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Abstract

Personal data promise relevant improvements in almost every economy sectors thanks
to all the knowledge that can be extracted from it. As a proof of it, some of the biggest
companies in the world, Google, Amazon, Facebook and Apple (GAFA) rely on this
resource for providing their services. However, although personal data can be very
useful for improvement and development of services, they can also, intentionally
or not, harm data respondent’s privacy. Indeed, many studies have shown how
data that were intended to protect respondents’ personal data were finally used to
leak private information. Therefore, it becomes necessary to provide methods for
protecting respondent’s privacy while ensuring utility of data for services. For this
purpose, Europe has established a new regulation (The General Data Protection Reg-
ulation) (EU, 2016) that aims to protect European citizens’ personal data. However,
the regulation only targets one side of the main goal as it focuses on privacy of citi-
zens while the goal is about the best trade-off between privacy and utility. Indeed,
privacy and utility are usually inversely proportional and the greater the privacy,
the lower the data utility. One of the main approaches for addressing the trade-off
between privacy and utility is data anonymization. In the literature, anonymiza-
tion refers either to anonymization mechanisms or anonymization metrics. While
the mechanisms are useful for anonymizing data, metrics are necessary to validate
whether or not the best trade-off has been reached. However, existing metrics have
several flaws including the lack of accuracy and the complexity of implementation.
Moreover existing metrics are intended to assess either privacy or utility, this adds
difficulties when assessing the trade-off between privacy and utility. In this thesis,
we propose a novel approach for assessing both utility and privacy called Discrim-
ination Rate (DR). The DR is an information theoretical approach which provides
practical and fine grained measurements. The DR measures the capability of at-
tributes to refine a set of respondents with measurements scaled between 0 and 1,
the best refinement leading to single respondents. For example an identifier has a
DR equals to 1 as it completely refines a set of respondents. We are therefore able
to provide fine grained assessments and comparison of anonymization mechanisms
(whether different instantiations of the same mechanism or different anonymization
mechanisms) in terms of utility and privacy. Moreover, thanks to the DR, we provide
formal definitions of identifiers (Personally Identifying Information) which has been
recognized as one of the main concern of privacy regulations. The DR can therefore
be used both by companies and regulators for tackling the personal data protection
issues.



viii



ix

Résumé

Les données personnelles sont d’une importance avérée pour presque tous les secteurs
d’activité économiques grâce a toute la connaissance qu’on peut en extraire. Pour
preuve, les plus grandes entreprises du monde que sont: Google, Amazon, Facebook
et Apple s’en servent principalement pour fournir de leurs services. Cependant,
bien que les données personnelles soient d’une grande utilité pour l’amélioration
et le développement de nouveaux services, elles peuvent aussi, de manière inten-
tionnelle ou non, nuire à la vie privée des personnes concernées. En effet, plusieurs
études font état d’attaques réalisées à partir de données d’entreprises, et ceci, bien
qu’ayant été anonymisées. Il devient donc nécessaire de définir des techniques fi-
ables, pour la protection de la vie privée des personnes tout en garantissant l’utilité
de ces données pour les services. Dans cette optique, l’Europe a adopté un nouveau
règlement (Le Règlement Général sur la Protection des Données) (EU, 2016) qui a
pour but de protéger les données personnelles des citoyens européens. Cependant,
ce règlement ne concerne qu’une partie du problème puisqu’il s’intéresse unique-
ment à la protection de la vie privée, alors que l’objectif serait de trouver le meilleur
compromis entre vie privée et utilité des données. En effet, vie privée et utilité
des données sont très souvent inversement proportionnelles, c’est ainsi que plus
les données garantissent la vie privée, moins il y reste d’information utile. Pour
répondre à ce problème de compromis entre vie privée et utilité des données, la
technique la plus utilisée est l’anonymisation des données. Dans la littérature scien-
tifique, l’anonymisation fait référence soit aux mécanismes d’anonymisation, soit
aux métriques d’anonymisation. Si les mécanismes d’anonymisation sont utiles
pour anonymiser les données, les métriques d’anonymisation sont elles, nécessaires
pour valider ou non si le compromis entre vie privée et utilité des données a été
atteint. Cependant, les métriques existantes ont plusieurs défauts parmi lesquels,
le manque de précision des mesures et la difficulté d’implémentation. De plus, les
métriques existantes permettent de mesurer soit la vie privée, soit l’utilité des don-
nées, mais pas les deux simultanément; ce qui rend plus complexe l’évaluation du
compromis entre vie privée et utilité des données. Dans cette thèse, nous proposons
une approche nouvelle, permettant de mesurer à la fois la vie privée et l’utilité des
données, dénommée Discrimination Rate (DR). Le DR est une métrique basée sur
la théorie de l’information, qui est pratique et permet des mesures d’une grande fi-
nesse. Le DR mesure la capacité des attributs à raffiner un ensemble d’individus,
avec des valeurs comprises entre 0 et 1; le meilleur raffinement conduisant à un
DR de 1. Par exemple, un identifiant a un DR égale à 1 étant donné qu’il per-
met de raffiner complètement un ensemble d’individus. Grâce au DR nous éval-
uons de manière précise et comparons les mécanismes d’anonymisation en termes
d’utilité et de vie privée (aussi bien différentes instanciations d’un même mécan-
isme, que différents mécanismes). De plus, grâce au DR, nous proposons des défini-
tions formelles des identifiants encore appelés informations d’identification person-
nelle. Ce dernier point est reconnu comme l’un des problèmes cruciaux des textes
juridiques qui traitent de la protection de la vie privée. Le DR apporte donc une
réponse aussi bien aux entreprises qu’aux régulateurs, par rapport aux enjeux que
soulève la protection des données personnelles.
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Chapter 1

Introduction

1.1 Data Privacy Issues with Identified Limitations of the
Current GDPR Regulation

It is difficult to estimate all the benefits that personal data can provide both to users
and to companies. Personal data are used in every sector for improvements and de-
velopment of new services including: consumers’ risk analysis, reduction of trans-
action costs, increase of advertising returns. In 2009, the European Commissioner
for Consumer Protection compared personal data to oil (Spiekermann et al., 2015),
in order to illustrate its implication for creating added value for companies. A re-
port by the Boston Consulting Group (Global, 2012), projects that the personal data
sectors will produce up to 1 trillion euro in corporate profits in Europe by 2020.

On the other hand, personal data can represent an important burden for compa-
nies due to the inherent risk of privacy violation. Indeed, the data may reveal more
information to the data processors than the respondent (Domingo-Ferrer, 2007) de-
sire, leading to privacy violation which could affect the company in terms of repu-
tation and legal penalties. For example, in 2006, America Online’s (AOL) released
twenty million anonymized search queries (Barbaro, Zeller, and Hansell, 2006) for
the benefit of researchers; thereafter, the data have been used to re-identify Thelma
Arnold, a 62-year old widow living in Lilburn. To adress such issues, Europe has
defined a new regulation for privacy management (GDPR: General Data Protection
Regulation) which will take effect on May 2018 and which aims protecting Euro-
pean citizens’ privacy. One of the main changes of this regulation according to pre-
vious ones is penalty: offending companies could be fined up to 4% of annual global
turnover or 20 million euro.

However, according to our analysis, two points of concern still need clarification
to support the implementation of the GDPR, as discussed in Section 1.3.

1.2 GDPR the New Regulation for Protecting Personal Data

The General Data Protection Regulation (GDPR) is the new regulation for protecting
users’ privacy which has been approved by the European Union (EU) on 14 April
2016 and will be directly applied in all members states on 25 May 2018. GDPR re-
places the previous regulation which was the Data Protection Directive 95/46/EC
adopted in 1995. The GDPR provides 3 main key changes:

• Increased Territorial Scope (extra-territorial applicability): GDPR applies to
all companies processing personal data of data subjects residing in the Union,
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regardless of the company’s location. Indeed, the previous data protection
regulation was intended to take into account the context of each member state
which was not clearly defined and has arisen in a number of high profile court
cases.

• Penalties: under GDPR, offending companies can be fined up to 4% of annual
global turnover or 20 Million euro (whichever is greater).

• Consent: consent should be clearly asked by service providers and long and
illegible terms are no longer allowed. Moreover, the request for consent must
clearly describe the purpose for data processing.

Other changes include: breach notification (breach notification is mandatory un-
der GDPR and must be done within 72 hours), right to access (the data subject has
the right to obtain from the data processor a copy of its personal data which should
be free of charge), right to be forgotten (the data subject has the right to ask for eras-
ing of all his personal data from the data processor data bases).

The first reason companies are encouraged to be compliant to GDPR is the fines.
Indeed, fines are relatively high (4% of annual global turnover or 20 Million euro,
whichever is greater) and this could be persuasive enough.

Another reason is trust. Indeed the main claimed goal of GDPR is to reinforce
the trust between companies and customers as without trust, innovation and devel-
opment of new services can not take place. Moreover, data breaches can damage the
reputation of a company with a great impact on incomes.

1.3 Lack of Clarity of GDPR for its Implementation

1.3.1 The Need to Characterize Identifiers, as not Clearly Addressed in
the GDPR

The main difficulty for privacy management comes from its legal definition and es-
pecially from the difficulty to characterize Identifiers (Schwartz and Solove, 2011).
Indeed the GDPR, as other regulations before (Schwartz and Solove, 2011), lacks a
proper definition of identifiers which may be biased. Indeed, in its Article 32, the
GDPR defines the means to ensure the security of processing, which can be sepa-
rated into two groups:

• Methods for ensuring and evaluating data privacy: pseudonymization (de-
fined below) and encryption.

• Methods for ensuring confidentiality, integrity, availability and resilience.

In addition to these measures, the GDPR encourages in its Article 40 : " the draw-
ing up of codes of conduct intended to contribute to the proper application of the Regulation,
taking account of the specific features of the various processing sectors and the specific needs
of micro, small and medium-sized enterprises."

Therefore, the GDPR proposes pseudonymization as a mean to ensure data pri-
vacy. Pseudonymization is defined in Article 4 as:

"the processing of personal data in such a manner that the personal data can no longer be
attributed to a specific data subject without the use of additional information, provided that
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such additional information is kept separately and is subject to technical and organizational
measures to ensure that the personal data are not attributed to an identified or Identifiable
Natural Person."

In other words, pseudonymization consists in transforming personal data such
that they can no longer be linkable to a specific data subject. .

Personal data are defined as :

"any information relating to an identified or identifiable natural person ("data subject");
an identifiable natural person is one who can be identified, directly or indirectly, in particular
by reference to an identifier such as a name, an identification number, location data, an on-
line identifier or to one or more factors specific to the physical, physiological, genetic, mental,
economic, cultural or social identity of that natural person."

However, the term identifier is not defined, this definition only provides an enu-
meration of specific cases which are obviously not exhaustive taking into account the
diversity of applications. Furthermore, considering the proposed set of identifiers,
could they be considered as such in any context ?

To illustrate the complexity behind this terminology let us consider the following
example which underlines the importance of the context when defining identifiers:

Suppose there is a badly parked car on the street and we need to identify the
owner of this car. Suppose we are able to find that the owner, M. John, is in a bar
in the same street. Now suppose that in the same bar there are many people named
John. Can we consider in this case that the name is an identifier as it does not refer
anymore to a single person ? On the other hand, suppose we are able to know that
the owner is wearing a white shirt and we find that in the same bar, there is only one
person wearing a white shirt. Then the white shirt becomes an identifier in this case
since it is enough to identify the car’s owner.

This example shows the complexity of the identifiers terminology and the im-
portance of context which is not taken into account in the current legal text.

A proper definition of identifiers is an important concern as personal data are de-
fined according to identifiers and pseudonymization (the recommended mechanism) is
about the protection of personal data. Hence, without a clear definition of identifiers,
data processors would not be able to identify them (identifiers) and therefore, would
not be able to protect personal data.

1.3.2 The Need for using Anonymization instead of Pseudonymization (a
Lacking Point of the GDPR)

Pseudonymization is not enough for protecting data as it only prevents a direct link
with a subject (cf. Section 1.3); however, the remaining knowledge within pseudonymized
data can still be used for re-identifying a specific subject (Hansell, 2006) (Barbaro,
Zeller, and Hansell, 2006). In the literature there is a more general mechanism to
protect personal data which is anonymization. Anonymization consists in transform-
ing data such that the data can no longer be linked to a particular data subject and
no information can be learned from him while still enabling utility of data. This def-
inition includes both the inability to link an information to a subject and the inability
to learn any information on specific subjects.
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TABLE 1.1: Original Data Table.

Age Disease

1 22 lung cancer
2 22 lung cancer
3 22 lung cancer
4 45 stomach cancer
5 63 diabetes
6 40 flu
7 35 aids
8 35 aids
9 32 diabetes

TABLE 1.2: Anonymized Data Table.

Age* Disease

1 2* lung cancer
2 2* lung cancer
3 2* lung cancer
4 ≥ 40 stomach cancer
5 ≥ 40 diabetes
6 ≥ 40 flu
7 3* aids
8 3* aids
9 3* diabetes

The following example describes the anonymization process. Let us consider the
two data tables (Table 1.1 and Table 1.2); an Original Data Table (Table 1.1) which
represents the raw data (not anonymized) and an Anonymized Data Table (Table
1.2) which is the corresponding anonymized table. This is a specific instantiation
of the k-anonymity anonymization model (Samarati and Sweeney, 1998) (Sweeney,
2002) (Samarati, 2001).

The idea of k-anonymity is to transform some attribute’s values (key attribute,
e.g. Age) in order to reduce their identifying capabilities according to another type
of attribute (sensitive attribute, e.g. Disease) by forming subsets of k records. In
our example, the key attribute Age is transformed into Age* within the anonymized
table, the sensitive attribute Disease is not transformed and subsets of 3 records are
formed (table 1.2 is therefore a 3-anonymity table of Table 1.1).

The main concern about anonymization is the trade off between data privacy and
data utility (Li and Li, 2009) (Loukides and Shao, 2008a). Indeed, while data privacy
is recommended by GDPR, service providers need to use the data for improvement
of their services and since anonymization is about reducing the attributes’ inherent
information, there should be a trade off between what is recommended by author-
ities and what is needed by service providers. Anonymization should therefore be
precisely evaluated in order to provide the good balance between data privacy and data
utility.
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The previous anonymization instantiation is therefore intended to respond to
both privacy and data utility. Privacy refers to the ability of an attacker to re-identify
a given respondent, while utility refers to the capability of a data processor to extract
useful information from data. Both issues can be formulated in terms of questions.
We provide here an example of possible questions:

• Privacy: how much is it possible to go from the transformed Age* values to its
corresponding raw values (Age) ?

• Utility: how much from the defined Age groups, is it possible to identify the
corresponding Disease ?

Indeed, the privacy violation comes from the ability to re-identify a subject and
therefore in our example, to go from the transformed attribute Age* to the raw at-
tribute Age (within the Original Data table); and measuring privacy would consist
in measuring this ability.

On the other hand, utility refers to the capacity to extract useful information from
the data. In this case, measuring utility would consist in measuring how, from Age,
we can guess the disease a subject suffers for.

However, as we will see in Chapter 3, utility extraction can also be considered as
a privacy violation and the difficulty of privacy evaluation would therefore consist
in delimiting the border between privacy and utility.

This example shows how complex anonymization can be, since it refers to spe-
cific questions which depend on the considered case.

Alongside the previous concern, the regulation encourages in its article 42: "the
establishment of data protection certification mechanisms and of data protection seals and
marks, for the purpose of demonstrating compliance with this Regulation of processing oper-
ations by controllers and processors."

However, in the literature, although there are many propositions of anonymization
mechanisms, there are few practical metrics for quantifying privacy vs. utility. More-
over, there is no uniform approach for comparison of different anonymization tech-
niques/instantiations. This last concern is necessary for choosing the most suitable
technique and therefore to assess the compliance with the regulation.

1.4 The Relevant Issues

We can therefore consider the following issues:

1. How can we characterize identifiers with respect to the context ? Identifiers
are at the centre of the regulation around personal data as personal data are
defined according to identifiers; however, the current regulation does not con-
sider the context in its definition and a lack of a proper characterization can
lead to misunderstandings.

2. Which approach is to be considered for privacy assessment ? Many ap-
proaches exist for privacy measurements but for defining consistent regulation
rules, there is the need for a global approach.
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3. How can we define a scale for comparing various anonymity mechanisms ?
Many mechanisms exist for protecting privacy but few are pratical. Moreover,
there is no uniform scale that can be used for comparison.

4. How can we measure utility in terms of specific needs (questions) ? As utility
refers to a specific data use and therefore to a specific question, an accurate
assessment would consist in measuring data with respect to a need; which is
difficult to implement because of the subjectivity of the need.

1.5 Contributions of this Thesis

In this thesis we propose a metric called Discrimination Rate (DR) that enables:

• Goal 1: A fine grained characterization of identifiers with respect to the con-
text.

• Goal 2: A measurement of anonymity degree in terms of attribute identifica-
tion capabilities which provide a fine granularity and therefore is usable for
different domains.

• Goal 3: An accurate evaluation and comparison of the existing anonymization
techniques in terms of disclosure risk.

• Goal 4: An accurate measurement of utility in terms of specific utility needs.

1.6 Thesis Organization

The rest of the manuscript is organized as follows:

• Part II: State of the Art

Chapter 2 - Statistical Disclosure Control: Goal and Mechanisms. This chap-
ter presents the Statistical Disclosure Control (SDC) goals in terms of the trade-
off between data utility and privacy and it describes the related mechanisms
(generalization and suppression, microaggregation, PRAM, synthetic data gen-
eration...) with their capability to achieve these goals.

Chapter 3 - Statistical Disclosure Control Metrics. This chapter presents
anonymity metrics as the main concern in data privacy and we can distinguish
two types of metrics: disclosure risk metrics and utility metrics. Disclosure risk
metrics (Uniqueness, Record linkage) assess the re-identification capability of
anonymized data while the utility metrics (information loss, machine learning
metrics) assess the data utility.

• Part III: Contributions

– Goal 1, Goal 2 and Goal 3

Chapter 4 - Discrimination Rate: an attribute-centric metric to measure
privacy. This chapter presents the Discrimination Rate (DR), a new met-
ric that provides an attribute-centric approach for privacy measurement
and that is practical and flexible enough to fit with various application
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domains. The DR computes the attribute identifying capability (scaled
between 0 and 1) by measuring how it refines an anonymity set; the more
an attribute can refine an anonymity set, the higher its DR. For example,
an identifier has a DR equal to 1 as it refines the anonymity set to single
users. Thanks to the DR, we provide the first fine grained evaluation and
comparison of two of the most used anonymization techniques which are
k-anonymity and l-diversity. This work gives a solution for Goal 1, Goal
2 and Goal 3 of Section 1.5. It was published in Journal of Annals of
Telecommunications, 2017 (Sondeck, Laurent, and Frey, 2017c).

– Goal 3

Chapter 5 - The Semantic Discrimination Rate. This chapter presents the
Semantic Discrimination Rate (SeDR), an improvement of the DR which
takes into account semantic considerations. The SeDR enables more flex-
ibility for anonymity measurements and is used to compare l-diversity
vs. t-closeness which are two of the best k-anonymity-like anonymization
techniques. Moreover, as t-closeness is considered better than l-diversity,
the SeDR shows that, depending on the semantic considerations, t-closeness
can be worse than l-diversity. This work is an approach for Goal 3. It
was published in the Security and Cryptography conference (SECRYPT)
in 2017 (Sondeck, Laurent, and Frey, 2017b).

– Goal 4

Chapter 6 - A posteriori utility assessment of sanitized data with the
Discrimination Rate metric. After using our metric (SeDR) for anonymity
measurement, we show how it can be used to provide an accurate a pos-
teriori utility assessment for any type of sanitized (anonymized) data. A
posteriori assessment is the most practical approach as it is performed
only on the basis of the sanitized data and a predefined utility need, while
the a priori assessment aims to assess the extent to which sanitized data
reflect the original data; and is therefore based on anonymized data and
original data (which is not accessible). This contribution satisfies Goal 4.

• Part IV: Conclusion

Chapter 7 - Conclusion and Perspectives. This chapter concludes the disserta-
tion and provides a summary of contributions together with the perspectives
for future works.
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Chapter 2

Statistical Disclosure Control: Goal
and Mechanisms

2.1 Introduction

This chapter presents the main anonymization mechanisms used for achieving both
data utility and data privacy within databases. We first explain the goal of anonymiza-
tion and the related challenges, then we introduce some background including at-
tacks targeting respondents’ privacy and finally we describe the different mecha-
nisms used to counteract those attacks. We focus on Statistical Disclosure Control
(SDC) mechanisms which are about protecting respondents’ privacy i.e. privacy of
persons to whom the data refer.

SDC is a large field including tabular data protection, queryable databases and
microdata protection. The related protection mechanisms are diverse with respect
to each domain. However, tabular data and queryable databases formats can be ob-
tained from microdata format (cf. Section 2.4.3). We provide a quick overview of tab-
ular data protection and queryable databases protection; then we focus on microdata
which the protection mechanisms can be splitted into: deterministic mechanisms
which do not consider noise addition, and non-deterministic mechanisms that are
based on noise addition and synthetic data generation. No approach is strictly bet-
ter than the other one as the goal is to reach the good trade-off between privacy
and utility and depending on the needs, either deterministic or non-deterministic
mechanism can be used.

This chapter is organized as follows. Section 2.2 presents the goals of SDC mech-
anisms in terms of trade-off between privacy and utility. Section 2.3 gives some
background on SDC including related definitions and description of the main SDC
file formats. Sections 2.5 and 2.6 focus on the microdata file format and present
the related protection mechanisms that are either deterministic or non deterministic.
Section 2.7 gives our conclusion.

2.2 SDC Objectives and Assessment Considerations

The goal of data anonymization (SDC) is twofold (Li and Li, 2009) (Makhdoumi and
Fawaz, 2013):

• Privacy: it should protect against respondents identification

• Utility: it should guarantee the usefulness of data for different processes.

anonymization goal is to guarantee the good trade-off between privacy and util-
ity; data are used to carry out various applications among which: development of
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new services by companies, scientific research, government studies... and these ap-
plications should also guarantee privacy. These specificities have led to another ex-
pression which is sanitization and which better underlines both of the goals.

However, SDC mechanisms are usually built to ensure privacy as they aim to
counteract re-identification attacks (Samarati and Sweeney, 1998), (Machanavajjhala
et al., 2007), (Li, Li, and Venkatasubramanian, 2007), (Dwork, 2011) and utility is
measured thereafter depending on the case. This approach has led to evaluate SDC
mechanisms in terms of their capability to resist to attacks (Ganta, Kasiviswanathan,
and Smith, 2008) instead of their capability to respond to the fundamental need
which is: the trade-off between privacy and utility. Indeed, privacy and utility are
usually considered as inversely proportional (Li and Li, 2009) (Xu et al., 2015) (Brick-
ell and Shmatikov, 2008) as such, comparing SDC mechanisms considering only the
privacy dimension could lead to a biased assessment.

2.3 SDC Terminology and Formal Description

Statistical Disclosure Control techniques aim to protect data within statistical databases
such that they can be published without harming the privacy of individuals to whom
the data correspond and, at the same time they can ensure data usability. The ear-
liest works on SDC date back to 1970s with the contribution of Dalenius (Dalenius,
1974) and the works by Schlörer and Denning (Denning, Denning, and Schwartz,
1979) (Schlörer, 1975). A good survey of more recent SDC technologies is given by
(Domingo-Ferrer, Sánchez, and Hajian, 2015a).

This section introduces the terminology of SDC that will be used throughout this
chapter.

2.3.1 SDC Terminology and Formal Description

The statistical databases can take one of the following formats: microdata (cf. Section
2.4.3), tabular data (cf. Section 2.4.1) and queryable databases (cf. Section 2.4.2). The two
latter can be seen as macro data (Ciriani et al., 2007) as they only refer to aggregated
data about respondents, while microdata contain data about single respondents. As
macro data formats can be obtained from a micro data format by aggregating values
(cf. Section 2.4.3), the terminology presented here is only about the micro data for-
mat.

A microdata file is generally depicted by a table where each row (record) contains
individual data and each column is an attribute shared by every respondents within
the table. For example Table 2.1 is a microdata with 4 attributes (ZIP Code, Age, Salary
and Disease) and 9 records.

Formally, a microdata file M referring to r respondents with s attributes (vari-
ables) is a r× s matrix where Mij is the value of attribute j for respondent i. Attributes
in a microdata can be of three categories which are not necessarily disjoint:

• Identifiers: attributes that can be used on their own to characterize a single re-
spondent among others. Examples of such attributes are: social security num-
bers, names, fingerprints.
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TABLE 2.1: Original Data Table (Salary/Disease).

ZIP Code Age Salary Disease

1 35567 22 4K colon cancer
2 35502 22 5K stomach cancer
3 35560 22 6K lung cancer
4 35817 45 7K diabetes
5 35810 63 12K diabetes
6 35812 40 9K aids
7 35502 35 8K aids
8 35568 35 10K flu
9 35505 32 11K lung cancer

• Quasi-Identifiers/Key Attributes: attributes that do not completely character-
ize a respondent but can be combined with others for complete characteriza-
tion. Examples of such attributes are: zip code, age, gender...

• Confidential/Sensitive attributes: attributes which contain sensitive informa-
tion on the respondent. Examples are: salary, religion, health.

Attributes within a microdata file format can be of different types (Domingo-
Ferrer, Sánchez, and Hajian, 2015a):

• Continuous: attributes on which numerical and arithmetical operations can
be performed. Examples: Age, Salary... The main disadvantage of continuous
attributes is that their values are usually completely different from each other
and so, can be used to characterize a respondent within a dataset.

• Categorical: attributes that take values over a finite set and over which arith-
metical operations can not be performed. We can distinguish two types of such
attributes:

– Ordinal: when the values are ordered. We can therefore apply operators
like ≤, max and min.

– Nominal: when the values are not ordered. The only possible operator is
equality (=). Examples are the colors.

Moreover, depending on the context, any attribute can be used for re-identification.
This last observation is underlined by (Schwartz and Solove, 2011) which presents
identifiers as one of the most important concerns for privacy regulation as personal
data are inherently linked to identifiers (Personally Identifiable Information). In
Chapter 4 we propose a more formal and quantifiable definition of the identifiers’
terminology which takes into account the context.

2.4 SDC Application Domains

This section presents a description of the three SDC domains which are: tabular data
protection, queryable databases protection and micro data protection. While the first two
protection mechanisms have been studied from a while (since 1970s (Denning, Den-
ning, and Schwartz, 1979) (Dalenius, 1974)), microdata protection is a relatively new
field.
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2.4.1 Tabular Data

Tabular data is a specific SDC format which the goal is to publish static aggregate
information over data (e.g., sums, averages...) rather than original data in order to
limit information leakage. Tabular data can be described as follows:

T ∶ D(Mi1)×D(Mi2)× ...×D(Mik)→ R or N (2.1)

Where k ≤ s and D refers to the domain where attributes Mij takes its values.
An interesting survey on tabular data is provided by (Willenborg and De Waal,
2012a). Tabular data tables can be of two types (Domingo-Ferrer, Sánchez, and Ha-
jian, 2015a):

• Frequency tables: that display the count of respondents at the crossing of cat-
egorical attributes (in N). For example given a census microdata containing
attributes "Marital Status" and "Zip Code", a frequency table can display the
count of respondents for each marital status in each Zip Code region.

• Magnitude tables: that display a numerical value at the crossing of categorical
attributes (in R). For example if the census data also contain the "Salary", a
magnitude table could display the average salary for each marital status in
each zip code region.

Tables are called linked if they share some of the crossed categorical attributes.
For example "Marital Status" × "Zip Code" is linked to "Marital Status" × "Age".

While the data displayed by tabular data seem to be constrained they can be
subject to attacks among which:

• External attack: refers to attacks made by an attacker who is not a respondent.
For example suppose an attack targeting a magnitude table displaying average
salary and that, there is a single respondent for a given marital status MSi and
living in a given zip code region Zj; the average salary of respondents would
then disclose the actual salary of the only respondent.

• Internal attack: refers to attacks made by an attacker who is a respondent.
Suppose now that there are only 2 respondents with marital status MSi and
living in Zj their salary would be displayed to each other.

• Dominance attack: is a specific case of the internal attack where the attacker
is a respondent who dominates in the contribution to a cell of magnitude table
and can therefore upper-bound the contributions of the other respondents. For
example if the magnitude table, instead of displaying an average salary, dis-
plays the total salary of respondent according to their marital status and Zip
Code regions and if a respondent contributes to 90% he can then infer that the
other respondents have low incomes.

The methods to counteract these attacks are either perturbative which modify
some values of the table (e.g., Controlled Tabular Adjustment (Dandekar and Cox,
2002)) or non-perturbative which do not modify the table values (e.g., Cell Suppres-
sion (Fischetti and Salazar, 2000)).
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2.4.2 Queryable Databases

Queryable databases are a SDC format depicted by on-line databases to which a
user can submit statistical queries (e.g., sums, averages...). These restrictions are
made to prevent a user to infer information on a specific respondent. The main
approaches to implement queryable data protection can be of three types (Domingo-
Ferrer, Sánchez, and Hajian, 2015a):

• Data perturbation. This is only possible when randomized answers can be
enough for the user’s need. Perturbation can either apply on the records to
which the queries refer or to the query result after computation over original
data.

• Query restriction. This is the mechanism used when the user does not want
randomized answers (e.g., a number). The data are simply restricted i.e. no
answer is provided since they may carry enough information for characteri-
zation and therefore for re-identification. Many criteria can be used to restrict
the access to a given request, one of them is the set size control i.e. refusing
the access to request referring to a set of records which is too small. (Chin and
Ozsoyoglu, 1982) propose some examples of query restriction.

• Camouflage. This mechanism is used when the user needs approximate but
not randomized answers, for example, when small interval answers can be
enough. The idea here is to provide an interval answer which includes the
exact answer.

2.4.3 Microdata

There are different approaches for describing Microdata: masking methods and syn-
thetic data generation. Masking methods consist in modifying the original data by re-
ducing their inner amount of identification information and can be either determin-
istic or non-deterministic (noise addition). Synthetic data generation refers to meth-
ods that generate synthetic data that reflect original data to ensure the respondents
confidentiality and is a non-deterministic approach. Note that the goal of both ap-
proaches is to preserve some statistical properties of the original data within the
sanitized data while preventing re-identification of the respondents.

