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SUMMARY 
 

Caveolae are plasma membrane invaginations that require caveolin proteins for their 

biogenesis. Recently, our laboratory reported a new role for caveolae in the cell response 

to mechanical stress (Sinha et al, Cell, 2011). Mutations in the CAV3 gene (muscle 

isoform), which lead to Cav3 retention in the Golgi complex, are associated with muscle 

disorders. My project consists in identifying the functional link between CAV3 mutations 

and muscle disorders, which exhibit defects in membrane integrity and repair, and in 

muscle homeostasis. Giving the rising interest on caveolae in the cell mechanical 

response, we focused on their specific role in human CAV3 related muscle diseases. To 

do this, we studies human myotubes from healthy patients, or bearing the CAV3 P28L or 

R26Q mutation, allowing the study of endogenously expressed CAV3 mutations. First, 

we showed a drastic decrease of caveolae structures at the plasma membrane of CAV3 

mutant myotubes due to Cav3 mutant retention in the Golgi complex. As a consequence, 

we could show that mutant myotubes were not capable of buffering the increase of 

membrane tension upon mechanical stress, resulting in failed mechanoprotection. 

Considering the possible role of caveolae mechanics in signaling (Nassoy & Lamaze, 

2012), we next wanted to know whether the interleukin-6 (IL6) signaling pathway could 

be differently regulated in mutant and wild type myotubes under rest and upon 

mechanical stress, as it is one of the major signaling pathway in muscle cells, and is 

tightly linked to muscle contraction. We found that Cav3 could negatively regulate the 

IL6 signaling pathway. Furthermore, IL6 signaling pathway is also negatively regulated by 

mechanical stress in a Cav3-dependent manner. As a result, hyperactivation of the IL6 

pathway, and failed mechano-regulation of the pathway were observed in mutant 

myotubes. Interestingly, mutated myotubes phenocopy Cav3 depletion, and the 

phenotype is reversible with caveolae reformation upon re-expression of the WT form of 

Cav3. This confirms the direct link between CAV3 mutations, the absence of caveolae 

and the observed phenotype.  
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RESUME 
 

Les cavéoles sont des invaginations de la membrane plasmique dont la biogénèse 

nécessite la présence d’une famille de protéines appelées cavéolines. Récemment, mon 

laboratoire d’accueil a décrit un nouveau rôle pour les cavéoles dans la réponse des 

cellules à des stress mécaniques (Sinha et al., 2011). Des mutations dans le gène CAV3 

(isoforme spécifique du muscle), qui ont pour conséquence la rétention de la protéine 

Caveoline-3 (Cav3) dans l’appareil de Golgi, ont été décrites comme associées à des 

pathologies musculaires. Mon projet consiste en l’identification du lien fonctionnel entre 

ces mutations de CAV3 et les pathologies musculaires associées qui ont pour 

caractéristiques un défaut d’intégrité et de réparation membranaire, ainsi que des 

dérégulations dans l’homéostasie du muscle. Le rôle des cavéoles dans la réponse 

mécanique de la cellule suscitant un intérêt grandissant, nous nous sommes plus 

particulièrement intéressé a cet aspect dans le contexte des mutations de CAV3 

associées a des pathologies musculaires. Pour ce faire, nous avons étudié des myotubes 

humains immortalisés à partir de biopsies de patients sains, ou portant les mutations 

CAV3 P28L ou CAV3 R26Q, ce qui nous a permis d’étudier ces mutations à un niveau 

d’expression endogène.  

Dans un premier temps, nous avons montré une diminution importante de structures 

caveolaires à la membrane plasmique des myotubes mutés pour Cav3, ce qui résulte de 

la rétention du mutant de Cav3 dans l’appareil de Golgi. En conséquence, nous avons 

montré que les myotubes mutants n’étaient plus capable de tamponner l’augmentation 

de la tension de membrane lorsqu’ils sont soumis à un stress mécanique, ce qui conduit à 

un défaut de mécanoprotection de ces myotubes.  

En considérant le potentiel rôle de la mécanique des cavéoles dans la signalisation 

cellulaire (Nassoy & Lamaze, 2012), nous avons ensuite voulu savoir si la voie de 

l’interleukine-6 (IL6) pouvait être régulée différemment dans les myotubes sains et les 

myotubes mutants lorsqu’ils sont au repos ou soumis à un stress mécanique. En effet, la 
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voie IL6 est une des voies de signalisation majeures dans le muscle et est étroitement 

associée avec la contraction musculaire. Nous avons pu montré que Cav3 régule 

négativement la voie IL6, et celle ci est également inhibée lorsque les myotubes sont 

soumis à un stress mécanique et ce, dépendamment de Cav3. Cela a pour conséquence 

une hyperactivation de la voie IL6 au repos, ainsi qu’un défaut de mécanorégulation de la 

voie IL6 dans les myotubes mutés soumis à un stress mécanique. De manière 

intéressante, nous avons pu montré que les myotubes mutants avaient le même 

phénotype que des myotubes dans lesquelles Cav3 a été déplétée. De plus, le 

phénotype observé chez les mutants peut être inversé lorsque l’on reforme des cavéoles 

à la membrane après réexpression de la forme sauvage de Cav3. Ceci confirme donc un 

lien direct entre les mutations de CAV3, l’absence de cavéoles à la membrane plasmique 

et le phénotype observé dans les mutants. !
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1 The skeletal muscle, an essential and highly 

organized tissue 
 

Several types of muscle tissues exist within the organism: cardiac muscle, smooth muscle 

and skeletal muscle. In the context of my PhD work, I will focus on the most represented 

one in our body, the skeletal muscle. 

 

1.1 The skeletal muscle, a central role in the organism 

 

In human, skeletal muscles represent approximately 40% of total body weight and 

concentrates 50-70% of total proteins. It is composed of 20% proteins, 70% of water, and 

the rest consists in carbohydrates, mineral fat and inorganic salts (Frontera & Ochala, 

2014). Skeletal muscles, as the name indicates, are linked to the skeleton, through 

tendons attached to the bones, and have two main functions in the body. One is to 

regulate glucose and lipid homeostasis, and the second is to provide support and 

movements through force generation initiated by muscle contractility.  

In this chapter, the particular organization and composition of the skeletal muscle will be 

detailed, highlighting how the fine structure of this organ enables muscle functions.  

 

1.2 From the muscle tissue to the single myofiber  

 

The muscle tissue is composed of satellite cells, myofibers, connective tissue, adipocytes 

and motoneurons fibers. Satellite cells, also called myoblasts, differentiate and fuse into 

myotubes, which undergo further maturation process. The fully differentiated muscle 

cells are myofibers, which are multinucleated cells that can reach several cm long with an 

average diameter of 100µm (Bentzinger et al., 2012). Myofibers are surrounded by 

connective tissue called the epimysium and assemble in bundles surrounded by the 
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Figure 1. The structure of the skeletal muscle 
In the skeletal muscle, satellite cells differentiate and fuse together to form the single unit of the 
muscle tissue: the myofiber. Myofiber contains a large number of myofibrils, which play a key role in 
contraction. Myofibers are surrounded by connective tissues called endomysium, assembled in 
bundles, themselves surrounded by the perimysium. Based on (Frontera & Ochala, 2014). 

Figure 2. The sarcomere 
The sarcomere is the structural unit of a myofibril, allowing contraction. Sarcomere formation 
relies on the association between thick filaments made of myosin and thin filaments made of 
actin. Thick filaments are docked on both sides of the M line at the center of the sarcomere. They 
are interdigitated with thin filaments, which are docked on the Z line at each extremity of the 
sarcomere. Based on (Frontera & Ochala, 2014). 
!
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Figure 3. Actin fi lament sliding allows muscle contraction 
1- ATP binds to myosin head. 2- Myosin ATPase activity triggers ATP hydrolysis. ADP + PI 
remain bound to myosin and induce conformational change of its head. 3- In this conformation, 
the myosin head binds to actin and forms a cross bridge. 4- The release of PI leads to the 
rotation of myosin head which pushes the actin filament. Finally, the release of ADP allows new 
ATP molecule binding and makes the cycle start again. Based on (Frontera & Ochala, 2014). 
!
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perimysium (Frontera & Ochala, 2014). Satellite cells are located between the myofiber’s 

plasma membrane  (PM), called sarcolemma, and the basal lamina (Figure 1). They can 

self-renew and are key for muscle regeneration (Collins et al., 2005).  

The myofiber, the single unit of the muscle, is highly specialized and has a particular 

protein and organelle content, as well as a specific sarcolemma topology further detailed 

in the next chapters.  

 

1.3 The myofiber, a highly specialized architecture  

 

1.3.1 The sarcomere and contractil ity 

 

Each myofiber contains multiple myofibrils, themselves composed of an assembly of 

sarcomeres. A sarcomere is the muscle contractile unit consisting of a specific 

arrangement of myofilaments. Myofilaments can be of two types: they can be thick 

filaments composed of myosin and thin filaments made of actin and troponin. Thin actin 

filaments are docked on one side to a Z line, mainly composed of α-actinin. One Z line 

can be found at each extremity of a sarcomere. These actin filaments, emanating 

symmetrically from each Z line are connected and interdigitate with thick myosin 

filaments that compose the H zone. Myosin filaments are docked on both sides of a 

central M line (Figure 2). The contraction of skeletal muscle relies on myosin and actin 

interaction, that form cross-bridge through myosin heads binding to actin (Huxley, 1969), 

and is dependent on calcium release (Szent-Györgyi, 1975). This is followed by the sliding 

of actin filaments, provoked by myosin heads movement in an ATP (adenosine 

triphosphate) dependent manner (Holmes & Geeves, 2000; Huxley, 1969; Huxley, 1957). 

ATP is provided by the mitochondria network or by glycogenolysis. This mechanism is 

detailed in Figure 3. 
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Figure 4. The costamere 
Costameres are composed of two protein complexes, the dystrophin glycoprotein complex (DGC) and 
the vinculin-talin-integrin complex. They are located at the plasma membrane of myofibers and aligned 
with Z and M lines of sarcomeres. 
a) The DGC contains dystrophin, the scaffold protein linking the actin cytoskeleton to the plasma 
membrane and the extracellular matrix (ECM). Dystrophin bridges γ–actin through its N-terminal 
domain, to β-dystroglycan through its C-terminal domain. β-dystroglycan is a transmembrane protein 
that forms a complex with the α-dystroglycan binding directly to laminin in the ECM. In addition, 
dystrophin also interacts with dystobrevin and syntrophins, both cytosolic proteins associated with the 
plasma membrane. The sarcoglycans, another set of proteins, stabilizes this complex. Based on (Cohn & 
Campbell, 2000). b) Vinculin interacts with the extremity of actin bundles linked to sarcomeres, on one 
side, and with talin on the other. Talin is the scaffold protein linking vinculin to integrins, 
transmembrane proteins that bind laminin in the ECM. Based on (Sabatelli et al., 2012). 
!
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Other actors are involved in the filament stabilization, such as troponin, tropomyosin, 

titin, nebulin or desmin (the role of desmin is further detailed in the next chapter) (Au, 

2004). 

 

1.3.2 The costamere, myofiber integrity and mechanotransduction 

 

Costameres are protein complexes located at the sarcolemma, which are arranged 

perpendicularly to myofilaments, at a specific distance and are mainly aligned with M 

lines, but also with Z lines (Pardo et al., 1983). They allow sarcomeres to anchor to the 

sarcolemma, but also to link the sarcolemma, the sarcomeres, and the cortical actin to 

the extracellular matrix. The costameres are mainly composed of two protein complexes, 

the dystrophin-glycoprotein complex (DGC) and the vinculin-talin-integrin complex.  

The DGC is the protein complex that allows to link the actin-based cortical cytoskeleton 

to laminin in the extracellular matrix (ECM), and is crucial for sarcolemma integrity 

(Yoshida & Ozawa, 1990). It contains both cytoplasmic and transmembrane proteins such 

as dystrophin, sarcoglycans, dystroglycan, dystrobrevins and syntrophins (Figure 4a). 

Dystrophin is the scaffold protein, binding γ-actin through its N-terminal domain (Ervasti 

& Campbell, 1993), a transmembrane protein, the β-dystroglycan its carboxyl-terminus, 

and cytoplasmic proteins such as dystobrevins and syntrophins. Dystroglycans consist in a 

heterodimer of two dystroglycan isoforms. β-dystroglycan is a transmembrane protein 

that binds dystrophin on its C-terminal part, and its extracellular partner α-dystroglycan 

that binds laminin in the extracellular matrix (Ervasti & Campbell, 1993). The precise role 

of sarcoglycans is not yet eluded, but they definitely contribute to the stabilization of the 

DGC complex, as deficient mice show loss of sarcolemmal integrity (Duclos et al., 1998). 

Finally, syntrophin and dystrobrevin complete this complex to supply an additional layer 

of dystrophin anchorage to the sarcolemma (Lapidos et al., 2004).  

The vinculin-talin-integrin complex allows a link between the sarcomeres, the sarcolemma 

and the ECM (Figure 4b). Vinculin is a membrane associated cytoplasmic protein that 
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was initially found to bind the extremity of actin filament bundles (Geiger et al.,1980; 

Hüttelmaiere et al., 1997). Vinculin interacts with talin, a scaffold protein that can also 

bind β-integrin and actin (Burridge & Mangeat, 1984; Calderwood et al., 2002; Lee et al., 

2004). Furthermore, interaction between talin and β-integrin induces β-integrin activation 

and further binding to collagen or laminin in the ECM (Calderwood et al., 2002), which 

allows mechanotransduction (De Palma et al., 2013). 

A few more proteins are involved in the organization and stability of sarcomeres, in 

particular desmin and the clathrin heavy chain (CHC). Desmin is an intermediate filament 

(IF) that is essential for muscle architecture since it connects sarcomeres with the 

sarcolemma, nuclei and other organelles (Paulin & Li, 2004). Desmin filaments are cross-

linked by plectins, create a network and bind to integrins (Steinböck & Wiche, 1999). 

Recently, an unconventional role for CHC usually associated with endocytosis was 

described in muscle. At the sarcolemma, CHC was shown to be organized as large 

plaques that recruit α-actinin for proper anchorage and organization of sarcomere 

(Vassilopoulos et al., 2014).    

Costameres are thus essential for sarcomere anchorage and stability, myofiber integrity 

and mechanotransduction. No surprisingly, mutations in most of costamere proteins are 

associated with different types of myopathies (reviewed in Jaka et al., 2015). 

 

1.3.3 Dysferlin and membrane repair 

 

Dysferlin is a transmembrane protein that is key for membrane repair in muscle (Bansal et 

al., 2003). It localizes at the sarcolemma or near T-tubules (transverse-tubule) (further 

detailed in chapter 1.4.2) and can be recruited on site of membrane injury. Upon 

membrane damage, dysferlin is recruited in a Ca2+-dependent manner and, together 

with MG53 (mitsugumin 53) and caveolin-3 (Cav3), will induce fusion of intracellular 

vesicles, and injured sarcolemma in order to reseal the wound (Cai et al., 2009; Lennon et 

al., 2003). The role of Caveolin-3 in this process will be further detailed in chapter 3.1.2.4. 
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Figure 5. Model for the mechanism of membrane patching in muscle fibers.  
1) In the intact muscle fiber, Mitsugumin 53 (MG53) is on sarcoplasmic vesicles in a reduced form, and 
the concentration of calcium in sarcoplasm is lower than in the extracellular matrix. 
2) Upon membrane damage, exposure of the intracellular environment to oxidative agents leads to 
oxidation and oligomerization of MG53 proteins on sarcoplasmic vesicles. Increased calcium 
concentration around the injury site also activates calpain. Activated calpain may cleave annexin 
proteins, which subsequently mediate accumulation of vesicles near the site of damage. 
3) Dysferlin senses the calcium that floods into the fiber and triggers fusion of accumulated vesicles. 
Activated calpain also degrades the cytoskeleton near the damaged area, making easier the fusion of 
vesicles with the plasma membrane.  
4) Vesicles fuse with the sarcolemma and form a patch that seals the membrane. Abbreviation: SH, 
reduced sulfur moieties in MG53. Adapted from (Tabebordbar, Wang, & Wagers, 2013). 
!
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Dysferlin can also be associated with intracellular vesicles and upon membrane damage, 

it is proposed that these vesicles could fuse with lysosomes to form larger vesicles ready 

to be recruited for membrane resealing (McDade & Michele, 2014). Dysferlin-dependent 

membrane repair in muscle is summarized in Figure 5. 

 

 1.3.4 Muscle associated signaling pathways 

 

Many signaling pathways have been shown to be essential for muscle integrity and 

functions. In this chapter, I chose to focus on the glucose pathway that is tightly 

regulated in muscle tissue to maintain glucose and lipid homeostasis, and the IL6 

pathway, which is important for muscle tissue integrity and homeostasis (reviewed in 

Muñoz-Cánoves et al., 2013). 

 

1.3.4.1 The glucose pathway in the muscle 

 

The glucose pathway in skeletal muscle is very important for homeostasis of the muscle 

and the whole organism. It has been observed very early that glucose was uptaken in 

skeletal muscle during exercise. Glucose can be transported in cells through specific 

transporters of the GLUT (glucose transporter) family, and more specifically GLUT1 and 

GLUT4 in skeletal muscle (Devaskar & Mueckler, 1992). GLUT1 being expressed at very 

low levels, GLUT4 is the major glucose transporter in muscle cells (Gaster et al., 2000; 

Zisman et al., 2000).  In resting condition, GLUT4 is stored in large endosomal structures, 

which formation requires the specific clathrin isoform CHC22 (clathrin heavy chain 22), 

and that can be recruited upon insulin stimulation or muscle contraction (Karlsson et al., 

2009; Lauritzen et al., 2010; Ploug et al., 1998; Vassilopoulos et al., 2009). These two 

stimuli have been proposed to recruit different pools of GLUT4 containing vesicles, as an 

additive effect was observed for their recruitment when muscle fibers are stimulated with 

both insulin and muscle contraction (Ploug et al., 1998). Once in the cell, glucose can 
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Figure 6. Insulin and exercise mediated GLUT4 translocation at the plasma 
membrane. 
Upon insulin binding, the insulin receptor gets phosphorylated, triggering the phosphorylation of 
the insulin receptor substrate (IRS) that recruits and activates the Phosphoinositide 3-Kinase (PI3K). 
This kinase converts PIP2 to PIP3, a docking platform for the recruitment of PDK1 and Akt. Once 
activated, Akt promotes the recruitment of GLUT4 containing vesicles at the plasma membrane, 
leading to glucose entry in the cell. Based on (Leto & Saltiel, 2012). 
Muscle contraction can have many cellular consequences. Among them, Ca2+ release increases NO, 
AMPK and TBC1D1 activities, all promoting the recruitment of GLUT4 vesicles at the plasma 
membrane. Based on (Richter & Hargreaves, 2013). 
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undergo glycolysis to provide the ATP needed for muscle contraction or glycogenesis for 

muscle glycogen storage (Hansen et al., 1995). Then, the stored glycogen will be used 

for rapid ATP production during the next exercise, or will follow glycogenolysis pathway 

to provide glucose in fasting diet for example. Glucose uptake mechanism is summarized 

in Figure 6.  

 

1.3.4.2 The IL6/STAT3 pathway in the muscle  

 

Interleukin-6 (IL6) is one of the major cytokine produced by the muscle and plays 

autocrine, paracrine and endocrine roles (Muñoz-Cánoves et al., 2013; Pedersen & 

Febbraio, 2008). IL6 is produced and secreted during exercise, and thus during muscle 

contraction (Steensberg et al., 2002). Several pathways can trigger IL6 production, all 

dependent on contraction. It was proposed that nitric oxide (NO), produced during 

exercise, could induce IL6 mRNA expression (Steensberg et al., 2007). NO also increases 

IL6 protein expression through the MAPK (Mitogen activated kinase) pathway (Makris et 

al., 2010). Increased calcium levels observed during contraction might also regulate IL6 

mRNA (messenger ribonucleic acid) expression. Indeed calcium binding to calcineurin 

leads to the dephosphorylation of nuclear factor of activated T-cell (NFAT). Then, NFAT 

translocates to the nucleus where it controls, among others, the IL6 mRNA transcription 

(Crabtree, 2001; Keller et al., 2006). The decrease of glycogen concentration, induced by 

glycogenolysis, are linked to the phosphorylation of P38 MAPK (mitogen-activated 

protein kinase) that promotes IL6 mRNA expression (Chan et al., 2004). Finally, IL6 itself 

can trigger its own expression probably via activation of AMP-activated protein kinase 

(AMPK) although this mechanism is not fully elucidated (Keller et al., 2003; Weigert et al., 

2007).  

IL6 signal transduction depends on its binding to the glycoprotein 130 (gp130), a 

ubiquitously expressed transmembrane receptor, and to the IL6 receptor (IL6R). IL6 binds 

first to the IL6R, that can be either at the plasma membrane or soluble in the extracellular 
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Figure 7. The IL6/STAT3 pathway. 
IL6 first binds to the IL6 receptor (IL6R). Then, the complex associates with two gp130 sub-units. 
JAK1 and JAK2 are then recruited and activated by phosphorylation, leading to the recruitment of 
the PI3K. PI3K converts PIP2 to PIP3, a docking platform for the recruitment of PDK1 that 
phosphorylates Akt. Finally, Akt activation promotes cell survival. The activation of JAKs also leads to 
STAT3 phosphorylation, followed by its dimerization and nuclear translocation. In the nucleus, it acts 
as a transcription factor and regulates the expression of many genes, including STAT3 itself but also 
SOCS3. SOCS3, together with SHP2, are negative inhibitors of the pathway and therefore key are 
for the termination of the signal. Based on (Heinrich et al., 2003). 
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Figure 8. IL6 autocrine functions in skeletal muscle. 
In skeletal muscle, the IL6 pathway is associated with glucose and lipid homestasis. IL6 signaling 
activation can participate to glucose entry through Akt-dependent GLUT4 vesicles translocation at the 
plasma membrane. It is also involved in lipolysis through AMPK activation. IL6 activated-STAT3 
controls the transcription of several genes such as FBXO32 or C/EBPδ, essential for the control of 
muscle mass. 
!
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environment, and then to gp130, leading to initiation of the signal (Heinrich et al., 2003). 

Janus Kinases 1 and 2 (JAK1 and JAK2) are recruited to the plasma membrane, and 

associate to the intracellular tail of gp130 to be activated (Babon et al., 2014; Haan et al., 

2001; Haan et al., 2000). Cytosolic STAT3 (signal transducer and activator of transcription 

3) is then recruited to the complex and undergoes phosphorylation and dimerization, 

both required for its subsequent nuclear translocation and activation of STAT related 

gene transcription (Milocco et al., 1999). JAK activation can also activate AMPK and the 

subsequent PI3K/Akt (PI3K: phosphatidylinositol-4,5-bisphosphate 3-kinase PKB/Akt:  

protein kinase B) pathway (Heinrich et al., 2003).  Two different ways to terminate the 

signal have been described, and rely on SOCS3 (suppressor of cytokine signaling 3) and 

SHP2/PTPN11 (Tyrosine-protein phosphatase non-receptor type 11) proteins (Heinrich et 

al., 2003). The IL6/JAK/STAT pathway in muscle is summarized in Figure 7. 

The IL6/STAT3 pathway in muscle tissue has been shown to be important for satellite cell 

activation during muscle regeneration, and its overactivation can cause satellite cell 

exhaustion (Price et al., 2014; Tierney et al., 2014; Toth et al., 2011). Interestingly, it 

seems that the main IL6 source involved in muscle regeneration is secreted from 

infiltrated macrophages and neutrophils (Zhang et al., 2013).  

In myotubes, the IL6 pathway contributes to homeostasis, as it enhances lipolysis and 

glucose uptake by triggering GLUT4 translocation through the activation of the AMPK 

and PI3K pathways (see chapter 1.3.3.1) (Carey et al., 2006; Wolsk et al., 2010). STAT3 

activity is mostly associated with muscle mass. Indeed, in extreme conditions such as high 

dose and long term IL6 exposure or IL6 overexpression, increased muscle proteolysis 

with decreased muscle mass have been observed (Ebisui et al., 1995; Franckhauser et al., 

2008). This explains the description of IL6/STAT3 induced muscle wasting phenotype in 

the context of cancer cachexia (Bonetto et al., 2011). Autocrine functions of the IL6 

pathway in skeletal muscle are summarized in Figure 8. 
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1.4 The specific organelle organization and membrane topology 

of myofibers  

 

In myofibers, the organelle organization and distribution is adapted to the very particular 

elongated shape of these multinucleated cells, highly enriched with myofibrils. I will focus 

here on two main organelles that are highly adapted to muscle function: the nuclei and 

the sarcoplasmic reticulum. The sarcoplasmic reticulum (SR) will be described together 

with the T-tubule system, as they form a particular structure called the triad. 

 

1.4.1 Nuclei 

Nuclei are located at the periphery of the myofibers, right below the sarcolemma, in a 

regular spaced manner (Bruusgaard, 2006). This specific localization requires nuclear 

movements occurring through sequential steps (Roman & Gomes, 2017). The first step, 

nuclear centration is dependent on microtubules (MT) that allow the gathering in the 

center of the cell of newly integrated nuclei when myoblasts fuse with a myotube. In 

myotubes, the microtubule organizing center (MTOC) has the particularity to be located 

on the nuclear envelop (NE) instead of the centrosomes as classically observed in other 

cell types, leading to MT nucleation from the nuclei (Tassin et al., 1985). In addition to 

MT, other important players are involved in this process, such as the dynein/dynactin 

motor and cdc42, Par3 and Par6 proteins (Cadot et al., 2012).  Nuclei then align and 

spread along the longitudinal axis. This process is dependent on the LINC (linker of 

nucleoskeleton and cytoskeleton) complex, and more particularly on nesprin-1α, that 

recruits centrosomal proteins such as PCM-1 (pericentriolar material protein 1) and 

Akap450. PCM-1 allows the recruitment of motors such as dynein/dynactin and kinesins, 

although kinesin-1 can be recruited by nesprin-1 itself, leading to nuclear movement 

(Espigat-Georger et al., 2016; Wilson & Holzbaur, 2015). Akap450 regulates MT 

nucleation and is crucial for nuclear positioning (Gimpel et al., 2017). Finally, nuclei move 

towards the periphery of the cell where they are anchored. Once myofibrils are formed, 
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Figure 9. Nuclear positioning during myogenic differentiation. 
a) Nuclear movements during myogenesis. Blue rectangles represent zoomed illustrations of B–F.  
b) Centration. Nucleus from newly fused myoblast is pulled toward the center of the myotube by 
dynein and microtubules (MT).  
c) Alignment. Nesprin-1α and PCM-1 recruit centrosomal and motor proteins to the NE.  
d) Spreading. Kinesin-1 and Map7 attached to microtubules allow use the anti-parallel microtubular 
network to spread nuclei along the length of the myotube. Kinesin-1 and kinesin light chain (KLC) at 
the nuclear envelop walk towards the (+) end of surrounding microtubules to induce nuclear rotation.  
e) Peripheral migration. Myofibril crosslinking, contraction and nuclear stiffness variations drive nuclear 
movement to the periphery. Myofibril crosslinking is mediated by desmin organization at the z-lines. 
f) Anchoring. Nesprin organizes an astral microtubular network to anchor nuclei juste below the 
plasma membrane. Anchoring is reinforced by a desmin network. (Roman & Gomes, 2017) 
!
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they are cross-linked at the level of the Z line with the help of desmin, which proper 

organization for cross-linking depends on the Arp2/3 complex and γ-actin. All together, 

these proteins will act like closing zippers that push nuclei towards the periphery. This 

process is further enhanced by myofibril contraction and lower nuclear stiffness tuned by 

local lamin A/C level decrease (Roman et al., 2017). Nuclei can either be aggregated to 

the myotendinous junction (MJ), involved in stretching, or to the neuromuscular junction 

(NMJ), involved in contraction, for localized expression of specific proteins. They can also 

be isolated and evenly distributed at the periphery of myofibers. The two different 

anchorage mechanisms involved may depend on nucleus fate, but are so far poorly 

understood (Roman & Gomes, 2017). The mechanisms of nuclear positioning are 

summarized in Figure 9.  

