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Résumé

Nous montrons la validité du formalisme multifractal pour les mesures aléatoires fai-
blement Gibbs portées par I’ attracteur associé a une dynamique aléatoire C! codée par
un sous-shift de type fini aléatoire, et expansive en moyenne. Nous établissons également
des loi de type 0-co pour les mesures de Hausdorff et de packing généralisées des ensembles
de niveau de la dimension locale, et calculons les dimensions de Hausdorff et de packing
des ensembles de points en lesquels la dimension inférieure locale et la dimension supé-
rieure locale sont prescrites. Lorsque l'attracteur est un ensemble de Cantor de mesure
de Lebesgue nulle, nous montrons la validité du formalisme multifractal pour les mesures
discrétes obtenues comme inverses de ces mesures faiblement Gibbs.

Mots-clefs : Mesures et dimensions de Hausdorff et de packing, formalisme multifractal,
formalisme thermodynamique, mesure faiblement Gibbs aléatoires, systémes dynamiques
aléatoires, théorie métrique de I'approximation, mesures inverses.

MULTIFRACTAL ANALYSIS OF RANDOM WEAK (GIBBS MEASURES AND THEIR
INVERSE

Abstract

We establish the validity of the multifractal formalism for random weak Gibbs mea-
sures supported on the attractor associated with a C'!' random dynamics coded by a random
subshift of finite type, and expanding in the mean. We also prove a 0-oo law for the gen-
eralized Hausdorff and packing measures of the level sets of the local dimension, and we
compute the Hausdorff and packing dimensions of the sets of points at which the lower
and upper local dimensions are prescribed. In the case that the attractor is a Cantor set of
zero Lebesgue measure, we prove the validity of the multifractal formalism for the discrete
measures obtained as inverse of these weak Gibbs measures.

Keywords : Hausdorff and packing measures and dimensions, multifractal formalism,
thermodynamic formalism, random weak Gibbs measure, random dynamical systems, met-
ric approximation theory, inverse measures.
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Chapter 1

Introduction

Weak Gibbs measures are conformal probability measures obtained as eigenvec-
tors of Ruelle-Perron-Frobenius operators associated with continuous potentials on
topological dynamical systems. When the system (X, f) has nice enough geometric
properties, for instance in the case of a conformal repeller, these measures provide
natural, and now standard examples of measures obeying the multifractal formalism:
their Hausdorff spectrum and L?-spectrum form a Legendre pair.

Specifically, for such a measure p on (X, f), the (lower) L9-spectrum 7, : R —
R U {—o0} is defined by

7.(g) = lim inf log sup{3;(u(Bi))*}

r—0 log(r> ’ (1'1)

where the supremum is taken over all families of disjoint closed balls B; of radius r
with centers in supp(u); the lower Hausdorff spectrum of p is defined by

d € R~ dimy E(u,d),

where dimy stands for the Hausdorff spectrum, E(u, d) is the level set of level d of

| B
the lower local dimension dimy..(u, x) = liminf og(p(B(x,r)))
r—0+ log(r)

, 1.C.

E(p, d) = {z € supp(p) : dimoc(p, x) = d},
and we have the duality relation

dimpg E(p, d) = 7,(d) := inf dg — 7,(q), Vd €R,

geR

a negative dimension meaning that the set is empty. In fact, due to the super
and submultiplicativity properties associated with u, the same equality holds if we
replace the liminf by a lim sup or a limit in the definition of the local dimension.
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The rigorous study of these measures started with the Gibbs measures case,
which corresponds to Holder continuous potentials, or continuous potentials pos-
sessing the so-called bounded distorsions property, and in particular on the so-called
“cookie-cutter” Cantor sets associated with a O™ expanding map f on the line
[19, [71] (see [68] for an extended discussion of dimension theory and multifractal
analysis for hyperbolic conformal dynamical systems). This followed seminal works
by physicists of turbulence and statistical mechanics pointing the accuracy of mul-
tifractals to statistically and geometrically describe the local behavior of functions
and measures [33, 36]. In the case of Gibbs measures, the Li-spectrum of the Gibbs
measure is differentiable, and analytic if the potential ¢ is Hélder continuous; it is the
unique solution t of the equation P(q¢ +tlog||Df]|) = 0, where P(-) stands for the
topological pressure. The general case of continuous potentials was solved later in
[26, 29, 42}, [63], with the same formula for the L9-spectrum. These progress then led
to the multifractal analysis of Bernoulli convolutions associated with Pisot numbers
[28, B0]. Thermodynamic formalism and large deviations are central tool in these
studies. It is worth mentioning that simultaneously another family of multifractal
measures has been studied intensively, namely the random measures possessing scale
invariance in multiplicative chaos theory (see [55], 56, 657, 4T, 5] 72, [3]).

It turns out that Gibbs measures on cookie-cutter sets naturally generate a class
of discrete measures obtained as their inverse (see Definition [I.12)), for which the
validity of the multifractal formalism was established in [11], after a partial study in
[58, 73, [74]. Given such a Gibbs measure pu, the Li-spectrum of its right continuous
inverse measure v is given by 7,(q) = min(0, —7,'(¢)); in [II], an essential new
ingredient is needed, namely conditioned ubiquity [8], which combines ergodic theory

and metric approximation theory.

In the context of random dynamical systems, the multifractal analysis of random
Gibbs measures (to be defined below) associated with random Hélder continuous po-
tentials on attractors of random C'* expanding (or expanding in the mean) random
conformal dynamics encoded by random subshifs of finite type has been studied in
[45], [31] and [6I]. These works, as well as the dimension theory of attractors of
random dynamics [I5] 45, 46, 61], are based on the thermodynamic formalism for
random transforms [14], 15, 20] 21) 221 135 43] 144] 49, [61]. The multifractal analysis
of random weak Gibbs measures is also implicitly considered in [31] (which deals
with the multifractal analysis of Birkhoff averages), but the fibers are deterministic,
and the techniques developed there seems difficult to adapt in a simple way in the
case of random subshifts.

In this thesis we consider, on a base probability space (2, F,P, ), random weak
Gibbs measures on some class of attractors included in [0, 1] and associated with
C! random dynamics semi-conjugate (up to countably many points), or conjugate,
to a random subshift of finite type, and show that these measures and their inverse
obey the multifractal formalism. Compared to the above mentioned works, apart
the source of new difficulties coming from the relaxation of the regularity proper-
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ties of the potentials, our assumptions provide a slightly more general process of
construction of the random Cantor set in terms of the distribution of the random
family of intervals used to refine the construction at a given step: it can contain
contiguous intervals (i.e. without gap in between, and even no gap) with positive
probability; thus, it covers the natural families of Cantor sets one can obtain by
picking at random a fiber in a Bedford-McMullen carpet. As a consequence, the
expression and study of the inverse measure are more involved than in the standard
and deterministic situation considered in [§]. Moreover, we succeed in developing
ubiquity theory in this random context without assuming any mixing properties on
the base space (€2, F,P, o). This substantially improves the approach developed in
[7] to get ubiquity results associated with the special class of random Gibbs mea-
sures obtained as random Riesz products, for which the product structure of (2, P)
plays an essential role.

Before stating our main results, we introduce some background about random
dynamical systems and thermodynamic formalism.

1.1 Weak Gibbs measures on random subshifts

Now let us introduce the concepts of random subshifts and associated topological
pressure of random continuous potentials. They have been studied by many authors
[14), (15, (3], [44] 43, 49, 61].

Assume that (€2, F,P) is a complete probability space and o is a P-preserving
invertible ergodic map. In fact, assuming that PP is o-invariant and it has an ergodic
decomposition is enough (this holds if, for example, F is a countably generated
(separable) o-algebra). Also, we do not really need to assume the map o to be
invertible; assuming that o€ = ) or that ¢"() is measurable for all n > 0 makes
it possible to construct a Rokhlin natural extension which preserves the ergodicity
and mixing (see |79 theorem 1.5] or |70}, section 2.7]).

Let Zi: {1,2,--- }U{oo} be the one-point compactification of Z* = {1,2,--- }.
Let I' := Z* x Z* x --- with the metric on I" given by

1 1
! .
d(v,v') =) exp(—1) Pl
i€eN L
where v = vovy -+ v; -+, ¥ = Vjv} -+ v)- -+ and we set — = 0.

Let [ be a ZT valued random variable such that
[ = /log(l) dP < oo and P({w e Q,l(w) >2}) > 0.

Here, [(w) will define the number of types for a fixed w.

Let A = {A(w) = (Ars(w)) : w € Q} be a random transition matrix such
that A(w) is a l[(w) x l(ow)-matrix with entries 0 or 1. We suppose that the map
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w — A,4(w) is measurable for all (r,s) € Z* x Z* and each A(w) has at least one
non-zero entry in each row and each column. Let

Yo ={v =101 ;1 <y, < (0" (w)) and A, 4, (0" (w)) =1 for k € N},

and F, : ¥, — X,, be the left shift (F,v); = viq for any v = vovy -+ € X,.
Define ¥g = {(w,v) : w € Q,v € ¥,} and the map II : ¥g — Q as [I(w,v) = w.
Define the map F' : ¥q — ¥q as F((w,v)) = (ow, F,v). The corresponding family
F={F,:weQ} is called a random subshift.

We assume that the random subshift defined above is topologically mixing, i.e.
there exists a N-valued random variable M = M(w) < 400 on (2, F,P) such that
for P-almost every w,

A(w)A(ow) - - - A(cMw) is positive.

It is not hard to see that this implies that one can choose M = M (w) such that
for P-almost every w,

A(o™MW)A(oe™™MF1w) ... A(o™w)
and are positive. (1.2)
A(w)A(ow) -+ A(cM~1w)

Define

v {v:vovl-~v o 1<, <l(o*(w)) for 0<k<n-1, }
wm " and Ay, = 1for 0 <k <n-—2. '

By convention we write Y,90 = (. Define X, . = Up>0Xwn. For v =
VU1 + - Up—1 € Xyp, we denote |v| = n. For such v, we define the cylinder [v],
as

V] ={weX, w=v fori=0,...,n—1}.

Now let us introduce basic notations. For any word v = vy -+ vp_10, - V1 €
Ywm, define vy to be the first character of v and v,,_; to be the last character of v.
For r < m, define v|, = vg - v,_1.

For any 1 < s < l(w), for any n > M(w), for any 1 < ¢ < [(0"w), there exists
at least one word v = v(w, n, s,t) € Xyw 1 such that svt € ¥,,,41. The choice of v
may be not unique. For each such v, we denote the word svt by s * t.

For any v = vovy -+ Up—1 € Yyy and w = wWowy -+ Wyp—1 € Xgnthym, if £ >
M (c"w), then vgvy -+ - Vp—gVp—1 * WoW1 * * * Wy—1 € Ly ntktm—1-

For any v = vgvy - v,_1 - - - € 3, define v|,, = vov1 -+ - V1.

For any v = vouy «+ - 0,10 - -+ Uy, W = WoWy * * * Wy W, - - - Wy, if for any i, 0 <
i <r —1 one has v; = w; and v, # w,, then define we v A w =: Vo1 -+ - V. _1.
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subshift of finite type

Random subshift

(Q,F,P,o)

l

( the number of types)

constant

random variable

A = (a;;) (Transitive matrix)

constant matrix

random matrix

M (To define the mixing property) constant random variable
1<y <1 1 <w <l(o'(w))
V=1V ...V, ... (Point) Apivin =1 A (0'(w)) =1
vEY v E Y,
shift operator X=X Yiw = Vigw

Table 1.1 — The differences between subshift of finite type and random subshift

The differences between subshift of finite type and random subshift of finite type
are indicated in Table 1.1.

Using the same notations as in [44] [47] 49], let
Pp(Xq) = {p, probability measure on Xq : II,p = po II"! = P},

and
Ip(3q) = {p € Pp(Xq) : p is F-invariant}.

Any p € Pp(3q) on g disintegrates in dp(w,v) = dp,(v)dP(w) where the
measures p,, w € €2, are regular conditional probabilities with respect to the o-
algebra 7o' (F), where mq is the canonical projection from g to €. This implies
that for P-almost every w, for any measurable set R C g, p,(R(w)) = p(R|mq" (F)),
where R(w) = {z : (w,v) € R}.

Let R = {R;} be a finite or countable partition of X, into measurable sets. Then
for all w € Q, R(w) = {R;(w) : Ri(w) ={x € X,: (w,x) € R;}} is a partition of
Yo

Given p € Pp(Xq), the conditional entropy of R given mg,*(F) is defined by

HyRImg (F) = = [ 3 pl(Bilm (F) log(p( Rilmg! (F))) P

= [ Hp(R())dP()

where H,, (A) denotes the usual entropy of a partition A.

Now, given a finite or countable partition Q of ¥, define the fiber entropy of F’
or the relative entropy of F' with respect to Q as

1 I _
hp(R Q) = nh_,nc}o ﬁHpW?:olF 2Q|7T§21(~7:))
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(here Vv denotes the join of partitions).
Then define
hp(F) = sup iy (F, Q),

where the supremum is taken over all finite or countable measurable partitions
Q = {Q;} of X with finite conditional entropy, that is h,(F, Q) < 4oo. In our
setting, we have h,(F') < [log(l) dP. The number h,(F'), also denoted h(p|P) in the
literature, is the relativized entropy of F' given p. It is also called the fiber entropy
of the bundle random dynamics F'.

We say that a measurable function ® on Y is in Ly (Q, C(X)) if

1.
Cp =: /Q 1D (@)oo dP(w) < 00 (1.3)
where
12(@)llo =+ sup |@(w, v)]; (1.4)
2.
var,®(w) — 0 as n — oo, [P-almost surely (1.5)

where var, ®(w) = sup{|®(w,v) — ®(w,w)| : v; = w;, Vi < n}.
The topological pressure P(®) of ® is defined by

P@) = sup {h,(F)+ / Bdp)

PEIp(Xq)

Now, with ® € Lg_(Q,C(X)) is associated the transfer operator L3 : C°(X,) —
C°(X,.,) defined as

Lih(v) = > exp(P(w,w))h(w), Vv € Ty,

Fow=v

By replacing if necessary €2 by a subset of full probability over which the mappings
d(c*w,-), k > 0 are all continuous, we have the following result:

Proposition 1.1 [/, [61] For all w € Q, there exists A(w) > 0 and a probability
measure i, on X, such that (L£$) fiow = MNw) My -

We call the family {fi, : w € Q} a random weak Gibbs measure on {¥, : w € Q}
associated with .
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1.2 A model of random dynamical attractor

Given a random subshift of finite type as above, we can construct a random dy-
namical attractor. Our assumptions on the distribution of the number of intervals
used in the construction, and the distribution of the lengths and positions of these
intervals are more general than those used to get dynamical random Cantor sets in
[45, [68], [76], 61].

For any w € Q, let Ul = [a,1,001], U2 = [awa,buzl, - US = [ays bos) -+ be
closed non trivial intervals with disjoint interiors and suppose that UJ is on the left
side of U™ for each s € N, i.e. b, s < ay s11.

We assume that for each s > 1, w = (aw,s, by s) is measurable, a,,1 > 0, by ) < 1

and setting f3(x) = =2 the mapping w — T% is measurable from (Q, F) to the

bw,s*aw,s
space of diffeomorphisms of [0, 1] endowed with its Borel o-field. Then T : U —
[0, 1] which is defined by T := T% o f3(x) is a C' diffeomorphism and we denote its
inverse by g := (T%)~1.

From now on for all w € Q2 and s > 1, we define

Y(w,s,x) = —log |(T3)) (z)], Va € US.

Here, if = is a endpoint of Uj, the derivative means the left derivative or right
derivative of 7] in the interval U}:

{bv( )(z) = —log [(T3)! (x)|, =« is the left end point of the interval US;
ST < log |(T3)_(x)], « is the right end point of the interval U.

We say that a measurable function ¢ on Ug = {(w,s,2) : w e Q1 < s <
l(w),z € Us}isin L (Q,C([0,1])) if

1.
Co = [ I9(@)lldP(w) < o0,

where
[(W)]los := sup sup |[P(w,s,z)l; (1.6)

1<s<l(w) z€Ug

2. for P-almost every w € Q, var(¢,w,e) — 0 as ¢ — 0, where
var(,w,e) = sup sup (W, s, x) = d(w,s,y)l. (1.7)

1<s<l(w) z,yeUg and |z—y|<e

We now make our first assumption on the construction:

Assumption 1 ¢ := {ﬁv‘ﬁﬂ e Lk (9, C(]0,1))) and 1 satisfies the contraction prop-
erty in the mean

Cy = —/Q sup sup ¥ (w,s,z)dP(w) > 0. (1.8)

1<s<l(w) z€Ug
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Define
Us = 90°gg,0" 0 ggzillw([(h 1])’ Vo = vov1 -+ U1 € Y
X, = N U U

n>1vEXy n

Xg = {(w,z):wezeX,}

Now we will draw a picture to show the construction of random dynamical at-
tractor:

Figure 1.1 — First and second steps of the construction of the random attractor X,,.

There is a natural projection 7, : ¥, — X, defined as

n—1

Mo(v) = lim gi o gl 0+ 0 9573, (0).

This map may not be injective, but any z € X, has at most two preimages in 3.

The family X = {X,, : w € Q} is called a random dynamical attractor. Specif-
ically, we will see that either X, is a Cantor set with probability 1, or X, = [0, 1]
with probability 1 (see chapter []). In both cases, {X,, : w € Q} is the attractor of
the random directed graph IFS {¢* : 1 < s < l(w), w € Q} where the edges are given
by the A(c*w), k > 0. In the first case, the mappings 7, conjugates {2, : w € Q}
with the family of random Cantor sets {X,, : w € Q}, which is endowed with the
random dynamics F, o 7_'; in the deterministic fullshift setting, when the intervals

w
U? are separated, the Cantor set X is called cookie-cutter set.

The above property 2. satisfied by v is weaker than the Holder continuity as-
sumed in [48], [61] (see chapter . It is also slightly weaker than the situation where
the attractor would be the repeller of a family of random C' conformal mappings,
since for two neighboring intervals U* and U™ we do not require any continuity at
their intersection point whenever it exists.
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Define the map 7 : £g — Xq as 7((w,v)) = (w, m,(v)). For all n € N, for any
word v = VgU1 ... Up_1 € Xy 5, We define

We also define
U(w,v) = (w, v, m(v)) for v = vovy - -+ € X, (1.9)

By Assumption (1} since ¢, > 0 we have sup,cs,  |US| < exp(—5%) for n larger than
some N (w), hence the function ¥ is in Lg_(Q2, C(X)). Furthermore,

cy = — [ sup ¥(w,v)dP(w) = cy.
Qoex,

Theorem 1.2 Under the Assumption |1, for P-almost every w € §2, the Bowen-
Ruelle formula holds, i.e. dimg X,, = tg where to is the unique root of the equation

P(t\IJ) = 0. Furthermore, ty = max,czp(2q) {_hj(\i;p}'

Such a formula appeared for the first time in [I7], where Bowen considered the
Hausdorff dimension of quasi-circles. His method easily applies to the study of
deterministic cookie-cutter sets (see [13] for instance). The Hausdorff dimensions of
random dynamical Cantor sets (as well as some invariant sets of random dynamics
on the torus) have been obtained through the same formula as in theorem in
[45, 46, [68], 16, 49] [61) [76] under the assumptions that the dynamics are piecewise
C'**. Thus, theorem is expected and not difficult to get from Bowen’s ideas,
but for the sake of completeness, we will give a proof using an appropriate random
weak Gibbs measure.

1.3 Multifractal formalism

Let us recall some general concepts of geometric measure theory. We start with
Hausdorff and packing measures and dimensions in general metric spaces (we fol-
low [59]).

Let (X, d) be a metric space, F a family of subsets of X and ( a non-negative
function on F. We make the following two assumption

e For every § > 0 there are £y, Fy, --- € F such that X = (J°, F; and d(E;) < 4,
where d(E) = sup, ,cp d(x,y) for any E € F. The diameter d(£) will be also
denoted by |E| is the sequel.

e For every 6 > 0 there is £ € F such that ((F) < 6 and d(F) <.
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For 0 < < oo and A C X, define
H(A) = inf{> ¢(E): A CUZ B, d(E;) <6, E; € F}.
i=1

Then define

HE(A) = lim HS(A) = sup HS(A)
410 §>0

for A C X. Then H¢ is a Borel measure further more if the member of F are Borel
sets, then H¢ is Borel regular.

Definition 1.3 [59/ Let X be separable, 0 < s < 00, choose
F={F:ECX},
and
((E) = (d(E))”,
with the convention 0° = 1 and (d(0))* = 0. The corresponding ’Hg is called the s-

dimensional pre-Hausdorff measure and is denoted by Hz, and the resulting measure
H? is called the s-dimensional Hausdorff measure and is denoted by H?.

The Hausdorff dimension of a set A C X is
dimy A = sup{s:H*(A) >0} =sup{s: H*(A) = oo}
= inf{t: H'(A) < oo} = inf{t: H'(A) = 0}

Let g : [0,00) — [0,00) be a non decreasing function with ¢(0) = 0 and we will
call g a gauge function. We take again

F={E:ECX} and ((F)=g(d(E)),
then the corresponding measure H? is called the Hausdorff g measure. Of course
HI = H® when g(t) = t°.
The packing measure and packing dimension can be defined in a similar way.

Let g : [0,00) — [0,00) be a non decreasing function with ¢g(0) = 0. For
0<éd<ooand AC X, define the packing g pre-measure

{B;}icr is a countable collection of
pairwise disjoint closed balls with
diameter not larger than § and centers in A

Pg,d(A) = sup {Zg(d(Bz))

i€l

Then define
P§(A) = lim Py 5(A) = sup Py 5(A),
60 5>0
for A € X. Then
PI(A) =inf{d_ P{(A;) : A C UjesA;, J countable }.

Jj€J

P9 is called the packing g measure.
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Definition 1.4 If g(E) = (d(E))®, then P? is also called the s-dimensional packing
measure and it is denoted by P?.

The packing dimension of a set A C X 1is
dim, A = sup{s : P*(A) = 0o} = inf{t : P*(A) = 0}.

Now, let us set up the multifractal formalism on R, which will be the context of
this thesis. Possible references are [24] 18] 64 [50, [4].

Let v be a compactly supported positive and finite measure on R.

Definition 1.5 The (lower) Li-spectrum 7, : R — R U {—o00} and the upper-L?
spectrum 7, : R = RU {—o0} are given by

7u(g) = lim inf log SUPEOZgi(Ef;(Bi))q} (1.10)
7,(q) = limsup log sup{X2:(1(B:))"} (1.11)

r—0 log(r)

where the supremum is taken over all families of disjoint closed balls B; of radius r
with centers in supp(p).

By construction, the function 7, is non decreasing and concave over its domain,
which equals R of Ry (see [50, 4]).

Definition 1.6 The lower and upper large deviations spectra LD and LD are given

by
log #{i : 7= < p(B(x;,7)

d—e
LD, (d) = lim lim inf )i (1.12)

e—=0 r—0 - log(r)
(

<
LD,(d) = limlimsup og #{i : 77 < p(B(wy,r) <r97)}
e=0 L0 —log(r)

(1.13)

where the supremum is taken over all families of disjoint closed balls B; =
B(z;,7) of radius r with centers x; in supp(i).

Definition 1.7 For all x € supp(u), define

log (B — log (B
@1OC(M7 ZL’) = lim inf M, dimloc(,u, ;L‘) = lim sup M
r—0t+ log r r—0+ log r

and

dimyec(p, z) = lim
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whenever the limit exists. Then, for d < d € R, define

E(p,d) = {z € supp(p) : dimy,. (1, x) = d},
E(p,d) = {x € supp(p) : dimyoe(p, 2) = d},
E(u,d) = E(u,d) N E(p, d),
E(p,d,d'") = {z € supp(p) : dimyo (1, 2) = d, dimyoc (s, 2) = d'}.

It is clear that since p is bounded, E(p,d,d) =0 if d' <0.
Finally, define

dimpy () = sup{s : for p-almost every x € supp(u), dimy,.(p, x) > s}.
An equivalent definition is (see [2]|]):
dimpy(p) = inf{dimg £ : u(EF) > 0}.

Definition 1.8 (Legendre Transform) For any function f : R — R U {—oo} with
non-empty domain, its Legendre transform f* is defined on R by

f(d) = }Iglg{dq — f(@)} e RU{~oc}.

