
HAL Id: tel-02147264
https://theses.hal.science/tel-02147264

Submitted on 4 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Categories and String Diagrams for Game Semantics
Clovis Eberhart

To cite this version:
Clovis Eberhart. Categories and String Diagrams for Game Semantics. Computer Science and Game
Theory [cs.GT]. Université Grenoble Alpes, 2018. English. �NNT : 2018GREAM091�. �tel-02147264�

https://theses.hal.science/tel-02147264
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ
GRENOBLE ALPES
Spécialité : Mathématiques

Arrêté ministériel : 25 mai 2016

Présentée par

Clovis Eberhart

Thèse dirigée par Tom Hirschowitz

préparée au sein du Laboratoire de mathématiques
et de l’Ecole Doctorale de Mathématiques, Sciences et Technologies
de l’Information, Informatique

Catégories et diagrammes de
cordes pour les jeux concurrents

Categories and String Diagrams for
Concurrent Game Semantics

Thèse soutenue publiquement le 22 juin 2018,
devant le jury composé de :

Mr. Martin Hyland
Professor, Department of Pure Mathematics and Mathematical Statistics, Univer-
sity of Cambridge, Président
M. Samuel Mimram
Maître de conférences, LIX, École polytechnique, Rapporteur
M. Pierre-Louis Curien
Directeur de recherche CNRS, IRIF, Université Paris Diderot, Examinateur
M. Vincent Danos
Directeur de recherche CNRS, Département d’informatique, ENS, Examinateur
M. Paul-André Melliès
Chargé de recherche CNRS, IRIF, Université Paris Diderot, Examinateur
M. Tom Hirschowitz
Chargé de recherche CNRS, LAMA, Université Savoie Mont Blanc, Directeur de
thèse

2

Thanks

I would like to extend my thanks to all the people I have shared these few
years with. To Tom Hirschowitz, my PhD supervisor, whose vast knowledge of
category theory and abstract way of thinking never ceased to amaze me, and
who has been more of a colleague with whom I had a fruitful collaboration
than someone who simply supervised my work. To Krzysztof Worytkiewicz,
who was my official supervisor for the first two years of my PhD, even though
we worked on different topics. To the members of the LIMD team, past or
present, especially those with whom I have interacted the most : Pierre for all
the fascinating math problems and anecdotes about computer science, Jaco for
his spirit, humour, and common sense, Christophe for his enthusiasm and ability
to always randomly generate conversation topics, and Xavier for his common
interests in food and a certain Québecois humourist. To the PhD students at
LAMA, either past or present : Rodolphe, Pierre, Florian, Lars, Marion, Boulos,
Lama, Rémy, Charlotte, Suelen, and all those I have forgotten to mention. More
generally, I would like to thank the whole LAMA laboratory for the wonderful
years I have spent there. I would like to (unironically) thank the administration
at MSTII (and more generally any person who had to deal with me from an
administrative point of view) for their patience. Finally, I would like to thank the
reporters – Marin Hyland and Samuel Mimram – and examiners – Pierre-Louis
Curien, Vincent Danos, and Paul-André Melliès – for reading this manuscript,
making enlightening comments about it, and giving me some pointers for future
research directions.

3

Contents

1 Introduction 7

1.1 Semantics of Programming Languages 7
1.1.1 An (Outdated) Map of Semantics 8
1.1.2 Semantics Today . 10

1.2 Game Semantics . 10
1.2.1 The Birth of Game Semantics 11
1.2.2 The Rich World of Game Models 12

1.3 Motivation and Contributions . 14
1.3.1 Fibred Models . 16
1.3.2 A Bridge Between Models 18
1.3.3 A Core of Game Models . 21

2 Preliminaries 24

2.1 Game Semantics . 24
2.1.1 Hyland-Ong/Nickau Games 25
2.1.2 Variations on HON Games 36
2.1.3 Tsukada and Ong’s Model 42
2.1.4 Abramsky-Jagadeesan-Malacaria Games 44
2.1.5 Blass Games . 46

2.2 Categorical Preliminaries . 52
2.2.1 Comma and Cocomma Categories 52
2.2.2 Fibrations . 54
2.2.3 Ends and Coends . 56
2.2.4 Kan Extensions . 59
2.2.5 Presheaf Categories . 63
2.2.6 Exact Squares . 79
2.2.7 Sheaves . 83
2.2.8 Factorisation Systems . 87
2.2.9 Pseudo Double Categories 90

3 Presheaves and Concurrent Traces 92

3.1 Introduction . 92
3.2 From Signatures to Pseudo Double Categories 93

3.2.1 Signatures and Positions . 93
3.2.2 Execution Steps and Traces 97

4

3.2.3 Organising Traces into a Pseudo Double Category 100
3.2.4 The Category of Execution Traces 104

3.3 Unfolding . 105
3.4 Perspectives . 105

4 Pseudo Double Categories and Concurrent Game Models 108

4.1 Motivation . 108
4.2 Preliminaries . 110
4.3 Signatures for Pseudo Double Categories 112

4.3.1 A Signature for the π-Calculus 113
4.3.2 Signatures . 121
4.3.3 From Signatures to Pseudo Double Categories 124
4.3.4 Fibredness and Categories of Plays 125

4.4 Fibredness . 126
4.4.1 Fibredness through Factorisation Systems 127
4.4.2 A Little Theory of 1D-Pullbacks and 1D-Injectivity 128
4.4.3 A Necessary and Sufficient Fibredness Criterion 131
4.4.4 Cartesian Lifting of Seeds 142

4.5 Perspectives . 150

5 Justified Sequences in String Diagrams 153

5.1 Motivation . 153
5.2 HON Games as String Diagrams 157

5.2.1 Building the Pseudo Double Category 157
5.2.2 Categories of Views and Plays 163
5.2.3 Characterisations of Views and Plays 167

5.3 The Level of Plays: Intuition . 173
5.3.1 Illustration on an Example 173
5.3.2 From String Diagrams to Proof Trees 177
5.3.3 From Proof Trees to Justified Sequences 182

5.4 The Level of Plays: Formal Proof 185
5.4.1 Constructing the Functor 186
5.4.2 Full Faithfulness . 194
5.4.3 Restriction to Views . 196

5.5 The Level of Strategies . 199
5.6 Perspectives . 200

6 Composing Non-Deterministic Strategies 203

6.1 Motivation . 203
6.1.1 The Main Ideas . 204
6.1.2 A Technical Point . 205

6.2 Polynomial Functors for Abstract Game Semantics 208
6.2.1 Plays as a Category-Valued Presheaf 209
6.2.2 Copycats and Composition as Polynomial Functors 211
6.2.3 Game Settings, Associativity and Unitality 213
6.2.4 The Boolean Case . 219

5

6.3 Applications . 222
6.3.1 Hyland-Ong/Nickau Games 222
6.3.2 Constraining Strategies . 225
6.3.3 AJM Games: a Partial Answer 229
6.3.4 A Non-Example: Blass Games 231

6.4 Innocence . 232
6.4.1 Concurrent Innocence . 232
6.4.2 Prefix-Based Innocence . 240
6.4.3 Boolean Innocence . 242

6.5 Perspectives . 244

A A Proof of View-Analyticity in Tsukada and Ong’s Model 254

6

Chapter 1

Introduction

In recent years, there has been increasingly more focus on concurrent program-
ming, following the increase in the average number of cores in a processor and
the rise of distributed computing. However, many programs are still unable to
use several cores simultaneously, as concurrent computing is much less intuit-
ive than classical computing. One way to make concurrent computing simpler
could be to design languages specifically for concurrency, which requires under-
standing the basic notions behind it. For example, an appealing aspect of func-
tional languages (admittedly not to the average programmer) such as OCaml or
Haskell is that they are built on well-understood theories, and these languages
can thus be used to test the effectiveness of functional programming techniques
on real problems, rather than academical ones. Once these techniques have
proved useful, functional programming paradigms can then be added to “main-
stream” programming languages such as Python or C++, where they can be
used to solve some problems more easily. This work is a contribution to concur-
rent game semantics, a research area that uses game semantics to understand
concurrency better.

1.1 Semantics of Programming Languages

Semantics of programming languages (or simply semantics for short) is a field
of computer science whose goal is to assign mathematical meaning to programs.
Indeed, a term of a language is just a sequence of symbols, which in itself carries
no meaning, and whose meaning is only understood in the context of a partic-
ular language. The idea is thus to build mathematical models of programming
languages to prove properties of programs.

There are several reasons why one would want to give a mathematical mean-
ing to programs: to prove that programs written in a particular language have a
certain property, to prove that a particular program has the intended behaviour,
to prove that it terminates within a reasonable amount of time, to prove that
two programs have the same behaviour... It is also interesting to study pro-
gramming languages in light of their link to logics, given by the Curry-Howard
isomorphism [95]. In its most basic form, it states that types A of a program-
ming language can be seen as propositions JAK of a logic and vice versa. But the
interesting part is: programs of type A in the language correspond to proofs of

7

JAK in the logic. The correspondence is even finer than this, stating that com-
position of programs correspond to cuts in the logic (a cut is a step in a proof
that does not prove anything new, for example, introducing a lemma). Finally,
it states a dynamic correspondence between proofs and programs, in the sense
that normalisation (execution) of a program corresponds to cut-elimination in
the proof (a process that turns a proof into a proof of the same proposition,
but without cuts, and which basically corresponds to inlining all the lemmas
introduced in the proof). Semantics is thus a way to understand logic better,
and vice versa.

1.1.1 An (Outdated) Map of Semantics

Let us give a slightly outdated view of semantics (we will then see that the
landscape of semantics is more complex today).

Semantics comes in several different flavours, usually depending on the kind
of property that one wishes to prove. It has two main branches: operational
semantics, which describes programs as some kind of machine, and denotational
semantics, which describes programs as well-known mathematical structures.

Operational Semantics

Operational semantics is probably the representation of programming languages
that is closest to the intuitions programmers have about them. It describes
programs as sequences of instructions to be executed by a kind of machine.
This is indeed very close to what happens inside a computer, though the set of
instructions used in operational semantics is meant to abstract away some of
the complexity.

There are different forms of operational semantics, but they all reflect the
idea described above. Maybe the most widespread one relies on labelled trans-
ition systems (or LTSs), which are basically graphs whose vertices are the set of
all possible program states and whose edges correspond to execution steps of a
program that starts in a certain state and ends in another one. Giving reduction
rules for formal languages (such as the λ-calculus [11] or the π-calculus [85])
is exactly defining an LTS whose vertices are the terms of the language and
edges are possible reductions. For example, here is a very simple LTS for the
λ-calculus:

M’(λx.M)N →M[N/x] M →M ′

MN →M ′N
N → N ′

MN →MN ′
.

Some LTSs are based on abstract machines [63]. As the name indicates, they
are in some sense even closer to the idea of a machine executing a sequence of
instructions, usually executing a program or term within a context called a stack,
and both the term and the stack may be modified by the various instructions
the machine executes. For example, the machine may stack the arguments of an
application and then unstack them when they are used, which is exactly what
this machine for the λ-calculus does:

MN Ȃ π →M ȂN ∶∶ π (λx.M) ȂN ∶∶ π →M[N/x] Ȃ π.

Here, π is the stack (a sequence of λ-terms), the first rule says that the machine
stacks the argument when it encounters an application, and the second rule

8

says that the machine pops an argument and performs the substitution when it
encounters an abstraction.

Denotational Semantics

While the interpretation of a program is typically close to its syntax in oper-
ational semantics, denotational semantics represents programs as well-known
mathematical structures. The idea is to interpret a type A as a space JAK of
some kind (for example, topological spaces) and functions of type A → B as
morphisms from JAK to JBK (in the case of topological spaces, morphisms would
be continuous functions).

One such semantics is given by Scott domains [93]. Basically, a Scott domain
is an ordered set that represents “information” about objects of a certain type:
x < y means that y holds more information about what it is describing than x.
For example, the Scott domain for integers has a bottom element (no information
about the integer is known) and an element for each integer (greater than the
bottom element, but incomparable to one another) that represents the fact that
we know the value of the integer:

0 1 2 3 . . .

�.
A morphism between two Scott domains is basically a monotone function. In
terms of programs, this means that, the more information a program has about
its input, the more information it may produce about its output. For example,
the denotation (interpretation) of a program that computes the predecessor but
does not terminate on 0 would be the function that maps � and 0 to �, and
n > 0 to n − 1.

A dentoational semantics should respect several properties in order to be
considered “good”. Let us assume that we are given a relation on terms that ex-
presses whether two terms have the same behaviour (for example, whether they
return the same result given the same arguments). The first and most obvious
property that a dentoational semantics should verify is soundness, i.e., that two
programs that have different behaviours must have different denotations. There
is not much that can be said about a semantics that does not even verify this
property. The second one is completeness, i.e., that two programs that have the
same behaviour must have equal denotations. When both properties above hold,
we say that the model is fully abstract. This is an interesting property because
studying equality in the model is enough to deduce behavioural equivalence of
terms. Another important property is whether the (compact) definability result
holds in the model, which means that each (compact) element of the model
is the interpretation of a term (we also say that the model is denotationally
complete).

Finally, a crucial property of denotational semantics is compositionality, i.e.,
that the denotation of a program can be deduced from those of its sub-programs.
For example, for the λ-calculus, we would want to be able to compute JMNK
from JMK and JNK. If we see M as a function of type A → B whose argument
is an N of type A, we want to define JMNK = JMK (JNK), which is indeed

9

compositional. (The actual definition is slightly more involved because we want
to interpret typing derivations rather than terms.)

1.1.2 Semantics Today

Today, there is a whole array of models of programming languages, and some
of them may be seen both as denotational and operational. A prime example
is game semantics: it may be seen as a denotational semantics because it inter-
prets programs as strategies on a general notion of game, but strategies actually
encode the interaction between the program and its environment, making the
model very dynamic, and in many cases (finite) strategies are in bijection with
normal forms, making the model very close to syntax, which are some reasons
why it is also close to operational semantics.

Nowadays, the meanings of denotational and operational semantics have
shifted from their original definitions to take a broader sense. For example,
some people do not consider models to be denotational unless they are fully
abstract (more precisely, unless they are complete, because models that are not
even sound can hardly be called models), but most people consider them to be
denotational to some degree. Some models are definitely considered denotational
(such as Scott domains) and others definitely not (such as LTSs). Between these
two extremes, there is a continuum of models that may be considered more or
less denotational, based mainly on two criteria. The first criterion is “how
mathematical” the structures used to interpret types and programs are: more
common ones (say, topological spaces or vector spaces) will give models that
are considered more denotational than models based on less common structures,
and ad hoc structures (such as LTSs or categories derived from the language’s
syntax) are not denotational at all. The second criterion is whether the model
enjoys “good” features (such as full abstraction) or not: those that do tend to be
considered more denotational than those that do not. In both respects, game
semantics lies at an intermediate point: strategies are not as common as vector
spaces or topological spaces, but they are not ad hoc structures either, and while
the model is not fully abstract, it is compositional and syntax-independent, and
an extensional quotient gives a fully-abstract model.

Similarly, the notion of operational model has also evolved over time. A
model used to be considered operational when it was derived from the syntax
of a language, such as LTSs. Today, there is another dimension to operational
models: a model is considered operational if it is dynamic, i.e., the execution of
the program can be recovered from its interpretation.

Maybe the distinction between operational and denotational models has be-
come too coarse nowadays, and should be refined into different axes on which
each model may be placed: models based on mathematical structures (topolo-
gical spaces) versus syntactic models (LTSs), static models (functions) versus
dynamic models (strategies), or intensional models (equality is based on reduc-
tion) versus extensional models (equality is based on observation), etc.

1.2 Game Semantics

We have discussed both operational and denotational semantics (while trying
to stay at a rather informal level) and have claimed that game semantics may

10

be seen as both. We here discuss game semantics, which will be at the heart of
this work, in a bit more detail.

1.2.1 The Birth of Game Semantics

Game semantics was first born in the realm of logic, in the form of dialogical
logic [75]. Dialogical logic expresses proofs of a formula as two entities debating
whether a formula is true or not: Proponent, who tries to prove that the formula
is true, and Opponent, who tries to prove that it is false. This formal game is the
description of a dialogue between two (rational) individuals would have when
debating whether a mathematical proposition holds or not: they both defend
their case until one of them is convinced they were wrong. A formula is true
when Proponent has a winning strategy in a certain game played on the formula,
which amounts to always managing to convince Opponent that the formula is
true, no matter the objections that are raised.

It was then introduced into the world of programming languages under the
name game semantics by a long series of authors, notably Berry and Curien [13]
(under the name of sequential algorithms), who were the first to use the idea
of interaction in semantics and gave a sequential, denotational semantics of a
higher-order language, Blass [14, 15], who exhibited links between game se-
mantics and linear logic [41], Joyal [58], who was the first to build a category of
games and strategies, Coquand [23]; who linked game semantics to the dynamics
of cut elimination (and thus to evaluation of programs), Abramsky, Jagadeesan,
and Malacaria [6], and Hyland and Ong [56] and Nickau [87], who built the most
well-known frameworks for game semantics today: AJM and HON games.

The most basic idea comes straight from dialogical logic: types are inter-
preted as formal games (formulas) and programs as the interactions they may
have with the environment (proofs of the formulas). In slightly more detail,
types are interpreted as games (sometimes called arenas) on which notions of
plays are built. Plays represent all the possible interactions an element of a
given type may have with its environment. Programs of a certain type are then
interpreted as strategies in that game, i.e., sets of plays satisfying some con-
straints. These plays are the interactions the programs may actually have with
the environment: if σ is the interpretation of a program P , then a play p belongs
to σ if and only if P may interact with its environment according to p. Here,
however, strategies are only used to compute values, and there are no “winning”
strategies.

For example, the plays for natural numbers could be sequences of the form(q N)∗, where q is a move in the game representing the environment asking (q
stands for “question”) for the value of the number, and N is any natural number,
which represents the program answering the value of the number. The strategy
corresponding to a counter that increases by 1 each time it is called would consist
of all plays of the form q 1 q 2 . . . q n. For functions of type int → int, the set of
plays could be of the form (qr (ql Nl)∗ Nr)∗, where qr is a move that represents
the environment asking the function for the result (r stands for “right”, as in the
right-hand side of int → int) of its computation, Nr represents the function
returning the value of its result to the environment, ql represents the function
asking for the value of its argument (l stands for “left”), and Nl represents the
environment giving the function the value of its argument. Such a sequence

11

corresponds to the environment asking the function for the value of its result
a certain number of times, and each time the function asks for the value of its
argument a certain number of times before returning its result. For example,
the strategy associated to the successor function would be the set of plays of
the form qr ql n

1
l (n1 + 1)r . . . qr ql nkl (nk + 1)r. The exact structure of plays

depends on the type of game semantics that we are considering, but this gives
a good idea of what plays and strategies look like.

Two other ideas are also present in most game models today. The first one
is innocence, which is that pure programs (those programs that only use purely
functional features) are interpreted as innocent strategies. The behaviour of
these strategies is based on limited information about what has happened in the
play until now. This information basically encodes the part of the interaction
between the program and its environment that has led to the current situation.
In particular, a function may only rely on the current function call. For example,
the strategy for the counter program above is not innocent because it needs to
know what it answered last time, and that the only part an innocent strategy
would be allowed to rely on is qr (and the counter is indeed impure). On the
other hand, the strategy associated to the successor function is innocent because
its answer (nk + 1)r only depends on nkl , and nothing else.

Finally, an important aspect of game semantics is how strategies are com-
posed. Indeed, game models are compositional, and there is in particular a no-
tion of composition of strategies that corresponds to composition of programs.
It is defined in two steps called parallel composition and hiding. Parallel com-
position lets both strategies interact. To define it, we need to define a notion
of “plays” on three games: assume that σ is a strategy on the games A and B

and τ a strategy on the games B and C, then we want the parallel composite
σ∥τ to be a strategy on the games A, B, and C. The parallel composite then
accepts a play on (A,B,C) if and only if its projection to (A,B) is accepted
by σ and its projection to (B,C) is accepted by τ . The idea is that σ and τ

communicate on the B game. The second step, hiding, consists in erasing the
B game to make the composite a strategy only on the games A and C.

As we have already mentioned, game models may be considered denotational
because they interpret programs as strategies, which are subsets of general struc-
tures. On the other hand, they are operational because strategies are often in
bijection with normal forms, and the interpretation of a program is exactly the
interactions it may have with the environment, which makes these models close
to the dynamics execution.

1.2.2 The Rich World of Game Models

Today, there are many game semantical models based on various ideas that
make the game semantical landscape very diverse. What is probably considered
the first game semantical model was built by Blass [14, 15]. In this setting, a
game is described as the tree of its positions, and plays are branches of that
tree. In the case of functions of type A → B, plays may be seen as a branch in
A and a branch in B. A strategy is basically a choice of move to play at each
node. Composition of strategies is defined by playing on three trees at the same
time (then hiding what happens on the middle tree). However, composition is
not associative (because of a technical problem with polarity of moves).

12

The first game semantical models that have become popular and whose vari-
ants are still used today are AJM games [6] and HON games [56], which were
both invented in the 1990s. AJM games define games as sets of moves together
with a condition that tells when a sequence of moves is a valid play. HON games
define games as a structured set of moves and plays as structured sequences (the
exact structure is beyond the point here). Both models then define strategies as
prefix-closed sets of plays and composition of strategies as parallel composition
plus hiding, where both operations are defined in similar ways in both models.

Today, there are many variants of HON and AJM games, invented for differ-
ent purposes. First of all, a number of variations on these games (that impose
further conditions on sequences to be valid plays) are described in Harmer’s
PhD thesis [46]. Some variations are not covered by the reference above, for
example [52], in which polarity is reversed. Other variations enrich games with
more structure, such as “copycat links” [70], group actions [79, 7, 86], or “co-
herence” [68]. There are also other models based on the same ideas, but where
games can be plugged into other games, such as polymorphic games [53], vari-
able games [4], open games [22], or context games [71]. There are other variants
that are neither really HON nor AJM, but use the very same ideas, such as the
sequoidal category built in [66]. Some models define games as trees (somewhat
like Blass games) and strategies as morphisms of games [54, 47].

Furthermore, there are many concurrent game models. This is not surprising
in the sense that a fundamental point of concurrency is the interaction between
agents, and interaction is precisely at the heart of game semantics. These models
may be based on HON games [67, 69, 40, 97] or more exotic structures. One such
structure is event structures [88], which are more focused on conflict between
events than the game models above (thus possibly more suited for concurrency)
and which have given many successful game models [92, 20, 21]. Basically, they
describe positions as sets of compatible events, moves as adding an event to a
position, and strategies as morphisms of games. Melliès has done significant
work to give efficient proofs in particular game models with his asynchronous
games [80, 82, 81, 84], which are also based on event structures.

Another exotic structure is playgrounds [50, 29, 30], which spawned the
approach used in this thesis. To simplify, they are double categories (basic-
ally categories with horizontal and vertical morphisms, and composition is only
defined on both classes of morphisms) whose objects are positions of a game,
horizontal morphisms are inclusions of positions, and vertical morphisms are
plays. They must satisfy a number of properties for this to make sense as a
game. From a playground, there is an abstract definition of a category E(X)
of plays starting from the position X. Strategies are then defined as presheaves
over E(X), the idea being that this definition is a generalisation of the tradi-
tional notion of prefix-closed sets of plays. The problem is that, to this day, it
is still unknown how to compose strategies as parallel composition plus hiding.
All known examples of playgrounds are part of a more general framework where
plays are defined as string diagrams (which are basically formalisations of intu-
itive drawings used in game semantics). In this framework, moves are defined
as basic string diagrams, and plays are defined as pastings of moves. Most of
the work described in this thesis is done in this string diagrammatic framework.

There have been very few attempts to understand the world of game models
globally. There are however a few notable exceptions. In [18], Bowler defines

13

a general construction of game models and composition of strategies. However,
he seems to be more interested in mathematical games than the ones that arise
as models of programming languages. In particular, the examples he treats
are those of simple games and Conway games, and he does not consider the
problem of defining innocent strategies. Finally, in [48], the authors define a
general framework of game models in a very close spirit to Chapter 6 of this
thesis and composition of strategies abstractly, but the frameworks differs with
ours on a number of fundamental points: first, the notion of morphism used
there can only model prefix ordering, and second, they do not treat the case of
innocent strategies.

1.3 Motivation and Contributions

The main motivation for this work was to understand the landscape of game
models better. More precisely, there are many game models, some of them
are very similar while others are based on completely different ideas, but there
is very little literature that provides insight about the links between all these
different games. Our goal was to provide insight about game models, mainly
through abstraction: we have tried to find properties that are verified in different
game models and abstract them away to create classes of models that verify these
properties, and to prove properties for all models of that class. A characteristic
feature of our approach, other than abstraction, is our extensive use of advanced
categorical tools, which makes constructions and proofs more streamlined and
efficient. In this matter, we have benefited from previous work in the same
spirit, namely the recent recasting of strategies as presheaves, and of innocence
as a sheaf condition, enabled by Melliès’s notion of morphisms between plays.
A key tool that we introduce for the first time in game semantics is the theory
of exact squares [45], which proves very efficient in Chapters 5 and 6.

Main Contributions

We here give the main results of each of the contributions that will be discussed
in this thesis. Each contribution is given a longer section dedicated to detailing
its results and the methods developed to prove them just below.

Fibred Models Our first contribution follows the pattern of abstraction ex-
plained above and is discussed in Chapter 4. All known instances of string
diagrammatic models (one for CCS [50], one for the π-calculus [29], one for
HON games, which we study in Chapter 5, and an unpublished one for the join-
calculus [36]) follow the same construction: they first define positions as some
kind of graphs, then moves as higher-dimensional arrows, and finally plays as
composites of moves. We call such positions and plays string diagrams, because
they formalise the drawings physicists call so. A crucial property to be able
to define a category of plays starting from a fixed position is fibredness, which
basically states that plays can be canonically restricted to sub-positions. We
first give an abstract way to build string diagrammatic models from an oper-
ational description of a language that generalises previous constructions. We
then give a necessary and sufficient criterion for the fibredness property to hold,

14

and another sufficient criterion that is easier to prove. This contribution is based
on [25].

A Bridge Between Models Our second main contribution is a connection
between two variations on HON games, as discussed in Chapter 5. The first
one [97] is based on the standard notion of justified sequence, while the second
one follows the string diagrammatic approach developed in our previous contri-
bution. There is an obvious, yet informal link between both models in the sense
that they both define innocent strategies as sheaves for a Grothendieck topo-
logy induced by embedding views into plays. We show that this relationship
can actually be tightened: they are equivalent in the sense that they yield equi-
valent categories of innocent strategies. We first try to give a slightly informal
argument, based on derivation trees in an ad hoc sequent calculus describing
HON games, and then give a direct, formal proof, without using derivation
trees. This contribution is based on [26] (which explains the argument using
derivation trees) and its extended version [25] (which gives the direct proof).

A Core of Game Models Our last main contribution, which we discuss in
Chapter 6, is the development of a general framework to study game models.
The idea is to try to boil down game models to a few basic properties about
their plays, and to derive the main constructions of game models from these
basic properties. Starting from a structure that represents plays, we show how
to define a notion of concurrent strategy and how to compose them by parallel
composition plus hiding. We show that, under some mild conditions, composi-
tion of strategies is associative and unital. Under further assumptions, we show
how to define a category of innocent concurrent strategies. We also show that
this framework encompasses many existing game models. This contribution is
based on [28].

Contributions Not Discussed in This Thesis

Let us finally mention a few contributions that will either not be detailed in this
thesis or only used as examples.

String Diagrams for Concurrent Traces and Unfolding The first such
contribution is Chapter 3, which is based on [24], and which we use as an
introduction to string diagrams, which are extensively used in Chapters 4 and 5.
We show how they can be used to model concurrent traces in a simple way, give
a few examples this construction applies to, and illustrate it on the example of
Petri nets.

A Game Model of the π-calculus In [29] and its extended version [30], we
build a model for the π-calculus that is intensionally fully abstract for fair test-
ing equivalence (intensional full abstraction is simply denotational completeness,
with the idea that an extensional collapse of the model gives a fully-abstract
model, which is necessary in some cases as some abstract models have no re-
cursively enumerable presentation [74]). We first define a notion of play based
on string diagrams for the π-calculus (this is actually the example we use in
Chapter 4) and show how to interpret terms as strategies. To show that this

15

interpretation is intensionally fully abstract, we appeal to the theory of play-
grounds, from which we abstractly derive an LTS for our notion of strategy and
relate it to that of the π-calculus. Many ideas present in Chapter 4 come from
this paper, in particular the use of factorisation systems to prove fibredness.

Interpreting Terms as Strategies Abstractly In [27], we study the in-
terpretation of terms into strategies in game models from an abstract point
of view. The idea is to define a broad notion of paraterm into which views,
plays, and terms can all be embedded. We can then abstractly define the inter-
pretation of terms as innocent strategies as a singular functor, which abstracts
some previous interpretations. We then recover a fundamental result of game
semantics, known as definability (which states that all finite innocent strategies
are isomorphic to the image of a value), under the form of geometric realisation.

1.3.1 Fibred Models

In Chapter 4, we show how to create string diagrammatic models and show
that they are fibred under some conditions. We start from a base category C

describing the operational semantics of a language. This base category comes
with a notion of dimension. Objects of lower dimensions are called players
and channels and describe positions of the game, which are basically graphs
of players and channels. Players are the agents of the game and channels are
the means by which they can communicate. For example, in the π-calculus, a
position simply represents the topology of communication between agents, as
in:

x y,

c

a

which represents a position with two players x and y who can communicate
through the channel a, and x knows a private channel c. Objects of higher
dimension describe the dynamics of the game. For example, in the π-calculus,
a synchronisation where x sends c on a and y receives it is drawn as on the left
below.

x′

x

y′

y

c

a
x′

x

y′

y

c

a

x′ y′

c

a

x y

c

a

16

Here, the initial position of the synchronisation is drawn at the bottom, the final
position at the top, and we can see that, in the final position, the avatar y′ of y
knows the channel c that x has sent them. For the π-calculus, synchronisation
corresponds to an object of higher dimension in the category C. Each object of
higher dimension of C is assigned such a drawing, which we call a move. We
further call the assignment of all these moves a signature. A play is a composite
(pasting) of such moves. Formally, positions are presheaves over the first two
dimensions of C (this is formal because the drawings represent the categories of
elements of the objects of C). Moves are cospans Y → M ← X of presheaves
over C, where X is the initial position, Y is the final position, and M represents
the move. For example, the cospan corresponding to the synchronisation in the
π-calculus is drawn next to it, with X at the bottom, Y at the top, M in the
middle, and the morphisms are inclusions.

From any signature S, we build a pseudo double category DS, which, to
simplify, is a gadget that has a set of objects (here, positions), and for all
objects X and Y , a set of horizontal morphisms X → Y (here, inclusions of X
into Y) and a set of vertical morphisms Y X (here, plays starting from X

and ending in Y). It also has, for all perimeters as below, a set of cells α (which
here represents the fact that u embeds into u′ in a certain sense).

Y Y ′

X X ′

k

u u′

h

α● ●

We then want to define a category E(X) of plays over a fixed position X whose
morphisms u → u′ would represent the fact that u′ is an extension of u (E(X)
depends on the signature S, but we leave the dependence implicit for readabil-
ity). The natural definition of morphism from u∶Y X to u′∶Y ′ X is thus
a tuple of a vertical morphism w∶Z → Y , a horizontal morphism h∶Z → Y ′, and
a cell α as in:

Z Y ′

Y

X X.

h

w

u′

u

●

●
●α

To be able to define a category, we need to be able to compose such morphisms,
i.e., to canonically find a dashed part to the solid part of:

Z ′′ Z ′ Y ′′

Z Y ′

Y

X X X,

h′

w′

u′′

h

w

u′

u

●

●

●

●

●
●

β

α

α′

17

so we need to be able to canonically restrict a play w′ to a smaller position Z.
This is the property we call fibredness: for all plays u∶Y X and morphisms
X ′ → X, there must exist a play u′∶Y ′ X ′ and a cell α as below such that,
for all diagrams as the solid part of

Y ′′

Y ′ Y

X ′′

X ′ X,

k

h

u

k′

h′

u′′
k′′

h′′

●

●

α

α′
α′′

u′●

there is a dashed arrow and corresponding cell (this basically means that u′ is
really a restriction of u along h and is necessary for composition in E(X) to be
well defined).

To prove it, we appeal to factorisation systems [17]. This algebraic tool
allows to factor all morphisms of a category as r ○ l, where l and r belong to
fixed classes L and R that are orthogonal, which means that they have a certain
lifting property. We build a factorisation system whose class L is generated
by the legs X → M for all cospans Y → M ← X in the signature (i.e., for all
moves). Remember that a play u∶Y X is a cospan of presheaves Y → U ←X,
so we are actually faced with a situation like the solid part of the left-hand
side diagram below, which we complete by factoring l ○ h as h′ ○ l′ (using the
factorisation system) and then taking the pullback of f and h′.

Y ′ Y

U ′ U

X ′ X

h′′

h′

h

f

l

f ′

l′

Y ′′

Y ′ Y

U ′′

U ′ U

X ′′

X ′ X

h′′

h′

h

f

l

q′′

q′

q

f ′′

l′′

s′′

s′

s

f ′

l′

We then get the desired universal property by building s′ and s′′ in the right-
hand side diagram: the former comes from the lifting property of our factorisa-
tion system and the latter follows by universal property of pullback.

It then remains to show that Y ′ → U ′ ← X ′ is a play, which we prove by
induction, under the hypothesis that it is the case for moves. We then give a
sufficient criterion on C for the restriction to be a play.

1.3.2 A Bridge Between Models

In Chapter 5, we start by building a string diagrammatic approach to HON
games as explained in 1.3.1 and then exhibit links between this model and an-
other one (based on the standard notion of justified sequence) both at the level

18

of plays and at the level of strategies. We start from a sequent calculus that de-
scribes arena games, strongly reminiscent of a focalised calculus for intuitionistic
logic. From this sequent calculus, we derive a signature SHON that describes
HON games. Here, channels are games on which two players play. We draw
channels as edges and players as nodes, and the positions typically look like

B ,
x y

A C

where, in this particular position, x plays as Proponent on B and Opponent on
A, and y as Proponent on C and Opponent on B. The dangling arrows represent
interaction with the environment. This could typically model the composition
of a function of type A → B, modelled by x, and one of type B → C, modelled
by y. Players that have only incoming edges are morally the program fragments
that are currently computing something, while the ones with an outgoing edge
are waiting for another program fragment to call them (on that outgoing edge).

The dynamics of this game is derived from cut elimination in our sequent
calculus, and drawn as:

Ȃ

Ȃ

Ȃ

Ȃ
Γn

Γ1

A⋅m

Λ

∆m.

∆1

@

A

β

x y

x′

y′

Maybe the simplest way to understand this interaction is from a computational
point of view. In the initial position (at the bottom of the drawing), x is a
function Γ1 → . . . → Γn → A that produces results of type A with access to
resources of type Γ1, . . . , Γn, while y is a program fragment that is currently
computing and has access to resources of type ∆1, . . . , ∆m, and A produced
by x. The interaction represents y asking x for its return value. In the final
position (at the top of the drawing), the polarities of both players have changed,
since x′ (the avatar of x after they are called) is now computing and y′ is waiting
for x′ to call it back with its return value (which is why x′ has “access” to y′:
this is just a continuation). Notice that y′ still has access to x, in cases it needs
to ask it to compute another value later during its execution.

We then derive a pseudo double category DHON whose objects are positions,
horizontal morphisms are inclusions of positions, vertical morphisms are plays,
etc, as in 1.3.1. We then show that our signature SHON verifies the conditions
for DHON to be fibred, from which we derive a category of plays E(X) above
any position X. In particular, we get categories E(A Ȃ B) above all positions
of the form

.
xA B

We also derive subcategories EV(A Ȃ B) that consist only of views, which are
particular plays, defined in a slightly ad hoc way. Strategies are then standardly
defined as presheaves over E(A Ȃ B), and innocent strategies as those presheaves

that are in the image of ∏i∶EV(A Ȃ B)Ȃ→ E(A Ȃ B)Ȃ
, where i is the embedding

19

of EV(A Ȃ B) into E(A Ȃ B), CȂ denotes the category of presheaves over C, and∏ denotes right Kan extension.
There are standard categories corresponding to these in the variant of HON

games based on justified sequences: the category PA,B of plays on the pair of
arenas (A,B), and the category VA,B of views. Similarly, strategies are defined
as presheaves over PA,B , and innocent strategies as the presheaves in the image
of ∏iHON

(where iHON is the embedding of VA,B into PA,B).
Most of the chapter is spent on building a commuting square as below left,

where F is a full embedding and FV is an equivalence of categories.

VA,B PA,B

EV(A Ȃ B) E(A Ȃ B)
iTO

FV

i

F

VA,B
Ȃ

PA,B
Ȃ

EV(A Ȃ B)Ȃ
E(A Ȃ B)Ȃ

∏iTO

∆
FV

∏i

∆F

In particular, we have that EV(A Ȃ B)Ȃ
and VA,B
Ȃ

are equivalent through the
restriction functor ∆FV . But there is more: the fact that FV is an equivalence
and F is fully faithful implies that the square is exact [45], which means that the
square above right commutes up to isomorphism. This means that the categories
of innocent strategies are equivalent in both variants of the model, and that
this equivalence is compatible with the saturation functors ∏i and ∏iHON

. The
differences between both variants is thus mostly a matter of presentation.

The hard part of the chapter is to define the functors F and FV above. The
latter is simply defined by restriction of the former to views, so the most difficult
part is to define F . We do this in two ways: we first give a slightly informal
argument, and then give a formal proof.

The first way uses derivation trees in an ad hoc sequent calculus. We define
a category T(A Ȃ B) whose objects are trees of conclusion (A Ȃ B) and whose
morphisms are inclusions of such trees, and a subcategory B(A Ȃ B) of branches
of conclusion (A Ȃ B). We decompose the desired square into

VA,B B(A Ȃ B) EV(A Ȃ B)
PA,B T(A Ȃ B) E(A Ȃ B)iTO i

by first showing that T(A Ȃ B) is equivalent to E(A Ȃ B), that this equivalence
restricts to an equivalence between B(A Ȃ B) and EV(A Ȃ B), and then by
building a full embedding from PA,B to T(A Ȃ B) and showing that it restricts
to an equivalence between VA,B and B(A Ȃ B). This is however not entirely
satisfactory in the sense that trees are not handled very formally, and a formal
definition of T(A Ȃ B) would make the problem as difficult to solve as without
using T(A Ȃ B).

We thus then give a formal construction of F and FV without using T(A Ȃ
B). The proofs are much more ad hoc than in the rest of this thesis, which is
not very surprising in the sense that we are trying to link models that are built
using very different methods.

20

1.3.3 A Core of Game Models

In Chapter 6, we want to build different categories of strategies from a basic
description of a game model. We start from some data P that describes a game
model. For all games A, P gives a category PA of plays on the game A. It also
gives, for all games A and B, a category PA,B of plays on the pair (A,B), and
similarly for triples and quadruples of games. It also gives insertion functors,
for example ι0∶PA,B → PA,A,B that typically duplicates what happens on the
left-hand side game, and deletion functors, for example δ1∶PA,B,C → PA,C that
typically erases what happens on the middle game.

We abstractly derive a notion of strategy from P: a strategy on the pair
of games (A,B) is a presheaf over PA,B (we only study strategies on a pair of
games because we want to show that they form a category, but we could define
strategies on a single game similarly). The idea is that a strategy σ accepts a
play p if σ(p) ≠ Ȃ (more precisely, σ(p) is the set of states the strategy can be
in after playing p). To show that games and strategies form a category, we then
define a composition as parallel composition plus hiding and identities for this
composition, known as copycat strategies.

The parallel composition σ∥τ of two strategies σ on (A,B) and τ on (B,C)
accepts to play an interaction sequence (a play on three games) u if and only
if σ accepts to play the projection δ2(u) of u to (A,B) and τ accepts to play
its projection δ0(u) to (B,C). The hiding of a strategy σ on PA,B,C accepts to
play p if and only if there is an interaction sequence u that projects to p that σ
accepts to play, i.e., it accept the same plays as σ, except we hide what happens
on B. Finally, the copycat strategy on the game A is a strategy on PA,A that
“copies” all the moves Opponent plays.

In our framework, both composition and copycats are defined as polynomial
functors. Given a functor F ∶C → D, the restriction functor ∆F ∶DȂ→ C

Ȃ
is given

by pre-composition by F op . It admits left and right adjoints ∑F ∶CȂ → D
Ȃ

and∏F ∶CȂ → D
Ȃ

, called left and right Kan extension, respectively. The intuition
behind ∑F is that the presheaf ∑F (X) is non-empty over an element d if there
exists an antecedent c of d such that X is non-empty over c. For ∏F , the
intuition is that X must be non-empty over all antecedents of d. These functors
can thus be seen as ∃ and ∀ functors. A functor from C

Ȃ
to D

Ȃ
is polynomial if it

is a composite of any number of restrictions and left and right Kan extensions.
Composition must be a functor from PA,B

Ȃ×PB,C
Ȃ

to PA,C
Ȃ

. This is the same
thing as a functor from PA,B + PB,C

Ȃ
to PA,C
Ȃ

. We define it as the composite

PA,B + PB,C
Ȃ∆δ2+δ0ÐÐÐÐ→ PA,B,C + PA,B,C
Ȃ∏∇ÐÐ→ PA,B,C

Ȃ∑δ1ÐÐ→ PA,C
Ȃ

,

where ∇ is the codiagonal functor. This is indeed a polynomial definition, and
the idea behind it is exactly that of parallel composition plus hiding, which
we can see by computing this functor, using the description of Kan extensions
given above. The composite of the first two functors is parallel composition: if
it maps the copairing [σ, τ] to θ, then computation shows that θ accepts to play
the interaction sequence u if and only if, for all antecedents u′ of u (that is inlu
and inru), [σ, τ] accepts to play (δ2 + δ0)(u′), i.e., σ accepts to play δ2(u) and
τ accepts to play δ0(u). The last functor ∑δ1 is hiding: if it maps σ to τ , then
τ accepts to play p if and only if there exists an interaction sequence u that
projects to p and is accepted by σ.

21

Copycat strategies are also defined as polynomial functors. The copycat
strategy on A may be defined as a functor from 1 to PA,A

Ȃ
. Since 1 ≅ ȂȂ, we can

define it as:

ȂȂ ∏!Ð→ PA
Ȃ ∑ι0ÐÐ→ PA,A

Ȃ
.

The idea is that ∏! is the terminal presheaf on PA, so it accepts all plays in PA,
and ∑ι0(σ) accepts a play p if and only if p is of the form ι0(p′) and σ accepts
p′. Since ι0 typically corresponds to copying what happens on A to the other
copy of A, the whole composite indeed corresponds to the copycat strategy on
A: it accepts to play p if and only if Proponent copies everything Opponent
does.

We then set out to show that games and strategies form a category whose
composition and identities we have just defined. This means that composition
must be associative and that the copycat strategies should be its units. We prove
that, under some conditions, composition is associative and copycat strategies
are units. The main condition is inspired by the method that is usually used in
game models to show that composition of strategies is associative: the zipping
lemma, which states that, in some cases, given two interaction sequences that
project to the same play, there is a unique way to build a generalised interac-
tion sequence (a play on four games) that projects to the original interaction
sequences.

All this work is done using our notion of concurrent strategy, and we want
to get the same results for “traditional” strategies, which we see as functors
P
op

A,B → 2, where 2 is the ordinal 0 → 1 seen as a category. We derive from
the fact that games and concurrent strategies form a category that games and
traditional strategies also do. We also investigate a number of game models and
show that they fit in this framework, and that composition of strategies in these
game models corresponds to composition of strategies as defined abstractly in
our framework.

Finally, we tackle the question of innocence. We assume that we are given a

full subcategory VA,B
iA,BÐÐ→ PA,B of views to each category PA,B . We then define

innocent strategies as those presheaves that are in the image of VA,B
Ȃ ∏iA,BÐÐÐ→

PA,B
Ȃ

. The idea of this definition is that a presheaf ∏iA,B
(σ) accepts to play p if

and only if, for all morphisms v → p from a view v to p, σ accepts to play v. For
this definition to be the right one, PA,B should contains enough morphisms (in
the case of HON games, the notion of morphism is that given by Melliès [80],
reused by Levy [73] and Tsukada and Ong [96]). Such a presheaf thus accepts
to play p if and only if it accepts to play all its views, which is the idea of
innocence. We then set out to show that games and innocent strategies form a
subcategory of games and strategies. By adding some properties on the model,
we show that this indeed holds.

It may be interesting to see how we prove this kind of results. For example,
let us take preservation of innocence, which states that the composite of two
innocent strategies is again innocent. We prove this by studying the diagram
below. (The reader does not need to understand this diagram.)

22

VA,B +VB,C V(A,B),(B,C) VA,B,C VA,C

VA,B +VB,C PA,B + PB,C P(A,B),(B,C) PA,B,C PA,C

∏

∏

∆ ∑

∏ ∏

∏ ∏ ∆ ∑

Notice that it does not make sense to ask whether this diagram commutes, since
there is no starting or ending point in it. However, when it is lifted to categories
of presheaves (where the ∆, ∑, and ∏ labels show how to lift functors), all ∆
arrows are reversed, and the diagram turns into a diagram for which it makes
sense to ask whether it commutes or not. When we lift this diagram to presheaf
categories, the bottom row corresponds to taking two innocent strategies and
composing them, so if the diagram (lifted to presheaf categories) commutes, then
the composite of any strategies is in the image of ∏iA,C

, and is thus innocent.
In the lifted diagram, the left-hand square commutes because the underlying
one does, and the middle square commutes because the underlying one is exact.
We thus only have to check that the right-hand one commutes, which is more
difficult. Basically all the proofs in this chapter follow a common pattern. We
study the underlying diagram and

• for all squares that are made exclusively of ∆ (resp. ∏, resp. ∑), we show
that the square commutes,

• for all squares that are of the form

A B

C D

∏

∆ ∆

∏

A B

C D

∑

∆ ∆

∑

we show that the square is exact, which entails that the lifted square
commutes up to isomorphism,

• for squares of the form

A B

C D

∑

∏ ∏

∑

we have to rely on more complex proofs.

23

Chapter 2

Preliminaries

In this chapter, we give a list of results from the state of the art that will be
used in this dissertation. In this thesis, each section will be prefaced by a list
of the preliminary sections that the reader should have read to understand the
current section.

2.1 Game Semantics

We will be mostly interested in a particular version of game semantics, called
arena games. The idea, in all these models, is to interpret types as arenas and
programs as strategies on arenas of the right type. The definitions of these
game models mostly follow the same pattern: they first define their notion of
arena, which usually describe all the possible ways a program of a given type
may perform a single reduction step, then plays, which describe a particular
interaction between a program and an environment, and finally strategies, which
usually consist of a set of accepted plays.

Being able to compose strategies is an important part of game semantics,
since this is why game semantical models are compositional: the strategy as-
sociated to the composite of two functions is the composite of the strategies
associated to those functions. To define composition of strategies, all these
models define interaction sequences, which basically represent the interaction of
two plays. Finally, to show that composition of strategies is associative, they
define generalised interaction sequences, which represent the interaction of three
plays.

In Section 2.1.1, we study a game model called HON games. We then study
a few possible variations of HON games, which are obtained by slightly changing
the notion of play, in Section 2.1.2. Finally, we study Tsukada and Ong’s games,
which are another variation of HON games, in which the notion of morphism
is different, in Section 2.1.3. In Section 2.1.4, we study AJM games, which are
another game model. Finally, we study Blass games in Section 2.1.5, which are
games that are well-known for their non-associative composition.

In Chapter 5, we will be interested in Tsukada and Ong’s games, and their
links to string diagrammatic models. In Chapter 6, we will be interested in all
the game models we describe in this section.

24

2.1.1 Hyland-Ong/Nickau Games

Required: Ȃ.
Recommended: Ȃ.

For this model and a few others, the presentation we adopt is inspired by
Harmer’s PhD thesis [46], because it unifies and simplifies many different frame-
works.

Definition 2.1.1. An arena is a triple (A,λ,Ȃ) where A is a set, λ∶A →{P,O} × {!, ?} is a function, and Ȃ ⊆ A ×A is a relation that verifies:

• for all m in A, if there is no n such that n Ȃm, then λ(m) = (O, ?),
• for all n and m in A such that m Ȃ n, λOP (m) ≠ λOP (n), where λOP is

defined as π1λ,

• for all n and m in A such that m Ȃ n, if λ?!(n) = !, then λ?!(m) = ?, where
λ?! is defined as π2λ.

Terminology 2.1.2. In an arena (A,λ,Ȃ), the elements of A are called moves,
λ is called the labelling function, and Ȃ is called the enabling relation. A move
m is said to enable a move m′ if m Ȃ m′. The set of all moves of A will be
denoted by MA, or sometimes simply A.

A move is initial (and is called a root of A) if there is no move that enables
it. The set of roots of A is denoted

√
A.

A move m is an Opponent move when λOP (m) = O, and a Proponent
move otherwise. A move m is a question when λ?!(m) = ?, and an answer
otherwise. In these terms, the constraints verified by λ state that all roots of A
are Opponent questions, that the enabling relation alternates between Opponent
and Proponent, and that answers are always enabled by questions.

Remark. Most of the settings we will study use exactly the same notion of
arena, and only differ from HON game semantics because they impose different
constraints on plays. AJM games and Blass games use different notions of
arenas. There is also one model based on HON games that uses a different
notion of arena: Tsukada and Ong’s games, in which the enabling relation forms
a forest.

Example 2.1.3. The boolean arena B comprises three moves: q, which is an
Opponent question, and t and f, which are Proponent answers. It may be drawn
as a graph:

q

t f,

where the arrow denotes the enabling relation. This representation may be aug-
mented with annotations for questions and answers to fully represent B, but
since we will not need to be very formal about arenas, except in the case of Tsu-
kada and Ong, who do not use questions and answers, we decide not to write
them for conciseness.

25

To model the interaction between a program fragment and its environment,
game semantics uses sequences of moves in an arena. For example, the following
sequence is an interaction between a program fragment computing a boolean,
and its environment:

q t q f.

The first move corresponds to the environment asking for the value of the
boolean. The second one corresponds to the program fragment answering that
question by telling the environment that the boolean is true. The third and
fourth moves play the same roles as the two previous moves, except that the
program fragment answers that the boolean is false. This program fragment
could, for example, be incrementing a reference each time it is called upon and
answer true or false depending on the parity of that reference.

Obviously, some sequences of moves do not make sense. For instance, an-
swering the value of a boolean before the environment even asked for that value
makes little sense. Interactions are therefore represented by justified sequences,
which prohibit such patterns by requesting that all moves be “justified” by some
previous move.

Definition 2.1.4. A justified sequence on an arena (A,λ,Ȃ) is a triple (n, f,ϕ)
where n is a natural number, f is a map from n to A and ϕ is a map from n to{0} Ȃ n, such that, for all i ∈ n,

• ϕ(i) < i,
• if ϕ(i) = 0, then f(i) ∈√A, and

• if ϕ(i) ≠ 0, then f(ϕ(i)) Ȃ f(i).
Justified sequences equipped with prefix ordering form a category PA.

Remark. The notation PA for justified sequences on A is non-standard. Usu-
ally, plays on an arena A are defined like what we call plays on a pair of arenas
in this dissertation (see below). We however prefer this definition because:

• it allows us to consider projections PA,B → PA and PA,B → PB, which is
impossible with the traditional notion of play on A,

• but it does not influence our study of strategies, since we only consider
strategies built on PA,B’s (see below) and not PA’s.

Terminology 2.1.5. In a justified sequence (n, f,ϕ), if ϕ(i) = j, we say that
j justifies i, or that j is the justifier of i. The arrow that points from i to j is
called a justification pointer.

Justified sequences will be drawn as sequences of moves, to be read from left
to right, with arrows pointing from each move to its justifier, as is classic in
game semantics.

Our example above can thus be redrawn with justification pointers as:

q t q f.

Game semantical frameworks then go on to define what a play is. A play
represents a particular type of interaction between a function and an environ-
ment. In order to define them, we first need to define arenas for function types,
which we do now.

26

To represent the interaction of a function of type A→ B and its environment,
we build an arrow arena AȂ B from the arenas A and B.

Definition 2.1.6. The arena AȂ B is defined by

• MAȂB =MA +MB,

• λAȂB = [λA, λB], where λ is (s×{?, !})λ, where s is the swap function on{O,P},
• and, for all m and m′ in MAȂB, m ȂAȂB m′ if and only if any of the

following holds:

– m ȂA m′ or m ȂB m′, or

– m is in
√
B and m′ is in

√
A.

If we draw arenas as trees, then we may draw AȂ B as:

B

A

In other words, A Ȃ B comprises the moves from A and those from B, with
exactly the same structure, except that initial moves in A are enabled by initial
moves in B and that polarity is reversed in A. An interaction in such an arena
is thought of as a player who may play on two games: as Proponent in B and
as Opponent in A (this is rendered explicit by the fact that polarity is reversed
in A). To easily tell in which part of A Ȃ B a move is played, we draw such
interactions as a sequence of moves to be read from top to bottom, with the
moves of A played on the left and those of B played on the right, as in:

B B

qr

ql

tl

fr.

In this interaction, a player plays on two boolean games, one on the left and
one on the right. They play as Proponent on the right-hand side game and as
Opponent on the left-hand side one. For simplicity let us call this player M
(for “middle”). There are two other players L and R who play Proponent on the
left-hand game and Opponent on the right-hand game, respectively (they may
also be thought of as a single player that represents the whole environment).

The drawing above represents a possible interaction of the not function on
booleans with an environment.

• The first move of the interaction (qr), which is played by the environment
(represented by the player R on the right), corresponds to asking the
function to compute its result.

27

• In order to compute that result, the function must know the value of its
argument. It thus asks the value of that argument to its environment,
and more precisely to another program fragment that is represented by
the player L on the left, by playing ql.

• After computing the value of that boolean, L answers the value of the
boolean: the boolean is true, which is encoded in the fact that L plays tl.

• Since M now knows the value of its argument, it can finally answer what
its result is by playing fr.

This example illustrates why there should be a change of polarity in A: when the
function asks for the value of its argument, it plays the role of the environment
to the program fragment that computes this argument, thus it should be playing
as Opponent on A.

We may also sometimes write plays on arenas A Ȃ B like other plays, in
which case we will write ml or mA if the move m is played in the left-hand side
arena and mr or mB if it is played in the right-hand side one.

Now that we have defined arenas for functional types, we may come back
to the definition of plays. The exact notion of play differs between frameworks,
but they all amount to imposing constraints on justified sequences. We will use
the following notion of play in this manuscript, as well as numerous variations
on it, which we will describe later.

Definition 2.1.7. A play on the pair of arenas (A,B) is a justified sequence(n, f,ϕ) on AȂ B that is:

• alternating: for all i < n, λOP (f(i)) ≠ λOP (f(i + 1)),
• of even length: n is even.

Prefix ordering between plays is defined in the obvious way: (n, f,ϕ) is a prefix
of (m,g,ψ) if and only if n ≤m and, for all i ≤ n, f(i) = g(i) and ϕ(i) = ψ(i).

Plays on the arena pair (A,B) equipped with prefix ordering form a category
PA,B.

In the other variants of game semantics discussed below, the notion of play
is modified by adding further constraints on them. In the case of Tsukada
and Ong’s model, however, there is a more fundamental difference between the
categories of plays: their categories of plays have more morphisms than those
simply given by prefix ordering.

A program fragment is then interpreted as a set of plays. The intuition is
that a program fragment is interpreted as the set of interactions it can actually
have with an environment. Such a set of plays is called a strategy.

Definition 2.1.8. A strategy on the arena pair (A,B) is a prefix-closed set of
plays on (A,B).

Sometimes, strategies are also asked to be non-empty (i.e., to contain at
least the empty play). A strategy σ is said to accept the play s if s ∈ σ and to
reject it otherwise.

Prefix-closedness comes from the fact that, if a program and its environment
may interact, then they can have exactly the same interaction, but cut at some
point, so if a strategy accepts a play, it should also accept all its prefixes.

28

Example 2.1.9. Let us consider the not function on booleans. It may be in-
terpreted as a strategy on the arena B Ȃ B that accepts all plays s = (2n, f,ϕ)
such that, for all i in n:

• if f(2i − 1) = qB, then { f(2i) = qA
ϕ(2i) = 2i − 1

,

• if f(2i−1) = tA, then { f(2i) = fB
ϕ(2i) = ϕ(2i − 1) − 1

, and similarly if f(2i−1) =
fA.

This illustrates the behaviour of the not function:

• whenever the environment asks for the value of not on a boolean (when
there is a qB move), the strategy asks for its argument (by playing qA) and
remembers which question it is trying to answer, which is represented by
the justification pointer pointing to a qB,

• whenever it receives a value for its argument (either tA or fA), it answers
the environment’s corresponding qB question with the right value (either
fB or tB); to know which qB question it should answer, the strategy looks
at which of its qA question was answered (by looking at the justification
pointer of the tA or fA move) and answers the corresponding qB question,
which necessarily comes just before the qA question.

