Prof Florence Maraninchi

Prof Patricia Bouyer

for giving me the opportunity to carry out my PhD at the Verimag laboratory, for providing ideal research conditions and for all his trust and support during this period. I would like to deepely thank my co-advisor Dr. Jacques Combaz for his continuous support, patience, motivation, and immense knowledge. His guidance as well as the tremendous amount of time spent

Résumé

Aujourd'hui, les systèmes temps réel sont omniprésents dans plusieurs domaines. Une telle expansion donne lieu à un besoin croissant en terme de performance (ressources, disponibilité, parallélisme, etc.) et a initié par la même occasion une transition de l'utilisation de plateformes matérielles à processeur unique, à de grands ensembles de noeuds de calcul inter-connectés et distribués. Cette tendance a donné la naissance à une nouvelle famille de systèmes connue sous le nom de Networked Embedded Systems, qui sont intrinsèquement distribués. Une telle évolution provient de la complexité croissante des logiciels temps réel embarqués sur de telles plateformes (par exemple les système de contrôle en avionique et dans domaines de l'automobile), ainsi que la nécessité d'intégrer des systèmes autrefois isolés afin d'accomplir les fonctionnalités requises, améliorant ainsi les performances et réduisant les coûts. Sans surprise, la conception, l'implémentation et la vérification de ces systèmes sont des tâches très difficiles car ils sont sujets à différents types de facteurs, tels que les délais de communication, la fréquence du CPU ou même les imprécisions matérielles, ce qui augmente considérablement la complexité lorsqu'il s'agit de coordonner les activités parallèles.

Dans cette thèse, nous proposons une démarche rigoureuse destinée à la construction d'applications distribuées temps réel. Pour ce faire, nous étudions des modèles basés sur les automates temporisés, dont la sémantique est formellement définie, afin d'étudier le comportement d'un système donné avec des contraintes de temps imposées lorsqu'il est déployé dans un environnement distribué. En particulier, nous étudions (i) l'impact des délais de communication en introduisant une latence minimale entre les exécutions d'actions et la date à laquelle elles ont été décidées, et (ii) l'effet des imperfections matérielles, plus précisément les imprécisions d'horloges, sur l'exécution des systèmes. Le paradigme des automates temporisés reste néanmoins destiné à décrire une abstraction du comportement d'une application donnée. Par conséquent, nous utilisons une représentation intermédiaire de l'application initiale, qui en plus d'avoir un comportement "équivalent", exprime explicitement les mécanismes mis en oeuvre durant l'implémentation, et donc réduit ainsi l'écart entre la modélisation et l'implémentation réelle. De plus, nous contribuons à la construction de tels systèmes en (iii) proposant une optimisation basée sur la connaissance, qui a pour but d'éliminer les temps de calcul inutiles et de réduire les échanges de messages pendant l'exécution.

Nous comparons le comportement de chaque modèle proposé au modèle initial et étudions les relations entre les deux. Ensuite, nous identifions et caractérisons formellement les problèmes potentiels résultants de ces contraintes supplémentaires. Aussi, nous proposons des stratégies d'exécution qui permettent de préserver certaines propriétés souhaitées et d'obtenir des scénarios d'exécution "similaires", et fidèles aux spécifications de départs.

Chapter 1 Introduction 1.1 Real-Time Systems

Computer systems consist of a combination of hardware, software, user and data. Such systems are constantly evolving and will become undoubtedly a constituent part of our daily lives. Nowadays, computer systems are widespread in several application domains. From simple systems like espresso machines to complex larger systems such as an airplane, these systems are continuously developing to facilitate and enhance our lifestyle by always providing improved solutions (more comfort, energy efficient, security, etc.) that answer directly to real life problems. Real-time systems are defined as those systems in which the correctness of the system depends not only on the logical results of computations, but also on the physical time at which the results are produced [START_REF] Stankovic | Misconceptions about real-time computing[END_REF]. In other terms, real-time systems are computing systems that have temporal constraints to meet and thus, are required to guarantee a response within specified timing constraints. Such systems need to achieve different requirements that can be structured into three main categories [START_REF] Kopetz | Real-Time Systems -Design Principles for Distributed Embedded Applications[END_REF]: (i) functional requirements, (ii) temporal requirements, and (iii) dependability requirements. Functional requirements refer to the functions that the real-time system must perform. In order to accomplish such requirements, the system needs to be able to observe its current state, that is, the values of variables describing the latter. For instance the position, speed and level of oil in a car are possible state variables. Additionally, a given system needs to control its state variables (actuation) for regulation purposes, and provide an interface to the system operator that allows its monitoring. On the other hand, temporal requirements are born from the requirements of control loops. A typical example is the time bounds for which a gear change needs to be achieved in the control system operating in modern vehicles. Temporal requirements of a given system might be of different order of magnitude. For instance the man-machine interface, in comparison with fast control loops, is less strict because of the human perception of time. Finally, dependability requirements are additional requirements regarding the quality of service that a given system produces, that is, the criteria for deciding whether the services provided by the system can justifiably be trusted. The concept of dependability encompasses the following attributes [START_REF] Avizienis | Basic concepts and taxonomy of dependable and secure computing[END_REF]: availability (readiness for correct services), reliability (continuity of correct services), safety (absence of catastrophic consequences), integrity (absence of improper system alterations), and maintainability (ability to undergo modifications and repairs).

Real-time systems can be classified from different perspectives [START_REF] Kopetz | Real-Time Systems -Design Principles for Distributed Embedded Applications[END_REF] based on either the characteristics of the application (perspective A), i.e., on factors outside the computer system, or on the design and implementation (perspective B), i.e., on factors inside the computer system. Tables 1.1 presents a classification of real-time systems based on these two perspectives:

Perspective

Classification Description A hard real-time vs soft real-time A hard real-time system is a system that must meet hard deadlines, that is, deadlines that if missed could result in severe consequences. On the other hand, for soft real-time systems the goal becomes to meet a certain subset of deadlines in order to optimize some specific criteria. Particularly, deadline violations result in degraded quality. However, the system keeps operating and may recover in the future. fail-safe vs fail-operational Fail-safe systems refer to those systems where a safe state can be identified and quickly reached upon the occurrence of a failure. On the contrary, failoperational systems are systems that must remain operational and provide a minimal level of service even in case of failure (no safe state).

B guaranteed-response vs best effort

Real-time systems where the probability of failure is reduced to the probability that some assumptions, on peak load or fault number and types for instance, do not hold in reality are called guaranteed-response. On the other hand, best-effort systems are systems where no analytical arguments for correctness can be made. The latter is rather established during the test and integration phases. resource-adequate vs resource-inadequate While Resource-adequate systems are systems that provide sufficient computational resources to handle a specified peak load and fault scenarios, resourceinadequate systems rely on dynamic resource allocation strategy. It is based on resource sharing and probabilistic arguments about expected load and fault scenarios. event-triggered vs time-triggered Event-triggered systems are systems where all communication and processing activities are initiated whenever a significant event (rather than the regular clock tick) occurs. Oppositely, in time-triggered systems all activities are initiated by the progress of real-time, which help to predict the behavior of a system since clock ticks are well known and defined moments.

Control Aspects in Real-Time Systems 1.2.1 Temporal Control Versus Logical Control

When building real-time systems, a clear distinction between the aspects related to the time domain and those related to the value domain needs to be made. The latter are respectively referred to as the concepts of temporal control and logical control. Temporal control is related to the progression of real-time. It is of concern when it comes to determining the instants in the domain of real time for the accomplishment of computations, that is, when computations must be activated. Such instants are derived from the dynamics of the application.

Logical control is related to the control flow within a given task, meaning that it is based on the given task structure and the particular input data. For instance, the execution of a branch condition and the selection of one of the alternatives is an example of logical control. The execution time represents the time interval needed to execute a task performing the logical control. If the temporal control and the logical control aspects are mixed in a program segment, then it is impossible to determine the worst-case execution time of this program segment without analyzing the behavior of its environment.

Example 1.2.1.

A semaphore wait statement is a temporal control statement. If a semaphore wait statement is contained in a program segment that also includes logical control (algorithmic) statements, then the temporal behavior of this program segment depends on both, the progress of execution time and the progress of real-time.

Thus, a good design decouples the reasoning about temporal constraints, governed by the application, from the reasoning about logical inner aspects of the algorithmic part of the application. Synchronous real-time languages, such as LUSTRE [START_REF] Halbwachs | Programming and verifying real-time systems by means of the synchronous data-flow language LUSTRE[END_REF] and ESTEREL [START_REF] Berry | The esterel synchronous programming language: Design, semantics, implementation[END_REF] distinguish clearly between logical control and temporal control. In these languages, the progression of real-time is partitioned into an (infinite) sequence of intervals of specified realtime duration, which we call steps. Each step begins with a tick of a real-time clock that starts a computational task (logical control). The computational model assumes that a task, once activated by the tick of a real-time clock (temporal control), finishes its computation quasi immediately. Practically, this means that a task must terminate its execution before the next triggering signal (the next tick of the real-time clock) initiating the next execution of the task.

Event-Triggered Control Versus Timed-Triggered Control

In real-time systems, the activation (start-up) of computation tasks is usually achieved through triggering signals, that is, control signals that specify the instant when an activity (computation) should start in the temporal domain. Two main paradigms are commonly used for triggering activities of a real-time system, namely, the event-triggered control and the time-triggered control. We say that the control is event-triggered when the triggering signal is associated to the occurrence of a significant event, such as the arrival of a particular message, the fulfillment of an activity within a component, or the occurrence of an external interrupt. Time-triggered control relies on the progression of time. The activation of computation is pre-determined and usually depends on the periodic overflow of a timer. Time-triggered systems are based on the notion of logical execution time (LET) introduced by the programming language Giotto [START_REF] Henzinger | Giotto: a time-triggered language for embedded programming[END_REF]. LET specifies the amount of time between the activation time of a computation and its due time. It abstracts the execution time of programs in the sense that even if they start before their activation date and finish before their due time, they behave as if they exactly consumed their LET.

System Design

System design is the process of defining the elements of a system such as the requirements, the architecture, the system components and their interfaces as well as the data flowing through the system. System design implies a systematic approach to the design of a system. It may adopt a bottom-up or a top-down approach, but either way the process is systematic wherein it takes into account all related variables of the system that need to be created. From the architecture, to the required hardware and software, right down to the data and how it travel and transform throughout its travel through the system. System design, then, overlaps with system analysis, system engineering and system architecture. The system design approach first appeared right before World War II, when engineers were trying to solve complex control and communication problems. They needed to be able to standardize their work into a formal discipline with proper methods, especially for new fields like information theory, operational research and computer science in general.

System design [BBB + 11a] differs radically from pure software design in the sense that it does not focus only on functional requirements but also accounts for nonfunctional properties, such as timing energy consumption or even fault tolerance. Meeting such extra functionalities is essential and requires evaluation of how design choices affect the overall system behavior.

Design Flows

Design of real-time systems is a rather complex task [START_REF] Marwedel | Embedded System Design -Embedded Systems Foundations of Cyber-Physical Systems[END_REF] which has to be broken down into a number of subtasks. In theory, the design process should be structured into distinct phases starting from the analysis phase until the final validation of the system and its effective deployment. In practice, such a strict sequential decomposition is hardly possible. In fact the design flow is rather decomposed into several iterations as depicted in Figure 1.1. Each iteration needs to include test generation and an evaluation of testability. A given design is then evaluated with respect to the different objectives (performance, dependability, energy consumption, etc.).

Design Styles

In what follows, we present some important design styles used in the design of real-time systems. Notice that the presented design styles are not exclusive in the sense that a given approach may combine several design styles.

Model-Based Design

Model-based design [START_REF] Jensen | A model-based design methodology for cyber-physical systems[END_REF][START_REF] Karsai | Model-integrated development of embedded software[END_REF] is one promising approach in building real-time systems. It relies on mathematical modeling for the design, analysis and validation of systems. This approach captures not only what the dynamics and the expected properties of the system are, but also what is assumed about the system's environment. Thus, it enables developers to verify the logic of their application, assumptions about its environment and end-to-end behavior at early stages of the design cycles. The model-based design workflow is usually as follows. First,

Design Flow

A n a l y s is Feedb a c k D e s i g n an application model expressing the behavior and dynamic of the considered system is built. It represents an abstraction that is platform independent, meaning that it does not consider any hardware specification such as communication delays or CPU(s) speed, which allows to model the system at early stages without any knowledge of the target platform, verify the obtained model against some safety properties (functional requirements), or even to synthesize a control strategy for tuning the system. Thereafter, the application source code, which represents the actual implementation of the system on a given platform, is automatically generated from the high level model, and integrated in a simulated environment.

Component-Based Design

Large scale systems are complex systems that usually require to assemble several components with wide-range functionalities. Many issues may rise when designing such systems [START_REF] Lee | Component-based design for the future[END_REF] ranging from the design process and the relationships with suppliers to incomplete specifications and testing. A typical example is the Toyota sticky accelerator problem that was caused in part by components provided by two contractors whose interaction was not verified appropriately. Component-based design tackles these issues by proposing an approach where such systems are build by assembling strongly encapsulated entities called component with stable, well-defined, and rigorous interface specifications [START_REF] Kopetz | Component-based design of embedded systems[END_REF]. This approach is based on the principle of reusability of heterogeneous components and focuses on the idea that internal knowledge about the design or the implementation of the latter is not needed. In some cases, this knowledge is not even available.

Architecture-Based Design

A system architecture is a conceptual model that describes the structure, behavior, and constraints of a system along with the interaction with its environment. Designing the architecture of a system is acknowledged to be a very hard task since it must address practical concerns of the engineering efforts [START_REF] Denford | Architecture-based design of computer based systems[END_REF] involved in system development (short term) and evolution (long term). Moreover, it needs to support a set of requirements whose details may be unknown until an advanced late step of the development process. Thus, a methodical design approach that provides means for coping with requirements uncertainty, and proposes guidance that helps in the decision making during the design process, is needed. Architecture-based design [BBC + 00] helps not only to detect design errors early in the development process, but also supports engineering efforts, which allows to produce high-quality code, by addressing the aforementioned problems.

Existing Approaches For Building Real-Time Systems

Giotto

Giotto [START_REF] Henzinger | Giotto: a time-triggered language for embedded programming[END_REF] is a programming approach for representing embedded systems at the architecture level using a timed-triggered programming language. It separates the platform-independent functionalities and timing aspects from platform-dependent scheduling and communication issues. It allows thus an intermediate abstraction that enables the design engineers to annotate the functional programming modules with temporal attributes that are derived from the high-level stability analysis of control loops. Figure 1.2 depicts the workflow of Giotto. A platform-abstract Giotto program is written. This program captures all the functionalities and the timing aspects necessary for ensuring consistency with the mathematical model of the control design. Thereafter, the program is implemented on a given platform. Notice that this step is completely decoupled from the first step in the sense that it does not require any interaction with the control engineer, and can in large parts be automated using powerful compilers. Giotto compilation facilitates the evaluation and the optimization phases by guarantying the preservation of functionalities and timings. In Giotto, all data are communicated through ports

Control Design

⇒

Oasis

Oasis [CDA + 05, CCDA07] is a framework that provides methods for the design and implementation of safety-critical real-time systems. It includes a complete set of development tools (code generation, validation, simulation and execution) that eases the design and verification stages while complying with general standards. The Oasis approach relies on the time-triggered paradigm to build systems that are fully deterministic, predictable, and reproducible in both the logical and temporal domains, even in case of failure. An Oasis application consists of a static set of communicating agents, i.e., autonomous execution entities including processing operations. The execution of a processing operation is time-triggered on a time window that is automatically deduced form the agent's timing. Every Oasis agent has an associated real-time window during which input and output data are visible. Figure 1.4 illustrates the execution of a processing operation within its time interval: each processing operation performed by an agent takes place between two temporal instants (points) of the real-time. These points are the beginning date (t start), which is the earliest instant when the processing can be started, and the ending date (t end) which is the latest date when it must be terminated. These two dates allow to explain a formal duration that is constant and represents a constraint for the actual duration of execution. real-time t start t end P rocessing 1 and provides a mathematical framework for presenting strategies that explore concurrency of implementations. It also allows deterministic schedulability analysis. PTIDES structures real-time software as an interconnection of components communicating using timestamped events.

Figure 1.5 (taken from [ELM + 12]) illustrates the PTIDES workflow.

Figure 1.5 -PTIDES Code Generation and Analysis Workflow

The PTIDES design environment is an extension of the Ptolemy II framework [START_REF] Liu | The ptolemy II framework for visual languages[END_REF], which supports modeling, simulation, and design of systems using mixed models of computation. The physical part of the system can be modeled in the continuous domain. The simulation can be instantiated with different ODE solvers that suit diverse time scales present in the model. PTIDES models define the functional and temporal interaction of distributed software components, the networks that bind them together, sensors, actuators, and physical dynamics. Simulation can be done on such models, such that functionality and timing can be tested. In particular, to get a picture of the temporal behavior of a particular implementation of a model, each actor can be endowed with a platform-dependent execution time, and simulation can be performed to determine whether real-time deadlines can be met for a given set of inputs.

Lustre

Lustre [START_REF] Halbwachs | Programming and verifying real-time systems by means of the synchronous data-flow language LUSTRE[END_REF] is a synchronous dataflow language used for the development of reactive systems, that is, systems that continuously interact with their environment. The behavior of a Lustre program is a sequence of reactions consisting in reading the current inputs, computing the current outputs, and updating the internal state of the program. Lustre is based on the synchrony hypothesis [START_REF] Halbwachs | Synchronous programming of reactive systems[END_REF]: A reaction is often said to take no time. In other words, this means that a given system is faster than its environment.

A Lustre program consists in a set of nodes operating on flows of values (inputs and outputs are described by their flows of values along with time). The synchronous dataflow approach consists in adding a time dimension to the dataflow model. This is done by associating time with the rate of dataflow, that is, the manipulated entities can be interpreted as function of time. For instance, given a variable or an expression x, it represents an infinite sequence of values (x 0 , . . . , x n , . . .), x n being the value of x at the logical time instant n, that is, at the n-th reaction of the program. The above program defines a node that takes two Boolean inputs X and Y, and returns the negation of "X and Y". It expresses the following relation:

For any instant t, Z t = not (X t and Y t)

Contribution

Nowadays, real-time systems are ubiquitous in several application domains, and such an emergence led to an increasing need of performance: resources, availability, concurrency, etc. This expansion initiates a shift from the use of single processor based hardware platforms, to large sets of interconnected and distributed computing nodes. Moreover, it prompts the birth of a new family of systems that are intrinsically distributed, namely, Networked Embedded Systems. Such an evolution stems from an increase in complexity of real-time software embedded on such platforms (e.g. electronic control in avionics and automotive domains [START_REF] Robert | This car runs on code[END_REF]), and the need to integrate formerly isolated systems [START_REF] Kopetz | An integrated architecture for dependable embedded systems[END_REF] so that they can cooperate as well as share resources improving thus functionality and reducing costs. To deal with such complexity, the community of safety critical systems often restricts its scope to predictable systems, which are represented with domain specific models (e.g. periodic tasks, synchronous systems, timedeterministic systems) for which the range of possible executions is small enough to be easily analyzed, allowing the pre-computation of optimal control strategies. Networked Embedded Systems usually describe a set of real-time systems, distributed across several platforms, and interacting through a network. Because of their adaptive behavior, the standard practice when implementing such systems is not to rely on models for pre-computation of execution strategies but rather to design systems dynamically adapting at runtime to the actual context of execution. Such approaches, however, do not offer any formal guarantee of timeliness. Also, the lack of a priori knowledge on system behavior leaves also little room for static optimization.

In this thesis, we propose a rigorous design flow intended for building distributed real-time applications using the BIP Framework. BIP [BBB + 11b] (Behavior, Interaction, Priority) is a model-based and component-based framework where systems consist of components represented as timed automata that may synchronize on particular actions to coordinate their activities. Particularly, we investigate timed automata based models in order to study the behavior of a given system with some imposed timing constraints when deployed in a distributed environment.

Knowledge Based Optimization of

In Chapter 3, we propose an intermediate model more appropriated for the representation of distributed real-time systems. It provides details on how the implementation of a system with multiparty interactions can be derived by explicitly expressing the ongoing communication mechanism. This model is obtained using model transformations that are in partly based of the notion of conflicting interactions. In other words, in a distributed context components may compete on the same resources at the same time. Thus, any distributed implementation must preserve the overall system consistency by ensuring mutual exclusion in such cases. In fact, conflicts are hard to characterize for real life case studies and their computation is based on over-approximation. Chapter 4 proposes a knowledge based optimization in order to optimize the computation of the conflicting interactions set.

Communication Delays

Chapter 5 tackles the communication delays problem inherent to distributed real-time systems. This is achieved by considering additional delays between the decision to execute an interaction and its actual execution. These delays result from the transmission delays between the component responsible for such a decision and the components involved in the interaction, and may have a huge impact in the satisfaction of timing constraints in real-time. This will particularly help to anticipate the execution of interactions at least some delay beforehand, corresponding to the actual worst estimation of communication delays of a given platform, which will alleviate the effect of those delays on the system behavior. Indeed, such delays may introduce behavioral flaws (e.g. deadlocks) when dealing with arbitrary timing constraints (i.e. no restriction to the non-decreasing deadlines case as in [START_REF] Triki | Implémentations distribuées des systèmes temps-réel à base de composants)[END_REF]). The proposed approach introduces a semantics based on partial states of the system components and formalizes in a precise way the effect of the delays in this context. It also provides practical means for enforcing system correctness in their presence.

Clock Drift

The verification of real-time systems against some considered properties relies on the fact that clocks are perfectly synchronous, that is, clocks advance at the same rate, which is not the case in practice. Clocks are in fact implemented using oscillators and counter registers, thus, their precision depend highly on the quality of the oscillators and parameters of their underlying environment (temperature, humidity, etc.). Chapter 6 studies the effect of this hardware imperfections by breaking the perfect clocks assumption. More precisely, this problem is formulated as a robustness problem, i.e., does the system still satisfies the specification when subject to different kind of perturbations (in our case clock imperfection). First, a timed automata model for distributed real-time system with drifting clocks is introduced. Thereafter, we revisit the robustness by proposing a strategy that allows to have "similar" or close execution scenarios in the latter and the system with perfect clocks.

Outline

The rest of this thesis is structured as follows:

• Part I introduces all the preliminaries and includes the following chapters:

-Chapter 2 gives formal definitions of timed transition systems, timed automata, their semantics and properties.

-Chapter 3 presents an intermediate timed automata based model for the representation of distributed real-time systems. It also tackles two important constraints related the distributed real-time context.

• Part II includes our contributions. It consists of the following chapters:

-Chapter 4 proposes a knowledge based optimization for systems modeled using the approach of Chapter 3.

-Chapter 5 tackles the problem of communication delays inherent to distributed real-time systems by proposing a complete formalization of the latter through a new semantics more suited for distributed real-time executions. It also provides different methods for the verification of systems behavior against deadlock freedom.

-Chapter 6 investigates the clock drift problem and revisits the robustness approach when studying systems with clock imperfections.

-Chapter 7 gives an overview of the BIP toolbox and the accomplished implementation.

It also presents the experimental results on different case studies

• Part III concludes the dissertation and includes the following chapter:

-Chapter 8 concludes with an overview of the accomplished work as well as some interesting perspectives.

Timed Transition Systems

Transition systems provide a general and convenient method for modeling systems and have been used frequently to model the behavior of software and hardware systems. They define graphs where nodes represent the possible states (potentially infinite) of the system, and edges model transitions, that is, state changes. A state encodes all the relevant information at a certain instant, whereas a transition describes how the system evolves between two states. Nowadays, several variants of transition system formalisms have been proposed. For instance, a labeled transition system is a transition system where the set of transitions is labeled by actions. In this thesis, we use Timed Transition Systems (TTS) to explicitly model the effect of time passage (besides the actions) on the states of the system. Formally, it is defined as follows:

Definition 2.1.1 (Timed Transition System). A timed transition system is a tuple T = (Q, q 0 , Σ ∪ K, →) such that Q is a set of states, q 0 ∈ Q is the initial state, Σ is a set of actions, K is a time domain and →⊆ Q × (Σ ∪ K) × Q is the transition relation.
Consequently, we distinguish two types of transition:

• action step σ -→ for σ ∈ Σ and we write q

σ -→ q ′ . • time step d -→ for d ∈ K and we write q d -→ q ′ .
We write q d,σ --→ q ′′ if there exists q ′ ∈ Q such that q d -→ q ′ σ -→ q ′′ . We say that q ′ is a time successor of q.

Given a TTS T = (Q, q 0 , Σ ∪ K, →), a run ϱ of T (also called execution sequence), is a path that alternates action steps and time steps, that is:

ϱ = s 0 σ 0 s 1 σ 1 s 2 • • • such that s i ∈ Q, s i σ i -→ s i+1 , and i ∈ Z ≥0 , σ i ∈ Σ ∪ K
We denote by time(ϱ, i) the total elapsed time until point i, that is, j<i σ j such as σ j ∈ K. In the same way, time(ϱ) represents the total elapsed time during ϱ, and is defined to be the limit of time(ϱ, i) if the sequence converges and ∞ otherwise. A run ϱ is said to be an initial run if s 0 = q 0 .