Definition 1.9 (Multifractal formalism) We say that p obeys the strong multifractal
formalism at d € RU {0} if

dimy E(u, d) = 7,;(d)
and that the strong multifractal formalism holds (globally) for p if it holds at any
d € RU {oc}.
We say that p obeys the multifractal formalism at d € RU {oo} if

dimp E(u, d) = 7,(d)

and that the multifractal formalism holds (globally) for p if it holds at any d €
R U {o0}.

The reader should have in mind that if the domain of 7, is the whole interval R,
then 7 (d) > 0 if and only if 7;;(d) > —o0, i.e. d € [1,(+00), T/, (—00)].

It turns out that if the strong multifractal formalism holds for p at d, then one
has (|64, 50])

dimy E(p,d) = dimpy E(p, d) = dimy E(p, d) = dimp E(u,d) = LD ,(d) = LD,,(d)
= 7.(d)

I
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since one always has

dimy E(p,d) < LD, (d)
and
max(LD,,(d), dimy E(u, d), dimy E(u, d),dimp E(u, d)) < LD,(d) < 7;(d).
Then, it is straightforward that in this case 7, is a limit, i.e. 7, = 7.

A full illustration of this multifractal formalism is given in [4], where, for any con-
cave function 7 naturally candidate to be the L4-spectrum of a compactly supported
positive measure on R (and more generally R?), such a measure p is constructed;
moreover, this measure obeys the strong multifractal formalism and it is exactly
dimensional.

Definition 1.10 Given a > 0, we say that the zero-infinity law holds for a set E
at o in the sense of Hausdorff if for any gauge function g we have

HI(E) 0  4f limsup,_, % > q,
| oo if limsup, % <.

We say that the zero-infinity law holds for E at o in the sense of packing if for
any gauge function g we have

logr
logg(r) ~
logr —

PI(E) =

oo if liminf, .

{ 0 if liminf, 2890 > ¢
Q.

1.4 Multifractal analysis of the random weak Gibbs
measures

Let ¢ € Ly (€, C(]0,1])) and consider the function: ®(w,v) = ¢(w, vo, 7(v)), for
v =gy - € X,. Then @ is an element of Ly, (2, C(X)).

Let u be the random weak Gibbs measure on {X, : w € Q} obtained as yu,, =
Twwflw = fl, © T, ', where /i is obtained from proposition Without changing the
random measures fi,, and i, we can assume P(®) = 0 after replacing ¢ by ¢ — P(®)
and A(w) by A(w)e P(®) if necessary.

Since cg > 0, one deduces from the definition of the topological pressure that
for any g € R, there exists a unique 7'(¢) € R such that

P(q® —T(q)V) =0,

and that the mapping T is concave and non decreasing. It follows from the varia-
tional principle that T'(¢)/q is bounded near —oco and +o0, so (T"(+00), T"(—00))
is a bounded subset of R.
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Theorem 1.11 Under the Assumption[d], for P-almost every w € ), one has

1. for any q € R,

70 (q) =T (@) = T(g) = min {hp(F)fE 3 pf (I)dp} |

pETp(Xq)

2. The strong multifractal formalism holds globally for u, i.e. for all d €
[T"(400),T"(—00)] we have

dimy E(py,,d) = dimyg E(py,d) = dimy E(u,,d) = dimp E(u,, d)
= LD, (d) = LDy, (d) = 7, (d) = T"(d);

furthermore

T*(d) = max {

PELp(Zq)

hy(F) [ dp _d}
JUdp " [wdp S

3. For any given d,d € [T"(+o00), T'(—o0)],
dimy E(pe,, d, d') = inf{T*(d), T*(d)},
dimp E(pty, d,d') = sup{T*(8) : B € [d,d]}.
4. For any given d € [T'(+00), T'(—00)],
dimpy E(p,,d) = T*(d), dimp E(pu,,d) = sup{T*(d') : d’ > d},
and

dimg E(p,,d) = T*(d), dimp E(uy,d) = sup{T*(d') : d' < d}.

5. For any d € [T'(+00),T'(—00)] such that
T(d) < sup{T*(d') : d' € [T'(+00),T'(—0)]} =ty = dimpy X,,,

the zero-infinity law holds for the set E(p,,d) at T*(d) in the sense of both
Hausdorff and packing.

Let us put our result in perspective with respect to the existing literature.

Multifractal analysis and large deviations for Gibbs measures on cookie-cutter
sets were achieved in [71I], after the study of some class of multifractal invariant
measures in [19] (see also[I3] and |24, Ch. 4 and 5|). They used a multifractal
formalism based on a Li-spectrum defined thanks to partition functions associated
with the symbolic coding of the support of the measure [I§|, while the more intrinsic
point of view we adopt here, which consists in considering balls centered on the
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support of the measure, comes from the fundamental contributions by Olsen [64]
and Lau-Ngai [50]. More generally, the multifractal analysis of Gibbs measures and
quasi-Bernoulli measures on attractors of hyperbolic dynamics has been studied
intensively (see for instance [I8, 25| 67, B8, 12]; on the other hand, a lot of works
have been dedicated to the closely related class of self-similar measures, see [5] for a
survey). Thermodynamic formalism and multifractal analysis was deal with for the
conformal infinite iterated function systems in [37] and for meromorphic functions
of finite order in [62]. Graph directed Markov system was considered in [60] and
then multifractal analysis of conformal measure for such system (over a subset of
the limit set which is often large) was considered in [77]. The first results for weak
Gibbs measures were obtained in [42], and completed in [26], 29| 30].

The study achieved in [68, [69] leads to the multifractal nature of Gibbs mea-
sures projected on some random Cantor sets whose construction assumes a strong
separation condition for the pieces of the construction. About the same time, the
multifractal analysis of random Gibbs measures and Birkhoff averages on random
Cantor sets and the whole torus where obtained in [45, 46|; when the support of
the measure is a Cantor set, a strong separation condition is assumed as well. More
recently, in [31], the multifractal analysis for disintegrations of Gibbs measures on
{1,...,mN < {1,...,m} was achieved as a consequence of the multifractal analy-
sis of conditional Birkhoff averages of random continuous potentials (not C*). The
approach developed there could, with some effort, be adapted to derive our results
on weak Gibbs measures if we worked with random fullshift only. However, as we
already said it in the beginning of the introduction, the method can not be extended
easily to the random subshift, and our view point will be different. In [31], the au-
thors start by establishing large deviations results and use them to construct by
concatenation Moran sets of arbitrary large dimension in the level sets E(u,, d); we
will concatenate information provided by random Gibbs measures associated with
Holder potentials which approximate the continuous potentials associated with the
random weak Gibbs measure and the random maps generating the attractor X,.
This will provide us with a very flexible tool from which, for instance, we will de-
duce the result about the sets F(u,,d,d’). In this sense, our results also complete
a part of those obtained in [61] which, in particular, achieves the multifractal anal-
ysis of random Gibbs measures on random Cantor sets obtained as the repeller of
random conformal maps.

The multifractal analysis of Birkhoff averages on random conformal repellers of
C'! expanding maps is studied in [81], where the random dynamics is in fact coded by
a non random subshift of finite type, and the random potentials that are considered
satisfy an equicontinuity property stronger than the one we require.

The sets E(u,d,d") were studied for Gibbs measures on conformal repellers and
for self-similar measures in [32, [65, 2], 66].

Finally, in [53], zero-infinity laws are established for Besicovitch subsets of self-
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similar sets of the line. This inspired theorem [1.11{5), of which the results in [53]
turn out to be a special case. Also, in [52], a zero-infinity law is established for the
Hausdorff and packing measure of sets of generic points of invariant measures on a
conformal repeller.

1.5 Multifractal analysis of the inverse of random
weak Gibbs measures

Definition 1.12 For any positive Borel measure p on [0,1], let F, be the distribu-
tion function of the measure p which is F,(t) = p([0,t]). The inverse measure v of
 is the unique Borel probability measure on [0, 1] such that

for all x € [0,1], F,(x) = sup{t € [0,1]; F,,(t) < z}.
After reducing the situation to the case P(®) = 0, our second main assumptionis:

Assumption 2

Cp 1= — sup  sup (¢(w, s, z))dP(w) > 0,
R 1<s<l(w) €U

and
P({w € Q: The Lebesgue measure of X, is equal to 0}) = 1.

The general assumption that for P-almost every w € €, the Lebesgue measure
of X,, vanishes ensures that, P-almost every w € (), the inverse measure of any
probability measure on X, is a discrete probability measure. This assumption is
weaker than the essential randomness sometimes assumed in some related works
(see [61]), which implies that for P-almost every w € € one has H"(X,) = 0
(recall that ty is the almost sure Hausdorff dimension of X,,): since t; < 1, essential
randomness implies vanishing of the Lebesgue measure. Our assumption, as well as
essential randomness, seems hard to illustrate with examples for which tg = 1. It
would be good to prove, or disprove, the existence of such an example.

For any ¢ € R, there exists a unique 7 (¢q) € R such that
P(q¥ —T(q)®) =0.

This is due to the fact that cs = ¢, > 0. There is an obvious relationship between
T and T through the equation P(q® — T'(q)¥) = 0.

Our result about the multifractal analysis of the inverse measure for the random
weak Gibbs measure is following:
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Theorem 1.13 Under the assumption[]] and[d, for P-almost every w € Q, the in-
verse measure v, of j, 1S a discrete measure and it satisfies the following properties:

1. For any q € R, one has that 7,,(q) = min{7T (¢),0}.
2. For any d € [0,7],_ (—00)|, one has

dimy (E(v,,d)) = T*w(d).

1%

3. e Foranyd e [T'(+00), T (—00)], one has

dimp (E(v,, d)) = dimpg (E(v,, d)) = T*(d) = dT*(1/d).

e For any d € (0, T'(+00)), the sets E(v,,d) and E(v,,d) are empty.
e Ford=0,

E(v,,0) = E(v,,0) = {atoms of v}

so that
dimH(E(Vw,O)) = dimy(E(v,,0)) = 0.

Multifractal analysis of inverse measures started in [58], and then was developed
in [73,[74]. In these papers, the local dimension is defined in a stronger sense in order
to get general relations between the multifractal behavior of measure and its inverse:

dimyee (1, ) = limy_ g4y 1‘1’(%;’(“(18), where [ is a non trivial interval containing I. With

this definition, it was shown in [74] that for the discrete inverse of a Gibbs measure
on a cookie-cutter the strong multifractal formalism fails on a non trivial interval.
Later, in [I1] obtained the validity of the multifractal formalism using the lower local
dimension. This used the so-called conditioned ubiquity theory, which combines
ergodic theory and metric approximation theory, and was developed in [8]. This tool
makes it possible to study a broad class of multifractal discrete measures [6, [10], to
which the measures v, do not belong to.

The flavor of theorem [1.13[(1) and (2) is similar to that of [1I] regarding the
inverse of Gibbs measures on cookie-cutter sets: for the level sets of the lower local
dimension, the Hausdorff spectrum is composed of two parts: a linear part with slope
dimpy X, which is established thanks to conditioned ubiquity theory, and a concave
part which mainly reflects the multifractal structure of weak Gibbs measures or,
equivalently, ratios of Birkhoff averages. Theorem [1.13(3) completes [I1] results in
this deterministic situation. Also, in [11] the level set E(v,,, T7'(—0o0)) was not treated
when 7*(7'(—o00)) = 0. The study of the sets dimy E(v,,d,d") is in progress.

As we explained it at the beginning of this chapter, though following the main
lines of the deterministic case considered in [11], the study of v, requires our results
on weak Gibbs measures since the potentials are not Holder. Also, even for Holder
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potentials, the study is made structurally more complexe because the inverse struc-
ture comes from a random subshift. Moreover, we need a version of the conditioned
ubiquity theorem of [§] adapted to our context.

It is worth mentioning that the mutifractal analysis of discrete measures started
with homogeneous sums of Dirac masses [1} [39] 40} 23], in particular the derivative
of Lévy subordinators [40], and that originally heterogeneous ubiquity was elabo-
rate with the multifractal analysis of Lévy processes in multifractal time as initial
target [9].
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Here are some pictures describing the Legendre pairs (7,7, ) and (7,7, ).

7 (@)=T(q)

I
w

—_

-dimy, X >-1

Figure 1.2 — The function of 7,, =T

dim, X |

Figure 1.3 — The function of 7; (d).
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dim,, X

Figure 1.4 — The function 7

o 1

Figure 1.5 — The Hausdorff dimension of the level sets E(v,,d) and E(v,,d): T*(d)
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A

diml_I X

Figure 1.6 — The L9-spectrum for the inverse measure — 7,

w

dim X |

o ' 1

Figure 1.7 — The Hausdorff dimension of the level sets E(v,,d) : 7 (d)

Vw
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1.6 Concrete examples of random attractors

The random attractors considered in this paper extend for instance the examples
that are obtained if one considers the fibers of McMullen-Bedford self-affine carpets,
and more generally the Gatzouras-Lalley self-affine carpets [82]. In particular, such
fibers naturally illustrate the idea that at a given step of the construction two
consecutive intervals U and Ut may touch each other. In [51], Luzia considers a
class of expanding maps of the 2-torus of the form f(x,y) = (a(x,y),b(y)) that are
C2-perturbations of Gatzouras-Lalley carpets, whose fibers naturally illustrate our
purpose with nonlinear maps, but not C'. Also these examples are associated with
random fullshift.

Let us give more explicit examples. Here we use the notations of Section [I.2]

A first example is the following. Let (2, F,P, o) is the following:
O=T:=Z"xZ" x -,

F is the o-algebra generated by the cylinders [niny---n;] for any k € N and any
n; € Z* for any i € N with 1 <1 <k,

1 1 1
P([ning---nyg)) = ni(ny + 1) ' na(ny + 1) T m7

the map o is the shift map. Such a system is ergodic. It satisfies the conditions we
need.

Let n = nyng---ny--- € T', define I(n) = ny and A(n) = An, xn,, Where A, yn,
is n1 X no-matrix with all entries equaling to 1 if ny £ ny — 1 or ny; = 2, otherwise it
is a matrix satisfying that the entries of the first n; — 1 rows are 1 and the entries
of the ni-th row are 0 except that a(ny,n; — 1) = 1. It is clear that such a system
can give us a random subshift system.

In fact it is easy to check that M and [ are measurable. For any k € N,
{ne@:Mn) =k} =[(k+Dk(k—1)---2],
and it is measurable. So that M is measurable. For [, for any k£ € N,
{neQ:l(n) =k} =[k],

and it is also measurable.

Then [ and M are unbounded but [log! dP < 400, and we get a random subshift,
which is not a fullshift . Now, we set T(z) = nyz mod 1 for z € [=+, -£] and for

. ny ’ ny
1=1,2,--- ,nq.

For any point w = n, If n, = 3, then at the k-th step the whole length of the
cylinders will become 5/6 of the whole length of k—1-th step. As P([3]) = 1/12, from
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Poincaré’s recurrence theorem [83, theorem 1.4] or ergodic theorem [83, theorem
1.14], for P-almost every w € 2, 3 will appear infinity many times, so at last the
whole length (Lebesgue measure) will be 0 for the fiber at w.

In fact, in the previous model the measure P is a special example of a Gibbs
measure on the (€, 0) (see |78, [80]). So we can enrich the previous construction by
considering any such measure IP for which [log! dIP < +o00. For the mappings maps
T, here is a way to provide a non trivial example, which seems to be not covered
by the existing literature.

Start with a family {p;, }sen of random C* differeomorphisms of [0, 1] such that
at least one ¢, , is nowhere C with positive probability. Assume that there exists
a random variable a( taking values in (0, 1] and such that

- , N |
reoari™ oy [Poe(@)] Z a0(w)

Let T3 = ps 0[5, where f7 is the linear map from UZ onto [0, 1]. Then, the constant
¢y of Assumption [I] satisfies

CTZJZ/Q

Thus, we require that

log(ao(w)) — sup 1og<|U5|>] )

1<s<i(w)

/Qllog(ao(w)) — sup log(|Uj\)] dP(w) > 0.

1<s<l(w)

This allows some 7;3 be not uniformly expanding, but ensures expansiveness
in the mean. It is easily seen that the Lebesgue measure of X, is almost surely
bounded by [T, (Zlgsgl(w) Uz, /CL[)(O'iW)) for all n > 1. Thus, if we strengthen
our requirement by assuming that

| llogmo(w))—log( > |U5\>
(@)

1<s<1

dP(w) > 0,

then the Lebesgue measure of X, is 0 almost surely.

Now let us provide a completely explicit illustration of the last idea (we will work
with a random fullshift for simplicity of the exposition).

We take (2, F,P,0) as the fullshift ({0,1,2}", F,P,o). For any n-th cylinder
[wowy « + - wn—1] C Q we set P(jwowy -+ - wp—1]) = 3% It is the unique ergodic measure
of maximal entropy for the shift map.

Let [ be a random variable depending on wy only, which is given by
4 Wo = 0
l(wy=4¢1 w=1
3 Wo = 2
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The entries of the random transition matrix are always 1 (we consider the random
fullshift). We assume that the map T'(w, x) just depends on wy and z.

If wy = 0, let s(z) =z for s = 1,2,3,4 and U} = [0,1/4], U2 = [1/4,1/2],
U2 =[1/2,3/4] and U2 = [3/4,1]. In this case, we know that ao(w) = 1. By the
way the intervals U2, 1 < s < 4 cover the interval [0, 1].

If wo =1, let h(xz) =6+ Z;;O‘f j2sin(2/mx). Define

Jo h(t)dt
Pru() = T,
Jo h(t)dt
and U} = [0,1]. In this case we can choose ag(w) = 1/2. Tt is easy to check that
T! is not expanding on some interval; furthermore it is just of class C* since h is
nowhere e-Holder for any € € (0,1).

If wo = 2, let @, (x) =z for s = 1,3 and g () = & + %27 and U} = [0,1/9],
U2 =11/9,2/9], U3 =[2/3,7/9]. Tt is easy to check that the left derivative of T} and
the right derivative of T is not coincide with each other, so it can not be express
as a conformal map here. In this case we can choose ay(w) = 7/8.

Also,

/ [mg(ao(w))—log( > |U5|>
)

1<s<l(w

_ log21 —log 16
B 3

dP(w) > 0,

so that all the conditions hold.
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Basic properties of random weak
(Gibbs measures

We will use the notations of the previous chapter.

Fix a potential ® € Ly, (€2, C(X)) (here P(®) may not be 0). Since var, ®(w) — 0
asn — 0 and (var,®),>; is bounded in L' norm, using Maker’s ergodic theorem [54],
we can get

n—1
Vo®(w) :== > var,_;®(c'w) = o(n), P-almost surely. (2.1)
=0

Due to ([1.3) and the ergodic theorem, setting S,||®(w)|ls = X1 [|®(0°w)]|oo, for
any positive sequence (a,),>o such that a, = o(n) we have

‘Sn”(I)(w)Hoo—Sn_an <I>(w)||oo‘ =nCe—(n—a,)Cos+o(n) =o(n), P-almost surely.

(2.2)

Definition 2.1 A family u = {un, : Xwn — Lo} of measurable maps satisfying
(Unw(V))|n = v for allv € ¥, and (n,w) € N x Q is called an extension. We say
that it is measurable, if the map (w,x) — Uy () is measurable for alln € N.

Let u = {uy.} be an extension and ® € L, (2, C(X)). Then for (n,w) € N x Q
n—1

Zuy(®,w) = > exp (Sp®(w, unw(v))) = D exp (Z @(Fz(w,umw(v))))
VEXw,n VEXw,n =0

is called n-th partition function of ® in w with respect to u.

Let ]
Tnu(P,w) = —log Z, (P, w).
n

25
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Due to the assumption log(l) € L!'(Q,P), using the same method as in [35] [49], it is
easy to prove the following lemma.

Lemma 2.2 Let u be any extension and ® € Ly, (Q, C(X)).

Then lim,, oo Ty (P, w) = P(P) for P-almost every w € 2. This limit is inde-
pendent of u.

Now let
AMw,n) = Aw) - ANow) - - Mo lw),

where A\(w) is defined as in proposition [I.1] The following lemma is direct when
the potential ® possesses bounded distorsions so that the Ruelle-Perron-Frobenious
theorem holds for the operator £3. For general potentials in Lg_(Q,C(X)) we need
a proof.

log A(w, n)

Lemma 2.3 One has 1}520

= P(®) for P-almost every w € €.

Remark 2.4 In the following proof, as well as in the rest of this text, we will use
the letter M to denote the levels of the function M(-). Keeping this in mind should
prevent from some confusion.

Proof First, for M > 0, let Fiy = {w € Q : M(w) < M}. Fix M large enough
so that P(Fy;) > 0. For each w € €, let by(w) be the k-th return time of w to

the set Ay;. From ergodic theorem we get limyg .o bf = IP(PEM) for P-almost every
b41—bg
k

w € §2. Then limg o 5 —" = 0 for P-almost every w € €}, which implies that
M (o"w) = o(n).

Second, for any v € Y¥,n,, we have
Zn—m(onw)) (P, w) exp(—o(n)) < L"1(v) < Zyn(P,w)exp(o(n)).

The right inequality uses the fact that we work with a subshift as well as (2.1)). We
just prove the left inequality: for n large enough so that M (c"w) < n,

L£2™M(v) = Y exp(S,0(w,wu))
wEEw,n,WQGEw
> Z exp (Sn,M(anw) (w, Uy ,n—M (0"w) (wl)) - 0(”))

wlezw,n—M(a"w)
= Zu,n—M(o"w))((I)u w) eXp(_O(n))'
The inequality follows by using (1.2)), then by preserving for each w’ € X, ,—pr(onw)
only one path of length M (c"w) from w’ to v, and by using (2.1]), M (c"w) = o(n)
and (22).

Now, since A(w, n) = [ L3"1(v)dfion,(v), we can easily get the result from lemma
and the fact that M(c"w) = o(n).
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Proposition 2.5 Let u = {u, .} be an extension and ®,V € Ly (Q,C(X)). There
exists V' C Q such that:

1. P(Y) = 1.

2. Setting ®,, = q® — tV for (q,t) € R?, for any w € O, T4 (Pys,w) converges
uniformly to P(®,;) over the compact subsets of R* as n — oo.

Proof We first check that that 7, ,(®,+,w) is a convex function of (g, t):
For any (qi1,t1), (g2, t2) € R? and « € [0, 1]

Tn,u ((I)aql +(1—a)g2,at1+(1—a)ta>s w)

1
= glog Z eXp(Sn((I)aqlJr(lfa)qg,atlJr(lfa)tg)(Waun,w(”))

VEXw,n
1
= Dlog 3 exp(Su(ayp + (1 )y 0,) (0, (1)
’Uezw,n
1
= Tlog Y exp(Su(0%y ), s (0) - exp(S((1 — @)y, ) 0 1 (0)
'Uezw,n
o) 1 -«
< Zlog 3 (S (B0 ) (0, unu(0) + T log Y ep(Su(Bys) (@, ()
VEXw,n VEXw,n

= Omn,U(q)q1,tnw) + (1 - a)ﬂn,U((qu,tza w).

Fix a dense countable subset D of R?. For any (¢q,t) € D, from theorem
we can find Q,; C Q such that P(Q,;) = 1 and for any w € €, one has
limy, o0 Tpu(Pgi,w) = P(Pyy).

Let € = Ngnepfqe- One has P(Q) = 1 and for any w € Qg,
limy, oo Tpu(Pyi,w) = Pr(Py,) for all (¢,t) € D. The uniform convergence over

the compact subsets of R? is now a standard result in convex analysis (theorem 10.8
of [75]).

For each w € Q, let

D(w) =: exp (=) [|P(w)]]oo)-

Alw, M(w))

Then D(w) > 0 for P-almost every w € . From M(c"w) = o(n), (2.2) and
lemma [2.3| we can get that log D(0"w) = o(n) P-almost surely.

Recall that by proposition [I.I, for P-a.e w € €, the measures [, satisfy
(E%)*ﬁo’w = )‘(w)ﬁw
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Proposition 2.6 For P-a.e w € (1, for any n € N, for all v = vovy ... Vp—1 € Xy,
one has

D(o"w) . N 1
< <
/\(wa n) P (Qg[lvf]‘w an><w, U)) B MW([U]W) - )\(w7 TL) ep <QS€1[1UI]DW S"q)(w7 Q))7
so that )
exp(—e,n) < fios([v]w) < explenn)

exp(S,P(w, v) — log(A(w,n)))

for any v € [v],, where €, does not depend on v and tends to 0 as n — oo.