Another way to characterize masking methods is by considering whether they
alter original data or not, they can be either perturbative or non-perturbative (Willen-
borg and De Waal, 2012b). Perturbative masking methods transform the original
data which may disappear in the anonymized version and can use one of the follow-
ing mechanisms: noise addition, microaggregation, data/rank swapping, microdata round-
ing, resampling and the Post-RAndomization Method (PRAM). Examples of perturba-
tive masking methods are described in (Hundepool et al., 2012). Non-perturbative
masking methods do not alter original data but produce partial suppression or re-
duction. Some examples are: sampling, generalization and suppression, top and bottom
coding and local suppression.

In this chapter we adopt another classification which is about whether microdata
protection mechanisms are deterministic or non-deterministic (Sections 2.5 and 2.6) as
it better underlines their capacity to provide privacy vs. utility.
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2.4.4 Conclusion

Queryable database protection and the tabular data protection can be obtained from a
microdata file by first performing a microdata protection mechanism over the data
before performing aggregate information in case of tabular data (cf. Section 2.4.1) or
a query in case of queryable databases (cf. Section 2.4.2).

2.5 Deterministic mechanisms

Deterministic mechanisms do not consider noise addition for protection. Different
mechanisms have been proposed in the literature including Generalization and Sup-
pression, Anatomy and Microaggregation.

2.5.1 Generalization and Suppression

Generalization and Suppression aim to protect respondents’ privacy by replacing
quasi-identifier values by more general values while suppressing identifying at-
tributes. Generalization and Suppression aims to counteract identity disclosure (cf.
Section 2.4.3). The idea is to reduce the identifying capability of quasi-identifiers
by preventing the uniqueness of some specific value or combination of values. The
quasi-identifier transformation can apply in different ways depending on the quasi-
identifier type. For a categorical attribute a specific value can be replaced by a more
general value according to a given hierarchy. For a continuous attribute, intervals
containing the exact values can be used instead; discretization can also apply (Hun-
depool et al., 2005). However, applying generalization on continuous attributes is
more tricky as the arithmetic operations that were simple to apply on exact data
could become less intuitive.

For example, let consider Table 2.2 which is a generalized instantiation of Table
2.1 where the categorical attributes Age and ZIP Code are transformed into Age*
and ZIP Code*. As we can observe, unlike in the original data (Table 2.1), where the
Age value 45 can be used to characterize a respondent, no value or combination of
values of the transformed attributes can be used to characterize a single respondent.

Various schemes of Generalization and Suppression have been proposed in the
literature including: full-domain generalization (LeFevre, DeWitt, and Ramakrishnan,
2005) (Sweeney, 2002); Subtree Generalization (Bayardo and Agrawal, 2005), (LeFevre,
DeWitt, and Ramakrishnan, 2005); Cell Generalization (Wong et al., 2006). They pro-
pose different generalization approaches considering different levels of a given tax-
onomy tree.

2.5.2 Local Suppression

Local suppression aims to suppress some of the identifying attributes values instead
of suppressing the entire attributes in order to increase the usable set of records by
building a cluster of values (referring to the Generalization and Suppression mech-
anism). For example in Table 2.1 we can suppress the subsets of Age values {63, 45,
40}, thus, we would be able to build a new cluster indexed by "≥ 40". As continuous
values are all different from each other, this mechanism is only suitable for categori-
cal values. (Hundepool et al., 2008) proposes an implementation of local suppression
in combination with the Generalization mechanism.
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TABLE 2.2: Generalized Table.

ZIP Code* Age* Disease

1 35*** ≤ 32 colon cancer
2 35*** ≤ 32 stomach cancer
3 35*** ≤ 32 lung cancer
9 35*** ≤ 32 lung cancer
4 35*** > 32 diabetes
5 35*** > 32 diabetes
6 35*** > 32 aids
7 35*** > 32 aids
8 35*** > 32 flu

2.5.3 Top and Bottom Coding

Top and Bottom Coding (Domingo-Ferrer and Torra, 2001a) is a specific applica-
tion of the Generalization and Suppression mechanism. The idea is to rank the data
values to form two sets, the top set and the bottom set, and then apply the same gen-
eralization for all the values in each set. For this mechanism the attribute should be
either continuous or categorical ordinal due to the need of an order relation. Other
variants of this mechanism (Domingo-Ferrer and Torra, 2001a) (Domingo-Ferrer and
Torra, 2002) use either top coding (only values greater than a given value are re-
placed), bottom coding (only values lower than a given value are replaced). For
example, in Table 2.2, two subsets of values are built for attribute Age, the top val-
ues referred by "≤ 32" and the bottom values referred by "> 32".

2.5.4 Anatomy

Anatomy (Xiao and Tao, 2006) releases all the quasi-identifiers and confidential at-
tributes in two different tables and targets attribute disclosure (cf. Section 2.4.3). In-
deed, splitting confidential attributes and quasi-identifiers in different tables enable
breaking their correspondences with the benefit of no transformation on their values,
which provides therefore more granularity for accurate analysis. The intuition is that
with the generalized Table, the domain values are lost and the uniform distribution
assumption is the best to consider since there is no additional knowledge, whereas
with the anatomyzed tables, domain values are kept and more accurate analysis can
apply. Anatomy increases therefore data utility with respect to the Generalization
and Suppression mechanism.

As an example, let us consider Table 2.3 which is the Original Data Table (Table
2.1) where we added attribute ID for specifying 2 groups of records (1 and 2). We
consider 3 quasi-identifiers (ZIP Code, Age and Salary) and 1 confidential attribute
(Disease). When we compute anatomy on this table, we obtain Tables 2.4 and 2.5. As
we can observe, there is no more direct links between quasi-identifiers and confiden-
tial attributes in the anatomy Tables, the correspondences are rather made through
attribute Group-ID.

Let us now compare this instantiation to the Generalization and Suppression in-
stantiation according to the following request: "count the number of respondents of age
"≥ 35" having aids". The correct number of respondents is 2; if we compute this num-
ber using the Generalized Table (Table 2.2) we obtain: 2 (the number of aids values
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TABLE 2.3: Original Data Table (Anatomy).

ID ZIP Code Age Salary Disease

1 35567 22 4K colon cancer
1 35502 22 5K stomach cancer
1 35560 22 6K lung cancer
2 35817 45 7K diabetes
2 35810 63 12K diabetes
2 35812 40 9K aids
2 35502 35 8K aids
2 35568 35 10K flu
1 35505 32 11K lung cancer

TABLE 2.4: The Quasi-Identifier Table Obtained with Anatomy
(QIT).

ZIP Code Age Salary Group-ID

35567 22 4K 1
35502 22 5K 1
35560 22 6K 1
35817 45 7K 2
35810 63 12K 2
35812 40 9K 2
35502 35 8K 2
35568 35 10K 2
35505 32 11K 1

in the table) × 1
5 (the probability of having a subject with age ≥ 35 and who belongs

to the subset containing the aids values within Table 2.2) = 2
5 . When computed on

the anatomyzed Tables (Tables 2.4 and 2.5) we obtain: 2 (the number of aids values
in the table) × 2

5 (the probability of having a subject with age ≥ 35 and who belongs
to the subset containing the aids values within Tables 2.4 and 2.5) = 4

5 which is closer
to the real value.

However, anatomy is not suitable for continuous attributes as it does not add any
benefit for such attributes. Indeed, continuous values are usually completely differ-
ent from each other and this would provide a uniform distribution assumption as
well for the anatomy mechanism. Moreover, as for anatomy, data are published in
different tables, it is unclear how standard data mining tools (classification, cluster-
ing, association...) would apply; then new tools and algorithms need to be designed.

2.5.5 Microaggregation

Microaggregation is a SDC mechanism usually performed on continuous attributes
(cf. Section 2.3.1) as the common application requires average computation. How-
ever some applications exist for categorical attributes (Domingo-Ferrer and Torra,
2005), (Torra, 2004). The idea of microaggregation is to prevent privacy violation by
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TABLE 2.5: The Sensitive Table Obtained with Anatomy (ST).

Group-ID Disease Count

1 colon cancer 1
1 stomach cancer 1
1 lung cancer 2
2 diabetes 2
2 aids 2
2 flu 1

building groups of at least k subjects where the individual confidential values are re-
placed by a common value (usually an average over the k subjects, in case of contin-
uous attributes). When the original data includes several attributes (variables), there
are different approaches for microaggregation: univariate microaggregation (Hansen
and Mukherjee, 2003), (Nin and Torra, 2009) which is applied to each variable inde-
pendently, Multivariate microaggregation (Domingo-Ferrer, Sebé, and Solanas, 2008)
which constructs clusters taking into account all or subsets of variables at a time.

Microaggregation is performed using the two following operations:

• Partition: original records are partitioned into several groups where values
correspond to at least k subjects and where no individual subject dominates
too much (i.e. where one of the value is not too high or too low with respect to
the other values)

• Aggregation: which is applied on attribute values using a specific computa-
tion (e.g., the mean for continuous attributes, the median for categorical attributes)

To illustrate the microaggregation process, we propose an example of a specific
type of microaggregation which is k-anonymity microaggregation (Domingo-
Ferrer, 2006). Let us consider Table 2.1 as our original table, Age and Salary as our
quasi-identifiers and Disease as our confidential attribute. Table 2.6 is a possible
microaggregation instantiation with a partition of 3 groups (1-3, 4-6, 7-9); aggrega-
tion consists in average computation for attribute Age and median computation for
attribute Salary. Table 2.6 provides therefore protection against the identity disclosure
as an observer can no longer infer the disease of a specific individual within the table.

However, partitioning should ensure the minimal information loss obtained when
we reach the optimal k-partition. The optimal k-partition maximizes the within-
group homogeneity and the higher the within-group homogeneity, the lower the
information loss. To measure the within-group homogeneity the sum of squares cri-
terion is commonly used (Hansen, Jaumard, and Mladenovic, 1998), (Gordon and
Henderson, 1977), (Edwards and Cavalli-Sforza, 1965).

The sum of squares criterion can be described as follows (Domingo-Ferrer and
Mateo-Sanz, 2002): let n be the number of records, g the number of groups of size
at least k, ni be the number of records in the i-th group (ni ≥ k and n = ∑g

i=1 ni). Let
xij be the j-th record in the i-th group and x̄i the average data vector over the i-th
group, let x̄ be the average data vector over the whole set of n individuals. The sum
of squares criterion is computed as:
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TABLE 2.6: Microaggregation Table.

Age Salary Disease

1 22 5K colon cancer
2 22 5K stomach cancer
3 22 5K lung cancer
4 49.33 9K diabetes
5 49.33 9K diabetes
6 49.33 9K aids
7 34 10K aids
8 34 10K flu
9 34 10K lung cancer

SSE =
g

∑
i=1

ni

∑
j=1

(xij − x̄i)′(xij − x̄i) (2.2)

Where "(xij − x̄i)′" refers to the micro aggregated instantiation and "(xij − x̄i)" to
the original microdata. Then the optimal k-partition is the one that minimizes the
SSE. However there exist different ways to form groups. Several taxonomies are
possible including: (1) fixed group size (Defays and Nanopoulos, 1993), (Domingo-
Ferrer and Torra, 2005) vs. variable group size (Laszlo and Mukherjee, 2005), (Domingo-
Ferrer and Mateo-Sanz, 2002), (2) exact optimal (Hansen and Mukherjee, 2003) vs.
heuristic microaggregation, (3) categorical (Domingo-Ferrer and Torra, 2005) vs. con-
tinuous.

2.6 Non-Deterministic Mechanisms

Non-deterministic protection mechanisms are based on noise addition and random-
ization to protect respondents’ data. Different methods exist for noise addition. We
first describe the noise addition principle and its related algorithms and then we
present the existing protection mechanisms.

2.6.1 Noise Addition

Noise addition refer to a set of perturbative masking methods that aim to protect
confidential data by mixing them with noise/fake data. This way, an attacker can
no longer distinguish which data actually belong to real respondents. The mix is
usually performed by adding or multiplying a sensitive attribute with a random
variable with a given distribution.

Let Xj be the jth column (sensitive attribute) of the original microdata table with
N records. There exist many algorithms for noise addition (Brand, 2002) among
which:

• Masking by uncorrelated noise addition: The sensitive attribute Xj of the
original data set is replaced by a vector:

Yj = Xj + εj
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where εj is a vector of normally distributed noise referring to a random vari-
able εj ∼ N(0, σεj)2, such that Cov(εj, εi) = 0, ∀i ≠ j. Uncorrelated noise addition
preserves the mean and the covariance and does not preserve neither variance
nor correlations.

• Masking by correlated noise addition: this method unlike the previous does
preserve means and correlation coefficients; it ensures that the covariance ma-
trix of noise is proportional to the covariance matrix of the original data set i.e.
ε ∼ N(0, Σε), where Σε = αΣ where Σ is the covariance matrix of the original
data. However, this method provides a weak level of protection Tendick, 1991
Tendick and Matloff, 1994.

• Masking by noise addition and linear/non linear transformation: These meth-
ods (Hundepool et al., 2012) (Kim, 1986) aims to improve the protection while
still providing a good level of correlations; therefore, the microdata obtained
after the additive noise is linearly/non linearly transformed before release.
However, such transformation relies on a parameter p that should not be re-
vealed, otherwise the released data would have the same protection level as
for data with additive noise.

Parameter p can be used for specific adjustments in case of sub populations but
with the drawback to reduce the protection level.

Noise addition is well suited for continuous data for many reasons: (i) there is no
assumption on the range of possible values (which may be infinite); (ii) the added
noise is usually continuous which matches with the data type; (iii) no exact matching
can be made with external data, however approximate matching can still apply.

These last properties guarantee resistance to the identity disclosure (cf. Section
2.4.3).

2.6.2 Data Swapping

Data swapping exchanges specific confidential values between respondents in order
to break the correspondence between key and confidential attributes. Data swap-
ping targets therefore attribute disclosure (cf. Section 2.4.3). The first propositions
date back to 80’s by Dalenius (Dalenius and Reiss, 1982) and Reiss (Reiss, 1984), for
continuous and categorical attributes respectively. A variant of data swapping is
rank swapping (Carlson and Salabasis, 2000) which first performs a ranking of con-
fidential values and then, swaps them according to their rank instead. The ranked
value is swapped with another within a restricted range according to an input pa-
rameter p which refers to the number of records. The goal of rank swapping is to
enable multivariate analysis which is less practical on data swapping without rank-
ing and therefore to provide more utility for data. Indeed an empirical work on data
swapping for continuous attributes (Domingo-Ferrer, Mateo-Sanz, and Torra, 2001)
have shown its effectiveness in terms of the trade-off between privacy and utility.

2.6.3 Sampling

Sampling is about publishing a sample of the original set of records (Willenborg
and De Waal, 2012a), instead of the whole original records. The idea is to reduce
accuracy by the uncertainty of presence or absence of a given respondent within the
sample. For example we can decide to publish only the even records of the original
microdata set. As such, this mechanism is more suited for categorical attributes as
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continuous attributes would highly enhance the re-identification capability. Indeed,
as the continuous values are most of the time completely different from each other,
they could easily serve for characterizing a given respondent within the sample, and
used for linkage with external data.

2.6.4 Rounding

Rounding (Denning, 1982) aims to replace original values with rounded values and
is applicable only on continuous values. For this purpose, intervals of sensitive val-
ues are built and for each interval i, a corresponding value vi is chosen within i;
therefore, each original value falling in i is replaced by vi.

2.6.5 Post-RAndomization Method (PRAM)

The Post-RAdomization Method (PRAM) (Gouweleeuw, Kooiman, and De Wolf,
1998), (Kooiman, Willenborg, and Gouweleeuw, 1997), (Wolf, 2006) is a perturbative
masking method that applies on categorical attributes and uses data randomization.
PRAM relies on a Markov matrix for providing probability for replacing a category
with another. Let P = [pij] be a Markov matrix (i.e. a real n × n matrix, where each
element pij ≥ 0 and ∑n

j=1 pij = 1, i = 1, ..., n), which contains the probability to replace
a category within the original data with another category. Therefore, pij is the proba-
bility that category ci in the original data is replaced by category cj for producing the
anonymized data. It is therefore difficult for an attacker to identify the real records.
As modifications can apply indistinguishably on key attributes and on confidential
attributes, this mechanism addresses both identity disclosure and attribute disclosure
(cf. Section 2.4.3). The Markov matrix, provides both suppression and generaliza-
tion which make the PRAM method more generic. However PRAM can not apply
on continuous attributes as the PRAM matrix must contain a row for each possible
value of each attribute, and continuous attributes may have an infinite number of
values.

2.6.6 MASSC

MASSC (Singh, Yu, and Dunteman, 2003) is a masking method which acronym refers
to: Micro Agglomeration, Substitution, Subsampling and Calibration. The corre-
sponding operations are the following:

1. Micro agglomeration refers to the generalization principles (cf. Section 2.5.1)
and is applied on key attributes to partition them into groups that have the
same disclosure risk.

2. Optimal probabilistic substitution is then used to modify the original data.
This substitution uses a markov matrix like the PRAM mechanism (Section
2.6.5)

3. Optimal probabilistic subsampling is used to suppress some values according
to predefined probabilities.

4. Optimal sampling weight calibration is used to increase data utility and pre-
serves estimates for the concerned variables.

The main advantage of MASSC is that, it is designed in such a way that disclo-
sure risk can be analytically quantified. Quantification is based on the uniqueness
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principle (cf. Section 2.4.3) which applies mainly on categorical attributes. Indeed,
as continuous values are usually completely different from each others, they can
be used to characterize each of the respondents in the microdata and would always
provide the worst security. That is why this method is not well suited for continuous
attributes.

In Chapter 3 we provide a quantitative definition of such attributes with different
values and we refer to them as identifiers.

2.6.7 Synthetic Data Generation

The difference between the Synthetic Data Generation mechanism and the Noise
Addition mechanisms is that, unlike the latter which mixes fake data with original
data, Synthetic Data Generation generates completely new data that do not contain
original data but some of its characteristics. The idea is to generate random data
that contain some statistics about the original data and guarantee utility for specific
purposes while protecting respondents. The earliest works on Synthetic Data Gen-
eration dates back to 90’s with the work of Rubin (Rubin, 1993) and aimed to create
an entire synthetic data based on original data. (Dwork, 2008) proposes a survey of
a more recent Synthetic Data Generation mechanism called Differential Privacy.

Synthetic Data Generation counteracts by definition all the existing attacks on
microdata (cf. Section 2.4.3) as the synthetic data are assumed not belonging to any
respondent and are generated randomly. However, the randomness of the process
can bring in some issues (Reiter, 2005), (Winkler, 2004). Suppose, by chance, some
records match the original records within the sanitized data, confidential data of the
corresponding respondent would therefore be revealed even if the data are assumed
to be randomly generated. However, this is not the main issue concerning data
generation, the main issue is about data utility. Unlike the previous mechanisms,
specific use cases should be defined prior to data sanitization using Synthetic Data
Generation, and this makes the Synthetic Data Generation mechanism very limited
in terms of utility; the sanitized data are only useful for the predefined use cases.
Moreover, the statistics that are defined using synthetic generation do not apply to
sub domains i.e. to subsets of values; statistics are rather extracted considering the
overall data. To counteract this latter issue, some hybrid mechanisms have been
proposed in the literature that combine Synthetic Data Generation and deterministic
approaches like k-anonymity (Li, Qardaji, and Su, 2011), (Soria-Comas et al., 2014).

2.7 Conclusion

This chapter presents an overview of the main Statistical Disclosure Control (SDC)
mechanisms and the SDC goal which is twofold: protecting respondent’s privacy
within statistical databases while ensuring data utility. We focus on microdata, a
specific SDC file format from which the other file formats can be derived. Micro-
data are subject to various attacks and many protection mechanisms are proposed to
counteract these attacks. We propose a classification of microdata protection mecha-
nisms according to whether they are deterministic or non-deterministic, and specify
for each mechanism which attack it aims to counteract. This classification underlines
the capacity of those mechanisms to provide the good trade-off between utility and
privacy. Indeed, while deterministic mechanisms are more subject to flaws, they
enable a better control over data which supports accurate analysis and therefore
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improves data utility. On the other hand, while non-deterministic mechanisms pro-
vide a stronger protection than deterministic mechanisms with respect to attacks,
the synthetic data addition prevents accurate analysis and therefore reduces data
utility. Finally, no category is strictly better than another as the goal is to reach the
good trade-off between privacy and utility. However, we can not achieve this goal
without a proper mean to assess the privacy/utility level of data. In the next chap-
ter, we present the main metrics used for evaluating SDC and to measure privacy vs.
utility.
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Chapter 3

Statistical Disclosure Control
Metrics

3.1 Introduction

While the SDC protection mechanisms (Chapter 2) are useful for providing the trade-
off between privacy and utility, the data processor still does not know which would
be the best mechanism for fulfilling his goals and therefore, needs metrics for choos-
ing the good one. This validation process is even more important as it is needed both
by the data processor and the regulator. Indeed, the trade-off can be translated from
the data processor’s point of view into: how to extract the maximum information
from data while ensuring compliance with the regulation ? While the regulator is
concerned by: how to define a threshold for validating or not the data processors’
implementations ?

In fact, companies and other processors (researchers, governments...) are inter-
ested in extracting the maximum information from the data while protecting re-
spondent’s privacy; yet, privacy is defined according to the regulation. The reg-
ulator on its side needs to define a protection threshold that would serve for val-
idating the compliance of processors’ data with regulation. However, data utility
and privacy are usually inversely proportional, meaning that the greater the util-
ity, the smaller the privacy and vice versa (Karr et al., 2006)(Li and Li, 2009) (Xu
et al., 2015) (Brickell and Shmatikov, 2008). This comes from the fact that to protect
against re-identification, data should be transformed in order to reduce their iden-
tification capabilities, which implies reducing information, and leads to a weaker
data accuracy. Therefore, the data processors’ challenge would be to maximize the
data utility (corresponding to minimize the privacy) and the regulator’s challenge,
to define the threshold that would be enough for protecting respondents’ privacy.
While the needs of each party (processors/regulator) seem to be contradictory, they
refer to the same issue which is privacy assessment and hence, metrics.

Metrics are at the centre of data sanitization as they are intended to guide the an-
swers to the previous challenges. Indeed, while the SDC mechanisms can be useful
for data sanitization they should be guided to address the previous challenges. In
fact, any mechanism is not suitable for every use case and for the same mechanism
different instantiations can provide very different results (Lee and Clifton, 2011) (Li
and Li, 2009). Metrics are therefore intended to answer the following issues:

1. Assessing the Data Disclosure risk level (both for the processors and the reg-
ulator).

2. Assessing the data utility level (by processors).
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However, ensuring the trade-off between privacy and utility is a very challeng-
ing concern for 2 main reasons:

• The diversity of privacy models: there is no consensus about the privacy
model to be considered; various approaches are proposed in the literature
which are most of the time difficult to compare and this does not enable a
uniform assessment of the effective privacy level.

• The subjectivity of utility: data utility refers to the capacity of data to respond
to a given need or problem and this is subjective (Domingo-Ferrer and Torra,
2001a)(Karr et al., 2006).

There are two main models in SDC which are: k-anonymity and ε-differential
privacy.

These models provide both protection mechanisms (cf., Sections 2.5.5 and 2.6.7
respectively) and metrics (cf., Sections 3.3.1 and 3.3.2 respectively). However, while
the related metrics can at some extent quantify privacy/disclosure risk, they fail
reflecting the data utility, especially for the ε-differential privacy metric (Lee and
Clifton, 2011). Moreover, the related metrics are not comparable in terms of privacy
degree.

These issues have led to various propositions intended to measure on the one
hand data utility (Sankar, Rajagopalan, and Poor, 2013) (Xu et al., 2006)(Bind-
schaedler, Shokri, and Gunter, 2017) and on the other hand the disclosure risk
(Domingo-Ferrer and Torra, 2001a). The disclosure risk assessment is computed ac-
cording to the existing SDC attacks (identity disclosure and attribute disclosure),
and the related approaches for measurements can be splitted into: uniqueness or
Record Linkage (cf., Sections 3.4). Concerning utility, we should first consider if
we plan to perform Privacy Preserving Data Mining (PPDM) or Privacy Preserv-
ing Data Publishing (PPDP). PPDM is about publishing data for a predefined use
(cf., Section 3.5.2), while PPDP is about publishing data that could serve for vari-
ous uses (cf., Section 3.5.1)(Clifton and Tassa, 2013). The utility assessment for the
k-anonymity model refers to information loss i.e. the extent to which the sanitized
data are degraded with respect to the original data (Domingo-Ferrer, Sánchez, and
Hajian, 2015a) and, for differential privacy, utility assessment refers to how much
data mining algorithms (clustering, classification...) are able to accurately process
the sanitized data (Bindschaedler, Shokri, and Gunter, 2017) (Abadi et al., 2016).

This chapter is organized as follows. Section 3.2 provides some background on
utility and disclosure risk measurements including the definition of disclosure risk
and data utility. Section 3.3 presents the two main privacy models in SDC which are
k-anonymity and ε-differential privacy and their limitations for measuring disclo-
sure risk and utility. Section 3.4 presents the main disclosure risk metrics in terms of
uniqueness and record linkage. Section 3.5 presents the common utility metrics for
measuring data utility both for PPDM and PPDP, Section 3.6 presents our compara-
tive analysis of disclosure risk metrics, and Section 3.7 gives our conclusion.

3.2 Background

This section gives some background on disclosure risk and utility assessment.
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3.2.1 What is Disclosure Risk ?

Disclosure risk can be defined as the capacity of an intruder to use a sanitized mi-
crodata to infer confidential information on a respondent among others within the
original microdata (Bernardo et al., 2003). In practice, the disclosure risk is per-
formed by matching different micro data files shared by the same respondent or by
assessing the correlation between a respondent data within the same microdata file.
Disclosure risk refers to disclosure scenarios and is evaluated accordingly. There
are two different disclosure scenarios (Domingo-Ferrer, Sánchez, and Hajian, 2015a)
which are:

• Identity disclosure: which aims to link a respondent to a specific record within
the microdata and is usually performed by composing different microdata
files. Indeed by using only the sanitized data, an intruder can not identify a re-
spondent due to the transformations performed by the protection mechanisms
and will therefore need external data for identification.

• Attribute disclosure: which is about the knowledge an attacker could gain
on attributes themselves without necessarily relate them to a given respon-
dent. This attack is based on the correspondences between attributes within
microdata sets (usually between key attributes and confidential attributes). If
an attacker is able to identify such correspondences, thereafter, he will only
need to link a respondent to an involved quasi-identifier to infer his confiden-
tial attribute. There exist various types of attribute disclosure including: the
homogeneity attack, the background knowledge attack, the semantic attack and the
skewness attack (cf., Section 3.3.1 for details).

Hence, identity disclosure ensures complete re-identification of respondents while
attribute disclosure is about information gain. Nevertheless, it is still useful to protect
against the latter attack as it may provide valuable information to an attacker that
could be used later in case of correspondence with data containing real identities.
We provide examples of identity disclosure and attribute disclosure in Section 3.3.1.

Another point is that, attribute disclosure can either be considered as an attack or
as a utility indicator, as discussed in Section 3.3.1

Two approaches can be considered for assessing disclosure risk (Domingo-Ferrer,
Sánchez, and Hajian, 2015b):

• Uniqueness: the idea of uniqueness is to identify specific combinations of at-
tributes that are unique or rare and can be used to link a record in the sanitized
microdata to a record within the original data. This attack is based on key at-
tributes as by definition some of their combinations can lead to unique charac-
terization of respondent (cf., Section 2.3). For identity disclosure, this approach
does not apply on perturbative masking methods (cf. Section 2.4.3) as they usu-
ally transform the original data and there are no longer correspondences with
original data; but can still be performed for attribute disclosure as shown in
Section 3.3.1.

• Record linkage: it provides a more general definition that is about the knowl-
edge a specialized intruder can use to link a record to a respondent. This ap-
proach requires a specific attack model for application, and can target both
perturbative masking mechanisms and non-perturbative masking mechanisms.
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While in (Domingo-Ferrer, Sánchez, and Hajian, 2015b) uniqueness and record
linkage are presented as targeting identity disclosure, they can also be used for assess-
ing attribute disclosure as described in Section 3.3.1.

The assessment mechanisms related to uniqueness an record linkage are presented
in Section 3.4.

3.2.2 What is Data Utility ?

Data utility refers to the capacity of data to respond to a given need. Indeed, it is
difficult to assess utility without specifying the need as data can be useful for some
uses but not for others. As such, defining a general data utility can be a tricky issue
(Karr et al., 2006). However, in practice many applications require data publication
without specifying a given need (e.g., health data, census data, educational data...).
These issues have led to two different approaches for defining utility when publish-
ing data: utility according to a specific use which is about Privacy Preserving Data
Mining (PPDM) or utility that can serve for various uses which is about Privacy
Preserving Data Publishing (PPDP).

We provide a detailed description of these approaches in Section 3.5.

3.3 Privacy Models (k-anonymity and Differential Privacy)

There are two main privacy models for SDC: k-anonymity (Samarati and Sweeney,
1998) (Samarati, 2001) (Sweeney, 2002) and ε-differential privacy (Dwork et al., 2006)
(Dwork, 2008) (Dwork, 2011). k-anonymity is a deterministic approach that can be
implemented using different protection mechanisms (Generalization and Suppression,
Aggregation...; cf., Sections 2.5.1 and 2.5.5) and various improvements have been
proposed to counteract different types of attacks. Differential privacy (DP) is a non-
deterministic approach and refers to the Synthetic Data Generation mechanism (cf.,
Section 2.6.7).

These models depict both protection mechanisms and metrics. However, while
the related metrics can at some extent reflect the disclosure risk, they do not reflect
utility of data. Moreover, the related privacy metrics are not comparable in terms of
privacy degree which do not allow a uniform assessment of approaches.

