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Résumé

Nous montrons la validité du formalisme multifractal pour les mesures aléatoires fai-

blement Gibbs portées par l’ attracteur associé à une dynamique aléatoire C1 codée par

un sous-shift de type fini aléatoire, et expansive en moyenne. Nous établissons également

des loi de type 0-∞ pour les mesures de Hausdorff et de packing généralisées des ensembles

de niveau de la dimension locale, et calculons les dimensions de Hausdorff et de packing

des ensembles de points en lesquels la dimension inférieure locale et la dimension supé-

rieure locale sont prescrites. Lorsque l’attracteur est un ensemble de Cantor de mesure

de Lebesgue nulle, nous montrons la validité du formalisme multifractal pour les mesures

discrètes obtenues comme inverses de ces mesures faiblement Gibbs.

Mots-clefs : Mesures et dimensions de Hausdorff et de packing, formalisme multifractal,

formalisme thermodynamique, mesure faiblement Gibbs aléatoires, systèmes dynamiques

aléatoires, théorie métrique de l’approximation, mesures inverses.

Multifractal analysis of random weak Gibbs measures and their

inverse

Abstract

We establish the validity of the multifractal formalism for random weak Gibbs mea-

sures supported on the attractor associated with a C1 random dynamics coded by a random

subshift of finite type, and expanding in the mean. We also prove a 0-∞ law for the gen-

eralized Hausdorff and packing measures of the level sets of the local dimension, and we

compute the Hausdorff and packing dimensions of the sets of points at which the lower

and upper local dimensions are prescribed. In the case that the attractor is a Cantor set of

zero Lebesgue measure, we prove the validity of the multifractal formalism for the discrete

measures obtained as inverse of these weak Gibbs measures.

Keywords : Hausdorff and packing measures and dimensions, multifractal formalism,

thermodynamic formalism, random weak Gibbs measure, random dynamical systems, met-

ric approximation theory, inverse measures.
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Chapter 1

Introduction

Weak Gibbs measures are conformal probability measures obtained as eigenvec-
tors of Ruelle-Perron-Frobenius operators associated with continuous potentials on
topological dynamical systems. When the system (X, f) has nice enough geometric
properties, for instance in the case of a conformal repeller, these measures provide
natural, and now standard examples of measures obeying the multifractal formalism:
their Hausdorff spectrum and Lq-spectrum form a Legendre pair.

Specifically, for such a measure µ on (X, f), the (lower) Lq-spectrum τµ : R →
R ∪ {−∞} is defined by

τµ(q) = lim inf
r→0

log sup{∑i(µ(Bi))
q}

log(r)
, (1.1)

where the supremum is taken over all families of disjoint closed balls Bi of radius r
with centers in supp(µ); the lower Hausdorff spectrum of µ is defined by

d ∈ R 7→ dimH E(µ, d),

where dimH stands for the Hausdorff spectrum, E(µ, d) is the level set of level d of

the lower local dimension dimloc(µ, x) = lim inf
r→0+

log(µ(B(x, r)))

log(r)
, i.e.

E(µ, d) = {x ∈ supp(µ) : dimloc(µ, x) = d} ,

and we have the duality relation

dimH E(µ, d) = τ ∗µ(d) := inf
q∈R

dq − τµ(q), ∀d ∈ R,

a negative dimension meaning that the set is empty. In fact, due to the super
and submultiplicativity properties associated with µ, the same equality holds if we
replace the lim inf by a lim sup or a limit in the definition of the local dimension.

1
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The rigorous study of these measures started with the Gibbs measures case,
which corresponds to Hölder continuous potentials, or continuous potentials pos-
sessing the so-called bounded distorsions property, and in particular on the so-called
“cookie-cutter” Cantor sets associated with a C1+α expanding map f on the line
[19, 71] (see [68] for an extended discussion of dimension theory and multifractal
analysis for hyperbolic conformal dynamical systems). This followed seminal works
by physicists of turbulence and statistical mechanics pointing the accuracy of mul-
tifractals to statistically and geometrically describe the local behavior of functions
and measures [33, 36]. In the case of Gibbs measures, the Lq-spectrum of the Gibbs
measure is differentiable, and analytic if the potential φ is Hölder continuous; it is the
unique solution t of the equation P (qφ+ t log ‖Df‖) = 0, where P (·) stands for the
topological pressure. The general case of continuous potentials was solved later in
[26, 29, 42, 63], with the same formula for the Lq-spectrum. These progress then led
to the multifractal analysis of Bernoulli convolutions associated with Pisot numbers
[28, 30]. Thermodynamic formalism and large deviations are central tool in these
studies. It is worth mentioning that simultaneously another family of multifractal
measures has been studied intensively, namely the random measures possessing scale
invariance in multiplicative chaos theory (see [55, 56, 57, 41, 5, 72, 3]).

It turns out that Gibbs measures on cookie-cutter sets naturally generate a class
of discrete measures obtained as their inverse (see Definition 1.12), for which the
validity of the multifractal formalism was established in [11], after a partial study in
[58, 73, 74]. Given such a Gibbs measure µ, the Lq-spectrum of its right continuous
inverse measure ν is given by τν(q) = min(0,−τ−1

µ (q)); in [11], an essential new
ingredient is needed, namely conditioned ubiquity [8], which combines ergodic theory
and metric approximation theory.

In the context of random dynamical systems, the multifractal analysis of random
Gibbs measures (to be defined below) associated with random Hölder continuous po-
tentials on attractors of random C1+α expanding (or expanding in the mean) random
conformal dynamics encoded by random subshifs of finite type has been studied in
[45], [31] and [61]. These works, as well as the dimension theory of attractors of
random dynamics [15, 45, 46, 61], are based on the thermodynamic formalism for
random transforms [14, 15, 20, 21, 22, 35, 43, 44, 49, 61]. The multifractal analysis
of random weak Gibbs measures is also implicitly considered in [31] (which deals
with the multifractal analysis of Birkhoff averages), but the fibers are deterministic,
and the techniques developed there seems difficult to adapt in a simple way in the
case of random subshifts.

In this thesis we consider, on a base probability space (Ω,F ,P, σ), random weak
Gibbs measures on some class of attractors included in [0, 1] and associated with
C1 random dynamics semi-conjugate (up to countably many points), or conjugate,
to a random subshift of finite type, and show that these measures and their inverse
obey the multifractal formalism. Compared to the above mentioned works, apart
the source of new difficulties coming from the relaxation of the regularity proper-
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ties of the potentials, our assumptions provide a slightly more general process of
construction of the random Cantor set in terms of the distribution of the random
family of intervals used to refine the construction at a given step: it can contain
contiguous intervals (i.e. without gap in between, and even no gap) with positive
probability; thus, it covers the natural families of Cantor sets one can obtain by
picking at random a fiber in a Bedford-McMullen carpet. As a consequence, the
expression and study of the inverse measure are more involved than in the standard
and deterministic situation considered in [8]. Moreover, we succeed in developing
ubiquity theory in this random context without assuming any mixing properties on
the base space (Ω,F ,P, σ). This substantially improves the approach developed in
[7] to get ubiquity results associated with the special class of random Gibbs mea-
sures obtained as random Riesz products, for which the product structure of (Ω,P)
plays an essential role.

Before stating our main results, we introduce some background about random
dynamical systems and thermodynamic formalism.

1.1 Weak Gibbs measures on random subshifts

Now let us introduce the concepts of random subshifts and associated topological
pressure of random continuous potentials. They have been studied by many authors
[14, 15, 34, 44, 43, 49, 61].

Assume that (Ω,F ,P) is a complete probability space and σ is a P-preserving
invertible ergodic map. In fact, assuming that P is σ-invariant and it has an ergodic
decomposition is enough (this holds if, for example, F is a countably generated
(separable) σ-algebra). Also, we do not really need to assume the map σ to be
invertible; assuming that σΩ = Ω or that σnΩ is measurable for all n ≥ 0 makes
it possible to construct a Rokhlin natural extension which preserves the ergodicity
and mixing (see [79, theorem 1.5] or [70, section 2.7]).

Let ‹Z+ = {1, 2, · · · }∪{∞} be the one-point compactification of Z+ = {1, 2, · · · }.
Let Γ := ‹Z+ × ‹Z+ × · · · with the metric on Γ given by

d(v, v′) =
∑

i∈N
exp(−i)

∣∣∣∣∣
1

vi
− 1

v′i

∣∣∣∣∣ .

where v = v0v1 · · · vi · · · , v′ = v′0v
′
1 · · · v′i · · · and we set 1

∞ = 0.

Let l be a Z+ valued random variable such that

l̂ :=
∫

log(l) dP <∞ and P({ω ∈ Ω, l(ω) ≥ 2}) > 0.

Here, l(ω) will define the number of types for a fixed ω.

Let A = {A(ω) = (Ar,s(ω)) : ω ∈ Ω} be a random transition matrix such
that A(ω) is a l(ω) × l(σω)-matrix with entries 0 or 1. We suppose that the map
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ω 7→ Ar,s(ω) is measurable for all (r, s) ∈ ‹Z+ × ‹Z+ and each A(ω) has at least one
non-zero entry in each row and each column. Let

Σω = {v = v0v1 · · · ; 1 ≤ vk ≤ l(σk(ω)) and Avk,vk+1
(σk(ω)) = 1 for k ∈ N},

and Fω : Σω → Σσω be the left shift (Fωv)i = vi+1 for any v = v0v1 · · · ∈ Σω.
Define ΣΩ = {(ω, v) : ω ∈ Ω, v ∈ Σω} and the map Π : ΣΩ → Ω as Π(ω, v) = ω.
Define the map F : ΣΩ → ΣΩ as F ((ω, v)) = (σω, Fωv). The corresponding family
F̃ = {Fω : ω ∈ Ω} is called a random subshift.

We assume that the random subshift defined above is topologically mixing, i.e.
there exists a N-valued random variable M = M(ω) < +∞ on (Ω,F ,P) such that
for P-almost every ω,

A(ω)A(σω) · · ·A(σM−1ω) is positive.

It is not hard to see that this implies that one can choose M =M(ω) such that
for P-almost every ω,





A(σ−Mω)A(σ−M+1ω) . . . A(σ−1ω)

and

A(ω)A(σω) · · ·A(σM−1ω)

are positive. (1.2)

Define

Σω,n =

®
v = v0v1 · · · vn−1 :

1 ≤ vk ≤ l(σk(ω)) for 0 ≤ k ≤ n− 1,
and Avk,vk+1

= 1 for 0 ≤ k ≤ n− 2.

´
.

By convention we write Σω,0 = ∅. Define Σω,∗ =
⋃
n≥0 Σω,n. For v =

v0v1 · · · vn−1 ∈ Σω,n, we denote |v| = n. For such v, we define the cylinder [v]ω
as

[v]ω := {w ∈ Σω : wi = vi for i = 0, . . . , n− 1}.

Now let us introduce basic notations. For any word v = v0 · · · vr−1vr · · · vm−1 ∈
Σω,m, define v0 to be the first character of v and vm−1 to be the last character of v.
For r ≤ m, define v|r = v0 · · · vr−1.

For any 1 ≤ s ≤ l(ω), for any n ≥ M(ω), for any 1 ≤ t ≤ l(σnω), there exists
at least one word v = v(ω, n, s, t) ∈ Σσω ,n−1 such that svt ∈ Σω,n+1. The choice of v
may be not unique. For each such v, we denote the word svt by s ∗ t.

For any v = v0v1 · · · vn−1 ∈ Σω,n and w = w0w1 · · ·wm−1 ∈ Σσn+kω,m, if k ≥
M(σnω), then v0v1 · · · vn−2vn−1 ∗ w0w1 · · ·wm−1 ∈ Σω,n+k+m−1.

For any v = v0v1 · · · vn−1 · · · ∈ Σω, define v|n = v0v1 · · · vn−1.

For any v = v0v1 · · · vr−1vr · · · vn, w = w0w1 · · ·wr−1wr · · ·wn, if for any i, 0 ≤
i ≤ r − 1 one has vi = wi and vr 6= wr, then define we v ∧ w =: v0v1 · · · vr−1.



CHAPTER 1. INTRODUCTION 5

subshift of finite type Random subshift
———– (Ω,F ,P, σ)

l ( the number of types) constant random variable
A = (ai,j) (Transitive matrix) constant matrix random matrix

M(To define the mixing property) constant random variable

v = v0v1 . . . vn . . . (Point)
1 ≤ vi ≤ l
Avi,vi+1

= 1
v ∈ Σ

1 ≤ vi ≤ l(σi(ω))
Avi,vi+1

(σi(ω)) = 1
v ∈ Σω

shift operator Σ → Σ Σω → Σσω

Table 1.1 – The differences between subshift of finite type and random subshift

The differences between subshift of finite type and random subshift of finite type
are indicated in Table 1.1.

Using the same notations as in [44, 47, 49], let

PP(ΣΩ) = {ρ, probability measure on ΣΩ : Π∗ρ = ρ ◦ Π−1 = P},

and
IP(ΣΩ) = {ρ ∈ PP(ΣΩ) : ρ is F -invariant}.

Any ρ ∈ PP(ΣΩ) on ΣΩ disintegrates in dρ(ω, v) = dρω(v)dP(ω) where the
measures ρω, ω ∈ Ω, are regular conditional probabilities with respect to the σ-
algebra π−1

Ω (F), where πΩ is the canonical projection from ΣΩ to Ω. This implies
that for P-almost every ω, for any measurable set R ⊂ ΣΩ, ρω(R(ω)) = ρ(R|π−1

Ω (F)),
where R(ω) = {x : (ω, v) ∈ R}.

Let R = {Ri} be a finite or countable partition of ΣΩ into measurable sets. Then
for all ω ∈ Ω, R(ω) = {Ri(ω) : Ri(ω) = {x ∈ Σω : (ω, x) ∈ Ri}} is a partition of
Σω.

Given ρ ∈ PP(ΣΩ), the conditional entropy of R given π−1
Ω (F) is defined by

Hρ(R|π−1
Ω (F)) = −

∫ ∑

i

ρ(Ri|π−1
Ω (F)) log(ρ(Ri|π−1

Ω (F)))dP

=
∫
Hρω(R(ω))dP(ω)

where Hρω(A) denotes the usual entropy of a partition A.

Now, given a finite or countable partition Q of ΣΩ, define the fiber entropy of F
or the relative entropy of F with respect to Q as

hρ(F,Q) = lim
n→∞

1

n
Hρ(∨n−1

i=0 F
−iQ|π−1

Ω (F))
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(here ∨ denotes the join of partitions).

Then define

hρ(F ) = sup
Q
hρ(F,Q),

where the supremum is taken over all finite or countable measurable partitions
Q = {Qi} of ΣΩ with finite conditional entropy, that is hρ(F,Q) < +∞. In our
setting, we have hρ(F ) ≤

∫
log(l) dP. The number hρ(F ), also denoted h(ρ|P) in the

literature, is the relativized entropy of F given ρ. It is also called the fiber entropy
of the bundle random dynamics F .

We say that a measurable function Φ on ΣΩ is in L1
ΣΩ

(Ω, C(Σ)) if

1.

CΦ =:
∫

Ω
‖Φ(ω)‖∞ dP(ω) <∞ (1.3)

where

‖Φ(ω)‖∞ =: sup
v∈Σω

|Φ(ω, v)|; (1.4)

2.

varnΦ(ω) → 0 as n→ ∞, P-almost surely (1.5)

where varnΦ(ω) = sup{|Φ(ω, v)− Φ(ω,w)| : vi = wi, ∀i < n}.

The topological pressure P (Φ) of Φ is defined by

P (Φ) = sup
ρ∈IP(ΣΩ)

ß
hρ(F ) +

∫
Φdρ

™
.

Now, with Φ ∈ L1
ΣΩ

(Ω, C(Σ)) is associated the transfer operator LωΦ : C0(Σω) →
C0(Σσω) defined as

LωΦh(v) =
∑

Fωw=v

exp(Φ(ω,w))h(w), ∀ v ∈ Σσω.

By replacing if necessary Ω by a subset of full probability over which the mappings
Φ(σkω, ·), k ≥ 0 are all continuous, we have the following result:

Proposition 1.1 [44, 61] For all ω ∈ Ω, there exists λ(ω) > 0 and a probability
measure µ̃ω on Σω such that (LωΦ)∗µ̃σω = λ(ω)µ̃ω.

We call the family {µ̃ω : ω ∈ Ω} a random weak Gibbs measure on {Σω : ω ∈ Ω}
associated with Φ.
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1.2 A model of random dynamical attractor

Given a random subshift of finite type as above, we can construct a random dy-
namical attractor. Our assumptions on the distribution of the number of intervals
used in the construction, and the distribution of the lengths and positions of these
intervals are more general than those used to get dynamical random Cantor sets in
[45, 68, 76, 61].

For any ω ∈ Ω, let U1
ω = [aω,1, bω,1], U

2
ω = [aω,2, bω,2], · · ·U s

ω = [aω,s, bω,s] · · · be
closed non trivial intervals with disjoint interiors and suppose that U s

ω is on the left
side of U s+1

ω for each s ∈ N, i.e. bω,s ≤ aω,s+1.

We assume that for each s ≥ 1, ω 7→ (aω,s, bω,s) is measurable, aω,1 ≥ 0, bω,l(ω) ≤ 1
and setting f sω(x) =

x−aω,s
bω,s−aω,s , the mapping ω 7→ T

s
ω is measurable from (Ω,F) to the

space of diffeomorphisms of [0, 1] endowed with its Borel σ-field. Then T sω : U s
ω →

[0, 1] which is defined by T sω := T
s
ω ◦ f sω(x) is a C1 diffeomorphism and we denote its

inverse by gsω := (T sω)
−1.

From now on for all ω ∈ Ω and s ≥ 1, we define

‹ψ(ω, s, x) = − log |(T sω)′(x)|, ∀x ∈ U s
ω.

Here, if x is a endpoint of U s
ω, the derivative means the left derivative or right

derivative of T sω in the interval U s
ω:

‹ψ(ω, s, x)(x) =
® − log |(T sω)′+(x)|, x is the left end point of the interval U s

ω;
− log |(T sω)′−(x)|, x is the right end point of the interval U s

ω.

We say that a measurable function ψ on ‹UΩ = {(ω, s, x) : ω ∈ Ω, 1 ≤ s ≤
l(ω), x ∈ U s

ω} is in L1
Xω(Ω,

‹C([0, 1])) if

1.
Cψ :=

∫

Ω
‖ψ(ω)‖∞dP(ω) <∞,

where
‖ψ(ω)‖∞ := sup

1≤s≤l(ω)
sup
x∈Usω

|ψ(ω, s, x)|; (1.6)

2. for P-almost every ω ∈ Ω, var(ψ, ω, ε) → 0 as ε→ 0, where

var(ψ, ω, ε) = sup
1≤s≤l(ω)

sup
x,y∈Usω and |x−y|≤ε

|ψ(ω, s, x)− ψ(ω, s, y)|. (1.7)

We now make our first assumption on the construction:

Assumption 1 ψ := ‹ψ|ŨΩ
∈ L1

Xω(Ω,
‹C([0, 1])) and ψ satisfies the contraction prop-

erty in the mean

cψ := −
∫

Ω
sup

1≤s≤l(ω)
sup
x∈Usω

ψ(ω, s, x)dP(ω) > 0. (1.8)
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Define

U v
ω = gv0ω ◦ gv1σω ◦ · · · ◦ gvn−1

σn−1ω([0, 1]), ∀v = v0v1 · · · vn−1 ∈ Σω,n

Xω =
⋂

n≥1

⋃

v∈Σω,n
U v
ω

XΩ = {(ω, x) : ω ∈ Ω, x ∈ Xω}.

Now we will draw a picture to show the construction of random dynamical at-
tractor:

0 1

g1σω g2σω g3σω · · · gl(ω)σω

. . .
U1
σω U2

σω U3
σω U l(σω)

ω

ω
U11
ω U12

ω U13
ω U l(σω)

ω

. . .

g2ω

U21
ω U22

ω U2l(σω)

ω

. . .

g1ω

U11
ω U12

ω U13
ω U l(ω)l(σω)

ω

. . .

gl(ω)ω

U1
ω U2

ω U l(ω)
ω

σω

· · · · · ·

Figure 1.1 – First and second steps of the construction of the random attractor Xω.

There is a natural projection πω : Σω → Xω defined as

πω(v) = lim
n→∞ g

v0
ω ◦ gv1σω ◦ · · · ◦ gvn−1

σn−1ω(0).

This map may not be injective, but any x ∈ Xω has at most two preimages in Σω.

The family X = {Xω : ω ∈ Ω} is called a random dynamical attractor. Specif-
ically, we will see that either Xω is a Cantor set with probability 1, or Xω = [0, 1]
with probability 1 (see chapter 4). In both cases, {Xω : ω ∈ Ω} is the attractor of
the random directed graph IFS {gsω : 1 ≤ s ≤ l(ω), ω ∈ Ω} where the edges are given
by the A(σkω), k ≥ 0. In the first case, the mappings πω conjugates {Σω : ω ∈ Ω}
with the family of random Cantor sets {Xω : ω ∈ Ω}, which is endowed with the
random dynamics Fω ◦ π−1

ω ; in the deterministic fullshift setting, when the intervals
U s are separated, the Cantor set X is called cookie-cutter set.

The above property 2. satisfied by ψ is weaker than the Hölder continuity as-
sumed in [48, 61] (see chapter 3). It is also slightly weaker than the situation where
the attractor would be the repeller of a family of random C1 conformal mappings,
since for two neighboring intervals U s

ω and U s+1
ω we do not require any continuity at

their intersection point whenever it exists.
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Define the map π : ΣΩ → XΩ as π((ω, v)) = (ω, πω(v)). For all n ∈ N, for any
word v = v0v1 . . . vn−1 ∈ Σω,n, we define

Xv
ω =: πω([v]ω).

We also define

Ψ(ω, v) = ψ(ω, v0, π(v)) for v = v0v1 · · · ∈ Σω. (1.9)

By Assumption 1, since cψ > 0 we have supv∈Σω,n |U v
ω| ≤ exp(

−ncψ
2

) for n larger than

some N(ω), hence the function Ψ is in L1
ΣΩ

(Ω, C(Σ)). Furthermore,

cΨ := −
∫

Ω
sup
v∈Σω

Ψ(ω, v)dP(ω) = cψ.

Theorem 1.2 Under the Assumption 1, for P-almost every ω ∈ Ω, the Bowen-
Ruelle formula holds, i.e. dimH Xω = t0 where t0 is the unique root of the equation

P (tΨ) = 0. Furthermore, t0 = maxρ∈IP(ΣΩ)

ß
hρ(F )

−
∫

Ψdρ

™
.

Such a formula appeared for the first time in [17], where Bowen considered the
Hausdorff dimension of quasi-circles. His method easily applies to the study of
deterministic cookie-cutter sets (see [13] for instance). The Hausdorff dimensions of
random dynamical Cantor sets (as well as some invariant sets of random dynamics
on the torus) have been obtained through the same formula as in theorem 1.2 in
[45, 46, 68, 16, 49, 61, 76] under the assumptions that the dynamics are piecewise
C1+α. Thus, theorem 1.2 is expected and not difficult to get from Bowen’s ideas,
but for the sake of completeness, we will give a proof using an appropriate random
weak Gibbs measure.

1.3 Multifractal formalism

Let us recall some general concepts of geometric measure theory. We start with
Hausdorff and packing measures and dimensions in general metric spaces (we fol-
low [59]).

Let (X, d) be a metric space, F a family of subsets of X and ζ a non-negative
function on F . We make the following two assumption

• For every δ > 0 there are E1, E2, · · · ∈ F such that X =
⋃∞
i=1Ei and d(Ei) ≤ δ,

where d(E) = supx,y∈E d(x, y) for any E ∈ F . The diameter d(E) will be also
denoted by |E| is the sequel.

• For every δ > 0 there is E ∈ F such that ζ(E) ≤ δ and d(E) ≤ δ.
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For 0 ≤ δ ≤ ∞ and A ⊂ X, define

Hζ
δ(A) = inf{

∞∑

i=1

ζ(Ei) : A ⊂ ∪∞
i=1Ei, d(Ei) ≤ δ, Ei ∈ F}.

Then define
Hζ(A) = lim

δ↓0
Hζ
δ(A) = sup

δ>0
Hζ
δ(A)

for A ⊂ X. Then Hζ is a Borel measure further more if the member of F are Borel
sets, then Hζ is Borel regular.

Definition 1.3 [59] Let X be separable, 0 ≤ s <∞, choose

F = {E : E ⊂ X},
and

ζ(E) = (d(E))s,

with the convention 00 = 1 and (d(∅))s = 0. The corresponding Hζ
δ is called the s-

dimensional pre-Hausdorff measure and is denoted by Hs
δ, and the resulting measure

Hs is called the s-dimensional Hausdorff measure and is denoted by Hs.

The Hausdorff dimension of a set A ⊂ X is

dimH A = sup{s : Hs(A) > 0} = sup{s : Hs(A) = ∞}
= inf{t : Ht(A) <∞} = inf{t : Ht(A) = 0}

Let g : [0,∞) → [0,∞) be a non decreasing function with g(0) = 0 and we will
call g a gauge function. We take again

F = {E : E ⊂ X} and ζ(E) = g(d(E)),

then the corresponding measure Hg is called the Hausdorff g measure. Of course
Hg = Hs when g(t) = ts.

The packing measure and packing dimension can be defined in a similar way.

Let g : [0,∞) → [0,∞) be a non decreasing function with g(0) = 0. For
0 ≤ δ ≤ ∞ and A ⊂ X, define the packing g pre-measure

Pg
0,δ(A) = sup





∑

i∈I
g(d(Bi))

∣∣∣∣∣∣∣

{Bi}i∈I is a countable collection of
pairwise disjoint closed balls with
diameter not larger than δ and centers in A




.

Then define
Pg

0 (A) = lim
δ↓0

Pg
0,δ(A) = sup

δ>0
Pg

0,δ(A),

for A ⊂ X. Then

Pg(A) = inf{
∑

j∈J
Pg

0 (Aj) : A ⊂ ∪j∈JAj, J countable }.

Pg is called the packing g measure.
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Definition 1.4 If g(E) = (d(E))s, then Pg is also called the s-dimensional packing
measure and it is denoted by Ps.

The packing dimension of a set A ⊂ X is

dimpA = sup{s : Ps(A) = ∞} = inf{t : P t(A) = 0}.

Now, let us set up the multifractal formalism on R, which will be the context of
this thesis. Possible references are [24, 18, 64, 50, 4].

Let µ be a compactly supported positive and finite measure on R.

Definition 1.5 The (lower) Lq-spectrum τµ : R → R ∪ {−∞} and the upper-Lq

spectrum τµ : R → R ∪ {−∞} are given by

τµ(q) = lim inf
r→0

log sup{∑i(µ(Bi))
q}

log(r)
(1.10)

τµ(q) = lim sup
r→0

log sup{∑i(µ(Bi))
q}

log(r)
(1.11)

where the supremum is taken over all families of disjoint closed balls Bi of radius r
with centers in supp(µ).

By construction, the function τµ is non decreasing and concave over its domain,
which equals R of R+ (see [50, 4]).

Definition 1.6 The lower and upper large deviations spectra LD and LD are given
by

LDµ(d) = lim
ε→0

lim inf
r→0

log#{i : rd+ε ≤ µ(B(xi, r) ≤ rd−ε)}
− log(r)

(1.12)

LDµ(d) = lim
ε→0

lim sup
r→0

log#{i : rd+ε ≤ µ(B(xi, r) ≤ rd−ε)}
− log(r)

(1.13)

where the supremum is taken over all families of disjoint closed balls Bi =
B(xi, r) of radius r with centers xi in supp(µ).

Definition 1.7 For all x ∈ supp(µ), define

dimloc(µ, x) = lim inf
r→0+

log µ(B(x, r))

log r
, dimloc(µ, x) = lim sup

r→0+

log µ(B(x, r))

log r
,

and

dimloc(µ, x) = lim
r→0+

log µ(B(x, r))

log r
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whenever the limit exists. Then, for d ≤ d′ ∈ R, define

E(µ, d) = {x ∈ supp(µ) : dimloc(µ, x) = d},
E(µ, d) = {x ∈ supp(µ) : dimloc(µ, x) = d},
E(µ, d) = E(µ, d) ∩ E(µ, d),

E(µ, d, d′) = {x ∈ supp(µ) : dimloc(µ, x) = d, dimloc(µ, x) = d′}.

It is clear that since µ is bounded, E(µ, d, d′) = ∅ if d′ < 0.

Finally, define

dimH(µ) = sup{s : for µ-almost every x ∈ supp(µ), dimloc(µ, x) ≥ s}.

An equivalent definition is (see [24]):

dimH(µ) = inf{dimH E : µ(E) > 0}.

Definition 1.8 (Legendre Transform) For any function f : R → R ∪ {−∞} with
non-empty domain, its Legendre transform f ∗ is defined on R by

f ∗(d) = inf
q∈R

{dq − f(q)} ∈ R ∪ {−∞}.

Definition 1.9 (Multifractal formalism) We say that µ obeys the strong multifractal
formalism at d ∈ R ∪ {∞} if

dimH E(µ, d) = τ ∗µ(d)

and that the strong multifractal formalism holds (globally) for µ if it holds at any
d ∈ R ∪ {∞}.

We say that µ obeys the multifractal formalism at d ∈ R ∪ {∞} if

dimH E(µ, d) = τ ∗µ(d)

and that the multifractal formalism holds (globally) for µ if it holds at any d ∈
R ∪ {∞}.

The reader should have in mind that if the domain of τµ is the whole interval R,
then τ ∗µ(d) ≥ 0 if and only if τ ∗µ(d) > −∞, i.e. d ∈ [τ ′µ(+∞), τ ′µ(−∞)].

It turns out that if the strong multifractal formalism holds for µ at d, then one
has ([64, 50])

dimH E(µ, d) = dimH E(µ, d) = dimH E(µ, d) = dimP E(µ, d) = LDµ(d) = LDµ(d)

= τ ∗µ(d)
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since one always has
dimH E(µ, d) ≤ LDµ(d)

and

max(LDµ(d), dimH E(µ, d), dimH E(µ, d), dimP E(µ, d)) ≤ LDµ(d) ≤ τ ∗µ(d).

Then, it is straightforward that in this case τµ is a limit, i.e. τµ = τµ.

A full illustration of this multifractal formalism is given in [4], where, for any con-
cave function τ naturally candidate to be the Lq-spectrum of a compactly supported
positive measure on R (and more generally Rd), such a measure µ is constructed;
moreover, this measure obeys the strong multifractal formalism and it is exactly
dimensional.

Definition 1.10 Given α ≥ 0, we say that the zero-infinity law holds for a set E
at α in the sense of Hausdorff if for any gauge function g we have

Hg(E) =





0 if lim supr→0
log g(r)
log r

> α,

∞ if lim supr→0
log g(r)
log r

≤ α.

We say that the zero-infinity law holds for E at α in the sense of packing if for
any gauge function g we have

Pg(E) =





0 if lim infr→0
log g(r)
log r

> α,

∞ if lim infr→0
log g(r)
log r

≤ α.

1.4 Multifractal analysis of the random weak Gibbs
measures

Let φ ∈ L1
ΣΩ

(Ω, ‹C([0, 1])) and consider the function: Φ(ω, v) = φ(ω, v0, π(v)), for
v = v0v1 · · · ∈ Σω. Then Φ is an element of L1

ΣΩ
(Ω, C(Σ)).

Let µ be the random weak Gibbs measure on {Xω : ω ∈ Ω} obtained as µω =
πω∗µ̃ω := µ̃ω ◦ π−1

ω , where µ̃ is obtained from proposition 1.1. Without changing the
random measures µ̃ω and µω, we can assume P (Φ) = 0 after replacing φ by φ−P (Φ)
and λ(ω) by λ(ω)e−P (Φ) if necessary.

