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Chapter 1

Introduction

This work is concerned with variational problems where the unknowns are curves or mappings
valued in the Wasserstein space. The so-called Wasserstein space! is the space of distributions of
mass over a fixed domain whose total mass is fixed. Putting by convention a total mass equal
to 1, this space can be identified with the one of probability measures. It is endowed with the
Wasserstein distance: such a distance measures how much it costs to transport mass from one
configuration to another. Hence, it is not surprising that this space arises naturally when one
aims at modeling phenomena dealing with the evolution (via transport) of a configuration of
mass, with the constraint that the total amount of mass is preserved.

A curve valued in the Wasserstein space should be thought as the evolution in time of
a distribution of mass: a crowd of people, a herd of sheeps, an assembly of particles (from
molecules to stars), etc. We will be interested in boundary value problems, i.e. problems where
the configuration of mass at the initial and final temporal horizons are prescribed, or at least
penalized. From the physical point of view, it would amount to look at instanciations of the least
action principle; on the other hand if one looks at a crowd of rational agents (like people), it
amounts to assume that the agents try to anticipate the consequences of theirs actions. With
the help of the metric structure on the Wasserstein space, one can define the action of a given
curve, which measures how costly it is for the motion of the curve to occur. Minimizing the
action with fixed boundary values leads to the geodesic problem in the Wassertein space, which
is now a well understood concept: it reveals the optimal way to transport the mass from its
initial to its final configuration. We will add congestion terms that have, in general, the effect of
penalizing the configurations where the distribution of mass is too concentrated. In a crowd of
people, it comes from the aversion (and the physical impossibility) for people to be too close to
each other; in a fluid it is what stands for incompressbility. The effect of this penalization is the
appearance of pressure forces and, of course, the spreading of the mass. The particles can have a
natural dynamic that tends to concentrate them: for instance, people might all want to go to
the same place, while physical particles, submitted to the force generated by a potential, have a
tendency to move to the minimum of this potential. From a mathematical point of view, our
study will focus on the regularity of the solutions of such problems where there is an interplay
between optimal evolution, penalization of congestion, but also favor of congestion through
natural dynamic of the particles. Broadly speaking, these results can be classified as elliptic
regularity: we will show that solutions of some (convex) problems in calculus of variations exhibit
more regularity than what expected a priori.

We are aware that this denomination is controversial. Even though we will stick to the most common usage,
as the reader can see in the next section, this distance could also be associated to the names of Monge, Lévy,
Fréchet, Kantorovich, or Rubinstein.



CHAPTER 1. INTRODUCTION

A natural extension of curves are mappings depending on more than one parameter (whereas
a curve is a mapping depending only on one parameter, namely time). A mapping valued in the
Wasserstein space can be thought as a distribution of mass depending on several parameters.
Although evoked briefly later in this introduction, the link between this mappings and applications
or modeling of actual phenomena remains tiny and would need to be explored. The generalization
of the geodesic problem is straightforward and leads to the concept of harmonic mappings valued
in the Wasserstein space. The Dirichlet energy of a mapping, which represents heuristically the
integral of the square of the magnitude (measured with the Wasserstein distance) of the gradient
of a mapping is a natural extension of the action of a curve. Minimizing the Dirichlet energy with
fixed values on the boundary of the source domain, i.e. the Dirichlet problem, leads to minimizers
that we call harmonic mappings valued in the Wasserstein space. Following the work of Otto,
the Wasserstein space can be seen formally as an infinite dimensional Riemannian manifold
whose sectional curvature is positive. The theory of harmonic mappings valued in Riemannian
manifold and metric spaces of negative curvature is now well understood, but to the best of our
knowledge, our work is one of the first one to consider harmonic mappings valued in infinite
dimensional Riemannian manifolds of positive curvature, though our technique are very specific
to the Wasserstein space and could hardly be generalized to other spaces. Our contribution
is a sound a thorough mathematical study of the Dirichlet energy and the Dirichlet problem
in the Wasserstein space, the proof of a maximum principle (more specifically a Ishihara-type
property) in this setting, a specific study of the case where the mappings are valued in a family
of elliptically contoured distributions, and a discretization of the problem leading to an algorithm
to compute (approximation of) these harmonic mappings.

In the rest of this introduction, we present a brief overview of the history of the optimal
transport theory, focusing on its link with the distances on the space of probability measures
(this part is can be skipped without impacting the comprehension of the rest). Then we describe
the kind of variational problems in the Wassertein space we are interested with. On a toy model,
we exhibit the key estimate which is at the basis of most of the results of this work, and conclude
by an overview of the manuscript.

1.1 Optimal transport and Wasserstein distances: a brief his-
torical survey

The birth of optimal transport is usually dated back to the Mémoire of Monge [Mon81| published
in 1781 where he formulated the problem: if one wants to move a configuration of mass from one
place to another, such that the cost of moving mass is proportional to the mass and the distance
traveled, what is the most efficient way to do it? Monge was a geometer and its main interest
was about the geometric characterization of the solution when the dimension of the ambient
space is 2 or 3. He gave a partial answer in terms of congruence of lines, developable surfaces,
etc. We refer to [Ghyl2] for a detailed account of the mémoire of Monge and the subsequent
work by Dupin, Appel and others with the same geometric focus. However, the metric point of
view on the optimal transport problem started only in the 20th century.

Before going further, let us fix some notations. From the modern point of view of calculus
of variations, the optimal transport problem can be stated as follows. Take ¢(x,y) a function
describing the cost of moving mass from x to y, and two configurations of mass p(x)dz, v(y)dy
sharing the same total mass. We want to find the coupling ~(x,y)dzdy, which describes the
amount of mass sent from z onto y, such that v actually transports p onto v (meaning that
§v(z,y)dy = p(z) and §~y(z,y)dz = v(z)) and minimizes the total cost {{c(z,y)y(z,y)dzdy. In

2



1.1. A BRIEF HISTORICAL SURVEY

short, it can be written

min {HC(af,y)v(%@/)dxdy Dy =0, fv(w,y)dy = p(z) and Jv(wxy)dw = V(w)} - (1)

Usually, p and v are normalized so that their total mass is 1, i.e. they are seen as probability
distributions. From the point of view of probability theory, the goal is to find the joint law of
(X,Y) such that the law of X is u, the law of Y is v, which minimizes the cost E[¢(X,Y")]. This
problem has three inputs (the configurations of mass p, v and the cost ¢) and two outputs (the
optimal value of the problem and the optimizer ).

Distances on the space of probability measures: early history If the cost ¢ is fixed
and one is only interested in the value of the problem (1.1), then in some specific situations it
provides a distance on the space of probability measures over a fixed metric space which we
will call the Wassertein distance. We mention that the formalization of the concept of distance
and of metric spaces (espaces distanciés) dates back to the work of Fréchet at the beginning of
the 20th century. Around that time the French school of mathematics, under the impulsion of
Poincaré and Borel, started to study actively the calculus of probability from a mathematical
point of view, and made the link with measure theory and the Lebesgue integral, developed
shortly before.

In 1925, in his book Calcul des probabilités [Lév25, p. 199-200], Paul Lévy introduced a
distance between probability distributions over the real line for technical reasons, in order to
handle an approximation process. This distance was not the Wasserstein distance but was rather
inspired by geometric considerations about the cumulative distribution functions of the laws. In
a note that he wrote in a book for Fréchet (see [Fré50, p. 331-337], first published in 1935), he
proposed different notions of distances between probability distributions among which one can
read the Wasserstein distance. This distance is seen as way to lift a distance between random
variables into a distance between laws of random variable, but he wrote that such a distance
lacks from explicit expression. An explicit expression of the Wassertein distance in the case
where the ambient space is one-dimensional, which amounts to say that the optimal coupling ~
is the increasing one, was given by Fréchet in 1957 [Fré57], though it is possible that the solution
(whose proof is not so involved) was found before.

We mention that few years before, in 1948, Fréchet [Fré48] proposed a definition of random
variables valued in metric spaces. The main issue was the definition of a mean (une position
typique) and the topology on the space of such random variables. At least in the optimal transport
community, this work is now mainly known for its definition of a (Fréchet) barycenter in metric
spaces.

As the reader can see, as soon as the notions of metric spaces and probability distributions
were settled, the interplay between them, which is what the Wasserstein distance is about, has
naturally been a subject of interest for researchers. However, the Wasserstein distance is not any
distance on the space of probability measures and features a lot of additional properties explored
later in the 20th century.

Economical interpretation The celebrated article On the translocation of masses of Kan-
torovich was published in 1942 (see [Kan58] for the english translation) and introduced what is
considered as the modern formulation of the optimal transport problem, namely (1.1). In this
article, he introduced the dual problem associated to it, which reads as the maximization of

wx{ [elantots + [y « o) +00) < e} (12)

e
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He showed that with this dual problem one can give a necessary and sufficient condition to
characterize the optimal ~. It is only a few years later, in [Kan48] that he made the link with
the problem phrased by Monge. The problem (1.1) is now usually called the Monge-Kantorovich
problem, while the equivalence between this problem and its dual (1.2) is the Kantorovich duality.

This formulation shows that solving the optimal transport problem is a linear programming
problem: minimization of a linear function under linear equalities and inequalities constraints.
Actually, the formulation of the problem as a linear program coincides with the developpement
of the linear programming theory, which happened after the second world war, in connection
with military and industrial interests [Dan83]. In some sense, the first instance of a problem
really thought as a linear programming one (namely (1.1), though the work of Kantorovich was
not known in the West until the end of the 1950s), was set in the infinite dimensional framework.
As mentioned by Dantzig, this linear programming structure, including the power of duality, also
appeared in the work of Von Neumann and Morgenstern [MVN53] in game theory (published
also around the end of the second world war).

In view of the applications, the optimal transport problem is seen as a planning problem,
more specifically an assignment problem: for instance p represents a distribution of workers,
v a distribution of tasks, and one wants to find the optimal way to assign each worker to a
specific task. The cost ¢(z,y) would be the efficiency of worker x when doing task y, and one
would rather try to maximize the total efficiency. The economical interpretations of optimal
transport are completely out of the scope of this work, for a modern reference we refer to [Gall6].
From the applied point of view, the great achievement of the linear programming approach was
the conception of scalable and efficient algorithms as the simplex algorithm. Indeed from a
combinatorial point of view the assignment problem is untractable as soon as the number of
workers is larger than a few dozens, but if the problem has a linear programming structure then
it becomes scalable with e.g. the simplex algorithm.

A flexible tool It is often said, sometimes even written? in the optimal transport community
(especially the one working on quadratic optimal transport) that (almost) nothing happened
between the work of Kantorovich and the one of Brenier [Bre87]. We would like to moderate
this assertion.

Making sense of linear programming problems and proving duality results in the most general
settings has been a research program conducted after the work of Kantorovich. One can look for
instance at the survey by Rachev [Rac85] or the book by Rachev and Riischendorf [RR98]. Quite
quickly, it has been noticed, if one chooses the distance over the underlying space as the cost
function, that the optimal value of (1.1) defines a distance on the space of probability measures
over a given metric space, distance which in fact comes from a norm: it is now what is called the
1-Wasserstein distance Wj. In the work of Kantorovich and co-authors, the first occurence seems
to be [KR58].

This 1-Wasserstein has revealed itself to be a great and flexible tool to study the space
of probability distributions. In the article [Was69] by Wasserstein, published in 1969, the
Wasserstein distance is used as a technical tool to study Markov processes®. In the 70s, the
1-Wasserstein distance is used (sometimes rediscovered) to tackle different problems: identifying
the dynamical systems which are isomorphic to Bernoulli shifts by characterizing the rates

2We want to avoid to put the blame on anyone, hence the absence of citations to back up this claim.

31t seems that it is Dobrushin who introduced the terminology Wasserstein distance (written Vasershtein in
[Dob70]). A different name may have been chosen at some point, but the article [JKO98], which showed the
relevance of the 2-Wasserstein metric, followed this terminology. All the subsequent works on the topic stick to
this denomination, and this manuscript makes no exception.

4



1.1. A BRIEF HISTORICAL SURVEY

of decrease of correlations [Orn74]; constructing random fields with prescribed distributions
[Dob70] or proving the mean field limit in kinetic theory [Dob79] to cite some examples. Here
the 1-Wasserstein distance appeared to be the most relevant and the most easily manipulated
(because of its dual formulation) metric on the space of probability distributions.

As pointed out by Vershik [Ver06], being rediscovered and used by many different communities,
the Wasserstein distances received many different names and it was not apparent that all the
formulations were related to each other. It is only in the beginning of the 21st century, with
the publication of reference textbooks [RR98, Vil03] and its increase in popularity that optimal
transport metrics became considered as a part of the legacy of the work of Kantorovich and
co-authors.

The quadratic case At the end of the 80s, the quadratic Wassertein distance, i.e. considering
the distance squared for the cost, began to draw more and more attention. Independent works by
Knott and Smith [KS84], Brenier [Bre87] (with the english version [Bre91]), Cuesta and Matran
[CM89] and Riischendorf and Rachev [RR90] have indeed provided a characterization of the
optimal  in this case. Brenier is usually the one credited for this result, which he formulated
as a polar decomposition theorem. He was working on incompressible fluid mechanics: assume
that S : Q — € is mapping the initial position of particles of a fluid to their final one, where
the fluid is constrained to stay in a bounded domain Q < R¢. Incompressibility is expressed
by the constraint that the push forward of the Lebesgue measure £ by S, denoted S#L, is
equal to £: it means that the distribution particles at the initial and final time is uniform over
the domain. A map S such that S#L = L is called a measure-preserving map. One can be
interested in computing the projection (and the distance) of a map S : 2 — Q onto the set of
measure preserving maps w.r.t. the Hilbertian metric on L?(92, R?) to quantify how far from
being incompressible a map is. Brenier showed that, to compute this projection, one just has to
solve an optimal transport problem (with the distance squared as the cost) between £ and S#L.
Moreover, S =T o U, where U is a measure preserving map, namely the projection of S on the
set of the measure-preserving maps, and 7T is the gradient of a convex function and the optimal
transport map between £ and S#L (meaning that (Id, T)#L is the optimal v in (1.1)).

As a byproduct, Brenier showed that in the quadratic case in R? (provided that measures
have densities w.r.t. the Lebesgue measure), the optimal v has a very nice structure: it is unique
and concentrated on the graph of the gradient of a convex function. In particular, the optimal
transport problem does not split mass: each point x is sent onto a unique y = T'(x). Later,
McCann [McC97] showed that the optimal v can be used to construct an interpolation between
probability measures which is aware of the geometry of the underlying space: this is what is
known as McCann’s interpolation, and corresponds to geodesic in the Wasserstein space. If a
particle of mass is supposed to be sent from z onto y, then it does following the geodesic at
constant speed from z to y. Moreover, he showed that there exist some relevant functionals over
the space of probability measures which are convex along this interpolation. He used this property
to study the uniqueness of solutions of variational problem modeling the behavior of a gas. A
few years later, Otto [Ott98, Ott01] together with Jordan and Kinderlehrer [JKO98] understood
that this way of interpolating between probability measures reveals an underlying structure of
Riemannian manifold which is physically relevant and that some well known parabolic PDEs
(in particular the heat equation) could be expressed as gradient flows, w.r.t. this Riemannian
structure, of functionals on the space of probability distributions. These functionals were precisely
the ones shown by McCann to be convex w.r.t. McCann’s interpolation, which is now interpreted
as a geodesic interpolation in this Riemannian structure.

In other words, the Wasserstein space, which is the space of probability distributions over a
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given space endowed with the quadratic Wasserstein distance, has at least formally a structure
of Riemannian manifold, and gradient flows w.r.t. this structure coincide with actual physical
equations. We emphasize that in Otto’s original work on the subject [Ott98], the goal was to
pass to the limit some non linear PDE, and the gradient flow structure in the Wasserstein space
appeared to be the right framework to achieve this end. Later, this point of view appeared to offer
many advantages: it enables to get explicit rate of convergence to equilibrium [Vil08, Chapter
24], to make sense of models whose writing in terms of PDEs can only be formal [MRCS10], or to
give a way to numerically compute the gradient flows [Pey15]. The publication, in 2005 for the
first edition, of the book by Ambrosio, Gigli and Savaré [AGS08], exhibited a sound framework
for existence, uniqueness and characterization of these gradient flows.

Gradient flows are first order evolution in time. Second order (in time) equations appear
naturally when one considers curves minizing Lagrangians depending on the velocity, measured
with the Wasserstein distance. It is the case for the variational model of the incompressible
Euler equations of Brenier [Bre89, Bre99], which is itself inspired by the more geometry-oriented
works of Moreau [Mor59] and Arnold [Arn66] about the least action principle for incompressible
fluid dynamics. Around 2006, the theory of Mean Field Games was introduced by Lasry and
Lions in [LLO06b, LL07] and, independently, by Caines, Huang and Malamé in [HMCO06]. Though
apparently disconnected from the theory of optimal transport, it was realized that some instances
of these problems share a deep link with it and could be thought as second order in time equations
in the Wasserstein space.

Following Brenier’s work, some people [McCO01] have realized that if the underlying space is
not R¢ but has a richer geometric structure, the Wasserstein space was able to reveal it. Indeed,
the coupling between probability distributions that it provides has a lot of geometric information
in it. It became apparent, with the work of Sturm [Stu06] and Lott and Villani [LV09] that the
convexity of the functionals studied by McCann was closely related to the Ricci curvature of the
underlying space. Leveraging from this observation, a synthetic theory of Ricci curvature was
developed with the help of optimal transport, enabling to define and study non smooth spaces
with Ricci curvature bounded from below and dimension bounded from above, the so-called
CD(K, N) spaces, later refined in RCD(K, N) by Gigli [Gigl3] by imposing a requirement of
being infinitesimally hilbertian. Bounds on the Ricci curvature deal with rate at which the
volumes grow or shrink along geodesic interpolation, and optimal transport has provided new
proofs of results involving Ricci-curvature related results, namely Brun Minkowski inequalities
and functional analysis estimates [McC94, Bar97], isoperimetric inequalities [CM17], etc. These
proofs are more robust than the previous ones, hence they can be more easily generalized, and
one line of research of this past ten years has been to prove that all these results stay true in
(R)CD(K, N) spaces, i.e. in the non smooth setting.

Numerical optimal transport As mentioned above, in the 40s and the 50s were simultane-
ously introduced the modern formulation of optimal transport as a linear programming problem
and efficient numerical algorithms to tackle linear programming. In short, the first way to solve
(1.1) is to consider measures u, v with finite support and to use a solver for finite dimensional
linear programming. There are some clever refinements that can leverage the precise structure
of the cost function, but these kind of methods become untractable when the support of the
measures is moderately large.

At the end of the 90s, as the picture of the Wasserstein space as a Riemannian manifold was
emerging, Benamou and Brenier proposed in [BB00] the following algorithm: the idea was to
compute the whole (McCann) interpolation by solving one single convex problem. In other words,

6
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to compute the optimal transport and the Wasserstein distance between two measures u and v,
one computes a time-dependent curve p; valued in the Wasserstein space which is y at time ¢t = 0
and v at time ¢ = 1, while being a constant-speed geodesic in between. The price to pay is the
increase in the number of variables of the problem (namely, by adding time as a variable), but
the gain is that the problem stays convex and can be formulated in terms of PDEs. With the
help of primal-dual iterative methods to face the optimization problem, one can solve efficiently
the problem, especially if the measures have densities. Indeed, in the latter case, PDE-based
discretization are more suited than the ones with finitely supported measures. Moreover, this
method applies with very few changes for the computation of gradient flows [BCL16] and to
solve instances of Mean Field Games [BC15].

We also mention other PDEs based solvers, which leverage on the fact that the optimal -,
in some cases, is concentrated on the graph of a mapping 7T'. Indeed, the computation of the
optimal 7" amounts to solve a Monge-Ampeére equation, for which there is now efficient and
robust solvers [BFO14, BCM16].

Another class of method are the semi-discrete ones [Mérll, Lévls, KMT16]. One of the
measure is supposed to be discrete, i.e. sum of Dirac masses, while the other one has a density.
Then, provided that one can compute the integral of the measure with a density over simple cells
(typically convex polyhedra), the optimal transport can be computed ezactly in a reasonable
time if one knows how to compute Laguerre diagrams (a generalization of Voronoi diagrams)
quickly; and they are indeed efficient solvers for the latter task. This type of computation is well
suited for problems where the precise structure of the transport is needed, as the solver returns
exactly the solution. It has been applied successively to fluid mechanics computations [GM18a]
or design of optical components [MMT18] for instance.

In 2013, Marco Cuturi [Cutl3] (see also [SDGP*15]) showed how, by adding an entropic
regularization of the transport plan to the linear problem (1.1), one obtains a problem which
can be solved very quickly. More precisely, if ¢ is the scale of the entropic regularization, using
Sinkhorn’s algorithm, one can solve the problem thanks to a very easy iterative scheme, where
each iteration amounts to compute a matrix vector product; however the number of iterations
needed increases as € — 0 (as well as the quality of approximation). This regularization introduces
spreading of mass, i.e. the support of the optimal transport plan - is no longer supported on
the graph of a function: in some cases this is a good thing (from the modeling point of view it
corresponds to add noise, see [BCDMN18]), in others it is something undesirable (for instance if
one is interested in the transport map and not just the value of the problem).

Applications of the Wasserstein distance On the more applied side, the Wasserstein
distance has found numerous applications. We do not at all pretend to be exhaustive and we
refer the interested reader to to [Sanl5, PC17, KPT*16] and references therein. As mentioned
before, the optimal transport problem, as an instance of linear programming, was naturally
suited for economical applications. In the beginning of the 21st century, it was (re)-discovered
and introduced in image processing under the name of Earth Mover’s distance [RTGO00]. Around
the same time, transport maps have also been used as a way to interpolate colors between images,
see for instance [MS03]. With the explosion of numerical methods to solve optimal transport
problem after 2010, Wasserstein distances have been used in machine learning as a loss function
[FZM*15, ACB17, FSV*18] or for domain adaptation [CFTR17]. As the computation of the
Wasserstein distance is one operation among others in the machine learning pipeline, scalability
becomes a real issue, and entropic regularization has been the most commonly used tool to
bypass it.

As it bears some tiny links with the second part of our manuscript, we mention the line of

7
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work developed by Solomon and co-authors [SGB13, SRGB14, SDGP*15]|. The idea is to use
optimal transport for surface processing. If one has a Riemannian manifold (N, g) (specifically: a
2-dimensional Riemannian submanifold of R3), many tasks in geometry processing imply to deal
with functions valued in A. The set of such functions is non convex and defined by non linear
constraints. On the other hand, one can use the Wasserstein space (P(N), W3) as a substitute
for (N, g): the space becomes convex, easy to discretize, and still encodes the geometry of the
surface. The (huge) price to pay is an increase in the number of unknowns. In any case, with
this heuristic, one can see why considering mappings valued in the Wasserstein space can appear
in surface processing.

1.2 Variational problems in the Wasserstein space

Let us specify what variational problems in the Wasserstein space look like and the ones we are
interested in. From now on we stick to the setting of this manuscript. We take  — R¢ a convex
bounded domain which we endow with the quadratic Wasserstein distance Wa, see (2.1) in the
next chapter. The space of probability measures over €2 is denoted by P(£2).

1.2.1 A toy model

Let vy, va, ..., vy be given probability distributions and F : P(2) —» R := R u {+0} a convex
functional over the Wasserstein space. As an example, on can think of F' as defined by

J w(x) In(p(z))dr if p has a density,
Q

+a0 otherwise,

F(u) = (13)

i.e. F(u) is the Boltzmann entropy* w.r.t. £ the Lebesgue measure restricted to Q. The
functional F' favors diffuse densities and is minimal for p = £/£(Q). Then, we fix Ai, Ao,..., An
positive weights and we consider the calculus of variation problem

N
min{F(u)—i—Zx\iW : MEP(Q)}. (1.4)

o = 2

In other words, we are looking for a measure p € P(§2) which is close to the minimum of F’
(which means, with the example of the entropy, that the measure should be diffuse) and, in the
same time, is close to the measures v;. Existence of a solution is granted provided F' exhibits
lower semi-continuity, and uniqueness can be shown under suitable assumptions (either strict
convexity of F' or absolute continuity of at least one measure v; w.r.t. £).

This toy problem is at the same time very simple, because we know how to characterize
explicitely the solutions, but on the other hand the informations that can be extracted from
the optimality conditions are very useful. Indeed, it appears as a discretization of variational
problems involving curves and mappings. The main part of the present manuscript just amounts
to show that a complicated problem can be reduced to (a sequence of problems like) (1.4), and
to use our understanding of the latter to say something that can be translated at the level of the
(complicated) original problem. In some specific cases detailed just below, Problem (1.4) boils
down to already studied objects.

4By abuse of notation, we call F' the Boltzmann entropy rather than minus the Boltzmann entropy.
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Figure 1.1: Top: schematic view of formulation (2.1) of optimal transport between u, on the left,
and v, on the right. The quantity v(z, y)daxdy represents the amount of mass that is transported
from x to y. The coupling -y is chosen in such a way that the total cost is minimal. Bottom:
geodesic in the Wasserstein space between the same distributions (computed with an adaptation
of the algorithm of Chapter 11). To go from the top to the bottom row, once one has the optimal
7, a proportion y(z, y)dzdy of particles follows the straight line between x and y with constant
speed. The macroscopic result of all these motions is a time-varying probability distributions,
whose snapshots are displayed.

Y
+ *

Figure 1.2: Barycenter in the Wasserstein space. The shape in the middle represents the
barycenter with equal weights of the probability measures which are (normalized) indicators of
the shapes in the corners. Taken from [SDGP*15] with permission of the authors.
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If N=2and F =0, i.e. if we minimize

W22(:U’7 Vl) W22(IU‘7V2)
ST, =

2 2
then, denoting A = A;/(A1 + A2), the solution of this problem is nothing else than p), where
t — p; is the geodesic, in the Wasserstein space, joining 11 to 5. An example of geodesic in
the Wasserstein space is displayed in Figure 1.1. More generally, if N = 2, then this problem
amounts to compute the so-called Wasserstein barycenters of the measures v; with weights \;
[AC11], see Figure 1.2 for an illustration. Notice that this definition would be valid for elements
of arbitrary metric spaces, and it coincides with the notion of Fréchet barycenter [Fré48|. In
short, a problem like (1.4), provided we set F' = 0, answers the question: in the sense of optimal
transport, what is the best way to summarize the data of many measures vy, vo,...,vy in a
single one?

If N=1and F # 0, i.e. if we solve (setting 7 = 1/\1)

W22(lu7 Vl) .
27

p— Aq

mgn {F(,u) +

e P(Q)} , (1.5)

then this problem is one step of the minimizing movement scheme (sometimes called the JKO
scheme because of the work [JKO98]) used to compute gradient flows in the Wasserstein space.
Notice that the problem amounts to find p which is close to v but at the same time decreases
the energy F. If we define a sequence recursively by taking ;*! the solution of the problem
above with data v; = p*, then, by sending 7 — 0 (in this case 7 is interpreted as a time step),
pF will converge to p, where the curve t — p; is the Wasserstein gradient flow of F. Namely,
t — pg, which is a curve valued in the Wasserstein space, is the curve which always follows the
direction of steepest descent of F'; but where this direction is computed w.r.t. the Wasserstein
geometry.

1.2.2 Flow interchange

Problem (1.4) is a convex problem, and one can write the optimality conditions which are (by
convexity) necessary and sufficient, hence entirely characterize the solutions of the problem.
However, in this work we will concentrate on a single estimate that we extract from (1.4) and
that we will use again and again. It corresponds to the perturbation of the optimizer along the
gradient flow of a functional which is convex along generalized geodesics. Its use in the case of
problems like (1.4) was introduced by Matthes, McCann and Savaré [MMS09] in the context of
minimizing movement schemes, under the name flow interchange, in order to prove regularity
results for gradient flows, see for instance [CGM17] for some recent application of the same
technique.

Specifically, let G : P(2) — R be a functional convex along generalized geodesics in the
Wasserstein space: it (almost) means that, along the geodesics in the Wasserstein space, the
function G is convex. In short, GG is convex w.r.t. the Riemannian structure of the Wasserstein
space. The typical example is

1

—— | w(z)™dz if p has a density,
Gm(u): m_lfﬂ ()

+00 otherwise,

for m > 1, the case m = 1 would correspond to the Boltzmann entropy. The gradient flow of G,,
is the curve t — p; satisfying the PDE called the porous medium equation

ap = A(p™).

10
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Take p a solution of (1.4) and consider t — p; the gradient flow of G starting from u. We use p;
for small ¢ as a competitor in the problem defining p. The key point is that, G being convex
along generalized geodesics, we can estimate the derivative of the Wasserstein distance along the
flow of G: this is called the Ewvolution Variational Inequality and it reads

2(pp. v
4 Wz<§> < G(v) = Glpo) = G(v) = G(p)

t=0

for any v € P(Q). With the help of this inequality we can write, by optimality of u,

> A (GO) = Gl) = — (o) (1.6
k=1

t=0

This is the flow interchange estimate that we will use over and over.
If F =0, ie. if g is the barycenters of the v;, we see that, provided the normalization
> A = 1 holds,

G(p) < 2 NG (),
i1

which is nothing else than Jensen’s inequality: for a convex (w.r.t. the Wasserstein geometry)
functional, the value of G at the (Wasserstein) barycenter is smaller than the mean of the values
of G.

Moreover, if for instance F' is the Boltzmann entropy and G = G,,, i.e. p satisfies the porous

medium equation then
4 2
:mJ |VM|2Mm2:J ‘V (Mm/2>‘ )
t=0 Q m Jq

As a consequence, (1.6) gives an upper bound on a Sobolev norm of ©™/2. For this to hold,
it is enough for the G, (;) to be finite. In short: provided the v; are in L™(Q2) and F is the
Boltzmann entropy, if 4 is the solution of (1.4), then p"/? is in H*(Q). This is an example of
elliptic regularity: the minimizer of a variational problem is smoother than the data.

d

- @F(Pt)

Let us conclude this subsection by explaining where the name flow interchange comes from.
Assume that we use (1.4) in the framework N = 1, i.e. we use the minimizing movement scheme
to compute an approximation of the gradient flow of the functional F'. In this setting, v1 and u
are thought as two samples at times k7 and (k + 1)7 of a smooth curve valued in the Wasserstein
space. Hence, the Lh.s. of (1.6) is nothing else than an approximation of (minus) the dissipation
of G along the Wasserstein gradient flow of F'; whereas the r.h.s. is the dissipation of F' along
the Wasserstein gradient flow of G. In short: we can compare the dissipation of G along the flow
of F' and the dissipation of F' along the flow of GG, i.e. we can interchange the flows.

We emphasize that the flow interchange, in the setting of Hilbert spaces, is immediate. Indeed,
let f: R4 — R and g : R - R be smooth and a point zy € R%. Let t — x; the curve such that
xo = zp and &y = —V f(z¢) (the gradient flow of f) and similarly ¢ — g, the curve such that
yo = zo0 and 9 = —Vg(y¢) (the gradient flow of g). Then

d
= &f(yt)

d
&9(%)

t=0 t=0

as both quantities are equal to —V f(29) - Vg(29). The dissipation of g along the flow of f is
indeed the same as the dissipation of f along the flow of g. In the (not as smooth) setting of the
Wasserstein space, one has to assume convexity along geodesics of the functionals and ends up
with a one-sided estimate only (because of the time-discretization).

11
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1.2.3 Curves and mappings valued in the Wasserstein space

In the present manuscript, we are interested in problems where the unknowns are curves and
mappings valued in the Wasserstein space. Let p : [0, 1] — P(€2) a curve valued in the Wasserstein
space, i.e. a distribution of mass evolving in time. The main metric quantity associated to this

curve is the action
1
1
S lpddt
J0 2 ’

where p; is the metric derivative of the curve, i.e. measures the speed of the curve in the
Wasserstein space. It is defined by

|p | -— lim W2(Pt+h:ﬂt)
I ey |h| '

Curves minimizing the action with fixed endpoint are the geodesics in the Wasserstein space.
On the other hand, let us consider g : D — P(Q) a mapping valued in the Wasserstein space®.
Here D c RP is the source space while the target space is P(£2) the Wasserstein space built over
Q c R?. The Dirichlet energy of the mapping g, which is the multi-dimensional equivalent of the
action and heuristically correspond to §,, [Vu|?/2 (with the magnitude of the gradient measured

in the Wasserstein space), is defined as

Dir(p) = lim C, (J Wg(“(g)’“(”))dn> de, (1.7)
D B(e)

e—0 2ep+2

with C), a dimensional constant depending on p the dimension of D. The reader can check that if
p were a smooth mapping valued in a Hilbert space and Wy the Hilbertian metric, than Dir(u)
would really coincide with §,, [V|?/2. This definition is the one of Korevaar, Schoen [KS93] and
Jost [Jos94] for Dirichlet energy of mappings valued in metric spaces, and it coincides with the
action of curve if the source space D is a segment of R.

We will be looking at three different classes of problem, which can be roughly stated as
follows.

e Variational problems arising in Mean Field Games. Find p : [0, 1] — P(2) which minimizes

1 1 1
f SliPa + f E(p)dt
0 0

with fixed or penalized values at t = 0 and t = 1. Here E : P(2) — R is a functional
introducing congestion effect. It can be of the form (1.3), or a constraint on the maximal
value of the density, augmented by the integral of p against a potential. This problem,
which gained interest because of the theory of Mean Field Games [Liol2, Carl0, BCS17]
(see Section 3.1) features competition between optimal density evolution (minimization
of the action), penalization of congestion (through F) and favor of congestion (through
boundary conditions and also E if it includes a potential energy). Figure 1.3 illustrates
what the solutions look like.

5To keep consistent notations in the introduction, the source space is denoted by D and the target space by
P(€2). However, in the second part of the manuscript, mainly for contingent reasons, 2 < R? will be the source
space while P(D) (with D c R?) will be the target space. As the two parts of this manuscript are independent
from one another, we hope that this will not be too confusing for the reader.

12
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® oo+ +
+

Initial Density evolution Final

Figure 1.3: Illustration of the optimal density evolution problem in the case where € is the
2-dimensional torus. On the left and right are the probability measures corresponding to the
initial and final (temporal) value of the curve valued in the Wasserstein space. The first row is
the geodesic in the Wasserstein space between the two measures: no congestion effects. In the
second row, we have added a potential taking high values in the center of the domain, forcing the
optimal curve to avoid this region. On the last row, we still have a potential penalizing presence
of mass in the center, but we also penalize congested densities by adding in the running cost the
L? norm (squared) of the density. As a result, mass has a tendency to spread. These pictures
are computed by adapting the algorithm of Chapter 11: to take for the source space a segment
is in fact simpler than what is done in this chapter, and following [BCS17], the adaptation to
optimal density evolution requires to modify only a few lines of the code.
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Figure 1.4: Example of a mapping valued in the Wasserstein space. Each little square corresponds
to the value of the mapping at one point, which is a probability distribution (represented by its
density). This mapping is harmonic, which means that it minimizes the Dirichlet energy among
all mappings sharing the same boundary conditions. More on this figure and its computation is
said in Chapter 11.
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o Incompressible Euler equations. Find Q € P(C([0,1],P(£2))) a probability measure on the
set of curves valued in the Wasserstein space, i.e. the law of a random variable taking
values in C([0, 1], P(£2)) the space of continuous curves valued in the Wasserstein space,

which minimizes .
1.
| (] glintar ) @ta
C([0,1],P(€2)) \JO

(the expected action of the random curve) with fixed values at ¢ € {0,1} and under the
incompressibility constraint that for all ¢t € |0, 1],

J ptQ(dp) = L,
C([0,11,P(2))

where L is the Lebesgue measure restricted to 2. This constraint states that in expectation
the random curve is the Lebesgue measure. As it will be explained in Section 3.2, this
problem can be seen as an instance of the least action principle for the incompressible
Euler equations [Bre89, Bre99, DF12]. Compared to the previous problem, we face now a
continuum of curves valued in the Wasserstein space and the congestion effects are trickier
as they are encoded in this incompressibility constraint. Note, however, that this is a (huge)
infinite-dimensional linear programming problem in the variable Q.

e Dirichlet problem in the Wasserstein space. Find p : D — P(2) a mapping valued in the
Wasserstein space with fixed values py, : 0D — P(2) on the boundary of D which minimizes
the Dirichlet energy. The natural terminology, by analogy with the case of mappings valued
in Riemannian manifolds, is to call it the Dirichlet problem and to consider the minimizers
as harmonic mappings valued in the Wasserstein space. An example of such a mapping is
presented in Figure 1.4. This problem was introduced more than 15 years ago by Brenier
[Bre03, Section 3] but the study left more open questions than sound results. Independently,
it was reintroduced in the framework of geometry processing by [SGB13] and studied in
the PhD thesis of [Lul7], though we argue that a good theoretical framework was still
missing, and we hope that this work is a step in this direction.

Notice that the optimality conditions of these problems are, roughly speaking, second order
elliptic equations for curves and mappings valued in the Wasserstein space, as they arise when
minimizing functionals involving convex functionals of first order derivatives.

As we said, the common point in our work is the use of the flow interchange estimate to
tackle these problems and extract interesting features.

For problems involving curves, if one discretize in time the curve p with N + 1 time steps
0,7,27,...,1 (7 := 1/N being the distance between two time steps), then the action of the curve
is approximated by

i W3 (p—1yrs PKT)

= 2T

In particular, at optimality, the k-th component pg, solves the problem (1.4) with M = 2,
VI = P(k—1)7s V2 = Plktl)rs M = A2 = 772 and a functional F whose precise expression depend
on the congestion effect modeled by E. Using the flow interchange estimate (1.6), we deduce that
for any G convex w.r.t. the Wasserstein geometry, we have an estimate between the (discrete)
second derivative of k +— G(pk,) and the dissipation of E along the flow of G.

On the other hand, for the problem involving the Dirichlet energy of mappings, the formulation
by Korevaar, Schoen and Jost directly comes with a natural approximation process: just take at
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the r.h.s. of (1.7) and look for a mapping minimizing it for a fixed €. By doing so, we obtain a
sequence p. converging to a solution of the Dirichlet problem. For a given e, the mapping p.
satisfies the following optimality conditions: for any point &, the probability distribution p.(§) is
the Wassertein barycenter of the p.(n) for n € B(£,¢) as already noticed by Jost [Jos94]. Then,
applying the flow interchange estimate (more specifically Jensen’s inequality), we deduce that
G(pe(§)) is smaller than the mean of G o . on the ball B(£,¢). Sending € — 0, we deduce that
the composition G o pu between a functional G convex w.r.t. the Wassertein geometry and a
harmonic mapping g is a subharmonic function, i.e. satisfies A(G o ) = 0. We call this property
the Ishihara type property [Ish78], which can be thought as a maximum principle for harmonic
mappings valued in the Wasserstein space.

Now, considering what is above, let us briefly summarize the new results contained in this
manuscript.

o Variational problems arising in Mean Field Games: soft congestion. In the case where the
penalization E is the integral of a convex function of the density (which can be augmented
by a potential), we are able to prove L® regularity results for p, locally in time and
globally in space. These results do not depend on the temporal boundary conditions,
only on a quantification of the convexity of E. These results are proved starting from
the flow interchange estimate followed by a iteration process reminiscent of Moser’s proof
of regularity for elliptic equations [Mos60]. The proof is really different from previous
attempts, either based on maximum principle for degenerate elliptic PDEs [Liol2], which
gives L™ regularity provided the boundary data are regular; or on regularity by duality
[San18, CMS16, GM18b], which gives Sobolev regularity for some function of the density.
However, previous works deal with quite generic Lagrangians, while our technique applies
only to quadratic ones.

e Variational problems arising in Mean Field Games: hard congestion. In the case were F
enforces the constraint for the density not to exceed a given threshold, we are able to show
that the pressure arising from this constraint is not only a measure, but belongs to L H}
under loose regularity assumptions on the potential driving the dynamic. We do not rely
on a flow interchange estimate, but we still discretize in time and end up with problems
like (1.4). This result improves the previous work [CMS16], but at the price that we look
only at quadratic Lagrangians.

e [ncompressible Fuler equations. We prove that the averaged entropy (i.e. the expectation
of the entropy of a random curve p drawn according to the optimal @) is a convex function
of time, a result which was conjectured by Brenier [Bre03, Section 4] but wasn’t proved
until now. Our proof relies on the use of the flow interchange which directly gives us the
convexity of the entropy in problem discretized in time. Posterior to the publication our
work [Lav17], Baradat and Monsaigeon [BM18] gave a simpler proof of this conjecture.
Contrary to us, they are able to show the convexity for all solutions, whereas we can only
show it for a particular one. Indeed, they do not rely on an approximation process and
directly work at the level of curves valued in the Wasserstein space.

o Dirichlet problem in the Wasserstein space. Our first contribution is to give a proper func-
tional analysis framework for the analysis of the Dirichlet problem. We show equivalences
between the definition of the Dirichlet energy of Korevaar, Schoen and Jost and the one
based on the extension of the Benamou Brenier formula proposed by Brenier in [Bre03,
Section 3]. We show the failure of the so-called superposition principle, answering to [Bre03,
Problem 3.5]. Using the flow interchange estimate, we are able to prove the Ishihara-type
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property. In the case of mappings valued in the space of Gaussian® measures, we show

well posedness of the Dirichlet problem and write explicit PDEs satisfied by the covariance
matrices. Eventually, we propose a numerical discretization based on the Benamou-Brenier
formulation that we used to make the illustrations present in this manuscript.

1.3 Organization of the manuscript

Optimal transport toolbox We recall the main definitions and results of optimal transport
that we use in the sequel. We mention that we present briefly the so-called Otto calculus about
the Riemannian structure of the Wasserstein space, which can be thought as hidden behind all
of our work.

After the optimal transport toolbox, this manuscript is divided into two main parts, concerned
with variational problems about curves, and variational problems about mappings respectively.
For each part, we advise to read the first chapter of it, which we have tried to free from technical
details, before going into the more specialized chapters.

Part I: optimal density evolution with congestion

The first part of this manuscript is concerned with problems involving curves valued in the
Wasserstein space, namely the variational problems arising in Mean Field Games and the
incompressible Euler equations.

Introduction to optimal density evolution We specify the problems about curves valued
in the Wasserstein space that we will tackle. We provide a heuristic derivation of the optimality
conditions and how, from these optimality conditions, one can guess the results proved in the
next chapters. We also make the link between these variational problems and modeling, i.e. what
they have to do with Mean Field Games and Incompressible Euler equations.

Regularity of the density in the case of soft congestion The content of this chapter is
based on the article Optimal density evolution with congestion: L* bounds via flow interchange
techniques and applications to variational Mean Field Games written with Filippo Santambrogio
[LS18]. We prove the L™ regularity of the density in the case of variational problem arising in
Mean Field Games, relying on a flow interchange estimate and an iterative process reminiscent
of Moser’s proof of regularity for elliptic equations. To make the computations rigorous, we
discretize the problem in time, and we show that this discretization leads indeed to a good
approximation of the original problem.

Regularity of the pressure in the case of hard congestion The content of this chapter is
based on the article New estimates on the reqularity of the pressure in density-constrained Mean
Field Games written with Filippo Santambrogio [LS19]. We prove that in density-constrained
Mean Field Games, which amounts to problems where the density is forced to stay below a
given threshold, then the pressure arising from this constraint, which is a priori only a measure,
belongs in fact to L H} or even L%, provided some regularity assumptions on the potential.
The time-discretization used to make the computations rigorous are the same as in the previous
chapter, however the estimates at the discrete level are quite different; and the passage to the

SIn fact, we rather work with elliptically contoured distributions but this subtlety is irrelevant at this point.
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limit now deals with dual variables (i.e. the pressure and the value function) and no longer
primal variable (i.e. the density, as in the previous chapter).

Time-convexity of the entropy in the multiphasic formulation of the incompressible
Euler equations The content of this chapter is based on our article Time-convexity of the
entropy in the multiphasic formulation of the incompressible Euler equations [Lav17]. We prove the
conjecture of Brenier about the convexity of the averaged entropy in the variational formulation
of the incompressible Euler equations. The techniques are very similar to the ones of the two
previous chapters, however in this case the additional issue is that we deal with a continuum of
curves (more specifically a measure on the set of curves valued in the Wasserstein space). At
the end of the chapter, we also prove that our formulation of the problem, which looks slightly
different than the one of Brenier [Bre99], is in fact equivalent to it.

Part II: Harmonic mappings valued in the Wasserstein space

The second part of this manuscript deals exclusively with the Dirichlet problem for mappings
valued in the Wasserstein space. It is mainly based on our article Harmonic mappings valued in
the Wasserstein space [Lav19].

Introduction to harmonic mappings in the Wasserstein space We specify the link
between this problem and the more general one of harmonic mappings valued in Riemannian
manifolds and metric spaces. We highlight that the issue is the positive curvature of the
Wasserstein space which prevents from applying already known theories. We also give an
overview of the main arguments and ideas present in the rest of this part.

The Dirichlet energy and the Dirichlet problem In this chapter, we show that one can
define the Dirichlet energy in two different ways which turn out to be equivalent: either by relying
on the theory of Korevaar, Schoen and Jost which is valid for mappings valued in arbitrary metric
spaces, or by an extension of the Benamou-Brenier formulation of the action for curves. Moreover,
the space of mappings with finite Dirichlet energy is shown to be identical to H'(Q, P(D)) where
the latter is defined in the sense of Reshetnyak [Res97]. We state the Dirichlet problem, prove
its well-posedness and derive a dual formulation. Eventually, we show that the superposition
principle does not hold, which is one of the main reason why the study of mappings valued in
the Wasserstein space turns out to be more involved than the one of curves.

The maximum principle In this chapter, we show the Ishihara-type property: the compo-
sition of a functional convex along generalized geodesics with an harmonic mapping valued in
the Wasserstein space is a subharmonic function. The proof bears many similarities with the
previous part, as it also relies on a approximation process (this time with e-Dirichlet energies)
and the use of the flow interchange estimate, which this time translates as Jensen’s inequality for
Wasserstein barycenters.

Special cases We first evoke results by other people about the case where the measures on the
boundary are Dirac masses: as € is flat, the solution of the Dirichlet problem stays valued in the
set of Dirac masses. Then we briefly say what happens in the case where the target space is the
Wasserstein space over a segment of R: in this very special case the geometry of the Wasserstein
space is flat and we do not need to rely on the theory presented in the previous chapters. On the
other hand, we also study what happens if all the boundary data belong to Pe.(2) a family of
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elliptically contoured distributions (this is a generalization of the gaussians measures), where
measures are characterized by their covariance matrix. In this case, we show that a solution of
the Dirichlet problem stays valued in Pec(£2), that we have uniqueness under minor regularity
assumptions, and that we can write the PDE satisfied by the covariance matrix. Eventually, we
give an example where the solution is (almost) explicitly known, which still features interesting
effects of the geometry of the Wasserstein space.

Numerical computations Although not identical, numerical methods very similar to the one
of this chapter have been published in the article Dynamical Optimal Transport on Discrete Sur-
faces written with Sebastian Claici, Ed Chien and Justin Solomon [LCCS18]. As we concentrate
in the present manuscript on the Dirichlet problem, while the article was mainly aimed at the
computation of geodesics (over curved surfaces), the content of this chapter is quite different
from the article, though the core ideas are the same. We tackle the problem of the computation
of harmonic mappings valued in the Wasserstein space. The only tool at our disposal suited for
numerics is the Benamou-Brenier formulation. Inspired by works on geodesics in the Wasserstein
space, we propose a finite difference discretization that we mainly use for illustration purposes.
The implementation of the algorithm presented in this chapter can be found online at

https://github.com/HugoLav/PhD

Perspectives and open questions Being a relatively unexplored topic, we point out some
open questions related to harmonic mappings valued in the Wasserstein space that we think are
of some interest. We have not included a similar chapter for the first part of this manuscript: of
course, the regularity results that we proved in the first part are far from being optimal, but we
have no clue about directions for improvement. On the other hand, for harmonic mappings valued
in the Wasserstein space, some of our attempts are failed but other gave promising preliminary
results, though not conclusive, that we would like to expose.

18


https://github.com/HugoLav/PhD

Notations

We set some useful notations that we will not always recall. Throughout the whole manuscript,
we will use the abbreviations w.r.t. (with respect to), Lh.s. (left hand side), r.h.s. (right hand
side) and l.s.c. (lower semi-continuous).

If X is any set, the mapping Id : X — X denotes the identity mapping.

The symbol R will denote R U {+oc}. Though the value +o0 will be allowed, we will never
consider functionals taking the value —co.

If X is a polish space (metric, complete and separable), it is endowed with its Borel o-algebra.
We define P(X) as the space of Borel positive measure with unit mass. It is endowed with
the topology of weak convergence, which means convergence in duality with C'(X) the space
of continuous bounded and real-valued functions defined on X. We also define M(X,R"), for
n = 1 as the space of Borel (vectorial) measures valued in R™ with finite mass, still endowed with
the topology of weak convergence. In the case n = 1, we use the shortcut M(X) := M(X,R).
In particular, P(X) is a convex subset of the linear space M(X). If u € P(X) or M(X,R"),
integration w.r.t. u is denoted by du, or by u(dx) if the variable cannot be omitted. If x € X,
the Dirac mass at point x is denoted by J,. The indicator function of a set X, which is a function
taking the value 1 on X and 0 elsewhere, will be denoted by 1 x.

The Euclidean spaces R? will be endowed with their canonical Euclidean structure with norm
denoted by | |. The notation B(x,r) is used for the closed ball of center x and radius r. The
outward normal to a domain X, whenever it exists, is denoted by nx.

If X is a subset of a Euclidean space R%, the d-dimensional Lebesgue measure restricted to
X will be denoted by Lx or simply £ if X is clear from the context. If no measure is specified
or we write simply dz for some variable x belonging to a subset of a Euclidean space, then the
integration is performed w.r.t. the Lebesgue measure.

If T: X — Y is a measurable application between two measurable spaces X and Y and p is
a measure on X, then the image measure (or push forward) of p by T', denoted by T#, is the
measure defined on Y by (T#p)(B) = u(T1(B)) for any measurable set B < Y. It can also be
defined by

f a(y)(T#u)(dy) = f oT ()l dz),
Y X

this identity being valid as soon as a : Y — R is an integrable function [AGS08, Section 5.2].

If (X, p) is a measured space and (Y, d) is any metric separable space, Lf(X,Y) will denote
the space of measurable mappings f : X — Y for which d(f,y)P integrable w.r.t. u for some
yeY. If Y =R, then the letter Y is omitted, and if i is the Lebesgue measure, then the letter
w1 is omitted. If Y is an Euclidean space, then we set

P —
I Bpcr = | 1F@Pa(da).
If X and Y are two subsets of Euclidean spaces, the L* norm of a measurable function f : X —» Y
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is defined as | flloo := esssup,ex | f(x)], where the essential supremum is taken w.r.t. the Lebesgue
measure.

If X and Y are two subsets of Euclidean spaces, C'(X,Y) and C'(X,Y) will denote respectively
the continuous and C' functions defined on X and valued in Y. If Y = R, then the target space
is omitted and we use C(X) or C'(X). The notation Vf will stand for the gradient: if X is of
dimension d then Vf € C(X,R?) for a function f € C*(X). On the other hand, V- will stand
for the divergence: V - f € C(X) for a vector field f € C'(X,R%). If X is of dimension 1, the
derivative of f: X — Y is simply denoted by f (if X stands for the time) or f’. Actually, if X is
a segment of R and f € C(X,Y), the value of f at time ¢t € X will be denoted by f; € Y rather
than f(t).

Notations specific to the case of harmonic mappings In the case of harmonic mappings
valued in the Wasserstein space, we will consider two domains 2 < RP and D < RY. In general,
all elements related to 2 will be denoted with Greek letters, and those related to D with Latin
ones. For instance, points in © (resp. D) will be denoted by &,7n (resp. z,y), and (eq)1<a<p
(resp. (ei)1<i<q) is the canonical basis of RP (resp. RY).

On the space C1(Q x D,Y) the following differential operators can be defined. The derivatives
w.r.t. variables in Q will be denoted by Vg, or simply (da)1<a<p, and those w.r.t. variables in D
by Vp, or simply (d;)1<i<q- As an example, if ¢ € C1 (2 x D, RP), with components (¢%)1<a<p,
then Vq - € C(2 x D) is defined as

P
VQ . @(5,1’) = 2 aacpa(f,ac),
a=1

for all £ € Q and z € D; and Vpp € C(2 x D,RP?) is defined as, for any a € {1,2,...,p} and
ie{l,2,...,q}, 4
(VD(p)al(gax) = aZQDQ(f,SC) eR.

The notation C’Cl(Q x D,Y') will stand for the smooth functions which are compactly supported
in © but not necessarily in D (and valued in Y): if o € C1(Q x D,Y), it means that there exists
a compact set X < €2 such that p(&,z) = 0 as soon as £ ¢ X.
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Chapter 2

Optimal Transport toolbox

The goal of this chapter is to present (a tiny part of) the theory of optimal transport with an
emphasis on the tools and results that we use in the rest of this manuscript. We do not claim to
be able to show all the richness and the level of generality reached by this topic, on the contrary
we will focus and deal only with the aspects relevant for our research. This chapter does not
provide new contents, and was inspired by the standard textbooks [San15, Vil03, AGS08, Vil08].

In all this chapter, we consider  the closure of a bounded convex open set of R%. By doing
so, we restrict ourselves to the case where the underlying space (i.e. §2) has no curved geometry.
The convexity assumption is crucial as it will prevent any congestion effect coming from the
presence of a boundary: to move inside 2 following shortest paths (i.e. straight lines), one never
meets 02 the boundary of 2. Hence the boundary will never be a cause of congestion effects.
Eventually, we look only at a bounded 2. This assumption may be removed at the price of
the study of the quadratic moments of the probability measures, but we deliberately prefer to
avoid these complications. The generalization to the case where € is the d-dimensional torus is
straightforward and we do not address it explicitly: actually, this case would be even simpler
because there is no boundary term to handle.

The set of probability measures on €2, denoted by P(2) is endowed with the topology of weak
convergence of measures. It is a convex compact subspace of the set M(2) of all finite measures
on 2. The space P(f2), endowed with the quadratic Wasserstein distance defined below, is what
we call the Wasserstein space.

2.1 The Wasserstein distance

2.1.1 The optimal transport problem

If u,v e P(R2) are two probability measures, the quadratic Wasserstein distance between them is
defined as

Wa(uv)i= mins [ fo = yPrdedy) + 7€ PR« D) and moy = mitty = v
QxQ
(2.1)
In the formula above, mg, 7 : 2 x  — ) stand for the projections on respectively the first
and second component of Q x Q. A v € P(Q x Q) satisfying the constraints mo#y = p and
m#y = v is called a transport plan and an optimal ~ is called an optimal transport plan. Clearly,
W2 :P(Q) x P(Q) — R is a convex function of its two arguments.
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Let us recall briefly the interpretation of this definition. The measures u and v are thought
as distributions of mass sharing the same total mass (1 by convention). The measure v on the
product space describes a way of moving mass from p to v: the quantity v(z,y)dzdy is the
infinitesimal amount of mass moving from x to y. The constraints mo#y = p and m#y = v are
the ones prescribing that v actually represents a way to move mass from p to v. The cost of
moving mass from x to y is |z — y|?, hence the name quadratic Wasserstein distance. Then, we
take the infimum over v, namely we look for the cheapest way to move mass from p onto v. The
distance between p and v is the square root of the total cost for this cheapest way.

The optimization problem defining the Wasserstein distance can be seen as a linear program-
ming problem in the variable +: it consists in the minimization of a linear functional under linear
constraints. In particular, it admits a dual problem which reads

[[ 2(“7”) _ .
Ty T { J rtamtao + [ vtontan
|z —y|?

0,1 € C(Q) and ¢(x) + P(y) < TV:I:, y € Q} (2.2)

Beware that we have inserted a factor 1/2 because of the simplifications it leads to in the sequel.
The optimal ¢ and ¢ in the problem above are called the Kantorovich potentials: the economical
interpretation is that ¢(x) (resp. ¥(y)) is the cost of loading (resp. unloading) a unit of mass at
z (resp. y). The constraint ¢(z) + ¥(y) < |x — y|?/2 states that the total price of loading and
unloading cannot excess the cost for moving from x to y, and the total cost is nothing else than
the sum of the total cost of loading and unloading.

We will not prove it but these two optimization problems admit solutions v € P(Q x ) and
v, € C(2). Moreover, we have the following relations between the optimizers of the primal and
dual formulation of the Wasserstein distance.

Proposition 2.1. Let u,v € P() be given. Let us call v and (p,1) any solutions in the
optimization problems (2.1) and (2.2) respectively.

1. There holds

_ |z —y?

Plo) + ) =

for v-a.e. (z,y) € Q x Q.

2. Moreover, one can choose ¢ and v in such a way that they are c-transform one from

another, namely that
=y
p(r) = inf —(y)

ye 2 )
W(y) = inf (kc;y' - w(af))-

The interpretation of the first point is that, the price of loading at « and unloading at y is equal
to the price |z — y|?/2 to move from z to y if some mass is actually moved (by 7) from z to
y. Notice that the second point implies that | -|?/2 — ¢ and | - |?/2 — % are convex functions.
Moreover, it also implies that ¢ and v are Lipschitz functions, with a Lipschitz constant that is
bounded by the one of z > |2|?/2 on €, the latter quantity being independent on y and v.
Now, and this was understood by Brenier and others, much more can be said when one
restricts its attention to measures which are not too singular. The right assumption is for the
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measures not to give mass to (d — 1)-dimensional subsets but we will rather consider the stronger
assumption that the measures have a density w.r.t. £ the d-dimensional Lebesgue measure.
Indeed, in this case, there is a unique 7 and it is concentrated on the graph of a function T,
meaning that each particle = of the initial measure p is sent onto a unique point y = T'(x). This
is expressed in the next proposition, which is usually called Brenier’s theorem.

Proposition 2.2. Assume that p has a density w.r.t. L. Then there exists a unique vy solution
of (2.1) and it can be written as v = (Id,Id — V)#u where (¢,v) is any solution of the dual
problem (2.2). In particular, v = (Id — Vo)#pu.

Let us underline that Id — V¢ is the gradient of the convex function | - |?/2 — ¢. In fact,
Brenier’s theorem comes with a reciprocal: under the assumption of the proposition, if there
exists a map T : 2 — € which is the gradient of a convex function such that T#u = v then
~v = (Id, T')#p is the (unique) optimal transport plan between p and v. In other words, Brenier’s
theorem states that there exists a unique way to write v = T#u with T being the gradient of a
convex function, and such a T can be found by solving the optimal transport problem.

Notice that Brenier’s theorem does not imply the uniqueness of ¢, in fact we have only the
uniqueness of Vi on the support of p. Let us now introduce an even stronger assumption: that
the support of i is ), or more precisely that the density of y w.r.t. L is strictly positive a.e.
With that in hand, we have uniqueness in the dual problem and we can compute derivatives of
the Wasserstein distance w.r.t. its inputs.

Proposition 2.3. Let p,v € P(Q) be two absolutely continuous probability measures with strictly
positive density w.r.t. L. Then there exists a unique (up to adding a constant to ¢ and subtracting
it from ) pair (o,) of Kantorovich potentials. Moreover the “vertical” derivative of Wi (-,v)
at p is : if p € P(Q) is any probability measure, then

C WH(A =) +ep,v) — Wi(u,v .
W= D)= W00) [
e—0 2 Q

For a proof, we refer to [Sanl5, Propositions 7.18 and 7.17]. We underline that this result is not
surprising: with (2.2), one sees that y — W2(u,v)/2 is the supremum of functional linear w.r.t.
. Hence its derivative is the slope of the linear functional for which the maximum is reached,

ie. .

In the proof of Proposition 9.5, we will make a brief use of the 1-Wasserstein distance W7. It
can defined by duality in the following way: for any p,v € P(Q),

Wi(p,v) :=sup {f ed(p—v) : peC(Q)is1— Lispchitz} .
¢ (JD

The only property that will be of interest to us is that this 1-Wasserstein distance controls the
2-Wasserstein distance in the sense that Wy < C/W7i, see [Sanlb, Equation (5.1)], where C'is
related to the diameter of €.

2.1.2 The Wasserstein space

Proposition 2.4. The function Wy : P(Q2) x P(Q) — R, defines a distance over P(§2) which
metrizes the weak convergence of measures.

This property is obviously the main reason why Ws is called a distance. If one were not working
on a bounded §2, the Wasserstein distance would metrize the weak convergence of measures
together with the convergence of the second moments, but we avoid this kind of subtleties by
assuming compactness.
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Definition 2.5. The Wasserstein space is the metric space (P (), W3).

Based on the property above, it is a compact metric space.

It is important to understand that the Wasserstein space contains the geometry of the
underlying space. Indeed, every x € ) can be seen as an element of P(€) by identifying it with
0, the Dirac mass located in z. From the very definition of the Wasserstein distance,

W2(5r75y) = |(L‘ _y|'

As a consequence, when we will talk in the sequel about differential concepts on the Wasserstein
space, the reader can, as a safety check, look at what happens when the curves or mappings
are valued in the set of Dirac masses. For instance, if f : [0,1] — Q is a smooth curve valued
in (2, we can see it as a curve p valued in the Wasserstein space by setting p; = d(;, and, for
instance the action A(p) of the curve, defined later in (2.7), can be seen to be the L? norm of
the derivative of f, up to a factor 1/2.

We mention that in the Wasserstein space the translations “commute” with the optimal
transport plans in the following sense: if u,v € P(Q) and if T, T}, : R — R? are translations
by x and y respectively, then v € P(Q2 x Q) is an optimal transport plan between p and v if
and only if (T, T,)# is an optimal transport plan between T,#u and T,#v. [Vil03, Problem
1]. In particular, if we take for m(u) and m(v) the centers of mass of p and v, and we call
po := T_py#p (and similarly for v) the centered measure built from p then we have the
decomposition

W3 (1, v) = W3 (110, v0) + [m() — m(u)[*. (2.3)

It tells us that we can decouple the effects of the center of mass and the centered part in the
Wasserstein distance. It also implies that the mapping p — m(u) is a retraction from (P(Q), Wa)
onto (£, |): it is a 1-Lipschitz mapping which leaves €, identified with the set of Dirac masses,
invariant.

2.2 Curves valued in the Wasserstein space and Otto Calculus

2.2.1 Metric derivative

The main interest of the Wasserstein distance —for what we have in mind- is that it endows
P(Q2) with a differential structure. One can define what a smooth curve valued in P(f2) is and
compute its speed in a way which is relevant to modeling.

We will denote by I' the space of continuous curves from [0, 1] to P(€2). This space will be
equipped with the distance dy of the uniform convergence, i.e.

doo(p', p%) = max Wa(pt, p7)-
One has to think at an element of I' as a distribution of mass evolving in time: a pile of sand,
the assembly of molecules in a gas, a crowd of people, a herd of sheeps, etc.
Following [AGSO08, Definition 1.1.1], we will use the following definition.

Definition 2.6. We say that a curve p € I" is 2-absolutely continuous if there exists a function
A€ L2([0,1]) such that, for every 0 <t < s <1,

S

Walpt, ps) < Jt A(r)dr.
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For real-valued functions, this definition would single out the H' functions-those whose speed is
square integrable. It follows the same purpose here. The main interest of this notion lies in the
following result.

Theorem 2.7. If pe ' is a 2-absolutely continuous curve, then the quantity

|p | -— lim WQ(PHhaPt)
TS0 |h]

exists and is finite for a.e. t. Moreover,

1 N W2
J |je|2dt = sup sup s (Pt Pt) (2.4)
0 Nz2 O<ti<ta<.<ty<l [=h te—tk-1

Proof. The first part is just [AGS08, Theorem 1.1.2]. The proof of the representation formula
(2.4) can easily be obtained by adapting the proof of [AT03, Theorem 4.1.6]. O

The quantity |p;| is called the metric derivative of the curve p and heuristically corresponds
to the norm of the derivative of p at time ¢ in the metric space (P(€2), Ws). Up to now, this
definition would make sense and the theorem would be true for curves valued in arbitrary (though
separable) metric spaces. However, in the case of the Wasserstein distance, there is this beautiful
link between analysis in metric spaces and fluid dynamics which goes as follows, see also [AGS08,
Theorem 8.3.1] or [Sanl5, Theorem 5.14].

Theorem 2.8. Let pe T’ be a 2-absolutely continuous curve. Then

1t 1 1
f |/')t|2dt:min{f (J |Vt|2dpt> dt}, (2.5)
2 Jo v (Jo \Ua 2

where the minimum is taken over all families (Vi)e[o,1] such that v, € th(Q,Rd) for a.e. t and
such that the continuity equation 0ypr +V - (pyvy) = 0 with no-fluz boundary conditions is satisfied
in a weak sense. Moreover, there exists a unique optimal (Vt)te[o,l] and it is characterized by the
fact that for a.e. t € |0, 1], the field vy belongs to the closure of {N ¢, ¢ € C*(Q)} in the Hilbert
space L,%t(Q, RY).

The optimal family (vi)eo,1] is called the tangent velocity field to p.

The continuity equation d;p; + V - (prvy) = 0 describes the evolution of an assembly of
particles, whose distribution at time ¢ is p;, and such that the velocity of a particle located at
time ¢ in x is v¢(xz). The no-flux boundary conditions expresses the conditions that particles
do not leave the domain 2, mathematically they read (p;v¢) - ng = 0 on 0f2, where ng is the
outward normal to (2.

In other words, if p € I is a 2-absolutely continuous curve, there exists a time-dependent
velocity field vy which “represents” the motion of p (in the sense that the continuity equation is
satisfied) and such that, at for a.e. t,

1 - 12 1 2
Sl = | 2 il
2|Pt| L 2|Vt| Pt

The latter expression is nothing else than the kinetic energy of the assembly of particles at time
t.

25



CHAPTER 2. OPTIMAL TRANSPORT TOOLBOX

2.2.2 A word on Otto calculus

Theorem 2.8 allows us to talk about the so-called Otto calculus and the interpretation of the
Wasserstein space as a Riemannian manifold. The following discussion will stay at a very formal
level, actually one could see the book [AGS08] as clean formalization of it. Let u € P()
admitting a smooth density bounded from below and above. To describe the tangent space at pu,
one needs to consider the set of all curves p: [—1,1] — P(£2) with py = . The question is how
one can characterize the speed of p at time ¢t = 0 and measure its magnitude.

One is tempted to compute dyp|,_, to evaluate the speed of p at time ¢ = 0. But as far as
transport is concerned, dip is not the right quantity: it tells you that mass is created at some
place (where d;p > 0) and removed elsewhere (where d;p < 0), not what is transported where.
On the other hand, one has rather to represent the motion with the help of a velocity field vy:
the interpretation of the continuity equation is that a particle located at z at time 0 will move to
x +tvo(x) at time ¢ at least at first order in ¢. Then, among all the velocity fields v( representing
the motion of p at time ¢ = 0, there exists an optimal one v, the one such that the square of
the metric speed of p is nothing else than the kinetic energy of the particles which are moving
according to vg. According to Theorem 2.8, the optimal one is characterized by vg = V¢ where
¢ satisfies

(2.6)
Vo -ng =0 on 0§,

{v (uVg) = — dipleg in €2,
which is a rephrasing of the continuity equation. Notice that (2.6) is an elliptic equation, whose
r.hs. — dipl,_ is seen as given, and which is well-posed if 1 = pg is bounded from below and
above. Here one difficulty of optimal transport is apparent: it is difficult to handle the situations
where there is not mass everywhere (i.e. if x4 vanishes), because in this case (2.6) cannot be
studied by standard tools. Anyway, provided ¢ is defined (according to Theorem 2.8, v; is well
defined at least for a.e. t), the square of the speed of p at time 0 is nothing else than SQ |Vo|2du,
i.e. the H' norm of ¢ weighted by pu.

Given p € P(2) there are two ways to describe its tangent space 7,,P(2), in other words two
bases for it. The first one, which corresponds to wvertical motion, is to see an element of 7),P(12)
as a function 0;p|,_, which has 0-mean (because of mass conservation). The second one, which
corresponds to horizontal motion, is to see an element of T),P(€2) as a function ¢ and to think
at V¢ as a velocity field. The change of coordinates formula is nothing else than the elliptic
equation (2.6) which is well posed at least if u is smooth enough. Eventually, the metric tensor
has a better expression in the basis for horizontal motion, as, if ¢, are two elements of the
tangent space,

(P V)1, pe) = L(V¢ - V)du.

Actually, one could guess this metric tensor by doing a formal Taylor expansion of the Wasserstein
distance. If ¢ is small, then at the leading order W3 (u,v) ~ &%(¢, ¢>T”73(Q) provided that
V- (uVo) = =(v —p)/e.

As an example, if 4 = £, then (2.6) boils down to the Poisson equation with Neumann
boundary conditions, and the metric tensor is the H~! scalar product in the basis for vertical
motion (while staying the H' one in the basis for horizontal motion). It explains why the
Wasserstein distance is sometimes considered as a weighted H~! norm, see for instance [San15,
Section 5.5.2].
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2.2.3 Action of a curve

A crucial quantity is the action of the curve, which is defined as

IR
— 13 f |p¢|?dt if p is 2 — absolutely continuous,
= 0

A(p) (2.7)

400 else.

Thanks to Theorem 2.8, one can interpret A(p) as the integral over time of kinetic energy, hence
from a physical point of view A(p) is an action (the integral over time of a Lagrangian). This
action looks like a H'-norm, hence the following results is not surprising.

Proposition 2.9. The functional A : T — R is convex, l.s.c. and its sublevel sets are compact
inI.

We recall that I' is a convex subspace of the set of functions defined on [0, 1] and valued in
M(), hence convexity of A has a well-defined meaning.

Proof. To prove that A is convex and l.s.c., we rely on the representation formula (2.4) which
shows that A is the supremum of convex continuous functions. Moreover if p € T" is a curve with
finite action and s < ¢, then, again with (2.4), one can see that Wa(ps, pr) < /2A(p)/t — s.
This shows that the sublevel sets of A are uniformly equicontinuous, therefore they are relatively
compact thanks to Ascoli-Arzela’s theorem. O

Let us underline that the whole goal of the second part of this work is to give a meaning to
this action A when one faces no longer curves valued in the Wasserstein space, but mappings, i.e.
probability measures depending on more than one parameter.

2.2.4 Geodesics

There is a particular class of curves valued in the Wasserstein space, namely the (constant-speed)
geodesic. A curve is a geodesic if it is the shortest path between two points. With the additional
requirement that this geodesic is traveled at constant-speed, a curve p € I' is by definition a
geodesic if and only if for any ¢, s € [0, 1],

Wal(pt, ps) = |t — s|Wa(po, p1)-

In the sequel, geodesic will always mean constant-speed geodesic.

There are two main features that we want to underline: the first one is the characterization
of geodesics as solutions of a problem of calculus of variations, and the second one is the fact
that geodesics between two measures p and v can be computed automatically if one solves (2.1)
the optimal transport problem between them.

The first statement would be in fact true for geodesics valued in arbitrary (though separable)

metric spaces. It amounts to say that given u,v € P(€) the solutions of the problem

1t
mpin {A(p) = 2J |p¢|?dt : peT such that pg = p and p; = I/}
0

are exactly the constant-speed geodesics joining i to v, and the value of the problem is W2(u, v)
/2. Notice that Proposition 2.9 can help to show the existence of at least one solution. Switching
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to the fluid dynamic formulation with Theorem 2.8, we can see that we can also write

1
W3 (p,v) = min {J J |v¢|?dpsdt : peT such that dp+ V- (pv) =0 and pg = p, p1 = V},
0 JQ

PV
(2.8)
which is sometimes called the Benamou-Brenier formulation of the Wasserstein distance. This
expression actually perfectly fits in the framework of Otto calculus in the sense that it shows
that W5 is the Riemannian distance coming from the metric tensor described above.

If one knows how to solve the optimal transport problem (2.1) between p and v, then the
geodesics between these two measures can be deduced. In fact, if v € P(Q x Q) is an optimal
transport plan between p and v, then the curve t — p; := ((1 — t)mg + tm)#7 is a constant
speed geodesic between p and v for ¢ running between 0 and 1, and reciprocally every geodesic
can be written that way [Sanlb, Proposition 5.32]. The interpretation is that, if a particle must
be sent from x to y, then it moves on the segment (i.e. the geodesic in ) joining x to y at
constant-speed. An example of geodesic in the Wasserstein space is displayed in Figure 1.1, page
9. Combining this result with the structure of the optimal transport plans, one can write the
following.

Proposition 2.10. Let pu,v € P(Q) and assume that p has a density w.r.t. L. Then there exists
a unique geodesic p € I' joining p to v and it can be written, fort € [0,1],

pr = (Id — tV)#pu,

where (@,1) is any pair of Kantorovich potentials between p and v.

2.3 Gradient flows and functional over the Wasserstein space

2.3.1 Gradient flows

An other class of remarkable curves are the gradient flows generated by functionals convex along
geodesics. Roughly speaking, if F': P(2) — R is a given functional, a gradient flow is a curve
p:[0,4+00) — P() along which F decreases “the most” w.r.t. the Wasserstein distance, in a

formal way it can be written

dpy

Of course nor the notion of gradient or of time derivative make sense as vectors in the Wassertsein
space, but the Otto calculus, by providing a formal Riemannian structure on the space P(£2),
indicates that there is some hope to make sense of it. In [AGS08] (see also [San15, Chapter 8]), it
is shown how the notion of gradient flow can still be defined through the use of metric quantities
only.

A standard assumption to ensure the existence and uniqueness of a gradient flow with a given
initial value p is that F' is convex along generalized geodesic. If ug, i and v are three probability
measures on €2, one can always build a transport plan v € P(2 x  x ) such that the 1-marginals
are respectively po, ¢ and v and the 2-marginals are optimal transport plans between pg, u on
the one hand and pg, v on the other hand (notice that in general the last 2-marginal is not an
optimal plan between p and v). Then, the generalized geodesic p : [0,1] — P(D) between p and
v with base point pg is defined as p; := a;#7, with a; : (z,y,2) € B > (1 —t)y +tz € Q. A
functional F : P(Q)) — R is said convex along generalized geodesics if for any points g, and v,
there exists a generalized geodesic p joining u to v with base point g such that Fop:[0,1] - R
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is a convex function. As a particular case, a function convex along generalized geodesics is convex
along geodesics in the Wasserstein space, but the reciprocal is not always true [AGS08, Remark
9.2.8]

Gradient flows in the Wasserstein space are a very large topic, we will only need what are
called the Energy Dissipation Equality (EDE) and the Evolution Variational Inequality (EVT)
formulations of gradient flows, which are ways to make sense of (2.9) in the metric framework.
They are summarized in the following theorem, whose proof can be found in [AGS08, Theorem
11.2.1].

Theorem 2.11. Let F : P(Q)) — R a functional L.s.c. and convex along generalized geodesics.
Then, for any p € P(Q) such that F(p) < 400, there exists a 2-absolutely continuous curve
t € [0,+00) = SFp e P(Q) such that S5p = p and for any t > 0 and any v such that
F(v) < +oo,

lim sup W22(S£-hpv V) - WQZ(StFpa V)

< F(v) — F(SFp). (2.10)
h—0, h>0 2h

Moreover, the function t — F (StFp) is decreasing and more precisely for any t = 0,

[[ 1t oias = £y - FisE D) (211)

The curve S¥p (which can be shown to be unique) is nothing else than the gradient flow of F
starting form p.

