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Abstract

This thesis investigates the formation and evolution of jets and vortices in turbulent plan-
etary atmospheres using a dual approach of high-resolution numerical simulations and
novel laboratory experiments. A two-layer quasi-geostrophic beta-channel shallow water
model is used for the numerical study. As in Panetta (1988), a vertical shear is imple-
mented to represent a spatially-mean latitudinal temperature gradient, which is partially
maintained by thermal relaxation. Baroclinic instabilities work to erode the temperature
gradient, while thermal relaxation acts to restore it. As the basic state vertical shear is
unstable, the thermal relaxation cannot lead to a full recovery, thus modifying subsequent
instabilities and leading to rich nonlinear dynamical behaviour.

First, we consider flow over a flat bottom, and model convective motions like those
thought to occur on Jupiter by pairs of cyclones/anti-cyclones or ‘hetons’ as in Thomson
(2016). We thereby obtain predominantly baroclinic jets, oscillating between quiescent
phases, when jets are zonal and the energy is nearly stationary, and turbulent phases,
when the flow loses its zonality, vortices pinch off from the meandering jets, and zonal
energy components drop while eddy energy components increase. These turbulent phases
typically last for a thermal relaxation relaxation period. The impacts of vertical shear
(baroclinicity), thermal relaxation and heton forcing are comprehensively investigated
by considering the energy transfers occurring between kinetic and potential energy, their
barotropic and baroclinic parts as well as their zonal and eddy parts. This leads to a
rethinking of the classic paradigm of energy transfer presented by Salmon (1982), as this
paradigm is too simplistic to explain the results found.

Then, we consider the effect of large-scale bottom topography, as a first approach to
understanding the role of topography in jet and vortex formation. We use the same model
as in the first study but include a linearly sloping topography which has the advantage
of being characterised by a single parameter, the slope. We omit the heton forcing and
instead perturb the flow with a small amplitude Rossby wave initially. The main effect
of heton forcing is actually to act as a kind of damping: energy fluctuations are consis-
tently less extreme than when no forcing is used. A linear stability analysis is carried
out to motivate a series of nonlinear simulations investigating the effect of topography,
in particular, differences from the flat bottom case previously examined. We find that
destabilising topography makes the jets more dynamic.

In the experimental part, a two-layer salt-stratified fluid is used in a rotating tank
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with a differentially rotating lid to generate the shear across the interface. We consider
a baroclinically unstable front in the regime of amplitude vacillation, which is found to
be characterised by the sequential emergence and disappearance of a large-scale vortex.
Analysing two similar experiments at the limit of geostrophy, with different Rossby num-
bers Ro=0.4 and Ro=0.6, shows surprisingly different behaviours, with a baroclinic dipole
for small, and a barotropic vortex for the large Rossby number. The small-scale wave ac-
tivity is explored using different methods, and the results suggest small, spontaneously-
arising inertia-gravity waves preceding the emergence of the vortex which stirs the inter-
face, thus having an impact on the mixing between the two layers. The recovery period of
the amplitude vacillation, as well as the intensity of the vortex, increases with the Rossby
number.

For further research on fronts at two-layer immiscible interfaces, a very accurate novel
optical method has been developed to detect the height and slope, based on the refractive
laws of optics. The associated theoretical equations are solved numerically and validated
in various idealised situations.



v

Résumé

Cette thèse étudie la formation et l’évolution des jets et des vortex dans les atmosphères
planétaires turbulentes, à l’aide d’une double approche de simulations numériques et
d’expériences de laboratoire. Pour l’approche numérique, un modèle en fluides shallow-
water quasi-géostrophique à deux couches dans le plan β avec des conditions canal a
été utilisé. Comme dans Panetta and Held [1988], on implémente un cisaillement ver-
tical pour représenter le gradient latitudinal (de l’équateur aux pôles) de température
moyenné spatialement, qui est partiellement maintenu par un forçage thermique. Les
instabiliteś baroclines affaiblissent le gradient de température, alors que le forçage ther-
mique le restaure, ce qui crée une dynamique non-linéaire très riche.

Dans la première étude numérique, nous avons considéré l’écoulement sur un fond
plat, et avons modélisé les mouvements convectifs par des paires de cyclones/anticyclones
ou ‘hetons’ comme dans Thomson and McIntyre [2016]. Nous obtenons ainsi des jets
principalement baroclines (pour une stratification atmosphérique), oscillants entre des
phases calmes et des phases turbulentes, où l’écoulement perd sa zonalité. Des vortex se
forment à partir des jets méandreux et l’énergie zonale diminue alors que l’énergie tour-
billonnaire augmente. Ces phases turbulentes durent typiquement pendant une période de
relaxation du forçage thermique. On étudie les effets du cisaillement vertical (baroclin-
icité), du forçage thermique et des hetons, en regardant les transferts d’énergie entre les
énergies cinétiques et potentielles, leurs composantes barotropes et baroclines ainsi que
leurs composantes zonales et tourbillonnaires. Ceci nous amène à repenser le paradigme
classique des transferts d’énergie présenté dans Salmon [1982]. De plus, nous étudions
comment une analyse de stabilité linéaire de l’écoulement zonal instantané est reliée aux
phases calmes et turbulentes. Enfin, nous examinons les propriétés et les caractéristiques
du profil en escalier de la vorticité potentielle.

Dans la seconde étude numérique, nous considérons l’effet d’une topographie de
grande échelle, comme une première approche pour comprendre le rôle de la topogra-
phie dans la formation des jets et des vortex. Nous utilisons le même modèle que dans
la première étude mais nous ajoutons un fond topographique linéaire méridionalement,
qui a l’avantage de dépendre d’un seul paramètre, la pente. Une pente négative appro-
fondit la couche inférieure par rapport à un fond plat, ce qui augmente le potentiel des
instabilités baroclines, alors qu’une pente positive a un effet stabilisateur. Nous suppri-
mons le forçage par les hetons et perturbons l’écoulement grâce à une zone de Rossby de
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faible amplitude dans la couche inférieure à l’instant initial. L’effet principal du forçage
par les hetons est d’agir comme une sorte d’amortissement : les fluctuations de l’énergie
sont constamment plus extrêmes que sans forçage. Une analyse de stabilité linéaire est
effectuée afin de déterminer les zones de stabilité et d’instabilité. Une topographie qui sta-
bilise l’écoulement rend les jets plus dynamiques. Nous avons aussi trouvé que différentes
définitions de l’échelle de Rossby reproduisent de manière qualitative le fait que l’espace
entre les jets s’accroı̂t avec la baroclinicité de l’écoulement.

Pour l’étude expérimentale, nous utilisons une cuve tournante remplie par deux couches
de fluides avec une stratification au sel et un couvercle rigide en rotation différentielle.
Nous étudions un front barocliniquement instable dans le régime des vacillations d’amplitude,
qui est caractérisé par l’émergence et la disparition de vortex de grande échelle. L’analyse
de deux expériences à la limite de la géostrophie, avec des nombres de Rossby de Ro =

0.4 et Ro = 0.6, montre des comportement très différents. Pour un faible nombre
de Rossby, nous observons des dipôles baroclines alors que pour un large nombre de
Rossby nous obtenons des vortex barotropes. Nous examinons l’activité des ondes de
petite échelle par différentes méthodes qui révèlent la présence d’ondes d’inertie gravité
comme précurseures de l’émergence des vortex. Nous étudions aussi de manière qual-
itative l’impact de ces vortex sur le mélange entre les couches. De plus, la période de
reconstruction des vacillations d’amplitude augmente avec le nombre de Rossby.

Afin de poursuivre nos recherches sur les fronts à l’interface entre deux couches de
fluides immiscibles, nous avons développé une nouvelle méthode de détection de la hau-
teur et de la pente basée sur les lois optiques de la réfraction. Les équations théoriques as-
sociées sont résolues numériquement et validées à l’aide de plusieurs situations idéalisées.
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Chapter 1

Introduction

Ever since ancient times, people have studied Nature, the stars and the weather, including
cloud formation and precipitation. They have tried to understand the rhythm of the tides,
ocean currents experienced while sailing, or atmospheric winds affecting agriculture. The
first records of weather forecasting go back to the Babylonians and ancient Greeks, who
used astrology and, studied the stars, the moon, and clouds to make predictions about the
weather. Around 350 B.C., Aristotle wrote Meteorologica, a study of the weather based
on the four elements. We have records of weather predictions made in China and India
from the same period.

To arrive at our understanding of geophysical flows, we have to ‘stand on the shoulders
of Giants’, as Bernard de Chartres first said during the twelfth century. We have to stand
on Newton’s shoulders and admire his scientific contributions, his laws of motion and
his theory of gravitation. We have to stand on Cassini’s shoulders for his contribution
to astronomy and in particular for the first observations of the Great Red Spot (shared
with Hook). We have to stand on Richardson’s shoulders, on Rossby’s shoulders and all
the others who have shaped, step by step, our understanding of science and especially
geophysical flows. In the eighteenth century, Edmond Halley and George Hadley built a
model to explain the trade winds based on large-scale dynamics (see Hadley et al. [1735]).
Based on this work, Gaspard-Gustave de Coriolis subsequently established the now well-
known Coriolis force (see Coriolis [1835]). In the nineteen century, new technologies like
the electric telegraph allowed for the analysis of information from around the globe. This
set the stage for modern meteorology. The study of geophysical fluid dynamics is closely
related to weather forecasts and climate sciences. The first numerical weather forecast

1



1.1 Geophysical context 2

model was developed by Lewis Fry Richardson at the beginning of the twentieth century
(see Richardson [2007]), based on work done by Bjerknes (Friedman [1993]). During the
twentieth century, with the evolution of computer sciences, weather forecast predictions
have made enormous progress. Now, in the early twenty-first century, we need a global
but precise understanding of geophysical flows to model the climate. To understand the
climate, many models run complex simulations based on numerous parameters, in which
it is difficult to evaluate the impact of each parameter.

The goal of geophysical fluid dynamics in general and of simple idealised models in
particular, then, is to assess the extent to which each parameter affects the climate. To
do so, it is essential to understand the Earth’s and ocean’s fluid dynamics. As both are
very similar, they can be generally modelled using the same set of equations, although
certain processes like condensation differ between the two. The Earth, however, only
provides a handful of examples of geophysical flows to inform our knowledge of these
atmospheric and oceanic phenomena. More examples can be found on other planets and
moons, like Titan, and, with the development of space observation, data from other plan-
ets, like Jupiter and Saturn – as well as from exoplanets – is becoming increasingly avail-
able. A better understanding of these planets’ atmospheres (and oceans) will offer insight
into our own planet’s fluid dynamics.

1.1 Geophysical context

Jets and vortices are striking features present in most planets with atmospheres, such
as gas giants like Jupiter or Saturn, but also telluric planets like the Earth that have an
atmosphere and oceans. Size, rotation period, atmosphere depth, and composition vary
from planet to planet, resulting in different kinds of jets. Jupiter exhibits strong, almost
zonal jets at lower latitudes and weaker jets at higher latitudes (see Porco et al. [2003] and
Ingersoll et al. [2004]). They coexist with vortices of varying intensity, such as the Great
Red Spot (studied numerically by Marcus [1988], experimentally by Sommeria et al.
[1988]), the white ovals (see Li et al. [2004] and Vasavada and Showman [2005]), and
the polar vortices observed recently by Juno, (see Adriani et al. [2018] for more details).
Saturn exhibits a very strong and wide equatorial jet, while the Earth’s atmosphere has
four main jets, weaker but more meandering than those on other planets. Finally, the
Earth’s oceans exhibit jets such as the Gulf Stream and Kuroshio, whose meanders pinch
off as a series of eddies, acting as strong biological or transport barriers (see Bower et al.
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Figure 1.1: Left: Jupiter observed by NASA’s space telescope Hubble in 2017. Alter-
nating zones (white-ish) and belts (red-ish) co-existing with vortices are visible at low
latitudes. Credit: NASA, ESA, and A. Simon (NASA Goddard). Right: averaged wind
speed from Cassini observations in black and Voyager 2 in red. Grey and white regions
correspond to belts and zones. The right panel indicates the occurrence of convective
features, image from Porco et al. [2003].

[1985] and Bower [1991]).

Jupiter and Saturn exhibit beautiful, impressive patterns in their visible atmospheres.
They are covered by latitudinal stripes, also called zonal bands, of various colours, as can
be seen, for example, in the visible atmosphere of Jupiter captured by NASA’s telescope
Hubble in figure 1.1. White regions are relatively high-pressure regions of rising air called
‘zones’. Their colour is due to a high concentration of ammonia clouds. Red regions are
called ‘belts’. They are relatively low-pressure regions where air subsides. Clouds in
the belts are less dense and so less white. The reason for the red colour is not known
but might be due to chemical components such as sulphur, phosphorus or carbon (see
Ingersoll et al. [2004] and Sugiyama et al. [2006]).

These bands are separated by relatively narrow currents flowing in an east-west or
‘zonal’ direction called ‘jets’. Jets separating belts and zones flow westward, i.e. retro-
grade where belts are located closer to the equator. Where zones are closer to the equator,
on the other hand, jets between zones and belts move in an eastward (prograde) direction.
Figure 1.1 displays the equatorial zone with two prograde jets on it edges adjacent to the
North and South equatorial bands. Also shown is the zonal velocity profile of the Jovian
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atmosphere deduced from cloud motions (image from Porco et al. [2003]). Alternating
prograde and retrograde jets are clearly visible and align with the boundaries of zones
and belts. Moreover, the speed of the jets decreases with latitude: equatorial jets have
relatively high speeds, while mid-latitude jets are weaker, as seen in the right panel in
figure 1.1.

Figure 1.2: Jupiter’s Great Red Spot, an anticyclone co-existing with zonal jets. Credit:
NASA.

Another prominent feature on Jupiter, beside jets, is the widespread occurrence of
spots, visible on figure 1.2. These spots are vortices, which are either cyclones spinning
counter-clockwise in the northern hemisphere or anticyclones, which spin clockwise in
the northern hemisphere (rotational directions being reversed in the southern hemisphere).
As we have seen, zones are separated by prograde jets on their equatorial edge and retro-
grade jets on their polar edge, so the wind speed decreases with latitude. Zones thus rep-
resent an anticyclonic wind shear. Moreover, anticyclones are always found within zones,
i.e. in a cooperative shear which is known to be stabilising (see Dritschel [1990]). Con-
versely, cyclones are only found in belts, where the wind shear is cyclonic (see Vasavada
and Showman [2005] for more details).

The most famous Jovian spot is undoubtedly the Great Red Spot, an anticyclone which
has been present on the surface of Jupiter at least since humans were able to observe it.
This was first reported by Hook in 1664, followed by Cassini in 1665, see figure 1.3.
Thirty years before, in 1630, Niccolo Zucchi was able to detect the presence of bands
thanks to the improvement of optics (see Rogers [1995]). Since then, scientists believe
that there has been a persistent presence of jets and the Great Red Spot. However, the
Great Red Spot was twice its current size a century ago, and is now shrinking in the
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longitudinal direction (see Simon-Miller et al. [2002] and Irwin [2009]).

Figure 1.3: First records of Jupiter with bands and spot, drawings from the seventieth
century by Riccioli and Cassini.

The peculiar case of oval BA’s formation is a beautiful example of the emergence
and dynamics of spots on Jupiter. The early origins of oval BA go back to 1939, when
three spots emerged from the split of the South Temperate Zone, STZ, creating three
white ovals called BC, DE and FA (see Rogers [1995]). In 1998, BC and DE merged to
form a bigger spot called BE. Subsequently, in September 2000, BE and FA merged to
create oval BA (see Sanchez-Lavega et al. [2001] for more details). Figure 1.4 shows the
different steps of oval BA’s formation. It also illustrates how a jet can collapse and two
bands can merge.

Our knowledge of the Jovian atmosphere is closely tied to the progress in scientific
instrumentation. Before Hook and Cassini, Jupiter was simply seen as a bright star (see
Sachs [1974]). The evolution of optics during the seventeenth century allowed for ob-
servations of the atmosphere, namely Zucchi’s observation of bands, and Hook’s and
Cassini’s subsequent discovery of spots (see Rogers [1995]). Thanks to the continued
improvement of spatial observation technology, many high-resolution images are now
available. A series of spacecrafts have captured images of the planet: first Pioneer 10 and
11, followed by the Voyagers (with a 5km resolution) (see Ingersoll et al. [1981]), next
the Galileo probe (see Atkinson et al. [1998], Banfield et al. [1998] and Vasavada et al.
[1998]), the Cassini-Huygens mission (see Vasavada and Showman [2005] and Read et al.
[2006]), the Hubble space telescope (see Simon et al. [2015]) and finally Juno, which was
sent on the 4th of July 2015. The latest observations are being studied intensively and
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Figure 1.4: Formation of the white oval BA from the merging of three vortices FA, DE
and BC. Image taken by the Hubble space telescope. Credit: NASA.

have revealed unexpected new results (see Guillot et al. [2018], Kaspi et al. [2018] and
Adriani et al. [2018]). One of them is the presence of polar vortices. The north and south
poles both exhibit a polar vortex surrounded by a series of circumpolar cyclones, eight
around the north pole and five around the south pole, see figure 1.5 from Adriani et al.
[2018].

Figure 1.5: Left: Jovian north pole cyclones. Right: south pole cyclones. Credit: NASA.

To summarise, the Jovian atmosphere exhibits a series of zonal jets co-existing with
long-lived vortices. Similar structures are also present on Saturn, Uranus, Neptune and,
of course, the Earth. The Earth’s atmosphere presents four main jets, two per hemisphere.
They separate polar air masses from temperate air masses (jet streams) and temperate
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air masses from tropical air masses (subtropical jets). Earth’s jets are not straight purely-
zonal flows but strongly meander around a mean position. They can also split into two
jets before merging back. When the jet stream is north of the UK mainland, one can
expect mild temperatures, as in summer 2018. On the other hand, when the jet stream is
south of the UK mainland, the UK finds itself under the polar air mass, corresponding to
cooler temperatures. The jet stream is therefore a useful weather forecast indicator.

Atmospheres are not the only places where jets can be found. The oceans also reveal
a number of jets. Most of the Earth’s main oceanic currents, such as the Gulf Stream,
the Kuroshio or the Agulhas current are jets. The Gulf Stream brings warm water from
the Gulf of Mexico to western Europe through the Atlantic Ocean. The Gulf Stream is a
jet, with many meanders, frequently pinching off into vortices. The Kuroshio, the Pacific
equivalent of the Gulf Stream and born in the warm pool of the Philippine and South
China Sea, brings warm water through the Luzon strait to northern latitudes and across
the Pacific Ocean. These currents are representative of the main oceanic jets. However,
jets in the ocean are much more widespread. In a long time average of ocean velocity,
typically ten years, a banded latitudinal organisation of the flow appears. These patterns
are called ‘latent’ jets or ‘ghost’ jets (see Maximenko et al. [2005], Kamenkovich et al.
[2009] and Berloff et al. [2011]).

1.2 Different approaches

When studying weather, climate and geophysical fluid dynamics in general, there are
many possible approaches depending on the detail required or the questions being ad-
dressed. Models may be sophisticated, incorporating many processes, as in long-term
climate prediction, or they can be idealised ‘toy’ models focusing on a particular aspect
of the flow. In all cases, approximations are made to seek the appropriate model. Even
weather forecasting models do not include all processes, since many are negligible over
the forecast period. A wide range of approaches are possible. Numerical weather predic-
tion models try to give an accurate, fine resolution forecast of the evolution of the flow
from assimilated data obtained in different ways, including both satellites and ground-
based observations. Such models may use different sets of equations and different nu-
merical methods to represent phenomena that we roughly understand and know how to
model, such as cloud formation, air-sea interactions, cyclogenesis, etc. However, these
models are highly demanding computationally. They are complex and depend on many
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parameters and parametrisations. To accurately understand the impact of one parameter
on the forecast is difficult with such a model.

To study fundamental aspects of geophysical fluid dynamics, researchers commonly
use idealised models. It was Bjerkness who first developed the ‘primitive’ equations (see
Friedman [1993]). These are based on conservation of momentum and mass, with three
approximations: the hydrostatic approximation, which states that the pressure gradient
force is balanced by gravity, the shallow-fluid approximation, which states that horizontal
scales are large compared to vertical scales, and the ‘traditional’ approximation, which
states that the horizontal velocity is large compared to the vertical velocity. To simplify
the problem, a vertically-integrated set of equations is often used, known as the shal-
low water equations, introduced by de Saint Venant (see de Saint-Venant [1888] for the
first derivation and Vallis [2006] for more details). Another idealisation can be made:
the ‘quasi-geostrophic’ shallow water approximation. Geostrophy refers to situations in
which the horizontal Coriolis force is balanced with the pressure gradient force. The
quasi-geostrophic approximation assumes a small Rossby number, which is to say that
the advective time scale is long compared to the planetary rotation period. These ide-
alised models offer different possibilities to study a problem, though many other models
or approximations can be considered involving forcing, relaxation, subgrid-scale turbu-
lence, etc. In geophysical fluid dynamics, there is a multi-dimensional parameter space
that can never be completely studied. Results depend not only on parameters but often
also on the initial conditions. This has led to a great diversity in models and approaches,
each offering different points of view on similar problems, and collectively a better com-
prehension of geophysical flows.

In studies of the Jovian atmosphere, different approaches have been taken. It is still
unknown if Jovian jets are due to shallow layer phenomena or to deep convection motions.
The shallow layer approach supposes that Jovian jets arise in a similar manner to Earth’s
jets. In the Earth’s oceans and atmosphere, vertical dimensions are typically much smaller
compared to horizontal dimensions. Charney [1971], Dritschel et al. [1999], Reinaud
et al. [2003] and Haynes [2005] have shown that the characteristic vertical scale H can be
related to the Rossby deformation radius Ld by a factor f/N with N the Brunt-Väisälä
frequency, i.e. H = Ldf/N , for rapidly rotating planets with a stably stratified atmo-
sphere. Using the same computation as Young and Read [2017], we compute the ratio
N/f for Jupiter’s midlatitudes (20◦-40◦). Only one vertical profile of the jovian atmo-
sphere has been captured by the Galileo probe (see Atkinson et al. [1998]). Therefore,
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it is difficult to make a precise estimate of the ratio N/f . Instead, we follow Young and
Read [2017] and compute a rough estimate from

N

f
=

g√
Tecp2Ω sinφ

=
g√

(S(1− A)/4σ)1/4cp2Ω sinφ

with g = 23.1m s−2 (see Showman et al. [2010]), Te the temperature of an isothermal hy-
drostatic atmosphere at equilibrium, we have Te = (S(1− A)/4σ)1/4, with S = 50.66W
m−2 the solar constant of Jupiter, A = 0.343 the albedo, σ = 5.670373 × 10−8Wm−2

K−4 the Stefan-Boltzmann constant, cp = 12360JK−1kg−1 the specific heat capacity,
Ω = 1.75865 × 10−4rad s−1 the rotation rate, and φ the latitude (all these values come
from Young and Read [2017]).

We obtain

N

f
=

56

sinφ
= [324, 164] for φ ∈ [20◦, 40◦].

So, the ratio of stratification over rotation on Jupiter is of the order of 102. One of the
approaches to study Jovian jets is to consider that horizontal scales are larger than vertical
scales (ratio N/f ) and that the shallow water approximation can be applied. Under this
assumption, using the shallow model approach, jets are mainly due to an upscale cascade
of geostrophic turbulence (see Williams [1978], Sukoriansky et al. [2007] and Scott and
Dritschel [2012]). Another approach states that jets are the external signature of deep
convective patterns. The flow is organised at large scales in deep concentric rotating
cylinders with visible bands representing their external print, and jets representing their
boundaries (see Busse [1970] and Kaspi et al. [2009]). The following paragraphs discuss
the two different approaches in more details.

The shallow layer approach assumes that jets are due to an upscale cascade of energy
(cascade to small wavenumbers). This energy accumulates at the Rossby deformation
wavenumber as in the Earth’s atmosphere. Williams [1978], using a barotropic vorticity
transfer model forced by stochastic forcing and a quasi-geostrophic baroclinic two-layer
model originally developed by Phillips [1951], reproduced the main large-scale phenom-
ena observed on Earth and Jupiter. He found that large-scale dynamics are mainly con-
trolled by barotropic phenomena but that eddy turbulence is necessary for the inverse
energy cascade which brings energy to large scales and specifically to jets. He also shows
that baroclinic instabilities are a potential candidate for smaller-scale phenomena and for
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energy and vorticity inputs that can create large-scale vortices, for example the Great Red
Spot or latitudinal temperature variations. Cho and Polvani [1996] went a step further
in the development of shallow models, using a spherical shallow-water model varying
the rotation and the deformation radius. Imposing Jupiter’s parameters, they obtained
Jupiter-like motions with most of the main features, like latitudinal variations of bands
and jets. While this model uses freely decaying turbulence, Showman [2007] forces only
with anticyclones and Scott and Polvani [2007] uses a forced-dissipative shallow-water
spherical model. They showed that the balance between the dissipation and the forcing is
crucial for the stability of jets.

From equator to poles, there is an enormous variation of planetary vorticity. Baldwin
et al. [2007] and Dritschel and McIntyre [2008] have shown that this planetary vorticity
is essential to explain jet formation. The classic turbulence theory predicts a uniform
mixing, but this is prevented by planetary vorticity. The down-gradient (diffusive-like)
mixing tends to homogenise the potential vorticity (PV) in zones and locally decreases
the PV gradient. This increases the shear, leading to a positive feedback (more mixing).
However, the overall planetary vorticity contrast cannot be mixed away, and therefore
jets must arise where PV gradients are intensified. In short, turbulent mixing in flows
supporting Rossby waves is heterogeneous, and tends to create staircase-profiles of PV.

Thomson and McIntyre [2016] used a doubly-periodic 11
2
-layer quasi-geostrophic β-

plane model to study jets and vortices co-existing on Jupiter. Following Dowling and
Ingersoll [1989], they applied a bottom topography to model the impact of deep, intense
jets of the dry-convective layer on the weather-layer. These jets act as guide-rails for
the weather-layer. They obtained statistically steady, straight jets in the weather-layer,
without any large-scale dissipation. Additionally, stochastic forcing was added to model
the convective motions in the weather layer. This forcing was implemented as pairs of
cyclones/anticyclones, called ‘hetons’, and was more intense in belts than zones to be
more realistic. They were able to reproduce long-lived vortices co-existing with jets for a
specific forcing regime. Moreover, a good qualitative reproduction of the activity of zone
and belt vortices was obtained. Specifically, they studied the migration of vortices from
belts to zones and investigated the possibility of the weather-layer being at or close to the
margin of shear stability.

Over time, different experimental approaches have also been used to study funda-
mental aspects of planetary circulations. The genesis of experiments in geophysical fluid
dynamics goes back to James Thomson’s Bakerian lecture in 1882, entitled the great cur-
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rents of the atmospheric circulation. In it, he proposed using a ring filled with water,
heated at the bottom and cooled at or close to the surface to observe the main large-scale
phenomena of the Earth’s atmosphere. He suggested varying different key parameters,
i.e. rotation, height of water, and imposed temperatures. This was a pioneering approach
to geophysical fluids experimental studies, and the essential features have remained un-
changed to this day.

Hide was the first to make some important changes to the structure of these experi-
ments: Hide [1953] and Hide [1958] started to conduct experiments using three concen-
tric rings on a rotating table. The internal ring contained cold water maintained at a stable
temperature, the external ring contained hot water also maintained at a stable tempera-
ture, while the middle ring — the so-called convection chamber — is where the dynamics
takes place. By varying different parameters such as rotation speed and stratification,
Hide observed baroclinic instability occurring over a range of azimuthal wavenumbers in
this rotating tank.