A state q ∈ Q is called reachable if there exists an initial run that leads to state q. We put Reach(T) to denote the set of all reachable states of T.

Comparing Timed Transition Systems

In this thesis, we use the concept of (bi)simulation [START_REF] Holmer | Deciding properties of regular real time processes[END_REF] in order to attest the similarity of timed transition systems.

Definition 2.1.2 (Simulation). Given two TTS T

1 = (Q 1 , q 0 1 , Σ∪K, → 1) and T 2 = (Q 2 , q 0 2 , Σ∪ K, → 2), a simulation relation from T 1 to T 2 is a binary relation R ⊆ Q 1 × Q 2 such that: • ∀(q 1 , q 2) ∈ R, ∀σ ∈ Σ, q 1 σ -→ 1 q ′ 1 ⇒ ∃q ′ 2 ∈ Q 2 such that q 2 σ -→ 2 q ′ 2 ∧ (q ′ 1 , q ′ 2) ∈ R • ∀(q 1 , q 2) ∈ R, ∀d ∈ K, q 1 d -→ 1 q ′ 1 ⇒ ∃q ′ 2 ∈ Q 2 such that q 2 d -→ 2 q ′ 2 ∧ (q ′ 1 , q ′ 2) ∈ R
T 2 simulates T 1 , denoted by T 1 ⊑ R T 2 means that T 2 can do everything T 1 does. Notice that if T 1 ⊑ R T 2 and T 2 ⊑ R T 1 , we say that T 1 and T 2 are bisimilar, denoted by

T 1 ∼ R T 2 .
In some cases, this notion of simulation is refined in order to consider only a part of a system behavior. This is usually the case when a system performs internal (or silent) actions not visible by external observers. This variant of simulation is called weak simulation.

Definition 2.1.3 (Weak Simulation). Given two TTS

T 1 = (Q 1 , q 0 1 , Σ ∪ {τ } ∪ K, → 1) and T 2 = (Q 2 , q 0 2 , Σ ∪ {τ } ∪ K, → 2)
, where τ actions represent silent (unobservable) actions, a weak simulation relation from

T 1 to T 2 , denoted T 1 ⊑R T 2 , is a binary relation R ⊆ Q 1 × Q 2 such that: • ∀(q 1 , q 2) ∈ R, q 1 τ -→ 1 q ′ 1 ⇒ ∃q ′ 2 ∈ Q 2 such that q 2 τ * -→ 2 q ′ 2 ∧ (q ′ 1 , q ′ 2) ∈ R • ∀(q 1 , q 2) ∈ R, ∀σ ∈ Σ, q 1 σ -→ 1 q ′ 1 ⇒ ∃q ′ 2 ∈ Q 2 such that q 2 τ * στ * ----→ 2 q ′ 2 ∧ (q ′ 1 , q ′ 2) ∈ R • ∀(q 1 , q 2) ∈ R, ∀d ∈ K, q 1 d -→ 1 q ′ 1 ⇒ ∃q ′ 2 ∈ Q 2 such that q 2 τ * dτ * ---→ 2 q ′ 2 ∧ (q ′ 1 , q ′ 2) ∈ R
We say that T 1 and T 2 are observationally equivalent, denoted T 1 ∼R T 2 , if it exists a weak simulation from T 1 to T 2 and vice versa.

In chapter 6, we will introduce an even weaker notion of simulation that characterizes the degree of closeness (in term of delays) between two timed systems.

Reactive Timed Systems

Reactive systems are supposed to execute forever, that is, they are supposed to act infinitely often. We refer to this characteristic as the requirement of progress [START_REF] Tripakis | Verifying progress in timed systems[END_REF]. Particularly, a timed system evolves either through an action step or by letting the time pass (time step). This evolution imposes thus two requirements of progress: discrete progress (resp. time progress) meaning that a timed system should be able to perform action steps (resp. time steps) infinitely often. In the physical world however, no matter how fast a system can evolve, it cannot be infinitely fast. This induces the following constraints on the progress of time:

1. Only a finite number of actions can happen in a finite amount of time

Only a bounded number of actions can happen in zero time

Time Progress (Zeno runs & Timelocks)

We distinguish two types of anomalies that infringe the time progress in a timed system namely zeno runs and timelocks. A run ϱ is called zeno if it is an infinite run and if time(ϱ) ̸ = ∞. Such a run transgresses the first point of the time progress presented above. Timelocks are states from which all infinite runs starting from these states are zeno.

Discrete Progress (Deadlocks)

States violating the discrete progress are called deadlock states. Formally, a state is said to be deadlock if no action can be executed from that state nor from any of its time successors.

Any model of a reactive timed system should properly capture the behavior of the latter. Particularly, the corresponding model must react infinitely often, that is, it must not block time or execute an unbounded number of actions in zero time. In that sense, we can say that deadlocks and timelocks are modeling errors that needs to be cleared, either during the modeling process (which is tedious for large scale systems) or by providing verification methods that guarantee their absence.

Timed Systems Syntax and Semantics

Clocks

In order to represent and measure the dense time domain, we rely on positive real valued variables, also known as clocks. Clocks are positive real variables increasing synchronously (with the same rate) in a given system. They are used to express timing constraints to impose a certain dynamics on the execution of a timed system.

Given a finite set of clocks X , we define the valuation function υ : X → R ≥0 assigning to each clock x a positive real value υ(x). We put R X ≥0 to denote the set of all valuations. For a valuation υ ∈ R X ≥0 and d ∈ R ≥0 , υ + d is the valuation satisfying (υ + d)(x) = υ(x) + d, while for a subset of clocks r ⊆ X , υ[r] is the valuation obtained from υ by resetting clocks of r, that is, υ[r](x) = 0 for x ∈ r and υ[r](x) = υ(x) otherwise. We write 0 for the valuation that assigns 0 to every clock.

An atomic clock constraint is an expression of the form:

c := true | x#k | x -y#k
where x and y are clocks in X , # ∈ {<, ≤, =, ≥, >}, and k ∈ Z. A clock constraint is a conjunction of atomic clock constraint, that is:

c := true | x#k | x -y#k | c 1 ∧ c 2 (2.1)
with c 1 and c 2 being atomic clock constraints. We write C(X) for the set of clock constraints over X . Given a clock constraint c and a valuation υ, we say that υ satisfies c, denoted υ |= c, if all constraints are satisfied when each x ∈ X is replaced by υ(x). We also consider the classical backward and forward operators on clock constraints:

Backward : υ |= ↙ c ⇔ ∃d ∈ R ≥0 . (υ + d) |= c Forward : υ |= ↗ c ⇔ ∃d ∈ R ≥0 . (υ -d) |= c
Additionally, we also use another variant of the backward and forward operators considering lower bounds l ∈ Z ≥0 and upper bounds u ∈ Z ≥0 ∪ {+∞}:

υ |= ↙ u l c ⇔ ∃d ∈ R ≥0 , l ≤ d ≤ u. (υ + d) |= c υ |= ↗ u l c ⇔ ∃d ∈ R ≥0 , l ≤ d ≤ u. (υ -d) |= c

Timed Components Syntax and Semantics

In this thesis, components are timed automata and systems are compositions of timed automata with respect to multiparty interactions. The timed automata we use are essentially the ones from [START_REF] Alur | A theory of timed automata[END_REF], however, slightly adapted to embrace a uniform notation throughout the dissertation.

Definition 2.2.1 (Timed Component).

A component is a tuple B = (L, ℓ 0 , X , A, E, I), where:

• L is a finite set of locations, with ℓ 0 ∈ L is the initial location,

• X is a finite set of clocks,

• A is a finite set of actions

• E ⊆ L × (A × C(X) × 2 X
) × L is a finite set of transitions labeled with an action, a clock constraint (guard), and a set of clocks to be reset,

• I : L → C(X) is the function assigning an invariant to each location. Notice that invariants are restricted to conjunction of atomic clock constraints of the form x ≤ k.

Throughout this thesis, we consider deterministic timed components, that is, at a given location ℓ and for a given action a, there is up to one outgoing transition from ℓ labeled by a.

A transition e = (ℓ, (a, g, r), ℓ ′) ∈ E is also denoted by ℓ a,g,r ---→ ℓ ′ . We write source(e), target(e), action(e), guard(e) and reset(e) for ℓ, ℓ ′ , a, g and r, respectively. We also denote by Φ(a, ℓ) the guard of the transition labeled by a and outgoing from ℓ if it exists, and false otherwise. It is formalized as follows: A,E,I) is defined such that:

Φ(a, ℓ) = g, if ∃e = (ℓ, a, g, r, ℓ ′) ∈ E false, otherwise
• L = {ℓ 0 , ℓ 1 }, • X = {x}, • A = {a, b}, • E = {e 1 , e 2 }
where

-e 1 = (ℓ 0 , a, 2 ≤ x ≤ 4, ∅, ℓ 1) -e 2 = (ℓ 1 , b, true, {x}, ℓ 0)
• I assigns the following invariants for locations: I(ℓ 0) = x ≤ 4 and I(ℓ 1) = true Notice that when a clock constraint (respectively an invariant is not shown on a transition (respectively location) it is interpreted as true. This is the case for transition e 2 and location ℓ 2 . A,E,I) is given by the timed transition system T = (Q, q 0 , A ∪ R >0 , →) where:

ℓ 0 x ≤ 4 B ℓ 1 a 2 ≤ x ≤ 4 b x := 0
• Q = L × R X
≥0 denotes the states of B with q 0 = (ℓ 0 , 0) being the initial state,

• →⊆ Q × (A ∪ R >0) × Q denotes the set of transitions between states according to the rules:

-(ℓ, υ) a -→ (ℓ ′ , υ[r]) if ℓ a,g,r ---→ ℓ ′ , υ |= g, and υ[r] |= I(ℓ ′) (action step) -(ℓ, υ) d -→ (ℓ, υ + d) if ∀d ′ ∈ [0, d], υ + d ′ |= I(ℓ) (time step)
Notice that since the invariants are restricted to conjunctions of upper bound atomic constraints, the time step can be simplified to:

(ℓ, υ) d -→ (ℓ, υ + d) if υ + d |= I(ℓ)
In this thesis, we always assume components with well formed guards, that is, for a transition ℓ a,g,r

---→ ℓ ′ , υ |= g ⇒ υ |= I(ℓ) ∧ υ[r] |= I(ℓ ′) for any υ ∈ R X ≥0 .
The rule on action step becomes then:

(ℓ, υ)

a -→ (ℓ ′ , υ[r]) if ℓ a,g,r ---→ ℓ ′ and υ |= g
We define the predicate Enabled(a) characterizing states (ℓ, υ) from which an action a is enabled, that is, such that (ℓ, υ) a -→ (ℓ ′ , υ ′). It is formalized as follows:

Enabled(a) = ℓ∈L at(ℓ) ∧ Φ(a, ℓ)
where at(ℓ) is true on states whose location is ℓ. In the same way, we define the predicates Enabled ↙ (a), Enabled ↙ u l (a), Enabled ↗ (a) and Enabled ↗ u l (a) describing, respectively, states from which an action a can be executed after some time step, some bounded time step, states that are time successors or bounded time sucessors of states satisfying Enabled(a) (see Figure 2.2). These predicates can be formally written as follows:

Enabled ↙ (a) = ℓ∈L at(ℓ) ∧ ↙ Φ(a, ℓ) Enabled ↙ u l (a) = ℓ∈L at(ℓ) ∧ ↙ u l Φ(a, ℓ) Enabled ↗ (a) = ℓ∈L at(ℓ) ∧ ↗ Φ(a, ℓ) Enabled ↗ u l (a) = ℓ∈L at(ℓ) ∧ ↗ u l Φ(a, ℓ) time g a time ↙ g a time ↙ u l g a l u time ↗ g a time ↗ u l g a l u Figure 2.2 -
U rgent(B) = ℓ∈L at(ℓ) ∧ urg(ℓ) (2.2)
where urg(ℓ) is a clock constraint characterizing the valuations from which time cannot progress with respect to the location invariant I(ℓ), that is, assuming that

I(ℓ) = m i=1 x i ≤ k i then urg(ℓ) = m i=1 x i ≥ k i .
• • • e m such that ∀i ∈ {1, • • • , m}, target(e i) =
source(e i+1) (the addition i+1 is modulo m). B is called strongly non-zeno if for every structural loop there exists a clock x and some 0 ≤ (i, j) ≤ m such that:

• x is reset in step i, that is, x ∈ reset(e i)
• x is bounded from below in step j, that is, (x < 1) ∧ guard(e j) = false Intuitively, this definition implies that at least 1 time unit elapses at each loop of B.

Lemma 2.2.1 ([Tri99]). If B is strongly non-zeno then every infinite run of B is non-zeno

The following corollary is an immediate consequence of lemma 2.2.1.

Corollary 2.2.1. Given a timed component B, if B is strongly non-zeno then it is timelock free.

Corollary 2.2.1 highlights an interesting fact of strong non-zenoness. It discharges from the trouble of checking time progress. In particular, checking the progress of a timed system is reduced to checking its deadlock freedom. Definition 2.2.4 (Deadlocks). Given a timed component B. We say that a state (ℓ, υ) of B is a deadlock if and only if no action can be executed from this state or any of its time successors, that is:

¬ ∃a ∈ A. (ℓ, υ) a -→ (ℓ ′ , υ ′) ∨ ∃d > 0. (ℓ, υ) d -→ (ℓ, υ + d) a -→ (ℓ ′ , υ ′)
Deadlock states are characterized by the following predicate:

ℓ∈L at(ℓ) ∧ ¬ a∈A ↙ Enabled(a) ∧ I(ℓ)
Because of well formed guards, the above can be simplified into:

a∈A ¬Enabled ↙ (a) (2.3)
A deadlock (ℓ, υ) is called an action-time-lock when no action can execute nor time can progress from (ℓ, υ), that is:

¬ ∃a ∈ A. (ℓ, υ) a -→ (ℓ ′ , υ ′) ∨ ∃d > 0. (ℓ, υ) d -→ (ℓ, υ + d)
Action-time-locks verifies the following predicate:

a∈A ¬Enabled(a) ∧ ℓ∈L at(ℓ) ∧ urg(ℓ) (2.4)

Timed Systems

The common practice in component-based timed systems is to have several components executing in parallel while their clocks increase synchronously. Moreover, it is often mandatory to restrict the components behaviors so as to achieve a given global property. This is usually achieved by coordinating the execution of actions in components using synchronization mechanisms. In what follows, components communicate by means of multiparty interactions. A multiparty interaction is a rendez-vous synchronization between actions of a fixed subset of components. It takes place only if all the participants agree to execute the corresponding actions. Given n components B i , with disjoint sets of actions A i , an interaction is a subset of actions α ⊆ ∪ 1≤i≤n A i containing at most one action per component, that is, α ∩ A i is either empty or a singleton {a i }. Thus, an interaction α can be put in the form α = {a i } i ∈ I with I ⊆ {1, • • • , n} and a i ∈ A i for all i ∈ I. We denote by part(α), the set of components participating in α, that is, part(α) = {B i } i∈I .

Definition 2.2.5 (Timed System). Given n components

B i = (L i , ℓ 0 i , X i , A i , E i , I i) with L i ∩ L j = ∅, A i ∩ A j = ∅,
and X i ∩ X j = ∅ for any i ̸ = j, the composition with respect to the interaction set γ, denoted by S = γ(B 1 , • • • , B n), is defined by the timed component (L, ℓ 0 , X , γ, E γ , I) where:

• L = L 1 × • • • × L n • ℓ 0 = (ℓ 0 1 , • • • , ℓ 0n), • X = X 1 ∪ • • • ∪ X n , • I(ℓ) = I 1 (ℓ 1) ∧ • • • ∧ I n (ℓ n), for ℓ = (ℓ 1 , • • • , ℓ n),
• E γ is defined by:

E γ =    ℓ α,g,r ---→ℓ ′ for α={a i } i∈I ∈γ ℓ=(ℓ 1 ,••• ,ℓ n)∈L, ℓ ′ =(ℓ ′ 1 ,••• ,ℓ ′ n)∈L for i̸ ∈I, ℓ ′ i =ℓ i , and for i∈I, ℓ i a i ,g i ,r i ----→ℓ ′ i and g= i∈I g i , r=∪ i∈I r i   
In a composition S of n components B i , an action a i can execute only as part of an interaction α such that a i ∈ α, that is, along with the execution of all other actions a j ∈ α. This corresponds to the usual notion of multiparty interactions. In practice, we do not explicitly build compositions of timed components as presented in Definition 2.2.5. We rather interpret their semantics by evaluating enabled interactions based on current states of components. Property 2.2.1 (Semantics of a Composition). Given a set of components {B 1 , • • • , B n } and an interaction set γ, the semantics of the composite component S = γ(B 1 , • • • , B n) with respect to the set of interaction γ, is defined by the timed transition system T g = (Q g , q 0g , γ ∪ R >0 , → γ) where:

• Q g = L × R X ≥0 is the set of global states, where L = L 1 × • • • × L n and X = n i=1 X ⟩ . We write a state q = (ℓ, υ) where ℓ = (ℓ 1 , • • • , ℓ n) ∈ L is a global location and υ = (υ 1 , • • • , υ n) ∈ R X
≥0 is a global clock valuation. The initial state is q 0 = (ℓ 0 , 0),

• γ is the set of interactions,

• → γ is the set of transitions defined by the rules:

-Interaction step:

α = {a i } i∈I ∈ γ, ∀i ∈ I.(ℓ i , υ i) a i -→ γ (ℓ ′ i , υ ′ i), ∀i / ∈ I.(ℓ i , υ i) = (ℓ ′ i , υ ′ i) (ℓ, υ) α -→ γ (ℓ ′ , υ ′) -Time step: d ∈ R >0 , ∀i ∈ {1, • • • , n}.υ i + d |= I i (ℓ i) (ℓ, υ) d -→ γ (ℓ, υ + d)
To simplify notations, predicates defined on individual components B i are straightforwardly interpreted on global states (ℓ, υ) of the composition by considering the projection (ℓ i , υ i) of (ℓ, υ) on B i . For instance, at(ℓ i) evaluates to true on (ℓ, υ)

iff ℓ ∈ L 1 , × • • •×L i-1 ×{ℓ i }×L i+1 ו • •×L n .
Similarly, clock constraints of component B i are applied to clock valuation functions of the composition by restricting υ to clocks in X i of B i . This allows to write the predicate Enabled(α), characterizing states (ℓ, υ) from which an interaction α = {a i } i∈I ∈ γ can be executed, as:

Enabled(α) = i∈I Enabled(a i), (2.5)
= i∈I ℓ i ∈L i at(ℓ i) ∧ Φ(a i , ℓ i), (2.6)
= ℓ∈L ℓ=(ℓ 1 ,••• ,ℓn) at(ℓ) ∧ i∈I a i ∈α Φ(a i , ℓ i) (2.
Enabled ↙ (α) = ℓ∈L ℓ=(ℓ 1 ,••• ,ℓn) at(ℓ) ∧ ↙ i∈I a i ∈α Φ(a i , ℓ i) Enabled ↙ u l (α) = ℓ∈L ℓ=(ℓ 1 ,••• ,ℓn) at(ℓ) ∧ ↙ u l i∈I a i ∈α Φ(a i , ℓ i) Enabled ↗ (α) = ℓ∈L ℓ=(ℓ 1 ,••• ,ℓn) at(ℓ) ∧ ↗ i∈I a i ∈α Φ(a i , ℓ i) Enabled ↗ u l (α) = ℓ∈L ℓ=(ℓ 1 ,••• ,ℓn) at(ℓ) ∧ ↗ u l i∈I a i ∈α Φ(a i , ℓ i)
Note that in general forward and backward operators do not distribute over conjunction, which prevent us from further expanding the above predicates, that is,for a clock constraint c = c 1 ∧ c 2 , we have:

⋄c = ⋄(c 1 ∧ c 2) ̸ = ⋄c 1 ∧ ⋄c 2 with ⋄ ∈ { ↙ , ↗ }.
The definitions of deadlocks and action-time-locks are also trivially extended to composition of timed components. Deadlocks can be characterized as follows:

ℓ=(ℓ 1 ,••• ,ℓ i)∈L at(ℓ) ∧ α∈γ ¬ ↙ Enabled(α) ∧ 1≤i≤n I i (ℓ i)
and action-time-locks by:

α∈γ ¬Enabled(α) ∧ 1≤i≤n ℓ i ∈L i at(ℓ i) ∧ urg(ℓ i)

Example

α 1 = {init 0 , init 1 }, α 3 = {start 0 , start 1 }, α 5 = {take, process 1 }, α 7 = {f ree, end 1 },
and similar interactions α 2 , α 4 , α 6 , α 8 for task T 2 , as shown by connections on Figure 2.3. The controller is responsible for firing the execution of each task. First, it non-deterministically initializes one of the two tasks, i.e., executes α 1 or α 2 , and then releases it through interaction α 3 or α 4 . Tasks perform their processing independently of the controller, after being granted an access to the shared resource (α 5 or α 6). When finished, a task releases the resource (interactions α 7 or α 8) and goes back to its initial location. An example of execution sequence of this system is given below. Valuation v of clocks x, y, and z are represented as

ℓ 1 0 ℓ 1 1 C init0 z > 25 start0 z := 0 ℓ 2 0 ℓ 2 1 ℓ 2 2 x ≤ 30 T1 ℓ 2 3 x ≤ 4 init1 start1 x := 0 process1 10 ≤ x ≤ 30, x := 0 end1 x ≤ 4 ℓ 3 1 ℓ 3 0 ℓ 3 2 y ≤ 30 T2 ℓ 3 3 y ≤ 4 init2 start2 y := 0 process2 10 ≤ y ≤ 30, y := 0 end2 y ≤ 4 ℓ 4 0 R ℓ 4 1 take free init2 start2 end2 process2 init1 start1 end1 process1 take free init0 start0 α5 α6 α1 α2 α3 α4 α7 α8 Figure 2.3 -Task Manager tuples (υ(x), υ(y), υ(z)): ((ℓ 1 0 , ℓ 2 0 , ℓ 3 0 , ℓ 4 0), (0, 0, 0)) 26 -→ γ ((ℓ 1 0 , ℓ 2 0 , ℓ 3 0 , ℓ 4 0), (26, 26, 26)) α1 -→ γ ((ℓ 1 1 , ℓ 2 1 , ℓ 3 0 , ℓ 4 0), (26, 26, 26)) α3 -→ γ ((ℓ 1 0 , ℓ 2 2 , ℓ 3 0 , ℓ 4 0), (0, 26, 0)) 10 -→ γ ((ℓ 1 0 , ℓ 2 2 , ℓ 3 0 , ℓ 4 0), (10, 36, 10)) α5 -→ γ ((ℓ 1 0 , ℓ 2 3 , ℓ 3 0 , ℓ 4 1), (0, 36, 10)) 2 -→ γ ((ℓ 1 0 , ℓ 2 3 , ℓ 3 0 , ℓ 4 1), (2, 38, 12)) α2 -→ γ ((ℓ 1 1 , ℓ 2 3 , ℓ 3 1 , ℓ 4 1), (2, 38, 12))

Timed Systems with Data

Timed models introduced in the previous section focuses on the timing behavior of a given system. In order to achieve a higher degree of expressiveness, we extend these models with data variables. Data allows additional representations of complex behavior. Similarly to clock variables, they may appear in the guards of transitions as additional conditions and may be updated when transitions fire.

Definition 2.3.1 (Guards on clocks and Data

). Let X be a set of clock variables and D be a set of data variables. We denote by G(X , D) the set of guards induced by the following grammar:

g := g x | g d | g 1 ∧ g 2
where g x ∈ C(X), g d is a predicate on a subset of data variables of D, and g 1 , g 2 are guards over clocks and/or data variables.

We extend the notion of valuation to data variables in the following manner:

• Valuations assign values to data variable (in addition to clocks),

• The satisfaction of a valuation to a constraint is straightforwardly extended to data variables,

• Data variables are insensitive to the progress of time, that is, for k ∈ D and

d ∈ R >0 , (v + d)(k) = (v)(k),
• Update operations are also defined for data variables using transfer functions

Definition 2.3.2 (Timed Component with Data). A timed component with data is a tuple

B d = (L, ℓ 0 , X , D, A, E, {f e } e∈E , I) such that: • L, ℓ 0 , X , A and I are defined as in Definition 2.2.1, • D is a finite set of data variables, • E ⊆ L × (A × G(X , D) × 2 X) × L
is a finite set of labeled transitions with an action, an extended guard, and a set of clocks to be reset. For each transition e ∈ E, we include the transfer function f e that updates elements of D. Remark 2.3.1. Notice that extending a timed component with data will result in a restriction of the behavior of the initial timed components since extending guards to data variables will only constrain the execution of transitions. Consequently, for a timed component with data A,E,I) represents an abstraction of the latter.

