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Résumé

Les méthodes ensemblistes constituent un sujet de recherche très populaire au cours
de la dernière décennie. Leur succès découle en grande partie de leurs solutions
attrayantes pour résoudre différents problèmes d’apprentissage intéressants parmi
lesquels l’amélioration de l’exactitude d’une prédiction, la sélection de variables,
l’apprentissage de métrique, le passage à l’échelle d’algorithmes inductifs, l’apprent-
issage de multiples jeux de données physiques distribués, l’apprentissage de flux de
données soumis à une dérive conceptuelle, etc...

Dans cette thèse nous allons dans un premier temps présenter une comparaison
empirique approfondie de 19 algorithmes ensemblistes d’apprentissage supervisé
proposé dans la littérature sur différents jeux de données de référence. Non seule-
ment nous allons comparer leurs performances selon des métriques standards de
performances (Exactitude, AUC, RMS) mais également nous analyserons leur dia-
grammes kappa-erreur, la calibration et les propriétés biais-variance.

Nous allons aborder ensuite la problématique d’amélioration des ensembles de mod-
èles par la sélection dynamique d’ensembles (dynamic ensemble selection, DES). La
sélection dynamique est un sous-domaine de l’apprentissage ensembliste où pour
une donnée d’entrée x, le meilleur sous-ensemble en terme de taux de réussite est
sélectionné dynamiquement. L’idée derrière les approches DES est que différents
modèles ont différentes zones de compétence dans l’espace des instances. La plu-
part des méthodes proposées estime l’importance individuelle de chaque classifieur
faible au sein d’une zone de compétence habituellement déterminée par les plus
proches voisins dans un espace euclidien.

Nous proposons et étudions dans cette thèse deux nouvelles approches DES. La pre-
mière nommée ST-DES est conçue pour les ensembles de modèles à base d’arbres de
décision. Cette méthode sélectionne via une métrique supervisée interne à l’arbre,
idée motivée par le problème de la malédiction de la dimensionnalité : pour les jeux
de données avec un grand nombre de variables, les métriques usuelles telle la dis-
tance euclidienne sont moins pertinentes.

La seconde approche, PCC-DES, formule la problématique DES en une tâche d’app-
rentissage multi-label avec une fonction coût spécifique. Ici chaque label correspond
à un classifieur et une base multi-label d’entraînement est constituée sur l’habilité
de chaque classifieur de classer chaque instance du jeu de données d’origine. Cela
nous permet d’exploiter des récentes avancées dans le domaine de l’apprentissage
multi-label. PCC-DES peut être utilisé pour les approches ensemblistes homogènes
et également hétérogènes. Son avantage est de prendre en compte explicitement les
corrélations entre les prédictions des classifieurs. Ces algorithmes sont testés sur un
éventail de jeux de données de référence et les résultats démontrent leur efficacité
faces aux dernières alternatives de l’état de l’art.
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Abstract

Ensemble methods has been a very popular research topic during the last decade.
Their success arises largely from the fact that they offer an appealing solution to sev-
eral interesting learning problems, such as improving prediction accuracy, feature
selection, metric learning, scaling inductive algorithms to large databases, learning
from multiple physically distributed data sets, learning from concept-drifting data
streams etc.

In this thesis, we first present an extensive empirical comparison between nineteen
prototypical supervised ensemble learning algorithms, that have been proposed in
the literature, on various benchmark data sets. We not only compare their perfor-
mance in terms of standard performance metrics (Accuracy, AUC, RMS) but we also
analyze their kappa-error diagrams, calibration and bias-variance properties.

We then address the problem of improving the performances of ensemble learn-
ing approaches with dynamic ensemble selection (DES). Dynamic pruning is the
problem of finding given an input x, a subset of models among the ensemble that
achieves the best possible prediction accuracy. The idea behind DES approaches is
that different models have different areas of expertise in the instance space. Most
methods proposed for this purpose estimate the individual relevance of the base
classifiers within a local region of competence usually given by the nearest neigh-
bours in the euclidean space.

We propose and discuss two novel DES approaches. The first, called ST-DES, is de-
signed for decision tree based ensemble models. This method prunes the trees using
an internal supervised tree-based metric; it is motivated by the fact that in high di-
mensional data sets, usual metrics like euclidean distance suffer from the curse of
dimensionality.

The second approach, called PCC-DES, formulates the DES problem as a multi-label
learning task with a specific loss function. Labels correspond to the base classifiers
and multi-label training examples are formed based on the ability of each classifier
to correctly classify each original training example. This allows us to take advantage
of recent advances in the area of multi-label learning. PCC-DES works on homoge-
neous and heterogeneous ensembles as well. Its advantage is to explicitly capture
the dependencies between the classifiers predictions. These algorithms are tested
on a variety of benchmark data sets and the results demonstrate their effectiveness
against competitive state-of-the-art alternatives.
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Introduction

Ensemble learning is a machine learning sub-field of combining multiple learners
to gain in terms of performances for a specific problem. In the last decades, the ma-
chine learning community has been developing new approaches to generate, com-
bine and test ensembles of models.

This thesis is divided into two parts. The first part is dedicated to ensemble learning
in general, with a review of the state-of-the-art approaches for supervised learning.
This part highlights through an extensive comparison, the best approaches among
homogeneous ensemble generation methods.

The second part deals with the problem of dynamic pruning or dynamic ensemble
selection (DES) which is a natural extension of ensemble learning methods : select-
ing the best sub-ensemble of models dynamically for an unseen instance x. In this
part, recent state-of-the art approaches will be presented, by focusing on their algo-
rithmic properties. Two novel DES approaches will be proposed and discussed in
this thesis.

In Chapter 1 we introduce the fundamentals of ensemble learning. First we review
the general homogeneous ensembles paradigms: Bagging, Boosting and all their vari-
ants. The goal is to give the readers some theoretical and intuitive explanation to
better understand these approaches. Some extra information about heterogeneous
ensembles and stacking generalization will be given at the end of this chapter.

In Chapter 2, we present an extensive empirical comparison between nine-teen pro-
totypical supervised ensemble learning algorithms for binary classification prob-
lems over 3 different metrics [Narassiguin et al., 2016]. The comparison leads to
make some general conclusions about the best performing approaches in the recent
ensemble learning literature.

Chapter 3 is devoted to the dynamic ensemble selection (DES) field and present
the standard state-of-the-art frameworks. Individual and meta-learning based ap-
proaches are detailed from a methodological and practical point of view. Their own
advantages and drawbacks are also discussed.

In Chapter 4, we propose a new dynamic pruning approach well-designed for ho-
mogeneous decision tree-based ensembles called ST-DES [Narassiguin, Elghazel,
and Aussem, 2016]. ST-DES, an individual-based approach, prunes the trees using
an internal supervised tree-based metric instead of euclidean distance, to mitigate
the curse of dimensionality problem.

In Chapter 5, Dynamic ensemble selection is reformulated as a multi-label classi-
fication problem with a specific loss function. Attempts on this aspect have been
reported recently in the literature [Markatopoulou, Tsoumakas, and Vlahavas, 2010;
Pinto, Soares, and Mendes-Moreira, 2016]. However, these approaches may con-
verge to an incorrect, and hence suboptimal, solution as they dont optimize the true
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- but non standard - loss function directly. In this Chapter, we show that the label
dependencies have to be captured explicitly and propose a DES method based on
Probabilistic Classifier Chains called PCC-DS [Narassiguin, Elghazel, and Aussem,
2017].
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Chapter 1

Ensemble Learning

OUTLINE
Ensemble learning has been one of the fastest growing field in machine learning.
Despite the recent interests in deep learning, ensembles still enjoy a great popularity
among researchers, corporate data scientists and data science amateur competitors.
Their success is due to their capacity to enhance single learners predictions, their
stability (low variance), their potential scalability and their low number of parame-
ters to tune.

1.1 Background

Training multiple classifiers/regressors parallelly or sequentially has been done in
the machine learning research field for some decades now [Ho, 1995; Breiman,
1996b; Freund and Schapire, 1996]. Even so, improving the existing ensemble para-
digms in terms of speed and accuracy is regularly discussed in recent prestigious
conferences [Dorogush et al., 2017; Chen and Guestrin, 2016; Ke et al., 2017].
Taking the decision of many models instead of one is something more or less natural
for us as humans since this methodology is applied in many of our activities where
scientific wisdom can’t give us a true answer: wisdom of crowd for democracy, peer
reviewing in research, etc... One famous toy example of using ensemble decisions
in a usual situation is the horse racing experts case. Supposed you want to bet
on a horse race without knowing anything about the domain. One solution might
be to meet the best better and ask him for some advises. Such a person might be
inaccessible and you still want to have some predictions ! One other solution is
to go to your local pub and ask to some betters their predictions and check how
well they did in terms of accuracy and gain for the previous races. You’ll thus be
able to combine, average, re-weight, and prune some of their predictions in order to
maximize you chance to win a certain amount of money. This example might seem
trivial but it sums up the rationale behind the ensemble methods such as majority
voting, boosting or ensemble pruning.
The ubiquity of ensemble models in machine learning and pattern recognition ap-
plications stems primarily from their potential to significantly increase prediction
accuracy over individual classifier models [Zhou, 2012]. In the last decade, there has
been a great deal of research focused on the problem of boosting their performance,
either by placing more or less emphasis on the hard examples, by constructing new
features for each base classifier, or by encouraging individual accuracy and/or di-
versity within the ensemble. While the actual performance of any ensemble model
on a particular problem is clearly dependent on the data and the learner, there is still
much room for improvement as the comparison between all the proposals provide
valuable insight into understanding their respective benefit and their differences.
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1.1.1 Definitions

Definition 1. In supervised learning, a classifier ψ is a function that maps input data X
to target values Y where Y belongs to a set of categories / classes / discrete values.

Definition 2. In supervised learning, a regressor ψ trained is a function that maps input
data X to target values Y where Y are continuous values, ie Y ∈ R.

Definition 3. An ensemble (or committee) of learners, is a set learners whose individual
decisions are combined in some way to classify new examples [Dietterich, 2000].

Generally, the nth learner ψn is learned on a transformed data set Tn(Xtrain) from the orig-
inal training data Xtrain (Tn can be re-weighting, bootstrap, rotation, etc...).

Learning ensemble of models can be parallel or sequential.

The learners are then combined by a weighted sum with weights (wn)1≤n≤N . A general
formulation of the ensemble’s decision function for an input x is given formally as follows :

Ψ(x) = Θ

( N∑
n=1

wn(x).ψn(x)
)

Where wn(x) is a weight assigned to the model n.

• For regression, Θ is usually the identity function.

• For classification Θ(z) = 1z≥θ where θ is a threshold.

• If the classifiers are not probabilistic, the sum is repalced by majority voting.

• For boosting, usually the weights wn(x) = wn are evaluated on training data.

• For boosting, Tn(Xtrain) are re-weighted versions of the training data.

• For bagging, wn(x) = wn = 1/N (or set manually).

• For bagging, Tn(Xtrain) are bootstraps of the original training data set.

• Static pruning : wn = 0 or 1, the weights are learned on validation data.

• Dynamic pruning : wn(x) = 0 or 1, the weights are learned dynamically on
validation data.

The Figures 1.2 and 1.3 show how the training and testing procedure generally work
for ensemble methods.
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FIGURE 1.1: General parallel training procedure.

FIGURE 1.2: General sequential training procedure.

FIGURE 1.3: General ensemble test procedure.

1.2 Homogeneous methods

The motivation of homogeneous ensemble learning is to use a single type of base
learner in the ensemble generation. Indeed, deterministic base models (CART, SVM,
Logistic Regression, etc...) have to be learned on transformed versions of the train-
ing data set in order to produce diverse outputs. This can be done parallely by
generating bootstraps of the original data set (Xtrain,Ytrain) and training a learner
per data set. It is the essence of Bagging (Bootstrap AGGregatING). On the other
hand, Boosting paradigm corrects sequentially the errors of the previous learners
by giving bigger weights to poorly predicted instances. In this Section, the detailed
explanations of these two homogeneous paradigms are given with theoretical anal-
ysis and some intuitive views.
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1.2.1 Bagging (Bag)

A simple idea to construct an ensemble of homogeneous base learners is to average
the predictions of independent learners (i.e trained on independently selected in-
stances). From a frequentist point of view, averaging decisions would keep a good
bias while reducing the variance which corresponds to the sensitivity of the model
to unseen instances. This is illustrated on Figure 1.4 where the average of two poly-
nomial models results in better generalization properties.
Suppose a regression problem (learning a function f(x) ∈ R) where the ensemble
decision of N independent regressors Ψ = (ψ1, . . . , ψN ) is given by :

Ψ(x) =
1

N

N∑
n=1

ψn(x)

For each regressor ψn, the expected prediction error Err[ψn(x)] is given by the bias-
variance decomposition for the squared loss [Geman, Bienenstock, and Doursat,
1992] :

Err[ψn(x)] = V ar[ψn(x)] +Bias[ψn(x)]
2 + σ2 (1.1)

Where σ corresponds to the unavoidable noise within the data. Since the ensemble
is homogeneous, we suppose that the variance and the bias is the same for all the
regressors :

∀n, V ar[ψn(x)] = V (1.2)
∀n,Bias[ψn(x)] = B (1.3)

The corresponding bias and variance for Ψ(x) are given below :

V ar[Ψ(x)] = V ar

[
1

N

N∑
n=1

ψn(x)

]

=
1

N2
V ar

[ N∑
n=1

ψn(x)

]

=
1

N2

N∑
n=1

V ar[ψn(x)]

=
V
N

(1.4)

Bias[Ψ(x)] = Ex

[
1

N

N∑
n=1

ψn(x)− f(x)
]

=
1

N

N∑
n=1

Ex[ψn(x)− f(x)]

=
1

N

N∑
n=1

Bias[ψn(x)]

= B

(1.5)
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This proves that averaging independent models reduces the variance while retain-
ing the bias.

FIGURE 1.4: Independent regressors averaging. To approximate the
function in red, two quadratic polynomials are learned indepen-
dently on the blue and the green data sets. There ensemble aggre-

gation in gold gives better generalization performances.

BOOTSTRAP
Bootstrapping is a statistical technique of sampling a data set with replacement.
The resulting new data set is called a bootstrap. The method was proposed by
Bradley Efron in 1979 predating by another sampling approach called jackknife
[Efron, 1979]. In probability and statistics, bootstrapping consists in estimating the
properties of a random variable estimator (mean, variance, etc) and is a strong alter-
native to statistical inference.
Bootstrapping is at the core of many machine learning techniques. In Bagging, boot-
straps are generated to simulate different training data set from the same distribu-
tion and thus introduce some diversity between the models. They allow also to have
unbiased estimates of the error of every single classifier without any validation data
set. Indeed, let’s suppose we generate from Xtrain a new bootstrap data set X′

train

with the same number of observations, i.e. M = M ′. Since the original data set
has been sampled with replacement, some observations may have been repeated
some others may be missing. It is easy to prove that the expected value for the ratio
of unique observations shared by Xtrain and X′

train is 1 − 1/e ≈ 63%. An internal
prediction error on these unseen instances (also called out-of-bag instances) can be
evaluated.

But how are those independant learners generated ? One way would be to select
randomly subsets of the training data and train learners on these. Unfortunately,
the more learners we’d like to generate, the smaller would be the non-overlapping
subsets which leads to a loss in individual performances of the learners. The inge-
nuity of Bagging (Bag) is to simulate independent data sets by applying bootstrap
sampling to the training data [Efron and Tibshirani, 1994]: from the training data
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of size M × P , M instances are chose with replacement. Thus, the bootstrap will
contain certain original instances more than once whereas some instances will be
missing, which will force the learners somehow to concentrate on specific spaces of
the data distribution (besides the unseen samples also called out-of-bags can be used
as a validation data set to evaluate learners’ individual generalization errors). By
repeating the process N times, N new training data sets are produced and N poten-
tially independent models are learned (Figure 1.5). Bag finally uses majority voting
or averaging (depending whether it’s a classification or a regression problem).

FIGURE 1.5: Bag training phases. N bootstraps (Tn(Xtrain))1≤N are
selected out of the training data Xtrain and used to generate the en-

semble of models.

Algorithm 1 Bagging Bag

Input: Training data set (Xtrain,Ytrain), test input x, number of base learners N .
Output: Prediction for x.

for n = 1 . . . N do
Select a bootstrap (Xboot,Yboot) from (Xtrain,Ytrain).
Fit a learner ψn on (Xboot,Yboot).

end for

return argmax
c

1
N

N∑
n=1

ψ
(c)
n (x)

Random Forest (RF)

Random Forest (RF, Breiman, 2001) is an extension of bagging which injects more
randomness on decision tree predictors to obtain more diverse classifiers. The main
idea is to use unpruned decision trees (CART) as base classifiers and introduces
additional randomness into all trees in the forest. Namely, in each interior node
of each tree a subset of KRF attributes is randomly selected and evaluated with the
Gini index heuristics. The attribute with the highest Gini index is chosen as split
in that node. The number KRF of features selected controls randomness within the
ensemble and could be tuned (on out-of-bags for example) such that classifiers are
independent enough without increasing their bias. Even so, Breiman empirically
shown that a value of KRF =

√
P or KRF = log2(P +1) results in good performances.
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As shown on Figures 1.6 and 1.7, RF has smoother decision boundaries than Bag
due to decision trees that are more independent and diverse which prevents noise
overfitting and leads to better generalization results on test set.

FIGURE 1.6: Bag decision boundary on "make moon" scikit-learn data
set with a high gaussian noise. The 5 first classifiers (here CARTs) are
given on top and the aggregated decision of 200 classifiers is given
bellow. The scales of blue and red are probability estimations (the

darker the bigger).

Besides as mentioned by Zhou and Zhi-Hu [Zhou, 2012], the training stage of RF
is faster than Bag since the deterministic procedure in Bag for tree construction
evaluates all the features for the split selection whereas RF evaluates only a subset
of those. The efficiency of RF in terms of time compared to Bag is shown on Figure
1.8.

Algorithm 2 Random Tree

Input: Training data set (Xtrain,Ytrain), test input x, Number of base learners N .
Output: Random Tree classifier fitted.

Initialize binary tree structure Tree. At each node :
Select randomly a subset Fsub from the feature set F .
Split on the best feature in Fsub.
Add the split in Tree.
return Tree
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FIGURE 1.7: RF decision boundary. We can see on the first five trees
that RF produces more diverse classifiers. Besides the performances

are usually a bit better than Bag.

Algorithm 3 Random Forest RF

Input: Training data set (Xtrain,Ytrain), test input x, Number of base learners N .
Output: Prediction for x.

for n = 1 . . . N do
Select a bootstrap (Xboot,Yboot) from (Xtrain,Ytrain).
ψn = RandomTree(Xboot,Yboot).

end for

return argmax
c

1
N

N∑
n=1

ψ
(c)
n (x)

Random Patches (RadP)

This method was proposed recently [Louppe and Geurts, 2012] to tackle the prob-
lem of insufficient memory w.r.t. the size of the data set. The idea is to build each
individual model of the ensemble from a random patch of data obtained by drawing
random subsets of both instances and features from the whole data set; ps and pf are
hyper-parameters that control the number of samples and features in a patch as fol-
low : for each new learner a patch of size (ps×M,pf ×P ) is randomly selected from
the training data. These parameters are tuned using an independent validation data
set. RadP was inspired by Bag and less popular dimension-reducing methods (in
terms of samples and features) such as Random Subspace (RS) [Ho, 1998] and Past-
ing Rvotes [Breiman, 1999]. It is worth mentioning that RadP was initially designed
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FIGURE 1.8: Training time comparison for RF and Bag when features
are added and for different ensemble sizes. Ensemble sizes are dis-

played only for Bag at the end of each curve for visibility reasons

to overcome some shortcomings of the existing ensemble techniques in the context
of huge data sets. As such, they were not meant to outperform the other methods
on small data sets or without a memory limitation. However this algorithm is an
interesting alternative to Bag and RF.

Algorithm 4 Random Patches RadP

Input: Training data set (Xtrain,Ytrain), test input x, Number of base learners N .
Output: Prediction for x.

for n = 1 . . . N do
Select a random patch (Xpatch,Ypatch) of size (ps × M,pf × P ) from
(Xtrain,Ytrain).
Fit a learner ψn on (Xpatch,Ypatch).

end for

return argmax
c

1
N

N∑
n=1

ψ
(c)
n (x)

Class Switching (Swt)

Swt [Martínez-muñoz and Suárez, 2005] is a variant of the output flipping ensemble
proposed by Breiman [Breiman, 2000]. Here one step further is done in terms of
perturbing the data set in order to have independent classifiers : the idea is to ran-
domly switch the class labels at a certain user defined rate pswt that has to be tuned
on a validation set. The decision of the final classifier is again given by the major-
ity vote scheme over all base classifiers. Even if falsifying some classes might seem
confusing, Martínez and Suárez showed experimentally that for a large ensemble
size N (more than a thousand of learners), Swt gives smoother decision boundaries
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FIGURE 1.9: Construct random patches from a data set

FIGURE 1.10: RS training phases. Here the models are trained on the
data set subspaces (random subsets of features are selected).

and better generalization properties than Bag and Adaboost. The authors claim that
introducing noise in the original training data will force the ensemble to learn com-
plex patterns. Indeed as shown on figure 1.12, for a linearly separable problem (with
some random noise around the border), Bag and Ad tend to reproduce the stair-like
pattern learned by the decision tree whereas Swt, by randomizing some instances
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FIGURE 1.11: RadP is a combination of Bag and RadP: random sub-
sets of samples and features are selected.

targets, gives a decision boundary closer to a straight line.

FIGURE 1.12: Bag, Ad and Swt decision boundaries for a linear sepa-
rable problem with some random noise around the boundary.
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Algorithm 5 Class Switching Swt

Input: Training data set (Xtrain,Ytrain), test input x, Number of base learners N ,
switching ratio pSWT .

Output: Prediction for x.
for n = 1 . . . N do

Select a bootstrap (Xboot,Yboot) from (Xtrain,Ytrain) (as in BAG).
Generate the new target Yswt by switching a ratio of pSWT classes.
Fit a learner ψn on (Xboot,Yswt).

end for

return argmax
c

1
N

N∑
n=1

ψ
(c)
n (x)

Rotation Forest (Rot)

Proposed by [Rodriguez, Kuncheva, and Alonso, 2006], Rot is another ensemble
classifier generation technique in which the training set for each base classifier is
formed by applying Principal Component Analysis (PCA, Jolliffe, 1986) to rotate
the original attribute axes. The training data for each base classifier is produced
as follows: the attributes are randomly split into KRot subsets (KRot is a parame-
ter of the algorithm) and PCA is applied to each subset. All principal components
are retained in order to preserve the variability information in the data. Thus, KRot

axis rotations take place to form the new attributes for a base classifier. Diversity
of the committee is promoted through the PCA step applied on random subsets
of attributes without compromising the classifier accuracy since all principal com-
ponents are retained and the whole data set is used for training each base classi-
fier. KRot is usually fixed to 3 as suggested in [Rodriguez, Kuncheva, and Alonso,
2006]. Other rotation approaches were proposed replacing PCA by sparse random
projection [Kuncheva and Rodríguez, 2007], independent component analysis [De
Bock and Poel, 2011] and random rotations [Blaser and Fryzlewicz, 2015]. Figure
1.13 tends to show that on a data set that has some circular properties (here an
Archimedes spiral), rotate the data set for a each model has better generalization
properties and provides smoother decision boundaries.

Algorithm 6 Rotation Forest Rot

Input: Training data set (Xtrain,Ytrain) of size (M×P ), test input x, Number of base
learners N , random splits KRot.

Output: Prediction for x.
for n = 1 . . . N do

Split the feature set F into KRot subset (Fn,k)1≤k≤KRot

Initialize a rotation matrix Rn = array(M ×M)
for k = 1 . . .KRot do

X[:,Fn,k] is the subspace of Xtrain for the features subset (Fn,k).
Remove a random subset of classes from X[:,Fn,k].
Select a bootstrap of size 0.75×M from X[:,Fn,k]: Xboot[:,Fn,k].
Apply PCA on Xboot[:,Fn,k] and save the components in Rn.

end for
Fit a classifier ψn on (Rn × Xtrain,Ytrain).

end for

return argmax
c

1
N

N∑
n=1

ψ
(c)
n (x)
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(A) Bag

(B) Bag with rotations

FIGURE 1.13: Bag vs Bag with random rotations. This toy example
shows that rotating the training set can sometimes give better gener-

alization abilities to the ensemble learning process.



16 Chapter 1. Ensemble Learning

1.2.2 Boosting

Boosting is a machine learning ensemble procedure that initially came from the
ideas raised by Kearns thirty years ago [Kearns, 1988]. The main question of this
article was if it is possible to create a strong learning algorithm starting from any
learner (especially a weak learner, an algorithm slightly better than random guess-
ing). In 1990, Schapire proved [Schapire, 1990] that it is indeed possible to boost
the performances of a base learner, using the Probably Approximately Correct learn-
ing (PAC) framework developed years before by Valiant [Valiant, 1984]. This lead
to a plethora of boosting inspired initiatives from the mid-90s to now (Adaboost,
Logitboost, Gradient Boosting, XGBoost, etc...). In some of there boosting articles
[Freund, Schapire, and Abe, 1999; Freund and Schapire, 1997], Freund and Schapire
often take the example of horse racing and how to boost some basics rules of thumb
proposed by amateur bettors ("Has the horse won many races this season ?", "Which
is the horse with the best odds for the race ?"). Boosting refers to a general frame-
work that combines those kind of rules of thumb into a stronger stable and accurate
predictor.

PAC LEARNING
The Probably Approximately Correct learning paradigm is at the core of boosting
techniques. Let’s suppose we have a binary classification problem on a distribution
(X ,Y) ∈ R×{−1, 1}, a learner ψ from a set of hypothesisH and the true function to
learn f ∈ H. The classifier’s error on the distribution (X ,Y) is defined as follows :

error(ψ) = Prx∈X [f(x) �= ψ(x)] (1.6)

On one hand, the set of hypothesis is said to be strong PAC-learnable if and only if for
all 0 ≤ ε ≤ 1/2 and for all 0 ≤ δ ≤ 1/2 there exists an algorithm that finds a learner
ψ such that error(ψ) ≤ ε in time and space complexities in 1/ε and 1/δ.
On the other hand, weak PAC-learnability is defined as the strong one except for ε
which is not required to be as small as possible but should be just a little less than
random guessing.
Thus, the problem of boosting was initially formulated whether or not weak learn-
ability could imply strong learnability.

