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Abstract

Nowadays, real-time systems are ubiquitous in several application domains. Such an emergence
led to an increasing need of performance (resources, availability, concurrency, etc.) and initiated
a shift from the use of single processor based hardware platforms, to large sets of interconnected
and distributed computing nodes. This trend introduced the birth of a new family of systems
that are intrinsically distributed, namely Networked Embedded Systems. Such an evolution stems
from the growing complexity of real-time software embedded on such platforms (e.g. electronic
control in avionics and automotive domains), and the need to integrate formerly isolated
systems so that they can cooperate, as well as share resources improving thus functionalities
and reducing costs. Undoubtedly, the design, implementation and verification of such systems
are acknowledged to be very hard tasks since they are prone to different kinds of factors,
such as communication delays, CPU(s) speed or even hardware imprecisions, which increases
considerably the complexity of coordinating parallel activities.

In this thesis, we propose a rigorous design flow intended for building distributed real-time
applications. We investigate timed automata based models, with formally defined semantics,
in order to study the behavior of a given system with some imposed timing constraints
when deployed in a distributed environment. Particularly, we study (i) the impact of the
communication delays by introducing a minimum latency between actions executions and the
effective date at which actions executions have been decided, and (ii) the effect of hardware
imperfections, more precisely clocks imprecisions, on systems execution by breaking the perfect
clocks hypothesis, often adopted during the modeling phase. Nevertheless, timed automata
formalism is intended to describe a high level abstraction of the behavior of a given application.
Therefore, we use an intermediate representation of the initial application that, besides having
“equivalent” behavior, explicitly expresses implementation mechanisms, and thus reduces the
gap between the modeling and the concrete implementation. Additionally, we contribute in
building such systems by (iii) proposing a knowledge based optimization method that aims to
eliminate unnecessary computation time or exchange of messages during the execution.

We compare the behavior of each proposed model to the initial high level model and study the
relationships between both. Then, we identify and formally characterize the potential problems
resulting from these additional constraints. Furthermore, we propose execution strategies that
allow to preserve some desired properties and reach a “similar” execution scenario, faithful to
the original specifications.





Résumé

Aujourd’hui, les systèmes temps réel sont omniprésents dans plusieurs domaines. Une telle
expansion donne lieu à un besoin croissant en terme de performance (ressources, disponibilité,
parallélisme, etc.) et a initié par la même occasion une transition de l’utilisation de plateformes
matérielles à processeur unique, à de grands ensembles de nœuds de calcul inter-connectés et
distribués. Cette tendance a donné la naissance à une nouvelle famille de systèmes connue sous
le nom de Networked Embedded Systems, qui sont intrinsèquement distribués. Une telle évolution
provient de la complexité croissante des logiciels temps réel embarqués sur de telles plateformes
(par exemple les système de contrôle en avionique et dans domaines de l’automobile), ainsi
que la nécessité d’intégrer des systèmes autrefois isolés afin d’accomplir les fonctionnalités
requises, améliorant ainsi les performances et réduisant les coûts. Sans surprise, la conception,
l’implémentation et la vérification de ces systèmes sont des tâches très difficiles car ils sont
sujets à différents types de facteurs, tels que les délais de communication, la fréquence du CPU
ou même les imprécisions matérielles, ce qui augmente considérablement la complexité lorsqu’il
s’agit de coordonner les activités parallèles.

Dans cette thèse, nous proposons une démarche rigoureuse destinée à la construction d’appli-
cations distribuées temps réel. Pour ce faire, nous étudions des modèles basés sur les automates
temporisés, dont la sémantique est formellement définie, afin d’étudier le comportement d’un
système donné avec des contraintes de temps imposées lorsqu’il est déployé dans un environ-
nement distribué. En particulier, nous étudions (i) l’impact des délais de communication en
introduisant une latence minimale entre les exécutions d’actions et la date à laquelle elles ont
été décidées, et (ii) l’effet des imperfections matérielles, plus précisément les imprécisions d’hor-
loges, sur l’exécution des systèmes. Le paradigme des automates temporisés reste néanmoins
destiné à décrire une abstraction du comportement d’une application donnée. Par conséquent,
nous utilisons une représentation intermédiaire de l’application initiale, qui en plus d’avoir
un comportement “équivalent”, exprime explicitement les mécanismes mis en œuvre durant
l’implémentation, et donc réduit ainsi l’écart entre la modélisation et l’implémentation réelle.
De plus, nous contribuons à la construction de tels systèmes en (iii) proposant une optimisation
basée sur la connaissance, qui a pour but d’éliminer les temps de calcul inutiles et de réduire
les échanges de messages pendant l’exécution.

Nous comparons le comportement de chaque modèle proposé au modèle initial et étudions
les relations entre les deux. Ensuite, nous identifions et caractérisons formellement les problèmes
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potentiels résultants de ces contraintes supplémentaires. Aussi, nous proposons des stratégies
d’exécution qui permettent de préserver certaines propriétés souhaitées et d’obtenir des scénarios
d’exécution “similaires”, et fidèles aux spécifications de départs.
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Chapter 1

Introduction

1.1 Real-Time Systems

Computer systems consist of a combination of hardware, software, user and data. Such systems
are constantly evolving and will become undoubtedly a constituent part of our daily lives.
Nowadays, computer systems are widespread in several application domains. From simple
systems like espresso machines to complex larger systems such as an airplane, these systems are
continuously developing to facilitate and enhance our lifestyle by always providing improved
solutions (more comfort, energy efficient, security, etc.) that answer directly to real life problems.
Real-time systems are defined as those systems in which the correctness of the system depends
not only on the logical results of computations, but also on the physical time at which the
results are produced [Sta88]. In other terms, real-time systems are computing systems that have
temporal constraints to meet and thus, are required to guarantee a response within specified
timing constraints. Such systems need to achieve different requirements that can be structured
into three main categories [Kop11]: (i) functional requirements, (ii) temporal requirements,
and (iii) dependability requirements. Functional requirements refer to the functions that the
real-time system must perform. In order to accomplish such requirements, the system needs to
be able to observe its current state, that is, the values of variables describing the latter. For
instance the position, speed and level of oil in a car are possible state variables. Additionally, a
given system needs to control its state variables (actuation) for regulation purposes, and provide
an interface to the system operator that allows its monitoring. On the other hand, temporal
requirements are born from the requirements of control loops. A typical example is the time
bounds for which a gear change needs to be achieved in the control system operating in modern
vehicles. Temporal requirements of a given system might be of different order of magnitude.
For instance the man-machine interface, in comparison with fast control loops, is less strict
because of the human perception of time. Finally, dependability requirements are additional
requirements regarding the quality of service that a given system produces, that is, the criteria
for deciding whether the services provided by the system can justifiably be trusted. The concept
of dependability encompasses the following attributes [ALRL04]: availability (readiness for
correct services), reliability (continuity of correct services), safety (absence of catastrophic
consequences), integrity (absence of improper system alterations), and maintainability (ability
to undergo modifications and repairs).

Real-time systems can be classified from different perspectives [Kop11] based on either the
characteristics of the application (perspective A), i.e., on factors outside the computer system,
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or on the design and implementation (perspective B), i.e., on factors inside the computer system.
Tables 1.1 presents a classification of real-time systems based on these two perspectives:

Perspective Classification Description

A

hard real-time
vs

soft real-time

A hard real-time system is a system that must meet
hard deadlines, that is, deadlines that if missed could
result in severe consequences. On the other hand, for
soft real-time systems the goal becomes to meet a
certain subset of deadlines in order to optimize some
specific criteria. Particularly, deadline violations
result in degraded quality. However, the system
keeps operating and may recover in the future.

fail-safe
vs

fail-operational

Fail-safe systems refer to those systems where a safe
state can be identified and quickly reached upon
the occurrence of a failure. On the contrary, fail-
operational systems are systems that must remain
operational and provide a minimal level of service
even in case of failure (no safe state).

B

guaranteed-response
vs

best effort

Real-time systems where the probability of failure is
reduced to the probability that some assumptions,
on peak load or fault number and types for instance,
do not hold in reality are called guaranteed-response.
On the other hand, best-effort systems are systems
where no analytical arguments for correctness can
be made. The latter is rather established during the
test and integration phases.

resource-adequate
vs

resource-inadequate

While Resource-adequate systems are systems that
provide sufficient computational resources to handle
a specified peak load and fault scenarios, resource-
inadequate systems rely on dynamic resource allo-
cation strategy. It is based on resource sharing and
probabilistic arguments about expected load and
fault scenarios.

event-triggered
vs

time-triggered

Event-triggered systems are systems where all com-
munication and processing activities are initiated
whenever a significant event (rather than the regu-
lar clock tick) occurs. Oppositely, in time-triggered
systems all activities are initiated by the progress
of real-time, which help to predict the behavior of a
system since clock ticks are well known and defined
moments.

Table 1.1 – Classification Of Real-Time Systems
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1.2 Control Aspects in Real-Time Systems

1.2.1 Temporal Control Versus Logical Control

When building real-time systems, a clear distinction between the aspects related to the time
domain and those related to the value domain needs to be made. The latter are respectively
referred to as the concepts of temporal control and logical control. Temporal control is related
to the progression of real-time. It is of concern when it comes to determining the instants in
the domain of real time for the accomplishment of computations, that is, when computations
must be activated. Such instants are derived from the dynamics of the application.

Logical control is related to the control flow within a given task, meaning that it is based
on the given task structure and the particular input data. For instance, the execution of a
branch condition and the selection of one of the alternatives is an example of logical control.
The execution time represents the time interval needed to execute a task performing the logical
control. If the temporal control and the logical control aspects are mixed in a program segment,
then it is impossible to determine the worst-case execution time of this program segment
without analyzing the behavior of its environment.

Example 1.2.1. A semaphore wait statement is a temporal control statement. If a semaphore
wait statement is contained in a program segment that also includes logical control (algorithmic)
statements, then the temporal behavior of this program segment depends on both, the progress
of execution time and the progress of real-time.

Thus, a good design decouples the reasoning about temporal constraints, governed by
the application, from the reasoning about logical inner aspects of the algorithmic part of the
application. Synchronous real-time languages, such as LUSTRE [HLR92] and ESTEREL [BG92]
distinguish clearly between logical control and temporal control. In these languages, the
progression of real-time is partitioned into an (infinite) sequence of intervals of specified real-
time duration, which we call steps. Each step begins with a tick of a real-time clock that starts
a computational task (logical control). The computational model assumes that a task, once
activated by the tick of a real-time clock (temporal control), finishes its computation quasi
immediately. Practically, this means that a task must terminate its execution before the next
triggering signal (the next tick of the real-time clock) initiating the next execution of the task.

1.2.2 Event-Triggered Control Versus Timed-Triggered Control

In real-time systems, the activation (start-up) of computation tasks is usually achieved through
triggering signals, that is, control signals that specify the instant when an activity (computation)
should start in the temporal domain. Two main paradigms are commonly used for triggering
activities of a real-time system, namely, the event-triggered control and the time-triggered
control. We say that the control is event-triggered when the triggering signal is associated to the
occurrence of a significant event, such as the arrival of a particular message, the fulfillment of an
activity within a component, or the occurrence of an external interrupt. Time-triggered control
relies on the progression of time. The activation of computation is pre-determined and usually
depends on the periodic overflow of a timer. Time-triggered systems are based on the notion of
logical execution time (LET) introduced by the programming language Giotto [HHK03]. LET
specifies the amount of time between the activation time of a computation and its due time.
It abstracts the execution time of programs in the sense that even if they start before their
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activation date and finish before their due time, they behave as if they exactly consumed their
LET.

1.3 System Design

System design is the process of defining the elements of a system such as the requirements, the
architecture, the system components and their interfaces as well as the data flowing through
the system. System design implies a systematic approach to the design of a system. It may
adopt a bottom-up or a top-down approach, but either way the process is systematic wherein
it takes into account all related variables of the system that need to be created. From the
architecture, to the required hardware and software, right down to the data and how it travel
and transform throughout its travel through the system. System design, then, overlaps with
system analysis, system engineering and system architecture. The system design approach
first appeared right before World War II, when engineers were trying to solve complex control
and communication problems. They needed to be able to standardize their work into a formal
discipline with proper methods, especially for new fields like information theory, operational
research and computer science in general.

System design [BBB+11a] differs radically from pure software design in the sense that it
does not focus only on functional requirements but also accounts for nonfunctional properties,
such as timing energy consumption or even fault tolerance. Meeting such extra functionalities
is essential and requires evaluation of how design choices affect the overall system behavior.

1.3.1 Design Flows

Design of real-time systems is a rather complex task [Mar11] which has to be broken down
into a number of subtasks. In theory, the design process should be structured into distinct
phases starting from the analysis phase until the final validation of the system and its effective
deployment. In practice, such a strict sequential decomposition is hardly possible. In fact
the design flow is rather decomposed into several iterations as depicted in Figure 1.1. Each
iteration needs to include test generation and an evaluation of testability. A given design is
then evaluated with respect to the different objectives (performance, dependability, energy
consumption, etc.).

1.3.2 Design Styles

In what follows, we present some important design styles used in the design of real-time systems.
Notice that the presented design styles are not exclusive in the sense that a given approach
may combine several design styles.

Model-Based Design

Model-based design [JCL11, KSLB03] is one promising approach in building real-time systems.
It relies on mathematical modeling for the design, analysis and validation of systems. This
approach captures not only what the dynamics and the expected properties of the system are,
but also what is assumed about the system’s environment. Thus, it enables developers to verify
the logic of their application, assumptions about its environment and end-to-end behavior at
early stages of the design cycles. The model-based design workflow is usually as follows. First,
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Figure 1.1 – Overal Design Flow

an application model expressing the behavior and dynamic of the considered system is built. It
represents an abstraction that is platform independent, meaning that it does not consider any
hardware specification such as communication delays or CPU(s) speed, which allows to model
the system at early stages without any knowledge of the target platform, verify the obtained
model against some safety properties (functional requirements), or even to synthesize a control
strategy for tuning the system. Thereafter, the application source code, which represents the
actual implementation of the system on a given platform, is automatically generated from the
high level model, and integrated in a simulated environment.

Component-Based Design

Large scale systems are complex systems that usually require to assemble several components
with wide-range functionalities. Many issues may rise when designing such systems [LS11]
ranging from the design process and the relationships with suppliers to incomplete specifications
and testing. A typical example is the Toyota sticky accelerator problem that was caused in part
by components provided by two contractors whose interaction was not verified appropriately.
Component-based design tackles these issues by proposing an approach where such systems are
build by assembling strongly encapsulated entities called component with stable, well-defined,
and rigorous interface specifications [Kop10]. This approach is based on the principle of re-
usability of heterogeneous components and focuses on the idea that internal knowledge about
the design or the implementation of the latter is not needed. In some cases, this knowledge is
not even available.
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Architecture-Based Design

A system architecture is a conceptual model that describes the structure, behavior, and con-
straints of a system along with the interaction with its environment. Designing the architecture
of a system is acknowledged to be a very hard task since it must address practical concerns of the
engineering efforts [DOL03] involved in system development (short term) and evolution (long
term). Moreover, it needs to support a set of requirements whose details may be unknown until
an advanced late step of the development process. Thus, a methodical design approach that
provides means for coping with requirements uncertainty, and proposes guidance that helps in
the decision making during the design process, is needed. Architecture-based design [BBC+00]
helps not only to detect design errors early in the development process, but also supports
engineering efforts, which allows to produce high-quality code, by addressing the aforementioned
problems.

1.4 Existing Approaches For Building Real-Time Systems

1.4.1 Giotto

Giotto [HHK03] is a programming approach for representing embedded systems at the architec-
ture level using a timed-triggered programming language. It separates the platform-independent
functionalities and timing aspects from platform-dependent scheduling and communication
issues. It allows thus an intermediate abstraction that enables the design engineers to anno-
tate the functional programming modules with temporal attributes that are derived from the
high-level stability analysis of control loops. Figure 1.2 depicts the workflow of Giotto. A
platform-abstract Giotto program is written. This program captures all the functionalities
and the timing aspects necessary for ensuring consistency with the mathematical model of the
control design. Thereafter, the program is implemented on a given platform. Notice that this
step is completely decoupled from the first step in the sense that it does not require any inter-
action with the control engineer, and can in large parts be automated using powerful compilers.
Giotto compilation facilitates the evaluation and the optimization phases by guarantying the
preservation of functionalities and timings. In Giotto, all data are communicated through ports

Control Design

⇒

Giotto Program

⇒

Code for Real-Time
Platform

• Modeling

• Control law derivation

• Functionalities and timings

• Periodic software tasks and mode switches

• Hardware mapping

• Computation and communication scheduling

Figure 1.2 – Giotto Workflow
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that can be classified into three categories: sensor ports, actuator ports and task ports. Sensor
ports are updated by the environment, whereas all other ports are updated by the Giotto
program. Task ports are used to communicate data between concurrent tasks or to transfer
data from one mode (execution mode) to another. A Giotto task consists of a set of In (input)
ports, a set of out (output) ports, and a function f from its input ports and current state,
which can be viewed as a set of private ports inaccessible from outside the task, to its output
ports and its next state. The invocation of Giotto tasks are based on two essential concepts:
instantaneous communication and time determinism. In fact, tasks are activated on periodic
cycles P (Figure 1.3). The Giotto logical abstraction does not specify when and how the actual
computation of a task f is performed, it only determines the instant at which input are read
tstart and output are produced tend.

time

Tasks

P

Read Inputs Write Outputs

Task Execution

Figure 1.3 – Example of a Giotto Task Execution

1.4.2 Oasis

Oasis [CDA+05, CCDA07] is a framework that provides methods for the design and imple-
mentation of safety-critical real-time systems. It includes a complete set of development tools
(code generation, validation, simulation and execution) that eases the design and verification
stages while complying with general standards. The Oasis approach relies on the time-triggered
paradigm to build systems that are fully deterministic, predictable, and reproducible in both
the logical and temporal domains, even in case of failure. An Oasis application consists of a
static set of communicating agents, i.e., autonomous execution entities including processing
operations. The execution of a processing operation is time-triggered on a time window that is
automatically deduced form the agent’s timing. Every Oasis agent has an associated real-time
window during which input and output data are visible.

Figure 1.4 illustrates the execution of a processing operation within its time interval: each
processing operation performed by an agent takes place between two temporal instants (points)
of the real-time. These points are the beginning date (tstart), which is the earliest instant
when the processing can be started, and the ending date (tend) which is the latest date when it
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must be terminated. These two dates allow to explain a formal duration that is constant and
represents a constraint for the actual duration of execution.

real-timetstart tendProcessing1

Figure 1.4 – Execution of a Processing Operation in Oasis

1.4.3 PTIDES

PTIDES [ZLL07] is an event-triggered programming model that serves as a coordination
language for model-based design of distributed real-time embedded systems. It leverages
network time synchronization to provide a coherent global temporal semantics. PTIDES builds
on top of a strong timed semantic foundation, based on discrete-event (DE) model [Lee99],
and provides a mathematical framework for presenting strategies that explore concurrency
of implementations. It also allows deterministic schedulability analysis. PTIDES structures
real-time software as an interconnection of components communicating using timestamped
events.

Figure 1.5 (taken from [ELM+12]) illustrates the PTIDES workflow.

Figure 1.5 – PTIDES Code Generation and Analysis Workflow
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The PTIDES design environment is an extension of the Ptolemy II framework [LXL01],
which supports modeling, simulation, and design of systems using mixed models of computation.
The physical part of the system can be modeled in the continuous domain. The simulation
can be instantiated with different ODE solvers that suit diverse time scales present in the
model. PTIDES models define the functional and temporal interaction of distributed software
components, the networks that bind them together, sensors, actuators, and physical dynamics.
Simulation can be done on such models, such that functionality and timing can be tested. In
particular, to get a picture of the temporal behavior of a particular implementation of a model,
each actor can be endowed with a platform-dependent execution time, and simulation can be
performed to determine whether real-time deadlines can be met for a given set of inputs.

1.4.4 Lustre

Lustre [HLR92] is a synchronous dataflow language used for the development of reactive systems,
that is, systems that continuously interact with their environment. The behavior of a Lustre
program is a sequence of reactions consisting in reading the current inputs, computing the
current outputs, and updating the internal state of the program. Lustre is based on the
synchrony hypothesis [Hal98]: A reaction is often said to take no time. In other words, this
means that a given system is faster than its environment.

A Lustre program consists in a set of nodes operating on flows of values (inputs and outputs
are described by their flows of values along with time). The synchronous dataflow approach
consists in adding a time dimension to the dataflow model. This is done by associating time
with the rate of dataflow, that is, the manipulated entities can be interpreted as function of
time. For instance, given a variable or an expression x, it represents an infinite sequence of
values (x0, . . . , xn, . . .), xn being the value of x at the logical time instant n, that is, at the n-th
reaction of the program. Figure 1.6 shows a small example of a Lustre program.

1 node Nand(X,Y: bool) returns (Z: bool);
2 var U: bool;
3 let
4 U = X and Y;
5 Z = not U;
6 tel

Figure 1.6 – A Lustre Program

The above program defines a node that takes two Boolean inputs X and Y, and returns the
negation of “X and Y”. It expresses the following relation:

For any instant t, Zt= not (Xt and Yt)

1.5 Contribution

Nowadays, real-time systems are ubiquitous in several application domains, and such an
emergence led to an increasing need of performance: resources, availability, concurrency, etc.
This expansion initiates a shift from the use of single processor based hardware platforms, to
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large sets of interconnected and distributed computing nodes. Moreover, it prompts the birth of
a new family of systems that are intrinsically distributed, namely, Networked Embedded Systems.
Such an evolution stems from an increase in complexity of real-time software embedded on
such platforms (e.g. electronic control in avionics and automotive domains [Cha09]), and the
need to integrate formerly isolated systems [Kop04] so that they can cooperate as well as share
resources improving thus functionality and reducing costs. To deal with such complexity, the
community of safety critical systems often restricts its scope to predictable systems, which
are represented with domain specific models (e.g. periodic tasks, synchronous systems, time-
deterministic systems) for which the range of possible executions is small enough to be easily
analyzed, allowing the pre-computation of optimal control strategies. Networked Embedded
Systems usually describe a set of real-time systems, distributed across several platforms, and
interacting through a network. Because of their adaptive behavior, the standard practice when
implementing such systems is not to rely on models for pre-computation of execution strategies
but rather to design systems dynamically adapting at runtime to the actual context of execution.
Such approaches, however, do not offer any formal guarantee of timeliness. Also, the lack of a
priori knowledge on system behavior leaves also little room for static optimization.

In this thesis, we propose a rigorous design flow intended for building distributed real-time
applications using the BIP Framework. BIP [BBB+11b] (Behavior, Interaction, Priority) is a
model-based and component-based framework where systems consist of components represented
as timed automata that may synchronize on particular actions to coordinate their activities.
Particularly, we investigate timed automata based models in order to study the behavior of a
given system with some imposed timing constraints when deployed in a distributed environment.

Knowledge Based Optimization of

In Chapter 3, we propose an intermediate model more appropriated for the representation of
distributed real-time systems. It provides details on how the implementation of a system with
multiparty interactions can be derived by explicitly expressing the ongoing communication
mechanism. This model is obtained using model transformations that are in partly based of
the notion of conflicting interactions. In other words, in a distributed context components may
compete on the same resources at the same time. Thus, any distributed implementation must
preserve the overall system consistency by ensuring mutual exclusion in such cases. In fact,
conflicts are hard to characterize for real life case studies and their computation is based on
over-approximation. Chapter 4 proposes a knowledge based optimization in order to optimize
the computation of the conflicting interactions set.

Communication Delays

Chapter 5 tackles the communication delays problem inherent to distributed real-time systems.
This is achieved by considering additional delays between the decision to execute an interaction
and its actual execution. These delays result from the transmission delays between the
component responsible for such a decision and the components involved in the interaction,
and may have a huge impact in the satisfaction of timing constraints in real-time. This will
particularly help to anticipate the execution of interactions at least some delay beforehand,
corresponding to the actual worst estimation of communication delays of a given platform,
which will alleviate the effect of those delays on the system behavior. Indeed, such delays may
introduce behavioral flaws (e.g. deadlocks) when dealing with arbitrary timing constraints
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(i.e. no restriction to the non-decreasing deadlines case as in [Tri15]). The proposed approach
introduces a semantics based on partial states of the system components and formalizes in a
precise way the effect of the delays in this context. It also provides practical means for enforcing
system correctness in their presence.

Clock Drift

The verification of real-time systems against some considered properties relies on the fact
that clocks are perfectly synchronous, that is, clocks advance at the same rate, which is not
the case in practice. Clocks are in fact implemented using oscillators and counter registers,
thus, their precision depend highly on the quality of the oscillators and parameters of their
underlying environment (temperature, humidity, etc.). Chapter 6 studies the effect of this
hardware imperfections by breaking the perfect clocks assumption. More precisely, this problem
is formulated as a robustness problem, i.e., does the system still satisfies the specification
when subject to different kind of perturbations (in our case clock imperfection). First, a timed
automata model for distributed real-time system with drifting clocks is introduced. Thereafter,
we revisit the robustness by proposing a strategy that allows to have “similar” or close execution
scenarios in the latter and the system with perfect clocks.