ℓ 0 x ≤ 4 B ℓ 1 a 2 ≤ x ≤ 4 ∧ k <= 5 k := k + 10 b x := 0 c k > 5 ∧ 1 < x ≤ 4 k := k -3 ∧ x := 0
B d = (L, ℓ 0 , X , D, A, E, {f e } e∈E , I), the timed component B = (L, ℓ 0 , X ,

Definition 2.3.3 (Timed System with Data). Given n components B

d i = (L i , ℓ 0 i , X i , D i , A i , E i , {f e } e∈E i , I i)
with disjoint set of data and an interaction set γ, the composition

S d = γ(B d 1 , • • • , B dn)
with respect to the interaction set γ is defined by the timed component (L, ℓ 0 , X , D, γ, E γ , {f e } e∈γ , I) where:

• L, ℓ 0 , X , γ and I are defined as in Definition 2.2.5.

• D = D 1 ∪ • • • ∪ D n • E γ is

straightforwardly extended by considering guards on data variables and the application of transfer functions on executions of interactions

The semantics of timed system with data extends the semantics of Property 2.2.1 in the sense that an interaction takes place if the guards on data variables also evaluates to true. Also, interactions executions apply the underlying transfer functions of the corresponding components transitions. Also, data variables are initialized based on their types. For instance, integer and real variables are initialized to 0. For other data types, one needs to define their initial valuation.

In what follows, when referring to timed component or timed system we imply by that extended timed component or extend timed systems, unless explicitly stated.

Verification of Timed Systems

Symbolic Reachability

The semantics of timed systems as presented in Property 2.2.1 defines states as pairs of locations configurations and clock valuations. By considering a continuous time domain (R ≥0 here), the resulting timed transition system yields an infinity of states. Consequently, the usual practice is to rely on a symbolic representation of states to make this state space finite. A symbolic state is defined by a pair (ℓ, ξ) where ℓ is a location and ξ is a zone, a set of clock valuations defined by clock constraints (as defined in 2.1). Consequently, the set of reachable states of a timed component B (system) can be put on the form:

Reach(B) = j∈J at(ℓ j) ∧ ξ j
Given a timed component with data B d and its abstraction of data B, we have Reach(B d) ⊆ Reach(B) when considering the projection of states on locations and clocks only. This means that Reach(B) can be used as an over-approximation of the reachable state of the timed component with data B d .

Compositional Verification

Standard verification techniques such as model checking are based on explicit exploration and exhaustive enumeration of all the reachable symbolic states of a given system. The main issue with this method is the combinatorial explosion when considering large scale systems. Compositional verification have been introduced to cope with state explosion problem, and thus achieves scalability when verifying large scale systems. This approach is based on the concept of divide-and-conquer in order to break up the verification problems into smaller subsequent problems. Compositional verification have been extensively studied under different manners e.g., assume-guarantee reasoning [Lam77, OG76], contract-based verification [BCP07, BFM + 08], deductive verification [START_REF] Manna | Temporal verification of reactive systems -safety[END_REF], etc. In this thesis, we choose to use a deductive compositional verification method that exploits compositionality for analysis of timed systems using invariants. Invariants are over-approximations of the set of reachable states of the system as opposed to the exact reachability analysis in model-checking. The key principle of this approach is the computation of a global invariant as the conjunction of other invariants (components invariants, interaction invariants, etc.).

Let S = γ(B 1 , • • • , B n) be a system composed of n timed components B i synchronizing through the interaction set γ, and let ψ be a property of interest. Assuming that GI(S) is the global invariant for this system, the verification rule of ψ can be intuitively written as follows:

GI(S) ⇒ ψ γ(B 1 , • • • , B n) |= □ψ where the notation "γ(B 1 , • • • , B n) |= □ψ" is to be read as "ψ holds in every reachable state of the composition γ(B 1 , • • • , B n)".
Usually when verifying timed systems, the common practice is to verify the system against some given property (safety property, liveness, deadlock, etc.). These properties allows to assert that a given model satisfies the specifications. We use satisfiability checking to verify that the global invariant of a system implies properties of interest. Particularly, for a system S characterized by the global invariant GI(S), and given a property ψ, we check the unsatisfiability of GI(S) ∧ ¬ψ. In the previous chapter, we presented a timed automata based model for representing timed systems with multiparty interactions. The semantics of such model is based on the notion of global states, that is, interactions executions are based not only on the state of participating components but on the states of all components of the system. Moreover, this type of model does not provide any details on how an implementation of multiparty interactions can be derived. Conversely, a distributed system can be seen as a collection of loosely coupled independent components communicating by explicit messages passing (components state may be known only through communication). In order to reduce the gap between the model presented in the previous chapter and its concrete implementation, we propose an intermediate model more suited for the distributed real-time context, and that is obtained by applying transformation rules on the first model. The main idea is to explicitly express the ongoing communication mechanism as well as allowing interactions executions based only on their participating components. The key concept of this approach is to structure a given system in two main layers: (1) an application layer that consists of a set of distributed components and (2) a scheduling layer that is responsible for scheduling the execution of the latter. Additionally, a third layer may be needed by the scheduling layer in order to achieve global consistency.

Chapter 3

Modeling Distributed Real-Time Systems

Target Architecture

In a distributed context, we consider that components communicate through asynchronous messages passing. Consequently, each component is able either to send a message, to wait for a notification or to execute an internal computation. Our approach proposes an architecture for executing multiparty interactions as a two way handshake protocol [Tri15, TBCB15, BBJ + 12] involving asynchronous exchange of messages between distributed components and a second layer responsible for triggering interactions, the scheduling layer (see Figure 3.1). In order to evaluate the enabled interactions at a given state, distributed components are required to send their current local information (e.g. enabled actions, invariants, clock constraints, etc.) to the scheduling layer using offer messages. As offers are sent asynchronously, the scheduling layer may not have a global knowledge of the system. In fact, the latter is built from partial (local) knowledge. Additionally, in order to increase the parallelism the scheduling layer may decide to execute an interaction once it accumulates enough offers. We require that the exchange of messages is sender-triggered and not blocking, that is, each time a sender is ready to transmit the corresponding receiver is ready to receive. The class of models satisfying this restriction are called Send/Receive models.

T SR 1 C SR R SR T SR 2 Scheduling Layer o 1 n 1 o 2 n 2 o 3 n 3 o 4 n 4 o 1 n 1 o 3 n 3 o 3 n 3 o 4 n 4

Interface

In order to express the message passing mechanism, we introduce the notion of communication ports. A communication port defines the interface of a distributed components, that is how it interacts with the rest of the system. For our purpose, we distinguish three types of ports: send ports, receive ports, and unary ports. A send port is used to export data outside of the sender when sending offers, whereas a receive port imports data inside the receiver when being notified. Unary ports correspond to independent execution of a distributed component, which is formally expressed using a unary interaction (singleton). Effectively, each action of a timed component as presented in Definition 2.2.1 will correspond to a receive port in a distributed component, which is responsible for triggering the execution of the underlying action.

From Local Time to Global Time

In the timed systems model of Chapter 2, every timed component can define a set of local clocks to be used for expressing clock constraints on transitions or the allowed time progress on locations, locally. In our intermediate model, we choose to make use of global clocks. In fact, a global clock measures the absolute time elapsed since the system startup and is never reset. This approach allows to have a common timescale between the distributed components and the scheduling layer, which reduces considerably the effort when keeping track of the actual time progress since one needs to maintain only the global clock(s). Notice that any component clock x can be derived from the global clock simply by shifting its value by an amount of time that is constant between successive resets of x. Consequently, achieving the global time mechanism is done by removing local clocks from individual components and adding global clock(s) to the scheduling layer. Moreover, given a global clock g and for each local clock x, we include a variable ρ g x that stores the absolute time of its last reset with respect to g. This variable is updated each time a transition resetting x is executed. Then, the value of x can be found by the equality x = g -ρ g

x . As a result, any clock constraint c involved in a component can be expressed using clock g as follows:

c = x∈X l x ≤ x ≤ u x = x∈X l x + ρ g x ≤ g ≤ u x + ρ g x (3.1)

Conflicting Interactions and Interaction Partitioning

In a distributed context, interaction executions may occur in parallel. However, when two interactions share at least a component it is impossible to execute both interaction concurrently. Particularly, if these interactions are enabled from the same state then they are conflicting since they will compete on the same resources (shared component(s)) at the same time. In general, conflicts can be very hard to characterize for real life case studies since they depend on the reachability of particular states. In [START_REF] Triki | Implémentations distribuées des systèmes temps-réel à base de composants)[END_REF][START_REF] Triki | Automated conflict-free concurrent implementation of timed component-based models[END_REF], the computation of the conflicting interactions relies on over-approximations. It is based on a notion of potential conflicts that can be detected by simple syntactic pre-checks, as depicted in Figure 3.2, and are used to quickly exclude conflicts since two interactions that are not potentially conflicting are also not conflicting. In order to avoid a centralized scheduling and to introduce concurrency between interaction executions, we propose to decentralize the scheduling layer into several schedulers each one responsible of scheduling a subset of interactions. The purpose behind this practice is to (i) spread the workload across concurrent schedulers and as much as possible independently, and (ii) map schedulers as close as possible to the components that they concretely handle (with respect to the corresponding subset of interactions), which brings back the communication overhead between components to the same magnitude. Our work does not address interaction partitioning, nonetheless it is a crucial concern for load-balancing and for tuning the system to achieve a desired level of performance.

Definition 3.1.2 (Interaction Partition). Given an interaction set γ, a partition of γ is a set of subset {γ k } m k=1 such that γ = γ 1 ∪ • • • ∪ γ m and ∀i, j ∈ {1, • • • , m} such that i ̸ = j, γ i ∩ γ j = ∅.
Decentralizing the schedulers generates situational conflict between interactions, that is, if two interactions handled in separate schedulers (from two class of the interaction partition) are potentially conflicting, they cannot execute in parallel. We call such interactions, externally conflicting interactions. A simple solution to resolve such conflicts is to enforce a conflict-free partitioning of interactions. In spite of that, this solution will restrict the choice for distributing interactions across schedulers. Thus, another method [BBJ + 12, Tri15] is to incorporate a third layer that will arbiter the execution of potentially conflicting interactions. The latter can be represented using an additional component realizing a conflict resolution protocol (CRP). This component implements an algorithm based on the idea of messages counting technique [START_REF] Antonio Pérez | An order-based algorithm for implementing multiparty synchronization[END_REF]. This technique counts the number of times that a component participates in an interaction. Conflicts are then resolved by ensuring that each participation number is used only once, which is achieved by counting the number of the interaction offer for each component. Then, conflicts are simply resolved by comparing the offer numbers of participating components with the numbers of their last execution. On the other hand, conflicts raised from interactions of the same class, that is, handled by the same scheduler, are resolved locally by the latter.

γ = {α 1 , • • • , α 8 }, let γ 1 = {α 2×i-1 } 4 i=1 ∪ γ 2 = {α 2×i } 4
i=1 be an interaction partition. Then from Definition 3.1.1 the set of potentially conflicting interactions two-by-two is: {(α 1 , α 2); (α 3 , α 4); (α 5 , α 6); (α 7 , α 8)}. This mean that the set of conflicting interactions of the whole system is γ.

3-Layer Send/Receive Model

Let S = γ(B 1 , • • • , B n) be a timed system. Given a partition of interactions {γ k } m
k=1 , the Send/Receive model corresponding to S is based on the three following layers:

• The Distributed Component Layer consists of a transformation of timed components B i into Send/Receive components B SR i that send, asynchronously, offer messages enclosing their current state to the scheduling layer.

• The Scheduling Layer is responsible of interactions executions. Based on offers received form the Send/Receive components, it may decide or not to execute an interaction. In case of conflicts, the scheduling layer relies on the conflict resolution layer to grant or deny the execution of an interaction.

• The Conflict Resolution Layer resolves conflicts between externally conflicting interactions based on messages counting technique.

T SR 1 C SR R SR T SR 2 Sch 1 {α 1 , α 3 , α 5 , α 7 } Sch 2 {α 2 , α 4 , α 6 , α 8 } Conf lict Resolution o 1 n 1 o 2 n 2 o 3 n 3 o 4 n 4 o 1 n 1 o 2 n 2 o 3 n 3 ok 1 f ail 1 req 1 ok 1 f ail 1 req 1 o 2 n 2 o 3 n 3 o 4 n 4 ok 2 f

Send/Receive Components

The transformation of a timed component B into a Send/Receive component B SR relies on decomposing each transition of B into two transitions: (1) an offer (send) transition and (2) a notification (receive) transition. This is done by splitting each location ℓ into two locations, ℓ itself and ℓ ⊥ as shown in Figure 3.4. When at ℓ ⊥ location, the Send/Receive component is not in a "stable" state, that is, it is able only to send an offer to its respective scheduler(s). We require that offers are sent as soon as possible meaning that there is no delay when at location ℓ ⊥ . We call such location urgent location, graphically represented by a ⌣ inside the location. From a semantics point of view, an urgent location is equivalent to adding an extra clock x that is reset on all incoming edges, and having an invariant x ≤ 0 on the location as illustrated in Figure 3.5. Thus, time is not allowed to pass when the system is in such locations. An offer contains the exact variables encoding the current state of a component. It includes the following variables:

• An invariant variable of the current location invariant • A guard variable for each action (port) that is set to the guard (over clocks and data) of each transition outgoing from the current location and labeled by this port if it exists, otherwise to false

• A Boolean variable for each clock indicating whether the corresponding clock was reset by the last transition or not

• A participation number variable used for conflict resolution • ℓ SR 0 = ℓ 0 ⊥ ∈ L ⊥ is the initial location.

ℓ 1 ℓ 2 x ≤ 0 a x := 0 ℓ 1 ℓ 2 a
• P SR = P ∪ {o}, where P = {p a |a ∈ A} is the set of ports for each action of B and o is the offer port.

•

D SR = D ∪ {g pa } a∈A ∪ {inv B } ∪ {r x } x∈X ∪ {n B },
-∀a ′ ∈ A, g p a ′ := g a ′ if e ′ = (ℓ ′ , a ′ , g a ′ , r ′ , ℓ ′′) ∈ E false otherwise -inv B := I(ℓ ′) -∀x ∈ X , r x := true if x ∈ r false otherwise -n B := n B + 1
This definition of a Send/Receive component relates the execution of a transition e = (ℓ, a, g, r, ℓ ′) ∈ E from the initial component B to the following two execution steps in B SR . First, an offer transition e ℓ = (ℓ ⊥ , o, true, ∅, ℓ) sends for each port p ∈ P the guard over clocks and data corresponding to the enabledness of p at ℓ, the location invariant inv B , the participation number n B for component B, as well as the reset variable r x for each clock x ∈ X , such that, r x = true, if x has been reset by the previous transition execution. Reset variables r x are used to update values of clocks in the Scheduling layer before computing guard of interactions. In the second place, a notification transition e pa = (ℓ, p a , true, ∅, ℓ ′ ⊥) is executed upon the execution of an interaction involving p a in the scheduling layer. In the same manner to e in B, e pa updates values of variables D according to to the transfer function f e , as well as variables needed for the next offer.

Scheduling Layer

As explained earlier, the scheduling layer works with a partial view of the global state of the system. Initially, every scheduler is waiting for offers form the corresponding components (with respect to the interaction partition). Each received offer specifies to the schedulers the state of the sender component. In what follows, we consider schedulers preserving the execution sequences of the initial model under the standard semantics. For the sake of distributed implementation, it is worth taking a decision as soon as possible. Thus, once a scheduler gathers enough information for scheduling interactions, it arbitrarily choose one and executes the corresponding transitions that will trigger the notification responses to the components involved in that interaction. In what follows, we use Petri nets [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF] to describe the scheduling Particularly, we focus on a class of Petri nets (1-Safe) to encode the structure of the schedulers introduced by our method since they provide clear and compact representations. Note that any 1-Safe Petri net can be transformed in an equivalent automaton [START_REF] Droste | From petri nets to automata with concurrency[END_REF].

ℓ ⊥ 1 0 ℓ 1 0 ℓ ⊥ 1 1 ℓ 1 1 o init 0 o start 0 g init0 := [z > 25]
Petri Nets Definition 3.2.2 (Petri Net). A Petri net is a 3-tuple P = (L, A, T) where L is a set of finite places, A is a finite set of actions, and

T ⊆ 2 L × A × 2 L is a set of transitions. A transition τ is a triple (• τ, a, τ •)
, where • τ is the set of input places of τ and τ • is the set of output places of τ .

A Petri net can be represented as a directed bipartite graph G = (V, E) where V denotes the set of vertices and E denotes the set of directed edges. The set of vertices is structured into two classes, namely places and transitions, that is, V = L ∪ T . Places are represented by circular vertices and transitions are represented by rectangular vertices as shown in Figure 3.7. The set of directed edges E is the union of the sets

{(ℓ, τ) ∈ L × T |ℓ ∈ • τ } and {(τ, ℓ) ∈ T × L|ℓ ∈ τ • }.
A marking of a Petri net is a mapping m : L → N that describes the current state of a Petri net by assigning a non-negative integer to each of its places. We use tokens [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF] to represent the marking (number of tokens). We say that a place is marked if it contains at least one token. For a transition τ , we say that τ is enabled at a given state if all of its input places • τ are marked, that is, ∀ℓ ∈ • τ , m(ℓ) > 0. A firing (execution) of an enabled transition removes one token from each input place and adds one token to each output place. Formally, the firing of a transition from a marking m results in a marking m ′ such that:

∀ℓ ∈ L, m ′ (ℓ) = m(ℓ) -τ -(ℓ) + τ + (ℓ) where τ -(ℓ) = 1 if ℓ ∈ • τ 0 otherwise and τ + (ℓ) = 1 if ℓ ∈ τ • 0 otherwise
We put m a -→ P m ′ to denote that a transition τ = (• τ , a, τ •) can be executed at marking m and reaches marking m ′ . We also denote by -→ P the set of triples (m, a, m ′) such that m a -→ P m ′ . Given a Petri net P = (L, A, T) and an initial marking m 0 , the marking m is reachable if there exists a sequence of transitions m 0

ℓ 0 ℓ 1 ℓ 2 τ 2 τ 1 τ 3 τ 4 ℓ 0 ℓ 1 ℓ 2 τ 2 τ 1 τ 3 τ 4
a 1 -→ P m 1 a 1 -→ P • • • a 1
-→ P m. We say that P is 1-Safe if there is at most one token per place in each reachable marking. This implies at most 2 |L| markings. In this thesis, we consider only this class of Petri nets. The behavior of a 1-Safe Petri net P = (L, A, T) is defined by the finite labeled transition system (2 L , A, → P), where 2 L is the set of states, A is the set of actions, and

→ P ⊆ 2 L × A × 2 L is the set of transitions defined as follows. We have (m, a, m ′) ∈→ P , denoted by m a -→ P m ′ , if there exists τ = (• τ , a, τ •) ∈ T such that • τ ⊆ m and m ′ = (m\ • τ) ∪ τ • .
In this case, we say that a is enabled at m.

Building Schedulers

Given a timed system γ(B 1 , • • • , B n) and a partition of interactions {γ j } m j=1 , each class of the interaction partition is handled by a single scheduler component, namely Sch j . The behavior of each scheduler is described as a 1-Safe Petri net in which there is a token for each component flowing between three or four different types of places as shown in Figure 4.3:

• Waiting place: For each component participating in an interaction handled by a scheduler, the corresponding scheduler include a waiting place signifying that it is waiting for the component offer. Waiting places are labeled by w.

• Receive place: When receiving an offer from a component, the corresponding token is moved from the corresponding waiting place to the receive place (one received place per component) and stays there until an interaction including this component is scheduled or requested for scheduling (through the conflict resolution layer). Receive places are labeled by r.

• Try place: Try places (labeled by t) concern only components that are participating in an interaction that is externally conflicting with another interaction (of another scheduler). As explained in Subsection 3.1.3, schedulers rely on the conflict resolution layer to resolve conflicts. For each externally conflicting interaction, a try place is inserted. When scheduling such interactions, tokens are moved from receive places of components to try place of that interaction, meaning that a request has been sent to the CRP. Following this request, the CRP either grants the execution of the interaction and the tokens are moved to the sending places, or denies the execution which results in moving the tokens back to the receive places. Moreover, loops for offer transitions are added on try places and receive places in order to accept new offers sent by the components if executed as part of an externally conflicting interaction.

• Sending place: Once an interaction has been scheduled for execution, the corresponding components tokens are moved from receive places (or try place) to send places corresponding to ports of components participating in that interaction. There is one send place for each port (excluding offer port) for every Send/Receive component. Sending places are labeled by s.

As illustrated in Figure 4.3, tokens are initially in waiting places. Once an offer is received by a scheduler, the corresponding token moves to the receive place. The scheduler copies then the values of the offer variables to its local variables. Once offers of all components involved in an interaction have been gathered, schedulers computes its guard. If the guard evaluates to true, with respect to data variables and the global scheduler clock, the scheduler can either execute the interaction if it is not externally conflicting with another interaction (Figure 3.8a). Tokens are then moved to send places of components ports participating in that interaction. Otherwise (Figure 3.8b), a request is sent to the CRP and the token is moved to the corresponding try place. Thereafter, either the CRP grants the execution of the interaction and tokens are moved to send places, or the execution is denied and tokens are moved back to receive places. Possibly, the scheduler may receive new offers when being in try places. This corresponds to the execution of a conflicting interaction in another scheduler.

Definition 3.2.3 (Scheduler). Let γ(B 1 , • • • , B n) be a timed system and γ j ⊂ γ be a subset of interactions. The corresponding scheduler Sch j responsible for executing interactions of γ j is defined by the tuple Sch j = (L j , P j , T j , X j , D j , {g τ } τ ∈T j , {r τ } τ ∈T j , {f τ } τ ∈T j , {I ℓ } ℓ∈L j), where (L j , P j , T j) is a 1-Safe Petri net defining the structure of the scheduler such that:

• X j = {t j }∪{z j } is the set of clocks of Sch j , where t j is the global clock used for scheduling interactions of γ j (it is never reset) and z j is a clock used for enforcing urgent behavior.

• D j is the set of variables containing:

-Variables updated whenever an offer from a component B i participating in interactions of γ j is received. These variables consist of: an invariant variable inv B i and a participation number n B i for each B i , a guard variable g pa for each action of B i involved in an interaction of γ j , and a Boolean reset variable for each clock of B i .

-Reset time variables that stores the absolute time of the last reset of each component clocks. For each clock x of B i we include a reset time variable ρ x .

• For each transition τ ∈ T j , g τ is a guard over X j and D j .

• For each transition τ ∈ T j , r τ is a reset function over X j .

• For each transition τ ∈ T j , f τ is a transfer function over D j .

• For each place ℓ ∈ L j , I ℓ is an invariant over X j .

• The 1-Safe Petri net (L j , P j , T j) is structured as follows:

-L j is the set of places. It includes four types of places: * For each component B i involved in interactions of γ j , we include a waiting place w j i , a receive place r j i , where I w j i = true and I r j i is the invariant inv B i expressed on t j . * For each action a involved in interactions of γ j , we include a sending place s pa , where I sp a = z j ≤ 0. * For each interaction α ∈ γ j that is externally conflicting with another interaction, we include a try place t α with I tα is the invariant inv B i expressed on t j .

-P j is the set of ports. It includes the following ports: * For each component B i involved in interactions of γ j , we include a receive port o j i . Each port o j i is associated with the variables g pa and r x for each action, respectively clock, of B i , as well as the variables inv B i and n i . * For each action a involved in interactions of γ j , we include a send port p a . * For each interaction α ∈ γ j that is externally conflicting with another interaction, we include a send port rsv α (reservation port), and receive ports ok α (granted execution) and f ail α (denied execution). The port rsv α exports the variables {n i } B i ∈part(α) . * For each interaction α ∈ γ j that is internally or not conflicting with other interactions of γ j , we include the unary port α.

-T j is the set of transitions. It consists of the following: * For each component B i , T j includes the offer transitions (w j i , o i , r j i), (r j i , o i , r j i) and {(t α , o i , t α)|B i ∈ part(α)} where α is an externally conflicting interaction. The execution of offer transitions copy the variables attached to components offer to its local variables. Offer transitions have no guards and no reset functions. Their transfer functions update reset time variables ρ x whenever r x = true, that is, ρ x := t j . * For each action a involved in interactions of γ j , T j includes a transition (s pa , p a , w j i) where i is the index of the component containing a. This transition notifies the corresponding Send/Receive component to execute the transition labeled by p a . It has no guard, no reset function, and no transfer function. * For each interaction α = {a i } i∈I ∈ γ j , that is internally conflicting or not conflicting with interactions of γ j , T j includes the transition τ α = ({r j i } B i ∈part(α) , α, {s pa i } a i ∈α). The guard of this transition is g τα = a i ∈α g pa i . Notice that guards over data are the same, whereas guard of clocks are expressed using the global clock t j and the reset time variables ρ x . This transition has no transfer function and its reset function resets the clock z j . * For each interaction α = {a i } i∈I ∈ γ j , that is externally conflicting, T j includes the following transitions:

• τ rsvα = ({r j i } B i ∈part(α) , rsv α , t α). The guard of this transition is g τrsv α = a i ∈α g pa i .