Adaboost (Ad)

Adaboost (for adaptive boosting Freund and Schapire, 1997) is the most popular
boosting framework. Its theoretical foundations and empirical performances have
made it a method of choice for many tasks in computer science, the best known
being ViolaJones algorithm for object detection in images [Viola and Jones, 2001].
For simplicity purposes, in all the following boosting algorithms state of the art
presentations, we’ll stay in a binary classification problem with y ∈ {−1, 1} and
y∗ = (1 + y)/2 ∈ {0, 1} as in many historical boosting studies. Obviously these
approaches can all be generalized to the multi-class problem and the reader can
find the multi-class generalization in the reference papers cited in this thesis.
Ad procedure detailed in Algorithm 7 was initially constructed to minimize addi-
tively the exponential loss L(y,Ψ(x)) = Ee−yΨ(x) which was seen to be a nice surro-
gate loss for the 0−1 misclassification error 1[yΨ(x)<0] in terms of differentiability and
performances on real data sets [Friedman, Hastie, and Tibshirani, 1998]. As a mat-
ter of fact, boosting procedure can be seen as an additive model of n weak learners
(fk)1≤k≤n as following :
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Ψn(x) =

n∑
k=1

fk(x) (1.7)

Where each extra learner fk tends to correct the wrong predictions of the previous
ones according to the current loss L(y,Ψn(x)). In a more formal way, suppose we
have a training data set (Xtrain,Ytrain) = (x1, y1), . . . , (xM , yM ), at the nth boosting
iteration, the training error is :

error(Ψn) =

M∑
m=1

error(Ψn(xm)) =

M∑
m=1

error(Ψn−1(xm) + αnψn(xm)) (1.8)

Where αn is a coefficient set such that the new weak learner ψn minimizes the ex-
ponential loss. The model fn = αnψn is added to the ensemble. But how is αn set ?
Since the error corresponds to the loss, the previous equation becomes :

error(Ψn) =

M∑
m=1

exp(−ymΨn(xm)) =

M∑
m=1

exp(−ymΨn−1(xm))exp(−αnymψn(xm))
(1.9)

Let’s set w(m)
1 = 1 and w(m)

n = exp(−ymΨn−1(xm)) for n > 1, we get :

error(Ψn) =

M∑
m=1

w(m)
n exp(−αnymψn(xm)) (1.10)

Knowing that y ∈ {−1, 1}, the sum can be split as following :

error(Ψn) =
∑

ym=ψn(xm)

w(m)
n exp(−αn) +

∑
ym �=ψn(xm)

w(m)
n exp(αn) (1.11)

By differentiating the error with respect to αn, we find αn’s optimal value for the
exponential loss :

αn =
1

2
log

( ∑
ym=ψn(xm)

w
(m)
n

∑
ym �=ψn(xm)

w
(m)
n

)
(1.12)

Which becomes after introducing the weighted error rate εn =
∑

ym �=ψn(xm)

w
(m)
n /

M∑
m=1

w
(m)
n

:

αn =
1

2
log(

1− εn
εn

) (1.13)

After N boosting iteration, the final prediction is given by the sign of the sum :
sign[Ψ(x)].
Figure 1.14 shows Ad’s behavior on a simple example.

LogitBoost (Logb)

When Ad started to be considered as an additive model as seen before, the ingenious
idea of adding regressors (whether the problem is classification, regression, ranking,
etc...) to minimize iteratively any differentiable loss function emerged from the en-
semble literature [Friedman, Hastie, and Tibshirani, 1998]. Indeed, let’s suppose
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Algorithm 7 Adaboost Ad (binary classification -1/+1)

Input: Training data set (Xtrain,Ytrain) = (x1, y1), . . . , (xM , yM ), Test input x, Num-
ber of weak learners N .

Output: Prediction for x.
Initialize ensemble Ψ← {}
Initialize w(1)

m ← 1/M for m = 1, . . . ,M
for n = 1 . . . N do

(i) Training
Fit a weak learner ψn on (Xtrain,Ytrain) weighted by (w

(n)
m )1≤m≤M .

(ii) Compute training error

εn =
∑

ym �=ψn(xm)

w
(n)
m /

M∑
m=1

w
(n)
m

αn = 1
2 log(

1−εn
εn

)

(iii) Update ensemble and weights
Ψ← Ψ ∪ αnψn
w

(n)
m ← w

(n)
m exp(−ymΨn(xm)αn)

Normalize the weights such that
M∑
m=1

wm = 1.

end for

return sign[Ψ(x)] = sign
[

N∑
n=1

αnψn(x)

]

that we use a boosting procedure to solve a regression problem. At iteration n, the
ensemble model Ψn can be improved. Intuitively, we would add a new model h
such that:

Ψn+1(x) = Ψn(x) + h(x) = y (1.14)

Then,

h(x) = y −Ψn(x) (1.15)

An intuitive idea would be to fit the regressor h to the so called residuals y − Ψn(x).
Those residuals can be seen as the negative gradient of the squared error loss func-
tion L(y,Ψ(x)) = 1

2(y −Ψ(x))2 with respect to Ψ((x).
Indeed,

∂L(y,Ψ(x))

∂Ψ(x)
= Ψ(x)− y = −h(x) (1.16)

This idea can be applied to any differentiable loss functions. For Logb, the authors
decided to take into account a natural loss function for binary classification which
is the binomial log-likelihood L(y,Ψ(x)) = −log(1 + e−2yΨ(x)) for y ∈ {−1,+1}.
When the loss function is the exponential loss, the algorithm becomes an alternative
version of Ad called Gentle Adaboost. As seen on Figure 1.15, the two previously
mentioned losses have approximately the same behavior.
It should be noted that Logb is the binary classification version of the more gen-
eral framework Gradient Boosting [Friedman, 2001] whose modern implementa-
tions [Chen and Guestrin, 2016; Ke et al., 2017; Dorogush et al., 2017] are now the
most popular frameworks in ensemble learning along side with RF.
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FIGURE 1.14: 25 first boosting iterations of decision stumps

The weight update procedure and the aggregation steps are given in Algorithm 8.

FIGURE 1.15: Different binary classification losses
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Algorithm 8 LogitBoost Logb (binary classification 0/1)

Input: Training data set (Xtrain,Ytrain) = (x1, y1), . . . , (xM , yM ), Test input x, Num-
ber of base learners N .

Output: Prediction for x.
Initialize weights w(m)

1 = 1/M for m = 1, . . . ,M ,
Ψ(xm) = 0
Probability estimate p(xm) = 1/2.
for n = 1 . . . N do

(i) Compute the working response and weights :
zm = ym−p(xm)

p(xm)(1−p(xm))

w
(m)
n = p(xm)(1− p(xm))

(ii) Fit a weighted least-squares regression ψn of (zm)1≤M to (xm)1≤M with
weights w(n)

m .

(iii) Updates
Update Ψ(x)← Ψ(x) ∪ 1

2ψn(x)

Update p(x) = eΨ(x)

eΨ(x)+e−Ψ(x) .
end for

return Prediction for x : sign[Ψ(x)] = sign
[
1
2

N∑
n=1

ψn(x)

]

Vadaboost (Vad)

Variance Penalizing AdaBoost [Shivaswamy and Jebara, 2011] is another ensemble
boosting method that appeared recently in the literature. Vad is similar to Ad except
that the weighting function tries to minimize both empirical risk and empirical vari-
ance in order to minimize an upper bound of the true risk. In Vad article, the authors
noticed that Ad doesn’t take into account the empirical variance when minimizing
the exponential loss. In an effort to address this shortcoming, they transformed the
re-weighting strategy from :

w
(m)
1 ← 1/M

αn =
1

2
log

( ∑
Ψn(xm)=ym

w
(m)
n

∑
Ψn(xm) �=ym

w
(m)
n

)

w(m)
n ← w(m)

n exp(−ymΨn(xm)αn)

To :

w
(m)
1 ← 1/M

u(m)
n ← λm(w(m)

n )2 + (1− λ)w(m)
n
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αn =
1

4
log

( ∑
Ψn(xm)=ym

u
(m)
n

∑
Ψn(xm)�=ym

u
(m)
n

)

w(m)
n ← w(m)

n exp(−ymΨn(xm)αn)

Vad relies on a hyper-parameter, λ, that has to be tuned on a validation set.

Algorithm 9 Vadaboost Vad (binary classification -1/+1)

Input: Training data set (Xtrain,Ytrain) = (x1, y1), . . . , (xM , yM ), Test input x, Num-
ber of weak learners N , hyperparameter λ, 0 ≤ λ ≤ 1.

Output: Prediction for x.
Initialize ensemble Ψ← {}
Initialize w(1)

m ← 1/M for m = 1, . . . ,M
for n = 1 . . . N do

(i) Training
u
(m)
n ← λm(w

(m)
n )2 + (1− λ)w(m)

n

Fit a weak learner ψn on (Xtrain,Ytrain) weighted by (u
(m)
n )1≤m≤M .

(ii) Compute training error

αn = 1
4 log

( ∑
Ψn(xm)=ym

u
(m)
n /

∑
ym �=ψn(xm)

u
(n)
m

)

(iii) Update ensemble and weights
Ψ← Ψ+ αnψn
w

(m)
n ← w

(m)
n exp(−ymΨn(xm)αn)

Normalize the weights such that
M∑
m=1

w
(m)
n = 1.

end for

return sign[Ψ(x)] = sign
[

N∑
n=1

αnψn

]

Arc-X4

Arc-X4 [Breiman, 1996a] belongs to the family of Arcing (Adaptive Resampling
and Combining) algorithms. Arc-X4 has been described as an "ad hoc invention"
whose accuracy is comparable to Ad. The algorithm was proposed by Breiman to
investigate whether the success of Ad is due to technical details or to the resam-
pling scheme. Like Ad, the algorithm sequentially train N classifiers, but instance’s
weights are proportional to the number of mistakes made by the previous classi-
fiers, to the fourth power, plus one (Algorithm 10). No weighting scheme is used in
the classifier recombination. The main point was to show that Ad’s strength is due
to the adaptive reweighting of training data and not to the final combination.

RotBoost (Rotb)

This method combines Rot and Ad [Zhang and Zhang, 2008]. As the main idea of
Rot is to improve the global accuracy of the classifiers while keeping the diversity
through the projections, the idea here is to replace the decision tree by Ad. This
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Algorithm 10 Arc-X4 (ARC-X4)

Input: Training data set (Xtrain,Ytrain) = (x1, y1), . . . , (xM , yM ), Test input x, Num-
ber of base learners N .

Output: Prediction for x.
Initialize weights w(m)

1 = 1/M for m = 1, . . . ,M
for n = 1 . . . N do

Sample training set (Xtrain, Ytrain) with replacement using weights
(w

(m)
n )1≤m≤M to get a new data set (X(n)

train, Y
(n)
train).

Fit a learner ψn on (X
(n)
train, Y

(n)
train).

Let εn =
n∑
i=1

M∑
m=1

1ψi(xm)�=ym

Compute w(m)
n = 1+ε4n

n∑

i=1
(1+ε4i )

.

end for

return argmax
c

1
N

N∑
n=1

ψ
(c)
n (x)

can be seen as an attempt to improve Rot by increasing the base learner accuracy
without affecting the diversity of the ensemble. The final decision is the vote over
every decision made by the internal Ad.
Rotb has two hyper-parameters : the number of Rotation Forest iterations and the
number of Adaboost iterations. As the result of, the ensemble has a total of N =
NRot ×NAd weak learners.

Algorithm 11 RotBoost (Rotb)

Input: Training data set (Xtrain,Ytrain), test input x, number of iterations for Rota-
tion Forest NRot, number of iterations for Adaboost NAd.

Output: Prediction for x.
for i = 1 . . .NRot do

As in Algorithm 6, construct a rotation matrix Ri and a new training set (Ri ×
Xtrain,Ytrain).
As in Ad initialize the weights w(1)

m ← 1/M for m = 1, . . . ,M
Initialize Ψi ← {}
for j = 1 . . .NAd do

Select a bootstrap (Xboot,Yboot) from (Ri × Xtrain,Ytrain).
Fit a learner ψj on (Xboot,Yboot) and compute the error εj and αj as in Algo-
rithm 7.
Update the weights (w(j)

m ) as in Ad.
Ψi ← Ψi + αjψj

end for
end for

return argmaxn
NRot∑
i=1

Ψn
i (x)
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1.2.3 Summary

To sum up this subsection on homogeneous methods, we show in table 1.1 the trans-
formations performed and the hyperparameters to tune for each ensemble genera-
tion procedure.

TABLE 1.1: Homogeneous ensemble summary

Algorithm Transformations Hyperparameters

Bag Bootstrap Bootstrap size

RF
Bootstrap

Random feature selection

Ensemble size N
Bootstrap size

Number of random selected features

B
a
g

g
in

g

RadP Random patch selection
Ensemble size N

Number of random samples selected ps
Number of random features selected pf

Swt
Bootstrap

Random class switching

Ensemble size N
Bootstrap size

Switching rate pswt

Rot
PCA rotations

Random class selection
Ensemble size N

Number of feature subset KRot

Ad Reweighting Ensemble size N

Logb Reweighting Ensemble size N

B
o

o
st

in
g

Vad Reweighting
Ensemble size N

Regularization parameter λ

Arc-X4 Reweighting + Bootstrap Ensemble size N

Rotb
PCA rotations

Random class selection
Reweighting

Number of feature subset KRot

Number of iterations for Rot NRot

Number of iterations for Ad NAd

1.3 Heterogeneous methods

An heterogeneous ensemble is an ensemble composed of different learning algo-
rithms. The rationale behind heterogeneous methods is that different models may
have different views about the data as they’re built on different mathematical para-
digms. For example, a multi-layer perceptron is robust to noise contrary to a k-
nearest neighbor classifier and they may provide different and complementary de-
cision boundaries (see Figure 1.16).
The last decades, heterogeneous ensembles have been used as much as homoge-
neous ones in a variety of domains such that text categorization [Dong and Han,
2004], astrophysics [Fuentes, 2001], logistics [Yue et al., 2010], outlier detection [Nguyen,
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FIGURE 1.16: An heterogeneous ensemble (voting classifier) of 3 dif-
ferent classification algorithms (from scikit-learn website)

Ang, and Gopalkrishnan, 2010], active learning [Lu, Wu, and Bongard, 2009], senti-
ment analysis [Kang, Cho, and Kang, 2015], etc...

1.3.1 Libraries of Models

Caruana proposed in 2004 a framework of heterogeneous ensembles for classifica-
tion [Caruana et al., 2004]. Here the base classifiers are selected from a library of
different classification methods : k-nearest neighbors, decision trees, support vec-
tor machines, etc... The framework allows to integrate models generated by ho-
mogeneous paradigms and thus integrate bagged and boosted trees (from Ad and
Bag). As most of the heterogeneous methods proposed in the literature, Caruana’s
methodology aim at generating large ensembles (at the expense of the individual
models performances) and cleverly combine and select the models to avoid overfit-
ting.

1.3.2 Selective fusion

One year later, Tsoumakas reviewed different methods for generating, selecting and
merging heterogeneous ensembles decisions [Tsoumakas, Angelis, and Vlahavas,
2005]. The two main paradigms discussed are classifier selection and classifier fu-
sion. Classifier selection is selecting a single model out of the ensemble for the all
test set while classifier fusion corresponds to usual majority voting or classifiers
combination.
He then proposed a new paradigm standing in between Selection and Fusion called
Selective Fusion taking the advantages of the two previous approaches. The main
idea was to overproduce some models and then heuristically find a pretty good
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subset of classifiers using statistical tests. This approach could have been cast to the
static pruning category. As expected, the authors claimed that for heterogeneous
models, neither majority voting nor single classifier selection is competitive against
a pruning paradigm. Indeed, on one hand, majority voting with some classifiers
that might be very weak could decrease the overall accuracy, on the other hand,
selecting statically one single classifier would lose the benefit of diversity meaning
that the errors of one classifier wont be compensate by others. In the final Chapter of
the thesis, well indeed show that heterogeneous models benefit clearly of selecting
sub-ensemble.

1.4 Stacking methods

Stacked generalization, more commonly known as stacking is the process of learn-
ing an ensemble of (usually heterogeneous) models whose outputs will serve as
meta-features to a meta-model as described in Figure 1.17. Since the work of Wopers
[Wolpert, 1992], stacking has become a major heuristic to boost weak learners per-
formances by naturally takign into account the learners errors correlations. Most of
the studies focus on how to generate the ensemble of models and the best possible
meta-learners for specific machine learning applications.

FIGURE 1.17: Stacking general steps, each model prediction consti-
tutes a feature for the meta-base (in green)

STACKING AS ENSEMBLE SELECTION
Ensemble selection is detailled in further sections but we can already notice that
stacking can be seen as an ensemble combination / selection scheme.
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Indeed, if the meta-learner is a decision tree, the stacking procedure will discard
some models if they’re not present in the tree path followed by the instance x.
On the other hand, if the meta-model is a linear model (for example logistic re-
gression), each model will be assigned to a specific weight (the parameters of the
regression) learned on the meta-dataset which corresponds to ensemble combina-
tion.

FIGURE 1.18: Stacking generalization from 3 different classification
algorithms (from scikit-learn website)

1.5 Chapter summary

In this Chapter, we presented the ensemble learning paradigm. We first presented
the main idea behind this category of models and showed how they enhance the
generalization performance of a single classifier. Then, we gave an overview of the
recently proposed ensemble algorithms and discussed in more details their strate-
gies in the light of the two main categories of ensemble models: Homogeneous and
Heterogeneous approaches.
Under this overview, we observed that only few comprehensive empirical studies
have been proposed in the litterature for comparing ensemble learning algorithms.
In the next Chapter, we investigate the capability and efficiency of these approaches
using an extensive empirical evaluation of most of the ensemble algorithms to shed
some light into their strength and weaknesses.
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Chapter 2

Extensive empirical review on
ensemble learning

OUTLINE
In this Chapter we propose a full extensive investigation of the previously presented
ensemble learning approaches. Performances evaluation on 3 different metrics and
diversity analysis bring us to make some general conclusions about the approaches
which stand out from others.

2.1 Introduction

There are few comprehensive empirical studies comparing ensemble learning algo-
rithms [Bauer and Kohavi, 1999; Caruana and Niculescu-Mizil, 2006; Chen, Ribeiro,
and Chen, 2015]. The study performed by Caruana and Niculescu-Mizil [Caruana
and Niculescu-Mizil, 2006] is perhaps the best known study however it is restricted
to small subset of well established ensemble methods like random forests, boosted
and bagged trees, and more classical models (e.g., Neural Networks, SVMs, Naive
Bayes). A more recent study performed in [Chen, Ribeiro, and Chen, 2015] is de-
voted to the specific class of cost-sensitive credit risk assessment and restricted to
six ensemble techniques. On the other hand, many authors have compared their
ensemble classifier proposal with others. For instance, Zhang et al. compared in
[Zhang and Zhang, 2008] Rotb against Bag, Ad, MultiBoost and Rot using decision
tree-based estimators, over 36 data sets from the UCI repository. In [Rodriguez,
Kuncheva, and Alonso, 2006], Rodriguez et al. examined the Rot ensemble on a se-
lection of 33 data sets from the UCI repository and compared it with Bag, Ad, and
RF with decision trees as the base classifier. More recently, Louppe et al. [Louppe
and Geurts, 2012] comapared their RadP approach with respect to Ad and RF, these
experiments on 16 data sets showed that the proposed method provides on par per-
formance in terms of accuracy while simultaneously lowering the memory needs,
and attains significantly better performance when memory is severely constrained.
Despite these attempts that have emerged to enhance the capability and efficiency,
we believe an extensive empirical evaluation of most of the ensemble proposal al-
gorithms can shed some light into the strength and weaknesses [Narassiguin et al.,
2016].
We briefly review these algorithms and describe a large empirical study compar-
ing several ensemble method variants in conjunction with two types of unpruned
decision trees : the standard CART decision tree and another randomized variant
called Extremely Randomized Tree (ET) proposed by Geurts et al in [Geurts, Ernst,
and Wehenkel, 2006] as base classifier, both using the Gini splitting criterion. As
noted by Caruana et al. [Caruana and Niculescu-Mizil, 2006], different performance
metrics are appropriate for each domain. For example precision/recall measures
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are used in information retrieval; medicine prefers ROC area; lift is appropriate for
some marketing tasks, etc. The different performance metrics measure different
tradeoffs in the predictions made by a classifier. One method may perform well on
one metric, and worse on another, hence the importance to gauge their performance
on several performance metrics to get a broader picture. We evaluate the perfor-
mance of Ad, Bag, RF, Rot, and their variants including Logb, Vad, Rotb, and Ad
with stumps. For the sake of completeness, we added more recent techniques like
RadP and less conventional techniques like Swt and Arc-X4. As previously seen
in Chapter 1, all these voting algorithms can be divided into two types: those that
adaptively change the distribution of the training set based on the performance of
previous classifiers (as in boosting methods) and those that generate parallely boot-
straps to fit their classifiers (as in Bagging).
The data sets used in the experiments were all taken from the UCI Machine Learn-
ing Repository. They represent a variety of problems but do not include high-
dimensional data sets owing to the computational expense of running Rot. The com-
parison is performed based on three performance metrics: accuracy, ROC Area and
squared error. For each algorithm we examine common parameter values. Follow-
ing [Caruana and Niculescu-Mizil, 2006] and [Niculescu-Mizil and Caruana, 2005],
we also examine the effect that calibrating the models via Isotonic Regression has
on their performance.
The main contribution of this study is to report on an exhaustive comparison of 19
different ensemble binary classification models over 19 UCI benchmark data sets,
not only in terms of threshold, ranking/ordering and probability metrics but also in
terms of kappa-error diagrams, calibration and bias variance dilemma. To the best
of our knowledge, this is the first extensive study focusing on so many ensemble
methods and performance criteria. In addition, we investigate the benefit of using
Extremely Randomized Trees [Geurts, Ernst, and Wehenkel, 2006] instead of base
line CART algorithm [Breiman et al., 1984] with regard to these metrics. The use
of ET as base learner instead of CART has only been investigated for the Random
Subspaces [Ho, 1998] and Random Patches [Louppe and Geurts, 2012] ensemble
methods. Its effectiveness is analyzed in more depth in this study.
This Chapter is organized as follows. In Section 2.2, we start with a brief description
of : 1) the ensemble learners parameters, 2) the two tree inducers: unlimited depth,
and extremely randomized tree, 3) the performance metrics, 4) the Isotonic calibra-
tion method that we use in our experiments. In Section 2.3, we report on our exten-
sive experiments and provide a list of dominating approaches per metric, with and
without calibration. In Section 2.4, kappa-error diagrams are plotted to illustrate the
relationships between diversity and individual accuracy across all ensemble meth-
ods. A bias-variance decomposition of the error for all models is conducted in Sec-
tion 2.5. Section 2.6 shows what the outcome would be when the ensemble size is
treated as hyperparameter and tuned for all ensemble methods compared here. We
raise several issues and for future work in Section 2.7 and conclude with a summary
of our contributions.

2.2 Ensemble Learning Algorithms & Parameters

Before discussing the ensemble algorithms chosen in this comprehensive study, we
would like to mention that, contrary to [Caruana and Niculescu-Mizil, 2006] which
attempted to explore the space of parameters for each learning algorithm, we de-
cided to fix the parameters to their common values except for a few data dependent
extra parameters that have to be finely tuned prior to learning. The number of trees
N was fixed to 200 in accordance with a recent empirical study [Hernández-Lobato,
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Martínez-Muñoz, and Suárez, 2013] which tends to show that ensembles of size less
or equal to 100 are too small for approximating the infinite ensemble prediction. Al-
though it is shown that for some data sets the ensemble size should ideally be larger
than a few thousands, our choice for the ensemble size tries to balance performance
and computation cost.
To estimate the hyper parameters mentioned above (i.e., ps, pf ,pswt and λ), 20% of
the data was used for validation purposes, the rest for training. The validation data
were used to search for the best hyper-parameters and were not used afterwards
for training or comparison purposes. Each hyper parameter was varied from 0.1 to
1.0. The parameters yielding the best performances on the validation set by cross-
validated grid-search were retained. It should be emphasized that a separate tuning
was done for each performance metric. All the above methods were implemented
in Python using Scikit-Learn [Pedregosa et al., 2011] to ensure a fair comparison be-
tween the approaches and also because some algorithms are not publicly available
(e.g., Arc-X4, Swt, Logb, Rot, Rotb and Vad). We performed a sanity check by com-
paring our results on benchmark data sets to those reported in the original papers.
The source codes used for conducting the experiments are available at the following
Github.

2.2.1 The decision tree inducers

As mentioned above, we use two distinct decision tree inducers: a decision tree
(CART or DT) [Breiman et al., 1984] and a so-called Extremely Randomized Tree
(ET) proposed in [Geurts, Ernst, and Wehenkel, 2006]. In [Louppe and Geurts, 2012],
Louppe and Geurts discovered that every sub-sampling (sample and/or feature) en-
semble method they experimented with was improved when ET was used as base
learner instead of a standard decision tree. ET is a variant of decision tree which
aims to reduce even more the variance of ensemble methods by reducing the vari-
ance of the tree as base learner. At each node, instead of cutting at the best threshold
among every possible ones, the method selects an attribute and a threshold at ran-
dom. To avoid very bad cuts, the score-measure of the selected cut must be higher
than a user-defined threshold otherwise it has to be re-selected. This process is re-
peated until a convenient threshold is found or until no more attributes remain (The
algorithm uses one threshold per attribute). According to the authors, the strength
of this algorithm in terms of variance reduction arises from the fact that thresholds
are selected totally at random, contrary to preceding methods proposed by Kong
and Dietterich in [Kong and Dietterich, 1995] which select a threshold at random
among the best ones, or by Ho in [Ho, 1998] which selects the best one among a
fixed number of thresholds. Therefore, we used both unpruned DT and ET as base
learners. To distinguish ensemble with DT and ET, we added "ET" at the end of the
algorithm names to indicate that extremely randomized trees are used.