 

1.4.2 The triad: the sarcoplasmic reticulum and the T-tubule system 

 

The triad, a specific structure only found in skeletal muscle, is key for muscle contraction. 

It is composed of the association of one T-tubule and two terminal cisternae of the 

sarcoplasmic reticulum (Al-Qusairi & Laporte, 2011). 

T-tubules are deep membrane invaginations that insert between myofibrils. Their main 

role is to induce Ca2+ release from the SR, needed for muscle contraction (see chapter 

1.3.1). Prior to release, calcium is stored in the SR through a calsequestrin-dependent 

process (Costello et al., 1986). Calsequestrin is localized at terminal cisternae where its 

anchorage depends on other proteins such as junctins, triadin and RyR1 (ryanodine 

receptor 1) (Zhang et al., 1997). It can bind Ca2+ with low affinity but in a high capacity 

manner, allowing high calcium concentration close to release sites (MacLennan & Wong, 

1971). Calcium release depends on the tight association between the L-type calcium 

channel DHPR (dihydropyridine receptor), located at the T-tubule, and RyR1, located at 

the level of the terminal cisternae of SR (Marty et al., 1994; Rios & Brum, 1987). Action 

potential spreading into T-tubules triggers DHPR conformational changes, leading to 
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Figure 10. Calcium release and uptake during excitation-contraction coupling 
control led by the Triad. 
a) Localization of the triad in myofibers, composed of one T-tubule and two terminal cisternae of the 
sarcoplasmic reticulum (SR) are surrounding. (Blausen.com staff (2014). "Medical gallery of Blausen 
Medical 2014". WikiJournal of Medicine) 
b) At rest, Ca2+ is concentrated and associated with calsequestrin, located right under Ryanodin 
Receptor 1 (RyR1) at SR terminal cisternae through its association with triadins and junctins. Upon 
excitation, the action potential propagates through the plasma membrane and the T-tubules, where it 
induces dihydropyridine receptor (DHPR) activation. DHPR is tightly associated with RyR1 and its 
activation induces RyR1 conformational change, leading to Ca2+ release and muscle contraction. After 
contraction, the excess of Ca2+ is re-uptaken in the SR through SERCA (sarco-endoplasmic reticulum 
calcium ATPase pumps) pumps, in an ATP-dependent process.  
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RyR1 opening, allowing the massive Ca2+ release in the cytoplasm, and subsequent 

contraction (Marty et al., 1994). Finally, during muscle relaxation, the excess of calcium 

needs to be re-captured by the SR. This process is mainly handled by sarco-endoplasmic 

reticulum calcium ATPase pumps (SERCA), located both at terminal cisternae and 

longitudinal SR (Yu et al., 1993). The mechanism of calcium release and uptake by the 

Triad is summarized in Figure 10.  

 

In addition to T-tubules, the plasma membrane of muscle cells is also highly enriched in a 

particular membrane invagination called caveolae. The next chapter will describe their 

constituents, biogenesis and functions. I will then discuss the particular functions of 

caveolae in the skeletal muscle, as well as their implication in muscle diseases.  

! !
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Figure 11. Caveolae observation by electron microscopy. 
a, b) Caveolae can adopt different organizations. It can be single 
caveolae individually connected to the plasma membrane (indicated 
with arrowheads), or interconnected caveolae forming bigger structures, 
called rosettes that can still be connected to the plasma membrane 
(indicated with asterisks). 
c) Visualization of the caveolar coat at the plasma membrane of 
myotubes. Survey view of the cytoplasmic surface of an unroofed mouse 
myotube presenting caveolae at the plasma membrane. Different types 
of caveolae structures are apparent, ranging from fully budded (1), 
circular (2), to flat (3). Scale bar: 500 nm. Scale bar in insets: 50 nm. 
Adapted from (Lamaze et al., 2017). 
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2 Caveolae 
 

2.1 Caveolae, specialized plasma membrane invaginations 

 

Caveolae were observed for the first time by electron microscopy in the ’50s by analyzing 

the structure of blood capillaries and the gall bladder epithelium (Palade, 1953; Yamada, 

1955). They are defined as 50-100 nm diameter plasma membrane invaginations, and can 

be distinguished from clathrin coated pits when observed by rapid-freeze deep-etch 

electron microscopy (Rothberg et al., 1992).  In mammals, caveolae are present in all type 

of cells, with the notable exception of neurons and lymphocytes, although they express 

caveolin-1, and are particularly enriched in adipocytes, endothelial and muscle cells. 

Caveolae can be found as single caveolae, associated to specialized structures such as T-

tubule in differentiating muscle cells (Parton et al., 1997), or interconnected as a multi-

caveolar structure called “rosette” (Pelkmans & Zerial, 2005) (Figure 11). After their 

discovery, it took almost 40 years to identify caveolin-1 (Cav1) as their main protein 

component (Glenney, 1992; Kurzchalia et al., 1992; Rothberg et al., 1992). This 

identification was followed by the characterization of two other members of the caveolin 

family, caveolin-2 (Cav2) and caveolin-3 (Cav3), and was the starting point of a better 

understanding of caveolae biogenesis and function in cells.  

 

2.2 Caveolae biogenesis 

2.2.1 Caveolae protein composition 

2.2.1.1 Caveolins 

 

Caveolin-1, the first identified member of the caveolin family, was discovered by two 

distinct teams at the same time but was thought to be two different proteins, VIP-21 
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(vesicular integral protein 1) and caveolin-1 (Kurzchalia et al., 1992; Rothberg et al., 

1992). It was then established that VIP-21 and caveolin-1 were the same protein, and the 

name caveolin-1 was kept (Glenney, 1992). Cav1 is a small protein of 21-24 kDa with two 

isoforms: α-Cav1 and β-Cav1. The β-Cav1 isoform lacks the first 31 amino acids (aa) 

compared to α-Cav1. Nevertheless, they both have a 33 aa hydrophobic domain, 

suggested to be a β-sheet inserted in the plasma membrane (Glenney & Soppet, 1992), 

with the N- and C-terminus facing the cytosol (Dupree et al., 1993; Monier et al., 1995). 

α-Cav1 (not β-) can be phosphorylated on its Tyrosine 14 (Tyr14) residue upon Rous 

sarcoma virus, or after insulin or Src activation (Glenney, 1989; Shengwen et al., 1996; 

Mastick, et al., 1995). The consequences of this modification will be further discussed in 

chapter 2.2.3. Cav1 can also be phosphorylated on its serine 80 (ser80) residue, which 

allows Cav1 binding to ER (endoplasmic reticulum) proteins and its secretion in the 

particular case of regulated secretion by pancreatic cells (Schlegel et al., 2001). 

Controlled Ser80 phosphorylation is also crucial for proper caveolae formation and shape 

(Ariotti et al., 2015). Cav1 presents also three palmitoylation sites (Cys133, Cys153 and 

Cys156) which are not necessary for membrane anchorage but may influence caveolin 

oligomerization (Dietzen et al., 1995; Monier et al., 1996). Using velocity sucrose gradient 

centrifugation, Cav1 was shown to form 300 kDa high molecular complexes. Caveolin 

proteins can form homo- or hetero- oligomers of α-/β-Cav1 and Cav2 (Root et al., 2015; 

Sargiacomo et al., 1995). This phenomenon occurs through the Cav1 oligomerization 

domain (residues 61-101). The oligomerization process and its purpose will be further 

detailed in chapter 2.2.3.4. 

Few years after Cav1 discovery, a potential homologue of Cav1 was found by nucleotide 

alignment. It allowed the identification of the muscle specific isoform that was first called 

M-caveolin, to be later renamed caveolin-3 (Cav3) (Way & Parton, 1995). Compared to α-

Cav1, Cav3 has 65% of identity and 85% of similarity, and lacks the first 27 aa. Its 

expression is restricted to cardiac, smooth and skeletal muscle, and is only expressed 

upon differentiation in skeletal muscle. Because it lacks the Tyr14 present in Cav1, it is 
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Figure 12. Caveol in protein family domains and insertion in the 
plasma membrane. 
a) Caveolin protein family exhibit several very conserved domains: the 
oligomerization domain containing the 8aa stretch signature sequence 
(FEDVIAEP) and the caveolin scaffolding domain (CSD), and the intramembrane 
domain. Size variability within the caveolin family is due to length difference of the 
N-terminal part of caveolins.  
b) Caveolin 1 (Cav1) is inserted in the plasma membrane through its 
intramembrane domain, with the N- and C-terminal parts facing the cytosol, 
conferring a hairpin shape. In addition, three palmitoylation sites allow anchoring 
and stability of the protein at the plasma membrane. Based on (Parton & del 
Pozo, 2013). 
!
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not phosphorylated, but it still shares a lot of common features with Cav1. Indeed, Cav3 

is palmitoylated, has the same conserved hydrophobic domain and is able to oligomerize 

(Tang et al., 1996; Way & Parton, 1995). Furthermore, in cardiac myocytes, one of the 

few cells expressing both Cav1 and Cav3, it has been shown that these caveolins could 

form hetero-oligomers (Volonte et al., 2008). 

The last member of the family, and the least studied, is caveolin-2. Based on the 

purification of membrane fractions enriched in caveolae, it was first defined as a protein 

with 38% identity and 58% similarity with Cav1. Furthermore, a specific stretch of 8 aa 

(FEDVIAEP) in the N-terminal part, extremely conserved with Cav1, and found later to be 

also present in Cav3, was found (Scherer et al., 1996; Tang et al., 1996). It was thus 

suggested to be the caveolin family signature. Cav2 exists under two isoforms, α-Cav2 

and β-Cav2, but not much is known about their potential differences in expression or 

function. Compared to α-Cav1, α-Cav2 and β-Cav2 lack the first 16 aa and 29 aa 

respectively. Cav2 localizes at caveolae structures, and colocalize with Cav1. As it is 

expressed in skeletal muscle cells, contrary to Cav1, it also colocalizes with Cav3. It has 

the capability to dimerize but not oligomerize further, and can form hetero-oligomers 

with other caveolin isoforms (Scherer et al., 1996, 1997). As Cav1 and Cav3, α-Cav2 is 

also triple palmitoylated and although α-Cav2 lacks the Tyr14, it can still be 

phosphorylated on its Tyr19 and Tyr27 residues upon insulin stimulation (Kwon et al., 

2015). Interestingly, there is no evidence that these residues can also be phosphorylated 

in the other caveolins. 

In summary, all three members of the caveolin family have a very similar structure, 

composed of an N-terminal part containing a very conserved stretch of 8 aa, a very 

conserved 33 aa hydrophobic region (residues 102-134 of Cav1) with N- and C-terminus 

facing the cytosol. This allows a particular “hairpin” conformation of the protein, inserted 

in the plasma membrane (Figure 12).  
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Figure 13. Cavin structure. 
Cavins are heterogeneous in size but they all contain PEST and Leucine rich domains for 
potential interaction with other proteins. Cavin-1 is the only member of the cavin family with 
a NLS sequence, favoring nuclear translocation. Based on (Bastiani et al., 2009). 
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2.2.1.2 Cavins 

 

In mammals, there are four members in the cavin family, cavin-1, 2, 3 and 4. Cavin-1 was 

the first to be identified when the Tranum-Jensen group screened for antibodies 

recognizing proteins localized in caveolae structures (Vinten et al., 2001). A 60 kDa 

protein was found to be highly enriched at caveolae, but was not identified. Three years 

later, PTRF (Polymerase I and transcript release factor) was found to be a major protein 

of caveolae by mass spectrometry on caveolae enriched membrane fractions from human 

primary adipocytes (Aboulaich et al., 2004). Shortly after, the Tranum-Jensen group 

confirmed that the 60 kDa protein they identified before corresponds to PTRF and 

showed it localization to caveolar structures. PTRF was then renamed into cavin-1 (Vinten 

et al., 2005).  

Cavin-2 and cavin-3 were originally discovered as two proteins involved in serum 

deprivation, SDPR (serum deprivation-response protein) and SRBC (sdr-related gene 

product that binds to c-kinase) (Gustincich & Schneider, 1993; Izumi et al., 1997). SDPR 

was shown quite early to be associated to caveolae, together with PKCα (protein kinase 

C α) (Mineo et al.,1998), and SDPR and SRBC were also found in the same mass 

spectrometry analysis that identified cavin-1 (Aboulaich et al., 2004).  

All three proteins share common features as they contain leucine zipper domains and 

PEST (sequences enriched in proline, glutamic acid, serine and threonine) domains 

(Figure 13). They were thus considered to belong to the same protein family. SDPR and 

SBRC were then renamed cavin-2 and cavin-3 respectively. All cavins contains the HR1 

and HR2 domain (Helical region 1 and 2), allowing oligomerization (Kovtun et al., 2014). 

Cavins, through interaction with the HR1 domain, can form trimers consisting of either 

three cavin-1 or two cavin-1 associated with one cavin-2 or one cavin-3 protein (Kovtun et 

al., 2015; Lamaze et al., 2017). The recruitment of cavin complexes to caveolae will be 

further described in chapter 2.2.3.3. 
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MURC (muscle-restricted coiled- coil protein)/cavin-4 was later identified by sequence 

homology screening with 29% identity and 49% similarity to cavin-1, 24% identity and 

42% similarity to Cavin-2, and 20% identity and 39% similarity to cavin-3 in mice (Bastiani 

et al., 2009). Like Cav3, Cavin-4 expression is restricted to cardiac and skeletal muscle, 

and highly increased upon muscle cell differentiation. Therefore, cavin-4 is considered as 

the muscle specific isoform of the cavin family, even though the other cavins are still 

present. 

 

Caveolins and cavins are the main protein components of the caveolar coat, and are both 

required at the plasma membrane for the biogenesis of bona fide caveola structures (see 

chapter 2.2). Nevertheless, a few more accessory proteins are necessary for the stability 

and dynamics of caveolae.  

!

 2.2.1.3 Accessory proteins 

 

Although they are not essential for the formation of caveolae, the dynamin-2 GTPase, the 

F-BAR protein pacsin2 (protein kinase C and casein kinase substrate in neurons protein 2, 

also called syndapin II) and the EHD2 ATPase (EH-domain containing 2) proteins could be 

found at the neck of caveolae (Hansen et al., 2011; Henley et al., 1998; Morén et al., 

2012; Stoeber et al., 2012). While dynamin-2 is involved in the endocytosis of caveolae 

(further detailed in chapter 2.2.1), pacsin2 and pacsin3 influence caveolae morphology, 

and EHD2 the dynamics of caveolae (both further detailed in chapter 2.2.4.3). 

 

2.2.2 Caveolae, a specific l ipid composition 

 

Caveolae have been initially defined as a specific type of lipid rafts, which are 

nanodomains of the plasma membrane, enriched in sterols, sphingolipids and ordered 

assembly of specific proteins (Simons & Sampaio, 2011; Simons & Ikonen, 1997). Similarly 
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to the classical lipid rafts, they are enriched in cholesterol and sphingolipids, which 

confers them detergent treatment resistance, a property defining lipid rafts (Simons & 

Toomre, 2000). But it is now well defined that caveolae are not lipid raft, as their lipid 

composition is not limited to cholesterol and sphingolipids, and that these lipids are not 

as dynamic as they would be in a classical lipid raft. Indeed, caveolae also contain other 

lipids such as sphingomyelin, glycerophospholipids, phosphatidylserine (PS), 

phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2, or PIP2) and glycosphingolipids such 

as GD3 and at a lesser extent, GM3, GM1 and GD1a (Iwabuchi et al., 1998; Örtegren et 

al., 2004; Sonnino & Prinetti, 2009). The lipid composition of caveolae is partly due to the 

capacity of Cav1 to bind cholesterol probably through its CRAC (cholesterol 

recognition/interaction amino acid consensus) motif with a ratio of 1:1, but also 

sphingolipids such as GM1 (Epand et al., 2005; Fra et al., 1995; Murata et al., 1995).  

 

2.2.3 Caveolae formation, a step by step process 

2.2.3.1 Minimum requirements 

 

Although a lot of progress has been made to determine caveolae biogenesis, this 

process is still poorly understood. To be achieved, the formation of proper caveolae at 

the plasma membrane needs essential elements. It was observed quite early that 

cholesterol depletion leads to caveolae flattening, suggesting a predominant role of this 

lipid in its biogenesis process (Rothberg et al., 1992; Rothberg et al., 1990). Lipids are 

not the only important feature of caveolae formation. For long, Cav1 (and Cav3 in muscle 

cells) were thought to be the only necessary proteins. Indeed, in lymphocytes, one of the 

few cells devoid of Cav1, no caveolae structures can be detected (Fra et al., 1994). Lack 

of caveolae was also observed in all tissues in CAV1 KO mice, at the exception of skeletal 

muscle tissue (Drab, 2001; Razani et al., 2001). And in CAV3 KO mice, no caveolae 

structure were observed in cardiac and muscle cells (Galbiati et al., 2001). Supporting 

these observations, the heterologous expression of Cav1 was sufficient to induce de 
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novo caveolae formation in lymphocytes (Fra et al., 1995) and more surprisingly in 

bacteria (Walser et al., 2012). Ten years ago, the identification of cavin-1 changed the 

established dogma. Indeed, CAVIN-1 KO mice show a global loss of caveolae, even in 

skeletal muscle, as it is ubiquitously expressed (Liu et al., 2008). Because cavin-1 and 

Cav1 are usually transcriptionally co-regulated, it can be hard to distinguish the impact of 

cavin-1 loss compared to Cav1 loss. To overcome this issue, we can take advantage of 

PC3 cells and cells from the notochord of zebrafish have the particularity of expressing 

Cav1 but not cavin-1. No caveolae structure can be observed in these cells, 

demonstrating unambiguously that cavin-1 is indeed necessary for caveolae formation 

(Hill et al., 2008). 

 

2.2.3.2 Caveolin oligomerization and trafficking to the plasma membrane 

 

Caveolae formation also requires sequential processes, starting with a first round of Cav1 

oligomerization in the ER. Then, Cav1 oligomers are rapidly (within 15 min) exported to 

the Golgi complex in a COPII dependent manner, and this step requires the 67DXE69 

motif of Cav1 (Hayer et al., 2010; Monier et al., 1995). In this organelle, a cholesterol 

dependent oligomerization induces conformational changes and a loss of Cav1 apparent 

mobility, probably due to oligomers association with lipids. At last, caveolin-enriched 

vesicles, containing 140-160 Cav1 molecules, are exported to the plasma membrane 

(Hayer et al., 2010; Pelkmans & Zerial, 2005). Once at the plasma membrane, although 

Cav1 palmitoylation is not required for the formation of the oligomers, it seems to be 

important for their stabilization (Monier et al., 1996). Cav1 oligomers will then cluster 

several lipid species such as PIP2 and PS (Sonnino & Prinetti, 2009), which will further 

recruit others caveolae components, mainly the cavin coat.  
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Figure 14. Putative model for caveolar coat assembly and organization.  
a) Schematic model of Cav1 topology. Cav1 is inserted into the plasma membrane through the 
caveolin scaffolding domain (CSD; red), an amphipathic helix part of the oligomerization 
domain (diffuse red), and through a second amphipathic helix, the intra-membrane domain 
(orange). Based on Cav3 ternary structure, Cav1 monomers may assemble as a disk-shaped 
oligomer with the C-terminal part oriented toward the center.  
b) Cavin monomers exhibit two helical rich domains, HR1 and HR2, that may form coil-coiled 
structures. Cavins, through interaction with the HR1 domain, can form trimers consisting of 
either three cavin-1 or two cavin-1 associated with one cavin-2 or one cavin-3 protein. The 
cavin-1 isoform could be responsible for a more complex assembly through the coiled-coil 
domain 2 (cc2) sequence in the HR2 domain.  
c) At the plasma membrane, Cav1 oligomers cluster specific lipids such as cholesterol, PI(4,5)P2 
and phosphatidyl serine involved in the recruitment of cavin trimers. This is followed by caveola 
invagination, a process not completely understood. It has been recently suggested that the 
overall architecture of the caveolar coat made of caveolins and cavins would best fit with a 
polyhedron structure. In this model, Cav1 oligomers position on each pentagonal face and 
cavin complexes align with the vertices and cover the Cav1 oligomers. (Lamaze et al., 2017) 
!
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2.2.3.3 Cavins recruitment and caveolae invagination 

 

Cavin-1 is a cytosolic protein that has been shown to be recruited on caveolin not at the 

level of the Golgi complex but only at the plasma membrane, once Cav1 oligomers are 

present (Hill et al., 2008). First, cavin recruitment has been suggested to occur via 

caveolins (Bastiani et al., 2009), but recent studies suggests that they are rather recruited 

via PS that are actually clustered in caveolae (Kovtun et al., 2014; Stoeber et al., 2016). 

This is supported by a recent study reporting a crucial role for PS in Cav1-cavin-1 

association and caveolae formation (Hirama et al., 2017). Cavin-1 plays a central role, as it 

is necessary for the invagination of caveolae (Hill et al., 2008) and the recruitment of both 

cavin-2, -3 and -4 (Bastiani et al., 2009). Cavin-2 seems to play a role in the shaping of 

caveolae, as its overexpression leads to the formation of enlarged caveolae. Cavin-3 is 

suggested to have a role in caveolae budding to form caveolar vesicles (Nabi, 2009). 

Finally, not so much is known about Cavin-4 involvement in caveolae formation (Lamaze 

et al., 2017).  

 

The putative model of caveolar coat assembly and organization is summarized in Figure 

14. 

 

2.2.3.4 Recruitment of accessory proteins 

 

Although not essential for the formation of caveolae, one last set of proteins can be 

recruited to caveolae and influences their morphology and dynamics. The GTPase 

dynamin2 was shown to be located at the neck of caveolae, allowing their budding and 

fission (Pelkmans et al., 2002). This will be further detailed in chapter 2.2.1. 

Two other proteins, members of the same protein family, pacsin2 (syndapin II) in non-

muscle tissues and pacsin3 (syndapin III) in muscle tissue, have been showed to be 

associated caveola structure. While pacsin2 recruitment mechanism to the neck of 
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caveolae is still unknown, its depletion or dissociation from caveolae is followed by 

caveolae number decrease and increased caveolin and cavin complexes at the plasma 

membrane (Hansen et al., 2011; Senju & Suetsugu, 2015). The same results were 

obtained upon depletion of pacsin3 in muscle tissue (Seemann et al., 2017). This 

suggests that pacsin2 and 3 are involved in the morphology of caveolae. Furthermore, 

together with EHD2 (EH-domain containing 2), another caveolae associated protein, 

pacsin2 protects caveolae from endocytosis by inhibiting the recruitment of dynamin2 

(Senju et al., 2015). 

EHD2 recruitment to the neck of caveolae requires its oligomerization and ATP binding. 

Although EHD2 is not required for the formation of caveolae, it allows the stability of 

static caveolae at the plasma membrane, as its depletion leads to a higher fraction of 

mobile caveolae diffusing in the membrane (Morén et al., 2012; Stoeber et al., 2016). 

Also, EHD proteins allows the formation of multi-caveolar structures (Yeow et al., 2017).  

 

2.3 Caveolae functions 

 

Since their discovery, many efforts have been put to understand the functions of 

caveolae in cells. Because caveolae are present in almost every type of cells, and are 

highly enriched at the plasma membrane of specialized cells, it has always been thought 

to have an important role. Thus, it is not surprising that many functions, further detailed 

in this chapter, have been associated with caveolae. 

 

2.3.1 Caveolae and cell trafficking 

 

Due to their morphological resemblance to clathrin coated pits (CCP) and their 

membrane localization, caveolae were first suspected to play a role in internalization. 