• τ okα = (t α , ok α , {s pa i } a i ∈α). This transition has no guard, no transfer function, and its reset function is r τ okα = {z j := 0}. • τ f ailα = (t α , f ail α , {s pa i } a i ∈α). This transition has no guard, no reset function, and no transfer function. Notice that Definition 3.2.3 presents only the syntax of a scheduler. It uses the Petri net formalism only for compactness purposes and is not to be confused with any other Petri Net formalism such as Time Petri Nets or Timed Petri nets. Property 3.2.1 (Scheduler Semantics). Let Sch = (L, P, T , X , D, {g τ } τ ∈T , {r τ } τ ∈T , {f τ } τ ∈E , {I ℓ } ℓ∈L) be a tuple defining a scheduler. Let (2 L , P, → P) be the finite labeled transition system of its underlying 1-Safe Petri net. The semantics of the scheduler Sch is equivalent to the semantics of the timed component (2 L , ℓ 0 , X , D, P, E, {f e } e∈T , I) such that:

• ℓ 0 = ⊗ ℓ∈L|ℓ∈m 0 ℓ
, where m 0 is the initial marking of the Petri net (L, P, T).

• For each (m 1 , p, m 2) ∈→ P we include a transition e ∈ E = (ℓ 1 , p, g p , r, ℓ 2) such that:

-ℓ 1 = ⊗ ℓ∈L|ℓ∈m 1 ℓ and ℓ 2 = ⊗ ℓ∈L|ℓ∈m 2 ℓ. The invariant of ℓ 1 and ℓ 2 are respectively I(ℓ 1) = ℓ∈m 1 |m 1 (ℓ)=1 I ℓ and I(ℓ 1) = ℓ∈m 2 |m 2 (ℓ)=1 I ℓ . -g p = g τ , f e = f τ , and r = r τ where τ = (• τ , p, τ •) ∈ T such that • τ ⊆ m and m ′ = (m\ • τ) ∪ τ • .

Conflict Reservation Protocol

In this subsection, we present the third layer of our Send/Receive architecture, namely the conflict resolution layer. The purpose of this layer is to resolve the conflict that occur between interactions of separate schedulers at run time. Since interactions may compete on resources (here sharing components), the conflict resolution layer implements a protocol, inspired from [START_REF] Antonio Pérez | An order-based algorithm for implementing multiparty synchronization[END_REF] and based on messages counting technique, that allows to check the freshness of requests received for the execution of an interaction from schedulers. It ensures that two externally conflicting interactions cannot execute with the same offers by checking that the participation numbers of the involved components have not been yet consumed. Particularly, the protocol keeps the last participation number of each component and compares it with the participation number from the reservation request of a scheduler and thereafter, decides whether to grant a scheduler or not the execution of an interaction.

w 1 1 w 1 2 w 1 4 o 1 o 2 o 4 r 1 1 r 1 2 r
There exists several implementations of the conflict resolution protocol [START_REF] Rajive | Process synchronization: Design and performance evaluation of distributed algorithms[END_REF]. We present here only one variant since our interest is not in studying the conflict resolution layer. It is centralized variant based on Bagrodia's protocol. Definition 3.2.4 (Conflict Resolution Protocol). Let γ(B 1 , • • • , B n) be a timed system and {γ j } m j=1 be an interaction partition. The corresponding centralized conflict resolution protocol component is defined by the timed component CP = (L CP , ℓ CP 0 , ∅, D CP , P CP , E CP , {f e } e∈E CP , ∅) such that:

• L CP contains for each externally conflicting interaction α a waiting location w α and a receive location r α . Receive locations are urgent locations.

• D CP includes for each component B i participating in conflicting interactions α its current participation number n α i as well as the last participation number N i .

• P CP includes for each externally conflicting interaction a reservation port rsv α , ok α and f ail α . The port rsv α imports the variables {n α i |B i ∈ part(α)}.

• E CP includes for each externally conflicting interaction α the following transitions:

-A reservation transition e rsvα = (w α , rsv α , true, ∅, r α)

-A transition granting the execution of α, e okα = (r α , ok α , g okα , ∅, w α) such that, In what follows, we present the Send/Receive interactions that link the three layer of the presented Send/Receive model. Definition 3.2.5 (Send/Receive Interactions). Let γ(B 1 , • • • , B n) be a timed system and {γ j } m j=1 be an interaction partition. The Send/Receive interactions γ SR connecting the three layers of the Send/Receive models are:

g okα = B i ∈part(α) n α i > N i and f e okα = {∀B i ∈ part(α), N i := n α i }. -A transition denying the execution e f ailα = (r α , f ail α , true, ∅, w α) w α1 r α1 rsv α1 n α1 1 > N 1 n α1 2 > N 2 ok α1 N 1 := n α1 1 N 2 := n α1 2 n α1 1 ≤ N 1 n α1 2 ≤ N 2 f ail α1 w α3 r α3 rsv α3 n α3 1 > N 1 n α3 2 > N 2 ok α3 N 1 := n α3 1 N 2 := n α3 2 n α3 1 ≤ N 1 n α3 2 ≤ N 2 f ail α3 w α7 r α7 rsv α7 n α7 1 > N 1 n α7 2 > N 2 ok α7 N 1 := n α7 1 N 2 := n α7 2 n α7 1 ≤ N 1 n α7 2 ≤ N 2 f ail α7 w α5 r α5 rsv α5 n α5 1 > N 1 n α5 2 > N 2 ok α5 N 1 := n α5 1 N 2 := n α5 2 n α5 1 ≤ N 1 n α5 2 ≤ N 2 f ail α5 rsv α5 ok α5 f ail α5 rsv α7 ok α7 f ail α7 rsv α1 ok α1 f ail α1 rsv α3 ok α3 f ail α3
• For each component B SR i , we include an offer interaction involving B SR i and its respective schedulers

{B SR i .o, Sch j 1 .o i , • • • , Sch j k .o i }.
• For each port p of a component B SR i and for each scheduler Sch j handling an interaction involving p, we include a notification interaction {B SR i .p, Sch j .p}.

• For each internally conflicting or not interaction α ∈ γ handled by a scheduler Sch j , we include the unary interaction {Sch j .a}.

• For each externally conflicting interaction α ∈ γ, we include the following interactions:

-{Sch j .rsv α , CP.rsv α } -{Sch j .ok α , CP.ok α } -{Sch j .f ail α , CP.f ail α }
The correctness of the Send/Receive transformation is proved using observational equivalence, that is, weak bisimulation.

Theorem 3.2.1 (Correctness [Tri15]). T ∼T SR .

The correctness of the presented approach is necessary to attest that both the initial and resulting systems have the same behavior. Nonetheless, the proof of correctness has already been established and its details are not relevant to the content of this thesis. The interested reader can find all the steps of the proof in Chapter 5 of [START_REF] Triki | Implémentations distribuées des systèmes temps-réel à base de composants)[END_REF].

Modeling Distributed Real-Time Constraints

Distributed real-time systems are prone to different kind of problems. The immediate concern is the communication delays inherent to distributed platforms. The latter increase considerably the effort of coordinating the parallel activities of running components. Thus, scheduling such systems must cope with the induced delays by proposing execution strategies ensuring global consistency while satisfying the imposed timing constraints. Another phenomenon intrinsic to distributed platforms is clock drift. A clock is a device that consists of a counter that is incremented periodically according to the frequency of an oscillator. This implies that clocks are not perfect since the oscillator frequencies may vary during their lifetime due to several factors such as aging, temperature, humidity, etc. Consequently, clocks trend to drift or gradually desynchronize from a given reference time. Moreover, when having multiple clocks running in the same system, which is usually the case in distributed real-time systems, the relative clock drift between these clocks may result in an unexpected (even undesirable) behavior. The common practice is to resynchronize the clocks [BBB + 12] (internally or externally) in order to bring the difference to a certain threshold to minimize the impact of this phenomenon.

Communication Delays

The Send/Receive model as presented in Section 3.2 assumes implicitly that communication between the different layers is timeless. This restricts the applicability of such approach to applications where communication delays imposed by the target platform can be neglected with respect to timing constraints of components. To cope with those delays, a variant of the Send/Receive approach was presented in [START_REF] Triki | Implémentations distribuées des systèmes temps-réel à base de composants)[END_REF]. It is based on an early decision making mechanism where schedulers plan interactions executions ahead and notify components of their execution dates in advance. The main issue of this method is that when planning components to execute at a given time, all the interaction including the planned components will be ineligible for execution (and even for planning). This may block additional components besides the ones planned for execution, which may introduce deadlocks and/or violations of timing constraints. To overcome this problem, this adaptation of the Send/Receive models suggests that each scheduler, additionally to the components it is handling, observe a subset of components that may be blocked when scheduling interactions. However, because of the nature of the location invariants (local constraints that propagate on the global level), this technique results in observing all the components of the system, instead of only a subset as presented in [START_REF] Triki | Implémentations distribuées des systèmes temps-réel à base de composants)[END_REF].

In order to model the behavior of a system under some communication delays, we introduce the local planning semantics. This semantics aims to distinguish between the decision dates for executing interactions and their actual execution dates by adding a notion of planning on the semantics level. The delay between the planning of an interaction and its execution has to be greater than the parameter h min which represents an upper bound on the communication delays (i.e worst case delay). Although this approach is based on the same idea of anticipating the executions of interactions, it differs from the approach of [START_REF] Triki | Implémentations distribuées des systèmes temps-réel à base de composants)[END_REF] in the following points:

• The class of system handled by the method of [START_REF] Triki | Implémentations distribuées des systèmes temps-réel à base de composants)[END_REF] is restricted to timed components with closed guards, that is, where clock constraints are of the form:

c := true | x ≤ k | x ≥ k
where x is a clock and k ∈ Z ≥0 . Moreover, this method is restricted to timed components with non-decreasing deadlines. In other words, if time can progress by d from a given state (ℓ, υ) of a component, it can also progress by d from any state (ℓ ′ , υ ′) reached by executing an action a from state (ℓ, υ). Our approach on the other hand, imposes only that the system is free of modelling errors such as deadlocks or timelocks.

• Our approach works on the semantics level whereas the method of [START_REF] Triki | Implémentations distribuées des systèmes temps-réel à base de composants)[END_REF] is based on transformations and model constructions. The main advantage of working on the semantics level is that it allows to stay at certain level of abstraction, close enough to the original model, which reduce considerably the chance of errors during the formalization. Furthermore, one can still imagine a Send/Receive like transformation that implements this semantics.

• Unlike the standard semantics of timed system, the local planning semantics is based on a local view of the system which is more suited for the distributed context.

Chapter 5 presents a detailed description of the local planning semantics, its properties and relations with the standard semantics of timed systems. It also provides sufficient conditions that guarantee the correctness (in terms of behaviour) of a given application under some bounded communication delays.

Clock Drift

Reachability analysis has been used to test the behavior of timed automata models against some desired properties. However, such analysis techniques whether region-based or zone-based can be incorrect and misleading, since they rely on several assumptions such as zero response times or infinitesimally precise clocks, which is generally not the case in reality. In practice, clocks are implemented using an oscillator and a counting register, and their precision based on the quality of the oscillator together with the operating environment. The common practice when studying the effect of clock imperfections is to define a perturbation model that approximates the behavior of a given model under clock drifts in order to study its robustness.

Robust reachability has been introduced to check whether a given system still satisfies the specification when subject to different perturbations such as clocks drift. In [START_REF] Puri | Dynamical properties of timed automata[END_REF], Puri introduced a model of clock drift for closed timed automata by introducing a parameter ϵ > 0 that bounds the clocks drift rates. This work showed that the standard reachability analysis approach is not correct when clocks drift, even by infinitesimally small amount, and subsequently suggested a region based method for calculating Reach * (S), the set of reachable states for every drift (the limit as ϵ → 0), that is, Reach * (S) = ∩ ϵ>0 Reach(S ϵ). Other works [START_REF] Daws | Symbolic robustness analysis of timed automata[END_REF][START_REF] Dima | Dynamical properties of timed automata revisited[END_REF] proposed a zone based algorithm for computing this reach-set more efficiently, and generalized the approach for open timed automata model [START_REF] Dima | Dynamical properties of timed automata revisited[END_REF].

In [START_REF] De Wulf | Robustness and implementability of timed automata[END_REF][START_REF] Puri | Dynamical properties of timed automata[END_REF], another perturbation model was considered. Here, the system model is syntactically modified by relaxing the guards through a parametric enlargement of δ. Dewulf [START_REF] De Wulf | Robustness and implementability of timed automata[END_REF] showed that the notion of robustness defined in [START_REF] Puri | Dynamical properties of timed automata[END_REF], and studied in other works [START_REF] Daws | Symbolic robustness analysis of timed automata[END_REF][START_REF] Dima | Dynamical properties of timed automata revisited[END_REF], is closely related to the notion of implementability introduced in [START_REF] De Wulf | Robustness and implementability of timed automata[END_REF], that is, whether for some δ > 0, the enlarged system model still satisfies the requirements expressed by the considered properties. This allowed to prove that the considered notion of implementability is decidable for timed automata.

Finally, [START_REF] Swaminathan | The surprising robustness of (closed) timed automata against clock-drift[END_REF] consider a more realistic model of drifting clocks by considering clock resynchronization, available now in most distributed real-time systems. It was proven that standard zone-based reachability analysis is exact when testing robust safety, provided a uniform strictly positive robustness margin of 1.

In Chapter 6, we present a timed automata based model for distributed real-time systems where the relative drift between clocks is assumed to be bounded (clocks are assumed to be resynchronized with a certain threshold). The resulting timed transition system includes straightforwardly more states than the initial model. We then give interesting properties of the drifted model and provide a strategy that allows, for any resulting execution trace, to stay close enough to a "similar" trace of the initial model. there exists a reachable state from which both α 1 and α 2 are enabled, i.e., a state satisfying:

Conf lict(S, α, β) = Reach(S) ∧ Enabled(α 1) ∧ Enabled(α 2) (4.1)
where Reach(S) is the set of reachable states of the S.

The above definition of conflicts characterizes the exact set of conflicting interactions. Especially, it considers that two interactions are not conflicting if the whole system cannot reach a state from which both can potentially execute. Clearly, such interactions do not require conflict resolution as they cannot be scheduled based on common offers. In what follows, we propose an approach that aims to reduce the set of potential conflicts. In fact instead of calculating the exact set of reachable states of a given system, we use static analysis techniques to extract a knowledge that represents an over approximation of the reachable states of the system on the form of invariants.

Knowledge Based Reduction of Potentially Conflicting Interaction

Knowledge as referred to it here can be interpreted as any information that gives a characterization of a given system. We distinguish two types of knowledge: local knowledge that captures partial information of a system at components level, and a global knowledge that builds upon local knowledge and takes into account components synchronizations. Our approach includes two main steps: the first step (i) consists of constructing the set of potentially conflicting interactions based on Definition 3.1.1. This step aims mainly to distinguish non conflicting interactions from those that can potentially conflict in order to avoid unnecessary checks during the second step. Then, the second step (ii) computes then combines local and global knowledge of the system on the form of invariants. The latter will represents an over-approximation of the reachable state of the system. After that, by replacing Reach(S) by its over-approximation Reach(S) ∼ in Expression 4.1, potentially conflicting interactions are reduced by checking the following precondition:

Conf lict(S, α 1 , α 2) ∼ = Reach(S) ∼ ∧ Enabled(α 1) ∧ Enabled(α 2) (4.2) Notice that since Reach(S) ⇒ Reach(S) ∼ , we obtain that Conf lict(S, α 1 , α 2) ⇒ Conf lict(S, α 1 , α 2) ∼
. Thus, if two interactions are established to be conflicting according to 4.2, then they are conflicting according to 4.1. Hereinafter, false conflicts refers to potential conflicts as defined in Definition 3.1.1 but that are not conflicts with respect to Definition 4.1.1.

A potential conflict between two interactions is a false conflict either: (i) because the system cannot reach a global location configuration enabling both interactions, or (ii) because both interactions are not enabled at the same time due to timing constraints. In the following, we show how to compute invariants for removing false conflicts of types (i) and (ii). These invariants combined with individual reachable states of components will represent our over-approximation of Reach(S).

Linear Invariants

Linear invariants consist of linear constraints that allow to reason on complex properties. For instance, they can be used to count how many processes are at a given state of a concurrent system. Such invariants have been widely used in different domain. Particularly, we are interested in the so called linear state-invariants [Mur89, KJ86, SSM03] from the Petri net community. Linear state-invariants or (S-invariants) are determined to be appropriate for proving non-coverage of subsets of individual locations, which corresponds exactly to what is needed to prove that two interactions cannot be enabled from the same location configuration. Precisely, linear invariants consist of linear equations of predicates at(ℓ) interpreted as integer values using the convention 1 for true and 0 for false. For instance at(ℓ 0) + at(ℓ 1) + at(ℓ 2) = 1 is a linear constraint for the Petri net of Figure 3.7 expressing the presence of on token circulating between places ℓ 0 , ℓ 1 and ℓ 2 .

Locations configurations reachable in a composition S = γ(B 1 , . . . , B n) are necessary combinations of reachable locations of individual components B i . However, in general not all combinations are reachable in S since components are not fully independent as they synchronize through interactions. A typical example of that is a shared resource used in mutual exclusion by a set of components: any of them can potentially use it, but they should coordinate so that states in which two (or more) components use the resource are not reachable. Another illustration of this can be found in example of Figure 2.3: components T 1 (resp. T 2) may reach location ℓ 2 1 (resp. ℓ 3 1) by executing action init 1 (resp. init 2), but in the composition T 1 and T 2 cannot be simultaneously at locations ℓ 2 1 and ℓ 3 1 . This is due to interactions α 1 = {init 0 , init 1 } and α 2 = {init 0 , init 2 } with component C: executing α 1 disables α 2 , and vice versa. That is, the potential conflict between interactions α 3 and α 4 can be excluded if we consider reachable locations of the composed system. Definition 4.2.1 (Linear Invariant). Let S = γ(B 1 , . . . , B n) be a timed system and L = 1≤i≤n L i being all components locations, with L i the set of locations of B i . A linear invariant of S is a linear equality constraint which holds in all reachable global state of S. It is of the form:

ℓ∈L u ℓ • at(ℓ) = u 0 ,
where u ℓ , and u 0 are integers, in which predicates at(ℓ), ℓ ∈ L, are interpreted as 0 for false and 1 for true.

To compute linear invariants for a timed system S = γ(B 1 , . . . , B n), we consider its untimed version S abstracting all data and timing aspects of S (i.e. obtained from S by relaxing guards and location invariants of components). Note that linear invariants for S are also linear invariants for S, since reachable locations of S are necessary included in reachable locations of S. Methods for calculating linear invariants are based on linear algebra, and more precisely on the characteristic system [START_REF] Krückeberg | Mathematical methods for calculating invariants in petri nets[END_REF] (also known by the place-transition matrix in the Petri nets community). It consists of a system of linear equations representing the interactions of a given system.

Definition 4.2.2 (Characteristic System). For a timed system S

= γ(B 1 , • • • , B n) and L = L 1 × • • • × L n ,
the set of all global location configuration. The characteristic system is defined as follows:

M(S) ≡

α∈γ ℓ∈Lα ℓ i ∈α • x ℓ i - ℓ j ∈ • α x ℓ j = 0
where L α is the subset of locations configurations from which α is possible, and α • , • α denotes respectively the destinations and sources locations of components actions involved in α.

Example 4.2.1. The characteristic system for Example 2.2.3 following the enumeration of all interactions of γ is:

M(S) =                                    x ℓ 1 1 -x ℓ 1 0 + x ℓ 2 1 -x ℓ 2 0 = 0 x ℓ 1 1 -x ℓ 1 0 + x ℓ 3 1 -x ℓ 3 0 = 0 x ℓ 1 0 -x ℓ 1 1 + x ℓ 2 2 -x ℓ 2 1 = 0 x ℓ 1 0 -x ℓ 1 1 + x ℓ 3 2 -x ℓ 3 1 = 0 x ℓ 4 1 -x ℓ 4 0 + x ℓ 2 3 -x ℓ 2 2 = 0 x ℓ 4 1 -x ℓ 4 0 + x ℓ 3 3 -x ℓ 3 2 = 0 x ℓ 4 0 -x ℓ 4 1 + x ℓ 2 0 -x ℓ 2 3 = 0 x ℓ 4 0 -x ℓ 4 1 + x ℓ 3 0 -x ℓ 3 3 = 0
The common techniques for solving homogeneous systems A.x = 0 are the Guass-Jordan elimination, Cholesky-, QR-or LU-factorization. These algorithms have low polynomial complexity and can be directly applied to solve the characteristic system M(S). In order to obtain the linear invariants of a given system, we use the algorithm proposed in [START_REF] Bensalem | Incremental generation of linear invariants for component-based systems[END_REF]. It is a variant of Gauss-Jordan elimination that exploits the locality of unknowns as well as the particular form of the characteristic system equations. Equations are processed iteratively, one by one, while producing an equivalent left-bound system.

Let LI(S) be the linear invariants characterizing a given system S. A potential conflict between interactions α 1 and α 2 is a false conflict if the following formula is not satisfiable:

1≤i≤n Reach(B i) ∧ LI(S) ∧ Enabled(α 1) ∧ Enabled(α 2) (4.3)
where Reach(B i) denots the reachable states of component B i .

Example 4.2.2. Let us reconsider the example of Figure 2.3. Among the resulting linear invariants, we focus on the following:

1 • at(ℓ 2 1) + 1 • at(ℓ 3 1) -1 • at(ℓ 1 1) = 0 (4.4) 1 • at(ℓ 2 3) + 1 • at(ℓ 3 3) -1 • at(ℓ 4 1) = 0. (4.5)
We deduce from the invariant (4.4) that at(ℓ 2 1) and at(ℓ 3 1) cannot be true simultaneously, that is, components T 1 and T 2 cannot be simultaneously at the corresponding locations. Consequently, we can directly infer that interactions α 3 and α 4 are not conflicting, even though they are potentially conflicting. Likewise, with (4.5) we exclude the conflict between α 7 and α 8 .

History Clocks Inequalities

As they completely abstract time, linear invariants presented above are only partially capturing system dynamics. For example, a global location may not be reachable because components locations have disjoint clock constraints, or an interaction may not be enabled from a state because of its empty timing constraint. Such properties require extra relationships relating clocks of different components that are not available in Reach(B i) as it is is restricted to clocks of a single component: a zone of one of its symbolic states is a conjunction of its related clocks constraints, as explained in Section 2.4.

We follow the approach of [RAB + 15] for reinforcing our approach with global invariants on clocks. They are induced by simultaneity of transitions when executing an interaction and the synchrony of time progress. To compute such invariants, additional history clocks are first introduced in components. History clocks are associated to actions of components and to interactions, and reset upon their executions. They do not modify the behavior since they are not involved in timing constraints. They only reveal local timing of components, relevant to the interaction layer, which allows to infer further properties referred to as history clocks inequalities in [RAB + 15], expressing the fact that history clock of an interaction is necessary equal to history clocks of its actions after its execution and until the execution of another interaction involving these actions.

HA(S) = α∈γ a i ,a j ∈α a k ∈Act(γ⊖α) h a i = h a j ≤ h a k ∧ (HA(γ ⊖ α)
where Act(γ ⊖ α) is the set of actions involved in the interactions γ ⊖ α = {β \ α | β ∈ γ ∧ β ⊈ α} and HA(∅) = true. The predicate HA(S) can be interpreted as follows. Assuming that α ∈ γ is the last interaction executed in the system. Then, all history clocks of its involved actions are reset at the same time. Moreover, they are smaller than all the other history clocks, contained in γ ⊖ α. The history clocks for actions are additionally strengthened by separation constraints for conflicting interactions. In fact, an action involved in two conflicting interactions is exclusively executed by one of these interactions at a given time. Particularly, in some cases a minimum time lapse is required between two executive occurrences of the same action. Similarly to history clocks for actions, we introduce a history clock for each interaction that will be reset on the execution of the latter. Separation constraints are then formalized as follows: Definition 4.2.4 (Separation Constraints). Given a timed system S = γ(B 1 , • • • , B n), the separation constraints are defined as follows:

HI(S) = α̸ =β∈γ a∈α∩β a∈α |h α -h β | ≥ k a
where |h| denotes the absolute value of h and k a is a constant computed locally on the component containing action a. It represents the minimum time lapse between two occurrences of a.

Our method combines history clocks inequalities H(S) = HA(S) ∧ HI(S) and symbolic states of components to identify false conflicts where the following is not satisfiable:

1≤i≤n Reach(B i) ∧ H(S) ∧ Enabled(α) ∧ Enabled(β) (4.6)
Example 4.2.3. We illustrate the application of (4.6) for checking conflicts by considering again the example of Figure 2.3. It can be shown that the potential conflict between α 5 and α 6 cannot be removed using (only) linear invariants. In the following, we prove that these interactions are actually not conflicting using history clocks inequalities. Since action start 0 of C is synchronized with either start 1 of T 1 or start 2 of T 2 , and since history clocks h a of an action a is reset whenever a is executed, by [RAB + 15] the history clock inequalities for start 0 are:

(h start 0 = h start 1 ≤ h start 2 -25) ∨ (h start 0 = h start 2 ≤ h start 1 -25) (4.7)
Equality (4.7) states that h start 0 is equal to the history clock corresponding to the last synchronization, i.e., either h start 1 or h start 2 , and is lower than history clocks of previous synchronizations. Value 25 in (4.7) is obtained considering separation constraints computed from symbolic states of components and interactions: two occurrences of start 0 are separated by at least 25 time units because of timing constraints of C, and so too occurrences of start 1 or start 2 which can only execute jointly with start 0 . To relate history clocks with components clocks, we simply include history clocks when computing symbolic states of components (i.e. Reach for components), which is used to establish here that x = h start 1 and y = h start 2 when components T 1 and T 2 are respectively at locations ℓ 2 2 and ℓ 3 2 . That is, with (4.7) we obtain x ≤ y -25 or y ≤ x -25. By definition of Enabled we have Enabled(α 5) = at(ℓ 2 2) ∧ (10 ≤ x ≤ 30). Similarly, Enabled(α 6) = at(ℓ 3 2) ∧ (10 ≤ y ≤ 30). We obtain then: Enabled(α 5) ∧ at(ℓ 3 2) ⇒ y ≤ 5 ∧ Enabled(α 6) ∧ at(ℓ 2 2) ⇒ x ≤ 5. This proves that α 5 and α 6 are not conflicting.

