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Ma thè sè èn 180 sècondès 

 

*Faire semblant de tenir un verre contenant un liquide à la main, le tourner légèrement, le sentir, regarder sa 

couleur, le goûter …. Nous sommes au 16ème siècle, et les médecins observaient la couleur et l'odeur de l'urine 

pour diagnostiquer des maladies, et mieux encore…ils la dégustaient ! Il parait que l'urine des patients atteints de 

diabète est sucrée. Hmm le pipi c'est délicieux ! Mais...d'où vient l’urine ? L'urine est produite par les reins. Ces 

organes ont la forme d'un haricot et font environ la taille de notre poing. Dans notre corps, ils agissent comme des 

filtres géants et servent à nettoyer, ♪♫ astiquer le sang toujours pimpant ♪♫ Hmm, oui ! Pour vous donner une 

idée, un enfant de 10 ans a en moyenne 2,5L de sang et ce sang va passer 80 fois par ses reins, tous les jours, pour 

être nettoyé. Les déchets filtrés sont éliminés dans l'urine. Cependant, cette urine contient plein d'informations sur 

notre organisme et plus particulièrement sur l'état de fonctionnement des reins.  

En soirée, on me taquine souvent en m’appelant ‘Dr Pipi’ parce que pour mon projet de thèse, j'étudie la 

composition de l’urine afin d'aider les médecins à diagnostiquer précocement les maladies rénales chez les enfants. 

De nos jours, pour diagnostiquer une maladie rénale le médecin trempe une bandelette dans votre urine afin de 

détecter la présence de grosses protéines. Ces dernières se retrouvent dans l'urine lorsque le filtre est endommagé. 

En effet, au fur et à mesure que le filtre cumule des dommages, des trous vont s'y former et s'agrandir avec le 

temps. Une fois ces trous suffisamment grands, ils permettent ainsi aux grosses protéines de passer dans l'urine. 

Mais pour pouvoir diagnostiquer plus précocement les dommages aux reins, il faudrait identifier des petites 

protéines qui passent le filtre lorsque les trous sont encore petits. Pour les identifier, au laboratoire, j'ai analysé des 

échantillons d’enfants malades et d’enfants en bonne santé avec un appareil qu'on appelle un spectromètre de 

masse. Il me permet d'identifier1 des protéines 20 fois plus petites mais aussi de mesurer leur quantité2 dans l'urine. 

J’ai ensuite comparé les urines des enfants malades et celles des enfants en bonne santé, afin de voir ce qui pourrait 

être différent. Cela m’a permis d’identifier une combinaison de petites protéines qui sont présentes très tôt dans 

l'urine des enfants malades et absentes dans l'urine des enfants sains. Diagnostiquer plus précocement la maladie 

permettrait ainsi de prendre en charge les patients plus tôt et surtout d'adapter le traitement afin de retarder 

l'apparition de plus de dommages aux reins. Je vous remercie de votre attention, et j'espère que durant ces 180 

secondes je n'aurais pas... « pissé » dans un violon ! 



 

  



Résumé 

Diagnostiquer précocement les maladies est un défi à relever pour améliorer la prise en charge des 

patients concernés et leur offrir une meilleure qualité de vie. Les analyses ‘omiques’, qui quantifient 

globalement, simultanément et sans a priori l’abondance de milliers de molécules dans les liquides 

biologiques, s’avèrent très prometteuses pour l’identification de biomarqueurs précoces des maladies 

complexes. Dans ce contexte, mon travail de thèse avait pour objectif de développer des outils de 

diagnostics, à partir d’analyses du peptidome et métabolome urinaire, pour détecter précocement la 

présence d’une maladie rénale chronique (MRC) et la survenue de ses complications cardiovasculaires.  

La première étude, insérée dans le projet européen 4C (Cardiovascular Complications in Children with 

Chronic kidney disease), s’est centrée sur les complications cardiovasculaires associées à la MRC en 

pédiatrie. Ces complications constituent la principale cause de mortalité des enfants en insuffisance 

rénale, et leur diagnostic précoce est impossible à ce jour. En analysant par électrophorèse capillaire 

couplée à la spectrométrie de masse (CE-MS) le peptidome urinaire de 86 enfants souffrant, ou non, de 

complications cardiovasculaires secondaires à la MRC, nous avons identifié des peptides qui permettent 

de prédire à l’avance les patients à haut risque cardiovasculaire : 190 peptides étaient associés à 

l’épaississement de la paroi carotidienne (AUC 0.87, sensibilité 80%, spécificité 100%) et 22 peptides 

prédisaient l’augmentation de la rigidité artérielle (AUC 0.83, sensibilité 83%, spécificité 70%). 

Le second projet relevait de la médecine vétérinaire. Dans cette étude menée sur 50 chiens avec et sans 

MRC, nous avons caractérisé pour la première fois le peptidome urinaire canin via la technologie CE-

MS et nous avons découvert 133 peptides urinaires associés à la MRC. Ces derniers ont permis de 

diagnostiquer la présence d’une MRC dans 80% des chiens.  

Les métabolites sont mieux corrélés au phénotype que les autres strates moléculaires. Cependant l’apport 

de la métabolomique en clinique est encore limité, dû au manque de technologies analytiques 

performantes. Le troisième objectif de ma thèse était donc de mettre au point une procédure de dosage 

par CE-MS des métabolites urinaires. Grâce à une méthode unique de normalisation interne, basée sur 

l'utilisation de métabolites endogènes stables, il est maintenant possible d'analyser le contenu en 

métabolites d'un même échantillon urinaire avec une très haute reproductibilité sur le long terme (4 ans). 

Comme preuve de concept, nous avons mis en évidence, via cette procédure, la présence d’une 

combinaison de 32 métabolites dans l’urine qui permet de repérer avec une sensibilité de 76% et une 

spécificité de 86% les nouveau-nés porteurs d’une malformation rénale obstructive. 

Enfin, la quatrième problématique s’inscrivait dans une démarche translationnelle. Son but était de 

développer des aptasenseurs capables de détecter avec de hautes affinités et spécificités les 

biomarqueurs d'origine omique, pour un diagnostic simple, rapide et à moindre coût. La cible choisie 



était un fragment urinaire de l’α-1-antitrypsine, qui est ~1000 fois plus abondant chez les adultes atteints 

de MRC que les chez les sains. La sélection de l’aptasenseur s'est faite par le Systematic Evolution of 

Ligands by EXponential enrichment (SELEX). Nous présentons ici les travaux préliminaires de la mise 

au point du SELEX sur cette cible. 

En conclusion, cette thèse démontre le potentiel de l'analyse du contenu urinaire en peptides et 

métabolites pour le diagnostic précoce des pathologies complexes telles que la MRC et les complications 

cardiovasculaires associées. De plus l’obtention d'aptasenseurs dirigés contre ces biomarqueurs précoces 

et utilisables au chevet du patient devrait révolutionner dans le futur les méthodes diagnostiques.  



Abstract 

Early diagnosis of diseases is a big challenge to improve patients’ health and quality of life. ‘Omics’ 

analyses, which allow the global and simultaneous quantification of the relative abundance of thousands 

of molecules in biological fluids are promising for the identification of early biomarkers of complex 

diseases. In this context, the objective of my thesis was to develop diagnostic tools, based on urinary 

peptidome and metabolome analyses, for the early detection of chronic kidney disease (CKD) and 

associated cardiovascular complications. 

The first study, as part of the 4C European project (Cardiovascular Complications in Children with 

Chronic kidney disease), focused on analyzing the cardiovascular complications associated to CKD in 

children. These complications are the main cause of mortality in children with CKD and their early 

diagnosis is impossible for now. Analysis of the urinary peptidome of 86 children with or without 

cardiovascular complications associated to CKD by capillary electrophoresis coupled to mass 

spectrometry (CE-MS), led to the identification of two sets of peptides for the early prediction of high 

cardiovascular risk in pediatric patients: 190 peptides were associated to an increase of the carotid 

intima-media thickness (AUC 0.87, sensitivity 80%, specificity 100%) and 22 peptides were associated 

to an increase in arterial stiffness (AUC 0.83, sensitivity 83%, specificity 70%). 

The second study falls in the field of veterinary medicine. In this study, carried out on 50 dogs with or 

without CKD, we analyzed for the first time the canine urinary peptidome using the CE-MS technology. 

We identified 133 urinary peptides associated to CKD allowing an accurate diagnosis of CKD in 80% 

of the dogs.  

Metabolites correlate best to phenotype compared to other molecular traits. However, the use of 

metabolomics for identification of clinically relevant biomarkers is very limited due to the lack of high-

performance analytical technologies. The third part of my thesis was to develop a procedure for the 

quantification of urinary metabolites by CE-MS. Using a unique method of internal normalization based 

on endogenous and stable metabolites, we can now analyze the metabolite content of the same urine 

sample with a high reproducibility over the long-term (4 years). As a proof-of-concept, we demonstrated 

that this developed procedure led to the identification of a set of 32 urinary metabolites that allow the 

early identification of newborns with an obstructive kidney anomaly with a sensitivity of 76% and a 

specificity of 86%. 

Finally, the fourth study was dedicated to improving translational research. The aim was to develop 

aptasensors able to detect ‘omics’-identified biomarkers with a high affinity and specificity to obtain a 

simple, rapid and low-cost diagnostic test. The biomarker chosen as target is a urinary fragment of α-1-

antitrypsin, which is ~1000 more abundant in adults with CKD compared to healthy subjects. 



Aptasensors were selected by the Systematic Evolution of Ligands by EXponential enrichment 

(SELEX). Here we present preliminary work on the development of the SELEX for our target. 

In conclusion, this thesis shows the strength of the urinary content, in terms of peptides and metabolites, 

for the early diagnosis of complex pathologies like CKD and the associated cardiovascular 

complications. Moreover, the selection of aptasensors targeting these early biomarkers and that can be 

used at bedside, will revolutionize future diagnostic methods. 
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I. Cardiovascular complications in 

children with chronic kidney disease  

1. Epidemiology of CKD in children 

Chronic kidney disease (CKD) is characterized by irreversible damage of the kidneys leading, in most 

of the cases, progressively to end-stage renal disease (ESRD). There are 5 CKD stages, stage 5 being 

the most severe and is equal to ESRD [1]. The only solution of survival for patients with ESRD is renal 

replacement therapy (RRT) by dialysis or kidney transplantation. Epidemiological studies report that 

CKD is the 14th leading cause of death worldwide, accounting for 12.2 deaths per 100,000 individuals. 

According to the projections from the Global Health Observatory, this death rate will continue to rise to 

reach 14 per 100,000 individuals by 2030 [2].  

 

The pediatric incidence of CKD stages 3-5 in Europe is approximately 11-12 per million of the age-

related population (pmarp) and the prevalence is 55-60 pmarp [3]. For the past 30 years, the prevalence 

and the incidence of RRT in children has increased. In 2008, the worldwide median incidence of RRT 

in children aged less than 20 years old was about 9 pmarp [4]. A recent study, published in February 

2018, examined a large, nationwide cohort of 1,521,000 Israeli adolescents (mean age 17.7 years) before 

conscription (obligatory military service) and followed them up for 30 years. This study showed that 

even if there is no evident decline of kidney function during adolescence, after a childhood episode of 

mild kidney disease or injury, early renal damages and renal scarring contribute to higher risks of ESRD 

and onset of ESRD at a younger age compared to the normal population [5]. 

2. Etiology of CKD in children 

i. Main etiologies 

CKD affects both adults and children, but the causes are different between these two populations. The 

causes of CKD in children are mostly due to primary kidney disease, as we will see below, while in 

adults, CKD is mostly secondary to other diseases, mainly diabetes and hypertension [6-9]. 

Congenital anomalies of the kidney and urinary tract (CAKUT) are the main causes of CKD in children 

(about 50%), followed by other key causes including steroid resistant nephrotic syndrome (SRNS) and 

glomerulonephritis both with a frequency of about 10% (Table 1).  



INTRODUCTION  Valérie BRUNCHAULT 
3 

Table 1. Causes of CKD in children under 25 years old and their relative frequency. From NAPRTCS 

- North American Pediatric Renal Trials and Collaborative Studies [10]. 

DIAGNOSTIC GROUPS Total 

Congenital anomalies of the kidney and urinary tract (CAKUT) 49.1% 

steroid-resistant nephrotic syndrome (SRNS) 10.4% 

Chronic glomerulonephritis (GN) 8.1% 

Renal cystic ciliopathies 5.3% 

Hemolytic uremic syndrome 2.0% 

Nephrolithiasis/nephrocalcinosis 1.6% 

Other 20.9% 

Unknown 2.6% 

Total 100% (N=7,037) 

 

CAKUT are due to structural anomalies that occur during kidney development (nephrogenesis) and 

urinary tract development. They may be further divided into renal agenesis (absence of kidney), 

hypoplasia (small-sized kidneys with intact nephrons but in reduced number), dysplasia (disrupted and 

undifferentiated renal parenchyma), ureteropelvic junction obstruction (obstruction of urine outflow at 

the intersection of the pelvis and the ureter), posterior urethral valves (obstruction of urine outflow at 

the exit of the bladder), vesicoureteral reflux (lower urinary tract dysfunction due to a variety of reasons) 

or megaureter (dilated ureter), as shown in Figure 1. CAKUT account for approximately 20-30% of all 

congenital abnormalities and for each 1000 births, about 3-6 cases are reported [11, 12]. Data collected 

during the follow-up of patients have shown that CAKUT are the cause of ~50% and 7% of ESRD 

worldwide in the pediatric and adult population, respectively [12].  

Nephrotic syndromes are characterized by excessive proteinuria (> 50 mg.kg-1.day-1 in children). They 

are classified based on their response to glucocorticoids treatment as either steroid-sensitive 

(glucocorticoids treatment is efficient and results in complete remission) or steroid-resistant (SRNS) 

[13]. SRNS may be further subdivided into focal segmental glomerulosclerosis, congenital nephrotic 

syndrome and membranous nephropathy. Histological analysis of biopsies from SRNS children showed 

that most of these children had glomerular epithelial damage and podocyte effacement which decrease 

the stability of the glomerular filtration barrier [14-17] and contribute to kidney lesions leading to CKD. 

SRNS is responsible of 5-20% of ESRD worldwide [18]. 

Chronic glomerulonephritis (GN) is the third leading cause of CKD in children. GN is a glomerular 

inflammation that is detected based on histopathological observations and described by a combination 

of 3 clinical observations: hematuria, hypertension and proteinuria [19]. They are further subdivided 
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into lupus nephritis, familial nephritis (Alport Syndrome), chronic glomerulonephritis, 

membranoproliferative glomerulonephritis, IgA nephritis and idiopathic crescentic GN [20]. On 

biopsies, GN kidneys display glomerular basement membrane damage, which is also associated to 

podocyte effacement and consequently leads gradually to nephron loss [21].  

 

Figure 1. 3D representations of some distinct types of CAKUT. The classification is based on 

anatomical changes adapted from [11]. 

ii. Factors influencing CKD development in children 

CKD has been shown to vary with race. Prospective analyses carried in Europe and the USA have shown 

that CKD was more frequent in black compared Caucasian children. For example, focal segmental 

glomerulosclerosis was three times more common in blacks than in Caucasians (19 vs 6%) and 

particularly among black adolescents (35%) when children aged between 0 – 20 years were compared 

[2, 22, 23].  

Moreover, certain age groups are more susceptible to develop CKD. A statistical analysis of the different 

age groups of children revealed that adolescence was the age group with the highest incidence of CKD 

[4, 23].  

Finally, several studies have shown that there was a higher frequency of CKD in boys than girls due to 

the higher frequency of CAKUT in this gender [3, 11, 24].  



INTRODUCTION  Valérie BRUNCHAULT 
5 

This chapter on the different etiologies of CKD in children underlines a critical point to consider which 

is the occurrence of the disease. CKD occurs very early in children’s life and is accompanied by 

complications associated to CKD, thereby reducing life expectancy.  

3. Mortality in children with CKD 

Data available from 2006-2008 in the US report that the mortality rate in the general pediatric population 

was 0.31 per 1000 patient-years at risk. However, an analysis of the mortality rate in children on ESRD 

showed that this rate was much higher: 35.6 for children on dialysis and 3.5 for children who received 

a kidney transplant per 1000 patient-years at risk. A high number of studies, including observations from 

international registries, to understand the factors contributing to this increase in death rate showed that 

cardiovascular diseases (CVD) were the leading causes of death in children with ESRD (Figure 2) [25-

28].  

 

Figure 2. Main causes of death in the children from the general population and children suffering from 

ESRD [28]. 

4. Cardiovascular complications associated to CKD in children  

As indicated above, the main causes of death in children with ESRD are due to CVD. To improve clinical 

management of CKD children, several studies have investigated the cardiovascular risk, mechanisms of 

the disease and markers of CVD complications in the pediatric population with CKD. The first 

complication that develops in the initial stages of CKD is left ventricular hypertrophy. At more advanced 

stages vascular calcification and associated wall stiffness, as well as atherosclerosis and associated 

increased wall thickness are observed.  
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i. Cardiac complications 

a. Left Ventricular Hypertrophy (LVH)  

Definition and detection 

Cardiac hypertrophy is characterized by an increase of the ventricular wall thickness and/or internal 

chambers size (Figure 3). This enlargement of the heart occurs in physiology consequently to exercise 

or pregnancy. Apart from these two exceptions, cardiac hypertrophy is a response to pathological 

conditions causing impaired cardiac function [29].  

To assess cardiac hypertrophy, LVH is usually evaluated by two-dimensional echocardiography [30-

34]. This allows evaluation of the cardiac geometry together with chamber size in real-time, and 

quantification of interventricular septal thickness, posterior wall thickness and internal LV diameter 

both in systole and diastole. Left ventricular mass index (LVMI) is then computed and normalized for 

height for expression in g/m2.16. LVMI is independent of gender. Moreover, relative wall thickness, i.e. 

the mean thickness of the septal and posterior wall divided by the LV end-diastolic dimension is also 

calculated [35]. However, the two-dimensional echocardiography technique has geometrical limitations, 

depending on the angle at which the measurement is done, and potential interobserver variability, 

depending upon image quality [36]. 

LVH is defined as either concentric or eccentric (Figure 3). LVH concentric remodeling is characterized 

by an elevated wall thickness and a normal left ventricular mass index (LVMI), while eccentric 

remodeling is characterized by a normal wall thickness and an elevated LVMI due to an increase in 

chamber size. 

LVH in children with CKD 

Cross-sectional studies on the analysis of the cardiac geometry in children suffering from CKD showed 

that cardiac hypertrophy is one of the most important independent marker of cardiovascular risk 

associated to CKD, with a prevalence of 17 – 49% in mild to moderate CKD and increasing to 75% in 

ESRD [37, 38] [39, 40]. Analysis of LVH in children suffering from CKD has shown that eccentric 

LVH with elevated LVMI (i.e. above the 95th percentile of the general healthy population) was more 

recurrent than concentric LVH [41-45]. Of note, it has been shown that girls have a higher risk of 

developing LVH than boys during CKD, although the reasons for these sex differences are still unknown 

[32, 46].  
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Figure 3. The different phenotypes of cardiac hypertrophy in physiological and pathological conditions 

adapted from [29]. RA: Right atrium; LA: Left atrium; RV; Right ventricle; LV: Left ventricle. 

Factors and mechanisms contributing to LVH 

LVH occurs in response to hemodynamic, cellular and molecular factors contributing to cardiomyocyte 

growth. Cardiomyocytes are terminal differentiated cells that cannot re-enter the cell cycle. They 

respond to external stresses by an increase in size. Eccentric hypertrophy is an increase in cardiomyocyte 

length, rather than the width, which occurs following assembly of serial contractile-protein units of 

myosin. In contrast, concentric hypertrophy occurs due to assembly of myosin in parallel such that 

cardiomyocytes increase in width, rather than in length. During CKD, previous studies have shown that 

hypertension, and more specifically increase in systolic blood pressure, was the major factor 

contributing to LVH in children. High blood pressure generates a mechanical stress that induces chronic 

changes in sarcomere length and collagenous components of the heart [37, 39].  

Moreover, decline of kidney function during CKD leads to the retention and accumulation of 

compounds, which are normally eliminated by the kidneys through urine. A number of these, known as 

uremic toxins, have shown biological activity that exert negative impacts on body functions [47]. Uremic 

toxins are broadly classified into 3 groups: small, middle or protein-bound solutes. Examples of uremic 

toxins recently identified in children with CKD stages 1-5 compared to healthy controls were symmetric 

dimethyl-arginine (SDMA), fibroblast growth factor 23 (FGF-23), β2-microglobuline, indoxyl sulphate 

(IxS), p-cresyl sulphate (pCS), indole-acetic acid, 3-carboxy-4-methyl-5-propyl-furanpropionic acid, 

and hippuric acid (HA) [48]. The association between SMDA, IxS, pCS, HA and LVH has already been 
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observed in humans and/or animal models but the mechanisms contributing to cardiac hypertrophy are 

still unknown [49-53]. On the other hand, different studies have explored the link between FGF-23 and 

LVH. Recent publications showed that circulating FGF-23 was an independent, with respect to eGFR, 

predictor of LVH in children with mild to moderate CKD [54-56]. In addition, in-vitro studies have 

shown that treatment of rat cardiomyocytes with FGF-23 induced hypertrophy [57]. Moreover, 

treatment with a pan-FGF receptor (FGFR) inhibitor, PD17307, in a rat model of CKD inhibited 

initiation of LVH [58]. Further studies on a FGFR4-knockout mice model showed that FGF-23 induces 

LVH via the activation of FGFR4 [59]. This suggests that FGFR4 could be a new pharmacological target 

to reduce cardiovascular complications associated to CKD. Nonetheless, LVH seems to be a very 

complex mechanism implying many more molecular actors. More research work is needed to determine 

the exact triggering mechanisms leading to LVH and, by the same way, to identify new therapeutic 

targets. 

Treatment 

In the 'Effect of Strict blood pressure Control and ACE inhibition on Progression of chronic renal failure 

in pediatric (ESCAPE) patients' trial, the effect of strict blood control was evaluated on baseline LVH 

in 84 hypertensive CKD children (aged 3-18 years), after either 1-year or 2-years follow-up [60]. The 

normalization of blood pressure with ACE inhibitors (ACEi) lead to a decrease in LVH prevalence from 

38% to 25% during the follow-up. Moreover, a significant improvement in myocardial systolic function 

was noted over time. However, reducing blood pressure to below normal values did not lead to further 

decrease in LVMI [60]. These results confirm that hypertension is a major actor in LVH and suggest 

that LVH could be targeted pharmacologically. 

As low hemoglobin level is significantly associated to increased LVH in children [32], it has been 

hypothesized that increasing hemoglobin levels in these children would increase oxygen transport and 

cardiac function. However, little evidence is available on the benefits of anemia treatment in children 

with CKD with respect to LVH and cardiac function. Only one study evaluated short term effect of 

human recombinant erythropoietin treatment in 11 children on ESRD, aged 2.3-12.3 years, and showed 

a decrease in LVH after 36 weeks of treatment [61].  

 

b.  Outcome and challenges of cardiac hypertrophy 

The main CVD outcome associated to cardiac hypertrophy are cardiomyopathies such as arrhythmia 

and cardiac arrest/sudden death [62-66]. Another study suggests that the abnormal cardiac function in 

CKD children with LVH may result in the development of systolic dysfunction and heart failure [40]. 

For now, the main problem for the management of LVH in CKD children is the lack of identification of 

high-risk patients. In 2011, Chavers et al. carried out an analysis on 656 United States pediatric patients 

on dialysis, aged 0.7-18 years, to investigate the frequency of the presence of cardiac disease in these 
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children. This study reported that while LVH was diagnosed in 24% of all the patients, echocardiography 

was performed in routine in only one third of the ESRD children [67]. The reasons for this lack of 

echocardiography analysis are unknown. Moreover, children who develop LVH associated to CKD 

remain asymptomatic for a long-time and are detected at a very late stage. Hence, it is imperative to find 

diagnostic tools which could allow early identification of LVH in children with CKD. Once 

hypertension is diagnosed in CKD children, annual testing for cardiac disease such as LVH should be 

performed [67]. This would allow prescription of the appropriate treatment to these children at the 

appropriate time, and thus extend their life expectancy. 

 

ii. Vascular complications 

a. Vascular calcification and arterial stiffness 

Definition and detection 

In physiology, arteries have a relatively elevated elasticity due to the high elastin-to-collagen ratio and 

the influence of smooth muscle cells. During vascular calcification, hydroxyapatite mineral (calcium 

and phosphate complex) is deposited in the arterial wall leading to increased stiffness. There are two 

types of calcification: arterial medial calcification (AMC, also known as Mönckeberg’s sclerosis) and 

intimal calcification (AIC) [68, 69]. In AMC, calcification occurs in a sheet-like manner in the tunica 

media, not the intima, leading to a concentric thickening of the vascular wall and it is responsible for 

arterial stiffness. In contrast, AIC occurs in the lipid-rich atheromatous plaque and in a patchy manner, 

involving pro-inflammatory macrophages and vascular smooth muscle cells (VSMCs). AIC is usually 

associated with ageing and is rarely seen in the pediatric population. However, it is difficult to clearly 

distinguish AIC from AMC [69].  

To assess rigidity of arteries, three different approaches can be used: 1) assessment of the arterial 

pressure waveforms, 2) measurement of the change in the diameter (or area) of an artery with respect to 

the expanding pressure and 3) measurement of the pulse wave velocity (PWV). PWV is considered as 

the gold standard for evaluation of arterial stiffness in adults [70]. In children, there are no gold 

standards, but most arterial stiffness evaluations have also been done by measuring the PWV and 

reference for comparison with the healthy population are available [71, 72]. The basis of PWV principle 

is that the pressure pulse, generated by the ventricular ejection, is spread along the arterial tree at a speed 

determined by the geometric and elastic properties of the arterial wall. The PWV is then expressed in 

meter per second. The arterial pulse wave is measured in proximal and distal arteries, most frequently 

the carotid and the femoral arteries. The different techniques used to measure PWV are the Doppler 

ultrasound, applanation tonometry, magnetic resonance imaging and oscillometric pressure cuffs [70]. 

PWV measurement can also be complemented with methods for evaluation of calcification such as the 

electron-beam computed tomography or spiral or helical computed tomography imaging. However, they 
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are less commonly used since the technique is expensive and not readily accessible [70]. One drawback 

observed with the PWV measure is that it can be difficult to carry out in very young children since their 

active participation is needed. They need to remain calm for at least 5 minutes in a supine position in a 

tempered room, and their head and shoulder part elevated at 30° to prevent venous artefacts [73].  

Vascular calcification in children with CKD  

Vascular calcification occurs in chronic inflammatory conditions such as CKD and dyslipidemia. 

Calcification is the first vascular damage observed in children with CKD, but very limited data are 

available on their prevalence in the pediatric population. In 2008, Shroff et al. analyzed vascular 

calcification in 34 children with CKD [74]. The authors showed that accumulation of calcium in the 

vessel walls starts in early CKD stages without any histological calcification evidence. However, 

dialysis of children with ESRD accelerated the process to rapidly induce overt calcification (within 2 

months of dialysis), as hydroxyapatite deposits were visible in 6 out of the 24 patients on dialysis (25%) 

together with VSMC apoptosis and osteogenic differentiation.  

Factors and mechanisms contributing to vascular calcification 

Under physiological conditions, calcification promoters and inhibitors are tightly balanced such that 

calcium and phosphate, which are supersaturated in body fluids, do not precipitate. However, this 

balance is disturbed during CKD and induces pro-osteogenic signaling. This is mainly due to another 

complication associated to CKD which is the chronic kidney disease mineral bone disorder (CKD 

MBD). The first biochemical abnormality noted during the initial stage of CKD is an increase in 

circulating FGF-23 [75]. In addition to the pathway involving FGFR4 described above for FGF-23 in 

the development of LVH, FGF-23 also binds to its co-receptor, Klotho, activating the fibroblast growth 

factor receptor 1 (FGFR-1). FGFR1 activation reduces renal phosphate reabsorption in the tubules, 

inhibits renal 1-α-hydroxylase, increases PTH secretion by the parathyroid gland and increases 24-

hydroxylase activity. This increase in 24-hydroxylase activity leads to a decrease in calcitriol (vitamin 

D). Moreover, a decrease in calcium absorption from the intestine occurs during CKD. The net decrease 

in calcium and phosphate levels, together with the increase in PTH in CKD patients leads to a 

compensatory mechanism causing calcium and phosphate release from the bones. This release causes 

renal osteodystrophy and bone fragilization in children. The other consequences usually observed in 

CKD children is a delay in growth, a short stature and eventually, vascular calcification [76, 77]. 

Calcium and phosphate are calcification promoters, whose effects are mediated by VSMCs. These cells 

are responsible of blood vessels contraction and relaxation, but they are also the key cellular effectors 

of calcification. Indeed, VSMCs are highly plastic cells which are able to adopt several phenotypes, 

such as osteoblasts or macrophage foam cells, depending upon the molecular signals in the extracellular 

microenvironment [78]. An increase in phosphate together with even a modest increase in calcium has 

shown to increase phosphate and calcium uptake in VSMCs in vitro and in animal models [79-81]. 
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Calcium initiates the calcification process by inducing the development and release of vesicles laden 

with hydroxyapatite which will further lead to nucleation of crystalline hydroxyapatite. These calcium-

phosphate nanocrystals are then degraded by lysosomes in VSMCs resulting in a peak intracellular 

calcium concentration and cell death (senescence and apoptosis – Figure 4). Once a nest of calcification 

forms in the extracellular matrix of VSCMs, its uptake and phagocytosis will induce additional 

calcification and simultaneously contribute to VSMCs differentiation to osteoblast like cells [69, 79]. 

To induce this differentiation of VSMCs during CKD, there is an upregulation of osteoblast genes and 

a synchronized decrease in smooth muscle genes which is mediated by a key transcription factor, Runx2 

[82-84]. 

Finally, calcification may also be promoted in children with CKD due to a decrease in calcification 

inhibitors such as fetuin-A [85, 86] and osteoprotegerin [87].  

Treatment 

To reduce progression of arterial stiffness, several treatment strategies are used. These include 

administration of phosphate binders, vitamin D derivatives supplement and calcimimetics. 

To reduce cardiovascular risk, phosphate levels are reduced with the administration of phosphate binders 

in children with CKD such as calcium carbonate and sevelamer hydrochloride, licensed for use in 

children [77]. In addition, calcimimetics are given to children to maintain a calcium to phosphate balance 

during CKD. However, very few data are available on the efficacy of those compounds and their long-

term effect in children with CKD [88]. 

To reduce the secondary hyperthyroidism that occurs following bone mineral disorders in CKD patients, 

vitamin D derivatives (Ergocalciferol and cholecalciferol) are administered [89]. The active form of 

vitamin D (1,25-dihydroxyvitamin D3) is a hormone involved in the control of mineral and bone 

homeostasis, and cardiovascular protection. A recent study carried out in 41 children with CKD and 24 

healthy controls reports that a high-dose oral cholecalciferol treatment, a vitamin D derivative, reduced 

endothelial dysfunction and local arterial stiffness after 12 weeks of treatment [90]. 

b. Atherosclerosis and arterial wall thickening 

Definition and detection 

Atherosclerosis is defined as the process of formation of an atherosclerotic plaque, also known as, 

atheroma [91]. The very first sign of atherosclerosis are fatty streaks developing in the intima. They are 

formed by the accumulation of T lymphocytes and lipid-rich macrophage (foam cells), which are derived 

from monocytes. These monocytes have been recruited from the blood circulation, in response to 

endothelial injury, or from de-differentiation of VSMCs (Figure 4). These foam cells regulate the 

cholesterol traffic, lipid homeostasis, inflammation and retention of atherogenic factors such as low-

density lipoproteins (LDL) in the arterial intima. The persistence of a pro-atherogenic signaling will 
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then cause a progressive thickening of the intima and fatty streaks evolution to more complex occlusive 

lesions called fibrous plaques. These fibrous plaques will increase in size over several years and project 

into the lumen of the artery, hampering blood flow. At advanced stages of atherogenesis, as the lesions 

become thicker, angiogenesis of the fibrous plaques occurs. At the terminal stages, these capillary and 

venule-like vessels may modify the structure of the plaques causing cleavage, cracking or ulceration, 

and finally lead to bleeding from the vascular lumen, or from vessels which developed during the 

secondary angiogenesis. These finally lead to formation of a terminal thrombus [92].  

The gold standard for the analysis of atherosclerotic plaque formation is the evaluation of the carotid 

intima-media thickness (cIMT). cIMT is measured using ultrasonography. For the measurement, the 

patient should stay in the supine position for 10 minutes in a controlled environment, to avoid 

vasoconstriction and/or vasodilation of blood vessels. During the imaging, a probe is placed 

perpendicular to the carotid artery for optimal imaging of the vessel wall and 2-dimensions images 

obtained. Using software compatible with the ultrasonogram, cIMT is then calculated [93].  

This technique is non-invasive but has two drawbacks for pediatric evaluation of cIMT. The first one, 

again as in PWV measurements, requires the patients’ collaboration and it is often challenging when 

performed in very young patients. Secondly, in most of the publications concerning the evaluation of 

cIMT, little attention is given to differences in the timing of measurements during the cardiac cycle and 

this may lead to variations during atherosclerosis diagnosis. To standardize cIMT measurement, it is 

suggested to perform the evaluation of thickness at the end diastole, when the artery appears the thickest 

[70].  

Atherosclerosis in children with CKD 

In children with CKD, atherosclerosis is the most common vascular damage [91]. Data available on the 

prevalence of atherosclerosis showed that it affects 10% to 15% of the ESRD population [94]. Analysis 

of atherosclerotic plaques were done in adult CKD patients only and showed that they were more 

complex and less stable than in patients with normal kidney function: they have higher lipid content and 

lower fibrous content [95, 96]. This is certainly due to complications, such as dyslipidemia, 

inflammation and uremic toxins, driven simultaneously by CKD. Furthermore, calcification is 

recognized as being an integral part of 80 – 90% of atheromatous plaques [97]. Histomorphological 

analysis of arteries composition of children with CKD revealed that there were calcium-phosphate 

deposits, similar to bone, in atheromatous plaques and the media [98]. As discussed above, this vascular 

calcification leads to an increase in the rigidity of arteries [99-101] and further contribute to morbidity 

and mortality.  

Factors and mechanisms contributing to atherosclerosis 

The main traditional atherogenic risk factor known for years now, is dyslipidemia [102, 103] and the 

pediatric CKD population is a vulnerable population. Analysis of the lipemic profile of 460 children 
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suffering from stage 2-3 CKD showed that 44% had dyslipidemia [104]. A small histological Turkish 

study of the internal iliac artery of 12 children with ESRD (aged 11-17 years) obtained during kidney 

transplantation showed that 7 (58%) of them had atherosclerotic lesions [105].  

While dyslipidemia seems to be the main contributor for this clinical observation in children, molecular 

data showed that atherosclerosis is accelerated due to chronic inflammation. This supports clinical 

findings which showed ESRD patients had high levels of serum C-reactive protein [106, 107]. 

Moreover, several studies have shown that atherosclerosis was highest at ESRD, compared to earlier 

stages of CKD, in children [108]. This implies that uremic toxins could be associated to atherosclerosis 

in children [109, 110]. The uremic toxin, IxS has shown to induce human and rat smooth muscle cells 

proliferation in vitro [111-113] and IxS administration to rats showed an induction of aortic calcification 

accompanied by aortic wall thickening [114]. Moreover, IxS and pCS have shown to inhibit endothelial 

repair in vitro and therefore contribute to atherosclerosis [115, 116]. 

Elevated levels of calcium, phosphate, parathyroid hormone (PTH) and fibroblast growth factor 23 

(FGF-23), and the calcium-phosphate product in CKD patients were also found to be associated to 

vascular calcification in atherosclerosis in children with CKD [117-119].  

Treatment 

Atherosclerosis is already diagnosed during moderate CKD and acceleration in atherosclerosis 

progression is usually observed when patients are enrolled on dialysis. This is not observed in 

transplanted patients [91]. Anti-atherosclerotic strategies target dyslipidemia, inflammation and arterial 

calcification. 