Proof Let us deal first with the case n = 1.

Fix 1 <4 < l(w). For any 1 < j < [(6eM®w), there exists w € Yow, M(w)—1 such
that dwj € Xy, 14a(w)- Due to proposition [[.1} we have

fio((i0).) = 5 68 i, ditgc,

AMw, M
where £5" = £3" '@ o -0 L3 o £%. This implies

(i) > et SRS L ().

Then i, ([i]) > D(w) follows after summing over 1 < j < [(c™“@w). The upper
bound fi,([i]) < 1 is obvious.

The general case is achieved similarly: If v € %,,, for each 1 < j <

("M@ =1) | there exists w € Syng pr(onw)—1 Such that vwj € Sy, i ar(onw). One
has

~ . 1 w,n+M(oc"w) ~

ell00ile) = 3o iy E Lo Al 0700,

from which we get

ﬁw([ij]w) > )\(W, n) ' D(Unw> exXp (yg[lvf]‘w SH(I)<W7 U))/jon“'”f("”“)w([j]on“'M("”“’)w)‘

(O.n+M(U"w) -1

Then, taking the sum over 1 < j <1 w) we get

D(c"w)
o) exp (Uéri)wa b(w,v)).

fiuo([v]w) =

The inequality fi,([v],) < m exp (SUP,epy), Sn®(w, v)) is direct from the equality

:quv]w) = gynl[v]w d/ja”w-

Finally we conclude with (2.1)) and log D(0"w) = o(n).
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For any v € LY (©2,C([0,1])) and any z € UZ, let

n—1

Spy(w, z) = Z Y(otw, vy, T - TY2).

oi—1lw
=0

Proposition 2.7 For P-almost every w € (), there are positive sequences
(e(¥,n))nz0 and (e(¢,n))n>0, that we also denote as (e(¥,n))n>0 and (e(P,n))n>0,

converging to 0 as n — 400, such that for alln € N, for all v = vyv; ... v, € ¥,
we have :

1. For all z € U:j,

eXp(Snw@Jv Z) - ne(%n)) < |U:J)‘ < eXp(Snw(w> z) + nﬁ(%”)%

hence for all v € [v],,

exp(S, (w0, v) — ne(W,n)) < [UZ] < exp(S,W(w,v) + ne(¥, n)).
Consequently, for allv € XJ:
IXE] < U2 < exp(SuW(w, v) + ne(¥, n)).
2. For allv € [v],,
exp(Sp®(w, v) — ne(®,n)) < fiu([vln) < exp(Sp®(w,v) + ne(®,n)),
hence for all z € UJ,
exp(Sno(w, 2) — ne(p, n)) < po(Xg) = p(UY),

as well as p1,(U2) < exp(Spo(w, z) + ne(p,n)) if fi, is atomless.

Proof 1. For all n € N, for all v = vyvy -+ - v,—1 € ¥y, ,, define T} as
Tl o--oT! 0T,
For any z,y € U}, from the Lagrange’s finite-increment theorem we have that
Tox = Tyl = (1) ()l — yl,
for some z between z and y. Since T(UY) =: Ton={ o

on—1, @ 0 Tch(UZJ}) = [07 1]7

| = ; =ex W,z
051 = 1oy = (S 2).
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for some z in the interior of U}. Then by definition (1.8 of ¢, due to the ergodicity
of the system (Q, F,P, o), we have

sup |Ug] < exp([|Sn¥(w)llo) < exp(—nce/2) (2.3)

Uezw,n

for n larger than some N(w).

Let a,(w) = var(¥,w,sup,ey,_, [Us]). Then, by definition of ¢, a,,(w) — 0 as
n — oo. Consequently,

V(,w,n) = > (0" 'w) = o(n)

0<i<n

by Maker’s ergodic theorem, and the same holds for V,,¥(w) which by definition

equals V (1, w,n) (see (1.7)) and (2.1))).

Since |Spt(w, 2) — Spt(w,y)| < V(¥,w,n) for any y, z € UY, we get
exp(Sntp(w, 2) — o(n)) < |Ug| < exp(Sntp(w, 2) + o(n))

for all z € f]j. The inequality associated with S, ¥ follows immediately.

2. Noting that we reduced the situation to P(®) = 0, the first part of this
item comes from theorem , lemma proposition , the fact that D(o"w) =
o(n), and the control (2.1)) of the distorsion V;,® coming from the assumption ¢ €
Lk, (2, C([0,1])).

The second part comes from the relation p,, = 7, /i, -
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Basic properties of random Gibbs
measures

Random Gibbs measures are associated with random Hoélder continuous potentials.

We say that a function ® is a random Hoélder potential if @ is measurable from g
to R,

/ sup |®(w,v)|dP < oo,
veXy
and there exists k € (0, 1] such that

var,®(w) < Ke¢(w)e ™™, (3.1)
where the random variable K¢ = Kg(w) > 0 is such that [log K¢(w)dP(w) < oco.

A random Hoélder continuous potential is obviously in Ly (Q2, C(X)).

Theorem 3.1 ([48], [49]) Assume that F is a countably generated o-algebra, F is
a topological mizing subshift of finite type and ® a random Hdélder potential.

For P-almost every w € Q, there exists some random variables C = C®(w) > 0,
A= A%w) > 0, a function h = h(w) = h(w,v) > 0 and a measure i € M}(Sq)
with disintegrations [i, satisfying

/\log C®|dP < 400, /\log M| dP < 400 and logh is a Hélder potential,
and such that

L3h(w) = Mw)h(ow), (£3) i = M@)o [ hw) dji = 1. (3.2)

Let m, = m® be given by dm,, = h(w)dfi, and set dm(w,v) = dfi,(v)dP(w).
Then m € I}(Xq), for P-almost every w € Q, for all v = vgvy ... v, 1 € Ywn, and
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for all v € [v],

= My ([v]w) o
¢ = exp(31y ®(Fi(w,v)) — log A2 (07 tw) - -+ - A®(w)) <C% (3.3)

The family of measures (my)weq is called a random (or relative) Gibbs measure
(or state) for the potential ®. Moreover, m is the unique mazximizing F-invariant
probability measure in the variational principle, i.e. such that

P(®) = hp(m|P) + /Q)dm, and one has P(®) = /log Aw) dP. (3.4)

FEach time we need to refer to the function ®, we denote the measures m and m,,
as m® and m®, and denote \ as \®.

We can also define the random Gibbs measure on the random attractor X, by setting

_ -1
[l = My, O T .

In this thesis if the potential ® (which is related to ¢) is a random Holder

potential, then when we say the relative measures m® and p¢, they are referred to
be random Gibbs measures.

Given a random Holder potential ®, from we can define the normalized

potential &' (w,v) = ®(w,v) + log h(w,v) — log h(F(w,v)) — log AM(w), which satisfies

¢, 1 = 1 for P-almost every w € Q. This implies that & < 0 for P-almost every
w € ). Also, we have the following fact:

Proposition 3.2 Suppose that ® is a random Hdlder potential. If P(®) =0, there
exist some w > 0 such that for P-almost every w € ), there exists N(w) such that
for any n > N(w) and any v € 3, ,,, one has

sup S, P(w,v) < —nw.

vE[v]w

As a consequence, i, is atomeless.

If we need to refer explicitly to ®, we will use the notations Ng(w) and we instead
of N(w) and w.

The main idea of the proof is from [31].

Proof Since P(®) = 0, we have sup{[ ®dp : p € Ip(Xq)} < 0.

We claim that sup{[®dp : p € Zp(Xq)} < 0. Let M large enough such that
P({w: M(w) < M,l(w) > 2}) > 0. For any w € Q such that M(w) < M and l(w) >
2 we have £5"1 = 1, hence Sy ®'(w,v) < 0 for any v € ¥, and [ Sy ®'(w, v)dp, < 0
for any probability measure p,, on X,. Since, moreover, we have Sy;®" < 0, we
conclude that sup{ [ ®' dp, p € Zp(Xq)} < 0.
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Let —2w := sup{/ ®dp : p € M}(Xq, F)}. If the proposition does not hold,
there exists a subsequence (ny)g>1 such that

SUP, ey, Sn, P(w, 1) w1

#{v: |v| = ng,

N
For any ¢ € R™,

log Yves,, ., €XP (ank(P(w, unk,w(v)»

P(g®d) = i
> lim g —qo.
k—o00 nk
However,
P(q®) = sup {hp(F) +/CI‘I) dP}
pEM(Sq,F)
< s {[e@dpf+ s {h(F))
PEM(Sq,F) pEM3(Sq,F)
< —2qw+ sup  {h,(F)}
pPEMG(q,F)

Since sup e pi(sg,m Mo (F)} = [logldP < oo, letting ¢ tend to co we get a contra-
diction.
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Proof of Bowen’s formula

Here we first explain that for P-almost every w € €, the set X, is either equal to
[0, 1] or totally disconnected.

From the construction of X, we deduce that setting ' = {w € Q: X, # [0, 1]},
then we have

V' ={w € Q: there exists a non trivial open interval I, C [0,1] such that I, N X, = 0}.

For each w € (Y, fix a nontrivial open interval I, such that I, N X, = 0.
If P(§Y) > 0, for P-almost every w € Q

; ) /
lim ﬁ{z<n.aw6§2}:

n—oo n

P(Q").
Then, for any n € N, for any v = vovy -+ - V1 € X5, the interval U], contains an
interval I such that 7 N X, = (. Indeed, since we can find that & > n + M(c"w)

such that o*w € 0, i.e. I, N Xyr, = 0, for each v = vyvy - v,_1 € X, we can
find a word v’ such that w = vv’ € ¥, and the nontrivial interval

I'=gogg,o 00, (In,) C US(CU)

does not intersect g2 ogllo---0g ¥ (X,k,) = X,NUY, hence it does not intersect
X, NU?L. Consequently, P-almost surely, the set [0, 1] \ X, is open and everywhere
dense, i.e. the closed set X, is totally disconnected. Moreover, P(Q') = 1.

The case P(Q') = 0 occurs only if for P-almost every w the intervals U2, 1 <
s < l(w) form a covering of the interval [0, 1], and simultaneously the matrix A(w)
is positive.

Now let us come to the proof of theorem [I.2] At first we notice that the unique-
ness of ¢y, comes from the fact that ¢ — P(tV) is decreasing because ¢, > 0.

Upper bound: For any s > 0 and 6 > 0 denote by Hj the s-dimensional
Hausdorff pre-measure computed using coverings by set of diameter less than §. Let
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On 1= SUDyey,,,, [Xo|. Then

M (Xo) < >0 X0

’Uezw,n

As is shown in proposition for any n € N, for any v € ¥,,,, we have | X}| <
U2] < exp(W(w, ) + o(n)), 50

Hy (X)) < D exp(sS,,¥(w,v) + o(n)).

VEXw,n

But P(s¥) < 0 when s > ty. Then, from lemma , for P-almost every w € €2, for
n large enough we get > ex,,  exp(s559,¥(w,v) + o(n)) < exp(n@). This implies
H*(X,) = 0. So dimy X, < s. Since s > tg is arbitrary, we get that dimy X, < t.

Lower bound: If {; = 0, since for P-almost every w € €2 the set X, is not
empty, there is nothing to prove.

Suppose that ¢y > 0: Since ¢ € L}Q(Q,a([o,l])), toy) € Lkw(ﬂ,é([O, 1])) as
well. For the potential oW, we can consider the projection {u/0%} of the associated
weak Gibbs measure {’%}. We want to prove that dimg (u/0%) > t,. If so, since
phov(X,) = 1, we get dimy X, > to.

First of all, since P(t,¥) = 0, by proposition 2.7(1) we can get that for any
n>1,vex,,anduv e [v],, wehave

exp(Sa(to¥)(w, 1) — o(n)) < i ([v]) < exp(Sy(to?)(w, v) + o(n)).

Since sup,ex,, Sn(toW)(w,v) tends to —oo as n — oo, we conclude that % is
atomless. Consequently,

exp(Sa(to®)(w, 1) — o(n)) < pg" (Ug) < exp(Sa(to?)(w, v) + o(n)).

Define V(r) = {v € E,. : (US| > r,Jvs € X, y11,|UY°| < r}. We have
SUP,cv () [v] = O(=logr), and for every x € X, for r small enough, there exist two
words v,v" € V(r) such that

(B(x,r/2) N X,) C (USUUY).
Then proposition [2.7(2) yields

MZW(B(LE, T/Q)) < ”tolﬂw(Ug) + Mtow,W(UZJ/)
< exp(Sju|(to¥)(w,2) + o(|v]) + exp(Sjv(to V) (w, ') + o(|V']))

for any v € [v], and V' € [¢],, where o(|v|) and o(]v'|) depend on w and £,V only.
Thus

sV (B(x,1/2)) < exp(S)y(to¥)(w, v) + o([v])) + exp(Sju (to ) (w, v') + o([v']))
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exp(Sju1(to W) (w, ) + o([v])) + exp (S (to V) (w, ) + o(|v']))
(1U2°[ exp(o(|v]))) + (U exp(ofv/]))
' exp(o(—logr)).

(VAN VAN VAN

tov
It follows that liminf,_, W > to, hence dimy (uo¥) > to.

hy (1)
— [wdp

For the equation ty = sup, ez, (s) { } , it will follow from proposition [5.3|
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Approximation of (¢, V) by random
Holder potentials and related
properties

We mainly introduce objects and related properties which will be used in the next
chapters. Also, we explain the variational formulas appearing in Bowen’s formula
and in the statement of theorem [L.11l

5.1 Approximation of (¢, V) by random Hélder po-
tentials

Now we approximate the potentials ® and U associated with {, }ueq and { X, }oen
by more regular potentials: for any ¢ > 1, for any w € €2 for any v = vgvy - - - v; - -+ €
[V]w C Xy with v = vy - -v;-1 € ¥, define

max{®(w, w), w € [v],} + min{®(w,w), w € v}

q)i(w,g) = : |
Wy(w,0) = max{¥(w,w),w € [v],} —21— min{ ¥ (w,w),w € [U]w}'

These functions ®; and ¥; are piecewise constant with respect to the second
variable. They are random Hoélder continuous potentials. If we take

Ks,(w) = (2 sup |®(w,v)|+ 1)e' and k=1,

VEL
then

var,®;(w) < 2 sup |P(w,v)| < K¢, (w)exp(—n) ifn <i
V€YY

var, ®;(w) =0 ifn >

37
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’ T

Furthermore
log((2 sup [®(w, v)| +1)e’) < i+ 2 sup [P(w,v)],
vEY, VEX

and the right hand side is integrable since ® € Lg_(Q,C(X)).

Also, since for P-almost every w we have var,®(w) — 0 as n — +oo, and
|P(w) — D3 (w)]|eo < var;®(w), we have &; — & uniformly as ¢ — oo for P-almost
every w. The same property holds for ¥; and ¥. Consequently, without loss of
generality we can also assume that P(®;) = 0 since P(®;) converges to P(P) as i
tends to +o0.

5.2 Approximation of (T,T*) by (T;,T)

Due to our assumptions on (®, W) and the definition of (®;, ¥;);cn, we have ¢y, < 0,
hence for the same reason as for (®, W), for any ¢ € R, for any i € N, there exists
a unique 7;(q) such that P(q®; — T;(q)¥;) = 0 and the function 7} is concave and
non-decreasing. Also, the function 7; is differentiable since for Holder potentials the
associated random Gibbs measure is the unique invariant measure that maximizes
the variation principle (see [35], 61].)

Lemma 5.1 For any q € R, one has that T;(q) — T(q) as i — oo.
Proof At first, we recall that for any ® € Ly, (€2, C(X)) one has

P(®)= sup {hr(p|P) —|—/q>dp}.

pEI(Eq)

Also, for any ¢ € R, we have P(¢® — T(q)V) = P(q®; — T;(¢)¥;) = 0. Thus

inf ([ [g(® — @) = T(q)(¥ = W) — (T(q) — T:())¥i] dp) <0, (5.1)

pEIp

and
sup ( [ [a(® = @) = Tlq)(¥ — W) — (T(q) = Ti@) W] dp) 2 0. (52)

pEIp

The inequality (5.1)) implies that for any € > 0, there exists a measure p € Zp(Xq)
such that

[ 4@ — @) ~ T(q) (¥~ ¥) ~ (T(q) ~ )W) dp < .

Then
[(T@) = @) Widp > [ a(® - @) = T(a)(¥ = W) dp— =,
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and

J (@ — ;) =T (q)(V —W;)dp — ¢

J(¥;)dp
< [ —lq|(var;®) — |T(q)|(var; ) dP — e
B J(¥;)dp
o 1 —lal(vari®) — |T(q)|(var;¥) dP — &

since [(¥;)dp < —cy < 0. Letting i — oo, from the arbitrariness of ¢ we get

liminf T;(q) > T(q).

i—00

Using (5.2)) similarly we can get limsup, . Ti(¢) < T(q). Finally lim; .. T;(¢) =
T(q).

Proposition 5.2 Let T : R — R be a concave function. Suppose that (T;);>1 is a
sequence of differentiable concave functions from R to R which converges pointwise

toT. Then (T});>1 converges pointwise to T* over the interior of the domain of T*.

Proof Let a be an interior point of dom(7™). Let g, € R be the unique point such
that a € [T'(¢a+),T"(ga—)], and T* () = aqa — T(qa).

By [27, proposition 2.5(i)|, there exists a sequence (g;);>1 such that for i large
enough one has T/(¢;) = a. Without loss of generality we can assume that this
sequence converges to ¢y € R or diverges to —oo or oo.

Suppose first that it converges to ¢, € R. If ¢ = ¢, then we are done since (7;);>1
converges uniformly on compact sets. Suppose that ¢ # ¢, and ¢ > q,. Using
the uniform convergence of (7;);>1 in a compact neighborhood of [qa, ¢}] and the
inequality T;(q) < T;(q:) +T7(q:)(q — ;) (75 is concave), we can get T'(¢a) < T'(qq) +
a(ga —qp)- On the other hand, T being concave we have T'(q,) + 71" (qa+)(q) — Ga) >
T'(q)) and T'(ga+) < a. This implies that @ = T"(¢,+) hence T*(a) = aga—T(qa) =
aqy — T(qp) = limioo(ag — Ti(q:) = 17 (@)

The case ¢ # ¢o and ¢ < g, is similar. Now suppose that (g;);>1 diverges to
oo (the case where it diverges to —oo is similar). If T is affine over [g,,00) with
slope «, a is not an interior point of dom(7™). Consequently, there exists ¢ and
€ > 0 such that T"(¢\+) < a — ¢, and T(q) < T(q}) + (o — €)(q — ¢;) for all ¢ > ¢.
On the other hand, since 77 is non increasing for all 4, for ¢ large enough we have
Ti(q) > Ti(q)) + alqg — qp) for all ¢ € [g),q]. Since (gi)i>1 diverges to oo, this
contradicts the convergence of (7});>1 to T.



EXPLANATION OF SOME VARIATIONAL FORMULAS

5.3 Explanation of some variational formulas

Proposition 5.3 If Assumption[]] holds, then

_ hy(F)
fo= peTi (e) {— J \Ifdp} (5:3)
and ho(F)+q [ &d
: +4q P
T(q) = £ . 4
0=t " Te ) o
Furthermore, for any d € (T'(400),T"(—00)),
h,(F) [®dp
T* _ _p . — ) .
0= (e Ty ) )

Proof For equation ([5.3)), since P(tq¥) = 0 and [ ¥dp < 0 for any p € Zp, then for
any p € Zp we have

ho(F) +to [ Wdp <0,

hence
ho(F)
— [ Wdp

On the other hand, for any € > 0, there exists p € Zp such that

to >

hy(F) +t0/\IJdp > e,

SO L (F
to < p( ) +e

T = [Wdp

h,(F
Letting € tend to 0 yields to = sup {p()} Finally we can get equation ([5.3))
petz(2a) (= J Wdp

from the fact that Zp is compact under the weak™ topology and the entropy map
p — h,(F') is upper semi-continuous [49, subsection 4.1 |.

For equation (.4)), it is almost the same as for equation (5.3)).
Regarding the equation (5.5)), on the one hand, for any d € R,

hp(F)+QI<I>dp}}

T*(d) = inf{qd —T(g)} = inf {qd— inf {

q€R pET»(Sq) J Wdp
: —h,(F) —q [ ®dp }}

= inf su L + qd
q€R {PEZJP(I;Q) { f Wdp 1

- wl o (Fog (- )l
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. —h,(F) J ®dp
> su inf { P + (d — )}}
m@gm{%R J¥dp I J Wdp

(Tl T _ )
— sup : =d;.
pEp(Xq) f\I/dp f\IIdp

On the other hand, for any d € (T'(+00),7"(—00)), by the proof of propo-
sition [5.2] there exists i large enough and ¢; € R such that T/(¢;) = d and
P(q;®; — T;(q;)¥) = 0. Then there exists p; € Zp(3q) such that

hp (F) + /(%“I)z‘ —Ti(q;)V;)dp =0

and
J ®idp;
S ¥dp;

T/(q;) =d= .

(2

This implies that there exists p; € Zp(Xq) such that

hm (F>
S ¥dp;

= 77 (d)

and
d— J @idp;
[ Wdps

Proposition tells us that 77 (d) — T*(d) as i — oo and Zp(Xgq) is compact for
the wear-star topology. Thus, there exists a limit point p’ of (p;) in Zp(Xq) such
that

hp’(F)
Wdp —

J @dyf
Jdp”

V

T*(d) and d =

since the entropy map is upper semi-continuous and (®;, ¥;) converges uniformly
to (@, V). Finally, we get

T*(d) = max {

PEIp(Zq)

_]%(F)'l[®dp__d}
JUdp " [Wdp S

The case d € {T"(+00),T'(—o0)} now follows by approximating d by a sequence

(di)k>0 of elements of (T"(400),T"(—o0)) and for each k picking p, which realizes
{ ho(F) [ ®dp

max < — : =

pEIp(Xq) f\I/dp f\Ifd,O

semi-continuous as a concave function and upper semi-continuous as a Legendre

J@dp _
J¥dp

dk}. Then, since T* is continuous at d (it is lower

F
transform), any limit point of (pg)r>0 is such that _fp\I(!d) = T7(d) and
- p

It exists since Zp(Xg) is compact in the weak™ topology (see [47, [49]).
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5.4 Simultaneous control for random Gibbs mea-
sures associated with (®;, U;)

In this quite technical section, we prepare the “concatenation of random Gibbs mea-
sures” approach that will be used in the next chapters to built auxiliary measures
with nice properties. We also show an almost everywhere almost doubling property
for projections of random Gibbs measures on the random attractor X,,,.

Let D be a dense and countable subset of (7"(+00),T"(—o0)). Let {D;};en be a

sequence of sets such that

e [; is a finite set for each i € N,
e D; C Dy, for each i € N,

[ ] UieNDi - D

Fix a sequence {g;};en decreasing to 0 as i — oco. We saw in the proof of
proposition that for any ¢ € N, there exists j; large enough such that for any
d € D;, there exists ¢; € R such that

L T} (q) = d,
2 |73 (d) — T(d)| < e
3. [qvar;,® dP < &} and [, var;, U dP < &

We can also assume that j; ;1 > j; for each + € N. We set

Qi ={q,d; € D;}.

For any q € Q);, we define
ALq = q(bji - T]L(q)\ljjz

Recall (2.1) and proposition For any ¢ > 0, there exist positive integers
M,L,N,C (large enough) such that there is a set 2 and a sequence {c,},>1 de-
creasing to 0 as n — oo such that: P(Qy) > 1 — ¢/4, and for any w € €y, one
has:

o M(w)< M, l(w) <L,

e for any n > 1,
max(V,®(w), V,¥(w)) < nc,
and
max{e(y,n) = e(¥,n),e(p,n) = €(®,n)} < c,,
where we have used Egorov’s theorem:;
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e foralln > N,

Spvar;, ®(w) — n/ var;,®(w) dP| < ncy,,
Q
Spvarj, U(w) —n/ var;, ¥ (w) dP| < ncy,,
Q
1
—Sp(logl)(w)| < C,
n

1 1
—n @ 00 *Sn ¢ - S
max(ns |P(w)]]oo, n (o wl

1 1
max(nSnH\I/(w)Hoo, nSn||\IJ(J_”+1w)||OO) < C.

and

sup Sp¥(w,v) < (—nwy), Yv € ¥, .,
v€[v]w

where we have applied ergodic theorem to var;, ®, logl, || ®(-)|le and || ¥(-)||eo, (2-3)
and Egorov’s theorem again.