Fifteen years later, Hart [1972] used a two-layer experiment with a rigid lid spinning
faster than the mean flow to create a vertical shear to obtain an experimental represen-
tation of the Phillips model, see Phillips [1951], where he could observe baroclinic in-
stabilities. Baroclinic instabilities have been experimentally investigated using various
methods, different forcings, the use of a rigid lid, or thermal heating and cooling, in
a variety of different parameter regimes. Depending on the parameter regime, various
phenomena can be observed. For small Burger numbers (Bu = g′H/f 2L2), the flow
oscillates between different patterns. This is called vacillation or amplitude vacillation,
and was first introduced by Hide [1958] and next developed by Hart [1972], Lovegrove
et al. [2000], Williams et al. [2005]. Additionally, Flór et al. [2011] and Scolan et al.
[2014] have studied amplitude vacillations using a two-layer salt-stratified rotating tank
with varying parameters. By exploring different regimes here, too, it was possible to study
the dynamics of fronts and vortices, and to observe different waves and instabilities, like
inertial-gravity, Kelvin-Helmholtz, Holmboe and baroclinic instabilities.

Baroclinic instability is a fundamental mechanism in geophysical flows that plays a
major role in the turbulent mixing occurring in oceans and in the planetary atmospheres
(see Galperin et al. [2004], Maximenko et al. [2005] and Richards et al. [2006] for more
details). These instability leads to small-scale eddies that seem to be essential for the for-
mation of zonal jets through energy conversion. Through an inverse energy cascade, en-
ergy is transformed from a large-scale input down to small scales thanks to baroclinic in-
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stability, before being converted to barotropic energy and back to large scales, see Salmon
[1982] and chapter 2 for more details.

Jets have been studied using different methods on different experimental apparatus.
Read et al. [2007] conducted an experiment on the Coriolis platform, a rotating tank
of thirteen-meter diameter which mimics vertical convection by spreading dense salty
water on the top surface and applying a β-topography. They observed large-scale zonal
structures separated by the Rhines scale. Matulka and Afanasyev [2015] studied oceanic-
like jets formation in a baroclinic two-layer flow on a polar β-plane, obtaining jets driven
by eddy-forcing.

Gas giants are mainly composed of light elements, primarily hydrogen and helium.
So instead of having a solid surface as found on telluric planets, their surfaces hold flu-
ids only. There might be a small core not larger than a tenth of the radius (see Guillot
[1999]), which was either originally the seed of the planet (see Lissauer [1993]) or was
formed at the early age of the planet when no convective motions were taking place (see
Boss [1998]). In this context, Busse [1970] and Busse [1976] have investigated the pos-
sibility of using Taylor-Proudman cylinders, i.e. concentric cylinders that showcase jets
as their visible external footprint. Several studies have been conducted following this ap-
proach. Aurnou and Olson [2001], Christensen [2002] and Aurnou and Heimpel [2004],
for example, used 3D numerical models to reproduce and continue the work started ex-
perimentally by Busse [1970], and obtained jets from the interaction between rapidly
rotating concentric cylinders.

Glatzmaier et al. [2009] and Kaspi et al. [2009] built a 3D non-hydrostatic general
circulation model to investigate different density profiles. They modelled the differential
rotation by using the expansion of rising fluid and the contraction of sinking fluid to obtain
jets. Using a similar general circulation model, Liu and Schneider [2009] reproduced the
general aspect of Saturnian and Jovian large-scale dynamics, with jets extending down
to depths where drag becomes strong. Spiga et al. [2015] also used a general circula-
tion model to look at the impact of aerosol layers, ring shadowing and internal heat flux
to study Saturnian dynamics. In the meantime, several groups developed laboratory ex-
periments to test this approach; Cardin and Olson [1994] used a rotating sphere with an
imposed latitudinal temperature gradient and a non-intrusive acoustic detection method
to capture the flow behaviour. Egbers et al. [2003], on the other hand, used two concen-
tric spheres in zero-gravity with different temperatures to create convective cells. They
employed Schlieren methods and optical index variations due to temperature changes and
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Particle Image Velocimetry (PIV) to detect the flow features.

Even if neither the shallow nor the deep approaches model Jovian jets realistically,
both shed light on the possible mechanisms at play. While the shallow approach allows
us to better understand the Earth’s atmospheric and oceanic dynamics, the deep approach
allows us to better understand solar and terrestrial convective motions. Moreover, these
two methods have widespread applications in geophysical flows.

1.3 Our approach to the problem

As said previously, geophysical fluid dynamics problems are multi-dimensional param-
eter space problems where choices have to be made regarding experimental, numerical,
statistical, theoretical, and model options, the level of idealisation, the forcing considered,
the initial conditions, etc. In this thesis, we consider both experimental and numerical ap-
proaches allowing us to gain a broader understanding of the mechanisms responsible for
the emergence of jets and vortices as well as their evolution in turbulent planetary at-
mospheres. These choices inevitably represent trade-offs. While a numerical approach
allows us to study a wide range of parameters, varying numerically the values of the differ-
ent parameters, there are commonly limitations in computational resources and numerical
accuracy. On the other hand, in laboratory experiments using real fluids, phenomena can
be observed as they happen, but the reason for the observed events may be unclear. We
find a real effect of viscosity in experiments, i.e. a Reynolds number much smaller than
in the Earth’s and Jupiter’s atmospheres. By using a dual approach of both numerical and
experimental investigation, some of the limitations of either method can be overcome to
obtain a more comprehensive understanding of flow behaviour.

Table 1.1 lists key parameters in the different geophysical contexts and in our numeri-
cal and experimental studies. Here a is the equatorial planetary radius for the atmospheres
in km, the longitudinal characteristic lengthscale divided by 2π for the oceans in km, the
dimensionless longitudinal lengthscale divided by 2π for the numerical simulations, and
the radius of the tank in experiments in km. Also, U is an estimate of the zonal wind
speed, Ro is an estimate for the Rossby number at midlatitudes based on U and a char-
acteristic lengthscale of L ' 2000km for the Earth’s atmosphere, 104km for Jupiter and
Saturn, Ω is the rotation rate, g is the equatorial gravity at the surface for the planetary
atmospheres and g′ the reduce gravity for the experiments, and finally Ld is an estimate
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a U Ro Ω g or g′ Ld/a

km m s−1 rad s−1 m s−2

E. oceans 1300 0.1 0.01 7.27× 10−5 0.01 0.02

E. atmos. 6370 20 0.1 7.27× 10−5 9.82 0.3

Jupiter 71400 40 0.02 1.7× 10−4 23.1 0.03

Saturn 60270 150 0.06 1.65× 10−4 8.96 0.03

Numerics 1 0.2 0.05

Experiments 65× 10−5 0.01 0.5± 0.1 0.3 0.14 0.35

Table 1.1: Geophysical parameters and parameters used in this thesis. Blue values come
from Showman et al. [2010], green values come from Vallis [2006], red value comes from
Cessi and Primeau [2001], purple value comes from Olson [1991].

of the Rossby deformation length, with Ld/a =
√
Bu.

For the numerical part, we chose to use a two-layer quasi-geostrophic shallow water
model (QGSW). While this is an idealised model, we are able to comprehensively study
the primary mechanisms giving rise to jets and vortices in geophysical flows. As for the
parameter space, we concentrate on variations around a chosen vertical shear, thermal
relaxation and topography. The advantage of the QGSW model is its capacity to model
all (small) Rossby numbers in one simulation. With such a simple model, the goal is
not a quantitative reproduction of a specific behaviour but to mimic, qualitatively, ob-
served behaviours. The reality is far too complex and poorly understood (we have little
information about Jupiter’s vertical structure (see Vasavada et al. [1998])). Boundary
conditions represent another dimension in the vast parameter space. Geostrophic balance
is problematic in spherical geometry, and full shallow-water simulations would not have
allowed us to carry out a comprehensive analysis of parameter space. This, however, is
possible in the mid-latitude β-plane channel geometry adopted. We sought to reach statis-
tical equilibrium where the initial conditions do not impact the flow, in order to eliminate
the dependence on initial conditions in parameter space.

Chapters 2 and 3 explore the mechanisms of jet formation, numerically, using the
two-layer quasi-geostrophic framework alluded to above. First, we consider vertically-
sheared (baroclinic) flow over a flat bottom in chapter 2. The dependence on various
parameters is widely explored, including the amplitude of the vertical shear, the thermal
relaxation rate and characteristics of the forcing (hereby known as small-scale baroclinic
eddies called ‘hetons’). We revisit the classical paradigm of energy transfers and dissi-
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pation mechanisms and demonstrate that this paradigm is too simplistic to describe the
results obtained. Moreover, we find strong intermittency, with long periods of stable jets
being interrupted (randomly) by highly non-zonal ‘turbulent’ events. Each of these events
are found to have similar characteristics, including energy transfers. Second, in chapter
3 we generalise the study in chapter 2 by including a meridionally sloping bottom topog-
raphy, as a first approach to understanding the impact of broadly-varying topography on
jet formation. Bottom topography directly impacts the potential for baroclinic instability,
generally destabilising the flow when the topography deepens northwards, and stabilis-
ing otherwise. Moreover, topography modifies the structure and spacing of the jets, their
persistence and their tendency to drift meridionally.

For our experimental study, we used a rotating tank, filled with a mix of water and
alcohol in the upper layer and salty water in the lower layer. In order to create a config-
uration where baroclinic instabilities can occur, we put a rigid lid on the top which spins
faster than the mean flow. This difference of rotation induces Ekman pumping and ele-
vates the interface at the centre, thus creating an inverse parabolic profile at the interface
between the two layers. On the sides of the interface, baroclinic instabilities may occur
due to the vertical shear. By varying the Rossby number we observe different scenarios
and study the formation of waves and vortices.

In chapter 4, experimental observations on the formation and evolution of waves and
vortices near a front in the baroclinic unstable stage of amplitude vacillation are discussed.
For two experiments, the Burger number is held fixed while the Rossby number is varied.
Strikingly different dynamics are observed; one exhibiting baroclinic dipoles while the
other exhibits barotropic vortices. Small- and large-scale disturbances present in the flow
are considered. The impact of these disturbances on vortex formation is studied. Subse-
quently, the impact of the Rossby number of the flow (vortices’ nature, their radius, their
formation) is investigated.

Finally in chapter 5, we present a new optical method for analysing interface displace-
ments using refractive laws of optics. This method has been built to detect the height and
slope of the interface between two layers of immiscible fluid. In turn, long and detailed
records of the entire interface profile can be obtained. A numerical validation of the code
is presented using two virtual tanks and a series of interface profiles.

A summary of the thesis and overall conclusions are provided in chapter 6. The key
findings, in particular how they further our understanding of the formation of jets and
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vortices in planetary atmospheres, are discussed. Lastly, we highlight several important
questions for future research.



Chapter 2

On the energetics of a two-layer
baroclinic flow.

The following chapter consists of a study, Jougla and Dritschel [2017], published in the
Journal of Fluid Mechanics and the work is reproduced here with minor modifications.

2.1 Introduction

General features of planetary atmospheres such as alternating bands and currents, exem-
plified by the jet streams on Earth and more prominently on Jupiter and the giant gas
planets, are known to be strongly affected by planetary rotation, specifically the latitudi-
nal variation in planetary potential vorticity (PV). Nowhere else is this better seen than
on Jupiter, a rapidly rotating planet with a particularly active atmosphere [Rogers, 1995].
Observations of Jupiter in fact go back to ancient times. Babylonian astronomers first
recorded the appearance of the planet [Sachs, 1974], and for them it was a bright star
in the celestial sky. In 1630 with the improvement of optics, Jupiter’s bands were first
captured by Niccolo Zucchi. Then, Hooke and Cassini in 1664 and 1665 detected spots,
now known as vortices [Rogers, 1995]. Hence, the presence of bands and vortices was
already known at this time. Much more recently, spacecraft observations have revealed
complex turbulent dynamics occurring in Jupiter’s atmosphere, composed of quasi-zonal
jets and myriads of vortices like the Great Red Spot (see Dowling and Ingersoll [1988]
and Marcus [1993]).

17
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The outer Jovian atmosphere is structured in zonal bands, called belts and zones. They
are separated by jets which are strong currents flowing eastwards around the planet. Con-
trary to Earth’s jets, Jovian jets are remarkably straight, with few large scale meanders.
Hubble offers us a visualisation of the Jovian atmosphere’s external layer where jets and
vortices are clearly present (see Simon et al. [2015] 1) and for previous observations see
Limaye [1986] and Porco et al. [2003]). Observations of Jupiter have in turn inspired re-
searchers to develop idealised models of the Jovian atmosphere (see e.g. Dowling [1995]
and Ingersoll et al. [2004]).

Such models generally differ as regards the vertical structure of the Jovian atmo-
sphere. Actual data are sparse: we have only a single vertical profile collected by the
Galileo probe (see Atkinson et al. [1998]), which cannot be argued to be representative.
To gain at least a qualitative understanding of the dynamics of Jupiter and of the gas gi-
ants generally, two main modelling approaches have been taken: a shallow model and a
deep model. The shallow model (typically employing the rotating shallow water equa-
tions in a single layer) suggests that jets emerge essentially through an upscale cascade
of geostrophic turbulence (Williams [1978], Cho and Polvani [1996], Kaspi and Flierl
[2007], Showman [2007],Scott [2007]). By contrast, the deep model suggests that the
flow is organised in deep concentric rotating cylinders, with jets their external representa-
tion, (see Busse [1970], Busse [1976]). [Kaspi et al., 2009] studied a 3D non-hydrostatic
general circulation model, with a large density variation under the anelastic approxima-
tion. Unlike in models employing the Boussinesq approximation valid for weak density
variations, they observe the development of baroclinic shear (a strong increase of hori-
zontal wind speed with height). Likewise, [Liu and Schneider, 2009] and [Spiga et al.,
2015] used general circulation models to study the atmospheres of the gas giants. [Liu
and Schneider, 2009] were able to reproduce main features of the large-scale circulation
on both Jupiter and Saturn, and found that zonal jets extend down to a depth where drag
is assumed to become important. [Spiga et al., 2015] focused on Saturn and included
specifically the roles of aerosol layers, ring shadowing and internal heat fluxes. They
found that zonal jets develop in the troposphere and equatorial oscillations occur in the
stratosphere. In summary, it has been argued that many models, having widely different
formulations, capture qualitative features of planetary circulations on the gas giants.

On Earth, both the atmosphere and the oceans exhibit similar dynamical structures.
The jets occurring in the oceans, however, are typically strongly meandering and unsteady

1Movie available at http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=12021

http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=12021


2.1 Introduction 19

(see Maximenko et al. [2005], Kamenkovich et al. [2009] and Berloff et al. [2011]). The
most well-known oceanic jets are the strong oceanic currents like the Gulf Stream and the
Kuroshio. The jets occurring in the atmosphere also exhibit large-scale meanders but are
generally much more well-defined than their oceanic counterparts.

[Arbic and Flierl, 2004] and [Thompson and Young, 2007] studied the impact of bot-
tom friction on oceanic simulations. Arbic and Flierl [2004] examined the energetics
behind the formation of mid-ocean eddies, while Thompson and Young [2007] focused
on the role of the baroclinic (vertically varying) mode on the eddy heat flux. [Venaille
et al., 2014], using a two-layer quasi-geostrophic model on the f -plane, found that for
a small bottom friction the flow forms approximately barotropic (height independent)
large-scale structures, which persist over a time-scale inversely proportional to the bottom
friction damping rate. However, for high bottom friction, the upper layer flow dominates
at leading order in the inverse damping rate. In this case, the upper flow behaves like a
single-layer shallow-water flow (a 11

2
-layer model) and exhibits coherent jets separating

regions of nearly homogeneous PV.

To develop a conceptual understanding of Jovian jets and vortices, Thomson and
McIntyre [2016] recently proposed a 11

2
-layer quasi-geostrophic model based on the

Dowling and Ingersoll model (see Dowling and Ingersoll [1989]), with pre-defined jets
(created by an imposed lower boundary shape interface) and forced by the injection of
cyclone/anti-cyclone pairs. With this idealised Jovian weather-like model, they managed
to reproduce observed features such as nearly steady and straight (zonal) jets together
with long-lived vortices.

The goal of the present study is to better understand the vertical structure of jets and
vortices in a turbulent planetary atmosphere. A two-layer quasi-geostrophic shallow-
water β-channel model is used to examine the formation and evolution of jets and vor-
tices, and in particular their sensitivity to vertical shear, forcing and relaxation. Fol-
lowing Panetta and Held [1988], a vertical shear is imposed by relaxing to a thermal
equilibrium temperature gradient — however we do not include Ekman damping or any
bottom friction (see [Venaille et al., 2014] for the impact of bottom friction on a two-layer
quasi-geostrophic model). Bottom friction is not relevant in shallow models of the gas
giants [Thomson and McIntyre, 2016]. The vertical shear induces baroclinic instability,
whose nonlinear equilibration attempts to reduce the shear. This competition between
thermal forcing and baroclinic instability gives rise to the formation of baroclinic jets
and, in extreme cases, to stepped PV profiles or ‘staircases’. Such staircase formation
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Figure 2.1: Vertical cross section of the model. Here, H1 and H2 are the mean layer
thicknesses, ρ1 and ρ2 the layer densities, and δ1 and δ2 the displacements of the middle
and upper interfaces.

has already been demonstrated in the single-layer barotropic context (see Dritschel and
McIntyre [2008] and Scott and Dritschel [2012]). Additionally, in the present model
small-scale stochastic forcing is imposed, crudely mimicking convective processes. This
is done by adding hetons or small cyclonic/anti-cyclonic pairs in the two layers. Unlike in
the model of [Thomson and McIntyre, 2016], jets do not emerge from an imposed lower
boundary shape but emerge naturally from the competition between baroclinic instability
and thermal relaxation.

Section §2.2 presents the model, the equations, and the boundary conditions. Section
§2.3 presents the results, starting with an analysis of a characteristic simulation, followed
by a detailed examination of energy transfers in section §2.4. We then focus on a turbulent
event in §2.5 and discuss the wider parameter dependence in §2.6. Finally, section §2.7
presents our conclusions and a few ideas for future research.

2.2 Model formulation

To study the formation and evolution of jets and vortices in turbulent planetary atmo-
spheres, we make use of a two-layer quasi-geostrophic (QG) β-channel model (see Phillips
[1951]), with a rigid bottom and a free upper surface (see figure 2.1). It is governed by
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the set of equations:

Dq1
Dt

= F1 ;
Dq2
Dt

= F2 (2.1)

q1 = βy +∇2ψ1 −
f0δ1
H1

; q2 = βy +∇2ψ2 −
f0(δ2 − δ1)

H2

(2.2)

δ1 =
f0(ψ1 − αψ2)

g(1− α)
; δ2 =

f0ψ2

g
(2.3)

where D/Dt = ∂/∂t + u · ∇ is the material derivative, qi is the quasi-geostrophic
potential vorticity (QGPV) in layer i, Fi includes all forcing and relaxation on the QGPV
in layer i, β is the linear gradient of the Coriolis frequency f = f0 + βy, ψi is the
streamfunction in layer i, δi is the displacement of the upper interface of layer i, Hi is the
mean depth of layer i, ρi the uniform density in layer i, α = ρ2/ρ1 is the density ratio, and
g is the acceleration due to gravity. We eliminate all reference to f0, g and the total mean
depthH = H1+H2 by specifying the mean baroclinic Rossby deformation wavenumber,
k̄d, defined through

k̄2d =
1

L2
d

=
f 2
0H

g(1− α)H1H2

(2.4)

and making use of the fractional mean layer depths hi = Hi/H whose sum is unity
(h1 + h2 = 1). Then the only explicit parameters are h1, k̄d, α and β.

As explained e.g. in [Vallis, 2006], the QGPV expressions in equations 2.2 derive
from a series expansion of the shallow-water Rossby-Ertel PV, qi = (ζi+f)/(hi(1+ h̃i)),
where ζi is the relative vorticity in layer i, and h̃i is the fractional layer depth perturbation
defined by h̃i = (δi − δi−1)/Hi, with δ0 = 0. The leading-order non-constant terms, for
ζi/f � 1 and h̃i � 1, define the QGPV:

qi = βy + ζi − f0h̃i. (2.5)

The interface displacements δi are related to the layer pressure perturbations pi through
hydrostatic balance (cf. Mohebalhojeh and Dritschel [2004]):

pi = g
n∑
j=i

(ρj − ρj+1)δj (2.6)
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where here n = 2 and ρn+1 = 0. From geostrophic balance, we have

pi = ψif0ρi (2.7)

together with ui = −∂ψi/∂y and vi = ∂ψi/∂x. Using 2.6 and 2.7, we can re-express 2.5
for each layer as

q1 = βy +∇2ψ1 + h2k̄
2
d(αψ2 − ψ1) ; q2 = βy +∇2ψ2 + h1k̄

2
d(ψ1 − ψ2). (2.8)

These may be regarded as ‘inversion relations’ providing the flow field ui in each layer
(via ψi) from the instantaneous distribution of QGPV (q1 and q2).

2.2.1 Stratification

Atmospheric stratification is modelled by an exponential decrease of the density profile
ρ = ρ0e

−z/Hρ , where ρ0 is the density at the bottom of the domain and Hρ is the scale
height (such a profile corresponds to an isothermal basic state), see Vallis [2006], p.40.
The impact of strong variations in density stratification has previously been studied by
Fu and Flierl [1980] and Smith and Vallis [2002] in a two-layer quasi-geostrophic ocean
model. Such variations inhibit energy transfers to the barotropic mode, thereby favouring
a relatively strong upper layer flow. The same enhanced baroclinic response is found in
the present results below.

The scale height is defined through cρHρ = H1 +H2 = H , with cρ being the depth of
the model in scale heights. We take equal layer depths H1 = H2 = cρHρ/2, and define ρi
to be the mean density in each layer:

ρ1 = H−11

∫ H1

0

ρ dz = ρ0
Hρ

H1

(1− e−
H1
Hρ ) (2.9)

ρ2 = H−12

∫ H

H1

ρ dz = ρ0
Hρ

H2

(e
−H1
Hρ − e−

H
Hρ ) (2.10)

Then the density ratio α = ρ1/ρ2 is prescribed through α = e−cρ/2. The densities ρ1 and
ρ2 are not explicitly needed in the model, only their ratio α is.



2.2 Model formulation 23

Figure 2.2: Sketch of the impact of hetons on the interface. The core of the heton is cold in the upper
layer and warm in the lower layer. The interface is elevated in the core of the heton and subsides outside.

2.2.2 Stochastic Forcing

Material changes of the QGPV in each layer occur through stochastic forcing and thermal
relaxation, represented by the terms F1 and F2 in (2.1). The stochastic forcing models in
a very simple way unresolved convective motions through the spatially-random addition
of ‘hetons’, which helps to destabilise the flow. A heton is a pair of opposite-signed PV
anomalies (cyclonic in the lower layer and anti-cyclonic in the upper layer, resulting from
convergence and divergence respectively) which carry heat (see [Carton, 2001]). In order
to avoid any net vorticity input in either layer, a compensating uniform vorticity is added
(mimicking subsidence). Figure 2.2 shows the impact of a heton on the interface. A
heton is composed of an anticyclone in the lower layer and a cyclone in the upper layer.
Due to thermal wind balance, this corresponds to a warm core in the lower layer and a
cold core in the upper layer. The interface is thus elevated in the core of the heton. By
imposing the requirement that the total integrated vorticity vanishes in each layer, the
interface surrounding the hetons must be deflected downwards.

Each heton has a fixed radius R = 0.05 and PV amplitude qheton on the highest baro-
clinic mode (there is no projection on the lowest mode). The frequency at which hetons
are added is controlled by a prescribed (potential) enstrophy input rate η. The dependence
of the flow evolution on η has been studied by using values ranging from 0.01 to 100. The
dependence on the heton’s radius R has also been examined but is found to have a minor
effect. Notably, simulations initialised with small non-zonal perturbations and no heton
forcing produce qualitatively similar results.
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Figure 2.3: Illustration of the initial undisturbed state of a two-layer quasi-geostrophic vertically-sheared
flow, with uniform westward flow in the lower layer and uniform eastward flow in the upper layer.

2.2.3 Thermal Relaxation and Vertical Shear

The thermal forcing of a planetary atmosphere generally varies from the equator to the
poles. Equatorial regions typically receive more solar radiation than the poles (at lower
levels). The resulting latitudinal temperature gradient implies a vertical gradient of the
horizontal velocity, by thermal wind balance under the QG approximation. As in [Panetta
and Held, 1988], this vertical shear is represented in a 2-layer QG model as a uniform
westward flow in the lower layer and a uniform eastward flow in the upper layer, as illus-
trated in figure 2.3. Indeed, a negative northward temperature gradient at lower levels (in
the northern hemisphere) implies a positive vertical gradient of velocity, here westward in
the lower layer and eastward in the upper layer. The mean zonal velocity is kept fixed at
its thermal equilibrium value at the y−boundaries. In the interior, the mean zonal velocity
may vary as a result of baroclinic and barotropic instability.

From equation 2.8, the QGPV is linearly related to the streamfunction, which in turn
is linearly related to the velocity. Adding a uniform velocity to the flow corresponds to
adding a linear streamfunction profile ψ ∝ y and hence a linear PV profile in 2.8. Thus,
vertical shear corresponds to adding a linear profile to the pre-existing background PV,
βy, so that the total PV is, say, εiβy in each layer (i = 1, 2). Below, we take ε1 to
be a control parameter and deduce ε2 from the requirements that (i) the vertical shear
projects only on the vertical mode with the highest deformation wavenumber (hereafter,
the ‘baroclinic’ mode), and that (ii) it has zero mass average (ρ1h1ū1 + ρ2h2ū2 = 0). Full
details may be found in appendix §A.

To allow baroclinic instability, the potential vorticity gradients in the two layers must
have opposite signs, implying ε1ε2 < 0. Baroclinic instability however acts to reduce
the vertical shear, leading to a quasi-stable flow. To prevent this and to allow cycles
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alternating between turbulent and quiescent states, thermal relaxation is imposed to help
maintain the large-scale vertical shear. The thermal relaxation here crudely corresponds
to radiative forcing by the sun or internally. It acts to restore the layer interfaces δi to
their initial thermal equilibrium profiles δeq,i at the rate r. This leads to non-conservative
changes in the QGPV through the relation between the QGPV and interface displacement,
namely (2.5) with h̃i = (δi − δi−1)/Hi and δ0 = 0. To eliminate reference to f0, g etc., it
is convenient to scale the interface displacements so they have units of vorticity:

δ̃i ≡
f0δi
H

. (2.11)

Owing to the relations (2.3), together with the definition of k̄2d in (2.4), we can express the
scaled interface displacements as

δ̃1 = h1h2k̄
2
d(ψ1 − αψ2) ; δ̃2 = h1h2k̄

2
d(1− α)ψ2. (2.12)

Then, thermal relaxation contributes the following terms to F1 and F2 in (2.1):

F1 ← r
(
δ̃1 − δ̃eq1

)
/h1 ; F2 ← r

(
(δ̃2 − δ̃1)− (δ̃eq2 − δ̃eq1

)
/h2. (2.13)

2.2.4 Boundary Conditions

We employ a channel model, with periodic conditions in x (longitude) and free-slip rigid
boundaries in y (latitude). On the y-boundaries, the zonally-averaged zonal velocity is
held fixed to the value imposed by the vertical shear, as in [Panetta and Held, 1988]. The
model has a rigid bottom surface and a free top surface, as illustrated schematically in
figure 2.1.