We have a few comments to make. This result is by no way trivial, on the contrary it can
be seen as a great achievement of the theory of gradient flows in the Wasserstein space. To get
convinced that it might be true, the reader can replace the Wasserstein space by a Hilbert space,
take F' to be convex, and check that indeed something like (2.10) is actually true if p satisfies
(2.9). In view of the problems we will tackle later, notice that Theorem 2.11 tells us that, to
build an interesting competitor in a problem involving the squared Wasserstein distance, it might
be useful to follow the gradient flow of some functional convex along generalized geodesics.

At this point, it might be necessary to make the difference between functional which are
convex and the ones convex along (generalized) geodesics. If u,v € P()), there are at least two
ways to compute the “mean” between them:

+v

1
o take the usual mean between measures;

e or take pyj, where p € I' is a geodesic joining p to v.

These two means do not coincide, see Figure 2.1. The first one will be called the linear one, while
the second will be the metric one. By a convex functional F' over P({2), we mean a functional
such that the value of the linear mean is smaller than the mean of the values; whereas for a
functional convex along geodesics we need the value of the metric mean to be smaller than the
mean of the values. The functional Fyu — W2 (o, i) (square distance to a fixed measure) is the
example of a convex functional (this can easily be seen from (2.2)) which is not convex along
geodesics (a feature which expresses the positive curvature of the Wasserstein space in the sense
of Alexandrov, see [AGS08, Section 7.3]). Actually, this function F' is convex along generalized
geodesics if the base point is pug.
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Probability measures

Linear interpolation

A Metric interpolation

Figure 2.1: On the different ways of interpolating between probability measures. Top row: two
probability measures p and v on the real line. Middle row: linear interpolation (u + v)/2 of the
measures. Bottom row: metric interpolation of the measures, i.e. middle point of the geodesic in
the Wasserstein space joining p to v.

2.3.2 Examples of functionals defined over the Wasserstein space

Let us introduce a class of functionals defined over the Wasserstein space which will be of great
importance in this manuscript (for a complete overview of the topic, we refer the reader to [Sanl5,
Chapter 7]). The most intriguing ones are the functionals of the density, which take the form

Fp) = L Fp*(@))dz + f'(+o0)u™"8(Q) (2.12)

where f : [0,+00) — R is convex and bounded from below, and p =: p*L + p*"8 is the
decomposition of i as an absolutely continuous part u*°£ and a singular part p*"8 w.r.t. £. If f
is superlinear, which is equivalent to f/(+00) = 400, then this functional is infinite if x4 is not
absolutely continuous w.r.t. £. In the latter case, by convexity of f, this functional is minimized
when p is constant (i.e. proportional to £): it penalizes congested densities. Some standard and
useful properties of F' are summarized below.

Proposition 2.12. Assume that f is convex, bounded from below and that F : P(2) — R is
defined by (2.12). Then the following assertions hold:

1. The functional F is conver and l.s.c. on P().

2. If s%f(s=%) is convex and decreasing, then the functional F is conver along generalized
geodesics in (P(§2), Wa).

Let us underline that the convexity of €2 is crucial for the latter point to actually hold. If this is
the case, then the gradient flow of f, defined in Theorem 2.11, can be shown to satisfy the PDE

{atp =V (pV(f'(p))) inQ,
pV(f'(p)) ng =0 on 0€).

The typical function f satisfying the two assumptions above is f(s) = s™ for some m > 1.
According to the computation above, the gradient flow of the associated F' would lead to the
porous medium equation d;p = C'(m)A(p™).
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2.4 Heat flow

However, the central functional which will appear everywhere is the (negative) Boltzmann entropy
which is defined as

J In(p(x))p(x)dr  if 4 has a density w.r.t. L,
Q

H(p) = (2.13)

400 otherwise.

Using Proposition 2.12, one can say that H is l.s.c., convex and convex along generalized geodesics.
The central result is that the gradient flow of H in the Wasserstein space is the heat flow with
Neumann boundary conditions.

The heat flow denotes the flow of the heat equation. This equation will be of great importance
as it will be the tool used to regularize probability measures: indeed, following the heat flow with
Neumann boundary conditions is the best way, in a convex domain with boundary, to regularize
a probability measure without leaving the Wasserstein space. Moreover, in Chapter 6, the link
between the heat flow and the Boltzmann entropy will be fully exploited.

We will denote by @ : [0, +w0) x P(Q2) — P(Q2) the heat flow with Neumann boundary
conditions acting on Q. If € P(Q) and ¢t > 0, then ®,u € P(Q2) is defined as the measure
u(t, z)dx with a density u : (0, +00) x Q — R which is the solution of the Cauchy Problem

dsu(s,z) = Au(s,z) if (s,2) € (0, +0) x Q,
Vu(s,z) -ng(x) =0 if (s,z)€ (0,+00) x 09,
lirr(l)[u(s,x)dw] =u in P(Q),

where nq is the outward normal to 2.

A closely related object is the so-called heat kernel. We denote by K : (0, +o0) x 2 x Q@ — R,
the heat kernel associated to the Laplacian on €2 with Neumann boundary conditions [Are02,
Section 7]. It is the function such that for any ¢t > 0

®uot) = ( [ Katepuo(a) as

at least if ug € L'(£2). Notice, as a constant function is preserved by the heat flow, that the
integral of K;(x,-) is 1 for a.e. x € ).

As said above, the key point is that the heat flow ® is the gradient flow of the entropy w.r.t.
the Wasserstein geometry, in the sense of Theorem 2.11. As an immediate consequence, (2.10)
and (2.11) hold if one replaces ' by H and S* by the heat flow ®. The useful properties of the
heat flow are summarized in the following proposition.

Proposition 2.13. The heat flow ® satisfies the following properties:

(i) For any p € P(Q) and any t > 0, the measure ¢y has a density w.r.t. L which is bounded
from below by a strictly positive constant and belongs to C1(§2).

(i) For anyt > 0, the density of @y w.r.t. L is bounded in L™(2) by a constant that depends
on t, but not on € P(Q).

(iii) For a fized t > 0 and for any p € P(Q) and a € C(RY), one has
f ad (Pyp) = J (Pra) du.
Q Q
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(iv) For any p,v e P(Q) and any t > 0,

Wo(Pup, Piv) < Wo(u,v). (2.14)

Proof. Point (i) is standard interior parabolic regularity. Point (ii) comes from L® — L! estimates
for the Neumann Laplacian, see [Are02, Section 7]. Point (iii) just states that the heat flow is
self-adjoint. Point (iv) comes from the convexity along generalized geodesics of the entropy H
and the fact that the heat flow is the gradient flow of the latter, see [AGS08, Theorem 11.2.1]. O

Except for (iv), all of the statements of Proposition 2.13 remain true if we drop the convexity
assumption on €2, and only assume that € is connected and has a Lipschitz boundary.

With the help of the last point, we can prove this uniform estimate about the behavior of the
heat flow for small values of ¢.

Proposition 2.14. There exists a function w : [0,4+00) — R, continuous and with w(0) = 0
such that, for any p € P(2) and any t = 0,

Wo(Pep, p) < wlt).

Proof. The only thing to check is that w is continuous in 0. Assume by contradiction that it is
not the case. We can find (uy)nen a sequence in P(Q2) and (t,)nen @ sequence that tends to 0
such that, for some ¢ > 0, there holds Wa(®y, tin, ptr,) = 9. Up to extraction, we can assume that
[y, converges to some limit p. We can write

W (@4, fins pin) < Wa(Pr, pin, e, 1) + Wa(®Py,, 1, 1) + Walp, pn) < Wal®r, p, 1) + 2Walp, i),

where we have used the last point of Proposition 2.13. But then it is clear that the two terms of
the r.h.s. tend to 0, which is a contradiction. ]
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Part 1

Optimal density evolution with
congestion






Chapter 3

Introduction to optimal density
evolution

The goal of this chapter is to give an overview of the present part about optimal density evolution,
to present the results that we will prove, and to provide a flavor of the techniques of proof.
The discussion in this chapter will stay at a formal level, with non rigorous arguments, all the
technical details are provided in the next chapters.

3.1 Variational problem arising in Mean Field Games

The problems we are interested in deal with the temporal evolution of a density subject to
congestion effect. Namely, we consider curves p € I' = C([0, 1], P(2)) which are continuous and
valued in the space of probability measures over a fixed bounded convex domain §2. The measure
p: denotes the density of agents, or particles, at time ¢. In all the sequel, we always identify a
measure with its density w.r.t. £ the Lebesgue measure restricted to 2. We will look for curves
solving a variational problem of the form

1y 1
mpin{f 2|pt|2dt—i-f E(p)dt +¥(p1) : pel, po given}. (3.1)
0 0

Let us describe in details the different terms in this objective functional.

e The first term is the integral over time of the square of the speed of the curve p in the
Wasserstein space, which can also be seen as the action of the curve, namely the integral
over time of the kinetic energy, see Section 2.2. If one would only minimize this term, with
po and p; fixed, the set of solutions would be the set of geodesics (in the Wasserstein space)
between pg and p;.

e To define the second term, we need to specify a functional E : P(2) — R which will
describe congestion effects. In Chapter 4, the functional E (the “running cost”) takes the
form of an integral functional such as

B(p) = | Fo@)do+ | Vpla)da
for a convex function f and a fixed time-independent potential V. The function f penalizes
concentrated densities while on the contrary the potential V' favors them (namely those

which are concentrated in the minima of V). This is what we call soft congestion, as very
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peaked densities are penalized (through f), but still allowed. On the other hand, in Chapter
5, we will deal with hard congestion, as we will forbid densities whose L® norm is above a
fixed threshold, namely 1. Specifically, the functional £ will take the form

J V(x)p(x)dz if p(z) <1 for a.e. z € Q,
E(p) := 4 Ja
+00 else.

e The final penalization ¥ can be either a functional of the same form of E, or a constraint
which prescribes pr. According to us, the most interesting results are interior regularity
(away from t = 0 and 1), thus the precise form of the final penalization is most of the time
irrelevant.

These variational problem can be thought as interesting in themselves, as an illustration for
the interplay between optimal density evolution (the action of the curve), favor of congestion
(through V and V), and penalization of congestion (through f or the hard congestion constraint
p < 1), see for instance [BJOO09] for an early introduction of them. On the other hand, they
are closely connected to the Mean Field Game theory as detailed below. We mention that the
case where F(p) is the H~! norm of p — 1, which corresponds to the least action principle for
a cloud of galaxies with Newtonian interaction has been introduced in [BFH"03] under the
name reconstruction of the early universe. It has been studied in depth in [Loe06] with an
approach based on the dual problem, which has a regularizing effect not present in the case we
are interested in.

We will only look at the cases where E and ¥ are convex functional over P(f2), hence the
“primal problem” (3.1) is a convex one. To understand the optimality conditions, the main tool
is the dual problem which can obtained by a formal inf — sup exchange. Indeed, we use Theorem
2.8 to express the action of the curve as the kinetic energy with a velocity field v submitted to a
continuity equation. Using ¢ as a Lagrange multiplier to enforce the continuity equation, the
solution of (3.1) is given by the saddle point

1 1 1
min sup { J J §|V|2dpdt + f E(py)dt + ¥(p1)
0 Jo 0

M)
n fQ dodpy — L drdpy + fo 1 L (006 +v - Vo) dpdt}-

and the only constraint is that pg is fixed. Now we exchange the infimum and the supremum,
something which can be justified with the help the Fenchel-Rockafellar theorem like in [Carl5].
In the saddle point formulation, let us do the optimization in p and v. The one is v is
straightforward as the Lagrangian is quadratic in v, we hasvev = —V¢ and the remaining part,
calling h = —0,¢ + 5|V¢|? can be written

1 1
sup min { - J J hdpdt + J E(p)dt + ¥(p1)
0 Jo 0

¢7h p

+ JQ $odpo — L ¢1dpy @ —0rd + %|V¢|2 = h}.
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Now the minimization is formally over. Indeed, pg is fixed and optimizing on the other values of
p, the Fenchel transform of ¥ and ¥ appear. Namely, the dual problem reads

1
sup {Jﬂ ®odpo — Jo E*(hy)dt — ¥*(¢1) : ¢,h:[0,1] x @ > R and — 01 + %|V¢|2 _ h} ’

é,h

(3.2)
where E*, U* : C(Q) — R denote the Fenchel transforms of E and ¥. Here ¢ is the so-called
value function and p = h — V can be thought as a pressure or a price as explained below. The
existence of a solution to this dual problem is guaranteed if one relaxes the space of function in
which ¢ and h lives (the precise choice depends on E and V). In any case, let p be a solution of
the primal problem, call v : [0,1] x © — R? its tangent velocity field obtained thanks to Theorem
2.8, and take ¢, h a solution of the dual problem. Then the absence of duality gap leads to the
system of equations

V¢ =—v,
ho e dE(p), (3.3)
¢1 € aqj(pl)a

where 0F, 0¥ denote the subdifferentials in the sense of convex analysis. Recall that to these
equations one has to add

op+V-(pv) =0,

3.4
—at¢+%|v¢|2 =h, (3.4)

which are the constraints of the primal and dual variables respectively. The first equation, namely
the continuity equation, is supplemented with no-flux boundary conditions V(pv) - ng = 0,
where ng is the outward normal to Q. In short, the optimality conditions (3.3), (3.4) are a
coupling between backward a Hamilton-Jacobi equation for ¢ with r.h.s. belonging to dE(p) (i.e.
depending on the density) and terminal cost ¥, and a forward continuity equation with initial
density given and velocity —V¢.

Now, if one chooses the right functional spaces, one can make sense of (3.1) and (3.2) and get
an existence result, but with a pretty weak notion of solution. Namely, p is only a probability
measure at any time ¢, and the pressure p = h — V is merely a positive measure. The goal
of Chapters 4 and 5 is to prove additional regularity for the solutions of the primal and dual
problems.

3.1.1 On the link with Mean Field Games

Other than the intrinsic interest of (3.1) as an interplay between optimal density evolution and
congestion, the main motivation for the regularity of the study of these variational problems was
about Mean Field Games (MFG).

MFG aim at modeling situations where there is a large number of rational agents who are
playing a game (i.e. having to take decisions whose payoff depends on what the others do) where
the payoff depends only on the average (i.e. mean field) behavior of the other agents. One
example, which is where the models in this manuscript come from, is the one of crowd motion.
Imagine a crowd of people who want to escape a given place, and they are not in an emergency
situation so that they can take time to think and adopt a rational behavior. Each agent wants
to escape the room, but on the other hand also wants to avoid congested area. He or she will
choose his trajectory to reach the exit while avoiding others, but the latter condition depends
on the choice of other agents, hence the game aspect. There is a mean field effect because each
agent is only interested in the average behavior of the rest of the crowd, i.e. the density of other
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agents, and not in the specific trajectory of each other agent. The reader might begin to see the
link with the problem (3.1) introduced above: the terminal condition (reaching the exit) favors
congestion, while the aversion of people for crowded areas plays in the opposite direction.

For the whole theory of Mean Field Games, introduced by Lasry and Lions in [LL0O6b, LL07]
and, independently, by Caines, Huang and Malamé in [HMCO06], we refer to the lecture notes by
Cardaliaguet [Carl10] and to the video-recorded lectures by Lions, [Liol2]. From the mathematical
point of view, we study the situation where there is an infinite number of players, which means
that the situation is modeled through concepts of fluid mechanics (density, velocity, pressure, etc.)
and characterize with the help of PDEs. What there is to characterize are Nash equilibria, i.e. a
set of strategy where each player has no interest in deviating from its strategy if other players do
not. Most models assume stochastic effects on the trajectory of the agents, and the corresponding
PDEs include diffusion terms which make the solution smooth and simplify the analysis, besides
being reasonable from the modeling point of view. Analytically, the most difficult case consists
in problems where the interaction between players is local (i.e. the cost at point x and time
t depends on the value of the density p;(z), without averaging it in a neighborhood) and no
diffusion is present. This case is essentially attacked when the game is of variational origin, i.e.
it is a potential game, and the equilibrium condition arises as an optimality condition for an
optimization problem in the class of density evolutions. For local potential MFG, we refer to
[Carl5, CG15] and to the survey [BCS17].

More specifically, we assume that we have a continuum of agent, and each agent has a given
position x(0) and chooses its trajectory z : [0, 1] — Q by solving a control problem, with a finite
temporal horizon (taken equal to 1) of the form

min
X

The function p : [0,1] x @ — R is a pressure, or a price if one thinks in economical terms which
depends on the mean field effect, i.e. the density of other agents. In the case of soft congestion,
the pressure is just a function of the density p of other agents, namely, to keep the same notations
as above, p(t,x) = f'(pe(z)) where f is a convex function. On the other hand, in the case of
hard congestion, namely if the density if forced to stay below 1, we just know that the pressure is
a positive function, which does not vanish only on areas where the constraint p < 1 is saturated,
and whose role is to prevent it from being violated. From the economical point of view, it is a
price that agents have to pay to pass through congest areas. Here the terminal cost ¥ : 2 — R is
the price paid by the players at the final time, to make the link with (3.1) the final penalization
of the density would be {, ¥dp;.

The striking result, already understood by Lasry and Lions [LLO6b] (see also [BCS17] for a
short and self contained introduction) is that to find the evolution of the density of agents, under
a monotonicity assumption (which, in our setting, translates in the convexity of the running cost
E and the final cost W), it is enough to solve the variational problem (3.1) and its dual (3.2).
Indeed, let us take p, v, ¢, h solutions of such problems, recall that they satisfy the optimality
conditions (3.3), (3.4). In particular, ¢ solves the Hamilton-Jacobi equation associated to the
control problem (3.5) with terminal cost ¥, i.e. ¢ is the value function for such problem. On the
other hand, as v = —V¢, it means that if an agent located in x at time ¢t moves with velocity
v(t,z) = —V¢(t,x), then the resulting motion of all the agents is indeed described by p. In
short: the optimality conditions (3.3), (3.4) exactly describe the mean field game model.

Alternatively, the same equilibrium problem can be formulated in terms of a probability
measure @) on the set C([0, 1], 2) of paths valued in Q2. This measure @) represents the distribution
of strategy of the agents: Q(7)dy describes the proportion of agent choosing the strategy =, i.e.

1 T 2
[} (0 4 viatwy + pit e ae + ot . (35)
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moving along v. With e; : C([0,1],2) — Q is the evaluation map at time ¢, defining p; = (e/) 4@,
the measure p; becomes the spatial distribution of agents at time ¢. Then, for the measure @ to
be an equilibrium, we require (eg)xQ = po and that Q-a.e. curve is optimal for (3.5) with this
definition of p; and a pressure p(¢,-) which belongs to ¢E(p:).

Yet, these considerations are essentially formal and not rigorous, so far. The objects p, v and
¢ live in rather big functional spaces and giving a precise meaning to the optimality conditions
is not obvious. Moreover, the difficulty with the interpretation about individual agents solving
(3.5) is the following: the function hA(t,z) := V(z) + p(t, x) is a priori defined a.e.: indeed, either
p is a function of the density p in the case of soft congestion, or is merely a positive measure in
the case of hard congestion. Integrating it on a curve, as we do when we consider the action
Sé h(t,x(t))dt in (3.5) has absolutely no meaning! Of course, it would be different if we could
prove some regularity (for instance, continuity) on p and p. The question of the regularity in
mean field games is a very challenging one and is not entirely understood yet. In [CMS16] a
stategy to overcome this difficulty, taken from [AF09], is used: indeed, it is sufficient to choose a
suitable representative of h to give a precise meaning to the integral of h on a curve, and the
correct choice is

A

h(t,x) := limsup h,(t,x) := b f h(t,y)dy.
r—0 |B(‘T7 T)| B(z,r)

To prove that @ is concentrated on optimal curves for h it is then enough to write estimates with
h, and then pass to the limit as » — 0. This requires an upper bound on h,, and the natural
assumption is that the maximal function Mh := sup, h, is L' in space and time. Thanks to
well-known results in harmonic analysis, h € L' is not enough for this but h € L™ for m > 1
is instead enough. Once integrability of Mh is obtained, then one can say that the optimal
measure () is concentrated on curves which minimize in (3.5) in the class of curves z(-) such
that Sé Mh(t,z(t))dt < +o0. These curves are almost all curves in a suitable sense, thanks to
the integrability properties of Mh in space-time, but they are in general not all curves. To be
able to compare with all curves, what would be needed is M h bounded, or in other words that A
(hence p as the potential V' is assumed to be bounded) belongs to L®.

Thus, the key point is to get summability estimates on the pressure p, which in the case
of soft congestion, translates into summablity estimates on p as p = f/'(p). Moreover, if one
proves them, then it is possible to infer regularity for the value function ¢: indeed, p appears
in the r.h.s. of the Hamilton-Jacobi equation and it implies, if p is in L™ with m > 1 + d/2,
that ¢ exhibits Holder and Sobolev regularity, as proved by Cardaliaguet and collaborators
[Carlb, CG15, CPT15]. To summarize,

1. If pe L™ with m > 1 then one can build @ € P(C]0, 1], ) which represents the strategy of
the agents in such a way that @-a.e. curve is optimal in (3.5), but optimal among the class
of curves satisfying some integrability assumption involving the maximal function of p.

2. If pe L™ with m > 1 + d/2, then the value function ¢ is Hoélder-continuous and satisfies
O € L'e, V¢ e L?*¢ for some € > 0, at least locally in space and time.

3. If p e L™ one can build @ € P(C]0,1],9) in such a way that Q-a.e. curve is optimal in
(3.5) compared to all other curves. Moreover, ¢ is Holder-continuous and exhibits Sobolev
regularity just as above.

What we provide, in the next two chapters, is precisely L* regularity of p in both soft and
hard congestion. However, the main restriction of our work is that we consider only a quadratic
Lagrangian (i.e. only L(z,%) = |#|?/2 appear (3.5)) to be able to import optimal transport
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techniques, while previous results that we will describe just below work with more general
Lagrangians. Their Lagrangians L(z, #) can depend on = and can behave like |#|” when r» — 400
with r # 2.

In the case of soft congestion, given the formula p = f'(p), if f’ is bounded from below and
f(s) behaves as s? as ¢ — 400 then automatically p € L%~ Thus we can always build the
measure ), but regularity of ¢ is a priori true only under the condition ¢ < 1+ 2/d. Of course, if
p € L* (and this what we will prove!) and f’ is bounded from below then automatically p € L®.
The question of the L® regularity of p was already studied, in the MFG framework, by P.-L.
Lions (see the second hour of the video of the lecture of November 27, 2009, in [Liol2]). The
analysis by P.-L. Lions was more general than ours in what concerns the Lagrangian. On the
other hand, we are able to include a potential V' (z) and to obtain local regularity results, which
were not present in [Liol2]. Indeed, the results presented by P.-L. Lions only concerned the case
where both py and p; are fixed (planning problem) and belong to L®, and no potential V' is
considered. The technique was essentially taken from maximum principles in degenerate elliptic
PDEs; it could be adapted to the case where p; is penalized instead of fixed (which amounts to
changing a Dirichlet boundary condition at ¢ = 1 into a Neumann one), but adapting it in order
to obtain local results seems out of reach. Indeed, local estimates in degenerate elliptic equations
usually require quantitative information on the degeneracy and the growth of the different terms,
which are in general not available in this setting. Here what we do is different, as detailed in the
next subsection.

In the case of hard congestion, we are able to prove that p € L* as soon as the potential V'
belongs to W4(Q) with ¢ > d, where d is the dimension of the ambiant space. The only previous
study of the regularity of the pressure we are aware of is the one of [CMS16|, where the authors
obtain p € L?JOCBVm. It allows, thanks to the injection BV < L#(@=1) to say that p is in L™
with m > 1 and hence recover the interpretation with @Q representing the distribution of strategy.
Such regularity was obtained by mimicking the proof of the regularity of the pressure in the case
of the incompressible Euler equations first investigated by [Bre99] and later refined in [AF08].
The main strategy is what was latter called regularity by duality [Sanl8]: one evaluates the dual
gap between space-time translations of the primal solution and the (untranslated) dual solution,
quantifies precisely the discrepancy, and uses it to deduce Sobolev regularity. We underline that
this strategy was used in [AF08] precisely to be able to deduce in [AF09] an interpretation of
the model of the incompressible Euler equations in term of a measure () on the set of curves.
Here we get higher regularity for the pressure than in [CMS16], with less assumption on the
data (we require V € W14(Q) with ¢ > d while they assume V € C1}(Q)), and on more general
domain (they work on the torus, we work in a general convex domain); however we handle only
quadratic Lagrangians whereas they work in a more general setting. As we describe briefly below,
our strategy is different than theirs: we really get an explicit inequality involving the Laplacian
of the pressure, from which we apply standard elliptic regularity techniques. Eventually, it seems
that the strategy that we use cannot be applied to study the regularity of the pressure for the
more complicated setting of the incompressible Euler equations.

Now, let us detail in the two following subsections the strategy to get these regularity
estimates.

3.1.2 Soft congestion

We concentrate on the case of soft congestion, namely
B(p) = | Fota)as + | Vioyp(da,
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In this case, the optimality conditions (3.3), (3.4) read
dp—V - (pV8) =0,

Po given,

1
—0p+5IVel* < f(p)+VV,
¢1 € ov (pl ) )

and in the third equation there is equality p-a.e. We will get rid of the subtilty as far as this
informal presentation is concerned and pretend that the third equation is in fact an equality and
not an inequality.

Our result is that, provided that f is convex enough, the solution p to (3.1) is unique and
belongs to L*([T1,T2] x Q) for any 0 < Th < Ty < 1, see Theorems 4.4, 4.5 and 4.6 for the
precise statements. In other words, there is L® regularity for p, global in space and local in time.
Let us underline that this result is surprising: if for instance one takes f(p) = p?, what we prove
is that not only p € L2([0,1] x ) (which would be true for any p € I' competitor for which the
objective functional is finite) but that p is bounded in L*. In particular, no conditions are asked
on pp and ¥ (other than the fact that there exists at least on p € I' with finite energy) for this
result to hold.

Let us explain how one proves —formally— this estimate. We work in the case V = 0, as
computations are already quite involved in this simpler setting. We introduce the functionals

Uy, where
1

Um(p) := =1 L p(z)™dz,
and m > 1 (U;(p) can be defined as the Boltzmann entropy of p, and the normalization constants
are chosen for coherence with this case). The idea is to look at the behavior w.r.t. time of U, (p),
for p the solution of (3.1). We will control in a fine way the growth of the quantities U,,(p) when
m — —+00, relying on an iterative process reminiscent of Moser’s proof of regularity for elliptic
equations [Mos60].

Specifically, we are interested in the second derivative w.r.t. time of U,,(p) where p is a
solution of (3.1). To guess the result, one can introduce the convective derivative Dy := d;—V¢-V
which is the derivative along the flow of the velocity field v = —V¢. As the continuity equation

is satisfied, for any function g : [0,1] x @ — R, there holds

T g(t,x)dp, = J (Dyg)dps
Q Q

The continuity equation can be written D;p = pA¢ and, taking the Laplacian of the Hamilton-

Jacobi equation, dropping a positive term in the process, we get D;(A¢) = —A(f'(p)). With

these identities in mind,
d? d 1

d1
a2 m(l)) =7

T dtm o

_ % L(Dtm)pm +

(D¢p)p (Ag)p™

~dtm Jg
m—1

f (Dep)(Ap)p™ !
Q

_l / m m—1 2 m
> | AU+ T | oo

Doing an integration by parts in the first integral, and dropping the second one as it is positive,
we are left with the estimate

m

d2

F2Unlo) = | 9alor 1), (36)
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In particular, as f is convex, we see that the r.h.s. is positive, hence the function Uy, (p;) is a
convex function of time. In the case f = 0, where p is simply a geodesic in the Wasserstein space,
we recover the fact that U,,(p) is a convex function of time: this is the geodesic convexity of Uy,
see Proposition 2.12. As a consequence, in the case f arbitrary (though convex), if pg and p;
are fixed and belong to some L™ for m > 1, then so does p; for any ¢ € [0, 1]. Similarly, if po, p1
belong to L*, so does p; for any ¢ € [0, 1].

Now we want to go further and drop assumptions on pg, p1. To estimate more precisely the
r.h.s. of (3.6), a natural assumption is f”(s) > s® (with o which could be negative, of course): if
this is the case, one can check that the integrand of the r.h.s. is larger than |V(p§nﬂr1+o{)/2)|2 (up
to a constant depending polynomially in m). Using the Sobolev injection H! — L24/(d=2) "one
can conclude (neglecting the 0-order term of the H! norm of p§m+1+a)/2), with 1 < 8 < d/(d—2),

that e
d2 B(m+1+a) !
Cm) 5aUn(p) > ( [ p241)

In the case o = —1, we see that the r.h.s. is larger than Uﬂm(pt)l/ﬁ. In other words, we have
obtained a control of Ugp,(p) in terms of U,,(p). Such a control can be iterated. If we take
a positive cutoff function x which is equal to 1 on [T7 — &, T5 + ¢]| and which is null outside
[T1 — 2e, T + 2¢], multiplying (3.6) by x and integrating the left hand side by parts twice, we

can say that
To+2e

To+-€
| Ut < Cme) [ ot
Ty —¢ T —2e

where the constant C'(m, ) grows not faster than a polynomial function of m and ¢~!. We have
to work a little bit more on the Lh.s. because we want to exchange the power 1/ and the
integral sign, and unfortunately Jensen’s inequality gives it the other way around. To this extent,
we rely on the following observation: as the function Ug,, is convex (this can be seen in (3.6))
and positive, it is bounded on [T, T3] either by its values on [T}, T} — €] or on [T%, T + £], thus
we have a “reverse Jensen’s inequality”

To 1/B T, — T, 1/8 Ty To+e
(J U,Bm(pt)dt> < L-T) 7 (J Uﬁm(ﬂt)l/ﬁdt-i-f UBm(Pt)l/B)'

il € Ty —¢ T

Combining this inequality with the estimation we have on the r.h.s., we deduce that

T 1/18 To+2e
(], vmtonar) < cma [ © " vt
Ty Ty —2¢

where the new constant C(m, ¢) has also a polynomial behavior in m and e~!. This estimation
is ready to be iterated. Indeed, setting m,, := 5™mg and €, = 27 "¢, given the moderate growth
of C(m,¢), it is not difficult to conclude that

To+en 1/m’ﬂ
lim sup (J U, (pt)dt> < 0.

n—+o T —€en

As the Lh.s. controls the L® norm of p on [T7,T»] x €, this is enough to conclude that p is
bounded locally in time and globally in space.

Let us comment on some technical refinements that arise in the actual proof, presented in
Chapter 4.
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e In practice, we do not have enough temporal regularity to differentiate twice w.r.t. time.
To bypass this issue, we introduce a discrete in time version of (3.1) and we prove all the
estimates at the discrete level. More is said on that in Section 3.3 at the end of this chapter.

o If we add an interior potential V, the r.h.s. of (3.6) contains lower order terms that are
controlled by the term involving f”. However, the sign of the Lh.s. is no longer known and
the function U,, is no longer convex but rather satisfies

d? 9
@Um(fot) + w Um(pt) = 0,

where w grows linearly with m. In particular, the

more difficult to prove, but it is still doable.

‘reverse Jensen inequality” becomes

e With assumptions on the final penalization, the regularity can be extended to the final
time. More precisely, if we assume that the final penalization W is given by the sum of a
potential term and a congestion term, then formally (and again we use a discrete in time
version to make this rigorous),

d

23 Um(p0) . < b(m)Unm(p1), (3.7)

where the constant b(m) depends on the potential and can be taken equal to 0 if there is
no potential. This inequality enables to control the value of U,, at the boundary ¢ = 1 by
its values in the interior. Thus the same kind of iterations can be performed and gives L®
regularity up to the boundary.

e If « < —1, we only have a control of Up, by Ug(m+14q)- Thus we must start the iterative
procedure with a value m such that m < g(m + 1 + «), i.e. we must impose a priori some
L™ regularity on p (with a m which depends on « and 3, the latter depending itself only
on the dimension of the ambient space). Such a regularity is imposed by assuming that
po (which is fixed) is in L™(£2) and that the boundary penalization in ¢ = 1 is the sum
of a potential and a congestion term. Indeed, if this is the case, the boundary condition
(3.7) combined with the interior estimate (3.6) shows that the potentials V, W are small
enough (compared to something that depends on the function f and m), the L™ norm of p
on [0,1] x Q must be bounded.

3.1.3 Hard congestion

Now we tackle a priori estimates in the case of hard congestion. Namely we assume that the
running cost is

JQ V(x)p(dx) if p(x) <1 ae xeQ,

400 else.

E(p) :=

In other words, we forbid the density to be above the threshold 1. In particular, we must assume
that the Lebesgue measure of (2 is larger than 1 in order for probability measures satisfying the
constraint to exist. Also, the terminal density will be penalized by SQ Udpy, where ¥ € C(Q) is a
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fixed potential. In this case, the optimality conditions (3.3), (3.4) read

op—V-(pVg) =0,
1
—0ip + §|V¢|2 < P+V (with equality on {p > 0}),

Po given,
1 < U (with equality on {p; > 0}),

where P > 0 is a measure concentrated on the set {p = 1}. Indeed h € 0E(p) reads, in this case,
h=P+V and P > 0. Compared to what is above we use the letter P instead of p to denote
the pressure: we will have to distinguish between the measure P and its density p w.r.t. L.

The density p already belongs to L* (by the very definition of the constraint is satisfies),
the object for which we will improve regularity is the pressure. Our result is that, provided that
V is smooth enough (namely Ve WH4(Q) for q = d), then the pressure P has a density w.r.t.
Lebesgue which belong to H*(Q) for a.e. time, see Theorem 5.5 for the precise statement.

Let us give a heuristic derivation of this result. For simplicity, we will just consider the
conditions which are satisfied on the support of p, where the inequalities become equalities.
Anyway, this is not restrictive since we are interested in estimates on the pressure P, i.e. on the
set {p = 1}. As we will see later, the pressure P is a measure which can be decomposed into
two parts: its restriction to [0,1) x € is absolutely continuous w.r.t. the Lebesgue measure on
[0,1) x Q, and its density is denoted by p; on the other hand, there is also a part on {1} x Q
which is singular, but absolutely continuous w.r.t. the Lebesgue measure on 2, and its density is
denoted by P;. This second part represents a jump of the function ¢ at ¢ = 1, which allows to
re-write the system as follows.

0p =V - (pVg) =0,
1
—0ip+5IVel* =p+V,

oo given,
®1 ="+ P.

(3.8)

where the density p satisfies p < 1 everywhere and p, P > 0 are strictly positive only on the
regions where the constraint involving p is saturated, i.e. where p =1 (p; = 1 in the case of Pj).
Similarly to the case of soft congestion, we denote by D; := 0, — V¢ - V the convective
derivative. This time, the idea is to look at the quantity — Dy (In p). Indeed, the first equation of
(3.8) can be rewritten D;(Inp) = A¢. On the other hand, taking the Laplacian of the second
equation in (3.8), it is easy to get, dropping a positive term, —D;(A¢) < A(p + V). Hence,

Notice that if p(t,x) = 1, then p is maximal at (¢,x) hence —Dy(In p)(¢,z) = 0. On the other
hand, if p(¢,z) < 1 then p(t,x) = 0. In other words, p satisfies A(p + V) = 0 on {p > 0}, which
looks like an obstacle problem. Multiplying (3.9) by p, integrating w.r.t. space at a given instant
in time and doing an integration by parts, for all ¢

J Vp(t,) - V(p(t.) + V) < f p(t, [V (p(t, ) + V) - ng], (3.10)
Q oQ

where ng is the outward normal to Q. As V(p+ V) is the acceleration of the agents and they are
constrained to stay in 2, under the assumption that the latter is convex, V(p(t,-) + V) -ng <0,
hence the Lh.s. of (3.10) is negative. From this we immediately see that |[Vp(t,-)|r2(q) <
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IVV 120, i-e. that p e L=((0, 1); H(2)). Moreover, taking m > 1, mutliplying (3.9) by p™,
and provided that VV € L(Q) with ¢ > d, using Moser iterations, we are able to prove that
p(t,-) € L®(Q) with a norm depending only on V and 2. For the final pressure P, we only look
at Dy(In p) = A¢. Using the equation for the terminal value of ¢,

Dy(lnp)(1,-) = A(P; + 0). (3.11)

The Lh.s. is positive at every point x such that p(1,z) = 1, hence we get A(¥ + P;) > 0 on
{P1 > 0}. From exactly the same computations, we deduce |[VPi|r2(q) < [VV]2(q) and the
L*(Q) norm of P; depends only on Q and ¥ provided that V¥ € L4(Q) with ¢ > d.

Let us say that this strategy, namely looking at the convective derivative of quantities such
as In p was in fact already used by Loeper [Loe06] to study a problem similar to ours (related to
the reconstruction of the early universe), but in a case without potential and where Ap := p — 1.
In his case, (3.9) led to a differential inequality involving only p from which a L* bound on p
was deduced.

From this heuristic computation, one can guess when the same result could applied to more
general Lagrangians as the question is reduced to what happens when one takes the Laplacian of
the Hamilton-Jacobi equation. For instance, if we replace €2 by a Riemannian manifold, it is
clear that the heuristic computation can be performed exactly in the same way provided that
the manifold has a positive Ricci curvature, as the inequality involving the Laplacian of the
Hamilton-Jacobi equation can be deduced from Bochner’s formula.

However, this strategy seems bound to fail when applied to the more involved setting of the
incompressible Euler equations (see Section 3.2 for the definition of the model). The first hint is
that the regularity of the pressure depends on the potential V', which does not appear in this
other setting. Moreover, here we have used that if p is maximal, so is In p. Applying the same
strategy to the incompressible Euler equations, we would get (see in the next Section for the
notations)

J [Dy (In p®)] 0(der) < | something with Ap |,
2

but the constraint is about Sm p% 0(da)) hence we cannot have any information on the sign of the
L.h.s. of the equation above.

As in the case of soft congestion, these computations are only formal because the quantities
involved cannot be differentiated twice in time, hence we have to work with a discrete version in
time of the problem which is detailed in Section 3.3.

3.2 Incompressible Euler equations

3.2.1 Model and convexity of the entropy

The incompressible Euler equations aim at describing the motion of an inviscid and incompressible
fluid. From the physical point of view, this system is conservative, hence one can hope to
instantiate the least action principle and to write a variational formulation of these equations.
This was done by Arnold [Arn66] with a geometric point of view: the incompressible Euler
equations are seen as a geodesic equation on the infinite-dimensional manifold of measure-
preserving maps. Later, Brenier introduced relaxations leading to generalized geodesics on the
group of measure-preserving maps: in [Bre89], he identified the correct calculus of variations
framework for this problem to make sense and admit solutions. Translated at a microscopic level,
fluid particles are allowed to split and diffuse on the whole space: for a general survey, see for
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instance [DF12]. We will concentrate in this paper on one of Brenier’s model with a flavor of
Eulerian point of view introduced in [Bre99] (see also [Bre03, Section 4], [DF12, Section 1.5.3]
and [AF09]).

More specifically, the goal is to study the evolution of particles subject to an incompressibility
constraint, namely that the average distribution of particles is, at any given time, uniform. In
particular, if we look just at p the distribution of particles, then it is a constant (proportional to
the Lebesgue measure) hence we see no evolution. To be able to analyze efficiently the motion of
the particles, one refines the description and looks at the individual behavior of the particles.
The model goes as follows.

There are (possibly infinitely) many phases indexed by a parameter a which belongs to some
probability space (2,4, 6). At a fixed time ¢, each phase is described by its density pf and its
velocity field v§', which are functions of the position x. We assume that all the densities are
confined in a fixed bounded domain 2 with Lebesgue measure 1, and up to a normalization
constant pf* can be seen as a probability measure on ). The evolution in time of the phase « is
done according to the continuity equation

oo + V- (pifvy) = 0. (3.12)

We assume no-flux boundary conditions on €, thus the total mass of p® is preserved over time.
The different phases are coupled through the incompressibility constraint: at a fixed ¢ the density
of all the different phases must sum up to the Lebesgue measure £ (restricted to €2). In other
words, for any ¢ we impose that

J prb(da) = L. (3.13)
A

Looking at the problem from a variational point of view, we assume that the values of pf' are
fixed for ¢ = 0 and ¢t = 1 and that the trajectories observed are those solving the following
variational problem:

1
min {J J J 1|V?(:1:)|2,0t°‘(x)dacdt@(doz) o (p®,v®) satisfies (3.12) and (3.13)}. (3.14)
(* v (Jar Jo Ja 2

From a physical point of view, the functional which is minimized corresponds to the average
(over all phases) of the integral over time of the kinetic energy, namely the global action of all the
phases. From the point of view of this manuscript, given Theorem 2.8, the functional which is
minimized is the average of the quantities A(p®) (see equation (2.7)) where t — p¢ is thought as
a curve valued in the Wassersteins space. Without the incompressibility constraint, each phase
would evolve independently and follow a geodesic in the Wasserstein space joining pf to p{ (this
is precisely what the Benamou-Brenier formula (2.8) says).

In Brenier’s original formulation, the space (2, .A4,0) is the domain Q endowed with the
Lebesgue measure L. In fact, the phase a € §) represents the trajectory of a particle whose initial
position is a. If T': Q2 —  is a measure-preserving map, “classical” boundary conditions are
those where pf is the Dirac mass located at a and p{ is the Dirac mass located at T'(«): it says
that the particles located at ¢ = 0 in a must be in T'(«) at ¢ = 1. In a classical solution, each
phase a will be of the form pf* = §,a(;), where y* : [0,1] — Q is a curve joining a to T(v). But,
even if one starts with “classical” boundary conditions, there are cases where the phase o may
split and p® may not be a Dirac mass for any ¢ € (0, 1), leading to a “non-classical” solution (for
examples of such cases, the reader can consult [Bre89, Section 6] or the detailed study [BFS09]).

It happens that all the quantities involved do not really depend on the particular dependence
of the p® in a. Indeed, recall that I' is the space of continuous curves valued in the probability
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measures on 2 endowed with the Wasserstein distance: in short I' = C([0, 1], P(£2)). Everything
only depends on the image measure of  through the map o — p®. The natural object we are
dealing with is therefore a probability measure on I', something that one can call (by analogy
with [BCMO5]) a Wa-traffic plan. We will use the letter @) to denote those W» traffic plans:
compared to Section 3.1, where Q denoted a measure on the set of curves valued in €2, here Q
will be a measure on the set of curves valued in P(2). In a way, the application a — p® is a
parametrization of a Wo-traffic plan: that’s why we will call Brenier’s formulation the parametric
one, while we will work in the non parametric setting, dealing directly with probability measures
on I'. In our setting, most topological properties are easier to handle, and notations are according
to us simplified. Even though any probability measure on I' cannot be a priori parametrized, we
will show that it is the case for the solutions of the variational formulation of the Euler equations.
Therefore, our results can be translated in Brenier’s parametric setting.

More precisely, if Q € P(T') is a Wa-traffic plan, given Theorem 2.8, the energy that we seek
to minimize is

min {L Uol ;|p't|2dt> Q(dp) : Qe P(T) and ¥t € [0,1], Lth(dp) _ c} . @35)

and the joint law of @ at time ¢ € {0,1} is fixed. The constraint is nothing else than the
translation, in the setting of W5 traffic plans, of the incompressibility constraint. The continuity
equation has disappeared, it is now implicit in the definition of the action for curves valued in the
Wasserstein space. Compared to the setting of the previous Section 3.1, the cost functional is just
(the expectation of) the action, but one faces a continuum of curves which interact through this
global incompressbility constraint. Until the end of this section, we will keep using the notations
of the parametric setting, as they are more suited for the exposition (but not for the proofs!).

With formal considerations (see for instance [Bre03, Section 4]) which amount basically to
write the dual formulation of this convex problem and explicit the absence of dual gap, one can
be convinced that for each phase «, the optimal velocity field is the gradient of a scalar field ¢

(i.e. v = =V¢§), and that each ¢* evolves according to a Hamilton-Jacobi equation
\V4 ¢o¢ 2
—0df + | 2t| = =Dt

with a pressure field p that does not depend on « and that arises from the incompressibility
constraint. As discussed below, the actual regularity of the pressure is a hard and challenging
question. If we look at the Boltzmann entropy (see (2.13)) of the phase «, a formal computation,
which is almost the same as the one done to obtain (3.6), leads to

d2
| @ m @ > | Anf @, (3.16)
Q Q
Thus, if one defines the averaged entropy H as a function of time by
(o) = [ w101 = [ ([ stormppoae) ocaa)
2A 2 \Jo
the previous computation leads to

H'(t) > J Apy = J Vp; - g
Q oQ
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where ng stands for the outward normal to €. In the setting of Wy traffic plans, it is enough
to replace H(t) by the integral of H(p;) against the measure @) € P(I"). Let us underline that
it is crucial that the r.h.s. of (3.16) depends linearly on p%, so that, integrated w.r.t. «, this
dependency disappears. The same computation with a functional different from the entropy
would not lead to any relevant result. At this point, notice that the convexity of €2 becomes a
natural requirement. Indeed, if this is the case, the acceleration of a fluid particle located on
the boundary will be directed toward the interior of €2 because the particle is constrained to
stay in . As the acceleration of the fluid particles is — at least heuristically — equal to —Vp,
it is reasonable to expect that Vp - ng = 0 on 0€2. Therefore, at a formal level, assuming the
convexity of Q leads to H” > 0, i.e. to the property that the averaged entropy H is a convex
function of time. This was remarked and conjectured by Brenier in [Bre03, section 4].

Our contribution is to show that the conjecture of Brenier is true, namely that the averaged
entropy H s, at least for one solution of the variational formulation of the incompressible Euler
equation, a convex function of time, see Theorem 6.9 for the precise statement. This result is
somewhat disappointing because we can prove convexity only for one solution and not for all: it
is because we use an approximation process to prove the result, and uniqueness of the solution is
known to be false in general. As for the two previous sections, the main difficulty lies in the fact
that the solutions are not regular enough to make the computations rigorous, and we bypass
this difficulty by introducing a time-discretization described below. As the reader will be able to
see in Chapter 6, once the time discretization is performed we never have to worry about the
regularity of the pressure p nor the value functions ¢® and the latter objects do not even appear
in the proof.

Posterior to the publication of our work [Lav17], Baradat and Monsaingeon [BM18, Proposi-
tion 5.2] have provided a simpler proof of this result. The main idea is the same: perturb the
solution w.r.t. the heat flow and use the result as a competitor. Because of our time discretization,
what we do can be see as fixing an instant ¢y in time and then letting p unchanged except
if £ = to where in this case we change it into ®spf for a small s > 0. On the other hand, in
[BM18], they directly work at the continuous level and change pi* in ®(1_ypf* for some small s:
their perturbation is not localized in time. Nevertheless, thanks to nice algebraic properties of
the heat flow, they are able to write the derivative of the action and conclude to the convexity
of the entropy. As they do not have a time-discretization procedure, they are able to retrieve
the convexity of the entropy for all solutions of (3.14) and not only one. On the other hand,
in their framework 2 is the torus and the adaptation to a convex domain seems doable, but
not immediate, whereas our proof is identical whether we are in the torus or a general convex
domain. Actually, as we just use the linearity of the heat flow and the EVI estimate, we believe
that our proof could be copied mutatis mutandis in RCD(0, o0) spaces. We have still included
our proof in this manuscript for its similarity with the techniques in Chapters 4 and 5, but we
would advise a reader which just want to have a nice proof of the convexity of the entropy to
read [BM18] rather than Chapter 6.

Let us briefly mention here some already known results and directions of study of this problem
not related to the convexity the entropy. With the relevant framework, existence of a solution
to (3.15) is rather easy, although one has to show that the problem is not empty, which is not
immediate [Bre89, Section 4]. In some cases there is no uniqueness in (3.15), we refer the reader to
[BF'S09] for a comprehensive study of one of such cases. Most of the research has been dedicated
to the characterization of optimality conditions: the main issue is to show existence, uniqueness
and regularity of a pressure field. It was accomplished by Brenier [Bre99] and regularity of the
pressure was later refined by Ambrosio and Figalli [AF08], though it is believed that the current
result is not sharp yet. In [AF09], the authors used the improved regularity of the pressure to
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get a Lagrangian interpretation, i.e. to characterize the trajectories of the different fluid particles.
They also show that, from the value of the problem (3.15), one can infer a distance on the set
of measure-preserving plans (i.e. elements of {1 € P(2 x Q) : mo#p = L and m#p = L}). We
also mention the recent result [Barl9] which proves continuous dependence on the pressure w.r.t.
the data, i.e. the initial and final configuration of the phases.

3.2.2 An explicit example

We end this section by explaining how, in basically the only situation where explicit solutions of
(3.14) are known, one can check by hand that indeed the entropy is convex. The situation is the
following: we take @ = B(0,1) the ball of center 0 and radius 1 in dimension d with d = 1 or
d = 2. The parameter space is the domain itself, i.e. (2, A, ) is the domain 2 endowed with
its Borel o-algebra and the normalized Lebesgue measure. Instead of the final time taken to be
1, for normalization reasons we rather choose it to be 7. Let us put p§ = d, and p% = §_, for
« € Q). Hence the phase o must describe a particle which is located at time t = 0 in « and at
time t = 7 in —a.

The idea is that we know what the solutions look like. In dimension d = 2, there exists two
smooth solutions of this problem, namely the ones where the particles rotate at unit angular
speed in the clockwise and counter clockwise directions. For these solutions, as the acceleration
of a particle located at x is —z, the pressure field can be computed explicitly and is given by
p(z) = |z|?/2. Actually, and this was one of the main result of [Bre99], the pressure field is
the same for all solutions. In dimension d = 1, we refer to [Bre89, BFS09] for the justification
that the pressure is also equal to p(x) = 22/2. Hence, whatever the solution we pick (with the
boundary conditions described above), we know that particles must have an acceleration equal to
—Vp(z) = —z. We introduce ¥ : [0, 7] x Q x R* — R? the flow of the equation & = —x, given by

U(t, z,v) = xcos(t) + vsin(t).

If the velocity of the particle a at time ¢ = 0 is given, then we will have pf* = dy(t,a)- In
dimension 2 we can set v = o the rotation of o by 7/2. Physically, each particle a moves in
the counter clockwise direction along the circle of radius |«| with unit angular speed: we recover
the solution described at the begining of this paragraph. Such a flow is incompressible and is a
solution of (3.14); and if we make particles flow in the clockwise direction we get also an optimal
incompressible flow (which shows in particular that uniqueness does not hold). But what was
understood by Brenier [Bre89] and later exhaustively explored in [BFS09] is that we can allow for
a phase « to diffuse: one can choose n® € P(R?) a distribution of velocity over R, depending on
«, and say that it stands for the initial distribution of velocity of the phase a. The two rotations
described above correspond to cases where this distribution is a Dirac mass. More precisely, let
us state [BFS09, Lemma 2.3], while being sloppy about measurability issues.

Proposition 3.1. Let (n®)acq a family of probability measures over R? indexed by a € Q. For
each a € Q and each t € |0, 7] we define

pta = \Il(ta «, )#ﬂa
Then (p“)aeq is a solution of (3.14) if and only if it is incompressible, i.e. if and only if for all

t € [0, 7],
L

L pio(da) = m

and reciprocally every solution of (3.14) is of this form.
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v v

t=0 t=

s
4

Figure 3.1: Temporal evolution, for the unique solution of the variational formulation of the

Euler equations in dimension 1, of the phase o = —% which is a Dirac mass in x = —% att=20

and a Dirac at = = % at t = m. One can see that, along the evolution, the mass is spreading.

Though not exactly represented, the density of this phase is not bounded for a fixed t. Note that
™

the support of the density at ¢t = § is not the whole domain 2.

We recall that 6 = £/L£(2), and that, as £(€2) # 1, we are forced to rescale the Lebesgue measure
over 2 when expressing incompressibility.

Working with the family (n).eq, let us check the convexity of the entropy. Indeed, for a
fixed t and «, the map ¥(¢,q,-) is just an affine transformation with slope sin(¢). Hence it is
quite easy to compute

H(pf') = —dIn(sin(t)) + H(n"),
where we recall that d € {1, 2} is the dimension of space. Notice that the dependency on ¢ has
been decoupled from the one in 7. Integrating this equality w.r.t. «,

H(t) = —dIn(sin(t)) —i—f H(n*)0(da).
Q
Now if we evaluate this identity at ¢ = /2, we can conclude that
H(t) = —dIn(sin(t)) + H (g) . (3.17)

In this identity, H can be computed with any solution of (3.14), but of course H(m/2) depends
on the solution and may be infinite. This is the case in the clockwise and counter clockwise
rotations describe above. Even in these cases, (3.17) tells us that #(¢) is identically +o0o, which
is true but not really relevant.

On the other hand, if H(7/2) < 400, then (3.17) shows that # is indeed convex, and also
belongs to L!([0,7]) as such properties are true for ¢t — — Insin(t). In particular, the latter
property shows that we fall under Assumption 6.1 which we will make later in Chapter 6.

We confess that we do not know, if d = 2, whether there are explicit solutions, i.e. explicit
families (n®)qeq for which H(m/2) < +00. Indeed, the families proposed in [BFS09] are concen-
trated on one dimensional sets, hence have an infinite entropy'. However, if d = 1, i.e. when
Q = [—1,1], then there is only one solution [BFS09, Theorem 3.1] and it is given by

To2qp2<1 (V)
(o) = —ectvsIVT g,
() ™1 — a2 —v2 v

'One could try to compute a convex combination of different solutions given in [BFS09] to build one with finite
entropy, but the computations are quite heavy and we did not have the courage to finish them.
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One can look at Figure 3.1 to understand what the evolution of the phase a (with o = —1/2)
looks like. As W(7/2,,-) is just the identity, pg/2(d$) = n*(dz). Hence, the total entropy at
time /2 can be written

H (n/2) = H In(f o 11__03 __UZj))dadv,

where we just set f(s) = m4/sls~g. Doing a polar change of variables and calling r? = o? + v2,
one can check that the integral is finite: the only issue would be close to » = 1, but we have
the expansion In f(1 —r2)/f(1 —r2) ~ Cln(1 — r)(1 —r)~'/2. As a conclusion, if we look at the
inversion of the segment in dimension d = 1, then the unique solution of (3.14) is such that
H e LY([0,7]) and H is indeed a convex function of time.

3.3 Time discretization and flow interchange

In the next three chapters, there is a common feature: the use of a time discretization to make
rigorous estimates established formally via time differentiation. As the technicalities involved are
very similar in all three chapters, we will try, in this subsection, to give a flavor of them.

3.3.1 The discrete problem

Let us explain how one can discretize a problem like (3.1). We choose N + 1 > 2 an integer
which will denote the number of time steps. We will write 7 := 1/N for the distance between
two time steps. The set TV will stand for the set of all time steps, namely

N.= {kt; k=0,1,...,N}.
We set Ty 1= P(Q)T" ~ P(Q)NTL: ie. an element p € Ty is a N + 1-uplet (pg, pr, ..., p1) of
probability measures indexed by T?V. Given (2.4), a natural discretization of the action is
N

1 2
1.9 Ws (p(k—1)7'7 ka)
= dt ~ .
RS

= 2T

Hence, the continuous problem (3.1) will be replaced by

N 2 N
min Z W5 (p=1yr k) + 2 TE(prr) +¥(p1) : po given . (3.18)
pel' 2T

k=1 k=1

Existence of solutions to (3.18) is easy to get, but the main interest of this problem is the way
optimality conditions are written. Indeed, let p be a solution of (3.18) and fix k € {1,2,..., N —1}.
We use the shortcut p := pg;. Let us also denote p := p_1); and v := p(x11), the values of
the curve at the previous and next time step respectively. By optimality we know that p is a
minimizer (among all probability measures) of

2 2
S (1 p) + W5 (p,v)

5 + T7E(p). (3.19)

Notice that this is an instance of the toy model (1.4) presented in Chapter 1. The key idea, which
was introduced precisely in the context of the JKO scheme under the name flow interchange
[MMS09], is to take F' a function convex along generalized geodesics and to use StF p (the
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Wasserstein gradient flow of F' starting at p, see Theorem 2.11) as a competitor. Indeed, using
the inequality (2.10) and saying that S}’ p cannot do better than p, one ends up with
F(u) + F)—2F(p) _ d

= > = 2B (S7) . (3.20)

The Lh.s. is nothing else than the discrete second derivative in time of the quantity k — F(pk;).
Taking E' = 0, we recover that the latter quantity is a convex function of time, which is precisely
the geodesic convexity of F.

As far as the study of soft congestion is concerned, it is enough to take F' = U, for some
m = 1. Indeed, as recall in Section 2.2, one can write a PDE satisfy by the gradient flow
SUn b and evaluate precisely the rate of dissipation of F along SY=. Once the computation is
done, what we get is exactly a discrete version in time of (3.6). Actually, for the case of soft
congestion we write explicitly the optimality conditions of (3.19): calling (@, ) and (1, 1)) pairs
of Kantorovich potentials between pu, p and p, v respectively, they read

s0+w+5£
272 op

(p) = [constant]. (3.21)

The presence of the Kantorovich potentials should not be surprising: they appear as the derivative
of the Wasserstein distance w.r.t. p, see Proposition 2.3. Then we multiply this optimality
condition by the relevant quantity, which is nothing than the gradient (in the Wasserstein space)
of U, at the point p, and we integrate w.r.t.  to get (3.20).

For the study of hard congestion, we do not rely on a flow interchange estimate, though we
use the optimality conditions (3.21) of the discrete problem. Indeed, the idea is to translate all
the formal computations at the discrete level, with the Hamilton-Jacobi equation being translated
in (3.21).

Eventually, for the incompressible Euler equations, we use the flow interchange estimate,
as we perturb each curve by making the component at time k7 follow the heat flow, which is
nothing else than the Wasserstein gradient flow of the entropy. By doing that, we preserve the
incompressibility constraint: this is just a consequence of the linearity of the heat flow and the
fact that the Lebesgue measure is invariant under the heat flow. Hence, when we write (3.20)
there is no r.h.s. Integrating w.r.t. all the phases leads to the discrete time-convexity of the
entropy.

There is actually a technical refinement present in all of the three chapters: in the discrete
problem, we add a vanishing entropic penalization, namely

N
A Z TH(ka)a
k=0

where we recall that H is the Boltzmann entropy, see (2.13). The parameter \ is then sent to 0,
together or after that NV — +00. The goal of this entropic penalization is twofold:

It will force the minimizers of the discrete problem to be measures with strictly positive
density a.e.: this comes from the fact that the derivative of x — zlnz at x = 0 is —o0. As seen
for instance in Proposition 2.3, it is great help to handle derivatives of the Wasserstein distance.
We think that it reveals an unavoidable issue: when one studies optimal transport, it is hard
to handle the regions where there is no mass, because in these regions mass can only be added,
not removed (hence all the optimality conditions with an inequality which becomes an equality
where there is mass). The role of entropic penalization is precisely to remove this potential issue
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and greatly helps to write the optimality conditions. Of course, one has to pay a price: passing
to the limit N — +o0o with entropic penalization is more involved than without.

On the other hand, in the case of the incompressible Euler equations, it will guarantee
convergence of the discrete entropy to the continuous one. Such a convergence is in fact not true
a priori (because H is only l.s.c. on P(2)) but necessary if one wants to pass to the limit a
feature such as convexity.

3.3.2 Passing to the limit

In each chapter, the strategy is always to prove estimates at the discrete level, i.e. for problem
(3.18) and then to pass to the limit N — 40 to get estimates that are true at the continuous level,
i.e. for problem (3.1). To achieve this end, we basically prove a I'-limit. We first emphasize that,
in case of non-uniquness in the limit problem, we can prove something only for one solution of
the continuous problem, not for all. It happens for the convexity of the entropy in the variational
formulation of the incompressible Euler equations and for the regularity of the pressure in the
case of hard congestion (as there is no uniqueness in the dual problem defining the pressure).

For the I'—lim inf, the first step is to identify competitors at the discrete level with competitors
at the continuous one. This is in fact quite easy: if one has p € I'y (i.e. one knows the value
of p; only for ¢t € {0,7,27,...,1}), then by interpolating along constant-speed geodesics on each
segment [k7, (k + 1)7] one easily get a competitor in I'. Along this process, the discrete action is
equal to the continuous one. Hence standard lower semi-continuity arguments allow to handle
the limit N — +oo0.

On the other hand, the I' — lim sup is done by sampling a continuous curve to get a discrete
one. The only issue that might appear is the presence of entropic regularization: indeed, in this
case, one must first regularize a curve before sampling it to ensure a control on the discrete
entropic penalization term.

We mention that for hard congestion, in Chapter 5, what we do in rather pass to the limit
in the dual problem, as the pressure P is a dual variable. As we already know that we have
convergence of the values of the problem (because of the convergence of the primal problem and
the absence of duality gap), it is enough to show that the limiting pressure does at least as good,
when evaluated in the continuous dual problem, as the solution of the continuous primal problem.
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Chapter 4

Regularity of the density in the case
of soft congestion

In this chapter, we tackle the problem of optimal density evolution with soft congestion which
reads

1 1
1,. .
mpin {J §|pt|2dt + J E(p)dt +¥(p1) : peT, po glven} .
0 0

where T' = C([0,1], P(£2)) and |p;| is the metric derivative of p. The functional E : P(Q) — R
will have the form

E(p) = L flp) + L Vdp

The goal is to show that the optimal p is in L® globally in space, locally in time provided we
can quantify how much convex f is and V has some regularity.

4.1 Statement of the problem and regularity of the density

Assumptions. The assumptions that will hold throughout this chapter are the following.

o Recall that Q) is the closure of an open convexr bounded domain with smooth boundary. To
simplify the constants, we assume that its Lebesgue measure is 1.

o We assume that f : [0, 4+0) — R is a strictly convex function, bounded from below and C?
on (0, +00). We define the congestion penalization F by, for any p € P(£2),

F(p) = L F(0°) + ' (+0)p"5(92),

where p =: p®L + p™ is the decomposition of p as an absolutely continuous part p*°
(identified with its density) and a singular part p*™9 w.r.t. L. Thanks to Proposition 2.12,
we know that F is a convez l.s.c. functional on P(£2).

o We assume that V : Q@ — R is a Lipschitz function.
o We assume that ¥ : P(Q) — R is a l.s.c. and convex functional, bounded from below.

We will consider variational problems with a running cost of the form
P Elp) = Flo) + | Vi
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while ¥ will penalize the final density, and the initial one will be prescribed. Namely, we fix
po a fixed element of P(2). We recall that I" := C([0,1],P(2)) where P(2) is endowed with
the Wasserstein metric Wy, and that the metric derivative of a 2-absolutely continuous curve is
defined in Theorem 2.7.

Definition 4.1. We define the the functional A: T — R by

1 1
Alp) = fg L Joulat +f0 E(p)dt + ().

We state the continuous problem as
min{A(p) : p€T, po = po}- (4.1)
A curve p e I' with pg that minimizes A will be called a solution of the continuous problem.

Proposition 4.2. Let us assume that there exists p € I' with py = py such that A(p) < +o0.
Then the problem (4.1) admits a unique solution.

Proof. The functional A is the sum of l.s.c., convex and bounded functionals. Moreover, as
A(p) = Sé %|;')t|2dt — C' (where C depends on the lower bounds of f,V and V), we know, thanks
to Proposition 2.9, that the sublevel sets of A are compact. The existence of a solution to (4.1)
follows from the direct method of calculus of variations.

To prove uniqueness, we need to prove that A is strictly convex. If p! and p? are two distinct
minimizers of A, we define p := (p' + p?)/2. As p' and p? are distinct, by continuity there exists
Ti < Ty such that p} and p? differ for every t € [Ty, T3]. In particular, for any t € [T}, T3], by
strict convexity of F, F(p) < (F(p') + F(p?))/2. Thus,

1 1 1

1 1

| Plonde <5 | Fobaes 5 | Pia
0 2 Jo 2 Jo

As all the other terms appearing in A are convex, one concludes that A(p) < (A(p') + .A(p?))/2,

which contradicts the optimality of p' and p?. O

As we will be interested in the regularity of the solutions of (4.1), we will not discuss the
existence of admissible competitors, i.e. the existence of p € I with py = po such that A(p) < +c0.
However, let us just say that if f(s) growths at most like s as s — +00 with m < 1+1/d (where
d is the dimension of the space), and if ¥(L) < +o0, then existence of such a p is guaranteed
for any pp € P(2). Indeed, by convexity of A it is enough to check that A(p) is finite if p is the
geodesic joining a Dirac mass at time ¢ = 0 to the Lebesgue measure at time ¢t = 1.

In order to get the L™ bounds, we will consider two different cases (strong and weak
congestion), depending on the second derivative of f. Let us start by introducing the typical
functions f that we will consider.

Definition 4.3. For any m > 1, we define uy, : [0, +0) — R for any t = 0 through

tlnt +1 ifm=1
U (T) 1= tm

m(m — 1)

For any m = 1, the functional U, : P(2) — R is defined, for p e P(Q2), via

ifm>1"

J um(p) if p is absolutely continuous w.r.t. L
Un(p) := 4 Jo .
+00 else
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One can notice that u” (t) = t™~2 for any m > 1 and any ¢t > 0, hence the functions u,, are
convex for all m. One can also notice that Uy is (up to an additive constant) the entropy w.r.t.
L that we already defined in (2.13). Moreover, thanks to Proposition 2.12, we see that U, is
L.s.c., convex and convex along generalized geodesics in P(£2). Let us underline also that a direct
application of Jensen’s inequality yields m2U,, for any m > 1.

Let us now state the different assumptions to quantify how much F' penalizes concentrated
measures.

Assumption 4.1 (strong congestion). There exists o > —1 and Cy > 0 such that f"(t) = Cyt®
for any t > 0.

Assumption 4.2 (strong congestion-variant). There exist o > —1, tg > 0 and Cy > 0 such that
f"(t) = Cyt™ for any t = to.

In particular, integrating twice, we see that under either of the above assumptions, for p € P(Q)
we have Uy42(p) < CrF(p) + C, where C' is a constant that depends on f (but not on p). One
can also see that f/(400) = 4+00. The function u,, is the typical example of a function satisfying
Assumption 4.1 with « = m — 2. To produce functions satisfying Assumption 4.2 but not
Assumption 4.1, think at f(t) = v/1 4+ t* (if we try to satisfy Assumption 4.1 we need a < 0 for
large ¢, and o > 2 for small t) or at f(t) = (¢t — 1)% (the difference between these two examples
is that in the first case on could choose an aribtrary tg > 0, while in the second it is necessary to
use tg = 1).

Assumption 4.3 (weak congestion). There exist a < —1, tg > 0 and Cy > 0 such that
f"(t) = Cyt® for any t = to.

For example, f(t) := v/1 + t? satisfies f"(t) = Cyt* for t > 1 with o = —3.

Assumption 4.4 (higher regularity of the potential). The potential V is of class C** (it is C*
and its gradient is Lipschitz) and VV -ngq > 0 on 00, where nq is the outward normal to .

We will see that only Assumption 4.1, where we require a control of f” everywhere, allows to
deal with Lipschitz potentials, while in general we will need the use of Assumption 4.4. The
condition VV - ng = 0 on 02 can be interpreted by the fact that the minimum of V is reached
in the interior of €2: it prevents the mass of p to concentrate on the boundaries.

Assumption 4.5 (final penalization). The penalization V is of the following form

J g(p1) + J Wdpy if p1 is absolutely continuous w.r.t. L
Y(p1) = | Jo Q

+0o0 if p1 is singular w.r.t. L,

where g : [0, +0) — R is a convex and superlinear (i.e. g'(+00) = +w0) function, bounded from
below, and W : Q — R is a potential of class C*' satisfying VW -ng > 0 on 0.

The mains results of this chapter can be stated as follows.

Theorem 4.4 (strong congestion, interior regularity). Suppose that either Assumption 4.1 holds
or Assumption 4.2 and 4.4 hold, and that A(p) < +oo for some p € I with py = po. Let p be the
unique solution to (4.1). Then for any 0 < Ty < Ty < 1, the restriction of p to |11, T3] belongs
to LOO([Tl,TQ] X Q)
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Theorem 4.5 (strong congestion, boundary regularity). Suppose that either Assumption 4.1
holds or Assumption 4.2 and 4.4 hold, and that Assumption 4.5 holds as well, and that A(p) < 400
for some p € T with py = py. Let p be the unique solution to (4.1). Then, for any 0 < Ty < 1,
the restriction of p to [T1,1] belongs to L*([T1,1] x Q).

Theorem 4.6 (weak congestion case). Suppose Assumptions 4.5, 4.8 and 4.4 hold and that
A(p) < +o for some p € T with py = po. We assume that the prescribed initial measure pg
satisfies po € L™ with mo > dja + 1]/2 and F(pg) < +00, and that |AV |, |AW |0 are small
enough (smaller than a constant that depends on mg). Let p be the unique solution to (4.1).
Then p € L™ (]0,1] x Q) and for any 0 < T1 < 1, the restriction of p to [T1,1] belongs to
L*([T1,1] x Q).

Actually, in the last theorem, the constant should also depend on the Lebesgue measure of € but
we do not see it as we have normalized €2 to have unit Lebesgue measure.

The rest of the chapter is devoted to the proof of these theorems. In particular, we will
always assume in the sequel that there exists p € T' with pg = pg such that A(p) < +o0. In
order to prove these theorems, we will introduce a discrete (in time) variational problem that
will approximate the continuous one. For this problem, we will be able to show the existence
of a unique smooth (in space) solution and write down the optimality conditions. From these
optimality conditions, we will be able to derive a flow interchange estimate whose iteration will
give uniform (in the approximation parameters, and in m) L™ estimates.

Let us introduce the discrete problem here. As explained in the previous chapter, we will use
two approximations parameters:

e N +1 > 2 will denote the number of time steps. We will write 7 := 1/N for the distance
between two time steps. The set TV will stand for the set of all time steps, namely

TV .= {kt; k=0,1,...,N}.

We set I'y := P(Q)TN ~ P(Q)N*! (i.e. an element p € 'y is a N + 1-uplet (po, pr, ..., p1)
of probability measures indexed by T'V).

e We will also add a (vanishing) entropic penalization (recall that U; denotes the entropy w.r.t.
L). It will ensure that the solution of the discrete problem is smooth. The penalization
will be a discretized version of .

M viteat
0
where ) is a parameter that will be sent 0.

Let us state formally our problem. We fix N > 1 (7 :=1/N) and A > 0, and we set Ay = A if
Assumption 4.5 is satisfied, Ay = 0 otherwise. We define AN : 'y — R by

N

N L W22(p(k71)77pk7') &
AN (p) =) o + 30 7 (Epir) + AUL(prr)) + ¥(p1) + AnUi(p1).-
k=1 k=1

This means that in the case of Assumption 4.5 we penalize p; by SQ g(p1) + A\Ui(p1) + SQ Wdp1,
while we do not modify the boundary condition otherwise (the reason for not always adding
AU1(p1) lies in the possibility of having a prescribed value for p; with infinite entropy). In all
the cases, we enforce strictly pg = pp. The discrete minimization problem reads

min{AY*(p) : peTx, po = fo}, (4.2)

and a p € T'y which minimizes A™* will be called a solution of (4.2).
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Theorem 4.7. For any N = 1 and any X > 0, the discrete problem (4.2) admits a solution.

Proof. The functional AN is a sum of convex and Ls.c. functionals, bounded from below, hence
it is itself convex, l.s.c. and bounded from below. Moreover, the space I'y = P(Q)V+! is compact
(for the weak convergence). Thus, to use the direct method of calculus of variations, it is enough
to show that AN*(p) < +co for some p € T'y.

This is easy in this discrete framework: just take pg, = L if k€ {1,2,...,N — 1}, po = po
and py, equal to an arbitrary measure p such that ¥(p) + AyUi(p) < +o0. O

We did not adress the uniqueness of the minimizer in the above problem since we do not
really care about it, but indeed it also holds. Indeed, the strict convexity of F' (or the term
AU; that we added) guarantees uniqueness of py, for all & < N — 1. The uniqueness of the last
measure (which cannot be deducted from strict convexity for an arbitrary functional ¥, as we do
not always add a term of the form AU;(p1)) can be obtained from the strict convexity of the last
Wasserstein distance term p — W2 (p, P(N—1)r)> @S P(N—1)r 15 absolutely continuous (see [Sanl15,
Proposition 7.19)).

In all the following, for any N > 1 and A > 0, we denote by p™¥* € I'y the unique solution
of (4.2) with parameters N and A. Moreover, In all the sequel, we fix 1 < f < d/(d —2). It is
well known that the space H'(Q) is continuously embedded into L?(£2). Moreover, in the case
where the assumptions of Theorem 4.6 are satisfied, we choose 5 in such a way that

ﬁ€1m0> la + 1]. (4.3)

4.2 Flow interchange estimate

4.2.1 Interior flow interchange

In this subsection, we study the optimality conditions of (4.2) away from the temporal boundaries.
We fix for the rest of the subsection N > 1,0 < A <1 and 0 < kK < N, and we use the shortcut

p = ﬁIZCVT’)‘. Let us also denote y := ﬁé\lii\l)r and v := ﬁé\;’i‘l)r. As p™V is a solution of the discrete

problem, we know that p is a minimizer (among all probability measures) of

W (pp) + Wi (p,v)
2T

+7 (F(p) + AUi(p) + L Vdp> :

In particular, we know that U;(p) < 400, thus p is absolutely continuous w.r.t. L.
Lemma 4.8. The density p is strictly positive a.e.

Proof. For 0 < e < 1, we define p. := (1 —¢)p + L. As L is a probability measure, we know
that p. is a probability measure too. Thus, using p. as a competitor, we get

WZQ(%PE) +W22(P€7V) _ W22(:uv p) +W22([), V)
2T 2T

ATL(P) - Ui(p2)) < + rE(p.) — rE(p).

We estimate the r.h.s. by convexity (as W3 and F are convex) to see that

c <W§(u>£) HWELD) | gy WEGD) + WEGv) TE(p))

D) — <
U]-(p) U]-(pf) ~ )\ o 27

Thus, there exists a constant C', independent of e, such that Uy (p) — U1(p:) < Ce. This can be
easily seen to imply (see for instance the proof of [Sanl5, Lemma 8.6]) that p is strictly positive
a.e. O
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We can then write the first-order optimality conditions.

Proposition 4.9. The measure p (or more precisely its density w.r.t. L) is Lipschitz and
bounded away from 0 and c0. Moreover, let us denote by ¢, and ¢, the Kantorovich potentials
for the transport from p to respectively p and v. Then the following identity holds a.e.:

Vo, +V A _
Proof. Let p e P(2) n L*(Q2) and for 0 < ¢ < 1 define p. = (1 —¢)p + ep. We use p: as a
competitor. We use Proposition 2.3 as p > 0 a.e., the Kantorovich potentials ¢, and ¢, for the
transport from p to respectively p and v are unique and

i V2 (1) = W3 (s pe) + W3 (p,v) = W3 (pe,v) _ J Put v
Q

e—0 27—2 T

p—p)

The term involving V is straightforward to handle as it is linear. Hence, by optimality of p we

get ) 0
[ (252 4v) - < g FP AR SR SNy
Q -

72 €
By definition of the objects involved,

F(p:) + A\Ui(p:) — F(p) — A\Ui(p JfA (1 —e)p +epl = Silol
3 g

The integrand of the integral of the r.h.s. converges pointewisely, as e — 0, to (f'(p)+A1n p)(p—p).
Moreover, as the function f) is convex, we see that for 0 < e < 1,

ﬁm—@@fd<ﬂﬂ<ﬁ@—ﬁw-

As pe L*®(Q) and F(p) + A\U1(p) < +00, the r.h.s. of the equation is integrable on €. Thus, by
a reverse Fatou’s lemma,

f F(pe) + \Ui(p:) — F(p) — A\U1(p)
Q

lim sup

e—0 €

< | (7@ +am7) (-7
Combing this equation with (4.5), we see that §;, hd(p — p) = 0 with

+ v
P 4 + f'(p) + Alnp + V.

