatDet) /

T(IntroRatDet); if the ratio is > 1, strategy IntroRatDet is better.

of imaging when compared with the modular determinant computation. In general,

IntIm is correctly chosen. Algorithm terminated by RatET in 11 cases and by IntET

in the remaining ones. In 2 cases, the approximation of sm(Ã) has been used in the

rational reconstruction i.e. RatET occurred for det(A)

sm(Ã
and not for detA. In 8 cases,

sm(Ã) has not been computed, as termination occurred by IntET first.

Fig. 14.11 presents the distribution of timings of IntroRatDet. In Fig. 14.12, the

distribution of ratios of timings for IntroRatDet and PrecBonus (left), and IntroRat-

Det and RatDet is shown. IntroRatDet performed better in most cases. The difference

between IntroRatDet and PrecBonus can be attributed to applying Correction by Alg.

14.1.3 before the actual determinant computation. The most extreme cases of ratio

greater than 3 are attributed to not calling the p-adic solver for easiest examples where

8 iterations of CRA yield IntET , big gain of Correction and using RatET . RatDet -

performed better in a few cases, in which we have chosen to compute sm(Ã) instead of

performing rational reconstruction. This case has been discussed in Thm. 14.2.2.
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A m ‖Ã‖ Derr/ log(D(det(A))) TSOLV E TDIX TRAT TINTRO
co9 2287 30 1.1 120.68 2321.22 3289.4 1847.66

gen1 329 1576 0.15 2500.29 2524.84 - 2160.05

l30 2492 31 0.01 172.18 2608.89 - 2132.92

model10 1341 429 0.28 594.2 1017.49 - 1500.14

model11 2039 19 2.54 94.15 1873.58 1268.14 1524.01

momentum2 2113 77 1.54 91.69 5692.5 10159.3 5452.43

pilot87 1540 634 0.21 5066.88 5855.59 - 2808.24

pilot87.pre 1625 634 0.18 4670.92 5250.43 - 2557.98

progas 1167 154 0.13 782.94 1026.86 - 790.45

scfxm1-2r-64 2870 14 1.56 5277.49 6044.00 5400.04 4281.32

stat96v4 3139 41 0.05 1363.12 7612.95 - 6835.8

stat96v5 812 193 2.14 128.85 1009.13 1165.12 747.28

stocfor3 1782 16 5.67 82.42 1210.32 843.69 475.78

Table 14.1: Parameters of 13 most challenging problems of BasisLib+ collection in the

case of determinant computation. Times for one system solving to approximate sm(Ã)

(TSOLV E), times for strategy PrecBonus (TDIX) , RatDet (TRAT , if applicable) and Alg.

IntroRatDet (TINTRO)are given. All times in seconds.

Difficult problems in Tab. 14.1 are usually large in dimension m, with the exception of

gen1,stat96v5. For smaller problems, on the contrary, the norm ‖Ã‖ is large. The relative

error of preconditioning ranges from 0.01 in the case of l30 to 5.67 in the case of stocfor3.

Rational reconstruction slightly improved the timings in 3 cases. In the case of stockfor3,

Alg. IntroRatDet terminated by RatET as well, performing one reconstruction less than

RatDet for this particular run. In the remaining cases, IntroRatDet terminated by IntET .

Better timings are result of earlier termination in p-adic solver, which have been triggered

by applying Alg. Corrections 14.1.3. In one case, RatDet is still superior.

14.3.3 Characteristic Polynomial Computation

In this section we evaluate the introspective algorithm for computation of the characteristic

polynomial of a rational matrix. Given m ×m matrix A, we denote by PA =
∑m

i=0 cix
m

its characteristic polynomial.

We have implemented the preconditioned CRA algorithm with geometrically scheduled

rational reconstruction presented in Sec. 14.1.3. Rational reconstruction is performed

at the kth step of CRA, if k = 2l for some l = 2, 3, . . . . We reconstructed a vector of

coefficients [ci], starting by cm and reconstructing D(ci−1)ci in the case of ith coefficient.

Recall that D(−) denote the denominator of a rational number. We have found the quality

of this preconditioning satisfactory in practice. We will comment on this in the description

of particular cases.

We remain the reader, that in the case of characteristic polynomial computation, A mod p

might by computed by RatIm in the usual way; for IntIm, A is represented as A =

(diag(Di)Ã)) and A mod p = (diag(Di mod p)(Ã mod p) is computed in the modular

arithmetics. This is a slightly different approach than in Sec. 14.3.1, as m modular images

and modular inverses of potentially large integer numbers Di have to be computed as well.



14.3. Experiments 255

 1

 10

 100

 1000

 10000

 100  200  300  400  500  600  700  800

tim
e 

[s
]

m

Times of rational characteristic polynomial computation

k=5
k=16

Figure 14.13: Average time [in sec.] of the introspective rational algorithm for charac-

teristic polynomial computation in the case of random matrices of decimal fractions with

k = 5, 16 decimal places. Scaling is logarithmic.

Then, matrix A mod p has to be multiplied by a diagonal matrix. Thus, the difference

between imaging timings will be less significant than in Sec. 14.3.1. In some cases, rational

imaging is chosen even if the results in Sec. 14.3.1 suggest otherwise.

We have compared the timings of computing characteristic polynomial mod p using two

different primes for every imaging scheme. In the case, when the computation of char-

acteristic polynomial in modular arithmetics dominates the cost, our check might have

produced incorrect answer. The time difference might correspond to fluctuations in tim-

ing for characteristic polynomial for different primes. However, this should not be the

case on average and, what is more important, this only happens if the time of imaging is

negligible anyway.

1. Case of random matrices

a) In the case of random matrices of decimal fractions IntIm is always chosen by the

introspective algorithm. Termination always happened by IntET , which proves

that the quality of preconditioning in Eq. 13.6 is good in this case. The size of

denominators of consecutive coefficients ci grows linearly with i by an average of 16

and 55 bits in the case of k=5 and 16 decimal places. This agrees very well with the

approximation D(ci−1)/D(ci) = 10k+1. In the experiment, D(ci) is always a factor

of D(ci−1) for k = 16, but a few (up to 7) supplementary are present in the case

k = 5. The average error of approximation for all coefficients is 1.5 bits in both

cases. Results are averaged over a few instances of random matrices. Fig. 14.13

presents the average running times for the characteristic polynomial computation.

b) In the case of random matrices, ‖A‖ = 100, we recall that IntIm is always better

in Sec. 14.3.1. In the experiments, RatIm has been chosen for 8 out of 47 instances

that we have run. For each matrix size, we have compared the results obtained using

RatIm and IntIm and concluded that no it has not resulted in slowdown.
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Figure 14.14: Average time [in sec.] of the introspective rational algorithm for characteris-

tic polynomial computation in the case of random matrices of type Rat and RatUni, with

‖A‖ = 100 and ‖A‖ = 10000 resp. Scaling is logarithmic.

Algorithm terminated by IntET in all except 4 cases, when termination by RatET

occurred first. This happened only for matrix dimension m = 100, twice for Rat

and twice for RatUni. Similar timings have been obtained in both cases, as the

termination happened at approximately the same iteration.

Slightly better timing have been obtained for RatUni distribution, which might

be result of better imaging times, see Sec. 14.3.1. Fig. 14.14 presents the times

of characteristic polynomial computation as a function of matrix dimension m for

both distribution and ‖A‖ = 100 and ‖A‖ = 10000. In the case of ‖A‖ = 10000 we

have run a limited number of examples for m = 50to150. We have observed that

both IntIm and RatIm can been chosen and still, comparable timings are observed.

Termination occurred by IntET in all cases.

Let us have a closer look at the error of approximation of denominators. In the case

when ‖A‖ = 100, we recall from Sec. 13.4 that the relative error of approximating

the denominator of D(det(A)) is up to 9%, but decreases quickly with growing m.

For ‖A‖ = 10000, the relative error of approximation is between 6% and 7% for the

consider range of m, see Fig. 13.8.

Let Dapp(i) = gcd(D(A)m−i, D) be given as in Eq. (14.3). Denote by Derr(i) the

error of approximation of the denominator of ci i.e. Derr = log(
Dapp(i)
D(ci)

). In our

experiments, Derr(1) is the maximal error for both ‖A‖ = 100, 10000. In the case

when m = 100, ‖A‖ = 100, Derr(1) is on average 1.17 times bigger than Derr(0) =

Derr, where Derr is the error of approximation of D(det(A)). The ratio grows to

1.5 for 300 × 300 matrices. For ‖A‖ = 10000, the ratio Derr(1)
Derr(0) is 5.15 for 50 × 50

matrix, but decreases quickly to 2.18 for m = 150. For ‖A‖ = MAX INT , initial

results that we have obtained for m = 20, 40 suggest that the situation might be

even worst.

In general, this means that taking Dapp(i) = gcd(D(A)m−i, D) is not enough to im-

prove the approximation of consecutive denominators D(ci) and does not eliminate

all errors. Surely, in the case when m� ‖A‖, D(A) is close to D, and the situation

is even worse.

Thus, we have checked the size of the maximal residue N(ci)Dapp(i)/D(ci) that is to

be reconstructed. We have found out, that the sizes of several first residues are com-
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Figure 14.15: Size of consecutive coefficients log(D(ci)) of the characteristic polynomial

PA, for 100× 100 matrix A given according to Rat distribution.

parable, and in particular log(N(c1)Dapp(1)/D(c1)) is at most log(N(c0)Dapp(0)/D(c0))+

1. Thus, the overall number of steps of preconditioned CRA is not influenced, and

the quality of preconditioning is the same as for the case of determinant computa-

tion, as we postulated in Sec. 13.4.

Fig. 14.15 illustrates the decrease of log(D(ci)) as function of i for a particular

100× 100 matrix A, given according to Rat distribution. The function is decreasing

with i, i.e. D(c0) is biggest. The sizes of several first denominators are comparable.

In our experiments we have also evaluated the quality of approximating D(ci−1) by

the previous denominator D(ci). From Fig. 14.15 we may deduce, that we cannot

expect D(ci−1) to be close to D(ci), especially for big i. Yet, D(ci) ’almost’ divides

D(ci−1) i.e. the fraction D(ci)
D(ci−1) has a small denominator. In our experiments, the

number of new bits introduced in the denominator is up to 12 for Rat, ‖A‖ = 100 and

19 for RatUni, ‖A‖ = 100. For ‖A‖ = 10000 and ‖A‖ = MAX INT initial results

are slightly worse, as up to 38 bits might have been introduced. The divisibility is

actually expected, if we consider that ci is equal to the sum of (m − i) principal

minors up to the sign. Given the Gauss formula for the (m − i + 1)th principal

minor, we can see that all (m − i) principal minors are included in the sum. By

summation, several bits might get reduced.

The stabilization of the denominator is also easy to explain. Notice, that computa-

tion of coefficient ci involves only matrix entries
akj
bkj

for which |k − j| = m − i − 1.

This means that for m×m matrix A, a linear number of entries is used to compute

several first coefficients. In general ci is computed using m + (m − i − 1)(m + i)

coefficients of A.

2. Case of Hilbert matrices

In the case of Hilbert matrices, integer imaging IntIm is chosen only in the case of

smallest matrix H50. Then, RatIm is used through the computation. The transition

occurs earlier in the case of characteristic polynomial computation, than in the case of

homomorphic imaging for H̃m, see Sec. 14.2. This is due to the fact, that the modular
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image H̃m mod p has to be further left multiplied by diag(D−1
i mod p) in order to be

suitable for characteristic polynomial computation.

Termination always happened by IntET condition, which is expected, as the quality

of determinant approximation is about 8.2% for Hilbert matrices, see p. 1. The error

of approximation was always biggest for c0. We have computed the characteristic

polynomial of Hm for matrix dimensions varying from m = 50 to 400. Timing is given

in Fig. 14.16.

Rational reconstruction is not necessary to complete the computation of the characteris-

tic polynomial of Hm, but we remark that at most 40 supplementary bits are introduced

by preconditioning D(ci)ci−1. This makes the error of preconditioning negligible. Yet,

this is not enough to force termination by rational reconstruction, as the remaining part

of the denominator of D(ci)ci−1 is still significant. The growth of coefficient followed

similar pattern as for the case of random matrices, see Fig. 14.17.
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polynomial computation for Lehmer matrices. Scaling is logarithmic.

3. Case of Lehmer matrices

In the case of Lehmer matrices, integer imaging IntIm is chosen last time for m=250;

On the other hand, RatIm is chosen first for m = 200. This gives defines a transition

phase of sizes of m, for which the times of imaging are comparable. The transition

occurs earlier in the case of imaging for characteristic polynomial, than in the case of

simple homomorphic imaging for L̃m, see Sec. 14.2.

Termination always happened by RatET condition, which is expected, as the quality

of determinant approximation for Lehmer matrices, see p. 1 is disastrous. We have

computed the characteristic polynomial of Lm for matrix dimensions varying from m =

50 to 600. Timing is given in Fig. 14.18.