Given a finite set ), we know that for P-almost every w, for s large enough one
has #3, s > #Q. Denote the smallest such s by S(w, #Q).

For any i € N, choose S(i) € N large enough such that there exists a set Q'(i) C
)y such that

o P(QY(i)) > 1—2¢/4 and for any w € Q'(i), one has S(cMw, 1Q;) < S(i), where
M has been fixed above.

Also, for all i € N, there exist w; > 0 and integers N(i) > N and M (i) > M
large enough, as well as a positive sequence {c¢;,}n,>1 converging to 0 as n — oo,
and a set Qi) C '(7) such that P(Q(i)) > 1 — 3¢/4, and for any w € (i), one has:

o M(aM+SWy) < M(i);

e for any ¢ € Q;, the random Gibbs measure {ﬁi\};ﬁ s+, Jwen 18 well defined,
and for any n > N (i)

Vi o (oMTSOMO )y < ey and €(Aig, n) < Cip;

e for all n > N(i), for all v € X mis@+ay, ,, for any ¢ € Qs

sup S\ o (M HEOTMO G 1) < (—nwy),
VEW] Mts@)+M(),
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where again we used the finiteness of @); and again (2.1)), proposition 2.7, proposi-
tion [3.2] and Egorov’s theorem.

Here we draw a picture to illustrate some of the parameters coming into play.

w o"w € Qi

| n | m S(i) M)

M'(i) = M + S(i) + M (i)

Let 0'(i,w, s) be the s-th return time of the point w to the set €2(7) under the
map o, that is
0'(i,w,1) = inf{n € NU{0} : 0"w € Q(i)},

and for any s € N and s > 2,

0'(i,w,s) =inf{n e N:n > 0'(i,w,s — 1), c"w € Q(i)}.

Then for any ¢ € N

lim 0'(i,w,s) 1
e s PQ3)

for P-almost every w. Consequently,

1 i i
lim 0'(1,w,s) .0 (t,w,s — 1)
k—00 0 (i,w,s)

= 0. (5.6)

Since N is countable, there exists Q' C Q of full probability such that for all
w e Y, for any i € N, we have

lim 0(,w,s) 1
e s P(Q()
hence 5(; 5(; )
lim (vav‘S)._ (Z,M,S— ) —0.
§—00 0 (i,w,s — 1)

Let M'(i) = M + S(i) + M(i). Given w € (i), let
n'(w) = inf{0 (i,w, s) : @' (i,w,s) > M'(i)} — M'(i).

For k > 2, define n(w) = 0'(i,w, s) — M'(i), where s, is the smallest s such that
the following hold:

0 (i,w, ) — iy (@) = max (M), m_ (@)(cin ¥ + /00w, 5)).



CHAPTER 5. APPROXIMATION OF (®,¥) AND RELATED PROPERTIES

It is easy to show that

Now we prove an almost everywhere almost doubling property for the Gibbs
measures ugi’q

For v € X w @, ,, We denote by U”M/m and U7,  the two intervals of the
n-th generation of the construction of X, which are neighboring U?, ;) , whenever
Ulsv,, 1s neither the leftmost nor the rightmost of the whole collection, and with
the convention that Uy, 1s on the left of UYy(, .

We say that B(i,c™ Dw, k,v) holds if v € ¥
lvAv—]<nt .
Let

and [v Av+ | <ni_, or

i
Y
DJTLk

Ui, o™ Dw, k) = U Ul

”ezgﬂ/f’(i)w,n;@: B(i,0M' () k,v) holds

Lemma 5.4 For alli € N, for all w € Q(i), for all ¢ € Q;, we have

Aiq . /(3
1oane () U Ui, ™Dy k) = 0.

N=1k>N

/ i o i i /
Proof For any v and v’ such that |v| =n},_, |v'| =n}, —n}_; and vv’ € LM 0) gyt 5

. A
by construction of _y ., ~one has

Aig v’
Honr iy, (Uo.l\l’(i)w)

< exp( ( - nk 1)wl + 4nkczn )

»q v
Mo iy, (UJM'@‘)W

We will use this fact to calculate the measure of U(i, 0™ e, k) Notice that for

any v € X there are at most two v’ such that vv' € ¥_w,, and

i K %
( )w}nk717 ()w nk

B(i, o™ @, k,vv') holds. Consequently,
A
ﬂazﬂﬁ(i)w(u(l oMy k) < 2exp(—(nj, — nj_,)w; +4nkzczn ).

Since w; > 0 and .
ny — ng_y > 1 (c, )/ +

we get

Zu i, (U (0,0 Ve, k) < oo,

By Borel-Cantelli’s lemma we get M’(z)w(ﬂN L Uksny Ui, 0™ D k) = 0.
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For any € > 0, § > 0, and k,p > 1 we now define the following sets:
€ X o, Vye{-11}Yve Egar )i Satistying
E7ﬁ7k(UM/(i)w,€) ={ JuA 93|n | >ni_,, for any v € [v], a0,
exp(—((8 = 72)S, (U (MO, 0) + 48y @5, (M D, v))) <1
Eipp(0™Ow,e) = N Figa(c™Dw,e)
k>p
and then
E;p(a™ = U Bigp(c" Dw,e).
p>1

Lemma 5.5 For all i € N, for all w € Q(1), for all ¢ € Q;, for any € > 0, the

singularity set E@ij(q)(aM/(i)w, e) has full u;\f\f,mw—measure.

Proof Fix ¢ > 0. Let
Ai (7
Si,q,k = MUJ\;Iq’(i)w(XaM’(“w \ Fi’TJ{z‘(Q)’k(O—M ( )w’ 5))
We have

Z Z Z Mgifz(i)w( ;)M’(i)w)

"/E{ 1 1} vel SM' (%), v'eX M (3),, ‘U/\U/|Zn’;‘€71

Si7q7k

IN

vexp (= (T <q> 7S, W5, (0™ Dw, ') = 8, @5 (0™ Vo, ')
= > exp((q + 1) S @5, (™ Dw, v))

~ve{-1,1} vm’EZUM/(i)w i Jvav|>nt

exp((—(T5,(a) + 1T}, (@) = n) Sy V) (0™ Ve, )
-exp(—y((T}, () = 7€) (S U5, (0™ Ve, ) = S, W5, (0™ D, 1))
~exp(71)(Sy; 5, (M Vw, ') = 5,1 @5, (0 D, v))) + o(n},))

Since T}, is in fact not only differentiable, but analytic [35, [61], we have

Ty.(q +vn) = Tj,(q) + T} (q)yn + o(n?).

uniformly in ¢ € @;. Then there exists b > 0 such that for n small enough, for all
q € Q;, we have
|T5(a + ) — Tj.(a) — T}, (@)yn] < bn”.

Consider such an 7 in (0, ]. We have

Si,%k < Z Z (l(O'M/(i)'kn?c—lw) ce Z(UM'(i)-l-n};—lw))

ye{-11} UGE(,M/(Z')W’TL}'c
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cexp(Syi (g +7m)®5, — Ty (g + ) ;) (0™ D, v))
cexp((en — bn?) S, V5, (0" Ve, v) + o(n}))

< > exp((ng —niy)C = (en — b, + o(nj))
ve{-1,1}
< Y exp('rz};cz-m;'c — (en — an)niw\p” +o(nk)) for k large enough
ye{-1,1}
g2 .
< 2exp (_(%)n;% + o<nz>) :

Consequently, 127 S; 41 < 0o, which yields the desired conclusion since ¢ is arbi-
trary.

Now we can collect the following facts.

Facts 5.6 Lemma and imply that for all i € N, for all w € Q(z), for any
¢, > 0, there exists an integer N; = Nj(o™ w) such that for any ¢ € Q;, there
exists B, = Ei(c™Dw) C X wrw,, such that

i)

Ay,
1. MUMq/@')w(Ei,q) > 1 — €,

2. M'(i) < njyel,

3. ¢

) 3 ) 3
nf,vl S & and Ci,njvi S &>

4. nf —nj_y <nj_,e} for any k > N,

5. for any v € Ejg, for any v € Ejar, 0 with k& > N such that v € [v],e,,
one has [vAv+| > ni ; and |[v Av—| > nl_,. Furthermore, for any
w € {v,v+,v—}, there exists (in fact for all ) w € [w], mr@), such that

S Bale” o) gy o (5.7)
S, WS (oM O, w) ()] <&, .
k
log 133, (Uthro,)
M/(z) M/ (i) y ,
g w AU w — T | < " 58
S|U|\IJJZ(O-M/(Z)W7M) ]7;( ]l(q)) S € ( )
and "
S (0" Vw, w)) :
) T - T* T < i‘ 5‘9
‘ S|U|\IJJZ(O'M’(7’)W,M) ji( Jl<(])) S € ( )

In fact with a suitable change of €; (take it as 2¢;), we can deduce from the above
item [f] the following property:
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For any d; € D;, there exists ¢; € (; such that for any v € E;,, for any
v E X with & > N such that v € [v] @, one has |[v Av+ | > nj_; and
v Av—| > ni_,. Furthermore, for any w € {v,v+,v—}, there exists (or for all)
w € [w],m @, such that

(i)w,n}C

Syt @, (M D, w) il <e (5.10)
5 Uy, (0w, w) = |
k
loguir\j\’jlx(i)w(U:}M’(i)w) T*<d) < (5 11)
S|v‘\Ifji(UM’(i)w,M) V)= |
nd (M O, )
Sjoifig(0™ Pw, w
‘ S|U“I/ji(o'M’(z)u),M) ( ) =° ( )

Facts 5.7 We can change (i) to §; C (i) a bit smaller such that P(€2;) > 1 —¢
and there exist A; and W (i) such that for any w € Q;, N;j(c™ @w) < N and
njy (w) < W (i) and the properties listed in Facts [5.6| hold.

We define 6(i,w, s) as being the s-th return time to the set ; for the point w.

Since N is countable, there exists Q C  of full probability such that for all
w € €, for any 7 € N, we have

. 0(i,w,s) 1
1 pumy
L P(Q;)’
hence o(s a(; .
lim (Z7w75>._ (z,w,s— ) —0.
s—00 O(i,w,s — 1)

From now on we just deal with the point in the set Q) which is a set with P-full
measure.



Chapter 6

Multifractal analysis of random weak
(Gibbs measures:
Proof of Theorem 1.

This chapter consists of three sections. In the first one we obtain the sharp upper
bound for the L9-spectrum of pu,,. Next, in the second section, we prove the validity
of the strong mutifractal formalism. There, our approach to construct suitable aux-
iliary measures already prepares the material used to establish in the third section
the refinements gathered in theorem [1.11](3)(4)(5).

6.1 Lower bound for 7,, and upper bound for 7,

Fix a countable and dense subset D of R. Let () be a set of full P-probability, such
that:

1. for all ¢ € D the weak Gibbs measure {f{f®~"@")} o are defined;

2. for all w € Q the conclusions of proposition hold all the potentials ¢® —
T(q)V, q € D;

3. for all n large enough, for all v € 3, for all v € [v],,

exp(—nCy — o(n)) < exp(S,¥(w,v)) < exp(—ncy — o(n)),

which follows from ergodic theorem applied to the potentials [|[V(w)|e =
sup,cx, |V(w,v)| and sup,cyx, V(w,v), where ¥(w,v) has been defined in (1.9), and
cy and Cy, are finite due to ([1.6)).

We will establish the lower bound 7,,(¢) > T'(q) for all w € Q and ¢ € D.
Since D is dense and both 7, and T are continuous, this will yield 7,, > T for
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all w e Q. By using the multifractal formalism, this immediately yields the desired

upper bound 7™ for 7; ~and the various spectra we consider for .

Let w € Q. Let r > 0 and consider B = {B;}, a packing of X, by disjoint balls
B; with the center z; and radius r. For each ball B;, choose n = n; and v(z;) € 3, ,,
such that x; € Ug(ff) and |UY@)| < r, but |[U2@)-1| > r By removing a set of
probability 0 from 2 if necessary, for any v € [v(z;)],, we have

r > US| > exp(S,¥(w,v) — o(n)) > exp(—nCy — o(n)),
where we have used ergodic theorem. Thus n > %ir for r small enough. On the

other hand, for r small enough, for any v € [v(x;)], we have

r < |UPE)n-1 | < exp(S,_1 ¥ (w,v) + o(n)) < exp(—(n — 1)eg + o(n)),

so n < =217 Ty resume, for r small enough, independently on B, if v(x;) € Xy

and v € | v?’xl we have
—logr —2logr

<n<
QC\I} - - Cy

(6.1)

Case ¢ € DN (—00,0):
For each B; € B, one has X!@) C B;, so for any v € [v(x;)],,

(a(B)? < (po(X2E)

exp (¢S, P(w,v) 4+ o(n))

exp(Sn(¢® — T(q)¥)(w,v)) - exp(T(q)Sn¥ (w,v) + o(n))
pl? @V (X )T exp(o(— log ),

IA A

IN

where we have applied proposition 2.7(2) to the potential ¢® — T'(¢)¥ as well as
proposition (1), the fact that |U2@)ln=1] > p > |U2®)| and (6.1). It follows that
Si(pw(Bi))? < 7@ exp(o(—logr)), and this bound does not depend on the choice
of the packing {B;}. Letting r — 0, this yields 7, (¢) > T'(q).

Case ¢ € DN [0, +00): Define
Vi(w,n,r) ={v € Xy, : US| > 2r,3s such that vs € &, 41, |US°| < 2r},

V'(w,n,r) ={v € V(w,n,r), there is no k < n such that v|, € V(w, k,r)},
V(w,r) = Ups1 V' (w,n, ).
Then {U? : v € V(w,r)} is a partition of [0,1]. Define n(w,r) = max{|v| : v €
V(w,r)} and n/(w,r) = min{|v|] : v € V(w,r)}. Then, from (6.1) we now that
for some positive constants By and By, for r small enough, we have —Bjlog(r) <
n'(w,r) <n(w,r) < —Bylog(r) .
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For any v € V(w,r), UY meets at most exp(o(—logr)) many balls of B; and for
any B;, B; meets at most two intervals of U}, Uﬁ’ with v,v" € V(w,r). Consequently,
since (o, (B;))? < 29((1o(US))? + (1o (UY))?), we have

> (mo(Bi)? < explo(—logr))2? > (m(UD)Y)

B;eB n/(w,r)<n<n(w,r) vEX L NV (w,T)

Using the same method argument as for ¢ < 0, we can know get that

(1 (U2))7) < pl®= 7@ (U2)rT@ exp(o(—log 7)),

so that
> (u(B))! < r"Pexplo(=logr)) Y PO ()
B;eB n/(w,r)<n<n(w,r) vEXL nNV (w,r)

— 7@ exp(o(~ logr)),

independently on {B;}, where we use the fact that {UY : v € V(w,r)} is a partition
of [0,1]. Letting » — 0, this yields 7, (¢) > T'(q).

6.2 Lower bound for the Hausdorff spectrum

Recall facts and facts For any w € Q, for any d € [T"(+00), T"(—00)],
for any sequence {d;}ieny with d; € D;, such that lim;,., d; = d, and consequently
lim; ;o 7%(d;) = T*(d) by continuity of 7%, we will build a measure 7, on a set
K(w,{d;}i>1) such that

o Nu(K(w,{ditiz1)) =1
K(w,{di}i>1) C E(p, d),

e For any = € K(w, {d;}i>1), lim,_, 0B > px(g),

logr —
This will imply that dimg 7, > T7*(d), and then

dimy (E(p, d)) = dimp (K (w, {di}iz1)) = T"(d).

The construction will consist of four steps. Fix a sequence {¢; };cn small enough
such that II;>1(1 — ¢;) > % For each i € N, Facts will be applied with this e;.
Notice that {¢;};endiffers from the other sequence {¢; };eny also invoked in Facts .

In the two first steps, we build a family of Moran structures indexed by the
elements of [];>1 D;.
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First step: For any w € , recall that 0(1,w, 1) is the smallest n € N such that
o"w € Q C Q1). Define my :=0(1,w,1) + M’( ). Facts and facts [5.7] tell us
that there exists an integer N7 = Nj(0™w) = N(ocMi(o ML) w)), such that for
any d; € Dy, there exists ¢ = ¢; € (1 and a set

Ey 4 (0™w) C Xomiy,

such that

L. pgmit,(Er g ) > 1 — €, recall that Ay ,, = 1P, — T, (1) ¥y,

4. n} —n}_, <ent | for any k > N,

5. for any v € E 4, for any v € Eamlw,n}c with & > Nj such that v € [v],m1, one
has |[vAv+| > ni_; and [vAv—| > nj_,. Furthermore, for any w € {v, v+,v—1},
there exists (or for all ) w € [w],nimrsm),, such that

S P, (0™ w, w)
L —d S 1.
S 1\Ifj1(o'ml(,u7w)
1Ogﬂ m1y(U)
g w _ T*<d> S 81,
S|U\\Ijj1( 1w7w)
Ay y(0™w, w)
’ - T*(d)| <
‘Sw‘lfjl(amlwaw) @) < =

Choose N > Nj large enough such that
o my < exnyy.

o M'(2) < e3nyy,

o W(2) < ejnyy,

e for any s such that the return time 6(2,w, s) satisfies 0(2,w, s) > m; + n}\q,
one also has

0(2,w,s) —0(2,w,s — )Sf:“%-
0(2,w,s —1)

Let s, be the smallest s such that 6(2,w, s) > mi +ny,.
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Now, let N; be the largest k such that m; +nj, < 6(2,w, s2) (by construction we
have Ny > N/). Then

1 1 1 31
0(2,w,82) —my —ny, <y, — Ny, S ETN,
by item 4. above.

Here is a picture which illustrates the beginning of the construction.

w long time ol 0(2,w, s2)
J n M(1)," \ Ny l
(s g NONANANANANN — % —

O.B(l,w,l)w c Ql

For each g € Q1 and k > 1, let
V(O'mlw’ 1,q, ]{j) = {U c nglwm}v : E11q<o'm1w) N X;_)mlw 7é @} .

Also, set
V(ie™w, 1,q) = V(c™w,1,q, N).

Since there exists at least §Q1 words in X,00.0.1)+m,, 5(1), for each ¢ € Q1 we can
choose v(q) € ¥yo1.w.1)+1, 5(1) With these v(g) pairwise distinct.

For any w € X, (1.,.1), for any ¢ € @, and v/ € V(gfUwD+HMIMLTSW)y, 1 q)
one can find at least one v"(w, q) € X 0001, p and v"(q,v") € Xjoa.w a5y 1(1)
such that

wv” (q)v(q)v" (g, ") € Zwﬂ(l,w,1)+M+M(1)+S(1)+n}\,1a

For each (w,q,v") € S, p01.w1) X Q1 x V(g0 DFMEMM+SW)y, 1 ¢) we choose
such a couple (v"(q),v"(q,v")) by requiring that for two distinct (w,q) and (v’ q)
in g, 001,01) X @1, v"(q) = v"(q) if w and w’ have the same last letter, and v" and v’
have the same first letter.

In the sequel, we denote wv”(q)v(q)v" (q)v] by w * v(q) * v, or w * v for short.

Fix wg € X, 9(1,,1)- For any d; € Dy, there exists ¢; € @y such that T} (q1) = d.
We define:
Ri(dr) = {wo * v(q1) x v € V(o™w,1,q1)},

and
Ry = Ugep, Ri(dy).

Second step: suppose that 6(i + 1, w, s;11), N;, R; have been chosen. Define
My =00+ Lw,sip1) + M+ S+ 1)+ M(i+1) =06+ 1,w,si41) + M'(i + 1)
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and
i+ _ il 0(i1w,si11)
ng - =ng (o ).

Facts[5.6|and facts [5.7] tell us that there exists an integer N;; 1 = N1 (0™i+'w) such
that for any d;;1 € D;;q, there exists g1 € Qi1 and a set Eiyy 4., (0™ Hw) C
X, mit1,, such that

Ai+1,(1'+1
1 ,ugmu-llw (Ei+1,q) >1- €i+1,

2. M'(i+1) <&l njf

. 3 , 3
3. Cppr < gfyy and Cit1nfl < &t
K3

T
1 it +1
4om =ity < efnity for any k> N,

5. for any x € Ejj14,,, for any v € EUmin’nZH with k& > N4 such that
T € X%y, one has [v Av+| > ni and [v Av—| > nit!. Furthermore, for
any w € {v,v+,v—}, there exists (or for all ) w € [w]|ymit1,, such that

Sn;jl q)ji+1 (o-miﬂwv M)

—d| < e&iqa,

Sn?_l‘lljiﬂ (O-miﬂwv M)

log ,uﬁ"“’q (Uniis,,)
S|U\\Ilji+1 (Umi+1w> M)
' Aigrq(0™ 0, w)

S|U\\I]ji+1 (Umi+1w> M)

=T(d)| < eipr-

—1(d)

IN

Eit1-

Choose NV, ; large enough such that

)

3 i+l
® Mip1 < i\,

(s < 3 7,'+/1
o M'(i+2)< Ervalln,
. < 2 i+/1 )

e W(i+2)< Ervaln

The above two items ensure that we do not need to wait a long relative time
to go into an other step.

e for any s with 6(i + 2,w, s) > m;1 +ni" one has
i+1

0(i+2,w,s) —0(i + 2,w,s — 1) 3
- < €ita-
0(i+2,w,s—1)

Let s;12 be the smallest s such that

0(i+2,w,s) > miq + nj\?,il. (6.2)
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Let N;i1 be the largest & > N/, such that nj™" < 6(i + 2,w,s;12). Then we

have
- i+1 i+l 3
0(i +2,w, Siv2) — Mip1 — NN, =N it

due to item 4.

Remark 6.1 By construction, we have m;, o — miyq > nj\}“,l and m; 1 = o(nj\J/Cl ).
. i+1 1+1

Consequently the speed we fix for the growth of (n))ien is directly related to the

growth speed of (m;);en-

Here again we draw a picture to illustrate this construction.

M@GE+1) long time ., 0(i + 2, w, Si+2)
Y N ‘ Nit1 l
0(i + 1,w, Sip1 ) ™t 1w INANAANNAN — %
\ /nH’ 1
oy

i+1

For ¢;11 € Q;y1 and k > 1, define
V(o™ w, i+ 1, g, k) = {v € Tymicrgnitt * Bir,g(0™ W) N Xomiia, # @} ,
and
V(" w, i+ 1,¢i11) = V(o™ w, i+ 1, g1, Nig1)-

As in the case i = 1, for any w € R;, for any d;. 1 € D;.1, there exists ¢;11 €
Qi1 such that T;Hl(qiﬂ) = d;y1. For any v(g;41) € 209(i+1,w,si+1)+1b1w78(i+1) and any
v € V(o™ w, i+ 1,¢41), we can build the word w % v(g;41) * v" by using the same
tule as in step 1, and denote it by w * v’ if there is no possible confusion.

Define

RiJrl(dla d27 T 7di7 diJrl)

/

w e Ri(dl, dy--- di), v(qiﬂ) € 209(i+1,w,si+1)+Mw’3(i+1) }

- {w *U(Giy1) ¥ v v e V(o™ w, i+ 1, giq)

and

/

Riy1 = {w * U(Qdi+1> *U

w € Ri,?}<qi+1) € de(i+1,w,si+1)+MUJ’S(Z-+1) with di+1 S Di+1
U/ S V<O-mi+lw7i + 17 Qi—i-l) .

Third step: For any d € [T"(+00),T"(—0o0)], there exists {d;}ien € [[ien Di, such
that lim; ., d; = d and lim;_,, T*(d;) = T*(d). Moreover, ifd € (T'(+o0), T'(—o0)),
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T7 (d;) converges to T*(d) directly from proposition . Ifde{T'(+0),T"(—00)},
again due to proposition , we can choose (d;);>1 to be piecewise constant to make
sure that 77 (d;) — T*(d;) tends to 0 as i — oo, so that T} (d;) converges to T*(d) as
well. We fix such a sequence.
Define
K(w,{di}i>1) = Ni>1 UveR,(di o, di) U

We will prove that for any = € K({d;};>1), one has lim, o, % d. Then
K(w,{di}i>1) C E(p, d).