We know that h is finite a.e., thus its essential infimum cannot be +00. Moreover, starting from
pf'(p) = f(p) — f(0), we see that §;, hp > —oo. Taking probability measures j concentrated on
sets where h is close to its essential infimum, we see that the essential infimum of A cannot be
+o0 and that h coincides with its essential infimum p-a.e. As p > 0 a.e., there exists C' such that
we have a.e. on )

f’(ﬁ)mlnﬁ:c_w—v (4.6)
As f'is C' and increasing, it is easy to see that f’ + AIn is an homeomorphism of (0, +c0) on
(—00, +90) which is bilipschitz on compact sets. As the function C' — (¢, + ¢,)/72 — V takes its
values in a compact set and is Lispchitz, we see that p is bounded away from 0 and oo and is
Lipschitz. With all this regularity (recall that f is assumed to be C? on (0, 4+o0)), we can take
the gradient of (4.6) to obtain (4.4). O
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4.2. FLOW INTERCHANGE ESTIMATE

Theorem 4.10 (Flow interchange inequality). For any m > 1, the following inequality holds:

Um(lu') + Um(V) - 2Um(ﬁ)
5 .

| Wt | (v v <

T

The reader can see that this result is a discrete version of (3.6) derived heuristically in the
previous chapter.

Proof. We multiply pointewisely (4.4) by p™~'Vp and integrate over Q. Dropping the entropic
term, we easily get

= —\ ~m— = —m— 1 ~ —m—
| 1wt | (vt < - | (95 (Tt Vo

To prove the flow interchange inequality, it is enough to show that

- JQ(VP' v‘ﬂu)ﬁm_l < Unm(p) = Un(p),

as a similar inequality will hold for the term involving ¢,. To this purpose, we denote by
p:[0,1] = P(Q) the constant-speed geodesic joining p to p. By Proposition 2.10, we know that
it is given by

pr = (Id =tV )#p.

By geodesic convexity of U,,, the function ¢ +— U, (p;) is convex. Hence,

Um(/j’) - Um(ﬁ) = Um(Pl) — Um(p[))
> lim sup Un(p) ; Un(po)
t—0

J U (pt) t—um(P)
Q

J (Pt — P)up (P)
Q

= lim sup
t—0

= lim sup

t—0 t

[ ol = Ven (o)) = ) 5,
Q

= limsup
t—0

where we also have used that u,, is convex. It is clear that for a.e. x € §,

o BBl = 1V, ()]) =t (pl)
t—0 t

= —[(Vp- Veu)up(p)] ().
Moreover, we have the uniform (in ¢) bound

U (Pl — 1V pu(2)]) — g, (Pl])
t

\ < 1 (D)ol V5l | Vool o

At this point, one can remember that u” (z) = 2™~2. Moreover, as p is bounded away from 0
and oo and Lipschitz, the r.h.s. of the equation above is finite. Thus, by dominated convergence,

J Uy, (Pl — tv%‘)uix)]) - u;"(ﬁ[x])ﬁ(x)dx _ _J (Vp- V‘Pu)ﬁm_l. =
Q Q

lim sup
t—0

From the result of Theorem 4.10 we need to deduce estimates on improved L™ norms. To this
aim, we treat in a slightly different way the cases of weak and strong congestion even if the result
are similar. The main issue is to control the term involving VV.
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Corollary 4.11 (Strong congestion case). Suppose that Assumption 4.1 holds. Then, for any
m = a+ 2 one has

Um(,u) + UmT(ZV) — QUm(ﬁ) + Cm2Um(ﬁ):| ’

Upm(p)'? < Cm? {

where C' > 0 depends only on f,V and 2.

Proof. Let us start from the case of Assumption 4.1. In this case, we recall that Cy is the
constant such that f”(t) > Cft® for any t > 0. We transform the term involving VV in the
following way:

|| vvigt = | @) gerev

C e ~12 >m— 1 ~—q ~m—
= —7f JQ 12 /QVP|2P 't E L p /2VV|ZP !
c ~12 -m—1+«a 1 -m—1—a
= —7f L [VplPpm e — E L VvVt

Cf —~12-m—1+4+a HVVH?DmQ —
> -1 - )
= 9 Jﬂ |Vp| P QCf Um(p)

For the last inequality, we have used the fact that

(m—1—a)/m
J ﬁm—l—a < (J Pm) < J ﬁm < ’I’I’L2Um(,5),
Q Q @

which is valid because 1 < m — 1 —a <m and L£(Q) = 1. Thus, using Theorem 4.10, we get

c ~12 >m—1+a = -\ ~m— c ~12-m—14a
e A e W P O e 7
Q Q Q
Unli) + Un(v) = 2Un(®) _ IVVE, o
< .
h { 72 * 2Cf m " Un(p)

We are interested only in the large values taken by p. Let us introduce p := max(1,p). This
function is larger than p and 1 and its gradient satisfies |Vp| = |[Vp|1;>1. Thus,

2 2 2
J |Vﬁm/2|2 — mJ |Vﬁ|2ﬁm72 < mJ |vﬁ|2ﬁmfl+a < mJ |vﬁ|2ﬁmfl+a.
Q 4 Jo 4 Jo 4 Jo

(the last inequality is true since Vp = 0 on the points where p > p, and the first inequality is
exactly the point where we exploit the fact p > 1, which explains the use of j instead of p). On
the other hand, if we use the injection of H'(Q) into L?*?(Q) for the function 5”2, we get (with
Cq a constant that depends only on ),

/B
(J ﬁmﬂ> < Cq (J |Vﬁm/2|2 +f ﬁm) .
Q Q Q
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As pP™ < pP™ and p™ < 14 p™, we see that
p p

/8 /8
()= ()
Q Q
2
< Cq (mj |Vp|2pm—1+a+f ﬁm-i-l)
4 Jo Q
1
< Cgm2 (4f |vﬁ|2ﬁmfl+a +2Um(ﬁ))
Q

< Om [Umw + Un(v) = 20n(p) CmQUm(ﬁ)] |

72

Notice that to go from the second to the third line, we have used the fact that 1 < SQ o
m2Upn (D). To conclude, it remains to notice that, as mg > 8 > 1, that we can control (unlformly
in m) Ung(p) by §, o™ ﬁ Indeed

(L) s Gy

Thus, up to a change in the constant C, we get the result we claimed. O

Corollary 4.12 (Weak congestion case). Suppose Assumption 4.3 and 4.4 both hold. Then, for
any m = 1 such that B(m + o+ 1) = 1 one has

Um(:u) + Um(V) B 2Um(ﬁ)

72

+ CmUp,(p) =0

and

_ Um + Um v)— 2Uvm 0 — m «
Uﬁ(m+1+a) (/))1/6 < sz |: (M) 7_(2 ) (P) + CmUm(p)] + Ct(] e )

where C' depends only on f,V and 2.

Proof. We use an integration by parts to treat the term involving VV. Recall that ng denotes
the exterior normal to €.

[ f ()

L[ (wvong)m —JAV
m Joq

— AV [omUnm(p),

WV

where we have used the assumption VV - ng = 0 on d€2. Thus, using Theorem 4.10, we get
(recall that f”(t) = Cyt™ but only for ¢ > t)

Cff Vpl*pm e < Cff Val*o™ L () o
{p=to} Q _
g [Um(ﬂ) + Un;—(;) —2Un(p) I |Av|mem(ﬁ)} ) (4.8)

This gives us the first inequality of the corollary. In a similar manner to the strong congestion
case, we introduce p := max(tg, p). This time we notice that

A(m a m’ ~12 -m—1+a
J |V (m+1+ )/2|2 < 4J |vp|2p I+a
{p=to}
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Thus, if we use the injection of H(Q) into L?#() with the function p(m+1+e)/2,

/8
(J ﬁﬁ(m+1+a)) < Cq (J |vﬁ(m+1+a)/2|2 +J ﬁm-‘rl-i-a).
Q Q Q

Then, we proceed as in the proof of the strong congestion case, but this time m + 1+ a < m
and ﬁm-ﬁ-l-ﬁ-a < ﬁm-&-l-&-a + t6n+1+a:

1/8 1/8
(J p,B(m-i-l-i-a)) < (J pAB(m+1+a))
Q Q

2
< Og mf |Vﬁ|2[3m1+a+J ﬁm+1+o¢+t6n+1+a
4 Jip=1y 0

2
<CQ mf |vﬁ|25m1+a+J ﬁm+t81+1+a
4 Jip=1y Q

Um(:u) + Um(’/) - 2Um(ﬁ)

72

<(%n2{ -%cmuhgn]+cn?“*¢

Notice that if tg < 1, we can control t§' by m2U,,(p) (as we did in the strong congestion case),

but in the general case this is not possible and we have to keep an explicit dependence in 3. To
conclude, we notice that, thanks to (4.3), one has f(m + 1 + ) = m > mg and thus

1/6 )
~B(m+1+a) —\1/8

The last case is a combination of the previous two cases.

Corollary 4.13 (Strong congestion case-variant). Suppose that Assumption 4.2 and 4.4 both
hold. Then, for any m = mg one has

Um(:UJ) + Um(y) - 2Um(:5)

72

+ CmUpn(p) = 0 (4.9)

and
Um(:u) + Um(”) - 2Um(ﬁ)

72

Upm ()P < Cm? { + C’mUm(p)] + Ct, (4.10)

where C' depends only on f,V and S.

Proof. We begin with the same computations as in Corollary 4.12. We can obtain the same
result as in (4.7), but on the set {p > to} we can use @ = —1 to write

—12-m Un(pt) + Up(v) —2Un(p _
| wapen < | Pl B 220 Ay, ().
{p=to} T

With p := max(tg, p) we get
2
| wworep < e varar,
Q 4 Jip=t0)
and the conclusion comes from the same Sobolev injection, with the function p™/2, and similar

computations as in the previous cases. O

For simplicity, inequalities (4.9) and (4.10) will be used by replacing the term mU,,(p) with
m2U,,(p), so as to allow a unified presentation with the inequality obtained in Corollary 4.11.
Notice also that Corollary 4.11 is basically giving us the same inequality as (4.10), as long as we
set tg = 0.
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4.2.2 Boundary flow interchange

In the case of Assumption 4.5, we can derive some estimate right at the final time ¢t =1 (k = N).
We will only sketch the proof, at it mimicks the proof of the interior case and these computations
are well- known in the case of the applications to the JKO scheme. We know that, with p = _N A
and p = pl_T, the measure p is a minimizer (among all probability measures) of

W3 (u, p)

p— + G(p) + \Ui(p J Wdp.
2T

Let us remark that it correspond to one step of the JKO scheme: it is in the context of such
variational problems that the flow interchange was firstly used, see [MMS09]. In any case, with
these notation, we obtain:

Proposition 4.14. Suppose Assumption 4.5 holds. Then, for any m > 1 ,

Um (:u) - Um (ﬁ)

> —(m — D||AW | oUnm (D).

Proof. Following the same strategy than in Lemma 4.8 and Proposition 4.9, we know that p is
bounded away from 0 and o, is a Lipschitz function, and that

T

v A
Yy <g"(ﬁ) n p) Vit VW =0

a.e. on £}, where ¢, is the unique Kantorovich potential for the transport from p to p. Thus, if
we multiply by p™ 1V, we get, by the same estimation than in Theorem 4.10 (we drop both
the entropic penalization and the congestion term),

Un (1) = Um(p)

T

> f (VW -Vp)p™ L.
Q

It remains to perform an integration by parts, using the sign of VW - ng on 0€2, to conclude that

Un(1) = Un(p) _% JQ AWR™ 2 —(m — )| AW | Unn(p). =

T

4.3 Moser-like iterations

Corollaries 4.11, 4.12 and 4.13 allow us to control the L™ or L("*+1+®8 norm of p in terms of
its L™ norm. The strategy will consist in integrating w.r.t. to time and iterating such a control
in order to get a bound on the L™([Ty, T3] x Q) norm of p™* that does not depend on A and N
and to control how this bounds grows in m. For any N > 1 and any 0 < A < 1, recall that p™*
is a solution of the discrete problem (4.2).

Definition 4.15. For any m > 1 and any 0 < Ty < Th < 1, we define L%,Tz as
1/m
LT 7, := liminf ( 2 TUm(ﬁ]k\:_’A)> .
N—+400,A—0 Ty <kr<Ty

The quantity L7 7, can be seen as a discrete counter part of (up to a factor 1/(m(m — 1)Ym)
the L™ norm of the restriction to [17, T3] of the limit (whose existence will be proven in the next
section) of pV* when N — +c0 and A — 0.
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4.3.1 The strong congestion case

First, we integrate w.r.t. time the estimate obtained in Corollary 4.11.

Proposition 4.16. Suppose that either Assumption 4.1 holds or Assumptions 4.2 and 4.4 both
hold. Then there exists two constants Cy and Co (depending on f,V and Q) such that, for any
0<e<Ci/mandany 0 <Th < T <1 such that [Ty —e,T> +¢] < (0,1), and any m > o + 2,

3 1/m
B m 2
LTTTZ < |:02€ (m + €2>] max (L%_E;&%,to) .

As pointed out earlier after Corollary 4.13, in the case where Assumption 4.1 holds, we set
to = 0.

Proof. Let us recall that in Corollary 4.11 and Corollary 4.13, we have proved (if we explicit the
dependence in N and \) that for any N > 1, A > 0 and any k€ {1,2,...,N — 1}, one has

Unm ﬁNi\ +Un ﬁN’A —2U,, ﬁl\:/\
Usm ()7 < cm2[ () + UnAiy) = 20t

. + CmPUnm (5™ | + Cti.

(4.11)
Let us take x : [0,1] — [0,1] a positive O cutoff function such that x(t) = 1 if t € [T} —
e/3, Ty + ¢/3] and x(t) = 0if ¢t ¢ [T1 — 2¢/3,T> + 2¢/3]. Such a function x can be chosen
with | x”|eo < 54/¢2. We multiply (4.11) by 7x(k7) and sum over k € {1,2,..., N — 1}. After
performing a discrete integration by parts, we are left with

N-1 o
> Xk U ()P

k=1
N-1
1 —1r)—2
<0+ 02’ S 0, [onit 4 XERDD 2 00 1) = Ber))
T
k=1

Given the bound on the second derivative of x, and if 7 < &/3, we get

_NA 1 _N,A
2 TUms (oo )P < O + Om? (m2 + 52) Z TUn (D)
Th—e/3<kT<Tr+¢/3 Ty —e<kT<Th—¢

1/m
The L.h.s. is not exactly (L:,n}lﬁ T2) as we would like to exchange the sum and the power 1/4.

Unfortunately, Jensen’s inequality gives the inequality the other way around. To overcome this
difficulty, we will use the fact that the function k& — U 5m(ﬁé\i/\) is almost a convex function of k.
More precisely, we will use the “reverse Jensen inequality”, whose proof is postponed at the end
of this chapter in Section 4.5.

Lemma 4.17. Let (u})rez be a family of real sequences indexed by a parameter 7. We assume
that there exists w = 0 such that for any k € Z and any 7, one has uj, > 0 and

ul . +ul  —2ul
. e T 1) (4.12)

T

Then, for any Ty < Ty and any n < w/(8w), there exists 19 (which depends on w), such that, if
T < 79, then

1/p _ 1+1/8
( 3 m;) ot DT+ 1) 5 D),
T

<kT<Th N Ty —n<kr<T2+n

where C is a universal constant.
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4.3. MOSER-LIKE ITERATIONS

To use this lemma, we observe that uj, := Uy, (ﬁ]k\g)‘) satisfies (4.12) with w? = Cm? (thanks again
to Corollary 4.11 and Corollary 4.13). Thus, if we take C; small enough, we have /3 < 7/(8w)
as soon as ¢ < C1/m. If 7 is small enough, we can exchange the sum and the power 1/ to get

1/8
_N,\ / Cm+1 N)\ 1/8
T

<kT<Ty T17€/3§kT<T2+€/3

3
m 1 N
< Cr— (m2 + 2) (to + E TUm(p]k\Q )) .
c c T1—e<kr<To+e

Notice that we have put the constant Com3s=!(m? + £72) also in factor of tJ', as it is anyway
larger than 1 as soon as ¢ is small enough. Then we take the power 1/m on both sides, use the
identity (a + b)/™ < C' max(a'/™, b/™) and send N — +00 and A — 0 to get the result. O

In other words, on a slightly larger time interval, the L?™ norm is control by the L™ norm. We
just have to iterate this inequality.

Proposition 4.18. Suppose that either Assumption 4.1 holds or Assumptions 4.2 and 4.4 both
hold. For any 0 < Ty < Ty < 1, there exists C (that depends on Ty, T, f,V and Q) such that

limsup L7: 7, < C'max (LS‘J{Q, )

m—>+co

Proof. Let g9 > 0 be small enough such that 0 < T} —eof/(6 —1) < Ta +e0B/( —1) < 1 and
g0 < C1/(a + 2) (where C} is the constant defined in Proposition 4.16). For any n € N, let us
define

Ty =T — Z,B and T} .—T2+2ﬁn,

and set m,, := (o + 2)[". Using Proposition 4.16, as we have |TZ-"Jrl — T =g ™ < Cy/my, for

i€ {1,2}, we can say that, with [, := max (L?{?T;,to

m> 9 1 1/mn
lni1 < |max<{1,Co—2 et — ln
o [m{ 2B (m wwm

< [C,Bﬁn] B (a+2) ln

One can easily check, as § > 1, that
+00

H [06671]3771/(0‘""2) < +oo,

n=0
thus we get that
sup Ly, < sup Lt pn < suply, < Clp = C'max (LZ"}[?TO, ) C max (L8‘J1’2, ) .
neN ’ neN 172 neN 1
To conclude, we notice that, if m > 1 and m,, = m, one has (using Jensen’s inequality)

m (1 (M0, — 1))1/mn mp,
12 = (m(m _ 1))l/m 11,1

thus sending m — 400 (hence n — +o) we conclude that

limsup L7, 5, < sup L'z, . (4.13)
neN

m—+400

O

As we will see later, the fact that LO‘+2 is finite is a consequence of the fact that the solution p

of the continuous problem (4.1) Satlsﬁes Sé F(py)dt < +oo.
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CHAPTER 4. REGULARITY OF THE DENSITY IN THE CASE OF SOFT CONGESTION

4.3.2 Estimates up to the final time

In this subsection, still supposing that either Assumption 4.1 holds or Assumptions 4.2 and 4.4
both hold, we exploit Assumption 4.5 to extend the L® bound up to the final time t = 1. We
will prove a result similar to Proposition 4.16, but this time up to the boundary.

Proposition 4.19. Suppose that either Assumption 4.1 holds or Assumptions 4.2 and 4.4 both
hold, and that Assumption 4.5 also holds. Then there exists two constants Cy and Co (depending
on f,V,g,W and Q) such that for any 0 < e < Cy/m and any 0 < T} <1 with 0 < T} — &, then
foranym = a+ 2,

Bm m® (m 2, 1 i
LTl 1 \ |:02 (E + m + E2>:| max (Lg}l_e’l, to) .
Again, we recall that if we are under Assumption 4.1, we take ¢y = 0.

Proof. Let us recall that equation (4.11) holds for any N > 1, A > 0 and k€ {1,2,..., N — 1}.
We take x : [0,1] — [0, 1] a positive O cutoff function such that x(t) = 1if t € [T} —¢/3,1] and
x(t) = 0if t € [0, T} — 2¢/3]. Such a function x can be chosen with |x" | < 54/2%. We multiply
(4.11) by 7x(k7) and sum over k € {1,2,..., N — 1}. After performing a discrete integration by
parts, we are left with (now a boundary term is appearing):

_N,\ _N,A

N—
S (k) Umalp 9 < cm2<U B D) Unliis) )

1 T

S font s Mo 00l 0] o

With the help of Proposition 4.14 and Corollary 4.11 or Corollary 4.13, and as x(1) = 1, we are
able to write (provided that 7 < ¢/3)

1
Z Umﬂ(ph MNE < om? <mUm(in’)‘) + [m2 + 52} Z TUm(in;/\)> + Cty".

Thi—e/3<kT<1 T —e<kr<1
To transform the boundary term U, (ﬁfw‘) into an integral term, we use the following lemma,

whose proof is also postponed at the end of this chapter in Section 4.5.

Lemma 4.20. Let (u])rez be a family of real sequences indexed by a parameter 7. We assume
that there exists w = 0 such that for any k € Z and any T, one has uj, > 0 and (4.12). We also
assume that there exists b = 0 such that for some N € Z,

-
Uy —UN_1

< buly.
T SUUN

Then, there exists C1 and Cy universal constants and 1o (which depends on w and b), such that
for any n < min{r/(32w), 7/(32b)} and any T < 79, then

C
ufy <— > T, (4.14)
n NtT—n<kT<NT

and for any Ty < N,

/8
( 2 Tu%) <Gy (w4 1)(NT =T — +1)1+1/8 Z D)V, (4.15)

Ty <kT<NT n Ty —n<kT<NT
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4.3. MOSER-LIKE ITERATIONS

We are in the case where this lemma can be applied because of Corollary 4.11 or Corollary 4.13
and Proposition 4.14 with uj, = Um(ﬁ,]jT’A), w=Cmand b=Cmand N7 = 1. Thus, if ¢ < C/m,
we can guarantee that we can use equation (4.14) of Lemma 4.20 (with ¢ = n), thus

5 m m 1 B
2 TUmﬁ(PkNé/\)lm < Cty' + Cm? [8 +m2 4 52] 2 TUm(ka\Q)\).

T1—¢/3<kT<1 T1—e<kr<1

Then we use equation (4.15) of Lemma 4.20 (but this time with uj, = Ugm(ﬁi\;)‘)) to exchange
the sum and the power 1/5 on the L.h.s. to conclude that

3

1/8
_ m> | m 1 m _

T <kr<1 Ty —e<kr<1

Again, we have put m3e=!(me~! + m? 4 £72) in factor of ¢J*, which is legit because this factor
is larger than 1 for ¢ small enough. Taking the power 1/m on each side, using the identity
(a4 b)Y™ < Cmax(a'/™,b/™), and letting N — 400 and A — 0, we get the result. O

It is then very easy to iterate this result, which looks exactly like Proposition 4.16. Thus, the
proof of the following proposition, which is exactly the same as Proposition 4.18, is left to the
reader.

Proposition 4.21. Suppose that either Assumption 4.1 holds or Assumptions 4.2 and 4.4 both
hold, and that Assumption 4.5 also holds. Then, for any 0 < Ty < 1, there exists C' (that depends
on T1, f,V and Q) such that

limsup L7, ; < C'max (LS‘J{Q, to) .
m——+0o0 ’ ’

4.3.3 The weak congestion case

The scheme is very similar in the weak congestion case, even though the iteration is not as direct
as in the strong congestion case. Moreover, we will directly prove an L* bound up to t = 1,
because, as we will see, Assumption 4.5 will be needed anyway to initialize the iterative process.
The proofs will be less detailed in this case: the reading on the two previous subsections is
advised to understand this one.

Proposition 4.22. Suppose Assumptions 4.3, 4.4 and 4.5 hold. Then there exist constants C
and Cy (depending on f,V and ) such that, for any 0 < e < C1/m and any e < Ty < 1, then
for any m = my,

m5/2 m 1 1/(m+1+a) P )
m+1l+a m m/(m+1+a
L§E71+ +a) < [CQ - <€ +m + 62)] max [( Tl—a,l) ,t0:| .

Proof. The proof starts the same way: starting from Corollary 4.12, we write

Um(ﬁ]\;’i\l -,-) + Um(ﬁ]\;i’Al -,-) - 2Um(ﬁfg\;>\)
Uﬁ(m+1+a) (ﬁ%f\)l/ﬁ < Cm? ( ) 7(2 s + CmUm(ﬁJk\::)\)

+ T (4.16)
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CHAPTER 4. REGULARITY OF THE DENSITY IN THE CASE OF SOFT CONGESTION

Because of Assumption 4.5, we can also write, tanks to Proposition 4.14, that

Un(7120) = U (57 )
T

> —(m — D)|AW |ooUn (5 ).

We use the same cutoff function x that in the proof of Proposition 4.19. We multiply (4.16) by
7x(kT), perform a discrete integration by parts and end up with

Z TUﬁ(m-‘rl-i—a) ([)i\:—’)\)l/ﬁ

Th—e/3<kT<1
—N,\
(Um (101 ) -

T

< Cm?

N
Um(pjlva) + m—i—i Z +U. (ﬁNﬂ)\) +Ctm+1+0‘
&2 m\Fgr 0

T —e<kr<1

1
< Cm? (mUm(piv’A) + [m + } 2 TUm(p}]c\Q)\)> + Oty e
Ty

2
€ —e<kT<1

We also use Lemma 4.20 but this time with w? = Cm (this is Corollary 4.12) and b = Cm. The
frequency w? is smaller than in the strong congestion case (where it was of the order m?) because
we have made stronger assumptions on the potential V', though this is not important as we only
use the fact that w grows not faster than a polynomial of m. With this lemma we can both
transform the boundary term into an integral term and exchange the sum and the power 1/3:
there exists C such that if 0 < & < Cj/m and if 7 is small enough,

1/B
_ m+1 _
( Z TUB(m+1+a) (PkNT/\)) < CL Z TU,B(m+1+a) (Pljg\?\)l/ﬁ

9
Ti<kr<1 T —e/3<kr<1

5/2
m m 1 14 _N\

Ty —e<kr<1

We take the power 1/(m + 1 + «) on both sides, use the fact that

(a + b)l/(m+1+a) < Cmax(al/(m-i-l-‘ra)’bl/(m+1+a))
and let N — 400, A — 0 to get the result. O

We proceed the same way by iterating the inequality, even though this expressions are slightly
more complicated. Let us underline that the condition (4.3) on f is precisely the one that ensures
that S(m + 1+ a) > m as soon as m = mg: it is only thanks to this condition that the iteration
of Proposition 4.22 will give useful information.

Proposition 4.23. Suppose Assumptions 4.8, 4.4 and 4.5 hold. Then, there exists v < 40
such that, for any 0 < Ty < 1, there exists C' (that depends on T, f,V and Q) such that

limsup Ly: | < C (max [Lg?f,to])v.
m——+00

Proof. As we know, thanks to our normalization choices, that Lgff = 1, it is not restrictive that
assume that ¢y > 1 (indeed, if this is not the case, Assumption 4.3 is still valid with ¢ty = 1 and
the content of Proposition 4.23 does not change).
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4.3. MOSER-LIKE ITERATIONS

Once we have chosen ¢g < S171/(5 — 1), we define 77" by the same formula as in the proof of
Proposition 4.18. We also define m,, by recurrence: for any n € N, we take my 1 = S(m, +1+ ).
Thus, we have the explicit expression

my, = <m0 + (a+ 1)B’il> A" — (o + 1)ﬁ6_1.

In particular, (my,)nen diverges exponentially fast to 400 as n — +oo0. Using Proposition 4.22
and as tg = 1, we get

Lmn+1
T1n+171 ~

1/(mn+1+a)
] max {(Lg,"wlﬁ’l

mp/(mp+a+1)

. m53L/2 ( m, . . 1 ) >mn/(mn+1+o¢) t]
D m’I’L Y A\ bl
*eofm \eof ™ (e0™™)* 0

] 1/(mn+a+1) s ([L?ﬁ,v to] )

Denoting by [, := In (max [LTY’JJ, tOD, we see that

< [051171/2

11n Cy mn

l < C + + In.
TS iy +at+l)  mpta+l mata+l”

Given the exponential asymptotic growth of (my,)nen, we leave it to the reader to check that is
enough to conclude that limsup,,_, ,, ln < vlp + C5 for some v < +o0 and C4 < +o0. Taking
the exponential gives
limsup L7, < C (max [Lg, to])ﬂ/ .
neN L ’

To conclude, we use again (4.13), which is valid independently of Assumption 4.1 or Assumption
4.3. O

However, in the weak congestion case, the fact that Lg?f < 400 will require a little bit more
of work and relies on the particular form of the boundary conditions.

Proposition 4.24. Suppose Assumptions 4.3, 4.4 and 4.5 hold. Then there exists Cpay (which
depends on mq) such that, if |AV |« and |AV |« are smaller than Chqy then

Lyt < +oo.

Proof. Again we will use the almost convexity of Uy, (p"*"). Indeed, we rely on the following
lemma, which has the same flavor as the “reverse Jensen inequality” and whose proof is postponed
at the end of this chapter in Section 4.5.

Lemma 4.25. Leta > 0,b > 0 and w > 0 and assume Tyax = min{m/(32w), 7/(32b)} is bounded
by 1. Then there exist some constants C' < +o0 and 179 > 0 (all depending on a,b and w) such
that for any N > 1/1y (1 := 1/N) and for any sequence (u},)x, € Z of strictly positive numbers
satisfying (4.12) for ke {1,2,...,N — 1}, and such that uj = a and

T T
Uny_1 — Uy

— > b,

one has uj, < C for any ke {1,2,...,N}.
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CHAPTER 4. REGULARITY OF THE DENSITY IN THE CASE OF SOFT CONGESTION

We use this lemma with u], = Umo(ﬁ,]jf). Equation (4.12) is satisfied with w? = [|AV||lwmo
(Corollary 4.12, one should look closely at the proof to see that the dependence is indeed linear
in |AV]s ); one can take

1
= Uy (5 = Upy (0 =J 06"
a = Upny(py ") = Umo(po) oo —1) Jo 0
and we take b = (mg—1)|AW/||e (cf. Proposition 4.14). Thus, one can conclude that if 1 < Tpax,
then Uy, (ﬁ]k\?‘) is bounded independently on N. The latter condition can be rephrased as
max (||AV ] s, [AV|w) < Cnax once one plugs the formula for Ty,.x. This is enough to conclude
that Ly is finite. O

4.4 Limit of the discrete problems

In this section, we will see that the solutions p™* of the discrete problems (4.2) converge to the
solution p of the continuous one (4.1) when N — +o and A — 0. Then, using the results of the
previous sections, we will be able to show the L* bound on p.

4.4.1 Building discrete curves from continuous one

In our construction we will need to work with curves with finite entropy. This is easy under
Assumption 4.1 of 4.2, but requires an approximation in the case of Assumption 4.3. Hence, we
will show that in this case we can approximate curves in I' by curves in I with finite entropy. In
order to do this, we will use the heat flow, whose definition and useful properties are recalled in
Section 2.4.

Recall that the heat flow with Neumann boundary conditions on {2 is denoted by ® and the
heat kernel by K. We mention that if A : R — R is any convex function bounded from below,
p € P(Q) N LY Q), and s = 0 then

| nl@p@1de < | bl
Q Q

If h is not superlinear, the same stays true for any p € P(Q) by replacing the integral {, h[p(x)]dz
with the expression in (2.12). Indeed, using in particular Jensen’s inequality and the fact that
Yo Ki(z,y)dx = 1 for any y and ¢,

| m@pena= [ o ( | mte y)p(y)dy) da
< || B hio)ayds = [ nlotdy,

Q
QxQ
The proof in the case where h is not superlinear and p is not absolutely continuous is obtained

by writing p =: p°L + p"8. Observing that h/(c0) is the Lipschitz constant of h, we have

| @@= | Bl@pm) @l <1 e0) | 197 @) e = (o) @),
Proposition 4.26. Suppose Assumption 4.5 holds and that py is such that Ui(pg), F(po) < 40,
and let p e I' with pg = po. Then, for any € > 0, there exists p € I' with py = pg and C' < 4+
such that A(p) < A(p) + € and Uy(p) < C for any t € [0,1].
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Proof. Without loss of generality, we assume A(p) < 4o0. The idea is to use the heat flow
to regularize solutions. But we cannot apply the heat flow uniformly, as we would loose the
boundary condition pg = pg. Consequently, for any 0 < s < 1, we define p° € P(T") by

Dy (po) fogt<s

0=, (p[t_SD ifs<t<1’

1—s

In other words, we take the curve ®4p, squeeze it into [s, 1], and use the heat flow to join pg to
ps on [0, s]. In particular, p§ = po = po and pj = ®sp1. From Ui(py) < +oo and the fact that U;
is decreasing along the heat flow (see Theorem 2.11), U;(p¢) is bounded by Ui (pp) if ¢ € |0, s]
and by a constant C (depending only on s and Q) if t € [s, 1]. Hence, for any s > 0, there exists
C < 400 such that U;(p;) < C for any t € [0, 1].

It remains to show that A does not increase too much because of our regularization process.
Because of the remark made above, one can see that

1

1
|, PG+ G < 5Py + (=) | PGt + G,

To handle the action of p°, we remark thanks to the fourth point of Proposition 2.13 and the
representation formula (2.4) that applying uniformly the heat flow decreases the action. Hence,
performing a affine change of variables on [s, 1] and using (2.11),

1, s, 1 I
[ iear= [[wipar + 11 [ posnpa
0 0 1 — S 0
(.,
< Uilpo) = Un(®spo) + 17— | Ioeldt.
- 0

By lower semi-continuity of U; and as Uy(pg) = U1(po) is finite, one concludes that
1 1
limsupj EARGE <J |pe]?dt.
s—0 0 0

Finally to handle the term involving the potentials, one uses, by continuity of the heat flow, that
p; converges to p; for any ¢t € [0,1] as s goes to 0. As Sé |p;|2dt is uniformly bounded, the family
(p°)o<s<1 is uniformly equicontinuous, hence p° converges uniformly to p as s — 0. This allows

us to write ) .
lim [J J Vdpidt —l—J Wdﬁ‘f] =J J Vdptdt—i-f Wdp;.
=01 Jo Ja Q 0 Jo Q

Gluing all the inequalities that we have collected, we see that lim sup,_,5.A(p°) < A(p). Hence,
it is enough to take p := p° for s small enough. O

Now, let us show how one can sample a continuous curve to get a discrete one that approximates
it.
Proposition 4.27. Let p € T' with pg = po be such that Sé Ui(py)dt < 400 and X\ > 0 be fized.

For any N > 1 we can build a curve pN € T'y with p}) = py in such a way that

1
lim sup AN (™) < A(p) + )\J Ui(pe)dt + AnUi(p1).
0

N—+0o0

We recall that Ay = 0 by default except if Assumption 4.5 holds.

73
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Proof. We can assume A(p) < 400. The idea is to sample p on a grid translated w.r.t. TV. We
start with the following observation.

1—7

7—N1
f (Flpiri) + Ai(pirsa)) ds = | (F(p) + 2V ()

<JRF@9+Awuwnh+cﬂ
0

where C' depends only on the lower bounds of F' and U;. Therefore, there exists sy € (0, 7) such
that

N-—1 1
P 3 Flpr ) + A (i) < | (F(p0)+ AU () + C

Let us define p" € I'y by sampling p on the grid translated by sy: for any k € {0,1,..., N},

oV =< if k=N

As the boundary values are left unchanged and given the choice of sy, it is clear that

! 1 N OWEN )
<«4(P)+)\J Ul(/)t)dtJr)\NUl(Pl)) — AN (p™) ZJ §|p't|2dt— D 2 ) PR 7 o
0 0

= 2T

The r.h.s. of the above equation is delicate to evaluate because of the non uniformity of the grid
near the boundaries. Recall that if ¢ < s then W3 (py, ps) < (s — ) §7 |pr|*dr, hence

& W3 (pf) Plk— l)T’ka)

= 2T
W (P07 107'+5N NZ Pk—1) 7'+5N ) pk‘T+SN) W22 (p(kfl)‘rJrst pl)
= +
= 2T
T+ SN TN kr+sn 1 . T — SN 1 1 .
< mﬂw+2j‘ St + Lo
27 0 (k— 1)T+8n 27 1-T+sn 2
T+SN . 1—T+sn 1 1 1 1 o
<[ labars | e | it
0 T+SN 2 1—7+sn 2

27'
J =104l dt"‘f 2|P5t|2dt-
0

In particular, we have used 7+ sy < 27 and 7 — sy < 7. Letting N — +o0 (hence 7 — 0), w
end up with

N WS (e Py (1
limsupZ 2 Py Phr <J ~|pe|?at,
N—+000 k=1 2T

and this is enough to conclude. O

Corollary 4.28. Under the assumptions of Theorems 4.4, 4.5 or 4.6, there exists C' < 400 such
that, uniformly in N > 1 and X € (0, 1], one has

ANA( NA)<C.
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Proof. If we are under the assumptions of Theorems 4.4 ot 4.5, we take p € I' such that
A(p) < +00. As Uy < CrF + C, we see that Sé Ui(py)dt < +oo. If we are under the assumptions
of 4.6, we take p € T" such that A(p) < +00 and regularize it thanks to Proposition 4.26. For this
regularized curve, one has Sé Ui(pe)dt + AUy (pl) < 400.

In any of these two cases, we construct pV as in Proposition 4.27 and define C' := supy>;
ANA(pN), then we use the fact that ANA(pVA) < ANA (V) < C. O

4.4.2 Solution of the continuous problem as limit of discrete curves

We will build a suitable interpolation of the discrete curves p™'* that will converge to some
continuous curve p as N — +o0 and A — 0, and we will show that p is a solution of (4.1).

As the order in which the limits N — 400 and A — 0 are taken does not matter, we will do
them in the same time. We take two sequences (N, )neny and (A, )pnen that go respectively to +o0,
and 0 (the second one being strictly positive). We will not relabel the sequences when extracting
subsequences. Moreover, to avoid heavy notations, we will drop the index n, and lim,,_, 1 will
be denoted by limy_, ;o 1—0. We will need to define two kind of interpolations: one filling the
gaps with constant-speed geodesics, and the other one by using piecewise constant curves.

Definition 4.29. If N > 1 and A > 0, we define pN* € T' as the curve such that pN* coincides

with o™ on TN, and such that for any k € {0,1,..., N—1}, the restriction of pN* to [kr, (k+17)]
NA, N

is the constant-speed geodesic joining p,." to Pli+1)r

As ﬁkNT”\ is absolutely continuous w.r.t. L for any k € {1,2,..., N — 1}, the constant-speed

geodesic between ﬁ]k\i and p( is always unique. From the characterization of constant-speed

k+1)
geodesics, one has, for any k€ {0,1,..., N — 1},

2/=N,A —N,\
J(kﬂ) 1 AN)\‘ 4 W3 (D ,p(kH)T)
kT 2 P ‘

2T
Summing these identities over k,
1 N W2 ( —N,)\ —N,)\)
1 ;N)\‘Q 2 p(k—l)T’ka
—1py 7| dt = . 4.17
. 5l Y 3 (417)

In other words, the continuous action of the interpolated curve pN* is equal to the discrete
action of the discrete curve p™¥*

Definition 4.30. If N > 1 and A > 0, we define p™* : [0,1] — P(Q) as the function such that
pVA coincides with pN* on TV, and such that for any k € {0,1,..., N — 1}, the restriction of
pVA to [kr, (k + 17)) is equal to ﬁi\;)‘

The curve p™ is not continuous as it might admit discontinuities at every point in TV. Let us
underline that the following identity trivially holds:

% (P + [ van) = [ (k@ + [ vty @iy

Proposition 4.31. Under the assumptions of Theorems 4.4, 4.5 or 4.6, there exists p e I' such
that pN* and pN* converge uniformly to p as N — +00 and X\ — 0.
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Proof. Let us denote by C' the constant given in Corollary 4.28. As all the terms in AN are
bounded from below and given identity (4.17), one can see that there exists C such that

J Y1 va?
S|P
0o 21"
uniformly in N > 1 and A € (0,1]. Thus, by compactness of the sublevel sets of the action
(Proposition 2.9), one concludes of the existence of p € T' such that p™¥* converges uniformly (up

to extraction) to p as N — 400 and A — 0. Moreover, one can see that for any ¢ € [0, 1] and any
N =1, by setting k£ to be the largest integer such that k7 < ¢, one has

<Gy

~N,A <N, AN AN/\
WQ( 7/01‘, ) W2< 7ka

ANA‘ dS \/ 2017’

This allows to conclude that p™* also converges uniformly to p as N — 4o and A — 0. O

Proposition 4.32. Under the assumptions of Theorems 4.4, 4.5 or 4.6, the curve p is the
solution to the continuous problem (4.1).

Proof. Taking the limit N — 400 and A — 0 in (4.17), as the action is L.s.c., we end up with

—N,\
bq . N W (p L )
f §|ﬁt|2dt lim inf E (k=1)r> Phr )
0

N—+00,A—0 bl 2T

Then, to handle the terms with the potential and the congestion, one can notice that for any
t € [0, 1], by lower semi-continuity of F' and the convergence of ﬁiv A to Dt

F(pt)—i-J Vdp, < liminf F(p* JVdWA.
Q N—+00,A—0

Thus, using Fatou’s lemma, as F,V and U; are bounded from below, one has for any 7y > 0,

1=7o 1—7
J <F(Pt) +J Vdpt) < liminf J (F(Igi\”‘) J VdﬁiV’A) dt
0 Q N—+00,A—-0 Jg

N-1

_ . —N,\
B NEToégio 1; ( (b J Vs )
N-1
< ..
== NEIEO(I),I}\fHO ,; ( ka f Vdka + AUy (ka )) .

In the equation above, 7y is arbitrary thus it is still valid for 7p = 0. As moreover the boundary
penalization V¥ is l.s.c. and the entropic penalization AyU;i(p1) is positive, one is allowed to write
that
5) < liminf N =N
APYS Bl AT
Let us assume by contradiction that there exists p € I' such that A(p) < A(p). Using,
if needed, Proposition 4.26, we can assume without loss of generality that A(p) < A(p) and
Sé Ui (ps)dt + AnUi(p1) < +oo. Using Proposition 4.27, for any N > 1, we can build p"¥ € Ty in
such a way that

1
lim sup AN (™) < A(p) + )\J Uir(pe)dt + AnUi(p1).
N—>+w 0
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Taking the limit A — 0, one can see that

limsup AMA(p™) < A(p) < A(p) < liminf ANA (M),
N—+400,A—0 N—+00,A—0

Taking N large enough and A small enough, we conclude that AV*(pN) < ANA(pNA), which is
a contradiction with the optimality of p™. O

4.4.3 Uniform bounds on p

To conclude and prove the Theorems 4.4, 4.5 and 4.6, it is enough to show the L* bounds
on p, which of course we will prove using the discrete solutions p™*. The key is the following
proposition.

Proposition 4.33. Let 0 < Ty < Ty < 1. Then for any 0 < T{ < Ty and any T < Ty < 1 (or
T5 =Ty =1 in the case To = 1),

esssup |pe(z)| < limsup LT, I
T1<t<T,z€Q m—>+00

Proof. We rely on the well-known identity

1/m T, 1/m
esssup  |pi(z)| = limsup (J J Py dt) = lim sup (J Um(pt)dt) .
T <t<T>, e m——+00 m——+00 T

For a fixed m > 1 and for 7 > 0 small enough, one has
T2 NA N
| on@Mars 3 U@
T T)<kr<T},
GNA to

When sending N — o0 and A — 0, by lower semi-continuity of U, and by convergence of p
p, we know that

T2 T2 N
Up(pr)dt < liminf U (YY)t
JT1 (pdt < | liminf JT1 (py 7)dt

.. —_N,\
<  liminf Z TU, ).
T NS0 m(Py:")

T/ <kT<T}

Taking the power 1/m on each side and by definition of L, ;,, one gets
172

Ty 1/m
(J Um(ﬂt)df) < Ly gy
T

It is enough to take the limit m — +a0 to get the announced inequality. O
We can now conclude the desired bounds:

Proof of Theorem 4.4. Combining Proposition 4.33 and Proposition 4.18, it is enough to show
that LS‘IZ < 400. Because of Assumption 4.1 or 4.2, we know that Uyio < C1F 4+ Cy with

C1 > 0. Hence, in order to conclude that L&J{Q < 400, it is enough to use Corollary 4.28, which
provides a constant C' < +00 such that for any N > 1 and any A € (0, 1] we have

N-1
MR < C. O
k=1
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Proof of Theorem 4.5. We combine Proposition 4.33 and Proposition 4.21, as we saw that
Lg‘jQ < 400 (in the proof of Theorem 4.4). O

Proof of Theorem 4.6. 1t is enough to combine Proposition 4.33 with Propositions 4.23 and
4.24. O

4.5 Apprendix: reverse Jensen inequality

In this section, we prove Lemma 4.17 (the “reverse Jensen inequality”) as well as Lemmas 4.20
and 4.25, whose proofs were postponed in order not to overload the key arguments of this chapter.
In all the sequel, we consider a family of sequences (uf,)rez indexed by a parameter 7 > 0. We
assume that there exists w > 0 such that for any k € Z, one has uj, > 0 and

up_ 1 +u,_, —2uj,
bl ~ kol TR 2] > 0. (4.19)

72

This inequation is a discrete counterpart of the differential inequality u” + w?u > 0. Let us
remark, by the positivity of uy, that we can assume without loss of generality that w > 0, even
though the proofs are considerably simpler if w = 0: the constants would be better, and the
strategy of the proof would be slightly different. The key point to handle uj, is to compare it
with explicit sequences realizing the opposite inequality in (4.19).

Definition 4.34. For any 7 > 0, let T7 be the set of sequences (vg)kez of the form vy =
A cos(2wkT + 0).

Lemma 4.35. There exists 19 > 0 such that for any T < 719, if (vgp)kez € T™ and k is such that

v > 0 then
Vg1 + Vg1 — 20

5 +w20k<0

T

Proof. This is a consequence of the trigonometric identity

v + vp_1 — 2v cos(2wt) — 1
ke + v szvk:(Q (27) +w2)vk
T T

2 -1
% + w? ~ —3w? as T goes to 0. O
-

and the fact that 2
We also note the following properties on the sequences in 77, that we do not prove and leave
to the reader as an exercise.

o if k1 < ko are fixed with |ky — ki|Tw < 7/8 and 7 is small enough, then for every fixed
positive values aj,az > 0 there exists a unique sequence in 77 with vg, = a1 and vk, = as.
Moreover, such a sequence (vg)rez is such that there exists an open interval I of the form
either (ko7, k17) or (keoT, k37), with length at least m/(8w), with vy > 0 for all the indices k
such that k7 e I.

e if k; < N and b > 0 are fixed and |N — ki|r < min{r/(8w),7/(8b)} and 7 is small
enough, then for every a > 0 there exists a unique sequence in 77 with v, = a and
(v —vn—1)/T = buy. Moreover, such a sequence (vg)xez is such that there exists an open
interval I of the form (ko7, k17) with length at least min{n/(32w), 7/(320)}, with v > 0
for all the indices k such that kT € I.
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Note that, for the purpose of Lemma 4.35 and of the subsequent observations other choices
of vy, were possible, such as vy = Acos((1 + e)wkT + 0) for some £ > 0, but we chose € = 1 for
simplicity in the next computations (more generally in this appendix we have not been looking
for the sharpest constants). Indeed, all these results are not surprising: at the continuous level
v solves v" + 4w?v = 0 and most of the discrete results are just an adaptation of this property.
The important point is the following comparision principle between (u],)rez and (vk)rez-

Lemma 4.36. Let ki < ko such that |ky — k1|Tw < 7/8 and assume T < 19. Let v € T7 the

unique element of T™ such that vy, = uf, and vg, = uj,. Let ko (resp. k3) be the largest (resp.

the smallest) index smaller that ki (resp. larger than ka) such that vi,—1 <0 (resp. vg,41 <0).
Then uy, < vy for any k1 < k < kg and uj, = vy, for any ko < k < k1 and any ko < k < ks.

In other words, u” is below v between k; and ko and above outside k; and ko (as long as v = 0).

Proof. The fact that there exists only one v € 77 such that vy, = uj, and v, = ug, has been
already observed above. Let us define wy = uj, — v;. By (4.19) and Lemma 4.35,

-2
Whtd FWho1 T 20k 2050 (4.20)

T2

for any ko < k < k3 and wy, = wg, = 0. We want to prove wy < 0 for every k1 < k < k. We
consider the piecewise affine interpolation w of the values wy: a function which is affine on each
interval [k7, (k + 1)7] and is equal to wy at the point k7. The condition (4.20) translates on w
as differential inequality in the sense of distributions:

" + w? Z TWEOkr = 0. (4.21)
&

Let us assume by contradiction that there is an open interval I c (ki7, ko7) on which w > 0,
with @w = 0 on dI. We denote by |I| the length of such an interval, and we have || < |k — ki|7.
By multiplying the above inequality by w and integrating by parts we get

Then, we observe that we have, for each k s.t. kT € I,

1 1
Wy, SJw'S Ifw'?
el < 5 | 1@< 11| 1]

The reason for the factor 1/2 in the above inequality is the possibility to choose to integrate w’
on an interval at the right or at the left of k7, and to choose the one where the integral of |w'| is
smaller. This implies

1
f @' < WPt el kT € T~k — k1|TJ 2.
I 4 I
Since {k: kT € I} c {k: k1 < k < ka}, we have #{k : kT € I} < |ka — k1| and the contradiction
comes from the assumption wrl|ks — k1| < 7/8 < 2.

In order to prove wy = 0 for ko < k < k1, we first observe that (4.20) for £ = k;, now that
we know wg, +1 < 0, implies wg,—; > 0. If for some k£ with ky < k < k; we had wy < 0, then we
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could find an open interval J < (ko7, k17) where w > 0 with w = 0 on ¢J. We then apply the
same approach as above, thus obtaining

1
J |w'|* < WP #{k kT € J}|J|J lw' 2.
J 40y

It is important to not that J is contained in an interval of positivity of a function of the form
A cos(2wt + 9), whose length is 7/(2w); the number of points of the form k7 contained in an
interval of such a length is at most 7/(2w7) + 1 but for k = k1, k2 the point k7 does not belong
to the open interval J. Hence #{k : k7 € J} < n/(2wT), and we have a contradiction since
72 < 16. O

We provide now a variant in the case where on the interval (k17, k27) we impose a different
boundary condition on the right end side.

Lemma 4.37. Let ki < N and b > 0 such that |N — k1|7 < min{n/(8w), 7 (8b)} and assume
7 < 10. Suppose (uny —un-1)/7 < buy. Letv e T7 the unique element of T7 such that vy, = uf,
and (vy —vNn_1)/T = bun. Let ko be the largest (resp. the smallest) index smaller that kisuch
that vi,—1 < 0.

Then uy, < vf, for any ki1 < k < N and uj, = vj, for any ko < k < k1.

Proof. The argument is very similar to the one in Lemma 4.36. We first define wy = ug — vy, as
well as the piecewise affine interpolation w of the values wy, which satisfies again (4.21), but also
w'(1) < bw(1), (recall tha N7 = 1).

Then, we assume by contradiction that there is an open interval I < (ky7, N7) on which
w > 0. If w =0 on 0! (i.e., on both points on the boundary), the argument is really the same.
Otherwise, we can assume I = (¢,1), with w(t) = 0. By multiplying by w and integrating by
parts we get

‘DWP:anm—J%<mm)|ﬂﬁ S gl

k : ktel
al < [ 1)<y i1 | 1o

We do not have anymore the factor 1/2 because w only vanishes at one end, now. This implies

Then, we use that on I we have

J [’ |? < || (w2T #{k: krel} +b)J |’ |2
I I

Since #{k : kr € I} < |N — k1| and |I| < |N — k1|7, using the assumptions on |N — k;| we have

J1|w'|2 < (g + <g>2> L|w’|2.

s ™2 1 1
T+ (5) <5+7<L 0

8 8 2 4
With the two lemma above, we are able to deduce some Harnack-type inequality, which
means that we can control the values of a u satisfying (4.19) in the interior of an interval with

the values of u outside the interval.

This is a contradiction, since
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Lemma 4.38. Let k1 < kg such that |ka — ki|tw < ©/8 and assume T < 19. Let ko (resp.
ks) be the smallest (resp. largest) integer smaller than ky (resp. larger than ks) such that
(k1 — ko)Tw < /8 (resp. (k3 — ko)Tw < 7/8). Then one has

sup uj < Cmax ( inf g, inf uz) ,

by <k<ks ko<k<ki ko ko<k<ks
where the constant C' is universal.

Proof. Given the symmetry of the property we want to prove w.r.t. to time reversal, we can
assume that uzl < uEQ. Let v € T7 be the unique element of 77 such that vy, = uzl and
Uk, = uj,. We know that it can be written in the form vy = Acos(krw + §) with A > 0. In
particular, A > |vg| for any k € Z. Up to a time translation, we can assume that § = 0 and
k1 < 0 < ko. By the hypothesis u}, < uf,, and |k — k17w < 7/8, we can even say that
|k2| < |k1]; thus, one has ko7 < 7/(16w). In particular, for any ko < k < k3, we can say more
than v, > 0:

cos (2wksT)
cos (2kawT + 2(ks — ko)wT)

v = A

> A

> cos (E + E) sup |vp|
8 4/ ez

= — sup |v
g Ck’eIZ)| k,|’

with C' = cos(37/8) ! < +co. Thus, by using the comparison between u™ and v (Lemma 4.36),
one can say that, for any ko < k < kg,

1
sup  up,

up = —
C ri<k'r<ko

which easily implies the claim. O

We also provide the same type of lemma but where a different condition is imposed on the
right end side, namely a Neumann-type boundary condition.

Lemma 4.39. Let ky < N and b > 0 such that [N — k1|7 < min{n/(32w), 7/(32b)} and assume
T < 19. Suppose (uy —un—1)/7 < buyn. Let ko be the smallest integer smaller than ki such that
(k1 — ko) < min{n/(32w), 7/(32b)}. Then one has

T . T
sup wup <C inf g
k1 <k<N ko<k<ks

where the constant C' is universal.

Proof. The strategy of the proof is the same than for Lemma 4.38. We take v to be the unique
element of 77 such that vy, = up, and (v —un—1)/T = buy. We know that v is of the
form vy, = Acos(2kTw + 0). Up to a time translation, we can assume that N7 = 0 and take
0 € (—m/2,m/2). Starting from (vy —vy_1)/7 = buy and using well known factorization formulas,
one ends up with

b= —2wtan(d) + O(wT).
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Thus, if 7 < 79, one can say that arctan(—b/w) < 0 < arctan(—b/(4w)). Hence, using the fact
that arctan(t) +arctan(1/t) = —m/2 (if t < 0) and that min{nt/4, 7/4} < arctan(t) <t (if ¢t > 0),
one concludes that

-{_E+E_E}<5< S L
min 5 TR <0 < min 5 b .

In other words, § cannot be too close to —7/2, the point where the cosine vanishes. Given the
information that we have on k; and kg, one can check that

d — 2wtky = 6 — 2wtk — 2wt (ko — k1)

) T Tw 7 ) T 7w
me{———i-— ——}—2mm{ }

2 4b’ 4 16’ 16b
o 7r+7rw 3
Zming ——+ —,—— .

2 8b 8

As, for every ko < k < N, one has
Acos(d — 2wtkpy) < v < Acos(d),
it is easy to conclude that

SUPg,<k<N Vk cos(min{—7% + 4Tw’ 0})
g pan o 7w 3y SO
infyo<k<n vk cos(min{—F + T2, F})

where the value of C' can be estimated by noting that if w/b < 1 both the numerator and the
denominator are of the order of w/b and if w/b is not small the denominator is far from 0 and
the numerator is bounded by 1. This proves that C is a universal constant. It remains to use
Lemma 4.37 to transfer the above inequality into an information on . O

To conclude, we can prove the Lemmas 4.17, 4.20 and 4.25 that we used throughout the
chapter, by using the above results. To prove Lemma 4.17, we cut the interval [T7,T5] into
several pieces of length of order 1/w, on each piece we use the Harnack inequality to exchange
the sum and the power 1/3, and we use rough comparisons to put the pieces together.

Proof of Lemma 4.17. Let M be the smallest integer larger than 8w(T> — T1)/m + 1. We cut the
interval [T7,T»] into M closed intervals Iy, Is, ..., Ins of equal length (all equal to (Th —T1)/M <
7/(8w)). Let us choose an interval I;, we can use Lemma 4.38 to write

1B
< 2 TUE) < (i| +7)Y7 sup (uf)"?

k : krel; krel;

<CULl+n)YP [ inf @)Y+  inf  (u))VP
T —n<kr<TY Ty<kr<T5+n

Iz' + 7 1/8 -
< C(| | ) 2 (uk)l/ﬁ’
N k : krel,tn
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where I; + 71 denotes the set of real numbers which are at a distance at most i of I;. Then we
put together the estimate for each I;:

( > m;>w<<§] > m;>w

Th<kr<Ts i=1k : krel;

M1/52< s >1//a

k : kTel;

_ 1/8
<0M1/5(T2MT1+7) 12 S rwpt’

z 1k : krel;£n

M(Ty — Ty + M7)'/?
<M =T+ M) Yo rp’
il T —n<kT<T2+n
D(Ty — Ty + 1)1/
<C(w—l- (T2 1+ 1) Z T(u2)1/57
il T —n<kr<T>+n

where we have used the fact that M7 < 1 if 7 < 79 (where 79 depends on w) and also that M
can be estimated by a constant times w + 1. O

Proof of Lemma 4.20. For the first part, we apply Lemma 4.39 with ky = N. With the choice of
n, one has (k1 — ko)7 < min{n/(32w), 7/(32b)}. Thus, one can write that
T < : T
uy s ¢ 1—n1£ka<1 Ui
which is enough to to conclude as the r.h.s. is bounded by the mean of uj, for 1 —n < k7 <1
For the second part (which is a variant of Lemma 4.17, but with Neumann boundary conditions

on one side), we can say with the help of Lemma 4.39 that with k; the smallest integer smaller
than N such that |V — k|7 max{w, b} < 7/32,

1/8
( 2 TUE) <P —kir+ 7Y sup  (uf)VP

kiT<kr<1 kir<kr<1

<SCl—kir+7)"%  inf  (uf)/?

kiT—n<kr<kiT

r(uf) %,

Cl1—kyr +7|'/8
"’] 2

kiT—n<kT<kiT

Then, we combine this estimate with the interior estimate Lemma 4.17 (with 75 =1 — ki7) to
end up with the announced result. ]

Proof of Lemma 4.25. We apply Lemma 4.39 with k&; = 0. Thus if 1 = 7N < Thax =
min{m/(32w), 7/(32b)}, one has

sup uy < Cugy = Ca.
0<kr<1

Thus, the L.h.s. is bounded by a constant which does not depend on N. ]
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Chapter 5

Regularity of the pressure in the
case of hard congestion

In this chapter, we tackle the problem of optimal density evolution with hard congestion which
reads

1 1
1.
min{f |pt|2dt+f E(pt)dt—i-J Udpy : peT, po given}.
P {Jo 2 0 Q

where I' = C([0,1],P(2)) and |p¢| is the metric derivative of p. The functional E will have the
form

Vdp if p<1ae. on[0,1] x £,
E(p) = JQ

400 otherwise

The goal is to show that the pressure arising from the incompressibility constraint exhibits some
Sobolev regularity if this is the case for the potentials V' and . Compared to the previous
chapter, we underline that the final cost is the integration against a given potential (called
¥ : Q — R) and not an arbitrary function ¥ : P(Q) —» R

In this chapter, we say that a measure pu € P(Q) satisfies p < 1 if u has a density w.r.t. £
and this density is bounded a.e. by 1.

5.1 Statement of the problem and regularity of the pressure

5.1.1 Primal and dual problem
Assumptions. The assumptions that will hold throughout this chapter are the following.

(A1) The domain ) is the closure of an open bounded convex subset of R% with Lebesgue measure
|Q| strictly larger than 1.

(A2) We fizx Ve H'(Q) (the “running cost”) and assume that it is positive.
(A3) We fiz ¥ e HY(Q) (the “final cost”) and assume that it is positive.
(A4) We take po € P(Q) (the initial probability measure) such that py < 1.

We denote by I'g < T" the set of curves such p € " that pg = pg. As we will see below in the
definition of the primal problem, it does not change anything to add a constant to V or ¥, hence
(A2) and (A3) are equivalent to ask that V and ¥ are bounded from below.

The primal objective functional reads
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14 1
J ~|pe|dt —I—J (J Vdpt) dt —i—f Udp, if p <1 foralltel0,1],
0 2 o \Ja Q

+o0 else.

A(p) =

Definition 5.1. The primal problem is
mpin {A(p) : peTly} (5.1)

We will need to consider the dual of this problem. Let ¢ € C*([0,1] x ©2) and P € C([0,1] x Q)
be smooth functions with P positive and in such a way that the Hamilton Jacobi equation is
satisfied as an inequality

— 01 + %|ng5|2 <V+P (5.2)
and the final value of ¢ is constrained by
(1) <. (5.3)
The dual functional, at least for smooth functions, is defined as follows:
5@.7) = | s0.9m— || P
[0,1]x2

and there is no duality gap between the primal and the dual problem. The reader can refer
to Section 3.1 to understand where this expression comes from. However, to get existence of a
solution of the dual problem, it is too restrictive to look only at smooth functions. As understood
in [CMS16], the right functional space is the following.

Definition 5.2. Let K be the set of pairs (¢, P) where ¢ € BV([0,1] x Q) n L%([0, 1], H'(2)) and
Pe ML([0,1] x Q) is a positive measure, and the Hamilton Jacobi equation (5.2) is understood
in the distributional sense, provided we set ¢(17,-) = W and that we take in account the possible
jump from ¢(17,-) to ¢(1%,-) in the temporal distributional derivative.

For (¢, P) € K, the dual functional is understood in the following sense:

B@P%=L¢mbww4ﬂmuxm.

Notice, that we can always assume ¢(07,-) = ¢(0",-) (no jump for ¢ = 0, otherwise it would
increase B(¢, P)) but we set ¢(11,-) = U. The measure P can have a part concentrated on t = 1,
which may lead to ¢(17,-) > ¢(17,-) = U, provided the jump is compensated by the part of P
on {1} x Q.

Definition 5.3. The dual problem is

max (B(6.P) : (6.P) € K}. (5.4)
These two problems are in duality in the following sense [CMS16, Propositions 3.3 and 3.8].
Theorem 5.4. There holds

mpin {A(p) : peTly} = max {B(¢,P) : (¢,P)eK}.
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Notice that the existence of a solution to both the primal and the dual problem are included in
this statement. The main result of this chapter is the following:

Theorem 5.5. There exists a solution (¢, P) of the dual problem such that:

e The restriction of P to [0,1) x Q has a density w.r.t. to the d + 1-dimensional Lebesgue
measure and this density, denoted by p; satisfies |Vp(t,-)|r2) < [VV|r2q) for a.e.
t € [0,1]. Moreover, if V.e Wh(Q) with ¢ > d, then |p|r=(o,1)x0) < C < 40 with C
depending only on |VV||paq) and Q.

e The restriction of P to {1} x Q has a density w.r.t. to the d-dimensional Lebesgue
measure and this density (denoted by P1) satisfies |V Pi|p2(q) < [VV|12(q). Moreover, if
U e Whi(Q) with q > d, then | Py||x(q) < C < +00 with C depending only on |V¥| 1q(q)
and €.

As already understood in [CMS16, Section 5], there are situations where the pressure is concen-
trated on {1} x €: one cannot expect P to have a density with respect to the Lebesgue measure
on the closed interval [0,1]. Nevertheless we prove in our theorem that the part of the pressure
concentrated on {1} x €2 has spatial regularity, namely H'(Q) and even L®(2) if ¥ € W14(Q)
with ¢ > d. The rest of this chapter is devoted to the proof of this theorem, the wrapping of the
arguments being located at page 99.

5.1.2 The discrete problem

To tackle this problem and make rigorous the estimate presented in Chapter 3, we will approximate
the primal problem in the following way:

e We introduce a time-discretization. The integer N 4+ 1 denotes the number of time steps,
7 = 1/N will denote the time step.

e We add an infinitesimal entropic penalization. The goal is to make sure that the density
of the minimizers of the discrete problem will be bounded from below, which is necessary
when we want to write the optimality conditions.

e For technical reasons, we need to regularize V and W. We take (Vi) nen a sequence which
converges to V in H'(Q) and such that Vi is Lipschitz for any N > 1. We can assume
moreover that [VVy|r2) < [[VV|12(q) and Vi is positive. Similarly, we take a sequence
Uy going to ¥ in H'() satisfying analogous properties.

The entropic penalization will be realized with the help of the Boltzmann entropy H whose
definition is recalled in (2.13). As recalled in Proposition 2.12, the functional H is lower
semi-continuous on P(€2). Moreover, a simple application of Jensen’s inequality yields

~In(|92)) < H(p) <0

as soon as p < 1.
To define the discrete problem, we take N > 1 and denote by

L0 := {(prr)refo,1,..ny : Prr € P(Q) and po = po} < (P(Q))NH

the set of discrete curves starting from pg. We denote by 7 := 1/N the time step. We choose
(AN)Nen which goes to 0 while being strictly positive, it will account for the scale of the entropic
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penalization. The speed at which Ay — 0 is irrelevant for the analysis, hence we do not need to
specify it. The discrete functional A" is defined on I'}’ as

S WE (ke peryr) e
.AN(p) = Z =+ 2 T VNprr + ANH (prr) | + Unp1 + ANH(p1)
k=0 27 k=1 0 Q

if ppr <1 forall ke {0,1,...,N} and +oo otherwise. The discrete problem reads as
mpin {AN(p) D pE F(])V} . (5.5)

Proposition 5.6. For any N = 1, there exists a unique solution to the discrete problem.

Proof. The functional A" is l.s.c. on I‘év . Moreover, the curve p which is constant and equal
to po belongs to I') and is such that AN (p) < +oo. As T} is compact (for the topology of the
weak convergence of measures), the direct method of calculus of variations ensures the existence
of a minimizer.

Uniqueness clearly holds as Ay > 0 and the entropy is a strictly convex function on P(2). [

From now on, for any N > 1, we fix p’¥ the unique solution of the discrete problem

5.2 Estimates on the discrete problem

Let us comment on a technical refinement: for some computations to be valid, we will need to
assume that pg is smooth is strictly positive. If it is not the case, it is easy to approximate (for
fixed V) the measure py with a sequence ﬁgn) of smooth densities. For such a ﬁ(()n), the estimates
obtained below for a given N (Corollary 5.12) do not depend on n. Hence it is easy to send n to
+00, using the stability of the Kantorovich potentials [San15, Theorem 1.52] to see that these
estimates are still satisfied for the solution of the discrete problem with initial condition pg. In
short: we will do as if our initial condition py were smooth, and as long as the final estimates do
not depend on the smoothness of py this will be legitimate.

5.2.1 Interior regularity

We begin with the interior regularity. In this subsection, we fix N > 1 and k€ {1,2,...,N — 1}

a given instant in time. We use the shortcut p := ﬁiVT and we also denote p := 5&71)7 and

V= ﬁé\,i ) As p" is a solution of the discrete problem, we know that p is a minimizer, among
all probability measures with density bounded by 1, of

W2(u, p) + W3(p,
o> 5 (p P)QT 3(p V)+7-<LVN,0+>\NH(P)>-

Lemma 5.7. The density p is strictly positive a.e.

Proof. This is exactly the same proof as Lemma 4.8, as the construction done in this proof
preserves the constraint of having a density smaller than 1. O

Proposition 5.8. Let us denote by ¢, and ¢, the Kantorovich potentials for the transport from
p to p and v respectively. There exists p € LY(Q), positive, such that {p > 0} = {p = 1} and a

constant C such that
Pu T Pu

= +Vn+p+Anln(p) =C a.e. (5.6)

Moreover p and In(p) are Lipschitz and Vp-VIn(p) =0 a.e.
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Proof. Let pe P(Q2) such that p < 1. We define p. := (1 —€)p + £p and use it as a competitor.
Clearly p. < 1, i.e. it is an admissible competitor. Comparing A" (p.) to AN (p), we extract the
following information. Using Proposition 2.3, as p > 0, the Kantorovich potentials ¢, and ¢,
are unique (up to a constant) and

lim

W3 . pe) = Wi p) + Wlpe, ) = W3(0.0) _ [ put v s o
e—0 27‘2 QO ,0

. p)-

The term involving Vi is straightforward to handle as it is linear. The only remaining term is
the one involving the entropy. But here, using the same reasoning as in Proposition 4.9, we can
say that

H —H(p
imsup T2 < [ )5 p),
e—0 € Q
Putting the pieces together, we see that §;, h (5 — p) > 0 for any p e P(Q) with p < 1, provided
that h is defined by
_l’_
hi= PP L Vy 4y In(p)

It is known, analogously to [MRCS10, Lemma 3.3], that this leads to the existence of a constant
C such that

p=1 on{h<C}

p<1 on{h=C} (5.7)

p=0 on{h>C}

Not that the case {h > C} can be excluded by Lemma 5.7. The pressure p is defined as
p = (C — h),, thus (5.6) holds. It satisfies p > 0 and p < 1 implies p = 0.

It remains to answer the question of the integrability properties of p and In(p). Notice that p
is positive, and non zero only on {p = 1}. On the other hand, In(p) < 0 and it is non zero only
on {p < 1}. Hence, one can write

12 — ]' 1%
p= (C - % + VN> and In(p) = —— (C _Fut P VN) . (5.8)
+ —

Given that the Kantorovich potentials and Vi are Lipschitz, it implies the Lipschitz regularity
for p and In(p). Moreover, the identity Vp - VIn(p) = 0 is straightforward using Vfy = Vflf.g
a.e., which is valid for any f e H(€). O

Let us note that ¢, and ¢, have additional regularity properties, even though they depend
heavily on N.

Lemma 5.9. The Kantorovich potentials ¢, and ¢, belong to C22(Q) n Ch(Q).

Proof. If k€ {1,..., N — 1}, thanks to Proposition 5.8 (applied in k — 1 and k + 1), we know
that p and v have a Lipschitz density and are bounded from below. Using the regularity theory
for the Monge Ampere-equation [Vil03, Theorem 4.14], we can conclude that ¢, and ¢, belong

o

to C2(Q) A CL2(Q). O

Theorem 5.10. For any m = 1, the following inequality holds:
JQ V(™) - V(p+ Vi) < 0. (5.9)
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Proof. The (optimal) transport map from p to pu is given by Id — V,,, and similarly for v. We
consider the following quantity, (defined on the whole  given the regularity of y, v, ¢, and ¢,),
which is a discrete analogue of the Lh.s. of (3.9):

D(x) = — 2@ = V(@) + (@ = Vipy (2)) = 2In(p(=))

T2

Notice that if p(x) = 1, then by the constraint u(z — Vo, (r)) <1 and v(z — Ve, (z)) <1 the
quantity D(x) is positive. On the other hand, using (Id — V¢, )#p = p and the Monge-Ampere
equation, for all z € ) there holds

plz)
p(x = V() = det(Id — D2y, (x))’

and a similar identity holds for ¢,. Hence the quantity D(z) is equal, for all x € (ol, to

In(det(Id — D2gou($))) + In(det(Id — D?p,(z)))

72

D(z) =

Diagonalizing the matrices D2QDM, D?p,, and using the convexity inequality In(1 —y) < —y, we
end up with

Alpu(@) +pu(2))

D(.’E)<— 72

We multiply this identity by p and integrate. Thanks to the fact that D is positive on {p = 1},
as p is positive and does not vanish only on {p = 1}, the quantity p™D is positive on 2. As the
latter coincides, up to a Lebesgue negligible set, with 2, we get

A v
me (o + 0) <0, (5.10)
Q

72

We do an integration by parts, which reads

mA + @, mV + ¢, + y
fp (wZ o) :J o (sOu vu) JV sou o) (5.11)
Q T o0

To handle the boundary term, recall that Vi, is continuous up to the boundary and that
x — Vou(x) € Q for every x € Q as (Id — Vi, )#p = p. Given the convexity of €, it implies
Vou(x) -ng(x) = 0 for every point = € €2 for which the outward normal ng(z) is defined. As it
is the case for a.e. point of the boundary, as a similar inequality holds for ¢,, and given that p™
is positive, we can drop the boundary term in (5.11) and get

A ) y
Jp (s0u+<p JV 90u+<p)
Q

Using the optimality conditions (5.6), we see that

0> fﬂpmw > L V(™) - V(p+ Vi + Ay In(p))

T2

Now remember that in Proposition 5.8 we have proved that Vp - VIn(p) = 0 a.e., which is
sufficient to drop the term involving V In(p) and get (5.9). O
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The inequation (5.9) implies the H(2) and L® () regularity for the pressure: this can be
seen as a consequence of Moser’s regularity for elliptic equations [Mos60]. We still give the proof
for the sake of completeness, and also because in the inequality (5.9), the boundary terms have
already been taken in account, which enables to get regularity up to the spatial boundary in a
single set of iterations.

Lemma 5.11. Let f,W be Lipschitz functions defined on ) such that f vanishes on a set of
measure at least |Q| —1 > 0 and such that, for any m =1,

fv,fm V([ +W) <

Then there holds |V f[ 12(q) < [VW | 2(q). Moreover, if VW € LU(Q) with ¢ > d, then f € L*()
and || f|| () is bounded by a constant which depends only on Q and |[VW | pe(qy-
Proof. With m = 1 we immediately get

IV fllzz@) < VW2

In particular, using the Poincaré inequality and the fact that |{f = 0}| > || — 1, we see that
Ifllz1 (@) is bounded by a constant depending only on 2 and V.

In the rest of the proof, we denote by C' a constant which depends only on Q and [VW/| 14(q),
and can change from line to line. We write the estimate, for any m > 1, as

j VP < —j (Vf VW)
Q Q

Using Young’s inequality, it is clear that
1
(m+1)/2 m— 1 - W2 m—1
e L —5 | w5 | wwem

Take § < 8 < ﬁ sufficiently close to ﬁ in such a way that 23/(3 — 1) < ¢. In particular,

the L28/(3=1)(Q) norm of VW is bounded by C|VW | (). Moreover, we know that H'(2) —

L?%(Q). Considering the fact that f(™+1)/2 vanishes on a subset of measure at least |Q| — 1, it
enables us to write [Mos60, Lemma 2]

()" <e s ey

< C(m+ 1)2f N
Q

o (B-1)/8 N\ 1/8
< C(m+ 1)? (J |VW|25/(B—1)> (J f(m—1)5> ’
Q Q

where the last inequality is Holder’s inequality with an exponent 3. Thanks to this choice, taking
the power 1/(m + 1) on both sides,

1/(m+1 /(m
I lmenogey < [Clm+ 1] g 0 20D,
It is easy to iterate this inequation. With r = (m — 1)/, as (m + 1) = fr/B, one can write that
1 psrar gy < [C(r + 1] max (1 ler (e, 1) -

An easy induction (recall that we already know that f is bounded in L'(Q) by a constant
depending only on Q and W) with r, = (8/ ﬂ)n shows that | f[|;r.(q) is bounded by a constant
which depends only on |[VW/||q(q) and €, which implies the claimed L*(£2) bound. O
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Corollary 5.12. There holds |Vp|2q) < |[VV|2(q). Moreover, if V € Wha(Q) with ¢ > d,
then p € L*(Q) and |p||p=(q) is bounded by a constant which depends only on Q and [[VV|1qq)-

Proof. 1t is enough to combine Lemma 5.11 and (5.9): one has to remember that p vanishes
where p = 1, which is of measure at least || — 1, that [VVy|r2(q) < [VV]12(q), and that
IVVN|Le(q) is bounded independently on N if V' € Wha(Q). O

5.2.2 Boundary regularity

As we said, we will see that the pressure has a part which is concentrated on the temporal
boundary ¢ = 1. The regularity of this part is proved exactly by the same technique than in the
interior, hence we will only sketch it. In this subsection, we fix NV > 1. We use the shortcut
p = pi. = pi¥ for the final measure and we also denote i := 55\/71)7' As p" is a solution of the
discrete problem, we know that p is a minimizer, among all probability measures with density
bounded by 1, of

W3 (1, p)

po—— F (L Unp+ )\NH(P)> :

Lemma 5.13. The density p is strictly positive a.e.
Proof. This property holds for exactly the same reason as in Lemma 5.7. O

Proposition 5.14. Let us denote by ¢, the Kantorovich potential for the transport from p to pu.
There exists p € LY(Q), positive, such that {p > 0} < {p = 1} and a constant C' such that

%+\pN+p+AN1n(ﬁ) _C. (5.12)

Moreover p and In(p) are Lipschitz and Vp -V 1n(p) =0 a.e.