It is essential for these matrices to analyze the gain of preconditioning D(ci)ci−1. In Fig.

14.19 gives the size of denominatorsD(ci) and the difference in sizes between consecutive

coefficients. An interesting pattern occurs, as two consecutive denominators are of the

same size. Actually, D(ci−1) might be even less than D(ci) as the difference is often

negative. Thus, D(ci)ci−1 is often integer, and we are dealing with overestimation

instead of underestimation, which is substantially different from previous cases, and

easier to overcome by CRA. A sharp decrease occurs when passing from D(c1) to

D(c0).

The preconditioning D(ci)ci−1 is substantially different than previous denominator pre-

conditioners Dapp, Dapp(i) or Dxapp as the goal is to approximate a divisor of D(ci−1)

rather than the whole denominator. Therefore we will define the measure of error as

Dcerr(i) = log(D( ci−1

ci
)). The maximal relative error max(Dcerr(i)/log(D(ci))) as a

function of matrix size m is presented in Fig. 14.20. As implied by Fig. 14.19, maximal

error corresponds to c0. The value of relative error is decreasing with m from 0.29 in

the case of m = 50 to 0.17 for m = 600. That is, the quality of preconditioning is much

less than 1, hence satisfactory.

4. Case of Collection BasisLib+
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We have computed the characteristic polynomial for a total of 96 files. IntIm is run

for 50 and RatIm for 46 cases. This corresponds to cases, when additional cost of

recovering A for its representation (diag(Di), Ã) significantly reduces the performance

of integer IntIm, when compared with Sec. 14.3.1.

Termination happened by IntET for a majority of 61 cases, compared to 34, in which

rational reconstruction terminated first. This is significantly more than in the case of

determinant computation, where only 11 cases terminated by RatET . This should not

be due to the growth of error of preconditioning, as the maximal residues reconstructed

is on average only 1.15 times bigger than the residue for Dapp(0)c0, except for two

extreme cases of r05,p05 when the ratio is 9.33. Yet in this cases as well, integer

residue reconstructed is smaller than max(bs(ci)). Thus, the error of approximation is

still acceptable.

In the case when IntET occurred, the average ratio max(log(Dapp(i)ci))/max(bs(ci))

is 0.67, and equal to 1.002 and 1.033 in the only two cases of scsd8,woodw when it is

greater than 1. This corresponded to 13 and 52 bits respectively, which can be recovered

by to up to 3 iterations of CRA using 24-bit primes.
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computation for 96 rational matrices of BasisLib+ collection.

We have also compared max(log(Dapp(i)ci)) to max(bs(D(ci−1)ci)) in the case of IntET

termination, and concluded that the latter is smaller in most cases, and never more than

17 bits higher. On average, the ratio max(bs(D(ci−1)ci))/max(log(Dapp(i)ci)) is 0.89

and 0.51 in the minimal case. This means that the quality of approximation D(ci−1)ci
is often better than the quality of integer preconditioning we have propose originally.

Yet, simpler termination strategy in the case of integer CRA leads to termination by

IntET . Recall, that geometrically scheduled rational reconstruction, which is used in

this implementation, needs in the worst case twice the optimal number of bits in the

residue.

Given the quality of preconditioning D(ci−1)ci it is not surprising that RatET is suc-

cessful in 35% of cases. In the case of RatET termination, we have evaluated the

quality of preconditioning by estimating the maximal relative number of bits added to

the denominator by preconditioning i.e. max(log(D(D(ci−1)ci))/ log(D(ci))). The ratio

is indeed very small and equal to 0.13 on average. In fact, only a few supplementary

bits are often present.

To summarize this example, we give the distributions of timings for BasisLib+ collection

in Fig. 14.21. The minimal time is 0.27 s. for 106×106 matrix mkc (IntIm and RatET

are used) and the maximal time is 3.1h for 713 × 713 matrix greenbeb (RatIm and

RatET are used). Longer computations have been interrupted. The running time of the

algorithm is below 100 seconds for 65% of tested matrices, and more for the remaining

35%.

We have been unable to complete the computation for 52 other matrices, which includes

all matrices of Tab. 13.1 and matrix msc98-ip from Tab. 13.2. Matrix dimension is

the limiting factor, as we have been unable to compute the characteristic polynomial

for matrices greater than 1135× 1135.

5. Perception Matrices
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A Titer [s] Niter Tall
perc4249 1 23.67s 21712 5.95d

perc4249 2 23.34s 20614 5.57d

perc4249 3 17.3s 23778 4.76d

Table 14.2: Details on computation of rational polynomial for rational matrix A: time of

one modular iteration Titer [in sec.], number of iterations Niter, and overall time Tall [in

days].

As an application of rational algorithms, we partially solved a problem coming from

the domain of image recognition. Methods used in this context, require the estimation

of the number of small eigenvalues for certain symmetric matrices. We have been given

three examples of 4249 × 4249 matrices, with entries given as binary fractions with

denominator being equal to 2106. Our efforts have focused on computing the exact

characteristic polynomial. Some initial experiments have proved the useability of the

computed polynomials in (exact) eigenvalues computation. Characteristic polynomial

is equal to the minimal polynomial in this case.

Tab. 14.2 gives the number of iterations, the time of one modular iteration [in sec.]

and the estimated running time [in days] for the considered matrices. Rational imag-

ing RatIm and integer termination IntET are used. The quality of precondition-

ing is exemplary good, as the relative error log( D
D(det(A)))/ log(D(det(A))) is resp.

0.00275,0.00384 and 0.01947 in the worst case. We think that successful precondi-

tioning has been essential in completing the problem.
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15
Motivations

One of the applications of the Smith form computation is the computation of homolo-

gies and cohomologies of chain complexes, which on its own has many applications in

mathematics (see e.g. [46]) and beyond e.g. in graphics ([60]) and medicine ([101]).

The computation of homology follow a general scheme. Based on the initial object, another

combinational object is constructed, such that it has the same homology groups. We call

it a cellular complex (or simplicial complex, cubical complex, depending on the genesis,

for specific constructions, see e.g. [72, 99, 63]). To the cellular complex one bounds an

algebraic structure of abelian modules, called a chain complex; and a boundary operator.

The boundary operator is a homomorphism between the modules. Apart from some de-

generated cases, the modules are free, and the boundary operator can be represented by

an exact sequence of matrices.

The matrices that arise in the applications are extremely sparse but at the same time,

extremely large. This makes the dense methods [121, 44] irrelevant due to large matrix

size. In order to deal with homology computations, effective sparse methods are needed,

such as in [38, 39, 37]. In fact, elimination methods based on the original algorithm of

Smith and its first modifications [80, 69] seem to perform well and in practice, do not

suffer from filling and/or prohibitive growth of coefficients, see e.g. [28].

This may be due to some hidden structure of the object, and thus, of the matrices. We

name just a few most common facts.

- non-zero entries are ±1 in the case of regular complexes,

- there is usually a limited number of entries per row/column, block-like structures are

present, which is the result of some geometric restrictions in the case of simplicial

and cubical homologies,

- if the resulting homology is relatively simple, most of the computation can be done

at a glance.

The object for which the computation of homologies is performed come from different

domains. Often, the domain permits a reduction of the object, which leads to another
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object, which has the same homology groups but for which the computation ”should” be

easier. The reduction procedures are often based on the excision theorem, see e.g. [1,

Thm. 2.20], [72, Thm. 9.14], which is universal for all theories of homology.

In general, the reduction procedures are heuristic and often greedy. No quantitative results

exist which would bound problem sizes before and after reduction. Examples include [94]

for cubical homologies and more generally, [73, 93] for chain complexes. See also [47]

for an example of reduction from K-theory (motivic cohomology theory) and [34] for its

application to the computation of cohomologies. In [37] an overview of other methods is

given, which includes the algebraic shifting of [74], minimal free resolution, see e.g. [65],

and the computation of a dual complex, see e.g. [99]. See [37] and the references therein.

The computation of a Smith form is the ultimate step in the homology computation. After

reductions, matrices of the boundary operator are generated and linear algebra subroutines

are called on each object. The development of Smith form algorithms has been a subject

of studies on its own now, see Sec. 15.2.2 for references.

It might be however interesting to translate the problem of reductions of chain complexes

to the corresponding sequence of matrices and mimic the reduction algorithm by operations

on rows and columns of matrices. This lead to the following problem:

Given an exact sequence of matrices (potentially, but not necessarily tied to

homology computation), find a way to reduce it, so that the computation of

Smith forms for all matrices is faster.

To our knowledge, such question has not been explicitly considered so far in the context

of Smith Form computation.

In this chapter we will show how to apply the reductions of [73] to a problem from K-

theory, in order to couple it with reductions of [47]. By coupling the reductions, we are able

to compute the Smith form of matrices reaching almost 2, 000, 000×2, 000, 000 in size. We

show, that by putting the reductions of [73] it the matrix setting, we can reduce the problem

to Gaussian elimination, which leads to simplified proofs of correctness, independent of

homology theory. The algorithm can also be used for modular rank computation over a

field. Additionally, thanks to matrix setting, the idea of coreductions can be introduced.

We show that the repeated reductions/coredutions scheme stands behind the successful

computation of the Smith forms of large matrices from [34].

15.1 Outline of this Part

The scheme of this part is as follows. We start in Sec. 15.2 by giving a short background on

the Smith form and existing algorithms for its computation. We continue by introducing

the basic notions from the theory of homology in Sec. 15.3. Then in Ch. 16 we introduce

the reductions of [73]. In Sec. 16.2 we present the reductions in the matrix setting

and give the main theorem. Then we propose to generalize the reductions of [73] to

coreductions and show how to omit some of the assumptions. In Sec. 17.2.3 we present

the implementational details and consider the complexity issues. In Sec. 17.3 we present
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the computational results and timings. In Sec. 17.3.1 we compare our method to the

parallel rank computation presented in [34].

15.2 Background on Smith Form Theory and Algorithms

15.2.1 Theory of the Smith Form

The concept of the Smith normal form was first introduced by H.J. Smith [116] in 1869

for integer matrices. The definition can be extended to the case of Principal Ideals Rings

(PIR)1. We have the following definition.

Definition 15.2.1 (Diagonal Matrix) Let k, n ∈ N and k, n > 0. Let S = [sij ]i=1..k,j=1..n

be a k × n matrix over a ring R. We say that S is diagonal if sij = 0 for i 6= j.

Definition 15.2.2 (Smith Form) Let R be a PIR. Let k, n ∈ N and k, n > 0. Let A be

a k × n matrix over R.

Let S be a diagonal k × n matrix, S = diag(s1, . . . , smin(k,n)), such that

si | si+1 ∀i = 1 . . .min(k, n).

S is called a (generalized) Smith form of A over R iff there exist k× k and n×n matrices

U, V , such that det(U) and det(V ) are invertible over R and

A = USV.

15.2.2 Historic Background

The first algorithm for the construction of the Smith form was given by Smith [116] in

his original paper and consisted of repeated elementary row and columns operations i.e.

exchanging rows/columns, multiplying by ±1 and adding multiples of rows/columns to

another one. His approach is presented in many papers, see e.g. [58, Ch. 3 and 8] (the

case of PID, generalizable to PIR) or [72, Ch.3] (for integer matrices). For integer matrices,

this algorithm may suffer from coefficients swell and may have exponential space and time

complexity in the worst case, see [49, 48].

Despite this fact, heuristics for integer elimination has been developed and elimination

techniques are applied to solve practical problems. We refer to [48] and the references

therein for some examples. See also [64] for strategies of choosing ±1 pivots. In [28]

the authors claim that elimination techniques might be efficient for the computation of

homologies of triangulation in design. Also, in [37] an effective heuristic pivoting strategy

1Ring R is called Principal Ideal Ring (PIR) if every ideal of R is generated by exactly one element.

A PIR R without zero-divisors is called Principal Ideal Domain (PID)
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for homology matrices is presented, which combined effective implementation leads to an

algorithm successful in practice.

It was not until 1979 that the first polynomial time algorithm was given by Kannan and

Bachem [80], which was later improved by Chou and Collins [18]. The idea of these

algorithms was again to perform elimination by means of elementary row and columns

operations but at the same time, to control the coefficient swell. See also [127, Alg. 1] for

a nice presentation. The algorithm is based repeated triangulation steps based on (partial)

row and column elimination.

In 1989 Iliopoulos presented an algorithm, which computes the Smith Form modulo the

determinant in about O∼(n5) operations, where n is the size of the matrix, see [69]. As

invariant factors are divisors of the determinant, this is equal the output of the algorithm

gives the integer Smith form. As remarked by [112] the computation can actually be

performed modulo the largest invariant factors (LIF), see Alg. 6.3.1 and [2, 44, 38, 39]

for algorithms to compute LIF. For Iliopoulos algorithm, the condition that the computa-

tion is performed in modular arithmetics implies that virtually any modular elimination

procedure can transform the input matrix into an equivalent diagonal matrix. Then, the

computation of a Smith form of a diagonal matrix is a much simpler problem.