Let us start with the following general estimate.

e For any w € R;, v € V(o™*'w,i+ 1,¢;41,k), for any k& > Ny, for any
v € [w * v], we can write for T € {®, U}

’SmH- +nz+1T W, U Z S Tﬂp<Fmp(w U)) S, H'lTJz-H (Fmiﬂ (Wav>>’
p=1
i nj -1
3% 0o, o D+ X (=T )
p=1 t=0 t=0
mi—1 1 mpt1—1
H Y TR @)+ Y T @)
t=0 p=1¢= mp+an
i 7\1 - n?jlfl
<M Z vary, T)(o"™ w) + > (var; 1 1) (o™ w)
T p=1 t=0 t=0
+ (m)C + | Y (mps — my — nﬁ,p)C’

p=1

i i
p 3 i+1_3 p 3 3
<Y onhe, Hngel FmaC Y 0k () +epn),
p=1 p=1

.

| A

nk 3 +1_3
ny, (3e,) +ni el +mC
=1

(m,+1 +nitt)(e?) for i,k large enough,

(6.3)
where to get the term Y0_, nf e + ni"'e},; in the upper bound we used

successively the property that
’T(way> - ij(w7y)| < VaI'jpT(W)

and
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= Snﬁvvpvarjp’f(ampw)
< Sn%pvarjp’f(ampw) —nly, /Qvarjp'r(w) dIP" +nl, /QvarjpT(w) dP
3
< 2nf ¢,

We also used

p?

Sn?vpvarjp"f(a w) an/ﬂvaerT(w) dIP” < N, Cnd, < njye

which holds since 6w € Q(p) and Cp < 613;, and
P

3
/QvarjpT(w) dP < e,

which holds by construction of (j;)en.
The estimate of the term invoking var;, , T works similarly.

To obtain the term m,C' + Y1, nly (e, +¢5,,) in the upper bound we wrote
My —my —nfy = M (p+1) +0(s + 1,w,5541) —my —nfy,

and by construction, M'(p+ 1) < e, 11}, and 0(p + 1,w, sp41) —my, — 0l <

3P
Exmim -

At the end we have used the fact that m, < nf,ep.; < myng,.

We also have:

For ¢ € N large enough, for any k& With'MH < k < Njyq for any v,v" €
wmisr it satisfying [v A v'| > m;1 + njt}, we have
U o

’lel = eXp((mH-l + nk )Ez) (64)

Indeed, at first,

llog |U3] — log |U|

IN

Wiy ¥ (@) 2005 = 0O

2V MY 1) U(w) +20ni el

mi—1 7

2> 1 Winlloe +2) (M1 —my)el +2Cnit e},
i=0 =1

mi—1
2 3" 1ol + 2m; + 2mipie} + 2Cnjte}
i=0

IN

IN

IN



58

LOWER BOUND FOR THE HAUSDORFF SPECTRUM

mi—1
< 2> [ Waiplle + Amisael +njtler,
i=0
for i large enough. Second, for i large enough, one can get 2 7% || W,

mz+15
At last we get ’10g U] —log |UY || <

(6.4) follows.

Now, fix x € K(w,{d;};>1). If r is small enough, we can choose the largest 1,
then the largest k = k;yq, with NV;;1 < k < N4 such that:

there exists w € R;(dy,da, -+ ,d;), v € V(o™+'w,i + 1,q;41,k) satisfying
x € UY*™ and

(M1 +ni)e? for i large enough. Then

|UY™| > 2r exp((mir1 + n”l) Z).

From the construction, if U¥*** and UY"~ are the neighboring intervals of
U then [v Av + |, [u Av — | are larger than n}". Then by (6.4) we have
|U&* | > 2r and |UY*~| > 2r. So there exists v/ = v— or v/ = v+ such that
B(z,r) C U¥™ U U».

Now, using estimates similar to those leading to (6.4)) with ¥ replaced by ®
we get that for any w x v € [w x v],,

Ho(B(x,7)) <po(US™) + po(US™)
<2exp(S,,,,, +nzﬂ(I)(cu w k) + (Mg +np el ).
Consequently, using (/6.3]),
log ,uw(B(x r))

loB2+ 3 Sy @, (F(00,0) + 5005, (F (0,0))

p=1
+2<ml+1 + nlJrl) €

IN

€

<3 S B, (7 (0,0)) 00y, (F71 (0,0) 4 (i + )2
p=1 g

(F™i+1(w,v)). Then

]7,—0—1

Let Z7 = Sy P L(F™(w,v)) and I, = S,

log p1,(B (Z Iq’) I8 e+ 3(mis + nier (6.5)

Now let us estimate logr from below:

— If k < Njy1, there exists 0 such that |w 0| = m; 1 +nji}, © € Ujj”*g and

U2| <2r exp((mysr + nith)e?). (6.6)
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: i+1 i+1 i+1_3 i+1_3
If we notice that njt —njtt < nit'e?  and T8, ., —T2%, , < —Cnjt'el,,
(where I];I’ is defined similarly as I;I’ ), from (6.6)) and - we can get

logr > (ZIW) 1, +1 k1 2(mi+1‘|‘”2111) —log2

i (ZII\}/) 1 +1k C’n?_lg?—&—l 2(mip1 +ny e — log2

p=1

> (Z I;) + Iy — 3 + m el

logr > <ZIW) Ty g — 3(map +my el (6.7)

— If k = N;y, there exists v such that |w % 0| = m;9 + nj\zzﬁﬂ, x e Uv
and

|Uw*v| <2rexp((myo + nN+2+1)5?+1). (6.8)

We have
1+1 v
logr > ZI Lo n a1 — 2(miva + 032 4y )ef — log 2
- (ZI\P> ZH Nitr 3(mp1 + “ﬁl)g?

where we have used ( . This implies that . holds as well.
Finally, for any v € (w %)y, (6.5)) and (6.7 imply

log s (B(,7))  (Xpm1 L) + T + 3(migs + mi™ et

logr & (=1 L) + L — 3(miga + nye? (69)
Due to item 5 in the second step we have \I\p —d;| < ¢ T —d| <&
for k > Nii1. *
It follows from Stolz-Cesaro theorem that
lim inf 18U (B@ ) (6.10)

r—0 logr



60 LOWER BOUND FOR THE HAUSDORFF SPECTRUM
e Now it remains to prove that limsup, HOW < d. This is easier
since we just need to choose the smallest ¢ and then the smallest k = k;
with Miy1 < k < N;i1, such that there exists w € R;(dy,ds,--- ,d;) and
v € V(0" w,i + 1,qi11, kiy1) for which z € UX* and |[U¥*"| < r. Then
(B, 1)) = (U2,
If k; 11 > Niy1, then v, the father of v, belongs to V(o™i+'w, i+1,d; 1, ki1 —1)
and x € U, We have |UY*’| > r, and
1 UU)*’U
i 08102y (6.11)
~Hlog U2
If kiy1 = Nii, then there exists w' € R;_i(di,do, -+ ,d;_1), and v €
V(o™w,i,d;, N;) with z € U™ |[U¥*'| > r, and
log ’Uw*v‘
— <L =1, 6.12
"5 log U] 12
In any case, we get limsup,_,, w <d.
Fourth step: For any v = wy x v(q;) * v € Ry, where V' €
V(gmtMEMM+SMy 1,dy) =: Vy, define:
A1q Uv’
nw(U;Uo*v(m)*v) — Ko 1w( Uzllj;) - ] (613)
Zv”eV(amlw,l,qﬂ :uamlw(Ucrmlw)
Then inductively, for any w € R;(dy,ds, -+ ,d;), v € Viy1, define:
Ai+1’qi+1
m; U,
nw(U‘zu*v(qu)*v) — nuJ(U:U) Homivay, ( o +1w) (614)

Ait1,g;44 o :
Zvlevi+1 Ho—mi-‘rlw (Uo—mi+1w)

We can extend 7, in a unique way to a probability measure on the o-algebra
generated by Ui>1{U} : v € R;(dy,ds,---,d;)}. This measure is supported on

K(w,{di}i1).

Since for each ¢ > 1 we have Y ey, fiomi, (Udm;,,
> (1—¢)> %, using the same method as in step three, we can prove that: for

any r € K(w,{d;}i>1),

W (Ubney) > pii (Eig) > 1 — ¢ and

lim inf 08B o b (d) = T(d) (6.15)

r—0 logr i—00

Then we get dimg (FE (., d)) > T*(d).
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In fact, our estimates yield a positive sequence (g});en decreasing to 0 and
a constant C’ > 0 such that, independently on {d;};cn, if in the construction
the sequence (m;);en is replaced by another one growing faster (with the effect
to modify (K (w,{d;}ien),;nw)), for all x € K(w,{d;}ien), for i large enough, if
exp(—m;1cy/2) < r, then

Mo(B(x,r)) < ClymintT (@) el <i<i (6.16)

This property will be used in the next section.

Remark 6.2 From the proof of theorem |1.11| we can directly get that

NRT Snip(w, )
Mo({x : lim S(@.7)

— =1

and then g
dimp({z € %, : lim Pl ) ny s o),

6.3 Proofs of theorems [1.11(3), (4) and (5)

Lemma 6.3 For P-almost every w € Q, for any given d < d' € [T"(+00), T'(—00)],
dimy E(py,, d,d") = inf{T*(d), T*(d')},

dimp E(py,d,d") = sup{T*(B) : B € [d,d']}.

Proof 1. We first deal with the lower bounds for the dimensions.

At first, for the Hausdorff dimension let us take two sequences (d;);>; and
(d});>1 in [[;>1 D; such that lim; ,. d; = d and lim;_,, d; = d’, with the prop-
erties:

lin 7(d) = (@), Jima T*(d) = T*(d)

Set Cigi = dz and d2i+1 = d;

We can use the same construction as in the previous section and get a set
K(w,{d;}i>1), as well as a probability measure 7,, supported on K (w, {d;};>1).

If we choose the sequence (A});>; used in the construction so that m? <
n,e3, and consequently m? < m;.1€}), then this growth speed yields that for

any z € K(w,{d;}i>1), % will have d and d' as accumulating points

and will fluctuate asymptotically between these points, hence K (w, {d;}i>1) C
E(uy,,d,d). Also, for all x € K(w,{d;}i>1), one has liminf,_,, w >
inf{T*(d), T*(d')}.
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From proposition 10.1 in [24], this will gives us that

dimy B, d,d') > inf{T*(d), T*(d')}.

Second, for the packing dimension, we just need to notice that we can choose
three sequences (di)iZI (d;)ZZI and (d;’)izlin HiZl Dz such that hmz_mo d, = d,
lim; o d; = d' and lim;_,, d! = d"” with the properties:

lim T*(d;) = T*(d), lim T*(d}) = T*(d),

i—00 i—00
and
lim 7*(d!) = T*(d") = sup{T*(B8) : 8 € [d,d']}.
1—00
Take J3i = di, CZgZ'Jrl = d;’ and CZ3i+2 = d;
Here again, we get K (w, {d;}i>1) and n,,, and if m; grows fast enough, then for
any © € K(w, {d;}is1), 254B@0) glternatively accumulates near d, d and d”

log(r) R
and fluctuates between d and d’ as r — 0, so that K (w, {d;}i>1) C E(uy,, d,d');
simultaneously,
1 B
lim sup og(n.(Bx,1))) _ sup{T*(B) : B € [d,d]}.
r—0 log r

From proposition 10.1 in [24], this gives us

dimp E(p, d,d") > sup{T*(B) : g € [d,d]}.

2. For the upper bound of the dimensions they directly come from (1) of propo-
sition 1.3 and (1.2),(1.3) in [4].

Using lemma [6.3| and (2) of proposition 1.3 in [4] we can directly get the following
corollary.

Corollary 6.4 P-almost every w € Q, for any d € [T"(+00),T'(—00)],
dimg E(uy,,d) = T*(d), dimp E(ju,,d) = sup{T*(d") : d' > d},

and

dimg E(p,,d) = T*(d), dimp E(uy,d) = sup{T*(d') : d' < d}.
Now, to finish the proof of theorem [I.11] we just need the following proposition.

Proposition 6.5 For P-almost every w € €2,
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1. for any gauge function g : Ry — Ry such that limsup,_,, 101%)2(:) > T*(d), one
has that
HY(E(pe, d)) = 0.

2. for any gauge function g : R_ — Ry such that liminf,_ lolgggf) > T*(d), one
has that
PI(E(uy,,d)) = 0.
3. if dimpy E(pw,d) = T*(d) < sup{T*(d) : d' € [T'(+00),T'(—0)]} = to =
dimy X, one has that for any gauge function g : Ry — R, such that
limsup,_,, 290 < 7*(d), one has that

logr
HI(E(p, d)) = +o00.

4. if dimp E(py,d) = T*(d) < sup{T*(d') : d' € [T'(+00),T'(—0)]} = to =
dimy X, one has that for any gauge function g : R, — R, such that
liminf, o lolig(:) < T*(d), one has that

PI(E(py,d)) = +00.

Proof 1. Since limsup,_,, loig(r) > T*(d), then there exist ¢ > 0 small enough
and a sequence {r;};> such that lim; ,,,r; = 0 and g(2r;) < (2r;)T" (D+2,
Also, since LD, (d) = T*(d), for € > 0 small enough, there exists n € N such
that for any » < 27" one has that #{i : 7+ < pu(B(x;,r) < rd=€)} < p~T7(d)=e

From the definition of E(u,,,d) we can get E(p,d) C Uy>1 Exn, where

En = No<p<a-~{ € supp(p) : 7 < (B, 7)) <73

Fix N > 1. It follows from the previous lines that for any n > N, there exists
J > 1 such that r; < 27" and we have

En C {x € supp(p) : T‘}HE < po(B(z,715)) < r?_e}

It follows from Besicovitch’s covering theorem (see [59]) that there exists an
integer () (which is a constant just depends on m in the space R™ ) such that,
defining F;(e) = {z € supp(p) : 7";“5 < po(B(z, 1)) < r?_e}, we can extract
from {B(z,r) : € Ej(e)}, Q families &(1 < k < Q) of disjoint balls such
that E;() C UL, Upee, B.

Then

Q
Hyni (By) < Z > 9(IBl) < Q(2&)(2r)) "+
k=1 Be&y,
A

< Q )—e (2 ) ()+2s<(2)T*(d)+1QT5

letting n tends to oo yields HI(Ey) = 0 for any N > 1. Finally we get
H(E(es,a)) = 0
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log g(?’)

2. liminf,_, ogr > T*(d) implies that for € > 0 small enough, there exists rg

such that for any 0 <17 <1, one has g(r) < pT(d)+e
Ey C No<a-r<a-v{z € supp(p) : 27749 < gy (B(x,277)) < 2779},

For any A C [0, 1], for any n € N, let {B(z;,7;) : i € N} be an 27" packing of
the set AN Ey. For each p > n+ 1, we can define P, = {i e N: 277 < r; <
2P} The balls in {B(z;,277) : i € B,, 2774+ <y (B(x,27P)) < 27Pld=9}
form a 27P-packing of supp(j,) of cardinality less than 2°(7"(d)+m),

Consequently,
Zg<2rl) < 2(27. d)+2n < Z Z 2 29— p+l T*(d)+2n
7 7 p>ni€P,
< 4T @R N (g p, )2 P (A2
p>n
< 4T (D42 9—pn.

The upper bound does not depend on the choice of the 27 "-packing { B(z;,7;) :
i € N} and goes to 0 as n — oo. It follows that the packing g pre-measure of
Ex N A with respect to the gauge function g is 0 for any A C [0, 1].

At last we get P9(E(uy,,d)) = 0.

. Let {e/};en and C’ > 0 be so that (6.16]) holds. Since T*(d) < ty, we can find

{di}ien € Tlien D; such that d; — d as i — oo, T*(d;) — €} > T*(d) + &} for
i large enough, T*(d;) — T*(d) as i — oo, and T%(d;) — ¢} is ultimately non
increasing.

For any gauge function g such that limsup,_,, lolig(:) < T*(d), there exists a

positive sequence {v, },~o such that both v, and 7"~ decrease to 0 as r decreases
to 0 and
g(r) > rT"@ror(r < 1),

Due to (6.16]) for 7 large enough, for any r such that exp(—m;ice/2) <1 <
exp(—mic\p/2), for any x € K(w, {di}121>,

’r]w(B(LU,T’)) Ol min{7T*(d;)— 6 1< <} < Cl T*(d;)—¢} < O/ T*(d)+

Notice that g(r)rvr > 7" (@20 Qo if we can impose 2v, < ¢}, we will have

(B, r)) < Cg(r)r

hence
g(r) > C’flnw(B(x,r))r_“*.
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Then, for any positive real number § > 0, this will yield H{(K (w, {d;}i>1)) >
07, and letting 0 — 0, H9(K (w,{d;}i>1)) = +00, and since K (w,{d;}i>1) C

E(p,d), item 3. will be proven.

Now, if we choose m; large enough so that

Uexp(—micy /2) < 62/27

then for exp(—mi1c9/2) < r < exp(—m;cy/2), we have 2v, < &) since v, <

Uexp(—mic\y /2)-

. Since liminf, o % < T*(d), there exist {r;}ien € (0,1)Y, and {v, }jen €
(0,00)" such that v, € (0,1] and r;” decrease to 0 as j tends to oo, and
T*(d)—&—vrj

9(27”3') >

Using the same approach as for 3., we can choose (d;)>1 € [[;>1 D; such that
lim; o d; = d, T*(d;) converges slowly to T%(d) from above, and in the con-
struction of (K (w, {d;}i>1),Nw) as in the previous section, m; tends fast enough
to oo so that, for some jy € N, for all j > jo, for any x € K(w, {d;};>1,

No(B(x,7;)) < C"(2r,)T @+

Now, let A C K(w,{d;}i>1) be of positive n,-measure. For any given § > 0,
take jo > jo such that rj; < ¢ consider the following family of closed balls

Bk = {B(l’,?’j) HES Aa] Zj(/]}a

which is a covering of A. Due to Besicovitch covering theorem, we can extract
an at most countable subfamily of pairwise disjoint balls {B(x;, p;) }ier such
that n,(User B;) > 0. This family is a d-packing of A, and

T (d)+vp,
Pis(4) = Y gBrip) 2 p "
> > (Bl pi)

= Py K M (A).

Since when 6 — 0, we have j| — oo and then P SN 00, we can conclude
that Pj(A) = +oo. Since any at most countable covering of K (w, {d;};>1) must
contain a set A of positive n,-measure, we finally get P9(K (w, {d; }i>1)) = +0o0.
Finally, P9(E (i, d)) = +oo since E(uy,,d) DO K(w,{d;}i>1).



Chapter 7

Multifractal analysis of the inverse

measures:
Proof of Theorem 1.13

After introducing new notations in section 7.1, we give an explicit writing of the
measure v, and some useful estimate of the mass of its atoms in section 7.2. Then, in
section 7.3. we start the multifractal analysis of v, by examining the possible scenarii
which lead to a given lower local dimension. This yields a first, not everywhere
sharp, but very useful for the sequel, upper bound for the lower Hausdorff spectrum.
Indeed, it is already related to conditioned ubiquity properties associated with the
sets of atoms, and thus it provides a beginning of concrete explanation of the origin
of the linear part in the lower Hausdorff spectrum. Then, in section 7.4, we derive
the sharp upper bound for the L%-spectrum of v, in which ubiquity properties
remain hidden. Section 7.5 derives the sharp lower bound for the lower Hausdorff
spectrum in its non linear part. This is based on the study of weak Gibbs measures
achieved in chapter 6. Then section 7.6 prepares section 7.7, which provides the
conditioned ubiquity theorem used in section 7.8 to get the sharp lower bound for
the lower Hausdorff spectrum in the linear part. Finally, section 7.9 deals with the
Hausdorff dimension of the level sets E(v,,d) and E(v,,d).

7.1 Some notations

Since Assumption [2| implies that pu, is atomless P-almost surely (due to proposi-
tion 7 without loss of generality, we assume that this is the case for all w € €.

ForweQ,n>1vel,, and k > 1 we define
S(w,v,k) ={w € pnp 1 vw € Eypip(w)},

the set of words in X,n,, ; which can be a suffix of v.
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Next we consider the set of words w in S(w,v, k) such that U"" has a right
neighbor U"% with @ € S(w, v, k) :

S,(W,U, k) = {w S S(OJ, v, k) ‘ there exists w € S(w’v7 k) such that }

U;“; is the nearest right neighbor of U5"

We need to point out that such a set can be empty. For any w € S'(w,v, k), we
denote by w the element of S(w,v, k) such that U is the closest right neighbor of
ume.

For every v € ¥, ., k > 1 and w € S(w,v, k), define

vw . vw vw vw
m,’ =min X_¥ and MJ" = max X",

as well as

gap(w,k) = inf sup sup {mZ’u’;—Mgw}.

’UEZw,l 1<m<k weS’(wﬂf»m)

For any v € ¥, ., we define

1 o= [Fu,(mg), Bl (M) = Fu, (X0) \ {Fpu, (M)}
Since the support of y,, restricted to the interval [m?, M?] (or UY) is X7, and g,
is atomless, from the construction, we get that I is a non-empty interval of length
L] = po(X5) = fu([v).
Since supp(p,) = X and Uyes, , X = X, we can get that the family of
intervals F) = {I%}ves.,,., n > 1, form a nested interval of [0,1). For any n € N,
for any v € X, ,,, we call I! the n-th basic grid.

7.2 An explicit writing of the inverse measure v,
and preliminary estimates for the mass of atoms

For any v € 3, and s € S'(w,v,1), denote 22¥ = F,,_(M?*). Denote m™™ = min X,
and M™> = X,,.

Using the same method as [II] for the inverse measures of deterministic Gibbs
measures on cookie-cutter sets, we can get the following explicit form for the inverse
of the random weak Gibbs measures {p, : w € Q}.

Proposition 7.1 (The inverse measure v, of u,) Suppose that the Assumptions
and (@ hold. Then the inverse measure v, of the random weak Gibbs mea-
sure fi, is the discrete probability measure on [0, 1] given by the following weighted
sum of Dirac measures:

Vo =m0 o+ S 3 (m = M) - Gy + (1 — MP)5,. (7.1)

V€YY, x s€5" (w,v,1)
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This proposition can be easily proved if we notice the following two facts. On
the one hand, from the definition we can get for each point z°, the measure is
at least ng — M2. On the other hand, we the whole measure is 1 and m™>™ +
>ves . Zsesl(w,vyl)(mfjg — M) 4+ (1 — M>™>) =1 from the assumption 1'

Lemma 7.2 If Assumption (@ holds, then

P({w € Q : supgap(w, k) > 0}) > 0.
k>1

Consequently, there exist some ky > 0 and ¢ > 0 such that P(Gap(ky, c)) > 0 where
Gap(ky,c) = {w € Q: gap(w, ky) > c}.

Remark 7.3 We point out that the assumption (@ is not mnecessary to get
lemma . We only need that X, is not equal to [0,1] for P-almost every w € (.
This can deduced from the beginning of chapter[4).

Proof By contradiction:

If the result does not hold, then for P-almost every w, there exists v € X, ; such
that

sup sup m." — M5 =0.
meNweS (w,v,m)

This implies that X! can not have any gaps. Then X is either a point or an interval.
From the assumption that X, has a Lebesgue measure 0, we get that it is a point.
Now, defining
B={weQ: Mw)<M, l(w) > 2},

we have P(B) > 0 for M large enough. For any w € , define bi(w) the k-th
return time of w to the set B by the map o. From ergodic theorem we have that

limy, o0 b’“,i”) = ﬁ for P-almost every w € Q. Define ' = {w € Q : limy_, b’“l(:’) =
1
ks
For any w € 2, we know that there is at least four words in ¥,y,,,, with the

2 4

prefix v € 3,1, and we denote them by w', w? w? and w!. We can assume that
these intervals appear from the left to the right as Uffl, Uijﬁ, Ujj’3, Ufj’4. The sets
XY Cc UY, i =1,2,3,4, are not empty since by definition the random transition
matrix A has at least one non-zero entry in each row and each column. Choose
v, € XY CUY,i=1,234. Since Ui = 1,2,3,4 are intervals, we have that
x4 — 21 > 0, which contradicts the fact that X! is a point.

With the same method as in the proof of propositions 2.6 and [2.7] we can get the
following proposition:
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Proposition 7.4 Under assumption [3, for P-almost every w € Q, for all n € N,
for allv € ¥, there ezists k, and w € S'(w,v, k,) such that

M M > exp(S,W(w, v) - o(n))

for any v € [v],. Here o(n) is independent of v, and k, = o(n) independently of v
as well.