Proof. We use exactly the same competitor as in the proof of Proposition 5.8. It leads to the
conclusion that {, h(p — p) = 0 for any g € P(Q) with j < 1 where h is defined as

h:= % + Uy + Ay ln(ﬁ).

It implies the existence of a constant C' such that (5.7) holds, and we define p exactly in the
same way, as p := (C' — h);. The integrability properties of p and In(p) are derived in the same
way as in the proof of Proposition 5.8. O

The additional regularity for ¢, is exactly the same than for the interior case (this is why we
have also used an entropic penalization at the boundary).

Lemma 5.15. The Kantorovich potential o, belongs to C>*(€2) n C1*(€).

Theorem 5.16. For any m = 1, the following inequality holds:
f V(p™)-V(p+¥yn) <O0. (5.13)
Q

Proof. On the set Q) we consider the following quantity, which is the analogue of the L.h.s. of
(3.11):

D) o 1) = In(u(e = Vi (2)))

T
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If p(x) = 1, then by the constraint u(x — Ve, (x)) < 1 the quantity D(zx) is positive. On the
other hand, exactly by the same estimate than in the proof of Theorem 5.10,
A
T
We multiply this inequality by p™, do an integration by parts (the boundary term is handled
exactly as in Theorem 5.10), and we end up with (5.13). O

Corollary 5.17. There holds |Vp|r2(q) < [V¥|2(q). Moreover, if ¥ € Wha(Q) with ¢ > d,
then p € L*(2) and |p| p=(q) is bounded by a constant which depends only on 2 and |V¥|Lqq)-

Proof. Exactly as in the proof of Corollary 5.12, it is enough to combine Lemma 5.11 and the
estimate (5.13). O

5.3 Convergence to the continuous problem

Recall that for any N > 1, p™¥ e Fév denotes the solution of the discrete problem.

5.3.1 Convergence of the primal problem

This convergence is very similar to the one performed in Chapter 4 hence we will not really
reproduce it. Furthermore, as we are ultimately interested in the dual problem, we need only the
convergence of the value of the primal problem, not of the minimizers.

Define AN on I‘év exactly as the discrete primal functional AY, but where the regularized
potentials Vy and ¥y are replaced by the true potentials V' and ¥. Given the L* bound on p
(which holds if AN or AV are finite), one can see that for any p € T'}Y with density bounded by 1,

AN (p) = AN (p)] < IV = Vivllprey + ¥ = O] Loy, (5.14)

and the r.h.s. goes to 0 uniformly in p as N — +oo0.

On the other hand, using exactly the same proofs as in Chapter 4, Section 4.4, one can easily
check (the only thing to check is that all the constructions are compatible with the constraint of
having a density bounded by 1 but it is straightforward) that the value of the discrete problem

mpin {AN(p) : peT{}

converges to the minimal value of the primal problem (notice that it is for this result that we need
the scale Ay of the entropic penalization to go to 0). Combined with (5.14), one can conclude
the following.

Proposition 5.18. The value of the discrete problem converges to the continuous one in the

sense that

. N/=Ny _ .. )
Nliriloo.A (p )—mpln{.A(p) : peTo}.

5.3.2 Convergence to the dual problem

In this subsection, we want to build a value function ¢ which will go, as N — 400, to a solution
of the (continuous) dual problem. Notice that the discrete functional A" is convex, hence we
could consider discrete dual problem but we will not do it explicitly: indeed, the approximate
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value function ¢V will not be a solution of the discrete dual problem and we will not prove a
duality result at the discrete level.

On the contrary, we will just guess the expression of ¢" (we have to say to the inspiration for
this kind of construction was found in the work of Loeper [Loe06]) and use the explicit expression
to prove that the value of some quantity which looks like the continuous dual objective, evaluated
at ¢, is close to the value of the discrete primal problem. Then, sending N to +o0, we recover
an admissible (¢, P) for the continuous dual problem such that B(¢, P) is larger than the optimal
value of the continuous primal problem (and this comes from estimates proved at the discrete
level). It will allow us to conclude that (¢, P) is a solution of the dual problem thanks to the
absence of duality gap at the continuous level. Eventually, we pass to the limit the discrete
estimates in Corollary 5.12 and Corollary 5.17 to get the ones for p and P;.

Let us recall that p” is the solution of the discrete problem. For any k € {0,1,...,N — 1},
we choose ((,0%_,1[)]];7[_) a pair of Kantorovich potential between ﬁfCVT and ﬁé}i 1) such choice is
unique up to an additive constant. According to Proposition 5.8 and Proposition 5.14, making
the dependence on N and k explicit, for any k € {1,2,..., N}, there exists a pressure p,]CVT positive
and Lipschitz, and a constant C,i\; such that

w(Nkfl)T + (p;c\;
2

-
Vi 1)r

+ VN4 p +AvIn(p) =CN ke{l1,2,...,N -1}, 5.15)

+ Uy +p¥ + AvIn(ph) =N k=N.

We define the following value function, defined on the whole interval [0, 1] which can be
thought as a function which looks like a solution of what could be called a discrete dual problem.

Definition 5.19. Let ¢" € BV([0,1] x Q) n L2([0,1] x HY(Q)) the function defined as follows.
The “final” value is given by
N1, ) = Uy +p7 (5.16)

Provided that the value ¢V (k1)) is defined for some k € {1,2,...,N}, the value of ¢V on
((k — )71, kT) x Q is defined by

oVt a) = inf (222 N (o)) (5.17)
T e \2(kr — 1) W) '
Ifke{l,2,...,N — 1}, the function ¢V has a temporal jump at t = kt defined by

oN((k7) " 2) = " (k)" 2) + 7 (Vv + i) (2) (5.18)

Notice that we have not included the entropic term: its only effect would have been to decrease
#Y (which in the end decreases the value of the dual functional) and it would have prevented us
from getting compactness on the sequence ¢~. The link between this value function and the
Kantorovich potentials is the following.

Lemma 5.20. For any k € {1,2,..., N}, one has

e Vi
(k)" )2 O+ Y o - DT (5.19)
i=k 4
For any k€ {0,1,...,N — 1}, one has
N—1 QON
N t >N N | Tkt
(Z) ((kT) 7)/01 +7 Z C]T+ T . (520)

j=k+1
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Proof. We will prove it by (decreasing) induction on k € {0,1,...,N}. For k = N, by the
optimality conditions (5.15) and the fact that In(p}) < 0, it is clear that (5.19) holds.

Now assume that (5.19) holds for some k. Using (5.17), one has

T — 2
o (=m0 = o (2 4 64 (ar) )

yeQ

e SyP VW)
. r—Y k—1)1
>C{V+TZCJ.JX+££(| 27' _ kD)

T

N |ﬂl’—y|2 N
= Cl + 7 Z C + — B _w(k_l)T(y)

TeQ

Pl1yr
_ N +TZ M,

where the last inequality comes from the fact that @é\,iil) . is the c-transform of wg\,ifl) - This

gives us (5.20) for £k — 1. On the other hand, assume that (5.20) holds for some k. Using (5.18)
and the optimality conditions (5.15) ,

¢V (k)" 2) = ¢" ((k )*J«“) +7 (Vv + i)

~1
Cl +T Z (ka T(VN —l—p{cVT)
j=k+1
o N w
_ N N N _ Yer bt
1 +7 Z Cir + Cpr - —AnTIn(pY) = 2
j=k+1
which means that (5.19) holds for k. O

From this identity, we can express some kind of duality result at the discrete level, which reads
as follows.

Proposition 5.21. For N > 1, the following inequality holds:

N (=N N+ N AN _ N
AN (p) < Jﬂqﬁ (0", )po — T Z kaT Qpl . (5.21)
k=1

We have an inequality and not an equality because we have not included the entropic terms in
the value function.

Proof. The idea is to evaluate AN (p") by expressing the Wasserstein distances with the help of
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the Kantorovich potentials.

Nt ws (pk‘r?p g
ANN) = > 2 (J Vnip, + ANH@{XT)) + L UnpY + ANH(pY)
k=0 k=1
1 N-—1 B B N-—1 - - -
== (J A +J w;@pé\éﬂﬁ) + T U Vi + ANH(/);QV})) +J oY
k=0 \/& Q k=1 Q Q
+ANH ()

oy U - _ _
f oY b0 + Z f (’““” T<VN+ANm<pﬁ;)>> wy

Qpé\flV—l)T Ny | SN
+ T—l—\IfN—i-)\Nln(pl) o
Q T

where the last equality comes from a reindexing of the sums. Now we use the optimality conditions
(5.15) to handle the second and third term. Notice that, as p,]c\; lives only where ﬁ{cVT = 1, that
we can replace ﬁkNT by 1 when it is multiplied by the pressure. Recall also that the probability
distributions, when integrated against a constant, are equal to this constant. We are left with
N(=N 1
AV (p"Y) = J b o + Z

> <Cm L pkNT) + (O{V - Lpiv >
< L ¢N(()+’ Ypo—T ,;:1 Lp;i\; - LP{V,

where the last equality comes from Lemma 5.20 which allows to make the link between the
Kantorovich potential ¢} and ¢™¥(0F,-). O

N-1

We want to pass to the limit N — +o00. To this extent, we rely on the fact that ¢ satisfies
an explicit equation in the sense of distributions. We start to define the distribution which will
be the r.h.s. of the Hamilton Jacobi equation.

Definition 5.22. Let o and PN the positive measures on [0,1] x Q defined as

N—1

o =7 Y Sk (PR + Vi) + Gimapt
k=1
N—1

PN = Z St—krPhy + 1=1D] -

More precisely, for any test function a € C(]0,1] x Q),
N—
JJ ada = Z J VN +pk7) J a(l")pjlv)
[0,1]x k=1 “

and similarly for PN.

In other words, oV is, from the temporal point of view, a sum of delta function, each of them
corresponding to the jump of the value function ¢*v.
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Proposition 5.23. Provided that we set ™ (07,-) = ¢™(0F,-) and ¢V (17, -) = Uy, the following
equation holds in the sense of distributions on [0,1] x §:

— ™ + %|V¢Nl2 <ol (5.22)

Proof. As the pressures and the potentials Vi, ¥ are Lipschitz, for any ¢ € [0, 1], the value
function ¢V (t+,-) and ¢’V (¢, ) are Lipschitz (but with a Lipschitz constant which may diverge
as N — +o0).

Notice that on each interval (((k — 1)7)*, (k7)7), the function ¢" is defined by the Hopf-
Lax formula, hence solves the Hamilton-Jacobi equation —d;¢" + %|V¢N |2 = 0 a.e. [Eval0,
Section 3.3]. It implies that the inequality —d;¢™ + %|V¢N |2 < 0 is also satisfied in the sense of
distributions, as V¢!V is bounded and ;¢ may have some singular parts, but they are positive.

Provided that we set ¢™V(0~,-) = ¢™(07,-) and ¢V (1%,.) = ¥y, the measure d;¢" has a
singular negative part at {7,27,...,1} corresponding to the jumps of the function o™ but, given
(5.16) and (5.18), the negative part of 0;¢" is exactly —a/V. O

The next step is to pass to the limit N — +c0. To this extent, we need uniform bounds on a?,

which derive easily from the bounds that we have on the pressure.

Lemma 5.24. There exists a constant C, independent of N, such that o™ ([0,1] x Q) < C and
PN([0,1] x Q) < C.

Recall that both o and PV are positive measures as we have chosen Vi in such a way that it
is positive.

Proof. We know that the pjy , for k € {1,2,..., N} have a gradient which is bounded uniformly
in L?(2). As moreover they all vanish on a set of measure at least |Q| — 1, they are bounded
uniformly (w.r.t. N) in L'(Q). This is enough, in order to get the uniform bound on PY. Given
the way Vi is built, the one for oV is a straightforward consequence of the one on PV, O

Now that we have a bound on oV, to get compactness on the sequence ¢”, we use the same
kind of estimates used to prove existence of a solution in the dual at the continuous level, see for
instance [CMS16, Section 3]. We recall that /C, the set of admissible competitors for the dual
problem, was defined in Definition 5.2.

Proposition 5.25. There exists (¢, P) € K admissible for the dual problem such that

lim ¢~ =¢  weakly in BV([0,1] x Q) n L*([0,1], H(Q)),

N—+00
lim PN =P in M, (]0,1] x Q).
N—+00
Proof. Given Lemma 5.24, we know that P is bounded in M, ([0,1] x Q) independently of
N. Up to the extraction of a subsequence, it converges weakly as a measure to some P. On the
other hand, once we know this convergence, it is easy to see that oV converges as a measure on
M ([0,1] x Q) to P+ V.

We have assumed that V' and ¥ are positive, and so are Vy and V¥, independently of N.
Using the definition of ¢V and the positivity of the pressures, it is not hard to see that ¢% is
positive [0, 1] x Q. Integrating the Hamilton Jacobi equation w.r.t. space and time and using
the bound on o (Lemma 5.24), we see that

L oN (0, ) — L Uy + % H Vo2 < C. (5.23)
[0,1]xQ
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CHAPTER 5. REGULARITY OF THE PRESSURE IN THE CASE OF HARD CONGESTION

Combined with the positivity of ¢"V(0F,-) and a L'(Q) bound on ¥y, we see that V¢ is
uniformly bounded in L2([0, 1] x ).

It remains to get a bound on 8;¢". Of course, as a measure, it can be decomposed as a
positive and a negative part. The negative part is concentrated on the instants {7,27,...,1}
as 0;¢" = 0 on the intervals (((k — 1)7)*, (k7)7). On the other hand, on {r,27,...,1}, the
temporal derivative d;¢" coincides with —a!V, hence the negative part is bounded as a measure.
On the other hand, given that

is bounded independently of N, we see that (0;¢™ ) = ;0" + (019" )_ is also bounded as a
measure.

As a consequence, up to the extraction of a subsequence we know that ¢V converges weakly
in BV([0,1] x Q) n L2([0, 1], H'(Q)) to some ¢. This convergence allows easily to pass to the
limit in the Hamilton-Jacobi equation satisfied (in the sense of distributions) by ¢V, hence (¢, P)
is admissible in the dual problem. ]

The last step, to show the optimality of the limit (¢, P), is to pass to the limit in (5.21).
Proposition 5.26. The pair (¢, P) € K is a solution of the dual problem.
Proof. We have already proved in Proposition 5.18 that

N - .
Nl—lH&-looA (") = mpm{A(p) : pelo}.

Given (5.21) and the duality result which holds for the continuous problem (Theorem 5.4), it is
enough to show that

N—1
Ijl;lrr_liuog) (JQ¢N(0+7.)pO—7-kZ:1fgp%—fgpjlv) f (0", )po — ([0, 1] x Q).

The convergence of the term involving the pressure is quite easy to show. Indeed, given the
positivity of the pressures,

N-1
>y JQP% + Lpiv = PN([0,1] x @) - p([0.1] x )
k=1

by weak convergence. On the other hand, using the definition of the trace,

JQ o(07, 2)po J é(s,2)po(z)dsdz.

[0,t]x2

We fix some ¢ > 0. Due to the convergence of ¢V to ¢, it clearly holds

Ny i
Nl—lg-loot ff ¢ (s,x)po(r)dsdx " jj o(s, ) po(x)dsdz.

[0,6]x2 [0,¢]x$2
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5.3. CONVERGENCE TO THE CONTINUOUS PROBLEM

For the value function ¢, we can use the information that we have on the temporal derivative,
namely 0t¢N > —a®N. It allows us to write, given the positivity of po,

Jf &N (s, z)po(x)dsdz = JJ ( tor) + JOS o™ (r, :B)dr) po(z)dsdx

[0,6]x2 [0,¢]x2
Jqﬁ (ot,. po—f Jf sa™ (s, x)po(x)dsdx
[0,t]xQ2
ZJQ&N(OJF,-) Jf (s, z)po(x)dsdz.
¢ [0,t]xQ2

Now, recall that pp < 1 and oV converges as a measure to p + V, hence

J o(s, x)po(x)dsde = lim = J &N (s, 2)po(x)dsdx
N—o+ow t

[0,6]x2 [0,6]x2
> tmsup ([ 0¥0 ) - (04 V)00 % )
N—+00 Q

Now we send ¢ to 0, and use the fact that (p+V)({0} x 2) = 0 (this can be seen as a consequence
of Corollary 5.12) to conclude that

tiwsup [ 0¥(07, 9 < [ 607, 2)p0

N—+00 JO Q
which gives us the announced result. O

To reach the conclusion of our main theorem, it is enough to show that P has the regularity

we announced. But this easily derives from the weak convergence of PV to P and the estimates
of Corollary 5.12 and Corollary 5.17.

Proof of Theorem 5.5. For any smooth test functions a,b (with a being real-valued and b being
vector valued), given the convergence of PV to p it holds

N-1
- 1 AV AN
JJ aP = Jhm (Z Tfﬂ a(kT, -)pyr + Jﬂ a(l,-)py )
[0,1]x&2 k=1
) N-1
. D = — 1 . . N . . N
| P = (2 SCORSE IR )
[0,1]xQ k=1

where on the second line we have done an integration by parts in the r.h.s. Using the estimates
given by Corollary 5.12 and Corollary 5.17, it is clear that

f (V-0)P f (1Bt ) 2| TV z2() dt + [B(L )] 2y VT 2(cn.
01 xQ

On the other hand, if V, ¥ e W14 with ¢ > d then, using the same propositions,

ﬂ aP < cj (latt. ) 2 en) At + a1, ) .

[0,1]x©

where C depends only on [VV|L4(qy, [V¥]14(q) and Q. Standard functional analysis manipula-
tions provide the conclusions of Theorem 5.5. ]
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Chapter 6

Time-convexity of the entropy in the
multiphasic formulation of the Euler
equations

In this chapter we study the minimization problem

mn{ [ ([ Jiaat) @ = eerm}.

where I' = C([0, 1], P(€2)) is the set of continuous curves valued in the Wasserstein space
(P(2),Ws) and |p¢| is the metric derivative of a curve p € T'; and where @ is submitted to two
constraints:

e The temporal boundary conditions are given, in the sense that if we denote (eg,e1) : I' —
P(Q)? the evaluation operator at time ¢t = 0 and 1, the measure (eg, e1)#Q € P(P(Q)?) is
fixed.

e The incompressibility constraint which states that for all ¢ € [0, 1],

JF Q(dp) = L

in other words, if p € I" is a random curve drawn according to @ then in expectation p; = L.

Although it may not be clear at first sight, but as it was detailed in Section 3.2, this variational
problem is an instance of the least action principle for the incompressible Euler equations.

Recall that H : P(2) — R is the Boltzmann entropy, see (2.13). The main goal of this
chapter is to show that if ones defines, for an optimal @),

Ho) = | HpQn)

the averaged entropy then H is a convex function of time. Moreover, in Section 6.4, we will
show that the model used in this chapter is equivalent to the “parametric” model introduced by
Brenier [Bre99, AF09].
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CHAPTER 6. TIME-CONVEXITY OF THE ENTROPY

6.1 Statement of the problem and the main result

Assumptions. The assumption that will hold throughout this chapter is the following: the
domain §) is the closure of an open bounded convex subset of RY. Without loss of generality, we
assume that the Lebesgue measure of € is 1.

Recall (see Section 2.2) that I' = C([0,1], P(€2)) is the set of continuous curves valued in
(P(Q), W3) endowed with the topology of uniform convergence. More generally, if S is a closed
subset of [0, 1], I's will denote the set of continuous functions on S valued in P(2) (in practice,
we will only consider subsets S that have a finite number of points or that are subintervals of
[0,1]). In the case where the index S is omitted, it is assumed that S = [0,1]. For any closed
subset S’ of S, the application eg : I's — I'y is the restriction operator. In the case where
S" = {t} is a singleton, we will use the notation e; := eqy and often use the compact writing py
for e;(p) = p(t). One can see that I'g is a polish space, and that it is compact if S contains a
finite number of points.

The space P(I's), which is the space of Borel probability measures over I'g, is endowed with
the topology of weak-x convergence of measures. As explained in Section 3.2, the object on which
we will work, a “Wh-traffic plan”, is a probability measure on the set of curves valued in P(£),
i.e. an element of P(I'). If Q € P(I'), we need to translate the constraints, namely the fact that
the values of the curves at t = 0 and t = 1 are fixed, and the incompressibility at each time ¢.

Incompressibility means that at each time ¢, the measure e;#@Q (which is an element of
P(P(£2))) when averaged (its mean value is an element of P(f2)), is equal to £. We therefore
need to define what the mean value of e;#() is.

Definition 6.1. Let S be a closed subset of [0,1] and t € S. If Q € P(I's), we denote by m(Q)
the probability measure on Q defined by

Ya e C(Q), f

Q

o) [my(Q)](d) = f

I's

(], st @tan (6.1)

We can easily see that, for a fixed ¢, @ — m(Q) is continuous. It is an easy application of
Fubini’s theorem to show that, if Q-a.e. p; is absolutely continuous w.r.t. to £, then m(Q)
is also absolutely continuous w.r.t. £, and its density is the mean density of the p; w.r.t. Q.
Incompressibility is then expressed by the fact that m;(Q) = £ for any t.

To encode the boundary conditions, we just consider a coupling v € P(I'qg 1;) = P(P(Q2) x
P(£2)) between the initial and final values, compatible with the incompressibilty constraint (i.e.
mo(y) = mi(y) = L), and we impose that (eg, e1)#Q = 7.

Definition 6.2. Let v € P(['qo1;) be a coupling compatible with the incompressibility constraint
(i.e. mo(y) = mi(y) = L) and S be a closed subset of [0,1] containing 0 and 1. The space of
incompressible Wa-traffic plans is

Pin(rg) = {Q € P(Fs) : Vte S, mt(Q) = ﬁ} .
The space of Wa-traffic plans satisfying the boundary conditions is

Pre(T's) :={Q € P(I's) : (eo,e1)#Q =~}.

The space of admissible Wa-traffic plans is
Padm(I's) := Pin(I's) N Pre(l's).
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6.1. STATEMENT OF THE PROBLEM AND THE MAIN RESULT

The following proposition derives directly from the definition.

Proposition 6.3. If S is a closed subset of |0, 1] containing 0 and 1, the spaces Pin(L's), Ppe(L's)
and Paam(L's) are closed in P(I'g).

We have now enough vocabulary to state the minimization problem we are interested in,
namely to minimize the averaged action over the set of admissible Wa-traffic plans. We denote
by A : P(I') — |0, +o0] the functional defined by, for any @ € P(I'),

A@ = | ApQun) = | (jo ;|p't|2dt) ,

where we recall that A(p) is the action of the curve p, see (2.7).

Definition 6.4. The continuous problem is defined as
mén{.A(Q) : Q€ Paam(D)}. (6.2)

Any Q € Paam(T) with A(Q) < +o0 realizing the minimum will be referred as a solution of the
continuous problem.

In order to prove the existence of a solution to (6.2), we rely on the classical following lemma
which is valid if T'g is replaced by any metric space (see for instance [Sanl5, Proposition 7.1] and

[AGS08, Remark 5.15]).

Lemma 6.5. Let S be a closed subset of [0,1] and F' : T's — [0, 400] a l.s.c. positive function.
Then the function F : P(I's) — [0, +o0] defined by

FQ) =jr F(p)Q(dp)

is convex and l.s.c. Moreover, if the sublevel sets of F' are compact, so are those of F.

The existence of a solution to (6.2) is then a straightforward application of the direct method of
calculus of variations.

Theorem 6.6. There exists at least one solution to (6.2).

Proof. The functional A is l.s.c. and has compact sublevel sets thanks to Proposition 2.9 and
Lemma 6.5. Moreover the set Pagm (') is closed. To use the direct method of calculus of variations,
we only need to prove that there exists Q € Paam (') such that A(Q) < +o0.

Notice that as Q is convex, it is the image of the unit cube of R¢ by a Lipschitz and
measure-preserving map (see [FP92, Theorem 5.4]!). Tt is known (see [AF09, Theorem 3.3] and
Proposition 6.26 to translate the result in our setting) that the fact that € is the image of the
unit cube by a Lipschitz and measure-preserving map ensures the existence of an admissible
Wo-traffic plan with finite action. O

In this chapter we are interested in the temporal behavior of the entropy when averaged over
all phases. Recall that for any p € P(£2), the entropy H(u) of p is defined through (2.13).

1Strictly speaking, in [FP92], it is required that Q has a piecewise C' boundary, but this assumption is only
used to prove that the Minkowski functional of ) is Lipschitz. If €2 is convex, then its Minkowski functional is
convex, hence Lipschitz. Thus, one can drop the assumption of a piecewise C'' boundary if Q is convex.
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CHAPTER 6. TIME-CONVEXITY OF THE ENTROPY

Definition 6.7. Let S be a closed subset of [0,1]. For any Q € P(I's), we define the averaged
entropy Hg : S — [0, +0] by, for anyte S,

Ho(t) := | H(p)Q(dp).

I's
1
If Q € P('), the quantity J Ho(t)dt will be called the total entropy of Q.
0

By lower semi-continuity of H and Lemma 6.5, we can see that the function (of the variable t)
Hgq is Ls.c. In the sequel, we will concentrate on the cases where the averaged entropy belongs
to L([0,1]), i.e. where the total entropy is finite. By doing so, we exclude classical solutions:
indeed, for a classical solution @ € Paqm(I'), for any ¢ the measure e;#(Q) is concentrated on Dirac
masses, for which the entropy is infinite. We denote by P;"dm(F) the set of admissible Ws-traffic
plans for which the total entropy is finite:

1
PHA(D) = Paam(T) N {Q e P(I) : L Ho(t)dt < —i—oo}

The main (and restrictive) assumption that we will consider is that there exists a solution of the
continuous problem (6.2) in P¥ _(T):

adm

Assumption 6.1. There exists Q € P14 (') such that A(Q) = min{A(Q") : Q" € Paam(T)}.

We will also work with a second assumption which will turn out to be more restrictive than
Assumption 6.1, but which has the advantage of involving only the boundary terms, namely the
fact that the initial and final values have finite averaged entropy.

Assumption 6.2. The coupling v is such that H(0) and H~(1) are finite.

In other words, we impose that

L (L Po lnpo> v(dp) < +o0 and L (L p1 lnp1> v(dp) < 4.

In particular, Assumption 6.2 implies that eg#~ and e;#+ are concentrated on measures that
are absolutely continuous w.r.t. L: it excludes any classical boundary data.

The two main results of this chapter can be stated as follows. Recall that € is assumed to be
convex.

Theorem 6.8. Suppose that Assumption 6.2 holds. Then there exists a solution Q € Pagm(L) of
the continuous problem (6.2) such that Hgo(t) < max(H~(0),H(1)) for any t € [0, 1].

In other words, if the initial and final averaged entropy are finite, then there exists a solution of
the continuous problem with a uniformly bounded averaged entropy. In particular, Assumption
6.2 implies Assumption 6.1.

Theorem 6.9. Suppose that Assumption 6.1 holds. Then, among all the solutions of the
continuous problem (6.2), the unique Q € P24 (T') which minimizes the total entropy Sé Ho(t)dt
is such that Hg is convex.
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In other words, we are able to prove the convexity of the averaged entropy for the solution which
is “the most mixed”, i.e. the one for which the total entropy is minimal. This statement contains
the fact that the criterion of minimization of the total entropy selects a unique solution among
the — potentially infinitely many — solutions of (6.2). Anyway, as we explained above in Section
3.2, it is now proved in [BM18] that the result in fact holds for all solutions, at least when € is
the d-dimensional torus.

The next two sections are devoted to the proof of these two theorems. As explained in Chapter
3, we will introduce a discrete (in time) problem (6.3) which approximates the continuous one.
Without any assumption, we will be able to prove the convexity of the averaged entropy at the
discrete level (Theorem 6.12). Then we will show that, under Assumption 6.1 or Assumption 6.2,
the solutions of the discrete problems converge to a solution of the continuous one (Proposition
6.18). Under Assumption 6.2, this solution will happen to have a uniformly bounded entropy
(Corollary 6.20). Then we will show that, under Assumption 6.1, this solution will be the one
with minimal total entropy (Corollary 6.21) and that its averaged entropy is a convex function of
time (Corollary 6.25).

Finally, the uniqueness of such a Q € PJ{ (I') with minimal total entropy has nothing to
do with the discrete problem, it is a simple consequence of the strict convexity of H. We will
therefore prove it here to end this section. Indeed, it is a consequence of the following proposition.

Proposition 6.10. Let Q' and Q% € P;fim(F) be two distinct admissible Wa-traffic plans. Then
there exists Q € P} (Q) with

AQ) < 5 (A@QY) + AQY)

N | =

" Lﬁm@M<;<£%@@w+£H@@a)

Proof. As Q — H is linear, it is not sufficient to consider the mean of Q! and Q?. Instead, we
will need to take means in I'. In order to do so, we disintegrate Q' and Q? w.r.t. (0,1} = (eg,€1).
We obtain two families Q}Jo,m and Q/%o,pl of Wa-traffic plans indexed by (po, p1) € T'j0.1} = P(Q)2.
We define @ by its disintegration w.r.t. eg13: we set Q 1= Qp, p, ® v where Q, ,, is taken to
be the image measure of Q1 ® Q2 by the map (p!, p?) = (p* + p?)/2 (where the + refers

PO,P1 P0,P1
to the usual affine structure on I'). In other words, for any a € C(T'),

JF a(p)Q(dp) := LM (L a [pl ;pz] po.pn (APHQ5 ) (dpz)) v(dpo, dp1).

As (eq, 61)#Qf1)o,p1 and (eq, 61)#Q;2)o,p1 are Dirac masses concentrated on (pg, p1), we can easily
see that Q € Ppc(I'). The incompressibility constraint is straightforward to obtain: for any
ae C(Q) and any t € [0, 1],

[ at@tm@is)
- (L UQ a(x)p%(d@ ;p?(dx)} Q}’O’pl (dpl)Qio,pl(dpz)) v(dpo, dp1)

UQ *(@) p?(Qd x)} 0,01 (dpz)) Y(dpo, dpr)
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CHAPTER 6. TIME-CONVEXITY OF THE ENTROPY

Thus, we have Q € Paqm(I'). To handle the action, let us just remark that for any p' and p?

I', by convexity of A,
1 + 2 1
A(555) < 5 A0h + A6,

2 2

Integrating this inequality w.r.t. to Q})o,m ® Q/%o,m and then w.r.t. v gives the result. We use
the same kind of reasoning for the entropy, but this functional is strictly convex. Hence, for any
te0,1],

1 2
o (m;m) < % (H(p) + H(p?))

With a strict inequality if p} # p? and if the r.h.s. is finite. Integrating w.r.t. ¢t and w.r.t.
po,m ® on o We get,

[ ([ [252] )t s
[ (i) () ),

with a strict inequality if Qlo n * on o and if the r.h.s. is finite. Then, we integrate w.r.t.
and notice that, as Q' # Q?, then on o * on o, for a y-non negligible sets of (po, p1), and as
Q' and Q? € P¥_(T), the r.h.s. of the equation above is finite for y-a.e. (po, p1). Using Fubini’s
theorem, we are led to the announced conclusion. ]

6.2 Analysis of the discrete problem

As we explained before, to tackle the continuous problem (6.2), we will introduce a discretized
(in time) variational problem that approximates the continuous one. In this section, we prove its
well-posedness, and show that the discrete averaged entropy is convex. In the proof of the latter
property, we use the flow interchange technique as explained in Chapter 3.

The discrete problem is obtained by performing two different approximations:

e We consider a number of discrete times N + 1 > 2. We will use 7 := 1/N as a notation for
the time step. The set TV < [0, 1] will stand for the set of all discrete times, namely

No=A{kr : k=0,1,...,N}.

We use the compact notation I'y := I'yv = P(Q)VF1. We will work with Wa-traffic plans
on I'y, i.e. elements of P(I'y).

e We will also add an entropic penalization, i.e. a discretized version of

1
A Jo Ho(t)dt

with A a small parameter. This term explains why we select, at the limit A — 0, the
minimizers whose total entropy is minimal. It is crucial because it enables us to show that
the averaged entropy of the discrete problem converges pointwisely to the averaged entropy
of the continuous problem. This pointwise convergence is necessary to ensure that the
averaged entropy of the continuous problem is convex. In particular, the limit A — 0 must
be taken after N — +o0.
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6.2. ANALYSIS OF THE DISCRETE PROBLEM

Let us state formally our discrete minimization problem. We fix N > 1 (7:=1/N) and A > 0
and define TV = {k7 : k=0,1,...,N}. We denote by AV : P(T'y) — [0, +o0] the functional
defined by, for any Q € P(T'y),

N-—1
_ANA ZJ W2 P(k— 1)Taka)Q(dp) Y Z THQ (k‘T)

k=1

The Discrete Problem consists in minimizing this functional under the constraint that the initial
and final values are coupled through v and the incompressibility constraint, the set of such
Wa-traffic plans being Pagm(I'n) (cf. Definition 6.2):

mén{AN”\(Q) . Qe padm(rN)}. (6.3)

A solution of the discrete problem is a @ € Paam(I'n) with ANA(Q) < +00 which minimizes
ANA,

Proposition 6.11. The discrete problem (6.3) admits a solution.

Proof. We can see that AN is a positive Ls.c. functional. Lower semi-continuity of the discretized
action and of the entropic penalization are not difficult to see thanks to Lemma 6.5.

As the space P(T'y) = P(P(Q)NT1) is compact, Paam(I'n) is also a compact space, thus it is
enough to show that there exists one @ € Paam(I'n) such that AVA(Q) < +00. We take @Q to be
equal to v on the endpoints, and such that eg,#Q is a Dirac mass concentrated on the Lebesgue
measure L for any k € {1,2,...,N —1}. As H(L) = 0 and as the incompressibility constraint
mir(Q) = L is satisfied for every k € {0,1,..., N}, we can see that for this @) we have

W2(po, L) + W2(L,
AN,)\(Q) _ JF 2(,00 )2—:— 2( pl)’y(dp).
{0,1}

As the Wasserstein distance is uniformly bounded by the diameter of €2, the r.h.s. of the above
equation is finite. The conclusion derives from a straightforward application of the direct method
of calculus of variations. O

One could show that the discrete problem (6.3) admits a unique solution (it is basically the
same proof as Proposition 6.10), but we will not need it. The key result of this section is the
following.

Theorem 6.12. Let Q € Paam(IT'n) be a solution of the discrete problem (6.3). Then the function
ke{0,1,...,N} — Hqg(kT) is convez, i.e. for every ke {1,2,...,N —1},

Ha (k) < Ho (k= 1)7) + S Ha (K + 1)7). (6.4)

Proof. As ANA(Q) is finite we know that for every k € {1,2,..., N — 1}, Ho(k7) < +oo. Let us
remark that if #g(0) = +co then there is nothing to prove in equality (6.4) for k = 1 (the r.h.s.
being infinite); and, equivalently, if Hg(1) = +o0 there is nothing to prove for k = N — 1. So
from now on, we fix k € {1,2,..., N — 1} such that Hg ((k — 1)7), Hq (k7) and Hg ((k + 1)7)
are finite, and it is enough to show (6.4) for such a k.

We recall that ® : [0, +00) x P(2) — P(Q) denotes the heat flow, let us call ®* : [0, +0) x
'y — 'y the heat flow acting only on the k-th component: for any s > 0, p € I'y and
le{0,1,...,N},

8(p) (1) = {q’s(”“) =k
Pir if | # k.
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If s > 0, it is clear that ®* leaves unchanged the boundary values, thus ®*#Q € Pp.(T'n).
Concerning the term m;(Q), the linearity of the flow enables us to write

(S 40) — {cbs (mur[QD) it 1=k,
mlT(Q) if | # k.

As my[Q] = £ and L is preserved by the heat flow, we conclude that my, (®5¥#Q) = L for any
le{0,1,...,N} hence Q € Paam(I'n). Let us underline that the linearity of the heat flow is
crucial to handle the incompressibility constraint. Our proof would not have worked if we would
have wanted to show the convexity (w.r.t. time) of a functional (different from the entropy)
whose gradient flow in the Wasserstein space were not linear. Using ®*#Q as a competitor in

ATNQ) < AN @{#Q). (6.5)

Let us expand this formula. We can see (by definition of Hg) that

H(®s[p1r d if | =k,
oo ) |, DR
Ho (I1) if I # k.

We can rewrite (6.5) in the following form (all the terms that do not involve the time k7 cancel):

W22(p(k—1)7'5 ka) + W22(p/€77 P(k+1)7)
d A H(pp:)Q(d
). - Q)+ | H(pQ()

VV2 _ T,(I)S T +W2 q)s T T
- L 5 (Pk=1)r» Pspk )27 2(Pophr: Plk+1) )Q(dp)—i-/\T H(®sprr)Q(dp).
N

'y

It is known that the heat flow decreases the entropy (it is for example encoded in (2.11)), thus

. H(®spk7)Q(dp) < . H (pir)Q(dp).

Therefore, multiplying by 7 and dividing by s, we are left with the following inequality, valid for
any s > 0:

Q(dp)

+ J W22(<I>spk'r> p(k+1)7) - W22(pk'ra p(k+1)7’)
I'n

J W3 (p(e-1yr> Psprr) — W (P(k—1)r» Pr)
T'n 25

55 Q(dp) = 0.

The integrand of the first integral is exactly the rate of increase of the function s — W2 (P(k=1)rs
®sprr)/2 whose limsup is bounded, when s — 0, by H(p(;—1);) — H(pk-) according to (2.10).
Moreover, as the entropy is positive, the same inequality (2.10) shows that this rate of increase
is uniformly (in s) bounded from above by H(p(—1),), and the latter is integrable w.r.t. to Q.
Hence by applying a reverse Fatou’s lemma, we see that

[H (p(e—1)7) — H(prr)]Q(dp) = limsup Q(dp).

'y s—0

J W3 (p(k—1yrs Psprr) = W3 (p(—1)r» Pir)
'y 2s
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We have a symmetric minoration for J [H (p(ks1)r) — H(prr)]Q(dp), hence we end up with

'y

o<Fmemm—ngmmm+Lmeﬂm—ﬂmgmmm

:£1Uﬂmpnﬁ+fﬂmmnﬁ—2H@mﬂQ@m

=Ho ((k—1)7) +Ho ((k + 1)7) — 2Hg (k7). O

6.3 Limit of the discrete problems to the continuous one

In all this section, let us denote by Q™:* a solution (in fact there exists only one but this is not
important) of the discrete problem (6.3) with parameters N and A\. We want to pass to the limit
in the following way:

e We will interpolate geodesically between discrete instants and show that this builds a
sequence of Wa-traffic plans which converges to a limit Qe Padm (T') when N — +oo. This
Q* is expected to be a solution

min {A(Q) A Ll Ho()dt : Qe ngm(r)} |

e Then, when A — 0, the Wa-traffic plans Q* will converge to the solution @ of the original
problem with minimal total entropy and Sé Haoa (t)dt will converge to Sé Hgy(t)dt. This is
the convergence of the total entropy that enables us to get a pointwise convergence of the
averaged entropy.

Basically, we are performing two successive I'-limits. Let us stress out that the order in which
the limits are taken is important, though this importance may be hard to see under the various
technical details. Taking the limit A — 0 at the end is needed to show that at the limit the
selected minimizer of the continuous problem is the one with minimal total entropy (cf. the proof
of Proposition 6.21).

This section is organized as follows. First we show some kind of I' — limsup, i.e. given
continuous curves we build discrete ones whose discrete action and total entropy are close to
their continuous counterparts. Then, and thanks to these constructions, we show a uniform
bound on QN that allows us to extract converging subsequences toward a limit Q, and we show
that Q is a solution of the continuous problem. Finally, we show that Q is the minimizer of A
with minimal total entropy and that its averaged entropy is convex.

6.3.1 Building discrete curves from continuous ones

Let us first show a result that will be crucial to handle Assumption 6.2, namely a procedure to
regularize curves in order for the total entropy to be finite.

Proposition 6.13. Under Assumption 6.2, for any Q € Paam (L) and for any e > 0, there exists
Q' € PH,(T) such that A(Q") < A(Q) + ¢ and Hgy € L*([0,1]).

Proof. Let us fix Q € Pagm (). Almost identically to the proof of Proposition 4.26, the idea is to
use the heat flow ® to regularize the curves: indeed, we know thanks to point (ii) of Proposition
2.13 that if s > 0 is fixed, then for any p € T, H(®4p;) is bounded independently on ¢ and p.
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Moreover, applying uniformly the heat flow decreases the action, as already recalled in the proof
of Proposition 4.26. However, by doing this, we lose the boundary values. To recover them, we
squeeze the curve ®4p into the subinterval [s,1 — s], and then use the heat flow (acting on pg) to
join po to @s(po) on [0, s] and ®s(p1) to p1 on [1 —s,1]. Formally, for 0 < s < 1/2, let us define
the regularizing operator R : I' = I' by

(I)t(p()) if 0 <t < S,
VpeI,Vte|0,1], Rs(p)(t) := < Ds (p [1t:258]) ifs<t<1—s,
(I)lft(pl) if1—8§t§ 1

The continuity of the heat flow allows us to assert that Rs(p) is a continuous curve. As the entropy
decreases along the heat flow, and as H(Rs[p]) is uniformly bounded on [s,1 — s] (independently
on p), we can see that there exists a constant Cs depending only on s such that

Vpel, Vte[0,1], H[Rs(p)(t)] < max(H(po), H(p1),Cs). (6.6)

To estimate the action of Rs(p), we use the the fourth point of Proposition 2.13 and the
representation formula (2.4) on [s,1 — s] and the identity (2.11) to handle the boundary terms:

1

51 . 1-s 1 ) 1 R
A(Rs(p)) < J §|‘I>tpo|2dt + J §|p(tfs)/(1728)|2dt + J §|‘I’17tpl|2dt
0 s 1—s
_ H(po) = H(®s[po]) | 1 Jll o H(py) — H(®u[p1])
- 2 T, ), il 2
1 1
= 195 40) + 5 (Hlpo) — H(®s[po]) + H(pr) — H(®s[p1])) -

In particular, using the lower semi-continuity of the entropy H and the continuity w.r.t. s of the
heat flow, we see that if H(pp) and H(p;) are finite,

th(l)lpA(RS(p)) < A(p). (6.7)
S—>

We are now ready to use the regularization operator on the Was-traffic plan @. For a fixed
0 < s <1/2, we define Qs := Rs#Q. As R, does not change the boundary points, we still have
(eo,€1)#Qs = 7. Integrating (6.6) w.r.t. @, we get that

Vte [0,1], Ho,(t) < Ho,(0) +Ho, (1) + Cs = Hy(0) + Hy(1) + Cs,

and we know that the r.h.s. is finite because of Assumption 6.2. Concerning the action, since
H(po) and H(p1) are finite for Q-a.e. p € ', we can integrate (6.7) w.r.t. () by using a reverse
Fatou’s lemma to get

limsup A(Qs) < A(Q).

s—0
It remains to check the incompressibility. For a fixed t € [0, 1], we notice that e;#Q; is of the
form (@, o ey )#Q for a some r > 0 and ¢’ € [0,1] (for example, r = t and ¢ = 0 if ¢ € [0, 5],
and r = s and ' = (t —s)/(1 —2s) if t € [s,1 — s]). Thus, by linearity of the heat flow,
mi(Qs) = @ (myp[Q]). But my(Q) = L for any ¢’ and the Lebesgue measure is preserved by the
heat flow, hence m:(Qs) = L.
Therefore, the Q' that we take is just Q4 for s > 0 small enough. O

It is then possible to show how one can build a discrete curve from a continuous one in such a
way that the action and the total entropy do not increase too much. This is a standard procedure
which would be valid for probability on curves valued in arbitrary geodesic spaces.
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Proposition 6.14. Let QQ € P;ém(l“) be an admissible Wo-traffic plan with finite total entropy.
For any N > 1, we can build a Wa-traffic plan QN € Paam(I'n) in such a way that

1
limsup AV Q) < A(Q) + )\J Ho(t)dt.
0

N—>+w0

Proof. We can assume that A(Q) < +00. Similarly to Proposition 4.27, the idea is to sample each
curve on a uniform grid, but not necessarily on TV. Indeed, the key point in this sampling is to
ensure that the discrete entropic penalization of the functional AN is bounded by A Sé Ho(t)dt.
Let us fix N > 1 and recall that 7 = 1/N. We can see that

T N—-1 1
J D Ho (k7 +5) ds_f Hol(t) t<J Ho(t)dt
0

0 k=1
Therefore, there exists sy € (0, 7) such that

N-1

T Z Ho (kT +sn) < Ll Ho(t)dt

We define the sampling operator Sy : I' = I'y (which samples on the grid {k7 + sy : k=1,2,
N —1}) by

Po ikaO,
Vpel',Vke {0,1,...,N}, Sn(p) (kT) =< ;1 if k=N,
prresy H1<k<N—1.

Then we simply define Qn := Sy#Q. As the initial and final values are left unchanged, it is
clear that (eg, e1)#QnN = (eg, e1)#Q = v, i.e. Qn € Ppe(I'n). By construction, we have that

N-1 N-1
AN THG (BT) = AT D" Ho (kT + sn) < JHQ
k=1 k=1

Moreover, as @ € Paqm(I') is incompressible, it is clear that @y is incompressible too. The last
term to handle is the action. Indeed, we have to take care of the fact that we use a translated
grid which is not uniform close to the boundaries. After a standard computation (which would
be valid in any geodesic space) which we already did in the proof of Proposition 4.27, one finds

that
Wi( P(k 1)77%) < 1L )
2 j Quldn) <A@ + | (| 3l0Pas) Qean).

For every 2-absolutely continuous curve, it is clear that the quantity SST %| ps|?ds goes to 0 as
N — +o0 and it is dominated by A(p) which is integrable w.r.t. ). Therefore, by dominated

convergence,
[ WPty Phr
lim sup (ZJ 2 (P(e—1yr P )QN(dP) < A(Q).
k=1In

N—+0oo 27

Gluing all the inequalities we have collected on Q, we see that AN ’)‘(Q ~) satisfies the desired
asymptotic bound. ]
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Corollary 6.15. Under Assumption 6.1 or Assumption 6.2, there exists C' < +00, such that,
uniformly in N =1, A€ (0,1] and ¢ > 1, we have

AN,/\(QN,)\) <C.

Proof. Indeed, it is enough to take @ any element of P74 (I') with finite action (it exists
by definition under Assumption 6.1 and we use Proposition 6.13 under Assumption 6.2), to
construct Qy as in Proposition 6.14, to define C := sup 1 AV*(Qn), and to use the fact that

ANMQNA) < ANMQN) < C. O

6.3.2 Solution of the continuous problem as a limit of discrete solutions

To go from Whs-traffic plans on discrete curves to Wa-traffic plans on continuous ones, we will
need an extension operator Ey : I'y — I' that interpolates a discrete curve along geodesics in
(P(§2), Wa). More precisely,

Definition 6.16. Let N > 1. If p e T'y, the curve En(p) € T is defined as the one that coincides
with p on TY and such that for any k € {0,1,..., N —1}, the restriction of Ex(p) to [k, (k+1)7]
is a® constant-speed geodesic joining p, to Plk+1)r-

In particular, for any k€ {0,1,2,..., N — 1}, |EN(p)| is constant on [k7, (k + 1)7]| and equal to
Wa(pkrs Pk+1)r)/7- Thus, we have the identity

AR N W3 (prr, p1)r)
~|En(p),2dt = —2ED AT
| g sicsa

summed over k € {0,1,..., N — 1}, these identities led to

N
AEN]) = S Wf(ﬂ(k;)mpm)' (6.8)

k=1

In other words, the action of the extended curve En(p) is equal to the discrete one of p.

We are now ready to show the convergence of QN to some limit Q € Pagm(T). We take two
sequences (N )neny and (A, )men that converge respectively to +o0 and 0. We will not relabel
the sequences when extracting subsequences. Moreover, to avoid heavy notations, we will drop
the indexes n and m, and lim,_, 4 and lim,,, 4 will be denoted respectively by limpy_, 1o and
hm)\_)o.

Proposition 6.17. Under Assumption 6.1 or Assumption 6.2, there exists Q € Paam(T), and a
family (Q*)x € Paam(T) such that (up to extraction)

im (En#Q™) = Q* in P(T),

lim Q* = Q in P(I).
A—0
20One may worry about the non uniqueness of the geodesic and hence of the fact that the extension operator

E is ill-defined. However, it is a classical result of optimal transport that the constant-speed geodesic joining two
measures is unique as soon as one of the two measures is absolutely continuous w.r.t. £. Moreover, for a traffic
plan Q € P(T'n), if Ho(t) < 400 for t € TV, then Q-a.e. p is absolutely continuous w.r.t. £ at time ¢t. Thus as
long as we work with Wa-traffic pans @ such that Heg(k7) < 400 for any k € {1,2,..., N — 1} (and we leave it to
the reader to check that it is the case), the operator En is well defined.
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Proof. We denote by C the constant given by Corollary 6.15.
We use (6.8), namely the fact that E transforms the discrete action into the continuous one:

k—1)7> pk:T)

AN\ <
27_ Q (dp) ~ C7

N 2
AEN#Q™™) = | AEN QM) = Y | Wi le
k=1Y+N

NN

where the last estimate comes from the definition of C' and the positivity of the entropy. We
know that the functional A is l.s.c. and that its sublevel sets are compact. Hence, we get the
existence of (Q*)y such that

lim (Ex#Q™*) = Q

N—>+w

in P(T") and A(Q") < C. Applying exactly the same argument, we can conclude at the existence
of Q € P(T) with
N
@ =
in P(T) together with A(Q) < C.

It is easy to show that (eg,e1)#Q = v as we have that (eg, e1)#Q™N* = ~: this condition
passes to the limit and is preserved by Ey.

The part which is not direct is the incompressibility of Q*. We recall that my,(QV*) = £
for any k € {0,1,...,N} and any A. Then to show that the incompressibility constraint is
satisfied by Q* for every t, we proceed as follows: let us consider ¢ € [0,1] and N > 1. Let
ke {0,1,...,N — 1} such that k7 <t < (k+ 1)7. We denote by s € [0,1] the real such that
t = (k + s)7. By definition of Ey, if p € T'y, there exists 4 an optimal transport plan between
prr and p(i41), (i.e. an optimal v in formula (2.1) with 4 = pgr and v = p.41),) such that
En(p)(t) = ms#ty with 7, : (z,9) — (1 — 8)z + sy. For any a € C1(Q), we can see that

| e | adp

Q

[ @l = e + syl - alelta dy>\
QxQ

<[ siva@llz - slitar.ay
QxQ

\/J |Va(x)|?y(dz, dy) \/J |z — y|?y(dx, dy)
QxQ

< [ValleWa(prrs p(i+1)r)

Therefore, if we estimate the action of m;(En#QY ) on a C' function a, we find that

|| adtmi(Br#Q) - | aw)as

- UQ ad[my(Ex#QN)] — L ad[ka(QN’A)]‘

<\I\
'n

Va|LfJ Wa(prrs Pa1)r) @™ (dp)

QYN (dp)

| adtEo1- | adp

< varwaluny [ ) gy
<V2CT|Va|p».
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Taking the limit N — +00 (hence 7 — 0), we know that m;(Ex#Q") converges to m(Q"),
thus we get

[ adtmi(@1= | atea

Q

As a is an arbitrary C' function, we have the equality my(Q) = L for any ¢, in other words,
Q" € Puw(T'). As we already know that Q)‘ € Ppe(T), we conclude that Q* € Puqm(T) for any
A > 0. But Pagm(I) is closed, therefore @ € Paqm (I). O

With all the previous work, it is easy to conclude that @ is a minimizer of A: we just copy a
standard proof of I'-convergence.

Proposition 6.18. Under Assumption 6.1 or Assumption 6.2, Q is a solution of the continuous
problem (6.2).

Proof. We have already seen that A(Ey#QN") < AN4MNQNA). By lower semi-continuity of A,
we deduce that

N—+00

AQ) < 1i1;\n i(I]lf (lim inf AN”\(QN’)‘)> .

By contradiction, let us assume that there exists Q € Paqm (L) such that A(Q) < A(Q). If we are
under Assumption 6.2, we can regularize it thanks to Proposition 6.13, and under Assumption 6.1
we know that we can assume that Q' € P*_(I') and A(Q’) < A(Q). In any of these two cases,

adm

we can assume that there exists Q € P/t (T") such that A(Q) < A(Q). Thanks to Proposition

adm
6.14, we know that we can construct a sequence (Qn with

1
lim sup AN NQn) < A(Q) + )\f Ho(t)dt
0

N——+0w

Taking the limit A — 0 and using A(Q) < A(Q), we get

lim sup (lim sup AN’)‘(QN)> < A(Q) < liminf (lim inf AN’)‘(QN’A)) .

A—0 N—+o0 A20 A\ N—+o©

Taking NN large enough and A small enough, one has ANMQpN) < ANAMQNA), which contradicts
the optimality of Q™. O

6.3.3 Behavior of the averaged entropy of Q

Now, we will show that Hg € L'([0,1]) and that Q is the minimizer of A with minimal total
entropy. If @Q € P(T'y), let us denote by ’Hiélt : [0, 1] — [0, +00] the piecewise affine interpolation

of Hg. More precisely, if k€ {0,1,..., N — 1} and s € [0, 1], we define
’Hiélt ((k+s)1):==(1=9)Hq (k1) + sHq ((k + 1)7).
We show the following estimate, which relies on the lower semi-continuity of the entropy:

Proposition 6.19. For any t € [0,1], we have the following upper bound for ’HQ(t) :

_ < Timi L. int
Hp(t) < h{\njgf (%ﬂﬂg ’HQN,A(t)> .
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Proof. We will use the fact that the entropy is geodesically convex, i.e. convex along the
constant-speed geodesics. Recall that Fn : 'y — I is the extension operator that interpolates
along constant-speed geodesics. Let us take p € I'y. By geodesic convexity, we have for any
ke{0,1,...,N —1} and s € [0, 1]

HEN(p) (k +8)7)] < (1= 8)H(prr) + sH(p(r+1)r)-
Integrating this inequality over I'y w.r.t. QV*, we get

My uova (k+8)7) < (1= 8s)Hana (k1) + sHowa (5 + 1)7)
< HENon (k+9)7).

We take the limit N — +o0, followed by A — 0 to get (thanks to the lower semi-continuity of
the averaged entropy) the announced inequality. O

We derive a useful consequence, which implies Theorem 6.8.
Corollary 6.20. Under Assumption 6.2, the function Hg is bounded by max(H,(0), H(1)).

Proof. This is where we use the work of Section 6.2: thanks to Theorem 6.12, we know that
Mg is convex and therefore bounded by the values at its endpoints which happen to be finite
(independently of N and \):

Vke{0,1,2,...,N}, Hona (k7) < max(H,(0), Hq(1)).

Thus the function 7—[15}\, » is also bounded uniformly on [0, 1] by max(#,(0),H~(1)). Proposition
6.19 allows us to conclude that the same bound holds for H5. O

As we have now proved Theorem 6.8, we will work only under Assumption 6.1. It remains to
show that the Q we constructed is the one with minimal total entropy. This is done thanks to
the entropic penalization, and is standard in I'-convergence theory, the specific structure of the
Wasserstein space does not play any role.

Proposition 6.21. For any Q € P/i_(T') solution of the continuous problem (6.2), we have

adm

1
L Ho(t)dt < L Ho(t)dt

Proof. Let us start with an exact quadrature formula for H2¢

QN
T - N-2 N-
Hha (Bt = SHowo (1) +7 3, Howa (k7) + %Q“ (1=7) < Z
T k=2 k=1

Then we take successively the limits N — +00 and A — 0, applying Fatou’s lemma and using
Proposition 6.19 to get

N-1
f Hep(t) hm 1nf (R{%H}«E (T kZ::l Hona [/cT])) : (6.9)

On the other hand, let us show that the r.h.s. of (6.9) is smaller than the total entropy of any
minimizer of (6.2). Indeed, assume that this is not the case for some @ € Puam (I') solution of
(6.2). In particular, for some A > 0 small enough, we have the strict inequality

N-1
J Ho(t)dt < hmlnf ( Z HQN)\ [k‘T]) .

k=1
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Using the fact that A(Q) < A(Q") by optimality of @, and thanks to the lower semi-continuity
of the action,

AQ) < AQ") < liminf (2 J 2 (Pt 1)ﬂka)QN’A(dp)) .

N—+400
Therefore, gluing these two estimates together, we obtain
1
AQ) + A L Ho(t)dt
< lim inf (hm inf (Z J P 1)T’ka)QN’>‘(d,0) + /\NZ:l TH -NA[kT])) :
N—o+owo \ g—+w = QY

But if we build the @y from @ as in Proposition 6.14, we get, for N large enough,

ANMNQN) < 2 J Ple—1) T’ka)QN)‘(dp )+ A Z THana (k) < ANA QN
k=1

which is a contradiction with the optimality of Q~*. Hence, we have proved that for any
Q € Paam(T) solution of the continuous problem,

N-1 1
f Hop(t) hm mf (%ﬁfg (T kZ: Hona [kT])) < fo Ho(t)dt. (6.10)
=1

O

Now it remains to show that Hg is a convex function of time. This will be done by proving

that H is the limit of 7—[8}“\, A

Proposition 6.22. Under Assumption 6.1, for a.e. t € |0,1],

Ha) = i (Jm, (4s10) )

Proof. Taking Q = @Q in (6.10), we see that, up to extraction,

N-1
f Ho(t)dt = lim <N1§x+1w <r kZl Hona [m])) :

In other words, the integral over time of the discrete averaged entropy converges to the integral
of the continuous one. As we know moreover that the discrete averaged entropy is an upper
bound for the continuous one (Proposition 6.19), it is not difficult to show that the discrete
averaged entropy converges (up to extraction) a.e. to the continuous one. [

6.3.4 From convexity a.e. to true convexity

Proposition 6.22 is slightly weaker than the result we claimed, as we get information about Hy
only for a.e. time. The first step toward true convexity is to show that, under Assumption 6.2,
the averaged entropy is everywhere below the line joining the endpoints.

Proposition 6.23. Under Assumption 6.2, for any t € [0,1], we have
’HQ(t) <(1-— t)HQ(O) + t’}-[Q(l).
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Proof. From Proposition 6.22, we know that H is a.e. the limit of the functions ’Hin}\, - Thanks to
Theorem 6.12, we can assert that for any ¢ € [0, 1], one has Hgf\, NOEXE t)’;’-lg;]tV A( )+t7—[8§v A(1).
We also know that H 5 and HIZE | coincide for ¢t = 0 and ¢ = 1. Therefore, for a.e. t € [0, 1],

Ha) = i (tm, (gt 0))

< lim ( lim ((1 — )G qa[0] + 1HEN 411 ]))

A—=0 \ N>+
=(1- t)'HQ(O) + t’HQ(l).

As Hg is Ls.c., we see that the above inequality is valid for any ¢ € [0, 1]. O

Now, if Q is the solution of the continuous problem (6.2) with minimal total entropy, then its
restriction to any subinterval of [0, 1] is also optimal: for any 0 < ¢ <t < 1, e[t1,t2]#@ is also
the solution of the continuous problem (on [t1,t2]) with boundary conditions e{t1,t2}#@ with
minimal total entropy. This is already known [AF09, Remark 3.2 and below| and comes from
the fact that we can concatenate traffic plans.

Proposition 6.24. Let 0 < t; <ty < 1. Then for any Q € Pagm (T [tl,tz]) such that eqy, 1\ #Q =
{11,217 Q, we have

L(J: 1Pt dt) Q(dp) < L[tm] (f ;|p't|2dt) Q(dp).

Moreover, if the inequality above is an equality, then

to t2

y Ho (t)dt < ; Ho(t)dt
Proof. This property relies on the fact that if Q € Paam(I'[¢, 1,]) With egy, 1,1 #Q = e{tl’tQ}#Q, we
can concatenate @ and @ together to build a Wa-traffic plan Q' € P(T") such that ey 11\t 1] #Q' =
€[0,1\[t1,t2] #Q and ey, 1,1 #Q" = epy, 1,)#Q. To do that, it is enough to disintegrate the measures

Q and Q w.r.t. eg, ;3 and then to concatenate elements of I'g 1\[¢, 1, and I'fy, 1,] Which coincides
on {t1,t2}: we leave the details to the reader. O

Combining the two above propositions, we recover the convexity of HQ. Let us remark that
we rely on the fact that the minimizer of .4 with minimal total entropy is unique.

Corollary 6.25. Under Assumption 6.1 or Assumption 6.2, for any 0 < t; <ty <1 and any
€(0,1),
'HQ((I —$)t1 + sta) < (1 — S)'HQ(tl) + SHQ(tQ).

Proof. If the r.h.s. is infinite, there is nothing to prove. Therefore, we can assume that Hg (t1)
and Hg(t2) are finite. By uniqueness of the solution with minimal total entropy (Proposition
6.10), we know that e[thtz]#Q coincides with the solution of the continuous problem (6.2) with

minimal total entropy on [t1,t2] with boundary conditions e{tl,tQ}#Q (Proposition 6.24). As
Hg(t1) and Hp(t2) are finite, Assumption 6.2 is satisfied for the continuous problem on [t1, 2]
and therefore we can apply Proposition 6.23 to get

Ho((1 = s)t1 + sta) < (1 = s)Hg(t1) + sHg(t2). O
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CHAPTER 6. TIME-CONVEXITY OF THE ENTROPY

6.4 Equivalence with the parametric formulation of the Euler
equation

In this section we will explain why our non-parametric formulation is equivalent to Brenier’s
parametric one that we presented in Section 3.2. From the way we build it, it is clear that our
formulation admits more potential solutions than Brenier’s one, so the only technical point will
be to show that, if the boundary data are in a parametric form, it is possible to parametrize the
a priori non-parametric solution of the continuous problem.

Let us take 2 a polish space and consider 6 € P(21) a Borel probability measure on 2. We will
assume that we have two families (the initial and the final) (p{")aea and (p§)aen of probabilities

measures on 2 indexed by 2. We denote by Py : % — I'yg 1y = P(2)? the parametrization of
the boundary conditions, simply defined by Py.(a) = (pS, ,0?‘) and assume that it is measurable.
We assume that the boundary data satisfy the incompressibility condition, i.e.

J pi0(da) = L and f pF0(da) = L.
2 2

Translated in our language, if we set v := P,.#0, we simply impose that mg(v) = mi(vy) = L.
A measurable family (pf', V') (a,)eax[0,1] indexed by a and t such that, for f-a.e. a, (t —
p?) €T and v& € L2(Q,R?, p¢) for a.e. t, is said to be admissible if

Py = pi and pi = p§  for f-a.e. a,

opg + V- (pfvy) =0 in a weak sense with no-flux boundary conditions for f-a.e. a,

$0(da) = L for all ¢ € [0, 1].

The first equation corresponds to the temporal boundary conditions, the second one is the
continuity equation while the last one is the coding of the incompressibility. If (pf', V§')(a,t)e2x[0,1]
is an admissible family, we define its (parametrized) action Ap by

JJ f S IV (@) P pf (dz)dtf(dev)

and its parametrized averaged entropy Hp(p,v) : [0,1] — R by, for any ¢ € [0, 1],

Hp(p, V) f H(p})0(de).

The first proposition is very simple: it asserts that every parametric family can be seen as an
non parametric one. In the sequel, we define the boundary conditions v € Pin(I'jg,13) for the
non-parametric problem by v := P, .#0.

Proposition 6.26. Let (p?,v?)(ayt)emx[o,l] be an admissible family. Then there exists Q) €
Padm(T) such that A(Q) < Ap(p,v) and Hq(t) = Hp(p, v)(t) for any t € [0,1].

Proof. Let P : A — T, defined by P(a) = (t — pY¥) be the parametrization. We set Q) := P#6
and leave it to the reader to check that this choice works (Theorem 2.8 might be useful). Ul

The reverse proposition is slightly more difficult to prove: it asserts that one can always build
a parametric family from a non-parametric Wa-traffic plan in such a way that the global action
and the total entropy decrease. In particular, it implies together with Proposition 6.26 that
(provided that the boundary conditions are in a parametric form) the solution of the continuous
problem (6.2) with minimal total entropy can be parametrized.
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Proposition 6.27. Let Q € Paqu(T'). Then there exists an admissible family (pf', v§') (a,t)e21x[0,1]
such that Ap(p,v) < A(Q) and Hp(p,v)(t) < Hg(t) for any t € [0,1].

Proof. Let us disintegrate @ w.r.t. to ey 1; = (eo,e1). We obtain a family (Qp,,,)p0,01 Of
Wa-traffic plans indexed by (po, p1) € T'0.1} = P(2)2. We define the curve p as the average of
all the curves in ' w.r.t. to Qp§m7p?: for any ¢ € [0, 1] and any « for which Qp?,p? is defined (and
this property holds for f-a.e. «), we set

Py = my (Qp?vp?) .

By definition of disintegration, 6{071}#62,)?7,)? is a Dirac mass at the point (pf‘,p?), thus the
boundary conditions are satisfied. The incompressibility condition is just a consequence of the
incompressibility of @: for any a € C(Q),

(et - [smto]r i)
- [ N ( [ [ | a(m)m(dm] Qron <dp>) +(dpo, dp)
:L<LM@MmﬁQmm

:ﬁﬂ@mx

To handle the action, we use the fact that A is convex and l.s.c. Thus, thanks to Jensen’s
inequality, for #-a.e. «,

A(p?) < JF A(p)Qpe p5 (dp).

Integrating w.r.t. 6, we end up with

| A6000) < A@).

We consider only the case A(Q) < 400 (else there is nothing to prove). Thus, for f-a.e. « the
quantity A(p®) is finite. By Theorem 2.8, we can find for each a a family (v{)e[o,1) of functions
Q0 — R9 such that the continuity equation is satisfied, v{* € L?(2,RY, p) for a.e. t and such that
the following identity holds

1 1 5 11 5
|| ave@par@od = [ [ Jiaepa
0 JQ A JO

Therefore, we see that the family (P?,Vta)(a,t)emx[o,l] is admissible and, integrating the last
equality w.r.t. 6, that Ap(p,v) < A(Q).

To get the inequality involving the entropy, we use the fact that the functional H is convex
and l.s.c. on P (), thus by Jensen’s inequality,

(o (00 = 100010

Integrating w.r.t. 6 leads to the announced inequality. O
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Chapter 7

Introduction to harmonic mappings
valued in the Wasserstein space

The goal of this chapter is to introduce and motivate the notion of harmonic mappings valued
in the Wassertein space, and to give a brief overview of the rest of this part. Compared to the
previous part, €2 will be the source space which is not necessarily assumed to be convex, while D
will be the convex domain over which the Wasserstein space P (D) is defined.

Namely, throughout this whole part we take p, ¢ = 1 some integers and we make the following
assumptions.

Assumptions. We assume that € is a connected compact subset of RP. Moreover, 0S) is assumed
to be Lipschitz, which means that around any point of 02, up to a rotation, 2 is the epigraph of
a Lipschitz function. The Lebesgue measure of  is assumed to be 1.

We assume that D is a conver compact subset of RY .

As a general rule, Greek letters will be associated to objects related to 2, while Latin ones will
be for objects related to D. For instance, generic points in 2 (resp. D) will usually be denoted
by &,m (resp. z,y); and derivatives w.r.t. variables in Q (resp. D) will be denoted by (0n)1<a<p
(resp. (0i)i<i<q)- The notation Lg (resp. Lp) will stand for the Lebesgue measure restricted to
Q (resp. D). Notice that by assumption Lg € P(Q).

7.1 Harmonic mappings
If f:Q — Ris a real-valued function defined on a subset € of RP, one says that f is harmonic if
Af =0, (7.1)

where A = Y _| 0n denotes the Laplacian operator. Although this equation can be traced back
to physics (for instance it corresponds to the equation satisfied by the electric potential in the
absence of charge, or the one satisfied by the temperature in some homogeneous and isotropic
medium when the permanent regime is reached), it has revealed to have its own mathematical
interest [HWO08]. In particular it is associated to a concept of equilibrium, as for an harmonic
function f, the value of f at a point & € () is always equal to the mean of the values of f on
a ball centered at £. A whole line of research has been devoted to define harmonic mappings
f:X > Y where X and Y are spaces without a structure as strong as the Euclidean one. If X
and Y are Riemannian manifolds, one can define an analogue of (7.1) which involves the metric
tensors of both X and Y (see for instance [ES64] or, for a modern presentation, [Jos08, HWO08]).
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CHAPTER 7. INTRODUCTION TO HARMONIC MAPPINGS

The standard assumption to get existence results and nice properties of harmonic mappings
is that X has a positive curvature and Y has a negative curvature. In the 90s, Korevaar and
Schoen [KS93] on one side and Jost [Jos94] on the other side, presented independently a more
general setting and showed that one can define harmonic mappings f : 2 — Y provided that
Q is a compact Riemannian manifold (in fact a more general object in Jost’s work) and Y is a
metric space with negative curvature in the sense of Alexandrov [KS93, Section 2.1].

The most robust point of view for the definition of harmonic mappings valued in metric
spaces is related to the Dirichlet problem. Indeed, if we go back to the case where Y = R, a
function f : Q0 — R is harmonic if and only if it is a minimizer of the Dirichlet energy

Dir(g) i~ | 3IVa(e)as

among all functions g : 0 — R having the same values as f on 02 the boundary of 2. The
main advantage of this formulation is that it involves only first order derivatives, and most of
the concepts involving first order derivatives can be defined on metric spaces even without any
vectorial structure [AT03]. Korevaar, Schoen and Jost proved that for every separable metric
space Y, one can define the analogue of the Dirichlet energy of any mapping f : 2 — Y. Then,
under the assumption that Y has a negative curvature in the sense of Alexandrov, they proved
existence and uniqueness of a minimizer of the Dirichlet energy (provided that the values at
the boundary 0f2 are fixed), interior and boundary regularity of the minimizer and lots of other
properties similar to harmonic mappings between manifolds. Most of the proofs mimic the ones
in the Euclidean case and rely only on the curvature properties of the target space Y. To quote
Korevaar and Schoen: “ We find the generality, elegance, and simplicity of the proofs presented
here to be an indication that we have found the proper framework for their expression” [KS93, p.
614].

In this part, our goal is to define and to study harmonic mappings defined over a compact
domain €2 of RP and valued in the space of probability measures over a convex domain D of RY
endowed with the quadratic Wasserstein distance Ws. We will define the Dirichlet energy for
mappings p :  — (P(D), Ws) and study its minimizers under the constraint that the values
at the boundary 09 are fixed. It is known that (P(D), Ws) is a positively curved space in the
sense of Alexandrov [AGS08, Section 7.3|, hence the whole theory of Korevaar, Schoen and Jost
does not apply: we have to leave the world of “generality, elegance and simplicity”. Though we
manage to develop a fairly satisfying theory of Dirichlet energy and harmonic mappings valued
in the Wasserstein space, it is ad hoc: it intensively relies on specific properties of (P(D), W3)
and is hardly generalizable to other positively curved spaces. We have already presented in the
introduction of this manuscript, in Figure 1.4, an example of what these harmonic mappings
look like.

7.2 Related works

This work can be seen as an extension of an article written by Brenier [Bre03] almost 15 years
ago. Recently, few articles [SNB712, SGB13, SRGB14, VL18, Lul7] have been published on
related topics even though none of them seems aware of Brenier’s work.

In Section 3 of [Bre03], Brenier proposed a definition of what he called generalized harmonic
functions which is the same thing as our harmonic mappings valued in the Wasserstein space.
He defined the Dirichlet energy for such mappings; proved the existence of harmonic mappings
in some special cases and gave an explicit solution in the very special case where all measures
on 0f) are Dirac masses; indicated the formulation of the dual problem; and formulated some
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conjectures. In the present work, we will rely on the same definition of Dirichlet energy as in
Brenier’s article, but we push the analysis much further: we provide a rigorous functional analysis
framework; link the Dirichlet energy with already known notions of analysis in metric spaces (in
particular with the definition of Korevaar, Schoen and Jost); prove the existence of harmonic
mappings in a more general context; and answer Brenier’s conjectures.

In [SNBT12, SGB13], the authors studied soft maps (which are nothing more than maps
2 - P(D) except that 2 and D are surfaces, i.e. Riemannian manifolds of dimension 2) and
define a Dirichlet energy in the same way as Korevaar, Schoen and Jost. These maps are
seen as relaxations of “classical” maps 2 — D, and they focus on numerical computation and
visualization of theses soft maps, see also [SRGB14] for applications to supervised learning. On
the other hand, they do not analyze in detail the theoretical properties of the Dirichlet energy
and harmonic mappings, which in contrast is the main topic of the present work. In [Lul7],
the author provides some theoretical analysis of soft maps by focusing on the cases where the
boundary measures on 0€2 are either Dirac masses or Gaussian measures. He uses only the metric
definition of the Dirichlet energy, i.e. the one of Korevaar, Schoen and Jost.

Finally, in [VL18] the authors also study mappings valued in the space of probability measures,
but are rather interested in the bounded variation norm (the integral of the norm of the gradient)
than in the Dirichlet energy. Their provide applications to the denoising of measure-valued
images.

Apart from these articles, let us underline the interest of our work by relating it to other
already known concepts:

e It is well known that harmonic mappings defined over an interval of R and valued in
a geodesic space are precisely the constant-speed geodesics, and it is the case with our
definition. Thus our work can be seen as extending the definition of geodesics in the
Wasserstein space, the latter being an object which is now well understood.

e As we said above, our definition of Dirichlet energy coincides with the one of Korevaar,
Schoen and Jost. In particular, our work shows that their definition can be applied to
positively curved spaces and still get some non trivial result, even though we rely on the
very special structure of the Wasserstein space.

e In connection to soft maps, Justin Solomon and co-authors have introduced the concept of
Wasserstein propagation [SRGB14]. They take a finite graph (V, E') with positive weights
(we)ecr on the edges. If p: V — P(D) is a mapping defined over the vertices the graph
and valued in the Wasserstein space, its Dirichlet energy is defined as

W3 ((0), 1(w))
2

Dir(p) := 2 We

e=(v,w)eE

It could be seen, at least formally, as an analogue as the Dirichlet energy defined in this
work when the source space is discrete. Then they assume that they have a distinguished
subset Vy < V of the set of vertices, thought as the boundary of the graph. The Wasserstein
propagation problem amounts to find a mapping minimizing the Dirichlet energy among
all mappings having given values on V{. Indeed, the (Wasserstein-valued) labels on V; are
propagated to the rest of the graph. Already in [SRGB14], or for instance in the recent
article [GAHEL18], the link between this problem and statistical questions is raised.

e To study the regularity of minimal surfaces, Almgren proposed the notion of Q-valued
functions (see [AJ00] or [DLS11] for a clear and self-contained reference), which can be
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seen (up to renormalization) as mappings defined on 2 < RP and valued in the subset
Ag(D) (where Q > 1 is an integer) of the Wasserstein space (P(D), Wa) defined as

Q
Ag(D) := {2225% : (1}1,$2,...,£L’Q)€DQ}.
=1

In other words, Ag(D) is the set of probability measures which are combinations of at
most @ Dirac masses with weights which are multiples of 1/Q, and is endowed with the
Wasserstein distance Ws. To put it shortly, a @-function is a function which in every point
takes @ unordered different values (counted with multiplicity). There exists a beautiful
existence and regularity theory for harmonic Q-functions. As UQ>1 Ag(D) is dense in
P(D), it would be tempting to see the Dirichlet problem for mappings valued in the
Wasserstein space P(D) as the limit as () — +0o0 of the Dirichlet problem for @-functions.
However, it is not so obvious that this limit really holds, and most of the results in the
theory of @-functions are proved by induction on @ through clever decompositions and
combinatorial arguments, hence they depend heavily on @ and not much can be passed
to the limit () — 400. Notice that the space Ag(D) is also positively curved in the sense
of Alexandrov (the example in [AGS08, Section 7.3] lives in A3(D)), hence the theory of
Q-functions is a theory of harmonic mappings valued in a positively curved space. However,
it is known that Ag(D) is in a bilipschitz bijection with a subset of RY for some large N
[DLS11, Theorem 2.1]: with @-functions we stay in the finite-dimensional world. On the
contrary, in the present article, the target space (P(D), W) will be both positively curved
and genuinely infinite-dimensional.