Since cΨ > 0, one deduces from the definition of the topological pressure that
for any q ∈ R, there exists a unique T (q) ∈ R such that

P (qΦ− T (q)Ψ) = 0,

and that the mapping T is concave and non decreasing. It follows from the varia-
tional principle that T (q)/q is bounded near −∞ and +∞, so (T ′(+∞), T ′(−∞))
is a bounded subset of R+.
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Theorem 1.11 Under the Assumption 1, for P-almost every ω ∈ Ω, one has

1. for any q ∈ R,

τµω(q) = τµω(q) = T (q) = min
ρ∈IP(ΣΩ)

®
hρ(F ) + q

∫
Φdρ

∫
Ψdρ

´
.

2. The strong multifractal formalism holds globally for µ, i.e. for all d ∈
[T ′(+∞), T ′(−∞)] we have

dimH E(µω, d) = dimH E(µω, d) = dimH E(µω, d) = dimP E(µω, d)

= LDµω(d) = LDµω(d) = τ ∗µω(d) = T ∗(d);

furthermore

T ∗(d) = max
ρ∈IP(ΣΩ)

®
−hρ(F )∫

Ψdρ
:

∫
Φdρ

∫
Ψdρ

= d

´
.

3. For any given d, d′ ∈ [T ′(+∞), T ′(−∞)],

dimH E(µω, d, d
′) = inf{T ∗(d), T ∗(d′)},

dimP E(µω, d, d
′) = sup{T ∗(β) : β ∈ [d, d′]}.

4. For any given d ∈ [T ′(+∞), T ′(−∞)],

dimH E(µω, d) = T ∗(d), dimP E(µω, d) = sup{T ∗(d′) : d′ ≥ d},

and

dimH E(µω, d) = T ∗(d), dimP E(µω, d) = sup{T ∗(d′) : d′ ≤ d}.

5. For any d ∈ [T ′(+∞), T ′(−∞)] such that

T ∗(d) < sup{T ∗(d′) : d′ ∈ [T ′(+∞), T ′(−∞)]} = t0 = dimH Xω,

the zero-infinity law holds for the set E(µω, d) at T ∗(d) in the sense of both
Hausdorff and packing.

Let us put our result in perspective with respect to the existing literature.

Multifractal analysis and large deviations for Gibbs measures on cookie-cutter
sets were achieved in [71], after the study of some class of multifractal invariant
measures in [19] (see also[13] and [24, Ch. 4 and 5]). They used a multifractal
formalism based on a Lq-spectrum defined thanks to partition functions associated
with the symbolic coding of the support of the measure [18], while the more intrinsic
point of view we adopt here, which consists in considering balls centered on the
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support of the measure, comes from the fundamental contributions by Olsen [64]
and Lau-Ngai [50]. More generally, the multifractal analysis of Gibbs measures and
quasi-Bernoulli measures on attractors of hyperbolic dynamics has been studied
intensively (see for instance [18, 25, 67, 38, 12]; on the other hand, a lot of works
have been dedicated to the closely related class of self-similar measures, see [5] for a
survey). Thermodynamic formalism and multifractal analysis was deal with for the
conformal infinite iterated function systems in [37] and for meromorphic functions
of finite order in [62]. Graph directed Markov system was considered in [60] and
then multifractal analysis of conformal measure for such system (over a subset of
the limit set which is often large) was considered in [77]. The first results for weak
Gibbs measures were obtained in [42], and completed in [26, 29, 30].

The study achieved in [68, 69] leads to the multifractal nature of Gibbs mea-
sures projected on some random Cantor sets whose construction assumes a strong
separation condition for the pieces of the construction. About the same time, the
multifractal analysis of random Gibbs measures and Birkhoff averages on random
Cantor sets and the whole torus where obtained in [45, 46]; when the support of
the measure is a Cantor set, a strong separation condition is assumed as well. More
recently, in [31], the multifractal analysis for disintegrations of Gibbs measures on
{1, . . . ,m}N ×{1, . . . ,m}N was achieved as a consequence of the multifractal analy-
sis of conditional Birkhoff averages of random continuous potentials (not Cα). The
approach developed there could, with some effort, be adapted to derive our results
on weak Gibbs measures if we worked with random fullshift only. However, as we
already said it in the beginning of the introduction, the method can not be extended
easily to the random subshift, and our view point will be different. In [31], the au-
thors start by establishing large deviations results and use them to construct by
concatenation Moran sets of arbitrary large dimension in the level sets E(µω, d); we
will concatenate information provided by random Gibbs measures associated with
Hölder potentials which approximate the continuous potentials associated with the
random weak Gibbs measure and the random maps generating the attractor Xω.
This will provide us with a very flexible tool from which, for instance, we will de-
duce the result about the sets E(µω, d, d

′). In this sense, our results also complete
a part of those obtained in [61] which, in particular, achieves the multifractal anal-
ysis of random Gibbs measures on random Cantor sets obtained as the repeller of
random conformal maps.

The multifractal analysis of Birkhoff averages on random conformal repellers of
C1 expanding maps is studied in [81], where the random dynamics is in fact coded by
a non random subshift of finite type, and the random potentials that are considered
satisfy an equicontinuity property stronger than the one we require.

The sets E(µ, d, d′) were studied for Gibbs measures on conformal repellers and
for self-similar measures in [32, 65, 2, 66].

Finally, in [53], zero-infinity laws are established for Besicovitch subsets of self-
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similar sets of the line. This inspired theorem 1.11(5), of which the results in [53]
turn out to be a special case. Also, in [52], a zero-infinity law is established for the
Hausdorff and packing measure of sets of generic points of invariant measures on a
conformal repeller.

1.5 Multifractal analysis of the inverse of random
weak Gibbs measures

Definition 1.12 For any positive Borel measure µ on [0, 1], let Fµ be the distribu-
tion function of the measure µ which is Fµ(t) = µ([0, t]). The inverse measure ν of
µ is the unique Borel probability measure on [0, 1] such that

for all x ∈ [0, 1], Fν(x) = sup{t ∈ [0, 1];Fµ(t) ≤ x}.

After reducing the situation to the case P (Φ) = 0, our second main assumptionis:

Assumption 2

cφ := −
∫

Ω
sup

1≤s≤l(ω)
sup
x∈Usω

(φ(ω, s, x))dP(ω) > 0,

and
P({ω ∈ Ω : The Lebesgue measure of Xω is equal to 0}) = 1.

The general assumption that for P-almost every ω ∈ Ω, the Lebesgue measure
of Xω vanishes ensures that, P-almost every ω ∈ Ω, the inverse measure of any
probability measure on Xω is a discrete probability measure. This assumption is
weaker than the essential randomness sometimes assumed in some related works
(see [61]), which implies that for P-almost every ω ∈ Ω one has Ht0(Xω) = 0
(recall that t0 is the almost sure Hausdorff dimension of Xω): since t0 ≤ 1, essential
randomness implies vanishing of the Lebesgue measure. Our assumption, as well as
essential randomness, seems hard to illustrate with examples for which t0 = 1. It
would be good to prove, or disprove, the existence of such an example.

For any q ∈ R, there exists a unique T (q) ∈ R such that

P (qΨ− T (q)Φ) = 0.

This is due to the fact that cΦ = cφ > 0. There is an obvious relationship between
T and T through the equation P (qΦ− T (q)Ψ) = 0.

Our result about the multifractal analysis of the inverse measure for the random
weak Gibbs measure is following:
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Theorem 1.13 Under the assumption 1 and 2, for P-almost every ω ∈ Ω, the in-
verse measure νω of µω is a discrete measure and it satisfies the following properties:

1. For any q ∈ R, one has that τνω(q) = min{T (q), 0}.

2. For any d ∈ [0, τ ′νω(−∞)], one has

dimH(E(νω, d)) = τ ∗νω(d).

3. • For any d ∈ [T ′(+∞), T ′(−∞)], one has

dimH(E(νω, d)) = dimH(E(νω, d)) = T ∗(d) = dT ∗(1/d).

• For any d ∈ (0, T ′(+∞)), the sets E(νω, d) and E(νω, d) are empty.

• For d = 0,

E(νω, 0) = E(νω, 0) = {atoms of νω}

so that
dimH(E(νω, 0)) = dimH(E(νω, 0)) = 0.

Multifractal analysis of inverse measures started in [58], and then was developed
in [73, 74]. In these papers, the local dimension is defined in a stronger sense in order
to get general relations between the multifractal behavior of measure and its inverse:
dimloc(µ, x) = limI→{x}

log(µ(I))
log(|I|) , where I is a non trivial interval containing I. With

this definition, it was shown in [74] that for the discrete inverse of a Gibbs measure
on a cookie-cutter the strong multifractal formalism fails on a non trivial interval.
Later, in [11] obtained the validity of the multifractal formalism using the lower local
dimension. This used the so-called conditioned ubiquity theory, which combines
ergodic theory and metric approximation theory, and was developed in [8]. This tool
makes it possible to study a broad class of multifractal discrete measures [6, 10], to
which the measures νω do not belong to.

The flavor of theorem 1.13(1) and (2) is similar to that of [11] regarding the
inverse of Gibbs measures on cookie-cutter sets: for the level sets of the lower local
dimension, the Hausdorff spectrum is composed of two parts: a linear part with slope
dimH Xω, which is established thanks to conditioned ubiquity theory, and a concave
part which mainly reflects the multifractal structure of weak Gibbs measures or,
equivalently, ratios of Birkhoff averages. Theorem 1.13(3) completes [11] results in
this deterministic situation. Also, in [11] the level set E(νω, T ′(−∞)) was not treated
when T ∗(T ′(−∞)) = 0. The study of the sets dimH E(νω, d, d

′) is in progress.

As we explained it at the beginning of this chapter, though following the main
lines of the deterministic case considered in [11], the study of νω requires our results
on weak Gibbs measures since the potentials are not Hölder. Also, even for Hölder
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potentials, the study is made structurally more complexe because the inverse struc-
ture comes from a random subshift. Moreover, we need a version of the conditioned
ubiquity theorem of [8] adapted to our context.

It is worth mentioning that the mutifractal analysis of discrete measures started
with homogeneous sums of Dirac masses [1, 39, 40, 23], in particular the derivative
of Lévy subordinators [40], and that originally heterogeneous ubiquity was elabo-
rate with the multifractal analysis of Lévy processes in multifractal time as initial
target [9].
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Here are some pictures describing the Legendre pairs (τµω , τ
∗
µω) and (τνω , τ

∗
νω).
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Figure 1.3 – The function of τ ∗µω(d).
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Figure 1.6 – The Lq-spectrum for the inverse measure — τνω

1

1

dim
H

 X
ω

o d

τ
ν
ω

* (d)

Figure 1.7 – The Hausdorff dimension of the level sets E(νω, d) : τ ∗νω(d)
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1.6 Concrete examples of random attractors

The random attractors considered in this paper extend for instance the examples
that are obtained if one considers the fibers of McMullen-Bedford self-affine carpets,
and more generally the Gatzouras-Lalley self-affine carpets [82]. In particular, such
fibers naturally illustrate the idea that at a given step of the construction two
consecutive intervals U s

ω and U s+1
ω may touch each other. In [51], Luzia considers a

class of expanding maps of the 2-torus of the form f(x, y) = (a(x, y), b(y)) that are
C2-perturbations of Gatzouras-Lalley carpets, whose fibers naturally illustrate our
purpose with nonlinear maps, but not C1. Also these examples are associated with
random fullshift.

Let us give more explicit examples. Here we use the notations of Section 1.2.

A first example is the following. Let (Ω,F ,P , σ) is the following:

Ω = Γ := ‹Z+ × ‹Z+ × · · · ,

F is the σ-algebra generated by the cylinders [n1n2 · · ·nk] for any k ∈ N and any
ni ∈ Z̃+ for any i ∈ N with 1 ≤ i ≤ k,

P([n1n2 · · ·nk]) =
1

n1(n1 + 1)
· 1

n2(n2 + 1)
· · · · · 1

nk(nk + 1)
,

the map σ is the shift map. Such a system is ergodic. It satisfies the conditions we
need.

Let n = n1n2 · · ·nk · · · ∈ Γ, define l(n) = n1 and A(n) = An1×n2 , where An1×n2

is n1 ×n2-matrix with all entries equaling to 1 if n2 6= n2 − 1 or n1 = 2, otherwise it
is a matrix satisfying that the entries of the first n1 − 1 rows are 1 and the entries
of the n1-th row are 0 except that a(n1, n1 − 1) = 1. It is clear that such a system
can give us a random subshift system.

In fact it is easy to check that M and l are measurable. For any k ∈ N,

{n ∈ Ω :M(n) = k} = [(k + 1)k(k − 1) · · · 2],

and it is measurable. So that M is measurable. For l, for any k ∈ N,

{n ∈ Ω : l(n) = k} = [k],

and it is also measurable.

Then l andM are unbounded but
∫
log l dP < +∞, and we get a random subshift,

which is not a fullshift . Now, we set T in(x) = n1x mod 1 for x ∈ [ i−1
n1
, i
n1
] and for

i = 1, 2, · · · , n1.

For any point ω = n, If nk = 3, then at the k-th step the whole length of the
cylinders will become 5/6 of the whole length of k−1-th step. As P([3]) = 1/12, from
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Poincaré’s recurrence theorem [83, theorem 1.4] or ergodic theorem [83, theorem
1.14], for P-almost every ω ∈ Ω, 3 will appear infinity many times, so at last the
whole length (Lebesgue measure) will be 0 for the fiber at ω.

In fact, in the previous model the measure P is a special example of a Gibbs
measure on the (Ω, σ) (see [78, 80]). So we can enrich the previous construction by
considering any such measure P for which

∫
log l dP < +∞. For the mappings maps

T sω, here is a way to provide a non trivial example, which seems to be not covered
by the existing literature.

Start with a family {ϕs,ω}s∈N of random C1 differeomorphisms of [0, 1] such that
at least one ϕ′

s,ω is nowhere Cǫ with positive probability. Assume that there exists
a random variable a0 taking values in (0, 1] and such that

inf
1≤s≤l(ω), x∈[0,1]

|ϕ′
s,ω(x)| ≥ a0(ω).

Let T sω = ϕs,ω◦f sω, where f sω is the linear map from U s
ω onto [0, 1]. Then, the constant

cψ of Assumption 1 satisfies

cψ ≥
∫

Ω

[
log(a0(ω))− sup

1≤s≤l(ω)
log(|U s

ω|)
]
dP(ω).

Thus, we require that

∫

Ω

[
log(a0(ω))− sup

1≤s≤l(ω)
log(|U s

ω|)
]
dP(ω) > 0.

This allows some T sω be not uniformly expanding, but ensures expansiveness
in the mean. It is easily seen that the Lebesgue measure of Xω is almost surely
bounded by

∏n−1
i=0

Ä∑
1≤s≤l(ω) |U s

σiω|/a0(σiω)
ä

for all n ≥ 1. Thus, if we strengthen
our requirement by assuming that

∫

Ω


log(a0(ω))− log

Ñ
∑

1≤s≤l(ω)
|U s

ω|
é
 dP(ω) > 0,

then the Lebesgue measure of Xω is 0 almost surely.

Now let us provide a completely explicit illustration of the last idea (we will work
with a random fullshift for simplicity of the exposition).

We take (Ω,F ,P, σ) as the fullshift ({0, 1, 2}N,F ,P, σ). For any n-th cylinder
[ω0ω1 · · ·ωn−1] ⊂ Ω we set P([ω0ω1 · · ·ωn−1]) =

1
3n

. It is the unique ergodic measure
of maximal entropy for the shift map.

Let l be a random variable depending on ω0 only, which is given by

l(ω) =





4 ω0 = 0
1 ω0 = 1
3 ω0 = 2
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The entries of the random transition matrix are always 1 (we consider the random
fullshift). We assume that the map T (ω, x) just depends on ω0 and x.

If ω0 = 0, let ϕs,ω(x) = x for s = 1, 2, 3, 4 and U1
ω = [0, 1/4], U2

ω = [1/4, 1/2],
U3
ω = [1/2, 3/4] and U4

ω = [3/4, 1]. In this case, we know that a0(ω) = 1. By the
way the intervals U s

ω, 1 ≤ s ≤ 4 cover the interval [0, 1].

If ω0 = 1, let h(x) = 6 +
∑+∞
j=1 j

−2 sin(2jπx). Define

ϕ1,ω(x) =

∫ x
0 h(t)dt∫ 1
0 h(t)dt

,

and U1
ω = [0, 1]. In this case we can choose a0(ω) = 1/2. It is easy to check that

T 1
ω is not expanding on some interval; furthermore it is just of class C1 since h is

nowhere ǫ-Hölder for any ǫ ∈ (0, 1).

If ω0 = 2, let ϕs,ω(x) = x for s = 1, 3 and ϕ2,ω(x) =
7x
8
+ x2

8
, and U1

ω = [0, 1/9],
U2
ω = [1/9, 2/9], U3

ω = [2/3, 7/9]. It is easy to check that the left derivative of T 1
ω and

the right derivative of T 2
ω is not coincide with each other, so it can not be express

as a conformal map here. In this case we can choose a0(ω) = 7/8.

Also,

∫

Ω


log(a0(ω))− log

Ñ
∑

1≤s≤l(ω)
|U s

ω|
é
 dP(ω) =

log 21− log 16

3
> 0,

so that all the conditions hold.



Chapter 2

Basic properties of random weak

Gibbs measures

We will use the notations of the previous chapter.

Fix a potential Φ ∈ L1
ΣΩ

(Ω, C(Σ)) (here P (Φ) may not be 0). Since varnΦ(ω) → 0
as n→ 0 and (varnΦ)n≥1 is bounded in L1 norm, using Maker’s ergodic theorem [54],
we can get

VnΦ(ω) :=
n−1∑

i=0

varn−iΦ(σ
iω) = o(n), P-almost surely. (2.1)

Due to (1.3) and the ergodic theorem, setting Sn‖Φ(ω)‖∞ =
∑n−1
i=0 ‖Φ(σiω)‖∞, for

any positive sequence (an)n≥0 such that an = o(n) we have
∣∣∣Sn‖Φ(ω)‖∞−Sn−an‖Φ(ω)‖∞

∣∣∣ = nCΦ−(n−an)CΦ+o(n) = o(n), P-almost surely.

(2.2)

Definition 2.1 A family u = {un,ω : Σω,n → Σω} of measurable maps satisfying
(un,ω(v))|n = v for all v ∈ Σω,n and (n, ω) ∈ N × Ω is called an extension. We say
that it is measurable, if the map (ω, x) 7→ un,ω(x) is measurable for all n ∈ N.

Let u = {un,ω} be an extension and Φ ∈ L1
ΣΩ

(Ω, C(Σ)). Then for (n, ω) ∈ N× Ω

Zu,n(Φ, ω) :=
∑

v∈Σω,n
exp
Ä
SnΦ(ω, un,ω(v))

ä
=

∑

v∈Σω,n
exp

(
n−1∑

i=0

Φ(F i(ω, un,ω(v)))

)

is called n-th partition function of Φ in ω with respect to u.

Let

πn,u(Φ, ω) =
1

n
logZu,n(Φ, ω).

25
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Due to the assumption log(l) ∈ L1(Ω,P), using the same method as in [35, 49], it is
easy to prove the following lemma.

Lemma 2.2 Let u be any extension and Φ ∈ L1
ΣΩ

(Ω, C(Σ)).

Then limn→∞ πn,u(Φ, ω) = P (Φ) for P-almost every ω ∈ Ω. This limit is inde-
pendent of u.

Now let
λ(ω, n) = λ(ω) · λ(σω) · · · · · λ(σn−1ω),

where λ(ω) is defined as in proposition 1.1. The following lemma is direct when
the potential Φ possesses bounded distorsions so that the Ruelle-Perron-Frobenious
theorem holds for the operator LωΦ. For general potentials in L1

ΣΩ
(Ω, C(Σ)) we need

a proof.

Lemma 2.3 One has lim
n→∞

log λ(ω, n)

n
= P (Φ) for P-almost every ω ∈ Ω.

Remark 2.4 In the following proof, as well as in the rest of this text, we will use
the letter M to denote the levels of the function M(·). Keeping this in mind should
prevent from some confusion.

Proof First, for M > 0, let FM = {ω ∈ Ω : M(ω) ≤ M}. Fix M large enough
so that P(FM) > 0. For each ω ∈ Ω, let bk(ω) be the k-th return time of ω to
the set AM . From ergodic theorem we get limk→∞

bk
k

= 1
P(FM )

for P-almost every

ω ∈ Ω. Then limk→∞
bk+1−bk

bk
= 0 for P-almost every ω ∈ Ω, which implies that

M(σnω) = o(n).

Second, for any v ∈ Σσnω we have

Zu,n−M(σnω))(Φ, ω) exp(−o(n)) ≤ Lω,nΦ 1(v) ≤ Zu,n(Φ, ω) exp(o(n)).

The right inequality uses the fact that we work with a subshift as well as (2.1). We
just prove the left inequality: for n large enough so that M(σnω) ≤ n,

Lω,nΦ 1(v) =
∑

w∈Σω,n,wv∈Σω
exp(SnΦ(ω,wv))

≥
∑

w′∈Σω,n−M(σnω)

exp
Ä
Sn−M(σnω)(ω, uω,n−M(σnω)(w

′))− o(n)
ä

= Zu,n−M(σnω))(Φ, ω) exp(−o(n)).
The inequality follows by using (1.2), then by preserving for each w′ ∈ Σω,n−M(σnω)

only one path of length M(σnω) from w′ to v, and by using (2.1), M(σnω) = o(n)
and (2.2).

Now, since λ(ω, n) =
∫ Lω,nΦ 1(v)dµ̃σnω(v), we can easily get the result from lemma

2.2 and the fact that M(σnω) = o(n).



CHAPTER 2. BASIC PROPERTIES OF RANDOM WEAK GIBBS MEASURES 27

Proposition 2.5 Let u = {un,ω} be an extension and Φ,Ψ ∈ L1
ΣΩ

(Ω, C(Σ)). There
exists Ω′ ⊂ Ω such that:

1. P(Ω′) = 1.

2. Setting Φq,t = qΦ− tΨ for (q, t) ∈ R2, for any ω ∈ Ω′, πn,u(Φq,t, ω) converges
uniformly to P (Φq,t) over the compact subsets of R2 as n→ ∞.

Proof We first check that that πn,u(Φq,t, ω) is a convex function of (q, t):

For any (q1, t1), (q2, t2) ∈ R2 and α ∈ [0, 1]

πn,u(Φαq1+(1−α)q2,αt1+(1−α)t2 , ω)

=
1

n
log

∑

v∈Σω,n
exp(Sn(Φαq1+(1−α)q2,αt1+(1−α)t2)(ω, un,ω(v))

=
1

n
log

∑

v∈Σω,n
exp(Sn(αΦq1,t1 + (1− α)Φq2,t2)(ω, un,ω(v)))

=
1

n
log

∑

v∈Σω,n
exp(Sn(αΦq1,t1)(ω, un,ω(v)) · exp(Sn((1− α)Φq2,t2)(ω, un,ω(v)))

≤ α

n
log

∑

v∈Σω,n
exp(Sn(Φq1,t1)(ω, un,ω(v))) +

1− α

n
log

∑

v∈Σω,n
exp(Sn(Φq2,t2)(ω, un,ω(v)))

= απn,u(Φq1,t1 , ω) + (1− α)πn,u(Φq2,t2 , ω).

Fix a dense countable subset D of R2. For any (q, t) ∈ D, from theorem 2.2
we can find Ωq,t ⊂ Ω such that P(Ωq,t) = 1 and for any ω ∈ Ωq,t one has
limn→∞ πn,u(Φq,t, ω) = P (Φq,t).

Let Ω′ = ∩(q,t)∈DΩq,t. One has P(Ω′) = 1 and for any ω ∈ ΩC ,
limn→∞ πn,u(Φq,t, ω) = Pσ(Φq,t) for all (q, t) ∈ D. The uniform convergence over
the compact subsets of R2 is now a standard result in convex analysis (theorem 10.8
of [75]).

For each ω ∈ Ω, let

D(ω) =:
1

λ(ω,M(ω))
exp(−SM(ω)‖Φ(ω)‖∞).

Then D(ω) > 0 for P-almost every ω ∈ Ω. From M(σnω) = o(n), (2.2) and
lemma 2.3 we can get that logD(σnω) = o(n) P-almost surely.

Recall that by proposition 1.1, for P-a.e ω ∈ Ω, the measures µ̃ω satisfy
(LωΦ)∗µ̃σω = λ(ω)µ̃ω.
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Proposition 2.6 For P-a.e ω ∈ Ω, for any n ∈ N, for all v = v0v1 . . . vn−1 ∈ Σω,n,
one has

D(σnω)

λ(ω, n)
exp ( inf

v∈[v]ω
SnΦ(ω, v)) ≤ µ̃ω([v]ω) ≤

1

λ(ω, n)
exp ( sup

v∈[v]ω
SnΦ(ω, v)),

so that

exp(−ǫnn) ≤
µ̃ω([v]ω)

exp(SnΦ(ω, v)− log(λ(ω, n)))
≤ exp(ǫnn)

for any v ∈ [v]ω, where ǫn does not depend on v and tends to 0 as n→ ∞.

Proof Let us deal first with the case n = 1.

Fix 1 ≤ i ≤ l(ω). For any 1 ≤ j ≤ l(σM(ω)ω), there exists w ∈ Σσω,M(ω)−1 such
that iwj ∈ Σω,1+M(ω). Due to proposition 1.1, we have

µ̃ω([iwj]ω) =
1

λ(ω,M(ω))

∫
Lω,M(ω)

Φ 1[iwj]ω dµ̃σM(ω)ω,

where Lω,nΦ = Lσn−1ω
Φ ◦ · · · ◦ LσωΦ ◦ LωΦ. This implies

µ̃ω([iwj]) ≥
infw∈[iwj]ω exp(SM(ω)Φ(ω,w))

λ(ω,M(ω))
µ̃σM(ω)ω([j]σM(ω)ω).

Then µ̃ω([i]) ≥ D(ω) follows after summing over 1 ≤ j ≤ l(σM(ω)ω). The upper
bound µ̃ω([i]) ≤ 1 is obvious.

The general case is achieved similarly: If v ∈ Σω,n, for each 1 ≤ j ≤
l(σn+M(σnω)−1ω), there exists w ∈ Σσnω,M(σnω)−1 such that vwj ∈ Σω,n+M(σnω). One
has

µ̃ω([vwj]ω) =
1

λ(ω, n)λ(σnω,M(σnω))

∫
Lω,n+M(σnω)

Φ 1[vwj]ω dµ̃σn+M(σnω)ω,

from which we get

µ̃ω([vwj]ω) ≥
1

λ(ω, n)
·D(σnω) exp ( inf

v∈[v]ω
SnΦ(ω, v))µ̃σn+M(σnω)ω([j]σn+M(σnω)ω).

Then, taking the sum over 1 ≤ j ≤ l(σn+M(σnω)−1ω) we get

µ̃ω([v]ω) ≥
D(σnω)

λ(ω, n)
exp ( inf

v∈[v]ω
SnΦ(ω, v)).

The inequality µ̃ω([v]ω) ≤ 1
λ(ω,n)

exp (supv∈[v]ω SnΦ(ω, v)) is direct from the equality

µ̃ω([v]ω) =
1

λ(ω, n)

∫
Lω,nΦ 1[v]ω dµ̃σnω.

Finally we conclude with (2.1) and logD(σnω) = o(n).
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For any γ ∈ L1
XΩ

(Ω, ‹C([0, 1])) and any z ∈ U v
ω, let

Snγ(ω, z) =
n−1∑

i=0

γ(σiω, vi, T
vi−1

σi−1ω · · ·T v0ω z).

Proposition 2.7 For P-almost every ω ∈ Ω, there are positive sequences
(ǫ(ψ, n))n≥0 and (ǫ(φ, n))n≥0, that we also denote as (ǫ(Ψ, n))n≥0 and (ǫ(Φ, n))n≥0,
converging to 0 as n → +∞, such that for all n ∈ N, for all v = v0v1 . . . vn ∈ Σω,n,
we have :

1. For all z ∈ Ů v
ω,

exp(Snψ(ω, z)− nǫ(ψ, n)) ≤ |U v
ω| ≤ exp(Snψ(ω, z) + nǫ(ψ, n)),

hence for all v ∈ [v]ω,

exp(SnΨ(ω, v)− nǫ(Ψ, n)) ≤ |U v
ω| ≤ exp(SnΨ(ω, v) + nǫ(Ψ, n)).

Consequently, for all v ∈ Xv
ω:

|Xv
ω| ≤ |U v

ω| ≤ exp(SnΨ(ω, v) + nǫ(Ψ, n)).

2. For all v ∈ [v]ω,

exp(SnΦ(ω, v)− nǫ(Φ, n)) ≤ µ̃ω([v]ω) ≤ exp(SnΦ(ω, v) + nǫ(Φ, n)),

hence for all z ∈ U v
ω,

exp(Snφ(ω, z)− nǫ(φ, n)) ≤ µω(X
v
ω) = µω(U

v
ω),

as well as µω(U v
ω) ≤ exp(Snφ(ω, z) + nǫ(φ, n)) if µ̃ω is atomless.

Proof 1. For all n ∈ N, for all v = v0v1 · · · vn−1 ∈ Σω,n, define T vω as

T
vn−1

σn−1ω ◦ · · · ◦ T v1σω ◦ T v0ω .

For any x, y ∈ U v
ω, from the Lagrange’s finite-increment theorem we have that

|T vωx− T vωy| = |(T vω)′(z)||x− y|,

for some z between x and y. Since T vω(U
v
ω) =: T

vn−1

σn−1ω ◦ · · · ◦ T v0ω (U v
ω) = [0, 1],

|U v
ω| =

1

|(T vω)′(y)|
= exp(Snψ(ω, z)),
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for some z in the interior of U v
ω. Then by definition (1.8) of cψ, due to the ergodicity

of the system (Ω,F ,P, σ), we have

sup
v∈Σω,n

|U v
ω| ≤ exp(‖SnΨ(ω)‖∞) ≤ exp(−ncΨ/2) (2.3)

for n larger than some N(ω).

Let αn(ω) = var(ψ, ω, supv∈Σω,n |U v
ω|). Then, by definition of ψ, αn(ω) → 0 as

n→ ∞. Consequently,

V (ψ, ω, n) :=
∑

0≤i≤n
αi(σ

n−iω) = o(n)

by Maker’s ergodic theorem, and the same holds for VnΨ(ω) which by definition
equals V (ψ, ω, n) (see (1.7) and (2.1)).

Since |Snψ(ω, z)− Snψ(ω, y)| ≤ V (ψ, ω, n) for any y, z ∈ U v
ω, we get

exp(Snψ(ω, z)− o(n)) ≤ |U v
ω| ≤ exp(Snψ(ω, z) + o(n))

for all z ∈ Ů v
ω. The inequality associated with SnΨ follows immediately.

2. Noting that we reduced the situation to P (Φ) = 0, the first part of this
item comes from theorem 2.6, lemma 2.3, proposition 2.6, the fact that D(σnω) =
o(n), and the control (2.1) of the distorsion VnΦ coming from the assumption φ ∈
L1
XΩ

(Ω, ‹C([0, 1])).
The second part comes from the relation µω = πω∗µ̃ω.



Chapter 3

Basic properties of random Gibbs

measures

Random Gibbs measures are associated with random Hölder continuous potentials.
We say that a function Φ is a random Hölder potential if Φ is measurable from ΣΩ

to R, ∫
sup
v∈Σω

|Φ(ω, v)|dP <∞,

and there exists κ ∈ (0, 1] such that

varnΦ(ω) ≤ KΦ(ω)e
−κn, (3.1)

where the random variable KΦ = KΦ(ω) > 0 is such that
∫
logKΦ(ω)dP(ω) <∞.

A random Hölder continuous potential is obviously in L1
ΣΩ

(Ω, C(Σ)).