The complexity of modular Smith form algorithms was gradually improved by other au-

thors by reducing the problem to matrix multiplication. In 1991 Hafner and McCurly

proposed a modular algorithm based on repeated triangulation steps, see [62]. A ran-

domized Las Vegas version of this algorithm was proposed by Giesbrecht in [53, Sec.1].

In the same article (see [53, Sec. 2]) the author proposed a black-box approach, which

for dense matrices leads a O(nωm) complexity Monte Carlo algorithm. In 1996 Storjo-

hann improved this by a factor of n and achieved an O∼(nω−1m) complexity algorithm

by repeated reduction of banded matrix.

For sparse matrices, the black-box approach of [53] (see also [54, 55] for detailed presenta-

tion) allows to omit the problem of coefficient swell and matrix filling and leads to O(m2Ω)

complexity Monte Carlo algorithm.

A mixture of modular elimination and black-box approach is applied in [38, 39, 37, 31]

to design a Smith form algorithm. First, the valence is computed by black-box methods,

which allows to determine primes, for which local Smith form is non trivial. Then, local

Smith forms by elimination mod pl are computed and integer Smith form is computed as

the product. The method was thoroughly experimentally tested for homology matrices,

see [38, 39, 37].

A totally different approach, which is due to Eberly, Giesbrecht and Villard is presented in

[44]. In Ch. 3 we presented the idea of the algorithm and its modifications. The ideas of

[44] coupled with practical improvements of [112] lead to a successful adaptive algorithm,

which is optimized for dense matrices. Moreover, the algorithm can easily be adapted to

the sparse case, by the use of sparse solver of [43]. Yet it seems that the algorithm is to

some extend far from the original motivations of the Smith form computation, where often

structured (sparse, banded) matrices are given on input.
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15.2.3 Algorithms in Spacial Cases

The computation of the Smith form of a diagonal matrix is a slightly easier problem,

which reduces to several extended gcd computation, see [69]. An effective algorithm which

uses sorting networks has been proposed by [127, Sec. 5.7.1]. For a square non-singular

diagonal integer matrix A, the complexity of the algorithm is O(log(| det(A)|)), see [127,

Thm. 5.20].

Over a field, the computation of the Smith form reduces to rank computation. For a matrix

of rank r the Smith form consist of r invariant factors equal to 1 and some remaining zeros.

Over Zpl , an elimination based algorithm for local Smith form computation, see [38, 39,

Alg. LRE] leads to effective Smith form computation in O(rmn) modulo pl operations,

see [38, Thm. 4] for a n×m matrix of rank r.

15.3 Background on Homology Theory

In this section we present some background on the homology theory and the basic ideas

for the computation of homologies. The ideas in this section are based on [72, Ch. 2]. For

other presentations see e.g. [99, 63]. Let us start with some definitions.

Definition 15.3.1 (Exact Sequence) Let n ∈ N∪{∞} and let {Ck}k=0..n be a sequence

of modules. Let ∂k : Ck → Ck−1, k = 0..n be a sequence of morphisms between modules.

We say that the sequence {∂k} is exact iff

∀k = 1..n : ∂k ◦ ∂k+1 = 0. (15.1)

Definition 15.3.2 (Chain Complex) Let n ∈ N∪{∞} and let R be an abelian ring.

Let {Ck}k=0..n be modules over R and let ∂k : Ck → Ck−1,k = 1..n be an exact sequence

of homomorphisms between modules. Then (C, ∂) = (Ck, ∂k+1)k=0..n is a chain complex

(over R).

Given a chain complex, we define the groups of boundaries and cycles and the groups of

homology as follows.

Definition 15.3.3 (Boundaries and Cycles) Let n ∈ N∪{∞} and let R be an abelian

ring. Let (C, ∂) = (Ck, ∂k+1)k=0..n be a chain complex (over R).

The group of cycles Zk ⊂ Ck is defined by

Z0 = C0,

Zk = ker(∂k), k = 1..n. (15.2)



270 15. Motivations

The group of boundaries Bk ⊂ Ck is defined by

Bk = I(∂k+1), k = 0..n− 1,

Bn = {0} (15.3)

(15.4)

We have the following proposition.

Proposition 15.3.4 (Prop. 2.39 of [72]) Let n ∈ N∪{∞} and let R be an abelian

ring. Let (C, ∂) = (Ck, ∂k+1)k=0..n be a chain complex (over R). Let {Zk}k=0..n be the

groups of cycles and {Bk}k=0..n be the groups of boundaries of (C, ∂). Then

Bk ⊂ Zk, k = 0..n

PROOF Let b ∈ Bk. By Eq. (15.3) this means that there exists a ∈ Ck+1 such that

∂k+1(a) = b. Then, by (15.1) ∂kb = ∂k(∂k+1a) = 0. Thus, by Eq. (15.2) b ∈ Zk.

Now, we may define the groups of homologies for (C, ∂).

Definition 15.3.5 (Groups of Homology) Let n ∈ N∪{∞} and let R be an abelian

ring. Let (C, ∂) = (Ck, ∂k+1)k=0..n be a chain complex (over R). Let {Zk}k=0..n be the

groups of cycles and {Bk}k=0..n be the groups of boundaries of (C, ∂).

The groups of homology of (C, ∂) (over R) are define by

Hk = Zk
/
Bk, k = 0..n. (15.5)

PROOF By Prop. 15.3.4, the groups of homology are well defined.

15.3.1 Computation of Homologies

Let n ∈ N∪{∞} and let R be an abelian ring. Let (C, ∂) = (Ck, ∂k+1)k=0..n be a chain

complex (over R). Let {Zk}k=0..n be the groups of cycles and {Bk}k=0..n be the groups

of boundaries of (C, ∂). To compute the quotient group Hk = Zk
/
Bk the groups of cycles

Zk and boundaries Bk have to be determined. In the case when Ck is a free module over

a number ring R, the task can be solved algorithmically.

In fact, by universal coefficient homology theorem, see [63, Thm. 3A.3], the computation

of homologies over Z allows to obtain the result for other rings as well. Therefore, the

computation of homologies over Z is of particular interest.

In the case when R is a PID, e.g. R is: integer ring Z,, rational field Q,, finite field Zp for a

prime p, the bases of Ck,Zk,Bk are well defined and Hk can be deduced from comparison

of bases.
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In the case when R is a finite ring Zq, for q ∈ N, q > 1, or, more generally, an abelian

PIR, the concept generating sets can be used. See [58, Lem. 8.4.1], [58, Lem. 8.4.4] for

theoretical background.

As Ck is a finitely generated free module, an exact chain of matrices Mk can be constructed

to represent ∂k. In the next subsection we shortly present the notations for matrices

generated by boundary operators. Then we show how the Smith form of Mk can be used

to compute the generating sets of Zk,Bk and thus, homologies Hk.

Matrix

Matrices can represent homomorphisms between finitely generated modules over abelian

rings. This is based on the following theorem.

Theorem 15.3.6 (Lem. 8.4.1 of [58]) Let R be an abelian ring with 1 and let m ∈
N,m > 0. Every basis of the finitely generated free module Rm has cardinality m.

Let us introduce the following notation. See [72, Def. 2.21, Prop. 2.22]

Definition 15.3.7 (Def. 2.21 of [72]) Let R be an abelian ring with 1. Let k ∈ N, k >
0 and let Rk be a finitely generated module over R. Let E = {ei}i=1..k be the basis of Rk

and let a, b ∈ Rk. Assume that a =
∑k

i=1 aiei and b =
∑k

i=1 biei, where ai, bi ∈ R, i = 1..k.

Then the ’scalar’ product < a, b > is defined as

< a, b >E=df
k∑

i=1

aibi.

The ’scalar’ product defined in Def. 15.3.7 is bilinear. Now, we may define a matrix.

Definition 15.3.8 (Matrix of Homomorphism) Let R be an abelian ring with 1. Let

n,m ∈ N, n,m > 0. Let Rm and Rn be two finitely generated modules and let U =

{uj}j=1..m and V = {vi}i=1..n be fixed bases for Rm and Rn respectively. Let f : Rm → Rn

be a homomorphism.

A n ×m (m columns, n rows) matrix A = [aij ]i=1..n,j=1..m over the ring R represents a

homomorphism f between two finitely generated free modules Rm and Rn in fixed bases

U and V if and only if aij is equal to the ith coefficient of f(uj) in basis V i.e.

aij =< f(uj), vi >V .

Matrix-vector product represents applying fA to the vector in the same basis. The sum

and the product of matrices is defined in the classic way. Usually, a matrix represents

the homomorphism in canonical basis {ei} = [0 . . . 01i0 . . . 0]T . In order to represent a

homomorphism by a matrix in another bases we may use the following proposition.
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Proposition 15.3.9 (Sec. 3.1 of [72]) Let R be an abelian ring with 1. Let n,m ∈
N, n,m > 0. Let Rm and Rn be two finitely generated modules and let U = {uj}j=1..m

and V = {vi}i=1..n be fixed bases for Rm and Rn respectively. Let f : Rm → Rn be a

homomorphism.

Let A = [aij ]i=1..n,j=1..m be a n×m matrix that represents homomorphism f in canonical

bases {e(m)
j } and {e(n)

i } of Rm and Rn respectively. Let B = [bij ]i=1..n,j=1..m be a n ×m
matrix that represents f in bases U and V . Let ulj , vki be the l and kth coefficient of uj
and vi respectively in the canonical bases, l, j = 1..m, k, i = 1..n. Let us define matrices

Ũ = [ulj ]l,j=1..m and Ṽ = [vki]k,i=1..n. Then

AŨ = Ṽ B.

Matrix of boundary operator

Let R be a number ring. Let n ∈ N∪{∞} and (C, ∂) = (Ck, ∂k+1)k=0..n be a chain complex

over R. We assume that Ck, k = 0..n are free finitely generated modules over R.

As ∂k is a homomorphism between finitely generated free modules, by Def. 15.3.8 it can

be represented by matrix Mk. Since {∂k} is an exact sequence, so is {Mk}. The groups

of cycles and boundaries, Zk and Bk are submodules of Ck. To compute the quotient

group Hk = Zk
/
Bk, the corresponding generating set for Zk and Bk can be found. A

way to compute the generating set for Bk = I(∂k+1) is to compute the Smith form of

the corresponding matrix Mk+1. The practical problem of generation of matrices of the

boundary operator from the (simplicial) complexes is addressed in [37].

The following propositions give the formula for image and kernel of matrix A from its

Smith form S.

Proposition 15.3.10 (Image of A) Let R be an abelian PIR with 1 and let l, n,m ∈
N, n,m > 1, l ≤ min(n,m). LetA be a n×mmatrix overR. Let S = diag(s1, . . . , sl, 0 . . . , 0)

be a diagonal matrix, si ∈ R, i = 1..l. Let U, V be a n× n and m×m invertible matrices

over R, such that A = USV . Then the image I(A) of A is equal to

I(A) = span(s1u1, . . . , slul),

where ui, i = 1..l is the lth column of U .

PROOF See e.g. [72, Prop. 3.9]. By Prop. 15.3.9, S represents the same homomorphism

as A, in bases U−1, V −1. Hence, the formula for I(A).

Proposition 15.3.11 (Kernel of A) Let R be an abelian PIR with 1 and let l, n,m ∈
N, n,m > 1, l ≤ min(n,m). LetA be a n×mmatrix overR. Let S = diag(s1, . . . , sl, 0 . . . , 0)

be a diagonal matrix, si ∈ R, i = 1..l. Let U, V be a n× n and m×m invertible matrices

over R, such that A = USV . Moreover, let us assume, that si, i = 1..l are not divisors of

0. Then the kernel ker(A) of A is equal to

ker(A) = span(V −1el+1, . . . , V
−1em) ' Rm−l,
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where ui, i = 1..l is the lth column of U .

PROOF See e.g. [72, Prop. 3.9]. By Prop. 15.3.9, S represents the same homomorphism

as A, in bases U−1, V −1. Hence, the formula for ker(A). As V is invertible, ker(A) is

isomorphic to Rm−l.

The following corollary gives the formula for homologies over Z.

Corollary 15.3.12 (Homologies over Z) Let n ∈ N∪{∞} and let (C, ∂) = (Ck, ∂k+1, k =

0..n) be a chain complex over Z. Let {Zk}k=0..n be the groups of cycles and {Bk}k=0..n be

the groups of boundaries of (C, ∂). Let nk denote the dimension of Ck and let Mk denote

the nk−1 × nk matrix of homomorphism ∂k, k = 1..n in the canonical bases. Let lk ∈ N
and Sk = diag(s

(k)
1 , . . . , s

(k)
lk
, 0, . . . , 0), s

(k)
i 6= 0 for i = 1..lk, be the Smith form of Mk.