A nice feature of game semantics is that it may interpret different classes of
functions depending on the restraints imposed on strategies. For example, the
strategy in the example above is very constrained, in the sense that Proponent
may not do much: the move it plays only depends on the previous move and its
justification pointer. In other words, its reaction only depends on the current
“call to the function”. Technically, this strategy is innocent (this term will be
defined later). Such strategies may only interpret purely functional programs.

Here is an example of strategy that is not innocent:

Example 2.1.10. Let us consider a boolean function that keeps a reference to
an integer, increments it each time it is called, and returns either its argument
if the reference is even, or its negation if the reference is odd. This function
is not purely functional, since it modifies the value of a reference. The strategy
associated to such a function could, for example, be the strategy σ that accepts
all plays s = (n, f,ϕ) such that, for all i ∈ n:

• if f(2i − 1) = qB, then { f(2i) = qA
ϕ(2i) = 2i − 1

,

• if f(2i − 1) = bA and the number of qB moves in s∣2i−1 is odd, then

{ f(2i) = not bB
ϕ(2i) = ϕ(2i − 1) − 1

, and similarly when the number of qB moves is

even, with f(2i) = bB.

This strategy indeed has the expected behaviour, since it answers either as the
not function or as the identity, depending on how many times it has been called
(given by the number of qB moves). Notice how this strategy no longer depends
only on the current call to the function, but also on how many times the function
has been called in total (this means that the strategy is not innocent).

29

We want game semantics to be compositional, i.e., the strategy associated
to the composite of two programs should be the composite of the strategies
associated to those programs. In order for this to be the case, we should give a
definition of how to compose strategies.

To compose two strategies A→ B and B → C, the idea is to let them interact
on B and then to hide that interaction, leaving only the parts on A and C.

But we first need to define the projection of a justified sequence s on the
arena (. . . (A1 Ȃ A2) Ȃ . . .) Ȃ An to the arena (. . . (((. . . (A1 Ȃ A2) . . .) Ȃ
Ai−1)Ȃ Ai+1) . . .)Ȃ An. It is defined as the justified sequence with the same
moves as s, except for the moves in Ai, and justification pointers inherited from
those of s: the only case where this does not make sense is when an initial move
mi−1 in Ai−1 points to an initial move mi in Ai, but then mi points to an initial
move mi+1 in Ai+1, so we define mi−1 to point to mi+1 in the projection.

To define such an interaction, we need to study “justified sequences on three
arenas”.

Definition 2.1.11. An interaction sequence on the arena triple (A,B,C) is
a justified sequence on (A Ȃ B) Ȃ C such that its projections to A Ȃ B and
B Ȃ C are plays and whose last move is either in A or C.

Interaction sequences on the arena triple (A,B,C) equipped with prefix or-
dering form a category PA,B,C .

Example 2.1.12. Here is an example of an interaction sequence on (B,B,B),
to be read from top to bottom:

B B B

qr

qm

ql

tl

fm

tr.

This could for example represent a call to the function not ○ not on the argument
t:

• qr corresponds to the function being called,

• then qm to the function calling its argument, i.e., calling the not function
once again,

• then the second call to not calls its argument by playing ql,

• the value of the argument is t, which is computed directly and sent back to
the second call to not by the move tl,

• now that it knows the value of its argument, the second call to not can
return the answer f by playing fm,

• finally, the first call to not can now answer by playing tr.

30

It is an interaction sequence because its projections are plays and its last move
is in the right-hand side arena.

We now have all the tools necessary to define composition of strategies:

Definition 2.1.13. The composite σ; τ of two strategies σ on AȂ B and τ on
B Ȃ C accepts a play s if and only if there is an interaction sequence u:

• whose projection to AȂ C is s,

• and such that its projection to A Ȃ B is accepted by σ and its projection
to B Ȃ C is accepted by τ .

Let us see how the composite σ; τ may be seen as σ and τ interacting on
B, then hiding what happens on B from the result of that interaction. The
traditional way to define composition is in two steps, as described above. The
first step, in which the two strategies interact, is called parallel composition,
and the second one, in which we hide what happens on B, is called hiding. The
parallel composition σ∥τ of σ and τ is a “strategy” on PA,B,C , i.e., a prefix-closed
set of interaction sequences, that accepts an interaction sequence u if and only if
there are plays s and t accepted by σ and τ respectively and that can “interact”
on B to combine into u. Hiding then just literally hides what happens on B,
slightly reorganising the justification pointers from A to B to make them point
to C (note that this is very simple, since pointers from moves in A to moves
in B necessarily point to initial moves in B, which themselves point to initial
moves in C).

Example 2.1.14. For example, if we call σ the strategy associated to the not

function, the composite of σ with itself accepts

B B

qr

ql

tl

tr

because the interaction sequence in Example 2.1.12 is equal to this play when
projected to A Ȃ C (we use A, B, and C here to distinguish between the three
B arenas), and its projections to AȂ B and B Ȃ C are accepted by σ. Notice
also how this indeed corresponds to how the composite of the not function with
itself may behave: indeed, this composite is simply the identity function, which
does return t when its argument is t.

Now that we know how to compose strategies, the next step is to organise
them into a category. We thus see strategies on A Ȃ B as maps from A to B.
For arenas and strategies to form a category, composition of strategies needs to
be associative and unital.

The classical way to prove that composition of strategies is associative is to
define generalised interaction sequences, which are justified sequences on four
arenas.

31

Definition 2.1.15. A generalised interaction sequence on the tuple (A,B,C,D)
of arenas is a justified sequence on ((A Ȃ B) Ȃ C) Ȃ D whose projections to
A Ȃ B, B Ȃ C, and C Ȃ D are plays, and whose last move is either in A or
D.

Generalised interaction sequences on the tuple of arenas (A,B,C,D) form
a category PA,B,C,D when equipped with prefix ordering.

The crucial lemma [9] to prove that composition of strategies is associative
is the following:

Lemma 2.1.16 (Zipping Lemma). The two squares

PA,B,C,D PA,C,D

PA,B,C PA,C

PA,B,C,D PA,B,D

PB,C,D PB,D

are pullbacks on objects.

Once we know that composition of strategies is associative, we also want to
know that it is unital. The units are the copycat strategies, which accept only
copycat plays.

Definition 2.1.17. A play s = (2n, f,ϕ) on (A,A) is copycat if, for all i in n,

f(2i) = f(2i − 1) and ϕ(2i) = ϕ(2i − 1) − 1, where mr =ml and ml =mr.

Copycat plays simply copy whatever the environment does on one copy of
A to the other one.

Example 2.1.18. The play illustrated in Example 2.1.14 is a copycat play.

Definition 2.1.19. The copycat strategy on (A,A) is the strategy that exactly
accepts copycat plays.

We may now form a category of arenas and strategies with:

• arenas as objects,

• strategies on (A,B) as morphisms from A to B,

• composition of strategies as composition,

• copycat strategies as identities.

One can then show that this category is symmetric monoidal closed, impose
some more conditions on plays (as we see in the next section) to make it cartesian
closed and interpret λ-calculus into it, but we will not give any details, as this
will not be relevant to us.

However, the following point will be very relevant to us. A class of strategies
that we will be particularly interested in is the class of innocent strategies. They
are important because they correspond to functional programs that do not use
references (stateless programs).

Basically, a strategy is innocent if it decides to accept plays based not on
the whole history of the interaction it has had with the environment, but only
on restricted parts of it. The intuition is that the parts of the play the strategy
may depend on are the parts which “led” to the current move. Such a part is
called a view.

32

Definition 2.1.20. For all plays s = (n, f,ϕ), and i in n, the Proponent view
(also simply view) of s at index i, denoted by ̂ŝi is the sequence defined in-
ductively by:

• ̂ŝi = f(i) if ϕ(i) = 0,

• ̂ŝi = ̂ŝϕ(i) ⋅f(i) if f(i) is an Opponent move (i.e., i is odd) and ϕ(i) ≠ 0,

• ̂ŝi = ̂ŝi−1 ⋅ f(i) if f(i) is a Proponent move (i.e., i is even).

First of all, if we want to be exact, ̂ŝi is not a sequence of moves, but a sub-
sequence of indices of s, equipped with f inherited from s. Furthermore, note
that ̂ŝi is not an ordinal, but is included in ω, so it is canonically isomorphic to
a single ordinal (which is the definition of view, if we want to be more formal).

Note that, in general, ̂ŝi is a mere sequence, and not a justified sequence.
For this sequence to be a justified sequence, the following condition must be
satisfied by the play:

Definition 2.1.21. A play s = (n, f,ϕ) is P -visible if each Proponent move is
justified by a move in its view. In other words, for all even i in n, ϕ(i) ∈ ̂ŝi.
Example 2.1.22. Let us consider the play s on the left and t on the right below.

B B

qr

ql

tl

fr

qr

ql

fl

tr

B B

qr

ql

tl

fr

qr

ql

fl

tr

Its view ̂ŝ8 = ̂ŝ7 ⋅ tr = ̂ŝ6 ⋅ fltr = ̂ŝ5 ⋅ qlfltr = qrqlfltr. So tr is justified by qr,
which is in its view. If we repeat this process for all Proponent moves, we get
that s is P -visible. On the other hand, t is not P -visible, because ̂ŝ8 does not
contain the first occurrence of qr, which is the justifier of tr.

The moves an innocent strategy σ may play after a play s depend only on
the view ̂ŝn. Since what an innocent strategy may do only depends on views,
whether it accepts a play or not only depends on its views. We thus want to
define innocent strategies as strategies that accept or reject views rather than
plays.

Definition 2.1.23. A view on the pair of arenas (A,B) is a non-empty play
s = (n, f,ϕ) such that ̂ŝn = s.

Views equipped with prefix ordering form a category VA,B.

Views are exactly the plays that arise as ̂ŝi for some P -visible play s =(n, f,ϕ) and i in n. The following characterisation of views is also sometimes
useful:

33

Lemma 2.1.24. A play s = (n, f,ϕ) is a view if and only if n ≠ 0 and all
Opponent moves are justified by their predecessors, or in other words, for all
odd i in n, ϕ(i) = i − 1.

We now define innocent strategies as a set of accepted views. Except that
we do not call these innocent strategies, but behaviours, as we reserve the term
strategy for sets of accepted plays.

Definition 2.1.25. A behaviour on the pair of arenas (A,B) is a prefix-closed
set of views on (A,B).

Just like for plays, we say that a behaviour σ accepts a view v when v ∈ σ
and that it rejects it otherwise.

We may now define innocent strategies:

Definition 2.1.26. A strategy σ on (A,B) is innocent if it only accepts P -
visible plays and, for all plays s, σ accepts s if and only if it accepts all its viewŝŝi.

There is an isomorphism between behaviours and innocent strategies:

• to each behaviour σ, we may associate the strategy that accepts all plays
whose views are accepted by σ,

• to each strategy σ, we may associate the behaviour that accepts all views
accepted by σ,

because an innocent strategy accepts a play if and only if it accepts all its views,
the mappings above are indeed isomorphisms.

Example 2.1.27. The strategy of Example 2.1.9 is innocent. Indeed, the be-
haviour associated to that strategy is the behaviour that accepts all views of the
form

B B

qr

ql

tl

fr

and

B B

qr

ql

fl

tr,

and their (non-empty) prefixes of even length. The innocent strategy associated
to that behaviour is exactly the strategy of Example 2.1.9, which is therefore
innocent.

However, the strategy of Example 2.1.10 is not innocent. Indeed, the beha-
viour associated it accepts the view

B B

qr

ql

tl

tr

34

among others, because the strategy accepts it. But then, the strategy associated
to that behaviour must accept

B B

qr

ql

tl

tr

qr

ql

tl

tr,

which the original strategy does not accept, so the original strategy is not inno-
cent.

The reader may note that the strategy obtained in the second part of Ex-
ample 2.1.27 is non-deterministic. Indeed, the original strategy accepts the play

B B

qr

ql

tl

tr

qr

ql

tl

fr,

so the behaviour associated to it should accept

B B

qr

ql

tl

fr,

which is one of its views. But then, the behaviour accepts both

B B

qr

ql

tl

tr

and

B B

qr

ql

tl

fr,

35

so it is clearly non-deterministic. A typical constraint that can be imposed on
strategies is determinism:

Definition 2.1.28. A strategy σ is deterministic if, for all plays s, if sab and
sab′ are accepted, then b = b′.

More precisely, not only should b be equal to b′ in the definition above, but
they should also point to the same move. Deterministic strategies can obviously
only interpret deterministic programs.

A crucial result of game semantics is that deterministic innocent strategies
compose. More precisely:

Lemma 2.1.29 (Preservation of innocence). If σ∶A→ B and τ ∶B → C are two
deterministic innocent strategies, then the composite σ; τ as defined in Defini-
tion 2.1.13, is again deterministic and innocent.

Moreover, copycat strategies are easily shown to be innocent and determin-
istic. We thus get:

Lemma 2.1.30. Deterministic, innocent strategies form a subcategory of the
category of arenas and strategies.

2.1.2 Variations on HON Games

Required: 2.1.1.
Recommended: Ȃ.

As we alluded to before, a nice point of HON-style game semantics is that
there are many variations on it, and that these slight variations give models of
different features of programming languages. Since the goal of Chapter 6 is to
define a general framework to study game semantics, we should show that all
these different variations can be accounted for. We thus define a list of different
HON-style game settings, most of them done again in the style of Harmer’s PhD
thesis [46] and the last one based on McCusker’s PhD thesis [78].

Constraints on Plays

Except for innocence and determinism, which we have already defined, all these
variations are defined similarly: we first restrict the notion of play by asking
that they verify additional constraints, then define strategies as prefix-closed
sets of plays (for the new notion of play), and finally verify that this new notion
of strategy forms a subcategory of the initial notion of strategy.

There are four main constraints that may be imposed on plays: P -visibility
(which we have already discussed), O-visibility (which is the counterpart to
P -visibility for Opponent), well-bracketing, and well-threadedness. Each set of
constraints taken among those gives a new notion of strategy. Let us thus
describe the different constraints we have not described yet.

Let us start with O-visibility. Just like P -visibility, we first need to define
a notion of view, but this time for Opponent, rather than Proponent, which is
exactly dual to the definition of Proponent views, though it must be expressed
slightly differently because of the only dissymmetry between Opponent and
Proponent: initial moves are always played by Opponent.

36

Definition 2.1.31. For all plays s = (n, f,ϕ), and i in n, the Opponent view
(or O-view) of s at index i, denoted ̂ŝi is the sequence defined inductively by:

• ̂ε̂i = ε,
• ̂ŝi = ̂ŝϕ(i) ⋅ f(i) if f(i) is a Proponent move (i.e., i is even),

• ̂ŝi = ̂ŝi−1 ⋅ f(i) if f(i) is an Opponent move (i.e., i is odd).

Like in the case of P -visibility, the O-view is not necessarily a justified se-
quence, but it is when the play verifies a condition dual to P -visibility:

Definition 2.1.32. A play s = (n, f,ϕ) is O-visible if each Opponent move is
justified by a move in its O-view. In other words, for all odd i in n, ϕ(i) ∈ ̂ŝi.

Let us now describe well-bracketing. Well-bracketed strategies can exactly
interpret programs that do not contain control operators (such as call/cc). This
is done by forcing such strategies to always answer the last pending question
asked by the environment. To define this, we first need to define pending ques-
tions:

Definition 2.1.33. A question i is the pending question in s = (n, f,ϕ) if it is
the last Opponent question in s that justifies no answer, or in other words:

• λ(f(i)) = (O, ?),
• for all j in n, if ϕ(j) = i, then λ?!(f(j)) = ?,

• for all j > i in n, if λ(f(j)) = (O, ?), then there is a k in n such that
ϕ(k) = j and λ(f(j)) = (P, !).

Definition 2.1.34. A play s = (n, f,ϕ) is well-bracketed if all Proponent an-
swers answer the last pending Opponent question in their view, or in other
words, for all even i in n, if f(i) is a Proponent answer, then ϕ(i) is the
pending question of ̂ŝi.

Let us finally describe well-threadedness. This constraint is more general
than P -visibility, as Proponent moves are not required to point into their views,
but only into their threads:

Definition 2.1.35. A move i in s = (n, f,ϕ) is hereditarily justified by j if
i = j or ϕ(i) is hereditarily justified by j.

If s = (n, f,ϕ) is a justified sequence, the thread of the ith move, denoted[s]i, is the sequence of all indices j that are justified by the initial move that is
a hereditary justifier of i. This notion can be generalised: if I is a set of indices
in n, then [s]I is the union of all sub-sequences [s]i, for i in I.

A play s = (n, f,ϕ) is well-threaded when all Proponent moves point inside
their predecessors’ threads, or in other words, for all even i in n, ϕ(i) ∈ [s]i−1.

With all these different constraints, we can define new notions of plays:

Definition 2.1.36. Let C = {P -vis,w-b,w-t} be the set of constraints defined
above (except for O-visibility). For any subset c of C, the category PcA,B of
c-plays (or simply plays when c is clear from context) on (A,B) is the full
subcategory of PA,B spanning plays that verify all constraints in c.

37

Example 2.1.37. If we take c = Ȃ, then we get the previous notion of play.

If we take c = {P -vis}, then we get the set of P -visible plays. This is the
notion of plays used by Tsukada and Ong, but they are equipped with a different
notion of morphism, so we will treat them separately later.

If we take c = C, then we get the notion of P -visible, well-bracketed plays
(because P -visibility implies well-threadedness).

For all these different notions of plays, we can define notions of strategies:

Definition 2.1.38. For any subset c of C, a c-strategy is a prefix-closed set of
c-plays.

Of course, we can then define innocent and deterministic strategies just like
in the standard case:

Definition 2.1.39. A c-strategy is innocent when it only accepts P -visible c-
plays and accepts a c-play s if and only if it accepts all the views of s.

A c-strategy is deterministic if, when it accepts c-plays sab and sab′, then
b = b′.

To define composition of strategies, we must then define interaction se-
quences:

Definition 2.1.40. Let c be a subset of C. The category PcA,B,C of c-interaction
sequences is the subcategory of PA,B,C spanning interaction sequences whose
projections to PA,B and PB,C actually fall into PcA,B and PcB,C respectively.

For any set of constraints c, we get that the projection from PcA,B,C to PA,C
actually falls into PcA,C .

The definition of composition then just mimics that explained in the previous
section:

Definition 2.1.41. If σ is a strategy on (A,B) and τ a strategy on (B,C),
then the composite strategy σ; τ is the strategy on (A,C) that accepts a play s
if and only if there is an interaction sequence u in PcA,B,C :

• whose projection to PcA,C is s,

• and such that its projection to PcA,B is accepted by σ and its projection to
PcB,C is accepted by τ .

Finally, to study associativity of composition for such strategies, we must
define generalised interaction sequences:

Definition 2.1.42. Let c be a subset of C. The category PcA,B,C,D of c-
generalised interaction sequences is the subcategory of PA,B,C,D spanning gener-
alised interaction sequences whose projections to PA,B, PB,C , and PC,D actually
fall into PcA,B, PcB,C , and PcC,D respectively.

The crucial lemma to prove associativity of strategies is once again the zip-
ping lemma, whose proof is obvious, since the zipping lemma is true for the basic
notion of play, and being a c-interaction sequence or c-generalised interaction
sequence is simply about projections being in Pc’s, the constrained versions of
P’s.

We should finally define identities for these new notions of composition:

38

Definition 2.1.43. A c-strategy on (A,B) is copycat if it accepts exactly
copycat c-plays on (A,B).

We do not prove here that arenas and c-strategies form a subcategory of
that of arenas and strategies because this point will be treated more elegantly
in Chapter 6.

Let us mention the case of O-visibility. It is also well-known that P -visible,
O-visible strategies (defined just like other c-strategies) form a category. How-
ever, strategies that are only O-visible do not form a category, which is why we
treat O-visible strategies separately. Indeed, if O-visible strategies are to form
a category, the identities must be the copycat strategies. The problem is that
not all copycat plays are O-visible, which leads to “forgetting” some plays when
composing with a copycat strategy. More precisely, let us consider an O-visible
strategy σ on (A,A) that accepts the play p on the left below (notice that p is
indeed O-visible).

A A

mr

ml

mr

ml

mr

ml

m′l
m′r

m′l
m′r

A A

mr

ml

mr

ml

mr

ml

m′l
m′r

m′l
m′r

If we want p to be accepted by σ; idA, then the copycat play on the right above
should be accepted by idA. But that play is not O-visible (the second m′l move
does not point into its O-view), so it cannot be accepted by idA, which means
that p cannot be accepted by σ; idA, and idA is thus not an identity.

One could also study other restrictions on plays, such as well-openedness:

Definition 2.1.44. A play is well-opened if there is at most one initial move
in it.

There is however a problem with this constraint, because composition cannot
be defined as easily as in the cases studied above:

Example 2.1.45. Let us consider a program of type B → B that calls its argu-
ment twice and answers t if the value of that argument is the same in each call,
and f if the values are different. In the context of well-opened strategies, this
program would be interpreted as the strategy σ that accepts all plays of the form

39

B B

qr

ql

al

ql

al

tr

and

B B

qr

ql

al

ql

āl

tr

for all booleans a, and all their prefixes. Let us also consider the identity function
on booleans, which is interpreted as the strategy id that accepts all plays of the
form

B B

qr

ql

al

ar

for all booleans a, and their prefixes. Intuitively, when we compose both strategies
id ;σ, we should obtain σ again. However, if we take an interaction sequence
that should intuitively correspond to the interaction of these two programs, we
obtain the interaction sequence on the left below, which, when projected to the
left-hand side arenas, gives the justified sequence on the right below.

B B B

qr

qm

ql

al

am

qm

ql

āl

ām

fr

B B

qr

ql

al

ar

qr

ql

āl

ār

But this play is not accepted by σ, since it is not even well-opened. This example
shows that composition of well-opened plays is somewhat more involved than in
the cases that we have treated, as we need to define a ! (bang) modality that
corresponds to repeating.

Further Constraints on Plays

Another possible variation on HON games is described in McCusker’s PhD
thesis [78]. The idea is that we impose a further constraint on the set of plays.

40

The terminology for plays is slightly different from that of the previous sec-
tions because there are now two notions of plays: the first one (legal plays) is
constrained only by conditions we have already mentioned, and the other one
(simply plays) is constrained by a further predicate.

Definition 2.1.46. A legal play (which McCusker calls legal positions) on the
arena A is an alternating, P -visible, O-visible, well-bracketed justified sequence
of even length on A. The set of legal plays on A is LA.

In terms of vocabulary from the previous section, a legal play is basically a
C-play.

We then choose a predicate that will tell which legal plays are actual plays.

Definition 2.1.47. An arena with predicate is a pair (A,PA) of an arena A
and a predicate PA on LA such that:

• PA is non-empty (there is s in LA such that PA(s) is true),

• PA is prefix-closed (if PA(sab) is true, then so is PA(s)),
• PA is stable under “generalised threads” (if PA(s) is true and I is a set of

indices in s, then PA([s]I) is also true).

A play (which McCusker calls a valid position) on (A,PA) is a legal play s on
A such that PA(s) is true.

We will sometimes denote the arena with predicate (A,PA) simply by A,
leaving the context to disambiguate.

Finally, a play on a pair of arenas is defined as a legal play whose projections
respect the constraints imposed by the predicates:

Definition 2.1.48. For all arenas with predicates (A,PA) and (B,PB) the
arrow arena with predicate is defined as (AȂ B,PAȂB), where PAȂB(s) holds
if and only if PA holds on the projection of s to A and PB holds on its projection
to B. A play on the pair of arenas with predicates ((A,PA), (B,PB)) is a play
on (AȂ B,PAȂB).

For all such pairs of arenas with predicates ((A,PA), (B,PB)), plays on the
pair of arenas (A,B) equipped with prefix ordering form a category PPA,B.

Interaction sequences and generalised interaction sequences are then defined
as before:

Definition 2.1.49. An interaction sequence on the tuple of arenas (A,B,C)
is a legal play of (A Ȃ B) Ȃ C whose left and right projections are in PPA,B
and PPB,C respectively and whose last move is either in A or C. Interaction

sequences on (A,B,C) equipped with prefix ordering form a category PPA,B,C .

A generalised interaction sequence on the tuple of arenas (A,B,C,D) is a
legal play of ((A Ȃ B) Ȃ C) Ȃ D whose projections are in PPA,B, PPB,C , and

PPC,D respectively and whose last move is either in A or D. Generalised inter-
action sequences on (A,B,C,D) equipped with prefix ordering form a category
PPA,B,C,D.

41

Since the definition of strategy and composition of strategies are exactly the
same as above, we spare the reader from having to read them yet another time.
Copycat plays are simply plays (i.e., legal plays on which P holds) that are also
copycat, and strategies are copycat if and only if they accept all copycat plays,
so we omit their formal definitions. Once again, associativity of composition
of strategies relies on a zipping lemma, which obviously holds because being a
play or an interaction sequences is only about projections being legal. One can
therefore prove that, in this setting, arenas and strategies form a category with
copycat plays as identities and composition of strategies as composition.

2.1.3 Tsukada and Ong’s Model

Required: 2.1.1.
Recommended: Ȃ.

Here is a brief recapitulation on Tsukada and Ong’s categories of views and
plays, as well as their notion of strategy. We will not use a specific vocabulary
when talking about their notions of arenas, plays, etc, so there could be a slight
ambiguity with the previous game models. However, the only part in which
we will talk about the other settings is Chapter 6, and more precisely when we
treat concrete examples, in which case the notions of arenas, plays, etc, will be
clear from context.

As in the other game semantical settings, games are based on arenas. Here,
however, arenas are forests (moves have at most one justifier).

Notation 2.1.50. If A is an arena and m is a move in A, then A/m is the

forest strictly below m, and A ⋅m denotes A/m when m ∈√A. If A is an arena,
we denote by m.A the tree t whose root is m and such that t ⋅m = A. Note that
any arena is a coproduct of trees, so it can be written A = ∑m∈√Am.(A ⋅m).
Remark. This graph-based notion of arena, already used, e.g., by Harmer,
Hyland, and Melliès [47], slightly differs from Tsukada and Ong’s relation-based
notion. For instance, their notion comprises non-empty arenas without initial
moves, e.g., the integers with justification given by predecessor and ownership
given by parity. But in fact, any relation-based arena A is isomorphic (in the
category of arenas and innocent strategies) to the simple forest FA given by the
part of A which is reachable from its roots. Furthermore, FA and A yield the
exact same categories of views and plays. So we deliberately restrict attention
to graph-based arenas.

Let us fix arenas A and B. Let AȂ B denote the simple graph defined as

• A +B, with an edge b→ a for all b ∈√B and a ∈√A if B is non-empty,

• the empty graph otherwise.

Even though AȂ B is not necessarily an arena, the notion of ownership straight-
forwardly extends to AȂ B, since all paths from any root to some vertex v have
the same length. Concretely, ownership is left unchanged in B but reversed in
A. (This is the exact same construction as in HON games, and it is an arena in
that setting.)

42

We denote by ∣s∣ the length n of the sequence s = (n, f,ϕ).
We will use the notion of preplay, which slightly generalises that of play.

This is also where the real difference between HON games and Tsukada and
Ong’s games appear: the notion of morphism is different.

Definition 2.1.51. A TO-preplay on the pair of arenas (A,B) is a P -visible,
alternating, justified sequence on (A,B).

A morphism of TO-preplays g from a TO-preplay (n, f,ϕ) on (A,B) to
another TO-preplay (n′, f ′, ϕ′) on (A,B) is an injective map g∶n → n′ such
that:

• f ′(g(i)) = f(i) for all i ∈ n,
• ϕ′(g(i)) = g(ϕ(i)) for all i ∈ n (with the convention that g(0) = 0),

• g(2i) = g(2i − 1) + 1 for all i ∈ n/2.
The last condition states that g should preserve blocks of an Opponent move and
the next Proponent move (so-called OP -blocks).

TO-preplays on (A,B) and morphisms of such form a category PPA,B with
the obvious identities and composition.

Definition 2.1.52. A TO-play on the pair of arenas (A,B) is a TO-preplay
on (A,B) of even length.

We denote by PA,B the category of TO-plays on (A,B), which is the full
subcategory of PPA,B spanning TO-plays.

Definition 2.1.53. If s = (n, f,ϕ) is a justified sequence, i and j are in n, and
ϕ(j) = 0, we say that i is hereditarily justified by j if i = j or ϕ(i) is hereditarily
justified by j.

A thread of s is a maximal sub-sequence of s in which all moves have the
same hereditary justifier. If s is a play, then all threads of s are justified se-
quences in which the pointers are inherited from s.

Definition 2.1.54. A TO-preview on (A,B) is a TO-preplay s = (n, f,ϕ) such
that ̂ŝn = s.

Let PVA,B be the full subcategory of PPA,B spanning previews.

Definition 2.1.55. A TO-view on (A,B) is a non-empty TO-preview of even
length. Let VA,B denote the full subcategory of PVA,B spanning TO-views.

Remark. VA,B is also a full subcategory of PA,B.

Note that the notions of views and plays are exactly the same as in HON
games, but that the notions of morphisms are different.

The embedding iTO ∶VA,B Ă PA,B induces an adjunction

PA,B
Ȃ � VA,B

Ȃ
,

∆iTO

∏iTO

where ∆F denotes restriction along F op and ∏F denotes right Kan extension
along F op (see Section 2.2.4).

43

Definition 2.1.56. We call VA,B
Ȃ

the category of TO-behaviours and PA,B
Ȃ

that of TO-strategies. We denote by Sh(PA,B) the category of innocent TO-
strategies on (A,B), which is the essential image of ∏iTO

.

By Theorem 2.2.84, full faithfulness of iTO entails that ∏iTO
restricts to an

equivalence Sh(PA,B) Ȃ VA,BȂ.

Remark. As the notation Sh(–) suggests, this is also a category of sheaves
for the Grothendieck topology induced by the embedding VA,B into PA,B (see
Section 2.2.7).

2.1.4 Abramsky-Jagadeesan-Malacaria Games

Required: Ȃ.
Recommended: 2.1.1.

AJM games are another approach to game semantics, and we once again
follow Harmer [46] to define them. These games are slightly different from
HON games in the sense that they are not based on arenas, but on even simpler
data: moves inside an “arena” are not even ordered, and there are no justification
pointers. Because of this, we need a predicate to tell which sequences are valid
and which are not.

Definition 2.1.57. A game is a triple G = (P,O,≈), where:

• P and O are disjoint sets of moves, with P called the Proponent moves
(or simply P -moves) and O the Opponent moves (or simply O-moves).
We denote by M the set of all moves P +O. A legal play is an alternating
sequence of moves starting with an O-move. Formally, a legal play s is a
pair (n, f) of a natural number n and a function f ∶n →M such that, for
all i in n, f(i) is in O if and only if i is odd. Legal plays equipped with
prefix ordering form a category LG.

• And where ≈ is a partial equivalence relation, i.e., a symmetric, transitive
(but not necessarily reflexive) relation verifying:

– ≈ is length- and prefix-preserving, i.e., if s ≈ t, then ∣s∣ = ∣t∣, and if
sa ≈ tb, then s ≈ t,

– ≈ is extensible, i.e., if s ≈ t and sa ≈ sa, then there exists b such that
sa ≈ tb.

A play is a legal play s such that s ≈ s. Plays on G equipped with prefix
ordering form a category PG.

Not only does ≈ define the set of plays, but it also serves another purpose: it
can be thought of as a way to equate plays that are basically the same. There
are thus two possible choices to define strategies: as a set of plays, or as a set
of equivalence classes for ≈.

To define plays on pairs of games, we first define arrow games.

Definition 2.1.58. If G and H are games, then GȂH is the game given by:

• PGȂH = OG + PH ,

44

• OGȂH = PG +OH ,

• and if s = (n, f) and t = (m,g), s ≈GȂH t if and only if:

– for all i in n, f(i) ∈ PGȂH exactly when g(i) ∈ PGȂH
– and sG ≈G tG and sH ≈H tH , where sG is the projection of s onto G,

and similarly for sG, tH , and tH .

We can now define plays on a pair of games (G,H):
Definition 2.1.59. A play on the pair of games (G,H) is a play of even length
on the game G Ȃ H. Plays on (G,H) equipped with prefix ordering form a
category PG,H .

Once the notion of play is defined, strategies are defined just like in the case
of HON games:

Definition 2.1.60. A strategy on (G,H) is a prefix-closed set of plays on(G,H).
Like in HON games and their variations, composition of strategies is based

on the notion of interaction sequence, which is defined similarly.

Definition 2.1.61. An interaction sequence on the tuple of games (G,H, I) is
a sequence of elements of MG+MH+MI whose projections to (G,H) and (H,I)
are plays. Interaction sequences on (G,H, I) equipped with prefix ordering form
a category PG,H,I .

Note that there is a slight difference between this definition and the defini-
tions of interaction sequences in the other cases because we do not require that
the last move belong either to G or I.

Composition of strategies is unsurprisingly defined as:

Definition 2.1.62. If σ and τ are strategies on (G,H) and (H,I) respectively,
then the composite σ; τ of σ and τ is the strategy on (G, I) that accepts a play
s if and only if there is an interaction sequence u on (G,H, I) such that:

• the projection of u to (G, I) is s,

• and the projections of u to (G,H) and (H,I) are accepted by σ and τ

respectively.

The proof of associativity of composition of strategies once again relies on a
zipping lemma, which is expressed just like 2.1.16, where generalised interaction
sequences are defined as:

Definition 2.1.63. A generalised interaction sequence on the tuple of games(G,H, I, J) is a sequence of elements in MG +MH +MI +MJ whose projections
to (G,H), (H,I), and (I, J) are plays.

As we said before, since s ≈ t means that s and t are essentially the same
play, there is another notion of strategy, which is given by equating all plays
that belong to the same equivalence class of ≈.

45

Definition 2.1.64. A saturated strategy on the pair of games (G,H) is a
prefix-closed set of equivalence classes of ≈GȂH . Saturated strategies equipped
with prefix ordering form a category PsG,H .

For this definition to make sense, we should verify that the prefix relation
on plays extends to a poset on equivalence classes of ≈, which is easily seen to
be true.

Saturated strategies accept plays only based on the equivalence class they
belong to. They can be thought of as strategies that only look at plays from
afar to choose whether to accept them or not, and two plays that are essentially
the same must either both be accepted or both rejected.

There is an obvious bijection between saturated strategies and strategies σ
such that, if σ accepts s, then it also accepts all s′ ≈ s. Let us call such strategies
replete. In this light, composition of saturated strategies amounts to showing
that the composite σ; τ of two replete strategies σ and τ is again replete, which
is easy to check.

2.1.5 Blass Games

Required: Ȃ.
Recommended: Ȃ.

Blass games [14, 15] are the last games that we will study in this dissertation.
They are well-known for the fact that composition of strategies is not associative,
and we will use them to test the limits of our framework for game semantics in
Chapter 6.

Blass games are different from arena games on several aspects:

• contrary to arena games, where the graph structure describes the possible
moves that can occur in a play, the structure of Blass games describes
the set of all positions in the game, which is a convention used in many
models that do not have justification pointers [3, 55, 47],

• they come equipped with a notion of winning position, so they are closer
to game theory,

• plays do not necessarily start by an Opponent move.

Since we will not be interested in winning strategies, but only in how to com-
pose strategies, we will skip the description of winning positions for a simpler
presentation.

Definition 2.1.65. A game G is a pair (P, s) where P is a simple tree, i.e.,
a directed, simple graph in which each vertex is uniquely reachable from a fixed
vertex without parent, called the root; and s ∈ {P,O}.
Terminology 2.1.66. In a game G, P is called the set of positions and s is
called the starting player. Each position in the game G is given a polarity that
is either P or O, depending on its depth in P : if the position is a root, then its
polarity is s, otherwise it is the opposite of its parent’s polarity. A position is
an O-position if its polarity is O, and a P -position otherwise.

46

We think of O-positions as positions where it is O’s turn to play, and P -
positions as those where it is P ’s turn to play.

Example 2.1.67. The game tree for the boolean game is the pair (B,O), where
B is the tree

⋅
⋅

⋅ ⋅.
In the initial position, the program and the environment have not interacted yet;
in the second one, the environment has asked the program for its return value;
and in the bottom positions, the program has answered a value, either true or
false, depending on the position.

We now want to build arrow games to define strategies on a pair of games,
which are our candidate morphisms of a category of Blass games and strategies.
To make this definition more tractable, we adopt notations inspired from Ab-
ramsky [2].

Definition 2.1.68. Games are defined coinductively by the grammar:

G ∶∶= ∐
i∈I
G ∣ ∏

i∈I
G.

This definition is equivalent to the previous one, in which we drop the con-
straint that both players should alternate. These games are basically what Blass
calls relaxed games, except that they do not verify the constraint that a player
should only play finitely many times in a row (but Blass writes that this con-
straint exists only for technical reasons). The translation from the “grammatical
form” to the “tree form” goes as follows:

• if Gi translates to a game (Ti, si), then Ȃi∈I Gi translates to the game(T,P), where T is the tree with I edges from its root, whose ith sub-tree
is Ti, and in which, after P plays i, it is si’s turn to play,

• similarly for ∏i∈I Gi, except the initial player in the translation is O.

Games of the form Ȃi∈I Gi are thus “positive” games in which P plays first, and
games of the form ∏i∈I Gi are negative ones, in which O plays first.

Example 2.1.69. The empty product ∏i∈0Gi is the game (⋅,O), i.e., the game
whose only position is an O-position. Similarly, the empty coproduct Ȃi∈0Gi is
the game (⋅, P), i.e., the game whose only position is a P -position. Since these
games do not depend on the Gi’s used to define them, we will write them ∏0

and Ȃ0 for the sake of brevity.

Based on this notation, all finite games can be written as a product ∏nGn
or a coproduct ȂnGn, where Gn are finite games. For example, the boolean
game defined in Example 2.1.67 can be written as ∏1 Ȃ2 ∏0. Indeed, the top
position is an O-position, so it is a product, and it has one child, so it is of the

47

form ∏1G. Similarly, G’s top position is a P -position, so it is a coproduct, and
it has two children, so it is of the form H1 +H2. Finally, H1 and H2 are both∏0, whence the final expression.

We may now define arrow games:

Definition 2.1.70. If G and H are games, then the arrow game G Ȃ H is
defined coinductively as:

• Ȃi∈I (Gi Ȃ (Ȃj∈J Hj))+Ȃj∈J ((∏i∈I Gi) ȂHj) if G is of the form ∏i∈I Gi
and H of the form Ȃj∈J Hj, where + is a binary Ȃ (and the whole expres-
sion should be understood as a Ȃi∈I+J of games, rather than a Ȃi∈2 of
coproducts of games),

• ∏i∈I (Gi ȂH) if G is of the form Ȃi∈I Gi and H of the form Ȃj∈J Hj,

• ∏j∈J (GȂHj) if G is of the form ∏i∈I Gi and H of the form ∏j∈J Hj,

• ∏(i,j)∈I×J (Gi ȂHj) otherwise.

The intuition behind this definition is that it defines an interleaving of all
moves of G and H, but imposing the condition that Opponent should play
whenever they can. For example, if G and H are both coproducts, then they
are both positive games in which P plays first, but since polarity is reversed
in the left-hand game (like in arena games), O may play in that game, so they
should, hence the form of the result: it is a product because Opponent plays
first, and after they have played, the play may continue in either the right-hand
game or one of the sub-games of the left-hand one. The idea is similar when
G and H are both products: O may play in the right-hand game, so they do.
When G is a product and H is a coproduct, O cannot play in any of the two
games, so P chooses one of them to play in and a move in it. Following this
logic, when G is a coproduct and H a product, O should pick one of the two
games to play in and a move in it, and we should get a similar expression for
GȂ H. However, this would break alternation, by allowing O to play twice in
a row, even if G and H alternate. To solve this problem, we let O play in both
G and H in a single move, whence the expression of GȂH.

This may also be defined by seeing GȂH as the forest consisting of G and
H’s game trees. The rule to decide which player’s turn it is to play in G Ȃ H

is that Opponent always plays first. To make a move in GȂH:

• if it is Proponent’s turn to play, it means that it is their turn to play both
in G and H, so they can choose in which game to play and make a move
there,

• if it is Opponent’s turn to play in G or H (but not both), then they play
in that game,

• otherwise, for the same reason as above, Opponent plays in both G and
H at the same time.

48

Example 2.1.71. The game B Ȃ B can be computed as:

B Ȃ B = (∏1 Ȃ2 ∏0) Ȃ (∏1 Ȃ2 ∏0)= ∏1((∏1 Ȃ2 ∏0) Ȃ (Ȃ2 ∏0))= ∏1((Ȃ1((Ȃ2 ∏0) Ȃ (Ȃ2 ∏0))) + (Ȃ2((∏1 Ȃ2 ∏0) Ȃ ∏0)))= ∏1((Ȃ1(∏2(∏0 Ȃ (Ȃ2 ∏0)))) + (Ȃ2 ∏0))= ∏1((Ȃ1(∏2(Ȃ0 +Ȃ2(∏0 Ȃ ∏0)))) + (Ȃ2 ∏0))= ∏1((Ȃ1 ∏2 Ȃ2 ∏0) + (Ȃ2 ∏0)),
which, when drawn as a tree whose nodes are labelled O or P based on their
polarities (this is necessary since G and H may not be alternating, though they
are in this case), gives

O

P

O O O O

P P

O O O O.

The first move in Bl Ȃ Br (where, once again, subscripts only serve to distin-
guish between the two copies of B) corresponds to O playing its initial move in
Br. Its two right-hand-side children correspond to P answering directly in B,
thus ending the game: it is O’s turn to play in Br, and therefore also in Bl Ȃ Br,
but there are no moves to play. Its left-hand child, however, corresponds to P
playing the initial move in Bl, which is possible because polarities are reversed.
Its two children correspond to the two possible moves O can answer in Bl, and
the subsequent children to the different choices P can make in Br.

Notice how this is actually just describing the different interleavings of moves
of Bl and Br under the constraint that Opponent always plays first. We can
thus also represent it as the product of Bl and Br, remembering that polarity is
actually reversed in Bl, and the fact that Opponent plays as soon as possible:

O

P

O O

O

P

O O.

We may now define strategies on a game. There is no formal definition of
strategies on Blass games, so their definition is open to interpretation. The
following definition is our own interpretation of strategies on Blass games, and

49

we do not claim that they are the same strategies as the ones Blass had in mind.
In particular, our definition definitely clashes with the one given by Abramsky,
who only considers total strategies. Nevertheless, we believe that the reason why
strategies fail to compose in Blass games is left unchanged with our definition
of strategy.

Definition 2.1.72. The set S(G) of strategies on the game G is defined coin-
ductively as:

• S(Ȃi∈ȂGi) = {Ȃ},
• S(Ȃi∈I Gi) = ∑i∈I S(Gi) + {Ȃ} otherwise,

• S(∏i∈I Gi) = ∏i∈I S(Gi).
In other words, a strategy σ on G is a downwards-closed set of positions of

G (or upwards-closed, if we imagine the tree’s root is at the top) such that:

• for all P -positions p in σ, σ contains at most one of p’s children,

• for all O-positions p in σ, σ contains all of p’s children.

This indeed corresponds with the intuition of a strategy (or at least of a de-
terministic strategy): Proponent chooses which move to make for each position
in which they have a choice to make. It may also be viewed as a partial function
from P -positions of G to their children (that is however slightly wrong because
two functions that differ only on a part of G that can never be reached by that
strategy should be considered equal).

A strategy on a pair of games (G,H) is a strategy on the game G Ȃ H.
By the description of G Ȃ H given above, a strategy on G Ȃ H is basically a
function from pairs (p, q) of an O-position p of G and a P -position q of H to
the union of p and q’s children.

Example 2.1.73. Let us describe the strategy associated to the not function
on booleans. It must be the sub-tree of the tree drawn in Example 2.1.71 that
corresponds to the function asking for its argument and then answering the
negation of that argument. It may be drawn as

O

P

O O O O

P P

O O O O,

where the dashed arrows are the part of the tree that have been cut off.

If we call ε, q, t, and f the positions of B, we can also see this strategy on
the pair (Bl,Br) as the function: (εl, qr) Ă ql, (tl, qr) Ă fr, (fl, qr) Ă tr.

50

We will not define composition of strategies formally, but only give an idea
of how it works. To the best of our knowledge, the formal description of com-
position of strategies in Blass games is not written anywhere (at least not
in [14, 15, 2]). Composition of strategies is explained as follows in [14].

Given a strategy σ on (G,H) and a strategy τ on (H,I), the composite σ; τ
on (G, I) plays as if, along with G and I’s game trees, H’s game tree were also
present. Since σ is basically a rule that explains how P should play in B and O
in A, and τ how P should play in C and O in B, it is not very surprising that
this data can be used to create a rule for P to play in C and O in A. It plays
according to either σ or τ , depending on the polarities of the positions it has
reached in A, C, and the fictitious copy of B. All the possible cases are in the
table below.

G H I σ τ σ; τ what to do
O O O H I I I

O O P H H ∣ I G ∣ I τ

O P O G ∣ H H & I I σ Ă (H,I)
O P P G ∣ H H G ∣ I σ

P O O G & H I G & I τ Ă σ

P O P G & H H ∣ I G (G,H) Ă τ

P P O G H & I G & I σ Ă τ

P P P G H G G

The table is a rule to know what move to play depending on the polarities of the
current positions in G, H, and I, and is meant to be read as follows: the first
three columns enumerate all the possible combinations of polarities in G, H,
and I; the next two columns show where σ and τ will play their next moves; the
next column shows where σ; τ should make its next move; and the final column
gives a “formula” to compute that move:

• if the formula is a game, then we are in an O position in which Opponent
must play exactly in that game, so we wait for them to do so,

• if the formula is a strategy, then we are in a P position, and we play
according to the strategy, leaving the other games untouched, which may
change the “internal state” of the strategy (the position on H),

• if the formula is σ Ă (H,I) (or the symmetric one for τ), then we are in
an O position in which Opponent must play in exactly one of the external
games, so we wait for Opponent to make their move (mH ,mI) on H Ȃ I,
and then check that σ indeed accepts to play mH : if σ does not accept
to play mH , there is some sort of conflict between the environment and
the strategy, and the composite strategy stops playing as soon as it is
Proponent’s turn to play,

• if the formula is τ Ă σ (or the symmetric one), then we are in an O position
where Opponent must play in both games, so we first let Opponent play
mI on I: if the final position of mI is an O position, there is a conflict
and the strategy stops playing as soon as it is Proponent’s turn, otherwise
we then play like in σ Ă (H,I) (this whole process should be atomic, in
the sense that Opponent will actually play (mG,mI) in the game, rather
than mI followed by mG).

51

Example 2.1.74. Let us show how to compose the strategy associated to the
not function with itself. Let us call ε, q, t, and f the four positions of B and σ
the strategy for not.

At the very beginning, the position is (ε, ε, ε), which has polarity (O,O,O),
so we simply wait for Opponent to move in the right-hand copy of B.

Since the only move they can make is q, we are then in (ε, ε, q), which has
polarity (O,O,P), so we play according to σ on the right-hand copies of B,
which are in position (ε, q), so we should play q in the middle copy of B.

Describing the whole strategy would take some time, but the result is exactly
as expected: it maps (εl, qr) to ql (with internal state qm), (tl, qr) to tr (with
internal state fm), and (fl, qr) to fr (with internal state tm).

We are now ready to exhibit an example where composition of strategies is
not associative.

Example 2.1.75. Take four games G = ∏1 Ȃ0, H = J = Ȃ0, and I = ∏0. In
terms of trees, G has only one branch of length 1, while all the other games are
trivial. Both G and I have polarity O, while H and J have polarity P . If we
call Ȃ the non-initial position of G, we define σ on GȂ H as the strategy that
maps (εG, εH) to Ȃ. Since H Ȃ I is trivial, there is only one strategy τ on it,
and similarly, since I Ȃ J is trivial, there is only one strategy υ on it.

The composite σ; τ starts on (εG, εH , εI), which has polarity (O,P,O), the
strategy thus waits for Opponent input on I, but it never gets any because this
game is trivial, so the strategy does not do anything (note that GȂ I is trivial,
so the strategy could not have played anything anyway). The composite (σ; τ);υ
starts on (εG, εI , εJ), which has polarity (O,O,P), so the strategy plays accord-
ing to υ, which does nothing.

On the other hand, τ ;υ starts on (εH , εI , εJ), which has polarity (P,O,P),
so the strategy waits for Opponent input on I, which never comes, so nothing
happens. But then, σ; (τ ;υ) starts on (εG, εH , εJ), which has polarity (O,P,P),
so it plays according to σ, which plays Ȃ on A.

We thus have that σ; (τ ;υ) ≠ (σ; τ);υ, so composition of strategies is not
associative.

2.2 Categorical Preliminaries

We assume basic knowledge of category theory, such as the notions of categories,
functors, natural transformations, limits and colimits, and adjunctions. We refer
the reader to the classical reference [76] for definitions of these notions.

We write composition of maps in the same order as composition of functions,

as is usual in category theory, so g ○ f is the composite A
fÐ→ B

gÐ→ C. We will
also often write gf instead of g ○ f .

Given a category C and objects c and c′ of C, we will usually denote by[c, c′] the homset C(c, c′) and let the context disambiguate.

2.2.1 Comma and Cocomma Categories

Required: Ȃ.
Recommended: Ȃ.

52

Comma [76] and cocomma categories [89] will be useful throughout this
dissertation, mainly for their combinatorial flavour, which will prove useful to
build categories.

Definition 2.2.1 (Comma Category). Let A
FÐ→ C

G←Ð B be a cospan of catego-
ries, the comma category F ↑ G is the universal cone equipped with a natural
transformation λ as below left. In other words, it is the pair of a cone and a nat-
ural transformation λ such that, for all other cones and natural transformations
α, there is a unique mediating arrow U,V܂ ܂ as below right such that U,V܂∂ ܂ = U ,
U,V܂∂ ܂ = V , and λ ⋅ U,V܂ ܂ = α.

F ↑ G B

A C

∂

∂ G

F

λ

X

F ↑ G B

A C

∂

∂ G

F

λ

V

U

[U,V]

If we unfold the definitions, we get:

• the objects of F ↑ G are triples (a, b, f) of two objects a of A, b of B, and
a morphism f ∶Fa→ Gb,

• the morphisms from (a, b, f) to (a′, b′, f ′) are pairs of morphisms (ϕ,ψ)
such that

Fa Fa′

Gb Gb′

Fϕ

f g

Gψ

commutes and the identities and composition are defined in the obvious
way,

• ∂∶F ↑ G→ A maps (a, b, f) to a and (ϕ,ψ) to ϕ,

• ∂∶F ↑ G→ B maps (a, b, f) to b and (ϕ,ψ) to ψ.

Dually, there is a notion of cocomma category:

Definition 2.2.2 (Cocomma Category). Let A
F←Ð C

GÐ→ B be a span of catego-
ries, the cocomma category F ↑ G is the universal cocone equipped with a natural
transformation λ as below left. In other words, it is the pair of a cocone and
a natural transformation λ such that, for all other cocones and natural trans-
formations α, there is a unique mediating arrow [U,V] as below right such that[U,V]l = U , [U,V]r = V , and [U,V] ⋅ λ = α.

C B

A F ↑ G

G

F r

l

λ

C B

A F ↑ G
X

G

F r

l

λ

V

U

U,V܂ ܂

53

The explicit description is slightly more complex than that of comma squares:

• objects of F ↑ G are the disjoint union of those of A and B,

• for morphisms:

– (F ↑ G)(a, a′) = A(a, a′),
– (F ↑ G)(b, b′) = B(b, b′),
– (F ↑ G)(a, b) = ∑c∈CA(a,Fc) ×B(Gc, b), where such triples are quo-

tiented by the following equivalence relation: two triples (c, f, g)
and (c′, f ′, g′) are equivalent when there exists a zigzag c

f0Ð→ f1←Ð
. . .

fn−1ÐÐ→ fn←Ð c′ and “lanterns”, i.e., commuting diagrams of the form

a

Fc ⋅ . . . ⋅ Fc′

f f ′

Ff0 Ff1 Ffn−1 Ffn

Gc ⋅ . . . ⋅ Gc′

b,
g g′

Gf0 Gf1 Gfn−1 Gfn

– (F ↑ G)(b, a) = Ȃ,

and the identities and composition are defined in the obvious way,

• l∶A→ F ↑ G maps A to its copy in F ↑ G,

• r∶B→ F ↑ G maps B to its copy in F ↑ G.

2.2.2 Fibrations

Required: Ȃ.
Recommended: Ȃ.

In this dissertation, we will use two notions of fibrations: one that is simply
called fibration and the other that is called discrete fibration. Basically, a functor
p∶E → B is a fibration when there is a canonical way to find antecedents of
morphisms b→ p(e).
Definition 2.2.3. For any functor p∶E → B, a morphism r∶ e′ → e in E is
cartesian when, as below, for all t∶ e′′ → e and k∶p(e′′)→ p(e′) such that p(r)○k =
p(t), there exists a unique s∶ e′′ → e′ such that p(s) = k and r ○ s = t:

e′′

e′ e

p(e′′)
p(e′) p(e).

r

p(r)

t

p(t)

s

k

Definition 2.2.4 (Fibration). A functor p∶E → B is a fibration if and only if
for all e in E, any h∶ b′ → p(e) has a cartesian lifting, i.e., a cartesian antecedent
by p with codomain e.

54

Let us now describe discrete fibrations:

Definition 2.2.5 (Discrete Fibration). A functor p∶E→ B is a discrete fibration
when, for all e in E and morphisms f ∶ b→ p(e), there exists a unique morphism
g∶ e′ → e such that p(g) = f . Such a g is called a cartesian lifting of e along f .

A morphism of discrete fibrations p∶E→ B and q∶E′ → B is a functor r∶E→
E′ such that qr = p.

Discrete fibrations over B and morphisms of such form a category DFibB.

Note that a discrete fibration is basically a fibration whose fibres are dis-
crete, in the sense that there is a unique morphism above an f ∶ b → p(e) whose
codomain is e.

Notation 2.2.6. Since the cartesian lifting of e along f is unique, we may
denote it by e ↑ f , and we denote the domain of this map by e ⋅ f .

It may be useful to draw a picture here. The property of discrete fibration
states that, if p is a discrete fibration, then for any solid part of the drawing
below, there is a unique dashed part that completes the drawing.

x′ x

a′ a

u

p p

f

p

Notice that, by uniqueness, it suffices to find a u as above to prove that x ↑ f = u.
Remark. Since we will sometimes mix cartesian liftings of different discrete
fibrations and actions of morphisms in different presheaves in the proofs, we
decide to write the action of morphisms in a presheaf X as x ⋅X f and the
cartesian lifting of e along f for the discrete fibration p as e ↑p f , and e ⋅p f for
its domain when there may be an ambiguity.

Note that this clash of notations happens for a good reason (if there is such
a thing as a good reason for a clash of notations): we will show in Section 2.2.5
that action of morphisms in presheaves correspond in some sense to cartesian
lifting in discrete fibrations.

Proposition 2.2.7 (“Functoriality” of cartesian lifting). For all discrete fibra-
tions p∶X → A, cartesian lifting is “functorial”, in the sense that, for all object
x of X:

• for all f ∶a→ p(x) and g∶a′ → a, (x ↑p f) ○ ((x ⋅p f) ↑p g) = x ↑p (fg),
• x ↑p idp(x) = idx.

Proof. Both proofs are by uniqueness of cartesian lifting.

• For composition, we have:

(x ⋅p f) ⋅p g x ⋅p f x

a′ a p(x),
(x⋅pf)↑pg

p p

g

p

x↑pf

p

f

p

55

so the morphism satisfies the property of x ↑p (fg), and so they are equal.

• For the identity, we have:

x x

p(x) p(x),
idx

p p

idp(x)

p

so the morphism satisfies the property of x ↑p idp(x), and so they are
equal.

Unsurprisingly, cartesian lifting is compatible with morphisms of discrete
fibrations:

Proposition 2.2.8. If p∶X→ A and q∶Y→ A are discrete fibrations and f ∶p→ q

is a morphism of discrete fibrations, then for all objects x of X and morphisms
g∶a→ p(x), f(x ↑p g) = f(x) ↑q g.
Proof. Because qf = p, we have:

x ⋅p g x

f(x ⋅p g) f(x)
a p(x),

x↑pg

f f

f(x↑pg)
q q

f

g

q

so by looking only at the bottom square, we see that f(x ↑p g) has the property
of x ↑q g, so they are equal.

Finally, let us mention that there is a dual notion to that of discrete fibration,
which we will also use at some point:

Definition 2.2.9 (Discrete opfibration). A functor p∶E → B is a discrete op-
fibration when, for all e in E and morphisms f ∶p(e) → b, there exists a unique
morphism g∶ e → e′ such that p(g) = f . This g is called the cartesian oplifting
of e along f and is denoted by f ↑ e, and its codomain is denoted by f ⋅ e.