Impact of Conflict Reduction on Send/Receive Models

As explained earlier, refining the conflicting interactions set enables to minimize the exchange of messages between the scheduling layer and the conflict resolution layer of the corresponding Send/Receive model. More precisely, every false conflicting interaction is scheduled using 2 exchange of messages between components participating in that interaction and the corresponding schedulers (offers and notifications), instead of 4 by considering the unnecessary exchange of messages between schedulers and the conflict resolution protocol. As a result, the Scheduler Sch 1 and the conflict resolution components from In Chapter 3, we presented a timed automata model for representing timed systems with multiparty interactions in a distributed setting. Such model provides details on how an implementation of multiparty interactions can be derived based on a partial view of the system. It also explicitly expresses the ongoing communication mechanism using simpler primitives such as exchange of messages. However, this type of model is constrained by the fact that the response time of the schedulers is fast enough to not impact the behavior of the overall system.

w α1 r α1 rsv α1 n α1 1 > N 1 n α1 2 > N 2 ok α1 N 1 := n α1 1 N 2 := n α1 2 n α1 1 ≤ N 1 n α1 2 ≤ N 2 f ail α1 w α2 r α2 rsv α2 n α2 1 > N 1 n α2 3 > N 3 ok α2 N 1 := n α2 1 N 3 := n α2 3 n α2 1 ≤ N 1 n α2 3 ≤ N 3 f ail α2 rsv α1 ok α1 f ail α1 rsv α2 ok α2 f ail α2
w 1 1 w 1 2 w 1 4 o 1 o 2 o 4 r 1 1 r 1 2 r 1 4 rsv α1 α 3 α 5 α 7 t α1 ok α1 s init0 ssta- rt0 s init1 ssta- rt1 spro- cess1 s end1 s take s f ree init 0 start 0 init 1 start 1 process 1 end 1 take f ree w 1 1 w 1 2 w 1 4 f ail α1 o 1 o 2 o 1 o 2 o 1 init 0 start 0 o 2 init 1 start 1 process 1 end 1 o 4 take f ree rsv α1 ok α1 f ail α1
In [START_REF] Triki | Implémentations distribuées des systèmes temps-réel à base de composants)[END_REF], a solution based on an early decision making approach was presented to cope with this problem. The main idea of this method was to anticipate components executions ahead such that the latency induced by the scheduling mechanism does not affect the system. To achieve this, schedulers plan ahead the execution of interactions and notify the corresponding components in advance. In this approach, it was suggested that schedulers are required to observe an additional subset of components, called observed components, not participating in the planned interactions, in order to achieve global deadlines. However, the characterization of the set of observed components is incomplete. In fact this set is greater than the presented characterization, and in many cases is it includes all the components of the system. This is mainly due to the nature of the location invariants (local constraints that propagate on the global level). Moreover, the proposed approach does not provide any proof of correctness regarding deadlocks. Intuitively, executions resulting from such method are included in the possible executions of the initial model. This means that the resulting behavior is a restriction of the initial behavior which in some cases may introduce blocking situations.

This motivates the introduction of the local planning semantics (LPS). It is based on the same idea of early decision making but with the difference that we do not reason on the Send/Receive model as in [START_REF] Triki | Implémentations distribuées des systèmes temps-réel à base de composants)[END_REF], but on a higher level of abstraction closer to the initial model. This choice was driven by two main points: (1) facilitate the comparison with the initial behavior of the standard semantics and the fact that (2) it is much more suited for verification. The local planning semantics differs from the standard semantics of timed automata in two main aspect: (i) interactions executions are based only on partial state of the system, that is, based only on the state of components participating in the considered interaction. Thus, it allows to decide locally without monitoring the entire system. (ii) it distinguishes between the execution decision of an interaction (its planning), and the execution itself. This distinction allows us to impose a delay between the planning of an interaction and its execution. The latter is constrained by the (maximal) communication latency induced by execution platforms, which is a parameter of the semantics. Trivially, this semantics is correct in the sense that it refines (it is included in) the standard semantics. However, being based on local states, planning decisions are too permissive and may introduce deadlocks when they are not compatible with the global state of the system. This property derives directly from the fact that executing an interaction β does not change the states of components participating in an interaction α, provided that α and β have disjoint sets of participating components, and thus, Plannable(α, d) is not affected by the execution of β in this case. In the following, we consider a slightly different definition of conflicts than the one presented in Chapter 3 and Chapter 4. We say that two interactions α and β conflicts when they have common participating components, that is, when part(α) ∩ part(β) ̸ = ∅, and we write α#β. We denote by conf (α) the set of interactions conflicting with α, that is,

Local Planning of Interactions

Definition of the LPS

Let S = γ(B 1 , • • • , B n) be
conf (α) = {β ∈ γ | α#β}. Property 5.1.2. Let (ℓ, υ) and (ℓ, υ + d ′), with d ′ ∈ R >0 be two states of the composition S. For an interaction α ∈ γ, if Plannable(α, d) holds at state (ℓ, υ) then Plannable(α, d -d ′) also holds at any state (ℓ, υ + d ′) such that d ′ ≤ d.
This property can be found directly by writing expression 5.1 on state (ℓ, υ + d ′).

As previously explained, due to communication latencies induced by execution platforms, we assume that interactions cannot be planned in d units of time if d < h min , where h min ∈ Z ≥0 is a parameter representing the minimal planning horizon, which should represent the upper bound response time of schedulers when scheduling interactions. The latter is constrained by the communication latencies between schedulers and both components and the conflict resolution layer as well as the evaluation of interactions constraints. Notice that for the sake of simplicity, we consider a global parameter h min but we could also assume different parameters for each interaction. Additionally, we also consider upper bound planning horizons h max : γ → Z ≥0 ∪ {+∞} for each interaction such that for any α ∈ γ we have h max (α) ≥ h min . We denote by h ∞ max the upper planning horizon assigning infinity to every h max (α). These bounds restrict planning horizons of interactions such that every interaction α can be planned only using a horizon d satisfying h min ≤ d ≤ h max (α), meaning that every component B ∈ part(α) will be blocked for a duration in [h min , h max (α)] each time α is planned. Observe that while h min represents the worst case estimation of the scheduler response time, the parameters h max (α) will be used later to find a strategy that avoids deadlocks by restricting the amount of time components can be blocked for.

For an interaction α, we define the predicate Plannable(α) characterizing states from which α can be planned in a delay respecting the planning horizons h min and h max (α), that is:

Plannable(α) ⇔ d∈[h min ,hmax(α)]

Plannable(α, d),

Remark that the above corresponds exactly with the definition of Enabled ↙ u l (α) given in Chapter 2. This allows to write:

Plannable(α) = Enabled ↙ hmax(α) h min (α) (5.2)
Definition 5.1.1 (Plan). A plan π is a function π : γ → R ≥0 ∪ {+∞} defining relative times for executing interactions, with the convention that an interaction α is planned to execute in π(α) time units only if π(α) < +∞. Plans satisfy that for any two interactions α ̸ = β, such that π(α) < +∞ and π(β) < +∞, the interactions α and β are not conflicting (i.e. ¬(α#β)).

We denote by π 0 the plan assigning +∞ to every interaction of γ, that is, ∀α ∈ γ, π 0 (α) = +∞. For a plan π, we consider its minimum value min(π) = min {π(α)|α ∈ γ}. We also denote by conf (π) the set of interactions conflicting with the plan π, i.e., conf (π) = {α | ∃β#α. π(β) < +∞}, and part(π) the set of components participating in interactions planned by π, i.e., part(π) = {B i | ∃α . π(α) < +∞ ∧ B i ∈ part(α)}. Notice that since π stores relative times, whenever time progresses by d, the value π(α) assigned by π to an interaction α should be decreased by d until it reaches 0, meaning that α has to execute. We write π -d to describe the progress of time over the plan, that is, (π

-d)(α) = π(α) -d for interactions α such that π(α) < +∞. Similarly, π[α → d] assigns relative time d to α, α / ∈ conf (π), into existing plan π, i.e. (π[α → d])(β) = d for β = α, (π[α → d])(β) = π(β) otherwise.
(B 1 , • • • , B n), as the TTS (Q p , q p 0 , γ ∪ R >0 ∪ (γ × R ≥0), ∼∼∼> γ) where: • Q p = L × V(X) × Π,
where L is the set of global locations, V(X) is the set of global clock valuations, and Π is the set of plans.

• (γ × R ≥0) defines the action of planning interactions of γ and their relative times. It represents the additional label besides the progress of time (R >0) and the execution of interactions (γ) present in the standard semantics.

• ∼∼∼> γ is the set of transitions defined by the rules:

-(ℓ, υ, π) ∼∼∼∼> (α,d) γ (ℓ, υ, π[α → d]) for α ∈ γ, h min ≤ d ≤ h max (α) and d ̸ = +∞ if α /
∈ conf (π) and Plannable(α, d) holds on (ℓ, υ, π).

-(ℓ, υ, π) ∼∼∼> α γ (ℓ ′ , υ ′ , π[α → +∞]) for α ∈ γ if π(α) = 0 and (ℓ, υ) α -→ γ (ℓ ′ , υ ′). -(ℓ, υ, π)∼∼∼> d γ (ℓ, υ +d, π -d) for d ≤ min(π), ℓ = (ℓ 1 , . . . , ℓ n), if (υ +d+h min) |= I i (ℓ i) for components B i / ∈ part(π).
Remark that in the above definition as well as in what follows, predicates defined on states (ℓ, υ) ∈ Q g = L × V(X) of the standard semantics are straightforwardly interpreted on states (ℓ, υ, π) ∈ Q p considering the projection (ℓ, υ) of (ℓ, υ, π) on Q g .

States of the LPS do not include only locations and clock valuations, but also the relative execution times of the planned interactions stored by π. Initially, no interaction is planned, that is, initial states are of the form (ℓ 0 , υ 0 , π 0). Planning an interaction α to be executed at a relative time h min ≤ d ≤ h max (α) corresponds to the operation π[α → d] on the plan, which can only be done if α is not conflicting with the latter, and becomes enabled if time progresses by d (i.e. if Plannable(α, d)). Additionally, time progress not only updates clock values but also the plan by decreasing the relative execution times of the planned interactions. To force the execution of planned interactions when their relative execution times reach 0, time cannot progress more than the relative execution times of the interactions (more than d ≤ min(π)). As for the standard semantics, time progress is limited by the location invariants of the components, but with the following significant difference. Components B i ∈ part(π) participating in planned interactions behave as in the standard semantics, that is, time can progress until their invariants become urgent. For components B i / ∈ part(π), i.e., that are not participating in planned interactions, we take into account the minimal delay h min needed for planning and then executing an interaction: in components B i / ∈ part(π) time can progress only up to h min time units before the urgency of their location invariants. By doing so, we ensure that there always remains enough time to plan interactions involving B i / ∈ part(π) , if they exist, and execute them before their invariants expire. ((ℓ 1 0 , ℓ 2 0 , ℓ 3 0 , ℓ 4 0), (0, 0, 0), +∞) This execution sequence represents a path that alternates plan actions, time progress and execution of some interactions, and leads to the action-time-lock state ((ℓ 1 0 , ℓ 2 2 , ℓ 3 2 , ℓ 4 0), (0, 0, 28), {α 6 → 30}). In fact, the location invariant x ≤ 30 in component T 1 , imposes the planning of interaction α 7 at the latest h min units of time before it becomes urgent. However, since interaction α 6 was planned in 28 units of time, α 7 cannot be planned since it is conflicting with α 6 . This execution sequence shows that a given system action-time-locks under the local planning semantics , even if it is deadlock-free in the standard semantics.

∼∼∼∼∼∼> (α 1 ,26) γ ((ℓ 1 0 , ℓ 2 0 , ℓ 3 0 , ℓ 4 0), (0, 0, 0), {α 1 → 26})∼∼∼∼∼∼> 26 γ ((ℓ 1 0 , ℓ 2 0 , ℓ 3 0 , ℓ 4 0), (26, 26, 26), {α 1 → 0}) ∼∼∼∼∼∼> α 1 γ ((ℓ 1 1 , ℓ 2 1 , ℓ 3 0 , ℓ 4 0), (26, 26, 26), +∞)∼∼∼∼∼∼> (α 3 ,2) γ ((ℓ 1 1 , ℓ 2 1 , ℓ 3 0 , ℓ 4 0), (26, 26, 26), {α 3 → 2}) ∼∼∼∼∼∼> 2 γ ((ℓ 1 1 , ℓ 2 1 , ℓ 3 0 , ℓ 4 0), (28, 28, 28), {α 3 → 0})∼∼∼∼∼∼> α 3 γ ((ℓ 1 0 , ℓ 2 2 , ℓ 3 0 , ℓ 4 0), (0, 28, 0), +∞) ∼∼∼∼∼∼> (α 2 ,26) γ ((ℓ 1 0 , ℓ 2 2 , ℓ 3 0 , ℓ 4 0), (0, 28, 0), {α 2 → 26})∼∼∼∼∼∼> 26 γ ((ℓ 1 0 , ℓ 2 2 , ℓ 3 0 , ℓ 4 0), (26, 54, 26), {α 2 → 0}) ∼∼∼∼∼∼> α 2 γ ((ℓ 1 1 , ℓ 2 2 , ℓ

Properties of the LPS

We use weak simulation to compare models interpreted with the standard semantics and with the local planning semantics, by considering the planning transitions unobservable. As shown in Example 5.1.1, the LPS does not preserve the deadlock freedom property of our system. Nevertheless, the following proves weak simulation relations between the two semantics.

∀α ∈ γ.(ℓ, υ, π) ∼∼∼> α γ (ℓ ′ , υ ′ , π ′) ⇒ (ℓ, υ) α -→ γ (ℓ ′ , υ ′).
Proposition 5.1.1 is a consequence of Lemma 5.1.1: an interaction α can execute in the local planning semantics if and only if π(α) = 0 (see Definition 5.1.1). That is, a state (ℓ, υ, π) of the LPS from which α can execute satisfies Plannable(α, 0) or equivalently Enabled(α), which demonstrates that α can execute from (ℓ, υ) in the standard semantics. The definition of weak simulation (Definition 2.1.3) is based on the unobservability of β-transitions. In our case, β-transitions corresponds to planning transitions. Let T g and T p be respectively the underlying timed transition systems of the standard semantics and the local planning semantics respectively.

∀d ∈ R >0 .(ℓ, υ, π) ∼∼∼> d γ (ℓ ′ , υ ′ , π ′) ⇒ (ℓ, υ) d -→ γ (ℓ ′ , υ ′).

Corollary 5.1.2. T p ⊑R T

g with R = {((q, π); q) ∈ Q p × Q g }.
Corollary 5.1.2 corresponds to a notion of correctness of the local planning semantics: any execution in the LPS corresponds to an execution in the standard semantics. In addition, if interactions are allowed to be planned with relative execution times of 0 (i.e. h min = 0) then timeless planning of interactions becomes possible. Thus, the planning semantics simulates the standards semantics in that case.

Case 1: no interaction is planned (i.e. π = π 0) By definition of the LPS, it is clear that for π = π 0 , there is no interaction to execute from (ℓ, υ, π) or any of its successor (ℓ, υ + d, π -d).

wait(ℓ, υ, π) = {0}:

This means that time progress is not allowed at state (ℓ, υ, π). We also have ∄σ ∈ (γ × R ≥0).(ℓ, υ, π) ∼∼∼> σ γ (ℓ ′ , υ ′ , π ′) (deadlock assumption). We can conclude that (ℓ, υ, π) is a reachable action-time-lock state, which contradicts the assumption that the system under the local planning semantics is action-time-lock-free.

wait(ℓ, υ, π) ̸ = {0}:

(a) max(wait(ℓ, υ, π)) = +∞: By P1 of Lemma (ℓ,υ + d,), we can conclude that the system under the standard semantics deadlocks, which contradicts the assumption of deadlock freedom of the system under the standard semantics.

(b) max(wait(ℓ, υ, π)) < +∞:

Considering that k = max(wait(ℓ, υ, π)), then we have by P1 of Lemma 5.1.2:

(ℓ, υ, π) ∼∼∼> k γ (ℓ, υ + k, π -k) ∧ wait(ℓ, υ + k, π -k) = {0}.
Using the deadlock assumption we have: α∈γ ¬Plannable(α) at state (ℓ, υ + k, π -k). Since the system cannot progress beyond this state (wait(ℓ, υ + k, π -k) = {0}), we can conclude that (ℓ, υ +k, π -k) is a reachable action-time-lock state, which contradicts the assumption that the system under the local planning semantics is action-time-lock-free.

Case 2: at least an interaction is planned (i.e. π ̸ = π 0) Considering that k = max(wait(ℓ, υ, π)), since π ̸ = +∞, we have by P2 of Lemma 5.1.2: k < +∞ ∧ k ≤ min π. Using the deadlock assumption we can infer that k < min π, since no execution is possible from (ℓ, υ, π) or any of its successors. This means that (ℓ, υ + k, π -k) is a reachable action-time-lock state, which contradicts the assumption that the system under the LPS is action-time-lock-free.

Enforcing Deadlock-Free Planning

As explained in previous section, the local planning semantics is based on local conditions for planning interactions and may exhibit deadlocks even when the system is deadlock-free with the standard semantics. Such deadlocks are partly due to the fact that planning an interaction may block, in addition to the participating components, extra components whose timing constraints are not considered in the preconditions of the local planning semantics. In this section, we investigate simple execution strategies that only restrict the horizon used for planning interactions with upper bounds. By reducing the period of time during which components are blocked, they tend to remove deadlocks from the reachable states. In what follows, we consider a composition of components S = γ(B 1 , • • • , B n) such that it is deadlock free in the standard semantics.

Proposition 5.2.1. A reachable state (ℓ, υ, π) of the local planning semantics is an actiontime-lock if and only if:

π > 0 ∧ α / ∈conf (π) ¬Plannable(α) ∧ ℓ i ∈L i B i / ∈part(π) at(ℓ i) ∧ (urg(ℓ i) + h min).
The above proposition derives directly from the definition of action-time-locks on a state of the local planning semantics. As shown in Example 5.1.1, the local planning semantics may introduce deadlocks. The source of deadlocks is twofold: (i) due to the scheduling response time, consecutive execution in a component are separated by at least h min units of time which may be incompatible with its timings constraints, and (ii) conditions for planning interactions are too permissive as they only take into account timing constraints of participating components whereas they may block additional components, namely the ones participating in conflicting interactions.

In what follows, we study how to generate planning strategies for preserving deadlock freedom by restricting the planning transitions of the LPS so that deadlock states become unreachable. Such a strategy may not exist when timing constraints cannot accommodate with the response time h min .

From Propostion 5.1.3, action-time-lock freedom is a sufficient condition for deadlock freedom of the LPS. By Proposition 5.2.1, a state (ℓ, υ, π) is an action-time-lock in the local planning semantics if and only if:

π > 0 ∧ α∈γ\conf (π) ¬Plannable(α) ∧ ℓ i ∈L i B i / ∈part(π) at(ℓ i) ∧ (urg(ℓ i) + h min).
The above predicate characterizes the fact that no interaction can be executed or planned, nor time can progress in component B i / ∈ part(π). Consequently, we deduce that a necessary condition of action-time-lock is the existence of a component B i / ∈ part(π) such that time cannot progress in B i and B i cannot be planned in an interaction, that is:

α∈γ(B i)\conf (π) ¬Plannable(α) ∧ ℓ i ∈L i at(ℓ i) ∧ (urg(ℓ i) + h min) .
where γ(B i) denotes the subset of interactions in which B i participates, that is, γ

(B i) = {β ∈ γ | B i ∈ part(β)}.
Notice that the above expression strongly depends on the plan π, which is difficult to characterize in practice. The following theorem proposes sufficient plan-independent condition characterizing action-time-lock states of the LPS . Theorem 5.2.1. Let ϕ be the following predicate:

1≤i≤n ℓ i ∈L i at(ℓ i) ∧ (urg(ℓ i) + h min) ∧ α∈γ(B i) ¬Plannable(α) ∨ β∈conf (α) B i / ∈part(β) Plannable(β) ∼ .
We prove that a reachable action-time-lock state (ℓ, υ, π) satisfies ϕ.

Proof of Theorem 5.2.1. A reachable action-time-lock state of the LPS satisfies:

π > 0 ∧ α∈γ(B i)\conf (π) ¬Plannable(α) ∧ ℓ i ∈L i B i / ∈part(π) at(ℓ i) ∧ (urg(ℓ i) + h min) .
In order to approximate the above formula, we distinguish two cases:

Case 1: no interaction is planned (i.e. π = π 0)

From π = +∞ we deduce directly that there exists an urgent component B i such that no interaction α involving B i can be planned, that is:

1≤i≤n ℓ i ∈L i at(ℓ i) ∧ (urg(ℓ i) + h min) ∧ α∈γ(B i) ¬Plannable(α) . (1
)
Case 2: at least an interaction is planned (i.e. π ̸ = π 0) In this case, there exists an urgent component B i / ∈ part(π) such that no interaction α involving B i can be planned, either because it conflicts with a planned interaction β (0

< π(β) < +∞) or because Plannable(α) is not satisfied, that is ∃β ∈ π, ∃B i / ∈ part(β) satisfying: (0 < π(β) < +∞) ∧ α∈γ(B i)\conf (β) ¬Plannable(α) ∧ ℓ i ∈L i B i / ∈part(β) at(ℓ i) ∧ (urg(ℓ i) + h min).
or equivalently ∃β ∈ π, ∃B i / ∈ part(β) satisfying:

ℓ i ∈L i B i / ∈part(β) at(ℓ i) ∧(urg(ℓ i)+h min) ∧ α∈γ(B i) ¬Plannable(α)∨ β ∈ conf (α)∧(0 < π(β) < +∞) .
By noticing that we have the following implication between quantifiers ∃y, ∀x.Q(x, y) =⇒ ∀x, ∃y.Q(x, y), we can deduce that the above condition implies:

1≤i≤n ℓ i ∈L i at(ℓ i) ∧ (urg(ℓ i) + h min) ∧ α∈γ(B i) ¬Plannable(α) ∨ β∈conf (α) B i / ∈part(β) 0 < π(β) < +∞ .
As π > 0, and if we consider only reachable action-time-locks, we have 0 < π(β) ≤ h max (β), and by Lemma 5.1.1 we have Plannable(β, π(β)). That is, β satisfies Plannable(β) in which the lower bound h min is replaced by the strict lower bound 0, i.e.:

Plannable(β) ∼ ⇔ ∃d > 0 . d ≤ h max (β) ∧ Plannable(β, d).
Then, the above expression becomes:

1≤i≤n ℓ i ∈L i at(ℓ i) ∧ (urg(ℓ i) + h min) ∧ α∈γ(B i) ¬Plannable(α) ∨ β∈conf (α) B i / ∈part(β) Plannable(β) ∼ . (2)
By remarking that Expression 1 implies Expression 2, we can conclude that an action-timelock of the local planning semantics satisfies:

1≤i≤n ℓ i ∈L i at(ℓ i) ∧ (urg(ℓ i) + h min) ∧ α∈γ(B i) ¬Plannable(α) ∨ β∈conf (α) B i / ∈part(β) Plannable(β) ∼ .
Notice that due to the monotony of ϕ on upper bound horizons, we obtain the following lemma:

Lemma 5.2.1. If T p is action-time-lock free for the upper bound horizons function h max , then it is action-time-lock free for any upper bound horizon function h

′ max ≤ h max .
As explained earlier, a given system is deadlock free under the restricted LPS if Reach(T p)∧ϕ is unsatisfiable. Since Reach(T p) ⊆ Reach(T g) (Corollary 5.1.2), we can verify the above on Reach(T g). Effectively, we do not compute Reach(T g) to avoid the combinatorial explosion problem, inherent to composition of timed automata. In fact, we rather build an over-approximation, Reach(T g) ∼ , of the latter, and use it during our verification. Finding a strategy granting action-time-lock freedom is based on the idea of restricting the upper bound horizon function h max . In fact, since h min is a parameter that is dependent of the communication latency of a given execution platform, it cannot be tuned. Instead, initially for each interaction α ∈ γ, we put h max (α) = +∞. Thereafter, due to the monotony of ϕ (Lemma 5.2.1) on upper horizons, this parameter will be refined, that is, its maximum will be decreased until finding a function h max for which Reach(T g) ∼ ∧ ϕ is unsatisfiable or until reaching the upper horizon function h h min max for which h max (α) = h min for every α ∈ γ and such that Reach(T g) ∼ ∧ ϕ is satisfiable.