2.2.2 Performance Metrics & Calibration

The performance metrics can be divided into three groups: threshold metrics, or-
dering/rank metrics and probability metrics [Caruana and Niculescu-Mizil, 2004].
For threshold-based metrics, like accuracy (ACC), it makes no difference how close
a prediction is to a threshold, usually 0.5, what matters is whether it is above or be-
low the threshold. In contrast, the ordering/rank-based metrics, like the area under
the ROC curve (AUC), depend only on the ordering of the instances, not the actual
predicted values, while the probability-based metrics, like the squared error (RMS),
interpret the predicted value of each instance as the conditional probability of the
output label being in the positive class given the input.
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TABLE 2.1: Characteristics of the nineteen problems used in this
study

Data sets #inst #feat #labels Reference
BASEHOCK 1993 4862 2 [ZHAO ET AL., 2010]
BREAST CANCER WISCONSIN (DIAGNOSTIC) 569 30 2 [NEWMAN AND MERZ, 1998]
BREAST CANCER WISCONSIN (ORIGINAL) 699 9 2 [NEWMAN AND MERZ, 1998]
BREAST CANCER WISCONSIN (PROGNOSTIC) 194 33 2 [NEWMAN AND MERZ, 1998]
COLON 62 2000 2 [BEN-DOR ET AL., 2000]
HEART DISEASE 303 13 2 [NEWMAN AND MERZ, 1998]
IONOSPHERE 351 34 2 [NEWMAN AND MERZ, 1998]
LEUKEMIA 73 7129 2 [GOLUB ET AL., 1999]
MADELON 2600 500 2 [NEWMAN AND MERZ, 1998]
MUSK (VERSION 1) 476 166 2 [NEWMAN AND MERZ, 1998]
OVARIAN 54 1536 2 [SCHUMMER ET AL., 1999]
PARKINSONS 195 22 2 [NEWMAN AND MERZ, 1998]
PCMAC 1943 3289 2 [ZHAO ET AL., 2010]
PIMA INDIANS DIABETES 768 8 2 [NEWMAN AND MERZ, 1998]
PROMOTER GENE SEQUENCES 106 57 2 [NEWMAN AND MERZ, 1998]
RELATHE 1427 4322 2 [ZHAO ET AL., 2010]
SMK-CAN 187 19993 2 [ZHAO ET AL., 2010]
SPAMBASE 4601 57 2 [NEWMAN AND MERZ, 1998]
SPECT HEART 267 22 2 [NEWMAN AND MERZ, 1998]

In many applications it is important to predict well calibrated probabilities; good ac-
curacy or area under the ROC curve are not sufficient. Therefore, all the algorithms
were run twice, with and without post calibration, in order to compare the effects
of calibrating ensemble methods on the overall performance. The idea is not new,
Caruana and Niculescu-Mizil have investigated in [Caruana and Niculescu-Mizil,
2006] the benefit of two well known calibration methods, namely Platt Scaling and
Isotonic Regression [Zadrozny and Elkan, 2001] , on the performance of several clas-
sifiers. They concluded that AdaBoost and good ranking algorithms in general are
those which draw the most benefits from calibration. As expected, these benefits
are the most noticeable on the root mean squared error metric. In this thesis, we
only focus on Isotonic Regression because it was originally designed for decision
trees model although Platt Scaling could also applied to decision trees. To this pur-
pose, we use the pair-adjacent violators (PAV) algorithm described in [Caruana and
Niculescu-Mizil, 2006; Zadrozny and Elkan, 2001] that finds a piecewise constant
solution in linear time.

2.2.3 Data sets

We compare the ensemble algorithms on nineteen binary classification problems
of various sizes and dimensions. Table 2.1 summarizes the main characteristics of
these data sets. These data sets have different characteristics and come from a va-
riety of fields. Some of them have thousands of features. As explained by Liu in
[Liu and Huang, 2008], if Rot or Rotb are applied to classify such data sets, a rota-
tion matrix with thousands of dimensions is required for each tree, which entails a
dramatic increase in computational complexity. To keep the running time reason-
able, we had no choice but to resort to a dimension reduction technique; the same
strategy was adopted in several works [Rodriguez, Kuncheva, and Alonso, 2006;
Zhang and Zhang, 2008; Liu and Huang, 2008]. Based on Liu’s comparison, we
took the best of the three proposed filter methods for Rotation forests, the signal to
noise ratio [Slonim et al., 2000] or SNR. SNR was used to rank all the features; we
kept the 100 top relevant features and discarded the others. Of course this choice is
for the benefit of the Rot-based methods, however it necessarily entails some com-
promises as there will generally be some loss of information especially for other
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TABLE 2.2: The win/tie/loss results on the 7 largest data sets for en-
sembles without Feature selection vs. ensembles with Feature selec-
tion, except Rot-based approaches. Bold cells indicate significant dif-

ferences at p = 0.05

APPROACH UNCALIBRATED MODELS CALIBRATED MODELS IN TOTAL
ACC AUC RMS ACC AUC RMS

AD 1/4/2 2/4/1 2/3/2 1/4/2 0/4/3 0/4/3 6/23/13
ADET 0/3/4 0/3/4 1/2/4 0/4/3 0/3/4 0/3/4 1/18/23
ADST 3/4/0 2/5/0 1/4/2 1/4/2 0/5/2 0/5/2 7/27/8
ARCX4 3/3/1 3/2/2 3/1/3 2/5/0 1/4/1 1/5/1 13/20/8
ARCX4ET 3/3/1 3/2/2 3/1/3 2/5/0 1/4/1 1/6/0 13/21/7
BAG 2/4/1 1/3/2 1/4/2 0/5/2 0/4/2 0/5/2 4/25/11
BAGET 3/2/2 3/1/3 1/0/6 1/4/2 2/2/2 2/4/1 12/13/16
CART 1/6/0 0/3/4 0/5/2 0/4/3 0/4/3 0/4/3 1/26/14
LOGB 2/4/1 2/3/1 1/4/2 0/5/2 0/5/2 0/4/3 5/25/11
RADP 2/4/1 1/3/2 1/4/2 0/6/1 0/4/2 0/5/2 4/26/10
RADPET 3/2/2 3/1/3 1/0/6 0/5/2 2/2/2 1/4/2 10/14/17
RF 3/2/2 3/2/2 1/1/5 2/5/0 2/4/0 2/5/0 13/19/9
SWT 2/4/1 2/4/1 3/1/3 1/4/2 0/3/3 0/4/3 8/20/13
SWTET 3/2/2 3/1/3 1/0/6 1/5/1 2/4/1 1/5/1 11/17/14
VAD 2/4/1 0/3/4 0/3/4 0/5/2 0/4/3 0/4/3 2/23/17
VADET 0/3/4 0/2/5 0/3/4 0/4/3 0/4/3 0/4/3 0/20/22

algorithms. To ensure a fair comparison among the methods, we compared the
performances of each of them with and without dimensionality reduction (DR) on
the 7 largest data sets (with more than a thousand of features) using the valida-
tion data set. The results of these pairwise comparisons are depicted in Table 2.2
in terms of win/tie/loss statuses for each approach; the three values in each cell
(i, j) respectively indicate how times many the approach without DR (i) is signifi-
cantly better/not significantly different/significantly worse than the approach with
DR (j). Following [Demšar, 2006], if the two algorithms are, as assumed under the
null-hypothesis, equivalent, each should win on approximately N/2 out of N data
sets. The number of wins is determined according to the binomial distribution and
the critical number of wins at p = 0.05 is equal to 7 here. Since tied matches support
the null-hypothesis we should not discount them but split them evenly between
the two classifiers when counting the number of wins; if there is an odd number of
them, we again ignore one.
The resulting win/tie/loss counts summarized in Table 2.2 do not reveal significant
differences at p = 0.05 between both strategies. While similar performances are
observed, DR yields slightly better performances. Hence, the experiments in the
remainder of the Chapter will be conducted with dimensionality reduction. So the
reader shall bear in mind that the actual size of the data sets is limited to the top 100
features in our experiments.

2.3 Performance analysis

In this Section, we report the results of the experimental evaluation. For each test
problem, we use 5-fold cross validation (CV) on 80% of the data (recall that 20%
of each data set is used to calibrate the models and to select the best parameters).
In order to get reliable statistics over the metrics, the experiments were repeated
10 times. So the results obtained are averaged over 50 iterations which allows us
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to apply statistical tests in order to discern significant differences between the 20
methods (i.e. the nineteen ensemble learning methods and the CART algorithm).
Detailed average performances of the 20 methods for all 19 data sets using the pro-
tocol described above are reported in Tables A.1-A.6 in the Appendix. For each
evaluation metric, we present and discuss the critical diagrams from the tests for
statistical significance using all data sets.
In order to better assess the results obtained for each algorithm on each metric, we
adopt in this study the methodology proposed by [Demšar, 2006] for the compar-
ison of several algorithms over multiple data sets. In this methodology, the non-
parametric Friedman test is firstly used to evaluate the rejection of the hypothesis
that all the classifiers perform equally well for a given risk level. It ranks the algo-
rithms for each data set separately, the best performing algorithm getting the rank of
1, the second best rank 2 etc. In case of ties it assigns average ranks. Then, the Fried-
man test compares the average ranks of the algorithms and calculates the Friedman
statistic. If a statistically significant difference in the performance is detected, we
proceed with a post hoc test. The Nemenyi test is used to compare all the classifiers
to each other. In this procedure, the performance of two classifiers is significantly
different if their average ranks differ more than some critical distance (CD). The crit-
ical distance depends on the number of algorithms, the number of data sets and the
critical value (for a given significance level p) that is based on the Studentized range
statistic (see [Demšar, 2006] for further details).
In this study, the Friedman test reveals statistically significant differences (p < 0.05)
for each metric with and without calibration. Furthermore, we present the result
from the Nemenyi posthoc test with average rank diagrams as suggested by Dem-
sar [Demšar, 2006]. These are given on Figures 2.1, 2.2 and 2.3. The ranks are de-
picted on the axis, in such a manner that the best ranking algorithms are at the
rightmost side of the diagram. The algorithms that do not differ significantly (at
p = 0.05) are connected with a line. The critical difference CD is shown above the
graph (CD=6.8025 here).
As may be observed in Figure 2.1, ET-based variant of Rotboost (RotbET) performs
best in terms of accuracy. In the average ranks diagrams corresponding to accuracy,
two groups of algorithms could be separated. The first consists of all algorithms
which have seemingly similar performances with the best method (i.e. RotbET).
The second contains the methods that performs significantly worse than RotbET,
including Bagging (Bag) and its ET-based variant (BagET); ArcX4, Boosted stumps
(AdSt) and single tree (CART).
The statistical tests we use are conservative and the differences in performance for
methods within the first group are not significant. To further support these rank
comparisons, we compared the 50 accuracy values obtained over each data set split
for each pair of methods in the first group by using the paired t-test (with p = 0.05)
as done in [Louppe and Geurts, 2012]. The results of these pairwise comparisons
are depicted (see the Appendix) in terms of win/tie/loss statuses of all pairs of
methods; the three values in each cell (i, j) respectively indicate how times many
the approach i is significantly better/not significantly different/significantly worse
than the approach j. Following [Demšar, 2006], if the two algorithms are, as as-
sumed under the null-hypothesis, equivalent, each should win on approximately
N/2 out of N data sets. The number of wins is distributed according to the binomial
distribution and the critical number of wins at p = 0.05 is equal to 14 in our case.
Since tied matches support the null-hypothesis we should not discount them but
split them evenly between the two classifiers when counting the number of wins; if
there is an odd number of them, we again ignore one.
In the Table A.7 in the Appendix, each pairwise comparison entry (i, j) for which
the approach i is significantly better than j is boldfaced. The analysis of this table
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Average ranks diagram of uncalibrated models in terms of accuracy
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Average ranks diagram of calibrated models in terms of accuracy
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FIGURE 2.1: Average ranks diagram comparing the 20 algorithms in
terms of Accuracy

reveals that the approaches that are never beaten by any other approach are: AdET,
ArcX4ET, RadPET, RF, all the Rotation Forest-based methods (Rot, Rotb, RotET and
RotbET), SwtET and VadET. We may also notice from Figure 2.1 and Table A.8 in
the Appendix for accuracy on calibrated models the following. First, the calibration
is beneficial to Random Patches algorithms (RadP and RadPET) and Bagged trees
(BagET) in terms of ranking. It hurts the ranking of boosted trees but does not
affect the performances of Rotation Forest-based methods and ArcX4ET. Overall,
RotbET is ranked first, then come Rotb, ArcX4ET and RadPET. Looking at Table
A.8 in the Appendix, the dominating approaches include again all Rotation Forest-
based methods and ArcX4ET, as well as BagET, RadP, RadPET, SwtET and VadET
(c.f. Table 2.3). Another interesting observation upon looking at the average rank
diagrams is that ensembles of ET lie mostly on the right side of the plot compared
to their DT counterparts, hence their superior performance.
As far as the AUC is concerned (c.f. Figure 2.2), RadPET ranks first. However, its
performance is not statistically distinguishable from the performance of nine other
algorithms: Ad, AdET, Logb, RadP, Rot, RotET, RotbET, Vad and VadET (Table A.9
in the Appendix). In our experiments, ET improved the ranking of all ensemble
approaches by at least 10% on average when compared to DT. This corroborate our
previous finding, namely that ET should be preferred to DT in the ensembles. Fig-
ure 2.2 and Table A.10 in the Appendix indicate that calibration reduces the ranking
of some approaches, especially VadET and RotET (among the best uncalibrated ap-
proaches in terms of AUC) but slightly improves the ranks of the approaches that
adaptively change the distribution (Logb, AdSt, Ad, Vad, Rotb) and Rot.
Regarding the RMS results reported in Figure 2.3 and Table A.11 in the Appendix,
Rot, Rotb, RotbET and ArcX4ET significantly outperform the other approaches.
Here again, ET-based methods outperform the DT ones by a noticeable margin. We
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Average ranks diagram of uncalibrated models in terms of AUC
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Average ranks diagram of calibrated models in terms of AUC
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FIGURE 2.2: Average ranks diagram comparing the 20 algorithms in
terms of AUC

found calibration to be remarkably effective at improving the ranking of boosting-
based algorithms in terms of RMS values, especially Ad, AdET, AdSt, Logb , Vad and
VadET (c.f. Table A.12 in the Appendix).
Overall, Rot and RotbET are the best ranking methods across all metrics; they ap-
pear in all the dominating sets (i.e. Table 2.3). When calibration is performed,
ArcX4ET, RadPET, Rotb, RotET and VadET are also among the top performing
algorithms. To corroborate our above finding, we compute the Dominance Rank
table following the recommendations of [Kuncheva and Rodríguez, 2007]. Table 2.4
displays the overall results in terms of ranking using the significant differences be-
tween methods. Each of the competing methods receives a ranking in comparison
with the other methods for each criteria. The Dominance Rank of method i is cal-
culated as Wins-Losses, where Wins is the total number of times method i has been
significantly better than another method and Losses is the total number of times
method i has been significantly worse than another method. The last column of the
table shows the average dominance across all evaluation criteria. It is interesting to
note that there is a large gap between the Rot-based methods, ArcX4ET, RadPET
and VadET and the others. The results in Table 2.4 confirm our previous finding,
namely that ET should be preferred to DT. Surprisingly, Random Forest (RF) stands
further up in the table as a prominent method. The reason is that RF is consistently
better than the methods it is superior to but the differences in favor of RF are not
statistically significant.
The diversity-error and bias-variance analysis presented in he next Section will shed
some light on the reasons why these ensemble methods are particularly efficient.
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Average ranks diagram of uncalibrated models in terms of RMS
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2.4 Diversity-error diagrams analysis

To achieve higher prediction accuracy than individual classifiers, it is crucial that
the ensemble consists of highly accurate classifiers which at the same time disagree
as much as possible. To illustrate the diversity-accuracy patterns of the ensemble,
we use the kappa-error diagrams proposed in [Margineantu and Dietterich, 1997].
The latter are scatterplots with N × (N −1)/2 points, where N is the committee size.
Each point corresponds to a pair of classifiers. On the x-axis is a measure of diversity
between the pair, κ. On the y-axis is the averaged individual error of the classifiers
in the pair, ei,j = (ei + ej)/2. As small values of κ indicate better diversity and
small values of ei,j indicate better performance; the diagram of an ideal ensemble

TABLE 2.3: List of dominating approaches per metric, with and with-
out calibration

METRIC WITHOUT CALIBRATION WITH CALIBRATION

ACC
ADET, ARCX4ET, RADPET,
RF, ROT, ROTB, ROTBET,
ROTET, SWTET, VADET

ARCX4ET, BAGET, RADP,
RADPET, ROT, ROTB,
ROTBET, ROTET, SWTET,
VADET

AUC
AD, ADET, LOGB, RADP,
RADPET, ROT, ROTET,
ROTBET, VAD, VADET

AD, ADET, ARCX4ET, LOGB,
RADPET, RF, ROT, ROTB,
ROTBET,ROTET, VAD, VADET

RMS ARCX4ET, ROT, ROTB,
ROTBET

AD, ADET, ARCX4ET, LOGB,
RADPET, ROT, ROTB,
ROTBET, ROTET, SWTET,
VAD, VADET
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TABLE 2.4: Ranking of the methods using the significant differences
(Win- Losses) from all pairwise comparisons.

APPROACH DOMINANCE (UNCALIBRATED) DOMINANCE (CALIBRATED) DOMINANCE
ACC AUC RMS ACC AUC RMS IN TOTAL

ROTBET 161 76 216 150 60 116 779
ROTB 158 22 199 124 49 93 645
RADPET 54 161 56 106 115 134 626
ROTET 156 70 169 81 37 62 575
ROT 76 79 219 30 82 63 549
ARCX4ET 119 35 157 87 23 56 477
VADET 55 106 59 34 61 73 388
RF 88 48 134 23 21 38 352
ADET 64 101 -103 23 59 62 206
VAD -13 13 44 -1 52 6 101
SWTET 96 -18 -78 73 -47 31 57
AD 12 36 -102 -9 75 20 32
RADP -41 12 -22 -6 -1 9 -49
BAGET -127 1 -56 12 3 -11 -178
LOGB -62 -26 -164 -43 29 -20 -286
ARCX4 -74 -72 54 -81 -63 -94 -330
SWT -30 -96 -157 -86 -122 -107 -598
ADST -169 -97 -278 -125 -65 -88 -822
BAG -231 -154 -130 -155 -123 -171 -964
CART -292 -297 -217 -237 -245 -272 -1560

should be filled with points in the bottom left corner. Since we have a large number
of algorithms to compare and due to space limitation, we only plot the distance
between their corresponding centroids in Figure 2.4 for the 18 ensemble methods
(Logb and CART are excluded), for the Musk and Relathe data sets only.
The conclusions we can draw in view of these results are: (1) Rot-based algorithms
outperform the others in terms of accuracy; (2) ArcX4, Bag and RF exhibit equiva-
lent patterns, they are slightly more diverse but slightly less accurate than Rot-based
algorithms; (3) while boosting-based methods (AdSt, Ad, AdET) and switching are
more diverse, their accuracies are lower than the others, except SwtET as ET is gen-
erally able to increase the individual accuracy, and (4) no clear picture emerged
when one examines the Random Patches-based algorithms. As expected, as the clas-
sifiers become more diverse, they become less accurate and vice versa. Furthermore,
according to the results in the previous subsection, it seems that the more accurate
the base classifiers are, the better the performance. The top performing methods
(i.e., Rot-based methods, ArcX4ET, RadPET and VadET) are in the lower right hand
side in Figure 2.4 while the poorly performing methods (i.e., Swt, Ad, AdSt) are in
the upper left hand side. The individual classifier accuracy is apparently the crucial
component of the sucess of these ensemble methods, not so much their diversity.
The kappa-error relative movement diagrams (ET-based ensembles vs. DT-based
ensembles) in Figure A.1 in the Appendix display the relative variations of κ and
accuracy when the baseline classification model is changed. Figure 2.5 summarizes
the results in Figure A.1 in the Appendix by reporting only the centroids of κ-Error
relative movement diagrams of each ensemble methods averaged over all the 19
data sets. Each point denotes a data set. For instance, Rotb lies in the upper-right
hand side represent data sets. This is the region where the ET-based methods out-
perform the standard DT-based algorithm both in terms of diversity and accuracy.
Swt lies in the upper-left hand side indicating that for this algorithm, ET improved
the marginal accuracy at the expense of the diversity. We may notice that ET as a
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TABLE 2.5: The win/tie/loss results for ET-based ensembles vs. DT-
based ensembles. Bold cells indicate significant differences at p = 0.05

APPROACHES UNCALIBRATED MODELS CALIBRATED MODELS IN TOTAL
ACC AUC RMS ACC AUC RMS

ROTET/ROT 8/8/3 11/2/6 7/6/6 6/11/2 7/8/4 8/7/4 47/42/25
BAGET/BAG 11/6/2 13/4/2 13/3/3 13/5/1 12/5/2 12/6/1 74/29/11
ADET/AD 7/10/2 7/10/2 11/4/4 6/11/2 4/8/7 6/12/1 41/55/18
ROTBET/ROTB 3/12/4 6/10/3 5/11/3 3/13/3 3/11/5 4/10/5 24/67/23
ARCX4ET/ARCX4 14/5/0 13/2/4 13/1/5 10/9/0 9/7/3 14/4/1 73/28/13
SWTET/SWT 10/8/1 9/5/5 13/2/4 14/3/2 10/6/3 13/4/2 69/28/17
RADPET/RADP 9/10/0 10/7/2 14/1/4 10/7/2 12/4/3 13/4/2 68/33/13
VADET/VAD 10/7/2 9/9/1 9/5/5 6/9/4 3/11/5 7/9/3 44/50/20

base learner usually improves one criteria at the expense of the other. Furthermore,
according to the resulting win/tie/loss counts for each ET-based approach against
the DT-based one summarized in Table 2.5, we find that the approaches for which
the ET-variant is significantly superior to the standard approach are also those for
which the accuracy (i.e. Swt) or the diversity (i.e. Bag, ArcX4 and RadP) is signifi-
cantly better.

2.5 Bias/variance analysis

Thus far, we discussed the error-based performance of the classifiers. In this Section,
we report on the experiments performed to evaluate the bias/variance decomposi-
tion. While the notion of bias/variance decomposition is clearly formalized in the
context of regression [Geman, Bienenstock, and Doursat, 1992], there are no uni-
versally accepted definitions for bias and variance in the context of classification
[Kohavi, Wolpert, et al., 1996; Domingos, 2000; James, 2003]. Whatever the defini-
tion used, the conventional formulation of the decomposition breaks the expected
error into the sum of three non-negative components: the squared bias, the vari-
ance and the intrinsic noise. Intuitively, bias represents the systematic component
of the error resulting from the incapacity of the classifier to model the underlying
distribution while the variance represents the component of the error that stems
from the particularities of the training sample. Typically, either bias or variance can
contribute to poor performance. Ensemble learning is clearly one way of resolving
this trade-off. For example, boosting combines many "weak" (high bias) models in
an ensemble that has greater variance than the individual models, while bagging
combines "strong" learners in a way that reduces their variance. As it is infeasible to
estimate the intrinsic noise from sample data, the noise term is usually aggregated
to the bias term.
As we discussed above, different ways to decompose error into bias and variance
terms in the field of classification tasks have been proposed [Kohavi, Wolpert, et al.,
1996; James, 2003]. As the underlying distribution is unknown, no clear consen-
sus has been met on how to achieve this task [Webb, 2000; Valentini and Dietterich,
2004]. In [Bouckaert, 2008], Bouckaert demonstrates that the state-of-art methods
proposed to compute the bias and variance are nearly always unstable. In fact, the
sampling procedure used in the estimation process considerably affects the results
and so, could lead to erroneous conclusions. Bouckaert illustrates his claim by draw-
ing three different conclusions over three runs of the Kohavi decomposition [Ko-
havi, Wolpert, et al., 1996] on the same data set. He argues that the problem can be
circumvented by ten fold cross validation with 100 instances in each fold and a test
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TABLE 2.6: Characteristics of data sets used in Bias/variance analysis

Data sets #inst #feat #labels Reference
MAGIC 19020 10 2 [NEWMAN AND MERZ, 1998]
ADULT 32561 14 2 [NEWMAN AND MERZ, 1998]

set size of at least 2000 instances. To the best of our knowledge, none of the previ-
ous works comparing ensemble methods using bias/variance decomposition used
this setting so, according to Bouckaert, their conclusions should be regarded with
some caution. In this study, we followed Bouckaert’s recommendations [Bouckaert,
2008]. Due to the computational burden involved by the simulation, we restricted
our experimental analysis to the two large data sets described in Table 2.6.
The detailed decompositions of error into bias and variance for all algorithms over
the two data sets are reported in Table 2.7. This table also indicates, for each method,
the means of the bias and the variance for all the data sets and their relative ranking,
although it is a very gross measure of relative performance.
Several conclusions can be drawn upon inspection of Table 2.7:

• The Rotation forest based algorithms (Rot, RotET, Rotb and RotbET) reduce
both the bias and the variance. They offer the best trade-off in terms of bias/variance
reduction, hence their overall efficiency in terms of accuracy, AUC and RMS.

• As expected, Boosting and Class-Switching based ensemble methods are found
to mainly reduce the bias. While this observation is already well known for
Boosting, we observe that label switching is also efficient at reducing the bias
of the base learner.

• Random Patches (RadP and RadPET) and Random Forests (RF) have very
little variance, however this comes at the expense of an increased bias. Intro-
ducing random perturbations (e.g. RadP and RF) into the tree construction
is clearly beneficial in terms of variance as compared to single decision trees
(CART).

• ET has an influence on the bias-variance decomposition. The ranking of the
ensemble algorithms in terms of mean variance value indicates that the ran-
domization of the discretization threshold used in Extremely randomized trees
(ET) is effective at reducing the variance, especially for Boosting and Class-
Switching algorithms (AdET, ArcX4ET, VadET and SwtET). Nevertheless, the
bias reduction achieved by these methods is significantly smaller than that
obtained with a standard DT (Ad, ArcX4, Vad and Swt).

• According to our previous findings, the results of bias-variance decomposition
reported in Table 2.7 support the conclusion that reducing the variance with-
out degrading the bias within the ensemble is apparently beneficial in terms of
performance. The best approaches (ArcX4ET, Rot-based methods and VadET)
in our simulations have lower mean variances than all the other algorithms
without increasing the bias to much, except for RadPET, for which no clear
conclusion emerged when one examines its values in Table 2.7.