Discrete opfibrations enjoy the same kind of properties as discrete fibrations,
including all the properties dual to the ones listed above: a simple proof of all
these facts is that p is a discrete opfibration if and only if pop is a discrete
fibration.

2.2.3 Ends and Coends

Required: Ȃ.
Recommended: beginning of 2.2.5.

Note that, in this section and the next one, some fundamental examples will
use presheaves, so it may be wise to first read the beginning of Section 2.2.5 (up
to Definition 2.2.38) to at least know what presheaves are.

Ends and coends are a kind of universal construction, much akin to limits
and colimits. They are defined in pretty much the same way:

56

• limits are terminal objects in the category of cones, and ends are terminal
objects in the category of wedges,

• dually, colimits are initial objects in the category of cocones, and coends
are initial objects in the category of cowedges.

We thus need to first define wedges:

Definition 2.2.10. Let C and D be categories, and F ∶Cop ×C→ D be a functor
(we also say that F is a bifunctor from C to D). A wedge to F is a pair (w, (ec))
of an object w of D and, for each object c of C, of a map ec∶w → F (c, c) such
that, for all f ∶ c→ c′,

w F (c, c)
F (c′, c′) F (c, c′)

ec

ec′ F (c,f)

F (f,c)

commutes.

A wedge (w, e) to F will be denoted e∶w → F .
To tell which wedges are terminal, we need to define a notion of morphism

between wedges:

Definition 2.2.11. A morphism between two wedges e∶w → F and e′∶w′ → F

is a morphism f ∶w → w′ in D such that, for all c in C, ec = e′cf .
Wedges to F and morphisms of such form a category. We may thus state

the definition of end:

Definition 2.2.12. An end of F is a terminal object in the category of wedges
to F .

Because terminal objects are unique up to isomorphism, we will sometimes
say the end of F , instead of an end of F . We will also sometimes call w the end
of F , when the actual end is the pair (w, e). Of course, categories of wedges
need not have terminal objects, so F may not have an end.

Notation 2.2.13. Let F be a bifunctor from C to D. If F has an end (w, e),
then we write ∫c∈C F (c, c) or ∫c F (c, c) for w, and πc or pc for ec.

Example 2.2.14. If F is a bifunctor from C to Set, then ∫c F (c, c) is a subset of
the product of all F (c, c)’s. More precisely, it is the subset of the tuples (xc)c∈C
such that, for all f ∶ c → c′, F (c, f)(xc) = F (f, c′)(xc′). In other words, it is the
biggest subset X of ∏c∈C F (c, c) such that

X F (c, c)
F (c′, c′) F (c, c′)

πc

πc′ F (c,f)

F (f,c′)

commutes for all f ∶ c→ c′ in C.

Let F,G∶C → D be functors between small categories and [d, d′] the homset
between two objects d and d′ of D. If we define H ∶Cop ×C → Set by H(c, c′) =

57

[F (c),G(c′)], then ∫cH(c, c) is the set of natural transformations from F to G.
Indeed, ∏c∈CH(c, c) is the set of all transformations (natural or not) between F
and G, and the diagram below left commutes when applied to the transformation(λc) exactly when the one below right does for f , which is exactly the naturality
condition.

∏cH(c, c) H(c, c)
H(c′, c′) H(c, c′)

πc

πc′ H(c,f)

H(f,c)

F (c) F (c′)
G(c) G(c′)

F (f)

λc λc′

G(f)

If P is a preorder viewed as a category and F is a bifunctor from C to P,
then F ’s end can be computed as a meet. Indeed, F ’s end is an object ∫c F (c, c)
of P equipped with maps to all F (c, c)’s, so it is a lower bound of the set of all
F (c, c)’s. Furthermore, suppose that X is also a lower bound of the set of all
F (c, c)’s, then it comes equipped with morphisms fc∶X → F (c, c) for all objects
c of C. But then

X F (c, c)
F (c′, c′) F (c, c′)

fc

fc′ F (c,f)

F (f,c′)

necessarily commutes for all f ∶ c→ c′, since there is at most one morphism from
X to F (c, c′). Therefore, by universal property of ∫c F (c, c), there is a morphism
X → ∫c F (c, c), and thus ∫c F (c, c) = Ȃc∈C F (c, c).

Just like colimits are the dual to limits, ends also have a dual notion, which
is (unsurprisingly) called coends.

Definition 2.2.15. If F ∶Cop × C → D is a functor, a cowedge from F is a
pair (w, (ec)) of an object w of D and, for all objects c of C, a morphism
ec∶F (c, c)→ w in D such that, for all f ∶ c→ c′,

F (c′, c) F (c, c)
F (c′, c′) w

F (f,c)

F (c′,f) ec

ec′

commutes.

A cowedge (w, e) will be denoted by e∶F → w. A morphism from a cowedge(w, e) to (w′, e′) is a morphism f ∶w → w′ such that, for all objects c of C,
e′c = fec. Cowedges from F and morphisms of such form a category.

A coend of F is an initial object in the category of cowedges from F .

Notation 2.2.16. Let F ∶Cop × C → D be a functor. If F has a coend (w, e),
then we write ∫ c∈C F (c, c) or ∫ c F (c, c) for wc, and ic for ec.

Example 2.2.17. If F is a bifunctor from C to Set, its coend ∫ c F (c, c) is
a quotient of the coproduct ∑c∈C F (c, c). More precisely, it is the coproduct∑c∈C F (c, c) quotiented by the equivalence relation generated by equating an ele-
ment x in F (c, c) and an element x′ in F (c′, c′) if there is a morphism f ∶ c→ c′

and an element x′′ in F (c′, c) such that F (f, c)(x′′) = x and F (c′, f)(x′′) = x′.
58

If P is a preorder viewed as a category and F is a bifunctor from C to P,
then the coend of F is computed as a join. We get the formula ∫ c F (c, c) =Ȃc∈C F (c, c).

There are a few formulas to compute ends and coends, which are sometimes
called “end and coend calculus”. Here are two such formulas:

Proposition 2.2.18. If F is a bifunctor from C to D, then the following holds:

• ∫c[d,F (c, c)] ≅ [d, ∫c F (c, c)],
• ∫c[F (c, c), d] ≅ [∫ c F (c, c), d].
There is also a formula to make ends commute:

Proposition 2.2.19 (Fubini theorem). If F ∶Cop ×Dop ×C ×D → E is a func-
tor, then if either side of ∫c ∫d F (c, d, c, d) = ∫d ∫c F (c, d, c, d) exists, the equality
holds.

There are other interesting formulas, but we leave them for the next section,
since they will appear more naturally in the framework of Kan extensions.

2.2.4 Kan Extensions

Required: 2.2.3.
Recommended: Ȃ.

The Kan extension of a functor F ∶C → D along K ∶C → C′ can be thought
of as a canonical way of extending F to a functor from C′ to D.

Definition 2.2.20. Let C, C′ and D be categories, and F ∶C→ D and K∶C→ C′

be functors. The left (resp. right) Kan extension of F along K, denoted by
LanK(F) (resp. RanK(F)), is a functor from C′ to D equipped with a natural
transformation η∶F → LanK(F)K (resp. ε∶RanK(F)K → F) that is universal
in the sense that, for all functors G∶C′ → D and natural transformations λ∶F →
GK (resp. λ∶GK → F), λ factors uniquely as λ = (µ⋅K)○η (resp. λ = ε○(µ⋅K)).

Under some hypotheses on D which we now describe, Kan extensions can be
expressed in terms of ends and coends, so we can compute concrete values of
Kan extensions.

Definition 2.2.21. A category C is powered [60] (or cotensored) if, for all
objects c of C and sets X, there is an object cX of C equipped with a natural
isomorphism C(−, cX) ≅ Set(X,C(−, c)).

Dually, a category C is copowered if, for all objects c of C and set X,
there is an object X ⋅ c of C equipped with a natural isomorphism C(X ⋅ c,−) ≅
Set(X,C(c,−)).

These definitions actually make sense in the broader sense of enriched cat-
egory theory, but we only state them in the case of category theory, since we
will only need the results in this case.

59

Example 2.2.22. The category Set is powered and copowered. The power object
Y X is the set of functions from X to Y . The copower object X ⋅Y is the cartesian
product X × Y .

The category 2, which is defined as the ordinal 0 → 1 seen as a category, is
also powered and copowered. The power objects are defined as:

{ 0Ȃ = 1

0X = 0 otherwise
1X = 1.

The copower objects are defined as:

X ⋅ 0 = 0 { Ȃ ⋅ 1 = 0

X ⋅ 1 = 1 otherwise.

The following property can be found, for example, in [76].

Property 2.2.23. If D is powered, the right Kan extension of F along K is
given by the formula RanK(F)(c′) = ∫c∈C F (c)C′(c′,Kc).

Similarly, if D is copowered, the left Kan extension of F along K is given

by the formula LanK(F)(c′) = ∫ c∈CC′(Kc, c′) ⋅ F (c).
Notation 2.2.24. When F ∶C → D is a functor and X is a presheaf over C,
we denote by ∑F (X) the left Kan extension of X along F op and by ∏F (X) its
right Kan extension along F op.

Using the descriptions of ends and coends in Set, we may give explicit de-
scriptions of ∑F (X) and ∏F (X).
Proposition 2.2.25. The left Kan extension ∑F (X) is given at d by the coend∑F (X)(d) ≅ ∫ cX(c)×[d,Fc], which is the coproduct ∑cX(c)×[d,Fc] quotien-
ted by the equivalence relation generated by equating (x ⋅ f, g) (with x in X(c)
and g∶d→ Fc) and (x, (Ff)g) for all f ∶ c→ c′.

We may recast this description in a more graphical way by depicting elements
of ∑F (X)(d) as pairs of arrows 1 → X(c) and Fc ← d, and the equivalence
relation on elements is generated by “commuting diagrams” of the form:

1

X(c) X(c′)
F (c) F (c′)

d.

⌜x⋅f⌝ ⌜x⌝

X(f)

g F (f)g

F (f)

Proposition 2.2.26. The expression of the right Kan extension ∏F (X) at d
is ∏F (X)(d) ≅ ∫c[[Fc, d],X(c)], which we recognise to be the set of natural
transformations from the presheaf [F−, d] to X.

Lemma 2.2.27. For any discrete fibration p∶E → B, presheaf X over E, and
object b in B, we have ∑p(X)(b) ≅ ∑p(e)=bX(e), where ∑ means left Kan ex-
tension on the left and disjoint union on the right.

60

Proof. We know that ∑p(X) is given at b by ∑p(X)(b) ≅ ∫ eX(e) × [b, p(e)].
But p is a discrete fibration, so all morphisms g∶ b→ p(e) have a cartesian lifting
e ↑ g∶ (e ⋅ g)→ e, so each pair of an element of X(e) and morphism g∶ b→ p(e) is
equated in ∑p(X)(b) with a pair whose second member is an identity by:

1

X(e) X(e ⋅p g)
p(e) p(e ⋅p g)

b.

⌜x⋅X(e↑g)⌝⌜x⌝

X(e↑g)

g

p(e↑g)

Now, let us consider (1 x1Ð→ X(e1), p(e1) f1←Ð b) and (1 x2Ð→ X(e2), p(e2) f2←Ð b)
that are identified in a single step in ∑p(X)(b), i.e., there is a “commuting
diagram” of the form:

1

X(e1) X(e2)
p(e1) p(e2)

b

⌜x2⌝⌜x1⌝

X(g)

f2f1

p(g)
or

1

X(e1) X(e2)
p(e1) p(e2)

b.

⌜x2⌝⌜x1⌝

X(g)

f2f1

p(g)

We want to show that (x2, f2) is equated with (x1 ⋅X (e1 ↑ f1), idb) in a single
step. Because (x1, f1) is identified in a single step with (x1 ⋅X (e1 ↑ f1), idb)
through the diagram shown above, we get the desired result in the right-hand
case by simply composing g and e1 ↑ f1. In the left-hand case, since (x2, f2)
is equated with (x2 ⋅X (e2 ↑ f2), idb) in one step, we simply need to show that
x2 ⋅X (e2 ↑ f2) = x1 ⋅X (e1 ↑ f1), which comes from the facts that e1 ↑ f1 = g(e2 ↑
f2) (by uniqueness of cartesian lifting) and that x1 ⋅ g = x2 (by commutation of
the diagram above).

Therefore, if two elements are equated, by induction on the length of the
zigzag that equate them, they are both identified with the same pair (1 →
X(e), p(e) = b) in a single step. We thus have that two pairs (1 xÐ→X(e), p(e) =
b) and (1 x′Ð→ X(e′), p(e′) = b) can only be identified if e = e′ and x = x′. We
thus have that ∑p(X)(b) is isomorphic to the coproduct ∑p(e)=bX(e).
We also have the dual property:

Lemma 2.2.28. For any discrete opfibration p∶E→ B, presheaf X over E, and
object b in B, we have ∏p(X)(b) ≅ ∏p(e)=bX(e), where ∏ means right Kan
extension on the left and product on the right.

Proof. We have that ∏p(X)(b) is isomorphic to the set of natural transforma-
tions [[p−, b],X], so we want to show that this set is isomorphic to∏p(e)=bX(e).

First, we send any natural transformation α∶ [p−, b] → X to the product(αe(idb))p(e)=b. To show that this mapping is injective, we show that α is

61

determined by the product. To prove this, let us take f ∶p(e)→ b and show that
αe(f) must necessarily be a value that only depends on the product. Because
p is a discrete opfibration, f has a cartesian lifting f ↑ e∶ e→ (f ⋅p e). Therefore,
by naturality of α, we have that αe(f) = αf ⋅pe(idb) ⋅X (f ↑ e).

Conversely, let us take a product (xe)p(e)=b and define α to be the trans-
formation given by αe mapping f ∶p(e) → b to xf ⋅pe ⋅X (f ↑ e). This mapping is
necessarily injective, because αe(idb) = xe for all antecedents e of b. It thus only
remains to show that α is natural, i.e., that for all f ∶p(e′) → b and g∶ e → e′,
xf ⋅pe′ ⋅X ((f ↑ e′)g) = x(fp(g))⋅pe ⋅X (fp(g) ↑ e), which follows from uniqueness of
cartesian lifting.

Let us also give two simple examples of left and right Kan extensions related
to game semantics to give some intuition about them. The basic idea is that
left Kan extension is a sort of existential quantifier, while right Kan extension
is a sort of universal one.

Example 2.2.29. Let σ be a behaviour on (A,B), i.e., a prefix-closed set of
views (we leave the exact setting we are working with ambiguous, but the reader
may think of classical HON games if they want a precise setting). We denote by
VA,B the poset of views on the pair of arenas (A,B) and by iA,B the embedding
of VA,B into PA,B. With these notations behaviours can also be seen as functors
from VA,B to 2 (the ordinal 0 → 1 seen as a category). Indeed, if a view v is
accepted by σ, then we map it to 1, and to 0 otherwise, and functoriality ensures
prefix-closedness.

We can take the right Kan extension of σ along i
op

A,B, which we denote by

∏iA,B
(σ) = Raniop

A,B
(σ), and it is given at p by ∫v∈VA,B

σ(v)PA,B(iA,Bv,p). Since

2 is an order, the formula reduces to ∏iA,B
(σ)(p) = Ȃv∈VA,B

σ(v)PA,B(iA,Bv,p).

Since 0Ȃ = 1X = 1 (for any set X) and 0X = 0 (for any non-empty X), the
formula above reduces to ∏iA,B

(σ)(p) = ȂiA,Bv→p σ(v). In other words, ∏iA,B
(σ)

accepts to play p if and only if σ accepts to play all views v of p. This is the
innocence condition (defined in Section 2.1.1) imposed on innocent strategies.∏iA,B

thus turns a behaviour into the corresponding innocent strategy.

Let σ be a “strategy” on PA,B,C , i.e., a functor P
op

A,B,C → 2 (typically the

parallel composition of a strategy on (A,B) and a strategy on (B,C)). We can
take the left Kan extension of σ along πop

A,C ∶Pop

A,B,C → P
op

A,C , and it is given by

∑πA,C
(σ)(p) = ∫ u∈PA,B,C

PA,C(p, πA,Cu) ⋅ σ(u). Again, since 2 is an order, this
reduces to ∑πA,C

(σ)(p) = Ȃu∈PA,B,C
PA,C(p, πA,C(u))⋅σ(u). Since Ȃ⋅1 =X ⋅0 = 0

(for any set X) and X ⋅1 = 1 (for any non-empty X), the formula above reduces
to ∑πA,C

(σ)(p) = ȂπA,Cu=p σ(u), assuming that all morphisms p → πA,Cu can

be factored as p = πA,Cu0 πA,CfÐÐÐ→ πA,Cu. In other words, ∑πA,C
(σ) accepts to

play p if and only if σ accepts to play at least one interaction sequence u whose
projection on (A,C) is p. This is typically the hiding operation, which hides
what happens on the middle arena when two strategies are composed (as defined
in again Section 2.1.1).

In the cases we are interested in, namely presheaves, if F ∶C → D, then∑F ∶CȂ→ D
Ȃ

, ∏F ∶CȂ→ D
Ȃ

, and ∆F ∶DȂ→ C
Ȃ

.
Since we will be especially interested in presheaves, the following lemmas will

be of some importance to us. The following lemma is named after the classical

62

Yoneda lemma (Property 2.2.37).

Lemma 2.2.30 (Yoneda lemma). Let C be a category and X a presheaf on C

(i.e., a functor X ∶Cop → Set), then X(c) ≅ ∫c′[[c′, c],X(c′)].
Lemma 2.2.31 (co-Yoneda lemma). Let C be a category and X a presheaf on

C, then X(c) ≅ ∫ c′X(c′) × [c, c′].
Proof. The first lemma may be seen directly, because [c′, c] = yc(c′), so the
formula reduces to ∫c′[yc(c′),X(c′)], which is isomorphic to the set of nat-
ural transformations from yc to X by Example 2.2.14, and thus to X(c) by
the classical Yoneda lemma. However, it may be interesting to remark that∫c′[[c′, c],X(c′)] is also the expression of right Kan extension of X along the
identity of Cop . But right Kan extension of a functor along the identity is always
isomorphic to the given functor, whence the result.

This also helps us understand why the second formula is called the co-Yoneda
lemma. Indeed, the formula simply exhibits X as the left Kan extension of itself
along the identity, which is dual to what happens in the Yoneda lemma.

2.2.5 Presheaf Categories

Required: Ȃ.
Recommended: Ȃ.

Presheaves are so important in this dissertation that they definitely de-
serve their own section. We will use them extensively to model both plays
and strategies. The intuition is that we want plays to be some kind of higher-
dimensional graphs and strategies to be some kind of trees, and both graphs
and trees are straightforward examples of presheaf categories.

Definition and Basic Properties

Definition 2.2.32 (Presheaf). A set-valued 1 presheaf over the category C is
a functor from Cop to Set, the category of sets and functions.

Presheaves over C and natural transformations form a category [Cop ,Set]
that we denote by C

Ȃ
.

Notation 2.2.33. For any presheaf X in C
Ȃ

, x ∈X(c) and f ∶ c′ → c, we denote
by x⋅f the action of X(f) on x, i.e., x⋅f =X(f)(x). Note that, by functoriality,
we have that (x ⋅ f) ⋅ g = x ⋅ (fg).

A very important property of the category of presheaves is the following:

Property 2.2.34. If C is small, then C
Ȃ

is complete and cocomplete, and limits
and colimits are computed pointwise.

In other terms, to compute the (co)limit of a functor F ∶J → C
Ȃ

, we think of
it as a functor J × Cop → Set and compute the (co)limit for c fixed in C, and
this assignment uniquely extends to a presheaf that is the desired (co)limit. Or,

1We will always assume that presheaves are set-valued in the following, except when ex-

plicitly stated otherwise, so we call set-valued presheaves simply presheaves.

63

more concisely, (limF)(c) ≅ lim(Fc). (This comes from the more general fact
that, if D has (co)limits of a certain shape J , then so does [C,D], and these
(co)limits are computed pointwise, as explained in [76].)

This property is very important for us because it allows us to combine the
objects we model as presheaves using limits and colimits. For example, in
the case of plays, we can use constructions that “glue” further plays together
to create different plays, and this is done using colimits (especially pushouts).
Composition of plays is, in particular, defined using pushouts.

Definition 2.2.35 (Yoneda embedding). Let A be a category. We define the

Yoneda embedding of A into A
Ȃ

as the functor y whose value on a is ya = [–, a],
and which acts on morphisms by pre-composition.

Note that the Yoneda embedding is indeed an embedding.

Property 2.2.36. The Yoneda embedding y is full.

Property 2.2.37 (Yoneda lemma). For all objects a of A and presheaf X over
A, there is an isomorphism [ya,X] ≅X(a) natural in a.

A nice, visual way of representing presheaves is through their categories of
elements.

Definition 2.2.38 (Category of Elements). For any presheaf X on A, we define
X’s category of elements as the comma category

el(X) 1

A A
Ȃ

!

πX ⌜X⌝

y

λ

together with its projection πX ∶ el(X)→ A.

Recall from the definition of comma categories (Section 2.2.1) that an object
of el(X) is a pair (a, x) of an object a of A and an element x ∈X(a), and that
morphisms from (a, x) to (a′, x′) are exactly morphisms f ∶a → a′ such that
x′ ⋅f = x. The projection πX projects an element (a, x) onto its first component
a. Even though it may be a bit mysterious why categories of elements are visual
way of representing presheaves for now, the examples below should convince the
reader that it is indeed the case.

Examples: Graphs and Trees

We now want to show how this notion adequately models the classical notions
of graphs and trees.

Modelling graphs will give us the intuition of how to model plays in our
games, since they are some sort of higher-dimensional graphs.

Example 2.2.39 (Graph: Running Example). Let us be more precise about
what we mean by “graph”, since there are many different notions of graphs.
What we call graph is what may more accurately be called directed multi-graph,
i.e., edges have a direction, and there may be more than one edge between two
vertices. Let us take the graph below as our running example.

64

x

y

a

b

c

α
β γ

δ

ε

Formally, a graph is a set of vertices, a set of edges, and two maps from the
set of edges to the set of vertices that map each edge to its source and target
respectively. For example, the drawing above is a representation of a graph
with five vertices V = {x, y, a, b, c}, five edges E = {α,β, γ, δ, ε}, and two maps
s, t∶E → V that map each edge to their source and target respectively, as on the
drawing (for example, s(α) = x and t(α) = y).

The formal representation of graphs is very easily cast as a presheaf category:

Example 2.2.40 (Graphs). Let G be the category freely generated by the graph[0] sĂ
t
[1]. The category of graphs is G

Ȃ
.

Indeed, a presheaf G over G is a functor Gop → Set, i.e., two sets V = G([0])
and E = G([1]) together with two functions G(s),G(t)∶V → E. That is, a
presheaf G is simply a set of vertices V and a set of edges E together with two
maps that give, for each edge e in E, its source G(s)(e) and target G(t)(e).

Moreover, a morphism of presheaves α from G to H is a natural trans-
formation from G to H, i.e., a pair of functions α0∶G([0]) → H([0]) and
α1∶G([1])→H([1]) such that both diagrams below commute.

G([1]) H([1])
G([0]) H([0])

α1

G(s) H(s)

α0

G([1]) H([1])
G([0]) H([0])

α1

G(t) H(t)

α0

In other words, such a natural transformation is a map of the vertices of G to
those of H and a map to the edges of G to those of H that respect sources and
targets. This is exactly the definition of a morphism of graphs.

Once we have modelled graphs as presheaves, we can instantiate the general
theory of presheaves to graphs, for example the Yoneda lemma:

Example 2.2.41 (Graphs and the Yoneda Lemma). In the case of graphs, the
Yoneda lemma simply states that the number of nodes in a graph G is equal
to the number of morphisms from the graph y[0] to G, and similarly for edges:
the number of edges in G is equal to the number of morphisms from the graph
y[1] to G. The question is: What are y[0] and y[1]? The former is the presheaf
G(–, [0]), i.e., y[0]([0]) = G([0], [0]) = {id [0]} and y[0]([1]) = G([1], [0]) = Ȃ,
so it is the graph with one node and no edge. The second one is G(–, [1]), i.e.,
y[1]([0]) = G([0], [1]) = {s, t} and y[1]([1]) = G([1], [1]) = {id [1]}, so it is a
graph with two nodes and one edge, and the action of morphisms show which
nodes are the source and target of the edge: y[1](s)(id [1]) = id [1] ○ s = s and
y[1](t)(id [1]) = id [1] ○ t = t. We thus have that y[0] is the graph and y[1] is the
graph . In other words, the Yoneda lemma simply states that there are
as many nodes in a graph G as there are morphisms from the “one-node graph”
to G and as many edges in G as there are morphisms from the “one-edge graph”
to G.

65

Finally, the example of graphs is enlightening as to why the category of
elements is a nice representation of a presheaf:

Example 2.2.42 (Graphs and Categories of Elements). Let G be a presheaf
over G. Its category of elements el(G) has as objects ([0], x) for all x in G([0])
and ([1], y) for all y in G([1]). Since, in the category of elements, morphisms(a, x) → (a′, x′) are simply the morphisms f ∶a → a′ such that x′ ⋅ f = x and
the base category G only has two non-trivial morphisms, we have that, except
for identities, the morphisms in el(G) are exactly of two possible forms: either([0], e ⋅ s) sÐ→ ([1], e) or ([0], e ⋅ t) tÐ→ ([1], e) for any edge e.

For example, the category of elements of the graph y[1] is

([0], s) ([1], id [1]) ([0], t)s t

(where we omit the identities for readability). If we decide to draw elements of
the form ([1],–) and the corresponding pair of arrows (s, t) as an arrow pointing
towards the source of t, we recover the graphic representation of the graph we
started from:

([0], s) ([0], t),
which is indeed the graph with only one arrow.

Similarly, the category of elements of our running example is

([0], x)

([0], y)

([0], a)

([0], b)

([0], c),
([1], α) ([1], β) ([1], γ)

([1], δ)
([1], ε)

s

t

s

t
s

t

s

t

st

from which we readily recover the description of the graph, using the same nota-
tion as above.

We may elaborate a bit further on this example by tweaking the base cat-
egory. We can for example add an arrow r∶ [1]→ [0] to G and equations rt = id [0]
and rs = id [0] to obtain the category of (directed multi) reflexive graphs. The
following extension is of particular interest to us because it is a way to define
higher-dimensional graphs (even though our notion of higher-dimensional graph
will be based on a slightly different approach):

Example 2.2.43 (Globular Sets). Let G∞ be the category freely generated by
the graph with a vertex [n] for each natural number n ∈ N, and edges sn, tn∶ [n]→[n + 1], quotiented by the equations

sn+1sn = tn+1sn and sn+1tn = tn+1tn.
We call G∞ the globe category. A globular set is a presheaf on G∞. In simpler
terms, a globular set G is a set of vertices G([0]) (which we call 0-cells), a
set of edges G([1]) (which we call 1-cells), a set G([2]) of 2-cells, etc, and for

66

each (n + 1)-cell a source n-cell and a target n-cell, with the condition that the
source and target n-cells agree on their own sources and targets. 2-cells can
thus be thought of as “edges between parallel edges”, 3-cells as “edges between
parallel 2-cells”, and so on, which is for example the type of n-morphisms in
some approaches to higher category theory or the type of path homotopies.

A second example of what may naturally be modelled by presheaves is that
of trees, which will also be useful to model plays, since our plays are also trees
in some sense. (We will always assume that trees are rooted, i.e., that they have
a distinguished root.)

We show two possibilities to represent trees as presheaves. The first one is
slightly more natural, but not so relevant to us, since this is not how we will
represent our plays:

Example 2.2.44 (Trees, first presentation). Let ω be the countable ordinal
category. A forest (of rooted trees) is a presheaf over ω. Indeed, such a presheaf
F has for each n ∈ N a set F (n) of nodes at depth n with, for each such node
x ∈ F (n + 1), a parent node x ⋅ sn (where sn is the only morphism from n to
n+1), which is indeed a forest. A tree is a presheaf T over ω such that T (0) is a
singleton set. The category ω

Ȃ
is sometimes known as the topos of trees, which is

somewhat fitting, since all presheaf categories are toposes (though a more fitting
name would probably be the topos of forests).

A natural transformation α∶T → T ′ is a family of maps αnT (n)→ T ′(n) for
all i ∈ N such that, for all n ∈ N,

T (n + 1) T ′(n + 1)
T (n) T ′(n)

αn+1

T (sn) T (sn+1)

αn

commutes. In other words, it is a mapping of the nodes of T to those of T ′

that respects depth (T (n) is mapped to T ′(n)) and the parent relation, which
is a possible, natural definition of morphism of forests. Similarly, a natural
transformation between trees is a possible, natural definition of morphism of
trees.

Here again, once we have defined trees (or forests) as presheaves on a partic-
ular category ω, the whole presheaf-theoretic lemmas give us some properties:

Example 2.2.45 (Trees and the Yoneda lemma). Here, the presheaf yn is given

by yn(m) = { {m ≤ n} if m ≤ nȂ otherwise,
where m ≤ n is the unique morphism from

m to n, when m is smaller than or equal to n, so yn(m) is either a singleton
or empty. Since each yn(m) is either empty or a singleton set, there is only
one possible action for morphisms. The presheaf yn is thus a tree (since it has
a single root yn(0) = {0 ≤ n}) with a single node at depth m for all m less than
or equal to n, and is empty below depth n. It is thus a branch of length n. The
Yoneda lemma now states that there are as many morphisms of trees from the
branch of length n into a forest F as there are nodes at depth n in F .

Finally, this presentation of trees also allows us to show once more why
categories of elements are nice visual representations of presheaves:

67

Example 2.2.46 (Trees and Categories of Elements). Let us compute a few
categories of elements. For example, let us take yn. As we have seen above,
yn(m) is a singleton set {m ≤ n} if m is smaller than or equal to n and empty
otherwise, with the only possible action for morphisms. Its category of elements
thus has as elements all the pairs (m,m ≤ n) for m smaller than or equal to n
and is as pictured below:

(0,0 ≤ n) (1,1 ≤ n) . . . (n,n ≤ n)0≤1 1≤2 n−1≤n

(where we only show the m ≤ m + 1 maps, and the other maps are obtained by
composition). We recover the graphical representation of a branch.

Let us now take the full infinite binary tree T . This tree can straightforwardly
be encoded as a presheaf over ω by taking T (n) = {l, r}n and where the action
of a morphism m ≤ n is given by prefix: T (m ≤ n)(w) = w∣m. Therefore, in the
category of elements, there will be a morphism (m,w)→ (n,w′) exactly when w
is a prefix of w′. If we draw this category of elements, we obtain:

. . .(2, rr)

. . .(1, r)

. . .(2, rl)

. . .(0, ε)

. . .(2, lr)

. . .(1, l)

. . .(2, ll)

. . .

0≤1

0≤1

1≤2

1≤2

1≤2

1≤2

2≤3

2≤3

2≤3

2≤3

2≤3

2≤3

2≤3

2≤3

(where, once again, we only picture the m ≤m + 1 morphisms). Here again, we
recover the graphic representation of the object through its category of elements.

The second possibility is the one that will be more relevant to us. It consists
in inductively building trees as particular graphs:

Example 2.2.47 (Trees, second presentation). Trees are particular pointed pre-

sheaves over G (elements of the coslice category y[0]/GȂ), i.e., particular morph-

isms y[0] → T in G
Ȃ

. In this description, T represents the “unrooted” tree struc-
ture and the morphism itself points to the root (remember that, from the Yoneda
lemma, a morphism y[0] → T is the same as an element of T ([0])). They are
(isomorphic to any presheaf) defined inductively by:

• a single node id y[0] ∶ y[0] → y[0] is a tree,

• if r∶ y[0] → T is a tree and n∶ y[0] → T is a node of T , then fr∶ y[0] → T ′ is
a tree, where T ′ and f are obtained by pushout as below.

68

y[0] y[1]

y[0] T T ′

s

n

fr

The inductive case in the definition above simply states:

• that if T is a tree, by picking a node n of T (represented by the morphism
n∶ y[0] → T) and adding an edge to T whose source is n, the resulting graph
is still a tree;

• and that all trees can be built in this way (so the category we are building
is actually that of finite trees).

A morphism of trees is a morphism in y[0]/GȂ, i.e., a morphism from r∶ y[0] → T

to r′∶ y[0] → T ′ is a morphism f ∶T → T ′ such that

y[0]

T T ′
r r′

f

commutes. In other words, it a morphism of graphs that preserves the root,
which is exactly a morphism of trees.

This example can also be tinkered with by adding different kinds of nodes
and edges, which is something we do when we model our plays.

Remark. Since plays are finite objects (they are basically execution traces), the
finiteness of the objects we build is actually a feature, rather than a limitation.
Had we wanted to model all trees (and not only finite ones) using the second
method, we could have relied on transfinite composition by adding the following
rule:

• for all limit ordinals β and cocontinuous functors F ∶β → y[0]/GȂ such that

F (α) = y[0]
rαÐ→ Tα is a tree for all α, the morphism r∶ y[0] → T obtained

as part of the cocone associated to the colimit below is also a tree:

y[0]

T0 T1 . . . Tα . . .

T .

r0
r1

r

rα

A final example that should give all the necessary intuition to understand
the representation of plays as string diagrams is that of binary trees. Indeed,
until now, the categories of trees contain trees with arbitrary branching: a node
can have a set of children. We want to build a category of binary trees, i.e., each
node has either zero or two children. We will proceed in a way that is similar
to the second presentation of trees that we have given above.

69

Since our inductive rule adds one edge to a tree, we first need to change it
so that it adds two edges from the same node. We define the basic binary tree
B as the coproduct:

2 ⋅ y[0] 2 ⋅ y[1]
y[0] B.

2⋅t

∇ lB

rB

(2.1)

It consists of a root (pointed by rB) with two children that are leaves. We can
now change the rule to:

• if r∶ y[0] → T is a binary tree and n∶ y[0] → T is a node of T , then fr∶ y[0] →
T ′ is a binary tree, where T ′ and f are obtained by pushout as below.

y[0] B

y[0] T T ′

rB

n

fr

However, this cannot work, since we can apply the inductive rule to a node
twice, so the trees built this way are not binary at all (this construction simply
constrains all nodes in a tree to have an even number of children). To make sure
we do not use the inductive rule on the same node twice, we must keep track of
which nodes are leaves and which nodes already have children.

A simple idea to do this is to put two different types of nodes in the base
category G: one for leaves and one for nodes. However, this is a bad idea for
two reasons.

• First, we would need to duplicate the type of edges: there must be a type
of edges that point to a node and a type of edges that point to a leaf. The
base category G would then look like

eN eL

N L,

t s
t

s

where N stands for “node” and L for “leaf”. Therefore, the creation of
trees becomes more involved: once we have found a leaf in the tree, we
must change its type to that of a node, change the type of the arrow that
points to that leaf to the type of an arrow that points to a node, and
finally, we can take the pushout along yN → B (where B is the obvious
counterpart of the B defined above in this setting). This construction is
not nice in the sense that it cannot be computed using limits and colimits.

• But the really problematic point is that the change made in the base
category has an impact on the notion of morphism: nodes can only be
mapped to nodes, and leaves only to leaves. This is obviously not the
notion of morphism we are interested in, so this construction is not what
we should do.

70

The idea of pointed presheaves y[0] → T is that the morphism distinguishes
the root of T from the other nodes. We are going to do something similar here

by giving another morphism Y
lÐ→ T from the set X of leaves of T to T .

Example 2.2.48 (Binary trees). Let l∶2 ⋅ y[0] → B be the composite 2 ⋅ y[0] 2⋅sÐ→
2 ⋅ y[1] lBÐ→ B, where B and lB are defined in (2.1). A move is any cospan

Y
lÐ→ U

r←ÐX that is isomorphic to that obtained as a pushout

2 ⋅ y[0] Y

B U

Ȃ Z

y[0] X,

lB l

rB r

where Z is a coproduct n ⋅y[0], and l and r are obtained by universal property of
pushout. We define the composition of two cospans Y → U ←X and Z → V ← Y

as the cospan Z → U ● V ←X defined as

Z

Y V

X U U ● V .

A forest of binary trees is a cospan of presheaves Y → F ←X that is isomorphic
to a finite composite of moves. A binary tree is a forest of binary trees of the
form Y → F ← y[0].

We now have at least two natural notions of morphism of forests.

• If Y → F ← X and Y ′ → F ′ ← X ′ are two forests, then a morphism
of forests is a natural transformation F → F ′. This yields the notion of
morphism of (unrooted) forest, i.e., of morphisms that do not necessarily
preserve the roots of forests.

• If Y → F ← X and Y ′ → F ′ ← X ′ are two forests, then a morphism of
forests is a triple of natural transformations X →X ′, F → F ′, and Y → Y ′

such that

Y Y ′

F F ′

X X ′

commutes. This yields a slightly strange notion of morphism of forests.
Such a morphism preserves not only the roots of forests, but also their
leaves.

71

However, the usual notion of morphism of rooted forests is given by a pair of
morphisms F → F ′ and X →X ′ such that

Y Y ′

F F ′

X X ′

commutes.

Equivalence to Discrete Fibrations

Required: 2.2.2, beginning of 2.2.5.
Recommended: Ȃ.

The adjoint equivalence between the category of presheaves over A and that
of discrete fibrations into A is well known. However, we have found no clear
and complete account of this fact, especially one that exhibits the equivalence,
so we decided to write it here in case it would be of general interest.

We start by recalling a similar, simpler result:

Proposition 2.2.49. For any set I, let FamI be the category of families of
sets indexed by I, whose objects are families {Xi}i∈I and whose morphisms from{Xi}i∈I to {X ′i}i∈I are families of functions {fi∶Xi →X ′i}i∈I . FamI is equivalent
to [–, I].
Example 2.2.50 (Hogwarts School of Witchcraft and Wizardry 2 3). Hog-
warts School of Witchcraft and Wizardry is divided into four houses: Gryffindor,
Hufflepuff, Ravenclaw, and Slytherin. Each student at Hogwarts belongs to ex-
actly one of these four schools. This may be represented in two equivalent ways:

• by giving a family of sets of students, indexed by houses:
XGryffindor = {Harry Potter,Ronald Weasley,Hermione Granger, . . .},
XHufflepuff = {Cedric Diggory,Ernie Macmillan,Hannah Abbot, . . .},
XRavenclaw = {Luna Lovegood,Cho Chang,Padma Patil, . . .},
XSlytherin = {Draco Malfoy,Vincent Crabbe,Gregory Goyle, . . .},

• by giving a map from the set of students to that of houses:
Harry PotterĂ Gryffindor,
Ronald WeasleyĂ Gryffindor,
Cedric DiggoryĂ Hufflepuff,
. . .

This can be represented by the drawing below, where the set of students is
represented at the top and that of houses at the bottom.

2Thanks to Ed Morehouse, who gave this ludic example during OPLSS 2015.
3All Harry Potter© characters, names, and places belong to J. K. Rowling and are used

under fair copyright law.

72

Gryffindor Hufflepuff Ravenclaw Slytherin

Potter
. . .

Abbot

Diggory

Macmillan
. . .

Patil

Chang

Lovegood
. . .

Malfoy
. . .

The map that assigns each student to their house is the “vertical projection”
map, while the indexed family associates to each house the set “above” it.

In the general case, the equivalence works as follows:

• to turn f ∶X → I into an indexed family, we organise X into the fibres of
f (formally, f is mapped to the indexed family {f−1(i)}i∈I),

• to turn {Xi}i∈I into a map, we amalgamate all the different Xi’s into one
(formally, this family is mapped to the function from ∑i∈I Xi to I that
maps (i, x) to i).

It is then simple to show that this forms an equivalence.
We now set out to prove the equivalence between the category of presheaves

over A and that of discrete fibrations into A. The intuition is the same as
above, except that there are now morphisms involved: presheaves correspond
to families indexed by I (a presheaf X maps each a in A to a set X(a)), while
discrete fibrations into A correspond to maps into I.

A presheaf X associates to each a in A a set X(a), and to each morphism
f ∶a→ a′ a function – ⋅ f ∶X(a′)→X(a). This can be pictured as follows:

⋅ ⋅ ⋅ ⋅

⋅
⋅

⋅
⋅
⋅
⋅

⋅
⋅
⋅
⋅

⋅
⋅

A

X(a) X(b) X(c)
X(d)

a b c df g h

–⋅f –⋅g –⋅h

For p∶E→ A to be a discrete fibration means that for each f ∶a→ a′, we can
define a map from the fibre p−1(a′) to p−1(a) that maps x to x ⋅p f , the domain
of the lifting of x along f . If we want to represent this fact in a picture similar
to the previous ones, it looks like the picture below. What should be noticed on
this picture is that, for a given x in the fibre of p over, say, c, there is exactly
one morphism over g whose codomain is x.

73

⋅ ⋅ ⋅ ⋅

⋅
⋅

⋅
⋅
⋅
⋅

⋅
⋅
⋅
⋅

⋅
⋅

B

E

a b c df g h

The idea is then simply to organise E into the fibres of p to recover a presheaf
over A, and conversely to turn a presheaf into a discrete fibration by amalgamat-
ing all the X(a)’s and the functions between them into a category: its category
of elements.

Proposition 2.2.51. For any presheaf X over A, the projection πX ∶ el(X)→ A

is a discrete fibration.

Proof. Take an object (a, x) of A and a morphism f ∶a′ → πX((a, x)) = a. First,
πX(f ∶ (a′, x ⋅X f) → (a, x)) = f ∶a′ → a, so f has an antecedent through πX .
Furthermore, if πX(g∶ (a′′, x′′) → (a, x)) = f ∶a′ → a, then g = f by definition of
πX , so πX is indeed a discrete fibration.

Conversely, to organise a discrete fibration p into its fibres, we use the fol-
lowing functor:

Definition 2.2.52. Let ∂∶A→ DFibA be the functor that maps a to the domain
functor ∂a∶A/a→ A and f ∶a→ a′ to f ○ –∶A/a→ A/a′.
Proposition 2.2.53. ∂ is well-defined.

Proof. We simply need to show that ∂a is a discrete fibration, as the facts that
∂f is a morphism of discrete fibrations and that ∂ is functorial are obvious. We
take an object f ∶a′ → a of A/a, and a morphism g∶a′′ → a′ of A. We want
to show that there is a unique morphism to f in A/a that is mapped to g by
∂a. Since g∶ fg → f is such a morphism, existence ensues. Moreover, the only
morphism that is mapped to g is g itself, which proves uniqueness.

Definition 2.2.54 (Nerve Functor). For any functor F ∶A → B, we define the

nerve functor F Ȃ∶B→ A
Ȃ

as:

F Ȃ(b)(a) = [Fa, b]
F Ȃ(b)(f ∶a→ a′) = { [Fa′, b] → [Fa, b]

u Ă u(Ff)
(F Ȃ(u∶ b→ b′))a = { [Fa, b] → [Fa, b′]

v Ă uv.

We think of ∂ as organising X into the fibres of p∶X→ A because:

Proposition 2.2.55. For all discrete fibrations p∶X → A and objects a of A,
p−1(a) ≅ ∂Ȃ(p)(a), naturally in p and a.

74

Proof. For all objects a of A, ∂Ȃ(p)(a) is the set of morphisms f ∶A/a→ X such
that

A/a X

A

f

∂a
p

commutes, and p−1(a) = {x ∣ p(x) = a}.
Let us first show that every f in ∂Ȃ(p)(a) is determined by its image on ida.

Let us define x = f(ida). We know by commutation of the triangle above that,
for all g∶a′ → a, p(f(g)) = ∂a(g) = a′, and if we see g as a morphism g∶ g → ida
in A/a, we have that p(f(g)) = ∂a(g) = g. We therefore have that f(g) is a
cartesian lifting of x along g, hence, by uniqueness of the cartesian lifting, f is
determined by f(ida).

Moreover, for any x such that p(x) = a, the mapping described above is
functorial and makes the triangle commute, and therefore yields an f . Com-
mutation of the triangle is obvious by definition. Furthermore, functoriality is
given by “functoriality” of cartesian lifting (Proposition 2.2.7).

Both sets are thus isomorphic. Naturality in a and p is direct.

We prefer using ∂Ȃ because it makes diagrammatic reasoning easier.
We finally have:

Lemma 2.2.56. The pair of functors A
Ȃ � DFibA

π

∂Ȃ

is an ad-

joint equivalence.

Proof. We need to define η∶ Id
A
Ȃ→ ∂Ȃπ and ε∶π∂Ȃ → IdDFibA and show that they

are isomorphisms and satisfy the triangle identities.
By Lemma 2.2.55, morphisms of discrete fibrations from ∂a to some p are in

one-to-one correspondence with antecedents of a through p. Let us call x the
morphism of discrete fibrations that corresponds to x through this isomorphism.
Remember from the proof that x(ida) = x.

We define η by defining all its components ηX , which are again natural
transformations, whose components are ηX,a∶X(a)→ [∂a, πX], ηX,a(x) = (a, x).
To prove naturality of ηX , we need to show that, for all f ∶a′ → a,

Xa [∂a, πX]
Xa′ [∂a′ , πX]

ηX,a

–⋅f [∂f ,πX]

ηX,a′

commutes, which, because morphisms ∂a′ → πX are determined by their image
on ida′ , amounts to showing that (a, x) ⋅πX

f = (a′, x ⋅X f). But

(a′, x ⋅X f) (a, x)
a′ a

f

πX πX

f

πX

75

exhibits (a′, x ⋅X f) as having the property of (a, x) ⋅πX
f , so they are equal.

Finally, to prove naturality of η, we need to show that for any α∶X → Y ,

X [∂, πX]
Y [∂, πY]

ηX

α [∂,πα]

ηY

commutes, which amounts to showing that

X(a) [∂a, πX]
Y (a) [∂a, πY]

ηX,a

αa [∂a,πα]

ηY,a

commutes for all a. It suffices to show that, for all x in X(a), the functors we
obtain are equal when applied to ida, which is the case, since they both map it
to (a,αa(x)).

We now define ε by defining its components εp as the functors:

π∂Ȃ(p) → p(a, g∶∂a → p) Ă g(ida)(f ∶ (a′, g(A/f))→ (a, g)) Ă g(ida) ↑p f .

Functoriality of εp is given by Proposition 2.2.7 (functoriality of cartesian lift-
ing). Naturality of ε is given by compatibility of cartesian lifting with morphisms
of discrete fibrations (Proposition 2.2.8).

We now show that η and ε are isomorphisms. We define η−1X,a∶ [∂a, πX] →
X(a) as the function that maps f ∶∂a → πX to f(ida) and show that it is an
inverse to ηX,a. In one direction, (η−1X,a ○ ηX,a)(x) = η−1X,a((a, x)) = (a, x)(ida) =
x. In the other, by recalling that two morphisms of discrete fibrations from
∂a are equal if they agree on ida, (ηX,a ○ η−1X,a)(f)(ida) = ηX,a(f(ida))(ida) =(a, f(ida))(ida) = f(ida). For ε, we define ε−1p as the functor:

x Ă (p(x), x)(f ∶x→ y) Ă (p(f)∶ (p(x), x)→ (p(y), y).
It is not difficult to show that ε−1p is well-defined, i.e., that p(f) indeed has the
desired domain and codomain. Now, we need to show that ε−1p is the inverse of
εp. We first show it on objects. In one direction, by noticing that all objects
in el(∂Ȃ(p)) are of the form (p(x), x) for some object x in X, we get (ε−1p ○
εp)((p(x), x)) = ε−1p (x(idp(x))) = ε−1p (x) = (p(x), x). In the other direction,(εp ○ε−1p)(x) = εp((p(x), x)) = x(idp(x)) = x. We then show it on morphisms. In
one direction, if f is a morphism from (p(x), x) to (p(y), y), then (ε−1p ○εp)(f) =
ε−1p (y(idp(y)) ↑p f) = ε−1p (y ↑p f) = p(y ↑p f) = f because the projection of a
cartesian lifting along f is necessarily f by definition. In the other direction, if
f is a morphism from x to y, then (εp ○ ε−1p)(f) = εp(p(f)) = y(idp(y)) ↑p p(f) =
y ↑p p(f) = f by uniqueness of cartesian lifting.

Finally, we show that η and ε satisfy the triangle identities. For the first
equality, we must show (∂Ȃ ⋅ ε)(η ⋅ ∂Ȃ) = Id∂Ȃ , for which it suffices to show
that both transformations are equal on all components p, for which it again

76

suffices to show that they are equal on all components p, a. We have ((∂Ȃ ⋅
ε)(η ⋅ ∂Ȃ))p,a = (∂Ȃ(εp))aη∂Ȃ(p),a, and when applied to f ∶∂a → p, ((∂Ȃ ⋅ ε)(η ⋅
∂Ȃ))p,a(f) = (∂Ȃ(εp))a(η∂Ȃ(p),a(f)) = (∂Ȃ(εp))a((a, f)) = εp ○ (a, f). Since
morphisms of discrete fibrations from ∂a are determined by their values on ida,
to show that this is equal to f , we just show that they are equal when applied
to ida. ((∂Ȃ ⋅ ε)(η ⋅ ∂Ȃ))p,a(f)(ida) = εp((a, f)(ida)) = εp((a, f)) = f(ida). For
the second identity, we must show that (ε ⋅π)(π ⋅η) = Idπ, which is equivalent to
showing that they are equal on all components. We have that ((ε ⋅π)(π ⋅η))X =
επX

πηX . To show that both transformations are equal on objects, we apply
them to an object (a, x) and get ((ε ⋅ π)(π ⋅ η))X((a, x)) = επX

(πηX ((a, x))) =
επX

((a, (a, x))) = (a, x)(ida) = (a, x). On morphisms, if f ∶ (a′, x′) → (a, x),
then ((ε ⋅ π)(π ⋅ η))X(f) = επX

(πηX (f)) = επX
(f ∶ (a′, (a′, x′)) → (a, (a, x))) =(a, x)(ida) ↑πX

f = (a, x) ↑πX
f = f .

Restriction and Extensions

Required: 2.2.4, beginning of 2.2.5.
Recommended: Ȃ.

Remember that, if F is a functor from C to D, then it induces three functors
between C

Ȃ
and D

Ȃ
. The first one is restriction along F op , denoted by ∆F .

When C and D are small, this restriction functor admits left and right adjoints,
respectively given by left and right Kan extension along F op :

Lemma 2.2.57. The following adjunctions hold

C
Ȃ

D
Ȃ

.

∑F

∆F

∏F

�

�

Proof. For the top adjunction, it suffices to show that, for all presheaves X over
C and Y over D, [∑F (X), Y] ≅ [X,∆F (Y)] naturally, which is given by the
following computation:

[∑F (X), Y] ≅ ∫
d
[∑F (X)(d), Y (d)] by Example 2.2.14

≅ ∫
d
[∫ c

X(c) × [d,Fc], Y (d)]
≅ ∫

d
∫
c
[X(c) × [d,Fc], Y (d)]

≅ ∫
c
∫
d
[X(c), [[d,Fc], Y (d)]] by Fubini and copower

≅ ∫
c
[X(c),∫

d
[[d,Fc], Y (d)]]

≅ ∫
c
[X(c), Y (F (c))] by the Yoneda lemma

≅ ∫
c
[X(c),∆F (Y)(c)]

≅ [X,∆F (Y)].
77

Since each step arises as a natural transformations, the whole computation is
also natural.

The idea is the same for the bottom adjunction. Here is the computation:

[Y,∏F (X)] ≅ ∫
d
[Y (d),∏F (X)(d)]

≅ ∫
d
[Y (d),∫

c
[[Fc, d],X(c)]]

≅ ∫
d
∫
c
[Y (d), [[Fc, d],X(c)]]

≅ ∫
c
∫
d
[Y (d) × [Fc, d],X(c)]

≅ ∫
c
[∫ d

Y (d) × [Fc, d],X(c)]
≅ ∫

c
[Y (Fc),X(c)] by the co-Yoneda lemma

≅ ∫
c
[∆F (Y)(c),X(c)]

≅ [∆F (Y),X].

Finally, it will be useful at some point to know what ∆F and ∑F amount
to when presheaves are translated to discrete fibrations (at least in some cases),
which is what we explain next.

Lemma 2.2.58. If F ∶C→ D is a functor and Y is a presheaf over D, then the
functor F̃ ∶ el(∆F (Y))→ el(Y) that maps (c, x) to (Fc, x) and f ∶ (c, x)→ (c′, x′)
to Ff ∶ (Fc, x)→ (Fc′, x′) makes

el(∆F (Y)) el(Y)
C D

F̃

π∆F (Y) πY

F

a pullback.

Proof. The proof is direct:

• for objects, it suffices to show that an object c of C and an element (Fc, x)
of el(Y) have a unique common antecedent in el(∆F (Y)), which is neces-
sarily (c, x),

• for arrows, it suffices to show that a morphism f ∶ c → c′ of C and a
morphism F (f)∶ (Fc, x) → (Fc′, x′) of el(Y) have a unique antecedent
in el(∆F (Y)), which is necessarily f ∶ (c, x)→ (c′, x′).

Lemma 2.2.59. If F ∶C→ D is a discrete fibration and X is a presheaf over C,
then π∑F (X)∶ el(∑F (X))→ D is isomorphic to FπX .

Proof. We want to show that there is an isomorphism i∶ el(X) → el(∑F (X))
such that

78

el(X) el(∑F (X))
C D

i

πX π∑F (X)

F

commutes. We know that elements of ∑F (X) are pairs of an object d of D and
a pair (1 → X(c), F (c) ← d) quotiented by the usual triangle equation. We
can thus define i as the functor that maps (c, x) to (Fc, (⌜x⌝ , idFc)) (and maps
f to “pre-composition” by Ff). This functor is not invertible in the general
case, but because F is a discrete fibration, by Lemma 2.2.27, we have that∑F (X)(d) ≅ ∑Fc=dX(c), so it is indeed invertible.

These results may be rephrased in the following terms: if we denote by
∆F ∶DFibD → DFibC the functor that pulls back along F and by ∑F ∶DFibC →
DFibD the functor that post-composes with F , then

C
Ȃ

D
Ȃ

DFibC DFibD

π

∆F

π

∆F

and
C
Ȃ

D
Ȃ

DFibC DFibD

∑F

π π

∑F

commute up to isomorphism (the second one only on the condition that F be a
discrete fibration).

2.2.6 Exact Squares

Required: 2.2.4,2.2.5.
Recommended: 2.2.1.

We will use Guitart’s theory of exact squares [45] several times in this dis-
sertation, so we explain it now.

Definition 2.2.60. A square is a natural transformation

A B

C D.

T

S V

U

ϕ (2.2)

where A, B, C and D are small categories and S, T , U , and V are functors.

Any square yields by restriction a square

A
Ȃ

B
Ȃ

C
Ȃ

D
Ȃ

.

∆T

∆S

∆U

∆V

∆ϕ

Indeed, take a presheaf X over D, ∆ϕ is the natural transformation from XV T

to XUS given at a by (∆ϕ)a∶X(V (T (a))) X(ϕa)ÐÐÐÐ→ X(U(S(a))). This new

79

square gives by adjunction (the so-called mate calculus) two further squares as
on the left and right:

A
Ȃ

B
Ȃ

C
Ȃ

D
Ȃ

∆T

∑S

∆U

∑V∑ϕ

A
Ȃ

B
Ȃ

C
Ȃ

D
Ȃ

.

∏T

∆S

∏U

∆V

∏ϕ

For example, the left-hand one is defined as

A
Ȃ

B
Ȃ

B
Ȃ

C
Ȃ

C
Ȃ

D
Ȃ

,

∑S

∆T

∑V

∆S ∆V

∆U

∆ϕ

εS
ηV

where ηS and εV come from the adjunctions ∑S Ȃ ∆S and ∑V Ȃ ∆V re-
spectively, and the right-hand square is defined similarly using the adjunctions
∆T Ȃ ∏T and ∆U Ȃ ∏U .

Definition 2.2.61. A square ϕ is exact if and only if ∑ϕ is an isomorphism.

The following is well-known:

Property 2.2.62. A square ϕ is exact if and only if ∏ϕ is an isomorphism.

The notion of exactness thus corresponds to commutation up to isomorphism
of the two diagrams above.

Remark. Our experience with exact squares suggests that it may be difficult to
remember the directions of ∑’s, ∆’s and ∏’s, as well as of the induced natural
transformations. In an attempt to try and spare the reader a few headaches, our
mnemonic is that the original transformation ϕ points to the ∑’ed functor if we
are to reason about ∑ϕ, and from the ∏’ed functor if we are to reason about∏ϕ. Furthermore, induced natural transformations flow along left adjoints and
against right adjoints (hence along ∑’s for ∑ϕ, and against ∏’s for ∏ϕ).