Planning Semantics as Real-Time Controller Synthesis

In Section 5.3, we presented a method that provides execution strategies by restricting the upper bound planning horizons for each interaction. This strategy aims to preserve the deadlock freedom property of a given system under the local planning semantics without imposing further scheduling constraints. This approach relies on the verification of a given expression on over-approximation of the reachable states of the initial semantics. Thus, it may give false-positive results due to (i) the nature of the expression to check (sufficient condition) and (ii) the over-approximation of the reachable states of the LP S using over-approximations of the reachable states of the standard semantics (Corollary 5.1.2).

In such cases, an alternative is to tackle the problem as a real-time controller synthesis problem. Real-time controller synthesis is a common method used to extract an execution strategy from formal specifications satisfying certain properties. Usually, these properties express the reachability (resp. non-reachability) of a set of winning states (resp. bad states). In case of planning interactions with bounded horizons, the idea is to restrict the transition relation so that all the remaining behaviors do not lead to states where a component is urgent and no possible execution including this component may occur. This can be formalized as a reachability game for a timed game automaton [CDF + 05], where the main idea consists in trying to find an execution strategy guaranteeing that a given set of namely bad states of the system are never reached.

In order to apply this approach, it is required to encode the planning of interactions and their effects on the system, that is, (i) encode interactions planning as synchronizations between components, (ii) reserve the components of the planned interactions until their chosen execution date, i.e, keep track of the planned interactions and their execution dates, and (iii) characterize the set of bad states. Thereafter, tools such as UPPAAL-Tiga [BCD + 07] can be used to find an execution strategy of the planning semantics avoiding the set of bad states, that is, deadlock states. Expressing the planning problem as a real-time controller synthesis problem is not an easy task. Hereinafter, we discuss the different issues met during the formalization process and provide suggestions for solving them.

Encoding the Planning Semantics

In order to encode the planning semantics, we rely on the idea of splitting each transition of the initial model into two transitions: (1) a planning transition, followed by (2) an execution transition after the plan transition being performed.

Planning Zones

From 5.2, we can see that the clocks values for planning an interaction α are calculated at a global level, that is, by applying the ↙ hmax(α) h min on the conjunction of its participating actions timing constraints. Notice that for a timing constraint g = g 1 ∧ g 2 , we have:

↙ hmax(α) h min g = ↙ hmax(α) h min (g 1 ∧ g 2) =⇒ ↙ hmax(α) h min g 1 ∧ ↙ hmax(α) h min g 2 (5.3)
The above formula bears out the fact that planning states must be encoded on the composition of the system model and not on individual components. Particularly, equation 5.3 points out the fact that encoding the planning on transitions of individual components will induce additional behavior (↙ hmax(α)

h min (g 1 ∧ g 2) =⇒ ↙ hmax(α) h min g 1 ∧ ↙ hmax(α) h min g 2).
This represents the first drawback of this method since building the composition may be tedious especially for big scale systems. Therefore, a simple solution to avoid computing the composition is to consider models with interactions having timing constraints on up to one of their participating actions and that involves a single clock, that is, given an interaction α = {a i } i∈I ∈ γ, we have g α = true or g α = g a i , with g a i involving a single clock and g a j = true for j ∈ I, j ̸ = i. In fact, considering interactions including up to one action with timing constraints involving a single clock, will allow to encode the planning on individual components that, additionally to the defined synchronizations (interactions), will also synchronize their planning actions.

For an interaction α ∈ γ, the choice of the planning horizon, that is, the duration for which components participating in α will be blocked for until their execution, will be encoded on the execution transition of the component whose action a i ∈ α and g α = g a i . Otherwise, if g α = true this choice is made arbitrarily. Consequently, this component will be equipped with a clock x p that will be used to track the planning dates. Finally, location invariants must also be translated to enforce planning at the latest h min units of time before their expiry. Figure 5.1 depicts an overview of such transformation for δ = 2 × h min horizon:

ℓ 1 x ≤ k ℓ 2 a, g a , r a (a) Part of a timed automaton ℓ 1 x ≤ k -h min ℓ a 1 x p ≤ 2h min ∧ x ≤ k ℓ 2 plan a ↙ 2hmin 2hmin g a x p := 0 a x p = 2h min

Infinite Planning Transitions

Effectively, in order to encode the planning in timed automata, horizons values must be integer. Moreover, due to the dense time nature of the planning intervals (relative planning date for each interaction α are in [h min , h max (α)]), we end up with an infinity of plan transitions, especially when not restricting upper bound planning horizons, i.e., h max = h ∞ max . Consequently, the first thing to do is to restrict for each interaction α ∈ γ the upper bound planning horizon h max (α).Thereafter, we propose to discretize the planning horizons in order to obtain finite values in Z >0 (Figure 5.2). In what follows, we denote by Disc : γ -→ D the discretized horizon function defining for each interaction its respective discretized planning horizons D ⊂ Z >0 . Time

g α ↙ hmax(α) h min g α ↙ h min h min g α ↙ h min +ε h min +ε g α ↙ h min +2ε h min +2ε g α
An interaction guard gα and its planning intervals Time

g α ↙ hmax(α) h min g α ↙ h min h min g α ↙ h min +d h min +d g α ↙ h min +2d h min +2d g α
Discretized planning intervals for gα

Planning Timed Automaton

Definition 5.3.1 (Planning Timed Automaton). Given n timed components B i = (L i , ℓ i 0 , A i , T i , X i , I i) synchronizing through the interaction set γ such that, for each interaction α ∈ γ, the guard of α is equal to the guard of one of its included actions. We define the corresponding planning model as the composition of the n timed automata B p i = (L p i , ℓ 0 , A i ∪ P i , T p i , X i ∪ {x p i }, I p i), w.r.t the interaction set γ ∪ P, where:

• P i = ∪ a∈A i p a is the set of Planning Actions • P = {p α = {p a i } i∈I |α ∈ γ ∧ α = {a i } i∈I } is the set of Planning Interactions • x p i is a Tracking Clock for interactions execution in each component • L p i = (L i ∪ L ip)
is the set of control locations, where L ip is the set of locations following planning actions • T p i is such that for each (ℓ i , a i , g i , r i , ℓ ′ i) ∈ T i , a i ∈ α and for each δ ∈ Disc(α):

if g α ̸ = true we have:

Planning transitions:

     ℓ i pa i ,true,∅ ------→ ℓ a i , if g = true ℓ i pa i , ↙ δ δ g i ,r(x p i) ---------→ ℓ δ a i , otherwise
Execution transitions:

   ℓ a i a,true,r i -----→ ℓ ′ i , if g = true ℓ δ a i a,ga∧x p i =δ,r i --------→ ℓ ′ i , otherwise where ℓ a , ℓ δ a i ∈ L ip .
if g α = true, we choose one action b ∈ α:

Planning transitions:

     ℓ i pa i ,true,∅ ------→ ℓ a i , if a ̸ = b ℓ i pa i ,true,r(x p i) --------→ ℓ δ a i , otherwise
Execution transitions:

   ℓ a i a i ,true,r i -----→ ℓ ′ i , if a ̸ = b ℓ δ a i a i ,g i ∧x p i =δ,r i --------→ ℓ ′ i , otherwise
• I p i is the set of Location Invariants , such that ∀ℓ p i ∈ L p i , we have:

I p i (ℓ p i) =    I(ℓ i) -h min , if ℓ p i = ℓ i ∈ L i x p i ≤ δ ∧ I(ℓ i), if ℓ p i = ℓ δ a i ∈ L ip such that ℓ i ∈ L i ∧ ℓ i pa i --→ ℓ δ a i , For a composition γ(B 1 , • • • , B n), let T p ′ = (Q p ′ , γ ′ ∪ R >0 , -→ γ ′)
, where γ ′ = γ ∪ P, be the corresponding timed transition system of its planning model under the standard semantics. Theorem 5.3.1. T p ′ ⊑R ′ T g where R ′ is the relation defined as follows: For q p = (ℓ p , υ p) ∈ Q p ′ and q g = (ℓ g , υ g) ∈ Q g , such that (q p , q g) ∈ R ′ , we have:

• ℓ p = (ℓ p 1 , • • • , ℓ p n), ℓ g = (ℓ g 1 , • • • , ℓ g n): ∀i ∈ {1, • • • , n}, ℓ g i = ℓ p i , if ℓ p i ∈ L i , ℓ i , if ℓ p i ∈ L ip with ℓ i a,g,r ---→ ℓ p i ∈ T p i ∧ ℓ i ∈ L i ,
Notice that for the case where ℓ p i ∈ L ip , ℓ i is unique by construction of the planning model.

• υ g = equ(υ p), where equ(υ p) is the projection of υ p on clocks of υ g

Proof of Theorem 5.3.1. To prove that T p ′ ⊑R ′ T g , we need to prove that:

1. ∀(q p , q g) ∈ R ′ , σ ∈ γ ∪ R >0 such that q p σ -→ γ ′ q ′p ⇒ ∃q ′g .(q ′p , q ′g) ∈ R ′ ∧ q g σ -→ γ q ′g 2. ∀(q p , q g) ∈ R ′ , p α ∈ P such that q p pα -→ γ ′ q ′p ⇒ (q ′p , q g) ∈ R ′ 1. (a) Suppose that (q p , q g) ∈ R ′ , σ = α ∈ γ and q p α -→ γ ′ q ′p with q ′p = ((ℓ

′ p 1 , • • • , ℓ ′ p n), υ ′ p
). We have: q p α -→ γ ′ q ′p ⇒ g α is true, and for α = {a i } i∈I , by construction of the planning automaton, we have:

ℓ g i a i ,g i ,r i ----→ ℓ ′ g i such that ℓ ′ g i = ℓ ′ p i .
Moreover, since the same clocks are reset by the execution of α in both models, we deduce that υ ′g = equ(υ ′p). By remarking that the state of components not participating in α remains the same, we conclude that ∃q ′ g such that q g α -→ γ q ′ g ∧ (q ′ p , q ′ g) ∈ R ′ .

(b) Suppose that (q p , q g) ∈ R ′ , σ ∈ R >0 and q p σ -→ γ ′ q ′p . For q p i = (ℓ p i , υ p i), we define I g the set of indexes such that ℓ p i ∈ L i , and I p the set of indexes such that

ℓ p i ∈ L p i . • ∀i ∈ I g .ℓ p i = ℓ g i ∧ q p i σ -→ q ′ p i ⇒ q g i σ -→ q ′ g i .
This implication is a direct result of the planning model definition since:

σ ≤ I(ℓ p i) ≤ I(ℓ g i) -h min . • ∀i ∈ I p .ℓ g i = ℓ i such that ℓ p i ∈ L ip with ℓ i a,g,r ---→ ℓ p i ∈ T p i ∧ ℓ i ∈ L i . Thus q p i σ -→ q ′ p i ⇒ q g i σ -→ q ′ g i , since I(ℓ p i) =⇒ I(ℓ g i).
We conclude that ∃q ′g such that q g σ -→ γ q ′ g ∧ (q ′ p , q ′ g) ∈ R ′ .

2. Suppose that (q p , q g) ∈ R ′ and q p pα -→ γ ′ q ′p , with p α ∈ P and q ′p = ((ℓ

′ p 1 , • • • , ℓ ′ p n), υ ′ p). We have: q p pα -→ γ ′ q ′p ⇒ for α = {a i } i∈I ℓ g i = ℓ p i ∧ℓ g i pa i
--→ ℓ ′ p i . Moreover, since planning actions reset only the clocks x p i for tracking execution time, we can deduce that (q ′ p , q g) ∈ R ′ .

Once interactions planning encoded, one last thing to do is to add the set of bad states to each planning automaton (if needed) and find a strategy to avoid those states. Figure 5.3 depicts the corresponding planning automata for example of Figure 2.3 with respect to Definition 5.3.1. Locations suffixed by p, correspond to locations following planning actions, whereas locations ending with err define the bad states, that is, states with urgent location invariant(s) and no possible execution removing the urgency. In this example, for each interaction α ∈ γ, we chose D(α) = {1, 2}. Notice that for this example, we consider that all actions are controllable actions since it is a closed system in the sense that there is no interaction with the environment.

We performed the verification on the Task Manager examples with 20 tasks. The winning condition being a safety condition: avoid all "err" locations. This was translated into the following property: control: A[] forall (i : int[0,N-1]) not (Task(i).l_2_err or Task(i).l_3_err)

(5.4)

The property of interest was successfully verified. Additionally, we were also able to synthesize all wining actions of all states using the command line of UPPAAL-Tiga. A sample of the resulting output is provided below Figures 5.4

Discussion

In this section, we explained how the problem of planning interactions can be formalized into a real-time controller synthesis approach. However, this approach has some drawbacks. In order to encode planning of interactions in components as timed automata, this approach restricts its scope to discretized horizon values which results in having less control over the planning dates of interactions, and leads in case of a high number of discretized values, to an explosion in the number of planning transitions. Unfortunately, we do not have an immediate solution for this problem. In fact, it is user dependent since one user may just want to block components for the least amount of time possible for a given interaction, for instance because the components involved in this interaction are often requested, and in that case the practice will be to always plan with h min . In other cases, the user may want to plan an interaction with flexible amount time. Additionally, this approach considers only a class of systems where Otherwise, the planning should be encoded on the composition, which represents a tedious work because of the state space explosion problem. Nevertheless, this approach differs form the usual scheduler synthesis approach since it is not performed on the regular semantics of timed automata. Particularly, here we are interested in avoiding bad states of the planning semantics (states that verify the expression of Theorem 5.2.1). Consequently, unless finding an automatic general method for generating such complex expressions in the query language accepted by such tools, and without ignoring that finding a strategy avoiding those states may be hard in terms of computational complexity, our real-time controller synthesis approach seems more straightforward and much simpler but it comes with some feasibility restriction. In the previous section, we introduced a timed automata model that describes a high level representation of systems execution. However, this type of model assumes that components clocks are perfectly synchronous which is hardly the case in practice. Effectively, clocks are able to measure time up to a certain precision and will be likely to drift since they are implemented based on oscillators that are not perfect: the oscillator frequency is not constant, it changes depending on environmental conditions such as temperature, humidity and aging. In this chapter, we present a distributed timed automata model where clocks advance at different rates and we study the resulting effect on the system behavior.

Distributed Timed Systems with Independent Clock Rates

Expressing Clock Constraints Using Local Clock

When building distributed real-time systems, a common practice is to use local clocks as time references as explained in Chapter 3. These clocks measure the absolute time elapsed since the system startup and are never reset. This approach reduces the effort of keeping track of the actual time progress in components and enable to have a common time scale.

The idea consists in mapping each clock of a component to a (unique) local clock. Thus, the value of component clocks are obtained by simply shifting their corespondent local clock by a constant amount of time as soon as the clocks are not reset. Effectively, for each clock x of a component, we introduce a real variable ρ x that stores the absolute time of its last reset (with respect to its local clock), that is, if x is mapped to a local clock g, then each time x is reset, ρ x is update to the current value of g. Notice that the value of x can be found by the equality x = g -ρ x . As a result, any timing constraints c of a component B i can be expressed using a local clock g as follows:

c = x i ∈X i l ◁ x i ▷ u = x i ∈X i l + ρ x i ◁ g ▷ u + ρ x i (6.1)
where ◁ ∈ {<, ≤} and ▷ ∈ {>, ≥}. Notice any timing constraints of Definition 2.1 can be written on the form of inequalities.

Distributed Timed System

Let S = (L, ℓ 0 , X , D, γ, E γ , {f e } e∈γ , I) be a timed system of n components synchronizing through the interaction set γ. For an interaction α, we denote by clock(α) the set of clocks appearing in its timing constraints, that is, clock(α) = {x ∈ X |∀(ℓ, α, g, r, ℓ ′) ∈ E γ , x ∈ g}, with ∈ denoting the presence of x in the guard g.

Given an interaction partition {γ k } m k=1 , we put clock(γ k) to denote the set of clocks appearing in the timing constraints of interactions of γ k , that is, clock(γ k) = {∪ α∈γ k clock(α)}. We formalize the independent evolution of clocks by defining an ownership map that assigns a set of clocks to a unique local clock based on interaction partitioning . Particularly, we assign to each class of interaction a unique local clock. We require additionally that clock of each components is mapped only to a unique local clock. This avoid timing inconsistency and ensure that each clock of a component is evaluated using a unique local clock. This constraints immediately the interaction partitioning as follows:

i,j∈{0,••• ,m} i̸ =j clock(γ i) ∩ clock(γ j) = ∅ (6.
2) Definition 6.1.1 (Distributed Timed System). Given a timed system S = (L, ℓ 0 , X , D, γ, E, {f e } e∈γ , I) and an interaction partitioning satisfying the constraint 6.2. We define the corresponding distributed timed system with independent local clock rates as the tuple S dt = (L, ℓ 0 , X dt , D dt , γ, E dt , {f dt e } e∈γ , I dt , π) such that:

• X dt is the set of local clocks (a unique clock per class of interaction)

• π : X -→ X dt is a many to one mapping between clocks X of S and local clocks X dt

• D dt = D ∪ {∪ x∈X ρ x |ρ x ∈ R ≥0 }
is the set of data with ρ x being real valued variables storing absolute reset times

• E dt is such that for every (ℓ, α, g, r, ℓ ′) ∈ E, α ∈ γ, we have the corresponding transition (ℓ, α, g dt , ∅, ℓ ′) ∈ E dt where:

g dt is the guard g expressed using the local clock x dt ∈ X dt where ∀x i , x j ∈ clock(α), i ̸ = j, π(x i) = π(x j) = x dt f dt e = f e ∪ {ρ x := x dt |∀x ∈ r} is the transfer function updating reset variables in addition to data variables of D • I dt is the set of location invariants expressed using local clocks Notice that clocks appearing in location invariants appear necessarily in at least an interaction since we assume timed system with well formed guard. Property 6.1.1 (Semantics). The semantics of a distributed timed system S dt = (L, ℓ 0 , X dt , D dt , γ, E dt , {f dt e } e∈γ , I dt , π) is defined by the timed transition system T dt = (Q dt , q dt 0 , γ, -→ γ) where: • q dt 0 = (ℓ 0 , 0, 0) is the initial state.

• Q dt = L × V(X dt ∪ D dt) × ∆
• -→ γ ⊆ Q dt × (γ ∪ R >0) × Q dt is
the set of labeled transitions defined by the rules:

-(ℓ, υ, δ) α -→ γ (ℓ ′ , υ[r], δ) for α ∈ γ, if (ℓ, α, g, r, ℓ ′) ∈ E dt ∧ υ |= g -(ℓ, υ, δ) d -→ γ (ℓ, υ ′ , δ ′) for d ∈ R >0 , such that υ ′ = υ + d -δ + δ ′ ∧ υ ′ |= I dt (ℓ) ∧ υ ′ ≥ υ
The above semantics models drifting clocks by introducing an offset variable δ that stores for each clock in x dt its actual drift value with respect to an implicit reference time. The common practice when clocks are subject to drift is to regularly resynchronize the clocks using different methods, such as bit-stuffing or any other clock synchronization scheme. Consequently, we consider a more realistic model where clocks can drift up to a certain value ϵ with respect to a reference clock. This value is generally computed based on three parameters: (i) the post-synchronization gap, (ii) the longest gap between synchronizations, and (iii) the clock precision parameter usually given by the constructor. This induces that δ ∈

[-ϵ, ϵ] |X dt | . -q 1 σ -→ q ′ 1 implies q 2 σ -→ q ′ 2 for some q ′ 2 ∈ Q 2 with (q ′ 1 , q ′ 2) ∈ R -q 1 d -→ q ′ 1 implies q 2 d ′ -→ q ′ 2 for some q ′ 2 ∈ Q 2 and d ′ ∈ R ≥0 with |d ′ -d| ≤ ϵ and (q ′ 1 , q ′ 2) ∈ R • Timed action ϵ-simulation, if for any (q 1 , q 2) ∈ R, σ ∈ , d, ϵ ∈ R ≥0 -q 1 d,σ --→ q ′ 1 implies q 2 d ′ ,σ --→ q ′ 2 for some q ′ 2 ∈ Q 2 and d ′ ∈ R ≥0 with |d ′ -d| ≤ ϵ and (q ′ 1 , q ′ 2) ∈ R
If there exists a strong timed (resp. timed action) ϵ-simulation between T 1 and T 2 w.r.t R, then we write

T 1 ⊑ ϵ R T 2 (resp. T1 ⊑ ϵ * R T 2)
This approach characterizes the degree of closeness between timed systems: it generalizes the (boolean) notions of timed simulation (yes or no) to metrics over timed system. Formally, for a positive real number ϵ, a state q 1 is told ϵ-similar to another state q 2 if there is a time-abstract simulation that can relates both states in the sense that the difference between the delays of time-step transitions is at most ϵ.

Although this definition of simulation is less restrictive, Property 6.1.3 gives the intuition that for some states (q dt , q) ∈ R there may be interactions that can be executed from q dt but not from q, which make the ϵ-simulation impossible.

Robust Distributed Semantics

As explained in previous sections, the distributed semantics may exhibit new behavior with respect to the standard semantics. In this section, we identify the problematical states of the distributed semantics and provide sufficient conditions that will guarantee timed action ϵ-simulation. Definition 6.2.1 (Potentially Bad States). We denote by Υ the set of potentially bad states of the distributed semantics characterized as follows:

Υ = {q = (ℓ, υ)|∃α ∈ γ, υ |= g α ∧ υ + ϵ ̸ |= g α }
The intuition behind this characterization results form Property 6.1.3. These states may yield possible execution of interactions in the distributed semantics that are not possible in the related states of the standard semantics (states that are ϵ-similar). Proposition 6.2.1. Let T dt be the timed transition system of the distributed semantics. We have:

Υ ∩ Reach * (T dt) = ∅ =⇒ T dt ⊑ ϵ * R T g where Reach * (T dt) is the projection of states of the distributed semantics on state variables of the standard semantics, that is, by considering only locations, clocks, and data variables.

Proof of Proposition 6.2.1. In order to prove proposition 6.2.1, we need to show that if for any (q dt , q) ∈ R, σ ∈ γ and d ∈ R ≥0 :

q dt d,σ --→ q dt ′ =⇒ ∃q ′ ∈ Q g , q d ′ ,σ --→ q ′ , with d ′ ∈ R ≥0 , |d ′ -d| ≤ ϵ and (q dt ′ , q ′) ∈ R
Let (q dt , q) ∈ R such that Υ ∩ Reach * (T dt) = ∅ and ∃σ ∈ γ, ∃d ∈ R ≥0 , q dt d,σ --→ q dt ′ . We distinguish two cases:

Case 1: d > 0
We have q dt d,σ --→ q dt ′ . This means:

       v dt ′ = (v dt + d -δ + δ ′)[r dt , f σ] v dt + d -δ + δ ′ |= I dt (ℓ) ∧ g dt σ v dt + d -δ + δ ′ + ϵ |= I dt (ℓ) ∧ g dt σ q dt / ∈ Υ
where [r dt , f σ] means after applying reset and transfer function. When expressed on original clocks the above becomes:

       v dt ′ = (υ + ρ + d + δ ′)[r dt , f σ] υ + d + δ ′ |= I(ℓ) ∧ g σ υ + d + δ ′ + ϵ |= I(ℓ) ∧ g σ
We also have δ ′ ∈ [-ϵ, ϵ]. Consequently we have:

1. δ ′ ∈ [0, ϵ], then:

v dt ′ = υ + d + δ ′ + (ρ)[r dt , f σ] υ + d + ϵ |= I(ℓ) ∧ g σ
By putting d ′ = d, and since r dt = ∅ (Definition 6.1.1) and f σ applies only on ρ we obtain:

v dt ′ = υ + d ′ + δ ′ + (ρ)[r dt] υ + d ′ + ϵ |= I(ℓ) ∧ g σ
Consequently, we can conclude that q

d ′ ,σ --→ q ′ such (q dt ′ , q ′) ∈ R 2. δ ′ ∈ [-ϵ, 0]
, then:

v dt ′ = υ + d + δ ′ + (ρ)[r dt , f σ] υ + d -ϵ + ϵ |= I(ℓ) ∧ g σ
By putting d ′ = d, and since r dt = ∅ (Definition 6.1.1) and f σ applies only on ρ we obtain:

v dt ′ = υ + d ′ + δ ′ -ϵ + (ρ)[r dt] υ + d ′ |= I(ℓ) ∧ g σ
Consequently, we can conclude that q

d ′ ,σ --→ q ′ such (q dt ′ , q ′) ∈ R Case 2: d = 0
Since Υ ∩ Reach * (T dt) = ∅, using the same methodology of case 1, we can conclude that

∃q ′ ∈ Q g , q d ′ ,σ
--→ q ′ , with d ′ ∈ R ≥0 , |d ′ -d| ≤ ϵ and (q dt ′ , q ′) ∈ R.