2.6 Influence of the ensemble size

In the previous experiments, we used the same ensemble size N = 200 for all meth-
ods. This was fixed in accordance with a recent empirical study [Hernández-Lobato,
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TABLE 2.7: Bias and Variance error decomposition for each algorithm.
The last two columns gives the mean bias and variance values as well

as their relative ranking over both Magic and Adult data sets

APPROACH MAGIC DATA SET ADULT DATA SET MEAN (RANK)
BIAS VAR BIAS VAR BIAS VAR

AD 0.196 0.106 0.212 0.160 0.204 (2) 0.133 (15)
ADET 0.207 0.099 0.211 0.154 0.209 (6) 0.127 (12)
ADST 0.231 0.137 0.227 0.131 0.229 (18) 0.134 (16)
ARCX4 0.212 0.104 0.222 0.135 0.217 (13) 0.119 (9)
ARCX4ET 0.228 0.082 0.220 0.136 0.224 (14) 0.109 (6)
BAG 0.218 0.148 0.232 0.183 0.225 (16) 0.165 (19)
BAGET 0.226 0.118 0.229 0.169 0.228 (17) 0.143 (17)
CART 0.199 0.228 0.210 0.219 0.204 (3) 0.224 (20)
LOGB 0.215 0.126 0.202 0.168 0.209 (5) 0.147 (18)
RADP 0.239 0.078 0.300 0.070 0.270 (20) 0.074 (1)
RADPET 0.214 0.092 0.259 0.090 0.236 (19) 0.091 (2)
RF 0.217 0.089 0.232 0.113 0.225 (15) 0.101 (3)
ROT 0.215 0.089 0.218 0.138 0.217 (12) 0.113 (8)
ROTB 0.213 0.084 0.213 0.126 0.213 (9) 0.105 (4)
ROTBET 0.223 0.085 0.209 0.132 0.216 (10) 0.108 (5)
ROTET 0.221 0.085 0.212 0.133 0.216 (11) 0.109 (7)
SWT 0.202 0.106 0.214 0.153 0.208 (4) 0.129 (13)
SWTET 0.215 0.095 0.210 0.152 0.212 (8) 0.124 (11)
VAD 0.197 0.105 0.209 0.160 0.203 (1) 0.132 (14)
VADET 0.210 0.095 0.210 0.150 0.210 (7) 0.123 (10)

Martínez-Muñoz, and Suárez, 2013] which shows that ensembles of size less or
equal to 100 are too small for approximating the infinite ensemble prediction. Al-
though it is shown that for some data sets the ensemble size should ideally be larger
than a few thousands, we fixed N = 200 for the statistical comparisons and to bal-
ance performance and computation cost. For larger N , we expect the differences
between approaches to fade away. As we may wander whether tuningN as another
hyperparameter would change our conclusions drawn so far, we conducted further
experiments where we variedN between 100 and 1000 by taking steps of size 100 on
all the data sets. The larger the ensemble size, the heavier the computational burden
involved of course.
The results with respect to the ensemble size for each ensemble method are reported
in the form of box plots in Figure 2.6. We may observe that bagging-based methods
(Bag, BagET, RF) have more compact box plots and perform better for large values
of N . On the other hand, the tuned ensemble size varies significantly and seems to
be more data dependent for boosting-based approaches (AdSt, AdET, Vad) than for
bagging-based methods.
Table 2.8 (respectively Table 2.9) shows the average and standard deviation values
for each uncalibrated (respectively calibrated) ensemble algorithm on each of the
three metrics (ACC,AUC, 1−RMS). Each entry in the table averages the obtained
scores across the fifty trials and nineteen test problems. The table is divided for each
metric into two blocks to separately illustrate the performances for both cases N =
200 and tuned N . In both tables, higher scores always indicate better performance.
The major observations we may draw from the results in Tables 2.8 and 2.9 are two-
fold:

• The performances of Boosting-based algorithms (AdET, Vad and VadET) de-
teriorate when ensemble size N is tuned.
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TABLE 2.8: Average and standard deviation scores by metric for each
uncalibrated ensemble method obtained over nineteen test problems
for two strategies : ensemble size N is tuned and (2) N is set to
200. Bold cells (i, j) highlights which of both strategies is significantly
better than the other according to the Wilcoxon signed-rank test at

p = 0.05.

APPROACH ACC AUC RMS
N IS TUNED N=200 N IS TUNED N=200 N IS TUNED N=200

AD 0.846±0.11 0.857±0.10 0.880±0.13 0.893±0.12 0.676±0.13 0.668±0.10
ADET 0.784±0.13 0.862±0.09 0.796±0.14 0.898±0.12 0.572±0.13 0.667±0.09
ADST 0.847±0.12 0.833±0.11 0.898±0.12 0.874±0.13 0.603±0.11 0.598±0.08
ARCX4 0.866±0.09 0.852±0.09 0.920±0.09 0.892±0.11 0.715±0.10 0.686±0.10
ARCX4ET 0.866±0.09 0.868±0.08 0.921±0.09 0.901±0.10 0.715±0.10 0.693±0.09
BAG 0.858±0.08 0.823±0.10 0.914±0.10 0.875±0.12 0.714±0.09 0.660±0.10
BAGET 0.865±0.10 0.836±0.11 0.916±0.11 0.893±0.11 0.717±0.10 0.673±0.10
LOGB 0.848±0.10 0.845±0.10 0.880±0.12 0.884±0.13 0.679±0.14 0.635±0.09
RF 0.865±0.09 0.864±0.09 0.915±0.11 0.896±0.12 0.716±0.10 0.689±0.10
RADP 0.859±0.08 0.850±0.09 0.915±0.09 0.889±0.13 0.714±0.09 0.669±0.09
RADPET 0.864±0.10 0.861±0.09 0.915±0.11 0.908±0.10 0.716±0.10 0.680±0.09
ROT 0.864±0.09 0.865±0.08 0.916±0.10 0.903±0.11 0.722±0.10 0.700±0.10
ROTB 0.862±0.09 0.865±0.09 0.913±0.10 0.897±0.11 0.719±0.10 0.702±0.11
ROTBET 0.864±0.09 0.866±0.09 0.913±0.10 0.900±0.11 0.719±0.10 0.704±0.11
ROTET 0.864±0.09 0.871±0.08 0.915±0.10 0.901±0.10 0.721±0.10 0.698±0.10
SWT 0.851±0.10 0.859±0.09 0.899±0.10 0.888±0.11 0.692±0.08 0.638±0.07
SWTET 0.864±0.10 0.866±0.08 0.913±0.11 0.890±0.11 0.699±0.09 0.649±0.08
VAD 0.812±0.10 0.858±0.09 0.817±0.13 0.894±0.12 0.628±0.14 0.684±0.11
VADET 0.791±0.13 0.864±0.08 0.792±0.15 0.899±0.11 0.601±0.15 0.681±0.09

• We can observe the influence of tuning ensemble size N on the performances
of all other compared ensemble methods. Although slight improvements are
obtained for all these approaches when N is tuned, the Wilcoxon signed-rank
test does not reveal significant differences at p = 0.05 between both strate-
gies, on all metrics, especially when calibration is performed. Meanwhile,
tuning N shows promise for obtaining significant improvements in terms of
AUC and RMS for uncalibrated models given by ensemble approaches that
ranked among the worst performing methods in pervious sections : ArcX4,
Bag, BagET, RadP and RF.

• Bagging-based approaches (Bag and BagET) was found to be significantly
fares better for large N on all evaluation metrics with and without calibration.

In order to shed some further light on the differences observed when tuning the
ensemble size N , a Friedman test was applied to reveal statistically significant dif-
ferences at p = 0.05 for each metric, with and without calibration. We then present
the results of the Nemenyi posthoc test with average rank diagrams in Figures 2.7,
2.8 and 2.9. An increase in performance is observed for BagET, SwtET and RF as
the ensemble size is increased. Figure 2.6 shows that the the value of N yielding
better performances exceeds 400. The resulting win/tie/loss counts does not re-
veal significant differences at p = 0.05 within the dominating group of algorithms
listed in Table 2.10 for each evaluation metric with and without calibration. These
methods yield seemingly similar performances. Overall, in the dominating set of
approaches, we find again Rotation Forest-based methods, ArcX4ET and RadPET,
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TABLE 2.9: Average and standard deviation scores by metric for each
calibrated ensemble method obtained over nineteen test problems for
two strategies : ensemble size N is tuned and (2) N is set to 200. Bold
cells (i, j) highlights which of both strategies is significantly better
than the other according to the Wilcoxon signed-rank test at p = 0.05.

APPROACH ACC AUC RMS
N IS TUNED N=200 N IS TUNED N=200 N IS TUNED N=200

AD 0.818±0.11 0.836±0.11 0.828±0.14 0.863±0.13 0.635±0.11 0.669±0.12
ADET 0.805±0.12 0.838±0.11 0.806±0.15 0.861±0.13 0.622±0.10 0.674±0.12
ADST 0.830±0.11 0.817±0.11 0.848±0.12 0.845±0.13 0.647±0.10 0.653±0.11
ARCX4 0.856±0.10 0.829±0.10 0.877±0.12 0.853±0.13 0.673±0.12 0.659±0.12
ARCX4ET 0.855±0.10 0.842±0.10 0.877±0.12 0.859±0.13 0.674±0.12 0.673±0.12
BAG 0.857±0.10 0.820±0.10 0.874±0.12 0.844±0.13 0.672±0.12 0.649±0.12
BAGET 0.871±0.10 0.833±0.11 0.883±0.13 0.852±0.14 0.685±0.13 0.663±0.13
LOGB 0.836±0.10 0.823±0.12 0.850±0.13 0.854±0.13 0.655±0.11 0.660±0.11
RF 0.865±0.10 0.835±0.11 0.880±0.13 0.857±0.13 0.680±0.12 0.669±0.12
RADP 0.858±0.10 0.836±0.10 0.874±0.12 0.851±0.14 0.672±0.12 0.662±0.13
RADPET 0.868±0.10 0.844±0.10 0.884±0.13 0.867±0.12 0.685±0.12 0.678±0.12
ROT 0.862±0.10 0.837±0.11 0.877±0.12 0.864±0.13 0.677±0.12 0.673±0.12
ROTB 0.860±0.10 0.841±0.11 0.874±0.12 0.861±0.13 0.675±0.12 0.676±0.12
ROTBET 0.859±0.10 0.844±0.11 0.875±0.12 0.859±0.13 0.675±0.12 0.678±0.12
ROTET 0.865±0.10 0.843±0.11 0.878±0.12 0.858±0.13 0.678±0.12 0.675±0.12
SWT 0.847±0.11 0.829±0.11 0.859±0.13 0.848±0.13 0.663±0.12 0.660±0.13
SWTET 0.866±0.11 0.841±0.11 0.880±0.12 0.850±0.14 0.681±0.13 0.673±0.12
VAD 0.806±0.11 0.839±0.10 0.810±0.13 0.864±0.13 0.622±0.10 0.671±0.11
VADET 0.806±0.12 0.841±0.11 0.803±0.15 0.864±0.13 0.626±0.10 0.678±0.12

but also ArcX4, Bag, BagET, RadP, RF and SwtET which benefit considerably from
the tuning process.
As before, we computed the Dominance Rank table as advocated in [Kuncheva and
Rodríguez, 2007]. Table 2.11 shows the influence of the committee size for a num-
ber of ensemble methods. BagET, RF and SwtET stand further up in the table as a
prominent methods. Surprisingly, the dominance ranks of Adaboost and Vadaboost
algorithms are not as good.Therefore, increasing the ensemble size was highly ben-
eficial to the ensemble approaches based on random perturbations of the training
set (e.g. Bagging, Random Forests, Class-Switching and Random Patches), but not
to the Ad and Vad-based ensemble approaches.
On the other hand, the results in Table 2.11 confirm our previous finding, namely
that ET should be preferred to DT in the ensemble, since ET appear in all the domi-
nating sets, except for AdET and VadET.
Another interesting observation upon looking at the tables 2.10 and 2.11, is that the
more accurate the base classifiers are, the better the performance. The top perform-
ing methods (i.e., ArcX4, ArcX4ET, Bag, BagET, RadP, RadPET, RF, SwtET and
Rot-based methods) are in the lower right hand side in Figure 2.4. This is in nice
agreement with our previous findings, namely that individual accuracy is key fac-
tor that drives performance in ensemble learning.

2.7 Discussion

In this Section, we summarize our findings and draw some conclusions in view of
our extensive experiments:
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TABLE 2.10: List of dominating approaches per metric, with and
without calibration when ensemble size is tuned

METRIC WITHOUT CALIBRATION WITH CALIBRATION

ACC

ADST, ARCX4, ARCX4ET,
BAG, BAGET, RF, RADP,
RADPET, ROT, ROTB,
ROTBET, ROTET, SWTET

ARCX4, ARCX4ET, BAG,
BAGET, RF, RADP, RADPET,
ROT, ROTB, ROTBET, ROTET,
SWTET

AUC

ADST, ARCX4, ARCX4ET,
BAG, BAGET, RF, RADP,
RADPET, ROT, ROTB,
ROTBET, ROTET, SWTET

ARCX4, ARCX4ET, BAG,
BAGET, RF, RADP, RADPET,
ROT, ROTB, ROTBET, ROTET,
SWTET

RMS

ARCX4, ARCX4ET, BAG,
BAGET, RF, RADP, RADPET,
ROT, ROTB, ROTBET, ROTET,
SWTET

ARCX4, ARCX4ET, BAG,
BAGET, RF, RADP, RADPET,
ROT, ROTB, ROTBET, ROTET,
SWTET

• When the ensemble size is fixed to N = 200 as advised in [Hernández-Lobato,
Martínez-Muñoz, and Suárez, 2013], the best performing methods with and
without calibration are Rot and RotbET, followed by ArcX4ET, RadPET, Rotb,
RotET and VadET with calibration only.

• Using extremely randomized trees as a base learner yields significant perfor-
mance improvements compared to DT, whatever the metric used.

• Calibration was found to be remarkably effective at improving the perfor-
mances of boosting-based algorithms in terms of RMS values, especially for
Ad, AdET, AdSt, Logb , Vad and VadET.

• Tuning the ensemble size usually was beneficial to many approaches, except
for Ad, AdET, Vad, VadET. A significant gain in performance was obtained
with large values of N for random perturbations-based ensemble techniques
as BagET, SwtET and RF. Considering the metrics altogether, , the dominating
approaches included not only the Rot-based methods, but also ArcX4ET, Rad-
PET, ArcX4, Bag, BagET, RadP, RF and SwtET which benefited most from
the tuning process.

• According to the kappa-error diagrams analysis, ensuring a high level of accu-
racy of the base classifiers was found more important than their forcing them
to be diverse.

• As far as the bias-variance decomposition is concerned, Rot-based algorithms
(Rot, RotET, Rotb and RotbET) exhibited the best trade-off in terms of bias/variance
reduction. Boosting and Class-Switching based ensemble methods were found
to mainly reduce the bias while Random Patches (RadP and RadPET) and
Random Forests (RF) have very little variance, however this comes at the ex-
pense of an increased bias. The ranking of the ensemble algorithms in terms
of mean variance value indicates that the randomization of the discretization
threshold used in Extremely randomized trees (ET) is effective at reducing the
variance. The bias-variance decomposition analysis support the conclusion
that reducing the variance without affecting the bias within the ensemble is a
good strategy.

Of course, some caution needs to be taken when interpreting our experimental re-
sults. Before we conclude, we list and discuss a few caveats of our comparative
experimental set up,
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TABLE 2.11: Ranking of the methods using the significant differences
(Win- Losses) from all pairwise comparisons. Here, the number of

trees N is tuned for ensemble approaches.

APPROACH DOMINANCE (UNCALIBRATED) DOMINANCE (CALIBRATED) DOMINANCE
ACC AUC RMS ACC AUC RMS IN TOTAL

BAGET 110 151 136 142 137 146 822
RADPET 108 147 134 134 133 150 806
RF 79 117 123 110 120 106 655
SWTET 112 98 16 133 124 142 625
ARCX4ET 81 122 88 61 93 86 531
ARCX4 81 122 90 65 92 79 529
ROTET 71 66 129 81 82 89 518
ROT 68 69 128 75 81 90 511
ROTBET 64 63 119 60 71 80 457
ROTB 60 59 116 66 68 84 453
RADP 20 48 83 50 42 31 274
BAG 15 51 85 39 41 34 265
SWT -18 -57 -53 -5 -8 -11 -152
LOGB 13 -63 -44 -37 -25 -28 -184
ADST 19 59 -217 -84 -31 -56 -310
AD 33 -6 -31 -121 -89 -135 -349
VADET -236 -258 -209 -158 -203 -175 -1239
VAD -216 -241 -191 -216 -250 -241 -1355
ADET -261 -261 -272 -184 -209 -226 -1413
CART -203 -286 -230 -211 -269 -245 -1444

• Following the recommendations of [Louppe and Geurts, 2012] and [Demšar,
2006], a two-step statistical comparison for each of the considered measures
was performed at a common used significance level of p = 0.05. The first step
is a Friedman test that rejects the null hypothesis that states that not all learn-
ers perform equally, followed by a Nemenyi post-hoc test to compare all the
classifiers to each other. As discussed in [Louppe and Geurts, 2012], we used
a less conservative pairwise comparison using the win/tie/loss statuses using
paired t-tests (at p = 0.05). A value of p = 0.01 was found too conservative;
too few significant differences were observed at this risk level, except when N
is tuned, the significant differences were found with p = 0.01.

• From the experimental analysis, it is not clear why tuning the ensemble sizeN
hurts the performances of Boosting-based algorithms (AdET, Vad and VadET)
so much. Our preliminary analysis indicates that the decrease in performance
is significant, especially for data set having a small validation data set (e.g.
Colon, Leukemia, Ovarian and Promoter Gene Sequences). The validation is
probably overfitted, this requires further investigations though.

• The comparison was performed on binary classification problems solely. Mutli-
class and multi-label classification problems were not investigated. However
it is worth noting that various strategies exists to cast these problems as a se-
ries of binary classification tasks.

2.8 Chapter summary

In this Chapter, We described an extensive empirical comparison between ninteen
prototypical supervised ensemble learning algorithms over nineteen UCI bench-
mark data sets with binary labels and examined the influence of two variants of
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decision tree inducers (unlimited depth, and extremely randomized tree) with and
without calibration. The experiments presented here support the conclusion that
the Rotation Forest family of algorithms (Rot, RotbET) outperforms all other ensem-
ble methods with or without calibration by a noticeable margin. They were never
beaten by any other approach whatever the metric considered (accuracy, AUC, RMS).
When calibration is performed, Arcing classifiers and Random patches using ex-
tremely randomized trees join the best performing methods. On the other hand,
we found that tuning the ensemble size shows promise for increasing the overall
performances of ensemble techniques based on random training set perturbation as
Bagging, Switching and Random Forests, especially when the size of the ensemble
large.
We also analysed the diversity-accuracy trade-off by inspecting the kappa-error di-
agrams. Individual accuracy was found to be the most crucial parameter. From the
bias-variance decomposition, it appears that the success of an ensemble approach is
closely related to its ability to mainly reduce the variance provided that the bias is
not increased too much. Interestingly, we found that Extremely randomized trees
should always be preferred to standard decision trees in the ensemble construction
especially with small sized data sets. This confirms the effectiveness of random split
threshold strategy when building the decision trees. Finally, we found calibration to
be remarkably effective at reducing the RMS of boosting and class-switching based
methods.
Overall, we advocate the use of Rot-based learners, RadPET and ArcX4ET when
comparing binary classification approaches in view of their highly competitive per-
formances, whatever the loss function considered. We believe these methods should
be preferred to Bagging, Switching and Random Forests as the latter require a larger
committee of base learner to yield similar performances. Training and testing times
have not been reported in our study for the sake of conciseness, our choice was to
focus solely on the prediction accuracy through several metrics.
In order to get the best use of the ensemble learning models, one needs a better un-
derstanding of the combination step in the ensemble paradigm. Thus, in the next
Chapter, we focuses on how to aggregate the output of the classifiers in order to
maximize the prediction accuracy of such approaches. We discuss Dynamic ensem-
ble selection, the problem of finding, given test instance, a subset of classifiers from
an ensemble that leads to improve the prediction accuracy.
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FIGURE 2.4: Centroids of κ-Error Diagrams of different ensemble ap-
proaches for two data sets. x-axis= κ, y-axis= ei,j (average error of
pair of classifiers). (01) Rot; (02) Bag; (03) Ad; (04) RF; (05) Rotb;
(06) ArcX4; (07) AdSt; (08) Swt; (09) RadP; (10) Vad; (11) RotET; (12)
BagET; (13) AdET; (14) RotbET; (15) ArcX4ET; (16) SwtET; (17) Rad-

PET; (18) VadET.
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FIGURE 2.6: The box plot visualization for the final ensemble size of
all compared ensemble approaches
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FIGURE 2.7: Average ranks diagram comparing the 20 algorithms in
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Chapter 3

Dynamic Ensemble Selection

OUTLINE
Dynamic ensemble selection (DES) is the problem of finding, given test instance x,
a subset of classifiers from an ensemble that leads to improve the prediction accu-
racy. The idea behind DES approaches is that different models have different areas
of expertise in the instance space. But how is the expertise of a model defined ? Tra-
ditionally it has been based on estimating the individual relevance of the base clas-
sifiers within a local region of competence. This Chapter will be devoted to present
the fundamental concepts of DES and to summarize the state-of-the-art approaches
in the dynamic pruning litterature.

The process of selecting a subset of classifiers is called ensemble selection or ensemble
pruning. When the same subset of models is selected for all test instances, the pro-
cess is referred to as static ensemble selection (SES) [Li, Yu, and Zhou, 2012]. In that
case, the simplest idea is to select the ensemble members from a set of individual
classifiers that are subject to less resource consumption and response time with ac-
curacy that performs at least as good as the original ensemble. A natural follow-up
is to determine this subset dynamically, i.e. according to the current input feature x.
This process is referred to as dynamic ensemble selection (DES).
It has been shown that selecting a part of classifiers instead of using all of them,
can generally achieve better performances [Zhou, Wu, and Tang, 2002; Martínez-
Muñoz, Hernández-Lobato, and Suárez, 2009]. When the selection is done stati-
cally, speed performances increase since all the test instances will be predicted by a
lower subset of classifiers whereas in the dynamic selection case, gain in accuracy is
favoured over time complexity.
Several DES methods have been recently proposed in the literature. A comprehen-
sive coverage of individual-based and group-based DES methods is provided in [Jr.,
Sabourin, and Oliveira, 2014] (Figure 3.1). In individual-based methods, the selec-
tion of a subset of models for each test instance is done by estimating the competence
level of the base classifiers individually, that is, without taking their dependency
structure of the model errors into account. Group-based methods make one step
further by modeling the error co-occurrences.

3.1 Dynamic Classifier Selection (DCS)

The DES field emerged when machine learning researchers started to ask the prob-
lem of selecting dynamically a classifier out of an ensemble (Dynamic Classifier Se-
lection, DSC). DSC-Rank, one of the pioneer approach was proposed by [Sabourin
and Mitiche, 1993] and uses a mutual entropy information measure to rank the clas-
sifiers of an ensemble.
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FIGURE 3.1: Taxonomy of DES methods by [Jr., Sabourin, and
Oliveira, 2014]

Some approaches then started to define region of competences for a given test pattern
x usually given by its nearest neighbors [Cover and Hart, 1967]. A simple approach
[Woods, Kegelmeyer, and Bowyer, 1997] is to find the neighbors of x in a validation
data set Xval. Then the most competent classifier on the nearest neighbors is selected.
In this case, competence is either defined by overall local accuracy (OLA) which is the
accuracy of the classifiers in the region of competence or by local class accuracy (LCA)
being the local accuracy of a classifier respectively to the class predicted on x (see
Figure 3.2).

FIGURE 3.2: OLA vs LCA. The unknown instance x is represented
in blue. If we consider OLA, ψ1 is selected since it has the highest
overall accuracy on the 6-nearest neighbors. If LCA is considered, ψ2

is selected since it has the better accuracy on the red star class.

Instead of using nearest neighbors, some clustering-based approaches were used to
determine region of competences [Kuncheva, 2000]. For each cluster the best classi-
fier in terms of accuracy is selected. At testing time, the test instance x is predicted
by the classifier of its belonging cluster as shown in Figure 3.3.
Metalearning methods for DCS were developed such as in [Ortega, Koppel, and
Argamon, 2001]. The authors idea is to assign a referee to each classifier that de-
scribes the classifier’s area of expertise. Then for an input x, an arbitration is made
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FIGURE 3.3: Cluster-based approach for DCS

between all the classifiers to select the best one.
Finally, during thesis a metalearning DCS approach called PM-DES was proposed
[Narassiguin, Elghazel, and Aussem, 2017]. Its details will be given later in Chapter
5.

3.2 Individual-based DES approaches

3.2.1 K-nearest-oracles

The K-nearest-oracles (or KNORA) scheme is an oracle-based measure set of meth-
ods [Jr., Sabourin, and Oliveira, 2014] that relies on the performances of the classi-
fiers on a local region defined by the K-nearest neighbors in the validation set of the
test pattern to be classified. 4 different schemes were proposed :

1. KNORA-ELIMINATE chooses the classifiers that correctly classify all K neigh-
bours. If such a classifier doesn’t exist, K values is decreased by one.

2. KNORA-UNION chooses the classifiers that correctly classify at least one of the
neighbours.

3. KNORA-ELIMINATE-W and KNORA-UNION-W : classifiers ensemble predic-
tions on x are weighted according to there Euclidean distance between x and
the K nearest neighbours.

An improved version of KNORA was proposed by Roli et al. in [Roli, 2009]. This
approach is based on KNORA-ELIMINATE which has been empirically recognized
as more accurate than other schemes such as KNORA-UNION [Ko, Sabourin, and
Britto, 2008]. In KNORA-ELIMINATE, a classifier is selected for a test pattern only if
it classifies correctly all the K nearest neighbors of the test pattern (KNORA-UNION
is less restrictive since a classifier need to classify correctly only one of the K nearest
neighbors, see Figure 3.4).
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(A) KNORA-ELIMINATE

(B) with rotations

FIGURE 3.4: KNORA-ELIMINATE selects classifiers that correctly clas-
sify all the K-nearest instances (in dark) of the unknown instance x
(hexagon point) whereas KNORA-UNION selects classifiers that cor-
rectly classify any the K-nearest instances (from [Jr., Sabourin, and

Oliveira, 2014])

KNORA has only one hyper-parameters K, which is the number of nearest neighbors
for a given test input. Algorithm 12 shows its pseudo-code.
The weakness of nearest-oracles methods is not only the dependence on nearest neigh-
bors, but also that the competences of the classifiers in Ψ is evaluated only one met-
ric : accuracy. As mentioned in previous chapters, diversity is an important metric
to evaluate the quality of an ensemble of learners and it may be consider when de-
signing new competence functions.

3.2.2 GMDH-based DES

GDES-AD (GMDH-based dynamic classifier ensemble selection according to accu-
racy and diversity) is an approach that evaluate a fitness function composed of the
two important metric in ensemble learning : accuracy and diversity [Xiao et al.,
2010]. The fitness function is evaluated on the nearest neighbors and is defined for
a sub-ensemble Ψx by :

Fitness(Ψx) = d2(Ψx) + λ×DFav(Ψx) (3.1)

where d2(Ψx) measures the overall accuracy on the nearest neighbors and DFav
measures the average pairwise diversity within the sub-ensemble Ψx. The criterion
is minimized using a GMDH neural network [Ivakhnenko, 1988] and the estimated
optimal solution corresponds to the optimal sub-ensemble. The authors claim that
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Algorithm 12 KNORA-ELIMINATE

Input: Ensemble of classifiers Ψ, validation set (Xval, Yval), test set Xtest and the
neighborhood size K.