They were first described to be involved in transcytosis in muscle capillaries (Simionescu 

et al., 1975). This mechanism was proposed to be important for the transport of fluid-
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phase or receptor-mediated albumin and LDL (low density lipoprotein) uptake in 

endothelial cells (Frank et al., 2009; Ghitescu et al., 1986; Schubert et al., 2001). While 

this specialized mechanism seems to be restricted to endothelial cells, caveolae 

mediated endocytosis appears to be quite ubiquitous as a caveolae fraction has been 

observed as not being static at the plasma membrane. Some exogenous cargos can 

trigger these events like SV40 virus or Cholera Toxin (CTx) (Anderson et al., 1996; 

Orlandi & Fishman, 1998; Tran et al., 1987). Some caveolae can undergo cycles of 

appearance and disappearance at the PM, without losing their caveolar coat, in a “kiss-

and-run” manner (Pelkmans & Zerial, 2005). As described previously, the dynamin2 

GTPase can be recruited, although at a low extent, to the neck of caveolae, together 

with actin, and provokes fission from the plasma membrane after GTP hydrolysis (Oh et 

al., 1998; Pelkmans et al., 2002). Endocytosed caveolae then fuse with early endosomes, 

as it has been recently confirmed that caveolae structures fusing with early endosomes 

were indeed caveolae which had budded from the plasma membrane (Shvets et al., 

2015). Other internal structures positive for Cav1 were thought to be an alternative 

pathway, independent from endosomes, and were called caveosomes. But it turned out 

that caveosomes actually correspond to late endosomal and multivesicular bodies 

structures where Cav1 when overexpressed accumulates, gets ubiquitinated and 

degraded (Hayer et al., 2010). Caveolae and more specifically caveolae components are 

also tightly linked to the CLIC/GEEC pathway (clathrin-independent carriers/GPI-AP 

enriched early endosomal compartment). Indeed, it was shown that Cav1, Cav3, cavin1 

and cavin3 could inhibit the CLIC/GEEC pathway, independently from caveolae 

structures. Furthermore, Cav1 and Cav3 seem to act through the caveolin scaffolding 

domain (CSD) since CSD mimicking peptides are sufficient to induce the same 

phenotype (Chaudhary et al., 2014). Apart from virus and toxins, some lipids can also 

trigger endocytosis of caveolae structures such as cholesterol and glycosphingolipids 

(GSL), notably lactosylceramide (Pagano, 2003; Sharma et al., 2003). In adipocytes, upon 

cholesterol addition and Src kinase activation, caveolae can also be endocytosed and 
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Figure 15. Fate of Cav1 following caveolar endocytosis. 
Depending on the cargo, caveolae and Cav1 can be endoctosed to further fuse with 
endosomes, the Golgi complex, lipid droplets or multivesicular bodies (MVBs). Cav1 
targeting to endosomes or to the Golgi complex is mostly associated with its recycling. 
Cav1 targeting to lipid droplets in adipocytes is involved in lipid storage. Finally Cav1 
targeting to MVBs is either associated with degradation, or with exosome association for 
potential further cell-cell communication.  
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targeted to lipid droplets, allowing the maintenance of free cholesterol in these 

structures (Le Lay et al., 2006). Until now, no specific caveolae cargo has been identified.  

As mentioned before, in some cases, following caveolae endocytosis, Cav1 accumulates 

to multivesicular bodies (MVBs) and is degraded. But we could also hypothesize that it 

associates with extracellular vesicles (EVs) and gets secreted. This idea is supported by 

the fact that Cav1 has been found in EVs derived from melanoma cells, but also in 

prostasomes, which are prostate cells specific EVs that derive from intracellular structures 

similar to MVBs (Llorente et al., 2004; Logozzi et al., 2009). More recently, it was shown 

that Cav1 was expressed in adipocyte-derived EVs. Two types of EVs are secreted, small 

and large EVs (sEVs and lEVs), and Cav1 exclusively associates with lEVs that are enriched 

in PS (Durcin et al., 2017). Once secreted, EVs can be uptaken by other cells, or interact 

with cells by presenting protein at their surface, as it is the case for the MHC (major 

histocompatibility complex) class II and ICAM-1 (intercellular adhesion molecule 1) in 

dendritic cell derived EVs (Segura et al., 2005). But the fate of Cav1 containing EVs is not 

yet known. 

The different fates of endocytosed caveolae are summarized in Figure 15. 

 

2.3.2 Caveolae and lipid homeostasis 

 

Due to its particular lipid composition, it has been proposed that caveolae could regulate 

cellular lipid homeostasis by different means. And indeed, caveolae can regulate fatty 

acid transport through plasma membrane (Meshulam et al., 2006) and sphingolipid 

internalization from this compartment (Shvets et al., 2015). Caveolae were even 

proposed to host triacylglycerol (TG) synthesis (Öst et al., 2005). Inside the cell, caveolae 

can also influence lipid sorting, as Cav1 and Cav2 can be associated with lipid droplets, 

an organelle specialized in lipid storage (Fujimoto et al., 2001; Ostermeyer et al., 2001; 

Pol et al., 2001). In adipocytes, Cav1 associates with lipid droplets during their 

maturation in a Src kinase dependent manner, and can be triggered by cholesterol 
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addition, as mentioned in the previous chapter, or when it accumulates in the ER (Blouin 

et al., 2008; Le Lay et al., 2006; Ostermeyer et al., 2001). In addition to the regulation of 

free cholesterol levels, Cav1 has also shown to be crucial for lipid droplet composition. 

Indeed, Cav1 deficient lipid droplets are smaller and have decreased amount of surface 

PS and lysophospholipids suggesting a role for lipid sorting and lipid droplet size 

regulation (Blouin et al., 2010). Finally, through their ability to regulate signaling pathway 

(detailed in the next chapter), caveolae play also a role in lipolysis through modulation of 

adrenergic receptors (Cohen et al., 2004) or in lipid storage through the insulin pathway 

(Kim et al., 2008; Mastick et al., 1995; Yamamoto et al., 1998). 

 

2.3.3 Caveolae and signaling 

 

Based on the early observations that caveolin is a substrate of Src kinase, and that G-

coupled proteins are located in caveolae, it has been proposed that caveolae could be 

involved in signaling events (Lisanti et al., 1994). Since then, the number of papers linking 

caveolae and/or caveolar components to signaling pathways has significantly grown. 

Indeed, a large panel of signaling molecules have been shown to be located in caveolae, 

among them eNOS (endothelial nitric oxide synthase), H-ras, EGFR (epidermal growth 

factor receptor), TGF-β (transforming growth factor β) or insulin (reviewed in Lamaze et 

al., 2017, see annex). How caveolae can regulate signaling events is a question that is still 

debated. It seems that caveolae could actually regulate signaling by different means 

(reviewed in Lamaze et al., 2017).  

The first one relies on the direct interaction of caveolin with signaling molecules, 

inducing most of the time a negative regulation. Indeed, the Lisanti group identified a 

specific region (residues 61-101) of caveolin that was necessary and sufficient for the 

interaction with heteromeric G proteins, Src tyrosine kinase and H-ras (Li et al., 1995; Li 

et al., 1996). But later, the dissection of caveolin / eNOS interaction using truncated form 

of Cav1 or Cav3 allowed to minimize the region to residues 82-101 for Cav1 or 55-74 for 
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Figure 16. Caveolae components behavior after caveolae flattening. 
In resting condition (steady state), caveolae are invaginated at the plasma membrane. 
Upon mechanical stress, caveolae flatten out, releasing their compounds either in the 
cytoplasm for cavins and EHD2, or in the plasma membrane for caveolins. Cavin-1 may go 
to the nucleus and regulate the expression of some genes, as it is the case for EHD2. It 
could also interact with potential partners in the cytoplasm through its PEST domains, and 
regulating their activity. Cavin-2 and -3 probably remain in the cytoplasm but nothing is 
known about their fate after caveolae flattening. Caveolins could interact with potential 
partners, possibly through a CSD-CBM interaction and regulate some signaling pathways. 
Based on (Nassoy & Lamaze, 2012). Deep-etched EM images from (Sinha et al., 2011). 
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Cav3. This particular region is called the caveolin scaffolding domain (CSD) (Garcia-

Cardena et al., 1997). Using mimetic cell penetrating peptides, it was shown that the 

CSD was sufficient to inhibit eNOS activity in cells. Directed point mutagenesis revealed 

that F92 Cav1 residue has a major role in the inhibition process (Bernatchez et al., 2005). 

Using phage display, three potential caveolin binding motif (CBM) were identified, all 

based on an aromatic rich sequence: ϕXϕXXXXϕXX, ϕXXXXϕXXϕ and ϕXϕXXXXϕXXϕ 

(ϕ for Trp, Phe, or Tyr and X for any amino acid) (Couet et al., 1997; Garcia-Cardena et 

al., 1997). Interestingly, a large amount of proteins, already described to be associated 

with caveolae have a putative CBM. But this hypothesis of interaction between CSD and 

CBM has been questioned because of the poor stringency of CBM sequence and its 

potential molecular inaccessibility to the CSD in several cases (Byrne et al., 2012; Collins 

et al., 2012). New insights into Cav1 insertion in the membrane suggest that the CSD 

could still be accessible but the question remains open (Liu et al., 2016) (Figure 16). In 

this context, mechanisms facilitating CSD accessibility have been proposed, such as Cav1 

Tyr14 phosphorylation (Shajahan et al., 2012). Another interesting hypothesis is the 

potential role for “free” caveolins (i.e. not associated to caveolae). Up to now, there is no 

clear evidence that Cav1 can be free at the plasma membrane in resting conditions, but 

the release of free caveolins can be achieved through flattening of caveolae upon 

mechanical stress (Nassoy & Lamaze, 2012; Sinha et al., 2011) (Figure 16). This 

hypothesis could make the link between signaling and caveolae mechanics that was 

suggested for some pathways, such as the Src kinase, RhoA, EGFR/Akt and ERK 

pathways (Gervásio et al., 2011; Kawabe et al., 2004; Kawamura et al., 2003; Sedding et 

al., 2005). 

Apart from the direct interaction between caveolin and its potential partner, the caveolae 

itself can play a role in the regulation of signaling events. Indeed, because of its 

particular lipid composition, it has been suggested to cluster signaling molecules. For 

instance, calcium pumps and the insulin receptor need to be located in caveolae to 

function properly (Fecchi et al., 2006; Fujimoto, 1991; Guo et al., 2015). Also, 
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reorganization of plasma membrane lipids upon Cav1 depletion leads to defects in H-Ras 

clustering and signaling (Ariotti et al., 2014). Caveolae could also potentially regulate 

signaling pathways through its endocytic properties, in a fashion similar to what has been 

described for the clathrin mediated endocytosis pathway (Gonnord et al., 2012). 

 

2.3.4 Caveolae, membrane tension buffering and mechanoprotection 

 

Caveolae are particularly enriched in cells constantly exposed to mechanical stress such 

as adipocytes, endothelial and muscle cells. While endothelial cells are subjected to shear 

stress applied by the blood flow, adipocytes undergo swelling and muscle cells repeated 

cycles of elongation and relaxation. It is thus not surprising that caveolae have been 

associated early with cell mechanics. The first evidence came with the observation of 

“opening” of the caveola neck upon skeletal muscle elongation in frogs (Dulhunty & 

Franzini-Armstrong, 1975). A similar phenotype was observed in smooth muscle cells 

freeze fracture preparations of the sea slug Aplysia californica that were stretched in vitro 

(Prescott & Brightman, 1976). Extensive tool developments to study caveolae and 

collaboration with physicists allowed our laboratory to definitely establish a new role for 

caveolae as major mechanosensors that control the immediate response to membrane 

tension increase in cells. This process, ATP and actin independent, consist in the rapid 

flattening of the caveolar structure, which results in the release of its components either 

in the plasma membrane (caveolins) or in the cytosol (cavins). This allows the buffering of 

increased membrane tension induced by mechanical stress (Sinha et al., 2011). Upon 

caveolae flattening, GSL packing is lost but very little is known on the other caveolae 

lipids fate (Gervásio et al., 2011). More recent data obtained in the laboratory show that 

the accessory protein EHD2 could be translocated to the nucleus after a mechanical 

stress, where it would act as a transcription factor (Torrino et al., submitted). Caveolae 

disassembly is reversible and caveolae reassembly requires both ATP and actin (Sinha et 

al., 2011) (Figure 16).  
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As caveolae disassembly allows buffering of membrane tension increase, it could play a 

role in cell mechanoprotection, which was confirmed by a higher membrane rupture 

amount in human muscle cells bearing a CAV3 mutation associated with muscle disease. 

Interestingly, in the last few years, several studies confirmed the initial findings by Sinha 

(2011) and showed that caveolae were crucial for mechanoprotection in vitro and in vivo.  

Indeed, a lack of caveolae lead to increased susceptibility to acute damage in endothelial 

cells, cell damage and impaired function of skeletal muscle in zebrafish, and impaired 

notochord integrity in developing zebrafish (Cheng et al., 2015; Garcia et al., 2017; Lim 

et al., 2017; Lo et al., 2015). 

In addition to cell mechanoprotection, caveolae was also suggested to play a role in cell 

repair after cell damage. Caveolae could reseal the plasma membrane when damaged 

through accumulation process at the damage site and endocytosis (Corrotte et al., 2013). 

Caveolae linked membrane repair has been exclusively studied in muscle tissue, and will 

be further detailed in chapter 3.1. 

 

2.4 Caveolae related diseases 

 

As mentioned, caveolae have a pleiotropic role in cells. It is thus not surprising that the 

loss and deregulation of caveolae or its components have been associated with many 

different diseases. Because it is very difficult to distinguish between the functions of 

caveolae versus the caveolar components, most of the studies related to caveolae and 

diseases are based on caveolar component deficiencies or mutations (reviewed in 

Lamaze et al., 2017, see annex ; Le Lay & Kurzchalia, 2005). I chose to focus this chapter 

on caveolae related diseases in adipose and vascular tissues, normally highly enriched in 

these structures, but also in cancer. I will then dedicate the last chapter to caveolae’s 

involvement in muscle related diseases, the main focus of my PhD work.  
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2.4.1 Lipodystrophy 

 

Both Cav1 and cavin-1 deficient mice exhibit a lipodystrophic phenotype. Cav1 deficient 

mice are usually smaller and lean, with adipose atrophy observed with aging (Cohen et 

al., 2003; Razani et al., 2002). This reduced adipose tissue should result from decrease 

triglyceride and fatty acid uptakes, as these lipids are found in higher concentrations in 

blood together with decreased level of circulating leptin. Thus, these animals present 

resistance to diet-induced obesity (Razani et al., 2002). Furthermore, Cav1 deficient mice 

are insulin resistant, consistent with Cav1 acting as an activator of the insulin receptor 

(Yamamoto et al., 1998). Indeed, Cav1 deficiency leads to the degradation of the insulin 

receptor beta unit, which can be rescued by simple addition of a CSD mimicking peptide. 

Interestingly, Cav2 null mice do not have such a phenotype (Cohen et al., 2003). As the 

major effect of insulin uptake in adipocytes is to accumulate lipids and avoid lipolysis 

(Londos et al., 1999), its impairment in Cav1 deficient mice should also participate to 

their lipodystrophic phenotype. Cavin-1 deficient mice exhibit the same phenotypes as 

Cav1 deficient mice. The only difference resides in the earlier appearance of adipocyte 

abnormalities in cavin-1 rather than in Cav1 deficient mice (Liu et al., 2008). 

Interestingly, these findings were followed by the identification of a homozygous non 

sense CAV1 mutations (p.Glu38X, stop codon) in a patient suffering from Berardinelli-

Seip congenital lipodystrophy (Kim et al., 2008). Three other heterozygous frame shift 

CAV1 mutations were found later in patients with similar phenotype: c.88delC and 

p.I134fsdelA-X137 in (Cao et al., 2008) and p.Phe160X in (Schrauwen et al., 2015). Three 

PTRF (cavin-1) mutations have also been found in patients with general lipodystrophy: 

c.696_697insC and c.525delG in (Hayashi et al., 2009), and c.947delA in (Ardissone et al., 

2013). These studies, together with others, confirm the central role of caveolae in lipid 

homeostasis.  
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2.4.2 Vascular and pulmonary dysfunction 

 

Cav1 and cavin-1 deficient mice also experience vascular dysfunctions. Indeed, abnormal 

artery vasodilatation and relaxation as well as impaired myogenic tone were observed in 

Cav1 KO mice (Drab, 2001; Razani et al., 2001). In these models, increased eNOS activity 

was shown to be responsible for these defects, confirming previous report of eNOS 

inhibition by Cav1 (see chapter 2.2.3). Calcium could also been involved in the 

contractility phenotype as it has been shown that calcium waves enter the cell via regions 

enriched in caveolae (Isshiki et al., 1998). Many other signaling pathways specific to 

endothelial cells are actually associated with caveolae (reviewed in Frank et al., 2003), 

including the VEGF (Vascular endothelial growth factor) pathway. This could partially 

explain the decreased angiogenesis observed in Cav1 KO mice (Woodman et al., 2003). 

On the contrary, high levels of Cav1 expression have been associated with 

atherosclerosis (Fernández-Hernando et al., 2010). In the particular case where Cav1 is 

overexpressed (OE-Cav1) specifically in mouse endothelial cells, cell proliferation and 

migration, normally necessary to reseal wound and avoid plaque accumulation, are 

decreased. NO production was also decreased, probably as a consequence of the 

enhanced eNOS inhibition by OE-Cav1. This could accelerate atherosclerosis 

development, as observed in eNOS KO mice (Kuhlencordt et al., 2001). Finally, Cav1 

overexpression led to increased VCAM (vascular cell adhesion molecule) expression, 

involved in the recruitment and differentiation of monocytes into macrophages, which 

participate to inflammation. 

In addition to vascular dysfunction, Cav1 mice exhibit also lung abnormalities, consisting 

in thickened alveolar septa due to cell hyperproliferation (Razani et al., 2001). It is also 

accompanied by increased fibrillar deposit, that could lead to the initiation of pulmonary 

fibrosis (Drab, 2001). In addition, pulmonary hypertension was observed in patients 
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bearing either the F160X or the P158PfsX22 mutations (Austin et al., 2012; Han et al., 

2016; Schrauwen et al., 2015).  

 

2.4.3 Cancer 

 

Many studies have long investigated the link between caveolae and cancer but no 

consensus has been reached yet. Most of the studies focus on the implication of Cav1, 

and it is yet not well understood whether Cav1 is a tumor suppressor or an oncogene 

(Lamaze & Torrino, 2015; Martinez-Outschoorn et al., 2015).  

Because the CAV1 gene is often deleted in human cancer such as squamous cell 

carcinomas, head and neck, and prostate cancer, ovarian adenocarcinomas, colon 

carcinomas and breast cancers, Cav1 was rather qualified as a tumor suppressor 

(Engelman et al., 1998). These observations were supported by the fact that 3T3 

fibroblasts depleted for Cav1 could form tumor in nude mice through hyperactivation of 

the MAPK pathway (Galbiati et al., 1998). On the contrary, pancreatic carcinoma cells 

overexpressing Cav1 had reduced tumor formation in vivo. In this case, Cav1 

overexpression induced inhibition of MAPK signaling, leading to reduced cell growth and 

anchorage-independent growth (Han et al., 2009). Furthermore, the P132L mutant of 

Cav1, retained in the Golgi complex and acting in a dominant negative fashion, leads to 

increased EGF and MAPK pathway activation and have been observed in some cancers 

(Hayashi et al., 2001). But the defined role of the P132L mutant in cancer is to date still 

controversed (Lacroix-Triki et al., 2010). Cav1 can also restore K-ras induced senescence 

that is normally lost in A549 and H460 lung cancer cells (Volonte et al., 2017). 

Surprisingly, Cav1 KO mice don’t develop spontaneous tumors (Razani et al., 2001) but 

have enhanced sensitivity to chemical carcinogen induced tumor formation (Capozza et 

al., 2003). 

On the other hand, Cav1 expression has also been shown to be upregulated in bladder, 

esophagus, thyroid and prostate carcinomas (reviewed in Williams & Lisanti, 2005), 
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Figure 17. Potential  role of caveolae in tumor progression.  
Tumors are often characterized by enhanced rigidity and stiffness and recent evidence shows 
that tumor progression is associated with alterations in tissue and cell mechanics. Caveolin-1 
(Cav1), the main constituent of caveolae, is clearly involved in tumor progression. A biphasic 
expression pattern could be correlated with distinct Cav1 functions. It was shown that Cav1 
expression is low during the first stage of tumor progression, however, Cav1 is overexpressed 
during the advanced cancer phases, including metastatic process. Thus, Cav1 would act as a 
tumor suppressor at early stage of transformation and tumor progression while it would play an 
oncogenic role inducing migration and metastasis at later stages. Our hypothesis is that the 
dual role of Cav1 in tumor progression may be explained by their recently discovered new 
function as mechanosensors that adapt the cell response to mechanical forces. Thus, in in situ 
carcinoma, when proliferative tumor cells become confined by the basal membrane, functional 
caveolae respond as mechanosensors with cycles of caveolae disassembly/reassembly induced 
by external forces. In invasive carcinoma, tumor cells break down the basal membrane and 
invade the extracellular matrix. Tumor cells are thus exposed to mechanical forces generated 
by the extracellular matrix and tissue stiffness. Increased mechanical environment may 
overwhelm and alter the functional cycle of caveolae disassembly/reassembly. This in turn may 
impair the caveolae mechanical response and Cav1 dependent mechanosignaling thereby 
promoting migration and metastasis formation. (Lamaze & Torrino, 2015) 
!
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suggesting an oncogene role. This is supported by studies showing that Cav1 promotes 

tumor cell migration and invasion through rac1 (Ras-related C3 botulinum toxin substrate 

1) activation both in metastatic cell lines and in mice injected with a melanoma cell line 

(Díaz et al., 2014; Lobos-González et al., 2013). Cav1 can also promote migration through 

the regulation of focal adhesion dynamics upon Cav1 Tyr14 phosphorylation in 

metastatic cell lines (Joshi et al., 2008). In pancreatic cancer, Cav1 expression is 

correlated with increased tumor grade and seems to increase cell proliferation, invasion 

and migration both in vitro and in vivo (Chatterjee et al., 2015). 

Interestingly, injection of melanoma cells overexpressing Cav1 do not induce 

spontaneous tumor formation but enhanced metastasis (Lobos-González et al., 2013), 

suggesting that Cav1 expression could be either a tumor suppressor or an oncogene 

depending of the stage of the tumor. Indeed, Cav1 can be overexpressed in metastatic 

prostate tumor compared to primary prostate tumor (Yang et al., 1998). 

Cav1 expression in cells present in the microenvironment of the tumor, such as cancer 

associated fibroblasts (CAF), can also influence cancer progression. Cav1 expression in 

breast cancer CAFs is associated with low survival. In CAFs, Cav1 controls the localization 

and inhibits P190 activity, leading to activation of rac. This induces cell contractility, 

allowing the remodeling and the increased stiffness of the ECM, which is crucial to 

facilitate cancer cell invasion (Goetz et al., 2011). Cav1 involvement in tumor progression 

is summarized in Figure 17. 

 

2.4.4 Muscle diseases 

 

One other major phenotype associated with cavin-1 deficiency is abnormalities in muscle 

tissue, either cardiac or skeletal (Ardissone et al., 2013; Ogata et al., 2014; Taniguchi et 

al., 2016). This is not surprising given the fact that Cavin-1 is necessary for caveolae 

formation muscle cells, together with the muscle specific isoform, Cav3. The role of 
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caveolae and Cav3 in muscle diseases, which is the focus of my PhD work, is more 

extensively detailed in the next chapter.  
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Phenotype Symptoms Muscle biopsy features            Mutation Reference(s) 
 
 
 
 
 
 
 
 

 LGMD1-C 

Restricted to limb muscle 
 

Myalgia (muscle pain) 
 

Mild to moderate muscle 
Weakness 

 
Calf hypertrophy 

 
Muscle cramps after exercise 

 
High serum CK levels 

Scattered necrotic fibers 
 

Increased connective tissue 
 

Variability of muscle fiber size 
 

Degenerating/regenerating muscle  
fibers 

 
Increased central nuclei 

R26Q (Figarella- 
Branger et al., 2003) 

D27E (Fischer et al., 2003) 

V43E (Sugie et al., 2004) 

A45T (Herrmann et al., 2000) 

T63P (Matsuda et al., 2001) 

!TFT 63-65 (Minetti et al., 2002) 

S60R (Fulizio et al., 2005) 

A92T (Kubisch et al., 2003) 

P104L (Minetti et al., 2002) 

T77M (Traverso et al., 2008) 

F96 del (Cagliani et al., 2003) 

R125H (De Paula et al., 2001) 

 
 
 
 

 HCK  
High serum CK concentrations 

 
No sign of muscle disease 

 

Mild variability of muscle fiber size 

R26Q (Carbone et al., 2000) 

P28L (Merlini et al., 2002) 

N33K (Fulizio et al., 2005) 

S60R (Fulizio et al., 2005) 

T77K (Traverso et al., 2008) 

T77M (Reijneveld et al., 2006) 

F96 del (Cagliani et al., 2003) 

 
 
 
 
 
 

 RMD 

Increased muscle irratibility, 3 means : 
 

1) Percussion induced rapid  
contraction (PIRC) 

 
2) Percussion-induced muscle  

mounding (PIMM) 
 

3) Rippling muscle 
 
 

Muscle hypertrophy 

Variability of muscle fiber size 
 

Increased central nuclei 

R26Q (Vorgerd et al., 2001) 

D27E (Fischer et al., 2003) 

P28T (Van Den Bergh et al., 2004) 

A45T (Betz et al., 2001) 

E46K (Madrid et al. 2005) 

W70X (Ueyama et al., 2007) 

A92T (Kubisch et al., 2003) 
P104L (Betz et al., 2001) 

F96 del (Cagliani et al., 2003) 

R125H (De Paula et al., 2001) 

 
 
     DM 

Restricted to distal muscle 
 

Muscle weakness 
 

High serum CK concentrations 

Mild variability of muscle fiber size 
 

Increased central nuclei 
 

Increased connective tissue 

D27E (Fischer et al., 2003) 

 N33K (Fulizio et al., 2005) 

  
Table 1. Cav3 mutations and associated caveol inopathies 
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Figure 18. Muscle disorders associated caveolin-3 mutations. 
Schematic representation of caveolin-3 (Cav3) mutations localization along the Cav3 protein. 
Each mutation can be associated with one or more Cav3 related musculopathies that are 
classified as four different phenotypes: limb-girdle muscular dystrophy 1C (LGMD1C), 
hyperCKemia (HCK), rippling muscle disease (RMD) and distal myopathy (DM). Based on (Parton 
& del Pozo, 2013).  
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3 Cav3 and caveolae in muscle physiology and 

pathophysiology 
 

3.1 Cav3 mutations and muscle diseases 

 

As mentioned before, caveolae are highly enriched in the muscle tissue, and Cav3 is one 

of the major players in caveolae biogenesis in muscle cells. Not surprisingly, CAV3 

mutations leading to defects in quantity and/or quality of the Cav proteins have been 

associated with muscle diseases. Caveolinopathies is a group of genetic muscular 

disorders associated with CAV3 mutations, which gather four different phenotypes in 

which skeletal muscles are affected: limb girdle muscular dystrophy 1C (LGMD1-C), 

isolated hyperCKemia (HCK), rippling muscle disease (RMD) and distal myopathy (DM). 

Symptoms and a non-exhaustive list of Cav3 mutations associated with the different 

caveolinopathies are summarized in Table 1. Among caveolae components, cavin-1 has 

also been associated with muscle diseases, although in a less defined manner as 

compared to Cav3. Cavin-1 mutations usually lead to lipodystrophy, but in some cases, 

patients also experience muscular dystrophy. In most of these patients, symptoms are 

the same as for CAV3 mutations, consisting in mild muscle pain and weakness along with 

muscle hypertrophy. Muscle biopsies show variations in muscle fiber size, increased 

central nuclei and fibrosis (Ardissone et al., 2013; Hayashi et al., 2009; Shastry et al., 

2010).  