Proof For any N € N, let

1 n—1

k:{w: M(w)<N, => sup sup |w(w,s,x)|§20¢,Vn2N}.
T —01<s<l(okw) z€U_g

Choose N large enough such that P(2y N Gap(ky,c)) > 0, where Gap(ky,c) was

defined in lemma [7.2l

For P-almost every w € (2, for n large enough, denote by H(n) the smallest
integer such that "™y € ) N Gap(ky,c) and H(n) > N. Since P(Qy N
Gap(ky,c)) > 0, from ergodic theorem we can get that lim,, Hn) — . Moreover,

since oMy € O N Gap(ky, c), there exists some 1 < s < (o™ (M) and
v € S'(o"HMy s k) with k < kg such that mjﬁ’w(n)w — MjZ;H(n)w > c¢. For
any v € X, there exists v” of length H(n) — 1 such that vv"s € 3, ninwm) (by
definition of M (c"*#™) and since H(n) > N > M(c"™)). Set w = v"sv’ and

W = v'sv. We have w € S'(0"w,v, H(n) + k). Moreover, o ([M2Y, mPe)) =

w

/

! . . .
(M2 -1, M5 rny—1,,]. Now using Lagrange’s finite-increment theorem and the
same approach as in lemma we can prove that

miT — M2 > cexp(S,¥(w,0) — o(n)).
for any v € [v],, since H(n) is a o(n). Morover, k, = |w| = H(n) + k = o(n).

Definition 7.5 Proposition [7.4] implies that for P-almost every w € Q, for all n €
N, for any v € X, there exist some point x =z}’ such that

vo({2}) = exp(S¥(w,v) — o(n))

for any v € [v],. For each v € ¥, ., we fix one such point and denote it by z_.

Arguments similar to those giving proposition [7.4] lead to the following remark.

Remark 7.6 For P-almost every w € €, for alln € N and v € X, for any
v € [v]o,
| X5l = exp(Sp ¥ (w, v) = o(n)),

where the o(n) does not depend on the choice of v. Then, using point (1) of propo-
sition [2.7] we get

exp(Sp,¥(w,v) —o(n)) < | X2 < exp(S,¥(w,v) + o(n)).
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7.3 Pointwise behavior of v, and an upper bound
for the lower Hausdorff spectrum without using
of multifractal formalism

Definition 7.7 Forv € X, ., we set
by, = 2|15| = 2fi([v].),

o = log|17],
v
afj — (w,v),
&y

where

U(w,v) = sup {Sj,¥(w,v)}.

vE[v]w

For x € [0,1) and n > 1, let v(w,n,x) stand for the unique element v in X,
such that x € @) Ifx =1, v(w,n, 1) is the unique v € X, such that 1 € T7.
If there is no confusion we will denote v(w,n,z) by v(n,x) or x|, for short. Let

a%(x) = azl,

a,(r) = lim inf al(x).

Forz € [0,1]\ {2z :v e Xy, s € S (w,v,1)}, the approxzimation degrees £, and
&¥ by the system {(xi’f,EZ)}UGEWﬁeS/(me) are defined as
. log |z — x|
&8 =limsup [ sup sup @ ———
n—00 vEYX (w) s€S’ (w,v,1) IOg EX;
log |« — a2}

€ =limsup  sup p
n—00 €5 (w,z|n,1) lOg by

Since we use only one specific word in the definition of Ej, we have ¥ > 555 > 1, for
every x € [0, 1]\ {2 :v € Xy, s € S (w,v,1)}.

Proposition 7.8 1. Ifz e {z% v e D, ,, s € S (w,v,1), and m¥ — M > 0},
then v,({x}) > 0, thus dimy.(v,, ) = 0.
2. For any x € [0,1], if v ¢ {a :v € B, ., 5 € S"(w,v,1)}, then

0 () < aw~<$> < dimyo (v, 7) < ().

& &

Here, if & = +oo then asz) = 0. In the same way, if & = +oo then

au(@) .,

&
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Proof (1) is obvious, we just give the proof of (2).

Let x € [0,1]\ {2z : v € By, s € S"(w,v,1)} and r > 0.

e The first inequality is obvious since one always has £ > 535 > 1.
e For the second inequality, let

ng" = max{n: Jv € ¥, such that B(z,r) C I3} (7.2)

If v ¢ {a% v € X, s € S (wuv, 1)}, then nZ" < =2 for r small enough
’ v

and n])" — oo as r — 0. Since n is the largest one then there exist a unique

v denoted by v(z,r) := x|,z and a s € S’(w,v(z,r),1) such that

2@ ¢ B(x,r) C 2@,

Hence, we get
Vo (B(x, 7)) < v, (1557 {max 1557 min I557}) < (X0 < Uy
< exp(Sjy(a,n) ¥ (w,v) + o(jv(x,7)|)) where v € [v(z, )],

by proposition [2.7(1).
Now for any € > 0, by definition of gjﬁ, for r small enough we have

P> fo— a0 > @I

Moreover, again for r small enough, we have
exp(¥(w, v(x,r))) < [157] 7=
by definition of ay,(x).

These estimates yield

~ ayw(z)—¢

vu(B(x,1)) < exp(¥(w, v(w, 7)) + ooz, 7)])) < v &+ explo(ny”)),

and by letting r tend to zero, since n?" < %;’gr, it follows that dimy. (v, x) >

2~ From the arbitrariness of ¢ we get that dim. (v, z) > %@

o te &

e Finally, for the third inequality, let {p; };>1 be an increasing sequence of integers
such that exp(¥(w,v,,)) > || @)+ where v,, € %, for all i > 1. Since

2kt € Blx, 2|17),
vo(B(x, 2| 1))

vo({2"}) > exp(S,, ¥ (w,v)) exp(—o(p;))
|17 |2+ exp(—o(py)).

Also, [I”] < exp(—=2) for p; large enough and € can approximate 0 arbitrarily,
w 2 g g

S0 @loc(yw’x) S Oéw(.T).

>
>
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Definition 7.9 Let a > 0, > 1 and ¢ > 0. A real number x € [0,1] is said
to satisfy the property P(a, &, €) if there exists an increasing sequence of positive
integers (ng)>1 such that for every k > 1, there exists v € ¥, ,, and s € S'(w,v, 1),
such that x € B(x?, (£%)57°) and ¥, € [a — €, + €].

Remark 7.10 Arguments similar to the previous ones show that dimy,.(v,, ) <

lim sup,,_,, al(z).

We need additional definitions.

Definition 7.11 For d > 0, let

B Ve > 0,da € QF, 3 € Q, & > 1 such that
F(d) = {x €(0,1) ‘ af/é < d+ 2e and x satisfies the property P(a, &, ¢€)

Definition 7.12 For every a,e >0 and £ > 1, let
G, e,8) = Ny>1 Un>n Uses, av cla—e,ate B2, (63)5)
It is easily seen that
F(d) C Upeq+ UgeQn(1,+00),a/e<d-+2e G(a,€,€).

Proposition 7.13 For P-almost every w, for any h > 0, we have (E(v,, h) \ {z¥° :
VE Yy s €S (wv,1)}) C F(h).

Proof Fixd > 0, x € E(v,,d) and € > 0. By definition of dim,,.(v,, =), there exists
a sequence (1)k>1 of positive numbers decreasing to zero such that for all £ > 1 we
have v,,(B(x,7)) > (rp)**¢. Let us recall the definition of n%" as in ([7.2)):

ng" = max{n : Jv € ¥, such that B(z,r) C I'}.

Ifod¢ {2y :veX,.se wuvl)} then n%" — oo as r — 0. Since nJ" is
maximal, there exist v = v(z,r) and s € S’(w,v(z,r), 1) such that

2@ € B(x,r) C M@0,
Then v, (B(z,7)) < vy (I°®M \ {max 2@ min [2@)}) < |U2@7)], and
(r)™ < w(Bla,r)) < exp(U(w, v(w, 7)) + oljo(z, ri)])-

Consequently,
V(@)
|[£($’Tk)|aw k 4o(1) > (Tk)d+6.
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Since zU®"* € B(x,r), |v — z@™s| < pp. Writing 7, > |z — al@®)s| =

(2(’[5(x,rk)‘))£k = (ﬁww(mmk))gk’ we have
I o 4o > (| e )+,

and & > 1.
If lim sup;,_, ., & < 0o, there exists (o, &) € QF x (QN[1, +00)) and an increasing
sequence of integer number (kg)s>1 such that

afo) — o <,

|€k5 - §| < g,
afé < d+ 2e.
This means = € G(«,¢€,§), (a,§) € QT x (QN[1,4+00)) and a/§ < h + 2¢.

If lim sup,,_, ., & = oo, there exists & € QT and an increasing sequence of integer
number (k;)s>1 such that
- (T, Tk,

|5_/w( ) _a| Sg,

gks — 0OQ,

Since o) is bounded (for P-almost every w ), there exists some £ € QN [1, 4+00)
with o/ < d+ 2¢ such that = satisfies P(«, ¢, &) (because if & < & then P(a, g, &)
implies P(a, €,&1)).

Finally,
(E(vy,d) \ {2z :v € X4 5 € S (w,v,1)}) C F(d). (7.3)

Lemma 7.14 There exists C' > 0 such that for P-almost every w, for ¢ > 0 small
enough, for all rationals o >0 and & > 1,
max(7 (o —¢), T*(a), T*(a + €))

dimg G(a, €,&) < Ce + ¢ .

When the right hand side of the inequality is negative, it means the set G(«, e, §)
15 empty.

Proof We only need to deal with fixed ¢ > 0 and rationals a > 0 and £ > 1. For
any N > 1, let o = sup,ey, (- By construction, if G(a,e,&) # 0, given s € R

we have
H;, (Gla,e,6) < Y > l(o"w)2° (€)%

n2N yes, ,:a—e<al,<ate
where we naturally extend the definition of Hj to negative s.

Here, to avoid confusions, we recall that [(w) is the number of types in the
subshift, and ¢, is the length of the interval 7.
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Case 1 o < T'(0—) —e: In other words, o+ < T'(0—).
a(wv
og [13]7

Hs (Gla,e,€)) < 2° ) > l(o"w)(62)*
nzN vEEw,n:qﬁ(w,v)Zq(aﬁ-a) log |13
< 4Y Y Uo"w)exp(q¥(w,v) — gla+2)log |I])
n>NvEXy n

-exp(s€log [I5] + o(n))

Since o = then for any ¢ > 0 one has:

almost surely. Now take s = (n + (o +¢)g — T (q))/€ with n > 0. We get,
M5 (Glae,6) < D D exp(q¥(w,v) — (T (q) +n)P(w,v)) - exp(o(n)),

n>N vEX L n

where v is any element of [v],. Then

H;, (Glae,€)) < >0 >0 a7 O0%([ul.) exp(—nean + o(n))

n>NveEXy n

< ex ——n

< n;v p(=7
for n large enough (recall the assumption (2)), from which cg = ¢, > 0). Conse-
quently, limy_,o Hj, G(a,e,§) = 0. However, if T*(a+¢) < 0, we can choose
n and ¢ such that s < 0, in which case it is necessary that limy o Hj = +00
if G(a,¢,€) is not empty. Consequently, if T*(a+¢) < 0, then G(«, ¢,£) = 0.
Otherwise, dimy G(o,€,&) < (n+ (a+¢€)g—T(q))/&. This holds for all n > 0
and ¢ > 0, so dimy G(«,¢,&) < T*(a + ¢).

Case 2 a > T'(0+) +¢: In other words, a —e > T7(0+). It is almost the same as
before except that one needs to use ¢ < 0 and q¥(w,v) > q(a — ) log|IY].

Case 3 o> T'(0—) — ¢ and o < T'(0+) + ¢ Two situations must be considered.
o if 7'(0—)—T'(0+) > 0, we can assume € < w. Then 77(0—) —
e > T'(0+) + ¢, so that Case 3 is empty.

e if 7/(0—) = T'(0+), then T is differentiable at 0. Take s = HTT) with
n > 0. Then

nmce

H;, Glo,e, &) < > exp(— —nP(T = > exp(— 777”6%

n>N n>N

Here we used the fact that by definition we have P(7(0)®) = 0.

This yields dimpy G(a,€,§) < 3 TO) since we can choose 7 arbitrarily close

to 0. Since T is concave, for £ small enough there exists some C' > 0

such that @ = T*(Z(O)) <Ce+ TT@
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Corollary 7.15 For P-almost every w, for all d > 0,

dimy E(u,d) < dimy F(d) < d-sup ToEa> < d - ty.
a>0

This provides us with a first upper bound for dimy E(u,d) which turns out to
be sharp on [0, 7" (to—)].

Proof For any € > 0, we saw that

F(d) C Uneq+ Uscon(,+oo),a/e<dt2: Gla, €, ).
Thus, from lemma one has

dimy F(d) < sup e 4 max(T*(a =), T*(a), T*(a +¢)).
a€QT,£€QN(1,+00):a/E<d+2¢ &

Letting ¢ tends to 0 yields

dimg F(d) < sup T () < d-sup T ()

=d - tp.
acQt caje<d & a>0

For the last equality, at first, since T (to) = 0, we have sup, T*OEO‘) > ato=T(t)

Next, we know that for any a > 0, inf,{qa — toa — T (q)} <0, so M < to,

and TT@ < to. Finally sup,-, T*a(a) < tp. Now, recall (7.3)). Since the set of atoms
of v, is countable, we get the desired conclusion for dimy E(v,, d).

== to.

7.4 Upper bound for the lower Hausdorff spectrum

Proposition 7.16 For P-almost every w € Q, for every q € R, we have 7,,(q) >
min(T (), 0) == T(q).

Proposition will give the upper bound for the lower Hausdorft spectrum.

Since the function 7,,(¢) and the function 7(g) are both continuous, we just
need to prove that this holds on a dense and countable subset of R, which amounts
to prove it for any fixed ¢ € R, almost surely.

Define

Ag(w, n) i= AIVT@2 (Gn=1g,y . NV=T@2 () NIV T@P ().

Proof Let r > 0 and consider B = {B;}, a packing of [0, 1] by disjoint intervals B;
with radii equal to r.
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e First, fix ¢ < 0. Denote B; =: B(x;, 7).

There exists a unique v' = v(z;,r) € Y such that z; € Ifji C B; and
I")" ¢ B;. Here the notation * means that we delete the last character of the
word. Then

2r 2 |IZ:Z = i ([v'].)
> exp(S,®(w,v) —log A(0"'w) - -+ Aw) — o(n))
> exp(—2nCyp),
where n = |[v?|. On the other hand, since I(*")" ¢ B; we have r < exp(— %)

(recall that ¢, = co was defined in Assumption |2 ' Consequently, n =
O(—log(r) = O(n) independently of z;.

Also, v,(B;) > v, (1Y) > |XY'|. Since ¢ < 0, we get

vo(Bi)! < [XU" = exp(q(Sntb(w, ) +o(n))) (Vo € UZZ?)
= exp(q(Sp¥(w,v) +o(n))) (Yol EN[v’]w)
= exp((Sulq¥ — T(q)B)(w, 0) — log Ay(w, n))

(g
-exp(T(¢)Sn-1®(w, ) — T(g) log Ao(w, n — 1))
-exp(o(n))
LT O (W) 18T exp(o(n))
qm T2 ([v'],)r™ exp(o(—log7)).

IA A

Thus
v(Bi)? < 17 exp(o(—logr)).

(]

B;eB
Letting r — 0, we have 7,,(¢) > T (q).

Second, fix ¢ € (0,%9) C (0,1), and recall that t, = dimy X, is the unique real
number such that P(tW) = 0. Let

V(w,n,r)={v € X, : |13] > 2r,3s such that vs € Xy, 11, |17 < 2r},
V'(w,n,r) ={v € V(w,n,r) : there is no k such that v|, € V(w, k,r) for some k < n},
V(w, T) = UnZlvl(wu 1, T)?
n, = max{|v| : V(w,r)}, and n, = min{|v| : v € V(w,r)}.
We have n, = O(—logr) = O(n.).

For any v € V(w, ) we have

112 < 2r exp(o(— log ).

For v € V(w, ), I' meets at most exp(o(—logr)) intervals B; of the packing
B, and every B; is included in the union of at most two intervals belonged to
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V(w,r), denote as v and v’. Using the sub-additivity of the function s > 0 +—

s?, we get
V(B < vy(1)T + 1y (I0) + v, (I)9, if 1€ B,
otherwise /
Vo(Bi)? < v, (1) +v,(15)% if 1¢ B,
and

v (I9)" < vu(I2)" + v ({min(12))})".
Recalling the definition of the inverse measure and proposition we know
that v, (12) < |X2|. Since ¢ > 0, we get:
vo(I5)" <X
exp(qSnt(w, x) +o(n)) (Vo € Uy)
exp(¢Sp¥(w,v) + o(n)) (Yo € [v],)
exp((Su(g¥ — T(q)®)(w, ) — log Ag(w, n))
-exp(T(q)Sn®(w, j) — T(q) log AMw, n))
-exp(log \y(w) + T (g) log A(w, ) + o(n))
ALt T O ([w]) 15|79 exp(o(n))
Al =T O ([w]o)r7@ exp(o(—logr)).

VAN VAN VAN VAN

IAINA

It follows that

Z Vo(Bi)? < v,(1)? + exp(o(—logr)) Z Z yw(log)q

BicB n=nj. veV(w,r)NZw n
Ny
IS DD SRAE UE
n=0 Uezw,n SES’(%UJ)

On the one hand,

i Z Vw(IOZ’,)q < yT(@) exp(o(—logr)).

n=n}. veV(w,r)NZy,n
On the other hand, for any n < n,, we have that
> exp(¢Sh¥(w,v) + o(n))(Vu € [v.)

VEXw,n

< S FET@ (), ) T exp(o(— log )

Uezw n

< 779 exp(o(—logr)).

Consequently,

Uz

o> > w{Erhy

n=0v€Xy n s€S5’(w,v,1)
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<Y Y My

n=0v€Xy n s€S’(w,v,1)

< 30 % Uomw)exp(Sa¥(w, ) + o(n))(Yu € [v].)
n=0veXy n
< 77@ exp(o(—logr)),
Using the fact that logn + log{(c"w) = o(—logr), we obtain

Z v,(B;)! < r7T(a) exp(o(logr)),
B;eB

and letting r — 0, we get 7,,(q) > T (q).
e At last, for ¢ >ty = dimy X, since v, is discrete, we can easily get 7, (¢) = 0

for every ¢ > 1. For q = tg, one has 7,,,(q) > T (q) = 0. Since the function 7,
is concave, we get 7, (¢) = 0 for every ¢ > t,.

7.5 First lower bound for the lower Hausdorff spec-
trum

Proposition 7.17 For any d € [T'(+00), T'(—00)],

dimp (E(vy, d)) = T7(d),

Proof For any d € [T'(+00), T'(—00)] such that 7*(d) > 0, the proof is the follow-
ing. Proposition [7.8| shows that

E(v,,d) D E(d) = {z| lim a*(z) =d and £ = 1}.

n—oo
The set E(d) can be expressed as:

E(d) = {z] lim aZ(z) = d} \ (Unz1{2| lim af\(x) = d and & > 1+ 1/m})

Using the same method as in section [6.2] but reversing the roles of ¥ and ®, we
can construct a probability measure 77, on [0, 1] with the following properties.

1. nu({z|lim, o o (z) = d}) =1,



CHAPTER 7. MULTIFRACTAL ANALYSIS OF THE INVERSE MEASURES 79

Since for any & > 0, {a|lim,_. o/ (z) = d and €% > 14+1/m} C G(a, ¢, €), from
proposition [7.14] one gets

dimp {z| lim ojj(z) = d and £ >1+1/m} < T*(d).

Then B
(el Jim (o) = hand & 2 1+ 1/m}) =0,

which implies Uy,>1{z|lim, . o' (z) = h and gjﬁ > 1+ 1/m} is 7i,-negligible.
Hence, 7j,(E(d)) = 1.
Finally,
dim E(v,,,d) > dimg(n,) > T*(d).
If d € [T'(+00),T"(—00)] with 7*(d) = 0, what we need is to prove that
dimpg E(v,,d) > 0, in the other word E(v,,d) # 0.

Here, we will use the process in the proof of the lower bound for the Hausdorff
spectrum in theorem M(see section .

We can fixed {e;};en such that % <&, lim;_ o :ﬁ = 1 and ¢; decreases to 0 as
i — 0o. We can choose suitably d; such that 7*(d;) = \/&; with lim; ... d; = d and
build a measure 7,, and a set K (w, {d;}i>1) such that n,(K(w,{d;}i>1)) =1 and

e for each n with m; + nxgil <n<mi+ nkfﬁw one has
(1Z5[)VEres <mo(I5) < (Ho)VE =,
ifveX,,and I’ N K(w,{di}ien) # 0.

. 3
e we can choose ny, > % large enough for each ¢ € N such that for any & > 1,
and then for any x € [0, 1], for ¢ large enough, one has

No(B(x, |I2]8)) < |I2]sWVEFT—=:),

log l(oFw)
S

e in addition sup;s.,,, &

. ) - -
For any given £ > 1, for ¢ large enough, m; + n’jfm <n < mp + nj\ZH and
v E Yy p, We get

(B, [15)¢
n ( n(i[lﬂ)w| )) < |I;U)|§(m_51)_(\/a+sz) < exp(—% . (C 672))7

where ¢ € (0, — 1), since £ > 1 and lim;_, ngi;ez _1

Since 7, (Uyes,, ,13) = 1, we can get

nw(UUGZw,n UsES(w,v,l) B@fﬂ |I£|5))
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< > > m(B@EL)))
V€Y, n sES(w,v,1)
n nce v
< Y Uorw)en(-"2 (e T)
Uezw,n
nce 2 v
< Y exp(——= - (ev/E — —e))nu(12)
Uezw,n 2 C(I’
Nncy C\/E;
< — 7.
< exp(—— - (=5))
< exp(—n?)

for n large enough (recall that £; > 1/7). Then

Z Z nw(UvGEw,n UsES(w,v,l) B(xffa |[o1.})‘£)) < +OO7
]VGN nzj\vf

hence
No(Nis1 Uns i Yvesn Usestonn B [12]9) = 0.

The set
ﬂﬁzl Unzﬁ Uvesy, n UseS(w,1) Bz, \IZZF)
increases as & decreases to 1, so
p 1
{]3 : fz > 1} = Umzl ﬂﬁZI UnZN Uvezw’n UseS(w,v,l)B(xZ;sa |]f;|1+m>‘
For any m > 1,
1
77w(ﬂﬁ21 Unzﬁ Uves,,n Uses(wu,1) B(x.?, |]£|1+m)) =0,

SO
1
nw(UmZI mﬁ21 Unzﬁ UUEEw,n USES(W70,1)B($ZS’ |]:)|1+m)) = 07

and
1
Mo (K (W, {di}iz1 \ Umz1 Ny Uy i Uvesa, Usestwny B, [12]77)) = 1.

Finally, we can say that E(v,,d) # (), since

By, d) D (K(w,{di}is1)N{z: =1}
= K(w, {di}i>1) \ Un>1 Ngoy YU, o 5 Uvesi, ., Useswe,) B(@, 1))

has full n,-measure.
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7.6 Some preparation to the conditioned ubiquity
theorem

This section is very similar to chapter [} Now we fix the two sequences of functions
{U;}i>1,{®;}i>1 as in section Since ¢, > 0 and then cy > 0, for each i € N
there exists a function 7; such that for any ¢ € R one has P(q¥; — T;(q)®;) = 0.

Lemma 7.18 1. T; converges poitwise to T as i — oo.

2. T converges pointwise to T* over the interior of the domain of T* asi — oo.

Let D be a dense and countable subset of (77(+00), 7' (—o0)), so that for any
d € [T'(+c0), T'(—00)], there exists {dy}ren C DN such that limy . dr = d and
limy oo T*(di) = T*(d).

Let {D;};en be a sequence of sets such that

e D; is a finite set for each ¢ € N,
e D, C D;;q, for each i € N,

[ ] UiENDi - D

Let us fix a positive sequence {¢; };en decreasing to 0. For each i, there exists j;
large enough such that for any d; € D;, there exists ¢; € R such that

L T (@) = d;,
3. Jovar;, ¥ dP < e} and [, var;,® dP < &}

Define Q; = {¢;, d; € D;} and Kw =q;V;, — T;,(q;)®;, for ¢; € Q.