According to the current guidelines, dietary modifications and lifestyle changes are the first line 

treatment for dyslipidemia in children [120]. In the literature, statins are described as an effective 

treatment to reduce total cholesterol and LDL cholesterol in adults, and consequently reduce the risk of 

an increase in cIMT and the development of atherosclerosis. Few data are available concerning the 

pediatric population. Key factors must be considered by the clinician before prescribing statins: Any 

child/adolescent who begins statin therapy will be prescribed a higher cumulative dose over the course 

of his/her lifetime compared to most adults. Safety of such long-term statin exposure beginning in 

adolescence has not yet been validated in the clinic. The 2013 Kidney Disease: Improving Global 

Outcomes (KDIGO) guidelines do not recommend any statins treatment for children with CKD since 

no dose escalation has been done to confirm the safety of the lowest starting dose possible and that of 

higher doses over the short term. Moreover, no data is available concerning the appropriate LDL 

cholesterol to target in these children. More investigations are required to provide strong evidence that 

use of statins in CKD children is safe and effective [121]. 
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Treatment of children with CKD with angiotensin-converting enzyme inhibitors (ACEi) seems to 

contribute to the reduction of atherosclerosis by inhibiting inflammation. Several studies using mice 

models have shown that ACEi reduced atherosclerosis [122, 123]. Angiotensin II contributes to 

atherosclerosis by promoting VSMCs migration and proliferation [124], and the release of 

proinflammatory molecules such as interleukin-6 [125]. ACEi are usually administered during the initial 

stages of CKD to children in most of the cases. This may contribute to reduction of atherosclerosis early 

in CKD and explain why atherosclerosis is detected in the late stages of CKD. 

 

Figure 4. Schematic representation of an atherosclerotic plaque with medial (A) and intimal (B) 

calcification, during CKD. Adapted from [78]. 

a. Outcome and challenges of vascular complications 

Atherosclerosis is less prevalent in children with CKD compared to adults. However, a number of 

prospective analyses report that adolescents and young adults with increased cIMT are more prone to 

myocardial infarction [126] and coronary artery disease [102]. Furthermore, according to a study which 

analyzed the survival and death of 146 children enrolled on peritoneal dialysis, 4 out of the 16 deaths 
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reported were due hemorrhagic stroke. Autopsy analysis revealed that these children with ESRD had 

atherosclerosis and vascular calcification [127]. The tools currently available for the diagnosis of 

vascular calcification and atherosclerosis (cIMT, PWV, computed tomography scan) are not sensitive 

enough to detect the very early changes of calcification. Moreover, normal/negative tests should be 

cautiously interpreted [74]. The real challenge is to identify new biomarkers which will allow a sensitive 

and clear identification of CKD patients with these above-mentioned vascular damages since these 

patients present high cardiovascular morbidity and mortality risks.  
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II. Chronic Kidney Disease in dogs 

1. Epidemiology 

CKD is the most common kidney disease in dogs [128]. Like in humans, CKD is defined as an 

irreversible kidney damage due to the presence of structural or functional abnormalities of the kidneys 

for 3 months or more.  

However, the incidence and prevalence of CKD is poorly documented in dogs. In a recent study, 

Pelander et al. (2015) report that incidence of kidney diseases varies much with the dogs’ breed (table 

2) between 16 and 39 cases for 10,000 dog-years at risk [129] and so does CKD. Another study supports 

this observation and reports that prevalence depends also on the study population and may vary from 

0.05 to 3.74% [128]. 

Table 2. Incidence of kidney diseases in dogs with respect to their breed. Study carried out on 600,000 

insured dogs in Sweden. There was no difference in the incidence of kidney disease between males and 

females [129]. 

In dogs, CKD is a typically progressive disease. Therefore, when the dogs are diagnosed with CKD, the 

disease is expected to be a lifetime condition, even with treatment.  
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2. Etiology of CKD in dogs 

Several factors affect the occurrence or progression of CKD, and most of them are analogous to humans.  

i. Ageing 

The prevalence of CKD increases considerably with age in dogs. Studies on the remodeling that occurs 

in the ageing dog kidney identified three major mechanisms which contribute to lifetime wear and tear: 

autophagy, senescence [130] and telomere shortening [131].  

Autophagy is a recycling process during which cellular components are degraded. During this 

degradation, cytoplasmic components, such as organelles and proteins, are enclosed in a membrane 

bound structure called an autophagosome which then fuses with lysosomes. The degraded products can 

then be reused by the cell [132]. In humans and mice, it has been shown that anomalies in autophagy, 

that occur with age, cause acute tubular epithelial injury, glomerulosclerosis and tubulointerstitial 

scarring [133] lead to CKD. Senescence, that occurs following arrest in replication, initiates 

inflammation via the production of cytokines, or cell death. This mechanism is often accompanied by 

telomere shortening [134]. This is in accordance with a study which reports that telomere shortening in 

dogs is associated to a less effective repair of oxidative damage with age and therefore contributes to 

CKD [131]. 

ii. Periodontal diseases 

A retrospective study carried out on mix-breed dogs has shown an association between periodontal 

diseases and histopathological alterations in renal glomeruli and interstitium leading to CKD [135, 136]. 

This observation was confirmed on a larger cohort of 164,706 dogs where increasing severity of 

periodontal disease was correlated to the decrease of glomerular filtration rate [137]. In humans also an 

association has been found between periodontal disease and CKD [138, 139], however, the mechanisms 

associating those two are still unknown in both species. 

iii. Acute kidney injury (AKI) 

AKI may be defined as a rapidly occurring kidney disease which can be reversed by kidney repair. Many 

recent studies have shown that AKI and CKD interconnect. Indeed, as in humans, the presence of AKI 

is a risk factor for initiation and advancement of CKD, and CKD is a risk factor for the active injury 

leading to AKI in dogs [140]. AKI displays a series of maladaptive cellular repair events which 

predisposes to CKD. In mice it has been shown that the driver of this maladaptive response is the G2/M 

arrest in tubular cells. Indeed, in response to an injury, the tubular epithelial cells blocked in G2/M 

overexpress profibrotic factors. This is accompanied by an induction of senescence in epithelial cells 

and the release of cytokines such as interleukin 6 and interleukin 8, leading to a persistent parenchymal 

inflammation [141]. A major feature that results from this maladaptive repair is an increase in the 

proliferation of myofibroblasts that will further deposit collagen and other extracellular matrix 
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components leading to fibrosis, a hallmark of CKD [142]. This is in accordance with a histological 

analysis of the kidneys of dogs suffering from AKI after ingestion of toxin-containing pet foods 

(melamine and cyanuric acid). Four out of the six dogs with AKI had renal interstitial fibrosis in addition 

to renal tubular necrosis, intratubular crystals, and interstitial inflammation which are markers of CKD 

[143].  

iv. Hypertension 

In small animals like dogs, hypertension is defined as chronic high blood pressure greater than 

150/95mmHg. The cause of hypertension is multifactorial, and the kidneys are one of the first organs to 

be directly impacted by this high blood pressure. Like in humans, glomerular hypertension and 

hyperperfusion result in an increase in the surface area and volume of the glomerular tuft. Podocytes 

maintain the integrity of the glomerular filtration barrier through complex series of interdigitating cell 

foot processes between adjacent podocytes, connected by structures known as ‘slit diaphragms’. These 

slit diaphragms limit the trafficking of blood components through the capillary wall. Podocyte number 

or size does not increase harmoniously as the glomeruli enlarge. A low glomerular podocyte density 

results in podocyte effacement, focal denudation of the capillary wall and increased capillary 

permeability, leading to leakage of proteins, such as albumin, in the urine resulting in proteinuria, as 

well as glomerular sclerosis and atrophy [144]. Moreover, the kidney function is further affected since 

hypertension also induces an increase in renal loss of sodium and water due to excessive pressure 

damages to tubules and causes interstitial fibrosis. All these combined contribute to CKD [145, 146]. 

v. Genetics  

A first example of genetic associated-CKD is X-linked hereditary nephropathy (XLHN), observed in 

some canine breeds such as English Cocker Spaniels, Navasotas, Samoyed, Dalmatian and Bull Terriers. 

XLHN is characterized by a defect in type IV collagen in the glomerular basement membrane (GBM). 

This glomerular disease, which corresponds to the Alport syndrome found in human, is caused by 

mutations in COL4A5 gene and leads to a failure in the synthesis of α5-collagen chains. Like humans, 

more males are affected than females. The juvenile-onset of CKD in dogs suffering from XLHN begins 

with a persistent proteinuria of glomerular origin, as early as 3–6 months old, followed by a reduced 

glomerular filtration rate GFR and persistent azotemia. These dogs typically progress to ESRD before 

1 year of age [147-149]. 

Another example is polycystic kidney disease (PKD). PKD has been described in several canine breeds: 

Shih Tzu, border terrier, golden retriever, standard poodle, boxer, Finnish harrier, Rhodesian ridgeback 

and Dutch kookier. In humans, PKD results from mutations in PKD1 or PKD2 genes encoding for 

polycystin-1 and 2 respectively. In dogs, mechanisms of PKD are unknown and it cannot be ruled out 

that mutations in PKD genes may be a cause, even if causative mutations have not yet been identified 
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[150]. Only one study reports that a missense mutation in PKD1 gene of bull terrier is associated to 

autosomal dominant PKD [151]. 

vi. Congenital anomalies 

Apart from familial hereditary issues, congenital disorders may also be responsible of CKD in dogs. As 

in human, these include renal dysplasia, hypoplasia and unilateral renal agenesis [152, 153]. Renal 

dysplasia and hypoplasia in dogs seem to occur due allelic variation following methylation of DNA in 

the promoter region of canine cyclooxygenase-2 gene [154, 155]. However, no mechanism has yet been 

identified for renal agenesis in dogs. To compensate for the missing nephrons, the remaining intact 

nephrons hypertrophy to increase glomerular filtration. This hypertrophy will then lead to podocyte 

effacement, focal denudation of the capillary wall and an increase in the permeability of capillaries for 

blood components, as discussed in the section on hypertension. Moreover, intact remnant nephrons will 

accumulate injuries consequently leading to inflammation, fibrosis and finally to CKD [156]. 

3. Complications associated to CKD in dogs and their treatments 

i. Nutritional disorders 

The first complication associated to CKD in dogs concerns nutritional disorders: reduced appetite, 

dehydration, anorexia, nausea, vomiting and body weight decrease due to muscle mass. 

Once this is noticed, veterinary nutritionists provide owners with a ‘kidney diet’ suitable for dogs 

suffering from CKD. This diet consists in reduced protein, phosphorus, and sodium content, increased 

caloric density, a neutral effect on acid-base balance and the addition of antioxidants. The effect of this 

new diet is then evaluated regularly by monitoring body weight, general body condition (including coat 

color and hydration), food intake, serum albumin concentration and quality of life [157]. 

ii. Chronic kidney disease mineral bone disorder 

As in humans, CKD in dogs is associated to CKD MBD. Mechanisms are like those described in humans 

since they imply increased FGF-23 levels, reduced renal phosphate reabsorption in the tubules, 

secondary increased PTH levels as well as decreased plasma calcium levels due to reduced intestinal 

absorption. This has deleterious effects on bones leading to their release of calcium and phosphate, 

thereby contributing to bone weakening and increased bone porosity [158]. However, the effect of CKD 

MBD on soft tissue calcification such as blood vessels has not been reported or thoroughly studied in 

dogs. Phosphate binders are usually given to dogs to manage CKD MBD [158, 159]. 

iii. Metabolic acidosis 

Like in humans, metabolic acidosis is also a problem in dogs with CKD [160, 161]. Kidneys ensure a 

stable serum bicarbonate concentration by reabsorbing bicarbonate ions from the glomerular ultrafiltrate 
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and by synthesizing bicarbonate ions. During CKD, kidney function is compromised, and bicarbonate 

ion reabsorption and synthesis are decreased. This leads to a positive H+ balance in the plasma. As a 

compensatory mechanism, to bring back a neutral acid-base balance, bones are used as the buffering 

component mainly by releasing phosphate ions. Consequently, this further exacerbates CKD MBD and 

increase bone fragilization. Moreover, this metabolic acidosis causes muscle wasting, impaired thyroid 

metabolism, increased inflammation and contribute to CKD progression [162]. 

To manage this acidosis, alkalinizing salts such as potassium citrate or sodium bicarbonate are 

prescribed for dogs to reduce disease progression. To evaluate the efficiency of the alkalinizing 

treatment, blood gas analysis is performed 10 to 14 days after starting the therapy and any adjustment 

of the dosage is done until blood gas level is normalized [157].  

iv. Cardiac remodeling 

There are increasing evidences of a cardiorenal disorder associated to morbidity and mortality in CKD 

dogs, like in humans. Cardiac modifications that occur in dogs with CKD are mainly valvular heart 

disease as opposed to humans which is LVH. Renal damages lead to systemic volume overload which 

contributes to congestion, valve disease, dilated cardiomyopathy, and diastolic dysfunction 

(hypertrophic cardiomyopathy and hypertensive heart disease) in dogs [163].  

A retrospective study carried out on 124 dogs showed that 50% of the dogs with chronic valvular heart 

disease also had CKD, and that 70% of CKD dogs were at the most severe stages of the chronic valvular 

heart disease [164]. However, more research work needs to be done to investigate the direct or indirect 

mechanisms linking this heart disease and kidney injury, and with respect to reduced GFR [163]. 

Even if LVH is not the main cardiorenal disorder associated to morbidity and mortality in dogs with 

CKD, one small scale study investigated the relationship between CKD and LVH in dogs. In this study 

carried out on 16 dogs, CKD was generated by subtotal nephrectomy and the authors followed left 

ventricular hypertrophy development. After 6 months of follow-up, CKD dogs displayed increased 

ventricular fibrillation, higher sympathetic activation, more inflammation and left ventricular 

hypertrophy compared to controls [165]. These observations have, however, to be validated on a larger 

cohort of dogs and the type of LVH (eccentric or concentric) needs to be determined. Concerning the 

possible molecular actors involved, azotemia/uremic toxins adverse effects on cardiomyocytes may be 

implicated in cardiorenal disorder, but these toxins and their effects need to be investigated in dogs.  

Management of cardiac remodeling is challenging in dogs since it relies upon fluid therapy and close 

monitoring of the amount and type of proteins and phosphorus intake. To manage heart failure and 

hypertension, ACEi are usually the first drugs to be prescribed to dogs. 
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v. Anemia 

A decline in kidney function, mainly in stage 3 or 4 CKD in dogs, is often accompanied by anemia. 

Erythropoietin (EPO) is a hormone essential for the synthesis of red blood cells which is produced by 

the kidneys. As functional mass of the kidney decreases, EPO is less secreted, causing anemia. To 

manage anemia in dogs, EPO is given to dogs, commercially available as darbopoietin and Aranesp® 

[166]. 

4. Diagnosis of CKD in dogs  

CKD in dogs is most of the time asymptomatic until the disease has quite advanced. The occurrence of 

CKD is usually strongly suspected when owners spot signs of age-related diseases such as decreased 

appetite and weight loss, deteriorating coat, vomiting, bad breath, lethargy, excessive production of urine 

(polyuria) and excessive thirst (polydipsia), as well as any urination accidents [167]. 

The veterinary physician begins the examination by gathering all the details concerning the dog: age, 

gender, breed predisposition, any pertinent history concerning medications use, any exposition to toxins, 

healing of acute kidney disease, diet and travel, and any exposure to infectious diseases, such as Lyme 

disease or Leptospirosis, that may favor occurrence of CKD. 

The next step is a physical examination of the dog, which consists in palpating any kidney abnormality, 

weighing the animal, evaluating dehydration, pallor, oral ulcers and hypertensive retinopathy, and more 

advanced evaluation using more specific diagnostic tools [167]. The main tools available for the 

assessment of canine CKD diagnosis are discussed below.  

i. Actual clinical biomarkers of CKD in dogs  

a. Glomerular filtration rate (GFR) 

As in humans, in dogs GFR measurement is the principal test to evaluate kidney function. GFR is 

determined using specific markers which are eliminated in urine by glomerular filtration without being 

reabsorbed or secreted by the tubules. Four GFR markers are currently used in dogs: inulin, iohexol, 

creatinine and cystatin C. The two first markers are exogenous, safe and inert compounds while 

creatinine is a breakdown product of muscular creatine phosphate and cystatin C is a protease inhibitor 

produced by all nucleated cells. 

Measurement of GFR is achieved by evaluating the plasma clearance of these markers, i.e the volume 

of plasma theoretically ‘free’ of the marker per unit time. The most accurate method to measure a 

marker’s renal clearance needs to evaluate the concentration of marker in plasma as well as the quantity 

of marker excreted in the urine over a 24-hour period. However, collection of urine produced over 24 

hours is impractical in the clinic with dogs. The alternative method consists to inject a given amount of 

exogenous (inulin or iohexol) marker into the dog’s blood and then quantify the decrease over time of 
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the marker plasma concentration. In this case, the marker clearance is calculated as the ratio between 

the quantity of the administrated marker and the area under the plasma concentration-versus-time curve. 

As in human, GFR can also be estimated by measuring endogenous (creatinine and cystatin C) marker 

concentration in plasma. Indeed, since both creatinine and cystatin C are produced at a constant rate, 

their accumulation in blood reflects a decrease in GFR. Although less accurate, this approach is less 

tedious than the previously described method.  

The International Renal Interest Society (IRIS, http://www.iris-kidney.com/guidelines/) – has classified 

the progression of CKD in dogs into 4 stages, with stage 4 being the most severe. The staging system is 

mostly based on creatinine (Table 3) completed with additional observations (i.e. presence of azotemia, 

extrarenal clinical signs (e.g blood pressure and urine specific gravity). In healthy dogs, blood creatinine 

is < 1.0 mg/dL [168]. 

Stage Blood creatinine  Comments 

At 

risk 

<125 μmol/L Suggests that the animal is at increased risk of developing CKD in 

the future <1.4 mg/dL 

1 
<125 μmol/L 

Non-azotemia dog but presence of some other renal abnormalities  
<1.4 mg/dL 

2 
125 – 180 μmol/L 

Mild renal azotemia with almost no clinical signs  
1.4 – 2.0 mg/dL 

3 
181 – 440 μmol/L 

Moderate renal azotemia with several extrarenal clinical signs. 
2.1 – 5.0 mg/dL 

4 
>440 μmol/L 

Increasing risk of systemic clinical signs and uremic crises 
>5.0 mg/dL 

Table 3. Definition of the 4 distinctive CKD stages in dogs according to the IRIS staging system. 

Of note, as in humans GFR is influenced by body weight in very low body weight animals, age, gender, 

breed and circadian rhythm [169]. 

b. Urine specific gravity (USG) 

Urine specific gravity (USG) is an estimate of urine osmolality which is used to evaluate the ability of 

the kidney tubules to concentrate the glomerular filtrate in dogs. USG is a ratio of the density of 1L of 

urine to the weight 1L of water and it is measured on a drop of urine using a refractometer [170, 171]. 

The higher the value, the more concentrated is the urine [171]. A USG value >1.030 is obtained when 

the dog kidneys are able to substantially concentrate urine by water tubular reabsorption and show that 

the kidneys are healthy [172]. In contrast, a USG between 1.008 and 1.012 indicates abnormalities in 

water reabsorption and is interpreted as renal dysfunction. In case of intermediate values of USG (1.013 

to 1.029), the decrease in urine concentrating ability is not enough to infer about renal tubular 

dysfunction [173]. 

http://www.iris-kidney.com/guidelines/
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However, several factors such as age, diet, sex, fasting status, thirst and the type of refractometer used 

affect USG [174]. 

c. Proteinuria 

In healthy kidneys, circulating proteins cannot pass in urine due to their higher size and negative charge. 

However, in most renal diseases, the glomerular barrier is damaged, leading to increased permeability, 

and plasma proteins flow into urine. Proteinuria is also considered as a prognostic marker of CKD in 

dogs, like in humans. Available evidence showed that proteinuria increases in nephrectomized dogs 

[175] and that treatment of dogs with ACEi simultaneously reduces proteinuria and increases lifespan 

[176, 177]. 

Proteinuria is evaluated by measuring the urine albumin concentration (microalbuminuria) and/or the 

urine protein-creatinine ratio (UPC). Albumin is the most abundant protein present in proteinuria [178], 

and as data on urinary albumin concentration and urinary total protein concentration are similar, both 

are used as markers of CKD [179]. In dogs, as in humans, the first common screening test is the dipstick 

test, a colorimetric test sensitive to detect albumin and other proteins in urine. For a quantitative 

evaluation, commercial kits such as enzyme-linked immunosorbent assays for albumin, or colorimetric 

tests for protein are used in dogs [179].  

Ideally, albumin or proteins must be measured over a 24-hour period but, as previously indicated this is 

impractical in dogs. The normal albumin concentration in dogs is < 0.01g/L. Microalbuminuria is 

defined as the presence of albumin in urine varies between ≥ 0.01 and < 0.03g/L, and proteinuria is 

diagnosed when urinary albumin > 0.03g/L. The gold standard test is the determination of UPC 

performed on a single urine sample, this ratio being closely correlated to the 24-hour urine protein 

excretion. UPC is < 0.2 in healthy dogs. An UPC between 0.2 and 0.5 is considered as borderline 

proteinuria, and UPC > 0.5 indicated proteinuria. Of note, the dipstick colorimetric test lower limit of 

protein detection in urine is about 0.30g/L. [179, 180].  

The main factors that affect proteinuria are hypertension, endogenous or exogenous corticosteroids, 

dietary protein content, exercise and hyperthermia [179, 181]. 

d. Azotemia 

Azotemia is defined as the presence of high concentration of blood urea nitrogen (BUN) compounds 

associated to inadequately concentrated urine. These BUN compounds are urea, creatinine and other 

non-protein nitrogenous compounds, usually cleared by glomerular filtration but retained in the blood 

in case of reduced GFR. 

Azotemia is evaluated by measuring serum creatinine level and urea, and USG. Dogs are considered to 

have azotemia when the serum creatinine >1.6mg/dL or BUN > 30mg/dL or UPC ≥ 3.5 over weeks to 

months together with a USG between 1.008 and 1.029 [182, 183]. 
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The factors that are known to affect azotemia are the amount of protein present in the diet and 

(de)hydration status [164]. 

e. Kidney hyperechogenicity on ultrasound imaging 

Ultrasound evaluation helps to distinguish between a normal kidney and a kidney with CKD, giving 

information about the position, size, shape and internal structure, and hemodynamics of the kidneys.  

When increased blood creatinine and urea levels are detected, abdominal ultrasound is performed if the 

veterinary has access to B-mode ultrasonography techniques (Doppler sonography). Renal cortical 

echogenicity is compared to the echogenicity of adjacent organs such as the liver and the spleen. 

Corticomedullary differentiation can also be assessed since the cortex is more hyperechoic, due to its 

higher cellularity, than the medulla, which has a higher liquid content. 

Increased hyperechogenicity has been noticed in 88% of dogs with CKD, decreased corticomedullary 

differentiation in 54% and absence of differentiation in 35% of dogs with CKD. In 45% of dogs with 

CKD, low renal volume was observed. In others, as in dogs with PKD, an increase in renal volume was 

detected, associated with irregular, oval or circular contours, anechoic content (typical of renal cysts), 

and thin, smooth, and hyperechoic walls sharply defined by distal acoustic shadowing. 

An abnormal kidney on imaging requires a renal biopsy to evaluate glomerular lesions, such as 

glomerulosclerosis, or tubular lesions, such as tubular atrophy, interstitial inflammation and fibrosis 

indicative of CKD, unless ultrasonography unveils kidney changes described above indicative of ESRD 

[184, 185]. 

ii. Drawbacks of actual biomarkers for CKD diagnosis in dogs  

The incidence of CKD in dogs is under-estimated. This is due to the lack of standardized protocols and 

performant diagnostic tools to detect CKD during the initial stages [129]. The drawbacks of the currently 

used biomarkers are discussed below. 

a. Creatinine  

Plasma creatinine is used to estimate GFR and a decreased GFR is considered as a main surrogate marker 

of CKD. However, the major limitation pointed out in many canine studies is that creatinine is a relevant 

biomarker for late stage CKD, when up to 75% of the kidney function is lost [186, 187]. Indeed, the 

kidneys display great compensatory mechanisms which take place during nephron loss, such that 

surviving nephrons hypertrophy, to ensure normal filtration rate [188]. In addition, since serum 

creatinine has an inverse but nonlinear relationship with GFR, major modifications in GFR occurring 

during in initial CKD stages induce minimal detectable changes in serum creatinine while much damage 

has been done to the kidneys. Second, creatinine provides little information on the disease progression 

[164]. Third, serum creatinine levels in dogs are affected by gender, breed variation, muscle mass protein 

intake and circadian rhythm, similarly to humans. Different formulae can be used to correct GFR by 
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these parameters, but no consensual calculation was found [167]. Additionally, depending on the size 

of the dogs, blood creatinine values may remain in the normal range and CKD may be detected only at 

azotemia stages which correspond to stage 3-4. At these stages, the dogs have only a few months to 2 

years survival before dying or being euthanized because of the advanced disease [128]. 

b.  Urine specific gravity 

Urine concentration measurement is not very reliable since the value obtained will depend on the 

refractometer used for measurement. Indeed, the comparison of five refractometers (four optical and 

one digital) have shown disparities in results and data failed to increase consistently with increasing 

urine specific gravity, contrary to reference methods (e.g density determination by pycnometer). USG 

evaluation using refractometer is therefore not a good marker of the kidneys urine concentration 

efficiency and cannot be used to infer about the presence of CKD [171]. 

Moreover, according to the IRIS working group, USG does not seem to be a reliable marker. Indeed, a 

wide range of USGs can be encountered in healthy dogs – 1.015 to 1.045 –, depending on the patient’s 

hydration status. This points out a loophole that USG cannot be used to infer about kidney function 

[189]. 

c. Proteinuria 

Proteinuria is only a late marker of CKD, since it is detected when there is significant and irreversible 

glomerular damage, and cannot predict CKD progression [180, 190]. Moreover, the dipstick 

colorimetric test can give false positive results in case of highly concentrated or pigmented urine since 

it has been designed for human urine which is rarely concentrated as dog urine. Finally, caution should 

be taken when interpreting albuminuria since urinary albumin increases with age in dogs [179]. 

d. Kidney hyperechogenicity on ultrasound imaging 

As GFR and proteinuria, ultrasound imaging does not allow early diagnosis of CKD [191]. In addition, 

architectural alterations associated with diffused parenchymal kidney dysfunction are difficult to assess. 

Moreoever, there is no reference standard for the renal size in adult dogs due to the wide variety of dog 

breeds. Finally, Doppler ultrasound is not routinely used by most veterinary practitioners since costs are 

high, the examination times are long, and ultrasound data interpretation is highly subjective [184, 185, 

192].  

iii. Challenge for diagnosis of early CKD in dogs 

It is important to point out again that biomarkers used in veterinary clinical practice have been originally 

found in humans and it is very well possible that a solution for the early diagnosis of CKD in dogs also 

comes from studies in humans. In human medicine, urinary biomarkers that can diagnose CKD with a 

high sensitivity and can even predict the progression of the disease have been identified. Moreover, to 
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diagnose complex diseases such as CKD, a combination of several markers showed to be most efficient 

[193, 194]. 

As you will see in the next chapter on ‘peptidome and metabolome analyses for the identification of 

biomarkers for early diagnosis of CKD and CVD’, urinary peptidome analysis has been applied for the 

identification of novel early biomarkers in human disease. The clinical challenge now is to apply this 

technology to help in the diagnosis of diseases in dogs by starting with identification of urinary peptide 

biomarkers for the early diagnosis of canine CKD.  
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III. Peptidome and metabolome analysis 

by mass spectrometry 

1. Introduction 

Complex clinical phenotypes, as exhibited by kidney disease, cannot in general, be described in detail 

on the level of single molecular features. In contrast, a combination of features - i.e. a panel or profile – 

can cover a disease complexity, while being less sensitive to inter-individual variations, and appears 

more suitable to describe or represent a complex clinical presentation. “Omics” studies allow 

quantitative monitoring of a plethora of such molecular features using high-throughput technologies. 

The major omics tracks are genetics (genomics), transcripts (transcriptomics), proteins (proteomics) and 

metabolites (metabolomics) (the “big 4”), but are further complemented by dozens of further “Omes” 

[195]. 

Genomics represents the global analyses of variations in genes (coding and noncoding regions) [196]. 

Genes and mutations therein describe the predisposition for a disease or its progression, but actual 

disease activity is generally not captured by genomic analysis. Transcriptome levels (i.e. messenger 

RNA (mRNA) and noncoding(nc) RNA) potentially better describe disease activity, but certainly 

mRNA expression only serves as an approximation of effective protein concentration and activity [197].  

Proteomics consists in the analysis of the global protein content, which are the main cellular components 

and important functional molecules (catalytic enzymes and signal transduction proteins), in a sample 

[196]. Moreover, proteomics ties information contained in the genome and the transcriptome together, 

with post-translational modifications such as phosphorylation and glycosylation. Therefore, the 

proteome can reflect the dynamics of changes in protein concentrations or post-translational 

modifications that occur during diseases [198]. Peptidomics has emerged from proteomics and consists 

in the analysis of low-molecular-weight proteins (peptides) with a molecular weight between 0.5 – 

15kDa, in a biological sample [199].  

A younger branch of omics research, which is gaining more and more popularity, is metabolomics. This 

is the study of metabolites (<1200Da) such as carbohydrates, amino acids, dipeptides and organic acids. 

Metabolites are considered to describe most accurately the physiological state of a biological system 

since it represents the downstream expression of the genome, transcriptome, proteome together with the 

influence of other factors such as the environment or lifestyle [200]. 
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In this thesis, we will focus mainly on the body fluid peptidome and metabolome analysis for the 

identification of biomarkers. 

2. Biomarkers 

i. Definition 

The term biomarker, a blendword of ‘biological marker’, refers to a characteristic that is measured as 

an indicator of healthy biological processes, pathogenic processes, or responses to treatment. When the 

link between any given measurable biomarker and relevant clinical endpoints is established, the 

biomarkers can be used for diagnosis (identification of patients with a disease or a subset of the disease), 

monitoring (serial measurements are used to detect a change in the severity/stage of the disease), 

prognosis (identification of disease progression or a clinical event) or response to a treatment. 

Biomarkers can be a molecular, histologic, radiographic, or physiologic characteristic [201]. 

ii. Identification of biomarkers 

High-throughput technologies have led to the identification of biomarkers in several biological fluids 

including saliva, blood, plasma, urine, or amniotic fluid. Such clinical omics have become possible by 

coupling omics-based approaches to computational, bioinformatics methods and well-phenotyped 

patient cohorts [202, 203]. However, several issues need to be considered before starting the 

identification of biomarkers using omics-based approaches.  

a. Clinical issues 

Having a clinical sample and being able to carry out omics experiments does not necessarily lead to 

useful biomarkers. A critical issue is to determine the clinical need and to define whether omics analysis 

can contribute to solve this clinical need. In addition, appropriate study design is essential for the study 

and starts with a precisely defined clinical phenotype, inclusion criteria and supply of sufficient 

demographic and/or clinical data. Appropriate positive and negative controls must be also defined. A 

healthy control population does not often reflect the clinical situation encountered and biomarkers 

identified in a defined study will potentially be invalid in follow-up studies (e.g. if we want to identify 

biomarkers of diabetic nephropathy, the controls should be diabetic patients with absence of 

nephropathy). 

b. Analytical issues 

Appropriate and highly standardized sample procurement is crucial for omics studies. Sufficient 

information about the sampling methodology including a description of specimen collection, handling 

and storage (i.e. type of containers, stabilizing solutions) should be available, in addition to the assurance 

of having all samples collected in the same manner. A bias can be introduced e.g. if urine is collected at 

home or in the clinic. The number of sample freeze-thaw cycle should also be considered if the omics 
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trait studied is sensitive to this. Finally, the same data normalization procedure should be applied to all 

samples to allow for comparison between different samples and avoid biases. Normalization procedures 

include, for e.g., correction for urine dilution between samples before comparing the samples to identify 

candidate urinary biomarkers based on relative abundance evaluation [204]. 

 

c. Statistical and validation issues 

To identify biomarkers, in general a two-step procedure is employed: the first step is called the discovery 

(or training) phase where biomarkers are identified following appropriate statistical analyses. This step 

is followed by a validation phase on an independent dataset or cohort, which allows appreciation of the 

performance of the biomarkers by assessment of their sensitivity and specificity. Good biomarkers have 

a high sensitivity, which means that it allows detection of the diseased individuals with slight or no 

overlap between healthy and diseased individuals, and a high specificity, meaning that absence of the 

disease in individuals identified by the biomarkers as healthy [205].  

For quality assurance of clinical omics studies, appropriate and rigorous statistical analyses should be 

performed. In the discovery phase, normality tests such as Shapiro-Wilk test should be first performed 

before comparing the groups. Then accordingly, a Student’s t-test or Wilcoxon-Mann-Whitney test is 

performed to identify potential biomarkers that are different between two conditions (e.g. healthy versus 

disease or two distinct stages of a disease). Correlation analysis can also be performed to identify 

potential biomarkers if binary cutoff values are absent. For the identification of robust biomarkers, the 

next important following step is the multiple testing correction since generally, the number of features 

is much higher than the number of patients. This includes Benjamini-Hochberg correction which 

calculates the false discovery rate, to reduce overall type I error rate and false positive results [206]. By 

the end of this analysis in the discovery phase, individual candidate biomarkers are identified. The next 

step is the development of multi- biomarker predictive models using a machine-learning algorithm such 

as support vector machines [207] or random forest algorithms [208].  

These multi-marker models need then to be validated. We reach therefore the second phase which is the 

validation of the model in an independent cohort (e.g. a holdout set or a newly recruited set of patients). 

In this step, we evaluate whether the multi-marker model can be applied to the new group of individuals, 

and that the model was not highly specific (i.e. overfitted) of the discovery cohort [202]. 

3. Mass spectrometry 

Since the completion of genome sequencing, there has been a shift in the characterization of other 

biological molecules such as proteins and metabolites. With this aim omics studies using mass 

spectrometry (MS) have been widely carried out. 
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i. Principle 

Basically, MS consists in the analysis of ions in the gaseous phase to measure a mass-to-charge (m/z) 

ratio. For this analysis, mass spectrometers are made-up of 3 main parts: i) an ion source, which converts 

analyte molecules into the gas phase (ionization), ii) a mass analyzer that separates ionized analytes with 

respect to their m/z ratio, and iii) a detector that records the number of ions at each m/z value [209].  

i) ionization: The two ionization techniques used in biomedical mass spectrometry are electrospray 

ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). In this manuscript, we will 

pay more attention to ESI, since MALDI is a high throughput technology that is mainly used on solid 

analytes, such as biopsies [210].  

ESI is the most compatible method for the analysis of liquids including biological fluids and it has 

virtually no limit on molecular mass for the compounds under analysis [211]. ESI is usually carried out 

when the mass spectrometer is coupled to a capillary emitter such as microcapillary chromatography 

[212], microfluid devices [213], or capillary electrophoresis [214]. The analytes in the biological fluid 

are ionized within the atmosphere of the laboratory forming a Taylor’s cone. The Taylor’s cone is a 

spray of droplets with ions of the analyte, and as the solvent evaporates, the droplet shrinks until 

completely desolvated, leading to the formation of highly-charged species [215]. The ions are then 

injected directly into the mass spectrometer with high vacuum at the ion source (Figure 5). This 

particularity accounts for the fact that ESI may be affected by environmental interference and therefore 

affect the detection sensitivity, accuracy and reproducibility of compounds of low abundance within the 

biological sample [214, 216]. 

 

Figure 5. Schematic depiction of an ESI source, following separation of a biological fluid (in this case 

desalted urine) components by capillary electrophoresis, operated in positive ion mode as in peptidome 

and metabolome analyses [217]. 
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ii) mass separation: The step following ionization is the determination of m/z ratio of the ions using the 

mass analyzers of the mass spectrometer. There are several types of analyzers: quadrupole, ion-mobility, 

ion traps, and time-of-flight (TOF) analyzers.  

In quadrupole analyzers, ions travel across the analyzer in a pulsed beam mode, i.e., the ions are trapped 

radially by a two-dimensional radio frequency field and axially by stopping potentials applied to end 

electrodes. Quadrupoles are often used to filter desired masses prior to fragmentation [218].  

Ion-mobility analyzers allow separation of ions based on their mass, charge and mobility in an electric 

field. This analysis gives information about the structures and stabilities of molecules. However, one 

drawback of this technique is that the time of analysis is quite long [219].  

Ion traps confine ions in an electromagnetic field over a prolonged period, within limited volume, in a 

three-dimensional quadrupole. A voltage is then applied to the electrodes of the trap affecting the 

trajectories of the ions which become unstable. The ions then leave the trap according to their m/z ratio 

and reach the detector. The main drawback of mass spectrometers with these analyzers is the cost of the 

apparatus, especially compared to TOF-based mass spectrometers [218].  