2.2.5 Non-dimensionalisation

We choose to employ dimensionless quantities only. To this end, we take the width of
the domain to be Lx = 2π and its breadth to be Ly = π, and, most importantly, ensure
that these dimensions are much larger than the characteristic Rossby deformation length
Ld = 1/k̄d = 0.05.2 The total height of the model H is taken to be cρ = 2 density
scale heights Hρ, corresponding to a density ratio of ρ2/ρ1 = α = e−cρ/2 ' 0.37, though

2A more representative measure of Ld is 2π/k̄d = π/10, yet this is still much smaller than Ly .
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Parameter Symbol Value or range considered

Longitudinal domain length Lx 2π

Latitudinal domain length Ly π

Rossby deformation length Ld 0.05

1st deformation wavenumber kd1 8.87

2nd deformation wavenumber kd2 17.93

Upper to lower layer density ratio α 0.37 to 1

Depth in density scale heights cρ 0 to 2

Fractional layer depths h1, h2 0.5

Planetary vorticity gradient β 8π

Lower layer PV gradient /β ε1 −0.5 to −0.1

Upper layer PV gradient /β ε2 2.81 to 3.79

Thermal relaxation rate r 0 to 0.5

Enstrophy input rate η 0.01 to 100

Heton PV amplitude qheton 1.257 to 1508

Heton radius R 0.05

Table 2.1: Physical parameters used in the model simulations.

cρ = 0.2 and 0 have also been studied (see below). For cρ = 2 and k̄d = 20, and for
equal layer depths h1 = h2 = 0.5, the deformation wavenumbers of each vertical mode
are kd1 ' 8.87 and kd2 ' 17.93 (see appendix §A for details).

2.2.6 Parameter choices

We set the planetary vorticity gradient β to be 8π, corresponding to a Rossby wave period
of unity for a barotropic disturbance with a wavenumber of k0 = 4. A typical time scale
emerges from the relation Tβ = 2πk0/β. We use in this study the dimensionless time
t̃ = t/Tβ . For ease of presentation, we drop the tilde in the following. Recall that the
initial PV gradients in each layer are εiβ, and the choice of ε1 controls the strength of
the vertical shear. Here, we consider two main values of ε1, namely −0.1 and −0.5,
corresponding to ε2 ' 2.81 and 3.79 respectively. For ε1 = −0.5, the initial mean
velocities in the two layers are ū1 ' −0.094 and ū2 ' 0.256 (see appendix §A for
details). The enstrophy input rate η controlling the injection of hetons ranges between
0.01 and 100. We consider values of the heton PV qheton ranging from 1 × β/k̄d to
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1200 × β/k̄d, whereas we fix the heton radius R at 0.05 unless otherwise stated. We
vary the thermal relaxation rate r between 0 and 0.5. Section §2.6 examines the effect of
variations in the parameters. A full list of the dimensionless physical parameters and the
values used are provided in Table 2.1.

Over 100 simulations have been run using a variety of grid dimensions Nx ×Ny, for
Nx = {128, 256, 512} and Ny = Nx/2 + 1, over 104 units of time (and up to 105 units
for very small r). Note: an extra grid point is needed in the y direction to include the
boundaries and ensure each grid box is square.

2.2.7 Numerical Model

All simulations have been carried out using the ‘Combined Lagrangian Advection Method’
(CLAM) developed by Dritschel and Fontane [2010]. This numerical method, using a
pseudo-spectral method at large scales, and Lagrangian contour advection at small scales,
is both highly accurate and efficient (see Dritschel and Tobias [2012] for a recent demand-
ing comparison). All numerical parameters follow the recommended choices outlined in
Fontane and Dritschel [2009] except that twice as many PV contour levels (here 80) are
used to represent the initial PV variation in each layer. The PV contour interval remains
fixed in time.

2.3 Results

We begin by presenting in detail a characteristic flow simulation. The flow illustrated
alternates, irregularly, between a more disturbed ‘turbulent’ phase and a more zonal ‘qui-
escent’ phase. The initial baroclinically-unstable zonal state rapidly breaks down and
never fully recovers. The instability equilibrates into a structured flow, a quiescent phase,
where regions of nearly homogeneous PV are separated by eastward jets in the upper
layer and westward jets in the lower layer. Next, and as a result of the accumulative effect
of thermal relaxation, this structured state destabilises and breaks down, again through
baroclinic instability but on a much different basic state than was present initially. The
flow becomes more turbulent and much less organised. It then recovers to a structured
quiescent phase only to break down again into a turbulent phase, and so on. We pay par-
ticular attention to the flow behaviour around these turbulent phases, and we study the
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Figure 2.4: The top figures show the upper layer flow, and the bottom figures show the
lower layer flow, all at t = 3000. Left: normalised latitude 2y/π vs zonally-averaged
zonal velocity ūi(y, t). Centre: PV field qi(x, y, t) over the entire domain. Right: equiva-
lent latitude ye(q̃, t) vs normalised PV q̃ = (q − qmin)/(qmax − qmin).

changes in energy (kinetic/potential, zonal/eddy, barotropic/baroclinic) and zonal-flow
stability which occur.

2.3.1 A characteristic simulation

The chosen simulation has been run on a 512 × 256 ‘inversion’ grid (the effective grid
resolution is 16 times finer in each direction), with a thermal relaxation rate r = 0.01, a
stratification parameter cρ = 2, a lower-layer fractional PV gradient ε1 = −0.5, a heton
PV qheton = 1× β/kd, and an enstrophy input rate η = 0.1.

At the initial time, the flow exhibits a linear slope in PV, opposite in each layer. This
flow is baroclinically unstable (as explicitly shown in appendix §A), and within a few
units of time leads to a strongly non-zonal, eddying, turbulent flow. This subsequently
collapses and organises into bands of nearly uniform PV separated by jets. This quiescent
phase, illustrated in figure 2.4 at t = 3000 typically lasts hundreds of time units, or several
relaxation time scales r−1.

The central panels in figure 2.4 show the PV field at this time in the upper and the
lower layers, respectively. In the upper layer, four distinct bands of nearly homogeneous
PV are present, separated by three jets flowing eastward. In the lower layer, by contrast,
there are three bands of nearly homogeneous PV separated by two westward jets. As
discussed in Dritschel and McIntyre [2008] and Scott and Dritschel [2012] in the context
of a single-layer model, the ‘equivalent latitude’ PV profile ye(q) is particularly useful
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for identifying jets, here seen by the nearly flat portions of the curves shown in the right
panels of these figures. The formation of a staircase profile in ye(q) indicates the presence
of homogeneous regions (dye/dq → ∞) and jets (dye/dq → 0). The function ye(q) is
obtained by re-arranging the PV monotonically in each layer. In the upper layer, ye(q) =

ymin + A2(q)/Lx where A2(q) is the area occupied by PV values having q > qmin. In the
lower layer, where the mean PV gradient is generally reversed, instead ye(q) = ymin +

A1(q)/Lx where A1(q) is the area occupied by PV values having q < qmax.

The right panels in figure 2.4 show ye(q̃) versus normalised PV, defined by q̃ ≡
(q − qmin)/(qmax − qmin), for each layer. Both layers exhibit a near staircase profile,
but it is most distinct in the upper layer. The three main small gradient portions of the
curve seen here correspond to the strong eastward jets seen in the zonally-averaged zonal
velocity ū2 (upper left figure), while the four high gradient portions correspond to the
nearly homogeneous PV regions. The zonal flow in these regions is weakly westwards.
In the lower layer, the two (central) small gradient regions in ye(q̃) correspond to west-
ward jets (see lower left panel). Between the westward jets in this layer one also sees
eastward jets of comparable magnitude. These are induced by the strong PV gradients in
the upper layer. PV inversion couples the layers together so that the flow in either layer
depends on the PV in both layers. Here however the lower layer PV is relatively weak, so
it has much less impact on the upper layer flow than has the upper layer PV on the lower
layer flow.

Overall, the observed jets are not vertically coherent. Jet intensities strongly vary
from one layer to another. This implies that the baroclinicity of the flow is important.
The two layers have different numbers of jets. Jets flow eastward in the upper layer and
predominantly westward in the lower layer. Moreover, the upper layer jets are much faster
than the lower layer jets. Additionally, signatures of the jets in one layer are visible in
the PV field of the other layer. In the upper layer (central panel), the transitions between
the two sky/pale blue bands, and between the pink-reddish bands (the two middle bands)
coincide with the locations of the lower layer westward jets. These signatures appear in
the equivalent latitude ye(q̃) (upper right panel) as small swerves in the middle of the two
high gradient portions. In the lower layer, the signatures of the upper layer jets are less
obvious, but are visible in the zonally averaged flow, an effect of PV inversion mentioned
above. Jet signatures in PV are less evident in the lower layer in part because the flow is
more disturbed at small scales there. These transitions could also be due to mixing around
jets as demonstrated in Scott and Tissier [2012].



2.3 Results 30

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4
π/2

0

−π/2
0 π 2π

112

0

−112 0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4
π/2

0

−π/2
0 π 2π

15

0

−17 0.0 0.2 0.4 0.6 0.8 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 2.5: The top figures show the upper layer flow, and the bottom figures show the lower layer flow,
all at t = 4000. Left: normalised latitude vs zonally-averaged zonal velocity (Note that plot scale for u are
the same as in figure 2.4). Centre: PV field over the entire domain. Right: equivalent latitude ye(q̃, t) vs
normalised PV.
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Figure 2.6: The top figures show the upper layer flow, and the bottom figures show the lower layer flow,
all at t = 9400. Left: normalised latitude vs zonally-averaged zonal velocity (Note that plot scale for u are
the same as in figure 2.4). Centre: PV field over the entire domain. Right: equivalent latitude ye(q̃, t) vs
normalised PV.
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Figure 2.7: Lower layer (left figure) and upper layer (right figure) zonally-averaged zonal velocity ūi(y, t)
at two different times t = 3000 blue and t = 9400 orange.
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Figure 2.5 illustrates the same flow at a later time t = 4000, during a turbulent phase.
The flow is substantially less zonal, with large-amplitude excursions exhibited in the PV
field in both layers. Remarkably, nearly homogeneous regions persist in the upper layer
though they are much more disturbed than in the quiescent phase. Moreover, the jets are
considerably weaker and virtually absent from the lower layer flow. The ‘jets’ seen in the
upper layer are not steady and show no obvious relation to the equivalent-latitude PV pro-
file ye(q̃, t). A series of short-lived vortices can be seen, especially in the central regions
of the flow. These formed from the buckling and breaking of the jets at earlier times and
re-merge with the jets subsequently. Two movies of the PV evolution are available in the
online supplementary material.

Various statistics summarising the time evolution of the flow are provided in figure
2.8. From top to bottom we show the equivalent PV qe(y) (the inverse of the function
ye(q)) in the upper and lower layers as Hövmoller diagrams, the zonal and eddy kinetic
energy in the first ‘barotropic’ and second ‘baroclinic’ vertical modes, the zonal and eddy
potential energies, the maximum growth rate of the instantaneously zonally-averaged flow
versus zonal wavenumber, and the meridionally-integrated spectrum of the available po-
tential energy (APE) versus zonal wavenumber. In each plot, time is in the abscissa.

The equivalent PV Hövmoller diagrams allow one to identify major changes in the
flow structure, such as a latitudinal shift of the jets and homogeneous regions. We can
see here the entire evolution of the flow, starting with the first rapid re-organisation of
the flow from its unstable initial state, to the alternation between quiescent phases and
(relatively short) turbulent phases.

The initial linear PV variations εiβy are short lived after the flow destabilises and
evolve into nearly homogeneous regions separated by jets, or staircase profiles, by t =

500. This is the beginning of the first quiescent phase. Four nearly homogeneous regions
are clearly identifiable in the upper layer and between them three jets are present. The
lower layer at this stage has three nearly homogeneous regions with two westward jets
separating them. Over the next 1600 units of time, the innermost homogeneous regions
narrow slowly but progressively, due to the accumulative effects of thermal relaxation
(this does not occur in the absence of relaxation). Near t = 2100, the quasi-zonal flow
is disrupted and a short turbulent phase occurs, lasting no more than approximately 100
days, which is the thermal relaxation time-scale, r−1. The flow then recovers, this time
significantly more rapidly than it did following the initial instability, and enters a second
quiescent phase, illustrated in figure 2.4 at t = 3000.
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Figure 2.8: (a,b) Hövmoller diagrams of the equivalent PV qe(t, y), with latitude in the or-
dinate. (c,d,e) Energy components (with the eddy part in blue, the zonal part in black and
the red line the time averaged APE). (f) log10 of the maximum growth rate of the zonally-
averaged flow versus zonal wavenumber kx. (g) log10 of the meridionally-integrated spec-
trum of available potential energy versus zonal wavenumber kx. The coloured contours
correspond to specific values of the spectrum as indicated on the colourbar. In all of these
plots time is in the abscissa.
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Over the next 1900 units of time, the same progressive thinning of the innermost
homogeneous regions occurs, disrupted by a turbulent phase around t = 4000, illustrated
in figure 2.5. This sequence of long quiescent and short turbulent phases continues with
irregular frequency almost to the end of the simulation. At around t = 9000, the flow
passes through a turbulent event and organises into an anomalous quiescent phase, similar
to that seen after the initial instability near t = 0, see figure 2.6. Instead of having a
symmetric flow with a centered jet, the flow exhibits a shift of the jets and homogeneous
regions as shown in figure 2.7.

This anomalous quiescent phase is significantly more active and non-zonal than pre-
vious such phases. It is also found in other simulations and is discussed further in §B
below.

The energy diagnostics closely correlate with the variations seen in the equivalent
PV Hövmoller diagrams. Each turbulent phase is characterised by a strong peak in the
non-zonal, eddy component of the energy and a dip in the zonal component. For the
barotropic (mode 1) kinetic energy, the eddy energy (EKE1) is always comparable or
greater than the zonal part (ZKE1). The baroclinic (mode 2) kinetic energy is smaller,
with the eddy part (EKE2) surpassing the zonal part (ZKE2) only during turbulent phases.
On the other hand, the potential energy is much larger: even the eddy potential energy
(EPE) is greater than any component of the kinetic energy. The zonal potential energy
(ZPE) is more than 10 times any component of kinetic energy. This dominance of ZPE
is seen in all simulations conducted. Note: here we mean the ‘available’ potential energy
(APE) relative to a resting basic state (APE measures the mean-square displacement of
the layer interfaces).

The maximum growth rate of the instantaneous zonally-averaged flow (second panel
from the bottom in figure 2.8) shows that the turbulent phases coincide with periods of
relatively strong baroclinic instability, involving zonal wavenumbers kx mainly between
5 and 20. Note that the instability is not in fact purely baroclinic, except in the initial
stages when the mean flow is a simple baroclinic shear. In general, there is a projection
on the barotropic mode as well when the zonal mean flow is more complex (see e.g.
[James, 1987], who examined the influence of barotropic shear on baroclinic instability).
It appears that the instability precedes the growth in the eddy energy components, but
in fact it occurs after these components have already grown significantly (this is shown
below in detail). Hence, it is too simplistic to think that the thermal relaxation has led
to an unstable zonal flow state, which then becomes turbulent. The non-zonal flow must
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also play a role, but this cannot be assessed simply through a linear stability analysis.

Finally, in the bottom panel in figure 2.8 we show the meridionally-integrated APE
spectrum as a function of zonal wavenumber kx (between 1 and 25) and time. At the very
earliest stages, t ≤ 10, baroclinic instability excites wavenumbers centred on kx = 11 (as
found in the linear stability analysis). Very soon after, a broad spectrum of disturbances
emerges, with dominant power residing at much lower wavenumbers, around kx = 4 and
to a lesser extent kx = 6. This is typical of quiescent phases, and indicates a significant
and persistent amount of eddy activity even during these phases. The turbulent phases
on the other hand are characterised by the excitation of a broad range of wavenumbers,
both lower and higher. This spreading is characteristic of turbulent flow evolution. Each
turbulent phase appears to first spread APE to higher wavenumbers then build up energy
at low wavenumbers, predominantly kx = 2 and 3. This is short-lived however as the
flow returns to a quiescent phase.

2.4 Energy Transfers

We next look more closely at the energy transfers taking place between different energy
components (kinetic/potential, barotropic/baroclinic, zonal/eddy) to gain a better under-
standing of the flow changes occurring when entering and leaving turbulent phases. To be
more quantitative, we define a turbulent phase as a period when the ZPE is smaller than
the mean ZPE. Other definitions have been tried, but this simple definition adequately
identifies turbulent phases, as seen in figure 2.8.

To study energy transfers, we examine two different kinds of instantaneous correla-
tions between the six energy components ZKE1, ZKE2, ZPE, EKE1, EKE2 and EPE.
Note that it is not possible to express the rate of change of any one component solely
in terms of the other components, so one must seek other means to examine the energy
transfers taking place. We have chosen correlations, separated into turbulent and quies-
cent phases, together with directions of energy change, as explained below.

The first correlation is the standard one, defined for two time series {x1, x2, ..., xn}
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and {y1, y2, ..., yn} by

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2
n∑
i=1

(yi − ȳ)2
(2.14)

where x̄ = n−1
∑n

i=1 xi and ȳ = n−1
∑n

i=1 yi. The second one, which we call the ‘global
correlation’, is defined by the numerator of (2.14) only. This gives a better measure of
the energy magnitudes involved and, in particular, helps to identify the key components
involved in the energy transfers taking place. In the results presented, data have been
sampled every 5 units of time, providing energy time series of n = 2001 values.

Figure 2.9 shows three scatterplots of different energy components and the standard
correlation matrix. First, the correlation matrix exhibits three distinct areas. The two red
areas show that zonal energies are positively correlated with each other, and that eddy
energies are also positively correlated with each other. The blue area shows that zonal
energies are negatively correlated with eddy energies. This finding agrees with that found
in figure 2.8 for the evolution of the energy components, namely that when there is a
decrease of any zonal energy the other zonal energies also decrease and the eddy energies
increase, and vice versa.

In the scatterplots, further information can be obtained. First of all, we see the strong,
tight correlation between ZKE2 and ZPE (top left figure), consistent with the value of 0.94

seen in the correlation matrix. Moreover, the eddy energies are all tightly and positively
correlated (only EKE2 vs EPE is presented here in the bottom left figure). The scatterplots
exhibit a racquet shape, very narrow at the base, corresponding to the quiescent phases,
and more spread at the top, corresponding to the turbulent phases. Moreover, there is a
definite pattern of evolution: the flow leaves a quiescent phase with relatively low EPE,
gains EPE during the peak of the turbulent phase, then returns to the quiescent phase with
relatively high EPE.

Similar looping patterns are present in the zonal versus the different eddy scatterplots,
as well as in both the ZKE1 versus ZKE2 and ZKE1 versus ZPE scatterplots. However,
only three of these scatterplots are shown to demonstrate this point. These patterns are
more widely spread than seen between the eddy energies themselves. If we look at ZPE
versus EPE (top right figure), we see that ZPE diminishes as EPE grows when leaving
a quiescent phase, following nearly a straight line. It then returns along a curved line
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Figure 2.9: (a, b, c) Scatterplots of different energy components in the characteristic simulation, for
(a) ZPE vs ZKE2, (b) EPE vs ZPE, and (c) EPE vs EKE2. Note: the mean values are subtracted and
the scales are adjusted to the range of energy values observed. The arrows represent a third of the distance
between adjacent points. Black arrows: initial phase. Cyan arrows: quiescent phases. Red arrows: turbulent
phases. The lines show the best fit of the data (cyan for quiescent phases, red for turbulent phases, and blue
overall), after optimal rotation of the data and a least-squares fit. The lengths of the lines are proportional to
the spread in the data. (d) The standard correlation matrix is shown, computed using (2.14) for the different
energy components.
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to recover from a turbulent phase. During this recovery, EPE falls relatively quickly
while ZPE does not show much growth until near the end of the turbulent phase. This
slow recovery of ZPE is likely due to the weak thermal relaxation. The nearly straight
lines, leaving quiescent phases and entering turbulent phases, are all closely parallel. The
more eccentric one, with black arrows, corresponds to the initial stages where baroclinic
instability acts on an idealised basic state. All the other straight lines are parallel to this
one because the same phenomenon happens: ZPE is converted into EPE due to baroclinic
instability. However the zonal energy at the beginning of subsequent turbulent phases is
lower than it was in the initial phase, explaining the gap between the different lines.

A difficulty in the interpretation of these results arises because the scatterplots are two-
dimensional projections of a six-dimensional phase space. The loop patterns seen imply
that other components not shown in a given 2D cross section are involved in the energy
transfers taking place, and moreover that the transfers are not occurring simultaneously
(this is highlighted in §2.5). An alternative interpretation, discussed next, focuses on the
energy components exhibiting the greatest variations.

The standard correlation scatterplots in figure 2.9 show the correlation between dif-
ferent energy components, but not the energy transfer. To see the energy transfer, it is
necessary to use the same plot limits in all scatterplots and to correlate the energy compo-
nents using only the numerator of (2.14). These global correlations are exhibited in figure
2.10 in the same format as figure 2.9 for comparison. The main energy transfers involve
just a few components, ZPE, EPE and to a weaker extent EKE1 and ZKE1. The other
components have essentially no impact on the global energy transfer. In particular, some
components which show a strong standard correlation instead show a very weak global
correlation, such as ZKE2 versus ZPE. This means that ZKE2 and ZPE evolve similarly
but there is scarcely any energy transfer between them.

The dominant energy transfer occurs between ZPE and EPE and is strongly anti-
correlated, as expected. ZPE is also anti-correlated with EKE1, implying that both EPE
and EKE1 are the dominant components uptaking any change in ZPE. This is consistent
also with the positive correlation between EPE and EKE1. Finally, and perhaps surpris-
ingly, only one correlation between zonal energies, ZPE versus ZKE1, is notable. For
a relatively large gain in ZPE, there is a modest increase in ZKE1. Evidently, the ther-
mal restoration of the sloping layer interfaces favours an increase in barotropic energy.
Restoration of a linear slope would not have this effect, as a linear slope only gener-
ates a baroclinic flow, by construction. Instead, it must be that the eddying motions



2.4 Energy Transfers 38

ZPE vs ZKE2 EPE vs ZPE

EPE vs EKE2 Correlation matrix

−2

0

2

Figure 2.10: (a, b, c) Scatterplots of different energy components, (a) for ZPE vs ZKE2, (b) for EPE vs
ZPE, (c) for EPE vs EKE2, in the characteristic simulation as in Table 1 but using fixed, identical scales in
each plot to emphasise which energy components exhibit the greatest variations. (d) The global correlation
matrix is shown, computed using only the numerator of (2.14) for the different energy components.
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present even during quiescent phases continue to provide inhomogeneous PV mixing,
maintaining sharp jets [Dritschel and McIntyre, 2008, Scott and Dritschel, 2012]. These
jets project on both barotropic and baroclinic modes, unlike the initial vertical shear flow.

2.5 Focus on a turbulent phase

The detailed behaviour of the flow around a turbulent phase is examined in this section.
The panels in figure 2.11 show the time evolution of various diagnostics over 1800 ≤
t ≤ 2800. The first three panels show energy components linearly rescaled to lie between
0 and 1 over the entire simulation duration (0 ≤ t ≤ 10000). In the third panel, the
complement of the rescaled zonal energies is shown so that they can be better compared
with the rescaled eddy energies (this panel combines the first two). The fourth panel
shows the maximum growth rate for each zonal wavenumber kx (in the abscissa), and the
bottom panel shows the meridionally-integrated APE spectrum, also versus kx.

In the top panel, the rescaled zonal energies ZKE2 and ZPE follow the same trend,
especially on the approach to the turbulent phase. This is why the standard correlation
between ZKE2 and ZPE is very high. However, ZKE1 decreases before the two other
energies and recovers sooner. Similarly, in the second panel for the rescaled eddy ener-
gies, there is a small offset between the different components. EKE1 and EKE2 grow
first (with EKE2 slightly ahead) and next EPE follows, with almost the same trend. This
offset between the different energy components explains the looping or racquet patterns
observed in the standard correlation scatterplots in Table 1.

The third panel compares the rescaled zonal and eddy energies. This highlights the
differences in evolution of the various components. The eddy energies are seen to rise and
fall rapidly, over a timescale comparable but shorter than the relaxation period r−1 = 100.
The mode 1 zonal kinetic energy ZKE1 appears to lead all components into the turbulent
phase, but due to the re-scaling, the energy changes involved are actually smaller than
those taking place in ZPE and EPE (cf. figure 2.8). The onset of the turbulent phase
is best associated with the steep rise in all the curves just before t = 2100, with the
dominant energy transfer between ZPE and EPE. Other rising events happen later, e.g.
between t = 2300 and 2400, without leading to any major disruption of the flow.

It therefore appears that the disturbance must reach a threshold amplitude before trig-
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Figure 2.11: (a,b,c) Rescaled energy components (with mode 1 kinetic energy in black,
mode 2 kinetic energy in blue and available potential energy in red) versus time for
1800 ≤ t ≤ 2800. In (a) only zonal components are shown, in (b) only eddy compo-
nents are shown, while in (c) all components are shown with the zonal ones inverted for
comparison. (d) log10 of the maximum growth rate of the zonally-averaged flow versus
zonal wavenumber kx. (e) log10 of the meridionally-integrated spectrum of the available
potential energy versus kx. The coloured countours correspond to specific values of the
spectrum as indicated on the colourbar. In each panel, time is in the abscissa.
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gering a turbulent phase (this has been confirmed by examining many such events). In the
PV field (not shown, but see the movie available to the online supplementary material),
wave amplitudes along the jets are seen to slowly grow, eventually (sometimes after sev-
eral false starts) leading to wave breaking and vortex formation. This strongly disturbed
state lasts only a relatively short time before the vortices are either torn apart by the jet
shear or recaptured by the jets, and the wave amplitudes gradually subside. The slow re-
turn to a quiescent state is most apparent in the behaviour of ZPE and ZKE2: the thermal
relaxation slowly acts to rebuild the sloping layer interfaces, at the same time enhancing
the baroclinic shear (in ZKE2). In this return to a quiescent phase, the principal energy
changes (i.e. in ZPE) are mainly brought about by thermal relaxation. However, the rapid
decay in all eddy energies, occurring over a period of just 20 to 30 units of time, can-
not be explained simply by thermal relaxation. Instead, part of this decay must be due
to inhomogeneous turbulent mixing, constrained by the mean PV gradient in each layer.
The mixing acts to homogenise PV and sharpen jets, processes which are only enhanced
by non-zonal variations [Dritschel and McIntyre, 2008, Scott and Dritschel, 2012]. The
mixing continues until most of the eddy energy (principally at higher wavenumbers where
thermal relaxation is weak) is exhausted and converted into jets (qualitatively this is the
argument behind the Rhines scale LRh =

√
U/β, where U characterises the eddy veloci-

ties and β is the background PV gradient, see Rhines [1975]). The low wavenumber part
of the eddy energy gives rise to meanders, which unlike the high wavenumber part are af-
fected by the thermal relaxation. Subsequently, thermal relaxation weakens the meanders
and establishes quasi-zonal jets around t = 2200. Thereafter, thermal relaxation grad-
ually modifies them, slowly bringing them closer together at the centre of the channel,
as seen in the top two panels of figure 2.8. Eventually, this sets up the conditions for a
further turbulent phase.

The maximum growth rate of the flow (shown in the fourth panel of 2.11) increases
in the expected range of baroclinic instability wavenumbers, i.e. wavenumbers around
kx = 11, at the onset of the turbulent phase. Thereafter, at the peak of the turbulent phase
around t = 2150, a wide range of wavenumbers are excited. Notably, just before this
peak there is a decrease in the growth rate for high wavenumbers (18 to 20), that will
only recover during the next quiescent phase. While it is not very clear in this figure, this
feature is common to all the turbulent phases.

The APE spectrum (bottom panel) before the turbulent phase shows significant and
persistent excitation of wavenumbers 4 to 6. During the first part of the turbulent phase,
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there is an increase in power for small wavenumbers, from 2 to 4, and more generally for
all wavenumbers. This is the effect of wave breaking, vortex generation and subsequent
turbulent mixing. The increased excitation of all wavenumbers is matched by the growth
of EPE shown in the second panel. Likewise, as the excitation subsides, so does the EPE,
reaching a minimum around the end of the turbulent phase at t = 2350.