On the other hand, to avoid confusion, let us mention briefly about some works that are not
really related to the present one.

There has been a lot of works recently about analysis on non smooth spaces using optimal
transport as a central tool (see for instance [Giglh] and references therein); and also some works
defining Hamilton-Jacobi equations on the Wasserstein space [GNT08, GSIS] in link with the
so-called master equation in Mean Field Games [CDLL15].

In these works, one studies mappings which are defined over a non smooth space (a RCD(K,
N) one in the first case, the Wasserstein space in the second) but which are valued in R. All
the issues (and interesting questions) come from the lack of smoothness of the source space. In
the present work, we study mappings which are defined over a smooth space, but valued in a
non smooth one, namely the Wasserstein space. At some point, it might be possible to look
at mappings defined over a non smooth space and valued in the Wasserstein space but, as the
reader will see in the sequel, there is already some work to do when the source space is smooth.

7.3 Main definitions and results

Let us go into the details and summarize the content of this part as well as the key insights. In
this discussion we will stay informal, with sometimes sloppy or non rigorous statements.

Dirichlet energy and Dirichlet problem Chapter 8 is concerned with the definition of the
Dirichlet energy and the Dirichlet problem.

More specifically, Section 8.1 is devoted to the different definitions of the Dirichlet energy of
a mapping p : Q@ — P(D), the equivalence between these definitions and some properties of this
Dirichlet energy
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The idea is to start from curves valued in the Wasserstein space and the so-called Benamou-
Brenier formula [BB00]. If I is a segment of R and p : I — P(D) is an absolutely continuous
curve, then its Dirichlet energy is nothing else than its action defined by (see Theorem 2.8)

Dir(p) = inf {J (J %|V(t, :z:)|2,u(t,d:1:)) dt : v:IxD—->R? and oypu + V- (uv) = O} ,
v W \Jp

which means that one minimizes the integral over time of the kinetic energy among all velocity
fields v such that the continuity equation s + V - (uv) = 0 is satisfied. This continuity equation
is supplemented with the non-flux condition V(uv) -np = 0 on 0D to ensure preservation of
mass. What Benamou and Brenier understood is that the correct variable is the momentum
E = vpu'. Indeed, the continuity equation d;pr + V - E = 0 becomes a linear constraint and

JI (JD ;|v(t,x)|2u(t,dx)> dt — f E;f

IxD

is a convex function of the pair (u, E). In particular, to find the constant-speed geodesic between
p and v € P(D), assuming that I = [0, 1], one minimizes the convex Dirichlet energy over the
pairs (p, E) with linear constraints given by the continuity equation, that p(0) = p and that
p(l) =v.

As noticed in [Bre03, Section 3], this formulation can be directly extended to the case where
the source space is no longer of dimension 1: if  is a subset of RP, one can define a (generalized)
continuity equation for the pair p: Q@ — P(D) and E: Q x D — RPY by

Vopup+Vp-E =0, (7.2)

where Vg stands for the gradient w.r.t. variables in {2 and V- stands for the divergence w.r.t.
variables in D. Notice that if E is thought as a matrix-valued measure, its dimension is the
same as the Jacobian of a map defined on 2 and valued in D. More precisely if (E*)1<a<p1<i<q
denote the components of E, and if the derivatives w.r.t. variables in Q (resp. D) are denoted
by (0a)i1<a<p (resp. (di)1<i<q) then the the continuity equation reads: for any a € {1,2,...,p},

q
dapr+ Y, OB = 0.
=1

The Dirichlet energy of the pair (u, E) is defined as

- ] 55m
20 — 2u
QxD QxD a=li=1

and Dir(p), the Dirichlet energy of p, is the minimal Dirichlet energy of the pairs (u, E) among
all E such that the continuity equation is satisfied (Definition 8.7). It is a straightforward copy
of the classical proofs of optimal transport to show that there exists a unique optimal momentum
E (which we call the tangent momentum) which is written E = vp for some velocity field
v:Q x D — RP! and that Dir is convex and lower semi-continuous.

!The notation E can look unusual for a momentum. We have taken it from [San15] while the author of this
book found it in the works of Brenier [Bre03]. When asked, Brenier answered that he introduced this notation in
[Bre01], where the momentum coming from optimal transport was representing an electric field, while there was a
“true” momentum j representing a courant density. To make sure there was no confusion, Brenier chose to use F
for the momentum of optimal transport, and J for the current density. For very contingent reasons, it seems that
this notation has been perpetuated ever since.
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We will prove that for p : @ — P(D), one has Dir(p) < +oo if and only if for any
u : P(D) — R which is 1-Lipschitz, one has that u o u belongs to H'(Q) with |V(uo u)| < g,
where g € L?(Q) is independent of u. Moreover, the minimal g will be shown to be controlled

from above and below by
\/J |V(', I)|2/J’(7d$) € Lz(Q)v
D

where E = v is the tangent momentum (Theorem 8.20). This precisley shows that the space
{p:Q — P(D) : Dir(n) < 40} coincides with the set H!(Q,P(D)), where the latter is
defined in the sense of Reshetnyak [Res97], and that the gradient of p in the sense of Reshetnyak
(the minimal g above) is related to the tangent velocity field v. The Dirichlet energy is not
equal to the L? norm of g, as it is already the case in the classical framework [Chi07]: if we
see v : ) x D — RP? as a matrix-valued field, the Benamou-Brenier definition measures the
magnitude of v with the Hilbert-Schmidt norm, whereas the optimal g from the definition of
Reshetnyak is rather related to the operator norm of the matrices. Nevertheless, it implies that
Lipschitz mappings p : Q — P(D) (i.e. such that Wa(u(&), u(n)) < C|§ —n| for any &, n € Q)
have a finite Dirichlet energy.

We will also prove that our Dirichlet energy coincides with the one of Korevaar and Schoen,
as well as Jost. The definitions of these authors can appear slightly different though they turn
out to be equivalent, see [Chi07]. Their idea goes as follows: if f :  — R is smooth, then for
any & € RP,

|f(n) — f(©)

IVF(©I? =lmC, oz,

=0 JBee)
for some constant C,, which depends on p the dimension of Q, where B(¢, ¢) is the ball of center £
and radius €. Thus, if € > 0 is small, a good approximation of the Dirichlet energy of f would be

1 _ 2
pir(f) = [ givseras =, [[ O L0y acay

QxQ

Notice that the right hand side involves only metric quantities, thus its definition can be extended
if f:Q — Y where (Y, d) is an arbitrary metric space by replacing | f(&)— f(n)|? by d(f(£), f(n))?:
this is what is done and extensively studied in [KS93, Section 1] (curvature assumptions on Y are
not required for the definition of the Dirichlet energy, but are used to derive existence, uniqueness
and properties of the minimizers). The counterpart in our case is to define the e-Dirichlet energy
of a mapping p : Q — P(D) by

W2 ,
Dire (p) := Cp J Q(l;(gilzu(n))lﬁn@dfd”'

QxQ

We are able show that Dir. converges to Dir as € — 0: it holds pointwisely but also in the sense
of I'-convergence (Theorem 8.26). For both the equivalence with the definition of Korevaar,
Schoen and Jost, or with the one of Reshetnyak, the difficulty is not to guess them (they are
fairly simple at the formal level) but to conduct careful approximation arguments.

We will show how one can define values on 02 for mappings p : Q@ — P(D) with finite
Dirichlet energy. There already exists a trace theory in [KS93], however in view of the dual
formulation for the Dirichlet problem, we prefer to define trace values by extending the continuity
equation up to the boundary of . Indeed, multiplying (7.2) by a test function ¢ € C1(Q x D, RP)
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valued in RP, we get the following weak formulation:

J J Vo - pdp +ij jD Vg dE = Jm ( fD P&, ) - nﬂ(g)u(adm) o(de),

QxD

where ng is the outward normal to 0€2 and o the surface measure. We will show that, if
Dir(p) < 400, then the r.h.s. can always be defined as a finite vector-valued measure acting on
¢ called BT,, (Theorem 8.27). Two mappings will have the same values on the boundary < if,
by definition, they have the same boundary term.

In Section 8.2 we define the Dirichlet problem and establish its dual formulation. This is
fairly classic in optimal transport theory, our proofs do not bring any new ideas.

To define the Dirichlet problem, we assume that a mapping pp : Q@ — P(D) with finite
Dirichlet energy is given and we study

ITED{DH‘(H) D= pp on 0§},
Thanks to the Benamou-Brenier formulation, existence of a solution is a straightforward applica-
tion of the direct method of calculus of variations (Theorem 8.32). As we discuss it in Chapter
12, we do not know if uniqueness holds. Only in some particular case where the boundary values
belong to a family of elliptically contoured distributions, we are able to prove uniqueness.

In the formulation of the Dirichlet problem, we define the boundary conditions through a
mapping pp, defined on the whole Q. A natural question arises: if pp, : 0 — P (D) is given, is
it possible to extend it on € in such a way that Dir(u,) < +00? We will show that the answer
to this question is positive if py is Lipschitz on 0€2, indeed in this case one can extend it as a
Lipschitz mapping on 2. The question of the existence of a Lipschitz extension for mappings
f:Z —>Y, where Z ¢ X and X,Y are metric spaces has been intensively studied, see for
instance [LS97, Oht09] and references therein. The general philosophy is that lower bounds on
the curvature are required for the source space X, whereas upper bounds on the curvature are
required for the target space Y. In our case, there are no upper bounds for the curvature of the
target space P(D), hence we cannot apply classical results. However, we use the fact that we
want to extend Lipschitz mappings defined not on an arbitrary closed subset of €2, but on the
boundary 02 which has some regularity. By some ad hoc construction, we are able to treat the
case where (2 is a ball, but we cannot control the Lipschitz constant of the extension on {2 by the
Lipschitz constant of the mapping on 0€2. Nevertheless, we can conclude for smooth domains, as
they can be cut in a finite number of pieces, each piece being in a bilipschitz bijection with a
ball (Theorem 8.33).

Let us establish here the dual formulation via a formal inf —sup exchange, it was already
done in [Bre03]. Indeed, given the definition of Dir and the weak formulation of the continuity
equation,

mgn{Dir(u) : = pp on 00}

. 1
= inf JJ —|v|?m + sup BT, (¢) — ff Va-edu — J Vpy- v

oV 2 ©eCL(Qx D,RP)

QxD QxD QxD
. T

= sup BT,,(¢) + inf §|v| —Vpe-v—=Va-¢|p

peC(Qx D,RP) ”’VQ 0

X
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Optimizing in v, we have that v = Vpe, and then the infimum in g is translated into the
constraint Vg - ¢ + %|V pp|? < 0. Hence, we have (formally, and it is proved rigorously in the
core of the article, see Theorem 8.36) the following identity:

2
sup{BTub(go) . peCYQ x D,RP) and Vg-tp—i—wl;ﬂé()}
¢

= muin{Dir(u) © = pp on 0N},

We do not have an existence result for solutions ¢ of the dual problem. Notice that ¢ is a
vector-valued function, but there is only a scalar constraint on it: the dual problem looks harder
than in the case where (2 is a segment of R. We are aware that “multitime Hamilton Jacobi
equations” have been studied [LR86] but the setting is different: in the latter case, one has a
scalar unknown which is submitted to as many equations as there are of “temporal” dimension.

Formally, as it is done in [Bre03], one can get optimality conditions out of the dual formulation.
Indeed, we have that v = Vp¢ and, from the optimization in p, that Vo - ¢ + [V pep|? =
p-a.e. If we assume that p is strictly positive a.e., we end up with the following system for v
(the first equation is just a rewriting of the fact that v is a gradient, the second one is obtained
by differentiating Vo - ¢ + 3|Vpe|* = 0 w.rt. D):

0ivoI = ;v fora e {1,2,...,p}and i,5 € {1,2,...,q},

& at & 2 aj at . (73)
Z&av —i—ZEvjé’jv =0 forie{l,2,...,q}.

a=1 a=1j=1

However, we will not push the analysis further and try to derive a rigorous version of theses
optimality conditions, it might be the topic of an other study. As the reader can see in the sequel,
even without them, we can already say a lot.

In Section 8.3, we answer to a problem formulated by Brenier [Bre03, Problem 3.1]. The
question is the following: if p : Q — P(D), does there exists a probability @ over functions
f:Q — D such that p is represented by @, i.e.

f a(2)(€, dz) = J a(F(€)Qf)
D

for all @ € C(D) continuous and & € §2; and such that the Dirichlet energy is the mean of the
Dirichlet energy of the f:

Dir(p) = J <JQ ;|Vf(§)|2d§) Q(df)?

If Q is a segment of R the answer is positive as shown in [AGS08, Section 8.2]: it is known as the
probabilistic representation or the superposition principle. However, as soon as §2 is two or more
dimensional (in fact it already fails if € is a circle), the answer becomes negative (Proposition
8.41). We will provide a counterexample and explain the obstruction.

The main consequence is the following: there is no Lagrangian formulation for mappings
p: Q — P(D). There can be no static formulation of the Dirichlet problem analogue to transport
plans or multimarginal formulation. One is forced to work only with the Eulerian formulation,
namely the Benamou-Brenier formula. It explains why it is substantially more difficult to study
mappings p : 2 — P(D) as soon as the dimension of 2 is larger than 2, as most of the difficult
results of optimal transport are proved thanks to the Lagrangian point of view.
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Maximum principle In Chapter 9, we prove a maximum principle (more specifically a Ishihara-
type property) for harmonic mappings, meaning roughly speaking that harmonic mappings reach
their maximum on the boundary of the domain Q. Of course, there is no canonical order on the
Wasserstein space, thus this assertion does not really make sense: only the composition of a
(real-valued) geodesically convex function over P(D) with an harmonic mapping will satisfy the
maximum principle.

If f: Q — Ris areal valued harmonic function, then (Fof) : Q — R is a subharmonic function
for every F' : D — R convex, which means that A(F o f) > 0. It can be checked by a direct
computation using the chain rule. If we take f : X — Y, where X and Y are two Riemannian
manifolds, then the result still holds (provided that harmonicity, subharmonicity and convexity
are properly defined through the Riemannian structures) and it is even a characterization of
harmonic mappings: this was first remark by Ishihara [Ish78] (hence we will denote this assertion
as a “Ishihara type property” rather than a maximum principle), one can find a statement and a
proof in [Jos08, Corollary 8.2.4]. In short: once composed with a convex real-valued function, an
harmonic mapping satisfies the maximum principle. Extensions of this result when the target is
a metric space with negative curvature are available, see for instance [Stu05, Section 7].

In the Wassertein space, mappings which are convex w.r.t. the metric structure, which means
convex along geodesics, are well understood. Actually, we will need something a little stronger,
which is convexity along generalized geodesics (see Section 2.2) as it guarantees existence and
uniqueness of its gradient flow. In our case the Ishihara property reads: if F': P(D) — R is
convex along generalized geodesics and if p : Q@ — P(D) is a solution of the Dirichlet problem,
then (F o p): Q2 — R is subharmonic (Theorem 9.3). This can be considered as the main result
of this part, and the proof bears many similarities with what is done in the first part of this
manuscript.

The proof of geodesic convexity usually relies on the Lagrangian formulation, which, as we
said above, is not available in our case. To overcome this difficulty, we use the approximate
Dirichlet energies Dir. as a substitute for Dir. Indeed, as explained by Jost [Jos94], if u. is a
minimizer of Dir. (with for instance fixed values around the boundary 0f2), then for a.e. £ € Q,
pe(€) is a minimizer of

qu W2 (0, e (1)),
B(&e)

in other words p.(§) is a barycenter of the u.(n), for n € B(£,e). Notice that if f: Q - R
is real-valued and harmonic, then for any € > 0 f(¢) is the barycenter of f(n) for n € B(¢,¢),
while in the metric case this property only holds asymptotically as € — 0. For barycenters in
the Wasserstein space, there exists a generalized Jensen inequality: it was already proved for
the barycenter of a finite number of measures by Agueh and Carlier [AC11, Proposition 7.6]
under the assumption that F' is convex along generalized geodesics, and in a more general case
(in particular with an infinite numbers of measures defined on a compact manifold, whereas
Agueh and Carlier worked in the Euclidan space) by Kim and Pass [KP17, Section 7], but with
rather strong regularity assumptions on the measures. As explained in the introduction of this
manuscript, we provide a new proof of this Jensen inequality in a case adapted to our context
by letting the barycenter pu.(§) follow the gradient of the functional F' and use the result as a
competitor: through arguments first advanced in [MMS09] in a very different context under the
name of flow interchange, one can show (estimating the derivative of the Wasserstein distance
along the flow of F' with the so-called (EVI) inequality) that for a.e. £ € Q

| ) - Fluc©)lan > o (7.4)
B(£,e)
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Then, as Dir. I'-converges to Dir, one knows that p. converges to p a solution of the Dirichlet
problem. Passing in the limit (7.4), one concludes that (F' o u) is subharmonic in the sense of
distributions.

Let us make a few comments. The main drawback of the proof, as we proceed by approximation
and that uniqueness in the Dirichlet problem is not known, is that we are only able to show
subharmonicity of F oy for one solution of the Dirichlet problem (which moreover depends on F),
and not for all. To overcome this limitation, the best thing to do would be to prove uniqueness
in the Dirichlet problem. Let us also discuss the regularity that we need on F'. Either we require
F to be continuous (which is very restrictive: it excludes the internal energies); or, if F' is only
lower semi-continuous, we need F' to be bounded on bounded subsets of L*(D) n P(D) (which
is not very restrictive), but we also need the weak lower semi-continuity of

o fﬂ F(u(€))de.

More precisely, a mapping p : Q@ — P(D) can be seen as an element of P(2x D) (by “fubinization”)
and we require lower semi-continuity of p — {(F o p) w.r.t. the weak convergence on P(€2 x D).
This weak lower semi-continuity holds heuristically if F is convex for the usual (and not geodesic)
convexity on P(D). At the end of the day, the Ishihara property works for potential energies
(for a convex, L' and lower semi-continuous potential), for internal energies (which have a super
linear growth and satisfy McCann’s conditions) and for the interaction energies (but only for a
convex continuous interaction potential). Eventually, notice that we do not have the converse
statement: we do not know if the fact that F o p is subharmonic for any F' convex along
generalized geodesics is enough to prove that p is harmonic. To prove such a result, one would
need a better understanding of the optimality conditions of the Dirichlet problem.

Special case In Chapter 10 we provide specific situations where we can say more about
harmonic mappings.

In Section 10.1, we briefly present the results of other people, namely Brenier [Bre03] and
Lu [Lul7]. More precisely, we say what happens when the boundary data g is valued in the
set of Dirac masses: the solution of the Dirichlet problem stays valued in this set. The shortest
argument relies on the existence of a retraction onto the set of Dirac masses. As understood by
Lu, this argument would also work if the space D over which the Wasserstein space is defined is
replaced by a Riemannian manifold with negative curvature, while it fails for some positively
curved manifolds.

Another simple situation, in Section 10.2, is the case where the set D, on which the target
space P(D) is modeled, is a segment of R. In this case, the Wasserstein space (P(D), Ws) is in
an isometric bijection with a convex subset of the Hilbert space L?([0, 1]). Hence, the Dirichlet
problem reduces to the study of the Dirichlet problem for mappings valued in a Hilbert space,
which is more standard.

In Section 10.3 we provide an example where we can do explicit computations, namely when
we restrict our attention to a family of elliptically contoured distributions. This terminology comes
from [Gel90] and denotes a generalization of the family of Gaussian measures. In statistics this
type of family is sometimes called a location-scatter family. More precisely, we take p € L'(RY)
a positive and compactly supported function such that the measure p(z)dz has a unit mass,
zero mean, and the identity matrix as covariance matrix. The family of elliptically contoured
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distributions built on p is nothing else than the sets of measures obtained as image measures from
p(x)dx by symmetric positive linear transformations. For instance, if p is the indicator function
of a ball, the family of elliptically contoured distributions built on p consists in probability
measures uniformly distributed on centered ellipsoids. In general the level sets of the density are
ellipsoids, hence the terminology. The Gaussian case would be obtained by taking for p(z)dz a
centered standard Gaussian, but this probability measure is not compactly supported (recall
that we work in P(D) where D < R? is compact). As in the Gaussian case, the elements of
the family of elliptically contoured distributions are parametrized by their covariance matrix.
Notice that it is already known that the geodesic between Gaussian measures and more generally
the barycenter of Gaussian measures stay in the Gaussian family [AC11, Section 6.3]. If the
boundary values py, : 0 — P (D) are valued in a family of elliptically contoured distributions,
we show that there exists at least one solution of the Dirichlet problem which takes values in the
same family everywhere on 2 (Theorem 10.9): it relies on a simple argument, the existence of a
retraction on the family of elliptically contoured distributions.

Under the additional assumption that the covariance matrices on the boundary €2 are non
singular we are able to show much more (Theorem 10.10). It implies that there is a solution of
the Dirichlet problem with covariance matrices non singular everywhere in {2: to prove it we use
the maximum principle for the Boltzmann entropy, which translates in a minimum principle for
the determinant of the covariance matrices. From this we are able to derive the Euler-Lagrange
equation satisfied by the covariance matrix.

Moreover we can show the uniqueness of the solution to the Dirichlet problem among all
competitors, not necessarily those valued in the family of elliptically contoured distributions.
Let us give the structure of the proof as it is almost the only case where we know how to
prove uniqueness. The observation is that all solutions of the Dirichlet problem must have the
same tangent velocity field. Indeed, if ¢ is a solution of the dual problem, from optimality the
tangent velocity field to any solution must be equal to Vpp. Now, if the velocity field Vpey is
regular enough (namely Lipschitz w.r.t. variables in D), then the solution of the (1-dimensional)
continuity equation with velocity field V pg is unique. As the (generalized) continuity equation
implies the 1-dimensional one, and as all solutions of the Dirichlet problem coincide on €2 they
must be equal everywhere. In the case of a family of elliptically contoured distributions the
tangent velocity field is linear w.r.t. variables in D with some uniform bounds which allow us to
make this argument rigorous.

Still under this additional assumption, we are also able to show the regularity of the minimizer:
as the problem boils down to the study of Dirichlet minimizing mappings valued in a Riemannian
manifold, the only thing to show, following the theory of Schoen and Uhlenbeck [SU82, SU83]| is
the absence of non-constant tangent minimizing mappings. We prove the latter property with
the help of the maximum principle: even though the Wasserstein space is positively curved, there
is a lot of functionals convex along geodesics defined on it.

In summary, under the assumption that the covariance matrices on the boundary 02 are non
singular we are able to give a full solution to the problem: existence, uniqueness, regularity and
Euler-Lagrange equation.

In Section 10.4, we give an example of an harmonic mapping valued in a family of elliptically
contoured distributions for which we have enough symmetry to give an almost explicit formula:
at this point, it boils down to solve a 1-dimensional problem of calculus of variations for a
curve valued in R2. The interest of this example is that, despite its simplicity, its encodes some
characteristic features of the geometry of the Wasserstein space. Indeed, on this example, we
know that the superposition principle must fail. Moreover, we are able to show that p(§) can
not be written as the (weighted) barycenter of the p(n) for n € Q. In other words, for harmonic
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mappings valued in the Wasserstein space, there is no hope for a Green formula to be true, i.e.
to express in a simple way the value at one point as a barycenter of the values at the boundary.

Numerical illustrations In Chapter 11, we describe the method that we use to compute
harmonic mappings valued in the Wasserstein space. As there is no Lagrangian point of view nor
static formulation, the Benamou-Brenier formulation appears to be the most adapted to tackle
numerics. Indeed, this formulation can be read as a convex optimization problem with a linear
constraint involving differential operator.

We have started form the dual formulation of the Dirichlet problem, and, inspired by ideas
from [PPO14] about the use of staggered grid, we provide a finite difference formulation of the
dual problem. We can prove existence of a solution to this discrete (i.e. finite dimensional)
dual problem, however this proof is very specific to the finite-dimensional case and cannot be
generalized to the continuous case. Then, taking the dual of the dual discrete problem, we obtain
a (primal) discrete problem which looks like the continuous one. In short: we obtain two discrete
(i.e. finite dimensional) convex optimization problems in duality, which mimic the primal and
dual Benamou-Brenier formulations of the Dirichlet problem. However, as discussed more in
details in Chapter 12, we do not have a proof of convergence if we refine the discretization.

Then, to solve efficiently these problems, as in the original paper by Benamou and Brenier
[BB00], we use the iterative method called Alternating Direction Method of Multipliers (ADMM).
Our unknowns live on a discretization of the space © x D, which is typically a space of dimension
4. However, the only non local step of each ADMM iteration is the resolution of a Poisson
problem on €2 x D, for which we use leverage our Cartesian discretization and use FFT. However,
due to the lack of strict convexity of the Dirichlet energy, the number of ADMM iterations
required is important and the method is quite slow.

Although we have no guarantee that our method indeed computes an approximation of
harmonic mappings, we show on some examples that it gives plausible mappings. An example of
the output of our algorithm has already been presented in the Introduction, with Figure 1.4.

Perspectives and open questions In Chapter 12, we present some problems that are very
natural but still left unanswered, and we explain the obstructions to our current attempts of
proof.

To end this introduction, let us comment the somehow restrictive framework that we have
chosen. The compactness assumption of 2 and D allows to simplify proofs by avoiding tails
estimates: we believe that there is enough technical difficulties and non trivial statements even
in this case, and that the key features of the Dirichlet problem are captured, which is the reason
why we have restricted ourselves to the compact case. Although we have stuck to the Euclidean
case, we see no deep reason which would prevent our definitions and results to be applied to
the case where 2 and D are compact Riemannian manifolds. In particular, our regularization
procedures rely on heat flows which are available in Riemannian manifolds. Finally, we have stick
to the quadratic Wasserstein distance. We believe that if p € (1,400) is given, the machinery
that we use can be adapted in a straightforward way to define

1
f 7|vl'l’|p7
Qb

where p : Q — P(D) but P(D) is endowed with the p-Wassertsein distance. However the
Ishihiara type property is related to the Riemannian framework; also the explicit computations in
the case of a family of elliptically contoured distributions are no longer avalaible. As mentionned
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above, the case p = 1, which corresponds the total variation of p : Q — P(D) (where P(D) is
equipped with the 1-Wasserstein distance), has been defined and studied very recently [VL18] in
the context of image denoising.
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Chapter 8

The Dirichlet energy and the
Dirichet problem

In this chapter, we define the Dirichlet energy of a mapping p € L?(Q, P(D)) following the idea
of [Bre03, Section 3]. We relate the space of p with finite Dirichlet energy with H(Q, P(D))
using the theory of Sobolev spaces valued into metric spaces of Reshetnyak [Res97, Res04], and
we also prove that this Dirichlet energy coincides with the limit of e-Dirichlet energies introduced
by Korevaar, Schoen and Jost [KS93, Jos94].

Let us first define the space L?(Q2,P(D)). As P(D) is bounded, it coincides with the

measurable mappings valued in P(D).

Definition 8.1. We denote by L?(Q, P(D)) the quotient space of measurable mappings p : Q —
P(D) by the equivalence relation of being equal Lo-a.e. This space is endowed with the distance
dr2 defined by: for any p and v in L?(Q, P(D)),

(i v) = f W2((6), v(€)de.
Q

If ue L?(Q, P(D)), we can define a probability measure on Q x D, that we will call temporary
[, in the following way: for any a € C(2 x D),

[ adn:- L (fDa@, -)du(§)> . (s.1)
QxD

X

As we have assumed that the Lebesgue measure of €2 is 1, the measure & is an actual probability
measure on 2 x D. If we take a function a € C(€2) which depends only on variables in §2, one

can see that
f f adji = L a(€)de. (8.2)

QxD

In other words, the marginal of i is the Lebesgue measure (restricted to ). We will denote
by Po(£2 x D) the subspace of P(£2 x D) such that (8.2) is satisfied for all a € C'(2). Thanks
to the disintegration Theorem [AGS08, Theorem 5.3.1], one can see that, reciprocally, to each
i € Po(Q x D), one can associate a unique element pu of L2(£2,P(D)) such that (8.1) holds. In
all the sequel, we will drop the “bar” on p and use the same letter g to denote an element of
L?(9,P(D)) and its counterpart in Py(Q x D) through the bijection that we have just described.
Any p € L*(Q,P(D)) can be seen in two different ways: either as a mapping Q — P(D), or as a
probability measure on €2 x D, and we will very often switch between the two points of view. To
clarify the notations:
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o if pe L3(Q,P(D)), then u(€) or p(&, dr), which is an element of P(D), will denote the
mapping p evaluated at &;

o p(d¢,dz) will indicate that we consider p as an element of Py(€2 x D), integration on
Q x D will be denoted by dup or p(d¢, dz), notice that we have the following relation:

p(dg, dz) = p(§, dr)dg;

e the mapping p € L?(Q, P(D)) is said continuous (resp. Lipschitz) if there is one represen-
tative of p such that Wa(u(€), u(n)) goes to 0 if n — £ (resp. is bounded by C|¢ — n]| for
some C' < +00).

The topologies on L*(Q, P(D)) are defined as follows.

Definition 8.2. The strong topology on L?(Q,P(D)) is the one induced by the distance djz,
and the weak topology is the one induced on Py(2 x D) by the weak topology on P(2 x D).

Proposition 8.3. W.r.t. the strong topology, L*(Q, P(D)) is a polish space. W.r.t. the weak
topology, L*(Q, P(D)) is a separable compact space. Moreover, the strong topology is finer than
the weak topology.

Proof. The statement concerning the strong topology is a consequence of the fact that P(D) is
itself a polish space, see for instance [KS93, Section 1.1]. As Pyp(€2 x D) is closed in P(2 x D), for
the second statement we simply use the fact that P(2 x D) is itself a separable compact space.

To compare the topologies we take a sequence (g, )neny Which converges strongly to some
e L2(Q,P(D)). Up to extraction, we know that we can assume that un(E) converges in P(D)
to u(ﬁ) for a.e. £ € Q. In particular, if a € C(Q x D), we have that §, a(¢,-)dpn,(§) converges to
SD p(&) for a.e. £ € Q. With the help of Lebesgue dominated convergence Theorem, we
see that

i U dps, = Jim | < fDa(ﬁ, -)dun@)) aé = fQ < fDa@, -)du(«f)) de =Q[ L adps.

As a is arbitrary, this allows us to conclude that (g, )nen converges to p for the weak topology. [

8.1 The Dirichlet energy

8.1.1 A Benamou-Brenier type definition

We are now ready to define the Dirichlet energy. The first step is to define the (generalized)
continuity equation. Recall that C1( x D,RP) is the set of C! functions defined on Q x D
and valued in R?, whose support is compactly included in (02, but not necessarily in D, and
M(Q x D,RP?) denotes the space of vector-valued measures on §2 x D with finite mass.

Definition 8.4. If u ¢ L*(Q,P(D)) and if E € M(Q x D,RP), we say that the pair (pu,E)
satisfies the continuity equation if, for every ¢ € C’l(Q x D,RP), one has

Jf Va:edu + JJ Vpy-dE = 0.

QxD QxD

In other words, the pair (u, E) satisfies the continuity equation if the equation

Vau +Vp-E=0.
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with no-flux boundary conditions on ¢D is satisfied in a weak sense. If we develop in coordinates,

it means that for every a € {1,2,...,p}, one has dopu + >0, G;E“ = 0. If the pair (u, E) satisfies

2
the continuity equation, we want to define its Dirichlet energy by SSQX D BE 1t is well known in

2p
optimal transport that this definition can be made by duality.

Definition 8.5. If (u, E) satisfies the continuity equation, we define its Dirichlet energy Dir(u,
E) by

Dir(u, E) := sup Jf adp + Jf b-dE : (a,b)e C(Q x D,K) ¢,
“* \oxp QxD

where K < RYP4 s the set of pair (z,y) with x € R and y € RP? such that = + %|y|2 <0.

Note that |y| is the Euclidean norm of y € RPY. In other words, if y is seen as p x ¢ matrix, |y| is
the Hilbert-Schmidt norm of the matrix. The following proposition is identical to the case of the
Benamou-Brenier formula.

Proposition 8.6. If (u,E) satisfies the continuity equation and Dir(p, E) < 400, then E is
absolutely continuous w.r.t. u, and if v : Q x D — RP? s the density of E w.r.t. u, then one has
. . 1 9
Dir(p, E) = Dir(p, vp) = || Slv[*dp.
QxD

Proof. There is nothing to add to the proof of this when 2 is 1-dimensional, and such a proof
can be found for instance in [Sanl5, Proposition 5.18]. O

Definition 8.7. Let p € L*(Q, P(D)). Its Dirichlet energy Dir(u) is defined by

Dir(u) := i%f {Dir(u, E) : E€ M(Q2 x D,RP?) and (u, E) satisfies the continuity equation} .

Let us underline that if there exists no E € M(Q x D, RP?) such that (u, E) satisfies the continuity
equation, then by convention Dir(u) = +oo. To be sure that it is written somewhere, let us state
the following proposition which identifies the Dirichlet energy if €2 is a segment of R with what
we called previously the action of a curve. It is a consequence of Theorem 2.8.

Proposition 8.8. Assume that I is a segment of R and let p € L*(I, P(D)). Then Dir(u) < 4o
if and only if p is 2-absolutely continuous, and in this case

Dir(u) = | Il (O

Now, let us show easy properties of the functional Dir and the optimal v and E. The proofs
are straightforward adaptation of the case where 2 is a segment of R.

Proposition 8.9. If u € L*(Q,P(D)) is such that Dir(u) < +o0, then there exists a unique
E € M(Q x D, RP?) such that (pu, E) satisfies the continuity equation and Dir(p) = Dir(u, E).

Definition 8.10. If u e L*(Q,P(D)) and if E = v is such that (u, E) satisfies the continuity
equation and Dir(p) = Dir(p, E) < 400, then E and v are said tangent to p.

The terminology tangent comes from [AGS08]. As in the case of absolutely continuous curves,
there is a characterization of the tangent velocity field v which looks like the one of Theorem 2.8.
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Proposition 8.11. Let p € L*(Q, P(D)) such that Dir(u) < +00 and v € L2, (Q x D,RP?) such
that (p, ve) satisfies the continuity equation. Then v is tangent to p if and only if there exists a
sequence (n)nen in CH(Q x D,RP) such that (V pin)nen converges to v in Li(Q x D, RPY).

Proof of Proposition 8.9 and Proposition 8.11. In the Hilbert space Li(Q x D,RP?) the set X
of v such that (u, vpe) satisfies the continuity equation is clearly an affine set, and it is not empty
as Dir(p) < +00. Denoting by Y = {V¢ : ¢ e C1(Q x D,RP)}, it is clear that X is parallel to
v

Thanks to Proposition 8.6, the problem of calculus of variations in Definition 8.7 corresponds
to finding the orthogonal projection of the vector 0 € LZ(Q x D,RPY) on the set of X, i.e.
Proposition 8.9 is proved.

It is well known that the projection v is characterized by the fact that v is orthogonal to
any vector in the linear space parallel to X. In other words, v is characterized (beside the fact
that it satisfies the continuity equation) by v € X+ = (Y 1)L, The latter is nothing else than the
closure in Li(Q x D,RP?) of Y. An easy argument involving cutoff functions shows that this
closure is the same as the closure of the set of Vp for 1 € C*(2 x D,RP), hence Proposition
8.11 is proved. O

As an immediate corollary, Proposition 8.11 implies a localization property: the tangent
velocity field v, depends only locally on the values of p. In the next proposition, p|g and vig
will denote the restrictions of p and v to a subset 2 of (2.

Corollary 8.12. Let p € L*(Q, P(D)) such that Dir(p) < +o0 and let v € L7,( x D,RP?) be
tangent to . Then, if Q is any subdomain compactly supported in Sol, v|g is tangent to p|g.

Still building from Proposition 8.11, we can build some sort of dual representation for the
Dirichlet energy. Namely, we can say that

1 .
Dir(p) = sup { — ﬂ (VQ-¢+2|VD<p|2> dp : e CHQ x D,RP) . (8.3)
®
QxD

Indeed, if v is the tangent velocity field to u, given the continuity equation and elementary

algebra,
1 2 1 2
- Va ¢+ 5IVppl” | du = Vop v —g|Vpyl” | du
QxD QxD

. 1
= Dir(p) — 3 f |Vpy — v2du.
QxD

Hence the Lh.s. is always smaller than Dir(u), and we can make the discrepancy arbitrary small
thanks to Proposition 8.11.

Proposition 8.13. The mapping Dir : L*(Q,P(D)) — R is l.s.c. w.r.t. weak convergence.
Moreover it is convex: for any p and v in L*(Q, P(D)) and any t € [0, 1],

Dir((1 —t)p + tv) < (1 —t)Dir(p) + tDir(v).

Proof. From (8.3), we see that Dir is the supremum of linear and continuous (w.r.t. weak
convergence) functionals on L2(Q, P(D)). Hence it is convex and continuous. O
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We will conclude this subsection by showing the following approximation result, which will
be useful to prove the equivalences with the metric definitions. We will not be able to regularize
up to the boundary of €2, though it will be sufficient for our purpose.

Theorem 8.14. Fiz Q) c compactly embedded in Q. Let pe L2(Q, P(D)) with Dir(p) < +o0.
Then there exists a sequence p, € L?(2, P(D)) with the following properties:

(i) For anyneN, p,(d¢,dz) = p,(§, x)dédx, where the density pp of pn w.r.t. to Lo @ Lp

satisfies p, € C*(Q, L* (D)) and essinfg, ,, pn > 0.
(i) The sequence (pn)nen converges weakly to p in L*(Q, P(D)).

(iii) There holds
lim Dir(py,) = Dir(p|g).

n—+0o
Notice that g, is defined only on €, i.e. not on the full domain €.

Proof. On Q, we will regularize with a convolution kernel x. Specifically, we fix x : RP — [0, 1]
a smooth function, radial, compactly supported in B(0,1) and of total integral 1, and we set
Xn(§) = nPx(n). On the other hand, on D we will regularize with the heat flow that we denote
by ®P, see Section 2.4. We set fi,,(£) := [®3n] [1(€)] for any & € Q. Hence f1, € L?(Q, P(D)) is

defined on the whole Q. For n large enough and £ € Q we define

Hn(§) = JQ Xn (€ = 1) i (n)dn,

where here we do the usual (linear) mean of probability measures. In short, p, = xn *q ft,. Here
we need n such that the support of x,, is small compared to the distance between Q and o9.
Assertion (i) holds because of the regularization properties of the convolution and the lower
bound on the solution of the heat flow.
Assertion (ii) is standard: if we fix a € C(Q x D), given the self-adjacency of the heat flow
and the symmetry of the heat kernel,

JJ adp, = JJ ®D,[xn *a a] dp

QxD QxD

and the r.h.s. converges strongly to the integral of a against p because of standard functional
analysis.

Assertion (iii) is slightly trickier. As we have already seen earlier in this manuscript (see for
instance Proposition 4.26), applying the heat flow decreases the Dirichlet energy, at least for curves
valued in the Wasserstein space. With mappings, provided we admit the representation given
below by Theorem 8.26 and the contraction property of the heat flow, it is straightforward that
we should have Dir(ft,) < Dir(p). But the current theorem will be used to prove Theorem 8.26,
hence we cannot invoke it. We adopt a different strategy: we start with the “dual” representation
for the Dirichlet energy given by (8.3). We want to show that Dir(f,) < Dir(u). For any fixed
we C’(}(Q x D,RP), and given that the heat flow is self-adjoint,

1 - 1
[ (va-ws 319008 i = [[ (vo- @80+ 2l (G1v008) )
QxD QOxD
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Notice that we used the property that the heat flow acting on D commutes with V-. Now, the
key point is the so-called Bakery-Emery estimate

1 p \?_oap (1 2
5 ‘V (q’un@)‘ < @y <2|VDSO| )

which is valid because D is a convex domain [GKM18, Equation (2.4)]. Hence

1 ) 1 2 .
” (VQ o+ 2IVDsOIQ) dfin > U (VQ H(P1p) + 5 ‘V (‘P?/nw)‘ ) dp = —Dir(p),
QxD QxD

where the last inequality comes from (8.3). Taking the supremum in ¢ and using the representation
formula (8.3) we conclude that Dir(f,) < Dir(u). Now we want to control the Dirichlet energy
of w, with the one of fi,,. Recall that Dir is a convex function. But u,, is the average, w.r.t. to
the weights x,(n), of the mappings £ — f1,(§ — 7). Hence, by Jensen’s inequality,

Dir(pn) < JB(O’I/H) Xn (MDir (fnlg (- = 1)) -

Hence, calling €, the set of points which are distant at most 1/n from €, one has Dir(u,) <
Dir(fin|, ). Sending n to +0o and using the lower semi-continuity of Dir and assertion (ii) to
get the reverse inequality, we get (iii).

O

8.1.2 The smooth case

In this subsection, we will briefly study the smooth case, i.e. the one where p has a smooth
and strictly positive density w.r.t. Lo ® Lp. It will help us to understand the meaning of the
continuity equation and we will use it in the sequel when reasoning by approximation. Basically,
if we are in a sufficiently smooth setting, we can give a precise meaning to the arguments evoked
in Section 2.2 about Otto calculus.

Definition 8.15. A mapping p € L*(Q, P(D)) with Dir(pu) < +o0 is said smooth if it admits a
density p w.r.t. Lo® Lp satisfying p € C*(Q, L*(D)) and uniformly bounded from below.

In particular, it implies p is uniformly bounded (from above) on the closed set 2. Notice that
Theorem 8.14 says that any p € L?(2, P(D)) with finite Dirichlet energy can be approximated
by a sequence of smooth functions (only in the interior of ) according to Definition 8.15. Let us
start by explaining how, in the smooth case, one can compute the tangent velocity field.

Proposition 8.16. Let p € L2(Q, P(D)) be smooth. Then, for every & € Q, there exists a unique
o(&,-) € H' (D, RP) with 0-mean solution to the elliptic equation

(8.4)

vD ) (/)(f, )VDQO(& )) = _va(€7 ) in le)
Vpe(,) -np =0 on 0D.

Moreover Vpp € Li(Q x D, RP?) is the tangent velocity field to p and it is continuous as a
mapping from Q to L?(D,RP9).

Proof. The existence of a unique solution to the elliptic equation (8.4) derives from standard
arguments. Notice that Vp(§, ) has always 0-mean on D, hence the equation is well-posed. In
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8.1. THE DIRICHLET ENERGY

particular, as p is bounded from below, the equation is uniformly elliptic. We have the usual
estimate

IVpe(€, ')HL2(D,Rm)<CHVDSO(§a )HL2( H(DRPO) S < C|Vap(&; o,

which tells us that Vp(€,-) is uniformly bounded (w.r.t. €) in L?(D,RP9). By construction,
v := Vpy is such that (u, vp) satisfies the continuity equation.

To prove continuity of £ — Vpp(§,-), let us fix £ € Q) and a sequence &, which converges
to £. We use momentarily the compact notations ¢ = ¢(¢,-) € HY(D,RP9) and ¢, = ¢(&n,-) €
H'(D,RP%). Similarly, we set p = p(&,-) and p, = p(&n, ). The 1.h.s. of the elliptic equations
will be h = —=Vap(€,+) and h, = —Vap(&,,+). We want to show that ¢, converges to @ in
H'(D,RP9), while we know that p, p, are uniformly bounded from below and above, and that
pn (resp. hy) converges to p (resp. h) in L®(D). Clearly, @, — @ satisfies the elliptic equation

vD ) (ﬁvD(‘pn - 95)) = hn - }_l + vD : ((pn - ﬁ)vD‘Pn)
with Neumann boundary conditions. Testing this equation against y,, — ¢, we deduce that
IVp(en = @) 2(prray < C (1hn = hll2(p) + o0 = Plool VDnl L2 0y ) -

We can use the convergence of p, to p, hy, to h and the fact that |V pe,| £2(D,rea) 18 uniformly
bounded in n to conclude that the 1.h.s. goes to 0 as n — +o0. O

Now take pu € L*(Q, P(D)) smooth and denote by v = Vpp its tangent velocity field. If
vy:I— () is a smooth curve going from an interval of R to Sol, then, multiplying (8.4) by 4, one
can see that u? = po~vy: I — P(D) defines a curve valued in the Wasserstein space for which the
(classical) continuity equation d;p” + V - (v’pu”) with Neumann boundary conditions is satisfied
(at least in a weak sense), provided that we define v :=v -4 : I x D — R%. More precisely, if
i€ {1,2,...,q}, the i-the component of v7 at time ¢ € I and at the point x € D is

P
(VI (t, ) Z YEA(t).

In other words, the (generalized) continuity equation implies that we get (classical) continuity
equation for every curve of Q. In some sense, the (generalized) continuity equation is much
stronger in higher dimensions.

As we recalled previously, the velocity field v7 is related to the metric derivative of the curve
p” in the Wasserstein space. As the tangent velocity field v € L?(€2 x D,RPY) is the gradient
of a function Vpp, by Proposition 8.11 v7 is the tangent velocity field to the curve p”. Using
Theorems 2.7 and 2.8, we see that for all s <tel,

2
Wi (u(y(t), p JJ IV (r, 2) > (~(r), dz)dr (8.5)

t—s

But in fact, we can say more and go from a global estimate to a local one, this is the object of
the following proposition.

Proposition 8.17. Let pu € L?(2,P(D)) be smooth and let v € C(Q, L?(D,RP?)) its tangent
velocity field. .
Then the function p is Lipschitz. Moreover, if £ € Q and n € RP,

lim Wa(p(€ +en), p(§)) _ \/J V(€ z) - n2p(E, da). (8.6)
D
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The important point of this proposition is that the estimate holds for all points of €2, there is no
more “almost everywhere” in the statement.

Proof. We fix & € € and use ~(t) := £ + tn which is defined for ¢ sufficiently close to 0. Notice
that v7(t,x) = v(§ + tn,x) - 7.

We denote by p the density of p w.r.t. Lo x Lp. To prove that p is Lipschitz, we use (8.5)
and the fact that p € L®(Q x D) and v € L®(£, L?(D,RP9)).

The fact the Lh.s. of (8.6) (provided the lim is replaced by a lim sup) is bounded by the r.h.s.
comes directly from (8.5) and the continuity of v : Q — L?(D, RP9).

To prove the reverse inequality, take a sequence (e, )nen realizing the liminf for the Lh.s. of
(8.6). Call v, € CY(D) the function with 0-mean such that £, is the Kantorovich potential
from (&) to (€ + €,7), it is unique because p(§) is supported on the whole D, see Proposition
2.3. As Id — €,V pt, is the optimal transport map from (&) onto (€ + €,1), there holds

eulVnl 2, () = Walsal€), B(E +am) < Con,

where C' is the Lipschitz constant of p. In particular, using the lower bound on p, one sees that,
up to a subsequence, (¢, )nen converges weakly in Hlll,(f)(D) to some function v such that

\/JD IVpy(@)Pp(E. do) = [Vpd|rz () < liminf Wa(p(&), (€ +enc))

n—-+0oo En

Thus, to conclude, it is enough to show that Vpy = —v(&,-) - .
As Id — £,V pt,, transports p(€) onto (€ + €,7), for any f € C1(D), one has

| re—cVpinnpteaie = | ol + cuna)i.
Using a Taylor expansion on f and dividing by &,

P(f + Ennvx) B p(§7$)
En

f(z)dz

J V(@) - Vi f(2)p(€, 2)de + f
D D

<Ce, j IV ptfn() [2da,
D

where the constant C' is a bound on the second derivative of f. Using the H! bound on 1, and
the weak convergence to v, as well as the fact that p is differentiable w.r.t. variables in €2, we
conclude that 1 solves weakly the elliptic equation

Vp - (p(,)Vpy) = =Vap(&,-) - n.

Using the uniqueness (recall that 1, has 0-mean, hence 1) too) result for equation (8.4), this
allows to conclude that Vpiy = v(§,-) - n where v is the tangent velocity field to p, hence the
proposition is proved. O

8.1.3 Equivalence with Sobolev spaces valued in metric spaces

Until now, we have not discussed the existence of solutions to the (generalized) continuity
equation: this notion could be too strong or too loose. In this subsection, we will show that the
set of p with finite Dirichlet energy coincides with an already known definition of Sobolev spaces
valued in metric spaces given by Reshetnyak [Res97, Res04]. This definition is restricted to the
case where the source space has a smooth structure (which is precisely our framework), but can
be seen as particular case of a more general definition given by Hajlasz (a pedagogic and clear
introduction to the latter can be found in [AT03, Chapter 5]).

144



8.1. THE DIRICHLET ENERGY

Definition 8.18. Let u € L?(Q,P(D)). For any v € P(D), define [u], € L*(R) by [u].(€) :=
Wo(u(€),v). We say that pe€ HY(Q,P(D)) if there exists a countable family (vy)nen dense in
P(D) such that [u],, € HY(Q) for all n € N and there exists a function g € L*(Q)) such that, for
every n € N,

Vil < g (8.7)

a.e. on . The smallest g for which (8.7) holds is called the metric gradient of p and is denoted
by gu-

Notice that g,, = sup,, |V[pt],,|. The definition looks slightly different than in [Res97]. However,
it is equivalent because of the following result:

Proposition 8.19. Let p € H(Q,P(D)) and g, € L*(Q) be its metric gradient. Then for all
mappings u : P(D) — R which are C-Lipschitz, uo p € HY(Q) and |V(uo p)| < Cg, a.e. on Q.

Proof. Is is enough to copy the proof of [Res97, Theorem 5.1]. Indeed, in this proof, one only
uses the functions [p], for measures v belonging to a dense and countable subset of P(D). [

In particular, if p € H'(Q,P(D)), then [pu], € H'(Q) with gradient bounded by g,, for all
v € P(D). Notice that the definition above can be stated for mappings valued in arbitrary metric
spaces (separability of the target space is required). The main theorem of this subsection is the
following, which states that the framework that we have developed coincides with the one of
Reshetnyak.

Theorem 8.20. Let u € L*(Q, P(D)). Then p € HY(Q,P(D)) if and only if Dir(u) < +co.
Moreover, if pe H' (Q,P(D)) and if v is tangent to p, then for a.e. & € €,

gul6) < \/ fD V(€ 2)Ppé, dx) < Pgu©).

Notice that the inequalities are sharp. The function g, measures the norm of the gradient of
as an operator norm, whereas the norm of the velocity field v is measured with an Hilbert-Schmidt
norm, which explains the discrepancy, see [Chi07] for a more detailed discussion.

We will prove this theorem in three steps. The first one is to prove it if ) is a segment of R
(Proposition 8.21). It is just a rewriting of the definition of Reshetnyak and does not rely of the
special structure of the Wasserstein space. The second step is to say that, roughly speaking, a
function is in H'(Q) if it is in H' for a.e. lines, with some uniform control on the gradients. It
enables us to get the result if  is a cube (Proposition 8.23). The third step is simply to write
that every domain can be written as a (countable) union of cubes.

Proposition 8.21. Theorem 8.20 holds if §2 is a segment of R.

Proof. Assume Q) = I is a segment of R. The set of curves with finite Dirichlet energy coincides
with the set of absolutely continuous curves, see Proposition 8.8. Given Theorem 2.8, we want to
prove the equality g, = |ft| a.e. on I.

Assume that Dir(p) < +00 and take v € P(D). Then, as Wa(-,v) is 1-Lipschitz, for all s < ¢
elements of I,

(] (@) — 1] (s)] < Wa(p(t), p(s)) < f || (r)dr.

It shows that the function [u], is in H'(I) and its gradient is smaller than |g|. Hence, as v is
arbitrary, u € HY(I,P(D)) and g,, < |f].
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Reciprocally, assume p € H (I, P(D)), take (v;)nen countable and dense in P(D) such that
[1]y,, € HY(I) for every n € N with gradient bounded by g,. In particular, for any n € N and

any s < t elements of I,
¢

[ttlon (1) — [l (5)] < J gu(r)dr.

S
Then we choose v, arbitrary close to u(t): the r.h.s. is unchanged and the l.h.s. is arbitrary
close to Wa(p(t), p(s)). Hence we conclude that

S

Walua(s), u(t)) < j gu(r)dr,

which is enough to say that p is an absolutely continuous curve and || < g, a.e. on I by
minimality of |f]. O

Now we will prove Theorem 8.20 at least locally, which means in the case where {2 is a cube.
Up to an isometry and a dilatation, we can assume that €2 is the unit cube of RP. Recall that
(éa)1<a<p is the canonical basis of RP. In the sequel, we will denote by €, < RP the a-face of the
cube, which means the set of (¢1,...,6%71,0,62t .. ¢P), with 0 < &7 <1 for all 8 # a. The
measure on {2, will be the p — 1-dimensional Lebesgue measure. If f : Q@ — X is a given mapping
(where X is any set) and £ € Q) is fixed, then f¢ : [0,1] — X is defined by fe(t) = f(£ + teq):
it is the restriction of f to a line directed by e, and crossing €2, at . Recall the following
characterization for real-valued mappings:

Proposition 8.22. Assume Q is the unit cube of RP and let f € L*(Q) be a given function. The
function f belongs to H*(Q) if and only if for any a € {1,2,...,p}, for a.e. £ € Qy, the function

fe is in H*([0,1]) and 1
La (L 'f?“>|2dt) At < +oo.

Moreover, for a.e. £ € Q, and a.e. t € |[0,1],

(0af)(§ +tea) = f&(t)'
Proof. One can look at [EG92, Section 4.9]. O
Proposition 8.23. Theorem 8.20 holds if Q) is the unit cube of RP.

Proof. Implication Dir(u) < 4+ = p € HY(Q,P(D)). Assume first that u € L?(Q, P(D))
is such that Dir(u) < 400 and take v € Li(Q x D, RP?) the velocity field tangent to p. Fix
a€{1,2,...,p}. Take two compactly supported test functions v € C1(]0,1[x D) and a € C1(4).
As a test function ¢ € CH(Q x D,RP) in the weak formulation of the continuity equation,
choose ¢(& + teq, z) := (0,0,...,0,%(t, x)a(£),0,...,0) for £ € Q4 and t € [0, 1] (only the a-th
component of ¢ is not 0). If we expand we find that Vg - ¢ = adp hence

0 :QJXJD Va-edu —|—Q{£ Vpp-vdu = La J Orp(t, x)dtp(€ + teq, dx) |a(£)dE

[0,1]xD

+ f J Vp(t,x) - (v(§ + teq, x) - eq)dtp(E + teq,dx) [a(E)dE.
Qq

[0,1]xD
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Using the arbitrariness of a, we deduce that for a.e. £ € Q,, and for a fixed ¢ € CL(]0, 1[x D, RP),

J Op)(t, z)dtp (€ +tey, dx) + J Vpi(t, z)-(v(E+teq, x) - eq)dtp( +teq,dx) = 0. (8.8)
[0,1]xD [0,1]xD

Now, taking a sequence (1, )neny Which is dense in CL(]0, 1[x D,RP), we can say that for a.e.
€ € Qq, for all y € C(]0,1[xD,RP), (8.8) holds. For £ € €, define p¢ : [0,1] — P(D) by
pe(t) = p(€ +teq) and ve : [0,1] x D — R? by ve(t, x) = v(§ + teq, z) - €. By Fubini’s theorem,
for a.e. £ € Qq, ve e Lig([(), 1] x D,RY). Hence (8.8) rewrites as: for a.e. § € {14, the curve pg is
an absolutely continuous curve in the Wasserstein space with a velocity field given by v¢. By
Proposition 8.21, if v € P(D), then the function [p¢], is in H'([0,1]) and

|0 [pee]w (t \/J [ve(t, x) 2 pe(t, da) \/J V(€ + te, ) - ea|? (€ + teq, dx).

As the r.hus. is integrable over [0, 1] x €, and « is arbitrary, we can use Proposition 8.22 to see
that [u], € H'(Q). Moreover, taking the square of the previous equation and summing over
a€{l,2,...,p}, we see that for a.e. £ €}

VIl ()P < jD V(& 2)Pale, da).

Thus, we conclude that € H'(Q, P(D)) and for a.e. £ € Q,

9u(8) < \/L) V(& 2)]*p(S, ). (8.9)

Implication p € HY(Q,P(D)) = Dir(p) < +o0. Let p € HY(Q,P(D)). Take (Vp)nen a
sequence which is dense in P(D). For any n € N, the function [u],, belongs to H(2). Fix
ae{l,2,...,p}. Forany n € N, for a.e. { € Q,, the function [pe],, : t — Wao(u(§+teq), vy) is in
H'([0,1]) with a gradient bounded by g,,(é +tes). As N is countable, we can exchange the “for a.e.
£ € ,” and the “for all n € N”. Hence, for a.e. { € §,, the function pg : [0,1] — P(D) belongs
to H'([0,1], P(D)) with a gradient bounded by g, (£ + tes). For a given £ € Q,, we can use
Proposition 8.21 and Theorem 2.8 to get the existence of a velocity field wg € Li ) ([0,1] x D,R?)
such that (pe, W pe) satisfies the (1-dimensional) continuity equation and for a.e. ¢ € [0, 1],

\/JD [we (£, 2) [P (S + tea, dz) < [fe(t)] = |gue (D) < gu(€ + tea). (8.10)

Now, do this for a.e. £ € Q, and then for any a € {1,2,...,p}. Define the velocity field
v : Q x D — RP! component by component, the a-th component at the point £ + te, (with
€ € Q) being defined as wg (t). To justify that v is measurable, notice that wg¢ is the solution of
an optimization problem [AGS08, Equation (8.3.11)] which depends in a measurable way of &,
thus one can apply Proposition 8.45 (see below at the end of the chapter). By the bound (8.10),
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it is clear that v € Li(Q x D,RP?). Moreover, if ¢ € C1(Q2 x D,RP),

[ va-etu= 3 ([ 2urtc mmtae,an
*=laxD

OxD =lg

P 1
O;lj (JO Oap™(§ + teq, ) (€ + tea,dx)dt> de¢

L4 a 1
— Z J (L Vpp® (€ + teq, x) -w?(t,l’)lt(f + teq, dq;)dt) d¢
a=1 e

P 1
_O;l JQQ (L VDQO (§+t€o¢,x>(V(£+tea7w) ea)ll(f-i-tea,dx)dt) dé.

— J Vpy - vdpu.
QxD

(The second and last inequalities are Fubini’s theorem and the third one comes from the 1-
dimensional continuity equations). Hence, we see that (u, vpe) satisfies the continuity equation.

To conclude, we need to show a control of v by g,. If a € {1,2,...,p}, for a.e. £ € Q, and
a.e. t € [0, 1], one has, by definition of g,, and Proposition 8.21,

\/fD |W?(t7x)|2“(£ + teaydx) = Gpe (t) = Slelg |aa[ﬂ]un(€ + teoc)| s

which can be rewritten as: for a.e. £ € ), for all a € {1,2,...,p},

\/JD [v(& 2) - eal? (€, dx) = sup IV 1], (§)eal < gul(8)- (8.11)

Squaring, summing over a and taking the square root, we see that for a.e. £ € )

\/ fD V(& D) 2lE,dr) < vPgp(E).

Even though one could prove that v is the tangent velocity field (using the fact that the w® are
and the characterization given in Proposition 8.11), it is enough to use Corollary 8.12 to see that
the Lh.s. is a.e. larger than the LZ(&) (D, RP?)-norm of the tangent velocity field. O

To conclude the proof of the theorem, we just have to justify that we can put the pieces together.

Proof of Theorem, 8.20. The domain €2 can be cut in a (countable) number of cubes () men-
The boundary 02 does not play any role as Lo(0€2) = 0.

Implication Dir(p) < +00 = p € HY(Q,P(D)). Assume first that p € L2(Q, P(D)) is such
that Dir(u) < +oo and take v € Li(ﬂ x D,RP?) the velocity field tangent to p. Fix n € N.
On each cube Q,,, we know that the function [u],, is in H'(£2,) with a gradient which is
bounded by a function which does not depend on n and is in L?(£2), which is sufficient to say
that [u],, € HY(Q) with a gradient bounded by a function which does not depend on n € N.

Implication p € H(Q,P(D)) = Dir(p) < +oo. Assume that p € H(Q,P(D)). For any
m € N, one can construct a tangent velocity field v € Li(Qm x D, RP?). Combining Proposition
8.9 giving the uniqueness p-a.e. of the tangent velocity field and Corollary 8.12 which enables to
localize, one sees that if €2,,,, N €y, # J, then the tangent velocity fields v; € LZ (Qm, x D,RPY)
and vo € Li(QmQ x D,RP9) coincide p-a.e. on Qp,, N Qpy,. Thus, one can define a velocity field
v on the whole (2, and it is straightforward to check that v is tangent to . O
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8.1.4 Equivalence with Dirichlet energy in metric spaces

In this subsection we will show that our definition coincides with the one of Korevaar, Schoen,
and Jost [KS93, Jos94]. As explained in the introduction, their formulation goes as follows.

Definition 8.24. Let ¢ > 0 and p € L*(Q, P(D)). We define the e-Dirichlet energy of u by

W2 ,
Dire(12) := C, f 2(’55,12” Oy, cdean,

QAxQ

-1
where the normalization constant C,, is defined as C, := |n|? (SB(O 1 € - n|2d§> .

One can notice that the e-Dirichlet energy is always finite as P(D) has a finite diameter, but
it can blow up when € — 0. The goal is to prove that Dir. is a good approximation of Dir if ¢ is
small enough. Before stating the main result, let us do the following observation, which will be
useful in the sequel.

Proposition 8.25. Let e > 0 be fized. Then the functional Dir. : L*(Q, P(D)) — R is continuous
w.r.t. strong convergence and l.s.c. w.r.t. the weak convergence.

Proof. The continuity w.r.t. strong convergence is simple: recall that P(D) has a finite diameter,
thus Lebesgue dominated convergence theorem is enough. The lower semi-continuity relies on
the fact that W3 is a supremum of continuous linear functionals, thus is 1.s.c. and convex.
More precisely, fix g € L2(€2, P(D)) and a sequence (g4, )nen which converges weakly to p in
L3(Q, P(D)). If ¢ and n are points of Q, take (¢(&,7,-),%(€,7,-)) a pair of Kantorovich potential
between pu(§) and wp(n). In other words, ¢(&,n,-) and ¥ (&, n, ) are continuous functions (in fact
uniformly Lipschitz), such that ¢(&,n, 2) +¥(&,n,y) < |v —y|?/2 for any 2,y € D, and such that

SO k) = | plema)n.do)+ | w(Enputndy) (312)
D D

One can do that in such a way that ¢ : Q x Q — C(D) and 9 : Q x Q@ — C(D) are measurable.
Indeed, for fixed & and 7, (p(&,n,),¥(&,n,-)) € C(D) x C(D) is a maximizer a functional which
is continuous on C(D) x C(D) and which depends on § and 7 in a measurable way: hence
we can apply Proposition 8.45 (see below at the end of the chapter). Then, using the double
convexification trick (see [Vil03, Section 2.1]) which is a measurable operation, we can assume
that (¢, 1) are uniformly (w.r.t. £ and 1) Lipschitz and bounded as elements of C'(D). By the
Kantorovich duality, for every n € N,

C
Dir. () > 575 || Heoatee ( | etenomican + wa@,n,ymn(n,dy)) dedn. (8.13)

QxQ

Now, apply Lusin’s theorem to the mapping ¢ : 2 x  — C(D) (for Lusin’s theorem to other
spaces than R, see for instance [Sanl5, Box 1.6]). For any > 0, we can find a compact X < Qx{)
such that Lo ® Lo([Q2 x Q\X) < § and ¢ : X — C(D) is continuous on X. Now notice, as
lo(€,n,z) — p(&,n,y)| < Clz — y| uniformly in € and 7, that ¢ : X x D — R is a continuous
function for the product topology on X x D < Q x Q x D. This function can be extended in a
function ¢ € C(2 x Q x D). To sum up, there exists a continuous function ¢, which coincides
with ¢ on X x D (the important point is that there is coincidence on all D). Thus, denoting by
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C a uniform bound of ¢ and @, one has that for every v € L?(Q, P(D)),

|] reue (jD (& )€, dx)) dgdn— || 1e g (jD a6, mm)v(f,dx)) dedy| < C5.
Q2 x Q) QOxO

(8.14)
On the other hand, using Fubini’s theorem one sees that

Sﬂ) Liei<e U (& m, ) pn (€, dx)) d¢dn = H (J - ~(g,n,x)om) pn(d€, dz).

As ¢ is continuous and bounded, it is not difficult to see that
L - CUR I

is continuous. Hence, using the weak convergence of (i, )nen,
Jim [ 1e e (f @(&w)un(s,dx)) dedn = [ 1 e (f B, x)u(f,dw)) dédy,
QAxQ b QxQ b

Using equation (8.14) with both w, and p as v, and using moreover the arbitrariness of §, we
conclude that we can replace ¢ by ¢ in the equation above:

i ([ veee ([ etenamc.an)aan = [[ e ([ etcnamnie.an) aan
QxQ QAxQ

Of course there is exactly the same statement with . With the help of this information,
combining (8.13) and (8.12), we reach the conclusion that

lim inf Dire(pey,)

n—-+0o

n—-+o gP +2

B Ep+2 JJ ¢—nl<e (JD (&, x)p (&, dz) + wa(g,n, y)u(n,dy)> dédn

= Dir.(u). O

hm inf —— JJ ]]_‘5 nl<e (JD <,0(€7 n, x)ﬂn(gy d.’l?) + J;) ¢(5a 7, y)un(na dy)) dde]

We are now ready to state and prove the main theorem of this subsection.

Theorem 8.26. Let u € L*(Q,P(D)). Then Dirc(p) converges to Dir(u) as ¢ — 0, and the
sequence (Dirg—n_ (pt))nen is increasing for any 9 > 0.

In addition for any ey > 0, Dirg—n., I'-converges to Dir on the space L*(Q,P(D)) endowed
with the weak topology as n — +o00.

In the case of a smooth mapping s, the equivalence will directly derives from Proposition 8.17.
The difficulty of the proof is to study the behavior of Dir. w.r.t. approximations.
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Proof. Monotonicity of Dir. If pe L*(Q,P(D)), e > 0 and ) € (0,1) then one has
Dire(p) < ADirp(p) + (1 — )\)Dir(l,x)s(u).

Indeed, this is a consequence of the triangle inequality and is valid for mappings valued in
arbitrary metric spaces, see for instance [Jos94, Example 1) (i)] or [Jos08, Equation (8.3.4)] for a
proof. In particular, by taking A = 1/2, we see that the sequence (Dirg-n.,(tt))nen is increasing
for any g9 > 0. Moreover, with well chosen A, one sees that for a fixed pu € L2(Q, P(D)) the
function € +— eDir.(p) is subadditive, which is enough to ensure the convergence of Dir.(u) to
some limit in [0, +00] as € — 0.

The smooth case. Let pu € H'(Q,P(D)) be smooth in the sense of Definition 8.15. Let v be
its tangent velocity field, by Proposition 8.16, there holds v € C (2, L?(D, RP9)). We will show
that the limit of Dir.(u) is equal to Dir(u). Indeed, one can write

Dire(p,) = J dlre(&)dfv

Q

where

W3 (1(©), n(0) |
2ept2 '

dir.(§) := C)
QnB(&,e)
If £ ¢ 09 (it happens for a.e. &), for € small enough, B(,¢) < © and we can perform the following
change of variables in spherical coordinates: denoting by SP~! the unit sphere of R? and o its
surface measure,

1 2 r
dira(ﬁ) — % - <J;) W2 (N‘(g)a”’(é‘ + 69))7“p1d7“> U(dﬂ)

2 g2

Thanks to Proposition 8.17 we have the pointwise limit of the integrand, and we can pass to
the limit as € — 0: recall that p is Lipschitz, which gives a uniform bound from above of the
Wasserstein distances. Hence, for a.e. £ € ),

main©) = 2 [ [ ([ wen oouean ) ] ot

= % v AR 2 T
2 JD (JB(0,1)| (&) -l dn) p(€, dz)

B % fD |V(£v $)|2ﬂ(§, dl‘)’

where the last inequality comes from the definition of C),. To integrate this equality over 2, we
still use the fact that p is Lipschitz to get the appropriate bounds, hence

iy Dir. 1) — | (1 i (6)) e = | (jD Ve )ue da:>) d¢ = Dir(ps, vpz) = Dir(j).

E—

General case: lim:Dir. < Dir. Let u € H*(Q,P(D)). As p is in H! in the sense of
Reshetnyak, and using the main result of [Res04], we know that [ := lim. Dir.(p) is finite. It
implies, thanks to the theory of Korevaar and Schoen [KS93, Theorem 1.10], that the so-called
energy density is absolutely continuous w.r.t. Lq which means lim, Dir. (@) does not decrease
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too much if we restrict p to a domain € slightly smaller than €. More precisely, it implies that
for any § there exists  compactly embedded in ) such that, for some ¢y small enough,

[ — 6 < Dirg, (plg) <1

Let (f4n)nen the sequence of elements of L2(Q, P(D)) given by Theorem 8.14. We choose n large
enough so that Dir(p,) < Dir(p|g) + 0 and Dirg,(pn) = Dirg,(p]g) — d: it is possible because
Dir,, is lower semi-continuous w.r.t. weak convergence on L?(Q, P(D)). Hence,

| < Dirg, (plg) + 0 < Dirgy(py) + 26 < Dir(py,) + 20 < Dir(pl|g) + 30 < Dir(p) + 36,

where the third inequality comes from monotonicity and the smooth case treated above. As § is
arbitrary, we get that [ < Dir(u), which means

liH(l) Dir.(p) < Dir(p).
E—>

This equation still holds if p ¢ H'(Q, P(D)) as the r.h.s. is infinite.

General case: lim. Dir, > Dir. For this part, we need to control in a fine way the behavior of
Dir, w.r.t. the approximation procedure of Theorem 8.14. Let u € H'(Q,P(D)) be given. Fix
Qc compactly included and let fi,, o, the sequences used in the proof of Theorem 8.14. We
recall that they are defined by

€)= B0 OL. 10(6) = | a6 = )i (),

where y,, : RP — R is a compactly supported convolution kernel and ., is defined only over Q.
Using the result for the smooth case,

lim Dire (pnlg) = Dir(pnlg)- (8.15)

As the heat flow is a contraction in the Wasserstein space (Proposition 2.13), we know that
Dir.(f1,) < Dir.(p). As W2 is jointly convex w.r.t. to its two arguments, the function Dir, is
convex for the affine structure on L?(Q, P(D)). Hence, exactly by the same argument than in
the proof of Theorem 8.14,

Dira(ﬂn) < Dire(ﬂn) < Dira(ﬂ)a
and the important point is that the r.h.s. does not depend on n. Taking the limit ¢ — 0 and
using equation (8.15), we see that

Dir(p,) = 21_1)% Dire(pn) < gl_r)% Dirc(p).

Now we can send n — +o¢ and use Theorem 8.14 to say that the Lh.s. converges to Dir(pug).
As Q is now arbitrary, it yields the result

Dir(p) < lin(1) Dirc ().
E—>

In the case pu ¢ H'(Q,P(D)), to justify that lim. o Dir(p), we can use for instance [Chi07,
Proposition 4] which is valid for mappings valued in arbitrary metric spaces.

The I'-convergence. The statement of I'-convergence is now easy. To summarize, until now

we have proved the monotonicity and that

Dir(p) = lim Dir.(p)

e—0

for every p € L?(Q,P(D)). It is an exercise that we leave to the reader to check that any
sequence of functionals which are l.s.c. (which is the case for the Dir., see Proposition 8.25) and
which converges in a increasing way in fact I'-converges. O

152



8.1. THE DIRICHLET ENERGY

8.1.5 Boundary values

It is well known that it is possible to make sense of the values of a H' real-valued function on
hypersurfaces, in particular to give a meaning to the values of such a function on the boundary of
a domain. As we want to define the Dirichlet problem, which consists in minimizing the Dirichlet
energy with fixed values on the boundary 22, we need to give a meaning to the boundary values
of elements of H'(Q,P(D)). Korevaar and Schoen have already developed a trace theory in a
fairly general context [KS93, Section 1.12]. However, in our specific situation and in view of
proving the dual formulation of the Dirichlet problem, we will define the boundary values by
showing how one can extend the continuity equation for test functions ¢ € C1(Q2 x D, RP) which
are no longer compactly supported in ). Even if we do not prove it in this article, our definition
of trace coincides with the one of [KS93]: to be convinced one can look at Proposition 9.6 and
compare it to [KS93, Theorem 1.12.3]. Recall that ng denotes the outward normal to €.

Theorem 8.27. Let p € HY(Q,P(D)). Then there exists a vector-valued measure BT,, €
M(Q x D,RP) supported on ngdSt x D (which means that BT ,(¢) =0 if ¢ -ng =0 on 02 x D)
such that for any @ € C1(2 x D,RP) and for any E € M(2 x D,RPY) for which (u,E) satisfies
the continuity equation and Dir(u, E) < 400,

JJ Va - pdu + J Vpp-dE = BT“(QO). (8.16)
QxD QxD

Moreover if w is continuous as a mapping valued in (P(D), Ws) then for any ¢ € C1(Q x D, RP),

81,0 = [ ([ ete.) ma@ute,an) ) atas),

o2

where o is the surface measure on 05).

BT, stands for “Boundary Term” of p. It is not surprising that, if p is continuous, the value of
BT}, depends only on the values of p on the boundary.

Proof. Take p € HY(,P(D)) and E = vu € M(Q2 x D,RPY) such that (u,E) satisfies the

continuity equation and Dir(u, E) < 400. The L.h.s. of (8.16) defines a vector-valued distribution

on 2 x D acting on p. We need to show that it is of order 0 and that it does not depend on E.
Take ¢ € C1(Q2 x D,RP). We define f : Q — RP by, for a.e. £ € Q,

£(6) = jD (€ (€. d).