Discussion

Proposition 6.2.1 highlights an interesting property on the reachable states of the distributed semantics. It states that if all the reachable states of the distributed semantics are not potential bad states, i.e, Υ ∩ Reach * (T dt) = ∅, then there exists a timed action ϵ-simulation between the timed transition systems of the standard semantics and the distributed semantics.

Consequently, the idea is to restrict the distributed semantics in order to avoid such states. This can be achieved by shrinking the upper bound of every transition timing constraints, if it exists, by ϵ. Let T dt ϵ be the timed transition system after shrinking every existing upper bound timing constraints by an amount of ϵ. Then, we have the following lemma:

Lemma 6.2.1. T dt ϵ ⊆ T dt
The above lemma derives straightforwardly from the fact that shrinking does not introduce new behavior. Conversely, it just restrains the set of states from which interactions can be executed.

Lemma 6.2.2. Υ ∩ Reach * (T dt ϵ) = ∅.
The above lemma is a direct consequence of the shrinking operation. In fact, since clocks of the distributed semantics an those of the standard semantics can have at most ϵ difference in values, by shrinking upper bound timing constraints we avoid all possible execution of interactions for clock values that are ϵ before its due date. Consequently, this ensures that Υ ∩ Reach * (T dt ϵ) = ∅ and allows for any related state of the standard semantics to execute the same interaction directly or after doing a timed step.

The following lemma is a direct consequence of Proposition 6.2.1 and Lemma 6.2.2. Lemma 6.2.3. T dt ϵ ⊑ ϵ * R T g Definition 6.2.2 (Robustness). For a given timed system S, we say that S is robust to clock drifts iff Reach(T dt ϵ) is deadlock free.

Restricting the distributed semantics through shrinking allows to avoid the reachability of some states (the potential bad states). This enforces the timed action ϵ-simulation between states of the standard semantics and those of the restricted distributed semantics. However, since shrinking reduces the set of reachable states, the timed action ϵ-simulation alone is not enough. We must also ensure that shrinking does not introduce any deadlocks. The two aforementioned point together form our definition of robustness.

Discussion

In this chapter, we revisited the robustness concept usually used to check whether a given system still satisfies the specification (a set of properties) when subject to different perturbations such as clock drift. We first modeled the behavior of a timed system with independent clock rates and subject to a resynchronization scheme. Thereafter, we used a variant of simulation that relates states with a timing difference up to a certain ϵ, and provide a characterization of potential bad states that may invalidate this variant of simulation. Then, we suggested a strategy based on shrinking upper bound timing constraints in order to avoid such states which allows to attest the timed action ϵ-simulation.

Sankur et al. [START_REF] Sankur | Shrinking timed automata[END_REF] studied the robustness problem in timed automata against guards shrinking. They provided a method for deciding whether shrinking all timing constraints (guards) of a timed automaton, by possibly different amounts, results in a timed automaton that preserves some time-abstract behaviors, and is not blocking. The latter represents their robustness notion. It was proven that if the automaton is shrinkable, then several properties established on the initial automaton are preserved in the implementation (when clocks are not perfect). Otherwise, then the conclusion is that the model is vulnerable to the slightest variations in the measure of time and should thus be considered as non-robust, and the design should be reviewed. From a theoretical aspect, the proposed analysis was formulated as a parameter synthesis problem. Shrinktech [START_REF] Sankur | Shrinktech: A tool for the robustness analysis of timed automata[END_REF] is a tool that implements the simulationshrinkability algorithm presented in [START_REF] Sankur | Shrinking timed automata[END_REF]. It is compatible with the Kronos [BDM + 98] model checker, that can minimize the region graph of a timed automaton [START_REF] Tripakis | Analysis of timed systems using timeabstracting bisimulations[END_REF] needed by the tool. The tool has been used to attest the shrinkability of several case studies, such as the Philips Audio Retransmission protocol, Fischer's Mutual Exclusion protocol (up to 4 agents), and some other asynchronous circuit models. These experiments showed that the tool is capable of treating shrinkability of timed automata with thousands of edges (w.r.t graphs with more than sixty thousand transitions). The bottleneck of the tool was also identified as being the size of the full bisimilarity graph, which is often costly to compute, and that may require long processing time for shrinkability analysis. Moreover, the non-shrinkability of most models was mainly due equality constraints, or to the fact that some models was designed at a high level of abstraction where imprecisions were not taken into account. • Behavior: This layer describes the behavior of each component of a system as a timed transition system. Atomic components are defined as timed automata with well defined interface (ports).

Chapter 7

Implementation and Experimentation

• Interactions: The interaction layer specifies how components interact together and coordinate their action using n-ary synchronizations. It restricts thus the global behavior of components together using these synchronizations.

• Priorities: Priorities are used to favor the execution of a subset of enabled interactions called maximal interactions. They can be used to resolve conflicts or to express particular scheduling policies.

The Real-Time BIP language [ACS10] extends the BIP language through clocks used to express timing constraints on transitions and locations (location invariants). It also supports urgency types on transitions [START_REF] Bornot | An algebraic framework for urgency[END_REF] that provide additional means to constrain the progress of time in a given system. In this thesis, we do not consider priorities or urgency types. However, given a timed system S that includes priority rules on interactions and/or urgency types on transitions, then its underlying timed transition system T S is included in the timed transition system representing its abstraction S * from the latter, that is, T S ⊆ T S * . This means that all the results of this thesis, if they apply on S * , then they apply on S.

The BIP language defines systems as a composition of components using a set of syntactic constructs that specify components behavior and interface as well as the ongoing synchronizations (interactions) and priorities. They consist of the following:

• Atomic component: Atoms represent the simplest entity of a system. An atomic component may include a set of ports, data and clocks. Its behavior is described using an automaton or a Petri net whose transitions are labeled by ports with guards possibly on data and/or clocks. Ports and data can be exported, and thus become accessible at a higher hierarchy level (compound). They define the interface of a component. Additionally, atomic components support the usage of external C/C++ functions on transition guards and may as well trigger the execution of such functions on the execution of a transition.

• Connector: Connectors are stateless entities that characterize the possible interactions between a set of components via their interface ports.

• Priority: Priorities are used to restrict the possible set of enabled interactions.

• Compound: A compound is a composite component that consists of a set of atomic components, the connectors specifying their interactions and a set of priority rules. It may as well export ports and data.

The BIP Toolbox

The BIP framework provides a rich set of tools that allows to model, verify and execute systems. The BIP toolbox is structured in different categories as shown by Figure 7 This category includes translation of various languages or modeling paradigms in addition to the BIP language. It includes translation of synchronous languages [BSS09, STS + 10] as well as languages combining software applications and hardware architectures [CRBS08, BMP + 07, BBB + 11c], allowing thus automatic generation of BIP models through several translation steps. First, the functional modules of the considered application, along with the necessary data structures and application functions, are translated into BIP components. Thereafter, connectors representing the interactions between the application modules are added. Finally, priorities may be added to refine the behavior of the obtained BIP model with respect to the expected behavior.

(2) The BIP Compiler

The BIP compiler consists of three parts:

1. The front-end : it interacts with the user of the compiler. It reads user input and transforms it in a form suitable for the following process (ie. internal representation).

2. The middle-end : applies operations on the internal representation (eg. optimizations, architectural transformations, etc.). Such operations are contained into small blocks of the middle-end that we will call filter later on. An example of filters that can be found in the middle-end of the BIP compiler are:

• The identity filter is the default filter that given a BIP model return the same BIP model.

• The flattening filter transforms a hierarchical system into flattened atomic components synchronized through flattened interactions.

• The distributed real-time filter includes the transformation of BIP models to Send/Receive models as described in Chapter 3. It also includes our implementation of the methods presented in Chapter 4 and Chapter 5.

The BIP middle-end can be also associated with the RTD-Finder tool for validation and optimization purposes.

3. The back-end : It consists of code generators that produce the final result from the internal representation. Usually, the final output is in the form of a source code in a programming language (eg. C++). We distinguish two types of code generators, namely, a self contained distributed code generator and an engine-based generator.

A typical compilation consists of the following steps:(1) First, the front-end executes and creates a BIP-EMF model. Then, (2) the filters in the middle-end are executed in turn. The result is a possibly modified BIP-EMF model. Finally, (3) the wanted back-end is executed and produces the compilation results.

(3) Simulation and Execution

As stated above, the back-end of the BIP compiler generates the final representation of a BIP model as source code in a programming language such as C++. The resulting source code is either self contained and can be directly compiled and deployed for execution, or it can be linked with an engine that computes the corresponding execution sequences according to the BIP semantics. Usually, the representation used is a C++ software that is linked against the engine's runtime to create an executable software. Typically, engines target one or more of the following main goals:

• Execution of the model corresponds to the computation of a single execution sequence that is intended to be executed on the target platform. In this case, the engine realizes the connection between the model and the platform in order to ensure a correct behavior of the execution.

• Simulation of the model corresponds to the computation of a single execution sequence that is intended to be executed on the host machine for simulation purpose, that is, time is interpreted in a logical way.

• Exploration of the model corresponds to the computation of several execution sequences corresponding to multiple simulations of the model.

(4) Verification Tools

The BIP toolset includes two verification tools intended for system validation and performance evaluation.

1. The RTD-Finder [START_REF] Ben Rayana | Rtdfinder: A tool for compositional verification of real-time component-based systems[END_REF] tool is a compositional verification tool that allows to verify a given system against a set of safety properties such as deadlock freedom, mutual exclusion or bounded response time. It is based on the computation of invariants representing over-approximations of the reachable states of a system.

SBIP [MNB + 18

] is a statistical model-checker that supports multiple modeling formalism ranging from DTMCs to CTMCs and GSMPs. It includes a single integrated environment where one can edit models, compile, simulate, and perform SMC analysis.

Tools Developed in this Thesis

The methods presented in Chapter 4 and Chapter 5 have been implemented in the distributed real-time filter of the BIP compiler. The latter also includes the transformation of BIP models to Send/Receive models as described in Chapter 3. Figure 7.4 depicts an overview of the distributed real-time filter. It includes the following modules:

• Analyser: The Analyser creates internal abstractions of the input BIP model. Particularly, it includes:

1. Component Info: It encompasses atomic components information such as a map indicating for each port a list of source and destination locations matching transitions labeled by this port, with the corresponding timing constraints. It also includes urgency predicate for each component.

Interaction Info:

This unit builds for each interaction the set of its participating components, the involved port for each component, as well as all the possible combinations (location configurations and timing constraints) based on component info. It also includes for each interaction α all the predicates Enabled(α), Enabled ↙ (α) and Enabled ↙ u l (α). The latter is constructed based on the Planning Horizons file provided as input.

3. Compound Info: The Compound Info unit combines the aforementioned info in order to build a given system abstraction. In addition to components and interactions info, it constructs the set of potential conflicts based on the Interaction Partition file and all the necessary elements required for building the Send/Receive model of Chapter 3, and for the generation of expressions presented in Chapter 4 and Chapter 5.

• Property Generator: The Property Generator module builds all the necessary expressions for the optimization of conflict detection and the deadlock freedom verification of the local planning semantics. It interacts with the RTD-Finder tool in order to achieve these tasks.

Experimentation

In this section, we present the experimental results for the methods presented in Chapter 4 and Chapter 5. The approaches have been validated on different case studies in combination with the RTD-Finder tool.

Case Studies

Train Gate Controller System

The train gate controller [AD94] is a system composed of: a controller, a gate and a train. Figure 7.5 gives an overview of the system and its interactions: The train informs the controller about his position (w.r.t. to the crossing) through the interactions α 1 (approach) and α 2 (exit).

On the other hand, the controller lowers (α 3) and raises (α 4) the gate whenever the train enters, respectively exits. Notice that actions {enter} of the train, and {up, down} of the gates are considered as singleton interactions.

FireWire -IEEE 1394

FireWire is a high-performance serial communication bus dedicated for hot plug-and-play multimedia devices. Devices can be organized in arbitrary topologies, where each pair of nodes is connected by two unidirectional channels. The internal representation of topologies is a tree where the root (leader) arbitrates the access to the bus. The designation of the leader is performed through a leader election protocol, namely, the tree identification protocol. Whenever the topology changes, i.e., a device joins/leaves, a reset occurs, and a new election is triggered. The tree identification protocol is initiated by the leaf nodes of the topology. They send requests asking their neighbors to become their parents. A parent request sending mode is non deterministically chosen to be fast or slow. It determines the amount of time to wait before sending. Internal nodes of the topology keep on listening to parent requests until they receive exactly n -1 requests, n being the number of neighbors. Then, they send a parent request to their remaining neighbor. When receiving a parent request, a node either sends an acknowledgment, or detects a contention in the case it has also sent a parent request and it is still waiting for an acknowledgment. Intuitively, a contention means that two neighbors are mutually asking to be leader. This situation is resolved by forcing both nodes to send new requests after a random waiting time. We implemented a FireWire model inspired from the case-study in [DLL + 11], where the considered topology is made of two devices. Figure 7.7 depicts the model for the node component.

Gear Controller System

The gear controller system (Figure 7.8) describes the control system responsible for the gear change inside a vehicle. The used model encompasses formal models of the gear controller and its environment. The whole system includes five components: an interface, a controller, a clutch, an engine a gear-box and two global variables. In order to change the gear, the interface sends a signal to the controller. Consequently, the controller interacts with the engine, the clutch and the gear-box to achieve the gear change. The engine is responsible of either regulating the torque or synchronizing the speed. On the other hand, the gear-box sets the gear between some fixed bounds, whereas, the clutch is used whenever the engine is not able to function properly (under difficult driving conditions, for instance). The case study was initially designed in UPPAAL [START_REF] Lindahl | Formal design and analysis of a gear controller[END_REF] and has been translated to BIP.

The complete model (taken form [START_REF] Lindahl | Formal design and analysis of a gear controller[END_REF]) can be found in Appendix A.

Remark 7.4.1. Note that since the gear controller system contains to global variables, we had to tweak the generated invariants of the RTD-Finder tool as well as some of the predicates in order to restrict the set of reachable states of the system.

Gear Controller

Gear Box Interface Clutch Engine

Results

The experiments have been conducted on a HP machine with Ubuntu 16.04, an Intel ® Core ™ i5-4300U processor of frequency 1.90GHz×4, and 7.7GiB memory. Table 7.1 summarizes for each experiment the number of components (n), interactions (i), partition classes (c), potential conflicts (p), false conflicts (f), the gain of the conflict detection and gives also the total verification time of our methods combined. The above results give an indication on how much conflict resolution will be needed during execution.

Conflict Detection Optimization

We first performed several experiments on different variants of the Task Manager example (with 2, 10, 20, 30, 40 and 50 Tasks). Each variant was tested with different partitioning of interaction (different number of classes). Note that each time we chose the interaction partition such that it yield the maximum number of potential conflicts. We can notice from the Task Manger experiments that increasing the number of interaction partition classes will increase the number of potential conflicts, that is, the more distributed the system is the more conflicts it contains. Remark that the percentage of gain remains the same meaning that our detection method is not affected by the partitioning but rather bu the overall structure and dynamics of a given system.

We performed other experiments on real-life case studies such as the Train Gate Controller and the Gear Controller Systems which also yield interesting results in term of conflict detection ratio and execution time.

Action-Time-Lock Detection for the LPS Table 7.2 depicts the values h max for each interaction of the Task Manager example, obtained while fixing h min . Notice that the symmetry of the system implies the same h max for interactions α i , α i+1 , i ∈ {1, 3, 5, 7}. By remarking that location ℓ 2 3 (resp. ℓ 3 3) has a time progress condition x ≤ 4 (resp. y ≤ 4), and by observing that the clock x is reset on the transition leading to this location, we can conclude that planning the system with h min > 4 will lead to an action-time-lock. Particularly, in Example 5.1.1, for h min = 2 interaction α 6 was planned with a horizon δ = 8, and consequently, leads to a action-time-lock state. Our method detects such cases and thus, finds that the maximum horizon for this interaction is 7. Likewise, the h max for interactions α 2 , α 4 and α 8 (resp. α 1 , α 3 and α 7) is found to be unbounded (+∞). 7.3 summarizes the experiments obtained on the benchmarks stated above, where n is the number of components, nb I the number of time progress conditions that will be verified against action-time-lock freedom and max h min the maximum value of h min for which the system is action-time-lock-free in the planning semantics. Additionally, the column h max indicates whether a restriction on the upper horizons is required to avoid deadlocks. Finally, t exec gives an overview of the execution time including both the invariants generation and the verification time. As shown in table 7.2, the task manager model has a maximal h min value of 4 TU and requires a restriction on the upper horizons for interactions α 5 and α 6 . In the same way, we found that the train gate controller, the firewire and the train gate controller models have respectively maximal h min value of 4 TU, 5 TU and 130 TU. However, they do not require any restriction on the upper horizons values of their interactions.

In this chapter, we conclude this thesis by summarizing the achievements and pointing out interesting future working directions.

Achievements Knowledge Based Optimization Approach

In this thesis, we presented an intermediate distributed representation (Send/Receive model) for distributed ream-time systems. This representation proposes an implementation method for systems with multiparty interactions through simpler primitives such as messages passing. It also provides a scheduling mechanism, more appropriate to distributed real-time systems, since it is based on partial information of a given system.

Our first contribution was to propose an optimization methods for such intermediate representation. We presented a methods that relies on invariants in order to refine the set of conflicting interactions, required for building the Send/Receive model. Based on the original model, an approximation of the set of reachable states of a timed system is derived on the form of invariants. The latter are used later on for checking the simultaneous enabledness of two potentially conflicting interactions. Based on the obtained results, either the potential conflict between two interactions is cleared out meaning that both interactions are never enabled at the same time, or the real conflict cannot be attested which in this case a counter-example is proposed. This optimization aims particularly at reducing the effort of scheduling interactions by removing any unnecessary exchange of messages or evaluation computations.

Modeling Communication Delays

The Send/Receive model presented in Chapter 3 assumes that the communication mechanisms are fast enough to not impact the behavior of the overall system. Effectively, this is due to the zero delay between the decision of executing interactions in schedulers and the concrete execution of the corresponding actions in the participating components. The resulting model was proven to be observationally equivalent to the initial model. To reduce the impact of communication delays on the system behavior, [START_REF] Triki | Implémentations distribuées des systèmes temps-réel à base de composants)[END_REF] proposed an approach based on the idea of early decision making. In this solution, schedulers plan ahead the execution of interactions and notify the corresponding components in advance. Moreover, it was suggested that schedulers are required to observe an additional subset of components called observed components, not participating in the planned interactions, in order to achieve global deadlines. However, besides the fact that this method is restricted to systems where components have non decreasing deadlines, the characterization of the set of observed components is incomplete. In fact this set is greater than the presented characterization, and in many cases is equal to all the component of the system. This is mainly due to the nature of the location invariants: Local constraints that propagate on the global level.

Our second contribution was to propose a method, based on the same idea of early decision making, but that differs from the approach of [START_REF] Triki | Implémentations distribuées des systèmes temps-réel à base de composants)[END_REF] in the following points:

• No restriction on components constraints was made • No restriction on the form of timing constraints (In [START_REF] Triki | Implémentations distribuées des systèmes temps-réel à base de composants)[END_REF] timing constraints are restricted to constraints of the form x ≤ k or x ≥ k)

• Our method works on the semantics level conversely to the aforementioned method that relies directly on transformations and model construction. Effectively, we introduced the local planning semantics that plan the execution of interactions based only on the set of its participating components. The planning operations are constrained by the worst estimation of communication delays as well as the planned interactions. This semantics is suited for distributed real-time systems since it is based on local (partial) information. We also provided a proof for weak simulation, and a strategy based on sufficient conditions guaranteeing the preservation of the system behavior from deadlocks. Finally, we presented an alternative method based on real-time controller synthesis paradigm and discussed its convenience with respect to our method.

Robustness to Clock Imperfections

We studied in Chapter 6 the effect of clock imperfections (clock drift) on the behavior of a timed system. We considered a perturbation model where clock rates are not perfect (not equal and may change during the execution) but under the assumption that clocks are resynchronized which induces that their difference of clock values will stay within a certain threshold. Our robustness analysis approach was based on the characterization of potential bad states that invalidates the ϵ-simulation between the initial model and the perturbated model. We proposed a solution for verifying the robustness of a given timed system based on shrinkability analysis and suggested the Shrinktech tool for achieving such analysis which is basically based on parameter synthesis.

Future Works

Partitioning and Mapping

In this thesis, we presented the partitioning of interactions as being an important parameter of the Send/Receive transformation. Interaction partitioning is of importance since the set of conflicting interactions is calculated based on the latter. The immediate question is whether a given partitioning is better than an other. In other terms, how can we evaluate if a given partition of interaction is good or bad. Instinctively, the choice of partitioning interactions is based on two main factors, namely the degree of parallelism and the effort for solving conflicts (in terms of messages and computational evaluation). This choice is generally guided by the choice of a specific target platform: how expensive is the communication? This introduce necessarily the problem of mapping an application on a given target platform [START_REF] Cotton | Multi-criteria optimization for mapping programs to multi-processors[END_REF]. This question is of great importance since its answer will define how each application process will be mapped to the platform interconnected processing nodes. Consequently, it decides on workload of each processing nodes and the communication volume induced by such mapping. Thus an optimal partition would be a partition that takes into account the target platform and proposes a partitioning that optimize all the above points. This can be done either by computing directly the optimal solution or by tuning a proposed partition by merging or splitting some processes of the application.

Invariants for Distributed Real-Time Systems

In Chapter 5 and Chapter 6, we presented different semantics reflecting the behavior of a real-time system in a distributed setting (under communication delays or with clock drift).

In Chapter 5, we relied on the invariants of the initial model to verify the sufficient conditions for deadlock freedom of the local planning semantics. This usage is due to the fact that invariants of the system under the standard semantics are proven to be invariants of the system under the local planning semantics. An interesting direction is to try to derive invariants characterizing specifically the reachable states of the planning semantics. This will help directly in the verification process in term of results precision.

In Chapter 6, we proposed the Shrinktech tool for the robustness analysis. However, such tool relies on the computation of the region graph of a timed automaton, which in term of complexity suffers from the state explosion problem when the increasing the number of clocks. A solution to reduce this cost is to compute a parametric invariant of the system with drifting clocks. The latter represents a cheap over-approximations may in some cases allow to avoid overly eager and expensive computations of the precise parametric images of the set of reachable states.

Modeling vs Semantics

Model-based development is one promising approach in building real-time systems today. This paradigm relies on models with well defined semantics when building systems all the way form the design phase until reaching a concrete implementation. This approach is really important when working with large scale heterogeneous systems since it reduces both the engineering efforts and the development costs and time. Nevertheless, a model represents only an abstraction of the reality and is often based on idealized assumptions, which will not hold at a given stage of the model-based workflow, precisely when reaching the implementation point. In this thesis, we tried to bridge this gap by introducing new semantics to tackle the different issues inherent to the distributed context. An interesting working direction would be to answer the following question: Can similar results be obtained without introducing new semantics, but using modeling instead? This question is of a big interest since it can indicate which direction efforts need to be made. For instance, the introduction of a new semantics can be in some case complicated and errors-prone whereas modeling is known to be more general, much easier and trivial to understand. Also, modeling has also the benefit of being modular in the sense that if we change the target execution platform on will have just to replace the corresponding model.

FFigure 1 . 1 -

 11 Figure 1.1 -Overal Design Flow

Figure 1 . 2 -

 12 Figure 1.2 -Giotto Workflow

Figure 1 . 4 -

 14 Figure 1.4 -Execution of a Processing Operation in Oasis

Figure 1 .Figure 1 . 6 -

 116 Figure 1.6 -A Lustre Program

Example 2 . 2 . 1 .

 221 Figure 2.1 depicts a timed component B where locations are represented by circles and transitions are the directed arrows from a location to another. The initial location (ℓ 0 here) is represented by a double circle. The component B = (L, ℓ 0 , X ,

Figure 2 . 1 -

 21 Figure 2.1 -Example of a Timed Component

Figure 2 .

 2 Figure2.3 depicts a timed system composed of four components C, T 1 , T 2 , and R. Component C represents a controller that initializes then releases tasks T 1 and T 2 . Tasks use the shared resource R during their executions. To implement such behavior, we consider the following interactions between C, R, and T 1 : α 1 = {init 0 , init 1 }, α 3 = {start 0 , start 1 }, α 5 = {take, process 1 }, α 7 = {f ree, end 1 }, and similar interactions α 2 , α 4 , α 6 , α 8 for task T 2 , as shown by connections on Figure2.3. The controller is responsible for firing the execution of each task. First, it non-deterministically initializes one of the two tasks, i.e., executes α 1 or α 2 , and then releases it through interaction α 3 or α 4 . Tasks perform their processing independently of the controller, after being granted an access to the shared resource (α 5 or α 6). When finished, a task releases the resource (interactions α 7 or α 8) and goes back to its initial location. An example of execution sequence of this system is given below. Valuation v of clocks x, y, and z are represented as

 We use transfer functions to express update operations on data variables of D. A transfer function f : V(D) → V(D) assigns to each variable d ∈ D a new value f (v) based on the current values of variables of D. Additionally, given a set D ′ ⊇ D, applying f on D ′ updates variable in D but does not change the values of variables in D ′ \ D.

Figure 2 . 4 - 2 . 3 . 1 .