Then for k = 1..n− 1, nk − lk − lk+1 ≥ 0 and the kth homology group is equal to

Hk ' Znk−lk−lk+1 ⊕Z
s
(k+1)
1

⊕ · · · ⊕ Z
s
(k+1)
lk+1

.

Additionally, n0 − l1 ≥ 0, nn − ln ≥ 0 and

H0 ' Zn0−l1 ⊕Z
s
(1)
1

⊕ · · · ⊕ Z
s
(1)
l1

Hn ' Znn−ln .

PROOF The computation follows from Prop. 15.3.10,15.3.11.
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Reduction of a Chain Complex

In [73], Kaczyński, Mrozek, and Ślusarek propose a procedure to reduce chain complexes

by algebraic reductions. The idea is based on the following theorem.

16.1 Algebraic Reductions of [73]

Theorem 16.1.1 (One-step Reduction of Sec. 2 in [73]) Let R be an abelian ring

and let n ∈ N∪{∞}. Let (C, ∂) = (Ck, ∂k)k=0..n be a chain complex over R such that Ck
are finitely generated modules over R, k = 0..n. Assume that bases Ek are given for each

Ck and let < −, · > denote the corresponding ’scalar’ product (cf. Def. 15.3.7). Let us fix

m ∈ {1..n}. Assume that a ∈ Em−1 and b ∈ Em are two elements such that there exists

λ ∈ R, r ∈ Cm−1, such that

∂mb = λa+ r (16.1)

and λ is invertible in R, < a, r >= 0. Define for k = 0..n

Ck =





Ck if k 6= m,m− 1

{v ∈ Ck :< a, v >= 0} if k = m− 1

{v ∈ Ck :< b, v >= 0} if k = m

.

For v ∈ Ck let us define

∂k =





∂k(v) if k 6= m+ 1,m

∂k(v)− λ−1 < a, ∂kv > ∂b if k = m

∂k(v)− < ∂kv, b > b if k = m+ 1

. (16.2)

Then the homologies groups of (C, ∂) are equal to homologies groups of (C, ∂).

PROOF See Sec. 2 of [73] and [73, Thm. 2] in particular. The proof of the theorem

follows from the inclusion theorem.
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16.1.1 Geometric Interpretation of Reduction

Thm. 16.1.1 has an intuitive geometric interpretation. Several examples are detailed in

[73, Sec. 3]. Here, let us present the concept of free-faces reduction (or exterior face

collapsing, or elementary collapse), see also [72, Sec. 2.4].

Definition 16.1.2 (Free Face) Let R be an abelian ring and let n ∈ N∪{∞}. Let

(C, ∂) = (Ck, ∂k)k=0..n be a chain complex over R such that Ck are finitely generated

modules over R, k = 0..n. Assume that bases Ek are given for each Ck. Let us fix

m ∈ {1..n} and let a ∈ Em−1. We say that a is a free face, if there exists exactly one

b ∈ Em (we call it a cell) such that < a, ∂mb >6= 0.

Remark 16.1.3 Compare with the concept of exterior face in [73, Sec. 4] in the case of

simplicial complexes and with [72, Def. 2.60] in the case of cubical sets.

Suppose now that a ∈ Cm−1 is a free face and that S ∈ Cm is the corresponding cell such

that < a, ∂kS >= λ 6= 0. Moreover, let λ be invertible in R. Notice, that theorem 16.1.1

can be applied to the pair (a, S).

Let us illustrate the reduction by Fig. 16.1. It is immediately visible that the U figure on

the right is a retract of the square on the left. Hance, homologies of both figures are the

same.

Figure 16.1: Retraction of a square

Proposition 16.1.4 (Thm. 16.1.1 for Free Faces) Let a be a free face and b the cor-

responding cell. Let us assume that λ =< a, ∂b > is invertible. Reduction of (a, b) based

on Thm. 16.1.1 does not require any modification of ∂ i.e. ∂ is a restriction of ∂ to a

smaller complex.

PROOF Let us assume that a ∈ Em−1 has dimension m − 1. By Eq. (16.2), ∂m is

modified in the case when there exists v 6= b such that < ∂mv > 6= 0. By the definition of

a free face this is not possible. On the other hand, ∂m+1 is modified if there exist v such

that < ∂v, b >6= 0. Assume for a moment that such v exists and < ∂v, b >= µ. Then,

< ∂∂v, a >=< µ∂b, a >= µλ, which is non-zero as λ is invertible. But ∂∂v = 0 from the

definition of boundary operator. Thus, no such v exists and ∂m+1 is not modified.

Remark 16.1.5 In some simple cases, reduction of free faces is often enough to reduce

the complex to a small size. On the other hand, examples of complexes for which no free

faces exists can be found, e.g. Bing’s house.
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16.2 Reduction Algorithm for Matrices

In this section, we will discuss matrix representation of algebraic reductions and its appli-

cation to Smith form and rank computation for an exact sequence of matrices.

Let us consider the notions of Thm. 16.1.1. Let Mk be the matrix of homomorphism

∂k. Let e
(k)
i ∈ Ek be the elements of the basis. Then we may consider e

(k)
i as labels for

columns of Mk and e
(k−1)
j as labels for rows of Mk. Let us consider Eq. (16.2). Taking into

account Eq. (16.1), one may observe that it gives the formula for Gaussian elimination of

Mk, which leads to the elimination of the column of Mk labelled by b. Indeed, we have

the following theorem.

Definition 16.2.1 (Admissible Entry) Let m,n ∈ N, let R be a PIR and let M =

[aij ]i=1..n,j=1..m be a n×m matrix over R. We say that an entry aij is admissible if aij is

not a zero divisor and

aij | ait ∀t = 1..mk (16.3)

aij | asj ∀s = 1..nk. (16.4)

Theorem 16.2.2 (One-step Reduction of an Exact Sequence of Matrices) Let R

be a PIR and let n ∈ N∪{∞}. Let Mk, k = 1..N be an exact sequence of matrices over

R. Let us take k = 1..N . Let us assume that Mk = [ast] is a nk ×mk matrix and let us

take i ∈ {1..nk}, j ∈ {1..mk}. Suppose that aij is an admissible entry as in Def. 16.2.1.

Then there exist a matrix L such that the jth column of LMk has only one non-zero entry

in the ith row, equal to aij. Let M ′k be the minor of LMk obtained by deleting the row and

column corresponding to aij. Then

SF (diag(aij , SF (M ′k))) = SF (LMk) = SF (Mk)

rank(M ′k) + 1 = rank(LMk) = rank(Mk). (16.5)

Moreover, if k > 1, let M ′k−1 denote the minor of Mk−1 obtained by deleting the ith column

and, if k < N , let M ′k+1 denote the minor of Mk+1 obtained by deleting the jth row. Then

. . .Mk−2M
′
k−1M

′
kM
′
k+1Mk+2 . . . is an exact sequence of matrices. Moreover,

[SF (M ′k−1), 0] = SF (Mk−1)

rank(M ′k−1) = rank(Mk−1) (16.6)

and

[
SF (M ′k+1)

0

]
= SF (Mk+1)

rank(M ′k+1) = rank(Mk+1). (16.7)



278 16. Reduction of a Chain Complex

PROOF Thanks to Eq. (16.3) there exists matrix L, given as a product row operations

i.e.

L =
∏

t6=i
Lt, Lt = Id +

j


0 . . . 0 . . . 0

0

...

−ait/aij
...

0

0 . . . 0 . . . 0




t

L =

j


1 −ai1/aij
. . .

...

1 −ai,i−1/aij
1

−ai,i+1/aij 1
...

. . .

−aink/aij 1




, L−1 =

j


1 ai1/aij
. . .

...

1 ai,i−1/aij
1

ai,i+1/aij 1
...

. . .

aink/aij 1




.

(16.8)

Matrix L is invertible overR and det(L) = 1. Thus, SF (LMi) = SF (Mi) and rank(LMi) =

rank(Mi). Moreover, thanks to Eq. (16.4) there exist a matrix U , given as a product of

column operations, such that

LMiU =



A 0 A′

0 aij 0

B 0 B′


 ,

U =
∏

s 6=j
Us, Us = Id +

s


0 . . . 0 . . . 0

0

...

−asj/aij
...

0

0 . . . 0 . . . 0




i

According to the definition, matrix

[
A A′

B B′

]
is equal toM ′k. Thus, SF (diag(aij , SF (M ′k))) =

SF (Mk) and rank(M ′k) + 1 = rank(Mk).

Let us now consider the case when k > 1 and let us consider matrix M ′k−1 delivered from

Mk−1. We have that

Mk−1Mk = 0⇒ (Mk−1L
−1)(LMk) = 0.
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Thus, in particular,

Mk−1L
−1
[
0 . . . aij . . . 0

]T
= 0,

i.e. the ith column of Mk−1L
−1 fulfills

aij(Mk−1L
−1)[1..nk−1, i] = 0.

This implies that (Mk−1L
−1)[1..nk−1, i] = 0, since aij is not a zero divisor. By the for-

mula for L−1 in Eq. (16.8), the ith column of Mk−1 is a combination of the remain-

ing columns. Moreover, multiplying by L−1 does not change any other column, thus

Mk−1L[1..nk−1][1..̂i..mk−1] = M ′k−1 and M ′k−1M
′
k = 0 and Eq. (16.6) holds.

Let us now consider the case when k < N . We have

MkMk+1 ⇒ LMkMk+1 = 0,

which after a suitable permutation implies that

[
M ′k 0

a aij

]
·
[

M ′k+1

Mk+1[j, 1..mk+1]

]
= 0.

Thus, M ′k ·M ′k+1 = 0 and a ·M ′k+1 + aijMk+1[j, 1..mk+1] = 0. By Eq. (16.4), aij divides

a and thus the jth row of Mk+1 is a 0 combination of the remaining rows. Hence, Eq.

(16.7) holds.

Remark 16.2.3 The theorem can be applied in the case when aij is invertible but it is

not restricted to this case.

As a corollary, let us now present a column version of the theorem.

Corollary 16.2.4 [One-step Reduction of an Exact Sequence of Matrices II] Let R be a

PIR and let n ∈ N∪{∞}. Let Mk, k = 1..N be an exact sequence of matrices over R.

Let us take k = 1..N . Let us assume that Mk = [ast] is a nk ×mk matrix and let us take

i ∈ {1..nk}, j ∈ {1..mk}. Suppose that aij is an admissible entry as in Def. 16.2.1. Then

there exist a matrix U such that the ith row of MkU has only one non-zero entry in the

jth column, equal to aij . Let M ′k be the minor of MkU obtained by deleting the row and

column corresponding to aij . Then

SF (diag(aij , SF (M ′k))) = SF (LMk) = SF (Mk)

rank(M ′k) + 1 = rank(LMk) = rank(Mk). (16.9)

Moreover, if k > 1 let M ′k−1 denote the minor of Mk−1 obtained by deleting the ith column

and if k < N let M ′k+1 denote the minor of Mk+1 obtained by deleting the jth row. Then

. . .Mk−2M
′
k−1M

′
kM
′
k+1Mk+2 . . . is an exact sequence of matrices. Moreover,

[SF (M ′k−1), 0] = SF (Mk−1)

rank(M ′k−1) rank(Mk−1) (16.10)
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and

[
SF (M ′k+1)

0

]
= SF (Mk+1)

rank(M ′k+1) rank(Mk+1). (16.11)

PROOF Chain MT
k , k = N..1 fulfills Theorem 16.2.2 so the corollary follows as a natural

consequences.

Remark 16.2.5 We refer to the latter case as coreductions.

As a result of reductions and coreductions in Thm. 16.2.2 and Cor. 16.2.4, a new exact

sequence of matrices is produces, for which reductions can be applied again. For this,

we require that reduction is induced by an admissible entry, which by definition, is not a

divisor of zero. In Sec. 16.2.1 we show that this condition is necessary to ensure that Thm.

16.2.2 and Cor. 16.2.4 could be applied again to the resulting sequence. In Thm. 16.2.8

we show that the requirement can be omitted if a stronger condition on the sequence is

imposed.

16.2.1 Reductions modulo pl

To avoid coefficient swell, many authors propose turning to modular algorithms. This is

the case of [69, 62, 121]. Also, elimination modulo pl is an efficient way to compute local

Smith form and helps compute the Smith form, see [38, 39]. Let us thus focus on the

results we may have in the case where the ring R is equal to Zq for a composite q, where

λ is a divisor of 0. We have been able to delivered both negative and positive results.

Example 16.2.6 Let us consider matrices

A =

[
2 2 −2

6 3 0

]
, B =




1

2

3


 (16.12)

over Z. The product AB is equal to 0 over Z. Let us now consider the process of reduction

modulo 6 of A. The entry a11 fulfills all properties of Def. 16.2.1 apart form the fact that

it is a zero divisor. Let us see what happens if we try to perform a reduction according

to Thm. 16.2.2 using a11. As a21 = 6 = 0 mod 6 the process of reduction consists of

deleting the first row and column of A as well as the first row of B. We obtain

A′ =
[
3 0

]
, B′ =

[
2

3

]
.