Using the continuity equation with test functions of the form xp®, for y € C! (Q,Rp) and
a€{l1,2,...,p}, one can see that f € H'(2,RP) and

0 (€)= jD 000’ (€, D) u(E, dx) + fD Vo (€, 2) - v (€, )€, de).

for all a, 5 € {1,2,...,p}. In particular f admits on 02 a trace f: 09 — RP. We apply the
divergence theorem: one can find in [EG92, Section 4.3] a statement when o< is only Lipschitz
and f has Sobolev regularity. In our case, given the expression of V f, it reads

|] vo-ean+ || vDso-dE=jQV-f= F©) - na(9o(a0 (8.17)
QxD

QxD
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where ng is the outward normal to 0f) and o its the surface measure. In particular we see that
the r.h.s. of (8.16) does not depend on E. Moreover, as |f[o < [¢]ow, the same L* bounds
holds for f, thus

7o) nﬂ(&)a(df)‘ < 0(09) ol

o0

It allows to conclude that the Lh.s. of (8.16) is a distribution of order 0 acting on ¢, hence
it can be represented by a measure BT, € M(Q x D,RP). From (8.17) it is clear that BT, is
supported on npdf) x D.

If we assume moreover that p is continuous, so is f. Indeed, for any &, 7 € €,

76— fon)| = \ | cteamean - | etnomutnan
les, (0, 2) (€, ) + U () (€, dz) — JD (0, ) (1, dz)

< [Vaglolt = nl + \ | etnomtean - [ swamnean|.

When £ — 7, the first term obviously goes to 0, and the second one too by definition of the weak
convergence (by assumption pu(§) — p(n) in the weak sense). Thus f coincides with f, which
gives the announced result. O

If pe HY(Q,P(D)), using the disintegration theorem and testing against well chosen functions,
one can show that there exists p : 00 — P(D) defined o-a.e. such that BT, = nou ® 0. The
mapping &t can be seen as a definition of the values of p on 0€2.

Now we can define what it means to share the same boundary values and prove that the set
of pu with fixed boundary values is closed.

Definition 8.28. Let p and v two elements of H'(Q, P(D)). We say that ploa = v|sa if
BT, = BT,,.

Proposition 8.29. Let puy € H (2, P(D)) and C € R be fized. Then the set
(e H\(Q,P(D))  prlsa = mlon and Dir() < C)
is closed for the weak topology on L?(Q), P(D)).

Proof. The proof is straightforward. Indeed, take a sequence (fty)nen in € L2(Q, P(D)) such
that pn|ao = mslen and Dir(p,) < C for any n € N, and assume it converges weakly to some
€ L3(Q,P(D)). By lower semi-continuity of Dir, we know that Dir(u) < C. For any n € N
choose E,, € M(Q x D ,RP?) tangent to w,, similarly take E;, tangent to pp. The identity
Lnloa = ploa can be written: for every p € C1(Q x D, RP)

ff V- odp, + f Vpy-dE, = ff V - odpy + f Vpp - dEy. (8.18)
QxD QxD QxD QxD

Notice that this simple estimate holds for the total mass of E,: provided v, is the tangent
velocity field to i,

[En|(Q x D) = [valr@xpreay < C1|valrz@xprea) < C14/2Dir(pun) < C1v2C.
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Hence one can assume that, up to extraction, (E,),en weakly converges to some E. It is easy to
see that (u, E) satisfies the continuity equation and that Dir(u, E) < C' < 400. Thus, we can
pass to the limit in (8.18) and see that for any ¢ € C1(Q x D, RP),

ffV-godu%— Jf Vpe - -dE = Jf V- pdpy + J Vpe - dEy,

QxD QxD QxD QxD

which exactly means that p|so = ps|eq- O

8.2 The Dirichlet problem and its dual

8.2.1 Statement of the problem

With all the tools at our disposal, we are ready to state the Dirichlet problem. It simply consists
in minimizing the Dirichlet energy under the constraint that the values at the boundary are

fixed.

Definition 8.30. Let uy, € H(Q2,P(D)). Then the Dirichlet problem with boundary values
is defined as
ITEI] {Dir(p) : pe HY(Q,P(D)) and plon = poloa} -

A mapping p € HY(Q, P(D)) which realizes the minimum is called a solution of the Dirichlet
problem.

Definition 8.31. Let u € HY(Q2,P(D)). We say that p is harmonic if it is a solution of the
Dirichlet problem with boundary values .

With the work of the previous section, the existence of at least one solution is a straightforward
application of the direct method of calculus of variations.

Theorem 8.32. Let p, € HY(Q, P(D)). Then there exists at least one solution of the Dirichlet
problem with boundary values pp.

Proof. There exists at least one p with finite Dirichlet energy which satisfies the boundary
conditions, namely pp. Thus, one can consider a minimizing sequence (f,)nen. By compactness
of L2(Q, P(D)), we can assume, up to extraction, that this sequence converges weakly to some
pe L2(Q,P(D)). By Proposition 8.29, we know that u also satisfies p|sn = ts|ao. The lower
semi-continuity of Dir allows to conclude that p is a minimizer of Dir. O

Let us spend a few words about the question of uniqueness, more is said in Chapter 12. Of
course, the proof above provides no information about it. By convexity of the Dirichlet energy
(Proposition 8.13), we know that the set of solutions of the Dirichlet problem is convex. However,
Dir is not strictly convex. Recall that if Q = [0, 1] is a segment of R, then the Dirichlet problem
reduces to the problem of finding a geodesic between the two endpoints py(0) and py(1). It is
well known that a sufficient condition for uniqueness is to impose that either p,(0) or py(1) are
absolutely continuous w.r.t. Lp, and there can be non uniqueness when it is not the case. Hence,
it would natural, in order to investigate the question of uniqueness, to impose that for every
& € 09, the measure (&) is absolutely continuous w.r.t. £p. We do not know if uniqueness
holds under this hypothesis: a difference with the case where (1 is a segment is the fact that we
do not know a static or Lagrangian formulation. In other words, we do not know the equivalent
of transport plans, which in the case of a 1-dimensional €2, allow to parametrize geodesics and to
greatly simplify the problem. However we are able to prove uniqueness in a non trivial case: the
one of a family of elliptically contoured distributions treated in Subsection 10.3.
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8.2.2 Lipschitz extension

To give ourselves the boundary conditions, we need a mapping g, defined on the whole €2, even
though only its values near 02 will play a role. Thus a natural question arises: if u is only
defined on 0f2, is it possible to extend it on 27 The next theorem shows that the answer is
positive in the case where py is Lipschitz on 0€2. Indeed, in this case we can build an extension
which is Lipschitz on 2, thus in H*(Q, P(D)) thanks to Theorem 8.20.

Theorem 8.33. Let p; : 0Q2 — P(D) a Lipschitz mapping. Then there exists p :  — P(D)
Lipschitz such that p(§) = pi(§) for every & € 09).

For a continuous p the boundary term BT, depends only on the values of pu on 0Q (Theorem
8.27), hence the boundary term of the Lipschitz extension of y; : 02 — P(D) does not depend
on the extension. In other words, the following problem is well defined:

Definition 8.34. Let p; : 02 — P(D) a Lipschitz mapping. Then the Dirichlet problem with
boundary values p; is defined as the Dirichlet problem with boundary values py, where py is any
Lipschitz extension of pu; on €.

Now, let us prove the Lipschitz extension theorem. It relies on the following Lemma, which
allows to treat the case where (2 is a ball.

Lemma 8.35. Let B(0,1) be the unit ball of RP and SP~1 := 0B(0,1) its boundary. Let
w2 S — P(D) a Lipschitz mapping and take o € D. Define, for any r € [0,1] the map
T,:D — D by T,(x) =rz+ (1 —r)xg. Then the mapping p : B(0,1) — P(D) defined by

p(rg) := T4 [p(8)]
for any r € [0,1] and any & € ST is Lipschitz.

Proof. If ¢ € S%! is fixed, then r € [0,1] — pu(r¢) is the constant speed geodesic joining 6y,
to pi(§). Hence, we can write that Wa(u(ré), u(sf)) < Clr — s|, where C' depends only on
the diameter of P(D). On the other hand, as 7, is r-Lipschitz in D, then v — T,#v is also
r-Lipschitz in P(D). Hence, for any & and n in S%~!, one has Wa(u(ré), u(rn)) < Crlé — 1),
where C' is the Lipschitz constant of p;. Putting the two estimates together, we deduce that for
any r,s € [0,1] and any &,ne SP 1,

Wa(p(rs), p(sn)) < Cllr — s| + min(r, s)[€ — 7],
which is enough to conclude that p is Lipschitz. O

Notice that the Lipschitz constant of the extension is not controlled by the Lipschitz constant
of p;: the distance between d,, and the range of p; also plays a role as p(0) = d,,. Hence, we
cannot use a decomposition with Withney cubes to extend mappings defined on arbitrary closed
subsets €2, but only on the boundary of smooth sets: basically we need to use Lemma 8.35 only
a finite number of times.

Proof of Theorem 8.33. We will use Lemma 8.35 in the following form: if Q is a domain which
is in a bilipschitz bijection with a ball, then Theorem 8.33 holds for this domain.

We reason by induction on p > 1 the dimension of 2. In dimension 1, 2 = I is a segment.
To extend a mapping defined only on the boundary of the segment I, we take the constant speed
geodesic in P(D) between the values of y; at the two endpoints of I.
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Figure 8.1: Idea of the proof of Theorem 8.33: every domain 2 with Lipschitz boundary (solid
line), even with an intricate topology, can be decomposed in a finite number of pieces X1, X, X3
such that each of them is in a bilipschitz bijection with a ball. The boundaries between the pieces
(dashed lines) are in bilipschitz bijection with balls of a smaller dimension (here segments).

Now assume that the result holds for some p — 1 = 1 and let €2 be a compact domain with
Lipschitz boundary in RP. The goal is to cut 2 in a finite number of pieces on which Lemma
8.35 apply. For each £ € Q we choose r¢ > 0 such that B(§,r¢) n € is in a bilipschitz bijection
with a ball. It is obvious that we can do that for ¢ € fl, and for points on €2 we use the fact that
Q) is locally the epigraph of a Lipschitz function. By compactness, we find balls Bi, Bo, ..., By
covering ) such that B,, n Q is in a bilipschitz bijection with a ball for any n € {1,2,..., N}. We
can of course assume that B, is not included in B,, for any n # m. Then we define recursively
X1 =B nQand X, = (B, nQ\X,_ forne {2,...,N}. Forany ne {1,2,..., N}, X, is still
in a bilipschitz bijection with a ball (see Figure 8.1 to understand what we are trying to do). On
U,, 0X», which is made of 0§ and of pieces of spheres of RP, thus locally in bilipschitz bijection
with Lipschitz domains of RP~!, we can use the induction assumption and extend p;. Then, we
use Lemma 8.35 to extend p on Xn for each n € {1,2,..., N}. We have obtained a function p
which is continuous and Lipschitz on each X,,n € {1,2,..., N}: it is globally Lipschitz on 2. [

8.2.3 The dual problem

We will know show a rigorous proof of the absence of duality gap. The dual problem was already
obtained, at least formally, in Chapter 7.

Theorem 8.36. Let pu, € H'(Q,P(D)). Then one has

\V4 2
+| D¥|
2

sup {BT%(QQ) : e CHQ x D,RP) and Vg -
¢

<0 on Q x D}
= H}tin {Dir(p) : pe HY(Q,P(D)) and ploo = poloa} -

Proof. We rely on the Fenchel-Rockafellar duality theorem which can be found in [Vil03, Theorem
1.9]. Let X := C(2 x D,R*P%) the space of continuous functions defined on the compact space
Q x D and valued in R'*P¢ endowed with the norm of uniform convergence. An element of X
will be written (a,b), where a € C(Q2 x D) and b € C(2 x D,RP?). The dual space X* is, by
the Riesz theorem, M(Q x D,R!*P4). Again an element of X* will be written (u, E) where
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p € M(2 x D) is a signed measure and E € M(2 x D, RPY) is a vector-valued measure. We
introduce the functionals F': X — R and G : X — R defined as, for any (a,b) € X,

F(a,b) = 0 1fa(f,$)+T<0forevery(§,x)egxp
+oo  else,
_BT}Lb ((p) lf (a7 b) = (VQ . (p’ VDSO) for some SO c Cl (Q X D,Rp)

400 else.

G(a,b) = {

Notice that thanks to (8.16), G is well defined and does not depend on the choice of ¢ such that
(a,b) = (Va -, Vpp). Notice also that at the point (—1,0) € X, one has that F is finite and
continuous and that G is finite (take (¢, z) := (—€1,0,0,...,0), where &' is the first component
of £). As moreover F' and G are convex, one can apply Fenchel-Rockafellar duality which means

- (”}g)lgx*[F (1, E) + G*(=p, —E)] = inf(F + G)

2
z—sup{BTub(go) . e CYQ x D,RP) and VQ'QO+|VD2(P|<O},
%)

where the last inequality is just a rewriting of the definition of F' and G. Let us compute F*(u, E).
By definition,

F*(u,E) = sup Jf adp + J b-dE :(a,b) e C(Q2 x D,K) ¢,
“* {owp QxD

where IC is defined in Definition 8.5. In particular, if g is not a positive measure, then choosing
suitable negative a, one sees that F*(u,E) = +o0. Moreover, if u € L*(Q,P(D)) and (u, E)
satisfies the continuity equation, then F*(u, E) = Dir(u, E): this is precisely Definition 8.5. On
the other hand, we can compute G*: for any (u,E) € X*,

G*(—p,—E) = sup BTy, () — ﬂ Vo - pdp — J Vpyp - dE
peC1l(Q2xD,RP)
QxD QxD

By linearity of the expression inside the sup w.r.t. ¢, we see that G*(—u, —E) < +o0 if and only
if G*(—p, —E) = 0, which translates in

BT, () = ff Va - edp + J Vpy-dE
QxD QxD

for every ¢ € C1(Q2 x D,RP). Let a € C(Q) a continuous function. It can always be written
a = Vgq -, where ¢ € C1(Q,RP) (take p = Vf where f solves Af = a), thus using the fact that

for such a ¢,
BT (0) = || Vot = || adin = | atcrac,
QxD

QxD

one sees that if G*(—u, —E) < +0o0, then

| e = | o

QxD
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Provided that p is a positive measure (recall that it happens if F*(u, E) < +o0) and by
arbitrariness of a, it implies that the disintegration of pu w.r.t. Lq is made of probability
measures on D, in other words that u € L?(2,P(D)). Once we have this information, testing
with functions ¢ which are compactly supported on 2, we see that if G*(—u, —E) < +00 then
(, E) satisfies the continuity equation, and testing with arbitrary ¢, we see that BT, = BT,,,.
In the end, one concludes that

min_[F* (16, E) + G*(—p, ~E)] = min {Dir(w) : pe H'(Q,P(D)) and plog = mlon}. O
(nE)eX~ u

A natural question which arises is the existence of an optimal ¢ € C1(2 x D, RP) (or in a
space of less regular functions). Actually, as detailed in Chapter 12, we do not know the answer
to this question and we believe that it can be substantially more complicated than in the case
where (Q is a segment of R.

8.3 Failure of the superposition principle

8.3.1 The superposition principle

In this section, we want to explain why a powerful tool to study curves valued in the Wasserstein
space (i.e. the case where ) is a segment of R), namely the superposition principle, fails in
higher dimensions. To say it briefly, there is no Lagrangian point of view for mappings valued
into the Wasserstein space, one has to work only with the Eulerian one. Notice that the question
of the existence of a superposition principle was already formulated by Brenier [Bre03, Problem
3.1], but left unanswered. As we want to prove a negative result, we will not only provide a
counterexample to the superposition principle, but also try to explain the obstruction and why
this principle fails for all but few exceptional cases. Let us first recall the superposition principle
for absolutely continuous curves.

The set ©Q will be replaced by the unit segment I = [0,1]. As stated in Proposition 8.8,
the set H'(I,P(D)) coincides with the set of 2-absolutely continuous curves whose definition
is recalled in Section 2.2. We denote by C = C(I, D) the set of continuous curves valued in D
endowed with the norm of uniform convergence, it is a polish space. If f € C, then f denotes the
derivative w.r.t. time of f provided that it exists. For any t € I, e¢; : C — D is the evaluation
operator, which means e;(f) = f(t) for any f € C. The following result can be found in [AGS08,
Section 8.2], see also [Lis07] for a more general framework.

Theorem 8.37. Let u€ HY(I,P(D)). Then there exists a probability measure Q € P(C) such
that

(i) for any te I, e#Q = u(t) ;

(ii) the following equality holds:

ir) = [ ([ yli0rar) Q).

The measure () can be seen as a multimarginal transport plan coupling all the different
instants, whose 2-marginals are almost optimal transport plans if they are taken between two
very close instants. In other words, for any ¢ and s in I, (es, €;)#@Q is a transport plan between
p(s) and p(t) (by (i), and it is almost an optimal transport plan if s is very close to t by (ii).
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Another way to see it is the following: if f € C, then we can also see it as an element gy of
HY(I,P(D)). Indeed, just set u(t) = 5 for any t € I, and one can define Ey € M(I x D,RY)
by, for any b e C(I x D,RY),

H b.dE; = Lb(t, £8) - ft)dt.

IxD
With this choice, one can check that

Dir(uy) = Div(pes. By) = | 5170

Then, Theorem 8.37 is saying that there exists ) € P(C) such that p is the mean w.r.t. @ of the

¢ (this is (i)), and such the E which is tangent to p is the mean w.r.t. Q of the E;. Indeed,
by linearity of the continuity equation the mean of the E; is an admissible momentum. Using
Jensen’s inequality,

Dir(p) = Dir ( L qu(df)> < Dir ( L qu(df>,LEfQ<df>) < L Dir(s, By)Q(d)

and the r.h.s. is equal to the Lh.s. by (ii). Hence, all inequalities are equalities, which tells us
that §, E;Q(df) is the tangent momentum to p.

Let us try to see what a superposition principle would look like if the dimension of € is
larger than 1. We denote by F the space L?(Q2, D) which is a polish space. As it was already
done in [Bre03], if f € H'(Q2, D), then we can see it as an element p; of H'(Q, P(D)) by
setting p(§) := 6 7(¢)- In other words, a classical function can be seen as a mapping valued
in the Wasserstein space by identifying f(£) € D with d4) € P(D). More precisely, we define
pr € L2(Q,P(D)) and Ef € M(Q x D,RP) by, for any a € C(Q x D) and be C(Q x D,RPY),

] adns —La(ﬁ,f(ﬁ))df,

QxD
[[ 0-amy = [ we.sien - vreae
QxD &
Proposition 8.38. If f € HY(, D), and if s and Ef are defined as above, then Ey is tangent
to py and
. . 1
Dir(uy) = Dir(say. By) = | SV

Proof. To check the first part, take ¢ € C1(€ x D,RRP). Defining ¢ € HY(Q,RP) by ¢(&) =
w(&, f(£)), we have that ¢ is compactly supported in €2 and

V-3 =(Va-9)& f(&)+ (Vpe)(& F(§)) - VF(E).

Integrating this identity w.r.t. €2, as the L.h.s. vanishes by compactness of the support of ¢, we
see that we can conclude that (uy, Ef) satisfies the continuity equation.

Notice that E; has a density vy € Lif(ﬂ x D,RPY) w.r.t. p given by v(§,x) = Vf(£). In
particular, for a fixed &, v¢(,+) is constant hence the gradient of a function. Using Proposition
8.11, one sees that it is enough to conclude that E; is tangent. Moreover, as v does not depend
on x,

Dir(uy) = Dir(us. By) = [[ 5lvs©Pntdtde) = | Sivi@Pae = [ FIvr@Pas

QxD
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We mention that Brenier proved that if f : 2 — D is a (classical) harmonic map, then gy is
also an harmonic mapping, see Proposition 10.1 below.

By analogy, the superposition principle would read as follows: If u € H' (2, P(D)) and
E € M(Q2 x D,RP9) is tangent to p, does there exist Q € P(F) such that p is the mean of p¢
w.r.t. Q and E is the mean of Ef w.r.t. Q7 Thanks to Jensen’s inequality and the uniqueness of
the tangent momentum, the second condition can in fact be rewritten as

Dir(s) = Di(u.B) = | Dir(us EQUaf) = | ( | ;Wf(s)?df) Qdf).

These considerations can be summarized by the following definition, which is the same as [Bre03,
Problem 3.1]. For f € F we define its “classical” Dirichlet energy Dir.(f) by

| sivr©pa it e m@.p)

400 else.

Dir.(f) =

Definition 8.39. Let uc H'(Q, P(D)). We say that p admits a superposition principle if there
exists Q € P(F) such that

(i) for any a € C(2 x D);

[ aan= ( La(é,f@»d&) QUf),

(ii) the following identity holds:
| punatar < i,

In particular, with our definition, if @ represents pu € H'(€2, D), then for Q-a.e. function f one
has Dir.(f) < +o0 hence f belongs to H!(Q, D). Let us underline that (i) is heuristically the
same as (i) of Theorem 8.37, but in a form integrated over € because the evaluation operator
does not make sense in higher dimensions: the elements of F are not necessarily continuous. In
Definition 8.39, if (i) and (ii) holds, then the inequality in (ii) is in fact an equality because the
reverse inequality always holds. Indeed, if p satisfies the superposition principle, we can say that
n= S]_. prsQ(df). By convexity of the Dirichlet energy (Proposition 8.13), we can apply Jensen’s
inequality, thus

Dir(p) < L Dir(/)Q(df) = LDirc(f)Q(df)-

8.3.2 Counterexample

We will first provide a counterexample which we will try to make as generic as possible. In
what follows, we take Q := B to be the unit disk of R? and S! = B its boundary. We also take
D = B. We view B as a subset of the complex plane C: multiplication on B means complex
multiplication.

Let ps : St :— P(B) be the (complex) square root: it is the mapping defined by, for ¢ € S,

22=

14(6) ::% S = %(5\/5%7\/5),
13
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where 1/ is a (complex) square root of £. The function pg is clearly Lipschitz (with Lipschitz
constant equals to 2). In fact, if £ = e with ¢ € R, one can write

. 1
ps(e) = 5 (5exp(it/2) + 5exp(it/2+i7r)) :

The function t — pg (eit) is 2m-periodic, but it cannot be written as a superposition of continuous
2m-periodic functions, only 4m-periodic ones. Hence, the superpositon principle with continuous
functions fails for this mapping. This example is well known in the theory of @-functions [DLS11],
we took it from there. To our purpose, we will need the fact that the superposition principle
with H/2 functions fails for the mapping ps: roughly speaking, it holds because H? functions,
in dimension 1, cannot have jumps.

Lemma 8.40. There is no function f € HY/?(S',B) such that f(£)? = € for a.e. £ € S,

As this lemma is not directly related to harmonic mappings, we postpone its proof to the end
of this chapter in Section 8.4. With the help of this lemma, we can prove that no mapping
pe HY (B, P(B)) such that p|sp = ps can have a superposition principle: indeed, if it were the
case, then we could restrict the superposition to dB, and we would have a superposition principle
for ps with functions in H 1/2 which is a contradiction. To make this argument rigorous is a bit
technical given the definition we chose for the boundary values of mappings in H'(B, P(B)): u
is not necessarily continuous.

Proposition 8.41. Let ue H' (B, P(B)) such that p|ss = ps. Then p cannot admit a superpo-
sition principle.

Proof. We will of course reason by contradiction. We assume that there exists @ € P(F) which
satisfies the points (i) and (ii) of Definition 8.39 (in fact only point (i) will be sufficient). Let
E = vu tangent to p. Take § > 0 and € > 0. We choose . € C*([0,1]) an increasing function
supported on [1 — ¢,1], such that x.(1) = 1. Define a. € C*(B,R?) and bs € C*(B x B) by, for
any &,z € B,

£

ac(§) = mxa(m),
212
b(;(g?x) = w

In words, a. is a vector-valued function, parallel to lines issued from the origin, and whose norm is
increasing on the annulus of radii 1 — ¢ and 1 from 0 to 1. Define A, = {{eB : 1—¢ < |{| < 1}
the annulus outside which a. vanishes. A simple computation gives

V- ac(€) — xc(IED] < CLa.(8),

where C' does not depend on €. On the other hand, bs is a smooth scalar function, which vanishes
if 22 = ¢, which is larger than 1 if |22 — ¢| > § and whose derivative is bounded by Cd~2. As a
test function for the continuity equation, we take (&, ) = a-(£)bs(§, x). With this choice, for
every ¢ € S!, one has

Lw(f,x)us(&dw) = % > e z) =0.

r2=¢
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8.3. FAILURE OF THE SUPERPOSITION PRINCIPLE

Thus, BT, (¢) = 0 and the continuity equation tested against ¢ reads

] xteheste omag ax)

BxB

" f f [0:(6) - Vabs(€, ) + (a:(€) ® Vpbs(€, 1)) - v(E, )| u(dé, dx)| < C.

BxB

Indeed, in the r.h.s, the reminder V - a. — xL(|{|) of order 1 has been integrated over A. whose
area scales like . For the first integral, we use the assumption that p satisfies the superposition
principle. For the second one, we bound Vbs by Cd~2, notice that a. vanishes outside A, and
use Cauchy-Schwarz:

[ ([ ehmte, snac) atan - f f L(l)bo(€, (e, )

S5 U 1+ |v(&, z))p(d€, dx) + Ce

A:xB

< J || @+ meamniagdn | [ g+ ce
BxB A:xB

«/1+2D1r JWe + Ce < }/;,

where C' denotes a generic constant which changes from one line to another and the inequality
may hold only for small € and 0. Let us call F5. < F the set of f € F such that

foé(ISI)If(E)Q _ePde >

By Markov’s inequality, one can say that

O(Fs.) =Q({fef [ xetiehite. stepae > 1})
< L (JB (€D E, f(&))df) Q) <Y;.

Now take the sequence €, := 27". By the previous estimate, one sees that

+0
> Q(Fse,) < +oo.
n=1

By the Borel-Cantelli lemma, one has that Q(limsup,, F5.,) = 0 which means that for Q-a.e.
f € F, there exists ng (which may depend on f) such that

fB o (EDIF©)? — €[2de < 8°

for all n > ng. Recall also that Q-a.e. f belongs to H'(£2, D). For such an f, sending n to +o0
and by definition of the trace of f,

|, 172 ~Pota < &
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where in this formula f stands for the trace of f on S! and o the surface measure on éB. Then
using this estimate for smaller and smaller é along a countable sequence, we conclude that Q-a.e.
function f satisfies f(£)% = € a.e. on S'. But on the other hand the trace of Q-a.e. function f
belongs to H'/2(S', B), which is a clear contradiction with Lemma 8.40. t

From this Proposition, we deduce that there exists an harmonic and a Lipschitz mapping
€ HY(Q,P(D)) for which the superposition principle fails: just take respectively a solution of
the Dirichlet problem with boundary values ps, or a Lipschitz extension of ps.

Though, these examples can seem too particular and rely too much on some singular boundary
conditions. To produce stronger examples, we will use the fact that, roughly speaking, the set of
o admitting a superposition principle is stable by approximation. Thus, by contraposition, any
neighborhood of a g which does not admit a superposition principle will contain other measures
not admitting a superposition principle.

Proposition 8.42. Let (ttn)nen @ sequence of elements of H'(Q, P(D)) such that, for every
n € N, w, admits a superposition principle. We assume that (fn)nen converges weakly to
pe HY(Q,P(D)) and that lim,, Dir(p,) = Dir(u). Then p admits a superposition principle.

Proof. For any n € N, let @, € P(F) such that (i) and (ii) of Definition 8.39 are satisfied. By
Rellich’s theorem (recall that D is compact), the functional Dir. : F — R has compact sublevel
sets in the L2(Q, D)-topology. As

sup ffDirc(f)Qn(df) = sup Dir(puy,) < 400,

neN neN
we can say [AGS08, Remark 5.1.5] that (Qn)nen is tight, hence up to extraction it weakly

converges in P(F) to some @ € P(F). We will show that @) represents p.
Let us take a € C(2 x D) and define A : F — R by, for any f € F,

AU%=La@f@M§

The function A is continuous for the L? topology. Thus, starting from

| awauan = [ ean.

QxD

which is valid by Definition 8.39, we can pass both terms to the limit (recall that u, weakly
converges to p) and see that (u, Q) satisfies (i) of Definition 8.39.
Moreover, as Dir, is Ls.c. (for the L?(€, D) topology), we can say that

n—-+0o0

JDmUWMﬁémmﬂfDMUWMM%ﬂggﬁmw0=Dﬂm,
F F

which gives point (ii) of Definition 8.39 and concludes the proof. O

With this proposition, one can use for instance the heat flow to regularize mappings and
produce “smoother” counterexamples. For instance, let u € H'(B,P(B)) which does not satisfy
the superposition principle. Set wp,(§) := @If/np(ﬁ): for a fixed £ € B, we regularize p(§) with
the help of the heat flow acting on P(B). One can check easily that w, converges weakly
in L?(B,P(B)) to pu. As CIDIIB/n is a contraction in the Wasserstein space (Proposition 2.13),
Dir(p,) < Dir(p) and by lower semi-continuity of Dir we deduce that lim, Dir(u,) = Dir(u).
According to Proposition 8.42, we deduce that u,, does not satisfy the superposition principle for
n large enough. On the other hand, the for any ¢ and any n the measure p,(§) is smooth: it
admits a density bounded from below and from above.
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8.3.3 Local obstruction to the superposition principle

The counterexample provided above shows a global obstruction. Indeed, the mapping ps can
be thought locally in €2 as a superposition of classical functions, but there is a contradiction if
we try to make this superposition global. On the other hand, there is also (at least formally)
local obstructions to the superposition principle. To describe them we will stay sloppy about the
regularity issues and concentrate on heuristic explanations.

Indeed, if g admits a superposition principle given by @ € P(F), and if v is the velocity field
tangent to w, then for Q-a.e. f, one has Vf(§) = v(&, f(&€)). To prove this fact, notice that the
tangent momentum E = v is equal to Xf E;Q(df): this is exactly the same proof as the case
where () is a segment of R which we did at the beginning of this section. In other words, for any

be C(Q x D, RPY),
[[v:am=] ( [ we.se- Vf(ﬁ)d€> )

QxD

Thus, one can say that

Dir(p JJ —|v|*dp = H —v-dE =

QxD

( f 7€) - Vf<5>d5) Qaf)

J
1
T4

f f |v|2du+ f (], 31vs©Pac) @tan

= Dir(u).

In particular, the inequality is an equality: one sees that for Q-a.e. f € F, one has Vf(§) =
v(&, f(€)) for a.e. £€ Q.

The analogue if (2 is a segment is the fact that (using notations from Theorem 8.37) for Q-a.e.
there holds f, f(t) = v(¢, f(t)): the measure Q is supported on the flow of the vector field v
(see [AGS08, Theorem 8.2.1]). In dimension larger than 1, the constraint Vf = v(-, f) is much
stronger. In particular, it implies that along every curve v : I — (Q, the function f o~y follows the
flow of v - 4. However, there are many different curves going from one point to another: if we
want all the results to be coherent, some commutation properties of the flow of v along different
directions are needed, which turns out to be a very strong constraint. Indeed, coordinatewise,
the constraint reads for every a € {1,2,...,p} and i € {1,2,...,q},

daf'(€) = vV'(E, F(6)).
If we differentiate w.r.t. 3, we find that
o f (&) = 05V (&, f(€)) + Z a7 (€)ov (€, f(8)) = (%V‘“ + Z v ove ) (& f(&).
Jj=1 j=1

The Lh.s is clearly symmetric if we exchange the role of o and 3, so must be the r.h.s. It implies
that for all o, 5 € {1,2,...,p},

q q
O, vP + 2 Vajajvﬁz = 0pv™ 4 Z vﬂjé’jvm, (8.19)
j=1 J=1
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at least on the support of g in 2 x D. In other words, we see that v must satisfy a differential
constraint for the superposition principle to hold, and there is no reason why this constraint
would be satisfied for a generic pu € H'(2, P(D)), even for a harmonic mapping. Actually, we
provide in Section 10.4 an explicit example where this commutativity relation (8.19) does not
hold.

An other way to understand the local failure of the superposition principle is the following.
We will be sloppy and use the evaluation operators e¢ : F — D defined by e¢(f) := f(§) (these
operators are in principle not defined as elements of F are not continuous). If g admits a
superposition principle, it would mean that for £ and 7 very close, (eg,e,)#Q € P(D x D)
is a transport plan between wp(£) and p(n) (because of point (i)) which is almost optimal
(between of point (ii)). It also works with three measures: if £, and 6 are three points of
very close to each other (for instance located at the vertices of an equilateral triangle), then
(ee,en,e9)#Q € P(D x D x D) is a coupling between p(§), pe(n) and p(f) whose 2-marginals
are almost optimal transport plans. However, it is known that, if p1, uo and pus € P(D), then
in general there exists no coupling between the three whose 2-marginals are optimal transport
plans.

8.4 Appendix: H'/? determination of the square root

In this subsection we want to prove Lemma 8.40, which states that, with S' the unit circle of the
complex plane C and B its unit disk, there is no function f € H'/2(S',S!) such that f(£)? = ¢
for a.e. £ € S! (where the multiplication is understood as a complex multiplication). We take
for granted that there is no continuous function f € C(S',S!) such that f(¢)? = ¢ for all € € S*.
Hence, it is enough to reason by contradiction and to prove that a function f € H'/2(S', S!) such
that f(£)? = ¢ for a.e. £ € S! admits a continuous representative.

We start with some easy lemma which states that H'/2(S',B) is stable by composition with
Lipschitz function.

Lemma 8.43. Let u : S' — R a Lipschitz function and f € HY/*(S',SY). Then (uo f) €
HY2(S',R).

Proof. 1t is well known (see [McL00, Chapter 3]) that there exists f € H' (B, B) whose trace on
St is f. Clearly, the function u o f stays in H'(B,R), hence its trace, which is nothing else than
wo f,is in HY2(S',R). O

Then, let us prove that an HY/? function cannot have a jump.

Proposition 8.44. Let f € H/?([0,1],R) such that f(¢) € {0,1} for a.e. € € [0,1]. Then there
s a representative of f which is constant.

Proof. We reason by contraposition: we assume that f is not constant, which translates in
0< Sé f <1 and we want to show that f ¢ H'/2([0,1],R). Recall that it is sufficient to prove,
given the definition of the H'/? norm [McL00, Chapter 3], that

— f(o
(LI
|6 =]
[0,1]x[0,1]
Take t > 0 large enough. The function

1 E+t—1/2/2
£ J J(n)dn
\/i E—t=1/2/2 )
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is continuous on [t~%2/2,1—¢~1/2/2] and has a means which belongs to [¢, 1 —¢], where 0 < ¢ < 1
is independent of ¢ (provided it is large enough). Hence, there exists & such that

Ee+t—1/2)2 c c
rodne | - 5],
Ltt_l/2/2 \/E \/E
Heuristically, & is close to a point where f “jumps”. On the segment [&, — t1/2/2, & + t71/2/2],

there must be points for which f = 0 and points for which f = 1, and at least ¢t—'/2 of each
kind. In particular, it implies that

1 1 2

2
L1011 ® Lio,1 ({(77,9) € [ft - 2\/?& + 2\/7;} : f(n) =1and f(0) = 0}) > -

As a consequence,

_ 02
L0,1] ® L[o,1 ({(77, 0) € [0,1]* : W > t}) >

This estimate leads to

— f(0
[| o=ty
(0,1]x[0,1]

With these two lemmas, we can easily arrive to our conclusion.

Proof of Lemma 8.40. Let f € H'Y/2(S',S') such that f(£)? = ¢ for a.e. & € S'. We want to
show that f is continuous. Take X an arc of circle of S'. If X is small enough, there are two
continuous functions fy and f; (the complex square roots) defined on X such that for all £ € X,
2?2 = ¢ if and only if z € {fo(€), f1(£)}. Moreover, if X is small, the ranges of fy and f; are far
apart, hence we can find a Lipschitz function v : B — {0, 1} such that uo fo =0 and uo f; =1
on X. Thus, (uo f)(&) € {0,1} for £ € X. The previous lemmas allow us to conclude that the
function is in H/2(X, {0,1}), hence constant, which means that f is continuous on X. As X is
arbitrary, f is continuous on S', which is a contradiction. O

8.5 Appendix: Measurable selection of the argmin

We want to show a result which states that if F': X x Y — R is a function which is measurable
w.r.t. X, then one can find a selection m : X — Y such that F(x, m(z)) = miny F(x,-) for every
x € X, i.e. such that m(z) € argminy F(z,-). First we recall the following result which can be
found in [AB06, Theorem 18.19].

Proposition 8.45. Let X be a measured space and 'Y a polish space. Let F': X xY — R
a function such that F(x, ) : Y — R is continuous for every x € X, and F(-,y) : X —> R s
measurable for every y € Y. Assume that for every x € X, the function F(x,-) has a minimizer
overY.

Then there exists m : X — Y a measurable function such that for all v € X,

F(x,m(z)) = I;él}I/l F(z,y).
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However, in particular for Proposition 9.8 below, we need a case where F(x,-) is only l.s.c..
Thus, we prove some ad hoc result relying on the particular structure of our problem which
allows to treat lower semi-continuity.

Lemma 8.46. Let X be a measured space andY a compact metrizable space. Let ' : X xY — R
a function such that F(x,-) : Y — R is continuous for every x € X, and F(-,y) : X —» R is
measurable for every y e Y; andlet G:Y — R a l.s.c. function.

Then the function H : X — R defined by

H(x):= myin{F(x,y) +G(y) : yeY}

1s measurable.

Proof. Notice that Y is separable as it is compact and metrizable. For any rational number a,
the exists a sequence dense in {y € Y : G(y) < a}. Hence, we can construct a sequence (yn)nen
such that for any rational number a there is a subsequence of (y,)nen Which is included and
densein {yeY : G(y) < a}.

Set H(z) := inf, F(x,y,) + G(y») which is measurable and larger than H. Let us prove that
it is equal to H. Indeed, if x € X, by standard arguments of calculus of variations, there exists y
such that H(z) = F(z,y) + G(y). For any a > G(y) rational, take a subsequence (yp, )xen Which
belongs to {y €Y : G(y) < a} and which converges to y. By continuity of F', one has

H(x) < liminf (F(z,yn,) + G(yn,)) < F(z,9) + a.

k—+w
As a can be chosen arbitrary close to G(%), we have that H(z) < F(x,7y) + G(y) = H(z). O

Proposition 8.47. Let X be a measured space and Y a compact metrizable space. Let F': X x
Y — R a function such that F(z,-):Y — R is continuous for every x € X, and F(-,y): X > R
is measurable for everyyeY; andlet G:Y — R a l.s.c. function.

Then there exists m : X — Y a measurable function such that for any x € X,

F(x,m(z)) + G(m(x)) = mz}n{F(:U,y) +G(y) : yeY}

Proof. As in the previous lemma, define H(z) := min{F(z,y)+G(y) : y € Y}, it is a measurable
function valued in R. Let I' be the mapping going from X and valued in the compact subsets of
Y defined by I'(x) = arg min, (F(x,-) + G(-)) which means

D(z):={yeY : F(z,y) +G(y) = H(z)}.

Notice that I'(x) is never empty thanks to standard arguments of calculus of variations. To prove
the existence of a measurable selection of I'; we rely on [AB06, Theorem 18.13]: it is sufficient to
show that I' is measurable, which means that {z € X : I'(z) n Z # J} is a measurable set of X
for any closed set Z < Y. But one can be convinced that, for a fixed Z < Y closed,

Nx)nZ +# @ < H(x)=Hz(x),

where Hz(x) := min{F(z,2) + G(z) : z € Z}. Thanks to Lemma 8.46, both H and Hy are
measurable, thus the set on which they coincide is measurable, which concludes the proof. [
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Chapter 9

The maximum principle

As explained in Chapter 7, we want to show in this chapter that F o p is subharmonic (which
means A(F o ) > 0) as soon as u € H'(Q,P(D)) is harmonic and F : P(D) — R is convex
along generalized geodesics. As far as the regularity of F' is concerned the simplest would be to
assume that F' is continuous on P(D). Nevertheless, this assumption is very strong and excludes
natural functionals (like the internal energies). In the case where F' is only ls.c., we will need
additional assumptions: it is the object of the following definition.

Definition 9.1. We say that F : P(D) — R is regular if it is l.s.c. on P(D), if
pe PHP(D) = | Plue)ds

is l.s.c. for the weak convergence on L*(Q, P(D)), and if F is bounded on the bounded sets of
L*®(D) nP(D).

Lower semi-continuity of F' is a reasonable assumption. To impose that F' is bounded on bounded
sets of L®(D) nP(D) is not a strong constraint as D is compact, we will need it to ensure that,
by regularizing probability measures with the heat flow, we get measures for which F is finite.

Lower semi-continuity of § : o+ §;,(F o p) is less usual: by a standard argument left to the
reader, it implies that F' is convex for the affine structure on P(D). However, we do not know
in the general case if the fact that F' is convex and l.s.c. on P(D) is enough to ensure lower
semi-continuity of §. Indeed, to apply abstract functional analysis arguments, we would like to
work in the space M (€ x D) endowed with the total variation norm: it is the dual of the Banach
space (C(2 x D),| - ||eo). If F is convex and l.s.c. on P(D), it can be shown easily that § is
convex and l.s.c. on M(Q x D) endowed with the total variation norm. However, it only implies
that § is L.s.c. for the topology on M(€Q x D) defined by duality w.r.t. the dual of M(Q2 x D),
the latter being strictly larger than C'(Q x D).

However, for the usual functionals on P(D) we can do an ad hoc analysis and we have the
following results.

Proposition 9.2. Let V € LY(D) a ls.c. function. Then the functional
F:MGP(D)I—)J Vdu
D

is reqular.
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Let f : [0, +00) = R a proper and convex function such that limy_, 1o f(t)/t = +00. Then the
functional defined by

F:ueP(D)w— JDf(N(x))d:E if p is absolutely continuous w.r.t. Lp
+00

else,

s reqular.

Proof. AsV is l.s.c. on the compact D, it is bounded from below. As V is in L!(2), the function
F' is clearly bounded on bounded sets of L*(D) n P(D). Then, we can use [Sanl5, Proposition
7.1], seeing either V' as a ls.c. function on D, or as a l.s.c. on  x D (constant w.r.t. its first
variable) to get that both F and {,(F o -) are Ls.c.

For the internal energy, to get lower semi-continuity of F' we rely on [Sanl5, Proposition 7.7].
To get the lower semi-continuity of §,(F o), we can see that

ff f(p(&, x))déda  if p is absolutely continuous w.r.t. Lo ® Lp
| P = {5,

+00 else,

thus [Sanlb, Proposition 7.7] still applies. As f is bounded on bounded sets of [0, +0), we see
that F' is bounded on bounded sets of L*(D) n P(D). O

However, the interaction energy is not regular: it lacks convexity w.r.t. the affine structure on
P(D) [Sanlb, Chapter 7]. For instance, take 2 = D = [0, 1] and define F' : P(D) — R by

Fi= [ lo - yPuton(ay).

DxD

This functional is continuous and bounded on P(D). However, if we define u,(§) := d,,(¢) with
zn(§) = 1/2 4+ 1/2 cos(n), one can see that F(u,(£)) =0 for all £ € 2 and n € N, but (e, )nen
converges weakly on P(Q2 x D) to p := Lo ® Lp, for which the value SQ (F o) is strictly positive.
On the other hand, as soon as the interaction potential is continuous, the interaction energy is
continuous on P(D).

Finally, let us recall that a function f : 2 — R is said subharmonic on Q) in the sense of
distributions if Af > 0 as a distribution in Q.

Theorem 9.3. Let F : P(D) — R a functional which is convex along generalized geodesics.
Assume either that F is continuous on P(D) or that F is reqular. Let p; : 0Q0 — P(D) a
Lipschitz mapping such that sup(F o p;) < +00.
Then there exists at least one solution p € H'(Q, P(D)) of the Dirichlet problem with boundary
conditions p; such that (F o p) : Q — R is subharmonic in Q) in the sense of distributions and
esssup(F o p) < sup(F o ). (9.1)
Q oQ

Moreover, if F' is reqular then p can be chosen in such a way that

J F(u(€))de < J F(u(€))de. 9.2)
Q Q

if v is any other solution of the Dirichlet problem with boundary values ;.
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Let us make some comments. The first one is that (9.1) is nothing else than the maximum
principle. It is not implied by the subharmonicity of (F o ) as the latter holds only in Q) and we
do not know if (F o p) is continuous. The second one is that (9.2) characterizes p if F' is strictly
convex. More generally, the subharmonicity of F' o u would hold for p solution of the Dirichlet
problem minimizing

f a(€)F ((€))de,
Q

where a € C(f2) is a continuous and strictly positive function (it comes from a slight modification
of the proof which is left to the reader). The last comment is that this result is somehow
disappointing because we cannot guarantee the subharmonicity to hold for all solutions. The
main issue is that we reason by approximation, thus the solution g is constructed as the limit of
some approximate mappings, the existence of the limit is coming from compactness. But as we
have no uniqueness result for the Dirichlet problem, we can only identify the limit through (9.2)
(which is a byproduct of the approximation process) but we cannot say much more.

The rest of this chapter is devoted to the proof of Theorem 9.3. In Section 9.1 we prove some
preliminary results. The most difficult and interesting case is the one where F' is not assumed to
be continuous but only regular: it is the object of Sections 9.2 and 9.3. To conclude, in Section
9.4, we briefly comment about the simplifications of the proof in the case of a continuous F.

9.1 Preliminary results

We prove first some technical results which would have overburden the previous chapters. The
first one deals with Rellich compactness theorem, as we will want some strong convergence of
our solutions of the approximate problems.

Proposition 9.4. Let (pn)nen a sequence in HY(2,P(D)) such that sup, Dir(pm,) < +o0.
Then, up to extraction, the sequence (fn)nen converges strongly in L?(Q, P(D)) to some pu €
HY(Q,P(D)).

Proof. This is nothing else than the Rellich compactness theorem, but for mappings valued in
metric spaces. Remark that P(D) has a finite diameter, thus in this result we only need a control
on the Dirichlet energy of p,. We can find this result for instance in [KS93, Theorem 1.13] or in
[AT03, Theorem 5.4.3]. In any way, this result is also a consequence of the next proposition. [

In fact, we will need a stronger result, as we want to show compactness if we only have a control
of the approximate Dirichlet energies.

Proposition 9.5. Let (p:)e~o a family in L*(Q,P(D)) such that liminf. Dir.(p.) < +oo.
Then there exists a sequence (en)neny which goes to 0 such that (e, )nen converges strongly in

L?(Q2,P(D)) to some pe H(Q,P(D)).

There is a well known criterion for compactness in L?(Q2): the Riesz-Fréchet-Kolmogorov theorem.
It requires a uniform control of the L?-norm of the difference between a function and its translation.
Here, we have only a control of the distance between a function and its translated in average
(thanks to Dir.), and our mappings take values in P(D) rather than R. Nevertheless, the strategy
of the proof of the Riesz-Fréchet-Kolmogorov theorem is rather straightforward to adapt.

Proof. There exists a sequence (&, )men, converging to 0, such that sup,, Dir.  (te,,) < +0.
As in the proof of Theorem 8.14, let x be a smooth function, radial, compactly supported in
B(0,1) and we set x¢(§) =t Px(&/t). We will regularize p.,, only w.r.t. the source space Q2. More
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specifically, for any Q compactly supported in Q) and ¢ small enough, we define fi,, ; € LQ(Q7 P(D))
by

fim s (€) 1= fQ Xe(€ = ) pte,, ()l (9.3)

for any & € Q. We first estimate dy2(fim.t, e, |q). Using Jensen’s inequality and the definition
of Diry,

dr2(fim,t, Hep |g) = f W3 (L(O ) Xt (1) te,, (§ — n)dn,u(€)> d¢

ff W (tey, (€ — ), p(E)) dnde
B(Ot)

2tp+2
< C|,Xt|ooDirt(ugm) = Ct*Diry(pe,, ).
P
Now, because of the monotonicity of Dir; (Theorem 8.26) remember that Dir(p.,,) < Dire,, (pte,,)
if m is large enough (and ¢ should in fact be of the form 2Ve,, but it does not really matter). In

consequence, for any ¢ > 0, there exists ¢t > 0 (small) and mg € N, such that for any m > my,

dL2 (.ﬂ'm,ta He,, |Q) <0

On the other hand, for a fixed ¢ > 0, we want to show compactness of the family (fi,,,+) in
L*(Q, P(D)). We will show that this family is uniformly equi-Holder as mappings defined on €
and valued in (P(D), Ws): it implies compactness in C(Q, P(D)) from which we easily deduce
compactness in L2(Q, P(D)). Here Q is a compact subset of Q lying at a distance larger than t
from 0€2. We prefer to work on the 1-Wasserstein distance whose definition is recalled in Section
2.1. Take ¢ € C(D) a 1-Lipschitz function, up to translation by a constant we can assume that
l¢]oo < C with C independent of ¢. Then for any &, 7 € €,

| e@inte.an = | oloimitnda = [[ o) tats =0) = xutn =) 6. ar)ao

QxD

1
< 1€ =l IX el 2o

As the bound is independent on ¢, we deduce that Wi (fim.¢(€), fim.e(1)) < Ct=PHD|¢ — 7] for all
¢ and 7 in Q. Using Wy < C+/W [Sanl5, Equation (5.1)], we see that, for a fixed ¢, the family
(fm.t)men, defined on Q, is uniformly equi-continuous (more precisely 1 /2-Holder continuous).

Now we put the pieces together. For each n > 1, take Q, Q compactly supported in O
such that Lo(Q\Q,) < 1/n. Choose also t, small enough such that dp2(fim., Heyla, ) < 1/n
holds for m large enough and the distance between €, and 8 is smaller than ¢,. Then, using
Ascoli-Arzela theorem, up to a subsequence, we know that (f;,+,)men converges strongly in
L*(Q,, P(D)), in particular it is a Cauchy sequence. Up to a diagonal extraction in (£, )men
(we do not relabel the sequence), we can assume that (fm.t,|q )men is a Cauchy sequence for all
n € N. Notice, as P(D) has a finite diameter, that |dp2(p,v) —dp2(plg , Vg, )| < C/n for all
w,v e L*(Q,P(D)). Hence, for any n € N, one has for m and m' large enough,

2C
Q 7/J'm tn) + —

dL2(Nsm,7N6m/) dLQ(Nem|Q s B tn) + dL2(Ime tns B/ tn) + dLQ(Na '

24 2C . ~
< n + dL2 (/J'm,tn’ um’,tn)a
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and dr2(fim.t,, fomy t,) can be made arbitrary small for m and m’ large enough. In other words,
(e, )men is a Cauchy sequence in L?(2,P(D)), thus it converges strongly. O

We will also need a result about the boundary conditions. Indeed, as the minimizers of Dir,
will only live in L2(2, P(D)), we cannot define and impose boundary values. To bypass this
difficulty, we extend slightly our domain into a larger domain €2, © €2 and impose the values of
the mappings everywhere on Qe\Q

Proposition 9.6. Let p; : 0QQ — P(D) a Lipschitz mapping. There exists a compact . such
that Q < e, and a Lipschitz mapping pe € L2(Q:\Q, P(D)) such that pe = p; on 02 and

{1e(€) + €€Q\Y = {pu(¢) = €00}, (9-4)
Moreover, a mapping p € H*(Q, P(D)) satisfies p|oq = wy if and only if the mapping fu defined

on e by

e ifeeq
“(5)‘{%(5) Fee0d

belongs to H (., P(D)).

Proof. As Q has a Lipschitz boundary, one can say [KS93, Section 1.12] that there exists a
compact €2, such that Q c (OZG, and ¥ : [0,1] x 0©2 — Qe\Q a bilipschitz mapping such that
U(0, -) is the identity on 092. Roughly speaking, ¥(¢, &) should be thought as £ + tng(€) where
ng is the outward normal to ¢§2. Then, one can define

pe(Y(t,6)) = ()

for every t € [0,1] and £ € 0€2: we extend p; by keeping it constant along the normal to 0€.
Because ¥ is bilipschitz and p; is Lipschitz, it is clear that p. is a Lipschitz mapping. Moreover,
by construction, (9.4) obviously holds.

Let us prove the second point. Take E € M(Q x D, RP) and E, € M((Q:\Q) x D, RP) the
momenta tangent to respectively pu and pe. The tangent momentum of fi, if it were to exist,
must coincide with E on  x D and with E, on (2.\2) x D because of Corollary 8.12. Hence, if
must be E € M(Q, x D,RP?) defined by

JJ b-dE = Hb dE + H

QexD (Q\Q)xD

As we already have Dir(fi, E) < +00, we see that 1 € H'(Q., P(D)) if and only if (j1, E) satisfies
the continuity equation. If p € CL(Q,, RP),

H Va-edf + J Vpe-dE

QexD QexD

H Vo - pdp + H V- dE + f Vo - edpe + f V- dE

(Q\)xD (QA\Q) XD
= BT#(SO) + BTy, (¥)-

By Whitney’s theorem, the restriction of functions in C1(€, RP) to Q coincide with C(Q, RP),
thus we see that i € H'(Qe, P(D)) if and only if BT,, = —BT,,,. Considering the fact that the
outward normal to Qe\Q is —ng, and that . is continuous with values on 92 given by g, there
holds BT,,, = —BT},, hence the proposition is proved. O
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9.2 The approximate problems and their optimality conditions

In all this subsection, we assume that F' is regular. As explained before, we use Dir. to
approximate Dir, as the optimality conditions of Dir, imply that for each £ € Q, u(§) is a
barycenter of all pu(n) for n in the ball of center £ and radius e.

Let us introduce some notations that we will keep during the rest of the proof. We denote by
Qe D Q and p, € H (Q,\Q, P(D)) the objects given by Proposition 9.6. Take g9 > 0 such that
B(&,e0) < Q for all £ € 02. We denote by

LY (Qe, P(D)) := {p € L} (e, P(D)) : plg g = He}

the set of L2 mappings which coincide with g, on Q.\Q. This set L2(Q, P(D)) is clearly closed
for the weak convergence on L%(Q, P(D)), in particular it is compact for the weak convergence.
We also define H!(Q.,P(D)) := H'(Qe, P(D)) n L3(Qe, P(D)). In the rest of the proof, we
extend the definitions of Dir. and Dir on L2(Qe, P(D)). More precisely, if u € L2(Qe, P(D)),

w3 ,
Dir.(p) := Cy J : (l;(jnl;i(ﬁ)) Ligpj<cdédn,

Qe xQe

and

Dir(p) := i%f{Dir(p,, E) : Ee M(Q. x D,RP9)

and (u, E) satisfies the continuity equation on 2, x D}.
(we integrate over €, and not only on §2). We also use the notation

M = sup(F o ),
(79

by assumption M is finite. Remark that by construction, if u € L2(,P(D)), then for all
£ € Q\Q one has F(u(€)) < M.

As F is ls.c. on the compact set P(D), it is bounded from below. Hence, we can translate it
by a constant and assume that F' > 0 on P(D).

Let € > 0 and A\ > 0 be fixed. The approximate problem is defined as

min {Dire(u) + A J

i Pu(©)de : pe LE(Qe,mD))}. (9.5)
Qe

To add the term A Sﬂe F o pu has two purposes: on the one hand, it ensures that F' o u will be
regular enough (namely in L!(Q.)) to extract information from the optimality conditions; on the
other hand by taking the limit € — 0 and then A — 0, we will be able to say that F o u. \ (where
Ke x is a minimizer of the approximate problem) converges pointewisely, and it is necessary
to pass to the limit the (approximate) subharmonicity that we will get from the optimality
conditions of the approximate problem.

The following result is easy with all the tools developed above.

Proposition 9.7. For any € > 0 and A > 0, there exists a solution to the approximate problem
(9.5).
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Proof. Let v € P(D) any measure such that F(v) < 4o (it exists as F' is regular). If we
define p € LZ(Qe, P(D)) by plg := v and u|96\§°2 := M, Oone can see that SQe F(u(€))dE < +oo,
moreover as P(D) has a finite diameter Dir.(u) < +00. Hence, the minimization problem is non
empty. In consequence, we are minimizing over the set L2(Qc,P(D)), which is compact for the
weak convergence, a functional which is l.s.c. (see Proposition 8.25 and the regularity assumption
on F'): we can use the direct method of calculus of variations. O

Starting from now, for any € > 0 and A > 0, we denote by .  a solution of the approximate
problem (9.5).

Proposition 9.8. Let 0 < € < eg and A > 0 be fizred. Then for a.e. £ € Q, p. \(§) is a minimizer
over P(D) of
Cp 2
— Ws (v, dn + AF(v).

Y e 5 (v, e (n)dn (v)
Proof. We reason by contradiction. If the property does not hold, there exists ¢ > 0 and a set
X < Q) of strictly positive measure such that for all £ € X,

Cp

2 Jpe W5 (127 (), 22 A (1) dn + AF (12 0(6))

C,
> i —P_ W2 dn + \F . (9.6
¢+ min (gw fB(&a) 5 (Vs e x(m)dn + AF(v) | . (9.6)
Now, consider § > 0 small and Y c X such that Lo(Y) = §. On every point of £ € Y, we want
to select a minimizer v (which depends on £) of the r.h.s. of (9.6), and we want to dot it in a
measurable way. Notice that

v [ WR )y + AFW)
B(&e)
is the sum of a functional continuous w.r.t. v and measurable w.r.t. £, and the functional \F’
which is l.s.c. w.r.t. v but which does not depend on &. The fact that F' is only l.s.c. prevents us
from using directly Proposition 8.45, though by some ad hoc measurable selection result which
is stated and proved in the appendix at the end Chapter 8 (Proposition 8.47), one can still

choose v(§) a minimizer in such a way that it is measurable in £. In other words, we construct
fi € L2(Qe, P(D)) such that fi = p  on Q.\Y and

C
iz pes W3 (e (£), pen(m)dn + AF (pe A (€))

>ot (55 [ WHEO poa)dn + AP ()
P77 UBce)

for all £ € Y. Now we evaluate:

<Dir5(ﬂ)+Af F(ﬂ(f))d€> —(Diremg,nmj F(ue,A(S))dE)

22;12 H (W3 (e (€), e (1)) — WE((E), i2(1))] Lje—yj<cddn

Qe xQe
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The integral over Q. x £, can be split over four parts: the one over (Q.\Y) x (2\Y), which
vanishes because .y = [t on this set; the one over Y x Y, which can be bounded by C6?, where
C' depends on the diameter of P(D) and on ¢; and the ones over (2:\Y) x Y and Y x (Q.\Y)

which are equal by symmetry. Moreover, one has

C
sots || VB Gen(©) o) = WRGHE). )] Lyt
Y x (Qe\Y)
C
ot | VR A©) a0~ WHAE) mer ()] Leyecdy
Y x(Qe\Y)
C
<08 35 ([ 173 01e©), mer0) — WEGHE) ea)] Tc_ectcan
Y xQe
=06 + Cy

2ep+2 v (JB@ ) [WQQ(NE,/\(g)a Hs,/\(ﬁ)) - Wg(ﬂ(&)a Ns,)\(n))] d"?) df,

where the inequality comes from the fact that we have add the piece Y x Y which is of size
62 and over which we integrate a function which is bounded. Notice that we have used that
B(¢,e) € Q, for £ € Q as e < gg. The part on (2.\Y) x Y gives exactly the same amount, thus

<Dir5<m i F<n<s>>dg> _ (Dirswm = F(ugm)dg)

Qe

C
2 p
<Co +L <€p+2

JB(& )[W§ (=7 (€), = (1) — W3 (), ua,x(n))]dn]

+A[F () = Fpea(6))] >d£ < 0§ —¢f,

where the last inequality comes precisely form the way we chose 1 on Y and of Lq(Y) = 4.
Hence, taking § small enough, the r.h.s. is strictly negative, which is a contradiction with the
optimality of g ». O

Remark that if A\ = 0, our proof still works, and it precisely shows that p. (&) is a barycenter
of the p. o(n) for n running over the ball of center £ and radius €, a fact which was already stated
by Jost [Jos94]. The crucial result which allows us to get subharmonicity is the following, namely
Jensen’s inequality for functionals convex along generalized geodesics. Notice that F'o p, y is
integrable on ().

Proposition 9.9. Let 0 <e < g9 and A > 0 be fizred. Then, for a.e. £ € (2,

1
Flue(©) < sy JB@,@ F(pae ().

Proof. Let us take a point £ € §) for which the conclusion of Proposition 9.8 holds and such that
F(pex(€)) < +o0: it is the case for a.e. points of Q. As a competitor, we use S'[p. 1(£)] for
small ¢ > 0, which means that we let p. (&) follow the gradient flow of F', see Theorem 2.11. By
Proposition 9.8,

C
Ep% B(&E)W;(Ms,A(& pex(m)dn + AF (pe A (£))
< G [ WA e r(©)] e () + AF (S [en(©)).
e JB(ge)
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By the very definition of gradient flows, F(Sf [pe(€)]) < F(pe(€)). Thus, rearranging the
terms and dividing by 2¢ > 0,

J Wg(sf[ﬂs,)\(f)]a NE,/\(n)) - Wg(“e,)\(g)u Ns,)\(n))
B(&.e)

dn > 0.
2t n=0

For a.e. n € B(&, €), one has that F(u. x(n)) < +00. Hence, using Theorem 2.11, we see that for
a.e. 1 € B(&,¢), the quantity

W3 (SE e ()], pen(n) — Wi (pea (), e (n)
2t

has a lim sup bounded by F'(u. A(1)) — F(pe 2 (€)) and is uniformly bounded in ¢ by F'(p. 2 (7))
(by Theorem 2.11 and positivity of F'), the latter being integrable on B(&,¢). Hence, by Fatou’s
lemma, we can pass to the limit ¢ — 0 and conclude that

| eat) = Flpal©)ldn > 0.
B(&e)

The result follows by just rearranging the terms. O

Let us conclude this subsection by proving a maximum principle, but for mappings which are
e-subharmonic. Recall that M is the supremum of F o g on Q.\§2 for any p € L2(Qe, P(D)).

Proposition 9.10. Let 0 < ¢ < ¢y and X > 0 be fired. Then, for a.e. £ € ., one has
Fpep(§) < M.

Proof. Let § > 0 be fixed and consider fs : Q¢ — R defined by fs5(&) = F(pe () + 8¢ — &l
where &p is any point of 2. By strict convexity of the square function and thanks to Proposition
9.9, for a.e. £ €2,

[ st = ss@1an>o.
B(¢e)

In particular, the essential supremum of f5 cannot be reached on (02, it must be reached on Qe\Q
On Q.\Q2 we control the values of F o u. ) by M, in consequence esssupgq,_ fs < M + C6, where
C' depends on the diameter of 2. Sending ¢ to 0 (along a sequence), we get the result. O

9.3 Limit to the Dirichlet problem

In all this section, we still assume that F' is regular.

The goal is now to pass to the limit and to show that p. ) converges to p a solution of the
Dirichlet problem such that F' o p is subharmonic. Recall that Dir. I'-converges to Dir when
e — 0, see Theorem 8.26. To get subharmonicity, we will need strong convergence, it implies to
take first the limit € — 0 and then A — 0. But on the other hand, we need a uniform bound on
the minimal values of the approximate problems to pass to the limit. To get them implies that we
need to produce at least one mapping g in H}(Qe, P(D)) such that SQ@ (Fop) < +. To do this,
we cannot rely on the Lipschitz extension: there is no way to guarantee that SQ(F op) < 4w
with the construction used in the proof of Theorem 8.33. To get this uniform bound, we will
take first the limit A\ — 0 and then ¢ — 0 (relying only on weak convergence). It will produce
a solution 1 € H}(Q,P(D)) of the Dirichlet problem with SQ@ (F o f1) < +o0 but we cannot
guarantee subharmonicity of F' o fi. However it brings uniform bounds and enables us to take the
limit € - 0, A — 0 and get a solution g of the Dirichlet problem for which F o & is subharmonic.
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CHAPTER 9. THE MAXIMUM PRINCIPLE

We take two sequences (5, )nenN, (Am)men that both converge to 0 while being strictly positive.
More precisely we take e, := 927" for any n € N, thus we always have ¢, < g9 and Dir,,
converges in an increasing way and I'-converges to Dir. We will not relabel the sequences when
extracting subsequences. Moreover, to avoid heavy notations, we will drop the indexes n and m;
and lim,— .o, lim;,—, 1o Wwill be denoted respectively by lim._,g and limy_,q.

Proposition 9.11. Up to extraction, there exists i € H(Qe, P(D)) such that

p = lim (;lgb Na,)\) ;
where the limits are taken weakly in L2(Qe, P(D)). Moreover, fi is a minimizer of Dir in the

space HL(Qe, P(D)) and
|, Pl < +oe (97)

Proof. The existence of 1 € L2(Q,,P(D)) is trivial: recall that L2(£2., P(D)) is compact for the
weak convergence. Moreover, using Proposition 9.10, we have that for ¢ < gg and A > 0,

f Fpen(€))de < M|Q,|.

e

By the regularity assumption on F', we can pass this inequality to the weak limit and get (9.7).

The minimizing property of ft is more involved. Assume by contradiction that there exists
v € HX(Q,P(D)) such that Dir(v) < Dir(). By the I'-convergence of Dir. to Dir and the
positivity of F, one has

Dir(v) < Dir(jt) < lim inf (h&n inf (Dire(um) + )\J F(%A(g))dg)) .

e—0 Qe

In particular, we can choose £ > 0 small enough such that (by monotonicity of Dir.)

Dir.(v) < Dir(v) < liminf (Dirs(uaﬂ/\) + )\J F(uaj,\(ﬁ))d§> .

A—0 Qe

We regularize v in the following way: for ¢ > 0, we denote by v, := (]qu)tD )v the element of
L2(Q,, P(D)) for which the heat flow on D has been followed only in : in other words, for any
t >0,

i) (@O iteen

V(f) = ,ue(é“) if e Qe\Q'

Clearly, vy € L2(Q2, P(D)). Moreover, as Wa(vy(€),v(£)) < w(t) with w(t) — 0 ast — 0 (see
Proposition 2.14), we see that v; converges strongly in L2(Qe, P(D)) to v. In particular, thanks
to the continuity of Dir,, there exists ¢ small enough such that

Dir. (1) < lim inf (Dirs(p,E A) )\J
A—0 ’ Q.

F(ua,x(ﬁ))d£> .

Because of the standard L® — L! estimate for the heat flow (see (ii) of Proposition 2.13), one
has that {1(¢) : &€ € Q} is included in a bounded set of L®(D) n P(D). In particular, F o v, is
bounded on 2. As it is also bounded on Qe\Q by M, we see that SQE F ov; < 400. Hence, for
some A small enough,

Dira(vze)JrAJ F(1(€))d€ < Dira(pey) + A f F(en(€))de,

e Qe

which is a contradiction with the optimality of . . O
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Proposition 9.12. Up to extraction, there exists i € H(Qe, P(D)) such that

0= i (1. )
poo=lim (lim gy )

where the limits are taken strongly in L2(Q, P(D)). Moreover, i is a minimizer of Dir in the
space H}(Qe, P(D)) and for any other minimizer v of Dir in H:(Q., P(D)),

A—0 e—0

[, Ftee < it (et (| Pona@nic)) < [ rwene o)

Proof. Using f1 as a competitor in the approximate problem, given the monotonicity of Dir., one
has that
Dira(ae) + 1 [ Plasea(@)dg < Din(a) +1 [ Face)de <
Qe Qe
where the constant C is uniform in € > 0 and 0 < A < 1. In particular, using the Rellich-like
theorem (Proposition 9.5), we see that, up to extraction, p. ) converges strongly in LZ(Q, P(D))
to some ) when € — 0. Moreover, by I'-convergence of Dir. and the regularity of F',

Dir(jan) + A | F(a(©)d¢ < limint (Dm(um x|, F(us,x(f))d£> <c. (99)

e—0

e e

Hence, we have a uniform bound on Dir(fy), and we can apply Rellich theorem (Proposition
9.4) to see that f1 converges strongly in L?(€., P(D)) to some ji € H:(Qe, P(D)) when A\ — 0.
Moreover, using the lower semi-continuity of Dir and positivity of F,

D) < gt (Dir(n) + 1 [ Flaa(eac). (9.10)

Let us assume by contradiction that g is not a minimizer of Dir. Thanks to Proposition 9.11,
it boils down to assume that Dir(f1) < Dir(f). In particular, as F o fi is integrable on 2, and
with the help of (9.10), it means that there exists A small enough such that

Dir(f) + )\f

Qe

F(A(€))dé < Dir(y) + AJ F(a(€))de.

Qe

Using the fact that Dir.(f1) — Dir() to handle the Lh.s. and (9.9) to deal with the r.h.s., we
see that for ¢ > 0 small enough,

Dir.(fi) + A f F(@(€))d€ < Dira(pen) + A L F (e r(€))de,

which is a contradiction with the optimality of p. . Hence, p is a minimizer of Dir over
HY(Q,, P(D)).

Remark that in (9.8) the first inequality is a consequence of the fact that F' is regular. Assume
by contradiction that there exists v € H}(Q, P(D)) a minimizer of Dir such that the second
inequality of (9.8) does not hold. In particular as Dir(z) = Dir(v), and by I'-convergence of
Dir. and lower semi-continuity of Dir,

e—0

Dir(v) = Dir(p) < lil/r\n i(I)lf (hm inf (Dirs(ug,)\))> ,

thus one can write that for some A small enough,

Dir(w) 4 A [ F(€)dc <timipt (Dirspacn) 4 [ Flrea©)ac) :

Qe Qe

it leads to the same contradiction as before by taking ¢ > 0 small enough. O

179



CHAPTER 9. THE MAXIMUM PRINCIPLE

Now, the key result to get subharmonicity of F' o @ is that we can pass at the pointwise limit
the quantity F'o . ».

Proposition 9.13. For a.e. £ € Q, there holds

F(a(©) = lim (lim (F(r(€)))

A—0 \e—0

Proof. As the convergence of . ) to i1 holds strongly in L2(, P(D)), we can, up to extraction,
assume that it holds a.e. In other words, for a.e. £ € ,

A(§) = lim (lim (1on(€))

A—0

in P(D). By lower semi-continuity of F' on P(D), the inequality

F((€)) < Timinf (Tim inf (F(12,0())) )

e—0

holds for a.e. £ € 2. On the other hand, use (9.8) with v = fi: up to extraction one has

[ Flucepac = ym (1 ( I Flea(©)a¢ ) ).

By combining the two equations above (recall that all the functions F' o u. ) and F o @i are
positive and bounded above by M thanks to Proposition 9.10), we reach the desired conclusion
(this is just an adaptation of the proof of Scheffé’s lemma). O]

Proposition 9.14. The function F o ju is subharmonic on Q. Moreover,

esssup(F o ) < M.
Q

Proof. The fact that the essential supremum of F' o g is bounded by M is a simple combination
of Propositions 9.10 and 9.13. For the subharmonicity, take ¥ € C(2) a smooth and positive
function compactly supported in €. For 0 < ¢ < g9 small enough, one has, thanks to Proposition

9.9,
1
Le () (d LM [P (e 7 (1)) — F(Ma,x(ﬁ))]dn> ac > 0.

Performing a discrete integration by parts (which is possible if ¢ is smaller than the distance
between €2 and the support of ), one sees that

| Fluea (dl JB@ NEOR ¢<5>]dn> a€ > 0.

e

Now send € — 0 and then A — 0. By smoothness of v, the quantity e~(¢+2) SB(g 5 [¥(n) =¥ (&)]dn
converges to Ay (§) (up to a multiplicative constant). On the other hand, F(p. x(£)) converges
pointwisely to F'(p) (see Proposition 9.13) while being bounded by M. By Lebesgue dominated
convergence theorem,

| F@av@ae=o

which exactly means that F' o p is subharmonic in the sense of distributions as ¢ is an arbitrary
smooth and positive function. ]
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Now we can conclude:

Proof of Theorem 9.3 if F is reqular. We take p the restriction of p to €2. Thanks to Proposition
9.6, the fact that j is a minimizer of Dir among H} (e, P(D)) is translated into the fact that u
is a solution of the Dirichlet problem with boundary values p;. The subharmonicity and the
upper bound of F' o i are preserved by restriction. To get the minimality of SQ (F o 1) among all
other solutions, we just use (9.8). O

9.4 Simplifications in the continuous case

In this section, we assume that F' is continuous. In particular, as P(D) is compact, it implies
that F is bounded. The proof is simpler because we do not need to add the term A § F o p in the
approximate problem. Indeed, strong convergence in L?(Q2, P(D)) of a sequence g, to g implies,
up to extraction, the convergence a.e. of (F o uy,) to (F o u).

We define Q, pte and the functional spaces L2(Qe, P(D)), H}(Qe, P(D)) as in the beginning
of Section 9.2.

Proof of Theorem 9.3 if F is continuous. For any € > 0, we take . € L2(Qe, P(D)) a minimizer
of Dir. over L2(Q., P(D)).

We can still apply Proposition 9.8 and conclude that for a.e. £ € Q, p.(§) is a barycenter of
the p.(n) for n € B(,e). The proof of Jensen’s inequality (Proposition 9.9) works in the same
way as F' is bounded on P(D). Hence, the maximum principle given by Proposition 9.10 is still
true as it is only implied by Proposition 9.9.

To pass to the limit ¢ — 0, we use the fact that (along an appropriate sequence) Dir,
I'-converges to Dir. Hence, up to extraction, u. converges to & which is a minimizer of Dir over
L?(Qe,P(D)). Thanks to Proposition 9.5, the convergence takes place strongly in L2 (€, P(D))
and a.e. By continuity of F', we deduce that the conclusion of Proposition 9.13 still holds: F o .
converges a.e. to F' o i as € — 0. Thus the proof of Proposition 9.14 works exactly in the same
way and it is enough to take for p the restriction of p to €. O
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Chapter 10

Special cases

In this chapter, we give examples of situations where more can be said about harmonic mappings.
The first ones are rather simple: if the boundary conditions are valued in the set of Dirac
masses, then so does the solution of the Dirichlet problem; and when D is a segment of R the
space P(D) is isometric to a convex subset of a Hilbert space, hence the study is considerably
simpler and all the machinery developed above is too heavy. The third one is trickier: we
restrict ourselves to a family of elliptically contoured distributions, which is a geodesically
convex subset of finite dimension. Thus we end up with mappings valued in a finite-dimensional
Riemannian manifold, on which we can show existence, uniqueness, regularity and write explicit
Euler-Lagrange equation.

10.1 Dirac masses

In this section, we say briefly what happens when the boundary data p; : 0 — P(D) is valued
in the set of Dirac masses. We underline that all results in this section were proved by other
people. We define

Pac(D) := {6, : x€ D} < P(D)

the set of Dirac masses. The proof of the following result can be found in [Bre03, Theorem 3.1]

Proposition 10.1. Let p; : 0Q — Pqyc(D) a Lipschitz mapping valued in the set of Dirac masses.
Then there exists a unique solution to the Dirichlet problem with boundary conditions p; and it
is valued in Pac(D).

Actually, if p;(§) = d5,e) for £ € 92 then the solution of the Dirichlet problem is (&) = d5(¢)
where f:Q — D is the (classical) harmonic extension of f;. The proof by Brenier relied on the
exhibition of a solution to the dual problem in this particular case. Actually, there are at least
two other arguments to reach the conclusion that at least one solution of the Dirichlet problem
is valued in Pgy.(D).

e Denoting by F : pp— §{, |z — y|?u(dx)p(dy) the variance functional, and recalling that
F is convex along generalized geodesic, we can apply Theorem 9.3 to say that (for at least
one solution of the Dirichlet problem), the minimum of the variance is reached on 0f2,
where it is 0. But Py.(D) coincides with F~1({0}), hence the result.

e The mapping 1 = 0py(,y With m(u) := §, zu(dz) is a contraction in the Wasserstein space,
see (2.3). Moreover, it leaves Pg.(D) invariant. Take a solution of the Dirichlet problem,
a priori valued in P(D) and compose it with this mapping: thanks to Lemma 10.7 (see
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below), the boundary conditions are not changed and the Dirichlet energy decreases, hence
we get a solution valued in Py.(D).