Notation 2.2.63. In the following, we will manipulate diagrams of restriction
and extension functors as above. In order to reduce some notational clutter,
hats will be omitted and arrows will point in the direction of underlying functors.
This means that ∆ arrows will point in the “wrong” direction, in the sense that if

F ∶X → Y , we will write Y
∆F←ÐÐX for Y

Ȃ ∆FÐÐ→X
Ȃ

. We find that this notation also
spares us the mental overhead of wondering about the direction of underlying
functors and matching over ∏,∑ and ∆. The price to pay is that when we draw
commuting diagrams, sources and sinks are sometimes less easy to spot. We try
and tame this difficulty by writing our diagrams from left to right (and from top
to bottom for vertical arrows) when possible.

Lemma 2.2.64 (Guitart [45, Theorem 1.2] (zigzag criterion)). A square as
in (2.2) is exact if and only if, for all objects c of C, b of B, and morphisms
f ∶Uc→ V b:

• there is an object a of A such that f factors as Uc
UgÐ→ USa

ϕaÐ→ V Ta
V hÐÐ→

V b,

80

• and for all two such factorisations Uc
UgÐ→ USa

ϕaÐ→ V Ta
V hÐÐ→ V b and

Uc
Ug′ÐÐ→ USa′

ϕa′ÐÐ→ V Ta′
V h′ÐÐ→ V b, there exists a commuting diagram (which

Guitart calls a lantern)

c

Sa ⋅ . . . ⋅ Sa′

g g′

St0 St1 Stn−1 Stn

Ta ⋅ . . . ⋅ Ta′

b.
h h′

Tt0 Tt1 Ttn−1 Ttn

Here is a list of useful examples of exact squares:

Lemma 2.2.65 (Guitart [45, Examples 1.14.2 and 1.14.3]). Any comma (resp.
cocomma) square is exact.

Lemma 2.2.66 (Guitart [45, Examples 1.14.1 and 1.14.4]). For any functor
f ∶A → B, the square below left is exact; furthermore, the square below right is
exact if and only if f is fully faithful:

A B

A B

f

f

idf

A A

A B
f

f
idf

Lemma 2.2.67 (Guitart [45, Theorem 1.8]). Exact squares are stable under
horizontal composition.

Lemma 2.2.68. Any square (2.2) in which ϕ and S are identities and V is
fully faithful is exact.

Proof. We obtain the given square as the horizontal composite

A B B

A B C.

T

T

T

U

V

V

The big square is exact by Lemma 2.2.67 because it is the horizontal composite
of two squares that are exact by Lemma 2.2.66.

A slightly more general version of this result is:

Lemma 2.2.69. Any square as in (2.2) in which ϕ is an identity, S is an
equivalence, and V is fully faithful is exact.

81

Proof. By the zigzag criterion. Consider a morphism f ∶Uc → V b. Since S is
an equivalence, there exists a functor S′∶C → A and a natural isomorphism

η∶ IdC → SS′. We can thus factor f as Uc
UηcÐÐ→ USS′c = V TS′c f○(Uη−1c)ÐÐÐÐÐ→ V b.

Since V is full, f ○ (Uη−1c) is the image of some h through V , which gives us the
first point of the criterion.

Now, assume a decomposition of f as Uc
Ug′ÐÐ→ USa = V Ta V h′ÐÐ→ V b. Because

S is an equivalence, it is in particular full, so g′η−1c is the image of some k

through S. Our candidate lantern is then:

c

SS′c Sa

TS′c Ta

b.

ηc g′

Sk

Tk

h h′

The top part commutes because Sk = g′η−1c by definition of k, and the bottom
part commute because it does when V is applied to it, and V is faithful.

Here are two lemmas showing that pullbacks of (op)fibrations are exact
squares (though not in the same direction!):

Lemma 2.2.70. Any pullback square (2.2) with V a fibration is exact.

Proof. We proceed by the zigzag criterion. Consider any f ∶Uc → V b. Let us
first establish existence of the desired factorisation, by considering any cartesian
lifting l∶ b0 → b of b along f . We obtain Uc = V b0, hence by universal property
of pullback a unique a such that c = Sa and b0 = Ta. The original f thus factors
as

Uc
U(id)ÐÐÐ→ USa

idÐ→ V Ta
V lÐ→ V b.

We now need to show that any factorisation is connected to this one by some
lantern. So consider any factorisation of f as

Uc
UgÐ→ USa′

idÐ→ V Ta′
V hÐÐ→ V b.

Because fibrations are stable under pullback, S is a fibration, so we may pick a
cartesian lifting, say k∶a′′ → a′, of a′ along g, so that in particular Sa′′ = c and
Sk = g. Now, we have V Ta′′ = USa′′ = Uc = USa = V Ta, hence a commuting
square as the bottom part of

82

Ta′′ Ta′

Ta b

V Ta′′ V Ta′

V Ta V b

Tk

V Tk

l

V b

u
h

V h

(because V Tk = USk = Ug so V h ○ V Tk = f = V l). So by cartesianness of l, we
obtain a dashed u making the top square above commute. But since V u = id ,
we have that U(id) = V u so by universal property of pullback again there exists
a unique w∶a′′ → a such that Sw = id and Tw = u. We thus obtain the following
lantern:

c

Sa′ Sa′′ Sa

Ta′ Ta′′ Ta

b,

g

SwSk

TwTk

lh

as desired.

Lemma 2.2.71. Any pullback square (2.2) with U an opfibration is exact.

Proof. By [45, Theorem 1.9], ϕ is exact if and only if ϕop is exact. So, if ϕ is
a pullback and U is an opfibration, then ϕop is also a pullback, and its “right-
hand” morphism is Uop , which is a fibration, so ϕop is exact by Lemma 2.2.70,
and thus so is ϕ.

2.2.7 Sheaves

Required: 2.2.5.
Recommended: 2.2.1,2.2.4.

While not used as extensively as presheaves, and hidden much deeper in
the details, sheaves are also an essential structure that appears throughout our
work. They are at the heart of the recasting of innocence in game semantics by
Hirschowitz [50], later reused by Tsukada and Ong [97].

A presheaf X on C is a sheaf when it has unique amalgamations, which
basically means that, if we know the value of X on sufficiently many subobjects
fi of c, then we can uniquely recover the value of X at c (we say that the fi’s
cover c). The intuition comes from topological spaces: if we take C to be the
category of open sets of some topological space (with inclusions as morphisms),
then we can uniquely recover the value of a function f on an open set U if we are
given its restrictions to open sets Vi that cover U . Our presentation is largely
based on Mac Lane and Moerdijk [77] and Johnstone [57].

83

Our running example will be that of the category of open sets of a topological
space X:

Example 2.2.72. If X is a topological space, we may define C as the category
whose objects are open sets of X and whose morphisms are inclusions thereof.
We can then define the set of functions from X to R as a presheaf P on C whose
sets P (U) are RU , the sets of all functions from U to R, and whose action
on morphisms is restriction. We can similarly define the set of continuous or
bounded functions from X to R.

Let us take an open set U of X and a family of open sets Vi such that
the union Ȃi Vi = U , and assume we are given functions fi for all Vi that are
compatible in the sense that fi∣Vi∩Vj

= fj∣Vi∩Vj
. Then, there is a single way to

define a function f on U whose restriction to each Vi is fi. Moreover, if all fi’s
are continuous, then so is f . What this means is that we can amalgamate the
fi’s into a single f , and we say that the presheaf of functions (or continuous
functions) is a sheaf. However, even if all fi’s are bounded, f may not be (take
U = R, Vi = (−i, i), and fi = idVi

), so the presheaf of bounded functions is not a
sheaf: we cannot amalgamate the fi’s into an f .

Definition 2.2.73. Let C be a small category and c an object of C. A sieve S
on c is a family of morphisms {fi∶ ci → c} that is closed under pre-composition,
i.e., if f ∶ c′ → c is in S and g∶ c′′ → c′ is a morphism, then fg is also in S.

Note that a sieve S on c is actually a subpresheaf of yc defined on c′ by the
set of all f ∶ c′ → c in S and whose action on morphisms is pre-composition.

Example 2.2.74. If C is the category of open sets of a topological space X

ordered by inclusion, then a sieve on U is a downwards-closed family of open
sets Vi ⊆ U .

Given a sieve S on c and a morphism f ∶ c′ → c, one may define the pullback
f∗(S) of S along f as the family of morphisms g such that fg is in S.

Property 2.2.75. For all objects c, sieves S on c and morphisms f ∶ c′ → c,
f∗(S) is a sieve.

Example 2.2.76. In the case of open sets of a topological space, if S = {Vi} is
a sieve on U and V is included in U , then the construction above gives {Vi∩V }.
Definition 2.2.77. A Grothendieck topology (or simply a topology) J on a
category C is a functor that assigns to each object c of C a collection of sieves
J(c) which are called J-covering (or simply covering), and acts on morphisms
by pullback. Covering sieves must enjoy the following properties:

• the maximal sieve of all maps to c must be in J(c),
• if S is in J(c) and f ∶ c′ → c, then f∗(S) is in J(c′),
• if S is in J(c) and R is a sieve on c such that, for all f ∶ c′ → c in S, f∗(R)

is in J(c′), then R is in J(c).
These conditions are actually very natural. If we think of f ∶ c′ → c as “pick-

ing” a piece of c (which is exactly what happens with topological spaces), then
the conditions above can be rephrased in words as:

84

• taking all pieces of c must cover c,

• if some pieces of c cover c, then restricting these pieces to c′ must cover
c′,

• if some pieces ci cover c and we consider some other pieces c′j , then the
only way for c′j not to cover c is for them not to cover one of the ci’s.

Example 2.2.78. Some simple examples of topologies are:

• the trivial topology, where the only sieve that covers c is the sieve {f ∶ c′ →
c} of all morphisms to c,

• the coarsest topology, where any sieve S on c covers it,

• given a topological space X and C defined as the category of open sets of
X, a sieve {Vi} covers U if Ȃi Vi = U .

An example of crucial importance in this dissertation is that of topology
induced by a functor, which can mean two different things. The first one is,
given a category D equipped with a topology J , a way to transfer the topology
on J to a subcategory of D. The other one, which we are interested in here, is,
given a functor F ∶C → D, a way to equip D with a topology basically saying
that an object d is covered by the collection of objects from c that map into d.

Example 2.2.79. If F ∶C → D is a functor, then a sieve S is covering for the
topology J induced by F if it contains all morphisms of the form Fc → d. This
is indeed a topology because:

• the sieve of all morphisms to d indeed contains all morphisms Fc→ d,

• if S contains all morphisms Fc→ d and f ∶d′ → d is a morphism, then for
all g∶Fc → d′, fg is a map from Fc to d, so it is in S, and therefore g is
in f∗(S), which is thus a covering sieve,

• if S and R verify the hypotheses of the third item in the definition above,
then, in particular, for all f ∶Fc→ d, f∗(R) contains all morphisms Fc′ →
Fc, so in particular it contains F (idc) = idFc, so f = f idFc is in R, and
so R indeed covers c.

Definition 2.2.80. Let C be a small category equipped with a topology J , and
S be a covering sieve on c. If X is a presheaf over C, an S-matching family
of elements of X assigns to each element f ∶ c′ → c of S an element xf of X(c′)
such that xf ⋅ g = xfg for all f ∶ c′ → c in S and g∶ c′′ → c′.

An amalgamation of such a matching family is an element x in X(c) such
that x ⋅ f = xf for all f in S.

Note that an S-matching family is equivalently a natural transformation
from S (seen as a subpresheaf of yc) to X. An amalgamation is thus a morphism
yc →X such that

S yc

X

85

commutes.

Example 2.2.81. If S is the maximal sieve of all morphisms to c, an S-
matching family of elements of X is a family xf indexed by all morphisms
f ∶ c′ → c of elements of X(c′), such that xf ⋅ g = xfg. An amalgamation of
such a family is an element x of X(c) such that x ⋅ f = xf for all f . But
then, necessarily x = x ⋅ idc = xidc

, and such a choice indeed works, because
x ⋅ f = xidc

⋅ f = xf .
If the empty sieve covers c, a matching family of elements of X for it is an

empty family. An amalgamation of such a family is any element in X(c).
Let C be the category of open sets of a topological space X equipped with the

topology generated by these open sets and P is a presheaf over C. Given an open
set U , a sieve S = {Vi} that covers U , and an element x in P (Vi) we denote
by x∣Vj

the “restriction” of x to Vj, defined as x ⋅ f , where f is the inclusion of
Vj into Vi. An S-matching family of elements of P for {Vi} is then a family of
elements xi of P (Vi) such that xi∣Vi∩Vj

= xj∣Vi∩Vj
for all Vi and Vj. Indeed, if

Vk = Vi ∩ Vj, we have that xi∣Vi∩Vj
= xk = xj∣Vi∩Vj

. An amalgamation of such a
family is an x in P (U) such that x∣Vi

= xi for all Vi.

In particular, if P is the presheaf of functions to R, matching families and
amalgamations are exactly what is discussed in Example 2.2.72.

Definition 2.2.82. If C is a small category and P is a presheaf on C, P is
a sheaf for the topology J if, for all objects c and sieves S covering c, there
is a unique amalgamation to each S-matching family. We denote by Sh(D, J)
the full subcategory of D

Ȃ
spanning sheaves for J (or Sh(D) if J is clear from

context).

If we see sieves as subpresheaves of some yc, P is a sheaf when, for all
objects c and sieves S covering c, the restriction map Y (c) ≅ [yc, Y]→ [S,Y] is
a bijection.

Example 2.2.83. We have already seen that, in the case of the trivial topology,
no matter the presheaf, there is always a unique amalgamation to any matching
family, so all presheaves are sheaves.

In the case of the coarsest topology, there must be a unique amalgamation
for any matching family of any covering sieve, in particular the empty sieve, so
X(c) must be a singleton, and sheaves are exactly terminal presheaves.

In the case of topological spaces, the presheaves of functions and that of
continuous functions are sheaves, but that of bounded functions is not.

Finally, in the case of the topology induced by a functor, which is the case
we are interested in, we have the following characterisation:

Lemma 2.2.84. If F ∶C → D is fully faithful and Y is a presheaf over D, then
Y is a sheaf if and only if it is in the essential image of ∏F .

Proof. Let JF denote the topology induced by F . Further let i∶Sh(D, JF) Ă D
Ȃ

denote the embedding of sheaves into presheaves.
F is cover-reflecting (if we consider the trivial topology on C), which means

that covering sieves in D of objects in C can be transported back to covering
sieves in C. Formally, a functor F is cover-reflecting if, for all objects c of C

86

and sieve R covering Fc, there is a sieve S covering c such that F (f) is in R for
all morphisms f in S. In our case, this is obvious because a sieve R covers Fc
if and only if it contains F /Fc, so we may take S to be the full covering sieve.

By [57, Proposition C 2.3.18], ∏F thus factors through i, say as R, because
all presheaves over C are sheaves. Therefore, the adjunction ∆F Ȃ ∏F restricts
to an adjunction (∆F ○ i) Ȃ R because i is fully faithful. This is an adjoint
equivalence by the comparison lemma [57, Lemma C 2.2.3]. So C

Ȃ
and Sh(D, JF)

are equivalent through ∏F , hence the result.

2.2.8 Factorisation Systems

Required: Ȃ.
Recommended: Ȃ.

Factorisation systems are a tool we will use extensively throughout this dis-
sertation. The property that gives factorisation systems their name is that
they can factor any arrow of a given category as a composite of arrows of two
given classes L and R. Another property of factorisation systems is that L and
R are orthogonal, which ensures the existence of diagonal fillers for particular
commuting squares.

In any category C, we say that l∶A → C is left orthogonal to r∶B → D, or
equivalently that r is right orthogonal to l, if and only if for all commuting
squares as the solid part of

A B

C D,

u

l

v

d
r

there exists a unique d as shown making both triangles commute.

Notation 2.2.85. We denote by l � r the existence of a unique such d for all u
and v, and extend the notation to sets of arrows by writing L � R when l � r for
all l ∈ L and r ∈ R. Similarly, L� denotes the class of all arrows that are right
orthogonal to all arrows of L, and symmetrically for �R.

Definition 2.2.86. A factorisation system [17] on a category C consists of two
classes of maps L and R such that L = �R, L� = R, and any morphism f ∶C →D

factors as C
lfÐ→ Af

rfÐ→D with lf ∈ L and rf ∈ R.

Example 2.2.87. The first example of a factorisation system is given by the
classes Epi and Mono, respectively of surjections and injections, in Set. Indeed,
it is well-known that all functions factor through their images as a surjection
followed by an injection. Perhaps less well-known is that Epi and Mono are
orthogonal. Indeed, take a commuting square

X X ′

Y Y ′

u

l r

v

87

with l ∈ Epi and r ∈ Mono. Then the definition d(l(x)) = u(x) indeed defines
a function: any y in Y has an image through d because l is surjective, and
the definition does not depend on the chosen x because, if l(x1) = l(x2), then
r(d(l(x1))) = r(u(x1)) = v(l(x1)) = v(l(x2)) = r(u(x2)) = r(d(l(x2))), and r

is injective. This is the only choice of function from Y to X ′ that makes both
triangles commute because r is mono.

This extends to presheaf categories: for any small category C, epi and monic
natural transformations form a factorisation system on C

Ȃ
, which we also denote

by (Epi,Mono). The factorisation of arrows is the same as in the previous case,
the only difference is that we need to show that the definition of the image is
a presheaf, and that the transformations going to and coming from the image
are natural, which is easy. For orthogonality, if we are in the same case as
above, but where objects of the diagram are presheaves and arrows are natural
transformations, then the definition dc(lc(x)) = uc(x) is the only choice of func-
tion that makes both triangles commute, by the same arguments as above, and
because a natural transformation is epi (or mono) exactly when all its compon-
ents are. It then remains to show that this mapping is natural, i.e. that, for
all f ∶ c → c′, dc(y ⋅ f) = dc′(y) ⋅ f , but that is easy because if y = lc′(x), then
dc′(y) ⋅ f = dc′(lc′(x)) ⋅ f = uc′(x) ⋅ f = uc(x ⋅ f) = dc(lc(x ⋅ f)) = dc(lc(x) ⋅ f) =
dc(y ⋅ f).

Another example, in Cat this time, is (Bo,FF), where Bo is the class of
functors that are bijective on objects and FF is the class of fully faithful functors.
All functors F ∶C → D factor through E, which has the same objects as C, and
whose homsets are defined by E(c, c′) = D(Fc,Fc′). The functor C → E is the
identity on objects but sends f to Ff and the functor E → D is the identity on
morphisms but maps c to Fc. When faced with a commuting square

C C ′

D D′,

U

L R

V

where L is bijective on objects and R is fully faithful, the diagonal filler ∆∶D →
C ′ may be defined as:

• ∆(d) = U(c), where c is the only object of C such that L(c) = d and

• ∆(f ∶d1 → d2) = g, where g is defined as follows: if we call ci the only
object of C such that L(ci) = di, then R(U(ci)) = V (L(ci)) = V di, so by
full faithfulness of R, V f has a unique antecedent g∶ c1 → c2.

It is then easy to show that this choice of ∆ is the only one that makes both
triangles commute.

The following characterisation of factorisation systems sometimes gives a
better intuition:

Property 2.2.88. A pair (L,R) of classes of maps of C form a factorisation
system exactly when:

• all arrows f ∶C → D may be factored as C
lfÐ→ Af

rfÐ→ D, with lf ∈ L and
rf ∈ R and that factorisation is unique up to a unique isomorphism and

88

• L and R contain the isomorphisms and are closed under composition.

Using this property, we can easily give a non-example:

Example 2.2.89. The classes (Mono,Epi) do not form a factorisation system
on Set. Indeed, all arrows factor as an injection followed by a surjection, but
that factorisation may not be unique. Consider any function f ∶X → Y , then f

may be factored through its graph as X
lÐ→X × Y rÐ→ Y , with

l∶ ∣ X → X × Y
x Ă (x, f(x)) and r∶ ∣ X × Y → Y(x, y) Ă y,

but it may also be factored through its (generally not isomorphic) cograph as

X
lÐ→X + Y rÐ→ Y , with

l∶ ∣ X → X + Y
x Ă inlx

and r∶ RRRRRRRRRRRRR
X + Y → Y

inlx Ă f(x)
inr y Ă y

or

l∶ ∣ X → X + Y
x Ă inr f(x) and the same r.

In terms of orthogonality, the classes Mono and Epi are weakly orthogonal, in
the sense that for all commuting squares

A B

C D

u

l

v

r

with l an injection and r a surjection, there exists a diagonal filler, but it is not
necessarily unique. For example,

0 2

1 1

possesses two distinct diagonal fillers.

The factorisation systems that we will be interested in will be cofibrantly
generated. Cofibrant generation refers to the fact that L and R are defined from
some generating set J , merely by the lifting property: R = J� and L = �R. The
point here is that J is a set, rather than a class. In fact, in many useful cases,
it is even a rather small set. In our case, it will be bounded by the cardinality
of C. Though it is not trivial – this uses the famous “small object” argument,
we have:

Theorem 2.2.90 (Bousfield [17]). For any set J of maps in any locally present-
able category C, (�(J�), J�) forms a factorisation system. We say this factor-
isation system is cofibrantly generated by J .

89

Example 2.2.91. The (Epi,Mono) factorisation system on Set is cofibrantly
generated by the singleton {2 → 1}. For any C, the (Epi,Mono) factorisation

system on C
Ȃ

is cofibrantly generated by the set of all maps ∇yc ∶ yc + yc → yc, for
c ∈ ob(C).

A crucial property of factorisation systems is the following:

Lemma 2.2.92. For any factorisation system (L,R), L contains all isomorph-
isms and is stable under right cancellation, composition and pushout.

Stability under right cancellation means that if some composite g ○ h is in L

for h ∈ L, then so is g.

Stability under pushout means that given any pushout square

A B

C D,

f

l

g

l′

if l ∈ L, then also l′ ∈ L.

Dually, R contains all isomorphisms and is stable under left cancellation,
composition and pullback (in the obvious dual sense to stability under right can-
cellation and pushout).

So in particular both classes determine identity-on-objects subcategories of
C.

2.2.9 Pseudo Double Categories

Required: Ȃ.
Recommended: Ȃ.

A pseudo double category [31, 32, 42, 43, 72, 37] D consists of a set ob(D)
of objects, shared by a “horizontal” category Dh and a “vertical” bicategory Dv.
Following Paré [90], Dh, merely being a category, has standard notation (normal
arrows, ○ for composition, id for identities), while the bicategory Dv earns fancier
notation (for arrows, ● for composition, id

● for identities). Moreover, for
each “square” as on the left below, D comes equipped with a set of cells α, which
have vertical, resp. horizontal, domains and codomains, denoted by domv(α),
codv(α), domh(α), and codh(α). We picture this as on the right below.

X ′ Y ′

X Y

h

u u′

h′

X ′ Y ′

X Y

h

u u′

h′

α

where u = domh(α), u′ = codh(α), h = domv(α), and h′ = codv(α). D is
furthermore equipped with operations for composing cells: ○ composes them
along a common vertical morphism, ● composes along horizontal morphisms.
Both vertical compositions (of morphisms and cells) may only be associative up
to coherent isomorphism. The full axiomatisation is given by Garner [37], and
we here only mention the interchange law, which says that both ways of parsing
the following diagram coincide:

90

X X ′ X ′′

Y Y ′ Y ′′

Z Z ′ Z ′′,

l

u

k

u′

l′

k′
u′′

v

h

v′

h′

v′′

α α′

β β′

i.e., (β′ ○ β) ● (α′ ○ α) = (β′ ● α′) ○ (β ● α).
For any pseudo double category D, we denote by DH the category with

vertical morphisms as objects and cells as morphisms, and by DV the bicategory
with horizontal morphisms as objects and cells as morphisms. Domain and
codomain maps extend to functors domv, codv ∶DH → Dh and domh, codh∶DV →
Dv. We will refer to domv and codv simply as dom and cod, reserving subscripts
for domh and codh .

Some of our constructions will be based on this example:

Example 2.2.93. Starting from any category C with pushouts, consider the
pseudo double category Cospan(C) with

• C itself as horizontal category, i.e., Cospan(C)h = C,

• as vertical morphisms X Y all cospans X → U ← Y , and

• as cells all commuting diagrams

X X ′

U U ′

Y Y ′,

k

h

l (2.3)

with dom(k, l, h) = k, domh(k, l, h) = (X → U ← Y), etc.

Composition in Cospan(C)v is defined by (some global choice of) pushout and
composition in Cospan(C)V follows by universal property of pushout.

91

Chapter 3

Presheaves and Concurrent

Traces

3.1 Introduction

In this chapter, we give concrete examples of how to represent concurrent traces
of executions as presheaves. We give three different applications: Petri nets,
graph rewriting, and interaction nets [65]. We do not consider the results dis-
cussed in this chapter to be very important, as it is mostly meant to be an
introduction to the use we will make of presheaves in Chapters 4 and 5 to
model concurrent execution traces. However, we do have a nice result about
how to represent the unfolding of a system, which is significantly simpler than
previous presentations.

This work is inspired by work by Baldan et al. [10], who give a general frame-
work for rewriting systems based on adhesive categories. They give a definition
of process in their setting, which is a sequence of rewriting steps considered up to
permutation of independent steps, and they show how to build the unfolding of
any object. Here, we propose a different approach to model rewriting, processes,
and unfoldings, which is based on string diagrams. The main contribution of our
work is a direct, combinatorial description of processes and unfoldings in terms
of presheaves. Just like in Baldan et al.’s work, the unfolding of an object has
a universal property (slightly different from theirs, though very close in spirit).
This framework can adequately model executions of Petri nets or interaction
nets [65], as well as processes in simple concurrent languages such as CCS [50],
the π-calculus [29], or the join-calculus [36]. It can also model some form of
graph rewriting, which has yet to be compared to existing frameworks, such as
DPO [33] and SPO [34]. Finally, the same techniques can model interaction in
HON game semantics [25] (which is described in Chapter 5).

The main difficulty in Baldan et al.’s work is that a process is more than the
sequence of its successive states (or positions): it also records all the different
occurrences of the rules that were applied. In our framework, this is dealt with
by describing the whole process as a single presheaf that describes a combin-
atorial object of higher dimension. Given a signature Σ that describes a set
of objects (which are the presheaves over a category C) and rewriting rules on

92

these objects (given as a set R of spans of such objects), we build a pseudo
double category D that models rewriting on this set of objects according to the
given rewriting rules. This pseudo double category will have as objects the set
of objects described by Σ, and as vertical morphisms from an object Y to an
object X all the execution traces (also called rewriting traces) that correspond
to rewriting X into Y according to the rules given by Σ. Processes are defined
as particular cospans in C[R]Ȃ (the category of presheaves over some category
C[R] constructed from C and R). Such a cospan Y → U ← X describes an
execution trace whose starting position is X and whose final position is Y . We
build C[R] from C by adding an object r for each rewriting rule in R and some
meaningful morphisms from objects of C to r. We then define seeds, which are
the local shape of a rewriting step, by equipping each representable presheaf yr
with its initial and final positions X and Y (as given by the rewriting rule), thus
forming a cospan Y → yr ← X. Rewriting steps are then defined by embedding
seeds into larger positions (thus allowing rewriting steps to occur in context).
This whole process is reminiscent of Example 2.2.48. Finally, rewriting traces
are defined to be compositions of rewriting steps in the bicategory of cospans
in C[R]Ȃ. We then derive the unfolding UX of any object X as the colimit of all
the rewriting traces whose starting position is X.

Under some assumptions on the category C, the presheaves over C[R] enjoy
a graphical notation that is both close in spirit to string diagrams, and also
inspired by that of graphs (but with higher-dimensional edges and multiple types
of edges). For this reason, we usually call them higher-dimensional graphs or
string diagrams (though none of these terms are actually very accurate).

In Section 3.2, we show how to derive a pseudo double category from a
signature. We start by describing how we describe states (or positions) in Sec-
tion 3.2.1, then the dynamics of the execution in Section 3.2.2, how to organise
this into a pseudo double category D in Section 3.2.3, and how to derive a cat-
egory of execution traces from D in Section 3.2.4. Finally, we show to describe
the unfolding of an object in Section 3.3.

3.2 From Signatures to Pseudo Double Catego-

ries

This whole section is devoted to explaining the construction in detail. We also
give applications and illustrate the construction on a running example.

3.2.1 Signatures and Positions

Required: 2.2.5.
Recommended: Ȃ.

We start from basic data, which we call signatures and set out to create
pseudo double categories of concurrent traces from them. We give three ex-
amples our techniques apply to, as well as a concrete running example on a
particular Petri net.

Let us first give notations for our examples.

93

Notation 3.2.1. A Petri net is a tuple (P,T, δ,M), where P is a set of places,
T is a set of transitions, δ∶T → NP ×NP is the transition function, and M ∶P →
N is the initial marking. Very briefly, for any marking M ∶P → N, M(p) is the
number of tokens in the place p, and for any transition t, δ(t) ∈ NP × NP can
be written as δ(t) = (δcons(t), δcrea(t)), where the first component associates to
each place p the number of tokens of p consumed by firing the transition t and
the second component associates to each place p the number of tokens created by
firing t.

A graph rewriting system S is a set of spans r = Lr ← Ir → Rr of graphs
describing the possibility to rewrite Lr into Rr (how this behaves on larger graphs
that contain a copy of Lr depends on the exact formalism used).

Finally, our third example is that of interaction systems [65], which are akin
to graph rewriting for interaction nets. Informally, an interaction net is some
kind of circuit containing “gates” called cells whose types are given by symbols.
Each symbol has an arity that determines the number of incoming ports for cells
of this type. Cells always have a unique outgoing port. An interaction net is a
circuit given by a number of cells and free ports, where ports are connected by
wires, which are connected to exactly two or zero ports. For example, here is a
drawing of an interaction net with symbols α, β, and γ, with arities 2, 1, and 0

respectively:

α

β

γ

α

β

β

α

It has seven cells, eleven wires (among which one is connected to no port and
drawn as a loop) and four free ports. Formally, given a pair (A,a) of a set
A of symbols and an arity function a∶A → N, an interaction net is a tuple(C, l,W0,W2, F, p) where C is the set of cells, l∶C → A is the labelling of cells,
W0 is the set of wires connected to 0 ports, W2 is the set of wires connected
to 2 ports, F is the set of free ports, and p∶W2 → P2(F + ∑c∈C a(l(c)) + 1) is
the function that maps each wire to the ports it is connected to (this function
must verify that all ports have a unique wire that is connected to it). Now, an
interaction system I is a set of rules of the form (x, y, σ), where x and y are
symbols and σ is a partition of a(x) + a(y) into pairs. Such a rule should be
understood as: if the outgoing ports of two cells labelled x and y are linked by
a wire, then the two cells may “disappear” together with the wire between their
outgoing ports, and their incoming ports are linked according to σ. The most
well-known rule of this form comes from interaction nets in linear logic, where
` and ⊗ cells reduce as below when faced with each other.

94

`

⊗ Ă `

⊗

Our construction starts from the basic notion of signature:

Definition 3.2.2 (Signature). A signature Σ is given by:

• a base category C that describes positions (more precisely, positions are
presheaves over C),

• a finite set R of spans Y
w←Ð I

uÐ→ X in the category C
Ȃ

of presheaves over
C, called rules, which describe the possibility to rewrite X into Y ,

• and a starting position S in C
Ȃ

.

Example 3.2.3. We here show how the three motivating examples can be de-
scribed in our framework.

• In the case of Petri nets, the Petri net (P,T, δ,M) is modelled by:

– the base category C = P , where P is viewed as the discrete category
with ∣P ∣ elements and only identity morphisms (note that presheaves
on C indeed model markings of the Petri net),

– if δ = ,δcons܂ δcrea܂, R contains a rule Yt ← Ȃ→Xt for each transition
t ∈ T , where Yt and Xt are resp. the multisets δcrea(t) and δcons(t),
seen as presheaves,

– the starting position is S =M , seen as a presheaf.

• In the case of graph rewriting, rewriting a graph G according to a given
set of rewriting rules S given as spans r = Lr ← Ir → Rr is modelled by:

– the base category is the category with two objects e, v and two non-
trivial arrows s, t∶ v → e (again, note that presheaves over C are indeed
graphs),

– R contains a rule Rr ← Ir → Lr for each r ∈ S, where Ir, Lr, and Rr
are seen as presheaves over C,

– the starting position is S = G, where G is seen as a presheaf over C.

• Given a set A of symbols and an arity function a, rewriting an interaction
net (C, l,W0,W2, F, p) according to an interaction system I given as a set
of rules (x, y, σ) is modelled by:

– a base category C that consists of one object ∗ for wires and an ob-
ject x for each symbol x in A, as well as a morphism t∶ ∗ → x and
morphisms si∶ ∗→ x for each i ∈ a(x),

– R contains a rule Yr
wr←Ð Ir

urÐ→ Xr for each rule r = (x, y, σ) in I,
where

∗ Ir is coproduct (a(x) + a(y)) ⋅ ∗,1
1 Here, ∗ is actually y∗, the representable presheaf on ∗. We will often implicitly identify

an object of a category and its representable presheaf and let the context disambiguate.

95

Figure 3.1: Our running example.

∗ Xr is the pushout

2 ⋅ ∗ x + y
∗ Xr

t+t

∇

∗ Yr is the coproduct ((a(x) + a(y))/2) ⋅ ∗,
∗ ur ∶ Ir [si]i∈a(x)+[si]i∈a(y)ÐÐÐÐÐÐÐÐÐÐÐ→ x + y →Xr,

∗ wr ∶ Ir → Yr is the quotient by σ (for all pairs (i, j) in σ, i and j
have the same image),

– the starting position is the codomain of the coequaliser of

W0 ⋅ ∗ +W2 ⋅ ∗ W0 ⋅ ∗ +∑c∈C c + F ⋅ ∗
Remark. The description of interaction systems as presheaves looks excruciat-
ingly painful, but it is actually more due to the initial description of interaction
nets (as tuples) than to the translation itself. Indeed, interaction nets are ba-
sically graphs, which are very easy to describe as presheaves, and the rules are
similarly simple to describe.

We could easily add some more features to these examples without increasing
the complexity of the representation. For example, in the case of Petri nets, we
could model “read arcs” by changing the middle component of the span (and
therefore Yt and Xt as well) to include the place the transition reads from. In
the case of interaction systems, we could allow cells with several outgoing wires
by changing the morphism t to n morphisms t1, . . . , tn, or allow more complex
shapes for the interaction rules.

Example 3.2.4. We further specialise the example of Petri nets to the particu-
lar Petri net and marking shown in Figure 3.1. In our setting, this is modelled
by:

• the set {a, b} as its base category, where a represents the top-left place and
b the bottom-left one,

• rules a ← Ȃ → a and b ← Ȃ → a + b, which represent the top-right and
bottom-right transitions respectively,

• the starting position is a + b.
We will also use a more graphical notation for positions, i.e., presheaves over

the set {a, b}. We could of course, as is usually done for Petri nets, represent a

96

position X by drawing a circle for each place and drawing as many bullets inside
the circle that corresponds to a place p as there are elements in X(p). However,
this will prove quite impractical in our case, so we use a different representation.
We will represent tokens in the place a by bullets and tokens in the place b by
circles. For example, represents a marking with two tokens in a and
one token in b.

3.2.2 Execution Steps and Traces

Required: 3.2.1.
Recommended: 2.2.1,2.2.4.

Our base category C is only used to model positions. To represent dynamics
in the same category, we augment C with objects that represent this dynamics.
For each rule r ∈ R, we define a new category Cr that has the same objects as
C, plus an additional object r and morphisms from some objects of C to that
new object.

Definition 3.2.5. For any presheaf U , C[U] is the following cocomma category:

el(U) 1

C C[U].
!

πU ⌜u⌝

iU

λ

In more simple terms, C[U] has the same objects as C, plus an additional
object, say u. Between two objects of C, C[U] has the same morphisms as C,
and the only morphism from u to itself is the identity morphism. For c an object
of C, there is a morphism f̄ ∶ c → u for each morphism f ∶ c → U (here again, we
identify c and yc), and there are no morphisms from u to c. Composition is
defined in the obvious way.

The categories C[U]Ȃwill describe some form of dynamics over positions in C
Ȃ

.
We now want to describe presheaves over C[U] and their links with presheaves
over C. This will help us understand how to use them to describe dynamics.

For each presheaf X over C, there is a presheaf X = ∑iU (X) = Laniop
U
(X)

over C[U]. In simple terms, for each object c of C, X(c) is isomorphic to X(c),
and X(u) is empty. Therefore, we will often denote X instead of X when it is
obvious that the presheaf is over C[U].
Proposition 3.2.6. Each presheaf X is the colimit of el(X) πXÐÐ→ C

iUÐ→ C[U] yÐ→
C[U]Ȃ.

Proof. We first show that ∑iU (yc) ≅ yiU (c):

∑iU (yc)(d) ≅ ∫ c′

yc(c′) × [d, iU(c′)] ≅ ∫ c′[c′, c] × yiU (c′)(d) ≅ yiU (c)(d)
by the coend formula for left Kan extension and the co-Yoneda lemma. Now we
have:

∑iU (X) ≅ ∑iU (∫ c

X(c) × yc) ≅ ∫ c

X(c) ×∑iU (yc)
≅ ∫ c

X(c) × yiU (c) ≅ Lany(yiU)(X)
97

by cocontinuity of left Kan extensions and the formula above.
Now, since

el(X) 1

C C
Ȃ

!

πX ⌜X⌝

y

is a comma square and Kan extensions are pointwise in Cat, the composition of
any left Kan extension Lany F ∶CȂ→ C′ with ⌜X⌝ is again a left Kan extension.
In particular, since Laniop

U
(–) is isomorphic to Lany(yiU), which is a left Kan

extension, it is also a left Kan extension, and therefore, so is Laniop
U
(–) ○ ⌜X⌝ =

⌜Laniop
U
(X)⌝ = ⌜X⌝, so X is indeed the desired colimit.

In particular, U is the colimit of el(U) πUÐ→ C
iUÐ→ C[U] yÐ→ C[U]Ȃ. Moreover,

we have the following natural transformation:

el(U) 1

C C[U] C[U]Ȃ,

!

πU ⌜u⌝
⌜u⌝

iU y

λ

so, by universal property of the colimit, there is a unique morphism from U to
u such that

el(U) 1 1

C[U] C[U]Ȃ C[U]Ȃ
!

iUπU ⌜U⌝ ⌜u⌝

y

gives back the natural transformation above.

Definition 3.2.7. We call ∂u∶U → u be the morphism constructed above.

In intuitive terms, U may be seen as a “hollow” version of u (or maybe
conversely, u may be seen as a “full” version of U). They agree on every object
in C, but U is empty over the new object u, while u is a singleton over it. We
may think of u as “giving a name” to the shape U by turning U into a single
entity: the representable presheaf over u. ∂u is then just the morphism that
adds the “filling” to U .

Definition 3.2.8. For any rule r ∈ R, let Cr be C[Mr], where Mr is defined as
the following pushout:

Ir Yr

Xr Mr.

wr

ur

Cr is defined as any C[U], and, if we call r its new object, then the morphisms
from c to r are as defined below:

98

• for each f ∶ yc →Xr in C
Ȃ

, add a morphism tf ∶ c→ r in Cr,

• for each f ∶ yc → Yr in C
Ȃ

, add a morphism sf ∶ c→ r in Cr,

• for each f ∶ yc → Ir in C
Ȃ

, add a morphism f̃ ∶ c→ r in Cr,

• quotient these morphisms by f̃ = turf , f̃ = swrf , tfg = tfg, and sfg = sfg.
Remark. In fact, we have only added morphisms tf and sf , since each morph-

ism f̃ will be identified with turf and swrf .

Building on the discussion above about “giving a name” and “filling” pre-
sheaves, if we see Mr as some sort of interaction or dynamics, then Cr is a
category that can describe positions (because it contains C), but can also speak
about the dynamics described by Mr, because it contains a new object designed
to fit this very purpose.

Definition 3.2.9. In Cr
Ȃ

, we call Yr
srÐ→ r

tr←Ð Xr the cospan obtained by com-
posing each leg of Yr →Mr ←Xr with ∂r.

Proposition 3.2.10. Yr
srÐ→ r

tr←ÐXr is such that

Ir Yr

Xr r

wr

ur sr

tr

(3.1)

commutes.

Proof. It is the composition of a commutative square with ∂r.

We finally define C[R], the base category our pseudo double category will
be built on.

Definition 3.2.11. For a signature Σ = (C,R, S), we define the base category

C[R] as the wide pushout of C
iMrÐÐ→ Cr for all rules r in R.

In more simple terms, this is the category C with all the objects r in R and
corresponding morphisms.

Example 3.2.12. In our running example, if we call the first rule u and the
second one v, we have that C[u, v], the base category of the corresponding pseudo
double category will have:

• as objects: the set {a, b, u, v},
• as non-trivial morphisms: tida

∶a → u, sida
∶a → u, til ∶a → v, tir ∶ b → v,

sidb
∶ b→ v,

or, up to renaming, and in more graphical terms:

u v

a b.

tua sua
tva

tvb sub

99

3.2.3 Organising Traces into a Pseudo Double Category

Required: 3.2.2, 2.2.9.
Recommended: Ȃ.

We now build a pseudo double category that describes rewriting on the sig-
nature. More precisely, the objects of this pseudo double category will be posi-
tions, horizontal morphisms describe “spatial inclusion”, i.e., how positions may
be included in larger positions, and vertical morphisms are “rewriting traces”,
i.e., how a position can reach another position after a finite number of execution
steps.

First of all, we need to define how we model an execution step.
In order to do this, we first define seeds, which are the basic shapes of

execution steps.

Definition 3.2.13. The seed that corresponds to the rule r = Yr wr←Ð Ir
urÐ→ Xr

is the commuting square (3.1).

Definition 3.2.14. An execution step, or rewriting step, is any cospan Y →
M ← X obtained by taking a pushout of a seed along some monomorphism
Ir → Z (where Z is necessarily of the form Z ′ if we want X and Y to be
positions):

Yr Y

r M

Ir Z

Xr X,

where X → M and Y → M are obtained by universal property of pushout. We
say that this rewriting step rewrites X into Y .

Example 3.2.15. In our running example, there are two seeds, which corres-
pond respectively to u and v. They are the squares

Ȃ a

a u

sua

tua

and

Ȃ b

a + b v.

svb

[tva,t
v
b]

We can represent them in a more graphical way. Recall the graphical notation
for positions from Example 3.2.4. We can draw the seeds that correspond to u
and v as below.

The initial position of each seed is drawn at the bottom, and its final position
is drawn at the top, with another element in the middle that corresponds to the
action of moving from the initial position to the final one itself.

100

Remark. These drawings actually correspond to drawing the category of ele-
ments of the seeds that correspond to u and v, just like drawing a graph corres-
ponds to drawing the category of elements of its corresponding presheaf. Here,
we have drawn the categories of elements of the presheaves u and v, with the
convention that Xu = a and Xv = a + b are drawn at the bottom, while Yu = a
and Yv = b are drawn at the top. Therefore, in all our drawings, “time flows
upwards”.

Example 3.2.16. Remember that our starting marking is a + b, so there are
two possible rewriting steps on this marking, depicted below.

Ȃ
a

u

a

b

a + b

u + b
a + b

Ȃ
a + b

v

b

Ȃ
a + b

v

b

The first one corresponds to firing u on the marking a + b, which indeed gives
back the marking a+ b, while the second one corresponds to firing v on the same
marking, which indeed gives the marking b.

We can draw these rewriting steps in a graphical way, very much like we did
for seeds (and again, this corresponds to drawing the category of elements of the
object we represent). Since the move that corresponds to v doesn’t differ from
the seed, it is represented exactly as in the example above, while the move that
corresponds to u is drawn as below.

The top and bottom positions indeed correspond to the initial and final positions
of the rewriting step, and the equal sign between the two tokens in b express
that they are actually the same token, but that this token is present both in the
initial and final positions (in the category of elements, there is of course only
one object corresponding to the token in b, but we draw it twice with an equal
sign between them for increased readability).

Definition 3.2.17. An execution trace (or rewriting trace) is any cospan that
is isomorphic to a finite composition of rewriting steps in the category of cospans

on C[R]Ȃ.

Example 3.2.18. For example, in our running example, the different rewriting
traces are (isomorphic to) either:

• Un for some n in N, where Un is the n-fold composition of the move
that corresponds to u on the initial marking (note that they can indeed be
composed because the final position is the same as the initial one),

• or Vn for some n in N, where Vn is the composition of Un with the move
that corresponds to v.

101

Figure 3.2: A less sequential Petri net.

They can be described in graphical terms, for example, the graphical descriptions
of U2 and V2 are on the left and right below, respectively.

Example 3.2.19. To see how the definition of execution trace is not sequential,
but retains only the minimal causality information between rewriting steps, we
have to introduce another Petri net, because the one from our running example
is entirely sequential.

Let us take as example the Petri net in Figure 3.2, which is much more
parallel: indeed, the two transitions do not interact anymore. In this Petri net,
the v transition (if we keep the same name as for the previous Petri net) is not
a+b← Ȃ→ b anymore, but b← Ȃ→ b. If we still call a, b, u, and v the different
places and transitions, we have that the possible moves from the initial marking
are isomorphic to one of the following two moves:

Ȃ
a

u

a

b

a + b

u + b
a + b

Ȃ
b

v

b

a

a + b.

a + v
a + b

A possible execution in the Petri net consists in first firing u, then firing v. It is
the composition of the two cospans a+ b→ u+ b← a+ b and a+ b→ a+ v ← a+ b,
which gives a+b→ u+v ← a+b, which is the same as the rewriting trace obtained
by first firing v, and then firing u, which corresponds to the fact that there is no
causality relation between firing u and firing v.

This can also be seen in graphical terms: if the seeds are drawn as

102

and

,

then the moves on the initial marking can be drawn as

and

.

Therefore, the execution that fires u then v and the one that fires v then u can
be drawn as on the left and right respectively, which can also be drawn as in the
middle (these drawings are again the graphical representation of the categories
of elements associated to the different presheaves):

= =
.

We can now define the pseudo double category D that will describe processes:

• its objects are the positions, i.e., the presheaves over C (more precisely,
they are the presheaves over C[R] that are isomorphic to X for some
presheaf X over C),

• its horizontal morphisms are monomorphisms of positions,

• its vertical morphisms are rewriting traces,

• its double cells are monomorphisms of traces, i.e., commuting diagrams of
the form

Y Y ′

U U ′

X X ′,

l

k

h

where h, k, and l are mono.

Remark. We can draw a parallel between rewriting and games (and indeed, the
ideas used here to model rewriting stem from playgrounds, which are at the base
of the work described in this dissertation):

• the objects our rewriting system works on (in the case of Petri nets, mark-
ings) are akin to positions,

• rewriting steps (in the case of Petri nets, the firing of a transition) to
moves,

• and rewriting traces (in the case of Petri nets, executions) to plays.

103

3.2.4 The Category of Execution Traces

Required: 3.2.3,
Recommended: Ȃ.

In this section, we derive a category E(X) of execution traces that start
from a given position X from our pseudo double category D.

Definition 3.2.20. The category E(X) is the category of rewriting traces over
X:

• its objects are the lower legs of rewriting traces: for each rewriting trace

Y
sÐ→ U

t←ÐX, X
tÐ→ U is an object of E(X),

• the morphisms from X
tÐ→ U to X

t′Ð→ U ′ are monomorphisms U
fÐ→ U ′ such

that ft = t′.
The morphisms in E(X) correspond to “prefix” inclusion of rewriting traces,

i.e., there is a morphism U → U ′ in E(X) if the rewriting trace U can be followed
by another rewriting trace such that the whole rewriting trace is isomorphic
to U ′.

Remark. We can make the statement above much more obvious by defining
E(X) in terms of the pseudo double category D we just built above. The con-
struction is as follows:

• the objects of E(X) are plays Y → U ←X,

• a morphism from Y → U ← X to Y ′ → U ′ ← X is a pair of a morphism
Z → V ← Y and a double cell

Z Y ′

Y

X X,

V

U ′

U

α

where such morphisms are quotiented by the equivalence relation generated
by (V,α) ∼ (V ′, α′) when there is a morphism Z → Z ′ and a double cell

Z Z ′

Y Y

V V ′
γ

such that α = α′ ○ (U ● γ).
With this definition of E(X), it is much more obvious that morphisms of E(X)
correspond to “prefix” (or “temporal”) inclusions. However, we should now show
that morphisms compose and that both definitions coincide. We do exactly this
in Section 5.2.3, albeit on a different base category, but the techniques we use
there also work in the case of Petri nets and our other examples.

104

Example 3.2.21. In our running example, E(X) is composed of all the plays
isomorphic to either Un or Vn (as defined in Example 3.2.18), plus the morph-
isms that correspond to prefix inclusion, which are generated by:

• for each n, the only morphism Un → Un+1 that fixes X,

• for each n, the only morphism Un → Vn that fixes X.

3.3 Unfolding

Required: 3.2.4,
Recommended: Ȃ.

Even though we will not use this kind of technique in the rest of this disser-
tation, it may be interesting to know that building the unfolding of an object
using our techniques is extremely simple.

Definition 3.3.1. The unfolding UX of X is the colimit of the functor E(X)Ă
X/C[R]Ȃ ∂Ð→ C[R]Ȃ.

Remark. Since X
idXÐÐ→X is an object of E(X), the unfolding UX of X comes

with a map X → UX obtained by universal property of UX .

Example 3.3.2. In our running example, if we draw the unfolding UX of X,
we obtain:

⋮ ⋮

,

and the morphism X → UX maps X to the bottom of this drawing, which is
exactly what the unfolding of our Petri net is supposed to look like.

3.4 Perspectives

The purpose of this chapter was to introduce the reader to the use of presheaves
as combinatorial objects to represent execution traces in a concurrent way. We
have shown through a running example that using this technique gives a faithful
representation of executions in Petri nets. We have also shown that this repres-
entation is indeed concurrent, in the sense that, if two independent moves are
played in a row, then the interpretation does not depend on whether the first
one is played first or second.

The example of Petri nets is only used to give some intuition about the tools
we use, and not meant to be an interesting example. Indeed, we have promised

105

Figure 3.3: An unsafe Petri net.

that our representation of execution traces faithfully represents executions in
Petri nets, and it is indeed the case in the examples we have given, but not
in general. It actually only works for safe Petri nets (i.e., those Petri nets
such that there is never more than one token in a given place). As a counter
example, consider the Petri net in Figure 3.3. Since there is a single transition,
there is at most a single execution trace of any given length on this Petri net.
Now, let us consider our representation of execution traces for this Petri net.
The base category C has two objects: one object a that represents the place
and one object u that represents the transition; and two non-trivial morphisms:

t, s∶a → u. The cospan that represents the transition is a
sÐ→ u

t←Ð a, and the
initial position of the Petri net is 2 ⋅ a. There is only one possible move on the

initial position (up to isomorphism): 2 ⋅ a s+aÐÐ→ u+a t+a←ÐÐ 2 ⋅ a. We may represent
this transition graphically as:

.

So far, so good.
A first problem becomes apparent when we look at plays of length greater

than 1. Indeed, in such a play, each move can be played either on the left token
or on the right token. A good thing is that this does not lead to an exponential
blow-up, but to a linear one: there are ⌈n+1

2
⌉ plays of length n > 0 (again, up

to isomorphism). For example, let us enumerate all the plays of length 2 up
to isomorphism. There are four ways to compose this transition with itself, as
depicted below.

But the two ways to compose drawn in the middle are isomorphic, as well as the
two on the sides, which gives two non-isomorphic plays. In general, composing
this transition n times with itself corresponds to choosing how many times the
transition is applied to the left token, and how many times it is applied to the
right one, so there are ⌈n+1

2
⌉ plays up to isomorphism.

Another problem arises when we look at E(2 ⋅ a). There, there are even two
non-isomorphic plays of length 1: the plays u+a and a+u are not isomorphic in
E(2 ⋅a)! Indeed, remember that a morphism between these two plays in E(2 ⋅a)
is a pair (U,α) such that

106

X 2 ⋅ a
2 ⋅ a
2 ⋅ a 2 ⋅ a

U

u+a
a+u

α

commutes. By unrolling the definitions, such a morphism is the pair of a cospan

X
sUÐ→ U

tU←Ð 2⋅a and a pair of monomorphisms l∶X → 2⋅a and k∶ (u+a)●U → a+u
such that

X 2 ⋅ a
U

2 ⋅ a a + u
u + a

2 ⋅ a 2 ⋅ a

l

sU

tU

s+a

t+a

a+s

a+t

(u + a) ●U k

commutes, which is impossible: if we start from the bottom-left 2 ⋅ a, through
the top-left path, the “left-hand” a is sent to u, which must be sent to u (it
cannot be sent to a because there are no morphisms u → a in C), but through
the bottom-right path, it is sent again to the “left-hand” a through the identity,
and then to a, so this square cannot commute.

Both problems come from the fact that tokens are “named” in our presheaves:
if X is a presheaf, then X(a) is a set, and we can distinguish between the
elements of this set. Firing a transition that consumes a token x is thus different
from firing one that consumes another token x′. This means that there may be
several representations of the firing of the same transition on the same marking
in a Petri net. We know one possible way to solve this problem, but the answer
is not elegant, and the construction of the base category becomes much more
involved and less intuitive, so we only wrote the simple construction here, while
perfectly aware of its limitations.

Notice however that this naming problem is limited to Petri nets, and it is
not a problem at all in our other examples: in graph rewriting, the names are
given to vertices and edges, and in interaction systems, the names are given
to wires and cells, and, in both cases, it is important to distinguish between
different objects of these classes, while no distinctions should be made between
different tokens in the same place in a Petri net.

107

Chapter 4

Pseudo Double Categories

and Concurrent Game Models

4.1 Motivation

In this chapter, we build an abstract framework to create sheaf models of pro-
gramming languages based on string diagrams. The goal of this construction is
to unify the previous constructions of game semantical sheaf models for CCS [50]
and the π-calculus [29] and make the method used there general enough to cre-
ate a variant of HON games (which is slightly harder than for CCS and the
π-calculus for technical reasons), which we do in Chapter 5. Another hope is
that this construction is general enough to encompass a large class of languages,
thus facilitating the creation of new sheaf models.

This framework takes as input a signature describing the operational se-
mantics of a language and outputs a fibred pseudo double category (i.e., a pseudo
double category that possesses an additional property we call fibredness) that de-
scribes the language in terms of games based on string diagrams. These pseudo
double categories are candidate models of the programming language we start
from. The models built from these pseudo double categories may be seen as
game semantical models because terms are interpreted as innocent strategies in
some kind of game, or sheaf models because innocent strategies are sheaves for
a Grothendieck topology induced by embedding views into plays.

The fibred pseudo double categories that are built this way enjoy a number
of fundamental properties that make them a good framework to build game
semantical models. They are a simplification of the notion of playground (but
they do not enjoy all the good properties of playgrounds), which was introduced
by Hirschowitz [50, 29] as a framework to study game semantics for concurrent
languages. In particular, the property of fibredness is crucial to define com-
position in the category E(X) of plays whose starting position is X, which is
necessary to define strategies.

Let us be a bit more precise. In our approach, the pseudo double category
D we build from a signature represents the game as a whole. Its objects model
positions in the game. For each pair (X,Y) of positions, its set of vertical
morphisms Dv(Y,X) models all plays with initial position X and final position

108

Y . For all pairs of positions (X,X ′), its set of horizontal morphisms Dh(X ′,X)
roughly models all ways of embedding the position X ′ into X. Finally, given
plays and morphisms as in

Y ′ Y

X ′ X,

h

u

k

v

the set of cells D(h,u, k, v) models embeddings from u into v that preserve both
the initial and final positions. E.g., u could describe the part of the play v which
concerns players in X ′. We can build the categories E(X) from D in a uniform
way, no matter the shape of X.

Beyond providing a uniform construction for the categories E(X), this rich
structure yields links between them, which greatly facilitate the development.
Indeed, all plays u∶Y X induce a functor u∗∶Sh(E(X))→ Sh(E(Y)) between
the corresponding categories of sheaves (which represent innocent strategies).
Similarly, each horizontal morphism h∶X ′ → X induces a restriction functor
h∗∶Sh(E(X)) → Sh(E(X ′)). These functors are semantically relevant: for any
innocent strategy S ∈ Sh(E(X)), u∗(S) denotes the “residual” of S after u, i.e.,
a description of how the players of X would behave according to S after playing
u. A meaningful transition system on innocent strategies is then (roughly)

given by triples S
MÐ→ M∗(S), for any move M in the game. The obtained

transition system is shown in both of our previous models to be closely related
to the operational semantics of the considered calculus. On the other hand,
h∗(S) denotes a restriction of S to X ′, i.e., a description of S for players in the
subposition X ′ of X. This is useful for composing strategies: if a given position
X is divided into two subpositions X ′ and X ′′, thought of as two teams, a
composite (in a sense analogous to parallel composition in game semantics) of
S′ ∈ Sh(E(X ′)) and S′′ ∈ Sh(E(X ′′)) is any S ∈ Sh(E(X)) whose respective
restrictions to X ′ and X ′′ give S′ and S′′.