 CAV3 mutations are located all along the Cav3 protein and can affect all the domains, 

although very few mutations have been identified in the C-terminus part (Figure 18). 

Interestingly, one mutation can lead to different phenotypes. For instance, Cav3-R26Q 

has been found in patients presenting one of each phenotype: LGMD1-C (Figarella-

Branger et al., 2003), HCK (Carbone et al., 2000) or RMD (Vorgerd et al., 2001). This 

mutation can also be found associated with several phenotypes within the same patient, 
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as found in this family of 14 members, where 12 members had all the three phenotypes 

overlapping (Carbone et al., 2000). Surprisingly, the observed molecular phenotype of 

CAV3 mutations is the same for almost all described mutations. Very often, Cav3 is 

expressed at lower level, and in 95% of the cases, it is retained at the Golgi complex, 

with a resulting loss of Cav3 and hence caveolae at the PM.  

Cavin-1 mutations usually lead to a strong decrease in the expression of the protein, 

which results in the absence of caveolae and their mislocalization or a decreased 

expression of Cav3, inducing a loss of caveolae structures at the plasma membrane 

(Ardissone et al., 2013; Hayashi et al., 2009). These diseases are thus due to either a 

Cav3 or a cavin-1 loss of function. 

The generation of KO mice and the identification of multiple CAV3 and cavin-1 mutations 

will allow to better define the role of Cav3 and caveolae functions in the skeletal muscle, 

which is key for understanding their implication in muscle diseases.  

 

3.2 Cav3 and caveolae in muscles 

3.2.1 Myofiber integrity 

3.2.1.1 Mechanoprotection 

 

Mechanoprotection is extremely important for the integrity of tissues undergoing 

constant mechanical stress, like the muscle tissue, and caveolae seem to play a major role 

in this process. Confirming the initial observations made in endothelial and muscle cells 

(Sinha et al., 2011), it has been shown that in the muscle fiber, caveolae flatten upon 

mechanical stress, with a preferential impact on the rosette structures that are also 

disassembled (Lo et al., 2015). The unfolding of caveolae structures by providing more 

membrane area contributes to the buffering of membrane tension increases that occur 

during mechanical stress in myotubes, as myotubes expressing the P28L mutation, which 

results in Cav3 retention in the Golgi complex, fail to do so (Sinha et al., 2011). 

Furthermore, myofibers lacking cavin-1, and thus caveolae, are more prone to membrane 
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Figure 19. Model for caveolin dependent dysferlin trafficking. 
In WT cells, dysferlin exit from the Golgi complex may take place via caveolar and non-caveolar 
exocytic carriers. Once at the plasma membrane, dysferlin endocytosis is inhibited by dysferlin 
association with caveolin. 
In Cav1 or Cav3 deficient cells (Cav1/Cav3 KO), dysferlin exit from the Golgi complex only relies 
on non-caveolar exocytic carriers. But dysferlin is rapidly endocytosed as caveolin absence 
enables dysferlin retention at the plasma membrane. Based on (Hernandez-Deviez et al., 2008). 
!
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rupture upon mechanical stress, which is also the case in muscle fibers of zebrafish 

bearing the R26Q mutation when they are put in viscous media (Lo et al., 2015). This 

defect could partially explain the degenerating/regenerating fibers that are often 

observed in muscle disease and that can result from impaired membrane integrity 

followed by tissue regeneration.  

 

3.2.1.2 Membrane repair 

 

Caveolins have been shown to be associated with dysferlin, which, as mentioned before, 

is a key protein for membrane repair. Cav3 and dysferlin interact in muscle cells and are 

located together at the sarcolemma or near T-tubules (Hernández-Deviez et al., 2006; 

Matsuda et al., 2001). Furthermore, the absence of caveolae led to a highly decreased 

plasma membrane localization of dysferlin, which was mainly mislocated in internal 

punctuated structures (Hernández-Deviez et al., 2006). This abnormal localization is the 

result of a decreased delivery of dysferlin to the PM, coupled with enhanced endocytosis 

of dysferlin (Hernandez-Deviez et al., 2008). Caveolae are thus important for dysferlin 

delivery to, and proper localization and retention at the PM (Figure 19). MG53, the 

third protein forming the complex with Cav3 and dysferlin that is needed for membrane 

repair (see chapter 1.2.3) is also affected in C2C12 differentiated mouse myotubes 

expressing Cav3-P104L. The Cav3-P104L mutant also induced the retention of MG53 in 

the Golgi complex, leading to deficient recruitment of MG53 containing vesicles 

resulting in lack of membrane repair after injury (Cai et al., 2009). 

Another mechanism of caveolae dependent membrane resealing was described earlier in 

chapter 2.3.4, consisting in caveolae cluster formation at the site of injury, followed by 

caveolae mediated endocytosis resealing the wound. Interestingly, this mechanism 

seems to occur also in muscle fibers (Corrotte et al., 2013).  
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Figure 20. Caveolin-3 promotes muscle growth. 
In WT cells, upon insulin-like growth factor (IGF) stimulation, the activation of the associated pathway 
requires the interaction between Cav3 and the IGF receptor. Activation of the receptor is followed by 
the recruitment and activation of PI3K. This kinase converts PIP2 to PIP3, which serves as a platform for 
the recruitment of PDK1 and Akt. Active Akt inhibits Foxo1, a transcription factor that positively 
regulates the expression of atrophy-related genes. In parallel, Cav3 also interacts with the myostatin 
receptor, inhibiting its activity. This results in the lack of activation of smad2/3 and smad4, which 
normally regulate negatively the expression of hypertrophy-related genes. Thus, in WT cells, Cav3 
contributes to muscle growth. 
In Cav3 deficient cells (Cav3 KO), The IGF/Akt pathway is inhibited, leading to the abolished inhibition 
of Foxo1 activity. In parallel, the myostatin pathway is no longer inhibited. Thus, lack of Cav3 
contributes to muscle atrophy.  
!
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3.2.1.3 Myoblast fusion, muscle atrophy and muscle hypertrophy 

 

Myoblast activation, proliferation, differentiation and fusion are key for muscle 

biogenesis and regeneration after injury. Cav3 has first been described as a positive 

regulator of myoblast fusion, as its depletion in C2C12 myoblasts leads to lack of 

myotube formation (Galbiati et al., 1999).  The same phenotype was observed in C2C12 

myoblasts transfected with a LGMD-1C associated CAV3 mutation (P104L). The mutated 

myoblasts present lower levels of Akt and p38 MAP kinase basal activation, leading to 

defects in myoblast differentiation and fusion (Stoppani et al., 2011). Indeed, it has been 

shown that activation of these pathways are required for myoblast differentiation (Li et 

al., 2000). Another pathway involved in the regulation of myoblast differentiation is the 

myostatin pathway. Myostatin is a muscle specific member of the TGF family that is a key 

player in the inhibition of myoblast differentiation, as it negatively controls the 

expression of myoblast differentiation associated genes (Joulia et al., 2003). Interestingly, 

Cav3 has been shown to interact with the myostatin receptor, probably through CSD-

CBM interaction, as this motif has been identified in the cytosolic tail of the receptor 

(Ohsawa et al., 2006). This interaction results in decreased activation of the myostatin 

pathway, suggesting that Cav3 is a negative regulator of the pathway. In accordance5!

myofibers from transgenic mice bearing the Cav3-P104L mutation or from patients 

carrying two different cavin-1 mutations (c.696_697insC and c.525delG) present an 

hyperactivation of the myostatin pathway (Hayashi et al., 2009; Ohsawa et al., 2006). The 

absence of Cav3 is thus associated with defect in myoblast differentiation and fusion 

through both decreased Akt activity and enhanced myostatin activity and resulting in 

muscle atrophy (Figure 20).  

Another study showed on the contrary that transgenic mice overexpressing Cav3 feature 

inhibition of myoblast fusion, while mice deficient for Cav3 showed increased myoblast 

fusion, leading to aberrant muscle fiber size. In this case, Cav3 would act through the 

inhibition of M-Cadherin, a protein targeted to caveolae that is involved in cell fusion 
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Figure 21. Modulation of myoblast fusion by caveolin-3.  
M-cadherin stimulates myoblast fusion in normal control skeletal muscle cells (Ctl) as 
long as caveolin-3 is not expressed. After 2 days of differentiation, upregulation of 
caveolin-3 leads to sequestration of M-cadherin into caveolae membranes and, as a 
consequence, inhibition of myoblast fusion. Caveolin-3 is always expressed in caveolin-3 
transgenic cells (Cav-3) and M-cadherin is constantly enriched into caveolae. As a result, 
myoblast fusion is inhibited by overexpression of caveolin-3. In contrast, inhibition of 
myoblast fusion after 2 days of differentiation does not occur in caveolin-3 null myotubes 
(Cav3 KO), which do not express caveolin-3. (Volonte et al., 2003) 
!



!
!
!

<B!

(Volonte et al., 2003). In this case, Cav3 deficiency leads to muscle hypertrophy (Figure 

21). Both atrophy and hypertrophy are observed in muscle disease, although LGMD1-C 

and RMD has so far mainly be associated with hypertrophy. 

 

3.2.2 Myofiber function 

 

Caveolae and Cav3 have been described to be associated with several key muscle 

structures such as T-tubules or the costamere, and with signaling pathways important for 

muscle function, that will be described in the present chapter.  

 

3.2.2.1 Triad formation and function 

 

Electron microscopy performed on skeletal muscle cells isolated from a chick embryo 

allowed for the first time the visualization of structures looking like clusters of caveolae in 

the chicken muscle. It was proposed that these structures were precursors of T-tubules 

(Ishikawa, 1968).  Cav3 and caveolae were indeed found to be associated with 

developing T-tubules in mice embryos but this association was transient. In adult mice 

muscle tissue, Cav3 is no longer associated with T-tubule but is rather located at the 

sarcolemma (Parton et al., 1997). Other data in Cav3, cavin-1 or cavin-4 deficient mice or 

zebrafish also show abnormal T-tubule organization (Galbiati et al., 2001; Housley et al., 

2016; Lo et al., 2015). This phenotype could be relevant in the context of muscle 

diseases, since skeletal muscles from a LGMD-1C patient showed T-tubule 

disorganization associated with large vacuolar structures below the sarcolemma, 

probably resulting from T-tubule abnormal proliferation (Minetti et al., 2002). The same 

kind of vacuoles were found in the muscle of RMD and DM patients (Fischer et al., 2003).  

T-tubules have a different lipid composition than the rest of the sarcolemma, and are 

particularly enriched in cholesterol (Horgan & Kuypers, 1987). It has thus been proposed 

that caveolae would bring a particular set of lipids necessary for T-tubule formation, but 
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also to allow the proper organization of T-tubule associated proteins such as the DHPR 

(see chapter 1.3.2). Indeed, the DHPR was more diffusely localized in skeletal muscle 

fibers of Cav3 deficient mice compared to WT (wild type) (Ferruccio Galbiati et al., 2001). 

Furthermore, Cav3 is able to interact with DHPR and RyR1, with which it forms two kind 

of complexes linking T-tubule with the sarcoplasmic reticulum. One is composed of Cav3, 

DHPR and RyR1 and the other with Cav3, RyR1 and two triadins, Trisk 51 and Trisk 95 

(Vassilopoulos et al., 2010). This is supported by the lack of colocalization between DHPR 

and RyR1 in myotubes carrying two different RMD associated Cav3 mutations, which 

leads to a reduced efficiency of the excitation-contraction coupling (Ullrich et al., 2011).  

Finally SERCA pumps were shown to be co-fractionated with caveolae in sarcoplasmic 

reticulum membranes (Li et al., 2006), suggesting that Cav3 is tightly associated with 

calcium release in myofibers.  

 

3.2.2.2 Costamere formation 

 

At the level of the costamere, Cav3 has been shown to be co-fractionated with members 

of the DGC complex (Song et al., 1996), and more precisely through the interaction 

between the Cav3 WW domain and the PPXY motif located in the C-terminal tail of β-

dystroglycan (see chapter 1.3.2). This is the same domain interacting with dystrophin, 

implying that Cav3 can be in competition with dystrophin for β-dystroglycan binding 

(Sotgia et al., 2000). This may explain why the overexpression of Cav3 induces the 

destabilization and degradation of the DGC complex, which leads to major defects in 

membrane integrity (Galbiati et al., 2000). In CAV3 KO mice, the DGC complex is 

expressed at normal levels but is no longer co-fractionated with lipid raft, showing that 

Cav3 is necessary for providing a specific lipid environment to the DGC complex 

(Galbiati et al., 2001). Surprisingly, in muscle fibers from patients with RMD or LGMD-1C, 

α-sarcoglycan was no longer expressed, causing the dissociation of the DGC complex 

and the lack of association to the ECM (Herrmann et al., 2000; Vorgerd et al., 2001).  
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3.2.2.4 Calcium, NO and muscle contraction 

 

Calcium is a key player in muscle contraction and in addition to the Ca2+ released from 

the SR, it can also be imported from outside via calcium channels. In skeletal muscle cells, 

TRPC1 (transient receptor potential channel 1) is a calcium channel important for Ca2+ 

influx during repeated contractions. Indeed, mice deficient for TRCP1 exhibit a 

progressive loss of force and a decrease in endurance activity (Zanou et al., 2009). It has 

been shown that Cav3 play a role in the targeting of TRPC1 at the plasma membrane and 

thus in Ca2+ entry (Gervasio et al., 2008). Cav3 could also play a role in the activation of 

the channel, since stretch induced Src kinase activation, which leads to activation of 

TRPC1, was increased in Cav3 overexpressing myoblasts (Gervásio et al., 2011). 

Nitric oxide (NO) is also another important regulator of muscle contraction. Indeed, NO 

production decreases the mechanical force induced during contraction through the 

activation of cGMP and inhibition of RYR1 opening (Meszaros et al., 1996; Stamler & 

Meissner, 2001). NO is also involved in other myofiber functions, such as glucose uptake 

and mitochondria respiration (Reid, 1998; Stamler & Meissner, 2001). NO is produced by 

NOS, that exists under three isoforms, nNOS, eNOS, and iNOS (neuronal-, endothelial-, 

and inducible- nitric oxide synthase). All three isoforms are expressed in skeletal muscle 

but nNOS, located at the sarcolemma, is the one producing the majority of NO found in 

myofibers. nNOS binds both α-syntrophin, a member of the DGC complex, and its 

expression and localization are impaired in myotubes lacking dystrophin (Brenman et al., 

1995). nNOS is also tightly linked to Cav3, as it has been shown to interacts with the 

Cav3 scaffolding domain leading to the inhibition of its activity (Garcia-Cardena et al., 

1997; Venema et al., 1997). Supporting this, increased nNOS activity was observed in 

transgenic mice carrying the P104L mutation (Sunada et al., 2001), but also in a patients 

carrying two different  cavin-1 mutations (c.696_697insC and c.525delG), situation in 
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which Cav3 is mostly cytoplasmic and caveolae structures are absent at the plasma 

membrane (Hayashi et al., 2009). It is worth mentioning that investigating nNOS activity 

in Cav3 associated muscular diseases could be difficult as CAV3 mutations can also 

induce dissociation of the DGC complex, leading to the absence of nNOS, as reported in 

muscle fibers from patients with LGMD1-C (Herrmann et al., 2000).  

 

3.2.2.4 Glucose metabolism 

 

The insulin pathway, which is a key pathway for glucose uptake and glycogen synthesis in 

skeletal muscles (see chapter 1.3.3.1 The glucose pathway in muscle), is tightly 

associated to caveolae. Indeed, Cav3 has been shown to enhance insulin response when 

it is overexpressed, and the use of CSD mimicking peptide is sufficient to recapitulate 

this effect in vitro (Yamamoto et al., 1998). This was confirmed by a decreased 

association to IRS-1 (insulin receptor substrate 1) and PI3K (phosphoinositide 3-kinase), 

resulting in lower PKB/Akt (protein kinase B) phosphorylation and activation in skeletal 

myofibers from CAV3 KO mice. After insulin stimulation, the recruitment of GLUT4 to the 

plasma membrane follows a two-step process, both depending on caveolae. Insulin 

stimulation dependent PI3K/Akt activation allows the trafficking of GLUT4/flotilin-1 

containing vesicles away from the periphery of the nucleus. Then, Cav3 and the insulin 

receptor containing endocytic vesicles move from the sarcolemma to the cytoplasm, 

where they transiently interact with GLUT4/flotilin vesicles. The insulin receptor is 

translocated to GLUT4/flotilin vesicles, which induces the recruitment and activation of 

the Cbl/C3G/TC10 pathway and the further movement of vesicles to the plasma 

membrane (Fecchi et al., 2006). It is thus not surprising that Cav3 deficient mice exhibit 

an insulin resistant phenotype (Oshikawa et al., 2004). Supporting these findings, Cav3 

overexpression leads to increased Akt activation, even without insulin stimulation, and to 

increased recruitment of GLUT4 at the plasma membrane and glucose uptake. 

Furthermore, Akt activation promotes the growth and proliferation of muscle cells 
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overexpressing Cav3. Surprisingly, glycogen levels were unchanged in Cav3 

overexpressing myofibers in comparison with normal myofibers, suggesting that in this 

case, it might involve a pathway independent of insulin (Shang et al., 2017). Recently, the 

Cav3-P104L mutation was also shown to cause glucose metabolism disorders in skeletal 

muscle. Indeed, C2C12 myotubes transfected with Cav3-P104L, and differentiated in 

high glucose medium, also display glucose metabolism disorders. In these myotubes, Akt 

activation was decreased, leading to a defect in GLUT4 containing vesicles to the plasma 

membrane, resulting in low glucose uptake and glycogen synthesis (Deng et al., 2017). 

Glucose metabolism disorders can also be due to the regulation of phosphofructokinase 

(PFK) by Cav3. PFK is the key enzyme for glycolysis, and it has been shown to interact 

with Cav3 upon high glucose levels in the extracellular environment (Scherer & Lisanti, 

1997). Cav3 allows the targeting of PFK at the plasma membrane and its localization in 

Cav3-rich domains. Indeed, both myofibers from Cav3 deficient mice and cells 

expressing LGMD-1C associated Cav3 mutations present an intracellular localization of 

PFK, but also degradation of this enzyme in the case of Cav3 mutant (Sotgia, et al., 

2003). Although it has not been established weather the mislocalization of PFK can 

directly affect glycolysis, it can be hypothesized that Cav3 allows the concentration and 

stability of PFK tetramers, which is the fully active structure of the enzyme (Sola-penn et 

al., 2010).  

 

Caveolae play thus a central role in different aspects of the skeletal muscle physiology. 

They are important for muscle formation and size regulation, as Cav3 and caveolae are 

key for myoblast differentiation and fusion, as it has been shown that deregulation of 

Cav3 expression can both induce atrophy and hypertrophy. Caveolae play also a major 

role in mechanoprotection and are involved in both membrane integrity during 

mechanical stress and repair following injury. Caveolae are also involved in muscle 

function, as they have a central role in the regulation of contraction through formation of 
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the T-tubule or the regulation of contraction-associated pathways. Finally, caveolae also 

participates to glucose homeostasis by tightly regulating the insulin pathway. 
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4 Lack of functional caveolae in Cav3 P28L and 

Cav3 R26Q human dystrophic myotubes results in 

deficient mechanoprotection and IL6/STAT3 

mechanosignaling. 
 

4.1 Objectives and summary 

 

A few years ago, our laboratory discovered a new role for caveolae as mechanosensors 

that control cell membrane tension homeostasis under mechanical stress: caveolae unfold 

to provide additional membrane, which buffers membrane tension increase and confers 

mechanoprotection. The membrane reservoir property of caveolae was also demonstrated 

in the skeletal muscle, as the Cav3 P28L mutation, which abnormally retain Cav3 in the 

Golgi complex, led to impaired membrane tension buffering and mechanoprotection in 

human myotubes upon mechanical stress (Sinha et al., 2011). This new aspect of caveolae 

function was confirmed by data in zebrafish where the Cav3 R26Q mutation was 

associated with higher muscle damage upon mechanical stress (Lo et al., 2015). 

Importantly, our laboratory proposed the hypothesis that caveolae unfolding could be also 

be of importance in the regulation of certain signaling pathways through the mechanical-

dependent release of free i.e. non caveolar caveolins in the plasma membrane (Nassoy & 

Lamaze, 2012). Giving the rising interest on caveolae in the cell mechanical response, my 

PhD work focused on their specific role in human Cav3 related muscle diseases, a less 

explored field of investigation.  

To do so, we studied human myoblasts that were isolated and immortalized from healthy 

patients, or bearing the Cav3 P28L or Cav3 R26Q mutation. These myoblasts can 

differentiate into myotubes, allowing us to investigate the effect of the endogenous 

expression of Cav3 mutations and in a cell type close to primary muscle cells (Mamchaoui 
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et al., 2011). The determination of Cav3 protein expression and localization, combined 

with structural EM analyzes of wild type (WT) and mutant myotubes showed that the 

retention of Cav3 mutants in the Golgi complex led to a drastic decrease of the amount of 

caveolae structures at the plasma membrane of mutant myotubes.  

We next analyzed how this defect could impact cell membrane tension and integrity upon 

mechanical stress. Membrane tension measurements, performed using the nanotube 

pulling technique combined with optical tweezers, revealed a lack of membrane tension 

buffering in mutant myotubes that were submitted to a hypo-osmotic shock. This 

translated into failed mechanoprotection in mutant myotubes as demonstrated with a 

membrane bursting assay. 

Considering the possible role of caveolae mechanics in signaling (Nassoy & Lamaze, 2012), 

we next wanted to know whether the interleukin-6 signaling pathway could be differently 

regulated in mutant and wild type myotubes under rest and upon mechanical stress.  

Indeed, IL6 has been described as a major cytokine that is secreted by muscle cells during 

physical exercise (Ostrowski et al., 1998; Steensberg et al., 2002). Furthermore, we 

hypothesized that the IL6 signaling pathway could be regulated by Cav3 and/or caveolae, 

as one of its receptor subunit gp130 and the associated JAK kinases bear putative 

caveolin binding motifs, that could interact with the corresponding caveolin scaffolding 

domain of Cav3. As a matter of fact, by monitoring the IL6 signaling pathway in WT, Cav3 

mutants, and Cav3 depleted myotubes, we found that Cav3 could negatively regulate the 

IL6 signaling pathway. Furthermore, experiments combining Cav3 depletion and hypo-

osmotic shocks in human myotubes revealed that the IL6 signaling pathway was also 

negatively regulated by mechanical stress in a Cav3-dependent manner. 

Finally, we made the interesting discovery that the Cav3 mutant myotubes reproduce the 

phenotype of Cav3 depletion in WT myotubes. We could also induce the formation of 

caveolae at the plasma membrane and rescue the mechanoprotection and 

mechanosignaling functions by expressing WT CAV3 in mutant myotubes. Altogether, our 

results establish for the first time a general defect of the cell mechano-response in human 
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Cav3 mutant myotubes, as a consequence of the impossibility to assemble a functional 

reservoir of caveolae at the plasma membrane and to control IL6 stimulation through the 

mechanical release of free Cav3. 

 
The detailed methods are described in the next chapter, followed by the detailed results 
presented in the form of an article in preparation for submission.  
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4.2 Method 

 

Myoblast differentiation 
 
Myoblast are plated at 80-100% confluency on a 0.01% matrigel coated surface to 

avoid detachment of future myotubes. The medium is then switched with DMEM 

high-glucose Glutamax supplemented with 0.1% of insulin for 4 days. Myoblast 

are thus serum starved, which allows the differentiation. Myotubes are defined by 

the presence of at least two nuclei in the cell. In all experiments performed, 

myotubes are 4 days differentiated myotubes. Except indicated differently, cells 

are grown and differentiated on cell culture treated dishes, plates or flasks.  

 

Immunoblotting 
 

After indicated treatment, cells were lysed in sample buffer (62.5 mM Tris/HCl pH 

6.0, 2% v/v SDS, 10% glycerol v/v, 40mM dithiothreitol and 0.03% w/v phenol 

red). Lysates are loaded on a pre-cast polyacrylamide gel, together with a protein 

ladder to serve as size reference, and submitted to electrophoresis. Proteins are 

then transferred on a nitrocellulose membrane using a semi-dry transfer 

apparatus. The membrane is saturated upon incubation in Tris-buffer saline with 

0.1% tween20 (TBST) supplemented with 5% BSA for at least 20 min. The 

membrane is then incubated with indicated primary antibodies (O/N at 4°C at 

1/1000 for all antibodies used) in TBST 5% BSA, washed three times for 5 min 

with TBST and incubated with indicated horseradish peroxidase- conjugated 

secondary antibody (1 h at RT at 1/5000 for all antibodies used) in TBST 5% BSA. 

After three washes of 5 min with TBST, the chemiluminescence signal is revealed 

using Pierce™ ECL Western Blotting Substrate, SuperSignal West Dura Extended 

Duration Substrate or SuperSignal West Femto Substrate. Acquisition and 

quantification were performed with a ChemiDoc MP Imaging System. Protein 



!
!
!

?P!

levels of expression are quantified by calculating the ratio between the intensity 

of the signal corresponding to the protein of interest and the one of either tubulin 

or clathrin heavy chain, which serve as loading control. 

 

Immunofluorescence 
 

Myoblasts are differentiated into myotubes on coverslips coated with 0.01% 

matrigel. For Cav3, Cav1, MF-20 and GM130 staining, myotubes are fixed with 

4% PFA for 10min, quenched in 50 mM NH4Cl and then permeabilized with 0.2% 

BSA and 0.05% saponin in PBS for 20 min. Cells are incubated sequentially with 

indicated primary (dilution: Cav3 1/250, Cav1 1/500, MF-20 1/20 and GM130 

1/50) and fluorescence-conjugated secondary antibody (1/500 for all antibodies) 

in permeabilization buffer for 1h at RT. For pSTAT3 staining, cells are fixed and 

permeabilized with cold methanol for 15 min at -20°C. After washes with PBS 

0.2% BSA, cells are incubated sequentially with indicated primary (pSTAT3 1/75) 

and fluorescence-conjugated secondary antibody (1/500 for all antibodies) in PBS 

0.2% for 1h at RT. Coverslips are then mounted in Fluoromount-G mounting 

medium supplemented with 2 µg/mL of DAPI and are dried O/N at RT. 

Acquisition of images are done using a spinning disk microscope.  