 24231 Figure 2.4 -Example of an Extended Timed Component

Contents 3 . 1

 31 Target Architecture . 40 3.1.1 Interface . 40 3.1.2 From Local Time to Global Time . 41 3.1.3 Conflicting Interactions and Interaction Partitioning 41 3.2 3-Layer Send/Receive Model . 42 3.2.1 Send/Receive Components . 43 3.2.2 Scheduling Layer . 45 3.2.3 Conflict Reservation Protocol . 50 3.3 Modeling Distributed Real-Time Constraints 53 3.3.1 Communication Delays . 54 3.3.2 Clock Drift . 55

Figure 3 . 1 - 3 . 1 . 1 .

 31311 Figure 3.1 -High Level Representation of the Target Architecture

Example 3 . 1 . 2 .

 312 Let us consider example of Figure 2.3. For the interaction set

 Figure 3.4 -Offer Construction

Figure 3 . 5 -

 35 Figure 3.5 -Representation of an Urgent Locatoion

 Figure 3.6 depicts the Send/Receive transformation of the component C of Example 2.3.

init 0 start 0 Figure 3 . 6 -

 036 Figure 3.6 -Send/Receive Transformation of the Controller Component From Figure 2.3

Figure 3 . 7 - 3 . 2 . 2 .

 37322 Figure 3.7 -A Simple Petri Net with Two Succesive Markins

Figure 3 .

 3 Figure 3.8 -Scheduling Mechanism

Example 3 . 2 . 3 .

 323 Figure 4.3 depicts the internal representation of scheduler Sch 1 from Figure 3.3. The scheduler Sch 1 is responsible of the interaction class γ1 = {α 1 , α 3 , α 5 , α 7 },that is, he is responsible of notifying components C, T 1 and R whose indexes are respectively 1, 2 and 4. Notice that since every interaction of γ 1 is potentially conflicting with an interaction of γ 2 handled by scheduler Sch 2 , scheduling interactions of γ 1 requires the intervention of the conflict resolution layer.

Figure 3 .

 3 Figure 3.9 -Internal Representation of Scheduler Sch 1 from Figure 3.3

Figure 3 .

 3 Figure 3.10 -Sub-Part of the Timed Component for the Centralized CRP of Figure 3.3 Handeling Interactions of γ 1

Figure 4 . 1 -Definition 4 . 2 . 3 (

 41423 Figure 4.1 -Example of a History Clock for Action a

Figure 4 . 3 and

 43 Figure 4.2 respectively become:

Figure 4 . 2 -

 42 Figure 4.2 -Refined Version of the Conflict Resolution Layer from Figure 4.2

Figure 4 . 3 - 3 5 The Local Planning Semantics Contents 5 . 1 5 . 2 5 . 3

 4335515253 Figure 4.3 -Refined Version of Scheduler Sch 1 from Figure 4.3

. 1) 5 . 1 . 1 .

 1511 a composition of components B 1 , . . . , B n with disjoint set of locations, actions and clocks. We define the predicate Plannable(α, d) characterizing states (ℓ, υ) from which an interaction α = {ai } i∈I ∈ γ is enabled in d ∈ R ≥0 unitsof time, that is, if time progresses by d units of time. It is formalized as follows: Plannable(α, d) holds at (ℓ, υ) ⇔ Enabled(α) holds at (ℓ, υ + d) (5Property Let (ℓ, υ) be a state of the composition S. For any interactions α, β ∈ γ such that, (ℓ, υ) β -→ γ (ℓ ′ , υ ′) and part(α) ∩ part(β) = ∅, if Plannable(α, d) holds at state (ℓ, υ) then it still holds at state (ℓ ′ , υ ′).

Definition 5 . 1 . 2 (

 512 Local Planning Semantics). Given a set of components {B 1 , • • • , B n } and an interaction set γ, we define the local planning semantics (LPS) of the composition γ

Example 5 . 1 . 1 .

 511 Let us consider the following execution sequence for example of Figure2.3 under the LPS with h min = 2 and h max = h ∞ max .

Proposition 5 . 1 . 2 .

 512 Time can progress by d at a state (ℓ, υ, π) in the local planning semantics only if time can progress by d at (ℓ, υ) in the standard semantics, that is:

Proposition 5 .Corollary 5 . 1 . 1 .

 5511 1.2 is a direct consequence of the definition of time progress in the local planning semantics which is a restriction of the one in the standard semantics. If a state (ℓ, υ, π) is reachable in the local planning semantics, then the state (ℓ, υ) is reachable in the standard semantics. Corollary 5.1.1 is obtained from Propositions 5.1.1 and 5.1.2 and the fact that planning transitions (labeled by (α, d)) affect only the plan π in states (ℓ, υ, π) of the LPS.

Figure 5 . 1 -

 51 Figure 5.1 -Planning as a Timed Automaton

Figure 5 . 2 -

 52 Figure 5.2 -Discretizing Planning Horizons for Interaction

Figure 5 . 3 -

 53 Figure 5.3 -Planning Automata for the Task Manager Example

Figure 5 . 4 -

 54 Figure 5.4 -Sample of the Output Strategy from UPPAAL-Tiga

 Figure 6.1 illustrates an example of two clocks x and y having different rate with respect to an implicit perfect reference time. Figure (a) shows the case where clock x evolves steadily faster than clock y. Whereas, in Figure (b) clock y is initially faster than clock x, then the trend is inverted after some time.

Figure 6 . 1 -

 61 Figure 6.1 -Example of Clocks with Different Rates

Contents 7 . 1 7 . 2 7 . 3 7 . 4 7 . 1

 7172737471 Figure 7.1 -BIP Layers

Figure 7

 7 Figure 7.3 -The BIP Toolbox

Figure 7 . 4 -

 74 Figure 7.4 -The Distributed Real-Time BIP Filter

Figure 7 . 5 -

 75 Figure 7.5 -Train Gate Controller

Figure 7 . 6 -

 76 Figure 7.6 -FireWire Topologies with 2, 3 and 5 nodes

Figure 7 . 7 -

 77 Figure 7.7 -Timed Automaton for a Node

Figure 7 .

 7 Figure 7.8 -Gear Controller System

Table 1 .

 1 1 -Classification Of Real-Time Systems 1.2 Control Aspects in Real-Time Systems

 1.4 Existing Approaches For Building Real-Time Systems that can be classified into three categories: sensor ports, actuator ports and task ports. Sensor ports are updated by the environment, whereas all other ports are updated by the Giotto program. Task ports are used to communicate data between concurrent tasks or to transfer data from one mode (execution mode) to another. A Giotto task consists of a set of In (input) ports, a set of out (output) ports, and a function f from its input ports and current state, which can be viewed as a set of private ports inaccessible from outside the task, to its output ports and its next state. The invocation of Giotto tasks are based on two essential concepts: instantaneous communication and time determinism. In fact, tasks are activated on periodic cycles P (Figure1.3). The Giotto logical abstraction does not specify when and how the actual computation of a task f is performed, it only determines the instant at which input are read t start and output are produced t end .

	Tasks	
	Read Inputs	Write Outputs
		P	time
	Task Execution	
	Figure 1.3 -Example of a Giotto Task Execution

Chapter 2 Timed Systems and Semantics Contents 2.1 Timed Transition Systems

. 25 2.1.1 Comparing Timed Transition Systems 26 2.1.2 Reactive Timed Systems . 27 2.2 Timed Systems Syntax and Semantics 27 2.2.1 Timed Components Syntax and Semantics 28 2.2.2 Timed Systems . 32 2.2.3 Example . 34 2.3 Timed Systems with Data .

. 35 2.4 Verification of Timed Systems

. 37 2.4.1 Symbolic Reachability . 37 2.4.2 Compositional Verification . 37

 Backward and Forward Operators on a GuardA state (ℓ, υ) is said urgent if time cannot progress from this state, that is, ∄d ∈ R >0 such that (ℓ, υ) (ℓ, υ + d). Urgent states of a component B are characterized by the predicate:

d

-→

Definition 2.2.3 (Strongly

 Notice that due to well formed guards, an urgent reachable state satisfies also Expression 2.2 if inequalities x i ≥ k i on clocks are replaced by equalities x i = k i in the expression of urg(ℓ). Non-Zeno Timed Component). Given a timed component B, a structural loop of B is a sequence of distinct transition e 1

	Remark 2.2.1. When used in predicate definition, clock constraints are straightforwardly applied
	to clock valuations of states and thus interpreted as true or false.

 This corresponds to Π i∈I |L a i | possible configuration, where L a i ⊆ L i is a subset of locations of B i from which there exists a transition labeled by action a i ∈ α, and |L a i | denotes the cardinality of L a i . The set L α is reasonably small in practice but can contain (at the worst case) Π i∈I |L| elements. The predicates Enabled ↙ (α),

	7)
	Expression 2.6 expresses the predicate Enabled(α) using location of individual components
	whereas Expression 2.7 formalizes it on global location configurations. Notice that the above
	formulation of Enabled(α) corresponds to locations enumeration of all components of the
	system. In practice, we rather consider only a subset of locations L α ⊆ L, from which the
	execution of α is possible. Enabled ↙ u l (α), Enabled ↗ (α) and Enabled ↗ u l (α) are given by:

 Figure 3.2 -Potential Conflict Between Interactions α 1 and α 2

	α 1	α 2	α 1	α 2
	a 1	a 2	a	
	a 1	a 2		

Definition 3.1.1 (Potential Conflict). Two interactions α 1 and α 2 are potentially conflicting if part(α 1) ∩ part(α 2) ̸ = ∅ and for each component B i ∈ part(α 1) ∩ part(α 2) there exists two transitions of B i e 1 , e 2 ∈ E i such that source(e 1) = source(e 2) and action(e 1) ∈ α 1 , action(e 2) ∈ α 2 .

 ail 2 res 2 ok 2 f ail 2 res 2

Figure 3.3 -High Level Representation of a Decentralized Send-Receive Model of the Task Manager Example Example 3.2.

1. Figure 3.3 describes a Send/Receive model of the Task Manager system with a decentralized scheduling. The set of interactions is partitioned into two classes γ 1 = {α 1 , α 3 , α 5 , α 7 } and γ 2 = {α 2 , α 4 , α 6 , α 8 }, each one handled by a scheduler (Sch 1 and Sch 2 respectively). Since γ 1 and γ 2 are conflicting (interactions of γ 1 are conflicting with interactions of γ 2), for instance α 1 and α 2 are potentially conflicting, schedulers rely on the conflict resolution layer to resolve the conflicts. In this case, they emit a request (req k with k ∈ {1, 2}) and wait for a notification granting (respectively denying) them the execution of an interaction (ok k respectively f ail k). Notice that components C SR and R SR send offers to both schedulers since they are participating in interactions handled in both schedulers.

 where g pa are guard variables, inv B is an invariant variable, r x are Boolean reset variables and n B is a participation number variable. Variables D SR o ⊂ D SR = {g pa } a∈A ∪ {i} B ∪ {n B } ∪ {r x } x∈X are exported by the offer port. • For each place ℓ ∈ L, we include an offer transition e ℓ = (ℓ ⊥ , o, true, ∅, ℓ) in E SR• For each transition e = (ℓ, a, g, r, ℓ ′) ∈ E, we include a notification transition e pa = (ℓ, p a , true, ∅, ℓ ′ ⊥). The transfer function f ep a applies the original transfer function f e of e, then update guard variables, invariant variable, reset variables and the participation number as follows:

 1 init 0 start 0 o 2 init 1 start 1 process 1 end 1 o 4 take f ree rsv α1 ok α1 f ail α1 rsv α3 ok α3 f ail α3 rsv α5 ok α5 f ail α5 rsv α7 ok α7 f ail α7

		o 1			o 2				o 4	
									1 4	
		rsv α1		rsv α3			rsv α5		rsv α7	
	f ail α1	o 1 o 2	t α1	o 1 o 2	t α3	t α5	o 2 o 4	t α7	o 2 o 4	f ail α7
					f ail α3 f ail α5				
		ok α1		ok α3			ok α5		ok α7	
	s init0	ssta-rt0	s init1		ssta-rt1	spro-cess1	s end1		s take	s f ree
	init 0	start 0	init 1	start 1	process 1	end 1	take	f ree
		w 1 1			w 1 2				w 1 4	

o

 5.1.2 we can deduce that ∃d ≥ h min such that (ℓ, υ, π) ∼∼∼> is reachable in the standard semantics, and by evaluating the deadlock characterization 2.3 on state

	d
	γ
	(ℓ, υ + d, π -d). We also have from the deadlock assumption and Lemma 5.1.3:

α∈γ ¬Enabled(()α). Finally, since the state (ℓ, υ + d, π -d)

Chapter 6 Clock Drift Contents 6.1 Distributed Timed Systems with Independent Clock Rates 83

 6.1.1 Expressing Clock Constraints Using Local Clock 83 6.1.2 Distributed Timed System . 84 6.1.3 Properties . 86 6.

2 Robust Distributed Semantics . 87 6.3 Discussion . 89

 where L is the set of global locations, V(X dt ∪ D dt) is the set of clock and data valuations, and ∆ = R |X dt | is the set offsets of local clocks in X dt with respect to an implicit (perfect) reference clock

•

 Package: A BIP package is a compilation unit contained in a single .bip file. It may contain data, external data types, external functions, external operators, port types, atom types, connector types and compound types. It also may use other BIP packages. Figure7.2 illustrates the syntax of BIP and presents different elements of the BIP language. The package ControllerWorker includes the definition of the port type Port, the connector type Link for interactions involving two ports of type Port, atomic components Controller and Worker. The atomic component Controller consists of a clock x, an internal port init and two exported port, a and c, defining its interface. The statement place lc0, lc1, lc2 defines the places (locations) of the timed automaton describing its behavior, where lc0 is the initial place. Lines 19 to 22 represent the declaration of a transition. It consists of the following elements:As explained earlier, components are composed using connectors. The Compound Type System defines a system composed of two Workers and one Controller. It also defines the interactions between the controller component and each Worker component (worker 1 and worker 2) through connectors ab1, cd1, ab2, and cd2.

	93 5. A possible empty transfer function for updating data variable or triggering the execution 3. A possible empty list of guards over data and clocks: when x ≥ 8 second 4. A possible empty list of clocks to reset: reset x of external C code: do{} package ControllerWorker port type Port () connector type Link (Port p1 , Port p2) define p1 p2 end atom type Worker () clock y export port Port d () export port Port b () place l1 , l2 initial to l1 on b from l1 to l2 when (y >= 5) do {} place lc0 , lc1 , lc2 initial to lc0 do {} on init from lc0 to lc1 when (x >= 8 second) reset x do {} on a from lc1 to lc2 when (x == 5 second) reset x do {} on c from lc2 to lc1 reset x do {} invariant inv1 at lc1 when (x <= 5 second) end compound type System () component Worker worker1 () component Worker worker2 () component Controller controller () connector Link ab1 (worker1 .b , controller . a) connector Link ab2 (worker2 .b , controller . a) connector Link cd1 (worker1 .d , controller . c) connector Link cd2 (worker2 .d , controller . c) Example 7.1.1. 7.1 The BIP Framework end
	on d end	
	from l2 to l1	
	reset y do {}	Figure 7.2 -A BIP Example
	end	
	atom type Controller ()	
	clock x	
	export port Port a ()	
	export port Port c ()	
	port Port init ()	

1. The port labeling the transition: on init 2. The source and destination places: from lc0 to lc1

 .3.

		1		Language Factory	BIP Language
			C	nesC	DOL	Simulink	Lustre	BIP
					Translation
				2		
			4	2.1			BIP Parser
	Property Verdict			
	Verification	4.1				BIP Model
	RTD-Finder				
		Property	2.2		
					Distributed Real-Time	Identity	Flatenning
	Verdict				Filter	Filter	Filter
				2.3		
					Distributed Code Generator	Code Generator (engine-based)
	Property	Verdict			
					C++	C++	C++	C++	3
	Verification	4.2	Executable	Executable	Executable	Executable
	SBIP				Communication Primitives	Execution Engine
						Distributed Platform	Platform

•

 Send/Receive Transformation: Using the system abstraction provided by the Analyser, and based on the result of the verification results obtained from the RTD-Finder tool, the Send/Receive Transformation module applies the transformations presented in Chapter 3.

	Interaction	Planning	BIP			
	Partition	Horizons	Model			
		Analyser		Property Generator	
	Components	Interactions	Compound	Conflict	Parametric	RTD-Finder
	Info	Info	Info	Resolution	Planning	
		Send/Receive Transformation		
		Send/Receive	Send/Receive	Send/Receive		
		Component	Scheduler	CRP		
			BIP			
			Model			

Table 7 .

 7

			1 -Experimental results	
	Model	n	i	c	p	f	g	t
		4	8	2	4	3	75%	60.55ms
				2	40	30	75%	367.19ms
		12 40	5	64	48	75%	521.45ms
				10 68	51	75%	545.34ms
				2	80	60	75%	2.14s
		22 80	10 144 108	75%	3.41s
	Task Manager	20 148 111 32 120 30 228 171	75% 75%	3.69s 8.41s
		42 160 40 308 231	75%	20.72s
				2 200 150	75%	22.56s
				5 320 240	75%	34.78s
		52 200	10 360 270 25 384 288	75% 75%	37.72s 41.69s
				50 388 291	75%	45.35s
	Train Gate Controller	22 45 20 74	37	50%	813,62ms
	Gear Controller	5	32	4	8	3	37.5%	5,94s

Table 7 .

 7 2 -Detailed Results of the Task Manager Experimentsh min h max (α 1), h max (α 2) h max (α 3), h max (α 4) h max (α 5), h max (α 6) h max (α 7), h max (α 8)

	4	+∞	+∞	9	+∞
	3	+∞	+∞	8	+∞
	2	+∞	+∞	7	+∞
	1	+∞	+∞	6	+∞
	Table				

Table 7 .

 7 3 -Experiments ResultsModeln nb I max h min h max t exec (s)

	Task Manager	4	4	4	B	0.11
	Train Gate Controller 3	6	4	+∞	0.16
	Firewire	4 10	5	+∞	3.03
	Gear Controller	5 19	130	+∞	4.65

The experiments have been conducted on a HP machine with Ubuntu 16.04, an Intel ® Core ™ i5-4300U processor of frequency 1.90GHz×4, and 7.7GiB memory.

Acknowledgements

F irstly, I would like to express my sincere gratitude to my advisor Prof. Saddek Bensalem

Part II Contribution

This part includes our contributions to the field of modeling and validation of distributed realtime systems. First, Chapter 4 proposes a knowledge based optimization of the Send/Receive transformation. It aims at reducing the interactions between the scheduling layer and the conflict resolution layer through a reduction of the potentially conflicting interactions set. Thereafter, Chapter 5 and 6 study the behavior of a given model when subject to constraints inherent to the distributed context. Chapter 5 tackles the problem of communication delays by proposing a strategy based on anticipating the execution of components beforehand. It provides sufficient conditions that allow to check whether a given system is robust or not (in the sense not guaranteed) to communication delays. We also propose an alternative method based on real-time controller synthesis and explain how it differs from our approach. In the same way, Chapter 6 investigates the clock drift problem and proposes a strategy that ensures that executions of the drifted system stay close enough from executions of the model with perfect clocks.

Chapter 4

Knowledge Based Optimization of Distributed Real-Time Systems

Conflicting Interaction Calculation

As explained in Subsection 3.1.3, two interactions α 1 and α 2 sharing a subset of components cannot execute concurrently. In fact, if these interactions are enabled from the same state they are conflicting, meaning that they are competing on the same resources (shared components) and only one interaction will be granted the execution and not the other. Particularly, given a timed system γ(B 1 , • • • , B n) and an interaction partition {γ j } m j=1 (Definition 3.1.2 of Chapter 3), if such interactions are part of two different classes of the interaction partition (externally conflicting interactions), then the resulting Send/Receive model requires the intervention of the conflict resolution layer to resolve the conflict situation. The computation of the conflicting interactions set is based on syntactic pre-checks (Definition 3.1.1), that is, it is an over-approximation that in some cases induces an unnecessary conflict resolution. The calculation of the conflicting interactions set highly impacts the structure and the performance of the underlying Send/Receive model. For every interaction that is in fact not conflicting, the corresponding scheduler includes an additional place and three transitions involved in the Send/Receive interactions involving the conflict resolution layer. In this case, executing an interaction adds not only an evaluation overhead, but also latency resulting from the communication delays between the two layers. In order to refine the conflicting interactions set, we rely on the following definition of conflicts. Definition 4.1.1 (Conflicting Interactions). Let S = γ(B 1 , . . . , B n) be a timed system. Two interactions α 1 and α 2 of γ are conflicting, and we write

However, this is no longer true in general if h min > 0 which means that not all execution sequences of the standard semantics are preserved by the local planning semantics. Corollary 5.1.4. If T g is zeno runs free then T p is too. Corollary 5.1.4 states that the LP S does not introduce any zeno run if the standard semantics is free from the latter. It is a direct consequence of Corollary 5.1.2 and the fact that it is not possible to have infinite sequences of planning transitions without interaction execution (γ is finite and planning times are bounded).

Before proving the above proposition, we need the following two lemmas that allows to reason on some properties of interest on states of the local planning semantics. We denote by wait(ℓ, υ, π) the set of allowed waiting times at state (ℓ, υ, π), that is:

We also put max(wait(ℓ, υ, π)) to denote the maximal waiting time at state (ℓ, υ, π). Notice that max(wait(ℓ, υ, π)) may not be defined in some cases. In fact, we are not interested in its actual existence but rather in the fact that it is bounded (< +∞) or not. Lemma 5.1.2. Let (ℓ, υ, π) be a reachable state of the local planning semantics. For k ∈ R ≥0 , such that k = max(wait(ℓ, υ, π)), we have the following properties:

The above lemma is direct consequence of Definition 5.1.2.

Lemma 5.1.3. Let (ℓ, υ, π) be a reachable state of the local planning semantics

results trivially from the definition of the predicate Plannable(α).

Proof of Propostion 5.1.3. We prove Proposition 5.1.3 by contradiction. Let us assume that the system under the standard (resp. local planning) semantics is deadlock free (resp. actiontime-lock-free). Let (ℓ, υ, π) be a reachable deadlock state of the LPS. We have:

We distinguish 2 cases:

Properties

Property 6.1.2 states that the relative drift between local partitions clock is bounded by 2ϵ. This results from the fact that all local clocks are kept within ϵ of a reference clock.

In order to attest the correctness of the distributed semantics, we compare its corresponding time transition system (T dt) and the timed transition system of the standard semantics (T g).

Let R be the relation:

such that:

The relation R relates states of the distributed semantics with states of the standard semantics having the same location configuration, and whose clock valuations expressed on local clocks are δ ∈ [-ϵ, ϵ] close. We call such states ϵ-similar. Lemma 6.1.1. For ϵ = 0, we have T dt ∼ R T g Lemma 6.1.1 describes the fact that a given system and its corresponding distributed model are bisimilar when ∆ = 0, that is, when clocks advance at the same rate (perfect clocks). Property 6.1.3. Let (q dt , q) ∈ R such that q dt satisfies Enabled(α), then q satisfies Enabled ↙ ϵ 0 (α) ∨ Enabled(α) ∨ Enabled ↗ ϵ 0 (α).

Property 6.1.3 expresses that for states (q dt , q) ∈ R if it exists an interaction enabled at q dt then this interaction is either enabled at q, will be enabled after a time progress of ϵ or is up to ϵ after the deadline of α. This property flows directly from the ϵ-similarity of states (q dt , q) ∈ R, the form of interactions timing constraints (conjunction of intervals) and the fact that clocks involved in the same interaction advance at the same rate. It points out that any execution from state q dt might not be always possible from state q or any of its time successor. Lemma 6.1.2. Let (q dt , q) ∈ R such that q dt satisfies Enabled(α) ∧ Enabled ↙ ϵ ϵ (α), then q satisfies Enabled ↙ ϵ 0 (α). Lemma 6.1.2 can be deduced straightforwardly from property 6.1.3. It expresses that for states (q dt , q) ∈ R, if it exists an interaction α ∈ γ such that α is enabled at q dt and that clock valuations are up to ϵ before the deadline of this interaction then, α can be executed from q or any of its ϵ-time successors (by doing a time progress up to ϵ).

The usual notion of simulation as defined in 2.1.2 is too precises. It requires that each trace in one system can be matched exactly by a trace in the other system, that is, two states can be distinguished even for an infinitesimally small mismatch between timings (ϵ ̸ = 0). Thus, we rely on the following quantitative variant of simulation [START_REF] Thrane | Quantitative analysis of weighted transition systems[END_REF]. Definition 6.1.2 (ϵ-simulation). Given two TTS,

Scheduling Distributed Real-Time Systems

In this thesis, we often mentioned the words "schedulers or scheduling" but without referring to any scheduling scheme or policy. An interesting working direction is to refine the behavior of given system by imposing some scheduling constraints. In fact, since we presented methods based on over-approximations and sufficient conditions, the results of our analysis may in some cases yield counter-examples that are either false-positives or real counter-examples. The idea is to identify scheduling schemes that could identify the needs, based on a given set of properties, in order to achieve a correct behavior.

List of Figures

List of Tables

Appendix A The Gear Controller System