Notice that A′B′ = 0 mod 6 but A′B′ 6= 0 over Z. Moreover, equations (16.5) and (16.7)

hold, as long as the Smith form is concerned. Indeed, a quick revision of the proof of Thm.
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16.2.2 shows, that for an exact chain of matrices over Z, one can take modular images and

perform one step of reduction. Yet, repeating the reduction may lead to a mistake, as we

will now show.

Let us continue the reduction of A and delete element a′11 = 3. After reduction A′ be-

comes void, and the Smith form of A is correctly determined modulo 6 as SF (A) =

SF (diag(2, 3)) = diag(1, 6) = diag(1, 0) mod 6. Also, the first row of B′ is deleted

and we are left with a one-entry matrix B′′ = [3]. However, the conclusion SF (B′) =

diag(SF (B′′), 0) = diag(3, 0) is false in this case.

Notice that the elimination of A followed the scheme of the algorithm of Iliopoulos [69]

modulo lcm(d2(A), d1(B)), where di is the gcd of all i × i minors. Repeated reductions

with admissible entries being divisors of zero lead to uncorrect results in this case.

Example 16.2.7 Let us consider matrices

A =

[
2 0

0 1

]
, B =

[
2 0

0 0

]
(16.13)

over Z4 but AB =

[
4 0

0 0

]
over Z. The product AB = 0 mod 4. The entry a11 fulfills

all properties of Def. 16.2.1 apart form the fact that it is a zero divisor. Let us perform

a reduction according to Thm. 16.2.2 using a11. The process of reduction consists of

deleting the first row and column of A as well as the first row of B. After reduction we

obtain a matrix A′ = [1], such that SF (A) = SF (diag(2, A′)), and matrix B′ = [0] such

that SF (B) 6= [SF (B′), 0]T . Reduction modulo a divisor of zero leads to uncorrect results

in this case.

Despite these negative results, the following theorem allows to apply reductions in the case

of local Smith form computation.

Theorem 16.2.8 (One-step Reduction Modulo pl) Let p be a prime and l ∈ Z, l >
1. Let R = Zpl and let n ∈ N∪{∞}. Let Mk, k = 1..N be an exact sequence of matrices

over Zpl.Let us take k = 1..N and let us additionally assume that

1. if k > 1 then there exist integer matrix Z, matrix X over Zpl, such that Mk−1Mk = plZ

over Z and Z = Mk−1X mod pl,

2. if k < N then there exist integer matrix W , matrix Y over Zpl, such that MkMk+1 =

plW over Z and W = YMk+1 mod pl.

Let us assume that Mk = [ast] is a nk×mk matrix and let us take i ∈ {1..nk}, j ∈ {1..mk}.
Suppose that aij fulfills Eq. (16.3) and (16.4) in Zpl1.

1Notice, that aij can be a zero divisor
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Then there exist an integer matrix L such that the jth column of LMk has only one non-

zero entry modulo pl in the ith row, equal to aij. Let M ′k be the minor of LMk obtained

by deleting the row and column corresponding to aij. We have

SF (diag(aij , SF (M ′k))) = SF (LMk) = SF (Mk), (16.14)

where SF denote the Smith form modulo Zpl.

Moreover, if k > 1 let M ′k−1 denote the minor of Mk−1 obtained by deleting the ith column

and if k < N let M ′k+1 denote the minor of Mk+1 obtained by deleting the jth row.

Then . . .M ′k−1(M ′k mod pl)M ′k+1 . . . is an exact sequence of matrices over Zpl such that

conditions 1, 2 hold. Moreover,

[SF (M ′k−1), 0] = SF (Mk−1), (16.15)
[
SF (M ′k+1)

0

]
= SF (Mk+1). (16.16)

PROOF The proof is rather technical, though some ideas of the proof of Thm. 16.2.2

carry on. First, matrices L and U can be constructed in the same way as in the proof

of Thm. 16.2.2 as products of elementary operations. Thus, matrices L,U , are integer

matrices s.t. det(L) = det(U) = 1.

Let us now prove that we can delete the row and column in the neighboring matrices and

still obtain an exact sequence of matrices such that conditions 1 and 2 hold. Notice, that

unless explicitly mentioned otherwise, all matrices and operations are over Z.

First, let us assume that k > 1. Without loss of generality we may assume that i, j = 1.

By condition 1, over Z we have

Mk−1L
−1LMkU = plZU. (16.17)

Also, by Eq. (16.8), L−1 is of a form

L−1 =




1

l21 1
...

. . .

lnk1 1


 =

[
1 0

l Id

]
.

As det(L) = 1, SF (Mk−1L
−1) = SF (Mk−1).

We can introduce the following block notations for matrices

Mk−1 =
[
c M ′k−1

]
,Mk−1L

−1 =
[
c +M ′k−1l M ′k−1

]
.
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Let α = ordp(aij . We have 0 ≤ α < l. Let us also define integer vectors w′,w,v and

matrix M ′′k =pl M
′
K , such that

LMk =

[
a11 pαw

′T

plv M ′k

]
, LMkU =

[
a11 plwT

plv M ′′k

]
, (16.18)

Now, from Eq. (16.17) we can deduce that

a11(c +M ′k−1l) + plM ′k−1v = plZU
[
1 0 . . . 0

]T
= plz, (16.19)

where ZU
[
1 0 . . . 0

]T
= z. Let =pl denote the equality modulo pl. By Cond. 1

z =pl Mk−1XU
[
1 0 . . . 0

]T
=pl Mk−1x =

[
c M ′k−1

] [
x x′T

]T
,

where

X =
[
x X̃

]
=

[
x x̃

x′ ˜̃X

]
. (16.20)

Eq. (16.19) transforms to

a11/p
αc = −M ′k−1(a11/p

αl + pl−αv) + pl−α(xc +M ′k−1x
′)

(a11/p
α − pl−αx)c = M ′k−1r, (16.21)

where r = a11/p
αl + pl−αv + pl−αx′.

As gcd(a11/p
α− pl−αx, p) = 1, a11/p

α− pl−αx is invertible over Zpl and there exist vector

r′ over Zpl such that c =pl M
′
k−1r

′. Thus, c is a combination of the columns of M ′k−1,

SF (Mk−1) = [0, SF (M ′k−1)] and Eq. (16.15) holds.

Now, we need to construct matrices Z ′, X ′, such that Cond. 1 holds. By Eq. (16.17)

pl(c +M ′k−1l)w
T +M ′k−1M

′′
k = plZ̃,

where Z̃ is composed of all but the first columns of ZU . Thus, we may put Z ′′ = Z̃− (c +

M ′k−1l)w
T . Consider Eq. (16.20). By condition 1, modulo pl we have,

Z ′′ =pl Mk−1X̃ − (c +M ′k−1l)w
T =pl cx̃ +M ′k−1

˜̃X − (c +M ′k−1l)w
T ,

As c =pl M
′
k−1r

′, we have

Z ′′ =pl M
′
k−1(r′x̃ + ˜̃X − (r′ + l)wT ).
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Now, let us take (M ′k mod pl) instead of M ′′k and define Z ′ = 1
pl
M ′k−1(M ′k mod pl). As

M ′k =pl M
′′
k , Z ′ is a well defined integer matrix, equal to Z ′′ modulo pl. Thus, it suffices

to take

X ′ = r′x̃ + ˜̃X − (r′ + l)wT .

Let us now assume that k < N . By condition 2, over Z we have

LMkMk+1 = plLW. (16.22)

Let us define a vector d, such that Mk+1 =

[
dT

M ′k+1

]
. Now, from Eq. (16.22), (16.18) we

can deduce that

a11d
T + pαw

′TM ′k+1 = pl
[
1 0 . . . 0

]
LW = plW1,

where W1 is the first row of LW . Thus a11/p
αdT = pl−αW1 −w

′TM ′k+1. Let

[
1 0 . . . 0

]
Y = yT =

[
y y′T

]
.

Modulo pl we have

a11/p
αdT =pl p

l−αLyMk+1 −w
′TM ′k+1 = a11/p

αdT =pl p
l−αydT + Ly′TM ′k+1 −w

′TM ′k+1,

dT (a11/p
α − pl−αy) = y′TM ′k+1 −w

′TM ′k+1.

As gcd(a11/p
α−pl−αy, p) = 1, a11/p

α−pl−αy is invertible over Zpl , and there exist vector

q′ over Zpl such that dT =pl q′TM ′k+1. Thus, dT is a combination of the rows of M ′k+1,

SF (Mk+1) = [0, SF (M ′k+1)] and Eq. (16.16) holds.

Now, we need to construct matrices W ′, Y ′ such that Cond. 2 holds. By Eq. (16.22) we

have

plvdT +M ′kM
′
k+1 = plW̃ ,

where W̃ is composed of all but the first rows of LW . This gives

M ′kM
′
k+1 = pl(W̃ − vdT ) = plW ′′.

Modulo pl, W ′′ is equal to

W ′′ =pl Ỹ Mk+1 − vq′TM ′k+1 =pl ỹdT + ˜̃YM ′k+1 =pl (ỹq′T + ˜̃Y )M ′k+1,

where

Ỹ = [−l Id]Y = [ỹ ˜̃Y ].
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It suffices now to put W ′ = 1
pl

(M ′k mod pl)M ′k+1, which is a well defined integer matrix.

Moreover W ′ =pl W
′′ and thus Y ′ = ỹq′T + ˜̃Y fulfills the requirements.

Remark 16.2.9 1. Conditions 1 and 2 ensure that Thm. 16.2.8 can recursively be applied

for the resulting chain . . .M ′k−1M
′
kM
′
k+1 . . . as long as an admissible entry is found.

2. Conditions 1 and 2 are trivially fulfilled for modular images of exact chains of matrices

over Z. It suffices to take Z = X = 0 and W = Y = 0. Thus, Thm. 16.2.8 can

repeatedly be applied in order to compute local smith forms at a prime p for exact

chains of integer matrices.

3. Let us suppose that q ∈ Z, q is composite. Suppose that Mk is an exact chain of matrices

over Z and let us take Mk mod q. One reduction as in Thm. 16.2.8 is possible i.e. the

Smith forms agree after reduction. However, attempting another reduction may fail,

see Ex. 16.2.6.

4. The proof of Thm. 16.2.8 is based on the special form of zero-divisors in Zpl compared

with Zq. As a related property we also notice, that for matrices over Zpl all minimal

generating sets of columns/rows have the same, minimal cardinality equal to the number

of non-zero invariant factors modulo pl. Algorithm LRE of [38, 39] can be adapted to

prove this claim. Therefore, by finding a dependency, we may remove the dependent

vector from the generating set in order to obtain a generating set of minimal cardinality

at the end of the process. In fact, in many aspect, matrices over Zpl behave like matrices

over a field.

5. Theorems 16.2.2,16.2.8 allow to trace bases of the kernel (resp. image) of Mk, which

become LEk (resp. Ek−1U ), if Ek (resp Ek−1) is the initial base. This is an important

factor in some applications, see e.g. for computing homologies of maps, see [72, Ch. 7].

Over integers, computational issues regarding coefficient swell arise, which is discussed

in [64]. However, this can be seen as a good point of the method, compared to undirect

methods such as [44].





17
Smith Form by Reductions -

Heuristic Algorithm

17.1 Introduction

Based on reductions and coreductions of Thm. 16.2.2 and Cor. 16.2.4, we may construct

an algorithm for the computation of rank and Smith form, for exact sequences of matrices

Mk over a PIR R. Whenever an admissible entry is found in matrix Mk, see Def. 16.2.1,

the remaining entries in a row and column can be bring to zero by elimination, and then

deleted, while the precomputed value of (partial) rank is increased an/or invariant factors

updated. The elimination then propagates on the neighboring matrices Mk−1 and Mk+1

by deletion of corresponding rows and columns. After this operations, we obtain again

an exact chain of matrices and the process can either be repeated for another admissible

entry of Mk or, for another matrix of the chain. For a prime p and l ∈ Z, l > 1, the

idea carry on to the modular ring Zpl by Thm. 16.2.8, which allows for local Smith form

computation.

In this chapter, we will focus on the case when R is equal to Z and the sequence Mi,

i = 1..N is finite. We will propose a heuristic reduction base algorithm for the computation

of the Smith form of an exact chain of integer matrices and show by experiments that this

approach may be an effective measure against the coefficient swell and filling, allowing

for successful computation in the case of very large matrices. Using this approach we

were able to conquer the challenge problem of [34] and compute the Smith forms of large

matrices coming from the K-theory.