1.6 Outline
The rest of this thesis is structured as follows:

• Part I introduces all the preliminaries and includes the following chapters:

– Chapter 2 gives formal definitions of timed transition systems, timed automata, their
semantics and properties.

– Chapter 3 presents an intermediate timed automata based model for the represen-
tation of distributed real-time systems. It also tackles two important constraints
related the distributed real-time context.

• Part II includes our contributions. It consists of the following chapters:

– Chapter 4 proposes a knowledge based optimization for systems modeled using the
approach of Chapter 3.

– Chapter 5 tackles the problem of communication delays inherent to distributed
real-time systems by proposing a complete formalization of the latter through a new
semantics more suited for distributed real-time executions. It also provides different
methods for the verification of systems behavior against deadlock freedom.

– Chapter 6 investigates the clock drift problem and revisits the robustness approach
when studying systems with clock imperfections.

– Chapter 7 gives an overview of the BIP toolbox and the accomplished implementation.
It also presents the experimental results on different case studies

• Part III concludes the dissertation and includes the following chapter:

– Chapter 8 concludes with an overview of the accomplished work as well as some
interesting perspectives.
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Part I

Preliminaries

In this part, we give formal definitions and present results that will be used in subsequent
chapters. Chapter 2 provides formal definitions of timed transition systems, timed automata,
their semantics and properties as well as a variant of the latter. It also discusses the verification
technique used in this thesis. Chapter 3 explains how an intermediate representation, based
on the timed automata formalism, can be used to represent a realistic view of a distributed
real-time systems. It also tackles two important constraints that an application may incur
when being deployed in a distributed environment under real-time restrictions.





Chapter 2

Timed Systems and Semantics
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2.1 Timed Transition Systems
Transition systems provide a general and convenient method for modeling systems and have
been used frequently to model the behavior of software and hardware systems. They define
graphs where nodes represent the possible states (potentially infinite) of the system, and edges
model transitions, that is, state changes. A state encodes all the relevant information at a
certain instant, whereas a transition describes how the system evolves between two states.

Nowadays, several variants of transition system formalisms have been proposed. For instance,
a labeled transition system is a transition system where the set of transitions is labeled by
actions. In this thesis, we use Timed Transition Systems (TTS) to explicitly model the effect of
time passage (besides the actions) on the states of the system. Formally, it is defined as follows:

Definition 2.1.1 (Timed Transition System). A timed transition system is a tuple T =
(Q, q0,Σ ∪ K,→) such that Q is a set of states, q0 ∈ Q is the initial state, Σ is a set of actions,
K is a time domain and →⊆ Q × (Σ ∪ K) × Q is the transition relation.

Consequently, we distinguish two types of transition:

• action step σ−→ for σ ∈ Σ and we write q σ−→ q′.
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• time step d−→ for d ∈ K and we write q d−→ q′.

We write q d,σ−−→ q′′ if there exists q′ ∈ Q such that q d−→ q′ σ−→ q′′. We say that q′ is a time
successor of q.

Given a TTS T = (Q, q0,Σ ∪ K,→), a run ϱ of T (also called execution sequence), is a path
that alternates action steps and time steps, that is:

ϱ = s0σ0s1σ1s2 · · · such that si ∈ Q, si
σi−→ si+1, and i ∈ Z≥0, σi ∈ Σ ∪ K

We denote by time(ϱ, i) the total elapsed time until point i, that is,
∑

j<i σj such as σj ∈ K.
In the same way, time(ϱ) represents the total elapsed time during ϱ, and is defined to be the
limit of time(ϱ, i) if the sequence converges and ∞ otherwise. A run ϱ is said to be an initial
run if s0 = q0.

A state q ∈ Q is called reachable if there exists an initial run that leads to state q. We put
Reach(T) to denote the set of all reachable states of T.

2.1.1 Comparing Timed Transition Systems

In this thesis, we use the concept of (bi)simulation [HLY91] in order to attest the similarity of
timed transition systems.

Definition 2.1.2 (Simulation). Given two TTS T1 = (Q1, q01 ,Σ∪K,→1) and T2 = (Q2, q02 ,Σ∪
K,→2), a simulation relation from T1 to T2 is a binary relation R ⊆ Q1 × Q2 such that:

• ∀(q1, q2) ∈ R,∀σ ∈ Σ, q1
σ−→1 q′

1 ⇒ ∃q′
2 ∈ Q2 such that q2

σ−→2 q′
2 ∧ (q′

1, q
′
2) ∈ R

• ∀(q1, q2) ∈ R, ∀d ∈ K, q1
d−→1 q′

1 ⇒ ∃q′
2 ∈ Q2 such that q2

d−→2 q′
2 ∧ (q′

1, q
′
2) ∈ R

T2 simulates T1, denoted by T1 ⊑R T2 means that T2 can do everything T1 does. Notice that
if T1 ⊑R T2 and T2 ⊑R T1, we say that T1 and T2 are bisimilar, denoted by T1 ∼R T2.

In some cases, this notion of simulation is refined in order to consider only a part of a
system behavior. This is usually the case when a system performs internal (or silent) actions
not visible by external observers. This variant of simulation is called weak simulation.

Definition 2.1.3 (Weak Simulation). Given two TTS T1 = (Q1, q01 ,Σ ∪ {τ} ∪ K,→1) and
T2 = (Q2, q02 ,Σ ∪ {τ} ∪K,→2), where τ actions represent silent (unobservable) actions, a weak
simulation relation from T1 to T2, denoted T1⊑̇RT2, is a binary relation R ⊆ Q1 × Q2 such that:

• ∀(q1, q2) ∈ R, q1
τ−→1 q′

1 ⇒ ∃q′
2 ∈ Q2 such that q2

τ∗
−→2 q′

2 ∧ (q′
1, q

′
2) ∈ R

• ∀(q1, q2) ∈ R, ∀σ ∈ Σ, q1
σ−→1 q′

1 ⇒ ∃q′
2 ∈ Q2 such that q2

τ∗στ∗
−−−−→2 q′

2 ∧ (q′
1, q

′
2) ∈ R

• ∀(q1, q2) ∈ R, ∀d ∈ K, q1
d−→1 q′

1 ⇒ ∃q′
2 ∈ Q2 such that q2

τ∗dτ∗
−−−→2 q′

2 ∧ (q′
1, q

′
2) ∈ R

We say that T1 and T2 are observationally equivalent, denoted T1∼̇RT2 , if it exists a weak
simulation from T1 to T2 and vice versa.

In chapter 6, we will introduce an even weaker notion of simulation that characterizes the
degree of closeness (in term of delays) between two timed systems.
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2.1.2 Reactive Timed Systems

Reactive systems are supposed to execute forever, that is, they are supposed to act infinitely
often. We refer to this characteristic as the requirement of progress [Tri99]. Particularly, a
timed system evolves either through an action step or by letting the time pass (time step). This
evolution imposes thus two requirements of progress: discrete progress (resp. time progress)
meaning that a timed system should be able to perform action steps (resp. time steps) infinitely
often. In the physical world however, no matter how fast a system can evolve, it cannot be
infinitely fast. This induces the following constraints on the progress of time:

1. Only a finite number of actions can happen in a finite amount of time

2. Only a bounded number of actions can happen in zero time

Time Progress (Zeno runs & Timelocks)

We distinguish two types of anomalies that infringe the time progress in a timed system namely
zeno runs and timelocks. A run ϱ is called zeno if it is an infinite run and if time(ϱ) ̸= ∞.
Such a run transgresses the first point of the time progress presented above. Timelocks are
states from which all infinite runs starting from these states are zeno.

Discrete Progress (Deadlocks)

States violating the discrete progress are called deadlock states. Formally, a state is said to be
deadlock if no action can be executed from that state nor from any of its time successors.

Any model of a reactive timed system should properly capture the behavior of the latter.
Particularly, the corresponding model must react infinitely often, that is, it must not block
time or execute an unbounded number of actions in zero time. In that sense, we can say
that deadlocks and timelocks are modeling errors that needs to be cleared, either during the
modeling process (which is tedious for large scale systems) or by providing verification methods
that guarantee their absence.

2.2 Timed Systems Syntax and Semantics

Clocks

In order to represent and measure the dense time domain, we rely on positive real valued
variables, also known as clocks. Clocks are positive real variables increasing synchronously
(with the same rate) in a given system. They are used to express timing constraints to impose
a certain dynamics on the execution of a timed system.

Given a finite set of clocks X , we define the valuation function υ : X → R≥0 assigning to
each clock x a positive real value υ(x). We put RX

≥0 to denote the set of all valuations. For a
valuation υ ∈ RX

≥0 and d ∈ R≥0, υ + d is the valuation satisfying (υ + d)(x) = υ(x) + d, while
for a subset of clocks r ⊆ X , υ[r] is the valuation obtained from υ by resetting clocks of r, that
is, υ[r](x) = 0 for x ∈ r and υ[r](x) = υ(x) otherwise. We write 0 for the valuation that assigns
0 to every clock.

An atomic clock constraint is an expression of the form:

c := true | x#k | x− y#k
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where x and y are clocks in X , # ∈ {<,≤,=,≥, >}, and k ∈ Z. A clock constraint is a
conjunction of atomic clock constraint, that is:

c := true | x#k | x− y#k | c1 ∧ c2 (2.1)

with c1 and c2 being atomic clock constraints. We write C(X ) for the set of clock constraints
over X . Given a clock constraint c and a valuation υ, we say that υ satisfies c, denoted υ |= c, if
all constraints are satisfied when each x ∈ X is replaced by υ(x). We also consider the classical
backward and forward operators on clock constraints:

Backward : υ |= ↙c ⇔ ∃d ∈ R≥0. (υ + d) |= c

Forward : υ |= ↗c ⇔ ∃d ∈ R≥0. (υ − d) |= c

Additionally, we also use another variant of the backward and forward operators considering
lower bounds l ∈ Z≥0 and upper bounds u ∈ Z≥0 ∪ {+∞}:

υ |= ↙u
l c ⇔ ∃d ∈ R≥0, l ≤ d ≤ u. (υ + d) |= c

υ |= ↗u
l c ⇔ ∃d ∈ R≥0, l ≤ d ≤ u. (υ − d) |= c

2.2.1 Timed Components Syntax and Semantics

In this thesis, components are timed automata and systems are compositions of timed automata
with respect to multiparty interactions. The timed automata we use are essentially the ones from
[AD94], however, slightly adapted to embrace a uniform notation throughout the dissertation.
Definition 2.2.1 (Timed Component). A component is a tuple B = (L, ℓ0,X ,A, E , I), where:

• L is a finite set of locations, with ℓ0 ∈ L is the initial location,

• X is a finite set of clocks,

• A is a finite set of actions

• E ⊆ L × (A × C(X ) × 2X ) × L is a finite set of transitions labeled with an action, a clock
constraint (guard), and a set of clocks to be reset,

• I : L → C(X ) is the function assigning an invariant to each location. Notice that
invariants are restricted to conjunction of atomic clock constraints of the form x ≤ k.

Throughout this thesis, we consider deterministic timed components, that is, at a given
location ℓ and for a given action a, there is up to one outgoing transition from ℓ labeled by a.
A transition e = (ℓ, (a, g, r), ℓ′) ∈ E is also denoted by ℓ a,g,r−−−→ ℓ′. We write source(e), target(e),
action(e), guard(e) and reset(e) for ℓ, ℓ′, a, g and r, respectively. We also denote by Φ(a, ℓ) the
guard of the transition labeled by a and outgoing from ℓ if it exists, and false otherwise. It is
formalized as follows:

Φ(a, ℓ) =
{
g, if ∃e = (ℓ, a, g, r, ℓ′) ∈ E
false, otherwise
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Example 2.2.1. Figure 2.1 depicts a timed component B where locations are represented by
circles and transitions are the directed arrows from a location to another. The initial location
(ℓ0 here) is represented by a double circle. The component B = (L, ℓ0,X ,A, E , I) is defined
such that:

• L = {ℓ0, ℓ1},

• X = {x},

• A = {a, b},

• E = {e1, e2} where

– e1 = (ℓ0, a, 2 ≤ x ≤ 4, ∅, ℓ1)
– e2 = (ℓ1, b, true, {x}, ℓ0)

• I assigns the following invariants for locations: I(ℓ0) = x ≤ 4 and I(ℓ1) = true

Notice that when a clock constraint (respectively an invariant is not shown on a transition
(respectively location) it is interpreted as true. This is the case for transition e2 and location ℓ2.

ℓ0

x ≤ 4

B

ℓ1

a
2 ≤ x ≤ 4

b
x := 0

Figure 2.1 – Example of a Timed Component

Definition 2.2.2 (Standard Semantics). The semantics of a timed componentB = (L, ℓ0,X ,A, E , I)
is given by the timed transition system T = (Q, q0,A ∪ R>0,→) where:

• Q = L × RX
≥0 denotes the states of B with q0 = (ℓ0, 0) being the initial state,

• →⊆ Q × (A ∪ R>0) × Q denotes the set of transitions between states according to the
rules:

– (ℓ, υ) a−→ (ℓ′, υ[r]) if ℓ a,g,r−−−→ ℓ′, υ |= g, and υ[r] |= I(ℓ′) (action step)

– (ℓ, υ) d−→ (ℓ, υ + d) if ∀d′ ∈ [0, d], υ + d′ |= I(ℓ) (time step)

Notice that since the invariants are restricted to conjunctions of upper bound atomic
constraints, the time step can be simplified to:

(ℓ, υ) d−→ (ℓ, υ + d) if υ + d |= I(ℓ)

In this thesis, we always assume components with well formed guards, that is, for a transition
ℓ

a,g,r−−−→ ℓ′,
(
υ |= g

)
⇒

(
υ |= I(ℓ) ∧ υ[r] |= I(ℓ′)

)
for any υ ∈ RX

≥0. The rule on action step
becomes then:

(ℓ, υ) a−→ (ℓ′, υ[r]) if ℓ a,g,r−−−→ ℓ′ and υ |= g
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We define the predicate Enabled(a) characterizing states (ℓ, υ) from which an action a is
enabled, that is, such that (ℓ, υ) a−→ (ℓ′, υ′). It is formalized as follows:

Enabled(a) =
∨
ℓ∈L

at(ℓ) ∧ Φ(a, ℓ)

where at(ℓ) is true on states whose location is ℓ. In the same way, we define the predicates
Enabled↙(a), Enabled↙u

l (a), Enabled↗(a) and Enabled↗u
l (a) describing, respectively, states

from which an action a can be executed after some time step, some bounded time step,
states that are time successors or bounded time sucessors of states satisfying Enabled(a) (see
Figure 2.2). These predicates can be formally written as follows:

Enabled↙(a) =
∨
ℓ∈L

at(ℓ) ∧ ↙Φ(a, ℓ)

Enabled↙u
l (a) =

∨
ℓ∈L

at(ℓ) ∧ ↙u
l Φ(a, ℓ)

Enabled↗(a) =
∨
ℓ∈L

at(ℓ) ∧ ↗Φ(a, ℓ)

Enabled↗u
l (a) =

∨
ℓ∈L

at(ℓ) ∧ ↗u
l Φ(a, ℓ)

timega

time↙ga

time↙u
l ga l

u

time↗ga

time↗u
l gal

u

Figure 2.2 – Backward and Forward Operators on a Guard
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A state (ℓ, υ) is said urgent if time cannot progress from this state, that is, ∄d ∈ R>0 such
that (ℓ, υ) d−→ (ℓ, υ + d). Urgent states of a component B are characterized by the predicate:

Urgent(B) =
∨
ℓ∈L

at(ℓ) ∧ urg(ℓ) (2.2)

where urg(ℓ) is a clock constraint characterizing the valuations from which time cannot progress
with respect to the location invariant I(ℓ), that is, assuming that I(ℓ) =

∧m
i=1 xi ≤ ki then

urg(ℓ) =
∨m

i=1 xi ≥ ki. Notice that due to well formed guards, an urgent reachable state satisfies
also Expression 2.2 if inequalities xi ≥ ki on clocks are replaced by equalities xi = ki in the
expression of urg(ℓ).

Remark 2.2.1. When used in predicate definition, clock constraints are straightforwardly applied
to clock valuations of states and thus interpreted as true or false.

Definition 2.2.3 (Strongly Non-Zeno Timed Component). Given a timed componentB, a struc-
tural loop of B is a sequence of distinct transition e1 · · · em such that ∀i ∈ {1, · · · ,m}, target(ei) =
source(ei+1) (the addition i+1 is modulo m). B is called strongly non-zeno if for every structural
loop there exists a clock x and some 0 ≤ (i, j) ≤ m such that:

• x is reset in step i, that is, x ∈ reset(ei)

• x is bounded from below in step j, that is, (x < 1) ∧ guard(ej) = false

Intuitively, this definition implies that at least 1 time unit elapses at each loop of B.

Lemma 2.2.1 ([Tri99]). If B is strongly non-zeno then every infinite run of B is non-zeno

The following corollary is an immediate consequence of lemma 2.2.1.

Corollary 2.2.1. Given a timed component B, if B is strongly non-zeno then it is timelock
free.

Corollary 2.2.1 highlights an interesting fact of strong non-zenoness. It discharges from the
trouble of checking time progress. In particular, checking the progress of a timed system is
reduced to checking its deadlock freedom.

Definition 2.2.4 (Deadlocks). Given a timed component B. We say that a state (ℓ, υ) of B is
a deadlock if and only if no action can be executed from this state or any of its time successors,
that is:

¬
(
∃a ∈ A. (ℓ, υ) a−→ (ℓ′, υ′) ∨ ∃d > 0. (ℓ, υ) d−→ (ℓ, υ + d) a−→ (ℓ′, υ′)

)
Deadlock states are characterized by the following predicate:∨

ℓ∈L
at(ℓ) ∧ ¬

( ∨
a∈A

↙(
Enabled(a) ∧ I(ℓ)

))
Because of well formed guards, the above can be simplified into:∧

a∈A
¬Enabled↙(a) (2.3)
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A deadlock (ℓ, υ) is called an action-time-lock when no action can execute nor time can
progress from (ℓ, υ), that is:

¬
(
∃a ∈ A. (ℓ, υ) a−→ (ℓ′, υ′) ∨ ∃d > 0. (ℓ, υ) d−→ (ℓ, υ + d)

)
Action-time-locks verifies the following predicate:∧

a∈A
¬Enabled(a) ∧

∨
ℓ∈L

(
at(ℓ) ∧ urg(ℓ)

)
(2.4)

2.2.2 Timed Systems

The common practice in component-based timed systems is to have several components executing
in parallel while their clocks increase synchronously. Moreover, it is often mandatory to restrict
the components behaviors so as to achieve a given global property. This is usually achieved by
coordinating the execution of actions in components using synchronization mechanisms. In what
follows, components communicate by means of multiparty interactions. A multiparty interaction
is a rendez-vous synchronization between actions of a fixed subset of components. It takes place
only if all the participants agree to execute the corresponding actions. Given n components Bi,
with disjoint sets of actions Ai, an interaction is a subset of actions α ⊆ ∪1≤i≤nAi containing
at most one action per component, that is, α∩ Ai is either empty or a singleton {ai}. Thus, an
interaction α can be put in the form α = {ai}i∈ I with I ⊆ {1, · · · , n} and ai ∈ Ai for all i ∈ I.
We denote by part(α), the set of components participating in α, that is, part(α) = {Bi}i∈I .

Definition 2.2.5 (Timed System). Given n components Bi = (Li, ℓ0i ,Xi,Ai, Ei, Ii) with
Li ∩ Lj = ∅, Ai ∩ Aj = ∅, and Xi ∩ Xj = ∅ for any i ̸= j, the composition with respect
to the interaction set γ, denoted by S = γ(B1, · · · , Bn), is defined by the timed component
(L, ℓ0,X , γ, Eγ , I) where:

• L = L1 × · · · × Ln

• ℓ0 = (ℓ01 , · · · , ℓ0n),

• X = X1 ∪ · · · ∪ Xn,

• I(ℓ) = I1(ℓ1) ∧ · · · ∧ In(ℓn), for ℓ = (ℓ1, · · · , ℓn),

• Eγ is defined by:

Eγ =

 ℓ
α,g,r−−−→ℓ′

for α={ai}i∈I∈γ

∣∣∣ ℓ=(ℓ1,··· ,ℓn)∈L, ℓ′=(ℓ′
1,··· ,ℓ′

n)∈L

for i ̸∈I, ℓ′
i=ℓi, and for i∈I, ℓi

ai,gi,ri−−−−→ℓ′
i and

g=
∧

i∈I
gi, r=∪i∈Iri


In a composition S of n components Bi, an action ai can execute only as part of an

interaction α such that ai ∈ α, that is, along with the execution of all other actions aj ∈ α.
This corresponds to the usual notion of multiparty interactions. In practice, we do not explicitly
build compositions of timed components as presented in Definition 2.2.5. We rather interpret
their semantics by evaluating enabled interactions based on current states of components.
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Property 2.2.1 (Semantics of a Composition). Given a set of components {B1, · · · , Bn} and
an interaction set γ, the semantics of the composite component S = γ(B1, · · · , Bn) with respect
to the set of interaction γ, is defined by the timed transition system Tg = (Qg, q0g , γ ∪ R>0,→γ)
where:

• Qg = L × RX
≥0 is the set of global states, where L = L1 × · · · × Ln and X =

⋃n
i=1 X⟩.

We write a state q = (ℓ, υ) where ℓ = (ℓ1, · · · , ℓn) ∈ L is a global location and υ =
(υ1, · · · , υn) ∈ RX

≥0 is a global clock valuation. The initial state is q0 = (ℓ0, 0),

• γ is the set of interactions,

• →γ is the set of transitions defined by the rules:

– Interaction step:

α = {ai}i∈I ∈ γ, ∀i ∈ I.(ℓi, υi)
ai−→γ (ℓ′i, υ′

i), ∀i /∈ I.(ℓi, υi) = (ℓ′i, υ′
i)

(ℓ, υ) α−→γ (ℓ′, υ′)
– Time step:

d ∈ R>0, ∀i ∈ {1, · · · , n}.υi + d |= Ii(ℓi)

(ℓ, υ) d−→γ (ℓ, υ + d)

To simplify notations, predicates defined on individual components Bi are straightforwardly
interpreted on global states (ℓ, υ) of the composition by considering the projection (ℓi, υi) of (ℓ, υ)
on Bi. For instance, at(ℓi) evaluates to true on (ℓ, υ) iff ℓ ∈ L1,× · · ·×Li−1×{ℓi}×Li+1×· · ·×Ln.
Similarly, clock constraints of component Bi are applied to clock valuation functions of the
composition by restricting υ to clocks in Xi of Bi. This allows to write the predicate Enabled(α),
characterizing states (ℓ, υ) from which an interaction α = {ai}i∈I ∈ γ can be executed, as:

Enabled(α) =
∧
i∈I

Enabled(ai), (2.5)

=
∧
i∈I

∨
ℓi∈Li

at(ℓi) ∧ Φ(ai, ℓi), (2.6)

=
∧
ℓ∈L

ℓ=(ℓ1,··· ,ℓn)

(
at(ℓ) ∧

∧
i∈I

ai∈α

Φ(ai, ℓi)
)

(2.7)

Expression 2.6 expresses the predicate Enabled(α) using location of individual components
whereas Expression 2.7 formalizes it on global location configurations. Notice that the above
formulation of Enabled(α) corresponds to locations enumeration of all components of the
system. In practice, we rather consider only a subset of locations Lα ⊆ L, from which the
execution of α is possible. This corresponds to Πi∈I |Lai | possible configuration, where Lai ⊆ Li

is a subset of locations of Bi from which there exists a transition labeled by action ai ∈ α,
and |Lai | denotes the cardinality of Lai . The set Lα is reasonably small in practice but can
contain (at the worst case) Πi∈I |L| elements. The predicates Enabled↙(α), Enabled↙u

l (α),
Enabled↗(α) and Enabled↗u

l (α) are given by:
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Enabled↙(α) =
∨
ℓ∈L

ℓ=(ℓ1,··· ,ℓn)

at(ℓ) ∧ ↙( ∧
i∈I

ai∈α

Φ(ai, ℓi)
)

Enabled↙u
l (α) =

∨
ℓ∈L

ℓ=(ℓ1,··· ,ℓn)

at(ℓ) ∧ ↙u
l

( ∧
i∈I

ai∈α

Φ(ai, ℓi)
)

Enabled↗(α) =
∨
ℓ∈L

ℓ=(ℓ1,··· ,ℓn)

at(ℓ) ∧ ↗( ∧
i∈I

ai∈α

Φ(ai, ℓi)
)

Enabled↗u
l (α) =

∨
ℓ∈L

ℓ=(ℓ1,··· ,ℓn)

at(ℓ) ∧ ↗u
l

( ∧
i∈I

ai∈α

Φ(ai, ℓi)
)

Note that in general forward and backward operators do not distribute over conjunction,
which prevent us from further expanding the above predicates, that is,for a clock constraint
c = c1 ∧ c2, we have:

⋄c = ⋄(c1 ∧ c2) ̸= ⋄c1 ∧ ⋄c2

with ⋄ ∈ {↙,↗}.