From this analysis, we can better understand the energy variations occurring during
the onset and decay of a turbulent phase. The loop patterns exhibited in the correlation
scatterplots (cf. figure 2.9) are associated with the asynchronous growth and decay of
the various energy components. What we find generically, across many events and sim-
ulations examined, is that at the onset of a turbulent phase ZKE1 decreases marginally
sooner than both ZKE2 and ZPE, which remain highly correlated until near the end of
the turbulent phase. ZKE1 recovers much sooner than either ZKE2 or ZPE, and this ap-
pears to be an eddy effect. Looking back at figure 2.8, we can see that the dips in ZKE1
occurring during a turbulent phase only last while there is significant eddy energy. By
contrast, ZKE2 and ZPE take longer to recover, well after the eddy energies have all
but dissipated. Another generic feature worth noting is that, at the onset of a turbulent
phase, EKE2 appears to increase slightly before EKE1, which is then followed by EPE.
The recovery is also in the same order, with EPE recovering last. The recovery is also
rapid, mainly a nonlinear effect of inhomogeneous mixing. Thermal relaxation acts most
strongly at largest scales, and gradually weakens the low-wavenumber meanders on the
jets. This helps to re-establish strong quasi-zonal jets, which then slowly shift due to
thermal relaxation until conditions are established for the next turbulent phase.

2.6 Dependence on parameters

2.6.1 Parameter Sweep

To study the dependence of the flow evolution on the different parameters involved, a wide
range of simulations have been conducted. The main parameters consist of the thermal
relaxation coefficient r, the lower layer fractional PV gradient ε1 (directly controlling the
vertical shear), the stratification coefficient cρ, the enstrophy input rate η, and the heton
PV qheton. Other parameters have been varied, like the heton radius R and topographic
forcing, but these have been found to have only a minor influence. Table 2.2 lists the
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Nx cρ ε1 η q1 × kd/β r other

512 2 −0.5 0.1 1 0, 10−4, 10−3

10−2, 0.1, 0.5

512 2 −0.1 0.1 1 0, 10−3, 10−2

0.1, 0.5

512 0.2 −0.1 0.1 1 0, 10−3, 10−2

0.1, 0.5

512 0.2 −0.1 0.01, 1 1 0.01

512 2 −0.1 0.01, 1 1 0.01

256 0, 2 −0.5 10, 100 10, 30, 100, 300 0.01

256 2 −0.1 100 100, 300, 1200 Heton radius
256 2 −0.1 100 300 0.001 R = 0.025 rather
256 0 −0.1 100 100 0.01 than 0.05

256 0 −0.5 100 100 0.01 h1 = 0.9

256 0 −0.5 100 100 0.01 h1 = 0.95

256 5 −0.5 100 100 0.01

256 2 2.0 1 1 0.001 opposite
256 0 1.5 1 1 0.001 vertical shear
256 2 −0.5,−0.4,−0.3 0.1 1 0.01

−0.2,−0.1

128, 512 2 −0.5 0.1 1 0.01

256 0 1 100 100 0.01 with and without
topography

Table 2.2: Numerical and physical parameters for the set of experiments conducted in this
study.

parameters used for the main simulations conducted in this study. In the following sub-
sections, we focus on the parameters having the greatest influence: the thermal relaxation
r and the vertical shear parameter ε1. We then briefly summarise the influence of the
remaining parameters.

2.6.2 Thermal relaxation

An important parameter controlling the flow evolution is thermal relaxation. A wide range
of thermal relaxation rates r = {0, 0.0001, 0.001, 0.01, 0.1, 0.5} have been examined,
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Figure 2.12: The evolution of zonal (upper plots) and eddy (lower plots) potential energy (ZPE and
EPE) for different thermal relaxation rates r: no relaxation, blue; 0.001, orange; 0.01 (reference), green;
and 0.1, red.
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Figure 2.13: Lower layer (left panel) and upper layer (right panel) time-averaged between t = 6500 and
t = 7300 (quiescent phase) zonally-averaged zonal velocity ūi(y, t), for different thermal relaxation rates
r: no relaxation, blue; 0.001, orange; 0.01 (reference), green; and 0.1, red.

mainly for different values of stratification coefficient cρ and vertical shear parameter ε1.
Thermal relaxation acts to restore the initial vertical shear. Simultaneously, baroclinic
instability, induced by excessive vertical shear, leads to turbulent mixing which tends to
reduce the vertical shear. There is thus a competition between thermal relaxation and
baroclinic instability which nearly always results in the formation of jets through inho-
mogeneous PV mixing.

Thermal relaxation is found to have a major impact on the evolution of the flow. This
is exhibited in figure 2.12 comparing the evolution of zonal potential energy (ZPE) for
r = 0, 0.001, 0.01 and 0.1, keeping all other parameters at their default values. The green
curve corresponds to the characteristic simulation examined already. At high relaxation
rates, r ≥ 0.1, the flow appears to be very stable: the initial ZPE is reduced by only
12% for r = 0.1 and fluctuates close to a constant value thereafter. In fact, small-scale
disturbances are ever present due to the perpetual creation of baroclinic instability, but
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Figure 2.14: Zonal potential available energy’s evolution for five different vertical shears ε1: −0.1
brown; −0.2 purple; −0.3 red; −0.4 green; and −0.5 orange and blue.

no large-scale disruption like that seen in figure 2.5 for the characteristic simulation ever
occurs. At high relaxation, the flow exhibits many weak jets whose number remains
constant from the earliest times. By contrast, with no relaxation (r = 0), the imposed
vertical shear is rapidly cancelled, suppressing any further baroclinic instability. The
flow in this case is mainly dominated by large-scale oscillations with a few weak jets, see
figure 2.13. For small but non-zero relaxation (r = 0.001 and 0.01), there is a competition
between the relaxation trying to restore the vertical shear and baroclinic instability trying
to break it down, leading to strong, widely-spaced jets. The relaxation has a direct impact
on the intensity of the jets (their zonal velocity) and jet spacing, as seen in figure 2.13. As
in the characteristic case presented in §2.3.1, the flow is more unstable and variable, and
exhibits large-scale fluctuations. The relaxation rate strongly affects the recovery time
from each turbulent phase, leading to a wider spacing of turbulent events.

2.6.3 Vertical shear

The initial vertical shear is directly controlled by the lower layer relative PV gradient, ε1
(see appendix §A). When ε1 < 0, PV gradients are reversed in the two layers, and the
vertical shear is sufficient to induce baroclinic instability. The more negative ε1 is, the
greater is the vertical shear and thus the potential for instability.

Vertical shear has a direct influence on the number of homogeneous regions and jets
that develop, see figure 2.14. Increased vertical shear implies stronger baroclinic insta-
bility and thus higher eddy velocities, u′rms. This on its own would imply an increased jet
spacing, qualitatively, through the Rhines scale LRh =

√
u′rms/ |q̄y|, except that the mean

PV gradient |q̄y| also increases. Nevertheless, we find that higher vertical shear leads to
both a wider jet spacing and more intense jets, see figure 2.15. Regarding the oscillations
between quiescent and turbulent phases, higher vertical shear decreases their frequency.
When the vertical shear is too weak to permit baroclinic instability (ε1 ≥ 0), the flow
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Figure 2.15: Lower layer (left figure) and upper layer (right figure) zonally-averaged zonal velocity
ūi(y, t) averaged between t = 3800 and t = 4500 (quiescent phase), for different vertical shears ε1: −0.2
purple; −0.3 red; −0.4 green; and −0.5 orange.

evolution is radically different than what we have seen so far. Jets, if at all present, are
very weak and erratic.

2.6.4 Other parameters

Many other simulations have been conducted, looking at the effect of stratification, the
PV of the injected hetons, the enstrophy input rate, etc. Regarding stratification, the simu-
lations presented in this paper are relevant to an atmospheric-like situation. We have also
run simulations for oceanic-like cases (cρ → 0). The main difference is a greater propen-
sity for meandering at small scales, such as seen in oceanic currents like the Kuroshio
or the Gulf Stream. Large scale structures are still present, though they are weaker and
significantly disturbed by small scale perturbations. Jets are also less prominent. As in
the oceans, the flow is less structured into zonal bands but contains many more coherent
vortices. These findings are broadly consistent with those found by Maximenko et al.
[2005], Kamenkovich et al. [2009], Berloff et al. [2011] who examined a forced idealised
two-layer ocean with Ekman damping.

Regarding the heton PV and the enstrophy input rate, we have examined the effect
of adding a few high intensity hetons versus adding numerous low intensity hetons. We
thought that adding high intensity hetons would favour the formation of long-lived vor-
tices, but this is not true. Inevitably any intense vortices which do form drift north or south
and get torn apart by or incorporated into the intense jets. Overall, these parameters have
only a small impact on the flow evolution. Simulations with different parameters exhibit
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the same number of homogeneous regions and jets, with comparable jet velocities and
spacing. Further details concerning the impact of hetons are provided in section §3.4.2.
Essentially, hetons tend to damp the flow and homogenise the energy (in particular ZPE)
over time during quiescent phases. Without hetons, variable topography is necessary to
obtain similar ratios between the energy fluctuations during quiescent phases, and the
drop of energy during turbulent events.

2.7 Conclusions

We have investigated the emergence, nonlinear dynamics and energetics of jets and vor-
tices in a two-layer β-plane quasi-geostrophic channel model. An extensive range of
numerical simulations have been carried out using the Combined Lagrangian Advection
Model [Dritschel and Fontane, 2010], at unprecedented resolution and for very long times
(104 to 105 model days). We have primarily focused on the atmospheric case where there
is a strong density difference between the two layers and where thermal relaxation acts
to maintain vertical shear against baroclinic instability. As found in the original study
of this type by Panetta and Held [1988], the competition between relaxation and baro-
clinic instability results in quasi-zonal jets. In the present study, additionally, we have in-
cluded the effect of stochastic forcing, specifically adding small-scale baroclinic vortices
called ‘hetons’ randomly at a prescribed enstrophy input rate. These hetons are meant to
crudely model the effects of convection thought to occur in the atmospheres of the gas
giant planets (see Thomson and McIntyre [2016] and references therein). The details of
the stochastic forcing however do not seem to matter: qualitatively similar evolution is
observed without such forcing when the initial flow is weakly perturbed.

The combination of thermal relaxation, heton forcing and atmospheric stratification
leads to a ‘baroclinic life cycle’ (see [Feldstein and Held, 1989, Thorncroft et al., 1993,
Esler, 2008]), in which jets emerge through baroclinic instability of the vertically-sheared
flow and subsequently break down and reform, often in an irregular manner. The jets
form through inhomogeneous potential vorticity mixing [Dritschel and McIntyre, 2008,
Scott and Dritschel, 2012], in which potential vorticity is nearly homogenised in bands,
but between which the potential vorticity abruptly jumps, forming a ‘staircase’ profile.
Each jump is associated with a jet, eastward in the upper layer and westward in the lower
layer, a direct effect of potential vorticity inversion [Dritschel and McIntyre, 2008].
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Both thermal relaxation and heton forcing continuously modify the jets that form
through baroclinic instability. Thermal relaxation works to increase the vertical shear
(favouring baroclinic instability), while heton forcing creates disturbances which even-
tually trigger the breakdown of the jets. In most cases, this breakdown is characterised
by wave amplification and breaking on the quasi-zonal jets, leading to vortex detachment
and turbulence. In this ‘turbulent phase’, the upper layer jets often persist but become
strongly non-zonal and time dependent, while the lower layer jets are nearly obliterated
before they reform. The turbulent phase lasts typically one thermal relaxation period,
approximately, but only part of the recovery is due to thermal relaxation. From a detailed
analysis of the energetics, it is found that the eddies (or non-zonal disturbances) created at
the onset of a turbulent phase convert their energy into jets, arguably by inhomogeneous
potential vorticity mixing (an inviscid mechanism). Thermal relaxation, by contrast, acts
mainly at large scales to dampen long-wave disturbances and straighten the jets. There-
after, thermal relaxation slowly shifts the jets and builds the mean vertical shear, setting
up the conditions for subsequent instability and breakdown.

Each turbulent phase is followed by a ‘quiescent’ phase characterised by nearly zonal
jets with weak small-scale disturbances. Notably, these oscillations between quiescent
phases and turbulent events have not been seen before in previous studies, e.g. Panetta
and Held [1988] and Thompson and Young [2007]. These quiescent phases often exhibit
a gradual latitudinal migration of the jets. In one particular example studied in detail,
two distinct quiescent phases were observed, one of which was significantly more robust
(long lived) than the other (further analysis may be found in appendix B.) The quasi-
zonal jets occurring during the quiescent phases are typically highly baroclinic. There are
different numbers of jets in each layer located at different mean latitudes. Moreover, the
upper layer jets are predominantly eastward, while the lower layer jets are predominantly
westward, or a mix between the two due to the strong influence of the upper layer potential
vorticity on both layers.

The wider dependence of the flow evolution on thermal relaxation, vertical shear,
stratification, heton intensity and enstrophy input rate has also been studied. Increasing
thermal relaxation weakens the turbulence created during baroclinic instability, leading
to less temporal variation especially of the zonal energy components. While baroclinic
instability still occurs (for sufficient vertical shear), it only manages to create weak jets
for strong thermal relaxation (i.e. for a 10 day or shorter relaxation period). On the other
hand, no relaxation results in the destruction of the initial vertical shear and no further
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chance for baroclinic instability. Weaker relaxation leads to baroclinic life cycles, here
oscillations between turbulent and quiescent phases. Both phases extend in proportion to
the relaxation period, though the recovery of the zonal part is significantly slower than
the recovery of the eddy part.

Increasing vertical shear makes the flow more unstable, generally creating fewer, more
intense jets. Changing the stratification to a form more appropriate to the oceans, we find
that the jets exhibit significant meandering and are less well defined. Moreover, many
more vortices are present which last for much longer times than found for atmospheric
stratification. These results are consistent with the two-layer ocean study of Maximenko
et al. [2005], Kamenkovich et al. [2009], Berloff et al. [2011]. The remaining model
parameters (heton intensity, enstrophy input rate) have been found to have only a weak
impact on the flow evolution.

A conspicuous feature of the atmospheric-like simulations we have conducted is the
absence of long-lived vortices, despite an extensive exploration of parameter space. Vor-
tices do form but they inevitably collide with a jet and are either incorporated or de-
stroyed. A major question then is: is there a parameter regime within this two-layer
quasi-geostrophic model favouring long-lived vortices? Or, is it necessary to go beyond
the quasi-geostrophic model and consider ageostrophic effects (e.g. as in a shallow-water
context)? Or again, is spherical geometry fundamental? Does the Great Red Spot, for
instance, depend on its proximity to the equatorial region, whose dynamics can be starkly
different from quasi-geostrophic? Are two-layers sufficient? We are presently working
to answer some of these questions by building and applying a highly-accurate multi-layer
shallow water numerical model.
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Chapter 3

Two-layer quasi-geostrophic flow over
topography

3.1 Introduction

The impact of topography on geophysical flows has been widely examined using different
experimental approaches, numerical models, and theoretical analyses. For example, Hart
[1975] conducted an experimental and analytical study investigating how bottom topog-
raphy affects the stability of a circular vortex. He found that perturbations from the mean
flow have a broader spectrum when using a linear topography rather than a flat bottom.

Previously, numerical studies such as Orlanski [1969] looked at the impact of bot-
tom topography on a baroclinic flow. Orlanski applied his model to different topography
profiles characteristic of the Gulf Stream region and showed that topography is an es-
sential factor in the stability analysis for representing the behaviour of the Gulf Stream.
Subsequently, various studies have been conducted to look at the impact of topography
on oceanic flows, for example on the Antarctic Circumpolar Current (see Treguier and
Hua [1988], Tréguier and McWilliams [1990], Wolff et al. [1991], Jackson et al. [2006]
and Thompson and Sallée [2012]), on the Gulf Stream (see Tansley and Marshall [2000],
Schmeits and Dijkstra [2001] and Chassignet and Marshall [2008]), and on the Agulhas
current (see Darbyshire [1972] and Matano [1996]). In each case, topography was found
to be an essential factor in the behaviour of these flows.

More theoretically, Pedlosky [1970] studied the behaviour and stability of baroclinic
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waves using a two-layer quasi-geostrophic model. As a continuation of this work, Stein-
saltz [1987] used a similar approach adding a sloping meridional topography and found
that for a small vertical shear, large wavenumbers can be unstable, in contrast to what was
found in Pedlosky’s study. Additionally, large wavenumber perturbations have a greater
amplitude in the lower layer than in the upper layer. To study the formation and evolu-
tion of waves and jets in a two-layer model, LaCasce and Brink [2000] used decaying
turbulence while Thompson [2010] and Boland et al. [2012] used a forced-dissipative
model. With a linear meridional sloping topography on the f -plane, LaCasce and Brink
[2000] obtained an intensification of the flow in the bottom layer and surface vortices
in the upper layer. Using a forced-dissipative model on the β-plane, with a meridional
sloping topography, Thompson [2010] studied the dependence of jet spacing and jet vari-
ability. He found that jet spacing is characterised by the barotropic Rhines scale, defined
by LRhbt = 2π

√
Ve/βbt, with Ve the eddy velocity and βbt the barotropic potential vortic-

ity gradient. As a continuation of this work, Boland et al. [2012] added a zonal sloping
topography to this meridional sloping topography, and used a doubly periodic barotropic
and a two-layer baroclinic quasi-geostrophic model. They found that tilted jets drift lat-
itudinally in time. They explained this drift by the difference of orientation between the
PV gradient in each layer and the barotropic PV gradient. In a related study, Chen and
Kamenkovich [2013] investigated the impact of topography on baroclinic instabilities us-
ing a QG eddy-resolving model. They found that a zonal sloping topography has a strong
effect on the destabilisation of the flow. Conversely, a meridional sloping topography can
either stabilise or destabilise the flow by either equalising or opposing the PV gradient
sign of the two layers, respectively.

There is a wide variety of studies on the impact of topography in an oceanic context.
This includes Venaille [2012], who showed that a topographic anomaly, such as a topo-
graphic bump, can create bottom-trapped currents. Poulin and Flierl [2005] and Poulin
et al. [2014] further studied the influence of topography on the stability of jets using a
two-layer QG model in an oceanic context with a linear slope. Growth rate and wave-
length were found to vary with the topographic parameter, chosen as the ratio between
the topographic slope and the isopycnal slope. Stern et al. [2015] investigated the evolu-
tion of a zonal jet around a continental shelf and over a very idealised topography. They
studied the formation of jets over the continental shelf and then their migration off the
shelf.

While most of these studies concentrate on oceanic flows, Thomson and McIntyre
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[2016] focus on the co-existence of Jovian jets and vortices. They use a 11
2

layer QG
model. To reproduce the Jovian jets, they impose a sinusoidal bottom interface. This
feature imposes the positions of the jets. By injecting cyclone/anticyclone pairs (known as
‘hetons’), they crudely mimic the convective motions thought to occur below the weather
layer, as well as the co-existence of jets with long-lived vortices in the Jovian weather
layer.

This chapter will focus on a very idealised topography consisting of a linear merid-
ional sloping bottom. Previously, chapter 2 focused on the energetics of a two-layer QG
β-channel shallow water model with an imposed vertical shear maintained by thermal
relaxation and the injection of cyclone/anticyclone pairs. These pairs were randomly in-
jected in space to mimic convective motions. We investigated the dependence of the flow
on different parameters, such as thermal relaxation and vertical shear. Focusing on a
characteristic simulation, we described the energy transfers occurring during two differ-
ent phases of the flow; a quiescent phase and a turbulent phase. In this chapter, keeping
the same parameters as in the characteristic simulation, we study the dependence of the
flow evolution on a linear meridional topography.

First, the model is presented in section §3.2. Second, a stability analysis is conducted
in section §3.3. Third, section §3.4 describes the main results, from their analysis to their
interpretation. Section §3.5, finally, presents conclusions and perspectives.

3.2 Model formulation

To study the impact of topography on the emergence and evolution of jets and vortices in
turbulent planetary atmospheres, we use the same model as in chapter 2 and add a linear
meridional topography. The main aspects of the model will be briefly presented again
(for more details see chapter 2). The model is based on the classic Phillips model (see
Phillips [1951]), a two-layer shallow water quasi-geostrophic model in a channel on the
β-plane, with bottom topography and a free surface at the top of each layer. The flow is
governed by the equations:

Dq1
Dt

= F1 ;
Dq2
Dt

= F2 (3.1)

q1 = βy +∇2ψ1 −
f0(δ1 − δb)

H1

; q2 = βy +∇2ψ2 −
f0(δ2 − δ1)

H2

(3.2)
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δ1 =
f0(ψ1 − αψ2)

g(1− α)
; δ2 =

f0ψ2

g
(3.3)

with D/Dt the material derivative, the subscript i referring to the layer i = 1, 2, qi the
quasi-geostrophic potential vorticity (QGPV), Fi representing the forcing and relaxation
applied to the QGPV, β the linear gradient of the Coriolis frequency f = f0 + βy, ψi the
streamfunction, δi the displacement of the upper interface in layer i, δb the topography
height, Hi the mean depth, ρi the uniform density, α = ρ2/ρ1 the density ratio, and g the
acceleration due to gravity. Layer 2 is above layer 1.

From the expression of the shallow-water Rossby-Ertel PV, we can obtain the QGPV
using a series expansion. If we relate the pressure perturbations to the interface dis-
placements using hydrostatic balance (see Mohebalhojeh and Dritschel [2004]) and to
the streamfunction using geostrophic balance, we can write the QGPV (see Vallis [2006]
for more details) as

q1 = βy +∇2ψ1 + h2k̄
2
d(αψ2 − ψ1)− βby (3.4)

q2 = βy +∇2ψ2 + h1k̄
2
d(αψ1 − ψ2) (3.5)

where βby = −f0δb/H1 for the linear profile of topography considered, and

k̄2d =
f 2
0H

g(1− α)H1H2

where H = H1 +H2 is the total mean depth.

As in chapter 2, we use a channel model, periodic in x and with free-slip rigid bound-
ary conditions in y, where the zonally-averaged zonal velocity value imposed by the ver-
tical shear is held fixed.

3.2.1 Topography

To study the impact of topography, we choose the simplest topography possible, a linear
meridional slope, characterised by a single topography parameter β̃b = βb/β. A dif-
ferent topography, such as a parabolic or sinusoidal profile, would have required more
parameters to characterise, thus complicating the analysis. Moreover, a constant-slope
topography does not tie the location of the jets to features in the topography, enabling us
to study how the topographic slope alone influences jet spacing and intensity.
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3.2.2 Stratification

Two different basic-state density profiles have been adopted in this study. We first con-
ducted ocean-like simulations using the Boussinesq approximation, with equal layer depths
and a density ratio α = ρ2/ρ1 ≈ 1, i.e. α − 1 � 1, see Vallis [2006], p67. Next, we
conducted atmosphere-like simulations using an exponentially decreasing density pro-
file approximated by two equal thickness layers, which gives a density ratio of α =

ρ2/ρ1 = e−cρ/2, with cρ the model depth as a multiple of the scale height Hρ, defined
by cρHρ = H1 +H2 = H . (Note that in the Boussinesq case, we have cρ = 0.)

3.2.3 Forcing and relaxation

In chapter 2, stochastic forcing was applied to crudely model unresolved convective mo-
tions using hetons. This forcing however appears to have little impact on the flow evo-
lution, apart from providing a greater level of background perturbations which make it
more difficult for the thermal relaxation to restore the basic state (see section §3.4.2 be-
low). In this study, we therefore remove this forcing. Instead, we add a small Rossby
wave perturbation in the lower layer at the initial time to create a non-zonal disturbance,
thus allowing the flow to destabilise without perturbing the flow subsequently.

As in chapter 2, a vertical shear is imposed to model the latitudinal thermal forcing
variation between the equator and the poles. In the quasi-geostrophic approximation,
thermal wind balance relates the latitudinal temperature gradient to a uniform velocity in
each layer (in opposite directions). The quasi-geostrophic potential vorticity (QGPV) is
linearly related to the streamfunction. In turn, the streamfunction is linearly related to the
velocity. Thus, the vertical shear is imposed as an additional QGPV term varying linearly
with the streamfunction. The total background PV is written as εiβy with εi the parameter
controlling the vertical shear in layer i. See chapter 2 for the relation between εi and the
shear.

3.2.4 Parameter choices

Most parameters have the same values as in the characteristic simulation in chapter 2. The
domain is defined by the widths Lx = 2π and Ly = π, the Rossby deformation length is
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equal to Ld = 1/k̄d, and the fractional layer depth h1 = H1/H = h2 = H2/H = 1/2.
The density ratio is α = ρ2/ρ1 = e−cρ/2 ' 0.37, with cρ = 2. We obtain kd1 ' 8.87 and
kd2 ' 17.93 as the deformation wavenumbers of the two vertical modes. The planetary
vorticity gradient is equal to β = 8π. The vertical shear is controlled by the parameters
εi, so that the total PV gradient is equal to εiβ in layer i. We consider ε1 = −0.5 and
ε2 = 3.79. The thermal relaxation rate is fixed at r = 0.01. The initial Rossby wave,
present in the lower layer to create a small perturbation of the flow, has a PV perturbation
equal to B sin(kx) sin(ly), with B = 2, k = 5 and l = 2. The topographic parameter β̃b
varies between −0.5 and 0.25. We chose this range of topography as it captures all the
regimes of interest, from the margin of stability to highly dynamic simulations where the
flow oscillates between quiescent and turbulent phases.

Simulations were run on a grid of the following dimensions: Nx × Ny with Nx =

256 and Ny = 129 over 104 units of time, using the ’Combined Lagrangian Advection
Method’ (see Dritschel and Fontane [2010] for more details).

3.3 Linear Stability Analysis

We next perform a linear stability analysis for a Boussinesq two-layer problem on the
β-plane with bottom topography but no forcing or relaxation on the QGPV. The set of
equations governing the dynamics is the same as for equations 3.1 without forcing or
relaxation.

We start with an initial state defined by a zonally averaged QGPV q̄i and velocity in
each layer ūi, with β the linear component of the Coriolis frequency f = f0 + βy, βb the
gradient of the topographic PV, i.e. f0δb/H = −βby. For equal layer depths, we have
−ū1 = ū2 = uc/2 = ū with uc the baroclinic or shear velocity. The basic-state PV is

q̄1 = (−k̄2dū2 + β − βb)y = (ε− β̃b)βy

q̄2 = (k̄2dū
2 + β)y = λβy.

(3.6)

Considering small perturbations to the QGPV q′i and streamfunctions ψ′i of the form

q′i(x, y, t) = <{Qi(y)ei(kxx−σt)}

ψ′i(x, y, t) = <{Ψi(y)ei(kxx−σt)}
(3.7)
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with kx the prescribed zonal wavenumber, σ the frequency, and Qi(y) and Ψi(y) the
amplitude of perturbations, the linearised PV conservation equations reduce to

(ūi − c)Qi +
dq̄i
dy

Ψi = 0, i = 1, 2 (3.8)

with c = σ/kx the phase speed.

Next, we use the inversion relation relating q̂j to ψ̂j , with j = 1, 2 the vertical modes:

q̂1 = ∇2ψ̂1 = −k2xψ̂1

q̂2 = ∇2ψ̂2 − k̄2dψ̂2 = −(k2x + k̄2d)ψ̂2.
(3.9)

The vertical modes’ QGPV and streamfunctions are related to the layers’ QGPV and
streamfunctions by the relations (written only for QGPV, but similar for the streamfunc-
tions)

q̂1 = (q1 + q2)/2 ; q1 = q̂1 − q̂2/2

q̂2 = q2 − q1 ; q2 = q̂1 + q̂2/2.
(3.10)

By combining equations 3.8, 3.9 and 3.10 we obtain a quadratic equation in c:

c2k2x(k
2
x + k̄2d) + c(β − βb/2)(2k2x + k̄2d) + (β − βb/2)2

−ū2k2x(k2x − k̄2d) + ūβb/2(2k2x − k̄2d)− β2
b /4 = 0.

(3.11)

Or, in terms of ε, β̃b, c̃ = cβ/k̄2d and k̃x = kx/k̄d, we have

c2k̃2x(k̃
2
x + 1) + c(1− β̃b/2)(2k̃2x + 1) + (1− β̃b/2)2

−(1− ε)2k̃2x(k̃2x − 1) + (1− ε)β̃b/2(2k̃2x − 1)− β̃2
b /4 = 0.