We will start this chapter by presenting the setting for our problem in Sec. 17.1.1. Then

we will discuss the choice of an admissible entry for reduction within our heuristics and

compare it to the existing elimination-based algorithms for the Smith form computation,

such as [31, Sec.5.1-2] and the references therein. This leads to the presentation of our

algorithm in Sec. 17.2. Then we present some implementation details in Sec. 17.2.3 and

comment on the complexity of our approach. We will then check the performance of our

heuristic approach and present experimental results and timings in Sec. 17.3. We will

compare the effectiveness of our approach against the parallel rank computation of [34] in

Sec. 17.3.1.
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17.1.1 Problem Setting

The performance of reduction algorithm depends on the choice of admissible entries at

each step of reduction. The choice should ensure that

- the filling and coefficient swell does not hamper elimination and does not lead to

memory trashing;

- it is always possible to find the next admissible entry.

Strategies for the choice of an admissible entry can be discussed in two different settings.

1. In the global (or omniscient) setting, all matrices fit into memory and can be processed

at the same time.

2. In the local (or linear) setting, only one matrix fit into memory and is processed,

additional (static) information on neighboring matrices can eventually be available.

In what follows, we will focus on the local setting, which is a rational choice for very large

matrices for which other algorithms fail. This approach can make use of existing sparse

matrix structures of LinBox, with some modifications to enhance performance.

Also, admissible entries are independent in a sense that

- new admissible entries in Mk arise as results of elimination on Mk,

- deletion of rows/columns in neighboring matrices cannot turn a non admissible entry

into an admissible one,

- finally, any choice of admissible entries in the global setting, can be realized in the

local setting choosing no admissible entries for certain matrices.

Therefore we feel that the applicability of global approach is limited in this sense and it is

difficult to anticipate a serious gain of the global setting compared to the local one. Also,

it seems that launching in parallel several reduction processes in the local settings should

be envisaged instead.

17.2 Reduction Algorithm

In the global setting, Alg. 17.2.1 presents the scheme for the reduction procedure. The

algorithm gives the general scheme of reconstruction in terms of function Reduce and

PartialElimination. On the input of the algorithm, a finite exact chain Mk, k = 1..N of

matrices (over Z or Zp for a prime p). For i = 1..N , matrix Mi is written in bases Ei and

Ei−1 and vectors Vi, Vi−1 associated with Mi contain marks for indices of eliminated rows

and columns respectively.
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Procedure Reduce(Mi+1, Vi) reads matrix Mi−1 from data file and zeroes rows from Mi−1

which are marked in Vi. PartialElimination(Mi, Vi−1, Vi,K) repeatedly finds admissible

entries and perform reductions according to Thm. 16.2.2, maintaining marks, so that Vi−1

and Vi contain information about the rows and columns that have to be zeroed in the

neighboring matrices, see Alg. 17.2.2 for details.

Algorithm 17.2.1 Reduction/coreduction scheme for the Smith form computation

Require: Mk, k = 1..N , a finite exact chain of matrices,

Ensure: Dk, k = 1..N , a sequence of diagonal matrices,

Ensure: M ′k, k = 1..N , an exact chain of matrices, such that

SF (Mk) = SF (diag(Dk,M
′
k)), k = 1..N.

1: M ′i = Mi, i = 1..N ;

2: K = 1;

3: repeat

4: for i = 1 to N − 1 do

5: Di = PartialElimination(M ′i , Vi−1, Vi,K + 1);

6: Reduce(M ′i+1, Vi);

7: end for

8: DN = PartialElimination(M ′N , VN−1, VN ,K + 1);

9: for i = N to 2 do

10: Di = PartialElimination(M
′T
i , Vi, Vi−1,K + 1);

11: Reduce(M
′T
i−1, Vi);

12: end for

13: D1 = PartialElimination(M
′T
1 , V0, V1,K + 1);

14: K = K + 1;

15: until No more admissible entries are found.

Lemma 17.2.1 (Correctness of Alg. 17.2.1) Suppose Mk, k = 1..N , an exact sequence

of matrices over a PIR R is given at the entrance of Alg. 17.2.1. Let 1 < i ≤ N .

During the course of the algorithm, whenever PartialElimination(M ′i , Vi−1, Vi,K) (resp.

(M
′T
i−1, Vi−1, Vi−2,K)) is about to start (i.e. at line 5,8 (resp. 10,14), the following condi-

tions are fulfilled

M ′i−1M
′
i = 0, (resp. M

′T
i M

′T
i−1 = 0).

As a consequence, at the end of the algorithm, SF (diag(Di,M
′
k)) is equal to the Smith

form of the original matrix Mk.

PROOF At the beginning of the algorithmM ′k is an exact sequence and thus the conditions

are fulfilled. The condition M ′i−1M
′
i = 0 is first violated when PartialElimination on

(M ′i−1, Vi−2, Vi−1) is performed, as matrix M ′i−1 is changed. According to Thm. 16.2.2

this can be repaired by a deletion of rows of M ′i , which correspond to eliminated columns.
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Provided that Vi−1 keeps track of columns of M ′i−1 which have been eliminated, this is

immediately done in Reduce(M ′i , Vi−1) and therefore is fulfilled at the beginning of line 4

or 8.

In the next run of the for loop, the call to PartialElimination(M ′i , Vi−1, Vi) violates the

condition again as M ′i is modified. Again, Thm. 16.2.2 point us to delete columns of M ′i−1

in order to maintain the conditions. This is not done immediately, but information on the

columns is stored in Vi−1. Then the call to PartialElimination(M
′T
i , Vi, Vi−1) changes

Mi once again and information of the eliminated rows of Mi are added in Vi−1. By Cor.

16.2.4 these columns should be deleted from Mi−1 as well.

This is exactly done by Reduce(M
′T
i−1, Vi−1), before PartialElimination on M

′T
i−1 is called.

Notice, that the rows of M
′T
i−1 are exactly the columns of M ′i−1 and the marks in Vi−1

are set according to the status of the column set in PartialElimination(M ′i , Vi−1, Vi)

and PartialElimination(M
′T
i , Vi, Vi−1). Thus, the call to Reduce ensures that before

the launch of PartialElimination(M
′T
i−1, Vi−1, Vi−2,K) we have that M

′T
i M

′T
i−1 = 0 and

M ′i−1M
′
i = 0. As the loop continues, the reasoning can be repeated.

The above reasoning justifies that Thm. 16.2.2 and Cor. 16.2.4 can be applies whenever

PartialElimination is launched. Thus, condition on the Smith form follows.

17.2.1 Choice of Admissible Entry

At this point, the essential part of the algorithm is the strategy of finding admissible entries

in PartialElimination. In general, as remarked by many authors, see e.g. [134], finding

an elimination scheme that optimize filling and coefficient swell is a NP complete problem.

Finding an optimal route for elimination/reduction scheme for the whole sequence seems

at least as difficult.

Optimal Elimination Strategy

Suppose now that an optimal elimination strategy for matrix M ′k is known i.e. a sequence

(i1, ij), . . . , (iK , jK) of indices of admissible entries is given, which results in optimal min-

imal filling and coefficient swamp. One solution is to perform full elimination on M ′k
according to the optimal strategy. Yet, the elimination of M ′k can be suspended and re-

sumed only in the next run of the repeat loop of Alg. 17.2.1. Indeed, deleting columns

and rows other than is and resp. js, s = 1..K, does not violate the admissibility of entries

of M ′k. By preserving a condition that no columns labelled by is, s = 1..K are deleted

in M ′k+1, and no rows labelled by jt, t = 1..K are deleted in M ′k−1, we may then resume

optimal elimination strategy for M ′k, possible reducing the cost, as the matrix is smaller.

Surely, it is possible that a new choice of admissible entries becomes optimal due to dele-

tion of rows and columns of M ′k. Also, eliminating columns labelled by is in M ′k+1 or

eliminating rows labelled by js in M ′k−1 might lead to better strategies.
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Heuristic Elimination Strategy

In general it seems that a locally greedy approach, which leads to maximal elimination of

Mk might have drawbacks, mostly as no new admissible entries arise from (co)reductions in

Mk. Actually, this is exactly the approach proposed by [73] in the original paper, as it uses

Thm. 16.2.2 only and not Cor. 16.2.4 for the transposed chain. It seems that a balanced

approach, where elimination steps intertwine with (co)reductions is more justified as it

allows to localize the computation in Mk as long as appropriate and profit from reductions

as well.

In [31, Sec. 5.1-2] a handful of elimination strategies are analyzed or referred to, which

can be used here. In particular, Markowitz’s minimal degree algorithm can be mentioned

here, see [31, Sec. 5.1-2] and the references therein. In [31, Sec. 5.1-2] a modification is

proposed and experimentally evaluated, which point out to first reduce the shortest rows,

by choosing the entry which lies in the shortest column.

PartialElimination Algorithm

It is easy to enforce a break in the elimination strategy by adding a parameters K1,K2 and

saying that only rows with less than K1 non-zero entries and columns with less than K2

non-zero entries can be eliminated at one pass of the repeat loop in Alg. 17.2.1. Also, in

the presence of reductions possibility, we propose the following locally greedy modification:

if a coefficient swell or filling is encounter, mark the affected row/column as preferred for

deletion. This can be taken into account while performing elimination on the neighboring

matrices. If reduction is possible, this will result with better filling and slower coefficient

growth. In Alg. 17.2.2 we summarize these ideas in a form of an algorithm. In Alg. 17.2.2

we decided to take K1 = K and K2 =∞ (or column dimension in practice).

Notice that the elimination of 1-rows comes at small cost as only a row and column

are zeroed. This case is equivalent to free face reduction, see Sec. 16.1.1. Moreover,

elimination of 2-rows does not lead to the growth of the overall number of non-zero entries.

Therefore elimination of 1-2 rows should have higher priority. In fact, 1-2 rows elimination

is often sufficient in some cases with geometric e.g. for the computation of homology groups

of cubical sets. Indeed, in [73, Sec. 4.3], the authors envisaged a tree structure, which will

allow to access shortest rows and columns (notice a correspondence to faces and edges)

first. Also, a priority queue can be envisaged.

In Sec. 17.2.3 we discuss a structure of grid to store matrix entries. This modification of

sparse matrix implementation allows us to realize Alg. 17.2.2.

17.2.2 Remarks on Reduce Procedure

The definition of function Reduce is straightforward from its requirements. From the

point of view of implementational in order to obtain good complexity of grid creation,

it is essential that in the matrix file entries from the same rows come together. Notice
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Algorithm 17.2.2 PartialElimination Algorithm

Require: Mi, Vi−1, Vi,

Require: K > 0, T ≥ 0 - threshold for stopping condition,

Ensure: Di, M
′
i such that SF (diag(Di,M

′
i)) = SF (Mi).

1: M ′i = Mi;

2: prevrank = 0; rank = 0;

3: repeat

4: prevrank = rank;

5: for s = 1 or M ′k.rowdim do

6: if size(M ′k[s]) ≤ K) #size is the number of non-zero elements then

7: Find an admissible entry ast in the preferred or shortest column;

8: Eliminate tth column;

9: rank = rank + 1;

10: Mark Vi−1[s] = eliminated, Vi[t] = eliminated;

11: If coefficient swell of filling occur, mark column as preferred to reduction; break;

12: end for

13: until rank − prevrank < T

that Reduce repeatedly gets matrix M ′i and M
′T
i . Thus, PartialElimination should write

back matrix M ′T i to the file.

For matrices that do not fit into memory, the paper of [37] proposes an elimination ap-

proach that allows to treat matrix row by row and perform elimination delayed in time

when same pivot is repeated. This seems a good base for the development of function

Reduce and PartialElimination in the case when memory is sacred.

17.2.3 Implementation and Complexity Study

In order to obtain a good complexity of Alg. 17.2.2 we need a matrix structure, that will

allow to perform column elimination in O(size(column)) time. In standard sparse matrix

implementation as a vector of pairs (column index,element) or a pair of vectors of elements

and column indices, this is not ensured. Additionally we require that it is possible to read

all elements of a row in linear time and that it is easy to perform a transpose. The order

of elements in the row is not important. To ensure that, we propose a structure of a

horizontally and vertically connected grid, the idea of which is shown in Fig. 17.1. This

is enough to efficiently perform PartialElimination and 17.2.1.

The structure can be realized by two vector of lists of elements, where element consist of

row and column indices and the non-zero value. It is implemented in LinBox library in

file ”linbox/matrix/grid.h”. Additional information such as gcd of row/column or its size

(i.e. the number of non-zero elements) can also be stored. Also, it can be wrapped in a

priority queue, which would manage indices of shortest rows.

The value of an element can be changed provided that a reference to the element is given.

Given a reference, an element, can be removed in O(1) time. An element can be added
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(3, 4, 1) - (3, 1, 2) - (3, 6,−1)

(2, 1,−1) - (2, 3,−2) - (2, 4, 1)

(1, 1, 2) - (1, 6, 1) - (1, 3,−1)
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Figure 17.1: Grid structure

to the list in O(1) time, provided that a reference to the element above/below it is given.

Let us now analyze the complexity of performing a row elimination.

Lemma 17.2.2 (Cost of Row Elimination) Let aij be an admissible element of ma-

trix A in a row consisting of N non-zero elements. Let M be the number of non-zero

elements in the jth column and Mmax the maximal number of non-zero elements in all

columns of A. Let grid position of a be given. Then the elimination of row r and column

c can be performed in at most O(NM) integer multiplications, and O(NMmax) additional

grid operations.