3.3.1 k-anonymity Based Models

k-anonymity is a model, and there exist many mechanisms/metrics based on this
model including: k-anonymity (itself) (Samarati and Sweeney, 1998) (Samarati, 2001)
(Sweeney, 2002) , l-diversity (Machanavajjhala et al., 2007) and t-closeness (Li, Li,
and Venkatasubramanian, 2007). In this section, we present this model and related
mechanisms/metrics and show how they are used to assess the disclosure attacks
(identity disclosure and attribute disclosure), according to the disclosure approaches
which are: uniqueness and record linkage. We then propose a discussion on the
data utility assessment using this model.

k-anonymity to Mitigate Identity Disclosure

k-anonymity (Samarati and Sweeney, 1998) (Samarati, 2001) (Sweeney, 2002), aims
to protect against identity disclosure and proposes to build blocks of k indistinguish-
able subjects to prevent characterization of single subjects. This prevents at some
extent uniqueness analysis, as a subject is less characterizable with specific values.
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While there exist three types of attributes: identifiers, quasi-identifiers and confi-
dential attributes, k-anonymity considers only two types: quasi-identifiers and con-
fidential attributes. Indeed, identifiers are either suppressed or transformed into
quasi-identifiers in order to reduce their identification capability; confidential at-
tributes are not transformed.

k-anonymity (Sweeney, 2002) (Samarati, 2001) is therefore defined as follows:

Definition 1 (k-anonymity)
Let T be a table and Q be the quasi-identifier associated with it. T is said to satisfy k-
anonymity if and only if each sequence of values in T[Q] appears with at least k occurences
in T[Q].

Where T[Q] refers to all the values of the quasi-identifier (cf. Chapter 2) Q within
T.

For example, let us consider Table 3.1 and Table 3.2 which are a raw microdata
and its corresponding 3-anonymity instantiation respectively.

TABLE 3.1: Original Data Table (Disease.

email address Age Disease
1 marco@orange.com 22 lung cancer
2 simon@orange.com 22 lung cancer
3 kevin@orange.com 22 lung cancer
4 a125@orange.com 45 flu
5 anne@orange.com 63 diabetes
6 youssou@orange.com 40 flu
7 vincent@orange.com 35 aids
8 nicolas@orange.com 35 aids
9 louis@orange.com 32 diabetes

TABLE 3.2: 3-anonymity Table (Disease).

email address* Age* Disease
1 * 2* lung cancer
2 * 2* lung cancer
3 * 2* lung cancer
4 * ≥ 40 flu
5 * ≥ 40 diabetes
6 * ≥ 40 flu
7 * 3* aids
8 * 3* aids
9 * 3* diabetes

This is an instantiation of k-anonymity using the Generalization and Suppression
protection mechanism (cf., Section 2.5.1). As we can observe attribute email address
has been completely suppressed as its values are all different and can be used for
identification. Attribute Age has been generalized into attribute Age* by building
groups of 3 subjects and therefore, an attacker can no longer link a subject to a spe-
cific Age value.
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However, if k-anonymity mitigates identity disclosure, it fails mitigating attributes
disclosure, especially: homogeneity and backgroung knowledge attacks (Machanavajjhala
et al., 2007).

l-diversity to Mitigate Homogeneity and Background Knowledge Attacks

The l-diversity technique (Machanavajjhala et al., 2007) has been introduced to coun-
teract two specific attribute disclosure attacks:

• homogeneity attack which refers to the knowledge gained by correlating key
attributes and sensitive attributes within the table. For instance, in the 3-anonymity
table (Table 3.2), the key attribute value "2*" completely corresponds to the sen-
sitive value "lung cancer"; as such, an attacker only needs to know that the sub-
ject is twenties to link him to the disease "lung cancer". This is an application
of uniqueness between key attributes and confidential attributes.

• backgroung knowledge attack which uses external data to improve subjects
identification. For example, in the 3-anonymity table (Table 3.2), if we consider
the third equivalence class (with key attribute value "3*"), the correspondence
between "Age*" and "Disease" is not complete, and an attacker will therefore
need external information (for example that the subject is less likely to have
diabetes) to link him to aids. This is a specific case of record linkage where the
attacker can link a key attribute value to a sensitive attribute value with a given
probability.

To counteract those attacks, l-diversity adds the restriction that all the confiden-
tial attributes should have at least l "well represented" values.

Definition 2 (The l-diversity principle)
An equivalence class is said to have l-diversity if there are at least l "well-represented" values
for the sensitive attribute. A table is said to have l-diversity if every equivalence class of the
table has l-diversity.

In this definition, "well-represented" refers to the number of different values of the
sensitive attribute within an equivalence class. Indeed, the more the sensitive values
are diverse, the better the protection is, as an attacker would not be able to infer a
specific sensitive value.

This restriction enables to reduce the correlation between key attribute values
and sensitive attribute values and helps to mitigate both homogeneity and background
knowledge attacks. This prevents uniqueness analysis between attributes within the
microdata. For instance, in the 3-diverse table (Table 3.3), there are 3 different values
of the sensitive attributes "Disease" and "Age" in each equivalence class, and this di-
versity prevents from correlating key attributes and sensitive attributes.

Despite these improvements, l-diversity has been proved (Li, Li, and Venkata-
subramanian, 2007) to be inefficient to counteract attribute disclosure attacks as it does
not take into account the semantic of attributes. This flaw is depicted through two
main attacks: skewness attack and similarity attack.

t-closeness to Mitigate Skewness and Similarity Attacks

The t-closeness technique (Li, Li, and Venkatasubramanian, 2007) has been intro-
duced to counteract:
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TABLE 3.3: A 3-diverse Table.

ZIP Code* Age* Salary Disease
1 355** 2* 4K colon cancer
2 355** 2* 5K stomach cancer
3 355** 2* 6K lung cancer
4 3581* ≥ 40 7K stomach cancer
5 3581* ≥ 40 12K diabetes
6 3581* ≥ 40 9K aids
7 355** 3* 8K aids
8 355** 3* 10K flu
9 355** 3* 11K lung cancer

• the skewness attack which is based on the skewness between the distribu-
tion of sensitive attribute values within the original table and the distribution
within equivalence classes. Let us consider the following example:

Example 1 Suppose we have an original skewness table containing data of 1000 pa-
tients with and without cancer; the key attributes are "Age", "ZIP Code" and the
sensitive attribute is "Cancer"; and "Cancer" can have two values "Yes" or "No".
Suppose we have only 10 "Yes" in the table. A 2-diverse table (formed by equivalence
class of 2 subjects) would provide 50% probability of having cancer for each subject
within classes instead of 10/1000% in the original table and then, an information gain
from the anonymized table.

• the similarity attack which relies on similarity between sensitive values. In-
deed, when the sensitive attribute values are distinct but semantically similar
(e.g. "stomach cancer", "colon cancer", "lung cancer"), the similarity attack can
occur. For example, let us consider the first class of the 3-diverse table (Table
3.3) with key value "2*". The value "2*" corresponds to the subset of sensitive
values: {4K, 5K, 6K}. Even if those values are diversified, they still contain se-
mantic information as an attacker can infer that all subjects who are twenties
have low incomes. This is a specific case of record linkage where the attacker
is not interested in specific values but instead in subsets of values.

To overcome skewness and similarity attacks, the t-closeness principle was proposed
by Li and al (Li, Li, and Venkatasubramanian, 2007) and states that:

Definition 3 (The t-closeness principle)
An equivalence class is said to have t-closeness if the distance between the distribution of a
sensitive attribute in this class and the distribution of the attribute in the original table is
no more than a threshold t. A table is said to have t-closeness if all equivalence classes have
t-closeness.

The t-closeness metric measures therefore the distance between distributions of
sensitive values within classes and within the original table to ensure it does not
exceed a given threshold. This property is claimed to mitigate both skewness and
similarity attacks.

Table 3.4 is an instantiation of the t-closeness principle and we can observe that
semantic and the skewness attacks can no longer be performed.
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TABLE 3.4: An 0.167-closeness w.r.t. Salary and 0.278-closeness w.r.t.
Disease.

ZIP Code* Age** Salary Disease
1 3556* ≤ 40 4K colon cancer
3 3556* ≤ 40 6K lung cancer
8 3556* ≤ 40 10K flu
4 3581* ≥ 40 7K stomach cancer
5 3581* ≥ 40 12K diabetes
6 3581* ≥ 40 9K aids
2 3550* ≤ 40 5K stomach cancer
7 3550* ≤ 40 8K aids
9 3550* ≤ 40 11K lung cancer

Data Utility for k-anonymity

While it is quite simple to observe the gain in resistance for each k-anonymity
improvement, it is not the case for data utility. Indeed, minimizing information loss
for k-anonymity requires a prior analysis of the needs and implementations should
consider a taxonomy and hierarchies of values (Xu et al., 2006) (Loukides and Shao,
2008b).

Utility is Handy with k-anonymity

An interesting point is about the trade-off between utility and privacy which, unlike
ε-differential privacy (cf., Section 3.3.2), is particularly palpable for the k-anonymity
model. Indeed, the more a given instantiation can resist attacks, the lower the data
utility.

To illustrate this observation, let us consider Tables 3.2 and 3.3 which are a 3-
anonymity instantiation and a 3-diversity instantiation respectively. Suppose a study
which aim to provide a treatment for diseases according to the age; a possible utility
assessment would be about the capability to infer from attribute Age a given Dis-
ease and be able thereafter, to prescribe the good treatment according to the age. It is
straightforward to observe that, for this utility study, the 3-anonymity instantiation
provides more utility than the 3-diversity instantiation.

This observation also shows the versatility of attribute disclosure that can be inter-
preted either as an attack or as a utility indicator.

3.3.2 ε-Differential Privacy

Unlike k-anonymity, ε-differential privacy (Dwork et al., 2006) is a non-deterministic
approach which guaranties privacy of respondent by generating synthetic Data (cf.,
Section 2.6.7). Differential privacy has been introduced for sanitization of queryable
data bases which is an interactive approach (cf., Section 2.4.2). The idea is to ensure
that a data base user can not guess - at some extent, defined by the parameter (ε)
- the presence/absence of any single respondent record. Thus, the query answer is
transformed in such a way that the influence of presence or absence of any respon-
dent record is limited. This transformation is performed according to the parameter
ε; the smaller ε, the more difficult it is for an attacker to infer the contribution of a
respondent on a given query answer. The formal definition of ε-differential privacy
is as follows (Dwork, 2008):
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Definition 4 ε-Differential Privacy
A randomized function K gives ε-differential privacy if for all datasets D1 and D2 differing
on at most one element, and all S ⊆ Range(K),

Pr[(K(D1) ∈ S] ≤ exp(ε)× Pr[(K(D2) ∈ S] (3.1)

In practice, ε-differential privacy prevents re-identification by adding noise to
the query response. Suppose f (X) is the real response to the user query f (e.g.,
the average of an attribute value, the number of records with a specific attribute
value,...), this response is perturbed by adding a random amount of noise g(X), to
f (X); the noise depends on ε and the variability of the query response. Finally, the
returned response r(X) has the following form:

r(X) = f (X)+ g(X) (3.2)

To generate the noise g(X) according to ε-differential privacy, the Laplace distri-
bution is commonly used with zero mean and ∆( f )/ε scale parameter where:

• ε is the differential parameter

• ∆( f ) is the L1-sensitivity of f which is the maximum variation of the query
function between neighbours data sets i.e. sets differing in at most one record.

The density function of Laplace noise is then:

p(x) = ε

2∆( f )
exp−∣x∣ε/∆( f ) . (3.3)

The variability of the query response (∆( f )) refers to the variability of the query
function between neighbour data sets i.e. how much the neighbours data sets in-
fluence the query response; indeed, as ε-differential privacy aims preventing the
knowledge of presence or absence of any single respondent within the table, a high
variability between neighbours is not desirable. Hence, the higher the variability,
the higher the amount of necessary noise for smoothing the response would be.

According to equation 3.3, for fixed ε, the higher the sensitivity ∆( f ) of the query
function f , the more noise is added which is normal as ε-differential privacy aims
to prevent observation. Also, for fixed sensitivity ∆( f ), the smaller the ε parameter,
the more Laplace noise is added. This last property is depicted by equation 3.1 as
the closer ε is to zero, the closer are the probabilities and therefore the similarity be-
tween different data sets differing on at most one element (D1 and D2).

Therefore, privacy for ε-differential privacy is ensured by the epsilon parameter
(ε) as the variability depends on the data set.

Differential privacy has been extended to be used for sanitization of microdata
sets which refers to a non-interactive approach (Sarathy and Muralidhar, 2011)(Chen
et al., 2011)(Hardt, Ligett, and McSherry, 2012).

Data Utility for ε-differential privacy

The main drawback of differential privacy is data utility (Lee and Clifton, 2011)((Clifton
and Tassa, 2013)). Indeed, the noise addition greatly reduces the control on data and
this prevents an accurate utility assessment.
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In practice, the noise addition should be added in order to guarantee utility
(Dwork et al., 2006), hence, the analysis to be performed should be known in ad-
vance in order to add to good amount of noise, taking into account ∆( f ) (the global
sensitivity) and ε (the differential parameter); this then refers to PPDM. Moreover,
as noise addition is usually performed according to the global sensitivity, it prevents
analysis over sub domains. Finally, the fact that sanitized data should be generated
according to a predefined purpose has raised some criticisms asking: "why not pub-
lish the statistics one wants to preserve rather than release the synthetic data ?" (Domingo-
Ferrer, 2008a). This contrasts with the k-anonymity model that provides more con-
trol over data to provide general purpose utility (cf., Section 3.3.1).

3.4 Disclosure Risk Metrics

This section presents the disclosure risk metrics that are: uniqueness and record
linkage (cf., Section 3.4). They aim to link records within a data set A to records
within another data set B and use different approaches which are mostly empirical.
Note that, as stated in the introduction, the two privacy models (k-anonymity and
ε-differential privacy) intrinsically provide privacy metrics (referred to as k and ε).
However, they are insufficient for quantifying the disclosure risk as they provide
global measurements over data, which the link with the capacity of re-identification
is not direct.

3.4.1 Uniqueness

The idea of uniqueness is that unique combination of key variables values have
higher risks of re-identification and mainly targets the sampling protection mechanism
(cf., Section 2.6.3) (Skinner, Marsh, and Wymer, 1994)(Elamir and Skinner, 2006); the
goal is to use the sample to re-identify a respondent within the whole population.
Uniqueness can also be used for attribute disclosure as shown in Section 3.3.1.

We can distinguish simple uniqueness and special uniqueness (Templ, Meindl,
and Kowarik, 2013).

Simple uniqueness

Let us consider Table 3.5 and perform uniqueness according to the sampling mech-
anism (cf., Section 2.6.3). Let fk be the frequency counts of records with pattern k in
the sample. A record is called a sample unique if it has a pattern k such that fk = 1.
Let Fk be the number of units in the population having the same pattern k. A record
is called a population unique if Fk = 1.

For example record 2 in Table 3.5 has fk = 1 as the combination of ZIP Code, Age
and Disease (75005, 23 and lung cancer) is unique within this table. Records 7 and 8
have fk = 2 as they are the only records with the same pattern.

Suppose now that an intruder observes fk on the sample and wishes to re-identify
using the whole population, the probability to re-identify is therefore computed as:
fk
Fk

; as Fk is the frequency counts of pattern k within the whole population.

Special uniqueness

Unlike simple uniqueness, special uniqueness (Elliot, Skinner, and Dale, 1998) also
takes into account subsets of key variable sets. This enables enhancing the proba-
bility of re-identification. For example in Table 3.5, record 2 is a sample unique for
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TABLE 3.5: uniqueness Table.

ZIP Code Age Disease
1 75002 22 lung cancer
2 75005 23 lung cancer
3 75002 22 lung cancer
4 75012 45 flu
5 75002 63 diabetes
6 75002 40 flu
7 75012 35 aids
8 75012 35 aids
9 75002 25 diabetes

attributes ZIP Code, Age and Disease (75005, 23 and lung cancer) but also for ZIP
Code and Age (75005 and 23). A record is defined as special unique with respect to
a variable set K if it is sample unique both on K and on a subset of K (Elliot, Skin-
ner, and Dale, 1998). It has been shown that special uniqueness provides a higher
probability of re-identification (Elliot, Manning, and Ford, 2002).

3.4.2 Record linkage

Uniqueness is not applicable on perturbative masking method as data are trans-
formed and it becomes useless to search for matching key values (cf., Section 3.2). A
more general approach consist in record linkage.

Record linkage is about linking records together (whether within the same micro
data or between two different microdata) and requires defining an attacker model.
We can distinguish four general approaches for record linkage:

• Distance-based record linkage the idea is to compute the distance between
the records we wish to link (Pagliuca and Seri, 1999), (Domingo-Ferrer and
Torra, 2001a)(Torra and Miyamoto, 2004); as such we should first define the
distance to be computed. (Pagliuca and Seri, 1999) proposes a specific case of
this approach using the microaggregation masking method with the Euclidean
distance. For each record in the sanitized data set, the distance to every record
in the original data set is computed; then the nearest and second nearest records
in the original dataset are considered. A record in the sanitized data set is la-
belled as linked when the nearest record in the original dataset turns out to be
the corresponding original record and; labelled as linked to 2nd nearest when
the second nearest record in the sanitized data set turns out to be the corre-
sponding original record. In all other cases, a record in the masked dataset is
labelled as not linked. The percentage of linked and linked to 2nd nearest is a mea-
sure of disclosure risk. An empirical work shows that the record based linkage
provides better performance than the probabilistic record linkage (Domingo-
Ferrer and Torra, 2001a).

• Interval disclosure it is a particular case of distance-based record proposed by
(Pagliuca and Seri, 1999). Instead of linking records (in original and sanitized
data sets) between them, each sanitized value is ranked and intervals are con-
structed around the value. The width of the interval is based on the rank of
the value or on its standard deviation. The proportion of original values that
fall within the interval centred around their corresponding sanitized value is a
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measure of disclosure risk. This approach allows computation on larger data
sets than the simple distance-based record linkage.

• Probabilistic record linkage the idea is to compute probabilities according to
coincidence between records in the sanitized data set and in the original data
set (Fellegi and Sunter, 1969) (Jaro, 1989) (Torra and Domingo-Ferrer, 2003).
As such, for each pair of records an index is computed: linked, not linked and
clerical. Indexes linked and not linked are computed according to the following
conditional probabilities for each variable in the pair of record: the probability
P(1∣M) of correspondence of values between attributes for a real match; and
P(0∣M) the probability of non correspondence between values of attributes
for a real match; finally, the index clerical is about records that can not be au-
tomatically classified as linked or not linked and requires a human inspection.
Disclosure is then computed as the number of matches between sanitized and
original data.

• Other record linkage methods have also been proposed (Domingo-Ferrer and
Torra, 2003)(Torra, 2004). While the previous record linkage approaches re-
quire that the data sets file share same variables; (Domingo-Ferrer and Torra,
2003)(Torra, 2004) propose a method which, under appropriate conditions,
shows that re-identification is still possible when the files do not share the
same variables. The conditions include the fact that both files contain similar
structural information and that this structural information can be expressed
by means of partitions. Therefore, the relationship between variables is estab-
lished using the built partitions as common partitions in both files reflect the
common structural information.

3.5 Utility Metrics

When talking about utility, we should consider two approaches: utility according
to various data uses (PPDP) and utility according to specific data uses (PPDM) (cf.,
Section 3.2.2).

This section presents the metrics that are used for providing both approaches ac-
cording to the k-anonymity model and the ε-differential privacy model. While for
the k-anonymity model, utility measurements refer to the information loss measure-
ments, the ε-differential utility assessment is more about machine learning process
(classification, clustering ....) (Clifton and Tassa, 2013).

Note that, these metrics use mostly an a priori approach for assessment, meaning
that the measurements are performed in order to provide anonymized data that re-
flect at some extent the original data set. On the other hand, an a posteriori approach
would consist in measurements over anonymized data with respect to a given util-
ity need. However, this latter approach is more complex as it requires a framework
that would capture the utility need, which is subjective. In Chapter 6 we propose a
framework for performing a posteriori assessment.

3.5.1 Utility for PPDP

Privacy Preserving Data Publishing (PPDP) aims to provide sanitized data that can
be used for various applications. This approach is suitable to the k-anonymity model
(cf., Section 3.2.2). The common way to ensure PPDP is by measuring information
loss, more precisely the distance between original and sanitized data according to
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specific statistics indicators.

Information loss measurement depends on the data type to be evaluated (contin-
uous or categorical, cf., Section 2.3).

Utility Measurement for Continuous Data

Domingo Ferrer et al. (Domingo-Ferrer, Sánchez, and Hajian, 2015a), propose the
following definition for information loss suited for continuous data:

Let us consider a microdata set with n respondents (records), I1, I2, ..., In and p
continuous attributes Y1, Y2, ..., Yp. Let M be the matrix representing the original
microdata set (rows are records and columns are attributes). Let M′ be the matrix
representing the sanitized microdata set. They consider the following indicators to
characterize the information within sanitized data:

• Covariance matrices V on M and V′ on M′.

• Correlation matrices R and R′.

• Correlation matrices RF and RF′ between the p attributes and the p factors
PC1, PC2, ..., PCp obtained through principal components analysis.

• Communality between each of the p attributes and the first principal compo-
nent PC1 (or other principal components PCi’s). Communality representing
the percent of each attribute that is explained by PC1 (or PCi). Let C be the
vector of communalities for M and C′ the corresponding vector for M′.

• Factor score coefficient matrices F and F′. Matrix F contains the factors that
should multiply each attribute in M to obtain its projection on each principal
component. F′ is the corresponding matrix for M′.

They propose thereafter to measure the discrepancy of these indicators between
original and sanitized data. More precisely, they propose to measure the discrepan-
cies between matrices M, V, R, RF, C, and F obtained on the original data and the
corresponding M′, V′, R′, RF′, C′, and F′ obtained on the sanitized data set. For this
purpose they propose three specific measures which are:

• Mean square error which refers to the sum of squared differences between
components of pairs of matrices, divided by the number of cells in either ma-
trix.

• Mean absolute error which refers to the sum of absolute differences between
components of pairs of matrices, divided by the number of cells in either ma-
trix.

• Mean variation which refers to the sum of absolute percent variation of com-
ponents in the matrix computed on sanitized data with respect to components
in the matrix computed on original data, divided by the number of cells in ei-
ther matrix. This approach is not influenced by the scale changes of attributes.
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Utility Measurement for Categorical Data

While this indicators are suited for continuous attributes, for categorical attributes,
utility assessment usually refers to (Domingo-Ferrer and Torra, 2001b):

• Direct comparison of values

• Comparison of contingency tables

• Entropy-based measures

Direct comparison of values depends on whether the categorical values are nominal
(which takes values over an unordered set) or ordinal (which takes values over a
totally ordered set).

Indeed nominal values only accept equality as comparison operation and the
comparison result between a sanitized category a′ and its original correspondence a
is binary i.e. either we have a correspondence or not:

dc(a, a′) = { 0 (if a ≠ a′)
1 (if a = a′) (3.4)

For ordinal values, we can consider a distance. Let ≤ C be the total order operator
over the range R(C) of variable C. We define the distance between categories a and
a′ as the number of categories between the minimum and the maximum of a and a′

divided by the cardinality of the range:

dc(a, a′) = ∣a′′ ∶ min(a, a′) ≤ a′′ ≤ max(a, a′)∣
∣R(C)∣

(3.5)

Comparison of contingency tables measures the distance between contingency ta-
bles rather than directly comparing values. The idea is to first build the contin-
gency tables of original and sanitized data sets and then compare them by com-
puting the sum of their differences component by component (Domingo-Ferrer and
Torra, 2001b). Comparison of contingency tables generalizes some of the information
loss measures based on counting (Hundepool et al., 2012).

Entropy-based measures this is one of the most used approaches for measuring
utility for categorical attributes. The idea is to model sanitization as a process that
removes information and the goal is therefore to assess the remaining information
within the data. However, this approach requires to define the assessment model as
random variables may be interpreted in different ways (Shin et al., 2012a). Proposi-
tions for this approach mainly target the PRAM protection mechanism and refer to
Mutual Information which is a specific case of the KL-divergence metric (Rebollo-
Monedero, Forne, and Domingo-Ferrer, 2010) (Rodriguez-Carrion et al., 2015).

3.5.2 Utility for PPDM

Privacy Preserving Data Mining (PPDM) aims at providing sanitized data which
utility is calibrated according to a specific use or set of uses. The advantage of this
approach is that data are optimized and can therefore provide a good amount of
utility while protecting respondent’s privacy. The main approaches for measuring
PPDM are: classification, regression and clustering (Torra, 2017a).
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Classification

Classification is one of the most used metrics for PPDP, they are more suited for
categorical data and aims to classify a given element with respect to the data to
which it belongs referring to different concepts including: decision trees and nearest
neighbour (Torra, 2017b).

Decision trees aims to classify a given element according to a binary tree of ques-
tions where the each node is a question except the leaves which are categories. Then
for each answer of questions with respect to the element, the element is oriented
whether to the left child or to the right child of the node until it reaches its corre-
sponding category. The decision trees is built from the data and the goal is to classify
new elements correctly and minimize the eight of the tree (the number of questions
to be asked).

Nearest neighbour aims to classify a given element with respect to its nearest el-
ements. When a nearest element is found the category of this element is returned.
Another approach (k-nearest neighbour) consists in finding the k-nearest elements
and returning the category of the majority of these k elements.

Using these techniques, the utility assessment is performed by comparing the ca-
pability of anonymized data to classify a record with respect to original data (Bapna
and Gangopadhyay, 2006) (Agrawal and Srikant, 2000) (Xue et al., 2017).

Some results show that sanitized data can even improve the data quality with
respect to original data ((Bapna and Gangopadhyay, 2006))(Sakuma and Osame,
2017). The reason can be the fact that aggregation of values reduces the number
of categories to be analysed and may therefore improve the capability to identify the
category of interest. Note however that this is only true for a predefined need, as the
definition of values to be aggregated depends on the use of data (Domingo-Ferrer,
Sánchez, and Hajian, 2015a).

While those approaches are intended to target a very narrow set of uses, Fung
et al. (Fung, Wang, and Philip, 2007) argue that: "even if the data processor knows in
advance that data will be used for classification, it may not know how the user may analyse
the data. Application-specific details often influence the building of classifier. For example,
some users prefer accuracy while others prefer interpretability. In many cases, visualization
or exploratory analysis are useful for defining the right approach for classification. Therefore,
even data sanitized with specific data mining tasks in mind can serve for other data mining
tasks as well".

Regression

Regression provides an estimation of the relationships among variables splitted into
a dependent variable and one or more independent variables (predictors) and is more
suited for continuous data. The goal is to measure how much the values of the de-
pendent variable change when a given independent variable varies while the other
independent variables do not change. Many derivations of regression exist: lin-
ear regression are used to assess anonymized data, for example (Muralidhar and
Sarathy, 2005) compares different results of regression models while (Raghunathan,
Reiter, and Rubin, 2003) compares the predictions of different regression models us-
ing the sum of squared error.
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Clustering

Clustering can apply either on categorical or continuous data. The idea is to group
elements within groups in such a way that elements in a given group are similar
with respect to criteria. The common parameters to be fixed are the number of clus-
ters to be formed and the considered criterion (usually a distance). There are many
structures for clusters used for evaluating sanitized data: clusters, fuzzy clusters,
dendrograms... (Batet et al., 2013) (Feldman et al., 2009).

3.6 Comparative Analysis of Disclosure Risk Metrics and Lim-
itations

This section compares the previously described disclosure risk metrics and under-
lines their limitations. We focus on disclosure risk metrics as they are very much
critical for enforcing the new regulation (cf. Chapter 1). We first present the criteria
used for our comparison and then, our comparative analysis.

3.6.1 Assessment Criteria

We use the following criteria for comparing the disclosure risk metrics:

1. Link with re-identification: Disclosure risk metrics measure how much a re-
spondent is about to be re-identified, therefore, the measurements should clearly
establish the link with the capability to re-identify a given respondent.

2. Empirical or analytical: While an empirical assessment can provide accurate
results, an analytical approach enables a better interpretation of the assessment
results, which is necessary for a wide adoption and usage.

3. Granularity: Granularity enables more flexibility and accuracy for providing
assessment with respect to specific use cases. Indeed, different interpretations
can fit to the same privacy assessment and granularity enables to take into ac-
count specific needs. For example, for assessing the capability to re-identify
a respondent with respect to his location, one may want to use specific loca-
tions, or subsets of locations instead, and the chosen metric should take this
into account.

Is it possible to perform measurements over many attributes, down to attributes’values,
combination of attributes’values...

4. Generality. A generic approach of measurements is important for a large
scope metric. For example, authors in (Domingo-Ferrer and Torra, 2003) un-
derline the fact that few record linkage metrics are able to link records within
different tables that do not share similar attributes’values, and propose a new
record linkage approach for tackling this issue. This is an important concern
as record linkage is usually performed over data that do not contain same val-
ues (Domingo-Ferrer and Torra, 2003). This feature is especially relevant for
defining a large scope metric especially interesting for regulation definition
(cf. Chapter 1)

Can the metric be used with different anonymization mechanisms ? Does the
metric take into account different types of attributes (categorical and continu-
ous) ? Can the metric be used to link records within tables that do not contain
same or similar attributes’values ?
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5. Applicability and scalability. As they are intended to be used over large sets
of data, record linkage metrics should be easily applicable (in terms of time
consumption) and scalable.

3.6.2 Comparative Analysis of Existing Metrics

Let us now compare the existing disclosure risk metrics according to our criteria (cf.
Section 3.6.1). Table 3.6 summarizes the comparison between these metrics.

k-anonymity-like metrics and the epsilon parameter

The k-anonymity-like metrics (k-anonymity, l-diversity and t-closeness) and the ε
parameter of ε-differential privacy provide measurements that are difficult to link to
the re-identification capability (Li, Li, and Venkatasubramanian, 2007) (Machanava-
jjhala et al., 2007) (Lee and Clifton, 2011). Moreover, the epsilon parameter suffers
from lack of granularity as it does not provide measurements with respect to specific
attributes or attributes’values but rather over tables as a whole. While epsilon pro-
vides an analytical approach for assessment, this is not validated in practice due
to the difficulty to link the results to the re-identification capability. Both models
provide few generic assessments as they can only apply to their corresponding ap-
plication domain; moreover, epsilon is more suitable for continuous data. Finally,
unlike the k-anonymity model which is easily applicable over large sets of data
and can be easily assessed, the epsilon parameter is less assessable as it should be
fixed before the anonymization and it is not possible to extract from an anonymized
data set, the corresponding epsilon value.