Theorem 3.1 ([48, 49]) Assume that F is a countably generated σ-algebra, F is
a topological mixing subshift of finite type and Φ a random Hölder potential.

For P-almost every ω ∈ Ω, there exists some random variables C = CΦ(ω) > 0,
λ = λΦ(ω) > 0, a function h = h(ω) = h(ω, v) > 0 and a measure µ̃ ∈ M1

P(ΣΩ)
with disintegrations µ̃ω satisfying

∫
| logCΦ| dP < +∞,

∫
| log λΦ| dP < +∞ and log h is a Hölder potential,

and such that

LωΦh(ω) = λ(ω)h(σω), (LωΦ)∗µ̃σω = λ(ω)µ̃ω,
∫
h(ω) dµ̃ω = 1. (3.2)

Let mω = mΦ
ω be given by dmω = h(ω)dµ̃ω and set dm(ω, v) = dµ̃ω(v)dP(ω).

Then m ∈ I1
P(ΣΩ), for P-almost every ω ∈ Ω, for all v = v0v1 . . . vn−1 ∈ Σω,n, and
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for all v ∈ [v]ω

1

CΦ
≤ mω([v]ω)

exp(
∑n−1
i=0 Φ(F i(ω, v))− log λΦ(σn−1ω) · · · · · λΦ(ω)) ≤ CΦ. (3.3)

The family of measures (mω)ω∈Ω is called a random (or relative) Gibbs measure
(or state) for the potential Φ. Moreover, m is the unique maximizing F -invariant
probability measure in the variational principle, i.e. such that

P (Φ) = hF (m|P) +
∫

Φdm, and one has P (Φ) =
∫

log λ(ω) dP. (3.4)

Each time we need to refer to the function Φ, we denote the measures m and mω

as mΦ and mΦ
ω , and denote λ as λΦ.

We can also define the random Gibbs measure on the random attractorXω by setting
µω = mω ◦ π−1

ω .

In this thesis if the potential Φ (which is related to φ) is a random Hölder
potential, then when we say the relative measures mΦ

ω and µφω, they are referred to
be random Gibbs measures.

Given a random Hölder potential Φ, from (3.2) we can define the normalized
potential Φ′(ω, v) = Φ(ω, v) + log h(ω, v)− log h(F (ω, v))− log λ(ω), which satisfies
LωΦ′1 = 1 for P-almost every ω ∈ Ω. This implies that Φ′ ≤ 0 for P-almost every
ω ∈ Ω. Also, we have the following fact:

Proposition 3.2 Suppose that Φ is a random Hölder potential. If P (Φ) = 0, there
exist some ̟ > 0 such that for P-almost every ω ∈ Ω, there exists N(ω) such that
for any n ≥ N(ω) and any v ∈ Σω,n, one has

sup
v∈[v]ω

SnΦ(ω, v) ≤ −n̟.

As a consequence, µω is atomeless.

If we need to refer explicitly to Φ, we will use the notations NΦ(ω) and ̟Φ instead
of N(ω) and ̟.

The main idea of the proof is from [31].

Proof Since P (Φ) = 0, we have sup{∫ Φdρ : ρ ∈ IP(ΣΩ)} ≤ 0.

We claim that sup{∫ Φdρ : ρ ∈ IP(ΣΩ)} < 0. Let M large enough such that
P({ω :M(ω) < M, l(ω) ≥ 2}) > 0. For any ω ∈ Ω such that M(ω) < M and l(ω) ≥
2 we have Lω,MΦ′ 1 = 1, hence SMΦ′(ω, v) < 0 for any v ∈ Σω and

∫
SMΦ′(ω, v)dρω < 0

for any probability measure ρω on Σω. Since, moreover, we have SMΦ′ ≤ 0, we
conclude that sup{∫ Φ′ dρ, ρ ∈ IP(ΣΩ)} < 0.
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Let −2̟ := sup{∫ Φdρ : ρ ∈ M1
P(ΣΩ, F )}. If the proposition does not hold,

there exists a subsequence (nk)k≥1 such that

#{v : |v| = nk,
supv∈[v]ω SnkΦ(ω, v)

nk
> −̟} ≥ 1.

For any q ∈ R+,

P (qΦ) = lim
k→∞

log
∑
v∈Σω,nk exp

Ä
qSnkΦ(ω, unk,ω(v))

ä

nk

≥ lim
k→∞

−q̟nk
nk

= −q̟.

However,

P (qΦ) = sup
ρ∈M1

P
(ΣΩ,F )

ß
hρ(F ) +

∫
qΦdρ

™

≤ sup
ρ∈M1

P
(ΣΩ,F )

ß∫
qΦdρ

™
+ sup

ρ∈M1
P
(ΣΩ,F )

{hρ(F )}

≤ −2q̟ + sup
ρ∈M1

P
(ΣΩ,F )

{hρ(F )}

Since supρ∈M1
P
(ΣΩ,F ){hρ(F )} =

∫
log l dP < ∞, letting q tend to ∞ we get a contra-

diction.



Chapter 4

Proof of Bowen’s formula

Here we first explain that for P-almost every ω ∈ Ω, the set Xω is either equal to
[0, 1] or totally disconnected.

From the construction of Xω we deduce that setting Ω′ = {ω ∈ Ω : Xω 6= [0, 1]},
then we have

Ω′ = {ω ∈ Ω : there exists a non trivial open interval Iω ⊂ [0, 1] such that Iω ∩Xω = ∅}.

For each ω ∈ Ω′, fix a nontrivial open interval Iω such that Iω ∩Xω = ∅.
If P(Ω′) > 0, for P-almost every ω ∈ Ω

lim
n→∞

♯{i < n : σiω ∈ Ω′}
n

= P(Ω′).

Then, for any n ∈ N, for any v = v0v1 · · · vn−1 ∈ Σω,n, the interval U v
ω contains an

interval I such that I ∩ Xω = ∅. Indeed, since we can find that k > n +M(σnω)
such that σkω ∈ Ω′, i.e. Iσkω ∩ Xσkω = ∅, for each v = v0v1 · · · vn−1 ∈ Σω,n we can
find a word v′ such that w = vv′ ∈ Σω,k and the nontrivial interval

I = gw0
ω ◦ gv1σω ◦ · · · ◦ g

wk−1

σk−1ω(Iσkω) ⊂ Uw
ω (⊂ U v

ω)

does not intersect gw0
ω ◦gv1σω ◦· · ·◦g

wk−1

σk−1ω(Xσkω) = Xω∩Uw
ω , hence it does not intersect

Xω ∩ U v
ω. Consequently, P-almost surely, the set [0, 1] \Xω is open and everywhere

dense, i.e. the closed set Xω is totally disconnected. Moreover, P(Ω′) = 1.

The case P (Ω′) = 0 occurs only if for P-almost every ω the intervals U s
ω, 1 ≤

s ≤ l(ω) form a covering of the interval [0, 1], and simultaneously the matrix A(ω)
is positive.

Now let us come to the proof of theorem 1.2. At first we notice that the unique-
ness of t0 comes from the fact that t 7→ P (tΨ) is decreasing because cψ > 0.

Upper bound: For any s > 0 and δ > 0 denote by Hs
δ the s-dimensional

Hausdorff pre-measure computed using coverings by set of diameter less than δ. Let

34
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δn := supv∈Σω,n |Xv
ω|. Then

Hs
δn(Xω) ≤

∑

v∈Σω,n
|Xv

ω|s.

As is shown in proposition 2.7, for any n ∈ N, for any v ∈ Σω,n we have |Xv
ω| ≤

|U v
ω| ≤ exp(Ψ(ω, v) + o(n)), so

Hs
δn(Xω) ≤

∑

v∈Σω,n
exp(sSnkΨ(ω, v) + o(n)).

But P (sΨ) < 0 when s > t0. Then, from lemma 2.2, for P-almost every ω ∈ Ω, for

n large enough we get
∑
v∈Σω,n exp(sSnΨ(ω, v) + o(n)) ≤ exp(nP (sΨ)

2
). This implies

Hs(Xω) = 0. So dimH Xω ≤ s. Since s > t0 is arbitrary, we get that dimH Xω ≤ t0.

Lower bound: If t0 = 0, since for P-almost every ω ∈ Ω the set Xω is not
empty, there is nothing to prove.

Suppose that t0 > 0: Since ψ ∈ L1
XΩ

(Ω, ‹C([0, 1])), t0ψ ∈ L1
Xω(Ω,

‹C([0, 1])) as
well. For the potential t0Ψ, we can consider the projection {µt0ψω } of the associated
weak Gibbs measure {µ̃t0Ψω }. We want to prove that dimH(µ

t0ψ
ω ) ≥ t0. If so, since

µt0ψω (Xω) = 1, we get dimH Xω ≥ t0.

First of all, since P (t0Ψ) = 0, by proposition 2.7(1) we can get that for any
n ≥ 1, v ∈ Σω,n and v ∈ [v]ω, we have

exp(Sn(t0Ψ)(ω, v)− o(n)) ≤ µ̃t0ψω ([v]ω) ≤ exp(Sn(t0Ψ)(ω, v) + o(n)).

Since supv∈Σω Sn(t0Ψ)(ω, v) tends to −∞ as n → ∞, we conclude that µ̃t0ψ is
atomless. Consequently,

exp(Sn(t0Ψ)(ω, v)− o(n)) ≤ µt0Ψω (U v
ω) ≤ exp(Sn(t0Ψ)(ω, v) + o(n)).

Define V (r) = {v ∈ Σω,∗ : |U v
ω| ≥ r, ∃ vs ∈ Σω,|v|+1, |U vs

ω | < r}. We have
supv∈V (r) |v| = O(− log r), and for every x ∈ Xω, for r small enough, there exist two
words v, v′ ∈ V (r) such that

(B(x, r/2) ∩Xω) ⊂ (U v
ω ∪ U v′

ω ).

Then proposition 2.7(2) yields

µt0ψω (B(x, r/2)) ≤ µt0ψ,ω(U
v
ω) + µt0ψ,ω(U

v′

ω )

≤ exp(S|v|(t0Ψ)(ω, v) + o(|v|)) + exp(S|v′|(t0Ψ)(ω, v′) + o(|v′|))

for any v ∈ [v]ω and v′ ∈ [v′]ω, where o(|v|) and o(|v′|) depend on ω and t0Ψ only.
Thus

µt0ψω (B(x, r/2)) ≤ exp(S|v|(t0Ψ)(ω, v) + o(|v|)) + exp(S|v′|(t0Ψ)(ω, v′) + o(|v′|))
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≤ exp(S|v|+1(t0Ψ)(ω, v) + o(|v|)) + exp(S|v′|+1(t0Ψ)(ω, v′) + o(|v′|))
≤ (|U vs

ω |t0 exp(o(|v|))) + (|U v′s′

ω |t0 exp(o|v′|))
≤ rt0 exp(o(− log r)).

It follows that lim infr→0
log µ

t0ψ
ω (B(x,r))
log r

≥ t0, hence dimH(µ
t0ψ
ω ) ≥ t0.

For the equation t0 = supρ∈IP(ΣΩ)

ß
hρ(F )

−
∫

Ψdρ

™
, it will follow from proposition 5.3.



Chapter 5

Approximation of (Φ,Ψ) by random

Hölder potentials and related

properties

We mainly introduce objects and related properties which will be used in the next
chapters. Also, we explain the variational formulas appearing in Bowen’s formula
and in the statement of theorem 1.11.

5.1 Approximation of (Φ,Ψ) by random Hölder po-
tentials

Now we approximate the potentials Φ and Ψ associated with {µω}ω∈Ω and {Xω}ω∈Ω
by more regular potentials: for any i ≥ 1, for any ω ∈ Ω for any v = v0v1 · · · vi · · · ∈
[v]ω ⊂ Σω with v = v0v1 · · · vi−1 ∈ Σω,i−1 define

Φi(ω, v) =
max{Φ(ω,w), w ∈ [v]ω}+min{Φ(ω,w), w ∈ [v]ω}

2
,

Ψi(ω, v) =
max{Ψ(ω,w), w ∈ [v]ω}+min{Ψ(ω,w), w ∈ [v]ω}

2
.

These functions Φi and Ψi are piecewise constant with respect to the second
variable. They are random Hölder continuous potentials. If we take

KΦi(ω) = (2 sup
v∈Σω

|Φ(ω, v)|+ 1)ei and κ = 1,

then

varnΦi(ω) ≤ 2 sup
v∈Σω

|Φ(ω, v)| ≤ KΦi(ω) exp(−n) if n ≤ i

varnΦi(ω) = 0 if n > i

37
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i )

Furthermore

log((2 sup
v∈Σω

|Φ(ω, v)|+ 1)ei) ≤ i+ 2 sup
v∈Σω

|Φ(ω, v)|,

and the right hand side is integrable since Φ ∈ L1
ΣΩ

(Ω, C(Σ)).

Also, since for P-almost every ω we have varnΦ(ω) → 0 as n → +∞, and
‖Φ(ω) − Φi(ω)‖∞ ≤ variΦ(ω), we have Φi → Φ uniformly as i → ∞ for P-almost
every ω. The same property holds for Ψi and Ψ. Consequently, without loss of
generality we can also assume that P (Φi) = 0 since P (Φi) converges to P (Φ) as i
tends to +∞.

5.2 Approximation of (T, T ∗) by (Ti, T ∗
i )

Due to our assumptions on (Φ,Ψ) and the definition of (Φi,Ψi)i∈N, we have cΨi < 0,
hence for the same reason as for (Φ,Ψ), for any q ∈ R, for any i ∈ N, there exists
a unique Ti(q) such that P (qΦi − Ti(q)Ψi) = 0 and the function Ti is concave and
non-decreasing. Also, the function Ti is differentiable since for Hölder potentials the
associated random Gibbs measure is the unique invariant measure that maximizes
the variation principle (see [35, 61].)

Lemma 5.1 For any q ∈ R, one has that Ti(q) → T (q) as i→ ∞.

Proof At first, we recall that for any Φ ∈ L1
ΣΩ

(Ω, C(Σ)) one has

P (Φ) = sup
ρ∈IP(ΣΩ)

{hF (ρ|P) +
∫

Φdρ}.

Also, for any q ∈ R, we have P (qΦ− T (q)Ψ) = P (qΦi − Ti(q)Ψi) = 0. Thus

inf
ρ∈IP

Å∫ î
q(Φ− Φi)− T (q)(Ψ−Ψi)− (T (q)− Ti(q))Ψi

ó
dρ
ã
≤ 0, (5.1)

and

sup
ρ∈IP

Å∫ î
q(Φ− Φi)− T (q)(Ψ−Ψi)− (T (q)− Ti(q))Ψi

ó
dρ
ã
≥ 0. (5.2)

The inequality (5.1) implies that for any ε > 0, there exists a measure ρ ∈ IP(ΣΩ)
such that

∫ î
q(Φ− Φi)− T (q)(Ψ−Ψi)− (T (q)− Ti(q))Ψi

ó
dρ ≤ ε.

Then ∫
(T (q)− Ti(q))Ψi dρ ≥

∫
q(Φ− Φi)− T (q)(Ψ−Ψi) dρ− ε,
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and

(T (q)− Ti(q)) ≤
∫
q(Φ− Φi)− T (q)(Ψ−Ψi)dρ− ε

∫
(Ψi) dρ

≤
∫ −|q|(variΦ)− |T (q)|(variΨ) dP− ε

∫
(Ψi) dρ

≤
∫ −|q|(variΦ)− |T (q)|(variΨ) dP− ε

−cΨ

since
∫
(Ψi) dρ ≤ −cΨ < 0. Letting i→ ∞, from the arbitrariness of ε we get

lim inf
i→∞

Ti(q) ≥ T (q).

Using (5.2) similarly we can get lim supi→∞ Ti(q) ≤ T (q). Finally limi→∞ Ti(q) =
T (q).

Proposition 5.2 Let T : R → R be a concave function. Suppose that (Ti)i≥1 is a
sequence of differentiable concave functions from R to R which converges pointwise
to T . Then (T ∗

i )i≥1 converges pointwise to T ∗ over the interior of the domain of T ∗.

Proof Let α be an interior point of dom(T ∗). Let qα ∈ R be the unique point such
that α ∈ [T ′(qα+), T ′(qα−)], and T ∗(α) = αqα − T (qα).

By [27, proposition 2.5(i)], there exists a sequence (qi)i≥1 such that for i large
enough one has T ′

i (qi) = α. Without loss of generality we can assume that this
sequence converges to q′0 ∈ R or diverges to −∞ or ∞.

Suppose first that it converges to q′0 ∈ R. If q′0 = qα then we are done since (Ti)i≥1

converges uniformly on compact sets. Suppose that q′0 6= qα and q′0 > qα. Using
the uniform convergence of (Ti)i≥1 in a compact neighborhood of [qα, q

′
0] and the

inequality Ti(q) ≤ Ti(qi)+T ′
i (qi)(q− qi) (Ti is concave), we can get T (qα) ≤ T (q′0)+

α(qα− q′0). On the other hand, T being concave we have T (qα)+T
′(qα+)(q′0− qα) ≥

T (q′0) and T ′(qα+) ≤ α. This implies that α = T ′(qα+) hence T ∗(α) = αqα−T (qα) =
αq′0 − T (q′0) = limi→∞(αqi − Ti(qi) = T ∗

i (α)).

The case q′0 6= qα and q′0 < qα is similar. Now suppose that (qi)i≥1 diverges to
∞ (the case where it diverges to −∞ is similar). If T is affine over [qα,∞) with
slope α, α is not an interior point of dom(T ∗). Consequently, there exists q′0 and
ǫ > 0 such that T ′(q′0+) < α − ǫ, and T (q) ≤ T (q′0) + (α − ǫ)(q − q′0) for all q ≥ q′0.
On the other hand, since T ′

i is non increasing for all i, for i large enough we have
Ti(q) ≥ Ti(q

′
0) + α(q − q′0) for all q ∈ [q′0, qi]. Since (qi)i≥1 diverges to ∞, this

contradicts the convergence of (Ti)i≥1 to T .
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5.3 Explanation of some variational formulas

Proposition 5.3 If Assumption 1 holds, then

t0 = max
ρ∈IP(ΣΩ)

®
hρ(F )

− ∫ Ψdρ

´
(5.3)

and

T (q) = min
ρ∈IP(ΣΩ)

®
hρ(F ) + q

∫
Φdρ

∫
Ψdρ

´
. (5.4)

Furthermore, for any d ∈ (T ′(+∞), T ′(−∞)),

T ∗(d) = max
ρ∈IP(ΣΩ)

®
−hρ(F )∫

Ψdρ
:

∫
Φdρ

∫
Ψdρ

= d

´
. (5.5)

Proof For equation (5.3), since P (t0Ψ) = 0 and
∫
Ψdρ < 0 for any ρ ∈ IP, then for

any ρ ∈ IP we have

hρ(F ) + t0

∫
Ψdρ ≤ 0,

hence

t0 ≥
hρ(F )

− ∫ Ψdρ
.

On the other hand, for any ǫ > 0, there exists ρ ∈ IP such that

hρ(F ) + t0

∫
Ψdρ ≥ −ǫ,

so

t0 ≤
hρ(F ) + ǫ

− ∫ Ψdρ
.

Letting ǫ tend to 0 yields t0 = sup
ρ∈IP(ΣΩ)

®
hρ(F )

− ∫ Ψdρ

´
. Finally we can get equation (5.3)

from the fact that IP is compact under the weak* topology and the entropy map
ρ 7→ hρ(F ) is upper semi-continuous [49, subsection 4.1 ].

For equation (5.4), it is almost the same as for equation (5.3).

Regarding the equation (5.5), on the one hand, for any d ∈ R,

T ∗(d) = inf
q∈R

{qd− T (q)} = inf
q∈R

®
qd− inf

ρ∈IP(ΣΩ)

®
hρ(F ) + q

∫
Φdρ

∫
Ψdρ

´´

= inf
q∈R

{
sup

ρ∈IP(ΣΩ)

®−hρ(F )− q
∫
Φdρ

∫
Ψdρ

+ qd

´}

= inf
q∈R

{
sup

ρ∈IP(ΣΩ)

®−hρ(F )∫
Ψdρ

+ q

Ç
d−

∫
Φdρ

∫
Ψdρ

å´}
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≥ sup
ρ∈IP(ΣΩ)

®
inf
q∈R

®−hρ(F )∫
Ψdρ

+ q

Ç
d−

∫
Φdρ

∫
Ψdρ

å´´

= sup
ρ∈IP(ΣΩ)

®−hρ(F )∫
Ψdρ

:

∫
Φdρ

∫
Ψdρ

= d

´
.

On the other hand, for any d ∈ (T ′(+∞), T ′(−∞)), by the proof of propo-
sition 5.2, there exists i large enough and qi ∈ R such that T ′

i (qi) = d and
P (qiΦi − Ti(qi)Ψ) = 0. Then there exists ρi ∈ IP(ΣΩ) such that

hρi(F ) +
∫
(qiΦi − Ti(qi)Ψi)dρ = 0

and

T ′
i (qi) = d =

∫
Φidρi∫
Ψidρi

.

This implies that there exists ρi ∈ IP(ΣΩ) such that

hρi(F )∫
Ψidρi

= T ∗
i (d)

and

d =

∫
Φidρi∫
Ψidρi

.

Proposition 5.2 tells us that T ∗
i (d) → T ∗(d) as i → ∞ and IP(ΣΩ) is compact for

the wear-star topology. Thus, there exists a limit point ρ′ of (ρi) in IP(ΣΩ) such
that

hρ′(F )∫
Ψdρ

≥ T ∗(d) and d =

∫
Φdρ′

∫
Ψdρ′

,

since the entropy map is upper semi-continuous and (Φi,Ψi) converges uniformly
to (Φ,Ψ). Finally, we get

T ∗(d) = max
ρ∈IP(ΣΩ)

®
−hρ(F )∫

Ψdρ
:

∫
Φdρ

∫
Ψdρ

= d

´
.

The case d ∈ {T ′(+∞), T ′(−∞)} now follows by approximating d by a sequence
(dk)k≥0 of elements of (T ′(+∞), T ′(−∞)) and for each k picking ρk which realizes

max
ρ∈IP(ΣΩ)

®
−hρ(F )∫

Ψdρ
:

∫
Φdρ

∫
Ψdρ

= dk

´
. Then, since T ∗ is continuous at d (it is lower

semi-continuous as a concave function and upper semi-continuous as a Legendre

transform), any limit point of (ρk)k≥0 is such that −hρ(F )∫
Ψdρ

= T ∗(d) and

∫
Φdρ

∫
Ψdρ

= d.

It exists since IP(ΣΩ) is compact in the weak* topology (see [47, 49]).
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5.4 Simultaneous control for random Gibbs mea-
sures associated with (Φi,Ψi)

In this quite technical section, we prepare the “concatenation of random Gibbs mea-
sures” approach that will be used in the next chapters to built auxiliary measures
with nice properties. We also show an almost everywhere almost doubling property
for projections of random Gibbs measures on the random attractor Xω.

Let D be a dense and countable subset of (T ′(+∞), T ′(−∞)). Let {Di}i∈N be a
sequence of sets such that

• Di is a finite set for each i ∈ N,

• Di ⊂ Di+1, for each i ∈ N,

• ∪i∈NDi = D.

Fix a sequence {εi}i∈N decreasing to 0 as i → ∞. We saw in the proof of
proposition 5.2 that for any i ∈ N, there exists ji large enough such that for any
d ∈ Di, there exists qi ∈ R such that

1. T ′
ji
(qi) = d,

2. |T ∗
ji
(d)− T ∗(d)| ≤ εi.

3.
∫
Ω varjiΦ dP ≤ ε3i and

∫
Ω varjiΨ dP ≤ ε3i .

We can also assume that ji+1 > ji for each i ∈ N. We set

Qi = {qi, di ∈ Di}.
For any q ∈ Qi, we define

Λi,q = qΦji − Tji(q)Ψji .

Recall (2.1) and proposition 2.7. For any ǫ > 0, there exist positive integers
M,L,N,C (large enough) such that there is a set Ω0 and a sequence {cn}n≥1 de-
creasing to 0 as n → ∞ such that: P(Ω0) > 1 − ǫ/4, and for any ω ∈ Ω0, one
has:

• M(ω) < M, l(ω) ≤ L,

• for any n ≥ 1,
max(VnΦ(ω), VnΨ(ω)) ≤ ncn

and
max{ǫ(ψ, n) = ǫ(Ψ, n), ǫ(φ, n) = ǫ(Φ, n)} ≤ cn,

where we have used Egorov’s theorem;
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• for all n ≥ N ,

∣∣∣∣SnvarjiΦ(ω)− n
∫

Ω
varjiΦ(ω) dP

∣∣∣∣ ≤ ncn,
∣∣∣∣SnvarjiΨ(ω)− n

∫

Ω
varjiΨ(ω) dP

∣∣∣∣ ≤ ncn,
∣∣∣∣
1

n
Sn(log l)(ω)

∣∣∣∣ ≤ C,

max

Ç
1

n
Sn‖Φ(ω)‖∞,

1

n
Sn‖Φ(σ−n+1ω)‖∞

å
≤ C,

max

Ç
1

n
Sn‖Ψ(ω)‖∞,

1

n
Sn‖Ψ(σ−n+1ω)‖∞

å
≤ C.

and
sup
v∈[v]ω

SnΨ(ω, v) ≤ (−n̟Ψ), ∀v ∈ Σω,n,

where we have applied ergodic theorem to varjiΦ, log l, ‖Φ(·)‖∞ and ‖Ψ(·)‖∞, (2.3)
and Egorov’s theorem again.

Given a finite set Q, we know that for P-almost every ω, for s large enough one
has ♯Σω,s ≥ ♯Q. Denote the smallest such s by S(ω, ♯Q).

For any i ∈ N, choose S(i) ∈ N large enough such that there exists a set Ω′(i) ⊂
Ω0 such that

• P(Ω′(i)) ≥ 1− 2ǫ/4 and for any ω ∈ Ω′(i), one has S(σMω, ♯Qi) ≤ S(i), where
M has been fixed above.

Also, for all i ∈ N, there exist ̟i > 0 and integers N(i) > N and M(i) ≥ M
large enough, as well as a positive sequence {ci,n}n≥1 converging to 0 as n → ∞,
and a set Ω(i) ⊂ Ω′(i) such that P(Ω(i)) ≥ 1− 3ǫ/4, and for any ω ∈ Ω(i), one has:

• M(σM+S(i)ω) ≤M(i);

• for any q ∈ Qi, the random Gibbs measure {µ̃Λi,q
σM+S(i)+M(i)ω

}ω∈Ω is well defined,
and for any n ≥ N(i)

VnΛi,q(σ
M+S(i)+M(i)ω) ≤ nci,n and ǫ(Λi,q, n) ≤ ci,n;

• for all n ≥ N(i), for all v ∈ ΣσM+S(i)+M(i)ω,n, for any q ∈ Qi,

sup
v∈[v]

σM+S(i)+M(i)ω

SnΛi,q(σ
M+S(i)+M(i)ω, v) ≤ (−n̟i),
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where again we used the finiteness of Qi and again (2.1), proposition 2.7, proposi-
tion 3.2 and Egorov’s theorem.

Here we draw a picture to illustrate some of the parameters coming into play.

ω
n

σnω ∈ Ω(i)

M S(i) M(i)

M ′(i) =M + S(i) +M(i)

Let θ′(i, ω, s) be the s-th return time of the point ω to the set Ω(i) under the
map σ, that is

θ′(i, ω, 1) = inf{n ∈ N ∪ {0} : σnω ∈ Ω(i)},
and for any s ∈ N and s ≥ 2,

θ′(i, ω, s) = inf{n ∈ N : n > θ′(i, ω, s− 1), σnω ∈ Ω(i)}.

Then for any i ∈ N

lim
s→∞

θ′(i, ω, s)

s
=

1

P(Ω(i))

for P-almost every ω. Consequently,

lim
k→∞

θ′(i, ω, s)− θ′(i, ω, s− 1)

θ′(i, ω, s)
= 0. (5.6)

Since N is countable, there exists ‹Ω′ ⊂ Ω of full probability such that for all
ω ∈ ‹Ω′, for any i ∈ N, we have

lim
s→∞

θ′(i, ω, s)

s
=

1

P(Ω(i))
,

hence

lim
s→∞

θ′(i, ω, s)− θ′(i, ω, s− 1)

θ′(i, ω, s− 1)
= 0.

Let M ′(i) =M + S(i) +M(i). Given ω ∈ Ω(i), let

ni1(ω) = inf{θ′(i, ω, s) : θ′(i, ω, s) ≥M ′(i)} −M ′(i).

For k ≥ 2, define nik(ω) = θ′(i, ω, sk) −M ′(i), where sk is the smallest s such that
the following hold:

θ′(i, ω, s)− nik−1(ω) ≥ max
Ä
M ′(i), nik−1(ω)(ci,nik−1

)
1
3 +
»
θ′(i, ω, s)).
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It is easy to show that

lim
k→∞

nik(ω)− nik−1(ω)

nik−1(ω)
= 0.

Now we prove an almost everywhere almost doubling property for the Gibbs
measures µ

Λi,q
ω .

For v ∈ ΣσM
′(i)ω,n, we denote by U v+

σM
′(i)ω

and U v−
σM

′(i)ω
the two intervals of the

n-th generation of the construction of Xω which are neighboring U v
σM

′(i)ω
, whenever

U v
σM

′(i)ω
is neither the leftmost nor the rightmost of the whole collection, and with

the convention that U v−
σM

′(i)ω
is on the left of U v

σM
′(i)ω

.

We say that B(i, σM
′(i)ω, k, v) holds if v ∈ ΣσM

′(i)ω,ni
k
, and |v ∧ v + | ≤ nik−1 or

|v ∧ v − | ≤ nik−1.

Let
U(i, σM ′(i)ω, k) =

⋃

v∈Σ
σM

′(i)ω,ni
k

:B(i,σM
′(i)ω,k,v) holds

U v
σM

′(i)ω
.

Lemma 5.4 For all i ∈ N, for all ω ∈ Ω(i), for all q ∈ Qi, we have

µ
Λi,q

σM
′(i)ω

(
⋂

N=1

⋃

k≥N
U(i, σM ′(i)ω, k)) = 0.

Proof For any v and v′ such that |v| = nik−1, |v′| = nik − nik−1 and vv′ ∈ ΣσM
′(i)ω,ni

k
,

by construction of µ
Λi,q

σM
′(i)ω

one has

µ
Λi,q

σM
′(i)ω

(U vv′

σM
′(i)ω

)

µ
Λi,q

σM
′(i)ω

(U v
σM

′(i)ω
)
≤ exp(−(nik − nik−1)̟i + 4nikci,nik).

We will use this fact to calculate the measure of U(i, σM ′(i)ω, k). Notice that for
any v ∈ ΣσM

′(i)ω,ni
k−1

, there are at most two v′ such that vv′ ∈ ΣσM
′(i)ω,ni

k
and

B(i, σM
′(i)ω, k, vv′) holds. Consequently,

µ
Λi,q

σM
′(i)ω

(U(i, σM ′(i)ω, k)) ≤ 2 exp(−(nik − nik−1)̟i + 4nikci,nik).

Since ̟i > 0 and
nik − nik−1 > nik−1(cnik)

1/3 +
»
nik,

we get
∞∑

k=1

µ
Λi,q

σM
′(i)ω

(U(i, σM ′(i)ω, k)) < +∞.

By Borel-Cantelli’s lemma we get µ
Λi,q

σM
′(i)ω

(
⋂
N=1

⋃
k≥N U(i, σM ′(i)ω, k)) = 0.