The definitions of deadlocks and action-time-locks are also trivially extended to composition
of timed components. Deadlocks can be characterized as follows:∨

ℓ=(ℓ1,··· ,ℓi)∈L
at(ℓ) ∧

[ ∧
α∈γ

¬↙(
Enabled(α) ∧

∧
1≤i≤n

Ii(ℓi)
)]

and action-time-locks by:( ∧
α∈γ

¬Enabled(α)
)

∧
( ∨

1≤i≤n

∨
ℓi∈Li

at(ℓi) ∧ urg(ℓi)
)

2.2.3 Example

Figure 2.3 depicts a timed system composed of four components C, T1, T2, and R. Component C
represents a controller that initializes then releases tasks T1 and T2. Tasks use the shared resource
R during their executions. To implement such behavior, we consider the following interactions
between C, R, and T1: α1 = {init0, init1}, α3 = {start0, start1}, α5 = {take, process1},
α7 = {free, end1}, and similar interactions α2, α4, α6, α8 for task T2, as shown by connections
on Figure 2.3. The controller is responsible for firing the execution of each task. First, it
non-deterministically initializes one of the two tasks, i.e., executes α1 or α2, and then releases
it through interaction α3 or α4. Tasks perform their processing independently of the controller,
after being granted an access to the shared resource (α5 or α6). When finished, a task releases
the resource (interactions α7 or α8) and goes back to its initial location. An example of execution
sequence of this system is given below. Valuation v of clocks x, y, and z are represented as
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ℓ1
0

ℓ1
1

C

init0
z > 25

start0
z := 0

ℓ2
0 ℓ2

1

ℓ2
2 x ≤ 30

T1

ℓ2
3x ≤ 4

init1

start1
x := 0

process1
10 ≤ x ≤ 30, x := 0

end1
x ≤ 4

ℓ3
1ℓ3

0

ℓ3
2 y ≤ 30

T2

ℓ3
3y ≤ 4

init2

start2
y := 0

process2
10 ≤ y ≤ 30, y := 0

end2
y ≤ 4

ℓ4
0

R

ℓ4
1

take

free

init2 start2

end2process2

init1start1

end1 process1

take

free

init0 start0

α5α6

α1α2

α3α4

α7α8

Figure 2.3 – Task Manager

tuples (υ(x), υ(y), υ(z)):

((ℓ1
0, ℓ

2
0, ℓ

3
0, ℓ

4
0), (0, 0, 0)) 26−→γ ((ℓ1

0, ℓ
2
0, ℓ

3
0, ℓ

4
0), (26, 26, 26)) α1−→γ ((ℓ1

1, ℓ
2
1, ℓ

3
0, ℓ

4
0), (26, 26, 26)) α3−→γ

((ℓ1
0, ℓ

2
2, ℓ

3
0, ℓ

4
0), (0, 26, 0)) 10−→γ ((ℓ1

0, ℓ
2
2, ℓ

3
0, ℓ

4
0), (10, 36, 10)) α5−→γ ((ℓ1

0, ℓ
2
3, ℓ

3
0, ℓ

4
1), (0, 36, 10)) 2−→γ

((ℓ1
0, ℓ

2
3, ℓ

3
0, ℓ

4
1), (2, 38, 12)) α2−→γ ((ℓ1

1, ℓ
2
3, ℓ

3
1, ℓ

4
1), (2, 38, 12))

2.3 Timed Systems with Data
Timed models introduced in the previous section focuses on the timing behavior of a given
system. In order to achieve a higher degree of expressiveness, we extend these models with
data variables. Data allows additional representations of complex behavior. Similarly to clock
variables, they may appear in the guards of transitions as additional conditions and may be
updated when transitions fire.

Definition 2.3.1 (Guards on clocks and Data). Let X be a set of clock variables and D be
a set of data variables. We denote by G(X ,D) the set of guards induced by the following
grammar:

g := gx | gd | g1 ∧ g2

where gx ∈ C(X ), gd is a predicate on a subset of data variables of D, and g1, g2 are guards
over clocks and/or data variables.

We extend the notion of valuation to data variables in the following manner:

• Valuations assign values to data variable (in addition to clocks),

• The satisfaction of a valuation to a constraint is straightforwardly extended to data
variables,
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• Data variables are insensitive to the progress of time, that is, for k ∈ D and d ∈ R>0,
(v + d)(k) = (v)(k),

• Update operations are also defined for data variables using transfer functions

We use transfer functions to express update operations on data variables of D. A transfer
function f : V(D) → V(D) assigns to each variable d ∈ D a new value f(v) based on the current
values of variables of D. Additionally, given a set D′ ⊇ D, applying f on D′ updates variable in
D but does not change the values of variables in D′ \ D.

Definition 2.3.2 (Timed Component with Data). A timed component with data is a tuple
Bd = (L, ℓ0,X ,D,A, E , {fe}e∈E , I) such that:

• L, ℓ0, X , A and I are defined as in Definition 2.2.1,

• D is a finite set of data variables,

• E ⊆ L × (A × G(X ,D) × 2X ) × L is a finite set of labeled transitions with an action, an
extended guard, and a set of clocks to be reset. For each transition e ∈ E , we include the
transfer function fe that updates elements of D.

ℓ0

x ≤ 4

B

ℓ1

a
2 ≤ x ≤ 4 ∧ k <= 5

k := k + 10

b
x := 0

c
k > 5 ∧ 1 < x ≤ 4
k := k − 3 ∧ x := 0

Figure 2.4 – Example of an Extended Timed Component

Example 2.3.1. Component of Figure 2.4 is an extended timed component with actions a, b
and c. The set of data is D = {k}. It is used on the guards of the transitions labeled by a and
c (k ≤ 5 and k > 5 respectively). The update operations for both transitions are respectively
{k := k + 10} and {k := k − 3 ∧ x := 0}.

Remark 2.3.1. Notice that extending a timed component with data will result in a restriction
of the behavior of the initial timed components since extending guards to data variables will
only constrain the execution of transitions. Consequently, for a timed component with data
Bd = (L, ℓ0,X ,D,A, E , {fe}e∈E , I), the timed component B = (L, ℓ0,X ,A, E , I) represents an
abstraction of the latter.

Definition 2.3.3 (Timed System with Data). Given n components Bdi
= (Li, ℓ0i ,Xi,Di,Ai,

Ei, {fe}e∈Ei , Ii) with disjoint set of data and an interaction set γ, the composition Sd =
γ(Bd1 , · · · , Bdn) with respect to the interaction set γ is defined by the timed component
(L, ℓ0,X ,D, γ, Eγ , {fe}e∈γ , I) where:

• L, ℓ0, X , γ and I are defined as in Definition 2.2.5.

• D = D1 ∪ · · · ∪ Dn
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• Eγ is straightforwardly extended by considering guards on data variables and the applica-
tion of transfer functions on executions of interactions

The semantics of timed system with data extends the semantics of Property 2.2.1 in the
sense that an interaction takes place if the guards on data variables also evaluates to true. Also,
interactions executions apply the underlying transfer functions of the corresponding components
transitions. Also, data variables are initialized based on their types. For instance, integer
and real variables are initialized to 0. For other data types, one needs to define their initial
valuation.

In what follows, when referring to timed component or timed system we imply by that
extended timed component or extend timed systems, unless explicitly stated.

2.4 Verification of Timed Systems

2.4.1 Symbolic Reachability

The semantics of timed systems as presented in Property 2.2.1 defines states as pairs of locations
configurations and clock valuations. By considering a continuous time domain (R≥0 here), the
resulting timed transition system yields an infinity of states. Consequently, the usual practice
is to rely on a symbolic representation of states to make this state space finite. A symbolic
state is defined by a pair (ℓ, ξ) where ℓ is a location and ξ is a zone, a set of clock valuations
defined by clock constraints (as defined in 2.1). Consequently, the set of reachable states of a
timed component B (system) can be put on the form:

Reach(B) =
∨
j∈J

at(ℓj) ∧ ξj

Given a timed component with data Bd and its abstraction of data B, we have Reach(Bd) ⊆
Reach(B) when considering the projection of states on locations and clocks only. This means
that Reach(B) can be used as an over-approximation of the reachable state of the timed
component with data Bd.

2.4.2 Compositional Verification

Standard verification techniques such as model checking are based on explicit exploration and
exhaustive enumeration of all the reachable symbolic states of a given system. The main
issue with this method is the combinatorial explosion when considering large scale systems.
Compositional verification have been introduced to cope with state explosion problem, and thus
achieves scalability when verifying large scale systems. This approach is based on the concept
of divide-and-conquer in order to break up the verification problems into smaller subsequent
problems. Compositional verification have been extensively studied under different manners e.g.,
assume-guarantee reasoning [Lam77, OG76], contract-based verification [BCP07, BFM+08],
deductive verification [MP95], etc. In this thesis, we choose to use a deductive compositional
verification method that exploits compositionality for analysis of timed systems using invariants.
Invariants are over-approximations of the set of reachable states of the system as opposed to
the exact reachability analysis in model-checking. The key principle of this approach is the
computation of a global invariant as the conjunction of other invariants (components invariants,
interaction invariants, etc.).
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Let S = γ(B1, · · · , Bn) be a system composed of n timed components Bi synchronizing
through the interaction set γ, and let ψ be a property of interest. Assuming that GI(S) is the
global invariant for this system, the verification rule of ψ can be intuitively written as follows:

GI(S) ⇒ ψ

γ(B1, · · · , Bn) |= □ψ

where the notation “γ(B1, · · · , Bn) |= □ψ” is to be read as “ψ holds in every reachable state of
the composition γ(B1, · · · , Bn)”.

Usually when verifying timed systems, the common practice is to verify the system against
some given property (safety property, liveness, deadlock, etc.). These properties allows to assert
that a given model satisfies the specifications. We use satisfiability checking to verify that
the global invariant of a system implies properties of interest. Particularly, for a system S
characterized by the global invariant GI(S), and given a property ψ, we check the unsatisfiability
of GI(S) ∧ ¬ψ.
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In the previous chapter, we presented a timed automata based model for representing
timed systems with multiparty interactions. The semantics of such model is based on the
notion of global states, that is, interactions executions are based not only on the state of
participating components but on the states of all components of the system. Moreover, this
type of model does not provide any details on how an implementation of multiparty interactions
can be derived. Conversely, a distributed system can be seen as a collection of loosely coupled
independent components communicating by explicit messages passing (components state may
be known only through communication). In order to reduce the gap between the model
presented in the previous chapter and its concrete implementation, we propose an intermediate
model more suited for the distributed real-time context, and that is obtained by applying
transformation rules on the first model. The main idea is to explicitly express the ongoing
communication mechanism as well as allowing interactions executions based only on their
participating components. The key concept of this approach is to structure a given system in
two main layers: (1) an application layer that consists of a set of distributed components and
(2) a scheduling layer that is responsible for scheduling the execution of the latter. Additionally,
a third layer may be needed by the scheduling layer in order to achieve global consistency.
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3.1 Target Architecture
In a distributed context, we consider that components communicate through asynchronous
messages passing. Consequently, each component is able either to send a message, to wait for a
notification or to execute an internal computation. Our approach proposes an architecture for
executing multiparty interactions as a two way handshake protocol [Tri15, TBCB15, BBJ+12]
involving asynchronous exchange of messages between distributed components and a second
layer responsible for triggering interactions, the scheduling layer (see Figure 3.1). In order to
evaluate the enabled interactions at a given state, distributed components are required to send
their current local information (e.g. enabled actions, invariants, clock constraints, etc.) to the
scheduling layer using offer messages. As offers are sent asynchronously, the scheduling layer
may not have a global knowledge of the system. In fact, the latter is built from partial (local)
knowledge. Additionally, in order to increase the parallelism the scheduling layer may decide
to execute an interaction once it accumulates enough offers. We require that the exchange of
messages is sender-triggered and not blocking, that is, each time a sender is ready to transmit
the corresponding receiver is ready to receive. The class of models satisfying this restriction are
called Send/Receive models.

TSR
1 CSR RSR TSR

2

Scheduling Layer

o1 n1 o2 n2 o3 n3 o4 n4

o1 n1 o3 n3 o3 n3 o4 n4

Figure 3.1 – High Level Representation of the Target Architecture

Example 3.1.1. Figure 3.1 depicts a high level representation of the timed system 2.3 in
a distributed setting. Components C, T1, T2 and R are transformed into the distributed
components CSR, TSR

1 , TSR
2 and RSR respectively. Each component sends information about

its current state to the scheduling layer through offer messages ({o1, · · · , o4}), and is notified
through notification messages ({n1, · · · , n4}). Triangles (respectively dots) indicates the sender
(respectively the receiver).

3.1.1 Interface

In order to express the message passing mechanism, we introduce the notion of communication
ports. A communication port defines the interface of a distributed components, that is how
it interacts with the rest of the system. For our purpose, we distinguish three types of ports:
send ports, receive ports, and unary ports. A send port is used to export data outside of the
sender when sending offers, whereas a receive port imports data inside the receiver when being
notified. Unary ports correspond to independent execution of a distributed component, which
is formally expressed using a unary interaction (singleton). Effectively, each action of a timed
component as presented in Definition 2.2.1 will correspond to a receive port in a distributed
component, which is responsible for triggering the execution of the underlying action.
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3.1.2 From Local Time to Global Time

In the timed systems model of Chapter 2, every timed component can define a set of local
clocks to be used for expressing clock constraints on transitions or the allowed time progress on
locations, locally. In our intermediate model, we choose to make use of global clocks. In fact, a
global clock measures the absolute time elapsed since the system startup and is never reset.
This approach allows to have a common timescale between the distributed components and the
scheduling layer, which reduces considerably the effort when keeping track of the actual time
progress since one needs to maintain only the global clock(s). Notice that any component clock
x can be derived from the global clock simply by shifting its value by an amount of time that is
constant between successive resets of x. Consequently, achieving the global time mechanism
is done by removing local clocks from individual components and adding global clock(s) to
the scheduling layer. Moreover, given a global clock g and for each local clock x, we include
a variable ρg

x that stores the absolute time of its last reset with respect to g. This variable is
updated each time a transition resetting x is executed. Then, the value of x can be found by
the equality x = g − ρg

x. As a result, any clock constraint c involved in a component can be
expressed using clock g as follows:

c =
∧

x∈X
lx ≤ x ≤ ux =

∧
x∈X

lx + ρg
x ≤ g ≤ ux + ρg

x (3.1)

3.1.3 Conflicting Interactions and Interaction Partitioning

In a distributed context, interaction executions may occur in parallel. However, when two
interactions share at least a component it is impossible to execute both interaction concurrently.
Particularly, if these interactions are enabled from the same state then they are conflicting
since they will compete on the same resources (shared component(s)) at the same time. In
general, conflicts can be very hard to characterize for real life case studies since they depend on
the reachability of particular states. In [Tri15, TBCB15], the computation of the conflicting
interactions relies on over-approximations. It is based on a notion of potential conflicts that
can be detected by simple syntactic pre-checks, as depicted in Figure 3.2, and are used to
quickly exclude conflicts since two interactions that are not potentially conflicting are also not
conflicting.

Definition 3.1.1 (Potential Conflict). Two interactions α1 and α2 are potentially conflicting
if part(α1) ∩ part(α2) ̸= ∅ and for each component Bi ∈ part(α1) ∩ part(α2) there exists two
transitions of Bi e1, e2 ∈ Ei such that source(e1) = source(e2) and action(e1) ∈ α1, action(e2) ∈
α2.

a1 a2

a1 a2 a

α1 α2 α2α1

Figure 3.2 – Potential Conflict Between Interactions α1 and α2
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In order to avoid a centralized scheduling and to introduce concurrency between interaction
executions, we propose to decentralize the scheduling layer into several schedulers each one
responsible of scheduling a subset of interactions. The purpose behind this practice is to (i)
spread the workload across concurrent schedulers and as much as possible independently, and
(ii) map schedulers as close as possible to the components that they concretely handle (with
respect to the corresponding subset of interactions), which brings back the communication
overhead between components to the same magnitude. Our work does not address interaction
partitioning, nonetheless it is a crucial concern for load-balancing and for tuning the system to
achieve a desired level of performance.

Definition 3.1.2 (Interaction Partition). Given an interaction set γ, a partition of γ is a set of
subset {γk}m

k=1 such that γ = γ1 ∪ · · · ∪ γm and ∀i, j ∈ {1, · · · ,m} such that i ̸= j, γi ∩ γj = ∅.

Decentralizing the schedulers generates situational conflict between interactions, that is, if
two interactions handled in separate schedulers (from two class of the interaction partition) are
potentially conflicting, they cannot execute in parallel. We call such interactions, externally
conflicting interactions. A simple solution to resolve such conflicts is to enforce a conflict-free
partitioning of interactions. In spite of that, this solution will restrict the choice for distributing
interactions across schedulers. Thus, another method [BBJ+12, Tri15] is to incorporate a third
layer that will arbiter the execution of potentially conflicting interactions. The latter can be
represented using an additional component realizing a conflict resolution protocol (CRP). This
component implements an algorithm based on the idea of messages counting technique [PCT04].
This technique counts the number of times that a component participates in an interaction.
Conflicts are then resolved by ensuring that each participation number is used only once, which
is achieved by counting the number of the interaction offer for each component. Then, conflicts
are simply resolved by comparing the offer numbers of participating components with the
numbers of their last execution. On the other hand, conflicts raised from interactions of the
same class, that is, handled by the same scheduler, are resolved locally by the latter.

Example 3.1.2. Let us consider example of Figure 2.3. For the interaction set γ = {α1, · · · , α8},
let γ1 = {α2×i−1}4

i=1 ∪ γ2 = {α2×i}4
i=1 be an interaction partition. Then from Definition 3.1.1

the set of potentially conflicting interactions two-by-two is: {(α1, α2); (α3, α4); (α5, α6);
(α7, α8)}. This mean that the set of conflicting interactions of the whole system is γ.

3.2 3-Layer Send/Receive Model

Let S = γ(B1, · · · , Bn) be a timed system. Given a partition of interactions {γk}m
k=1, the

Send/Receive model corresponding to S is based on the three following layers:

• The Distributed Component Layer consists of a transformation of timed components Bi

into Send/Receive components BSR
i that send, asynchronously, offer messages enclosing

their current state to the scheduling layer.

• The Scheduling Layer is responsible of interactions executions. Based on offers received
form the Send/Receive components, it may decide or not to execute an interaction. In
case of conflicts, the scheduling layer relies on the conflict resolution layer to grant or
deny the execution of an interaction.
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• The Conflict Resolution Layer resolves conflicts between externally conflicting interactions
based on messages counting technique.

TSR
1 CSR RSR TSR

2

Sch1{α1, α3, α5, α7} Sch2{α2, α4, α6, α8}

Conflict Resolution

o1 n1 o2 n2 o3 n3 o4 n4

o1 n1 o2 n2 o3 n3

ok1 fail1 req1

ok1 fail1 req1

o2 n2 o3 n3 o4 n4

ok2 fail2 res2

ok2 fail2 res2

Figure 3.3 – High Level Representation of a Decentralized Send-Receive Model of the Task
Manager Example

Example 3.2.1. Figure 3.3 describes a Send/Receive model of the Task Manager system
with a decentralized scheduling. The set of interactions is partitioned into two classes γ1 =
{α1, α3, α5, α7} and γ2 = {α2, α4, α6, α8}, each one handled by a scheduler (Sch1 and Sch2
respectively). Since γ1 and γ2 are conflicting (interactions of γ1 are conflicting with interactions
of γ2), for instance α1 and α2 are potentially conflicting, schedulers rely on the conflict resolution
layer to resolve the conflicts. In this case, they emit a request (reqk with k ∈ {1, 2}) and wait
for a notification granting (respectively denying) them the execution of an interaction (okk

respectively failk). Notice that components CSR and RSR send offers to both schedulers since
they are participating in interactions handled in both schedulers.

3.2.1 Send/Receive Components

The transformation of a timed component B into a Send/Receive component BSR relies on
decomposing each transition of B into two transitions: (1) an offer (send) transition and (2) a
notification (receive) transition. This is done by splitting each location ℓ into two locations, ℓ
itself and ℓ⊥ as shown in Figure 3.4.

When at ℓ⊥ location, the Send/Receive component is not in a “stable” state, that is, it is
able only to send an offer to its respective scheduler(s). We require that offers are sent as soon
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ℓx ≤ 4

ab

ℓ⊥

ℓx ≤ 4

o

ab

Figure 3.4 – Offer Construction

as possible meaning that there is no delay when at location ℓ⊥. We call such location urgent
location, graphically represented by a ⌣ inside the location. From a semantics point of view,
an urgent location is equivalent to adding an extra clock x that is reset on all incoming edges,
and having an invariant x ≤ 0 on the location as illustrated in Figure 3.5. Thus, time is not
allowed to pass when the system is in such locations. An offer contains the exact variables
encoding the current state of a component. It includes the following variables:

• An invariant variable of the current location invariant

• A guard variable for each action (port) that is set to the guard (over clocks and data) of
each transition outgoing from the current location and labeled by this port if it exists,
otherwise to false

• A Boolean variable for each clock indicating whether the corresponding clock was reset
by the last transition or not

• A participation number variable used for conflict resolution

ℓ1

ℓ2x ≤ 0

a
x := 0

ℓ1

ℓ2

a

Figure 3.5 – Representation of an Urgent Locatoion

Definition 3.2.1 (Send/Receive Component). Let B = (L, ℓ0,X ,D,A, E , {fe}e∈E , I) be a
timed component. The corresponding Send/Receive component is defined by the timed
component BSR = (LSR, ℓSR

0 , ∅,DSR,PSR, ESR, {fe}e∈ESR , ∅), such that:

• LSR = L ∪ L⊥, where L⊥ = {ℓ⊥|ℓ ∈ L}. Locations of L⊥ are urgent locations.
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• ℓSR
0 = ℓ0⊥ ∈ L⊥ is the initial location.

• PSR = P ∪ {o}, where P = {pa|a ∈ A} is the set of ports for each action of B and o is
the offer port.

• DSR = D ∪ {gpa}a∈A ∪ {invB} ∪ {rx}x∈X ∪ {nB}, where gpa are guard variables, invB is
an invariant variable, rx are Boolean reset variables and nB is a participation number
variable. Variables DSR

o ⊂ DSR = {gpa}a∈A ∪ {i}B ∪ {nB} ∪ {rx}x∈X are exported by the
offer port.

• For each place ℓ ∈ L, we include an offer transition eℓ = (ℓ⊥, o, true, ∅, ℓ) in ESR

• For each transition e = (ℓ, a, g, r, ℓ′) ∈ E , we include a notification transition epa =
(ℓ, pa, true, ∅, ℓ′⊥). The transfer function fepa

applies the original transfer function fe of
e, then update guard variables, invariant variable, reset variables and the participation
number as follows:

– ∀a′ ∈ A, gpa′ :=
{
ga′ if e′ = (ℓ′, a′, ga′ , r′, ℓ′′) ∈ E
false otherwise

– invB := I(ℓ′)

– ∀x ∈ X , rx :=
{

true if x ∈ r

false otherwise

– nB := nB + 1

This definition of a Send/Receive component relates the execution of a transition e =
(ℓ, a, g, r, ℓ′) ∈ E from the initial component B to the following two execution steps in BSR.
First, an offer transition eℓ = (ℓ⊥, o, true, ∅, ℓ) sends for each port p ∈ P the guard over
clocks and data corresponding to the enabledness of p at ℓ, the location invariant invB, the
participation number nB for component B, as well as the reset variable rx for each clock
x ∈ X , such that, rx = true, if x has been reset by the previous transition execution. Reset
variables rx are used to update values of clocks in the Scheduling layer before computing guard
of interactions. In the second place, a notification transition epa = (ℓ, pa, true, ∅, ℓ′⊥) is executed
upon the execution of an interaction involving pa in the scheduling layer. In the same manner
to e in B, epa updates values of variables D according to to the transfer function fe, as well as
variables needed for the next offer. Figure 3.6 depicts the Send/Receive transformation of the
component C of Example 2.3.

3.2.2 Scheduling Layer

As explained earlier, the scheduling layer works with a partial view of the global state of the
system. Initially, every scheduler is waiting for offers form the corresponding components (with
respect to the interaction partition). Each received offer specifies to the schedulers the state
of the sender component. In what follows, we consider schedulers preserving the execution
sequences of the initial model under the standard semantics. For the sake of distributed
implementation, it is worth taking a decision as soon as possible. Thus, once a scheduler gathers
enough information for scheduling interactions, it arbitrarily choose one and executes the
corresponding transitions that will trigger the notification responses to the components involved
in that interaction. In what follows, we use Petri nets [Mur89] to describe the scheduling
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Figure 3.6 – Send/Receive Transformation of the Controller Component From Figure 2.3

layer. Petri nets are a well suited formalism for encoding parallel and concurrent executions.
Particularly, we focus on a class of Petri nets (1-Safe) to encode the structure of the schedulers
introduced by our method since they provide clear and compact representations. Note that any
1-Safe Petri net can be transformed in an equivalent automaton [DS02].

Petri Nets

Definition 3.2.2 (Petri Net). A Petri net is a 3-tuple P = (L,A, T ) where L is a set of finite
places, A is a finite set of actions, and T ⊆ 2L × A × 2L is a set of transitions. A transition τ
is a triple (•τ, a, τ•), where •τ is the set of input places of τ and τ• is the set of output places
of τ .

