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Résumé

Introduction

Les techniques d’usinage avancées sont indispensables pour le développement des industries man-

ufacturières. L’une de ces techniques, l’usinage à grande vitesse (UGV), est le sujet principal de

cette thèse de doctorat. Elle remplace l’usinage à vitesse conventionnelle (UVC) pour la réali-

sation des formes de pièces complexes dans l’industrie aérospatiale, automobile ou des moules,

etc. Le principal avantage de l’usinage à grande vitesse accroit le taux d’enlèvement de matière

et améliore la qualité de surface. Par conséquent, il est évident qu’un avantage économique peut

être obtenu.

Généralement, de nombreuses étapes interviennent dans l’usinage à grande vitesse, comme le

montre la Fig. 1, depuis la conception assistée par ordinateur (CAO), la génération de trajectoire

par la fabrication assistée par ordinateur (FAO), les traitements d’exécution par la commande

numérique (CN), y compris l’interpolation temporelle et la commande des axes, jusqu’au com-

portement structurel à l’intérieur de la machine-outil. À la fin de ce processus, on obtient le

déplacement réel de l’outil, ainsi que le profil de la vitesse d’avance et le profil d’erreur de contour

(CE) le long de la trajectoire d’usinage.
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Figure 1: Processus d’usinage à grande vitesse simplifié

En raison de la forte concurrence dans les industries manufacturières, il y a de plus en plus de

demandes pour la mise en œuvre des stratégies d’usinage à grande vitesse. Pour augmenter les

performances de l’usinage à grande vitesse, ce travail de doctorat se concentre principalement
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sur l’amélioration de l’étape de commande d’axe, en particulier la commande en position des

axes par la commande numérique. La motivation générale est que si l’action de commande

fonctionne bien, la pièce usinée sera très proche de celle désirée. Par conséquent, les étapes de

polissage manuelles après usinage peuvent être réduites. La qualité de coupe, la productivité et

les avantages économiques sont donc évidents.

Le cadre de ces travaux de recherche est mis en évidence dans la Fig. 2. Le processus est

constitué de multiples entrées et sorties.

Pièce:

- propriétés du matériau, 

- taille, géométrie, etc

Outil:

-  propriétés du matériau, 

- géométrie, etc

Processus d'usinage général en MO

 Paramètres de coupe:

- vitesse de coupe, 

- profondeur de coupe

Machine-outil:

- spécification broche,

- comportement 

dynamique

- énergie, etc

CNC:

- interpolation 

temporelle

Parties du processus d'usinage en MO 

considérées dans ce travail de recherche

Commande d'axe 

(CNC)

Perturbations:

- frottement

- force de coupe,

 etc

Incertitudes:

- variation des

paramètres, etc

Taux d'enlèvement 

de matière

Température de 

l'outil et de la pièce

Défauts de 

la pièce usinée:

- déformation,

- rugosité,

- erreur de contour, etc

Réponses de coupe:

- force de coupe,

- énergie de coupe, etc

Figure 2: Usinage général en machine outil [Dagiloke 1995] et paramètres d’usinage considérés

dans ce travail de recherche

Dans ce processus, les paramètres de coupe (vitesse de coupe, profondeur de coupe, etc), configu-

ration et spécification de la machine-outil (spécification broche, comportement dynamique, etc),

de la CN (interpolation temporelle), de la pièce (propriétés du matériau, taille, géométrie, etc)

et de l’outil (propriétés du matériau, géométrie, etc) sont des données d’entrée. Tandis que les
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effets de sortie sont le taux d’enlèvement de matière, la température de l’outil et de la pièce, les

défauts de la pièce usinée, les forces de coupe, etc. La partie centrale du processus d’usinage sur

machine outil est la commande d’axe réalisée en boucle fermée, étant sujette à des incertitudes

(par exemple la variation des paramètres d’entraînement, etc) et à des perturbations (par exem-

ple frottements, force de coupe, etc). Dans ce travail de recherche, cinq facteurs d’entrée sont

principalement pris en compte, notamment la vitesse de coupe, le comportement dynamique de

la structure de la machine outil, la vitesse d’avance, la géométrie de la pièce/surface désirée et

l’outil. Seul le frottement est considéré comme perturbation de la commande d’axe. En sortie,

seul le profil d’erreur de contour est pris en compte.

Pour améliorer les performances de la CN industrielle, les techniques d’interpolation temporelle,

le processeur, la motorisation et l’actionneur ont été considérablement améliorés. Toutefois,

sa structure et sa stratégie de commande n’ont eu que peu d’améliorations. En fait, chaque

entraînement d’axe est contrôlé à travers une structure classique en cascade, comprenant des

boucles de position, de vitesse et de courant, respectivement des boucles externes aux boucles

internes. Tandis que les deux boucles internes sont contrôlées par des régulateurs proportionnel

- intégral (PI), la boucle de position externe est contrôlée par un régulateur Proportionnel (P)

combiné avec une action d’anticipation en vitesse (Feed Forward -FFW) pour la boucle de vitesse

[Altintas 2000a].

Au sein du processus de commande, il est évident que les petites discontinuités dans la trajectoire

peuvent exciter les modes naturels de la structure mécanique, provoquant des vibrations de la

machine. Par conséquent, la trajectoire de référence doit d’abord être lissée. Pour ce faire, la

planification de la vitesse est réalisée en tenant compte des limites cinématiques de la machine,

en particulier les limites de jerk [Erkorkmaz 2001a, Barre 2005, Beudaert 2012]. Par la suite,

on s’attend à ce que le contrôleur produise la trajectoire résultante en respectant toutes les

contraintes cinématiques de la trajectoire de référence.

Étant donné que l’usinage des surfaces de forme complexe est principalement concerné dans

cette étude, il y a de nombreuses raisons qui expliquent qu’avec la commande classique men-

tionnée ci-dessus, il soit difficile d’obtenir une grande précision de contour. D’une part, dans

l’usinage à grande vitesse, la vitesse de coupe élevée conduit à une vitesse d’avance élevée.

L’interpolation d’une telle vitesse d’avance augmente également la vitesse, l’accélération et le

jerk de chaque axe lors de l’exécution de la trajectoire. Par conséquent, en suivant le profil

libre, les axes de la machine-outil peuvent avoir des caractéristiques cinématiques élevées et
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des fréquences élevées. D’autre part, la structure de commande d’axe classique a une bande

passante limitée. En outre, les sollicitations dynamiques de la machine-outil changent; elle est

soumise à des perturbations, telles que des variations d’entraînement dues à la variation de

la masse de la pièce et des conditions de lubrification, au frottement et aux forces de coupe

[Altintas 2000a, Altintas 2000b, Erkorkmaz 2001b, Tang 2013, Khoshdarregi 2014]. Ces effets

augmentent l’erreur de suivi et génèrent une erreur de contour, définie de manière classique

comme la distance orthogonale entre le point de contact réel de l’outil et le profil souhaité.

Pour relever ces défis, les chercheurs ont proposé de nombreuses stratégies de commande avancées

et intelligentes comme alternatives à la technique classique, telles que Cross Couple Control

[Koren 1980, Koren 1991, Zhao 2013], Sliding Mode Control [Altintas 2000b], Adaptive Ro-

bust Control [Yao 1997, Davis 2015]. Ces approches sont plus ou moins validées par des ré-

sultats de simulation et/ou des essais expérimentaux utilisant une CN ouverte [Altintas 1994,

Erkorkmaz 2001b, Beudaert 2014]. Cependant, l’implémentation des contrôleurs avancés dans la

version commerciale des CN n’est pas encore réalisée. Ceci est dû au fait que de façon générale,

une CN ne permet jusqu’à présent qu’un accès limité au cœur des contrôleurs; elles restent

donc "fermées". Une autre raison est que presque toutes les stratégies de commande proposées

nécessitent une modification de la structure de commande classique.

En résumé, cette thèse de doctorat “Commande à gains variables de l’erreur de contour pour

l’usinage multiaxes” vise à améliorer la précision de contour en usinage multi-axes grande vitesse

pour des surfaces de forme complexe, en exploitant toutes les possibilités de la structure de com-

mande classique de l’entraînement d’axes, et en proposant des solutions que les constructeurs

pourraient intégrer dans leur CN commerciale. L’amélioration du suivi de la trajectoire sig-

nifie que l’erreur de contour doit être contrôlée aussi faible que possible. Dans cette étude, à

l’exception du frottement, les autres sources de perturbations et d’incertitudes sont négligées.

De plus, compte tenu des vibrations de la machine, l’étape d’interpolation temporelle produit

les mouvements d’axes, en respectant les contraintes cinématiques des axes, notamment les

limites de jerk. Ces travaux proposent une méthode permettant de générer des gains de com-

mande variables optimaux pour la réduction de l’erreur de contour dans le processus d’usinage.

L’optimisation proposée est ici soumise à diverses contraintes que sont les limitations cinéma-

tiques des axes (vitesse, accélération et jerk), la stabilité de l’entraînement des axes et les limites

de courant du moteur.

Cette thèse de doctorat est réalisée à l’Université de Paris-Saclay, dans le cadre de la coopération
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entre deux laboratoires de recherche français: le Laboratoire des Signaux et Systèmes (L2S)

de CentraleSupélec et le Laboratoire Universitaire de Recherche en Production Automatisée

(LURPA) de l’ENS Paris-Saclay. Ce travail est enregistré sous No 2014-812D - Projet OMEGA

et soutenu par la fondation DIGITEO. La méthode proposée est appliquée au centre d’usinage

5 axes Mikron UCP 710, composé de trois axes linéaires et deux axes rotatifs. Cependant,

elle peut être appliquée quelle que soit la structure du centre d’usinage 5 axes considéré. Deux

briques logicielles élémentaires précédemment développées au LURPA en partenariat avec le L2S

constituent le début du processus:

La première est le modèle non linéaire des axes du centre UCP 710 Mikron, qui a été initialement

proposé par M. Susanu dans le cadre de sa thèse de doctorat au L2S de 2002 à 2005 [Susanu 2005],

puis enrichi et validé par D. Prévost dans sa thèse de doctorat au LURPA de 2008 à 2011

[Prévost 2011a]. Le modèle a fait ses preuves pour simuler le comportement réel du centre

d’usinage Mikron UCP 710 avec une grande fiabilité.

Le second support de cette thèse est un algorithme d’interpolation temporelle VPOp (Velocity

Profile Optimization), développé par X. Beudaert lors de sa thèse de doctorat conduite au

LURPA de 2010 à 2013 [Beudaert 2013], permettant de générer les consignes de position de

référence, contenant un profil de vitesse d’avance optimisé, et respectant toutes les contraintes

cinématiques des axes mentionnées auparavant.

Stratégie principale

La stratégie est illustrée dans la Fig. 3.

Dans une optique d’optimisation du processus, on peut noter que le réglage de l’entraînement

des axes pourrait être différent en fonction de la surface usinée. L’idée est donc d’optimiser le

contrôleur d’axe en fonction de la géométrie de la trajectoire d’usinage, avec pour objectif la

réduction des erreurs de contour.

En particulier, au lieu d’utiliser des gains de commande fixes dans le contrôleur de position, les

gains variables seront calculés tout en préservant la structure de commande en cascade classique

avec anticipation.

L’idée de départ de cette thèse de doctorat est de rechercher une séquence optimale de gains de
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(*)

Consigne de position

Jerk limité, etc.

Commande d'axe classique Commande d'axe proposée

# Gain fixé # Gain variable

Même structure 

de commande 

en cascade classique

Interpolation temporelle

Optimisation

Modèle nonlinéaire d'axe

- Perturbation 

Hors-ligne

Contraintes

- Limites cinématiques des axes

- Stabilité d'entraînement d'axe

- Limites de courant du moteur 

Déplacement de l'outil simulé

ayant un profil d'erreur de contour réduit

Gain variable optimal

Figure 3: Vue globale de la stratégie proposée

commande variable, qui pourraient modifier de manière appropriée la dynamique d’entraînement

des axes pour réduire l’erreur de contour pendant le processus d’usinage.

Les gains de commande sont générés hors ligne par résolution d’un problème d’optimisation et

en utilisant le modèle non linéaire d’axes de la machine. De plus, le problème d’optimisation

est soumis à des contraintes, dont les limites cinématiques des axes, le critère de stabilité des

boucles d’asservissement et les limites de courant du moteur. En outre, l’erreur de contour est

modélisée dans le cas de l’usinage 5 axes en bout et en flanc d’outil.

Une autre spécificité est l’utilisation de “l’horizon glissant”, approche présente dans la commande

prédictive (MPC), pour résoudre le problème d’optimisation pour l’ensemble de la trajectoire.

Cette approche proposée, appelée "Offline Gain Adjustment (OGA)", permet de réduire l’erreur

de contour pour l’usinage multi-axes grande vitesse, que ce soit en usinage 3 axes ou 5 axes.

Enfin, l’objectif est de développer les bases d’une méthode qui pourrait être mise en œuvre dans

une CN commerciale.

Architecture du manuscrit

L’architecture du manuscrit est organisée comme suit :
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Après l’introduction, le premier chapitre, “Géométrie et cinématique de trajectoire dans l’usinage

à grande vitesse multi-axes”, formule l’erreur de contour dans les cas d’usinage en bout et en

flanc d’outil. Il met en évidence les contraintes cinématiques de la trajectoire de référence.

Tout d’abord, la chaîne d’usinage numérique est brièvement présentée. Les particularités de la

génération de la trajectoire sont ensuite relevées.

Les techniques d’interpolation temporelle classiques sont expliquées et mènent à la présentation

de la technique choisie pour générer la trajectoire de l’outil et les mouvements articulaires.

Le deuxième chapitre, “Commande de contour adaptative pour l’usinage multi-axes”, consiste à

développer l’approche proposée nommée “Off-line Gain Adjustment”(OGA).

Cette approche permet de pré-compenser l’erreur de contour définie au chapitre précédent, qui se

produit dans le processus d’usinage. Tout d’abord, la structure classique de commande des axes

est présentée. La caractéristique non linéaire du modèle d’axe est également détaillée. Deux-

ièmement, l’état de l’art relatif aux techniques avancées de commande d’axes est passé en revue.

Ensuite, le cœur de ce chapitre consiste à formuler et à résoudre le problème d’optimisation sous

contraintes lié à OGA.

Le but du troisième chapitre, “Simulations et discussions”, est de mettre en évidence l’amélioration

de la précision des contours grâce à l’approche OGA. Les effets du profil de gain variable optimal

résultant, la vérification des contraintes et les effets de la configuration des paramètres d’OGA

sont présentés et analysés à travers les résultats de simulation pour valider la pertinence de

l’approche OGA.

Le quatrième chapitre, “Extensions OGA”, consiste à explorer les applications d’OGA pour des

objectifs diversifiés. Dans la première section, un gain global pour la commande en position est

présenté et optimisé en utilisant l’approche OGA. Ensuite, la mise en œuvre d’OGA dans le cas

de l’utilisation d’une structure de commande prédictive généralisée est effectuée. Les résultats de

simulation correspondants prouvent les possibilités offertes par OGA dans la pré-compensation

de l’erreur de contour au sein de différents types de contrôleurs de position.

Enfin, les “Conclusions et perspectives” visent à évaluer non seulement les contributions scien-

tifiques mais aussi les perspectives de ces travaux.
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Contributions de la thèse

Les principales contributions de cette thèse sont présentées ci-dessous.

La première contribution porte sur la formulation de l’erreur de contour en fraisage 5 axes en

bout d’outil et en flanc d’outil. Pour obtenir de telles formulations d’erreur de contour, la

géométrie de la trajectoire FAO est détaillée et certaines hypothèses sont proposées. En outre,

la cinématique prise en compte lors de l’étape d’interpolation temporelle est également exploitée.

Une loi de commande d’axe adaptative est proposée fondée sur l’approche Offline Gain Ad-

justment (OGA) pour compenser l’erreur de contour pendant l’usinage. Le diagramme général

d’OGA est illustré dans la Fig. 4.

Ajustement des gains hors-ligne

Consigne de position

+ Utiliser le modèle non-linéaire d'axe

+ Estimer l'erreur de contour

+ Résoudre le problème sous contraintes

Processus 

hors-ligne

Processus 

en-ligne

Centre UGV multi-axes

CN commerciale 

avec fonctions étendues

Gain variable optimal

Figure 4: Idée générale d’OGA

L’une des contributions importantes de cette thèse est le développement des deux techniques de

résolution du problème d’optimisation. Elles sont fondées sur le principe du réglage des gains à

l’intérieur d’une fenêtre glissante sur la trajectoire.

Dans la première technique de résolution, les fenêtres considérées sur la trajectoire sont calculées

en tenant compte des caractéristiques de courbure du profil. Ensuite, le gain à l’intérieur de

chaque fenêtre est optimisé en se fondant sur une fonction d’évolution de gain prédéfinie. Une

caractéristique de cette première technique est qu’il n’y a pas de chevauchement des fenêtres sur

la trajectoire considérée.

En revanche, la deuxième technique de résolution prédit les gains constants optimaux sur un

horizon glissant, mais seul le premier gain optimal est conservé et l’horizon est avancé d’un

pas en avant. Cette technique de résolution nécessite une quantité de calcul plus importante
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que la première, mais elle permet d’obtenir un profil de gain de commande plus flexible. Par

conséquent, cette seconde technique de résolution permet une réduction de l’erreur de contour

plus importante que la première méthode.

Enfin, une nouvelle idée autour d’un gain de commande global est proposée. Ce gain peut

être intégré dans les différents types de contrôleurs, classiques ou avancés. Cette méthode peut

garantir non seulement l’amélioration de la précision de l’usinage, mais aussi un temps de calcul

raisonnable. Cela élargit les possibilités de l’approche OGA proposée dans un environnement

industriel.

Les deux techniques de résolution étant différentes dans leurs propres principes, leurs config-

urations sont également définies différemment. Les impacts des configurations des paramètres

sur les performances d’OGA sont discutés. Le choix du nombre maximal de gains potentiels,

du facteur de variation de gain et des longueurs d’horizon se sont avérés importants pour la

performance d’OGA. De plus, l’effet du facteur de pondération sur la gestion du compromis

entre le lissage du profil de gain et la précision du contournage est également étudié.

Les résultats de simulation fondés sur un simulateur d’usinage validé ont montré que le niveau de

précision du suivi de contour et le temps de calcul sont différents selon les différentes techniques

de résolution et le nombre d’axes et les gains de commande impliqués dans l’optimisation d’OGA.

Les résultats ont également vérifié que les réponses de l’OGA ont respecté toutes les contraintes

concernées. Les relations entre les gains variables obtenus, la réponse en jerk, la vitesse d’avance

résultante et les profils d’erreur de contour ont été mis en évidence. Grâce à la fiabilité du

simulateur de machine, on peut dire que l’erreur de contour est considérablement réduite grâce

à l’approche proposée.

De plus, une interface OGA-GUI est construite pour faciliter son utilisation et faciliter les

applications pratiques.

Perspectives

Une perspective est de prendre en compte d’autres effets non linéaires, ainsi que des pertur-

bations, comme par exemple les flexibilités de la structure machine, ou encore les efforts de

coupe.
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Par ailleurs, d’autres techniques d’optimisation, telles que méthode heuristique ou algorithme

génétique, devraient être investiguées. L’objectif est de réduire la charge de calcul pour résoudre

le problème d’optimisation et de produire de meilleurs gains de commande optimaux pour la

réduction des erreurs de contour.

Une autre perspective est l’analyse des variations de gains obtenus pour construire en amont

des motifs de variation en fonction des caractéristiques géométriques du profil à usiner. Cela

pourrait faciliter l’obtention de la variation des gains sur toute la trajectoire.

Enfin et surtout, des essais expérimentaux d’OGA devraient être réalisés sur une machine outil

possédant une CN ouverte.
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Context

The advanced machining techniques are always the backbone of the manufacturing industries.

One of such techniques, High Speed Machining (HSM), is the main subject of this PhD thesis.

It replaces the Conventional Speed Machining (CSM) in sculpturing intricate parts in aerospace,

automotive, die or mold industries, etc. This is because high speed machining increases material

removal rates and enhances surface finish. As a result, an economical benefit can evidently be

obtained.

Generally, high speed machining involves many processes, as shown in Fig. 5, from Computer

Aided Design (CAD); trajectory generation by Computer Aided Manufacturing (CAM); execu-

tion treatments by Computer Numerical Control (CNC), including feedrate interpolation and

axes control; to structural behaviors inside Machine Tool (MT). Finally, the tool displacement

is obtained, as well as feedrate and Contour Error (CE) profiles along the machining trajectory.

Feedback

Axis control

 

Motor

 

Execution treatment : CNC (closed structure)

Nominal

geometry Setpoints

Control

CAM Interpolation
Trajectory

Interpolation

Structure behavior: MTCAM
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Actual tool tip displacement
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t

Contour error
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Figure 5: Simplified high speed machining procedure

Motivation and framework

Due to the high competition in the manufacturing industries, there are increasing demands for

implementation of high speed machining strategies. To boost the performance of high speed

machining, this PhD thesis mainly focuses on the improvement of the axis control stage, partic-

ularly the position controller of axis drive in the CNC process. The general motivation is that

if the control action performs really well, the part finishing will be very close to the desired one.

Consequently, the hand finishing and polishing steps after machining can be eliminated or at
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least will require less effort. Hence, the cutting quality, productivity, and economical benefit can

obviously be achieved.

The framework of the current research is highlighted within a multi-input and multi-output

process of machining in Fig. 6.

Tool and workpiece

temperature

Material removal rate

Cutting responses:

- cutting forces

- cutting energy

Machine tool:

- spindle specification

- dynamic behavior

- power

- machine rigidity

Workpiece/desired 

profile:

- material properties

-  size, geometry

CNC:

- feedrate 

interpolation

Tool/workpiece

interface: 

- deformation

- roughness

- contour error

Tool:

- material properties

- geometry

Cutting parameters:

- cutting speed

- depth of cut

Axis control (CNC) 

Uncertainties:

- parameter 

variations

Disturbances:

- friction

- cutting force

general machining procedure in MT

specified machining procedure in MT

within the current research 

Figure 6: Machining process on machine tool [Dagiloke 1995] and specified concerns in the

research framework

In this process, the cutting parameters (e.g. cutting speeds, depth of cut, etc), configuration

and specification on machine tool (e.g. spindle specification, dynamic behavior, etc), CNC

(feedrate interpolation, axis control), workpiece (e.g. material properties, size, geometry, etc)

and tool (e.g. material properties, geometry, etc) are designated as the inputs. Meanwhile, the

output effects are such as material removal rate, tool and workpiece temperatures, deformation

of machined part, cutting forces, etc. The core part of the machining process on machine tool

is the axis control realized in a feedback manner, being subject to uncertainties (e.g. variation
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of drive parameters), and disturbances (e.g. friction, cutting force). In the limit of the current

research, five input factors are mainly considered, including cutting speeds, dynamic behavior of

machine tool (i.e. the axes), feedrate, geometry of desired part/surface and tool. Only friction

is considered as the disturbance on axis control. At output, only contour error profile is taken

into consideration.

To enhance the performance of the industrial CNC, interpolation techniques, computer processor,

motor and actuator have been much improved. However, its control structure and strategy have

undergone less improvement. In fact, each axis drive is controlled by CNC through a classical

cascaded structure, including position, velocity and current loops ranging from outer to inner

loops respectively. While the two inner loops are controlled by Proportional - Integral (PI)

controllers, the external position loop is controlled by a Proportional (P) controller, combined

with the Feed Forward (FFW) action for the velocity loop [Altintas 2000a].

During control process, it is known that small discontinuities in the trajectory can excite the

natural modes of the mechanical structure, causing machine vibration. Therefore, the ref-

erence trajectory firstly needs to be smoothed. To do this, the trajectory planing is per-

formed by considering the kinematic limitations of the machine, especially the limited jerk

[Erkorkmaz 2001a, Barre 2005, Beudaert 2012]. Afterwards, the controller is expected to pro-

duce the resulting trajectory respecting all of the kinematic constraints of the reference one.

Considering that machining free-form surface is primarily concerned in this study, there are

many reasons saying that with the above classical axis control, it is difficult to obtain high

contouring accuracy. On the one hand, in high speed machining, the high cutting speed

leads to high feedrate. By interpolating such a feedrate, the required axis velocity, accel-

eration and jerk are also increased. Thus, by following the free-form profile the machine

tool axes may have high kinematic characteristics and high frequency. On the other hand,

the classical axis control structure has a limited bandwidth. Furthermore, machine tool con-

tains uncertainty characteristics and disturbances, such as variation in drive parameters due

to the varying workpiece mass and lubrication condition, coulomb friction and cutting force

[Altintas 2000a, Altintas 2000b, Erkorkmaz 2001b, Tang 2013, Khoshdarregi 2014]. These detri-

mental facts increase tracking error, and generate large contour error, which is classically defined

as the orthogonal distance between the actual tool contact point and the desired profile.

To cope with the above challenges, researchers proposed many advanced and intelligent con-
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trol strategies as an alternative for the classical one, such as Cross Couple Control (CCC)

technique [Koren 1980, Koren 1991, Zhao 2013], Sliding Mode Control [Altintas 2000b], Adap-

tive Robust Control (ARC) [Yao 1997, Davis 2015], Fuzzy Logic Control [Ngo 2013], Neural

Network [Lin 2006], Model Predictive Control (MPC) [Susanu 2006, Tang 2012], etc. These ap-

proaches are more or less validated by simulation results and/or experimental tests using an

open CNC [Altintas 1994, Erkorkmaz 2001b, Beudaert 2014]. However, the implementation of

the advanced controllers into the commercial version of CNC is not achieved yet. This is due to

the fact that the CNC up to now permits only a limited access to the core of the controllers due

to their close features. Another reason is that almost all the proposed control strategies require

the modification of the classical control structure. That may be inconvenient and very expensive

for the CNC manufacturer. Therefore, the previously mentioned classical control structure is

still in use in the commercial CNC.

In summary, this PhD thesis “Variable gain contouring control for multi-axis machine tools”

aims at improving the contouring accuracy in multi-axis high speed machining of free-form sur-

faces, by exploiting all possibilities of the classical control structure of axis drive, proposing

solutions that the manufacturers can implement into their commercial CNC. The enhancement

of contour following means that the contour error should be controlled to be as small as possi-

ble. In this research, except for the friction, other sources of disturbance and uncertainties are

neglected. Moreover, considering machine vibration, the feedrate interpolation step produces

the axis motions, respecting axis kinematic constraints, especially the limited jerk. This thesis

refers to a method to generate optimal variable control gains for pre-compensating the contour

error in machining process, using optimization techniques. The proposed optimization is here

subject to the constraints, including the axis kinematic (velocity, acceleration and jerk) limi-

tations, the stability of the axis drive and the motor current limits. Other factors causing the

machine vibration are not taken into consideration.

This PhD work is carried out at the University of Paris-Saclay, France, within the cooperation

between two French research laboratories: Laboratoire des Signaux et Systèmes (L2S), Centrale-

Supélec and Laboratoire Universitaire de Recherche en Production Automatisée (LURPA), ENS

Paris-Saclay. This work is registered under N◦ 2014-812D – Projet OMEGA and supported by

DIGITEO foundation. The proposed method is specifically built for the 5-axis machining center

Mikron UCP 710, consisting of three linear and two rotary axes. However, it is expected to be

applicable to the structures of 5-axis machining centers. There are two starting points favoring
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this work.