Finally, TOF mass spectrometers are widely used mass analyzers and these mass spectrometers will be 

of prime interest for this thesis because this is the technology that we use in our laboratory for urine 

peptidome and metabolome analysis (Figure 6). For the analysis, ionized molecules are accelerated in 

an electric field and then ejected in a flight tube under vacuum. Smaller ions will fly faster than larger 

ions in the tube, and this time of flight for each ion will then be measured by the detector. There are two 

modes of operation of the analyzer: linear or reflectron. In the linear mode, ions fly in the tube and reach 

the detector. In the reflectron mode, which is more accurate than the linear mode, ions fly towards a 

reflectron which focuses ions with the same m/z ratio so that these ions reach the detector at the same 

time. The advantages of using a TOF analyzer is that the molecular mass range is unlimited, it has a 

high resolution, a high mass accuracy, and compared to other analyzers such as the quadrupole, most 

ions will reach the detector (there is fewer ion loss) [218, 220].  

iii) detection: The last step before obtaining analytes is the detection. In MS, there are several types of 

detectors. For TOF-MS, in addition to having a high sensitivity, together with a linear and quantitative 

response, they should be able to have a very rapid readout and response, a very high-count rate (>106 

counts/second), low or no noise, simultaneous detection, wide mass-range response, short recovery time 

and a high saturation level [221].  

ii. Coupling with separation techniques 

To increase the number of molecular species analyzed in a complex biological sample, mass 

spectrometers are coupled to separation techniques such as two-dimensional polyacrylamide gel 
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electrophoresis (2D-PAGE), liquid chromatography (LC), or capillary electrophoresis (CE). They allow 

separation of the samples into small sub fractions, increasing the sensitivity of the analysis. 2D-PAGE 

is a technique that has been widely used for proteome analysis in the past, but is hardly used anymore 

because it is time-consuming, cannot be used to analyze small proteins < 10kDa, is not appropriate to 

analyze highly hydrophobic proteins, displays strong of gel-to-gel variation and finally the 

quantification of the proteins is affected by the sensitivity of the stain used. Moreover, only up to a 

maximum of ~400 protein spots can be analyzed per gel [222-224]. 2D-PAGE is therefore not discussed 

in detail.  

a. Liquid chromatography  

LC is a technique routinely used for both proteomic and metabolomic profiling. It consists in separating 

analytes based upon the rates at which they elute from a stationary phase typically over a mobile phase 

gradient. Different analytes usually have different affinities for the stationary/mobile phase during 

separation such that those which will be more attracted to the mobile phase will elute more rapidly (short 

retention time) than those retained by the stationary phase which will elute more slowly [225]. For omics 

analysis, most of the time high-performance liquid chromatography is performed. It consists of a column 

packed with hydrophobic beads for the stationary phase, a pump that creates pressure and moves the 

mobile phase (which is polar) through the column. Hydrophilic analytes elute more rapidly than 

hydrophobic ones. Moreover, analytes with the same molecular mass but different polarity will elute at 

separate times. The advantages of LC coupled to MS are that up to 1500 proteins can be analyzed in a 

single run, non-polar proteins can be analyzed and that the system can be automated [222]. In addition, 

the high separation and ionization efficiency of LC separation followed by MS analysis also allows the 

analysis of metabolites and up to ~1100 metabolites in a single run can be detected [226]. However, 

sample preparation and instrumentation performance may affect quantification of metabolites, and the 

whole analysis often lasts for several hours [227].  

b. Capillary electrophoresis  

Capillary electrophoresis is a technique which allows separation of analytes with respect to their charge 

and size within an electric field. It can be used for the analysis of proteins and metabolites. This 

separation technique is different from chromatography and is more efficient for separation of analytes 

since there is no transfer between phases [228]. CE-MS is performed with either a sheathless or a sheath 

liquid interface. In both approaches, the end of the capillary is inserted in a needle at the entry of the ion 

source of the mass spectrometer (Figure 6). In the sheathless interface, only the contents that elute from 

the capillary form droplets that are turned into a spray during the electrospray process. In the sheath 

liquid interface, the capillary content is mixed with a liquid that surrounds the tip of the capillary at the 

outlet, thereby diluting the content of the capillary. Although some sensitivity is lost due to dilution of 

the sample, the sheath liquid ensures a more stable interface for electrical connection between the CE 

and the mass spectrometer to ensure efficient and uninterrupted separation [229].  
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Figure 6. Schematic representation of the CE-MS workflow for urine analysis, adapted from [230]. 

In contrast to LC, no elution gradients are required for separation, since the migration of the analyte is 

controlled by the electric field strength [231]. This is a strong advantage as the use of elution gradients 

could induce interference with subsequent detection by MS, due to a continuous change of composition 

during separation [232]. On another hand, CE-MS is limited to the detection of small proteins and 

peptides and only a small sample volume can be loaded onto the capillary, which decreases somewhat 

the sensitivity of the detection. Overall, the CE-MS technology has been developed into a commonly 

used proteomic technology, especially in the field of low-molecular weight proteome profiling (i.e. 

peptidome) and it has also been successfully used to study metabolites [233]. 

4. Biological fluids 

Peptide and metabolite biomarkers of kidney disease were most frequently studied in blood and urine.  

Blood 

Blood is a relatively easily accessible body fluid, and consequently many groups have analyzed the 

blood (serum or plasma) -ome. For proteome analysis, serum has the advantage of being depleted from 

abundant coagulation factors. But it is likely that proteolytic activity persists, leading eventually to 

protein degradation upon sample treatment and storage, resulting therefore in an alteration of the serum 

proteome [234]. This contributes to experimental inaccuracy, and hampers comparison of serum 

proteome or peptidome profiles between individuals. Alternatively, plasma, the most complex body 

fluid, can be used. Plasma high complexity is mainly due to the dynamic range with which proteins and 
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peptides are found, spanning 10 orders of magnitude [235, 236]. The 10 most abundant proteins 

represent >90% of the total plasma content, albumin being first, and may interfere with the identification 

of less abundant proteins. Highly abundant proteins can be removed by employing depletion techniques, 

but this removal potentially introduces biases and may induce loss of the low abundance proteins and 

peptides. It has been shown that depletion of albumin induces an additional loss of ~1000 low abundance 

proteins and increases variability [237]. Thus, although blood analysis has a large potential to provide 

us with biomarkers of (kidney) disease, both plasma and serum proteomics have drawbacks that need to 

be overcome. 

For metabolome analysis, both plasma and serum are used [238]. However, some metabolome-targeted 

studies have revealed that plasma metabolites are unstable and are affected by the anticoagulants used 

and by storage. The serum metabolome showed to be more stable, resisted freeze-thaw cycles and more 

than 1 year storage at -70°C [239, 240].  

Urine 

Urine has been in the center of attention of scientists for many years now. In addition to being collected 

non-invasively, it is an attractive fluid to study the proteome/peptidome since it contains a very limited 

amount of proteins. Urine contains approximately 2000 proteins compared to plasma which contains 

more than 10,000 proteins. The presence of a low protein quantity in a sample decreases the probability 

of high abundance proteins to bind to and/or cover candidate peptide biomarkers [198, 241]. For 

laboratory analyses, the stability of urinary peptides is of great advantage compared to urinary proteins 

since they are the final breakdown products and are unlikely to be further cleaved in the bladder at 37°C. 

The urinary peptidome is very stable for 6 hours at room temperature, for 3 days at 4°C, for several 

years at -20°C and/or at -80°C [242, 243].  

In addition, urine is also an attractive fluid for metabolites study since it contains few enzymes for 

metabolite degradation and few high molecular weight compounds which may mask the identification 

of metabolites. Analysis of human urine samples revealed that it contains ~2600 metabolites [244]. The 

main source of variability between analyses were mainly due to low intensity signals [245] and to 

fluctuations associated to hormonal changes and time of exposure to medications or a particular diet for 

example [246]. Moreover, urinary metabolome has shown to be stable during storage for 26 weeks at -

25°C [247] and during freeze-thaw cycles [248]. 

5. Urinary peptidome analysis by CE-MS 

For the study of kidney diseases urine is known as the ‘liquid biopsy’ since it has been estimated that, 

under physiological conditions,70% of the urinary proteins originate from the kidney and the urinary 

tract, while the 30% remaining originate from plasma [243].  
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i. Kidney disease 

One key example of the use of urinary peptidome analysis in adults and two examples in the pediatric 

population for kidney disease will be given below.  

Chronic kidney disease (CKD): CKD represents the best studied condition using urinary peptidome 

analysis. In 2010, Good et al. published a combination of 273 urinary peptides, of known sequence, as 

potential biomarkers of CKD in the adult population. The 273 peptides were identified by CE-MS by 

comparing the urine samples of 379 healthy subjects and 230 biopsy-proven CKD patients. This analysis 

showed that fragments of the major circulating proteins were present with increased abundance in urine 

of CKD patients, suggesting failure of the glomerular barrier filtrating characteristics, and different 

collagen fragments displayed decreased abundance, suggesting an accumulation of intrarenal 

extracellular matrix. Protein fragments associated with progression of CKD originated mostly from 

proteins related to inflammation and tissue repair [194, 249]. These 273 peptides were combined in a 

machine-learning algorithm called the CKD273 model. This model was then validated a first time on an 

independent blinded cohort of 144 patients, with 34 healthy individuals and 110 CKD patients. The 

CKD273 model showed a sensitivity of 85.5%, a specificity of 100% and an AUC of 0.955 [193]. This 

classifier was further validated on a larger cohort of patients and could detect early and late CKD 

independent of age and gender [230, 250, 251]. Furthermore, an assessment of the performance of the 

CKD273 model on a large cross-sectional multicenter cohort detected normo- and micro-albuminuric 

patients and outperformed creatinine and albuminuria predicting a fast CKD progression (eGFR decline 

>5% per year). Just recently, Currie et al. (2018) showed that there was a significant correlation between 

the CKD273 score and mortality [252]. The most interesting aspects of the CKD273 model are not its 

diagnostic capacities but the apparent predictive capacities of progressive disease at a very early stage 

CKD, before apparent clinical signs. It is therefore now used in a multicenter prospective clinical trial, 

to select at an early stage progressive CKD (ClinicalTrials.gov Identifier: NCT02040441 [253]). 

Ureteropelvic junction obstruction (UPJO): The identification of urinary biomarkers as diagnostic tool 

has also been applied for the diagnosis of pediatric kidney anomalies. The first study concerns the 

detection of hydronephrosis associated to UPJO. UPJO is a frequently encountered clinical situation in 

which urine flow to the bladder is restricted and if untreated can lead to renal damage. In mild obstruction 

UPJO resorbs naturally and in severe cases surgery is needed. However, for intermediary UPJO, it is 

not clear whether surgery is required. Neonates with intermediate UPJO need close surveillance with 

repetitive isotope excretion scans up to the age of 2 years, to identify those in need for surgical removal 

of the obstruction. Our research team has identified 51 urinary peptide markers which were differentially 

abundant between children with spontaneous resolution of UPJO and those who needed surgery after 

birth [254]. A model of those 51 peptides predicted severe UPJO in 34 out of 36 children (94%) up to 

15 months in advance of the actual surgery in a blinded cohort [255, 256]. This model of 51 peptides 



Valérie BRUNCHAULT  INTRODUCTION 
36 

was further validated on 27 children in a separate study. For 19 children, aged < 1 year, the model 

predicted surgery with 83% sensitivity and 92% specificity. However, when the model was validated on 

older children, the sensitivity was of 20% and the specificity of 66%. This suggest that there are changes 

in urinary proteome occurring with age in children and that urinary peptide models should be used in 

their context of development, in this case, detection of severe UPJO before 1 years old [257].  

Posterior urethral valves (PUV): Posterior urethral valves (PUV) is a rare developmental disease which 

represents the most common cause of lower urinary tract obstruction in males. The majority of the 

infants with PUV surviving the neonatal period progress to CKD, and approximately 20 to 30% progress 

to ESRD in the first decade of life [258-260]. An important clinical challenge upon antenatal detection 

of PUV is to predict post-natal renal function. Current methods to predict these outcomes in utero are 

controversial [261, 262]. A comparative analysis of the fetal urinary peptidome of 15 fetuses with PUV 

displaying normal post-natal renal function and 18 fetuses with PUV with early ESRD lead to the 

identification of 26 peptides differentially expressed between the two groups. Out of these 26 peptides, 

12 peptides were the most significant and were combined in a machine-learning algorithm called 12PUV 

model. The 12PUV model was then validated on an independent blinded cohort of 38 PUV patients with 

an AUC of 0.94, a sensitivity of 88% and a specificity of 95% [263]. This fetal urinary peptide-based 

model outperformed all conventional clinical parameters such as prenatal ultrasound and fetal urine 

biochemistry, none of which reached the same level of predictive sensitivity and specificity. The 12PUV 

model will potentially allow truly informed prenatal counseling, and hopefully will avoid unnecessary 

termination of pregnancy. Furthermore, prediction of postnatal renal function will be helpful in tailoring 

clinical follow-up and planning for clinical management of ESRD. Most importantly, reliable prediction 

of postnatal outcomes would greatly reduce the psychological burden of prognostic uncertainty imposed 

on the affected families. To study the wider employability of the 12PUV model, it is currently being 

validated in a multicenter European study called “multicentre vAlidatioN of a fetal urine pepTidome-

based classifiEr to predict post-natal reNAl function in posterior ureThral vALves” (ANTENATAL; 

ClinicalTrials.gov Identifier: NCT03116217).  

ii. Cardiovascular  disease (CVD) 

As described in chapter 2, CVD is the leading complication in CKD in children. With the available 

clinical tools including echocardiography and Doppler ultrasound, CVD complications are often 

detected at a late stage where lesions are irreversible. Urinary biomarkers of CVD might offer the 

possibility for the early identification/prediction of CVD of the most at-risk patients and might provide 

additional information about disease-related pathways. Urinary biomarkers of CVD have been 

identified, although not yet on a CKD background.  

A first study in 2008, on a cohort of 370 adult patients with (n=88) or without (n=282) coronary artery 

disease (CAD) lead to the identification of 15 urinary peptides that diagnosed CAD with a sensitivity of 
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98%, a specificity of 83% and an area under curve (ROC) of 0.94 in a blinded validation set. Five out 

of the 15 urinary peptides were identified by sequencing [264]. All of them were collagen fragments 

(type I or III fragments) and they were all more abundant in CAD patients’ urine compared to controls. 

In the normal artery, both synthesis and degradation of extracellular matrix proteins are remarkably slow 

and balanced [265]. During atherosclerosis there is an increased synthesis of many matrix components, 

including collagen types I and III, elastin, and several proteoglycans. Increased abundance of collagen 

fragments in the urine of CAD patients may be explained by an alteration in the turnover of these 

proteins during physiopathology. Collagen types I and III are predominant proteins in the arterial walls 

and in the thickened intima of atherosclerotic lesions. Furthermore, in accordance with these 

observations concerning an elevated collagen degradation levels, increased circulating levels of 

collagenases, such as MMP-9, have been noticed in CAD [264, 266].  

Additional urinary peptide-based models were developed for the identification of other CVDs. For the 

prediction of acute coronary syndrome (ACS) defined as progression of atherosclerotic plaques towards 

an inflamed, unstable fibroatheromas that are susceptible to cause a thrombotic occlusion of coronary 

arteries, 75 urinary peptides were identified, on a cohort of 252 patients. They were combined in a model 

called the ACSP75 model, which successfully diagnosed ACS in asymptomatic patients with a 

sensitivity of 73.8% and a specificity of 73.8% [267]. In another study comparing the urinary peptidome 

of 33 controls with 69 patients suffering from stroke 35 urinary peptide biomarkers were identified and 

combined in a model which had a sensitivity of 56%, a specificity was 93% and an AUC on ROC 

analysis of 0.86, allowing the diagnosis of acute stroke in patients with mild symptoms [268]. 

Furthermore, a study on a cohort of 70 patients, with the aim to diagnose early left ventricular diastolic 

dysfunction in hypertensive patients lead to the identification of 85 urinary peptides with a sensitivity 

of 69%, a specificity of 94% and an AUC on ROC of 0.84 [269]. Urinary peptide biomarkers have also 

been identified for diagnosis of heart failure with reduced ejection fraction [270] and heart failure with 

reduced ejection fraction due to chronic kidney disease [271]. 

Taken together, urinary peptide analysis showed promising results in predicting CKD and its progression 

and potential early detection of several CVDs. Of note, studies on the identification of urinary peptide 

biomarkers of CVD complications in children with CKD are clearly missing in the scientific literature. 

6. Urinary metabolome analysis by CE-MS for CKD 

The most common metabolite biomarker used in CKD diagnosis is creatinine [272, 273]. However, 

compared to the identification of urinary peptide-based biomarkers, the literature concerning the 

identification and validation of urinary metabolite biomarkers for the diagnosis or prognosis of CKD or 

its complications using MS is poor.  
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A study on a cohort of 49 adult patients concerning the identification of urinary and plasma metabolites 

by MS/MS techniques lead to the discovery of 30 metabolites comprising 17 plasma metabolites and 13 

urinary metabolites associated to CKD. As observed in previous studies, a significant decrease of 

asymmetric dimethylarginine (ADMA) in the urine was significantly correlated with a decrease in the 

eGFR [274]. ADMA is an analogue of L-arginine that occurs naturally in the human circulation. A 

decrease of urinary ADMA may suggest accumulation in the circulation and studies have shown that 

high ADMA levels diminish endothelial function and contributes to renal impairment [275]. Another 

study identified a panel of 13 urine metabolites linked with mitochondrial metabolism. The metabolites 

were significantly decreased in patients with diabetes and CKD compared with healthy controls [276, 

277]. In another study involving 240 patients, adding plasma and urine metabolites to a model of 

baseline albuminuria and estimated glomerular filtration rate significantly improved risk prediction for 

the development of macroalbuminuria in diabetic individuals [278].  

Challenge for the study of urinary metabolome 

Very few studies have investigated the use of the CE-MS technology in the discovery of body fluid 

metabolite markers. Only one study by Kimura T et al. (2016) was carried out on the identification of 

plasma metabolites to predict progression to ESRD. The study cohort consisted of 112 stage 3-5 CKD 

patients, with median follow-up period of 4.4 years, and the plasma metabolites were analyzed by LC-

MS or CE-MS. On a total of 218 detected plasma metabolites, 16 metabolites could predict progression 

of the disease to ESRD. However, neither AUC, sensitivity or specificity was reported, and validation 

was not performed [279]. 

The use of body fluid metabolome analysis in CKD and its complications is still anecdotal and validation 

studies are missing. 
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IV. Aptamers: 'omics' translation for bed 

side detection of biomarkers 

1. What are aptamers? 

i.  Definition:  

Aptamers are short single-stranded DNA (ssDNA) or RNA which can specifically bind targets with high 

affinity [280-282]. In the literature, we can find a large diversity of molecules for which aptamers have 

been selected [283]: toxins [284, 285], dyes [281], ATP [286], metal ions [287, 288], and proteins [289, 

290]. 

ii. Structure:  

Contrary to the information contained in the intrinsic nucleotide chain of genes or mRNA molecules, 

here it is the molecular spatial arrangement (secondary and tertiary) that gives aptamers their properties. 

The major difference between the well-known helical DNA structure, and the single-stranded 

oligonucleotides is that single-stranded molecules fold into three dimensional structures due to 

intramolecular Watson-Crick interactions, aromatic ring stacking or Van der Waals forces of attraction, 

that lead to different fascinating shapes depending upon the length and nucleotide arrangement in the 

sequence (Figure 7). Therefore, aptamers can adopt complex structures such as hairpins, G-quartets or 

pseudo-knots, that will determine their ability to bind a target [282]. 

iii. Advantages:  

Aptamers are often compared to antibodies, but they offer much more advantages. First, aptamers have 

a great discriminatory potential and are very specific for their ligand, as exemplified by the RNA aptamer 

which targets theophylline and that does not bind to caffeine, knowing that theophylline and caffeine 

differ only by a methyl group [291]. Second, aptamers are stable, even if they are denatured and 

renatured several times. Their structure can be modified, by adding base-pairs to the stem structures, to 

further increase their stability and their capacity of binding can also be improved by modifying the 

phosphodiester linkage [292]. For use as a detection tool, aptamers can be coupled to reporter molecules 

such as fluorochromes, without altering their conformation and their binding affinity. For in vivo 

applications, aptamers are small enough to reach tissues easily. Their average molecular weight ranges 

from 15 to 30 kDa compared to 150 kDa for IgG. They have a low immunogenicity since the human 

immune system does not recognize oligonucleotides as foreign agents [293]. Finally, while antibody 

production is laborious, takes months, is very expensive and requires the use of animals [294], aptamers 
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are chemically synthesized in vitro at low cost and in large quantity, with great accuracy, purity and 

reproducibility. These properties make aptamers relevant alternatives to antibodies as diagnostic, 

analytical or therapeutic agents.  

2. Aptamer selection 

Aptamers are selected in-vitro from a library of oligonucleotides by the systematic evolution of ligands 

by exponential enrichment (SELEX). 

i. Library of oligonucleotides 

Aptamers are selected from a library which consists of a pool of 1013-1015 RNA or ssDNA molecules. 

Each molecule has a central random sequence flanked by two fixed sequences. These fixed sequences 

have a length which varies between 18-22 nucleotides [295] (Figure 7). 

The central variable part is responsible for the aptamers’ specific secondary/tertiary structures and their 

size varies from 8 to 50 nucleotides [296].  

 

Figure 7. A. Schematic representation of an aptamer showing the random sequence flanked by two fixed 

sequences, which are complementary to PCR primers. B. The random sequence is responsible of the 

different folding shapes of aptamers.  

According to Gold et al. (2012), libraries with at least 25 randomized nucleotides are necessary to offer 

enough length to generate stable secondary and tertiary structures such as hairpins, G-quartets or pseudo-

knots [296]. However, correlation analysis between the length of an aptamer and its affinity for a target, 
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in all reported selection studies between 1990 and 2013, did not reveal any significant association 

between those two parameters [297]. Intuitively, the longer the randomized sequence, greater are the 

conformation possibilities and chances of finding an aptamer for the target. Nevertheless, for a 

successful selection of aptamers recognizing small targets, it has been suggested to start with a pool of 

short DNA sequences to limit crowding during aptamer-target interaction and increase selection 

efficiency [296]. 

ii. SELEX 

a. Principle 

The SELEX consists of rounds of selection to screen the library for sequences having the highest binding 

affinity for a defined target [280]. The process [295] is divided into four main steps (Figure 8): 

Step 1 – Incubation of the library with the target: the oligonucleotides are first heated to ~ 95°C for 

linearization and then cooled down rapidly on ice so that they fold into stable structures. They are then 

incubated with the target. 

Step 2 –Oligonucleotide-target complex harvest: the target-bound sequences are separated from the 

unbound sequences using for example affinity columns or capillary electrophoresis (CE) and are 

collected by elution. 

Step 3 – Polymerase Chain Reaction (PCR) amplification of target-bound sequences: during the 

denaturation step of the PCR, the bound oligonucleotide sequences are separated from the targets, and 

the oligonucleotide sequences are amplified by PCR. 

Step 4 –Regeneration of single-stranded oligonucleotides: for ssDNA aptamers, the complementary 

strand is trapped on beads using for example the streptavidin-biotin affinity system. In this case, the 

previous step of PCR involves the use of a biotinylated reverse primer to label the complementary strand. 

When the PCR products are applied on the streptavidin beads, they get immobilized by the 

complementary strands and the non-biotinylated strand, i.e aptamer, can be regenerated by elution with 

a buffer having a high ionic strength [298]. For RNA aptamers, the process is similar except than an 

additional step for in vitro transcription should be added. 

This cycle consisting of the four steps is then repeated for several times until the pool of oligonucleotide 

becomes enriched with strands of similar sequences and which have a high affinity for the target. At 

each iterative cycle, the stringency of selection is progressively augmented by increasing the 

aptamers:target relative ratio to increase the competition between the aptamers and the target. In 

addition, during the different cycles, PCR amplicons are sub-cloned and sequenced to see an enrichment 

of the pool with similar sequences. According to previous studies, at least 15 SELEX cycles are required 

to obtain an aptamer for a defined target [299, 300]. 
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Finally, once the sequences are known, aptamers should be synthesized, and their binding affinities and 

specificities characterized [295, 301]. 

 

Figure 8. The systematic evolution of ligands by exponential enrichment (SELEX) cycle for selection 

of aptamers from an ssDNA library. This includes four main steps: incubation, ssDNA-target complex 

harvest, PCR amplification and ssDNA regeneration. At the first cycle, a ssDNA library is used for 

incubation with the target but for the next cycles, the ssDNA regenerated in the preceding cycle are 

used. B: Biotin-label; dsDNA: double-stranded DNA. 

The most critical step in this whole SELEX procedure is the partition of the target-bound sequences 

from unbound sequences and different SELEX strategies can be used, as explained in part below. 

b. SELEX using affinity columns 

Conventional SELEX is usually done by immobilizing the target using nitrocellulose filter [299, 302], 

streptavidin affinity-based methods [300, 303], magnetic beads [304, 305], or N-hydroxysuccinimide 

(NHS)-activated sepharose system [306, 307]. In this lastly mentioned case for example, the target could 

be any molecule with a free amino group, i.e. mostly peptide or protein. The target is first immobilized 

on the NHS sepharose column via a very stable amide bond between its amino group and NHS esters 

[308]. Then the library of oligonucleotides is applied to the column for the incubation step of the SELEX. 

After elimination of unbound oligonucleotides by a few washes, the bound aptamers are eluted using a 

strong ionic elution buffer. Before aptamer amplification, a desalting step is required since the high salt 

concentration of the elution inhibits the PCR reaction [307, 309]. This strategy has been used for the 
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selection of ssDNA aptamers targeting mucin-1,a glycoprotein, a tumor marker upregulated in several 

cancers [307]. 

c. Capillary electrophoresis SELEX (CE-SELEX) 

Capillary electrophoresis is an electrophoretic technique in which analytes are separated according to 

the size/charge [310]. The application of CE for aptamer selection was first published in 2004 by 

Mendonsa and Bowser. The principle is that oligonucleotides bound to a target undergo a mobility shift 

compared to free oligonucleotides. The bound sequences can therefore be collected just after the 

capillary exit separately from unbound sequences either by monitoring UV-absorbance or by laser-

induced fluorescence for oligonucleotide libraries labelled fluorescently [311]. 

For an efficient selection of aptamers using CE-SELEX, care should first be brought to the choice of the 

capillaries as well as pH and composition of separation buffers. 

Capillary walls used for CE-SELEX should not interact with the analyte since any interactions results 

in low resolution during separation, and peak tailing. Most of the time, bare fused-silica capillaries are 

used and the pH at which the separation is performed is usually greater than 2. In this case, two processes 

are involved in separation by CE: electroosmotic flux (EOF) and electrophoretic mobility (EM).  

EOF: at a pH > 2, the silanol groups present in the capillary wall are deprotonated. This results in a net 

negative charge on the capillary wall. Therefore, cations present in the solvent are attracted to the 

negatively charged capillary wall surface creating a positively charged mobile layer. The cation mobile 

layer is attracted to the cathode, thereby generating the EOF. EOF creates a ‘conveyor belt effect’, 

carrying any analyte to the capillary outlet at the cathode, independent of their charge [312].  

EM: EM occurs concurrently to EOF and affects only charged molecules. Positively charged molecules 

migrate toward the cathode whereas negatively charged compounds are attracted to the anode. The 

cumulative effect of EOF and EM will lead to separation of compounds. Positively charged molecules 

will be the first to rush to the cathode with both EOF and EM driving in the same direction, smaller 

positively charged ions being detected first followed by bigger ones. Then, neutral molecules will exit 

the capillary since they are carried only with the EOF. Finally, negative molecules will reach the outlet, 

with EOF and EM driving in opposite directions, with bigger negatively charged compounds being 

detected before smaller ones [313, 314] (Figure 9).  
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Figure 9. Order (from left to right) in which the different analytes of different mass and charge will 

reach the detection window in CE. The negative charge of the capillary wall surface is due to the 

deprotonation of silanol groups at pH>2; the positive charges come from positive ions in the buffer to 

ensure electroneutrality. 

For an optimal selection, the CE separation buffer should mimic the conditions in which the aptamer 

will be used. In addition, its ionic composition should not be high to avoid Joule heating. Joule heating 

is defined as the heat generated inside the capillary when an electric current is applied to an electrolyte. 

This increase in temperature is removed to a certain extent by the cooling system of the CE apparatus 

but when the temperature rises too much, this affects the viscosity of the buffer, leading to an increase 

in the diameter of the capillary, and causes a non-uniform migration of the analytes by affecting the 

electrophoretic velocity and the molecular diffusion [315]. 

3. Clinical applications of aptamers  

i. Aptamers as therapeutic agents 

Since the discovery of aptamers, several studies have been launched to see whether they could be used 

as therapeutic agents. The first aptamer to reach into the clinic was NX1838, an RNA aptamer which 

had a very high affinity for vascular endothelial growth factor 165 (VEGF165) and which prevented it to 

bind to its receptor [316]. The efficacy of NX1838 has been demonstrated for the treatment of the wet 

form of age-related macular degeneration (ARMD). Licensed and renamed as Macugen®, this aptamer 

received the food and drug administration (FDA) approval in 2005. However, Macugen® was not a 

commercial and a financial success since it was selected to target specifically VEGF165 while another, 

smaller VEGF isoform, VEGF121, also involved in the development of ARMD, was not targeted by 

Macugen® [296]. 

Other aptamers are now in clinical trial. For example, E10300 targets PDFG-B in ARMD and diabetic 

retinopathy. AS1411 binds to nucleolin and was proposed for acute myeloid leukemia and renal 

carcinoma treatment. NOX-E36 which targets the pro-inflammatory chemokine C-C motif-ligand 2 

(CCL2), was tested in a context of kidney diseases [317]. Safe and well tolerated, this aptamer 
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(commercialized under the name of Emapticap pegol) reduces glycated hemoglobin (an index of 

glycemia) as well as albumin:creatinine ratio in patients with type 2 diabetes [318]. 

ii. Aptamers as biosensors 

Biosensors are tools used for biological recognition that could be used to identity biomarkers at the 

patient’s bedside [319]. When binding to their targets, aptamers undergo a three-dimensional 

conformation change that can be monitored either with an electrical signal using voltammeter, 

potentiometry measurement or electric impedance spectroscopy [320, 321], or by fluorescence [322, 

323]. Interestingly, aptamers can also be coupled to nanomaterials to transduce the induced 

conformational change in an easy-to-use colorimetric test [285]. In most cases, the colorimetric sensing 

method employs gold nanoparticles (AuNPs), since they are biologically inert material [324], in 

association with a cationic surfactant (e.g. hexadecyltrimethylammonium bromide (CTAB)). The 

surfactant does not only bind to DNA to form supramolecules but also induce the aggregation AuNPs. The 

principle of aptamer-target detection relies on the change in the distribution of nanoparticles in the 

medium due to aptamer-target complexes formation [285]. When AuNPs are dispersed, the inter-particle 

distance is greater than the diameter of the nanoparticle and the solution appears red. When the 

nanoparticle aggregates, this inter-particle distance decreases and causes a color change from red to blue 

[325-327]. In the absence of target, the surfactant and free aptamers form a supramolecule, and thus the 

subsequent AuNPs cannot aggregate due to the lack of free surfactant (Figure 10). In the presence of a target, 

the aptamers bind preferentially to their targets and the following surfactant molecules can assemble AuNPs 

to form aggregates, thereby leading to a color change from red to blue [328, 329] (Figure 10).  

This strategy has been used in the context of malaria for the development of an aptasensor-based 

diagnostic tool targeting Plasmodium vivax and Plasmodium falciparum lactate dehydrogenase [329].  

For now, aptasensors are extensively studied in research and are already available to target thrombin, 

theophylline, PDGF and cocaine. However, no aptasensor has reached clinical trial up to now [330, 

331]. 

javascript:popupOBO('CHEBI:35195','C2AN35711A','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=35195')


Valérie BRUNCHAULT  INTRODUCTION 
46 

 

Figure 10. Schematic representation of aptasensors based on surfactant (CTAB)-induced aggregation 

together with the visual color changes that occur with increasing target concentration, adapted from 

[328]. 

Challenge for the development of biosensors for biomarker detection 

The use of CE to separate free nucleic acids and collect aptamer-target complexes has been a major 

improvement. Due to the high resolving power of CE associated to the low probability for nonspecific 

interaction with the stationary phase (selections are done in free solution), CE-SELEX typically takes 

less than 15 cycles and is applicable to a large variety of targets, including small molecules or organic 

target having only no suitable functional groups [332]. Thus, several aptamers have been selected using 

the CE-SELEX, including aptamers recognizing HIV reverse transcriptase [333], alpha-fetoprotein 

[334], porphyrin [335] and thrombin [336]. 

For many years now, our research team has identified several urinary peptide biomarkers. However, this 

identification requires a technology which cannot be used at the patients’ bedside and need some trained 

personnel. For the detection of biomarkers, previously identified by CE-MS by our research group, we 

aimed to develop an aptamer-based biosensor that will facilitate the diagnosis system and provide a tool 

that could be used by anyone at the patient’s bedside. For this, our challenge is to use CE-SELEX and 

select aptamers that would bind to selected biomarkers freely in urine.  
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Aims and Objectives 

CVD the main cause of death in the CKD pediatric population. Biomarkers that could predict 

progression of cardiovascular complications in children with CKD are unfortunately not available for 

now. The objective of this work was to identify urinary peptide biomarkers that could predict CVD 

progression in the largest European cohort of children with CKD. The parameters monitored as surrogate 

markers of cardiovascular complications, i.e. atherosclerosis, vascular stiffness and cardiac hypertrophy, 

were carotid intima-media thickness, pulse wave velocity and left ventricular hypertrophy respectively. 

Such biomarkers could revolutionize identification of high-risk pediatric patients so that their 

therapeutic treatment could be personalized to delay a cardiovascular event or even death. 
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Urinary peptide biomarkers predictive of the progression of cardiovascular 

complications in children with chronic kidney disease 

 

Brunchault et al. (in preparation) 

 

Introduction 

 

 Chronic kidney disease (CKD) affects approximately 10% of the worldwide general population 

[1] and affects both adults and children. Regardless of age, CKD is associated with several comorbidities 

and high mortality. In 2017, epidemiological data from the European Society for Paediatric 

Nephrology/European Renal Association-European Dialysis and Transplant Association (ESPN/ERA-

EDTA) registry showed that the overall mortality rate was 32.6 per 1000 children with advanced CKD 

compared to 3.7 per 1000 children in the European general pediatric population [2]. Using a cohort of 

1643 children with CKD, the Australia and New Zealand Dialysis and Transplant Registry also showed 

that the mortality rates differ according to the type of renal replacement therapy: 4.8 per 100 patient-

years among patients receiving hemodialysis, 5.9 per 100 patient-years among those having peritoneal 

dialysis and 1.1 per 100 patient-years among those who received a renal transplantation [3]. Like in 

adults, cardiovascular disease (CVD) is the most important comorbidity associated with CKD in the 

pediatric and young adult population. CVD is responsible for 50% of the deaths, cardiac arrest being the 

first cause of CKD-related CVD followed by arrhythmia, cardiomyopathy, and stroke [4-7]. As shown 

in the Chronic Kidney Disease in Children (CKiD) study (United States and Canada) following 586 

children, 31% of dialyzed patients experienced a cardiac-related incident within 7 years of follow-up 

[8]. The most common cardiovascular lesions observed in pediatric patients with CKD are left 

ventricular hypertrophy [9-11] and vascular remodeling associated with accelerated atherosclerosis and 

increased arterial stiffness [12, 13]. Non-invasive methods that could help predicting the progression of 

these complications would strongly improve specific patient clinical management and should result in a 

decrease in morbidity and mortality due to preventable CV events in patients with CKD. 

 

 Urine is increasingly investigated as ‘liquid biopsy’ since it is a potential source of markers of 

disease. Using approaches based on capillary electrophoresis coupled to mass spectrometry (CE-MS), 

we and others have shown the usefulness of urinary peptidome analysis for prediction of progression of 

CKD in both adults [14] and children [15]. Furthermore, in several small-sized studies in non-CKD adult 

populations, a number of urinary peptide biomarkers have been associated to the occurrence of CVD 
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such as coronary artery disease [16], hypertensive atherosclerotic CVD [17], heart failure [18], left 

ventricular diastolic dysfunction [19] and, recently, acute coronary syndromes [20]. However, urinary 

peptides able to predict development of CVD in the pediatric population have not yet been identified, 

irrespective of whether those CVD develop on a CKD background.  