A Petri net can be represented as a directed bipartite graph G = (V, E) where V denotes the
set of vertices and E denotes the set of directed edges. The set of vertices is structured into two
classes, namely places and transitions, that is, V = L ∪ T . Places are represented by circular
vertices and transitions are represented by rectangular vertices as shown in Figure 3.7. The set
of directed edges E is the union of the sets {(ℓ, τ) ∈ L × T |ℓ ∈ •τ} and {(τ, ℓ) ∈ T × L|ℓ ∈ τ•}.
A marking of a Petri net is a mapping m : L → N that describes the current state of a Petri net
by assigning a non-negative integer to each of its places. We use tokens [Mur89] to represent
the marking (number of tokens). We say that a place is marked if it contains at least one token.
For a transition τ , we say that τ is enabled at a given state if all of its input places •τ are
marked, that is, ∀ℓ ∈ •τ , m(ℓ) > 0. A firing (execution) of an enabled transition removes one
token from each input place and adds one token to each output place. Formally, the firing of a
transition from a marking m results in a marking m′ such that:

∀ℓ ∈ L, m′(ℓ) = m(ℓ) − τ−(ℓ) + τ+(ℓ)

where

τ−(ℓ) =
{

1 if ℓ ∈ •τ

0 otherwise
and τ+(ℓ) =

{
1 if ℓ ∈ τ•

0 otherwise

We put m a−→P m′ to denote that a transition τ = (•τ , a, τ•) can be executed at marking m
and reaches marking m′. We also denote by −→P the set of triples (m, a,m′) such that m a−→P m′.
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Figure 3.7 – A Simple Petri Net with Two Succesive Markins

Example 3.2.2. Figure 3.7 depicts an example of a Petri net with two successive markings.
It includes three places {ℓ1, · · · , ℓ3} and four transitions {t1, · · · , t4}. For clarity, places with
tokens are represented with filled gray circles (blue = zero tokens, gray = one token). The left
side marking shows the initial marking of the Petri net whereas the right side marking results
from the execution of transition t1.

Given a Petri net P = (L,A, T ) and an initial marking m0, the marking m is reachable if
there exists a sequence of transitions m0

a1−→P m1
a1−→P · · · a1−→P m. We say that P is 1-Safe

if there is at most one token per place in each reachable marking. This implies at most 2|L|

markings. In this thesis, we consider only this class of Petri nets. The behavior of a 1-Safe Petri
net P = (L,A, T ) is defined by the finite labeled transition system (2L,A,→P), where 2L is
the set of states, A is the set of actions, and →P⊆ 2L × A × 2L is the set of transitions defined
as follows. We have (m, a,m′) ∈→P , denoted by m a−→P m′, if there exists τ = (•τ , a, τ•) ∈ T
such that •τ ⊆ m and m′ = (m\•τ) ∪ τ•. In this case, we say that a is enabled at m.

Building Schedulers

Given a timed system γ(B1, · · · , Bn) and a partition of interactions {γj}m
j=1, each class of the

interaction partition is handled by a single scheduler component, namely Schj . The behavior
of each scheduler is described as a 1-Safe Petri net in which there is a token for each component
flowing between three or four different types of places as shown in Figure 4.3:

• Waiting place: For each component participating in an interaction handled by a scheduler,
the corresponding scheduler include a waiting place signifying that it is waiting for the
component offer. Waiting places are labeled by w.

• Receive place: When receiving an offer from a component, the corresponding token is
moved from the corresponding waiting place to the receive place (one received place per
component) and stays there until an interaction including this component is scheduled or
requested for scheduling (through the conflict resolution layer). Receive places are labeled
by r.

• Try place: Try places (labeled by t) concern only components that are participating in an
interaction that is externally conflicting with another interaction (of another scheduler).
As explained in Subsection 3.1.3, schedulers rely on the conflict resolution layer to resolve
conflicts. For each externally conflicting interaction, a try place is inserted. When
scheduling such interactions, tokens are moved from receive places of components to try
place of that interaction, meaning that a request has been sent to the CRP. Following
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Figure 3.8 – Scheduling Mechanism

this request, the CRP either grants the execution of the interaction and the tokens are
moved to the sending places, or denies the execution which results in moving the tokens
back to the receive places. Moreover, loops for offer transitions are added on try places
and receive places in order to accept new offers sent by the components if executed as
part of an externally conflicting interaction.

• Sending place: Once an interaction has been scheduled for execution, the corresponding
components tokens are moved from receive places (or try place) to send places correspond-
ing to ports of components participating in that interaction. There is one send place for
each port (excluding offer port) for every Send/Receive component. Sending places are
labeled by s.

As illustrated in Figure 4.3, tokens are initially in waiting places. Once an offer is received by a
scheduler, the corresponding token moves to the receive place. The scheduler copies then the
values of the offer variables to its local variables. Once offers of all components involved in an
interaction have been gathered, schedulers computes its guard. If the guard evaluates to true,
with respect to data variables and the global scheduler clock, the scheduler can either execute
the interaction if it is not externally conflicting with another interaction (Figure 3.8a). Tokens
are then moved to send places of components ports participating in that interaction. Otherwise
(Figure 3.8b), a request is sent to the CRP and the token is moved to the corresponding
try place. Thereafter, either the CRP grants the execution of the interaction and tokens are
moved to send places, or the execution is denied and tokens are moved back to receive places.
Possibly, the scheduler may receive new offers when being in try places. This corresponds to
the execution of a conflicting interaction in another scheduler.

Definition 3.2.3 (Scheduler). Let γ(B1, · · · , Bn) be a timed system and γj ⊂ γ be a subset
of interactions. The corresponding scheduler Schj responsible for executing interactions of γj

is defined by the tuple Schj = (Lj ,Pj , Tj ,Xj ,Dj , {gτ }τ∈Tj , {rτ }τ∈Tj , {fτ }τ∈Tj , {Iℓ}ℓ∈Lj
), where

(Lj ,Pj , Tj) is a 1-Safe Petri net defining the structure of the scheduler such that:
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• Xj = {tj}∪{zj} is the set of clocks of Schj , where tj is the global clock used for scheduling
interactions of γj (it is never reset) and zj is a clock used for enforcing urgent behavior.

• Dj is the set of variables containing:

– Variables updated whenever an offer from a component Bi participating in interac-
tions of γj is received. These variables consist of: an invariant variable invBi and
a participation number nBi for each Bi, a guard variable gpa for each action of Bi

involved in an interaction of γj , and a Boolean reset variable for each clock of Bi.
– Reset time variables that stores the absolute time of the last reset of each component

clocks. For each clock x of Bi we include a reset time variable ρx.

• For each transition τ ∈ Tj , gτ is a guard over Xj and Dj .

• For each transition τ ∈ Tj , rτ is a reset function over Xj .

• For each transition τ ∈ Tj , fτ is a transfer function over Dj .

• For each place ℓ ∈ Lj , Iℓ is an invariant over Xj .

• The 1-Safe Petri net (Lj ,Pj , Tj) is structured as follows:

– Lj is the set of places. It includes four types of places:
∗ For each component Bi involved in interactions of γj , we include a waiting place
wj

i , a receive place rj
i , where I

wj
i

= true and I
rj

i
is the invariant invBi expressed

on tj .
∗ For each action a involved in interactions of γj , we include a sending place spa ,

where Ispa
= zj ≤ 0.

∗ For each interaction α ∈ γj that is externally conflicting with another interaction,
we include a try place tα with Itα is the invariant invBi expressed on tj .

– Pj is the set of ports. It includes the following ports:
∗ For each component Bi involved in interactions of γj , we include a receive port
oj

i . Each port oj
i is associated with the variables gpa and rx for each action,

respectively clock, of Bi, as well as the variables invBi and ni.
∗ For each action a involved in interactions of γj , we include a send port pa.
∗ For each interaction α ∈ γj that is externally conflicting with another interaction,

we include a send port rsvα (reservation port), and receive ports okα (granted
execution) and failα (denied execution). The port rsvα exports the variables
{ni}Bi∈part(α).

∗ For each interaction α ∈ γj that is internally or not conflicting with other
interactions of γj , we include the unary port α.

– Tj is the set of transitions. It consists of the following:
∗ For each component Bi, Tj includes the offer transitions (wj

i , oi, r
j
i ), (rj

i , oi, r
j
i )

and {(tα, oi, tα)|Bi ∈ part(α)} where α is an externally conflicting interaction.
The execution of offer transitions copy the variables attached to components offer
to its local variables. Offer transitions have no guards and no reset functions.
Their transfer functions update reset time variables ρx whenever rx = true, that
is, ρx := tj .
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∗ For each action a involved in interactions of γj , Tj includes a transition (spa , pa, w
j
i )

where i is the index of the component containing a. This transition notifies the
corresponding Send/Receive component to execute the transition labeled by pa.
It has no guard, no reset function, and no transfer function.

∗ For each interaction α = {ai}i∈I ∈ γj , that is internally conflicting or not con-
flicting with interactions of γj , Tj includes the transition τα = ({rj

i }Bi∈part(α), α,
{spai

}ai∈α). The guard of this transition is gτα =
∧

ai∈α gpai
. Notice that guards

over data are the same, whereas guard of clocks are expressed using the global
clock tj and the reset time variables ρx. This transition has no transfer function
and its reset function resets the clock zj .

∗ For each interaction α = {ai}i∈I ∈ γj , that is externally conflicting, Tj includes
the following transitions:
· τrsvα = ({rj

i }Bi∈part(α), rsvα, tα). The guard of this transition is gτrsvα
=∧

ai∈α gpai
.

· τokα = (tα, okα, {spai
}ai∈α). This transition has no guard, no transfer func-

tion, and its reset function is rτokα
= {zj := 0}.

· τfailα = (tα, failα, {spai
}ai∈α). This transition has no guard, no reset func-

tion, and no transfer function.

Example 3.2.3. Figure 4.3 depicts the internal representation of scheduler Sch1 from Figure
3.3. The scheduler Sch1 is responsible of the interaction class γ1 = {α1, α3, α5, α7}, that is, he
is responsible of notifying components C, T1 and R whose indexes are respectively 1, 2 and
4. Notice that since every interaction of γ1 is potentially conflicting with an interaction of γ2
handled by scheduler Sch2, scheduling interactions of γ1 requires the intervention of the conflict
resolution layer.

Notice that Definition 3.2.3 presents only the syntax of a scheduler. It uses the Petri net
formalism only for compactness purposes and is not to be confused with any other Petri Net
formalism such as Time Petri Nets or Timed Petri nets.

Property 3.2.1 (Scheduler Semantics). Let Sch = (L,P, T ,X ,D, {gτ }τ∈T , {rτ }τ∈T , {fτ }τ∈E ,
{Iℓ}ℓ∈L) be a tuple defining a scheduler. Let (2L,P,→P) be the finite labeled transition system
of its underlying 1-Safe Petri net. The semantics of the scheduler Sch is equivalent to the
semantics of the timed component (2L, ℓ0,X ,D,P, E , {fe}e∈T , I) such that:

• ℓ0 = ⊗ℓ∈L|ℓ∈m0ℓ, where m0 is the initial marking of the Petri net (L,P, T ).

• For each (m1, p,m2) ∈→P we include a transition e ∈ E = (ℓ1, p, gp, r, ℓ2) such that:

– ℓ1 = ⊗ℓ∈L|ℓ∈m1ℓ and ℓ2 = ⊗ℓ∈L|ℓ∈m2ℓ. The invariant of ℓ1 and ℓ2 are respectively
I(ℓ1) =

∧
ℓ∈m1|m1(ℓ)=1 Iℓ and I(ℓ1) =

∧
ℓ∈m2|m2(ℓ)=1 Iℓ.

– gp = gτ , fe = fτ , and r = rτ where τ = (•τ , p, τ•) ∈ T such that •τ ⊆ m and
m′ = (m\•τ) ∪ τ•.

3.2.3 Conflict Reservation Protocol

In this subsection, we present the third layer of our Send/Receive architecture, namely the
conflict resolution layer. The purpose of this layer is to resolve the conflict that occur between in-
teractions of separate schedulers at run time. Since interactions may compete on resources (here
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Figure 3.9 – Internal Representation of Scheduler Sch1 from Figure 3.3

sharing components), the conflict resolution layer implements a protocol, inspired from [PCT04]
and based on messages counting technique, that allows to check the freshness of requests
received for the execution of an interaction from schedulers. It ensures that two externally
conflicting interactions cannot execute with the same offers by checking that the participation
numbers of the involved components have not been yet consumed. Particularly, the protocol
keeps the last participation number of each component and compares it with the participation
number from the reservation request of a scheduler and thereafter, decides whether to grant a
scheduler or not the execution of an interaction.

There exists several implementations of the conflict resolution protocol [Bag89]. We present
here only one variant since our interest is not in studying the conflict resolution layer. It is
centralized variant based on Bagrodia’s protocol.

Definition 3.2.4 (Conflict Resolution Protocol). Let γ(B1, · · · , Bn) be a timed system and
{γj}m

j=1 be an interaction partition. The corresponding centralized conflict resolution protocol
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component is defined by the timed component CP = (LCP , ℓCP
0 , ∅,DCP ,PCP , ECP , {fe}e∈ECP , ∅)

such that:

• LCP contains for each externally conflicting interaction α a waiting location wα and a
receive location rα. Receive locations are urgent locations.

• DCP includes for each component Bi participating in conflicting interactions α its current
participation number nα

i as well as the last participation number Ni.

• PCP includes for each externally conflicting interaction a reservation port rsvα, okα and
failα. The port rsvα imports the variables {nα

i |Bi ∈ part(α)}.

• ECP includes for each externally conflicting interaction α the following transitions:

– A reservation transition ersvα = (wα, rsvα, true, ∅, rα)
– A transition granting the execution of α, eokα = (rα, okα, gokα , ∅, wα) such that,
gokα =

∧
Bi∈part(α) n

α
i > Ni and feokα

= {∀Bi ∈ part(α), Ni := nα
i }.

– A transition denying the execution efailα = (rα, failα, true, ∅, wα)
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Figure 3.10 – Sub-Part of the Timed Component for the Centralized CRP of Figure 3.3
Handeling Interactions of γ1

In what follows, we present the Send/Receive interactions that link the three layer of the
presented Send/Receive model.
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Definition 3.2.5 (Send/Receive Interactions). Let γ(B1, · · · , Bn) be a timed system and
{γj}m

j=1 be an interaction partition. The Send/Receive interactions γSR connecting the three
layers of the Send/Receive models are:

• For each component BSR
i , we include an offer interaction involving BSR

i and its respective
schedulers {BSR

i .o, Schj1 .oi, · · · , Schjk
.oi}.

• For each port p of a component BSR
i and for each scheduler Schj handling an interaction

involving p, we include a notification interaction {BSR
i .p, Schj .p}.

• For each internally conflicting or not interaction α ∈ γ handled by a scheduler Schj , we
include the unary interaction {Schj .a}.

• For each externally conflicting interaction α ∈ γ, we include the following interactions:

– {Schj .rsvα, CP.rsvα}

– {Schj .okα, CP.okα}

– {Schj .failα, CP.failα}

The correctness of the Send/Receive transformation is proved using observational equivalence,
that is, weak bisimulation.

Theorem 3.2.1 (Correctness [Tri15]). T ∼̇T SR.

The correctness of the presented approach is necessary to attest that both the initial and
resulting systems have the same behavior. Nonetheless, the proof of correctness has already
been established and its details are not relevant to the content of this thesis. The interested
reader can find all the steps of the proof in Chapter 5 of [Tri15].

3.3 Modeling Distributed Real-Time Constraints

Distributed real-time systems are prone to different kind of problems. The immediate concern
is the communication delays inherent to distributed platforms. The latter increase considerably
the effort of coordinating the parallel activities of running components. Thus, scheduling such
systems must cope with the induced delays by proposing execution strategies ensuring global
consistency while satisfying the imposed timing constraints. Another phenomenon intrinsic
to distributed platforms is clock drift. A clock is a device that consists of a counter that is
incremented periodically according to the frequency of an oscillator. This implies that clocks are
not perfect since the oscillator frequencies may vary during their lifetime due to several factors
such as aging, temperature, humidity, etc. Consequently, clocks trend to drift or gradually
desynchronize from a given reference time. Moreover, when having multiple clocks running
in the same system, which is usually the case in distributed real-time systems, the relative
clock drift between these clocks may result in an unexpected (even undesirable) behavior. The
common practice is to resynchronize the clocks [BBB+12] (internally or externally) in order to
bring the difference to a certain threshold to minimize the impact of this phenomenon.
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3.3.1 Communication Delays

The Send/Receive model as presented in Section 3.2 assumes implicitly that communication
between the different layers is timeless. This restricts the applicability of such approach to
applications where communication delays imposed by the target platform can be neglected
with respect to timing constraints of components. To cope with those delays, a variant of
the Send/Receive approach was presented in [Tri15]. It is based on an early decision making
mechanism where schedulers plan interactions executions ahead and notify components of their
execution dates in advance. The main issue of this method is that when planning components to
execute at a given time, all the interaction including the planned components will be ineligible
for execution (and even for planning). This may block additional components besides the ones
planned for execution, which may introduce deadlocks and/or violations of timing constraints.
To overcome this problem, this adaptation of the Send/Receive models suggests that each
scheduler, additionally to the components it is handling, observe a subset of components
that may be blocked when scheduling interactions. However, because of the nature of the
location invariants (local constraints that propagate on the global level), this technique results
in observing all the components of the system, instead of only a subset as presented in [Tri15].

In order to model the behavior of a system under some communication delays, we introduce
the local planning semantics. This semantics aims to distinguish between the decision dates
for executing interactions and their actual execution dates by adding a notion of planning on
the semantics level. The delay between the planning of an interaction and its execution has to
be greater than the parameter hmin which represents an upper bound on the communication
delays (i.e worst case delay). Although this approach is based on the same idea of anticipating
the executions of interactions, it differs from the approach of [Tri15] in the following points:

• The class of system handled by the method of [Tri15] is restricted to timed components
with closed guards, that is, where clock constraints are of the form:

c := true | x ≤ k | x ≥ k

where x is a clock and k ∈ Z≥0. Moreover, this method is restricted to timed components
with non-decreasing deadlines. In other words, if time can progress by d from a given
state (ℓ, υ) of a component, it can also progress by d from any state (ℓ′, υ′) reached by
executing an action a from state (ℓ, υ). Our approach on the other hand, imposes only
that the system is free of modelling errors such as deadlocks or timelocks.

• Our approach works on the semantics level whereas the method of [Tri15] is based
on transformations and model constructions. The main advantage of working on the
semantics level is that it allows to stay at certain level of abstraction, close enough to the
original model, which reduce considerably the chance of errors during the formalization.
Furthermore, one can still imagine a Send/Receive like transformation that implements
this semantics.

• Unlike the standard semantics of timed system, the local planning semantics is based on
a local view of the system which is more suited for the distributed context.

Chapter 5 presents a detailed description of the local planning semantics, its properties and
relations with the standard semantics of timed systems. It also provides sufficient conditions
that guarantee the correctness (in terms of behaviour) of a given application under some
bounded communication delays.
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3.3.2 Clock Drift

Reachability analysis has been used to test the behavior of timed automata models against some
desired properties. However, such analysis techniques whether region-based or zone-based can
be incorrect and misleading, since they rely on several assumptions such as zero response times
or infinitesimally precise clocks, which is generally not the case in reality. In practice, clocks
are implemented using an oscillator and a counting register, and their precision based on the
quality of the oscillator together with the operating environment. The common practice when
studying the effect of clock imperfections is to define a perturbation model that approximates
the behavior of a given model under clock drifts in order to study its robustness.

Robust reachability has been introduced to check whether a given system still satisfies
the specification when subject to different perturbations such as clocks drift. In [Pur00], Puri
introduced a model of clock drift for closed timed automata by introducing a parameter ϵ > 0
that bounds the clocks drift rates. This work showed that the standard reachability analysis
approach is not correct when clocks drift, even by infinitesimally small amount, and subsequently
suggested a region based method for calculating Reach∗(S), the set of reachable states for every
drift (the limit as ϵ → 0), that is, Reach∗(S) = ∩ϵ>0Reach(Sϵ). Other works [DK06, Dim07]
proposed a zone based algorithm for computing this reach-set more efficiently, and generalized
the approach for open timed automata model [Dim07].

In [WDMR04, Pur00], another perturbation model was considered. Here, the system
model is syntactically modified by relaxing the guards through a parametric enlargement of
δ. Dewulf [WDMR04] showed that the notion of robustness defined in [Pur00], and studied
in other works [DK06, Dim07], is closely related to the notion of implementability introduced
in [WDMR04], that is, whether for some δ > 0, the enlarged system model still satisfies the
requirements expressed by the considered properties. This allowed to prove that the considered
notion of implementability is decidable for timed automata.

Finally, [SFK08] consider a more realistic model of drifting clocks by considering clock
resynchronization, available now in most distributed real-time systems. It was proven that
standard zone-based reachability analysis is exact when testing robust safety, provided a uniform
strictly positive robustness margin of 1.

In Chapter 6, we present a timed automata based model for distributed real-time systems
where the relative drift between clocks is assumed to be bounded (clocks are assumed to
be resynchronized with a certain threshold). The resulting timed transition system includes
straightforwardly more states than the initial model. We then give interesting properties of
the drifted model and provide a strategy that allows, for any resulting execution trace, to stay
close enough to a “similar” trace of the initial model.





Part II

Contribution

This part includes our contributions to the field of modeling and validation of distributed real-
time systems. First, Chapter 4 proposes a knowledge based optimization of the Send/Receive
transformation. It aims at reducing the interactions between the scheduling layer and the
conflict resolution layer through a reduction of the potentially conflicting interactions set.
Thereafter, Chapter 5 and 6 study the behavior of a given model when subject to constraints
inherent to the distributed context. Chapter 5 tackles the problem of communication delays
by proposing a strategy based on anticipating the execution of components beforehand. It
provides sufficient conditions that allow to check whether a given system is robust or not (in the
sense not guaranteed) to communication delays. We also propose an alternative method based
on real-time controller synthesis and explain how it differs from our approach. In the same
way, Chapter 6 investigates the clock drift problem and proposes a strategy that ensures that
executions of the drifted system stay close enough from executions of the model with perfect
clocks.
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Knowledge Based Optimization of
Distributed Real-Time Systems
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4.1 Conflicting Interaction Calculation
As explained in Subsection 3.1.3, two interactions α1 and α2 sharing a subset of components
cannot execute concurrently. In fact, if these interactions are enabled from the same state they
are conflicting, meaning that they are competing on the same resources (shared components)
and only one interaction will be granted the execution and not the other. Particularly, given a
timed system γ(B1, · · · , Bn) and an interaction partition {γj}m

j=1 (Definition 3.1.2 of Chapter 3),
if such interactions are part of two different classes of the interaction partition (externally
conflicting interactions), then the resulting Send/Receive model requires the intervention
of the conflict resolution layer to resolve the conflict situation. The computation of the
conflicting interactions set is based on syntactic pre-checks (Definition 3.1.1), that is, it is
an over-approximation that in some cases induces an unnecessary conflict resolution. The
calculation of the conflicting interactions set highly impacts the structure and the performance
of the underlying Send/Receive model. For every interaction that is in fact not conflicting,
the corresponding scheduler includes an additional place and three transitions involved in
the Send/Receive interactions involving the conflict resolution layer. In this case, executing
an interaction adds not only an evaluation overhead, but also latency resulting from the
communication delays between the two layers. In order to refine the conflicting interactions set,
we rely on the following definition of conflicts.

Definition 4.1.1 (Conflicting Interactions). Let S = γ(B1, . . . , Bn) be a timed system. Two
interactions α1 and α2 of γ are conflicting, and we write α1#α2, if part(α1) ∩ part(α2) ̸= ∅ and
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there exists a reachable state from which both α1 and α2 are enabled, i.e., a state satisfying:

Conflict(S, α, β) = Reach(S) ∧ Enabled(α1) ∧ Enabled(α2) (4.1)

where Reach(S) is the set of reachable states of the S.

The above definition of conflicts characterizes the exact set of conflicting interactions.
Especially, it considers that two interactions are not conflicting if the whole system cannot
reach a state from which both can potentially execute. Clearly, such interactions do not require
conflict resolution as they cannot be scheduled based on common offers. In what follows, we
propose an approach that aims to reduce the set of potential conflicts. In fact instead of
calculating the exact set of reachable states of a given system, we use static analysis techniques
to extract a knowledge that represents an over approximation of the reachable states of the
system on the form of invariants.

4.2 Knowledge Based Reduction of Potentially Conflicting In-
teraction

Knowledge as referred to it here can be interpreted as any information that gives a characteri-
zation of a given system. We distinguish two types of knowledge: local knowledge that captures
partial information of a system at components level, and a global knowledge that builds upon
local knowledge and takes into account components synchronizations. Our approach includes
two main steps: the first step (i) consists of constructing the set of potentially conflicting
interactions based on Definition 3.1.1. This step aims mainly to distinguish non conflicting
interactions from those that can potentially conflict in order to avoid unnecessary checks during
the second step. Then, the second step (ii) computes then combines local and global knowledge
of the system on the form of invariants. The latter will represents an over-approximation of the
reachable state of the system. After that, by replacing Reach(S) by its over-approximation
Reach(S)
∼

in Expression 4.1, potentially conflicting interactions are reduced by checking the
following precondition:

Conflict(S, α1, α2)
∼

= Reach(S)
∼

∧ Enabled(α1) ∧ Enabled(α2) (4.2)

Notice that since Reach(S) ⇒ Reach(S)
∼

, we obtain that Conflict(S, α1, α2) ⇒
Conflict(S, α1, α2)
∼

. Thus, if two interactions are established to be conflicting according to 4.2,
then they are conflicting according to 4.1. Hereinafter, false conflicts refers to potential conflicts
as defined in Definition 3.1.1 but that are not conflicts with respect to Definition 4.1.1.