The first one is the nonlinear model of the translation axes of the Mikron UCP 710, that has been

proposed by M. Susanu within her PhD thesis at L2S from 2002 to 2005 [Susanu 2005], enhanced

and validated by D. Prévost in his PhD thesis at LURPA from 2008 to 2011 [Prévost 2011a].

The model was proven to simulate the real behavior of the Mikron UCP 710 machining center

with high confidence.

The second support of this thesis is a velocity optimization profile (VPOp) algorithm, developed

by X. Beudaert during his PhD thesis conducted at LURPA from 2010 to 2013 [Beudaert 2013],

allowing the generation of reference position setpoints, containing an optimized velocity profile,

and respecting all the axis kinematic constraints.

Strategy

The main strategy of this PhD thesis is illustrated in Fig. 7.
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Figure 7: Global view of this PhD thesis

It is observed by CNC users that axis drive tuning can be different in function of the machined
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surface. Thus, the idea is to optimize the axis controller depending on the geometry of the

machining trajectory, with the objective of contour error reduction.

Particularly, instead of using fixed proportional and feed forward control gains in the position

controller, variable values of such gains will be computed while preserving the classical cascaded

control structure with feed forward.

The original idea of this PhD thesis is to seek an optimal set of variable control gains that

could excite appropriately the axis drive dynamic to reduce the contour error during machining

process.

Control gains are generated off-line by solving an optimization problem and using the nonlin-

ear axis model of the machine. Moreover, the optimization problem is subject to constraints,

including axis kinematic limitations, stability criterion of servo drives and motor current limits.

Moreover, the contour error is considered in both 5-axis point milling and 5-axis flank milling.

The off-line execution is based on the nonlinear axis model, in which the disturbance coming

from friction model is considered.

It is well known that when the friction is concerned, the feed forward friction compensation is

widely used in CNC system to overcome the detrimental effects of friction at motion reversals,

especially for contouring accuracy. However, the current nonlinear axis model, served as the

fundamental base of this thesis, has not been equipped yet such a compensation technique.

Therefore, the control law for contour error reduction is proposed in this thesis without regard

to this situation as well. It is assumed that the feed forward friction compensation is well

designed in CNC and the proposed control law serves as an advanced supplementary approach

to improve more the contouring accuracy in CNC machining.

Another specificity is the use of “receding horizon” approach of Model Predictive Control (MPC)

to solve the optimization problem for the whole trajectory. This proposed approach, so-called

Off-line Gain Adjustment (OGA), can be used to reduce the contour error for multi-axis high

speed machining, either 3-axis or 5-axis machining.

Ultimately, the objective is to build the foundations of a method that could be considered for

an implementation in a commercial CNC.



Introduction 9

Thesis organization

The manuscript architecture is summarized as follows:

After the introduction, the first chapter, “Tool path geometry and kinematics in multi-axis high

speed machining”, is to formulate the contour error in multi-axis high speed machining and to

highlight the kinematic constraints of the reference trajectory.

Firstly, the digital chain of machining is briefly introduced. The specifics in the generation of the

programmed tool path is then discussed. After that, the contour error formulations for either

point or flank milling are defined.

It is followed by the discussions of the feedrate interpolation techniques leading to presentation

of the chosen technique to generate the tool trajectory and the joint motions.

The second chapter, “Adaptive contouring control in multi-axis high speed machining”, consists

in developing the proposed approach called “Off-line Gain Adjustment” (OGA).

This approach allows to pre-compensate the contour error defined in chapter two, that occurs

in the machining process. Firstly, the introduction of the classical axis control structure is

presented. The nonlinear feature of the axis model is also provided. Secondly, the state of the

art related to the advanced techniques of contouring control is reviewed.

Then, the core section of this chapter is to formulate and solve the optimization problem under

constraints related to OGA.

The intent of the third chapter, “Simulations and discussions”, is to highlight the improvement

of contouring accuracy thanks to the OGA approach proposed in chapter three. Impacts of the

resulting optimal variable gain profile, constraint verification and effects of OGA’s parameters

configuration are shown and discussed through simulation results to validate the performance of

the OGA approach.

The fourth chapter, “OGA extensions”, is to explore the applications of OGA for diversified

purposes. In the first section, the global gain of the position controller is introduced and then

tuned by using the OGA approach. Next, the application of OGA in the case of using a Gen-

eralized Predictive Control structure is discussed. The corresponding simulation results prove

the valuable possibilities of OGA in pre-compensating the contour error within different kinds
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of position controllers in multi-axis high speed machining.

Finally, “Conclusions and perspectives” aims at evaluating not only the scientific contributions

but also the perspectives of this PhD thesis.



Chapter 1

Tool path geometry and kinematics in

multi-axis high speed machining
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The main goal of this chapter is to highlight tool path geometry and kinematic execution in

multi-axis high speed machining, in order to support the formulation of axis control problem in

the next chapter.

Firstly, the digital chain of machining is introduced. Multi-axis tool path computations, referring

to tool geometry, tool positioning, geometrical errors, tool path description and milling context,

are represented afterwards.

In order to propose a method to pre-compensate contour error in off-line process, this error must

be estimated based on a machine simulator. Thus, the next section is dedicated to contour error

estimation approach.

Lastly, relating to kinematic execution of trajectory, feedrate interpolation is carried out to

evaluate its effects on the axis control and machining process.

1 Introduction of machining process

The digital chain of machining is shown in Fig. 1.1. It can be classified into five major stages,

as follows:

#1 Design

#2 Trajectory

generation

#5 Machining 

#3 Post

processor
  

#4.1 Feedrate

interpolation

CAD model

 

NC program

CAM model

 

#4 CNC
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Figure 1.1: Digital chain of machining
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#1 Design: This stage allows to obtain a nominal surface of the desired part.

#2 Trajectory generation: From the nominal surface, CAM computes a set of reference contact

points between the tool and the workpiece. Based on these points, a programmed tool path

is determined. Most of time, such a tool path is represented by a set of discrete tool location

points and tool orientation vectors. These data constitute the CL data, also called CL file.

#3 Post processor [Jung 2002, She 2007]: This is dedicated to transform the programmed

tool path into the adapted language for numerical control (NC) in CNC, so-called “NC

program”.

#4 CNC [Schmitz 2001, Omirou 2005, Mori 2013, Yuen 2013, Beudaert 2013, Besset 2017]:

This stage consists of two tasks: feedrate interpolation and axis control. The former allows

to generate a trajectory having a feedrate profile, in such a way that the corresponding

axis motions, which are obtained by solving the Inverse Kinematic Transformation (IKT),

respect the machine constraints, e.g. the axes velocity, acceleration, and jerk limitations,

to limit the machine vibration, etc. The later controls the axes motions through closed

control loops, axes drive and motor. The combined motions of all axes allow to obtain the

tool displacements.

#5 Machining [Neugebauer 2007]: This task is performed in machining center. It is in fact

the relative movements between the tool and the workpiece, controlled by the axis control

in CNC, to sculpture the machined part.

2 Multi-axis tool path computation

The aim of this section is to analyze the way that tool path is programmed in the context of

multi-axis machining.

2.1 Tool geometry

There are many types of tools with different geometries. However, nearly all tools used in milling

community can be defined from one generic form, called APT parameterization [APT 1983], as

seen in Fig. 1.2.
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Figure 1.2: APT parameterization

From APT parameterization, the general parameters a, b, d, h, α, β and r are modified and

adapted to form different tool types. For example, the three most commonly used tool types:

hemispheric tool (ball nose or ball end cutter), toric tool (bull nose end mill cutter) and cylin-

drical tool, are illustrated in Fig. 1.3 a, b, and c, respectively.

a)
c)

b)

CL

u
u u

CE CE

CL CL

R
R

r

r

Figure 1.3: Tool types: a) Hemispheric tool; b) Toric tool; c) Cylindrical tool

The main geometrical characteristics of the above tools are given as follows:

• CE: Center point of the tool,

• CL: Cutter location described in the NC program, which is generally the extremity point

of the tool,

• u: Unit vector of the tool axis orientation,

• r: Radius of the hemispheric tool and small radius of the toric tool,

• R: Radius of the cylindrical tool and large radius of the toric tool.
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2.2 Tool positioning

The programmed tool path is characterized by a couple of values (CL,u), that represents the

tool positioning.

To calculate the above components of the programmed tool path, CAM firstly computes the

tool contact points, CC, onto the nominal surface. Using different tools for one specific milling

technique, for example point milling illustrated in Fig. 1.4, leads to the fact that the tool location

points are formulated differently from (1.1) to (1.4) [Duc 1998].

a)
c)

b)

CL
CC

n

u

CEr

t
vf

R
R

vf f

n n

u u

r

CL

CC
CC

CL

CE

Figure 1.4: Point milling with a) hemispheric tool; b) toric tool; c) cylindrical tool

• for hemispheric tool:

CE = CC + r.n

CL = CC + r. (n − u)
(1.1)

• for toric tool:

CE = CC + r.n +R.v

CL = CC + r. (n − u) +R.v
(1.2)

with

v =
u ∧ n

‖u ∧ n‖
∧ u (1.3)

• for cylindrical tool:

CL = CC +R.v (1.4)

with v defined in (1.3).
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in which f, n and t = f∧n, are the unit feed, surface normal and transverse vectors, respectively.

The tool axis direction u is defined by tilt angle θt and yaw angle θn in CAM, as seen in Fig.

1.5. In fact, u is obtained by two consecutive rotations: firstly a rotation of n by an angle of θt

around t and then the obtained vector is rotated by an angle of θn around n [Lauwers 2003].

θt

θn

R
r

CE

CC

CL

t

n

u

f

Figure 1.5: Tool positioning parameters

2.3 Geometrical errors

In the tool path planning, the tool movement involves the longitudinal and transversal tool steps,

as illustrated in Fig. 1.6.

Figure 1.6: The tool path planning [Duc 1999]
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The tool contact points CC are determined in CAM, in a way that the tool movement envelope,

illustrated in Fig. 1.7, respects the admissible geometrical errors, which are usually chordal error

and scallop height.

Figure 1.7: Tool movement envelope and CL cross-section [Kim 1995]

The chordal error e, illustrated in Fig. 1.8, represents the maximum deviation between the

nominal surface and the tool movement envelope generated by the interpolation of the tool

positioning along a longitudinal tool step [Kim 1995].

Chordal error

Programmed tool path

Tool movement envelope

Nominal surface

e CC2

CL2

u2

CC1CL1

u1

Figure 1.8: Chordal error

The scallop height, h, represents the remaining material after a transversal tool step. One

example for machining a flat surface by a hemispheric tool is illustrated in Fig. 1.9.
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Figure 1.9: Scallop height of a flat surface machined by a hemispheric tool [Lin 1996]

By respecting the conditions of chordal error e ≤ emax and of scallop height h ≤ hmax, the tool

contact points CC are generated by CAM.

2.4 Tool path description

In multi-axis machining, there are two main formats for the description of tool path: either

by linear segments (linear interpolation - G1) or by curves (polynomial interpolation - Bspline)

[Langeron 2004]. The former, which is more commonly used in the industrial community than

the latter, is presented below.

Linear interpolation allows to describe tool path through a series of tool positionings. The tool

location points are under the form of linear segments (CL point - ISO 3592), while tool axis

orientations are interpolated in workpiece frame, as illustrated in Fig. 1.10. Each tool positioning

constitutes a block of machining program, including three position components (x, y, z), and

three orientation components (i, j, k).

Trajectory expression

Figure 1.10: Tool path description by linear interpolation [Lavernhe 2006]
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In principle, when the tool moves in the piecewise linear way, the tool contact point CC follows

also the piecewise linear way, which approximates the nominal surface within an allowable chordal

error. However, this is only true for 3-axis machining. As discussed in [Bohez 2002], in 5-axis

machining, even if the linear interpolation is used in CAM, the real CC path is not formed by

linear segments, but a curve, as seen in Fig. 1.11. This fact is due to the effect of tool orientation.

Thus, in 5-axis machining, the calculation of the chordal error is more complex than in 3-axis

machining, because it should take the deviation generated by the tool orientation into account.

Figure 1.11: Convex/concave part - CC and CL points [Bohez 2002]

2.5 Milling contexts

Another factor that affects the configuration of the programmed tool path is the milling context,

referring to point milling, flank milling, and combined milling, as illustrated in Fig. 1.12.

In point milling, the tool is in contact with the workpiece through a contact point CC. In flank

milling, the tool intersects the workpiece through a contact segment on the tool trunk. The last

milling context combines the above two kinds of intersection between the tool and the workpiece.

Fig. 1.12 also highlights differences between the 3-axis and 5-axis configurations. The former

refers to a machine having three linear axes, in which the tool orientation is fixed in vertical or

horizontal direction depending on machine structure. The latter differs from its counterpart due

to the addition of two rotary axes. Thus, the tool orientation can be changed relatively to the

workpiece during machining process.
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Figure 1.12: Multi-axis machining contexts

2.6 Conclusion

According to the above discussions related to the multi-axis tool path computation, there are

important remarks as follows:

• Different tool geometries lead to different formulas of the tool positioning.

• It is important to note that the tool does not remove all the material along its programmed

tool path, because of the inherent existence of the chordal error and scallop height.

• The 5-axis machining center makes the milling more flexible than the 3-axis one, due

to a variable tool orientation. However, it also places the challenges in computing and

respecting the maximum chordal error and scallop height.

• The different milling contexts have their own characteristics in sculpturing the workpiece,
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especially the different contacts between the tool and the workpiece, that should be con-

sidered at the axis control stage.

3 Contour error estimation in multi-axis machining

Following, contour error formulation will be developed for 5-axis machining. This can obviously

be applied for 3-axis machining as well. For simplicity, the superscripts m and w are denoted

for the articular (machine axis) and workpiece spaces, respectively. The trajectory defined by

the NC program is considered as the reference, while the trajectory generated by the effective

tool movement during machining is considered as the actual one. The superscripts r and a are

therefore used for the reference and actual parameters.

3.1 Contour error estimation in 5-axis point milling

3.1.1 Problem formulation

The definition of contour error in 5-axis point milling is explained through the schematic proce-

dure illustrated in Fig. 1.13.
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Figure 1.13: a) Reference tool positioning; b) Actual tool positioning with contour error

As it can be seen in Fig. 1.13.a, CAM generates a programmed tool path, characterized by a

set of (Cr
L,u

r), in which the reference CL path can be represented by a series of reference tool
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location points Cr
L and tool axis orientation ur. If the tool follows exactly such a programmed

tool path, it will sculpture the workpiece to obtain a desired machining profile, that approximates

the nominal surface with the allowable geometrical errors, as discussed in § 2.3. This desired

machining profile can be seen as the reference CC path, represented by a set of reference tool

contact points Cr
C.

The above programmed tool path is interpreted into NC code, that is then fed into the CNC.

After that, tool axes are controlled to follow the axis position setpoints, that are generated from

the programmed tool path through feedrate interpolation and the IKT, without knowledge of

the reference tool contact points, but only the couple (Cr
L,u

r).

In fact, due to the limited bandwidth of the axis drives and the nonlinear characteristics, such

as friction or cutting force, the actual tool positioning (Ca
L,u

a) lags behind the reference one

(Cr
L,u

r), as illustrated in Fig. 1.13.b. Such lag distance is defined as the tool tracking error, et,

in (1.5).

et = ‖Cr
L − Ca

L‖ (1.5)

As it can be seen, there is a deviation between the actual tool path and the programmed one.

Sets of the actual tool location points Ca
L and of the actual tool contact points Ca

C represent

the actual CL and CC paths, respectively.

In 3-axis machining, many works in the literature [Koren 1983, Erkorkmaz 2001b, Yao 2012]

defined contour error in point milling as the orthogonal distance (distance⊥) between the actual

tool location Ca
L and the reference CL path, denoted as εL and expressed in (1.6).

εL = distance⊥ (Ca
L,Reference CL path) (1.6)

The purpose of such a contour error definition is to approximate the effective cutting error,

caused by the actual tool contact point Ca
C. This is because the information of the tool contact

points is not available in the axis control and machining stages. This error can be represented

by the orthogonal distance between the actual tool contact point Ca
C and the reference CC path,

denoted as εC , and expressed in (1.7).

εC = distance⊥ (Ca
C,Reference CC path) (1.7)

In 5-axis machining, to improve the approximation accuracy of the effective cutting error εC ,

[Altintas 2010, Yang 2015a] considered a complementary error related to the deviation of tool
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orientation. As it can be seen in Fig. 1.14, even though the tool location point can be tracked

with high accuracy, the tool orientation deviation can still cause the cutting error εC . The error

related to the deviation of the tool orientation is denoted as εu and defined in (1.8).

εu = angle (ur,ua) (1.8)
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Figure 1.14: Cutting error caused by tool orientation deviation

According to the above discussions, it can be noticed that the main objective of contour error

definition, εL or (εL, εu), is to estimate the effective cutting error, εC. Main approaches for

contour error determination are briefly presented in next paragraph.

3.1.2 Literature review

The strategies for contour error estimation have some specificities as follows.

Firstly, they depend on the definition of the contour error. Whether contour error is defined

by εL or (εL & εu) or εC. As discussed in § 3.1.1, in 3-axis machining, contour error is usually

defined by εL [Ghaffari 2016, Yang 2015b, Altintas 2012, Yao 2012, Chiu 2001, Erkorkmaz 2006,

Koren 1980], while (εL & εu) are usually employed to define contour error in 5-axis machining

[Li 2016, Yang 2015a, Khoshdarregi 2014, Zhang 2013, Altintas 2010]. To the best of the au-

thors’ knowledge, there is no report in which contour error is directly defined by εC. This

can be understood because the tool path information (CL,u) can be easily accessed, while the

estimation of tool contact point CC requires further information from the CAM system.

Another factor affecting the estimation approaches of contour error is the purpose of use in axis

control strategy: whether it is used for contour error compensation technique during machining
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process or for contour error pre-compensation technique in the off-line execution before the

machining starts. Each control strategy has its own characteristics and requirements, thus the

contour error estimation approach has to be consistent with the control strategy.

For contour error on-line compensation technique, contour error has to be estimated as fast

as possible to respond to the real-time effect in on-line execution. Therefore, the estimation

formula and assumption of contour error must be quite simple and/or the processor has to be

powerful enough to overcome the computing burden. Within this context, some related works

are proposed in the literature for both 3-axis and 5-axis machining, as follows.

In 3-axis machining, [Koren 1980] proved that contour error is proportional to the tool tracking

error in machining linear paths. [Chiu 2001] proposed a task coordinate frame attached locally

to the desired contour. By this way, some projections of the actual position tracking error in this

moving task coordinate frame can be used to approximate contour error for feedback controller

design. More accurate global task coordinate frame has been developed by [Yao 2012]. It

calculates contour error exactly to its first order approximation. [Ghaffari 2016] used a Newton-

based update law to estimate contour error.

In 5-axis machining, the influence of the actual tool orientation on contour error must be taken

into account. [Altintas 2010] proposed two analytical models, for both tool tip contour error

and tool orientation contour error, based on differential path geometry and the kinematics of

the machine. [Yang 2015a] proposed that the contouring error components contributed by all

axes drives are estimated through interpolated position commands and the generalized Jacobian

function. [Li 2016] used the second-order Taylor series expansion and an analytical root-seeking

formula to obtain an analytical method rather than an iterative one to estimate contour error

and to overcome the computing burden in the real-time process.

For contour error pre-compensation, the computation burden is not a constraint anymore. Thus,

the algorithm for contour error estimation has enough time to perform. However, the pre-

cision of the estimated contour error much depends on the accuracy of the dynamic model.

Within this context, the authors [Yang 2015b, Khoshdarregi 2014, Zhang 2013, Altintas 2012,

Prévost 2011a, Erkorkmaz 2006] estimated contour error using the availability of the programmed

tool path and the simulated one, in which the later is calculated by solving the Forward Kinematic

Transformation (FKT) with the simulated axis position responses obtained from the dynamic

model of the machine axes. The general idea of these works is quite simple. First, the closest
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segment on the programmed tool path to the simulated tool positioning is detected. Then, the

contour error is formulated by εL for 3-axis machining or (εL & εu) for 5-axis machining.

In this work, the intended control strategy belongs to the class of the contour error pre-

compensation technique in off-line execution. Therefore, the intended estimation approach for

contour error should take the advantages of the existing approaches within this class. In partic-

ular, the calculation technique in [Erkorkmaz 2006] will be considered to formulate the intended

contour error estimation approach.

According to the above survey, it can be noted that none of the existing works refer to the

estimation of the effective tool contact point, in order to define the contour error by εC. This

fact gives a motivation for this work, that is to propose some assumptions to estimate contour

error from the tool contact point CC in multi-axis machining within the context of off-line

execution.

In summary, the above related studies and the intention of this work are classified by Table 1.1.

Table 1.1: Some related works for contour error estimation and X the intention of this work

3-axis machining 5-axis machining

εL εC εL & εu εC

On-line

[Ghaffari 2016]

[Yao 2012]

[Chiu 2001]

[Koren 1980]

[Li 2016]

[Yang 2015a]

[Altintas 2010]

Off-line

[Yang 2015b]

[Altintas 2012]

[Erkorkmaz 2006]

X
[Khoshdarregi 2014]

[Zhang 2013]
X

3.1.3 Contour error estimation based on tool contact point

According to § 3.1.1 and § 3.1.2, it can be noticed that even if both εL and εu are non-zero, the

effective cutting error εC may be zero, as illustrated in Fig. 1.15.
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Figure 1.15: Zero cutting error in the presence of tool path deviation

The above issue gives a motivation for the following proposed contour error approximation

approach. As a consequence, it is proposed to improve the contour error by controlling directly

the CC point and the εC error.

Contour error formulation. The mathematic formula of the tool contact point derives from

the formulation of the tool positioning in § 2.2.

Take the case of toric tool for an example, according to (1.2) and (1.3), the tool contact point

CC is defined by (1.9),

CC = CL − r. (n − u)−R.
u ∧ n

‖u ∧ n‖
∧ u (1.9)

in which the tool path information (CL,u) can be reformulated by solving the FKT based on

the position setpoints and the position responses, as found in [Lavernhe 2006]. Clearly, the tool

contact point CC will be determined if the unit surface normal vector n is known. Determination

of n is the main difficulty to estimate the tool contact point.

As it can be seen in Fig. 1.5, as u is known, n can be reformulated if other parameters f, θn and

θt are known or estimated. To obtain the latter values, it is proposed to make some assumptions

as follows:

• For both the programmed and actual tool paths, the unit feed vector f at CC, denoted as

fCC
, is assumed to be equal to the unit tangential vector as a function of tool displacement

at CL, denoted as fCL
, if the two following conditions are satisfied:

– The tool diameter is much smaller than the trajectory curvature,

– The tool inclination variation and its angular velocity, ∆θt and θ̇t respectively, are

very small, e.g. several micro-degrees.
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This assumption is illustrated in Fig. 1.16.
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Figure 1.16: Estimation of the feed vector

When CL is known, fCC
and fCL

are defined by the first derivative of CL coordination as

a function of the tool displacement s, expressed in (1.10),

fCC
≅ fCL

=
d ([CLx,CLy,CLz])

ds
(1.10)

where the tool displacement at the k instant, denoted as sk, defined in (1.11).

sk =
k∑

i=1

‖Cr,i
L − Cr,i−1

L ‖ (1.11)

In the following, only the symbol f is used for the feed vector, that is defined in (1.10).

• For θn and θt, their reference values are known in CAM configuration. Assume that the

responses of θn and θt can be estimated by specified values

Once all of the reference and actual values of u, f, θn and θt are determined, vector n can be

calculated as follows.

According to Fig. 1.5, given the unit vectors u (ux,uy,uz), f (fx, fy, fz) and n (nx,ny,nz). A

unit vector m (mx,my,mz) is obtained by a rotation of f with an angle of θn around n, having

the same direction with the projection of u onto the plane (t, f). Its coordinates are defined by

(1.12).

[mx,my,mz]
T = Rn (θn) . [fx, fy, fz]

T (1.12)
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where Rn (θn), a rotation matrix around n [Kovács 2012], is given in (1.13),

Rn (θn) =







c+ n2
x (1− c) nxny(1− c)− nzs nxnz(1− c) + nys

nynx(1− c) + nzs c+ n2
y (1− c) nynz(1− c)− nxs

nznx(1− c)− nys nzny(1− c) + nxs c+ n2
z (1− c)







(1.13)

with c = cos(θn) and s = sin(θn).

Due to the fact that n is perpendicular to f, and the definition of θt and θn, the relations in

(1.14) are obtained.






n ⊥ f

∠ (n,u) = θt

∠ (m,u) = 90− θt

(1.14)

From (1.14), leading to (1.15).







n.f = 0

n.u = ‖n‖.‖u‖.cos (θt)

m.u = ‖m‖.‖u‖.cos (90− θt)

(1.15)

As u, f, n and m are unit vectors, from (1.15), (1.16) is deduced.







nx.fx + ny.fy + nz.fz = 0

nx.ux + ny.uy + nz.uz = cos (θt)

mx.ux + my.uy + mz.uz = sin (θt)

(1.16)

By solving (1.16), the coordinate components of n can be obtained.

To verify the above assumption, a test case is proposed with the yaw angle θn sets to zero and

the tilt angle θt sets to 5 degrees. The previous equation (1.16) can be simplified by (1.17).

n =
f ∧ u

‖f ∧ u‖
∧ f (1.17)

Once n is estimated by (1.17), CC is estimated by (1.9).
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Calculation technique. To fulfill the proposed contour error (εC) estimation, the orthogonal

distance from the actual tool contact point Ca
C to the reference CC path must be found, as

illustrated in Fig. 1.13.b.

The calculation technique of the contour error in off-line execution is based on [Erkorkmaz 2006],

whose main ideas are illustrated in Fig. 1.17 and summarized below.
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Figure 1.17: Three cases for contour error estimation

• The actual tool contact point Ca
C can belong to one of the three regions, I, II and III,

which are bounded by the normal surfaces of the path segment vectors and the bi-normal

surface of the angle ∠Ci-1
C Ci

CCi+1

C .

• Case 1: Contour error, εC , is estimated using the previous closest CC segment, Ci-1
C Ci

C,

and given in (1.18).

εC = distance⊥

(

Ca
C,C

i-1
C Ci

C

)

=
‖
−−−−→
Ci-1

C Ci
C ×

−−−−→
Ci-1

C Ca
C‖

‖
−−−−→
Ci-1

C Ci
C‖

(1.18)

• Case 2: Contour error, εC , is estimated using the next closest CC segment, Ci
CCi+1

C , and

given in (1.19).

εC = distance⊥

(

Ca
C,C

i
CCi+1

C

)

=
‖
−−−−−→
Ci

CCi+1

C ×
−−−−→
Ci

CCa
C‖

‖
−−−−−→
Ci

CCi+1

C ‖
(1.19)
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• Case 3: Contour error, εC , is estimated using the closest reference tool contact point Ci
C,

and given in (1.20).

εC = ‖
−−−−→
Ca

CCi
C‖ (1.20)

From (1.18) to (1.20), the absolute value of contour error, εC , is obtained. To evaluate whether

contour error represents an under cut or an over cut, the sign of contour error is a good indicator

[Prévost 2011a]. It is proposed that the positive and negative signs of contour error represent

for an under cut and an over cut, illustrated in Fig. 1.18.a and b, respectively.