 

In the current study we analyzed the urinary peptidome of 86 pediatric patients with CKD (eGFR 

10-45 mL/min/1.72m2), without overt cardiac dysfunction at inclusion, from the Cardiovascular 

Comorbidity in Children with CKD (4C) study [21] by CE-MS. We investigated the use of urinary 

peptides as biomarkers to predict progression of CVD over one year, using left ventricular mass index 

(LVMI), carotid intima media thickness (cIMT) and pulse wave velocity (PWV) as markers of 

cardiovascular complications.  

 

 

Materials and Methods 

 

Study Population  

The 4C study is a prospective observational cohort study in pediatric patients with CKD. It included 700 

patients recruited in 55 pediatric nephrology centers in 12 European countries. Inclusion criteria were 

ages 6–17 years old and GFR (estimated using Schwartz formula [22]) between 10 and 45 ml/min/1.73 

m2. Non-inclusion criteria were existing transplants, active systemic vasculitis, renal artery stenosis, 

coexisting primary cardiovascular anomalies, and anomalies of the limbs preventing diagnostic 

procedures. The study was approved by local ethics committees in all participating centers, and parents 

or legal guardians provided informed consent for study participation. Eighty-six patients from the 4C 

cohort whose detailed CVD follow-up information were available were randomly picked for the 

identification of urinary peptides associated with the progression of CVD. 

 

cIMT, PWV and LVMI were measured as surrogate markers of CVD, namely atherosclerosis, vascular 

stiffness and cardiac hypertrophy respectively [23], and the rate of changes of these parameters (i.e 

slopes, measured over one year) were used to determine the CVD progression. For every CVD marker, 

the 86 patients were randomized in a discovery (2/3 of the population, n= 57) and a validation cohort 

(1/3 of the population, n = 29) for building and testing the peptidomics-based prognosis tools, 

respectively. Since no clear clinical cutoffs are available for the definition of patients displaying CVD, 

we defined the cutoffs by dividing the discovery population in tertiles of progression for the 3 measured 

parameters (Figure 1): T1 was composed of children considered with low-risk for CVD progression; 

T2 contained patients considered with intermediate risk for CVD progression; T3 was composed of 

children with high-risk for CVD progression. These threshold values dividing tertiles were then applied 

to the validation population to define the risk for CVD progression (Figure 1). 
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Cardiovascular Disease Monitoring  

All patients underwent a complete transthoracic echocardiographic examination with commercially 

available machines. Examinations were stored and analyzed in a central echocardiographic reading 

center by two independent readers unaware of the clinical data.  

 

Two–dimensional echocardiography images were obtained for the analysis of left ventricular (LV) 

volumes on three consecutive beats from apical four– and two– chamber views. Wall thickness and 

chamber dimensions were obtained from the two–dimensional parasternal long axis or M–mode short 

axis at the midventricular level. The LV mass index (LVMI) was calculated according to the Devereux 

Equation [24] and indexed to height 2.16 [25]. The sex– and age– specific LVMI partition values of 

Khoury et al. [26] are applied to define left ventricular hypertrophy. 

 

The cIMT is measured according to the Mannheim cIMT consensus [27]. The cIMT is obtained either 

by five averaged measurements on each side or semi-automatically using a portable ultrasound device 

(Acuson P50; Siemens Medical Solutions USA, Inc.) with integrated digital image evaluation software 

(Syngo US Workplace; Siemens Medical Solutions USA, Inc.). Interobserver variation studies showed 

an intraclass correlation coefficient of 0.42 and an interobserver coefficient of variation (CV) of 7.3%. 

Because cIMT in children changes with growth, reference values normalized for height and age were 

established in 1155 healthy children ages 6–18 years old [28].  

 

The central PWV is measured with the Vicorder Oscillometric PWV device using the distance from the 

suprasternal notch to the femoral recording point via the umbilicus as path length. The method was 

validated against the gold standard of applanation tomometry [29], and reference values normalized for 

height and age were established in a large European pediatric population (1003 healthy children ages 6–

18 years old) [30]. Intra- and interobserver variability studies showed CVs of 5.6% and 5.8%, 

respectively, and intraclass correlation coefficients of 0.8 and 1.0, respectively [30]. 

 

Sample preparation 

Urine samples were collected at enrollment by the clean-catch method and frozen at -20°C within the 

hour. Urine samples were shipped on dry ice to Inserm U1048, Toulouse, France and thawed 

immediately before use. A volume of 0.7 mL was diluted with 0.7 mL 2 M urea, 10 mM NH4OH and 

0.02 % sodium dodecyl sulfate (SDS). To remove high molecular weight polypeptides, samples were 

filtered using Centrisart ultracentrifugation filter devices (20 kDa molecular weight cut-off); Sartorius, 

Goettingen, Germany) at 3000 g until 1.1 mL of filtrate was obtained. The filtrate was desalted with PD-

10 column (GE Healthcare, Sweden) equilibrated in 0.01% NH4OH in HPLC-grade water. The prepared 

samples were lyophilized and stored at 4°C. Shortly before capillary electrophoresis coupled to mass 
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spectrometry (CE-MS) analysis, lyophilisates were resuspended in HPLC-grade water (Merck KGaA, 

Darmstadt, Germany). The preparation method has previously been described in more detail by 

Theodorescu et al. 2006 [31]. 

 

CE-MS analysis and data processing 

CE-MS analysis was performed using a Beckman Coulter Proteome Lab PA800 capillary 

electrophoresis system (Beckman Coulter, Fullerton, USA) on-line coupled to a micrOTOF II MS 

(Bruker Daltonic, Bremen, Germany), as previously described [15, 32]. The electro-ionization sprayer 

(Agilent Technologies, Palo Alto, CA, USA) was grounded, and the ion spray interface potential was 

set to –4.5 kV. Data acquisition and MS acquisition methods were automatically controlled by the CE 

via contact-close-relays. Spectra were accumulated every 3 s, over a range of m/z 350 to 3000.  

MosaiquesVisu software package was applied to deconvolute mass spectral ion peaks representing 

identical molecules at different charge states into single masses [33]. Migration time and ion signal 

intensity (amplitude) were normalized using internal polypeptide standards [34]. Each polypeptide 

present in the list was defined by its normalized migration time [min], molecular mass [kDa], and signal 

intensity detected. Using a Microsoft SQL database, all detected polypeptides were deposited, matched, 

and annotated to allow for further comparison between the groups. The criteria applied to consider a 

polypeptide identical was that within different samples, the mass deviation was lower than 50 ppm for 

masses <4kDa, 150 ppm for masses >6kDa, and between 50-150 ppm for masses between 4-6kDa. 

Acceptable migration time deviation was between 1 and 2.5 minutes. 

MS-MS analysis 

 

CE was connected to an Orbitrap Velos FTMS (Thermo Finnigan, Bremen, Germany). Urine sample 

was ionized using a modified Proxeon nano spray source fitted with a non-grounded Agilent ESI sprayer 

operating in positive ion mode. Ionization voltage was 3.4 kV and the capillary temperature was 275°C. 

The mass spectrometer was operated in MS/MS mode scanning from 350 to 1500 amu. The top five 

multiply charged ions were selected from each scan for MS/MS analysis using HCD at 40% collision 

energy. The resolution of ions was 60 000 for MS1 and 7500 for MS2. For LC-MS/MS analysis, aliquots 

of 5μL were analyzed on a Dionex UltiMate 3000 RSLS nano flow system (Dionex, Camberley, UK) 

at a flowrate of 5μL/min. The trap and nanoflow column were maintained at 35°C. After loading (5μL) 

onto a Dionex 0.1×20 mm 5μm C18 nano trap column, elution was performed on an Acclaim PepMap 

C18 nano column 75μm×15 cm, 2μm 100°A at a flowrate of 0.3μL/min. Typically, samples were eluted 

with a gradient of solvent A: 97.9% H2O, 0.1% formic acid, 2% acetonitrile versus solvent B: 80% 

acetonitrile, 19.9% H2O, 0.1% formic acid starting at 1% B for 5 min rising to 20% B after 90 min and 

finally to 40% B after 120 min. Thereafter, the column was washed and reequilibrated prior to the next 

injection. The eluant was ionized using a Proxeon nano spray ESI source operating in positive ion mode 

into an Orbitrap Velos FTMS (Thermo Finnigan, Bremen, Germany). Ionization voltage was 2.6 kV and 



STUDY 1  Valérie BRUNCHAULT 
53 

the capillary temperature was 250°C. The mass spectrometer was operated in HCD MS/MS mode. Using 

HCD, the top 20 multiply charged ions were selected from each scan for MS/MS analysis and only 

charge state one was rejected for MS/MS [36]. The detection limit for the LC- or CE-MS/MS analysis 

using the Orbitrap Velos mass spectrometer, with 60 000 resolution for MS1 and with 7500 resolution 

for MS2, was in the range of 0.05–0.2 fmol. To obtain sequence information, CE- and LC-MS/MS were 

used as complementary approaches. CE-MS/MS has the advantage of direct matching (mass and CE-

time) to the peptides quantified by CE-MS. On the other hand, LC-MS/MS exhibits higher sensitivity 

due to the increased loading capacity of the LC-column, consequently a better coverage of sequence 

information. However, the retention time in LC does not directly correspond to the CE migration time, 

which represents a disadvantage of LC-MS/MS in this approach [35]. 

 

Protein sequence data analysis 

Data files were searched against the UniProt human nonredundant database using Proteome Discoverer 

1.2 (Thermo) and the SEQUEST search engine. Relevant settings were: no fixed modifications, 

oxidation of methionine and proline as variable modifications. The minimum precursor mass was set to 

790 Da, maximum precursor mass to 6000 Da with a minimum peak count of 10. The high-confidence 

peptides were defined by cross correlation (Xcorr) ≥ 1.9 and rank=1. Precursor mass tolerance was 5 

ppm and fragment mass tolerance was 0.05 Da. False discovery rate settings cannot guarantee that the 

correct sequence is assigned to a fragmentation spectrum generated in an MS/MS experiment [36]. 

However, a property of CE is that the migration time is dependent on the net positive charge of the 

peptide. At pH 2 (pH of the running buffer) this (charge) is a function of the number of basic amino 

acids present [37]. The peptide sequences obtained from the tandem MS analysis were matched to the 

CE-MS peaks by matching the molecular mass and migration time (in the case of CE-MS/MS) or 

molecular mass and theoretical migration time based on the number of basic amino acids (in the case of 

LC-MS/MS). To further allow matching, the absence of cysteine and the absence of hydroxylated 

proline in non-collagen peptides were required. If a sequence passed all these criteria, it was then 

assigned to the corresponding CE-MS peak [37]. 

Statistical Analysis 

Multidimensional classifiers: For the identification of peptides associated to markers of CVD 

progression, we compared the normalized abundance of peptides between T1 and T3 groups from the 

discovery cohort. Significant peptides were selected by performing a Wilcoxon analysis and then 

combined using an in-house developed tool in random forest models (for cIMT and LVMI) or support 

vector machine (SVM) model (for PWV) or to build the prognostic biomarker classifiers. For the SVM 

model (SVM package of R [38]), the parameters of the radial kernel function (type C) were 1 (cost 

parameter) and 0.04545455 (kernel width). The score taken as cut-off for prediction was 0.5 for the 

random forest-based classifiers and 0 for the SVM-based classifier.  
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Patients in the validation cohort were then scored using the built classifiers mentioned above. Predictive 

performances of classifiers were evaluated calculating area under the receiver operating characteristic 

(ROC) curve (AUC) as well both sensitivity and specificity using GraphPad Prism 5.0 for Windows 

(GraphPad Software Inc).  

Comparisons: Characteristics and classifier based-scores of patients were compared using a Mann-

Whitney test or student t-test or a One-way ANOVA, as indicated. To assess the discriminatory ability 

of clinical parameters or classifiers, we tested the hypothesis that the AUC is 0.5 [39]. Statistical 

analyses were performed using GraphPad Software Inc. p<0.05 was considered as statistically 

significant. 

 

Results 

 

Description of the study population  

For the identification of urinary peptides associated with the progression of CVD, we studied the urinary 

peptidome of 86 CKD children from the 4C cohort by CE-MS. The discovery cohort, consisting of 57 

patients, was used for the identification of urinary peptide biomarkers and establishment of the 

prognostic classifiers and the validation cohort, composed of 29 patients, was used for the analysis of 

the performances of prognostic classifiers. cIMT, PWV and LVMI were considered as surrogate markers 

of CVD [23] and the rate of changes of these parameters (i.e slopes, measured over one year) were used 

to determine the CVD progression. For the 3 measured parameters, 3 groups of cardiovascular risks 

were defined (Figure 1): T1 was composed of children considered with low-risk for CVD progression; 

T2 contained patients considered with intermediate risk for CVD progression; T3 was composed of 

children with high-risk for CVD progression. Clinical characteristics of individual patients in both 

discovery and validation cohorts are presented in Tables 1-3. 
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Figure 1: Scatter plots showing the distribution of patients with the different CVD risks in the discovery 

and validation cohorts. (A) The discovery cohort was split into tertiles for the 3 CVD parameters, T1 

defining the group of patients with low-risk for CVD progression, T2 the group with intermediate risk 

for CVD progression and T3 the group with high-risk for CVD progression. (B) The threshold values 

defining tertiles in the discovery cohort (dotted lines on the graph) were then applied to the validation. 

Data are mean ± SD; cIMT: carotid intima-media thickness; PWV: pulse wave velocity; LVMI: left 

ventricular mass index. * P < 0.05, ** P < 0.01, **** P < 0.001, One-way ANOVA test for independent 

samples. 

 

Table 1: Characteristics of the cIMT study population. 

  Discovery phase (n=38)  Validation phase (n=19)  

  
Low risk 

(T1) 

High risk 

(T3) 
p-value$ 

Low risk 

(T1) 

High risk 

(T3) 
p-value$ 

Age (years) - 12.06 ± 2.83 11.92 ± 3.95 0.90 11.40 ± 2.85 12.35 ± 3.29 0.66 

Gender 
f 7 7 

1.00 
3 1 

0.29 
m 12 12 6 9 

eGFR Baseline 

(ml/min/1.73m2) 
- 26.97 ± 5.65 28.20 ± 6.66 0.54 27.28 ± 4.36 28.98 ± 6.60 0.49 

eGFR slope 

(ml/min/1.73m2/year) 
- -3.22 ± 3.37 -2.93 ± 4.97 0.84 -2.88 ± 1.25 -4.87 ± 3.79 0.13 

cIMT baseline (SD score) - 2.61 ± 1.69 0.88 ± 0.86 <0.01 2.77 ± 1.05 0.11 ± 1.76 <0.01 

cIMT slope (SD score/year)* - -0.46 ± 0.29 0.55 ± 0.35 <0.0001 -0.79 ± 0.60 0.60 ± 0.19 <0.0001 
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PWV baseline (SD score) - 0.54 ± 1.68 0.01 ± 1.53 0.32 0.44 ± 0.69 0.47 ± 1.99 0.80 

PWV slope (SD score/year) - 0.10 ± 0.51 0.10 ± 0.24 0.98 0.14 ± 0.41 1.18 ± 0.55 0.89 

LVMI baseline (g/m2.16) - 41.14 ± 10.03 44.47 ± 13.98 0.40 49.94 ± 16.39 35.05 ± 6.22 0.03 

LVMI slope (g/m2.16/year) - 1.66 ± 3.74 4.60 ± 13.51 0.37 0.11 ± 6.10 4.56 ± 5.46 0.10 

Systolic BP (SD score) - 1.15 ± 1.37 1.23 ± 1.29 0.86 1.32 ± 1.87 0.87 ± 0.77 0.59 

Diastole BP (SD score) - 1.02 ± 1.11 1.94 ± 1.22 0.82 1.12 ± 1.55 0.63 ± 0.51 0.42 

Values are means ± SD. T1: first tertile; T3: third tertile; GFR: Glomerular filtration rate; cIMT: 

carotid intima-media thickness; PWV: pulse wave velocity; LVMI: left ventricular mass index; BP: 

blood pressure. *See also Fig. 1. $Mann-Whitney test for independent samples. 

 

Table 2: Characteristics of the PWV study population. 

  Discovery phase (n=38)  Validation phase (n=22)  

  
Low risk 

(T1) 

High risk 

(T3) 
p-value$ Low risk (T1) 

High risk 

(T3) 

p-

value$ 

Age (years) - -1.94 ± 3.43 -3.01 ± 2.50 0.28 10.40 ± 3.28 13.64 ± 2.34 0.01 

Gender 
f 9 10 

0.75 
4 1 

0.08 
m 10 9 6 11 

eGFR Baseline 

(ml/min/1.73m2) 
- 27.52 ± 6.14 24.43 ± 5.00 0.09 25.98 ± 3.96 30.81 ± 5.27 0.07 

eGFR slope 

(ml/min/1.73m2/year)  
- -1.94 ± 3.44 -3.01 ± 2.50 0.28 -2.94 ± 2.55 -6.39 ± 4.10 0.127 

cIMT baseline (SD score) - 1.75 ± 1.91 1.47 ± 1.26 0.60 1.48 ± 1.71 1.64 ± 1.18 0.67 

cIMT slope (SD score/year) - -0.01 ± 0.55 0.01 ± 0.41 0.9 -0.03 ± 0.64 -0.20 ± 0.78 0.37 

PWV baseline (SD score) - 1.30 ± 1.60 -0.83 ± 1.26 <0.01 1.16 ± 1.58 -0.53 ± 0.90 0.02 

PWV slope (SD score/year) * - -0.25 ± 1.67 0.61 ± 0.37 <0.0001 -0.23 ± 0.11 0.71 ± 0.45 <0.0001 

LVMI baseline (g/m2.16) - 44.76 ± 11.72 40.61 ± 10.03 0.25 42.10 ± 12.63 
42.87 ± 

13.07 
0.86 

LVMI slope (g/m2.16/year) - 0.82 ± 3.79 2.52 ± 2.61 0.12 2.56 ±3.95 3.14 ± 9.92 <0.01 

Systolic BP (SD score) - 1.77 ± 1.46 0.66 ± 1.08 0.01 0.79 ± 1.06 0.67 ± 0.83 0.43 

Diastole BP (SD score) - 1.41 ± 1.12 0.46 ± 0.79 <0.01 0.54 ± 0.76 0.63 ± 0.85 0.93 

Values are means ± SD. GFR: T1: first tertile; T3: third tertile; Glomerular filtration rate; cIMT: 

carotid intima-media thickness; PWV: pulse wave velocity; LVMI: left ventricular mass index; BP: 

blood pressure. *See also Fig. 1. $Mann-Whitney test for independent samples. 

 

Table 3: Characteristics of the LVMI study population. 

  Discovery phase (n=38)  Validation phase (n=22)  

  low risk (T1) 
high risk 

(T3) 
p-value$ low risk (T1) high risk (T3) 

p-

value$ 

Age (years) - 11.78 ± 2.92 12.30 ± 3.40 0.46 12.46 ± 3.87 12.27 ± 3.76 0.91 

Gender 
f 10 10 

1,00 
1 2 

0.66 
m 9 9 9 10 

eGFR Baseline 

(ml/min/1.73m2) 
- 27.81 ± 7.30 28.60 ± 5.10 0.75 27.45 ± 5.31 27.17 ± 4.66 0.9 
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eGFR slope 

(ml/min/1.73m2/year)  
- -1.56 ± 3.70 -4.17 ± 5.38 0.09 -4.91 ± 5.68 -4.42 ± 2.49 0.81 

cIMT baseline (SD score) - 1.59 ± 1.47 1.21 ± 1.12 0.39 1.63 ± 1.24 1.34 ± 1.20 0.59 

cIMT slope (SD score/year) - 0.01 ± 0.45 0.19 ± 0.53 0.25 -0.21 ± 0.76 -0.02 ± 0.64 0.55 

PWV baseline (SD score) - 0.48 ± 1.43 0.31 ± 1.81 0.39 -0.35 ± 0.75 0.02 ± 1.14 0.36 

PWV slope (SD score/year) - 0.05 ± 0.34 0.13 ± 0.43 0.54 0.43 ± 0.55 0.16 ± 0.57 0.27 

LVMI baseline (g/m2.16) - 45.98 ± 10.97 42.04 ± 15.33 0.37 50.94 ± 13.49 43.60 ± 12.68 0.21 

LVMI slope (g/m2.16/year) * - -1.83 ± 1.66 8.42 ± 12.51 <0.0001 -4.19 ± 4.89 8.77 ± 6.41 <0.0001 

Systolic BP (SD score) - 1.54 ± 1.56 1.04 ± 1.41 0.3 0.93 ± 0.71 0.94 ± 1.97 0.99 

Diastole BP (SD score) - 1.23 ± 1.23 0.85 ± 1.23 0.34 0.64 ± 0.81 0.61 ± 1.45 0.96 

Values are means ± SD. T1: first tertile; T3: third tertile; GFR: Glomerular filtration rate; cIMT: 

carotid intima-media thickness; PWV: pulse wave velocity; LVMI: left ventricular mass index; BP: 

blood pressure. *See also Fig. 1. $Mann-Whitney test for independent samples. 

 

Identification of urinary peptides associated to progression of CVD and development of predictive 

classifiers 

Analysis of the urinary peptidome of the discovery sets by CE-MS led to the identification of a total of 

7586 urinary peptides. Comparison of the abundance of the urinary peptides between T1 (low-risk of 

CVD progression) and T3 (high-risk of CVD progression) groups for the 3 cardiovascular parameters 

led to the discovery of 190, 22 and 14 urinary peptides associated to cIMT, PWV and LVMI progression, 

respectively. None of these peptides resisted to correction for multiple testing. We therefore continued 

the analysis with these non-adjusted peptides.  

These identified peptides were then combined in either a random forest or SVM prediction model and 

were optimized for the classification of patients in this discovery set (Figure 2A). This resulted in three 

models: the cIMT190P model for cIMT slope prediction, the PWV22P model for PWV slope prediction 

and the LVMI14P model for LVMI slope prediction. Scoring the patients with each of these classifiers 

clearly and significantly separated the 3 groups according to the severity (low-, intermediate- or high-

risk) of CVD damage. 

 

Validation of the predictive classifiers and evaluation of predictive performances in an independent 

cohort  

The 3 models were subsequently tested on a new set of patients (validation cohort) not previously used 

for designing the classifiers (Figure 2B). After CE-MS analysis of their urinary peptidome, these 

patients were scored blindly with cIMT190P, PWV22P and LVMI14P classifiers. Interestingly the 

distribution of both cIMT190P and PWV22P classifiers showed significant separation of the patients at 

low (T1) and high (T3) risk for developing CVD. The cIMT190P classifier predicted cIMT progression 

with a sensitivity of 80% [95%confidence interval (CI), 44 to 97], a specificity of 100% (95% CI, 66 to 

100) and an AUC of 0.87 (95% CI, 0.68 to 1.00) (Figure 3A). Although they failed to distinguish the 
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individuals with intermediate risk of CVD progression (T2) from T1, the cIMT190P-based scores 

allowed to separate T2 from T3 (Figures 2B) and correlated with cIMT slope (r=0.459; p = 0.012) 

(Figure 3B).  

 

 

Figure 2: Urinary peptide-based scores of CVD risk in the discovery and validation cohorts. (A) Box-

and-whisker plots showing the distribution of scores for cIMT190P model, PWV22P model and 

LVMI14P model in the discovery cohort for patients with low-risk (T1), intermediate risk (T2) and high-

risk for CVD progression (T3). (B) Validation of the classifiers in an independent, blinded cohort. The 

dotted lines represent the cut-off scores for prediction. cIMT: carotid intima-media thickness; PWV: 

pulse wave velocity; LVMI: left ventricular mass index. * P < 0.05, **** P < 0.001, One-way ANOVA 

for independent samples. 

 

The PWV22P classifier predicted PWV progression with a sensitivity of 83% [95% CI, 52 to 98], a 

specificity of 70% (95% CI, 34.8 to 93.3) and an AUC of 0.83 (95% CI, 0.64 to 1.00) (Figure 3A). Like 

the prediction of progression of cIMT slope, the PWV22P model also clearly distinguished T2 from T3 

patients, but not T1 from T2 (Figure 2B) and the PWV22P-based scores displayed a significant 

correlation to PWV slope (r=0.480; p = 0.008) (Figure 3B). In contrast, the LVMI model (LVMI14P) 

was not been validated (AUC: 0.70 (95% CI, 0.42 to 0.89), p>0.05) (Figure 2B and data not shown). 

Taken together, these data support the existence of urinary peptides allowing to predict future 
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development of several CVD such as vascular remodeling (atherosclerosis [related to cIMT] and arterial 

stiffness [related to PWV]) in a CKD background.  

 

 

Figure 3. Efficiency of urinary peptides in the prediction of cIMT and PWV progression. (A) ROC 

curves for cIMT190P and PWV22P models. (B) Correlation between classifier-based scores and the 

rates of changes of CVD parameters. cIMT: carotid intima-media thickness; PWV: pulse wave velocity; 

LVMI: left ventricular mass index.  

 

 

Identity of urinary peptides associated to CVD progression 

Tandem mass spectrometry was applied to sequence the peptides predictive for the CVD complications 

associated to CKD. Among peptides included in the cIMP190P, PWV22P and LVMI14P models, 75 

peptides, 9 peptides and 6 peptides were identified by sequencing in each classifier, respectively 

(Supplementary tables 2-4). Regarding the signature of cIMT progression, most of sequenced peptides 
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are fragments of various collagens (85%), a major constituent of the extracellular matrix; other peptides 

included fragments of keratin, brefeldin A-inhibited guanine nucleotide-exchange protein 1, pre-rRNA 

processing protein, histone-lysine N-methyltransferase 2A, M-phase-specific PLK1-interacting protein, 

PAX-interacting protein 1, serum amyloid A protein, thymosin-β4, ubiquitin carboxyl-terminal 

hydrolase 31 and fibrinogen alpha chain and (Figure 4A). 2/3 of these cIMT-related urinary peptides 

were less abundant in patients with high-risk to develop CVD. 

Next, we compared proteins from which the predictive peptides for cIMT, PWV and LVMI slope 

originated to find any overlap. Interestingly, although most of the peptide sequences were not the same, 

we only found collagen alpha-1(I) (COL1A1) as common protein to the 3 analyzed CVD parameters 

(Figure 4B). Among fragments derived from the collagen alpha-1(I), 23/35, 5/7 and 2/4 present in the 

cIMT190P, PWV22P and LVMI14P classifiers, respectively, were downregulated in patients with high-

risk CVD. Peptide sequences which were either more or less abundant, span the entire protein sequence.  
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Figure 4. Protein origin of urinary peptides associated to progression of CVD in CKD children. (A) 

Signature of cIMT progression and (B) overlap of protein of origin of the sequenced peptides associated 

to progression of CVD in CKD children. Brefeldin A-inhibited guanine nucleotide-exchange protein 1 

– ARFGEF1; Collagen alpha-1(I) chain – COL1A1; Collagen alpha-2(I) chain – COL1A2; Collagen 

alpha-1(III) chain – COL3A1; Collagen alpha-1(V) chain – COL5A1; Collagen alpha-2(V) chain – 

COL5A2; Collagen alpha-1(VIII) chain – COL8A1; Collagen alpha-3(IX) chain – COL9A3; Collagen 

alpha-1(XIX) chain – COL19A1; Collagen alpha-1(XXII) chain – COL22A1; Collagen alpha-1(XXV) 

chain – COL25A1; Collagen alpha-1(XXVI) chain – COL26A1; Fibrinogen alpha chain – FGA; pre-

rRNA processing protein - FTSJ3; Keratin; type I cytoskeletal 10 – KRT10; Serum amyloid A protein 

– SAA1; Thymosin beta-4 – TYB4. 

 

Collagen alpha-2(I) (COL1A2) and serum amyloid A protein (SAA1) were the only proteins 

overlapping between the cIMT190P and PWV22P models: most of fragments originating from collagen 

alpha-2(I) were downregulated with cIMT progression (12/14), whereas the fragments included in the 

PWV22P model were upregulated by CVD. In addition, the abundance of the unique sequence derived 

from serum amyloid A protein was decreased in cIMT190P but increased in the PWV22P model. 

Collagen alpha-2(V) chain (COL5A2) was the only common protein between cIMT190P and LVMI14P 

being less abundant in high-risk patients in both models. Moreover, fragments from keratin; type I 

cytoskeletal 10 (KRT10) was less abundant in high-risk patients for LVMI and was unique to this CVD 

parameter.  

Finally, we evaluated the potential overlap of our peptides with other urinary peptides panels associated 

to CVD complications/events in adults on a non CKD background: CAD238 as classifier for the 

diagnosis and prognosis of coronary artery disease [16, 17], HFP which predicts heart failure [18, 40] 

and ACSP75 for the prediction of acute coronary syndromes [20]. Interestingly, several sequenced 

peptides present in the cIMP190P model, PWV22P and LVMI14P models were common with those 

included in the previously published CVD classifiers (Table 4). 

 

Table 4. Overlap of sequences from cIMT190P, PWV22P and LVMI14P classifiers with peptides 

previously identified in classifiers predicting cardiovascular events. 

Sequence Classifier Protein name Previously 

published classifiers 

Cardiovascular 

event 

SpGPDGKTGPpGP cIMT190P Collagen alpha-

1(I) chain 

CAD238 [16] coronary artery 

disease 

SpGSPGPDGKTGPpGP cIMT190P Collagen alpha-

1(I) chain 

TGSpGSpGPDGKTGPPGpAG cIMT190P Collagen alpha-

1(I) chain 
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EGSpGRDGSpGAkGDRGETGP cIMT190P Collagen alpha-

1(I) chain 

GKNGDDGEAGKPGRpGERGP

pGP 

cIMT190P Collagen alpha-

1(I) chain 

GKNGDDGEAGKpGRpGERGP

pGP 

cIMT190P Collagen alpha-

1(I) chain 

LDGAKGDAGPAGPKGEpGSp

GENGApG 

cIMT190P Collagen alpha-

1(I) chain 

SpGRDGSpGAKGDRGETGP LVMI14P Collagen alpha-

1(I) chain 

ADGQpGAkGEpGDAGAKGDA

GPpGP 

PWV22P Collagen alpha-

1(I) chain 

VGPpGpPGPPGPPGPPS cIMT190P Collagen alpha ‐

1(I) chain 

HFP [40] Incident heart 

failure 

VGPpGPpGPpGPPGPPS cIMT190P Collagen alpha ‐

1(I) chain 

LKGQpGApGVKGEpGApGEN

GTPGQTGARG 

cIMT190P Collagen alpha ‐

2(I) chain 

SpGERGETGPpGP cIMT190P Collagen alpha ‐

1(III) chain 

DEAGSEADHEGTHSTKRGHA

KSRPV 

cIMT190P Fibrinogen alpha 

chain 

KGNSGEPGApGSKGDTGAKG

EPGPVG 

PWV22P Collagen alpha ‐

1(I) chain 

VGPpGPpGPpGPPGPPS cIMT190P Collagen alpha-

1(I) chain 

ACSP75 [20] Acute coronary 

syndromes 

VGPpGPpGPpGpPGPPS cIMT190P Collagen alpha-

1(I) chain 

PpGPpGPpGpPGPPS cIMT190P Collagen alpha-

1(I) chain 

SpGERGETGPp cIMT190P Collagen alpha-

1(III) chain 

SpGERGETGPpGP cIMT190P Collagen alpha-

1(III) chain 

ADGQpGAKGEpGDAGAKGD

AGPpGPA 

LVMI14P Collagen alpha-

1(I) chain 

ADGQpGAKGEpGDAGAKGD

AGPpGP 

PWV22P Collagen alpha-

1(I) chain 
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Discussion 

CVD is the leading complication in CKD in children. To improve personalized risk assessment and 

clinical management of these patients, novel strategies need to be found to detect children the most at 

risk of cardiovascular lesion progression as earliest as possible. Several panels of urinary peptide 

markers of cardiovascular complications and events have already been established as diagnostic/ 

prognostic tools in the adult non-CKD population [16, 17, 19, 20, 41]. Here, we evaluated the potential 

of CE-MS urinary peptidomics analysis to predict the progression of CVD complications associated to 

CKD in children after 1-year follow-up. In order to monitor the progression of the cardiac lesions, we 

assessed the slope of three surrogate markers of CVD: cIMT, PWV, and LVMI for atherosclerosis, 

vascular stiffness and left ventricular hypertrophy respectively. The cohort was split into tertiles of 

progression for each of the CVD parameter. 

 

We found 190 and 22 urinary peptides associated with atherosclerosis and vascular stiffness, 

respectively. Combination of those peptides into models (cIMT190P and PWV22P) allowed to predict 

with high sensitivities and specificities, as well as significant AUCs, rapid versus slow progression of 

both cIMT and PWV. To our knowledge, this study is the first to identify robust urinary biomarkers of 

CVD in children having a CKD background. The use of both classifiers can provide a significant 

improvement of the clinical management of CKD children, since early therapeutic treatment to delay 

the occurrence of a cardiovascular event could be proposed in the patients predicted in the high-risk 

stratum. 

 

Although they can be used for predicting patients having a high or a low risk to develop CVD, both 

cIMT190P and PWV22P classifiers were less performant to detect patients with intermediate risk. 

Nevertheless, we observed a significant positive correlation between the classifier-based scores and the 

rates of changes of CVD markers (i.e cIMT slopes and PWV slopes), thereby suggesting that maybe the 

scores should not be interpreted in a dichotomous manner but rather as a continuum without threshold 

which increases when CVD risks increases. 

 

We also discovered a panel of 14 urinary peptides associated with LWMI. However, these markers did 

not display efficiency for early screening of pediatric CKD patients with increased risk to develop 

cardiac hypertrophy. This discrepancy between predictive performances of cIMT190P and PWV22P 

one side and those of LVMI14P on the other side might be because early molecular modifications 

preceding vascular structural/functional changes occur earlier or faster compared to those responsible 

for cardiac modifications in CKD children. A longer follow-up might be necessary to identify urinary 

peptide biomarker predictive of the progression of left ventricular remodeling. 
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Among the urinary CVD associated-biomarkers discovered in this study, a total of 90 peptides were 

sequenced which could relate to key molecular components of pediatric-CKD dependent CVD. Most of 

the identified peptides originated from collagen. These observations were in accordance with previously 

described CVD signatures associated to coronary artery disease [16, 17, 41], heart failure [18, 19, 40] 

and acute coronary syndrome [20]. They strengthen the role of the remodeling of extracellular matrix as 

a common and important mechanism in CVD process, including also atherosclerosis, vascular stiffness 

and left ventricular hypertrophy induced by CKD in children. 

The alpha 1 chain of type I collagen was the protein represented by the highest number of peptides and 

is the only common protein of the 3 CVD classifiers. Collagen type I is a major extracellular matrix 

constituent of the myocardium and the arterial vascular wall, synthesized by fibroblasts in the 

myocardium and smooth muscle cells in the medial arterial vascular wall [42]. The collagen turnover is 

controlled by proteinases such as matrix metalloproteinases and the tight control on the enzyme activities 

is altered during heart failure and atherosclerosis reducing the number or the type of generated fragments 

[43]. However, the focus here on urinary peptides failed to assess the early underlying molecular 

changes of connective tissue turnover in CKD-induced CVD. Indeed, both up and down regulations of 

collagen type I alpha 1 chain, without regionalization on the protein of origin, were observed in patients 

rapidly progressing toward CVD. In the same order, 16 fragments of collagen present in the cIMT 

classifier have a C-terminal GxPGP motif, a substrate of MMP2, membrane Pro-x carboxypeptidase and 

prolyl oligopeptidase [16], but 11/16 were down-regulated while 5/16 were up-regulated in the high risk 

group. 

Interestingly, the cIMT classifier included several peptides not related to collagen (15%) such as 

thymosin beta 4 or serum amyloid A1 protein (downregulated in patients with fast progressing cIMT) 

as well as pre-rRNA processing protein (up regulated). Thymosin beta 4 is known for its implication in 

mechanisms of repair. This protein is able to inhibit oxidative stress and myocardial cell death during 

cardiac injury [44, 45], and its administration in vivo contributes to vascular regeneration and cardiac 

repair [46]. Serum amyloid A1 is an apolipoprotein highly expressed in plasma in response to 

inflammatory stimulation [47], which promotes the development of atherosclerosis [48, 49]. The protein 

accumulates in HDL particles of patients with CAD and/or CKD [50, 51] where it reverses the anti-

inflammatory and vaso-protective properties of HDL [51].  