PROOF The formula for elimination of j column by the ith entry aij changes entries ast
according to the equation

ast = ast − ait
asj
aij

, ‖ast‖ ≤ ‖ast‖+ ‖asj‖‖asj‖ ∈ O(‖A‖2), (17.1)

which means that ast is changed in ait, asj are both non zero. By definition of N and M

this happens in (N − 1)(M − 1) cases. A change an operation on grid such as: change of

the value, insertion, deletion, which cost O(1) each. For each t, ait 6= 0, this can be done

by scanning the tth and jth column at the same time to find the right place in at most

2Mmax comparisons.

Lemma 17.2.3 (Cost of PartialElimination) Let n,m,∈ N and let A be a matrix n×
m matrix on which PartialElimination Alg. 17.2.2 is performed. Suppose that rows of size

at most K > 0 are eliminated. Let A′ denote the matrix at the exit of the algorithm, and

let r denote the increase in precomputed rank i.e. r = rank(A)− rank(A′). Then the cost

of PartialElimination Alg. 17.2.2 is O(rKn) integer multiplications and grid operations.

PROOF The cost of treating an individual admissible entry is at most O(Kn) by Lem.

17.2.2.

Remark 17.2.4 In the worst case, the growth of coefficient in the case of integer elimi-

nation is exponential, as the elimination formula in Eq. (17.1) gives

‖ast‖ ≤ ‖ast‖+ ‖asj‖‖asj‖ ∈ O(‖A‖2),
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if ‖A‖ is a bound on entries of matrix A at the beginning of elimination.

We may yet control aij , asj by the choice of admissible entries in Alg. 17.2.2, thus limiting

the coefficient swell. Similarly, filling i.e. the growth of N,M , can be controlled. Deletion

of rows/columns by reductions also helps control this factors. Indeed, in Fig. 17.2 we

show that filling and in matrix norm (in Fig. 17.3) were kept at bay in the case of large

scale computation of Smith form for matrices from K-Theory.

17.3 Experiments and Results

All computation in this section were done on a SGI Altix 3700 gathering 64 Itanium2 pro-

cessors with 192Gb memory and running SuSE Linux Enterprise System 10. Further infor-

mation on this platform are available at www.math.uwaterloo.ca/mfcf/computing-environments/

HPC/pilatus.

We are grateful to Arne Storjohann and to the Computer Science Computing Facilities of

the University of Waterloo for letting us fill up the resources.

17.3.1 Application to K-Theory

Comparison with [34]

In our PASCO 2007 paper [34], we pose a problem of computing the Smith forms for a

set of 17 sparse matrices, representing the boundary operator for one of the problems in

K-theory. The size of largest matrices in the chain was approaching 2,000,000 with 40

millions non-zero entries, see Tab. 17.1 for parameters.

The challenge was to compute high torsions for primes p > 7 or to conclude that these do

not exist. Theory predicted that small torsions for primes p ≤ 7 should be present, due

to the construction of the chain as an equivalence class. Indeed, this is the case as seen in

Tab. 17.1.

1. Rank Computation

In [34] we dealt with the computation of the rank of matrices over Z or, equivalently,

Q. The computation took several months to complete in a highly parallel environ-

ment. In [34, Sec. 2.2] we present the parallel Wiedemann algorithm, which was

used to compute the rank of the matrices modulo a FFT prime. Thus, we obtained

a lower bound for the rank over Z. Using Eq. (15.1) we can conclude that for matrix

Mk = GL7dk of the sequence

rank(Mk) ≤ ker(Mk−1) = mk − rank(Mk−1),

where mk and nk are the number of resp. rows and columns of matrix Mk. The

upper and lower bounds obtained in this way agreed on all matrices except GL7d13.
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Then, the rank of GL7d13 can be computed exactly using Alg. 17.2.1. Thus, we

have certified all results of the rank computation over Z (Q). The computation of

rank and kernel enabled us to compute cohomologies over Q of GL7(Z).

2. Smith Form Computation

In [34], the Smith form was computed for 8 smallest matrices by a modified adaptive

algorithm of [112]. For two other matrices, partial results i.e. rank modulo 2,3,5 was

obtained, but filling was to much of a factor and memory trashing occurred for the

remaining matrices. Thanks to Alg. 17.2.1 we were able to obtain other results, as

seen in Tab. 17.1.

The Smith forms were computed by Thm. 16.2.2 using the value of precomputed

rank and torsions obtained by the reductions and coreductions in Alg. 17.2.1. A few

factors 2,3,4 up to 12, were indeed found by Alg. 17.2.1 for some of the matrices.

The Smith form of the remaining matrix M ′k was computed once again the modified

algorithm of [112] described in [34, Sec. 2.6].

To be specific, column ’prec. rank’ of Tab. 17.1 gives the number of rows and columns

eliminated by Alg. 17.2.1 in matrix M ′k, and thus, provides the lower bound for its

rank. The value is close to the actual value computed in [34]. As a result, at the

end of Alg. 17.2.1, matrix M ′k was small and Smith form computation by modified

algorithm of [112] was possible. The rank of the output matrix M ′k is the difference

between the rank of Mk and the precomputed rank. From Tab. 17.1, it can be seen

that matrix GL7d24 was reduced to a zero matrix, and the largest remaining matrix

GL7d19 had rank 12022 after reductions.

3. Comparison of Timings and Performance

The full reduction for the GL7(Z) matrix sequence required 147 passes of the repeat

loop of Alg. 17.2.1 i.e. at most 294 runs (iterations) of PartialElimination by Alg.

17.2.2 in the case of largest matrices GL7d19 and GL7d20. We will use the word

’iteration’ to refer to one pass of Alg. 17.2.1 over matrix M ′k or its transpose.

Table 17.2 presents the timings for Alg. 17.2.1 for GL7(Z) matrices and compares it

to the parallel rank computation in [34]. Column Treduce and Telim gives the overall

time of calls to Reduce and PartialElimination procedures respectively, for matrix

M ′k and M
′T
k .

Column Toverall of Tab. 17.2 approximates the running time of Alg. 17.2.1 after

which no new admissible entries were found for M ′k,M
′T
k . Contrary to other columns,

it reflects the cost of computation on the whole sequence of matrices an NOT on

matrix M ′k itself. This is an approximate of true timing based on data logged during

computation. Due to large scale of computation, the values in this column include

the additional cost of data handling e.g. read and write operation and memory

managing. Notice that the overall running time of Alg. 17.2.1 is max(Toverall.

On the contrary, Tparallel accounts for the time of parallel rank computation, see

[34, Tab. 4]. The number of processors is given in brackets. The value is a sum of

the time of sequence generation and σ-basis computation for the parallel rank. For
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Mk Treduce Telim Toverall Tparallel Tsequential
GL7d12 0.31 s 0.1 s 31.14 m [3] 12.48 s [30] 9.6 s

GL7d13 6.09 s 1.62 s 5.64 h [3] 5.01 m [30] 25.83 m

GL7d14 34.99 m 53.69 m 1.22 d [36] 1.01 h [30] 16.8 h

GL7d15 2.78 h 8.95 h 15.11 d [73] 4.7 h [30] 2.81 d

GL7d16 10.03 h 61.89 h 29.16 d [142] 1.39 d [30] 34.11 d

GL7d17 34.07 h 12.79 d 39.84 d [162] 14.57 d [30] 420 d

GL7d18 6.53 d 28.84 d 206.4 d [260] 29 d [40] 840 d

GL7d19 8.37 d 20.48 d 240.6 d [294] 36.56 d [50] 1050 d

GL7d20 7.96 d 9.82 d 240.6 d [294] 11.41 d [48] 300 d

GL7d21 4.51 d 11.75 d 218.6 d [276] 5.55 d [30] 150 d

GL7d22 44.57 h 11.97 d 141.4 d [211] 22.32 h [30] 20.59 d

GL7d23 1.78 h 3.85 h 9.83 d [52] 2.26 h [30] 1.46 d

GL7d24 16.18 s 6.9 s 12.5 h [15] 14.26 m [30] 1.57 h

GL7d25 1.92 s 0.77 s 9.04 h [8] 43.03 s [30] 46.8 s

GL7d26 0.2 s 0.08 s 9.04 h [7] 2.06 s [30] 0.9 s

Σ 31.28 d 98.8 d 240.6 d [294] 1 99.75 d 2796 d

Table 17.2: Approximate running times of Alg. 17.2.1: time of Reduce and

PartialElimination on Mk; the overall time of running Alg. 17.2.1 on Mk until no

admissible entries were found, with the number of iterations in brackets. For comparison,

in two last columns: parallel times for rank computation in [34] and equivalent sequential

times are given. Times in seconds [s], minutes [m], hours [h] or days [d]

comparison, Tsequential is given, which corresponds to the equivalent sequential time

of sequence generation. Notice, that this gives the timiming of only one modular

rank computation, whereas Toverall gives the time of the Smith form computation.

The last row of the column give the overall time of all calls toReduce, PartialElimination

and Alg. 17.2.1, compared to the overall parallel and sequential time of the rank

computation by the Wiedemann algorithm in [34]. Notice that PartialElimination

(cpu time) took approximately the same time as the overall parallel computation.

Reduce (which mainly read matrix entries from files) took one third of this time.

The actual running time given in Toverall is about twice the cpu time of Reduce

and PartialElimination. The computation was highly sequential, thus it it worth

remarking, that the whole (real) time of Alg. 17.2.1 was over 11 times shorter, than

the sequential computation of the modular rank by Wiedemann’s algorithm would

be. Moreover, the timing was still comparable to the parallel rank computation,

which is significant, as the computation of integer Smith form is a much complex

task than modular rank computation.

Reductions for GL7(Z) Matrices

In this section we will present technical details of the implementation of Alg.17.2.1 and

experiments with GL7(Z) matrices. We will show that reduction/coreduction scheme

enabled us to deal with filling and coefficient swell despite the fact that our implementation

did not took advantage of all ideas mentioned in Sec. 16. In what follows, unless otherwise
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stated, we will drop the distinction between reductions and coreductions as passes of Alg.

17.2.1 on M ′k and M
′T
k resp. We will refer to the run of Reduce procedure as ’reduction’

and to the run of PartialElimination as ’elimination’. As a consequence, elimination is

always performed on rows of a matrix, an columns are changed according to the elimination

formula.

Our implementation of Alg. 17.2.1 for the experiment with GL7(Z) matrices was slightly

different than described in Sec. 17.2.1. In particular, the idea of marking preferred rows

and columns was not implemented. Also, only 1-2 rows were treated as soon as they

appeared, and all the others were discovered in repeated passes on the rows. In fact,

reduction scheme for matrices GL7(Z) took relatively long to compute, see Tab. 17.2.

Actually, the experiments with the matrices gave raise to the ideas presented in Sec. 17.2,

as we gradually designed and implemented new heuristic strategies in order to improved

the performance. Then, some part of the initial computation was re-run to evaluate the

ideas.

1. Rank Precomputation and the Number of Non-zero Elements

Figures Fig. 17.2 presents the change of the number of non-zero elements at the end

of PartialElimination and the value of the precomputed rank throughout Alg. 17.2.1,

for each matrix separately. Comparison of the plots can reveal interesting depen-

dencies between minima and maxima of Ω and the rate on which the precomputed

rank grew.

It can be notice that fast rank precomputation for M ′k (i.e. large number of rows

eliminated in Alg. 17.2.2 at a given iteration) generally accounts for a sharp decrease

in the value of Ω in M ′k and the neighboring matrices. Also, if no more admissible

entries can be found for M ′k (the matrix becomes inactive) i.e. the maximal precom-

puted rank is reached, then

- the computation on smaller neighboring matrix is completed, no further reduc-

tions or elimination are possible;

- the elimination of matrix M ′k is completed, Ωk will decrease sharply due to

reductions;

- no reductions are induced by M ′k on the neighboring matrices, as a result, filling

occurs for the bigger one;

In general, the plot of Ωk in Fig. 17.2 can be read as follows. Whenever the value

of Ωk increased, elimination was the dominant operation in the iteration. If the

value of Ωk decreased, this means that reduction was the dominant factor. Surely,

elimination can increase the value of Ωk only to a certain level, when the remain-

ing matrix M ′k becomes mostly dense. At this point the number of short rows in

PartialElimination is limited, and reductions gain on significance. This results with

a slow downwards trend, see plots of Ωk for GL7d17, GL7d22 on Fig. 17.2. The

final sharp fall occurs at the moment where the dimension of M ′k becomes smaller

than parameter K in PartialElimination.
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Figure 17.2: In the upper plot, evolution of Ω for GL7(Z) matrices throughout the reduc-

tion process is presented. In the lower plot, precomputation of rank for GL7(Z) matrices

is presented.
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2. Dealing with Filling

One of the most important modifications of our method compared to Alg. 17.2.1 was

an engineered choice of parameterK i.e. the size of rows treated in PartialElimination.