C
a

C

C
a

L

u
a

f
a

εC<0
Over cut

C
a

C

C
a

L

u
a

f
a

εC>0

Under cut

Reference CC path

Desired part

C
i

C
f
i

n
i

a) b)

Actual CC path

C
i

C

f
in

i

Figure 1.18: Illustration of contour error sign

The sign of contour error is mathematically defined in (1.21).

sign (εC) = sign

(

ni.
−−−−→
Ci

CCa
C

)

(1.21)

Validation. It is clear that the accuracy of the estimated contour error, from (1.18) to (1.20),

belongs to the accuracy of the estimated tool contact point in (1.9). The latter belongs to the

accuracy of n in (1.17).

To validate n, it is proposed to perform the two following steps:

• Firstly, from the estimated f and estimated n, calculate the estimated tilt angle θt,

• Then, compare the estimated θt with the programmed one.

Note that in the case of study, the programmed tool path generated by CAM has the specificity

of tilt and yaw angles as θt = 5 deg and θn = 0 deg, respectively.
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Fig. 1.19 shows the programmed tool path, the estimated CC path and the estimated vectors.

Zoom in Estimated θt 

Figure 1.19: Illustrations of the programmed tool path, the estimated CC path and the estimated

vectors

As it can be seen in Fig. 1.20, the estimated θt values accurately approximates the programmed

value, with a tolerance of less than 1.10−4 degrees. Therefore, the approximation of vector n

has a high confidence, leading to the high precision of the estimated CC.
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Figure 1.20: Verification of θt value
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3.2 Contour error estimation in 5-axis flank milling

The general 5-axis flank milling is illustrated in Fig. 1.21. As it can be seen, there exist the over

cut and/or under cut due to the deviations of the higher and lower parts of the tool trunk over

the workpiece.
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Figure 1.21: Over cut and under cut in flank milling

Controlling the higher and lower parts of the tool trunk is performed through either controlling

the programmed tool path (CL,u), or controlling two points: one for the programmed tool

location point CL and another point on the tool trunk, denoted as the higher tool location point

CH. This means that controlling a couple of values (CL,CH) is equivalent to controlling the

programmed tool path (CL,u). These two points are characterized by (1.22),

CLCH = Hu (1.22)

where H is the distance between CL and CH.
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3.2.1 Problem formulation

In 3-axis flank milling, due to the fixed tool orientation, only a limited number of surfaces can

be machined, e.g. in flank milling with a 3-axis machine having a vertical tool axis, the walls

with fixed orientations should be parallel to the machine tool axis. Fig. 1.22 illustrates that

the errors in controlling the tool location point generate an under cut and an over cut over the

workpiece.
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Figure 1.22: Impact of tool location error on the effective cutting errors of 3-axis flank milling

In 5-axis flank milling, the effect of the tool location point error on the effective cutting error

is the same as in the 3-axis flank milling case. However, in this case, the errors of the tool

orientation vector also have a high impact on the effective cutting error, as illustrated in Fig.

1.23.

CL
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Figure 1.23: Impact of tool orientation error on the effective cutting error of 5-axis flank milling

The definition of contour error in flank milling consists in approximating the above effective

cutting errors between the nominal surface and the machined surface.

The literature review related to this topic is briefly presented below.
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3.2.2 Literature review

Contour error in flank milling is usually determined by calculating the surface envelope of the

tool movement, as illustrated in Fig. 1.7.

To determine the surface envelope, each author proposed their own approach, that gener-

ally belongs to one of the two following groups. The first one is the analytical approach,

that refers to calculating the implicit equation of the envelope, such as using “Jacobian Rank

Deficiency”[Abdel-Malek 1997, Yang 2005], or “Sweep Differential Equation”[Blackmore 1994],

etc. The second one is the kinematic approach, that consists in estimating the surface enve-

lope, such as using “Tangency fonction”[Chiou 2004], “Grazing Curve”[Bedi 2003], etc. While

the analytical approach is generally complex, time-consuming and difficult to be implemented,

the kinematic approach is quite simple to obtain quickly the approximated surface envelope.

That is the reason why the latter will be preferred in this thesis.

Because proposing a new estimation approach for the contour error of flank milling is not the

objective of this thesis, the calculation technique of this error in the next paragraph is based on

a kinematic approach proposed in the literature, that is [Pechard 2011].

3.2.3 Calculation technique

Similar to the calculation technique of contour error in point milling in § 3.1.3, it is possible to

find out the reference CL path segment Ci
LC

i+1

L , that is closest to the actual tool positioning

(Ca
L,C

a
H), illustrated in Fig. 1.24.

From Ci
L, one can define a specified local plane Pi, defined by (1.23),

Pt =
(
Ci

L,u
i, fi
)

(1.23)

where the unit feed vector fi is similarly defined in (1.10).

The estimated contour errors generated by the lower and higher tool location points, CL and

CH, denoted by εL and εH , are provided by (1.24) and (1.25), respectively,

εL = distance⊥
(
Ca

L,P
i
)
= ‖

−−−→
Ca

LN‖ (1.24)

εH = distance⊥
(
Ca

H,P
i
)
= ‖

−−−→
Ca

HM‖ (1.25)
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Figure 1.24: Contour error definition in flank milling

where N and M are the projections of Ca
L and Ca

H on the plane Pi, respectively. According to

(1.24) and (1.25), contour error of 5-axis flank milling, denoted as εF , is finally estimated by

(1.26).

εF = max (εL, εH) (1.26)

3.3 Conclusion

To conclude, the estimated contour errors for both point milling and flank milling in multi-axis

machining center have been formulated in this section.

For point milling, the primary idea of the proposed contour error estimation approach is based

on the estimation of the tool contact point.

Meanwhile, in flank milling the estimation of the contour error is still based on the evaluation

of the tool location points.



36 Variable gain contouring control for multi-axis machine tools

4 Feedrate interpolation

Another execution before controlling the machine axes is feedrate interpolation. This stage is

important, because it generates the position setpoints, that are the input of the axis control

stage.

It can be noted that the position response of each axis, which is the output of axis control

stage, is expected to follow the position setpoint as close as possible. Thus, the behaviors of

the position setpoint, i.e. its kinematic characteristics, will affect the behaviors of the position

response as well. Consequently, the latter affects the tool and machining behaviors. For example,

if the reference axis jerk exceeds the jerk limit of machine axis, its response may have a high

possibility to exceed this limitation also. This will induce the tool vibration during machining,

causing marks on the machined part.

Henceforth, in developing an advanced axis control law for the contour error reduction, it is

important to take the constraints of the position setpoints into account, in the way that the

resulting position responses should also respect such constraints.

To evaluate the constraints of the position setpoints, it is necessary to intrinsically understand

the core idea of the feedrate interpolation.

4.1 Overview

The schematic diagram of feedrate interpolation is highlighted in Fig. 1.25, which is explained

below.

Feedrate interpolation

NC 
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}
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Figure 1.25: Schematic diagram of feedrate interpolation

Firstly, the NC program contains the programmed tool path (CL,u) and the programmed fee-
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drate Fprog. While the former is geometrically treated by the CNC, such as rounding off the

discontinuities in the programmed tool path described by G1 code, the latter is always constant,

determined by the cutting conditions between the tool and workpiece material. They are the

two inputs for the IKT, to determine the joint movements.

Next, the programmed feedrate and the joints movements are evaluated as a function of geometry,

namely denoted ṡprog and q (s), where s represents the tool displacement along the tool path.

The two data constitute the inputs of the feedrate interpolation. The outputs of this stage

are the feedrate and the sampled axis position setpoints, evaluated as a function of time, and

denoted ṡ (t) and q (t), respectively. The core part of the feedrate interpolation is primarily

based on the feedrate planning technique with the respect of the concerned constraints, e.g. the

axis kinematic limitations.

It can be said that CAM produces the programmed tool path typically without regards to the

constraints of the machine, such as axis kinematic limits, machine vibration, etc. Therefore,

the purpose of the feedrate interpolation is to generate a feedrate profile to follow the given

trajectory, while complying with all of these constraints. Although the programmed feedrate

is always constant, the one produced by the feedrate interpolation stage is often decreased to

respect all of the concerned constraints.

Some studies related to this topic are briefly reviewed as follows.

4.2 Literature review

To perform the feedrate interpolation stage, there are many proposed techniques in the literature.

Each one solves its main problems and obtains its own objectives.

[Bobrow 1985] solved the minimum time control problem based on the solution from the feedrate

interpolation stage, in which the trajectory generation is considered as a dynamic system with

two states, including path displacement and velocity; then the velocity along the tool path is

limited by the actuator torque constraints. Moreover, the tool path acceleration is switched

between its maximum and minimum limits at the identified path points to generate a bang-bang

style trajectory.

Furthermore, there are problems associated to the feedrate planning along a curved path, be-
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ing subject to bounds on the acceleration to achieve minimum traversal time in machining

[Shin 1985, Shiller 1990]. [Timar 2005] has addressed such problems for a 3-axis CNC machine,

in which by using polynomial parametric curves, the optimal feedrate can be specified by a

piecewise-rational function of the parameter. Consequently, a simple real-time interpolator al-

gorithm, directly driving the machine based on the analytic path description, can be performed

to obtain the optimized feedrate, without the need for piecewise-linear/circular G code approx-

imations.

To remove feedrate fluctuations due to parametrization errors and to produce continuous profiles

of position, velocity, and acceleration, [Erkorkmaz 2001a] proposed a quintic spline interpolation

approach, in which fifth order polynomials are used to re-sample the reference trajectory gener-

ated with varying interpolation period at the servo loop closure period. This allows preservation

of the original kinematic profiles. In addition, to counteract with the feedrate planning for long

tool paths, a Linear Programming combined with a parallel windowing algorithm is proposed in

[Erkorkmaz 2017], from which the interpolation can be performed over different portions along

the tool paths in parallel, with minimal impact on the optimality of the obtained feedrate profile.

On top of this, it can be said that the axis kinematic constraints, including the velocity, accelera-

tion and jerk limitations of the machine axes, are usually considered in the feedrate interpolation

stage. This is due to the fact that such constraints allow preservation of the operational life of

the drives and of course of the machine, avoidance of saturations, and the prevention of machine

vibrations that can potentially lead to severe marks on the surface or instability of the axis

control [Sencer 2008, Beudaert 2012]. The velocity and acceleration limitations of the drives in

the feedrate interpolation are carried out in [Dong 2005, Renton 2000]. Indeed, jerk is also an

important parameter, because it allows to limit the feedrate variations in high speed machining.

[Erkorkmaz 2001a, Barre 2005] have highlighted the effect of jerk limitation on the mechanical

structure.

4.3 Chosen algorithm

Developing a new technique of feedrate interpolation is out of the scope of this work. Therefore,

it is proposed to use one of the proposed feedrate interpolation technique in the literature

to generate the position setpoint for the axis control. In fact, the chosen technique for the

feedrate interpolation stage is the VPOp algorithm proposed in [Beudaert 2012], which has been
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developed at the laboratory LURPA. Main characteristics of VPOp are highlighted as follows:

• To reduce the frequency content of the trajectory and to avoid exciting the natural modes

of the structure, the limitation of not only the tangential jerk but also of each axis jerk

should be taken into consideration.

• The geometrical problem is separated from the temporal interpolation problem by a de-

coupled approach. The interpolation in sharp zones is based on a look ahead algorithm,

in considering the geometrical analysis of the tool path.

• Its mathematical formulation allows processing both linear and rotary axes in the same

manner and the algorithm is suitable for either serial or parallel kinematic machines.

The main equation representing the principle of VPOp algorithm, given in (1.27), expresses the

upper limits of the feedrate ṡ subject to the minimum value between the programmed feedrate

and the upper feedrate limits derived from the limitations of axis velocity, acceleration and jerk.

ṡ ≤ min

(

Fprog,

(
V max

|qs|

)

,

(√

Amax

|qss|

)

,

(

3

√

Jmax

|qsss|

))

(1.27)

The equation (1.27) allows to predict the areas where the real feedrate will decrease, while

respecting all of the kinematic constraints.

The resulting feedrate obtained by VPOp is illustrated in Fig. 1.26. As it can be seen, the

feedrate respects all the constraints in (1.27).
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Figure 1.26: Resulting feedrate by VPOp [Beudaert 2013]

5 Conclusions

The tool path geometry and the kinematic execution in multi-axis high speed machining have

been analyzed in this chapter.

Concerning the geometry treatments, firstly the necessary knowledge in computing the multi-

axis tool path have been given. Moreover, the issues of the real tool path derived from the

changes of the tool orientation in 5-axis milling contexts have been discussed. The contour error

estimation approaches in 5-axis point milling and 5-axis flank milling have been formulated. The

former is proposed, based on the estimation of the tool contact point through some assumptions.

The latter is based on one of the proposed approach in the literature.

Relating to the kinematic execution, the important roles of feedrate interpolation for the axis

control and for the machining are highlighted. Furthermore, the principle and purpose of this

task are discussed. The chosen feedrate interpolation technique generates the position setpoint

respecting the axis kinematic limitations of the machine. Therefore, the adaptive control law

in the next chapter should be developed in the way that the position responses respect these

constraints as well.
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Finally, it can be concluded that this chapter has successfully provided the necessary elements

(the position setpoint generation, the contour error formulation, the axis kinematic constraints)

so that the intended adaptive control law for the contour error reduction can be developed.





Chapter 2

Adaptive contouring control in multi-axis

high speed machining
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The previous chapter has formulated the contour error estimation approach within the different

contexts of multi-axis high speed machining. By using the nonlinear axis model, the contour

error can be predicted by means of an off-line process.

This chapter aims at solving an optimization problem to produce the optimal variable control

gains in pre-compensating the contour error, before it occurs in the machining process.

The introduction of the classical axis control structure is firstly presented. The nonlinear feature

of the axis model is then highlighted. Finally, the core part of this chapter is to formulate and

solve the optimization problem under constraints.

1 Introduction of the classical axis control and the nonlin-

ear axis model

The axis control in CNC is built under the classical cascaded structure [Altintas 2000a]. It

consists of the position, velocity and current loops, ranging from the outer to inner loops,

respectively, illustrated in Fig. 2.1.

Figure 2.1: Axis control structure [Susanu 2005]

The sampling time decreases from the position to current loops. The position loop is equipped

with a Proportional (P) controller and a velocity Feed Forward (FFW) action. A Proportional-

Integral (PI) controller with a torque FFW action is used in the velocity loop, while the current
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loop uses only a PI controller. The purpose of these controllers is to reduce the axis tracking

error, with an expectation that the contour error is also reduced during the machining process.

In this thesis, due to the aim of contour error pre-compensation in an off-line phase, the nonlinear

axis model of the above classical axis control is used to investigate the proposed control law. For

the case of study, it is proposed to use the nonlinear axis model of the Mikron UCP 710 machine

tool located at LURPA, that has been developed in [Susanu 2005], and enhanced and validated

in [Prévost 2011a]. Obviously, the proposed control approach can be used for other axis models

of other machining centers. It can be found in [Prévost 2011a], the chosen model has been

proved to simulate the real behavior in 5-axis milling within Mikron UCP 710 machining center

with high confidence. One validation example is for machining the impeller surface illustrated

in Fig. 2.2, whose the simulated and measured axis tracking errors are superimposed almost at

all portions of the machining profiles, as seen in Fig. 2.3.

Figure 2.2: Definition of impeller surface and the machining trajectory [Pechard 2011]

In the selected axis model, only the nonlinear friction characteristic is taken into account. The

friction law in each axis drive is studied and proposed in [Prévost 2011a] and illustrated in Fig.

2.4. It is a combination of both viscous and Coulomb frictions.

The detailed descriptions of the friction model as well as the motor drive model are given in

Appendix A.
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Figure 2.3: Simulated and measured axis tracking errors of the impeller surface [Prévost 2011a]

Experimental points
Tendency curve

Results (X axis)

Double 

exponential 
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Figure 2.4: Friction law and experimental results for X axis [Prévost 2011a]
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2 Contouring control: State of the art

The fact is that the presence of the contour error definitely indicates the existence of the tool

tracking error, the opposite is not always the case. This means that although the tool tracking

error may exist, the contour error can be zero. It is well-known that obtaining small contour

error is more important than small tool tracking error. This is because the contour error is

usually referred to the conformity between the machined and desired parts. The control efforts

for contour error reduction can be called contouring control [Erkorkmaz 2001b]. There are two

main techniques in order to deal with such a control, including contour error compensation and

pre-compensation techniques.

For the contour error compensation, advanced axis controllers are usually developed. There are

two sub-philosophies in this way.

On the one hand, authors proposed advanced controllers for axis tracking. The motivation is

that when the axis tracking error is reduced in all of the axes, it may indirectly lead to the

contour error reduction.

Altintas et al. [Altintas 2000b] built a sliding mode controller to reduce the tracking error of

each axis in the presence of external disturbances such as friction and cutting force, obtaining an

indirect reduction of contour error. Erkorkmaz et al. [Erkorkmaz 2001b] used a pole placement

controller with disturbance cancellation in the feedback loop, in order to deal with the detrimen-

tal effects of friction, cutting forces, and drive parameter variations. A combination of vibration

avoidance, sliding mode control, torque ripple and friction compensation techniques to facilitate

high bandwidth – high accuracy tracking in ball screw drives is proposed in [Kamalzadeh 2007].

The model predictive control is also proposed for the axis control in the context of high speed

machining in [Rodriguez-Ayerbe 2014, Dumur 2008].

The benefit of this method is that the idea is simple, as it is based on the axis tracking error

reduction to reduce the contour error. Moreover, the tracking error is easily obtained during

the control process thanks to the measuring devices. However, it should be noted that the

decrease of tracking error, which is still larger than zero, may be less effective in reducing the

contour error or can even increase the contour error in some cases of multi-axis machining

[Koren 1991, Tang 2013].

On the other hand, to directly reduce the contour error, especially in the case of multi-axis
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machining, authors proposed the advanced contouring controllers. In this way, all axis tracking

error and position responses are collected and used to predict the contour error by one of the

estimation methods. The control signal of each axis is then modified by one of the intelligent

control laws to compensate the contour error [Koren 1991, Chiu 2001].

Following this philosophy, Koren [Koren 1980, Koren 1991] was a pioneer of Cross Couple Control

(CCC) for compensating the contour error online. Afterwards, a large number of extended and/or

improved versions of CCC are proposed [Huo 2012, Zhang 2015]. Cheng et al. [Cheng 2009] pro-

posed an integrated motion control scheme combined with a fuzzy logic-based feedrate regulator,

which adjust the value of the desired feedrate, to reduce the contour error. In addition, Khal-

ick et al. [El-Khalick 2011] added the real time estimated contour error into the optimization

problem of Model Predictive Control (MPC), in yielding the contour error reduction. Adaptive

robust control is also proposed for biaxial contouring control in [Yao 2012, Davis 2015].

The benefit of the advanced contouring control approaches is that they can evaluate and control

the real behaviors of the machine. The axis drive dynamics can be excited intelligently to

compensate the contour error. In contrast, the drawback is the computing load in real time,

especially in 5-axis machining. Moreover, its effectiveness much depends on the precision of

the contour error estimation method. Even if the contour error can be estimated accurately,

the advanced contouring controllers require modification of the classical control structure of the

commercial CNC. That may be inconvenient and costly for machine tool manufacturers.

For the contour error pre-compensation techniques, the contour error is firstly predicted based

on the dynamic axis model and one of the contour error estimation approaches. Then calibration

efforts are performed to pre-compensate the predicted contour error.

To the best of the authors’ knowledge, almost all of the works in the literature are dedicated

to modifying the position setpoints in pre-compensating the contour error on the machining

operation. Khoshdarregi et al. [Khoshdarregi 2014] proposed generating the shaping position

commands in the FFW blocks that pre-compensate the resulting contour error and avoid struc-

tural vibrations in 5-axis CNC machine tools. Zhang et al. [Zhang 2013] modified the trajectory

commands in pre-compensating the contour error and respecting axis kinematic constraints,

which are axis velocity, acceleration and jerk limitations. Yang et al. [Yang 2015b] used the

idea of MPC to adjust the position setpoints, preserving the axis velocity and acceleration con-

straints. Furthermore, the contouring accuracy in corner machining application is also improved
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by a trajectory planning strategy developed in [Erkorkmaz 2006].

The advantage of the contour error pre-compensation techniques is that the contour error can

be calculated off-line through the nonlinear axis model and the computational load can be less

critical. The modified position is easily implemented by users in CNC. However, this method re-

quires strictly an accurate knowledge of the axis dynamic model obtained from the identification

task.

According to the above discussions, it is proposed in this work to investigate a new strategy

within the class of the contour error pre-compensation techniques. The proposed idea is that

the control gains are adjusted in the off-line process through the nonlinear axis model, with an

objective of the contour error reduction during the machining process. This proposed approach,

so-called “Off-line Gain Adjustment” (OGA), is developed in detail below.

The works related to this topic in the literature and the intention of this thesis can be categorized

by their different strategies through Table 2.1.

Table 2.1: Contouring control methods and X the intention of this work

Controller Trajectory

Tracking following Contouring following (CL,u)

On-line

Sliding mode control

[Kamalzadeh 2007],

[Altintas 2000b],

Zero Phase Error

Tracking Controller

[Erkorkmaz 2001b], etc.

Cross couple control

[Koren 1980, Koren 1991]

[Huo 2012, Zhang 2015],

Fuzzy logic control

[Cheng 2009],

Model predictive control

[El-Khalick 2011],

Adaptive robust control

[Yao 2012],[Davis 2015], etc.

Off-line
Model predictive control

[Rodriguez-Ayerbe 2014]

[Dumur 2008], etc.

X

Off-line gain adjustment

(OGA)

MPC’s idea[Yang 2015b],

FFW shaping[Khoshdarregi 2014],

Analytical method

and kinematic constraints

[Zhang 2013],

Trajectory planning strategy

[Erkorkmaz 2006], etc.
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3 Off-line gain adjustment (OGA)

According to the pros and cons of the above two main contouring control techniques, it is

proposed to take the advantages of both methods to compensate their drawbacks. The idea is

to maintain the classical cascaded control structure and the position setpoints in the current

commercial CNC, while using variable gains for the position controller, e.g. to adaptively excite

the axis drive dynamic, to compensate the contour error during the machining process. The

only modification on the commercial CNC is the extended functions, that are the gain update

at each sampling time and the required memory to store the gain values for the given trajectory,

as illustrated in Fig. 2.5.

Optimal variable gains

On-line 

process

Off-line

process

Multi-axis 

High Speed Machining centerReference trajectory (setpoint)

Off-line Gain Adjustment
+ Use nonlinear axis model

+ Calculate/predict the contour error

+ Solve the contour error optimization 

problem under constraints

Commercial CNC

with extended 

functions

Figure 2.5: Proposed offline execution

3.1 Gain modification influence in the contour error

In the proceeding, the cases of study are related to the 5-axis point milling on the 5-axis Mikron

UCP 710 machine, having three linear axes {X, Y, Z} and two rotary axes {A,C}. For the

simplicity of mathematic formulation, the following symbols are used:

• a: the axes {X, Y, Z,A,C},

• r and s: the reference and simulated values in view of the axis model simulation, respec-

tively.

The core part of the proposed axis control is the OGA algorithm. Thus, the key question is
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how can the variable gains of position controllers generated by OGA reduce the contour error?

Answering this question, it is essential to analyze the procedure in Fig. 2.6 as follows.

-3

0

 

 

 

...

Vm
Y

Vm
A

(rpm)

(m/min)

Δt tΔt

t

Δt

Δt

z1 z2

(d)

(Xw,Yw,Zw)r

z1 z2

Fr

(i,j,k)r

(Xw,Yw,Zw)s

Fs

(i,j,k)s

(Xm,Ym,Zm,A,C)r

Interpolation

IKT

(Xm,Ym,Zm,A,C)s
Axis control

with variable gain

by OGA

FKT

Bode diagram 

of position closed loop

M
ag

n
it

u
d
e 

(d
B

)

Frequency (rad/s)

Kmin
a Kmax

a

Bmin
a Bmax

a

(S1) (S2) (S3) (S4)

emax
t

 
emin

t

kth
k+1th

ε (d)

or

S
...

Figure 2.6: Motivation of gain adjustment

(S1) Along the desired profile (d) generated by CAM, different zones z have different curvature

characteristics, e.g. z1 and z2 having small and high curvatures, respectively. The tool behav-

iors involve the tool location CL(Xw, Yw, Zw) and the tool axis orientation u(i, j, k), while the

tangential feedrate vector at the tool location point is denoted by F. As discussed in Chapter

1, Section § 4, CAM only produces two inputs for the feedrate interpolation stage: the first one

is the constant programmed feedrate and the second one is the programmed tool path.

(S2) According to the above desired tool behavior, the position setpoints (Xm, Ym, Zm, A, C)r

generated by the feedrate interpolation stage have different kinematic characteristics between

the different zones and between the different types of axis. For example: in the zone z1, Y axis

is more excited than A axis, while in z2, the reverse is the case. These setpoints are then fed

into the position closed loops of the axis drives to control the tool.

(S3) The axis tracking error depends partly on the reference dynamics (i.e spectral content).

For axes with references having different dynamics, this error would be different for each axis,

having an impact in the contour error. To reduce the contour error, one possibility is to modify

the axis drive dynamics in order to adapt it in function of the reference of each axis.

If the controllers use fixed control gains, the dynamic of axis drives is kept unchanged during the
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whole process of axis control. In the qualitative point of view, it can be said that the axis drive

dynamic is too rigid to adapt appropriately the suitable positioning compliance. That causes

the deviation between the resulting tool path and the reference one, that is responsible for the

contour error presence.

Therefore, there is a need to excite more or less the axis drive dynamic during the axis control

process to compensate the contour error. It can also be remarked that the axes are not needed

to be permanently controlled with high gains, because for slow dynamics, a small gain is enough

and the high frequencies of the machine are less excited. The OGA is derived based on such an

idea.

Basically, when OGA adjusts the proportional gain of the position controller, KP
a , it leads to

adjusting of the dynamics of axis drives [Pritschow 1996], meaning that the bandwidth of the

position loop Ba is modified within the range in (2.1),

Bmin
a ≤ Ba ≤ Bmax

a (2.1)

when OGA adjusts the feed forward gain of the position controller, KF
a , it modifies the impact

of feed forward action on the velocity loop.

According to the above effects of the two control gain adjustments, denoting Ka as KP
a and KF

a ,

when OGA adjusts Ka within a boundary as in (2.2), it leads to the fact that the axis tracking

error, Ea,m, is also modified within a boundary as in (2.3),

Kmin
a ≤ Ka ≤ Kmax

a (2.2)

Emin
a,m ≤ Ea,m ≤ Emax

a,m (2.3)

where EX,m is for example the axis tracking error of X axis, given in (2.4).

EX,m = Xr
m −Xs

m (2.4)

(S4) By solving the FKT, a set of tool behavior responses in the workpiece space is determined.

Clearly, once the axis motions are adjusted more or less differently, the amplitude and direction

of the resulting tangential feedrate vector in the workpiece space are also modified. This leads

to the modification of the tool tracking error vector, et, which is defined in (1.5). Its norm is

also bounded by (2.5).

emin
t ≤ ‖et‖ ≤ emax

t (2.5)
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Assume that between emin
t and emax

t , S represents a region where the tool can approach due to

the effects of the above control gain adjustments. In this region, the desired profile (d) illustrates

the tool contact positions corresponding to the zero contour error.

It can be said that the gain adjustments in OGA can finally modify the tangential feedrate

vector so that the tool contact point can approach the desired profile (d), in order to remove or

reduce the contour error.