 
Electron microscopy 
 

Epon embedding was used to preserve the integrity of cell structures. Myotubes 

were fixed sequentially for 1 h at RT with 1.25% glutaraldehyde in 0.1 M Na-

Cacodylate and then overnight at 4°C. Cells were washed extensively with 0.1 M 

Na-Cacodylate pH 7.2. Membrane fixation was performed for 1 h at RT with 1% 

OsO4 in 0.1 M Na-Cacodylate pH 7.2. Cells were dehydrated by incubation with 

aqueous solutions of ethanol at increasing concentrations (50, 70, 90, then 100%, 

each for 10 min at RT). Embedding was finally performed in LX112 resin. Cells 
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were infiltrated with a 1:1 LX112:ethanol solution, washed with LX112, and 

embedded overnight at 60°C in LX112 resin. Ultrathin 65 nm sections were sliced 

using a Leica UCT ultramicrotome and mounted on nickel formvar/carbon-coated 

grids for observations. Contrast was obtained by incubation of the sections for 10 

min in 4% uranyl acetate followed by 1 min in lead citrate. Electron micrographs 

were acquired on a Tecnai Spirit electron microscope (FEI, Eindhoven, The 

Netherlands) equipped with a 4k CCD camera (EMSIS GmbH, Münster, Germany). 

Myotubes were defined by cells containing at least two nuclei and caveolae were 

defined according to their morphology and size, as it was extensively described in 

the literature. 

 
Micropatterning 
 

18 mm diameter coverslips are coated with PLL-g-PEG (poly L-lysine and 

polyethylene glycol) for 30min at RT. Coated corverslips are then washed 

successively in PBS and water, and dried. Coverslips are then placed on a photo-

mask on top of a thin layer of water, and are illuminated with UV to destroy the 

PLL-g-PEG according to the pattern imposed by the mask, in our case in a shape 

of lines of 10 µm with a separation of 60 µm between the lines. Coverslips are 

kept at 4°C. 

 
Force measurements 
 

Myotubes are differentiated on line micropattern coverslips coated with 0.01% 

matrigel. Plasma membrane tethers were extracted from cells by a concanavalin A 

coated bead (3 "m in diameter) trapped in optical tweezers. The optical tweezers 

are made of a 1064 nm laser beam (ytterbium fiber laser, ! = 1064 nm, TEM 00, 5 

W, IPG Photonics, Oxford, MA) expanded and steered (optics by Elliot Scientific, 

Harpenden, UK) in the back focal plane of the microscope objective (Apo-TIRF 
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100Å~ NA 1.45, Nikon). The whole setup was mounted on a Nikon Eclipse-Ti 

inverted microscope. The sample was illuminated by transmitted light, and movies 

were acquired at 10 Hz with an EM-charge-coupled device camera (Andor iXon 

897) driven by Micro-Manager. The fine movements and particularly the 

translational movement necessary to pull the membrane tether were performed 

using a custom-made stage mounted on a piezoelectric element (P753, Physik 

Instrumente, Karlsruhe, Germany) driven by a servo controller (E665, Physik 

Instrumente) and a function generator (Sony Tektronix AFG320). 

Calibration was performed using an oscillatory modulation driven by a function 

generator 

and measuring the response of the bead to an oscillatory motion of the stage. We 

measured k = 16P pN/("m.W), where P is the laser power. This relationship is 

linear in the laser power range used for the experiments (0.4–2 W). The 

membrane tether was held at constant length to measure the static force. For 

measuring membrane tension changes due to hypo-osmotic shock, a first tether 

was first pulled at 300 mOsm (iso condition). A second tube was pulled on the 

same cell 5 minutes after diluting the medium with milliQ water to obtain 45 

mOsm. The position of the bead used to compute tether forces was detected 

from the images using a custom ImageJ macro.  

 
Membrane burst assay 
 

Myotubes are differentiated on line micropattern coverslips coated with 0.01% 

matrigel. Myotubes are incubated in 5 "g/mL of calcein-AM, a permeant dye that 

becomes fluorescent once it enters intact cells, and 50 "g/mL of DAPI to 

distinguish myotubes from myoblasts, in differentiating medium for 15 min at 

37°C in the dark. Medium was then switched back with fresh differentiation 

medium to wash out the excess of calcein-AM and DAPI. The medium is then 

switched again with a 30 mOsm hypo-osmotic shock medium obtained after a 
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dilution of 10% medium and 90% H2O, supplemented with 2 mg/mL of PI, a non 

permeant dye that binds to DNA and becomes fluorescent in cells with a 

damaged membrane. Hypo-osmotic shock is used as a mechanical stress as it 

induces cell swelling. Immediately after medium switching, pictures are taken 

every minute for 10 min using a videomicroscope. This experiment allows us to 

study the membrane integrity of WT and mutant myotubes, as the concomitant 

loss of calcein-AM and appearance of PI fluorescence in a given myotube 

indicates a membrane bursting event. Membrane integrity is determined through 

the quantification of the percentage of myotubes that burst and the mean time of 

hypo-osmotic shock required for a myotube to burst. This assay allows us also to 

study membrane repair, as the concomitant calcein-AM retention and the 

appearance of PI fluorescence in a given myotube indicates a membrane repair 

event. Membrane repair is determined through the quantification of the 

percentage of myotubes that burst and have a repaired membrane.  

 
IL6 stimulation 
 

Prior to stimulation, myotubes are incubated in insulin free DMEM medium and 

are thus starved for 4 h. 

STAT3 and pSTAT3 immunoblotting:  

For IL6 stimulations done in cells at rest, the medium is switched for the indicated 

time with DMEM supplemented with 0.2% BSA and 10 ng/mL of human 

recombinant IL6 at 37°C. For IL6 stimulation done in cells submitted to a hypo-

osmotic shock, cells are successively incubated in a 75 mOsm hypo-osmotic shock 

medium (75% H2O and 25% DMEM) for 5 min at 37°C and in the same medium 

supplemented with 10 ng/mL of human recombinant IL6 for 5 min at 37°C. For IL6 

stimulation done in cells submitted to cyclic stretch, myoblasts are grown and 

differentiated on stretchable plates coated with 10 µg/mL fibronectin. The plates 
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are then placed in a stretch device (Flexcell system, Flexcell international) and 

were subjected or not to 30 min of cyclic stretch (10% elongation, 0.5Hz). 

Immediately after stretching, the medium was switched with DMEM with 0.2% 

BSA and supplemented or not with 10 ng/mL of human recombinant IL6 for 5 

min. Immediately after IL6 stimulation, Cells are lysed and samples are analyzed 

by immunoblotting. For the analysis, pSTAT3 levels were quantified by calculating 

the ratio between pSTAT3 and STAT3, both normalized to Tubulin signal. 

pSTAT3 nuclear translocation in IF:  

Myoblasts are grown and differentiated on 12 mm diameter coverslips coated 

with 0.01% matrigel. Cells are stimulated with 10 ng/mL IL6 as described above 

for 0min or 15min and were then fixed as described in the section 

immunofluorescence and were analyzed for pSTAT3 staining and sub-cellular 

localization by immunofluorescence. Quantification of pSTAT3 nuclear 

translocation specifically in myotubes are done by calculating the ratio between 

the pSTAT3 fluorescent intensity in the nuclei on the one in the cytoplasm. Nuclei 

are observed with a DAPI staining, and myotubes are identified as cells containing 

two or more nuclei.  

 
STAT3 related gene expression assay 
 

Myotubes are starved 4h prior to lysis, and RNA extraction is performed using an 

extraction kit. To obtain corresponding cDNA, reverse-transcription reaction is 

performed with 1 µg of RNA per reaction, using high capacity cDNA reverse-

transcription kit. Samples are placed in a PCR machine with the following 

program: 10 min at 25°C, 2 h at 37°C, 5 min at 85°C and 4°C hold. qPCR is then 

performed on 50 ng of cDNA for a reaction in a total volume of 20 µL using the 

LightCycler 480 Probes Master kit and Taqman gene expression assays that allow 

the detection of the following genes: FBXO32, SOCS3, ACTC1 and MYH8. 

GAPDH serves as a house-keeping gene. Samples are then placed in a 
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LightCycler 480 instrument qPCR machine with the following program: 10 mmin 

at 95°C, 45 cycles of 10 min at 95°C + 30 min at 60°C and 1 moin at 72)C, 30 min 

at 40°C. Relative expression levels were calculated using !!CT method with fold 

changes calculated as 2–!!CT.  

 
RUSH 
 

HeLa cells are transfected with  500ng of Cav3 WT, Cav3 P28L or Cav3 R26Q 

RUSH constructs (constructs used: Str-Ii_SBP-EGFP-Cav3, Str-Ii_SBP-EGFP-Cav3-

P28L and Str-Ii_SBP-EGFP-Cav3-R26Q), Str coding for streptavidine, Ii coding for 

the Invariant chain of the major histocompatibility complex and serves as ER hook, 

SBP coding for streptavindin binding protein, and EGFP coding for eGFP) using a 

lipofectamin 3000 kit in 6 well plates. 24 h after transfection, cells are incubated at 

the indicated times in DMEM supplemented with 40µM of biotin, and 

immunofluorescence was performed as described in the section 

Immunofluorescence using a GM130 antibody. Cav3 RUSH protein localization is 

visualized thanks to its eGFP tag. Acquisition of picture is done using a wide-field 

epifluorescence microscope.  

 
 
Co-immunoprecipitation 
 

To obtain enough material, myoblasts grown and differentiated in at least two 

petri dishes of 10 cm diameter and are lysed with a lysis buffer (TNE 150 mM 

NaCl with 1% NP40 and 1/1000 of protease inhibitor cocktail). Samples are 

centrifuged 5 min at 13000 rpm to get rid of membranes and an aliquot of 

supernatant is kept to serve as input. The rest of the samples are further 

incubated with 3µg of Cav3 antibody in the lysate buffer O/N at 4°C under 

agitation to allow capturing of Cav3 and its interacting partners. GFP antibody is 

used as a negative control. Samples are then incubated with 25 µL of magnetic 
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beads coated with protein A for 1 h et 4°C under agitation to allow capturing of 

the antibody coupled with the protein of interest and its partners. Beads are 

harvest using a magnetic rack, washed to get rid of unspecific binders and 

proteins at the surface of the beads are put in the buffer used for 

immunoblotting. Immunobloting is performed as described in the section 

Immunoblotting.  
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4.3 Article 
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Abstract  
Caveolin-3 is one of the major components of caveolae in muscle cells. Mutations in the 

CAV3 gene cause different type of muscle disorders mostly characterized by defects in 

membrane integrity and repair, deregulation in the expression of certain muscle proteins 

and deregulation of muscle associated signaling pathways. We show here that the lack of 

functional caveolae at the plasma membrane of myotubes derived from patients bearing the 

CAV3 P28L and R26Q mutations results in an abnormal mechanoresponse. Mutant 

myotubes can no longer buffer the increase of membrane tension induced by mechanical 

stress and present an hyperactivation of the IL6/STAT3 signaling pathway both at rest and 

under mechanical stress. The lack of mechanical control of the IL6/STAT3 signaling 

pathway by caveolae leads to a chronic activation of the pathway and a higher expression 
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of muscle specific genes. The defects in mechanosensing and mechanosignaling observed 

in mutant myotubes could be reversed by reassembling a functional pool of caveolae 

through re-expression of WT Cav3. Our findings bring more mechanistic insight into Cav3 

associated muscle disorders by showing a general defect in the mechanoresponse of 

human myotubes expressing the CAV3 P28L and R26Q mutations. 

 

Introduction 

Caveolae are cup-shaped plasma membrane invaginations that were first observed in the 

50’s by Palade and Yamada on electron micrographs from vascular and gall bladder tissues 

(Palade, 1953, Yamada, 1955). Caveolae present a specific protein signature involving two 

main families of proteins, caveolins (caveolin-1, -2 and -3), and cavins (cavin-1, -2, -3 and -

4) (Aboulaich et al., 2004; Hansen, Howard, & Nichols, 2011; Hill et al., 2008; Morén et al., 

2012; Rothberg et al., 1992; Scherer et al., 1996; Way & Parton, 1995). Caveolins and 

cavins are expressed in almost every type of cells, except for caveolin-3 (Cav3) and cavin-

4, which are expressed only in smooth and striated muscle cells (Tagawa et al., 2008; Way 

& Parton, 1995). Similarly to Cav1 in non muscle cells, Cav3 is necessary for the formation 

of caveolae at the plasma membrane of muscle cells (Minetti et al., 2002). 

Caveolae have long been associated with several important cellular functions including 

endocytosis, lipid metabolism and cell signaling (Cheng & Nichols, 2016; Lamaze et al., 

2017). More recently, a new function of caveolae was established as mechanosensors that 

play an essential role in cell mechanoprotection both in vitro and in vivo (Garcia et al., 2017; 

Y.-W. Lim et al., 2017; Lo et al., 2015; Sinha et al., 2011). The mechanical function of 

caveolae is likely to explain their particular abundance at the surface of specialized cells 

that undergo chronic mechanical stress, such as adipocytes, endothelial and muscle cells. 

Moreover, mutations or abnormal expression of caveolae components have been 

associated with lipodystrophy, vascular dysfunction, cancer and muscle disorders (reviewed 

in Lamaze et al., 2017; Le Lay & Kurzchalia, 2005). The molecular mechanisms underlying 

caveolin-associated diseases remain poorly understood. 

In this study, we investigated the mechanical role of caveolae in caveolinopathies, a family 

of muscle diseases involving mutations in the CAV3 gene. Human caveolinopathies can 

affect both cardiac and skeletal muscle tissues, and encompass five distinct genetic 

disorders: Rippling Muscle Disease (RMD), Distal Myopathies (DM), HyperCKemia (HCK), 

Limb-Girdle Muscular Dystrophy 1C (LGMD-1C), and Familial Hypertrophic Cardiomyopathy 
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(HCM) (Gazzerro et al., 2010)., These disorders share nevertheless common characteristics 

such as mild muscle weakness, high levels of serum creatine kinase, variations  in muscle 

fiber size and an increased number of central nuclei as observed in muscle biopsies (Betz 

et al., 2001; Carbone et al., 2000; Minetti et al., 1998; Tateyama et al., 2002).  

We focused our investigations on two representative CAV3 mutations namely Cav3 P28L 

and Cav3 R26Q, which are respectively responsible for HCK (Merlini et al., 2002), and 

RMD, HCK and LGMD-1C (Sotgia et al., 2003). These two heterozygous mutations both 

lead to the abnormal retention of Cav3 in the Golgi complex. The P28L and R26Q Cav3 

mutations have so far been associated to deregulations of some signaling pathways 

(Brauers et al., 2010; Sotgia et al., 2003), defects in membrane repair (Cai et al., 2009; 

Hernandez-Deviez et al., 2008) and defect in the mechanoprotection of the muscle tissue 

(Lo et al., 2015). These studies were conducted either in vivo in transgenic mice or 

zebrafish or in vitro in the mouse muscle cell line C2C12 or fibroblasts overexpressing a 

mutant form of Cav3, and the mechanical aspect of caveolae have been poorly explored in 

this context. 

In this study, we investigated whether human myotubes from patients bearing the 

Cav3 P28L or Cav3 R26Q mutations presented defects in the mechanoresponse mediated 

by caveolae at the plasma membrane. We also tested the hypothesis that the mechanical 

flattening of caveolae could be involved in the selective regulation of signaling pathways 

(Nassoy & Lamaze, 2012), by studying interleukin-6 (IL6) signaling, a pathway that plays an 

essential role in muscle tissue homeostasis (Muñoz-Cánoves et al., 2013). 

We show here that the Cav3 P28L and Cav3 R26Q myotubes are unable to 

assemble bona fide caveolae at the plasma membrane, leading to a loss of membrane 

tension buffering and membrane integrity under mechanical stress. We also found that the 

absence of functional caveolae impairs the regulation of the IL6/STAT3 pathway in the 

mutant myotubes both at rest and under mechanical stress. As a result, the IL6 signaling 

pathway is chronicly hyperactivated and several of the STAT3 target genes are highly 

expressed. Finally, the overexpression of WT Cav3 in mutant myotubes was sufficient to 

assemble a functional pool of caveolae and rescue mechanosensing and IL6/STAT3 

signaling pathway regulation in these cells. 
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Results 
 

Drastic decreased number of caveolae at the plasma membrane of Cav3 mutant 
myotubes. 
To address the impact of Cav3 mutations in muscle disorders, we analyzed WT, Cav3 P28L 

and Cav3 R26Q myotubes obtained from immortalized myoblasts which were isolated from 

healthy or Cav3 mutant patients and differentiated for 4 days. The state of myotube 

differentiation was validated by the expression level of the differentiation marker MF-20 

(myosin II heavy chain) in the three cell lines (Supplementary Fig. 1a). We first analyzed the 

presence and the ultrastructure of caveolae at the plasma membrane of myotubes by 

electron microscopy. In WT myotubes, we observed many structures corresponding to bona 

fide caveolae that were directly connected to the plasma membrane or to larger vacuoles of 

variable size deeper inside the cell known as rosettes, and that could still be connected to 

the plasma membrane (Fig. 1a). In contrast, few caveolae if any could be detected at the 

plasma membrane of mutant myotubes, and no large vacuolar structures were observed.  

This drastic decrease of caveolae number led us to investigate the localization of Cav3, 

since it is required for caveolae assembly at the plasma membrane (Minetti et al., 2002). 

Immunoblot analysis showed a reduced expression of mutant Cav3 as compared to WT 

(Fig. 1b), with a shifted band for the R26Q mutant corresponding to the Cav3 mutant form, 

as observed previously (Sotgia et al., 2003). Cav3 immunostaining revealed that WT Cav3 

was mainly associated with the plasma membrane of myotubes and also partially localized 

in the Golgi complex, defined by GM130 staining (Fig. 1c). On the contrary, in the P28L and 

R26Q myotubes, Cav3 showed a drastic accumulation in the Golgi complex, as shown by 

the strong colocalization with GM130, in agreement with published data (Brauers et al., 

2010; Sotgia et al., 2003). These data confirm that the Cav3 P28L and R26Q mutations 

retain Cav3 in the Golgi complex, which results in a drastic reduction of the number of 

caveolae present at the plasma membrane of the Cav3 mutant myotubes. 

After 4 days of differentiation, Cav1 could still be expressed in myotubes and could 

potentially participate to the formation of caveolae independently from Cav3. We therefore 

analyzed Cav1 expression in myotubes after 4 days of differentiation and found that Cav1 

was indeed expressed to the same level in the three cell lines (Supplementary Fig. 1b). We 
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also found that Cav1 colocalized perfectly with Cav3 at the plasma membrane and to a 

lesser extent at the Golgi complex in WT myotubes whereas it was mainly retained in the 

Golgi complex in Cav3 P28L and R26Q myotubes (Supplementary Fig. 1c). This indicates 

that Cav1 can form hetero-oligomers with Cav3, and that the Cav3 P28L and R26Q mutants 

are dominant on Cav1 localization.  

 

Cav3 P28L and R26Q myotubes exhibit major defects in membrane tension buffering 
and mechanoprotection under mechanical stress. 
To know whether the strong decrease in caveolae number could induce defects in cell 

mechanoprotection, we first determined if the Cav3 P28L and R26Q myotubes could buffer 

the increase of membrane tension induced by a mechanical stress. We thus applied a 45 

mOsm hypo-osmotic shock to aligned myotubes and we measured the apparent membrane 

tension before and after 5 min of hypo-osmotic shock using membrane nanotube pulling 

with optical tweezers. While the mutant myotubes showed no significant changes in 

membrane tension in resting condition (Fig. 2a), they showed a significant increase of 

membrane tension (P28L: 63.1% ± 9.8%; R26Q: 93.8% ± 11.2%) under 45 mOsm hypo-

osmotic shock compared to WT myotubes (33% ± 9.7%) (Fig. 2b). These results clearly 

show that the Cav3 P28L and R26Q mutant myotubes have lost the ability to buffer 

membrane tension variations induced by intense mechanical stress. 

We next tested whether the lack of membrane tension buffering could result in 

insufficient mechanoprotection and increased membrane fragility in mechanically 

challenged mutant myotubes. We designed an assay to quantify the percent of cells that 

rupture their membrane under mechanical stress. This assay (membrane burst assay) 

consists in incubating aligned myotubes with calcein-AM, a permeant fluorescent dye 

(green) that becomes fluorescent only inside the cell, and with the nucleus specific dye 

DAPI to specifically visualize myotubes (Supplementary Fig. 2b). Live imaging was 

performed on myotubes subjected for 10 min to 30 mOsm hypo-osmotic shock in the 

presence of propidium iodide (PI), a non-permeant fluorescent dye (red) that cannot enter 

cells if the plasma membrane is intact. The concomitant decrease of calcein-AM 

fluorescence and the appearance of PI fluorescence in the nucleus indicate the loss of 

membrane integrity (Fig. 2c). After 10 min of hypo-osmotic shock, in comparison to WT 

myotubes, mutant myotubes not only showed a higher percentage of cells that bursted out  

(WT: 52.9% ± 2.84%; P28L: 78.26% ± 2.38%; R26Q: 88.56% ± 1.93%) but also a shorter 
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time of resistance to bursting (WT: 4.5 min ± 0.2, P28L: 2.1 min ±0.1, R26Q: 2.7 min ±0.2) 

(Fig. 2d).  Importantly, when we apply a milder hypo-osmotic shock (150 mOsm), for which 

no increase in membrane tension could be measured, the plasma membrane of all three 

cell lines remained intact after 10 min of shock (Supplementary Fig. 2b and 2c). 

In agreement with the absence of caveolae observed at the plasma membrane of the 

mutant myotubes (Fig. 1), when WT myotubes were depleted for Cav3, we measured a 

percentage of bursted out cells that was similar to mutant myotubes (siCtl: 22.7% ± 1.5%, 

siCav3: 88.93% ± 1.4%; Fig. 2e and 2f; Supplementary Fig. 2d). Likewise, Cav3 depleted 

myotubes significantly bursted out faster as compared to control myotubes (siCtl: 3.1 min ± 

0.2, siCav3: 2.4 min ± 0.1) (Fig. 2e and 2f). Together, our results demonstrate that the Cav3 
P28L and R26Q mutant myotubes, as well as the myotubes depleted for Cav3, are unable 

to provide the mechanoprotection that is required to maintain the integrity of the plasma 

membrane under mechanical stress. 

 

Chronic hyperactivation of the IL6/STAT3 signaling pathway in Cav3 P28L and R26Q 

mutant myotubes. 
Considering the key role of caveolae and caveolin in intracellular signaling (Lamaze et al., 

2017), we next investigated the possible impact of the loss of functional caveolae on some 

of the muscle signaling pathways. We focused our analysis on the IL6/STAT3 signaling 

pathway that has been associated with satellite cells exhaustion and muscle wasting 

(Bonetto et al., 2011; Price et al., 2014; Tierney et al., 2014). Furthermore, the IL6 signal 

transducer glycoprotein gp130, which, together with the IL6 receptor subunit, assemble the 

IL6 receptor, has been localized in caveolae in a myeloma cell line (Podar et al., 2003), 

suggesting a potential regulation of the IL6 signaling pathway by caveolae. IL6 binding to 

the IL6 receptor is classically followed by the activation of receptor-bound JAK1 and JAK2 

kinases, which in turn phosphorylate the signal transducer and activator of transcription 3 

(STAT3) that is then translocated as a dimer to the nucleus where it activates the 

transcription of IL6 sensitive genes (Heinrich et al., 2003). 

We therefore monitored the level of STAT3 tyrosine phosphorylation (pSTAT3) in 

myotubes stimulated for 5 and 15 min with physiological concentrations of IL6. At steady 

state, in the absence of IL6 stimulation, little if any phosphorylation of STAT3 was detected 

in WT myotubes. In contrast, we found that the level of pSTAT3 was already high in Cav3 

P28L and R26Q mutant myotubes in the absence of IL6 stimulation. While IL6 stimulation 
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for 5 and 15 min led to increased levels of pSTAT3 in WT myotubes, we observed a higher 

level of pSTAT3 in Cav3 P28L and R26Q mutant myotubes at similar times of stimulation 

(Fig. 3a, b). To rule out a possible contamination of cell lysates by undifferentiated 

myotubes, we also directly investigated the nuclear translocation of pSTAT3 by 

immunofluorescence in differentiated myotubes characterized by the presence of multiple 

nuclei (Fig. 3c, d). Again, we could detect a higher pSTAT3 signal in the nuclei of mutant 

myotubes as compared to WT at steady state (WT: 1.62 ± 0.1; P28L: 2.06 ± 0.2; R26Q: 

2.02 ± 0.2), and after 15min of IL6 stimulation, although it was less pronounced in P28L 

mutants (WT: 3.03 ± 0.2; P28L: 3.66 ± 0.2; R26Q: 4.8 ± 0.4). These data confirm the 

immunoblot analysis, and show that the IL6/STAT3 signaling pathway is hyperactivated in 

the Cav3 P28L and R26Q mutant myotubes both at steady state and upon IL6 stimulation.  

We next investigated if the regulation of the IL6/STAT3 pathway was dependent on 

the presence of functional caveolae at the plasma membrane and thus on the expression of 

Cav3. We therefore repeated the experiments on WT myotubes depleted for Cav3. By 

immunoblot analysis, we found that Cav3 depletion by siRNA led also to an hyperactivation 

of the IL6 pathway with an overall activation of STAT3 (Fig. 3e, f) (0 min: siCtl: 0.11 ± 0.1, 

siCav3: 0.2 ± 0.1; 5 min: siCtl: 0.33 ± 0.2, siCav3: 0.98 ± 0.4; 15 min: siCtl: 0.4 ± 0.1, 

siCav3: 2.12 ±0.2). These results indicate that Cav3 is a negative regulator the IL6/STAT3 

pathway in myotubes and that depletion of Cav3 in WT myotubes reproduces the phenotype 

of the Cav3 mutant phenotypes. It demonstrates that the absence of Cav3 and/or caveolae 

at the plasma membrane of mutant myotubes is responsible for the constitutive 

hyperactivation of the IL6/STAT3 signaling pathway. 

STAT3 is a key transcription factor which controls the transcription of many 

downstream genes whose products mediate the pleiotropic effects of STAT3 in 

physiological and pathological contexts (Levy & Lee, 2002). We therefore examined the 

consequences of IL6/STAT3 chronic activation on gene expression. In the context of muscle 

diseases, we investigated the transcription of muscle-specific genes as STAT3 was 

suggested to be involved in their regulation of (Bonetto et al., 2011). We focused our 

analysis on FBXO32 a gene known to be associated with muscle atrophy, and on the 

ACTC1, MYH8 and SOCS3 genes that are associated with muscle regeneration. SOCS3 

serves also as a positive control, as it is transcribed upon STAT3 activation and its gene 

product SOCS3 is a major actor in the negative regulation of the pathway (Heinrich et al., 

2003). Using quantitative PCR, we found an increased transcription of SOCS3, MYH8 and 
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ACTC1 genes, and little effect on the FBXO32 gene (SOCS3: WT 1, P28L 2.5 ± 0.58, 

R26Q: 2.95 ± 1.1; FBXO32: WT 1, P28L 2.33 ± 1.01, R26Q: 1.65 ± 0.59; MYH8: WT 1, 

P28L 15,15 ± 4,3, R26Q 5,24 ± 1,6; ACTC1: WT 1, P28L 3,37 ± 1,18, R26Q 12,3 ± 4,56) 

(Fig. 3g). These data strongly suggest that the high level of pSTAT3 found in the Cav3 P28L 

and R26Q mutant myotubes is responsible of the deregulation of several genes that could 

be involved in the muscular pathology. 