Our first main contribution is a way to produce such fibred pseudo double
categories automatically from more basic data. The kind of basic data we will
use is the notion of signature defined in Section 4.3. From any signature S,
we construct a pseudo double category D(S). Up to the verification of a few
additional conditions on D(S), new sheaf models may thus be produced directly
from nice signatures S.

As mentioned above, one crucial such condition, on which the very construc-
tion of our categories E(X) is based, is fibredness. Our second main contribution
is then in Section 4.4 to prove that, under suitable hypotheses, D(S) satisfies
this property. More precisely, we provide two results:

• Under a necessary and sufficient, but hard-to-verify condition essentially
saying that fibredness is satisfied for all “generators” (called seeds) in S,
we prove that D(S) is fibred (Theorem 4.4.30).

• We then exhibit sufficient, easier-to-verify conditions for the hard-to-verify
condition above to hold (Theorem 4.4.39).

By plugging both results together, we obtain (Corollary 4.4.40) that any S

satisfying the given sufficient conditions yields a fibred D(S).
109

4.2 Preliminaries

Required: 2.2.5.
Recommended: Ȃ.

In this preliminary section, we collect a few basic results about pushouts,
pullbacks and monos in presheaf categories, which we will consider to be second
nature in the sequel. The well-known pullback and pushout lemmas are not
recalled, though widely used throughout. Similarly, let us merely recall that
epis are stable under pullback, and that monos are stable under pushout in
presheaf categories.

Let us start with an easy result about pullbacks along monos:

Lemma 4.2.1. Any commuting square as below with j iso and m monic is a
pullback:

A B

C D.

j m

Proof. A simple diagram chase.

Our second result is specific to sets:

Lemma 4.2.2. Any commuting square of the form below left is a pullback if
each rectangle as below right is:

∑i∈I Ai A

∑i∈I Bi B

[fi]i∈I

∑i∈I ki

[gi]i∈I

k

Ai A

Bi B.

fi

ki

gi

k

Proof. Straightforward.

Our third result is an instance of the other pullback lemma [91].

Lemma 4.2.3 (Another pullback lemma). In any presheaf category, for any
commuting diagram as below with e epi, if the outer rectangle and the left-hand
square are pullbacks, then so is the right-hand square:

A B C

X Y Z.e

Proof. An immediate consequence of [91, Theorem 1], given that, in any pre-
sheaf category, epimorphisms are stable under pullbacks and (Epi,Mono) is a
factorisation system, so all epimorphisms are strong.

Let us continue by recalling the adhesivity properties of presheaf catego-
ries [64].

110

Lemma 4.2.4. In any presheaf category, any pushout along a mono is also a
pullback. Explicitly, any pushout square

A B

C D

m

with m mono is also a pullback.

Lemma 4.2.5 (Adhesivity). In any presheaf category, for any commuting cube

I B

A C

I ′ B′

A′ C ′,

with the marked pullbacks, mono and pushout, all vertical faces are pullbacks if
and only if the top face is a pushout.

Proof. By [64, Example 6 and Proposition 8 (iii)].

Let us finish with a similar-looking statement, which has in fact more to do
with extensivity [19] of Set than with adhesivity.

Lemma 4.2.6. In Set, for any commuting cube

I B

A C

I ′ B′

A′ C ′,

f

with the marked pushouts and pullback,

• if I ′ → B′ is injective then the front square is a pullback, and

• if all arrows except perhaps f are injective, then f also is.

Proof. The following proof is due to Paweł Sobociński (private communication).
In Set, the map m∶ I ′ → B′, being injective, may be written as a coproduct
injection m∶ I ′ → I ′ +X ′. But, injective maps being stable under pullback and
coproduct injections being stable under pushout, the whole cube may be written
as

111

I I +X
A

I ′

A′

I ′ +X ′
A +X

A′ +X ′

g+k

f

g

h

with f = h + k. This in particular shows that injectivity of h and k entails
injectivity of f . Let us now show that the front face is a pullback. Indeed, it is
the pasting of both left-hand squares below:

A A +X X

A A +X ′ X ′

A′ A′ +X ′ X ′.

A+k

h h+X′

k

All rows being coproduct injections, by extensivity all squares are pullbacks,
hence so is the face of interest by the pullback lemma.

Corollary 4.2.7. For any commuting cube as in Lemma 4.2.6 in any presheaf
category with the marked pushouts and pullback,

• if I ′ → B′ is monic then the front square is a pullback, and

• if all arrows except perhaps f are monic, then f also is.

Proof. Monos and pullbacks are pointwise in presheaf categories.

4.3 Signatures for Pseudo Double Categories

In this section, we define the notion of signature and illustrate it with the
example of the π-calculus. We start by generalising the method used in the
previous sheaf models to define the notion of signature. We then abstractly give
the construction of the pseudo double category D(S) associated to any signature
S. Finally, we motivate fibredness by showing how it occurs in the definition of
relevant categories of plays.

Any signature S will comprise a base category C, and D(S) will be a sub-
pseudo double category of Cospan(CȂ) (as defined in Example 2.2.93). Very
roughly, C will be equipped with a notion of dimension, and S will consist of a
selection of cospans

Y
sÐ→M

t←ÐX (4.1)

in C
Ȃ

viewed as morphisms Y X in Cospan(CȂ)v, where X and Y have dimen-
sion at most 1 and M may have arbitrary dimension. We will call these cospans
seeds. The intuition is that presheaves of dimension ≤ 1 model positions in a
game (they are essentially graphs), while higher-dimensional presheaves model
the dynamics of the game. Thus each cospan (4.1) models a play, starting in
position X and ending in position Y , and M models how the play evolves from

112

X to Y . Up to some technicalities, D(S) is the smallest sub-pseudo double cat-
egory of Cospan(CȂ) whose objects are positions and whose vertical morphisms
contain seeds.

4.3.1 A Signature for the π-Calculus

Required: 2.2.5.
Recommended: 3.2.2.

In this section, we define a signature for the π-calculus to explain and mo-
tivate the abstract notion of signature we will use in the rest of the chapter.

Method

The method used in previous work to design games proceeds in four stages:

(i) Design a base category C1 over which finitely presentable presheaves will
model positions in the game.

(ii) Select a collection of spans of monomorphisms modelling “typical” moves
in the game. In each selected span Y

w←Ð Z
uÐ→X,

• X denotes the initial position of the move,

• Y denotes the final position of the move,

• Z denotes the part of the position which remains unchanged during
the move.

This is in line with the double pushout approach to graph rewriting [33].

(iii) The next step is characteristic of our approach, and allows us to give a
causal representation of plays not as spans but rather as cospans (on a
richer base category). The obtained representation is significantly simpler
than analogous, span-based representations of rewrite sequences [10], and
a simple example is treated in detail in Chapter 3. It proceeds by aug-
menting C1 to a category C over which finitely presentable presheaves will
also model plays. This goes by adding one new object µS for each selected
span S = (Y w←Ð Z

uÐ→X), in a way that

Z Y

X µS

w

u

t

s

is a pullback (with the marked monos). The resulting cospans Y
sÐ→ µS

t←Ð
X are called seeds of the game. In fact, this description of seeds is slightly
naive, as it implies that any two seeds are independent from each other, a
simplification that we cannot afford if we aim at fibredness. So we should
also describe morphisms between the new objects, and select our spans
in a compatible way, which essentially means that they should induce a
functor S∶C∣≥2 → Cospan(CȂ)H , where C∣≥2 is the full subcategory of C

spanning the new objects.

113

(iv) In the last stage, roughly (see Section 4.3.3 for details), we construct the
smallest sub-pseudo double category of Cospan(CȂ)

• whose objects are positions,

• whose vertical morphisms include all identities and seeds, and

• which contains all pushouts of the form

id
●
Z id

●
Z′

S(µS) M

id●h

for all selected spans S = (Y ← Z → X) and morphisms h∶Z → Z ′

with Z ′ a position.

The last point intuitively says that moves (modelled by seeds) may occur
in context.

We will handle the first three stages here to produce our example signature
Sπ. The signature we get is exactly the one we used for our previous model of
the π-calculus [29]. By applying the last step to Sπ, we get exactly the pseudo
double category that our model of the π-calculus is built on. Another example
is given in Section 5.2, where we define a signature for HON games.

Operational description of the language and informal description of

the game

We start by giving an operational description of the π-calculus that will guide
us through steps (i)–(iii).

The π-calculus we study is slightly unusual in the sense that:

• its terms are possibly infinite, which spares us the need to define con-
structors for replication or to put recursion in our language,

• the reduction of terms is done in terms of a chemical abstract machine, in
the style of Berry and Boudol [12].

Definition 4.3.1. Processes of the π-calculus are terms coinductively generated
by the grammar

γ Ȃg P1 . . . γ Ȃg Pn
γ Ȃ∑

i∈n
Pi

γ Ȃ P γ Ȃ Q
γ Ȃ P ∣Q

γ,a Ȃ P
γ Ȃg νa.P

γ Ȃ P
γ Ȃg τ.P

a ∈ γ γ, b Ȃ P
γ Ȃg a(b).P

a, b ∈ γ γ Ȃ P
γ Ȃg ā܂b܂.P ,

where

• we have two judgements, Ȃ for processes and Ȃg for guarded processes;

• γ ranges over finite sets of natural numbers, and

114

• γ, a is defined if and only if a ∉ γ and then denotes γ Ȃ {a}.
We denote by Piγ the set of all processes of the form γ Ȃ P .

To define the reduction of our π-calculus, we first need to define the config-
urations of the chemical abstract machine:

Definition 4.3.2. A configuration is a pair of a finite set of natural numbers
γ and a finite multiset of processes γ Ȃ Pi. We write such a configuration܂γ∥P1, . . . , Pn܂.

The notation below is a formal definition to make sense of the intuitive
notation P +Q when P is a guarded process and Q is a sum, and which does
exactly what one would expect:

Notation 4.3.3. For any γ Ȃg P , γ Ȃ Q of the form ∑i∈nQi, and injection
h∶n Ă n + 1, we denote by P +h Q the sum ∑j∈n+1 Pj, where Ph(i) = Qi for all
i ∈ n and Pk = P , for k the unique element of (n + 1) Ȃ Im(h).

We finally define the reduction of configurations:

γ∥a(b).P܂ +h R, ā܂c܂.Q +h′ R′܂→ γ∥P܂ [bĂ c],Q܂ γ∥P܂ ∣Q܂→ ܂γ∥P,Q܂
γ∥τ.P܂ +h R܂→ γ∥P܂ ܂ γ∥νa.P܂ +h R܂→ ,γ܂ a∥P ܂

→܂γ1∥S1܂ γ1∥S܂܂γ2∥S2܂ ∪ S1܂→ γ2∥S܂ ∪ S2܂
Let us now informally describe the game based on this operational descrip-

tion of our π-calculus. A position will be a finite hypergraph (i.e., a graph in
which edges do not link two vertices but an arbitrary number of them). In a
position, we call nodes players and edges channels. A player who is linked to n
channels is a placeholder for a process γ Ȃ P with n free communication chan-
nels, i.e., where ∣γ∣ = n. A channel that is linked to n players is thought of as a
communication channel that is shared by n processes. Our game is intrinsically
multi-party in the sense that there are several players in a play.

Example 4.3.4. The position below is a position with three players x, y1, and
y2, and two channels c1 and c2. The first channel c1 is shared between all three
players, while the second channel c2 is private to x.

c1 c2x

y1

y2

Let us now describe moves in the game. They are typically given by the
operational description of the language, which, in the case of the π-calculus, are
the rules given above. Each rule in our calculus will correspond to a move in
our game.

115

The move for parallel composition goes as follows: a player x may fork to
turn into two new players who know the same channels as x. Graphically, if
the player who plays the move is binary (i.e., they know two channels), this is
pictured as:

x

y1

y2

π

,

where the starting position is pictured at the bottom (it has one player x who
knows two channels), the final position (with two players y1 and y2 who know
exactly the same channels as x). There is also something in the middle denoted
by π that represents the action of forking itself, but we do not delve into details
here, as we only give an informal presentation. This move is in accordance with
the intuition that it should model the operational description of the rule for
parallel composition: according to this rule, a process γ Ȃ P ∣Q turns into a pair
of processes γ Ȃ P and γ Ȃ Q that know exactly the same channels (i.e., among
the channels in γ).

Following the same intuition, we easily define moves for the silent τ action
and channel creation. In the first case, a process γ Ȃ τ.P +h R turns into a
process γ Ȃ P , i.e., a process that knows exactly the same channels. In the
second case, a process γ Ȃ νa.P +hR turns into a process γ, a Ȃ P , i.e., a process
that knows exactly the same channels, plus a new, fresh channel a. They are
depicted as below left and below right respectively, again in the case where the
initial player is binary.

x

y

τ

x

y

ν

Finally, the synchronisation rule is slightly more complex, and the move
reflects the intuition of message passing: when two processes γ Ȃ a(b).P +R and
γ Ȃ ā܂c܂.Q +R′ synchronise and turn into γ Ȃ P [b Ă c] and γ Ȃ Q, Q sends its
channel c on a and P receives it and treats it as a fresh channel. Therefore, if
a(b).P knows n channels among the channels of γ, P [bĂ c] knows n+1 of these
channels (there may be repetitions, e.g., if a(b).P already knows c, then P [bĂ c]
knows c “twice”). Moreover, note that, for both processes to communicate, they
need to share a common channel a. If we represent this move graphically, for a
player x who knows two channels a and c and who sends c on a, and a player y
who knows only one channel a, we obtain:

116

x′

x

y′

y,

c

a

where the initial position is indeed again at the bottom, and in the final position,
the two players have turned into x′ and y′, and y′ knows c. Just like in the
other moves, there is something in the middle that represents the action of
synchronising itself: the arrow that goes from c in the bottom position to c in
the top position. Again, we do not dwell on details here, but intuitively, this
arrow represents the path c’s name follows during the synchronisation: x first
fetches c’s name, then sends it on a, the message is received by y, who thus
gains the knowledge of a new channel.

The congruence rule is not turned into a move in our game, as it is typically
given by the fact that moves only have a local effect (i.e., when a player moves,
the rest of the position is left untouched).

Stage (i): positions

Let us now formalise this. All involved data will be represented as presheaves
on a certain base category, say C. Let us start with C1, the part of C which
only concerns positions:

Definition 4.3.5. Let C1 have

• an object ∗,
• an object [n] for each n in N,

• morphisms s1, . . . , sn∶ ∗→ [n] for each n in N.

The ∗ object represents channels, while [n] objects represent n-ary players.

Example 4.3.6. The (informal) position of Example 4.3.4 is modelled as the
presheaf X with

• X(∗) = {c1, c2},
• X([1]) = {y1, y2},
• X([2]) = {x},
• X([n]) = Ȃ otherwise,

and whose action on non-trivial morphisms is:

• y1 ⋅ s1 = c1,
• y2 ⋅ s1 = c1,
• x ⋅ s1 = c1, and x ⋅ s2 = c2.

The graphical representation we have given in Example 4.3.4 is a representation
of the category of elements of X (the only information lost with that represent-
ation is the order of channels, i.e., whether x ⋅ s1 is c1 or c2).

117

Stage (ii): selecting spans

Let us now select the spans that will model moves. We will select a span for
each move described above, i.e., forking π, silent action τ , channel creation ν,
and synchronisation σ.

However, in order for our pseudo double category to be fibred, we need
to be able to talk about plays on sub-positions. In other words, when moves
involve more than one player, there should be moves that correspond to what
a single player sees of the play. In our case, this means that σ, which concerns
two players, should be “split” into two moves, each move corresponding to the
action of a single player. It is thus split into ι, which represents receiving a
name, and o, which represents sending a name.

Moreover, we ultimately want players to be able to change their behaviours
according only to what they have seen of the play. We thus need to be able
to define views, which are what a single player sees of a play. In our case, this
means that π should also be split into two moves, the left forking move πl and
the right forking move πr that correspond only to what a single avatar of the
forking move sees when a player forks.

Finally, there should actually be an n-ary version of each move, since players
do not have a constant arity, which means that there should be a τn move for
each n in N, etc. Similarly, since channels are ordered, a player receiving on
their first channel is not doing the same thing as one who receives on their
second one. This means that there should be an ιn,i move that represents an
n-ary player receiving on their ith channel for all n in N and i in n. Similarly,
there should be an om,j,k move that represents an m-ary player sending their
kth channel on their jth one for all m in N and j, k in m. Naturally, this should
be reflected in σ: there is a σn,i,m,j,k move for all n,m in N, i in n, and j, k in
m.

Let us now choose spans for all these moves. Remember that a span Y
w←Ð

I
uÐ→ X should represent a move whose starting position is X, whose final posi-

tion is Y , and where I is the part of the position that is left untouched by the
move. Following this intuition, we define the spans for all moves:

• for τn: [n] [si]i∈n←ÐÐÐ n ⋅ ∗ [si]i∈nÐÐÐ→ [n],
• for νn: [n + 1] [si]i∈n←ÐÐÐ n ⋅ ∗ [si]i∈nÐÐÐ→ [n],
• for πln: [n] [si]i∈n←ÐÐÐ n ⋅ ∗ [si]i∈nÐÐÐ→ [n],
• for πrn: [n] [si]i∈n←ÐÐÐ n ⋅ ∗ [si]i∈nÐÐÐ→ [n],
• for πn: [n] ∣ [n] w←Ð n ⋅ ∗ [si]i∈nÐÐÐ→ [n], where [n] ∣ [n] is the position defined

as the pushout

n ⋅ ∗ [n]
[n] [n] ∣ [n],

[si]i∈n

[si]i∈n inl

inr

(4.2)

and we denote by w∶n ⋅ ∗→ [n] ∣ [n] the diagonal morphism in the pushout
above,

118

• for ιn,i: [n + 1] [si]i∈n←ÐÐÐ n ⋅ ∗ [si]i∈nÐÐÐ→ [n] (notice that the player in the final
position knows one more channel than the one in the initial position),

• for on,j,k: [n] [si]i∈n←ÐÐÐ n ⋅ ∗ [si]i∈nÐÐÐ→ [n],
• for σn,i,m,j,k: [n + 1] i,n+1 ∣j,k [m] w←Ð (n +m − 1) ⋅ ∗ uÐ→ [n] i ∣j [m], where[n] i ∣j [m] is defined as the pushout below and u by universal property of

pushout:

∗ m ⋅ ∗
∗

n ⋅ ∗

inj j

inj i [m]
(n +m − 1) ⋅ ∗

[n] [n] i ∣j [m],

[si]i∈m

sj

si

inr

u

inl

[si]i∈n

(4.3)

and similarly for [n] i,n+1 ∣j,k [m] and w:

∗ m ⋅ ∗
2 ⋅ ∗

n ⋅ ∗

inj j

inj i

inl

[m]
(n +m − 1) ⋅ ∗

[n + 1] [n + 1] i,n+1 ∣j,k [m].

[si]i∈m

[sj ,sk]

[si,sn+1]

inr

w

inl

[si]i∈n

(4.4)

The reader may check that, if we draw the category of elements of the different
presheaves defined above, we do get back the initial and final positions of the
moves we informally defined before, as well as the part of those moves that is
common to both positions.

Stage (iii): augmenting the base category

At last, we augment our base category C1 with new objects and morphisms
that model moves. We could here appeal to cocomma categories, as sketched in
Chapter 3, which would lead to the definition below, except it would lack the
morphisms πln, π

r
n → πn and ιn,i, om,j,k → σn,i,m,j,k. In order to get them back,

we would need to build C in three stages, which would make the construction
slightly more complex, so we do not describe the process here, and simply give
the result.

Definition 4.3.7. Let C consist of C1, plus, for all n,m in N, a, b in n, and
c, d in m:

• objects πln, π
r
n, πn, νn, τn, ιn,a, on,a,b, and σn,a,m,c,d,

119

• for all v in {πln, πrn, τn, on,a,b}, morphisms s, t ∶ [n]→ v,

• morphisms [n + 1] sÐ→ νn
t←Ð [n] and [n + 1] sÐ→ ιn,a

t←Ð [n],
• morphisms πln

lÐ→ πn
r←Ð πrn and ιn,a

ρÐ→ σn,a,m,c,d
ε←Ð om,c,d,

modulo the equations:

• s ○ si = t ○ si in C(∗, v), for all n in N, i in n, a, b in n, and v in{πln, πrn, τn, ιn,a, on,a,b, νn},
• l ○ t = r ○ t in C([n], πn), for all n in N,

• ρ ○ t ○ sa = ε ○ t ○ sb and ρ ○ s ○ sn+1 = ε ○ s ○ sc, in C(∗, σn,a,m,b,c), for all
n,m in N, a in n, and b, c in m.

The pseudo double category describing the π-calculus will be a sub-pseudo
double category of Cospan(CȂ), entirely determined by the choice of a functor
from C∣≥2 to Cospan(CȂ)H , where C∣≥2 denotes the full subcategory of C spanning
the objects not in C1. Intuitively, this functor chooses for all new objects µ of
C a cospan which will be thought of as the basic play consisting of just µ. This
choice of cospan should of course be compatible with the choice of spans made
above, as mentioned in the informal description of the process in Section 4.3.1.

In fact, for each tuple (n,m,a, c, d), C∣≥2 locally looks like the poset

πn σn,a,m,c,d

νn τn πln πrn ιn,a om,c,d

l r ρ ε

viewed as a category (where we have omitted τm, πm, etc for readability). We
define our functor C∣≥2 → Cospan(CȂ)H to map this to

Yνn Yτn Yπl
n

Yπn
Yπr

n
Yιn,a

Yσn,a,m,c,d
Yom,c,d

νn τn πln πn πrn ιn,a σn,a,m,c,d om,c,d

Xνn Xτn Xπl
n

Xπn
Xπr

n
Xιn,a

Xσn,a,m,c,d
Xom,c,d

,

inl inr

l r

inl inr

ρ ε

inl inr

(4.5)

where Xm and Ym are the positions defined in Stage (ii), and the different
horizontal morphisms are all defined in (4.2), (4.3), and (4.4). It is then routine
to verify that the obtained assignment is a functor.

Definition 4.3.8. Let Sπ ∶C∣≥2 → Cospan(CȂ)H denote the obtained functor. We
call seeds cospans in the image of this functor.

We now need to construct our pseudo double category based on this. Before
proceeding, as we intend to provide a generic construction, we reflect a bit on
the properties of our functor Sπ, which leads us to the notion of signature.

120

4.3.2 Signatures

Required: 4.2, 4.3.1.
Recommended: Ȃ.

We now introduce an abstract notion of signature that generalises the functor
C→ Cospan(CȂ) obtained above. The Steps (i)-(iii) above are just meant to be
an illustration to support our definition of signature.

We begin by a few observations on the obtained functor. Our first observa-
tion is that the category C enjoys a natural notion of dimension: ∗ has dimension
0, each [n] has dimension 1, all τn, νn, πln, π

r
n, ιn,a, and om,c,d have dimension

2, and all πn and σn,a,m,c,d have dimension 3. In particular, C forms a dir-
ect category in the sense of Garner [38], i.e., it comes equipped with a functor
to the ordinal ω viewed as a category, which reflects identities. Presheaves X
themselves inherit a (possibly infinite) dimension: the least n such that X is
empty above dimension n. The dimension of any representable is thus that of
the underlying object.

Second, let us make a few additional observations on our functor Sπ ∶C∣≥2 →
Cospan(CȂ)H :

(a) the middle object of each Sπ(µ) is yµ;

(b) both legs of all selected cospans are monic;

(c) all morphisms between those cospans have monic components;

(d) for all such morphisms, top squares are pullbacks;

(e) finally, all initial positions X are tight, in the sense that all channels c ∈
X(∗) are in the image of some X(si).

So a first, naive notion of signature could consist of a direct category C,
equipped with a functor from C∣≥2 to Cospan(CȂ)H satisfying (a)–(e). However,
some of the examples we have in mind require a bit more generality, so in our
abstract definition we relax things a bit. We also need to restrict it a little bit
for the proof of fibredness to hold. Let us briefly explain why we need to relax
the definition.

Even though, in many examples, morphisms between seeds have bottom
squares that are pullback, we can see that the π-calculus does not. Indeed,
consider the morphism ρ∶ ιn,a → σn,a,m,c,d, the channel that is sent in σn,a,m,c,d
is present both in ιn,a and the initial position of σn,a,m,c,d, but not in the initial
position of ιn,a. However, we want to have a property close to that bottom
square being a pullback for the proof of fibredness to hold. There are also
relevant, though unpublished examples of base categories in which the top square
of a morphism between seeds is not necessarily a pullback. Furthermore, we need
the generated pseudo double category to accommodate morphisms of cospans
whose components are non-injective. Let us thus change our tentative definition
just enough to accomodate these needs. In short, we pass from injective maps
to maps which are injective except perhaps on objects of dimension 0, and
find an analogous generalisation for bottom squares being pullbacks. We also
completely drop the requirement on top squares, as it proves useless in the
definition.

121

Let us fix any small, direct category C for the rest of this section. By analogy
with the base category for π, we think of objects of dimension 1 as players in
a game, which may communicate with each other through objects of dimension
0. Objects of dimensions > 1 are thought of as moves in the game. Accordingly,
we use the following terminology:

Terminology 4.3.9. The dimension of any object of C is its image in ω. A
channel is an object of dimension 0, a player is an object of dimension 1, and
a move is an object of dimension > 1.

Definition 4.3.10. Let a natural transformation of presheaves over C be 1D-
injective when all its components of dimensions > 0 are injective.

A square in C
Ȃ

is a 1D-pullback when it is a pullback in all dimensions > 0.

Notation 4.3.11. We mark 1D-pullbacks with a dotted little square, as below

A B

C D

Definition 4.3.12. Let D0(C) denote the sub-pseudo double category of the

pseudo double category Cospan(CȂ)
• whose horizontal category D0(C)h is the subcategory of C

Ȃ
consisting of

positions, i.e., finitely presentable presheaves of dimension ≤ 1, and 1D-
injective morphisms between them,

• whose vertical morphisms are cospans with monic legs, and

• whose cells are those of Cospan(CȂ) with 1D-injective components and 1D-
pullback bottom squares.

Terminology 4.3.13. For any vertical u∶Y X in D0(C)v, X and Y are
respectively called the initial and final positions of u.

Definition 4.3.12 only makes sense because:

Proposition 4.3.14. D0(C) forms a sub-pseudo double category of Cospan(CȂ).
This relies on the following direct corollary of Lemma 4.2.6:

Corollary 4.3.15. In C
Ȃ

, for any commuting cube

I B

A C

I ′ B′

A′ C ′,

f

with the marked pushouts and 1D-pullback,

122

• if I ′ → B′ is 1D-injective then the front square is a 1D-pullback, and

• if all arrows except perhaps f are 1D-injective, then f also is.

Proof. By pointwise application of Lemma 4.2.6.

Proof of Proposition 4.3.14. The only non-trivial bit lies in showing that a ver-
tical composite of componentwise 1D-injective cells with 1D-pullback bottom
squares again has 1D-injective components and 1D-pullback bottom square.
This is a simple consequence of Corollary 4.3.15 and the pullback lemma.

Let us finally give a definition of tightness which generalises the one given
in (e) for π – though the presentation differs.

Definition 4.3.16. For all presheaves U in C
Ȃ

, let us denote by pl(U) the set
of players of U , i.e., pairs (d, x) for all morphisms x∶d → U , where d is any
representable of dimension 1. Let Pl(U) denote the corresponding coproduct∑(d,x)∈pl(U) d of representables.

A position X is tight if and only if the canonical morphism Pl(X) → X is
epi.

Definition 4.3.17. A signature consists of a small, direct category C, together
with a functor S∶C∣≥2 → D0(C)H making the following square commute

C∣≥2 D0(C)H
C C

Ȃ
,

S

y

m (4.6)

where m denotes the middle projection functor. We further require that for all
µ ∈ C∣≥2, the initial position of S(µ) be tight.

Definition 4.3.18. Cospans in the image of S are called the seeds of S.

Letting X,Y,Z, . . . range over positions, we get that any signature S maps
any move M to some cospan Y →M ←X which determines its initial and final
positions.

Example 4.3.19. The functor Sπ of Definition 4.3.8 is a signature. Indeed,
all morphisms are evidently monic and all bottom squares are 1D-pullbacks (the
only one that is not a pullback is the one that corresponds to ρ∶ ιn,a → σn,a,m,c,d,
and it is straightforwardly shown to be a 1D-pullback). Furthermore, all initial
positions are clearly tight.

Here is an immediate, useful consequence of the definition:

Lemma 4.3.20. The functor S underlying any signature is fully faithful.

Proof. Faithfulness holds by Yoneda and fullness follows from monicity of the
legs of the involved cospans.

123

4.3.3 From Signatures to Pseudo Double Categories

Required: 4.3.2, 2.2.9.
Recommended: 3.2.3.

We now define and give an explicit description of the pseudo double category
D(S) associated to any signature S.

Let us start with the following observation:

Proposition 4.3.21. For any pushout square of the form

id
●
Z0

id
●
Z

S(µ) P

id●h

k (4.7)

in Cospan(CȂ)H , if h ∈ D0(C)h(Z0, Z) and k ∈ D0(C)H(id●Z0
,S(µ)), i.e., h is

1D-injective and k has 1D-injective components and 1D-pullback bottom square,
then the whole square in fact lies in D0(C).
Proof. Indeed, given h and id

●
Z0
→ S(µ) as above, the pushout P = (Y →M ←

X) always exists in Cospan(CȂ)H . It is computed by taking pushouts levelwise,
as in

Y0 Y

µ M

Z0 Z

X0 X,

(4.8)

where S(µ) = (Y0 → µ ← X0) and the dashed arrows are obtained by universal
property of pushout. Now, monos are stable under pushouts in Set and colimits
are pointwise in presheaf categories, so 1D-injectivity of all components follows
from 1D-injectivity of all involved morphisms. Finally, both bottom squares
are pullbacks, hence 1D-pullbacks as desired, either by Lemma 4.2.1 or by the
pushout lemma and Lemma 4.2.4.

Remark. In the proposition above, k necessarily has 1D-pullback bottom square.
Indeed, both its top and bottom squares are pullback by Lemma 4.2.1.

Definition 4.3.22. A move is any cospan M isomorphic to one obtained as a
pushout of the form (4.7).

Definition 4.3.23. The pseudo double category D(S) associated to any signa-
ture S is the smallest sub-pseudo double category of D0(C) such that

• D(S)h is D0(C)h;
• D(S)H is replete and contains all moves;

• D(S) is locally full, i.e., if a cell of D0(C) has its perimeter in D(S), then
it is in D(S).

124

Remark. By Proposition 4.3.21, saying that D(S) contains all moves entails
that all pushout squares defining moves lie inside D(S).

That D(S) is well-defined is easy: it is the intersection of all sub-pseudo
double categories of D0(C) that verify all three points above, and D0(C) is
obviously one such pseudo double category, so we are taking the intersection of
a non-empty family.

It is still useful to give a concrete description of D(S). First, its horizontal
category is just D0(C)h. Regarding vertical morphisms, D(S) must contain all
moves, and since it is stable under vertical composition, it must also contain
all finite composites of moves. By repleteness, it should also contain all vertical
morphisms isomorphic to such vertical composites. We thus define:

Definition 4.3.24. A play is any vertical morphism isomorphic to some vertical
composite of moves.

Proposition 4.3.25. D(S) is precisely the locally full sub-pseudo double cat-
egory of D0(C) obtained by restricting vertical morphisms to plays.

Proof. By construction, it is enough to show that the given data forms a sub-
pseudo double category of Cospan(CȂ), which is easy.

4.3.4 Fibredness and Categories of Plays

Required: 4.3.3.
Recommended: 3.2.4.

For a given pseudo double category D, the categories of plays studied in
previous work [50, 29] come in several flavours. A first variant is based on the
following category:

Definition 4.3.26. Let E denote the category

• whose objects are vertical morphisms of D,

• and whose morphisms u → u′ are pairs (w,α) as below left, considered
equivalent up to the equivalence relation generated by equating (w,α) with(w′, α ○ (u ● γ)), for all cells γ as below right:

T Z ′

Z

Y Y ′

w

u

u′

r

s

α

T ′ T Z ′

Z

Y Y ′.

w
w′

u

u′

r

s

α

γ

(4.9)

Notation 4.3.27. We denote the involved equivalence relation by ∼. Further-
more, in principle, E depends on D, which should appear in the notation. For
readability, we will rely on context to disambiguate.

In order to define composition in this category, one needs to consider all
diagrams of shape the solid part of

125

Z ′′ Z ′ Y ′′

Z Y ′

Y

X X ′ X ′′.

w

s

u

r

u′

w′

s′

r′

u′′

w′′

α

β

γ

Fibredness then comes in by requiring the existence of a cell γ as shown, which
is canonical in a certain sense. This allows us to define the composite of (w,α)
and (w′, β) as the equivalence class of (w ●w′′, β ○ (α ● γ)).

Here is the long-awaited fibredness property, which uses the notion of fibra-
tion (see Section 2.2.2):

Definition 4.3.28. A pseudo double category D is fibred if and only if the
functor cod∶DH → Dh is a fibration.

Fibredness is related to Grandis and Paré’s double categorical Kan exten-
sions [44] and to Shulman’s framed bicategories [94].

Proposition 4.3.29. If D is fibred, then E is indeed a category.

The category of plays EX over any position X used in [50, 29] is then ob-
tained as the comma category of E over the functor ⌜X⌝ ∶1→ Dh picking X. In
Chapter 5, to study views and plays in HON games, we will use another variant:

Definition 4.3.30. Let E(X) denote the fibre of E over X.

Explicitly, objects of E(X) are plays u∶Y X, and morphisms are those of
E, as on the left in (4.9), which have idX as their lower border.

Our next goal is to give an abstract framework to show that, given some
signature S, D(S) is fibred. We want this framework to be abstract to be able
to use it on the existing examples of CCS and the π-calculus, but also on a
signature for HON games in order to relate the categories E(X) for HON games
to the categories of views and plays given by Tsukada and Ong [97].

4.4 Fibredness

In this section, we study the fibredness property abstractly. In order to do that,
we first define a candidate cartesian lifting of any morphism in D(S)h using
factorisation systems and show that it has all the good properties of cartesian
liftings, except that it is unclear whether it lies inside D(S)H , which is proved
in the rest of the section. We then recast the definitions of 1D-injectivity and
1D-pullbacks in terms closer to the defining properties of injective maps and
pullbacks. We then give a necessary and sufficient condition for our candidate
lifting to lie in D(S)H , hence for D(S) to be fibred. However, this condition is
not very useful in practice, so, in the last part, we give a sufficient condition for
D(S) to be fibred that is easier to verify.

126

4.4.1 Fibredness through Factorisation Systems

Required: 4.3.4, 2.2.8.
Recommended: Ȃ.

Our main tool to prove that the pseudo double category D(S) generated
by a signature S is fibred will be cofibrantly generated factorisation systems
(see Section 2.2.8). Let us explain the core idea of the proof. In the setting of
Example 2.2.93, any factorisation system (L,R) on C yields a fibred sub-pseudo
double category of Cospan(C).

We are going to refine the pseudo double category Cospan(C) into a fibred
pseudo double category. Let us consider CospanL,R(C), the locally full sub-
pseudo double category of Cospan(C)

• whose horizontal category is C,

• and whose vertical morphisms Y X are cospans Y
sÐ→ U

l←ÐX with l ∈ L.

Proposition 4.4.1. The pseudo double category CospanL,R(C) forms a sub-
pseudo double category of Cospan(C) that is fibred if C has pullbacks.

Proof. That CospanL,R(C) forms a pseudo double category is a simple con-
sequence of Lemma 2.2.92. To see that it is fibred, consider any vertical morph-

ism Y
fÐ→ U

l←Ð X and horizontal morphism X ′
hÐ→ X. In order to construct

a cartesian lifting of (f, l) along h, we factor the composite X ′
hÐ→ X

lÐ→ U as

X ′
l′Ð→ U ′

h′Ð→ U , with l′ ∈ L and h′ ∈ R, and then take the pullback of f and h′,
as in the front face below:

Y ′′

Y ′ Y

U ′′

U ′ U

X ′′

X ′ X.

h′′

h′

h

f

l

q′′

q′

q

f ′′

l′′

s′′

s′

s

f ′

l′

(4.10)

The obtained morphism (h,h′, h′′) is generally not cartesian in Cospan(C)H ,
but let us show that it is in CospanL,R(C). For this, consider any morphism(q, q′, q′′) to U such that q = hs as above; then since l′′ ∈ L (by hypothesis) and
h′ ∈ R (by construction), we obtain by the lifting property a unique s′ making
everything in sight commute. But then the universal property of pullback gives
the desired s′′.

For any signature S over some base category C, we will try to apply this
construction to the pseudo double category of plays D(S) over S, with the fac-
torisation system cofibrantly generated (remember Theorem 2.2.90) by the set

127

JS of all “t-legs”, i.e., the set of morphisms X
tÐ→M for Y

sÐ→M
t←Ð X spanning

seeds. A map is then in J�
S

when no new move is added “forwards”, i.e., following
the direction of time. Indeed, recalling that each M occurring in a seed should
be representable, giving a square

X U

M V

f

t

µ

r

amounts by Yoneda to picking a move µ in V , whose initial position X is already
available in U . The map r is then in R when all such moves are also already in
U .

Our goal now reduces to showing that D(S) is fibred as a sub-pseudo double
category of Cospan�(J�

S
),J�

S
(CȂ) – which we henceforth abbreviate to CospanJS(CȂ).

The difficulty is that, in a situation like (4.10), the factorisation system yields
a cartesian lifting (h,h′, h′′) in CospanJS(CȂ), of which we will further need to
prove that (1) it lies in D(S)H , and (2) it is also cartesian there. Point (2)
reduces to proving that if (q, q′, q′′) is in D(S)H then so is (s, s′, s′′).

In fact, assuming that the candidate lifting is in D(S), its cartesianness
follows from the fact that all mediating arrows, computed as in (4.10), are also
in D(S). Indeed, we have:

Lemma 4.4.2. D(S)H has the left cancellation property: for all β and α in

Cospan(CȂ) such that β ○ α and β are in D(S)H , then also α is in D(S)H .

Proof. By 1D-analogues of the pullback lemma and left cancellation for mono-
morphisms.

It thus remains to prove that the candidate lifting is a play, and that the
morphism (h,h′, h′′) lies in D(S)H . Let us record this as:

Lemma 4.4.3. Assume that in all situations like (4.10), if U is a play and h is
1D-injective, then U ′ is again a play and (h,h′, h′′) is in D(S)H . Then, D(S)
is fibred.

We thus consider conditions for this to hold. In Section 4.4.3, we show that
if it holds for seeds, then it extends to all plays. In Section 4.4.4, we investigate
conditions for the result to hold for seeds.

This all relies on a few elementary facts about 1D-pullbacks and 1D-injective
maps in presheaf categories, which we now prove.

4.4.2 A Little Theory of 1D-Pullbacks and 1D-Injectivity

Required: 2.2.5.
Recommended: Ȃ.

Let us start by recasting the definitions of 1D-injectivity and 1D-pullback in
the following setting:

Definition 4.4.4. A one-way category consists of category C equipped with a
functor to 2, the ordinal 2 viewed as a category.

128

Any direct category d∶C→ ω may be viewed as a one-way category by post-
composing with the functor ω → 2 mapping everyone to 1 except 0 which is
mapped to itself.

Definition 4.4.5. Let d∶C → 2 be a one-way category. The dimension of an
object of C is its image by d. A natural transformation between presheaves over
C is 1D-injective if and only if its components on objects of dimension 1 are
injective. A square of natural transformations is a 1D-pullback if and only if it
is at all objects of dimension 1.

Proposition 4.4.6. The definitions of dimension (or, more precisely, whether
a dimension is equal to 0 or not), 1D-injectivity, and 1D-pullbacks given for
direct categories d∶C → ω coincide with their analogues for the corresponding
one-way category C→ ω → 2.

Proof. Trivial.

We here work in the simpler setting of presheaves over a one-way category,
but by the proposition we may transport our results from the one-way categor-
ical setting to the direct categorical one. We will do so silently in the sequel.

There are several functors from one-way categories to categories, but the
important one for us restricts its argument to dimension 1:

Definition 4.4.7. Let π1∶Cat/2→ Cat denote pullback along ⌜1⌝ ∶1→ 2.

In principle, this should rely on some global choice of pullbacks, but the
easiest is to pick the pullbacks making each arrow i1∶π1(C)Ă C an inclusion.

Notation 4.4.8. We denote π1(C) by C∣1.

We now have the standard chain of adjunctions:

C∣1
Ȃ

C
Ȃ

,

∑i1

∏i1

∆i1

�
�

where ∆i1 , ∑i1
and ∏i1

respectively denote restriction, left Kan extension and
right Kan extension along the opposite of i1.

Proposition 4.4.9. A morphism in C
Ȃ

is 1D-injective if and only if its image
by ∆i1 is injective.

A square in C
Ȃ

is a 1D-pullback if and only if its image by ∆i1 is a pullback.

Proof. By definition and the fact that limits are pointwise in presheaf categories.

It is instructive to push things just a bit further. In particular, we establish
a characterisation of 1D-injectivity and pullbacks analogous to the standard
universal properties of injectivity and pullbacks, though relative to objects of
C∣1
Ȃ

. Our first step is:

Proposition 4.4.10. The left adjoint ∑i1
is full and faithful, and the comonad∑i1

○∆i1 is idempotent, so that C∣1
Ȃ

is a coreflective, full subcategory of C
Ȃ

.

129

Proof. It is well known [60, Proposition 4.23] that the unit of the adjunction
is an isomorphism when we extend and restrict along a fully-faithful functor.
Furthermore, it is also well-known [76] that if the unit of an adjunction is an
isomorphism, then the left adjoint is full and faithful. The comultiplication of
the induced comonad is then an isomorphism by construction.

Our characterisations will stem from the more general:

Lemma 4.4.11. Consider any full coreflection L∶C � D ∶R.

For any small category J and functor D∶J → D, if RD has a limit in C, then
L(limj RD(j)) has the universal property of a limit of D relative to objects of
C, i.e., we have for all X ∈ C:

∫
j∈J

D(LX,D(j)) ≅ D(LX,L(lim
j
RD(j)))

naturally in X.

Proof. We have

∫
j∈J

D(LX,D(j)) ≅ ∫
j∈J

C(X,RD(j)) ≅ C(X, lim
j
RD(j))

≅ D(LX,L(lim
j
RD(j))),

where the last step is by full faithfulness of L.

Corollary 4.4.12. A square in C
Ȃ

as below left is a 1D-pullback if and only if
for all X ∈ C∣1Ȃ, u and v as below right making the outer diagram commute, there
is a unique mediating morphism h as shown, such that ph = u and qh = v:

A C

B D

q

p

f

g

∑i1
(X)

A C

B D.

v

u

h
q

p

f

g

Proposition 4.4.13. Consider any morphism m∶X → Y in C
Ȃ

. The following
are equivalent:

1. m is 1D-injective;

2. for all f, g∶∑i1
(Z)→X, mf =mg implies f = g;

3. the square

X X

X Ym

m (4.11)

is a 1D-pullback.

Proof. By definition, these three items are respectively equivalent to

130

• (1’) ∆i1(m) is monic,

• (2’) for all f, g∶Z →∆i1(X), ∆i1(m)f =∆i1(m)g implies f = g;
• (3’) the image by ∆i1 of the square (4.11) is a pullback.

But now these three are well-known to be equivalent.

4.4.3 A Necessary and Sufficient Fibredness Criterion

Required: 4.4.1, 4.4.2.
Recommended: Ȃ.

We now prove some basic facts about Cospan(CȂ), D0(C), and CospanJS(CȂ),
from which we derive useful results about plays, and eventually our main ab-
stract result, namely that, under the hypothesis that seeds admit cartesian
restrictions (which we investigate independently in the next section), D(S) is
fibred.

Let us start with some notation:

Notation 4.4.14. The cospan underlying any play u∶Y X will be denoted by

Y
suÐ→ U

tu←ÐX (using capitalisation for the middle object). We will often denote

cospans Y
sÐ→ U

t←Ð X simply by ,܂U܂ leaving the context provide the missing

information. Furthermore, pushouts exist in Cospan(CȂ)H (they are given by
taking pushouts levelwise) and when we write pushouts of cospans, the notation

means that they are cospans in Cospan(CȂ)H . We will often take pushouts of
cospans in D0(C)H , but such pushouts are not necessarily pushouts in D0(C)H
(the square itself does not necessarily lie in D0(C)H).

Let us start with some preliminary work about tightness.

Lemma 4.4.15. For any position X, we have Pl(X) ≅ ∑i1
(∆i1(X)) (recalling

Definition 4.3.16). In particular, X is tight if and only if εX ∶∑i1
(∆i1(X))→X

is epi.

Proof. By definition.

Lemma 4.4.16. Consider any diagram

A B

C D

f

g

h

l
k

in C
Ȃ

where only the outer square and the bottom right triangle are known to
commute, i.e., kf = hg and kl = h. If A is tight and k is 1D-injective, then also
the top left triangle commutes.

Proof. Post-composing with k, we have by hypothesis that kf = hg = klg, hence
kfεA = klgεA. By 1D-injectivity of k and Proposition 4.4.13, we get fεA = lgεA.
By tightness of A and Lemma 4.4.15, we finally obtain f = lg.

131

Definition 4.4.17. The cofree invariant position of a cospan Y → U ← X is
given by the pullback

Z Y

X U .

The terminology is justified by the following:

Proposition 4.4.18. Fixing any global choice of pullbacks, taking the cofree
invariant position Zu of any play u induces a functor Z−∶Cospan(CȂ)H → C∣1

Ȃ

which is right adjoint to the subcategory inclusion C∣1
Ȃ Ă Cospan(CȂ)H . The

inclusion being obviously full and faithful, the unit is an isomorphism, and the
associated comonad is idempotent.

Proof. Let us take a play ,܂U܂ denote by Z its cofree invariant positions, take a
position T and a morphism id

●
T → ,܂U܂ i.e., a diagram as the solid part of

T Y

T U

T Z

T X,

from which we get a dashed morphism T → Z by universal property of pullback.
Conversely, given a morphism T → Z, the morphism id

●
T → ܂U܂ is simply built

by composition.

Lemma 4.4.19. Any pushout in Cospan(CȂ)H as below left, where Z is a pos-
ition, may be factored as below right, where Z0 is the cofree invariant position
of U :

id
●
Z ܂U܂

V܂ ܂ W܂ ܂
id
●
Z id

●
Z0

܂U܂
V܂ ܂ V܂ ܂′ W܂ .܂

If V܂ ܂ is isomorphic to id
●
Z′ for some position Z ′, then V܂ ܂′ is isomorphic to

id
●
Z′

0
for some position Z ′0.

Proof. The last point is a consequence of colimits being pointwise in presheaf
categories. For the first, we get a map Z → Z0 such that id

●
Z → ܂U܂ = id

●
Z →

id
●
Z0
→ ܂U܂ by adjunction. We can then define V܂ ܂′ as the pushout of V܂ ܂

along id
●
Z → id

●
Z0

and obtain a unique morphism V܂ ܂′ → W܂ ܂ by its universal
property: this yields a diagram as desired, whose right-hand square is again a
pushout by the pushout lemma.

Lemma 4.4.20. Cofree invariant positions are stable under pushout in the
following sense: if Z is the cofree invariant position of ܂U܂ and

132

id
●
Z id

●
Z′

܂U܂ U܂ ܂′
is a pushout, then Z ′ is the cofree invariant position of U܂ .܂′
Proof. Let us first name the involved presheaves: ܂U܂ = (Y → U ← X) and܂U ܂′ = (Y ′ → U ′ ←X ′). Since Z is the cofree invariant position of ,܂U܂ we may
apply Corollary 4.2.7 to

Z Y

Z ′ Y ′

X U

X ′ U ′,

to obtain that the front face is also a pullback.

Lemma 4.4.21. In Cospan(CȂ)H , pushout squares are preserved by vertical com-
position. More explicitly, given two vertically composable pushouts as below left
and centre, the composite square below right is again a pushout:

܂U0܂ ܂U1܂
܂U2܂ ܂U܂

܂V0܂ ܂V1܂
܂V2܂ V܂ ܂

܂U0܂ ● ܂V0܂ ܂U1܂ ● ܂V1܂
܂U2܂ ● ܂V2܂ ܂U܂ ● V܂ .܂

Proof. Let us first name the involved presheaves: ܂Ui܂ = (Yi → Ui ←Xi), ܂Vi܂ =(Zi → Vi ← Yi), and similarly for ܂U܂ and V܂ .܂ If we call Λ the posetal category
with objects 0, 1, and −1, and morphisms generated by 0 → 1 and 0 → −1 (the
“walking span” category), we introduce a bifunctor from Λ×Λ to C

Ȃ
through the

following diagram:

V1 V0 V2

Y1 Y0 Y2

U1 U0 U2.

By computing its colimit first horizontally, then vertically, we get ܂U܂ ● V܂ ,܂
which by interchange of colimits is the desired pushout.

Lemma 4.4.22. Any morphism in CospanJS(CȂ)H is cartesian if and only if it
has the shape of the front face of (4.10), i.e., its top square is a pullback and
its middle morphism is in J�

S
.

133

Proof. The “if” direction follows from the proof of Proposition 4.4.1. For the
“only if” direction, the considered properties are stable under composition with
isomorphisms in CospanJS(CȂ)H . But any cartesian α∶ ܂U܂ → U܂ ܂′ is uniquely

isomorphic in CospanJS(CȂ)H/܂U ܂′ to the cartesian lifting of U܂ ܂′ along cod(α)
computed as in (4.10), hence the result.

When we want to show that a morphism of cospans is cartesian, we need
by Lemma 4.4.22 to show that the middle morphism is in J�

S
. The next few

lemmas prepare for Corollary 4.4.25, which is the main tool we will use to show
that some morphisms belong to J�

S
.

Some 1D-pullbacks in C
Ȃ

satisfy the universal property of pullbacks with
respect to tight positions. Concretely:

Lemma 4.4.23. For any commuting diagram as the solid part of

T

A C

B D

f

h

k

with the marked mono and 1D-pullback, and where T is a tight position, there
exists a unique map k making the diagram commute.

Proof. We construct in turn both dashed maps in

Pl(T) A C

T B D ∶
εT

l f

k
h

• l follows from universal property of 1D-pullbacks (Corollary 4.4.12), since
Pl(T) ≅ ∑i1

(∆i1(T)) (Lemma 4.4.15),

• k then follows again by Lemma 4.4.15 (which ensures that εT is epi) and
lifting in the (Epi,Mono) factorisation system.

The construction of k however does not a priori ensure that f ○ k = h, but
f ○ k ○ εT = f ○ l = h ○ εT which entails the result by tightness.

This yields an analogue of the pullback lemma:

Lemma 4.4.24. In any commuting diagram

A B C

D E F

with the marked mono, pullback and 1D-pullback, the outer rectangle has the
universal property of pullbacks w.r.t. tight positions.

134

Proof. A diagram chasing similar to the proof of the pullback lemma, using
Lemma 4.4.23.

Corollary 4.4.25. For any seeds Y →M ←X and S → C ← T , any commuting
diagram as the solid part of

T U X

C V M

with the marked 1D-pullback, such that at least one of U → X and U → V is
monic, may be completed as shown.

Proof. Because M is a seed, the bottom square of S(C →M) yields a morphism
T →X making the diagram commute. We conclude by Lemma 4.4.23.

Lemma 4.4.26. For any commuting diagram of 1D-injective maps of the form

U W V

U ′ W ′ V ′

sU

fU

sU′

sV

fV

sV ′

f

with the marked 1D-pullbacks in C
Ȃ

, such that

• sU and sV are jointly surjective and both monic,

• sU ′ and sV ′ are jointly surjective and both monic,

• fU and fV are in J�
S
,

we have that f ∈ J�
S
.

Proof. Consider any morphism T → C in JS and commuting square

T W

C W ′.

We want to show that there is a unique diagonal filler C → W . By Pro-
position 4.4.13, uniqueness follows from 1D-injectivity of f and the fact that
C ≅ ∑i1

(∆i1(C)), so we only need to show existence. Furthermore, by joint
surjectivity and because C is a representable, C →W ′ factors either through U ′

or through V ′ (possibly both).
Both cases being symmetric, we only treat one. If C →W ′ factors through

U ′, then we get a commuting diagram as the solid part of

135

T W

U

U ′

C W ′,

l

k

hence a map k as indicated by Lemma 4.4.23, using monicity of sU . By hypo-
thesis, U → U ′ is in J�

S
, so there is a unique map l∶C → U making both triangles

commute. By composing it with U →W , we get the desired diagonal filler.

This is the first crucial lemma of this section, which states that vertical
composition in D0(C) preserves CospanJS(CȂ)-cartesianness, and will be used to
inductively prove that plays admit cartesian restrictions under the condition
that seeds do (Theorem 4.4.30). Explicitly:

Lemma 4.4.27. If any two vertically composable double cells of Cospan(CȂ)
are both in D0(C) and CospanJS(CȂ), and are cartesian in the latter, then their
vertical composite is again cartesian (in the latter).

Proof. Consider any two composable vertical morphisms ܂U܂ = (Y → U ← X)
and V܂ ܂ = (Z → V ← Y), and similarly U܂ ܂′ and V܂ ,܂′ together with compos-
able cartesian double cells α∶ ܂U܂ → U܂ ܂′ and β∶ V܂ ܂ → V܂ .܂′ To show that the
composite is cartesian, it is enough by Lemma 4.4.22 to show that it has the
shape of the front face of (4.10), i.e., that its top square is a pullback and that
U ● V → U ′ ● V ′ is right-orthogonal to JS.

Because →܂U܂ U܂ ܂′ is cartesian, by Lemma 4.4.22, the left face of

Y V

U U ● V

Y ′ V ′

U ′ U ′ ● V ′,
is a pullback, so by two applications of Corollary 4.3.15 and Corollary 4.2.7
respectively, its front face is a 1D-pullback and its right one is a pullback. By
Lemma 4.4.26, the obtained map U ●V → U ′●V ′ is thus in J�

S
. Since V܂ →܂ V܂ ܂′

is cartesian, by Lemma 4.4.22, the left-hand square below is a pullback, hence
so is the right-hand one by the pullback lemma:

Z Z ′

V V ′

Z Z ′

U ● V U ′ ● V ′,
which concludes the proof.

136

We will also need to start the induction somewhere, so we need to show
that moves admit cartesian restrictions when seeds do (Lemma 4.4.29), which
is based on the following lemma:

Lemma 4.4.28. For any pushout

id
●
Z id

●
Z′

P P ′

id●h

k (4.12)

in Cospan(CȂ)H where h ∈ D0(C)h(Z,Z ′) and k ∈ D(S)H(id●Z , P), P ′ is a play
and P → P ′ is cartesian and lies in D0(C)H (hence also in D(S)H).

Proof. The fact that P → P ′ lies in D0(C)H follows form 1D-injectivity of h,
stability of monos under pushout in Set, and the fact that pushouts along monos
are pullbacks by adhesivity of Set. Let us show the other properties by induction
on the play.

We prepare the induction by treating the case of moves. Let us thus assume
that P = ܂M܂ is a move. We know that any move ܂M܂ is a pushout of some
seed .܂M0܂ By Lemma 4.4.19, we may assume that it is the pushout of ܂M0܂
along a morphism Z0 → Z ′0, where Z0 is the cofree invariant position of .܂M0܂
Since Z0 is the cofree invariant position of ,܂M0܂ by Lemma 4.4.20, we know
that Z ′0 is the cofree invariant position of .܂M܂ Therefore, id●Z → ܂M܂ factors as
id
●
Z → id

●
Z′

0
→ .܂M܂ Now, we define Z ′′ as the pushout below and id

●
Z′′ → P܂ ܂′

by its universal property:

id
●
Z id

●
Z′

id
●
Z′

0
id
●
Z′′

܂M܂ P܂ .܂′
Now, two applications of the pushout lemma give that

id
●
Z0

id
●
Z′′

܂M0܂ P܂ ܂′
is a pushout, and since Z0 → Z ′′ is 1D-injective (as the composite of two 1D-
injective maps), P܂ ܂′ is a move, which we also call M܂ .܂′

Let us now show that the obtained morphism →܂M܂ M܂ ܂′ is cartesian using
Lemma 4.4.22, i.e., by showing that it has the shape of the front face of (4.10).
By the pushout lemma, the top square

Y Y ′

M M ′

137

is a pushout along Y → M , which is monic, so it is a pullback by adhesivity
(Lemma 4.2.4). Moreover, to show that M →M ′ is right-orthogonal to JS, we
take any T → C in JS and commuting square as the solid part of

T M

C M ′.

Since M →M ′ is an isomorphism in dimensions > 1 and C is a representable of
dimension > 1, C →M ′ can be factored uniquely as shown above. Now, since T
is tight and M →M ′ is 1D-injective, by Lemma 4.4.16, we get that the top-left
triangle commutes as well, hence C →M is the desired diagonal filler.