3.2 OGA integrated control structure

The control structure with specificity of OGA is illustrated in Fig. 2.7.a and explained below.
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Figure 2.7: Control structure with OGA, e.g. for Y axis

In this figure, s and 1/s are the Laplace domain transfer functions for the derivative and in-

tegrator operations respectively; Kc is a conversion factor from m to rad . For simplicity, the

velocity loop, current loop, motor and friction model have been hidden. The study intention is
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to modify the control gains in position loop, KP
a and KF

a . The torque feed forward action as

seen in Fig. 2.1 is not considered in this work, in order to highlight the effects of the velocity

feed forward control action and its modification based on the OGA.

Note that the unit of KP
a is 1/s. However, in [Prévost 2011a] KP

a is proposed in m/min/mm

for the linear axes (X, Y and Z) and in rad/min/mrad for the rotary axes (A and C). Both of

them are multiplied a factor of 1000/60 to obtain the original unit 1/s. In the proceeding, KP
a

in either m/min/mm or rad/min/mrad will be used. While, KF
a is a constant without unit.

The inputs of OGA are the position setpoints and the position responses simulated by the

nonlinear axis model. In OGA, firstly the FKT problem is solved to obtain the reference and

simulated tool behaviors in the workpiece space. Then the tool contact points and the contour

error are estimated, based on the proposed estimation method in Chapter 1, Section § 3.1. The

constraints are checked. Solving the contour error optimization problem under constraints allows

one to obtain the optimal variable gains at the output of OGA. The gains are afterwards used

to update the control gains in the position loop of axis drive.

In the following, three main cases of study of OGA are considered.

• Case 1: OGA optimizes only KP
a , illustrated in Fig. 2.7.b.

• Case 2: OGA optimizes only KF
a , illustrated in Fig. 2.7.c.

• Case 3: OGA optimizes both KP
a and KF

a , illustrated in Fig. 2.7.d.

3.3 Optimization problem of OGA

To pre-compensate the contour error before it happens in the online machining process, the

OGA generates the optimal variable gains in the simulated machining framework by using the

nonlinear axis model. This has been done based on the idea of Model Predictive Control (MPC),

that is to formulate the optimization problem within the prediction horizon.
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3.3.1 Horizon definition

At instant k, the future trajectory ranging from k+1 to k+Nk within a horizon hk is considered,

as illustrated in Fig. 2.8.a. The horizon hk is characterized by Nk instants or Nk tool positions,

represented by (CL,u). Its length is physically defined either as a function of time or as a

function of tool displacement length, as proposed below.
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Figure 2.8: a) Horizon hk; b) Temporal length of hk; c) Geometrical length of hk

In time domain, as illustrated in Fig. 2.8.b, the temporal length of hk, ∆th,k, is related to the

sampling period of the position setpoint Te and Nk through (2.6).

∆th,k =
(
Nk − 1

)
Te (2.6)

In the geometry domain, as illustrated in Fig. 2.8.c, the geometrical length of hk, ∆sh,k is defined

by (2.7),

∆sh,k = sk+Nk

− sk+1 (2.7)

where sk is defined in (1.11). In addition, ∆sh,k can also be expressed through Te and the
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tangential feedrate F i, as in (2.8).

∆sh,k ∼= Te





k+Nk
−1∑

i=k+1

F i



 (2.8)

If ∆th,k and ∆sh,k are chosen in advance, Nk is obtained by solving (2.6) and (2.8), respectively.

There is a difference between the above two definitions of the horizon length. If all of the horizons

over the trajectory are chosen as a function of time, having the same value of ∆th,k, then each

horizon has the same number of instants Nk due to the constant value of Te. In contrast, if they

are chosen as a function of tool displacement length, having the same value of ∆sh,k, then the

number of instants Nk in each horizon may be different, depending on the different values of

feedrate F i. The two ways of the horizon length definition will be discussed in detail to solve

the optimization of OGA in Chapter 3, Section § 2.1.

3.3.2 Optimization problem

Assume that at the k instant, the control gain values, the reference and simulated values of the

axes motions and the tool behaviors at the present and past instants are known. The objective

is to find out the optimal future values of the control gains from the instant k+1 to the instant

k +Nk so that the future contour errors are minimized, over the horizon hk.

A matrix containing all position setpoints over the horizon hk, Sr, is defined in (2.9):

S
r =









Xr,k+1
m Y r,k+1

m Zr,k+1
m Ar,k+1 Cr,k+1

Xr,k+2
m Y r,k+2

m Zr,k+2
m Ar,k+2 Cr,k+2

· · · · · · · · · · · · · · ·

Xr,k+Nk

m Y r,k+Nk

m Zr,k+Nk

m Ar,k+Nk

Cr,k+Nk









(2.9)

Assume that within such a horizon, the values of KP
a and KF

a for all axes are given by the matrix

KP in (2.10) and KF in (2.11), respectively.

K
P =









KP,k+1
X KP,k+1

Y KP,k+1
Z KP,k+1

A KP,k+1
C

KP,k+2
X KP,k+2

Y KP,k+2
Z KP,k+2

A KP,k+2
C

· · · · · · · · · · · · · · ·

KP,k+Nk

X KP,k+Nk

Y KP,k+Nk

Z KP,k+Nk

A KP,k+Nk

C









(2.10)
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K
F =









KF,k+1
X KF,k+1

Y KF,k+1
Z KF,k+1

A KF,k+1
C

KF,k+2
X KF,k+2

Y KF,k+2
Z KF,k+2

A KF,k+2
C

· · · · · · · · · · · · · · ·

KF,k+Nk

X KF,k+Nk

Y KF,k+Nk

Z KF,k+Nk

A KF,k+Nk

C









(2.11)

The instant variation amounts of the above gain values of the axis a are denoted as δKP
a and

δKF
a , and defined in (2.12) and (2.13), respectively. Note that KP,k

a and KF,k
a are known at the

k instant.

δKP
a =









KP,k+1
a −KP,k

a

KP,k+2
a −KP,k+1

a

· · ·

KP,k+Nk

a −KP,k+Nk
−1

a









(2.12)

δKF
a =









KF,k+1
a −KF,k

a

KF,k+2
a −KF,k+1

a

· · ·

KF,k+Nk

a −KF,k+Nk
−1

a









(2.13)

The sums of squares of the instant gain variations of KP
a and KF

a are denoted as ∆KP
a and

∆KF
a , and defined in (2.14) and (2.15), respectively.

∆KP
a =

(
δKP

a

)T (
δKP

a

)
(2.14)

∆KF
a =

(
δKF

a

)T (
δKF

a

)
(2.15)

The vectors containing the above gain variations for all of the axes, denoted ∆KP and ∆KF ,

are defined in (2.16) and (2.17), respectively.

∆K
P =

[
∆KP

X ,∆KP
Y ,∆KP

Z ,∆KP
A ,∆KP

C

]
(2.16)

∆K
F =

[
∆KF

X ,∆KF
Y ,∆KF

Z ,∆KF
A ,∆KF

C

]
(2.17)

To simulate the machining from the k + 1 to k + Nk instant over the horizon hk, each row of

Sr in (2.9), KP in (2.10) and KF in (2.11) are simultaneously sent to the machine simulator to

generate the predicted position responses, denoted by Ŝs, and given by (2.18).

Ŝ
s =









X̂s,k+1
m Ŷ s,k+1

m Ẑs,k+1
m Âs,k+1 Ĉs,k+1

X̂s,k+2
m Ŷ s,k+2

m Ẑs,k+2
m Âs,k+2 Ĉs,k+2

· · · · · · · · · · · · · · ·

X̂s,k+Nk

m Ŷ s,k+Nk

m Ẑs,k+Nk

m Âs,k+Nk

Ĉs,k+Nk









(2.18)
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From (2.18), solving the FKT problem allows one to obtain a vector representing the predicted

tool behaviors, P̂s, given in (2.19),

P̂
s =

[

P̂ s,k+1
w , P̂ s,k+2

w , ..., P̂ s,k+Nk

w

]

(2.19)

where P̂ s,k+1
w represents for (Ĉ

s,k+1

L , ûs,k+1 ), as illustrated in Fig. 2.9.a.

From (1.1) to (1.17) and (2.19), a vector containing the predicted tool contact points, Ĉs
C , is

obtained in (2.20).

Ĉ
s
C =

[

Ĉ
s,k+1

C , Ĉ
s,k+2

C , ..., Ĉ
s,k+Nk

C

]

(2.20)

As illustrated in Fig. 2.9.b, the contour error is calculated by the orthogonal distance from each

element of Ĉs
C to the reference CC path. To do this, as discussed in Chapter 1, Section § 3.1.3,

a vector containing a set of the reference tool contact points, denoted as Cr
C , is employed.

X (mm)

Y (mm)

Z (mm)

hk

CC

r,k+1

CC
s,k+1^

εC
^k+1

O

CC

r,1

CC
s,k+Nk^

CC

r,k+Nk

X (mm)

Y (mm)

Z (mm) Reference 

CL pathhk

a)

CL      ,u
r,k+1r,k+1

O

^
CL      ,u

s,k+1s,k+1

CL,ur,1r,1

b)

^
CL      ,u

s,k+N
ks,k+Nk ^

CL      ,u
r,k+N

kr,k+Nk

CC

r,k-Nb

Simulated 

CL path

Reference 

CC path

Simulated 

CC path

Figure 2.9: a) Predicted tool behaviors; b) Predicted contact points and predicted contour error

As it can be noticed, all of the simulated tool contact points from Ĉ
s,k+1

C to Ĉ
s,k+Nk

C lag behind

their reference ones, from Cr,k+1
C to Cr,k+Nk

C , due to the inherent tool tracking error. Therefore,

the size of Cr
C must be greater than that of Ĉs

C to ensure that the contour error can always be

calculated. Consequently, Cr
C is proposed by (2.21),

C
r
C =

[

Cr,k−Nb

C ,Cr,k−Nb+1
C , ...,Cr,k+Nk

C

]

(2.21)

in which 0 ≤ N b ≤ k − 1 is chosen in advance so that sr,k−Nb

< ss,k, where sk defined in (1.11).

If N b = k − 1, the first element of vector Cr
C is always Cr,1

C , the contour error can always be

calculated, however it induces a computation burden. This is because the size of Cr
C will be
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increased when k increases. To overcome such an inconvenience, depending on the dynamic

response of the axis drive, N b can be chosen as a specific value to reduce the size of Cr
C and so

reduce the computation time. For example, during simulations of OGA with the axis drive in

this thesis, N b is chosen as in (2.22).






N b = k − 1 if 1 ≤ k ≤ 100

N b = 100 if k > 100
(2.22)

From (1.18) to (1.20), (2.20) and (2.21), the predicted contour error values over the horizon hk

are calculated and represented by ÊC in (2.23).

ÊC =
[

ε̂k+1
C , ε̂k+2

C , ..., ε̂k+Nk

C

]

(2.23)

From (2.16), (2.17), and (2.23), the cost function, J , is proposed in (2.24),

J = ÊC

(

ÊC

)T

+ λP
(
∆K

P
)T

+ λF
(
∆K

F
)T

(2.24)

where λP , λF are the weighting vectors for the gain variations of KP
a and KF

a , given in (2.25)

and (2.26) respectively.

λP =
[
λP
X , λ

P
Y , λ

P
Z , λ

P
A, λ

P
C

]
(2.25)

λF =
[
λF
X , λ

F
Y , λ

F
Z , λ

F
A, λ

F
C

]
(2.26)

From (2.24), the optimization problem of OGA is formulated by (2.27),
[

K̃
P , K̃F

]

= argmin (J) (2.27)

where K̃P and K̃F are the optimal values of KP in (2.10) and KF in (2.11).

In solving (2.27), the meaning of the weighting factors is that smaller λP and λF , greater ∆KP
a

and ∆KF
a can be accepted, and vice-versa. The optimization problem in (2.27) is subject to

constraints, that are discussed below.

3.4 Constraints

In order to assure machine kinematic limitations, stability and feasibility, the optimization of

OGA in (2.27) is subject to the three following constraints.
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3.4.1 Stability criterion

The first constraint is the stability criterion of the servo drive. It is proposed that the variable

values of proportional gain in the position controller, generated by OGA, need to respect the

limitations of phase margin and gain margin of the position open loop of the axis drive, as in

(2.28) [Younkin 2003].







Gain margin ≥ 15 (dB)

Phase margin ≥ 70 (Deg)
(2.28)

3.4.2 Axis kinematic limitations

The second constraint refers to the axis kinematic limitations. They are the axis velocity, accel-

eration and jerk limitations, given in Table 2.2, denoted by V max
a , Amax

a , and Jmax
a respectively,

and represented in (2.29).

Table 2.2: Axis kinematic constraints of Mikron UCP 710 machine

X Y Z A C

V max(m/min− rpm) 30 30 30 15 20

Amax(m/s2 − rad/s2) 2.5 3 2.1 0.83× 2π 0.83× 2π

Jmax(m/s3 − rad/s3) 5 5 50 5× 2π 100× 2π







−V max
a ≤ V̂ s,i

a ≤ V max
a

−Amax
a ≤ Âs,i

a ≤ Amax
a

−Jmax
a ≤ Ĵs,i

a ≤ Jmax
a

with k + 1 ≤ i ≤ k +Nk (2.29)
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where V̂ s,i
a for example are the predicted velocity values of the axis a from k + 1 to k + Nk

instant. V̂ s,k+1
X , Âs,k+1

X and Ĵs,k+1
X of X axis for example are calculated by (2.30).







V̂ s,k+1
X =

X̂s,k+1
m −Xs,k

m

Te

Âs,k+1
X =

V̂ s,k+1
X − V s,k

X

Te

=
X̂s,k+1 − 2Xs,k +Xs,k−1

T 2
e

Ĵs,k+1
X =

Âs,k+1
X − As,k

X

Te

=
X̂s,k+1 − 3Xs,k + 3Xs,k−1 −Xs,k−2

T 3
e

(2.30)

3.4.3 Motor current limitations

Relating to the motor current response, it is noted that the sampling time of the position loop Te

is different from that of the current loop T ′

e. The k instant of the position response corresponds

to the k
′

instant of the current response. The relation between Te, T ′

e, k and k
′

is evaluated

through the machining time ∆tm, as represented in (2.31).

∆tm = (k − 1)Te =
(

k
′

− 1
)

T
′

e (2.31)

There are two important values related to the motor current. The first one is the instant value

of motor current Ik
′

a (A). The second one is its increment ∆Ik
′

i (A), which is defined in (2.32).

∆Ik
′

a = Ik
′

a − Ik
′

−1
a (2.32)

The two values are subject to their constraints in (2.33),






I
k
′

i

a ≤ I
k
′

i
,max

a
∣
∣
∣
∣
∆I

k
′

i

a

∣
∣
∣
∣
≤ ∆I

k
′

i
,max

a

(2.33)

in which given k
′

in the prediction horizon hk, ∆tm (k + 1) ≤ ∆tm
(
k

′

i

)
≤ ∆tm

(
k +Nk

)
; I

k
′

i
,max

a

is proportional to the admissible maximum of the motor torque Cmax
m (N.m) by a factor of

Kt (N.m/A), as in (2.34).

Ik
′

,max
a = Cmax

m /Kt (2.34)
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Depending on the type of motor, e.g. the Siemens motor 1FT6084 - 8WF71 for Mikron Ma-

chine [Seimens 2005], the motor torque limit, Cmax
m , is a function of the motor angular velocity,

Vm (rpm), through the “torque-velocity” diagram in Fig. 2.10, that is represented in (2.35).

Cmax
m = f (Vm) (2.35)

C
m
(N
.m
)

Vm(rpm)

Constant torque constraint (Cm)
Power constraint (Cm)

0

30

65

1000 2000 3000 40000

c

p

Figure 2.10: “Torque-Velocity” diagram of Siemens motor 1FT6084-8WF71

Therefore, from (2.34) and (2.35), the motor current limit is a function of Kt and Vm, as in

(2.36).

Ik
′

,max
a = f (Vm) /Kt (2.36)

This means that during the control operation, each motor drive has an angular velocity profile,

leading to a corresponding profile of the motor current limit Ik
′

,max
a , as illustrated in Fig. 2.11

(black dashed curve).

I(A)

t(s)

Ia
k',max

Ia
k',max
-

k'ΔIa I(OGA)

0

Figure 2.11: Motor current response of OGA

In addition, respecting the limit profile of motor current is not sufficient if the response of

the motor current is too noisy and contains a large variation, because this fact can potentially
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damage the motor and further the machine. Thus, it is proposed that the maximum current

increment is equal to kI (%) of the nominal value of motor current, Ina , which corresponds to the

value of the constant torque constraint, Cc
m, in Fig. 2.10.

Consequently, Ina and ∆Ik
′

,max
a are given in (2.37) and (2.38), respectively.

Ina = Cc
m/Kt (2.37)

∆Ik
′

,max
a = kII

n
a (2.38)

To summarize, at the k instant the OGA aims at solving the optimization problem given in

(2.27), being subject to the constraints formulated by (2.28), (2.29), and (2.33), to generate a

set of optimal variable control gains used in the position controller of one of the three cases of

study, illustrated in Fig. 2.7.b, c and d, in pre-compensating the contour error predicted by

(2.23). The developments of OGA are valid for both the temporal horizon length in (2.6) and

the geometrical horizon length in (2.7).

3.5 Admissible gain range

For each variable gain value at each instant, OGA always checks its feasibility based on the

three above constraints. If one certain gain value does not satisfy the constraints, it will not be

chosen. Therefore, the control gain range, in which OGA can be performed, can be theoretically

unlimited. However, it is clear that if OGA is performed within an unlimited gain ranges, the

computation burden turns to be too serious to finish the OGA optimization.

To address this issue, OGA should be performed within one limited range for each control gain,

so-called admissible gain range. It is proposed to define the admissible gain range in the way

that the classical axis control can use any fixed gain values in this range without violating any

constraints in § 3.4.

For the three cases of study illustrated in Fig. 2.7.b, c and d, the admissible gain ranges of both

KP
a and KF

a are established as follows.

• For the admissible range of KP
a :

The upper limit of KP
a , KP,max

a , is chosen respecting the stability criterion of the position
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loop in (2.28), expressed in (2.39).

KP
a ≤ KP,max

a s.t stability criterion in (2.28) (2.39)

The lower limit of KP
a , KP,min

a , is globally proposed as in (2.40).

0 < KP,min
a < KP,max

a (2.40)

One specific value of KP,min
a will be chosen by users.

• For the admissible range of KF
a :

The lower limit of KF
a , KF,min

a , should be zero, that is the case having only P controller

activated, and is described by (2.41).

KF,min
a = 0 (2.41)

In fact, KF
a is outside the position closed loop, its maximum value does not affect the

stability criterion of this loop. However, the variation of KF
a affects the behavior of the

reference velocity signal in the velocity loop. A too large value of KF
a can violate the axis

kinematic limitations and/or the current limitations.

The upper limit of KF
a , KF,max

a , depends on two following factors. The first one is the

reference axis kinematic profiles, including the reference axis velocity, acceleration and

jerk profiles. One example for the reference jerk profile is that, as it can be seen in Fig.

2.12, case 1 has the reference jerk profile much below its limitations than case 2. Thus,

there are more spaces for the variations of the actual axis jerks in case 1 than in case

2. Consequently, the potential KF,max
a in the former can be larger than in the later,

KF,max,1
a > KF,max,2

a .

-Jmax
a

Jmax
a

0
t(s)

J(m/s-3)

-Jmax
a

Jmax
a

0
t(s)

J(m/s-3)
Case 1 Case 2

reference

actual

Figure 2.12: Reference and actual axis jerks

The second factor is the chosen value of KP
a . For example, as it can be seen in Fig. 2.13,

the reference velocity signal U r
a,m is a sum of two control signals UP

a and UF
a , derived from
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KP
a and KF

a respectively. Obviously, when U r
a,m is subject to a limit value, the chosen KP

a

value will affect the upper limit of KF
a , and vice versa.

Ua,m

(rad/s)(rad)

Ea,m
+
-

s

++

(rad)

 

Ka
 P

Ka
 F

 
rθr(t)

θs(t)

UF
a

UP
a

Figure 2.13: Impacts of KP
a and KF

a on the reference velocity signal

In addition, the choice of KF,max
a is subject to the two constraints, including the axis

kinematic limitations in (2.29) and the current limitations in (2.33).

According to the above facts related to KF,max
a , it is proposed two steps for obtaining its

value as follows.

– Firstly, the admissible gain range of KP
a is discretized into numerous discrete values.

With each discrete value of KP
a , increasing the value of KF

a from zero till one limit

value, over which the axis kinematic limitations and the current limitations are not

satisfied anymore. This first step is represented by (2.42),






KP
a = KP,1

a , KF
a ≤ KF,1

a

KP
a = KP,2

a , KF
a ≤ KF,2

a

. . .

KP
a = KP,N

a , KF
a ≤ KF,N

a

s.t.







axis kinematic limitations in (2.29)

current limitations in (2.33)

(2.42)

with 1 ≤ i ≤ N , KP,min
a ≤ KP,i

a ≤ KP,max
a .

– Secondly, obtain KF,max
a by (2.43).

KF,max
a = min

(
KF,1

a , KF,2
a , . . . , KF,N

a

)
(2.43)

To summarize, the control gains KP in (2.10) and KF in (2.11) are bounded within the admissible

gain ranges, represented in (2.44),






KP,min
a ≤ KP,i

a ≤ KP,max
a

KF,min
a ≤ KF,i

a ≤ KF,max
a

with k + 1 ≤ i ≤ k +Nk (2.44)
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in which it can be highlighted that KP,min
a is chosen by users, respecting (2.40); KP,max

a is

determined depending on the chosen stability criterion for the servo drive, as in (2.39); KF,min
a

is obviously zero, as in (2.41); and KF,max
a is determined depending on the reference trajectory

and the chosen value of KP
a , being subject to the two constraints, as expressed in (2.43).

3.6 Solve the optimization problem

To solve the OGA optimization problem, two questions need to be answered. How to optimize

the variable gains for the future trajectory over the horizon hk in (2.10) and (2.11)? Which

technique allows to solve the optimization problem in (2.27)? Following, two solving techniques

are proposed to solve the optimization problem of OGA for the whole trajectory.

At the first instant, k = 1, the initial values of control gains are freely chosen respecting the

admissible gain ranges in § 3.5 to start the simulated machining, as in (2.45).







KP,1
a = KP,initial

a

KF,1
a = KF,initial

a

(2.45)

This leads to the fact that the first simulated/reference values of the axes motions and tool

behaviors are achieved. Then, the prediction horizon starts at k = 1 and the OGA is solved to

obtain optimal variable gains for k > 1.

3.6.1 First solution technique: OGA(a)

The first solution technique of OGA is denoted as OGA(a). Its motivation is illustrated in Fig.

2.14 and explained as follows.

Over the horizon hk in Fig. 2.14.a, a gain modification profile is defined to generate variable

values for the control gain Ka of the axis a, which are the gain values over the columns of either

KP in (2.10) or KF in (2.11), as illustrated in Fig. 2.14.b. This gain profile is a function of several

parameters. The principle of OGA(a) is to tune the parameter values of such a gain profile. By

this way, different parameter values generate different responses of the gain profile, yielding

different values of the control gains. Then, by evaluating the optimization problem in (2.27), the

best parameter value of the gain function is chosen, corresponding to the optimal variable gains
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Trajectory

s(mm)

a)

b)

c)

Ka

hk

sk+1
sk+N

k

OGA

1δa

Kmin
a

Kmax
a

OGAOGA

Tuning gain amplitude Ha

Optimal variable gains

hk+N
k

2δa

-1δa
-2δa

0

δa

k^

Gain profile

Figure 2.14: OGA(a): a) Horizon length; b) Tuning cases; c) Receding horizon without overlap

over the horizon hk. These optimal variable gains are all kept and applied to control the tool

position and orientation over the future trajectory within the concerned horizon. The horizon

is then receded to the next one without overlap and the optimizing procedure is repeated, as

illustrated in Fig. 2.14.c. The proposed gain function is illustrated in Fig. 2.15 and described

below.
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Figure 2.15: Gain prediction by predefined gain function
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It consists of a sinusoidal part and a constant part, formed by (2.46) and (2.47), respectively,

(l1) : Kk+1:k+l1
a = −

1

2
Hk

a sin (ts) +
1

2
Hk

a +Kk
a (2.46)

(l2) : Kk+l1+1:k+Nk

a = Kk+l1
a (2.47)

where

• The horizon length characterized by Nk can be a fixed value or adaptive values along the

trajectory, depending on user’s choice for either the temporal horizon length in (2.6) or

the geometrical horizon length in (2.7).

• l1 is the length of the sinusoidal part. This is an user-defined value, proposed in (2.48).

l1 = klN
k with 0 < kl ≤ 1 (2.48)

If kl = 1, the constant part defined in (2.47) is removed, there is only the sinusoidal part in

(2.46). The meaning of l1 is that it allows to change the shape of the gain profile generated

by the proposed gain function, as illustrated in three examples in Fig. 2.16.

s(mm)

Ka

Kmina

Kmaxa
hk

l1

s(mm)

Ka

Kmina

Kmaxa
hk

l1

s(mm)

Ka

Kmina

Kmaxa
hk

l1

a) b) c)

Figure 2.16: Effects of different values of l1

• ts is a time array of the sinusoidal part, defined by (2.49).

ts = [π/2 : 1/ (l1 − 1) : 3π/2] (2.49)

• Hk
a represents the gain amplitude modification of such a gain function. It can have a

positive, zero or negative value. When the value of Hk
a is changed, different behaviors of

the gain function are obtained for tuning, as illustrated in Fig. 2.14.b.

In respecting the admissible gain range in (2.44), the constraint of Hk
a is given in (2.50).

Kmin
a −Kk

a ≤ Hk
a ≤ Kmax

a −Kk
a (2.50)
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There are many possibilities to propose such a gain function, e.g. using the parabola function

instead of the sinusoidal one. However, only the above gain function is chosen, in order to create

smooth gain transition between the two consecutive horizons, by choosing an appropriate value

of l1 in (2.48). Other possibilities will be checked in future works.

To solve the optimization problem of OGA, a gridding approach is used. In this approach, l1

is chosen constant in advance and kept fixed for all of the horizons, the criteria in (2.24) is

evaluated for Hk
a equal to each element of the vector Uk

a in (2.51),

Uk
a =

[

−mδa − (m− 1) δa . . . 0δa . . . (n− 1) δa nδa

]

(1,m+n+1)
(2.51)

where

• The element {0δa = 0} of Uk
a means that if Hk

a = 0, all of the variable gains in the horizon

hk, defined by (2.46) and (2.47), are equal to the current gain value Kk
a .

• δa is an amplitude step of the gain function in (2.46). It is subject to (2.52).

0 < δa ≤ Kmax
a −Kmin

a (2.52)

• Denote p0 as the total number of potential gain values for Ka. From (2.51), p0 is defined

in (2.53).

p0 = m+ n+ 1 with 0 ≤ {n,m} ≤ p0 − 1 (2.53)

• The constraint in (2.50) leads to the condition in (2.54).