Output: Ψx a subset of classifiers for the unknown pattern x.
k = K
while k > 0 do

Find Xknn, the k-nearest neighbors of x in the Xval.
for each classifier ψ in the ensemble Ψ do

if ψ correctly classifies all the instances in Xknn then
Ψx = Ψx ∪ ψ

end if
end for
if Ψx is empty then
k = k − 1

else
break

end if
end while
if Ψx is empty then

Find the classifier ψ that correctly recognizes the most number of instances in
Xknn.
Select all the other classifiers that recognizes the same amount of instances
than ψ.

end if
return Ψx

this approach tends to give nice performances especially when there’s some pres-
ence of noise in the data.

3.2.3 Dynamic ensemble selection by competence voting

In DES-CV (Dynamic ensemble selection by competence voting) Woloszynski and
Kurzynski ask themselves how to define rigorously a natural competence metric for
DES[Woloszynski and Kurzynski, 2011; Woloszynski et al., 2012]. They proposed to
model the probability of a classifier ψ to correctly classify an input x :

P (ψ|x) = P (x ∈ c ∩ ψ(x) = c) (3.2)

Where c is the instance x true class.
Using a classifier probabilities estimate to evaluate its competence regarding a cer-
tain test instance might be bias because "no one should be a judge in their own
cause" as mentioned by the authors. Thus, they decided to evaluate the classifiers
competences indirectly by modeling an hypothetical classifier named randomised
reference classifier (RRC) that simulates stochastic processes having the same prob-
abilities estimates as the true classifier ψ. Suppose that for a given x the classi-
fier gives the following probabilities for each classes : (ψ̂1(x), . . . , ψ̂C(x)), the RRC’s
probability distribution (Δ1(x), . . . ,ΔC(x)) should have those properties :

1. Δc(x) ∈ [0, 1]

2. E[Δc(x)] = ψ̂c(x)



54 Chapter 3. Dynamic Ensemble Selection

3.
C∑
c=1

Δc(x) = 1

Indeed, the RRC has to model the behavior of ψn(x) that’s the reason why it follows
the same probability distribution (condition 2). Condition 1 and 3 correspond to
trivial probability properties. The stotastic process behind RRC is chosen to be a
beta distribution and the final probability of a RRC to be correct on a validation
instance xval with a correct class c is :

P (RRC|xval) =
∫ 1

0
b(u, αc(xval), βc(xval))

C∏
i �=c

B(u, αi(xval), βi(xval)) du (3.3)

With αc(xval) and βc(xval) being beta distribution parameters, here defined by :{
αc(xval) = C ψ̂c(xval)

βc(xval) = C (1− ψ̂c(xval))
(3.4)

Once the individual competence of ψ on xval Γ(ψ, xval) = P (RRC|xval) is found,
results can be aggregated to find the resulting competence of ψn on x. To do so,
ψn competences are averaged relatively to the distances between an xval and x : the
closer an instance xval is to x the more important is its contribution to the final com-
petence. A non-negative potential function K(xval, x) decreasing when the distance
between xval and x increases is used for the weighting. The competence function is
finally given by :

γ(ψ, x) =
∑

xval∈Xval

Γ(ψ, xval)K(xval, x) (3.5)

Thus a classifier is selected if its competence is better than random classification
which is equal to 1/C for multiclass classification. Pseucode with the steps required
to compute the competence Γ(ψ, xval) is given in Algorithm 14 and the full DES-CV
algorithm is detailed in Algorithm 14.

Algorithm 13 DES-CV competence function Γ

Input: A classifier ψ, a validation instance (xval, yval). xval belongs to class c (ie
yval = c).

Output: Estimated competence Γ(ψ, xval) of ψ on xval.
Probabilities produced by ψ for each class : (ψ1(xval), . . . , ψ

C(xval)).
Compute (αc(xval), βc(xval)) for each c = 1 . . . C using Equation 3.4.
Construct the RRC and evaluate its probability P (RRC|xval) with Equation 3.3
(Riemann sum to approximate integral).
return Γ(ψ, xval) = P (RRC|xval)

DES-CV’s originality in defining a new metric based on probabilities modeling that
can be viewed as more robust compared to approaches considering only the class
labels.
However as many individual-based DES approach, the entire pruning process relies
on a single competence function, which doesnt take into potential missing criteria
and more importantly, the correlations between the classifiers performances.
Recently new meta learning methods appeared in the literature that propose to in-
clude more than one metric to evaluate the performance of the classifiers within the
ensemble.
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Algorithm 14 DES-CV

Input: Ensemble of classifiers Ψ of size N , validation set (Xval, Yval), test set Xtest. C
is the number of classes of the data set.

Output: Ψx a subset of classifiers for the unknown pattern x.
for each validation instance xval in Xval do

for each ψ ∈ Ψ do
Compute Γ(ψ, xval) with Algorithm 13.

end for
end for
Ψx = {}
for each ψ in Ψ do

γ(ψ, x) =
∑

xval∈Xval

Γ(ψ, xval)K(xval, x).

if γ(ψn, x) > 1/C then
Ψx ← ψ.

end if
end for
return Ψx

3.3 DES using meta learning

3.3.1 META-DES

In their papers, Cruz and Sabourin had the idea to consider DES as a new classi-
fication problem named meta-problem [Cruz et al., 2015]. To do so, they propose
five sets of meta-features given by the outputs of the classifierson a validation data
set. They claim that each set of feature is adding more advantageous information
about the behaviour of the classifiers rather than considering the accuracy or an-
other unique metric on a region of performances. These sets of features are map to
a response which is whether or not the corresponding classifier predicted correctly
a validation instance. Then a simple binary classification algorithm is fitted (called
meta-learner) on the meta-base and for an unknown instance x, the meta-learner
gives returns the subset of good classifiers Ψx. This framework is called META-DES.
First the method filters the instances in (xval, yval) ∈ (Xval, Yval) where the consensus
H(Ψ, xval) among the ensemble is above a certain threshold hC . The consensus of the
classifiers for an instance xval corresponds to the ratio of learners that have predicted
correctly the instances class and can be written as follow :

H(Ψ, xval) =

∑
ψ∈Ψ

1ψ(xval)=yval

|Ψ| (3.6)

From the resulting data set, 5 sets of features are computed. These five sets of fea-
tures (f1, f2, f3, f4, f5) are defined below :

• f1 - Nearest neighbor’s hard classification: K binary values corresponding to
whether or not a classifier ψ correctly classified the K nearest neighbors of xval
in the validation set (1 if correct, 0 otherwise).

• f2 - Posterior probabilities on neighbors ψc(Xknn): corresponds to the esti-
mated probabilities on the neighbors for their correct class.

• f3 - Overall local accuracy: accuracy of the classifier ψ on xval’s region of com-
petence.
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• f4 - Output profiles classification: Kp binary values corresponding to the Kp

nearest neighbors of xval in the output profile classfier space.

• f5 - Classifier’s confidence: classifier’s probabilities on the correct class c for
xval, ψc(xval).

Those meta-features are computed for each validation instance xval and each clas-
sifier ψn and are mapped to a value of 1 if ψn correctly classifies xval and 0 oth-
erwise. A binary classification database is thus obtained (XMETA,YMETA) of size
(nval×N, 2K+2Kp+2). Finally a classifier META is fitted and for an instance x the
right classifiers are dynamically selected by considering META’s outputs. The full
description of META-DES running is describe in Algorithm 15.
In their papers, META-DES authors proved empirically that their algorithm can
boost the performances of weak learners such as perceptrons by learning complex
patterns.

Algorithm 15 META-DES

Input: Ensemble of classifiers Ψ of size N , validation set (Xval, Yval) of size Mval ×
Pval, test set Xtest. The function which computes the features [f1, f2, f3, f4, f5] is
referred as MetaFeatures(x, ψ).

Output: Ψx a subset of classifiers for the unknown pattern x.

Create meta-base

Initialize XMETA = array(Mval ×N, 2K + 2Kp + 2)
Initialize YMETA = array(Mval ×N, 1)
Initialize iMETA = 0
Filter validation data using consensus (Equation 3.6)
for each validation instance (xval, yval) in (Xval,Yval) do

for each ψ ∈ Ψ do
XMETA[iMETA, :] = MetaFeatures(xval, ψ)
YMETA[iMETA] = 1ψ(xval)�=yval
iMETA = iMETA + 1

end for
end for

Dynamic pruning

Ψx = {}
for each ψ in Ψ do
p = META.predict(MetaFeatures(x, ψ)).
if p = 1 then
Ψx ← ψ.

end if
end for
return Ψx

While computing multiple metrics to prune ensembles, META-DES evaluates the
classifiers one by one when transforming the ensemble into a meta-base. Thus, the
correlations between the classifiers errors are not taken into account. Some authors
had the idea to design a meta-base that considers the classifiers output all at once.
This process transforms the validation data into a multi-label data set.
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3.3.2 DES using multi-label learning

Instance-Based Ensemble Pruning via Multi-Label Classification, or IBEP-MLC is
a framework proposed by Markatopoulou et al. in [Markatopoulou, Tsoumakas,
and Vlahavas, 2010; Markatopoulou, Tsoumakas, and Vlahavas, 2015], the idea is
based on the simple observation that the problem of dynamic ensemble selection
can be cast as a multi-label classification (MLC) task. Learning to predict the subset
of classifiers that are expected to correctly classify a given instance. The framework
requires the construction of an appropriate multi-label training set for this learning
task. The feature space of this training set is the same as the original feature space,
while the label space contains one label for each classifier. The label is positive if
the given classifier predict the right class for the given validation instance otherwise
the label is negative as shown in Table 3.1. The transformed validation data is now
referred as (Xval, Ŷval).

TABLE 3.1: From validation set to multi-label dataset (from
[Markatopoulou, Tsoumakas, and Vlahavas, 2010])

validation set classifier predictions multi-label training set
Xval Yval ψ1 ψ2 . . . ψN x ψ1 ψ2 . . . ψN
x1 sky path sky . . . cement x1 - + . . . -
x2 window sky window . . . window=⇒ x2 - + . . . +

. . . . . . . . .
xn foliage foliage grass . . . path xn + - . . . -

Once the transformation is performed, a multi-label learner is trained on (Xval, Ŷval).
It returns 0/1 outputs for an input x whether a specific classifier is considered as
good or not. The full formalism of this approach is described in Algorithm .
In Markatopoulou’s IBEP-MLC articles, ML-KNN [Zhang and Zhou, 2007] is the
multi-label algorithm chosen, its performances are relatively competitive while its
computational cost is reasonable for high dimensional data sets. This multi-label
classifier returns a set of real numbers between 0 and 1 for each testing instances
which corresponds to the confidence of a label for being labelled negative or posi-
tive (0/1). It is usually set by default threshold θML = 0.5. This method has two
hyperparameters: KML which is the number of the K-nearest-neighbors selected
by the ML-KNN approaches and θML. IBEP-MLC achieves good performances for
θML = 0.75 or 0.80 [Markatopoulou, Tsoumakas, and Vlahavas, 2010] and KML =
10. The authors reported significant improvements in accuracy for an heterogeneous
ensemble method of 200 classifiers.
Another recent proposal called CHADE (for CHAined Dynamic Ensemble) algo-
rithm [Pinto, Soares, and Mendes-Moreira, 2016] is based on the classifier chain
(CC) technique [Read et al., 2011]. More details about this approach that intrin-
sically captures correlations between classifiers and its probabilistic version PCC-
DES developped during this thesis are given in the next chapters. This algorithm
was evaluated on a bagging ensemble of 100 decision stumps using a large set of
classification data sets.

3.4 Chapter summary

This Chapter presented the dynamic ensemble selection problem and overviewed
different proposals in this domain. As we observed in this review, most methods
proposed for this purpose estimate the individual relevance of the base classifiers
within a local region of competence usually given by the nearest neighbours in the
euclidean space.
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Algorithm 16 Formalism of DES using multi-label learning

Input: Ensemble of N trained classifiers Ψ = (ψ1, . . . , ψN ), validation set (Xval,
Yval) (size M × P), multi-label classifier META, test instance x.
Ouput: Trained multi-label classifier META, subset of classifiers Ψx best suited
to predict x.

Step 1: Problem transformation
Initialize labels Ŷval = array(M ×N).
for n = 1 to N do

for m = 1 to M do
Ŷval(m,n) = 1[ψn.predict(Xval[m, :]) = Yval[m]]

end for
end for
Intermediate output: metabase (Xval, Ŷval).

Step 2: Train multi-label classifier
META.fit(Xval, Ŷval)
Intermediate output: Trained multi-label classifier META.

Step 3: Predict the subset of classifiers
Initialize Ψx = {}.
ŷ =META.predict(x)
for n = 1 to N do

if ŷ[n] = 1 then
Ψx ∪ ψn

end if
end for
return Ψx

In the remaining of this thesis, we address the problem of improving the perfor-
mances of ensemble learning approaches using two novel DES approaches. In Chap-
ter 4, we firstly present ST-DES, a method designed for decision tree based ensem-
ble models. This method prunes the trees using an internal supervised tree-based
metric; it is motivated by the fact that in high-dimensional data sets, usual metrics
like euclidean distance suffer from the curse of dimensionality. Then, in Chapter 5,
a second approach, called PCC-DES is discussed. PCC-DES formulates the DES
problem as a multi-label learning task with a specific loss function. Labels corre-
spond to the base-classifiers and multi-label training examples are formed based on
the ability of each classifier to correctly classify each original training example. This
allows us to take advantage of recent advances in the area of multi-label learning.
PCC-DES works on homogeneous and heterogeneous ensembles as well.
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Chapter 4

ST-DES: A novel instance-based
approach

OUTLINE
In this section, we’ll introduce our new dynamic pruning approach called ST-DES
for Similarity Tree - Dynamic Ensemble Selection. A point of criticism of euclidean
based DES methods such as KNORA and OLA could be there sensitivity to high-
dimensional data set and noisy data. This idea motivated us to define a robust
supervised tree-based metric to evaluate the similarity of two instances within a
single decision tree.

4.1 Problem statement

Suppose the following classification problem : a training data set with 4 instances
and 4 binary features. The two first variables determine the output Y as in an XOR
pattern, the two last variables are random noise. The full data set is given in Table
4.1.

TABLE 4.1: Binary classification toy example

X Y
x1 0 0 0 1 1
x2 0 1 1 1 0
x3 1 0 1 1 0
x4 1 1 0 0 1

While training an ensemble of random trees on this data set, some models would
consider only the 2 correct variables while discarding the other two. One possible
decision tree T for this problem is given in Figure 4.1. Determining the region of
competence with the nearest neighbors for a specific test pattern relative to this tree
would be a bit confusing. Indeed, suppose we have a test input x = [1, 1, 1, 1] whose
class is 1. Its closest neighbors in the euclidean space are x2 and x3 due to the two
last noisy variables (the distances between x and (xi)1≤4 are respectively

√
3,
√
3,

1 and
√
2), while x would share the same path as x4 in the tree T . This limitation

would be accentuated in the context of high dimensional data sets. Our principal
idea in this new proposed DES approach is to take the advantage of the supervised
features space designed by a decision tree to find more robust region of competences
especially when noisy features are involved.
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X(1) < 0.5

X(2) < 0.5

10

X(2) < 0.5

01

FIGURE 4.1: Decision tree on the toy example data set

4.2 Similarity measure for decision trees

Let Px be the path of an instance x to be classified in the decision tree. Px is an
ordered list of nodes which end by a leaf node. Figure 4.2 shows a decision tree
composed by the nodes T = {p1, . . . , p7} with the path Px = {p1, p3, p4, p6}.

p1

p3

p7p4

p6p5

p2

FIGURE 4.2: Decision Tree T and Px path (in bold)

Supposed x and x’ two instances and Px = (p1, . . . , pl) and Px′ = (p′1, . . . , p′l′) their
respective path in a decision tree T . A first intuitive way to quantify the similarity
between x and x’ in a tree would be to count the number of nodes shared by both
instances in T , as follows :

|Px ∩ Px′ |
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Unfortunately this adapted version of Hamming distance strongly depends on the
size of the tree. At the result, we thought of normalizing the previous quantity by
the length of path Px :

|Px ∩ Px′ |
|Px|

This formulation is limited since it is not symmetric in Px and Px′ . To cope with
this issue, the similarity s(x, x’) was designed to be the geometric mean of the two
quantities |Px∩Px′ |

|Px| and |Px∩Px′ |
|Px′ | :

1

s(x, x’)
=

1

2
(

|Px|
|Px ∩ Px′

|+ |Px′|
|Px ∩ Px′ |)

Which results to :

s(x, x’) = s(Px, Px′) =
2|Px ∩ Px′ |
|Px|+ |Px′ | (4.1)

Or algebraically:

s(x, x’) = s(Px, Px′) =

2

min(l,l′)∑
k=1

1pk=p′k

l + l′
(4.2)

s(x, x′) can be seen as an adapted F-measure for two vectors of different dimensions.
Its a supervised metric since it limits the computation of the distance to relevant
features highlighted by the decision tree.
Even if our newly defined similarity measure is pretty intuitive and straightforward
to understand, we empirically found out that its use in the full ST-DES procedure
(detailed in the further Section) resulted sometimes in poor performances in terms
of accuracy. The reason behind is that in big size trees, two instances can have a
pretty high similarity although they’re not in the same region of the tree. Thus, we
decided to apply a threshold σST to our measure in order to avoid those issues. s
becomes:

s(Px, Px′)← max[s(Px, Px′)− σST , 0] (4.3)

s(Px, Px′) = max
[
2|Px ∩ Px′ |
|Px|+ |Px′ | − σST , 0

]
(4.4)

The threshold parameter σST can be tuned during cross validation.

4.3 ST-DES Algorithm

ST-DES as other instance-based DES frameworks consists of computing a compe-
tence measure for each classifier and then excluding those that perform poorly. De-
signing a competence function consists usually in simultaneously penalizing incor-
rect classification while benefitting correct labelling. In our case, for a unclassified
instance x and a validation instance xval, the decision tree ψ competence on x will
be s(x, xval) or −s(x, xval) depending on whether ψ classifies correctly xval or not.
Then, our competence function is given by the normalized sum over all validation
instances (Xval,Yval) as follows:
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FIGURE 4.3: x1 in red, x2 in blue and x3 in green. x1 and x2 have a
similarity measure of 2× 3/4 + 4 = 3/4 and are distant to x3 in terms

of the tree space (s(x1, x3) = s(x2, x3) = (2× 1)/(4 + 1) = 2/5)

γ(ψ, x) =

∑
(xval,yval)∈(Xval,Yval)

s(x, xval)sign[ψ(xval) = yval]

∑
xval∈Xval

s(x, xval)
(4.5)

Our approach can benefit from out-of-bags instances (Xoob,Yoob) produced by the
bagging process instead of using the validation data set.
Once the competence computed, we used the same thresholding strategy investi-
gated in [Markatopoulou, Tsoumakas, and Vlahavas, 2010] to produce a bipartition
of the models from the score vector (tree selected or not).
To sum up, the main step of ST-DES algorithm are the following:

• Train a tree based ensemble on (Xtrain,Ytrain)

• For each test instance to label in Xtest:

 Compute the similarity between the given instance and all validation in-
stances in Xval with equation 4.4.

 Compute the competences of the decisions trees within the ensemble us-
ing equation 4.5.

 Keep a subset of trees with competences greater than θST .

 Label the instance by majority voting among the selected classifiers.

Algorithm 17 gives a formal description of the procedure.

4.4 Experiments

In this section, we will investigate the performance of ST-DES against other DES
techniques on a Random Forest based ensemble of size 200, as its performances are
one of the most competitive and its diversity is pretty pertinent.
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Algorithm 17 ST-DES

Input: Ensemble (Forest) of trees Ψ of size N , validation set (Xval, Yval) or (Xoob,
Yoob), test set Xtest, thresholds σST and θST , unknown instance x.

Output: Ψx a subset of classifiers for the instance x.
Ψx = {}
for tree ψ ∈ Ψ do

for each validation instance xval in Xval do
P and Pval, xval and x respective paths in ψ.
Compute s(x, xval) = max[ 2|P∩Pval|

|P |+|Pval| − σST , 0].
Save s(x, xval).

end for
Determine γ(ψ, x) with Equation 4.5 and (s(x, xval))xval∈Xval

.
if γ(ψ, x) > θST then
Ψx ← ψ

end if
end for
return Ψx

4.4.1 Evaluation protocol

To gauge the practical relevance of ST-DES, we compared its performance to five
other DES methods on several benchmark and real data sets in terms of accuracy
improvements:

• OLA: the Overall Local Accuracy algorithm [Woods, Kegelmeyer, and Bowyer,
1997]. It is a simple individual-based DES method which consists to classify
a test instance using the most competent classifier within its local region. For
that, it measures the percentage of correct classifications of each model for the
examples that exist in the local region of the unclassified instance. In OLA,
kNN is used with an Euclidean distance.

• KNORA-ELIMINATE: the K-Nearest-ORAcles Eliminate algorithm [Ko, Sabourin,
and Britto, 2008]. It is another individual-based DES method that use the Eu-
clidean distance to estimate the nearest neighbors of a given unclassified in-
stance. The ELIMINATE version of KNORA was used, as that was found
as producing good results in recent studies. It is worth mentioning that we
compare ST-DES to the both previous approaches in order to evaluate the ef-
fectiveness of our tree-based metric against standard Euclidean distance.

• DESCV: the Dynamic ensemble selection by competence voting algorithm
[Woloszynski and Kurzynski, 2011; Woloszynski et al., 2012], another individual-
based DES method evaluating the effectiveness of a model for a given unseen
instance using a new probability-based competence metric.

• IBEP: the Instance Based Ensemble Pruning technique [Markatopoulou, Tsou-
makas, and Vlahavas, 2010; Markatopoulou, Tsoumakas, and Vlahavas, 2015].
It is a group-based technique that resolves the DES problem as a multi-label
classification problem using the (MLkNN) multi-label approach.

• CHADE: CHAined Dynamic Ensemble algorithm [Pinto, Soares, and Mendes-
Moreira, 2016], another recently proposed group-based method that also casts
DES as a multi-label classification problem using the classifier chain (CC) tech-
nique.
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TABLE 4.2: Characteristics of the data sets used in the study

Data sets # Instances # Features # Classes Ref.

AutoMoto 1980 2159 2 [Rennie, 2000]
BaseHock 1993 4862 2 [Zhao, Morstatter, et al., 2010; Rennie, 2000]
Breast cancer wisconsin (original) 699 9 2 [Blake and Merz, 1998]
CNAE-9 1080 856 9 [Blake and Merz, 1998]
Colic 368 27 2 [Blake and Merz, 1998]
Colon 62 2000 2 [Alon, Barkai, et al., 1999]
Credit Approval 690 15 2 [Blake and Merz, 1998]
German credit 1000 24 2 [Blake and Merz, 1998]
Haberman’s Survival 306 3 2 [Blake and Merz, 1998]
Heart Disease (Cleve) 303 13 2 [Blake and Merz, 1998]
Ionosphere 351 34 2 [Blake and Merz, 1998]
Leukemia 73 7129 2 [Golub et al., 1999]
Madelon 2600 500 2 [Blake and Merz, 1998]
Parkinsons 195 22 2 [Blake and Merz, 1998]
PcMac 1943 3289 2 [Zhao, Morstatter, et al., 2010; Rennie, 2000]
Promoter gene sequences 106 57 2 [Blake and Merz, 1998]
Robot 88 90 4 ??
Smk-Can 187 19993 2 [Zhao, Morstatter, et al., 2010]
Spambase 4601 57 2 [Blake and Merz, 1998]
Congressional Voting Records (Vote) 435 16 2 [Blake and Merz, 1998]

• RF: the complete Random Forest ensemble classically used as our baseline
method.

Twenty benchmark and real labeled data sets, mostly selected from the UCI Machine
Learning Repository [Blake and Merz, 1998], were used to assess the performance
of ST-DES. They are described in Table 4.2. We selected these data sets as they con-
tain different number of features and different number of instances. Some data sets
consist of thousands features with comparatively much smaller sample size (e.g.,
Leukemia, Colon and Smk-Can) and are thus good candidates for DES problem.
Following [Markatopoulou, Tsoumakas, and Vlahavas, 2010], we use the same sim-
ple thresholding strategy to produce a bipartition of models with ST-DES. A model
is selected as positive if its competence score is higher than a single threshold θST
used for all models. We explore threshold values ranging from 0.5 to 0.9 with a step
of 0.05. We found that a threshold of 0.5 leads to the best overall result. In the rest of
the experiments we fix the threshold to this overall best value for all data sets. One
could argue that this is unfair, because we tune a parameter by peeking at the test
sets. However, we don’t use the best respective threshold for each data set, rather
a fixed value, which could be suboptimal for some data sets. Concerning σST the
same strategy was used and a value around 0.5 was retained.
The performance of the models was tested using a 5-fold cross-validation experi-
ment. At each step of the cross-validation, 75% of the training data set was used
to train the RF ensemble and the remaining 25% as a validation set to train the
meta-learners for DES. This process was repeated 5 times for each DES method. The
overall accuracy was computed by averaging over those 25 iterations. All the ex-
periments were implemented in Python using Scikit-Learn [Pedregosa et al., 2011]
to ensure a fair comparison between the compared approaches.