A potential conflict between two interactions is a false conflict either: (i) because the system
cannot reach a global location configuration enabling both interactions, or (ii) because both
interactions are not enabled at the same time due to timing constraints. In the following, we
show how to compute invariants for removing false conflicts of types (i) and (ii). These invariants
combined with individual reachable states of components will represent our over-approximation
of Reach(S).
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4.2.1 Linear Invariants

Linear invariants consist of linear constraints that allow to reason on complex properties. For
instance, they can be used to count how many processes are at a given state of a concurrent
system. Such invariants have been widely used in different domain. Particularly, we are
interested in the so called linear state-invariants [Mur89, KJ86, SSM03] from the Petri net
community. Linear state-invariants or (S-invariants) are determined to be appropriate for
proving non-coverage of subsets of individual locations, which corresponds exactly to what is
needed to prove that two interactions cannot be enabled from the same location configuration.
Precisely, linear invariants consist of linear equations of predicates at(ℓ) interpreted as integer
values using the convention 1 for true and 0 for false. For instance at(ℓ0) + at(ℓ1) + at(ℓ2) = 1 is
a linear constraint for the Petri net of Figure 3.7 expressing the presence of on token circulating
between places ℓ0, ℓ1 and ℓ2.

Locations configurations reachable in a composition S = γ(B1, . . . , Bn) are necessary
combinations of reachable locations of individual components Bi. However, in general not all
combinations are reachable in S since components are not fully independent as they synchronize
through interactions. A typical example of that is a shared resource used in mutual exclusion
by a set of components: any of them can potentially use it, but they should coordinate so
that states in which two (or more) components use the resource are not reachable. Another
illustration of this can be found in example of Figure 2.3: components T1 (resp. T2) may reach
location ℓ21 (resp. ℓ31) by executing action init1 (resp. init2), but in the composition T1 and T2
cannot be simultaneously at locations ℓ21 and ℓ31. This is due to interactions α1 = {init0, init1}
and α2 = {init0, init2} with component C: executing α1 disables α2, and vice versa. That is,
the potential conflict between interactions α3 and α4 can be excluded if we consider reachable
locations of the composed system.

Definition 4.2.1 (Linear Invariant). Let S = γ(B1, . . . , Bn) be a timed system and L =⋃
1≤i≤n Li being all components locations, with Li the set of locations of Bi. A linear invariant

of S is a linear equality constraint which holds in all reachable global state of S. It is of the
form: ∑

ℓ∈L
uℓ · at(ℓ) = u0,

where uℓ, and u0 are integers, in which predicates at(ℓ), ℓ ∈ L, are interpreted as 0 for false
and 1 for true.

To compute linear invariants for a timed system S = γ(B1, . . . , Bn), we consider its untimed
version S̃ abstracting all data and timing aspects of S (i.e. obtained from S by relaxing
guards and location invariants of components). Note that linear invariants for S̃ are also linear
invariants for S, since reachable locations of S are necessary included in reachable locations of
S̃. Methods for calculating linear invariants are based on linear algebra, and more precisely on
the characteristic system [KJ86] (also known by the place-transition matrix in the Petri nets
community). It consists of a system of linear equations representing the interactions of a given
system.

Definition 4.2.2 (Characteristic System). For a timed system S = γ(B1, · · · , Bn) and L =
L1 × · · · × Ln, the set of all global location configuration. The characteristic system is defined
as follows:

M(S) ≡
∧

α∈γ

∧
ℓ∈Lα

( ∑
ℓi∈α•

xℓi
−

∑
ℓj∈•α

xℓj

)
= 0
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where Lα is the subset of locations configurations from which α is possible, and α•, •α denotes
respectively the destinations and sources locations of components actions involved in α.

Example 4.2.1. The characteristic system for Example 2.2.3 following the enumeration of all
interactions of γ is:

M(S) =



xℓ1
1

− xℓ1
0
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1

− xℓ2
0

= 0
xℓ1

1
− xℓ1

0
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0
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1
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The common techniques for solving homogeneous systems A.x = 0 are the Guass-Jordan
elimination, Cholesky-, QR- or LU-factorization. These algorithms have low polynomial
complexity and can be directly applied to solve the characteristic system M(S). In order to
obtain the linear invariants of a given system, we use the algorithm proposed in [BBBL13]. It
is a variant of Gauss-Jordan elimination that exploits the locality of unknowns as well as the
particular form of the characteristic system equations. Equations are processed iteratively, one
by one, while producing an equivalent left-bound system.

Let LI(S) be the linear invariants characterizing a given system S. A potential conflict
between interactions α1 and α2 is a false conflict if the following formula is not satisfiable:∧

1≤i≤n

Reach(Bi) ∧ LI(S) ∧ Enabled(α1) ∧ Enabled(α2) (4.3)

where Reach(Bi) denots the reachable states of component Bi.

Example 4.2.2. Let us reconsider the example of Figure 2.3. Among the resulting linear
invariants, we focus on the following:{

1 · at(ℓ21) + 1 · at(ℓ31) − 1 · at(ℓ11) = 0 (4.4)
1 · at(ℓ23) + 1 · at(ℓ33) − 1 · at(ℓ41) = 0. (4.5)

We deduce from the invariant (4.4) that at(ℓ21) and at(ℓ31) cannot be true simultaneously, that is,
components T1 and T2 cannot be simultaneously at the corresponding locations. Consequently,
we can directly infer that interactions α3 and α4 are not conflicting, even though they are
potentially conflicting. Likewise, with (4.5) we exclude the conflict between α7 and α8.

4.2.2 History Clocks Inequalities

As they completely abstract time, linear invariants presented above are only partially capturing
system dynamics. For example, a global location may not be reachable because components
locations have disjoint clock constraints, or an interaction may not be enabled from a state
because of its empty timing constraint. Such properties require extra relationships relating
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clocks of different components that are not available in Reach(Bi) as it is is restricted to clocks
of a single component: a zone of one of its symbolic states is a conjunction of its related clocks
constraints, as explained in Section 2.4.

We follow the approach of [RAB+15] for reinforcing our approach with global invariants
on clocks. They are induced by simultaneity of transitions when executing an interaction and
the synchrony of time progress. To compute such invariants, additional history clocks are
first introduced in components. History clocks are associated to actions of components and
to interactions, and reset upon their executions. They do not modify the behavior since they
are not involved in timing constraints. They only reveal local timing of components, relevant
to the interaction layer, which allows to infer further properties referred to as history clocks
inequalities in [RAB+15], expressing the fact that history clock of an interaction is necessary
equal to history clocks of its actions after its execution and until the execution of another
interaction involving these actions.

ℓ1

ℓ2

a

ℓ1

ℓ2

a
ha := 0

Figure 4.1 – Example of a History Clock for Action a

Definition 4.2.3 (History Clocks Inequalities for Actions). Given a timed system S =
γ(B1, · · · , Bn), the history clocks inequalities for actions are defined as follows:

HA(S) =
∨

α∈γ

[( ∧
ai,aj∈α

ak∈Act(γ⊖α)

hai = haj ≤ hak

)
∧ (HA(γ ⊖ α)

]

where Act(γ⊖α) is the set of actions involved in the interactions γ⊖α = {β \α | β ∈ γ∧β ⊈ α}
and HA(∅) = true. The predicate HA(S) can be interpreted as follows. Assuming that α ∈ γ
is the last interaction executed in the system. Then, all history clocks of its involved actions are
reset at the same time. Moreover, they are smaller than all the other history clocks, contained in
γ⊖α. The history clocks for actions are additionally strengthened by separation constraints for
conflicting interactions. In fact, an action involved in two conflicting interactions is exclusively
executed by one of these interactions at a given time. Particularly, in some cases a minimum
time lapse is required between two executive occurrences of the same action. Similarly to
history clocks for actions, we introduce a history clock for each interaction that will be reset on
the execution of the latter. Separation constraints are then formalized as follows:

Definition 4.2.4 (Separation Constraints). Given a timed system S = γ(B1, · · · , Bn), the
separation constraints are defined as follows:

HI(S) =
∧

α ̸=β∈γ
a∈α∩β

∧
a∈α

|hα − hβ| ≥ ka
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where |h| denotes the absolute value of h and ka is a constant computed locally on the component
containing action a. It represents the minimum time lapse between two occurrences of a.

Our method combines history clocks inequalities H(S) = HA(S) ∧ HI(S) and symbolic
states of components to identify false conflicts where the following is not satisfiable:∧

1≤i≤n

Reach(Bi) ∧ H(S) ∧ Enabled(α) ∧ Enabled(β) (4.6)

Example 4.2.3. We illustrate the application of (4.6) for checking conflicts by considering
again the example of Figure 2.3. It can be shown that the potential conflict between α5 and
α6 cannot be removed using (only) linear invariants. In the following, we prove that these
interactions are actually not conflicting using history clocks inequalities. Since action start0
of C is synchronized with either start1 of T1 or start2 of T2, and since history clocks ha of an
action a is reset whenever a is executed, by [RAB+15] the history clock inequalities for start0
are:

(hstart0 = hstart1 ≤ hstart2 − 25) ∨ (hstart0 = hstart2 ≤ hstart1 − 25) (4.7)

Equality (4.7) states that hstart0 is equal to the history clock corresponding to the last syn-
chronization, i.e., either hstart1 or hstart2 , and is lower than history clocks of previous syn-
chronizations. Value 25 in (4.7) is obtained considering separation constraints computed
from symbolic states of components and interactions: two occurrences of start0 are sepa-
rated by at least 25 time units because of timing constraints of C, and so too occurrences
of start1 or start2 which can only execute jointly with start0. To relate history clocks with
components clocks, we simply include history clocks when computing symbolic states of
components (i.e. Reach for components), which is used to establish here that x = hstart1

and y = hstart2 when components T1 and T2 are respectively at locations ℓ22 and ℓ32. That
is, with (4.7) we obtain x ≤ y − 25 or y ≤ x − 25. By definition of Enabled we have
Enabled(α5) = at(ℓ22) ∧ (10 ≤ x ≤ 30). Similarly, Enabled(α6) = at(ℓ32) ∧ (10 ≤ y ≤ 30). We
obtain then:

(
Enabled(α5) ∧ at(ℓ32)

)
⇒

(
y ≤ 5 ∧Enabled(α6) ∧ at(ℓ22)

)
⇒ x ≤ 5. This proves

that α5 and α6 are not conflicting.

4.3 Impact of Conflict Reduction on Send/Receive Models
As explained earlier, refining the conflicting interactions set enables to minimize the exchange
of messages between the scheduling layer and the conflict resolution layer of the corresponding
Send/Receive model. More precisely, every false conflicting interaction is scheduled using 2
exchange of messages between components participating in that interaction and the correspond-
ing schedulers (offers and notifications), instead of 4 by considering the unnecessary exchange
of messages between schedulers and the conflict resolution protocol. As a result, the Scheduler
Sch1 and the conflict resolution components from Figure 4.3 and Figure 4.2 respectively become:
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In Chapter 3, we presented a timed automata model for representing timed systems with
multiparty interactions in a distributed setting. Such model provides details on how an
implementation of multiparty interactions can be derived based on a partial view of the system.
It also explicitly expresses the ongoing communication mechanism using simpler primitives
such as exchange of messages. However, this type of model is constrained by the fact that the
response time of the schedulers is fast enough to not impact the behavior of the overall system.

In [Tri15], a solution based on an early decision making approach was presented to cope
with this problem. The main idea of this method was to anticipate components executions
ahead such that the latency induced by the scheduling mechanism does not affect the system.
To achieve this, schedulers plan ahead the execution of interactions and notify the corresponding
components in advance. In this approach, it was suggested that schedulers are required to
observe an additional subset of components, called observed components, not participating in
the planned interactions, in order to achieve global deadlines. However, the characterization of
the set of observed components is incomplete. In fact this set is greater than the presented
characterization, and in many cases is it includes all the components of the system. This is
mainly due to the nature of the location invariants (local constraints that propagate on the
global level). Moreover, the proposed approach does not provide any proof of correctness
regarding deadlocks. Intuitively, executions resulting from such method are included in the
possible executions of the initial model. This means that the resulting behavior is a restriction
of the initial behavior which in some cases may introduce blocking situations.

This motivates the introduction of the local planning semantics (LPS). It is based on the
same idea of early decision making but with the difference that we do not reason on the
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Send/Receive model as in [Tri15], but on a higher level of abstraction closer to the initial
model. This choice was driven by two main points: (1) facilitate the comparison with the initial
behavior of the standard semantics and the fact that (2) it is much more suited for verification.
The local planning semantics differs from the standard semantics of timed automata in two
main aspect: (i) interactions executions are based only on partial state of the system, that is,
based only on the state of components participating in the considered interaction. Thus, it
allows to decide locally without monitoring the entire system. (ii) it distinguishes between the
execution decision of an interaction (its planning), and the execution itself. This distinction
allows us to impose a delay between the planning of an interaction and its execution. The latter
is constrained by the (maximal) communication latency induced by execution platforms, which
is a parameter of the semantics. Trivially, this semantics is correct in the sense that it refines (it
is included in) the standard semantics. However, being based on local states, planning decisions
are too permissive and may introduce deadlocks when they are not compatible with the global
state of the system.

5.1 Local Planning of Interactions

5.1.1 Definition of the LPS

Let S = γ(B1, · · · , Bn) be a composition of components B1, . . . , Bn with disjoint set of
locations, actions and clocks. We define the predicate Plannable(α, d) characterizing states
(ℓ, υ) from which an interaction α = {ai}i∈I ∈ γ is enabled in d ∈ R≥0 units of time, that is, if
time progresses by d units of time. It is formalized as follows:

Plannable(α, d) holds at (ℓ, υ) ⇔ Enabled(α) holds at (ℓ, υ + d) (5.1)

Property 5.1.1. Let (ℓ, υ) be a state of the composition S. For any interactions α, β ∈ γ such
that, (ℓ, υ) β−→γ (ℓ′, υ′) and part(α) ∩ part(β) = ∅, if Plannable(α, d) holds at state (ℓ, υ) then it
still holds at state (ℓ′, υ′).

This property derives directly from the fact that executing an interaction β does not change
the states of components participating in an interaction α, provided that α and β have disjoint
sets of participating components, and thus, Plannable(α, d) is not affected by the execution
of β in this case. In the following, we consider a slightly different definition of conflicts than
the one presented in Chapter 3 and Chapter 4. We say that two interactions α and β conflicts
when they have common participating components, that is, when part(α) ∩ part(β) ̸= ∅, and
we write α#β. We denote by conf(α) the set of interactions conflicting with α, that is,
conf(α) = {β ∈ γ | α#β}.

Property 5.1.2. Let (ℓ, υ) and (ℓ, υ + d′), with d′ ∈ R>0 be two states of the composition S.
For an interaction α ∈ γ, if Plannable(α, d) holds at state (ℓ, υ) then Plannable(α, d − d ′) also
holds at any state (ℓ, υ + d′) such that d′ ≤ d.

This property can be found directly by writing expression 5.1 on state (ℓ, υ + d′).
As previously explained, due to communication latencies induced by execution platforms,

we assume that interactions cannot be planned in d units of time if d < hmin, where hmin ∈ Z≥0
is a parameter representing the minimal planning horizon, which should represent the upper
bound response time of schedulers when scheduling interactions. The latter is constrained
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by the communication latencies between schedulers and both components and the conflict
resolution layer as well as the evaluation of interactions constraints. Notice that for the
sake of simplicity, we consider a global parameter hmin but we could also assume different
parameters for each interaction. Additionally, we also consider upper bound planning horizons
hmax : γ → Z≥0 ∪ {+∞} for each interaction such that for any α ∈ γ we have hmax(α) ≥ hmin.
We denote by h∞

max the upper planning horizon assigning infinity to every hmax(α). These bounds
restrict planning horizons of interactions such that every interaction α can be planned only
using a horizon d satisfying hmin ≤ d ≤ hmax(α), meaning that every component B ∈ part(α)
will be blocked for a duration in [hmin, hmax(α)] each time α is planned. Observe that while hmin
represents the worst case estimation of the scheduler response time, the parameters hmax(α)
will be used later to find a strategy that avoids deadlocks by restricting the amount of time
components can be blocked for.

For an interaction α, we define the predicate Plannable(α) characterizing states from which
α can be planned in a delay respecting the planning horizons hmin and hmax(α), that is:

Plannable(α) ⇔
∨

d∈[hmin,hmax(α)]
Plannable(α, d),

Remark that the above corresponds exactly with the definition of Enabled↙u
l (α) given in

Chapter 2. This allows to write:

Plannable(α) = Enabled↙hmax(α)
hmin (α) (5.2)

Definition 5.1.1 (Plan). A plan π is a function π : γ → R≥0 ∪ {+∞} defining relative times
for executing interactions, with the convention that an interaction α is planned to execute in
π(α) time units only if π(α) < +∞. Plans satisfy that for any two interactions α ≠ β, such
that π(α) < +∞ and π(β) < +∞, the interactions α and β are not conflicting (i.e. ¬(α#β)).

We denote by π0 the plan assigning +∞ to every interaction of γ, that is, ∀α ∈ γ, π0(α) =
+∞. For a plan π, we consider its minimum value min(π) = min {π(α)|α ∈ γ}. We also
denote by conf (π) the set of interactions conflicting with the plan π, i.e., conf (π) = {α | ∃β#α.
π(β) < +∞}, and part(π) the set of components participating in interactions planned by π,
i.e., part(π) = {Bi | ∃α . π(α) < +∞ ∧Bi ∈ part(α)}. Notice that since π stores relative times,
whenever time progresses by d, the value π(α) assigned by π to an interaction α should be
decreased by d until it reaches 0, meaning that α has to execute. We write π − d to describe
the progress of time over the plan, that is, (π − d)(α) = π(α) − d for interactions α such that
π(α) < +∞. Similarly, π[α 7→ d] assigns relative time d to α, α /∈ conf(π), into existing plan
π, i.e. (π[α 7→ d])(β) = d for β = α, (π[α 7→ d])(β) = π(β) otherwise.

Definition 5.1.2 (Local Planning Semantics). Given a set of components {B1, · · · , Bn} and an
interaction set γ, we define the local planning semantics (LPS) of the composition γ(B1, · · · , Bn),
as the TTS (Qp, qp0 , γ ∪ R>0 ∪ (γ × R≥0),∼∼∼>γ) where:

• Qp = L × V(X ) × Π, where L is the set of global locations, V(X ) is the set of global clock
valuations, and Π is the set of plans.

• (γ × R≥0) defines the action of planning interactions of γ and their relative times. It
represents the additional label besides the progress of time (R>0) and the execution of
interactions (γ) present in the standard semantics.
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• ∼∼∼>γ is the set of transitions defined by the rules:

– (ℓ, υ, π) ∼∼∼∼>
(α,d)

γ (ℓ, υ, π[α 7→ d]) for α ∈ γ, hmin ≤ d ≤ hmax(α) and d ̸= +∞ if
α /∈ conf (π) and Plannable(α, d) holds on (ℓ, υ, π).

– (ℓ, υ, π) ∼∼∼>
α

γ (ℓ′, υ′, π[α 7→ +∞]) for α ∈ γ if π(α) = 0 and (ℓ, υ) α−→γ (ℓ′, υ′).

– (ℓ, υ, π)∼∼∼>
d

γ (ℓ, υ+d, π−d) for d ≤ min(π), ℓ = (ℓ1, . . . , ℓn), if (υ+d+hmin) |= Ii(ℓi)
for components Bi /∈ part(π).

Remark that in the above definition as well as in what follows, predicates defined on states
(ℓ, υ) ∈ Qg = L × V(X ) of the standard semantics are straightforwardly interpreted on states
(ℓ, υ, π) ∈ Qp considering the projection (ℓ, υ) of (ℓ, υ, π) on Qg.

States of the LPS do not include only locations and clock valuations, but also the relative
execution times of the planned interactions stored by π. Initially, no interaction is planned,
that is, initial states are of the form (ℓ0, υ0, π0). Planning an interaction α to be executed
at a relative time hmin ≤ d ≤ hmax(α) corresponds to the operation π[α 7→ d] on the plan,
which can only be done if α is not conflicting with the latter, and becomes enabled if time
progresses by d (i.e. if Plannable(α, d)). Additionally, time progress not only updates clock
values but also the plan by decreasing the relative execution times of the planned interactions.
To force the execution of planned interactions when their relative execution times reach 0,
time cannot progress more than the relative execution times of the interactions (more than
d ≤ min(π)). As for the standard semantics, time progress is limited by the location invariants
of the components, but with the following significant difference. Components Bi ∈ part(π)
participating in planned interactions behave as in the standard semantics, that is, time can
progress until their invariants become urgent. For components Bi /∈ part(π), i.e., that are not
participating in planned interactions, we take into account the minimal delay hmin needed for
planning and then executing an interaction: in components Bi /∈ part(π) time can progress
only up to hmin time units before the urgency of their location invariants. By doing so, we
ensure that there always remains enough time to plan interactions involving Bi /∈ part(π) , if
they exist, and execute them before their invariants expire.

Example 5.1.1. Let us consider the following execution sequence for example of Figure 2.3
under the LPS with hmin = 2 and hmax = h∞

max.

((ℓ10, ℓ20, ℓ30, ℓ40), (0, 0, 0),+∞) ∼∼∼∼∼∼>
(α1,26)

γ((ℓ10, ℓ20, ℓ30, ℓ40), (0, 0, 0), {α1 7→ 26})∼∼∼∼∼∼>
26

γ

((ℓ10, ℓ20, ℓ30, ℓ40), (26, 26, 26), {α1 7→ 0}) ∼∼∼∼∼∼>
α1

γ((ℓ11, ℓ21, ℓ30, ℓ40), (26, 26, 26),+∞)∼∼∼∼∼∼>
(α3,2)

γ

((ℓ11, ℓ21, ℓ30, ℓ40), (26, 26, 26), {α3 7→ 2}) ∼∼∼∼∼∼>
2

γ((ℓ11, ℓ21, ℓ30, ℓ40), (28, 28, 28), {α3 7→ 0})∼∼∼∼∼∼>
α3

γ

((ℓ10, ℓ22, ℓ30, ℓ40), (0, 28, 0),+∞) ∼∼∼∼∼∼>
(α2,26)

γ((ℓ10, ℓ22, ℓ30, ℓ40), (0, 28, 0), {α2 7→ 26})∼∼∼∼∼∼>
26

γ

((ℓ10, ℓ22, ℓ30, ℓ40), (26, 54, 26), {α2 7→ 0}) ∼∼∼∼∼∼>
α2

γ((ℓ11, ℓ22, ℓ31, ℓ40), (26, 54, 26),+∞)∼∼∼∼∼∼>
(α4,2)

γ

((ℓ11, ℓ22, ℓ31, ℓ40), (26, 54, 26), {α4 7→ 2}) ∼∼∼∼∼∼>
2

γ((ℓ11, ℓ22, ℓ31, ℓ40), (28, 56, 28), {α4 7→ 0})∼∼∼∼∼∼>
α4

γ

((ℓ10, ℓ22, ℓ32, ℓ40), (28, 0, 0),+∞) ∼∼∼∼∼∼>
(α6,30)

γ((ℓ10, ℓ22, ℓ32, ℓ40), (28, 0, 0), {α6 7→ 30})

This execution sequence represents a path that alternates plan actions, time progress and execu-
tion of some interactions, and leads to the action-time-lock state ((ℓ10, ℓ22, ℓ32, ℓ40), (0, 0, 28), {α6 7→
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30}). In fact, the location invariant x ≤ 30 in component T1, imposes the planning of interaction
α7 at the latest hmin units of time before it becomes urgent. However, since interaction α6 was
planned in 28 units of time, α7 cannot be planned since it is conflicting with α6. This execution
sequence shows that a given system action-time-locks under the local planning semantics , even
if it is deadlock-free in the standard semantics.

5.1.2 Properties of the LPS

We use weak simulation to compare models interpreted with the standard semantics and with
the local planning semantics, by considering the planning transitions unobservable. As shown
in Example 5.1.1, the LPS does not preserve the deadlock freedom property of our system.
Nevertheless, the following proves weak simulation relations between the two semantics.

Lemma 5.1.1. Given a reachable state (ℓ, υ, π) of the LPS. If for α ∈ γ, π(α) < +∞ ⇒
Plannable(α, π(α)).

Proposition 5.1.1. An interaction can execute from a state (ℓ, υ, π) in the LPS semantics
only if it can execute from (ℓ, υ) in the standard semantics, that is:

∀α ∈ γ.(ℓ, υ, π) ∼∼∼>
α

γ (ℓ′, υ′, π′) ⇒ (ℓ, υ) α−→γ (ℓ′, υ′).