Uniqueness metrics

The uniqueness metrics (simple uniqueness and special uniqueness cf. Section 3.4)
depict an empirical approach for assessment (Domingo-Ferrer and Torra, 2001a)
which requires specific implementation for each study case. The simple unique-
ness method is not granular as we can only compare complete records, unlike the
special uniqueness approach which compares subsets of key variable sets. How-
ever, the approach is not generic as it is suitable only for non-perturbative masking
methods (cf. Section 3.4). However, as they do not provide an analytical approach,
those metrics require, for each use case, specific considerations which restrict the
definition of a global approach for regulation. Uniqueness metrics are easily appli-
cable as they act over non-masked values.

Record Linkage

Record linkage as uniqueness provides empirical approaches (Domingo-Ferrer and
Torra, 2001a) for assessment which the link with re-identification varies with re-
spect to the considered model and the specific parameters. For instance, Distance-
based record linkage depends on the considered distance which also depends on
the use case. Also, once the distance is chosen, distance-based record linkage provides
less accuracy than interval disclosure in terms of link with re-identification, as there
are only two possibilities with distance-based record linkage (nearest and second nearest
records cf. Section 5.4.5) while there is a wider range of values for interval disclo-
sure. Record linkage provides granular assessments down to attributes’values. As
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record linkage assumes the definition of a model that can fit to the case (e.g. spe-
cific distance in case of distance-based linkage), record linkage is somehow generic.
However, record linkage is less easily applicable than uniqueness metrics as we
should consider specific parameters which could add complexity over assessments
(Domingo-Ferrer and Torra, 2003).

Other record linkage methods

The main difference of those metrics with uniqueness and record linkage is the ca-
pacity to link records that do not contain similar variables (Domingo-Ferrer and
Torra, 2003)(Torra, 2004). These metrics are therefore granular and provide a link
with re-identification which is variable. They are also somehow generic but do not
provide an analytical approach for assessment. Application of those metrics is as
complex as for record linkage.

TABLE 3.6: Table comparing existing disclosure risk metrics.

Metrics Link with re-id Granul Analyti Gener Appl/Scal
k-anonymity ☀☆ ☀☆☆ ☀☆ ☆☆☆ ☀

epsilon ☆☆ ☆☆☆ ☀☀ ☆☆☆ ☆
Simple U ☀☀ ☀☆☆ ☆☆ ☆☆☆ ☀
Special U ☀☀ ☀☀☆ ☆☆ ☀☆☆ ☀

D-b linkage ☀☆ ☀☀☀ ☆☆ ☀☀☆ ☆
Itv linkage ☀☆ ☀☀☀ ☆☆ ☀☀☆ ☆

Prob linkage ☀☆ ☀☀☀ ☆☆ ☀☀☆ ☆
O record linkage ☀☆ ☀☀☀ ☆☆ ☀☀☀ ☆

☀: fulfilled criterion
☆: unfulfilled criterion

As depicted by the comparison table (Table 3.6), the "Other record linkage meth-
ods" is the one which fulfills most of the criteria. We also observe that, while the
"epsilon" parameter provides the most analytical approach is lacks most of the de-
scribed criteria. In the rest of this thesis we propose a metric which both includes
the uniqueness and the record linkage approaches.

3.7 Conclusion

This chapter presents the SDC metrics for measuring both the disclosure risk of san-
itized data and the remaining utility within sanitized data. We first present the two
main privacy models in SDC which are k-anonymity and ε-differential privacy, and
show their limitations to capture utility and disclosure risk. We then present exist-
ing metrics for disclosure risk and utility. The disclosure risk metrics assess either
unique correspondences between attributes’ values (uniqueness), or rely on more
general approaches based on linkage models (record linkage). On the other hand,
utility metrics can be classified according to whether they target sanitized data in-
tended to respond to various uses (PPDP) or sanitized data calibrated for responding
specific uses (PPDM). The disclosure risk metrics are then assessed and compared
according to different criteria: link with re-identification, empirical/analytical, gran-
ularity, generality, applicability. As a result, none of the existing metrics fulfil all the
criteria. However, disclosure risk metrics are especially relevant for regulation as it
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aims to define rules for protecting respondent’s privacy. Moreover, even for the k-
anonymity model, which is the most well studied model (as it is the oldest), there are
very few metrics enabling accurate comparison of its related derivations. In Chap-
ter 4, we present our first contribution (The Discrimination Rate Metric) which fulfil
almost all the previously listed criteria and provides an analytical approach for as-
sessing disclosure risk with application over the k-anonymity model.
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Part III

Contributions
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Chapter 4

Discrimination Rate: An
Attribute-Centric Metric to
Measure Privacy

4.1 Introduction

This chapter is about our first contribution, the Discrimination Rate (DR) metric
which is an attribute-centric metric as it measures the capability of attributes to re-
fine an anonymity set. The DR enables tackling the limitations of the existing metrics
(cf. Chapter 3).

Moreover, the DR enables accurate and formal definition of identifiers (more gen-
erally Personally Identifying Information), which has been recognized as one of the
main concerns of privacy regulation (Schwartz and Solove, 2011). Indeed, as under-
lined in Chapter 1 identifiers are at the centre of personal data protection as personal
data are defined with respect to identifiers. However, the current regulation does
not provide a characterization of identifiers, and without a proper definition, one
can not identify an identifier and therefore, can not protect personal data. The main
concern with identifiers comes from the difficulty to provide a general definition of
identifiers as they depend on the context.

The DR enables to address all these issues through fine grained assessments
which provide: a direct link with re-identification, granularity, generality, an ana-
lytical approach and applicability. The DR relies on a largely adopted anonymity
definition provided by Pfitzmann et al. (Pfitzmann and Hansen, 2010) and which
states that: "the anonymity of a subject from an attacker’s perspective means that the at-
tacker cannot sufficiently identify the subject within a set of subjects, the anonymity set",
where the anonymity set is defined as "the set of all possible subjects". We then use
this definition to define our DR metric which measures the attacker’s capability by
evaluating the capability of the attributes the attacker owns, to refine the anonymity
set. The maximum refinement leading to a single subject.

The following example drawn from the Location Based Systems (LBS) (Wernke
et al., 2014) (Shin et al., 2012b), underlines the flexibility of this approach as it is
attribute-centric. Assume Alice uses a location service1 to find a cardiology clinic
but wishes to hide her location to the service provider. The attacker is the service
provider in this case and his goal is therefore to link "Alice" to "Cardiology clinic"
and infer that Alice suffers from heart disease. We call anonymity set the set of all
users in the same location who send a request to the service provider - at the same

1Location service: service delivered through mobile platforms and based on location data.
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period of time - to find a Cardiology clinic. If Alice is the only user in the anonymity
set, the identification is direct as the information into the request is enough to iden-
tify Alice (link "Alice" to "Cardiology Clinic"). Alice’s request carries the maximum
amount of information to identify Alice. Now assume there are k − 1 other users in
the anonymity set and that their requests are indistiguishable, the attacker then needs
an extra amount of information (e.g. from some context data) to identify Alice - i.e.
reduce the anonymity set to 1 user - as each request refers to k subjects. Alice’s re-
quest does not carry the maximum amount of information to identify Alice and the
attacker needs extra identifying information. The attacker’s knowledge can there-
fore be measured by the identification capability of the information he owns.

The DR provides many features that can be configured to fit with different appli-
cations including measurement of single and combined attributes. The DR is very
much practical with some algorithms provided. As the DR measures the identifica-
tion capability of attributes, the link with identification is direct. The usefulness of
the DR is illustrated through evaluation and comparison of the k-anonymous and
l-diverse mechanisms, two of the most popular Statistical Disclosure Control (SDC)
techniques. We are therefore able to provide an attack driven assessment by comput-
ing how much information is gained by an attacker after applying a given disclosure
attack. Finally, the formalism introduced by the DR enables to formalize well known
definitions like identifiers and quasi-identifiers, and to propose new definitions of
zero-identifiers and partial-identifiers.

The rest of this chapter is organized as follows. Section 4.2 identifies key features
for a good privacy metric. After giving first informal definitions about identifiers in
Section 4.4, Section 4.3 introduces the Discrimination Rate metric with useful theo-
retical background and definitions for Sensitive vs Key Attributes. Section 4.5 revis-
its the identifiers’ definitions with the formalism of the DR. Section 4.6 illustrates the
DR relevancy through k-anonymity and l-diversity evaluation, and information loss
computation. Section 4.7 illustrates the practical dimension and the information loss
computation over a real dataset (the Adult data set). Section 4.8 provides a compar-
ison of the DR with the existing metrics and Section 5.7 gives our conclusions.

4.2 Key Features For a Good Privacy Metric

We identify two key features for getting a relevant general privacy metric. This
metric should :

1. quantify how much an attacker can refine an anonymity set from a given in-
formation, with fine granularity support in that measurement.

2. enable quantifying the amount of knowledge gained after applying a given
attack on a given system.

The idea of feature (1) comes from Pfitzman et al.’s works (Pfitzmann and Hansen,
2010). For them, "the anonymity of a subject from an attacker’s perspective means that the
attacker cannot sufficiently identify the subject within a set of subjects, the anonymity set",
where the anonymity set is defined as "the set of all possible subjects". They introduce
the requirement for fine granularity, providing a full useful range of intermediary
scores between "identified" and "not identified".
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TABLE 4.1: Example of data table

Subjects ZIP Code Age Salary Disease
subject 1 35000 22 4K cancer
subject 2 35000 35 5K diabetes
subject 3 35000 63 3K malaria
subject 4 35000 22 13K cancer
subject 5 35000 22 8K cancer
subject 6 35000 35 15K malaria
subject 7 35000 45 9K malaria
subject 8 35000 35 7K diabetes
subject 9 35000 40 11K diabetes

Feature (2) comes from the practical consideration that anonymization mecha-
nisms are introduced to counteract some identified attacks (Li, Li, and Venkatasub-
ramanian, 2007) (Singh, Bansal, and Sofat, 2014). Therefore, assessing anonymiza-
tion mechanisms in terms of attacks, provides the most pragmatic approach for as-
sessment. K-anonymity (Samarati and Sweeney, 1998) was designed against the
identity attack targeting the disclosure of the identity, l-diversity (Machanavajjhala
et al., 2007) improved k-anonymity by mitigating the homogeneity and background
knowledge attacks (refer to Chapter 3 for more details). As such, the idea of the gen-
eral privacy metric is to give a clear measured evaluation and comparison of some
anonymization mechanisms, based on identified attacks. This analysis is provided
in Section 4.6.1.

4.3 Our Informal Definitions Related to Identifiers

Hereafter are several informal definitions or explanations related to identifiers.
Note that, for these definitions, an attribute is considered as a variable which can
take different values. For example, in Table 4.1, Age can take values: 40, 35, 63, 22
and 45.

Definition 5 An Identifier is an attribute or set of attributes whose knowledge helps, for
each of its (combination of) values, to reduce an anonymity set of more than one subject to
exactly one subject.

Definition 6 A Zero-Identifier is an attribute or set of attributes whose knowledge does
not help, for each of its (combination of) values, to reduce an anonymity set of more than one
subject.

Definition 7 A Sketchy-Identifier is an attribute or set of attributes whose knowledge
helps, for at least one of its (combination of) values, to reduce an anonymity set of more than
2 subjects to at least 2 subjects.

In the light of these definitions, we consider that the identification process refers
to reducing the set of subjects to refine the target. As illustrated in Figures 4.1 and
4.2, the knowledge of an identifier enables - for each of its values - to reduce the
anonymity set to a single subject whereas the knowledge of a sketchy-identifier per-
mits - for at least one of its values - to reduce a subset to at least 2 subjects. Therefore,
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FIGURE 4.1: Anonymity set before and after the knowledge of an
Identifier

an attribute that can not help to reduce a set of subjects can not help in identification
and is considered, neither as an identifier nor as a sketchy-identifier and according
to our definition, is a zero-identifier.

We consider identifiers, sketchy-identifiers and zero-identifiers as context de-
pendent. An identifier (sketchy-identifier/zero-identifier) for a particular anonymity
set, is not necessarily an identifier (sketchy-identifier/zero-identifier) for another.

For illustration, let us consider the following example: suppose we have a set of
9 subjects (Table 4.1) and an attacker only knows that there are nine indistinguish-
able subjects in the Table. Our anonymity set then refers to the sensitive attribute
Subjects; the attacker’s goal is therefore to refine the set of the Subjects’s values. In
this context, attribute ZIP Code is a zero-identifier as everybody shares the same
attribute value. Therefore, it does not help to reduce the anonymity set. Attribute
Salary is an identifier as each of its values reduces the anonymity set to a subset of
exactly 1 subject. Attribute Disease is a sketchy-identifier as it enables refinement
of the anonymity set to 3 subsets of 3 subjects with respect to its values. Finally at-
tribute Age is also a sketchy-identifier.

Also, we should distinguish different types of identifiers, global and partial.
Global identifiers refine the anonymity set to subsets of exactly one subject whereas
partial identifiers refine the main set to subsets among which there is at least one
subset of one subject and one subset of at least two subjects. For example, attribute
Age is a partial identifier; it refines the anonymity set to 2 subsets of 3 subjects (val-
ues 22 and 35) and 3 subsets of 1 subject (values 63, 45 and 40). Attribute Salary is a
global identifier; it refines the main set to subsets of exactly 1 subject. In the follow-
ing, global identifiers are referred to as identifiers.

As explained previously, identifiers are context dependent. For example, at-
tribute ZIP Code, although a zero-identifier for this anonymity set, then becomes
a sketchy-identifier if we introduce another subject with a different ZIP Code value.

4.4 Discrimination Rate (DR)

This section presents our general privacy metric, the Discrimination Rate (DR)
which is based on information theory.
After giving some short introduction to entropy metrics, we introduce the Simple
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FIGURE 4.2: Anonymity set before and after the knowledge of a
Sketchy-Identifier

Discrimination Rate (SDR) for single attribute measurements and the Combined Dis-
crimination Rate (CDR) for multiple attributes measurements.

4.4.1 Background on Entropy

We give here short definitions of entropy, conditional entropy and joint entropy
that are used to define our metric. For complete definitions, the reader can refer to
(Kolmogorov, 1956).

• The Entropy "H(X)" of a d.r.v.2 X, taking its values in X , with a probability
mass function P is a measure of its uncertainty and is defined as follows:

H(X) = −∑
x∈X

p(x) log(p(x)) (4.1)

• The Conditional Entropy "H(X∣Y)" of a d.r.v. X given a d.r.v. Y, is the entropy
of X conditioned on each value y of Y averaged over all values y and defined
as follows:

H(X∣Y) = −∑
y

p(y)∑
x

p(x∣y) log(p(x∣y))

= −∑
x,y

p(x, y) log(p(x∣y)) (4.2)

• The joint entropy "H(X,Y)", of two d.r.v. taking their values withinX for X and
within Y for Y with a probability mass function P is a measure of uncertainty
defined as follows:

H(X, Y) = −∑
x∈X

p(x, y)log(p(x, y)) (4.3)

For more than two variables X1, ..., Xn the joint entropy is computed as:

H(X1, .., Xn) = −∑
x1

..∑
xn

p(x1, .., xn)log(p(x1, .., xn)) (4.4)

Entropy is informally considered as the average amount of information con-
tained in a source X that can take different values within X .

Referring to Information theory, uncertainty is computed based on the fact that,
the more likely an event is to happen, the less information it contains.

2d.r.v.: discrete random variable
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4.4.2 Simple Discrimination Rate (SDR), and Sensitive vs Key attributes

The goal of our metric is to compute the identification capacity of an attribute into a
given anonymity set, more precisely, to compute the amount of identification infor-
mation carried by an attribute into that anonymity set. To remain far more general,
we consider attributes as d.r.v. and the anonymity set as the set of outcomes (values
and occurrences) of another d.r.v. To clarify our idea, let us consider 2 d.r.v. X and Y;
Y the attribute we wish to measure the identification capacity and X, the attributes
which the set of values is our anonymity set. As underlined in (Shin et al., 2012a),
one of the main concern about entropy based anonymity metrics is the considered
random variable. In our case, we want to compute the amount of information car-
ried by a d.r.v. according to the refinement of the set of outcomes of another d.r.v.
For that purpose, we consider H(X) the amount of information (uncertainty) carried
by X as our initial state. We then compute entropy of X conditioned on Y (H(X∣Y))
as we wish to measure the effect of Y on X. This quantity represents the remaining
uncertainty within X, after Y is divulged. In order to compute the amount of infor-
mation carried by Y according to X, we need to subtract that quantity from H(X)
and thus we obtain H(X) − H(X∣Y), which is the effective amount of identification
information carried by attribute Y according to the anonymity set. Finally, we divide
that quantity by H(X) to normalize the value.

Let us propose the following definition for the Simple Discrimination Rate:

Definition 8 (Simple Discrimination Rate)
Let X and Y be two d.r.v. The Simple Discrimination Rate of Y relatively to X is the
capacity of Y to refine the set of outcomes of X and is computed as follows:

DRX(Y) = H(X)− H(X∣Y)
H(X)

= 1− H(X∣Y)
H(X)

(4.5)

It is easy to observe that 0 ≤ DRX(Y) ≤ 1 and:

• DRX(Y) = 0 when Y is a zero-identifier as we have H(X∣Y) = H(X); the rest
of information is maximal.

• DRX(Y) = 1 when Y is an identifier as we have H(X∣Y) = 0, the rest of infor-
mation is null.

In the following, X is referred to as the Sensitive Attribute and Y is the Key
Attribute.

SDR Computation illustration

This section describes how the Simple Discrimination Rate can be computed. We
also provide an algorithm to describe the computation steps.

Example 2 Let us consider Table 4.1 and compute the SDR of attribute Age (our key at-
tribute) over Subjects (our sensitive attribute, cf. Section 4.4.2); the discrete random vari-
ables are therefore:
X: Subjects and Y: Age.
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SDRX(Y) = 1− H(X∣Y)
H(X)

= 1− −1/3 log2(1/3)−1/3 log2(1/3)

−
9
∑
s=1

1/9 log2(1/9)

= 1− 1/3 log2(3)+1/3 log2(3)
log2(9)

= 0.66

For H(X∣Y), the distribution is computed according to the definition of the Conditional
Entropy in Section 4.4: the attribute Age can take 5 values 22, 35, 40, 45, 63. This helps
to reduce the main set to subsets of 3, 3, 1, 1 and 1 subject(s) respectively, corresponding
to 1/3, 1/3, 1/9, 1/9 and 1/9 of the whole set respectively. The conditional entropies are re-
spectively: H(X∣Y = 22) = −log2(1/3), H(X∣Y = 35) = −log2(1/3), H(X∣Y = 40) = 0,
H(X∣Y = 45) = 0 and H(X∣Y = 63) = 0. H(X∣Y) is therefore the sum of −1/3 log2(1/3)
and −1/3 log2(1/3).

Similarly, we can compute the DR of attributes ZIP Code, Disease and Salary which are
respectively 0 (zero-identifier), 1/2 (sketchy-identifier) and 1 (identifier).

The SDR computation is depicted in Algorithm 1 where H(X) represents a pre-
computed value of the entropy of X.

Algorithm 1 Simple DR Computation of key attribute Y according to the sensitive
attribute X. Input: The set X of values of X, the set Y of values Y and the connec-
tion between each Y outcome and X outcome. Output: DRX(Y).

1: Part2 ← 0
2: Sum ← total number of subjects
3: for each value y in (Y) do
4: Correlate-Sum ← 0
5: Sum-y ← number of subjects who share y
6: i ← 0
7: while ((x in X ) and (number of subjects sharing x and y != 0)) do
8: Tab[i] = ← number of subjects who share x and y
9: Correlate-Sum ← Correlate-Sum + Tab[i]

10: i ← i + 1
11: end while
12: Cond-Entropy ← 0
13: if ∣X ∣ = 1 then
14: Cond-Entropy ← log2(Correlate-Sum/Sum)
15: else
16: for each value t in Tab do
17: Cond-Entropy ← Cond-Entropy + (t/Correlate-Sum) * log2(t/Correlate-Sum)
18: end for
19: end if
20: Part2 ← Part2 - (Correlate-Sum/Sum) * Cond-Entropy
21: end for
22: DR ← 1 - Part2/H(X)
23: return DR
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FIGURE 4.3: The Discrimination Rate for Table 4.1

4.4.3 Combined Discrimination Rate (CDR)

The SDR (Section 4.4.2) enables to measure the identification capacity of a single
attribute according to a given anonymity set. The Combined Discrimination Rate
goes one step further by measuring the identification capacity of a combination of
attributes.

From joint entropy, we define the Combined Discrimination Rate. For conve-
nience, we use the same DR notation for Combined Discrimination Rate and Simple
Discrimination Rate, where only the number of parameters differs.

Definition 9 (Combined Discrimination Rate)
Let X, Y1, ..., Yn be d.r.v. The Combined Discrimination Rate of Y1, Y2, ..., Yn relatively to
X is the capacity of Y1, ..., Yn to refine the set of outcomes of X and is computed as follows:

DRX(Y1, ..., Yn) = 1− H(X∣Y1, ..., Yn)
H(X)

. (4.6)

CDR Computation illustration

This section gives some computation examples of CDR and its algorithm.

Example 3 Referring to Table 4.1 we can compute the Combined DR of the combination of
attributes Age and Disease (our key attributes) over the Subjects (our sensitive attribute).
The three d.r.v. are in this case:
X: Subjects and Y1: Disease and Y2: Age

DRX(Y1, Y2) = 1− H(X∣Y1,Y2)
H(X)

= 1− −1/3 log2(1/3)−1/2 log2(2/9)

−
9
∑
s=1

1/9 log2(1/9)

= 1− 1/3 log2(3)+2/9 log2(2)
log2(9)

= 0.76

Hence, the combination of attributes Disease and Age gives more identification
information than they give individually.
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Thereafter, DRX(Age, ZIP Code) and DRX(Age, Salary) are respectively
DRX(Age) = 0.66 and DRX(Salary) = 1. This is normal as ZIP Code is a zero-identifier in
the current anonymity set (i.e. it does not bring any information) and Salary is an identifier
(i.e. thus it brings the maximum of information for the current anonymity set).

The DR can also be computed on attributes’ values and combination of attributes’ values.
For example: DRX(cancer) = 0.83, DRX(cancer, 22) = 0.83, DRX(cancer, 35) = 0.93,
DRX(malaria, 35) = 1.

Finally the values of DRX(Age, Disease, ZIP Code), DRX(Age, Disease, Salary),
and DRX(Age, Disease, Salary, ZIP Code) are respectively DRX(Age, Disease) = 0.76,
DRX(Salary) = 1 and DRX(Salary) = 1. We summarize the results in Figure 4.3.

The CDR computation is depicted in Algorithm 2 where H(X) represents a pre-
computed value of the entropy of X.

Algorithm 2 Combined DR of key attributes Y1, ..., Yn relatively to the sensitive
attribute X. Input: The set X of values of X, the key attributes (Y1, Y2, ..., Yn) and
the connection between each (Y1, Y2, ..., Yn) outcome and X outcome. Output:
CDRX(Y1, Y2, ..., Yn).

1: Part2 ← 0
2: Sum ← total number of subjects
3: for each value (y1, ..., yn) in (Y1, ...,Yn) do
4: Correlate-Sum ← 0
5: Sum-y ← number of subjects who share (y1, ..., yn)
6: i ← 0
7: while ((x in X ) and (number of subjects sharing x and (y1, ..., yn) != 0)) do
8: Tab[i] = ← number of subjects who share x and (y1, ..., yn)
9: Correlate-Sum ← Correlate-Sum + Tab[i]

10: i ← i + 1
11: end while
12: Cond-Entropy ← 0
13: if ∣X ∣ = 1 then
14: Cond-Entropy ← log2(Correlate-Sum/Sum)
15: else
16: for each value t in Tab do
17: Cond-Entropy ← Cond-Entropy + (t/Correlate-Sum) * log2(t/Correlate-Sum)
18: end for
19: end if
20: Part2 ← Part2 - (Correlate-Sum/Sum) * Cond-Entropy
21: end for
22: CDR ← 1 - Part2/H(X)
23: return CDR

Remark
From the examples, we observe that attributes with DR = 0 (the zero-identifiers) are
useless for identification (for example ZIP Code). This remark has been underlined
by Diaz et al (Diaz, Troncoso, and Danezis, 2007) who shown that, with more infor-
mation, the attacker’s uncertainty does not necessarily decrease.
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4.5 Revisited Identifiers Definitions with DR

In the light of the CDR, we revisit the definitions of identifiers given in Section 4.3,
to get the more formal definitions below.

Definition 10 Identifier
Let X be a sensitive attribute and Y1, Y2, ...Yn be a set of key attributes, n ∈ N ∖ {0}.
(Y1, Y2, ...Yn) is an Identifier relatively to X if, and only if:
DRX(Y1, Y2, ..., Yn) = 1.

Definition 11 Sketchy-Identifier
Let X be a sensitive attribute and Y1, Y2, ...Yn be a set of key attributes, n ∈ N ∖ {0}.
(Y1, Y2, ...Yn) is a Sketchy-Identifier relatively to X if, and only if:
DRX(Y1, Y2, ..., Yn) ∈]0, 1[.

Definition 12 Zero-Identifier
Let X a sensitive attribute and Y1, Y2, ...Yn be a set of key attributes, n ∈N∖{0}. (Y1, Y2, ...Yn)
is a Zero-Identifier relatively to X if, and only if:
DRX(Y1, Y2, ..., Yn) = 0.

Definition 13 Partial-Identifier
Let X be a sensitive attribute and Y1, Y2, ...Yn be a set of key attributes, n ∈ N ∖ {0},
and Y1,Y2, ...,Yn be the sets of possible values of Y1, Y2, ...Yn. (Y1, Y2, .., Yn) is a Partial-
Identifier relatively to X, if and only if (Y1, Y2, .., Yn) is a Sketchy-identifier relatively to
X and if ∃ (y1, y2, ..., yn) ∈ (Y1,Y2, ...,Yn)/
DRX(y1, y2, ..., yn) = 1.

4.6 DR application To SDC

In this section, we apply the DR to measure anonymity within SDC systems (cf.
Chapter 3) and use an attack driven assessment evaluation which computes how
much information is gained by an attacker after applying a given attack. We perform
our measurements over the k-anonymous and l-diverse techniques.

TABLE 4.2: Generalization Table

ZIP Code ZIP Code* Age Age*
35510 355** 22 2*
35512 355** 22 2*
35517 355** 22 2*
35877 358** 35 3*
35830 358** 39 3*
35618 356** 35 3*
35620 356** 45 ≥ 40
35842 358** 40 ≥ 40
35655 356** 63 ≥ 40
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TABLE 4.3: A 3-anonymous Table

ZIP Code* Age* location 1 location 2
1 ***** 2* diabetes-clinic church
4 ***** 2* cardiology-clinic church
5 ***** 2* cancer-clinic church
2 ***** 3* hiv-clinic synagogue
6 ***** 3* cancer-clinic mosque
8 ***** 3* cardiology-clinic synagogue
3 ***** ≥ 40 diabetes-clinic mosque
7 ***** ≥ 40 hiv-clinic mosque
9 ***** ≥ 40 hiv-clinic synagogue

TABLE 4.4: A 3-diverse Table

ZIP Code* Age* location 1 location 2
5 355** * cancer-clinic church
2 355** * hiv-clinic synagogue
4 355** * cardiology-clinic mosque
1 358** * diabetes-clinic church
6 358** * cancer-clinic synagogue
7 358** * hiv-clinic mosque
3 356** * diabetes-clinic church
8 356** * cardiology-clinic mosque
9 356** * hiv-clinic synagogue

4.6.1 Measuring SDC anonymization mechanisms with the DR

Let us now evaluate k-anonymity and l-diversity mechanisms, based on the three
attacks listed in Chapter 3 and the DR metric.

Identity disclosure: The protection for k-anonymity and l-diversity against this
attack comes directly from the generalization process (Table 4.2). The three following
cases are usually considered:

• The black box approach: it refers to an attacker who only has the transformed
data (public data) and wishes to re-identify.

• The white box approach: it refers to an attacker who has both the original
and the generalized non-sensitive data but not the exact correspondences; for
example {355**, 355**, 355**} as transformed data and {35510, 35512, 35517} as
original data. The attacker can be an intruder within a company.

• The intermediary (grey box) approach: it refers to an attacker who has the
generalized data and some external data that help him guess the original data.
This approach is the hardest one as it is difficult to speculate on the external
data.

In this chapter we only consider the white box case and we evaluate this attack
by computing the amount of information an attacker can gain from the generalized
key attributes.

To evaluate this attack, we therefore compute the amount of information that an
attacker could gain from the generalized key attributes in the white box approach.
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TABLE 4.5: Risk measurements for the Identity disclosure

X Y DRX(Y)
ZIP Code 355** 0.83
ZIP Code 356** 0.83
ZIP Code 358** 0.83
ZIP Code ZIP Code* 0.5

Age 2* 1
Age 3* 0.87
Age ≥40 0.78
Age Age* 0.66

TABLE 4.6: Risk measurements for the Homogeneity attack

X Y DRX(Y)
3-anonymity Table

location 1 2* 0.85
location 1 3* 0.73
location 1 ≥40 0.73
location 1 Age* 0.31
location 2 2* 1
location 2 3* 0.81
location 2 ≥40 0.81
location 2 Age* 0.61

3-diversity Table
location 1 355** 0.73
location 1 356** 0.73
location 1 358** 0.73
location 1 ZIP Code* 0.2
location 2 355** 0.67
location 2 356** 0.67
location 2 358** 0.67
location 2 ZIP Code* 0

The DR is computed from Table 4.2 over each key attribute using the original key
attributes as sensitive attributes; Table 4.5 gives the risk measurements to identity dis-
closure.