Now that we have shown that moves are stable under pushouts of the desired
form and that the resulting morphism is cartesian, we proceed to show that it
is also the case for arbitrary plays by induction on P܂ .܂

If Y → P ← X contains zero moves, then the result is obvious. If Y → P ←
X contains at least one move, we decompose it as ܂M܂ ● ,܂U܂ for some move
T →M ←X and play Y → U ← T containing fewer moves than P .

Because the square below

Z

T U

M P

is a pushout along a monomorphism, hence a pullback, we obtain a unique
dashed map as shown such that the diagram commutes. Thus, id

●
Z → P

factors as a vertical composite of two cells id
●
Z → U and id

●
Z → M . By

Lemma 4.4.21, the desired pushout (4.12) is the vertical composite of the fol-
lowing two pushouts:

id
●
Z id

●
Z′

܂U܂ U܂ ܂′
id
●
Z id

●
Z′

܂M܂ M܂ .܂′
Since U܂ ܂′ and M܂ ܂′ are plays by induction hypothesis, so is P܂ .܂′ Moreover,
by induction hypothesis again, ܂U܂ → U܂ ܂′ and ܂M܂ → M܂ ܂′ are cartesian, and
therefore, so is P܂ →܂ P܂ ,܂′ by Lemma 4.4.27.

Remark. The morphism P → P ′ thus computed is not opcartesian in general.
To see this, consider the signature Sπ of the π-calculus, and push the play P ܂om,c,d܂= along [m] → [n] a ∣c [m] to get P ′. Now, P clearly has a morphism to
σn,a,m,c,d (given by Sπ(σ)), but P ′ does not, because its final position contains a
player of type [n], while the final position of σn,a,m,c,d only contains two players
of type [n + 1] and [m] respectively.

Lemma 4.4.29. If seeds admit cartesian restrictions in D(S), then so do moves.

138

Proof. Consider any move as in (4.8) and horizontal morphism h∶X ′ → X. We
start by forming the cube

Z ′0 Z ′

X ′0 X ′

Z0 Z

X0 X,

h0
h

(4.13)

where the dashed arrow is obtained by universal property of pullback. By the
pullback lemma, the left-hand face is again a pullback. Now, by Lemma 4.4.19,
we may assume that Z0 → X0 is monic, so by adhesivity the top face of (4.13)
is again a pushout.

By Lemma 4.4.28, the morphism →܂µ܂ ܂M܂ is cartesian. By hypothesis, we
obtain a cartesian lifting of ܂µ܂ along h0, say Y ′0 → U ′0 ←X ′0. We get a morphism
Z ′0 → U ′0 by composing Z ′0 →X ′0 and X ′0 → U ′0, and then a morphism Z ′0 → Y ′0 by
universal property of pullback, remembering that, by Lemma 4.4.22, the square

Y ′0 Y0

U ′0 µ

is a pullback. We may thus push the obtained lifting along id
●
Z′

0
→ id

●
Z′ to

obtain a play U܂ ܂′ and a cartesian morphism U܂ ܂′0 → U܂ ܂′ by Lemma 4.4.28.
It also induces, by universal property of pushout, a morphism U܂ ܂′ → ܂M܂ in
Cospan(CȂ)H as in

id
●
Z′

0
id
●
Z′

U܂ ܂′0 U܂ ܂′
id
●
Z0

id
●
Z

܂µ܂ .܂M܂
We want to show that U܂ ܂′ is the cartesian restriction of ܂M܂ along h. In order
to do that, we first need to show that U܂ ܂′ → ܂M܂ is a morphism of plays, i.e.,
that it belongs to D(S)H .

139

Now consider the following cubes:

X ′0 U ′0

X ′ U ′

X0 µ

X M

Z ′0 Z ′

Y ′0 Y ′

Z0 Z

Y0 Y ,

where, in the left-hand case, both pushouts are obtained by the pushout lemma.
In the left-hand cube, by pointwise adhesivity and Corollary 4.3.15, we obtain
that U ′ → M is 1D-injective and that the front face is a 1D-pullback. In the
right-hand cube, Corollary 4.3.15 entails that Y ′ → Y is 1D-injective. This
entails in particular that U܂ →܂′ ܂M܂ indeed is a morphism of plays.

It remains to show that U܂ →܂′ ܂M܂ is cartesian, for which by Lemma 4.4.22
it is sufficient to show that it has the shape of the front face of (4.10).

First, the upper square is a pullback by pointwise application of Lemma 4.2.6
in

Y ′0 U ′0

Y ′ U ′

Y0 µ

Y M .

So the only point left to show is that U ′ →M lies in J�
S
. To show this, we

consider any morphism T → C in JS and commuting square

T U ′

C M

and show that there is a unique diagonal filler. Uniqueness follows from the fact
that U ′ →M is 1D-injective and that C ≅ Σi1(∆i1(C)), so we only need to show
that there exists such a diagonal filler.

First, since µ →M is an isomorphism in dimensions > 1 and C is a repres-
entable of dimension > 1, we know that C → M factors through µ → M in a
unique way. We now want to show that T → U ′ factors through U ′0 → U ′ in such
a way that

140

T U ′0 U ′

C µ M

commutes.
Stepping back a little, let us recall a cube considered above, as below left

T

X ′0 U ′0

X ′ U ′

C

X0 µ

X M

T U ′0

C µ,

where we added the map T → X0 given by S(C → µ). By Lemma 4.4.24 on
the front face, using tightness of T , we obtain a unique arrow T → X ′, which
further gives by universal property of pullback a unique dashed arrow T → X ′0
making everything commute. In particular, we obtain a square as the solid part
above right by composing the arrow T →X ′0 we just obtained with X ′0 → U ′0.

But now U ′0 → µ is in J�
S
, so there is a unique dashed diagonal map as

shown making both triangles commute, which gives rise to a map C → U ′ by
composition, hence the result.

Finally, we state and prove our first fibredness criterion:

Theorem 4.4.30. If seeds admit cartesian restrictions in D(S), then D(S) is
fibred.

Proof. Let us consider any play Y → P ←X and show that its cartesian restric-
tion alongX ′ →X in CospanJS(CȂ) lies in D(S), which is enough by Lemma 4.4.3.
We proceed by induction on Y → P ← X. If it is the composite of 0 moves,
then X → P and Y → P are isomorphisms and the result is obvious. If it is
the composite of n+ 1 moves, then it can be decomposed as ܂M܂ ● ܂U܂ for some
move T →M ←X and play Y → U ← T . By Lemma 4.4.29, we know that ܂M܂
admits a cartesian restriction along X ′ → X, say T ′ → V ′ ← X ′. Furthermore,
by induction hypothesis, ܂U܂ admits a cartesian restriction along T ′ → T , say
Y ′ → U ′ ← T ′. By Lemma 4.4.27, the vertical composition of V܂ ܂′ → ܂M܂ and܂U →܂′ ܂U܂ is cartesian, hence the result.

141

4.4.4 Cartesian Lifting of Seeds

Required: 4.4.3.
Recommended: Ȃ.

In the previous section, we have shown that D(S) is fibred as soon as seeds
admit cartesian restrictions in D(S). In this section, we exhibit sufficient con-
ditions for the latter to be the case. I.e., possibly under additional hypotheses,
in the setting of (4.10), if ܂U܂ is a seed, then its restriction U܂ ܂′ is a play and(h,h′, h′′) is a morphism of plays.

The basic idea of our proof is that there are two possible cases: either X ′

“contains all of” X, or it does not. In more precise terms, either h is a retraction,
or it is not. In both cases, for the given seed µ, we

• first construct a candidate restriction U܂ ,܂′
• prove that it is indeed a play and that the morphism U܂ ܂′ → ܂µ܂ is a

morphism of plays,

• and then finally show that it is a cartesian lifting of ܂µ܂ along h by showing
that it has the shape of the front face of (4.10).

The main difference between the two cases is that, in the first one, X can be
thought of as a sub-position of X ′, so we basically extend µ so that it is played
from all of X ′. By contrast, in the second case, X ′ does not contain X, so it is
impossible to play µ from it, and the restriction consists of all the “pieces” of µ
that can be played from X ′.

Let us make a first hypothesis that will be useful throughout the whole proof.
It is equivalent to asking that moves never erase channels, in the sense that, if
a channel occurs in the initial position of a move, then it also does in its final
position. The hypothesis is the following:

Definition 4.4.31. A signature S is persistent when for any seed Y →M ←X,
the morphism Z → X from its cofree invariant position is an isomorphism in
dimension 0.

Lemma 4.4.32. The seeds of any persistent signature admit cartesian liftings
along retractions.

Proof. Consider any such signature S. By Lemma 4.4.2, it is enough to prove
that the cartesian lifting in CospanJS(CȂ) lies in D(S). Consider any seed Y →
M ←X and 1D-injective retraction h∶X ′ →X. Since h is a retraction, there is a
section h′∶X →X ′ such that hh′ = idX . We call Z the cofree invariant position
of Y →M ←X and define Z ′ as the pullback

Z

X Z ′ Z

X ′ X

r′
u

h′

r

u′ u

h

142

and r′∶Z → Z ′ by its universal property. As a section, r′ is mono, so in particular
1D-injective. We know that u is an isomorphism in dimension 0 by persistence,
and so is u′ as a pullback of u, which entails by Lemma 4.2.1 in the opposite
category that the left-hand square above is a pushout in dimension 0. But in
dimensions > 0, h is an isomorphism, hence so are h′ and r′ (as a pullback of h′),
so by the same argument, the left-hand square is also a pushout in dimensions> 0. It is thus a pushout in all dimensions, hence a pushout in C

Ȃ
, since colimits

are computed pointwise in presheaf categories.
We define the cospan M܂ ܂′ as the pushout

id
●
Z id

●
Z′

܂M܂ M܂ ܂′ id
●
Z

܂M܂

id●
r′

id●r
β

α′

α

(4.14)

and α∶ M܂ ܂′ → ܂M܂ by its universal property. Now, if we define (l, k, h̃) = α,(l′, k′, h̃′) = α′, and (l′′, k′′, h′′) = β, we can assume without loss of generality
that h′′ = u′ and that h̃′ = h′, since both

Z Z ′

X X ′

r′

u u′

h′

and
id
●
Z id

●
Z′

܂M܂ M܂ ܂′
id●

r′

β

α′

are pushouts. Similarly, by the pushout lemma, we get that

Z ′ Z

X ′ X

r

u′ u

h

and
id
●
Z′ id

●
Z

M܂ ܂′ ܂M܂
id●r

β

α

are pushouts, so we can assume that h̃ = h. By Lemma 4.4.28 in the left-hand
square of (4.14), we get that M܂ ܂′ is a play. Now, by Lemma 4.4.28 in the
right-hand square, we get that α is cartesian, so M܂ ܂′ is a lifting of ܂M܂ along
h.

Remark. The lemma above shows that, if a signature is persistent, then it
admits cartesian liftings along retractions. The converse actually holds. Indeed,
consider any signature S that is not persistent. This means that there is some
move m0 in the base category C whose seed ܂M܂ is such that the morphism from
the cofree invariant position Z to X is not an isomorphism in dimension 0.
Since that morphism is a monomorphism as the pullback of Y → M , which is
mono, it cannot be an epimorphism in dimension 0 (because all epi monos are
isos in Set). This implies that there is a channel c∶ ∗→M for some object ∗ of

dimension 0 that is in the image of X
tÐ→M , but not in that of Y

sÐ→M .

Let us consider the move ܂M܂ and try to build its cartesian lifting along

∗ + X [c,X]ÐÐÐ→ X. If such a cartesian lifting U܂ ܂′ → ܂M܂ exists, because it is
cartesian, id ܂M܂ must factor through it in a unique way, as in

143

Y

M Y ′ Y

X U ′ M

∗ +X X.

Therefore, U ′ → M must be a retraction, but it is also 1D-injective so it is
bijective in dimensions > 0. In particular, U ′(m) is isomorphic to M(m) for
all moves m. Now, since U ′ must be isomorphic to m0 in dimensions > 0, it
is necessarily the composite of a single m0 move. But the only way to play m0

from ∗ +X is to be isomorphic to ∗ + Y ∗+sÐÐ→ ∗ +M ∗+t←ÐÐ ∗ +X. So we want to
find a pair of morphisms as the dashed arrows in:

∗ + Y Y

∗ +M M

∗ +X X.

[g,g′]

∗+s s

[f,f ′]

∗+t

[c,X]

t

In particular, it must be that tc = f = sg. But we chose c such that tc is not in
the image of s, so this is impossible, hence ܂M܂ has no cartesian lifting along[c,X].

When h is not a retraction, we need some more hypotheses to construct
restrictions (and ensure that they are indeed cartesian). We will need three
hypotheses. The first one, monolithicity, restricts the possible ways to model
interactions between players. It is not necessary, but makes proofs much sim-
pler. The second one, fragmentation, forces all interactions to have restrictions
to single players. This condition is necessary for seeds to admit cartesian restric-
tions (otherwise, the seed corresponding to an interaction could be restricted
along one of the players). The last condition, separation, states that, if a player
is created by an interaction, then it is the avatar of a single one of the players
involved in that interaction. This is related to the notion of view: to define
the vie of the created player, we take the view of the player it was created by.
This condition is also necessary, otherwise a player created during an interaction
could end up being created multiple times in a restriction, which would break
1D-injectivity.

First, we want to limit the possible interactions between moves:

Definition 4.4.33. A signature is monolithic when for all morphisms of plays
α∶ (Y → M ← X) → (Y ′ → M ′ ← X ′) between any two seeds, if X is not a
representable, then M =M ′.

A signature is monolithic roughly when restricting a move Y ′ → M ′ ← X ′

describing an interaction to a strict sub-position X of X ′ cannot yield an in-
teraction. In other words, interactions cannot be broken down into smaller

144

interactions (e.g., an interaction between three players cannot be broken down
into an interaction between only two of them). Though it is possible to relax
this limitation, this would not only induce an explosion of the number of cases
to analyse, but we would also need to put another kind of restriction, which
would more difficult to check, which is why we decided to stick to a simple case.
Moreover, such “partial interactions” do not appear to bring much expressiveness
to our framework.

Remark. Since the base category is direct, monolithicity ensures that, if there
is a morphism α between seeds as above, and X is not a representable, then
α = (idY , idM , idX).

A second hypothesis that we make says that there should exist a “biggest
part” of any move from the point of view of any player involved in it. Basically,
we want to ensure that any seed Y → µ←X has restrictions along all morphisms
of positions h∶X ′ → X, and we prove this property by pasting together the
“biggest part” of what each player in X ′ sees of µ when restricted along h.
We here give a notion that entails the desired property, and basically amounts
to asking that seeds admit cartesian restrictions along morphisms of the form
yd →X with respect to other seeds (as opposed to arbitrary plays):

Definition 4.4.34. A signature is fragmented if and only if for all seeds Y
sÐ→

M
t←Ð X and players x∶d → X, there exists a seed YM,x

sM,xÐÐÐ→M∣x
tM,x←ÐÐ d and a

morphism fM,x∶M∣x →M in C such that:

(a) the top square of S(fM,x) is a pullback, and

(b) for any seed Y ′′ → M ′′ ← X ′′ and commuting diagram as the solid part
below, there is a map M ′′ →M∣x making the diagram commute.

M ′′

X ′′ M∣x M

d X

fM,x

(4.15)

Remark. Since fM,x is 1D-injective and M ′′ is a representable of dimension> 1, the morphism M ′′ →M∣x in the hypothesis above is necessarily unique.

Lemma 4.4.35. If a signature S is persistent, monolithic, and fragmented, then
each morphism S(fM,x) is a cartesian lifting of ܂M܂ along x in D(S).
Proof. By Lemma 4.4.22, it is enough to prove that the top square of S(fM,x)
is a pullback and that fM,x in J�

S
. The first point holds by (a). To prove the

second one, consider any morphism T → C in JS and commuting square

T M∣x

C M .

fM,x

145

We need to show that there is a unique diagonal filler C → M∣x. By Corol-
lary 4.4.25, we obtain a unique morphism T → d making the diagram below left
commute:

T d X

C M∣x M

C

T M∣x M

d X,

which may be arranged as on the right to have the shape of (4.15). We thus
conclude by (b).

Lemma 4.4.35 exhibits cartesian liftings along players d → X. Let us now
consider more general cases, assuming a third property saying that each player
involved in a synchronisation M (i.e., a seed whose initial position contains
several players) is related to at most one of the “biggest parts” of M , in the
sense of our above explanation of fragmentedness.

Definition 4.4.36. A signature S is separated if it is fragmented and, for
all moves µ ∈ ob(C∣≥2) with seed S(µ) = (Y → µ ← X), players d ∈ ob(C∣1),
x1∶d1 →X and x2∶d2 →X, and y1∶d→ µ∣x1

and y2∶d→ µ∣x2
making

d µ∣x1

µ∣x2
µ

y1

y2 fµ,x1

fµ,x2

commute, we have x1 = x2 (and hence fµ,x1
= fµ,x2

).

Remark. Separation really only says something in the case where the diagonal
x∶d → µ does not factor through X. Indeed, if it does, then by the properties of
1D-pullbacks, x also factors through x1 and x2, hence by directedness of C is in
fact equal to x1 and x2.

Remark. Separation is related to the notion of view in game semantics (and
indeed, in the cases we are interested in, separation is derived from what is called
the axiom of views in [50]). It basically states that any player that is created in
a move M is created by at most one player.

When h is not a retraction, the restriction of a seed along h has a particular
form that we call a “quasi-move”, which basically consists of several moves played
“in parallel”, i.e., independently from one another.

Definition 4.4.37. A quasi-move is any cospan that is isomorphic to a pushout
of the form

∑i∈n id
●
Zi

id
●
Z

∑i∈n܂Mi܂ ,܂U܂
id●h

146

in D0(C)H , where the s’܂Mi܂ are seeds.

Lemma 4.4.38. Every quasi-move is a play.

Proof. Let ܂Mi܂ = (Yi siÐ→Mi
ti←ÐXi) for all i ∈ n. By Lemma 4.4.28, it is enough

to show that ∑i܂Mi܂ is a play. We proceed by induction on n. If n = 0, the
result is trivial. Otherwise, we have

∑
i

܂Mi܂ ≅ ܂M1܂) +∑
i>1

id
●
Xi
) ● (id●Y1

+∑
i>1
.(܂Mi܂

By induction hypothesis, both components are plays, so by Lemma 4.4.21, the
composite also is.

We can now exhibit the construction of the restriction of a seed Y
sÐ→M

t←ÐX

along a morphism h∶X ′ →X that is not a retraction.

Theorem 4.4.39. The seeds of any persistent, monolithic, and separated sig-
nature S admit cartesian liftings in D(S).
Proof. By Lemma 4.4.32, it is enough to deal with the case where h is not
a retraction. We first build the candidate restriction. Let Z be the cofree
invariant position of .܂M܂ By fragmentedness, we know that for each player

(d, x) ∈ pl(X), there exists a seed YM,x

sM,xÐÐÐ→ M∣x
tM,x←ÐÐ d and a morphism(lM,x, fM,x, x)∶ →܂M∣x܂ ܂M܂ satisfying (a) and (b) of Definition 4.4.34. Letting

Z ′ =X ′ ×X Z, for any player (d, x) ∈ pl(X ′) we may thus construct by universal
property of pullback a map rM,x as in

ZM,hx YM,hx

d M∣hx

Z ′ Z Y

X ′ X M ,

r

h

x

rM,x

(4.16)

where ZM,hx → Z comes from the universal property of Z. We first want to
show that

∑(d,x)∈pl(X′)ZM,hx Z ′

∑(d,x)∈pl(X′) d X ′

[rM,x](d,x)∈pl(X′)

[x](d,x)∈pl(X′)

(4.17)

is a pushout and that all involved maps are 1D-injective. First, it is a pullback:
by Lemma 4.2.2, it suffices to show ZM,hx = d ×X′ Z ′ for each x, which follows
by three consecutive applications of the pullback lemma in (4.16). Because it
is a pullback of two 1D-injective maps, all of its maps are in fact 1D-injective.
But then, recalling that the pullback of any isomorphism is in fact a pushout
square, we have:

• in dimension 1, ∑(d,x)∈pl(X′) d→X ′ is an isomorphism and

147

• in dimension 0, Z ′ →X ′ is an isomorphism by persistence,

so the square is a pushout in all dimensions, hence a proper pushout.
We now define our candidate restriction U܂ ܂′ as the quasi-move below, and܂U →܂′ ܂M܂ by its universal property:

∑(d,x)∈pl(X′) id●Z′
M,hx

id
●
Z′

∑(d,x)∈pl(X′)܂M∣hx܂ U܂ ܂′ id
●
Z

.܂M܂

id●[rM,x](d,x)∈pl(X′)

id●r

(l′,k′,h′)

[S(fM,hx)](d,x)∈pl(X′)

(l,k,h̃)

First, U܂ ܂′ is a quasi-move, and therefore a play by Lemma 4.4.38. Moreover,
because (4.17) is a pushout, we can assume without loss of generality that it is
the bottom square of the pushout defining U܂ .܂′ Thus, h̃ = h.

Furthermore, the morphism [S(fM,hx)](d,x)∈pl(X′) is in D(S)H . Indeed, that
its bottom square is a 1D-pullback follows from Lemma 4.2.2; 1D-injectivity of
its bottom component is 1D-injectivity of h○ [x](d,x)∈pl(X′); 1D-injectivity of its
top component follows from that of its middle component. So let us consider an
object c of dimension > 0 and two morphisms f1, f2∶ c → ∑(d,x)∈pl(X′)M∣hx that
are equal when composed with [fM,hx](d,x)∈pl(X′). Since c is a representable, f1
and f2 must factor through one of the coproduct injections, so fi = inj (di,xi) ○f ′i
for some f ′1∶ c→M∣hx1

and f ′2∶ c→M∣hx2
. We thus have a commuting diagram

c M∣hx2

M∣hx1
M .

f ′2

f ′1

fM,hx1

fM,hx2

We want to exhibit a square as above but with an object d of dimension 1

instead of c. If c is of dimension 1, we take d = c. Otherwise , by monolithicity,
we know that S(c) must have a representable as its initial position, and since
all initial positions must be tight, it must be a representable of dimension 1.
We thus get a morphism x∶d→ c for some object d of dimension 1. We can now
compose the diagram above with that morphism, which gives us a diagram on
which we may apply the property of separation, which gives us that hx1 = hx2.
Now,

fM,hx1
f ′1 = [fM,hx](d,x)∈pl(X′)inj (d1,x1)f

′
1= [fM,hx](d,x)∈pl(X′)f1= [fM,hx](d,x)∈pl(X′)f2= [fM,hx](d,x)∈pl(X′)inj (d2,x2)f
′
2= fM,hx2

f ′2= fM,hx1
f ′2.

Therefore, since fM,hx1
is 1D-injective and c ≅ ∑i1

(∆i1(c)), we have that f ′1 = f ′2
by Proposition 4.4.13, hence f1 = f2, so [fM,x](d,x)∈pl(X′) is indeed 1D-injective.

148

We now want to show that the morphism (l, k, h)∶ U܂ ܂′ → ܂M܂ is in D(S)H ,
i.e., that all its components are 1D-injective. We know that [rM,x](d,x)∈pl(X′)
is bijective in dimensions > 0, as the pullback of [x](d,x)∈pl(X′), which is by
construction. Thus, the components of the map (l′, k′, h′) are bijective in di-
mensions > 0, which entails that U܂ →܂′ ܂M܂ is in D(S)H .

Finally, let us prove that U܂ ܂′ is the restriction of ܂M܂ along h. To this end,
let us first prove that k is in J�

S
: consider any T → C in JS and commuting

square

T U ′

C M .

By Corollary 4.4.25, we get a dashed map as in

T X ′ X

C U ′ M ,

which makes the diagram commute. If C were equal to M , then, since C is
direct, C → M would be an identity, and so would T → X by Lemma 4.3.20,
which contradicts the hypothesis that h is not a retraction. Thus, C is different
from M . Therefore, by monolithicity, we know that T is representable, and of
dimension 1 by tightness. Hence, T → X ′ factors as T = d0 → ∑(d,x)∈pl(X′) d →
X ′. We thus have the solid part of:

T d0 ∑(d,x)∈pl(X′) d X ′ X

C M∣hx0 ∑(d,x)∈pl(X′)M∣hx U ′ M ,

inj (d0,x0) h′ h

inj (d0,x0) k′ k
(4.18)

which we can reorganise as the solid part of:

C

T M∣hx0
M

d0 X

fM,hx0

hx0

on which we can use fragmentedness to get a dashed map making both diagrams
commute. Since (4.18) commutes, it is obvious that C → U ′ obtained as the
composite C →M∣hx0

→ U ′ is a desired diagonal filler. Uniqueness of C → U ′ is
given by Proposition 4.4.13, since k is 1D-injective, and C ≅ ∑i1

(∆i1(C)).

149

Lastly, we prove that the right-hand square below is a pullback:

Z ′ +∑(d,x)∈pl(X′) YM,hx Y ′ Y

Z ′ +∑(d,x)∈pl(X′)M∣hx U ′ M .

(4.19)

By Lemma 4.2.2, the outer square is a pullback because the square below left
(by Lemma 4.2.1) and each of the squares below right (by fragmentedness) are:

Z ′ Y

Z ′ M

YM,x Y

M∣x M .

Moreover, the left-hand square in (4.19) is also a pullback by Lemmas 4.2.1,
4.4.28 (because we know that the top squares of cartesian liftings are pullbacks),
and 4.2.2. Since Z ′ +∑(d,x)∈pl(X′)M∣x → U ′ is epi, Lemma 4.2.3 entails that the
desired square is a pullback.

Corollary 4.4.40. For any persistent, monolithic, and separated signature S,
D(S) is fibred.

As an easy application, we get:

Proposition 4.4.41. D(Sπ) is fibred.

Proof. By Corollary 4.4.40, it suffices to verify that Sπ is persistent, monolithic,
and separated, which is routine.

4.5 Perspectives

We have introduced a notion of signature for the sheaf-based approach to con-
current game semantics [50, 29]. We have shown how to, from such a signature,
automatically build a pseudo double category of concurrent traces, which we
interpret as plays in some sort of game. Finally, we have introduced the no-
tion of fibredness, which allows us to build categories of plays from our pseudo
double categories, and given two criteria to prove that a pseudo double category
is fibred, one necessary and sufficient, the other simpler but only sufficient. The
second criterion is still general enough to show that many interesting calculi yield
fibred pseudo double categories, as illustrated by the example of the π-calculus,
which can also be adapted to recover this property of a previous construction of
CCS, as well as to show that the pseudo double category for HON games that
we define in Chapter 5 is fibred.

The link between the pseudo double category we construct and games is
further explored in Chapter 5, where we build a signature for HON games
and investigate the link between the categories of plays we obtain and more
traditional categories of plays.

Unfortunately, there are constructions that we would like to be able to do
but that do not fit in this framework. One limitation of this framework is
that moves are defined as pushouts along any (1D-injective) map, but for some

150

calculi, we would like to be able to restrict the class of morphisms along which
we are allowed to push. For example, in a π-calculus with match and mismatch
operators, there would be a move εn,a,b that may only be played when channels
a and b are equal, and a move δn,a,b that may only be played when a and b are
different. The first move is not difficult to define, we simply add morphisms
s, t∶ [n] → εn,a,b, quotient maps by ssi = tsi and tsa = tsb, and define its seed

to be [n]a=b s′Ð→ εn,a,b
t′←Ð [n]a=b, where [n]a=b is the representable [n] whose

channels a and b have been identified, or, more formally, the coequaliser of

2 ⋅ ∗ [n]sa

sb

and s′ and t′ are given by universal property of coequaliser applied to s and t

respectively. This is not perfect however, in the sense that the obtained signa-
ture is not fragmented. The clean solution to overcome this problem is to define
another move ε0n,a,b, with morphisms s, t∶ [n]→ ε0n,a,b and ∂∶ ε0n,a,b → εn,a,b satis-

fying the obvious equations, and define its seed as [n] sÐ→ ε0n,a,b
t←Ð [n]. Finally,

there would be a special kind of plays (called closed-world plays) that do not
contain any move built from ε0n,a,b.

However, defining δn,a,b is trickier. Indeed, the only restriction to be able to
play this move is that a and b should be different. So we should model it as an
object δn,a,b with maps s, t∶ [n] → δn,a,b, with the morphisms in C quotiented

by ssi = tsi, and define its seed to be [n] sÐ→ δn,a,b
t←Ð [n]. However, since we

are allowed to push along any morphism, nothing prevents us from building the
move

[n] [n]a=b
δn,a,b M

2 ⋅ ∗ ∗
[n] [n]a=b,[sa,sb]

which is a move δn,a,b played by a player whose a and b channels are equal,
exactly what we wanted to avoid! So, in this case, we would want to be able to
push this move only along those morphisms that do not identify a and b. The
only solution here is to allow only plays in which all moves m over δn,a,b are
such that m ⋅ (tsa) ≠m ⋅ (tsb) in closed-world plays. This is much more difficult
in the sense that we are refusing plays based on the morphisms along which we
push seeds, rather than simply forbidding some moves.

Another example where we do not want to be able to push along any morph-
ism is that of HON games. Let us take the following position as a concrete
example:

Bx y
A C .

It consists of two players, x on the left and y on the right. The basic idea is
that there are three kinds of moves in our calculus for HON games: Λ and @,
which correspond to Opponent and Proponent moves, and β, which corresponds

151

to the synchronisation of both moves. The Λ and @ moves should correspond
to interacting with the environment, while the β moves should correspond to
internal moves. Therefore, even though y is able to play @ on its own (by
interacting with the environment), it should not be able to play it in the position
drawn above, because such a move should be internal, and thus synchronised
with a Λ move by x.

Moreover, the persistence property, which is necessary for our construction
to admit restrictions along retractions, is sometimes too restrictive. Indeed, in
the variant of HON games that we give in Chapter 5, the notion of view differs
from the notion of view that was given in previous models of CCS and the π-
calculus based on the same techniques [50, 29]. In order to recover the standard
notion of view, one would need to add a new move to the base category, together
with a seed that does not verify persistence.

Some possible future work on this framework would thus be to generalise it
to accept some or all of the examples above.

152

Chapter 5

Justified Sequences in String

Diagrams

5.1 Motivation

In this chapter, we study the link between two approaches to concurrent game
semantics. At the level of plays, the first one is based on traditional notions of
HON games, while the second one is based on string diagrams, as illustrated in
Chapter 3. We reuse the machinery developed in Chapter 4 to define a pseudo
double category of string diagrams for HON games and prove that it is fibred,
thus allowing us to define categories of views and plays. We then set out to
explore the link between the two approaches at the level of plays.

While the categories of plays we obtain are not the same, at the level of
strategies, both approaches follow the same idea, by defining innocent strategies
as sheaves over plays for a Grothendieck topology induced by the embedding of
“views” into “plays”. We make the link between the two approaches formal by
proving that they in fact define equivalent categories of innocent strategies.

Two approaches to concurrent game semantics

Recent advances in concurrent game semantics have produced new game models
for a non-deterministic, simply-typed λ-calculus on the one hand [97], and for
CCS and the π-calculus on the other hand [49, 50, 29]. These models are based
on categories of innocent and concurrent strategies that are defined in both
cases as categories of sheaves over a site of plays.

The first model, by Tsukada and Ong, has proven to successfully extend
the most fundamental results of game semantics (interpreting terms as innocent
strategies and composing strategies to form a cartesian closed category of arenas
and innocent strategies) to a non-deterministic λ-calculus. On the other hand,
our approach aims to give a general framework to build game models for different
calculi, in order to study translations between them.

There is a clear, yet informal relationship between the two approaches in
that they both define innocent strategies as sheaves for a Grothendieck topology
induced by embedding views into plays. However, despite this similarity, the

153

notions of views and plays differ significantly. Indeed, Tsukada and Ong [97]
define them as justified sequences of moves satisfying additional conditions, as
in standard Hyland-Ong/Nickau game semantics [56, 87], while in [49, 50, 29],
plays are defined as ad hoc string diagrams describing the game, close in spirit to
ideas originally suggested by Melliès in a different setting (circa 2008, published
as [83]). Since the notions of plays differ significantly, it is legitimate to wonder
to what degree the approaches are related.

The level of views and plays

In this chapter, we go beyond this informal similarity and show a tight corres-
pondence between the two approaches at the level of plays. Specifically, in Sec-
tion 5.2, we design a pseudo double category DHON of string diagrams for HON
games whose vertical morphisms represent concurrent traces in HON games,
just like we did for the π-calculus in Section 4.3. From DHON , we design, for
each pair of arenas A and B, categories E(A Ȃ B) and EV(A Ȃ B) respectively
of plays and views for HON games.

In Tsukada and Ong’s model, there are also standard categories PA,B and
VA,B of plays and views as defined in standard game semantics (and which
we call TO-plays and TO-views to disambiguate), with a notion of morphism
inspired by Melliès’s work [80]. In Sections 5.3 and 5.4, we show how to embed
these categories into E(A Ȃ B) and EV(A Ȃ B) respectively (whose objects we
simply call plays and views).

We give two ways to define this embedding. The first way, which we explain
in Section 5.3, goes through a third model, whose plays are proof trees in an
ad hoc sequent calculus, and whose views are branches of those trees. The
categories of trees and branches are equivalent to those of plays and views
respectively, so they can be thought of as another possible representation of
these objects. Trees may also be seen as a maximal parallelisation of TO-plays,
while branches are simply equivalent to TO-views.

This definition is not very satisfactory, in the sense that trees are treated
very informally, and a formal treatment (e.g., by defining proof trees as certain
pointed presheaves over a well-chosen base category) would not make things
easier than defining it directly. It however gives a good idea of how the embed-
ding works, and what the discrepancy between our notion of play and that of
Tsukada and Ong is, which is why we still choose to expose it. Then, in Sec-
tion 5.4, we give a more formal definition of the embedding and show it verifies
all the desired properties.

We thus obtain, for each pair of arenas A and B, a commuting square of
embeddings of categories:

VA,B PA,B

EV(A Ȃ B) E(A Ȃ B),
iTO

FV

i

F (5.1)

where iTO denotes the embedding of TO-views into TO-plays, i denotes the em-
bedding of views into plays, and FV and F denote the constructed embeddings,
respectively from TO-views into views and from TO-plays into plays. Our first
result is that all these embeddings are full and that FV is an equivalence of

154

categories (Theorem 5.3.11).

The level of strategies

However, we are not only interested in comparing views and plays, but also
innocent strategies, which are at the core of game semantics. The square in
Figure 5.1 gives a correspondence at the level of plays, but it also yields a
tight correspondence between strategies in both approaches. More precisely, it
induces an equivalence between innocent strategies in both contexts and shows
that this equivalence is compatible with innocentisation. Section 5.5 is devoted
to proving this result.

To be more precise, there are two notions of innocent strategy in standard
game semantics: the first one is a prefix-closed set of views, the second one is
a prefix-closed set of plays verifying an extra condition called innocence. Both
in Tsukada and Ong’s approach and in ours, the first notion generalises to
presheaves on views, which we call behaviours and TO-behaviours. The second
notion generalises to sheaves on plays, which we simply call innocent strategies
and innocent TO-strategies. In particular, mere presheaves on plays are possibly
non-innocent strategies.

The idea behind this generalisation is the following: a prefix-closed set of
views (in, say, VA,B) is a presheaf of booleans B∶Vop

A,B → 2 (where 2 is the
ordinal 0 → 1 viewed as a category). Similarly, a prefix-closed set of plays is a
presheaf S∶Pop

A,B → 2. This presheaf is a sheaf for the Grothendieck topology
induced by the embedding of VA,B into PA,B when S(p) is accepted if and only
if S(v) is accepted for all views v → p. The notion of morphism in PA,B is
slightly non-standard in HON games: morphisms are usually defined as prefix
ordering, but they are here defined to satisfy the property that morphisms v → p

correspond to morphisms from a view of p to p (which is not necessarily a prefix
of p). The condition of being a sheaf is exactly innocence, which states that a
player can change its behaviour only according to what they have “seen”, i.e.,
their view, of the play).

However, that is not sufficient to model concurrent strategies, because there
may be several different ways to accept a play (or, in other words, a machine
may be in several different states after a given trace). The classical example is
that of Milner’s coffee machines.

⋅
⋅

⋅ ⋅

a

b c

⋅
⋅ ⋅
⋅ ⋅

a a

b c

Both machines accept exactly the same traces: ε, a, ab, and ac. However, one
has a single way of accepting the trace a, after which it still accepts b and
c, while the other makes a choice when accepting a whether to accept b or c.
The first machine has one way of accepting a, while the second has two. Thus,
modelling concurrent strategies correctly requires to know all the different states
the strategy can end in after reading a trace: it is not a presheaf of booleans,
but a presheaf of sets. Notice that it is now easy to differentiate between the
two machines: if we call Sl the strategy of the left-hand machine and Sr that of

155

the right-hand one, we have that Sl(a) is a singleton, while Sr(a) contains two
elements, so they indeed are different.

The functors F and FV give rise to functors ∆F ∶E(A Ȃ B)Ȃ→ PA,B
Ȃ

and

∆FV ∶EV(A Ȃ B)Ȃ→ VA,B
Ȃ

, where ∆f is pre-composition by fop . Since FV is an
equivalence of categories, so is ∆FV , hence behaviours and TO-behaviours are
equivalent.

A strategy is innocent (resp. TO-innocent) when it is in the essential image
of ∏i (resp. ∏iTO

), where ∏f denotes right Kan extension along fop . This
may also be seen as a sheaf condition stating that an innocent strategy accepts
a play if and only if it accepts all the views that can be embedded into that
play (see Section 2.2.7). Using the theory of exact squares (Section 2.2.6), the
square (5.1) provides a categorical explanation of why both induced categories
of innocent strategies are equivalent. Indeed, it is exact (Corollary 5.5.2), which
means that

VA,B
Ȃ

PA,B
Ȃ

EV(A Ȃ B)Ȃ
E(A Ȃ B)Ȃ

∏iTO

∆
FV

∏i

∆F
(5.2)

commutes up to isomorphism. In other words, ∆F turns into an equivalence
when restricted to innocent strategies and the saturation functors ∏i∶EV

AȂB →
EAȂB and ∏iTO

∶VA,B → PA,B that embed behaviours (resp. TO-behaviours)
into strategies (resp. TO-strategies) are compatible with this equivalence. This
implies that the innocentisation functors ∏i ○∆i and ∏iTO

○∆iTO
, which turn any

strategy into an innocent strategy, are also compatible with this equivalence.

Remark. Had we wanted to make F an equivalence of categories rather than a
mere full embedding, we could easily have imposed an additional condition on our
plays akin to alternation in a classical HON-game setting. The point is that we
want to compare the purely diagrammatic notion of play with the classical one.
And since we obtain an equivalence between both notions of innocent strategies
anyway, we feel the result is in fact more convincing.

Overview

In Section 5.2, we define the base category for HON games in the same way
as for the π-calculus, derive categories of views and plays for HON games from
it, and give a useful characterisation of these categories as subcategories of
coslices of a presheaf category. We then give a slightly informal, but intuitive
definition of the embedding of Tsukada and Ong’s plays into ours and prove all
the desired properties of this embedding in Section 5.3, which is the core result
of this chapter. In Section 5.4, we present a formal definition of this embedding
and prove all the desired properties. Finally, in Section 5.5, we build on the
relationships to show the relationship between plays to give the second result of
this paper, which is that both models have equivalent categories of strategies,
and that this equivalence is compatible with saturation.

156

5.2 HON Games as String Diagrams

We first build our model of HON games as string diagrams. We reapply the
machinery we have developed in Chapter 4 to build a base category for HON
games and derive a pseudo double category of string diagrams representing its
plays, as well as categories of views and plays.

5.2.1 Building the Pseudo Double Category

Required: 4.3.3, 2.1.3.
Recommended: Ȃ.

Sequent calculus and informal description of the game

Like in the case of the π-calculus, our first step is to give an operational descrip-
tion of our language to guide us through steps (i)–(iii). For arena games, the
operational description comes in the form of a sequent calculus on arenas (see
Sections 2.1.1 and 2.1.3 for details). This is close in spirit to Melliès’s work [83]
– though the latter takes place in a linear setting. The idea is to understand
an arena A = ∑imi.Ai as a logical formula much like Ȃi ¬Ai, and to consider
the straightforward focalised [8] sequent calculus on these formulas. Remember
that the set of roots of A is denoted by

√
A, and that for all m in

√
A, A ⋅m

denotes the arena strictly below m.
In our case, the sequent calculus that will guide our construction is:

Λ(ΓȂA),m

Γ,A ⋅m Ȃ
Γ Ȃ A

@(Γ,A,∆Ȃ),∣Γ∣+1,m

Γ,A,∆ Ȃ A ⋅m
Γ,A,∆ Ȃ

cut

Γ Ȃ A ∆,A,∆′ Ȃ
∆,Γ,∆′ Ȃ ,

(5.3)

where sequents are lists of arenas, with possibly a distinguished arena, written(A1, . . . ,An Ȃ) or (A1, . . . ,An Ȃ A). Let Γ range over lists of arenas, ∣Γ∣ denote
the length of Γ, and for all i ∈ ∣Γ∣, Γi the ith arena of Γ. We generalise these
notations to sequents: this generalisation is obvious when the sequent is of the
form S = (Γ Ȃ), then ∣S∣ = ∣Γ∣ and Si = Γi, and when S = (Γ Ȃ A), we choose∣S∣ = ∣Γ∣ and Si = Γi, which may be a bit surprising, but this definition makes
statements simpler in our work.

Remark. The sequent calculus we use here does not make much sense from a
logical point of view. It however makes sense when seen in relationship with the
following sequent calculus:

right

Γ,A ⋅m Ȃ (∀m ∈ √A)
Γ Ȃ A

left

Γ,A,∆ Ȃ A ⋅m
Γ,A,∆ Ȃ

cut

Γ Ȃ A ∆,A,∆′ Ȃ
∆,Γ,∆′ Ȃ .

(5.4)

Note that this sequent calculus is a fragment of intuitionistic logic when an arena
A = ∑i∈nmi.Ai is interpreted as JAK = Ȃi∈n (¬ JAiK), and proofs in this calculus
are proofs of intuitionistic logic.

Positions will be some kind of graphs whose vertices (which we again call
players) are labelled by sequents, whose edges (which we again call channels) are

157

labelled by arenas, and such that each player labelled (Γ Ȃ A) has ∣Γ∣ incoming
edges labelled Γi and one outgoing edge labelled A, and similarly for players
labelled (Γ Ȃ).
Example 5.2.1. For example, the drawing below represents a position with three
players: x labelled (B,A Ȃ), y1 labelled (A,C Ȃ B), and y2 labelled (A Ȃ A);
as well as four edges: a and a′ labelled A, b labelled B, and c labelled C (we
did not write the label of channels and only their names for readability, but we
usually do the opposite and do not write names and only labels).

b

a′

x

y1

y2

c

a

We see in this example that our graphs are not exactly graphs, but something
slightly more general, for two reasons: edges may have several targets, and they
may also be open-ended.

As in our game for the π-calculus, we think of players as agents that may
interact through channels. We now want to express the possible interactions
in this game, and our sequent calculus again guides us through this step. The
cut rule shows when two players may interact: when the first player’s outgoing
channel is equal to one of the second player’s incoming channels. The interaction
between players is governed by the shapes of the Λ and @ rules. In other words,
two players can interact according to the Λ and @ rules if and only if they are
linked by a cut rule. Now we just have to show the “shape” of this interaction.

As prescribed by Curry-Howard, we see this interaction as a step in a form
of proof of a certain formula. We write A = ∑i∈nmi.Ai for the arena shared
by the two players. Let x by the negative player, labelled (Γ Ȃ A), and y the
positive one, labelled (∆,A,∆′ Ȃ); x should provide a proof of JAK, while y
should require such a proof to prove a contradiction. When they interact, y
chooses some i ∈ n and asks x for a proof of ¬ JAiK, i.e., y now provides a proof
of JAiK which x may inspect to prove a contradiction. Therefore, y turns into(∆,A,∆′ Ȃ Ai), while x turns into (Γ,Ai Ȃ).

Moreover, x should not only change into a proof of contradiction assuming
JAiK, but since y may inspect the proof of JAK again, the original x player should
also remain in the final position.

Another way to look at this is to see the dynamics of interaction as cut
elimination. If we extend our calculus with sharing (we do not describe how
this works exactly), then it comes with the following cut elimination rule:

π

A′Γ Ȃ A
π′

∆1,A,∆2 Ȃ A ⋅m
A′∆1,A,∆2 Ȃ

∆′1,Γ,∆
′
2 Ȃ

π
Γ Ȃ A π′

∆1,A,∆2 Ȃ A ⋅m
∆′1,Γ,∆

′
2 Ȃ A ⋅m

πm

A′Γ,A ⋅m Ȃ ,
∆′1,Γ,∆

′
2 Ȃ

Ă

158

where π is

. . .

πm

Γ,A ⋅m Ȃ . . . (∀m ∈ √A)
Γ Ȃ A .

Indeed, if we see players as the parts of a proof that interact with each other, in
the cut rule above left, we see two players sharing a channel of type A on which
they may interact according to π and π′ followed by a left rule respectively.
After applying the cut elimination rule, we are now in presence of three players
that act according to π, π′, and πm respectively. This means that, in the final
position of the interaction, there should be three players: a player x labelled(Γ Ȃ A) that corresponds to the left part of the proof, a player y labelled(∆1,A,∆2 Ȃ A ⋅m) that corresponds to the middle part of the proof, and a
player x′ labelled (Γ,A ⋅m Ȃ) that corresponds to the right part of the proof.

We see that the left part of the proof is linked to the middle part by a cut

rule on an arena A, while the middle and right parts of the proof are linked
by a cut rule on an arena A ⋅m, which did not exist in the initial proof. This
means that x and y should share the corresponding channel of type A, while y
and x′ should share the corresponding channel of type A ⋅m. Moreover, Γ is
shared between the left and right parts of the proof, so x and x′ should share
all their channels in Γ. Finally, we may notice that the left part of the proof is
π both before and after eliminating the cut rule, so x should have exactly the
same behaviour before and after interacting. This will be imposed by having x
“survive” the move, i.e., in such an interaction, the player labelled (Γ Ȃ A) in
the final position of the move is equal to the one in the initial position (and not
just another player with the same label).

If we try to picture this, we get that such a move should have for initial
position the one on the left-hand side below, and for final position the one on
the right-hand side below.

⋮ ⋮
Γn

Γ1

∆m

∆1

A

Ă ⋮ ⋮
Γn

Γ1 A⋅m

∆m

∆1

A
x

x′

y

A third and final way to understand this interaction is in terms of interpret-
ation of programs. In our game, players are placeholders for program fragments,
and channels are the means through which two program fragments may interact.
When we see things this way, positive players (those players that are labelled(Γ Ȃ)) represent program fragments that are currently computing, while neg-
ative players (those labelled (Γ Ȃ A)) represent program fragments waiting to
be called on. A positive player labelled (Γ Ȃ) represents a program fragment
that has access to resources of type Γi, some of which may be continuations. A
negative player labelled (Γ Ȃ A) represents a program fragment that has access
to resources of type Γi (among which there may be continuations) and provides
a value of type A.

Two players x labelled (Γ Ȃ A) and y labelled (∆,A,∆′ Ȃ) interact when
the program fragment corresponding to y calls the one corresponding to x.

159

When this happens, y must stop computing to wait for x’s answer, and x starts
computing, with a new resource available: the continuation to y to give their
answer. We thus see that there is a reversal of roles: x was negative before the
interaction and becomes positive afterwards, and vice versa for y. Moreover,
x should still have access to the resources in Γ, so it should now be labelled(Γ,A ⋅m Ȃ). Similarly, y should also still have access to the resources it had
access to before, so it should be labelled (∆,A,∆′ Ȃ A ⋅m), waiting to be called
back on A ⋅m. Finally, y should be able to call x again later in their execution
if they need to, and x should behave “the same” if we want our game to model
a pure language, so the original copy of x should still be present in the final
position.

Stage (i): positions

Let us now formalise this. We call L the base category on which the pseudo
double category of string diagrams for HON games is built. We first build L1,
which represents positions in our game, as follows:

Definition 5.2.2. Let L1 be the category freely generated by the graph with

• a vertex for each arena,

• a vertex for each sequent,

• for each sequent S = (A1, . . . ,An Ȃ) and i ∈ n, an edge si∶Ai → S,

• for each sequent S = (A1, . . . ,An Ȃ A), an edge t∶A→ S, and for all i ∈ n,
an edge si∶Ai → S.

Example 5.2.3. The (informal) position of Example 5.2.1 is modelled as the
presheaf X defined by:

• X(A) = {a, a′}, X(B) = {b}, X(C) = {c},
• X(A,C Ȃ B) = {y1}, X(A Ȃ A) = {y2}, X(B,A Ȃ) = {x},
• X(c) = Ȃ otherwise,

• y1 ⋅ s1 = y2 ⋅ s1 = a, y1 ⋅ s2 = c, y1 ⋅ t = x ⋅ s1 = b, and y2 ⋅ t = x ⋅ s2 = a′,
Indeed, if we draw its category of elements, we obtain the graph on the left below,
which we draw as on the right, which is the desired position.

c y1
b

a x

a′

y2

s2

s1

s1

t

s1

t

s2

B

A

x

y1

y2

C

A

160

Stage (ii): selecting spans

Let us now select the spans our moves are built from. For all arenas A =∑i∈Imi.Ai and i ∈ I, we will have a span β corresponding to the move sketched in
the informal presentation. But in order for the obtained pseudo double category
to be fibred, we need to introduce one additional move for each player in the
initial position. This makes two moves: the one corresponding to the Λ(ΓȂA),m
and the one corresponding to @(Γ,A,∆Ȃ),∣Γ∣,m. As announced above, we should
enforce the fact that the player x survives the move β (and therefore Λ as well).

Given this, let us now select spans for the Λ, @, and β moves.
For all sequents S = (Γ Ȃ A) and m ∈ √A, consider the span S

Λ
S,m =

Y Λ
S,m

wΛ
S,m←ÐÐÐ ZΛ

S,m

uΛ
S,mÐÐÐ→XΛ

S,m,

where

• XΛ
S,m = (Γ Ȃ A),

• Y Λ
S,m = (Γ Ȃ A) ∣ (Γ,A ⋅m Ȃ) is the pushout

∑i∈∣Γ∣ Γi (Γ,A ⋅m Ȃ)
(Γ Ȃ A) (Γ Ȃ A) ∣ (Γ,A ⋅m Ȃ)

[si]i∈∣Γ∣

[si]i∈∣Γ∣

inl

inr

• and ZΛ
S,m = (Γ Ȃ A),

with the obvious morphisms uΛS,m = idS and wΛ
S,m = inl. The form of the pushout(Γ Ȃ A)∣(Γ,A⋅m Ȃ) reflects the fact that x and x′ should share all their channels

in Γ, as explained in the informal introduction.
For all S′ = (∆ Ȃ), i ∈ ∣∆∣, and m ∈ √∆i, consider the span S

@
S′,i,m =

Y @
S′,i,m

w@

S′,i,m←ÐÐÐÐ Z@
S′,i,m

u@

S′,i,mÐÐÐÐ→X@
S′,i,m,

where

• X@
S′,i,m = (∆ Ȃ),

• Y @
S′,i,m = (∆ Ȃ Ai ⋅m)

• and Z@
S′,i,m = ∑i∈∣∆∣∆i,

with the obvious morphisms.
For all sequents S = (Γ Ȃ A) and S′ = (∆ Ȃ) with ∆i = A and m ∈ √A,

consider the span S
β
S,S′,i,m =

Y
β
S,S′,i,m

w
β

S,S′,i,m←ÐÐÐÐÐ Z
β
S,S′,i,m

u
β

S,S′,i,mÐÐÐÐÐ→X
β
S,S′,i,m,

where

161

• X
β
S,S′,i,m is the pushout

A S′

S X
β
S,S′,i,m,

si

t

inl

inr

• Y
β
S,S′,i,m denotes the pushout

A + (A ⋅m) (Γ Ȃ A ⋅m)
S ∣ (∆,A ⋅m Ȃ) Y

β
S,S′,i,m,

[si,t]

[inl ○t,inr ○s∣∆∣+1]

inl

inr

• and ZβS,S′,i,m = (S +∑j≠i∆j),
with the obvious morphisms.

Stage (iii): augmenting the base category

At last, we augment our base category L1 with new objects and morphisms that
model moves, just like in the case of the π-calculus.

Definition 5.2.4. Let L consist of L1, plus:

• For all sequents S = (Γ Ȃ A) and m ∈ √A, an object ΛS,m with maps

S
tÐ→ ΛS,m

s←Ð (Γ,A ⋅m Ȃ) such that t ○ si = s ○ si for all i ∈ ∣Γ∣,
• For all sequents S = (∆ Ȃ), i ∈ ∣∆∣, and m ∈ √∆i, an object @S,i,m with

maps S
tÐ→ @S,i,m

s←Ð (∆ Ȃ Ai ⋅m) such that t ○ si = s ○ si for all i ∈ ∣∆∣,
• For all sequents S = (Γ Ȃ A) and S′ = (∆ Ȃ), with i ∈ ∣∆∣ such that ∆i = A

and m ∈ √A, an object βS,S′,i,m with maps ΛS,m
λÐ→ βS,S′,i,m

@←Ð @S′,i,m
such that

λ ○ t ○ t = @ ○ t ○ si and λ ○ s ○ s∣∆∣+1 = @ ○ s ○ t.
For all sequent S = (Γ Ȃ A) and m in

√
A, we have by Yoneda a morphism

t∶XΛ
S,m → ΛS,m. Moreover, we get s′∶Y Λ

S,m → ΛS,m by universal property of
pushout in:

∑i∈∣Γ∣ Γi (Γ,A ⋅m Ȃ)
(Γ Ȃ A) Y Λ

S,m

ΛS,m.

[si]i∈∣Γ∣

[si]i∈∣Γ∣

inl

t

inr
s

s′

Proposition 5.2.5. For all sequents S = (Γ Ȃ A) and move m in
√
A, the

square

162

ZΛ
S,m Y Λ

S,m

XΛ
S,m ΛS,m

wΛ
S,m

uΛ
S,m s′

t

is a pullback.

Proof. A simple check.

There are of course similar propositions for @S,i,m and βS,S′,i,m.
We may now choose the signature describing HON games by choosing a

functor from L∣≥2 to Cospan(LȂ). In fact, for each valid tuple (S,S′, i,m), L∣≥2
locally looks like the poset

βS,S′,i,m

@S′,i,mΛS,m

λ @

viewed as a category. We define our functor L∣≥2 → Cospan(LȂ)H to map this to

Y Λ
S,m Y

β
S,S′,i,m Y @

S′,i,m

ΛS,m βS,S′,i,m @S′,i,m

XΛ
S,m X

β
S,S′,i,m X@

S′,i,m.
inl

inl

λ

inr

inr

@ (5.5)

We may easily check that this assignment yields a functor.

Definition 5.2.6. Let SHON ∶L∣≥2 → Cospan(LȂ)H denote the obtained functor.

5.2.2 Categories of Views and Plays

Required: 5.2.1, 4.4.4.
Recommended: Ȃ.

We may now construct the pseudo double category DHON based on the
signature SHON using the machinery from Chapter 4. We thus get a pseudo
double category of concurrent traces that represent HON games.

We may then prove:

Lemma 5.2.7. DHON is fibred.

Proof. By Corollary 4.4.40, it suffices to show that SHON is persistent, mono-
lithic, and separated, which is routine.

From this, we get for each position X a category E(X) of plays over X, as
defined in Definition 4.3.30 and which may concretely be characterised as the
category with:

• as objects, all plays U ∶Y X,

163

• as morphisms from U ∶Y X to U ′∶Y ′ X, all double cells α as below
left, quotiented by the equivalence relation generated by relating α on the
left to α ○ (U ● γ) on the right:

Z Y ′

Y

X X

W

U

U ′
α

Z ′ Z Y ′

Y

X X.

W
W ′

U

U ′
α

γ

Remark. Notice that, by Lemma 4.2.1, any α as above whose middle component
is 1D-injective automatically has a 1D-pullback bottom square. Moreover, if the
middle component is 1D-injective, then the top component also is.

As explained in Section 4.3.4, composition is defined using cartesian cells. The
composition of α and β below is β ○ (α ●γ), where γ is the cartesian lifting of s.

Z ′′ Z ′ Y ′′

Z Y ′

Y

X X X.

W

s

U

r

U ′

W ′

s′

r′

U ′′

α

β

γ

Composition defined this way indeed possesses an identity (the identity cell)
and is associative (because cartesian cells compose both horizontally and ver-
tically).

To relate to traditional HON game semantics, we need to define categories
of views and plays that are the counterparts of the traditional categories PA,B
and VA,B (see Section 2.1.3 for definitions). For this reason, we now restrict
our attention to particular shapes of initial positions. The counterpart to PA,B
in our case is simply the category E(A Ȃ B).
Remark. The construction may look too involved, since we end up restricting
our attention to plays over (A Ȃ B), that is, with only one player. For example,
β moves can never occur in a play over (A Ȃ B). Indeed, for such a move to
happen, the outgoing edge of one player must be equal to one of the incoming
edges of another player. But we cannot find this pattern in the initial position,
and positions where this pattern does not appear are stable under Λ and @ moves,
so a β move can never be played.