 

 

IL6/STAT3 mechanosignaling is impaired in Cav3 P28L and R26Q mutant myotubes. 
If caveolae and caveolins have often been associated with signalin (Jade P.X. Cheng & 

Nichols, 2016; Lamaze et al., 2017), the integration of this function with their role in 

mechanical stress has not been explored. We have proposed that the mechano-dependent 

cycle of caveolae disassembly and reassembly could be linked to the regulation of signaling 

by caveolae (Lamaze et al., 2017; Nassoy & Lamaze, 2012). We thus analyzed whether the 

regulation of the IL6/STAT3 pathway by caveolae could depend on mechanical stress. 

When myotubes were subjected to hypo-osmotic shock and stimulated with IL6, we 

observed a dramatic decrease of STAT3 activation (approx. 80%) in WT myotubes whereas 

no significant changes were observed in Cav3 P28L and R26Q mutant myotubes (Fig. 4a, 

b). We also tested the effect of mechanical stretching on IL6/STAT3 signaling as this is 

more relevant to the kind of stress experienced by skeletal muscles during exercise. When 

we applied a 10% cyclic stretch for 30 min to WT myotubes followed by IL6 stimulation, we 

also observed a drastic reduction of STAT3 activation, confirming that the IL6/STAT3 

pathway is tightly regulated by mechanical cues (Supplementary Fig. 3). To know whether 

the mechanical regulation of IL6 signaling requires the presence of functional caveolae, we 

also applied an hypo-osmotic shock to WT myotubes depleted of Cav3. While no effect was 

observed at steady state, we found that STAT3 activation was slightly decreased by 

mechanical stress (approx. 20%) in WT myotubes when no changes were observed in Cav3 

depleted myotubes (Fig. 4c-d. The poor adhesion of Cav3 P28L and R26Q mutant 

myotubes on the stretching membrane did not allow to perform cycling stretching. 

Nevertheless, these results confirm that the IL6 pathway is negatively regulated by 

mechanical stress in myotubes and that this regulation is lost in the absence of functional 

caveolae as shown in Cav3 P28L and R26Q mutant myotubes and in WT myotubes 

depleted for Cav3. It further confirms that the defects of mechanoprotection and IL6/STAT3 
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signaling regulation observed in the Cav3 P28L and R26Q mutant myotubes result from the 

lack of caveolae assembly at their plasma membrane. 

 

Re-expression of WT Cav3 rescues a normal phenotype in Cav3 P28L myotubes. 
Our experiments show that the depletion of Cav3 in WT myotubes reproduces the defects 

observed in P28L and R26Q myotubes, implying that the absence of Cav3 at the plasma 

membrane, as a result of its abnormal retention in the Golgi complex, is responsible for the 

observed phenotype. To validate this hypothesis, we generated stable WT and P28L 

myoblasts expressing either GFP or Cav3 WT tagged with GFP (Cav3-GFP). 

Immunofluorescent microscopy confirmed that re-expressed Cav3-GFP was mainly 

localized at the plasma membrane whereas endogenous Cav3 remained colocalized with 

the Golgi marker GM130 in Cav3-GFP P28L myotubes (Fig. 5a and supplementary Fig. 4a). 

We next performed electron microscopy to see if Cav3 WT re-expression would allow to 

reconstitute a pool of structurally defined caveolae at the plasma membrane of Cav3 P28L 

myotubes expressing GFP or Cav3 GFP. While the plasma membrane of control GFP 

myotubes presented very few, often isolated, caveolae structures, Cav3 rescued myotubes 

presented higher amount of bona fide caveolae, including larger vacuolar structures with 

connected caveolae i.e. rosettes, as observed above in WT myotubes (Fig. 5b and 1c). 

These observations confirm that the decrease of caveolae numbers in Cav3 P28L myotubes 

is a direct consequence of the retention of Cav3 P28L in the Golgi complex.  

The next question was to know whether the reconstitution of the caveolae reservoir at 

the plasma membrane of Cav3 P28L myotubes was sufficient to rescue the 

mechanoprotection and mechanosignaling properties. We therefore monitored the 

resistance to bursting of P28L GFP and P28L Cav3-GFP myotubes as described above. 

Notably, Cav3-GFP P28L myotubes showed a dramatic increase in the resistance to 

bursting under hypo-osmotic shock as compared to P28L GFP myotubes (P28L GFP: 

49.01% ± 2.7%; P28L Cav3-GFP: 18.44% ± 2.1%). It also took a significantly longer time for 

P28L Cav3-GFP myotubes to burst out as compared to P28L GFP myotubes (GFP: 1.63 

min ± 0.09; Cav3-GFP: 2.28 min ± 0.21) (Fig. 5c, d). Finally, we analyzed the regulation of 

the IL6/STAT3 pathway by monitoring STAT3 phosphorylation and nuclear translocation in 

P28L GFP and P28L Cav3-GFP myotubes. At steady state, we observed a significant 

decrease of pSTAT3 activation and nuclear translocation in Cav3-GFP myotubes as 

compared to GFP myotubes, indicating that the re-expression of Cav3 was sufficient to 



!
!
!

P$!

reduce the hyperactivation of STAT3 observed at steady state in Cav3 P28L myotubes 

(P28L GFP: 2.53 ± 0.2, Cav3-GFP: 1.7 ± 0.1) (Fig 5e, f). Interestingly, we also found that 

the re-expression of Cav3-GFP in WT myotubes led to a decrease of pSTAT3 activation 

and nuclear translocation at steady state as compared to non transfected WT myotubes 

(Supplementary Fig. 4c). Altogether, these results show that Cav3 expression and 

localization at the plasma membrane of P28L myotubes was sufficient to rescue the lack of 

membrane integrity and the overactivation of the IL6 pathway described before. This allows 

us to conclude that the phenotype observed in mutant myotubes is due to a lack of Cav3 

and caveolae at the plasma membrane. 

 
Discussion 
The first Cav3 mutations associated with muscle disorders were described 20 years ago 

(Minetti et al., 1998). Since then, a lot of effort has been put in trying to understand how 

these mutations could alter muscle tissue integrity and cause the observed syndromes. Due 

to its localization at the plasma membrane of myotubes and at the sarcolemma of muscle 

fibers, Cav3 has been showed to regulate myoblast fusion (Bjerregard et al., 2014) and T-

tubule organization (Ferruccio Galbiati et al., 2001). Also, Cav3 interacts with the dystrophin 

complex (Song et al., 1996) and regulates the trafficking of dysferlin (Hernández-Deviez et 

al., 2006.), two proteins causing severe myopathies when deregulated. Furthermore, Cav3 

is involved in the regulation of different signaling pathways important for muscle function 

such as calcium (Weiss et al., 2008), the insulin/GLUT4/Akt pathway (Fecchi et al., 2006) or 

TrkA and EGFR signaling (Brauers et al., 2010). Finally, our group showed a role of Cav3 in 

membrane tension buffering and mechanoprotection of human myotubes (Sinha et al., 

2011). Furthermore, a recent study showed in an in vivo model of zebrafish expressing the 

R26Q mutation, that Cav3 was required for membrane integrity of muscle tissue (Lo et al., 

2015).  

In the present work, we studied human myotubes after differentiation from myoblasts that 

were isolated and immortalized from healthy patients or patients bearing either the P28L or 

the R26Q mutation. As it is likely that Cav3 and caveolae regulate several functions in 

myotubes, we chose to focus on two major but poorly explored functions of caveolae that 

could have an important impact on the integrity of muscle cells and tissue. We first studied 

mechanoprotection as this function recently described has not been extensively investigated 

in muscle cells and never in human myotubes. We demonstrate in this study that the Cav3 
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P28L and R26Q myotubes show a strong defect in mechanoprotection, with less resistance 

of the plasma membrane to mechanical stress. We show that this defect results from the 

absence of a caveolae reservoir at the plasma membrane which leads to a lack of 

membrane tension buffering under mechanical stress.  

We then studied the regulation of the IL6/STAT3 signaling pathway in resting myotubes or 

under mechanical stress. Indeed, we have proposed that the cycles of caveolae 

disassembly and reassembly induced by mechanical stress could have an impact on some 

signaling pathways (Nassoy & Lamaze, 2012). We chose to investigate the IL6 pathway as 

it is tightly associated to mechanical stress in muscle cells, and IL6 is mostly secreted 

during exercise (Kenneth Ostrowski et al., 1998). We could show for the first time that the 

Cav3 mutant myotubes present a deregulation of the IL6/STAT3 signaling pathway, as this 

pathway hyperactivated in these myotubes under resting conditions. This defect translated 

into increased gene expression of MYH8, SOCS3 and ACTC1, genes that have been 

associated with muscle regeneration, a process that may be important for the regulation of 

muscle tissue size. Whether the regulation of these genes depends directly on STAT3 still 

needs to be demonstrated. In addition, we show that the IL6 signaling pathway is negatively 

regulated by mechanical stress in a Cav3 dependent manner, and that this mechano-

regulation is lost in mutated myotubes. It is likely that this mechano-regulation of the 

IL6/STAT3 pathway allows a negative feedback loop to avoid a chronic activation of the 

pathway and to adapt it to the mechanical stress that myotubes constantly experience 

during their lifetime.  

Importantly, we also found that Cav3 mutant myotubes phenocopy Cav3 depleted 

myotubes. Furthermore, the defects in mechanoprotection and IL6 signaling regulation 

could be, at least partially, rescued in Cav3 P28L myotubes re-expressing the WT form of 

Cav3 and thereby reassembling functional caveolae at the plasma membrane.  In 

conclusion, our data also confirm that the retention of the Cav3 mutated forms in the Golgi 

complex is responsible for the absence of functional and morphologically defined caveolae 

at the plasma membrane of mutated myotubes. This absence leads both to deficient 

mechanoprotection and impaired mechano-regulation of the IL6/STAT3 signaling pathway, 

a pathway tightly linked to muscle mass and size. Mechanoprotection and proper regulation 

of muscle size are two features extremely important for general muscle integrity and it is 

easy to understand how alteration of these two processes can be deleterious for muscle 

tissue integrity, as it is often seen in muscular dystrophic patients.  
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Methods 
 
Cell lines. P28L and R26Q human myoblasts were immortalized by the platform for 

immortalization of human cells of the Institute of Myology as described in (Mamchaoui et al., 

2011). Briefly, myoblasts were transduced with lentiviral vectors encoding hTERT and cdk4 

and containing puromycin (P28L) or puromycin and neomycin (R26Q) selection markers. 

Transduced cells were selected with puromycin (1 µg/ml) for 6 days (P28L) or with 

puromycin (1 µg/ml) for 6 days and neomycin (1 mg/ml) for 10 days (R26Q). Cells were 

seeded at clonal density, and individual myogenic clones were isolated.  

For caveolin-3 expression, immortalized WT and P28L myoblasts were transduced with 

lentiviral vectors expressing WT caveolin-3 and a GFP reporter gene (MOI 5). A GFP 

lentiviral vector was used as control (MOI 5).  

  
Cell culture. All cells were grown at 37°C under 5% of CO2. All myoblasts cell lines were 

cultured in Skeletal Muscle Cell Growth Medium (Promocell) supplemented with 20% FCS 

(Gibco, Life technologies), 50 !g/mL of fetuine, 10 ng/mL of epidermal growth factor, 1 

ng/mL basic fibroblast growth factor, 10 !g/mL of insulin and 0,4 !/mL of dexamethasone 

(Promocell). Prior to any cell seeding, surfaces (well, coverslip, patterned coverslips) are 

coated with 0.01% of matrigel (v/v) (Sigma) for 15 min at 37°C. For myoblast differentiation, 

confluent cells (80-100% confluency) are put in DMEM high-glucose Glutamax (Gibco, Life 

Technologies), supplemented with 0.1% of insulin (v/v) (Sigma) for 4 days.  

 

Antibodies and reagents. Mouse anti-"Tubulin (Sigma-Aldrich, clone B512, T5168, 1/1000 

for WB); mouse anti-caveolin-3 (Santa cruz, clone A3, sc-5310, 1/1000 for WB, 1/250 for 

IF); rabbit anti-caveolin-1 (Cell signaling, 3238, 1/1000 for WB, 1/500 for IF); goat anti-

GM130 (Santa Cruz, clone P-20, sc-16268, 1/50 for IF); mouse anti-MF20 (kind gift of 

Vincent Mouly, 1/100 for WB, 1/20 for IF); mouse anti-STAT3 (Cell signaling, clone 124H6, 

9139, 1/1000 for WB); rabbit anti-pSTAT3 (Cell signaling, clone D3A7, 9145, 1/1000 for WB, 

1/75 for IF); Secondary antibodies conjugated to Alexa FITC, Cy3, Cy5 or horseradish 

peroxidase (Beckman Coulter or Invitrogen). DAPI (Sigma-Aldrich).  

 

RNA interference-mediated silencing. Myoblasts were transfected with small interfering 

RNAs (siRNAs) using HiPerFect (Qiagen) according to the manufacturer’s instructions at 
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days 0 and 2 of differentiation and were cultured in differentiation medium for a total f 4 

days. Experiments were performed on validation of silencing efficiency by immunoblot 

analysis using specific antibodies and normalizing to the total level of tubulin used as 

loading controls. 20 nM of a pool of four siRNA targeting Cav3 were used (SI03068730, 

SI02625665, SI02625658 and SI00146188, QIAGEN), Control siRNA (1022076, QIAGEN) 

was used at the same concentration and served as reference point. 

 

Immunoblotting. Cells were lysed in sample buffer (62.5 mM Tris/HCl pH 6.0, 2% v/v SDS, 

10% glycerol v/v, 40mM dithiothreitol and 0.03% w/v phenol red). Lysates were analyzed by 

SDS–PAGE and Western blot analysis and immunoblotted with the indicated primary 

antibodies and horseradish peroxidase- conjugated secondary antibodies. 

Chemiluminescence signal was revealed using Pierce™ ECL Western Blotting Substrate, 
SuperSignal West Dura Extended Duration Substrate or SuperSignal West Femto Substrate 

(Thermo Scientific Life Technologies). Acquisition and quantification were performed with 

the ChemiDoc MP Imaging System (Bio-rad).  

 

Immunofluorescence. Myoblasts were grown and differentiated on coverslips for 4 days. 

For Cav3, Cav1, MF-20, GM130 staining, cells are fixed with 4% PFA (v/v) (Sigma-Aldrich) 

for 10min at RT, quenched in 50 mM NH4Cl and then permeabilized with 0.2% BSA (v/v) 

and 0.05% saponin (v/v) (Sigma-Aldrich) in PBS for 20 min. Cells are incubated sequentially 

with indicated primary and fluorescence-conjugated secondary antibody in permeabilization 

buffer for 1h at RT.  For pSTAT3 staining, cells are fixed and permeabilized with cold 

methanol for 15 min at -20°C. After washes with PBS 0.2% BSA (v/v), cells are incubated 

sequentially with indicated primary and fluorescence-conjugated secondary antibody in PBS 

0.2% (v/v) for 1h at RT. In both protocols, coverslips are mounted in Fluoromount-G 

mounting medium (eBioscience) supplemented with 2 !g/mL of DAPI (Sigma-Aldrich). 

Acquisition of images are done using a spinning disk microscope (inverted Spinning Disk 

Confocal Roper/Nikon; Camera: CCD 1392x1040 CoolSnap HQ2 ; objective : 60x CFI Plan 

Apo VC).  

 

Electron microscopy. Epon embedding was used to preserve the integrity of cell 

structures. Myotubes were fixed sequentially for 1 hour at room temperature with 1.25% 

glutaraldehyde in 0.1 M Na-Cacodylate and then overnight at 4°C. 
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Cells were washed extensively with 0.1 M Na-Cacodylate pH 7.2. Membrane fixation was 

performed for 1 h at room temperature with 1% OsO4 in 0.1 M Na-Cacodylate pH 7.2. Cells 

were dehydrated by incubation with aqueous solutions of ethanol at increasing 

concentrations (50, 70, 90, then 100%, each for 10 min at room temperature). Embedding 

was finally performed in LX112 resin. Cells were infiltrated with a 1:1 LX112:ethanol 

solution, washed with LX112, and embedded overnight at 60°C in LX112 resin. Ultrathin 65 

nm sections were sliced using a Leica UCT ultramicrotome and mounted on nickel formvar/ 

carbon-coated grids for observations. Contrast was obtained by incubation of the sections 

for 10 min in 4% uranyl acetate followed by 1 min in lead citrate.  

Electron micrographs were acquired on a Tecnai Spirit electron microscope (FEI, 

Eindhoven, The Netherlands) equipped with a 4k CCD camera (EMSIS GmbH, Münster, 

Germany) 

 

Micropatterning. 18 mm coverslips were micropatterned as described in (Carpi et al., 

2011) using a photo-mask with lines of 10 !m of width, separated by 60 !m. In both force 

measurements and membrane bursting assay, myoblasts are plated at confluency on line 

micropatterns coverslips coated with 0.01% of matrigel (v/v) (Sigma) for 15 min at 37°C. 

Differentiation of myoblasts is achieved as described above in section Cell culture.  

 

Force Measurements. Plasma membrane tethers were extracted from cells by a 

concanavalin A (Sigma-Aldrich) coated bead (3 µm in diameter, Polysciences) trapped in 

optical tweezers. The optical tweezers are made of a 1064 nm laser beam (ytterbium fiber 

laser, # = 1064 nm, TEM 00, 5 W, IPG Photonics, Oxford, MA) expanded and steered 

(optics by Elliot Scientific, Harpenden, UK) in the back focal plane of the microscope 

objective (Apo-TIRF 100$ NA 1.45, Nikon). The whole setup was mounted on a Nikon 

Eclipse-Ti inverted microscope. The sample was illuminated by transmitted light, and 

movies were acquired at 10 Hz with an EM-charge-coupled device camera (Andor iXon 

897) driven by Micro-Manager. The fine movements and particularly the translational 

movement necessary to pull the membrane tether were performed using a custom-made 

stage mounted on a piezoelectric element (P753, Physik Instrumente, Karlsruhe, Germany) 

driven by a servo controller (E665, Physik Instrumente) and a function generator (Sony 

Tektronix AFG320). 
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Calibration was performed using an oscillatory modulation driven by a function generator 

and measuring the response of the bead to an oscillatory motion of the stage. We measured 

k = 16P pN/(!m.W), where P is the laser power. This relationship is linear in the laser power 

range used for the experiments (0.4–2 W). 

The membrane tether was held at constant length to measure the static force. For 

measuring membrane tension changes due to hypo-osmotic shock, a first tether was first 

pulled at 300 mOsm (iso condition). A second tube was pulled on the same cell 5 minutes 

after diluting the medium with milliQ water to obtain 45 mOsm. The position of the bead 

used to compute tether forces was detected from the images using a custom ImageJ macro.  

 

Membrane burst assay. Line micropatterned myotubes are incubated in 5 !g/mL of 

calcein-AM (Life techonologies) and 50 !g/mL of DAPI (Sigma-Aldrich) for 15 min at 37°C in 

the dark. Medium was then switched back with differentiation medium to wash out the 

excess of calcein-AM. The medium is then switched again with a 30 mOsm hypo-osmotic 

shock medium obtained after a dilution of 10% medium and 90% H2O, supplemented with 2 

mg/mL of PI (Sigma). Immediately after medium switching, pictures are taken every minute 

for 10 min using a videomicroscope (Inverted microscope Nikon Ti-E, Camera: CCD 

1392x1040 CoolSnap HQ2, objective: 10x CFI Fluor). 

 

IL6 stimulation. Myotubes were starved 4h by switching the differentiation medium to 

DMEM medium. In resting conditions, cells are then stimulated by switching the medium 

with DMEM with 0.2% BSA (w/v), supplemented with 10ng/mL of human recombinant IL6 

(R&D) for 0, 5 or 15min at 37°C. For hypo-osmotic conditions, medium was first switched to 

75% hypo-osmotic shock (25% DMEM, 75% H2O) for 5min and then switched to the same 

medium supplemented with 10ng/mL of IL6 for 5 more minutes at 37°C. For stretching 

conditions, myoblasts were differentiated on fibronectin (Sigma-Aldrich) coated stretchable 

plates (Uniflex® culture plate, Flexcell International) and were then subjected or not to 

30min of cyclic stretch (10% elongation, 0.5Hz), using the FX-4000T TM Tension Plus 

device (Flexcell International), followed by 0min or 5min of IL6 stimulation. Cells are lysed 

and samples are analyzed by immunoblotting. For the analysis, pSTAT3 levels were 

quantified by calculating the ratio between pSTAT3 and STAT3, both normalized to Tubulin 

signal. For the analysis of pSTAT3 nuclear translocation, myotubes were differentiated on 

coverslips, stimulated with IL6 as described above for 0min or 15min and were then fixed for 
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further immunofluorescence analysis. Quantification corresponds to the ratio between the 

mean pSTAT3 intensity in the nuclei on the one in the cytoplasm. 

 

Quantitative PCR. Cells were lysed and RNA extraction was performed using an extraction 

kit (RNeasy Plus, Qiagen). Reverse-transcription reaction was performed with 1!g of RNA 

per reaction, using high capacity cDNA reverse-transcritpion kit (Applied biosystem).  qPCR 

was performed on 50ng of cDNA for a reaction in a total volume of 20!L, using Taqman 

Gene Expression Assays (GAPDH: Hs02786624_g1 ; FBXO32: Hs01041408_m1 ; ACTC1: 

Hs01109515_m1 ; MYH8: Hs00267293_m1 ; SOCS3: Hs02330328_s1, Applied biosystem) 

and a Lightcycler 480 Probes Master kit (Roche). Relative expression levels were calculated 

using %%CT method with fold changes calculated as 2–%%CT 
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Figure legends 
 
Figure 1 | Characterization of caveolae and Cav3 expression in WT and Cav3 P28L 

and Cav3 R26Q myotubes. (a) Electron micrographs of WT, Cav3 P28L or Cav3 R26Q 

myotubes. Caveolae and interconnected caveolae are indicated with arrowheads and 

asterisks, respectively. (b) Immunoblot analysis of total levels of Cav3 in WT, Cav3 P28L 

and Cav3 R26Q differentiated myotubes. Tubulin serves as loading control. (c) 

Immunofluorescent labeling of Cav3 and GM130 in WT, Cav3 P28L or Cav3 R26Q 

myotubes analyzed by confocal microscopy. Arrows in inset indicate the plasma membrane 

and arrowheads indicate the Golgi complex. (a) Scale bar = 200 nm. (c) Scale bar = 10 !m. 

Reproducibility of experiments: (a) Representative cells. (b) and (c) Representative data for 

3 experiments. 

 

Figure 2 | Cav3 P28L and Cav3 R26Q myotubes present defects in membrane tension 
buffering and membrane integrity. (a, b) Membrane tension measurements analysis 

using optical tweezers and nanotube pulling on aligned WT, Cav3 P28L or Cav3 R26Q 

myotubes. Membrane tethers were pulled in the perpendicular axis of myotubes after 

micropatterning in resting conditions and 5 min after a 45 mOsm hypo-osmotic shock (a, b, 
left panels).  Membrane tension was analyzed in resting condition (a, right panel) and the 

difference of membrane tension before and after hypo-osmotic shock was calculated, 

reflecting the percentage of increase of membrane tension upon mechanical stress (b, right 

panel). 

(c, e) Micropatterned WT, Cav3 P28L or Cav3 R26Q myotubes (c) WT ctl (siCtl) and Cav3-

depleted (siCav3) myotubes (e) were loaded with calcein-AM (green). The medium was 

switched with a 30 mOsm medium supplemented with propidium iodide (PI, red). 
Representative pictures were taken at the indicated times during hypo-osmotic shock. 

Arrows correspond to myotubes and asterisks correspond to bursted myotubes. (d, f) 
Quantification of the percentage of bursted myotubes (upper panel) and mean time of 

bursting in minutes (lower panel) in (c) and (e), respectively. (a, b) Scale bar = 5 !m, (c, e). 

Scale bar = 120 !m. Reproducibility of experiments: (a) Representative pictures and 

quantifications from 7 independent experiments (WT n=20 Cav3 P28L n=23 and R26Q 

n=22) (b) Representative pictures and quantifications from 7 independent experiments (WT 

n=17 P28L n=20 and R26Q n=18). (c) Representative data of 3 independent experiments 
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quantified in (d) (% bursted cells: WT  n=310, P28L n=299 and R26Q n=271; mean time of 

bursting: WT n=165, P28L n=233 and R26Q n=240 ). (e) Representative data of 3 

independent experiments quantified in (f) (% bursted cells: siCtl n=749 and siCav3 n=569  ; 

mean time of bursting: siCtl n=171 and siCav3 n=506 ). Mean value ± SD. (a, b) Statistical 

analysis were done using Kurskal-Wallis test.(d, f) Statistical analysis  with two-tailed 

unpaired t test *** P<0,0001 

 

Figure 3 | Hyperactivation of the IL6/STAT3 signaling pathway in Cav3 P28L and Cav3 
R26Q. (a) Immunoblot analysis of pSTAT3 and STAT3 levels in WT, Cav3 P28L or Cav3 

R26Q myotubes stimulated for the indicated times with 10 ng/mL IL6. Tubulin serves as 

loading control. (b) Quantification of STAT3 activation of (a), corresponding to the ratio 

pSTAT3 on STAT3 total levels after normalization to tubulin levels. (c) Confocal microscopy 

of immunofluorescent pSTAT3 in WT, Cav3 P28L or Cav3 R26Q myotubes stimulated or 

not for 15 min with 10 ng/mL IL6. (d) Quantification of pSTAT3 nuclear translocation in (c) 

corresponding to nuclei/cytoplasm mean intensity ratio of pSTAT3. (e) Immunoblot analysis 

of pSTAT3 levels in WT ctl (siCtl) and Cav3-depleted (siCav3) myotubes stimulated for the 

indicated times with 10 ng/mL IL6. (f) Quantification of STAT3 activation in (e), 

corresponding to the ratio pSTAT3 on STAT3 total levels after normalization to tubulin 

levels. (g) Expression of STAT3 related genes: from left to right FBXO32, SOCS3, MYH8 

and ACTC1 in WT, Cav3 P28L or Cav3 R26Q myotubes. (c) Scale bar = 10 !m. 