Now, let us do a short digression about curved geometries. As we already mention, we see no
obstruction to extend our definition to the case where D is replaced by (N, g) a Riemannian
manifold. The striking point is that, if A/ is negatively curved, then these two arguments should
still work. Indeed, if ' has negative curvature and is simply connected, the variance functional
is convex along geodesics, see [KP15]. However, to really make the argument working, we would
need convexity along generalized geodesics as well as the validity of the Evolution Variational
Inequality on Riemannian manifolds. On the other hand, still if A/ has negative curvature,
the barycenter of a measure is uniquely defined and the mapping sending a measure on its
barycenter is a contraction for the Wasserstein distance (see [Stu03, Theorem 6.3] for a proof
for the 1-Wasserstein distance which can be easily adapted to Wa). Actually, in the case where
(N, g) is a simply connected manifold with negative curvature, a result similar to Proposition
10.1 has been proved in [Lul7, Theorem 3.3]. The proof by Lu relies on the second argument, i.e.
the existence of a retraction onto Pyc(N).

On the other hand, as understood by Lu, if A" has positive curvature the result is no longer
true. Indeed, he provided an example [Lul7, Example 3.6] of a domain €2 and some boundary
conditions valued in Py.(N) (where A is the unit circle) such that any solution of the Dirichlet
problem is not valued in Pgc(N).

10.2 One dimensional target

In this section, we assume that D = I = [0, 1] is the unit interval. We underline that [Lul7,
Theorem 2.2] provides a result similar to what follows in this section, we do not claim novelty here
either. The important point is that the space P(I) has a very simple structure: the right object
to characterize an element p € P(D) is its inverse distribution function F;E_l] : [0,1] — [0,1]
defined by

FI() == inf{z € [0,1] : p([0,2]) > t}.

It is well known that F,E_l] is increasing, right continuous, and that there is a bijection between
the set of increasing and right continuous mappings [0, 1] — [0, 1] and P(I). Moreover, for any
w, v € P(I), one has (see for instance [Sanl5, Proposition 2.17])

1
W2(u,v) :J )~ F ) an (10.1)
0
Introduce the Hilbert space H := L?([0,1]) with its usual norm (denoted by |- |3) and the

subspace H; of increasing functions: if f € H, then we say that f € H; if f(¢t) € [0,1] for a.e.
t € [0,1] and if for any 0 < t; < to < t3 <4 < 1, one has

I I
f(Hdt < f(t)dt
752—751Jf,1 (®) ty —t3 Jiy ®)

Notice that H; is clearly a convex and closed subset of H. Any f € H; has a unique increasing
and right continuous representative. Indeed, take the representative given by the Lebesgue
differentiation theorem: except on a subset N which is negligible, it is increasing. Then, on N
and on any point of discontinuity, choose the right limit. Uniqueness is easy as any increasing
and right continuous representative is continuous except at a countable number of points. This
discussion can be summarized in the following proposition.
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Proposition 10.2. If we define U (u) := F;E*l], then U is a one-to-one isometry between P(I)
and H,;.

Now we need to make the bridge between the Dirichlet energy in the space H'(Q,P(I)) and
the one in H'(Q,H). In fact, it was already proved by Korevaar and Schoen [KS93] that their
definition of Dirichlet energy coincides with the usual one if the target space is R. By Pythagore’s
theorem, the equivalence still holds if the target space is a separable Hilbert space, as one can
work on the coordinates in an orthogonal basis. As our definition of Dirichlet energy coincides
with the one of Korevaar and Schoen, see Theorem 8.26, we can conclude that

Dir(s J V(W 0 ) (€) 2,de. (10.2)

for any g€ HY(Q,P(I)). Thus, we can say the following:

Theorem 10.3. Let p; : 0Q2 — P(I) a given Lipschitz mapping. Then there exists a unique
p e HYQ, P(I)) solution of the Dirichlet problem with boundary values p;. Moreover, ¥ o u is
the solution of the minimization problem

win{ [ [V7@Be < 1€ H'OH) and Slon = o pu . (103)

Proof. Everything relies on (10.2). With the help of Proposition 9.6, one can be convinced that
imposing BT,, = BT}, is the same as saying that the the trace of (¥ o p) is (¥ o p;). Then,
one takes f to be the unique harmonic extension of (¥ o g;) in H(, H): it is the minimizer of
(10.3). By the maximum principle, as (¥ o ;) € H; on 95, it is clear that f € H'(2,H;). Thus,
we can simply set p:= ¥~ 1o f. O

10.3 Family of elliptically contoured distributions

We study the case where the boundary values belong to a family of elliptically contoured
distributions: they are parametrized by their covariance matrix. It can be seen as a generalization
of the case where the measures are Gaussian. In this section, we would like to show that at least
one solution of the Dirichlet problem is valued in the family of elliptically contoured distributions
if it is the case for the boundary values, and to give a full solution (existence, uniqueness,
regularity and Euler-Lagrange equation) under the additional assumption that the covariance
matrices of the boundary values are non singular.

We will deal with centered measures (i.e. measures with zero mean) because the contribution
of the mean to the Dirichlet energy can be handled independently. More precisely if u € P(D)
we denote by m(u) := §, xu(dz) € D its mean and fig the centered measured defined as the push
forward of p by (x +— x —m(u)). As recalled in Section 2.1, if pu, v € P(D) then

W3 (n,v) = Wi (no, vo) + [m(p) — m(v)[*.
If pe L%(Q, P(D)), we use the formula above on Dirg(u):

2
. m{p uw
Dir (p) = Dire (o) + Cp ff | 25p+2( )] Ly <cdédn.
QxQ

Then, sending ¢ to 0 and using [Jos08, Theorem 8.3.1] to handle the part involving the Dirichlet
energy of the means, one sees that

Dir(p) = Dir(po) f |V [m(w)](€)[2d€.
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The term involving m(u) is easy to minimize (because m(u) is a vector-valued function, it boils
down to take the harmonic extension) and it can be done independently from the term involving
Dir(po). In other words, it is not restrictive to work only with centered measures.

Let us go define what is a family of elliptically contoured distributions. As we have assumed
that D is compact, we cannot work with non compactly supported measures, in particular with
Gaussian measures. For the rest of the section, we fix p € L!'(R?) a positive function compactly
supported such that pLp is a probability measure with zero mean and the identity matrix as a
covariance matrix. Recall that the covariance matrix cov(u) of a centered measure p € P(RY)
with finite second moments is defined as: for any i,j € {1,2,...,¢},

covlu)y = | (o)

and that the covariance matrix of an non-centered measure y is defined as the covariance matrix
of its centered part. For technical reasons, we also assume that p is radial and that the Boltzmann
entropy of pLp (see (10.8) below) is finite. Let us denote by S;(R) the set of symmetric ¢ x ¢
matrices and S; (R) < S4(R) the set of symmetric and semi-definite positive ¢ x ¢ matrices. The
space Sy(R) is equiped with its canonical scalar product {-,-) defined by (A, B) = Tr(AB). The
unique symmetric square root of a matrix A € S; (R) is denoted by A/2. Instead of parametrizing
measures by their covariance matrix we will do it by the square root of their covariance matrix,
i.e. by their standard deviation: it is more natural for homogeneity reasons and the formulas are
slightly simpler.

Definition 10.4. For any A € S (R) we denote by pa € P(RY) the push-forward of pLp by the
map x € R? — Ax € RY.

The set of all pa for A€ S;(R) is denoted by Pec(RY) and is called a family of elliptically
contoured distributions (with reference measure pLp).

Thanks to the normalization of p, the measure p4 has zero mean and covariance matrix A2.
Notice that if A is invertible then

paldr) := detl(A)

P (A_ll‘) dx.
We would recover the Gaussian case by taking p(z) = (27)~ %2 exp(—|z[?/2), but this function is
not compactly supported.

The crucial tool to establish that an harmonic extension of a mapping valued in a family of
elliptically contoured distributions stays in the same family is the existence of a retraction on the
set Pec(R?). Let us call Po(R?) the set of probability measures on R? with finite second moment.

Definition 10.5. Let R : P2(RY) — Pe(R?) the application defined by R(u) := pa, where
A= COV(M)1/2 is the symmetric square root of the covariance matriz of .

Proposition 10.6. The application R : P2(RY) — Pec(D) leaves Pec(RY) unchanged and is a
contraction (i.e. is 1-Lipschitz) provided that P2(R?) and Pec(RY?) are endowed with the quadratic
Wasserstein distance W.

Proof. The first part is obvious by the way we normalize p. The second part is a reformulation
of Theorem 2.1 and Theorem 2.4 of [Gel90]. Nevertheless, for the convenience of the reader we
provide a simpler argument.
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Let p, v € Po(RY), without loss of generality we can assume that they are centered. Let (¢, )
be a pair of Kantorovich potential between R(u) and R(v). It is well known that ¢ and 1 are
quadratic functions (see for instance [PC17, Remark 2.29]), hence

2, v 2 v
VV2(2M7) > JRq odp + qu Pdv = qu edR () + JRq YdR(v) = W (R('l;)’ R ))

Indeed, the first inequality is Kantorovich’s duality and the first equality comes from the fact
that the integral of a quadratic function against a centered probability measure depends only on
the covariance matrix of the probability measure. O

Let us prove state and prove here an easy technical lemma which will be crucial in the sequel.

Lemma 10.7. Let p; : 00 — P(D) a Lipschitz function and p € H*(Q, P(D)) such that
wlog = py. Let T : P(D) — P(D) a 1-Lipschitz mapping. Then T o p € HY (2, P(D)) with
(T'op)lon = (T o ) and

Dir(T o p) < Dir(p).

Proof. As T is a contraction and from the definition of Dir. it is obvious that
Dir.(T o p) < Dire(p)

holds for any € > 0. Then it is sufficient to send € to 0. To get the assertion involving the
boundary conditions, one can use for instance Proposition 9.6. 0

As we work in the compactly supported case, we add some assumption that D is large enough
in order for the boundary of D to be invisible. More precisely, the following lemma will help us
to handle the finiteness of D.

Lemma 10.8. Let D c D be a convex compact subset of D. Let p; : Q — P(D) be a Lipschitz
mapping. If p € H'(Q, P(D)) is a solution of the Dirichlet problem with boundary values py,
then, seen as an element of H'(Q, P(D)) (extending p by 0 on D\D), u is also a solution of the
Dirichlet problem with boundary values p; (with p; seen as a mapping valued in P(D)).

Proof. It relies on a simple observation. Let Py : D — D be the Euclidean projection on D.
One has that v — Pp#v is a 1-Lipschitz function from (P(D), Ws) to (P(D), Ws) which leaves
the boundary values p; unchanged. Thus we can apply Lemma 10.7 to see that Pz maps any

competitor from H'(Q, P(D)) into a competitor in H*(Q, P(D)). O

We will say that D < D is compatible with p if it is a compact convex subset of D and for
any pu € P(D), one has R(u) € P(D). It holds if D is large enough compared to D and the
diameter of the support of p. In the sequel, we will use the notations Pec(D) := P(D) N Pec(RRY)
and Pec(D) := P(D) N Pec(R?). The first main result of this section is the following.

Theorem 10.9. Tuke D ¢ D compatible with p. Let p; : 6Q — Pec(D) a Lipschitz mapping
valued in the family of elliptically contoured distributions. Then there exists p € H'(Q, P(D)) a
solution of the Dirichlet problem with boundary values p; such that p(€) € Pec(D) for a.e. & € Q.

The assumption that D is compatible with D can be translated in the fact that the supports of
the (&) for £ € 09 are small compared to D.
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Proof. Let 1 be a solution of the Dirichlet problem with boundary values u;, it exists thanks
to Theorem 8.33 and Theorem 8.32. According to Lemma 10.8, we can choose fi such that
e P(D) a.e. As R is a contraction which leaves the boundary values unchanged, it is clear
thanks to Lemma 10.7 that p := R o fi is a solution of the Dirichlet problem with boundary
values p;. By construction, p is valued in Pe.(R?) and also in P(D) as D is compatible with
p- O

We believe that, conducting a careful analysis, one can prove that all solutions of the Dirichlet
problem with boundary values p; are valued in Pe.(D).

Now, we want to go further and give a more explicit description of the solution valued in the
family of elliptically contoured distributions. To this extent, we rely on the fact that the manifold
S; (R), when endowed with the distance induced by Wy through the application A — p4, has
a structure of Riemannian manifold, at least when restricted to the set of non singular matrix.
The computation of Wasserstein distance between gaussians distributions has been discovered
independently many times (see for instance [DL82, Gel90]), while the resulting geometry was
first investigated by Takatsu [Tak11] and has recently regained some interest [MMP18, BJL18].
The restriction of the Wasserstein distance to the set of gaussian measures is sometimes called
the Bures metric.

More precisely, if A and B are in S (R) it is known (see for instance [Gel90]) that (up to a
global multiplicative constant that depends only on p)

W22(PA7 pp) =Tr (A2 + B?2 — 2(AB2A)1/2) .

Notice that if A and B commute then W3 (pa, pg) = Tr((A — B)?) is the squared Euclidean
distance between A and B, which justifies that the right choice is to parametrize elements of the
family of elliptically contoured distributions by the square root of their covariance matrix. If
Ae S (R), we can define the linear map La : Sy(R) — Sy(R) by Ls := A®Id +1d® A. More
explicitly for any B € Sy(R)

Ly(B) = AB + BA.

The map L4 is symmetric, and is moreover positive definite as soon as A is positive definite (in
this case in particular it is invertible). If A is diagonal, then L4 is also diagonal in the canonical
basis for matrices. In particular, if A and B commute, then L4 and Lpg also commute. Denote
by S;7(R) the set of ¢ x ¢ symmetric definite positive matrices. If A € S;*(R) and B € S,(R),
a lengthy but straightforward computation leads to

2
tim V2P LAE) _ (p g (), (10.4)

where g4 : S4(R) — Sy(R) is a linear map defined as

g4 = %(LA)2(LA2)71‘

More explicitly, if A is a diagonal matrix with eigenvalues A1, Ag,..., Ay and B = (Bjj)i<i j<q
then ( 2
1 Ai + A
(B,ga(B)) = 3 > ﬁBEJ (10.5)
1<i,j<q ? J

Notice that g4 always defines a scalar product on the space S;(R). As a consequence, we can
define the Riemannian manifold (S, (R), g): at each point A € S *(IR) the tangent space, which
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is isomorphic to S4(R), is endowed with the scalar product g4. If we do that, as we already know
that Pec(R?) is a geodesic space and thanks to (10.4), we see that the Riemannian distance dj
induced by g satisfies dg(A, B) = Wa(pa, pp) for any A, B € S (R). From this identity we can
derive the following consequence. Take A € H'(, (SF*(R),g)) a matrix-valued function and
define pa € L*(Q, P(D)) by pa(€) = pae) for a.e. &€ Q. Then pa € H'(Q,P(D)) and

Dir(pa) = | 5 D (@A) a0 @ AONE (10.)
a=1

To justify this identity, one can use for instance the formulation with Dir, (Theorem 8.26),
replace the Wasserstein distance W2 by the Riemannian distance dg, and use the already known
equivalence between Dir and the limit of Dir, when ¢ — 0 for mappings valued in a Riemannian
manifold [Jos08, Theorem 8.3.1].

Notice that the metric tensor g4 diverges as A becomes singular. Thus, it is natural to
assume that the boundary values have non singular covariance matrices. With this assumption
we are able to provide a full solution of the Dirichlet problem, which is the second main result of
this section.

Theorem 10.10. Take D © D compatible with p. Let p; : 0 — Pec([)) a Lipschitz mapping
such that det (cov(py(€))) > 0 for all € € 6Q and define Ay(€) = cov(p(€))'/2 for all € € 9.

Then there exists a unique solution 1 € H*(Q, P(D)) of the Dirichlet problem with boundary
values py and (€) € Pec(D) for a.e. £ € Q. Moreover, if A € H'(2, (S;T(R),g)) is defined by
A (&) := cov(m(£)V? for a.e. £ € Q, then the following holds:

(i) essinfdet(A(&)) > 0;
e
(ii) A is a minimizer of

D (0aB(8), 9B (6) (aB(£)))dE.

a=1

DO | =

)

among all B € H'(, (S (R), g)) which have boundary values Ay;

(iii) A is a weak solution of
P - P 9
A (LALK;(aaA)) + ) (L AL;(aaA)) = 0. (10.7)
a=1 a=1

(iv) The mapping A is smooth (namely C®) in the interior of Q, and regularity up to the
boundary holds provided A; and 0€) are smooth enough.

Notice that we are able to prove uniqueness among all mappings valued in the Wasserstein space
and not only those valued in the family of elliptically contoured distributions: it is one of the
only case where we can prove that uniqueness holds for the Dirichlet problem. Remark also that
(10.7) is nothing else than the Euler-Lagrange equation associated to the problem of calculus of
variations (ii). The last point is the application of the standard theory of elliptic regularity for
harmonic mappings valued in Riemannian manifolds, in particular we refer the reader to [SU83]
for the precise assumptions required for the regularity to hold up to the boundary. The only
thing we will need to show is the absence of non constant minimizing tangent maps, which we
will prove thanks to an argument based on the maximum principle.
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The rest of this section is dedicated to the proof of Theorem 10.10 which is obtained by
putting together Propositions 10.11, 10.12,10.15 and 10.17. More precisely, the first step is to
show the existence of one solution g of the Dirichlet problem taking values in the family of
elliptically contoured distributions for which the covariance matrices stay non singular inside
Q (Proposition 10.11). Then, using the explicit expression (10.6), it is fairly easy to show that
(ii) and (iii) are satisfied (Proposition 10.12). The hardest part is the question of uniqueness.
As explained in Chapter 7, we will first show that any solution p of the Dirichlet problem with
boundary values p; must have v as tangent velocity field, where v is the tangent velocity field
of u. Then, as v will happen to be smooth enough (linear, hence Lipschitz w.r.t. variables
in D), we will use the results about uniqueness of the (1-dimensional) continuity equation for
smooth velocity field (Proposition 10.15). For the last point of the theorem, as A is a Dirichlet
minimizing mapping valued in a compact subset of the Riemannian manifold (S;*(R), g) (thanks
to point (i)), we can apply the classical theory: see [SU82, Theorem IV] for the interior regularity
and [SU83] for the boundary regularity. The only point to show is the absence of non constant
minimizing tangent maps, which a consequence of Proposition 10.17 proved below.

Let us begin by showing that for at least one solution of the Dirichlet problem the covariance
matrices stay non singular inside 2. As a tool to measure regularity of elliptically contoured
distributions, we will use the Boltzmann entropy, see (2.13). More precisely, we define H :
P(D) - R by

J w(x) In(u(x))dz if u is absolutely continuous w.r.t. Lp,
D

H(p) = (10.8)

400 else.

It is known that H is convex along generalized geodesics [AGS08, Theorem 9.4.10] and it is
regular according to Proposition 9.2. Moreover, an explicit computation leads to H(pa) =
—In(det A) + H(pLp) (with the convention In(0) = —o0). Also, using the fact that Gaussian
measures are the ones which minimize H for a given covariance matrix, we get that for any
ne P(D),

Hu) > —% In (det (cov(y))) + C, (10.9)

where the constant C' is the entropy of a standard normal distribution.

Proposition 10.11. Take D c D compatible with p. Let p; : @Q — Pec(D) a Lipschitz mapping
such that det (cov(p(€))) > 0 for all £ € 0Q2. Then there exists s € H' (2, P(D)) a solution of
the Dirichlet problem with boundary values p; such that p(€) € Pec(D) for a.e. £ € Q and such
that
essinf [det (cov(i(£)))] > 0.
£eQ)

Proof. Notice, thanks to the explicit formula for H on Pe.(R?) and as p; is continuous, that
supsq(H o) < 400. Take p € H'(Q,P(D)) the solution of the Dirichlet problem with boundary
values p; given by Theorem 9.3 (with F' = H). Set gt := R o . By the same argument as in
Theorem 10.9, i € H(, Pec(D)) is a solution of the Dirichlet problem with boundary values p;.
Using first the estimate (10.9) and then the maximum principle (9.1),

esssup [—In (det (cov(p(€))))] = ess sup [—In (det (cov(p(£))))]

ceQ £eQ
< =20 + 2esssup H(u())
e
< —2C + 2 sup H(m(§)) < +co. M
£eoQ)
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Until the end of the section, p € H i(Q, Pec(D)) will denote the object defined in Proposition
10.11 and for a.e. £ € €2, one defines A(§) = cov(ﬁ(ﬁ))l/f. Notice that point (i) of Theorem 10.10
is proved. Now let us derive the equation satisfied by A.

Proposition 10.12. The mapping A € H'(Q, (S;T(R),9)) is a weakly harmonic map, more
precisely a minimizer of

p
Be (9 (5] (R0) = | 5 DB, ano (2BONE.
a=1

among all B which have boundary values A;. In particular, A satisfies the Euler-Lagrange
equation (10.7).

Proof. We need to prove that, for any B e H'(Q, (S} (R),g)) with boundary values A; one has

|3 D) 0uB(€), 0 (aBLE) 6 > |3 D} 2uA(E), 820 (CuAE)ME = Dir(ps) = Dir(z).

To prove it, if we take any B € H'(Q, (S7*(R),g)) we can build p := pp and we have, thanks
to (10.6), the identity

Dir(u) = | 3 D (0aB(6): g (Ca B

A priori, p is valued in P(R?). If we denote by Pp : R? — D the Euclidean projection on D,
then
Dir(fs) < Dir(Pp#p) < Dir(p),

where the first inequality comes from the optimality of fi (notice that Pp#- leaves the boundary
values unchanged) and the second one from the fact that Pp#- is a contraction (Lemma 10.7).

To get the Euler-Lagrange equation it is actually easier if we take the covariance matrix and
not its square root as the variable. In other words we define C := A2. As A is never singular,
this change of variables is smooth. We have 0,C = Lz (d,A) and in particular

(0aA, g4 (0aA)) = (0,C, Lél(&’a@)>.

If we take D : Q — Sy¢(R) smooth and compactly supported on € and that we consider
B := C +tD as a competitor for small ¢, we reach the conclusion that

P A = 14 d _ ~
Zl@aD, L' (0aC)) + 5 > il (3C, Lg 1 (8.C)) = 0.

a=1

A simple computation leads to

LatD(aaC) = L' (0.C) —tLg [D(Lél(aaC)) + (L’l(aaC))D] + o(t?).

Using the properties of the Trace and the symmetry of L', we conclude that the Euler-Lagrange
equation reads

P P
D 12D, L5 (2aC))y = Y (D, (L5 (2.C))*) = 0.
a=1 a=1
Coming back to C = A? and 0,C = Lz (0,A), as D is arbitrary we see that we get the weak
formulation of (10.7). O
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As far as the regularity issues are concerned, notice that A is uniformly bounded from
below as a symmetric matrix (this is (i) of Theorem 10.10) and also bounded from above as a
symmetric matrix (as pg € P(D) and D is compact), hence the operators Ly () : Sq(R) — Si(R)
are bounded with a bounded inverse uniformly in £ € €. In other words, the metric tensor
OA(¢) 1s equivalent to the canonical scalar product uniformly in £ € Q. In particular, the
regularity iz € H'(Q, P(D)) translates in A € H'(Q, S,(R)) where S,(R) is endowed with its
usual Euclidean norm | - |.

We need to prove uniqueness. The first step is to identify the tangent velocity field to & and
a (at least formal) solution of the dual problem.

Proposition 10.13. For any a € {1,2,...,p} we define B := LALE(%A) e L*(Q, S,(R))
and we set

V¢, x) := B*(&)r e RY,
foréeQandx e D. Then ve L%(Q x D,RP?) is the tangent velocity field to .

Proof. Take 1) € C}(Q x D,RP) a test function. If we define 1) € H'(Q, RP) by
= [ wleonie o = [ w6 A©Dp)ds,
D D

then we see that ) is compactly supported in €, in particular the integral of V-1 over Q vanishes.
It reads

|| (90 w6 Aot + ﬂ 2 (0uA(€)2) - (Vo) (€, AlE))pl)d = 0.

QxD

By doing for a fixed & € Q the change of variables y = A(£)x, one can see that (jz, wjt) satisfies
the continuity equation where w : 2 x D — RP is given by

W&, y) == [ AATY(E) y-

Notice that w(&,-) is not a gradient because d,A (&) and A(£)~! do not necessarily commute.
On the contrary, as the matrices B*(¢) for o€ {1,2,...,p} are symmetric, v(¢,-) is a gradient.

Fix £ € Qand a € {1,2,...,p}. We claim that the velocity field v¥(¢,-) is the orthogonal
projection in L%(&)(D’ RY) of w*(&,-) on the space of gradients (actually, this is exactly how v
was chosen). Not to overburden the notations, we drop momentarily the dependence on &, i.e.
A = A(§), B® := B¥(¢) and 0, A := 0,A(&) are considered as given matrices. Take f € C1(D)
a test function defined on D and compute:

f V(@) - (w(E ) - “(é,ib‘))ﬁ(f,dx)=JD(Vf)(A:U)-((5aAA_1—1_3°‘)Ax) plz)dz

where f(x) := f(Ax). On the other hand, as the reader can check, B® is the projection on the
set of symmetric matrices of é,AA ! where the scalar product between two matrices C' and
D is given by Tr(ACTDA) In particular, the matrix (J,AA™! — BY)A? is skew-symmetric,
thus the matrix A~1(6,AA"1 — B*)A is also skew-symmetric. As p is radial, it implies that
the function

xeD - (A—l(aaAA—l — B*)Az) p(z)
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is divergence-free. It allows us to conclude that

jD V() - (WO (€ x) — 9O(€, 2)alE, dx) = jD F(@)V - [(A~'(2AA~" — B®)Ax) p(a)] de = 0,

hence the claim is proved as f is arbitrary.
The claim implies that (j, vjt) also satisfies the continuity equation: for any ¢ € C1(Q x
D,RP),

as the last integral vanishes because of the claim.
As v(¢,-) is a gradient (because the B® are symmetric), Proposition 8.11 implies that v is
the tangent velocity field to f. O

Notice that if we define @ : Q x D — RP by, for any £ € Q,x € D and a € {1,2,...,p},

7 (6a) = 3B

then v = Vpy. More precisely, for a.e. £ € Q, (&, ) (resp. v(§,-)) is defined everywhere on D
as a smooth function belonging to C*(D,RP) (resp. C'(D,RP?)). Moreover the Euler-Lagrange
equation (10.7), which can be written

P P
D1 0B+ ) (B*)? =0, (10.10)
a=1 a=1
translates at the level of ¢ in
1
Vo ¢+ 5|ng5|2 = 0. (10.11)

In fact, at least formally (because of the lack of smoothness of ), the function ¢ is a solution of
the dual problem. For ¢ to be an actual solution, we would need the B® to be C! up to the
boundary: even with the elliptic regularity proved below (i.e. point (iv) of Theorem 10.10), we
would not reach such a strong result if we just assume that 02 and A; are Lipschitz. We will
use ¢ to show that the tangent velocity field of any other solution of the Dirichlet problem with
boundary values p; must coincide with v. About the smoothness of the objects involved, notice
that for any a € {1,2,...,p} one has B* € L(Q2, S,(R)) and, given (10.10), the function

p —
> 0B
a=1

belongs to L'(€2, S,(R)).

Proposition 10.14. Let p a solution of the Dirichlet problem with boundary conditions p; and
v its tangent velocity field. Then, for a.e. £ € Q, one has v(&, x) = v(&, ) for p(§)-a.e. x.

Proof. If p € C1(Q x D,RP) then, as pu and & share the same boundary conditions,
ff (Va-¢+ Vpp-v)du =BT, () = ff (Va- ¢+ Vpp-v)dpa.
QxD QxD
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We claim that we can insert ¢ = @ even though ¢ is a priori not regular enough. In other words,
given (10.11) and the fact that v = Vpgp, we claim that

1 1
[ (e ] e
QxD QxD

Notice that the r.h.s. is (formally) equal to both BT, (¢) and Dir(f): it is not surprising as ¢
is a solution of the dual problem.

To prove such an equality we regularize ¢ in the following way. For each o € {1,2,...,p} we
apply to the matrix field B the standard truncation and convolution procedure (see [EG92,
Theorem 3 of Section 4.2]) to produce a sequence (B2),en which belongs to C1(€, S,(R)) and
which converges to B® in L?(£, S;(R)). Moreover, as derivatives commute with convolution, we
can say that

and the limit takes place in L'(£2, S;(R)) as we already know that the r.h.s. belongs to such a
space. In particular, up to extraction the convergences hold a.e. on 2. Then we set

Fl6) = 5 BIE .

for £ € Q and x € D. By construction ¢, € C*(Q2 x D,R) so that

JJ (Va-on+ Vpe,-v)du = BT, (¢n) = ff (Va - ¢n+ Vpe, -v)dp. (10.13)
QxD QxD
It remains to show that we can pass to the limit n — 4-00. Given the convergence a.e. of the B
and of 3 0,B%, we can assume that for a.e. £ € 2, the functions Vg - ¢, (&,-) and Vpe,(€,-)
converge to respectively —%[v|?(¢, ) and V(¢ ) in respectively C(D) and C(D, RP?) respectively
(notice that we use the fact that D is bounded). Hence for a.e. £ € €,

lim (VQ . (,On(f, l‘) + vD@n(ga ‘T) : V(fa ‘T)) y’(fu dﬂ?)

n—+0© Jp
B )
_JD( ST @) + ¥(&,2) - Vi, )) (€, dz). (10.14)

It remains to integrate this limit over 2. The natural upper bound for the Lh.s. of (10.14) is
obtained by Cauchy-Schwarz and the boundedness of D: for any n € N,

fD (Vo - on(6,2) + Vpon(€, 2) - v(E,2)) (€, da)

<o S iBaP + \/ | Moo

a=1

where C depends only on D. The r.h.s. is not bounded uniformly w.r.t. n € N but on the other
hand it converges in L'(Q) which is enough to say that the L.h.s. is uniformly integrable. Hence,
up to extraction we can integrate (10.14) w.r.t. Q:

. 1 _o  _
i ([ Faven s Tognvan = [[ (<5E4vv) an
QxD QxD
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Of course, the result still holds if we take (u,v) = (@1, v). Thus, passing in the limit in (10.13)
we get (10.12).

Until now we have not used the optimality of p. We notice that the r.h.s. of (10.12) is
nothing else than Dir(f) which coincides with Dir(u) = {{,, , 3|v|*dp by optimality of p. From
there, an algebraic manipulation leads to

1
H v = v[2dp = 0,

QxD

which easily implies the result: recall that for a.e. £ € €2, the velocity field v is continuous on
D. O

Proposition 10.15. Let p a solution of the Dirichlet problem with boundary conditions py.
Then pu = p.

Proof. Take p a solution of the Dirichlet problem with boundary conditions p; and define
v =pu— 1. We extend v on RP\Q by 0: with such a choice v € L2(RP, M(D)) is a (signed)
measure-valued mapping defined on the whole space RP which vanishes outside a compact set. We
also define v as a function R? x D — RPY by extending it to 0 outside Q x D. If p € C*(RP x D, RP)
is any smooth function then

JJ (Va-¢+Vpp -v)dv = H (Va-¢+ Vpp-v)dv

RPx D QxD
= ” (Va-¢+Vpy-v)du — ” (Va-¢+Vpy-v)du
QxD QxD

= BTM(QO) - BTM(QO) =0,

where we have used the fact that both (@, vp) and (@, vir) satisfy the continuity equation. In
other words, (v, vr) satisfy the continuity equation on the whole space RP x D.

We take an arbitrary direction in RP: we fix @ = 1. As we have seen in the proof of Proposition
8.23, the (generalized) continuity equation implies that for a.e. £ € RP~™! = (e,)*, the curve
te R — v((t,§)) satisfies the (1-dimensional) continuity equation with a velocity field given by
w(t,z) = v¥((t,€), z). Notice that for a fixed ¢ the velocity field w(t, -) is Lipschitz and bounded
with Lipschitz constant and upper bound controlled by Cﬂ(t75)69|]§a((t,§))| where C' < +o0
depends only on D. Given that B® € L%(Q), for a.e. £ € RP~! one has that

JR Litg)ealB((t,)|dt < +oo.

Hence for a.e. £ € RP~! the assumptions of [AGS08, Proposition 8.1.7] are satisfied: the curve
t e Rw— v((t§)) is solution of a continuity equation which has at most one solution. As the
curve identically equal to 0 is a solution (recall that v((¢,£)) = 0 for |¢| large enough), so must
be v((+,£)). As this result holds for a.e. £ € RP~1, it implies that v is identically zero, which is
the desired result. O

Eventually, to prove regularity, following the theory of Schoen and Uhlenbeck [SU82, SU83|,
we only need to show that there is no minimizing tangent maps, i.e. no Dirichlet minimizing
mapping which is 0-homogeneous. We start with the following result.
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Proposition 10.16. Let A € H'(Q, 5/ (R)) be a weak solution of (10.7), bounded from above
and uniformly away from singular matrices, and C' € S; (R) a semi-definite positive matriz. Then
the (real-valued) mapping

f:€eQ (A% 0)

1s subharmonic.

Actually, this is nothing else than the Ishihara property (Theorem 9.3) for the functional
p §5 & (CEu(dE), though in this simpler case we can show that it holds for any solution, as
we can check it by a straightforward computation.

Proof. As in Proposition 10.13, for aw € {1,2,...,p}, we set B* := LALjAé (0aA). Thanks to the
assumptions on A, we know that B® € L?(Q, S,(R)): this regularity is enough to justify the
following computations. Indeed, with this notation at hand, for any a € {1,2,...,p}

Oof = (La(0aA),C) = (La2(B?),C) = (B®, Lx2(C)).

Hence, taking the derivative again and summing over «,

Af =

=

((0aB”, La2(C)) + (B®, Ly, (0,4)(C)))

Q
Il
-

|
M=

(€CaB, La2(C)) + (B, Ly, (e (O)))

i
I

Il
M=

((3aB%, La2(C)) + Tr ([2B*A?B” + (B*)?A% + A*(B*)*| C)) .

i
L

Now, using (10.7) which reads Y, 0,B% = — Y (B%)?, one reaches the conclusion that

p
Af=2) Tr(B*A’B°C).

a=1

The matrix B*A?B belongs to S’; (R) because A does, and so does C' by assumption. As the
trace of the product of two elements of S, (R) is non negative, we deduce Af > 0 which was the
claim. O

With this result, it is easy to see that there exists no non constant 0-homogeneous tangent maps.
Notice, by point (i) of Theorem 10.10, and as D is bounded, that any minimizing tangent map,
if it were to exist, would be bounded from above and uniformly away from singular matrices.

Proposition 10.17. Assume Q =B the unit ball of dimension p and A € H'(Q, ST*(R)) is a
weak solution of (10.7), bounded from above and uniformly away from singular matrices, which
is 0-homogeneous, meaning that A(N) = A(&) for any A > 0. Then A is constant.

Proof. According to Proposition 10.16, for any C' € S/ (R), the function
f:E€eQ— (A% C)

is subharmonic and 0-homogeneous, hence it is constant by the maximum principle. But clearly,
the scalar product between A and any given symmetric positive matrix is constant if and only if
A is itself constant. O
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10.4 An (almost) explicit example

In this section we want to give a case where the solution to the Dirichlet problem can be (almost)
exactly computed and which, in the same time, exhibits interesting effects of the geometry
of the Wasserstein space. This example deals with mappings valued in the set of elliptically
contoured distributions (see the previous section), hence we will look only at the square root of
the covariance matrices.

We choose  := B the unit disk of R2. We will work in polar coordinate, i.e. a generic point
of Q) will be characterize by r the distance to the origin and 6 the angle made with the axis Ox.
The domain D is included R?: as explained in the previous section, we don’t really care about
the specific form of D as we will work with a family of elliptically contoured distributions.

For any # € R and any (k1, k2) € R? real numbers, we define the following 2 x 2 matrices:

~ [cos() —sin() o o) e (1O T _
R(9) = (Sm(e) cos(@))’ D1, k) : (0 @), 5(6) 1= R(-0)D(1, ~1)R())

R(0) is the rotation by an angle 6, while D(k1, k2) is just a diagonal matrix and S(6) is the
orthogonal symmetry w.r.t. the line making an angle 8 with the horizontal axis. Now, we fix
numbers 0 < k1 < ko and we define the matrix field

A(0) :=R(—0)D(k1, k2)R(0)

which is defined on B (parametrized in polar coordinates). We set pu; = pa,. The matrices
A, are uniformly bounded from below, and the mapping § — A;(0) is Lipschitz hence we can
apply Theorem 10.10 and conclude that there exists a unique solution p to the Dirichlet problem
with boundary values pa,. Moreover, this solution is valued in the set of elliptically contoured
distributions. Let us denote A(r,6) := cov(u(r,0))/?. Then we can give an almost explicit
expression for A.

Theorem 10.18. Let A : B — SST(R) defined by A := cov(u)'? where p is the unique
solution of the Dirichlet problem with boundary conditions p; as described above. There exists
two functions k1, ke : [0,1] = [K1, k2] such that for any (r,0) € B,

A(r,0) = R(—0)D(k1(r), ka(r))R(6). (10.15)
Moreover, the functions k1, ke satisfy the following properties.
(i) The functions k1, ko are smooth with k1(0) = k2(0) and k1(1) = k1, ko(l) = Ra.
(i) For any r >0, there holds rk1(r) < ka(r).
(iii) The pair (K1, Kk2) minimizes
1
I (

among all pairs satisfying (i). In particular, it solves the following system

K/Q _ ,{.12 2
()% + ()?) + 71“(;%%2%)) (10.16)

ey L (M = ) 2w 2
1 = K2 + 12 (,{2 +/42)2 )
1 2 1 2
AV 1 452(’%% - H%) 2’%2("% - ’f%)z
(7%2) - K2 + R2 - (ﬁz +,€2)2
1 2 1 2
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Figure 10.1: Numerical computation of the solution of the problem explored in this section with
k1 =1 and ko = 5. On the left, plot of (K1, kK2) minimizing a finite difference version of (10.16)
with N = 100 discretization points for . On the right, representation of the resulting harmonic
mapping: on points £ € B the source space are displayed ellipses defined by A({). The matrices
A (§) were computed with (10.15) and the optimizer of the finite difference version of (10.16).

Here &}, K, denote the derivatives of k1, k2. A plot of the solution is displayed in Figure 10.1.
The interpretation is that, along a given radius of B, all the matrices A are diagonal in the same
basis, but the eigenvalues k1, k2 depend on the distance to the center. On the other hand, on a
given circle around the origin, the matrices A share the same eigenvalues but the eigenvectors
depend on the angle 6.

Proof. The smoothness of A directly derives from point (iv) of Theorem 10.10. The regularity
up to the boundary holds because here both A; and ¢B are C® objects. As A is uniformly non
singular, it easily implies that, valued in Sy " (R) endowed with its Euclidean structure, A is also
a C® mapping.

To prove the specific form that A takes, we will use symmetry arguments and uniqueness of
the solution to the Dirichlet problem. For a given 6y € R, we consider the matrix field B defined
by

B(r,0) := R(—0p)A(r,0 — 6p)R(6p).

One can see easily that B shares the same boundary conditions as A. On the other hand,
(7,0) = pA(ro—6,) share the same Dirichlet energy as A and C' — R(—6p)CR(6p) is an isometry
of (S5 *(R), g) hence the Dirichlet energy of pp is the same as the one of pa. By uniqueness in
the Dirichlet problem, A = B which means in particular

A(r,0) :=R(—0)A(r,0)R(0)

for any (r,0) € B. We still have to justify that A(r,0) is diagonal in the canonical basis of
S5 T(R). To this end, we now use the competitor B(r, ) := S(0)A(r,0)S(0). With this B, one
can check that

B(0,r) := R(—60)B(r,0)R(0)

still holds and B shares the same boundary conditions as A. Along a radius of B, as C' —
S(0)CS(0) is an isometry of (S5 T(R), g), thus the contribution to the Dirichlet energy of the
radial derivatives of B is the same as the one of A. On the other hand, for each r we know that
there exists 0, such that one eigenvector of A (0, ) makes an angle 6, with Ox. In particular, there
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holds A(0,r) = R(—26,)B(0,7)R(20,) = B(20r,r). As a consequence A(6,r) = B(6 + 20,,r)
for all 6 € R. It shows that the tangential part of the Dirichlet energy on the circle of radius r is
the same for A and B. As it is the case for every r, we deduce that A and B share the same
Dirichlet energy, hence coincide. It reads A(0,r) commutes with S(0), which translates in the
fact that A(0,r) is a diagonal matrix.

Thus, we just define k1, k2 as the function such that A(r,0) = D(ki(r), k2(r)). Given that
A is smooth, we also know that x1, ko are smooth. As A has boundary conditions A;, we easily
identify Iil(l) = Rl, I{Q(l) = K9.

Notice that the Dirichlet energy of pa is given, as we work in polar coordinates, by

1 27
Dir(on) - [ | ;(r<arA,gA(arA)>+i<aeA,gA<aeA>>) aodr.

We need to develop this expression given the specific form of A. For the radial component it is easy
as 0, A(r,0) = R(—0)D(x)(r), kh(r))R(0): given (10.5), we have (0, A, ga (0,A)) = (k})% + (kh)2.

The derivation for the tangential part is more tedious but straightforward: we compute

O0A(r,0) = (a(r) — 11 (r)R(—0) (g’ é) R(0),

and then we plug in (10.5) to get

(5§ — K3)*

A A)) =
<69 agA(aG )> Iﬁ%—i—/i%

Hence, we conclude that the Dirichlet energy of A is nothing else, up to a multiplicative constant,
than (10.16).

From this information, we see that indeed (iii) is satisfied. Moreover, we infer that x1(0) =
k2(0), otherwise A would not be a smooth mapping. Of course, the system of ODEs satisfied
by (K1, k2) is nothing else than the Euler Lagrange equations associated to the minimization of
(10.16).

Eventually, if ka(rg) < k1(rg) for some rg, then there exists r1 € (0,1) such that x1(r1) =
k2(r1). Then, setting x1(r) = ka(r) = k1(r1) for all » € [0,71] would decrease the Dirichlet
energy, hence a contradiction. O

Notice that the condition x1(0) = k2(0) means that the measure p(0) is isotropic, in particular
that p is continuous in 0, there is no blow up. We call this example almost explicit because we
do not have an analytical formula for (1, k2). On the other hand, we have computed a finite
difference approximation of the solution. Indeed, denoting by /N + 1 the number of discretization
points, 7 = 1/N the spatial step, a finite difference approximation of (10.16) is

]:Z_:T; (kT+ ;) [(m((kﬂ):) —m(f))? . <@((k+1):) —@(T)ﬂ
+2 [ (i1 (k)2 —mg(k7)2)2]'

kt k1(kT)? + Ko(kT)?

We have minimized this functional thanks to a simple gradient descent algorithm?, the result is
displayed in Figure 10.1. We have reached a critical point of this functional, and though we have

!The code is available at https://github.com/HugoLav/PhD.
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no guarantee that it is indeed a minimizer (this problem is not convex in k1, k2), we have found
that random initialization leads to the same output, at that this output is in accordance with
Theorem 10.18.

Moreover, with this (almost) explicit expression at hand, we want to derive two consequences.

First, we know that there is some r such that p(0) is not the barycenter of the u(r,6) for
0 € [0,27]. In other words, by calling B, := B(0,r), we see that p is harmonic on B, but p(0) is
not the Wasserstein barycenter of the values of g on the boundary on ¢B,. It shows that there is
no hope of writing a Green formula stating that the values of p at one point are the (weighted)
Wasserstein barycenters of the values of g on the boundary (which is true for harmonic mappings
valued in R).

To back such a claim, it is enough to notice that the Wasserstein barycenter of the u(r, 6)
for 0 € [0,27] is pxra with & = (k1(r) + k2(7))/2. Indeed, by symmetry this barycenter is of the
form p.1q and a very simple optimization problem leads to the explicit expression of k. Indeed,
we recall that if two matrices A, B commute, then the Wasserstein distance between p and pp
coincides with the euclidean distance (the one induced by the Hilbert-Schmidt norm) between A
and B. Now, if p1(0) were the barycenter of the (p(r,6))ge[o,2+] it would mean that the function
k:= (K1 + K2)/2 is constant. Using the system of ODE for k1 and k2, it would lead to

. (T (mmz)')’ _mit R (2(51—/@)2 _ (n%—m%)z) o mbm) et

2 r K2 + K3 (k2 + K2)2 r(k? + Kk3)

Hence, it is straightforward that the r.h.s. does not vanish if k1 # ks, which happens at least
close to r = 1 if k1 < RKo. On Figure 10.1, though it is not really visually apparent, we were able
to check that (k1 + k2)/2 is not constant.

The second interesting consequence is that it provides an explicit example where we can show
that the commutativity relation (8.19) does not hold, hence we know that the superposition
principle should fail for this mapping. Recall that this relation is the following: for every

a, B e {1,2},
q q
PPl + Z v avP = 9gvel 2 v 9,v, (10.17)
j=1 J=1

We claim that this relation does not hold. We have to write the tangent velocity field for
the mapping A. We know that, for a direction «, they are of the form v*(¢,z) = B*(¢)x for
x € D, where B® is defined in Proposition 10.13. In our specific example we have, using the
computations of the proof of Theorem 10.18,

r _ oy [F1(r)/Ka(r) 0
B'(r,0) = R(—0) ( ! )> R(9),

0 kY (1) /Ka(r
K2 2
BY(r0) = 0o T R(0) ((1) (1)) R(6).

Now, we notice that in (10.17), the terms in d,v” and dzv® would lead to terms of the form
(&, x) — C(&)x where C are symmetric matrices (because the derivatives of symmetric matrices
are symmetric matrices). On the other hand, choosing as directions (eq,eg) = (e, eg) one can
write

(2

(i Vo gvBi - zq] vﬁjajvai> ((r,0),z) = [(B‘)BT _B'BY)(r, Q)x] ,
j=1 j=1
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in

Hence it is enough for this part not to vanish in order to conclude that (10.17) does not hold.
But this part vanishes only if B and BY commute. From the explicit expressions that we have,
if kK1 # ko they do not share the same eigenvectors hence do not commute.
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Chapter 11

Numerical illustrations

The goal of this chapter is to present the numerical method that we use to compute approximations
of the harmonic mappings valued in the Wasserstein space. The actual implementation of this
method can be found online at the following address

https://github.com/HugoLav/PhD

As we said earlier, there is no Lagrangian point of view nor static formulation for mappings valued
in the Wasserstein space. Hence, the main tool to handle numerics appears to be the so-called
Benamou Brenier formula. We underline that the content of this chapter is not really satisfactory:
we only provide a consistent discretization, but we are unable to prove the convergence of it
when one refines the discretization.

We will work with finite difference discretizations. Hence, to simplify the analysis, we restrict
ourselves to the following framework in this whole chapter.

Assumptions. The domain S is the unit square of R?. The domain D is the 2-dimensional
torus (R/Z)2.

We only work on spaces of dimension 2 because of scalability issues: as our unknowns will be
defined on the space 2 x D, we cannot really afford the dimension of this space to be larger than
4. On the other hand, having 2 of dimension 1 is the already known case of geodesics in the
Wasserstein space, for which several algorithms exist; and if D is of dimension 1 the problem
becomes too simple as explained in Section 10.2. Eventually, we take D to be the torus because
it helps us to avoid handling what happens at the boundaries of D. As mentioned earlier all of
the theory developed in the previous chapters can be adapted straightforwardly to this case.

We want to discretize the variational problem stated in Definition 8.30. To this end, we will
use the Benamou-Brenier formulation of the Dirichlet energy. Actually, we will rather start with
a discretization of the dual problem, see Theorem 8.36. In short, given a boundary condition
w2 02 = P(D), the (continuous) Dirichlet problem consist in these two formulations, that we
call respectively primal and dual:

E2
min JJH:VQM—FVD-E:Oandu:pboné’Q )
wE 2p

QxD

swp{ [ ([ ete.) ma@umle.an) otae) = Yoo+ 5IToel <0}

)
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--A---O--A---O--A--C Fully centered grid G§ x GG, @
; ! p is defined on it

Fully staggered grid G§ x Gg
! Nothing is defined on it

o
A
o
A : Staggered-centered grid G& x G& [ ]
®
Ax

| @' is defined on it

L
e Centered-staggered grid G& x G& A
©? is defined on it

Figure 11.1: Example of the different grids considered on €2 for the case N = 3. We mention that
the boundary values p are defined on the intersection of the staggered-centered and centered-
staggered with the boundary of Q (displayed as a dashed line).

The primal unknowns u, E belong to P(2 x D) and M (2 x D,R*%), while the dual unknown
@ is an element of C1(€2 x D, R?). The link between the optimizers of these two problems is
E = (Vpp)u, but we do not know if an optimal ¢ exists, and even if it does, if it is not smooth
enough the knowledge of ¢ does not determine uniquely g and E.

11.1 Discretization

Both the unit square 2 and the torus D will be discretized with uniform grids. As argued in
[PPO14], if one uses finite differences it is better to use grids which are staggered with respect to
each other.

We denote by N the number of discretization points per dimension in 2. The grid step is
7 = 1/N. We consider two 1-dimensional grids, called respectively the centered and the staggered
grid.

1
952{(2'4-2)7' : T=0,1,~-7N_1}C[O’1]’
G¥ ={ir : 7=0,1,...,N} = [0,1].

The staggered grid has N + 1 points, while the centered one has only N. We will consider the
2-dimensional grids G§ x G§, gg; x GG and G§ x ggt: if we were to divide  in N2 equal squares,
the first grid would be located on the centers of the squares, the second one the centers of the
vertical interfaces between squares, and the third one on the centers of the horizontal interfaces
between squares (see Figure 11.1).

On the other hand, we denote by M the number of discretization points in D and § = 1/M
the grid step. We consider two 1-dimensional grids, called respectively the centered and the
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staggered grid.

1
g,g:{<i+2)5 : z’zO,l,...,M—l}CR/Z,
Gh=1{i6 : i=0,1,..., M — 1} c R/Z

Contrary to ©, the grids G, and G5! have the same cardinality: this is because of the absence of
boundary on D.

We start by explaining how we discretize the dual formulation of the Dirichlet problem. In
the continuous world, an unknown of this problem is defined on € x D and valued in R%. The
function ¢ has two components o', p?. They will be defined over the following girds:

wl:ggxgﬁng)ng}—ﬂ&
62 G5 X G X G x G —> R

More precisely, we call Xy s := RY9G %96%9Hx9D x RIG*9G X0 x0h ~ RANFHNM? the finite-
dimensional space to which such a ¢ belong. This space is endowed with the scalar product
(, dx =72, ) which is the canonical scalar product on RZN+DNM? myitiplied by the scaling
factor 72. For a p € X N,M, it is not difficult to find a consistent discretization of the divergence
w.r.t. variables in the source space 2, actually this space was chosen for that. Indeed, this
discretization should be, for (¢!, €2,z 22) € GG x G4 x G% x Gh,

1 1 2 2
dsc L (’0§1+7'/2,§2,$1,SC2 B 905177/2,52,901,952 @El,§2+7/2,x1,x2 o 90@,5277'/2@179:2
(VQ @)51,52@1@2 = - + - .

Notice that the discrete version of Vg - ¢ ends up on a single grid, which is the “fully” centered
one. On the other hand, if one uses finite differences to compute the gradients V py, they are not
defined on the same grid. For instance, the discrete derivative of ¢! w.r.t. the first coordinate of
D, denoted by 6dDS7clg01 is naturally defined on G&f x G§ x G5 x G%, by

1 1
adsc 1 _ Pare2atyspa? T Pele2al §/2,a2
D1Pel g2 2l a2 " S ’

and 6%572900‘ are defined similarly by permutation of the indices o, i € {1, 2}.
As they will be important later, and to compactify (a little bit) the notations, we introduce
variables A and B (with «,i € {1,2}) such that the following constraints hold

A= V?)SC " P
B = 0550 Va,ie{1,2}.
In particular, A (resp. B*) is defined on the same grid as V&< - ¢ (resp. é’j“)sggoo‘). We will call
Yn v the finite-dimensional space to which (A, B) belongs: it is the space

RYIEXGEXGHXGS o RIG X96%05 %0 « RIS X96xIH %05 o RIGXIG *IB%xTD « RIG*TG xTHxGH
. ~/ . ~/ . . S/ ~/

v v Y v v
dsc, dsc 41 dsc .1 dsc 2 dsc .2
Ve aD,1‘P aD,QW 059 ¥ aD,ﬂ’

Similarly to X az, this space is endowed with the scalar product { , )y := 72(, ) which is the

canonical scalar product on R(Y SHAN(N+1)M? multiplied by the scaling factor 72. The discrete

differentiation operator will be subsumed under the letter D¢, namely

dsc Vgsc-
D = (adsq S004) )
Dyi onie{1,2}
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which is a linear operator going from Xx s to Y . The relation between (A, B) and ¢ is
simply written (A, B) = D%,

We need to define the constraint corresponding to the Hamilton-Jacobi equation, which would
read like A + |B|%/2, but A and the B% do not live on the same grid. To still get a well-defined
constraint, we use the following heuristics: compute finite differences approximations of Vpy,
then square them, and after that average them from the staggered grids onto the centered one
GG x G§ x Gh x Gf. More specifically, let us introduce the average operators Avg, : R9: — R%
and Avgp : R95 — R9D defined by

Ugyr/2 + Ue—7/2

(Avgou)e := 2 vee gy

U + Ug_
(Avgpu)y := 2+9/2 5 ¢ 6/2, Vx € Gh

Following the rule of thumb, we define F45¢(A, B) the function whose value is 0 if

A+ ;{ [Avgﬂ ®Id oy ® Avgp ®1dgc ((31,1)2)]
n [Ang ®Id g ®1d g @ Avgy, ((31,2)2)] + [Id]RgSc7 ® Avgo ® Avgp ® Id g5 ((32,1)2>]
+ [14,0;, ® Avegg ®1d o, @ Avey, ((B22)?) } <0 (1L.1)

on GG x GG x Gep x Gep and 400 otherwise. Here (Bo"')2 is understood component by component.
The formula can look complicated, but the idea is simple: if B® is not on the centered grid
in one direction, we average it in this direction. The function F9¢ is a discrete analogue of
the functional F' introduced in the proof of Theorem 8.36. The constraint on the discrete dual
problem will be written

Fdsc vdsc . ’<adsq a) =0,
[ Q P D aief1,2}

it is a discrete analogue of the Hamilton-Jacobi constraint.

We also need to discretize the objective functional. Recalling that p, : 0Q — P(D), by
a slight abuse of notation we denote by (&', €2, 2!, 22) the integral of uy (¢, €2, dzt, dz?) on
the square centered in (x!,z?) of side length §2. In particular the sum of py (¢!, €2, 21, 22) for
(z',2%) € G% x G%, is equal to 1. For ¢ € Xy we define,

BT?LSZ;C(QD) =7 EQ 1 12 (SO%,E,zl,z?“b(lvgaxlax2) - Wé,&,zl,m2ﬂb(ov§uxlvx2)
£€9g (2lyh)edn <Gy

+ 9021,961@2%(57 1, SCl, .%'2) — (,020711712/11;(5, 0, :L'l, .%'2)> ,

which is just a linear form on Xy js looking like BT,,. By an abuse of notation, we denote by
BT‘ELS,]C both the linear form on Xy ps and the element of Xy »s representing this linear form with
the help of the scalar product { , )x.

Definition 11.1. We define the discrete (i.e. finite-dimensional) dual problem as

max {BI}i(0) = F“(A, B) : ¢ € Xnar, (4. B) € Yiar and Do = (4, )}
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The variables (A, B) look superfluous for the moment but they play an important role for the
actual resolution of the problem. The discrete dual problem is a convex problem. Moreover, it
reads as a quadratically constrained linear program, more specifically as the quadratic part is
semi-definite positive, it could be rewritten as a second-order cone program.

Proposition 11.2. For any N, M = 2, there exists at least one solution to the discrete dual
problem.

Proof. Once (A, B) has been eliminated, the constraint on ¢ can be written as a intersection of
quadratic constraints, but the set of admissible ¢ is not compact. Using ¢ = 0 as a competitor,
we know that the value of the dual problem is positive.

Let (¢n)neny @ maximizing sequence with BTfLiC(gon) > 0 for every n. For a fixed n, we define

©n by 1
(Plogaa =15 2, (Pegyye
(y'.42)€G5, XG5,

The function @, is defined on the same grid as ¢,, but does not depend on variables in D. We
write @, = @n — @pn. Thus, we can decompose @, = @, + @, and @, has 0 mean in the sense that

D1 (Bedeezara =0. (11.2)

(z!,22)eGs, xG$,
As @, does not depend on the variables in D and given the normalization of py,

7_2 Z (v%sc . Sﬁn

(61.€%,21,22)egg xGg x G, x G,

_ dsc/ = . dscy/ ~
oo o = BII(@0) = —BT(20).

where the inequality comes from BTisbc(gon) > 0. Hence, summing over the grid G§ x G3 x Gf, x Gf,

the inequalities coming from F¢(D¢y, ) = 0, taking in account that ¢, does not depend on

the variables (z!, z?),

BT + 7 ) (Vi) + Q(g0) <0

(€1,62,21,22)eGg, x G5 x G x G5,
where the last term of the sum is the quadratic form @) defined by
1 dsc 1 2
Q) = 51 | Aven ®1d g, ® Avey ®1d gy, ( (9556
dsc 1 2
+ |:AVgQ ®Id gy ®Id oe ® Avgp ((aD,QSO ) )}
dsc , 2 2
n |:1ng§2 ® Avgg ® Avgp ®1d g ((aDJ@ ) )}
dsc , 2 2
+ [Inggz ® Avgg ®Idgs ® Avgp <<0D,2<P ) )] }

The quadratic form @ is definite positive over the set of @, satisfying (11.2). (Note that it
explains why it was important to square the derivatives of ¢ before averaging). On the other
hand, the first two terms in the inequality above are linear in ¢,. Hence, we deduce that ¢, is
bounded, thus converges up to extraction.
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Then we want to say something about ¢,. Thanks to the convergence of ¢, and the
constraint FI¢(DdCyp,) = 0, it is clear that V&© - 3, is bounded from above uniformly on the
grid G& x G§ x G x G%). On the other hand, the sum of such V?)SC - ¢, on the same grid is larger
than —BT,, (¢n), hence bounded from below. Thus, up to extraction, V?ZSC - (o, converges for
every point of the grid G§ x G§ x G, x Gf,.

Let (, be the projection of @, on the orthogonal of the kernel of (V&-). By the previous
observation, ¢, converges to some limit up to extraction. The sequence @, + @, satisfies

BTy, (20 + @n) = FE(DY(Pn + @n)) = BTy, (fn + $n) — FE(DF(5n))
= BT, (¢n) = FE(D®(pn))

A

because V%SC “Pp = V%SC - ©n, and is convergent up to extraction. Its limit is nothing else, as ¢,
is a maximizing sequence, than a solution of the dual problem. ]

The next step is to derive the dual of this discrete problem and observe that it looks like the
continuous primal problem. Moreover, as we will use a primal-dual algorithm to efficiently solve
this convex optimization problem, we will need an expression of the Lagrangian at some point.
The derivation of the dual is very similar to what was done with the formal inf — sup exchange
in the introductory Chapter 7.

We introduce (g, (E*), jef1.2}) € Yv,ir Lagrange multipliers for the constraint A = vde. o
and BY = 6?5%00‘. The Lagrangian of the problem can be written

L(907 A, B, p, E) = BT(;S;,C(SO) - FdSC(A7 B) + <(/~‘l’a E)7 (A7 B) - DdSC(P>Y' (113)

The objective value of the discrete dual problem is recovered by minimizing the Lagrangian
in pw and E. To get the dual of the dual discrete problem, we first maximize in ¢ and A, B.
Maximization in the (now unconstrained) variable ¢ is straightforward as the Lagrangian is
linear in . It can be written abstractly

(D)7 (g) = BT,,, (11.4)

where (D%)T is the adjoint of the operator D¢, This equation, stating the equality of two
vectors in Xy a7, is nothing else than a discrete version of the (generalized) continuity equation;
but we will not try to write it explicitly. Then, for the maximization in (A, B), we know that we
end up by definition with (F'95°)*(u, E) the Fenchel transform of Fdsc.

Proposition 11.3. The value of the discrete dual problem is equal to

min {(Fdsc)*(u,E) . (,E) € Yy and (D¥) 7 (g) = BT%}.
H,

The latter problem will be called the discrete primal problem

Proof. As the problem is finite-dimensional, standard arguments about convex duality guarantee
the existence of a solution to the discrete dual problem and the absence of duality gap, see [BV04,
Chapter 5]. O

Actually, Theorem 8.36 is the infinite-dimensional analogue of the proposition above. We
will not provide an explicit expression for (F45¢)*(u, E). It leads to some expression of the form

> |]23;, where fi is a linear averaging of the p defined on grids on which the components of E
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are defined, which means that the discrete primal problem really looks like the continuous one.
However, the precise expression of (F4¢)*(u, E) is quite heavy and will not be relevant in the
sequel, but we mention that it is reminiscent of the formulas of Maas and Gigli [Maall, GM13]
about optimal transport on graphs. In any case, pe1 ¢2 ;1 ;2 can be interpreted as the mass given
by p(€l,€2) to the square of center (z!,2?) and side length §2.

We do not know whether there is uniqueness in the discrete primal problem. However, in
practice, when we used the iterative algorithm described in the next section to solve these convex
problems, we have found that the solution g does not depend on the initial guess. On the other
hand, for the discrete dual problem, as the constraint on D%y will be saturated only where g is
strictly positive, it is highly unlikely for uniqueness to hold.

If we summarize, we have two convex finite dimensional problems in duality, which look
like the continuous ones. As discussed later in Chapter 12, we do not know if the discrete
problems converge, when N, M — 400, to the continuous ones. However, we can prove these
easy properties on the solution p of the discrete primal problem.

Proposition 11.4. Let (u, E) a solution of the discrete primal problem. Then pu > 0 and for
all (€,€%) € G§ x G§,
Z u£1’£2,x1,x2 =1.

(z!,22)eGE x G,

In other words, positivity and preservation of the mass hold.

Proof. If per 2 31 52 < 0 at some (€1, 62,21 2%) € G x GS x G x G%, then it is enough to
take Agi g2 41,2 very negative and large (in absolute value) to conclude that the Lagrangian
L(p, A, B, u, E) goes to +00, which would say that the value of the discrete primal problem is
+0, hence a contradiction.

For the preservation of mass, we use the discrete version of the continuity equation. Namely,
we fix (€1, €2) € G§ x G and we take ¢%1+T/2,§2,x1,x2 =1 for all (z',2?) € G$, x G%, while all other
values of ! are set to 0. All the values of ©? are set to 0. Because of the discrete continuity
equation,

T2VE o, ) = BT, ().

Developing the 1.h.s. and using the exact expression for the r.h.s. (and the normalization for uy),

D ( ) 1 ifgt+7=1,
H£1+T’£27ml7z2 - u£17£27$17$2 = :
(1,22)€05, x G, 0  otherwise.
From this set of equations, it is not difficult to see that mass is preserved along each line parallel
to the second component of {2, which eventually proves the claim. O

Let us conclude this section by insisting that the grid on which p is defined is not the same
than the one on which the boundary conditions are defined. Indeed, p is defined on the grid
G§ x G5 which never actually touches the boundary 02 of €2, while the boundary conditions g,
live on @2. The meaning given to the boundary conditions is only through (11.4), namely the
values of pp on 9 and p close to 6€2 are coupled with the momentum E, which is itself defined
up to the boundary of 2.
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11.2 Effective resolution

In practice, the algorithm that we have implemented computes a saddle point of the Lagrangian
(11.3). The input of the algorithm is the boundary data pp, and the outputs are ¢, A, B, p and
E. To compute a saddle point, we first augment the Lagragian with a quadratic penalization
and then use the Alternative Direction Method of Multipliers (ADMM), see [BPC*11]. Notice
that this is very similar to what happens for computation of geodesics in the Wasserstein space,
see [BBOO] or [Sanl5, Section 6.1]. But before describing the method, let us first emphasize that
we augment the number of unknowns in the Lagrangian, with no impact on the saddle points.

Instead of storing only V%SC - ¢, we store the whole four derivatives w.r.t. variables in €2
of ¢. More precisely, we denote by 8?25‘3 : R% — RY% the finite difference operator 2 and
(8gSC)T : R9% — RY its adjoint, which is almost the opposite of the previous one, except for
what happens at the boundary. By definition, in A = (A*3 )a,Bef1,2}, We store

1,1  _ Aadsc, 41
A =0q1%

A = ()T,
A= ()T
A2 = 0g%5e,

Notice that, given the previous definitions, V& . o = ALl + 422 For AY? and A*! we use
rather the adjoint of 6?2“ because of the grid on which ¢ is defined. As A has four components,
the Lagrange mutliplier g will be a vector with four different components (u®? )a,Bef1,2}-

As far as B is concerned, we will split the variables. Indeed, each value of ng,g?,:pl,ﬁ appears
in four different inequalities involved in the definition of F4¢ in (11.1). So each value of B*
will be stored four times, in such a way that each component of B is constrained to a unique
inequality, to which we of course add the equality constraints B = é’]d)sficpa. Automatically, the
number of Lagrange multipliers, i.e. the dimension of the vector E, is multiplied by 4.

We will define by D¢ the “augmented” differentiation operator by

aug
055!

— (055 T

Dl = —(5555);801

SC

59,290

adsq a)

(D’ZSO a,ie{1,2}

where in the last row it is tacitly assumed that each component of 8%83-@0‘ is duplicated four

times. Notice that Dgﬁ‘égp just looks like a gradient of ¢ w.r.t. all the variables.
Then, the Lagrangian (11.3) can be rewritten as

L(¢, A, B, p, E) = BT2(p) — F*(A" + A%, B) + (1, E), (4, B) — Disgp)y -

Although we have increased the number of variables, it is straightforward to see that if (¢, A, B,
u,E) is a saddle point of this Lagrangian then p'' = p?? so that we really recover a saddle
point of the previous Lagrangian. Following [BPC*11], we augment the Lagrangian by adding a
quadratic penalization. Specifically, we set, for r > 0,

Laug(@a A7 B7 K, E) = BT?J,SbC(SO) - FdSC(All + A227 B) + <(#’7 E)7 (A7 B) - DgllegSD>Y

~ L HDdSCcp (A B)H2 . (1L5)
2 |7 eue Py
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Figure 11.2: Convergence of the ADMM iterations. Left: evolution of the L? norm of the dual
residual as a function of the number of iterations. Right: evolution of the value of the Lagrangian
as a function of the number of iterations. The dual residual, as defined in [BPC*11, Section 3.3],
corresponds roughly to r((Dgﬁ‘é)T(u, E)— BTfLSbC). The jumps in its values are due to an update
of the augmenting parameter r. We plot these quantities for different value of the discretization
parameters N, M, but we the same boundary conditions: those corresponding to a family of

elliptically contoured distributions as in Figure 11.3.

This augmented Lagrangian has the same saddle point than the previous one.

Now, the algorithm consists in the iteration of the following steps. Given ¢, A, B, u, E,
1. Replace ¢ by the one that maximizes L*"8(-, A, B, u, E).

2. Replace (A, B) by the ones that maximize L*"¢(y, -, -, pu, E).

3. Do the dual update (pu, E) «— (u,E) —r [(4, B) — Dglslcg@].

We emphasize that the step used in the dual update is precisely r the augmentation parameter.
In practice, the value of this parameter was tuned dynamically during the iterations according to
the heuristic rule of [BPCT11, Section 3.4.1]. As the problem is finite-dimensional, convergence
to a saddle point is guaranteed [BPC*11, Section 3.2]. Actually, if the scalar products are well
scaled, we noticed experimentally that the number of ADMM iterations to reach convergence
was quite independent on the sizes N, M of the grids, see Figure 11.2 (though we would agree
that this is not so apparent, but we have trouble to do computation with more than a few dozens
discretization points per dimension). At least for the case of geodesics, this feature comes from
the fact that, in the limit N, M — 400, the ADMM iterations still make sense and converge
also holds in the infinite-dimensional setting [Gui03, Hugl6]. Let us now detail in practice how
the different steps are handled. As the reader can see below, each step of the ADMM has a
complexity of O(N2M?log(NM)).

Maximization in ¢ Once the other variables are fixed, the augmented Lagrangian L?"8 is a
quadratic function of . Hence its maximization amounts to invert a linear system, whose matrix,
namely (Dgﬁcg)TDgﬁ‘é is the same for every iteration. Notice that this matrix (Dgﬁ‘é)TDgﬁ‘é has a
kernel of dimension 1, which corresponds to functions that are constant. Hence, once we impose
that ¢ has 0-mean (i.e. that ¢ lives in the space orthogonal to the kernel), inverting the linear

system is a matter of linear algebra.
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More specifically, (Dgﬁg)Tl)gﬁ‘é is a finite difference discretization of the full Laplacian Aqg+Ap.
To invert this matrix, we leverage the fact that we work on Cartesian grids: we use a Discrete
Cosine Transform on Gg, Q?{ and a Fast Fourier Transform on Gf), Q%. Notice that for the grids
in  we work with cosine transforms because of the boundary conditions. Provided we use

efficient routines for these transforms, the overall complexity of this step is O(N2M?log(N M)).

Maximization in (A, B) Once the other variables are fixed, maximizing the augmented
Lagrangian L*"¢ in (A, B) amounts to project a vector, namely Dgﬁggo + L(u, E), onto the set
of (A, B) satisfying the constraint F4¢(A!! + A?2) B) < +o0. In particular, notice that A'?
and A?! are not submitted to any constraints, hence the projection is straightforward. On the
other hand, as each component of (A'! + A?2 B) is subject to a unique inequality constraint
(hence the interest of the splitting of variables), we have to solve for each point of the grid

G§ x G§ x G5, x G$, a problem of the type

b

1 1
mibn{2|a—ao|2 + §|b—b0|2 : (ap, bo) given and a + 53 < 0},

)

where a, ag are scalar and b, by are vectors. It is well known (see for instance [PPO14, Proposition
1]) that solving this problem amounts to find the root of a third-order polynomial. The latter
search was performed using Newton’s method. Provided all the problems are solved in parallel,
the overall complexity of this step is O(N2M?).

Dual update The dual update (pu,E) < (u,E) -7 [(A, B) — Dgﬁ‘écp] just amounts to subtract
some arrays, the overall complexity of this step is O(N2M?).

11.3 Examples

We present in this section actual computations of harmonic mappings by the discretization and
algorithm described above. We insist that we have no proof of convergence if one refines the
discretization. The only hint in this direction is that the outputs are visually plausible, but
we consider our method as a way to provide illustrations rather than a solid and guaranteed
numerical discretization. Notice that it would be hard to compare the computed solution with a
theoretical one. Indeed, the only case where we have explicit formulas, namely Section 10.4, does
not fit the geometry that we can reach with our finite difference discretization: with our current
implementation, we can only handle the source space {2 being a square, not a disk. It might be
possible to propose finite difference discretizations for more complicated geometries of the source
space, but it would for sure require heavy changes in the implementation.

Our method is quite slow. Indeed, the number of ADMM iterations required to reach
convergence (setting a primal and dual residual lower than 10~%, where these residuals are defined
in [BPC*11, Section 3.3]) is of the order of 103 and the time per iteration, for instance for
N =14 and M = 40 is 4 seconds. Hence, the total time required to reach convergence can be of
the order of several hours.

To plot the results, we have displayed N? copies of D. Each copy of D corresponds to a
point (&1, €2) € G§ x G§, on which is represented the measure with density Mgt g2. As pointed out
earlier, the boundary conditions pp are not on the same grid as the final solution p. However,
at least visually, there seems to be a good agreement between the boundary values p;, and the
values of p close to the boundary.
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Figure 11.3: Left: boundary conditions, inspired from the example described in Section 10.4.
Right: solution of the Dirichlet problem with N =13, M = 30.

Constant boundary conditions If p(£) does not depend on £ € 0€2, then our algorithm
indeed converges to a function which is constant over €2 and takes the same value than ;. The
associated value of the Lagrangian is 0.

Family of elliptically contoured distributions We have tried to mimic the situation
described in Section 10.4. As underlined before, we cannot really do it as €2 is the unit square and
not the unit disk, and the target space is the Wasserstein space built over the torus. Nevertheless,
as the reader can see in Figure 11.3, we still observe the symmetry predicted in Section 10.4 and
the fact that, close to the center of €2, the measures are more isotropic than at the boundary.

Interpolation between shapes Figure 11.4 is built according to the following process. For
each corner of ), we have selected a probability measure which is just the normalized indicator
of a shape. Then we have computed the geodesics in the Wasserstein space between each of these
shapes, and used the geodesics as boundary data p; (i.e. on each edge of the square we put a
geodesic). Eventually, we have solved the Dirichlet problem.

We have chosen this example because of the similarity with [SDGP*15, Figure 12| which
is reproduced in Figure 11.5. In the latter, for each point of 2, one computes the barycenter
with bilinear weights of the shapes in the corners. Hence the edges of Figure 11.5 coincide with
the boundary conditions of our figure. However, as explained in Section 10.4, the value of the
solution of the Dirichlet problem at one point cannot be expressed as the (weighted) barycenter
of the values at the boundary.

Hence, though visually similar, the interpolation in Figure 11.4 and 11.5 are very likely to
differ. However, we couldn’t prove the discrepancy analytically, because of the more complicated
geometry than in Section 10.4 and the absence of a closed formula for the Wasserstein distance
when we no longer face measures valued in a family of elliptically contoured distributions.
Identifying the discrepancy numerically is likely to be challenging: as seen in Section 10.4, we
expect it to be small, hence we would not be able to distinguish between it and the errors due to
the discretization. Moreover, Figure 11.4 and Figure 11.5 are computed by different means (the
method of the present chapter for the former, entropic regularization for the latter), which would
make a precise comparison even more delicate.
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Figure 11.4: Top: the boundary conditions are geodesics in the Wasserstein space between the
shapes displayed in the corners. The one dimensional geodesics were computed by adapting
the method described in this chapter to the simpler case where the source space is a segment.
Bottom: solution of the Dirichlet problem with N = 14, M = 40.
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Figure 11.5: Figure taken from [SDGP*15, Figure 12] with permission of the authors. On each
corner of the square there is a given shape. Then, on points of the square, the Wasserstein
barycenter with bilinear weights between the four probability distributions on the corners is
computed (with the help of entropic regularization) and displayed.
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Figure 11.6: Left: boundary conditions which are supposed to look like Dirac masses. In practice,
each probability distribution on the boundary is non zero on 4 = 2 x 2 points of the grid Gf, x GY,.
Right: solution of the Dirichlet problem with NV = 13, M = 17. As one can see, the solution of
the Dirichlet problem takes values in only very peaked probability distributions.
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Dirac masses As a test case, we have put for boundary values Dirac masses, i.e. a data
py(€L,€%) is 0 for all but a few vertices of G$, x G%. As mentioned before, the solution of the
(continuous) Dirichlet problem is a mapping valued in the set of Dirac masses. When we put
such boundary conditions in our algorithm, as one can see in Figure 11.6, we observe that u
stays very peaked in the middle, which reproduces a feature of the continuous case. This test
case is somehow an extreme one: we use a PDE formulation of our problem but we test it on
very singular measures. Nevertheless, we recover a result which is visually satisfactory. We
mention that we have tried other discretizations which gave worse output on this kind of test,
and that the present method, which we chose in the end, was the one performing the better on
this example.
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Chapter 12

Perspectives and open questions

In this chapter, we would like to present questions that we have faced but left unanswered and
give some possible directions for future research. For most of these questions, we have tried
the standard approaches but they were not conclusive, and their resolution are likely to need
new ideas which are not present in this manuscript. In the rest of this chapter, we will be quite
sloppy with regularity issues and most of the computations will be purely formal.