Proposition 5.1.1 is a consequence of Lemma 5.1.1: an interaction α can execute in the local
planning semantics if and only if π(α) = 0 (see Definition 5.1.1). That is, a state (ℓ, υ, π) of
the LPS from which α can execute satisfies Plannable(α, 0 ) or equivalently Enabled(α), which
demonstrates that α can execute from (ℓ, υ) in the standard semantics.

Proposition 5.1.2. Time can progress by d at a state (ℓ, υ, π) in the local planning semantics
only if time can progress by d at (ℓ, υ) in the standard semantics, that is:

∀d ∈ R>0.(ℓ, υ, π) ∼∼∼>
d

γ (ℓ′, υ′, π′) ⇒ (ℓ, υ) d−→γ (ℓ′, υ′).

Proposition 5.1.2 is a direct consequence of the definition of time progress in the local
planning semantics which is a restriction of the one in the standard semantics.

Corollary 5.1.1. If a state (ℓ, υ, π) is reachable in the local planning semantics, then the state
(ℓ, υ) is reachable in the standard semantics.

Corollary 5.1.1 is obtained from Propositions 5.1.1 and 5.1.2 and the fact that planning
transitions (labeled by (α, d)) affect only the plan π in states (ℓ, υ, π) of the LPS.

The definition of weak simulation (Definition 2.1.3) is based on the unobservability of
β−transitions. In our case, β−transitions corresponds to planning transitions. Let Tg and Tp

be respectively the underlying timed transition systems of the standard semantics and the local
planning semantics respectively.

Corollary 5.1.2. Tp⊑̇RTg with R = {((q, π); q) ∈ Qp × Qg}.

Corollary 5.1.2 corresponds to a notion of correctness of the local planning semantics: any
execution in the LPS corresponds to an execution in the standard semantics. In addition, if
interactions are allowed to be planned with relative execution times of 0 (i.e. hmin = 0) then
timeless planning of interactions becomes possible. Thus, the planning semantics simulates the
standards semantics in that case.
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Corollary 5.1.3. Tg⊑̇RTp with R = {(q; (q, π)) ∈ Qg × Qp} for hmin = 0.

However, this is no longer true in general if hmin > 0 which means that not all execution
sequences of the standard semantics are preserved by the local planning semantics.

Corollary 5.1.4. If Tg is zeno runs free then Tp is too.

Corollary 5.1.4 states that the LPS does not introduce any zeno run if the standard
semantics is free from the latter. It is a direct consequence of Corollary 5.1.2 and the fact that
it is not possible to have infinite sequences of planning transitions without interaction execution
(γ is finite and planning times are bounded).

Proposition 5.1.3. If Tg is deadlock free, then Tp is deadlock free if it is action-timelock-free.

Before proving the above proposition, we need the following two lemmas that allows to
reason on some properties of interest on states of the local planning semantics. We denote by
wait(ℓ, υ, π) the set of allowed waiting times at state (ℓ, υ, π), that is:

wait(ℓ, υ, π) = {0} ∪ {d ∈ R>0|(ℓ, υ, π) ∼∼∼>
d

γ (ℓ, υ + d, π − d)}

We also put max(wait(ℓ, υ, π)) to denote the maximal waiting time at state (ℓ, υ, π). Notice
that max(wait(ℓ, υ, π)) may not be defined in some cases. In fact, we are not interested in its
actual existence but rather in the fact that it is bounded (< +∞) or not.

Lemma 5.1.2. Let (ℓ, υ, π) be a reachable state of the local planning semantics. For k ∈ R≥0,
such that k = max(wait(ℓ, υ, π)), we have the following properties:

P1 If k < +∞ then (ℓ, υ, π) ∼∼∼>
k

γ (ℓ, υ + k, π − k) ∧ wait(ℓ, υ + k, π − k) = {0}

P2 If π ̸= π0 then k ≤ min(π)

The above lemma is direct consequence of Definition 5.1.2.

Lemma 5.1.3. Let (ℓ, υ, π) be a reachable state of the local planning semantics . If ∀d ∈
R>0. (ℓ, υ, π) ∼∼∼>

d
γ (ℓ, υ + d, π − d) ∧ ¬Plannable(α) at (ℓ, υ, π), then we have ¬Enabled(α) at

(ℓ, υ + d, π − d) with hmin ≤ d ≤ hmax(α).

Lemma 5.1.3 results trivially from the definition of the predicate Plannable(α).

Proof of Propostion 5.1.3. We prove Proposition 5.1.3 by contradiction. Let us assume that
the system under the standard (resp. local planning) semantics is deadlock free (resp. action-
time-lock-free). Let (ℓ, υ, π) be a reachable deadlock state of the LPS. We have:

∄σ ∈ γ ∪ (γ ×R≥0),∃d. (ℓ, υ, π) ∼∼∼>
σ

γ (ℓ′, υ′, π′) ∨ (ℓ, υ, π) ∼∼∼>
d

γ (ℓ, υ+ d, π− d) ∼∼∼>
σ

γ (ℓ′, υ′, π′)

We distinguish 2 cases:
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Case 1: no interaction is planned (i.e. π = π0) By definition of the LPS, it is clear that
for π = π0, there is no interaction to execute from (ℓ, υ, π) or any of its successor (ℓ, υ+d, π−d).

1. wait(ℓ, υ, π) = {0}:
This means that time progress is not allowed at state (ℓ, υ, π). We also have ∄σ ∈
(γ × R≥0).(ℓ, υ, π) ∼∼∼>

σ
γ (ℓ′, υ′, π′) (deadlock assumption). We can conclude that (ℓ, υ, π)

is a reachable action-time-lock state, which contradicts the assumption that the system
under the local planning semantics is action-time-lock-free.

2. wait(ℓ, υ, π) ̸= {0}:

(a) max(wait(ℓ, υ, π)) = +∞:
By P1 of Lemma 5.1.2 we can deduce that ∃d ≥ hmin such that (ℓ, υ, π) ∼∼∼>

d
γ

(ℓ, υ + d, π − d). We also have from the deadlock assumption and Lemma 5.1.3:∧
α∈γ ¬Enabled(()α). Finally, since the state (ℓ, υ + d, π − d) is reachable in the

standard semantics, and by evaluating the deadlock characterization 2.3 on state
(ℓ, υ + d, π − d), we can conclude that the system under the standard semantics
deadlocks, which contradicts the assumption of deadlock freedom of the system
under the standard semantics.

(b) max(wait(ℓ, υ, π)) < +∞:
Considering that k = max(wait(ℓ, υ, π)), then we have by P1 of Lemma 5.1.2:
(ℓ, υ, π) ∼∼∼>

k
γ (ℓ, υ + k, π − k) ∧ wait(ℓ, υ + k, π − k) = {0}. Using the deadlock

assumption we have:
∧

α∈γ ¬Plannable(α) at state (ℓ, υ+ k, π− k). Since the system
cannot progress beyond this state (wait(ℓ, υ+k, π−k) = {0}), we can conclude that
(ℓ, υ+k, π−k) is a reachable action-time-lock state, which contradicts the assumption
that the system under the local planning semantics is action-time-lock-free.

Case 2: at least an interaction is planned (i.e. π ̸= π0) Considering that k =
max(wait(ℓ, υ, π)), since π ̸= +∞, we have by P2 of Lemma 5.1.2: k < +∞ ∧ k ≤ min π.
Using the deadlock assumption we can infer that k < min π, since no execution is possi-
ble from (ℓ, υ, π) or any of its successors. This means that (ℓ, υ + k, π − k) is a reachable
action-time-lock state, which contradicts the assumption that the system under the LPS is
action-time-lock-free.

5.2 Enforcing Deadlock-Free Planning

As explained in previous section, the local planning semantics is based on local conditions
for planning interactions and may exhibit deadlocks even when the system is deadlock-free
with the standard semantics. Such deadlocks are partly due to the fact that planning an
interaction may block, in addition to the participating components, extra components whose
timing constraints are not considered in the preconditions of the local planning semantics.
In this section, we investigate simple execution strategies that only restrict the horizon used
for planning interactions with upper bounds. By reducing the period of time during which
components are blocked, they tend to remove deadlocks from the reachable states. In what
follows, we consider a composition of components S = γ(B1, · · · , Bn) such that it is deadlock
free in the standard semantics.
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Proposition 5.2.1. A reachable state (ℓ, υ, π) of the local planning semantics is an action-
time-lock if and only if:

π > 0 ∧
∧

α/∈conf(π)
¬Plannable(α) ∧

∨
ℓi∈Li

Bi /∈part(π)

at(ℓi) ∧ (urg(ℓi) + hmin).

The above proposition derives directly from the definition of action-time-locks on a state of
the local planning semantics. As shown in Example 5.1.1, the local planning semantics may
introduce deadlocks. The source of deadlocks is twofold: (i) due to the scheduling response time,
consecutive execution in a component are separated by at least hmin units of time which may be
incompatible with its timings constraints, and (ii) conditions for planning interactions are too
permissive as they only take into account timing constraints of participating components whereas
they may block additional components, namely the ones participating in conflicting interactions.
In what follows, we study how to generate planning strategies for preserving deadlock freedom
by restricting the planning transitions of the LPS so that deadlock states become unreachable.
Such a strategy may not exist when timing constraints cannot accommodate with the response
time hmin.

From Propostion 5.1.3, action-time-lock freedom is a sufficient condition for deadlock
freedom of the LPS. By Proposition 5.2.1, a state (ℓ, υ, π) is an action-time-lock in the local
planning semantics if and only if:

π > 0 ∧
∧

α∈γ\conf(π)
¬Plannable(α) ∧

∨
ℓi∈Li

Bi /∈part(π)

at(ℓi) ∧ (urg(ℓi) + hmin).

The above predicate characterizes the fact that no interaction can be executed or planned,
nor time can progress in component Bi /∈ part(π). Consequently, we deduce that a necessary
condition of action-time-lock is the existence of a component Bi /∈ part(π) such that time
cannot progress in Bi and Bi cannot be planned in an interaction, that is:∧

α∈γ(Bi)\conf(π)

(
¬Plannable(α) ∧

∨
ℓi∈Li

at(ℓi) ∧ (urg(ℓi) + hmin)
)
.

where γ(Bi) denotes the subset of interactions in which Bi participates, that is, γ(Bi) = {β ∈
γ | Bi ∈ part(β)}. Notice that the above expression strongly depends on the plan π, which is
difficult to characterize in practice. The following theorem proposes sufficient plan-independent
condition characterizing action-time-lock states of the LPS .

Theorem 5.2.1. Let ϕ be the following predicate:∨
1≤i≤n

[ ∨
ℓi∈Li

at(ℓi) ∧ (urg(ℓi) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α) ∨

∨
β∈conf (α)
Bi /∈part(β)

Plannable(β)
∼)]

.

We prove that a reachable action-time-lock state (ℓ, υ, π) satisfies ϕ.
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Proof of Theorem 5.2.1. A reachable action-time-lock state of the LPS satisfies:

π > 0 ∧
∧

α∈γ(Bi)\conf(π)

(
¬Plannable(α) ∧

∨
ℓi∈Li

Bi /∈part(π)

at(ℓi) ∧ (urg(ℓi) + hmin)
)
.

In order to approximate the above formula, we distinguish two cases:

Case 1: no interaction is planned (i.e. π = π0)
From π = +∞ we deduce directly that there exists an urgent component Bi such that no
interaction α involving Bi can be planned, that is:∨

1≤i≤n

[ ∨
ℓi∈Li

at(ℓi) ∧ (urg(ℓi) + hmin) ∧
∧

α∈γ(Bi)
¬Plannable(α)

]
. (1)

Case 2: at least an interaction is planned (i.e. π ̸= π0)
In this case, there exists an urgent component Bi /∈ part(π) such that no interaction α involving
Bi can be planned, either because it conflicts with a planned interaction β (0 < π(β) < +∞)
or because Plannable(α) is not satisfied, that is ∃β ∈ π,∃Bi /∈ part(β) satisfying:

(0 < π(β) < +∞) ∧
∧

α∈γ(Bi)\conf(β)
¬Plannable(α) ∧

∨
ℓi∈Li

Bi /∈part(β)

at(ℓi) ∧ (urg(ℓi) + hmin).

or equivalently ∃β ∈ π,∃Bi /∈ part(β) satisfying:∨
ℓi∈Li

Bi /∈part(β)

at(ℓi) ∧(urg(ℓi)+hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α)∨

(
β ∈ conf (α)∧(0 < π(β) < +∞)

))
.

By noticing that we have the following implication between quantifiers ∃y,∀x.Q(x, y) =⇒
∀x,∃y.Q(x, y), we can deduce that the above condition implies:∨

1≤i≤n

[ ∨
ℓi∈Li

at(ℓi) ∧ (urg(ℓi) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α) ∨

∨
β∈conf (α)
Bi /∈part(β)

0 < π(β) < +∞
)]
.

As π > 0, and if we consider only reachable action-time-locks, we have 0 < π(β) ≤ hmax(β),
and by Lemma 5.1.1 we have Plannable(β, π(β)). That is, β satisfies Plannable(β) in which
the lower bound hmin is replaced by the strict lower bound 0, i.e.:

Plannable(β)
∼

⇔ ∃d > 0 . d ≤ hmax(β) ∧ Plannable(β, d).

Then, the above expression becomes:∨
1≤i≤n

[ ∨
ℓi∈Li

at(ℓi) ∧ (urg(ℓi) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α) ∨

∨
β∈conf (α)
Bi /∈part(β)

Plannable(β)
∼)]

. (2)
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By remarking that Expression 1 implies Expression 2, we can conclude that an action-time-
lock of the local planning semantics satisfies:∨

1≤i≤n

[ ∨
ℓi∈Li

at(ℓi) ∧ (urg(ℓi) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α) ∨

∨
β∈conf (α)
Bi /∈part(β)

Plannable(β)
∼)]

.

Notice that due to the monotony of ϕ on upper bound horizons, we obtain the following
lemma:

Lemma 5.2.1. If Tp is action-time-lock free for the upper bound horizons function hmax, then
it is action-time-lock free for any upper bound horizon function h′

max ≤ hmax.

As explained earlier, a given system is deadlock free under the restricted LPS if Reach(Tp)∧ϕ
is unsatisfiable. Since Reach(Tp) ⊆ Reach(Tg) (Corollary 5.1.2), we can verify the above on
Reach(Tg). Effectively, we do not compute Reach(Tg) to avoid the combinatorial explosion prob-
lem, inherent to composition of timed automata. In fact, we rather build an over-approximation,
Reach(Tg)
∼

, of the latter, and use it during our verification. Finding a strategy granting
action-time-lock freedom is based on the idea of restricting the upper bound horizon function
hmax. In fact, since hmin is a parameter that is dependent of the communication latency of a
given execution platform, it cannot be tuned. Instead, initially for each interaction α ∈ γ, we
put hmax(α) = +∞. Thereafter, due to the monotony of ϕ (Lemma 5.2.1) on upper horizons,
this parameter will be refined, that is, its maximum will be decreased until finding a function
hmax for which Reach(Tg)

∼
∧ ϕ is unsatisfiable or until reaching the upper horizon function

hhminmax for which hmax(α) = hmin for every α ∈ γ and such that Reach(Tg)
∼

∧ ϕ is satisfiable.

5.3 Planning Semantics as Real-Time Controller Synthesis
In Section 5.3, we presented a method that provides execution strategies by restricting the
upper bound planning horizons for each interaction. This strategy aims to preserve the deadlock
freedom property of a given system under the local planning semantics without imposing
further scheduling constraints. This approach relies on the verification of a given expression
on over-approximation of the reachable states of the initial semantics. Thus, it may give
false-positive results due to (i) the nature of the expression to check (sufficient condition) and
(ii) the over-approximation of the reachable states of the LPS using over-approximations of
the reachable states of the standard semantics (Corollary 5.1.2).

In such cases, an alternative is to tackle the problem as a real-time controller synthesis
problem. Real-time controller synthesis is a common method used to extract an execution
strategy from formal specifications satisfying certain properties. Usually, these properties
express the reachability (resp. non-reachability) of a set of winning states (resp. bad states).
In case of planning interactions with bounded horizons, the idea is to restrict the transition
relation so that all the remaining behaviors do not lead to states where a component is urgent
and no possible execution including this component may occur. This can be formalized as a
reachability game for a timed game automaton [CDF+05], where the main idea consists in
trying to find an execution strategy guaranteeing that a given set of namely bad states of the
system are never reached.
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In order to apply this approach, it is required to encode the planning of interactions and
their effects on the system, that is, (i) encode interactions planning as synchronizations between
components, (ii) reserve the components of the planned interactions until their chosen execution
date, i.e, keep track of the planned interactions and their execution dates, and (iii) characterize
the set of bad states. Thereafter, tools such as UPPAAL-Tiga [BCD+07] can be used to find
an execution strategy of the planning semantics avoiding the set of bad states, that is, deadlock
states. Expressing the planning problem as a real-time controller synthesis problem is not an
easy task. Hereinafter, we discuss the different issues met during the formalization process and
provide suggestions for solving them.

5.3.1 Encoding the Planning Semantics

In order to encode the planning semantics, we rely on the idea of splitting each transition of
the initial model into two transitions: (1) a planning transition, followed by (2) an execution
transition after the plan transition being performed.

Planning Zones

From 5.2, we can see that the clocks values for planning an interaction α are calculated at a
global level, that is, by applying the ↙hmax(α)

hmin on the conjunction of its participating actions
timing constraints. Notice that for a timing constraint g = g1 ∧ g2, we have:

↙hmax(α)
hmin g = ↙hmax(α)

hmin (g1 ∧ g2) =⇒ ↙hmax(α)
hmin g1 ∧ ↙hmax(α)

hmin g2 (5.3)

The above formula bears out the fact that planning states must be encoded on the com-
position of the system model and not on individual components. Particularly, equation 5.3
points out the fact that encoding the planning on transitions of individual components will
induce additional behavior (↙hmax(α)

hmin (g1 ∧ g2) =⇒ ↙hmax(α)
hmin g1 ∧ ↙hmax(α)

hmin g2). This represents
the first drawback of this method since building the composition may be tedious especially
for big scale systems. Therefore, a simple solution to avoid computing the composition is to
consider models with interactions having timing constraints on up to one of their participating
actions and that involves a single clock, that is, given an interaction α = {ai}i∈I ∈ γ, we have
gα = true or gα = gai , with gai involving a single clock and gaj = true for j ∈ I, j ̸= i. In fact,
considering interactions including up to one action with timing constraints involving a single
clock, will allow to encode the planning on individual components that, additionally to the
defined synchronizations (interactions), will also synchronize their planning actions.

For an interaction α ∈ γ, the choice of the planning horizon, that is, the duration for which
components participating in α will be blocked for until their execution, will be encoded on
the execution transition of the component whose action ai ∈ α and gα = gai . Otherwise, if
gα = true this choice is made arbitrarily. Consequently, this component will be equipped with
a clock xp that will be used to track the planning dates. Finally, location invariants must also
be translated to enforce planning at the latest hmin units of time before their expiry. Figure 5.1
depicts an overview of such transformation for δ = 2 × hmin horizon:
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ℓ1x ≤ k

ℓ2

a, ga, ra

(a) Part of a timed automaton

ℓ1
x ≤ k − hmin

ℓa1xp ≤ 2hmin ∧ x ≤ k

ℓ2

plana

↙2hmin
2hmin ga

xp := 0

a
xp = 2hmin

ra

(b) Planning encoding

Figure 5.1 – Planning as a Timed Automaton

Infinite Planning Transitions

Effectively, in order to encode the planning in timed automata, horizons values must be integer.
Moreover, due to the dense time nature of the planning intervals (relative planning date for each
interaction α are in [hmin, hmax(α)]), we end up with an infinity of plan transitions, especially
when not restricting upper bound planning horizons, i.e., hmax = h∞

max. Consequently, the
first thing to do is to restrict for each interaction α ∈ γ the upper bound planning horizon
hmax(α).Thereafter, we propose to discretize the planning horizons in order to obtain finite
values in Z>0 (Figure 5.2). In what follows, we denote by Disc : γ −→ D the discretized horizon
function defining for each interaction its respective discretized planning horizons D ⊂ Z>0.

Time

gα

↙hmax(α)
hmin gα

↙hmin
hmin gα

↙hmin+ε
hmin+ε gα

↙hmin+2ε
hmin+2ε gα

An interaction guard gα

and its planning intervals

Time

gα

↙hmax(α)
hmin gα

↙hmin
hmin gα

↙hmin+d
hmin+d gα

↙hmin+2d
hmin+2d gα

Discretized planning intervals for gα

Figure 5.2 – Discretizing Planning Horizons for Interaction

5.3.2 Planning Timed Automaton

Definition 5.3.1 (Planning Timed Automaton). Given n timed components Bi = (Li, ℓ
i
0,Ai, Ti,Xi, Ii)

synchronizing through the interaction set γ such that, for each interaction α ∈ γ, the guard of
α is equal to the guard of one of its included actions. We define the corresponding planning
model as the composition of the n timed automata Bp

i = (Lp
i , ℓ0,Ai ∪ Pi, T p

i ,Xi ∪ {xp
i }, Ip

i ),
w.r.t the interaction set γ ∪ P, where:

• Pi = ∪a∈Ai pa is the set of Planning Actions
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• P = {pα = {pai}i∈I |α ∈ γ ∧ α = {ai}i∈I} is the set of Planning Interactions

• xp
i is a Tracking Clock for interactions execution in each component

• Lp
i = (Li ∪ Lip) is the set of control locations, where Lip is the set of locations following

planning actions

• T p
i is such that for each (ℓi, ai, gi, ri, ℓ

′
i) ∈ Ti, ai ∈ α and for each δ ∈ Disc(α):

– if gα ̸= true we have:

Planning transitions:


ℓi

pai ,true,∅
−−−−−−→ ℓai , if g = true

ℓi
pai ,↙δ

δ gi,r(xp
i )

−−−−−−−−−→ ℓδai
, otherwise

Execution transitions:

ℓai

a,true,ri−−−−−→ ℓ′i, if g = true

ℓδai

a,ga∧xp
i =δ,ri−−−−−−−−→ ℓ′i, otherwise

where ℓa, ℓδai
∈ Lip .

– if gα = true, we choose one action b ∈ α:

Planning transitions:

ℓi
pai ,true,∅
−−−−−−→ ℓai , if a ̸= b

ℓi
pai ,true,r(xp

i )
−−−−−−−−→ ℓδai

, otherwise

Execution transitions:

ℓai

ai,true,ri−−−−−→ ℓ′i, if a ̸= b

ℓδai

ai,gi∧xp
i =δ,ri−−−−−−−−→ ℓ′i, otherwise

• Ip
i is the set of Location Invariants , such that ∀ℓpi ∈ Lp

i , we have:

Ip
i (ℓpi ) =

I(ℓi) − hmin, if ℓpi = ℓi ∈ Li

xp
i ≤ δ ∧ I(ℓi), if ℓpi = ℓδai

∈ Lip such that ℓi ∈ Li ∧ ℓi
pai−−→ ℓδai

,

For a composition γ(B1, · · · , Bn), let Tp′ = (Qp′ , γ′ ∪ R>0,−→γ′), where γ′ = γ ∪ P , be the
corresponding timed transition system of its planning model under the standard semantics.

Theorem 5.3.1. Tp′⊑̇R′Tg where R′ is the relation defined as follows: For qp = (ℓp, υp) ∈ Qp′

and qg = (ℓg, υg) ∈ Qg, such that (qp, qg) ∈ R′, we have:

• ℓp = (ℓp1, · · · , ℓpn), ℓg = (ℓg1, · · · , ℓgn):

∀i ∈ {1, · · · , n}, ℓgi =
{
ℓpi , if ℓpi ∈ Li,

ℓi, if ℓpi ∈ Lip with ℓi
a,g,r−−−→ ℓpi ∈ T p

i ∧ ℓi ∈ Li,

Notice that for the case where ℓpi ∈ Lip , ℓi is unique by construction of the planning model.

• υg = equ(υp), where equ(υp) is the projection of υp on clocks of υg

Proof of Theorem 5.3.1. To prove that Tp′⊑̇R′Tg, we need to prove that:

1. ∀(qp, qg) ∈ R′, σ ∈ γ ∪ R>0 such that qp σ−→γ′ q′p ⇒ ∃q′g.(q′p, q′g) ∈ R′ ∧ qg σ−→γ q
′g
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2. ∀(qp, qg) ∈ R′, pα ∈ P such that qp pα−→γ′ q′p ⇒ (q′p, qg) ∈ R′

1. (a) Suppose that (qp, qg) ∈ R′, σ = α ∈ γ and qp α−→γ′ q′p with q′p = ((ℓ′p1, · · · , ℓ′pn), υ′p).
We have: qp α−→γ′ q′p ⇒ gα is true, and for α = {ai}i∈I , by construction of the
planning automaton, we have: ℓgi

ai,gi,ri−−−−→ ℓ′gi such that ℓ′gi = ℓ′pi . Moreover, since
the same clocks are reset by the execution of α in both models, we deduce that
υ′g = equ(υ′p). By remarking that the state of components not participating in α
remains the same, we conclude that ∃q′g such that qg α−→γ q

′g ∧ (q′p, q′g) ∈ R′.