Homogeneity attack: As explained in Chapter 3, this attack refers to the rel-
ative distribution between key and sensitive attributes. To evaluate resistance of
k-anonymity and l-diversity to this attack, we measure how much the key attributes
can serve to refine the sensitive attributes set. Thus the DR is computed over Tables
4.3 and 4.4 over the key attributes using each sensitive attribute as sensitive attribute.
Table 4.6 gives the risk measurements to the homogeneity attack.

Background knowledge attack: refers to the external knowledge that can be
used to link a quasi-identifier to a sensitive attribute within the table. However, us-
ing the attributes within the table, an attacker can already extract some information
for linking a quasi-identifier to a sensitive attribute, and this refers to the homogene-
ity attack. Therefore, for computing the external information needed, we should
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TABLE 4.7: Resistance measurement to combine Homogeneity and
Background knowledge attacks (computed from the results of Table 4.6)

X Y 1−DRX(Y)
3-anonymity Table

location 1 2* 0.15
location 1 3* 0.27
location 1 ≥40 0.27
location 1 Age* 0.69
location 2 2* 0
location 2 3* 0.19
location 2 ≥40 0.19
location 2 Age* 0.39

3-diversity Table
location 1 355** 0.27
location 1 356** 0.27
location 1 358** 0.27
location 1 ZIP Code* 0.8
location 2 355** 0.33
location 2 356** 0.33
location 2 358** 0.33
location 2 ZIP Code* 1

subtract the internal information (referring the the homogeneity attack) from the
maximum amount of information needed for complete linkage. Hence, using the DR
metric for computing this background knowledge, we should subtract the knowl-
edge about the homogeneity attack (the internal knowledge) from the maximum DR
which is 1. For example, Table 4.6 reports that the knowledge about the homogene-
ity attack for quasi-identifier Age∗ is 0.61, meaning that for re-identifying a subject,
the attacker needs extra data with accuracy evaluated with a DR of 1 − 0.61 = 0.39,
which represents the background knowledge. Table 4.7 summarizes the capacity of
an attacker for the background knowledge attack within the 3-anonymous Table (4.3)
and the 3-diverse Table (4.4).

Interpretation of results

The measurements in Tables 4.5, 4.6 and 4.7 are computed on attributes as a
whole (ex: Age*, Zip Code*) and on attributes’ values (ex: 2*, 355**).

Identity disclosure: From Table 4.5, we note that, although attribute ZIP Code has
a global low risk to be used for re-identification (DR = 0.5), the risk related to its
values remains relatively high (DR = 0.83). The DR permits an accurate evaluation
that can be used during the generalization process to balance between privacy and
information loss.

Homogeneity attack: From global measurements of attributes Age* and ZIP Code*
in Table 4.6, we observe that the 3-diversity table provides a better security than the
3-anonymity table with lower DR values. However, according to some attributes’
values, both mechanisms provide the same security level. For example, attribute’s
values ≥ 40 (3-anonymity table) and 356** (3-diversity table) have the same security
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level according to location 1 (DR = 0.73). We also observe that, for the 3-diversity
table, the DR of ZIP Code*’s values is lower for location 2 (DR = 0) than for location 1
(DR = 0.2); this can be explained as location 1 has 4 different values while location 2
has only 3. An attacker is therefore more able to relate a user to location 1 from ZIP
Code*.

Background knowledge attack: Table 4.7 reports statistics about the amount of in-
formation needed to completely relate a sensitive attribute to a key attribute using
a backgroung knowledge attack. To re-identify a user, an attacker can therefore focus
on attributes with the lowest values (1 − DR) since they minimize his efforts. For
example, for the 3-anonymity table, the attribute’s value 2∗ is the most vulnerable
one (DR = 0).

Global information loss: information loss is inversely proportional to the DR. That
is, the less the DR, the more the information loss, and the less an attacker is able to
re-identify a user. This comes directly from the definition of the DR: it quantifies
the identification capacity of attributes. Therefore, the less an attacker can identify a
user from attributes, the less he is able to re-identify.
The overall information loss can therefore be computed according to attacks by com-
puting a mean over DRs. We then obtain:

• Global risk measurement according to Identity disclosure:
DRid = (DRZipCode(ZipCode∗)+DRAge(Age∗))/2 = (0.5+ 0.66)/2 = 0.58

• Information loss related to Identity disclosure : ILid = 1−DRid = 0.42

• Global risk measurement according to Homogeneity attack (3-anonymization):
DRhaa = (DRlocation1(Age∗)+DRlocation2(Age∗))/2 = (0.31+ 0.61)/2 = 0.46

• Information loss related to Homogeneity attack (3-anonymization):
ILhaa = 1−DRhaa = 0.54

• Global risk measurement according to Homogeneity attack (3-diversification):
DRhad = (DRlocation1(ZipCode∗)+DRlocation2(ZipCode∗))/2 = (0.2+ 0)/2 = 0.1

• Information loss related to Homogeneity attack (3-diversification):
ILhad = 1−DRhad = 0.90

• Overall information loss measurement (3-anonymization): (ILid + ILhaa)/2 =
(0.42+ 0.54)/2 = 0.46

• Overall information loss measurement (3-diversification): (ILid + ILhad)/2 =
(0.42+ 0.90)/2 = 0.66

Note that, all the above measurements can also apply on attributes’values, for
specific interpretations.
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TABLE 4.8: Attributes of the Adult dataset used in the experiment

Attribute Type #Values
1 Marital Status key attribute 7
2 Native Country key attribute 41
3 Race key attribute 5
4 Work Class key attribute 8
5 Occupation Sensitive 14

FIGURE 4.4: Identity Attack measurements in the Adult dataset

4.7 Experiments (k-anonymity and l-diversity assessment and
comparison)

The goal of this experiment is to compare k-anonymity and l-diversity using a real-
istic dataset and various levels of anonymization.

The data used in the experiment is the "Adult dataset" from the UC Irvine Ma-
chine Learning Repository which contains data collected from a US census. After
removing missing values, we obtain a total of 30161 valid records. We use five at-
tributes of the dataset as depicted in Table 4.8 (4 key attributes and 1 sensitive at-
tribute). We use the ARX tool (Polonetsky, Tene, and Jerome, 2014) (version 3.5.1)
to compute the anonymization techniques (k-anonymity and l-diversity) and the R
tool (Chokkathukalam et al., 2013) (version 3.3.1) to compute our DR metric. Our
measurements are computed according to the examples given in Section 4.6. The ex-
periments are running on a i5-4300U CPU with 1.90GHz - 2.50GHz and 4GB mem-
ory.

For k-anonymity, we generated 2 instantiations (10-anonymity, 15-anonymity)
based on "Generalization and Suppression". For l-diversity, we generated 3 instan-
tiations: a distinct-10-diversity, a shannon-entropy-10-diversity and a recursive-(5-
10)-diversity (cf. Chapter 3).
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FIGURE 4.5: Homogeneity Attack measurements in the Adult
dataset

TABLE 4.9: Values of attribute "Marital Status" used in the experi-
ment

Marital Status
1 Divorced
2 Married-civ-spouse
3 Married spouse absent
4 Never Married
5 Seperated
6 Widowed

4.7.1 Identity Attack

Figure 4.4 depicts the identity attack measurements. The measurements are made on
key attributes as a whole (QI: see Table 4.8 for the correspondence between numbers
and attributes) and on the specific values of the key attribute "Marital Status" (see
Table 4.9 for the correspondence between numbers and values). The measurements
describe the identification capacity of generalized attributes according to original at-
tributes (cf. Section 4.6.1). We can observe from Figure 4.4 that the 15-anonymity in-
stantiation is globally better than the 10-anonymity instantiation as it has fewer iden-
tifying attributes. However, for the key attribute "Native Country" the 15-anonymity
instantiation provides weaker resistance (0.0047 vs 0.004). For the specific mea-
surements over the key attribute "Marital Status", the 15-anonymity instantiation
also provides a global better resistance even if for some values ("Widowed") the 15-
anonymity instantiation is weaker (1 vs 0.9779).

4.7.2 Homogeneity attack

Figure 4.5 depicts the homogeneity attack measurements. We consider measure-
ments of identification capacity of the key attributes according to the sensitive at-
tribute "Occupation" (see Section 4.6.1 for more details). The measurements are
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made on key attributes as a whole (Occupation∣QI: see Table 4.8 for the correspon-
dence between numbers and attributes) and on the specific attribute values of at-
tribute "Marital Status" (Occupation∣Marital Status: see Table 4.9 for the correspon-
dence between numbers and values). For key attributes as a whole, we observe
that the shannon-entropy-10-diversity is globally better than the recursive-(5-10)-
diversity which in its turn is better than the distinct-10-diversity. With no surprise,
the 10-anonymity instantiation provides the global lowest resistance.

However, for some key attributes ("Marital Status"), the 10-anonymity instantia-
tion is more resistant than the distinct-10-diversity instantiation (0.237 vs 0.251). This
is a non-expected result as 10-anonymity is supposed to be weaker than the distinct-
10-anonymity. This is due to the anonymization process which uses an heuristic
approach (Prasser et al., 2014) and tries to do the best; this enables a global better
resistance for the distinct-10-diversity but which can be weaker for specific values.
As such, the DR underlines inconsistencies which can occur during practical imple-
mentations.

For key attribute "Marital Status", we did not consider the shannon-entropy-10-
diversity as for that model, the "Marital Status" values were completely destroyed
during the anonymization process (see left graph on Figure 4.5). We observe that for
this particular attribute, the distinct-10-diversity instantiation is globally less resis-
tant than the 10-anonymity instantiation, as depicted by the "occupation∣QI" graph.

4.8 Comparison of the DR with the existing disclosure met-
rics

The Discrimination Rate has the following interesting features:

1. Context awareness. The DR is context aware as it is computed relatively to a
sensitive attribute and it has the flexibility to change the context by replacing a
sensitive attribute with another one. This feature is not considered by the ex-
isting disclosure risk metrics as they only aim to link complete records within
different tables.

2. Granularity. With its attribute-centric approach the DR offers a good granu-
larity and can be computed with different parameters (over an attribute as a
whole, over a combination of attributes, over specific attribute’s value, over
combination of attributes’values).

3. Link with re-identification: the link between DR measurements and
re-identification is direct as the DR computes the capability of attributes to
identify a subject.

4. Generality. The DR can apply on different anonymization mechanisms, to
different types of attribute and even when the attributes to be linked do not
share same or similar values. This property is useful for addressing different
application domains.

5. Analytical: the DR provides an analytical approach

6. Applicability and scalability: applicability of DR is simple with an algorithm
provided which is easily scalable to large data sets.
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Note that context awareness is not new as it was identified as a lacking property
in anonymity measures in (Tóth, Hornák, and Vajda, 2004).

The comparison is summarized in table 4.10. As we can observe, the DR ad-
dresses almost all the considered features except a specific generality feature which
is the capability to compare tables that do not contain similar values. Indeed, as un-
derlined by (Domingo-Ferrer and Torra, 2003) this type of assessment should take
into account a mean to express the relationship between non-similar values within
the different tables. This issue can be addressed by means of partitions (Domingo-
Ferrer and Torra, 2003). This last issue is addressed in Chapter 5.

Table 4.10 provides a comparison of existing disclosure risk metrics with the DR
metric. We use full and empty stars to reflect the capability to fulfil or not a require-
ment respectively.

TABLE 4.10: Table comparing existing disclosure risk metrics with
DR.

Metrics Link with re-id Granul Analyti Gener Appl/Scal
k-anonymity ☀☆ ☆☆☆ ☀☆ ☀☆☆ ☀

epsilon ☆☆ ☆☆☆ ☀☀ ☆☆☆ ☆
Simple U ☀☀ ☀☆☆ ☆☆ ☆☆☆ ☀
Special U ☀☀ ☀☀☆ ☆☆ ☀☆☆ ☀

D-b linkage ☀☆ ☀☀☀ ☆☆ ☀☀☆ ☆
Itv linkage ☀☆ ☀☀☀ ☆☆ ☀☀☆ ☆

Prob linkage ☀☆ ☀☀☀ ☆☆ ☀☀☆ ☆
O record linkage ☀☆ ☀☀☀ ☆☆ ☀☀☀ ☆

DR ☀☀ ☀☀☀ ☀☀ ☀☀☆ ☀

☀: fulfilled criterion
☆: unfulfilled criterion

4.9 Conclusion and Future Work

This chapter presents ou first contribution, the Discrimination Rate (DR) metric, for
measuring disclosure risk within data bases. The DR uses an attribute-centric ap-
proach for providing a flexible and practical metric for disclosure risk assessment.
Thanks to its attribute-centric approach, the DR enables to be more general than
other proposals and tackles the limitations of the existing disclosure risk metrics in
terms of: link with re-identification, granularity, generality, applicability and scala-
bility. We are therefore able to provide an attack-driven privacy assessment by mea-
suring how much information is gained by an attacker after applying a given attack;
this allows to evaluate and compare k-anonymity and l-diversity, two of the most
popular Statistical Disclosure Control (SDC) techniques. Finally, the DR is used for
providing an accurate and quantified definition of fundamental privacy notions that
are identifiers, and which are recognized as one of the critical concerns for definition
of data protection regulations.

Improvements of the DR are still possible to take into account disclosure assess-
ment between different tables which do not contain similar values. This is depicted
by the capability to capture the proximity of some sensitive values for expressing
their semantic similarity. Indeed, sensitive values can be grouped into subsets for
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expressing meaning, and it might be of interest to discriminate those particular sub-
sets of values instead of single values; for instance for getting the information that
a person suffers from a cancer, whatever the cancer type. Chapter 5 describes the
Semantic Discrimination Rate (SeDR) as an improvement of the DR; it provides a
more generic disclosure risk assessment for improving record linkage.
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Chapter 5

The Semantic Discrimination Rate

5.1 Introduction

To increase the DR with the semantic dimension, we define the Semantic Discrimi-
nation Rate (SeDR). The term semantic refers to the possibility for a data processor
to perform specific measurements according to the meaning he gives to some at-
tributes’values. Indeed, using the SeDR, a data processor can define subsets of val-
ues of interest (which reflect the meaning) and perform measurements with respect
to these subsets of interest. This enables generic assessment for improving disclosure
risk assessments. For example, a data processor could be interested in assessing the
identification level of subjects suffering from cancer, whichever the cancer type; or
he may be interested in identifying subjects living in a subset of locations, instead of
specific locations. This new property improves assessment in different ways among
which:

1. A a more generic disclosure risk evaluation than the DR metric for measur-
ing record linkage

2. Anonymity measurements from the attacker’s perspective, by computing
how much information is gained after applying a given attack. Especially
for the semantic attack.

3. An illustrative experiment leading to the comparison of t-closeness and l-
diversity, the proof that t-closeness as a metric, is not as protective as claimed
by the authors and that, depending on the semantic considerations, t-closeness
can be worse than l-diversity.

This new feature enables disclosure risk assessment between tables that do not
share similar values but which the values share semantic similarity and belong to
the same respondents (Domingo-Ferrer and Torra, 2003). For that purpose, we in-
troduce a new notion, the semantic partition which depicts a specific partition of an
attribute’s values for expressing the meaning they carry. As a result, and using an at-
tack driven assessment approach, the SeDR enables to show that t-closeness, which
is considered better than l-diversity (cf. Chapter 3), can be worse than l-diversity
depending on the case.

The rest of the chapter is organized as follows: Section 5.2 presents our critical
analysis on t-closeness technique, and points out its irrelevance to quantify privacy.
Section 5.4 describes the semantic empowered Discrimination Rate together with
our semantic partition definition; we then show how it can be used for improving
record linkage assessment. Section 5.5 presents our measurements and comparison
of l-diversity vs t-closeness. Section 5.6 provides our experiment on a real data set.
Finally Section 5.7 gives our conclusions.
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5.2 t-closeness Limitations and Inability to Quantify Privacy

(Domingo-Ferrer and Torra, 2008) identified the following limitations on the t-closeness
metric:

• t-closeness does not provide a computational procedure;

• If such a procedure was available, it would greatly damage the utility of data.
Indeed, by definition, t-closeness aims to destroy the correlations between key
attributes and sensitive attributes and this, for any combination of key attribute
values.

Additionally, we identified another criticism as t-closeness, taken as a metric,
does not measure the effective disclosure risk but instead the accomplishment of
the anonymization process. Indeed, two attributes with the same t-closeness mea-
surement can have different privacy levels. This comes directly from the definition
(cf. Chapter 3): t-closeness computes the distance between the distribution of a sensitive
attribute within classes and the distribution of attributes in the original table. That is, a
t-closeness measurement relies on the distribution of attributes in the original table;
hence, if two attributes have different distributions in the original table, they can
have the same t-closeness measurement, but not the same disclosure risk.

Another concern is that the t-closeness measurement relies on a pre-built hierar-
chy of attribute values that can differ according to the attacker’s model. Indeed, in
order to compute a t-closeness measurement, the attribute values should be classi-
fied and the measurement relies on this classification (Li, Li, and Venkatasubrama-
nian, 2007) which is subjective. We give more details about semantical subjectivity
and attacker’s model in Section 5.4.1.

Finally, there is no direct link between t-closeness measurements and the re-
identification process. Indeed, t-closeness computes a distance between distribution
sets and the relationship with information gain or loss is unclear as acknowledged
by the authors (Li, Li, and Venkatasubramanian, 2007): "...the relationship between the
value t and information gain is unclear".

TABLE 5.1: An 0.167-closeness w.r.t. Salary and 0.278-closeness w.r.t.
Disease.

ZIP Code* Age** Salary Disease
1 3556* ≤ 40 4K colon cancer
3 3556* ≤ 40 6K lung cancer
8 3556* ≤ 40 10K flu
4 3581* ≥ 40 7K stomach cancer
5 3581* ≥ 40 12K diabetes
6 3581* ≥ 40 9K aids
2 3550* ≤ 40 5K stomach cancer
7 3550* ≤ 40 8K aids
9 3550* ≤ 40 11K lung cancer
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5.3 Inability for Basic DR to Measure Semantic

The DR does not take into account the semantic behind attribute values. For exam-
ple, the t-closeness instantiation (Table 5.1) can provide more semantic privacy than
the l-diverse instantiation (Table 5.2). Indeed, from key attribute value 355** in the
l-diverse instantiation, an attacker can infer with 50% success that the user’s salary is
low (between 4K and 6K). This reflects the semantic aspect of attributes which is not
taken into account by l-diversity, but is included in the t-closeness approach (Table
5.1).

TABLE 5.2: A 3-diverse Table.

ZIP Code* Age* Salary Disease
1 355** 2* 4K colon cancer
2 355** 2* 5K stomach cancer
3 355** 2* 6K lung cancer
4 3581* ≥ 40 7K stomach cancer
5 3581* ≥ 40 12K diabetes
6 3581* ≥ 40 9K aids
7 355** 3* 8K aids
8 355** 3* 10K flu
9 355** 3* 11K lung cancer

5.4 Semantic Empowered Discrimination Rate

This section presents the semantic DR (SeDR) that supports semantic measurements.
After arguing that the semantic measurement is a subjective measurement, we define
our semantic domains that permit to capture this subjectivity. Then, we present our
semantic Discrimination Rate (SeDR), along with illustration of SeDR computation.

5.4.1 Semantic as a Subjective Measurement with Regard to Attacker’s
Model

The term semantic refers to the meaning of attributes or attributes values, which is
fully subjective. Indeed, an attribute’s value can have different meanings according
to the attacker’s model. The attacker’s model here refers to the attacker’s goal and
previous knowledge to achieve this goal. The attacker’s model can be specified
according to the categories an attacker is classifying the sensitive values.

For instance, let us consider the following three attacker’s models over Tables 5.2
and 5.1 where the attacker’s knowledge is made of the key attributes Age* and ZIP
Code*:

1. The attacker wants to know the exact Salary’s value of a subject;

2. The attacker wants to know which Salary category the subject belongs to: low
(4K-6K), medium (7K-9K) or high (10K-12K);

3. The attacker wants to link the subject to one of the following Salary’s subsets:
{4K, 6K, 10K}, {7K, 12K, 9K} and {5K, 8K, 11K}.
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For the attacker’s model 1, the attacker needs to know the exact value. The set of
categories contains therefore single values: {4K}, {5K},...,{12K}. Hence, the similarity
between values is not taken into account for this model as the attacker is interested
in single values. Therefore, the t-closeness instantiation provides the same semantic
security than the l-diverse instantiation and the current DR is enough to compute
the disclosure risk for both techniques.

For the attacker’s model 2, the attacker’s needs are not as restrictive as for at-
tacker’s model 1 as the attacker only wants to know the average salary. For this
attacker’s model, the similarity between values is worthwhile and is a privacy risk.
As such, the t-closeness metric and the l-diversity metric do not provide the same
semantic security, and adaptation of the Discrimination Rate is therefore necessary
to measure that disclosure risk.

The attacker’s model 3 is somewhat interesting as it refers to the subsets of
Salaries within classes of the t-closeness table (Table 5.1). As shown in Section 5.5,
for this model, the t-closeness instantiation (Table 5.1) is proved to be worse than the
l-diverse instantiation (Table 5.2).

5.4.2 Semantic Domain Definitions

This section gives our definitions about semantic partition and semantic domains, which
help to capture the subjectivity of semantic based on attacker’s models of section
5.4.1. These definitions are illustrated through an example.

Definition 14 (Semantic Partition)
Let X be an attribute and X be the set of all possible values of X. A Semantic Partition of
X is a partition of X according to a given attacker’s model.

Definition 15 (Semantic Domain)
A Semantic Domain is an element of a Semantic Partition.

The semantic domains refer to the classification of sensitive values with respect
to their sensitivity similarity as identified by the attacker’s model (Section 5.4.1). We
refer to the set of semantic domains as the semantic partition. Indeed, for the purpose of
this work, we suppose the semantic domains to be disjoint and the semantic partition
to be a partition1 of the set of sensitive values.

We use partitions instead of more sophisticated structures as dendrograms or
ontologies because as shown by (Neumann and Norton, 1986), partitions are more
robust to changes in data.

The corresponding semantic partitions of attacker’s models in Section 5.4.1 are:

• Attacker’s model 1: SP1 = {{4K}, {5K},..., {12K}}.

• Attacker’s model 2: SP2 = {{4K, 5K, 6K}, {7K, 8K, 9K}, {10K, 11K, 12K}}.

• Attacker’s model 3: SP3 = {{4K, 6K, 10K}, {7K, 12K, 9K} {5K, 8K, 11K}}.

Note that, the methodology for getting a semantic partition is out of scope of this
chapter. Our objective is only to show how subjective are the anonymity measure-
ments and how semantic can be introduced in our DR metric. There are however
some works (Erola et al., 2010) (Abril, Navarro-Arribas, and Torra, 2010) proposing
a way to cluster values according to their semantic similarity, and therefore, a way
to build semantic partitions.

1Partition of a set A: is a subdivision of A into subsets that are disjoint, non-empty and which the
union equals to A.
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5.4.3 SeDR as DR with Semantic Measurement

To cope with the DR’s inability to handle semantic dimension as explained in Section
5.3, this section defines the Semantic DR (SeDR) which supports semantic measure-
ments based on the semantic domains (Section 5.4.2).

Thanks to the semantic domains, the SeDR has the objective to measure how much
an attacker provided with key attributes, is able to refine the set of semantic domains
(the semantic partition) instead of the set of single values. As such, with SeDR, it is
possible to know the attacker’s capacity to infer subsets of user’s sensitive values
from a key attribute value.

Before applying the SeDR, we should first transform the sensitive attribute X
according to a given semantic partition SP. Let sX be the result of the transformation.
We define the semantic partition transformation fSP as follows:

fSP ∶ X → sX. (5.1)

The SeDR is then defined as follows:

Definition 16 (Semantic Discrimination Rate)
Let X be a sensitive attribute and SP a semantic partition of X. Let sX = fSP(X) and
Y1, ..., Yn be a set of key attributes. The Semantic Discrimination Rate (SeDR) of Y1, ..., Yn
relatively to X is the DR of Y1, ..., Yn relatively to sX and is computed as follows:

SeDRX(Y1, Y2, ..., Yn) = DRsX(Y1, Y2, ..., Yn) (5.2)

Therefore, the original DR is a particular case of the SeDR with a semantic parti-
tion composed of single sensitive values.

5.4.4 Illustration of the SeDR Computation and Comparison with the DR

Let us illustrate the SeDR over the original data Table 5.3 with the semantic partition
SP4 = {{diabetes, flu, aids}, {colon cancer, lung cancer, stomach cancer}}.

TABLE 5.3: Original Data Table (Salary/Disease).

ZIP Code Age Salary Disease
1 35567 22 4K colon cancer
2 35502 22 5K stomach cancer
3 35560 22 6K lung cancer
4 35817 45 7K stomach cancer
5 35810 63 12K diabetes
6 35812 40 9K aids
7 35502 35 8K aids
8 35568 35 10K flu
9 35505 32 11K lung cancer

The semantic partition transformation fSP is applied on X by replacing the set of
values X (of X) by the set of values sX (of sX). For example, for sensitive attribute
"Disease", we transform X = {colon cancer, stomach cancer, lung cancer, stomach cancer,
diabetes, aids, aids, flu, lung cancer} using SP4 = {{diabetes, flu, aids}, {colon cancer, lung
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TABLE 5.4: Semantic DR in Table 5.3.

X Y DRX(Y)
Disease 22 1
Disease 32 1
Disease 35 1
Disease 40 1
Disease 45 1
Disease 63 1
Disease Age 1

cancer, stomach cancer}} into sX = {cancer, cancer, cancer, cancer, other disease, other
disease, other disease, other disease, cancer}.

When applying the previous transformation on the sensitive attribute Disease in
Table 5.3, and computing the SeDR according to the key attribute "Age*", we obtain
the results in Table 5.4.

As shown in Table 10 vs Table 5, the SeDR is able to extract more information
from the same database than the non-semantic DR, as higher values are obtained in
Table 5.4. For instance, for key attribute value 22, the SeDR is 1 compared to 0.79 for
the DR, as this key attribute fully corresponds to the semantic domain {colon cancer,
lung cancer, stomach cancer} of the original data table (Table 5.3).

5.4.5 Measuring Record Linkage with SeDR

Record linkage aims to link records that belong to the same respondents between
different tables. Some existing techniques (Domingo-Ferrer and Torra, 2003) (Torra,
2004) enable comparison of records that do not contain similar values using different
models. These approaches require first to express the similarities between records
before comparing them.

Using the SeDR, the similarities are reflected by the semantic partitions and mea-
surements are performed with respect to these semantic partitions. For example the
previous illustration of SeDR computation in Section 5.4.4 can be considered as a
record linkage assessment where we try to link Disease’s values to specific groups
of Age’s values. In the context of record linkage, we can suppose that these attributes
belong to different tables. Disease and Age do not contain similar values but we are
able to compute the correspondence between Disease’s values and a specific parti-
tion of Age’s values (which reflects the meaning a data processor can give to attribute
Age’s values) and the computation depicts their linkage. We then observe a perfect
match between the Disease’s values and this specific partition of Age’s values which
would provide the maximal capacity for an attacker trying to link these subsets of
values (cf. Section 5.5.3). The comparison of the SeDR and the other metrics is de-
picted in Table 5.5 (cf. Chapter 4).

5.5 Measurement and Comparison of l-diversity vs t-closeness
with SeDR

This section shows first how the semantic attacks - skewness attack and the simi-
larity attack (Section 2.3) - can be measured with either the DR or the SeDR. Then
it proves through the SeDR, for the similarity attack only, that t-closeness is not as



5.5. Measurement and Comparison of l-diversity vs t-closeness with SeDR 75

TABLE 5.5: Table comparing existing disclosure risk metrics with DR
and SeDR.

Metrics Link with re-id Granul Analyti Gener Appl/Scal
k-anonymity ☀☆ ☆☆☆ ☀☆ ☀☆☆ ☀

epsilon ☆☆ ☆☆☆ ☀☀ ☆☆☆ ☆
Simple U ☀☀ ☀☆☆ ☆☆ ☆☆☆ ☀
Special U ☀☀ ☀☀☆ ☆☆ ☀☆☆ ☀

D-b linkage ☀☆ ☀☀☀ ☆☆ ☀☀☆ ☆
Itv linkage ☀☆ ☀☀☀ ☆☆ ☀☀☆ ☆

Prob linkage ☀☆ ☀☀☀ ☆☆ ☀☀☆ ☆
O record linkage ☀☆ ☀☀☀ ☆☆ ☀☀☀ ☆

DR ☀☀ ☀☀☀ ☀☀ ☀☀☆ ☀
SeDR ☀☀ ☀☀☀ ☀☀ ☀☀☀ ☀

☀: fulfilled criterion
☆: unfulfilled criterion

privacy protective as claimed by the authors, and that it can provide lower privacy
protection than l-diversity. Both t-closeness and l-diversity techniques are instanti-
ated over the original data Table 5.3 to give Tables 5.2 and 5.1 respectively. Note that
these tables are similar to the ones of the original paper related to the t-closeness
metric (Li, Li, and Venkatasubramanian, 2007).

5.5.1 Skewness Attack - Measurement with DR

The original DR is enough to evaluate this attack as only the skewness between the
original distribution of sensitive values and their distribution within equivalence
classes needs to be measured. For explaining this measurement, let us recall the
skewness example of Chapter 3:

Example 4 Suppose we have an original skewness table containing data of 1000 patients
with and without cancer; the key attributes are "Age", "ZIP Code" and the sensitive at-
tribute is "Cancer"; and "Cancer" can have two values "Yes" or "No". Suppose we have
only 10 "Yes" in the table. A 2-diverse table (formed by equivalence class of 2 subjects)
would provide 50% probability of having cancer for each subject within classes instead of
10/1000% in the original table and then, an information gain from the anonymized table.

The objective of the attack is to improve the attacker’s knowledge within the
equivalence classes. As such, the DR enables to quantify how much information is
gained by an attacker from equivalence classes, according to the original table.