The present study however has some limitations. Peptides associated to the progression of cIMT, PWV 

and LVMI were identified based on their differential urinary excretion (Wilcoxon test) between children 

progressing rapidly - versus slowly - toward CVD. However, none of these peptides resisted to 

correction for multiple testing. Pediatric CKD patients included in this study displayed a broad range of 

CVD status at enrollment, thereby potentially explaining urinary peptidome heterogeneity. Refinement 

of the prognosis study in a much larger cohort including children balanced with respect to baseline CVD 

status must be undertaken to reevaluate the predictive value of urinary peptides for CVD progression. 
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Conclusion 

In conclusion, the present study showed the potential of CE-MS urinary peptidomics for identification 

of biomarkers able to predict cardiovascular complications such as atherosclerosis and vascular stiffness 

in children with CKD. Used in clinic, such biomarkers will allow non-invasive screening of CKD 

children having a high risk to develop CVD. These will improve management of the disease, without 

adding traumatic examination for these children already undergoing repetitive medical examinations. 

Further studies should be carried out for discovering biomarkers predictive of left ventricular 

hypertrophy, a cardiac disease frequently observed in children with CKD. 
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SUPPLEMENTARY DATA 

 

Table 1. Seventy-five sequenced peptides from the list of 190 peptides combined in the 190P model for 

cIMT slope prediction. 

 

Peptide 

ID 

Sequence Prot_ 

Symbol 

Prot_Name Prot_ 

Accession 

Start

AA 

Stop

AA 

Fold 

Change 

T3/T1 

12495 DGSDSENIQANGIP ARFGE

F1 

Brefeldin A-

inhibited guanine 

nucleotide-exchange 

protein 1 

Q9Y6D6 363 376 0.586 

61665 GPEGPSGKpGINGKD

GIPGAQGImGKpGD

RGpKGERGDQGIP 

COL19

A1 

Collagen alpha-

1(XIX) chain 

Q14993 917 958 0.774 

12646 GVNVpSYPGpPGPPG COL19

A1 

Collagen alpha-

1(XIX) chain 

Q14993 834 848 0.816 

40610 GPpGPKGNSGEpGAp

GSKGDTGAKGEpGP

VG 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 425 455 0.176 

45333 LDGAKGDAGpAGPK

GEPGSpGENGAPGQ

mGPRG 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 273 305 0.391 

4181 pGPPGpPGppGP COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 141 152 0.458 

20736 GAAGEpGKAGERGV

pGpPGA 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 587 606 0.481 

58619 PGLPGPSGEpGKQGp

SGASGERGPPGPMG

PPGLAGppGESGR 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 973 1014 0.503 

48602 pGPpGPPGLGGNFAp

QLSYGYDEKSTGGIS

VPG 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 147 179 0.623 

4102 GPpGSAGAPGKDG COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 1142 1154 0.669 
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10513 PpGPPGPpGPPGPPS COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 1179 1193 0.677 

14180 VGpPGPPGpPGPPGP

PS 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 1177 1193 0.792 

63758 ARGNDGATGAAGpP

GPTGPAGPPGFPGA

VGAKGEAGpQGpRG

SEGpQG 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 321 368 0.802 

44522 VMGFpGPKGAAGEp

GKAGERGVPGppGA

VGPAG 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 579 611 0.882 

44263 NVGApGAKGARGS

AGpPGATGFpGAAG

RVGPpGP 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 855 888 0.904 

21158 GEpGSpGENGApGQ

MGPRG 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 287 305 0.930 

13681 GPpGKNGDDGEAGK

PG 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 224 239 0.931 

14556 GSpGSpGPDGKTGPP

Gp 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 542 558 0.934 

45005 FQGLPGpAGPpGEA

GKpGEQGVPGDLGA

pGPSG 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 642 674 0.941 

40305 ERGSpGPAGPKGSpG

EAGRpGEAGLpGAK

G 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 510 539 0.946 

27973 AGpPGEAGKpGEQG

VPGDLGApGP 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 649 672 0.959 

28305 AGPpGEAGKpGEQG

VpGDLGApGP 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 649 672 0.963 

32074 KGNSGEpGAPGSKG

DTGAKGEpGpVG 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 430 455 0.967 

29755 GKNGDDGEAGKPG

RpGERGppGP 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 227 249 0.982 

14529 VGPpGPPGPpGPpGP

PS 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 1177 1193 0.993 
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34813 GPpGKNGDDGEAGK

pGRpGERGPPGP 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 224 249 0.997 

19821 TGSpGSpGPDGKTGP

pGPAG 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 541 560 1.001 

31732 KGNSGEPGApGSKG

DTGAKGEPGpVG 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 430 455 1.019 

13342 SpGSpGPDGKTGPPG

p 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 543 558 1.021 

8050 ApGDRGEpGPPGp COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 798 810 1.025 

6660 SpGPDGKTGpPGP COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 546 558 1.046 

25386 EGSpGRDGSpGAKG

DRGETGP 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 1021 1041 1.047 

21723 SpGRDGSpGAKGDR

GETGP 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 1023 1041 1.389 

6317 pGDRGEpGPpGP COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 799 810 1.434 

33377 LDGAKGDAGPAGpK

GEpGSpGENGApG 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 273 299 1.495 

16523 GPIGPpGPAGApGDK

GES 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 767 784 1.838 

43435 ESGREGAPGAEGSP

GRDGSpGAKGDRGE

TGp 

COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 1011 1041 2.040 

12101 SpGEAGRpGEAGLpG COL1A

1 

Collagen alpha-1(I) 

chain 

P02452 522 536 2.231 

34002 PpGPPGRDGEDGPT

GPPGPPGPpGPpG 

COL1A

2 

Collagen alpha-2(I) 

chain 

P08123 46 72 0.449 

30077 pGERGEVGpAGpNG

FAGPAGAAGQP 

COL1A

2 

Collagen alpha-2(I) 

chain 

P08123 711 735 0.519 

23575 LpGSpGNIGPAGKEG

PVGLpG 

COL1A

2 

Collagen alpha-2(I) 

chain 

P08123 452 472 0.624 

29619 AGPpGKAGEDGHpG

KpGRpGERG 

COL1A

2 

Collagen alpha-2(I) 

chain 

P08123 135 157 0.722 
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29293 AGPpGKAGEDGHpG

KpGRPGERG 

COL1A

2 

Collagen alpha-2(I) 

chain 

P08123 135 157 0.746 

45928 RTGEVGAVGPpGFA

GEKGPSGEAGTAGP

pGTpGP 

COL1A

2 

Collagen alpha-2(I) 

chain 

P08123 830 863 0.825 

17544 SpGNIGPAGKEGPVG

LpG 

COL1A

2 

Collagen alpha-2(I) 

chain 

P08123 455 472 0.864 

58028 DQGPVGRTGEVGA

VGPpGFAGEKGpSG

EAGTAGPPGTpGPQ

G 

COL1A

2 

Collagen alpha-2(I) 

chain 

P08123 824 865 0.885 

42230 LkGQpGApGVkGEpG

ApGENGTpGQTGAR

G 

COL1A

2 

Collagen alpha-2 (I) 

chain 

P08123 188 217 0.890 

55841 DQGPVGRTGEVGA

VGppGFAGEKGPSG

EAGTAGPpGTpGP 

COL1A

2 

Collagen alpha-2(I) 

chain 

P08123 824 863 0.901 

28666 NDGpPGRDGQpGHK

GERGYpG 

COL1A

2 

Collagen alpha-2(I) 

chain 

P08123 932 952 0.925 

27882 VGEpGpAGSKGESG

NKGEPGSAGP 

COL1A

2 

Collagen alpha-2(I) 

chain 

P08123 345 368 0.943 

889 DpGKNGDKG COL1A

2 

Collagen alpha-2(I) 

chain 

P08123 503 511 1.093 

5105 ApGEAGRDGNpG COL1A

2 

Collagen alpha-2(I) 

chain 

P08123 920 931 1.240 

45138 ppGAKGQEGAHGAP

GAAGNPGAPGHVG

APGPSGpP 

COL22

A1 

Collagen alpha-

1(XXII) chain 

Q8NFW1

-3 

899 933 0.679 

35934 QGpPGPpGPQGLQGP

KGEQGSPGIPGM 

COL25

A1 

Collagen alpha-

1(XXV) chain 

Q9BXS0 449 474 2.420 

1382 GRpGPpGPpG COL26

A1 

Collagen alpha-

1(XXVI) chain 

Q96A83 250 259 0.632 

8080 DGVPGKDGPRGPT COL3A

1 

Collagen alpha-

1(III) chain 

P02461 752 764 0.516 

10644 TGpGGDKGDTGPpG

P 

COL3A

1 

Collagen alpha-

1(III) chain 

P02461 623 637 0.772 
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4746 SpGERGETGPp COL3A

1 

Collagen alpha-

1(III) chain 

P02461 796 806 0.804 

25922 GSNGNpGpPGPSGSp

GKDGPpGP 

COL3A

1 

Collagen alpha-

1(III) chain 

P02461 885 907 1.114 

8536 SpGERGETGPpGP COL3A

1 

Collagen alpha-

1(III) chain 

P02461 796 808 1.333 

52572 NTGApGSPGVSGPK

GDAGQpGEKGSpGA

QGpPGAPGPLG 

COL3A

1 

Collagen alpha-

1(III) chain 

P02461 910 948 1.432 

14888 KGDpGpAGLpGKDG

pP 

COL5A

1 

Collagen alpha-1(V) 

chain 

P20908 1038 1053 1.272 

35960 GpTGATGDKGPPGP

VGPPGSNGpVGEpGP 

COL5A

2 

Collagen alpha-2(V) 

chain 

P05997 1020 1048 0.494 

5347 GPpGpPGPPGPpA COL8A

1 

Collagen alpha-

1(VIII) chain 

P27658 560 572 0.833 

3797 DGEkGDPGPpG COL9A

3 

Collagen alpha-

3(IX) chain 

Q14050 207 217 1.059 

29136 DEAGSEADHEGTHS

TKRGHAK 

FGA Fibrinogen alpha 

chain 

P02671 605 625 0.719 

38224 DEAGSEADHEGTHS

TKRGHAKSRPV 

FGA Fibrinogen alpha 

chain 

P02671 605 629 0.938 

50457 DEAGSEADHEGTHS

TKRGHAKSRPV 

FIBA Fibrinogen alpha 

chain 

P02671 605 629 0.717 

43336

95 

VEDDGDDTSLDSDL

DPE 

FTSJ3 pre-rRNA 

processing protein 

FTSJ3 

Q8IY81 460 476 1.528 

25362 GGSGEDEQFLGFGS

DEEVR 

KMT2A Histone-lysine N-

methyltransferase 

2A 

Q03164 140 158 0.727 

18439 PGPGGGGWGSGSSF

RGTPG 

MPLKI

P 

M-phase-specific 

PLK1-interacting 

protein 

Q8TAP9 14 32 2.276 

3152 SPASSQEGSPS PAXIP1 PAX-interacting 

protein 1 

Q6ZW49 219 229 1.752 
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55834 FGHGAEDSLADQAA

NEWGRSGKDPNHFR

PAGLPE 

SAA1 Serum amyloid A 

protein 

E9PQD6 87 120 0.900 

70785 SDKPDMAEIEKFDK

SKLKKTETQEKNPL

PSKETIEQEKQAGES 

TYB4 Thymosin beta-4 P62328 2 44 0.776 

65617 LPDHPWGTLNPSVS

WGGGGPGTGWGTR

PMPHPEGIWGINNQ

P 

USP31 Ubiquitin carboxyl-

terminal hydrolase 

31 

Q70CQ4 1315 1325 3.074 

 

 

Table 2. Nine sequenced peptides from the list of 22 peptides combined in the 22P model for PWV 

slope prediction. 

Peptide 

ID 

Sequence Prot_ 

Symbol 

Prot_Name Prot_ 

Accession 

Start

AA 

Stop

AA 

Fold 

Change 

T3/T1 

55834 FGHGAEDSLADQA

ANEWGRSGKDPNH

FRPAGLPE 

SAA1 Serum amyloid 

A protein 

E9PQD6 87 120 1.222 

47804 GADGQpGAKGEpG

DAGAKGDAGPpGP

AGPAGPpGPIG 

COL1A

1 

Collagen alpha-

1(I) chain 

P02452 818 854 0.623 

28845 ADGQPGAKGEpGD

AGAKGDAGPPGp 

COL1A

1 

Collagen alpha-

1(I) chain 

P02452 819 843 0.969 

32074 KGNSGEpGAPGSKG

DTGAKGEpGpVG 

COL1A

1 

Collagen alpha-

1(I) chain 

P02452 430 455 1.031 

28733 KGNSGEpGApGSKG

DTGAKGEpGP 

COL1A

1 

Collagen alpha-

1(I) chain 

P02452 430 453 1.072 

22895 GNAGPpGPpGPAGK

EGGKGPR 

COL1A

1 

Collagen alpha-

1(I) chain 

P02452 890 910 1.090 

40424 KEGGKGPRGETGPA

GRpGEVGPpGPpGP

AG 

COL1A

1 

Collagen alpha-

1(I) chain 

P02452 903 932 1.207 
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49492 GPpGESGREGAPGA

EGSpGRDGSpGAKG

DRGETGp 

COL1A

1 

Collagen alpha-

1(I) chain 

P02452 1007 1041 1.217 

29293 AGPpGKAGEDGHpG

KpGRPGERG 

COL1A

2 

Collagen alpha-

2(I) chain 

P08123 135 157 1.341 

 

Table 3. Six sequenced peptides from the list of 14 peptides combined in the 14P model for LVMI slope 

prediction. 

Peptide 

ID 

Sequence Prot_ 

Symbol 

Prot_Name Prot_ 

Accession 

Start

AA 

Stop

AA 

Fold 

Change 

T3/T1 

10154 GSpGPDGKTGPpGP

A 

COL1A1 Collagen alpha-

1(I) chain 

P02452 545 559 2,664494 

21723 SpGRDGSpGAKGD

RGETGP 

COL1A1 Collagen alpha-

1(I) chain 

P02452 1023 1041 0,514339 

30951 ADGQpGAKGEpGD

AGAKGDAGPpGpA 

COL1A1 Collagen alpha-

1(I) chain 

P02452 819 844 0,673761 

43789 NSGEpGApGSKGD

TGAKGEpGPVGVQ

GPpGPAG 

COL1A1 Collagen alpha-

1(I) chain 

P02452 432 464 3,249639 

49422 pTGAVGFAGpQGP

DGQPGVKGEpGEp

GQKGDAGSP 

COL5A2 Collagen alpha-

2(V) chain 

P05997 841 875 0,626274 

22191 SSSKGSLGGGFSSG

GFSGGSF 

KRT10 Keratin; type I 

cytoskeletal 10 

P13645 37 57 0,509296 
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Study 2: 

CKD diagnosis in dogs  
(Manuscript submitted to The Veterinary Journal - 2018) 
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Aims and Objectives 

Since several years now, research has brought new diagnostic tools based on the identification of urinary 

peptides as biomarkers for the early identification of CKD in humans. To help veterinary medicine, 

where the diagnosis of CKD is still struggling, we adapted the CE-MS technology of urinary peptides 

identification for the canine diagnosis. These biomarkers, which need to be validated on a larger cohort 

of dogs, will allow an earlier diagnosis of CKD in dogs so that the disease can be treated early to increase 

life expectancy. 
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Urinary peptidome analyses for diagnosis of chronic kidney disease in dogs 
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Abbreviations 

CKD chronic kidney disease 

mGFR measured glomerular filtration rate 

UPC urine protein-to-creatinine ratio 

IRIS international renal interest society 

SVM support vector machine 

ECM extra-cellular matrix 
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Abstract 

Chronic kidney disease (CKD) is clinically important in canine medicine. Current diagnostic tools lack 

sensitivity to identify subclinical canine CKD. The aim of our study was to evaluate if mass 

spectrometry-based urinary peptidome analysis could be used to diagnose CKD and improve the 

detection of CKD in dogs. Analysis demonstrated presence of ~5400 peptides in dog urine. Comparison 

of dogs with and without CKD identified 133 differentially excreted peptides (adjusted p-values <0.05). 

Sequence information was obtained for 35 peptides out of 133. These 35 and 133 peptides were included 

in two predictive models of CKD, and validated in an independent cohort of 20 dogs. Both models 

predicted CKD in this blinded cohort with an identical area under the ROC curve of 0.88 (95% CI: 0.72 

to 1.0). Most of the differentially excreted peptides represented fragments of collagen I, indicating 

possible association with fibrotic processes in CKD, as is the case for the equivalent human urinary 

peptide CKD model (CKD273). In conclusion, this first study of the urinary peptidome in dogs identified 

peptides that predicted presence of CKD. Future studies should validate the usefulness of this model for 

diagnosis and prediction of progression of canine CKD in a clinical setting.  
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Statement of significance of the study 

In this paper CE-MS technology, originally developed for the diagnosis of early chronic kidney disease 

(CKD) in humans, was applied for the first time in the canine population. Similar to the situation in 

human medicine, currently available diagnostic tools lack sensitivity to identify early CKD in dogs. The 

identification and blinded validation of two urinary peptide marker models for diagnosis of canine CKD 

are described. Most of the peptides in the biomarker models were fragments of extracellular matrix 

components and it was hypothesized that these fragments represent the early fibrotic process in situ in 

the kidney that constitutes the histological hallmark of CKD. If proved to be a reproducible and specific 

diagnostic method for dogs, that is, coupled to the intrarenal fibrosing process common to all forms of 

CKD, it will provide a completely new way of diagnosing CKD. The identification of ongoing renal 

damage occurring before global renal functional loss is presently only possible with renal biopsy, which 

is a costly and risky procedure. 

To our knowledge, this is the first urinary peptidome-based tool investigated for detection of CKD in 

dogs. We therefore believe it is suitable for the readership of Proteomics.  
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Introduction  

Chronic kidney disease (CKD) is a clinically important cause of morbidity and mortality in dogs.[1] In 

veterinary medicine, CKD is defined as “structural or functional abnormalities (present for at least three 

months) of one or both kidneys”.[1] This heterogeneous disease is insidious in onset and often not 

recognized until late in the course of disease.  

Routine methods used for diagnosis of CKD include measurement of serum creatinine concentration 

and urinalysis, including evaluation of presence of renal proteinuria.[1] In addition, diagnostic imaging 

is often used to detect structural lesions of the kidneys. However, current diagnostic methods are 

insensitive for detection of early CKD. Also, evidence of persistence of disease, hence, repeated 

measurements, are needed to confirm presence of CKD.[1] Therefore, research with the aim of improving 

early diagnosis of CKD in dogs has gained attention. Several serum or plasma biomarkers of decreased 

glomerular filtration rate (GFR) have been suggested as candidate biomarkers for future implementation 

in the clinic, but because of the immense compensatory capacity of the kidneys a reduction in GFR 

(even if measured by renal clearance studies or by scintigraphy) does not ensue until this compensatory 

adaptation fails.[2] Therefore, markers of GFR are not likely to ever be able to indicate subclinical 

progressive renal damage.  

Urine (which is non-invasively available in comparably large volumes from most dogs)  has evolved as 

a potential source of biomarkers for diagnostic use for diseases of the kidney and urinary tract.[3] Urine 

as a biological fluid for peptidome analyses is stable, since any proteolytic degradation is considered to 

be completed in the bladder by the time of urination.[3, 4] Urinary peptidomics (i.e. analysis of the low 

molecular weight proteome), using capillary electrophoresis coupled to mass spectrometry (CE-MS), 

has shown to be a particularly useful tool to diagnose and predict CKD and its complications in people.[5] 

The sample preparation is robust and several thousands of peptides that compose the human urinary 

peptidome can be analyzed by employing standard operating protocols and normalization procedures 

within a short time span of approximately one hour.[6] In this context, a model containing 273 urinary 

peptide biomarkers, called CKD273, was identified by CE-MS and shown to perform significantly better 

than urinary albumin in early detection and prediction of progression of human CKD.[4, 7] This model is 
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currently used in the PRIORITY trial (NCT02040441) in Europe, in which diabetic patients are screened 

for presence of early renal lesions.[8]  

Several studies have investigated the urinary proteome in healthy dogs or in dogs with kidney disease, 

but only two of these studies have explored proteomics for the diagnosis of CKD.[9] No attempt to 

validate study findings in a separate cohort of dogs was performed in either study.  

Therefore, the aim of this study was to evaluate if CE-MS-based urinary peptidome analysis can 

discriminate healthy dogs from dogs with CKD with high sensitivity and specificity. A secondary aim 

was to identify the peptides included in the discriminating models. 

 

Materials and methods 

Study population 

This cross-sectional observational study was performed at the Swedish University of Agricultural 

Sciences in Uppsala, after approval by the local ethical committee (Uppsala djurförsöksetiska nämnd, 

Sweden). All experiments were performed in accordance with relevant guidelines and regulations. 

Client-owned dogs were included in the study provided that the owner had given informed consent. 

Dogs with a previous diagnosis (or a strong suspicion of) CKD and healthy dogs, of any breed, body 

weight (BW) and age, were prospectively recruited. Dogs were considered to have a conclusive 

diagnosis of CKD if they had multiple renal cysts, persistent azotemia, persistent proteinuria, a 

persistently decreased measured glomerular filtration rate (mGFR), or a combination thereof. Exclusion 

criteria were the presence of other systemic or organ related disease. If a dog was receiving an 

angiotensin converting enzyme inhibitor, the drug was withdrawn a week before inclusion, and 

reintroduced after study inclusion. Dogs chronically medicated with other drugs (except sodium 

pentosane polysulfate injections) were excluded, as were dogs with bacteriuria. Oral administration of 

glucosaminoglycan supplements and feeding a kidney diet was allowed. Dogs referred with a suspicion 

of kidney disease, for which a diagnosis of CKD could not be confidently confirmed during the clinical 

investigation, were included as “inconclusive”. Healthy student-, client-, and staff-owned dogs of 

various breeds and ages were included as controls. Also, six healthy beagles from a Swedish research 

institution were included as healthy control dogs. These beagles were considered free of kidney disease 
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based on the absence of clinical signs, a creatinine concentration within the reference range and a normal 

complete urinalysis, including semi-quantitative biochemical analysis, sediment examination, protein-

to-creatinine ratio (UPC), and normal kidney histology.  

On the day of enrollment into the study, all dogs (including all control dogs except the six research 

beagles) underwent repeated blood pressure measurements, a physical examination, collection of venous 

blood and urine, echocardiographic examination, abdominal ultrasound examination of the entire 

urinary tract, and a scintigraphic examination for calculation of individual kidney mGFR. Dogs had to 

be clinically stable and fasted for 12 h on the day of inclusion. Dogs with CKD were staged according 

to the International Renal Interest Society (IRIS) classification system, based on stable serum creatinine 

concentration.[10]  

 

Blood pressure measurement 

Indirect blood pressure measurements were performed according to reported guidelines[11] by high 

definition oscillometry (S+B medVET, Germany).  

 

Blood and urine examinations 

Blood was drawn from the cephalic vein and transferred to the laboratory at the University Animal 

Hospital for immediate hematological and biochemical analysis. For most dogs, urine was obtained by 

cystocentesis. When cystocentesis was not possible (n=8), fresh spontaneously voided urine was 

obtained. In the six beagles, urine was obtained by cystocentesis, snap frozen and stored at -70°C. 

Remaining urine from the beagles was cooled and analyzed within 24 hours (dipstick and sediment 

examinations, specific gravity, urine protein-to-creatinine ratio (UPC) and aerobic culture). 

 

Abdominal ultrasound examination 

Complete upper and lower urinary tract ultrasound examinations were conducted by radiologists at the 

university animal hospital diagnostic imaging clinic in Uppsala according to a pre-defined protocol.  
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Glomerular filtration rate measurement by scintigraphy 

Estimation of individual kidney GFR was performed by a board-certified radiologist after renal 

scintigraphy, using the plasma volume method as previously described.[12]  

 

Sample preparation 

Urine samples were shipped on dry ice to Inserm U1048, Toulouse, France, and thawed immediately 

before use. A volume of 0.7 mL was diluted with 0.7 mL 2 M urea, 10 mM NH4OH and 0.02 % sodium 

dodecyl sulfate (SDS). In order to remove high molecular weight polypeptides, samples were filtered 

using Centrisart ultracentrifugation filter devices (20 kDa molecular weight cut-off); Sartorius, 

Goettingen, Germany) at 3000 g until 1.1 mL of filtrate was obtained. The filtrate was desalted with PD-

10 column (GE Healthcare, Sweden) equilibrated in 0.01% NH4OH in HPLC-grade water. The prepared 

samples were lyophilized and stored at 4°C. Shortly before CE-MS analysis, lyophilysed samples were 

resuspended in HPLC-grade water (Merck KGaA, Darmstadt, Germany). The preparation method has 

previously been described in more detail by Theodorescu et al. 2006.[13] 

 

CE-MS analysis and data processing 

CE-MS analysis was performed as previously described.[6] Briefly, CE-MS analyses were performed 

using a Beckman Coulter Proteome Lab PA800 capillary electrophoresis system (Beckman Coulter, 

Fullerton, USA) on-line coupled to a micrOTOF II MS (Bruker Daltonic, Bremen, Germany). The 

electro-ionization sprayer (Agilent Technologies, Palo Alto, CA, USA) was grounded, and the ion spray 

interface potential was set to –4.5 kV. Data acquisition and MS acquisition methods were automatically 

controlled by the CE via contact-close-relays. Spectra were accumulated every 3 s, over a range of m/z 

350 to 3000. In the next step the MosaiquesVisu software package was applied to deconvolute mass 

spectral ion peaks, because ionization produced ions at different charged states from the original urinary 

peptides. This deconvolution step groups these differently charged ions into single peptides with unique 

real mass. Only signals observed in a minimum of three consecutive spectra with a signal-to-noise ratio 

of at least 4 were considered. Signals with a calculated charge of 1+ were automatically excluded to 

minimize interference with matrix compounds or drugs. Capillary electrophoresis migration time and 



Valérie BRUNCHAULT  STUDY 2 
84 

MS-detected mass were normalized by the definition of 950 clusters of peptides covering a range of 

17.23 to 47.74 minutes in CE migration time and 807 to 16399 kDa in molecular mass. Peptide 

abundance (intensity) calibration was based on 141 endogenous internal urinary polypeptide standards 

with > 81% frequency and < 61% amplitude deviation to compensate for differences in dehydration and 

urine dilution between dogs.[14] Each polypeptide present in the list was defined by its normalized 

migration time [min], molecular mass [kDa], and signal intensity detected. Using a Microsoft Structured 

Query Language database, all detected polypeptides were deposited, matched, and annotated in order to 

allow for further comparison between the groups. The criteria applied to consider a polypeptide identical 

was that within different samples, the mass deviation was lower than 50 ppm for masses < 4 kDa, 150 

ppm for masses > 6 kDa, and between 50-150 ppm for masses between 4 and 6 kDa. Acceptable 

migration time deviation was between 1 and 2.5 minutes. 

 

Sequencing of peptides 

Candidate biomarkers and other native peptides from dog urine were sequenced using LC-MS/MS and 

CE-MS/MS analysis.[15] LC-MS/MS analysis experiments were performed on a Dionex Ultimate 3000 

RSLC nano flow system (Dionex, Camberly UK). For CE-MS/MS, the samples were injected under 

constant flow and pressure conditions at a pH of 2.2 to ensure that all peptides are positively charged. 

Both CE and LC were directly interfaced with an LTQ-Orbitrap XL (Thermo Finnigan, Bremen, 

Germany), using data-dependent high-energy collisional dissociation (HCD) MS/MS sequencing of a 

maximum of the top 20 ions. All resultant MS/MS data were analyzed using Proteome Discoverer 1.3 

(activation type: HCD; min-max precursor mass: 790-6000; precursor mass tolerance: 10 ppm; fragment 

mass tolerance: 0.05 Da; S/N threshold: 1) and were searched against the Uniprot canine non-redundant 

database without enzyme specificity. No fixed modifications were selected, oxidation of methionine and 

proline were selected as variable modifications. The peptide data were extracted using high confidence 

peptides, defined by an Xcorr ≥ 1.9, a delta mass between experimental and theoretical mass ± 5 ppm, 

absence of cysteine in the sequence as without reduction and alkylation it is forms disulphide bonds, 

absence of oxidized proline in protein precursors other than collagens or elastin, and top one peptide 

rank filters.  
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For further validation of peptide identification, the strict correlation between peptide charge at pH 2 and 

CE-migration time was utilized to minimize false-positive identification rates.[16] Calculated CE-

migration time of the sequence candidate based on its peptide sequence (number of basic amino acids) 

was compared to the charges of the peptides and the experimental CE-migration time. Peptides were 

accepted only if they had a mass deviation below ± 90 ppm and a CE-migration time deviation below 

±2 min. 

 

Biomarker selection and modelling  

For the identification of candidate urinary biomarkers, the reported P-values were calculated using the 

Wilcoxon Rank-Sum test (R software package, version 3.1.3) followed by adjustment for multiple 

testing using the method described by Benjamini and Hochberg.[17] Peptides that were detectable in at 

least 75% of dogs in one of the two groups (healthy versus CKD) and reached an adjusted p-value of 

<0.05 were further considered as relevant. An R-based (version 3.1.3) support vector machine (SVM)-

package and leave-one-out feature selection approach were used to generate biomarker models. 

Sensitivity and specificity were calculated based on the number of properly classified samples. The 

overall yield of the polypeptide pattern was evaluated by receiver operating characteristic (ROC) and 

area under curve (AUC) plots using the Prism 7.00 GraphPad software. 

 

Results 

Study setup and patient data 

In total, 53 dogs (25 dogs with CKD, 25 healthy dogs and 3 inconclusive dogs) were included in the 

study. Clinical data for the 25 dogs with CKD are summarized in Table 1.  
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Table 1: Clinical characteristics of dogs used for diagnosis of CKD. 

 
Discovery  

(CKD dogs, n=15) 

Validation  

(CKD dogs, n=10) 
p 

Persistent azotemia 10 (68%)   6 (60%)  0.73 

Persistent proteinuria  7 (47%)   7 (70%)  0.25 

Persistently decreased mGFR 
12 (80%)   7 (70%)  0.57 

IRIS stage 1/2/3/4 5/4/4/2  4/3/2/1  0.97  

Multiple cysts in both kidneys 1 (7%) 1 (10%)  

CKD: chronic kidney disease, mGFR: glomerular filtration rate, IRIS stage: international renal interest 

society staging of CKD (www.IRIS-kidney.com). 

 

Dogs were considered to have a conclusive diagnosis of CKD if they had multiple renal cysts, persistent 

azotemia, persistent proteinuria, a persistently decreased mGFR, or a combination thereof. Healthy 

student-, client-, and staff-owned dogs of various breeds and ages, and six healthy beagles from a 

Swedish research institution, were included as healthy control dogs. According to guidelines for human 

clinical proteomics,[18] the population of 50 dogs with known clinical status was divided into two 

cohorts: a discovery cohort, in which the clinical status of each dog was known to those performing the 

analyses and an independent validation cohort, in which the clinical status of the dogs was blinded to 

those performing the analyses. The minimum number of individuals to include in a discovery cohort in 

a proteomic study has been suggested to be 24 (12+12).[19] For this reason, 30 dogs (15 healthy and 15 

CKD dogs) were included in the discovery cohort. Thus, 20 dogs comprised the independent validation 

cohort (10 healthy dogs and 10 CKD dogs). An attempt was made to accomplish an even distribution of 

dogs in different IRIS CKD stages in the discovery- and validation groups, respectively. Inconclusive 

dogs were not used in the statistical modelling. Clinical data for dogs in the different groups are 

presented in Table 2.  

 

 

 

http://www.iris-kidney.com/
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Table 2: Descriptive statistics of clinical variables by group (median, interquartile range (IQR). 

 Disvovery (D) Validation (V) D vs V 

 Control 

(n=15) 

CKD (n=15) p Control 

(n=10) 

CKD (n=10) p p 

Creatinine 

(µmol/L) 

78 (72-88) 171(100-236)  77 (67-96) 132(86-212)  0.62 

UPC 0,06 (0.03-

0.12) 

0,44 (0.15-

1.67) 

 0,06 (0.03-

0.13) 

1,5 (0.17-3.42)  0.37 

mGFR* 

(ml/min/L) 

52 (48-71) 15 (13-30)  51 (45-73) 29 (25-47)  0.02 

Age  

(years) 

3.9 (1.9–7.7) 7.1 (2.5–9.8) 0.33 2.7 (1.6–6.5) 6.9 (3.9–9.5) 0.08 0.96 

Sex  

(F vs M) 

11 vs 4 10 vs 5 0.69 8 vs 2 2 vs 8 0.007 0.02 

SBP** 

(mmHg) 

147 (127-164) 158 (129-169) 0.47 123 (103-127) 144 (133-165) 0.001 0.94 

USG*** 1.036 (1.029-

1.050) 

1.024 (1.016-

1.029) 

0.007 1.028 (1.021-

1.040) 

1.022 (1.016-

1.037) 

0.25 0.90 

Urinary 

creatinine 

(µmol/L) 

19303 (10371-

23826) 

9923 (4791-

19315) 

0.032 13242 (8496-

15183) 

7701 (4290-

14730) 

0.19 0.95 

UPC: urinary protein to creatinine ratio; mGFR: measured glomerular filtration rate; SBP: mean systolic 

blood pressure; USG: urine specific gravity 

*Measurement of mGFR was not available for all dogs. Discovery group: n=12 (control) and n=13 

(CKD), validation group: n=7 (control) and n=8 (CKD).  

**Blood pressure measurement was not available for all dogs. Discovery group: n=7 (control) and n=12 

(CKD), validation group n=7 (control) and n=8 (CKD).  

***USG and urinary creatinine were not available for two dogs. One from the discovery group and one 

from the validation group. 

 

Identification of urinary peptides associated with CKD  

Fifteen healthy and 15 dogs with CKD were used in the discovery phase of the study (Fig. 1a). CE-MS 

analysis of canine urine led to the identification of in total 5398 different peptides in all samples (Fig 

1C).  
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Fig. 1 Study set-up and CE-MS analysis of canine urine. (a) The analysis was performed in two 

separate phases: a discovery phase and a validation phase. Urine from 30 dogs (15 healthy and 15 with 

CKD) was analyzed, leading to the identification of 133 differentially secreted peptides (133P model). 

Of these peptides, 35 were identified by CE-MS/MS and LC-MS/MS sequencing and included in the 

35P model. In the validation phase, the two different models were tested on an independent, blinded 

cohort of dogs (n=20) to evaluate their predictive value. (b) Prediction of health status of dogs in the 

inconclusive group (n=3) was performed using models developed in “a” and validated in “b”. (c) Peptide 

pattern showing the compiled datasets of 30 canine urine samples. Each peptide (n=5398) was identified 

based on CE migration time and specific mass (kD), with relative abundance represented by the peak 

height. (d) Sequenced peptide (n=35) pattern distinguishing dogs with CKD from healthy dogs. 

 

 

For inter sample comparability, all samples were normalized by 141 endogenous urinary peptides 

displaying the highest frequency and stability in all analyzed samples as described previously for 

people[4] and in detail in the M&M section. Comparison of canine urine from healthy and CKD dogs in 

this discovery phase resulted in the identification of 133 differentially excreted peptides after correction 

for multiple testing. These 133 peptides were combined in an SVM model, resulting in a model called 

133P, which clearly separated healthy and CKD dogs in the discovery cohort (Fig 2a). In the next step 

we tried to obtain sequence information of the 133 urinary peptides by CE-MS/MS and LC-MS/MS 

(Fig. 1a).  
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Fig. 2 Distribution scores of urinary peptide models for CKD vs. healthy dogs in the discovery 

cohort. (a) 133P model, (b) 35P model. ****p<0.0001 versus healthy dogs, Mann-Whitney test for 

independent samples. 

 

 

This led to identification of 35 peptides: 33 collagen (I and IV) and 2 uromodulin fragments 

(Supplementary table). All 35 peptides were down-regulated in dogs suffering from CKD (Fig. 1d). 

These 35 peptides were combined in an SVM model, resulting in a model called 35P, also clearly 

separating healthy and CKD dogs in the discovery cohort (Fig. 2b). 

 

Validation of 133P and 35P models  

The two previously established models were validated in an independent, blinded cohort of 20 dogs (10 

healthy dogs and 10 dogs with CKD) not used in the discovery phase (Table 2). The samples were 

scored using the 133P and 35P models and then given a prediction as to either an individual dog is 

healthy or suffering from CKD. A positive score (>0) predicts a dog with CKD. These predictions were 

then compared to the clinical status of the dog.  
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Fig 3 Validation of urinary peptide models in an independent, blinded cohort. Classification of 

healthy and CKD dogs in the validation cohort according to (a) 133P model scores and ROC curve for 

the 133 P model (AUC 0.88 [0.721 to 1.04]); (b) 35P model scores and ROC curve for the 35P model 

(AUC 0.88 [0.723 to 1.04]). ** P < 0.01 versus healthy dogs, Mann-Whitney test for independent 

samples; AUC: Area under curve; [95% CI]; # : p<0.005. 