4.4.2 Accuracy performance

The average accuracies as well as standard deviations of the compared methods
for all 20 data sets are reported in Table 4.3. We follow in this study the method-
ology proposed by [Demšar, 2006] for the comparison of several algorithms over
multiple data sets. In this study, the non-parametric Friedman test is firstly used to
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FIGURE 4.4: Average rank diagrams of the compared DES methods.

determine if there is a statistically significant difference between the rankings of the
compared techniques. The Friedman test reveals here statistically significant differ-
ences (p < 0.05). Next, as recommended by Demsar [Demšar, 2006], we perform the
Nemenyi post hoc test with average rank diagram. This diagram is given on Fig-
ure 4.4. The ranks are depicted on the axis, in such a manner that the best ranking
algorithms are at the rightmost side of the diagram. The algorithms that do not dif-
fer significantly (at p = 0.05) are connected with a line. The critical difference (CD)
is shown above the graph (CD=2.0139 here). As may be observed from CD plot,
ST-DES is ranked first. However, its performances are not statistically distinguish-
able from the performances from the performances of IBEP, DESCV and CHADE
according the post hoc test.
The nonparametric statistical tests we used are very conservative. To further sup-
port these rank comparisons, we compared the 25 accuracy values obtained over
each data set split for each pair of algorithms according to the paired t-test (with
p = 0.05). The results of these pairwise comparisons are depicted in the last row of
Table 4.3 in terms of "win/tie/loss" statuses of all methods against ST-DES; the three
values respectively indicate how times many the corresponding approach is sig-
nificantly better/not significantly different/significantly worse than ST-DES. The
marker ’•/◦’ suggests that ST-DES is statistically superior/inferior to others. Other-
wise, a tie is counted and no marker is placed. Looking of this win/tie/loss values
at Table 4.3 reveals that ST-DES compares more favorably to the other approaches
and especially to the standard Random Forest ensemble (RF) taken as our baseline
method. The win/tie/loss values triples are statistically better with ST-DES on 6
data sets, poorer on 1 data set only, and not significant on 13 data sets.
To summarize the obtained results so far, we can draw several conclusions:

• As expected, dynamic ensemble selection becomes crucial especially for data
sets for which the RF ensemble consists of less accurate as well as more di-
verse models. For a better understanding of this phenomena, the kappa-error
diagrams are used to illustrate the pattern of relationship between diversity
and individual accuracy for the RF ensemble. On the x-axis is a measure of
diversity between the pair of models (1 − κ). On the y-axis is the averaged
individual error of the classifiers in the pair. Figure 4.5 plots the centroids of
the clouds of kappa-error diagrams of this ensemble in the same plot for all
used data sets. Inspection of this plot reveals that the data sets for which ST-
DES achieves a significant gain in performances over RF ensembles, are those
filled with points in the upper right corner of the kappa-error diagrams. As
the individual trees in RF become less accurate (respectively more diverse),
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TABLE 4.3: Means and standard deviations of accuracy for compared
algorithms on the 20 used data sets over the RF ensemble.

Data set RF KNORA-ELIMINATE OLA DESCV IBEP CHADE ST-DES
AutoMoto 0.932±0.013 0.849±0.040• 0.767±0.037• 0.933±0.014 0.933±0.015 0.933±0.012◦ 0.930±0.014
BaseHock 0.964±0.010 0.906±0.046• 0.828±0.037• 0.963±0.010 0.963±0.010 0.964±0.010 0.964±0.011

Breast cancer 0.962±0.024 0.956±0.029• 0.936±0.027• 0.962±0.024 0.962±0.026 0.962±0.024 0.963±0.021
CNAE-9 0.915±0.025 0.894±0.027• 0.824±0.021• 0.915±0.025 0.920±0.022 0.914±0.023 0.917±0.016

Colic 0.859±0.025 0.827±0.047• 0.766±0.057• 0.857±0.024 0.868±0.025◦ 0.860±0.025 0.860±0.024
Colon 0.799±0.115 0.789±0.094 0.695±0.119• 0.834±0.099 0.843±0.103 0.818±0.098 0.811±0.082

Credit Approval 0.852±0.110 0.821±0.094• 0.762±0.076• 0.852±0.109 0.847±0.109• 0.849±0.108• 0.856±0.111
German Credit 0.753±0.015 0.713±0.024• 0.668±0.031• 0.753±0.015 0.752±0.016 0.753±0.015 0.747±0.016

Haberman 0.697±0.065• 0.673±0.079• 0.657±0.071• 0.697±0.065• 0.694±0.082• 0.689±0.065• 0.729±0.044
Heart Disease 0.826±0.038 0.769±0.047• 0.733±0.051• 0.825±0.037 0.822±0.033• 0.824±0.033• 0.833±0.039

Ionosphere 0.931±0.040 0.924±0.037 0.848±0.048• 0.932±0.040 0.932±0.039 0.935±0.041 0.931±0.038
Leukemia 0.912±0.106 0.957±0.073 0.858±0.125• 0.912±0.106 0.920±0.100 0.917±0.104 0.931±0.085
Madelon 0.665±0.021• 0.569±0.026• 0.543±0.023• 0.673±0.020 0.638±0.025• 0.664±0.022• 0.683±0.023

Parkinsons 0.778±0.046• 0.777±0.072• 0.758±0.087• 0.778±0.046• 0.791±0.060 0.785±0.058• 0.802±0.053
PcMac 0.906±0.012• 0.811±0.052• 0.746±0.037• 0.909±0.012• 0.909±0.012• 0.909±0.013• 0.918±0.014

Promoters 0.870±0.055 0.776±0.096• 0.729±0.077• 0.890±0.060 0.875±0.076 0.873±0.066 0.879±0.059
Robot 0.783±0.125• 0.743±0.129• 0.718±0.103• 0.795±0.130 0.815±0.116 0.794±0.119 0.811±0.102

Smk-Can 0.587±0.102• 0.551±0.088• 0.527±0.091• 0.601±0.114 0.604±0.111 0.590±0.110 0.601±0.113
Spambase 0.929±0.052◦ 0.917±0.054• 0.867±0.060• 0.929±0.052◦ 0.928±0.052◦ 0.928±0.052◦ 0.925±0.051

Vote 0.962±0.023 0.958±0.025• 0.937±0.034• 0.961±0.023 0.965±0.023 0.960±0.024 0.965±0.023
(Win/Tie/Loss) 1/13/6 0/4/16 0/0/20 1/16/3 2/13/5 2/12/6

ST-DES becomes crucial and more appropriate to improve the performances
of RF (c.f. Table 4.3 and Figure 4.6).

• OLA and KNORA-ELIMINATE are the poorly performing methods and the re-
sults indicates a decreasing in performance, especially for high-dimensional
data sets (e.g. AutoMoto, BaseHock, CNAE-9, Madelon, PcMac, and Smk-Can)
and also data sets having a small validation part (e.g. Robot and Promoters).
Our novel supervised tree-based metric proposed in ST-DES for dynamic en-
semble selection seems to be well-suited, in such situation, compared to the
euclidean distance used in OLA and KNORA-ELIMINATE.

• Specially, on the Madelon data set containing noise features (c.f. 480 among
the 500 features in this data set are noisy), ST-DES obtains significantly better
accuracy results compared to all the compared methods. The method shows
promise to deal with very large domains in the presence of many noisy fea-
tures.

4.4.3 Analysis of the number of selected models

In Table 4.4, the average number of models selected by KNORA-ELIMINATE, DESCV
, IBEP and ST-DES across all test instances and for all data sets is displayed. It
appears that KNORA-ELIMINATE have a strange behavior, outputting a very small
number of models for all data sets. ST-DES and IBEP exhibit the same behavior.
Both approaches reduces considerably the number of models only for data sets in
the upper right corner of the kappa-error diagrams (c.f. Figure 4.5). Consequently,
the less accurate and more diverse the individual trees in RF, the large the average
number of models discarded by both ST-DES and IBEP is.
Moreover, Figure 4.7 shows the frequency of selection of each member of the ensem-
ble across all test examples on Madelon data set. Following this plot, we can see that
all DESCV and CHADE combine larger sets of classifiers than ST-DES and IBEP.
These approaches select the models in a more even manner than PCC-DES. All the



4.4. Experiments 67

FIGURE 4.5: Centroids of the kappa-error clouds of RF ensembles for
the 20 used data sets.

models are used most of times by DESCV and CHADE while ST-DES and IBEP are
somehow more dynamic.

4.4.4 Effect of noisy features on DES performances

In this Section, we investigated the robustness of the previously compared DES
methods as many irrelevant features are added to the original feature set. The RF
approach was used again as the baseline ensemble algorithm since it is well known
to be very sensitive to noisy features due to its random feature selection process. We
consider the well known Iris data set [Fisher, 1936] for this purpose. This data set
has three classes, 150 instances, and 4 features. We conducted several experiments
on this data set in order to study the impact of adding noisy features on the per-
formance of Dynamic ensemble selection. We first performed the compared DES
methods over a RF on the original data set; then 50 ∗ i (i ∈ {1, 2, . . . , 18}) normally
distributed variables with mean 0 and variance 1 were added sequentially to the fea-
ture set and the DES methods was ran again following the protocol of the previous
section.
As may be shown from the results reported in Table 4.5, the performances of all DES
methods and RFdeteriorated markedly with an increasing number of noisy features.
ST-DES is less sensitive to random noise. Indeed, adding 900 random features to the
original Iris data set leads to a 7.296% relative decreasing in accuracy for ST-DES.
The decrease is more than 10% for all the other DES approaches. Besides, applying
a simple linear regression, we notice that ST-DES’s accuracy decreases in a 10−5

slope, whereas all the others methods decrease in a much steeper slope around 10−4.
This corroborate our previous finding, namely that our novel supervised tree-based
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FIGURE 4.6: Kappa-error diagrams of RF ensembles for Breast cancer,
Madelon, PcMac and Spambase data sets

metric in ST-DES is well-suited, compared to the euclidean distance, for dynamic
ensemble selection on high-dimensional data sets with a possible noisy features.

4.5 Chapter summary

This Chapter presented a new framework ST-DES for dynamic ensemble selection
based on a new measure specially designed for decision tree-based ensemble ap-
proaches.
The experimental results on 20 benchmark data sets over a Random forest ensemble
demonstrated the effectiveness of the proposed method against competitive state-
of-the-art DES techniques. Although it does not systematically outperform the Ran-
dom Forest ensemble, the novel supervised tree-based metric in ST-DES is proved
to be well-suited, compared to the euclidean distance, for individual-based dynamic
ensemble selection especially on high-dimensional problems with a possible noisy
features.
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TABLE 4.4: Classifiers selected

Data set KNORA-ELIMINATE DESCV IBEP CHADE ST-DES
AutoMoto 7.283 +/- 7.444 194.258 +/- 14.021 128.984 +/- 35.089 157.565 +/- 21.621 119.306 +/- 29.070
BaseHock 10.215 +/- 10.732 192.738 +/- 16.294 153.729 +/- 31.610 174.694 +/- 21.576 140.294 +/- 29.562

Breast cancer 152.769 +/- 70.391 200.000 +/- 0.000 189.929 +/- 24.599 186.938 +/- 30.509 183.476 +/- 25.771
CNAE-9 30.774 +/- 35.725 199.971 +/- 1.525 140.704 +/- 40.519 164.282 +/- 48.247 123.212 +/- 57.841

Colic 18.392 +/- 17.754 181.278 +/- 26.082 113.868 +/- 28.647 142.404 +/- 34.654 114.763 +/- 26.791
Colon 5.603 +/- 4.484 136.271 +/- 31.537 73.977 +/- 21.526 125.903 +/- 19.115 60.813 +/- 19.724

Credit Approval 24.203 +/- 26.684 191.213 +/- 17.789 134.172 +/- 39.082 150.331 +/- 41.277 127.485 +/- 35.605
German Credit 8.908 +/- 14.698 190.167 +/- 16.992 70.947 +/- 46.434 126.662 +/- 37.043 89.032 +/- 36.528

Haberman 11.260 +/- 15.888 199.303 +/- 2.201 77.411 +/- 43.095 132.595 +/- 51.690 92.252 +/- 45.506
Heart Disease 14.587 +/- 17.783 196.620 +/- 6.189 107.577 +/- 40.830 140.993 +/- 39.786 110.015 +/- 33.144

Ionosphere 78.167 +/- 64.582 198.967 +/- 4.488 171.757 +/- 26.067 160.907 +/- 36.331 158.803 +/- 29.012
Leukemia 39.644 +/- 24.152 124.872 +/- 88.515 160.481 +/- 27.497 171.017 +/- 29.173 156.397 +/- 30.556
Madelon 3.008 +/- 2.565 150.431 +/- 12.395 19.373 +/- 6.958 107.124 +/- 7.578 34.073 +/- 9.903

Parkinsons 51.111 +/- 59.510 199.710 +/- 1.206 155.301 +/- 37.197 159.183 +/- 37.183 147.431 +/- 41.848
PcMac 7.538 +/- 7.273 194.807 +/- 14.751 129.931 +/- 31.263 161.803 +/- 24.952 101.553 +/- 37.036

Promoters 4.315 +/- 3.959 132.589 +/- 20.108 64.092 +/- 12.006 118.647 +/- 11.829 73.698 +/- 11.336
Robot 4.932 +/- 3.602 192.234 +/- 20.917 69.955 +/- 22.930 126.414 +/- 30.654 70.966 +/- 29.775

Smk-Can 3.841 +/- 3.653 113.219 +/- 49.936 40.754 +/- 21.916 117.412 +/- 15.934 36.873 +/- 16.993
Spambase 77.672 +/- 61.497 200.000 +/- 0.000 175.175 +/- 32.197 172.473 +/- 35.555 164.244 +/- 31.025

Vote 134.947 +/- 58.253 198.537 +/- 5.434 188.479 +/- 19.577 182.988 +/- 31.103 173.618 +/- 28.724

TABLE 4.5: Overall accuracies of the DES methods on the Iris data set
as a function of the number of irrelevant variables in the input.

Nb. Feat. ST-DES KNORA-ELIMINATE DESCV IBEP RF
0 95.067 95.333 95.067 94.667 95.067
50 95.067 93.733 95.333 95.733 95.067
100 95.467 91.6 95.067 95.467 95.2
150 94.933 91.467 94.533 95.333 94.4
200 95.6 92.133 94.533 94.933 93.867
250 95.333 89.6 92.4 95.333 93.867
300 93.467 87.6 90.667 91.867 90.8
350 93.333 86.533 92.933 92.8 92.133
400 92.667 86.267 90.933 89.867 89.867
450 92.8 84.267 90.8 91.6 89.333
500 93.867 88.533 91.6 91.333 90.4
550 90.933 84.133 88.667 88.8 88.133
600 92.4 86.133 89.467 87.2 87.333
650 91.467 82.267 88.533 86.133 86.8
700 91.467 85.333 86.933 88.8 84.667
750 91.2 86.0 88.133 87.467 88.0
800 89.733 83.333 85.6 88.667 84.8
850 90.933 86.0 88.133 85.6 86.8
900 88.133 81.867 85.2 84.267 82.933

Δ -7.293 -14.126 -10.379 -10.986 -12.763
Slope 7.05 10−5 1.207 10−4 1.108 10−4 1.254 10−4 1.329 10−4

Δ is the relative difference in percentage between the accuracy on the
Iris data set without extra features and the data set with 900 random
features.
"Slope" is the slope coefficient given by a simple linear regression.
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FIGURE 4.7: Distribution of the number of times each model was se-
lected by each DES method on Madelon data set
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Chapter 5

Dynamic pruning using
multi-label : loss minimization

OUTLINE
In this Chapter, we reformulate the DES problem as a multi-label classification task
with a proper formalization. This leads to a new DES approach that explicitly cap-
tures the dependencies among the classifiers in the ensemble.

As noted in [Markatopoulou, Tsoumakas, and Vlahavas, 2010; Markatopoulou, Tsou-
makas, and Vlahavas, 2015; Pinto, Soares, and Mendes-Moreira, 2016], DES may be
cast as a distinct special case of multi-label classification (MLC) problem. The main
idea behind this formulation is that the dynamic selection is transformed to a multi-
label learning problem with a specific zero-one error expressing the fact that at least,
half of the base classifiers selected for inclusion of the sub-ensemble should be cor-
rect for the overall class to be correct (i.e. precision > 1/2, yes or no?). The question
raised by these authors was: What should be the properties of the MLC algorithm
to minimize this non-standard loss? This question was addressed from an experi-
mental point of view only, pointing out that precision was found experimentally a
good surrogate loss candidate for the success of DES. Yet, many loss functions has
been proposed in the literature and it is now well understood that a MLC method
performing optimally for one loss is likely to perform suboptimally for another loss
[Dembczyński et al., 2012]. For simple loss functions, analytic expressions of the
Bayes (optimal) classifier can be derived. For example, the Hamming loss mini-
mizer coincides with the marginal modes of the conditional distribution of the class
labels given an instance. Conversely, for the subset 0/1 loss, the risk minimizer is
given by the joint mode of the conditional distribution, for which individual-based
methods might not be good choices. For more complex multi-label loss functions
like the one associated with the DES problem, the Bayes (optimal) classifier is un-
known and the minimization of such losses requires more involved procedures. In
this thesis, we show that the minimization of the true loss function necessitates the
modeling of dependencies between labels (i.e. co-occurrence of errors) and we use
Probabilistic Classifier Chains (PCC), with Monte Carlo sampling, as a "plug-in rule
approach" for optimizing this loss directly.
Our approach is directed at both homogeneous and heterogeneous ensembles and
aims primarily at improving the predictive performance compared to the full en-
semble. In contrast to previous research studies in DES, we try to analyze in this
Chapter the benefit of the proposed method against both homogeneous and hetero-
geneous ensembles scenarios using four different ensemble generation strategies.
The rest of the Chapter is organized as follows: Section 5.1 introduces our contribu-
tion in dynamic ensemble selection using multi-label classification. Experiments on
both homogeneous and heterogeneous ensembles using relevant benchmarks data
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sets are presented in Section 5.2. Finally, Section 5.3 concludes with a summary of
our contributions and raises issues for future work.

5.1 Problem statement

The literature leaves open the question of deciding what MLC algorithm should
work best, and more importantly how to exploit the dependencies between the la-
bels, implicitly giving the misleading impression that any MLC method could solve
the DES task. The benefit of exploiting label dependence is known to be closely de-
pend on the type of loss to be minimized. Rather than proposing yet another MLC
algorithm, the aim of this thesis is to elaborate more closely on the idea of exploiting
label dependence to solve the DES task.

5.1.1 DES loss function

When the multi-label training set is constructed for an ensemble of classifiers Ψ =
{ψ1, . . . , ψN}, the goal is to output a subset Ψx of classifiers (Ψx ⊂ Ψ) using a multi-
label classifier for a given test instance x. A natural question is what should be
learned from the labels dependency structure to solve the DES task, and what is the
appropriate loss function for training the MLC method to obtain a "good" subset of
classifiers.
Let’s denote the subset of classifiers that correctly classify x as Φx and suppose that
hx = (hn)

N
n=1 (hn ∈ {0, 1}) and wx = (wn)

N
n=1 (wn ∈ {0, 1}) are the binary represen-

tations for respectively Ψx and Φx, an intuitive way of obtaining a correct final pre-
diction in a two-class classification task is to have at least 50% of the classifiers from
Ψx to be in Φx Markatopoulou, Tsoumakas, and Vlahavas, 2010; Markatopoulou,
Tsoumakas, and Vlahavas, 2015. This condition can be written in different ways:

|Ψx ∩ Φx|
|Ψx| > 0.5⇔ hx.wx

hx.hx
> 0.5⇔

N∑
n=1

hn.wn

N∑
n=1

hn

> 0.5

This yields the following actual loss function (also referred to as DES loss),

DES_loss(hx,wx) =

⎧⎪⎨
⎪⎩

0, if
hx.wx

hx.hx
> 0.5

1, otherwise.

= 1− 1[
hx.wx

hx.hx
> 0.5] (5.1)

Unfortunately, there is no closed-form of the Bayes optimal multi-label classifier,
that is, a mapping h∗ from the input features X to the labels Y that minimizes the
expected loss (or risk) L of the model h, defined as:

RL(h) = EXYL(Y,h(X)) =
∑

x,y∈X×Y
P (x,y)L(y,h(x)) (5.2)
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The optimal classifier, h∗, commonly referred to as Bayes classifier, minimizes the
risk conditioned on x: h∗(x) = argmin

h

∑
y∈Y

P (y|x)L(y,h(x)). Finding h∗(x) directly

by brute force search leads to intractable optimization problems and only very few
loss functions have a (known) closed-form solution. For simple loss functions, ana-
lytic expressions of the Bayes optimal classifier have been derived in [Dembczyński
et al., 2012]. For example, the Hamming loss minimizer was shown to coincide with
the marginal modes of the conditional distribution of the labels given an instance x,
and methods such as Binary Relevance (BR), perform particularly well in this case.
Conversely, for the subset 0/1 loss, the risk minimizer was proven to be the joint
mode of the conditional distribution, for which methods such as the Label Pow-
erset classifier (LP) is a good choice. Further results have been established for the
ranking loss [Dembczyński et al., 2012], and more recently for the F-measure loss
[Dembczynski, Jachnik, et al., 2013]. However, as far as we know, there is no closed-
form expression of the Bayes classifier that minimizes the DES task loss. In such
situations, the true loss is usually replaced by a surrogate loss that is easier to cope
with.

5.1.2 MLC approaches to the DES problem

With the above difficulty in mind, Markatopoulou et al. [Markatopoulou, Tsouma-
kas, and Vlahavas, 2010; Markatopoulou, Tsoumakas, and Vlahavas, 2015], used the
precision loss as surrogate loss:

Precision_loss(hx,wx) = 1− hx.wx

hx.hx
= 1− Precision(hx,wx) (5.3)

To solve the problem, two multi-label learning algorithms (ML-KNN [Zhang and
Zhou, 2007] and CLR [Fürnkranz et al., 2008]) were used. Each algorithm outputs a
score vector for each label. There were used in tandem with a thresholding strategy
as an attempt to optimize the task loss. Despite the performance improvements
reported, we shall see next that a method performing optimally for the precision
loss may not perform well for the DES task loss, even upon tuning the threshold
value. More problematic is the fact that the standard version of ML-KNN does not
consider the correlation between labels and, as such, is devoted to minimize the
Hamming loss LH [Dembczyński et al., 2012]:

LH(Ψx,Φx) =
|(Ψx ∩ Φx) ∪ (Ψx ∩ Φx)|

|Ψ| , LH(hx,wx) =
1

N

N∑
n=1

1hn=wn
(5.4)

Tuning automatically the threshold via cross-validation was performed to overcome
the theoretical shortcomings of the base MLC approaches. Clearly, choosing higher
confidence thresholds for inclusion in the final pool tends to reduce the precision
loss. Threshold values greater than 0.75 have been considered in their work.
In [Pinto, Soares, and Mendes-Moreira, 2016], the Classifier Chains (CC) [Read et
al., 2011] classifier was used to take the correlation between labels into account.
However Dembczynski et al. [Dembczyński et al., 2012] argued that CC is more
appropriate for the subset 0/1 loss as it tends to approximate the joint mode of the
conditional distribution of label vectors in a greedy manner. The 0/1 loss is given
by:
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L0/1(Ψx,Φx) = 1[∀ψ ∈ Ψx, ψ ∈ Φx], L0/1(hx,wx) = 1hx=wx
(5.5)

The above methods have several shortcomings. Consider the simple DES exam-
ple in Table 5.1. The ensemble consists of 4 models, each having a mean accuracy
exceeding 50%. The joint conditional distribution P (y1, . . . , y4 | x) is displayed.

TABLE 5.1: A DES example cast as a multi-label problem: different
loss functions yield distinct minimizers.

y1 y2 y3 y4 P (y1, . . . , y4 | x)
1 1 0 1 3 / 7
1 1 1 0 2 / 7
1 0 1 1 1 / 7
0 0 1 1 1 / 7

It is easy to show that in this toy example, the optimal solution for the Hamming
loss, 0/1 loss, DES task loss and Precision loss respectively are given by h∗

hl =
(1, 1, 1, 1), h∗

0/1 = (1, 1, 0, 1), h∗
DEStaskloss ∈ {(0, 1, 1, 1), (1, 0, 1, 1)} and h∗

Precisionloss =

(1, 0, 0, 0). This illuminating toy example is important to caution the hurried re-
searcher against using "off-the-shelf" MLC techniques to solve the DES problem.
Indeed, IBEP-MLC which minimizes the Hamming loss implicitly, would select all
the classifiers, whereas CHADE, based on CC that attempts to minimize the 0/1
loss, would output {c1, c2, c4}. As may be observed, both methods fail to recover
the optimal solution for the DES actual loss function, {c2, c3, c4} or {c1, c3, c4}. It is
also worth noting that the thresholding strategy based on the marginal label prob-
abilities is unable cope with this problem. In fact, some information on the label
dependency structure has to be captured to optimize the DES actual loss function.
The following result shows that the precision loss tends to favor the best performing
model,

Lemma 1. The mapping h(.) = (h1(.), . . . , hN (.)) defined by:

⎧⎪⎨
⎪⎩

hk(x) = 1, k = argmax
n∈{1,...,N}

P(Yn = 1|x).

hj(x) = 0, j �= k

(5.6)

minimizes the expected precision score loss.

Proof. Minimizing the expected precision loss is equivalent to maximizing the ex-
pected precision which can easily be bounded above:

EY|XPr(h,Y) =
∑
y∈Y

P (y|x)

N∑
n=1

hn.yn

N∑
n=1

hn

=

N∑
n=1

hnP (yn = 1|x)

N∑
n=1

hn

≤ maxn P (yn = 1|x)

The mapping h(.) defined above reaches this bound and is thus Bayes optimal for
the expected precision. This concludes the proof.
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Therefore, picking the label having the highest confidence is a Bayes optimal so-
lution to the MLC problem under the precision loss. However, we have just seen
that on a toy problem that the best performing model is not always a good solution
to the DES problem even if it is straightforward to identify. We may conclude that
Precision loss is not a valid surrogate loss for this task. In this Section we focus on
a general technique capable of minimizing the DES actual loss function based on a
combination of Probabilistic Classifier Chains and Monte Carlo sampling. A simi-
lar approach was successfully applied to maximize the F-measure in [Dembczynski,
Jachnik, et al., 2013]. This constitutes our second main contribution in this thesis
[Narassiguin, Elghazel, and Aussem, 2017].