Therefore, for evaluating this attack, we compute the difference between the DRs
of the involved key attributes in the original table and in the equivalence classes.
Based on the skewness table of Example 4, we compute the DR of key attributes
"Age" and "ZIP Code" using "Cancer" as the sensitive attribute in the original table
(DRCancer(Age) & DRCancer(ZIPCode)) and the DR of the key attributes "Age*" and
"ZIP Code*" within equivalence classes (DRCancer(Age*) & DRCancer(ZIPCode*)). Fi-
nally the actual information gain related to skewness attack is:

• DRcancer(Age)−DRcancer(Age*) for key attribute Age.

• DRcancer(ZIPCode)−DRcancer(ZIPCode*) for key attribute ZIP Code.
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TABLE 5.6: Risk measurement for Tables 5.2 & 5.1 for the similarity
attack using SP4 as the semantic partition and Age* & ZIP Code* as

key attributes.

X Y SeDRX(Y)
3-diverse Table

SP4 2* 1
SP4 ≥ 40 0.69
SP4 3* 0.69
SP4 Age* 0.38
SP4 355** 0.38
SP4 3581* 0.69
SP4 ZIP Code* 0.07

t-closeness Table
SP4 ≤ 40 0.38
SP4 ≥ 40 0.69
SP4 Age** 0.07
SP4 3550* 0.69
SP4 3581* 0.69
SP4 3556* 0.69
SP4 ZIP Code* 0.07

This computation can also be performed on attribute’s values instead of the at-
tributes.

This evaluation through DR computation gives far more results than merely
computing the ratio between probabilities (50% and 10/1000%), as the DR takes into
account the correlation between key attributes and sensitive attributes and since the
attacker’s knowledge refers to key attributes, the DR quantifies the actual informa-
tion gain.

5.5.2 Similarity Attack - Measurement with SeDR

The SeDR is computed to evaluate the similarity between values of sensitive at-
tributes. The similarity between values is formalized through some defined semantic
partitions.

We consider three semantic partitions; two partitions of "Salary" (according to the
attacker’s models 2 and 3, Section 5.4.2) and one partition of "Disease":

• SP2 = {{4K, 5K, 6K}, {7K, 8K, 9K}, {10K, 11K, 12K}} for "Salary".

• SP3 = {{4K, 6K, 10K}, {7K, 12K, 9K} {5K, 8K, 11K}}

• SP4 = {{diabetes, flu, aids}, {colon cancer, lung cancer, stomach cancer}}

We then use these semantic partitions and each key attribute ("Age*" and "ZIP
Code*") to compute the SeDR for the l-diverse and the t-closeness instantiations (Ta-
bles 5.2 and 5.1). The results are depicted in Tables 5.7, 5.8 and 5.6.
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TABLE 5.7: Risk measurement for Tables 5.2 & 5.1 for the similarity
attack using SP2 as the semantic partition and Age* & ZIP Code* as

key attributes.

X Y SeDRX(Y)
3-diverse Table

SP2 2* 1
SP2 ≥ 40 0.81
SP2 3* 0.81
SP2 Age* 0.61
SP2 355** 0.39
SP2 3581* 0.81
SP2 ZIP Code* 0.19

t-closeness Table
SP2 ≤ 40 0.39
SP2 ≥ 40 0.81
SP2 Age** 0.19
SP2 3550* 0.67
SP2 3581* 0.81
SP2 3556* 0.81
SP2 ZIP Code* 0.28

5.5.3 Results Proving the Lower Privacy Protection of T-closeness vs L-
diversity

As reported in Section 5.4.3, the SeDR can compute the refinement capacity of a
given key attribute over a semantic partition of a sensitive attribute (Section 5.4.2). The
semantic partition reflects the subjectivity related to the semantic interpretation. The
semantic risk measurement consists therefore in measuring how much from a given
key attribute, an attacker is able to refine the semantic partition of a sensitive attribute.
The more an attacker is able to refine the semantic partition, the higher the related
risk.

Each computation is therefore performed according to a given key attribute and a
given semantic partition.

Tables 5.7, 5.8 and 5.6 depict the risk measurements related to the similarity at-
tack performed over the l-diverse table (Table 5.2) and the t-closeness table (Table
5.1). The considered key attributes are ZIP Code* and Age* and their SeDR are com-
puted over the semantic partitions SP2, SP3 (related to "Salary") and SP4 (related to
"Disease").

Hereafter, we prove that the assertion that t-closeness is semantically more se-
cure than l-diversity is wrong:

1. Table 5.7 shows that an attacker is more able to refine the semantic partition
SP2 within the t-closeness table based on key attribute ZIP Code* than with
the l-diversity table. ZIP Code* gives a SeDR of 0.28 for t-closeness vs 0.19 for
l-diversity.

2. Table 5.8 proves that the t-closeness instantiation is weaker than the l-diverse
instantiation against the similarity attack for the semantic partition SP3.
Based on attribute ZIP Code*, an attacker is able to completely refine the se-
mantic partition SP3 (DR = 1), as the ZIP Code*’s values directly refer to the
considered semantic domains.
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TABLE 5.8: Risk measurement for Tables 5.2 & 5.1 for the similarity
attack using SP3 as the semantic partition and Age* & ZIP Code* as

key attributes.

X Y SeDRX(Y)
3-diverse Table

SP3 2* 0.81
SP3 ≥ 40 1
SP3 3* 0.81
SP3 Age* 0.61
SP3 355** 0.58
SP3 3581* 1
SP3 ZIP Code* 0.58

t-closeness Table
SP3 ≤ 40 0.58
SP3 ≥ 40 1
SP3 Age** 0.58
SP3 3550* 1
SP3 3581* 1
SP3 3556* 1
SP3 ZIP Code* 1

3. Table 5.6 shows that an attacker is more able to refine the semantic partition
SP4 with some key attribute ZIP Code* values (3550* and 3556*). For these
two values, the computed SeDR is higher for the t-closeness instantiation (0.69
vs 0.38).

5.6 Experiment

The goal of this experiment is to demonstrate over a realistic dataset, that depending
on the chosen semantic partition, a t-closeness instantiation can be weaker than a l-
diverse instantiation.

The data used in the experiment is the "Adult dataset" from the UC Irvine Ma-
chine Learning Repository which contains data collected from a US census. After
removing missing values within the dataset, we obtain a total of 30161 valid records.
We used six attributes of the dataset as depicted in Table 5.9 (4 key attributes and 2
sensitive attributes). We used the ARX tool (Prasser et al., 2014) (version 3.5.1) to
compute the anonymization techniques (l-diversity and t-closeness) and the R tool
(Chokkathukalam et al., 2013) (version 3.3.1) to compute our DR metric. Our mea-
surements are computed according to the examples given in Section 5.5. The exper-
iments are running on a i5-4300U CPU with 1.90GHz - 2.50GHz and 4GB memory.

The Figure in the experiment refers to values within Table 5.9 according to their
corresponding numbers. For example, the number 1 in Figure 5.1 refers to the key
attribute Age in Table 5.9.

We compare an l-diversity instantiation to a t-closeness instantiation of the dataset.
The considered sensitive attribute in this case is attribute "Occupation". Using the
ARX tool we generated 2 instantiations of the "Adult dataset" : a 10-diverse instan-
tiation and a 0.3-closeness instantiation. We then compute our measurement both
with and without considering the semantic partition.



5.7. Conclusion 79

TABLE 5.9: Attributes of the Adult dataset used in the experiment

Attribute Type #Values
1 Age key attribute 72
2 Education key attribute 16
3 Race key attribute 5
4 Sex key attribute 2
5 Occupation Sensitive 14
6 Salary Sensitive 2

The semantic partition is computed as follows: attribute "occupation" has a total
of 14 values:

• {Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-speciality,
Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-
moving, Priv-house-serv, Protective-serv, Armed-Forces}

We considered the following semantic partition for our measurements that de-
montrates less resistance for the t-closeness instantiation:

• SP = {{Adm-clerical, Exec-managerial, Prof-specialty, Transport-moving, Other-
service}, {Handlers-cleaners, Protective-serv, Tech-support}, {Craft-repair, Protective-
serv, Sales}, {Machine-op-inspct, Armed-Forces, Priv-house-serv}}

Results interpretation

Let us first consider the graph on the left-hand side of Figure 5.1. This graph depicts
the global identification capacity of attributes Age ("1"), Education ("2"), Race ("3")
and Sex ("4") according to the sensitive attribute "Occupation". The measurements
are computed both with and without the considered semantic partition (SP). We can
first observe that for instantiations without the semantic partition (0.3-closeness and
10-diversity), the 10-diversity instantiation is globally weaker than the 0.3-closeness
instantiation as the key attributes are more identifying for the 10-diversity instanti-
ation. However, when we consider the instantiations with semantic partition (0.3-
closeness-SP and 10-diversity-SP), the 0.3-closeness instantiation becomes globally
weaker than the 10-diversity instantiation. This is especially true for attribute "4"
(Sex) as we obtain: DR = 0.025 vs DR = 0.001.

The graph on the right-hand side (Figure 5.1) focuses on attribute Sex ("4") and
depicts the identification capacity of its values (Female and Male) according to the
sensitive attribute "Occupation". The graph faithfully translates what is depicted
by the global measurement on attribute Sex (the graph on left-hand side). That is,
the t-closeness instantiation with SP, is worse than the l-diverse instantiation with SP.

This experiment validates the conclusion of Section 5.5 that is: considering spe-
cific cases (specific semantic partitions) over the same data set, t-closeness can be
worse than l-diversity.

5.7 Conclusion

Data publishing promises significant progress for emergence and improvement of
new services. However, to mitigate privacy leakages due to poor anonymization
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FIGURE 5.1: SeDR measurements for the Experiment

procedures, there is a strong need for publishers to have a practical and precise met-
ric to assess the data anonymity level prior to publishing datasets. However, the
anonymity level is reflected by the resistance capacity of anonymized data to disclo-
sure attacks which are uniqueness and record linkage.

This chapter presents the Semantic Discrimination Rate, an improvement of the
DR metric described in Chapter 4. The SeDR enables a more generic disclosure
risk assessment for addressing both record linkage and uniqueness, and therefore
the full range of approaches used to describe disclosure risk. The SeDR enables to
tackle the de-anonymization issue from the attacker’s perspective, by computing
how much information is gained after applying a given disclosure attack, and all the
existing attacks are evaluated. Illustration of that metric is given over some classical
anonymization techniques (t-closeness and l-diversity), and proves that t-closeness
is not as privacy protective as it was originally claimed to be as it can behave worse
than l-diversity.

However, preventing disclosure of sensitive data is one of the two main goals of
data anonymization as data anonymization aims to ensure both privacy and utility
of anonymized data. In the next chapter, we propose a new method for assessing
utility of anonymized data based on the SeDR metric.
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Chapter 6

A Posteriori Utility Assessment of
Sanitized Data with the
Discrimination Rate Metric

6.1 Introduction

Chapters 4 and 5 describe our DR and SeDR metrics for assessing disclosure risk
(uniqueness and record linkage) within data bases. This chapter provides a method
for measuring utility within data bases based on the SeDR metric. We use an a pos-
teriori approach (cf. Sections 6.4 and 6.5) i.e. an approach based only on a sanitized
data set and a predefined utility formulation. We provide a formalization of the util-
ity need which captures the versatility of utility need and we use our SeDR metric
for assessing the utility degree.

With the adoption of the General Data Protection Regulation (the new data pro-
tection regulation in Europe), companies and the over all system built around big
data will face a very big concern. Indeed, the current data utility assessment per-
formed on raw data, will be performed on sanitized data instead. The main diffi-
culty of this issue is that, sanitization destroys data by reducing their capability to
re-identify a respondent and therefore, in most of cases, it reduces their capability
to respond accurately to the utility needs. It is therefore necessary to find specific
metrics for assessing utility based on sanitized data. In practice, utility assessment
is based on a formulated need and evaluated on the basis of sanitized data only (a
posteriori assessment); however, the current metrics aim to assess utility (cf. Section
??) with respect to the capability of sanitized data to reflect the original data (a priori
assessment). While this latter approach can at some extent capture the information
loss, it does not target the utility need and may not respond to the data processor’s
requirement. However, the a posteriori approach is complex as it requires defining
the utility need, which is very diverse and depends on the semantic, which is based
on human interpretations. Moreover, even with a framework for capturing that util-
ity need, one should also define a metric, flexible enough to fit any cases. Therefore,
the definition of an a posteriori approach for utility assessment would require: (a) a
framework for capturing the versatility of utility needs, (b) a metric that would be
flexible enough to fit any possible needs.

In the literature, due to the complexity of the previous issues, the proposed util-
ity metrics focus on the a priori approach and can be classified in two main cate-
gories: Privacy Preserving Data Publishing (PPDP) which is about information loss
and Privacy Preserving Data Mining (PPDM) which is about specific uses metrics.
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Information loss reflects how much data are destroyed between original and sani-
tized data, and their main goal is to guide anonymization processes for providing
data for various data uses (Torra, 2017a) (Murdoch, 2014) (Rebollo-Monedero, Forne,
and Domingo-Ferrer, 2010). On the other hand, specific uses metrics aim to provide
sanitized data that can be used for specific uses and which include classification
metrics (Bapna and Gangopadhyay, 2006) (Agrawal and Srikant, 2000) (Xue et al.,
2017), regression based metrics (Muralidhar and Sarathy, 2005) (Regner and Riener,
2017) (Gomatam, Karr, and Sanil, 2005) and clustering (Batet et al., 2013) (Ni, Xie,
and Qian, 2017). These latter metrics consider at some extent the utility need (Fung,
Wang, and Philip, 2007).

However, concerning the specific uses a priori metrics, (Domingo-Ferrer, 2008b)
criticized the approach asking : "why not directly publish the statistics one wants to pre-
serve rather than release a synthetic microdata set". A response to this critic, concerning
classification (one of the widest used method for specific assessment) can be found in
the following observation by Fung et al. (Fung, Wang, and Philip, 2007): "knowing
that the data is used for classification does not imply that the data provider knows exactly how
the recipient may analyse the data. The recipient often has application-specific bias towards
building the classifier. For example, some recipient prefers accuracy, whereas the others pre-
fer interpretability" and that "In other cases, the recipient may not know exactly what to do
before seeing the data, such as visual data mining, where the human makes decisions based
on certain distributions of data records at each step".

As a global observation, both metrics do not directly respond to the data proces-
sor’s a posteriori need and further investigation is still necessary.

In this chapter, we propose a new approach for providing a posteriori utility as-
sessment, which directly targets the data processor’s need and applies on sanitized
data obtained from any anonymization mechanism. This approach differs from the
current approaches which focus on how to optimize the anonymization process in
terms of information (a priori assessments). Our approach relies on two elements:

• the utility need expressed in terms of attributes of interest which the values are
partitioned into partitions of interest

• the utility degree computed using the Semantic Discrimination Rate metric
(SeDR) (Sondeck, Laurent, and Frey, 2017b) (cf. Sections 6.4 and 6.5) which
is an improvement of the Discrimination Rate metric (Sondeck, Laurent, and
Frey, 2017a) (DR), introduced by Sondeck et al. and which computes identi-
fication capability of attributes (scaled between 0 and 1) by measuring how
they can refine an anonymity set; the maximum refinement leading to a single
subject (e.g. an identifier has a DR of 1). The Semantic DR (SeDR) takes into
account semantic considerations by computing the capability of attributes to
refine subsets of subjects (semantic partitions) instead of single subjects. This
enables measurements with respect to specific subsets of interest to reflect the
need (semantic). Let us take a simple example for illustration. A data proces-
sor can be interested in identifying the respondents living in regions (sets of
zip code locations) instead of specific zip code locations. Our approach will
enable him to build a semantic partition of regions, instead of using single zip
code locations, prior to measure the utility degree with the SeDR.

We show that the expressed utility need reflects the 2 aspects of semantic in psychol-
ogy (Sánchez et al., 2012) which are semantic similarity and semantic relatedness and
that the a posteriori utility need can be expressed thanks to semantic partitions. We are
then able to:
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1. Assess utility while taking into account the versatility of utility needs

2. Measure utility accurately (down to specific subsets of values).

3. Assess utility over sanitized data obtained from any anonymization mecha-
nism.

As a proof of concept, we provide a utility evaluation over the Adult dataset
from the UCI machine learning repository.

This chapter is organized as follows. Section 6.2 gives some background on se-
mantic for utility assessment. Section 6.3 underlines the frontier between privacy
and utility and shows that the attribute disclosure attack, one of the well known pri-
vacy attacks, belongs to this frontier. Section 6.4 presents our informal definition of
the a posteriori utility assessment. Section 6.5 presents the formal definition of the
a posteriori utility assessment based on the observations of Section 6.4. Section 6.6
provides our experiment on real data. Finally, Section 6.7 gives our conclusion.

6.2 Semantic in Utility Assessment

In this section we introduce the semantic aspect of the utility need as utility is subjec-
tive and refers to semantic considerations (Abril, Navarro-Arribas, and Torra, 2010)
(Erola et al., 2010).

Utility refers to semantic considerations. Semantic is defined in psychology (Gold-
stone, 1994) by how humans organize and classify objects and is depicted by two
different paradigms (Sánchez et al., 2012): semantic similarity and semantic related-
ness. Semantic similarity refers to how different objects are similar with respect to
a taxonomy (e.g., a car and a motorcycle are similar as they are both automotive).
On the other hand, semantic relatedness does not necessary rely on a taxonomy (e.g.,
antonymy, functionality, cause-effect). While semantic similarity is clearly defined
(with respect to a taxonomy), relatedness is less clearly defined and depends on the
use case. We believe that these two notions can be used to characterize semantic
through the existing utility metrics.

In the literature these concepts are used both for information loss and specific
uses metrics (Abril, Navarro-Arribas, and Torra, 2010) (Erola et al., 2010) (Batet et
al., 2013) (Ni, Xie, and Qian, 2017). Usually, they refer to statistics computation such
as: mean, variance, covariance matrices which reflect the semantic relatedness. For
example, (Abril, Navarro-Arribas, and Torra, 2010) (Erola et al., 2010) measure se-
mantic with respect to the microaggregation anonymization mechanism, which aim
to group individual values into small aggregates, and within each aggregate, indi-
vidual values are replaced by mean values. Utility refers then to how to classify
values (which reflects the semantic similarity) for maximizing the within-aggregate
homogeneity (Domingo-Ferrer, Sánchez, and Hajian, 2015a) i.e. the extent to which
the mean value reflects each of the values taken into account within the mean com-
putation (which reflects the semantic relatedness).

We propose our definitions of semantic similarity and semantic relatedness for cap-
turing the a posteriori utility need over sanitized microdata in Sections 6.4 and 6.5.
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TABLE 6.1: Data table example

Respondent ZIP Code Age Salary Disease
resp 1 35510 22 4K cancer
resp 2 35510 35 5K diabetes
resp 3 35510 63 3K malaria
resp 4 35510 22 13K cancer
resp 5 35510 22 8K cancer
resp 6 35510 35 15K malaria
resp 7 35510 45 9K malaria
resp 8 35510 35 7K diabetes
resp 9 35510 40 11K diabetes

6.3 On the Frontier Between Utility and Privacy

Privacy and utility are considered as two faces of the same coin. Indeed, both work
together and we can not act on one without acting on the other one; the more we
have privacy, the less the data are useful and vice versa. As such, some attacks on
privacy can also be considered as evaluation of utility as attacks on privacy reduce
privacy and therefore enhance utility. As criteria for defining attacks on privacy are
the most well established, let us consider the following privacy attacks which are
commonly accepted (Domingo-Ferrer, Sánchez, and Hajian, 2015a):

• attribute disclosure consists in inferring information about attributes of an
individual based on the sanitized data set. This usually occurs through the
computation of correspondences between attributes within the sanitized data
set (Machanavajjhala et al., 2007) (Li, Li, and Venkatasubramanian, 2007).

• identity disclosure consists in linking a record of a respondent within a san-
itized data set to his identity. This is also called re-identification. Unlike at-
tribute disclosure which does not imply disclosure of the identity of a respon-
dent, identity disclosure implies disclosure of his identity.

Hence, while identity disclosure refers to complete re-identification and is clearly
not acceptable, attribute disclosure is less strictly defined and belongs to the frontier
as utility assessment also refers to computing the correspondence between attributes
(cf. Section 6.4).

Most of the examples of utility assessment in this work can also be considered
as an attribute disclosure assessment (cf. Section 6.4.3) and the distinction between
privacy disclosure and utility can be defined through a threshold that can be fixed
using our model (cf. Section 6.5).

6.4 Informal Definitions of the A Posteriori Utility and Illus-
trations

This section shows how the a posteriori utility can be expressed in terms of semantic
similarity (based on semantic partitions) and semantic relatedness (based on the correla-
tion degree of semantic partitions) (cf. Chapter 5). A posteriori needs do not consider
original data and is only based on a sanitized data set and an expressed need.
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Note that, unlike a priori utility assessments, the a posteriori utility assessment
does not have the constraint for considering differently categorical and continuous
data. The main reason for considering continuous and categorical data differently
for the a priori approach is that they do not use the same operations for compari-
son (cf. Chapter 2). Indeed, the a priori approach aims to guarantee the similarity
between sanitized and original data and therefore needs to compare them. For our
measurements, we only consider semantic partitions with SeDR computations over
sanitized data without considering original data.

Moreover, our method is completely independent of any anonymization mech-
anism and can apply to all the existing anonymization mechanism, all we need is a
formulated utility need and a sanitized micro data set.

6.4.1 Informal Definitions

As the utility need is intended to be answered by a microdata set, let us first define
what is a microdata set.

A microdata is a file generally depicted by a table where each row (record) con-
tains individual’s information splitted into different columns (attributes). A record
refers to a single respondent and an attribute is an information shared by all the re-
spondents within the microdata. For example in Table 6.2, there are 9 respondents
and 4 attributes (ZIP Code, Age, Salary and Disease).

From this definition, we propose a characterization of the need as a function tak-
ing as input a set of attributes and returning a value between 0 and 1 reflecting the
capability of the considered attributes to respond to the need. However, specific
conditions should also apply on the attributes’ values to reflect the semantic similar-
ity. Considering a sanitized microdata, the formulation of the a posteriori utility need
should therefore take into account:

1. A set of attributes of interest (for the data processor) as all attributes are not
necessarily useful for responding to the need.

2. A partition of the attributes’ values into subsets of interest (for the data pro-
cessor) as a need is reflected by how the attributes’ values are organized into
sub domains. The sub domains of interest are used to build the semantic parti-
tions (Section 6.5).

The term interest refers to the fact that it should be defined by the data processors
and this reflects the subjectivity of the need. The first property (1) refers to semantic
relatedness (cf. Section 6.2) as the attributes of interest are chosen according to specific
considerations related to the data processor’s need, however, the second property
(2) refers to semantic similarity as attributes’s values are partitioned according to the
similarity of some of the subsets of values.

Finally the quality of utility is reflected by the correlation degree between sub-
sets of values within partitions of different attributes of interest; which also refers
to the semantic relatedness. We use the SeDR approach for computing this correlation
degree.

6.4.2 Illustration (Global Recoding)

Let us consider the following example for illustration. Suppose we want to evaluate
utility using the sanitized data Table 6.3, extracted from Table 6.1 (by considering
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TABLE 6.2: Original data table (Global Recoding)

ZIP Code Age Disease
1 35510 22 cancer
2 35602 35 diabetes
3 35712 63 malaria
4 35510 22 cancer
5 35510 22 cancer
6 35602 35 malaria
7 35715 45 malaria
8 35602 32 diabetes
9 35703 40 diabetes

only ZIP Code, Age and Disease). The protection mechanism is the global recoding
(Domingo-Ferrer, Sánchez, and Hajian, 2015a) and we use the k-anonymity model
(Samarati and Sweeney, 1998). We provide a 3-anonymity instantiation as clusters
of 3 respondents are built by recoding Age into Age* to prevent re-identification of
respondents as shown in table 6.3.

TABLE 6.3: 3-anonymity Table (Disease) of Table 6.2.

ZIP Code* Age* Disease
1 355** 2* cancer
2 355** 2* cancer
3 355** 2* cancer
4 356** ≥ 40 malaria
5 356** ≥ 40 diabetes
6 356** ≥ 40 malaria
7 357** 3* malaria
8 357** 3* diabetes
9 357** 3* diabetes

Suppose now the following scenario for utility measurement.
Consider a study which aims to provide respondent with treatment with respect

to their age and which is based on the sanitized data in Table 6.3. Then a possible
utility need would be the capacity to know from attribute Age* the corresponding
Disease. Therefore, the attributes of interest are Age* and Disease and we can consider
the predefined semantic partition (depicted by values 2*, ≥ 40 and 3* as they are de-
fined by the anonymization mechanism) for assessing the utility need. Note that we
can also define our own semantic partitions for computation (see Section 6.4.3).

Let us consider the predefined semantic partition, and assess the utility need. The
utility need in this case refers to the correlation degree between the semantic partition
of Age* and each value of attribute Disease. We use the SeDR to compute the capa-
bility of Age*’s values to refine the Disease’s values for computing this correlation
degree. The result is depicted in Table 6.4.

We observe that the global capability (SeDR) to respond to the utility need i.e. to
prescribe a treatment according to age is 0.6. We can also observe that the value "2*"
provides the highest utility (SeDR = 1) as for respondents who have twenties, we
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TABLE 6.4: Utility assessment within Table 6.3.

X Y DRX(Y)
Disease 2∗ 1
Disease ≥ 40 0.8
Disease 3∗ 0.8
Disease Age* 0.6

TABLE 6.5: Original data table (Microaggregation)

ZIP Code Age Salary Disease
1 35510 22 4K cancer
2 35510 35 5K diabetes
3 35510 63 3K malaria
4 35620 22 13K cancer
5 35620 22 8K cancer
6 35620 35 15K malaria
7 35740 45 9K malaria
8 35740 32 7K diabetes
9 35740 40 11K diabetes

can prescribe without ambiguity the cancer treatment.

6.4.3 Illustration (Microaggregation)

Let us consider a second example for illustration. Suppose we want to evaluate
utility using the sanitized data Table 6.6, obtained from the original data Table 6.5.
The protection mechanism is microaggregation (Domingo-Ferrer, 2006) applied on
attribute Salary by replacing some of its values by average measurements; the con-
sidered set of values are: {3K, 4K, 5K}, {7K, 8K, 9K}, {11K, 13K, 15K} and average
values are computed as depicted in Table 6.6.

Let us now evaluate this sanitized microdata in terms of utility.
Suppose a study that aims to subsidize people with respect to their Salary based

on their Age and ZIP Code considering different cases:

1. Whether their Salary belongs to the following intervals: [0K, 5K[, [5K, 10K[
and [10K, 15K[ (Table 6.6)

2. Whether their salary is lower or greater than 10K (Table 6.7).

Suppose also that attributes Age and ZIP Code are evaluated using the following
considerations:

(a) Attribute Age only

(b) Combination of ZIP Code and Age

(c) Whether Age is lower or greater than 35

The attributes of interest are therefore Age, Salary and ZIP Code and the partitions
of interest are defined by (1) and (2) (for Salary) and (a), (b) and (c) (for Age and ZIP
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TABLE 6.6: Microaggregated data table of Table 6.5

ZIP Code Age Salary*
1 35510 22 4K
2 35510 35 4K
3 35510 63 4K
4 35620 22 13K
5 35620 22 8K
6 35620 35 13K
7 35740 45 8K
8 35740 32 8K
9 35740 40 13K

TABLE 6.7: Microaggregated data table of Table 6.6 with application
of the semantic partition (2) over attribute Salary

ZIP Code Age Salary**
1 35510 22 < 10K
2 35510 35 < 10K
3 35510 63 < 10K
4 35620 22 ≥ 10K
5 35620 22 < 10K
6 35620 35 ≥ 10K
7 35740 45 < 10K
8 35740 32 < 10K
9 35740 40 ≥ 10K

Code). The utility assessments would therefore consist in measuring how much from
the specific considerations over Age and ZIP Code we can infer whether the Salary’s
values belong to subsets: [0K, 5K[, [5K, 10K[ and [10K, 15K[, or are greater or lower
than 10K.

Using SeDR, the key attributes are ZIP Code and Age and the sensitive attribute
is Salary. The semantic partitions for attribute Salary are depicted (1) and (2) and the
semantic partitions of ZIP Code and Age are defined by (a), (b) and (c). Hence, for each
case (1) or (2) we use the three semantic partitions (a), (b) and (c).

Let us now compute our SeDR measurements according to the considered at-
tributes with the considered semantic partitions; the results are depicted in Table 6.8
(for the assessment with respect to (1)) and Table 6.9 (for the assessment with respect
to (2)).

We can observe that the combination of attributes ZIP Code and Age in both cases
(1) and (2) provide a greater utility (SeDR = 0.85 for (1) and SeDR = 0.75 for (2))
than assessments using Age only (SeDR = 0.52 for (1) and SeDR = 0.42 for (2)) as
we are more able to infer the considered subsets of attribute Salary. We also observe
that most of the values provide the maximum utility (SeDR = 1) and can therefore
be used to directly grant the subsidies. For example, from the combination of 35510
and 35 we can directly know that the respondent earns between 0K and 5K (for the
semantic partition (1)) or less than 10K (for the semantic partition (2)) and then grant
the subsidies.
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TABLE 6.8: Utility assessment within the Microaggregated Table 6.6
w.r.t. (1).

X Y DRX(Y)
Salary* 22 0.66
Salary* 32 1
Salary* 35 0.85
Salary* 40 1
Salary* 45 1
Salary* 63 1
Salary* Age 0.52
Salary* 35510/22 1
Salary* 35620/22 0.85
Salary* 35740/32 1
Salary* 35510/35 1
Salary* 35620/35 1
Salary* 35740/40 1
Salary* 35740/45 1
Salary* 35510/63 1
Salary* ZIP Code/Age 0.85
Salary* ≥ 35 0.57
Salary* < 35 0.46
Salary* Age* 0.04

6.5 Formal Definition of the A Posteriori Utility Within a Mi-
crodata

From Section 6.4.3 we observe that the a posteriori approach requires two steps: (1)
a posteriori utility need formulation by defining attributes of interest and semantic
partitions, (2) computation of the a posteriori utility degree by using the SeDR.

6.5.1 A Posteriori Utility Need Formulation

Let us provide our formal definition of the utility need with respect to a microdata
set.