(b) Suppose that (qp, qg) ∈ R′, σ ∈ R>0 and qp σ−→γ′ q′p. For qp
i = (ℓpi , υ

p
i ), we define Ig

the set of indexes such that ℓpi ∈ Li, and Ip the set of indexes such that ℓpi ∈ Lpi .

• ∀i ∈ Ig.ℓpi = ℓgi ∧ qp
i

σ−→ q′p
i ⇒ qg

i
σ−→ q′g

i . This implication is a direct result of the
planning model definition since: σ ≤ I(ℓpi ) ≤ I(ℓgi ) − hmin.

• ∀i ∈ Ip.ℓ
g
i = ℓi such that ℓpi ∈ Lip with ℓi

a,g,r−−−→ ℓpi ∈ T p
i ∧ ℓi ∈ Li. Thus

qp
i

σ−→ q′p
i ⇒ qg

i
σ−→ q′g

i , since I(ℓpi ) =⇒ I(ℓgi ).

We conclude that ∃q′g such that qg σ−→γ q
′g ∧ (q′p, q′g) ∈ R′.

2. Suppose that (qp, qg) ∈ R′ and qp pα−→γ′ q′p, with pα ∈ P and q′p = ((ℓ′p1, · · · , ℓ′pn), υ′p). We
have: qp pα−→γ′ q′p ⇒ for α = {ai}i∈I ℓ

g
i = ℓpi ∧ℓgi

pai−−→ ℓ′pi . Moreover, since planning actions
reset only the clocks xp

i for tracking execution time, we can deduce that (q′p, qg) ∈ R′.

Once interactions planning encoded, one last thing to do is to add the set of bad states to
each planning automaton (if needed) and find a strategy to avoid those states. Figure 5.3 depicts
the corresponding planning automata for example of Figure 2.3 with respect to Definition 5.3.1.
Locations suffixed by p, correspond to locations following planning actions, whereas locations
ending with err define the bad states, that is, states with urgent location invariant(s) and
no possible execution removing the urgency. In this example, for each interaction α ∈ γ, we
chose D(α) = {1, 2}. Notice that for this example, we consider that all actions are controllable
actions since it is a closed system in the sense that there is no interaction with the environment.

We performed the verification on the Task Manager examples with 20 tasks. The winning
condition being a safety condition: avoid all “err” locations. This was translated into the
following property:

control: A[ ] forall (i : int[0,N-1]) not (Task(i).l_2_err or Task(i).l_3_err) (5.4)

The property of interest was successfully verified. Additionally, we were also able to
synthesize all wining actions of all states using the command line of UPPAAL-Tiga. A sample
of the resulting output is provided below Figures 5.4. Notice that the average execution time1

for verifying Property 5.4 is 0.1141 seconds (0.6534 seconds when requesting the generation of
a strategy).

1The experiments have been conducted on a HP machine with Ubuntu 16.04, an Intel® Core™i5-4300U
processor of frequency 1.90GHz×4, and 7.7GiB memory.
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(a) Controller Component (b) Variable Component

(c) Task Component

Figure 5.3 – Planning Automata for the Task Manager Example

5.3.3 Discussion

In this section, we explained how the problem of planning interactions can be formalized into
a real-time controller synthesis approach. However, this approach has some drawbacks. In
order to encode planning of interactions in components as timed automata, this approach
restricts its scope to discretized horizon values which results in having less control over the
planning dates of interactions, and leads in case of a high number of discretized values, to an
explosion in the number of planning transitions. Unfortunately, we do not have an immediate
solution for this problem. In fact, it is user dependent since one user may just want to block
components for the least amount of time possible for a given interaction, for instance because
the components involved in this interaction are often requested, and in that case the practice
will be to always plan with hmin. In other cases, the user may want to plan an interaction
with flexible amount time. Additionally, this approach considers only a class of systems where
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State: ( Controller.l_1_p_1 Task(0).l_0 Task(1).l_1_p Task(2).l_3_p2
Task(3).l_0 Task(4).l_0 Task(5).l_0 Task(6).l_0 Task(7).l_0 Task(8).l_0
Task(9).l_0 Task(10).l_0 Task(11).l_0 Task(12).l_0 Task(13).l_0 Task(14).l_0
Task(15).l_0 Task(16).l_0 Task(17).l_0 Task(18).l_0 Task(19).l_0 Var.V_pe
) vlist[0]=2 vlist[1]=0 vlist[2]=0 vlist[3]=0 vlist[4]=0 vlist[5]=0
vlist[6]=0 vlist[7]=0 vlist[8]=0 vlist[9]=0 vlist[10]=0 vlist[11]=0
vlist[12]=0 vlist[13]=0 vlist[14]=0 vlist[15]=0 vlist[16]=0 vlist[17]=0
vlist[18]=0 vlist[19]=0 vlen=1 Controller.list[0]=1 Controller.list[1]=0
Controller.list[2]=0 Controller.list[3]=0 Controller.list[4]=0
Controller.list[5]=0 Controller.list[6]=0 Controller.list[7]=0
Controller.list[8]=0 Controller.list[9]=0 Controller.list[10]=0
Controller.list[11]=0 Controller.list[12]=0 Controller.list[13]=0
Controller.list[14]=0 Controller.list[15]=0 Controller.list[16]=0
Controller.list[17]=0 Controller.list[18]=0 Controller.list[19]=0
Controller.len=1
When you are in (Controller.zp==1 && Task(2).yp<=2), take transition
Controller.l_1_p_1-> Controller.l_0 { zp == 1 && 1 == front(), exec_run[1]!,
z := 0, dequeue() } Task(1).l_1_p->Task(1).l_2 { 1, exec_run[id]?, y := 0,
venqueue(id) } When you are in (Task(2).yp==2 && Controller.zp<=1), take
transition Task(2).l_3_p2-> Task(2).l_0 { yp == 2, exec_end[id]!, vdequeue()
} Var.V_pe->Var.V_ee { 2 == vfront(), exec_end[2]?, 1 }

Figure 5.4 – Sample of the Output Strategy from UPPAAL-Tiga

interactions have timing constraints on up to one of their participating components action.
Otherwise, the planning should be encoded on the composition, which represents a tedious
work because of the state space explosion problem. Nevertheless, this approach differs form the
usual scheduler synthesis approach since it is not performed on the regular semantics of timed
automata. Particularly, here we are interested in avoiding bad states of the planning semantics
(states that verify the expression of Theorem 5.2.1). Consequently, unless finding an automatic
general method for generating such complex expressions in the query language accepted by
such tools, and without ignoring that finding a strategy avoiding those states may be hard in
terms of computational complexity, our real-time controller synthesis approach seems more
straightforward and much simpler but it comes with some feasibility restriction.
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In the previous section, we introduced a timed automata model that describes a high level
representation of systems execution. However, this type of model assumes that components
clocks are perfectly synchronous which is hardly the case in practice. Effectively, clocks are able
to measure time up to a certain precision and will be likely to drift since they are implemented
based on oscillators that are not perfect: the oscillator frequency is not constant, it changes
depending on environmental conditions such as temperature, humidity and aging. Figure 6.1
illustrates an example of two clocks x and y having different rate with respect to an implicit
perfect reference time. Figure (a) shows the case where clock x evolves steadily faster than
clock y. Whereas, in Figure (b) clock y is initially faster than clock x, then the trend is inverted
after some time.

In this chapter, we present a distributed timed automata model where clocks advance at
different rates and we study the resulting effect on the system behavior.

6.1 Distributed Timed Systems with Independent Clock Rates

6.1.1 Expressing Clock Constraints Using Local Clock

When building distributed real-time systems, a common practice is to use local clocks as time
references as explained in Chapter 3. These clocks measure the absolute time elapsed since the
system startup and are never reset. This approach reduces the effort of keeping track of the
actual time progress in components and enable to have a common time scale.

The idea consists in mapping each clock of a component to a (unique) local clock. Thus,
the value of component clocks are obtained by simply shifting their corespondent local clock by
a constant amount of time as soon as the clocks are not reset. Effectively, for each clock x of a
component, we introduce a real variable ρx that stores the absolute time of its last reset (with
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(a) (b)

Figure 6.1 – Example of Clocks with Different Rates

respect to its local clock), that is, if x is mapped to a local clock g, then each time x is reset,
ρx is update to the current value of g. Notice that the value of x can be found by the equality
x = g − ρx. As a result, any timing constraints c of a component Bi can be expressed using a
local clock g as follows:

c =
∧

xi∈Xi

l ◁ xi ▷ u =
∧

xi∈Xi

l + ρxi ◁ g ▷ u+ ρxi (6.1)

where ◁ ∈ {<,≤} and ▷ ∈ {>,≥}. Notice any timing constraints of Definition 2.1 can be
written on the form of inequalities.

6.1.2 Distributed Timed System

Let S = (L, ℓ0,X ,D, γ, Eγ , {fe}e∈γ , I) be a timed system of n components synchronizing through
the interaction set γ. For an interaction α, we denote by clock(α) the set of clocks appearing in
its timing constraints, that is, clock(α) = {x ∈ X |∀(ℓ, α, g, r, ℓ′) ∈ Eγ , x ∈ g}, with ∈ denoting
the presence of x in the guard g.

Given an interaction partition {γk}m
k=1, we put clock(γk) to denote the set of clocks appearing

in the timing constraints of interactions of γk, that is, clock(γk) = {∪α∈γk
clock(α)}. We formalize

the independent evolution of clocks by defining an ownership map that assigns a set of clocks
to a unique local clock based on interaction partitioning . Particularly, we assign to each class
of interaction a unique local clock. We require additionally that clock of each components is
mapped only to a unique local clock. This avoid timing inconsistency and ensure that each
clock of a component is evaluated using a unique local clock. This constraints immediately the
interaction partitioning as follows:∧

i,j∈{0,··· ,m}
i ̸=j

clock(γi) ∩ clock(γj) = ∅ (6.2)
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Definition 6.1.1 (Distributed Timed System). Given a timed system S = (L, ℓ0,X ,D, γ, E ,
{fe}e∈γ , I) and an interaction partitioning satisfying the constraint 6.2. We define the
corresponding distributed timed system with independent local clock rates as the tuple
Sdt = (L, ℓ0,X dt,Ddt, γ, Edt, {fdt

e }e∈γ , Idt, π) such that:

• X dt is the set of local clocks (a unique clock per class of interaction)

• π : X −→ X dt is a many to one mapping between clocks X of S and local clocks X dt

• Ddt = D ∪ {∪x∈Xρx|ρx ∈ R≥0} is the set of data with ρx being real valued variables
storing absolute reset times

• Edt is such that for every (ℓ, α, g, r, ℓ′) ∈ E , α ∈ γ, we have the corresponding transition
(ℓ, α, gdt, ∅, ℓ′) ∈ Edt where:

– gdt is the guard g expressed using the local clock xdt ∈ X dt where ∀xi, xj ∈
clock(α), i ̸= j, π(xi) = π(xj) = xdt

– fdt
e = fe ∪ {ρx := xdt|∀x ∈ r} is the transfer function updating reset variables in

addition to data variables of D

• Idt is the set of location invariants expressed using local clocks

Notice that clocks appearing in location invariants appear necessarily in at least an interaction
since we assume timed system with well formed guard.

Property 6.1.1 (Semantics). The semantics of a distributed timed system Sdt = (L, ℓ0,X dt,Ddt,
γ, Edt, {fdt

e }e∈γ , Idt, π) is defined by the timed transition system Tdt = (Qdt, qdt
0 , γ,−→γ) where:

• Qdt = L × V(Xdt ∪ Ddt) × ∆ where L is the set of global locations, V(Xdt ∪ Ddt) is the set
of clock and data valuations, and ∆ = R|X dt| is the set offsets of local clocks in Xdt with
respect to an implicit (perfect) reference clock

• qdt
0 = (ℓ0, 0, 0) is the initial state.

• −→γ⊆ Qdt × (γ ∪ R>0) × Qdt is the set of labeled transitions defined by the rules:

– (ℓ, υ, δ) α−→γ (ℓ′, υ[r], δ) for α ∈ γ, if (ℓ, α, g, r, ℓ′) ∈ Edt ∧ υ |= g

– (ℓ, υ, δ) d−→γ (ℓ, υ′, δ′) for d ∈ R>0, such that υ′ = υ+ d− δ+ δ′ ∧υ′ |= Idt(ℓ) ∧υ′ ≥ υ

The above semantics models drifting clocks by introducing an offset variable δ that stores
for each clock in xdt its actual drift value with respect to an implicit reference time. The
common practice when clocks are subject to drift is to regularly resynchronize the clocks using
different methods, such as bit-stuffing or any other clock synchronization scheme. Consequently,
we consider a more realistic model where clocks can drift up to a certain value ϵ with respect
to a reference clock. This value is generally computed based on three parameters: (i) the
post-synchronization gap, (ii) the longest gap between synchronizations, and (iii) the clock
precision parameter usually given by the constructor. This induces that δ ∈ [−ϵ, ϵ]|X dt|.
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6.1.3 Properties

Property 6.1.2. ∀x, y ∈ X dt, x ≠ y, δ = (· · · , δx, · · · , δy, · · · ) where |δ| = |X dt|, we have
δx − δy ∈ [−2ϵ, 2ϵ]

Property 6.1.2 states that the relative drift between local partitions clock is bounded by 2ϵ.
This results from the fact that all local clocks are kept within ϵ of a reference clock.

In order to attest the correctness of the distributed semantics, we compare its corresponding
time transition system (Tdt) and the timed transition system of the standard semantics (Tg).

Let R be the relation:

R = {(qdt, q) ∈ Qdt × Q|qdt = (ℓdt, υdt, δ), q = (ℓ, υ)

such that:
{
ℓdt = ℓ,

∀x ∈ X , υ(x) = vdt(π(x)) − ρx − δx

The relation R relates states of the distributed semantics with states of the standard
semantics having the same location configuration, and whose clock valuations expressed on
local clocks are δ ∈ [−ϵ, ϵ] close. We call such states ϵ−similar.

Lemma 6.1.1. For ϵ = 0, we have Tdt ∼R Tg

Lemma 6.1.1 describes the fact that a given system and its corresponding distributed model
are bisimilar when ∆ = 0, that is, when clocks advance at the same rate (perfect clocks).

Property 6.1.3. Let (qdt, q) ∈ R such that qdt satisfies Enabled(α), then q satisfies
Enabled↙ϵ

0 (α) ∨ Enabled(α) ∨ Enabled↗ϵ
0 (α).

Property 6.1.3 expresses that for states (qdt, q) ∈ R if it exists an interaction enabled at
qdt then this interaction is either enabled at q, will be enabled after a time progress of ϵ or is
up to ϵ after the deadline of α. This property flows directly from the ϵ−similarity of states
(qdt, q) ∈ R, the form of interactions timing constraints (conjunction of intervals) and the fact
that clocks involved in the same interaction advance at the same rate. It points out that any
execution from state qdt might not be always possible from state q or any of its time successor.

Lemma 6.1.2. Let (qdt, q) ∈ R such that qdt satisfies Enabled(α) ∧ Enabled↙ϵ
ϵ (α), then q

satisfies Enabled↙ϵ
0 (α).

Lemma 6.1.2 can be deduced straightforwardly from property 6.1.3. It expresses that for
states (qdt, q) ∈ R, if it exists an interaction α ∈ γ such that α is enabled at qdt and that clock
valuations are up to ϵ before the deadline of this interaction then, α can be executed from q or
any of its ϵ−time successors (by doing a time progress up to ϵ).

The usual notion of simulation as defined in 2.1.2 is too precises. It requires that each trace
in one system can be matched exactly by a trace in the other system, that is, two states can be
distinguished even for an infinitesimally small mismatch between timings (ϵ ̸= 0). Thus, we
rely on the following quantitative variant of simulation [TFL10].

Definition 6.1.2 (ϵ−simulation). Given two TTS, T1 = (Q1, q01 ,Σ ∪ R≥0,→1) and T2 =
(Q2, q02 ,Σ ∪ R≥0,→2), a relation R ⊆ Q1 × Q2 is a:

• Strong timed ϵ−simulation, if for any (q1, q2) ∈ R, σ ∈
∑

, d, ϵ ∈ R≥0
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– q1
σ−→ q′

1 implies q2
σ−→ q′

2 for some q′
2 ∈ Q2 with (q′

1, q
′
2) ∈ R

– q1
d−→ q′

1 implies q2
d′
−→ q′

2 for some q′
2 ∈ Q2 and d′ ∈ R≥0 with |d′ − d| ≤ ϵ and

(q′
1, q

′
2) ∈ R

• Timed action ϵ−simulation, if for any (q1, q2) ∈ R, σ ∈
∑

, d, ϵ ∈ R≥0

– q1
d,σ−−→ q′

1 implies q2
d′,σ−−→ q′

2 for some q′
2 ∈ Q2 and d′ ∈ R≥0 with |d′ − d| ≤ ϵ and

(q′
1, q

′
2) ∈ R

If there exists a strong timed (resp. timed action) ϵ−simulation between T1 and T2 w.r.t R,
then we write T1 ⊑ϵ

R T2 (resp. T1 ⊑ϵ∗
R T2)

This approach characterizes the degree of closeness between timed systems: it generalizes the
(boolean) notions of timed simulation (yes or no) to metrics over timed system. Formally, for a
positive real number ϵ, a state q1 is told ϵ−similar to another state q2 if there is a time-abstract
simulation that can relates both states in the sense that the difference between the delays of
time-step transitions is at most ϵ.

Although this definition of simulation is less restrictive, Property 6.1.3 gives the intuition
that for some states (qdt, q) ∈ R there may be interactions that can be executed from qdt but
not from q, which make the ϵ−simulation impossible.

6.2 Robust Distributed Semantics

As explained in previous sections, the distributed semantics may exhibit new behavior with
respect to the standard semantics. In this section, we identify the problematical states of
the distributed semantics and provide sufficient conditions that will guarantee timed action
ϵ−simulation.

Definition 6.2.1 (Potentially Bad States). We denote by Υ the set of potentially bad states
of the distributed semantics characterized as follows:

Υ = {q = (ℓ, υ)|∃α ∈ γ, υ |= gα ∧ υ + ϵ ̸|= gα}

The intuition behind this characterization results form Property 6.1.3. These states may
yield possible execution of interactions in the distributed semantics that are not possible in the
related states of the standard semantics (states that are ϵ−similar).

Proposition 6.2.1. Let Tdt be the timed transition system of the distributed semantics. We
have:

Υ ∩ Reach∗(Tdt) = ∅ =⇒ Tdt ⊑ϵ∗
R Tg

where Reach∗(Tdt) is the projection of states of the distributed semantics on state variables of
the standard semantics, that is, by considering only locations, clocks, and data variables.

Proof of Proposition 6.2.1. In order to prove proposition 6.2.1, we need to show that if for any
(qdt, q) ∈ R, σ ∈ γ and d ∈ R≥0:

qdt d,σ−−→ qdt′ =⇒ ∃q′ ∈ Qg, q
d′,σ−−→ q′, with d′ ∈ R≥0, |d′ − d| ≤ ϵ and (qdt′

, q′) ∈ R
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Let (qdt, q) ∈ R such that Υ ∩ Reach∗(Tdt) = ∅ and ∃σ ∈ γ,∃d ∈ R≥0, qdt d,σ−−→ qdt′ . We
distinguish two cases:

Case 1: d > 0
We have qdt d,σ−−→ qdt′ . This means:

vdt′ = (vdt + d− δ + δ′)[rdt, fσ]
vdt + d− δ + δ′ |= Idt(ℓ) ∧ gdt

σ

vdt + d− δ + δ′ + ϵ |= Idt(ℓ) ∧ gdt
σ qdt /∈ Υ

where [rdt, fσ] means after applying reset and transfer function. When expressed on original
clocks the above becomes: 

vdt′ = (υ + ρ+ d+ δ′)[rdt, fσ]
υ + d+ δ′ |= I(ℓ) ∧ gσ

υ + d+ δ′ + ϵ |= I(ℓ) ∧ gσ

We also have δ′ ∈ [−ϵ, ϵ]. Consequently we have:

1. δ′ ∈ [0, ϵ], then: {
vdt′ = υ + d+ δ′ + (ρ)[rdt, fσ]
υ + d+ ϵ |= I(ℓ) ∧ gσ

By putting d′ = d, and since rdt = ∅ (Definition 6.1.1) and fσ applies only on ρ we obtain:{
vdt′ = υ + d′ + δ′ + (ρ)[rdt]
υ + d′ + ϵ |= I(ℓ) ∧ gσ

Consequently, we can conclude that q d′,σ−−→ q′ such (qdt′
, q′) ∈ R

2. δ′ ∈ [−ϵ, 0], then: {
vdt′ = υ + d+ δ′ + (ρ)[rdt, fσ]
υ + d− ϵ+ ϵ |= I(ℓ) ∧ gσ

By putting d′ = d, and since rdt = ∅ (Definition 6.1.1) and fσ applies only on ρ we obtain:{
vdt′ = υ + d′ + δ′ − ϵ+ (ρ)[rdt]
υ + d′ |= I(ℓ) ∧ gσ

Consequently, we can conclude that q d′,σ−−→ q′ such (qdt′
, q′) ∈ R

Case 2: d = 0
Since Υ ∩ Reach∗(Tdt) = ∅, using the same methodology of case 1, we can conclude that

∃q′ ∈ Qg, q
d′,σ−−→ q′, with d′ ∈ R≥0, |d′ − d| ≤ ϵ and (qdt′

, q′) ∈ R.
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Proposition 6.2.1 highlights an interesting property on the reachable states of the distributed
semantics. It states that if all the reachable states of the distributed semantics are not potential
bad states, i.e, Υ ∩ Reach∗(Tdt) = ∅, then there exists a timed action ϵ−simulation between the
timed transition systems of the standard semantics and the distributed semantics.

Consequently, the idea is to restrict the distributed semantics in order to avoid such states.
This can be achieved by shrinking the upper bound of every transition timing constraints, if it
exists, by ϵ. Let Tdtϵ be the timed transition system after shrinking every existing upper bound
timing constraints by an amount of ϵ. Then, we have the following lemma:

Lemma 6.2.1. Tdtϵ ⊆ Tdt

The above lemma derives straightforwardly from the fact that shrinking does not introduce
new behavior. Conversely, it just restrains the set of states from which interactions can be
executed.

Lemma 6.2.2. Υ ∩ Reach∗(Tdtϵ) = ∅.

The above lemma is a direct consequence of the shrinking operation. In fact, since clocks
of the distributed semantics an those of the standard semantics can have at most ϵ difference
in values, by shrinking upper bound timing constraints we avoid all possible execution of
interactions for clock values that are ϵ before its due date. Consequently, this ensures that
Υ ∩ Reach ∗ (Tdtϵ) = ∅ and allows for any related state of the standard semantics to execute the
same interaction directly or after doing a timed step.

The following lemma is a direct consequence of Proposition 6.2.1 and Lemma 6.2.2.

Lemma 6.2.3. Tdtϵ ⊑ϵ∗
R Tg

Definition 6.2.2 (Robustness). For a given timed system S, we say that S is robust to clock
drifts iff Reach(Tdtϵ) is deadlock free.

Restricting the distributed semantics through shrinking allows to avoid the reachability of
some states (the potential bad states). This enforces the timed action ϵ−simulation between
states of the standard semantics and those of the restricted distributed semantics. However,
since shrinking reduces the set of reachable states, the timed action ϵ−simulation alone is
not enough. We must also ensure that shrinking does not introduce any deadlocks. The two
aforementioned point together form our definition of robustness.

6.3 Discussion
In this chapter, we revisited the robustness concept usually used to check whether a given
system still satisfies the specification (a set of properties) when subject to different perturbations
such as clock drift. We first modeled the behavior of a timed system with independent clock
rates and subject to a resynchronization scheme. Thereafter, we used a variant of simulation
that relates states with a timing difference up to a certain ϵ, and provide a characterization
of potential bad states that may invalidate this variant of simulation. Then, we suggested a
strategy based on shrinking upper bound timing constraints in order to avoid such states which
allows to attest the timed action ϵ−simulation.

Sankur et al. [SBM14] studied the robustness problem in timed automata against guards
shrinking. They provided a method for deciding whether shrinking all timing constraints
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(guards) of a timed automaton, by possibly different amounts, results in a timed automaton
that preserves some time-abstract behaviors, and is not blocking. The latter represents their
robustness notion. It was proven that if the automaton is shrinkable, then several properties
established on the initial automaton are preserved in the implementation (when clocks are
not perfect). Otherwise, then the conclusion is that the model is vulnerable to the slightest
variations in the measure of time and should thus be considered as non-robust, and the design
should be reviewed. From a theoretical aspect, the proposed analysis was formulated as a
parameter synthesis problem. Shrinktech [San13] is a tool that implements the simulation-
shrinkability algorithm presented in [SBM14]. It is compatible with the Kronos [BDM+98]
model checker, that can minimize the region graph of a timed automaton [TY01] needed by
the tool. The tool has been used to attest the shrinkability of several case studies, such as the
Philips Audio Retransmission protocol, Fischer’s Mutual Exclusion protocol (up to 4 agents),
and some other asynchronous circuit models. These experiments showed that the tool is capable
of treating shrinkability of timed automata with thousands of edges (w.r.t graphs with more
than sixty thousand transitions). The bottleneck of the tool was also identified as being the
size of the full bisimilarity graph, which is often costly to compute, and that may require long
processing time for shrinkability analysis. Moreover, the non-shrinkability of most models was
mainly due equality constraints, or to the fact that some models was designed at a high level of
abstraction where imprecisions were not taken into account.
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7.1 The BIP Framework

BIP [BBB+11b] is a highly expressive model-based and component-based framework for building
embedded applications. It is based on three main layers: Behavior, interactions, and priorities
as shown in Figure 7.1:

B E H A V I O R

Interactions

Priorities

Figure 7.1 – BIP Layers

• Behavior: This layer describes the behavior of each component of a system as a timed
transition system. Atomic components are defined as timed automata with well defined
interface (ports).