46 Simultaneous control for random Gibbs measures associated with (Φi,Ψi)

For any ε > 0, β ≥ 0, and k, p ≥ 1 we now define the following sets:

Fi,β,k(σ
M ′(i)ω, ε) =





x ∈ XσM
′(i)ω : ∀γ ∈ {−1, 1}, ∀v ∈ ΣσM

′(i)ω,ni
k

satisfying

|v ∧ x|ni
k
| ≥ nik−1, for any v ∈ [v]σM′(i)ω,

exp(−γ((β − γε)Sni
k
Ψji(σ

M ′(i)ω, v) + γSni
k
Φji(σ

M ′(i)ω, v))) ≤ 1




,

Ei,β,p(σ
M ′(i)ω, ε) =

⋂

k≥p
Fi,β,k(σ

M ′(i)ω, ε)

and then
Ei,β(σ

M ′(i)ω, ε) =
⋃

p≥1

Ei,β,p(σ
M ′(i)ω, ε).

Lemma 5.5 For all i ∈ N, for all ω ∈ Ω(i), for all q ∈ Qi, for any ε > 0, the
singularity set Ei,T ′

ji
(q)(σ

M ′(i)ω, ε) has full µΛi,q

σM
′(i)ω

-measure.

Proof Fix ε > 0. Let

Si,q,k = µ
Λi,q

σM
′(i)ω

(XσM
′(i)ω \ Fi,T ′

ji
(q),k(σ

M ′(i)ω, ε)).

We have

Si,q,k ≤
∑

γ∈{−1,1}

∑

v∈Σ
σM

′(i)ω,ni
k

∑

v′∈Σ
σM

′(i)ω,ni
k

,|v∧v′|≥ni
k−1

µ
Λi,q

σM
′(i)ω

(U v
σM

′(i)ω
)

· exp
Ä
− γη((T ′

ji
(q)− γε)Sni

k
Ψji(σ

M ′(i)ω, v′)− Sni
k
Φji(σ

M ′(i)ω, v′))
ä

=
∑

γ∈{−1,1}

∑

v,v′∈Σ
σM

′(i)ω,ni
k

,|v∧v′|≥ni
k−1

exp((q + γη)Sni
k
Φji(σ

M ′(i)ω, v))

exp((−(Tji(q) + γηT ′
ji
(q)− εη)Sni

k
Ψji)(σ

M ′(i)ω, v))

· exp(−γη((T ′
ji
(q)− γε)(Sni

k
Ψji(σ

M ′(i)ω, v′)− Sni
k
Ψji(σ

M ′(i)ω, v)))

· exp(γη(Sni
k
Φji(σ

M ′(i)ω, v′)− Sni
k
Φji(σ

M ′(i)ω, v))) + o(nik))

Since Tji is in fact not only differentiable, but analytic [35, 61], we have

Tji(q + γη) = Tji(q) + T ′
ji
(q)γη + o(η2).

uniformly in q ∈ Qi. Then there exists b > 0 such that for η small enough, for all
q ∈ Qi, we have

|Tji(q + γη)− Tji(q)− T ′
ji
(q)γη| ≤ bη2.

Consider such an η in (0, ε
2b
]. We have

Si,q,k ≤
∑

γ∈{−1,1}

∑

v∈Σ
σM

′(i)ω,ni
k

(l(σM
′(i)+ni

k−1ω) · · · l(σM ′(i)+ni
k
−1ω))
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· exp(Sni
k
((q + γη)Φji − Tji(q + γη)Ψji)(σ

M ′(i)ω, v))

· exp((εη − bη2)Sni
k
Ψji(σ

M ′(i)ω, v) + o(nik))

≤
∑

γ∈{−1,1}
exp((nik − nik−1)C − (εη − bη2)nik̟Ψji

+ o(nik))

≤
∑

γ∈{−1,1}
exp(nikci,nik − (εη − bη2)nik̟Ψji

+ o(nik)) for k large enough

≤ 2 exp

Ç
−(

ε2

4b
)nik̟Ψ + o(nik)

å
.

Consequently,
∑+∞
k=1 Si,q,k < ∞, which yields the desired conclusion since ε is arbi-

trary.

Now we can collect the following facts.

Facts 5.6 Lemma 5.4 and 5.5 imply that for all i ∈ N, for all ω ∈ Ω(i), for any
ǫi > 0, there exists an integer Ni = Ni(σ

M ′(i)ω) such that for any q ∈ Qi, there
exists Ei,q = Ei,q(σ

M ′(i)ω) ⊂ XσM
′(i)ω such that

1. µ
Λi,q

σM
′(i)ω

(Ei,q) > 1− ǫi,

2. M ′(i) ≤ niNiε
3
i ,

3. cniNi
≤ ε3i and ci,niNi

≤ ε3i ,

4. nik − nik−1 ≤ nik−1ε
3
i for any k ≥ Ni,

5. for any v ∈ Ei,q, for any v ∈ ΣσM
′(i)ω,ni

k
with k ≥ Ni such that v ∈ [v]σM′(i)ω,

one has |v ∧ v + | ≥ nik−1 and |v ∧ v − | ≥ nik−1. Furthermore, for any
w ∈ {v, v+, v−}, there exists (in fact for all ) w ∈ [w]σM′(i)ω such that

∣∣∣∣∣∣

Sni
k
Φji(σ

M ′(i)ω,w)

Sni
k
Ψji(σ

M ′(i)ω,w)
− T ′

ji
(q)

∣∣∣∣∣∣
≤ εi, (5.7)

∣∣∣∣∣∣
log µ

Λi,q

σM
′(i)ω

(Uw
σM

′(i)ω
)

S|v|Ψji(σ
M ′(i)ω,w)

− T ∗
ji
(T ′

ji
(q))

∣∣∣∣∣∣
≤ εi. (5.8)

and ∣∣∣∣∣
S|v|Λi,q(σM

′(i)ω,w))

S|v|Ψji(σ
M ′(i)ω,w)

− T ∗
ji
(T ′

ji
(q))

∣∣∣∣∣ ≤ εi. (5.9)

In fact with a suitable change of εi (take it as 2εi), we can deduce from the above
item 5. the following property:
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For any di ∈ Di, there exists qi ∈ Qi such that for any v ∈ Ei,qi , for any
v ∈ ΣσM

′(i)ω,ni
k

with k ≥ Ni such that v ∈ [v]σM′(i)ω, one has |v ∧ v + | ≥ nik−1 and

|v ∧ v − | ≥ nik−1. Furthermore, for any w ∈ {v, v+, v−}, there exists (or for all)
w ∈ [w]σM′(i)ω such that

∣∣∣∣∣∣

Sni
k
Φji(σ

M ′(i)ω,w)

Sni
k
Ψji(σ

M ′(i)ω,w)
− di

∣∣∣∣∣∣
≤ εi, (5.10)

∣∣∣∣∣∣
log µ

Λi,q

σM
′(i)ω

(Uw
σM

′(i)ω
)

S|v|Ψji(σ
M ′(i)ω,w)

− T ∗(di)

∣∣∣∣∣∣
≤ εi. (5.11)

and ∣∣∣∣∣
S|v|Λi,q(σM

′(i)ω,w))

S|v|Ψji(σ
M ′(i)ω,w)

− T ∗(di)

∣∣∣∣∣ ≤ εi. (5.12)

Facts 5.7 We can change Ω(i) to Ωi ⊂ Ω(i) a bit smaller such that P(Ωi) ≥ 1 − ǫ
and there exist Ni and W (i) such that for any ω ∈ Ωi, Ni(σ

M ′(i)ω) ≤ Ni and
niNi(ω) ≤ W (i) and the properties listed in Facts 5.6 hold.

We define θ(i, ω, s) as being the s-th return time to the set Ωi for the point ω.

Since N is countable, there exists ‹Ω ⊂ ‹Ω′ of full probability such that for all
ω ∈ ‹Ω, for any i ∈ N, we have

lim
s→∞

θ(i, ω, s)

s
=

1

P(Ωi)
,

hence

lim
s→∞

θ(i, ω, s)− θ(i, ω, s− 1)

θ(i, ω, s− 1)
= 0.

From now on we just deal with the point in the set ‹Ω which is a set with P-full
measure.



Chapter 6

Multifractal analysis of random weak

Gibbs measures:

Proof of Theorem 1.11

This chapter consists of three sections. In the first one we obtain the sharp upper
bound for the Lq-spectrum of µω. Next, in the second section, we prove the validity
of the strong mutifractal formalism. There, our approach to construct suitable aux-
iliary measures already prepares the material used to establish in the third section
the refinements gathered in theorem 1.11(3)(4)(5).

6.1 Lower bound for τµω and upper bound for τ ∗µω

Fix a countable and dense subset D of R. Let “Ω be a set of full P-probability, such
that:

1. for all q ∈ D the weak Gibbs measure {µ̃(qΦ−T (q)Ψ)
ω }

ω∈Ω̂ are defined;

2. for all ω ∈ “Ω the conclusions of proposition 2.7 hold all the potentials qΦ −
T (q)Ψ, q ∈ D;

3. for all n large enough, for all v ∈ Σω,n, for all v ∈ [v]ω,

exp(−nCΨ − o(n)) ≤ exp(SnΨ(ω, v)) ≤ exp(−ncΨ − o(n)),

which follows from ergodic theorem applied to the potentials ‖Ψ(ω)‖∞ =
supv∈Σω |Ψ(ω, v)| and supv∈Σω Ψ(ω, v), where Ψ(ω, v) has been defined in (1.9), and
cΨ and Cψ are finite due to (1.6).

We will establish the lower bound τµω(q) ≥ T (q) for all ω ∈ “Ω and q ∈ D.
Since D is dense and both τµω and T are continuous, this will yield τµω ≥ T for

49
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and upper bound for τ∗µω

all ω ∈ “Ω. By using the multifractal formalism, this immediately yields the desired
upper bound T ∗ for τ ∗µω and the various spectra we consider for µω.

Let ω ∈ “Ω. Let r > 0 and consider B = {Bi}, a packing of Xω by disjoint balls
Bi with the center xi and radius r. For each ball Bi, choose n = ni and v(xi) ∈ Σω,n

such that xi ∈ U v(xi)
ω and |U v(xi)

ω | ≤ r, but |U v(xi)|n−1
ω | > r. By removing a set of

probability 0 from “Ω if necessary, for any v ∈ [v(xi)]ω, we have

r ≥ |U v(xi)
ω | ≥ exp(SnΨ(ω, v)− o(n)) ≥ exp(−nCΨ − o(n)),

where we have used ergodic theorem. Thus n ≥ − log r
2CΨ

for r small enough. On the
other hand, for r small enough, for any v ∈ [v(xi)]ω we have

r ≤ |U v(xi)|n−1
ω | ≤ exp(Sn−1Ψ(ω, v) + o(n)) ≤ exp(−(n− 1)cΨ + o(n)),

so n ≤ −2 log r
cΨ

. To resume, for r small enough, independently on B, if v(xi) ∈ Σω,n

and v ∈ [v(xi)]ω we have

− log r

2CΨ

≤ n ≤ −2 log r

cΨ
. (6.1)

Case q ∈ D ∩ (−∞, 0):

For each Bi ∈ B, one has Xv(xi)
ω ⊂ Bi, so for any v ∈ [v(xi)]ω

(µω(Bi))
q ≤ (µω(X

v(xi)
ω ))q

≤ exp(qSnΦ(ω, v) + o(n))

= exp(Sn(qΦ− T (q)Ψ)(ω, v)) · exp(T (q)SnΨ(ω, v) + o(n))

≤ µ(qΦ−T (q)Ψ)
ω (Xv(xi)

ω )rT (q) exp(o(− log r)),

where we have applied proposition 2.7(2) to the potential qΦ − T (q)Ψ as well as
proposition 2.7(1), the fact that |U v(xi)|n−1

ω | > r ≥ |U v(xi)
ω | and (6.1). It follows that∑

i(µω(Bi))
q ≤ rT (q) exp(o(− log r)), and this bound does not depend on the choice

of the packing {Bi}. Letting r → 0, this yields τµω(q) ≥ T (q).

Case q ∈ D ∩ [0,+∞): Define

V (ω, n, r) = {v ∈ Σω,n : |U v
ω| ≥ 2r, ∃s such that vs ∈ Σω,n+1, |U vs

ω | < 2r},

V ′(ω, n, r) = {v ∈ V (ω, n, r), there is no k < n such that v|k ∈ V (ω, k, r)},
V (ω, r) = ∪n≥1V

′(ω, n, r).

Then {U v
ω : v ∈ V (ω, r)} is a partition of [0, 1]. Define n(ω, r) = max{|v| : v ∈

V (ω, r)} and n′(ω, r) = min{|v| : v ∈ V (ω, r)}. Then, from (6.1) we now that
for some positive constants B1 and B2, for r small enough, we have −B1 log(r) ≤
n′(ω, r) ≤ n(ω, r) ≤ −B2 log(r) .
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For any v ∈ V (ω, r), U v
ω meets at most exp(o(− log r)) many balls of Bi and for

any Bi, Bi meets at most two intervals of U v
ω, U

v′

ω with v, v′ ∈ V (ω, r). Consequently,
since (µω(Bi))

q ≤ 2q((µω(U
v
ω))

q + (µω(U
v′

ω ))
q), we have

∑

Bi∈B
(µω(Bi))

q ≤ exp(o(− log r))2q
∑

n′(ω,r)≤n≤n(ω,r)

∑

v∈Σω,n∩V (ω,r)

(µω(U
v
ω))

q)

Using the same method argument as for q < 0, we can know get that

(µω(U
v
ω))

q) ≤ µ(qΦ−T (q)Ψ)
ω (U v

ω)r
T (q) exp(o(− log r)),

so that

∑

Bi∈B
(µω(Bi))

q ≤ rT (q) exp(o(− log r))
∑

n′(ω,r)≤n≤n(ω,r)

∑

v∈Σω,n∩V (ω,r)

µ(qΦ−T (q)Ψ)
ω (U v

ω)

= rT (q) exp(o(− log r)),

independently on {Bi}, where we use the fact that {U v
ω : v ∈ V (ω, r)} is a partition

of [0, 1]. Letting r → 0, this yields τµω(q) ≥ T (q).

6.2 Lower bound for the Hausdorff spectrum

Recall facts 5.6 and facts 5.7. For any ω ∈ ‹Ω, for any d ∈ [T ′(+∞), T ′(−∞)],
for any sequence {di}i∈N with di ∈ Di, such that limi→∞ di = d, and consequently
limi→∞ T ∗(di) = T ∗(d) by continuity of T ∗, we will build a measure ηω on a set
K(ω, {di}i≥1) such that

• ηω(K(ω, {di}i≥1)) = 1,

• K(ω, {di}i≥1) ⊂ E(µω, d),

• For any x ∈ K(ω, {di}i≥1), limr→0
log(ηω(B(x,r)))

log r
≥ T ∗(d).

This will imply that dimH ηω ≥ T ∗(d), and then

dimH(E(µω, d)) ≥ dimH(K(ω, {di}i≥1)) ≥ T ∗(d).

The construction will consist of four steps. Fix a sequence {ǫi}i∈N small enough
such that Πi≥1(1 − ǫi) ≥ 1

2
. For each i ∈ N, Facts 5.6 will be applied with this ǫi.

Notice that {ǫi}i∈Ndiffers from the other sequence {ǫi}i∈N also invoked in Facts 5.6.

In the two first steps, we build a family of Moran structures indexed by the
elements of

∏
i≥1Di.
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First step: For any ω ∈ ‹Ω, recall that θ(1, ω, 1) is the smallest n ∈ N such that
σnω ∈ Ω1 ⊂ Ω(1). Define m1 := θ(1, ω, 1) +M ′(1). Facts 5.6 and facts 5.7 tell us
that there exists an integer N1 = N1(σ

m1ω) = N1(σ
M ′

1(σθ(1,ω,1)ω)), such that for
any d1 ∈ D1, there exists q = q1 ∈ Q1 and a set

E1,q1(σ
m1ω) ⊂ Xσm1ω

such that

1. µ
Λ1,q1
σm1ω(E1,q1) > 1− ǫ1, recall that Λ1,q1 = q1Φj1 − Tj1(q1)Ψj1 .

2. M ′(1) ≤ ε31n
1
N1

,

3. cn1
N1

≤ ε31 and c1,n1
N1

≤ ε31,

4. n1
k − n1

k−1 ≤ ε31n
1
k−1 for any k ≥ N1,

5. for any v ∈ E1,q, for any v ∈ Σσm1ω,n1
k

with k ≥ N1 such that v ∈ [v]σm1ω, one

has |v∧v+| ≥ n1
k−1 and |v∧v−| ≥ n1

k−1. Furthermore, for any w ∈ {v, v+, v−},
there exists (or for all ) w ∈ [w]σn+M+S(1)ω such that

∣∣∣∣∣∣
Sn1

k
Φj1(σ

m1ω,w)

Sn1
k
Ψj1(σ

m1ω,w)
− d

∣∣∣∣∣∣
≤ ε1.

∣∣∣∣∣∣
log µ

Λ1,q

σm1ω(U
w
ω )

S|v|Ψj1(σ
m1ω,w)

− T ∗(d)

∣∣∣∣∣∣
≤ ε1,

∣∣∣∣∣
Λ1,q(σ

m1ω,w)

S|v|Ψj1(σ
m1ω,w)

− T ∗(d)

∣∣∣∣∣ ≤ ε1,

Choose N ′
1 > N1 large enough such that

• m1 ≤ ε32n
1
N ′

1
.

• M ′(2) ≤ ε32n
1
N ′

1
,

• W (2) ≤ ε32n
1
N ′

1
,

• for any s such that the return time θ(2, ω, s) satisfies θ(2, ω, s) ≥ m1 + n1
N ′

1
,

one also has
θ(2, ω, s)− θ(2, ω, s− 1)

θ(2, ω, s− 1)
≤ ε32.

Let s2 be the smallest s such that θ(2, ω, s) ≥ m1 + n1
N ′

1
.
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Now, let N1 be the largest k such that m1 +n1
k ≤ θ(2, ω, s2) (by construction we

have N1 ≥ N ′
1). Then

θ(2, ω, s2)−m1 − n1
N1

≤ n1
N1+1 − n1

N1
≤ ε31n

1
N1

by item 4. above.

Here is a picture which illustrates the beginning of the construction.

ω
n

σθ(1,ω,1)ω ∈ Ω1

M ′(1)
σm1ω

long time

n1
N ′

1

n1
N1

θ(2, ω, s2)

For each q ∈ Q1 and k ≥ 1, let

V(σm1ω, 1, q, k) =
{
v ∈ Σσm1ω,n1

k
: E1,q(σ

m1ω) ∩Xv
σm1ω 6= ∅

}
.

Also, set
V(σm1ω, 1, q) = V(σm1ω, 1, q, N1).

Since there exists at least ♯Q1 words in Σσθ(1,ω,1)+Mω,S(1), for each q ∈ Q1 we can
choose v(q) ∈ Σσθ(1,ω,1)+Mω,S(1) with these v(q) pairwise distinct.

For any w ∈ Σω,θ(1,ω,1), for any q ∈ Q1 and v′ ∈ V(σθ(1,ω,1)+M+M(1)+S(1)ω, 1, q)
one can find at least one v′′(w, q) ∈ Σσθ(1,ω,1)ω,M and v′′′(q, v′′) ∈ Σσθ(1,ω,1)+M+S(1)ω,M(1)

such that
wv′′(q)v(q)v′′′(q, v′)v′ ∈ Σω,θ(1,ω,1)+M+M(1)+S(1)+n1

N1
,

For each (w, q, v′) ∈ Σω,θ(1,ω,1) × Q1 × V(σθ(1,ω,1)+M+M(1)+S(1)ω, 1, q) we choose
such a couple (v′′(q), v′′′(q, v′)) by requiring that for two distinct (w, q) and (w′, q̃)
in Σω,θ(1,ω,1) ×Q1, v

′′(q) = v′′(q̃) if w and w′ have the same last letter, and v′ and ṽ′

have the same first letter.

In the sequel, we denote wv′′(q)v(q)v′′′(q)v′q by w ∗ v(q) ∗ v′q or w ∗ v′q for short.

Fix w0 ∈ Σω,θ(1,ω,1). For any d1 ∈ D1, there exists q1 ∈ Q1 such that T ′
j1
(q1) = d1.

We define:
R1(d1) = {w0 ∗ v(q1) ∗ v′:v′ ∈ V(σm1ω, 1, q1)} ,

and
R1 = ∪d1∈D1R1(d1).

Second step: suppose that θ(i+ 1, ω, si+1), Ni, Ri have been chosen. Define

mi+1 := θ(i+ 1, ω, si+1) +M + S(i+ 1) +M(i+ 1) = θ(i+ 1, ω, si+1) +M ′(i+ 1)
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and
ni+1
k = ni+1

k (σθ(i+1,ω,si+1)ω).

Facts 5.6 and facts 5.7 tell us that there exists an integer Ni+1 = Ni+1(σ
mi+1ω) such

that for any di+1 ∈ Di+1, there exists qi+1 ∈ Qi+1 and a set Ei+1,qi+1
(σmi+1ω) ⊂

Xσmi+1ω such that

1. µ
Λi+1,qi+1

σmi+1ω (Ei+1,q) > 1− ǫi+1,

2. M ′(i+ 1) ≤ ε3i+1n
i+1
Ni+1

3. cni+1
Ni+1

≤ ε3i+1 and ci+1,ni+1
Ni+1

≤ ε3i+1,

4. ni+1
k − ni+1

k−1 ≤ ε3i+1n
i+1
k−1 for any k ≥ Ni+1,

5. for any x ∈ Ei+1,qi+1
, for any v ∈ Σσmi+1ω,ni+1

k
with k ≥ Ni+1 such that

x ∈ Xv
σmi+1ω, one has |v ∧ v+ | ≥ ni+1

k−1 and |v ∧ v− | ≥ ni+1
k−1. Furthermore, for

any w ∈ {v, v+, v−}, there exists (or for all ) w ∈ [w]σmi+1ω such that
∣∣∣∣∣∣

Sni+1
k

Φji+1
(σmi+1ω,w)

Sni+1
k

Ψji+1
(σmi+1ω,w)

− d

∣∣∣∣∣∣
≤ εi+1,

∣∣∣∣∣∣
log µ

Λi+1,q
ω (Uw

σmi+1ω)

S|v|Ψji+1
(σmi+1ω,w)

− T ∗(d)

∣∣∣∣∣∣
≤ εi+1.

∣∣∣∣∣
Λi+1,q(σ

mi+1ω,w)

S|v|Ψji+1
(σmi+1ω,w)

− T ∗(d)

∣∣∣∣∣ ≤ εi+1.

Choose N ′
i+1 large enough such that

• mi+1 ≤ ε3i+2n
i+1
N ′
i+1

,

• M ′(i+ 2) ≤ ε3i+2n
i+1
N ′
i+1
,

• W (i+ 2) ≤ ε2i+2n
i+1
N ′
i+1
.

The above two items ensure that we do not need to wait a long relative time
to go into an other step.

• for any s with θ(i+ 2, ω, s) ≥ mi+1 + ni+1
N ′
i+1

one has

θ(i+ 2, ω, s)− θ(i+ 2, ω, s− 1)

θ(i+ 2, ω, s− 1)
≤ ε3i+2.

Let si+2 be the smallest s such that

θ(i+ 2, ω, s) ≥ mi+1 + ni+1
N ′
i+1
. (6.2)
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Let Ni+1 be the largest k ≥ N ′
i+1 such that ni+1

k ≤ θ(i + 2, ω, si+2). Then we
have

θ(i+ 2, ω, si+2)−mi+1 − ni+1
Ni+1

≤ ni+1
Ni+1

ε3i+1

due to item 4.

Remark 6.1 By construction, we have mi+2 −mi+1 ≥ ni+1
N ′
i+1

and mi+1 = o(ni+1
N ′
i+1

).

Consequently the speed we fix for the growth of (niN ′
i
)i∈N is directly related to the

growth speed of (mi)i∈N.

Here again we draw a picture to illustrate this construction.

θ(i+ 1, ω, si+1)

M ′(i+ 1)

σmi+1ω

long time

ni+1
N ′
i+1

ni+1
Ni+1

θ(i+ 2, ω, si+2)

For qi+1 ∈ Qi+1 and k ≥ 1, define

V(σmi+1ω, i+ 1, qi+1, k) =
{
v ∈ Σσmi+1ω,ni+1

k
: Ei+1,q(σ

mi+1ω) ∩Xv
σmi+1ω 6= ∅

}
,

and
V(σmi+1ω, i+ 1, qi+1) = V(σmi+1ω, i+ 1, qi+1, Ni+1).

As in the case i = 1, for any w ∈ Ri, for any di+1 ∈ Di+1, there exists qi+1 ∈
Qi+1 such that T ′

ji+1
(qi+1) = di+1. For any v(qi+1) ∈ Σσθ(i+1,ω,si+1)+Mω,S(i+1) and any

v′ ∈ V(σmi+1ω, i+ 1, qi+1), we can build the word w ∗ v(qi+1) ∗ v′ by using the same
tule as in step 1, and denote it by w ∗ v′ if there is no possible confusion.

Define

Ri+1(d1, d2, · · · , di, di+1)

=

{
w ∗ v(qi+1) ∗ v′

∣∣∣∣∣
w ∈ Ri(d1, d2 · · · di), v(qi+1) ∈ Σσθ(i+1,ω,si+1)+Mω,S(i+1)

v′ ∈ V(σmi+1ω, i+ 1, qi+1)

}

and

Ri+1 =

{
w ∗ v(qdi+1

) ∗ v′
∣∣∣∣∣
w ∈ Ri, v(qi+1) ∈ Σσθ(i+1,ω,si+1)+Mω,S(i+1) with di+1 ∈ Di+1

v′ ∈ V(σmi+1ω, i+ 1, qi+1)

}
.

Third step: For any d ∈ [T ′(+∞), T ′(−∞)], there exists {di}i∈N ∈ ∏
i∈NDi, such

that limi→∞ di = d and limi→∞ T ∗(di) = T ∗(d). Moreover, if d ∈ (T ′(+∞), T ′(−∞)),
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T ∗
ji
(di) converges to T ∗(d) directly from proposition 5.2. If d ∈ {T ′(+∞), T ′(−∞)},

again due to proposition 5.2, we can choose (di)i≥1 to be piecewise constant to make
sure that T ∗

ji
(di)− T ∗(di) tends to 0 as i→ ∞, so that T ∗

ji
(di) converges to T ∗(d) as

well. We fix such a sequence.

Define
K(ω, {di}i≥1) = ∩i≥1 ∪v∈Ri(d1,d2,··· ,di) U v

ω.

We will prove that for any x ∈ K({di}i≥1), one has limr→0+
log µω(B(x,r))

log r
= d. Then

K(ω, {di}i≥1) ⊂ E(µω, d).

Let us start with the following general estimate.

• For any w ∈ Ri, v ∈ V(σmi+1ω, i + 1, qi+1, k), for any k ≥ Ni+1, for any
v ∈ [w ∗ v]ω we can write for Υ ∈ {Φ,Ψ}

Υ

∣∣∣∣Smi+1+n
i+1
k

Υ(ω, v)−
i∑

p=1

Snp
Np
Υjp(F

mp(ω, v))− Sni+1
k

Υji+1
(Fmi+1(ω, v))

∣∣∣∣

≤
∣∣∣∣

i∑

p=1

np
Np

−1∑

t=0

(Υ−Υjp)(σ
mp+tω)

∣∣∣∣+
∣∣∣∣
ni+1
k

−1∑

t=0

(Υ−Υji+1
)(σmi+1+tω)

∣∣∣∣

+
∣∣∣∣
m1−1∑

t=0

Υ(F t(ω, v))
∣∣∣∣+

∣∣∣∣
i∑

p=1

mp+1−1∑

t=mp+n
p
Np

Υ(F t(ω, v))
∣∣∣∣

≤
i∑

p=1

np
Np

−1∑

t=0

(varjpΥ)(σmp+tω) +

ni+1
k

−1∑

t=0

(vari+1Υ)(σmi+1+tω)

+ (m1)C +
∣∣∣∣

i∑

p=1

(mp+1 −mp − npNp)C
∣∣∣∣

≤
i∑

p=1

npNpε
3
p + ni+1

k ε3i+1 +m1C +
i∑

p=1

npNp(ε
3
p + ε3p+1),

≤
i∑

p=1

npNp(3ε
3
p) + ni+1

k ε3i+1 +m1C

≤(mi+1 + ni+1
k )(ε2i ) for i, k large enough,

.

(6.3)

where to get the term
∑i
p=1 n

p
Npε

3
p + ni+1

k ε3i+1 in the upper bound we used
successively the property that

|Υ(ω, v)−Υjp(ω, v)| ≤ varjpΥ(ω)

and

np
Np

−1∑

t=0

(varjpΥ)(σmp+tω)
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= Snp
Np

varjpΥ(σmpω)

≤
∣∣∣∣SnpNpvarjpΥ(σmpω)− npNp

∫

Ω
varjpΥ(ω) dP

∣∣∣∣+ npNp

∫

Ω
varjpΥ(ω) dP

≤ 2npNpε
3
p.

We also used
∣∣∣∣SnpNpvarjpΥ(σmpω)− npNp

∫

Ω
varjpΥ(ω) dP

∣∣∣∣ ≤ npNpcnpNp
≤ npNpε

3
p,

which holds since σmpω ∈ Ω(p) and cnp
Np

≤ ε3p, and

∫

Ω
varjpΥ(ω) dP ≤ ε3p,

which holds by construction of (ji)i∈N.

The estimate of the term invoking varji+1
Υ works similarly.

To obtain the term m1C +
∑i
p=1 n

p
Np(ε

3
p + ε3p+1) in the upper bound we wrote

mp+1 −mp − npNp =M ′(p+ 1) + θ(s+ 1, ω, sp+1)−mp − npNp

and by construction, M ′(p+ 1) ≤ ε3p+1n
p
Np and θ(p+ 1, ω, sp+1)−mp − npNp ≤

ε3pn
p
Np .

At the end we have used the fact that mp ≤ npN ′
p
ε3p+1 ≤ mp+1ε

3
p+1.

We also have:

• For i ∈ N large enough, for any k with Ni+1 < k ≤ Ni+1 for any v, v′ ∈
Σω,mi+1+n

i+1
k

satisfying |v ∧ v′| ≥ mi+1 + ni+1
k−1, we have

|U v
ω|

|U v′
ω |

≤ exp((mi+1 + ni+1
k )ε2i ). (6.4)

Indeed, at first,
∣∣∣log |U v

ω| − log |U v′

ω |
∣∣∣

≤ 2Vmi+1+M ′(i+1)+ni
k
Ψ(ω) + 2(ni+1

k − ni+1
k−1)C

≤ 2Vmi+1+M ′(i+1)+ni
k
Ψ(ω) + 2Cni+1

k ε3k+1

≤ 2
m1−1∑

i=0

‖Ψσiω‖∞ + 2
i∑

j=1

(mj+1 −mj)ε
3
j + 2Cni+1

k ε3i+1

≤ 2
m1−1∑

i=0

‖Ψσiω‖∞ + 2mi + 2mi+1ε
3
i + 2Cni+1

k ε3i+1
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≤ 2
m1−1∑

i=0

‖Ψσiω‖∞ + 4mi+1ε
3
i + ni+1

k ε2i+1

for i large enough. Second, for i large enough, one can get 2
∑m1−1
i=0 ‖Ψσiω‖∞ ≤

mi+1ε
3
i .

At last we get
∣∣∣log |U v

ω| − log |U v′

ω |
∣∣∣ ≤ (mi+1+n

i+1
k )ε2i for i large enough. Then

(6.4) follows.

• Now, fix x ∈ K(ω, {di}i≥1). If r is small enough, we can choose the largest i,
then the largest k = ki+1, with Ni+1 < k ≤ Ni+1 such that:
there exists w ∈ Ri(d1, d2, · · · , di), v ∈ V(σmi+1ω, i + 1, qi+1, k) satisfying
x ∈ Uw∗v

ω and
|Uw∗v

ω | ≥ 2r exp((mi+1 + ni+1
k )ε2i ).