0 ≤ nδa ≤ Kmax
a −Kk

a

0 ≤ mδa ≤ Kk
a −Kmin

a

(2.54)

It is proposed that the maximum gain variation, (p0 − 1) δa, is always less than or equal to the

admissible gain range, represented in (2.55),

(p0 − 1) δa = T0

(
Kmax

a −Kmin
a

)
with 0 < T0 ≤ 1 (2.55)

in which T0, denoted for the variation factor, is an user-defined parameter. It allows to regulate

the maximum gain variation. If T0 = 1, the maximum gain variation is equal to the admissible
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gain range. If 0 < T0 < 1, the maximum gain variation is smaller than the admissible gain

range.

From (2.55), the gain amplitude step, δa, is defined in (2.56).

δa =
T0 (K

max
a −Kmin

a )

(p0 − 1)
(2.56)

If p0 is a fixed value, the value of T0 also allows to adjust the amount of gain step.

To determine n and m in (2.51), and respect the constraint in (2.53), n is firstly proposed by

(2.57) and illustrated in Fig. 2.17.

(q) : n =
p0 − 1

Kmax
a −Kmin

a

(
−Kk

a +Kmax
a

)
with Kk

a ∈
[
Kmin

a : Kmax
a

]
(2.57)

Kmina Kmaxa

p0-1

0

Kka

(q)

n

Figure 2.17: Value of n as a function of Kk
a

The meaning of (2.57) is that if Kk
a = Kmin

a , then n = p0 − 1. If Kk
a = Kmax

a , then n = 0.

Therefore, when Kk
a ranges from Kmin

a to Kmax
a , n ranges from p0 − 1 to 0.

Afterwards, from (2.53), m is defined in (2.58).

m = p0 − n− 1 (2.58)

It can be easily verified that δa in (2.56), n in (2.57) and m in (2.58) respect the constraints in

(2.54). To facilitate the calculation, n and m are chosen as integers. It is proposed that after

solving (2.57), only the nearest integer less than or equal to the value of n is used. Then, m is

calculated by (2.58). If mδa is not satisfied (2.54), meaning that mδa > Kk
a −Kmin

a , then mδa

is set as Kk
a −Kmin

a .
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In the case of T0 = 1, Fig. 2.18 shows three examples of the tuning cases of Uk
a in (2.51). Given

p0 = 5, from (2.56) δa = (Kmax
a −Kmin

a ) /4.

Kmina KmaxaKmina Kmaxa

δa

Kmina Kmaxa

Kka

a) b) c)

Kka Kka
n=4m=0 m=3 m=4n=1 n=0

Figure 2.18: Three examples for the tuning case of T0 = 1

• In Fig. 2.18.a, if Kk
a = Kmin

a , from (2.57) and (2.58), leading n = 4 and m = 0. Thus, Uk
a

in (2.51) is [0δa, 1δa, 2δa, 3δa, 4δa].

• In Fig. 2.18.b, if Kk
a = Kmax

a − δa, from (2.57) and (2.58), leading n = 1 and m = 3. Thus,

Uk
a in (2.51) is [−3δa,−2δa,−1δa, 0δa, 1δa].

• In Fig. 2.18.c, if Kk
a = Kmax

a , from (2.57) and (2.58), leading n = 0 and m = 4. Thus, Uk
a

in (2.51) is [−4δa,−3δa,−2δa,−1δa, 0δa].

Similarly, in the case of T0 = 0.5, Fig. 2.19 shows three examples of the tuning cases of Uk
a in

(2.51).

Kmina KmaxaKmina Kmaxa Kmina Kmaxa

Kka

a) b) c)

KkaKka
n=4 n=2 n=1m=2 m=3m=0 δa

Figure 2.19: Three examples for the tuning case of T0 = 0.5

It can be seen that in this case the tuning gain range, the maximum gain variation and the gain

step are half of the ones in the previous case with T0 = 1. From Fig. 2.19.a to Fig. 2.19.c, it

can be noticed a receding effect of the tuning gain range, that does not exist when T0 = 1.

To summarize, the OGA(a) has three main properties: (1) generate the variable gains using a

predefined gain transition function as a template, (2) tune and optimize the gain amplitude of



72 Variable gain contouring control for multi-axis machine tools

the gain function within the admissible gain range to generate the optimal variable gains and

(3) recede the horizon without overlap.

The gain modifications over the trajectory are defined by parameters Nk, kl, T0 and Hk
a . The

parameters Nk, kl and T0 are fixed in advance and are equal for each axis. Only parameter Hk
a ,

one for each axis, is obtained by optimization.

3.6.2 Second solution technique: OGA(b)

The second solution technique of OGA is denoted as OGA(b). It takes the advantages of MPC

into account, that is to find the optimal gains for the whole horizon hk at the k instant but only

the first optimal gain of the horizon is kept for the instant k+1, as illustrated in Fig. 2.20.a and

b. Then the horizon is receded to the instant k + 1 and the optimization is repeated, as shown

in Fig. 2.20.c. The method of receding horizon allows one to apply the OGA optimization for

the whole trajectory.

 

...

Trajectory

s(mm)

a)

b)

c)

Ka

hk

sk+N
k

Kmin
a

Kmax
a

OGA OGA

sk+1sk sk+2

Tuning casesδa

The best caseChosen optimal gain

Figure 2.20: OGA(b): a) Horizon length; b) Tuning the constant gains; c) Receding horizon

with overlap
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During the prediction horizon hk, the gain can take different values for each sampling time. In

order to simplify the optimization problem and as receding horizon is used, it is proposed that

the gain is constant during the prediction horizon.

Assume that δKa (2.59), representing for either δKP
a in (2.12) or δKF

a in (2.13), is the gain

modifications within the horizon hk.

δKa =









Kk+1
a −Kk

a

Kk+2
a −Kk+1

a

· · ·

Kk+Nk

a −Kk+Nk
−1

a









(2.59)

Solving the OGA optimization problem with this method consists in tuning δKa in (2.59) within

the admissible gain ranges in (2.44). Applying a gridding approach to solve this optimization

problem, the criteria (2.24) is evaluated for δKa in (2.59) equal to the columns of matrix Wa in

(2.60), to find out all of the possibilities of KP in (2.10) and KF in (2.11),

W k
a =









−mδa − (m− 1) δa . . . 0δa . . . (n− 1) δa nδa

0 0 . . . 0 . . . 0 0

: : : : : : :

0 0 . . . 0 . . . 0 0









(Nk,m+n+1)

(2.60)

in which as same as OGA(a), it is proposed to introduce the total number of potential gain

values p0 in (2.53), and the variation factor T0 in (2.55). Then, the gain step δa, the values of n

and m are defined in (2.56), (2.57) and (2.58), respectively.

One example is that if δKa in (2.59) is equal to the last column of W k
a in (2.60), the variable

gains become (2.61):






Kk+1
a = Kk

a + nδa

Kk+2:k+Nk

a = Kk+1
a

(2.61)

Then, by checking all of the possibilities of KP in (2.10) and KF in (2.11) by means of the

machine simulator, the optimal variable gains satisfying (2.27) are found.

The illustration for the values in the first row of Wa in (2.60) is similar to Fig. 2.18 and Fig.

2.19



74 Variable gain contouring control for multi-axis machine tools

4 Conclusion

To conclude, the main part of this chapter has been dedicated to the formulation of the op-

timization problem of OGA. The optimization problem of OGA is proposed in (2.27), being

subject to the stability, axis kinematic, and current constraints, represented in (2.28), (2.29),

and (2.33), respectively.

The optimization problem of OGA is basically built for the future trajectory over a horizon,

in order to deal with the challenges in machining the free-form geometry. After solving this

optimization problem, the horizon is receded so that the OGA optimization can cover the whole

trajectory. Finally, an optimal variable gain profile is obtained, pre-compensating the contour

error.

For solving such an optimization problem of OGA, there are many techniques that can be

performed, such as genetic algorithm, heuristic method, etc. However, the two proposed solving

methods for the OGA optimization problem have been preferred here, based on a gridding

technique. The primary reason for this choice is its simplicity. That makes the OGA more

practical and easily implementable in the machining community. However, such a technique also

causes a problem related to computation burden. This drawback will be discussed in Chapter

3, Section § 2.2.
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The optimization problem under constraints of OGA and the two solving techniques of OGA

have been proposed in the previous chapter. The aim of this chapter is to analyze the efficiency of

the above developments, especially in the contouring accuracy improvement and the constraint

verification.

To do this, the necessary starting points and parameters configurations are performed. Many

cases of study are carried out. Simulation results are shown and discussed to prove the perfor-

mance of the proposed approach.

1 Starting points

Before performing and evaluating the OGA, the following tasks are considered:

• Generate the reference trajectory and position setpoints.

• Find out the admissible gain range, based on the analyses in Chapter 2, Section § 3.5.

• Find out the best responses of the classical axis control, consider it as the reference case

to compare with the performance of OGA.

• Analyze the sensitivity of KP and KF in the position loop.

1.1 Reference trajectory and position setpoints

Fig. 3.1.a shows the desired part having free-form profile for milling with 5-axis Mikron UCP

710 machine center.

2

0.5

1.5

Feedrate

(m/min)

20 mm

100 m
m

60 m
m

a) b)

1

Figure 3.1: a) Desired part; b) Feedrate cartography from feedrate planning
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The programmed tool path is created by CAM, with the configuration given in Appendix B.

The position setpoints are generated by the feedrate interpolation stage using the VPOp algo-

rithm [Beudaert 2012], with the configuration of Bspline interpolation, the interpolation period

of 6 ms and the programmed feedrate of 3 m/min. Without loss of generality in 5-axis machining

and for the simplicity purpose, this interpolation task is carried out with only two linear axes,

Y and Z, and one rotary axis, A. The resulting position setpoints correspond to the reference

feedrate cartography illustrated in Fig. 3.1.b.

1.2 Admissible gain range

An important starting point of OGA is the admissible gain range. Based on the analysis in

Chapter 2, Section § 3.5, the upper limit of KP
a in the position controller should firstly be

determined by respecting the stability criterion. To do so, the linear axis model of the position

open loop should firstly be identified from the nonlinear one, that comes from the complete axis

model in Fig. 2.7.a and simply illustrated in Fig. 3.2. The identification is based on a least

square identification technique.

VY,mUY,m

(rad/s)
1

Velocity loop

(Current loop: Motor

+ Friction model) (rad/s)
s

 

(rad)

Ym
r s s

Te=6 ms

Figure 3.2: Nonlinear model of the position open loop without control gain (Te = 6 ms)

To do such an identification, there are two steps: (1) identify the linear model of the velocity

closed loop and (2) combine the obtained linear velocity model with the linear integrator action.

Firstly, the nonlinear velocity model is excited by a step signal. The velocity step response of

the nonlinear model depends on the amplitude of the step, principally because of the friction in

the machine. The identification has been done using a step amplitude equal to the half of the

maximum velocity of the axes, that is because the nonlinear axis model is previously identified

through this value as well.

Indeed, the numerical model needs to provide the same response as the nonlinear one. This
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precision depends on the chosen order of the transfer function. Thus, an appropriate choice for

the order of the model should be achieved.

Fig. 3.3 shows the comparison between the step velocity responses of the different order linear

models and that of the nonlinear one, for example in the case of Y axis.

Figure 3.3: Step response of different order linear models of velocity loop

As it can be seen, the third and fourth order linear models approximate reasonably well the

response of the nonlinear velocity loop of Y axis. In the following, the third order model is

finally chosen as it is simpler than the fourth one and has the same response. Its mathematical

representation in discrete time is given by (3.1),

V s
Y,m (q−1)

U r
Y,m (q−1)

=
1.16q−1 − 0.3656q−2

1− 0.4007q−1 + 0.1411q−2 + 0.05416q−3
(3.1)

with q−1 the backward-shift operator.

Secondly, the discrete time transfer function of the integrator action is given in (3.2).

Y s
m (q−1)

V s
Y,m (q−1)

=
0.006

1− q−1
(3.2)

As a result, the linear model of the position open loop is determined by combining the linear

velocity model in (3.1) with the integrator action (3.2), and given in (3.3).

Y s
m (q−1)

U r
Y,m (q−1)

=
0.00696q−1 − 0.002193q−2

1− 1.401q−1 + 0.5418q−2 − 0.08693q−3 − 0.05416q−4
(3.3)
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From the obtained linear model of the position open loop, the upper limit of KP
Y can be obtained,

by tuning this gain, illustrated in Fig. 3.4, respecting the stability criterion in (2.28).

UY,m

(rad/s) (rad)

Ym
r s

KPY
1000
60(rad)

Ym
r

Ym
s

UY,m
r
(q-1)

(q-1)

Figure 3.4: Position open loop with the control gain KP
Y (m/min/mm) and its linear plan

The Black-Nichols chart of the position open loop of Y axis in Fig. 3.5 allows to compare

the phase margin (dB) and gain margin (deg) for different KP
Y values, in order to choose the

allowable KP,max
Y , satisfying (2.28).

Te=0.006 s

13.8 dB

15.2 dB

25.8 dB

86.7 deg 88.4 deg 90.1 deg

Black-Nichols chart

Figure 3.5: Frequency analysis for different KP
Y of Y axis

In addition, the lower limit of KP
a , KP,min

a , is chosen in considering (2.40). Next, by considering

(2.41) (2.42) and (2.43), the admissible range of KF is obtained.

Consequently, the admissible ranges of KP
a and KF

a for OGA simulations are obtained and given

in Table 3.1.
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Table 3.1: Admissible gain range of KP
a (m/min/mm or rad/min/mrad) and KF

a

Y Z A

KP
a [0.9 : 3.4] [0.9 : 2.7] [0.9 : 2.7]

KF
a [0 : 1.08] [0 : 1.95] [0 : 1.52]

Note that, the KP,min
a can be chosen as a very small positive value, satisfying (2.40). However,

this increases the computation burden of OGA. To have a reasonable computation time for the

simulations of OGA in many cases of study, only KP,min
a = 0.9 is checked and shown.

1.3 Reference response in the classical axis control

To evaluate the benefit of variable gains obtained by OGA in axis control, the contouring accu-

racy of the classical axis control using fixed control gains is firstly discussed. Table 3.2 shows

three cases of study using fixed control gains, in which the KP values are the same as KP∗ for

the three cases, the KF values are slightly different.

Table 3.2: Three cases of study for using fixed gains

Cases of study
Gains Y Z A

ε̄ (µm)
KP∗(m/min/mm or rad/min/mrad) 1.2 1.8 1

(1) KF1 0.95 0.85 0.95 33.3

(2) KF2 0.85 0.75 0.85 18.5

(3) KF∗ 0.9 0.8 0.9 14.4

Note that the third case, KP∗ combined with KF∗ are the best fixed gains, which are obtained as

follows. Testing all combinations of KP and KF in the admissible range from Table 3.1, with a

grid step of ∆KP = 0.1 for KP and ∆KF = 0.01 for KF , as illustrated by Fig. 3.6. Such values

of ∆KP and ∆KF are chosen considering the sensitivity of these two gains on the reference

velocity signal of the velocity loop, that will be discussed in the next section § 1.4. The smallest

mean contour error have been obtained with KP∗ and KF∗. This test takes about three days

to finish with a PC Intel(R) Core(TM) i7-4790 CPU 3.60 GHz, RAM 16 Go and the testing

algorithm is performed on the nonlinear axis model implemented in Matlab R2014b.
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Figure 3.6: Discretized admissible gain range by the gain steps: ∆KP = 0.1 and ∆KF = 0.01

The contouring accuracy is quantitatively evaluated through the mean contour error, ε̄, defined

in (3.4),

ε̄ =
1

N

N∑

i=1

∣
∣εi
∣
∣ (3.4)

with N is the number of tool positionings on the trajectory.

As it can be seen from Table 3.2, even small changes in the KF value can produce different mean

contour error values.

Fig. 3.7 shows the curvature, feedrate (F) and contour error (CE) profiles as a function of the

trajectory geometry for the above three cases of study.

Based on the curvature profile, the trajectory can be divided into nine portions, from S1 to S9,

having the equivalent curvature characteristic in each portion. S2 and S8 are concave portions

with the increasing curvatures. S3 and S9 are concave portions with the decreasing curvatures.

S5 and S6 are convex portions having the increasing and decreasing curvatures respectively. S1,

S4 and S7 have curvatures close to zero and can be seen as linear portions. In each portion, the

feedrate can be increased and/or decreased, depending on the strategy in the feedrate interpo-

lation task. As it can be seen, the feedrate in the three linear portions is increased quickly.
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Figure 3.7: Responses with the fixed control gain values

As it can be observed, case (3) produces the smallest mean contour error in the three studied

cases. The effects of different curvature portions and different gain values on the resulting

contour error profiles are discussed as follows:

• The contour error in the high curvature portions, S2, S3, S5, S6, S8 and S9, is much bigger

than in the linear portions, S1, S4 and S7.

• In the same curved portions, the increasing curvatures (S2, S5 and S8) and the decreasing

curvatures (S3, S6 and S9) produce different contour error profiles.

• In S2, S5, and S6, there are slight differences in feedrate tracking, however, their corre-
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sponding contour error profiles are greatly different. It means that the resulting contour

error profile is very sensitive to the feedrate.

• One specified combination of the fixed gain values may produce a small contour error in

some portions, but may cause a large contour error in other ones. For example, case (3)

has smaller contour error than case (2) in S2 and S5; while case (2) has smaller contour

error than case (3) in S3, S6 and S9.

From the above facts, there are three general remarks in using the fixed control gains, as follows:

• Firstly, large contour error usually occurs in the curved portions (S2, S5, S6, S9). Mean-

while, the linear portions usually have small contour error (S1, S4, S7).

• Secondly, in the same curved portions, when the curvature increases or decreases, the

contour error profile may behave differently (S2 and S3, S5 and S6, S8 and S9).

• Lastly, the modification of control gains leads to modifying the resulting feedrate tracking.

A small adjustment of the resulting feedrate can produce a large change in the contour

error.

According to the above discussions, it can be concluded that the curvature characteristics and

the control gain values are two main factors that are responsible for the presence and variations

of contour error.

In addition, it would be significant to compare the contouring accuracy between the case (3)

using the best fixed gain values KP∗

a and KF∗

a , and the case using the nominal gain values, KP,n
a

and KF,n
a , proposed by the machine tool manufacturer. In [Prévost 2011a], it can be found the

nominal gain values in the position controller of the Mikron UCP 710 machine, as given in Table

3.3.

Table 3.3: Nominal gain values in position controller of Mikron UCP 710 machine

Y Z A

KP,n
a (m/min/mm or rad/min/mrad) 1.5 3.5 1

KF,n
a 1 1 1
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Figs 3.8 shows that the obtained contour error of the case (3) using the best fixed gain is clearly

much smaller than the one obtained by the case using the nominal gain values. In contrast, for

the tool tracking error, the reverse is the case.

Figure 3.8: Comparing contour error profile of C3 and the nominal case

This can be explained that the nominal gain values are proposed by the machine tool manu-

facturer for mainly reducing the tool tracking error, expecting to indirectly reduce the contour

error. However, the above comparison once again proves that the reduction of tool tracking error

does not much reduce the contour error in machining free-form profile.

According to the above results and discussions, the response of the case (3), using the best

fixed gain values KP∗

a and KF∗

a , is considered as the reference one, in order to compare with the

performance of OGA.

1.4 Sensitivity of different control gains

The OGA is in fact applied to modify the values of KP
a and KF

a in the position controller,

yielding the changes in the reference signal of the velocity loop and in the resulting feedrate

profile after that, in order to compensate the contour error.

Thus, the two following questions come naturally: which control gain allows to achieve more

effectivenesses with OGA? And the effectiveness occurs in which conditions? To answer these
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questions, it is important to analyze the sensitivity of these control gains on the reference signal

of the velocity loop.

The reference velocity signals from P and FFW actions, denoted as UP and UF respectively, are

compared when one of the two control gains is kept fixed as its best fixed value, KP∗

a or KF∗

a ,

and the other is tuned with different values. For such a analysis, Fig. 3.9 compares UP and UF

for Y axis.
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Figure 3.9: Comparing velocity reference of FFW and P actions, for Y axis
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On top, Fig. 3.9 indicates that when KP
Y is kept fixed, the modification of KF

Y leads to clear

modifications in both UP and UF . It can be seen that greater KF
Y , greater UF , smaller UP ; and

vice-versa. The contribution of UP to the reference velocity signal is much less than UF .

At bottom, Fig. 3.9 shows that when KF
Y is kept fixed, the modification of KP

Y does not change

UF , but slightly modifies UP . This is obvious because UF only depends on the position setpoint

and the value of KF
Y . In these three cases of study, greater KP

Y , greater UP and vice-versa.

According to the above discussions, it can be said that KF
a modification is more sensitive than

KP
a in adjusting the reference velocity signal. It can be predicted that KF

a only needs to be

slightly adjusted to achieve the benefit of OGA; while KP
a needs to be much modified to have

similar effect as the KF
a adjustment. These predictions will be checked in § 3.

2 Configurations

To perform the cases of study of OGA(a) and OGA(b), it is needed to configure their parameters,

as follows:

• The sampling period of the position loop of Mikron UCP 710 machine is Te = 6 ms.

• The axis kinematic limitations are taken from Table 2.2.

• The initial gain values (2.45) can be chosen as whatever value in the admissible gain range.

In this work, it is proposed to start with the best fixed gains.

• The nominal motor current value Ina (2.37) is calculated based on the documentation of

Siemens motor 1FT6084 - 8WF71 [Seimens 2005]. ∆Imax
a (2.38) is chosen as 2% of Ina

(kI = 2%), in order to limit noise and large variations of the motor current.

• Other user-defined parameters, including the horizon length, the number of potential gain

values, the length of the sinusoidal part in the pre-defined gain function of OGA(a), and

the weighting factors, are discussed in detail below.
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2.1 Horizon length

Chapter 2, Section § 3.3.1 proposed two ways to define the horizon length, either as a function

of time or as a function of the trajectory geometry.

For OGA(a), the horizon length is defined considering the following two factors:

• Firstly, because the horizon in OGA(a) completely recedes without overlap, the optimal

variable gains generated within a horizon are totally applied for controlling the trajectory

over that horizon.

• Secondly, according to the three remarks in § 1.3, there is the fact that the free-form

trajectory can be divided into many different portions, and each portion has its own

curvature characteristics, e.g. either convex or concave or linear features. Moreover, one

specified combination of the fixed control gains is suitable for controlling only one specified

portion. Consequently, the horizon lengths should correspond to the above portions. Like

this, the variable gains are optimized to be suitable with the curvature characteristics in

those portions.

Due to the above two facts, it is proposed to define the horizon length of OGA(a) as a function

of the trajectory geometry, which is illustrated in Fig. 3.10 and realized by Algorithm 1.

h1 h2 h3 h4 h5 h6 h7 h8 h9

C0

-C0

i1

i2

i3

i4

i5

i6 i7

i8

i9

i10

Y

Figure 3.10: Illustration of the definition of geometry horizon for OGA(a)
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Algorithm 1 Find the horizon length of OGA(a)

1: Calculate the curvature values of the reference trajectory, as illustrated in Fig. 3.10.

2: Choose the curvature value C0 so that [−C0 : C0] represents linear portions. In this work,

C0 = 0.02 (mm−1) is chosen.

3: Determine the total instants over the reference trajectory, denoted as ni.

4: for k = 1 : ni do

5: Determine the first and last indexes on the trajectory, e.g. i1 and i10 respectively.

6: Determine the indexes, e.g. {i2, i4, i5, i7, i8}, that stay on the boundaries of the above

linear portions.

7: Determine the critical indexes, e.g. {i3, i6, i9}, that are the negative and positive curva-

ture peaks.

8: end for

9: From the above obtained indexes, determine the horizon lengths as a function of tool dis-

placement length as in (2.7).

For OGA(b), at each instant the objective is to find the optimal gain for the first future instant,

while considering the future curvature characteristics of the trajectory.

If the horizon length of OGA(b) is chosen as adaptive as OGA(a), it may cause the wrong

prediction effect. For example, in Fig. 3.11, the length of linear portion is much longer than

that of the curved one. At the k instant, the tool stays at the linear portion. If OGA(b) takes the

length of linear portion to evaluate the future trajectory containing mainly the curved portion,

then the chosen gain, Kk+1
a , applied at the k + 1 instant is not the optimal one. This induces

the wrong effect of OGA(b).

hk

k+1k k+Nk

OGA(b)

Ka
k+1

Figure 3.11: Illustration of the effect of the bad horizon length in OGA(b)

It is proposed to use a small fixed horizon length as a function of time for OGA(b), rather

than the adaptive geometrical ones. With such a fixed temporal length, the number of instants
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within each horizon is always the same, as discussed in Chapter 2, Section § 3.3.1. To firstly

simulate OGA(b), the horizon length of OGA(b) is chosen constant and equal to 25 instants.

This value means that if Te = 0.006 s and the horizon has a constant feedrate of 3 m/min, then

the geometrical length of such a horizon is 7.2 mm. The tuning effect of different horizon lengths

in OGA(b) will be discussed in § 3.7.

2.2 Number of potential gain values

For both OGA(a) and OGA(b), the number of potential gain values is given by p0 (2.53), that is

in relation with the value of gain step in δa (2.56). For greater p0, smaller δa, more possibilities

are evaluated to obtain the optimal variable gains, but it is more time consuming. For example,

if all of the five axes, {X, Y, Z,A,C} and both KP
a and KF

a are involved into the optimization

of OGA and if p0 = 20, the number of tuning cases in each horizon will be 2010 = 1.024e13.

This takes too huge computation time to finish the optimization of OGA. As a consequence, the

OGA implementation would be intractable.

For the simulation of OGA(a) in § 3, p0 will be chosen as 10. This value means that if all of

the three axes {Y, Z,A} and both of the two control gains are involved into the optimization,

there are 106 tuning cases in each horizon, that is large enough to verify the effect of OGA(a).

Because the horizon in OGA(a) is receded without overlap and the Algorithm 1 allows to generate

9 horizons over the reference trajectory, as seen in Fig. 3.10, thus there are 9.106 simulating

iterations over the whole trajectory.

For OGA(b), the horizon is receded only one instant. Assume that the trajectory has N instants,

there are N−1 horizons. In fact, the reference trajectory in Fig. 3.1.a has 852 instants, meaning

that there are 851 iterations. Because the number of horizons in OGA(b) is much more than

in OGA(a), p0 in OGA(b) must be chosen less than in OGA(a), in order to have a reasonable

computation time. Finally, p0 = 5 will be chosen to simulate OGA(b) in § 3, that corresponds a

total number of 851.56 ≈ 13.106 simulations.



Simulations and discussions 91

2.3 Length of the sinusoidal part in the predefined gain function

For OGA(a) only, the length of the sinusoidal part, l1 (2.46), allows to adjust the shape of gain

profile, as seen in Fig. 2.16. Because the horizon length is adaptive, depending on the curvature

characteristics of the free-form trajectory, as discussed in § 2.1, the length of the sinusoidal part

should be adaptive also. However, how to choose its adaptive values is an open question. To

firstly analyze the responses of OGA(a), the length of the sinusoidal part is chosen as 30% of

the horizon length. According to (2.48), this means l1 = 0.3Nk (kl = 0.3). The tuning effect of

different values of l1 will be discussed in § 3.6.

2.4 Weighting factor

The weighting factors, λP and λF (2.24), allow to manage the gain variation amount. Smaller

λP and λK , greater gain variations ∆KP
a and ∆KF

a can be accepted respectively, and vice-versa.

In the OGA, the main objective is to obtain the contour error as small as possible, as long as

its constraints are respected. If a large gain variation can satisfy this motivation, then it can

be chosen. In the sequel, λP = λF = 0 is firstly chosen to simulate both OGA(a) and OGA(b).