However, this machinery is built in the same way as our other string dia-
grammatic models, and it allows us to treat the multi-party positions that will
appear in plays uniformly, and with the same intuitions as in playground mod-
els. The β move also makes sense in larger positions, for example when trying
to define interaction sequences in string diagrams. In this framework, we may
define interaction sequences just like plays, but with a different initial position:
an interaction sequence on the arena triple (A,B,C) is a play on the position(A Ȃ B Ȃ C), which is defined as the pushout

164

B (A Ȃ B)
(B Ȃ C) (A Ȃ B Ȃ C).

t

s1 inl

inr

(This definition is however unsatisfactory for technical reasons, and we need to
adapt the definition of the base category for it to be meaningful.)

In particular, we use this category in Chapter 6 to study fine invariants of
interaction sequences in HON games.

We now need to give a counterpart to the notion of view. But fibred pseudo
double categories are inspired from the notion of playgrounds [50, 29], a cat-
egorical gadget that is in turn inspired from game semantics and come with a
notion of view. In the setting of playgrounds, there are special moves called
basic moves, which track only one player, and views are defined as composites
of such moves. The idea is that, if the behaviour of a player only depends on its
view (which is the basic idea of innocence), then its behaviour cannot depend
on how other players play.

In our case, the idea is the same, but this exact approach fails on two points.

• Since there is a duality in HON game semantics between Opponent and
Proponent, who usually play alternatively, and we are only interested in
Proponent (because we want to describe the behaviour of the program,
and not that of the environment), only composites of basic moves of even
length should be views.

• We do not have all the basic moves that we need to define views this easily.
Indeed, one of the playground axioms, the axiom of views, basically states
that, for all moves M ∶Y X and player y∶Y in the final position of M ,
there should exist a cell

d Y

dy,M X,

y

vy,M M

xy,M

αy,M

where vy,M is a basic move or an equivalence and xy,M ∶dy,M → X is a
player. As the reader can see, this means that basic moves should have
players as their initial and final positions, and that for any move and
player in its final position, there should be a basic move that corresponds
to what that player “sees” of the move. But, if we take the move Λ(ΓȂA),m
and the player inr∶ (Γ,A ⋅m Ȃ)→ Y Λ

S,m, there is no way to fill the diagram

(Γ,A ⋅m Ȃ) Y Λ
S,m

d (Γ Ȃ A).
inr

v ΛS,m

x

α

What we do at this point in our other models is to define a new move,
say λ(ΓȂA),m, that only contains the player labelled (Γ,A ⋅m Ȃ) in its final
position. However, if we do that, then the channel labelled A in the initial

165

position is not present in the final position, which breaks persistence, and
thus our proof of fibredness.

Because of this, we should find an alternative definition of view that follows the
same idea: a view should only follow one player.

Definition 5.2.8. For any play U ∶Y (A Ȃ B), we define the binary relationȂU on all moves m∶µ → U of U (where µ ∈ L∣≥2) by m ȂU m′ if and only
if m ⋅ s = m′ ⋅ t. When m ȂU m′, we say that m′ causally depends on m.
Furthermore, we omit the subscript when clear from context.

A preview is a play U ∶Y (A Ȃ B) such that the reflexive, transitive closureȂ∗ of ȂU is a total order on the moves of U .

A view is a preview of positive, even length (i.e., it is the composite of a
positive, even number of moves).

In other words, a preview is a play that does not contain any β moves and
that can be written as a composite M1● . . .●Mn of moves in a unique way (up to
isomorphism of moves). This means that we may assign a number to each move,
according to its place in the previous sequence, and that the kth move has to
occur before the k+1th. In particular, no two moves may occur “in parallel”, or,
if we decompose U as U1 ●Q●U2 with Q a quasi-move (recall Definition 4.4.37),
then Q is actually a move. It also implies that U is an alternation of Λ and @

moves, and that the k + 1th move is played by the unique player created by the
kth move (i.e., that player who is in the final position of the kth move, but not
in its initial position).

Our counterpart to VA,B is:

Definition 5.2.9. Let EV(A Ȃ B) be the full subcategory of E(A Ȃ B) spanning
views.

Let us also give a useful lemma on views:

Lemma 5.2.10. Let V ∶Z (A Ȃ B) be a view isomorphic to a composite of
a play U ∶Y (A Ȃ B) and a move M ∶Z ′ Y . Then U is also a view.

Proof. Let (l, k, id(AȂB))∶U ●M → V be the isomorphism. Because k is an
isomorphism, we have that ȂU●M and ȂV have the same structure: all moves mV

in V are in the image of k, and m ȂU●M m′ if and only if k(m) ȂV k(m′). Since
V is a view, we know that ȂV is of the form k(m1) ȂV . . . ȂV k(mn), where m1,
. . . , mn are all the moves in U ●M . Therefore, we have m1 ȂU●M . . . ȂU●M mn.
Now, it suffices to notice that ȂU●M is an extension of ȂU , and that adding the
move M can only add pairs m Ȃm′ in which m is a move from U and m′ is the
move from M , so m′ is necessarily mn, so Ȃ∗U is a total order.

We finally give the notions of strategy that are associated to this game.
As mentioned in this chapter’s introduction, there are actually two notions of
strategies, just like in game semantics.

Definition 5.2.11. An (A Ȃ B)-behaviour (or simply a behaviour) is a pre-
sheaf over EV(A Ȃ B).
Definition 5.2.12. An (A Ȃ B)-strategy (or simply a strategy) is a presheaf
over E(A Ȃ B). A strategy is innocent when it is in the essential image of ∏i,
where i is the inclusion of EV(A Ȃ B) into E(A Ȃ B).

166

5.2.3 Characterisations of Views and Plays

Required: 5.2.2.
Recommended: Ȃ.

Before relating our categories of views and plays with Tsukada and Ong’s,
we digress a little in this section to establish the announced characterisation of
E(A Ȃ B) and EV(A Ȃ B), as subcategories of the coslice (A Ȃ B)/LȂ.

Definition 5.2.13. Let E′(A Ȃ B) denote the subcategory of (A Ȃ B)/LȂ span-

ning morphisms t∶ (A Ȃ B)→ U for which there exists a play Y
sÐ→ U

t←Ð (A Ȃ B),
and 1D-injective morphisms (Definition 4.3.10) between them.

Let (EV)′(A Ȃ B) denote the full subcategory of E′(A Ȃ B) spanning views.

There is an obvious candidate functor U∶E(A Ȃ B) → E′(A Ȃ B) mapping

Y
sÐ→ U

t←Ð (A Ȃ B) to t and a morphism

Z Y ′

W

Y U ●W U ′

U

(A Ȃ B) (A Ȃ B)

α

from ܂U܂ to U܂ ܂′ (remember Notation 4.4.14) to the composite U → (U ●W) αÐ→
U ′.

Lemma 5.2.14. U is compatible with the equivalence relation ∼ (defined in
Notation 4.3.27) and yields a functor U∶E(A Ȃ B)→ E′(A Ȃ B).
Proof. To show that U is compatible with ∼, we simply show that, for all situ-
ations as in (4.9), W܂) ,܂ α) and W܂) ,܂′ α○(u●γ)) have the same image through
U. Given a diagram as the solid part of

Z ′ Z Y ′

W ′ W

Y U ●W ′ U ●W U ′

U

X X,

γ

U●γ α

we get U ●γ by universal property of pushout, and the images through U of the
two morphisms we are interested in are

167

U → U ●W αÐ→ U ′ and U → U ●W ′ U●γÐÐ→ U ●W αÐ→ U ′,

which are equal by construction of U ● γ. Functoriality of the obtained assign-
ment is straightforward.

The rest of this section is devoted to proving:

Theorem 5.2.15. U is an equivalence, and thus restricts to an equivalence at
the level of views U

V∶EV(A Ȃ B)→ (EV)′(A Ȃ B).
Since U is surjective on objects by definition, we just need to prove that

the underlying functor to (A Ȃ B)/LȂ is faithful and that its image on homsets
precisely spans 1D-injective morphisms.

This is in fact an easy consequence of:

Lemma 5.2.16. Assume given plays u∶Y (A Ȃ B) and u′∶Y ′ (A Ȃ B),
and a 1D-injective morphism h∶U(u)→ U(u′).

There exists a quasi-move w∶Z Y and a morphism α∶ (u ● w) → u′ in

D(SHON)H such that h = (U → U ●W αÐ→ U ′), which is minimal in the sense

that, for any (w′, α′) such that h = (U → U ●W ′ α′Ð→ U ′), there exists a unique
γ∶w → w′ such that α decomposes as α′ ○ (u ● γ), as in

Z Z ′ Y ′

Y

(A Ȃ B) (A Ȃ B).
w′w

u

u′

s

α′

γ

In the rest of the proof, we show how to build (w,α) and how to factor it
through any (w′, α′) as above. The idea is that positive players (those of the
form (Γ Ȃ)) are always present in the final position (they can only play Λ moves,
and they are present in the final positions of those moves), while negative players
(those of the form (Γ Ȃ A)) are in the final position of a play if and only if they
never play (because they are not present in the final positions of @ moves). For
u ● w to have a map α to u′, the final position Z of w must be contained in
that of u′, which means that all negative players in Z must also exist in Y ′. To
ensure this, we define w′ to play @ moves for all the negative players of w′ that
are not in the final position of u′.

In order to prove this, we need to analyse final positions of plays as follows.
Given a position X ∈ L

Ȃ
, recalling Terminology 4.3.9, let us call a channel an

input when it occurs as x ⋅si, for some player x ∈X(S) for some sequent S, and
an output when it occurs as x ⋅ t. In general positions, channels may be both
inputs and outputs, but in coproducts of sequents, each channel is one or the
other, but not both. Let us generalise this situation:

Definition 5.2.17. A position is polar when each of its channels is either an
input or an output but not both.

Non-polar positions either have disconnected channels (which are neither
inputs nor outputs) or channels which are both inputs and outputs.

168

From this point on until the end of the proof of Lemma 5.2.16, we will
implicitly use the fact that β moves never occur in the plays we consider, which
holds because we only consider plays starting from polar positions. In particular,
we will use notations such as m ⋅ t or m ⋅ s for arbitrary moves m, which is ill-
defined in general, but well-defined for Λ and @ moves.

Lemma 5.2.18. Any polar position admits a surjective and 1D-injective map
from a coproduct of sequents, given by the counit of the comonad of Proposi-
tion 4.4.10.

Proof. The counit is clearly 1D-injective, and it is surjective because all channels
are connected to at least one player (otherwise, they would not have a polarity).

Lemma 5.2.19. For all plays u∶Y (A Ȃ B), Y is polar.

Proof. This follows from the more general fact that, for any u∶Y X with
polar X, Y is polar, which is proved by induction on the length of u.

Definition 5.2.20. An interface is a position consisting only of channels.

Any polar position X comes with a canonical (up to isomorphism) monic
map IX +OX ĂX from some coproduct of two interfaces IX and OX , surjective
(hence iso) in dimension 0, such that IX covers inputs and OX covers outputs.
Note that all maps preserve polarity, i.e., any h∶X → Y maps positive channels
to positive channels and negative ones to negative ones, but they may also add
polarities to some channels, so, e.g., a positive channel may be mapped to a
channel that is both positive and negative.

Notation 5.2.21. We call any map as in Lemma 5.2.18 a polar cover of the
given position. We fix a global choice of such polar covers, which, for any polar

X, we denote by Pl(X) = (∑i∈PX
XP
i) + (∑i∈NX

XN
i) εX

X, where each XP
i

is a positive sequent, i.e., one of the form (Γ Ȃ), and each XN
i is a negative

sequent, i.e., one of the form (Γ Ȃ A), and PX and NX are the numbers of
positive and negative players in X, respectively.

Finally, by Lemma 4.4.28, any play u on Pl(X) “descends” to a play (εX ⋅
u)∶ (εX ⋅ Y) X, as the pushout

id
●
IPl(X)+OPl(X)

id
●
IX+OX

u εX ⋅ u.
αu

X

We now need a further observation on final positions. These are a priori
associated to some play, but in fact we may pose:

Definition 5.2.22. The final position ↑U of a presheaf U ∈ LȂ is the smallest
subpresheaf of U containing all channels and negative players, as well as all
positive players x for which there exists no move m with m ⋅ t = x. We deem the
elements of ↑U final in U .

Accordingly, a morphism h∶Y → U with Y a position, is called final if and
only if it is isomorphic to ↑U → U (in L

Ȃ/U).

169

Intuitively, the final position retains only those positive players who haven’t
yet played any move.

Lemma 5.2.23. For all plays u∶Y (A Ȃ B), su is final.

Proof. By induction on u.

Our next step will have to do with fullness of U. It will rely on the following
notion:

Definition 5.2.24. For any play u∶Y (A Ȃ B), a 1D-injective morphism
h∶X → U (remember Notation 4.4.14) is P -ample if and only if for all S, i, r
and m ∈ U(@S,i,r), if m ⋅ t ∈ Im(h) then m ⋅ s ∉ Im(h).

The idea behind P -ample morphisms is that such a morphism X → U only
takes a “slice” of the play at some point in time, and so all players in X have
causally independent images in U . (This is only a rough idea, and there may a
player causally dependent on another in a P -ample morphism.)

Definition 5.2.25. For any play u∶Y (A Ȃ B), final players of U are called
survivors, while non-final players are called doomed. The set of survivors of U
is denoted by Surv(U) and the set of doomed players by Doom(U).

For any h∶X → U , we reflect the decomposition of pl(U) into survivors and
doomed players as pl(X) = Surv(X) ȂDoom(X).

Of course, all doomed players are positive.

Lemma 5.2.26. For any play u and moves m1 and m2 in U , if m1 ⋅ s =m2 ⋅ s,
then m1 =m2.

Proof. By induction on u.

Notation 5.2.27. For any play u∶Y X, let ̂û denote the cospan Y
suÐ→

U U .

Lemma 5.2.28. Assume given any polar position X, play u∶Y (A Ȃ B),
and P -ample morphism h∶X → U .

There exist quasi-seeds (vertical morphisms which are either seeds or iden-
tities) Mi∶Yi XP

i for all i ∈ PX and a 1D-injective αh as in

(∑i∈PX
Yi +∑j∈NX

XN
j) εX ⋅ (∑i∈PX

Yi +∑j∈NX
XN
j) Y

(∑i∈PX
XP
i +∑j∈NX

XN
j) X U ,

Mh

εX

εX ⋅Mh

α
Mh
X

h

̂û
αh

where bottom squares are all 1D-pullbacks, Mh = (∑i∈PX
Mi +∑j∈NX

XN
j) and,

on the right, the cospan ̂û is viewed as a vertical morphism in Cospan(LȂ).
Proof. Let XN = ∑j∈NX

XN
j and XP = ∑i∈PX

XP
i . By Lemma 5.2.23, any

negative player x in X uniquely corresponds to some negative player x′ in Y ,
mapped to h(x) by su. This yields a cell

170

XN Y

XN U .

̂ûαN

Now, for any positive survivor x in X (over some sequent Sx), if we define
Yx = Sx, there is a cell

Yx Y

Sx U
⌜h(x)⌝

̂û
αx

analogous to the one above.
Finally, for any doomed x ∈X(Sx), let x′ = h(x) denote its image in U(Sx).

Because x is doomed, there exists a (unique) move m ∈ U(@Sx,i,r) for some i and
r, such that m ⋅ t = x′. Let (Mx∶Yx Sx) = SHON (@Sx,i,r) denote the seed of
m. By definition of SHON , Yx is a negative sequent, and we let y =m ⋅s ∈ U(Yx).
By the same argument as above, y has a unique antecedent y′ in Y and so there
exists a cell

Yx Y

Sx U .

⌜y′⌝

Mx

⌜h(x)⌝

̂û
αx

By copairing all these cells, we obtain a cell α0
h∶Mh → ̂û in Cospan(LȂ),

which decomposes as desired by universal property of pushout and the fact that
id
●
IU+OU

is the universal interface with a map to U (so IX + OX → U factors
through IU +OU). It remains to prove that all involved maps are 1D-injective
and that all bottom squares are 1D-pullbacks.

Let us first show that α0
h is 1D-injective. In dimension 2, if m,m′∶@S,i,r →

Mh are two moves such that α0
hm = α0

hm
′, then (α0

hm) ⋅ t = (α0
hm
′) ⋅ t, so

α0
h(m ⋅ t) = α0

h(m′ ⋅ t), but m ⋅ t and m′ ⋅ t have antecedents in XN +XP , so this
contradicts 1D-injectivity of hεX . In dimension 1, the set of players of Mh is
isomorphic to the coproduct of players of XN , XP , and Y N , where Y N denotes∑x∈Doom(X) Yx, the set of players created by the @S,i,r moves in Mh. Since
hεX is 1D-injective, players in the image of XN and XP cannot be equated by
α0
h. Players in Y N and XP cannot be equated because they lie over different

objects (those in Y N are over negative sequents, while those in XP are over
positive ones). By construction, players in Y N cannot be equated by α0

h: by
Lemma 5.2.26, in a play, if m ⋅ s = m′ ⋅ s, then m = m′. So the only possibility
for α0

h not to be 1D-injective is for a player in Y N to be equated with a player
in XN . Let us call yN and xN these two players. By construction of Mh, we
know that there is a player xP in the image of XP and a move m in Mh such
that yN =m ⋅ s and xP =m ⋅ t. But then, h(εX(xN)) = α0

h(yN) = α0
h(m) ⋅ s and

h(εX(xP)) = α0
h(m) ⋅ t, which contradicts P -ampleness of h.

The left-hand square has a 1D-pullback bottom square by Lemma 4.4.28
and the fact that id

●
IPl(X)+OPl(X)

→ id
●
IX+OX

is bijective in dimensions > 0. The
large rectangle has a 1D-pullback bottom square by Lemma 4.2.2. Finally, the
right-hand square has a 1D-pullback bottom square by Lemma 4.2.3.

171

We have three further handy lemmas:

Lemma 5.2.29. For any horizontal morphism h∶X ′ → X and play u∶Y X,
there exists at most one cell id●X′ → u with bottom border h.

For any @S,i,r ∈ ob(L), morphism h∶S →X, and play u∶Y X, there exists
at most one cell SHON (@S,i,r)→ u with bottom border h.

Proof. The first proof is by monicity of Y → U . For the second, because X → U

and Y → U are monic, any cell α∶SHON (@S,i,r) → u is uniquely determined by
its middle component @S,i,r → U . But, by Yoneda, that component itself is de-
termined the image of m = id@S,i,r

(which is the move element in SHON (@S,i,r)).
But this is in fact uniquely determined by the image of t ∈ y@S,i,r

(the player
element), so it is uniquely determined by h(idS). Indeed, by an easy induction
on u, there is at most one m′ ∈ U(@S,i,r) such that m′ ⋅ t = h(x).
Lemma 5.2.30. For any play u and player x in U , either x is in the image of
tu or there exists a move m such that x =m ⋅ s. Dually, either x is in the image
of su or there exists m in U(@S,i,r), for some S, i, r, such that x =m ⋅ t.
Proof. By induction on u.

We now define a relation analogous to Ȃ (Definition 5.2.8), but on players:

Definition 5.2.31. For all plays u and players x and y in u, let x Ȃu y if and
only if there exists m such that x = m ⋅ t and y = m ⋅ s. As before, we omit the
subscript when clear from context.

Lemma 5.2.32. For all morphisms h∶U(u) → U(u′) in E′(A Ȃ B), if h(x) Ȃu′
h(y) with x positive, i.e., over some (Γ Ȃ), then x Ȃu y.
Proof. Let m′ witness h(x) Ȃu′ h(y). By Lemma 5.2.30, we have h(y) ∉ Im(tu′),
so y ∉ Im(tu), and hence there exists m ∈ U such that m ⋅ s = y, again by
Lemma 5.2.30. Now, by naturality of h, we have h(m) ⋅ s = h(y) so h(m) = m′
by Lemma 5.2.26. Again by naturality of h, we get h(m ⋅ t) = m′ ⋅ t = h(x), so
by 1D-injectivity of h we obtain x =m ⋅ t and hence x Ȃu y.

Lemma 5.2.16 now follows:

Proof of Lemma 5.2.16. Given u, u′ and h, let k = h ○ su. This morphism is P -
ample. Indeed, consider any m′ ∈ U ′(@S,i,r) with k(x) =m′ ⋅ t, and k(y) =m′ ⋅s.
Then we have k(x) Ȃu′ k(y) so by Lemma 5.2.32, there exists m witnessing
su(x) Ȃu su(y), so su(x) ∈ Im(su) and m ⋅ t = su(x), which, by Lemma 5.2.30,
is a contradiction.

Since k is P -ample, by Lemma 5.2.28, we get a cell (l, αk, k)∶w → ̂u′̂ with
w = εY ⋅Mk ∶Z Y a quasi-move. This in particular ensures that the square

Y W

U U ′
h

172

commutes. By universal property of pushout, this induces a unique morphism
α∶u ●w → u′ such that α ○ injWU = h and α ○ injUW = αk (where injWU ∶U Ă U ●W
and injUW ∶W Ă U ● W are the pushout injections). Let us show that α is
1D-injective by showing that W Ȃ Y and U Ȃ Y have disjoint images in U ′

in dimensions > 0. In dimension 1, if αk(xW) = h(xU) for some players xW
of W Ȃ Y and xU of U , then by construction of W , xW is a negative player,
hence so is xU , and therefore xU is in Y by Lemma 5.2.23. In dimension 2, if
αk(mW) = h(mU) for some moves mW of W and mU of U , then by construction
of W , mW must be such that mW ⋅ t = tw(y) for some player y in Y , and mW is
also necessarily an @ move, and thus, so must mU . Now, h(mU ⋅ t) = h(mU) ⋅ t =
αk(mW) ⋅ t = αk(mW ⋅ t) = αk(tw(y)) = k(y) = h(su(y)), so by 1D-injectivity
of h, mU ⋅ t = su(y), which is a contradiction by Lemma 5.2.30. To show that
the bottom square of α∶u ● w → u′ is a 1D-pullback, it suffices to notice that
α is 1D-injective and the bottom component is an identity, so the square is a
1D-pullback by Lemma 4.2.1.

It remains to show that the pair (w,α) is minimal. Consider thus any (w′, α′)
such that α′ ○ injW ′

U = h.
By Lemma 5.2.30, a positive player x ∈ U(S) in the image of tu is doomed if

and only if there is a move m ∈ U(@S,i,r), for some i and r, such that x =m ⋅ t.
Now, let us observe that, by construction of W , for any positive player x of

Y , tw(x) ∈ Doom(W) if and only if k(x) ∈ Doom(U ′).
But, for any player x in Y , if k(x) is doomed in U ′ then tw′(x) is doomed in

W ′ (otherwise, tw′(x) has an antecedent in Z ′ by Lemma 5.2.30, and thus k(x)
has an antecedent in Y ′, which is a contradiction, again by Lemma 5.2.30).

This entails that Mk → U ′ lifts through α′ ○ injUW ′ , as desired, uniquely by
Lemma 5.2.29. But then w → U ′ also lifts through α′ by universal property of
pushout, uniquely because αMk

Z is epi.

Proof of Theorem 5.2.15. Lemma 5.2.16 easily entails that the image of U in(A Ȃ B)/LȂ on homsets spans 1D-injective morphisms. Faithfulness follows from
minimality of the constructed pair (w,α).
5.3 The Level of Plays: Intuition

We now want to define the functor F ∶PA,B → E(A Ȃ B) and show that it is a
full embedding and that it restricts to an equivalence FV∶VA,B → EV(A Ȃ B)
on views. For reasons we explain at the end of this section, the arguments used
here are not as formal as one would expect, so this whole section is here more
to give the reader intuition about F than a formal construction and proofs of
its properties, which are delayed to Section 5.4.

5.3.1 Illustration on an Example

Required: 5.2.3.
Recommended: Ȃ.

To give some intuition about how this embedding works, we apply it to an
example, illustrated in Figure 5.1. This embedding is decomposed into two
steps: the first one maps TO-plays to some form of proof trees, and the second

173

qr ql tl fr fl tr

fr tr

tl fl

ql

qr

Bl,{t, f}r,Ȃl Ȃ Ȃr
fr

Bl,{t, f}r,Ȃl Ȃ
Bl,{t, f}r,Ȃl Ȃ Ȃr

tr
Bl,{t, f}r,Ȃl Ȃ

tl, fl
Bl,{t, f}r Ȃ {t, f}l ql

Bl,{t, f}r Ȃ qr
Bl Ȃ Br

Bl,{t, f}r,Ȃl Ȃ Ȃr
fr

Bl,{t, f}r,Ȃl Ȃ
Bl,{t, f}r,Ȃl Ȃ Ȃr

tr
Bl,{t, f}r,Ȃl Ȃ Bl,{t, f}r Ȃ {t, f}l

fl
Bl,{t, f}r Ȃ {t, f}l

tl
Bl,{t, f}r Ȃ {t, f}l ql

Bl,{t, f}r Ȃ Bl Ȃ Br qr
Bl Ȃ Br

tr

fl

fr

tl

ql

qr

1

2

3

4

Figure 5.1: The big picture

174

one maps these proof trees to plays as string diagrams. In our example, we
further refine both steps: TO-plays are first mapped to P -view trees [16], then
to proof trees, then to a linearised form of the same proof tree, and finally to a
string diagram.

In our example, we study a play s on (Bl,Br), the pair of two boolean arenas,
where l and r are only present to show in which copy of B moves are played. We
show how s may be mapped to a string diagram P , explain why this mapping
is functorial, and how it restricts to an equivalence on views.

Our plays are as defined in Section 5.2, but, for the sake of readability,
we omit channels when drawing positions. We thus need to have a way to
distinguish between positive and negative players. We depict the positive ones
as and negative ones as . The only two moves that may occur in a play
on (A Ȃ B) are built from the seeds ΛS,m and @S,i,m, which are depicted as

m

and
m

respectively, with their initial positions at the bottom and
the final ones at the top, but where we omit channels. We can then draw moves

by drawing a seed and the rest of the position, as in
m

, which is a move
on a position with two players, with the left player playing an @ move. A play
can then be represented as a vertical pasting of moves.

A morphism of plays f (i.e., a morphism in D(SHON)H) is then just like an
injective morphism of graphs whose vertices are players and whose edges are
moves: it sends players and moves labelled c to players and moves with the
same label and respects the graph structure of the play. It should also respect
the initial and final positions in the sense that the image of the source’s initial
and final positions should be contained in the target’s initial and final positions.
A morphism f ∶U → U ′ in E(A Ȃ B) is then just an inclusion of the graph
representing U into that representing U ′ that respects the initial position.

As a first step (Step 1 in Figure 5.1), we map our example play s to its P -
view tree [16], a tree whose branches are the TO-views of s. There are two types
of “arrows” in this tree: the ones depicted as proper arrows, which correspond
to justification pointers in s, and the ones that create the tree structure, which
correspond to the view of each move, as defined inductively:

• if m is an O-move, then in the tree it is the child of its predecessor in the
sequence,

• if m is a P -move, then in the tree it is the child of its justifier in the
sequence.

Since, in the tree structure, all O-moves point to their predecessors, P -view
trees can only branch at odd depth.

We then map this P -view tree (Step 2) to a partial proof tree (i.e., a proof
tree whose branches may be left unfinished) in a sequent calculus based on
arenas. Partial proof trees in this sequent calculus represent explorations of
proofs in sequent calculus (5.4) (what we call exploration is basically a sub-tree
of the whole proof), so it is not very surprising that these partial proof trees
are equivalent to string diagrams. By definition of the sequent calculus these
proof trees will be built on, they may branch arbitrarily, but only at odd depth,
just like P -view trees. This notion of play comes with a notion of view, which

175

are simply branches in this sequent calculus. Even though both notions are
trees and look alike (the structures are clearly similar), there are some subtle
differences: the P -view tree is labelled by moves, while the proof tree is labelled
by sequents of arenas, and the P -view tree contains pointers, while the proof
tree does not. A little bit of work has to be done to prove that this mapping
is a full embedding and that it restricts to an equivalence on views. We prove
this for the composite of Steps 1 and 2 in Section 5.3.3.

Steps 3 and 4 are conceptually simple, but somewhat tricky to formalise,
so we do not detail them in the rest of the chapter. Step 3 maps the proof
tree, which may branch with an arbitrary degree, to a similar tree that only
branches in a binary way. Let us call the result of Step 3 a sequential proof
tree (in the sense that we have sequentialised some of the tree structure). To
do this, we change the rules on which our proof trees are built. Here, the rules
that have a positive sequent as conclusion are the same as in the previous proof
trees, but the rules that have a negative sequent as conclusion have necessarily
two premises: a positive one like in the previous proof trees, and a copy of the
conclusion. Sequentialising a proof tree is now completely obvious: if a node
has n premises, we just apply the sequential rule n times. There is a choice to
be made on the order in which we sequentialise the rules, but all these choices
lead to isomorphic plays in the end. For example, we have decided to linearise
the tree by applying tl first, and then fl in our example, but the reverse ordering
would clearly yield the same string diagram. Step 4 is completely direct: all the
rules of the proof tree now exactly correspond to moves in our game, so we just
mimic the structure of the proof tree. Nodes in the tree become players with
the same label, and deduction rules become moves in our game. Here again,
since the tree is a branching structure, we may choose to apply the moves in
different orders, but all choices lead to isomorphic plays. In our example, we
have chosen to play tl, fr, fl, and tr in that order, but we could have played fr
at any point after tl (and all the resulting plays are isomorphic).

To show that this mapping reduces to an equivalence when restricted to
views on both sides, we should first say what our views look like when drawn
like the bottom play in Figure (5.1). They are simply non-branching plays,
in the sense that, for all Λ moves (the only moves that can possibly branch),
only the created player may play in the rest of the play. For example, the play
depicted at the bottom of Figure (5.1) is not a view because, both players in the
final position of the tl move play (fr and fl respectively). Equivalently, since all
equal signs are mathematical equalities in the presheaf that represents the play,
we may collapse the whole structure along these equal signs. A play is then a
view if and only if this collapse is linear, i.e., it never branches. Now, we can
map views in our setting back to TO-views by reading moves from bottom to
top in our view (this is unambiguous because views do not branch). We explain
in Section 5.3.3 how to recover pointers from the structure of a play, and how
this implies that the sequence defined by taking moves from bottom to top in a
view is actually a TO-view.

Finally, let us briefly mention the case of morphisms. Morphisms of TO-
plays are injective functions that respect views (in the sense that it “maps views
to views”). Through Step 1, they are mapped fully and faithfully to injective
morphisms of rooted trees, i.e., those injective morphisms of trees that map
its source’s root to its target’s root. Through Step 2, they are mapped fully

176

and faithfully to inclusions of proof trees, which is the notion of morphism of
proof trees. This is not surprising since P -view trees are mapped to proof trees
that have exactly the same structure and the notions of morphisms are similar in
both settings. Through Steps 3 and 4, inclusions of proof trees are mapped fully
and faithfully to morphisms in EV(A Ȃ B). This is once again not surprising
because both notions of morphisms are similar, in the sense that they can both
be seen as morphisms of trees.

5.3.2 From String Diagrams to Proof Trees

Required: 5.3.1.
Recommended: Ȃ.

In this section, we build another model of HON games based on proof trees
and show that it has equivalent categories of views and plays as our string
diagrammatic model.

The sequent calculus these proof trees are built on is:

right

. . . Γ,A ⋅m(i) Ȃ . . . (∀i ∈ n)
Γ Ȃ A

left

Γ,A,∆ Ȃ A ⋅m
Γ,A,∆ Ȃ (5.6)

where the right rule can be applied with any m∶n → √
A for a positive n and

the left rule can be applied with any m ∈ √A. Notice how, apart from the
absence of a cut rule, the sequent calculus (5.4) we have introduced at the
beginning differs only slightly from this one: there, in the right rule, m must
always be a bijection. Moreover, while the objects of interest are “complete”
trees in the first case, the objects of interest here are “incomplete” trees. This
once again corresponds to the fact that we are interested in explorations of
proofs, and not proofs themselves. Therefore, some branches of the proof may
not be explored (hence the fact that m need not be surjective) and others may
be explored more than once (hence m need not be injective).

An S-tree is a partial proof tree (i.e., a proof tree whose branches may be left
unfinished) whose conclusion is S. For all sequents S, the counterpart of E(S)
is the category T(S) of S-trees and morphisms of such, which are inclusions,
both in width and depth, of S-trees, defined inductively by:

• the empty S-tree has exactly one morphism to all other S-trees,

• if, for all i in n, Ti is a (Γ,A ⋅ mi Ȃ)-tree, and for all i in m, T ′i is a

(Γ,A ⋅m′i Ȃ)-tree, then the set of morphisms from
T1 . . . Tn

Γ Ȃ A to

T ′1 . . . T ′m
Γ Ȃ A is the disjoint union, for all injective g∶n →m such that

m′g(i) =mi, of ∏i∈nT(Γ,A ⋅mi Ȃ)(Ti, T ′g(i)),
• if T and T ′ are (Γ,A,∆ Ȃ A ⋅m)-trees, then the set of morphisms from

T
Γ,A,∆ Ȃ to T ′

Γ,A,∆ Ȃ is T(Γ,A,∆ Ȃ A ⋅m)(T,T ′).
Notice that morphisms treat the premises of a (Γ Ȃ A) node as if they were
unordered.

We also need a counterpart of EV(S), which is given by S-branches:

177

Definition 5.3.1. An S-branch is a non-branching S-tree (i.e., an S-tree whose
right rules are all unary) of positive, even depth. Let B(S) be the full subcat-
egory of T(S) spanning S-branches.

Remark. Representing plays as trees is reminiscent of Boudes’s work [16], and
our trees are indeed close to his P -view trees (it may be shown that a slight
variant of this notion is equivalent to ours), but there are some differences. The
first one is that his notion of morphism of trees is different. In particular, the
functor from TO-plays to trees is not full with his definition of morphism. The
second one is that we allow branches of odd depth, when he does not. Both these
differences are easily remediable, but there are two more fundamental differences:
the nodes of his trees are labelled by moves in an arena while ours are labelled by
sequents of arenas, and his P -view trees contain pointers while our trees do not.
Some work must therefore be done to know whether the two notions coincide.

Example 5.3.2. The tree in the middle of Figure 5.1 (between Steps 2 and 3)
is an example of (B,B)-tree. Here is an example of (A Ȃ B)-tree:

A,B ⋅m Ȃ A,B ⋅m Ȃ
m,m

A Ȃ B .

None of these trees are branches (they both branch at some point). Note that,
while the first tree intuitively represents a TO-play, the other one does not, as
it lacks alternation: it is as if Opponent had played m twice in a row. This
example also shows that morphisms treat premises as if they were unordered, in
the sense that there are two morphisms from that tree to itself (one that maps
both branches to themselves and one that swaps them).

Here is an example of (A Ȃ B)-branch:

A,B ⋅m Ȃ A ⋅m′
m′

A,B ⋅m Ȃ
m

A Ȃ B .

We will later need this technical result:

Proposition 5.3.3. T(A,B Ȃ C) and T(A +B Ȃ C) are isomorphic.

This is a conceptually simple result, and we only sketch the proof.

Proof. We want to show by induction that TN(A,B Ȃ C) and TN(A +B Ȃ C)
are isomorphic, where TN(S) is the category of S-trees of height at most S.
This is enough to prove the main result, because T(S) is the colimit of the
TN(S)’s, and colimits of isomorphic diagrams are isomorphic.

But we first need to generalise the induction hypothesis. For all integers
n, m and maps γ∶n → m, we define γ(A1, . . . ,An) as the m-tuple whose kth
component is ∑γ(i)=kAi. We generalise this notation to sequents in the obvious
way: γ(Γ Ȃ A) = (γ(Γ) Ȃ A) and γ(Γ Ȃ) = (γ(Γ) Ȃ). It is now easy to show
that for all integers n and m and all maps γ∶n→m and sequent S of length n,
TN(S) ≅ TN(γ(S)).

We now show that (A Ȃ B)-trees and branches are just an alternative way
of representing plays and views:

178

Lemma 5.3.4. T(A Ȃ B) and E(A Ȃ B) are equivalent, and so are B(A Ȃ B)
and EV(A Ȃ B), and these equivalences are such that

B(A Ȃ B) T(A Ȃ B)
EV(A Ȃ B) E(A Ȃ B)

commutes.

The intuition behind this statement is that sequents in the proof tree corres-
pond to players who exist at some point in the play, and that deduction rules
correspond to what such players can do during the play. The trees are meant
to be read bottom up: at the beginning of a play in E(A Ȃ B), there is only one
player of type (A Ȃ B) present in the play. Because that player is negative, they
are present in the final position of any move they play, and there is no causal
dependence between the different moves they can play, so they can be seen as
being played in parallel, independently from one another, which corresponds
to the right rule with a family I of cardinal n if the player plays n different
moves. On the contrary, positive players are never present in the final positions
of any move they play, so they may only play once, hence the form of the left

rule, which allows for a single move to be played.

Proof. By Theorem 5.2.15, the lemma is equivalent to showing that T(A Ȃ B)
and B(A Ȃ B) are equivalent to the subcategories of the coslices of The-
orem 5.2.15 (which are denoted E′(S) and (EV)′(S) for any sequent S) and
that the desired diagram commutes. We actually show a slightly more general
result, by replacing (A Ȃ B) above by any sequent S.

The basic idea is very simple: if U is a play and T is an S-tree that is
equivalent to it (for the equivalence that will be defined below), then nodes of
T correspond exactly to players of U ; edges of T exactly to moves of U ; and
an edge e connects a node x to its parent y in T exactly when the player that
corresponds to y plays the move that corresponds to e, resulting in the creation
of a new player that corresponds to x.

For any sequent S, S-trees may be interpreted as elements of S/LȂ inductively
like so:

• the empty S-tree is interpreted as id ∶S → S,

• if T is a (Γ,A,∆ Ȃ A ⋅m)-tree interpreted as f ∶ (Γ,A,∆ Ȃ A ⋅m)→ U , then
T

Γ,A,∆ Ȃ is interpreted as t̃ defined by universal property of pushout in

(Γ,A,∆ Ȃ) @(Γ,A,∆),∣Γ∣+1,m (Γ,A,∆ Ȃ A ⋅m)

Ũ U ,

t

t̃

s

f

• if Ti’s are (Γ,A ⋅m(i) Ȃ)-trees interpreted as fi∶ (Γ,A ⋅m(i) Ȃ)→ Ui, then
T1 . . . Tn

Γ Ȃ A is interpreted as the arrow (Γ Ȃ A) → U ′ resulting from

the wide pushout of t̃1, . . . , t̃n:

179

(Γ Ȃ A) Ũ1

Ũn Ũ ,

t̃1

t̃n t̃
Ȃ

where t̃i is defined by universal property of pushout in:

(Γ Ȃ A) Λ(ΓȂA),m(i) (Γ,A ⋅m(i) Ȃ)

Ũi Ui.

t

t̃i

s

fi

The interpretation of morphisms of S-trees is a morphism in the coslice S/LȂ,
and it is defined by induction on the S-tree structure:

• if the interpretation of T is f ∶S → U , the only morphism from the empty
S-tree to T is sent to f (remember that the interpretation of the empty
tree is idS),

• if T → T ′ is sent to α∶ f → f ′, we get a morphism from the interpretation

of T
Γ,A,∆ Ȃ to that of T ′

Γ,A,∆ Ȃ by universal property of pushout

in

(Γ,A,∆ Ȃ) @(Γ,A,∆),∣Γ∣+1,m (Γ,A,∆ Ȃ A ⋅m)
Ũ U

Ũ ′ U ′,

t

t̃

t̃′

s

f

α

• if Ti → T ′g(i) is sent to αi∶ fi → f ′i , then we get α̃i∶ Ũi → Ũ ′
g(i) as above,

and a morphism from the interpretation of
T1 . . . Tn

Γ Ȃ A to that of

T ′1 . . . T ′m
Γ Ȃ A by universal property of wide pushout in

S Ũ1 Ũ ′k

S Ũ ′
g(1)

Ũn Ũ

Ũ ′
g(n)

Ũ ′l Ũ ′,

Ȃ
Ȃ

where k, . . . , l are the indices of m that are not in the image of g.

180

This interpretation is functorial.
The interpretation of the left rule corresponds to an @ move, and the

interpretation of the right rule to an n-composite of Λ moves. Therefore, the
interpretation of an S-tree is a composite of moves, so it is a play, hence the
image of the interpretation is contained in E′(S).

Conversely, any play in E(S) may be interpreted as an S-tree. The inter-
pretation of a play P is defined by induction on the number of moves P is
composed of. The construction maintains the invariants that all nodes in the
S-tree correspond to exactly one player of the same type in P , and that a node
x is a child of y if and only if the player corresponding to x is created by a
move played by y in P . The empty play (composite of 0 moves) is interpreted
as the empty S-tree, and if P is composite Q ●M where Q is a play and M a
move 1, and Q is interpreted as the S-tree on the left below, where the node S′

corresponds to the player who plays M , then P is interpreted as on the right
below, where S′′ is the resulting sequent (i.e., if S′ = (Γ Ȃ A) and M is a ΛS′,m
move, then S′′ = (Γ,A ⋅m Ȃ), and if S′ = (Γ Ȃ) and M is an @S′,i,m move, then
S′′ = (Γ Ȃ Γi ⋅m)), and the new S′′ node in the tree corresponds to the player
created by M .

T1 . . . Tn

T ′1 . . . T ′m
S′

T

T1 . . . Tn

T ′1 . . . T ′m S′′

S′

T

Even though this looks wrong at first sight in the case where S′ is of the form(Γ Ȃ) (because then the tree could possibly branch on such sequents, which is
forbidden by the structure of our trees), we know that such a player may only
play at most once in a play, so m must be equal to 0 in that case, so there is no
contradiction.

Moreover, in the case of plays whose initial positions consist of a single
player, a morphism in U → V in E(S) can be reduced to an injective mapping
of moves of U to those of V that preserves both causality (if a player x is created
by a move m and plays a move m′, then the image of m′ must be played by a
player created by the image of m) and the initial player (the image of all moves
played by the initial player of U must be played by the initial player of V).
Therefore, a morphism of plays U → V is equivalent to a mapping of edges in
the interpretation of U to those in the interpretation of V that respects causality
(if an edge is under another in the source tree, then its image must be under
the other’s image in the target tree) and initiality (the image of all edges that
start from the root must start from the root), i.e., they are exactly morphisms
of S-trees. This interpretation is also functorial.

It can easily be seen that both composites of these two interpretations (the
one from T(S) to itself and the one from E′(S) to itself) are naturally isomorphic
to identities: for any of the two interpretations, the number of nodes in the tree
is equal to the number of players in the corresponding play (and they have the
same type), the number of edges of the tree to that of moves in the play (and
they have again the same type), and their structure (what we called “initiality”
and “causality” above) is preserved. Therefore, the image of a tree T through
the composite of both interpretations has the same number of nodes and edges

1There may be several such decompositions, but they all result in the same interpretation.

181

as as T , and these nodes and edges are structured exactly the same in both
trees, so they are isomorphic (and similarly for plays).

Therefore, the two interpretations form an equivalence between T(S) and
E′(S), and therefore T(S) and E(S) are equivalent.

Moreover, the definition of views ensures exactly that views are linear, in
the sense that a player cannot play more than one move. It is then easy to show
that, if a player cannot play more than one move, then its interpretation must
be a branch, and conversely that, in the interpretation of a branch, each player
must play at most once. Therefore, the equivalence restricts to an equivalence
between B(S) and EV(S), hence the result.

5.3.3 From Proof Trees to Justified Sequences

Required: 5.3.2.
Recommended: Ȃ.

Now that we have introduced our model based on proof trees and shown that
it is equivalent to that based on string diagrams in the sense of Lemma 5.3.4, we
want to show that this tree model is related to Tsukada and Ong’s in a similar
sense. Namely, we want to construct a full embedding from PA,B to T(A Ȃ B)
and then show that it restricts to an equivalence FV∶VA,B → B(A Ȃ B). By
combining both results, we thus get a full embedding from PA,B to E(A Ȃ B)
that restricts to an equivalence on the respective categories of views. This will
then yield a further correspondence between categories of strategies.

Let us first build F (s) by induction on s. If s is empty, F (s) is simply
the empty (A Ȃ B)-tree. Otherwise, s can be written as a sum 2 of threads
s = ∑i∈n ti (recall the definition of of thread from Definition 2.1.53). Now, each
thread ti is of the form m1

im
2
i si for moves m1

i , m
2
i and a play si, and a slight

generalisation of a result at the start of Section 3.5 in [97] gives:

Proposition 5.3.5. For all arenas A and B, if TA,B is the full subcategory of
PA,B spanning threads, χ∶ (mm′)/TA,B → PC,C⋅m′ , (mm′s) Ă s is an isomorph-
ism, where C = A +B ⋅m.

Each si can therefore be mapped to a (Ci Ȃ Ci ⋅m2
i)-tree recursively, where

Ci = A +B ⋅m1
i . By Proposition 5.3.3, this gives an (A,B ⋅m1

i Ȃ Ci ⋅m2
i)-tree

F̃ (si), which can in turn be composed with the left and right rules to give
F (s) as below:

. . .

F̃ (si)
m =m2

i
A,B ⋅m1

i Ȃ . . .
m(i) =m1

iA Ȃ B.

This interpretation extends to a functor in the obvious way: each move in
a TO-play turns into an edge in its interpretation, and a morphism of TO-
plays g∶ s → t is mapped to the morphism of (A Ȃ B)-trees that maps the edge
that corresponds to m to the one that corresponds to g(m). This is indeed a
morphism of (A Ȃ B)-trees because morphisms of TO-plays respect views.

2This is not a coproduct in PA,B , but it is a coproduct in the category with the same

objects and morphisms, except that morphisms need not be injective.

182

Lemma 5.3.6. F is a full embedding.

Proof. Injectivity on objects is easy to prove, but requires to treat trees formally
as pointed presheaves and construct F carefully with this definition, so we skip
it. Faithfulness is also easy to prove: if two morphisms of TO-plays f, g∶ s→ t are
different, then there must be an index i such that f(i) ≠ g(i), so the morphisms
F (f) and F (g) map the edge that corresponds to i to different edges, so they
are different. The proof of fullness is mostly straightforward: a morphism of(A Ȃ B)-trees from F (s) to F (t) is a mapping of the edges of F (s) to those
of F (t), which directly corresponds to a mapping of moves in s to those in t.
All that is left to show is that this mapping is a morphism of TO-plays, i.e.,
that it is compatible with the pointers in s and t. This is intuitively the case
because morphisms of (A Ȃ B)-trees map branches to branches, and branches
correspond to views in HON games. We show that it is indeed the case by
explaining how to recover pointers in s from the structure of F (s), and then
show that morphisms of (A Ȃ B)-trees are necessarily compatible with those
pointers. We explain in details how to read pointers from F (s) below.

First, recovering the moves in s from F (s) is easy: they are all the m’s used
in any left or right rule, with the obvious multiplicities. Recovering pointers
is a bit trickier and requires to know what an occurrence of an arena in a tree
is, as well as what it means for a move to create such an occurrence, and what
it means for a move to be played on the occurrence of an arena. Lemmas 5.4.20
and 5.4.24, which are proved independently, then explain how to recover pointers
from our structure of plays (these lemmas are expressed in the context of plays
as string diagrams, and we translate them here to fit the context of plays as
proof trees). They can be stated as follows: each move m is justified by the
move that created the arena occurrence m was played on.

Definition 5.3.7. Let T be an S-tree. The set of moves occurring in T is the
disjoint union of all the moves of the rules of T , where, in (5.3), there is a single
move m occurring in the left rule, and the moves that occur in the right rule
are all the m(i)’s.

In the left rule, m plays on A and creates A ⋅m. In the right rule, m(i)
plays on A and creates A ⋅m(i). Additionally, if

Γ,A ⋅m(1) Ȃ . . . Γ,A ⋅m(n) Ȃ
Γ Ȃ A

is the first rule of T , then m(i) creates all the arenas in (Γ,A ⋅m(i) Ȃ).
The occurrences of an arena in an S-tree T is an arena that is either the

negative arena in the conclusion of T (if it exists) or an arena created by a rule
in T .

This definition simply means that, if

T1 . . . Tk

S′

is a strict sub-tree of an S-tree T , then, for all i ∈ ∣S′∣, all the arenas that appear
at the ith position of any sequent in any of the Tj ’s, is thought of as equal to
the arena Γi in the sequent at the bottom of this tree. (Note that in the string

183

diagrammatic play that corresponds to T , the elements that correspond to the
interpretations of two such arenas are indeed equal).

Example 5.3.8. There are four occurrences of the empty arena Ȃ in the tree
of Figure 5.1, created by tl, fl, fr, and tr respectively. There are also two occur-
rences of the boolean arena: the first one exists (Br) at the beginning, and the
second one (Bl) is created by qr (and shared by all sequents above in the tree).

In the first tree of Example 5.3.2, there are two occurrences of the A arena,
created by both m moves. This is an artefact of playing on the arena pair (A,B)
rather than on A→ B, but this is more natural in our setting (for example, the
notion of interaction sequence, which is used to study composition of strategies,
is the same as that of play, but on particular positions).

In the tree in Figure 5.1, the ql move is played on the occurrence of B called
Bl, which is created by qr, so ql is justified by qr. Similarly, fr is played on
the occurrence of {t, f} called {t, f}r, which is also created by qr, so fr is also
justified by qr. We thus recover the pointer structure from the P -view tree, i.e.,
the pointer structure of the play we started from.

Bl,{t, f}r,Ȃl Ȃ Ȃr
fr

Bl,{t, f}r,Ȃl Ȃ
Bl,{t, f}r,Ȃl Ȃ Ȃr

tr
Bl,{t, f}r,Ȃl Ȃ

tl, fl
Bl,{t, f}r Ȃ {t, f}l ql

Bl,{t, f}r Ȃ qr
Bl Ȃ Br

The tree above is the tree from Figure (5.1), with colours indicating which move
created which arena occurrences. The reader can now readily check that the
pointer structure recovered when applying the method described above indeed
gives back the pointer structure of the TO-play at the top of Figure (5.1). (How-
ever, it is impossible, from the tree structure, to exactly recover the order of
moves in the TO-play.)

Lemma 5.3.9. F restricts to a functor FV∶VA,B → EV(A Ȃ B).
Proof. Let us take a TO-view s = (n, f,ϕ), and show that F (s) is a branch. The
proof trees of our sequent calculus can only branch with the use of a right rule.
In that case, by the method described above to recover pointers, we get that
two Opponent moves are justified by the same Proponent move. But we know
by Lemma 2.1.24 that all Opponent moves in s are justified by the preceding
move, so there can be no two Opponent moves justified by the same Proponent
move.

Lemma 5.3.10. FV is an equivalence of categories.

Proof. Since i, iTO , and F are fully faithful, FV is also fully faithful by left
cancellation, since fully faithful functors are the right class of a factorisation
system (see Example 2.2.87). Now, to show that FV is essentially surjective on
objects, we simply need to build an antecedent through FV of any view v. The
candidate TO-view is given by taking all moves of v from the root to the top
(this is unambiguous since v is non-branching) and pointers given by the method
described above. All that is left is to verify that the candidate TO-view is indeed
a TO-view, which is done by verifying that it is a TO-play, that it has positive

184

length, and that all Opponent moves are justified by the preceding move. The
first two points are easy, since the way we have chosen the antecedent may be
generalised to any play, and the antecedent verifies all properties of TO-plays,
except perhaps for alternation and having positive, even length, which are both
trivial in our case because views do not branch and have positive, even depth.
The second point is obvious by construction.

Remark. The proof above gives some insight on the only fundamental difference
between our plays and TO-plays: ours only verify a weak form of alternation,
where Opponent may play several moves in a row, but Proponent may only
answer once per Opponent move.

By putting everything together, we get:

Theorem 5.3.11. The square in Figure 5.1 commutes, F is a full embedding,
and FV is an equivalence of categories.

5.4 The Level of Plays: Formal Proof

We have just seen a proof that (5.1) commutes, that F is a full embedding, and
FV an equivalence of categories. However, this proof is not very satisfactory.
The whole presentation is actually a bit sloppy because the treatment of proof
trees is. Indeed, if we define trees, as is usually the case in computer science,
as functions from a skeleton to some set of labels, where the skeleton is a set of
finite sequences of natural numbers that is closed under prefix (if (u1, . . . , un+1)
is in a skeleton, then so is (u1, . . . , un)) and predecessor (if (u1, . . . , un + 1) is
in a skeleton, then so is (u1, . . . , un)), then the functor from PA,B to T(A Ȃ B)
is not a full embedding, but only fully faithful. This does not make our final
result on categories of strategies any weaker (we still get equivalent categories
of strategies), but the link between our plays and Tsukada and Ong’s become a
bit weaker. As a counterexample, consider the two TO-plays on the arena pair(A,B) below, where all moves are in B, and m1 is the only initial move in B.

m1 m2 m1 m2 m3 m4 m3 m4 m1 m2 m1 m2 m3 m4 m3 m4

They are both interpreted as the (A Ȃ B)-tree
A,B/m1

,B/m3
Ȃ B/m4

A,B/m1
,B/m3

Ȃ
A,B/m1

Ȃ B/m2

A,B/m1
Ȃ

A,B/m1
,B/m3

Ȃ B/m4

A,B/m1
,B/m3

Ȃ
A,B/m1

Ȃ B/m2

A,B/m1
Ȃ

A Ȃ B.

However, if (A Ȃ B)-trees are treated as pointed presheaves, then we can
get the desired full embedding (in the case of the example shown above, the
trees we get are isomorphic, but not equal). The problem is that this requires
a careful definition of the functor F ∶PA,B → T(A Ȃ B), and that it is hard to
grasp any intuition from the definitions. The problem is not that we only get
a fully faithful morphism, but that, no matter which definition we choose for
trees, the formal proof is not any easier:

185

• treating (A Ȃ B)-trees as labelled skeletons requires a careful management
of indices, which is exactly what we do in the formal proofs, but directly
between TO-plays and plays,

• while treating (A Ȃ B)-trees as pointed presheaves does not make the proof
any simpler than ignoring (A Ȃ B)-trees altogether, since plays themselves
can be seen as pointed presheaves by Theorem 5.2.15.

We thus rectify the sloppiness of the previous section by formally defining
the full embedding F ∶PA,B → E(A Ȃ B) and proving that it satisfies all the
desired properties. We define it directly, without using T(A Ȃ B), as a formal
treatment of trees does not make the definitions any simpler.

In Section 5.4.1, we actually construct our functor F from TO-plays to plays,
which is proved in Section 5.4.2 to be fully faithful. We then show in Sec-
tion 5.4.3 that F restricts to a functor FV from TO-views to views, which is an
equivalence of categories.

5.4.1 Constructing the Functor

Required: 5.2.3.
Recommended: 5.3.3.

In this section, we define the functor F ∶PA,B → E(A Ȃ B). By The-
orem 5.2.15, constructing F reduces to defining a fully-faithful functor F ∶PA,B →
E′(A Ȃ B) restricts to views, as in:

VA,B PA,B

(EV)′(A Ȃ B) E′(A Ȃ B).
iTO

FV

i

F (5.7)

We first construct F on objects, which requires some preparatory notation
on arenas and preplays.

Notation 5.4.1. We define (A,B)/m = A/m when m is in A and (A,B)/m =
B/m when m is in B.

We immediately notice:

Lemma 5.4.2. For all m, m′ in MA +MB, if m ȂAȂB m′ and Ȃ /ȂA m′, then

m′ ∈√(A,B)/m and (A,B)/m′ = (A,B)/m ⋅m′.
Proof. Trivial.

Notation 5.4.3. In any preplay s = (n, f,ϕ) and i ∈ n, let Ks(i) denote the
length of ̂ŝi, and let ̂ŝi = (Is,i1 , . . . , I

s,i

Ks(i)) (where ̂ŝi is the sequence of all

indices of moves in the view of s at index i, so Is,ij are numbers). Furthermore,

let Is,i0 = 0 for all i ∈ n.
By recasting the definition of views in HON games in terms of Ks(i) and

I
s,i
j , we get a few useful relations. First, we can follow the Ks(−)’s through a

view. Indeed, for all i ∈ n:

186

• if i is odd, then Ks(i) = 1 +Ks(ϕ(i)) and for all j < Ks(i), Is,ij = Is,ϕ(i)j ,
with the convention that Ks(0) = 0;

• if i is even, then Ks(i) = 1 +Ks(i − 1) and for all j <Ks(i), Is,ij = Is,i−1j .

Furthermore, the definition of views reflects into the following relations:

• I
s,i

Ks(i) = i;
• for all odd k ∈Ks(i), Is,ik−1 = ϕ(Is,ik);
• for all even k ∈Ks(i), Is,ik−1 = Is,ik − 1.