From the construction, if Uw∗v+
ω and Uw∗v−

ω are the neighboring intervals of
Uw∗v
ω , then |v ∧ v + |, |v ∧ v − | are larger than ni+1

k−1. Then by (6.4) we have
|Uw∗v+

ω | ≥ 2r and |Uw∗v−
ω | ≥ 2r. So there exists v′ = v− or v′ = v+ such that

B(x, r) ⊂ Uw∗v
ω ∪ Uw∗v′

ω .

Now, using estimates similar to those leading to (6.4) with Ψ replaced by Φ
we get that for any w ∗ v ∈ [w ∗ v]ω,

µω(B(x, r)) ≤µω(Uw∗v
ω ) + µω(U

w∗v′
ω )

≤2 exp(Smi+1+n
i+1
k

Φ(ω,w ∗ v) + (mi+1 + ni+1
k )ε2i+1).

Consequently, using (6.3),

log µω(B(x, r))

≤ log 2 +
i∑

p=1

Snp
Np
Φjp(F

mp(ω, v)) + Sni+1
k

Φji+1
(Fmi+1(ω, v))

+2(mi+1 + ni+1
k )ε2i

≤
i∑

p=1

Snp
Np
Φjp(F

mp(ω, v)) + Sni+1
k

Φji+1
(Fmi+1(ω, v)) + 3(mi+1 + ni+1

k )ε2i

Let IΦ
p = Snp

Np
Φjp(F

mp(ω, v)) and IΦ
i+1,k = Sni+1

k
Φji+1

(Fmi+1(ω, v)). Then

log µω(B(x, r)) ≤
Ñ

i∑

p=1

IΦ
p

é
+ IΦ

i+1,k + 3(mi+1 + ni+1
k )ε2i . (6.5)

Now let us estimate log r from below:

– If k < Ni+1, there exists ṽ such that |w ∗ ṽ| = mi+1+n
i+1
k+1, x ∈ Uw∗ṽ

ω and

|Uw∗ṽ
ω | ≤2r exp((mi+1 + ni+1

k+1)ε
2
i ). (6.6)
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If we notice that ni+1
k+1−ni+1

k ≤ ni+1
k ε3i+1 and IΨ

i+1,k+1−IΨ
i+1,k ≤ −Cni+1

k ε3i+1

(where IΨp is defined similarly as IΦp ), from (6.6) and (6.3) we can get

log r ≥
Ñ

i∑

p=1

IΨ
p

é
+ IΨ

i+1,k+1 − 2(mi+1 + ni+1
k+1)ε

2
i − log 2

≥
Ñ

i∑

p=1

IΨ
p

é
+ IΨ

i+1,k − Cni+1
k ε3i+1 − 2(mi+1 + ni+1

k )ε2i − log 2

≥
Ñ

i∑

p=1

IΨ
p

é
+ IΨ

i+1,k − 3(mi+1 + ni+1
k )ε2i .

So

log r ≥
Ñ

i∑

p=1

IΨ
p

é
+ IΨ

i+1,k − 3(mi+1 + ni+1
k )ε2i . (6.7)

– If k = Ni+1, there exists ṽ such that |w ∗ ṽ| = mi+2 + ni+2
Ni+2+1, x ∈ Uw∗ṽ

ω

and

|Uw∗ṽ
ω | ≤2r exp((mi+2 + ni+2

Ni+2+1)ε
2
i+1). (6.8)

We have

log r ≥
Ñ
i+1∑

p=1

IΨ
p

é
+ IΨ

i+2,Ni+2+1 − 2(mi+2 + ni+2
Ni+2+1)ε

2
i − log 2

≥
Ñ

i∑

p=1

IΨ
p

é
+ IΨ

i+1,Ni+1
− 3(mi+1 + ni+1

Ni+1
)ε2i ,

where we have used (6.2). This implies that (6.7) holds as well.

Finally, for any v ∈ (w ∗ ṽ)ω, (6.5) and (6.7) imply

log µω(B(x, r))

log r
≥ (

∑i
p=1 IΦ

p ) + IΦ
i+1,k + 3(mi+1 + ni+1

k )ε2i
(
∑i
p=1 IΨ

p ) + IΨ
i+1,k+1 − 3(mi+1 + ni+1

k )ε2i
(6.9)

Due to item 5 in the second step we have |I
Φ
p

IΨ
p
−di| ≤ εi and |I

Ψ
i,k

IΨ
i,k

−d| ≤ εi+1

for k ≥ Ni+1.

It follows from Stolz-Cesàro theorem that

lim inf
r→0

log(µω(B(x, r)))

log r
≥ d. (6.10)
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• Now it remains to prove that lim supr→0
log µω(B(x,r))

log r
≤ d. This is easier

since we just need to choose the smallest i and then the smallest k = ki+1

with Ni+1 ≤ k ≤ Ni+1, such that there exists w ∈ Ri(d1, d2, · · · , di) and
v ∈ V(σmi+1ω, i + 1, qi+1, ki+1) for which x ∈ Uw∗v

ω and |Uw∗v
ω | ≤ r. Then

µω(B(x, r)) ≥ µω(U
w∗v
ω ).

If ki+1 > Ni+1, then ṽ, the father of v, belongs to V(σmi+1ω, i+1, di+1, ki+1−1)

and x ∈ Uw∗ṽ
ω . We have |Uw∗ṽ

ω | ≥ r, and

lim
r→0

log |Uw∗v
ω |

log |Uw∗ṽ
ω | = 1. (6.11)

If ki+1 = Ni+1, then there exists w′ ∈ Ri−1(d1, d2, · · · , di−1), and v′ ∈
V(σmiω, i, di, Ni) with x ∈ Uw′∗v′

ω , |Uw′∗v′
ω | ≥ r, and

lim
r→0

log |Uw∗v
ω |

log |Uw′∗v′
ω | = 1. (6.12)

In any case, we get lim supr→0
log(µω(B(x,r)))

log r
≤ d.

Fourth step: For any v = w0 ∗ v(q1) ∗ v′ ∈ R1, where v′ ∈
V(σn+M+M(1)+S(1)ω, 1, d1) =: V1, define:

ηω(U
w0∗v(q1)∗v′
ω ) :=

µ
Λ1,q

σm1ω(U
v′

σm1ω)
∑
v′′∈V (σm1ω,1,q1) µ

Λ1,q

σm1ω(U
v′′
σm1ω)

. (6.13)

Then inductively, for any w ∈ Ri(d1, d2, · · · , di), v ∈ Vi+1, define:

ηω(U
w∗v(qi+1)∗v
ω ) := ηω(U

w
ω )

µ
Λi+1,qi+1

σmi+1ω (U v
σmi+1ω)

∑
v′∈Vi+1

µ
Λi+1,qi+1

σmi+1ω (U v′

σmi+1ω)
. (6.14)

We can extend ηω in a unique way to a probability measure on the σ-algebra
generated by ∪i≥1{U v

ω : v ∈ Ri(d1, d2, · · · , di)}. This measure is supported on
K(ω, {di}i≥1).

Since for each i ≥ 1 we have
∑
v′∈Vi µ

Λi,qi
σmiω(U

v′

σmiω) ≥ µ
Λi,qi
σmiω(Ei,qi) ≥ 1 − ǫi and∏∞

i=1(1 − ǫi) ≥ 1
2
, using the same method as in step three, we can prove that: for

any x ∈ K(ω, {di}i≥1),

lim inf
r→0

log(ηω(B(x, r)))

log r
≥ lim inf

i→∞
T ∗(di) = T ∗(d) (6.15)

Then we get dimH(E(µω, d)) ≥ T ∗(d).
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In fact, our estimates yield a positive sequence (ε′i)i∈N decreasing to 0 and
a constant C ′ > 0 such that, independently on {di}i∈N, if in the construction
the sequence (mi)i∈N is replaced by another one growing faster (with the effect
to modify (K(ω, {di}i∈N), ηω)), for all x ∈ K(ω, {di}i∈N), for i large enough, if
exp(−mi+1cΨ/2) < r, then

ηω(B(x, r)) ≤ C ′rmin{T ∗(dj)−ε′j :1≤j≤i}. (6.16)

This property will be used in the next section.

Remark 6.2 From the proof of theorem 1.11 we can directly get that

ηω({x : lim
n→∞

Snϕ(ω, x)

Snψ(ω, x)
= d}) = 1,

and then

dimH({x ∈ Σω : lim
n→∞

Snϕ(ω, x)

Snψ(ω, x)
= d}) ≥ T ∗(d).

6.3 Proofs of theorems 1.11(3), (4) and (5)

Lemma 6.3 For P-almost every ω ∈ Ω, for any given d ≤ d′ ∈ [T ′(+∞), T ′(−∞)],

dimH E(µω, d, d
′) = inf{T ∗(d), T ∗(d′)},

dimP E(µω, d, d
′) = sup{T ∗(β) : β ∈ [d, d′]}.

Proof 1. We first deal with the lower bounds for the dimensions.

At first, for the Hausdorff dimension let us take two sequences (di)i≥1 and
(d′i)i≥1 in

∏
i≥1Di such that limi→∞ di = d and limi→∞ d′i = d′, with the prop-

erties:
lim
i→∞

T ∗(di) = T ∗(d), lim
i→∞

T ∗(d′i) = T ∗(d′).

Set d̃2i = di and d̃2i+1 = d′i.

We can use the same construction as in the previous section and get a set
K(ω, {d̃i}i≥1), as well as a probability measure ηω supported on K(ω, {d̃i}i≥1).

If we choose the sequence (N ′
i )i≥1 used in the construction so that m3

i ≤
niN ′

i
ε3i , and consequently m3

i ≤ mi+1ε
3
i ), then this growth speed yields that for

any x ∈ K(ω, {d̃i}i≥1),
log µ(B(x,r))

log(r)
will have d and d′ as accumulating points

and will fluctuate asymptotically between these points, hence K(ω, {d̃i}i≥1) ⊂
E(µω, d, d

′). Also, for all x ∈ K(ω, {d̃i}i≥1), one has lim infr→0
log(ηω(B(x,r)))

log r
≥

inf{T ∗(d), T ∗(d′)}.
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From proposition 10.1 in [24], this will gives us that

dimH E(µω, d, d
′) ≥ inf{T ∗(d), T ∗(d′)}.

Second, for the packing dimension, we just need to notice that we can choose
three sequences (di)i≥1 (d′i)i≥1 and (d′′i )i≥1in

∏
i≥1Di such that limi→∞ di = d,

limi→∞ d′i = d′ and limi→∞ d′′i = d′′ with the properties:

lim
i→∞

T ∗(di) = T ∗(d), lim
i→∞

T ∗(d′i) = T ∗(d′),

and
lim
i→∞

T ∗(d′′i ) = T ∗(d′′) = sup{T ∗(β) : β ∈ [d, d′]}.

Take d̃3i = di, d̃3i+1 = d′′i and d̃3i+2 = d′i.

Here again, we get K(ω, {d̃i}i≥1) and ηω, and if mi grows fast enough, then for

any x ∈ K(ω, {d̃i}i≥1),
log µ(B(x,r))

log(r)
alternatively accumulates near d, d′ and d′′

and fluctuates between d and d′ as r → 0, so that K(ω, {d̃i}i≥1) ⊂ E(µω, d, d
′);

simultaneously,

lim sup
r→0

log(ηω(B(x, r)))

log r
= sup{T ∗(β) : β ∈ [d, d′]}.

From proposition 10.1 in [24], this gives us

dimP E(µω, d, d
′) ≥ sup{T ∗(β) : β ∈ [d, d′]}.

2. For the upper bound of the dimensions they directly come from (1) of propo-
sition 1.3 and (1.2),(1.3) in [4].

Using lemma 6.3 and (2) of proposition 1.3 in [4] we can directly get the following
corollary.

Corollary 6.4 P-almost every ω ∈ Ω, for any d ∈ [T ′(+∞), T ′(−∞)],

dimH E(µω, d) = T ∗(d), dimP E(µω, d) = sup{T ∗(d′) : d′ ≥ d},

and
dimH E(µω, d) = T ∗(d), dimP E(µω, d) = sup{T ∗(d′) : d′ ≤ d}.

Now, to finish the proof of theorem 1.11 we just need the following proposition.

Proposition 6.5 For P-almost every ω ∈ Ω,
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1. for any gauge function g : R+ 7→ R+ such that lim supr→0
log g(r)
log r

> T ∗(d), one
has that

Hg(E(µω, d)) = 0.

2. for any gauge function g : R+ 7→ R+ such that lim infr→0
log g(r)
log r

> T ∗(d), one
has that

Pg(E(µω, d)) = 0.

3. if dimH E(µω, d) = T ∗(d) < sup{T ∗(d′) : d′ ∈ [T ′(+∞), T ′(−∞)]} = t0 =
dimH Xω, one has that for any gauge function g : R+ 7→ R+ such that
lim supr→0

log g(r)
log r

≤ T ∗(d), one has that

Hg(E(µω, d)) = +∞.

4. if dimP E(µω, d) = T ∗(d) < sup{T ∗(d′) : d′ ∈ [T ′(+∞), T ′(−∞)]} = t0 =
dimH Xω, one has that for any gauge function g : R+ 7→ R+ such that
lim infr→0

log g(r)
log r

≤ T ∗(d), one has that

Pg(E(µω, d)) = +∞.

Proof 1. Since lim supr→0
log g(r)
log r

> T ∗(d), then there exist ε > 0 small enough

and a sequence {rj}j≥1 such that limj→∞ rj = 0 and g(2rj) ≤ (2rj)
T ∗(d)+2ε.

Also, since LDµ(d) = T ∗(d), for ǫ > 0 small enough, there exists n ∈ N such
that for any r ≤ 2−n one has that #{i : rd+ǫ ≤ µ(B(xi, r) ≤ rd−ǫ)} ≤ r−T

∗(d)−ε.

From the definition of E(µω, d) we can get E(µ, d) ⊂ ∪N≥1EN , where

EN = ∩0<r≤2−N{x ∈ supp(µ) : rd+ǫ ≤ µω(B(x, r)) ≤ rd−ǫ}.
Fix N ≥ 1. It follows from the previous lines that for any n ≥ N , there exists
j ≥ 1 such that rj ≤ 2−n and we have

EN ⊂ {x ∈ supp(µ) : rd+ǫj ≤ µω(B(x, rj)) ≤ rd−ǫj }
It follows from Besicovitch’s covering theorem (see [59]) that there exists an
integer Q (which is a constant just depends on m in the space Rm ) such that,
defining Ej(ε) = {x ∈ supp(µ) : rd+ǫj ≤ µω(B(x, rj)) ≤ rd−ǫj }, we can extract
from {B(x, r) : x ∈ Ej(ε)}, Q families Ek(1 ≤ k ≤ Q) of disjoint balls such

that Ej(ε) ⊂ ∪Qk=1 ∪B∈Ek B.

Then

Hg
2−n+1(EN) ≤

Q∑

k=1

∑

B∈Ek
g(|B|) ≤ Q(♯Ek)(2rj)T

∗(d)+2ε

≤ Qr−T
∗(d)−ε(2rj)

T ∗(d)+2ε ≤ (2)T
∗(d)+1Qrε

letting n tends to ∞ yields Hg(EN) = 0 for any N ≥ 1. Finally we get
Hg(E(µω,d)) = 0.
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2. lim infr→0
log g(r)
log r

> T ∗(d) implies that for ε > 0 small enough, there exists r0

such that for any 0 < r ≤ r0, one has g(r) ≤ rT
∗(d)+ε.

EN ⊂ ∩0<2−p≤2−N{x ∈ supp(µ) : 2−p(d+ǫ) ≤ µω(B(x, 2−p)) ≤ 2−p(d−ǫ)},

For any A ⊂ [0, 1], for any n ∈ N, let {B(xi, ri) : i ∈ N} be an 2−n packing of
the set A ∩ EN . For each p ≥ n + 1, we can define Pp = {i ∈ N : 2−p < ri ≤
2−p+1}. The balls in {B(xi, 2

−p) : i ∈ Pp, 2
−p(d+ǫ) ≤ µω(B(x, 2−p)) ≤ 2−p(d−ǫ)}

form a 2−p-packing of supp(µω) of cardinality less than 2p(T
∗(d)+η).

Consequently,

∑

i

g(2ri) ≤
∑

i

(2ri)
T ∗(d)+2η ≤

∑

p≥n

∑

i∈Pp
(2 · 2−p+1)T

∗(d)+2η

≤ 4T
∗(d)+2η

∑

p≥n
(♯Pp)2

−p(T ∗(d)+2η)

≤ 4T
∗(d)+2η

∑

p≥n
2−pη.

The upper bound does not depend on the choice of the 2−n-packing {B(xi, ri) :
i ∈ N} and goes to 0 as n → ∞. It follows that the packing g pre-measure of
EN ∩ A with respect to the gauge function g is 0 for any A ⊂ [0, 1].

At last we get Pg(E(µω, d)) = 0.

3. Let {ε′i}i∈N and C ′ > 0 be so that (6.16) holds. Since T ∗(d) < t0, we can find
{di}i∈N ∈ ∏

i∈NDi such that di → d as i → ∞, T ∗(di) − ε′i ≥ T ∗(d) + ε′i for
i large enough, T ∗(di) → T ∗(d) as i → ∞, and T ∗(di) − ε′i is ultimately non
increasing.

For any gauge function g such that lim supr→0
log g(r)
log r

≤ T ∗(d), there exists a

positive sequence {υr}r>0 such that both υr and rυr decrease to 0 as r decreases
to 0 and

g(r) ≥ rT
∗(d)+υr (r ≤ 1).

Due to (6.16) for i large enough, for any r such that exp(−mi+1cΨ/2) ≤ r ≤
exp(−micΨ/2), for any x ∈ K(ω, {di}i≥1),

ηω(B(x, r)) ≤ C ′rmin{T ∗(dj)−ε′j :1≤j≤i} ≤ C ′rT
∗(di)−ε′i ≤ C ′rT

∗(d)+ε′i .

Notice that g(r)rυr ≥ rT
∗(d)+2υr . So, if we can impose 2υr ≤ ε′i, we will have

ηω(B(x, r)) ≤ C ′g(r)rυr

hence
g(r) ≥ C ′−1

ηω(B(x, r))r−υr .
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Then, for any positive real number δ > 0, this will yield Hg
δ(K(ω, {di}i≥1)) ≥

δ−υδ , and letting δ → 0, Hg(K(ω, {di}i≥1)) = +∞, and since K(ω, {di}i≥1) ⊂
E(µω, d), item 3. will be proven.

Now, if we choose mi large enough so that

υexp(−micΨ/2) ≤ ε′i/2,

then for exp(−mi+1cΨ/2) ≤ r ≤ exp(−micΨ/2), we have 2υr ≤ ε′i since υr ≤
υexp(−micΨ/2).

4. Since lim infr→0
log g(r)
log r

≤ T ∗(d), there exist {rj}i∈N ∈ (0, 1)N, and {υrj}j∈N ∈
(0,∞)N such that υrj ∈ (0, 1] and r

υj
j decrease to 0 as j tends to ∞, and

g(2rj) ≥ r
T ∗(d)+υrj
j .

Using the same approach as for 3., we can choose (di)≥1 ∈ ∏
i≥1Di such that

limi→∞ di = d, T ∗(di) converges slowly to T ∗(d) from above, and in the con-
struction of (K(ω, {di}i≥1), ηω) as in the previous section, mi tends fast enough
to ∞ so that, for some j0 ∈ N, for all j ≥ j0, for any x ∈ K(ω, {di}i≥1,

ηω(B(x, rj)) ≤ C ′(2rj)
T ∗(d)+2υrj .

Now, let A ⊂ K(ω, {di}i≥1) be of positive ηω-measure. For any given δ > 0,
take j′0 ≥ j0 such that rj′0 ≤ δ consider the following family of closed balls

Bk = {B(x, rj) : x ∈ A, j ≥ j′0},

which is a covering of A. Due to Besicovitch covering theorem, we can extract
an at most countable subfamily of pairwise disjoint balls {B(xi, ρi)}i∈I such
that ηω(

⋃
i∈I Bi) > 0. This family is a δ-packing of A, and

Pg
0,δ(A) ≥

∑

i

g(B(xi, ρi)) ≥
∑

i

ρ
T ∗(d)+υρi
i

≥
∑

s

ρ
−υρi
i ηω(B(xi, ρi))

≥ ρ
−υρ

j′
0

j′0
ηω(A).

Since when δ → 0, we have j′0 → ∞ and then ρ
−υρ

j′
0

j′0
→ ∞, we can conclude

that P g
0 (A) = +∞. Since any at most countable covering ofK(ω, {di}i≥1) must

contain a set A of positive ηω-measure, we finally get Pg(K(ω, {di}i≥1)) = +∞.
Finally, Pg(E(µω, d)) = +∞ since E(µω, d) ⊃ K(ω, {di}i≥1).



Chapter 7

Multifractal analysis of the inverse

measures:

Proof of Theorem 1.13

After introducing new notations in section 7.1, we give an explicit writing of the
measure νω and some useful estimate of the mass of its atoms in section 7.2. Then, in
section 7.3. we start the multifractal analysis of νω by examining the possible scenarii
which lead to a given lower local dimension. This yields a first, not everywhere
sharp, but very useful for the sequel, upper bound for the lower Hausdorff spectrum.
Indeed, it is already related to conditioned ubiquity properties associated with the
sets of atoms, and thus it provides a beginning of concrete explanation of the origin
of the linear part in the lower Hausdorff spectrum. Then, in section 7.4, we derive
the sharp upper bound for the Lq-spectrum of νω, in which ubiquity properties
remain hidden. Section 7.5 derives the sharp lower bound for the lower Hausdorff
spectrum in its non linear part. This is based on the study of weak Gibbs measures
achieved in chapter 6. Then section 7.6 prepares section 7.7, which provides the
conditioned ubiquity theorem used in section 7.8 to get the sharp lower bound for
the lower Hausdorff spectrum in the linear part. Finally, section 7.9 deals with the
Hausdorff dimension of the level sets E(νω, d) and E(νω, d).

7.1 Some notations

Since Assumption 2 implies that µω is atomless P-almost surely (due to proposi-
tion 2.7), without loss of generality, we assume that this is the case for all ω ∈ Ω.

For ω ∈ Ω, n ≥ 1, v ∈ Σω,n and k ≥ 1 we define

S(ω, v, k) = {w ∈ Σσnω,k : vw ∈ Σn+k(ω)},
the set of words in Σσnω,k which can be a suffix of v.

66
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Next we consider the set of words w in S(ω, v, k) such that U vw has a right
neighbor U vw̃, with w̃ ∈ S(ω, v, k) :

S ′(ω, v, k) =

{
w ∈ S(ω, v, k)

∣∣∣∣∣
there exists ‹w ∈ S(ω, v, k) such that

U vw̃
ω is the nearest right neighbor of U vw

ω

}
.

We need to point out that such a set can be empty. For any w ∈ S ′(ω, v, k), we

denote by ‹w the element of S(ω, v, k) such that U vw̃
ω is the closest right neighbor of

U vw
ω .

For every v ∈ Σω,∗, k ≥ 1 and w ∈ S(ω, v, k), define

mvw
ω = minXvw

ω and M vw
ω = maxXvw

ω ,

as well as
gap(ω, k) = inf

v∈Σω,1
sup

1≤m≤k
sup

w∈S′(ω,v,m)
{mvw̃

ω −M vw
ω }.

For any v ∈ Σω,∗, we define

Ivω := [Fµω(m
v
ω), Fµω(M

v
ω)) = Fµω(X

v
ω) \ {Fµω(M v

ω)}.

Since the support of µω restricted to the interval [mv
ω,M

v
ω] (or U v

ω) is Xv
ω, and µω

is atomless, from the construction, we get that Ivω is a non-empty interval of length
|Ivω| = µω(X

v
ω) = µ̃ω([v]ω).

Since supp(µω) = Xω and ∪v∈Σω,nXv
ω = Xω, we can get that the family of

intervals Fn
ω = {Ivω}v∈Σω,n , n ≥ 1, form a nested interval of [0, 1). For any n ∈ N,

for any v ∈ Σω,n, we call Ivω the n-th basic grid.

7.2 An explicit writing of the inverse measure νω,
and preliminary estimates for the mass of atoms

For any v ∈ Σω,∗ and s ∈ S ′(ω, v, 1), denote xvsω = Fµω(M
vs
ω ). Denotemmin

ω = minXω

and Mmax
ω = Xω.

Using the same method as [11] for the inverse measures of deterministic Gibbs
measures on cookie-cutter sets, we can get the following explicit form for the inverse
of the random weak Gibbs measures {µω : ω ∈ Ω}.

Proposition 7.1 (The inverse measure νω of µω) Suppose that the Assumptions
(1) and (2) hold. Then the inverse measure νω of the random weak Gibbs mea-
sure µω is the discrete probability measure on [0, 1] given by the following weighted
sum of Dirac measures:

νω = mmin
ω · δ0 +

∑

v∈Σω,∗

∑

s∈S′(ω,v,1)

(mvs̃
ω −M vs

ω ) · δxvsω + (1−Mmax
ω )δ1. (7.1)
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An explicit writing of the inverse measure νω, and preliminary estimates for the
mass of atoms

This proposition can be easily proved if we notice the following two facts. On
the one hand, from the definition we can get for each point xvsω , the measure is

at least mvs̃
ω − M vs

ω . On the other hand, we the whole measure is 1 and mmin
ω +

∑
v∈Σω,∗

∑
s∈S′(ω,v,1)(m

vs̃
ω −M vs

ω ) + (1−Mmax
ω ) = 1 from the assumption (2).

Lemma 7.2 If Assumption (2) holds, then

P({ω ∈ Ω : sup
k≥1

gap(ω, k) > 0}) > 0.

Consequently, there exist some kψ > 0 and c > 0 such that P(Gap(kψ, c)) > 0 where
Gap(kψ, c) =: {ω ∈ Ω : gap(ω, kψ) > c}.

Remark 7.3 We point out that the assumption (2) is not necessary to get
lemma 7.2. We only need that Xω is not equal to [0, 1] for P-almost every ω ∈ Ω.
This can deduced from the beginning of chapter 4.

Proof By contradiction:

If the result does not hold, then for P-almost every ω, there exists v ∈ Σω,1 such
that

sup
m∈N

sup
w∈S′(ω,v,m)

mvw̃
ω −M vw

ω = 0.

This implies that Xv
ω can not have any gaps. Then Xv

ω is either a point or an interval.
From the assumption that Xω has a Lebesgue measure 0, we get that it is a point.

Now, defining

B = {ω ∈ Ω : M(ω) ≤M, l(ω) ≥ 2},
we have P(B) > 0 for M large enough. For any ω ∈ Ω, define bk(ω) the k-th
return time of ω to the set B by the map σ. From ergodic theorem we have that
limk→∞

bk(ω)
k

= 1
P(B)

for P-almost every ω ∈ Ω. Define Ω′ = {ω ∈ Ω : limk→∞
bk(ω)
k

=
1

P(B)
}.
For any ω ∈ Ω′, we know that there is at least four words in Σω,bM+2

with the
prefix v ∈ Σω,1, and we denote them by w1, w2, w3 and w4. We can assume that
these intervals appear from the left to the right as Uw1

ω , Uw2

ω , Uw3

ω , Uw4

ω . The sets
Xwi

ω ⊂ Uwi

ω , i = 1, 2, 3, 4, are not empty since by definition the random transition
matrix A has at least one non-zero entry in each row and each column. Choose
xi ∈ Xwi

ω ⊂ Uwi

ω , i = 1, 2, 3, 4. Since Uwi

ω , i = 1, 2, 3, 4 are intervals, we have that
x4 − x1 > 0, which contradicts the fact that Xv

ω is a point.

With the same method as in the proof of propositions 2.6 and 2.7 we can get the
following proposition:
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Proposition 7.4 Under assumption 2, for P-almost every ω ∈ Ω, for all n ∈ N,
for all v ∈ Σω,n, there exists kv and w ∈ S ′(ω, v, kv) such that

mvw̃
ω −M vw

ω ≥ exp(SnΨ(ω, v)− o(n))

for any v ∈ [v]ω. Here o(n) is independent of v, and kv = o(n) independently of v
as well.

Proof For any N ∈ N+, let

Ω′
N =

{
ω : M(ω) ≤ N,

1

n

n−1∑

k=0

sup
1≤s≤l(σkω)

sup
x∈U

σkω

|ψ(ω, s, x)| ≤ 2Cψ, ∀n ≥ N

}
.

Choose N large enough such that P(Ω′
N ∩ Gap(kψ, c)) > 0, where Gap(kψ, c) was

defined in lemma 7.2.

For P-almost every ω ∈ Ω, for n large enough, denote by H(n) the smallest
integer such that σn+H(n)ω ∈ Ω′

N ∩ Gap(kψ, c) and H(n) ≥ N . Since P(Ω′
N ∩

Gap(kψ, c)) > 0, from ergodic theorem we can get that limn→∞
H(n)
n

= 0. Moreover,
since σn+H(n)ω ∈ Ω′

N ∩ Gap(kψ, c), there exists some 1 ≤ s ≤ l(σn+H(n)ω) and

v′ ∈ S ′(σn+H(n)ω, s, k) with k ≤ kψ such that msṽ′

σn+H(n)ω
− M sv′

σn+H(n)ω
> c. For

any v ∈ Σω,n there exists v′′ of length H(n) − 1 such that vv′′s ∈ Σω,n+H(n) (by
definition of M(σn+H(n)) and since H(n) ≥ N ≥ M(σn+H(n))). Set w = v′′sv′ and
‹w = v′′s‹v′. We have w ∈ S ′(σnω, v,H(n) + k). Moreover, T vv

′′

ω ([M vw
ω ,mvw̃

ω ]) =

[M sv′

σn+H(n)−1ω
,msṽ′

σn+H(n)−1ω
]. Now using Lagrange’s finite-increment theorem and the

same approach as in lemma 2.7 we can prove that

mvw̃
ω −M vw

ω ≥ c exp(SnΨ(ω, v)− o(n)).

for any v ∈ [v]ω, since H(n) is a o(n). Morover, kv = |w| = H(n) + k = o(n).

Definition 7.5 Proposition 7.4 implies that for P-almost every ω ∈ Ω, for all n ∈
N, for any v ∈ Σω,n, there exist some point x = xvwω such that

νω({x}) ≥ exp(SnΨ(ω, v)− o(n))

for any v ∈ [v]ω. For each v ∈ Σω,∗, we fix one such point and denote it by zvω.

Arguments similar to those giving proposition 7.4 lead to the following remark.

Remark 7.6 For P-almost every ω ∈ Ω, for all n ∈ N and v ∈ Σω,n, for any
v ∈ [v]ω,

|Xv
ω| ≥ exp(SnΨ(ω, v)− o(n)),

where the o(n) does not depend on the choice of v. Then, using point (1) of propo-
sition 2.7 we get

exp(SnΨ(ω, v)− o(n)) ≤ |Xv
ω| ≤ exp(SnΨ(ω, v) + o(n)).
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Pointwise behavior of νω and an upper bound for the lower Hausdorff spectrum
without using of multifractal formalism

7.3 Pointwise behavior of νω and an upper bound
for the lower Hausdorff spectrum without using
of multifractal formalism

Definition 7.7 For v ∈ Σω,∗, we set

ℓvω = 2|Ivω| = 2µ̃ω([v]ω),

ξvω = log |Ivω|,

αvω =
‹Ψ(ω, v)

ξvω
,

where
‹Ψ(ω, v) = sup

v∈[v]ω
{S|v|Ψ(ω, v)}.

For x ∈ [0, 1) and n ≥ 1, let v(ω, n, x) stand for the unique element v in Σω,n

such that x ∈ Iv(ω,n,x)ω . If x = 1, v(ω, n, 1) is the unique v ∈ Σω,n such that 1 ∈ Ivω.
If there is no confusion we will denote v(ω, n, x) by v(n, x) or x|n for short. Let

αnω(x) = αx|nω ,

αω(x) = lim inf
n→∞ αnω(x).