(3.12)

To find the maximum growth rate and the stable and unstable regions in the ε-β̃b
parameter space, we find the dispersion relation:

c̃ =
(−(1− β̃b/2)(2s+ 1)±

√
R

2s(s+ 1)
(3.13)
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where s = k̃2x and

R(s) = 4s4(1− ε)2 − 4β̃bs
3(1− ε) + 4s2(β̃2

b /4− (1− ε)β̃b/2− (1− ε)2)

+ 4sβ̃b/2(β̃b/2 + (1− ε)) + (1− β̃b/2)2.
(3.14)

Instabilities occur where R < 0, and the maximum growth rate over s can be determined
from the roots of a high-order polynomial (not shown).

Figure 3.1: Dimensionless maximum growth rate σ̃ as a function of the vertical shear
parameter ε and the topographic parameter β̃b. Grey crosses mark the simulations con-
ducted in chapter 2 while the coloured crosses mark the simulations conducted in the
present chapter.

Figure 3.1 exhibits the dimensionless maximum growth rate σ̃ = σβ/k̄2d for various
β̃b and ε values. Baroclinic instabilities can occur when β1β2 < 0. The vertical green
line corresponds to ε = 2, and so λ = 0, therefore β2 = 0 – the upper layer PV gradient
vanishes. The slanting green line corresponds to β̃b = ε, and so the lower layer PV
gradient β1 = β(ε − β̃b) = 0. The upper left region, between the two green lines,
corresponds to the unstable region where β̃1 < 0 and β̃2 > 0. The lower right region
corresponds to the unstable region where β̃1 > 0 and β̃2 < 0. Finally, the two regions
without contours are regions where the flow is stable. In chapter 2, no topography was
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present. Simulations performed in that chapter are shown on the graph by grey crosses.
Additional simulations performed with topography are shown on the graph by coloured
crosses and described further below.

3.4 Results

We next discuss the results of a series of non-linear simulations investigating the influence
of sloping bottom topography on jet formation and dynamics.

First, section §3.4.1 presents the energy decomposition into modal kinetic and avail-
able potential energies. Next, we focus on the dependence of the flow on the initial
conditions and the stochastic forcing in section §3.4.2. Then, the dependence of the flow
on the amplitude of topography is investigated in section §3.4.3. Finally, we present some
conclusions and perspectives in section §3.5.

3.4.1 Energy decomposition

We next explain how to calculate the kinetic and available potential energies, whose sum
gives the total conserved energy (in the absence of forcing and dissipation).

We start with the shallow-water equations:

ρ1

(
Du1

Dt
+ fk× u1

)
= −∇p1

ρ2

(
Du2

Dt
+ fk× u2

)
= −∇p2

(3.15)

with D/Dt the material derivative, ui the velocity in the layer i, and pi the layer pressure.

The potential energy PE is found from

PE = ρ1g

∫
x

∫
y

∫ h1+δb

z=δb

zdzdydx+ ρ2g

∫
x

∫
y

∫ h2+h1+δb

z=h1+δb

zdzdydx

=
1

2
gρ1 < (1− α)h21 + α(h1 + h2)

2 + 2δb(h1 + αh2) >

(3.16)

with < . > denoting an area average, hi the mean layer thickness of layer i, δi the
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displacement of the upper interface of each layer i and δb the topography height.

Similarly, the kinetic energy KE is found from

KE =
1

2
ρ1

∫
x

∫
y

∫ h1+δb

z=δb

(
u21 + v21

)
dzdydx+

1

2
ρ2

∫
x

∫
y

∫ h2+h1+δb

z=h1+δb

(
u22 + v22

)
dzdydx

=
1

2
ρ1 < h1(u

2
1 + v21) + αh2(u

2
2 + v22) > .

(3.17)

with ui and vi the zonal and meridional velocities in layer i.

These relations can be simplified and generalised to an n-layer shallow water flow as

PE =
1

2
g

n∑
i=1

ρi < z2i − z2i−1 >= g
n∑
i=1

ρi < hiz̄i >

KE =
1

2

n∑
i=1

ρi < hi
∣∣ui

2
∣∣ > (3.18)

with zi(x, y, t) the height of the layer i and z̄i(x, y, t) the mean height of layer i.

In our two-layer context, we can write this relation in terms of the displacement δi of
the upper interface of each layer i, using h1 = H1 + δ1 − δb each h2 = H2 + δ2 − δ1.

Typically, a large part of the potential energy is not available dynamically. This part
is associated with the background undisturbed state, in which

zi =
i∑

j=1

Hj.

The remaining potential energy is called the “available potential energy” (APE). The
available potential energy is equal to

APE =
1

2
gρ1((1− α) < δ21 > +α < δ22 >). (3.19)

Notably the topography does not contribute explicitly to the APE.

Under the QG approximation, the streamfunctions are related to the heights and dis-
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placements by the relations:

ψ1 =
g

f
(h1 + αh2 + δb) =

g

f
((1− α)δ1 + δ2)

ψ2 =
g

f
(h1 + h2 + δb) =

g

f
δ2.

(3.20)

So the APE can be written as

APE =
1

2
ρ1

f 2
0

g(1− α)
< (ψ1 − αψ2)

2 + α(1− α)ψ2
2 >

=
1

2
ρ1(H1 +H2)h1h2k̄

2
d(< (ψ1 − αψ2)

2 > +α(1− α) < ψ2
2 >).

(3.21)

Similarly, under the QG approximation, in the KE it is consistent to replace the θi by
their mean values Hi. It is convenient to normalise APE and KE by ρ1(H1 + H2) to
remove any dependence on the density ρ1. This leads to the final expressions used here
and in chapter 2

APE =
1

2
h1h2k̄

2
d(< (ψ1 − αψ2)

2 > +α(1− α) < ψ2
2 >)

KE =
1

2
(h1(u

2
1 + v21) + αh2(u

2
2 + v22))

(3.22)

where h1 and h2 are the fractional mean layer depths introduced previously.

3.4.2 Initial condition dependence

In chapter 2, stochastic forcing was implemented, modelling convective motions through
the addition of hetons. In this chapter, no stochastic forcing is added, although a Rossby
wave perturbation is added at the initial time in the lower layer to allow instabilities to
develop. This subsection focuses on the dependence of the flow on this initial condition
and stochastic forcing.

Figure 3.2 shows different analyses of the flow for the characteristic simulation of
chapter 2 in burgundy. It also shows a simulation with the same parameters, namely no
topography and the vertical shear parameter equal to ε = −0.5. The difference here is
the absence of stochastic forcing and the use of an initial Rossby wave perturbation in
the lower layer. This simulation is represented in yellow in the following section, and
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Figure 3.2: Top left panel: zonal available potential energy (solid lines) and eddy avail-
able potential energy (dashed lines). Top right panel: eddy available potential energy.
Bottom left panel: zonal available potential energy. Bottom right panel: rearranged zonal
available potential energy. In burgundy, the characteristic simulation of chapter 2, in
yellow the reference simulation of this chapter (without topography).

will be called the reference simulation. The top left panel in figure 3.2 shows the zonal
and eddy available potential energies. The zonal available potential energies (ZPE) at the
top are considerably higher than the eddy available potential energies (EPE) closer to the
bottom. The modal kinetic energies are very weak and therefore are not shown here. The
top right panel in the figure concentrates on EPE and the bottom left panel in the figure
concentrates on ZPE.

ZPE (and to a lesser extent EPE) are generally higher for simulations without stochas-
tic forcing. The same simulations likewise show greater fluctuations from the mean value,
as can be seen in the EPE plots (as well as in the ZPE plots). This means that in the ab-
sence of stochastic forcing, the flow is more energetic and fluctuates more. The stochastic
forcing mixes the flow more efficiently, which has a damping effect. This damping de-
creases small fluctuations and generally reduces the energy over time. As in the character-
istic simulation, the flow exhibits turbulent events distinguished by a fast and considerable
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drop of ZPE and an increase of EPE. We see that in order to obtain a comparable ratio
of energy fluctuations during quiescent phases to the drop of energy during turbulent
events as in simulations forced with stochastic noise, we need to add sufficiently steep
topographic slope (see further remarks in section §3.4.3).

The bottom right panel in the figure focuses on the different turbulent events. In this
plot, for each turbulent event, ZPE values are shifted down by the first value of the con-
sidered window. We can see that turbulent events are more energetic in the characteristic
simulation, the loss of ZPE being higher and steeper, while the recovery period is longer.
In both cases, a secondary drop is visible during the recovery phase (as can also be seen
in section §3.4.3). It is difficult to compare the time between two turbulent events due to
their small number.

In summary, the stochastic forcing and the initial conditions have an impact on the
flow, affecting the mean value of ZPE, the fluctuations, loss of energy during turbulent
events and their recovery period. Stochastic forcing contributes to mixing and effectively
results in turbulent damping. In the following, the yellow curves illustrated here will be
considered as the reference simulation.

3.4.3 Topography dependence

This section uses the following colour coding to distinguish results for different topogra-
phies (i.e. β̃b). For a constant value of the vertical shear parameter, we vary the topo-
graphic parameter β̃b from the margin of stability in blue to no topography in yellow, and
up to a high positive topographic parameter in red. As in section §3.4.2, a burgundy line
shows the characteristic simulation of chapter 2. The top left panel in figure 3.3 shows the
growth rate as a function of the horizontal wavenumber for different topographic slopes.
The solid lines are for an atmospheric stratification characterised by an exponential de-
crease of the density profile, the dashed lines are for an ocean-like like stratification under
the Boussinesq approximation. Dark blue flat lines correspond to β̃b = −0.5, light blue
lines to β̃b = −0.4, turquoise lines to β̃b = −0.25, forest green lines to β̃b = −0.1, light
green lines to β̃b = −0.05, yellow lines to β̃b = 0, orange lines to β̃b = 0.05, and red
lines to β̃b = 0.25. Qualitatively, both oceanic and atmospheric stratification display the
same dependence on topography. The further we are from the margin of stability, the
higher is the growth rate, with a small shift towards higher wavenumbers for higher to-
pographies. However, the difference in the wavenumber for which the growth rate is the
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Figure 3.3: Growth rate versus horizontal wavenumber (top left panel), zonal available
potential energy versus time (top right panel), standard deviation of ZPE (bottom panel)
for different topographic slopes. In the top left panel, solid lines correspond to the at-
mospheric configuration and dashed lines correspond to the oceanic configuration. The
colour code is: β̃b = −0.5 in dark blue, β̃b = −0.4 in blue, β̃b = −0.25 in turquoise,
β̃b = −0.1 in forest green, β̃b = −0.05 in light green, β̃b = 0 in yellow, β̃b = 0.05 in
orange and β̃b = 0.25 in red. The burgundy line in the right panel shows ZPE for the
characteristic simulation of chapter 2.

highest is more pronounced between oceanic and atmospheric stratification. While atmo-
spheric cases present a maximum growth rate for a wavenumber of kx = 10−11, oceanic
cases present a maximum growth rate for kx = 14− 15. Thus, atmospheric stratification
favours larger scales, but results in slightly weaker baroclinic instabilities.

The top right panel in figure 3.3 exhibits the time evolution of ZPE for different to-
pographic slopes. The following paragraphs focus on different aspects of these results
to help understand the influence of topography on the flow’s behaviour. First, we fo-
cus on simulations near the margin of stability, before studying simulations with a small
topography and finally considering the impact of large topography.
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Margin of stability

In section §3.3, we found regions where the flow is stable using a linear stability analysis
for a Boussinesq case. However, the Boussinesq approximation is not applied to the
simulations run. Simulations were conducted to see if the margin of stability occurs
for similar vertical shear and topographic parameters as in the Boussinesq case. Figure
3.5 shows ZPE for different topographic parameters: the upper blue line corresponds to
β̃b = −0.5, the lower blue line corresponds to β̃b = −0.4, β̃b = −0.25 for the turquoise
line, β̃b = −0.1 for the green line, and β̃b = 0 for the reference simulation in yellow. In
the Boussinesq case, the margin of stability occurs for β̃b = −0.5.

Figure 3.5: Evolution of the zonal available potential energy for different topographic
slopes: β̃b = −0.5 in dark blue, β̃b = −0.4 in blue, β̃b = −0.25 in turquoise, β̃b = −0.1
in forest green and β̃b = 0 in yellow.

The upper blue line (β̃b = −0.5) exhibits strong stability with little variation in ZPE.
When the flow is unstable and baroclinic instabilities can develop (as for the lower blue
line corresponding to β̃b = −0.4), there is an initial (small) drop in ZPE and a subsequent
recovery to a reduced value at later times. The weak initial instability reorganises the
zonal mean flow to a marginally stable state. As the initial flow becomes more unstable
(see the turquoise line corresponding to β̃b = −0.25), the initial drop in ZPE is larger
and the recovery is less certain; a lower time-mean value of ZPE is found together with
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more significant fluctuations associated with persistent weak baroclinic instabilities. The
green line shows the evolution of ZPE for β̃b = −0.1. After the initial (now larger)
drop in ZPE, the flow exhibits numerous fluctuations and even turbulent events. The first
turbulent events are smaller than in the reference simulation (in yellow), although the last
one is comparable to those in the reference simulation. Figure 3.4 exhibits the maximum
growth rate of the instantaneous zonally-averaged flow for various topographies. Growth
rates are generally higher for higher values of β̃b. The presence of an initial drop is
visible and additionally weaker drops during turbulent phases are noticeable. The impact
of topography on the turbulent events is discussed in the subsection below, focusing on
the dependence of the flow on large topography.

It follows that, as for the Boussinesq case, the margin of stability occurs at β̃b = −0.5

for ε = −0.5. Additionally, the more we increase the topographic parameter, the more
unstable the flow becomes. Baroclinic instabilities are often most pronounced at early
times and the flow is globally more dynamic with higher topographic parameters. The
initial instability tends to re-organise the flow into a less unstable basic state (with a
lower mean value of ZPE), leading to weaker fluctuations in ZPE (weaker baroclinic
instabilities) at later times.

Small topography dependence

The left panel in figure 3.6 shows ZPE variations for the reference simulation (β̃b = 0) in
yellow, and two simulations with a small topography. The green line shows a simulation
with β̃b = −0.05, and the orange line shows a simulation with β̃b = 0.05. The time-
averaged ZPE is greater for smaller values of topography: the green simulation has a
greater time-averaged ZPE than the yellow simulation, which in turn has a greater time-
averaged ZPE than the orange simulation. Fluctuations from the time-averaged ZPE are
greater for higher values of the topography, as seen in the bottom panel in figure 3.3.
Additionally, turbulent events are stronger, with, in addition, a greater drop of ZPE. The
right panel in figure 3.6 shows the rearranged ZPE during turbulent events, i.e. shifted
down by the first value of the considered time window. The drop of ZPE is comparable
or larger for β̃b = 0.05 than in the reference simulation, but smaller for β̃b = −0.05 than
in the reference simulation. Additionally, the slope from quiescent phases to turbulent
events is steeper for higher topographic parameters. In other words, β̃b = 0.05 slopes are
steeper than β̃b = 0 ones, which are steeper than β̃b = −0.05 ones.
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Figure 3.6: Evolution of the zonal available potential energy (left panel) and rearranged
ZPE around turbulent events (right panel) for different topographic slopes: β̃b = −0.05
in light green, β̃b = 0 in yellow and β̃b = 0.05 in orange.

This leads us to the conclusion that a small topography has a significant impact on the
flow, and that ZPE is reduced with more oscillations for higher topographic parameters.
Furthermore, turbulent events are more intense.

Large topography dependence

The previous two subsections discussed the impact of a small topography (either β̃b pos-
itive or β̃b negative) on the flow. In this part, we turn to the impact of larger topography.
Three simulations are considered: first, the reference simulation, second, the simula-
tion introduced in the margin of stability section with a topographic parameter equal to
β̃b = −0.1, and third, a simulation with a topographic parameter equal to β̃b = 0.25.

Figure 3.7: Evolution of the zonal available potential energy (left panel) and rearranged
ZPE around turbulent events (right panel) for different topographic slopes: β̃b = −0.1 in
forest green, β̃b = 0 in yellow and β̃b = 0.25 in red.
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The left panel in figure 3.7 exhibits the evolution of ZPE for the three simulations, with
the reference simulation in yellow, β̃b = −0.1 in turquoise, and β̃b = 0.25 in red. The
patterns observed above in the small topography cases recur, only with more pronounced
variations. With increasing β̃b, the time-averaged ZPE decreases. The increasingly tur-
bulent character of the flow more effectively flattens interface displacements against the
restoring effect of thermal relaxation. Fluctuations from the time-averaged value are also
greater. It is difficult to accurately quantify the period between turbulent events, as we
only have a small number of them. The simulation with β̃b = −0.1 exhibits few turbulent
events, which are also relatively weak. Again, their small number makes it difficult to
compare the periods between them. The right panel in figure 3.7 shows the rearranged
ZPE for these three simulations. The drop in ZPE is clearly greater in simulations with
positive β̃b than in the reference simulation. The reference simulation, in turn, exhibits a
greater drop in ZPE than in the simulation with a negative β̃b. A similar pattern is found
with regard to the slope between a quiescent phase and a turbulent event: the slope is
steepest for positive β̃b, followed by that found in the reference simulation, and is least
steep for negative β̃b.

Topography, then, has a strong impact on the flow. A positive β̃b results in more
intense turbulent events. On the other hand, a negative β̃b is stabilising relative to a flat
bottom; the reduction in mean ZPE is less, and turbulent events are weaker.

QGPV variations

We have seen that topography has a strong impact on the evolution of the flow and on the
intensity of turbulent events. In this section, we focus on the evolution of the rearranged
zonally-averaged QGPV (as introduced in section §2.3.1 of chapter 2). Figure 3.8 shows
Hövmoller diagrams of the upper and lower layer rearranged PV. First, topography di-
rectly affects the lower layer PV. At the initial time, in the stable case (β̃b = −0.5), the
topography completely cancels the lower layer QGPV gradient. For larger β̃b, the topog-
raphy leads to reversed PV gradients relative to the upper layer, thus creating the potential
for baroclinic instability. The upper layer PV range is only indirectly affected via the in-
fluence of the lower layer due to vertical mode interactions. Initial baroclinic instabilities
develop in all simulations except for β̃b = −0.5. For β̃b = −0.4, small variations of the
PV are visible, but the flow exhibits strong overall stability. Jets are present but remark-
ably weak and thus scarcely visible. For β̃b = −0.25, the flow is still very steady, though



3.4 Results 70

jets are more visible here than in the previous simulation. The first turbulent events are
clearly visible for β̃b = −0.1. Only a small number of weak turbulent events are visible
until t = 9000. They are characterised by a breakdown of the staircase profile with a ten-
dency to adopt a more linear profile. A larger turbulent event is visible between t = 9000

and t = 10000. All simulations for larger˜̃βb exhibit prominent turbulent events.

In addition, some simulations exhibit latitudinal jet drifts, either northward (e.g. for
β̃b = −0.1) or southward (e.g. for β̃b = −0.25 and β̃b = 0). We know that in Nature,
jets can drift (see Thompson and Wallace [2000] and Barnes and Polvani [2013]). Boland
et al. [2012] observed jets drifting in a two-layer quasi-geostrophic model with a sloping
meridional and a sloping zonal topography. They attribute the jets’ drift to the difference
of orientation between the PV gradient in each layer and the barotropic PV gradient. This
explanation, however, cannot be applied to our study, as no zonal topography is present.
Drifting jets were also observed in chapter 2, but not all drifted in the same direction.
Typically, the central jet remains at the same latitude, while the nearest jet north of it
drifts southward and symmetrically, and the nearest jet south of it drifts northward. In
contrast, our study includes simulations in which all jets drift in the same direction. This
was previously observed by Panetta [1993] and Smith et al. [2014], who noted that jet drift
(and merger or split) is associated with the domain width not being an integer multiple of
the Rhines scale.
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Figure 3.9: Zonally-averaged zonal velocity averaged over the entire simulation, for dif-
ferent topographies: β̃b = −0.05 in light green, β̃b = 0 in yellow, β̃b = 0.05 in orange
and β̃b = 0.25 in red.

Thompson [2010] found that jet spacing is characterised by the barotropic Rhines
scale LRhbt. He defined it as LRhbt = 2π

√
Ue/βbt, with Ue the eddy velocity nondimen-

sionalised by Us, where Us = ū2 − ū1 is the shear velocity, and ūi is the mean velocity
in layer i, and βbt = βL2

d/Us + sl/2 with sl = αslf0L
2
d/(UsH), where αsl is a constant

(unspecified) and H the mean layer depth. Following the approach of Thompson [2010],
we compute both the barotropic Rhines scale LRhbt = π

√
U/βbt (marked by circles in

the top panels in figure 3.10), with, in our case, βbt = β(1 + β̃b), and the usual Rhines
scale LRh = π

√
U/β (marked by crosses in the top panels in figure 3.10). We multiply

by a factor of π to rescale it to our domain’s size and thus define it as a wavelength, not a
wavenumber. As in Dritschel and McIntyre [2008], we choose for U either Uvortex defined
as the vortex peak velocity, as in the top left panel in figure 3.10, or Ujet = maxu−minu,
as in the top right panel in figure 3.10. In the top left panel, values of the barotropic
Rhines scale decrease with β̃b, despite our result from figure 3.9, namely, that jet spacing
increases with β̃b. However, the usual Rhines scale using Uvortex qualitatively matches
observations from figure 3.9. Ujet values are obtained from the maximum and minimum
values of the zonally-averaged zonal velocity. As jets shift from one quiescent phase to
another, the time averaged flow is not a good representation of the flow for some simula-
tions (e.g. for β̃b = 0). The Rhines scale defined with Ujet is thus not appropriate when
jets drift or shift, to represent jet spacing. Here, neither the barotropic Rhines scale nor
the Rhines scale defined with Ujet are a good representation of jet spacing.

The bottom panels in figure 3.10 exhibit two other ways to compute a qualitative
jet spacing. In both panels, the Rhines scale is defined by LRh = 51/4

√
Urms/β as

in Scott and Dritschel [2018], with Urms the root mean square of the velocity over the
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Figure 3.10: Four different ways to compute the Rhines scale for different topographic
slopes. The top left panel shows LRhbt = π

√
Uvortex/β for crosses and LRhbt =

π
√
Uvortex/βbt for circles; the top right panel shows LRhbt = π

√
Ujet/β for crosses

and LRhbt = π
√
Ujet/βbt for circles; the bottom left panel shows: LRh = 51/4

√
Urms/β;

the bottom right panel shows: LRh = 51/4
√
Urms/βshear. The colour code is: β̃b = −0.5

in dark blue, β̃b = −0.4 in blue, β̃b = −0.25 in turquoise, β̃b = −0.1 in forest green,
β̃b = −0.05 in light green, β̃b = 0 in yellow, β̃b = 0.05 in orange and β̃b = 0.25 in red.

entire domain, i.e.
√

2KE. In the right panel, instead of using β as on the left, we use
βshear = β2 − β1 with βi the time-averaged zonal mean PV gradient in layer i. Both
results show a good qualitative agreement with figure 3.9. These different graphs confirm
the fact that the Rhines scale is only one possible qualitative estimation of jet spacing.

3.5 Conclusion

In this chapter, we investigated the impact of a sloping topography on a very idealised
two-layer quasi-geostrophic shallow water model with an imposed vertical shear main-
tained by thermal relaxation. This model is based on the model used in chapter 2, although
differing from it through the absence of stochastic forcing and the early introduction of
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a lower layer Rossby wave perturbation. These differences have an impact on the flow.
Simulations with stochastic forcing exhibit a lower mean value of ZPE and overall en-
ergy, as well as fewer small fluctuations. Stochastic forcing contributes to the mixing and
damps perturbations over time. It further intensifies turbulent events, causing a greater
and steeper decrease in ZPE, followed by a longer recovery period.

Topography also has a strong impact on the flow. A linear stability analysis has been
carried out to determine the conditions favouring baroclinic instability. Topography that
deepens northwards was found to be destabilising and vice-versa. This analysis was
then used to choose appropriate initial conditions for a series of nonlinear simulations
investigating the impact of topography. By running different simulations for various to-
pographies without changing the constant vertical shear, we were able study the flow’s
behaviour from the margin of stability to unstable cases exhibiting oscillations between
quiescent phases and turbulent events. Close to the margin of stability, the flow is very
steady, and only a small initial drop in energy is visible due to baroclinic instability devel-
oping. This is followed by a steady phase, where jets are more or less visible depending
on the topography. For simulations further away from the margin of stability, the first tur-
bulent events appear. The greater the topography, the more intense the turbulent events,
with high, steep drops of ZPE. Topography impacts the mean value of ZPE, which is
smaller for higher values of the topographic parameter. Jet spacing also depends on to-
pography, and is found to increase with the topographic parameter, i.e. with the effective
β in the lower layer, contrary to a naive interpretation of the Rhines scale.

Finally, we observe continuous latitudinal drifts of jets. In chapter 2, jets were also
found to drift, but they were not all moving in the same direction. Here, on the other hand,
we find jets drifting together northward or southward. Further work on jet drifting would
be an interesting addition to this study. Is the drifting direction randomly distributed?
Does the direction depend on the topography or on the PV gradient in one of the two
layers? Are drifting jets more stable (with fewer turbulent phases) than steady jets? Do
drifting jets change the period between two turbulent phases?



Chapter 4

Occurence and evolution of waves and
vortices at a front in amplitude
vacillation.

4.1 Introduction

In the 50’s and 60’s, Hide [1953], Hide [1958], Fultz et al. [1959] and Hide and Fowlis
[1965] started using rotating tanks of cylindrical geometry with the flow induced by a
lateral temperature gradient. The idea of using a temperature gradient in a rotating tank
goes back to James Thomson in 1882, who had the original idea to heat an outer ring
at the bottom of the tank, representing the equator, and to cool the surface, representing
one pole. The experiment of Hide consisted of three concentric cylinders, the outer ring
filled with hot water, the inner ring filled with cold water and in between the ring where
the circulation should take place, which he called the ‘convection chamber’. He observed
jets of different baroclinic modes emerging from the flow and analysed them. In addition
to the baroclinic modes, he observed an oscillation in the amplitude of the baroclinic
instability, which he called amplitude vacillation. Thus, the study of jets started with
the study of Hide [1958]. Following these studies, different groups have continued to
work with this setup, although, now, most of the apparatus is with hot water in the inner
cylinder, as in Hide and Mason [1970] and Bastin and Read [1997]. Amplitude vacillation
has been studied in various ways, theoretically by Lindzen et al. [1982], numerically
by Ohlsen and Hart [1989] and Randriamampianina et al. [2007] or experimentally by

75
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Buzyna et al. [1989], Larcher et al. [2005], Harlander et al. [2011] and Scolan et al.
[2014].

Investigating the baroclinic instability regime is fundamental, as baroclinic instabili-
ties are a predominant source of stirring in the oceans and in the planetary atmospheres, as
presented in Galperin et al. [2004], Maximenko et al. [2005] and Richards et al. [2006],
the small scales eddies created by baroclinic instabilities might be responsible for the
energy input to form zonal jets.

To investigate the formation of jets in planetary atmospheres, Read et al. [2007] con-
ducted experiments on the thirteen metre large Coriolis platform. Topography was used
to simulate the variation of the Coriolis force with latitude, assuming a constant variation
with latitude also known as the β-plane. Salty water was sprayed at the surface to model
vertical convection. The idea of adding a conic topography to a baroclinic experiment
goes back to Mason [1975]. This strong β-topography and the small-scale input will cre-
ate large-scale zonal structures, separated by a distance close to the Rhines scale as on
the Earth’s oceans, see Richards et al. [2006], or on planetary atmospheres, see Vasavada
and Showman [2005].

More recently, Scolan and Read [2017] have built a new experimental setup to study
baroclinic instabilities created by convection motions. They use an annulus in which
they cool a ring-shaped region near the surface close to the centre and heat a ring-shaped
region at the bottom. They obtain two turbulent convective regions near the inner and
outer boundary and a baroclinic region in the centre. Varying the rotation rate and the
differential heating allows them to study different regimes, and to observe the interactions
between convection and baroclinic instabilities.