Let us first formally define a microdata set. A microdata set Z referring to r
respondents with s attributes is a r × s matrix where Zij is the value of attribute j
(1 ≤ j ≤ s) for respondent i (1 ≤ i ≤ r). Attributes are considered as random variables
possibly discrete or continuous.

Let us now define the utility need. As explained in Section 6.4, the utility need
should consider:

1. A set of attributes of interest

2. Specific partitions of values for each of the attributes of interest (referring to
semantic partitions)

We propose this definition for characterizing a semantic partition. Let X be an
attribute within Z; and Ωx its set of outcomes. Let P(Ωx) be the set of partitions of
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TABLE 6.9: Utility assessment within the Microaggregated Table 6.7
w.r.t (2).

X Y DRX(Y)
Salary** 22 0.66
Salary** 32 1
Salary** 35 0.75
Salary** 40 1
Salary** 45 1
Salary** 63 1
Salary** Age 0.42
Salary** 35510/22 1
Salary** 35620/22 0.75
Salary** 35740/32 1
Salary** 35510/35 1
Salary** 35620/35 1
Salary** 35740/40 1
Salary** 35740/45 1
Salary** 35510/63 1
Salary** ZIP Code/Age 0.75
Salary** ≥ 35 0.60
Salary** < 35 0.41
Salary** Age* 0.01

Ωx and p ∈ P(Ωx), a specific partition of interest. We define the following function for
characterizing the semantic partition:

Sp ∶ X → X′ (6.1)

In this definition X′ refers to attribute X where some values have been grouped
to form new subsets of values with respect to p. For example in Table 6.7 new sub-
sets of attribute Salary’s values are formed ("< 10K" and "≥ 10K" with p = {{4K, 8K},
{13K}}) and utility assessment is performed with respect to this new partition.

From this definition we propose the following equation for characterizing the a
posteriori utility within a microdata Z. Let X1, X2, ..., Xk (k ≤ s) be a set of attributes of
interest; and p1, p2, ..., pk their corresponding partitions of interest, we characterize
the a posteriori utility need as:

(Sp1(X1), Sp2(X2), ..., Spk(Xk)) = (X′
1, X′

2, ..., X′
k) (6.2)

This equation characterizes the formulation of an a posteriori utility need which
is depicted by the attributes of interest (X1, X2, ..., Xk) and the partitions of interest
with respect to each attribute of interest (p1, p2, ..., pk).

Note that the choice of the partitions of interest (semantic partitions) is made
according to the data processor’s need which is very subjective; our goal here is not
to propose a specific way to identify these partitions of interest, but rather to propose
a way for characterizing the need.
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TABLE 6.10: Attributes of the Adult data set used in the experiment

Attribute Type #Values
1 Age key attribute 72
2 Education key attribute 16
3 Native Country key attribute 41
4 Race key attribute 5
5 Salary-class Sensitive 2

FIGURE 6.1: Utility assessment over sanitized data sets and compar-
ison with original data

6.5.2 A Posteriori Utility Need Computation Using the SeDR

As the SeDR computes the capability of one or more key attributes to refine the se-
mantic partitions of the values of a given sensitive attribute, we define the following
function for computing the a posteriori utility need based on SeDR:

SeDRXi ∶ (X′
1, X′

2, ..., X′
i−1, X′

i+1, ..., X′
k)→ [0, 1] (6.3)

with 1 ≤ i ≤ k. In this definition, Xi refers to the sensitive attribute which the set
of outcomes is our anonymity set. Therefore, this function evaluates the capability of
the other attributes (indexed by the set {1, 2, ..., k}∖ {i}) to refine the set of outcomes
of Xi.

For example, in Section 6.4.3, the 3 attributes of interest are "ZIP Code", "Age" and
"Salary"; the key attributes are "ZIP Code" and "Age" and the sensitive attribute is
"Salary". The semantic partitions for "ZIP Code" and "Age" are depicted by (a), (b) and
(c) and the semantic partitions of "Salary" are depicted by (1) and (2). Then, the SeDR
computes the utility degree which is depicted in Tables 6.8 and 6.9.

6.6 Experiment

The goal of this experiment is to assess the a posteriori utility over sanitized data
sets. Our experiment is based on the well known Adult data set (more than 30.000



92
Chapter 6. A Posteriori Utility Assessment of Sanitized Data with the

Discrimination Rate Metric

TABLE 6.11: Values of attribute "Race" used in the experiment

Race #Values
a Amer-Indian-Eskimo 286
b Asian-Pac-Islander 895
c Black 2817
d Other 231
e White 25932

TABLE 6.12: Values of attribute "Salary-class" used in the experiment

Salary-class #Values
≤ 50K 22653
> 50K 7508

records) (Martínez, Sánchez, and Valls, 2012) (Fung, Wang, and Yu, 2005) from the
UC Irvine Machine Learning Repository which contains data from a US census. The
goal of this census was to predict whether income exceeds $ 50K per year, based on
different attributes including: Age, Education, Race and Native Country.

We assess the a posteriori utility according to this goal. We use the global recod-
ing mechanism (cf. Section 6.4.2) for sanitization. We generate 2 instantiations of
the k-anonymity and one instantiation of l-diversity (Machanavajjhala et al., 2007)
over the Adult data set: 5-anonymity, 10-anonymity and 2-diversity. We consider
4 key attributes (Age, Education, Race and Native Country) and 1 sensitive at-
tribute (Salary-class) as depicted in Table 6.10. We use the ARX tool (Polonetsky,
Tene, and Jerome, 2014) (version 3.5.1) to compute the anonymization techniques
(k-anonymity and l-diversity) and the R tool (Chokkathukalam et al., 2013) (version
3.3.1) to compute our DR metric.

We also perform our assessment over the specific values of attribute Race (Amer-
Indian-Eskimo, Asian-Pac-Islander, Black, Other, White) as depicted in Table 6.11.

All the assessments have been performed based on the predefined semantic par-
titions of sanitized data i.e. the semantic partitions generated by the ARX tool during
the sanitization process. For example, in Section 6.4.2, a predefined semantic parti-
tion is depicted by "2*", "≥ 40" and "3*"; which are subsets built for this instantiation.
Using the ARX tool, the semantic partitions are generated automatically by the san-
itization algorithm. For the two instantiations of k-anonymity (5-anonymity and
10-anonymity), only the key attributes have been partitioned and no semantic par-
tition is applied on the sensitive attribute (Salary-class), as k-anonymity only acts
on key attributes. For the l-diversity (Machanavajjhala et al., 2007) instantiation (2-
diversity), the key attributes and the sensitive attribute (Salary-class) are partitioned
in order to provide at least 2 different values of the sensitive attribute Salary-class for
each category of key attributes.

The results are compared to assessments over the original data and are depicted
in Figure 6.1.

Interpretation of results

Figure 6.1 depicts the capability of key attributes in Table 6.10 (the graph on the
left hand side) and capability of the specific values of attribute Race in Table 6.11
(the graph on the right hand side) to predict the income of respondents within the
sanitized Adult Data sets. The assessment is performed according to the different
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instantiations (k-anonymity and l-diversity) and the original data. This enables to
compare the a posteriori assessment with the assessment over original data.

Concerning the capability of the key attributes (the graph on the left hand side),
we observe that attribute "2" (Education in Table 6.10) is the one which best enables to
predict the income as the assessments provides the higher SeDR for any of the sani-
tized data sets. We also observe that the 2-diverse instantiation provides the weakest
capability for predicting the income. Finally, Attribute "1" (Age) provides the weak-
est capability for the sanitized data sets whereas its capability is very high within the
original data set. This is due to the chosen taxonomy for recoding attribute Age’s
values which is not very granular; indeed, the Age’s values are splitted into two val-
ues: "< 80" and "≥ 80" in the sanitized data, rather than 72 values in the original data
(cf. Table 6.10).

Concerning the capability of the specific values of attribute Race (the graph on
the right hand side), we observe that the value "d" (Other in Table 6.11) provides
the highest capability for predicting the income of respondents, and the value "e"
(White) provides the weakest capability for prediction. The graph globally reflects
the measurement over attribute "4" (Race) referring to the graph on the left hand side
on Figure 6.1.

We can also observe that on the graph on the right hand side, some Race’s values
(a, b , c and d), provide less utility for the original data than for the anonymized data.
This can be explained by the definition of utility provided in this paper (cf. Section
6.4), which states that, a utility assessment is performed according to a predefined
utility need. Therefore, if the anonymization process is performed with respect to the
predefined need, anonymization can improve both utility of data and anonymity of
users. For example, let us consider Tables 6.2 and 6.3 which are an original data
table and its 3-anonymous instantiation respectively. Consider now a study which
aims to provide respondent with treatment with respect to their Zip Code* (Table
6.3) instead of Zip Code (Table 6.2), which is more specific. Therefore, for this use
case, the anonymous table will provide more utility as it directly refers to the rel-
evant data, and can be considered as a pre-processed instantiation of the original
data. This principle also applies on the experiment and explains why on the graph
on the right hand side of Figure 6.1, some anonymized data provide more utility
than the original data.

This experiment provides a practical fine grained a posteriori utility assessment
that can be used by data processors to validate the quality of sanitized data.

6.7 Conclusion

Utility is one of the two main goals of data sanitization as data sanitization aims to
provide the best trade-off between privacy and utility. However, unlike privacy that
can be characterized through a set of well known attacks, utility is very subjective
and depends on the need of the data processor. In practice, utility is assessed on the
basis of a sanitized data set and a predefined utility need (a posteriori assessment).
However, due to the complexity of capturing the versatility of utility needs, the cur-
rent metrics are concerned with assessing how much sanitized data do reflect origi-
nal data (a priori assessment). This latter approach does not directly respond to the
data processor’s need and requires further investigations for complete assessment.
This chapter proposes an a posteriori approach for utility assessment which directly
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targets the data processor’s need. Our model expresses the utility need through
the partitioning of attribute values in order to define partitions of interest (semantic
partitions), and computes the utility degree based on the Semantic Discrimination
Rate, which is an information theoretic metric. The model enables to provide fine
grained assessment of utility down to specific attributes’ values. To the best of our
knowledge this is the first work providing such accurate measurements of the a pos-
teriori utility of sanitized data sets, which is a very important concern for companies
tackling the newly adopted data protection regulation (General Data Protection Reg-
ulation) in Europe.
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Chapter 7

Conclusion and Perspectives

7.1 Conclusion

Data protection has never been as crucial as today; indeed, the new data pro-
tection regulation (GDPR) which will take effect on may 2018, will completely
transform the way big data - recognized as the new oil of our era - will be pro-
cessed. GDPR will drastically change how data are collected, stored, exploited,
shared and deleted; with for the offenders, some fines up to 20 millions euro
or 4 per cent of their previous year’s global turnover (whichever is greater).
Some technology groups even suggested GDPR could be one of the most ex-
pensive pieces of regulation in the internet sector’s history (Ram, 2017), as it
also implies great changes in terms of data management. However, while the
regulation has already been adopted and will be effective after May 2018, some
clarifications still remain to be made including:

• A clear definition of what a personal data is; indeed, the current regulation
text defines personal data as data which are linked to an identifier. However,
identifiers are not defined nor even characterized, although they have been
recognized by the community as one of the most important concern (Schwartz
and Solove, 2011).

• Clear recommendations about data protection (anonymization); indeed, anonymiza-
tion is one of the most used protecting mechanism for ensuring data privacy,
but there is no clear recommendation about how it should be implemented, for
example, how to measure the anonymization level, which level of anonymiza-
tion should be considered for avoiding or enforcing fines.

On the other hand, beyond the fear of paying huge fines in case of privacy
breaches (which are not clearly defined), companies also have concerns about:

• Data utility, companies are worried about whether their anonymized data will
still be useful for their own services as anonymization destroys data by re-
ducing their identification capability. This might reduce significantly the data
utility.

This thesis addresses the three previously identified concerns by providing prac-
tical methods which enable to:

1. Precisely define identifiers and therefore personal data (Chapter 4).

2. Provide accurate anonymization measures for providing recommendations
about data anonymization (Chapters 4 and 5).
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3. Provide accurate utility measures for computing the data utility degree while
taking into account the specific needs of data processors (Chapter 6).

Chapter 4 presents our first contribution, the Discrimination Rate metric which
is an information theoretic metric that measures the identification capability of at-
tributes by computing how much they can refine a set of subjects (an anonymity
set). The measurements are scaled between 0 and 1. The DR therefore enables
to characterize identifiers as they have a DR equal to 1 and to introduce new no-
tions like sketchy identifiers, partial identifiers and zero-identifiers. This is a novel ap-
proach which is different from the existing ones as these latter are either empirical
or have other limitations which include: lack of granularity, difficulty to link the
measurements to the identification capability, use case specific measures and lim-
ited number of variables; the proposed DR is addressing all these limitations. The
DR addresses disclosure risk assessment through the uniqueness principle (Domingo-
Ferrer, Sánchez, and Hajian, 2015a) and enables accurate assessment and compari-
son of k-anonymity and l-diversity which are two of the most popular anonymiza-
tion techniques. Thanks to its accuracy, the DR enables an evaluation down to spe-
cific attributes’ values and to underline specific inconsistencies of the anonymization
implementation. As the DR uses a generic approach for assessment, it can be used
by the regulator to define wide scope rules for applying the regulation in different
application domains.

Chapter 5 presents our second contribution, the Semantic Discrimination Rate
metric (SeDR) which is an improvement of the DR metric. The SeDR adds the capa-
bility to refine subsets of subjects instead of single subjects through the concept of
semantic partitions (specific partitions of the sensitive values). This last property pro-
vides a greater flexibility for addressing both uniqueness and record linkage which are
the two approaches for computing disclosure risk (cf. Chapter 3). We then use the
SeDR to assess and compare l-diversity and t-closeness and we are able to underline
the limitation of t-closeness by showing it is not as protective as claimed by authors
and that, depending on the case, t-closeness can be worse than l-diversity. Thanks to
its improvements, the SeDR provides to the regulator and to companies a full stack
metric that can be used to evaluate disclosure risk through its two main approaches
which are uniqueness and record linkage.

Chapter 6 presents our third contribution which is about a posteriori utility assess-
ment of anonymized data based on the SeDR metric. We provide utility assessment
based only on a utility need and the anonymized data (a poteriori assessment) while
the existing metrics provide measures based on original data and anonymized data
(a priori assessment). This approach is more pragmatic as in practice utility assess-
ment is based on a predefined need and a sanitized data set. We are able to formalize
the utility need through the concept of semantic partitions (introduced with the SeDR)
by considering specific partitions of attributes’ values, and from this formalization,
we provide our measurements with the SeDR metric. This approach applies to san-
itized data obtained from any anonymization mechanism and measurements are
computed down to specific values providing a very accurate assessment. This is, to
the best of our knowledge, the first practical and accurate metric that can apply to
sanitized data from any anonymization mechanism. This method for utility assess-
ment can therefore be used by companies to evaluate their anonymized data quality
to address their specific needs.
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7.2 Perspectives

Several tracks are still conceivable for data assessment either for disclosure assess-
ment or for utility assessment; among which:

• Disclosure risk assessment of differential privacy anonymized data: the DR
can be used for assessing disclosure risk over differential privacy (DP) data.
Indeed, as DP anonymized data do not necessarily contain the similar val-
ues than original data, semantic partitions can be used to capture similarity
of values within anonymized and original data sets and assessment would be
performed accordingly. The semantic partitions computation would require
specific analysis as DP anonymized data may contain new values that may
bias the assessment. This would be a specific disclosure risk assessment over
data that do not contain similar values.

• Micro data anonymization based on the DR metric: as DR enables fine grained
assessments both for disclosure risk and utility assessment, we can use it to
provide well balanced anonymization. Indeed, the DR could assist the exist-
ing anonymization mechanisms to guarantee the best trade-off between pri-
vacy and utility. For example, some works have been proposed for ensuring
this trade-off by composing different anonymization techniques (Soria-Comas
et al., 2014); while the approach is interesting and can actually enhance utility,
an accurate metric would enable better parametrization for better results. Note
that, this approach directly refers to the a priori data assessment.

• Anonymization of real time data: The DR acts directly on data within a micro
data table, and therefore acts on static data. However, many applications use
real time data that are continuously recovered for providing services and need
metric for assessing both utility and privacy over time (Wang et al., 2016). For
example, location services use continuous data to improve lives of mobile de-
vices’ users through spatio temporal analysis. Another research field is contin-
uous authentication based on behavioural biometrics which uses continuous
data for authenticating people, based on different parameters (walking, swipe
gestures...). The DR can apply on this type of data for providing continuous
assessment which would evolve over time.
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Glossary

a posteriori assessment An approach of assessment which aims to assess how much
sanitized data can be used to answer a predefined utility need. 83

a priori assessment An approach of assessment which aims to assess how much
sanitized data are similar to original data. 83

anonymization A process that aims to transform data in order to ensure both utility
of data and privacy of respondents. 14

categorical attributes Attribute which take values over a finite set and over which
arithmetical operations can not be performed. 16

Confidential/Sensitive attributes Attributes which contain sensitive information on
the respondent. Examples are: salary, religion, health. 15

continuous attributes Attributes on which numerical and arithmetical operations
can be performed. Examples: Age, Salary. 15

Data Disclosure Violation of privacy which occurs by linking different records be-
longing to the same respondent. 30

data processor Is the one who processes data for either protecting them or extract-
ing information. 3

Discrimination Rate (DR) A novel approach for assessing both utility and privacy
and which computes the identification capability of attributes with values scaled
between 0 and 1. For example an identifier has a DR equals to 1. 51

Identifiable Natural Person Someone who can be identified, directly or indirectly,
in particular by reference to an identifier such as a name, an identification num-
ber, location data, an online identifier or to one or more factors specific to the
physical, physiological, genetic, mental, economic, cultural or social identity
of that natural person. 5

identifier An attribute that can be used to characterize a single respondent among
others. Examples of such attributes are: social security numbers, names, fin-
gerprints. 4

k-anonymity A data set is said to satisfy k-anonymity for an integer k > 1 if, for each
combination of values of quasi-identifier attributes, at least k records exist in
the data set sharing that combination. 30

microdata A table where each row (record) contains individual’s information split-
ted into different columns (attributes). A record refers to a single respondent
and an attribute is an information shared by all the respondents within the
microdata. 13
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Original Data Data on which no sanitization mechanism has been applied. 7

personal data Any information relating to an identified or identifiable natural per-
son ("data subject"); an identifiable natural person. 3

pseudonymization The processing of personal data in such a manner that the per-
sonal data can no longer be attributed to a specific data subject without the use
of additional information, provided that such additional information is kept
separately and is subject to technical and organizational measures to ensure
that the personal data are not attributed to an identified or identifiable natural
person. 4

Quasi-Identifiers/Key Attributes Attributes which do not completely characterize
a respondent but can be combined with others for complete characterization.
Examples of such attributes are: zip code, age, gender... 15

Record Linkage A knowledge an attacker can have for linking different records be-
longing to the same respondent. 30

respondent Is the one to which the data records correspond. 3

Semantic Discrimination Rate (SeDR) An improvement of the DR which takes into
account the similarity between values through semantic partitions. 71

semantic partition A partitioning of values of a given attribute reflecting the pro-
cessor’s need. 71

synthetic Data Data that do not contain original data but which are similar to orig-
inal data with respect of some relevant statistics. 37
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Appendix A

Résumé de la thèse en français
(long)

A.1 Introduction

Il est difficile d’estimer tous les avantages que peuvent avoir les données person-
nelles aussi bien pour les fournisseurs de services, que pour les personnes à qui ap-
partiennent ces données. De nos jours, les données personnelles sont utilisées dans
presque tous les secteurs d’activité pour l’amélioration et le développement de nou-
veaux services, entre autres: l’analyse de la consommation, la réduction des coûts
de transactions, l’accroissement de la rentabilité des publicités. Fort de ce constat, le
commissaire européen à la protection des consommateurs compare en 2009, les don-
nées personnelles au pétrole (Spiekermann et al., 2015), pour illustrer sa capacité à
créer de la valeur ajoutée pour les entreprises. Un rapport du Boston Consulting
Group (Global, 2012), estime les bénéfices produits par les données personnelles à
environ 1 milliard d’euro d’ici 2020.

D’autre part, les données personnelles peuvent représenter un fardeau impor-
tant pour les entreprises, ceci lié au risque inhérent de violation de vie privée. En
effet, les données peuvent révéler plus d’information aux fournisseurs de services
que souhaité par le propriétaire des données (Domingo-Ferrer, 2007), ce qui mène
à des violations de la vie privée pouvant porter atteinte à l’entreprise concernée
sur plusieurs plans (réputation, amendes importantes...). Par exemple, en 2006,
l’entreprise American Online’s (AOL) a publié 20 million de requêtes web sous
forme anonymisée à des fins de recherche; par la suite, les données ont été util-
isées pour identifier Thelma Arnold, une veuve de 62 ans vivant à Lilburn aux Etats
Unis (Barbaro, Zeller, and Hansell, 2006). Pour empêcher de telles violations de se
reproduire, l’Europe a adopté une nouvelle loi dénommée Règlement Général sur
la Protection des Données (RGPD) qui vise à protéger la vie privée des citoyens eu-
ropéens et qui prendra effet en Mai 2018. L’une des principales nouveautés de ce
règlement est la pénalité: elle s’élève à 20 million d’euro ou 4% du chiffre d’affaire
annuelle (le plus élevé étant retenu) pour les entreprises fautives.

Cependant, selon notre analyse, deux points essentiels nécessitent encore d’être
clarifiés pour la mise en oeuvre du RGPD, comme spécifié dans la Section A.2.1.
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A.2 Le manque de clarté du RGPD dans son implémentation

A.2.1 Le besoin de caractériser les identifiants, qui n’est pas clairement
pris en compte par le RGPD

La principale difficulté de la gestion de la vie privée provient des textes de loi,
et plus précisément de la difficulté à caractériser l’identifiant comme souligné par
(Schwartz and Solove, 2011). En effet, le RDPD comme d’autres textes de loi précé-
dent (Schwartz and Solove, 2011), ne fournit pas une définition claire de ce qu’est
un identifiant, ce qui peut remettre en question la fiabilité des mesures de protec-
tion préconisées. En effet, dans son Article 32, le RGPD définit les moyens à mettre
en oeuvre pour assurer la sécurité des traitements, qui peuvent être séparés en 2
groupes:

• Les méthodes permettant d’assurer et d’évaluer la vie privée: pseudonymisa-
tion et chiffrement.

• Les méthodes permettant d’assurer les autres aspects de la sécurité (confiden-
tialité, intégrité, disponibilité, résilience...).

Ainsi, le RGPD propose la pseudonymisation comme un moyen de garantir la
protection des données personnelles. Cependant, la pseudonymisation est définie
dans l’Article 4 comme:

"le traitement de données à caractère personnel de telle façon que celles-ci ne puissent
plus être attribuées à une personne concernée précise sans avoir recours à des informations
supplémentaires, pour autant que ces informations supplémentaires soient conservées sé-
parément et soumises à des mesures techniques et organisationnelles afin de garantir que les
données à caractère personnel ne sont pas attribuées à une personne physique identifiée ou
identifiable;"

En d’autres termes, la pseudonymisation consiste à transformer les données per-
sonnelles de telle sorte qu’elles ne puissent plus être associées à une personne unique.

Les données à caractère personnel sont définies comme:

"toute information se rapportant à une personne physique identifiée ou identifiable (ci-
après dénommée "personne concernée"); est réputée être une "personne physique identifi-
able" une personne physique qui peut être identifiée, directement ou indirectement, notam-
ment par référence à un identifiant, tel qu’un nom, un numéro d’identification, des données
de localisation, un identifiant en ligne, ou à un ou plusieurs éléments spécifiques propres
à son identité physique, physiologique, génétique, psychique, économique, culturelle ou so-
ciale;"

Cependant, le terme identifiant n’est pas défini, cette définition fournit une énuméra-
tion non exhaustive des informations pouvant être considérées comme identifiants.
De plus, si on considère les cas considérés, pouvons nous affirmer sans risque de
nous tromper, qu’ils s’agisse bien d’identifiants?

Pour illustrer la complexité de cette terminologie, considérons l’exemple suivant
qui souligne l’importance de la prise en compte du contexte pour la définition des
identifiants:
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Supposons qu’il y’ait une voiture mal garée dans une rue et que nous souhaitions
identifier le propriétaire de la voiture. Supposons que nous savons que le proprié-
taire, M. John est dans un bar dans la même rue. Supposons aussi que dans le même
bar, il y’a plusieurs personnes du nom de John. Peut-on considérer dans ce cas que
le nom est toujours un identifiant, étant donné qu’il ne fait plus référence à une
seule personne. D’autre part, supposons que nous savons aussi que le propriétaire
de la voiture porte une chemise blanche et que dans le bar il n’y a qu’une personne
vêtue d’une chemise blanche. Ainsi, la chemise blanche devient un identifiant dans
ce cas puisqu’il est suffisant pour identifier le propriétaire de la voiture.

Cette exemple montre la complexité de la terminologie des identifiants et l’importance
de la prise en compte du contexte; ce qui n’est pas le cas dans le texte de loi actuel.

En effet, une définition claire des identifiants est une nécessité étant donné que
les données à caractère personnel sont définies en fonction des identifiants et que la
pseudonymisation (l’un des mécanismes de protection recommandé) a pour but de
protéger les données à caractère personnel. Donc, sans une définition claire de ce qu’est
un identifiant, les entreprises ne seraient pas en mesure de déterminer un identifiant
et donc, ne seraient pas en mesure de protéger les données à caractère personnel.

A.2.2 Le besoin d’utiliser l’Anonymisation plutôt que la Pseudonymisa-
tion (Un point manquant du RGPD)

La pseudonymisation protège contre des liens directs entre les données et une per-
sonne concernée (cf. Section A.2.1), cependant, il a été prouvé que le reste des in-
formations contenues dans les données pseudonymisées, peut encore être utilisé
pour re-identifier un sujet (Hansell, 2006) (Barbaro, Zeller, and Hansell, 2006); la
pseudonymisation est donc insuffisante pour protéger la vie privée. Dans la littéra-
ture, il existe un mécanisme plus générique permettant la protection des données
personnelles qui est l’anonymisation. L’anonymisation consiste à transformer les
données de telle sorte que les données ne puissent plus être liées à un sujet partic-
ulier, qu’elles ne contiennent plus aucune information concernant un utilisateur en
particulier, et qu’elles conservent une certaine utilité pour les services. Cette défini-
tion inclut aussi bien l’incapacité de lier une identité à un individu, que l’incapacité
d’acquérir de l’information sur un individu en particulier.

L’exemple suivant décrit la procédure d’anonymisation. Considérons les deux
tables de données: Table A.1 (la table de données originales) et Table A.2 (la ta-
ble correspondante de données anonymisées). Ceci représente une implémentation
spécifique du modèle d’anonymisation "k-anonymity" (Samarati and Sweeney, 1998)
(Sweeney, 2002).

Le principe de la "k-anonymity" est de transformer certaines valeurs d’attributs
(attributs clés, ex: Age) dans le but de réduire leur capacité d’identification par
rapport à un autre type d’attribut (attribut sensible, ex: Disease) en formant des sous
ensembles de k enregistrements.

Le problème principal de l’anonymisation est de permettre le meilleur compro-
mis entre l’utilité des données pour les services et la vie privée des sujets concernées
(Li and Li, 2009) (Loukides and Shao, 2008a). En effet, alors que le RGPD recom-
mande la confidentialité des données, les fournisseurs de services doivent utiliser les
données pour améliorer leurs services, puisque l’anonymisation consiste à réduire
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TABLE A.1: Original Data Table.

Age Disease
1 22 lung cancer
2 22 lung cancer
3 22 lung cancer
4 45 stomach cancer
5 63 diabetes
6 40 flu
7 35 aids
8 35 aids
9 32 diabetes

TABLE A.2: Anonymized Data Table.

Age* Disease
1 2* lung cancer
2 2* lung cancer
3 2* lung cancer
4 ≥ 40 stomach cancer
5 ≥ 40 diabetes
6 ≥ 40 flu
7 3* aids
8 3* aids
9 3* diabetes

les informations inhérentes aux attributs, il devrait y avoir un compromis entre ce
qui est recommandé par les autorités et ce qui est nécessaire par les fournisseurs de
services. L’anonymisation doit donc être évaluée avec précision afin de fournir le
bon équilibre entre la confidentialité des données et l’utilité des données.

L’instanciation d’anonymisation précédente est donc destinée à répondre à la
fois aux problèmes de vie privée et d’utilité des données. Les deux questions peu-
vent être formulées en termes de besoins. Nous donnons ici un exemple de besoins
possibles:

• (Vie privée): quelle est la difficulté des asser des valeurs (Age*) transformées
aux valeurs brutes correspondantes (Age)?

• (Utilité des données): a partir des groupes d’ages définis, est-il possible d’identifier
la maladie correspondante?

En effet, la violation de la vie privée provient de la capacité à ré-identifier un
sujet concerné et donc dans notre exemple, de passer de l’attribut transformé Age* à
l’attribut brut Age; et mesurer la vie privée consiste à mesurer cette capacité.

D’autre part, l’utilité se réfère à la capacité d’extraire des informations utiles à
partir des données. Dans ce cas, mesurer l’utilité consiste à mesurer comment, à
partir de l’âge, nous pouvons deviner la maladie dont souffre un sujet.

Cet exemple montre à quel point l’anonymisation peut être complexe, puisqu’elle
renvoie à des questions spécifiques qui dépendent du cas considéré.
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Cependant, dans la littérature, bien qu’il existe de nombreuses propositions de
mécanismes d’anonymisation ("k-anonymity" entre autres), il existe peu de mesures
pratiques permettant de quantifier la vie privée et l’utilité des données. De plus, il
n’existe pas d’approche uniforme pour la comparaison de différentes techniques/instanciations
d’anonymisation. Cette dernière préoccupation étant importante pour la mise en
oeuvre d’une réglementation cohérente.

A.3 Les questions pertinentes traitées dans cette thèse

Nous pouvons donc considérer les problèmes suivants:

1. Comment pouvons-nous caractériser les identifiants par rapport au contexte?
Les identifiants sont au centre de la régulation des données personnelles car les
données personnelles sont définies en fonction des identifiants; cependant, la
réglementation actuelle ne considère pas le contexte dans sa définition et un
manque de caractérisation appropriée peut conduire à des malentendus.