For x ∈ [0, 1] \ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)}, the approximation degrees ξxω and
ξ̃xω by the system {(xvsω , ℓvω)}v∈Σω,∗,s∈S′(ω,v,1) are defined as

ξxω = lim sup
n→∞

(
sup

v∈Σn(ω)
sup

s∈S′(ω,v,1)

log |x− xvsω |
log ℓvω

)

ξ̃xω = lim sup
n→∞

sup
s∈S′(ω,x|n,1)

log |x− xx|nsω |
log ℓ

x|n
ω

Since we use only one specific word in the definition of ξ̃xω, we have ξxω ≥ ξ̃xω ≥ 1, for
every x ∈ [0, 1] \ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)}.

Proposition 7.8 1. If x ∈ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1), and mvs̃
ω −M vs

ω > 0},
then νω({x}) > 0, thus dimloc(νω, x) = 0.

2. For any x ∈ [0, 1], if x /∈ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)}, then

αω(x)

ξxω
≤ αω(x)

ξ̃xω
≤ dimloc(νω, x) ≤ αω(x).

Here, if ξxω = +∞ then αω(x)
ξxω

:= 0. In the same way, if ξ̃xω = +∞ then
αω(x)

ξ̃xω
:= 0.
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Proof (1) is obvious, we just give the proof of (2).

Let x ∈ [0, 1] \ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)} and r > 0.

• The first inequality is obvious since one always has ξxω ≥ ξ̃xω ≥ 1.

• For the second inequality, let

nx,rω = max{n : ∃v ∈ Σω,n, such that B(x, r) ⊂ Ivω}. (7.2)

If x /∈ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)}, then nx,rω ≤ −2 log r
cψ

for r small enough

and nx,rω → ∞ as r → 0. Since n is the largest one then there exist a unique
v denoted by v(x, r) := x|nx,rω and a s ∈ S ′(ω, v(x, r), 1) such that

xv(x,r)sω ∈ B(x, r) ⊂ Iv(x,r)ω .

Hence, we get

νω(B(x, r)) ≤ νω(I
v(x,r)
ω \ {max Iv(x,r)ω ,min Iv(x,r)ω }) ≤ |Xv(x,r)

ω | ≤ |U v(x,r)
ω |

≤ exp(S|v(x,r)|Ψ(ω, v) + o(|v(x, r)|)) where v ∈ [v(x, r)]ω,

by proposition 2.7(1).

Now for any ε > 0, by definition of ξ̃xω, for r small enough we have

r ≥ |x− xv(x,r)sω | ≥ (2|Iv(x,r)ω |)ξ̃xω+ε.

Moreover, again for r small enough, we have

exp(‹Ψ(ω, v(x, r))) ≤ |Iv(x,r)ω |αω(x)−ε

by definition of αω(x).

These estimates yield

νω(B(x, r)) ≤ exp(‹Ψ(ω, v(x, r)) + o(|v(x, r)|)) ≤ r
αω(x)−ε

ξ̃xω+ε exp(o(nx,rω )),

and by letting r tend to zero, since nx,rω ≤ −2 log r
cψ

, it follows that dimloc(νω, x) ≥
αω(x)−ε
ξ̃xω+ε

. From the arbitrariness of ε we get that dimloc(νω, x) ≥ αω(x)

ξ̃xω
.

• Finally, for the third inequality, let {pi}i≥1 be an increasing sequence of integers

such that exp(‹Ψ(ω, vpi)) ≥ |Ivpiω |αω(x)+ǫ where vpi ∈ Σω,pi for all i ≥ 1. Since
z
vpi
ω ∈ B(x, 2|Ivpiω |),

νω(B(x, 2|Ivpiω |)) ≥ νω({zvpiω }) ≥ exp(SpiΨ(ω, v)) exp(−o(pi))
≥ |Ivpiω |αω(x)+ǫ exp(−o(pi)).

Also, |Ivω| ≤ exp(−̟pi
2
) for pi large enough and ǫ can approximate 0 arbitrarily,

so dimloc(νω, x) ≤ αω(x).
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Definition 7.9 Let α > 0, ξ ≥ 1 and ε > 0. A real number x ∈ [0, 1] is said
to satisfy the property P(α, ξ, ε) if there exists an increasing sequence of positive
integers (nk)k≥1 such that for every k ≥ 1, there exists v ∈ Σω,nk and s ∈ S ′(ω, v, 1),
such that x ∈ B(xvsω , (ℓ

vs
ω )

ξ−ε) and αvω ∈ [α− ε, α + ε].

Remark 7.10 Arguments similar to the previous ones show that dimloc(νω, x) ≤
lim supn→∞ αnω(x).

We need additional definitions.

Definition 7.11 For d ≥ 0, let

F (d) =

®
x ∈ (0, 1)

∣∣∣∣∣
∀ε > 0, ∃α ∈ Q+, ∃ξ ∈ Q, ξ ≥ 1 such that
α/ξ ≤ d+ 2ε and x satisfies the property P(α, ξ, ε)

´
.

Definition 7.12 For every α, ε > 0 and ξ ≥ 1, let

G(α, ε, ξ) = ∩N≥1 ∪n≥N ∪v∈Σω,n:αvω∈[α−ε,α+ε]B(xvω, (ℓ
v
ω)
ξ).

It is easily seen that

F (d) ⊂ ∪α∈Q+ ∪ξ∈Q∩[1,+∞),α/ξ≤d+2ε G(α, ε, ξ).

Proposition 7.13 For P-almost every ω, for any h ≥ 0, we have (E(νω, h) \ {xvsω :
v ∈ Σω,∗, s ∈ S ′(ω, v, 1)}) ⊂ F (h).

Proof Fix d ≥ 0, x ∈ E(νω, d) and ε > 0. By definition of dimloc(νω, x), there exists
a sequence (rk)k≥1 of positive numbers decreasing to zero such that for all k ≥ 1 we
have νω(B(x, rk)) ≥ (rk)

d+ε. Let us recall the definition of nx,rω as in (7.2):

nx,rω = max{n : ∃v ∈ Σω,n such that B(x, r) ⊂ Ivω}.

If x /∈ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)}, then nx,rω → ∞ as r → 0. Since nx,rω is
maximal, there exist v = v(x, r) and s ∈ S ′(ω, v(x, r), 1) such that

xv(x,r)sω ∈ B(x, r) ⊂ Iv(x,r)ω .

Then νω(B(x, r)) ≤ νω(I
v(x,r)
ω \ {max Iv(x,r)ω ,min Iv(x,r)ω }) ≤ |U v(x,r)

ω |, and

(rk)
d+ε ≤ νω(B(x, r)) ≤ exp(‹Ψ(ω, v(x, rk)) + o(|v(x, rk)|)).

Consequently,

|Iv(x,rk)ω |α
v(x,rk)
ω +o(1) ≥ (rk)

d+ε.
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Since xv(x,r)sω ∈ B(x, r), |x − xv(x,rk)sω | ≤ rk. Writing rk ≥ |x − xv(x,rk)sω | =
(2(|Iv(x,rk)ω |))ξk = (ℓω,v(x,rk))

ξk , we have

|Iv(x,rk)ω |α
v(x,rk)
ω +o(1) ≥ (2(|Iv(x,rk)ω |))ξk(d+ε),

and ξk ≥ 1.

If lim supk→∞ ξk <∞, there exists (α, ξ) ∈ Q+×(Q∩ [1,+∞)) and an increasing
sequence of integer number (ks)s≥1 such that

|αv(x,rks )ω − α| ≤ ε,

|ξks − ξ| ≤ ε,

α/ξ ≤ d+ 2ε.

This means x ∈ G(α, ε, ξ), (α, ξ) ∈ Q+ × (Q ∩ [1,+∞)) and α/ξ ≤ h+ 2ε.

If lim supk→∞ ξk = ∞, there exists α ∈ Q+ and an increasing sequence of integer
number (ks)s≥1 such that

|α̃v(x,rks )ω − α| ≤ ε,

ξks → ∞,

Since α
v(x,rks )
ω is bounded (for P-almost every ω ), there exists some ξ ∈ Q∩ [1,+∞)

with α/ξ ≤ d+2ε such that x satisfies P(α, ε, ξ) (because if ξ1 ≤ ξ2 then P(α, ε, ξ2)
implies P(α, ε, ξ1)).

Finally,

(E(νω, d) \ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)}) ⊂ F (d). (7.3)

Lemma 7.14 There exists C > 0 such that for P-almost every ω, for ε > 0 small
enough, for all rationals α > 0 and ξ ≥ 1,

dimH G(α, ε, ξ) ≤ Cε+
max(T ∗(α− ε), T ∗(α), T ∗(α + ε))

ξ
.

When the right hand side of the inequality is negative, it means the set G(α, ε, ξ)
is empty.

Proof We only need to deal with fixed ǫ > 0 and rationals α > 0 and ξ ≥ 1. For
any N ≥ 1, let δN = supv∈Σω,N ℓ

v
ω. By construction, if G(α, ε, ξ) 6= ∅, given s ∈ R

we have
Hs
δN
(G(α, ε, ξ)) ≤

∑

n≥N

∑

v∈Σω,n:α−ε≤α̃vω≤α+ε
l(σnω)2s(ℓvω)

sξ

where we naturally extend the definition of Hs
δ to negative s.

Here, to avoid confusions, we recall that l(ω) is the number of types in the
subshift, and ℓvω is the length of the interval Ivω.
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Case 1 α ≤ T ′(0−)− ε: In other words, α + ε ≤ T ′(0−).

Since αvω = Ψ̃(ω,v)
log |Ivω | , then for any q ≥ 0 one has:

Hs
δN
(G(α, ε, ξ)) ≤ 2s

∑

n≥N

∑

v∈Σω,n:qΨ̃(ω,v)≥q(α+ε) log |Ivω |
l(σnω)(ℓvω)

sξ

≤ 4s
∑

n≥N

∑

v∈Σω,n
l(σnω) exp(q‹Ψ(ω, v)− q(α + ε) log |Ivω|)

· exp(sξ log |Ivω|+ o(n))

almost surely. Now take s = (η + (α + ε)q − T (q))/ξ with η > 0. We get,

Hs
δN
(G(α, ε, ξ)) ≤

∑

n≥N

∑

v∈Σω,n
exp(qΨ(ω, v)− (T (q) + η)Φ(ω, v)) · exp(o(n)),

where v is any element of [v]ω. Then

Hs
δN
(G(α, ε, ξ)) ≤

∑

n≥N

∑

v∈Σω,n
µ̃qΨ−T (q)Φ
ω ([v]ω) exp(−ηcΦn+ o(n))

≤
∑

n≥N
exp(−ηcΦ

2
n)

for n large enough (recall the assumption (2), from which cΦ = cφ > 0). Conse-
quently, limN→∞ Hs

δN
G(α, ε, ξ) = 0. However, if T ∗(α+ ε) < 0, we can choose

η and q such that s < 0, in which case it is necessary that limN→∞ Hs
δN

= +∞
if G(α, ε, ξ) is not empty. Consequently, if T ∗(α+ ε) < 0, then G(α, ε, ξ) = ∅.
Otherwise, dimH G(α, ε, ξ) ≤ (η+(α+ ε)q−T (q))/ξ. This holds for all η > 0
and q ≥ 0, so dimH G(α, ε, ξ) ≤ T ∗(α + ε).

Case 2 α ≥ T ′(0+) + ε: In other words, α− ε ≥ T ′(0+). It is almost the same as
before except that one needs to use q ≤ 0 and q‹Ψ(ω, v) ≥ q(α− ε) log |Ivω|.

Case 3 α > T ′(0−)− ε and α < T ′(0+) + ε Two situations must be considered.

• if T ′(0−)−T ′(0+) > 0, we can assume ε < T ′(0−)−T ′(0+)
2

. Then T ′(0−)−
ε > T ′(0+) + ε, so that Case 3 is empty.

• if T ′(0−) = T ′(0+), then T is differentiable at 0. Take s = η+T (0)
ξ

with
η > 0. Then

Hs
δN
G(α, ε, ξ) ≤

∑

n≥N
exp(−ηncΦ

2
−nP (T (0)Φ)) =

∑

n≥N
exp(−ηncφ

2
) <∞.

Here we used the fact that by definition we have P (T (0)Φ) = 0.

This yields dimH G(α, ε, ξ) ≤ T (0)
ξ

since we can choose η arbitrarily close
to 0. Since T ∗ is concave, for ε small enough there exists some C > 0
such that T (0)

ξ
= T ∗(T ′(0))

ξ
≤ Cε+ T ∗(α)

ξ
.
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Corollary 7.15 For P-almost every ω, for all d ≥ 0,

dimH E(µ, d) ≤ dimH F (d) ≤ d · sup
α>0

T ∗(α)

α
≤ d · t0.

This provides us with a first upper bound for dimH E(µ, d) which turns out to
be sharp on [0, T ′(t0−)].

Proof For any ε > 0, we saw that

F (d) ⊂ ∪α∈Q+ ∪ξ∈Q∩[1,+∞),α/ξ≤d+2ε G(α, ε, ξ).

Thus, from lemma 7.14 one has

dimH F (d) ≤ sup
α∈Q+,ξ∈Q∩[1,+∞):α/ξ≤d+2ε

Cε+
max(T ∗(α− ε), T ∗(α), T ∗(α + ε))

ξ
.

Letting ε tends to 0 yields

dimH F (d) ≤ sup
α∈Q+,ξ:α/ξ≤d

T ∗(α)

ξ
≤ d · sup

α>0

T ∗(α)

α
= d · t0.

For the last equality, at first, since T (t0) = 0, we have supα>0
T ∗(α)
α

≥ αt0−T (t0)
α

= t0.

Next, we know that for any α > 0, infq{qα− t0α− T (q)} ≤ 0, so infq{qα−T (q)}
α

≤ t0,

and T ∗(α)
α

≤ t0. Finally supα>0
T ∗(α)
α

≤ t0. Now, recall (7.3). Since the set of atoms
of νω is countable, we get the desired conclusion for dimH E(νω, d).

7.4 Upper bound for the lower Hausdorff spectrum

Proposition 7.16 For P-almost every ω ∈ Ω, for every q ∈ R, we have τνω(q) ≥
min(T (q), 0) := ‹T (q).

Proposition 7.16 will give the upper bound for the lower Hausdorff spectrum.

Since the function τνω(q) and the function ‹T (q) are both continuous, we just
need to prove that this holds on a dense and countable subset of R, which amounts
to prove it for any fixed q ∈ R, almost surely.

Define

λ̃q(ω, n) := λqΨ−T (q)Φ(σn−1ω) · · ·λqΨ−T (q)Φ(σω)λqΨ−T (q)Φ(ω).

Proof Let r > 0 and consider B = {Bi}, a packing of [0, 1] by disjoint intervals Bi

with radii equal to r.
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• First, fix q < 0. Denote Bi =: B(xi, r).

There exists a unique vi = v(xi, r) ∈ Σω,∗ such that xi ∈ Iv
i

ω ⊂ Bi and

I(v
i)∗

ω 6⊂ Bi. Here the notation ∗ means that we delete the last character of the
word. Then

2r ≥ |Iviω | = µ̃ω([v
i]ω)

≥ exp(SnΦ(ω, v)− log λ(σn−1ω) · · · · · λ(ω)− o(n))

≥ exp(−2nCΦ),

where n = |vi|. On the other hand, since I(v
i)∗

ω 6⊂ Bi we have r ≤ exp(− (n−1)cΦ
2

)
(recall that cφ = cΦ was defined in Assumption 2). Consequently, n =
O(− log(r) = O(n) independently of xi.

Also, νω(Bi) ≥ νω(I
vi

ω ) ≥ |Xvi

ω |. Since q < 0, we get

νω(Bi)
q ≤ |Xvi

ω |q = exp(q(Snψ(ω, x) + o(n))) (∀x ∈ U vi

ω )

= exp(q(SnΨ(ω, v) + o(n))) (∀vl ∈ [vi]ω)

= exp((Sn(qΨ− T (q)Φ)(ω, v)− log λ̃q(ω, n))

· exp(T (q)Sn−1Φ(ω, v)− T (q) log λ0(ω, n− 1))

· exp(o(n))
≤ µ̃qΨ−T (q)Φ

ω ([vi]ω)|I(v
i)∗

ω |T (q) exp(o(n))

≤ µ̃qΨ−T (q)Φ
ω ([vi]ω)r

T (q) exp(o(− log r)).

Thus ∑

Bi∈B
νω(Bi)

q ≤ rT (q) exp(o(− log r)).

Letting r → 0, we have τνω(q) ≥ T (q).

• Second, fix q ∈ (0, t0) ⊂ (0, 1), and recall that t0 = dimH Xω is the unique real
number such that P (tΨ) = 0. Let

V (ω, n, r) = {v ∈ Σω,n : |Ivω| ≥ 2r, ∃s such that vs ∈ Σω,n+1, |Ivsω | < 2r},

V ′(ω, n, r) = {v ∈ V (ω, n, r) : there is no k such that v|k ∈ V (ω, k, r) for some k < n},
V (ω, r) = ∪n≥1V

′(ω, n, r),

nr = max{|v| : V (ω, r)}, and n′
r = min{|v| : v ∈ V (ω, r)}.

We have nr = O(− log r) = O(n′
r).

For any v ∈ V (ω, r) we have

|Ivω| ≤ 2r exp(o(− log r)).

For v ∈ V (ω, r), Ivω meets at most exp(o(− log r)) intervals Bi of the packing
B, and every Bi is included in the union of at most two intervals belonged to
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V (ω, r), denote as v and v′. Using the sub-additivity of the function s ≥ 0 7→
sq, we get

νω(Bi)
q ≤ νω(1)

q + νω(I
v
ω)
q + νω(I

v′

ω )
q, if 1 ∈ Bi,

otherwise
νω(Bi)

q ≤ νω(I
v
ω)
q + νω(I

v′

ω )
q, if 1 /∈ Bi,

and
νω(I

v
ω)
q ≤ νω(I̊

v
ω)
q + νω({min(Ivω))})q.

Recalling the definition of the inverse measure and proposition 7.1 we know
that νω(I̊

v
ω) ≤ |Xv

ω|. Since q > 0, we get:

νω(I̊
v
ω)
q ≤ |Xv

ω|q
≤ exp(qSnψ(ω, x) + o(n)) (∀x ∈ U v

ω)

≤ exp(qSnΨ(ω, v) + o(n)) (∀v ∈ [v]ω)

≤ exp((Sn(qΨ− T (q)Φ)(ω, v)− log λ̃q(ω, n))

· exp(T (q)SnΦ(ω, j)− T (q) log λ(ω, n))

· exp(log λ̃q(ω) + T (q) log λ(ω, n) + o(n))

≤ µ̃qΨ−T (q)Φ
ω ([v]ω)|Ivω|T (q) exp(o(n))

≤ µ̃qΨ−T (q)Φ
ω ([v]ω)r

T (q) exp(o(− log r)).

It follows that

∑

Bi∈B
νω(Bi)

q ≤ νω(1)
q + exp(o(− log r))(

nr∑

n=n′
r

∑

v∈V (ω,r)∩Σω,n
νω(I̊

v
ω)
q

+
nr∑

n=0

∑

v∈Σω,n

∑

s∈S′(ω,v,1)

νω({xvsω })q).

On the one hand,

nr∑

n=n′
r

∑

v∈V (ω,r)∩Σω,n
νω(I̊

v
ω)
q ≤ rT (q) exp(o(− log r)).

On the other hand, for any n ≤ nr, we have that
∑

v∈Σω,n
exp(qSnΨ(ω, v) + o(n))(∀v ∈ [v]ω)

≤
∑

v∈Σω,n
µ̃qΨ−T (q)Φ
ω ([v]ω)r

T (q) exp(o(− log r))

≤ rT (q) exp(o(− log r)).

Consequently,

nr∑

n=0

∑

v∈Σω,n

∑

s∈S′(ω,v,1)

νω({xvsω })q)
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≤
nr∑

n=0

∑

v∈Σω,n

∑

s∈S′(ω,v,1)

(mvs′

ω −M vs
ω )q

≤
nr∑

n=0

∑

v∈Σω,n
l(σnω) exp(qSnΨ(ω, v) + o(n))(∀v ∈ [v]ω)

≤ rT (q) exp(o(− log r)),

Using the fact that log n+ log l(σnω) = o(− log r), we obtain

∑

Bi∈B
νω(Bi)

q ≤ rT (q) exp(o(log r)),

and letting r → 0, we get τνω(q) ≥ T (q).

• At last, for q ≥ t0 = dimH Xω, since νω is discrete, we can easily get τνω(q) = 0
for every q ≥ 1. For q = t0, one has τνω(q) ≥ T (q) = 0. Since the function τνω
is concave, we get τνω(q) = 0 for every q ≥ t0.

7.5 First lower bound for the lower Hausdorff spec-
trum

Proposition 7.17 For any d ∈ [T ′(+∞), T ′(−∞)],

dimH(E(νω, d)) ≥ T ∗(d),

Proof For any d ∈ [T ′(+∞), T ′(−∞)] such that T ∗(d) > 0, the proof is the follow-
ing. Proposition 7.8 shows that

E(νω, d) ⊃ ‹E(d) = {x| lim
n→∞α

n
ω(x) = d and ξ̃xω = 1}.

The set ‹E(d) can be expressed as:

‹E(d) = {x| lim
n→∞α

n
ω(x) = d} \ (∪m≥1{x| lim

n→∞α
n
ω(x) = d and ξ̃xω ≥ 1 + 1/m})

Using the same method as in section 6.2, but reversing the roles of Ψ and Φ, we
can construct a probability measure η̃ω on [0, 1] with the following properties.

1. η̃ω({x| limn→∞ αnω(x) = d}) = 1,

2. dimH η̃ω ≥ T ∗(d).
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Since for any ε > 0, {x| limn→∞ αnω(x) = d and ξ̃xω ≥ 1+1/m} ⊂ G(α, ε, ξ), from
proposition 7.14 one gets

dimH{x| lim
n→∞α

n
ω(x) = d and ξ̃xω ≥ 1 + 1/m} < T ∗(d).

Then
η̃ω({x| lim

n→∞α
n
ω(x) = h and ξ̃xω ≥ 1 + 1/m}) = 0.

which implies ∪m≥1{x| limn→∞ αnω(x) = h and ξ̃xω ≥ 1 + 1/m} is η̃ω-negligible.

Hence, η̃ω(‹E(d)) = 1.

Finally,
dimE(νω, d) ≥ dimH(η̃ω) ≥ T ∗(d).

If d ∈ [T ′(+∞), T ′(−∞)] with T ∗(d) = 0, what we need is to prove that
dimH E(νω, d) ≥ 0, in the other word E(νω, d) 6= ∅.

Here, we will use the process in the proof of the lower bound for the Hausdorff
spectrum in theorem 1.11(see section 6.2).

We can fixed {εi}i∈N such that 1
i
≤ εi, limi→∞

εi
εi+1

= 1 and εi decreases to 0 as

i → ∞. We can choose suitably di such that T ∗(di) =
√
εi with limi→∞ di = d and

build a measure ηω and a set K(ω, {di}i≥1) such that ηω(K(ω, {di}i≥1)) = 1 and

• for each n with mi + ni+1
Ni+1

≤ n < mi+1 + ni+2
Ni+2

, one has

(|Ivω|)
√
εi+εi ≤ ηω(I

v
ω) ≤ (|Ivω|)

√
εi−εi ,

if v ∈ Σω,n and Ivω ∩K(ω, {di}i∈N) 6= ∅.

• we can choose niN ′
i
>

m3
i

ε3
i

large enough for each i ∈ N such that for any ξ > 1,

and then for any x ∈ [0, 1], for i large enough, one has

ηω(B(x, |Ivω|ξ)) ≤ |Ivω|ξ(
√
εi+1−εi),

• in addition supk≥mi
log l(σkω)

k
≤ εi.

For any given ξ > 1, for i large enough, mi + ni+1
Ni+1

≤ n < mi+1 + ni+2
Ni+2

and
v ∈ Σω,n, we get

ηω(B(x, |Ivω|ξ))
ηω(Ivω)

≤ |Ivω|ξ(
√
εi+1−εi)−(

√
εi+εi) ≤ exp(−ncΦ

2
· (c√εi)),

where c ∈ (0, ξ − 1), since ξ > 1 and limi→0

√
εi+1−εi√
εi+εi

= 1.

Since ηω(∪v∈Σω,nIvω) = 1, we can get

ηω(∪v∈Σω,n ∪s∈S(ω,v,1) B(xvsω , |Ivω|ξ))
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≤
∑

v∈Σω,n

∑

s∈S(ω,v,1)
ηω(B(xvsω , |Ivω|ξ)))

≤
∑

v∈Σω,n
l(σnω) exp(−ncΦ

2
· (c√εi))ηω(Ivω)

≤
∑

v∈Σω,n
exp(−ncΦ

2
· (c√εi −

2

cΦ
εi))ηω(I

v
ω)

≤ exp(−ncφ
2

· (c
√
εi

2
))

≤ exp(−n 1
2 )

for n large enough (recall that εi ≥ 1/i). Then

∑

Ñ∈N

∑

n≥Ñ
ηω(∪v∈Σω,n ∪s∈S(ω,v,1) B(xvsω , |Ivω|ξ)) < +∞,

hence

ηω(∩Ñ≥1
∪
n≥Ñ ∪v∈Σω,n ∪s∈S(ω,v,1) B(xvsω , |Ivω|ξ)) = 0.

The set

∩
Ñ≥1

∪
n≥Ñ ∪v∈Σω,n ∪s∈S(ω,v,1) B(xvsω , |Ivω|ξ)

increases as ξ decreases to 1, so

{x : ξ̃xω > 1} = ∪m≥1 ∩Ñ≥1
∪
n≥Ñ ∪v∈Σω,n ∪s∈S(ω,v,1)B(xvsω , |Ivω|1+

1
m ).

For any m ≥ 1,

ηω(∩Ñ≥1
∪
n≥Ñ ∪v∈Σω,n ∪s∈S(ω,v,1) B(xvsω , |Ivω|1+

1
m )) = 0,

so

ηω(∪m≥1 ∩Ñ≥1
∪
n≥Ñ ∪v∈Σω,n ∪s∈S(ω,v,1)B(xvsω , |Ivω|1+

1
m )) = 0,

and

ηω(K(ω, {di}i≥1 \ ∪m≥1 ∩Ñ≥1
∪
n≥Ñ ∪v∈Σω,n ∪s∈S(ω,v,1)B(xvsω , |Ivω|1+

1
m )) = 1.

Finally, we can say that E(νω, d) 6= ∅, since

E(νω, d) ⊃ (K(ω, {di}i≥1) ∩ {x : ξ̃xω = 1}
= K(ω, {di}i≥1) \ ∪m≥1 ∩Ñ≥1

∪
n≥Ñ ∪v∈Σω,n ∪s∈S(ω,v,1)B(xvsω , |Ivω|1+

1
m )

has full ηω-measure.
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7.6 Some preparation to the conditioned ubiquity
theorem

This section is very similar to chapter 5. Now we fix the two sequences of functions
{Ψi}i≥1, {Φi}i≥1 as in section 5.1. Since cψ > 0 and then cΨ > 0, for each i ∈ N

there exists a function Ti such that for any q ∈ R one has P (qΨi − Ti(q)Φi) = 0.

Lemma 7.18 1. Ti converges poitwise to T as i→ ∞.

2. T ∗
i converges pointwise to T ∗ over the interior of the domain of T ∗ as i→ ∞.

Let D be a dense and countable subset of (T ′(+∞), T ′(−∞)), so that for any
d ∈ [T ′(+∞), T ′(−∞)], there exists {dk}k∈N ⊂ DN such that limk→∞ dk = d and
limk→∞ T ∗(dk) = T ∗(d).

Let {Di}i∈N be a sequence of sets such that

• Di is a finite set for each i ∈ N,

• Di ⊂ Di+1, for each i ∈ N,

• ∪i∈NDi = D.

Let us fix a positive sequence {εi}i∈N decreasing to 0. For each i, there exists ji
large enough such that for any di ∈ Di, there exists qi ∈ R such that

1. T ′
ji
(qi) = di,

2. |T ∗
ji
(di)− T ∗(di)| ≤ εi.

3.
∫
Ω varjiΨ dP ≤ ε3i and

∫
Ω varjiΦ dP ≤ ε3i

Define Qi = {qi, di ∈ Di} and ‹Λi,qi = qiΨji − Tji(qi)Φji for qi ∈ Qi.

For any ǫ > 0, there exist positive integers M,L,N,C large enough, and a set
‹Ω0 such that there exists a sequence {cn}n≥1 where cn → 0 as n → ∞ such that

P(‹Ω0) > 1− ǫ/4, and for any ω ∈ ‹Ω0, one has:

• M(ω) < M, l(ω) ≤ L,

• the o(n) with respect to the potential Φ,Ψ in proposition 2.7 is smaller than
ncn and VnΦ(ω) ≤ ncn, VnΨ(ω) ≤ ncn.
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• for any n ≥ N ,

∣∣∣∣SnvarjiΦ(ω)− n
∫

Ω
varjiΦ(ω) dP

∣∣∣∣ ≤ ncn,
∣∣∣∣SnvarjiΨ(ω)− n

∫

Ω
varjiΨ(ω) dP

∣∣∣∣ ≤ ncn,
∣∣∣∣
1

n
Sn(log l)(ω)

∣∣∣∣ ≤ C,

max

Ç
1

n
Sn‖Φ(ω)‖∞,

1

n
Sn‖Φ(σ−n+1ω)‖∞

å
≤ C,

max

Ç
1

n
Sn‖Ψ(ω)‖∞,

1

n
Sn‖Ψ(σ−n+1ω)‖∞

å
≤ C.

•

sup
v∈[v]ω

Sn(Φ)(ω, v) ≤ (−n̟Φ)

and

sup
v∈[v]ω

Sn(Ψ)(ω, v) ≤ (−n̟Ψ)

for any v ∈ Σω,n with n ≥ N .

For any given finite set Q we know that for s large enough one has ♯Σω,s will
larger than ♯Q. Denote the smallest such s by S(ω, ♯Q).

Also, for all i ∈ N, choose S(i) ∈ N large enough so that there exists a set
‹Ω′(i) ⊂ ‹Ω0 such that

• P(‹Ω′(i)) ≥ 1− 2ǫ/4,

• for any ω ∈ ‹Ω′(i), one has S(σMω, ♯Qi) ≤ S(i).

For all i ∈ N, there exists N(i) > N and M(i) ≥ M large enough and {ci,n}n≥1

decreasing 0 as n→ ∞, and a set ‹Ω(i) ⊂ ‹Ω′(i) such that P(‹Ω(i)) ≥ 1− 3ǫ/4 and for
any ω ∈ ‹Ω(i),

• M(σM+S(i)ω) ≤M(i),

• for any q ∈ Qi, the random Gibbs measures µ̃
Λ̃i,q
σM+S(i)+M(i)ω

are well defined,

Vn‹Λi,q(σM+S(i)+M(i)ω) ≤ nci,n for any n ≥ N(i), and the o(n) with respect to

the potential ‹Λi,q in proposition 2.7 is smaller than nci,n, that is

ǫ(‹Λi,q, n) ≤ ci,n.
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• for any q ∈ Qi, there exist ̟i > 0 such that

sup
v∈[v]

σM+M(i)+S(ei)ωω

Sn‹Λi,q(σM+S(i)+M(i)ω, v) ≤ (−n̟i),

for all n ≥ N(i), for all v ∈ ΣσM+M(i)+S(i)ω,n.

Let θ̃′(i, ω, s) be the s-th return time of the point ω to the set ‹Ω(i) under the
map σ. Then for any i ∈ N

lim
s→∞

θ̃′(i, ω, s)

s
=

1

P(‹Ω(i))

for P-almost every ω. Consequently,

lim
s→∞

θ̃′(i, ω, s)− θ̃′(i, ω, s− 1)

θ̃′(i, ω, s− 1)
= 0.