12.1 Uniqueness in the primal problem, existence in the dual
problem

Even some very natural questions about the primal and dual formulation of the Dirichlet problem
are not answered.

Question 12.1. Under which assumptions can one guarantee the uniqueness of the solution p
to the Dirichlet problem (Definition 8.30)%

Question 12.2. In which functional space, and in which sense, can one find a @ which realizes
the supremum in the dual formulation of the Dirichlet problem, as defined in Theorem 8.367

Existence in the dual problem We will start with the second question. If the source space
Q) is a segment, the constraint to which ¢ is submitted is the Hamilton Jacobi equation, namely

1
O + 5|V§0|2 < 0.

Usually, one relaxes the set of admissible ¢ by admitting continuous functions as competitors,
and the Hamilton Jacobi equation is understood in the viscosity sense. The key point is that
there exists an explicit expression of ¢(t = 1,-) as a function of ¢(t = 0, ), namely the Hopf-Lax
formula. For our vector-valued unknown ¢, we don’t know what would be the meaning of our
constraint in the viscosity sense, and we are unaware of any explicit formula related to it. On the
other hand, when one works on Mean Field Games, as stated for instance in Definition 5.2, the
Hamilton Jacobi equation is rather understood in the distributional sense. Whatever meaning we
choose, it is important that, provided ¢ satisfies the constraint, and g has boundary conditions
w2 092 — P(D),
Dir(p) > BT, (©)-

Such a computation is usually justified with a regularization procedure, where there is an interplay
between the meaning given to the Hamilton Jacobi equation and the regularity of the measures
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py at the boundary. Until now, we have not really studied this interplay, but we think that,
provided the py are regular enough (with a density, maybe bounded from below), one can allow
a quite loose meaning (maybe distributional sense) to our Hamilton Jacobi constraint.

Provided we know the meaning of the Hamilton Jacobi constraint, we still need to prove
compactness of a maximizing sequence (maybe up to transformation like the double convexification
trick in the case of geodesics [Vil03, Section 2.1]). We have proved in Proposition 11.2 such
a compactness result for a discretized version of our dual problem. However, this proof really
relies on the fact that we work in a finite-dimensional setting and the constants used to get
compactness blow up when one refines the discretization. We have no idea of any estimate which
would lead us to compactness in the infinite dimensional case.

Uniqueness in the primal problem The Dirichlet energy is not strictly convex, hence
uniqueness is not automatically guaranteed. However, when () is a segment, we know that,
provided the values at the boundary are regular (at least one of them has a density w.r.t. Lp for
instance), uniqueness holds. But the proof of such a result relies on a static formulation which is
no longer available if the dimension of 2 is larger than 1.

We want to highlight, as already observed and used in the proof of Theorem 10.10 that all
solutions should share the same velocity field. Indeed, let u, ¢ be admissible competitors for the
primal and dual problems respectively, and v the tangent velocity field to p. The dual gap can
be written

Dir() — BT}, (¢) = U %|v|2du— ” (Va- ¢+ Vop-v)du

QxD QxD
1 2 1 2
= oIV = Vpeldp - Va ¢+ 5[Vpel” | du
QxD QxD ~ ~
<0
1 2
> 5|V = Voeldp.
QxD

Hence, the dual gap controls how much Vpy and v are close to each other. Now, provided that
there exists a solution ¢ (which is, as we have seen above, not guaranteed), that this solution ¢
is C1 (which is likely to be false), then all solutions of the Dirichlet problem must have V¢ as
their tangent velocity field. On the other hand, on the set of mappings in H'(Q, P(D)) sharing
the same velocity field, the Dirichlet energy is linear. In other words: concerning uniqueness, the
convexity of Dir can only tell us that all solutions share the same velocity field.

The question becomes: from the knowledge of the velocity field, can one recover the mapping
p? The usual answer involves Lipschitz continuity assumptions on this velocity field [AGSO08,
Proposition 8.1.7], which translates in the control of the second derivatives (w.r.t. variables in D)
of an hypothetical ¢ solution of the dual problem. In the case of mappings valued in a family of
elliptically contoured distribution, we were able to have this control because of available explicit
expressions, but in the general case it seems out of reach. We mention that Hug [Hugl6, Section
IV.2], in the case of geodesics in the Wasserstein space, showed how one can recover uniqueness
of the mapping @ once one can prove uniqueness of the tangent velocity field. However, his proof
relies on the explicit expression of the velocity field once the Kantorovich potentials are known,
and he only proves uniqueness in the class of u such that pu € L?(€ x D): he needs to assume
some a priori regularity of p w.r.t. variables in D. We are aware of the Ambrosio-DiPerna-Lions
theory [DL89, Amb04], but this theory still requires higher regularity on the velocity fields than
the one we have, and only proves uniqueness among mappings which have some regularity w.r.t.
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variables in D (the typical assumption would be that all p(£) have a density w.r.t. to Lp and
that this density is uniformly bounded from above).

If for instance all boundary measures py(€) belong to some space L™ (D) with a uniform
bound on the L™ (D) norm, then by Theorem 9.3 we know that p(§) also belong to L™ (D) for
a.e. £ € Q. (However, we know it that it holds for only one solution of the Dirichlet problem).
Provided that we manage to prove that it is the case for all solutions of the Dirichlet problem
(at least for the entropy one could adapt the proof of Baradat and Monsaigeon [BM18]), then it
would be one step in the direction of using the result of Hug or Ambrosio-DiPerna-Lions: we
would know that the measures have some regularity w.r.t. variables in D. Even with this wishful
thinking, we are not over because we need to provide regularity on the velocity field, and we
have no idea how.

12.2 Regularity of harmonic mappings

A general feature of harmonic mappings valued in Riemannian manifolds is that they exhibit a
lot of regularity, maybe except on a singular set of small dimension. Notice that it is not possible
for harmonic mappings valued in the Wasserstein space to gain regularity w.r.t. variables in D.
Indeed, if the boundary conditions are very irregular, for instance if p(§) is a Dirac mass for
all £ € 092, then (&) is also a Dirac mass for all £ € Q where p is the solution of the Dirichlet
problem (Proposition 10.1). Hence, seen as objects living on D, the measures p(§) are no more
regular than the boundary conditions. In the first part of this manuscript, we were able to
provide more regularity on our solutions because of congestion effects: the problem of Chapter 4
is of the form

win {Dir(u) o E(u(ﬁ))df} ,

for some E : P(D) — R (and with the source space {2 being a segment), and all regularity was
related to E. On the other hand, seen as mappings Q — (P(D), W3), one can expect harmonic
mappings to be more regular. Actually, we think that the answer to the following question is
positive.

Question 12.3. If u € HY(Q, P(D)) is an harmonic mapping, can one show that, at least locally
in the interior of ), the mapping p is Holder continuous, in the sense that for all £, n away from
the boundary 0€,

Wa(p(8), m(n)) < ClE—nl”
for some C,;~ > 0.

Of course, if the source space 2 is a segment, this answer is positive as geodesics are Lipschitz.
We underline, as explained below, that we conjecture that there is no singular set, whatever the
dimension of the source space is. However, because of the absence of a bootstrapping argument,
we don’t know if one could reach Lipschitz regularity. Notice, in the case of mappings valued in
a family of elliptically contoured distributions (Section 10.3), that this conjecture is actually true
as proved in Theorem 10.10. As we will explain below, the proof for this special case indicates
why this result should be true in full generality.

Regularity theory for harmonic mappings valued in Riemannian manifolds Let
(N,g) be a (compact) Riemannian manifold. We want first to give a very quick overview
of the proof for the regularity theory of Dirichlet minimizing mappings f : Q@ — (N, g). We
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refer to the articles by Schoen and Uhlenbeck [SU82, SU83] for the original investigation of the
question and [HWO08, Section 4] for a survey on the topic. We introduce the notation

1

which denotes the amounts of energy present in the ball of center £ and radius r, rescaled in
such a way that this quantity becomes invariant under dilatation (recall that p is the dimension
of ). The general strategy is the following.

| IV f(n)lgdn

)

1. Show that, if f is harmonic, then for a given & the quantity r — E¢ ,.(f) is non increasing. To
prove this result, one usually uses “interior” perturbation, i.e. one takes ® a diffeomorphism
of € close to identity and compare the Dirichlet energy of f o ® with the one of f. Once
the monotonicity is established, the idea is to look at the limit, when » — 0, of E¢,(f)
and to distinguish between two cases: either the limit is 0, either it is not.

2. Show that if E¢,(f) is smaller than a constant € > 0 (which does not depend on r), then
f is Holder in the ball of center £ and radius r/2. This result, known as a e-regularity
result, usually relies on an iterative argument whose key estimate is that, if E¢,(f) <e¢
than Ee g, (f) < 3E¢,(f) for some § € (0,1). This key estimate is proved thanks to a
linearization of the manifold, estimates for harmonic mappings valued in a Euclidean space,
and a fine control of the error made by linearization. It is valid for any compact manifold
N, seen as a submanifold of some Euclidean space thanks to the Nash embedding theorem.
Then, with this key estimate at hand, one can control the precise speed at which F¢ ,(f)
tends to 0 when r — 0 and prove Holder continuity thanks to Morrey-Campanato inclusions.
Once Holder continuity is proved, provided (N, g) is smooth enough, the usual theory for
elliptic equations comes into play and, by bootstrapping, one gets f € C®(B(&,r/2),N).

3. The previous paragraph handled the case where the limit of E¢,(f) is 0. On the other
hand, if this limit is strictly positive, then one can consider a rescaling of f, namely
fr = f((- = &)/r). This is sometimes called a blow up argument. The scaling on Eg ,
was chosen in such a way that E¢,.(f) = Eo,1(f;). By some compactness arguments, one
can extract from f, a subsequence converging to some f : B(0,1) — A. This function
f is 0-homogeneous (constant along the radii issued from 0) and, by minimality of f, it
is harmonic, in the sense that it satisfies the Euler Lagrange equations coming from the
minimization of the Dirichlet energy.

Then one studies the 0-homogenous harmonic mappings valued in A/. By the Ishihara
property [Ish78, Jos08], if F : N’ — R is a convex function, F o f is real-valued, convex
and 0-homogeneous, hence constant. If N has negative curvature, there are enough convex
functions (namely, the distance square to a given point of A') to conclude that f is constant.
But this implies that Fy 1(f) = 0, which contradicts the assumption that E¢,(f) does not
tend to 0 when r — 0. On the other hand, if A/ has positive curvature, there may exist
such 0-homogeneous harmonic mappings: the typical example is £ — £/|¢|, defined on the

unit ball of R? and valued in the unit sphere of R3.

A point £ for which the limit of E¢,.(f) is not 0 will correspond to a singular point, because
f is not continuous around that point. Indeed, close to that point, f will behave like a
0-homogeneous harmonic mapping valued in N. What was said just above is that there
are no singular points for harmonic mappings valued in negatively curved manifolds, but
there may be in positively curved ones: although the e-regularity theory is generic, the
study of 0-homogeneous harmonic mappings strongly depends on the geometry of N.
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Putting all the pieces together, the regularity result reads as follows. A mapping f : Q — (N, g)
which is Dirichlet minimizing is smooth, except on a singular set ¥ < ). Moreover, the Hausdorff
dimension of the singular set can be bounded by p — p, where p is the smallest integer for which
there exists non constant 0-homogeneous harmonic mappings defined on R? valued in A

The set X is defined as the set of £ such that E¢,(f) does not tend to 0 when r — 0. The
estimation on the Hausdorff dimension of ¥ comes from techniques originating from the work of
Federer [Fed70]. In particular, if N is negatively curved then p = +00 and Dirichlet minizing
mappings are always smooth. Notice also, by definition of F¢ ,.(f), that, if €2 is of dimension 2,
then E¢,.(f) always tends to 0 as r — 0. Hence, the codimension of the singular set is always
larger than 2, and all Dirichlet minizing mappings defined over a space of dimension 2 are smooth.

We finish this brief overview by mentioning two regularity results for mappings valued in
metric spaces.

For harmonic mappings valued in metric spaces negatively curved in the sense of Alexandrov,
as already proved in the original article by Korevaar and Schoen, harmonic mappings are Lipschitz
in the interior of Q [KS93, Theorem 2.4.6] and Holder continuous up to the boundary [Ser94]. The
proof of such a result does not rely on the general strategy described above, the authors directly
showed that the metric counterpart of |V f[> (the local density of energy) is a subharmonic
function (provided f is Dirichlet minimizing), hence bounded in the interior of ). However, the
subharmonicity of such a quantity is really a feature of negatively curved space, and it is false
for harmonic mappings valued in positively curved (finite-dimensional) Riemannian manifolds.

As far as Q-functions are concerned (see Page 125), which is an example of mappings valued in
a metric space of positive curvature, Almgren [AJ00] proved that Dirichlet minimizing Q-fonctions
are Holder continuous. De Lellis and Spadaro [DLS11] later proposed a simpler proof of this
result. The latter proof relies on an estimate, for a Dirichlet minimizing mapping f, between
the Dirichlet energy on a ball and the Dirichlet energy on the boundary of the ball, i.e. the
sphere. This estimate leads to an ODE enabling to control the speed at which E¢ ,.(f) tends to 0
when r — 0. The main tool is comparison with clever explicit constructions. However, all the
constants depend on @, and there is no hope to take the limit Q — +co.

What about harmonic mappings valued in the Wasserstein space? Let us try to
explain what can adapted from the general strategy to prove regularity of harmonic mappings.
Let p € HY(Q, P(D)) an harmonic mapping and let v be its tangent velocity field, we denote by

1 2
Eer(t) = 55 JB(g ; L) [v|*dp

the rescaled energy over B(&,r) < Q.

1. The monotonicity formula, i.e. the fact that r — E¢,(u) is non increasing for p harmonic,
is very likely to stay true. Indeed the proof of it in the Riemannian case uses “interior”
perturbation which are also available here. Actually, a formal computation from the
(expected) optimality conditions (7.3) leads to a divergence free stress-energy tensor [HWO0S,
equation (29)] which is known to imply the monotonicity formula [HWO08, Section 4.3].

2. We do not know how to prove an e-regularity result, i.e. to prove that p is Holder on
B(&,r/2) provided Eg,(p) is small enough. This is at this point that we face the infinite-
dimensionality of the Wasserstein space and its positive curvature. Arguments of the
Riemannian case completely fail as there is no embedding in a Euclidean space. Moreover,
the metric tensor of the Wasserstein space does not depend smoothly on the point at which
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it is computed. Eventually, comparisons with well-chosen competitors have not lead to
any result yet, the main issue being the difficulty to control the energy of these other
competitors, due to the positive curvature of the Wasserstein space. Although we think
that this e-regularity result holds, our attempts to prove it have failed.

3. On the other hand we think we can exclude blow up configurations, in the sense that there
are no non constant 0-homogeneous harmonic mappings valued in the Wasserstein space.
Indeed, we will rely on the Ishihara property, see Theorem 9.3. For a given V € C(D), we
denote by Fy : P(D) — R the functional defined by

Fy(u) = J Vdp. (12.1)
D
As already mentioned before, if V' is convex then Fy is convex along generalized geodesics.
Thus, if p is harmonic and 0-homogeneous, then Fy o p is subharmonic and 0-homogeneous
provided V is convex. (Actually, our result holds for only one minimizer of the Dirichlet
energy, but we think that, at least in the case of potential energies, one can prove that it
actually holds for all harmonic mappings). As a consequence, Fy o p is constant. It implies
that the integral of pu(§) against any convex potential does not depend on £. As the linear
span of convex functions include all functions, we deduce that u(§) does not depend on &.

We emphasize that in the case of mappings valued in a family of elliptically contoured
distributions, we used exactly this argument in Propositions 10.16 and 10.17. Actually, in
this case, as our mappings were valued in a finite-dimensional Riemannian manifold, the
e-regularity derived from the general theory of [SU82], and we are able to give a positive
answer to the question of regularity.

As we see the key point is that, even though the Wasserstein space is positively curved,
there exists a lot of geodesically convex functions defined over it, and it is enough to exclude
blow up. This argument is, for the moment, mainly heuristic but we really think that it
could be implemented rigorously.

If we summarize, provided we can come up one day with a proof of an e-regularity result, and
provided that we write a rigorous proof of the absence of non constant 0-homogeneous mappings
valued in the Wasserstein space, we would be able to provide a positive answer to the question
raised at the beginning of this section.

12.3 Convergence of the numerical method

The numerical method that we proposed has no guarantee of convergence if we refine the
discretization. We could have chosen a finite element discretization of the problem. It would
have implied to choose finite element spaces in which g and E live, give a variational meaning to
the (generalized) continuity equation, and, for the Dirichlet energy, to compute exactly or choose
an approximation of the integral
EB[?
J 2p

QxD

for p, E which belong to the finite element spaces. Notice, as soon as p is not piecewise constant,
that analytical integration of the formula above promises to be very tedious. We have not followed
this strategy, mostly for contingent reasons: we have originally worked on finite differences to
be able to use FFT to run fast ADMM iterations, and we did not dare to implement another
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version. Moreover, as we will explain below, the obstructions in the proof of convergence are also
present with finite element methods.

Recall that the setting of Chapter 11 is that, from the continuous primal and dual (Dirichlet)
problems, which are two convex optimization problems in duality, we derive two discrete (i.e. finite-
dimensional) problems, the two of them being in duality, and which are consistent approximations
of the primal and dual continuous problems. As we do not work with finite elements, it would
be hard to prove convergence of the solutions of the discrete problems: we do not know how to
see a discrete p as a continuous one. However, we will indicate that, even trying to prove the
convergence of the (numerical) values of the discrete problems to the continuous ones, we run
into issues.

Before going into details, we indicate some related work about the computation of geodesics
in the Wasserstein space, which would amount to take for €2 a segment of R. Starting from the
work of Maas [Maall], some people have started to be interested in Wasserstein spaces over finite
spaces using a formulation mimicing the Benamou-Brenier one. From a numerical point of view
(though this was not the aim of such an article), it would be like solving the geodesic problem in
the Wasserstein space with a continuous time but a discrete space. In this setting, convergence if
one refines the spatial discretization has been obtained, first for a uniform cartesian mesh on
the torus [GM13], and then in the more general framework of finite volumes [GKM18]. These
proofs rely on careful regularization procedures with the help of heat flows and a fine study
of the metric tensor of the discrete Wasserstein space. On the other hand, for a fixed discrete
Wasserstein space, a proof of the convergence of a time discretization was obtained in [ERSS17]
but all the constants of this proof blow up when one refines the space discretization. We also
mention [BC15, Section 3] which gives a proof of convergence for some static problem related to
optimal transport, and then asserts that the dynamical case (which corresponds to computing
geodesics in the Wasserstein space) is likely to be more involved. To the best of our knowledge,
there is no proof of convergence of algorithms computing geodesics in the Wasserstein space,
defined from Benamou-Brenier formulations, when one refines both the temporal and the spatial
grid.

Now we go to the framework of Chapter 11, where €2 is the unit square discretized with
N points and D is the 2-dimensional torus discretized with M points. We fix some boundary
conditions py, : 02 — P(D) which we assume Lipschitz w.r.t. variables in 0Q2. We want to show
convergence of the values of the problem. Let us call Vi 3 the value of the discrete dual problem
(see Definition 11.1) and V' the value of the continuous problem (see Definition 8.30).

We claim that, quite easily, one should get

V < liminf Vi .
N,%ni&w N.M
If we were working with finite elements, this identity would be automatic. Indeed, from solutions
(N, Enoar) of the discrete primal problem, we would extract a converging subsequence to
(p, E). The continuity equation is a linear constraint, hence should pass to the limit. On the
other hand, the Dirichlet energy is l.s.c. hence

V < Dir(p, E) < liminf Dir(pn s, Ex ) = liminf Vi

N,M—+a0 N,M—+0w0

In our finite difference setting, what we can do instead is to sample the continuous dual problem.
Indeed, take ¢ a solution of the continuous dual problem. It is not difficult to smooth it a little
bit while still respecting the differential constraint to which it is submitted and not changing
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too much BT}, (¢). Then, it is enough to take for ¢y s the sampled values of ¢ on the relevant
grid. By consistency of our discrete formulation, this discrete ¢y s will satisfy the discrete
constraint. Moreover, BTgiC(go ~Nm) ~ BTy, (¢) at least if N, M are large enough. Using oy s
as a competitor in the discrete dual problem, we get a lower bound on Vi ps by something close
to V, which was our claim. We see that the key point is that the constraint in the dual problem
is one-sided, which leaves us some room for regularization techniques.

On the other hand, the reverse inequality, namely

V = limsup V.
N,M—+0

is currently out of reach. The natural idea would be to take p, E solution of the continuous primal
problem and to sample them on a grid to get pxy a7, En s discrete competitors. Provided there
is a clean discretization, we could expect (pun a7, En ar) to solve exactly the discrete continuity
equation. However, the function

is not uniformly continuous: its derivative has a singularity in 0. Hence, if the density p vanishes
at some point, we could make a large error in the Dirichlet energy with this sampling process.
To counter this effect, we would like to regularize p a little bit, for instance with a convolution or
a heat flow. But we have to take care of the boundary conditions on ¢§2! One option would be to
do a regularization which preserves the boundary conditions. This is what is done for instance
in [ERSS17], but in a simpler setting: as they work on geodesics (corresponding to Q = [0, 1]),
there are only two boundary points t = 0 and ¢t = 1. It is not clear how to adapt their proof
when 2 is no longer a segment. Another option would be to act that we loose the boundary
conditions, but it naturally leads to the following question.

Question 12.4. Is the mapping which sends py : 02 — P(D) onto the (numerical) value of the
Dirichlet problem with boundary conditions p, continuous? If the answer is positive, for which
topology on the set of boundary conditions?

If © is a segment (which is the framework of [ERSS17, GKM18]), then the value of the Dirichlet
problem is the squared Wasserstein distance, which is of course a continuous functions of its
inputs. In the case of harmonic mappings, from the dual formulation (Theorem 8.36) we know
that the mapping is L.s.c. as a supremum of continuous mappings p, — BT, (¢). On the
other hand, showing an upper semi-continuity would amount to prove a stability result for the
optimal ¢ in the dual formulation. Such a feature is not known yet, and probably related to the
question of the existence of a solution to the dual problem. Moreover, these continuity properties
should rather hold for the discrete problem (uniformly in N, M), which means the proofs should
be adaptable to the discrete setting. In any case, a tentative proof for the regularization of
the primal problem, followed by a sampling procedure, has failed. In the primal problem the
constraint is an equality (namely the generalized continuity equation together with the boundary
conditions), hence there is much less room for regularization. We emphasize that this whole
discussion could be applied to a finite element discretization.

Another idea would be to interpolate a solution of the dual discrete problem. If ¢y s is a
solution of the discrete dual problem, one could try to interpolate it to produce a competitor on
the continuous dual problem, hence giving a lower bound on V' which is close to Vi »s. With our
current discretization, to show that from ¢x, s one can indeed build an admissible competitor
at the continuous level, we would need estimates on the (discrete) second derivatives of pn s,
uniformly on N, M. We don’t even know yet how to get these estimates at the continuous level.
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Appendix A

Résumé des résultats de la these

Ce chapitre contient un résumé des probléemes abordés dans cette these et des résultats auxquels
nous sommes parvenus. Il a été écrit pour se lire indépendamment du reste de ce travail. Pour
le garder concis, nous avons fait le choix de n’évoquer que trés brievement les modeéles dont
les problémes abordés proviennent : 'unité de notre travail se trouve plus dans la structure
mathématique commune aux différents problémes variationnels étudiés qu’aux phénomenes qu’ils
prétendent décrire. Signalons aussi que, dans un souci de clarté, les énoncés des résultats donnés
dans ce chapitre sont parfois peu rigoureux et ne décrivent pas le cadre le plus général traité
dans le coeur de ce manuscrit.

A.1 Cadre de la theése

Fixons nous § un domaine convexe et borné de I’espace euclidien R%. L’espace de Wasserstein
n’est autre que I'ensemble des mesures de probabilité sur €2, que I'on munit de la distance
(quadratique) de Wasserstein dont la définition est rappelée ci-dessous, cf. (A.1). Un élément de
I’espace de Wasserstein est pensé comme une distribution de masse dans le domaine 2, et tous les
éléments de cet espace partagent la méme masse totale, & savoir 1. La distance de Wasserstein
entre deux distributions p et v représente alors le cotlit minimal nécessaire pour déplacer la masse
de la configuration p vers la configuration v. Au vu de cette définition, I’espace de Wasserstein
est souvent un cadre naturel lorsque 1’on cherche a modéliser des phénoménes comme 1’évolution
d’une configuration de masse lorsque la masse totale est conservée. Dans ce travail, nous nous
intéressons a des problemes variationnels dans lesquels les inconnues sont soit des courbes, soit
des applications, prenant leurs valeurs dans ’espace de Wasserstein.

Une courbe a valeurs dans ’espace de Wasserstein est pensée comme 1’évolution temporelle
d’une configuration de masse : une foule, un troupeau de moutons, un ensemble de particules
(depuis les molécules jusqu’aux étoiles), etc. Nous nous intéresserons & des problémes aux limites,
c’est-a-dire lorsque les valeurs de la courbe a l'instant initial et I'instant final sont données (ou
du moins pénalisées), et pour lesquels la courbe minimise une certaine énergie faisant intervenir
sa vitesse, mesurée dans ’espace de Wasserstein.

Une extension naturelle des courbes consiste en les applications, c’est-a-dire que nous nous
intéressons aussi aux situations ou I'espace de départ n’est plus seulement uni-dimensionnel (la
variable correspondant dans ce cas au temps), mais est un domaine de ’espace euclidien. Nous
considérons alors des problémes variationnels pour des applications a valeurs dans ’espace de
Wasserstein prenant des valeurs fixées sur le bord du domaine (c’est-a-dire que nous regardons
toujours des problemes aux limites), et qui minimisent leur énergie de Dirichlet, a savoir I'intégrale
du carré de la norme de leur gradient, ou la norme du gradient est mesurée a ’aide de la distance
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de Wasserstein. Les solutions de ces problémes variationnel sont naturellement appelées les
applications harmoniques (& valeurs dans ’espace de Wasserstein).

Plus précisément, commencons par quelques rappels a propos de la théorie du transport
optimal [Vil03, Vil08, AGS08, Sanl5]. Si u,v € P(£2), sont deux mesures de probabilité (i.e.
deux éléments de l'espace de Wasserstein), la distance entre les deux est définie par

Walp,v) = myin J |z — y|?y(de,dy) : yeP(Q x Q) et mo#y =p, m#EYy=v . (A1)
QxQ

Dans cette formule, my et w1 :  x  — Q sont les projections sur respectivement la premiere
et la deuxiéme composante de 2 x . Une mesure v € P(Q2 x Q) qui satisfait les contraintes
moFy = p et m#v = v est appelé un plan de transport entre p et v, et il est dit optimal s’il
réalise le minimum du membre de droite de (A.1).

Un plan de transport v décrit une maniere de transporter la masse de la configuration pu(z)dx
vers v(y)dy : la quantité de masse qui est transportée de x & y n’est autre que y(z,y)dzdy. Le
colit pour un tel transport est |z — y|2, et le carré de la distance de Wasserstein correspond au
cotlit le minimal parmi tous les transports possibles.

L’application Wy : P(Q2) x P(Q2) — R définit une distance sur I’ensemble P(£2), et elle métrise
la convergence en mesure. L’espace métrique (P(€2), Wa) est appelé I'espace de Wasserstein. Nous
soulignons ici que {2 est supposé compact : dans cette these, nous travaillons sous cette hypothese
qui simplifie certains aspects techniques tout en conservant les caractéristiques typiques de
I’espace de Wasserstein. Pour travailler dans un cadre non compact, il faudrait aussi s’intéresser
aux moments d’ordre 2 des mesures de probabilité considérées.

Nous mentionnons le théoréme de Brenier [Bre87], qui montre que les plans de transport
optimaux ont une structure bien particuliére : sous réserve que p a une densité par rapport a
la mesure de Lebesgue (en fait cette hypotheése peut étre affaiblie), il existe un unique plan de
transport optimal v € P(2 x Q) entre u et v, et il est concentré sur le graphe du gradient d’une
fonction convexe, c’est-a-dire qu’il existe T': 2 — Q, gradient d’une fonction convexe, tel que
~v = (Id, T)#u. Ce résultat montre que le couplage entre mesures de probabilité donné par la
théorie du transport optimal est en fait un objet avec une structure tres rigide.

Nous nous intéressons principalement au point de vue différentiel sur ’espace de Wasserstein.
Si p:[0,1] = P(Q) est une courbe a valeurs dans 'espace de Wasserstein, par exemple Lipschitz
par rapport a la distance de Wasserstein, on peut lui associer une vitesse, qui est la quantité
scalaire définie par, a t fixé,
. Wa(ptsn, pt)
= lim —————~
|:0t| B0 |h|
Sous réserve que la courbe soit Lipschitz (en fait on peut affaiblir cette hypothese), cette quantité
est bien définie et finie pour presque tout temps. La quantité centrale est 1’action de la courbe,
définie par
1
1 .2
Ap) = | Slinfat, (A.2)
0
et qui se comporte comme une norme H'! (mise au carré). Cette quantité a un lien avec des
considérations de mécanique de fluide. Comme cela a été compris par Benamou et Brenier
[BB00], l'action A(p) d’une courbe coincide avec

1
min {J (J ;|v|2dp> dt : v:[0,1]x Q> R? et dp+V-(vp) = O} . (A.3)
v 0 \Ja
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Figure A.1: En haut : vue schématique de la formulation (A.1) du transport optimal entre
i, & gauche, et v, a droite. La quantité v(z,y)dzdy représente la quantité de masse qui est
transportée de x a y. Le couplage v est ensuite choisi de maniere a minimiser le cofit total de
transport. En bas : géodésique dans l’espace de Wasserstein entre les mémes mesures. Une
fois que le  optimal est choisi, une proportion v(z,y)dxdy se déplace en ligne droite & vitesse
constante entre x et y. Le résultat macroscopique de tous ces mouvements microscopiques est
une mesure de probabilité évoluant dans le temps, dont des instantanés sont affichés.

Plus précisément, 1’équation de continuité d;p + V - (vp) = 0 dit que le champ de vitesse v
(dépendant du temps) représente le mouvement de particules composant p, dans le sens ou si
une assemblée de particules a une vitesse en un point = et un instant ¢ donnée par vy(x), alors le
mouvement collectif est décrit par une densité p évoluant en temps selon ’équation de continuité.
Des lors, parmi tous les champs de vitesse v qui représentent le mouvement de masse décrit par
p, on choisit celui qui minimise 'intégrale en temps de I’énergie cinétique (l'intégrale temporelle
d’un Lagrangien, c’est-a-dire une action), et la valeur minimale n’est autre que 'action de la
courbe A(p), qui avait été définie de maniére purement métrique.

Il existe une classe particuliere de courbes a valeurs dans I'espace de Wasserstein, a savoir
les géodésiques parcourues a vitesse constante. On peut en donner une définition purement
métrique : une courbe p : [0,1] — P(Q2) est une géodésique (parcourue a vitesse constante) si et
seulement si, pour tous les instants s et t,

Wa(pe, ps) = |t — s|Wa(po, p1)-

Etant données deux mesures de probabilité p, v, il existe toujours une géodésique telle que py = p
et p1 = v. D’ailleurs, cette géodésique est une courbe solution du probléme variationnel

mgn {A(p) : po=p and p1 =v}.

De plus, la structure des géodésiques a un lien fort avec le probleme de transport optimal. En
effet, si v € P(2 x Q) est un plan de transport optimal entre u et v, alors la courbe définie par
pt = ((1 —t)mo + tmy)# est une géodésique entre u et v, et réciproquement toute géodésique est
de cette forme. Un exemple de géodésique dans I'espace de Wasserstein est affiché dans la Figure
Al
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Mesures de probabilité

Interpolation linéaire

A Interpolation métrique

Figure A.2: A propos des différentes maniéres d’interpoler entre deux mesures de probabilité.
En haut : deux mesures de probabilité p et v sur 'axe réel. Au milieu : interpolation linéaire
(1 + v)/2 des deux mesures. En bas : interpolation métrique entre les deux mesures, c’est-a-dire
le point milieu de la géodésique dans ’espace de Wasserstein joignant p a v.

L’espace de Wasserstein est un sous-ensemble convexe de I’ensemble des mesures sur €2. En
termes moins savants, si p et v sont deux mesures de probabilité sur €, la mesure (u + v)/2, c’est-
a-dire la moyenne (linéaire) des deux, est encore une mesure de probabilité. Une fonctionnelle
F:P(Q) — R sera dite convexe si F((1u+ v)/2) < (F(u) + F(v))/2. D'un autre coté, il existe
un autre moyen de faire la moyenne de p et v : il s’agit de prendre py, ou ¢ — p; est une
géodésique a vitesse constante joignant p a v. Pour peu que 'une des mesures ait une densité
par rapport a la mesure de Lebesgue, la géodésique joignant les deux est unique, de sorte que
p1/2, que l'on appellera moyenne métrique est bien définie, cf. Figure A.2. Si F': P(Q) - R
est une fonctionnelle semi-continue inférieurement, on dira que F' est géodésiquement convexe
sit— F(p) € R est convexe pour toute géodésique p. En fait, on aura besoin de la propriété
légerement différente de convexité le long de géodésiques généralisées, nous renvoyons le lecteur
ou la lectrice au corps de ce manuscrit pour une explication de la différence, qui est peu pertinente
pour la suite.

L’exemple type de fonction géodésiquement convexe est I’(opposé de I’) entropie de Boltzmann,
définie par

p(x) In(p(z))de  si p a une densité par rapport a Lebesgue,
F(p) = Jﬂ (A.4)

400 sinon.

Plus généralement, toute fonction définie par F(u) = {, f(1) (dans le cas ol p est absolu-
ment continu par rapport & Lebesgue) avec f convexe, superlinéaire, et s — s%f(s~%) convexe
décroissante, est convexe le long des géodésiques (généralisées).

Une fois que 'on se donne une fonctionnelle F' convexe le long des géodésiques (généralisées),
il est possible de considérer un probleme d’évolution dans I’espace de Wasserstein, appelé flot
gradient de F' qui s’écrit heuristiquement

dp
2L — _VF(p).
i” VF(p)
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Bien sfir, ni la dérivée temporelle, ni le gradient n’ont de sens dans I’espace de Wasserstein, mais
il est possible de donner un sens a cette équation a ’aide de quantités ne faisant intervenir que
la distance de Wasserstein. Ainsi, une caractérisation métrique des flots gradient, appelée (EVI)
pour Fvolution variational inequality, se lui comme suit : une courbe ¢ — p; est un flot gradient
pour la fonctionnelle F si et seulement si, pour tout v € P(Q) fixé et tout ¢ > 0,

lim WQ(pt+h7V) _WQ(pt,V) <
h—0,h>0 h

F(v) = F(pr)- (A.5)

Nous soulignons qu’il est crucial de supposer que F' soit convexe le long des géodésiques généralisées
(en fait on pourrait étendre cette définition au cas ou F' est A\-convexe). Un des résultats majeurs
de [AGS08] est que, pour toute donnée initiale p telle que F(u) < +oo, il existe une unique
courbe p : [0, +00) — P(R), qui vérifie (A.5), et telle que pg = p. Dans le cas ou F' est 'entropie
de Boltzmann, c.f. (A.4), cette courbe est la solution de I’équation d’évolution

op = Ap

avec condition de Neumann sur le bord, c’est-a-dire que le flot gradient de 'entropie dans I’espace
de Wasserstein n’est autre que le flot de la chaleur. Cette remarquable propriété, observée dans
[JKO98], est notamment ce qui a motivé ’étude des flots gradients dans I'espace de Wasserstein.

A.2 Courbes optimales a valeurs dans ’espace de Wasserstein

Nous nous sommes intéressés a des problémes variationnels dans lesquels 'inconnue est une
courbe a valeurs dans I’espace de Wasserstein. Plus précisément, nous désignerons dans la suite
par I' = C([0, 1], P(©2)) 'ensemble des courbes continues a valeurs dans 'espace de Wasserstein
(P(Q), W3). Nous rappelons que A(p), pour p € I', désigne laction d’une courbe et est définie
dans (A.2), on lui attribue éventuellement la valeur +o0 si p n’est pas assez réguliere pour que
Iintégrale ait un sens.

A.2.1 Géodésiques parcourues a vitesse constante

Le probléme le plus simple (et bien compris) pour de telles courbes s’écrit
min {A(p) : peTl, pg,p1 données}. (A.6)
p

Les solutions de ce probléme sont les géodésiques joignant pg a p1, parcourues a vitesse constante,
dont on peut trouver une illustration Figure A.1.

Une variante de ce probléme consiste, par exemple, a pénaliser la valeur finale au lieu de la
fixer. Si I'on considére ¥ : P(Q) — R une fonction convexe et semi-continue inférieurement, on
peut considérer le probléme

mpin {A(p) + ¥(p1) : peT, py donnée}.

Ce probleme apparait d’ailleurs quand on regarde le minimizing movement scheme pour les flots
gradients dans l’espace de Wasserstein (parfois appelé schéma JKO d’apres [JKO98] dans ce
contexte). Nous soulignons qu’une fois p; connue (elle ne dépend que de pg et V), la solution
aux instants intermédiaires reste une géodésique dans I’espace de Wasserstein. Ainsi, dans ce qui
nous intéressera par la suite, a savoir de la régularité locale en temps, que la valeur au temps
final soit imposée ou juste pénalisée ne changera pas grand chose.
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Figure A.3: Ilustration du probleme de I’évolution optimale de la densité avec de la congestion
considéré dans le Théoréme A.1 dans le cas o  est le tore de dimension 2. A gauche et a
droite se trouvent des mesures de probabilité correspondant a la valeur initiale et la valeur finale
de la courbe a valeurs dans ’espace de Wasserstein. La premiere ligne est la géodésique dans
I’espace de Wasserstein entre les deux mesures : pas d’effets de congestion. Pour la deuxiéme
ligne, nous avons ajouté un potentiel prenant des valeurs élevées au centre du domaine, forcant
ainsi la densité a éviter cette région. Pour la derniere ligne, le potentiel pénalisant la présence de
masse au centre est toujours présent, mais nous pénalisons aussi les densités congestionnées par
le carré de la norme L? de la densité. En conséquence, la masse a tendance & s’étaler.

Terminons par une remarque tautologique, mais qui sera utile dans des cadres plus compliqués.
Si F: P(Q) — R est une fonctionnelle définie sur I’espace de Wasserstein et p une solution de
notre probléme variationnel, on peut regarder 1’évolution temporelle de ¢ — F(p;). Dans le cas
ou F est convexe le long des géodésiques, alors t — F'(p;) est bien entendu une fonction convexe
du temps. Dans des probléemes variationnels plus élaborés, la majeure partie de notre analyse
consistera justement a choisir une fonctionnelle F' est pertinente et & décrire son évolution le
long de la solution.

A.2.2 Evolution optimale de densité avec de la congestion

Inspiré par une modélisation issue des jeuzr a champ moyen [LLO6a, LLO6b, HMC06, Carl0],
nous nous intéressons a des problémes ot une courbe a valeurs dans I’espace de Wasserstein ne
minimise pas seulement son action, mais aussi une énergie E qui pénalise certaines configurations
ou la densité est trop élevée. Le probléme type est de la forme

min {A(p) + Jol E(p)dt : pe r}

ou E(p) est par exemple 'intégrale (spatiale) du carré de la densité, ou l'entropie de Boltzmann.
La valeur initiale et la valeur finale de la courbe peuvent étre imposées, ou pénalisées. Une
alternative est de dire que E(p) vaut +oo si la valeur de la densité dépasse un certain seuil
critique et (par exemple) l'intégrale de p contre un potentiel sinon. Cela revient & mettre la
contrainte que la densité de p ne dépasse pas un seuil, et méne a apparition de forces de pression
concentrées sur ’endroit ou la contrainte est saturée. Nous signalons que pour la structure
linéaire sur l’espace des mesures probabilité, ce probléme est convere (pour peu que E le soit),
ainsi 'existence d’une solution est assez standard une fois les espaces fonctionnels appropriés
choisis.
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D’un point de vue de la modélisation, p représente une densité d’individus (ou plutot d’agents)
qui cherchent & se rendre & un endroit (d’ou par exemple la pénalisation de la valeur finale)
mais qui tentent d’anticiper le comportement des autres agents de fagon a éviter les zones
congestionnées (d’ou la pénalisation des configurations ou la densité est trop élevée). Nous
insistons qu’il est indispensable de prendre en compte I’anticipation des agents pour se retrouver
avec un probléme variationnel avec des conditions aux bords temporels données et pas une
équation d’évolution.

La question qui nous intéresse est celle de la régularité des solutions : naturellement la courbe
optimale p sera telle que E(p;) soit intégrable, mais en réalité la régularité spatiale pourra étre
plus forte : nous montrons des résultats de régularité elliptique, c’est-a-dire que la solution de
certains problemes variationnels convexes est plus réguliere que ce que 'on pouvait penser a
Priori.

Congestion douce Nous nous intéressons au cas ou 1’énergie de pénalisation de la congestion
FE prend la forme

B(o) = | Fota)ds+ | Viop(ds,

ou f est une fonction convexe et bornée par en dessous, tandis que V' : 2 — R est un potentiel
au moins continu. Une approximation numérique du probleme résultant est montrée dans la
Figure A.3. Nous arrivons alors a montrer de la régularité L™ sur p.

Théoréme A.1. On considére le probléeme

min {A(p) + L 1 (L Flou())dz + JQ V(x)pt(a:)dx) dt+ () : pel, py donnée} ,

p

ot linconnue p est une courbe continue d valeurs dans l'espace de Wasserstein (P(Q), Wa).

On suppose que le domaine €} est convezxe, que le potentiel V : 0 — R est Lipschitz et que
U :P(Q) - R est convexe et semi-continue inférieurement. Enfin, on suppose que la fonction f
est conveze et qu’il existe Cy > 0, a = —1 tels que f"(s) = Cys® pour s > 0.

Alors, pour peu qu’il existe un compétiteur d’énergie finie, le probléme admet une unique
solution p et pour tout 0 < Ty < Ty < 1, la restriction de p a [11,T2] x Q appartient a
LOO([Tl,TQ] X Q)

Ce résultat, obtenu initialement dans I’article [LS18] écrit en collaboration avec F. Santambrogio,
se trouve dans le Chapitre 4. Nous soulignons qu’en réalité dans ce chapitre de nombreuses
variations autour de ce résultat sont étudiées. Pour peu que 'on spécifie la forme précise de ¥, la
régularité peut étre étendue jusqu’a l'instant final (i.e. on peut prendre T = 1), mais ’étendre
jusqu’a l'instant initial reste une question ouverte. De plus, 'estimation sur f peut étre affaiblie,
quitte a supposer de la régularité supplémentaire sur le potentiel : par exemple on peut imposer
f"(s) = Cys® seulement pour s > so pour un certain so (mais alors il faut supposer V' e chh,
et I’on peut méme regarder o < —1 sous des hypotheéses supplémentaires assez lourdes.

Ce résultat apporte réellement une information supplémentaire : I’hypothese sur f autorise
toutes les fonctions puissances f(s) = s? avec ¢ > 1, et méme l'entropie f(s) = slog(s). Avec une
telle pénalisation, automatiquement un p d’énergie finie appartient a L4(|0, 1] x ), notre résultat
nous apprend qu’en plus le p optimal appartient a L® localement en temps et globalement en
espace. Et ce sans aucune hypothése de régularité sur la donnée initiale pg, ni sur la pénalisation
finale ¥. Du moins la seule hypothese a vérifier est 1’existence d’un compétiteur d’énergie finie,

'Par abus de notation, I’énergie désigne la quantité que ’on cherche & minimiser
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et cela est par exemple garanti automatiquement si f croit au plus comme s? avec ¢ < 1+ 1/d,
ou d est la dimension de ’espace.

Avant de donner une idée de la démonstration, nous mentionnons qu’'un résultat de régularité
L™ avait déja été obtenu pour un probléme similaire de jeux & champ moyen par P.-L. Lions
(dans la deuxieéme heure de la vidéo du cours au College de France du 27 Novembre 2009 [Lio12]).
Ce résultat repose sur un principe du maximum pour les équation elliptiques dégénérées : pour
ce faire, il est nécessaire que les mesures pg et p; soit fixées et dans L™ (ainsi que bornées par
en dessous), et qu’il n’y ait pas de potentiel V', contrairement a notre résultat. En revanche,
P.-L. Lions peut traiter des Lagrangiens généraux (c’est-a-dire remplacer laction A par une
fonctionnelle plus générale), tandis que nous devons nous restreindre au cas quadratique.

Donnons trés brievement une idée de la démonstration : elle repose sur une idée similaire a
la démonstration d’une borne L® pour les solutions d’équations elliptiques par Moser [Mos60)].
Pour simplifier, regardons seulement le cas ou V = 0, notons p € I' la solution de notre probléeme
variationnel et introduisons les fonctionnelles U,, : P(Q)) — R définies par

Unm(p) := S L p(z)"d,

m(m — 1)

(ou 400 si la mesure p n’a pas de densité par rapport & Lebesgue)avec Uy qui serait 1’entropie de
Boltzmann. Ces fonctionnelles sont convexes le long des géodésiques, en particulier ¢ — Uy, (p¢)
est une fonction convexe du temps lorsque f = 0. Dans le cas f # 0, un calcul formel nous meéne
a 2
2Une) = [ Vool 170,
Q

c’est-a-dire que 1'on peut quantifier la convexité de U, (p). A partir de 13, en utilisant I’hypothése
f"(s) = Cys™ et des injections de Sobolev, on tombe sur

d? mitra))
C(m, Cp) 35 Um(pr) > (L prm >)

ou 8 > 1 est lié & la dimension de I’espace d. En bref, nous pouvons controler une puissance
B(m + 1+ «) > m de p par une puissance m de p (tout cela intégré en espace). Certes il
y a une dérivée seconde en temps qui apparait, mais avec un certain travail (trés similaire a
[Mos60]) I'itération de I'estimée ci-dessus suffit & borner uniformément les normes L™ de p, et
ainsi conclure & une borne L*. En pratique les calculs ci-dessus sont formels, et il faut introduire
une discrétisation en temps pour les rendre rigoureux.

Congestion dure Nous nous intéressons maintenant au cas ou les configurations pour les-
quelles la densité dépasse un certain seuil sont tout simplement interdites. Cela correspond a
une contrainte de capacité maximale, ’environnement ne peut pas accueillir plus qu’une certaine
densité d’agents. Mathématiquement, I’énergie E prend la forme

f V(z)p(z)dx sip(x) <1 pour presque tout x € €2,

E(p) == 4 Jo
+00 sinon,

ou V : 2 — R est un potentiel fixé. Par convention, la seuil maximal pour la densité a été fixé

a 1. Dans ce cas la densité p est automatiquement dans L, la problématique se déplace vers

la régularité de la pression qui est le multiplicateur de Lagrange associé a la contrainte sur la
densité. Plus précisément, la pression P donne lieu a la force forgant la contrainte a étre respectée
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et vérifie P > 0 (c’est une mesure positive) ainsi que P = 0 si p < 1 (elle n’est active que si la
contrainte est saturée). L’enjeu est de prouver un résultat de régularité L® sur la pression, cette
question étant liée a des problématiques d’interprétation lagrangienne en jeux a champ moyen
[CMS16].

Théoréme A.2. On considére le probléme

min {A(p) + Ll (Jﬂ V(w)pt(a:)dx> dt + JQ V(z)p1(z)de : pel’, po donnée} ,

p

ot l'inconnue p € ' satisfait la contrainte p; < 1 pour tout instant t € [0,1]. On suppose que
est convexe et que les potentiels V, ¥ : Q — R appartiennent a W14(Q) avec q > d, ou d est la
dimension de l’espace ambiant.

Alors il existe pe L*([0,1] x Q) et P; € L*(Q) tels que

P = p(z,t)(dz ®@dt) + Pi(x)(dz ® 6¢—1)
soit le multiplicateur de Lagrange associé a la contrainte p < 1.

Ce résultat, obtenu initialement dans I’article [LS19] écrit en collaboration avec F. Santambrogio,
se trouve dans le Chapitre 5. Comme déja remarqué dans [CMS16], méme si la pression est
réguliere (avec une densité L® par rapport a Lebesgue) sur [0,1) x €2, il n’est pas possible
d’exclure une singularité temporelle de la pression pour l'instant final ¢t = 1.

La seule étude précédente concernant la régularité de la pression dans les jeux a champ
moyen avec contrainte de densité dont nous soyons au courant est celle de [CMS16], ou les
auteurs obtiennent P € L?ZOCBV@,. Gréace a l'injection BV — L1 " cela permet de de dire
que P e L™ avec m > 1 (iocalement en temps, globalement en espace). Une telle régularité
avait été obtenue en adaptant la preuve de la régularité de la pression dans le cas des équations
d’Euler incompressible, d’abord étudiée par [Bre99], et par la suite raffinée dans [AF08]. La
stratégie générale, appelée par la suite régularité par dualité [Sanl8] permet d’obtenir de la
régularité Sobolev pour des équations elliptiques tres dégénérées. Dans notre cas nous adoptons
une stratégie complétement différente, qui nous conduit a une information sur le laplacien de la
pression, mais qui ne marche que pour des lagrangiens quadratiques (alors que [CMS16] permet
de traiter des quantités plus générales que l'action A). D’un autre c6té, nous avons besoin de
moins de régularité sur le potentiel (V' doit avoir une régularité Sobolev au lieu de V € C'! dans
[CMS16]) et notre stratégie marche sur des domaines convexes, pas seulement sur le tore comme
pour [CMS16].

Plus précisément, soit p une solution du probléeme qui nous intéresse. On note v son champ de
vitesse tangent, c’est-a-dire le v optimal dans la formule de Benamou-Brenier (A.3). La dérivée
convective associée & v, c’est-a-dire &; + v - V est notée D;. A partir des conditions d’optimalité,
un calcul formel conduit a

_Dtt ln(p) < A(P + V)

Or, si P > 0, ce qui ne peut arriver que si p = 1 (la contrainte est saturée), alors In(p) atteint un
maximum de sorte que —Dy In(p) = 0. En bref, on arrive & la conclusion que

A(P+V)>= sur {P > 0}.

C’est une sorte de probléme de I'obstacle pour P. Des résultats de régularité elliptique plutot
standards, couplés & de bonnes conditions au bord (car €2 est supposé convexe) permettent de
conclure, & t fixé, que P e HY(Q) si Ve HY(Q) et Pe L®(Q) si V e WH4(Q) avec ¢ > d. Un
argument similaire permet de conclure pour la régularité de la pression lorsque ¢ = 1. De maniere
analogue au paragraphe précédent, les calculs présentés ici sont formels et une approximation
par discrétisation temporelle est nécessaire pour les rendre rigoureux.
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A.2.3 Formulation variationnelle des équations d’Euler

Une autre variation autour du probléme (A.6) apparait dans la formulation variationnelle des
équations d’Euler incompressible [Bre89, Bre99, AF09, DF12]. Nous énongons ici le probléme sous
une forme qui le rend similaire & (A.6), méme si ce n’est pas sous celle-ci qu’il est originellement
apparu dans [Bre89).

Plus précisément, rappelons que I' = C(]0, 1], P(Q2)) désigne I’ensemble des courbes continues
a valeurs dans ’espace de Wasserstein. Notre inconnue ne sera pas un élément de I', mais @
une mesure de probabilité sur I'. En d’autres termes, notre inconnue est la loi d’'une courbe
aléatoire. La quantité que nous cherchons a minimiser est I’espérance de I’action E¢q [A(p)] sous
deux contraintes : celle que la loi jointe de @) aux instants ¢ = 0 et ¢ = 1 soit fixée et surtout celle
que pour tout t, Eg[p:] = £ la mesure de Lebesgue sur Q. Cette deuxieme contrainte exprime
I'incompressibilité et force la masse a se répartir uniformément sur §2.

D’un point de vue de la modélisation, il faut imaginer () comme décrivant la cinématique
d’un fluide composé d’une infinité de phases : Q(p)dp donne la proportion de phases suivant la
trajectoire p. Les configurations des différentes phases sont fixées a l'instant initial et I'instant
final, et comme le fluide est incompressible, au niveau global la somme des toutes les phases
se répartit uniformément sur le domaine. Enfin, en suivant le principe de moindre action, la
quantité a minimiser n’est autre que 'action totale, c’est-a-dire l'intégrale en temps de 1’énergie
cinétique.

Ce modele a été étudié sous 'angle de I'existence des solutions [Bre89], de la description du
défaut d’unicité [BFS09] et surtout de l'existence et la régularité du multiplicateur de Lagrange
correspondant & la contrainte d’incompressibilité, a savoir la pression [Bre99, AF08, AF09]. Pour
notre part, nous nous sommes intéressés a une conjecture laissée ouverte par Brenier [Bre03,
Section 4], a savoir le comportement en temps de ’entropie moyenne définie par

Ho(t) = Eo | [ pe)mipi(w))a|. (A7)

En effet, un calcul formel indique que la fonction Hg, pour @ solution du probleme, devrait
étre une fonction convexe du temps, mais ce probleme est resté ouvert. Nous y apportons une
réponse positive.

Théoréme A.3. Soient Q un domaine convere, de mesure de Lebesque unité, et v € P(P() x
P(£2)) une mesure de probabilité sur le produit P(Q2) x P(?) (satisfaisant une condition d’incom-
pressibilité). On considére le probléme

min {Eq[A(p)] : Qe P(T), (eo,e1)#Q =~ et Vt,Eq[p] = L},

ot (eg,e1) : I' = P(Q) x P(Q) désigne I’évaluation aux instantst =0 et t = 1.

Supposons qu’il existe une solution du probléme pour laquelle Hg (définie dans (A.T)) soit
dans L'([0,1]), et considérons alors la solution Q telle que la norme L*([0,1]) de Hg est
minimale. Alors Hg est une fonction convexe du temps.

Ce résultat, obtenu initialement dans I’article [Lav17], se trouve dans le Chapitre 6. Il peut étre
vu comme décevant car nous pouvons garantir la convexité de ’entropie moyenne seulement pour
une solution des équations d’Euler incompressible. Apres la publication de notre article, Baradat
et Monsaingeon [BM18] ont prouvé, par une approche différente, au moins quand le domaine §2
est un tore, qu’en fait toute solution des équation d’Euler sous forme variationnelle posséde une
entropie moyenne temporellement convexe.
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Figure A.4: Exemple d’application harmonique a valeurs dans I'espace de Wasserstein. Chaque
petit carré correspond a la valeur de I'application en un point, qui est une mesure de probabilité
(représentée par sa densité). Cette application est harmonique, c’est-a-dire qu’elle minimise
I’énergie de Dirichlet parmi toutes les applications partageant les mémes conditions aux bords.

Formellement la convexité de H est vraie, c’est d’ailleurs au vu d’un calcul formel que Brenier
avait formulé sa conjecture. Pour la démontrer rigoureusement, nous utilisons des arguments de
discrétisation en temps similaires au deux chapitres précédents. C’est d’ailleurs parce que nous
raisonnons par approximation que nous ne pouvons obtenir le résultat pour toutes les solutions
du probleme considéré, mais seulement pour une.

A.3 Applications harmoniques a valeurs dans I’espace de Wasser-
stein

Dans la deuxiéme partie de ce manuscrit, issue en majorité de l'article [Lav19], nous nous
intéressons & des applications, et non plus seulement des courbes, a valeurs dans I’espace de
Wasserstein. C’est-a-dire que nous considérons des applications p : D — P(2) définies sur un
domaine D < RP prenant leurs valeurs dans P(2). Le cas ou D est un segment de R nous raméne
aux problématiques précédentes. Dans le cas général, I’enjeu est la définition de 1’équivalent de
I’action A, que 'on appelle plutét ’énergie de Dirichlet et qui sera notée Dir. Heuristiquement,
Dir(p) = 5 §,, [Vi|?, ot [Vpu| est mesuré & I'aide de la distance de Wasserstein. Une Dir définie,
prenons D un domaine borné avec un bord ¢D Lipschitz. Pour peu que py, : 0D — P(Q) soit
une application fixée définie sur le bord de D, on peut s’intéresser au probléeme de Dirichlet

H,lu,in {Dir(p) : p: D — P(Q) et p = pyp sur 0D} . (A.8)

Par analogie avec le cas des applications a valeurs réelles, les solutions du probléme de Dirichlet
sont naturellement appelées les application harmoniques a valeurs dans ’espace de Wasserstein.
Cette appellation rentre parfaitement dans le cadre du calcul d’Otto [Ott01], qui montre que
formellement ’espace de Wasserstein est une variété Riemannienne de dimension infinie. Notons
que si D est un segment, comme Dir coincide alors avec A, (A.8) est identique a (A.6) et les
applications harmoniques coincident avec les géodésiques a vitesse constante.
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Le premier enjeu est la définition de ’énergie de Dirichlet. Une définition, fondée sur une
extension de la formule de Benamou-Brenier (A.3) a été proposée par Brenier dans [Bre03,
Section 3]. D’un autre cdté, I’énergie de Dirichlet et les applications harmoniques a valeurs dans
les espaces métriques ont été étudiées dans les années 90 dans les travaux de Korevaar, Schoen
et Jost [KS93, Jos94]. En plus de proposer une définition valable dans un cadre tres général, ces
auteurs ont montré qu’une étude approfondie est possible si ’espace cible posséde une courbure
négative au sens de Alexandrov. Or I'espace de Wasserstein a une courbure positive au sens
de Alexandrov [AGS08, Section 7.3], de sorte que la définition de Korevaar, Schoen et Jost a
toujours un sens, mais la plupart de leur théorie est inutilisable.

Notre premiere contribution est de montrer que ces deux définitions, celle se fondant sur une
extension de la formulation de Benamou-Brenier et celle issue de la théorie des applications a
valeurs dans les espaces métriques, coincident : c’est I’objet de la Section 8.1. Plus précisément
L’énergie de Dirichlet telle que proposée par Brenier prend la forme suivante.

Définition A.4. Soit u: D — P(Q). On définit son énergie de Dirichlet par la formule

1
Dir(p) = min ff §|v|2dp, cv:Dx Q>R et Vpu+ V- (uv) =0,
DxQ

avec la convention que le minimum de [’ensemble vide est 4c0.

On pourra noter la ressemblance avec (A.3). Pour introduire la formulation métrique, commengons
par définir ’énergie de Dirichlet au niveau e, a savoir

: W3 (p(),
Dirc(p) = Cp J : (/;(Epl;"'(y)) 1\x—y|<adxdy7 (A.9)

DxD

ou (), est une constante de normalisation qui dépend de p la dimension du domaine D. Il est
facile de vérifier que si 'espace de Wasserstein est remplacé par la droite réelle, I’énergie de
Dirichlet au niveau € converge simplement vers ’énergie de Dirichlet au sens usuel, a savoir
I'intégrale du carré du gradient. Dans notre situation, nous arrivons au résultat suivant.

Théoréme A.5. On a
lir% Dir. = Dir,
E—>

simplement et au sens de la T'-convergence (le long de la suite (€p)neny = (27" )nen)-

Le membre de gauche correspond a ’énergie de Dirichlet au sens de Korevaar, Schoen et Jost,
tandis que le membre de droite est celui de la Définition A.4. L’équivalence de ces définitions est
assez facile au niveau formel (et donc dans le cas ou tous les objets sont réguliers), la preuve de
ce résultat repose sur des procédures d’approximation pour se ramener au cas régulier.

Nous signalons, sans le détailler ici, que si Dir(u) < +00 alors il est possible de donner un
sens aux valeurs de p sur le bord de D, pour peu que ce dernier soit Lipschitz.

A partir de 13, il est facile de montrer que le probléme de Dirichlet (A.8) est bien posé si les
données aux bords ont une certaine régularité, c’est 'objet de la Section 8.2.

Théoréme A.6. Soit py, : 0D — (P(Q), W) une application Lipschitz. Alors il existe au moins
une solution au probléme (A.8).
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L’hypothese sur p, permet de construire au moins un compétiteur d’énergie de Dirichlet finie
grace a une extension Lipschitz de p sur tout le domaine D. Nous soulignons que, puisque
I’espace de Wasserstein a une courbure positive, 'existence d’une extension Lipschitz n’est
pas automatique [Oht09] et repose sur des arguments ad hoc adaptés seulement a 1’espace de
Wasserstein. L’unicité de la solution reste une question ouverte : elle ne peut pas étre vraie
en toute généralité (c’est déja faux si D est un segment), mais méme avec des hypothéses de
régularité supplémentaires sur g, nous ne savons pas si nous pouvons conclure a I'unicité.

Du point de vue de la structure linéaire sur P({2), le probléme de Dirichlet est un probléme
convexe. En particulier, il lui est associé un probleme dual qui s’écrit de la fagon suivante. La
lettre o désigne la mesure de surface sur oD.

Théoréme A.7. Soit puy : 0D — (P(Q), Wa) une application Lipschitz. Alors on peut écrire

2
sup f (J o(z, -)dub(x)) o(dz) : Vp-o+ Vel <0 sur D x Q
pecl(Dxre) | Jop \Ja 2

= m”in {Dir(p) : p: D —P(Q) et p = pp, sur oD} .

Dans ce probleme dual apparait une équation d’Hamilton-Jacobi dans laquelle I'inconnue est
© une fonction a valeurs vectorielles, tandis qu’il ne porte sur elle qu'une contrainte scalaire.
Nous ne savons pas si le supremum dans le membre de gauche est atteint, pas méme le sens
dans lequel il pourrait étre atteint : déja dans le cas ou D est un segment, il faut par exemple
autoriser des solutions de viscosité.

Etant un probléme convexe, le probléme de Dirichlet se préte bien & une approximation
numérique. Plus précisément, nous proposons dans le Chapitre 11 un probléme convexe de
dimension finie qui, formellement, est une discrétisation du probleme de Dirichlet. La preuve de la
convergence des minimiseurs de ce probléme de dimension finie vers les applications harmoniques
reste néanmoins une question ouverte. Grace a des méthodes de “splitting prozimal”, plus
précisément 1’ Alternating Direction Method of Multipliers (ADMM), nous pouvons résoudre
algorithmiquement le probléeme de dimension finie en un temps long (mais raisonnable) et nous
nous en sommes servis pour produire les illustrations qui parsément ce manuscrit. Nous soulignons
qu’une telle méthode n’est en rien nouvelle, elle a déja utilisé pour approcher numériquement
des géodésiques dans ’espace de Wasserstein : c’est méme pour cette raison que Benamou et
Brenier ont introduit la formulation (A.3) pour I'action d’une courbe [BBO0O].

Le principe de superposition [AGS08, Section 8.2] est un outil trés pratique pour étudier
les courbes a valeurs dans 'espace de Wasserstein. Lorsque D cesse d’étre un segment (et que
Q) n’est pas de dimension 1), alors il est mis en échec, comme décrit dans la Section 8.3, et
cela répond d’ailleurs & une question soulevée par Brenier [Bre03, Problem 3.1]. En bref, il
n’existe pas de point de vue Lagrangien pour les applications harmoniques a valeurs dans I’espace
de Wasserstein, seule la formulation eulérienne est disponible. Cela explique que ’étude des
applications soit substantiellement plus difficile que celle des courbes.

Le résultat théorique principal auquel nous arrivons, pour les applications harmoniques, est
qu’un principe du maximum reste valide : c’est ’objet du Chapitre 9. Bien siir il n’y a pas
d’ordre canonique sur I’ensemble des mesures de probabilité. Pour donner un sens au principe
du maximum, il faut prendre une application harmonique g : D — P(2) et la composer avec
F : P(2) — R convexe le long des géodésiques (généralisées). Si D est un segment (donc p
est une géodésique), on obtient une fonction convexe par définition. Dans le cas général, on
obtient une fonction sous-harmonique, c’est-a-dire A(F o u) > 0. Cette propriété n’est pas si
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surprenante : dans le cadre lisse, a savoir si I’on prend une application harmonique a valeurs dans
une variété Riemannienne, et qu’on la compose avec une application convexe a valeurs réelles, on
obtient une application sous-harmonique, comme remarqué par Ishihara [Ish78]. Dans le cas ou
la variété Riemannienne est 1’espace de Wasserstein (c’est-a-dire celui que nous étudions), nous
arrivons a prouver le résultat suivant.

Théoréme A.8. Soit F': P(Q2) — R une fonctionnelle conveze le long des géodésiques général-
isées (ainsi que quelques propriétés de régularité supplémentaires que l’on ne détaille pas). Soit
wy 2 0D — (P(QQ), Wa) une application Lipschitz telle que supyp(F o pp) < +00.

Alors il existe au moins une solution p : D — P(2) du probléme de Dirichlet avec conditions
au bord py telle que (F o p) : D — R est sous-harmonique au sens des distributions dans D et

esssup(F o p) < sup(F o pp). (A.10)
D oD

L’équation (A.10) n’est autre que le principe du maximum, il ne découle pas directement de
I’équation vérifiée par F' o p a Uintérieur de D a cause de I’éventuelle discontinuité de F' o p au
bord de D. Ce résultat est bien siir décevant car nous pouvons affirmer quelque chose seulement
pour une solution du probleme de Dirichlet, pas pour toutes : la raison est que nous procédons
par approximation et que nous ne savons pas garantir I'unicité dans le probleme de Dirichlet.
Comme c’est 'objet principal de cette partie, nous présentons la stratégie de notre démon-
stration. L’idée consiste & minimiser Dir, ’énergie de Dirichlet au niveau e définie dans (A.9),
grace au Théoreme A.5 nous savons que si p. est un minimiseur de Dir. (avec des conditions
aux bords appropriées) alors p. va converger vers une solution du probléme de Dirichlet lorsque
€ — 0. Par optimalité de u., on arrive a la conclusion que pour presque tout x dans D, la mesure
pe(x) est un barycentre des p.(y) pour y € B(x,¢) : cette mesure minimise la fonctionnelle

[ J W3 (11, p(y))dy. (A.11)
B(y.e)

On en tire un lien entre barycentre et applications harmoniques (vrai dans un cadre tres général,
voir par exemple [Jos94]) : la mesure p(z) est le barycentre de ses voisins sur une boule de taille
€, du moins dans la limite € - 0. Comme F est convexe le long des géodésiques généralisées, on
peut utiliser I'inégalité de Jensen pour dire que

Flpe(x)) < jB( Flpty) (A12)

Plus précisément, pour établir cette inégalité de Jensen, on part de la caractérisation du barycentre
par (A.11) et on perturbe le barycentre en lui faisant suivre le flot gradient de la fonctionnelle
F. L’utilisation de l'inégalité EVI, rappelée dans (A.5), donne exactement l'inégalité de Jensen.
Il reste alors & passer a la limite ¢ — 0 dans (A.12) pour obtenir A(F o ) > 0 au sens des
distributions ainsi que (A.10). C’est & ce moment que des considérations techniques, que nous
ne détaillons pas ici, entrent en jeu.

Terminons ce résumé en expliquant ce que ’on peut dire de plus dans certains cas particuliers,
qui sont développés dans le Chapitre 10.

L’espace €2 s’injecte de fagon isométrique dans (P(€2), Wa) : il suffit d’associer a x € Q la
mesure J,, & savoir la masse de Dirac concentrée en x. En particulier, si f : D — €2, on peut
naturellement la voir comme une application py: x € D dp,) € P(Q2) a valeurs dans 'espace
de Wasserstein. En un sens, une application & valeurs dans I’espace de Wasserstein peut étre vue
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comme la relaxation d’une application & valeurs dans 2 [SGB13]. Une question que 'on peut se
poser est de savoir si cette relaxation apporte de meilleurs compétiteurs pour le probleme de
Dirichlet. Brenier [Bre03, Theorem 3.1] a déja apporté une réponse négative.

Proposition A.9. Soit py : x € 0D w §5,(,) € (P(Q), W) une application Lipschitz a valeurs
dans ’ensemble des masses de Dirac. Alors il existe une unique solution p au probléme de
Dirichlet avec conditions au bord py et elle s’écrit p(x) = Of(x), 0u [ est l'unique extension
harmonique de f.

La preuve de Brenier repose sur ’exhibition de la solution du probléme dual dans ce cas. Nous
ne l’avions pas encore signalé mais si p : x — ;) pour un certain f: D —  alors

Dir(u) = | 31V P

En d’autres termes, 1’énergie de Dirichlet pour les applications a valeurs dans l’espace de
Wasserstein étend bien la définition usuelle de I’énergie de Dirichlet pour les fonctions.

Un autre exemple révele plus de la géométrie de ’espace de Wasserstein : il s’agit des
applications qui sont a valeurs dans ’ensemble des mesures gaussiennes. Comme nous travaillons
avec 'hypotheése que ) est borné, nous ne pouvons pas vraiment considérer des mesures gaussiennes.
A la place, prenons p € P(R%) une mesure radiale, & support compact, et dont la matrice de
covariance est 'identité. Pour des raisons techniques, nous supposons aussi que son entropie est
finie. On note S4(R) 'ensemble des matrices d x d symétriques, ainsi que S (R) I'ensemble des
matrices symétrique semi-définies positives.

Définition A.10. Pour A€ S; (R), on note ps € P(RY) la mesure image de p par Uapplication
x— Azx.

L’ensemble des pa, pour A € S; (R) est noté par Pec(RY) et appelé une famille de distributions
aux contours elliptiques. On utilisera aussi la notation Pec(Q) = P(Q) N Pec(RY)

Par exemple, si p est l'indicatrice (renormalisée) d’un disque en dimension 2, alors les p4 sont
des indicatrices (renormalisées) d’ellipses. Plus généralement, le paramétrage A — p4 est injectif
puisque A peut se retrouver en prenant la racine carré de cov(pa) la matrice de covariance de p4.
Le cas gaussien s’obtiendrait en prenant pour p la mesure gaussienne centrée réduite. L’ensemble
des matrices symétriques définies positives muni de la distance (A, B) — Wa(pa, pp) forme une
variété Riemannienne de dimension finie. Elle n’est cependant pas complete car les matrices
singulieres (au voisinage desquelles la métrique dégénere) sont a distance finie des matrices
inversibles. Notre résultat principal est le suivant.

Théoréme A.11. Soit py, : D — Pec(Q) une application Lipschitz (vérifiant certaines conditions
de compatibilité entre leur support et §) non spécifiées) telle que det (cov(pp(z))) > 0 pour tout
z € @D and définissons Ay(x) = cov(uy(x))/? pour tout x € éD.

Alors il existe une unique solution p : D — P(Q) au probléme de Dirichlet avec valeurs
au bord py et p prend ses valeurs dans Pec(S2). De plus si A : D — ST(R) est défini par
A(x) := cov(u(z))'/? pour z € D alors on a :

(i) eiseilglfdet(A(x)) > 0.

(ii) L’application A est réguliére (spécifiquement C®) dans Uintérieur de D et la régularité
jusqu’au bord est vraie si Ay et 0D sont assez réguliers.

(i) L’application A vérifie une équation aux dérivées partielles explicite (mais que l'on ne
reproduit pas ici).
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La preuve de ce résultat repose sur deux idées simples. La premiere est I’existence d’une rétraction
sur 'ensemble Pec(£2) (i.e. une application 1-Lipschitz valant I'identité sur Pec(£2)) de sorte qu’en
prenant n’importe quel compétiteur et en le composant avec cette rétraction on diminue son
énergie de Dirichlet tout en laissant les conditions au bord inchangées : cela garantit ’existence
d’au moins une solution au probléme de Dirichlet & valeurs dans Pe.(€2). Puis on utilise le
principe du maximum (Théoréme A.8) en prenant pour F' ’entropie de Boltzmann (A.4). En
effet, pour un tel choix de F,
F(pa) = —In(det A) + C,

ou la constante C dépend seulement de p. Ainsi, le principe du maximum pour ’entropie se
transforme en principe du minimum pour le déterminant de A : le point (i) est prouvé. Une
fois ces deux arguments utilisés, on sait en fait que A est une application harmonique a valeurs
dans une variété Riemannienne de dimension finie, et des arguments standards permettent d’en
déduire ’équation aux dérivées partielles qu’elle satisfait ainsi que d’en inférer sa régularité.
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Titre : Courbes et applications optimales a valeurs dans I’espace de Wasserstein

Mots Clefs : Calcul des variations, Transport optimal, Régularité elliptique, Analyse dans les espaces
métriques.

Résumé : L’espace de Wasserstein est ’ensemble des mesures de probabilité définies sur un domaine
fixé et muni de la distance de Wasserstein quadratique. Dans ce travail, nous étudions des probléemes
variationnels dans lesquels les inconnues sont des applications a valeurs dans I’espace de Wasserstein.

Quand l'espace de départ est un segment, c’est-a-dire quand les inconnues sont des courbes a valeurs
dans ’espace de Wasserstein, nous nous intéressons a des modeles oti, en plus de ’action des courbes,
des termes pénalisant les configurations de congestion sont présents. Nous développons des techniques
permettant d’extraire de la régularité a partir de I'interaction entre I’évolution optimale de la densité
(minimisation de 'action) et la pénalisation de la congestion, et nous les appliquons & I’étude des jeux &
champ moyen et de la formulation variationnelle des équations d’Euler.

Quand l'espace de départ n’est plus seulement un segment mais un domaine de ’espace euclidien, nous
considérons seulement le probleme de Dirichlet, c’est-a-dire la minimisation de I’action (qui peut étre
appelée I’énergie de Dirichlet) parmi toutes les applications dont les valeurs sur le bord du domaine de
départ sont fixées. Les solutions sont appelées les applications harmoniques a valeurs dans 'espace de
Wasserstein. Nous montrons que les différentes définitions de 1’énergie de Dirichlet présentes dans la
littérature sont en fait équivalentes ; que le probléme de Dirichlet est bien posé sous des hypotheéses assez
faibles ; que le principe de superposition est mis en échec lorsque 1'espace de départ n’est pas un segment ;
que ’on peut formuler une sorte de principe du maximum ; et nous proposons une méthode numérique
pour calculer ces applications harmoniques.

Title: Optimal curves and mappings valued in the Wasserstein space
Keys words: Calculus of variations, Optimal Transport, Elliptic regularity, Analysis in metric spaces.

Abstract: The Wasserstein space is the space of probability measures over a given domain endowed with
the quadratic Wasserstein distance. In this work, we study variational problems where the unknowns are
mappings valued in the Wasserstein space.

When the source space is a segment, i.e. when the unknowns are curves valued in the Wasserstein
space, we are interested in models where, in addition to the action of the curves, there are some terms
which penalize congested configurations. We develop techniques to extract regularity from the minimizers
thanks to the interplay between optimal density evolution (minimization of the action) and penalization
of congestion, and we apply them to the study of Mean Field Games and the variational formulation of
the Euler equations.

When the source space is no longer a segment but a domain of a Euclidean space, we consider only the
Dirichlet problem, i.e. the minimization of the action (which can be called the Dirichlet energy) among
mappings sharing a fixed value on the boundary of the source space. The solutions are called harmonic
mappings valued in the Wasserstein space. We prove that the different definitions of the Dirichlet energy in
the literature turn out to be equivalent; that the Dirichlet problem is well-posed under mild assumptions;
that the superposition principle fails if the source space is no longer a segment; that a sort of maximum
principle holds; and we provide a numerical method to compute these harmonic mappings.
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