~_ For any € > 0, there exist positive integers M, L, N, C large enough, and a set
Qo such that there exists a sequence {¢,},>1 where ¢, — 0 as n — oo such that
P(Qp) > 1 — €/4, and for any w € €, one has:

o M(w)< M, l(w) <L,

e the o(n) with respect to the potential ®, ¥ in proposition [2.7) is smaller than
ne, and V,®(w) < nc,, V,¥(w) < ne,.
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e for any n > N,

Spvar;, ®(w) — n/ var;, ®(w) dP| < ncp,
Q
Spvar;, V(w) —n/ var;, U(w) dP| < ncy,
0
1
“Saloghw)| < €.

1 1
e (25, 18)es 1SR ) < €.

maX(TllSnH\I/(w)HOO, Tllsnuxy(an“w)uoo) < c

sup Sp(?)(w,v) < (—nwe)

ve [U]w

and
sup Su(W)(w,2) < (—ne)

vE€[v]w

for any v € X, ,, with n > N.

For any given finite set Q@ we know that for s large enough one has #¥,, ; will
larger than Q. Denote the smallest such s by S(w, Q).

_ Also, for all i € N, choose S(i) € N large enough so that there exists a set
V(i) C Qp such that

o P((i)) > 1 — 2¢/4,

e for any w € (i), one has S(cMw, 1Q;) < S(i).

For all i € N, there exists N(i) > N and M (i) > M large enough and {¢;, }n>1
decreasing 0 as n — oo, and a set (i) C (i) such that P(Q(i)) > 1 —3¢/4 and for
any w € Q(i),

o M(oM+SWy) < M(3),

e for any ¢ € Q;, the random Gibbs measures ﬂg;’jw(i) @y, are well defined,
Vil o (oM+SOFME) ) < e, for any n > N (i), and the o(n) with respect to
the potential A, , in proposition is smaller than nc; ,, that is

€(Nig,n) < cCip.
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e for any g € @);, there exist w; > 0 such that

S R —
ve [U]O.J\/I+M(i)+s(ei>ww

for all n > N (i), for all v € X, asr6)+5G) 4y -

Let 0'(i,w,s) be the s-th return time of the point w to the set (i) under the
map o. Then for any ¢ € N

»
lim AU = ~1

e s P(Q2(2))

for P-almost every w. Consequently,

(s s _
lim 7 (z,wls) 0 (i,w,s — 1) _0
§700 0 (i,w,s — 1)

Since N is countable, then for P-almost every w € €, for any i € N,

/(s 1
lim 0w, 5) = ——

e s P(Q(2))

then

(s s 1
th(Z,w,s) 0'(i,w,s —1)

= = 0.
§—00 0’(@&),8)

In the following we always deal with the w € ) such that the above hold we
denote all these w by €2 which is full of P-measure.

Given w € (i), let M'(i) = M + S(i) + M (i) and

nt(w) = inf{0'(i,w, s) : O(i,w, s) > M'(i)} — M’ ().
For k > 2, define ni.(w) = & (i,w, s;) — M'(i), where s, is the smallest s such that
the following hold:

+ /0 (i, w, s))

ol

0'(i,w,8) =y (w) > max (M'(0), mj_y (@) (ciny )

It is easy to show that
L) — (@)

. =0.
k—roo ng_1(w)

Using the same method as in section we can get the following series of
properties.
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Facts 7.19 For any i € N, for any w € Q(i), there exist a sequence {n}, = ni(w) }e>1
and a positive integer N; = N; (o™ w) such that for any d = d; € D;, there exists

q = ¢; € Qi, a measure p:]@",(i)w on [0,1] and a set E; ,(c™ ®w) C [0,1] satisfying

1. For pii}%(i)w-almost every x € [0, 1], there exists N(g, z) such that for any k& >
N(q,z) for any v € ¥_r i satisfying z € I one has: [vAv+|>nt , and
v Av—|>n}_,. Furthermore, for any v € [v] ), U[v+], a0, U [v—] 000,
one has

Dwn

Sy W5 (0™ Do, v) 7ol <
5, @, (0O ) )] S 8

and for v' =v , v =v— or v/ = v+, and V' € [V'] 2

Kz’ v
log pozvqus Dw (IUM’ (i)w)
S, (0 O, )

~ T (T;(q)| < &

and

2. for any k > N one has ¢, < (£:)"/8, M'(i) < nj(e:)"/8, ;i < (£4)"/8 and
”E—i”}c—l < (e,)4/8.

N1

Xzﬂ = (i
3. po.]tf’(i (Ez',q(UM ( )W)) > % and:

w

(a) For any z € E; (o™ ®w), for any k > N;, for any v € ¥_u such

that z € I, one has [v Av+|>n}_, and [vAv—|>n}_,.

(i)w,nk

(b) For any v € [v], mr, U [v+] 0000, U [v—], 0ri),,, OnE has

Sn}; \Ijji (O-M/(i)w7 Q)

Snz q)jz‘ (UM/(i)w7 Q)

and for v' =v , v =v— or v = v+, and V' € [V'] )

Ki q v’
log P oar iy, (IO.J\I’(i)w)
S|’U'| q)jz' (UM/(i)w7 U—/)

- 7T @)| < =

and N .
SN g (™ Do, v o

S @, (M D, vf)
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In fact we will use the following version of the previous facts:

Facts 7.20 We can change Q(i) to €; C Q(i) a bit smaller such that P(;) > 1 —¢
and there exist A; and W (i) such that for any w € Q;, Nj(c™@w) < N and
iy (w) < W (i), and the items 2 and 3 of facts also hold. Furthermore if we
change the ¢; (for example take it to be 2¢;), in the inequalities of (b) in item 3 of

facts T;:(T;(q)) can be changed to T*(7}.(¢)).

From now on we will define (i, w, s) be the s-th return time to the set € for
the point w

Since N is countable, there exists Q c @ of full probability such that for all
w € (), for any 7 € N, we have

[
lim V,¥(w)/n =0,
[ ]
lim Vo®(w)/n =0,
. ~
. 0(i,w,s) 1
1
P P(Q;)’
hence - ~
lim H(Z,w,Ns) —0(i,w,s — 1) _o
§7r00 0(i,w,s —1)

From now on we just deal with the points of ﬁ, which is a set with IP-full measure.

For any w € X, , such that c"w € @;, for any d; € D;, there exists ¢; € Q;
such that 7} (¢:) = d;. Since §¥ninm 5 > £Q;, for each ¢; we can choose v(g;) €
Yontm s(;y S0 that these words are pairwise distinct. Now, using the same rule as in
section , for any ¢; and v € ¥ .1, We can connect w with v(g;) and v(g;)

with v € X i@, ., and get a word w * v(g;) * v, denoted we call w * v if there is

no confusion. Also, we define a new measure (, ., 4 supported on I o) .
oI = ) (it (7.0
W,W,qi \~w - po-n+M/(i)w on+M/(5), )" .

Also, we define

Ew,i,w,q) = {w*v(g) *v:v € B (aFM )},

We notice that the measures (.4, ¢ € Qi, have supports which pairwise have at
most one point in common. Also, (4 (E(w, i, w,q)) > 1/2.
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7.7 Conditioned ubiquity

We will adapt the method of [7] to get the following result, which provides us with
the necessary material to get the sharp lower bound for the lower Hausdorff spectrum

on [0, 7" (to—)].

Definition 7.21 Ifd > 0, £ > 1 and € = {€;}ien 1S a positive sequence decreasing
to 0 as i — oo, we set

S(w,d, &, €) == Nn>1 Up>y U n‘P(w@,d‘SEiB(ZZ? (£2)%)-

VEX n,JVEV]w such that | gné(w )

The following result concerns the ubiquity of the family of points {z)}ies, .
Sn ¥ (w,v)

relatively to the radii {{,},esx,, ., and conditionally on the behavior of 3" Do) I [V]o-

Theorem 7.22 For P-almost every w € €, for any & > 1 and any d €
[T (4+00), T'(—00)], there exists a sequence €(w) = {e;(w)}ien decreasing to 0 as
i — 00, as well as a set K4(&) C S(w,d,&,€) and a Borel probability measure mg

supported on K(&) such that dimy(md) > T*g(d),

Remark 7.23 In fact we can choose € independent of w.

Remark 7.24 For anyx € S(w,d, &, €) there are infinitely many n; and v(i) € X, p,
such that x € B(z2W, (€2D)8) and or(x) < d + €, so

log v, (B(z°@ (pr()¢ n; d
dimy,. (v, ) < liminf o8 vu(B(z, ’(,<) M) < lim inf oy (@) < -, (7.5)

i—00 glogajjz i—00 f 5
since 98Uzl o oumptotically not bigger than the Birkhoff average Syt V)
log[u(i) y p y gg g S|Ui|<b(w,g) :

C’onsequentul)y, S(w,d, &, €) C UthE(Vw,h).

Now, we will prove theorem [7.22]

Proof Recall that §(i7w,k) is the k-th return time of w to the set ; under the
mapping o.

We start by constructing a generalized Cantor set K(§,d) for each £ > 1 and
each sequence d € [[2; D;.

Step 1: Let w € Q. Let n = 5(1,w,1). Fix w® € %,,. Recall that for each
dy € Dy there is 1 € Q; with T/ (q1) = dy and v(q:) € see

the end of the previous section).

(Tg(l""’l)+Mw,S(1) (
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From the facts and facts [7.20] there exists N; large enough, such that for
each d; € Dy, there is a set F(w, 1, w®, ¢1) which is a subset of the closure of
[2*(a) such that o (B(w, LwM g1)) > 1/2 (recall that ), and
E(w,1,w®, q)) have been defined at the end of section and the following
properties hold:

1. M'(1) < (e1)*n),,
2. cpy, < (e1)* and Cink, S (e1)*,
3. np —np_y < (e1)*nj_, for any k > N,
4. e For any v € E(w,1,wY q), for any k& > N, for any v €
(1)« *
Ea&w’lHM’(l)w,ni such that x € IV **(@)* one has [v Av+| > ni_,
and [v Av—|>ni ;.

e For any v € [U]U%WHMI(DM U [U+]U§(1,w,1)+zw(1)w U [U_]ﬁ(l,w,l)JrM'(l)w’
one has

R s
. = - — —dq| < ey,
8, (P 0 )

and for v' =v , v =v— or v/ = v+, and v’ € [V'] a5

A1,q (I )

lo -
gp09(1,w,1)+1\/]’(1)w 0—0(1,w,1)+M/(1)w 7_*<d ) < c
Y -/ 1 >~ c1
Sl @y (0 DFM My, 1) " ’

and

Sy A U§(1,w,1)+M’(1)w7 v
‘ | 17(11(~ —) _ﬁj(dl) §51~
S/ 5, (DM (D )

Choose N > N large enough such that
hd 9(1,&], 1) S (61)47’1’/1\/1’7

o Vp(w) < (1)"p for any p > ny, and

0(1,w,1)+M’(1)

Z H(D(ij)noo < (51)4njl\f{7
=0

o M'(2) < (e2)'ny,
o W(2) < (e2)'nys,

e for any s such that the return time 6(2,w,s) satisfies 0(2,w,s) >

0(1,w, 1) + M'(1) + njy, one also has

A(2 —0(2 -1
0( ,w,~s) 0(2,w,s ) < (e,
0(2,w,s —1)
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Let s, be the smallest s such that 6(2,w, s) > 0(1,w, 1) + M'(1) + n}\/l,.

Now, let N; be the largest k such that 6(1,w, 1)+ M'(1) +nk < 0(2,w, s5) (by
construction we have Ny > N]). Then

0(2,&)7 52) - 9(1,&), 1) - M/(l) o n}\ll < n}VlJrl - n}\/'l < (81)471}\71

by item 3. above.
For z € E(w,1,w™, q;), we denote v(w, 1, q;,ni, z) the unique word such that
Iw(1>*U(ql)*v(w,l,ql,n}c,x)

T € lw

For any k > Ny, let

and v(w, 1,q1,nt,z) €T =

of(Lw, 1)+M' (1),

wDxy wv(w,1,q1,nk,
Fi(q, k) = { By, 205 "Wt amady e Bl 1,00, q)}

Then Fi(q,k) is a covering of E(w,1,wm, q). From Besicovitch
covering theorem [59, theorem 2.7|, there are I'y families of inter-
vals Fl(qu, k), -+, Fi' (¢, k) C Fi(q, k), such that E(w,1,wM q) C
utL, Upers(q k) B and for any B, B € F7, if B # B’ one has BN B’ =
(here T’y just depends on the dimension 1 of the Euclidean space R).

Since (, 4, (E(w, 1w, g1)) > 1/2, there exists s such that

1
Cw,w(l) 1 (UBeFf(q1,l<:)B> > 27F1

Among the intervals of F; (k) we can choose finite subset
DM(I)(l,qla k) — {Bla . ,Bs,}
such that ]
Cw,w(1>,q1 (UBleDw(l)(l,ql,k)Bl) = TFI

For any B; € D“’(l)(l,ql, k), there exists i € F(w,1,w", q) such that B, =
B(yi, 2€$(1)*“(q1)*”("”l)), where v(k,1) := v(w, 1,q1,nk, y;). Since

B(Zg(l)*v(ql)*v(k,l)7 (gz)u(l)*v(ql)*v(k,l))f) C B(Z;U(l)*v(ql)*v(k’l), gg(l)*v(ql)*v(k,l))
- B(yl, 2€g(1)*u(q1)*v(kz,l)) — Bla
using the same argument as in step 3 in section [6.2] we can obtain that
Co_,’w(l)’ql (B(yl, 2£Z(I>*U(Q1)*v(k,l)>) < (465(1)*1)((11)*@(’671))7; (dl)—2517 (76)
and

Cw,w(l)m (B(Zg(1>*v(q1)*v(k7l), 63(1)*v(q1)*v(k,l))) < (463(1)*v(q1)*v(k,l))7—j’; (d1)—251.
(7.7)
Choose the smallest j such that o/w € (), and there exists v € Y., satisfying
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ZZJU(I)*U(Ql)*v(k’Z) c ﬁ

° [z C B( wWsv(qr)*v(k,l) (gw(l)*v(ql)*v(k l)) )
Define J; = I, the closure of IY. From the construction we get that
7| < 2(eg" D),

Since we have chosen the smallest j := 5(2,@), s), then for v/ = v|5(2ws_1) we
have

<€$(1)*v(q1)*v(k,l))§ <|IY| < |17 exp(Vg(Ms

)(w)) exp((0(2,w, s) — 0(2,w, s —1))C).
Since |I| > exp(—2-0(2,w, s)Cy), V- )( w) < 0(2,w,s) (1) and 6(2,w, 5)—

~ 9( W,
0(2,w,5—1)<2-0(2,w,5s—1)-(e2)' <2-0(2,w,5) - (£1)* we obtain

(4@ NE < | poi=(E)?, (7.8)

Denote B; := J;. Conversely, if an interval J can be written as B, then we
denote B =: J. By construction we have

[ < [T < [, (7.9)
Define

G (1,di, k) = {Bi: Bie D" (1,q1,k), where T (¢1) =di}.  (7.10)

We notice the following useful property:

By construction, if J; and J; are two distinct elements of G*(1,dy, k), their
distance is larger than max;eq 23 (|| /2 — (].;]/2)%). Since & > 1, when k large
enough, one gets that maxeqi2(].;/2 — (|;|/2)%) > maxyeqi 2y ;] /3. This
implies that their distance is larger than max;c 2 | J:| /3.

On the algebra generated by G*(1,dy, k), we can define a probability measure
mgl by:

Cw,w(l),ql (‘])
ZJ[EGM(I)(17q17k) gw,w(l),ql (Jl)

For any J € G¥(1,d, k), from inequities ([7.6) and ([7.8]) we can get

mg' (J) =

Cw,w(1)7q1 (7) < |‘]

(T} (d1)=2e) (1= (e1)®)

d1 —2e1 < |J|

and
1

Yo Gawng () = 3 Con) g (B1) > —.
AT,

1eGw ™ (1,dy k) Biep» ™ (1,q1,k)
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Then for any J € G¥(1,dy, k),

(77 (d1)=2e) (1= (e)®)

mgt(J) < Ay|J| g

We can choose k large enough such that 41y < |J|=°* for any d; € D; and
J e Gw(l)(l, dy, k). We denote such a k by k.

The first step of the construction of K (¢, d) is G(dy) := G*" (1, dy, ky). Define:

G1 = Ugep, G(dh).

From the construction we know that: for any d; € D;, there exists ¢ € Q;
such that

1.

(77, (d1)=2e1) (1= (=1)*)

V.J € G(dy), m¢*(J) < |J| : e (7.11)

2. For any J € G(d;) there exists 3, € E(w,1,w", q) such that

B(Zw(1)>|<v(ql)>x<v(lc1,l)7 (gx(l)*v(ql)*v(kl,l))g) cJ= B(yl7 263(1)*v(q1)*v(k1,l)>.

Then, for any y € Ujeg(a,)/, there exists a word v = v(ky, 1) satisfying

EwU)*v(ql)*v
9 )
(B<Z£)(l)*y(q1)*v’ eg(l)*v(ql)*v» S (465“)*1]((11)*”)7}*1 (d1)—2€1.

‘Zw(l)*v(ql)*v . y’ < (gw(l)*v(ql)*v)f <
w — w g

szw(l)7ql

Step 2: Suppose that G; is well defined and for any {d;}1<j<; € [T1<j<i Dj, the set

function médj}lgjgi is well defined on the set G(dy,...,d;).
For any w such that J =1T¥ € G(d; ---d;) C Gy, we set n = |w|.
In this step n} stands for n;™ (0"w).

By construction:

1. c"w € §i+1,

2. M'(i) + nj\ﬂl < n(ei1)/8;
For any diy1 € Djja, take qiy1 € Qiy1 such that 7 (giy1) = di1, and
V(qir1) € Loninmy, g(i+1) the associated word.
From facts [7.19] and [7.20] for each d;;; € D1, there is a set E(w,i +

1w, gip1) C 1579 such that (g, (B(w,i + 1,w,q11)) > 1/2 ( Recall
that the definition of (y,u4,,, and E(w,i+1,w, ¢;41) are defined at the end of

section and:
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1. Caipt < (gi41)* and Cz‘+1,nj\#+1 < (e1)4,

2. mt = m < (i)'t for any k> Nipy,

3. e Forany v € F(w,i+ 1,w,qi11), for any k > Niyy, for any v €
St i1, i1 Such that a € [wl@i+)* one has [v A v+ | > nity

> nZ-‘rl

and |[v Av —

e For any v € [ ]U"“'M/(H'l)w U [U+]0n+1x1/(i+1)w U [/U_}o_n.i,-]k{/(i.i,-l)w, one has

S\Il
S<I>

( ”+M/(i+1)w,y)

(oM (1), v)

.77,+1

—dit1| < gy,
Ji +1

and for v' =v , v =v—or v = v+, and V' € [V'] nsnrii,

Ai+17qi+1 4
log po.n+1\/1/(i+1)w(‘[0-7L+M/(i+1)w) ,7.* ( +1) < Eirt
(7 i i > Ci41-
S\U'|q)ji+1 (O-n-l—M (H_I)(A),QI) Jit1

and

N M’ (i+1 /
S|v \AiJrl qi+1 <O-7L+ G+ )wa v )

S @5, (M D o) — T (dig1)| < €1
Choose N/,; > N1 large enough such that
o n < (gi11) n}\ﬁl
o Vp(w) < (gi41)"p for any p > nztil and
n+M'(i+1)
Z [P (07w)|oe < (5z‘+1)4nﬁxl
=0

o M'(i+2) < (gi12) nj\#

W(i+2) < (51+2)4nj\7@1

e for any s such that the return time 0(i + 2,w, s) satisfies 0(i + 2,w, s) >
n+M@Gi+1)+ nj\”;il, one also has

§(i+2,w,s)—§(i+2,w,s—
0(i +2,w,5—1)

D, < (eip2)™.

Let s;4o be the smallest s such that 8(i + 2,w,s) > n+M'(i+1) +nidt .

7.+1
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Now, let N; 1 be the largest &k such that n+M'(i + 1) +ni™ < 0(i + 2, w, si42)
(by construction we have N;;; > N, ). Then

0(i +2,w, 549) —n— M'(i + 1) — nﬁ\ﬂl < nﬁ\ﬂl n}\ﬂl < (8”1)471}{11
by item 3. above.
For any k > N1, let

w*v(q; *v(w,i+1,q; ,ni‘H, .
Fiv1(qiy1,n+M’ (z+1)+n’+1) {B(y, 2. (@)oot Lgisamg, y)):yEE(w,z+1,w,qi+1)},

here v(w,i + 1,q41,n5 " y) is the unique word such that y €
wHv(q; *v(w,2+1,q; ,ni+ s

et Lam ) g v(w,i+1,q1,n ) € gt i41) i+t Then

Fis1(qiy1,m + M'(i +1) +ni™) is a covering of E(w,i + 1,w, giy1).

From the Besicovitch covering theorem, I'; families of disjoint intervals, namely
Fi(@ipnn+ M@+ 1)+, Fh(n+ MG+ 1) + i)
can be extracted from Fiy (i1, n+M'(i)+nitt) so that E(w,i+1,w,g1) C
U =1 UBG]—'ZJrl(q1+1,n+M’(z’+1)+n§c+1) B.
Since Cu g1 (F(w, i+ 1,w,qi41)) > 1/2, there exists s such that
1

Cw,w,qiﬂ(UBE}'f_H(qz‘+17n+M/(i)+"Z+1)B) 2 TFI

Again, we extract from F7,,(giy1,n+ M'(i) +ni"") a finite family of pairwise
disjoint intervals D*(i + 1,¢;41,k) = {Bi,- - , By} such that
1
Cw W, G541 (UBZED‘”(1+17%+1,]€)BZ) el 4F
For each B, € D"(i+ 1, qix1, k), there exists y; € E(w,i+ 1, w, ¢;41) such that

B = B(yl72€w*v(qz+1)*’u(w dt+1,gi41,m k 7yl)) Set U(l{?,l) _ U(w,l + ]-7Qi+1;nk ,yl)-
Moreover,

B(Ziv*v(qi+1)*v(k,l)7 (gz*v(qi+1)*v(k,l))£) C B(Z;u*v(qi+1)*v(k,l)’ gz-)u*v(qprl)*v(k,l))
C Bly, 20w _

Also, using the same argument as in the step 3 of section [6.2] and noticing the
fact that n < (6i+1)4n]\4{il, we can obtain

4£w*y(qi+l)*v(k7l) 7;');+1 (di+1)_25i+1
w . (1.12)

Cw,w,qu(B(yl,2£g*v(qi+1)*”(kvl))) < < |Iw|

and

wv(gi41)*v(k,l T': (dit1)—2ei+1
Cwwq'+1(B(Zg*v(q”l)*v(k’l),fﬁ*v(qm)*v(k,l))) < <4€w (@i2)v( )> Jit1 |

1]
_ (7.13)
Choose the smallest j such that 07w € ;15 and there exists v € ¥, ; satisfying
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° ZZJu*v(qu)*v(k,l) c Tg’

° [5 C B(zZkav(qH_l)M}(k,l)7 (gz*v(qi+1)*v(k,l))£)

Define J; =: I, the closure of the interval I”.

Denotes B; = J;. Conversely, if an interval J can be written B for some larger
interval B, we write B = J.

Using the same method as in the step 1, we can get:

|J| < [T]E < | g7 (7.14)

From the construction we get
Gw(Z + 1, di-i—l; ]{) = {&, B, € Dw(Z +1, di—i—la k’)} (715)

If J; and Jy are two distinct elements of G*(i + 1, d;11, k) then their distance
is at least max;eq12y(]Ji|/2 — (|3]/2)*), which is larger than max;eq 2y |F5|/3
for k large enough ( since £ > 1 ).

{dj}1§j§i+l

We can define my with d;;1 € D;,, as follows,

N T N
m;[d]hg]gzﬂ(J) _ G ) 7qz+1( ) _ médy} S]SZ([;}U)) )
ZJZEGw(i+1,di+]_,k!) wawﬂﬂrl (Jl)

For any J € G¥(i + 1,d;11, k), from the inequality (7.12)) we get that

G (j) < <|J|> T (dit1) =281
W,W, G541 = T Twl

|12
< |J‘ 7 +1(d1+1)—26:+1>(17(5i+1) ) ‘[w| (dz+l)
Then, since
1

Z Cw:quz'ﬂ (jl) Z E?