Reproducibility of experiments: (a, c and e) Representative data. (b) Quantification was 

done on 4 independent experiments. (d) Quantification was done on 3 independent 

experiments (0 min: WT n=41 P28L n=25 R26Q n=21; 15 min: WT n=22 P28L n=30 R26Q 

n=30). (f) Quantification was done on 4 experiments. (g) Quantification was done on 6 

(FBXO32), 5 (SOCS3), 8 (MYH8) and 3 (ACTC1) independent experiments. Mean value ± 

SEM. (b, f) Statistical analysis with two-tailed paired t test, (d, g) Statistical analysis with 

two-tailed unpaired t test  * P<0,005 ** P<0,001*** P<0,0001, ns non significant 

 

Figure 4 | IL6/STAT3 mechanosignaling is impaired in Cav3 P28L and R26Q 
myotubes. (a, c) Immunoblot analysis of pSTAT3 and STAT3 levels in WT, Cav3 P28L or 

Cav3 R26Q myotubes (a) WT ctl (siCtl) or Cav3-depleted (siCav3) myotubes (c) subjected 

or not to a 75 mOsm hypo-osmotic shock for 10 min, followed by stimulation or not with 10 

ng/mL IL6 for 5 min. Tubulin serves as loading control. (b, d) Quantification of STAT3 
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activation in (a) and (c) respectively, corresponding to the ratio pSTAT3 on STAT3 total 

levels after normalization to tubulin levels.  

Reproducibility of experiments: (a, b) Representative data. (b) Quantification was done on 5 

and 3 independent experiments for WT, mutants respectively. (d) Quantification was done 

on 4 independent experiments. Mean value ± SEM. (b, d) Statistical analysis with two-tailed 

paired t test * P<0,005, ns non significant 

 

Figure 5 | Overexpression of WT Cav3 rescues a normal phenotype in Cav3 P28L and 
R26Q myotubes. 
(a) Immunofluorescent labeling of Cav3 and Golgi marker GM130 in Cav3 P28L GFP or 

P28L Cav3-GFP transduced myotubes analyzed by confocal microscopy. Arrows in inset 

indicate the plasma membrane and arrowheads indicate the Golgi complex. (b) Electron 

micrographs of Cav3 P28L GFP or P28L Cav3-GFP transduced myotubes. Caveolae and 

interconnected caveolae are indicated with arrowheads and asterisks, respectively. (c) 

Micropatterned Cav3 P28L GFP or P28L Cav3-GFP transduced myotubes were loaded with 

calcein-AM (green). The medium was switched with a 30 mOsm medium supplemented with 

propidium iodide (PI, red). Representative pictures were taken at the indicated times during 

hypo-osmotic shock. Arrows correspond to myotubes and asterisks correspond to bursted 

myotubes. (d) Quantification of the percentage of bursted myotubes (upper panel) and 

mean time of bursting in minutes (lower panel) in (c). (e) Confocal microscopy of 

immunofluorescent pSTAT3 in Cav3 P28L GFP or P28L Cav3-GFP transduced myotubes 

stimulated or not for 15 min with 10 ng/mL IL6. (f) Quantification of pSTAT3 nuclear 

translocation in (e) corresponding to nuclei/cytoplasm mean intensity ratio of pSTAT3. (a) 

Scale bar = 10 !m. (b) Scale bar = 200 nm. (c) Scale bar = 120 !m. (e) Scale bar = 10 !m. 

Reproducibility of experiments: (a) Representative pictures of 3 experiments. (b) 

Representative pictures (c) Show representative data of 3 experiments quantified in (d) (% 

burst cells: GFP n=353 and Cav3-GFP n=358; time of burst: GFP n=175 and cav3-GFP 

n=65). (e) Show representative data of 3 experiments quantified in (f) (0min: GFP n=33 and 

Cav3-GFP n=42; 15min: GFP n=14 and Cav3-GFP n=13). Mean value ± SEM. (d) and (f) 
Statistical analysis with a two-tailed unpaired t test ** P<0,01, *** P<0,0001, ns= non 

significant 
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Supplementary figure 1 | MF20 and Cav1 expression in WT, Cav3 P28L and R26Q 

myotubes. (a, b) Immunoblot analysis of total levels of MF20 (a) and Cav1 (b) in WT, Cav3 

P28L or Cav3 R26Q myotubes. Tubulin serves as loading control. (c) Cav3, Cav1 and Golgi 

marker GM130 immunofluorescence were analyzed by confocal microscopy in WT, Cav3 

P28L or Cav3 R26Q myotubes. (a), (b) and (c) Representative data for 3 experiments. (c) 

Scale bar = 10 !m 
 

Supplementary figure 2 | Efficient membrane tension buffering and 
meachanoprotection in Cav3-P28L and Cav3-R26Q myotubes under mild hypo-
osmotic shock. (a) Calcein-AM and DAPI fluorescence of WT, Cav3 P28L or Cav3 R26Q 

myotubes prior to hypo-osmotic shock in the membrane burst assay described in Figure 2c. 

Insets show DAPI in myotubes indicated with arrows in Figure 2c.  (b) Micropatterned WT, 

Cav3 P28L or Cav3 R26Q myotubes were loaded with calcein-AM (green). The medium 

was switched with a 150 mOsm medium supplemented with propidium iodide (PI, red). 
Representative pictures were taken at the indicated times during hypo-osmotic shock. 

Arrows correspond to myotubes and asterisks correspond to bursted myotubes. (c) 

Membrane tension measurements analysis using optical tweezers and nanotube pulling on 

aligned WT, Cav3 P28L or Cav3 R26Q myotubes. Membrane tethers were pulled in the 

perpendicular axis of myotubes after micropatterning in resting conditions and 5 min after a 

150 mOsm hypo-osmotic shock (upper pane).  Membrane tension was analyzed in resting 

condition (lower panel, left) and the difference of membrane tension before and after hypo-

osmotic shock was calculated, reflecting the percentage of increase of membrane tension 

upon mechanical stress (lower panel, right) (d) Immunoblot analysis of Cav3 depletion in 

Figure 2e. (a,b) Scale bar = 120 !m. (c) Scale bar = 5!m Reproducibility of experiments: 

(c) Quantifications were done on 5 independents experiments (WT n=17, P28L n=16, R26Q 

n=14). Mean value ± SD. Statistical analysis were done using Kruskal-Wallis test. ns non 

significant 

 

Supplementary figure 3 | IL6/STAT3 signaling in WT myotubes under cyclic stretch. 
(a) Immunoblot analysis of pSTAT3 and STAT3 levels in WT myotubes subjected or not to 

30 min cyclic stretch. Myotubes were then stimulated or not with 10 ng/mL IL6 for 5 min. 

Tubulin serves as loading control. (b) Quantification of STAT3 activation in (a) 
corresponding to the ratio pSTAT3 on STAT3 total levels after normalization to tubulin 
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levels. Reproducibility of experiments: (b) Quantifications were done on 3 experiments. 

Mean value ± SEM. Statistical analysis were done using two-tailed paired t test * P<0,05 

 

Supplementary figure 4 | Effect of Cav3 overexpression in mechanoprotection and 
IL6 signaling in WT myotubes. (a) Immunofluorescent labeling of Cav3 and Golgi marker 

GM130 in WT GFP or WT Cav3-GFP transduced myotubes analyzed by confocal 

microscopy. Arrows in inset indicate the plasma membrane and arrowheads indicate the 

Golgi complex. (b) Quantification of the percentage of bursted myotubes after a 30 mOsm 

hypo-osmotic shock (left panel) and mean time of bursting in minutes (right panel) in (a). (c) 

Quantification of pSTAT3 nuclear translocation in WT GFP or WT Cav3-GFP transduced 

myotubes stimulated or not for 15 min with 10 ng/mL IL6, corresponding to nuclei/cytoplasm 

mean intensity ratio of pSTAT3. (a) Scale bar = 10 !m. Reproducibility of experiments: (a) 

Representative data from 3 independent experiments. (b) Quantification done on 3 

independent experiments (% burst: GFP n=714, Cav3-GFP n=610; time of burst: GFP 

n=80, Cav3-GFP n=171). (c) Quantification was done on 3 independent experiments (0min: 

GFP n=16, Cav3-GFP n=21; 15min: GFP n=16, Cav3-GFP n=21). (b, c) Statistical analysis 

were done using two-tailed unpaired t test ***P<0,0001 *P<0,05 ns non significant 
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All cell lines were generated and provided by Anne Bigot 
 
Figure 1: 
a) Co-performed by Valérie Chambon (sample preparation and EM) and Melissa Dewulf 
(cell and sample preparation) 
b, c) Performed by Melissa Dewulf 
 
Figure 2:  
a, b) Co-Performed by Christine Viaris (nanotube pulling) and Melissa Dewulf 
(micropatterning and cell preparation) 
c-f) Performed by Melissa Dewulf 
 
Figure 3:  
Performed by Melissa Dewulf 
 
Figure 4:  
Performed by Melissa Dewulf  
 
Figure 5:  
a, c-f) Performed by Melissa Dewulf  
b) Co-performed by Valérie Chambon (sample preparation and EM) and Melissa Dewulf 
(cell and sample preparation) 
 
Supplementary figure 1:  
Performed by Melissa Dewulf 
 
Supplementary figure 2:  
a, b, d) Performed by Melissa Dewulf 
c) Co-Performed by Christine Viaris (nanotube pulling) and Melissa Dewulf (micropatterning 
and cell preparation) 
 
Supplementary figure 3:  
Performed by Melissa Dewulf 
 
Supplementary figure 4: 
Experiments performed by Melissa Dewulf  
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Figure 1. Dewulf et al. 
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Figure 2. Dewulf et al. 
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Figure 3. Dewulf et al. 
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Figure 4. Dewulf et al. 
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Figure 5. Dewulf et al. 
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Supplemental figure 1. Dewulf et al. 
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Supplemental figure 2. Dewulf et al. 
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Supplemental figure 3. Dewulf et al. 
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Supplemental figure 4. Dewulf et al. 
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5 Discussion and perspectives 

5.1 CAV3 mutations, retention in the Golgi complex and loss of 

caveolae at the plasma membrane 

 

Although the CAV3 described mutations are distributed all along the Cav3 protein, it is 

intriguing that 95% of them lead to Cav3 retention in the Golgi complex. This is indeed 

the case in the Cav3 P28L and R26Q immortalized human myotubes that we have 

studied in this work. By studying the behavior of different mutated and truncated forms 

of Cav1, it has been shown that it was sufficient to mutate only one domain among all of 

the existing ones, to drive Cav1 retention in the Golgi complex. Furthermore, all Cav1 

mutants had oligomerization and lipid association defects (Ren et al., 2004). Given the 

high degree of similarity between Cav1 and Cav3, it is reasonable to think that the same 

situation happens for CAV3 mutations. Accordingly, computational predictions show that 

the P104L mutation, which is associated with both LGMD-1C and RMD, could induce 

structural changes in all the protein domains of Cav3, despite its location in the 

intramembrane region (Deng et al., 2017). This suggests that conformational changes 

induced by point mutations may lead to oligomerization defects and impair the proper 

association of Cav3 with specific lipids and thereby proper export from the Golgi 

complex. Oligomerization defects remains to be proven, as it is in contradiction with the 

fact that most of Cav3 mutations are dominant negative and also lead to the retention of 

the WT form of Cav3, probably through oligomerization (Galbiati et al., 2000). Misfolding 

of the Cav3 protein could also lead to trafficking defect due to potential loss of 

interaction with trafficking partners. To test this hypothesis, comparative 

immunoprecipitation between WT and mutated Cav3 coupled to differential mass 

spectrometry analysis could be performed. The loss of interaction with potential partners 

along the trafficking route could either affect the Golgi complex exit, the delivery to the 

plasma membrane, or enhance Cav3 recycling back from the plasma membrane to the 
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Figure 22. Synchronization of Cav3 trafficking. 
(a) Schematic of the principle illustrates that the reporter is retained in the donor compartment, 
in our case, the ER, via its interaction with the hook (Ii). This interaction is mediated by the core 
streptavidin and the streptavidin binding protein (SBP). Release is induced by addition of biotin 
to allow trafficking of the reporter to its acceptor compartment. A fluorescent protein is fused to 
the reporter. In our case, the reporter is either Cav3 WT, Cav3 P28L, or Cav3 R26Q, fused with 
both an SBP and GFP (RUSH constructs). 
(b) HeLa cells were transfected with either WT Cav3, Cav3 P28L or Cav3 R26Q RUSH constructs. 
24h after transfection, cells were put in presence or not of biotin for the indicated time and fixed. 
Immunofluorescent labeling of RUSH constructs and Golgi marker GM130 in in HeLa cells 
transfected with Cav3 WT-RUSH, Cav3 P28L-RUSH or Cav3-R26Q-RUSH analyzed by 
epifluorescence microscopy.!
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Golgi complex. To distinguish between these mechanisms, we could take advantage of 

the RUSH (Retention Using Selective Hook) system, which allows to synchronize and 

follow carefully the trafficking of a protein of interest upon simple biotin addition 

(Boncompain et al., 2012). We engineered RUSH constructs of the Cav3 P28L and Cav3 

R26Q mutants and a pilot experiment shows trafficking from the ER to the plasma 

membrane of the WT form of Cav3, while Cav3 mutant trafficking stopped at the Golgi 

complex. Live microscopy would be needed to clearly determine whether Cav3 mutants 

are rapidly recycled or not (Figure 22). 

In mutant myotubes, we showed that re-expression of Cav3 WT form, by locating itself at 

the plasma membrane, was sufficient to restore caveolae structures and rescue the 

observed phenotypes. Thus, it may be interesting to perform a screen for chemical 

compounds to identify drugs triggering the release of Cav3 from the Golgi complex in 

patient myotubes. Since mutated protein can adopt altered structures, reformed 

caveolae would be tested for their proper functionality. 

 

We showed that CAV3 mutations lead to the loss of caveolae structures at the plasma 

membrane. What does happen to the other caveolae components in this context? Our 

immunofluorescence analysis show that Cav1 colocalizes in majority with Cav3 mutants in 

the Golgi complex, and a faint staining is also visible at the plasma membrane (see 

supplementary figure 1 of results). Cavin-1 seems to be more cytosolic (not shown), 

which is expected since there should not be any caveolae to be associated with at the 

plasma membrane. Cavin-1 could shuttle to the nucleus where it could regulate gene 

transcription since it was first described as a transcription factor. We did not carefully 

look at cavin-1 nuclear localization but it was observed in our laboratory that when cells 

undergo mechanical stress, releasing cavins in the cytoplasm, no increase in cavin-1 

nuclear translocation was observed (Torrino et al., in revision), suggesting that higher 

levels of cytosolic cavin-1 would not enhance its transcription factor activity. We did not 

look at the other cavins but as cavin-1 is necessary for cavin oligomerization and 
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recruitment at the plasma membrane we can hypothesize that cavin-2, -3 and -4 are also 

mostly cytosolic. 

 

5.2 Caveolae is required for plasma membrane integrity in 

muscle cells undergoing mechanical stress 

 

In addition to our previous study (Sinha et al., 2011), we observed here that mutated 

myotubes could buffer membrane tension increase up to a 150 mOsm hypo-osmotic 

shock but not upon a higher hypo-osmotic shock (30 mOsm). Accordingly, we observe 

membrane integrity defects only in mutant myotubes subjected to a 30 mOsm hypo-

osmotic shock. This suggests that muscle cells are particularly well adapted to 

mechanical stress and that acute/strong or prolonged exercise might induce a higher 

rate of muscle damage in the muscle tissue of CAV3-related MD patients. However 

membrane damage translates into muscle damage only if membrane repair is not able to 

compensate. As mentioned in the chapter 3.2.1.2 Membrane repair, Cav3 and caveolae 

have been shown to be tightly associated with membrane repair. Although the aim of 

this study was not focused on membrane repair, the membrane integrity assay we used 

could inform us about effective membrane repair after damage. To do this, we quantified 

the percentage of cells that were positive for both propidium iodure in the nucleus, 

which reports membrane damage, and calcein-AM, which indicates retention of the dye 

after rapid membrane repair. Our experiments were performed under hypo-osmotic 

medium for 10 min and therefore were not as accurate as monitoring dye influx after 

laser injury of muscle fiber. The latter showed that initial resealing is quite rapid but the 

recruitment of necessary proteins for proper membrane repair and remodeling takes 

more than 20 min (Marg et al., 2012). Although our experiments were performed for 10 

min only, we observed yet a decrease of membrane repair events in both Cav3 mutants 

compared to WT. These data suggest that Cav3 mutations can affect membrane repair 
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Figure 23. Membrane repair defect in Cav3 P28L and R26Q myotubes.  
(a,b) Quantification of the percentage of membrane repair. WT, P28L and R26Q myotubes (a) 
or WT ctl (siCtl) or Cav3-depleted (siCav3) myotubes (b) were loaded with calcein-AM (green). 
The medium was switched with a 150 mOsm medium supplemented with propidium iodide (PI, 
red). Representative pictures were taken at the indicated times during hypo-osmotic shock. The 
percentage of membrane bursting corresponds to the percentage of cells positive for both PI 
and calcein-AM after 10 min of 30 mOsm hypo-osmotic shock. Scale bar = 10 µm. Statistical 
analyzes with a two-tailed unpaired t test * P<0,05 *** P<0,0001 
!
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after injury in agreement with the published role of Cav3 in membrane repair (Cai et al., 

2009; Hernandez-Deviez et al., 2008). Indeed, this membrane repair defect seems to be 

caveolae-dependent since Cav3 depletion induced decreased membrane repair in WT 

myotubes, and WT Cav3 expression restores partially membrane repair in P28L myotubes 

(Figure 23). Our observations are in accordance with the higher muscle damage seen in 

Cav3 R26Q expressing zebrafish kept in viscous medium (Lo et al., 2015). It might also 

explain the observation of variability in muscle fiber size and the presence of 

degenerating and regenerating fibers in muscle biopsies of CAV3-related MD patients 

(see Table 1 of introduction). 

Finally, Cav3 is not the only caveolae component that is associated with membrane 

repair. Indeed, EHD2 may be recruited at the site of injury together with annexin A1 and 

dysferlin, and stays there during the whole process of membrane remodeling (Marg et 

al., 2012). EHD2 seems to act independently from caveolae because its function was not 

modified in the context of the loss of caveolae induced by Cav3 mutations. Cavin-1 also 

may be necessary for membrane repair and would allow the anchorage of the membrane 

repair protein MG53, although this study doesn’t allow to determine whether only cavin-

1 is implicated or whether the whole caveolae structure is necessary. 

 

5.3 Caveolin-3 and mechanical stress are negative regulators of 

the IL6/STAT3 pathway 

 

Our results show that the IL6/STAT3 signaling pathway is negatively regulated both by 

Cav3 and mechanical stress. It would be interesting to know how this regulation is 

achieved at the molecular level, but also how these two means to inhibit the same 

pathway could be related. 

As it has been previously described for other signaling pathways, this regulation could 

occur through direct interaction between Cav3 and key players of the IL6 pathway. In the 
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Figure 24. Cav3 interacts with JAK2. 
(a, b) WT myotube cell lysates were incubated with anti-JAK1 (a) or anti-JAK2 (b) 
antibody to immunoprecipitate endogenous JAK1 or JAK2 and reveal co-
immunoprecipitated endogenous Cav3. Immunoprecipitation of GFP serves as negative 
controle.  
!
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case of the NO signaling pathway for example, this interaction is occurring through the 

caveolin scaffolding domain and a putative caveolin binding motif in the NO synthase 

(see chapter 2.3.3). Interestingly, we found by BLAST analysis that gp130, JAK1 and 

JAK2 have one or more putative CBM (not shown) and that gp130 has been shown to 

interact with Cav1 in a myeloma cell line (Podar et al., 2003). Furthermore, STAT3 can 

interact with Cav1 at the plasma membrane of fibroblasts, epithelial and endothelial cells, 

although this interaction does not impact STAT3 activity (Shah et al., 2002). To determine 

at which level this inhibition occurs, we should look at gp130 and JAKs activation state 

upon Cav3 depletion and mechanical stress. The interaction between Cav3 and its 

potential target can be established by different means, including colocalization assays, 

FRET (Förster resonance energy transfer), PLA (proximity ligation assay) and co-

immunoprecipitations experiments. Preliminary experiments done in WT myotubes show 

that Cav3 co-immunoprecipitates with JAK2 but not with JAK1. However, this does not 

preclude any potential interaction between them (Figure 24).  To demonstrate a direct 

interaction might be difficult, as caveolin purification has been very difficult to achieve 

due to high rate of protein aggregation. Nevertheless, the implication of the CSD could 

be investigated by using mimicking peptides (cavtratin/cavnoxin) or CSD mutated form 

of Cav3 (Bernatchez et al., 2005). If our hypothesis is correct, the use of these peptides 

should be sufficient to rescue the phenotype of IL6 hyperactivation at steady state. As 

mentioned before, one way to release a larger pool of “free” Cav3 into the plasma 

membrane is to apply a mechanical stress (Sinha et al., 2011). We could thus hypothesize 

that the observed effect of mechanical stress on IL6 pathway may be due to a higher 

amount of released free Cav3 available at the plasma membrane following the 

immediate disassembly of caveolae. Hypo-osmotic shock is a severe stress for the cell 

and we cannot exclude that other mechanisms may be involved but our data showing a 

decreased inhibition of the IL6 pathway upon mechanical stress in Cav3 depleted cells 

strongly suggest that Cav3 is an important player in this process (see Figure 4 of the 

paper). 
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An interaction with Cav3 through its CSD shouldn’t explain why the IL6 pathway is 

already overactivated at steady state in mutant myotubes. Indeed, Cav3 should be 

associated with caveolae in WT cells and would thus not be able to interfere with the 

pathway. It has been observed for a long time that even in resting condition, both 

invaginated and flat caveolae can be observed (Rothberg et al., 1992).  Regardless how 

caveolae flatten out at steady state, it should lead to the release of a fraction even minor 

of Cav3 in the plasma membrane, which should be visible by EM coupled with 

immunolabelling of Cav3. Cav3 being totally absent from the plasma membrane of 

mutant myotubes, this could partially explain the fact that the IL6 pathway is 

hyperactivated in these cells. Another important player in the regulation of this pathway, 

the negative regulator SOCS3, may also not function properly in these myotubes. 

Indeed, a recent study showed that SOCS3 needs cavin-1 for its targeting to the plasma 

membrane and its function (Williams et al., 2018). Although the mechanism of cavin-1 

induced SOCS3 plasma membrane targeting remains unknown, the initial localization of 

cavin-1 at the plasma membrane may be crucial. In Cav3 mutant myotubes, SOCS3 gene 

expression is increased, but cavin-1 is mainly cytosolic, suggesting that SOCS3 may not 

get properly targeted and cannot inhibit the pathway. 

What consequences can arise from the abnormal hyperactivation of the IL6 pathway in 

skeletal muscle from patients bearing CAV3 mutations? In these cells, we showed that 

the expression of muscle regeneration-associated genes MYH8, ACTC1 and SOCS3 was 

upregulated. Their expression could be upregulated by STAT3 activation but we need 

further experiments to establish this link in a direct manner, such as the use of 

pharmacologic compounds inhibiting STAT3 activity or STAT3 silencing. Furthermore, if 

IL6 is capable of positively regulating its own expression (see chapter 1.3.4.2), the 

chronic autocrine secretion of the cytokine could also stimulate differentiation and fusion 

of satellite cells involved in muscle regeneration. At long term, chronic activation of the 

IL6 pathway could lead to satellite cell exhaustion, resulting in muscle atrophy. Other 
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genes that are often associated with muscle atrophy have also been shown to be 

upregulated when STAT3 is overactivated, such as FBXO32, Atrogin1, or C/EBPδ 
(CCAAT-enhancer-binding proteins). C/EBPδ is a transcription factor controlling the 

expression of myostatin, a major inducer of proteolysis (Bonetto et al., 2011). In our 

system however, we could not observe any difference between mutant and WT 

myotubes for FBXO32 expression. 

 

5.4 Caveolin-3 mutations are associated with different clinical 

phenotypes 

 

As discussed in chapter 3.1 CAV3 mutations and muscle diseases, CAV3 mutations can 

induce four distinct clinical phenotypes of skeletal muscle diseases. Some symptoms and 

some features of muscle biopsies are however common between the different 

phenotypes: high serum creatine kinase (CK) levels signing muscle cell lysis, muscle 

hypertrophy, variability of muscle fiber size and increased central nuclei. In this chapter, I 

will discuss how the results we obtained by studying human Cav3 P28L and Cav3 R26Q 

myotubes can be linked to the clinical features listed above.  

High CK levels and variability of muscle fiber size can both result from impaired muscle 

integrity, and increased muscle damage, which was already discussed in the chapter 5.2 

Caveolae contribute to plasma membrane integrity in muscle cells undergoing 

mechanical stress. Increased Cav3-related muscle damage could also be responsible for 

increased central nuclei. Indeed, it has been shown that regenerating muscle fibers had 

more central nuclei, although it is not clear whether it is an intermediate state or a 

permanent feature (Maxwell et al., 1984). Cav3 could also perturb nuclei localization by 

disturbing the DGC complex and desmin organization. This remains to be proven since 

the effect of Cav3 loss on the stability and function of the DGC is still unclear. 

The observation of muscle hypertrophy in patients could be partially explained by the 

overexpression of muscle regeneration associated genes. Indeed, although regenerating 
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muscle fibers can be a consequence of muscle damage, the expression of MYH8, ACTC1 

and SOCS3 could also be controlled by STAT3, as it was suggested before (Bonetto et 

al., 2011). This remains to be directly proven by using STAT3 inhibitors or STAT3 

depletion, but if this is correct, the chronic activation of STAT3 could enhance muscle 

fiber regeneration and at long term potentially lead to muscle hypertrophy. 

However muscle atrophy and hypertrophy both rely on the activity of many different 

pathways. Similarly, a lack of Cav3 expression has been associated with both decreased 

and increased myoblast fusion, also depending on different pathways (Ohsawa et al., 

2006; Volonte et al., 2003). It is likely that to determine the implication of Cav3 in muscle 

atrophy or hypertrophy will be complex and will need further investigations.  