However, the effect of different weighting factor values on the gain variations and the resulting

contour errors would also be worth discussion in § 3.8.

2.5 Summary of the configurations

To summarize, the configurations of both OGA(a) and OGA(b) are given in Table 3.4. Partic-

ularly, T0 (2.55) will be a tuning parameter in the next section § 3.
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Table 3.4: Configurations of OGA(a) and OGA(b)

Type Parameters Data source Value Unit

General

Te Mikron machine 0.006 s

[InY , I
n
Z , I

n
A] (2.37) Motor documentation [26.2, 26.2, 42.7] A

[∆Imax
Y ,∆Imax

Z ,∆Imax
A ](2.38) User-defined 2% [InY , I

n
Z , I

n
A] A

λP , λF (2.24) User-defined 0 -

KP,1
a , KF,1

a (2.45) User-defined KP∗

a , KF∗

a see Chap. 2,§ 3.2

KP,min,max
a , KF,min,max

a User-defined see Table 2.2 see Table 2.2

OGA(a)

Nk, ∆sh,k(2.7) Algorithm 1 (+) see below instant, mm

l1(2.48) User-defined 0.3Nk instant

p0 (2.53) User-defined 10 -

OGA(b)
Nk, ∆th,k (2.6) User-defined 25, 0.144 instant, s

p0 (2.53) User-defined 5 -

(+) For the desired trajectory in Fig. 3.1.a, there are 852 instants, corresponding to the total

length of the tool displacement of send = 101 mm. The nine adaptive horizons generated by the

Algorithm 1 have the adaptive Nk and ∆sh,k as follows:

Nk(h1:h9)=[77, 56, 111, 116, 63, 84, 114, 87, 144] instant.

∆sh,k(h1:h9) =[8.3126, 10.7076, 12.9685, 17.1182, 13.5307, 11.2934, 9.5413, 8.8023, 8.7577] mm.

3 Discussions

This section consists of analyzing not only the effects of the parameter configurations on the

performance of OGA, but also the responses of OGA, including the obtained variable gain profile,

the axis kinematic responses, the resulting feedrate and contour error profiles.

The cases of study of OGA(a), OGA(b) and the reference case are denoted and explained in

Table 3.5.
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Table 3.5: Cases of study for OGA with the classical control structure

Control strategy Notation Description

Classical control r0 Using the best fixed gains

OGA(a)

OGA(a1) Tuning KP
a

OGA(a2) Tuning KF
a

OGA(a3) Tuning both KP
a and KF

a

OGA(b)

OGA(b1) Tuning KP
a

OGA(b2) Tuning KF
a

OGA(b3) Tuning both KP
a and KF

a

When only one control gain, KP
a or KF

a , is modified, the remaining control gain, KF
a or KP

a , is

kept constant as its best fixed value, KF∗

a or KP∗

a in Table 3.2, respectively.

3.1 Impact of the variation factor

In the following, the effects of the variation factor T0 (2.55) on the performance of both OGA(a)

and OGA(b) are discussed. In fact, if a very high number of potential gains, p0 (2.53), can be

checked by OGA without suffering serious computation burden, T0 has less meanings. However,

as discussed in § 2.2, due to the inherent drawback of computation burden in the gridding

solving techniques of OGA(a) and OGA(b), p0 must be limited, e.g. as 10 and 5 for OGA(a)

and OGA(b), respectively, to assure a reasonable computation time for the OGA optimization.

Due to this fact, the value of T0 is needed to regulate the gain step δa and the maximum gain

variations. As a result, it allows to compensate inconveniences due to the limited number of

potential gains. It can be argued that adjusting δa can also have the same effect as T0. However,

T0 is preferred because it has more physical meanings than δa, when it directly shows the ratio

between the maximum allowable gain variation and the admissible gain range.

The cases of study related to this parameter in OGA(a) and OGA(b) are illustrated in Fig.

3.12. In fact, T0 is tuned over the range [0.0001 : 1], however only five cases of study of OGA(a),

including Ra1, Ra2, Ra3, Ra4 and Ra5, and five cases of study of OGA(b), including Rb1, Rb2,

Rb3, Rb4 and Rb5, are shown, because they are enough to highlight the effect of the variation

factor T0 on the performance of OGA(a) and OGA(b).
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Figure 3.12: Illustration of the cases of study for the variation factor of OGA(a) and OGA(b)

With the admissible gain range in Table 3.1 and the number of potential gains in Table 3.4, the

corresponding gain steps of the above cases of study of T0 are calculated in (2.56) and given in

Table 3.6 and Table 3.7. It can be seen that ranging from Ra1 to Ra5 and from Rb1 to Rb5, the

variation factor T0 is decreasing, consequently the gain steps, δP and δF , are decreasing also.

Table 3.6: Different gain steps in OGA(a)

δP δF

Ra1 Ra2 Ra3 Ra4 Ra5 Ra1 Ra2 Ra3 Ra4 Ra5

Y 0.0889 0.0178 0.00889 0.0044 0.000889 0.12 0.0240 0.012 0.0060 0.0012

Z 0.1111 0.0222 0.01111 0.0056 0.001111 0.2167 0.0433 0.02167 0.0108 0.00433

A 0.0222 0.0044 0.00222 0.0011 0.000222 0.1689 0.0338 0.01689 0.0084 0.00338

Table 3.7: Different gain steps in OGA(b)

δP δF

Rb1 Rb2 Rb3 Rb4 Rb5 Rb1 Rb2 Rb3 Rb4 Rb5

Y 0.04 0.02 0.004 0.0004 0.00004 0.054 0.027 0.0054 0.00054 0.000054

Z 0.05 0.025 0.005 0.0005 0.00005 0.098 0.0488 0.0098 0.00098 0.000098

A 0.01 0.005 0.001 0.0001 0.00001 0.076 0.038 0.0076 0.00076 0.000076

According to the configurations in § 2, the OGA(a) and OGA(b) are performed with the above

different cases of study of T0. The obtained mean contour errors, ε̄ (3.4), are given in Table 3.8.
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Table 3.8: The mean contour errors of OGA(a) and OGA(b)

ε̄(µm)

r0 14.4

OGA(a)

Ra1 Ra2 Ra3 Ra4 Ra5

OGA(a1) 4.9 9.4 10.6 12.4 12.8

OGA(a2) 12.2 2.8 1.4 3.5 4.2

OGA(a3) 4.2 1.2 0.7 2.3 3.5

OGA(b)

Rb1 Rb2 Rb3 Rb4 Rb5

OGA(b1) 17.1 4.2 4.8 12.3 12.5

OGA(b2) 18.6 10.4 6.3 0.68 3.8

OGA(b3) 10.2 2.1 0.23 0.4 2.5

There are important remarks based on the results in Table 3.8, as follows:

• Almost all of the cases of study with OGA(a) and OGA(b) produce smaller contour error

than the reference case r0, except for OGA(b1) and OGA(b2) in Rb1. Based on these

quantitative evaluations, it is hard to explain such low performances. However, when the

obtained gain profiles and jerk responses are analyzed in the section § 3.4, these worse

results of OGA will be clarified.

• OGA(a3) and OGA(b3) are the best cases of OGA(a) and OGA(b), respectively. It can

be explained that the OGA(a3) and OGA(b3) have more possibilities in tuning the gains,

due to the combination of all potential gains of both KP and KF .

• In OGA(a), OGA(a1) has smaller contour error than OGA(a2) with Ra1; while in all of the

remaining cases the reverse is the case. In OGA(b), OGA(b1) is better than OGA(b2) in

the cases of Rb1, Rb2 and Rb3; while in Rb4 and Rb5, OGA(b2) is better than OGA(b1).

The above phenomenons can be explained by the sensitivity of the KP and KF values

over the reference velocity signal, that has been discussed in § 1.4, i.e. Fig. 3.9. It can

be said that in order to see the effects of the KP adjustment, the gain variations of KP

should be large enough to be able to regulate the reference velocity signal and of course

the feedrate, in order to further compensate the contour error. In the opposite, the small
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gain variations of KF are suitable to adjust the axis velocity and the feedrate in a delicate

manner to compensate the contour error.

• If the gain variations are too small, as in Ra5 and Rb5, they generate too small effects

on the axis velocity and the feedrate. As a consequence, the contour error is not much

compensated in these cases.

• For OGA(a), the best case of OGA(a1) is Ra1, while the best cases of OGA(a2) and

OGA(a3) are Ra3. For OGA(b), the best cases of OGA(b1), OGA(b2) and OGA(b3) are

namely Rb2, Rb4 and Rb3. Based on these facts, it is hard to find out a clear method to

choose T0, in order to achieve the best performances of OGA(a) and OGA(b).

According to the above results and for the given axis drives, it can only be pointed out

two following facts:

In OGA(a), for adjusting KP , T0 = 1 in Ra1 should be chosen. It means that the

maximum gain variation of KP should be equal to the admissible gain range. For

adjusting KF , its maximum gain variation should be 10% of its admissible gain range,

as in Ra3.

In OGA(b), the maximum gain variations of KP and KF should be chosen as within

5% and 0.1% of their admissible gain range, respectively.

Because OGA(a) and OGA(b) have different ways and characteristics in generating the optimal

gain profile, it is hard to compare them within the same condition. It is proposed to compare

between their best cases in Table 3.8 (in bold). The improvement and the computation time of

these best cases are given in Table 3.9. There are some important remarks as follows.

• In general, the best performance of OGA(b) is better than that of OGA(a). However, the

computation time of the former is much longer than the latter.

• For OGA(a), the best cases of OGA(a1), OGA(a2) and OGA(a3) improve the contour-

ing accuracy with a contour error reduction of around 67%, 90% and 95%, respectively,

compared with the reference case r0.

With the same computation time, OGA(a2) is enhanced around 71% as compared with

OGA(a1). Although having 50% of improvement compared with OGA(a2), OGA(a3) takes

much more computation time than OGA(a2), 1.5 days compared with 12.5 minutes.
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Table 3.9: The best performances of OGA(a) and OGA(b)

ε̄(µm) Improvement Computation time

r0 14.4 - -

OGA(a)

OGA(a1) 4.9 65.97% r0 ≃ 12.5 min

OGA(a2) 1.4 90.28% r0 ≃ 12.5 min

71.43%a1

OGA(a3) 0.7 95.14% r0 ≃ 2260 min (≃ 1.5 days)

50%a2

OGA(b)

OGA(b1) 4.2 70.83% r0 ≃ 6.5 h

OGA(b2) 0.68 95.28% r0 ≃ 6.5 h

83.81%b1

OGA(b3) 0.23 98.40% r0 ≃ 45.5 h (≃ 1.89 days)

66.18%b2

67.14%a3

• It can be seen that the best cases of OGA(b1), OGA(b2) and OGA(b3) can respectively

reduce around 70%, 95% and 98% the contour error of the reference case r0. The OGA(b2)

takes the same computation time as the OGA(b1), but the former reduces around 83% the

contour error of the latter. Meanwhile, the contouring accuracy of OGA(b3) is improved

around 66% compared with OGA(b2), but the former takes 7 times longer to finish the

computation than the latter.

• The best case of OGA(b), OGA(b3) in Rb3, has improved 67.14% the contouring accuracy

of the best case of OGA(a), OGA(a3) in Ra3.

From the above results and discussions, it can be said that to have a reasonable computation

time and a good contouring accuracy, it should be chosen OGA(a2) or OGA(b2). However, if

in off-line execution the computation time is normally not limited, and the contouring accuracy

has the highest priority, it is clear that OGA(a3) and OGA(b3) are preferred.
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3.2 Impact of variable gains on contour error profile

This section is to illustrate the variable gains and contour error profiles, obtained from the best

performances of the cases of study of T0 in § 3.1, represented in Table 3.9. Theses responses are

plotted in function of the trajectory in the workpiece space.

Fig. 3.13 gives a general view for the best variable gains and contour error profiles of OGA(a1)

in Ra1, OGA(a2) and OGA(a3) in Ra3.

Zoom in

Fixed gains Variable gains

Figure 3.13: Resulting variable gains and contour error profiles of OGA(a)
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For OGA(a), the horizon boundaries are also plotted to easily check the variable gain formulation

due to the predefined gain function within each horizon.

Fig. 3.14 does the same but for the best cases of OGA(b), meaning OGA(b1) in Rb1, OGA(b2)

in Rb4 and OGA(b3) in Rb3.

Zoom in

Zoom in

Figure 3.14: Resulting variable gains and contour error profiles of OGA(b)
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It can be seen that all of the variable gains respect the admissible gain range in Table 3.1. The

gain variations of OGA(a3) and OGA(b3) are slightly less than the remaining cases. It can be

understood that, when only one control gain is adjusted, it must be much changed in order to

compensate the contour error. While, if both KP and KF are adjusted, a small modification of

each gain is enough to have the effect of contour error compensation.

These variable gains affect the contour error profiles, as seen in the three plots at the bottom of

Fig. 3.13 and Fig. 3.14. From OGA(a1) to OGA(a3) and from OGA(b1) to OGA(b3) the contour

error profile is improving in a way that it is approaching the zero line over the whole trajectory.

In OGA(a1) and OGA(b1), there are contour error peaks at the region around Yw = 60 mm.

While, in OGA(a2) and OGA(b2) there are smaller contour error peaks at the region around

Yw = 20 mm. These contour error peaks are all smaller than the ones in the reference case. In

OGA(a3) and OGA(b3), all of the contour error peaks appeared in the previous cases have been

removed. The zoomed views indicate that the contour error of OGA(a3) and OGA(b3) only

fluctuates several micrometers and several tenth of micrometers, respectively, around the zero

line of contour error.

It can generally be said that the optimal variable gains of either OGA(a2) or OGA(a3) or

OGA(b2) or OGA(b3) have mostly overcome the challenges due to the high curvature along

the reference trajectory, in order to generate a small contour error over the whole free-from

trajectory.

3.3 Impact of variable gains on axis kinematic and motor current re-

sponses

In this section, OGA(a3) in Ra3 and OGA(b3) in Rb3, presented in § 3.1, are employed to

highlight the effect of the obtained variable gains on the axis kinematic and current responses.

Fig. 3.15 and Fig. 3.16 show that all of the axis kinematic responses respect their limitations in

Table 2.2. With a general view, when the control gains are adjusted, there are small variations

of the axis position, velocity and acceleration, but a large variation of the axis jerk, especially

in OGA(b3).

A comparison of the axis kinematic responses between OGA(a3) and OGA(b3), e.g. Y axis, is
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illustrated in Fig. 3.17. It can be noticed that the gain profile of OGA(b3) fluctuates more than

the one of OGA(a3). As a consequence, the axis kinematic responses of OGA(b3) is much more

excited than that of OGA(a3), especially the axis jerk. While the axis position, velocity and

acceleration responses are quite the same as the reference ones, the response of axis jerk is more

excited.
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Figure 3.15: Axis kinematic responses of OGA(a3)
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Figure 3.16: Axis kinematic responses of OGA(b3)
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Zoom in

For Y axis For Y axis

Trajectory Trajectory

Figure 3.17: Comparison of the variable gains and kinematic responses of OGA(a3) and

OGA(b3): Y axis case

Moreover, the motor current responses of the reference case r0, OGA(a3) and OGA(b3) are

compared in Fig. 3.18. Their constraints in (2.33) are verified. The motor current responses of

OGA(a3) and OGA(b3) are very similar to that of the reference case. The current increments

are less than 2% of the nominal current values, which have been set in the initial configuration,

as shown in Table 3.4.
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Figure 3.18: Motor current responses of r0, OGA(a3) and OGA(b3)

3.4 Relation between variable gains, jerk response and contour error

This section consists in answering the question: why OGA(a1) in Ra1 (T0 = 1) is better than

in Ra2 (T0 = 0.2), while OGA(b1) in Rb1 (T0 = 0.1) is worse than in Rb2 (T0 = 0.05), in which

OGA(b1) in Rb1 is even worse than r0?

Fig. 3.19 shows the obtained variable gains, axis jerk responses (e.g. Y axis) and the resulting

contour error profiles of OGA(a1) in Ra1 and Ra2. There are two important remarks as follows.

Firstly, large gain variation of KP
a in OGA(a1) does not much excite the jerk response. As it

can be seen, the gain variations in Ra1 are much larger than in Ra2. This is because T0 in Ra1

is five times more than in Ra2. This leads to the fact that the jerk variations in Ra1 are more

significant than in Ra2. However, the axis jerk variations in Ra1 are still much less than its

limitation and they only occur at the sinusoidal gain part in each horizon.

Secondly, due to the sensitivity contribution of KP
a in the position controller discussed in § 1.4,

it can be stated that it would be good to have a large variation of KP
a to adjust the reference

velocity signal of the velocity loop and the feedrate after that, in order to compensate the contour

error.

Clearly, the above two facts prove that for the contour error compensation in OGA(a1) the large

gain variation of KP
a in Ra1 is better than the small one in Ra2.
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Figure 3.19: Analysis of OGA(a1) in Ra1 and Ra2

Fig. 3.20 is similar to Fig. 3.19, but for OGA(b1) in Rb1 and Rb2. As it can be seen, a small

gain variation of OGA(b1) in Rb2 can much excite the axis jerk responses, approaching the

limitations. Thus, the large gain variation of OGA(b1) in Rb1 has obviously higher possibility

to violate the jerk limitation.
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Figure 3.20: Analysis of OGA(b1) in Rb1 and Rb2

Consequently, if a large gain variation for the minimum contour error does not satisfy the con-

straints, especially the axis jerk limitation, the OGA will remove this optimal choice. Therefore,

the obtained gain profile of OGA(b1) in Rb1, containing many constant gain portions and sev-

eral large gain jumps, is not the optimal one for the contouring following anymore and even

worse than the classical case. Meanwhile, the small gain variations in Rb2 can both compensate

the contour error and still respect the jerk limitation. These facts explain why the contour error

compensation of OGA(b1) in Ra1 is worse than in Ra2 and even worse than r0.
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3.5 Relation between variable gains, feedrate, tool tracking error and

contour error

This section is dedicated to analyze the relation between the variable gains, the feedrate, the tool

tracking error and the contour error in the workpiece space. Fig. 3.21 and Fig. 3.22 respectively

illustrate the concerned responses of OGA(a3) in Ra3 and OGA(b3) in Rb3, as represented

in § 3.1 As it can be observed, the adjustment of the control gains generally changes the tool

positioning behavior, including the feedrate, tool tracking error and contour error. Moreover, a

small change of the feedrate can also result in a significant contour error reduction.
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Figure 3.21: Impact of variable gains of OGA(a3) on the resulting feedrate, tool tracking error

and contour error
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Figure 3.22: Impact of variable gains of OGA(b3) on the resulting feedrate, tool tracking error

and contour error

While the contour error is much reduced by OGA, the resulting tool tracking error of OGA is

sometimes increased as compared with r0. This confirms the fact that a zero contour error can

be obtained even if the tool tracking error still exists.

The zoomed views in Fig. 3.21 and Fig. 3.22 prove that both OGA(a) and OGA(b) make the

tool displacement very accurate over the peak of the convex curve zone, which is one of the

critical regions in machining the free-form trajectory.

The comparison of the contouring accuracy between OGA(a3) and OGA(b3) is illustrated in

detail through Fig. 3.23. Over the trajectory, the contour error of OGA(b3) mostly fluctuates

within the limit of 1 µm, while the OGA(a3) has some contour error peaks from 2 to 4 µm.
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Figure 3.23: Comparison of the contouring accuracy between OGA(a3) and OGA(b3)

In addition, Fig. 3.24 shows another ways to evaluate the contouring accuracy of the above two

cases.
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Figure 3.24: a) Illustration of the contour error along the machining surface; b) Histogram of

the contour error

Fig. 3.24.a shows that ranging from r0, OGA(a3) to OGA(b3), the contour error over the

simulated machining surface has been remarkably reduced.

Fig. 3.24.b illustrates that the contour error of the reference case r0 mainly ranges from 0.5 to

50 µm. While, OGA(a3) and OGA(b3) have a centered normal distribution of contour error,

ranging from -3 to 3 µm and from -0.5 to 0.5 µm, respectively.
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3.6 Impact of the sinusoidal part of OGA(a)

The effects in tuning different lengths l1 (2.48) of the sinusoidal part in the predefined gain

function (2.46) of OGA(a), are now discussed. Note that l1 is kept the same over all of the

adaptive horizons of OGA(a).

Three cases of study related to the length l1 of OGA(a2) in Ra3 from § 3.1 are given in Table

3.10. Remember that OGA(a2) in Ra3 of Table 3.8 has used l1 = 0.3Nk.

Table 3.10: Cases of study for the sinusoidal part

Control strategy Notation l1 ε̄(µm) Improvement

Classical control r0 - 14.4 -

OGA(a2)

L1 0.1Nk 5.7 60.42%r0

L2 0.3Nk 1.4 90.28%r0

75.44%L1

L3 0.8Nk 1.4 90.28%r0

As it can be seen, the above three cases of study have compensated the contour error much more

than the reference case r0. L1 reduces about 60% the contour error of r0. L2 and L3 similarly

reduce about 90% and 75 % the contour error of r0 and L1, respectively.

In addition, the effects of different lengths of the sinusoidal part on the obtained variable gain

profile, the axis jerk responses and the contour error profile are illustrated in Fig. 3.25.

As shown in Fig. 2.16, longer l1, smoother gain profile, and vice-versa. Because L1 has the

smallest l1 in the three cases, its gain profile contains sharp changes. As it can be noticed, several

sharp gain variations in L1, even with small amplitudes, can also lead to the corresponding large

peaks in the axis jerk responses. This implies that other large and sharp changes of the optimal

gains in L1 have been eliminated from the OGA optimization due to the constraints of axis jerk.

Therefore, the gain profile of L1 is less flexible and has less optimal variable gains, leading to

the fact that its contour error is not much compensated.
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Figure 3.25: Impact of the sinusoidal part of gain function on OGA(a2)

In contrast, L2 and especially L3 have smoother gain profile and less jerk variations than L1.

This means that the last two cases can generate more optimal gains than the first case. As a

result, the contour error in L2 and L3 is reduced much more than in L1. Moreover, a smaller

contour error peak of L2 around Yw = 20 mm has been removed in L3.

According to the above discussions, it can be concluded that longer length of the sinusoidal part,

more flexible profile of the variable gains, less excitations of the axis jerk responses, and more

contour error reductions. However, how to globally choose the optimal length of the sinusoidal
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part for the different adaptive horizons is still an open question. Up to now, it is still needed

to do some tests and choose the best fixed length of the sinusoidal part for all of the adaptive

horizons of OGA(a).

3.7 Impact of the horizon length of OGA(b)

This section refers to the tuning effect of different values of the fixed horizon length on the

performance of OGA(b).

Four cases of study related to the horizon length of OGA(b1) in Rb2 from § 3.1 are provided

in Table 3.11. Remember that the previous value of the horizon length of OGA(b1) in Rb2 in

Table 3.8 is ∆tk = 0.144 s (or Nk = 25 instants).

Table 3.11: Cases of study for the horizon length of OGA(b)

Control strategy Notation Horizon length ε̄(µm) Improvement

Classical control r0 - 14.4 -

OGA(b1)

Hb1 0.024 s (5 instants) 4.7 67.36%r0

Hb2 0.144 s (25 instants) 4.2 70.83%r0

Hb3 0.294 s (50 instants) 4.8 66.67%r0

Hb4 0.594 s (100 instants) 6.2 56.94%r0

Table 3.11 indicates that in general the above four cases of study produce smaller contour error

than the reference case r0. The best case is Hb2, which has reduced around 70% the contour

error of r0.

Fig. 3.26 shows the effects of the obtained gain profiles on the axis jerk responses and the result-

ing contour error profiles. In general, from Hb1 to Hb4, when the horizon length is increasing,

the gain variations are generally decreasing and therefore the variations of the axis jerk responses

are decreasing also.
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Figure 3.26: Impact of the prediction horizon length on the OGA(b1)

As it can be seen, Hb1 has the largest contour error peaks at the critical positions on the

trajectory, being the curvature peaks on the convex and concave portions. Even its large gain

variations at these critical positions cannot remove the contour error peaks. This implies that

the reactions of the variable gains in Hb1 are too slow to deal with the changes in the curvature

at the critical positions, which usually cause large contour errors. This is due to the shortest

horizon length of Hb1. Therefore, it can be said that if the horizon length is too short, the

OGA(b) will lose the prediction effect at the critical positions on the trajectory.

In Hb4, due to having the longest horizon length, its variable gain profile behaves too early as

compared with the other cases, e.g. as seen in the KP
Y profile at Yw = [30 : 50] or the KP

A profile

at Yw = [50 : 70]. Besides, it can be noticed that at Yw = [50 : 60], Hb4 has the largest contour
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error in the four cases of study. This can be understood since the detrimental effect of a too

long horizon length of OGA(b) discussed in § 2.1, illustrated in Fig. 3.11, that leads to the fact

that the obtained variable gain is not optimal for the closest future tool position.

According to the above discussions, the horizon length should be chosen appropriately not only

to have the prediction effect, but also to generate the optimal gains. In this way, the horizon

length in Hb2 is finally chosen. However, how to choose explicitly the horizon length for OGA(b)

is still an open issue. It is proposed that some tests must be performed to choose the best horizon

length for OGA(b).

3.8 Impact of the weighting factor

The tuning effects of different values of the weighting factor on the OGA(a) and OGA(b) re-

sponses are discussed in this section. The cases of study related to this parameter for OGA(a2)

in Ra3 and OGA(b2) in Rb3 from § 3.1 and their quantitative results are given in Table 3.12.

Table 3.12: Cases of study for the weighting factor of OGA(a) and OGA(b)

Control strategy Notation λF ε̄(µm) Improvement

Classical control r0 - 14.4 -

OGA(a2)

Wa1 0 1.4 90.28%r0

Wa2 0.0001 3 79.17%r0

Wa3 0.001 5.8 59.72%r0

OGA(b2)

Wb1 0 6.3 56.25%r0

Wb2 0.0001 4.7 67.36%r0

Wb3 0.001 4.7 67.36%r0

It can be seen that when the weighting factor λF is increasing, the mean contour error of

OGA(a2) is increasing; while the mean contour error of OGA(b2) slightly decreases. This can

be explained through the fact that OGA with large weighting factor permits only small or

maybe too small gain variations. This means that for OGA(a) a small gain amplitude of the

pre-defined gain function leads to small gain variations for each horizon, that cannot sufficiently

adjust the axis velocity, feedrate, and then cannot much compensate the contour error. In

contrast, each optimization cycle of OGA(b) only produces one single optimal gain. Therefore,
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small gain variation of each single gain due to large weighting factor does not much affect on its

performance. Moreover, similar to the cases of study in § 3.1, for good contouring accuracy, the

gain variations of OGA(a) are usually larger than that of OGA(b). Henceforth, the choice of

weighting factor depends on the chosen solving technique of OGA, either OGA(a) or OGA(b).

In addition, the effects of the different weighting factors on the obtained gain profiles, the axis

jerk responses, and the resulting contour error profiles are illustrated by Fig. 3.27 and Fig. 3.28.

For OGA(a2), when the weighting factor value is zero, as in Wa1, the variable gain profiles

undergo larger adjustments, but the axis jerk variations are quite similar to the other cases.