• Interactions: The interaction layer specifies how components interact together and
coordinate their action using n-ary synchronizations. It restricts thus the global behavior
of components together using these synchronizations.
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• Priorities: Priorities are used to favor the execution of a subset of enabled interactions
called maximal interactions. They can be used to resolve conflicts or to express particular
scheduling policies.

The Real-Time BIP language [ACS10] extends the BIP language through clocks used to
express timing constraints on transitions and locations (location invariants). It also supports
urgency types on transitions [BS00] that provide additional means to constrain the progress of
time in a given system. In this thesis, we do not consider priorities or urgency types. However,
given a timed system S that includes priority rules on interactions and/or urgency types on
transitions, then its underlying timed transition system TS is included in the timed transition
system representing its abstraction S∗ from the latter, that is, TS ⊆ TS∗ . This means that all
the results of this thesis, if they apply on S∗, then they apply on S.

The BIP language defines systems as a composition of components using a set of syntactic
constructs that specify components behavior and interface as well as the ongoing synchronizations
(interactions) and priorities. They consist of the following:

• Atomic component: Atoms represent the simplest entity of a system. An atomic component
may include a set of ports, data and clocks. Its behavior is described using an automaton
or a Petri net whose transitions are labeled by ports with guards possibly on data and/or
clocks. Ports and data can be exported, and thus become accessible at a higher hierarchy
level (compound). They define the interface of a component. Additionally, atomic
components support the usage of external C/C++ functions on transition guards and
may as well trigger the execution of such functions on the execution of a transition.

• Connector: Connectors are stateless entities that characterize the possible interactions
between a set of components via their interface ports.

• Priority: Priorities are used to restrict the possible set of enabled interactions.

• Compound: A compound is a composite component that consists of a set of atomic
components, the connectors specifying their interactions and a set of priority rules. It
may as well export ports and data.

• Package: A BIP package is a compilation unit contained in a single .bip file. It may
contain data, external data types, external functions, external operators, port types, atom
types, connector types and compound types. It also may use other BIP packages.

Example 7.1.1. Figure 7.2 illustrates the syntax of BIP and presents different elements of
the BIP language. The package ControllerWorker includes the definition of the port type Port,
the connector type Link for interactions involving two ports of type Port, atomic components
Controller and Worker. The atomic component Controller consists of a clock x, an internal
port init and two exported port, a and c, defining its interface. The statement place lc0,
lc1, lc2 defines the places (locations) of the timed automaton describing its behavior, where
lc0 is the initial place. Lines 19 to 22 represent the declaration of a transition. It consists of
the following elements:

1. The port labeling the transition: on init

2. The source and destination places: from lc0 to lc1
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3. A possible empty list of guards over data and clocks: when x ≥ 8 second

4. A possible empty list of clocks to reset: reset x

5. A possible empty transfer function for updating data variable or triggering the execution
of external C code: do{}

As explained earlier, components are composed using connectors. The Compound Type
System defines a system composed of two Workers and one Controller. It also defines the
interactions between the controller component and each Worker component (worker1 and
worker2) through connectors ab1, cd1, ab2, and cd2.

1 package ControllerWorker
2
3 port type Port ()
4
5 connector type Link (Port p1 , Port p2)
6 define p1 p2
7 end
8
9 atom type Worker ()

10 clock y
11
12 export port Port d()
13 export port Port b()
14
15 place l1 , l2
16
17 initial to l1
18
19 on b
20 from l1 to l2
21 when ( y>= 5 )
22 do {}
23
24 on d
25 from l2 to l1
26 reset y
27 do {}
28 end
29 atom type Controller ()
30 clock x
31 export port Port a()
32 export port Port c()
33 port Port init ()
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37 place lc0 , lc1 , lc2
38
39 initial to lc0
40 do {}
41
42 on init
43 from lc0 to lc1
44 when (x >= 8 second )
45 reset x
46 do {}
47
48 on a
49 from lc1 to lc2
50 when (x == 5 second )
51 reset x
52 do {}
53
54 on c
55 from lc2 to lc1
56 reset x
57 do {}
58
59 invariant inv1 at lc1 when (x <= 5 second )
60 end
61
62 compound type System ()
63 component Worker worker1 ()
64 component Worker worker2 ()
65 component Controller controller ()
66
67 connector Link ab1 ( worker1 .b, controller .a)
68 connector Link ab2 ( worker2 .b, controller .a)
69 connector Link cd1 ( worker1 .d, controller .c)
70 connector Link cd2 ( worker2 .d, controller .c)
71
72 end
73 end

Figure 7.2 – A BIP Example

7.2 The BIP Toolbox

The BIP framework provides a rich set of tools that allows to model, verify and execute systems.
The BIP toolbox is structured in different categories as shown by Figure 7.3.
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Figure 7.3 – The BIP Toolbox

(1) Language Factory

This category includes translation of various languages or modeling paradigms in addition to
the BIP language. It includes translation of synchronous languages [BSS09, STS+10] as well
as languages combining software applications and hardware architectures [CRBS08, BMP+07,
BBB+11c], allowing thus automatic generation of BIP models through several translation
steps. First, the functional modules of the considered application, along with the necessary
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data structures and application functions, are translated into BIP components. Thereafter,
connectors representing the interactions between the application modules are added. Finally,
priorities may be added to refine the behavior of the obtained BIP model with respect to the
expected behavior.

(2) The BIP Compiler

The BIP compiler consists of three parts:

1. The front-end : it interacts with the user of the compiler. It reads user input and
transforms it in a form suitable for the following process (ie. internal representation).

2. The middle-end : applies operations on the internal representation (eg. optimizations,
architectural transformations, etc.). Such operations are contained into small blocks of
the middle-end that we will call filter later on. An example of filters that can be found in
the middle-end of the BIP compiler are:

• The identity filter is the default filter that given a BIP model return the same BIP
model.

• The flattening filter transforms a hierarchical system into flattened atomic compo-
nents synchronized through flattened interactions.

• The distributed real-time filter includes the transformation of BIP models to Send/Re-
ceive models as described in Chapter 3. It also includes our implementation of the
methods presented in Chapter 4 and Chapter 5.

The BIP middle-end can be also associated with the RTD-Finder tool for validation and
optimization purposes.

3. The back-end : It consists of code generators that produce the final result from the
internal representation. Usually, the final output is in the form of a source code in a
programming language (eg. C++). We distinguish two types of code generators, namely,
a self contained distributed code generator and an engine-based generator.

A typical compilation consists of the following steps:(1) First, the front-end executes and
creates a BIP-EMF model. Then, (2) the filters in the middle-end are executed in turn. The
result is a possibly modified BIP-EMF model. Finally, (3) the wanted back-end is executed
and produces the compilation results.

(3) Simulation and Execution

As stated above, the back-end of the BIP compiler generates the final representation of a BIP
model as source code in a programming language such as C++. The resulting source code
is either self contained and can be directly compiled and deployed for execution, or it can be
linked with an engine that computes the corresponding execution sequences according to the
BIP semantics. Usually, the representation used is a C++ software that is linked against the
engine’s runtime to create an executable software. Typically, engines target one or more of the
following main goals:
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• Execution of the model corresponds to the computation of a single execution sequence
that is intended to be executed on the target platform. In this case, the engine realizes
the connection between the model and the platform in order to ensure a correct behavior
of the execution.

• Simulation of the model corresponds to the computation of a single execution sequence
that is intended to be executed on the host machine for simulation purpose, that is, time
is interpreted in a logical way.

• Exploration of the model corresponds to the computation of several execution sequences
corresponding to multiple simulations of the model.

(4) Verification Tools

The BIP toolset includes two verification tools intended for system validation and performance
evaluation.

1. The RTD-Finder [RBBC16] tool is a compositional verification tool that allows to verify a
given system against a set of safety properties such as deadlock freedom, mutual exclusion
or bounded response time. It is based on the computation of invariants representing
over-approximations of the reachable states of a system.

2. SBIP [MNB+18] is a statistical model-checker that supports multiple modeling formalism
ranging from DTMCs to CTMCs and GSMPs. It includes a single integrated environment
where one can edit models, compile, simulate, and perform SMC analysis.

7.3 Tools Developed in this Thesis

The methods presented in Chapter 4 and Chapter 5 have been implemented in the distributed
real-time filter of the BIP compiler. The latter also includes the transformation of BIP models
to Send/Receive models as described in Chapter 3. Figure 7.4 depicts an overview of the
distributed real-time filter. It includes the following modules:

• Analyser: The Analyser creates internal abstractions of the input BIP model. Particu-
larly, it includes:

1. Component Info: It encompasses atomic components information such as a map
indicating for each port a list of source and destination locations matching transitions
labeled by this port, with the corresponding timing constraints. It also includes
urgency predicate for each component.

2. Interaction Info: This unit builds for each interaction the set of its participating
components, the involved port for each component, as well as all the possible combi-
nations (location configurations and timing constraints) based on component info.
It also includes for each interaction α all the predicates Enabled(α), Enabled↙(α)
and Enabled↙u

l (α). The latter is constructed based on the Planning Horizons file
provided as input.
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3. Compound Info: The Compound Info unit combines the aforementioned info in order
to build a given system abstraction. In addition to components and interactions info,
it constructs the set of potential conflicts based on the Interaction Partition file and
all the necessary elements required for building the Send/Receive model of Chapter 3,
and for the generation of expressions presented in Chapter 4 and Chapter 5.

• Property Generator: The Property Generator module builds all the necessary expres-
sions for the optimization of conflict detection and the deadlock freedom verification of
the local planning semantics. It interacts with the RTD-Finder tool in order to achieve
these tasks.

• Send/Receive Transformation: Using the system abstraction provided by the Anal-
yser, and based on the result of the verification results obtained from the RTD-Finder
tool, the Send/Receive Transformation module applies the transformations presented in
Chapter 3.
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Figure 7.4 – The Distributed Real-Time BIP Filter

7.4 Experimentation

In this section, we present the experimental results for the methods presented in Chapter 4 and
Chapter 5. The approaches have been validated on different case studies in combination with
the RTD-Finder tool.
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7.4.1 Case Studies

Train Gate Controller System

The train gate controller [AD94] is a system composed of: a controller, a gate and a train.
Figure 7.5 gives an overview of the system and its interactions: The train informs the controller
about his position (w.r.t. to the crossing) through the interactions α1 (approach) and α2 (exit).
On the other hand, the controller lowers (α3) and raises (α4) the gate whenever the train enters,
respectively exits. Notice that actions {enter} of the train, and {up, down} of the gates are
considered as singleton interactions.
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Figure 7.5 – Train Gate Controller

FireWire - IEEE 1394

FireWire is a high-performance serial communication bus dedicated for hot plug-and-play
multimedia devices. Devices can be organized in arbitrary topologies, where each pair of nodes
is connected by two unidirectional channels. The internal representation of topologies is a
tree where the root (leader) arbitrates the access to the bus. The designation of the leader is
performed through a leader election protocol, namely, the tree identification protocol. Whenever
the topology changes, i.e., a device joins/leaves, a reset occurs, and a new election is triggered.

Figure 7.6 – FireWire Topologies with 2, 3 and 5 nodes

The tree identification protocol is initiated by the leaf nodes of the topology. They send
requests asking their neighbors to become their parents. A parent request sending mode is
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non deterministically chosen to be fast or slow. It determines the amount of time to wait
before sending. Internal nodes of the topology keep on listening to parent requests until they
receive exactly n − 1 requests, n being the number of neighbors. Then, they send a parent
request to their remaining neighbor. When receiving a parent request, a node either sends
an acknowledgment, or detects a contention in the case it has also sent a parent request and
it is still waiting for an acknowledgment. Intuitively, a contention means that two neighbors
are mutually asking to be leader. This situation is resolved by forcing both nodes to send
new requests after a random waiting time. We implemented a FireWire model inspired from
the case-study in [DLL+11], where the considered topology is made of two devices. Figure 7.7
depicts the model for the node component.
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Figure 7.7 – Timed Automaton for a Node

Gear Controller System

The gear controller system (Figure 7.8) describes the control system responsible for the gear
change inside a vehicle. The used model encompasses formal models of the gear controller and
its environment. The whole system includes five components: an interface, a controller, a clutch,
an engine a gear-box and two global variables. In order to change the gear, the interface sends
a signal to the controller. Consequently, the controller interacts with the engine, the clutch
and the gear-box to achieve the gear change. The engine is responsible of either regulating
the torque or synchronizing the speed. On the other hand, the gear-box sets the gear between
some fixed bounds, whereas, the clutch is used whenever the engine is not able to function
properly (under difficult driving conditions, for instance). The case study was initially designed
in UPPAAL [LPY01] and has been translated to BIP.

The complete model (taken form [LPY01]) can be found in Appendix A.

Remark 7.4.1. Note that since the gear controller system contains to global variables, we had
to tweak the generated invariants of the RTD-Finder tool as well as some of the predicates in
order to restrict the set of reachable states of the system.



7.4 Experimentation 101

Gear Controller

Gear Box
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ClutchEngine

Figure 7.8 – Gear Controller System

7.4.2 Results

The experiments have been conducted on a HP machine with Ubuntu 16.04, an Intel® Core™i5-
4300U processor of frequency 1.90GHz×4, and 7.7GiB memory.

Conflict Detection Optimization

Table 7.1 – Experimental results

Model n i c p f g t

Task Manager

4 8 2 4 3 75% 60.55ms

12 40
2 40 30 75% 367.19ms
5 64 48 75% 521.45ms
10 68 51 75% 545.34ms

22 80
2 80 60 75% 2.14s
10 144 108 75% 3.41s
20 148 111 75% 3.69s

32 120 30 228 171 75% 8.41s
42 160 40 308 231 75% 20.72s

52 200

2 200 150 75% 22.56s
5 320 240 75% 34.78s
10 360 270 75% 37.72s
25 384 288 75% 41.69s
50 388 291 75% 45.35s

Train Gate
Controller 22 45 20 74 37 50% 813,62ms

Gear
Controller 5 32 4 8 3 37.5% 5,94s

Table 7.1 summarizes for each experiment the number of components (n), interactions (i),
partition classes (c), potential conflicts (p), false conflicts (f), the gain of the conflict detection
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and gives also the total verification time of our methods combined. The above results give an
indication on how much conflict resolution will be needed during execution.

We first performed several experiments on different variants of the Task Manager example
(with 2, 10, 20, 30, 40 and 50 Tasks). Each variant was tested with different partitioning of
interaction (different number of classes). Note that each time we chose the interaction partition
such that it yield the maximum number of potential conflicts. We can notice from the Task
Manger experiments that increasing the number of interaction partition classes will increase
the number of potential conflicts, that is, the more distributed the system is the more conflicts
it contains. Remark that the percentage of gain remains the same meaning that our detection
method is not affected by the partitioning but rather bu the overall structure and dynamics of
a given system.

We performed other experiments on real-life case studies such as the Train Gate Controller
and the Gear Controller Systems which also yield interesting results in term of conflict detection
ratio and execution time.

Action-Time-Lock Detection for the LPS

Table 7.2 depicts the values hmax for each interaction of the Task Manager example, obtained
while fixing hmin. Notice that the symmetry of the system implies the same hmax for interactions
αi, αi+1, i ∈ {1, 3, 5, 7}. By remarking that location ℓ23 (resp. ℓ33) has a time progress condition
x ≤ 4 (resp. y ≤ 4), and by observing that the clock x is reset on the transition leading
to this location, we can conclude that planning the system with hmin > 4 will lead to an
action-time-lock. Particularly, in Example 5.1.1, for hmin = 2 interaction α6 was planned with
a horizon δ = 8, and consequently, leads to a action-time-lock state. Our method detects such
cases and thus, finds that the maximum horizon for this interaction is 7. Likewise, the hmax for
interactions α2, α4 and α8 (resp. α1, α3 and α7) is found to be unbounded (+∞).

Table 7.2 – Detailed Results of the Task Manager Experiments

hmin hmax(α1), hmax(α2) hmax(α3), hmax(α4) hmax(α5), hmax(α6) hmax(α7), hmax(α8)
4 +∞ +∞ 9 +∞
3 +∞ +∞ 8 +∞
2 +∞ +∞ 7 +∞
1 +∞ +∞ 6 +∞

Table 7.3 summarizes the experiments obtained on the benchmarks stated above, where n
is the number of components, nbI the number of time progress conditions that will be verified
against action-time-lock freedom and max hmin the maximum value of hmin for which the system
is action-time-lock-free in the planning semantics. Additionally, the column hmax indicates
whether a restriction on the upper horizons is required to avoid deadlocks. Finally, texec gives
an overview of the execution time including both the invariants generation and the verification
time.
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Table 7.3 – Experiments Results

Model n nbI max hmin hmax texec(s)
Task Manager 4 4 4 B 0.11

Train Gate Controller 3 6 4 +∞ 0.16
Firewire 4 10 5 +∞ 3.03

Gear Controller 5 19 130 +∞ 4.65

As shown in table 7.2, the task manager model has a maximal hmin value of 4 TU and
requires a restriction on the upper horizons for interactions α5 and α6. In the same way, we
found that the train gate controller, the firewire and the train gate controller models have
respectively maximal hmin value of 4 TU, 5 TU and 130 TU. However, they do not require any
restriction on the upper horizons values of their interactions.
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Chapter 8

Conclusion and Perspectives

In this chapter, we conclude this thesis by summarizing the achievements and pointing out
interesting future working directions.

8.1 Achievements

Knowledge Based Optimization Approach

In this thesis, we presented an intermediate distributed representation (Send/Receive model)
for distributed ream-time systems. This representation proposes an implementation method for
systems with multiparty interactions through simpler primitives such as messages passing. It
also provides a scheduling mechanism, more appropriate to distributed real-time systems, since
it is based on partial information of a given system.

Our first contribution was to propose an optimization methods for such intermediate
representation. We presented a methods that relies on invariants in order to refine the set of
conflicting interactions, required for building the Send/Receive model. Based on the original
model, an approximation of the set of reachable states of a timed system is derived on the form
of invariants. The latter are used later on for checking the simultaneous enabledness of two
potentially conflicting interactions. Based on the obtained results, either the potential conflict
between two interactions is cleared out meaning that both interactions are never enabled at
the same time, or the real conflict cannot be attested which in this case a counter-example is
proposed. This optimization aims particularly at reducing the effort of scheduling interactions
by removing any unnecessary exchange of messages or evaluation computations.

Modeling Communication Delays

The Send/Receive model presented in Chapter 3 assumes that the communication mechanisms
are fast enough to not impact the behavior of the overall system. Effectively, this is due to
the zero delay between the decision of executing interactions in schedulers and the concrete
execution of the corresponding actions in the participating components. The resulting model
was proven to be observationally equivalent to the initial model. To reduce the impact of
communication delays on the system behavior, [Tri15] proposed an approach based on the idea
of early decision making. In this solution, schedulers plan ahead the execution of interactions
and notify the corresponding components in advance. Moreover, it was suggested that schedulers
are required to observe an additional subset of components called observed components, not
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participating in the planned interactions, in order to achieve global deadlines. However, besides
the fact that this method is restricted to systems where components have non decreasing
deadlines, the characterization of the set of observed components is incomplete. In fact this set
is greater than the presented characterization, and in many cases is equal to all the component
of the system. This is mainly due to the nature of the location invariants: Local constraints
that propagate on the global level.

Our second contribution was to propose a method, based on the same idea of early decision
making, but that differs from the approach of [Tri15] in the following points:

• No restriction on components constraints was made

• No restriction on the form of timing constraints (In [Tri15] timing constraints are
restricted to constraints of the form x ≤ k or x ≥ k)

• Our method works on the semantics level conversely to the aforementioned method that
relies directly on transformations and model construction. Effectively, we introduced the
local planning semantics that plan the execution of interactions based only on the set
of its participating components. The planning operations are constrained by the worst
estimation of communication delays as well as the planned interactions. This semantics is
suited for distributed real-time systems since it is based on local (partial) information. We
also provided a proof for weak simulation, and a strategy based on sufficient conditions
guaranteeing the preservation of the system behavior from deadlocks. Finally, we presented
an alternative method based on real-time controller synthesis paradigm and discussed its
convenience with respect to our method.

Robustness to Clock Imperfections

We studied in Chapter 6 the effect of clock imperfections (clock drift) on the behavior of a
timed system. We considered a perturbation model where clock rates are not perfect (not equal
and may change during the execution) but under the assumption that clocks are resynchronized
which induces that their difference of clock values will stay within a certain threshold. Our
robustness analysis approach was based on the characterization of potential bad states that
invalidates the ϵ-simulation between the initial model and the perturbated model. We proposed
a solution for verifying the robustness of a given timed system based on shrinkability analysis
and suggested the Shrinktech tool for achieving such analysis which is basically based on
parameter synthesis.

8.2 Future Works

Partitioning and Mapping

In this thesis, we presented the partitioning of interactions as being an important parameter
of the Send/Receive transformation. Interaction partitioning is of importance since the set of
conflicting interactions is calculated based on the latter. The immediate question is whether
a given partitioning is better than an other. In other terms, how can we evaluate if a given
partition of interaction is good or bad. Instinctively, the choice of partitioning interactions is
based on two main factors, namely the degree of parallelism and the effort for solving conflicts
(in terms of messages and computational evaluation). This choice is generally guided by the
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choice of a specific target platform: how expensive is the communication? This introduce
necessarily the problem of mapping an application on a given target platform [CMLS11]. This
question is of great importance since its answer will define how each application process will be
mapped to the platform interconnected processing nodes. Consequently, it decides on workload
of each processing nodes and the communication volume induced by such mapping. Thus an
optimal partition would be a partition that takes into account the target platform and proposes
a partitioning that optimize all the above points. This can be done either by computing directly
the optimal solution or by tuning a proposed partition by merging or splitting some processes
of the application.

Invariants for Distributed Real-Time Systems

In Chapter 5 and Chapter 6, we presented different semantics reflecting the behavior of a
real-time system in a distributed setting (under communication delays or with clock drift).

In Chapter 5, we relied on the invariants of the initial model to verify the sufficient conditions
for deadlock freedom of the local planning semantics. This usage is due to the fact that invariants
of the system under the standard semantics are proven to be invariants of the system under the
local planning semantics. An interesting direction is to try to derive invariants characterizing
specifically the reachable states of the planning semantics. This will help directly in the
verification process in term of results precision.

In Chapter 6, we proposed the Shrinktech tool for the robustness analysis. However, such
tool relies on the computation of the region graph of a timed automaton, which in term of
complexity suffers from the state explosion problem when the increasing the number of clocks.
A solution to reduce this cost is to compute a parametric invariant of the system with drifting
clocks. The latter represents a cheap over-approximations may in some cases allow to avoid
overly eager and expensive computations of the precise parametric images of the set of reachable
states.

Modeling vs Semantics

Model-based development is one promising approach in building real-time systems today. This
paradigm relies on models with well defined semantics when building systems all the way form
the design phase until reaching a concrete implementation. This approach is really important
when working with large scale heterogeneous systems since it reduces both the engineering efforts
and the development costs and time. Nevertheless, a model represents only an abstraction
of the reality and is often based on idealized assumptions, which will not hold at a given
stage of the model-based workflow, precisely when reaching the implementation point. In this
thesis, we tried to bridge this gap by introducing new semantics to tackle the different issues
inherent to the distributed context. An interesting working direction would be to answer the
following question: Can similar results be obtained without introducing new semantics, but
using modeling instead? This question is of a big interest since it can indicate which direction
efforts need to be made. For instance, the introduction of a new semantics can be in some case
complicated and errors-prone whereas modeling is known to be more general, much easier and
trivial to understand. Also, modeling has also the benefit of being modular in the sense that if
we change the target execution platform on will have just to replace the corresponding model.
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Scheduling Distributed Real-Time Systems

In this thesis, we often mentioned the words “schedulers or scheduling” but without referring
to any scheduling scheme or policy. An interesting working direction is to refine the behavior
of given system by imposing some scheduling constraints. In fact, since we presented methods
based on over-approximations and sufficient conditions, the results of our analysis may in some
cases yield counter-examples that are either false-positives or real counter-examples. The idea is
to identify scheduling schemes that could identify the needs, based on a given set of properties,
in order to achieve a correct behavior.
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Appendix A

The Gear Controller System

Figure A.1 – The Gearbox Component

Figure A.2 – The Clutch Component
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Figure A.3 – The Gearbox Controller Component
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Figure A.4 – The Engine Component
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Figure A.5 – The Interface Component
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