For iterations 1-170, the value of K increased uniformly for all matrices by a constant

factor. Then we decided to provide K for each matrix Mk separately and set it to

much bigger value for border active matrices for the sequence. Assuming that no

admissible entries exist for M ′k−1, PartialElimination on M ′k would was run with

the value of K at least twice as large as for M ′k+1 (or M ′k−1, depending whether we

consider reduction or coreduction phase). The value of K was adjusted experimen-

tally in order to ensure that precomputed rank grows steadily for each matrix of the

sequence.

This approach was based on the following heuristics:

- elimination should be easier on Mk as it is currently the smallest matrix to

eliminate;

- the only way to enhance reductions on Mk is to enhance eliminate Mk+1; thus,

by inducing more reductions on Mk+1 we should enhance its elimination, and

consequently obtain more reduction on Mk in the following coreduction step;

This approach indeed allowed us to complete the computation for border matrices

efficiently. Yet, it came at the cost of increased filling, as it can be see on Fig. 17.2

for border active matrices GL7d18 and GL722.

In fact, it was necessary to introduce a bound on the number of non-zero elements

in the eliminated columns, which we temporally set to αK, for a heuristically chosen

value α = 100. As a result, the rate of growth of the precomputed rank became

slower, but filling and the time of one row elimination was limited.

Let us summarize the analysis of Fig. 17.2. In iterations 1-160, Ωk gradually in-

creased for all matrices, before slowly falling at the end of the computation on

matrices GL7d16, GL7d17 (see Tab. 17.2 for exact iteration numbers). At iterations

162, PartialElimination for matrix GL7d17 finished, and a sharp fall in the number

of non zero elements of GL7d18,GL7d19 followed. Then, with no reductions coming

from matrix GL7d17, Ω18 increased even more sharply as more rows were allowed

to be eliminated (we increasing the value of K for GL7d18). This forced us to limit

the elimination by setting the upper size on columns that can be eliminated. As a

result, Ωk for matrices GL7d18, GL7d19, GL7d20 stayed roughly at the same level

until iterations 210, when we released the condition on columns. This immediately

led to final elimination of GL7d22. A sharp decrease in Ω followed for all active

matrices GL7d21, GL7d20, GL7d19, GL7d18 and the number of non-zero elements

gradually continued to decrease.

3. Dealing with Matrix Norm Growth

In the upper plot of Fig. 17.3 we give the average time of one row elimination for

every iteration, computed by dividing the time of PartialElimination by the pre-

computed value of rank. The value was approximated for iterations and matrices
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Figure 17.3: In the upper plot, time of one elimination in Alg. 17.2.1 for GL7(Z) matrices

in logarithmic scaling is presented. In the lower plot, the time of elimination of one

element is presented, which was approximated from the time of one row elimination. This

corresponds to the maximal norm of eliminated rows and columns at each iteration.
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for which the precomputed rank was greater than 100. Timing is presented in loga-

rithmic scale. Two branches of each plot correspond to reductions and coreductions

on the matrix. The time seems polynomial for one branch of the plot but rather

exponential for the other branch, at least in some fragments of the plot. It is however

difficult to analyze the plot after iteration 170, where the value of K was different

for every matrix and for reductions and coreductions.

Thus in the lower plot of Fig. 17.3 we analyze the average time of the elimination of

one entry, which was computed by dividing the time of PartialElimination by the

precomputed value for rank and parameter K. Again, the value was approximated

for iterations and matrices for which the precomputed rank was greater than 100.

As the cost of integer multiplication is ∼ (log(‖M ′k(i)‖)), where ‖M ′K(i)‖ denote the

norm of M ′k, this gives a rough approximation of the growth of the norm of matrix

entries in Alg. 17.2.1.

Two trends for every matrix are observed: for even and odd iterations i.e. reductions

and coreductions on matrix M ′k and M
′T
k respectively. This means that although the

norm of a matrix should be approximately the same in both cases, rows and columns

with different norms were chosen in the case of the call to PartialElimination on Mk

and MT
k . It seems that the explosion in norm occurs for one branch of computation,

whereas for the other the growth is linear. Moreover, after it 210 the growth seems

under control and decrease in time can be observed at the end of the computation

for both branches.

It is significant that by temporally limiting the size of columns eliminated in PartialElimination,

we were able to reduce the time of one row elimination and the cost of one entry

elimination for the remaining matrices, when the condition was dropped in iteration

210. As the elimination of border active matrices was in general not controlled, it

is not surprising to see that the cost of elimination of border matrices was often the

biggest in every pass of the repeat loop of Alg. 17.2.1.

17.3.2 Application to Cubical Homology

The reduction algorithm of [73] has been implemented in the CAPD2 library for the

computation of homologies of cubical sets. The reductions are performed on the complex

itself, which results with better performance, when compared to the applying Alg. 17.2.1

to matrices generated for the (initial) boundary operator. Also, other kinds of reductions

are possible in the case of 3D cubical sets, which result in almost instant performance.

Still, the timings for algebraic reductions are comparable for both procedures.

In Tab. 17.3 we present the timings of homology computations for matrices of over 8

million cubes. AsLtHom and CrHom are specialized reduction procedures for 3D sets

implemented in CAPD, see [94]. ArHom is the implementation of algebraic reductions

(for complexes) in the CAPD library. LinBoxHom refers to our implementation of Alg.

17.2.1 in LinBox, which was applied to compute homologies over Q (by rank computation).

2http://capd.wsb-nlu.edu.pl/
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AsLtHom CrHom ArHom LinBoxHom(rank) LinBoxHom/ArHom

P0098 10.9408 11.051 3936.69 15022.9 3.82

Table 17.3: Times (in sec.) for the computation of homologies for the sets of over 8 million

cubes.

Mk n m rank ker

P0098 1 8,392,997 26,299,032 8,392,997 17,906,035

P0098 2 26,299,032 27,427,163 17,906,035 9,521,128

P0098 3 27,427,163 9,520,072 9,520,071 1

Table 17.4: Matrix sizes, rank and kernel for P0098 matrices.

The time of the generation of matrices was not taken into account in this case. The time

of reading matrices from data set was taken into account and is responsible for a big part

of the workload.

In Tab. 17.4 the results of rank computation for matrices of homology of the same cubical

set are presented. The result 17,906,035 is the biggest rank ever computed by LinBox. In

particular, the time of full reduction for the biggest matrix was 9740,47 sec. Only one run

of the repeat loop of Alg. 17.2.1 was required to reduce matrices and to allow for the

computation of rank using sparse elimination methods. Elimination (deletion) of rows of

size 1 coupled with reductions was sufficient to complete the computation.
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In part I of the thesis, we introduced the notion of output dependent and expected com-

plexities as measures of performance of adaptive algorithms, see Sec. 2.3. Then in Ch. 3

we showed how this concepts can be applied in order to analyze Smith form algorithm for

dense matrices of [44] and possibly improve its running times by introducing an output-

dependent modification in Alg. 3.4.1. Thanks to the adaptive approach, algorithm of

[44] might efficiently be used on other types of matrices e.g. sparse, symmetric, Han-

kel/Toeplitz type. The evaluation of the expected complexity of Alg. 3.4.1 for these

matrix types is an open problem, as it is subject to results on the expected number of

non-trivial invariant factors.

The main contribution of Part II of the thesis is the adaptive determinant algorithm showed

in Alg. 8.4.1. It is based on the extended bonus concept presented in Alg. 7.3.1. Alg.

8.4.1 is a version of preconditioned Chinese Remaindering loop, which is a generalization

of the ideas of [2], see Ch. 6.

In Thm. 8.7.2 we give the expected complexity of the algorithm for random dense matrices

which improves over the algorithm of [122] by a O(log0.5(n)) factor. At the same time,

Thm. 8.7.3 proves that the worst case complexity of Alg. 8.4.1 is that of the state-of-

the-art, see [78, 79] for discussion on determinant algorithms. By Thm. 8.7.1, Alg. 8.4.1

can be even faster on many matrices. Actually, our algorithm follows the computational

part of [2] at the beginning of computation and apart from some degenerated case should

always be faster than [2] or CRA scheme, see Sec, 8.9. Moreover, it will generally perform

better than the determinant of [44], as it computes a smaller number of invariant factors.

We tested the algorithm on dense and sparse matrix representations and remarked that it

should also be applicable to structured matrices. The evaluation of expected performance

of Alg. 8.4.1 is subject to results on the expected number of non-trivial invariant factors.

While analyzing Alg. 8.4.1 we came across several problems regarding the distribution of

almost uniformly distributed matrices and random integer matrices. In Lem. 5.2.2, we

generalize the result of [10] on the probability of rank distribution to the case of almost

uniformly distributed matrices over a field. In Lem. 5.2.3 the probability that rank is jess

than given j is evaluated. Question remains whether better bounds could be found by

evaluation of sums from Eq. (5.12).

In Thm. 5.3.10 we give a asymptotically better bound on the expected number of non-

trivial invariant factors for a random dense matrix, which is O(log0.5(n)) compared to

previous O(log(n)) bound of [44, Thm. 6.2]. In Cor. 5.3.15 we apply the result of [7]

to almost uniformly distributed sparse matrices, under some favorable assumption of Eq.

(5.39). The computation of expected number of non-trivial invariant factors for integer

structured (sparse, symmetric, Hankel/Toeplitz) matrices remains an open problem. In

particular, Teoplitz/Hankel n×n matrices are determined by O(n) of their entries, which

leaves us with a low degree of freedom in the choice of random matrix. For very sparse

matrices (e.g. banded), the problem can be restricted to the class of matrices, for which

all gcd of rows and columns are 1, see Sec. 8.10.1.

In fact, in view of Eq. (5.39) evaluating the distribution of minors of a matrix or their gcd

seems and interesting problem. The question is not easy, as can be seen in Thm. 5.4.5,
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where the distribution of determinant modulo ps is analyzed. In Remark 7.5.2 we state

another problem, of distribution of minors of sn(A)A−1 for random matrix A, which could

then be apply to simplify extended bound computation.

The main contribution of part III is the development of preconditioning methods in Ch.

13, which allow us to use integer algorithms and integer precondition CRA instead of

rational CRA. This allows us to carry on the computation of determinant, linear system

solution and minimal/characteristic polynomial for rational matrices. In Alg. 14.1.2 and

14.1.5 we combine the ideas in a form of an adaptive rational algorithm. These rational

algorithms are based on the general algorithm for the Chinese Remaindering. Thus, in

Ch. 10 we present a survey on CRA, which we and by a proposition of introspective

reconstruction scheduling in Sec. 10.7.

Additionally, in order to improve the performance of rational reconstruction, we corrected

and implemented the algorithm of [131], see Alg. 11.4.3, and show how it can be used in

Maximal Quotient RR of [90], see Alg. 11.5.1.

Exact approach should be compared to numerical methods in terms of the quality of the

result an its applicability to real life problems. Namely, as ill conditioned matrices are

sensible to small entries modification, even a rigorous evaluation of the floating point

representation of real data might lead to large errors. On the other hand, continued

fractions offer best approximants of real numbers with smallest denominators, in the sense

of [70, Ch. 4]. Thus, representing data by continued fractions might be an interesting

alternative. Exact computation with continued fractions can be carried on by algorithms

developed on Ch. 14.

In part IV of the thesis, we generalized Thm. 16.1.1 of [73] to the case of admissible

entries over PIR, see Thm. 16.2.2. Also, in Cor. 16.2.4 we proposed an analogous con-

cept of coreductions, see also [93] for an independent idea. This resulted in a heuristic

(co)reduction scheme for Smith form computation in Alg. 17.2.1. In Sec. 17.3 we showed

that it can be used to solve extremely large computational problems (see Sec. 17.3.1) and

at the same time has comparable timings with software that deals purely with complex

chains (see Sec. 17.3.2).

Perspectives for development include a parallelization of the scheme. Indeed, the scheme

we propose in Alg. 17.2.1 is very sequential although many parts of the computation are

independent. Parallelism can be envisaged for admissible elements coming from different

and not neighboring matrices. Synchronization would be required in order to preserve the

chain condition at the entry of elimination phase, see Lem. 17.2.1.

Moreover, in Alg. 17.2.2 full row elimination is required, which does not allow us to follow

existing polynomial Smith form algorithms such as [80, 18]. Moreover, we get blocked

if no admissible entry is found. Thm. 16.2.2 can be restated to capture the idea of

elimination being a base change, of which case (co)reduction scheme is a simple case. In

global setting, maintaining same bases for neighboring matrices can be envisages, yet it is

not sure whether additional computational cost can be outweighed by benefits.
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Finally, it would also be interesting to analyze if and how other concepts generalize to

matrix representation e.g. reduction of acyclic subspaces of [94], shifting [74], minimal

free resolution [65], and the computation of a dual complex to mention a few.
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