Consequently, the contour errors are more reduced.
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Figure 3.27: Impact of the weighting factor on the OGA(a2)
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For OGA(b2), when the weighting factor value is zero, as in Wb1, the variable gain profiles

also undergo more adjustments, and the axis jerk responses are more varied than the other

cases. Consequently, the optimal gains having large variations may be removed by the OGA

constraints, especially the limited jerk constraint, leading to the fact that their contour errors

are not much reduced.

Figure 3.28: Impact of the weighting factor on the OGA(b2)

The above discussions highlight the fact that the weighting factor is a good parameter to regulate

the behaviors of not only the variable gain profiles, but also the axis kinematic responses, i.e.
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the axis jerk response, and the resulting contour error profile.

4 Conclusion

To conclude, the configuration and the performance of OGA are discussed through the simulation

results of the two solving techniques, OGA(a) and OGA(b). Each solving technique has its own

advantages and disadvantages or challenges, as follows.

For OGA(a)

The advantages include:

∗ The adaptive horizon lengths allow OGA(a) to consider the challenges of the

different curvature characteristics over the free-form trajectory.

∗ The adaptive horizon lengths are easily obtained by the Algorithm 1, that can

be applied for whatever free-form trajectory.

∗ The principle of receding horizon without overlap makes the computation time

of OGA(a) shorter than OGA(b).

∗ The behaviors of the variable gain profile and the axis kinematic responses can be

managed by the formulation of the gain function, i.e. by choosing an appropriate

length of the sinusoidal part.

∗ The obtained variable gains are shaped into the gain function. They can be

computed on-line using the gain function and its optimal parameters. Hence, the

optimal variable gains obtained by OGA(a) will need less memory to be stored

if OGA(a) is implemented into the real machine.

The challenges include:

∗ There are many possibilities to define such a gain function of OGA(a). Finding

an optimal gain function is an open issue.

∗ Besides, how to choose the optimal length of the sinusoidal part within the dif-

ferent adaptive horizons is also an open question.

For OGA(b)

The advantages include:
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∗ The prediction effect of OGA(b) is more global than that of OGA(a). It is

not necessary to analyze the curvature characteristics of the free-form trajectory

before performing OGA(b).

∗ According to the above results, it can be said that the obtained variable gains in

OGA(b) are more flexible than in OGA(a). Moreover, the best cases in OGA(b)

produce smaller contour error than in OGA(a).

The challenges include:

∗ Because the horizon is receded by only one instant, the computation time in

OGA(b) is much longer than in OGA(a). It can be argued that if the horizon is

receded by more than one instant, then the computation time can be reduced.

This is correct. However, initially the OGA(b) is inspired from the idea of MCP,

in which one-step receding horizon is chosen. Moreover, if the receding horizon

length can be varied, it will be another parameter for tune. Therefore, this will

be a part of future works.

∗ If the variable gains obtained by OGA(b) is implemented into the real machine,

it takes more memory space than the gain implementation of OGA(a).

∗ How to explicitly choose optimal horizon length of OGA(b) is still an open issue.

In addition, the above two solving techniques, OGA(a) and OGA(b), share the same character-

istics as follows.

Their common advantages include:

∗ Both techniques reduce much more contour error than the reference case using

the best fixed gain in the classical axis control.

∗ Considering the optimization over the horizon allows to consider the challenges

in the high curvature portions over the free-form trajectory.

∗ All of the axis kinematic constraints, the stability criterion of the servo drive and

the motor current limits are respected.

∗ They have high possibility to be implemented into the real machine, since the

only requirement in the current CNC is the memory to store the optimal gains

for the given trajectory and then each gain value is loaded at each sampling time.
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∗ The solving technique is basically based on tuning/searching. The idea is simple,

so it can be easily understood and used by new users.

Their common challenges include:

∗ There are many parameters for choice in the configurations of OGA(a) and

OGA(b). How to choose optimal values for some of the user-defined parame-

ters, e.g. the length of the sinusoidal part in OGA(a) or the horizon length in

OGA(b), are still open questions.

∗ The optimizations in the cases of OGA(a3) and OGA(b3) can significantly im-

prove the contouring accuracy, but they have a high computation burden.

According to the above discussions, it can be concluded that if the computation burden can

be regardless or overcome within the off-line execution phase, tuning both KP
a and KF

a is the

best choice for the contouring accuracy. If not only a high contouring accuracy but also a short

computation time are needed, then tuning only KF
a is preferred.

In general, the proposed OGA has significantly improved the contouring accuracy of the given

free-form profile, while preserving all of the concerned constraints. It could be a practical solution

for the axis control in the future CNC.
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The last two chapters have presented, analyzed and proved the core idea of this PhD thesis, that

is to keep the classical axis control structure being used in the current CNC and to modify only

the control gain inside the position loop by the OGA approach to reduce contour error. In this

chapter, the applicable possibilities of OGA are extended.

In the first part, one global control gain is introduced into the classical axis control structure

and adjusted by OGA. In the second part, the OGA is also examined in the case using advanced

controllers for axis control.

Simulation results are shown and discussed to prove the possibilities of these OGA extensions.

Finally, an OGA-GUI interface is created to facilitate the use of OGA.

1 Introduction of the variable global gain

Generally, the OGA is proposed to adjust the control gains used in the position controller

(P+FFW) of the classical axis control in the current commercial CNC. This method can be

easily implemented by the machine tool manufacturers, because they do not need to change

their control structure. The only requirement is to change the way in which the control gain

values are stored in CNC, a set of variable gain values instead of a fixed gain value.

This chapter assumes that machine tool manufacturers can develop the axis position control with

either classical or advanced controllers. Although the number of control gains or parameters in

the position loop can be numerous depending on which kind of controller is used, there is only

one reference signal of the velocity loop. Thus, the adjustments of several or all of the control

gains result in the modification of the reference signal of the velocity loop, as illustrated in Fig.

4.1.

Velocity loop

(Current loop: Motor

+ Friction model)

Position controller

Variable gain 1

  1
s

θref θ

Position loop

Uref V

...

Variable gain 2

Variable gain n

(rad/s)
(rad)

(rad)(rad/s)

Figure 4.1: Adjustment of the classical control gains in position controller
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The more gains adjusted, the more degrees of freedom of the adjustment. However, this leads to

a higher computation burden, especially if the optimization is performed for all of the axes. If

only one or several control gains are optimized by OGA, it is important to choose the appropriate

gains to adjust. The sensitivity and effectiveness of such gains need to be discussed firstly. This

is due to the fact that their contribution to the global control action is not the same. For

example, as shown in the previous chapter, the velocity reference produced through KF is much

more important than through KP . Thus, adjusting the KF gain is more sensitive and more

effective than adjusting KP . However, KP is essential to maintaining feedback loop stability.

According to the above analysis, to reduce the computation burden and to adequately maintain

the efficiency of OGA, a new idea is proposed, in which the control gains inside the position

controller, either a classical or advanced one, are kept unchanged, then one variable global gain

is introduced just after the position controller, ahead of the velocity loop, as represented in Fig.

4.2. This gain is without unit, as its function is just to modify the amplitude of the reference

velocity signal.

Velocity loop

(Current loop: Motor

+ Friction model)

Position controller

Fixed gain 1

  1
s

θref θ

Position loop

Uref V

...

Variable 

global gain 

Fixed gain 2

Fixed gain n

(rad)
(rad)(rad/s) (rad/s)(rad/s)

Figure 4.2: Adjustment of the global gain

The OGA is then performed to adjust this new gain. Before analyzing the efficiency of this idea

related to the contouring accuracy, it is obvious that the computation time in this case of study

is much reduced compared to the global case where all the control gains are optimized, and it is

equivalent to the case where only one classical control gain, e.g. either KP or KF in the classical

axis control, is adjusted.

Another benefit of the global gain adjustment is that it can easily be applied into any type of

position controller without regard to the complexity of its control structures. Therefore, CNC

technicians or specialists can easily implement this new gain for the application of OGA into

their commercial CNC versions.
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In the following, such a global gain is namely integrated with the classical axis control structures

and with one of the advanced axis controllers.

2 OGA integrated classical axis controller: The global gain

case

The above global gain, denoted as Kglobal
a , is firstly added into the classical cascaded control

structure through its nonlinear axis model. It is then adjusted by OGA during the off-line

execution to produce its optimal variable value to pre-compensate contour error. The axis

control structure with the specificity of global gain and OGA is proposed in Fig. 4.3
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Figure 4.3: Axis control structure with specificities of global gain and OGA

2.1 Admissible range for the global gain

In fact, the principle of OGA formulated in the previous chapter is kept unchanged. The only

difference is that the optimization task of OGA is now to optimize the global gain, instead of

the P and/or FFW control gains. Therefore, the only requirement is to establish constraints for

this new gain.

It can be noticed that the adjustment of Kglobal
a is equivalent to the adjustments of both KP

a

and KF
a by the same factor. Therefore, the adjusted Kglobal

a values will affect the concerned
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constraints proposed in Chapter 2, Section § 3.4, including the stability of the axis drive, the

axis kinematic and the motor current limitations. As a result, the bounds of Kglobal
a must be

chosen respecting all of the constraints. They are proposed as follows.

Firstly, without the variable global gain in the position loop, KP
a and KF

a are chosen as fixed

values. In this case of study, it is proposed to choose the two gains as their best fixed values in

view of contouring accuracy, KP∗

a and KF∗

a , given in Table 3.2, and represented by (4.1).






KP
a = KP∗

a

KF
a = KF∗

a

(4.1)

The upper bound of Kglobal
a , Kglobal,max

a , is obtained by (4.2).

Kglobal
a ≤ Kglobal,max

a s.t







stability criterion proposed in (2.28)

the axis kinematic limitations given in Table 2.2

the motor current limitations in (2.33)

(4.2)

In fact, there is a relation between Kglobal,max
a in (4.2), KP,max

a in (2.39) and KF,max
a in (2.42).

Assume that Kglobal,1
a is the maximum value of Kglobal

a respecting the stability criterion in (2.28);

and Kglobal,2
a is the maximum value of Kglobal

a preserving the axis kinematic limitation in Table

2.2 and the motor current limitations in (2.33). A set of equations in (4.3) must be obtained.






Kglobal,1
a =

KP,max
a

KP∗
a

Kglobal,2
a =

KF,max
a

KF∗
a

(4.3)

Consequently, Kglobal,max
a is in relation with KP,max

a and KF,max
a though (4.4).







Kglobal,max
a = min

(
Kglobal,1

a , Kglobal,2
a

)

= min

(
KP,max

a

KP∗
a

,
KF,max

a

KF∗
a

) (4.4)

Then, the lower bound of Kglobal
a , which is obviously greater than zero and less than Kglobal,max

a ,

is chosen by users.

Finally, the admissible range of Kglobal
a is given in (4.5).

Kglobal
a ∈

(
0 : Kglobal,max

a

]
(4.5)
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2.2 Simulations and discussions

The applications of the two solving techniques of OGA on Kglobal
a are denoted as OGA(a4) and

OGA(b4).

2.2.1 Configurations of OGA

The configurations of OGA(a4) and OGA(b4) are the same as the ones given in Table 3.4, except

for the admissible gain range of Kglobal
a . There are many possibilities to choose the Kglobal,min

a

(4.5), but only Kglobal,min
a = 0.5 is checked considering the reasonable computation time in

the simulations. The Kglobal,max
a is obtained according to the discussion in § 2.1. Finally, the

admissible range of the global gain is obtained and provided in Table 4.1.

Table 4.1: Admissible range of the global gain

Y Z A

Kglobal
a [0.5 : 1.2] [0.5 : 1.5] [0.5 : 1.68]

The variation factor T0 in (2.55), which is examined as a tuning parameter, is similar to the

cases of study illustrated in Fig. 3.12.

2.2.2 Responses of OGA

The corresponding responses of OGA(a4) and OGA(b4) for each case of study of T0 are discussed

as follows. It should be kept in mind that T0 in (2.55) is now applied for Kglobal
a , while the two

classical control gains, KP
a and KF

a , are kept fixed as KP∗

a and KF∗

a , respectively. The obtained

quantitative results are compared with the reference case r0 in Table 4.2.
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Table 4.2: Performance of OGA(a4) and OGA(b4)

r0 ε̄(µm) 14.4

Ra1 Ra2 Ra3 Ra4 Ra5

OGA(a4)

T0 1 0.2 0.1 0.05 0.01

ε̄(µm) 7.2 3.6 3.3 4.2 8.7

Improvement (%) 50% r0 75% r0 77.08% r0 70.83% r0 39.58% r0

Computation time (min) ≈ 12.5

Rb1 Rb2 Rb3 Rb4 Rb5

OGA(b4)

T0 0.1 0.05 0.01 0.001 0.0001

ε̄(µm) 25.6 13.1 5.7 3 11.7

Improvement (%) -77.78% r0 9.03% r0 60.42% r0 79.17% r0 18.75% r0

Computation time (min) ≈ 400

It can be seen that the best performances of OGA(a4) and OGA(b4) correspond to the cases

of Ra3 and Rb4 where they reduce the contour error of r0 about 77% and 79%, respectively.

Although the contouring accuracy of OGA(b4) in Rb4 is slightly improved as compared with

OGA(a4) in Ra3, the computation time of the former is 20 times longer than the latter.

To highlight the differences in adjusting the global gain, Kglobal, and other control gains, either

KP or KF , a comparison between Table 3.8 and Table 4.2 is performed.

It can be seen that the best cases of OGA(a4) in Ra3 is better than the best case of OGA(a1) in

Ra1 and worse than the best case of OGA(a2) in Ra3. Similarly, the best cases of OGA(b4) in

Rb4 is better than the best case of OGA(b1) in Rb2 and worse than the best case of OGA(b2)

in Rb4.

The contouring performances of OGA(a4) and OGA(b4) are respectively worse than OGA(a3)

and OGA(b3) in all of the cases of study. This is due to the fact that the former cases have less

degrees of freedom in tuning the gains than the latter cases. Because of this, the former cases

take much less computation time than the latter cases.

Based on the above comparisons, it can be said that the performances of OGA(a4) and OGA(b4)

are more or less the same as OGA(a1) or OGA(a2) and OGA(b1) or OGA(b2), respectively.

In addition, although the adjustment of global gain reduces the contour error less than the
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adjustment for both classical control gains, the former achieves more reasonable computation

time than the latter. Similar to the adjustment of KP
a and/or KF

a , the efficiency of the Kglobal
a

adjustment much depends on the parameter configurations, such as the gain variation factor T0.

Fig. 4.4 compares the resulting feedrate, tool tracking error and contour error profiles between

OGA(a4) in Ra3 and OGA(b4) in Rb4, in the relation with the trajectory and the obtained

variable global gains.

Zoom in
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OGA(b4)

OGA(a4)

Figure 4.4: Comparisons of feedrate, tool tracking error, contour error between OGA(a4) and

OGA(b4)

It can be seen that the obtained variable global gains have slightly modified the response of the

feedrate profile, especially on high feedrate zones, leading to the change of the tool tracking error
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and the compensation of contour error.

The contour error profiles of OGA(a4) and OGA(b4) have a peak of about 30 µm at the critical

regions just over Yw = 20µm and Yw = 60µm, respectively. However, in general their contour

errors have been much reduced as compared with the one of the reference case.

The contour error histogram shows that the contour errors of OGA(a4) and OGA(b4) have a

centered normal distribution, mainly ranging from -10 to 10 µm, while r0 induces the contour

errors mainly between 5 to 20 µm.

For OGA(a4), over all of the five cases of study of T0, it has much improved the contouring

accuracy with at least 40 % improvement as compared with the reference case r0. As it can be

seen in Table 4.2, it should be good to have the variation factor T0 ranging from 0.05(Ra4) to

0.2(Ra2) for OGA(a4).

For OGA(b4), from Rb2 to Rb4, the contour error has been reduced as compared with r0,

however the mean of contour error in Rb1 is much larger than in r0. This reduced contouring

performance of OGA(b4) in Rb1 is due to its largest variation factor, which is explained in detail

as follows.

Fig. 4.5 compares the obtained variable global gains and the jerk responses of OGA(b4) in Rb1

(T0 = 0.1) and Rb4 (T0 = 0.001).

Figure 4.5: Resulting variable global gains and jerk responses of OGA(b4) in the cases of Rb1

and Rb4
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It can be seen that the gain profile in Rb4 is much smoother than in Rb1. In fact, the gain

profile of Rb1 consists of straight lines and large gain jumps, which are explained by the effect

of the kinematic constraints, i.e. the axis jerk limitation, in solving the optimization of OGA.

As it can be seen, each gain variation of Rb1 induces a large peak of jerk. Therefore, it can

be understandable that if one optimal gain value of Rb1 in term of the smallest contour error

corresponds to a large gain variation, that violates the axis jerk limitation, this gain is not chosen

by OGA. Consequently, the gain profile of Rb1 remains unchanged in many segments. At the

end of the optimization procedure along the trajectory, the obtained variable global gain profile

is not an optimal one for the purpose of contour error compensation.

According to the above relation between the gain variation, kinematic constraints and the chosen

gain value, the obtained gain profile in Rb1 causes a poor CE profile, as shown in Fig. 4.6.

Zoom in

Zoom in

Figure 4.6: Contouring accuracy of OGA(b4) in the cases of Rb1 and Rb4

As it can be seen, at the beginning of the trajectory, OGA(b4) in Rb1 works well when it allows

the smallest contour errors within the three cases of study. To obtain this, the gain profile of

Rb1 started with large gain variations. For example, the initial variations of Kglobal
Y are as large

as 1.2. Then, because the global gain has been increased too much, its next gain variations may

violate the jerk limitations. Therefore, after a good start its gain profile kept unchanged until
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around Yw = 40 mm. This explains why the obtained gain profile in Rb1 is not optimal, and

consequently the contour error in Rb1 is not reduced, but even increased along the trajectory.

Other analyses of OGA(a4) and OGA(b4) can be performed the same as the ones in previous

chapter, such as the impacts of the sinusoidal gain part, of the horizon length or of the weighting

factor on the OGA responses(Chapter 3, § 3.6, § 3.7, § 3.8). However, for simplicity, only the axis

kinematic responses of both OGA(a4) and OGA(b4) are discussed as follows.

Fig. 4.7 and Fig. 4.8 show the resulting variable global gain profiles and the axis kinematic

responses as a function of trajectory in cases of Ra3 and Rb4, which are the two best cases of

OGA(a4) and OGA(b4), respectively.
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Figure 4.7: Variable gain and kinematic responses of OGA(a4)
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For Y axis For Z axis For A axis

Trajectory
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Figure 4.8: Variable gain and kinematic responses of OGA(b4)

As it can be seen, all of the axis kinematic responses respect their limitations in Table 2.2.

It can be seen that in general the amplitude variation of the global gain in OGA(b4) is smaller

than in OGA(a4). However, the gain profile of the former varies nearly every instant along the

trajectory, while that of the latter has many constant gain segments due to effect of the constant

part in its predefined gain function.
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2.3 Conclusion

Indeed, it is hard to conclude that the adjustment of the Kglobal
a is more interesting than the

previous adjustment of the classical control gains, KP
a and/or KF

a . It can only be said that

it has the advantages of the one single gain adjustment, especially the reasonable computation

time. In addition, the above simulation results prove one important thing that the OGA can

be applied correctly as a means of modifying only one single global gain, in the context of the

classical axis control structure. Therefore, it is inspired to test this idea with the advanced axis

control structure. It makes sense because like in this case the applicable possibilities of OGA

can be further extended.

3 OGA integrated advanced axis controller

In this section, the application of OGA for the global gain is examined within the structure of

an advanced position controller.

It should be noted that although the development of advanced controller for feed drives is out

of the main scope of this PhD thesis, it is also valuable to highlight the generic possibilities of

OGA, not only for the classical axis control but also for advanced structures. Moreover, this

idea is developed with an assumption that the advanced position controllers can be implemented

in the future in a commercial CNC version, which is not obvious.

A case of study for advanced feed drive control is the GPC (Generalized Predictive Control),

which has been extensively studied in the literature [Susanu 2006, Dumur 2008, Rodriguez-Ayerbe 2014].

Note that in the previous chapters, the sampling period in the framework of machine tools for

the position loop and the setpoint interpolation period were set to 6 ms, that is consistent with

the Mikron UCP 710 machining center. Furthermore, the trajectory for the desired part in Fig.

3.1.a is interpolated to machine with two linear axes Y and Z, and one rotary axis A.

Following, the machining of the same part is also simulated. Nevertheless, to evaluate the

response of OGA in both different types of position controller and different contexts of multi-

axis high speed machining, other configurations for the reference trajectory are proposed, as

follows:
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• Firstly, the sampling period in the framework of machine tools for the position loop and

the setpoint interpolation period were set to 1 ms, instead of 6 ms. The reason for

this configuration is that the GPC provides better performance with 1 ms than 6 ms

[Rodriguez-Ayerbe 2014]. It can be understood that each advanced position controller has

its own specificities, and its own applicable domain. This makes sense, because it allows

to see the adaptation of OGA for whatever condition of axis control.

• The above modification related to the sampling period leads to the re-calculation in the

feedrate interpolation stage, using VPOp algorithm with a new interpolation period of 1

ms. Unfortunately, this task for the case of 5-axis machining, i.e. for Y, Z, and A axes in

the previous case of study, takes too long to finish. However, it can be finished with an

reasonable computation time for a 3-axis machining, i.e. for Y and Z axes for this case of

study. Due to the time limit in this PhD framework, finally it is proposed that instead

of using 5-axis machining center, machining the above desired part with 3-axis machining

center is now simulated.

One example for the reference trajectories obtained by the different configurations in CAM and in

the feedrate interpolation is illustrated in Fig. 4.9. As it can be seen, the trajectory interpolated

with Te = 1 ms has more programmed tool path data than with Te = 6 ms. Furthermore, it is

clear that the tool axis orientation of the 3-axis machining is always fixed vertically, while that

of 5-axis machining is changed, respecting the configuration of tilt angle θt = 5 degrees and yaw

angle θn = 0 degree, as illustrated in Fig. 1.19.

Tool axis directions
Trajectory with Te = 6 ms

Trajectory with Te = 1 ms

Figure 4.9: 3-axis trajectories with different interpolation periods
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In addition, by changing the number of involved axes and the interpolation period in the feedrate

interpolation stage, performed by the VPOp algorithm, the kinematic characteristics related to

the position setpoints are different. One example is the different reference feedrate cartographies,

illustrated in Fig. 4.10.

X
w  (m

m
)

Yw
 (m

m)

Zw(mm)

F (m/min)

3-axis (i.e. Ym and Zm) trajectory, Te=1ms

(1)

(2)

5-axis (i.e. Ym, Zm, and Am) trajectory, Te=6ms

(1)

(2)

Figure 4.10: Different reference feedrate cartographies for 3-axis and 5-axis trajectories

3.1 Generalized predictive control (GPC)

Following, the synthesis of GPC controller is briefly reminded.

GPC belongs to the class of model-based advanced controllers. Therefore, the design of the GPC

controller for the axis control requires the knowledge of a numerical model of the machine axis.

In this work, this is obtained through two successive identification procedures as shown in Fig.

4.11.
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Identification by

experimental means

Velocity loop

(Current loop: Motor

+ Friction model)
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Machining center Nonlinear axis model Numerical model

Nonlinear model

Standard least square 

identification method

q-1 B(q-1)

A(q-1)

θUref

Figure 4.11: Identification procedures of the axis models

The first identification process is to obtain the nonlinear axis model. Based on this nonlinear

model, a linear discrete time transfer function of the axis dynamics, in other words the numerical

model, is derived through a standard least square identification method [Landau 1990]. Once

the appropriate linear axis model is obtained, the design of the GPC can be performed, as stated

below.

In the GPC theory [Clarke 1987], the plant is classically modeled by the input/output CARIMA

form as in (4.6),

A
(
q−1
)
y (t) = B

(
q−1
)
u (t− 1) +

C (q−1) ξ (t)

∆ (q−1)
(4.6)

with q−1 the backward-shift operator, u(t) the input and y(t) the output of the system. ξ (t) is

a zero mean non-correlated white noise, C (q−1) models the noise influence [Clarke 1989]. The

introduction of the difference operator ∆(q−1) = 1− q−1 in the disturbance model helps to find

an integral action in the controller and so eliminate the static errors. A (q−1) and B (q−1) are

the two polynomials obtained by the least square identification:







A (q−1) = 1 + a1q
−1 + . . .+ ana

q−na

B (q−1) = b0 + b1q
−1 + . . .+ bnb

q−nb

.

The block diagram of the above CARIMA model is represented in Fig. 4.12.
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u(t) y(t)
B(q-1)q-1

A(q-1)

1

+

+

Δ(q-1)
C(q-1)

ξ(t)

Figure 4.12: Block diagram of CARIMA model

The control signal of GPC is obtained by minimization of a quadratic cost function in (4.7),

J =

N2∑

j=N1

[yref (t+ j)− ŷ (t+ j)]2 + λ
Nu∑

j=1

∆u (t+ j − 1)2 (4.7)

in which

• N1 and N2 define the lower and upper output prediction horizons, respectively

• Nu is the control horizon,

• λ is the control weighting factor,

• yref is the setpoint,

• ŷ (t+ j) is the optimal j-step ahead predictor, given in (4.8),

ŷ (t+ j) = Fj

(
q−1
)
y (t) +Hj

(
q−1
)
∆u (t− 1)

︸ ︷︷ ︸

free response

+Gj

(
q−1
)
∆u (t+ j − 1)

︸ ︷︷ ︸

forced response

(4.8)

where the Fj, Hj, Gj polynomials are unique solutions of a set of Diophantine equations

[Clarke 1987],

• u is the control signal.

The receding horizon principle assumes that only the first value of the optimal control sequence

resulting from the minimization of (4.7) is applied to the system, so that at the next sampling

period the same procedure is repeated. This control strategy leads to a two-degree of freedom

RST controller, implemented through a difference equation (4.9) by means of 3 polynomials R,
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S and T , as illustrated in Fig. 4.13. One major characteristic to be noted is that T (q) has a

non-causal structure and assures the anticipation effect in the closed loop.

∆(q−1)S
(
q−1
)
u (t) = −R

(
q−1
)
y (t) + T (q) yref (t) (4.9)

R(q-1)

u(t) y(t)yref(t) +

-

Δ(q-1)S(q-1)

1
B(q-1)q-1

A(q-1)

1
T(q)

+

+

Δ(q-1)

C(q-1)

ξ(t)

Equivalent polynomial controller

Figure 4.13: Two-degree of freedom RST controller

Once the polynomials R (q−1), S (q−1) and T (q) of the GPC controller are found, they are used

to control the nonlinear axis model, e.g. of Y axis, shown in Fig. 4.14.
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TY(q)

RY(q-1)

Δ(q-1)SY(q-1)

  1
+
-

GPC controller

Figure 4.14: GPC controller for the position loop of the nonlinear Y-axis model

3.2 OGA integrated GPC

The global gain OGA strategy is integrated into the above GPC controller through the proposed

control structure in Fig. 4.15.
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Figure 4.15: OGA integrated RST control structure: the GPC case

The principle of OGA to adjust the Kglobal
a is unchanged, except the change in the upper bound

of this control gain.

The upper bound of Kglobal is achieved by respecting two following constraints: (1) tuning it

within the position open loop, as illustrated for Y axis in Fig. 4.16, while verifying the stability

criterion in (2.28), and (2) tuning it within the position closed loop illustrated in Fig. 4.15,

without the OGA, while verifying the axis kinematic limitations in Table 2.2 and the motor

current limitations in (2.33).
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Figure 4.16: Position open loop with GPC controller and linear model

3.3 Simulations and discussions

The main objective of this section is to primarily prove that the OGA can be applied into

diversified control structures, either classical or advanced ones and can reduce more or less the

contour error as compared with the control structures without OGA.
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Due to the above intention, and for the simplicity, only OGA(a4) is performed. Following, four

cases of study are considered, as in Table 4.3.