5.1.3 Probabilistic classifier chains & Monte Carlo inference

We have seen that some information on the joint conditional distribution P (Y | x)
has to be captured to minimize the DES task loss. Brute-force search is however
intractable as the number of possible labels permutations grows as O(2N ). One
idea to cope with this issue is to infer a label combination probability in a step-
wise manner using the chain rule of probability. Given a test instance x, the joint
conditional probability of the labels y = (y1, . . . , yN ) can be expressed by the chain
rule of probability :

Px(y) = P (y|x) = P (y1|x) ·
N∏
n=2

P (yi|x, y1, . . . yn−1) (5.7)

The rationale behind Probabilistic Classifier Chains [Cheng, Hüllermeier, and Dem-
bczynski, 2010] (PCC) is to estimate the joint conditional probability using this chain
rule. PCC is the probabilistic counterpart of the Classifier Chain [Read et al., 2011]
algorithm. The method goes as follows: N probabilistic classifiers are used to esti-
mate the probability distributions P (yn|x, y1, . . . , yn−1) for each label n = 1, . . . , N .
Therefore, the nth classifier hn is trained on a training data set composed of the
original training data Xtrain and (ytrain1

, . . . , ytrainn−1
). While the training stage is

rather straightforward, several approaches have been proposed in the literature for
performing inference during the testing stage. CC is the simplest approach: each
hi predicts in sequential fashion the label yi with the highest marginal conditional
probability, taking as input the current input x and the previous predicted labels
(ŷ1, . . . , ŷi−1) (Algorithm 18 and figure ??). Therefore, CC may be regarded as a
greedy approximation of PCC, focusing on the 0/1 loss minimization as the method
estimates the mode of the joint distribution in a greedy fashion. In contrast, infer-
ence with PCC amounts to explore exhaustively the probability tree to estimate the
Bayes optimal solution for any type of loss. This approach called Exhaustive Search
(ES) estimates the true risk minimizer at the cost of extensive computation time
since the tree diagram grows exponentially with N (Algorithm 19 and figure ??).
Several methods have been proposed to reduce the computational burden of ES:
ε-Approximation, Beam Search and Monte Carlo sampling (MC) (see for instance
[Mena et al., 2017] and references therein for further details and experimental com-
parisons). However, ε-Approximation and Beam Search also tend to minimize of
the 0/1 loss instead of the DES task loss. In this Chapter, we use Monte Carlo MC
sampling technique [Read, Martino, and Luengo, 2014] due to its ability to mini-
mize arbitrary loss functions. The procedure is rather straightforward: given a new
unlabeled instance x, the labels are sampled in sequence, by taking the previously
sampled labels ŷ1, . . . , ŷn as input to the classifier hi in order to estimate the marginal
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conditional probability of the next label yn+1. Finally, the label combination ŷpcc that
exhibits the lowest DES task loss value among the nMC samples is chosen as the fi-
nal prediction. Note that the DES task loss minimizer is estimated over a subset of
nMC samples drawn randomly instead of the whole set of possible labels, in order
to keep the computational burden as low as possible. Once the nMC samples are
drawn, the search for the DES task loss minimizer requires O(n2MC) further oper-
ations (calls to the loss functon) which can be prohibitive for large values of nMC .
Of course, the preference for smaller values of nMC should be traded off against
the prediction performance of the selected classifiers. In our experiments, we set
nMC = 1000. The PCC + Monte Carlo method applied to DES is termed PCC-DES
in the sequel.

Algorithm 18 Classifier Chains

Input: MLC data set (Xtrain, Ytrain), N classifiers (h1, . . . , hN ), Test input x.
Ouputs: Chain of classifiers CC = (h1, . . . , hN ), prediction for x.

Step 1 : Training phase
Initialize training data X′

train = Xtrain.
for n = 1 to N do

Fit hn on (X′
train,Ytrain[:, n])

X′
train ← X′

train ∪ Ytrain[:, n]
end for
Intermediate output : trained CC chain (h1, . . . , hN ).

Step 2 : Test phase
Initialize prediction y = zeros(1×N) = (y1, . . . yN ).
Initialize input data x′ = x
for n = 1 to N do

Predict yn = hn.predict(x
′)

x′ ← x′ ∪ yn
end for
return y
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Algorithm 19 Probabilistic Classifier Chains

Input: MLC data set (Xtrain, Ytrain), n base probabilistic learners (h1, . . . , hn), Test
data set (Xtrain, Ytrain), multi-label loss function L.
Ouput: P (y|x) estimate P̂ (y|x), optimal solution for a loss function L.

Step 1 : Training phase
Same as in CC.

Step 2 : Join probability estimation
Generate the 2N possible vectors in Y : (ŷ)y∈Y .
for y ∈ Y do

Initialize P̂ (y|x) = 1
Initialize x′ = x
for n = 1 to N do
P̂ (y|x) = P̂ (y|x)× hn.predict_proba(x′)
x′ ← x′ ∪ hn.predict(x′)

end for
end for
Intermediate output : Probability distribution estimate (P̂ (y|x))y∈Y .

Step 3 : Test phase
Initialize Risk =∞
for y ∈ Y do

Estimate risk for y, R̂L(y) =
∑
y′∈Y

P̂ (y|x)L(y,y′)

if R̂L(y) ≤ Risk then
ypred = y

end if
end for
return ypred
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5.2 Experiments

In this Section, we report on the experiments performed to evaluate the use of the
proposed PCC-DES method on several data sets and we compare its predictive per-
formance against other multi-label based DES methods. The following experiments
were performed on 20 binary classification data sets primarily selected from the UCI
Machine Learning Repository Blake and Merz, 1998 and some other online reposito-
ries, covering a wide variety of topics including health, education, business, science
etc., and exhibiting various dimensionalities as described in Table 5.2.

TABLE 5.2: Characteristics of the data sets used in the study

Data sets # Instances # Features # Classes Ref.

Adult 48842 14 2 [Blake and Merz, 1998]
AutoMoto 1980 2159 2 [Rennie, 2000]
BaseHock 1993 4862 2 [Zhao, Morstatter, et al., 2010; Rennie, 2000]
Breast cancer wisconsin (original) 699 9 2 [Blake and Merz, 1998]
Colic 368 27 2 [Blake and Merz, 1998]
Colon 62 2000 2 [Alon, Barkai, et al., 1999]
Credit Approval 690 15 2 [Blake and Merz, 1998]
EleCrypt 1973 2514 2 [Rennie, 2000]
German credit 1000 24 2 [Blake and Merz, 1998]
GunMid 1847 2917 2 [Rennie, 2000]
Hepatitis 155 19 2 [Blake and Merz, 1998]
Ionosphere 351 34 2 [Blake and Merz, 1998]
Chess (Krvskp) 3196 36 2 [Blake and Merz, 1998]
Madelon 2600 500 2 [Blake and Merz, 1998]
Ovarian 54 1536 2 [Schummer, Ng, Bumgarner, et al., 1999]
PcMac 1943 3289 2 [Zhao, Morstatter, et al., 2010; Rennie, 2000]
RelAthe 1427 4322 2 [Zhao, Morstatter, et al., 2010; Rennie, 2000]
Connectionist Bench (Sonar) 208 60 2 [Blake and Merz, 1998]
Spambase 4601 57 2 [Blake and Merz, 1998]
Congressional Voting Records (Vote) 435 16 2 [Blake and Merz, 1998]

5.2.1 Ensemble generation

In the sequel, we will investigate the performance of PCC-DES against other multi-
label based DES techniques in both homogeneous and heterogeneous ensembles
scenario. In order to make fair comparisons, the experiments that we carried out
in this Chapter were conducted using four ensemble generation techniques (two
heterogeneous and two homogeneous) that appeared in the literature.

Heterogeneous ensembles:

The first ensemble generation was used in Markatopoulou, Tsoumakas, and Vla-
havas, 2010; Markatopoulou, Tsoumakas, and Vlahavas, 2015. An heterogeneous
ensemble of 200 classifiers was constructed consisting of: (1) 40 multilayer percep-
trons (MLPs) with {1, 2, 4, 8, 16} hidden units, momentum varying in {0, 0.2, 0.5,
0.9} and two learning rates: 0.3 and 0.6, (2) 60 k nearest neighbors (kNNs) with 20
values for k evenly distributed between 1 and the number of training observations,
3 weighting methods: no weights, inverse-weighting and similarity-weighting, (3)
80 support vector machines (SVMs) composed of 16 polynomial SVMs with a kernel
of degree 2 and 3 and a complexity parameter C varying from 10−5 to 102 in steps of
10, and 64 radial SVMs with the same values of C and a width γ in {0.001, 0.005, 0.01,
0.05, 0.1, 0.5, 1, 2}, and (4) 20 decision trees (DTs), half of which are trained using Gini
and half using entropy as split criteria; five values of the maximum depth pruning
option 1, 2, 3, 4 and None, 8 decision trees using also Gini and entropy, varying the
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FIGURE 5.3: Centroids of the kappa-error clouds of both heteroge-
neous ensembles for the 20 data sets.

number of features to consider when looking for the best split (square root, log2,
50% and 100%) of the total number of features, and 2 decision trees using Gini and 2
values for the minimum number of samples per leaf 2, 3. We refer to this ensemble
generation as HET-1 in the remaining of this Chapter.
The second ensemble generation was used in library A pool of 200 heterogeneous
models was constructed consisting of: (1) 50 bagged trees (BAG-DTs) using 25 trees
for each splitting criterion (Gini and entropy), (2) 50 random subspace trees (RSM-
DTs) consisting of 25 trees per splitting criterion, (3) 8 Boosting decision trees (BST-
DTs) obtained by boosting a decision tree for each splitting criterion (Gini and en-
tropy) and since Boosting can overfit, boosted DTs were added to the pool after 2, 4,
8, 16 steps of boosting, (4) 14 Boosting stumps (BST-STMP) obtained by boosting sin-
gle level decision trees with both splitting criteria, each boosted 2, 4, 8, 16, 32, 64, 128
steps, (5) 24 multilayer perceptrons (MLPs) with {1, 2, 4, 8, 32, 128} hidden units and
a momentum varying in {0, 0.2, 0.5, 0.9}, and (6) 54 support vector machines (SVMs)
composed of 6 linear SVMs with complexity parameter C varying from 10−3 to 102

in steps of 10, 48 radial SVMs with the same values of C and a width γ in {0.001,
0.005, 0.01, 0.05, 0.1, 0.5, 1, 2}. We refer to this ensemble generation by HET-2.
These two strategies have many classifiers (MLPs and SVMs) in common. Yet, HET-
2 is expected to perform better as more powerful models (BAG-DTs, RSM-DTs,
BST-DTs, BST-STMP) are generated. The kappa-error diagrams are used to illus-
trate the pattern of relationship between diversity and individual accuracy for both
heterogeneous ensemble strategies. Figure 5.3 plots the centroids of the clouds of
kappa-error diagrams of both ensemble approaches in the same plot for all used
data sets. On the x-axis is a measure of diversity between the pair of models (1−κ).
On the y-axis is the averaged individual error of the classifiers in the pair. As ex-
pected, the HET-1 ensembles are less accurate than HET-2. The overall mean error
rate, averaged over the 20 data sets, is 0.340 with HET-1 and 0.288 with the HET-2.
This should be kept in mind when analyzing the results.

Homogeneous ensembles:

The third and fourth ensemble generations build for each learning problem a bagging
ensemble Breiman, 1996b of 200 estimators using two distinct decision tree inducers:
an unpruned decision tree for the third generation and a decision stump for the fourth
generation. We refer to them as respectively BAG-DT and BAG-ST in the sequel. We
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FIGURE 5.4: Centroids of the kappa-error clouds of both homoge-
neous ensembles for the 20 data sets.

chose to use these both strategies to compare DES approaches across homogeneous
ensemble of models with different level of performances. BAG-ST is expected to
contain more weak learners.
The kappa-error diagrams are again used here to illustrate the pattern of relation-
ship between diversity and individual accuracy for both homogeneous ensemble
strategies studied here. Figure 5.4 plots the centroids of the clouds of kappa-error
diagrams in the same plot for all used data sets. This enables a visual evaluation of
the relative positions of the clouds for the respective ensemble strategies (BAG-DT
and BAG-ST). As expected, the BAG-ST ensembles are less accurate than the BAG-
DT ones. It is worth noting that this strategy was recently used in [Pinto, Soares,
and Mendes-Moreira, 2016] to assess the performance of CHADE since it has been
reported that this approach enhances the detection of differences between dynamic
approaches [Pinto, Soares, and Mendes-Moreira, 2016].

5.2.2 Compared methods & Evaluation protocol

To gauge the practical relevance of our PCC-DES method, we compared its perfor-
mance to four multi-label based DES methods in terms of accuracy improvements.

• BR-DES: Binary Relevance based DES method. BR resolves the MLC problem
by training a classifier for each label separately. It is tailored for the Hamming
loss [Dembczyński et al., 2012].

• LP-DES: Label Powerset based DES method. LP reduces the MLC problem to
multi-class classification, considering each label subset as a distinct meta-class.
LP is tailored for the subset 0/1 loss [Dembczyński et al., 2012].

• PM-DES: Precision loss minimizer based DES technique. As discussed in this
Section, this approach attempts to select the best classifier in the pool, given x.

• CHADE: CHAined Dynamic Ensemble algorithm [Pinto, Soares, and Mendes-
Moreira, 2016]. It is based on the classifier chain (CC) technique. CC is tailored
for the subset 0/1 loss [Dembczyński et al., 2012].

• BEST: the classifier with the highest accuracy in the validation data is selected
(static method) [Ruta and Gabrys, 2005].
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• ENSEMBLE: the complete ensemble is classically used (baseline method).

Following [Dembczyński et al., 2012], the logistic regression chosen as the base clas-
sifier of the MLC methods in our experiments. As noted earlier, a set of nMC = 1000
samples was considered during the MC inference stage. The performance of the
models was tested using a 5-fold cross-validation experiment. At each step of the
cross-validation, 75% of the training data set was used to train the ensemble and the
remaining 25% as a validation set to train the meta-learners for DES. This process
was repeated 5 times for each DES method. The overall accuracy was computed by
averaging over those 25 iterations.

5.2.3 Comparison of accuracy performance

The average accuracies of the compared methods for all 20 data sets using the first
and the second generation strategies are reported respectively in Tables 5.3-5.6. We
follow in this study the methodology proposed by Demšar, 2006 for the compari-
son of several algorithms over multiple data sets. In this study, the non-parametric
Friedman test is firstly used to determine if there is a statistically significant dif-
ference between the rankings of the compared techniques. The Friedman test re-
veals here statistically significant differences (p < 0.05) for each ensemble gener-
ation strategy. Next, as recommended by Demsar Demšar, 2006, we perform the
Nemenyi post hoc test with average rank diagrams. These diagrams are given on
Figures 5.5-5.8. The ranks are depicted on the axis, in such a manner that the best
ranking algorithms are at the rightmost side of the diagram. The algorithms that do
not differ significantly (at p = 0.05) are connected with a line. The critical difference
(CD) is shown above the graph (CD=2.0139 here). As may be observed from CD
plots and the results in Tables 5.3-5.6 PCC-DES outperforms the other models most
of the time.

Accuracy performance on heterogeneous ensembles:

As far as the first ensemble generation HET-1 is concerned (c.f. Table 5.3 and Fig-
ure 5.5), the performances of PCC-DES are not statistically distinguishable from the
performances of the single best classifier in the ensemble (BEST). As mentioned
before, the first generation produces a pool containing several weak classifiers. Se-
lecting the best single model from this pool yields remarkably good performance.
The nonparametric statistical tests we used are very conservative. To further sup-
port these rank comparisons, we compared the 25 accuracy values obtained over
each data set split for each pair of algorithms according to the paired t-test (with
p = 0.05). The results of these pairwise comparisons are depicted in the last row of
Table 5.3 in terms of "win/tie/loss" statuses of all methods against PCC-DES; the
three values respectively indicate how times many the corresponding approach is
significantly better/not significantly different/significantly worse than PCC-DES.
Inspection of this win/tie/loss values reveals that DES using PCC (PCC-DES) is the
only MLC-based DES method able to outperform the best single model BEST. The
win/tie/loss values triples are statistically better with PCC-DES on 10 data sets,
poorer on 1 data set only, and not significant on 9 data sets. Overall, PCC-DES com-
pares more favorably to the other approaches, sometimes by a noticeable margin, in
terms of accuracy.
Regarding the second ensemble generation strategy HET-2, here again PCC-DES
outperforms the other algorithms, except BR-DES (c.f. Table 5.4 and Figure 5.6).
PCC-DES ranks first as well. Yet, it is not statistically better than BR-DES accord-
ing the post hoc test. On the other hand, the win/tie/loss counts in Table 5.4 are
statistically better for PCC-DES on 4 data sets and not significant on 16 data sets.
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TABLE 5.3: Means and standard deviations of accuracy for compared
algorithms on the benchmark data sets with the first heterogeneous

ensemble generation strategy HET-1.

Data set ENSEMBLE PM-DES BR-DES LP-DES CHADE BEST PCC-DES
Adult 0.752±0.06• 0.781±0.04• 0.798±0.06• 0.755±0.06• 0.790±0.06• 0.791±0.04• 0.803±0.04
AutoMoto 0.631±0.16• 0.872±0.04• 0.852±0.04• 0.774±0.06• 0.818±0.06• 0.845±0.04• 0.902±0.05
BaseHock 0.643±0.19• 0.911±0.02• 0.867±0.07• 0.808±0.06• 0.824±0.11• 0.912±0.03• 0.933±0.03
Breast-Cancer 0.960±0.02• 0.965±0.02 0.970±0.02 0.961±0.02• 0.970±0.02 0.968±0.02 0.970±0.02
Colic 0.678±0.03• 0.812±0.05 0.737±0.05• 0.709±0.05• 0.735±0.05• 0.821±0.06 0.822±0.04
Colon 0.684±0.20• 0.781±0.13 0.794±0.15 0.774±0.16• 0.791±0.17 0.779±0.15 0.813±0.14
Credit Approval 0.828±0.06• 0.852±0.03• 0.871±0.03 0.831±0.05• 0.870±0.03 0.866±0.03 0.872±0.04
EleCrypt 0.774±0.23• 0.909±0.02• 0.882±0.05• 0.818±0.07• 0.833±0.10• 0.918±0.03• 0.938±0.02
German Credit 0.700±0.04• 0.727±0.05• 0.736±0.05 0.722±0.04• 0.724±0.04• 0.733±0.05 0.745±0.05
GunMid 0.582±0.11• 0.768±0.04• 0.756±0.05• 0.715±0.05• 0.738±0.06• 0.784±0.04• 0.806±0.04
Hepatitis 0.794±0.13• 0.806±0.11 0.795±0.13• 0.795±0.13• 0.795±0.13• 0.815±0.12 0.808±0.12
Ionosphere 0.641±0.19• 0.909±0.05 0.766±0.15• 0.661±0.19• 0.765±0.14• 0.927±0.05◦ 0.919±0.04
Krvskp 0.662±0.12• 0.946±0.02• 0.916±0.05• 0.801±0.09• 0.912±0.06• 0.952±0.03• 0.966±0.02
Madelon 0.501±0.05• 0.584±0.05 0.574±0.04 0.546±0.04• 0.563±0.04 0.580±0.06 0.590±0.06
Ovarian 0.369±0.37• 0.778±0.15 0.833±0.09 0.745±0.13• 0.833±0.10 0.771±0.16 0.823±0.04
PcMac 0.602±0.15• 0.838±0.03• 0.802±0.07• 0.725±0.06• 0.759±0.11• 0.836±0.03• 0.882±0.03
RelAthe 0.562±0.06• 0.849±0.04• 0.801±0.06• 0.789±0.06• 0.674±0.07• 0.855±0.04• 0.888±0.03
Sonar 0.093±0.18• 0.438±0.13 0.298±0.14• 0.220±0.19• 0.303±0.14• 0.396±0.14• 0.465±0.12
Spambase 0.756±0.06• 0.890±0.03 0.854±0.03• 0.754±0.06• 0.812±0.05• 0.883±0.03• 0.898±0.03
Vote 0.945±0.04 0.928±0.05 0.940±0.05 0.930±0.05• 0.939±0.05 0.938±0.05 0.945±0.04
(Win/Tie/Loss) 0/1/19 0/10/10 0/7/13 0/0/20 0/6/14 1/9/10

FIGURE 5.5: Average rank diagrams of the compared DES methods
using the first heterogeneous ensemble generation strategy HET-1.

FIGURE 5.6: Average rank diagrams of the compared DES methods
using the second heterogeneous ensemble generation strategy HET-2.
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TABLE 5.4: Means and standard deviations of accuracy for compared
algorithms on the benchmark data sets with the second heteroge-

neous ensemble generation strategy HET-2.

Data set ENSEMBLE PM-DES BR-DES LP-DES CHADE BEST PCC-DES
Adult 0.950±0.03 0.947±0.04 0.952±0.03 0.948±0.03 0.950±0.03 0.952±0.03 0.952±0.03
AutoMoto 0.878±0.05• 0.859±0.04• 0.905±0.04 0.879±0.05• 0.893±0.04• 0.856±0.04• 0.908±0.04
BaseHock 0.883±0.06• 0.904±0.03• 0.921±0.04 0.903±0.03• 0.868±0.04• 0.898±0.04• 0.930±0.03
Breast-Cancer 0.963±0.02 0.951±0.03• 0.966±0.02 0.964±0.02 0.963±0.02 0.942±0.03• 0.964±0.02
Colic 0.825±0.04• 0.808±0.05• 0.832±0.03• 0.825±0.05• 0.823±0.04• 0.807±0.05• 0.847±0.04
Colon 0.784±0.15• 0.765±0.14• 0.846±0.13 0.854±0.12 0.842±0.12 0.797±0.14• 0.844±0.11
Credit Approval 0.898±0.03 0.858±0.03• 0.902±0.02 0.877±0.03• 0.902±0.02 0.874±0.03• 0.905±0.02
EleCrypt 0.899±0.03• 0.899±0.03• 0.917±0.03 0.911±0.02• 0.897±0.03• 0.912±0.02 0.922±0.02
German Credit 0.722±0.05• 0.696±0.04• 0.744±0.05 0.735±0.04 0.731±0.05• 0.717±0.05• 0.748±0.04
GunMid 0.747±0.05• 0.747±0.04• 0.807±0.05 0.772±0.04• 0.780±0.05• 0.776±0.05• 0.806±0.04
Hepatitis 0.815±0.11 0.790±0.11• 0.823±0.10 0.818±0.10 0.812±0.11 0.788±0.15• 0.831±0.09
Ionosphere 0.910±0.06• 0.891±0.05• 0.910±0.06• 0.907±0.06• 0.910±0.06• 0.891±0.07• 0.920±0.05
Krvskp 0.952±0.03• 0.954±0.02 0.960±0.02 0.956±0.02 0.953±0.02 0.958±0.03 0.959±0.03
Madelon 0.548±0.05• 0.540±0.05• 0.592±0.04 0.563±0.05• 0.573±0.05• 0.553±0.05• 0.599±0.04
Ovarian 0.762±0.15• 0.740±0.15• 0.841±0.08 0.738±0.15• 0.820±0.08• 0.764±0.14• 0.845±0.07
PcMac 0.828±0.03• 0.847±0.03• 0.886±0.02 0.836±0.03• 0.859±0.04• 0.847±0.04• 0.894±0.02
RelAthe 0.815±0.05• 0.850±0.03• 0.863±0.04• 0.844±0.04• 0.830±0.05• 0.867±0.05 0.879±0.03
Sonar 0.323±0.13• 0.477±0.11◦ 0.382±0.09• 0.392±0.08 0.340±0.12• 0.467±0.13◦ 0.415±0.08
Spambase 0.900±0.02 0.886±0.03• 0.903±0.02 0.900±0.02 0.898±0.02 0.882±0.03• 0.906±0.02
Vote 0.950±0.03 0.947±0.04 0.952±0.03 0.948±0.03 0.950±0.03 0.952±0.03 0.952±0.03
(Win/Tie/Loss) 0/6/14 1/3/16 0/16/4 0/9/11 0/8/12 1/5/14

Accuracy performance on homogeneous ensembles:

Figure 5.7 shows the Critical Difference diagram for the comparison of the DES ap-
proaches on BAG-DT based ensembles. Although PCC-DES achieves a better mean
rank than all compared methods, there is no evidence in these experiments that
the difference is statistically significant with ENSEMBLE and MLC-based DES ap-
proaches (LP-DES, BR-DES and CHADE).
This is mainly due to the fact that BAG-DT ensembles are more accurate than all
other studied ensemble strategies (c.f. Figures 5.3 and 5.4), resulting in a multi-
label metabase Ŷval with a large number of 1 (correct classifications). Consequently,
dynamic pruning has no significant gain in performance with such ensembles. On
the other hand, in such a situation, it seems that the loss functions (Hamming loss
and Subset 0/1 loss) optimized by LP-DES, BR-DES and CHADE have the same risk
minimizer Dembczyński et al., 2012. This explains the equivalence in performances
for these three approaches. Meanwhile, PCC-DES benefits from the advantage of
considering the true DES loss function to obtain slightly better performances.
The results in Table 5.6 and Figure 5.8 show that PCC-DES presents the best perfor-
mance and is able to clearly improve the performance of Bagging of decision stumps
(ENSEMBLE) compared to all other DES techniques. The results suggest that PCC-
DES allows an improvement over MLC-based DES techniques (LP-DES, BR-DES,
PM-DES and CHADE) but this statement is not statistically validated.
To briefly summarize the obtained results, we draw conclusions from the following
observations:

• As expected, dynamic ensemble selection becomes crucial especially for het-
erogeneous ensemble models.

• PCC-DES works well and is more appropriate to improve the performances
of ensemble learning approaches. The strategy proposed in PCC-DES to opti-
mize the true loss function for dynamic ensemble selection seems to perform
better than all other MLC-based DES techniques.
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TABLE 5.5: Means and standard deviations of accuracy for compared
algorithms on the benchmark data sets with the BAG-DT strategy.