JEGY(n,i+1,k)

we get, VJ € G¥(i 4+ 1,d;11, k):

(T (djy1)—2e;41)(1— (Ez+1) )
diti<j<i it d
mé sh<ic T(T) < AT || 3 || T (i1

We can also choose k = k; 1 large enough such that for any d;;; € D, and
for any J € G*(i + 1,d;41, ki1 1), one has

AT LT ) < g,
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Then by construction we have

(T (diy1)—2e541)(A—(ei4D)3)

VJ e Gw(z +1,di4q, ki+1), médj}lﬁjﬁi+l(J) < |J‘ 3 —€it1
(7.16)

Then, for (d;)i1<j<i+1 € ]_[;ill D; define:
G(d17 d2’ e 7di+1) = UwEG(dl,qQ,“-,di)Gw(i + 1a di+17 ki-l-l)v

and
Git1 = Uwea() Ygire0i, GUE+ 1, diga, kiga).

The definition of médj N<i<itt can be extended to the algebra generated by
Us<it1G(dy, da, -+ ,ds), and for any J = IY € G(dy,da, - - ,dy),

(Tj’;+1 (dir1)—2,41) (1= (2141)%)

médj}ISjSHI(J) <|J| : —Sit1

Step 3: For any d = {d;}ien € 112, D, for any J € G(dj, -++,d;), define m?(]) =
médj hi<s ='(J). This yields a probability measure m¢ on the algebra generated
by UienG(dy, - -+, d;).

For any i € N, the elements in G(dy,- - ,d;) are closed and disjoint intervals.
Also, for any J € G(dy,--- ,d;), we take J to be the associated interval of .J.
We have the following properties:

1. e JCJ, forany J e G(dy,- - ,d;),
e for any J € G(dy, -+ ,d;)

[ < TS < e (7.17)
e if J; # Js belong to G(dy, - ,d;), their distance is at least

|Ji]
max —,
1e{1,2} 3

e The intervals J;, J; € G(dy, -+ ,d;), are disjoint.

2. Any J in G(dy,dy,--- ,d;) is contained in some element L = % €
G(dy,dy, -+ ,d;_1). Moreover , J N E(w,i,w,q) # 0, where ¢; € Q;
is such that T} (¢;) = d; and E(w,i,w, g;) is the set which can be seen in
step 2.

3. For any J € G(dy,dy,- - ,d;),

~ (T7: (d) =2 (1= (e)*)

m¢(J) < |J| ; e (7.18)
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4. Any J in G(di,ds,--- ,d;) is contained by some element L = [V €
G(dl, dz, s ,difl) such that

m¢(J) < AT (L) (7),

where ¢; € Q; is such that T (q¢:) = d;.

Because of the separation property , we get a probability measure mg on

o(J:J € U>1G(dy,dy, -+ ,d;)) such that properties . to . hold for every
1 > 1. We now define

K(&,d) = Niz1 Usea(ds ) J-

Then, m‘g(K(f, d)) = 1. ‘The measure mg can be extended to [0, 1] by setting,

for any B € B([0,1]), m¢(B) := m¢(B N K(£,d)).
step 4: Fix a sequence d= {d;}ien € Tlien D; such that

lim d; = d, lim 7*(d;) = T*(d).

1—>00 1—00

Define K%4(¢) = K(¢,d), and m¢ = m¢. Below we first show that K%(&) C
S(w,d, &, €) and estimate the lower Hausdorff dimension of mg.

Now, let ;11 = |d — di11| + 2€;41, we will use the same notation as in step 2
and prove that for any w * v(qi+1) * v € [w * v(giy1) * vV(Kit1,1)]w wWe have:

Sn+M'(i+1)+n§$+11‘I’(Wa w * v(Git1) * V)

Sn+M’(i+1)+ni++11 P (w, w * v(giy1) * V)

i

—d| < €q1.

Indeed,

Sn+M’(i+1)+nZ;_L_‘l_1 \Il(wa w * U(QiJrl) * Q)

Sn—i—M’(i—&—l)—i—nZ':ilq)(w? w* v(qi1) * V)

Sy i)V (w, w * v(gis1) * V) + Sn;i:rl Y(Fr M D= w0 v(gig) * v))
1+1

S (i+1) (W, w * V(i) xv) + Sn;';l O(FrtM D=1 w * v(gig1) * V)
i+1

Thus,

Sn—i—M’(i—i—l)—&-n?;l \D(w7 w * U(QiJrl) * Q)

SnJrM/(z‘+1)+n§€j+11 P (w, w * v(git1) * v)

|Sn+M/(i+1)(‘I’ — dip1®)(w, w * v(giy1) * V)|

— dis

< -
T S (W, w ok 0(gign) * v) + S SLEPFMED T W, w sk v(gi) * 0)))]
i+l
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1S, (0 = iy @) (F™H M G0 w05 v(giga) % )

+ T
|Snarr(i41)P(w, w * v(giy1) ¥ v) + Sn;':rl O(Fr+M D=1 (e w * v(giy1) * V)
i1
(n+M(@+1)(1+dip)C

T Sy @(w, w x v(giga) ¥ v) + Sn;jll‘I)(F“M’(i“)‘l(w, w * v(qiy1) * v))|

it
(5i+1)|5n§f.+1 O(F M (w0, 1w v(giy1) * 0))|
+ i+1

(ng), (i) (1 + disa)C

141

[Snar i) @(w, w x v(gis1) ¥ 0) + Sy SFHED" 0w, w ok v(giga) * 0)))|
141

< -
T Shear e (W, wox v(gis) x v) + Sy SETHMIFD (w, w0 x 0(gig) * 0)|)

b
+ (&it1)
< (2ei41),

where we used the fact that the Birkhoff sums arising above are negative.
Finally, we get

Sn+M'(v:+1)+ng+11 W (w, w* v(git1) * v)

—d| <|d = dig1| + 28541 = €41
Sn+M’(i+1)+nZ_L_‘l_1 P(w, w * v(giy1) * v)

By construction, we conclude that

K%¢) c S(w,d, &, @).

Now let us estimate the lower Hausdorff dimension of m¢. If 7*(d) = 0,
there is nothing to prove. So we assume that 7*(d) > 0. We recall that
T3 (di) — T*(di)| < &

For any J € G(dy,da, - -+ ,d;), define g(J) = i. Let us fix B an interval of [0, 1]
of length less than that of the elements of G(d;), and assume that BNK{ # 0.
Let L = I be the element of largest diameter in U;>;G(d; - - - d;) such that B
intersects at least two elements of G(d; - - - dg(r)+1) included in L € Gdl..‘dg@).
We remark that this implies that B does not intersect any other element of
G(dy,dy,- -+ ,ds), where s = g(L), and as a consequence m¢(B) < m{(L).

Let us distinguish three cases:
o If |B| > |L|: then
(T} (ds)—2es) (1—¢5) (T} (ds)—2es)(1—¢5)

m{(B)<m{(L) < |LI” € c<[BT . (T19)

o If [B| < £|Llexp(—(Jwl|)(es)?/4). Assume Ly, ..., L, are the elements of
Gs41 which have non-empty intersection with B.
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From property , we can choose g,11 € Q41 so that T} (gsy1) = dsy1, and
get

p
=Y " m{(BN L) <ATImE(L) Y Comgens (L0). (7.20)
=1 =
From property (1)) we can also deduce that max{|L;| : 1 <1 < p} < 3|B].

From property we can get E(w,s+1,w,qs1) N L; # 0. There exists [ such
that F(w,s 4+ 1,w,qsi1) N L; # (. If y is taken in the intersection, we have
B(y,4B) > (U1 Lu).

Now we notice that L is the closure of I? for some w € ¥, ,, with n € N. We
have o™w € 554’_1.

Now for any two intervals [W*(@s+1)%0 and [+ with [v Av'| > nit! and
lv| = || = njt] with & > Ny, we want to calculate |log [[W*v(as+1)*v| —
log | [w*v(@s+0)%"| | We have

‘ 10g ’[w*v(%-»—l)*v' o 10g |[w*U(Q.s+1)*v’H

S 2V +M’ 8+1)+ s+1( ) + 20(7’1/21—_11 - ni+1)
< 2+ M'(s+1)+nit)(e)!
< 2+ M'(s+1)+nit(e,)? (7.21)

The second inequality uses the fact that
Ve mr(snymgtt (W) < ()" (n + M'(s + 1) + ni1y),
since n 4+ M'(s + 1) + nit] > n}, and for k > Ny we have |njl —ngt!| <
(88)47124*1 )
Since |B| < §|L| exp(—(|w|)(es)?/4), we obtain:
81B| < |L| exp(—(|wl)(es)*/4)
<y s ) e (9(n  M (s + 1) + nt) (2))(7.22)

for some k > N,.;. We denote by kp the largest of those k such that the
previous inequality holds.

(QS+1 )*U(W s+1,gs+1,n J];l 7y)

From (7.21)), we obtain B(y,4|B|) C U Jeso@x’

where v’ is a neighbor of v(w,s + 1,q5+1,n2;1,y) such that |v(w,s +

s+1 / s+1
17Qs+17nk3 >y) ANv ’ 2 Mgp—1-

Now we can now give the following upper bound for ,, u.q. ., (B(y,4|B])) (this
is the same proof as in section :

for any v € [w * v(gsy1) * v(w, s+ 1, qs+1,n2§, Y)]w, one has

Cw,w,qu(B(ya 4|B|))
S eXp(SnZHAS-&-quH(Fn+M,(S+1)(W7Q)) + (55-&—1)3”2—;1 + (58)3n)'
B
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Next we prove that ([7.23)) implies

8| B[\ Te1 (dt1) = (o2
Comars (B 41B]) < <|Iw|) (1B (12

By definition of kg (see (7.22))), we have

v(w,n+M’ (s+1)+n2+31+1 Y)

8|B| > |L, lexp(—2(n+ M'(s + 1) + njtL 1) (5)?)
> |IY] eXp(Sni;llq)(FnJrM'(SH)(W v)) — Vo(w) — Vn+M,(s+1)+nz+1+1(w))
cexp(=2(n + M'(s + 1) + njtl ) (e.)?)
> |13 ]exp(S s+1¢(F”+M/ W (w, ) = npfhy = nptt|o)
cexp(—4(n+ M'(s+1) + nf;H)(as) )
> |17 exp(S s+1¢>(F"+M/ Gt (w,v) = 5(n+ M'(s + 1) + njtl)(e)?)
> |17 ]exp(S a+1¢(F"+M/ (D (w,0)) = 5(n+ M'(s+ 1) + njth,)(e0)?).
Thus

B '
T 2 Oxp(S, g B ) 50 M (s 1) L)) (725
B

Then, using ([7.23]) we obtain

Cw,w,qs+1 (B(yv 4|B|>>
eXp(Sn;;AsH,qu(F’”M/(SH)(%Q))) + (es1)’nit + (e5)°n)

< exp((Ty.,, (ds1) = Es41) S O(F MM (W, 0))) + (o) rif + (65)°0)

IN

A

8 B J +1 s+1) Es+1 s
< (3’ exp(Ever)niy! + (20)7n)

'eXP((7}*+1 (ds+1) — 1) - (5(n+ M'(s + 1) + nj %) (e:)”)

dS S
() e

: o log | B
The last inequality is just from § < —= (:ﬂ)lnz i < 2C5.

Now, since L = I is the closure of I, we can get:



CHAPTER 7. MULTIFRACTAL ANALYSIS OF THE INVERSE MEASURES 99

me (B) <4F1m§ ) Z Cw,v,qs.H (fl)

AT (L) Cogpe: (B(y, 4|B)))

Ttz 8B\ T T
<4T|L]| e (”LH) |1B| (e5)?

(T* (ds)—3es)(1—es) (8|B‘
13

(|B)~ "
)
where oy = T (dsy1) — €541 —

(T}: (ds)=3) (1—<s)
Js+1

3
since T*(d) > 0. Moreover, 8| B|/|L| < 1, so

<4T'1(8|B|)

is positive for s large enough

mi(B) < 4Ty (8B)) " = (|1B])~
o If }|L|exp(—(|w|)(es)?/4) < |B| < |L]:

We need at most M(B) = |[9exp((Jw])(es)?/4)] contiguous intervals
(B(k))1<k<nr(p) with diameter §|L|exp(—(|w|)(es)?/4) to cover B. For these
intervals we have the estimate above. Consequently,

M(B) (T} (ds)—8es)(1—¢5)

RV E _ 2
mg(B) < 3 AT1(8|B]) ¢ (1B~
k=1
(T;;(ds) 3es)(1—es) 7( )2
<AMB)T\IB) " = (B))
<|B T*(d)/f—e;,

where €/ tends to 0 as s tends to oo, or as |B| goes to 0 (here it is important
to notice that M(B) < |L|7% < |B| ™% if s is large enough). It follows from
the previous estimates that

T"(d)

: (7.26)

dimp (mg) >

We have finished the proof of theorem

7.8 Conclusion on the lower bound for the lower
Hausdorff spectrum
Proposition 7.25 For P-almost every w, for any d € [0, T (to—)], one has

d *
dimy (E (v, d)) > sup 7"(a)
a€[T"(+00),T'(—o0)] a

= dty = ddimy X,,.
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Proof In the proof of corollary we proved that
7" (a)

sup =1y
a>0 07

and the supremum is attained at o = T"(to—).

If d € (0,7"(to—)], we write d = T'(to—)/& with & > 1. We can find a suitable
sequence ¢ such that theorem and remark can be used. This provides us
a positive Borel measure mz =) on K T'(to=) (¢), with the following properties.

° mz (to_)(KT/(tO*)(f)) =1 and dimH(mz (to_)) > 7T*(T’£(to—)) = dtp.
o mz/(tof)(E) = 0 as soon as dimy E < dt,.

e For any x € K7'(0)(¢), we have that dim,,. (v, 2) < d.
It follows from lemma [7.13] that
(K (&) \ (Uo<neaF(h))) C (E(vp, d) U{zl? 10 € Epuys € S'(w,v,1)}).

Also, dimy F(h) < hty < dto, for all 0 < h < d, so m{ 7 (F(h)) = 0, for all
0< h<d.

Moreover, the family of sets (F'(h))o<n<q is nondecreasing. Thus, we have
mz(to_)(ﬂ(yw,d) Uf{all:veX,.se S (wu1)}) >0,

thus
dimpy (E(v,,d) U{zl v € Xy, s € S"(w,v,1)}) > di.

Finally, dimy E(v,,, d) > dty since {2 : v € ¥, ., s € S'(w, v, 1)} is a countable set.
If d=0or ty =0, we have

0+ {a% v e, s€ S (wu1), and m” — M > 0} C E(v,0),

thus dimy E(v,,d) > dty for d = 0.

Next proposition collects all the information required to conclude regarding the
lower bound for the lower Hausdorff spectrum. Its claim 3. is the desired sharp
lower bound.

Proposition 7.26 For P-almost every w:

1. Ifd €0, T (to—)], then dimpy(E(v,, d)) > di,
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2. 4fd € [T'(+0), T'(—00)], then dimy(E(v,,d)) > T*(d),
3. For any d € [0,T"(—o0)], dimy(E (v, d)) > T*(d).

Proof (1) and (2) come from proposition and proposition
To prove (3), since T (¢) = min{7(¢),0},7 (t,) = 0 and T is increasing,

dto, d e [0, 7 (to—)],
T*(d), de[T (to—), T (—00)].

T(d) = nf{td - 7)) = {
7.9 Hausdorff dimensions of the level sets E(v,,d)
and E(v,,d)

Now we need to define another approximation rate.
For any € [0,1]\ {2 : v € ¥, .,5 € §'(w,v,1)}, define

log(inf{|x — 22| : |v| < n,s € S’ (w,v,1)})

v(w,n,z)

log | L, |

g(w,n,x) =

and then

~ ~

{(w,x) = liminf {(w, n, z).

First of all we point out the following lemma:

Lemma 7.27 For P-almost every w € €0, we have

o~

{z €0, 1\ {2z :veD,.s€ 5w 1)}:&(wx)>1}=0.
In other words, for any x € [0,1], if x ¢ {227 v € ¥, ., s € ' (w,v,1)},
g(w,a:) = 1.

Proof We just need to prove that for any k € Z*,

o~

{z e [0,1]\ {2 :veX,.s€ S5 (wv,1)}:&(w,z)>1+1/k} =0.

~

For any = € [0,1] \ {2 : v € ¥, .,s € 5 (w,v,1)} such that {(w,x) > 1+ 1/k,
there exists N(z) € Z" such that for any n > N(z) one has

inf{|z — 22| : ju| < n,s € §'(w, v, 1)} < [IL@m Lk,

Furthermore, the infimum must be attained at a point z’° which is in the closure
of I?@n?)  We denote vs by w(w,n,z). We just need to prove that z is the point
z@@n) for n large enough. This will give a contradiction.

w g g g



102 HAUSDORFF DIMENSIONS OF THE LEVEL SETS F(v,,d) AND E(v,,d)

The choice of w(w,n + 1, 2) must be made in
{v(w,n,z)s: s €S (w,v,1)} U{w(w,n,z)}.

Otherwise it is easily seen that it is in contradiction with the choice of w(w,n,z)
and z € I:,”(”’"’“).

v(w,n,z)l v(w,n,z)2
Iw [w
w(w,n,x) v(w,n,z)l (w,n,z)2 v(w,n,z)
.Z'w :BUJ xw P xw .
f } Ha IAVAVAVAVA I IaVAVAVAVA }
v(w,n,z)
I
Figure 7.1 — The choice for w(w,n,z
Y Y
We have

inf{lz — 22| : |v| <n+1,s€ 5w 1)}
_ |xw(w,n+1,z) . l‘| < |]v(w,n+1,x)|1+1/k < |Iv(w,n,x)|1+1/k'

Now suppose that w(w,n + 1,z) # w(w,n,z). Then, on the one hand, we have

‘Iz(w,n,m)s| < |$Z;)u(w,n+1,z) . xg(w,n,a:)| < 2|I£(w,n,m)’1+1/k'

On the other hand, from assumption [2| and proposition it is easy to prove that
for n large enough we have

|I:j(w,n,a:)s| — |]:}(w,n,a:)| . 6o(log(|fol.))<w’n’gg)|)) > |[£(W7”ax)|1+ﬁ > 4|I£(w,n,x)|1+1/k.
We get a contradiction. So tw(w,n + 1,2) = w(w,n,x) for n large enough.

Lemma 7.28 For P-almost every w € Q, for any v € [0,1\{z2’ : v € ¥,.,s €
S'(w,v,1)}, we have that

L 1 [Ov(w,n,x)
dimyee (v, ) > liminf ogy(uz)).
n—o00 10g I]Zj w,n,T |

Proof For P-almost every w € Q, since z € [0, 1\{z2’ : v € ¥, .,s € S (w,v,1)},
lemma [7.27] tells us ~

£(w,x) = 1.
Then there exists a subsequence {ny}rez+ such that &(w,ng,z) — 1 as k — oo.
Now,

~

|
lim sup og vu(B(x,7))
r—0 log r
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1 B I'U(UJ7’I’L]€7$) g(w7nk7x)+1/nk
> Jimsup 28X (Llw - | )
k—oco log |IZ.)1 WMo |§(w7nk,x)+1/nk

1 iv(w,nk,m)
> limsup og v ;an x))
k—oo  log |Io"""™|

log v (I3

L’g(w,n,x) ’ ’

> liminf
n—oo

log |

The second inequality follows from the fact that &(w,ng, ) — 1 as k — oo and

B(:L“, |Ig(w,nk,$)|g(w,nk,a;)+1/nk) - Iog(w’nk’x),

o~

by definition of &(w, ng, x).

Proposition 7.29 For P-almost every w € €,

1. for any d € [T (+00), T'(to—)],

dimy({z € [0,1] : D (v, ) < d}) < T*(d).

2. for any 0 < d < T'(4+00) one has

{z € [0,1] : dimyee(v, z) = d} = 0.

3. Ifze{z’ veD,,,seS wul), andm? — M =0}, then

dimyee (v, ) > T'(+00).

E(v,,0) = E(v,,0)
(2% v € Dyas € 8w, v, 1), and m® — M > 0}

so that
dimy (E(v,,0)) = dimg(E (v, 0)) = 0.

Proof 1. First, for any d € [T’ (+00), T'(to—)], for any € > 0, there exists ¢ > 0
such that 7*(d) > qd — T (q) — /2.

Second, choose € > 0 such that ge < e/4, for any N € N

rv(w,n,z)
log V(IuE ) ) < d}
log ‘[uzj w,n,T ‘

n—oo

{x €10,1] : dimyee(vp, ) < d} C {x € [0,1] : lim inf
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c U U I

n2N 4Ry v (I8)>]13|d+e

Third, for any § > 0, for N large enough, and v € %,,, one has |[IJ| < §.
Choosing s = T*(d) + € we get for N large enough,

Hi({w € [0,1] : dimyee (v, 7) < d}) < Y > L[ (@t

NN vEXy n,v(I8) 2] 157+

< Z Z ‘[Zj |qd—T(Q)+£/2

N2 N v€Xw n e (I3) 2|15 |4+

< XX O (1))

n>N veEXy n
< 3N BT ()

n>N vEXy n

ncee

< X exp(nP(g¥ — T(0)®) = =)

n>N

ncee
n>N

Here we used the fact that 1,(12) < |X2| < |UZ| < exp(S,¥(w, v) 4 o(n)) for
any v € [v], and v € ¥, .

Letting N go to oo we get Hi({z € [0,1] : dimye(v, z) < d}) = 0 for any
§ > 0, so H({x € [0,1] : dimjee(v,z) < d}) = 0. This holds for any
s > —=T*(d), so dimgy{x € [0,1] : dimee(v,, ) < d} < T*(d).

10 <d < T'(4+00), we have T*(d) = —oo. This implies that for any s > —oo,

for any ¢ > 0, there exists ¢ > 0 such that s > gd — T (q) + . Thus, we
can deduce from the above calculation that we have {z ¢ {277 :v € &, ,,s €

v(w,n,x)

S (w,v,1)} : liminf, % <d} =0.
og|L

. From the proof of item (2) if x € {2 :v € &, ., s € S'(w,v,1)} and = do not

have a positive measure, the upper local dimension will larger than 7' (400).

4. Since item (3) it is obvious.

Theorem 7.30 For P-almost every w € Q, for any d € [T'(4+00),T'(—00)], we

have

dimy E(v,,d) = dimy E(v,,d) = T*(d).

Proof By construction, if z € E(d), the set constructed in the proof of propo-
sition [7.17] then lim, ,, a’(z) = d, so due to remark we must have
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dimyoe (v, #) < d. Since, moreover, dim,,.(vy,,2) = d, we get E(d) C E(u,,d) C
E(v,,d), and the the lower bound dimg E(d) > T*(d), yields the expected
lower bound, while the upper bound was obtained in the previous proposition
for d € [T'(4+00), T (tp—)], and it follows from the multifractal formalism for
d e [T'(to—), T'(=00)], since 7, < T*.

Remark 7.31 Let us explain how, to study the sets F(v,,d), we could have used
some result from [58] [73 [74], which gives an inversion formula for multifractals. If
the definition of local dimension is changed to the more uniform one:

o _ log p([)
dlmloc(:u?x) - IEI{I;} lOg ’]| )

where I — {2} means that I is an interval containing x, and that the length of [
tends to zero, we have

{z € supp(p) : dimjo (1, ¥) = o} C E(p, a).

Theorem 7.32 (Corollary 2.2 in [74]) Let u be a probability measure on [0, 1]
and v be its inverse measure. Assume that 0 < a < oco. Then

dimpg{z € supp(v) : dimy, (v, z) = a} = adimy{z € supp(p) : dimy, . (u, x) = 1/a},
and

dimp{z € supp(v) : dimy. (v, x) = a} = adimp{z € supp(p) : dim}, (1, x) = 1/a}.

Lemma 7.33 For P-almost every w € Q, for any d € [T'(4+00), T'(—00)], we have
T*(d) = dT™(1/d),

and
dimy({z € supp(v,,) : dim{’ (v, z) = d}) = T*(d).

Proof We have

T*(d) = inf{gd—T(q):qeR}
= d-inf{g—T(q)/d: q € R}

Moreover, T = —T ! o (—Idg), so

T(d) = d-inf{qg—T(q)/d:qeR}
= d-inf{g—T(q)/d: T(q) € R}
= d-inf{-T(t)+t/d:t € R}
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= dT*(1/d).

The result about the Hausdorff dimension then follows from theorem [7.32] and the
fact that in section the item

K(w,{di}i>1) C E(pw, d)
can be change to
K(w,{di}i>1) C {x € supp(u) : dimjy.(p, x) = d}.

This comes from the fact that the measure is almost doubling on K (w, {d;};>1)-
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