Rodda et al. [2018] studied another kind of differentially heated rotating annulus,
using the classical configuration of Hide. They added a salt stratification to the experiment
and observed internal gravity waves emitted from large-scale baroclinic jets.

In 1972, Hart decided to use salinity instead of temperature to impose the density gra-
dient. He used two immiscible fluids to do his experiments, silicone oil and salty water,
which corresponds to the Phillips model, see Phillips [1951]. Following this approach,
Ohlsen and Hart [1989], Lovegrove et al. [2000] and Williams et al. [2005] have contin-
ued the work on large-scale phenomenon, with amplitude vacillation, but they also started
to focus on smaller-scale effects such as waves. Flór et al. [2011] and Scolan et al. [2014]
have started to study the dynamics of fronts and waves in a relatively large 2m wide rotat-
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ing tank with two miscible fluids, salt-stratified with a rigid lid, capturing various instabil-
ities, such as Kelvin-Helmholtz, Holmboe and Rossby Kelvin instabilities, and possibly,
the emission of spontaneously emitted internal gravity waves. Miscible fluids have the
advantage of allowing the opportunity to have a continuous density gradient between the
two layers. Here, we are focusing on the emergence and interaction between fronts waves
and vortices in the baroclinic unstable regime with amplitude vacillation. Can we confirm
the existence of spontaneous emitted inertia-gravity waves observed in Flór et al. [2011]
and Scolan et al. [2014], do these small waves play a role for the generation of vortices,
and how does this regime change with Rossby number? To investigate these questions, I
further processed the data acquired on fronts by Jo-Hendrick Thysen (MI student in 2014
in the MEIGE team at the LEGI, direction JB Flór), and have conducted some tests for
similar parameters to become familiar with the flow evolution and measurement proce-
dure (see table 4.1, experiments in green), as a mean to better interpret our results. To
obtain more information about this front and wave field, we employed novel approaches
in examinations of the entire flow field’s modes. However, interesting insight was further
gained by exploring the derivative of the density fields and their contours.

This chapter is structured as follows: section §4.2 presents the experimental setup and
the dimensionless parameters. Next, section §4.3 focuses on the different analyses we use
to inspect the data. We then present two experiments and analyse them in section §4.4.
Finally, we conclude with section §4.5.

4.2 Experimental setup

4.2.1 Apparatus

We use a cylindrical tank of 1.3 metre diameter and 50cm working depth, filled with 30cm
of fluid. The tank is placed on a rotating platform, which can spin at a maximum speed
of πrad s−1. To create a vertical shear between the two layers and to be able to enter the
baroclinic instability regime, we use a rigid lid spinning faster than the rotating platform
(as in Hart [1972]), which creates an inverse parabolic profile (h(r) = −Ar2, with A a
constant, r the radius and h the interface height). Figure 4.1 exhibits the apparatus of
the experiments. This profile is due to Ekman pumping induced by the rigid lid. As the
rigid lid spins faster than the rotating platform, it provokes a transport at the surface to
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Figure 4.1: Apparatus of the experiments, with the rotating tank in black, the rigid lid in
blue, the parabolic interface in green and the horizontal laser sheet which intersects it, in
red, and two cameras on top.

the outside of the tank, which pumps the fluid up in the centre, thus leading to a parabolic
profile. The shape of the profile has been theoretically studied by Berman et al. [1978]
and Bradford et al. [1981]. The entire platform is covered by a green tarpaulin to avoid
light beams reflecting in the entire laboratory and to prevent light from outside entering
the platform.

We use different methods to detect the fluid motions: particle image velocimetry (PIV)
and laser-induced fluorescence (LIF). For the PIV, we use orgasol particles of diameter
60µm, of a density of 1.02 − 1.04 kg L−1 for the lower layer and of 1.014 kg L−1 for
the upper layer. The particles are illuminated by a Coherent Verdi solid Nd : Y V O4

continuous laser, with a 532 nm wavelength and a maximum power of 5 watts. To create
a horizontal laser sheet, we use a system of mirrors which brings the laser at the top of the
platform to an oscillating mirror, which generates a vertical sheet which is subsequently
converted into a horizontal sheet via a mirror at an angle of 45 degrees. We synchronise
the oscillating mirror with the camera’s exposure time, such that one exposure covers
an entire number of oscillations. The position of the oscillating mirror is controlled by
a computer, so that the vertical position of the laser sheet in the tank can be chosen
and either a horizontal sheet via the inclined mirror is generated or a vertical sheet is
generated. Here, we only use views of the horizontal plane. To detect the particles, we
use a Dalsa 1M60 camera, with a Nikkon AF 20mm f2.8d A lens, on which we put a band
passed filter FF01-543/3-50. Section §4.3.5 presents the method of analysis used to study
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the particle measurements.

For the LIF measurements, we use rhodamine 6G with a concentration of 6.5× 10−5

kg L−1. The rhodamine is mixed into one of the two fluid layers; the upper layer in the
experiments is considered here. It fluoresces with a different wavelength when excited
with the laser light. As the lower layer does not have any dye and the laser beam intersects
the two layers, the interface between the two layers is visible from the contrast in light
intensity. Thus, the evolution of the interface between the two layers is visible from the
contrast between the layers. The second camera is also a Dalsa 1M60, with a Nikkon
AF 20mm f2.8d A lens and a band-passed filter HOYA 62mm R(25A) and allows us to
observe only the fluorescein dye. Sections §4.3.1, §4.3.2, §4.3.3 and §4.3.4 present the
analysis of the LIF measurements.

In order to correct the refractive index variations near the interface caused by the
gradient in salt-concentration, we add a specific amount of alcohol to the watery upper
layer fluid. Here, we used the relations linking density and optical indices from Daviero
et al. [2001] to match the optical indices and obtain the expected density ratio. Note that
by adding alcohol to plain water, we decrease its density and thereby increase the density
ratio.

The density and the temperature of each layer is measured using an Anton Paar density
metre DMA 35N. The optical index is measured with a Brix refractometer.

4.2.2 Dimensionless Parameters

Following former investigations (see Gula et al. [2009], Flór et al. [2011] and Scolan et al.
[2014]), we characterise the flow by the Rossby number and the Burger number. The
Rossby number characterises the effect of inertial forces compared to Coriolis forces. For
very small Rossby numbers, the flow is in geostrophic balance, whereas for Ro > 0.5, a-
geostrophic effects become important. This has consequences for the stability of the flow,
as has been shown in the stability regime diagrams in the Rossby-Burger number space
(see Flór et al. [2011]). We define the Rossby number as Ro = ∆Ω/(2Ω), with Ω the
rotation frequency of the tank, and ∆Ω the rotation frequency of the rigid lid compared
with the tank.

The Burger number is defined by Bu = g′H/f 2R2, with R = 65cm the radius of the
tank, H the height parameter defined as H = H1H2/(H1 + H2) = 15cm, f the Coriolis
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Experiment Ω ∆Ω g′ Ro Ld Bu Re d

rads−1 rads−1 cms−2 cm ×104

0.25 0.093 12.821 0.186 25.41 0.153 3.929 0.043

0.25 0.143 12.821 0.286 25.41 0.153 6.042 0.028

0.25 0.193 12.821 0.386 25.41 0.153 8.154 0.021

0.25 0.243 12.821 0.486 25.41 0.153 10.267 0.016

0.3 0.093 13.983 0.155 22.46 0.120 3.929 0.045

1 0.3 0.243 13.983 0.405 22.46 0.120 10.267 0.017

0.3 0.293 13.983 0.488 22.46 0.120 12.379 0.014

2 0.3 0.343 13.983 0.572 22.46 0.120 14.492 0.012

0.3 0.393 13.983 0.655 22.46 0.120 16.604 0.011

0.3 0.493 13.983 0.823 22.46 0.120 20.829 0.009

0.7 0.28 549.448 0.2 64.81 0.1 11.830 0.020

0.7 0.28 489.900 0.2 61.17 0.1 11.830 0.020

0.7 0.42 489.900 0.2 61.17 0.1 17.745 0.013

Table 4.1: Parameters used in the different experiments, in blue the experiments of Jo-
Hendrick Thysen, in green the experiments of Thibault Jougla.

parameter f = 2Ω, g′ = 2g(ρ1 − ρ2)/(ρ1 + ρ2) the reduced gravity with g = 9.81m
s−2 the gravity parameter, and ρ1 and ρ2 the density in, respectively, the bottom and top
layer, giving typical values of the order of g′ = 10− 15cm s−2 (see table 4.1). It indicates
the impact of stratification compared with rotation, with baroclinic instability occurring
for values of Bu < 0.1. We can write the Burger number as Bu = (Ld/R)2, with
Ld =

√
g′H/f the Rossby radius of deformation, i.e. the radius at which rotation affects

a gravitationally driven flow.

Further relevant numbers are the aspect ratio, which is γ = H/R = 15/65 ' 0.25,
the Reynolds number, which characterises inertial forces compared to viscous forces
and is equal to Re = ∆ΩR2/ν, the dissipation number d characterising the ratio of
the typical time scale linked with the forcing compared with the time of the spin-down,
d = 1/∆Ω/(H/

√
νΩ) =

√
νΩ/H∆Ω.
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Figure 4.2: Raw LIF image with a red circle around a radius r = 41cm showing where
the light intensity is caputred for experiment 1 at time 410s.

4.3 Data analysis methods

Different methods have been developed to analyse the flow. Section §4.3.1 presents an
analysis of the light intensity variation around a circle. Section §4.3.2 presents a method
detecting the contour of the front. Another method of a polar interpolation followed by a
radial average to detect is presented in section §4.3.3. Then, a method of the derivative of
the density field is presented in section §4.3.4. Finally, section §4.3.5 shows the particle
image velocimetry method to obtain the vertical vorticity of the flow.

4.3.1 Analyse around a circle

The interface between the two layers is made visible by the light intensity variation (dark
in the lower layer and lit in the upper layer). Since the front’s basic stable state is circular,
an analysis of the light intensity variation around a chosen circle was developed following
Vincze et al. [2013] and Thysen [2014]. Using this method, we detect small wavenumber
perturbations rather than large wavenumber perturbations. Here, we aim at visualising
small-scale wave perturbations. First, we choose the radius of a circle, see the red circle
in figure 4.2. In their methods, the circle is centred in the centre of the tank, which might
be shifted from the centre of the image. Next, we look at the light intensity variations
around this circle. Plotting the light intensity variations with angular position against
time, we can create a Hövmoller diagram. The evolution of the flow, the propagation
of waves, and the formation and the evolution of vortices are visible on such a diagram.
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Figure 4.3: Hövmoller diagram of the light intensity around a radius r = 41cm for
experiment 1.

Figure 4.3 shows the light intensity around a circle of a radius of r = 41cm for experiment
1 between times t = 405s and t = 410s. We can see the different waves with varying
wavelengths propagating, as well as waves emerging, e.g. around t = 409s just above
π/4, where new waves with higher wavelengths appear.

Figure 4.4 shows four different diagrams. The top panel represents the light intensity
around a chosen circle r = 41cm. In order to improve the resolution, data is interpolated
to a finer grid. We then subtract the temporal mean to emphasise the emerging waves
rather than the permanent wavenumbers. The second panel in figure 4.4 shows the fft –
calculated for each unit of time – of the light intensity around the circle considered here.

The shape of the interface is no longer circular as soon as small wavenumber per-
turbations appear, in which case large wavenumber perturbations may not be visible;
thus, small wavenumber perturbations may outside the chosen circle and thus not be visi-
ble. Therefore, instead of considering only one circle, we considered a ring and radially-
multiply the data by either a Gaussian, a constant, or a sinusoidal function. We eventually
opted for a sinusoidal function, which best captures the radial variations. It is defined
by data(r) = data(r) cos(π(r − r1)/(δr)), with r1 = 41cm the originally chosen circle
and δr = 2.5cm a small radial displacement. This method deletes the mean value and
highlights variations from the mean value. The rearranged data are visible in the third
panel in figure 4.4. As above, we compute the fft of the rearranged data. It is shown in
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Figure 4.4: First panel: Hövmoller diagram of the light intensity around a radius r =
41cm for experiment 1. Second panel: spectral diagram as a function of time, obtained
from the light intensity in the first panel. Third panel: Hövmoller diagram of the re-
arranged light intensity around a radius r = 41cm and δr = 2.5cm. Fourth panel: spectral
diagram versus time, obtained from the light intensity in the third panel.

the fourth panel of figure 4.4, it is neater and high wavenumbers are more clearly visible
than in the second panel.

4.3.2 Contour analysis

A contour detection method was developed to enable us to capture the different waves and
large-scale behaviour of the flow. By examining a light level contour, we can estimate the
different wavenumbers. To this end, we first have to capture the adequate light level.
Next, we can find the arc-length of the contour and compute the fft. Finally, we consider
the time evolution of the wavenumbers. The following paragraphs elaborate the different
steps of this method.

First, the image is cleaned to avoid capturing any spurious effect. To exclude contours
around the edge of the tank and because the dynamics take place in its centre, we create
a circular mask, whose diameter is defined by the size of the image. Next, to remove
small-scale fluctuations that we consider noise, we apply a smoothing routine, which will
be presented in the following paragraph. We then choose a light level (see below for
more details) and obtain the contour at this light level. Note that the contour is obtained
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in a grid four times finer than the original image, which gives a very precise and neat
contour, and using the contour detection algorithm developed by Dritschel and Ambaum
[1997]. Next, we compute the arc-length of the contour between contour points. Then,
we redistribute the contour points so that each point is separated from the next one by the
same arc length. Thus, for each point on the contour, we obtain its position (x, y) as a
function of arc length s. Finally, we compute the 1D ffts of x(s) and y(s). By summing
the square of the two spectra, we obtain the power spectrum of the contour shape.

Figure 4.5: Contours obtained from experiment 1, at time t = 405s for the light level
l = 32882 for four different levels of smoothing. Black line: no smoothing, blue line:
ks = 5 smoothing iterations, red line: ks = 10 smoothing iterations, green line: ks = 30
smoothing iterations. Left panel: whole contour, right panel: zoom on a specific region.

The smoothing routine is based on a diffusive process. Images can display many small
variations from one pixel to another, due, for example, to the presence of a particle, or
any other perturbation on the laser beam. In order to smooth the data, a diffusive filter
is applied of the form data(x, y) = 0.5data(x, y) + 0.25(data(x − 1, y) + data(x +

1, y)) as equally applied to the y direction. Different numbers of iterations ks of this
diffusive process were tested. Figure 4.5 exhibits contours obtained from experiment 1 at
time t = 405s for the contour level l = 32882 for different smoothing treatments. The
black line corresponds to no smoothing, the blue line to ks = 5 iterations, the red line
to ks = 10 iterations, and the green line to ks = 30 iterations. The left panel shows
the whole contour while the right panel zooms into the waves with the wavelengths of
greatest interest. We can see that the smoothing process represented by the black line
captures very small scales. These small scales are in part due to very small fluctuations
from one pixel to another. Typically, at the rim of the tank where the laser enters it,
small perturbations such as bubbles can create small waves on the contours. Conversely,
the smoothing process represented by the green line largely inhibits the waves we are
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interested in. The interesting waves are captured best using ks = 5 to ks = 10 smoothing
iterations.

Figure 4.6: Log profile of the power spectrum around a level contour equal to 32884, at
time 150s, for various smoothing iterations. Black line: no smoothing, blue line: ks =
5 iterations, red line: ks = 10 smoothing iterations, green line: ks = 30 smoothing
iterations.

Figure 4.6 shows the logarithm power spectrum of a light level contour equal to
l = 32882 at time 105s for different smoothing iterations, for experiment 1. Note that
for small wavenumbers, the results are very similar for most of the different numbers of
smoothing iterations. For higher wavenumbers however, the smoothing acts as a low-pass
filter. The more we iterate the smoothing process, the more we damp the high wavenum-
bers. In the following analyses, we chose to use ks = 10 iterations (red line). For ks
smaller than five, the contour exhibits too many fluctuations. We chose ten iterations
rather than five, as this results in a clearer profile.

To find the relevant light level which will capture the front, we plot the area covered
by this level in the image (i.e. a probability density function not scaled between 0 and
1). Figure 4.7 shows the area covered by each level. The interface is characterised by
a region of a high positive gradient of the area covered by each contour. The first high
positive gradient corresponds to the centre of the tank, while the most interesting contour
levels are found in the second and third high positive gradients.

This method yields a precise spectrum of the wavenumbers around a specific contour.
However, as the contour’s size changes with time, so too do the wavenumbers. This
method is, therefore, used mainly for single images rather than time evolutions.
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Figure 4.7: Area covered by each light level compared with light intensity levels. The
black line exhibits the time averaged area covered by each level over 9000 images and the
grey regions exhibit the time averaged area minus the area covered by each level variance
over 9000 images.

4.3.3 Radially averaged analysis

Using light intensity around a circle does not capture waves outside the circle, so if
we have small wavenumber perturbations, a lot of information may be missed using
this approach. With the contour method, we obtain a precise contour for a single im-
age. As stated above, however, the variation in contour length over time makes it im-
possible to simultaneously follow the time evolution. We developed another method
based on radial integration. First, we smooth the image to delete the small light aber-
rations, as we did in the contour method, before interpolating the image to polar coordi-
nates. We then radially integrate the light intensity by applying the following function:∫ R
r=0

data(r, θ)rdr/
∫ R
r=0

rdr. We can apply this function by assuming that waves mainly
propagate azimuthally, not radially. The left panel in figure 4.8 displays the signal ob-
tained in the first experiments after applying the routine between times t = 350s and
t = 450s. Next, we apply a 2D fft to the signal which depends on θ and time and obtain
an array with frequencies and azimuthal wavenumbers.

The right panel in figure 4.8 exhibits a phase diagram with azimuthal wavenumbers
on the abscissa and frequencies on the ordinates. We can see a clear pattern of several
linear profiles. The blue line corresponds to the dispersion relation of surface gravity
waves, linearly varying as

√
g′h. The two dashed lines are a large estimation of the error

on the computation of the dispersion relation. The dispersion relation of inertia-gravity
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Figure 4.8: Left panel: time evolution of the radially-averaged azimuthal light intensity.
Right panel: logarithm of the phase diagram for frequency versus azimuthal wavenumber.

waves is ω2 = (f 2k2 + N2(l2 + m2))/(k2 + l2 + m2) with the limit frequencies N and
f . While the vertical and radial wavenumbers (k and l) are not known, we expect the
slope of the dispersion relation to be lower for inertia-gravity waves, and indeed this is
consistent with the observed signal (red area in figure 4.8). This indicates the presence of
inertia-gravity waves that propagate between half and a quarter of the speed of the disk.
The origin of the waves could be Kelvin-Helmholtz or Holmboe, as well as spontaneously
emitted inertial-gravity waves as was also confirmed by Scolan et al. [2014], who showed
the waves in space set by Richardson – wave number. Note that the less steep dashed
blue line also corresponds to the rotation of the rigid lid. To find the mean radius where
these patterns are observed, we computed the mean radius over a contour obtained from
the contour method. Although it is biased by the choice of the light intensity level, it does
give a first approximation of the localisation of these waves.

4.3.4 Density derivative

By subtracting two consecutive LIF images, we obtain information about the temporal
evolution of the density (as the density can be directly related to light intensity) and on
the divergence of the density times the velocity by mass conservation. To improve the
signal, we apply the same diffusive smoothing process after the subtraction. From this
signal, we apply a two-dimensional Fourier transform. To obtain the power spectrum,
we average the power (squared amplitude) over concentric shells in wavenumber space,
centered on m =

√
k2x + k2y = constant. In this way, we capture both the wavelength in
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Figure 4.9: Top panel: subtraction of two images for time t = 405s on the left panel and
t = 600s on the right panel. Bottom panel: log10 of the power spectrum versus log10 of
wavenumbers m.

the direction of propagation as well as the width of the waves in the orthogonal direction.
Figure 4.9 shows this method applied at two different times: at t = 405s on the top left
panel and at t = 600s on the top right panel. The bottom panel shows the power spectrum
versus the log10 of wavenumbers. Waves are clearly visible on the top left panel, but
absent or very weak at time t = 600s. This difference in wave activity matches the power
spectrum variations between these two times.

This method focuses on the derivative of the density with time. We tried different
derivative schemes by subtracting one image from the consecutive image or using order
three and five schemes. Figure 4.10 shows the signal for two different derivative schemes.
The left panel shows the first order derivative scheme (f(t) − f(t − δt))/δt, while the
right panel shows the fifth order derivative scheme (2(f(t + δt) − f(t − δt)) + f(t +

2δt)− f(t− 2δt))/8δt. The fifth order derivative scheme tends to smooth the signal over
time and, diminish some waves that could be of interest to our study. We will, therefore,
use the first order derivative scheme in this study.
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Figure 4.10: Left panel: image after applying a first order derivative temporal scheme.
Right panel: image after applying a fifth order derivative temporal scheme, both at time
t = 700s.

4.3.5 Particle image velocimetry

To analyse the particle images, we use the PIV method with the software UVmat devel-
oped with Matlab by Joël Sommeria. From the particle images, we obtain the velocity
field. This then allows us to extract information about the vorticity and divergence of the
flow field. The PIV is computed between images separated by a time step, which is here
0.2 seconds.

4.4 Results

In this section, we analyse two experiments which have the same parameters except for
the Rossby number, which is equal to Ro = 0.405 for experiment 1 and Ro = 0.572

for experiment 2. Different phenomena are visible in the two experiments: whereas ex-
periment 1 exhibits baroclinic vortices preceded by small waves, experiment 2 reveals
large-scale barotropic vortices emerging from the flow. We look at the impact of small
waves on the formation of vortices, at the different ways in which vortices form in the two
experiments, the typical recovery period, mixing, and at the overall impact of the Rossby
number on amplitude vacillations. Section §4.4.1 presents the evolution of the flow in
experiment 1 and section §4.4.2 presents the evolution of the flow in experiment 2.

Here, since the mean flow moves anti-clockwise, upstream and downstream mean in a
clockwise and anti-clockwise direction, respectively. Positions are characterised by their
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angle in a classic trigonometry reference, with the centre located at the centre of the tank,
as in figure 4.2.

4.4.1 Experiment 1

Figure 4.11: Power spectrum fluctuations of experiment 1, obtained using the density
derivative method, between times t = 100s and t = 900s, with azimuthal wavenumber in
ordinates and time in abscissa.

Experiment 1 has been conducted over 1000s. It has a Burger number of Bu = 0.120

and a Rossby number of Ro = 0.405. We start recording when the flow is already in
solid body rotation. Figure 4.11 shows the power spectrum fluctuations between times
t = 100s and t = 900s, with azimuthal wavenumbers along the ordinates and time along
the abscissa. The power spectrum fluctuations are obtained from the density derivative
method presented in section §4.3.4. Until time t = 300s, the flow is quite steady, with
only a small number of visible perturbations. Between times t = 300s and t = 520s,
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many azimuthal wavenumbers are excited. First, we will present the main characteristics
of the flow during this period. Next, we will focus on the formation and evolution of a
dipole. Finally, we present the main characteristics of the flow during the recovery phase,
between t = 700s to t = 820s.
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Figure 4.12 shows a Hövmoller diagram of the power spectrum fluctuations between ap-
proximately t = 400s and t = 500s, in the bottom panel and ten snapshots of the flow
using the density derivative method. These snapshots allow us to follow the evolution of
the flow and to see wave activity and vortex precursors. As seen in the central diagram,
a large number of wavenumbers are excited during the first twenty seconds, followed by
a more quiescent phase between approximately t = 420s and t = 445s. Next, a new
active phase appears between approximately t = 445 and t = 460s, followed by another
quiescent phase between t = 460s and t = 480s, which in turn precedes another active
phase.

To enable us to follow the flow evolution, a black dot gives a point of reference in the
top and middle panels in figure 4.12. The region marked by the black dot is particularly
interesting as it is from this region that the first vortex will form. A clear front is visible
at t = 400s at π/3, and at t = 410s at π/2. Small waves upstream of this front are visible
(between π/3 and π/6 at t = 400s). To study the flow in between these times, figure 4.13
shows different analyses performed at t = 405s: the top left panel shows the LIF image,
the top right panel shows an image obtained from the density derivative method, the
bottom left panel shows the particle image, and the bottom right panel shows the vertical
vorticity field. Around π/2, a sharp front is visible, with small-scale waves upstream.
Around the angle π/4, the vertical vorticity field exhibits a larger-scale perturbation. This
is the seed of the future vortex. Upstream of this large-scale perturbation, small-scale
waves are visible. Small waves upstream of a vorticity anomaly are a recurring pattern in
this experiment.

At t = 410s, azimuthal wavenumber three is excited, giving the flow a droplet shape
with a pointed top and small waves on its flanks. Additional mixing occurs, characterised
by a continuous red spot (region Rr in figure 4.12) at an angle between π/3 and π/2

(other parts of the flow are barely visible at this time). This active region is less visible at
t = 420s and t = 430s, before being visible again between t = 440s and t = 460s, again
barely visible between t = 470s and t = 480s, before finally reappearing at t = 490s.
These oscillations match the oscillations visible in the central diagram. The fluctuations
of the power spectrum are qualitatively comparable between times t = 400 − 420s,
t = 445 − 460s, and t = 480 − 500s, where we have a high wave activity. Similarly,
quiescent phases are also qualitatively comparable. It is unclear if these oscillations be-
tween quiescent and active phases are due to oscillations in wave activity or the rotation
of the mean flow (and so the rotation of active regions) linked to the attenuation of light
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on one side of the tank. The signal is clearer at the top than the bottom of the image due
to the unavoidable light attenuation caused by rhodamine (the laser beam enters at the top
of the image). But we can at least say that quiescent and active phases are correlated with
the mean flow.

Figure 4.13: Top left panel: LIF image. Top right panel: image obtained with the deriva-
tive method. Bottom left panel: particle image. Bottom right panel: vertical vorticity
field. All these images are taken at time t = 405s.

At t = 490s, a peculiar pattern is visible between π/3 and π/2: two lines of waves are
visible for the same azimuthal position. This phenomenon is also vaguely visible at other
times, such as t = 450s or t = 470s. At t = 490s, the outside part exhibits more wave
patterns than the inner side, which shows an almost continuous line. These two lines are
not two separated and unrelated lines but rather the contour of a common region. This
contour encloses a region Rc where mixing between the two layers has occurred. The
interface has a certain thickness characterised by a transition in density. Jumps in density
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occur at the limits of the interface and are recognised as fronts. This region is of interest
to us as its evolution will lead to the formation of the first vortex. In other words, the
vortex is formed from regions of high wave activity. The following section will present
its appearance and its evolution.

Baroclinic vortices

Figure 4.15 displays in the top and middle panels ten snapshots obtained using the density
derivative method between times t = 500s and t = 600s, and a Hövmoller diagram in the
bottom panel showing the time evolution of azimuthal wavenumbers obtained from the
density derivative method.

In the previous section, we introduced a region Rc defined by a contour visible at time
t = 490s. This region is still visible at time t = 500s, and barely visible but present at
time t = 510s. Later, at time t = 520s, a vortex starts to form between −π/3 and 0 that
it is characterised by the intrusion of the region Rc in the lower layer.

t = 520s t = 530s t = 540s t = 550s t = 560s

Figure 4.14: Top panel: particle images. Bottom panel: vertical vorticity field.
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Figure 4.14 shows particle images on the top panels and the vertical vorticity field
on the bottom panels for five different times during the formation of a vortex. At time
t = 520s, a vortex emerges from the front. It is visible on the vorticity image at an
angle of −π/6. Later, the vortex develops, as seen over the subsequent times. When
the vortex’s size increases, it centres and slows down, since the lower layer has a lower
velocity than the front. On the vorticity images, we can see the development of the vortex
and the emergence of a second vortex close to the front. While the first vortex is a cyclone
with a positive vorticity (yellow spot), the second one is an anti-cyclone with a negative
vorticity (blue spot). These two vortices, which form a dipole, centre and dissipate (see
Thysen [2014]).