Data set ENSEMBLE PM-DES BR-DES LP-DES CHADE BEST PCC-DES
Adult 0.798±0.03 0.771±0.03• 0.797±0.03 0.798±0.03 0.798±0.03 0.774±0.05• 0.801±0.04
AutoMoto 0.876±0.03 0.866±0.03• 0.878±0.03 0.883±0.03◦ 0.878±0.03 0.871±0.03 0.879±0.03
BaseHock 0.884±0.03 0.864±0.03• 0.888±0.03◦ 0.891±0.03◦ 0.888±0.03 0.855±0.03• 0.886±0.03
Breast-Cancer 0.961±0.02 0.946±0.02• 0.961±0.02 0.961±0.02 0.961±0.02 0.940±0.03• 0.962±0.02
Colic 0.859±0.04 0.815±0.05• 0.863±0.03 0.866±0.03 0.861±0.04 0.801±0.06• 0.864±0.03
Colon 0.768±0.15• 0.712±0.14• 0.796±0.15 0.812±0.12 0.803±0.15 0.676±0.10• 0.793±0.15
Credit Approval 0.885±0.03 0.833±0.04• 0.887±0.03 0.884±0.03 0.887±0.03 0.846±0.04• 0.884±0.03
EleCrypt 0.891±0.01 0.866±0.03• 0.891±0.01 0.891±0.01 0.892±0.01 0.871±0.03• 0.891±0.01
German Credit 0.741±0.04 0.682±0.06• 0.740±0.04 0.743±0.04 0.740±0.05 0.674±0.05• 0.734±0.05
GunMid 0.759±0.04• 0.670±0.04• 0.768±0.04 0.774±0.04 0.762±0.04• 0.673±0.06• 0.772±0.04
Hepatitis 0.794±0.11 0.754±0.10• 0.791±0.11 0.790±0.11 0.796±0.11 0.755±0.13• 0.800±0.11
Ionosphere 0.907±0.05 0.900±0.06 0.908±0.05 0.908±0.05 0.908±0.05 0.878±0.06• 0.910±0.05
Krvskp 0.961±0.02 0.954±0.02 0.961±0.02 0.960±0.03 0.961±0.02 0.950±0.02• 0.961±0.02
Madelon 0.634±0.04 0.549±0.04• 0.640±0.04 0.634±0.03 0.637±0.05 0.567±0.06• 0.636±0.04
Ovarian 0.813±0.18 0.777±0.15 0.824±0.15 0.809±0.14 0.827±0.15 0.763±0.17 0.816±0.14
PcMac 0.868±0.03 0.851±0.02• 0.870±0.03 0.872±0.03 0.869±0.03 0.851±0.02• 0.872±0.03
RelAthe 0.828±0.03 0.799±0.05• 0.836±0.03 0.844±0.03 0.834±0.03 0.794±0.05• 0.839±0.03
Sonar 0.458±0.11 0.475±0.09 0.458±0.11 0.454±0.11 0.454±0.11 0.465±0.15 0.464±0.10
Spambase 0.897±0.02 0.862±0.03• 0.897±0.02 0.897±0.02 0.897±0.02 0.864±0.03• 0.901±0.02
Vote 0.955±0.03 0.960±0.03 0.955±0.03 0.955±0.03 0.955±0.03 0.957±0.03 0.954±0.03
(Win/Tie/Loss) 0/16/4 0/5/15 1/19/0 2/18/0 0/19/1 0/4/16

FIGURE 5.7: Average rank diagrams of the compared DES methods
using the BAG-DT strategy.

FIGURE 5.8: Average rank diagrams of the compared DES methods
using the BAG-ST strategy.

• PCC-DES achieves a significant gain in performances especially with hetero-
geneous ensembles HET-1 and HET-2. The average ranks of all compared DES
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TABLE 5.6: Means and standard deviations of accuracy for compared
algorithms on the benchmark data sets with the BAG-ST strategy.

Data set ENSEMBLE PM-DES BR-DES LP-DES CHADE BEST PCC-DES
Adult 0.782±0.06 0.784±0.04 0.797±0.06 0.786±0.05 0.794±0.06 0.800±0.06 0.789±0.05
AutoMoto 0.749±0.05• 0.791±0.05 0.762±0.05• 0.767±0.05• 0.761±0.05• 0.728±0.05• 0.799±0.05
BaseHock 0.668±0.04• 0.763±0.08 0.695±0.04• 0.727±0.06 0.709±0.05• 0.664±0.04• 0.740±0.06
Breast-Cancer 0.942±0.02• 0.931±0.03• 0.942±0.02• 0.942±0.02• 0.942±0.02• 0.923±0.03• 0.956±0.03
Colic 0.728±0.08• 0.820±0.06• 0.764±0.05• 0.755±0.07• 0.753±0.07• 0.705±0.10• 0.835±0.04
Colon 0.794±0.13 0.765±0.15• 0.806±0.13 0.832±0.12 0.799±0.14 0.774±0.14 0.807±0.12
Credit Approval 0.872±0.02 0.872±0.02 0.872±0.02 0.872±0.02 0.872±0.02 0.872±0.02 0.872±0.02
EleCrypt 0.665±0.02• 0.740±0.03◦ 0.685±0.02• 0.676±0.03• 0.681±0.03• 0.679±0.03• 0.696±0.02
German Credit 0.699±0.04• 0.722±0.04 0.720±0.04 0.710±0.04 0.720±0.04 0.705±0.04 0.720±0.04
GunMid 0.612±0.04• 0.694±0.05 0.690±0.04 0.646±0.06• 0.676±0.05 0.569±0.05• 0.692±0.04
Hepatitis 0.808±0.12 0.772±0.11• 0.808±0.12 0.803±0.12 0.806±0.12 0.790±0.12 0.813±0.10
Ionosphere 0.793±0.10• 0.859±0.07◦ 0.801±0.10• 0.797±0.10• 0.802±0.10• 0.788±0.11• 0.831±0.09
Krvskp 0.660±0.09• 0.908±0.03 0.882±0.08• 0.883±0.06• 0.874±0.08• 0.653±0.06• 0.913±0.04
Madelon 0.614±0.04 0.580±0.04• 0.625±0.04 0.613±0.05 0.622±0.05 0.594±0.06 0.616±0.04
Ovarian 0.813±0.15 0.752±0.22 0.845±0.13 0.816±0.12 0.838±0.13 0.752±0.22 0.821±0.14
PcMac 0.663±0.04• 0.730±0.05◦ 0.680±0.05• 0.680±0.05• 0.677±0.04• 0.668±0.04• 0.707±0.06
RelAthe 0.618±0.03• 0.747±0.05 0.734±0.06 0.729±0.04 0.740±0.06 0.586±0.04• 0.727±0.05
Sonar 0.560±0.12◦ 0.470±0.10 0.556±0.11◦ 0.542±0.13 0.540±0.12 0.481±0.18 0.486±0.11
Spambase 0.811±0.03• 0.823±0.04• 0.810±0.03• 0.811±0.03• 0.812±0.03• 0.791±0.04• 0.846±0.03
Vote 0.970±0.02 0.970±0.02 0.970±0.02 0.970±0.02 0.970±0.02 0.970±0.02 0.965±0.04
(Win/Tie/Loss) 1/7/12 3/11/6 1/10/9 0/11/9 0/11/9 0/4/16

methods computed over all data sets and over all ensemble generation strate-
gies in Table 5.7 show that PCC-DES could be used to enhance the quality
of heterogeneous ensemble, resulting on better predictive performances than
homogeneous ensemble even after the pruning process. The best performing
approach across all data sets is HET-2 combined with our dynamic ensemble
selection method PCC-DES.

5.2.4 Relationship between Diversity-accuracy and DES performance

For a better understanding of the behavior of PCC-DES in comparison with the oth-
ers DES approaches, we explored in the sequel the relation between the diversity-
accuracy of the ensemble and the performance of the dynamic ensemble selection.
To measure the diversity within the ensemble, we consider the kappa metric (κ)
used in [Margineantu and Dietterich, 1997]. κ evaluates the level of agreement be-
tween two classifier outputs. The plots in figures 5.9 and 5.10 are representative
examples of the effects of individual classifier average error and diversity (respec-
tively) on the ability of DES methods for accuracy improvement under the four en-
semble generation strategies.
A closer inspection of plots in these figures reveals the following: (1) not surpris-
ingly, as the individual classifiers become less accurate (respectively more diverse),
the dynamic ensemble selection becomes crucial for ensemble learning, (2) a signif-
icant accuracy gain was obtained with large values of errors (respectively diversity)
with PCC-DES compared to the other MLC-based DES techniques, especially for
ensemble models obtained using the heterogeneous strategies HET-1 and HET-2.

5.2.5 Further Analysis

Analysis of the number of selected models:

In Table 5.8, the average number of models selected by BR-DES, LP-DES, CHADE
and PCC-DES across all test instances and for all data sets is displayed. Our prime



88 Chapter 5. Dynamic pruning using multi-label : loss minimization

TABLE 5.7: Average ranks of all compared DES methods computed
over all data sets and over all ensemble generation strategies.

Generation DES method Avg. Rank
HET-2 PCC-DES 4.9
HET-2 BR-DES 5.0

BAG-DT LP-DES 6.55
BAG-DT PCC-DES 6.6
BAG-DT CHADE 6.75

HET-1 PCC-DES 6.9
BAG-DT BR-DES 6.9
BAG-DT ENSEMBLE 8.1

HET-2 LP-DES 8.5
HET-2 CHADE 9.0
HET-1 BEST 9.3
HET-1 PM-DES 10.65
HET-2 BEST 10.95
HET-2 ENSEMBLE 11.0

BAG-ST PCC-DES 11.45
HET-2 PM-DES 12.4

BAG-ST BR-DES 12.7
BAG-ST CHADE 13.25
HET-1 BR-DES 13.55

BAG-ST LP-DES 13.75
BAG-DT PM-DES 14.05
BAG-ST PM-DES 14.25
BAG-DT BEST 14.55
BAG-ST ENSEMBLE 15.35
HET-1 CHADE 15.65

BAG-ST BEST 16.95
HET-1 LP-DES 18.4
HET-1 ENSEMBLE 21.15

conclusion is that PCC-DES is a promising approach to DES. Concentrating on the
actual DES task loss pays off in terms of performance. Compared to all others DES
approaches, it appears that PCC-DES selects a far smaller number of models on
average, especially with the first ensemble generation strategy HET-1 and BAG-ST
containing both weaker models as well (c.f. Figures 5.11 and 5.12).
The two lowest mean numbers of selected models, 78 and 85, are attained by our
approach respectively with BAG-ST and HET-1. It is clear that one of the reasons for
the success of PCC-DES is the selection of a small number of accurate models.
Even for data sets, such as Adult, German credit and Madelon, for which PCC-DES
yields not significantly better performances than the complete ensemble ENSEM-
BLE and all other DES techniques (c.f. Tables 5.3-5.6), our approach is often out-
putting a very small number of models.
Figures 5.13-5.16 show the frequency of selection of each member of the ensemble
across all test examples on Adult data set for all ensemble generation strategies. Re-
garding these plots, we can see that all the other MLC-based DES techniques com-
bine larger sets of classifiers than PCC-DES. These approaches select the models in a
more even manner than PCC-DES. All the models are used at least 90% of times by
BR-DES, LP-DES and CHADE while PCC-DES often discards many models from
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FIGURE 5.9: Gain in accuracy of PCC-DES over the other DES meth-
ods vs. individual classifier average error with the four ensemble gen-

eration strategies.

the generalization phase. This also indicates that PCC-DES is somehow more dy-
namic than the other DES techniques, which can be very useful in some data sets.

Effect of ensemble size N :

We also plotted in Figure 5.17 the overall accuracy on the 20 data sets as a function of
the size of the ensemble, varying from 100 to 500. This confirms that our conclusions
are rather insensitive to the size of the original ensemble.

Effect of the number of Monte Carlo samples nMC :

In Section ??, we pointed out that a larger value of the number of Monte Carlo sam-
ples usually leads to a time-consuming inference step during multi-label prediction
with PCC-DES. This step requires O(n2MC) calls to the loss function. This point was
confirmed by increasing the number of Monte Carlo samples nMC from 50 to 1000
and computing the running time of PCC-DES. Figure 5.18 gives the results for the
Madelon data set. As expected, when the Monte Carlo sample size increases, the
computational cost grows quadratically.
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FIGURE 5.10: Gain in accuracy of PCC-DES over the other DES meth-
ods vs. diversity (1−κ) with the four ensemble generation strategies.

FIGURE 5.11: Histogram of the number of classifiers selected per in-
stance, by each DES method with heterogeneous ensembles HET-1

(left) and HET-2 (right).

In the sequel, we will investigate how the number of Monte Carlo samples nMC af-
fects the accuracy of PCC-DES as well as the minimization of our task loss function.
Here again, we varied nMC between 50 and 1000 by taking steps of size 50 on all the
data sets. Figure 5.19 shows the accuracy percentage using PCC-DES as well as the
task loss of the different nMC values averaged over all data sets. On can note that
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TABLE 5.8: Average number of classifiers selected by DES methods
for the heterogeneous ensembles.

HET-1 HET-2

Data set BR-DES LP-DES CHADE PCC-DES BR-DES LP-DES CHADE PCC-DES
Adult 187 +/- 40 200 +/- 6 185 +/- 49 27 +/- 20 193 +/- 16 189 +/- 27 196 +/- 21 63 +/- 43
Auto Moto 125 +/- 36 122 +/- 40 118 +/- 36 106 +/- 19 161 +/- 23 138 +/- 35 165 +/- 27 136 +/- 30
BaseHock 139 +/- 42 128 +/- 46 130 +/- 44 107 +/- 24 164 +/- 24 140 +/- 38 168 +/- 27 137 +/- 24
Breast-Cancer 176 +/- 33 182 +/- 30 177 +/- 32 159 +/- 47 190 +/- 10 191 +/- 9 191 +/- 10 164 +/- 45
Colic 160 +/- 54 172 +/- 47 161 +/- 54 84 +/- 44 164 +/- 31 140 +/- 55 183 +/- 30 107 +/- 42
Colon 172 +/- 34 153 +/- 49 172 +/- 35 161 +/- 39 154 +/- 38 144 +/- 45 155 +/- 38 145 +/- 32
Credit Approval 159 +/- 37 166 +/- 40 161 +/- 38 110 +/- 63 173 +/- 23 153 +/- 39 178 +/- 25 111 +/- 43
Elecrypt 135 +/- 40 128 +/- 46 135 +/- 41 102 +/- 42 167 +/- 20 140 +/- 45 181 +/- 20 122 +/- 38
German Credit 166 +/- 64 187 +/- 43 169 +/- 68 21 +/- 12 171 +/- 42 145 +/- 56 179 +/- 52 51 +/- 33
Gunmid 135 +/- 36 120 +/- 37 129 +/- 37 90 +/- 33 149 +/- 24 124 +/- 35 150 +/- 36 82 +/- 19
Hepatitis 195 +/- 20 194 +/- 30 196 +/- 21 94 +/- 61 195 +/- 10 159 +/- 53 198 +/- 1 126 +/- 60
Ionosphere 173 +/- 44 188 +/- 22 172 +/- 48 39 +/- 17 191 +/- 15 187 +/- 25 196 +/- 8 121 +/- 63
krvskp 144 +/- 46 151 +/- 49 149 +/- 45 82 +/- 24 167 +/- 18 154 +/- 29 172 +/- 21 151 +/- 23
Madelon 115 +/- 50 99 +/- 59 116 +/- 65 47 +/- 27 102 +/- 27 100 +/- 32 112 +/- 39 55 +/- 9
Ovarian 125 +/- 45 118 +/- 44 121 +/- 43 103 +/- 37 161 +/- 31 140 +/- 27 162 +/- 31 123 +/- 25
PcMac 144 +/- 33 120 +/- 40 139 +/- 33 100 +/- 24 162 +/- 23 131 +/- 36 163 +/- 24 125 +/- 12
Relathe 154 +/- 54 133 +/- 58 170 +/- 46 88 +/- 17 170 +/- 28 139 +/- 39 185 +/- 27 122 +/- 23
Sonar 149 +/- 46 149 +/- 48 147 +/- 52 65 +/- 33 163 +/- 31 142 +/- 44 182 +/- 29 86 +/- 43
Spambase 172 +/- 41 198 +/- 13 180 +/- 36 63 +/- 28 189 +/- 14 180 +/- 29 198 +/- 4 112 +/- 36
Vote 168 +/- 26 166 +/- 31 168 +/- 26 160 +/- 40 185 +/- 13 185 +/- 16 186 +/- 12 165 +/- 32

Mean 152 +/- 48 152 +/- 52 153 +/- 51 85 +/- 50 168 +/- 32 151 +/- 44 175 +/- 34 112 +/- 49

TABLE 5.9: Average number of classifiers selected by DES methods
for the homogeneous ensembles.

BAG-DT BAG-ST

Data set BR-DES LP-DES CHADE PCC-DES BR-DES LP-DES CHADE PCC-DES
Adult 195 +/- 12 199 +/- 6 197 +/- 23 46 +/- 30 188 +/- 35 175 +/- 50 188 +/- 37 48 +/- 40
AutoMoto 199 +/- 11 190 +/- 31 199 +/- 11 184 +/- 37 192 +/- 23 181 +/- 50 191 +/- 33 48 +/- 51
BaseHock 198 +/- 13 183 +/- 38 199 +/- 11 149 +/- 55 174 +/- 52 147 +/- 76 169 +/- 59 60 +/- 56
Breast-Cancer 200 +/- 0 200 +/- 0 200 +/- 0 158 +/- 60 200 +/- 0 200 +/- 0 200 +/- 0 128 +/- 65
Colic 188 +/- 21 158 +/- 52 196 +/- 18 117 +/- 58 168 +/- 53 169 +/- 54 167 +/- 53 71 +/- 49
Colon 155 +/- 26 130 +/- 49 158 +/- 30 144 +/- 28 147 +/- 36 137 +/- 46 148 +/- 37 130 +/- 25
Credit Approval 191 +/- 24 185 +/- 40 196 +/- 25 77 +/- 52 198 +/- 18 198 +/- 18 198 +/- 18 54 +/- 59
EleCrypt 199 +/- 4 186 +/- 34 200 +/- 4 182 +/- 35 179 +/- 50 190 +/- 41 180 +/- 56 59 +/- 39
German Credit 163 +/- 39 141 +/- 48 178 +/- 56 56 +/- 23 168 +/- 59 179 +/- 51 164 +/- 71 24 +/- 26
GunMid 173 +/- 19 129 +/- 38 189 +/- 29 92 +/- 23 152 +/- 52 128 +/- 49 127 +/- 49 93 +/- 40
Hepatitis 193 +/- 13 177 +/- 44 200 +/- 0 118 +/- 53 197 +/- 6 189 +/- 27 198 +/- 6 146 +/- 61
Ionosphere 199 +/- 5 200 +/- 4 200 +/- 0 109 +/- 73 197 +/- 18 198 +/- 17 198 +/- 19 71 +/- 61
Krvskp 198 +/- 11 198 +/- 15 199 +/- 12 184 +/- 40 138 +/- 61 130 +/- 58 134 +/- 58 139 +/- 56
Madelon 121 +/- 21 107 +/- 26 138 +/- 42 65 +/- 17 124 +/- 57 128 +/- 67 124 +/- 71 28 +/- 30
Ovarian 163 +/- 37 151 +/- 36 163 +/- 38 142 +/- 30 175 +/- 26 162 +/- 30 180 +/- 24 138 +/- 35
PcMac 198 +/- 10 188 +/- 38 199 +/- 9 156 +/- 58 192 +/- 31 191 +/- 36 193 +/- 31 94 +/- 57
RelAthe 187 +/- 20 150 +/- 49 190 +/- 32 126 +/- 53 154 +/- 72 125 +/- 81 144 +/- 72 44 +/- 27
Sonar 167 +/- 35 131 +/- 44 177 +/- 45 88 +/- 44 179 +/- 20 154 +/- 42 187 +/- 20 75 +/- 32
Spambase 200 +/- 0 200 +/- 2 200 +/- 0 108 +/- 47 199 +/- 4 199 +/- 9 199 +/- 14 109 +/- 55
Vote 200 +/- 3 200 +/- 0 200 +/- 1 160 +/- 45 200 +/- 0 200 +/- 0 200 +/- 0 200 +/- 0

Mean 168 +/- 52 162 +/- 57 156 +/- 61 121 +/- 64 149 +/- 69 140 +/- 72 125 +/- 75 78 +/- 63

higher Monte Carlo sample sizes almost monotonically increase the overall perfor-
mance of the ensemble and decrease the true DS loss function. Moreover, it is worth
mentioning that the accuracy of PCC-DES (respectively the true DS loss function)
generally increases (respectively decreases) swiftly at the beginning (the number of
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FIGURE 5.12: Histogram of the number of classifiers selected per in-
stance, by each DES method with homogeneous ensembles BAG-DT

(left) and BAG-DT (right).

FIGURE 5.13: Distribution of the number of times each model was
selected by each DES method with heterogeneous ensemble HET-1

on Adult data set.

Monte Carlo samples is small) and slows down at the end. The obtained results
also suggest that the value of nMC yielding better performances with PCC-DES is
between 200 and 400, a good compromise to balance performance and computation
cost.
To corroborate our previous finding, we used the Scree test to select the "optimal"
value of nMC in view of the DES loss value (see Cattell, 1966 for details). The values
are ordered by their obtained DES loss values, and the loss is plotted against the
nMC value. The optimal value of nMC is the one above the "elbow" in the plot. It is
called a scree test because the graph usually looks a bit like where a cliff meets the
plain. The Scree tells us where the cliff stops and the plain begins. The Scree test
was applied for each data set and the obtained optimal values of nMC are showed in
Figure 5.20. The results confirm our previous finding, namely that a value of nMC

around 200-400 should be enough to obtain a smaller value for our DES loss and
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FIGURE 5.14: Distribution of the number of times each model was
selected by each DES method with heterogeneous ensemble HET-2

on Adult data set.

FIGURE 5.15: Distribution of the number of times each model was
selected by each DES method with homogeneous ensemble BAG-DT

on Adult data set.
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FIGURE 5.16: Distribution of the number of times each model was
selected by each DES method with homogeneous ensemble BAG-ST

on Adult data set.

FIGURE 5.17: Accuracy averaged over 20 data sets, as a function of
the ensemble size.

hence a significant gain in performance within a reasonable computational cost for
PCC-DES.
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FIGURE 5.18: Computing time VS number of Monte Carlo samples
on Madelon data set.

FIGURE 5.19: Overall accuracy and DES Loss VS number of Monte
Carlo samples.

5.3 Chapter summary

In this Chapter, we reformulated the dynamic ensemble selection (DES) problem
as a multi-label classification problem and derived the actual multi-label loss as-
sociated to the DES problem. Contrary to other approaches that use state-of-art
multi-label classification methods, we addressed the problem of optimizing the non-
standard actual loss directly, since an analytic expression (or characterization) of the
Bayes classifier that minimizes the actual DES loss is missing. We showed that the
dependencies of the errors made by each model in the ensemble have to be exploited
to optimize this loss. As the problem is intractable for realistic ensemble sizes, we



96 Chapter 5. Dynamic pruning using multi-label : loss minimization

FIGURE 5.20: Optimal number of Monte Carlo samples per data set
according to the Scree Test.

discussed a more sophisticated multi-label procedure based on Probabilistic Classi-
fier Chains and Monte Carlo sampling capable that allows to minimize the actual
loss function directly. The experimental results on 20 benchmark data sets demon-
strated the effectiveness of the proposed method against competitive alternatives
using standard "off-the-shelf" multi-label learning techniques. Our experimental re-
sults show that optimizing the actual DES loss pays off in terms of performance.
Compared to all others DES approaches, the proposed method was found to select
a significantly smaller number of models, especially in the presence of many weak
models.
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Conclusion and perspectives

In this thesis, we addressed the problems of ensemble learning and dynamic en-
semble selection, that is, how to generate ensemble of models and finding the most
efficient subset of classifiers for an unknown instance x as input. We first reviewed
the main state-of-the art approaches in ensemble learning and ensemble selection.
Then, we tackled the problem of dynamic pruning for high dimensional data sets
by proposing a new supervised metric for homogeneous tree-based ensembles. Fi-
nally, we formulated the DES problem as a multi-label learning task with a proper
loss function and an optimization procedure.
Our main contributions are:

1. A large extensive empirical comparison between ninteen prototypical super-
vised ensemble learning algorithms over several criteria (3 evaluation met-
rics, model calibration, ensemble size tuning) in Chapter 2. This study digs
out of oblivion highly competitive approaches such as rotation-based methods,
Random Patches or Arc-X4 which challenge regular Random Forest and boosting
methods.

2. ST-DES, a new dynamic pruning approach for homogeneous ensembles. Al-
though it doesn’t systematically outperform Random Forest, it can be used effi-
ciently to treat high dimensional and noisy data.

3. A new multi-label based DES (PCC-DES) that aims at optimizing the true
(but non-standard) DES loss directly using the Probabilistic Classifier Chain al-
gorithm and a Monte Carlo sampling process to avoid exponential complexity.
We showed in Chapter 5 that capturing explicitly the dependencies between
the classifiers errors yields superior performances. PCC-DES provides a nice
pruning agnostic pruning environment that boosts homogeneous ensembles
as well as heterogeneous ensembles independently of the models complexity.

Recently, dramatic increases in accuracy have been made by new versions of the
gradient boosting framework (XGBoost, LightGBM, CatBoost) that directly minimize
a loss function while regularizing internally the models complexity. An interesting
extension worth to be investigated would be to add some rotation-based features to
the ensemble generation process since we showed experimentally that such features
enhanced significantly classical bagging and boosting ensembles. Another follow-up
would be to address the problem of scalability of rot-based approaches. Indeed, Ro-
tation Forest and RotBoost are experimentally very appealing in relatively low dimen-
sion data sets. Some researches tried to replace the PCA step by random rotations
in order to decrease significantly the computational time, however the question of
whether or not random subsets of PCA have a real influence on performances re-
mains unanswered. Finally the multi-label innovations strongly rely on ensemble
learning, we believe some of the interesting ’tricks’ presented in the review (arcing,
class switching, etc...) could be applied to multi-label problems with success.
Regarding the PCC-DES approach, the Monte Carlo sampling trick is still insuffi-
cient to perform fast dynamic selection. One solution might be to find a new surro-
gate loss to our DES loss function that has an explicit minimizer and a proper meta
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learner. Another avenue for future research would be to transform the data encod-
ing prior to learning in such a way that fast approaches like IBEP-MLC or CHADE
minimizing the 0/1 or the Hamming loss could be applied, while still solving our
DES problem.
Finally, the recent years we have witnessed the rise of automated machine learn-
ing solutions (AutoML). AutoML leverages the last optimization techniques and
meta-learning paradigms to avoid hyperparameter tuning and model selection by
cross validation. While a plethora of DES approaches have been proposed in the
machine learning literature, the potential applications of DES in AutoML is rather
unexplored in the community.
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Appendix A

Extensive empirical review on
ensemble learning

This section provides the tables that present the results of the experiments for each
ensemble method on each data set for both uncalibrated and calibrated models. Due
to space limitation, the tables are presented in landscape form. More specifically,
Tables A.1, A.2 and A.3 present the classification accuracies, the AUC and the RMS
respectively for the uncalibrated models. Tables A.4, A.5 and A.6 present the same
results respectively for the calibrated models. On the other hand, the differences
in performance between methods in terms of win/tie/loss statuses are depicted in
Tables A.7, A.9 and A.11 for uncalibrated models in Tables A.8, A.10 and A.12 for
calibrated ones. Finally, Figure A.1 displays the relative variations of κ and accuracy
when the baseline classification model is changed.
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FIGURE A.1: κ-Error relative movement diagrams for standard en-
semble approaches and their ET-variant on different data sets. x-
axis= κ, y-axis= ei,j (average error of the pair of classifiers). (01)
Rot; (02) Bag; (03) Ad; (05) Rotb; (06) ArcX4; (08) Swt; (09) RadP; (10)
Vad; (11) RotET; (12) BagET; (13) AdET; (14) RotbET; (15) ArcX4ET;

(16) SwtET; (17) RadPET; (18) VadET.
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