 

The distribution of 133P and 35P scores (Fig 3a-b) showed significant separation of healthy and CKD 

dogs. The 133P model predicted CKD with a sensitivity of 80% [95%confidence interval (CI): 44 to 

97%], a specificity of 80% (95% CI: 44 to 97%) and an area under the curve (AUC) of 0.88 (95% CI: 

0.72 to 1.0) (Fig 3a). The 35P model predicted CKD with a sensitivity of 70% (95% CI: 35 to 93%), a 

specificity of 80% (95% CI: 44 to 97%) and an AUC of 0.88 (95% CI: 0.72 to 1.0) (Fig 3b).  

Using the 133P and 35P models, two out of the three inconclusive dogs (Fig. 1b) were classified as 

healthy, and one dog as CKD.  
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Discussion 

Using urinary peptidome analysis, we developed and blindly validated two peptide models for 

discrimination between dogs with CKD and healthy dogs. Such a tool, based on a non-invasive, one 

point in time, urine analysis might, if validated and considered useful in further studies, allow early 

detection of CKD in dogs. Diagnosis of canine CKD currently mainly relies on repeated measurements 

(renal persistent proteinuria or azotemia) or on reliable parenchymal abnormalities detected by 

ultrasonography, all of which are insensitive for diagnosis of subclinical disease.[20]  

Thirty-five of the peptides differentially secreted between CKD dogs and healthy dogs were sequenced 

in this study. Of the 35 sequenced peptides, 33 were collagen fragments (for the major part fragments 

of interstitial collagen I), which were less abundant in the urine of dogs with CKD than in healthy dogs. 

This is in agreement with studies in people with CKD.[4, 21] Most urinary peptides are results of 

proteolytic activity, probably reflecting differences in activity of different collagenases.[21] It was 

hypothesized that decreased urinary collagen fragments are associated with decreased collagenase 

activity and increased intrarenal extra-cellular matrix (ECM) deposition.[21] Intrarenal ECM deposition 

leading to fibrosis is a hallmark of CKD across species and therefore this reasoning most likely also 

holds true in dogs.  

In the present cross-sectional study, we identified peptide models associated to the presence of CKD, 

which might contribute to early detection of CKD in dogs. An additional important issue is whether 

CKD is progressive. Regarding the human counterpart peptide model, CKD273, which was identified 

under similar conditions as those in this study, there is initial evidence that it can predict CKD 

progression.[7] This could be linked to the presence of uromodulin fragments in the model as described 

above. In addition, recently, a significant association between CKD273 score and degree of fibrosis in 

renal biopsies was shown.[22]  These findings all further strengthen the hypothesis that these peptide-

based models probably identify the fibrotic process that constitutes the histological hallmark of 

progressive CKD. If our models can identify progressive CKD, they detect something different than our 

current golden standard (the clinical diagnosis of canine CKD, based mainly on interpretation or 

measurement of GFR) does and, consequently, represent a new, single step option for diagnosis of 

progressive CKD.  



Valérie BRUNCHAULT  STUDY 2 
92 

In this study, we also investigated whether we could use only sequenced peptides to build another model, 

35P, without losing performance. This model performed similarly to the 133P-model. However, 

biomarker models with higher numbers of included peptides are more robust and therefore more likely 

to perform better in independent cohorts.[23] In addition, the heterogenous nature of CKD is probably 

reflected in the urinary peptidome of patients with CKD, and therefore over-fitting is a risk when 

reducing numbers of peptides in a model that is intended for use as a diagnostic tool for canine CKD of 

all causes.  

In order to investigate early diagnosis, ideal individuals with CKD to include in test- and validation sets 

are those that have progressive disease but not (yet) azotemia or clinical signs. Three dogs with a 

suspicion of CKD, for which no conclusive diagnosis of CKD could be made even after extensive 

diagnostic workup, were included as “inconclusive”. Two of these dogs were classified as “healthy” by 

both models, and none had evidence of reduced kidney function on follow up examinations at least two 

years after study inclusion. The third dog was included six months after treatment of, and recovery from, 

pyelonephritis and was non-azotemic, non-proteinuric with normal mGFR, and therefore could not be 

included in the “CKD”-group. However, mGFR in one kidney was half of that of the other kidney (which 

would not have been appreciated using only routine diagnostics), and both models categorized this dog 

as CKD. This dog was considered healthy by the owners two and a half years after inclusion but on 

follow up, mGFR was further decreased. Our interpretation is that this dog had progressive CKD at 

inclusion, as reflected by both models, but not detectable with routine diagnostic methods.  

An important future task in the validation of the urinary peptide models is to investigate specificity of 

the model, most importantly in dogs with other diseases mimicking early CKD clinically, i.e. 

hyperadrenocorticism, diabetes insipidus and psychogenic polydipsia. An additional potential future 

application of this technique could be for specific diagnosis of different etiologies of CKD (potentially 

lessening the need for kidney biopsy), as this has been recently shown for urinary peptides in people 

using the same technological platform as in this study.[8]  

In conclusion, urinary peptide-based models were able to discriminate healthy dogs from dogs with 

CKD, with an AUC of 0.88, in an independent cohort of dogs. Thirty-five of the 133 peptides 
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differentially expressed between healthy and CKD dogs were identified and most of them were collagen 

fragments. Peptidome analysis by CE-MS is a promising future tool for early diagnosis of canine CKD. 

Although further investigation of these models is necessary in order to validate their usefulness for early 

CKD diagnosis and prediction of progression in a clinical setting, it is the first urinary peptidome-based 

tool investigated for early detection of CKD in dogs. 
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 SUPPLEMENTARY Table: 

Peptide sequences of thirty-five urinary peptides, differentially excreted between healthy and 

CKD dogs in the discovery cohort. 

Peptide 

ID 

Peptide sequence Protein Name UniProt Name p-value 

(Wilkinson) 

Adjusted p-value 

(BH)* 

1118 DGRpGPpGPpG 
Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.00105003 0.0112353 

1287 GDRGEpGPpGP 
Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.00618982 0.03679507 

2544 GPpGESGREGSpG 
Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.00897202 0.04465147 

2873 ApGDRGEpGPpGP  
Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.00794034 0.04212972 

4264 ApGDRGEpGPpGPAG 
Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.00030786 0.00732031 

5134 DGQPGAKGEpGDAGAK  
Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.00369059 0.02755065 

5497 GSpGSpGPDGKTGPPGp  
Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.00049369 0.00880411 

6130 SpGSpGPDGKTGPpGPAG 
Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.00057598 0.00897333 

6513 VGpPGPpGPpGPPGPPSGG 
Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.00161971 0.015292 

6662 VGpPGPpGPpGPpGPPSGG 
Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.00479476 0.03173438 

6802 DQGPVGRTGETGASGpPG  
Collagen alpha-

2(I) chain  
CO1A2_CANLF 0.00042247 0.00874917 

7219 NGApGNDGAKGDAGApGApG 
Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.0024626 0.02107989 

8115 GEKGPSGEpGTAGPpGTpGP 
Collagen alpha-

2(I) chain  
CO1A2_CANLF 0.00022146 0.00681417 

8907 SGGIIDQSRVLNLGPITR Uromodulin  UROM_CANLF 6.8368E-05 0.00337633 

9040 TGEKGpSGEpGTAGPpGTpGP 
Collagen alpha-

2(I) chain  
CO1A2_CANLF 0.00078021 0.00963253 

9966 SGGIIDQSRVLNLGPITRK Uromodulin  UROM_CANLF 0.00049369 0.00880411 

11110 AGPpGEAGKpGEQGVPGDLGApGP  
Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.00105003 0.0112353 

11265 AGPpGEAGKpGEQGVpGDLGApGP 
Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.00545214 0.03431641 
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11289 GPpGpPGGMKGEKGEQGEPGKR 
Collagen alpha-

5(IV) chain  
CO4A5_CANLF 0.00322672 0.02468753 

11294 PGpDGKTGPPGPAGQDGRPGPPGP 
Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.00618982 0.03679507 

11526 RGAPGDRGEpGPpGPAGFAGppGA 
Collagen alpha-

1(I) chain  CO1A1_CANLF 0.00545214 0.03431641 

11728 FTGEKGPSGEpGTAGPpGTPGpQG 
Collagen alpha-

2(I) chain  
CO1A2_CANLF 6.8368E-05 0.00337633 

13263 
LDGAKGDAGPAGPKGEpGSpGENG

ApG 

Collagen alpha-

1(I) chain  
CO1A1_CANLF 2.7983E-05 0.00337633 

14251 
VNGApGEAGRDGNpGNDGPpGRDG

QAG 

Collagen alpha-

2(I) chain  
CO1A2_CANLF 0.00369059 0.02755065 

14554 
pGDKGEAGPSGpAGpTGARGApGD

RGEP 

Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.00420995 0.02970094 

14824 
AGPpGApGApGAPGPVGPAGKNGD

RGETGP 

Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.0101218 0.04885862 

14848 
KEGGKGARGETGPAGRpGEVGPpG

PpGP 

Collagen alpha-

1(I) chain  
CO1A1_CANLF 5.6936E-05 0.00337633 

15775 
GSRGDGGppGATGFPGAAGRTGPpG

pSGITG 

Collagen alpha-

2(I) chain  
CO1A2_CANLF 1.9352E-05 0.00337633 

17053 
NGPpGPAGSRGDGGpPGATGFpGAA

GRTGpPGP 

Collagen alpha-

2(I) chain  
CO1A2_CANLF 0.00018795 0.00639273 

18031 
LDGAKGDAGPAGPKGEpGSpGENG

ApGQMGPRG 

Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.00102315 0.0112353 

19095 
GADGQPGAKGEpGDAGAKGDAGP

pGPAGPTGPpGPIG 

Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.00078021 0.00963253 

19687 
AAGEpGKAGERGVPGppGAVGPAG

KDGEAGAQGPPGP 

Collagen alpha-

1(I) chain  
CO1A1_CANLF 8.134E-05 0.00373003 

19943 
GpAGVRGPNGDSGRPGEPGLmGpR

GFPGAPGNVGp  

Collagen alpha-

2(I) chain  
CO1A2_CANLF 0.00161971 0.015292 

20535 
ARGNDGATGAAGPpGPTGPAGPpG

FpGAVGAKGEAGpQG 

Collagen alpha-

1(I) chain  
CO1A1_CANLF 6.786E-05 0.00337633 

20952 
GPpGADGQPGAKGEpGDAGAKGD

AGpPGPAGPTGPpGPIG 

Collagen alpha-

1(I) chain  
CO1A1_CANLF 0.004748 0.03173438 

Abbreviations in sequence: p, hydroxyproline; k, hydroxylysine; m, hydroxymethionine. 

* p-value adjusted by the method of Benjamini and Hochberg[17]  

  

  



Valérie BRUNCHAULT  STUDY 2 
98 

 



STUDY 3  Valérie BRUNCHAULT 
99 

 

 

 

Study 3: 

Identification of metabolite biomarkers 

using CE-MS technology 

Boizard F*, Brunchault V* et al., 2016, Scientific Reports 

*Equal contribution 

 

  



Valérie BRUNCHAULT  STUDY 3 
100 

 

 

 

 

 

Aims and Objectives 

Metabolites are believed to be the closest molecules associated to a phenotype since they integrate 

information from the genome, transcriptome, proteome and respond to subtle variations such as diet, 

medication or changes during disease development/progression. The objective of this project was to 

optimize the CE-MS set-up and pipeline for the analysis of urine metabolome in clinical research. As a 

proof of concept of this novel approach, we focused on its use for the identification of metabolite 

biomarkers of a kidney anomaly, the ureteropelvic junction obstruction, in newborns.   
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A capillary electrophoresis coupled 
to mass spectrometry pipeline for 
long term comparable assessment 
of the urinary metabolome
Franck Boizard1,2,*, Valérie Brunchault1,2,*, Panagiotis Moulos3, Benjamin Breuil1,2, 
Julie Klein1,2, Nadia Lounis4, Cécile Caubet1,2, Stéphanie Tellier5, Jean-Loup Bascands1,2, 
Stéphane Decramer1,2,5, Joost P. Schanstra1,2 & Bénédicte Buffin-Meyer1,2

Although capillary electrophoresis coupled to mass spectrometry (CE-MS) has potential application in 
the field of metabolite profiling, very few studies actually used CE-MS to identify clinically useful body 
fluid metabolites. Here we present an optimized CE-MS setup and analysis pipeline to reproducibly 
explore the metabolite content of urine. We show that the use of a beveled tip capillary improves the 
sensitivity of detection over a flat tip. We also present a novel normalization procedure based on the use 
of endogenous stable urinary metabolites identified in the combined metabolome of 75 different urine 
samples from healthy and diseased individuals. This method allows a highly reproducible comparison 
of the same sample analyzed nearly 130 times over a range of 4 years. To demonstrate the use of this 
pipeline in clinical research we compared the urinary metabolome of 34 newborns with ureteropelvic 
junction (UPJ) obstruction and 15 healthy newborns. We identified 32 features with differential urinary 
abundance. Combination of the 32 compounds in a SVM classifier predicted with 76% sensitivity and 
86% specificity UPJ obstruction in a separate validation cohort of 24 individuals. Thus, this study 
demonstrates the feasibility to use CE-MS as a tool for the identification of clinically relevant urinary 
metabolites.

‘Omics’-based strategies appear to be promising tools for the identification of diagnostic and prognostic biomarkers  
of disease. They can lead to the design of multimarker models which are potentially better suited than single 
biomarkers to describe complex pathophysiological mechanisms1–3. Metabolomics, defined as the analysis of the 
low-molecular-weight compound (< 1500 Da) content of a sample, offers advantages compared to the other omics 
traits. Indeed, being the downstream products of cellular function, metabolites represent a sensitive measure of 
the actions of upstream molecular species such as genes, transcripts, and enzymes, including the effects of disease, 
drugs, toxicity, and the environment4,5. However sensitivity to these many perturbants also contributes to poten-
tial issues about the high variability in metabolome exploration6.

Analysis of urine plays a central role in clinical diagnostics as it can be collected non-invasively, often in large 
quantities, and requires minimal sample pre-treatment due to its low complexity and protein content. In addi-
tion, we and others have already shown that urine is an excellent reservoir of biomarkers (peptides, proteins and 
metabolites) of many diseases7–17.

Metabolomics studies mostly use NMR spectroscopy and liquid chromatography coupled to mass spec-
trometry (LC-MS) that provide complementary readouts4. NMR spectroscopy allows both identification and 
quantification of metabolites. It is a highly reproducible and non-destructive method which requires minimal 
sample preparation thereby minimizing contamination and maintenance issues and enabling the routine and 
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high-throughput analysis of hundreds to thousands of samples4,18. The inherent low sensitivity of NMR, however, 
restricts the detection limit to about 1 μ M18,19. Moreover, the interpretation of NMR data is challenging18,20. In 
contrast, LC-MS allows the detection, quantification and structure elucidation of metabolites in the picomolar 
to nanomolar range of several thousand metabolites in a single measurement5. Unfortunately, the coupling of 
chromatographic separations with MS platforms requires an elevated level of maintenance, as the samples come 
in direct contact with many components of these platforms, contaminate surfaces and cause drift in the meas-
ured response and retention time over relatively short analysis periods4,5, thereby preventing the comparison of 
large numbers of samples. Relevant progress in the field of LC-MS was made with the introduction of ultra high 
performance liquid chromatography (UPLC) leading to improvement of analysis speed as well as sensitivity and 
resolution19,21,22. In particular, the potential of miniaturized UPLC-MS, based on the optimized use of microbore 
columns, was recently demonstrated for large-scale metabolomic studies23,24.

Until approximately ten years ago, capillary electrophoresis coupled to mass spectrometry (CE-MS) has only 
been rarely used for metabolome analysis. This was potentially due to issues related to stable coupling of CE to 
the MS instrument and the limited loading capacity of CE capillaries. However the significantly increased sensi-
tivity of modern mass spectrometers and optimized methods for coupling of CE to MS have transformed CE-MS 
into a potential appropriate tool for profiling of disease associated metabolites in clinical relevant body fluid 
samples20,25–29. A number of recent studies now report the use of CE-MS for metabolome analysis of clinically rel-
evant samples, with in particular those recently conducted by Soga and coworkers30–32, the first group to develop 
CE-MS for the comprehensive profiling of metabolites in biological samples33. However, the use of CE-MS for 
the discovery and validation of clinically relevant metabolic markers of human disease requires evaluation of its 
performance in terms of long term reproducibility and comparability.

Here, we present an optimized CE-MS setup and data analysis pipeline. Using a normalization procedure 
based on a set of “housekeeping” metabolites, this method allows to compare the metabolite content in urine 
samples analyzed over a period of several years. As proof of concept, we demonstrate the clinical relevance of this 
pipeline for the urinary metabolome based-detection of obstructive nephropathy in infants.

Results
Identification of metabolite internal standards for CE-MS normalization. As a first measure 
towards improved comparison of large numbers of clinical samples over time, we developed a new method that 
allows to normalize the metabolite content of a biofluid sample. This method is based on the use of a set of per-
sistent and stable metabolites across disease and healthy urine samples. In order to identify these so-called stable 
endogenous metabolites, 54 CE-MS runs of urine obtained from various kidney and urinary tract pathologies 
together with 21 control CE-MS runs of urine from healthy patients (Supplementary Table S1) were processed 
using the Bioconductor package xcms34. Each metabolite feature was identified by a unique identifier (ID) on 
the basis of the specific mass-to-charge ratio and migration time with a peak height representing the relative 
abundance. After preprocessing of the mass spectra (including mass calibration and migration time window 
restriction), the xcms pipeline (see Materials and Methods) identified 9642 distinct molecule features in terms 
of m/z and migration time pairs across all 75 samples. From this initial list, only features present (no-null abun-
dance) in at least 50% of the total samples were considered for further analysis. The 6044 remaining metabolite 
features spanned a CE migration time from 16 to 50 min and a m/z range from 30–650. This reference dataset of 
6044 metabolite features was then interrogated for the presence of stable molecule features, in terms of intensity, 
that would comprise the basis for a set of CE-MS internal normalization standards. For this, several established 
algorithms from the ‘rank invariant’ family of normalization methods present in the DNA microarray literature 
were deployed. Specifically, the Rank Invariant normalization method implemented in the dChip algorithm35, 
the Rank Invariant normalization algorithms for Illumina BeadArrays implemented in the lumi Bioconductor 
package36 and the GRSN algorithm37 were tested. However, each one of these suffered from several drawbacks, 
including among others unstable housekeeping sets because of their selection algorithm (dChip), selection pref-
erence in higher (dChip), lower (lumi) or medium (GRSN) intensities instead of spanning the whole metabolite 
abundance range, very high number of metabolites to achieve proper normalization (lumi) or poor normalization 
efficiency (dChip). The failure of present methodologies (partially due to the different nature of CE-MS data as 
compared to microarrays) to detect a stable set of metabolites led to the development of two new different inter-
nal standard selection strategies. Specifically, the first approach used the residuals of Robust Linear Regression 
models38,39 to identify sets of metabolites presenting low variability across samples and the second, more geomet-
rical than statistical, approach was based on the Euclidean distance of each metabolite abundance vector from 
the identity ‘hyperline’ in the sample space. The final set of stable metabolites for each method was derived using 
a Forward Selection procedure with the purpose of finding the smallest possible subset of metabolites with the 
greater normalization power (detailed description of the methods in the ‘Materials and Methods’ section). The 
method that was finally followed was the geometrical approach as it was found to yield more robust results in 
terms of metabolite intensity coverage, normalization power, smaller number of stable metabolites and its appli-
cation did not require any assumptions for a baseline as compared to the RLM approach which requires a base-
line. This led to the identification of 267 endogenous housekeeping metabolic features among the 6044 features 
detected (Supplementary Table S2) which spanned a CE migration time from 17 to 36 min and a m/z range from 
82 to 650. These stable endogenous metabolite features were implemented in the CE-MS normalization pipeline. 
Hence, the CE migration time is normalized in a first step (Fig. 1A) followed by normalization of the metabolite 
abundance using the endogenous housekeeping metabolic features, as exemplified on a random selection of six 
samples (Fig. 1B).

Use of a beveled capillary improves the sensitivity of metabolite detection. CE coupling to MS 
via electrospray ionization (ESI) can be performed using either a sheathless or a sheath flow interface40. The use 
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of sheathless systems is promising. In particular, the potential usefulness of a sheathless porous tip interface for 
CE-MS has been recently demonstrated for the analysis of the urinary metabolome28,29. Nevertheless this porous 
tip has not yet been adopted as a routine method for CE-MS coupling. So far, the sheath flow interface has been 
most widely used for CE-MS in metabolomics26,40,41. This type of coupling is stable and provides good sensitivity, 
its implementation is relatively easy and allows using a wide range of buffers. However, the CE-effluent is diluted 
in this configuration, thereby reducing the achievable sensitivity of the method28,29,40,41. As part of a continuous 
effort to improve the interface between CE and MS, Tseng et al.41 have developed a beveled tapered tip emitter in 
order to reduce the sheath flow leading to decreased sample dilution. By analyzing synthetic drugs and triazine 
mixtures, they demonstrated that the use of beveled tip provides better sensitivity for detection than conventional 
sheath liquid interface which uses flat capillary tips41.

Therefore in an attempt to optimize the sensitivity of the detection of urinary metabolites, we compared the 
performance of a standard flat tip and a beveled tip sheath-liquid ESI interface. A QC urine sample was analyzed 
by CE-MS using either a standard (ten consecutive runs) or beveled capillary (ten consecutive runs) for CE. Of 

Figure 1. Processing and normalization of samples. Urinary samples were analyzed in CE-MS, processed 
and then normalized using the stable endogenous metabolites-based procedure described in the Materials 
and Methods section. (A) Representative distribution profile of urinary metabolite features before and after 
migration time alignment against reference dataset. Each circle is a unique peak processed with xcms. Red: 
metabolite features detected in a random urine sample and matching the reference; yellow: equivalent features 
in the reference dataset. (B) Box-whisker plot for metabolite abundance of exemplary healthy (2) and UPJ 
obstruction (4) patients before and after intensity normalization.
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note, the previously described 267 stable endogenous metabolites required for normalization procedure were 
identified using a beveled tip. After normalization, 2275 and 1950 distinct molecule features were detected in at 
least one run using the beveled tip and standard flat tip, respectively (Fig. 2A). Moreover, 338 and 316 metab-
olite features were detected consistently in all ten runs using the beveled tip and conventional tip, respectively 
(Fig. 2A). Although the absolute number of features detected is only slightly higher using the beveled tip, compar-
ison of the intensities of 192 features detected in all runs with both types of capillary revealed a significant 3 fold 
gain in sensitivity using the modified capillary (Fig. 2B). Of note, robustness of the beveled tip was not decreased 
compared to flat tip (resisting to 40–50 runs [data not shown]). Therefore, the use of beveled tip as sheath-flow 
interface for CE-MS displays increased sensitivity towards the detection of urinary metabolites. We used the 
beveled tip for the remainder of the experiments.

QC-based validation of CE-MS pipeline for urine metabolome profiling. In order to estimate the ana-
lytical variability of the CE-MS pipeline, a set of experiments for validation was performed: repeatability (intra-assay 
precision), postpreparation stability, postdilution stability, and long-term (intermediate) precision were evaluated.

Repeatability expresses the precision under the same operating conditions over a short interval of time. 
Repeatability of the CE-MS pipeline was examined by analyzing the QC urine sample in five consecutive runs, 
covering a total run time of ≈ 8 h. Among 6044 potential metabolites, 1342 (22%) features were detected on 
average in each run. Figure 3A shows a typical plot of a CE-MS analysis of a QC sample, giving an indication of 
the distribution of mass-to-charge ratio and CE migration times encountered for this typical sample. To obtain 

Figure 2. Effect of the capillary on sensitivity of metabolite detection. The same sample was analyzed in 
CE-MS using either standard (10 times) or beveled tip capillary (10 times) for CE. (A) Euler diagrams showing 
for each capillary the number of metabolite features detected at least once (left) or every time (right). Dark gray: 
standard (flat tip) capillary; light gray: beveled tip capillary. (B) For each metabolite detected in every run and 
with both types of capillaries (n =  192), the mean intensity was calculated and then the ratio between intensity 
measured with beveled tip capillary and intensity measured with classical capillary was calculated. Graph shows 
the mean ratio ±  SEM, indicating that metabolite detection was more sensitive with beveled tip than with 
standard capillary.
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Figure 3. Short term performance characteristics of metabolomic CE-MS platform. The data from QC 
analyses were investigated to assess intra-assay precision, postpreparation stability and postdilution stability 
for molecule intensities. (A) Typical plot from the CE-MS analysis of the QC sample: Each metabolite was 
identified by a unique identifier (ID) on the basis of the specific mass-to-charge ratio and migration time. Graph 
shows the distribution of metabolite mass-to-charge ratio (m/z) with CE-migration time for a representative 
QC injection. (B) Short term precision: The QC was analyzed in five consecutive runs and the intensity in each 
run was shown for four exemplary randomly selected metabolite features. The coefficient of variance (CV) for 
amplitude was between 0.7 and 1.9% for these individual features, thereby demonstrating the repeatability in 
peak height. (C) Variability according to preparation: QC sample was prepared on three different dates using 
different lots of buffer, and then analyzed in consecutive runs. The intensity in each run was shown for four 
exemplary randomly selected metabolite features. The obtained CV for abundance was between 1.1 and 4.3%, 
showing a stability depending of the preparation. (D) Stability according to dilution: QC sample was prepared 
at different concentrations and then analyzed in consecutive runs. The intensity of four exemplary randomly 
selected metabolite features was plotted against the dilution factor.
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information on the run-to-run precision, four metabolite features were randomly selected for evaluation of inten-
sity variation. The abundance variation of these four metabolite features was found to be negligible (Fig. 3B), with 
coefficient of variation (CV) values less than 2%, thereby indicating high performance of CE-MS platform in 
terms of repeatability. Next, the effect of different sample preparations was studied (post-preparation stability). 
We prepared QC sample according to the same procedure but using three different lots of buffer before CE-MS 
analysis in 3 consecutive runs. As shown in Fig. 3C, the intensity of the four exemplary selected metabolite fea-
tures was constant in preparations, with a low CV, below 4.3%. Third, in order to test linearity of detection, the QC 
sample was prepared at six different concentrations and then analyzed by CE-MS in consecutive runs. Figure 3D 
depicts the abundance of the four randomly selected molecule features as a function of the dilution factor of a 
urine sample. For three of them, a significant negative correlation was observed between dilution and abundance 
whereas only a trend was observed for the fourth (Fig. 3D), thereby suggesting the relative stability of CE-MS 
platform when urine samples are diluted.

Finally, we evaluated intermediate precision of CE-MS platform which expresses the precision within labora-
tory variations. This assay involved analysis of QC urine metabolites at different days by different operators over 
a long period of time. It included different lot numbers of buffers, solvents and chemicals and also implies annual 
maintenance service of both CE and MS devices. This evaluation is important in the field of clinically useful 
metabolite biomarkers where durable use of CE-MS is necessary. For the long-term stability assay, the QC sample 
was analyzed repeatedly 128 times over a range of 4 years (from 2011 to 2014). Among 6044 potential metabolite 
features, 1389 (23%) were detected on average in each run, this result being similar to the previously reported 
value. A mean of 67.7% of all metabolite features and 30.5% of the stable endogenous metabolites in the QC sam-
ples from these 128 runs matched against the reference dataset. The analysis of our data set revealed that the dis-
tribution of intensities is bimodal, with a strong proportion of values at a point-mass at zero (point-of-mass values 
[PMVs] corresponding to missing values [NaN], zero intensity data being treated as missing data) and a continu-
ous component (Fig. 4A). The occurrence of zero component in the data matrix is a recurrent issue encountered 
in MS data42. The origin of PMVs may either be biological, eg absence of a specific metabolite in biological sam-
ple, or technical, eg the inability of the mass spectrometer to detect the specific metabolite or of the algorithm 
to identify the peak. Next, as it is recommended that the coefficient of variation should not exceed 15%4,43, we 
examined CE-MS results using similar acceptance criteria as a means of determining the quality of the data. 
For this, the abundance of four exemplary randomly chosen molecule features was plotted over time (Fig. 4B). 
The statistical spread for these metabolite features was between 2.2 and 8.6%, indicating that CE-MS platform 
exhibits long-term stability. In addition, CV of intensities was calculated for all metabolite features across the 
QC samples. A data subset was considered including features which were detected in at least one of the 128 QC 
injections (4879 entities) and different filters of selected metabolites were considered to evaluate improvement of 
the proportion of peaks being acceptable. Using this subset, we observed that 4487 (92%) of the 4879 molecule 
features displayed a variation of ≤ 10%, whilst 2892 (59%) exhibited a variation of ≤ 5% level. Altogether, these 
results demonstrated the long-term stability of CE-MS platform and thus suggest that the optimized CE-MS setup 
and analysis pipeline allows to compare the metabolite content in urine samples regardless of the time of analysis.

CE-MS for clinical metabolomics: application to diagnosis of UPJ obstruction. Next we analyzed 
the capacity of the aforementioned pipeline in clinical research for the identification of diagnostic/prognostic 
biomarkers of disease. Newborns with UPJ obstruction were chosen for our proof of principle study. Two dif-
ferent cohorts of infants were employed: one discovery cohort (n =  49) for the identification of urinary metab-
olite biomarkers of UPJ obstruction (15 healthy newborns and 34 patients with UPJ obstruction; Table 1 and 
Supplementary Table S3) and one cohort (n =  24) for the blinded validation of urinary biomarkers (7 healthy 
newborns and 17 patients with UPJ obstruction; Table 2 and Supplementary Table S4). All urine samples were 
analyzed by CE-MS for their metabolite content and normalized using the above developed stable endogenous 
metabolites-based normalization procedure.

Metabolic profiling of urine samples from patients with UPJ obstruction and healthy children. The urinary metabolome  
of the discovery cohort, composed of 15 healthy children and 34 patients with severe UPJ obstruction (Table 1 
and Supplementary Table S3) was studied by CE-MS. A mean of 42.0% of the stable endogenous metabolites in 
urine samples matched against the reference dataset. Among 6044 potential metabolite features, 1889 (31%) were 
detected on average in each sample. Only the features detected in at least 75% of the urine samples in each group 
(healthy and UPJ) were further investigated. This noise-filtering process reduced the number of features to 388 
entities (Fig. 5A). The distribution of the metabolite intensities for all the 388 selected metabolite features showed, 
as for QC sample data, a bimodal distribution characterized by a proportion of PMVs (Fig. 5B) and a continuous 
component. In order to explore the origin of PMVs, metabolite features with consonant or dissonant differences 
were quantified. In the former case, the group with the higher proportion of PMVs has the smaller mean in the 
continuous part, while in the latter case the group with the higher PMV proportion also has the higher mean. 
An example of each type is shown in Fig. 5C. Although this definition does not distinguish between technical 
and biological PMVs, technical PMVs naturally correspond to consonant compounds whereas biological PMVs 
generally allow for both types44,45. The data employed here contains 357 (92%) consonant compounds, 15 (4%) 
dissonant and 16 (4%) without point-mass component. The high proportion of consonant markers associated 
with the low number of dissonant markers suggests that PMVs in present metabolomics data originated from 
technical considerations rather than biological (Fig. 5D).

Identification of urinary metabolites associated to UPJ obstruction. Comparing urinary metabolites from UPJ 
and healthy patients led to the identification of 32 adjusted (Benjamini and Hochberg46) differentially excreted 
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metabolite features (Fig. 6A,B and Supplementary Table S5). Matching 32 features against databases (HMDB, 
ChEBI and KEGG) led to determination of real mass for 9 metabolite features; 5 of 9 were annotated for chemical 
formulas (Table 3). Of note, abundances of two compounds (227.111791/989.758 and 228.114334/990.108) cor-
responding to the same annotation were highly correlated (R2 =  0.94, p <  0.0001, data not shown). The 32 metab-
olite features of interest were then used to develop a support vector machine (SVM) discrimination model that 
we called “UPJMetab32”. Scoring the patients from the discovery cohort with the UPJMetab32 classifier clearly 
separated UPJ from healthy patients (Fig. 6C).

Validation of UPJMeta32 in a separate, blinded cohort. In the next step, following the recommendations 
for biomarker identification47, the UPJMetab32 model was validated in a separate, blinded study using urine 
from 7 healthy and 17 UPJ patients not used in the discovery cohort (Table 2 and Supplementary Table S4).  
These urine samples were analyzed by CE-MS and scored using the UPJMetab32 model (Supplementary Table S4).  

Figure 4. Long term performance characteristics of metabolomic CE-MS platform. The data from QC 
analyses were investigated to evaluate intermediate precision for molecule intensities. (A) Histograms of the 
distribution of abundance: The mean frequency of all features in QC sample was plotted against the logarithm 
(2) of the intensity. Profiles show a point-mass at zero and a continuous component. The zero component 
arises because the molecule features are either absent or their concentration is below the detection limit. Insert: 
magnification of the continuous distribution. (B) Long term variability: The QC sample was analyzed 128 times 
between 2011 and 2014. The intensity of four exemplary randomly selected metabolite features was plotted 
against the time.
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A UPJMetab32 score > 0 predicts patients with UPJ obstruction. These predictions were compared to the clinical 
criteria based status. The UPJMetab32 classifier diagnosed clinical status (healthy versus UPJ) with a sensitivity of 
76.5%, a specificity of 85.7%, and an area under the curve (AUC) of 0.90 [95% CI: 0.707 to 0.984] (Fig. 7A). The 
UPJMetab32 model predicted 13 out of 17 UPJ cases correctly, showing the efficacy of the model to detect patients 
with severe UPJ. In addition, it predicted 6 out of 7 control cases correctly. The distribution of the UPJMetab32 
scores for the validation cohort showed significant separation of the two patient populations (Fig. 7B).

Discussion
We have explored the use of CE-MS and endogenous stable urinary metabolites for long-term, reproducible and 
comparable analysis of the urinary metabolome. The developed pipeline allowed comparison of urinary metab-
olite content analyzed over a 4 year timespan. As proof-of-concept we have used this pipeline to discover and 
validate urinary metabolites associated to a frequently encountered renal pathology in newborns.

Clinical metabolomics aims at the detection of clinically useful metabolites that can be extracted from a 
diverse range of sample types. Amongst those samples, easily accessible bodyfluids like urine and blood are most 
suited for clinical use. Although the field of metabolomics has advanced significantly in the past 10 years4, there 
has been little progress in the identification of clinically useful urinary metabolite biomarkers. To enable the 
discovery and the validation of diagnostic/predictive biomarkers, medium-to-large-scale epidemiological stud-
ies are required in order to take into account the substantial diversity observed in physiology/physiopathology, 
metabolic status and lifestyle in the general human population. This involves the use of analytical methods able 
to analyze large numbers of samples over periods of many months or years with both high reproducibility and 
high sensitivity4. We explored the potential of CE which offers multiple advantages: (i) as CE separates com-
pounds on the basis of their charge and size25, it demonstrates high-resolution power for separation of small 
ionogenic metabolites which are important constituents of the urinary metabolome; (ii) CE separations require 
a low sample volume and consume very little solvent25, thereby reducing the matrix effect that can cause ion sup-
pression and then insufficient ionization and lower peak intensity in MS; (iii) CE displays high reproducibility 
when analyzing large numbers of samples since no gradients are applied. Indeed, we observed high stability of 
urinary metabolite abundance when analyzing the same sample nearly 130 times over a range of 4 years. A few 
studies report stability evaluation of pipelines, such as for example over 535 runs covering a timespan of 5 months 
(GC-TOF-MS48) or over 120 runs covering a timespan of 3 years (UPLC-TOF-MS49). However, such a long term 
assessment of reproducibility and comparability is only rarely performed. Hence our 4 years proof of stability of 
the developed pipeline, associated with its use in the UPJ obstruction, validates its potential use in the clinic field.