Since N is countable, then for P-almost every ω ∈ Ω, for any i ∈ N,

lim
s→∞

θ̃′(i, ω, s)

s
=

1

P(‹Ω(i))

then

lim
s→∞

θ̃′(i, ω, s)− θ̃′(i, ω, s− 1)

θ̃′(i, ω, s)
= 0.

In the following we always deal with the ω ∈ Ω such that the above hold we
denote all these ω by ‹Ω which is full of P-measure.

Given ω ∈ ‹Ω′(i), let M ′(i) =M + S(i) +M(i) and

ni1(ω) = inf{θ̃′(i, ω, s) : θ̃(i, ω, s) ≥M ′(i)} −M ′(i).

For k ≥ 2, define nik(ω) = θ̃′(i, ω, sk) −M ′(i), where sk is the smallest s such that
the following hold:

θ̃′(i, ω, s)− nik−1(ω) ≥ max
Ä
M ′(i), nik−1(ω)(ci,nik−1

)
1
3 +

√
θ̃′(i, ω, s))

It is easy to show that

lim
k→∞

nik(ω)− nik−1(ω)

nik−1(ω)
= 0.

Using the same method as in section 5.4, we can get the following series of
properties.
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Facts 7.19 For any i ∈ N, for any ω ∈ ‹Ω(i), there exist a sequence {nik = nik(ω)}k≥1

and a positive integer Ni = Ni(σ
M ′(i)ω) such that for any d = di ∈ Di, there exists

q = qi ∈ Qi, a measure ρ
Λ̃i,q

σM
′(i)ω

on [0, 1] and a set ‹Ei,q(σM ′(i)ω) ⊂ [0, 1] satisfying

1. For ρ
Λ̃i,q

σM
′(i)ω

-almost every x ∈ [0, 1], there exists N(q, x) such that for any k ≥
N(q, x) for any v ∈ ΣσM

′(i)ω,ni
k

satisfying x ∈ Ivω one has: |v ∧ v+ | ≥ nik−1 and

|v∧ v− | ≥ nik−1. Furthermore, for any v ∈ [v]σM′(i)ω ∪ [v+]σM′(i)ω ∪ [v−]σM′(i)ω,
one has ∣∣∣∣∣∣

Sni
k
Ψji(σ

M ′(i)ω, v)

Sni
k
Φji(σ

M ′(i)ω, v)
− T ′

ji
(q)

∣∣∣∣∣∣
≤ εi,

and for v′ = v , v′ = v− or v′ = v+, and v′ ∈ [v′]σM′(i)

∣∣∣∣∣∣∣

log ρ
Λ̃i,q

σM
′(i)ω

(Iv
′

σM
′(i)ω

)

S|v′|Φji(σ
M ′(i)ω, v′)

− T ∗
ji
(T ′

ji
(q))

∣∣∣∣∣∣∣
≤ εi.

and ∣∣∣∣∣∣
S|v′|‹Λi,q(σM ′(i)ω, v′)

S|v′|Φji(σ
M ′(i)ω, v′)

− T ∗
ji
(T ′
ji
(q))

∣∣∣∣∣∣
≤ εi.

2. for any k ≥ Ni one has cniNi
≤ (εi)

4/8, M ′(i) ≤ nik(εi)
4/8, ci,ni

k
≤ (εi)

4/8 and

ni
k
−ni

k−1

ni
k−1

≤ (εi)
4/8.

3. ρ
Λ̃i,q

σM
′(i)ω

(‹Ei,q(σM ′(i)ω)) > 1
2

and:

(a) For any x ∈ ‹Ei,q(σM ′(i)ω), for any k ≥ Ni, for any v ∈ ΣσM
′(i)ω,ni

k
such

that x ∈ Ivω, one has |v ∧ v + | ≥ nik−1 and |v ∧ v − | ≥ nik−1.

(b) For any v ∈ [v]σM′(i)ω ∪ [v+]σM′(i)ω ∪ [v−]σM′(i)ω, one has

∣∣∣∣∣∣

Sni
k
Ψji(σ

M ′(i)ω, v)

Sni
k
Φji(σ

M ′(i)ω, v)
− T ′

ji
(q)

∣∣∣∣∣∣
≤ εi,

and for v′ = v , v′ = v− or v′ = v+, and v′ ∈ [v′]σM′(i)

∣∣∣∣∣∣∣

log ρ
Λ̃i,q

σM
′(i)ω

(Iv
′

σM
′(i)ω

)

S|v′|Φji(σ
M ′(i)ω, v′)

− T ∗
ji
(T ′
ji
(q))

∣∣∣∣∣∣∣
≤ εi.

and ∣∣∣∣∣∣
S|v′|‹Λi,q(σM ′(i)ω, v′)

S|v′|Φji(σ
M ′(i)ω, v′)

− T ∗
ji
(T ′

ji
(q))

∣∣∣∣∣∣
≤ εi.
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In fact we will use the following version of the previous facts:

Facts 7.20 We can change ‹Ω(i) to ‹Ωi ⊂ ‹Ω(i) a bit smaller such that P(Ωi) ≥ 1− ǫ
and there exist Ni and W (i) such that for any ω ∈ ‹Ωi, Ni(σ

M ′(i)ω) ≤ Ni and
niNi(ω) ≤ W (i), and the items 2 and 3 of facts 7.19 also hold. Furthermore if we
change the εi (for example take it to be 2εi), in the inequalities of (b) in item 3 of
facts 7.19 T ∗

ji
(T ′

ji
(q)) can be changed to T ∗(T ′

ji
(q)).

From now on we will define θ̃(i, ω, s) be the s-th return time to the set ‹Ωi for
the point ω

Since N is countable, there exists ‹Ω ⊂ ‹Ω′ of full probability such that for all
ω ∈ ‹Ω, for any i ∈ N, we have

•
lim
n→∞VnΨ(ω)/n = 0,

•
lim
n→∞VnΦ(ω)/n = 0,

•

lim
s→∞

θ̃(i, ω, s)

s
=

1

P(Ωi)
,

hence

lim
s→∞

θ̃(i, ω, s)− θ̃(i, ω, s− 1)

θ̃(i, ω, s− 1)
= 0.

From now on we just deal with the points of ‹Ω, which is a set with P-full measure.

For any w ∈ Σω,n such that σnω ∈ ‹Ωi, for any di ∈ Di, there exists qi ∈ Qi

such that T ′
ji
(qi) = di. Since ♯Σσn+M ,S(i) ≥ ♯Qi, for each qi we can choose v(qi) ∈

Σσn+M ,S(i) so that these words are pairwise distinct. Now, using the same rule as in
section 6.2, for any qi and v ∈ Σσn+M

′(i)ω,∗ we can connect w with v(qi) and v(qi)
with v ∈ Σσn+M

′(i)ω,∗, and get a word w ∗ v(qi) ∗ v, denoted we call w ∗ v if there is

no confusion. Also, we define a new measure ζω,w,qi supported on I
w∗v(qi)
ω by:

ζω,w,qi(I
w∗v(qi)∗v
ω ) = ρ

Λ̃i,qi
σn+M

′(i)ω
(Iv
σn+M

′(i)ω
). (7.4)

Also, we define

E(ω, i, w, qi) = {w ∗ v(qi) ∗ v : v ∈ ‹Ei,qi(σ|w|+M ′(i)ω)}.

We notice that the measures ζω,w,qi , qi ∈ Qi, have supports which pairwise have at
most one point in common. Also, ζω,w,qi(E(ω, i, w, qi)) > 1/2.
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7.7 Conditioned ubiquity

We will adapt the method of [7] to get the following result, which provides us with
the necessary material to get the sharp lower bound for the lower Hausdorff spectrum
on [0, T ′(t0−)].

Definition 7.21 If d ≥ 0, ξ ≥ 1 and ǫ̃ = {ǫi}i∈N is a positive sequence decreasing
to 0 as i→ ∞, we set

S(ω, d, ξ, ǫ̃) := ∩N≥1 ∪n≥N ∪
v∈Σω,n,∃v∈[v]ω such that |SnΨ(ω,v)

SnΦ(ω,v)
−d|≤ǫiB(zvω, (ℓ

v
ω)
ξ).

The following result concerns the ubiquity of the family of points {zvω}v∈Σω,∗
relatively to the radii {ℓω}v∈Σω,∗ , and conditionally on the behavior of SnΨ(ω,v)

SnΦ(ω,v)
in [v]ω.

Theorem 7.22 For P-almost every ω ∈ Ω, for any ξ ≥ 1 and any d ∈
[T ′(+∞), T ′(−∞)], there exists a sequence ǫ̃(ω) = {ǫi(ω)}i∈N decreasing to 0 as
i → ∞, as well as a set Kd(ξ) ⊂ S(ω, d, ξ, ǫ̃) and a Borel probability measure md

ξ

supported on Kd(ξ) such that dimH(m
d
ξ) ≥ T ∗(d)

ξ
.

Remark 7.23 In fact we can choose ǫ̃ independent of ω.

Remark 7.24 For any x ∈ S(ω, d, ξ, ǫ̃) there are infinitely many ni and v(i) ∈ Σω,ni

such that x ∈ B(zv(i)ω , (ℓv(i)ω )ξ) and αniω (x) ≤ d+ ǫi, so

dimloc(νω, x) ≤ lim inf
i→∞

log νω(B(zv(i)ω , (ℓv(i)ω )ξ))

ξ log ℓ
v(i)
ω

≤ lim inf
i→∞

αniω (x)

ξ
≤ d

ξ
, (7.5)

since log νω({zviω })
log ℓ

v(i)
ω

is asymptotically not bigger than the Birkhoff average
S|vi|

Ψ(ω,v)

S|vi|
Φ(ω,v)

.

Consequently, S(ω, d, ξ, ǫ̃) ⊂ ∪h≤ d
ξ
E(νω, h).

Now, we will prove theorem 7.22.

Proof Recall that θ̃(i, ω, k) is the k-th return time of ω to the set ‹Ωi under the
mapping σ.

We start by constructing a generalized Cantor set K(ξ, d̃) for each ξ > 1 and
each sequence d̃ ∈ ∏∞

i=1 Di.

Step 1: Let ω ∈ ‹Ω. Let n = θ̃(1, ω, 1). Fix w(1) ∈ Σω,n. Recall that for each
d1 ∈ D1 there is q1 ∈ Q1 with T ′

j1
(q1) = d1 and v(q1) ∈ Σ

σθ̃(1,ω,1)+Mω,S(1)
(see

the end of the previous section).
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From the facts 7.19 and facts 7.20, there exists N1 large enough, such that for
each d1 ∈ D1, there is a set E(ω, 1, w(1), q1) which is a subset of the closure of

Iw
(1)∗v(q1)

ω such that ζω,w(1),q1(E(ω, 1, w
(1), q1)) > 1/2 (recall that ζω,w(1),q1 and

E(ω, 1, w(1), q1)) have been defined at the end of section 7.6) and the following
properties hold:

1. M ′(1) ≤ (ε1)
4n1

N1
,

2. cn1
N1

≤ (ε1)
4 and c1,n1

N1
≤ (ε1)

4,

3. n1
k − n1

k−1 ≤ (ε1)
4n1

k−1 for any k ≥ N1,

4. • For any x ∈ E(ω, 1, w(1), q1), for any k ≥ N1, for any v ∈
Σ
σθ̃(1,ω,1)+M

′(1)ω,n1
k

such that x ∈ Iw
(1)∗v(q1)∗v

ω , one has |v ∧ v + | ≥ n1
k−1

and |v ∧ v − | ≥ n1
k−1.

• For any v ∈ [v]
σθ̃(1,ω,1)+M

′(1)ω
∪ [v+]

σθ̃(1,ω,1)+M
′(1)ω

∪ [v−]
σθ̃(1,ω,1)+M

′(1)ω
,

one has ∣∣∣∣∣∣∣

Sni
k
Ψj1(σ

θ̃(1,ω,1)+M ′(1)ω, v)

Sni
k
Φj1(σ

θ̃(1,ω,1)+M ′(1)ω, v)
− d1

∣∣∣∣∣∣∣
≤ ε1,

and for v′ = v , v′ = v− or v′ = v+, and v′ ∈ [v′]σM′(i)

∣∣∣∣∣∣∣∣

log ρ
Λ̃1,q1

σθ̃(1,ω,1)+M
′(1)ω

(Iv
′

σθ̃(1,ω,1)+M
′(1)ω

)

S|v′|Φj1(σ
θ̃(1,ω,1)+M ′(1)ω, v′)

− T ∗
j1
(d1)

∣∣∣∣∣∣∣∣
≤ ε1,

and ∣∣∣∣∣∣
S|v′|‹Λ1,q1(σ

θ̃(1,ω,1)+M ′(1)ω, v′)

S|v′|Φj1(σ
θ̃(1,ω,1)+M ′(1)ω, v′)

− T ∗
j1
(d1)

∣∣∣∣∣∣
≤ ε1.

Choose N ′
1 > N1 large enough such that

• θ̃(1, ω, 1) ≤ (ε1)
4n1

N ′
1
,

• Vp(ω) ≤ (ε1)
4p for any p ≥ n1

N ′
1

and

θ̃(1,ω,1)+M ′(1)∑

j=0

‖Φ(σjω)‖∞ ≤ (ε1)
4n1

N ′
1
,

• M ′(2) ≤ (ε2)
4n1

N ′
1
,

• W (2) ≤ (ε2)
4n1

N ′
1
,

• for any s such that the return time θ̃(2, ω, s) satisfies θ̃(2, ω, s) ≥
θ̃(1, ω, 1) +M ′(1) + n1

N ′
1
, one also has

θ̃(2, ω, s)− θ̃(2, ω, s− 1)

θ̃(2, ω, s− 1)
≤ (ε2)

4.
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Let s2 be the smallest s such that θ̃(2, ω, s) ≥ θ̃(1, ω, 1) +M ′(1) + n1
N ′

1
.

Now, let N1 be the largest k such that θ̃(1, ω, 1)+M ′(1)+n1
k ≤ θ̃(2, ω, s2) (by

construction we have N1 ≥ N ′
1). Then

θ̃(2, ω, s2)− θ̃(1, ω, 1)−M ′(1)− n1
N1

≤ n1
N1+1 − n1

N1
≤ (ε1)

4n1
N1

by item 3. above.

For x ∈ E(ω, 1, w(1), q1), we denote v(ω, 1, q1, n
1
k, x) the unique word such that

x ∈ I
w(1)∗v(q1)∗v(ω,1,q1,n1

k
,x)

ω and v(ω, 1, q1, n
1
k, x) ∈ Σ

σθ̃(1,ω,1)+M
′(1)ω

.

For any k ≥ N1, let

F1(q1, k) = {B(y, 2ℓ
w(1)∗v(q1)∗v(ω,1,q1,n1

k
,y)

ω ) : y ∈ E(ω, 1, w(1), q1)}.

Then F1(q1, k) is a covering of E(ω, 1, w(1), q1). From Besicovitch
covering theorem [59, theorem 2.7], there are Γ1 families of inter-
vals F1

1 (q1, k), · · · ,FΓ1
1 (q1, k) ⊂ F1(q1, k), such that E(ω, 1, w(1), q1) ⊂

∪Γ1
s=1 ∪B∈Fs1 (q1,k) B and for any B,B′ ∈ F s

1 , if B 6= B′ one has B ∩ B′ = ∅
(here Γ1 just depends on the dimension 1 of the Euclidean space R).

Since ζω,w(1),q1(E(ω, 1, w
(1), q1)) > 1/2, there exists s such that

ζω,w(1),q1(∪B∈Fs1 (q1,k)B) ≥ 1

2Γ1

.

Among the intervals of F s
1 (k) we can choose finite subset

Dw(1)

(1, q1, k) = {B1, · · · , Bs′}

such that

ζω,w(1),q1(∪Bl∈Dw(1)
(1,q1,k)

Bl) ≥
1

4Γ1

.

For any Bl ∈ Dw(1)
(1, q1, k), there exists yl ∈ E(ω, 1, w(1), q1) such that Bl =

B(yl, 2ℓ
w(1)∗v(q1)∗v(k,l)
ω ), where v(k, l) := v(ω, 1, q1, n

1
k, yl). Since

B(zw
(1)∗v(q1)∗v(k,l)

ω , (ℓw
(1)∗v(q1)∗v(k,l)

ω )ξ) ⊂ B(zw
(1)∗v(q1)∗v(k,l)

ω , ℓw
(1)∗v(q1)∗v(k,l)

ω )

⊂ B(yl, 2ℓ
w(1)∗v(q1)∗v(k,l)
ω ) = Bl,

using the same argument as in step 3 in section 6.2 we can obtain that

ζω,w(1),q1(B(yl, 2ℓ
w(1)∗v(q1)∗v(k,l)
ω )) ≤ (4ℓw

(1)∗v(q1)∗v(k,l)
ω )T

∗
j1
(d1)−2ε1 , (7.6)

and

ζω,w(1),q1(B(zw
(1)∗v(q1)∗v(k,l)

ω , ℓw
(1)∗v(q1)∗v(k,l)

ω )) ≤ (4ℓw
(1)∗v(q1)∗v(k,l)

ω )T
∗
j1
(d1)−2ε1 .

(7.7)

Choose the smallest j such that σjω ∈ ‹Ω2 and there exists v ∈ Σω,j satisfying
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• zw
(1)∗v(q1)∗v(k,l)

ω ∈ Ivω,

• Ivω ⊂ B(zw
(1)∗v(q1)∗v(k,l)

ω , (ℓw
(1)∗v(q1)∗v(k,l)

ω )ξ).

Define Jl = Ivω, the closure of Ivω. From the construction we get that

|Jl| ≤ 2(ℓw
(1)∗v(q1)∗v(k,l)

ω )ξ.

Since we have chosen the smallest j := θ̃(2, ω, s), then for v′ = v|
θ̃(2,ω,s−1)

we

have

(ℓw
(1)∗v(q1)∗v(k,l)

ω )ξ ≤|Iv′ω | ≤ |Ivω| exp(Vθ̃(2,ω,s)(ω)) exp((θ̃(2, ω, s)− θ̃(2, ω, s− 1))C).

Since |Ivω| ≥ exp(−2·θ̃(2, ω, s)CΦ), Vθ̃(2,ω,s)(ω) ≤ θ̃(2, ω, s)·(ε1)4 and θ̃(2, ω, s)−
θ̃(2, ω, s− 1) ≤ 2 · θ̃(2, ω, s− 1) · (ǫ2)4 ≤ 2 · θ̃(2, ω, s) · (ε1)4 we obtain

(4ℓw
(1)∗v(q1)∗v(k,l)

ω )ξ ≤ |Ivω|1−(ε1)3 . (7.8)

Denote Bl := Jl. Conversely, if an interval J can be written as B, then we
denote B =: J . By construction we have

|J | ≤ |J |ξ ≤ |J |1−(ε1)3 . (7.9)

Define

Gw(1)

(1, d1, k) = {Bl : Bl ∈ Dw(1)

(1, q1, k), where T ′
j1
(q1) = d1}. (7.10)

We notice the following useful property:

By construction, if J1 and J2 are two distinct elements of Gw(1, d1, k), their
distance is larger than maxi∈{1,2}(|Ji|/2− (|Ji|/2)ξ). Since ξ > 1, when k large
enough, one gets that maxi∈{1,2}(|Ji|/2 − (|Ji|/2)ξ) ≥ maxi∈{1,2} |Ji|/3. This
implies that their distance is larger than maxi∈{1,2} |Ji|/3.
On the algebra generated by Gw(1, d1, k), we can define a probability measure
md1
ξ by:

md1
ξ (J) =

ζω,w(1),q1(J)∑
Jl∈Gw(1)

(1,q1,k)
ζω,w(1),q1(Jl)

For any J ∈ Gw(1, d1, k), from inequities (7.6) and (7.8) we can get

ζω,w(1),q1(J) ≤ |J |T ∗
j1
(d1)−2ε1 ≤ |J |

(T ∗
j1

(d1)−2ε1)(1−(ε1)
3)

ξ

and ∑

Jl∈Gw(1)
(1,d1,k)

ζω,w(1),q1(Jl) =
∑

Bl∈Dw(1)
(1,q1,k)

ζω,w(1),q1(Bl) ≥
1

4Γ1

.
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Then for any J ∈ Gw(1, d1, k),

md1
ξ (J) ≤ 4Γ1|J |

(T ∗
j1

(d1)−2ε1)(1−(ε1)
3)

ξ .

We can choose k large enough such that 4Γ1 ≤ |J |−ε1 for any d1 ∈ D1 and

J ∈ Gw(1)
(1, d1, k). We denote such a k by k1.

The first step of the construction of K(ξ, d̃) is G(d1) := Gw(1)
(1, d1, k1). Define:

G1 = ∪d1∈D1G(d1).

From the construction we know that: for any d1 ∈ D1, there exists q1 ∈ Q1

such that

1.

∀J ∈ G(d1), m
d1
ξ (J) ≤ |J |

(T ∗
j1

(d1)−2ε1)(1−(ε1)
3)

ξ
−ε1 . (7.11)

2. For any J ∈ G(d1) there exists yl ∈ E(ω, 1, w(1), q1) such that

B(zw
(1)∗v(q1)∗v(k1,l)

ω , (ℓw
(1)∗v(q1)∗v(k1,l)

ω )ξ) ⊂ J = B(yl, 2ℓ
w(1)∗v(q1)∗v(k1,l)
ω ).

Then, for any y ∈ ∪J∈G(d1)J , there exists a word v = v(k1, l) satisfying

|zw(1)∗v(q1)∗v
ω − y| ≤ (ℓw

(1)∗v(q1)∗v
ω )ξ ≤ ℓw

(1)∗v(q1)∗v
ω

2
,

ζω,w(1),q1(B(zw
(1)∗v(q1)∗v

ω , ℓw
(1)∗v(q1)∗v

ω )) ≤ (4ℓw
(1)∗v(q1)∗v

ω )T
∗
j1
(d1)−2ε1 .

Step 2: Suppose that Gi is well defined and for any {dj}1≤j≤i ∈ ∏1≤j≤iDj, the set

function m
{dj}1≤j≤i
ξ is well defined on the set G(d1, . . . , di).

For any w such that J = Iwω ∈ G(d1 · · · di) ⊂ Gi, we set n = |w|.
In this step ni+1

k stands for ni+1
k (σnω).

By construction:

1. σnω ∈ ‹Ωi+1,

2. M ′(i) + ni+1
Ni+1

≤ n(εi+1)
4/8;

For any di+1 ∈ Di+1, take qi+1 ∈ Qi+1 such that T ′
ji+1

(qi+1) = di+1, and
v(qi+1) ∈ Σσn+Mω,S(i+1) the associated word.

From facts 7.19 and 7.20, for each di+1 ∈ Di+1, there is a set E(ω, i +

1, w, qi+1) ⊂ I
w∗v(qi+1)
ω such that ζω,w,qi+1

(E(ω, i + 1, w, qi+1)) > 1/2 ( Recall
that the definition of ζω,w,qi+1

and E(ω, i+1, w, qi+1) are defined at the end of
section 7.6) and:
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1. cni+1
Ni+1

≤ (εi+1)
4 and ci+1,ni+1

Ni+1

≤ (ε1)
4,

2. ni+1
k − ni+1

k−1 ≤ (εi+1)
4ni+1

k−1 for any k ≥ Ni+1,

3. • For any x ∈ E(ω, i + 1, w, qi+1), for any k ≥ Ni+1, for any v ∈
Σσn+M

′(i+1)ω,ni+1
k

such that x ∈ Iw∗v(qi+1)∗v
ω , one has |v ∧ v + | ≥ ni+1

k−1

and |v ∧ v − | ≥ ni+1
k−1.

• For any v ∈ [v]σn+M′(i+1)ω ∪ [v+]σn+M′(i+1)ω ∪ [v−]σn+M′(i+1)ω, one has

∣∣∣∣∣∣

Sni
k
Ψji+1

(σn+M
′(i+1)ω, v)

Sni
k
Φji+1

(σn+M ′(i+1)ω, v)
− di+1

∣∣∣∣∣∣
≤ εi+1,

and for v′ = v , v′ = v− or v′ = v+, and v′ ∈ [v′]σn+M′(i+1)ω

∣∣∣∣∣∣∣∣

log ρ
Λ̃i+1,qi+1

σn+M
′(i+1)ω

(Iv
′

σn+M
′(i+1)ω

)

S|v′|Φji+1
(σn+M ′(i+1)ω, v′)

− T ∗
ji+1

(di+1)

∣∣∣∣∣∣∣∣
≤ εi+1.

and ∣∣∣∣∣∣
S|v′|‹Λi+1,qi+1

(σn+M
′(i+1)ω, v′)

S|v′|Φji+1
(σn+M ′(i+1)ω, v′)

− T ∗
ji+1

(di+1)

∣∣∣∣∣∣
≤ εi+1.

Choose N ′
i+1 > Ni+1 large enough such that

• n ≤ (εi+1)
4ni+1

N ′
i+1

,

• Vp(ω) ≤ (εi+1)
4p for any p ≥ ni+1

N ′
i+1

and

n+M ′(i+1)∑

j=0

‖Φ(σjω)‖∞ ≤ (εi+1)
4ni+1

N ′
i+1
,

• M ′(i+ 2) ≤ (εi+2)
4ni+1

N ′
i+1

,

• W (i+ 2) ≤ (εi+2)
4ni+1

N ′
i+1

,

• for any s such that the return time θ̃(i+ 2, ω, s) satisfies θ̃(i+ 2, ω, s) ≥
n+M ′(i+ 1) + ni+1

N ′
i+1

, one also has

θ̃(i+ 2, ω, s)− θ̃(i+ 2, ω, s− 1)

θ̃(i+ 2, ω, s− 1)
≤ (εi+2)

4.

Let si+2 be the smallest s such that θ̃(i+ 2, ω, s) ≥ n+M ′(i+1)+ni+1
N ′
i+1

.
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Now, let Ni+1 be the largest k such that n+M ′(i+ 1)+ni+1
k ≤ θ̃(i+ 2, ω, si+2)

(by construction we have Ni+1 ≥ N ′
i+1). Then

θ̃(i+ 2, ω, si+2)− n−M ′(i+ 1)− ni+1
Ni+1

≤ ni+1
Ni+1

− ni+1
Ni+1

≤ (εi+1)
4ni+1

Ni+1

by item 3. above.

For any k ≥ Ni+1, let

Fi+1(qi+1, n+M
′(i+1)+ni+1

k ) = {B(y, 2ℓ
w∗v(qi+1)∗v(ω,i+1,qi+1,n

i+1
k

,y)
ω ) : y ∈ E(ω, i+1, w, qi+1)},

here v(ω, i + 1, qi+1, n
i+1
k , y) is the unique word such that y ∈

I
w∗v(qi+1)∗v(ω,i+1,qi+1,n

i+1
k

,y)
ω and v(ω, i+ 1, qi+1, n

i+1
k , y) ∈ Σσn+M

′(i+1)ω,ni+1
k

. Then

Fi+1(qi+1, n+M ′(i+ 1) + ni+1
k ) is a covering of E(ω, i+ 1, w, qi+1).

From the Besicovitch covering theorem, Γ1 families of disjoint intervals, namely

F1
i+1(qi+1, n+M ′(i+ 1) + ni+1

k ), · · · ,FΓ1
i+1(n+M ′(i+ 1) + ni+1

k )

can be extracted from Fi+1(qi+1, n+M
′(i)+ni+1

k ) so that E(ω, i+1, w, qi+1) ⊂
∪Γ1
s=1 ∪B∈Fs

i+1(qi+1,n+M ′(i+1)+ni+1
k

) B.

Since ζω,w,qi+1
(E(ω, i+ 1, w, qi+1)) ≥ 1/2, there exists s such that

ζω,w,qi+1
(∪B∈Fs

i+1(qi+1,n+M ′(i)+ni+1
k

)B) ≥ 1

2Γ1

.

Again, we extract from F s
i+1(qi+1, n+M ′(i) + ni+1

k ) a finite family of pairwise
disjoint intervals Dw(i+ 1, qi+1, k) = {B1, · · · , Bs′} such that

ζω,w,qi+1
(∪Bl∈Dw(i+1,qi+1,k)Bl) ≥

1

4Γ1

.

For each Bl ∈ Dw(i+1, qi+1, k), there exists yl ∈ E(ω, i+1, w, qi+1) such that

Bl = B(yl, 2ℓ
w∗v(qi+1)∗v(ω,i+1,qi+1,n

i+1
k

,yl)
ω ). Set v(k, l) = v(ω, i + 1, qi+1, n

i+1
k , yl).

Moreover,

B(zw∗v(qi+1)∗v(k,l)
ω , (ℓw∗v(qi+1)∗v(k,l)

ω )ξ) ⊂ B(zw∗v(qi+1)∗v(k,l)
ω , ℓw∗v(qi+1)∗v(k,l)

ω )

⊂ B(yl, 2ℓ
w∗v(qi+1)∗v(k,l)
ω ) = Bl.

Also, using the same argument as in the step 3 of section 6.2 and noticing the
fact that n ≤ (εi+1)

4ni+1
Ni+1

, we can obtain

ζω,w,qi+1
(B(yl, 2ℓ

w∗v(qi+1)∗v(k,l)
ω )) ≤

(
4ℓw∗v(qi+1)∗v(k,l)
ω

|Iwω |

)T ∗
ji+1

(di+1)−2εi+1

, (7.12)

and

ζω,w,qi+1
(B(zw∗v(qi+1)∗v(k,l)

ω , ℓw∗v(qi+1)∗v(k,l)
ω )) ≤

(
4ℓw∗v(qi+1)∗v(k,l)
ω

|Iwω |

)T ∗
ji+1

(di+1)−2εi+1

.

(7.13)
Choose the smallest j such that σjω ∈ ‹Ωi+2 and there exists v ∈ Σω,j satisfying
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• zw∗v(qi+1)∗v(k,l)
ω ∈ Ivω,

• Ivω ⊂ B(zw∗v(qi+1)∗v(k,l)
ω , (ℓw∗v(qi+1)∗v(k,l)

ω )ξ)

Define Jl =: Ivω, the closure of the interval Ivω.

Denotes Bl = Jl. Conversely, if an interval J can be written B for some larger
interval B, we write B = J .

Using the same method as in the step 1, we can get:

|J | ≤ |J |ξ ≤ |J |1−(εi+1)
3

. (7.14)

From the construction we get

Gw(i+ 1, di+1, k) = {Bl, Bl ∈ Dw(i+ 1, di+1, k)}. (7.15)

If J1 and J2 are two distinct elements of Gw(i+ 1, di+1, k) then their distance
is at least maxi∈{1,2}(|Ji|/2 − (|Ji|/2)ξ), which is larger than maxi∈{1,2} |Fi|/3
for k large enough ( since ξ > 1 ).

We can define m
{dj}1≤j≤i+1

ξ with di+1 ∈ Di+1 as follows,

m
{dj}1≤j≤i+1

ξ (J) =
ζω,w,qi+1

(J)
∑
Jl∈Gw(i+1,di+1,k) ζω,w,qi+1

(Jl)

(
m

{dj}1≤j≤i
ξ (Iwω )

)
.

For any J ∈ Gw(i+ 1, di+1, k), from the inequality (7.12) we get that

ζω,w,qi+1
(J) ≤

(
|J |
|Iwω |

)T ∗
ji+1

(di+1)−2εi+1

≤ |J |
(T ∗
ji+1

(di+1)−2εi+1)(1−(εi+1)
3)

ξ |Iwω |
−T ∗

ji+1
(di+1).

Then, since
∑

Jl∈Gw(n,i+1,k)

ζω,w,qi+1
(Jl) ≥

1

4Γ1

,

we get, ∀J ∈ Gw(i+ 1, di+1, k):

m
{dj}1≤j≤i+1

ξ (J) ≤ 4Γ1|J |
(T ∗
ji+1

(di+1)−2εi+1)(1−(εi+1)
3)

ξ |Iwω |
−T ∗

ji+1
(di+1).