Table 4.3: Cases of study for different axis controllers (Te = 1 ms)

Control strategy Notation Tuning Gain

P+FFW f1a None (Fixed gains)

P+FFW+OGA(a4) f1b Kglobal
a

GPC f2a None (Fixed gains)

GPC+OGA(a4) f2b Kglobal
a

3.3.1 Linear model

The linear model for the position loop is needed not only to determine the stability criterion of

the axes but also to design the GPC controller. To obtain this, the same identification procedure

as Chapter 3, Section § 1.2 is performed, but not represented here for the simplicity. It is noted

that because the only difference is the sampling time of 1 ms, instead of 6 ms, a third-order linear

velocity model is also obtained. Following, only the obtained mathematical representation of

the linear model of the position open loop, illustrated in Fig. 4.16, is given in (4.10).

Y s
m (q−1)

Û r
Y,m (q−1)

=
0.000224q−1 − 0.0001933q−2

1− 2.729q−1 + 2.444q−2 − 0.6697q−3 − 0.04502q−4
(4.10)

3.3.2 Reference responses

To perform the cases of study in Table 4.3, the reference cases of P+FFW and GPC controllers

must be determined firstly.

Reference response of the classical axis controller (P + FFW)

As discussed in Chapter 3, Section § 1.3, the reference case of the classical axis controller corre-

sponds to the response based on the best fixed gains, KP∗ and KF∗. These gains are obtained

by testing many values of KP and KF in order to find out the best ones having the smallest

mean contour error, respecting all of the constraints.
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In this case of study, the above searching approach is employed again to find out KP∗ and KF∗.

These best fixed gains and the corresponding mean of contour error are given in Table 4.4

Table 4.4: KP∗ (m/min/mm), KF∗ and ε in 3-axis machining with Te = 1 ms

Gain Y Z

KP∗ 1.5 2.3

KF∗ 0.72 0.57

ε (µm) 0.46

Comparing Table 3.2 and Table 4.4, it can be noticed that KP∗ and KF∗ in 3-axis machining

with Te = 1 ms are different from the ones in 5-axis machining with Te = 6 ms. This is due

to the fact the position setpoints and its reference kinematic characteristics of these two cases

are produced differently by the feedrate interpolation algorithm, as discussed and illustrated in

Fig. 4.9 and Fig. 4.10. Therefore, it can be understood that although the trajectory curvature

is the same, the control gains need to be consistent with the different kinematic references, i.e.

different feedrate profiles, to obtain a high contouring accuracy.

Reference response of the advanced controller (GPC)

The synthesis of GPC polynomials is based on the obtained numerical model of the position

loop in (4.10), along with the pre-defined parameters including N1, N2, Nu, λ, in (4.7) and

the polynomial C in (4.6). These parameters are chosen respecting the stability constraints in

(2.28).

In particular, it is proposed that the reference response of GPC corresponds to the best value

of λ in (4.7), denoted as λ∗

a, which is achieved by the same manner as the best fixed gains, KP∗

and KF∗, of the P + FFW controller. In this case of study, λY and λZ are tuned within a set

of values [0.0001 : 0.0001 : 0.01], in order to find out the best values, λ∗

Y and λ∗

Z , corresponding

to the smallest mean contour error. Table 4.5 represents the values of all of the predefined

parameters in the reference case of the GPC controller, along with its mean of contour error.
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Table 4.5: Parameters and ε in the reference response of the GPC controller

Parameter Value

N1 1

N2 12

Nu 1

C (q−1) (1− q−1) (1− 0.8q−1) (1− 0.9q−1)

λ∗

Y 0.0002

λ∗

Z 0.001

ε (µm) 0.23

The above polynomial C is chosen considering [Rodriguez-Ayerbe 2014], in which the obtained

GPC controller for axis control has been experimentally validated. Such a polynomial C has

been chosen due to the two following reasons. Firstly, it includes a root at q = 1, in order

to remove the integral action of the GPC controller. In fact, the static friction in the axis

produces oscillations in the output when an integral action is included in the predictive controller

[Rodriguez-Ayerbe 2014]. Secondly, the other two roots of the C polynomial permits to obtain

good robustness margins [Rodriguez-Ayerbe 2005].

The synthesis of GPC leads to the following R, S and T polynomials, e.g. of Y axis, in (4.11)






RY (q−1) = 90.8526− 160.3818q−1 + 67.1472q−2 + 4.2234q−3

∆(q−1)SY (q−1) = 1.0000− 1.9246q−1 + 1.1778q−2 − 0.2262q−3

TY (q) = 0.2534q−1 + 0.1279 + 0.0346q1 − 0.0475q2 − 0.1162q3

−0.1712q4 − 0.2124q5 − 0.2404q6 − 0.2558q7 − 0.2596q8

−0.2531q9 − 0.2373q10 − 14.2170q11 + 17.4360q12

(4.11)

Frequency analysis

Fig. 4.17 shows the Black-Nichols diagrams of the position open loop to verify the stability

criterion of the P + FFW and GPC controllers, using the above configurations for the reference

cases. For both Y and Z axes, the gain margin and phase margin of the P + FFW controller

are larger than the ones of the GPC controller. However, both of them respect the stability

constraint in (2.28).
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Figure 4.17: Frequency analysis of f1a and f2a: a) Y axis; b) Z axis

3.3.3 Configurations of OGA

For the OGA configurations, the parameters in Table 3.4 are kept unchanged, while the variation

factor T0 is chosen as 1, corresponding to case Ra1 in Fig. 3.12. With the interpolation period

of 1 ms, the trajectory of the desired part in Fig. 3.1.a includes 4965 instants. The total length

of the tool displacement is send = 101.5 mm. The nine adaptive horizons generated by the

Algorithm 1 have the adaptive Nk and ∆sh,k as follows:

Nk (h1 : h9) = [531, 540, 747, 726, 621, 515, 354, 637, 294] instant.

∆sh,k (h1 : h9) = [8.5383, 10.7139, 12.8409, 17.2418, 12.7771, 11.9358, 9.5926, 12.2614, 5.1457] mm.

Based on the analysis in § 3.2, the admissible range of the global gain is obtained and given

in Table 4.6. Only Kglobal,min = 0.9 is checked to have a reasonable computation time, that is

about several tenths of minutes.

Table 4.6: Admissible range of the global gain with Te = 1 ms

Gain Case Y Z

Kglobal
r0+OGA(a4) [0.9 : 1.16] [0.9 : 1.25]

GPC+OGA(a4) [0.9 : 1.62] [0.9 : 1.24]
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3.3.4 Responses of the OGA integrated GPC

The resulting variable global gain profiles and the axis kinematic responses of all of the cases of

study in Table 4.3 are firstly shown in Fig. 4.18 and Fig. 4.19.

For Y axis For Z axis

Trajectory Trajectory

3

-3

30

2.1

-2.1

30

-30

Figure 4.18: Kinematic responses of f1a and f1b
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For Y axis For Z axis
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2.1

-2.1

30

3

-3

Trajectory Trajectory

Figure 4.19: Kinematic responses of f2a and f2b

As it can be seen, the global gain is adjusted within its admissible gain range, and all of the axis

kinematic responses respect the kinematic limitations in Table 2.2. Moreover, it can be seen

that for GPC and GPC +OGA(a4), the variation of jerk response is the least in all of the cases.
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The comparison of the mean contour error between the above cases of study is given in Table

4.7. It can be seen that the application of OGA in the two cases f1b and f2b has reduced the

contour error in the two reference cases f1a and f2a, with around 17 % and 39%, respectively.

Another remark is that the development of the advanced axis controller, GPC, can reduce 50%

the contour error of the classical axis controller, P+FFW. While, if GPC is combined with

OGA(a4), then it can even reduce around 70% the contour error of the classical controller.

Table 4.7: Contouring performances comparison

Control strategy Notation Mean contour error Improvement Computation time

(µm) % (min)

P+FFW f1a 0.46 - -

P+FFW+OGA(a4) f1b 0.38 17.39%f1a ≈ 12.5

GPC f2a 0.23 50%f1a -

GPC+OGA(a4) f2b 0.14 69.57%f1a, 39.13%f2a ≈ 12.5

Moreover, Fig. 4.20 illustrates the resulting profiles of the variable global gain, the resulting

feedrate, tool tracking error and contour error profiles as a function of trajectory.

It can be seen that due to the optimal adjustment of the global gain value, although the feedrate

and the tool tracking error is slightly changed, the contour error has been much compensated.

Furthermore, as it can be seen in the two histograms in Fig. 4.21, the OGA(a4) allows to obtain a

centered normal distribution of contour error, ranging from -0.8 to 0.8 µm for P+FFW+OGA(a4)

and from -0.2 to 0.2 µm for GPC + OGA(a4). While, without OGA, the norm of contour error

ranges from 0.4 to 1.2 µm and from 0.2 to 0.4 µm for P+FFW and GPC, respectively.
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Figure 4.20: Comparisons of feedrate, tool tracking error, contour error between f1a, f1b, f2a

and f2b
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Figure 4.21: Comparison of the histograms of contour error between f1a, f1b, f2a and f2b

3.4 Conclusion

According to the above simulation results and discussions, it can be said that the OGA can

be combined with the advanced controller by means of the global gain, in order to much more

compensate the contour error.

It is important to remind that the above performances of OGA in these cases of study may not

be the best ones, because the parameter tuning is not discussed, it only aims at proving that the

OGA can apply and have its effect in different control structures, either classical or advanced

one. In this aspect, the above simulation results have satisfied the initial objective.

4 OGA-GUI

To facilitate the end user in configuring and performing OGA, an OGA-GUI interface is devel-

oped and illustrated in Fig. 4.22. The working principle of this interface is explained below.
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Figure 4.22: OGA-GUI interface

To configure and start OGA, it is necessary to perform 6 following steps:

• Step 1 allows

– to load the type of machine, e.g. Mikron UCP 710 machine in this work, as illustrated

in Fig. 4.23,
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Figure 4.23: OGA-GUI: Select machine structure

– to view the nonlinear axis model (Simulink simulation model), as illustrated in 4.24,

Figure 4.24: OGA-GUI: Simulink simulation model

– to load the parameters corresponding to the machine type and the nonlinear axis

model,

– to load the axes setpoints, derived from the feedrate interpolation task. This data is

achieved by VPOp algorithm,

– to illustrate the reference surface of the desired part in 3D, and to illustrate the

reference axis kinematics, that is the results of the feedrate interpolation stage, as

illustrated in Fig. 4.25. The latter allows to verify the reference axis kinematic profile

respecting their constraints.
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Figure 4.25: OGA-GUI: Reference trajectory and reference axis kinematic

• Step 2 allows

– to (1) select the type of position controller, either classical controlller (P+FFW) or

advanced one (GPC) and (2) set its control gains/parameters, and (3) save these

values for the use of OGA, as illustrated in Fig. 4.26,

(1)

(2)

(3)(4)

Figure 4.26: OGA-GUI: Select the position controller and design it

– to select the gain of the position controller to be adjusted by OGA, as illustrated in

Fig. 4.27. Note that for the P+ FFW controller, it can be chosen KP and/or KF

gains; or Kglobal. For GPC, only Kglobal is available to adjust.

Figure 4.27: OGA-GUI: Select adjustable gain(s)
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• Step 3 allows to select which axes are involved in the optimization of OGA, either only

one axis or several axes or all of the axes. The remaining axes use the fixed gain values

for their axis controllers, as illustrated in Fig. 4.28.

Figure 4.28: OGA-GUI: Select the axes for optimization by OGA

• Step 4 allows

– to (1) select the solving technique of OGA, either OGA(a) or OGA(b), and (2) con-

figure the specificities of OGA(a) or OGA(b), and (3) save these configurations, as

illustrated in Fig. 4.29,

(1) (2)

(4) (3)

Figure 4.29: OGA-GUI: Select OGA(a) or OGA(b) and configure it

– to add the values of the constraints, including the axis kinematic limitations, the

admissible gain range and the motor current limits, as illustrated in Fig. 4.30.
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(1) (2)

(3)

Figure 4.30: OGA-GUI: Add the constraints

• Step 5: After the configuration is done, the user clicks the button: Run OGA, to start the

OGA algorithm, as illustrated in Fig. 4.31.

(1) (2)

Figure 4.31: OGA-GUI: Run OGA

• Step 6: When the OGA is finished, this step allows to view the resulting variable gain

profile, the resulting feedrate and the obtained contour error profile, and to load and save

the obtained results, as illustrated in Fig. 4.32.

Figure 4.32: OGA-GUI: OGA results
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5 Conclusions

This chapter has introduced a new idea related to the global gain and the application of OGA

into this new control gain. The advantages and disadvantages of this proposed idea are given as

follows.

• Advantages

The application of OGA for the global gain can lead to a high contouring accuracy,

and the same computation time as when the OGA is applied into one single control

gain KP or KF .

The general principle of OGA is not changed in this case of study. Only the admissible

range for this new control gain is needed to define, but the idea and the constraints

for such an admissible range is not changed.

OGA can be applied not only with a classical controller but also with an advanced

one, e.g. the GPC controller in this case of study.

• Disadvantages

A drawback of this method is that it is needed to slightly modify the software part

in CNC, in order to implement this new control gain.

Although the synthesis of the advanced controller is out of the scope of this PhD thesis, it is

also interesting to see that the GPC, in the framework of the advanced model-based controller,

can give a better contouring accuracy than the classical axis controller for the position loop in

CNC.

The OGA-GUI interface is also built to facilitate the end users to tune the parameters, to

switch between the techniques and the control gains, and to start the OGA algorithm. The

visual comparisons and analysis are also integrated in this interface. Finally, the user can easily

achieve the resulting variable gain profiles for use in the future CNC, to pre-compensate the

contour error in the machining process.



Conclusion and perspectives
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Conclusions

This PhD thesis focuses on improving the contouring accuracy in machining free-form part in

the context of multi-axis high speed machining, for either 3-axis or 5-axis high speed machining

center, based on the means of an off-line process. Its main strategy is to exploit all possibilities

of the classical control structure of axis drive, proposing the elementary base of a method that

could be considered for an implementation in a commercial CNC.

Inspiring from the above motivations, the main contributions of this thesis are summarized as

follows.

The first contribution is related to the contour error formulation in 5-axis point milling, based

on εC , using the proposed estimation approach for the tool contact points CC. In the literature,

almost all of works proposed the contour error estimation approach based on εL and/or (εL, εu),

using the tool path information (CL,u). This is because this information is available and can

be accessed during machining process, while the determination of the tool contact points CC

during machining stage is still an open issue. In fact, the use of εL and/or (εL, εu) is to estimate

the effective cutting error (under cut or over cut), expressed by εC . Therefore, the formulation of

contour error by εC , using directly the estimated tool contact points CC, is proposed to predict

the effective cutting error more accurate than the one based on the tool path information, εL

and/or (εL, εu).

In addition to this, the kinematics taken into account during in the feedrate interpolation stage

have also been analyzed. They are the essential elements supporting generally the axis control

and particularly fulfilled the development of the proposed adaptive control law. Especially, the

axis kinematic constraints, including the axis velocity, acceleration, and jerk limitations, in the

feedrate interpolation are used as one of the constraints in solving the optimization problem of

the proposed axis control approach.

The thesis has scoped with the challenges in machining with high speed machining center, being

the high feedrate and the axis kinematic constraints of the machine. Besides, the nonlinear

characteristic derived from the static friction is also considered through the friction model.

The motor current limits have also been taken into account to assure a good behavior of the

machine drives. Moreover, the closed structure of commercial CNC and axis drives have been

also discussed and taken into account, in order to proposed an easily implementable solution in
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actual CNC systems.

An adaptive axis control law has been proposed for the commercial CNC based on an Off-line

Gain Adjustment (OGA) approach, to compensate the contour error during machining. The

main idea is to determine the optimal variable gain values used in the position loop of the

classical axis control to reduce the contour error during the machining phase. This optimal

gain calculation is done off-line by solving an optimization problem using a machine virtual

environment. The optimization is formulated subject to the axis kinematic constraints, the

stability criterion of servo drive, and the limits of motor current. The optimization result is the

gain values of the position loop and feed forward for the considered machining profile. In this

way the gains of the position controller and the feed forward are changed on-line in real time to

reduce the contour error in the machining.

One of the important contributions of the current research is the development of two solving

techniques for the optimization of OGA. They are based on the receding horizon principle.

The gain tuning is performed within a trajectory horizon, that is receded until the end of the

trajectory.

In the first solving technique, OGA(a), the gain is obtained based on the pre-defined geometry

horizon, considering the curvature characteristic of the free-form profile and based on the pre-

defined gain function. When the horizon is receded without overlap, the optimization is repeated

for the next horizon.

In contrast, the second solving technique, OGA(b), predicts the optimal constant gains over one

horizon length but only the first optimal gain is kept and the horizon is receded one step ahead.

This solving technique has a more important computation burden than the first one but allows

the control gain to vary more flexibly. That leads to fine-tune the resulting feedrate and as a

consequence, this second solving technique allows to reduce the contour error much more than

the first one. In the concerned cases of study, the best case of OGA(b) has improved 67.14% the

contouring accuracy, compared with the best one of OGA(a). However, the former takes more

than 9 hours to finish the OGA optimization than the later.

The two solving techniques are different in their own principles therefore their configurations

are also set differently. The analysis of the parameter configuration on the performance of OGA

have been discussed. The choices of the maximum number of potential gains, the gain variation

factor, the horizon lengths and the weighting factor are important for the high performance of
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OGA.

Another contribution of this work is the proposition of a global variable gain in the axis con-

troller. The influence of the position control gain variation and the feed forward gain variation

in the contour error reduction has induced this new idea related to a global control gain. This

gain can be integrated into whatever kinds of controllers, either classical or advanced ones. Af-

terwards, this new gain is used in the application of the proposed OGA approach. This method

guarantees not only the improvement of the contouring accuracy but also a reasonable com-

putation time. That extents the tractable possibilities of the proposed OGA approach in an

industrial environment.

Simulation results based on a validated machining simulator showed that the precision level

of the contour following and the computation time are different depending on the different

solving techniques and the number of axes and control gains involved in the optimization of

OGA. The results also verified that the responses of OGA have respected all of the concerned

constraints. The relations between the obtained variable gains, axis jerk response, resulting

feedrate and contour error profiles have been highlighted. Due to the high confidence of the

machine simulator, it can be said that the contour error has been reduced significantly thanks

to the proposed OGA approach.

In addition, a machine interface has been built (OGA-GUI) to make the use of OGA easier to

users and increase the practical applications of the OGA in the machining community.

It can be concluded that the proposed OGA approach satisfies the initial objective of the PhD

thesis, that is to reduce the contour error while keeping unchanged the classical axis control

structure inside the current commercial CNC of machine tools. The only proposed modification

on the future CNC is the extended functions, in which the gains are updated at each sampling

time and the required memory to store the gain values for a given trajectory.

Perspectives

In perspective, the OGA will consider more nonlinear characteristics and disturbances effects,

e.g. machine flexibilities, into the optimization problem under constraints of OGA. That can

extend the effectiveness of the OGA.
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The application of OGA for the multi-axis flank milling would also be performed in future works.

In addition, other techniques of optimization, e.g. heuristic method or genetic algorithm, etc,

should be examined. The objective is to reduce the computation burden in solving the OGA

optimization problem and to produce more optimal control gains for the contour error reduction.

The gain modification pattern depends on all axis trajectories. This dependency has to be deeper

analyzed to reduce the computation time. Ideally, it is expected to analyze the obtained gain

variation profiles to eliminate or reduce the optimization stage. Moreover, using optimization

results of similar trajectories is to produce gain modification profiles in function of trajectories.

Last but not least, the experimental tests of OGA are expected to be performed in the framework

of an OPEN CNC.
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Appendix A

Nonlinear axis model

1 Motor model

Fig. A.1 shows a circuit model of DC motor, which is represented by the resistance R (Ohm),

the inductance L (H), the back EMF (Electromotive Force) voltage E (V) and the voltage source

U (V).

Figure A.1: Motor model [Prévost 2011b]

The back EMF voltage E(t) is proportional to the angular velocity Ω(t) (rad/s) of the rotor in

the motor, expressed as (A.1),

E(t) = KeΩ(t) (A.1)

where Ke (V/rad/s) is the back EMF constant.

According to the Kirchhoff’s voltage law, the electrical equation of the DC motor is described
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by (A.2),

U(t) = Ri(t) + L
di (t)

dt
+ E(t) (A.2)

where i(t) (A) is the armature current. This current passing through the rotor windings in the

magnetic region of the stator generates the Laplace force. As a result, this force produces a

torque Cm (N.m), leading to the rotation of the rotor, given as (A.3),

Cm (t) = Kti(t) (A.3)

where Kt (N.m/A) is the torque constant. Such a torque drives the external torque through the

motor shaft, expressed by the dynamic equation in (A.4),

J
dΩ(t)

dt
= Cm(t)− Cres (t) (A.4)

where Cres (t) (N.m) represents the resistant torque, which is due to the viscous and dry friction

or the gravity of the Z axis; J (kg.m2) the total equivalent rotor moment of inertia, that is

obtained by (A.5),

J = Jeq = Jmot + Jred +
Jscrew
N2

+
Jaxis
N2

(A.5)

where Jmot, Jred, Jscrew and Jaxis are the equivalent inertia of the motor, the gear reducer, the

ball screw and the driven axis; N is the reduction factor.

Considering all of the equations from (A.1) to (A.5) in the Laplace domain s, the electric,

eletro-mechanic and mechanic equations are obtained in (A.6), (A.7) and (A.8), respectively.

U(s) = R.I(s) + s.L.I(s) +Ke.Ω(s) (A.6)

Cm(s) = Kt.I(s) (A.7)

Cm(s) = s.J.Ω(s) + Cres(s) (A.8)

The equations from (A.6) to (A.8) can be illustrated by the block diagram in Fig. A.2.

The above model is used for a rotary motor. For the linear motor, the detailed description can

be found in [Prévost 2011b].
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Figure A.2: Block diagram of motor model

2 Friction model

The friction law in each axis drive has been studied and proposed in [Prévost 2011a]. It is a

combination of both viscous and Coulomb frictions.

The obtained friction model is characterized by (A.9),







ifr = aebV + cedV if V ≥ 0

ifr = −aebV + ce−dV if V ≤ 0

ifr ∈ [−i0; i0] if V = 0

(A.9)

where ifr (A) is the current caused by the friction, V (m/min) is the axis velocity, the parameters

a, b, c, d and the value of the static friction current i0 (A) are given in Table A.1.

Table A.1: Parameter of the friction model of Mikron machine [Prévost 2011a]

Friction parameter Unit Linear axes Rotary axes

X axis Y axis Z axis A axis C axis

a A.min/m 1.576 1.253 1.420 2.079 3.832

b 0.01965 0.01895 0.01650 0.02919 0.03248

c A.min/m -0.5332 -0.3629 -0.6301 -0.9891 -2.6177

d -0.2801 -0.4026 -0.2625 -0.1946 -0.3441

i0 A 1.043 0.890 0.790 1.090 1.216

Friction law and experimental results for X axis can be seen in Fig. A.3.
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Figure A.3: Friction law and experimental results for X axis [Prévost 2011a]

In the concerned motor model in Fig. A.2, the resistant torque Cres derived from the impact of

the friction model (A.9). Thus, the mechanic equation in (A.8) is rewritten as (A.10).

Cm(s) = s.J.Ω(s) +KtIfr (s) (A.10)

The motor model with the friction model (A.9) is illustrated in Fig. A.4,

Cm

Cres

U Ω
Kt

Ke

1
R+L.s J.s

1

-

+ +
-

i

(V)
(V)

(A) (N.m) (rad/s)

(N.m)

Friction 

model

60

Kc(m/min)

V
Kt

ifr

(A)

Figure A.4: Block diagram of motor model with friction model

in which Kc is the conversion factor from m to rad.



Appendix B

CAM configuration for tool path

generation

Table B.1: CAM configuration for the programmed tool path generation

Parameters Value/Configuration Unit

Tool Hemispheric tool -

Type Point milling -

Tool radius 5 mm

Tool length 100 mm

Tilt angle 5 deg

Yaw angle 0 deg

Machining tolerance 10−4 mm
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Titre : Commande à gains variables de l’erreur de contour pour l’usinage multiaxes

Mots clefs : lois de commande adaptatives; erreur de contour; usinage grande vitesse

Résumé : Les techniques d’usinage avancées sont
un élément indispensable du développement des in-
dustries manufacturières. L’une de ces techniques,
l’usinage à grande vitesse, constitue le sujet prin-
cipal de cette thèse de doctorat. Ainsi, l’objec-
tif majeur des travaux vise à améliorer la préci-
sion de contour dans le contexte de l’usinage mul-
tiaxes à grande vitesse de surfaces de forme libre,
en agissant directement au niveau des boucles de
commande d’axe. Pour cela, une première étape
consiste à élaborer une stratégie permettant d’esti-
mer le plus précisément possible l’erreur de contour
pour différentes configurations de l’outil. Cette
erreur de contour est ensuite minimisée grâce à
l’adaptation hors ligne, pour un profil de pièce
donné, des gains proportionnel et d’anticipation des
régulateurs des boucles d’asservissement de la po-

sition de chaque axe. L’adaptation de ces gains est
réalisée via un algorithme d’optimisation à l’aide
d’un modèle non-linéaire du comportement de la
machine, en considérant en particulier les frotte-
ments sur chacun des axes. L’optimisation per-
mettant d’obtenir les gains des correcteurs des
boucles de régulation tient compte des contraintes
en termes de limitations cinématiques des axes (vi-
tesse, accélération et jerk), de stabilité des boucles
d’asservissement et de limites au niveau des cou-
rants des moteurs. Afin d’en faciliter la mise en
œuvre dans un cadre industriel, les stratégies dé-
veloppées s’avèrent directement implantables au
sein des commandes numériques actuellement sur
le marché, exploitant toutes les possibilités de la
structure de commande classique de l’entraînement
d’axe.

Title : Variable gain contouring control for multi-axis machine tools

Keywords : adaptive control laws; contour error; high speed machining

Abstract : The advanced machining techniques
are always the backbone of the manufacturing in-
dustries. Among such techniques, high speed ma-
chining is the main subject of this PhD thesis. In-
deed, the main objective of this work is to improve
the contouring accuracy in multi-axis high speed
machining of free-form surfaces, directly acting in-
side the axis control loops. To do that, a first step
aims at elaborating a strategy to estimate as accu-
rately as possible the contour error for different tool
configurations. This contour error is then minimi-
zed by means of an off-line adaptation for a given
profile of the proportional and feedforward gains of

the axis position loop controllers. This gain adap-
tation is performed via an optimization algorithm
that considers a nonlinear model of the machine be-
haviour, in particular including friction related to
each axis. This optimization leading to the control-
lers gains takes into account several constraints, in-
cluding the axis kinematic (velocity, acceleration
and jerk) limitations, the stability of the controlled
loops and the motor current limits. Finally, to help
their integration within an industrial framework,
the developed strategies can be directly implemen-
ted in commercial CNC, by exploiting all possibili-
ties of the classical control structure of axis drive.
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