Establishing long term stability has therefore been a major objective of the study. Although CE-MS is a repro-
ducible analytical tool, some variations induced by sample concentration (especially for urine where individual 
urine outputs are dependent of water uptake, diet, … ), interfering compounds and injection volume differences 
might still be observed. Several normalization strategies, such as normalization to creatinine, osmolarity and 
total area normalization are frequently employed in urine metabolomics studies. However, these commonly used 
normalization methods are not well adapted. For example, the creatinine level can be impacted by factors such as 
kidney function impairment, gender difference, and lean body mass50,51. The osmolarity normalization procedure 
is often affected by insoluble components, such as urine particles50,52. Adjusting the total peak area might yield 
biased results since the background noise and ion suppression due to the matrix may greatly interfere with the 

All patients Healthy UPJ obstruction

n 49 15 34

Gender

 M 46 (93.9%) 15 (100%) 31 (91.2%)

 F 3 (6.1%) 3 (8.8%)

Age

 Mean (months) 2.25 + /−  0.27 2.29 + /−  0.62 2.22 + /−  0.29

 Median (months) 1.45 (range 0 to 7.0) 1.58 (range 0 
to 6.1) 1.45 (range 0.7 to 7.0)

Table 1.  Discovery cohort.

All patients Healthy UPJ obstruction

n 24 7 17

Gender

 M 21 (87.5%) 7 (100%) 14 (82.4%)

 F 3 (12.5%) 0 3 (17.6%)

Age

 Mean (months) 2.51 + /−  0.58 1.35 + /−  1.21 2.99 + /−  0.65

 Median (months) 1.28 (range 0 
to 8.6)

0.03 (range 0 
to 8.6)

1.61 (range 0.8 
to 8.6)

Table 2.  Validation cohort.
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Figure 5. Metabolomic CE-MS analysis in urine of patients with UPJ. The urine metabolome of 15 healthy 
and 34 UPJ patients of the discovery cohort was analyzed. (A) Representative figure showing abundance of 
the CE-MS detected-urinary metabolite features: on the left, before application of a filter; on the right: after 
selection of features present in at least 75% of the samples in each group. (B) Histograms of distribution: 
The frequency of all metabolite features in healthy and UPJ samples was plotted against the logarithm (2) of 
the intensity. As for QC sample data, profiles show a point-mass at zero and a continuous component. (C) 
Histograms of distribution of two selected metabolite features from example dataset. Metabolite feature ID: 
636.25007/1484.602 (left): consonant; metabolite feature ID: 601.266107/1381.567 (right): dissonant. (D) 
Repartition of compounds with consonant and dissonant differences between healthy and UPJ obstruction 
groups.
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total signal. Furthermore, the total signal for samples with different metabolite distributions does not reflect the 
total concentration differences as ionization efficiency is compound dependent50. Variations can also be corrected 

Figure 6. Identification of a classifier: UPJMeta32. The urine metabolome of 15 healthy and 34 UPJ patients 
(discovery cohort) was analyzed. (A) Volcano plot showing fold-changes (Log2) between UPJ obstruction and 
healthy groups as well as statistical significance (-Log 10 of p-value) for 388 considered metabolite features. The 
dashed line shows where p =  0.05. Points above the line had p <  0.05 and corresponding metabolite features (32) 
have been considered as significantly differentially excreted by UPJ patients. (B) Compared abundance of the 
32 urine metabolite features which were identified as differentially excreted between UPJ patients and healthy 
subjects in the discovery cohort. Insert: two strongly abundant metabolite features (C) Cross-validation score 
of an SVM metabolite model, called UPJMetab32, consisting of 32 differentially excreted metabolite features. 
***p <  0.0001 versus healthy subjects. Mann-Whitney test for independent samples.
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by addition of exogenous standards but this method assumes that those are representative of the thousands of 
injected metabolites53. In the present study, we have opted for the selection of a set of most stable endogenous 
metabolites observed in a range of samples. This method offers several advantages. Firstly, for the selection of 
these stable endogenous compounds, we have chosen 75 urine samples potentially representing the diversity 
of (pediatric) diseases to be encountered in future studies. Therefore, we anticipate that the 267 derived stable 
endogenous metabolites can be used for the discovery of metabolite-based biomarkers in a number of pediatric 
diseases of the kidney and the urinary tract. Secondly, such a high number of stable endogenous metabolites for 
normalization spanning a CE migration time from 17 to 36 min and a m/z range from 82–650 allows that signal 
normalization can be performed ‘locally’, using metabolites with comparable ionization efficiency since close in 
terms of CE migration time and m/z ratio. In addition, this inclusion ensures that for every new sample, there 
will be a sufficient number of endogenous internal standards so as to span the whole intensity range of the new 
sample. Thirdly, as a result of this high number of stable endogenous metabolites, we observed that significant 
numbers of metabolite features are available for robust normalization in nearly all cases (we identified a mean 
of 42.0% of stable endogenous metabolites in the UPJ experiments). A potential drawback of the use of these 
endogenous metabolites for normalization could be that those are stable in the specific case of kidney disease and 
are excluded for the selection of biomarkers of disease. Selection of novel endogenous stable metabolites might 
thus be required in order to discover biomarkers for disease affecting other organs than the kidney/urinary tract.

Analysis of urinary metabolome is extremely attractive since changes reflect modifications of the entire organ-
ism in its equilibrium with the environment including particularly contributions from nutritive substances, 
drugs and gut microbial activities19. However, the variability induced by these factors can introduce a day-to-day 
intrapersonal variability as well as interpersonal differences, being a major drawback in studies aiming at disease 
diagnosis/prognosis. In order to address the sources of urinary metabolome variation throughout the day, Kim  

ID Isotope Adduct Real Mass Database Database code Proposed Formula Proposed Name

227.111791/989.758 [56][M]+ [M+ H]+ 226.104515 HMDB HMDB00033 C9H14N4O3 Carnosine

228.114334/990.108 [56][M+ 1]+ KEGG cpd:C00386 C9H14N4O3 Carnosine

HMDB HMDB12482 C9H14N4O3 Hydroxypterin

HMDB HMDB00245 C10H14N2O4 Porphobilinogen

KEGG cpd:C00931 C10H14N2O4 Porphobilinogen

KEGG cpd:C02345 C15H14O2 (2S)-Flavan-4-ol

KEGG cpd:C15598 C15H14O2 Favan-3-ol

KEGG cpd:C09757 C15H14O2 7-Hydroxyflavan

KEGG cpd:C10276 C15H14O2 Pinosylvinmethylether

KEGG cpd:C10325 C15H14O2 Deoxylapachol

KEGG cpd:C13632 C15H14O2 4,4′ -Dihydroxy-alpha-methylstilbene

KEGG cpd:C07205 C14H14N2O Metyrapone

ChEBI 55316 C7H16BrNO2 Acetylcholine bromide

ChEBI 50426 H4O6P2S2 Disulfanediylbis(phosphonic acid)

229.117309/1322.695 [8][M]+ [M+ H]+ 228.110033 HMDB HMDB06695 C10H16N2O4 Prolylhydroxyproline

KEGG cpd:C13733 C10H16N2O4 (S)-ATPA

KEGG cpd:C10371 C15H16O2 MansononeC

KEGG cpd:C13624 C15H16O2 BisphenolA

KEGG cpd:C15210 C15H16O2 1,1-Bis(4-hydroxyphenyl)propane

KEGG cpd:C17424 C15H16O2 Lindenenone

ChEBI 58089 C5H11NO7P 5-phosphonato-D-ribosylaminium(1− )

ChEBI 58681 C5H11NO7P 5-phospho-β -D-ribosylaminium(1− )

KEGG cpd:C18436 C9H16N4OS Tebuthiuron

ChEBI 53648 C7H4N2O7 2-hydroxy-3,5-dinitrobenzoic acid

355.071351/1117.064 [306][M]+ 354.064075 KEGG cpd:C01268 C9H15N4O9P 5-Amino-6-(5′ -phosphoribosylamino)uracil

KEGG cpd:C02927 C15H14O10 2-Caffeoylisocitrate

KEGG cpd:C07952 C17H19ClN2S. HCl Chloropromazinemonohydrochloride

KEGG cpd:C12600 C19H14O5S Phenolsulfonphthalein

488.133087/1622.375 [453][M]+ 487.125811 KEGG cpd:C02555 C26H21N3O5S Luciferylsulfate

KEGG cpd:C18429 C18H22FN5O8S Flucetosulfuron

366.599792/1929.853 [461][M]+ 365.592516

438.677677/1763.369 [443][M]+ 437.670401

474.701959/1359.882 [359][M]+ 473.694683

526.161131/1357.627 [160][M]+ 525.153855

Table 3.  Annotation for potential chemical formulas and names. HMDB: Human Metabolome Data Base; 
KEGG: Kyoto Encyclopedia of Genes and Genomes, ChEBI: Chemical Entities of Biological Interest.
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et al.6 have performed LC-MS metabolomics analysis of urine in subjects receiving a standardized and weight-based 
diet. The largest source of instability was attributable to technical issues such as sample preparation and analysis; 
to a lesser extent, an inconstancy subject-to subjects as well as intrapersonal variability due to meals and time of 
day were observed; day-to-day fluctuation was minimal6. Despite that, several studies suggest the existence of a 
stable part (time scale: months to years) of the urine metabolomic profile which seems to be specific to each indi-
vidual54,55. Under unrestricted lifestyle conditions, multiple collections of urine samples can be used to reduce the 
metabolic noise and retrieve the individual phenotype56. In the current study, differences in alimentation are most 
likely not a confounding factor since alimentation of newborns/infants is significantly less variable than in adults.

We have show-cased the use of the pipeline in a frequently encountered renal pathology in newborns11,57. 
We were able to identify 32 metabolic features associated to UPJ obstruction. Combination of the 32 metabolite 
features in a SVM classifier predicted with 76% sensitivity and 86% specificity UPJ obstruction in a separate vali-
dation cohort, thereby demonstrating the efficacy of the model to detect patients with UPJ obstruction. Increased 
carnosine excretion in UPJ was attributed to two highly correlating isotopes of a same metabolite. Carnosine is 
a dipeptide synthesized from alanine and histidine by the carnosine synthase in muscle, brain and other tissues 
such as kidney. It is degraded by the carnosinase predominantly in the liver but also in kidneys. Carnosine from 
animal food can also be absorbed in the small intestine, and at least part of it enters the blood intactly upon 
oral ingestion. Finally, kidneys filter plasma carnosine, reabsorb a part of carnosine via specific transporters 
and excrete the remaining in urine58,59. In order to understand the origin of the elevated urinary level of car-
nosine from UPJ obstruction patients, further experiments measuring expression of carnosine related-enzymes 
and transporter proteins in both obstructed and contralateral kidneys should be performed. The dipeptide  
possesses also strong antioxidant and free radical scavenging activities58. Interestingly, protective effects of carnosine 
have been demonstrated in rodent models of kidney disease60–62 and in patients with diabetic nephropathy63 or  
children with glomerulopathies64. Thus, increased urinary excretion of carnosine in UPJ obstruction could be an 
adaptive rather than a deteriorating mechanism.

In conclusion, we have developed a robust setup and analysis pipeline for the exploration by CE-MS of the 
metabolite content of urine and found that the long-term reproducibility of the metabolite data generated was 
excellent. As proof of concept, we demonstrated the feasibility to use CE-MS as a tool for the identification of 
clinically relevant urinary metabolites.

Materials and Methods
Patients and urine collection. Samples used for optimization of the CE-MS normalization procedure.  
Fifty-four urinary samples from various kidney and urinary tract pathologies together with 21 control CE-MS 
samples from healthy patients (Supplementary Table S1) were used. We considered that these samples represent 
the potential diversity to be encountered in clinical samples and hence used those samples for the development 
of CE-MS normalization procedure.

Quality control (QC). The QC sample was a mixture of urine samples of 9 healthy individuals (3 females and 6 
males, mean age 34.1 ±  2.8 years).

Ureteropelvic junction (UPJ) obstruction and healthy patients. UPJ obstruction patients (n =  51) and healthy 
individuals (n =  22) of less than one year old were recruited in Toulouse Hospital and included in our study. 
The UPJ obstruction group was composed of patients scheduled for pyeloplasty with a pelvic dilatation of at 
least 16 mm and grade 3 and 4 hydronephrosis. Renographies were performed as soon as possible after birth, 

Figure 7. Validation of urinary metabolite classifier UPJMetab32 in a separate population. The diagnostic 
value of the UPJMetab32 model was tested in an independent cohort (7 healthy subjects and 17 UPJ patients) 
by a blinded analysis. (A) ROC curve for the UPJMetab32 classifier. (B) Box-whisker plot for classification of 
healthy and UPJ patients in the validation set according to the UPJMetab32 score. **p <  0.005 versus healthy 
subjects. Mann-Whitney test for independent samples.
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generally between week 3 and 6 to establish baseline differential renal function (DMSAscan) and washout pat-
tern (MAG3-scan). Healthy and UPJ obstruction patients were randomly divided into two cohorts: a discov-
ery cohort (n =  49; Table 1 and Supplementary Table S3) and a blinded cohort for validation (n =  24; Table 2 
and Supplementary Table S4). Mann Whitney analysis revealed no significant difference in the age of healthy 
and UPJ obstruction newborns included in both discovery and validation cohorts (p =  0.26). In addition, the 
use of Chi Squared test also revealed no gender bias (p =  0.45). Urine from newborns was collected in the 
morning during 30 min using a sterile pediatric urine collection pouch (B. Braun, Boulogne, France) during 
hospital consultation. Urine from healthy controls was collected from newborns in the maternity hospital and 
at home using the same sterile collection bags and a pair of gloves. Care was taken to not take the first morn-
ing urine. After collection, all urines were frozen within the hour at − 20 °C both in the hospital (dedicated 
− 20 °C freezer in the clinic) and at home. Transport was done using ice blocks in both cases and the samples 
were finally stored at − 80 °C in the laboratory. The UPJ study was performed in accordance with the ethical 
principles in the Declaration of Helsinki and Good Clinical Practice. The study and its experimental protocols 
were approved by the ethics committee of the French Ministry of National Education, Higher Education and 
Research (number DC-2008-452). Written informed consent was obtained from all participants (parents of 
the newborns).

Sample Preparation. A 170 μ l aliquot of urine was diluted with the same volume of a denaturing solu-
tion composed of 2 M urea, 0.0125% NH4OH, 100 mM NaCl and 0.01% SDS. To remove higher molecular 
mass proteins, the sample was ultrafiltered using a Centristat 20 kDa cut-off centrifugal filter device (Satorius, 
Göttingen, Germany) at 2000 ×  g for 45 min at 4 °C. In order to remove urea, electrolytes and SDS, 200 μ 
l of filtrate was applied onto a NAP5 gel filtration column (GE Healthcare Bio Sciences, Uppsala, Sweden), 
washed and then eluted with 700 μ l of 0.01% NH4OH. Finally, all samples were lyophilized in a Savant speedvac 
SVC100H connected to a Virtis 3L Sentry freeze dryer (Fischer Scientific, Illkirch, France). At this step, sam-
ples can be stored at 4 °C until use and re-suspended in HPLC grade water shortly before CE-MS analysis. The 
resuspension volume was adjusted to yield 1 μ g/μ l protein as measured by BCA assay (Pierce Biotechnology, 
Rockford, USA).

CE-MS analysis. CE-MS analyses were performed as previously described11,12,65 using a Beckman 
Coulter Proteome Lab PA800 capillary electrophoresis system (Beckman Coulter, Fullerton, USA) on-line 
coupled to a micrOTOF II MS (Bruker Daltonic, Bremen, Germany). The electro-ionization sprayer (ESI, 
Agilent Technologies, Palo Alto, CA, USA) was grounded, and the ion spray interface potential was set 
between –4 and –4.5 kV. The CE separation buffer contained 20% (v/v) acetonitrile and 250 mM formic acid 
(Sigma-Aldrich) in HPLC-grade water. The CE-system was equipped with a 95 cm (internal diameter: 50 μ m) 
bare fused silica capillary. Two types of CE-ESI-MS interfaces were tested (see results section); either a flatted 
or a tapered and beveled needle surrounding the capillary terminus. Data and MS acquisition methods were 
automatically controlled by the CE via contact-close-relays. Spectra were accumulated every 2 s, over a range 
of m/z 30 to 650.

CE-MS sample preprocessing for stable endogenous metabolites identification. After mass cali-
bration using the measurement of sodium formate salts at the start of each run, the raw MS-data were converted 
into NetCDF format (http://www.unidata.ucar.edu/software/netcdf/) through the Bruker software (DataAnalysis 
version 4.0). The NetCDF files were filtered by excluding spectra corresponding to a migration time less than 
520 or greater than 3650 seconds prior to preprocessing using the Bioconductor package xcms34 as previously 
described25. All the standard xcms pipeline parameters were kept to their defaults apart from steps which was set 
to 3 and bw which was set to 20. In addition, the total number of migration time alignment iterations was set to 5, 
using the LOESS approach of xcms. The resulting molecule features derived from the execution of the xcms pipe-
line (in terms of m/z and migration time pairs) were further filtered for their presence across samples by including 
only those molecule features present in at least 50% of the total samples. The latter ensured the robustness of the 
initial set of molecule intensities which would be later interrogated for the presence of stable (in terms of inten-
sity) molecule features that would serve as a set of CE-MS internal normalization standards.

Stable endogenous metabolites identification. The final filtered set of xcms preprocessed and iden-
tified m/z – migration time pairs was further interrogated for the potential presence of a set of ‘housekeeping’ 
metabolites with stable intensity across pathologies and spanning the whole intensity range. To this end, a sub-
set of ‘rank invariant’ family of normalization algorithms from the DNA microarray literature was applied with 
the purpose of identifying stable molecule features that would represent the ‘invariant set’ as referenced in the 
microarray bibliography66. Specifically, the algorithms described in35 (dChip algorithm)36, (lumi Bioconductor 
package) and37 (GRSN algorithm) were applied and sets of rank invariant metabolite abundances were retrieved. 
However, graphical assessment of the performance of these algorithms (see main text) revealed that the nature 
of CE-MS data prohibited the usage of these algorithms for the identification of a set of internal standards. 
Therefore, the following two strategies were applied:

1. The first strategy is based on the assumption that the majority of identified metabolites do not present 
differential abundance across samples (a similar assumption made for the normalization methods in the 
DNA microarray literature) and as a result, the relationship among different sample abundances is close 
to linear, after xcms preprocessing. Specifically, this approach includes the fitting of a set of Robust Linear 
Regression models38,39, either among all possible sample pairs, or for all samples against a baseline (e.g. the 
median metabolite abundances across samples) and the calculation of each model residuals. The set of stable 

http://www.unidata.ucar.edu/software/netcdf/
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metabolites is iteratively constructed by aggregating those ones whose abundance presented very low residu-
als in each model, implying low divergence from the model and subsequently, among samples.

2. The second strategy does not make any assumptions about the differential abundance distribution of the 
metabolites but requires noise preprocessing, as performed by the xcms pipeline and is based on the geomet-
rical distance of each metabolite abundance vector in the sample space from the identity ‘hyperline’. Specifi-
cally, this approach includes the construction of the identity ‘hyperline’ =

�� ��
Y X, in the n-dimensional sample 

space, where = … = …
�� ��
Y Xy y y x x x( , , , ) ( , , , )n n1 2 1 2 , and n is the number of samples. Then for each 

metabolite abundance vector = …
��
A a a a( , , , )i i i in1 2 , the Euclidean distance di from an equally spaced grid 

distributed along =
�� ��
Y X is calculated. The set of stable metabolites is constructed by aggregating metabolites 

with small di which imply both very high correlation as well as low inter-sample variability.

In both strategies (i) and (ii), the optimal number of metabolites with stable abundances is selected according 
to the normalizing potential of forward selected subsets of metabolites. The Forward Selection approach was 
selected as the number of stable metabolites should be kept to the minimum possible also for later purposes 
(exploration of prognostic or diagnostic values). Specifically, the initial candidate list is constructed by retrieving 
the first 1000 metabolites with the smallest Euclidean distance from the identity hyperline (or with the smallest 
residual value from an RLM) and sorting it in ascending order (of distance or residual value). Then, starting 
from a minimum set S of 10 metabolites, the whole dataset is normalized by fitting a LOESS curve L in this set 
and using it as the normalization reference. In each iteration one member of the stable metabolite candidate list 
is added to S, L is recalculated, the whole dataset is normalized and the following dataset variability metric is 
calculated:

=
∼ ∼

…
∼

= …M MAD X X X x x x( , , , ), where ( , , , )n i i mi1 2 1 2

and xij the normalized abundance of metabolite i in sample j, i =  1, …, m (m the number of metabolites in the 
total dataset), j =  1, …, n (n the number of CE-MS samples). M reflects the total variability of the normalized 
intensity matrix by firstly summarizing each column (sample) by taking its median value and then calculating 
the variability of this summarization, by taking the Median Absolute Deviation (MAD) of the column medians 
distribution. The final number of the stable metabolites is the size of S that minimizes M and has thus the best 
normalizing potential while at the same time being as small as possible.

Processing and normalization of new samples. New CE-MS urine samples are preprocessed up to 
filtering (exclusion of spectra corresponding to a CE-time less than on average 840 [sodium salts] or greater 
than 3000 seconds) and peak-picking (no migration time alignment) with xcms as described above. Then, the 
masses of the new samples are matched against the reference dataset (consisting of 75 disease and control runs as 
described above) with a tolerance of 0.01 mass units, and the molecule features that do not match the reference 
are excluded from further analysis. The migration time alignment of the new samples is performed with an iter-
ative procedure, similarly to the one followed by the xcms package but using the urine specific internal standards 
instead of the ones that are identified for independent datasets by xcms. Specifically, the migration times of the 
internal standards subset which is specific to the new sample (identified as described above) and span the whole 
range of the new sample’s migration times, are used as seeds for the creation of migration time clusters using 
k-means clustering with the k parameter equal to the number of matching internal standards. Then, a LOESS 
curve is fitted to each cluster and used as a reference for the alignment of migration times in each cluster. The 
intensity normalization of the new samples is performed as described above (‘stable endogenous metabolites 
identification’ section), using the proper subset of the internal standards set according to the aforementioned 
mass match procedure.

Metabolite features annotation. The final set was matched against HMDB67, ChEBI68 and KEGG69 for 
known molecules and annotated for potential chemical formulas using the CAMERA Bioconductor package70. 
From the two aforementioned methods, RLM and identity hyperline, the latter was selected as it was found to 
yield more robust results in terms of metabolite intensity coverage (S contained features spanning a sufficient 
range of intensities), normalization power, cardinality of S and its application did not require any assumptions 
for a baseline.

Statistical analysis. Biomarker identification and modelling. For the identification of potential metabolite 
biomarkers, the normalized levels of urinary metabolite features were compared between the healthy and UPJ 
obstruction patient groups. Only molecule features that were detected with a minimal frequency of 75% in every 
of the discovery groups were investigated for statistical analysis. Missing values (recorded as “Not a Number” 
[NaN]) from the discovery cohort were replaced by the average of the metabolite intensities found in the corre-
sponding group (UPJ obstruction patients or healthy newborns). However, in the validation cohort where the 
belonging of the sample is unknown, we used the mean abundance of all patients from discovery set as impu-
tation methods for missing values. Of note, zero values were considered as missing values. P-values were calcu-
lated for the comparison between healthy and UPJ obstruction patient groups using the Wilcoxon test followed 
by adjustment for multiple testing using the method described by Benjamini and Hochberg46. Only metabolite 
features with a corrected p <  0.05 were considered significant. Using an in-house developed tool, we next used a 
support vector machine (SVM)-based approach (SVM package e1071 of R)71 to generate a prognostic biomarker 
classifier based on 32 biomarkers associated with UPJ obstruction. The parameters of the radial kernel function 
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(type C) for the multi-dimensional hyperplane were: cost parameter (C) of 1 and kernel width (γ ) of 0.03125. 
Sensitivity and specificity were calculated using receiver operating characteristic (ROC) plots via the software R.

Comparison of svm scores. Statistical analyses were performed using GraphPad Prism 5.0 for Windows 
(GraphPad Software Inc) and comparisons between two groups were assessed using a Mann-Whitney test for 
independent samples. p <  0.05 was considered as statistically significant.
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Supplementary Table S1: Characteristics of the cohort used for identification of the 

endogenous housekeeping metabolic features.  

 

 

Gender   

 
M 46 61.3% 

 

F 

 

29 

 

38.7% 

 

 

Clinic symptoms of renal pathology   

 
no renal pathology 21 28.0% 

 
ureteropelvic junction obstruction 25 33.3% 

 
pelvicalyceal dilatation 4 5.3% 

 
posterior urethral valves 4 5.3% 

 
megaureter 3 4.0% 

 
pyelonephritis 3 4.0% 

 
hyperechogen kidney 3 4.0% 

 
ureteral hydronephrosis 3 4.0% 

 
bilateral renal hypoplasia 2 2.7% 

 
multicystic kidney 2 2.7% 

 
unique kidney 2 2.7% 

 
renal cystic dysplasia 1 1.3% 

 
glomerulonephritis 1 1.3% 

 

maternity 

 

1 

 

1.3% 

 

 

  



Supplementary Table S2: List of endogenous housekeeping metabolic features  

 

ID 

 

mass-to-charge 

ratio 

 

CE-time 

(min) 

Log2-intensity 

 

 

82.064873/1368.589 

 

82,06487274 

 

22,8098192 

 