We can also choose k = ki+1 large enough such that for any di+1 ∈ Di+1 and
for any J ∈ Gw(i+ 1, di+1, ki+1), one has

4Γ1|Iwω |
−T ∗

ji+1
(di+1) ≤ |J |−εi+1 .
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Then by construction we have

∀J ∈ Gw(i+ 1, di+1, ki+1), m
{dj}1≤j≤i+1

ξ (J) ≤ |J |
(T ∗
ji+1

(di+1)−2εi+1)(1−(εi+1)
3)

ξ
−εi+1 .
(7.16)

Then, for (dj)1≤j≤i+1 ∈ ∏i+1
j=1 Dj define:

G(d1, d2, · · · , di+1) = ∪w∈G(d1,q2,··· ,di)G
w(i+ 1, di+1, ki+1),

and
Gi+1 = ∪w∈G(i) ∪qi+1∈Qi+1

Gw(i+ 1, di+1, ki+1).

The definition of m
{dj}1≤j≤i+1

ξ can be extended to the algebra generated by
∪s≤i+1G(d1, d2, · · · , ds), and for any J = Ivω ∈ G(d1, d2, · · · , ds),

m
{dj}1≤j≤i+1

ξ (J) ≤ |J |
(T ∗
ji+1

(di+1)−2εi+1)(1−(εi+1)
3)

ξ
−εi+1 .

Step 3: For any d̃ = {di}i∈N ∈ ∏∞
i=1 Di, for any J ∈ G(d1, · · · , di), define md̃

ξ(J) =

m
{dj}1≤j≤i
ξ (J). This yields a probability measure md̃

ξ on the algebra generated
by ∪i∈NG(d1, · · · , di).
For any i ∈ N, the elements in G(d1, · · · , di) are closed and disjoint intervals.
Also, for any J ∈ G(d1, · · · , di), we take J to be the associated interval of J .
We have the following properties:

1. • J ⊂ J, for any J ∈ G(d1, · · · , di),
• for any J ∈ G(d1, · · · , di)

|J | ≤ |J |ξ ≤ |J |1−(εi)
3

, (7.17)

• if J1 6= J2 belong to G(d1, · · · , di), their distance is at least

max
l∈{1,2}

|Jl|
3
,

• The intervals Jl, Jl ∈ G(d1, · · · , di), are disjoint.

2. Any J in G(d1, d2, · · · , di) is contained in some element L = Iwω ∈
G(d1, d2, · · · , di−1). Moreover , J ∩ E(ω, i, w, qi) 6= ∅, where qi ∈ Qi

is such that T ′
ji
(qi) = di and E(ω, i, w, qi) is the set which can be seen in

step 2.

3. For any J ∈ G(d1, d2, · · · , di),

md̃
ξ(J) ≤ |J |

(T ∗
ji

(di)−2εi)(1−(εi)
3)

ξ
−εi . (7.18)
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4. Any J in G(d1, d2, · · · , di) is contained by some element L = Iwω ∈
G(d1, d2, · · · , di−1) such that

md̃
ξ(J) ≤ 4Γ1m

d̃
ξ(L)ζω,w,qi(J),

where qi ∈ Qi is such that T ′
ji
(qi) = di.

Because of the separation property 1, we get a probability measure md̃
ξ on

σ(J : J ∈ ∪i≥1G(d1, d2, · · · , di)) such that properties 1. to 4. hold for every
i ≥ 1. We now define

K(ξ, d̃) = ∩i≥1 ∪J∈G(d1,··· ,di) J.

Then, md̃
ξ(K(ξ, d̃)) = 1. The measure md̃

ξ can be extended to [0, 1] by setting,

for any B ∈ B([0, 1]), md̃
ξ(B) := md̃

ξ(B ∩K(ξ, d̃)).

step 4: Fix a sequence d̃ = {di}i∈N ∈ ∏i∈N Di such that

lim
i→∞

di = d, lim
i→∞

T ∗(di) = T ∗(d).

Define Kd(ξ) = K(ξ, d̃), and md
ξ = md̃

ξ . Below we first show that Kd(ξ) ⊂
S(ω, d, ξ, ǫ̃) and estimate the lower Hausdorff dimension of md

ξ .

Now, let ǫi+1 = |d − di+1| + 2εi+1, we will use the same notation as in step 2
and prove that for any w ∗ v(qi+1) ∗ v ∈ [w ∗ v(qi+1) ∗ v(Ki+1, l)]ω we have:

∣∣∣∣∣∣∣

Sn+M ′(i+1)+ni+1
ki+1

Ψ(ω,w ∗ v(qi+1) ∗ v)
Sn+M ′(i+1)+ni+1

ki+1

Φ(ω,w ∗ v(qi+1) ∗ v)
− d

∣∣∣∣∣∣∣
≤ ǫi+1.

Indeed,

Sn+M ′(i+1)+ni+1
ki+1

Ψ(ω,w ∗ v(qi+1) ∗ v)
Sn+M ′(i+1)+ni+1

ki+1

Φ(ω,w ∗ v(qi+1) ∗ v)

=
Sn+M ′(i+1)Ψ(ω,w ∗ v(qi+1) ∗ v) + Sni+1

ki+1

Ψ(F n+M ′(i+1)−1(ω,w ∗ v(qi+1) ∗ v))
Sn+M ′(i+1)Φ(ω,w ∗ v(qi+1) ∗ v) + Sni+1

ki+1

Φ(F n+M ′(i+1)−1(ω,w ∗ v(qi+1) ∗ v))
.

Thus,
∣∣∣∣∣∣∣

Sn+M ′(i+1)+ni+1
ki+1

Ψ(ω,w ∗ v(qi+1) ∗ v)
Sn+M ′(i+1)+ni+1

ki+1

Φ(ω,w ∗ v(qi+1) ∗ v)
− di+1

∣∣∣∣∣∣∣

≤ |Sn+M ′(i+1)(Ψ− di+1Φ)(ω,w ∗ v(qi+1) ∗ v)|
|Sn+M ′(i+1)Φ(ω,w ∗ v(qi+1) ∗ v) + Sni+1

ki+1

Φ(F n+M ′(i+1)−1(ω,w ∗ v(qi+1) ∗ v))|
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+
|Sni+1

ki+1

(Ψ− di+1Φ)(F
n+M ′(i+1)−1(ω,w ∗ v(qi+1) ∗ v))|

|Sn+M ′(i+1)Φ(ω,w ∗ v(qi+1) ∗ v) + Sni+1
ki+1

Φ(F n+M ′(i+1)−1(ω,w ∗ v(qi+1) ∗ v))|
.

≤ (n+M ′(i+ 1))(1 + di+1)C

|Sn+M ′(i+1)Φ(ω,w ∗ v(qi+1) ∗ v) + Sni+1
ki+1

Φ(F n+M ′(i+1)−1(ω,w ∗ v(qi+1) ∗ v))|

+
(εi+1)|Sni+1

ki+1

Φ(F n+M ′(i+1)−1(ω,w ∗ v(qi+1) ∗ v))|
|Sn+M ′(i+1)Φ(ω,w ∗ v(qi+1) ∗ v) + Sni+1

ki+1

Φ(F n+M ′(i+1)−1(ω,w ∗ v(qi+1) ∗ v))|

≤
(ni+1

ki+1
(εi+1)

4(1 + di+1)C

|Sn+M ′(i+1)Φ(ω,w ∗ v(qi+1) ∗ v) + Sni+1
ki+1

Φ(F n+M ′(i+1)−1(ω,w ∗ v(qi+1) ∗ v)|)
+ (εi+1)

≤ (2εi+1),

where we used the fact that the Birkhoff sums arising above are negative.
Finally, we get

∣∣∣∣∣∣∣

Sn+M ′(i+1)+ni+1
ki+1

Ψ(ω,w ∗ v(qi+1) ∗ v)
Sn+M ′(i+1)+ni+1

ki+1

Φ(ω,w ∗ v(qi+1) ∗ v)
− d

∣∣∣∣∣∣∣
≤ |d− di+1|+ 2εi+1 = ǫi+1.

By construction, we conclude that

Kd(ξ) ⊂ S(ω, d, ξ, ǫ̃).

Now let us estimate the lower Hausdorff dimension of md
ξ . If T ∗(d) = 0,

there is nothing to prove. So we assume that T ∗(d) > 0. We recall that
|T ∗
ji
(di)− T ∗(di)| ≤ εi.

For any J ∈ G(d1, d2, · · · , di), define g(J) = i. Let us fix B an interval of [0, 1]

of length less than that of the elements of G(d1), and assume that B∩K d̃
ξ 6= ∅.

Let L = Iwω be the element of largest diameter in ∪i≥1G(d1 · · · di) such that B
intersects at least two elements of G(d1 · · · dg(L)+1) included in L ∈ Gd1···dg(L)

.
We remark that this implies that B does not intersect any other element of
G(d1, d2, · · · , ds), where s = g(L), and as a consequence md

ξ(B) ≤ md
ξ(L).

Let us distinguish three cases:

• If |B| ≥ |L|: then

md
ξ(B) ≤ md

ξ(L) ≤ |L|
(T ∗
js

(ds)−2εs)(1−εs)

ξ
−εs ≤ |B|

(T ∗
js

(ds)−2εs)(1−εs)

ξ
−εs . (7.19)

• If |B| ≤ 1
8
|L| exp(−(|w|)(εs)2/4). Assume L1, . . . , Lp are the elements of

Gs+1 which have non-empty intersection with B.
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From property (4), we can choose qs+1 ∈ Qs+1 so that T ′
js(qs+1) = ds+1, and

get

md
ξ(B) =

p∑

l=1

md
ξ(B ∩ Ll) ≤ 4Γ1m

d
ξ(L)

p∑

i=1

ζω,w,qs+1(Ll). (7.20)

From property (1) we can also deduce that max{|Ll| : 1 ≤ l ≤ p} ≤ 3|B|.
From property (2) we can get E(ω, s+1, w, qs+1)∩Li 6= ∅. There exists l such
that E(ω, s + 1, w, qs+1) ∩ Ll 6= ∅. If y is taken in the intersection, we have
B(y, 4|B|) ⊃ (∪pl=1Ll).

Now we notice that L is the closure of Iwω for some w ∈ Σω,n with n ∈ N. We

have σnω ∈ ‹Ωs+1.

Now for any two intervals Iw∗v(qs+1)∗v
ω and Iw∗v(qs+1)∗v′

ω with |v ∧ v′| ≥ ns+1
k and

|v| = |v′| = ns+1
k+1 with k ≥ Ns+1, we want to calculate | log |Iw∗v(qs+1)∗v

ω | −
log |Iw∗v(qs+1)∗v′

ω ||. We have

| log |Iw∗v(qs+1)∗v
ω | − log |Iw∗v(qs+1)∗v′

ω ||
≤ 2Vn+M ′(s+1)+ns+1

k+1
(ω) + 2C(ns+1

k+1 − ns+1
k )

≤ 2(n+M ′(s+ 1) + ns+1
k )(εs)

4

≤ 2(n+M ′(s+ 1) + ns+1
k )(εs)

3. (7.21)

The second inequality uses the fact that

Vn+M ′(s+1)+ns+1
k+1

(ω) ≤ (εs)
4(n+M ′(s+ 1) + ns+1

k+1),

since n +M ′(s + 1) + ns+1
k+1 ≥ nsN ′

s
and for k ≥ Ns+1 we have |ns+1

k+1 − ns+1
k | ≤

(εs)
4ns+1

k .

Since |B| ≤ 1
8
|L| exp(−(|w|)(εs)2/4), we obtain:

8|B| ≤ |L| exp(−(|w|)(εs)2/4)
≤|Iw∗v(qs+1)∗v(ω,s+1,qs+1,n

s+1
k

,y)
ω | exp(−2(n+M ′(s+ 1) + ns+1

k )(εi)
3)(7.22)

for some k ≥ Ns+1. We denote by kB the largest of those k such that the
previous inequality holds.

From (7.21), we obtain B(y, 4|B|) ⊂ I
w∗v(qs+1)∗v(ω,s+1,qs+1,n

s+1
kB

,y)

ω ∪ Iw∗v(q)∗v
′

ω ,
where v′ is a neighbor of v(ω, s + 1, qs+1, n

s+1
kB

, y) such that |v(ω, s +
1, qs+1, n

s+1
kB

, y) ∧ v′| ≥ ns+1
kB−1.

Now we can now give the following upper bound for ζω,w,qs+1(B(y, 4|B|)) (this
is the same proof as in section 6.2):

for any v ∈ [w ∗ v(qs+1) ∗ v(ω, s+ 1, qs+1, n
s+1
kB

, y)]ω, one has

ζω,w,qs+1(B(y, 4|B|))
≤ exp(Sns+1

kB

‹Λs+1,qs+1(F
n+M ′(s+1)(ω, v)) + (εs+1)

3ns+1
kB

+ (εs)
3n).

(7.23)
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Next we prove that (7.23) implies

ζω,w,qs+1(B(y, 4|B|)) ≤
Ç
8|B|
|Iwω |

åT ∗
js+1

(ds+1)−εs
(|B|)−(εs)2 . (7.24)

By definition of kB (see (7.22)), we have

8|B| ≥ |Iv(ω,n+M
′(s+1)+ns+1

kB+1
,y)

ω | exp(−2(n+M ′(s+ 1) + ns+1
kB+1)(εs)

3)

≥ |Iwω | exp(Sns+1
kB+1

Φ(F n+M ′(s+1)(ω, v))− Vn(ω)− Vn+M ′(s+1)+ns+1
kB+1

(ω))

· exp(−2(n+M ′(s+ 1) + ns+1
kB+1)(εs)

3)

≥ |Iwω | exp(Sns+1
kB

Φ(F n+M ′(s+1)(ω, v))− |ns+1
kB+1 − ns+1

kB
|C)

· exp(−4(n+M ′(s+ 1) + ns+1
kB+1)(εs)

3)

≥ |Iwω | exp(Sns+1
kB

Φ(F n+M ′(s+1)(ω, v))− 5(n+M ′(s+ 1) + ns+1
kB+1)(εs)

3)

≥ |Iwω | exp(Sns+1
kB

Φ(F n+M ′(s+1)(ω, v))− 5(n+M ′(s+ 1) + ns+1
kB+1)(εs)

3).

Thus

8|B|
|Iwω |

≥ exp(Sns+1
kB

Φ(F n+M ′(s+1)(ω, v))−5(n+M ′(s+1)+ns+1
kB+1)(εs)

3). (7.25)

Then, using (7.23) we obtain

ζω,w,qs+1(B(y, 4|B|))
≤ exp(Sns+1

kB

‹Λs+1,qs+1(F
n+M ′(s+1)(ω, v))) + (εs+1)

3ns+1
kB

+ (εs)
3n)

≤ exp((T ∗
js+1

(ds+1)− εs+1)Sns+1
kB

Φ(F n+M ′(s+1)(ω, v))) + (εs+1)
3ns+1

kB
+ (εs)

3n)

≤
Ç
8|B|
|Iwω |

åT ∗
js+1

(ds+1)−εs+1

exp((εs+1)
3ns+1

kB
+ (εs)

3n)

· exp((T ∗
js+1

(ds+1)− εs+1) · (5(n+M ′(s+ 1) + ns+1
kB+1)(εs)

3)

≤
Ç
8|B|
|Iwω |

åT ∗
js+1

(ds+1)−εs+1

|B|−(εs)2 .

The last inequality is just from cΦ
2
≤ log |B|

n+M ′(s+1)+ns+1
kB+1

≤ 2CΦ.

Now, since L = Iwω is the closure of Iwω , we can get:
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md
ξ(B) ≤4Γ1m

d
ξ(L)

p∑

l=1

ζω,v,qs+1(Ll)

≤4Γ1m
d
ξ(L)ζω,w,qs+1(B(y, 4|B|))

≤4Γ1|L|
(T ∗
js

(ds)−3εs)(1−εs)

ξ
−εs
Ç
8|B|
|L|

åT ∗
js+1

(ds+1)−εs+1

|B|−(εs)2

≤4Γ1(8|B|)
(T ∗
js

(ds)−3εs)(1−εs)

ξ

Ç
8|B|
|L|

åαs
(|B|)−(εs)2 ,

where αs = T ∗
js+1

(ds+1)− εs+1 −
(T ∗
js
(ds)−3εs)(1−εs)

ξ
is positive for s large enough

since T ∗(d) > 0. Moreover, 8|B|/|L| ≤ 1, so

md
ξ(B) ≤ 4Γ1(8|B|)

(T ∗
js

(ds)−3εs)(1−εs)

ξ (|B|)−(εs)2 .

• If 1
8
|L| exp(−(|w|)(εs)2/4) ≤ |B| ≤ |L|:

We need at most M(B) = ⌊9 exp((|w|)(εs)2/4)⌋ contiguous intervals
(B(k))1≤k≤M(B) with diameter 1

8
|L| exp(−(|w|)(εs)2/4) to cover B. For these

intervals we have the estimate above. Consequently,

md
ξ(B) ≤

M(B)∑

k=1

4Γ1(8|B|)
(T ∗
js

(ds)−3εs)(1−εs)

ξ (|B|)−(εs)2

≤4M(B)Γ1(8|B|)
(T ∗
js

(ds)−3εs)(1−εs)

ξ (|B|)−(εs)2

≤|B|T ∗(d)/ξ−ε′s ,

where ε′s tends to 0 as s tends to ∞, or as |B| goes to 0 (here it is important
to notice that M(B) ≤ |L|−εs ≤ |B|−εs if s is large enough). It follows from
the previous estimates that

dimH(m
d
ξ) ≥

T ∗(d)

ξ
. (7.26)

We have finished the proof of theorem 7.22.

7.8 Conclusion on the lower bound for the lower
Hausdorff spectrum

Proposition 7.25 For P-almost every ω, for any d ∈ [0, T ′(t0−)], one has

dimH(E(νω, d)) ≥ sup
a∈[T ′(+∞),T ′(−∞)]

dT ∗(a)

a
= dt0 = d dimH Xω.
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Proof In the proof of corollary 7.15 we proved that

sup
α>0

T ∗(α)

α
= t0

and the supremum is attained at α = T ′(t0−).

If d ∈ (0, T ′(t0−)], we write d = T ′(t0−)/ξ with ξ ≥ 1. We can find a suitable
sequence ε̃ such that theorem 7.22 and remark 7.24 can be used. This provides us

a positive Borel measure m
T ′(t0−)
ξ on KT ′(t0−)(ξ), with the following properties.

• m
T ′(t0−)
ξ (KT ′(t0−)(ξ)) = 1 and dimH(m

T ′(t0−)
ξ ) ≥ T ∗(T ′(t0−))

ξ
= d t0.

• m
T ′(t0−)
ξ (E) = 0 as soon as dimH E < d t0.

• For any x ∈ KT ′(t0−)(ξ), we have that dimloc(νω, x) ≤ d.

It follows from lemma 7.13 that

(K(ξ) \ (∪0≤h<dF (h))) ⊂ (E(νω, d) ∪ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)}).

Also, dimH F (h) ≤ ht0 < dt0, for all 0 ≤ h < d, so m
T ′(t0−)
ξ (F (h)) = 0, for all

0 ≤ h < d.

Moreover, the family of sets (F (h))0<h<d is nondecreasing. Thus, we have

m
T ′(t0−)
ξ (E(νω, d) ∪ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)}) > 0,

thus
dimH(E(νω, d) ∪ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)}) ≥ dt0.

Finally, dimH E(νω, d) ≥ dt0 since {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)} is a countable set.

If d = 0 or t0 = 0, we have

∅ 6= {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1), and mvs̃
ω −M vs

ω > 0} ⊂ E(νω, 0),

thus dimH E(νω, d) ≥ dt0 for d = 0.

Next proposition collects all the information required to conclude regarding the
lower bound for the lower Hausdorff spectrum. Its claim 3. is the desired sharp
lower bound.

Proposition 7.26 For P-almost every ω:

1. If d ∈ [0, T ′(t0−)], then dimH(E(νω, d)) ≥ dt0,
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2. if d ∈ [T ′(+∞), T ′(−∞)], then dimH(E(νω, d)) ≥ T ∗(d),

3. For any d ∈ [0, T ′(−∞)], dimH(E(νω, d)) ≥ ‹T ∗(d).

Proof (1) and (2) come from proposition 7.25 and proposition 7.17.

To prove (3), since ‹T (q) = min{T (q), 0},T (t0) = 0 and T is increasing,

‹T ∗(d) = inf
q
{td− ‹T (q)} =

®
dt0, d ∈ [0, T ′(t0−)],
T ∗(d), d ∈ [T ′(t0−), T ′(−∞)].

7.9 Hausdorff dimensions of the level sets E(νω, d)

and E(νω, d)

Now we need to define another approximation rate.

For any x ∈ [0, 1] \ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)}, define

ξ̂(ω, n, x) =
log(inf{|x− xvsω | : |v| ≤ n, s ∈ S ′(ω, v, 1)})

log |Iv(ω,n,x)ω |
and then

ξ̂(ω, x) = lim inf
n→∞ ξ̂(ω, n, x).

First of all we point out the following lemma:

Lemma 7.27 For P-almost every ω ∈ Ω, we have

{x ∈ [0, 1] \ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)} : ξ̂(ω, x) > 1} = ∅.

In other words, for any x ∈ [0, 1], if x /∈ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)},

ξ̂(ω, x) = 1.

Proof We just need to prove that for any k ∈ Z+,

{x ∈ [0, 1] \ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)} : ξ̂(ω, x) > 1 + 1/k} = ∅.

For any x ∈ [0, 1] \ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)} such that ξ̂(ω, x) > 1 + 1/k,
there exists N(x) ∈ Z+ such that for any n ≥ N(x) one has

inf{|x− xvsω | : |v| ≤ n, s ∈ S ′(ω, v, 1)} ≤ |Iv(ω,n,x)ω |1+1/k.

Furthermore, the infimum must be attained at a point xvsω which is in the closure
of Iv(ω,n,x)ω . We denote vs by w(ω, n, x). We just need to prove that x is the point
xw(ω,n,x)ω for n large enough. This will give a contradiction.



102 Hausdorff dimensions of the level sets E(νω, d) and E(νω, d)

The choice of w(ω, n+ 1, x) must be made in

{v(ω, n, x)s : s ∈ S ′(ω, v, 1)} ∪ {w(ω, n, x)}.

Otherwise it is easily seen that it is in contradiction with the choice of w(ω, n, x)
and x ∈ Iw(ω,n,x)ω .

· · · · · ·

Iv(ω,n,x)ω

xw(ω,n,x)ω xv(ω,n,x)1ω xv(ω,n,x)2ω xv(ω,n,x)sω

Iv(ω,n,x)1ω Iv(ω,n,x)2ω

x

Figure 7.1 – The choice for w(ω, n, x)

We have

inf{|x− xvsω | : |v| ≤ n+ 1, s ∈ S ′(ω, v, 1)}
= |xw(ω,n+1,x)

ω − x| ≤ |Iv(ω,n+1,x)
ω |1+1/k ≤ |Iv(ω,n,x)ω |1+1/k.

Now suppose that w(ω, n+ 1, x) 6= w(ω, n, x). Then, on the one hand, we have

|Iv(ω,n,x)sω | ≤ |xw(ω,n+1,x)
ω − xw(ω,n,x)ω | ≤ 2|Iv(ω,n,x)ω |1+1/k.

On the other hand, from assumption 2 and proposition 2.7, it is easy to prove that
for n large enough we have

|Iv(ω,n,x)sω | = |Iv(ω,n,x)ω | · eo(log(|Iv(ω,n,x)ω |)) ≥ |Iv(ω,n,x)ω |1+ 1
2k > 4|Iv(ω,n,x)ω |1+1/k.

We get a contradiction. So tw(ω, n+ 1, x) = w(ω, n, x) for n large enough.

Lemma 7.28 For P-almost every ω ∈ Ω, for any x ∈ [0, 1]\{xvsω : v ∈ Σω,∗, s ∈
S ′(ω, v, 1)}, we have that

dimloc(νω, x) ≥ lim inf
n→∞

log ν(I̊v(ω,n,x)ω )

log |Iv(ω,n,x)ω |
.

Proof For P-almost every ω ∈ Ω, since x ∈ [0, 1]\{xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)},
lemma 7.27 tells us

ξ̂(ω, x) = 1.

Then there exists a subsequence {nk}k∈Z+ such that ξ̂(ω, nk, x) → 1 as k → ∞.
Now,

lim sup
r→0

log νω(B(x, r))

log r
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≥ lim sup
k→∞

log ν(B(x, |Iv(ω,nk,x)ω |ξ̂(ω,nk,x)+1/nk))

log |Iv(ω,nk,x)ω |ξ̂(ω,nk,x)+1/nk

≥ lim sup
k→∞

log ν(I̊v(ω,nk,x)ω )

log |Iv(ω,nk,x)ω |

≥ lim inf
n→∞

log ν(I̊v(ω,n,x)ω )

log |Iv(ω,n,x)ω |
.

The second inequality follows from the fact that ξ̂(ω, nk, x) → 1 as k → ∞ and

B(x, |Iv(ω,nk,x)ω |ξ̂(ω,nk,x)+1/nk) ⊂ I̊v(ω,nk,x)ω ,

by definition of ξ̂(ω, nk, x).

Proposition 7.29 For P-almost every ω ∈ Ω,

1. for any d ∈ [T ′(+∞), T ′(t0−)],

dimH({x ∈ [0, 1] : dimloc(νω, x) ≤ d}) ≤ T ∗(d).

2. for any 0 < d < T ′(+∞) one has

{x ∈ [0, 1] : dimloc(νω, x) = d} = ∅.

3. If x ∈ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1), and mvs̃
ω −M vs

ω = 0}, then

dimloc(νω, x) ≥ T ′(+∞).

4.

E(νω, 0) = E(νω, 0)

= {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1), and mvs̃
ω −M vs

ω > 0}

so that
dimH(E(νω, 0)) = dimH(E(νω, 0)) = 0.

Proof 1. First, for any d ∈ [T ′(+∞), T ′(t0−)], for any ε > 0, there exists q ≥ 0
such that T ∗(d) ≥ qd− T (q)− ε/2.

Second, choose ǫ > 0 such that qǫ ≤ ε/4, for any N ∈ N

{x ∈ [0, 1] : dimloc(νω, x) ≤ d} ⊂
{
x ∈ [0, 1] : lim inf

n→∞
log ν(I̊v(ω,n,x)ω )

log |Iv(ω,n,x)ω |
≤ d

}
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⊂
⋃

n≥N

⋃

v∈Σω,n,ν(I̊vω)≥|Ivω |d+ǫ
Ivω.

Third, for any δ > 0, for N large enough, and v ∈ Σω,n, one has |Ivω| < δ.
Choosing s = T ∗(d) + ε we get for N large enough,

Hs
δ({x ∈ [0, 1] : dimloc(νω, x) ≤ d}) ≤

∑

n≥N ′

∑

v∈Σω,n,ν(Ivω)≥|Ivω |d+ǫ
|Ivω|T

∗(d)+ε

≤
∑

n≥N

∑

v∈Σω,n,νω(Ivω)≥|Ivω |d+ǫ
|Ivω|qd−T (q)+ε/2

≤
∑

n≥N

∑

v∈Σω,n
|Ivω|−T (q)+ε/2−qǫ(νω(I̊

v
ω))

q

≤
∑

n≥N

∑

v∈Σω,n
|Ivω|−T (q)+ε/4(ν(I̊vω))

q

≤
∑

n≥N
exp(nP (qΨ− T (q)Φ)− ncΦε

8
)

≤
∑

n≥N
exp(−ncΦε

8
).

Here we used the fact that νω(I̊
v
ω) ≤ |Xv

ω| ≤ |U v
ω| ≤ exp(SnΨ(ω, v) + o(n)) for

any v ∈ [v]ω and v ∈ Σω,∗.

Letting N go to ∞ we get Hs
δ({x ∈ [0, 1] : dimloc(νω, x) ≤ d}) = 0 for any

δ > 0, so Hs({x ∈ [0, 1] : dimloc(νω, x) ≤ d}) = 0. This holds for any
s > −T ∗(d), so dimH{x ∈ [0, 1] : dimloc(νω, x) ≤ d} ≤ T ∗(d).

2. If 0 < d < T ′(+∞), we have T ∗(d) = −∞. This implies that for any s > −∞,
for any ε > 0, there exists q > 0 such that s > qd − T (q) + ε. Thus, we
can deduce from the above calculation that we have {x /∈ {xvsω : v ∈ Σω,∗, s ∈
S ′(ω, v, 1)} : lim infn→∞

log ν(I̊
v(ω,n,x)
ω )

log |Iv(ω,n,x)ω |
≤ d} = ∅.

3. From the proof of item (2) if x ∈ {xvsω : v ∈ Σω,∗, s ∈ S ′(ω, v, 1)} and x do not
have a positive measure, the upper local dimension will larger than T ′(+∞).

4. Since item (3) it is obvious.

Theorem 7.30 For P-almost every ω ∈ Ω, for any d ∈ [T ′(+∞), T ′(−∞)], we
have

dimH E(νω, d) = dimH E(νω, d) = T ∗(d).

Proof By construction, if x ∈ ‹E(d), the set constructed in the proof of propo-
sition 7.17, then limn→∞ αnω(x) = d, so due to remark 7.10 we must have
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dimloc(νω, x) ≤ d. Since, moreover, dimloc(νω, x) = d, we get ‹E(d) ⊂ E(νω, d) ⊂
E(νω, d), and the the lower bound dimH

‹E(d) ≥ T ∗(d), yields the expected
lower bound, while the upper bound was obtained in the previous proposition
for d ∈ [T ′(+∞), T ′(t0−)], and it follows from the multifractal formalism for
d ∈ [T ′(t0−), T ′(−∞)], since τ ∗νω ≤ T ∗.

Remark 7.31 Let us explain how, to study the sets E(νω, d), we could have used
some result from [58, 73, 74], which gives an inversion formula for multifractals. If
the definition of local dimension is changed to the more uniform one:

dimu
loc(µ, x) = lim

I→{x}

log µ(I)

log |I| ,

where I → {x} means that I is an interval containing x, and that the length of I
tends to zero, we have

{x ∈ supp(µ) : dimu
loc(µ, x) = α} ⊂ E(µ, α).

Theorem 7.32 (Corollary 2.2 in [74]) Let µ be a probability measure on [0, 1]
and ν be its inverse measure. Assume that 0 < α <∞. Then

dimH{x ∈ supp(ν) : dimu
loc(ν, x) = α} = α dimH{x ∈ supp(µ) : dimu

loc(µ, x) = 1/α},

and

dimP{x ∈ supp(ν) : dimu
loc(ν, x) = α} = α dimP{x ∈ supp(µ) : dimu

loc(µ, x) = 1/α}.

Lemma 7.33 For P-almost every ω ∈ Ω, for any d ∈ [T ′(+∞), T ′(−∞)], we have

T ∗(d) = dT ∗(1/d),

and
dimH({x ∈ supp(νω) : dim

u
loc(νω, x) = d}) = T ∗(d).

Proof We have

T ∗(d) = inf{qd− T (q) : q ∈ R}
= d · inf{q − T (q)/d : q ∈ R}

Moreover, T = −T −1 ◦ (−IdR), so

T ∗(d) = d · inf{q − T (q)/d : q ∈ R}
= d · inf{q − T (q)/d : T (q) ∈ R}
= d · inf{−T (t) + t/d : t ∈ R}
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= dT ∗(1/d).

The result about the Hausdorff dimension then follows from theorem 7.32 and the
fact that in section 6.2, the item

K(ω, {di}i≥1) ⊂ E(µω, d)

can be change to

K(ω, {di}i≥1) ⊂ {x ∈ supp(µ) : dimu
loc(µ, x) = d}.

This comes from the fact that the measure is almost doubling on K(ω, {di}i≥1).
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