2. Quelle approche doit-on prendre en compte pour l’évaluation de la vie privée?
Il existe de nombreuses approches pour la mesure de la vie privée, mais peu
sont pratiques. De plus, pour définir des règles de régulation cohérentes, une
approche uniforme est nécessaire.

3. Comment pouvons-nous définir une échelle pour comparer divers mécan-
ismes d’anonymisation? De nombreux mécanismes existent pour protéger la
vie privée, mais il n’y a pas d’échelle uniforme pouvant être utilisée pour les
comparer.

4. Comment pouvons-nous mesurer l’utilité en termes de besoins spécifiques?
Comme l’utilité renvoie à une utilisation spécifique des données et donc à une
question spécifique, une évaluation précise consisterait à mesurer des données
par rapport à un besoin. Ce qui est difficile à mettre en oeuvre à cause de la
subjectivité du besoin.

A.4 Contributions de cette thèse

Dans cette thèse, nous proposons une métrique appelée DR (Discrimination Rate)
qui permet:

• Objectif 1: Une caractérisation fine des identifiants par rapport au contexte.

• Objectif 2: Une mesure du degré d’anonymat en termes de capacités d’attributs,
permettant une granularité fine et donc utilisable pour différents domaines
d’application.

• Objectif 3: Une évaluation et une comparaison précises des techniques d’anonymisation
existantes en termes de vie privée.

• Objectif 4: Une mesure précise de l’utilité en termes de besoins d’utilité spéci-
fiques exprimés.

Le reste de la thèse est organisé en 3 parties:
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• L’etat de l’art: qui se décline en deux parties: les techniques d’anonymisation
et les métriques d’anonymisation.

• Notre contribution: il s’agit essentiellement de la métrique DR, qui se décline
en plusieurs versions permettant d’évaluer la vie privée sous ses différents
aspects (mesure de la re-identification, évaluation du niveau de connaissance
qu’on peut avoir sur un individu en particulier) et l’utilité des données en
fonction d’un besoin exprimé. Plus précisément il s’agit de 3 contributions:

1. Le Discrimination Rate: une métrique centrée sur les attributs pour
mesurer la vie privée (Objectifs 1, 2 et 3): le Discrimination Rate (DR)
est une nouvelle métrique qui fournit une approche centrée sur les at-
tributs pour la mesure de la vie privée et qui est pratique et suffisamment
flexible pour s’adapter à divers domaines d’application. Le DR calcule
la capacité d’un attribut (évaluée entre 0 et 1) à raffiner un ensemble de
sujets; plus un attribut peut affiner un ensemble de sujets, plus son DR
est élevé. Par exemple, un identifiant a un DR égal à 1 car il permet
d’isoler chacun des sujets de l’ensemble. Grâce au DR, nous fournissons
une première évaluation précise ainsi qu’une comparaison de deux des
techniques d’anonymisation les plus utilisées, à savoir le k-anonymat et
la l-diversité. Ce travail a été publié dans le Journal Annals of Telecom-
munications, 2017 (Sondeck, Laurent, and Frey, 2017c).

2. Le Semantic Discrimination Rate (Objectif 3). le Semantic Discrimina-
tion Rate (taux de discrimination sémantique) (SeDR), est une amélio-
ration du DR qui prend en compte des considérations sémantiques. Le
SeDR permet plus de flexibilité pour ses mesures d’anonymat et est util-
isé pour comparer la l-diversité à la la t-proximité qui sont deux des
meilleures techniques d’anonymisation de type k-anonymat. De plus,
comme la t-proximité est considérée meilleure que la l-diversité, le SeDR
montre que, selon les considérations sémantiques, la proximité t-proxi-
mité peut être pire que la l-diversité. Ce travail a été publié dans la con-
férence Security and Cryptography (SECRYPT) en 2017 (Sondeck, Lau-
rent, and Frey, 2017b).

3. Evaluation d’utilité a posteriori de données anonymisées avec la
mesure Discrimination Rate (Objectif 4) Après avoir utilisé notre
métrique (SeDR) pour la mesure de l’anonymat, nous montrons comment
il peut être utilisé pour fournir une évaluation de l’utilité a posteriori pré-
cise pour tout type de données anonymisées. L’évaluation a posteriori
est l’approche la plus pratique car elle est réalisée uniquement à par-
tir des données anonymisées et d’un besoin prédéfini d’utilité alors que
l’évaluation de type a priori vise à évaluer dans quelle mesure les données
désinfectées reflètent les données originales et donc basée sur des don-
nées originales et les données anonymisées (qui ne sont pas accessibles).

• La conclusion et les perspectives.

A.5 Etat de l’art

A.5.1 Les techniques d’anonymisation

Il existe un grand nombre de mécanismes pour l’anonymisation des données dans
les bases de données statistiques, et différentes façons de considérer une base de
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données statistiques. Nous analysons ici un type particulier de bases de données ap-
pelé microdonnées et évaluons les capacités des techniques d’anonymisation en fonc-
tion de leur qualité déterministe ou non à répondre au problème de l’anonymisation
qui est: le compromis entre vie privée et utilité des données.

Définitions

Une microdonnée: est un fichier généralement représenté par une table où chaque
ligne (enregistrement) contient des informations individuelles divisées en différentes
colonnes (attributs). Un enregistrement fait référence à un seul sujet et un attribut est
une information partagée par tous les sujets au sein de la microdonnée. Par exemple,
Table A.1 est une microdonnée avec 2 attributs (Age et Disease) et 9 enregistrements.

Les attributs dans une microdonnée peuvent être de trois catégories qui ne sont
pas nécessairement disjointes:

• Identifiants: attributs qui peuvent être utilisés pour caractériser un seul sujet
parmi d’autres. Des exemples de tels attributs sont: les numéros de sécurité
sociale, les noms, les empreintes digitales.

• Quasi-identifiants/Attributs clés: attributs qui ne caractérisent pas complète-
ment un sujet mais peuvent être combinés avec d’autres pour une caractérisa-
tion complète. Des exemples de ces attributs sont: code postal, âge, sexe.

• Attributs confidentiels/sensibles: attributs qui contiennent des informations
sensibles sur le sujet. Les exemples sont: le salaire, la religion, la santé.

Comme précisé dans l’introduction, la définition actuelle de l’identifiant ne prend
pas en compte le contexte et nous proposons une définition plus précise comme con-
tribution.

Les mécanismes d’anonymisation déterministes

Il s’agit de mécanismes qui ne prennent pas en compte de génération aléatoires ni
l’ajouts de données synthétiques. Ces mécanismes incluent entre autres: la générali-
sation et suppression (Hundepool et al., 2005), la microaggregation (Domingo-Ferrer
and Torra, 2005), (Torra, 2004), la suppression locale (Hundepool et al., 2008). Ces
techniques ont l’avantage de permettre un meilleur contrôle sur le processus d’anonymisation
et permettent donc un meilleur calibrage des données en fonction du besoin en util-
ité.

Les mécanismes d’anonymisation non-déterministes

Il s’agit de mécanismes basés sur la génération aléatoire et sur l’ajout de données
synthétiques. Ces mécanismes incluent entre autres: la méthode "Post-RAndomization"
(PRAM) (Gouweleeuw, Kooiman, and De Wolf, 1998), (Kooiman, Willenborg, and
Gouweleeuw, 1997), la génération de données synthétiques (Dwork, 2008), le "swap-
ping" des données (Dalenius and Reiss, 1982) (Reiss, 1984) (Carlson and Salabasis,
2000). Le principal avantage de ces techniques est de fournir une meilleure résis-
tance aux attaques sur la re-identification. Cependant, à cause de l’aléatoire et de
l’ajout de données synthétiques dont elles dépendent, elles permettent un contrôle
plus faible sur l’utilité des données.
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A.5.2 Les métriques d’anonymisation

L’anonymisation a un double objectif (vie privée et utilité des données), ainsi, pour
l’évaluer il existe deux grands types de métriques: les métriques de vie privée et les
métriques d’utilité des données. Nous analysons ici les métriques existantes dans
leur capacité à évaluer d’une part la vie privée et d’autre part l’utilité des données.
Nous proposons ensuite une comparaison des métriques de vie privée en fonction
de plusieurs critères que nous trouvons pertinents.

Les métriques de vie privée

Dans la littérature, il existe plusieurs métriques d’évaluation de la vie privée.
Elles évaluent le degré de vie privée dans un jeu de données anonymisées en
mesurant sa capacité à résister aux attaques connues sur la vie privée. Pour ce faire
plusieurs propriétés peuvent être considérées:

1. Lien avec la ré-identification: Le lien entre les mesures et la capacité de ré-
identification est-il direct ou non?

2. Empirique ou analytique: les mesures sont-elles empiriques ou analytiques?

3. Granularité: Est-il possible d’effectuer des mesures sur plusieurs attributs, en
fonction des valeurs d’attributs, d’une combinaison de valeurs d’attributs ...?

4. Généralité. La métrique peut-elle être utilisée avec différents mécanismes
d’anonymisation? La métrique prend-elle en compte différents types d’attributs?
La métrique peut-elle être utilisée pour lier des enregistrements dans des mi-
crodonnées qui ne contiennent pas des valeurs d’attributs identiques ou simi-
laires?

5. Applicabilité et évolutivité. La métrique est-elle applicable sur de grands
ensembles de données?

Nous proposons une comparaison des métriques en fonction de ces critères et
montrons qu’aucune métrique existante ne répond à tous ces critères.

Les métriques d’utilité des données

La principale difficulté pour l’évaluation de l’utilité des données est la subjec-
tivité du besoin d’utilité. En effet, le besoin dépend du cas d’utilisation et varie en
fonction de l’interprétation du problème. Dans la littérature il existe 2 principales
approches pour évaluer l’utilité des données: les métriques pour des besoins spéci-
fiques et le métriques pour des besoins génériques.

Les métriques pour les besoins spécifiques évaluent la capacité des données à
répondre à un besoin prédéfinit et utilisent principalement des techniques provenant
du domaine de l’intelligence artificielle (Torra, 2017a) (classification, regression, clus-
tering).

Les métriques d’utilité génériques essaient de maximiser la quantité
d’information restante dans un jeu de données anonymisées afin de maximiser
l’utilisation des données pour différents usages non identifiés à l’avance. Cette
méthode utilise des techniques de statistique incluant: l’erreur quadratique
moyenne (MSE), l’erreur quadratique absolu (MAE), la variation moyenne
(Domingo-Ferrer, Sánchez, and Hajian, 2015a).
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Notez que ces métriques utilisent principalement une approche dites a priori
pour l’évaluation des données, ce qui signifie que les mesures sont effectuées afin de
fournir des données anonymes qui reflètent dans une certaine mesure les données
d’origine. Une approche a posteriori consisterait à faire des mesures sur des données
anonymisées par rapport à un besoin d’utilité donné. Cependant, cette dernière ap-
proche est plus complexe car elle nécessite un cadre qui capterait le besoin d’utilité,
qui est subjectif. Nous proposons comme contribution un cadre pour effectuer une
évaluation dites a posteriori (en fonction des données anonymisées et d’un besoin
d’utilité exprimé).

A.6 Contribution

Notre contribution s’articule autour de la métrique Discrimination Rate (taux de
discrimination) pour répondre aux objectifs présentés en introduction (Secction A.3).
Le DR se décline 3 version le Simple DR, le Combine DR pour la contribution 1
(Objectifs 1, 2 et 3) et le Semantic DR pour la contribution 2 (Objectif 3). Le SeDR est
complété ensuite pour remplir l’objectif 4.

A.6.1 Le Discrimination Rate: une métrique centrée sur les attributs pour
mesurer la vie privée (Objectifs 1, 2 et 3)

Cette première contribution vise à répondre aux objectifs 1 2 et 3 (en partie). Ainsi,
nous proposons: (1) une définition précise de la notion d’identifiant, (2) une ap-
proche générique pour l’évaluation de la vie privée et (3) une évaluation et com-
paraison précises du k-anonymat et de la l-diversité qui compte parmi les méthodes
les plus utilisées pour anonymiser les données.

Le Discrimination Rate

Le but de notre métrique est de calculer la capacité d’identification d’un at-
tribut dans un ensemble de sujets donné, plus précisément de calculer la quantité
d’informations d’identification contenue dans un attribut par rapport à cet ensem-
ble de sujets. A des fins de généralité, nous considérons les attributs comme des
variables aléatoires et l’ensemble des sujets est défini comme l’ensemble des résul-
tats (valeurs et occurrences) d’une autre variable aléatoire. Pour clarifier notre idée,
considérons 2 variables aléatoires X et Y; Y l’attribut dont nous souhaitons mesurer
la capacité d’identification et X, les attributs dont l’ensemble des valeurs est notre
ensemble d’anonymat. Comme souligné dans (Shin et al., 2012a), l’une des princi-
pales préoccupations concernant les mesures d’anonymat basées sur l’entropie est
la variable aléatoire considérée. Dans notre cas, nous voulons calculer la quantité
d’information portée par une variable aléatoire par rapport à la capacité de raffine-
ment de l’ensemble des résultats d’une autre variable aléatoire. Pour cela, nous con-
sidérons H(X) la quantité d’information (incertitude) portée par X comme notre
état initial. Nous calculons ensuite l’entropie de X conditionnée sur Y (H(X∣Y)) car
nous souhaitons mesurer l’effet de Y sur X. Cette quantité représente l’incertitude
restante à l’intérieur de X, après que Y soit divulgué. Afin de calculer la quantité
d’information portée par Y par rapport à X, nous devons soustraire cette quan-
tité de H(X) et ainsi nous obtenons H(X) − H(X∣Y) qui est la quantité effective
d’information d’identification portée par l’attribut Y par rapport à l’ensemble des
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TABLE A.3: Example of data table

Subjects ZIP Code Age Salary Disease
subject 1 35000 22 4K cancer
subject 2 35000 35 5K diabetes
subject 3 35000 63 3K malaria
subject 4 35000 22 13K cancer
subject 5 35000 22 8K cancer
subject 6 35000 35 15K malaria
subject 7 35000 45 9K malaria
subject 8 35000 35 7K diabetes
subject 9 35000 40 11K diabetes

sujets. Finalement, nous divisons cette quantité par H(X) pour normaliser le résul-
tat.

Nous proposons donc la définition formelle suivante:

Definition 17 (Le Simple Discrimination Rate)
Soit X et Y deux variables aléatoires. Le simple Discrimination Rate de Y par rapport à X
est la capacité de Y à raffiner l’ensemble des sorties de X et est calculé comme suit:

DRX(Y) = H(X)− H(X∣Y)
H(X)

= 1− H(X∣Y)
H(X)

(A.1)

Dans ce qui suit, X est appelé Attribut sensible et Y est le Attribut clé.

Exemple

Considérons l’exemple suivant qui illustre un calcul de DR.
Considérons la table de données A.3 et évaluons la capacité de chacun des at-

tributs à identifier un sujet dans la table.
Supposons que nous souhaitions évaluer la capacité de Age a raffiner l’ensemble

de sujets dans la table. L’attribut sensible serait donc X = "Subjects" et l’attribut clé Y
= "Age". Les calculs s’effectuent donc comme suit:

SDRX(Y) = 1− H(X∣Y)
H(X)

= 1− −1/3 log2(1/3)−1/3 log2(1/3)

−
9
∑
s=1

1/9 log2(1/9)

= 1− 1/3 log2(3)+1/3 log2(3)
log2(9)

= 0.66

Pour H(X∣Y), la distribution est calculée selon la définition de l’entropie con-
ditionnelle: l’attribut Age peut prendre 5 valeurs 22, 35, 40, 45, 63. Cela permet
de réduire l’ensemble principal à des sous-ensembles de 3, 3, 1, 1 et 1 sujet(s) re-
spectivement, correspondant à 1/3, 1/3, 1/9, 1/9 et 1/9 de l’ensemble respective-
ment. Les entropies conditionnelles sont respectivement: H(X∣Y = 22) = −log2(1/3),
H(X∣Y = 35) = −log2(1/3), H(X∣Y = 40) = 0, H(X∣Y = 45) = 0 et H(X∣Y = 63) = 0.
H(X∣Y) est donc la somme de −1/3 log2(1/3) et −1/3 log2(1/3).
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FIGURE A.1: Le Discrimination Rate dans la Table A.3

Nous proposons par la suite le Combined DR qui prend en entrée plusieurs at-
tributs clés comme suit:

Definition 18 (Le Combined Discrimination Rate)
Soit X et Y1, ..., Yn des variables aléatoires. Le Combined Discrimination Rate de Y1, ..., Yn
par rapport à X est la capacité de Y1, ..., Yn à raffiner l’ensemble des sorties de X et est calculé
comme suit:

DRX(Y1, ..., Yn) = 1− H(X∣Y1, ..., Yn)
H(X)

. (A.2)

En reprenant l’exemple précédent, nous évaluons la capacité d’une combinaison
d’attributs pour identifier un individu dans la table. Le résultat est illustré par la
figure A.1.

Le DR permet de satisfaire les objectifs de la thèse mentionnés à la Section A.4,
comme précisé ci-dessous.

Objectif 1

A partir du CDR nous proposons les définitions suivantes pour les identifiants:

Definition 19 Identifiant
Soit X un attribut sensible et Y1, Y2, ...Yn un ensemble d’attributs clés et n ∈ N ∖ {0}.
(Y1, Y2, ...Yn) est un Identifiant relativement à X si, et seulement si:
DRX(Y1, Y2, ..., Yn) = 1.

Definition 20 Sketchy-Identifiant
Soit X un attribut sensible et Y1, Y2, ...Yn un ensemble d’attributs clés, n ∈N∖{0}. (Y1, Y2, ...Yn)
est un Sketchy-Identifiant relativement à X si, et seulement si:
DRX(Y1, Y2, ..., Yn) ∈]0, 1[.

Definition 21 Zero-Identifiant
Soit X un attribut sensible et Y1, Y2, ...Yn un ensemble d’attributs clés, n ∈N∖{0}. (Y1, Y2, ...Yn)
est un Zero-Identifiant relativement à X si et seulement si:
DRX(Y1, Y2, ..., Yn) = 0.
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Definition 22 Identifiant Partiel
Soit X un attribut sensible et Y1, Y2, ...Yn un ensemble d’attributs clés, n ∈ N ∖ {0} et
Y1,Y2, ...,Yn les ensembles de valeurs possibles de Y1, Y2, ...Yn. (Y1, Y2, .., Yn) est un Identi-
fiant Partiel par rapport à X, si et seulement si (Y1, Y2, .., Yn) est un Sketchy-identifiant
relativement à X et si ∃(y1, y2, ..., yn) ∈ (Y1,Y2, ...,Yn) /
DRX(y1, y2, ..., yn) = 1.

Objectif 2

Le DR étant basé sur une définition générique de l’anonymat prenant en compte
des variables partagées par tout problème de vie privée: un ensemble de sujets, un
attribut sensible, des attributs clés; il fournit une approche générique pour l’évaluation
de la vie privée.

Objectif 3

Le DR permet l’évaluation et la comparaison des techniques d’anonymisation
(aussi bien différentes instanciations d’un même mécanisme que différents mé-
canismes). Nous introduisons une approche nouvelle d’évaluation qui consiste à
évaluer à quel point un jeu de données est résistant à une attaque donnée.

Nous comparons ainsi différentes instanciations de k-anonymat et une instanci-
ation de k-anonymat avec plusieurs instanciations de l-diversité.

Notre évaluation permet de souligner certaines incohérences avec ce qui est ad-
mis théoriquement. Nous montrons par exemple que pour certaines valeurs, la l-
diversité peut être pire que le k-anonymat.

Cependant, le DR peut encore être amélioré pour prendre en compte la proximité
de certaines valeurs sensibles pour exprimer leur similarité sémantique. En effet, les
valeurs sensibles peuvent être regroupées en sous-ensembles pour exprimer le sens,
et il peut être intéressant de distinguer ces sous-ensembles particuliers de valeurs
plutôt que des valeurs uniques; par exemple pour obtenir l’information qu’une per-
sonne souffre d’un cancer, quel que soit le type de cancer. La contribution 2 (Section
A.6.2) décrit le taux de discrimination sémantique (SEDR) comme une améliora-
tion du DR; il fournit une évaluation des risques de vie privée plus générique pour
améliorer le couplage des enregistrements.

A.6.2 Le Semantic Discrimination Rate (Objectif 3)

Le Semantic Discrimination Rate (SeDR) est une amélioration du DR pour permettre
des mesures de vie privée qui tiennent compte d’un besoin donné. Grâce au SeDR
nous remettons en question la t-proximité et montrons qu’elle n’est pas meilleure
que la l-diversité pourtant reconnue dans la litérature comme étant meilleure. En
effet, selon le cas la t-proximité peut être pire que la l-diversité.

Le SeDR considère des partitions spécifiques de valeurs sensibles et effectue des
mesures en fonction de ces partitions spécifiques. Par exemple dans la table A.4,
nous pouvons considérer la partition suivante de l’attribut "Disease": {{diabetes, flu,
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TABLE A.4: Original Data Table (Salary/Disease).

ZIP Code Age Salary Disease
1 35567 22 4K colon cancer
2 35502 22 5K stomach cancer
3 35560 22 6K lung cancer
4 35817 45 7K stomach cancer
5 35810 63 12K diabetes
6 35812 40 9K aids
7 35502 35 8K aids
8 35568 35 10K flu
9 35505 32 11K lung cancer

TABLE A.5: Semantic DR in Table 5.3.

X Y DRX(Y)
Disease 22 1
Disease 32 1
Disease 35 1
Disease 40 1
Disease 45 1
Disease 63 1
Disease Age 1

aids}, {colon cancer, lung cancer, stomach cancer}}. Ainsi, nous pouvons évaluer la ca-
pacité de Age à raffiner cette partition spécifique au lieu de raffiner chacune des
maladies prise séparément.

En appliquant le SeDR à la table A.4 en ayant pour attribut clé l’attribut "Age"
et pour attribut sensible l’attribut "Disease" partitionné comme précédemment, on
obtient les résultats dans la table A.5.

Nous pouvons constater que suivant cette partition spécifique de "Disease", le
SeDR est capable d’extraire le maximum d’information (SeDR = 1) car chacune des
valeurs de "Age" correspond parfaitement à chacun des sous ensembles de la parti-
tion.

Objectif 3
Cette nouvelle propriété permet d’effectuer des mesures selon le sens accordé à

certaines valeurs de l’attribut sensible. Nous sommes donc en mesure, d’évaluer la
vie privée de manière plus précise et de prendre en compte un besoin spécifique qui
permet de souligner les insuffisances de la t-proximité.

A.6.3 Evaluation d’utilité a posteriori de données anonymisées avec la
mesure Discrimination Rate (Objectif 4)

Les métriques d’utilité existantes effectuent pour la plupart des mesures dites à pri-
ori, qui consistent à mesurer à quelle point les données anonymisées reflètent les
données d’origine, elles s’appuient donc sur des données d’origine et des données
anonymisées.

En effet, à cause de la subjectivité de la notion d’utilité, il est difficile de trouver
un modèle permettant d’exprimer le besoin d’utilité dans sa diversité, encore plus
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TABLE A.6: Original data table (Global Recoding)

ZIP Code Age Disease
1 35510 22 cancer
2 35602 35 diabetes
3 35712 63 malaria
4 35510 22 cancer
5 35510 22 cancer
6 35602 35 malaria
7 35715 45 malaria
8 35602 32 diabetes
9 35703 40 diabetes

difficile, de trouver une métrique suffisamment flexible pour s’adapter à tous les
besoins d’utilité. Dans cette contribution nous nous attelons à répondre a ces deux
préoccupations. Nous proposons une nouvelle approche basée sur la métrique SeDR
pour évaluer l’utilité a postériori s’appuyant uniquement sur un besoin d’utilité et
un jeu de données anonymisée. Nous sommes en mesure de: (1) évaluer l’utilité
tout en tenant compte de la polyvalence des besoins d’utilité; (2) mesurer l’utilité
avec précision (en fonction de sous-ensembles de valeurs spécifiques); (3) mesurer
l’utilité de n’importe quel type de données anonymisées.

Pour ce faire nous proposons un framework permettant d’exprimer une besoin
d’utilité et, à partir de ce besoin exprimé, nous évaluons le degré d’utilité des don-
nées avec le SeDR. L’évaluation se fait donc en 2 étapes:

1. Expression d’un besoin dans notre modèle

2. Evaluation du besoin d’utilité à partir du SeDR

Exemple d’évaluation d’un besoin d’utilité a posteriori
Nous proposons un modèle permettant de capturer un besoin d’utilité a poste-

riori dans une microdonnée (cf. Section A.5.1). Pour ce faire nous considérons 2
critères:

• Un ensemble d’attributs d’intérêt

• Pour chaque attribut d’intérêt, une partition d’intérêt

Ces deux critères nous permettent d’exprimer notre besoin d’utilité qui est par la
suite évalué avec le SeDR.

Considérons l’exemple suivant pour qui illustre l’évaluation de l’utilité à poste-
riori où la table A.7 est un 3-anonymat de la table A.6.

Considérons maintenant une étude qui vise à fournir un traitement aux sujets
en fonction de leur âge et qui serait basée sur les données anonymisées de la table
A.7. Ainsi, le besoin de l’utilité serait de savoir à partir de l’attribut Age* l’attribut Dis-
ease correspondant. Par conséquent, les attributs d’intérêt sont Age* et Disease et nous
pouvons considérer comme partition d’intérêt la partition prédéfinie (représentée par
les valeurs 2*, ≥ 40 et 3* tels qu’ils sont générés par le mécanisme d’anonymisation)
pour évaluer le besoin d’utilité. Notez que nous pouvons aussi définir nos propres
partitions sémantiques pour le calcul (voir Section A.6.2).

Considérant la partition prédéfinie nous pouvons évaluer le besoin de d’utilité.
Le besoin d’utilité dans ce cas fait référence au degré de corrélation entre la partition



A.7. Conclusion et perspectives 119

TABLE A.7: 3-anonymity Table (Disease) of Table A.6.

ZIP Code Age* Disease
1 355** 2* cancer
2 355** 2* cancer
3 355** 2* cancer
4 356** ≥ 40 malaria
5 356** ≥ 40 diabetes
6 356** ≥ 40 malaria
7 357** 3* malaria
8 357** 3* diabetes
9 357** 3* diabetes

TABLE A.8: Utility assessment within Table A.7.

X Y DRX(Y)
Disease 2∗ 1
Disease ≥ 40 0.8
Disease 3∗ 0.8
Disease Age 0.6

d’intérêt de Age* et chaque valeur de l’attribut Disease. Nous utilisons le SeDR pour
calculer la capacité des valeurs de Age* à affiner les valeurs de Disease pour calculer
ce degré de corrélation. Le résultat est représenté dans la table A.8.

Nous observons que la capacité globale (SeDR) à répondre à l’utilité, c’est-à-dire
de prescrire un traitement selon l’âge est 0.6. Nous pouvons également observer
que la valeur "2*" fournit l’utilité la plus élevée (SeDR = 1) comme pour les sujets qui
ont une vingtaine d’années, nous pouvons prescrire sans ambiguïté le traitement du
cancer.

Ceci illustre notre méthode d’évaluation que nous formalisons par la suite;
Cette méthode s’applique a toutes les mécanismes d’anonymisation car il suffit

d’avoir la microdonnée, de choisir les attributs d’intérêt et les partitions d’intérêt.

A.7 Conclusion et perspectives

La protection des données n’a jamais été aussi cruciale qu’aujourd’hui. En effet, le
nouveau règlement sur la protection des données (RGPD), qui entrera en vigueur en
mai 2018, transformera complètement la manière dont les données de masse - recon-
nues comme la nouveau pétrole de notre époque - seront traitées. Le RGPD mod-
ifiera radicalement la façon dont les données sont collectées, stockées, exploitées,
partagées et supprimées; avec pour les contrevenants, des amendes allant jusqu’à
20 millions d’euros, ou 4% du chiffre d’affaires global de l’année précédente (le
plus élevé des deux étant retenu). Certains groupes de travail considèrent le RGPD
comme l’un des règlements les plus coûteux de l’histoire de la réglementation numérique
(Ram, 2017), car il implique également de grands changements en termes de gestion
des données.

Cependant, alors que le règlement a déjà été adopté et entrera en vigueur en mai
2018, certains points restent à éclaircir, notamment:
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• Une définition claire de ce qu’est une donnée personnelle; En effet, le texte
actuel de la réglementation définit les données personnelles comme des don-
nées liées à un identifiant. Cependant, les identifiants ne sont ni définis ni
même caractérisés, bien qu’ils aient été reconnus par la communauté comme
l’un des sujets les plus importants (Schwartz and Solove, 2011).

• Des recommandations claires sur la protection des données (anonymisa-
tion); En effet, l’anonymisation est l’une des méthodes de protection des don-
nées personnelles les plus utilisées, mais il n’y a pas de recommandation claire
quant à sa mise en œuvre, par exemple comment mesurer le niveau d’anonymisation,
quel niveau d’anonymisation faut-il envisager pour éviter des amendes?

D’autre part, au-delà de la crainte de payer d’énormes amendes en cas d’atteintes
à la vie privée (qui ne sont pas clairement définies), les entreprises s’inquiètent égale-
ment pour:

• L’utilité de données, les entreprises s’inquiètent de savoir si leurs don-
nées anonymisées seront toujours utiles pour leurs propres services, car
l’anonymisation détruit les données en réduisant leur capacité d’identification.
Cela pourrait réduire considérablement l’utilité des données.

Cette thèse aborde les trois préoccupations précédemment identifiées en four-
nissant des méthodes pratiques qui permettent de:

1. Définir précisément les identifiants et donc les données personnelles (Section
A.6.1).

2. Fournir des mesures d’anonymisation précises permettant des recommanda-
tions claires quant à l’anonymisation des données (Sections A.6.1 et A.6.2).

3. Fournir des mesures d’utilité précises pour calculer le degré d’utilité des don-
nées tout en prenant en compte les besoins spécifiques des processeurs de don-
nées (Section A.6.3).
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