14,68 

100.074386/1290.237 100,0743857 21,50395422 21,50 

126.090263/1290.666 126,0902629 21,51110489 19,34 

131.04454/1408.987 131,0445404 23,48310929 19,25 

134.043624/1361.785 134,0436241 22,69641784 20,62 

152.579489/1215.841 152,5794887 20,26401059 13,50 

164.107226/1230.268 164,1072264 20,50447002 18,05 

164.770715/1144.141 164,7707148 19,06901749 12,66 

165.537382/1144.661 165,5373824 19,07768342 12,69 

166.597455/1194.84 166,5974554 19,914004 13,16 

179.098782/1060.965 179,0987821 17,68274446 19,37 

191.064945/1361.393 191,064945 22,68987572 20,19 

198.601243/1201.964 198,6012432 20,03273491 13,73 

202.500848/1344.512 202,5008476 22,4085376 13,52 

203.136101/1300.548 203,1361008 21,67580248 23,07 

204.14024/1296.284 204,1402399 21,60474124 20,45 

212.615842/1208.194 212,6158423 20,13656831 13,98 

222.60553/1222.569 222,6055304 20,37615281 13,36 

228.589951/1160.622 228,5899513 19,34369431 13,66 

231.607345/1221.787 231,6073454 20,36311795 14,50 

235.604147/1214.61 235,6041466 20,24350635 13,78 

236.611114/1286.885 236,6111144 21,44807627 13,69 

246.611275/1469.58 246,6112747 24,49299902 13,87 

250.61946/1288.443 250,6194598 21,47405246 13,33 

254.612435/1213.68 254,612435 20,22800526 13,78 

255.622652/1222.513 255,6226521 20,37522417 13,07 

256.614786/1262.341 256,6147862 21,03901713 14,60 

260.189836/1017.354 260,1898359 16,95589886 21,14 

260.740627/1465.128 260,7406272 24,41880129 14,03 

261.25445/1017.45 261,2544502 16,95750329 15,26 

262.112181/1421.234 262,1121809 23,68723898 23,07 

265.633773/1179.398 265,6337732 19,65664051 14,62 

268.045356/1743.858 268,0453562 29,0642968 16,60 

268.622288/1258.926 268,6222881 20,9820975 13,79 

269.635473/1230.377 269,6354726 20,50627711 14,72 

270.6254/1212.424 270,6253996 20,20706497 13,98 

270.63942/1359.559 270,63942 22,65931457 13,73 

271.636821/1202.838 271,6368213 20,04730355 16,10 

273.628936/1194.162 273,6289358 19,90270664 14,30 

274.629864/1191.02 274,6298635 19,85034113 14,13 

274.630437/1262.888 274,6304374 21,0481343 14,41 

281.143806/1204.434 281,1438063 20,07390411 19,58 

282.665381/1153.988 282,665381 19,23313141 13,84 

285.575663/1815.207 285,5756634 30,25345542 13,36 

285.612072/1263.691 285,6120721 21,0615105 14,13 



289.616079/1364.636 289,6160794 22,74393441 14,04 

289.633751/1214.821 289,6337508 20,24700843 15,15 

290.636694/1206.118 290,6366936 20,10197092 14,74 

292.621738/1205.03 292,621738 20,08383204 16,21 

294.630044/1199.84 294,6300443 19,9973258 15,79 

294.64226/1362.038 294,6422602 22,70063152 13,41 

296.654961/1271.452 296,654961 21,19086441 14,91 

298.631463/1220.712 298,6314635 20,34519762 14,37 

298.635515/1293.916 298,6355149 21,56527263 14,62 

299.646088/1197.092 299,6460876 19,95153484 15,99 

300.590944/1408.706 300,5909444 23,47843393 13,71 

300.650874/1217.639 300,6508739 20,29397918 17,35 

302.133273/1411.849 302,1332732 23,53082121 23,15 

302.135969/1287.865 302,135969 21,46440995 20,12 

303.13451/1413.158 303,1345101 23,55262564 20,95 

304.111015/1593.291 304,1110154 26,55484677 21,92 

304.648005/1268.013 304,6480047 21,13354378 16,32 

305.63435/1302.773 305,6343504 21,71287654 15,12 

307.146323/1369.066 307,1463235 22,817772 18,62 

307.148705/1230.369 307,1487049 20,50614996 19,07 

308.665297/1169.656 308,6652966 19,49426678 14,04 

310.638959/1255.701 310,6389587 20,92835776 13,79 

314.101344/1743.897 314,1013436 29,0649441 18,79 

314.634715/1251.179 314,6347146 20,85298135 15,97 

318.643809/1223.993 318,6438086 20,39988076 14,52 

319.159081/1102.727 319,1590809 18,37878525 19,39 

320.13298/1485.611 320,1329803 24,7601903 20,37 

320.635477/1213.982 320,6354768 20,2330331 15,35 

321.641887/1305.62 321,6418868 21,76034121 15,11 

321.650428/1208.409 321,6504277 20,14014278 15,39 

323.630609/1801.983 323,6306086 30,03305525 13,83 

323.640607/1249.625 323,6406065 20,82708473 16,90 

324.150607/1248.284 324,150607 20,8047335 16,67 

324.647138/1249.004 324,6471381 20,81674097 15,53 

325.649757/1288.357 325,6497575 21,47261704 14,11 

327.161675/1369.801 327,1616752 22,83001681 17,43 

327.162473/1230.925 327,1624728 20,51541556 19,53 

328.124035/1141.391 328,1240353 19,0231778 19,09 

328.671614/1184.054 328,6716143 19,73424161 14,87 

331.644158/1207.185 331,6441578 20,11974746 15,90 

333.646652/1259.013 333,6466523 20,98354474 13,84 

335.15515/1273.104 335,1551495 21,21840159 16,63 

337.653498/1390.386 337,653498 23,17309764 13,95 

342.135439/1743.897 342,1354392 29,0649441 19,19 

343.661957/1224.444 343,6619573 20,40740632 15,98 

348.147758/1301.265 348,1477582 21,68775823 21,03 

348.64621/1326.937 348,6462097 22,11562184 14,59 

349.150317/1301.565 349,1503175 21,69275782 18,52 

351.687587/1345.166 351,687587 22,41942605 14,58 

352.060866/1538.349 352,060866 25,63914717 17,44 

352.696232/1254.963 352,6962316 20,9160515 16,68 

353.636588/1256.701 353,6365877 20,9450182 14,62 



353.655923/1336.987 353,6559232 22,28311962 14,00 

356.043978/1484.516 356,0439784 24,74192537 16,78 

357.240469/1045.095 357,2404687 17,41825461 19,67 

357.668794/1243.614 357,6687942 20,72690523 15,21 

358.218428/1045.336 358,2184278 17,42227492 18,22 

360.652745/1399.776 360,6527447 23,3296071 13,83 

360.661529/1303.782 360,661529 21,72970736 14,15 

361.718911/1215.219 361,7189114 20,25364527 14,91 

365.654915/1256.415 365,6549154 20,94025609 16,08 

366.599792/1929.853 366,5997925 32,16421764 18,61 

368.654864/1319.063 368,6548638 21,9843821 14,65 

369.66691/1355.09 369,6669101 22,58483945 13,91 

370.676917/1353.474 370,676917 22,55789869 14,67 

373.168936/1550.871 373,168936 25,84785716 19,76 

375.22096/1068.053 375,2209604 17,80087744 21,27 

375.645865/1258.961 375,6458654 20,98268539 13,77 

376.218952/1070.119 376,2189515 17,83531475 19,05 

377.16708/1163.562 377,1670795 19,39269307 17,61 

377.655953/1359.433 377,6559532 22,65721418 15,56 

378.110994/1784.113 378,1109936 29,73521871 18,01 

378.659033/1291.424 378,6590332 21,52372702 17,01 

379.671845/1355.508 379,6718446 22,59179673 14,88 

381.688107/1297.209 381,6881069 21,62015418 15,24 

385.166963/1664.281 385,1669625 27,73802389 18,91 

385.173767/1266.758 385,1737671 21,11262804 20,18 

385.648308/1368.425 385,6483075 22,80709165 14,80 

387.174605/1288.03 387,1746047 21,46716792 19,04 

389.197597/1336.085 389,1975971 22,26808683 17,09 

391.178399/1158.617 391,1783986 19,31029045 17,20 

392.18842/1099.733 392,1884198 18,32888225 17,71 

392.637684/1364.239 392,6376836 22,73731927 14,12 

395.127839/1864.154 395,1278386 31,06923162 16,68 

395.629514/1865.679 395,6295141 31,09464439 14,84 

397.678509/1356.868 397,6785088 22,61446805 14,82 

398.676458/1217.373 398,676458 20,28954232 14,60 

401.165412/1630.778 401,1654115 27,17962894 17,16 

401.172738/1694.078 401,1727382 28,23463127 17,85 

405.160292/1750.745 405,1602925 29,17908622 17,69 

407.681908/1288.138 407,6819084 21,46896308 15,95 

408.196932/1586.633 408,1969318 26,44388156 18,85 

410.173096/1595.747 410,1730957 26,59578908 19,37 

413.200371/1192.737 413,2003708 19,87894394 18,29 

413.683915/1159.411 413,6839146 19,32352332 15,16 

416.138318/1457.816 416,1383182 24,29692872 21,18 

417.138051/1457.816 417,1380508 24,29692872 19,16 

422.208861/1585.041 422,208861 26,41734307 19,27 

423.21461/1582.481 423,2146104 26,37469114 17,03 

428.171946/2161.302 428,1719461 36,02170451 19,85 

430.200632/1216.775 430,2006318 20,27957778 18,74 

434.672277/1449.443 434,6722771 24,15738558 13,56 

435.181292/1392.421 435,1812918 23,20701655 20,18 

436.224365/1604.09 436,2243654 26,73483786 19,68 



437.22758/1603.401 437,22758 26,72335754 17,54 

438.677677/1763.369 438,6776767 29,38947692 15,76 

442.195188/1213.07 442,1951882 20,21783167 17,66 

444.678335/1389.577 444,6783355 23,15962007 14,81 

445.234116/1131.271 445,234116 18,85450941 18,79 

445.685726/1317.599 445,6857257 21,95997874 13,37 

447.13451/1743.8 447,13451 29,06333393 18,09 

448.120871/1977.551 448,1208713 32,95918744 17,53 

451.199547/1640.605 451,1995466 27,3434211 16,94 

451.698063/1344.384 451,6980627 22,40640803 15,51 

453.752029/1209.719 453,7520288 20,1619817 14,68 

456.630578/1929.795 456,6305782 32,16324359 19,55 

457.133081/1929.812 457,1330812 32,16354081 17,98 

457.635126/1929.771 457,6351265 32,16285129 16,27 

461.71289/1220.865 461,7128898 20,34775286 13,90 

462.190898/1220.712 462,1908982 20,34519762 17,51 

462.706609/1339.049 462,7066092 22,31747984 14,64 

464.684514/1212.616 464,684514 20,21026703 13,28 

468.703106/1451.689 468,703106 24,19482171 14,32 

470.225944/1653.39 470,225944 27,55650688 17,43 

470.703741/1183.775 470,7037412 19,72958001 14,72 

481.238133/1219.328 481,2381329 20,32213214 15,33 

484.698435/1368.309 484,6984353 22,80514295 15,24 

486.247369/1708.019 486,2473691 28,4669869 20,13 

488.133087/1622.375 488,1330872 27,03958472 19,29 

488.214118/1369.828 488,2141182 22,83047402 22,28 

489.215511/1369.069 489,2155112 22,81781094 20,28 

489.229227/1205.593 489,2292272 20,09322211 19,03 

489.665135/1342.397 489,6651353 22,37328039 14,50 

490.134078/1623.722 490,134078 27,06203208 16,47 

490.21951/1368.282 490,21951 22,80470357 17,63 

492.205293/1471.231 492,2052929 24,52051938 16,79 

493.253588/1677.895 493,2535878 27,96491312 15,97 

495.748052/1194.549 495,7480519 19,90914215 14,95 

497.661528/1356.495 497,6615285 22,60824506 13,63 

498.255692/1806.746 498,2556915 30,11242689 15,39 

499.721026/1363.67 499,7210256 22,72782957 14,53 

501.226919/1696.798 501,2269192 28,279971 16,28 

502.224384/1707.009 502,2243842 28,45015414 16,28 

506.200924/1752.808 506,2009238 29,2134718 16,15 

515.24634/1400.671 515,2463404 23,34451668 15,51 

515.248321/1729.411 515,2483211 28,82351853 16,06 

518.231079/1746.072 518,2310791 29,10120139 15,29 

518.249367/1644.683 518,2493668 27,41138073 14,93 

518.730279/1191.19 518,7302786 19,8531684 14,93 

519.202828/1716.55 519,2028283 28,60916124 17,18 

519.261834/1679.677 519,261834 27,99461568 16,29 

524.18742/1537.513 524,1874198 25,62521491 15,28 

532.237327/1715.671 532,2373266 28,59451929 15,34 

537.252966/1745.497 537,2529662 29,09161056 16,26 

537.259601/1206.691 537,2596009 20,1115228 15,45 

537.65526/1977.926 537,6552596 32,96542568 19,10 



538.15717/1977.551 538,1571699 32,95918744 17,90 

538.256933/1745.852 538,2569334 29,09753333 15,13 

541.262762/1216.547 541,2627622 20,27579099 15,15 

542.266486/1216.08 542,2664862 20,26799739 14,90 

543.733933/1491.624 543,7339327 24,86039627 13,59 

545.181617/1534.794 545,1816167 25,57989247 17,51 

548.236652/1770.107 548,2366522 29,50178164 16,56 

551.230866/1687.373 551,2308658 28,12287597 15,00 

556.233638/1715.476 556,2336378 28,59126324 16,25 

557.22316/1733.993 557,2231598 28,89988669 15,04 

557.728983/1522.141 557,7289831 25,36900963 14,74 

558.246165/1439.659 558,2461647 23,99431211 18,32 

559.235568/1778.845 559,2355682 29,64742487 15,95 

559.261777/1211.451 559,2617769 20,19084567 15,80 

564.228867/1194.728 564,2288667 19,9121261 15,60 

564.755231/1194.859 564,7552315 19,91431623 14,18 

565.264247/1755.841 565,2642474 29,26401596 16,42 

566.26682/1756.102 566,2668204 29,2683656 14,90 

567.306418/1742.115 567,3064183 29,03524965 18,11 

568.275617/1738.142 568,2756168 28,9690395 17,85 

570.254059/1734.858 570,2540592 28,91429373 15,80 

570.736694/1175.967 570,7366943 19,5994569 15,63 

571.12954/1927.947 571,1295405 32,13245331 13,78 

571.233572/1187.381 571,2335721 19,78968591 17,25 

571.75515/1187.613 571,7551504 19,79354428 15,92 

572.247057/1190.971 572,2470572 19,84951362 16,04 

574.245882/1803.627 574,245882 30,06045483 15,62 

575.230134/1758.306 575,2301345 29,30509964 14,74 

581.170349/2003.087 581,1703491 33,38478874 15,85 

581.261495/1791.803 581,2614954 29,86337724 16,17 

582.245846/1711.533 582,2458461 28,52555629 15,55 

582.261043/1789.684 582,2610432 29,82807281 15,32 

583.284852/1764.808 583,2848516 29,41346918 15,38 

584.253179/1203.079 584,2531791 20,05132495 15,30 

593.28699/1271.06 593,28699 21,18432928 13,91 

594.258391/1285.899 594,2583907 21,43164897 16,89 

594.67484/2007.316 594,6748398 33,45526924 14,17 

595.274204/1800.156 595,2742037 30,00259454 15,46 

597.298388/1782.142 597,2983879 29,70237409 14,01 

598.243112/1817.154 598,2431123 30,28589325 14,82 

599.157187/2007.515 599,1571868 33,45858828 18,10 

599.254308/1775.366 599,254308 29,58942879 14,82 

599.294007/1215.768 599,294007 20,26279527 14,74 

599.745744/1190.383 599,745744 19,83972129 15,56 

599.761164/2005.377 599,7611635 33,42294345 15,66 

600.686619/2008.125 600,6866186 33,46875825 13,92 

600.737245/1190.894 600,7372445 19,84823332 13,56 

602.240525/1285.603 602,2405248 21,42672213 16,22 

603.25773/1872.357 603,2577304 31,20595449 16,31 

607.287674/1266.867 607,2876741 21,11445337 17,24 

613.281398/1205.717 613,2813976 20,09527859 14,73 

614.292271/1810.528 614,2922713 30,17547232 15,77 



614.2963/1730.712 614,2963001 28,84519658 14,01 

620.247793/1820.414 620,2477933 30,34023657 14,89 

627.195496/1743.897 627,1954956 29,0649441 21,08 

628.198697/1743.893 628,1986965 29,06487812 19,08 

629.20105/1743.897 629,2010498 29,0649441 17,17 

630.204347/1743.893 630,2043469 29,06487812 14,68 

630.329301/1777.574 630,3293012 29,62623844 14,54 

633.245859/1808.377 633,2458589 30,1396222 14,01 

638.284268/1843.128 638,2842685 30,71880022 13,96 

639.191648/2019.722 639,1916478 33,66203958 14,90 

645.302376/1782.53 645,3023764 29,70884146 13,61 

647.769309/1214.697 647,7693085 20,24494297 12,80 

649.261459/1503.246 649,2614586 25,0540934 15,08 

650.18319/1749.625 

 

650,1831897 

 

29,1604185 

 

14,96 

 

 

  



Supplementary Table S3: Clinical characteristics of UPJ discovery cohort 

 

Sample code 

Clinical characteristics 

Gender 
Age 

(days) 
Cohort  

Status 
HN 

grade 

Pelvis 

dilatation 

 

C63-1-14 

 

Healthy control 
    

 

M 

 

1 

 

discovery 

C63-1-7 Healthy control     M 1 discovery 

C63-1-3 Healthy control     M 2 discovery 

C63-1-8 Healthy control     M 2 discovery 

C63-1-4 Healthy control     M 3 discovery 

C63-1-13 Healthy control     M 4 discovery 

C63-1-5 Healthy control     M 5 discovery 

C30-4-3 Healthy control     M 48 discovery 

C47-1-2 Healthy control     M 94 discovery 

C30-3-16 Healthy control     M 104 discovery 

C59-1-5 Healthy control     M 123 discovery 

C63-1-16 Healthy control     M 143 discovery 

C63-2-7 Healthy control     M 152 discovery 

C63-2-5 Healthy control     M 176 discovery 

C47-1-3 Healthy control     M 187 discovery 

C22-2-2 UPJ obstruction 3 16 M 38 discovery 

C11-4-14 UPJ obstruction 3 21 M 44 discovery 

C42-4-11 UPJ obstruction 3 25 M 44 discovery 

C42-4-4 UPJ obstruction 3 26 F 37 discovery 

C49-4-12 UPJ obstruction 3 43 M 34 discovery 

C42-4-14 UPJ obstruction 4 17 M 29 discovery 

C3-1-1 UPJ obstruction 4 22 M 53 discovery 

C7-1-20 UPJ obstruction 4 22 M 53 discovery 

C5-3-11 UPJ obstruction 4 23 M 33 discovery 

C2-3-13 UPJ obstruction 4 24 M 37 discovery 

C49-3-4 UPJ obstruction 4 24 M 106 discovery 

C63-2-2 UPJ obstruction 4 25 M 50 discovery 

C16-4-15 UPJ obstruction 4 25 M 58 discovery 

C58-2-6 UPJ obstruction 4 26 M 30 discovery 

C57-1-21 UPJ obstruction 4 28 F 56 discovery 

C63-2-3 UPJ obstruction 4 30 M 20 discovery 

C11-3-17 UPJ obstruction 4 30 M 26 discovery 

C58-4-9 UPJ obstruction 4 30 M 39 discovery 

C55-1-5 UPJ obstruction 4 31 M 40 discovery 

C31-1-17 UPJ obstruction 4 33 M 39 discovery 

C17-3-14 UPJ obstruction 4 34 M 58 discovery 

C16-3-3 UPJ obstruction 4 35 M 40 discovery 

C50-1-6 UPJ obstruction 4 50 M 20 discovery 

C50-2-1 UPJ obstruction 4 50 M 36 discovery 

C5-3-6 UPJ obstruction ND 25 M 35 discovery 

C6-3-16 UPJ obstruction ND 16 M 167 discovery 

C63-2-4 UPJ obstruction ND 20 M 133 discovery 

C6-3-19 UPJ obstruction ND 22 M 112 discovery 

C5-3-10 UPJ obstruction ND 30 M 213 discovery 



C6-3-17 UPJ obstruction ND 34 M 105 discovery 

C6-4-11 UPJ obstruction ND 40 M 69 discovery 

C5-3-1 UPJ obstruction ND ND F 80 discovery 

C5-4-15 UPJ obstruction ND ND M 174 discovery 

C6-4-21 

 

UPJ obstruction 

 

ND 

 

ND 

 

M 

 

193 

 

discovery 

 

 

HN: Hydronephrosis. ND: undetermined.



Supplementary Table S4: Clinical characteristics of UPJ validation cohort 

 

Sample code Score UPJMetab32 

Clinical characteristics 

Gender 
Age 

(days) 
Cohort 

Status 
HN 

grade 

Pelvis 

dilatation 

 

C30-4-5 

 

-0,1674 

 

Healthy control   

 

M 

 

18 

 

validation 

C63-1-10 -1,0277 Healthy control 
  

M 1 validation 

C63-1-2 -0,9342 Healthy control 
  

M 1 validation 

C63-1-1 -0,4827 Healthy control 
  

M 1 validation 

C63-1-9 -0,7862 Healthy control 
  

M 4 validation 

C30-4-2 0,4222 Healthy control 
  

M 261 validation 

C63-1-6 -0,2766 Healthy control 
  

M 1 validation 

C2-3-1 -0,3163 UPJ obstruction ND 15 M 193 validation 

C5-4-5 0,0726 UPJ obstruction ND 15 M 232 validation 

C5-3-17 0,9125 UPJ obstruction ND 16 M 153 validation 

C28-4-12 1,0583 UPJ obstruction 3 17 M 49 validation 

C47-3-10 0,9652 UPJ obstruction 4 19 M 47 validation 

C47-1-10 0,5623 UPJ obstruction 4 20 M 64 validation 

C5-3-20 -0,0424 UPJ obstruction 4 23 M 196 validation 

C55-2-11 0,4952 UPJ obstruction 4 23 F 42 validation 

C44-4-18 0,2127 UPJ obstruction 4 25 M 69 validation 

C9-2-7 -0,0509 UPJ obstruction 3 27 F 27 validation 

C7-1-18 1,1222 UPJ obstruction 4 31 M 29 validation 

C31-4-10 0,8644 UPJ obstruction 4 33 M 33 validation 

C3-1-15 0,3647 UPJ obstruction 4 37 M 24 validation 

C50-1-20 1,0617 UPJ obstruction 4 46 F 29 validation 

C55-1-1 0,6135 UPJ obstruction 4 50 M 36 validation 

C56-1-2 0,5371 UPJ obstruction 4 67 M 60 validation 

C5-3-19 -0,510 UPJ obstruction ND ND M 262 validation 
 

  



Supplementary Table S5: List of 32 urinary metabolites differentially excreted 

between healthy and UPJ patients in the discovery cohort. 

 

ID 

 

Raw-intensity 

N° 

Log2-intensity p-value 

 
Healthy 

UPJ 

obstruction 
FC Healthy 

UPJ 

obstruction 
Wilcoxon BH 

 

324.083234/1512.623 

 

708506 

 

406112 

 

0,57 

 

19,34 

 

18,56 

 

1,8E-05 

 

0,0035 

456.630578/1929.795 3173450 1588974 0,50 21,50 20,26 1,8E-05 0,0035 

177.031281/1357.129 526987 318408 0,60 18,92 18,20 1,3E-04 0,0135 

366.599792/1929.853 788580 605801 0,77 19,54 18,89 1,4E-04 0,0135 

227.111791/989.758 10196251 24720725 2,42 22,67 24,26 2,5E-04 0,0164 

467.617961/1929.795 129782 73106 0,56 16,83 15,99 2,5E-04 0,0164 

457.133081/1929.812 864131 540265 0,63 19,58 18,91 3,0E-04 0,0166 

438.677677/1763.369 83802 53536 0,64 16,26 15,63 6,7E-04 0,0182 

490.134078/1623.722 114760 85880 0,75 16,76 16,30 8,0E-04 0,0182 

157.077555/1067.986 198756 369487 1,86 17,56 18,25 7,9E-04 0,0193 

242.074921/1533.731 3719793 7549206 2,03 21,63 22,61 5,9E-04 0,0193 

299.056259/1357.852 500388 304343 0,61 18,82 18,10 7,4E-04 0,0193 

338.098419/1482.724 633012 468298 0,74 19,20 18,81 5,8E-04 0,0193 

390.245275/1571.028 905682 401355 0,44 19,42 18,07 3,3E-03 0,0193 

474.701959/1359.882 132854 80873 0,61 16,85 16,22 1,4E-03 0,0193 

488.133087/1622.375 1150184 811380 0,71 20,07 19,55 5,8E-04 0,0193 

229.117309/1322.695 108917815 204227951 1,88 26,49 27,30 9,3E-04 0,0194 

234.129064/1411.802 230142 158724 0,69 17,72 17,20 1,7E-03 0,0194 

368.181291/1241.422 219228 127700 0,58 17,58 16,85 2,4E-03 0,0194 

632.28172/1223.924 166033 115919 0,70 17,26 16,49 3,7E-03 0,0194 

211.087719/991.444 88269 164219 1,86 16,27 17,10 1,4E-03 0,0240 

228.167817/1066.426 64195 110790 1,73 15,75 16,46 1,4E-03 0,0240 

237.193077/1281.495 96751 187287 1,94 16,28 17,26 1,5E-03 0,0240 

526.161131/1357.627 432409 272417 0,63 18,56 17,72 1,2E-03 0,0240 

181.105924/990.207 732059 1324472 1,81 19,03 20,14 2,3E-03 0,0333 

228.114334/990.108 894846 1902390 2,13 19,20 20,55 2,1E-03 0,0344 

259.090975/1390.694 1117825 485984 0,43 19,48 18,46 3,8E-03 0,0356 

306.619622/1015.236 45530 67407 1,48 15,35 15,92 6,0E-03 0,0366 

303.615001/1045.311 16068 24344 1,52 13,91 14,41 1,4E-03 0,0407 

355.071351/1117.064 547815 283969 0,52 18,80 17,97 4,0E-03 0,0424 

537.65526/1977.926 4714555 2813304 0,60 21,96 20,87 1,2E-02 0,0435 

185.125274/1291.16 

 

165754 

 

317070 

 

1,91 

 

17,18 

 

17,79 

 

2,3E-03 

 

0,0481 

 

 

FC: fold change between UPJ obstruction and healthy patients. BH: Benjamini and 

Hochberg. 
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Aims and Objectives 

Identification of urinary biomarkers by CE-MS gave promising results but this technology is quite heavy 

and requires trained personnel to analyze urine samples. The aim of this last part of my thesis was to 

develop biosensor using aptamers, that could be used as an easy-to-use diagnostic tool and that would 

give, for e.g., a color change in the presence of a urinary peptide biomarker. 
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Introduction 

Identification of urinary peptide biomarkers by CE-MS has emerged as a powerful tool allowing CKD 

diagnosis and prognosis as discussed in chapter III in the introduction. The CKD273 classifier, a panel 

of 273 urinary peptide biomarkers, has reached the highest step in clinical validation and has even 

received the FDA support for further validation 

(https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/UCM508790.pdf) [1]. 

However, this technology has some limitations. Trained personnel are needed to run the sample analysis, 

the results are not obtained on the spot, and it is quite expensive since regular servicing needs to be done 

to ensure that the apparatuses are still correctly calibrated for the analyses. To go one step ahead, tools 

with the same predictive potential but that are easier, more rapid and cheaper to use are constantly looked 

forward. As discussed in chapter IV in the introduction, aptamers seem to be optimal biosensors that 

could help developing such clinical tools. However, aptamer selection takes place on one target at a 

time.  

In the laboratory, we thus aimed to develop a biosensor based on the aptamer technology that would 

detect, directly in urine, one peptide biomarker previously identified by CE-MS. For this, we first 

selected a peptide that displayed appropriate physico-chemical properties for optimal aptamer selection 

and good predictive performance in the context of CKD, from the CKD273 panel. Then, we focused on 

the selection of aptamers directed against this peptide using CE-SELEX. 

Materials and methods 

Alpha-1-antitrypsin fragment, ssDNA library sequences and conjugated ssDNA-peptide synthesis. 

The α-1-antitrypsin fragment (MIEQNTKSPLFMGKVVNPTQK, MW=2391.0 g/mole) was purchased 

at Eurogentec (France) with a purity >85% and resuspended in ultrapure water at 25mM. A ssDNA 

library was designed and purchased at Integrated DNA Technologies (Belgium). The synthesized library 

was delivered at a concentration of 100µM in IDTE buffer (pH 8.0). Each ssDNA sequence of the library 

contained 66 nucleotides (MW~20000 g/mole): 30 randomized nucleotides (N30) flanked by two 18-

nucleotide primer sequences (5' - CGCCTCGGATAACGGATT-N30-TTCGCAGGTTACAGGACA - 

3’). 

A peptide conjugated with a fixed ssDNA sequence of 66 nucleotides was also purchased at Eurogentec 

(France). The α-1-antitrypsin fragment amino acid sequence was slightly modified to add a cysteine (C) 

so that the oligonucleotide could be added by covalent bonding. To note, this modification negligibly 

affected the isoelectric point, size and hydrophobicity of the peptide. The 21-amino acid was 

MIEQNCKSPLFMGKVVNPTQK and the ssDNA sequence added was 5’-

CGCCTCGGATAACGGATTTAGACTGATGAGACTCTACTAATGTTGCGCTTCGCAGGTTAC

AGGACA-3’ (MW=23159.8 g/mole).  

https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/UCM508790.pdf
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Incubation step of CE-SELEX 

For our CE-CELEX process, 25µM ssDNA sequences were resuspended in the incubation buffer 

containing 100mM potassium phosphate (Sigma, USA), 1mM magnesium chloride (Sigma, USA) and 

10mM NaCl (Merck, Germany) adjusted to pH 8.2 to a final volume of 10µL and then heated at 94°C 

for 10mins before being rapidly cooled on ice. Ten microliters of 25µM α-1-antitrypsin fragment was 

also resuspended in the incubation buffer and then added to the ssDNA solution for incubation for 30 

minutes at room temperature. 

CE migration buffer 

For an efficient separation of our molecular species, we tested 4 different buffers: i) 10mM potassium 

phosphate buffer (10mM potassium phosphate (Sigma, USA), 1mM magnesium chloride (Sigma, 

USA) and 10mM NaCl (Merck, Germany) adjusted to pH 8.2), ii) 20mM potassium phosphate buffer 

(20mM potassium phosphate (Sigma, USA), 1mM magnesium chloride (Sigma, USA) and 10mM NaCl 

(Merck, Germany) adjusted to pH 8.2), iii) 100mM potassium phosphate buffer (100mM potassium 

phosphate (Sigma, USA), 1mM magnesium chloride (Sigma, USA) and 10mM NaCl (Merck, Germany) 

adjusted to pH 8.2) and iv) 10mM sodium acetate buffer (10mM sodium acetate (Sigma, USA), 1mM 

magnesium chloride (Sigma, USA) and 10mM NaCl (Merck, Germany) adjusted to pH 8.2).  

CE instrumentation 

Analyzes were done using a Beckman Coulter Proteome Lab PA800 capillary electrophoresis system 

(Beckman Coulter, Fullerton, USA) equipped with a 100µm internal diameter fused silica capillary 

(Polymicro Technologies, Phoenix, Arizona) of a total length of 50 cm on which a detection window 

was done at 39.5 cm. Using the on-instrument ultraviolet (UV) photodiode array detection system and 

standard filters, the migration of molecular species was monitored at 214nm (α-1-antitrypsin fragment 

and conjugated peptide) and 254nm (ssDNA). For the experiments, the electrodes were cleaned using 

milli-Q water and in between different CE separation runs, the capillary was washed with 0.1M NaOH. 

The CE migration buffers volumes of the vials at anode and cathode was 1.5 mL. Each time a new 

capillary was used, it was conditioned by washing with 0.1M HCl (30.0 psi for 4mins), 0.1M NaOH 

(30.0 psi for 4mins), milli-Q water (30.0 psi for 4mins), and finally the CE separation buffer 0.1M HCl 

(30.0 psi for 4mins). The voltage applied was of +22 kV (current intensity: 90 µA).  

Results 

Choice of urinary peptide biomarker as target for aptamer selection 

To start our selection by CE-SELEX, we decided to focus on a peptide from the CKD273 panel. The 

choice of the peptide was based on two main selection criteria. First, for affinity studies using CE, an 

important requirement is that there should be an electrophoretic mobility difference between the 
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molecular species under analysis. This means that there should be a difference in the size or charge 

between free or bound species that will cause a change in their migration patterns [2]. In the CE, at 

pH~8, the ssDNA sequences are negatively charged [3, 4]. Therefore, to optimize the separation, the 

candidate peptide should have a net positive charge at this pH, i.e., an isoelectric point > 8. In addition, 

the candidate peptide should be able to significantly discriminate between controls and patient with 

CKD. Based on these criteria, we selected a fragment of α-1-antitrypsin (AAT) from the CKD273 

(peptide ID 90840 [5]). This peptide has a 21-amino acid sequence MIEQNTKSPLFMGKVVNPTQK 

and an isoelectric point of 9.7.  At pH~8, the peptide has a net positive charge due to the ionization of 

the three lysine (K) and one glutamate (E). Moreover, this AAT peptide is ~1000 more abundant in urine 

of patients with CKD compared to controls, and has a good discriminatory power compared to the 

CKD273 score (Figure 1).  

 

Figure 1. Scatterplots showing the classification of CKD patients and patients with no kidney disease 

(controls) using the scores established by the CKD273 classifier (A) and by the relative urinary 

abundance of AAT fragment (B). Adapted from [5] supplementary data. 

 

Selection of optimal CE separation buffer 

For affinity analysis by CE, the first step was to find the correct buffer composition for separation of the 

different molecules. Optimal composition of a CE separation buffer is defined by the absence of heat 

generated (Joule heating) when an electric current is applied to the solution since this will affect the 

migration of our electrolytes. We thus compared 4 different buffers: i) 10mM potassium phosphate 

buffer, ii) 20mM potassium phosphate buffer, iii) 100mM potassium phosphate buffer and iv) 10mM 

sodium acetate buffer. For all of them the pH was kept to 8.2. To find the optimal buffer composition 

and the maximum voltage that can be applied to limit Joule heating, an Ohm’s law plot was plotted by 

recording the intensity (µA) generated in response to the application of increasing voltages to a capillary 

filled with the 4 different buffers. The Ohm law states that ratio of voltage to current (intensity) is a 
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constant and gives a linear relationship when voltage and current are plotted. If the relationship is non-

linear, this means that the material does not obey the Ohm law and that the temperature will change [6].  

As shown in Figure 2, the 20mM potassium phosphate (green line) and 10mM sodium acetate (blue 

line) buffers showed a non-linear relationship between voltage and intensity. For the 100mM potassium 

phosphate buffer (pink line), the intensity rose too rapidly to 122 and 265 µA upon application of low 

voltages of 4 and 8 kV respectively. By comparison, the 10mM potassium phosphate buffer (red line) 

was the only one showing a linear relationship between voltage and intensity, hence obeying the Ohm’s 

law. This buffer was then selected for separation of molecular species during CE-SELEX.  

 

Figure 2. Ohm’s law plot showing the intensity recorded with increasing voltage application to the 

different CE separation buffers: 10mM potassium phosphate buffer, 20mM potassium phosphate buffer, 

10mM sodium acetate buffer and 100mM potassium phosphate buffer. 

Migration time assessment 

The next step was to define clearly the migration time of the unbound AAT fragment, unbound ssDNA 

and the conjugated peptide-ssDNA complex to define the optimal time windows for complex collection. 

For the analysis we first ran the AAT fragment alone (50µM), then the ssDNA library alone (50µM). 

With the peptide, a sharp peak was detected between 2.38 (± 0.20) and 2.91 (± 0.02) mins as shown in 

Figure 3 (green line). With the ssDNA, two peaks were detected: a first one between 2.77 (± 0.07) and 

3.06 (± 0.07) mins, slightly overlapping the time of detection of AAT fragment, and the other detected 

between 5.71 (± 0.45) and 13.4 (± 1.20) mins (Figure 3, blue line). These results confirmed the mobility 

shift between the AAT peptide and the ssDNA library that migrate in two different time windows. 
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Figure 3. Overlay of the migration pattern of 50µM AAT peptide (green curve) and 50µM ssDNA 

library (blue curve). Detection is monitored at 214nm for AAT fragment and 254nm for ssDNA. AU: 

absorbance unit. 

We next monitored the electrophoretic mobility of the complex. The peptide being positively charged, 

and the ssDNA sequences being negatively charged at pH 8.2, the formation of a complex between the 

two molecules would imply a charge shift, towards neutrality, and a detection window during the time 

interval, between the free AAT and free ssDNA sequences.  

To evaluate AAT-ssDNA complex migration and the time window during which the complex should be 

collected we purchased the same AAT fragment on which an oligonucleotide of 66 nucleotides has been 

conjugated. We ran 50µM of this conjugated peptide and obtained the migration pattern shown in Figure 

4 (red line). First, a small peak, overlapping with the detection time of free AAT fragment and free 

ssDNA is obtained. Then, a second peak is detected, starting immediately after the first one, and slowly 

increasing to attain maximum intensity at about 10 minutes, followed by a sharp collapse. Optimal time 

window for complex collection should be placed between the two peaks observed for the free ssDNA 

library so that there is no contamination of complexes with unbound DNA during the CE-SELEX 

analysis. This window, represented by the shaded area in Figure 4, corresponds to a time-lapse of 

approximately three minutes. 
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Figure 4. Overlay of the migration pattern of AAT peptide (green curve), ssDNA library (blue curve) 

and the peptide conjugated to the oligonucleotide (O+P) (red curve). Detection is measured at 214nm 

for AAT fragment and the conjugated peptide and at 254nm for ssDNA. The shaded region represents 

the time zone during which AAT peptide fragment – ssDNA complexes can be collected without 

contamination from unbound DNA. AU: absorbance unit. 

 

CE migration reproducibility of ssDNA library 

We next assessed the reproducibility of the migration of the ssDNA during CE to validate the time 

window for the complex collection. While the first peak at ~2.8 mins was still present and stable over 

17 runs, the second peak showed a very strong instability in the resolution of separation over time 

(Figure 5). These results show that our parameters for CE-SELEX were not reproducible and that the 

CE analysis could not be optimized for aptamers selection. 
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Figure 5. Overlap of different CE migration runs during AAT peptide-ssDNA complexes collection, all 

carried out using the same capillary. The black curves represent the early runs (5th – 7th) and the blue 

curves represent later runs (15th-17th). AU: Absorbance unit. 

Discussion 

Selection of aptamers using CE-SELEX has several advantages over other methods, including that low 

sample and reagent volumes are required, a large variety of molecules may be analyzed, separation is 

automated, and the number of SELEX cycles required for the selection of aptamers is reduced. 

Moreover, its use during separation of a ligand-protein complexes have already been described [2, 7].  

The composition of the buffers used for incubation and separation of the complexes is of outmost 

importance in the CE-SELEX process, as this will influence the formation and the stabilization of the 

aptamer structure, the binding of the aptamer to its target, and the migration in the CE. In the literature, 

Tris-based buffers for CE analysis reigned as the ‘optimal’ buffer for DNA analysis and is the most 

widely used buffer nowadays [8, 9]. However, several years ago, Ray, T. et al. described for the first 

time that during electrophoresis Tris induced ssDNA degradation due to electrolysis of water altering 

the pH of the buffers in the vials [4, 10, 11]. For this reason, we tested the use of other buffers without 

Tris, to avoid DNA degradation, and favored the presence of K+, Na+ and Mg2+. These cations play key 

roles in nucleic acid folding, such as the formation of G-quadruplex, which seems to be an important 

DNA structure that has been described in a variety of aptamers targeting for e.g. thrombin, ATP, VEGF 

or insulin [12]. G-quadruplex is a cyclic arrangement of four hydrogen-bonded guanines called a G-

quartet. This structure is induced and stabilized by cations which are able to fit in the cavity in the middle 

of the G-quartet (tetrad plane) [13]. Na+ allows formation of G-quadruplex structures by fitting only in 

a tetrad plane but does not allow stabilization of the structure. K+ is best since it is big enough to fit in 

the middle of the cavity, formed in between two-tetrad planes, and allows strong stabilization of the G-
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quadruplex [12]. According to NMR magnetic studies of G-quadruplex, 100mM of cation is an optimal 

concentration for G-quadruplex stabilization [14, 15], although for K+ the ion concentration may be as 

low as 10mM [16]. Furthermore, Mg2+ is needed to stabilize DNA duplexes and at least 1mM are 

required [17, 18]. A combination of all these cations increases DNA folding, increasing the chances that 

structured DNA could bind to our peptide.  

To test the efficiency of a separation buffer for CE, it should be certified that there is no heat generated 

(Joule heating) when the electric current is applied since this will affect the migration of our electrolytes. 

Heat generated when a voltage is applied will vary according to parameters such as length and internal 

diameter of the capillary. After testing 4 different buffer compositions, we selected a 10mM phosphate 

buffer for the CE-SELEX as it did not generate Joule heating. 

In addition, since we want to use aptamers for the detection of biomarkers directly in urine, the pH and 

ionic composition of the buffers should closely mimic that of urine. Analysis of urine revealed that the 

pH of individuals varies from 5.4 to 8.5 [19] and that pH of urine is usually low in patients with kidney 

diseases [20, 21]. For this reason, the pH of the buffer was set at 8.2. 

Our target for aptamer selection was chosen from a panel of 273 peptides used in the diagnosis and 

prognosis of CKD [1]. We selected a fragment of AAT, a protein closely associated to inflammation 

and progression of CKD [1, 22]. The selection of the AAT peptide was mainly driven by its great 

discriminating power between CKD and non-CKD patients and its physicochemical properties that 

seemed optimal for the CE-SELEX process. For the selection of aptamers, we used a library containing 

1017 ssDNA molecules with each sequence having 66 nucleotides, with a random 30-nucleotide central 

region (N30). The size if the random central region is important. Too short, the complexity may be to 

low such that the sequences could not form relevant secondary and tertiary structures for target binding. 

Too long, sequences would be more complex but not all could be represented in the library during 

chemical synthesis resulting in a loss of useful motifs [23]. In the literature, at least a ~25-nucleotide 

central region is favored since the whole molecular diversity may be represented in a purchased ssDNA 

library (425 ~ 1015). Therefore, we selected a N30-ssDNA library as it provided a good compromise 

between assortment and complexity. 

Due to its positive charge, the AAT peptide migrated rapidly towards the cathode as shown by the single, 

resolute peak on CE analysis. Conversely, ssDNA being negatively charged, it was detected much later 

than AAT peptide. The small peak obtained during ssDNA migration at 2.77 (± 0.07) to 3.06 (± 0.07) 

mins is due to positively charged impurities left in the ssDNA library following chemical synthesis. In 

our analysis, we noted a large standard deviation between the CE runs of free ssDNA (± 1.11 mins). It 

may be hypothesized that the impurities contained in the ssDNA library may accumulate on the capillary 

wall with successive runs. This accumulation may affect efficiency of migration and could account for 

the delay in detection of unbound ssDNA and loss in separation resolution.  
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After incubation, the bound peptide-ssDNA complexes should be separated from the unbound and 

collected. Such collection at a specific time and over a certain time lapse after CE separation is possible 

by automation. Due to the lack of migration reproducibility, precise determination of time window for 

the complex collection and automation of complex collection will not be possible here.  

Conclusion 

In this section, we presented preliminary development of CE-SELEX and showed that the use of CE for 

SELEX did not display sufficient separation resolution and reproducibility for optimal development. 

However, other options are available such as immobilization of the target on an affinity column. After 

solving this issue, the next steps, PCR and ssDNA regeneration need to be optimized to proceed the 

selection of aptamers. The development of a biosensor to screen CKD at the initial stages, using a very 

sensitive method and at bedside will certainly help to identify most at-risk patient so that they can be 

treated at the very beginning of the disease and reduce disease progression. 
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In conclusion, my thesis focused on the development and the use of biomarkers in the context of kidney 

disease and its associated CVD complications.  

I have presented here, and for the first time, the identification of urinary peptide biomarkers which 

predict with high accuracy the development of CVD in children on a CKD background. However, the 

peptides did not resist to multiple testing correction. This might be improved by increasing the size of 

the cohorts which would increase the statistical power of the identified peptides or by moving from urine 

to blood for peptidome profiling. Since blood is in direct contact with the heart and blood vessels, blood-

derived peptides may even better reflect early changes in cardiac and vascular remodeling and will not 

suffer from changes with respect to glomerular filtration and tubular uptake in children with CKD. 

Moreover, these blood-derived peptides may be informative about the mechanisms involved in the 

pathophysiology of CVD.  

Urinary metabolites could also be examined in this context since metabolites are theoretically closer to 

the phenotype and might reflect more closely the ongoing biological processes tying up information 

from the genome, the transcriptome, and the proteome. To fast-forward the identification of such 

metabolite biomarkers, we have established the proof of concept of the use of a CE-MS pipeline for the 

analysis of the urinary metabolome. The development of this new promising technology is certainly 

another step towards improvement of tools for early and more accurate diagnosis and prognosis of 

diseases. The actual CE-MS pipeline used for analysis of the peptidome allows identification of 

biomarkers in several biological fluids. In future works, it would be interesting to use the CE-MS 

pipeline developed in this thesis for the identification of metabolite biomarkers in other biological fluids, 

such as serum and plasma. Moreover, the identification of biomarkers of different molecular species, 

for e.g. metabolites and peptides, and/or from different biological fluid, for e.g. urine and plasma, could 

be combined in classifiers to improve the power of a classifier.  

 Furthermore, for the first time, we identified urinary peptide biomarkers for the diagnosis of CKD in 

dogs. The results are very promising since these urinary peptides would ensure an early diagnosis and a 

more standardized protocol in clinical practice. Interestingly, modifications of the canine urinary 

peptidome during CKD closely resemble those of the human urinary peptidome in the same context (not 

shown in the publication). Comparison between the two species showed several ortholog fragments 

(CKD273 classifier peptide IDs: 92410, 43543, 46649, 78332, 93417, 152967, 15593; 35P classifier 

peptide IDs: 13263, 5497, 6130, 11110, 5134, 11265, 1287, respectively) originating from collagen 

alpha-1 (I) chain that were all less abundant in the urine in the context of CKD. This implies that both 

in humans and dogs, mechanisms involved in the alteration of collagen turnover are similar, have been 

conserved during evolution and may explain why renal fibrosis is observed as a hallmark of CKD in 

both species. In the past, dogs have extensively been used in nephrology in the very first studies of 

transplantation and dialysis [337, 338]. Our results suggest that the man’s best friend could also be an 
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animal model that could boost our knowledge on the development and the progression of CKD in 

humans. For further comprehension, it is planned to continue the identification of the 98 remaining 

unknown peptides of the 133P classifier so that we can identify more orthologs and gain more 

knowledge on the mechanisms involved in the pathophysiology of CKD. Moreover, the 133P and 35P 

classifiers need to be validated on a larger cohort of dogs. In such larger study, it would be interesting 

to investigate whether these classifiers could be used to discriminate between CKD stages in dogs and 

more importantly be used for the prognosis of canine CKD as it has been done for the human counterpart 

CKD273. 

Finally, while a plethora of urinary biomarkers have been identified by CE-MS, the development of 

biosensors for the detection of biomarkers, directly in urine using aptamers is expected to significantly 

reduce the cost of detection and facilitate identification at bedside, like the dipstick test. When looking 

at the flotilla of proof-of-principle biosensor studies available, aptamers targeting distinct types of 

biomarker molecules could be selected (peptides, proteins or metabolites) since each of aptamer will be 

very specific to its target depending upon its nucleotide sequence. This is particularly interesting since 

different aptamers targeting different, but most discriminating, biomarkers could be used in multiplex 

test in urine for a more accurate and robust diagnosis in the future [339]. 
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