The vortices come from the front of the flow, from a region where mixing occurred
and then moved toward the centre. The vortex is visible on the vorticity field and particle
images, but barely visible on the LIF images. Since the dye is in the upper layer and the
particles are everywhere, this means that there are no, or only few, intrusions from the
top into the bottom layer. Vortices, then, only add to the large-scale mixing to a limited
extent, as we will see in experiment 2 (see section §4.4.2). Moreover, vortices are only
visible in the lower layer. Additionally, the radius of each vortex is comparable to the
Rossby deformation radius defined by Ld =

√
g′H1/f . We therefore have vortices with

components in the barotropic and baroclinic modes in this experiment.

Figure 4.16: Contours at time t = 550s, for nine contours between l = 32840 and
l = 32880, separated from one another by five light levels.

Figure 4.16 shows different contour levels at time t = 550s. We can see on the
upper part that the contours are more spread than in the other parts. This upper region
corresponds to the area where the anticyclones settle, i.e., vortices contribute to a small
extent to the mixing between the two layers.
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Recovery Phase

Later, around time t = 650s, another cyclone appears, soon followed by another vortex.
The two form a dipole, centre and then dissipate with the flow.

The recovery phase begins when the second dipole starts to centre. During this phase,
the vortices first centre and the small waves on the front disappear, before the vortices
slowly dissipate with the flow. After that, small waves start reappearing. This recovery
phase starts at around t = 700s and lasts until t = 820s, when a new vortex forms and the
process repeats, as being part of the process of amplitude vacillation.

4.4.2 Experiment 2

Figure 4.17: Power spectrum fluctuations of experiment 2, obtained using the density
derivative method, between times t = 100s and t = 900s, with azimuthal wavenumber in
the ordinates and time in the abscissa.
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Experiment 2 was conducted over 1000s. It has the same Burger number as exper-
iment 1, Bu = 0.120, and a Rossby number of Ro = 0.572. As in experiment 1, the
records begin when the flow starts to be in solid body rotation.

Figure 4.17 illustrates the power spectrum fluctuations between times t = 100s and
t = 900s obtained using the density derivative method. A first vortex emerges around
time t = 180s and centres around time t = 300s. A quiescent phase follows where the
vortex dissipates into the flow. The merging of the flow between times t = 300s and
t = 450s contributes to the mixing. This mixing is responsible for a flattening of the
interface between the two layers. It is characterised by a shrinking of the front at this
height, visible around time t = 450s. Then, between t = 450s and t = 650s, the vertical
shear imposed by the rigid lid again increases the slope of the interface. At time t = 650s,
a second vortex starts to form until its final centring around time t = 800s. As before, the
interface is flatter and slowly recovers its vertical shear.

Although the power spectrum fluctuations look qualitatively comparable to experi-
ment 1, they are different. First, positive fluctuations appear while the vortex is forming
rather than appearing as a precursor of the vortex. Fluctuations present at different scales
in experiment 2 are a signature of mixing, whereas in experiment 1, they are a signature of
waves propagating. Vortices in experiment 2 arise from small wavenumber perturbations;
typically, wavenumber three in this case. Figure 4.18 shows ten images of the flow using
the density derivative method, between times t = 200s and t = 300s. The bottom panel
shows the power spectrum fluctuations between the same times obtained from the density
derivative method. At time t = 200s, the excitation of wavenumber three is clearly visi-
ble, with one of the corners already more dynamic (the upper corner, calledC1), and small
waves forming upstream on the flank of the front. At time t = 220s, the breaking of cor-
ner C1 is visible, forming a vortex. This vortex is visible in the subsequent times, where
it further soon centres. In contrast to experiment 1, the vortex radius is about two times
larger and completely dominates the entire flow. This suggests a barotropic vortex that
extends uniformly over the entire depth and mixes the fluid at the interface. The radius of
the vortex is comparable to the Rossby radius of deformation defined by Ld =

√
g′H/f

with H = H1 +H2.

Figure 4.19 shows three contours for the same light intensity at three different times.
The blue line shows the contour when the vortex has finished to dissipate into the flow,
at time t = 400s, when the interface is at its flattest. The other two contours show the
flow at time t = 500s (green line) and t = 600s (red line). We can see the contour area
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increasing with time, corresponding to the recovery period of the flow, when the vertical
shear imposed by the rigid lid sharpens the interface.

Figure 4.19: Contours for a light intensity of l = 32880 at times t = 400s, t = 500s and
t = 600s, for experiment 2.

In experiment 2, then, we have barotropic vortices which emerge from small wavenum-
ber perturbations and contribute to the mixing between the two layers. Small-scale waves
are visible in the bottom panel in figure 4.18, but they are not predominant as in experi-
ment 1.

4.5 Conclusion

In this chapter, we have analysed two experiments conducted by JH Thysen in 2014 to
understand the formation of waves and vortices. To do so, different analysis methods
have been used: a method to find the contour and obtain the wavenumbers from it, a
method based on the interpolation of the signal into polar coordinates followed by a radial
integration yielding a phase diagram, and a method based on the derivative of the density
field, which reveals the waves and PIV using the software UVmat.

Using these methods, we have been able to analyse the two experiments. While both
have the same Burger number, they differ in their Rossby numbers and behaviours. In
both cases, amplitude vacillations are present, vortices emerge from the flow, before cen-
tring, merging into the mean flow and thus stabilising it. This is followed by the formation
of a new vortex, and the process repeats. However, amplitude vacillations are strongly dif-
ferent for the two Rossby numbers. In experiment 1 (Ro = 0.405) baroclinic dipoles form
following small inertial-gravity wave activity. Vortex radii are comparable to the Rossby
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radius of deformation using the lower layer height H1. These vortices contribute to the
mixing between the two layers only to a limited extent. In experiment 2, on the other hand
(Ro = 0.572), only barotropic vortices form. They play an important role in the mixing
between the two layers. Their radius is comparable to the Rossby deformation radius
defined with the total height H = H1 + H2. Carton [2010] presented different vortices:
a baroclinic vortex present in the thermocline and a barotropic vortex which extends fur-
ther down. Their radii also vary depending on their vertical extension. Additionally, the
recovery period of the amplitude vacillation differs between the two experiments, being
around 120s for experiment 1 and around 200s for experiment 2. It follows that amplitude
vacillations strongly depend on Rossby number: the recovery period is much longer and
the mixing is more important for higher Rossby numbers. Furthermore, the nature of the
resulting vortices is different; baroclinic dipoles versus barotropic vortices, and their ori-
gins also differ considerably, baroclinic vortices emerging from high wavenumber activity
while barotropic vortices emerge from small wavenumber perturbations.

More research on the small waves’ nature and the way energy is transferred from these
waves to vortices is needed. Hilbert transform could be applied to the LIF measurements,
though as the information is very localised in space, it has a broad range in the spectral
space, making it potentially difficult to draw clear conclusions from results. Experiments
with Rossby numbers between Ro = 0.405 and Ro = 0.572 for the same Burger num-
ber should be conducted to see if the transition between baroclinic dipoles to barotropic
vortices is continuous or more abrupt, and to determine for which Rossby number it takes
place.

To obtain more general information, we have developed a new optical method to de-
tect the height of the entire profile. We plan to use this method on a two-layer immiscible
fluids configuration. This apparatus and method will offer precise data over a long pe-
riod and could reveal unknown behaviours. The following chapter presents this optical
method.



Chapter 5

An optical method for measuring the
interface height of two-layer immiscible
fluids.

5.1 Introduction

A precise method able to detect small perturbations and large-scale dynamics is essen-
tial to analyse laboratory experiments. Currently, various methods are used to detect the
two-dimensional motion of a fluid surface, such as synthetic Schlieren, Altimetry Im-
age Velocimetry (AIV), Particle Image Velocimetry (PIV), Laser-Induced Fluorescence
(LIF), polarimetry and dye intensity variations. Cox [1958] developed a method to ob-
tain a one-dimensional slope using collimated light beams. Jähne et al. [1994], Zhang
et al. [1996] extended his work to a two-dimensional slope. Dabiri and Gharib [2001]
developed a non-intrusive colour-based method to detect the perturbation of a free sur-
face, which combines the PIV method and optical laws of reflection. Rhines et al. [2007]
developed another non-intrusive method using the reflection of a black and white pat-
tern with the PIV method to detect the interface perturbations. Afanasyev et al. [2009]
combined the method developed by Dabiri and Gharib [2001] and Rhines et al. [2007] to
detect the elevation of a free surface in a rotating tank. For this method, a colour pattern
is used that consists of red, green and blue gradients, are all shifted one from the other
by 2π/3, to give a unique colour to each point. The free surface of a rotating tank has
a parabolic shape, plus perturbations due to, for example, forcing or instabilities. This
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pattern is projected at the surface of the rotating fluid, which has a parabolic shape and is
detected by a camera placed above near the centre of the rotation axes. By comparing the
observed colour profile (with perturbations) with the initial profile (purely parabolic), the
inclination of the free surface is obtained and the variation in height deduced. Supposing
a quasi-geostrophic flow, the velocity field in the layer can be derived. By using a high
definition image and camera, with this method one is able to obtain a very high spatial
resolution of the slope of the free surface.

Another optical method for different layers of fluids is based on the detection of per-
turbations of the profile compared with an initial profile. This is the pseudo-Schlieren
method. A pattern of random dots placed below the fluid at the bottom of the tank is
deformed due to perturbations of the fluid surface. Using a digital image correlation al-
gorithm the velocity field can then be obtained. This method is based on the pioneering
work of Kurata et al. [1990], next applied to geophysical problems by Sutherland et al.
[1999], Dalziel et al. [2000], and finally developed by Moisy et al. [2009]. However,
this method can only be applied to flows with weak deformations and weak slopes of the
surface of the fluid.

The aim of the research presented in this chapter is to find the height and slope of the
interface between two layers of fluid in a rotating tank with a rigid rotating lid on top.
As seen in chapter 4, the LIF and PIV methods have limitations, such as the difficulty
of capturing the entire profile of the interface due to the concentration of particles at the
interface. Information about the slope and height can be acquired for the surface of a
single layer of fluid with the synthetic Schlieren method provided that these slopes are
small. We are, however, interested in flows with slopes bigger than those tolerated by
this method. In view of safety constraints at the LEGI we have chosen to use silicone
oil instead of limonene. This is because limonene is more flammable, but this means we
cannot use the polarimetry method. Our method is inspired by the AIV method which
gives very high spatial resolution slopes of the free surface, using reflection laws. Here,
we want to investigate the interface between two layers of fluid of different refraction
index, so that we can use the refraction laws to calculate the motion of the interface (see
Afanasyev et al. [2009]). Thus, we have developed a method to detect the height and the
slope of an interface between two layers of fluids with a rigid lid at the surface.

In section §5.2 we describe the apparatus. Next, equations to find the height and the
slope of the interface are presented in section §5.3. Section §5.4 details the numerical
implementation. Then, the different configurations used to test the code are discussed
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in section §5.5. Finally, section §5.6 concludes this chapter and examines the different
possibilities of improvement for this method.

5.2 Experimental setup

5.2.1 Apparatus

Let us first introduce the flow and experimental setup. The experimental setup is similar
to the one presented in chapter 2. Instead of two fluid layers with different salt content to
set the density difference, we use water for the lower layer and silicon oil for the upper
layer. The relevant properties of the two fluids (density, viscosity and refractive index) are
given in table 5.1. Also included are the properties of 1 centiStockes Silicon oil, which is
more interesting because of its viscosity being equivalent to that of water. In view of the
numerous safety precautions related to fast evaporation and an explosive nature, we focus
here on the safer 2 centiStockes Silicon oil.

Fluid ρ ν n
kg L−1 cSt=10−6m2 s−1

Water 1 1 1
Brine 1.2 1.383

Ethanol 95% 0.78 1.41
Silicon oil 1cSt 0.816 1 1.3874
Silicon oil 2cSt 0.872 2 1.3904

Table 5.1: Density ρ, cinematic viscosity ν and optical index n of fluids.

If the lower layer is plain water, we have g′ = 134cm s−2. From the value of the
reduced gravity, we can compute the Burger number, assuming H = 15cm, R = 65cm
and Ω = 0.7rad s−1, we have Bu = 0.24. Silicon oil is immiscible with water and
also with other fluids that are miscible with water, such as alcohol or salty water. The
density of the lower layer can be increased or decreased by adding salt or alcohol to water,
respectively. Brine density is around ρ = 1.20kg L−1, so g′ = 2g(ρ2 − ρ1)/(ρ2 + ρ1) =

310cm s−2. With a solution of ethanol of 95%, the lower layer has a density of ρ = 0.78kg
m−3, by mixing 95% alcohol with plain water, we can reach g′ = 10cm s−2 (note that
adding salt or alcohol also changes the optical index of the fluid). The rotation speed can
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vary from 0.1rad s−1 to π rad s−1 for a constant mean height of H = 15cm, the possible
range of Burger numbers for this flow, using background rotation and density, goes from
Bu = 0.0009 to Bu = 27.5, so that a wide range of Burger numbers can be investigated.

Immiscible fluids have several advantages but also some dynamical inconveniences.
Since the fluids do not mix, an experiment may last forever. For a typical rotation of
Ω = 0.7rad s−1, we can model a period of a year in a bit less than an hour. We could
therefore simulate the evolution of a front for a period of nine years in a single day.
PV is conserved and results may therefore be compared with two-layer shallow-water
simulations, such as the Phillips model from Phillips [1951]. Mixing, however, is absent,
so waves and instabilities due to a continuous variation of density will not be present or
will exhibit a different behaviour.

As mentioned, we measure the refraction of light rays passing through the interface.
To detect the different rays a colour pattern is used, illuminated by LEDs from below. A
camera is placed at the top of the tank, at a height of Hc = 210cm from the bottom of
the tank. Figure 5.2 shows a two-dimensional sketch of the apparatus. Because of the
different refraction indices of the two fluids, interface perturbation will result in a change
of direction of a light beam. Because of the colour pattern, each light ray has a different
colour. With the laws of refractive optics one can then calculate the appropriate variation
in interface height for each light beam. We implemented a virtual 30cm diameter tank,
with H1 = 3.5cm and H2 = 2.8cm, with the camera placed at a height of Hc = 210cm
from the bottom of the tank. The lower layer fluid has an optical index of n1 = 1.33 and
the upper layer has an optical index of n2 = 1.3787.

Since this method allows us to measure the variations in height, one reference height,
somewhere in the tank, for a ray of reference is also needed. A point on the edge of the
tank would not be useful, for example, as no ray goes from the bottom of the tank to the
edge up to the camera. So, a probe or any other method to obtain the height at one point
in the field of view of the camera has to be used.

5.2.2 Colour profile

We use a colour profile based on that used by Afanasyev et al. [2009]. It is an rgb colour
profile, with the intensity of each of the three colours, red, green and blue, linearly going
from 0 to 1 with a rotating shift of 2π/3 between each of them. Our profile differs from
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the one chosen by Afanasyev et al. [2009], as each colour varies linearly in our case and
not in theirs. We chose a linear profile as it simplifies the following equations, since the
colour gradient can directly be related to the pixel gradient.

Figure 5.1: RGB colour profile.

5.3 Height and slope equations

In the following section, index 3 refers to the air, index 2 refers to the upper layer, index
1 refers to the lower layer, angles θ are computed between rays and the vertical vector ~z,
angles β are computed between rays and the normal at the middle interface, the symbol˜
is used for variables in the middle interface incident plane.

We consider a light ray coming from the colour profile at the point Mi. In the ab-
sence of fluid, this ray arrives at the camera with an angle θ3 defined by cos(θ3) =

Hc/
√
x2i + y2i +H2

c with Hc representing the camera height. Mi can be written in the
(x, y, z) coordinate system as Mi = (xi, yi, 0), with x and y the coordinates of the colour
profile and z the vertical coordinate. Figure 5.2 shows a two-dimensional sketch of a ray
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Figure 5.2: Two-dimensional sketch of the experiment, with the trajectory of a ray from
the bottom of the tank up to the camera. The camera is placed at the top of the tank. A
colour pattern is placed underneath, illuminated by LEDs. The grey wavy line represents
the interface between the two layers. The blue line shows the trajectory of the ray in the
air, the red one in the upper layer, and the green one in the lower layer.

trajectory between the colour pattern underneath the tank up to the camera at the top of
the tank.

We consider an inverse ray trajectory coming from the camera with the same an-
gle θ3. Note that each light ray is marked by colour. By applying Snell-Descartes law,
n3 sin(θ3) = n2 sin(θ2), with n3 and n2 the optical indices of the air and the upper layer,
respectively, on the top-rigid interface, we know the angle θ2 of the ray to this plane. The
ray encounters the top interface at the positionM2 = (x2, y2, H), withH the height of the
top interface, and we call ~I2 the refracted vector, defined by the position M2 and the angle
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Figure 5.3: Sketch of an inverse light trajectory in the two layers. The solid red line
is the light trajectory in the upper layer, with its director vector ~I1, the dashed red line
corresponds to the trajectory light would have if the optical indices of the two layers were
similar. Its length is l. The green line corresponds to the light trajectory in the lower-layer,
with director vector ~I1, and length h̃. The grey plane is normal to the interface, with ~n1

its normal vector.

θ2. This ray intersects the interface at the point M1 = (x1, y1, h), which is unknown.
Next, the ray encounters the colour profile, at the point M0 = (x0, y0, 0). We know the
position of this point from its colour (as each pixel has a unique colour) and by converting
the colour position to a pixel position and next to a position in centimetres. The incident
plane P1 of the middle interface is defined by the incident vector ~I2 and point M0. The
different points and vectors are shown in figure 5.3, representing the inverse trajectory of
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a light ray in the two layers of fluids.

The goal is to find the height and slope in x and y of the middle interface. We
can apply Snell-Descartes law at this interface, at point M1 of the incident plane P1,
n2 sin(β2) = n1 sin(β1). β2 and β1 (see figure 5.2) are respectively the incident and re-
fracted angles compare to the normal at the surface ~n1 and n1 the optical index of the
lower layer. We define a two-dimensional orthonormal coordinate system (~̃r, ~̃z) in the in-
cident plane, defined by the vectors ~̃r and ~̃z, with ~̃r = (xp−x0, yp−y0, 0)/

√
(xp − x0)2 + (yp − y0)2,

where Mp = (xp, yp, 0) is the point at the intersection between the colour profile, the line
defined by the vector ~I2 and the point M2. In other words, the point Mp is the point where
the ray should go in case n1 = n2. ~̃z is a vector perpendicular to ~̃r in the incident plane.
Note that if the incident planes of the interface and the lid at the surface are similar, we
have ~̃r = ~r, the radial vector ~r = (xp − x2, yp − y2, 0)/

√
(xp − x2)2 + (yp − y2)2, and

~̃z = ~z the vertical vector ~z = (0, 0, 1). β2 = θ̃2 − s̃, with θ̃2 the angle between the
vector ~I2 and the vector ~̃z, and s̃ the slope of the interface in the incident plane, defined
by tan(s̃) = dh̃/dr̃, with h̃ the height of the interface in the incident plane, i.e. minimum
distance between the point (x1, y1, h1) and the lineM0Mp. Similarly, we have β1 = θ̃1−s̃,
with θ̃1 the angle between the refracted ray directed by the vector ~I1 and the vector ~̃z.

We can simplify this system to a two-dimensional problem. We call M̃2 = (r̃2, 0) and
M̃1 = (r̃1, 0) the projections of the point M2 and M1 on the line M0Mp, expressed in the
coordinate system (~̃r, ~̃z). Similarly, we can write the point M0 and Mp in this coordinate
system: M̃0 = (r̃0, 0) and M̃p = (r̃p, 0).

We define d as the distance between the points r̃p and r̃0, and we can link d with θ̃2,
θ̃1 and h̃ using these relations:

tan(θ̃2) =
r̃p − r̃2
H̃

=
r̃1 − r̃2
H̃ − h̃

tan(θ̃1) =
r̃0 − r̃1
h̃

d = r̃p − r̃0


d = h̃(tan(θ̃2)− tan(θ̃1)) (5.1)

with

θ̃2 = arcsin(
~I2.~̃r∥∥∥~̃r∥∥∥). (5.2)
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We can relate the projected height h̃ to h by the relation:

cos(θ̃2) =
h̃

l

cos(θ2) =
h

l

 h = h̃
cos(θ2)

cos(θ̃2)
(5.3)

with l the length between the point M1 = (x1, y1, h) and the point Mp.

As β2 = θ̃2 + s and β1 = θ̃1 + s, using Snell-Descartes law, we obtain:

θ̃1 = arcsin(n2/n1 sin(θ̃2 − s)) + s. (5.4)

So, we get

h̃ =
d

tan(θ̃2)− tan(arcsin(n2/n1 sin(θ̃2 − s)) + s)
. (5.5)

Using the relation of the tangent tan(a + b) = tan a+tan b
1−tan a tan b , we can simplify the equation

5.5 to:

n2(sin(θ̃2)− cos(θ̃2) tan(s)) + tan(s)q(s)

q(s)− tan(s)(n2(sin(θ̃2)− cos(θ̃2) tan(s)))
− tan(θ̃2) +

d

h̃
= 0

q(s) =

√
n2
1(1 + tan(s)2)− n2

2(sin(θ̃2)− cos(θ̃2) tan(s))2

tan(s) =
dh̃

dr̃
= h̃′.

(5.6)

From equations 5.6, we know the slope in the incident plane P1. We can write the
normal vector ~n1 = (n1x, n1y, n1z) to the interface in terms of the obtained slope in the
coordinate system (x, y, z). And from the normal vector, we have the slope in x and y
directions

~n1 =
~̃r + (0, 0, h̃′)√

~̃r2 + h̃′2

∂h

∂x
=
n1z

n1x

∂h

∂y
=
n1z

n1y

(5.7)
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5.4 Numerical implementation

Equations 5.6 represent a non-linear first order differential equation, for which an initial
condition is needed to solve it. We will use a reference height of the interface at one point
(xi, yi). Knowing the height of the interface at this point, we can find the height and the
slope of the entire flow.

The algorithm to find the slope in x and y from the height is the following. We
compute the distance d and the angle θ̃2 from the relations 5.1 and 5.2. From equation
5.3, we obtain a relation between the height h in the coordinate system (x, y, z) and the
projected height h̃ in the coordinate system (r̃, z̃). To find the slope of the interface from
the height at this given point, we need to solve the non-linear differential equation 5.6.
First, by iterating the slope angle s, defined by h̃ = tan(s), from 0 to 2π, with a chosen
increment kh̃′ , we find in between the increments kh̃′ the function

f(h̃′) =
n2(sin(θ̃2)− cos(θ̃2) tan(s)) + tan(s)q(s)

q(s)− tan(s)(n2(sin(θ̃2)− cos(θ̃2) tan(s)))
− tan(θ̃2) +

d

h̃

that changes sign. Next, we apply the Newton-Raphson method to find the root of this
function.

Thus, we have the slope h̃′ of the projected interface in the incident plane P2 at this
point. Thanks to the relations 5.7 we can obtain the normal vector ~n1 and the slope in x
and y directions. Finally, we obtain the height h.

We consider a circular tank, so we have adapted the code to be able to compute the
height for this geometry. Two different ways of computing the height of the interface are
implemented. Sketches in figure 5.4 illustrate these two ways. In both cases, we know the
height at the point (xi, yi), which is represented by a red cross on the sketches. We focus
first on the sketch in the left panel. From this point, we find the height of the next point in
the x direction (xi+1, yi) by applying a predictor-corrector method. This process can be
iterated until the end of the domain; it is represented by the big turquoise arrow in the left
panel. Next, we repeat for x positions smaller than xi – the green arrow. Similarly, for
each x position, the same algorithm can be applied for y higher than yi (orange arrows)
and smaller than yi (coral arrows). However, with this procedure, we miss two areas
which are delimited by dashed lines. For these areas, we compute for each y value the
missing x values. We call the height obtained from this procedure hxy. Similarly, the
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same procedure can be applied though we start by computing the height for all y values
for xi and next for each y value for all x values, we obtain a height called hyx. The
right panel in figure 5.4 illustrates this procedure. In order to improve the result, the final
height hc is taken as the average between these two heights. Section §5.5.3 shows the
error difference obtained using hxy, hyx and ht.

Figure 5.4: Two different ways to obtain the height are sketched here, hxy on the left
panel and hyx on the right panel. Turquoise arrows are directed rightward, green arrows
are directed leftward, orange arrows are directed upward and coral arrows are directed
downward.

5.5 Numerical validation

To verify the code, we numerically build a two-layer profile with an imposed interface.
Two setups have been used to test the code. The first one is a small virtual tank of a
30cm diameter, with 6.3cm of water filled with two layers of immiscible fluids. This con-
figuration allows the efficiency of the code for capturing small perturbations to become
apparent. The second configuration is similar to the tank used in chapter 4. We use a
virtual tank of a diameter of 1.30m filled with two layers of immiscible fluids, each 15cm

deep. For the two setups, we have a tank with a colour profile at the bottom, two layers
of fluids in the tank, a rigid lid on the top and a camera at a height of Hc from the bottom
of the tank. The lower layer fluid has an optical index of n1 = 1.3787 and the upper layer
has an optical index of 1.33. Section §5.5.1 shows the difference between the two con-
figurations. Section §5.5.2 shows the difference for one configuration between different
height profiles. Finally, section §5.5.3 shows the impact on the height of different ways
of computing the height.
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5.5.1 Different setups

Different configurations have been tested, either a small tank of 30cm diameter, filled
with two layers of fluids with the mean lower layer equals to H1 = 3.5cm and the mean
upper layer equal to H2 = 2.8cm. In the second setup, we have a bigger tank of a 130cm
diameter, withH1 = 15cm andH2 = 15cm. In both cases, the camera is placed at a height
of Hc = 210cm from the bottom of the tank. Two simulations have been run for the two
configurations with a comparable perturbation value. The amplitudes of the perturbations
are similar in terms of pixel, though as the factor linking pixels to centimetres is different
in the two experiments, the slope is different.

Figure 5.5: Error (ht − hc)/ht between the theoretical profile ht and the computed pro-
file hc, for the small tank configuration (left panel) and the big tank configuration (right
panel). Black lines: values for x = 0cm, blue lines: values for y = 0cm.

Figure 5.5 exhibits two different graphs. The left figure shows the error (ht − hc)/ht
for the small tank setup, with ht the theoretical height and hc the computed height. The
right figure shows the error (ht − hc)/ht for the large tank setup. Black lines correspond
to the error for x = 0cm, and blue lines correspond to the error for y = 0cm. The two
setups have comparable error values and profiles, with errors smaller than 10−4 almost
everywhere except for the error for x = 0cm in the small tank configuration, where the
error exceeds 10−4 around y = −13cm. The error’s range, then, does not strongly depend
on the configuration.

5.5.2 Different perturbations

Different interface profiles ht have been implemented to verify the consistency and pre-
cision of the numerical method. A monochromatic wave in x direction and next in y
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direction have been implemented. Then, an interface profile based on the addition of
three monochromatic waves with different amplitudes propagating in different directions
has been implemented:

ht = H1 +
3∑
i=1

ai cos(2πλi(αix+ βiy))

with ai the amplitude of each wave i and λi the wavenumber, αi and βi are coefficients
which control the direction of the wave. Figure 5.6 shows the theoretical profile ht on
the left panel and the error (ht − hc)/ht, with hc the computed profile in the small tank
configuration for small amplitude waves on the right panel.

Figure 5.6: Left panel: numerical interface profile based on the addition of three small
amplitude monochromatic waves propagating in different directions, for the small tank
configuration. Right panel: ratio of the difference between the imposed profile ht and the
profile hc obtained from the code, (ht − hc)/ht.