One important point to raise here is that even though many other signaling pathways 

have been associated with caveolae before, only few of them have been considered 

through caveolar mechanosignaling. Notably, several pathways are associated with 

mechanical stress, such as the ERK and the Akt pathway (Kawamura et al., 2003; Sedding 

et al., 2005). It would thus not be surprising that Cav3 and caveolae could be involved in 

their sensitivity to mechanical stress, as it is the case for the IL6 pathway. 

 

Although they have common features, it still surprising that CAV3 mutations are 

associated with as much as four different clinical phenotypes. Indeed, CAV3 mutations 

are numerous, yet they all lead to retention in the Golgi complex. We would thus expect 

that all CAV3 mutations would translate into only one clinical phenotype, like many other 

mutated proteins associated with muscle diseases. This difference of clinical phenotypes 

observed between the different CAV3 mutations could be due to the difference of 

genetic background between individuals, although it is very difficult to prove. It could 

also be that depending on the mutation, the protein could be expressed at different 

levels and have different conformations. This could induce changes in the interaction with 

potential partners, such as signaling molecules, and would regulate differently some 

signaling pathways. This hypothesis was proposed when Brauers et al. showed a 
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difference in the regulation of some growth factor signaling (nerve growth factor and 

epidermal growth factor) by the two CAV3 mutations we investigated on in our study: 

P28L and R26Q (Brauers et al., 2010). Furthermore, one mutation can be associated with 

several clinical phenotypes, even within the same individual, highlighting that a strict 

genotype-phenotype association does not exist in caveolinopathies. 

 

Many progress have been made since the first identification of muscle disorder 

associated CAV3 mutation, but the underlying molecular aspects remain poorly 

understood. The recent development of new tools to study caveolinopathies, such as the 

generation of human muscle cell lines expressing endogenous CAV3 mutations, CRISPR 

technology or the application of mechanical stress combined with microscopy, to name 

only a few, should help providing a better understanding of the molecular mechanisms 

associated with these mutations. By extension, these tools could also be of use in the 

context of other caveolae components associated diseases such as lipodystrophy, 

atherosclerosis or cancer.  
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The caveolae dress code: structure and signaling
Christophe Lamaze1, Nicolas Tardif1, Melissa Dewulf1,
Stéphane Vassilopoulos2 and Cédric M Blouin1

Abstract

Over the past decade, interest in caveolae biology has peaked.

These small bulb-shaped plasma membrane invaginations of

50–80 nm diameter present in most cell types have been

upgraded from simplemembrane structures to amore complex

bona fide organelle. However, although caveolae are involved

in several essential cellular functions and pathologies, the

underlying molecular mechanisms remain poorly defined.

Following the identification of caveolins and cavins as the main

caveolae constituents, recent studies have brought new insight

into their structural organization as a coat. In this review, we

discuss how these new data on caveolae can be integrated in

the context of their role in signaling and pathophysiology.
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The caveola robe
Caveolins
It took almost 40 years after caveolae were first visualized
by electron microscopy (EM) in the 1950s to identify the
caveolar protein components [1,2]. Caveolin-1 (Cav1) was
identified in 1992 [3,4] followed by the two others homo-
logues caveolin-2 (Cav2) [5] and the muscle specific
caveolin-3 (Cav3) [6,7]. The three caveolin isoforms
contain a family signature constituted by a single stretch
of eight amino acids 68FEDVIAEP75 localized in the N-
terminal cytosolic oligomerization domain (Figure 1a) [7].

Cavins
Although Cav1 and Cav3 were initially thought to be
necessary and sufficient for caveolae morphogenesis [8],

several studies in the past decade have uncovered addi-
tional constituents. Thus, the identification of the cavin
protein family brought precious insights into caveolae
ultrastructure and assembly opening new avenues for
better understanding the cellular functions of this intrigu-
ing organelle. The assembly of a bona fide caveola requires
both Cav1 and cavin-1 (also called PTRF) [9,10]. In
mammals, cavin-2 (SDPR), cavin-3 (SRBC) and the mus-
cle-restricted cavin-4 (MURC) complete this four-mem-
ber family, which has emerged as essential to caveolae
formation and functions (Figure 1b) [11–13].

Purified cavins when added on phosphatidylserine (PS)
enriched liposomes or when overexpressed inmammalian
cells induce membrane tubulation, leading to the
assumption that cavins may play a role in the initiation
of the caveola invagination [11,14,15!!]. Accordingly,
cavin-1 depletion results in loss of caveolae while caveo-
lae are not morphologically detectable in the prostate
cancer PC3 cell line and in the nematode Caenorhabditis
elegans, which both express Cav1 but not cavin-1 [9,16].
Nevertheless, it was reported that caveolae could be
assembled in Escherichia coli independently from cavin-
1 [17].

Accessory proteins
Several non-essential proteins have also been involved in
caveolae biogenesis. PACSIN-2, also called Syndapin2, is
the only F-BAR protein representative, proteins regulat-
ing membrane curvature, that has been involved in
caveolae morphology [18,19]. The dynamin-2 GTPase
and the dynamin-like ATPase EHD2 have been localized
at the neck of caveolae [20,21]. EHD2 has been shown to
stabilize caveolae by controlling their dynamics and asso-
ciation with the actin cytoskeleton [22]. Dynamin-2 how-
ever is not present in all caveolae and whether it plays a
role in caveolae scission similarly to its classical role in
clathrin-dependent endocytosis remains to be
established.

A tailored coat
Caveolins bind lipids and organize membrane
nanodomains
The assembly process is initiated by the export of caveo-
lin-enriched vesicles from the Golgi apparatus to the
plasma membrane [23]. Little is known about this first
step except for a critical role of lipids and particularly
cholesterol, which is essential for both caveolin oligomer-
ization at the Golgi apparatus and caveola invagination at
the plasma membrane [3]. Cav1 binds cholesterol with a
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1:1 stoichiometry [24,25], probably through a cholesterol
recognition/interaction amino acid consensus (CRAC)
motif (94VTKYWFYR101) located in the vicinity of the
plasma membrane [26]. Caveolin oligomers trigger the
clustering of specific lipids thereby constructing special-
ized lipid nanodomains at the plasma membrane [27].
They include sphingolipids (sphingomyelin, GD3 and
GM1 gangliosides), phospholipids such as PS and phos-
phoinositides such as phosphatidylinositol (4,5)-bispho-
phate (PI(4,5)P2).

Cavins are recruited to caveolin-induced lipid
nanodomains
Interestingly, PS and PI(4,5)P2 were recently involved in
caveola formation through electrostatic interactions
between the negatively charged headgroups and two
specific domains of cavins (HR1 & HR2)
[9,12,14,15!!,28]. Thus, cytosolic cavins form higher-
order heterotrimers consisting of either three cavin-1 or
two cavin-1 with one cavin-2 or one cavin-3, through their
HR1/cc1 coiled-coil domain, that further polymerize
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Putative model of caveolar coat assembly and organization.
(a) Schematic model of Cav1 topology. Cav1 is inserted into the plasma membrane through the caveolin scaffolding domain (CSD; red), an
amphipathic helix part of the oligomerization domain (diffuse red), and through a second amphipathic helix, the intra-membrane domain (orange).
Based on Cav3 ternary structure [108], Cav1 monomers may assemble as a disk-shaped oligomer with the C-terminal part oriented toward the
center. (b) Cavin monomers exhibit two helical rich domains, HR1 and HR2, that may form coil-coiled structures [14]. Cavins, through interaction
with the HR1 domain, can form trimers consisting of either three cavin-1 or two cavin-1 associated with one cavin-2 or one cavin-3 protein. The
cavin-1 isoform could be responsible for a more complex assembly through the coiled-coil domain 2 (cc2) sequence in the HR2 domain [15]. (c)
At the plasma membrane, Cav1 oligomers cluster specific lipids such as cholesterol, PI(4,5)P2 and phosphatidyl serine involved in the recruitment
of cavin trimers. This is followed by caveola invagination, a process not completely understood. It has been recently suggested that the overall
architecture of the caveolar coat made of caveolins and cavins would best fit with a polyhedron structure [15,30]. In this model, Cav1 oligomers
position on each pentagonal face and cavin complexes align with the vertices and cover the Cav1 oligomers.
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upon association with assembling caveolae (Figure 1c)
[14,21,29].

Flat versus curved: the interplay between caveolins and
cavins
At the plasma membrane cavins and caveolins invariably
form characteristic stripes surrounded by a proteinaceous
crescent made of globular proteins whose identity
remains elusive (Figure 2). To date, it is still unclear
whether caveolae assemble as flat structures that will then
bud inward and produce the typical stable cup-shaped
caveolae or if pre-formed caveolae emanating from intra-
cellular compartments most likely the trans-Golgi net-
work fuse with the plasma membrane.

Recent EM and X-Ray crystallography studies revealed
that the characteristic striated coat that is observed on the
outer cytoplasmic side of caveolae may be organized by
cavins rather than caveolin oligomers alone as originally
proposed [14,15!!,21,29,30!!]. These striations are
observable on deep etch electron micrographs of caveolae

presenting various degrees of invagination from flat to
fully budded (Figure 2).

It has been estimated that 150–200 Cav1 monomers
associate with 50–60 cavins ("15–20 trimers) to form a
caveola [15!!,21,29,31]. The overall architecture of caveo-
lae was recently proposed to fit with a polyhedron most
likely a dodecahedron structure formed by cavin com-
plexes aligned with the vertices but also covering the
caveolin oligomers positioned on each pentagonal face
(Figure 1c) [15!!,30!!]. It is however difficult to visualize a
dodecahedron organization when observing caveolae en
face on deep-etch electron micrographs, and further
efforts will be needed to validate this model with proteins
which have been purified from more physiological sys-
tems than insect cells and bacteria.

Signaling regulation through direct interaction
with Cav1
Over the years, caveolae have been associated with vari-
ous physiological and pathological contexts in relation
with their cellular functions in lipid homeostasis, signal
transduction, endocytosis and transcytosis. If some debate
still exists [32], early consensus suggested that caveolae
could regulate cellular signaling by organizing specific
signaling platforms at the plasma membrane [33].

Thus, a broad variety of growth factor and signaling
receptors, kinases, enzymes and other signaling mole-
cules have been localized into caveolae and/or co-immu-
noprecipitated with Cav1 including but not limited to
eNOS [34], the insulin [35], EGF [36], TGF-b [37!] and
P2X7 [38] receptors, Src tyrosine kinase [39], H-Ras and
K-Ras [40], the heme oxygenase [41]. Caveolae have also
been associated with bona fide mechanosignaling path-
ways including MAP kinase, Akt, Src kinases, Rho and
Rac small GTPases [42].

The central role of the caveolin scaffolding domain
A first study identified a domain responsible for the direct
regulation of heterotrimeric G proteins by Cav1 [43]. This
interaction was further confirmed for H-Ras, the Src and
Fyn tyrosine kinases, and the endothelial nitric oxide
synthase eNOS [35,40,41].

This specific feature of Cav1 resides in a particular
a-helical domain (residues 82–101) called the caveolin
scaffolding domain (CSD) so named because it is also
required for Cav1 oligomerization. The CSD is localized
on the N-terminal part but its relative position to the
plasma membrane remains unclear. The CSD would
exert an inhibitory role on signaling effectors by binding
directly to a putative corresponding caveolin binding
motif (CBM) identified in several of these effectors
[35,40,41,44,49]. Indeed, biochemical studies on eNOS
revealed the critical role of the CSD phenylalanine resi-
due 92, which, by extending its lateral chain, allows to
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Visualization of the caveolar coat at the plasma membrane of
myotubes.
Survey view of the cytoplasmic surface of an unroofed mouse
myotube presenting caveolae at the plasma membrane. Different
types of caveolae structures are apparent, ranging from flat (1),
circular (2), to fully budded (3). Scale bar: 500 nm. Scale bar in insets:
50 nm.
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reach the hydrophobic pocket of eNOS to inhibit its
catalytic activity [44,45]. A similar example was provided
by the heme oxygenase 1 whose activity is inhibited
through direct binding between its CBM domain and
the CSD [41]. Furthermore, a small CSD-mimicking
peptide inhibits eNOS activity whereas the correspond-
ing mutated peptide increases eNOS activity most likely
by competing with endogenous Cav1, which suggests a
direct Cav1-CSD mediated inhibitory effect [46].

Controversy on CSD accessibility
However, new studies have recently undermined the
model of signaling regulation through direct CBM/CSD
interaction. The CBM motif was found to be poorly
discriminative as it is also found in species such as
Saccharomyces cerevisiae that do not express caveolins.
No particular enrichment in proteins with the CBM
sequence was found in the Cav1 interactome and the
structural analysis of different CBM domains revealed
that this domain was likely to be buried inside the
proteins and therefore not readily available for interacting
with the CSD [47,48]. Likewise, the CSD would also be
an amphipathic helix and thus partially embedded inside
the plasma membrane hence not accessible [49].

Alternativemechanisms could also be considered. Thus, a
new study proposed that the CSD is a dynamic structure
that can be either fully helical or partly unstructured,
which may change its accessibility [50!]. Furthermore,
the conformation of Cav1 could vary with the oligomeri-
zation state and the organization of the caveola compo-
nents (cavin isoforms or lipids). In this context, mechani-
cal stress by promoting the release of Cav1 from
disassembled caveolae [51] could not only control the
ratio of caveolar vs. free Cav1 but also the accessibility to
its CSD.

Yet the mechanisms controlling the reversibility of these
interactions, a key parameter in signaling, remain to be
explored. In this context, the post-translational modifica-
tions of Cav1 may be particularly relevant. Phosphoryla-
tion on Cav1 Ser 80 would result in a more versatile
topology exposing the CSD because of charge repulsion
between the inner leaflet of the plasma membrane and
the phosphorylated residue [52]. A similar mechanism
was proposed for Cav1 Tyr 14 phosphorylation that would
form a stable structure facilitating binding to the CSD
[53]. Cav1 Tyr 14 phosphorylation was also shown to
prevent the direct binding of Cav1 on Egr1 [54]. Whether
Cav1/Egr1 interaction occurs through the CSD is how-
ever unknown.

Indirect regulation of signaling by caveolae
Through caveolae
In addition to the direct inhibitory effect of Cav1 on
signaling effectors, caveolae can also indirectly modulate
intracellular signaling. Caveolae interact with the actin

cytoskeleton and contribute to lipid sorting and delivery
to the plasma membrane through their enrichment in
glycosphingolipids and cholesterol [55]. Caveolae can
thus modulate the nanoscale plasma membrane organiza-
tion, a key parameter in transmembrane receptor activa-
tion [56]. Once again this process could also be actively
controlled by caveolae dynamics in response to mechani-
cal strains [51,57]. In this regard, stretch-induced caveolae
disassembly led to the redistribution of Cav1 and sphin-
golipids at the plasma membrane together with c-Src
activation [58]. Furthermore, Cav1 depletion led to per-
turbations in Ras spatial nano-organization and signaling
through changes in lipid composition and PS distribution
[59!]. In agreement with the localization of calcium
pumps in caveolae [60], the mechanical disassembly of
caveolae led to reduced Ca2+ responses through changes
in Gaq/Cav1 association [58,61]. Finally, as for clathrin-
mediated endocytosis, caveolae endocytosis, while lim-
ited under resting conditions, might also contribute to the
endosomal control of signaling by delivering activated
receptors to this compartment [62].

Through Cav2
The role of Cav2, which is not required for caveolae
formation, remains enigmatic. Cav2 expression is
required for activating the estrogen receptor a by 17b-
oestradiol [63]. The insulin signaling pathway can be
regulated by Cav2 fatty acylation and phosphorylation,
two successive post-translational modifications that pre-
vent the interaction of the SOCS3 phosphatase with the
insulin receptor allowing the activation of IRS-1 (Insulin
Receptor Substrate-1) and the nuclear translocation of
activated STAT3 [64–66]. Cav2 was allegedly reported to
mediate signaling from the plasma membrane to the
nucleus, as phospho-ERK nuclear translocation induced
by insulin relied on Cav2 154SSV156 C-terminal sequence
[67].

Through cavins
Finally, the recently identified cavins may also contribute
to caveolae signaling. Cavin-1 being essential to caveolae
assembly, it controls the number of functional caveolae
and thereby the localization of activated receptors in
these structures [68,69]. Cavin-3 mediates ERK activa-
tion by anchoring caveolae to the plasma membrane via
myosin-1c [70] and regulates their dynamics [71!]. Like-
wise CAVIN-1/-2/-3 KO mice display a certain degree of
heterogeneity among endothelial caveolae depending on
tissues and cavin-2 expression [72].

Caveolinopathies
Because of the multiple functions of caveolae and their
impact on signaling, it is not unexpected that several
pathologies have been associated with caveolae dysfunc-
tion. With the notable exception of neurons and lympho-
cytes, caveolae are ubiquitously found in most cells and
are particularly enriched in adipocytes, endothelial and
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muscle cells. Accordingly, mutations or deregulation of
caveolae components expression have been associated
with lipodystrophy, vascular dysfunction, musculopathies
[73] or cancer [74]. It is certainly no coincidence that, all
chronically experience mechanical forces in their envi-
ronment [1,51,75,76]. Whether these diseases can be
related to defects in caveolae mechanosensing and
mechanotransduction remains however to be tested.

Lipodystrophy
In mice, Cav1 or cavin-1 deficiency leads to a similar
lipodystrophic phenotype consisting in important loss of
fat mass associated with hypertriglyceridemia [10,77]. A
p.Glu38X stop codon CAV1 homozygous mutation result-
ing in caveolae loss was first identified in a patient
suffering from Berardinelli-Seip congenital lipodystrophy
[78] followed by the identification in lipodystophic
patients of a homozygous frame shift mutation
(c.696_697insC) in the PTRF gene coding for cavin-1
[79]. Other human mutations are found in Cav1 and
cavin-1, including heterozygous frame shift mutations
in the CAV1 gene (88delC and p.I134fsdelA-X137 in
Ref. [80], p.Phe160X in Ref. [81!]) and a single deletion
in PTRF gene (c.947delA in Ref. [82]), leading again to a
similar phenotype. These studies and others emphasize
the central role of caveolae in lipid metabolism. Lipody-
strophy could be ascribed to the loss of caveolae-depen-
dent lipid storage capacities by adipocytes as mice lacking
Cav1 or cavin-1 remain lean under high fat diet [77,80,83].
Cav1 is found at the plasma membrane of adipocytes and
at the surface of lipid droplets, the key lipid storage
organelle [84]. Thus, the absence of Cav1 will affect both
lipid uptake and associated caveolae-dependent signaling
events together with lipid droplet composition [85,86].
Lipid uptake results also in rapid swelling of adipocytes, a
mechanical stress that may require functional caveolae for
efficient membrane mechanoprotection.

Vascular dysfunction
In addition to lipodystrophy, mice lacking Cav1 and
cavin-1 experience vascular dysfunction [87–89]. Defects
in stimulated contractility, myogenic tone and endothe-
lium-dependent relaxation of arteries have been observed
in CAV1 KOmice [87] that could be related to the control
of NO and calcium signaling by Cav1 [90,91]. The
phenotype of CAV2 KO mice, which still have caveolae,
is surprisingly restricted to lung dysfunction through
increased lung endothelial cell proliferation [92]. Again
shear stress is intrinsically associated with endothelial
cells in vessels and caveolae are likely to be involved
in several shear-related functions [93].

Muscular dystrophies and cardiomyopathies
Mutations of muscle-specific Cav3, cavin-1 and cavin-4
have been associated with several forms of muscular
dystrophies and cardiomyopathies [79,94]. The observed
symptoms could be ascribed to several defects in muscle

physiology. A lack of functional caveolae could lead to
defective formation of the excitation contraction coupling
machinery and disorganization of the T-tubule network
[94,95]. It could also result in lipid homeostasis and
mechanosensitivity defects upon muscle contraction,
which in turn would directly affect the response of the
sarcolemmal membrane to mechanical strains. Moreover,
non-mutually exclusive caveolae-dependent defects have
also been reported for signaling pathways important for
muscle physiology such as those mediated by calcium,
Akt or MAP kinases [96–98], or in the expression or
localization of key proteins involved in membrane integ-
rity or repair such as dysferlin [99], and also in mechan-
oprotection [51,100!].

Cancer
Several thousand studies have addressed the role of Cav1
in this broad-spectrum pathology that is cancer. Yet this
role remains complex with studies describing Cav1 as a
tumor suppressor and others as an oncogene. The nature
of this role may vary with the type and stage of cancer [74]
and is probably related to a deregulation of signaling
pathways involved in tumor progression. The other com-
ponents of caveolae have been less studied. In breast and
prostate cancers [101,102], Cav2 expression was increased
whereas cavins, with lower expression, were more likely
to be tumor suppressors [68,103,104]. The role of caveo-
lae in cancer should be reconsidered through their
mechanosensing function as recent data have shed light
on the key role of mechanical forces in tumor progression
[105].

Other pathologies including pulmonary arterial hyperten-
sion [106], fibrosis [87] or atherosclerosis [107] have also
been associated with caveolae deficiency or deregulated
Cav1 expression. These pathologies can also be analyzed
in the context of mechanical dysfunction [32].

Conclusion and unresolved questions
Obviously more than 60 years after the first description of
caveolae, many fundamental questions remain unan-
swered. It is intellectually challenging to reconcile the
diversity of their cellular functions with a unique organ-
elle that is mostly stable at the plasma membrane. The
absence or deregulation of this ubiquitous organelle
results likewise in a rather specific set of pathologies. A
major unresolved question concerns the mechanisms by
which caveolae can control so many signaling circuits.
The recent structural description of the caveolar coat has
been a major step forward that will allow to better
understand how signaling effectors can associate with
the different components of this compact structure.
The resolution of the ternary structure of Cav1, as
recently achieved for Cav3 [108], will bring new answers
as well.
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One could also speculate that the different Cav1 and
cavin isoforms may assemble subpopulations of caveolae
differing in their composition/structure thereby allowing
customized signaling and local reactivity to mechanosen-
sing in different cells and tissues. At the ultrastructural
level, various degrees of caveolar invaginations can be
observed (Figure 2). Whether these structures co-exist
independently or are in dynamic exchange is unknown. It
will be important to analyze the distribution of caveolin
and cavin isoforms in these structures. Live cell imaging
of caveolae with higher spatiotemporal resolution
approaches such as super-resolution microscopy should
also provide a better understanding of their significance
[109!!].

The rapid exchange of cavins and Cav1 from caveolae in
response to mechanical constrains is potentially a new
mechanism by which caveolae could control signaling in a
highly dynamic and integrated manner
[51,55,57,100,110!,111,112]. In this context, it is interest-
ing that in most caveolae-associated pathologies, cells and
tissues are subjected to increasing mechanical stress that
may induce aberrant cellular mechanosignaling [105,113].
Thus, the miscellaneous functions of caveolae could be
reunified through a central mechanoprotective role rely-
ing onmechanosensing andmechanosignaling. Thanks to
the new conceptual and technological advances applied to
caveolae biology during the past decade, we start to
understand how this multifunctional organelle is capable
of integrating and translating an array of various external
stimuli into the regulation of distinct cellular functions.
The next challenge is to translate this knowledge in vivo
in order to design tailored therapeutics for treating caveo-
lae-associated diseases.
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Résumé : Les cavéoles sont des invaginations 
de la membrane plasmique qui nécessitent les 
cavéolines pour leur biogénèse. Récemment, 
mon laboratoire d’accueil a décrit un nouveau 
rôle pour les cavéoles dans la réponse au stress 
mécanique (Sinha et al, Cell, 2011). Des 
mutations de la cavéoline-3 (Cav3), isoforme 
spécifique du muscle, qui ont pour conséquence 
la rétention de la protéine dans l’appareil de 
Golgi, ont été décrites dans certaines 
dystrophies musculaires. Mon projet consiste en 
l’identification du lien fonctionnel entre les 
mutations de la cavéoline-3 et les dystrophies 
musculaires, qui ont comme phénotype 
principal un défaut d’intégrité et de réparation 
membranaire et des dérégulations dans 
l’homéostasie du muscle. Dans des myotubes 
humains provenant d’un patient portant la 
mutation Cav3-P28L ou Cav3-R26Q, j’ai pu 
montré une diminution de la quantité de 
cavéoles à la membrane plasmique. 
 

En conséquence, les myotubes mutants ne sont 
plus capables de tamponner l’augmentation de 
la tension membranaire provoquée par un stress 
mécanique, ce qui conduit à un défaut 
d’intégrité membranaire. J’ai aussi montré que 
la voie de l’interleukin-6 (IL6), importante pour 
l’homéostasie du muscle, est hyperactivée dans 
les myotubes mutants, révélant un rôle de 
régulateur négatif de la voie IL6 par Cav3. De 
plus, cette voie n’est plus régulée négativement 
quand un stress mécanique est appliqué comme 
c’est le cas dans les myotubes sauvages (WT). 
De manière intéressante, les myotubes mutés 
phénocopient une déplétion de Cav3 et ce 
phénotype est réversible lorsque l’on reforme 
des cavéoles à la membrane plasmiques des 
myotubes mutés en exprimant la forme WT de 
Cav3. Ceci confirme un lien direct entre les 
mutations de CAV3, l’absence de cavéoles et le 
phénotype observé.  
 

 

 

Title : Role of caveolin-3 and caveolae mechanics in the muscle pathophysiology. 
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Abstract : Caveolae are plasma membrane 
invaginations that require caveolin proteins for 
their biogenesis. Recently, our laboratory 
reported a new role for caveolae in the cell 
response to mechanical stress (Sinha et al, Cell, 
2011). Mutations in the CAV3 gene (muscle 
isoform), which lead to caveolin-3 (Cav3) 
retention in the Golgi apparatus, are associated 
with muscular dystrophies. My project consists 
in identifying the functional link between Cav3 
mutations and MDs, which exhibit defects in 
membrane integrity and repair, and in muscle 
homeostasis. In Cav3 P28L and Cav3 R26Q 
mutated human myotubes, I showed a lack of 
caveolae structures at the plasma membrane. 
This results in a lack of membrane tension 

buffering upon mechanical stress, leading to 
mechanoprotection defects. I also showed that 
the interleukin-6 (IL6) pathway, important for 
muscle homeostasis, is overactivated in mutant 
myotubes, showing evidence of a negative 
regulation of the pathway by Cav3. 
Furthermore, the IL6 pathway is no longer 
negatively regulated upon mechanical stress, as 
it is the case in wild-type (WT) myotubes. 
Interestingly, mutated myotubes behave as 
Cav3 depleted myotubes, and the phenotype is 
reversible with caveolae reformation upon 
expression of the WT form of Cav3. This 
confirms the direct link between CAV3 
mutations, the absence of caveolae and the 
observed phenotype.   