Different amplitudes of waves have been tested to know the impact of the slope on
the error. A first wave has amplitude of the order of a millimetre, a second one is ten
times bigger, i.e. amplitude of a centimetre. A third wave has amplitude of the order of
10−3cm. Similarly, we implemented two simulations with different amplitudes for the
large tank configuration, the first one with amplitude of the order of a centimetre and the
second one with amplitude of ten centimetres. As seen previously in section §5.5.2, the
setup does not have a strong impact on the error. This is also the case for these different
simulations, i.e. one-centimetre amplitude perturbations in the small tank are equivalent
to ten-centimetre amplitude perturbations in the large tank, and one-millimetre amplitude
perturbations in the small tank are equivalent to one-centimetre amplitude perturbations
in the large tank.
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Figure 5.7: Error (ht−hc)/ht between the theoretical profile ht and the computed profile
hc, for small perturbations (left panel) and large perturbations (right panel), for the small
tank configuration. Black lines: values for x = 0cm, blue lines: values for y = 0cm.

Figure 5.7 shows the error differences between large-scale (centimetre) perturbations
and small-scale (millimetre) perturbations, for the small tank configuration. The left panel
shows the small-scale perturbations error (ht − hc)/ht, the right panel shows the large-
scale perturbations error, with black lines the error for x = 0cm and blue lines the error
for y = 0cm. The order of magnitude is ten times larger for large-scale perturbations than
for small-scale perturbations. Note that, for the simulation with very small amplitude
perturbations – 10−3cm – we obtain an error of the order of 10−6.

In order to know whether the amplitude of the perturbation or the slope is the main fac-
tor of the difference of error between the small perturbations and the large perturbations,
we implemented three simulations with monochromatic waves with different amplitudes
and wavenumbers. Figure 5.8 shows the slope (top left panel), the height (top right panel)
and the error (bottom panel) for the three simulations. The black and red lines have the
same amplitude but different wavenumbers. Conversely, black and blue lines have dif-
ferent amplitudes but the same wavenumbers. We can see that the blue and the black
simulations have comparable slopes, but the error is twice more important for the red
simulation. Furthermore, black and red simulations have the same amplitude perturba-
tions, although the error is drastically more important for the red simulation. The error
seems to be directly proportional to the derivative of the slope. So, the major factor seems
to be the second derivative of the height.
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Figure 5.8: Top left panel: slope of the interface for three different simulations. Top
right panel: height of the interface. Bottom panel: height error. Blue and red simula-
tions have same perturbations’ slope amplitudes. Black and red simulations have same
perturbations’ height amplitude.

5.5.3 Different height computations

First, we compare the different ways to compute the height presented in the former sec-
tion. This is done either by computing first the height for all x for yi and next iterating
the algorithm for each x for all y indices; hxy, or the other way around, by first iterating
for all y for xi and next for each y for all x, to obtain hyx. By taking the average of these
two heights, we obtain hc. Figure 5.9 shows profiles of the error between the theoreti-
cal height ht and the computed heights: (ht − hxy)/ht in black, (ht − hyx)/ht in blue,
(ht− hc)/ht in red, for x = 0cm on the left panel and y = 0cm on the right panel, for the
small tank configuration, with small-scale perturbations. We can see that the three results
are comparable, though we still improve the results by considering hc rather than only
hxy or hyx. In both cases, the error is smaller than 10−4.
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Figure 5.9: Error (ht − h)/ht between the theoretical profile ht and three computed pro-
files h, for y = 0cm in the left panel and for x = 0cm in the right panel. Black lines:
h = hxy, blue lines: h = hyx, red line h = ht.

5.6 Conclusion

Inspired by the optical AVI method used for a single layer (see Afanasyev et al. [2009]),
we have developed a new optical method to measure accurately the height of an interface,
using the comparison between an initial image with a colour profile and an image with
perturbation of this profile. The two fluids need to have different optical indices and we
have supposed that the interface is sharp, allowing the use of Snell-Descartes optical laws
to obtain a first-order non-linear equation linking the height and the slope. The reference
height is needed at one point to be able to compute it in the entire domain. With the
height at this point, we can solve the first order non-linear equation. This reference height
should be measured with a probe (acoustic, laser, ...) at a position that corresponds with
a light ray, i.e. in the field of view.

The code has been tested using different virtual tank configurations, with different
interface profiles. It is possible to capture very small waves as much as large-amplitude
perturbations. However, the precision decreases when the second derivative of the height
becomes too important. In the different cases here considered, from the extremely high
amplitudes and steep perturbations in the large tank to the small amplitude oscillations in
the small tank, the error between the theoretical height and the computed height is never
higher than 10−3 the theoretical height. So, we have a very precise method to detect the
height of the interface.

However, as we have to solve first order non-linear equations for each point, the code
is not very fast and needs one to two hours to obtain the height for one image using
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a single core computer. The code can be easily parallelised, since all time steps are
absolutely independent from one another. Additionally, for each time step, hxy and hyx
can be computed independently, thus cutting the time in half for each time step.

An experimental validation of this method remains to be performed. We need to
determine this effect of local noise on the quality of the entire profile. This could be done
in the first instance numerically. This would help understand the limits of resolution that
can be captured by this method as well as the limits on interface slopes. Furthermore,
it would be interesting to compare the precision of our method with the precision of the
polarimetry method [Lovegrove et al., 1999]. In our method we use the angle of the
interface whereas in Lovegrove et al. [1999] they use the height of the interface, which is
measured from the optical rotation of the light.

This method is very promising, as we will obtain the entire profile of the interface
with a very high spatial resolution. Additionally, as it will be used with immiscible flu-
ids, experiments can be conducted during very long periods. This spatial and temporal
improvement will offer a better understanding of the formation and evolution of vortices
and show the impact of small waves on their dynamics. Then, this method could perhaps
be extended to flows with a miscible and thick interface to linear stratification, supposing
little mixing.
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Chapter 6

Conclusion and perspectives

In this chapter, the overall results and their possible perspectives are discussed.

Jets and vortices are omnipresent in turbulent planetary atmospheres, both on telluric
planets like the Earth, as well as on gas giants like Jupiter or Saturn. Jupiter exhibits a
peculiar feature: namely, the permanent coexistence of jets and vortices. In this study, we
have used a dual approach of both numerical simulations and laboratory experiments to
study the formation and evolution of jets and vortices in turbulent planetary atmospheres.
We have decided to adopt a shallow-layer approach, assuming that jets emerge through
an upscale cascade of geostrophic turbulence. In this final chapter, we first review the key
findings obtained from a numerical approach using a highly accurate numerical method.
Then we review our experimental findings, including a novel approach to visualisation of
the interface between two immiscible fluids. Finally, we present a few ideas for future
research that have emerged from this thesis.

In chapters 2 and 3, we have investigated the emergence and evolution of jets using
a two-layer β-plane quasi-geostrophic shallow-water channel model (based on Phillips’s
model, see Phillips [1951]). We model the stratification as an exponential decrease of the
density profile. Following Panetta and Held [1988], a vertical shear is implemented to
represent the latitudinal temperature gradient representing the thermal forcing variation
between the equator and the poles. This vertical shear is maintained by thermal relax-
ation which tends to bring the interfaces of the two layers back to the state imposed by
the vertical shear. To mimic convective motions, a spatially-random addition of hetons is
implemented, as in Thomson and McIntyre [2016]. The hetons contribute to the destabil-
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isation of the flow. In chapter 3, stochastic forcing is replaced by an initial lower layer
Rossby wave perturbation, which allows for an initial destabilisation of the flow. The
stochastic forcing has little impact on the flow, except for increasing background per-
turbations and thus making the flow more resistant to the vertical shear. More than one
hundred simulations have been run using the Combined Lagrangian Advection method
(Dritschel and Fontane [2010]), for at least 104 and up to 105 units of time. Simulations
of this accuracy over such durations have never before been conducted in this context and
they have led to new insights into jet formation and dynamics.

The initial state imposed by the vertical shear is baroclinically unstable. Hetons more-
over contribute to the destabilisation of the flow. This leads to heterogeneous potential
vorticity mixing, which creates regions where potential vorticity is relatively homoge-
neous, separated by regions of potential vorticity jumps called jets (see Dritschel and
McIntyre [2008], Scott and Dritschel [2012]). Thermal relaxation tries to bring the in-
terface back to the imposed vertical shear state, whereas baroclinic instability develops
and reduces the vertical shear. This competition between thermal relaxation and baro-
clinic instability leads to the continuous evolution of jets. For a specific regime in vertical
shear and thermal relaxation, turbulent phases appear from time to time. During these
phases, the flow loses its zonal organisation and forms large eddies and generally more
turbulence. The turbulent phases last for a thermal relaxation period before recovering to
a quiescent phase, when the flow is organised in nearly zonal bands.

We have also investigated the energetics during the turbulent phases. At the beginning
of turbulent phases, all the zonal energy components drop, which corresponds to the loss
of zonality. At the same time, the eddy energy components increase due to the formation
of eddies pinching off the meandering jets. Next, eddies transfer their energy back to jets
through heterogeneous potential vorticity mixing. Zonal available potential energy takes
longer to recover, as it is directly linked to the thermal relaxation period.

The dependence of the flow evolution on vertical shear, thermal relaxation, topogra-
phy, stratification, heton intensity and enstrophy input rate has been studied. The flow
strongly depends on thermal relaxation. Without thermal relaxation, baroclinic instability
breaks down the initial state imposed by the vertical shear, but no recovery or baroclinic
instability are then possible. If the thermal relaxation is too strong, it inhibits the for-
mation of turbulent phases. Oscillations between quiescent phases and turbulent phases,
then, are only possible for a specific regime in vertical shear and thermal relaxation. No-
tably, jets are globally more intense and jet spacing is larger for weaker thermal relaxation.
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The stronger the vertical shear, the more unstable is the flow. For a small vertical
shear, the flow is very stable and no turbulent phases appear. Jet spacing and jet intensity
increase with vertical shear.

Different stratifications have been examined, mainly an atmospheric case, but also an
oceanic case. For the oceanic case, jets are more meandering, and, globally the flow is
less homogeneous, but rather composed of a multitude of vortices.

The impact of topography was investigated in chapter 3. For a given vertical shear,
topography can either bring the flow to the margin of stability or bring a stable flow
to instability (as seen in Chen and Kamenkovich [2013]), and to simulations where os-
cillations between quiescent phases and turbulent phases are present. Topography that
deepens northward makes turbulent phases more intense, with a higher and steeper drop
of zonal available potential energy. Additionally, we obtained jets slowly drifting north
or south. This has already been observed in Boland et al. [2012], in the context of merid-
ional and zonal topographies, or in Nature, as in Thompson and Wallace [2000], Barnes
and Polvani [2013].

In chapter 4, we have studied the formation of fronts and vortices in a rotating cylin-
drical tank filled with two salt-stratified miscible fluids. In order to create an interface
allowing baroclinic instability, we used a rigid lid spinning faster than the rotating plat-
form. We analysed two experiments conducted by JH Thysen. By the addition of rho-
damine 6G in one layer, light intensity, showing the interface between the two layers, was
recorded. Additionally, particle images were recorded, which allowed us to use particle
images velocimetry. The flow was analysed using different methods. From the particle
images, we used the software UVmat to obtain the vorticity of the flow. Using the light
intensity images, different methods have been developed. First, we looked at the light
intensity variation around a chosen circle. This method allowed us to capture waves and
large-scale perturbations. But in the presence of large-amplitude, small wavenumber per-
turbations, large wavenumber perturbations were difficult to observe. A second method
based on the computation of the light intensity contours was therefore developed. This
method is very accurate and provides a precise power spectrum of the contour. How-
ever, due to the variation in contour sizes, it is difficult to obtain the time evolution of
the power spectrum using this approach. A third method computed the temporal and az-
imuthal spectrum from the radially-averaged light intensity. Finally, by subtracting two
consecutive images, we obtained the density derivative. This approach offered a clear
view of the temporal evolution of waves on the interface. In addition, a radial mean was
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calculated to obtain the time evolution of the azimuthal spectrum.

Following the work of Scolan et al. [2014] on amplitude vacillations, two experiments
have been analysed, both having the same flow parameters, except for the Rossby number.
Amplitude vacillations were present in both cases. We found vortices emerging from the
front, centring, merging into the mean flow and stabilising it, until a new vortex emerged
and the process started again. However, amplitude vacillations were strongly different
in these two experiments. For the small Rossby number (Ro = 0.405), the formation
of a vortex was highly correlated to small wave activity. The vortices that formed were
baroclinic dipoles and their radius was comparable to the baroclinic Rossby deformation
radius. In the experiment with a larger Rossby number (Ro = 0.572), we had barotropic
vortices emerging from large-scale disturbances. Their radius was comparable to the
barotropic Rossby deformation radius. This result matches the observations of baroclinic
and barotropic vortices recorded in Carton [2010]. The Rossby number also impacted the
recovery period of amplitude vacillations. The experiment with a larger Rossby number
presented a longer recovery period, linked with the fact that more mixing occurred and
that the interface had been flattened.

In chapter 5, we have presented a new optical method that has been developed for a
rotating tank filled with two immiscible fluids, with a rigid lid on top. A camera is placed
on top of the tank. The rotation is not mandatory for our method, but the two fluids need
to have different optical indices. A colour pattern is placed at the bottom of the tank and
illuminated from underneath. Using refractive optical laws, we can compute the height
of the interface between the two layers. The algorithm to compute the interface is based
on a first-order non-linear equation linking the height and the slope of the interface. The
height at one point in the domain, then, is necessary to be able to compute the entire
height profile. This could be obtained from a probe, a laser, or using an acoustic method.

The code was tested using two virtual tanks for various interface profiles. The pre-
cision of the height decreases with its second derivative, though it is precise enough to
capture the kind of flow we were interested in. From steep high-amplitude perturba-
tions to small-amplitude perturbations, the error between the theoretical height and the
obtained height was never higher than 10−3 the theoretical height. To obtain the height
from a 512×512 grid, we needed between one to two hours using a single core computer.
However, the code can be parallelised easily, both in time and in space. Each time step
can be computed independently from the other and we can further halve the computation
in space. In the future, we will conduct an experimental verification. Then this method



125

could be extended to study other stratifications, such as linear stratification or thick inter-
faces.

To summarise, with a dual approach we have investigated the formation of jets and
vortices in turbulent planetary atmospheres. Similarities can be found between the two
studies. In both cases, the time evolution of the flow exhibits oscillations. Oscillations
between quiescent and turbulent phases were found in the numerical study. During the
turbulent phases, the flow loses its zonality, forms eddies, and becomes generally more
turbulent. In the experimental study, amplitude vacillations were visible, with large-scale
vortices forming, followed by quiescent phases when the flow recovers.

New experiments could be conducted for Rossby numbers between Ro = 0.405 and
Ro = 0.572 to see if the transition from baroclinic dipoles to barotropic vortices is gradual
or abrupt. A Hilbert transform could be applied to LIF measurements to evaluate whether
triadic interactions are present. With the new optical method developed and presented in
chapter 5, we obtain the experiments full height profile. By using immiscible fluids, no
mixing occurs, so experiments could last for a long time. Typically, we can model around
nine years in a single day. Knowing the entire profile of the interface for such long
periods will both improve our understanding of the formation and evolution of vortices
and allow us to better assess the impact of small waves on their dynamics. We further
plan to add a spinning bottom to the experimental set-up for an experimental equivalent
to the Phillips’s model. Additionally, vortices will be created on the edge of the tank to
observe the interactions between fronts and vortices.

In the numerical study, we investigated the formation of jets and vortices using a two-
layer quasi-geostrophic β-channel model. It would be interesting to see if we can obtain
similar oscillations between quiescent and turbulent phases using another model, namely,
the shallow-water approximation or the primitive approximation. We could further vary
the number of layers and the geometry, for instance, changing it to spherical geometry.
Also, no long-lived vortex is present in our simulations – varying the approximation might
enable us to obtain a persistent co-existence of jets and vortices.

Moreover, the appearance of turbulent phases in the flow is a fascinating phenomenon.
Can such a phenomenon be found in Nature during climate variations? In a first approach,
it would be interesting to acquire an estimate of the period between two turbulent phases
and its dependence on the different parameters.

Additionally, the study of drifting jets should be expanded. Possible points of atten-
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tion could include the impact of topography and of the potential vorticity gradient in each
layer on the direction of propagation and on the drift velocity. Would the distribution of
the drifting direction be random? Further, would the drifting jets be more stable (contain-
ing fewer turbulent phases) than non-drifting jets? Answers to these question will widen
our knowledge on the dynamics and formation of these jets.



Appendix A

Layer model decomposition and related
analyses

A.1 Vertical modes

The inversion of (2.8) for the layer streamfunctions ψ1 and ψ2 is accomplished through a
projection onto vertical modes, i.e.

ψ̂1 = c11ψ1 + c12ψ2

ψ̂2 = c21ψ1 + c22ψ2

(A.1)

where a hat indicates a vertical mode, and the cij are the projection coefficients, deter-
mined as follows. Using the same projection for the PV anomaly q′i − βy in (2.8), we
obtain

q̂′j = ∇2ψ̂j + cj1h2k̄
2
d(αψ2 − ψ1) + cj2h1k̄

2
d(ψ1 − ψ2) (A.2)

for each vertical mode (j = 1 or 2). The objective is to make the terms involving cj1 and
cj2 equal to −γj k̄2dψ̂j for each j, since then we have simple Helmholtz-type equations to
invert for ψ̂j , namely

q̂′j = ∇2ψ̂j − k2djψ̂j (A.3)
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where k2dj ≡ γj k̄
2
d is the squared deformation wavenumber for mode j. Equating then the

terms above with −γj k̄2dψ̂j and re-arranging, we obtain

[(γj − h2)cj1 + h1cj2]ψ1 + [(γj − h1)cj2 + αh2cj1]ψ2 = 0. (A.4)

As this must be true for all ψ1(x, y, t) and ψ2(x, y, t), the constant coefficients must van-
ish:

(γj − h2)cj1 + h1cj2 = 0 (A.5)

(γj − h1)cj2 + αh2cj1 = 0. (A.6)

(A.7)

The only nontrivial solution results by taking the determinant of this linear system to be
zero, leading to

γ2j − γj + (1− α)h1h2 = 0 (A.8)

which gives the prefactor γj in k2dj ≡ γj k̄
2
d:

γ1,2 =
1

2
∓
√

1

4
− (1− α)h1h2. (A.9)

We have taken the minus sign in front of the square root for the lower mode, since it is
purely ‘barotropic’ with γ1 = 0 in the Boussinesq limit α→ 1. The other mode is called
‘baroclinic’ and always has the higher deformation wavenumber. Note: γ1 + γ2 = 1.

Regarding the projection coefficients cj1 and cj2, by convention we take c11 + c12 = 1

for the ‘barotropic’ mode j = 1. This, along with (A.5) gives

c11 =
h1

1− γ1
=
h1
γ2

; c12 = 1− h1
γ2
. (A.10)

For the ‘baroclinic’ mode j = 2, we take c22 = 1. Again using (A.5), we find

c21 =
h1

h2 − γ2
; c22 = 1. (A.11)



A.2 Vertical shear 129

The inverse of these coefficients are needed to express modes in terms of layers, i.e. as

ψ1 = c̃11ψ̂1 + c̃12ψ̂2

ψ2 = c̃21ψ̂1 + c̃22ψ̂2.
(A.12)

Simple algebra leads to

c̃11 =
c22
∆

; c̃12 = −c12
∆

; c̃21 = −c21
∆

; c̃22 =
c22
∆

(A.13)

where ∆ = c11c22 − c12c21.

A.2 Vertical shear

A vertical shear (a uniform flow ūi in each layer i) is imposed by taking the lower layer
mean PV to be q̄1 = −ε1βy, specifying ε1, and requiring the mass-integrated momentum
to be zero, or h1ū1 +αh2ū2 = 0. The latter requirement determines the constant ε2 in the
associated upper layer PV q̄1 = ε2βy, as well as the mean flows ū1 and ū2, as explained
next.

We start with (2.8) for the mean flow, for which ψ̄i = −ūi(y − yc), where yc is
the centreline of the channel. For this flow, the relative vorticity ∇2ψ̄i is zero. After
cancelling the common y factor and some re-arrangement, (2.8) implies

(1− ε1)β = h2k̄
2
d(αū2 − ū1)

(1− ε2)β = h1k̄
2
d(ū1 − ū2).

(A.14)

We can solve these for the mean flows ū1 and ū2 in terms of ε1 and ε2, but we also want to
obtain ε2 from the condition of zero momentum, h1ū1 +αh2ū2 = 0. Omitting the details,
this gives ε2 = 1 + (1− ε1)G1/G2 where Gj = c1jγ2 + µc2jγ1 with

µ =
h1c̃12 + αh2c̃22
h1c̃11 + αh2c̃21

. (A.15)

The mean velocities ˆ̄uj associated with each mode j are

ˆ̄u1 =
(1− ε1)β∆

k̄2dG2

; ˆ̄u2 = −µˆ̄u1, (A.16)
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from which we obtain the mean layer velocities by projection:

ūi = c̃i1 ˆ̄u1 + c̃i2 ˆ̄u2 i = 1, 2. (A.17)

A.3 Thermal equilibrium Interface slopes

Initially, the flow is in thermal equilibrium, with uniform velocity ūi in each layer i.
Associated with this flow, by thermal wind balance, the layer interfaces adopt a linear
profile δeq,i ∝ y − yc. In terms of the scaled displacements δ̃eq,i = f0δeq,i/H , upon using
their definitions in terms of streamfunctions (2.12), we find

δ̃eq,1 = −h1h2k̄2d(ū1 − αū2)(y − yc) ; δ̃eq,1 = −h1h2k̄2d(1− α)ū2(y − yc). (A.18)

These are the profiles to which the interfaces are relaxed to subsequently, at a specified
rate r.

A.4 Linear stability

We next provide brief details of the linear stability analysis used in the main body of the
paper to calculate the maximum growth rate. We start with the instantaneous zonally-
averaged PV q̄i and zonal velocity ūi in each layer i = 1, 2. In this subsection, these
profiles are general functions of y for each sampled time t. In the numerical code, they
are provided at each y grid point (typically 129 or 257 grid points, including the edges).
The PV gradient dq̄i/dy, needed in the analysis below, is computed using centred differ-
ences in y. Notably, only the interior grid point values are needed, since the perturbation
satisfies homogeneous boundary conditions (required to ensure zero meridional velocity
at each boundary).

In the linear stability analysis, the base flow is considered to be both x and t-independent.
Hence, we can consider infinitesimal perturbations of the form

q′i(x, y, t) = <{Qi(y)ei(kxx−σt)}

ψ′i(x, y, t) = <{Ψi(y)ei(kxx−σt)}
(A.19)
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where kx is a prescribed zonal wavenumber (necessarily integer for a domain of length
Lx = 2π), σ is the frequency (the imaginary part of which, if non-zero, is the growth rate),
while Q(y) and Ψ(y) are the perturbation amplitudes (eigenfunctions) to be determined
along with σ (the eigenvalue).

Plugging the above forms into the conservative form of the governing equations (2.1)
— with Fi = 0 — and in the PV inversion relations (2.8), then linearising, and finally
cancelling the common ei(kxx−σt)} factor, we obtain the following eigen-system for the
perturbation amplitudes Q(y) and Ψ(y) together with the phase speed c = σ/kx:

(ūi − c)Qi +
dq̄i
dy

Ψi = 0, i = 1, 2 (A.20)

d2Ψ̂j

dy2
−K2

j Ψ̂j = Q̂j, j = 1, 2 (A.21)

(A.22)

where i refers to layers, j and the hats refer to vertical modes, and K2
j ≡ k2x + k̄2dj . To

combine these, we eliminate Qi in the first set of equations using Q̂j in the second set
projected onto layers:

Qi = c̃i1Q̂1 + c̃i2Q̂2

=
d2Ψi

dy2
− c̃i1K2

1Ψ̂1 − c̃i2K2
2Ψ̂2.

(A.23)

Next, we eliminate Ψ̂1 and Ψ̂2 by projecting them onto modes:

Ψ̂j = cj1Ψ1 + cj2Ψ2. (A.24)

Using this in the expression for Qi above, we obtain

Qi =
d2Ψi

dy2
−Bi1Ψ1 −Bi2Ψ2 (A.25)

where Bij ≡ c̃i1K
2
1c1j + c̃i2K

2
2c2j . Finally, inserting this into (A.20) to eliminate Qi
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Figure A.1: Growth rate as a function of x and y wavenumbers, respectively kx and ky,
for the initial flow state used for the characteristic simulation.

results in two coupled, second-order equations for the layer streamfunction amplitudes:

ū1
d2Ψ1

dy2
+

(
dq̄1
dy
− ū1B11

)
Ψ1 − ū1B12Ψ2 = c

(
d2Ψ1

dy2
−B11Ψ1 −B12Ψ2

)
ū2
d2Ψ2

dy2
+

(
dq̄2
dy
− ū2B21

)
Ψ1 − ū2B22Ψ2 = c

(
d2Ψ2

dy2
−B21Ψ1 −B22Ψ2

)
.

(A.26)

This is an eigenvalue problem for the phase speed c. It is solved numerically by dis-
cretising the second derivative terms by centred finite differences, and using the boundary
conditions Ψi = 0 on both channel walls. This results in a block-tridiagonal generalised
eigenvalue problem, which we have solved using the LAPACK routine DGGEV,

The results of the analysis above have been verified by matching them with the exact
results obtained for the initially uniform PV gradients dq̄i/dy = εiβ and uniform layer ve-
locities ūi, i = 1, 2. In this special case, we can seek solutions for Ψi ∝ sin(ky(y−ymin))

where ky is the meridional wavenumber (an integer for Ly = π). This reduces (A.26) to
a simple algebraic system, from which c is determined from a quadratic equation. It is
straightforward to show that (baroclinic) instability always occurs when the PV gradients
have opposite signs in the two layers, ε1ε2 < 0 (details omitted).
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Figure A.1 shows the growth rates as a function of kx and ky, obtained using the
parameters of the characteristic simulation. The most unstable disturbances have small
meridional wavenumbers ky, and zonal wavenumbers kx between 11 and 13. For a given
kx, the maximum growth rate is positive until kx > 13. Hence, there are always distur-
bances with low kx which are unstable (note: kx = 0 is excluded). These disturbances
simply have higher meridional wavenumbers ky. Baroclinic instability occurs in a band
of total wavenumbers

√
k2x + k2y between approximately 11 and 13 here.
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Appendix B

Evolution variations

To illustrate the variability occurring between different simulations of the same flow, two
other nearly identical simulations have been conducted. All parameters were kept the
same as in the characteristic simulation previously illustrated, only the inversion grid
resolution was halved to 256 × 129. Additionally, a different random number seed was
used in each simulation.

The two simulations exhibit striking differences. In the first case, see figure B.1,
we see oscillations between turbulent and quiescent phases, sometimes with a shift of
the jets and homogeneous regions, while retaining the jet spacing. The flow alternates
between the two different quiescent phases encountered in the characteristic simulation.
The ‘centred’ state exhibits jets slowly coming together toward the center of the domain.
By contrast, the ‘shifted’ state does not exhibit any evident jet drift and moreover appears
to be much shorter lived. Arguably, the jet configuration of this state is less robust than
that in the centred state, though both the stability analysis of the zonal flow and the APE
spectrum show no major differences between the states.

In the second simulation, see figure B.2, the shifted quiescent state develops after
the initial baroclinic instability and dominates the first third of the simulation. Turbu-
lent events throughout this period collapse back to this state except for the last one. This
prominent turbulent event instead collapses to a new configuration resembling the cen-
tred state seen over much of the characteristic simulation. This state then dominates the
remainder of the evolution.
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Figure B.1: (a,b) Hövmoller diagrams of the equivalent PV, with latitude in the ordinate.
(c,d,e) Energy components (with the eddy part in blue and the zonal part in black) ver-
sus time. (f) log10 of the maximum growth rate of the zonally-averaged flow versus zonal
wavenumbers. (g) log10 of the y-integrated spectrum of the available potential energy ver-
sus zonal wavenumbers. For all these plots time is in the abscissa. The same parameters
are used as in the characteristic simulation but on a 256× 128 basic inversion grid.
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