We often omit both superscripts when clear from context. For all j ∈Ks(i),
j and Ij have the same parity. This in particular gives ϕ in terms of I, for
odd (i.e., Opponent) moves. In the case of even (or Proponent) moves, by
P -visibility, when j is even, we have ϕ(j) ∈ ̂ŝi and so there exists a unique
l ∈Ks(i) such that ϕ(j) = Il. By alternation, ϕ(j) is odd and so l also is. Thus,
there exists a unique Ls(j) ∈Ks(i)/2 such that l = 2Ls(j) − 1. In summary, we
have:

Lemma 5.4.4. For all i ∈ n and j ∈ ̂ŝi, letting k ∈Ks(i) be such that Is,ik = j,
we have

• ϕ(j) = I2Ls(j)−1 if j is even and

• ϕ(j) = ϕ(Is,ik) = Is,ik−1 if j is odd.

Lemma 5.4.5. For all preplays s, i ∈ ∣s∣, and j ∈ ̂ŝi, Ks(j) ≤ Ks(i) and for

all k ∈Ks(j), Is,jk = Is,ik .

Proof. By induction on i. If i is odd and ϕ(i) = 0, then the result is obvious. If
i is odd and ϕ(i) > 0, then either j = i, in which case the result is obvious, or
j ∈ ̂ŝϕ(i), in which case Ks(j) ≤Ks(ϕ(i)) =Ks(i)− 1 by induction hypothesis,

and for all k ∈ Ks(j), Is,jk = Is,ϕ(i)k = Is,ik by induction hypothesis and the fact
that k <Ks(i). If i is even, the proof follows the same pattern.

Furthermore, the sequence of all I2l−1 for l ∈ Ks(i)+1
2

(where the division is

understood in the integer setting and thus in particular equals Ks(i)
2

when i is
even) is relevant in our context. It consists of all odd indices in ̂ŝi. Let us
provide some notation for this:

Notation 5.4.6. For all maps x∶n→X to some set X, let us denote by [x(i)]i∈n
the sequence (x(1), . . . , x(n)).

So, e.g., the above subsequence of I is denoted by [I2l−1]l∈Ks(i)+1
2

. Using this

notation, we may explicitly characterise the sequents associated to each stage
of s. As we will see below, for each move i ∈ n, Ss,i+1 will be the sequent of the
player “created by the ith move” in F (s).
Notation 5.4.7. For any justified sequence s = (n, f,ϕ), we define (A,B)s/i =(A,B)/f(i). We extend this by convention to (A,B)s/0 = B.

187

Definition 5.4.8. For any i ∈ n Ȃ {0}, let Ss,i+1 denote the sequent defined by

• (A, [(A,B)s/Is,i
2l−1

]
l∈Ks(i)+1

2

Ȃ) if i is odd and

• (A, [(A,B)s/Is,i
2l−1

]
l∈Ks(i)

2

Ȃ (A,B)s/Is,i
Ks(i)

) if i is even.

In particular, when i = 0, the definition yields Ss,1 = (A Ȃ B).
First, let us observe:

Lemma 5.4.9. For all i ∈ ∣s∣, if f(i) ∉ √A, then f(i) ∈ √(A,B)s/ϕ(i) and(A,B)s/i = (A,B)s/ϕ(i) ⋅ f(i).
Proof. If ϕ(i) = 0, then f(i) ∈ √B, so the formula obviously holds because(A,B)s/0 = B. Otherwise, the result is a direct application of Lemma 5.4.2,
using the fact that f(ϕ(i)) ȂA,B f(i).

Which entails:

Corollary 5.4.10. The arenas (A,B)s/I1 , . . . , (A,B)s/IKs(i)
are related by

• (A,B)s/Ik = (A,B)s/Ik−1 ⋅ f(Ik) when k is odd,

• (A,B)s/Ik = (A,B)s/I2Ls(Ik)−1
⋅ f(Ik) when k is even and f(Ik) ∉√A, and

• (A,B)s/Ik = A ⋅ f(Ik) when k is even and f(Ik) ∈√A,

for all k ∈Ks(i).
Proof. By Lemmas 5.4.4 and 5.4.9 for the first two points. For the third point,
we have (A,B)s/Ik = (A,B)/f(Ik) = A/f(Ik) = A ⋅ f(Ik).

We now show a few useful lemmas about TO-plays and morphisms of such.
The first one simply states that morphisms of TO-preplays map views to views:

Lemma 5.4.11. If g∶ s → s′ is a morphism of TO-preplays, then for all i ∈∣s∣ Ȃ {0}:
• Ks′(g(i)) =Ks(i),
• for all j ∈Ks(i), Is′,g(i)j = g(Is,ij).

Proof. Let us start with the first point, by induction on i. For the base case,
we have Ks′(g(0)) = Ks′(0) = 0 = Ks(0) by definition. Now, for the induction
step, consider i > 0. If i is odd:

Ks′(g(i)) = 1 +Ks′(ϕ′(g(i))) because g(i) is odd= 1 +Ks′(g(ϕ(i))) because ϕ′g = gϕ= 1 +Ks(ϕ(i)) by induction hypothesis= Ks(i) because i is odd,

188

and similarly when i is even.
For the second point, we again proceed by induction on i. The base case

trivially holds because Ks(i) = 0. For the induction step, consider any i > 0. If
i is odd, then for all j <Ks(i):

I
s′,g(i)
j = Is′,ϕ′(g(i))j because g(i) is odd and j <Ks(i) =Ks′(g(i))= Is′,g(ϕ(i))j because ϕ′g = gϕ= g(Is,ϕ(i)j) by induction hypothesis= g(Is,ij) because i is odd and j <Ks(i),

and similarly if i is even. Finally, when j =Ks(i), we have:

I
s′,g(i)
Ks(i) = Is′,g(i)

Ks′(g(i)) by the first point= g(i)= g(Is,i
Ks(i))

as desired.

Lemma 5.4.12. If g∶ s → s′ is a morphism of TO-preplays, then for all i ∈{0} Ȃ ∣s∣, (A,B)s′/g(i) = (A,B)s/i.
Proof. We have (A,B)s′/g(i) = (A,B)/f ′(g(i)) = (A,B)/f(i) = (A,B)s/i.
Lemma 5.4.13. If g∶ s → s′ is a morphism of TO-preplays, then for all i ∈{0} Ȃ ∣s∣, Ss,i+1 = Ss′,g(i)+1.
Proof. When i is odd, then g(i) is also odd, so

Ss
′,g(i)+1 = (A, [(A,B)s′/Is′,g(i)

2l−1

]
l∈Ks′ (g(i))+1

2

Ȃ).
By Lemma 5.4.11, we know thatKs′(g(i)) =Ks(i) and that for all l ∈ Ks′(g(i))+1

2
,

I
s′,g(i)
2l−1 = g(Is,i

2l−1), which directly implies the result by Lemma 5.4.12. The proof
is similar when i is even.

Lemma 5.4.14. If g∶ s → s′ is a morphism of TO-preplays, then for any even
i ∈ ∣s∣, we have Ls′(g(i)) = Ls(i).
Proof. Since ϕ′(g(i)) = g(ϕ(i)), we know that

I
s′,g(i)
2Ls′(g(i))−1 = ϕ′(g(i)) = g(ϕ(i)) = g(Is,i2Ls(i)−1) = Is′,g(i)2Ls(i)−1

by Lemma 5.4.11, which entails the desired result, since k Ă I
s′,g(i)
k is monic.

Returning to the construction of F on objects, in fact, we construct it on
all preplays in PPA,B , by induction on their length, and eventually restrict to
plays. In order for our induction step to make sense, we should make explicit a
few invariants that our assignment will satisfy.

Notation 5.4.15. In the following, we will denote x ⋅ f by x ⊙ f when x is a
player, and use x ⋅f only when x is a move. (This is useful because all channels,
players, and moves will be natural numbers, so this notation should spare the
reader a few headaches.)

189

For any preplay s = (n, f,ϕ), the associated morphism F (s) = ((A Ȃ B) tÐ→
U) in E′(A Ȃ B) will satisfy:

(P1) The sets U(A) for all arenas A are pairwise disjoint, and ⊎A∈AU(A) = n+2;
this induces a map a∶n+ 2→ A, where A denotes the set of all sub-arenas
of A or B, such that for all i ∈ n + 2, i ∈ U(a(i));

(P2) The sets U(S) for all sequents S are pairwise disjoint, and ⊎S∈SU(S) =
n+1; this induces a map s∶n+1→ S, where S denotes the set of all sequents
of sub-arenas of A or B, such that for all i ∈ n + 1, i ∈ U(s(i));

(P3) The sets U(µ) for all moves µ ∈ ob(L∣2) are pairwise disjoint, and we have⊎µ∈L∣2 U(µ) = n; this induces a map m∶n→ ob(L∣2) such that for all i ∈ n,
i ∈ U(m(i));

(P4) for all i ∈ n, i ⋅ s = i + 1 (move i creates player i + 1);

(P5) the player n + 1 is final in U ;

(P6) for all i ∈ n + 1, s(i) = Ss,i.
When n = 0, the preplay s is mapped by definition to a morphism that is

isomorphic to the identity on (A Ȃ B) and that verifies the conditions above.
There are two such morphisms, and we (arbitrarily) choose (A Ȃ B) −∼ U such
that

U(A Ȃ B) = {1}, 1⊙ s1 = 1, 1⊙ t = 2. (5.8)

For the induction step, consider any s = (n+1, f, ϕ) and assume that (A Ȃ B) t′Ð→
U ′ satisfies (P1)–(P6) for the immediate prefix s′ of s.

We define F (s) = ((A Ȃ B) tÐ→ U) by a specific choice of composite U ′ ●M ,
for some move M ∶ ↑U ↑U ′, itself constructed by choosing some seed Y0

s0Ð→
µ

t0←Ð X0 with representable X0 and final player x ∈ U ′(X0), and taking the
pushout

X0 µ

↑U ′ M ,

t0

⌜x⌝

which ensures that F (s) is in E′(A Ȃ B). The map t0 being injective, so is
the induced map U ′ → U . We choose to make it an inclusion, which makes
it entirely determined by the choice of “created” elements, i.e., of images of
elements in µ Ȃ X0. Because µ ∈ ob(L∣2), we know that in all cases there is
exactly one created channel, one created player, and one new move. Since the
channels, players and moves of U ′ respectively are the elements of n+2, n+1 and
n, we will systematically pick the created elements to be respectively n+3, n+2
and n+1. Thus, we only need to choose x final in U ′ and µ and show that (P6)
is preserved. Let us proceed by case analysis:

• If n + 1 is odd and ϕ(n + 1) = 0, then f(n + 1) ∈ √
B so we may pick

µ = Λ(AȂB),f(n+1), which leaves us with the task of picking some player in
U ′(A Ȃ B). But by (P6), 1 ∈ U ′(Ss,1) = U ′(A Ȃ B): we simply pick 1. To

190

show that (P6) is preserved, we compute Ss,n+2 to check that it is equal to(A,B ⋅f(n+1) Ȃ), which comes from the facts that Ks(n+1) = 1+Ks(ϕ(n+
1)) = 1+0 = 1 and (A,B)s/Is,n+1

1

= (A,B)s/Is,n+1
Ks(n+1)

= (A,B)s/n+1 = B ⋅f(n+1).
• If n + 1 is odd and ϕ(n + 1) ≠ 0, then let i = ϕ(n + 1). Thus, we have

f(i) ȂAȂB f(n + 1), so by Lemma 5.4.2 we have f(n + 1) ∈ √(A,B)s/i
(because n+1 is odd, so f(n+1) is not initial in A). Furthermore, by (P4)
and (P6), (i ⋅ s) = (i + 1) is in U(Ss′,i+1), which, because i is even by
alternation, is equally

U(A, [(A,B)s′/Is′,i
2l−1

]
l∈Ks′ (i)

2

Ȃ (A,B)s′/Is′,i
K

s′ (i)

).
But Is

′,i

Ks′(i) = i, so (A,B)s′/Is′,i
K

s′ (i)

= (A,B)s′/i = (A,B)s/i: we pick x = (i + 1)
and µ = ΛSs′,i+1,f(n+1). We thus have that n + 2 is a player over

(A, [(A,B)s′/Is′,i
2l−1

]
l∈Ks′ (i)

2

, (A,B)s′/Is′,i
K

s′ (i)

⋅ f(n + 1) Ȃ),
which is Ss,n+2 as desired, because Ks′(i) =Ks(i) =Ks(n+ 1)− 1 (for the
number of arenas), (A,B)s′/Is′,i

2l−1

= (A,B)/Is,i
2l−1

= (A,B)/Is,n+1
2l−1

(to show that

the bracketed arenas are equal to those of Ss,n+2), and (A,B)s′/Is′,i
K

s′ (i)

⋅f(n+
1) = (A,B)/Is,i

Ks(i)

⋅f(n+1) = (A,B)/Is,n+1
Ks(n+1)−1

⋅f(Is,n+1
Ks(n+1)) = (A,B)/Is,n+1

Ks(n+1)

by Corollary 5.4.10 (to show that the last arena is equal to that of Ss,n+2).

• If n + 1 is even, then we pick x = (n ⋅ s) = n + 1 (by (P4)). Moreover, n + 1

is in U(Ss′,n+1) by (P6), which, because n is odd, is equally

U(A, [(A,B)s′/Is′,n
2l−1

]
l∈Ks′ (n)+1

2

Ȃ).
If now f(n+1) ∈√A, then we pick µ = @Ss′,n+1,1,f(n+1). Otherwise, taking
k = n + 1 in Corollary 5.4.10 yields

(A,B)s/n+1 = (A,B)s/Is,n
2Ls(n+1)−1

⋅ f(n + 1) = (A,B)s′/Is,n
2Ls(n+1)−1

⋅ f(n + 1).
But since n + 1 is even and 2Ls(n + 1) − 1 < Ks(n + 1), Is,n

2Ls(n+1)−1 =
I
s′,n

2Ls(n+1)−1, so in particular f(n + 1) ∈√(A,B)s′/Is′,n
2Ls(n+1)−1

and, in view of

the form of Ss
′,n+1, we may pick µ = @Ss′,n+1,1+Ls(n+1),f(n+1). The fact

that n+2 is in U(Ss,n+2) follows by a computation similar to the one done
in the previous case.

The chosen player is final in U ′ by definition when n + 1 is odd, and by (P5)
otherwise.

We now want to show that F as defined here extends to a functor. We will
define the image of a morphism of TO-plays below, but we first need a few
preparatory lemmas.

We first state and prove a few lemmas about the presheaf U obtained by
applying the construction above.

191

Lemma 5.4.16. For all preplays s, if F (s) = ((A Ȃ B)→ U), then for all i ∈ ∣s∣:
• i ∈ U(ΛSs,ϕ(i)+1,f(i)) if i is odd,

• i ∈ U(@Ss,i,1,f(i)) if i is even and f(i) ∈ √A,

• i ∈ U(@Ss,i,1+Ls(i),f(i)) if i is even and f(i) ∉ √A.

Proof. By induction on s:

• if s is empty, then the result is obvious,

• otherwise, there are two possible cases. Either i < ∣s∣, in which case, if
we denote by s′ the immediate prefix of s, and F (s′) = ((A Ȃ B) → U ′),
we know by induction hypothesis that i belongs to U ′(µ) ⊆ U(µ) for the
desired µ (because Ss,i = Ss′,i and Ls(i) = Ls′(i)). Or i = ∣s∣, in which
case the result holds by construction.

We can now state and prove the lemma we are interested in:

Lemma 5.4.17. If g∶ s→ s′ is a morphism of TO-plays, F (s) = ((A Ȃ B)→ U),
and F (s′) = ((A Ȃ B)→ U ′), then:

• for all µ ∈ L∣2, if i ∈ U(µ), then g(i) ∈ U ′(µ),
• for all S ∈ L∣1, if i + 1 ∈ U(S), then g(i) + 1 ∈ U ′(S),
• for all C ∈ L∣0, if i + 2 ∈ U(C), then g(i) + 2 ∈ U ′(C).

Proof. For the first point, let us assume that i is odd. We know that if i is in
U(µ), then by Lemma 5.4.16 we have µ = ΛSs,ϕ(i)+1,f(i). But then Ss,ϕ(i)+1 =
Ss

′,g(ϕ(i))+1 = Ss
′,ϕ′(g(i))+1 by Lemma 5.4.13 and the fact that gϕ = ϕ′g, so

µ = ΛSs′,ϕ′(g(i))+1,f ′(g(i)) (since f ′(g(i)) = f(i)), so by Lemma 5.4.16 we have
g(i) ∈ U ′(µ). The proof is similar in the other cases (note that, in particular,
the proof uses Lemma 5.4.14 when i is even and f(i) ∉√A).

The proofs of the other two points follow a similar pattern (alternatively,
one may notice that, for all k in ∣s∣, s(k + 1) and a(k + 2) are determined by
m(k) by construction).

We will use the following notation to define F (g):
Definition 5.4.18. If f is a function from n to m, we define f̃ ∶n + 1 → m + 1

by f̃(1) = 1 and f̃(i + 1) = f(i) + 1 for all i ∈ n.
The following lemma will be useful later:

Lemma 5.4.19. If g∶ (n, f,ϕ) → (n′, f ′, ϕ′) is a morphism of TO-plays, then
g̃(2i) = g(2i).
Proof. We have g̃(2i) = g̃(2i−1+1) = g(2i−1)+1 = g(2i) because g is a morphism
of TO-plays.

Now, if g∶ s → s′ is a morphism of TO-plays, F (s) = ((A Ȃ B) → U), and
F (s′) = (X → U ′), we define k = F (g)∶U → U ′ as:

192

• kµ(x) = g(x) for all µ ∈ L∣2 and x ∈ U(µ),
• kS(x) = g̃(x) for all S ∈ L∣1 and x ∈ U(S),
• kA(x) = ˜̃g(x) for all A ∈ L∣0 and x ∈ U(A).

This is indeed well-defined by Lemma 5.4.17 and (5.8). We need to prove two
other lemmas in order to show that k is natural.

Lemma 5.4.20. For all preplays s and i ∈ ∣s∣, if F (s) = ((A Ȃ B)→ U), then:

• i ⋅ t = i if i is even,

• i ⋅ t = ϕ(i) + 1 if i is odd.

Proof. By induction on s and case distinction on i, where the only interesting
case is when i = ∣s∣, in which case both points hold by construction.

By (P4), the player created by each move i is i+1. The next lemma describes
how its associated sequent, Ss,i+1 (Definition 5.4.8), connects to its environment.
Intuitively, this is quite simple: all non-new connections are as in Ss,i; and the
new formula connects to the created channel, i + 2. The technical statement is
obfuscated by index handling, so let us explain this a bit. By construction, if i
is odd, Ss,i+1 is positive and has 1 + Ks(i)+1

2
hypotheses. If i is even, Ss,i+1 is

negative and has 1 + Ks(i)
2

hypotheses. In both cases, the first hypothesis is A,
and the others have been created by previous moves. In fact, when i is even,
so is Ks(i), so 1 + Ks(i)

2
= 1 + Ks(i)+1

2
. So for all i ∈ n, Ss,i+1 has 1 + Ks(i)+1

2

hypotheses.

Lemma 5.4.21. For all preplays s, i ∈ ∣s∣, if F (s) = ((A Ȃ B) → U), then,
recalling Definition 5.4.8 and the fact that i ⋅ s = i + 1, we have:

• if i is odd:

– (i + 1)⊙ sj = (ϕ(i) + 1)⊙ sj for all j ∈ Ks(i)+1
2

and

– (i + 1)⊙ sKs(i)+1
2

+1 = i + 2;

• if i is even:

– (i + 1)⊙ sj = i⊙ sj for all j ∈ Ks(i)
2

+ 1,

– (i + 1)⊙ t = i + 2.

Proof. By induction on s and case distinction on i, where the only interesting
case is when i = ∣s∣, in which case all points hold by construction.

We can now prove that k defined above is a natural transformation, which
amounts to showing that all diagrams of the form

U(µ) U ′(µ)
U(S) U ′(S)

kµ

U(α) U ′(α)

kS

or
U(S) U ′(S)
U(C) U ′(C)

kS

U(β) U ′(β)

kC

(5.9)

193

commute, for all α∶S → µ and β∶C → S. The left-hand side diagram can now
be shown to commute using Lemma 5.4.20, and the right-hand side one using
Lemma 5.4.21 within an induction. For example, the following computation
shows that the right-hand side diagram commutes for i > 1 odd and β = sj for

j < Ks(i)+1
2

+ 1 (i = 1 can easily be verified by hand):

˜̃g(i⊙ sj) = ˜̃g((ϕ(i − 1) + 1)⊙ sj) by Lemma 5.4.21= g̃(ϕ(i − 1) + 1)⊙ sj by induction hypothesis= (g(ϕ(i − 1)) + 1)⊙ sj= (ϕ′(g(i − 1)) + 1)⊙ sj because gϕ = ϕ′g= (g(i − 1) + 1)⊙ sj by Lemma 5.4.21= g̃(i)⊙ sj .
The other points either follow a similar pattern or can be proved directly by
Lemma 5.4.20 or 5.4.21.

When restricted to (A Ȃ B), k turns into id(AȂB), as desired. Finally, k is
1D-injective by injectivity of g, which ends the definition of F on morphisms.

It remains to prove functoriality of F , which follows directly from functori-
ality of −̃.
5.4.2 Full Faithfulness

Required: 5.4.1.
Recommended: Ȃ.

This section is devoted to proving:

Theorem 5.4.22. The functor F ∶PA,B → E′(A Ȃ B) is a full embedding.

We start by giving two lemmas that express ϕ in function of F (s), making
injectivity on objects of F obvious. Remember that, for all i in n, Ss,i has
Ks(i)+1

2
+ 1 hypotheses.

Lemma 5.4.23. For all preplays s, i ∈ ∣s∣, and j ∈ ̂ŝi, and k ∈ Ks(j)+1
2

+ 1:(j + 1) ⊙ sk = (i + 1) ⊙ sk.
Proof. By induction on i − j and Lemma 5.4.21.

The next lemma expresses the justifier ϕ(i) of i in terms of F (s), using
the fact that moves and created channels are in bijection, each move i creating
channel i+2. The idea here is that if some positive move i is played on a sequent(A1, . . . ,AN Ȃ), say on Ak, then ϕ(i) should be the move that has created Ak.
But, i being positive, the involved player is just i itself, and the corresponding
channel is i⊙sk, which has been created by move i⊙sk−2. There is one exception
though: when k = 1, the move is played on A, so by definition of A Ȃ B, its
justifier is the first move played on B in the corresponding view. But this is
precisely the move having created i⊙ s2, i.e., i⊙ s2 − 2.
Lemma 5.4.24. For all preplays s, if F (s) = ((A Ȃ B) → U) and i ∈ U(@S,k,m),
then:

194

• ϕ(i) = i⊙ sk − 2 if k > 1,

• ϕ(i) = i⊙ s2 − 2 if k = 1.

Proof. Let us assume k > 1 (the other case is similar). By Lemma 5.4.16,
k = 1 + Ls(i). Now, on the one hand ϕ(i) = Is,i

2Ls(i)−1, and on the other hand

ϕ(i) = Is,ϕ(i)
Ks(ϕ(i)) = Is,iKs(ϕ(i)), so 2Ls(i) − 1 = Ks(ϕ(i)), since k Ă I

s,i
k is monic.

Therefore, we have k = Ks(ϕ(i))+1
2

+1, so since ϕ(i) ∈ ̂ŝi−1, Lemma 5.4.23 entails

that (ϕ(i) + 1) ⊙ sk = i⊙ sk. But, by Lemma 5.4.21, since k = Ks(ϕ(i))+1
2

+ 1, we
also have that (ϕ(i) + 1) ⊙ sk = ϕ(i) + 2. We thus derive ϕ(i) + 2 = i⊙ sk, hence
the result.

Now, faithfulness is easy: if g and g′ are two morphisms s→ s′, then, letting
k = F (g) and k′ = F (g′), we know by (P3) that the U(µ)’s form a partition
of n, and by definition of k and k′ that kµ(x) = g(x) and k′µ(x) = g′(x) for all
x ∈ F (s)(µ) and µ ∈ L∣2. Therefore, if kµ = k′µ for all µ ∈ L∣2, then g = g′.

Proving fullness is a bit more involved. Let us start with a lemma asserting
that any natural transformation k∶F (s) → F (s′) is layered just as any F (g). In
order to formalise this, let us state:

Definition 5.4.25. For any TO-play s and i ∈ {0,1,2}, we define F (s)∣i =⊎c∈L∣i F (s)(c).
For any k∶F (s) → F (s′) in E′(A Ȃ B) and i ∈ {0,1,2}, let

k∣i∶F (s)∣i → F (s′)∣i
denote the restrictions of k to each given domain and codomain.

When U = F (s) for some s = (n, f,ϕ), we know by construction that F (s)∣2 =
n, F (s)∣1 = n + 1, and F (s)∣0 = n + 2. This allows us to state:

Lemma 5.4.26. For any k∶F (s) → F (s′) in E′(A Ȃ B),
k∣1 = k̃∣2 and k∣0 = ̃̃k∣2.

Proof. Because E′(A Ȃ B) is a subcategory of the coslice (A Ȃ B)/LȂ, we know
that k∣1(1) = 1, k∣0(1) = 1, and k∣0(2) = 2. It thus remains to prove that
k∣1(i + 1) = k∣2(i) + 1 and k∣0(i + 2) = k∣1(i + 1) + 1, for all i ∈ n.

We have
k∣1(i + 1)=k∣1(i ⋅ s)=k∣2(i) ⋅ s (by naturality of k)=k∣2(i) + 1

for the first point. We treat the second point by case analysis on the parity of
i, using naturality and Lemma 5.4.21:

k∣0(2i + 1)=k∣0((2i)⊙ sN)=k∣1(2i)⊙ sN=k∣1(2i) + 1

and k∣0(2i + 2)=k∣0((2i + 1)⊙ t)=k∣1(2i + 1)⊙ t=k∣1(2i + 1) + 1

where in the odd case N = Ks(2i−1)+1
2

+ 1.

195

We are finally able to prove that F is full. Consider any s = (n, f,ϕ) and
s′ = (n′, f ′, ϕ′), with F (s) = ((A Ȃ B) → U) and F (s′) = ((A Ȃ B) → U ′),
together with a morphism k∶U → U ′ in E′(A Ȃ B). We know by (P3) that
the U(µ)’s form a partition of n for µ in L∣2. We can therefore define the map
g∶n→ n′ by g = k∣2. Our goal is to show that g is a morphism s→ s′ of TO-plays
and that F (g) = k. But given the first point, the latter follows from g = k∣2 by
definition of F and Lemma 5.4.26.

So let us show that g is a morphism of TO-plays.

• To show that f ′(g(i)) = f(i), we notice that g(i) belongs to U ′(m′(g(i))),
but also to U ′(m(i)), because g(i) = k∣2(i) = km(i)(i)∶U(m(i))→ U ′(m(i)).
Since all U ′(µ) are disjoint, for µ in L∣2, we have that m(i) = m′(g(i)).
Now, by construction, m(i) is either ΛS,f(i) or @S,k,f(i), and m′(g(i))
either ΛS,f ′(g(i)) or @S,k,f ′(g(i)), hence the result.

• Furthermore, g is injective by 1D-injectivity of k.

• We also know that k is natural, so we get commuting diagrams as in (5.9)
for all α∶S → µ and β∶C → S. By taking α = s, we get that g(2i − 1) =
g(2i) − 1 and g(ϕ(2i− 1)) = ϕ′(g(2i− 1)) for all i ∈ n/2. The last point we
need to show is that g(ϕ(2i)) = ϕ′(g(2i)) for all i ∈ n/2. Let us consider
the case where m(2i) = @S,k,m and k > 1 (the proof is similar for k = 1).
By alternation, ϕ(2i) is odd, so ϕ(2i) ≥ 1, hence (2i)⊙ sk = ϕ(2i) + 2 ≥ 3,
by Lemma 5.4.24, since k > 1. Thus, by definition, ˜̃g((2i)⊙ sk) = g((2i)⊙
sk −2)+2. This entails that g(ϕ(2i)) = g((2i)⊙ sk −2) = ˜̃g((2i)⊙ sk)−2 =̃̃
k∣2((2i) ⊙ sk) − 2 = k∣0((2i) ⊙ sk) − 2 = k∣1(2i) ⊙ sk − 2 = g̃(2i) ⊙ sk − 2 =
g(2i)⊙ sk − 2 = ϕ′(g(2i)), by Lemmas 5.4.24, 5.4.26, and 5.4.19.

This proves that g is indeed a morphism of TO-plays, hence ends the proof of
Theorem 5.4.22.

5.4.3 Restriction to Views

Required: 5.4.2.
Recommended: Ȃ.

At last, we show how our functor F ∶PA,B → E′(A Ȃ B) restricts to an
equivalence on views, which achieves the construction of our candidate exact
square (5.7).

We start with:

Lemma 5.4.27. If Y → U ← (A Ȃ B) is a play, then Ȃ∗u (Definition 5.2.8) is
an order.

Proof. It suffices to show that Ȃ∗ is antisymmetric, which we do by induction
on U . If U ≅ idAȂB , then the result is direct. Otherwise, it is the composite of
a move Y → M ← Y ′ and a play Y ′ → U ′ ← (A Ȃ B), and Ȃ∗U ′ is an order by
induction hypothesis. Now, it suffices to notice that Ȃ∗U is an extension of Ȃ∗U ′ ,
and that adding the move M can only add pairs x Ȃ y in which y is an element
that is not in U ′, which cannot break antisymmetry of Ȃ∗U .

This allows us to show:

196

Lemma 5.4.28. The functor F restricts to a functor FV∶VA,B → (EV)′(A Ȃ
B).
Proof. Let s = (n, f,ϕ) be any view. By Lemma 5.4.27, Ȃ∗ is an order. But for
all i ∈ n − 1, using Lemma 5.4.20:

• if i is odd: (i + 1) ⋅ t = i + 1 = i ⋅ s,
• if i is even: (i+1) ⋅ t = ϕ(i+1)+1, but because s is a view and i+1 is odd,
ϕ(i + 1) = i, hence (i + 1) ⋅ t = i + 1 = i ⋅ s.

In both cases, we have i Ȃ i + 1, hence Ȃ∗ is a total order.

By left cancellation, FV is fully faithful (see the beginning of the proof of
Lemma 5.3.10). If we prove that it is also essentially surjective, we will obtain:

Theorem 5.4.29. The restriction FV∶VA,B → (EV)′(A Ȃ B) is an equivalence.

Let us start by showing that any preview (A Ȃ B) → V in (EV)′(A Ȃ B) is
isomorphic to some canonical preview, in the following sense.

Definition 5.4.30. A preview (A Ȃ B) → V of length n is canonical if and
only if

(i) it satisfies points (P1)–(P3),

(ii) the element of V (A Ȃ B) corresponding to (A Ȃ B) → V via Yoneda is 1,
with 1⊙ s1 = 1 and 1⊙ t = 2,

(iii) for all i ∈ n, i ⋅ t = i, i ⋅ s = i + 1, and i ⋅ ν = i + 2,

where i ⋅ ν denotes the channel created by move i, i.e.,

• if i ∈ V (@S,k,m), then i ⋅ ν = i ⋅ s⊙ t,
• if i ∈ V (ΛS,m), then i ⋅ ν = i ⋅ s⊙ s∣S∣+1, where ∣(Γ Ȃ A)∣ = ∣Γ∣.
In words, a preview is canonical when the ith move is represented by i and

played by i, and its created player and channel are respectively i + 1 and i + 2.
Of course, we have:

Lemma 5.4.31. For all TO-views s, F (s) is canonical.

Proof. By induction on s.

Lemma 5.4.32. Any preview is isomorphic to a unique canonical preview.

Proof. By induction on the given preview:

• if the preview is isomorphic to id
●
(AȂB), then the result is obvious,

• otherwise, it is the composite of a play Y → V ← X and a move Z →
M ← X. By induction hypothesis and Lemma 5.2.10, Y → V ← (A Ȃ B)
is isomorphic to a canonical preview Yc → Vc ← (A Ȃ B). To show the
result, it suffices to show that M is played by the player y in Y that is
mapped to n+1 in Vc. But, since ȂVc●M and ȂV ●M have the same structure,
if M were played by another player than y, Ȃ∗Vc●M would not be a total
order, which would contradict the fact that we started from a view.

197

Lemma 5.4.33. In any canonical preview V , for any sequent S and player
i ∈ V (S), we have ∣S∣ = i/2+1 and furthermore for all 0 ≤ k < ∣S∣, i⊙sk+1 = 2k+1.
Proof. By induction on V .

Proof of Theorem 5.4.29. Lemma 5.4.32 allows us to restrict attention to the
claim that canonical previews have antecedents in TO-previews (which, remem-
ber, are TO-preplays s = (n, f,ϕ) such that ̂ŝn = s). We again proceed by
induction on the given canonical preview V . If V is the identity preview, then
an antecedent is given by the empty TO-preview. Now, assume V ′ is any ca-
nonical preview of length n and V = V ′●M is a canonical preview. By induction
hypothesis, we get s′ = (n, f ′, ϕ′) such that F (s′) = V ′.

We will define our candidate antecedent s for V by case analysis on M . In
both cases, we will first need to show that s is indeed a TO-preview, and then
that F (s) = V . By construction, F (s) will be determined by picking a player in
V ′ (i.e., a valid index in n + 1) and a valid move object in L. By canonicity of
V , it will thus be enough to show that these correspond to those of V .

There are two cases, depending on M :

• if (n + 1) ∈ V (ΛS,m) with S = (A1, . . . ,AN Ȃ C) and m ∈ √C, then we
define s = (n + 1, f, ϕ) as the extension of s′ by

– f(n + 1) =m,

– ϕ(n + 1) = n.

Let us first show that s is a TO-preview. Alternation and P -visibility are
trivial, so we only need to verify that s is a justified sequence and that̂ŝn+1 = s:

– ϕ(n + 1) < n + 1: holds trivially;

– if ϕ(n+1) = 0, then f(n+1) ∈√B: if ϕ(n+1) = 0, then by definition
n = 0, so S = (A Ȃ B), hence C = B and f(n + 1) = m ∈ √B, as
desired;

– if ϕ(n + 1) ≠ 0, then f(ϕ(n + 1)) is the parent of f(n + 1) in AȂ B:
indeed, in that case, n ∈ V (@(A1,...,ANȂ),k,m′) by Lemma 5.4.16, for
some k ∈ N and m′ ∈√Ak, and C = Ak ⋅m′, so m′ ȂAȂB m;

– finally, ̂ŝn+1 = s: if ϕ(n+1) = 0, then ̂ŝn+1 = (n+1) and n = 0, and
otherwise ̂ŝn+1 = ̂s′̂ϕ(n+1) ⋅ (n + 1) = ̂s′̂n ⋅ (n + 1) = s′ ⋅ (n + 1), as
desired.

By construction, the image of s under F is obtained by adding a new move,
n+1, to F (s′) (i.e., to V ′ by induction hypothesis), with (n+1) ⋅ t = n+1,
of the form ΛSs′,n+1,m. This agrees with V , so F (s) = V , as desired.

• if (n + 1) ∈ V (@S,k,m), with S = (A1, . . . ,AN Ȃ) and m ∈ √Ak, then we
define s = (n + 1, f, ϕ) as the extension of s′ by

– f(n + 1) =m,

– ϕ(n + 1) = (n + 1)⊙ sk − 2 if k > 1,

– ϕ(n + 1) = (n + 1)⊙ s2 − 2 if k = 1.

198

Let us first show that s is a TO-preview. Alternation is again trivial, and
so is P -visibility (because s′ is a preview), so we only need to verify that
s is a justified sequence such that ̂ŝn+1 = s:

– ϕ(n + 1) < n + 1: if k = 1, then by Lemma 5.4.33 we have ϕ(n + 1) =(n+1)⊙s2−2 = 2+1−2 = 1 < n+1 because n+1 is even; otherwise, by
Lemma 5.4.33 again we have ϕ(n+1) = (n+1)⊙sk−2 = 2(k−1)+1−2 =
2k−3 andN = (n+1)/2+1, with k ≤ N , so ϕ(n+1) ≤ 2((n+1)/2+1)−3 =
n < n + 1;

– if ϕ(n + 1) = 0, then f(n + 1) ∈ √B: we in fact have ϕ(n + 1) ≠ 0,
because ϕ(n + 1) is always odd by Lemma 5.4.33;

– if ϕ(n + 1) ≠ 0, then f(ϕ(n + 1)) is the parent of f(n + 1) in AȂ B:
indeed, in that case, we have, by Lemma 5.4.16 and the fact that
ϕ(n + 1) is odd, that ϕ(n + 1) ∈ V (Λ(A1,...,Ak−1ȂC),m′) for some m′ ∈√
C, with Ak = C ⋅m′; but then f(ϕ(n+1)) =m′ is indeed the parent

of f(n + 1) =m ∈√Ak;
– finally, ̂ŝn+1 = ̂s′̂n ⋅ (n + 1) = s′ ⋅ (n + 1), as desired.

By construction, the image of s under F is obtained by adding a new move,
n+1, to F (s′) (i.e., to V ′ by induction hypothesis), with (n+1) ⋅ t = n+1,
of the form @Ss′,n+1,k′,m for some valid k′. The equation agrees with V ,
so by canonicity it is enough to show k = k′.
Again, there are two cases:

– if f(n + 1) ∈√A, then k′ = 1 but also k = 1;

– otherwise k′ = 1 +Ls(n + 1) by definition of F . Since s is a preview,
Il = l for all l in n+1, and so ϕ(n+1) = I2Ls(n+1)−1 = 2Ls(n+1)−1 =
2k′ − 3. But, as we saw above, ϕ(n+ 1) = 2k − 3, so k = k′, as desired.

This concludes the proof that F (s) = V .

5.5 The Level of Strategies

Required: 5.4.3, 2.2.6.
Recommended: 2.2.7.

In this chapter’s final section we exploit the link we have exhibited between
the different categories of plays and views to link the categories of strategies in
both approaches. An interesting point is that it is very simple to prove this link
using the theory of exact squares.

In the previous section, we have built a commuting square which we repro-
duce here for convenience:

VA,B PA,B

EV(A Ȃ B) E(A Ȃ B),
iTO

FV

i

F

where F is a full embedding and FV is an equivalence by Theorem 5.3.11.

199

Lemma 5.5.1. The square above is exact.

Proof. By Lemma 2.2.69.

From which we deduce:

Corollary 5.5.2. For all arenas A and B, the square

VA,B
Ȃ

PA,B
Ȃ

EV(A Ȃ B)Ȃ E(A Ȃ B)Ȃ
∏iTO

∆
FV

∏i

∆F

commutes up to isomorphism.

Restriction along FV induces an equivalence between behaviours over (A Ȃ
B) and TO-behaviours over (A,B).

Restriction along F induces a functor from strategies over (A Ȃ B) to TO-
strategies over (A,B), which restricts to an equivalence on innocent strategies.

The moral of this result is that our views and plays faithfully represent Tsu-
kada and Ong’s. Indeed, both notions of behaviour essentially coincide and
moreover, although our categories of plays are slightly richer, our innocent
strategies restrict to theirs and furthermore their process of extending beha-
viours to innocent strategies coincides with ours up to this restriction.

This also implies that these equivalences are compatible with innocentisa-
tion, which takes a possibly non-innocent strategy and canonically turns it into
an innocent strategy. This is done by sheafification, which, in our case, is the
functor ∏i ○∆i. Indeed, consider the diagram:

E(A Ȃ B) EV(A Ȃ B) E(A Ȃ B)
PA,B VA,B PA,B .

∆ ∏

∆ ∆

∆ ∏

∆

Remember that, when drawing diagrams using ∏’s, ∑’s, and ∆’s, we only draw
the underlying diagram (which in particular means that ∆ arrows point in the
“wrong” direction). If we take the top path in the diagram above, we first inno-
centise the strategy (inside the string diagrammatic setting) and then take the
equivalent TO-strategy. If we take the bottom path, we first take the equivalent
TO-strategy, and then innocentise it (inside Tsukada and Ong’s setting). But
the left-hand square commutes because the underlying diagram (without the
∆’s) does, and the right-hand side one commutes by exactness.

5.6 Perspectives

One may notice that a crucial point is left untreated here: Tsukada and Ong can
compose strategies, while it is not clear how to do this directly in our setting.
Two steps are required to compose strategies, parallel composition and hiding:
the first executes two strategies in parallel, and the second one hides the middle

200

arena. While parallel composition is easy to manipulate in our setting because
our game is intrinsically multi-party, hiding could admittedly be more difficult
to handle.

Another point, which we already mentioned at the end of Chapter 4 is that
we do not use quite the same definition of views in this setting as in our other
models. As we explained when we defined views, we cannot define views as in
our other models and use our proof of fibredness. If we used the same technique
as in our previous models, we would break persistence, which we proved to be
necessary for fibredness (Theorem 4.4.30) to hold (see the remark after the proof
of Lemma 4.4.32). We thus cannot hope to have the same definition of view for
our model of HON games as in our model of the π-calculus using this notion
of signature. This point makes us think that maybe the notion of signature we
used is a bit too restrictive. It is not yet clear to us how to solve this problem.

Another problem with this setting is that interaction sequences are not faith-
fully modelled by plays on the pushout

B (A Ȃ B)
(B Ȃ C) (A Ȃ B Ȃ C).

t

s1 inl

inr

Indeed, using the same techniques as in this chapter, it is not hard to show that
there is a full embedding IA,B,C → E(A Ȃ B Ȃ C), where IA,B,C is the category of
interaction sequences in Tsukada and Ong’s model. However, there are objects
in E(A Ȃ B Ȃ C) that do not make much sense from a computational point of
view, as we try to explain now. Let us call x0 the initial (A Ȃ B) player and y0
the initial (B Ȃ C) player, and let us give ourselves terms f ∶A→ B and g∶B → C

of some language (say a non-deterministic λ-calculus) interpreted as strategies
Sf on (A Ȃ B) and Sg on (B Ȃ C). After some moves have been played on
the position (A Ȃ B Ȃ C), one can divide the final position into two “teams” of
players: those players x such that x0 Ȃ∗ x, and those such that y0 Ȃ∗ x. The first
team is made of those players that represent some ongoing or frozen computation
of f , while the second team is made of players that represent computations of
g. Some moves make complete sense from a computational point of view:

• β moves between two players: it can be proved that such a move is always
played between two players that are on different teams, and they corres-
pond to an interaction between f and g, just like playing on the middle
arena in an interaction sequences in traditional game semantics,

• Λ and @ moves with the outside (i.e., on sub-arenas of A or C): they
correspond to interacting with the outside, just like playing on the two
extremal arenas in traditional game semantics,

• Λ moves on B: it can be proved by induction that such moves may only
be played by players of the first team, and they correspond once again to
interaction with the outside, since program fragments other than g may
call f .

The last point is slightly more controversial, but it makes sense if we see (A Ȃ
B Ȃ C) as a sub-position of

201

B

x
y

y′

A

C

C′

and the Λ move as a sub-move of a β move between x and y′. However, @

moves on B do not make sense from a computational point of view, because
they represent g asking f for a value, but somehow ending up interacting with
the outside while doing so. This corresponds to the fact that positions of the
form

Bx

y

x′

A

C

A′

do not really make sense in our game, and that y must thus necessarily syn-
chronise with x if they want to play @ on B.

An idea that could possibly solve this problem would be to define plays
not as presheaves, but as sheaves for a Grothendieck topology stating that β
moves are covered by @ moves and the presence of a player that could play Λ

to synchronise with that @ move.

202

Chapter 6

Composing

Non-Deterministic Strategies

6.1 Motivation

Game models offer an intuitive and simple semantical framework that nonethe-
less provides fully abstract models for a variety of languages. However, the
proofs involved are usually very complex with respect to the definitions. Let us
give the example of two fundamental properties of these models that are not
straightforward to prove. Their proofs also depend on the particular variant of
games studied, which raises the issue of finding a theory that would be general
enough to encompass a large number of these models, but also powerful enough
to factor out these proofs.

The first one is maybe the most fundamental property of a game model (or
any denotational model). It is that games and strategies (or the interpretations
of programs in the case of denotational models) form a category and that com-
position of strategies coincides with composition of programs. Even the fact
that games and strategies form a category is not straightforward to prove.

Another fundamental notion is that of innocence, which is the fact that the
behaviour of a program should only depend on what it “sees” of the environment
(typically, how the environment interacts with the program, the values it sends
to the program, etc.), and not on the rest of the execution (how the environment
interacts with other program fragments, how it computes the values it sends
to the program, etc.). This is of course not a reasonable hypothesis in general,
because the program may for example keep a pointer or reference to some values
that change depending on how a value is computed, but a key result in game
semantics is that innocent strategies exactly correspond to the interpretations
of purely functional programs. It is therefore crucial to verify that innocent
strategies form a subcategory of the category of games and strategies.

The work we discuss in this chapter started as an attempt at taking the
proof of Tsukada and Ong [97] that their arenas and innocent strategies form
a category and recasting it using different tools that we thought to be more fit
for this purpose. By using high-level tools, we get the same result with simpler
proofs, and are also able to precisely extract the hypotheses used in the proofs

203

without drowning in details about how exactly plays are represented.
This led us to a surprisingly broad framework, that may be applied to stream-

line the proofs that composition of strategies is associative and unital in different
settings. In non-technical terms, we first define an abstract gadget, which we
call a game setting (which basically represents plays) and show how that gadget
gives rise to a notion of strategy, as well as copycat strategies and a com-
position functor. We then show that, under mild hypotheses, games and non-
deterministic strategies form a category. Under some more hypotheses, we prove
that non-deterministic, innocent strategies form a subcategory of strategies. A
game semanticist should be doubtful at this point, as it is well known that non-
deterministic, innocent strategies do not compose, but the notion of strategy we
use here is slightly different from the traditional one, though there is an intuit-
ive correspondence between the two. We then treat composition of “traditional”
strategies and show that non-deterministic strategies form a category and that
restraining to deterministic, innocent strategies gives a subcategory. In passing,
we can pinpoint where our method fails if we try to show that non-deterministic,
innocent strategies compose.

All the while, we make sure to relate composition of our strategies, which
are not exactly traditional, with composition of traditional ones, and show in
which sense the two correspond.

6.1.1 The Main Ideas

We define strategies as presheaves over a category of plays. Such a strategy S
accepts the play p if S(p) is non-empty and rejects it otherwise. We may think
of S(p) as the set of states S may be in once it has played p (if S cannot be
in any state after playing p, then S refuses to play p altogether). The fact that
S may be in several states after playing p reflects the fact that S is inherently
non-deterministic. If there is a morphism p → p′ (which typically means that p
is a prefix of p′), then the presheaf structure induces a function from S(p′) to
S(p), so that, if p′ is accepted, then so is p. This notion of strategy is not exactly
traditional because a strategy may accept a play in several ways (the cardinal
of S(p)), while a traditional strategy barely accepts or rejects plays. We thus
also define “traditional” strategies as presheaves to 2, the ordinal 0 → 1 seen
as a category. There is an obvious way to translate presheaves as presheaves
to 2, given by collapsing all non-empty sets to 1 and the empty set to 0. We
thus have two fundamentally different types of strategies: general strategies (or
g-strategies) and boolean ones (or b-strategies).

Our first contribution is to define composition of g-strategies and copycat
g-strategies as polynomial functors [62, 35] (i.e., composites of ∏’s, ∑’s, and
∆’s) and to show that these definitions agree with Tsukada and Ong’s. Our
definition of composition is conceptually simple, in the sense that it can directly
be read as “the composite σ1;σ2 of two strategies accepts a play p on the pair
of games (A,C) if there is an interaction sequence u on (A,B,C) that projects
to p and whose projections to (A,B) and (A,C) are accepted by σ1 and σ2
respectively”. The use of polynomial functors also gives us the opportunity to use
Guitart’s theory of exact squares (see Section 2.2.6), which shifts the focus from
the categories of presheaves to the base categories, leading to simpler proofs.
We thus show that, under some hypotheses on the game setting, composition

204

of g-strategies is associative and unital. We also show how this implies that
composition of b-strategies is associative and unital by exhibiting links between
compositions in both settings.

We then set out to instantiate our framework on different game settings, such
as traditional HON games and AJM games, different variations on HON games,
and Tsukada and Ong’s games. We also show how the hypotheses imposed on
game settings are actually necessary by showing that Blass games, a classic
example of strategies whose composition is not associative, do not verify them.

Finally, we treat the case of innocent strategies. Traditionally, a strategy S
is innocent when it accepts a play p if and only if it accepts all the views (a
particular type of play) that embed into it. Hirschowitz has argued [50] that
this idea may be recast as a sheaf condition, by viewing a play as covered by
its views. An innocent g-strategy is simply a sheaf for the topology induced
by the embedding of views into plays. By adding structure describing the em-
bedding of views into plays to our game settings, we can express innocence and
study composition of innocent strategies. We show that composition of innocent
g-strategies is associative under some conditions. To study composition of tra-
ditional, deterministic, innocent b-strategies, we need to take into account the
fact that the notion of morphism of plays may have changed: typically, we want
to infer that games and innocent b-strategies form a category for HON games
from the fact that Tsukada and Ong’s g-strategies form a category, but Tsukada
and Ong consider a richer notion of morphism than prefix inclusion, which is
the notion of morphisms of plays in HON games. We thus have more notions
of innocence: p-innocence if morphisms form a poset (e.g., prefix inclusion) and
c-innocence if morphisms form a proper category. From the fact that innocent
cg-strategies form a category, we derive that innocent pg-strategies form a cat-
egory. We cannot infer that innocent pb-strategies form a category (because
they do not), but manage to show that it is the case for deterministic, innocent
pb-strategies.

6.1.2 A Technical Point

Required: 2.2.6.
Recommended: Ȃ.

As everything is expressed in terms of polynomial functors, the theory of
exact squares provides a powerful toolbox to show that diagrams commute (up
to isomorphism). However, this theory is limited to squares of one of the forms

A
Ȃ

B
Ȃ

C
Ȃ

D
Ȃ

∆T

∑S

∆U

∑V
or

A
Ȃ

B
Ȃ

C
Ȃ

D
Ȃ

.

∏T

∆S

∏U

∆V

It is even easier to show that squares that only involve one of ∏, ∑, or ∆

commute, since it suffices to show that the underlying diagram (the one on the
base categories, rather than the presheaf categories) commutes. But we will also
need a lemma to make left and right Kan extension commute, which we now
discuss.

205

Consider an exact square as below left. Because it is exact, the middle
natural transformation is an isomorphism, so it can be inverted, which gives
rise by the mate calculus to a square as below right.

A C

B D

T

S V

U

ϕ

A
Ȃ

C
Ȃ

B
Ȃ

D
Ȃ

∆T

∑S

∆U

∑V∑ϕ

A
Ȃ

C
Ȃ

B
Ȃ

D
Ȃ

∏T

∑S

∏U

∑V

ϕ̃

Definition 6.1.1. An exact square is distributive when ϕ̃ is an isomorphism.

Let us consider any functors A
SÐ→ B

UÐ→ D with S a discrete fibration and
U fully faithful. Remember that, in Section 2.2.5, we denoted by ∂∗(S) the
presheaf that corresponds to S through the equivalence of presheaves and dis-
crete fibrations. Let C = el(∏U(∂∗(S)) denote the category of elements of the
right Kan extension of ∂∗(S) along Uop , and let V denote its projection to
D. Because U is fully faithful, the counit ε of the adjunction ∆U Ȃ ∏U is an
isomorphism, so the left-hand square of

A ⋅ C

B B D

εS

S ∆U (V) V =∏U (S)

U

is a pullback. The right-hand square is a pullback by Lemma 2.2.58, so the
rectangle also is by the pullback lemma. By Lemma 2.2.70, it is exact, so we
may wonder whether or not it is distributive. This square is called the local
pushforward square of S and U .

Lemma 6.1.2. Local pushforward squares are distributive.

Proof. We first prove the corresponding result for the equivalent categories of
discrete fibrations. There, because S and V are discrete fibrations, ∑S be-
comes post-composition with S, and similarly for ΣV . So the result essentially
states that for any discrete fibration P ∶X → A, ∏U(∑S(P)) ≅ ∏U(SP) ≅∏U(S)∏T (P) ≅ V ○∏T (P) ≅ ∑V (∏T (P)), where the only non-obvious point
is that ∏U(SP) ≅ ∏U(S)∏T (P). To prove that this isomorphism holds, we
show that ∏U(S)∏T (P) enjoys the same universal property as ∏U(SP). In
other words, we show that, for all discrete fibrations Q∶Y →D, [∆U(Q), SP] ≅[Q,∏U(S)∏T (P)], naturally in Q.

We first show how to map each morphism F in [Q,∏U(S)∏T (P)] to a
morphism in [∆U(Q), SP]. Given such a morphism, we have a diagram as the
solid part of

X Y

Z ′ Z

A C

a

B D

∆U (Q)

F

Q

P
∏T (P)

T

S ∏U (S)

U

206

and want to define the dashed arrow. (We can build the top square because fully
faithful functors are the right class of a factorisation system, so are stable under
pullbacks, and U is fully faithful.) We could simply define it by the universal
property of pullback (and that would indeed be the right construction), but we
prefer using adjunctions ∆ Ȃ ∏, because it will make the proof more symmetric.
We have that ∏T (P)F is a morphism from Q to ∏U(S), so it corresponds by
adjunction to a morphism P ′ from ∆U(Q) to S, and

Z ′ Z

A C

P ′ ∏T (P)F

T

is a pullback by the pullback lemma, so that P ′ is isomorphic to ∆T (∏T (P)F).
But now, F is a morphism from ∏T (P)F to ∏T (P), which yields by adjunction
a morphism F̃ from ∆T (∏T (P)F) to P , hence from P ′ to P . We thus get
that F̃ is a morphism from ∆U(Q) to SP , and this mapping is monic and
natural because all arrows arise from the use of natural isomorphisms. The
proof that any morphism in [∆U(Q), SP] may be mapped naturally to one in[Q,∏U(S)∏T (P)] is similar.

What we have shown here is that

DFibA DFibC

DFibB DFibD

∏T

∑S ∑V

∏U

commutes up to isomorphism. We now transfer this result, replacing DFibX
with X
Ȃ

through the following diagram:

A
Ȃ

C
Ȃ

B
Ȃ

D
Ȃ

DFibA DFibC D
Ȃ

.

DFibB DFibD

∏T

∏T

∏U

∏U

∑S

∑V

∑S

∑V

Our goal is to prove that the top part of the diagram commutes up to isomorph-
ism, which we prove by showing that everything else does. We just proved that
bottom square commutes up to isomorphism, and the final triangle also does be-
cause (π, ∂∗) forms an equivalence, so we are left with showing that the vertical
squares commute up to isomorphism.

For any functor F ∶C → D, we know that the left-hand square below com-
mutes up to isomorphism, so by pre- and post-composing with ∂∗, we get that
the right-hand one does too, using the fact that (π, ∂∗) form an equivalence.

C
Ȃ

D
Ȃ

DFibC DFibD

∆F

ππ

∆F

C
Ȃ

D
Ȃ

DFibC DFibD
∆F

∂∗∂∗

∆F

207

Now, using the fact that ∑F Ȃ∆F and π Ȃ ∂∗ form adjunctions and uniqueness
of left adjoint up to isomorphism, we get that the left-hand square below com-
mutes up to isomorphism, and similarly for the right-hand one, using ∆F Ȃ ∏F ,
∂∗ Ȃ π, and uniqueness of right adjoint.

C
Ȃ

D
Ȃ

DFibC DFibD

∑F

π π

∑F

C
Ȃ

D
Ȃ

DFibC DFibD

∏F

π π

∏F

Applying this result to all four vertical faces concludes the proof.

6.2 Polynomial Functors for Abstract Game Se-

mantics

The main idea behind game settings is that they describe plays with two or more
players, and the link that must exist between these notions of plays. We organise
this information into a categorical structure from which we abstractly get two
notions of strategies: the presheaf-based one and essentially the standard one.
We then prove that games and strategies form a category, for both notions of
strategies, and exhibit a link between composition of both types of strategies.

The construction of a typical game model relies on the definition of notions of
plays between increasingly many players. There is first a notion of game. Each
game A involves two players O (Opponent) and P (Proponent), and features
in particular a set of plays PA, which may be endowed with the prefix ordering
or with a more sophisticated notion of morphism, thus forming a category of
plays.

Example 6.2.1. In games based on arenas (see Section 2.1 for some examples),
a game is an arena A taken from the set A of all arenas. Plays on such arenas
are typically defined as alternating justified sequences of elements of A of even
length (this is enough to understand the intuitions). This definition is however
not broad enough (see the definition of PA,B in the case of HON-style games
just below), so, if we consider HON-style games, PA will be given by potentially
non-alternating justified sequences of elements of A of any finite length, as in
Definition 2.1.4.

The crucial step to view strategies as morphisms is to consider the arrow
game A Ȃ B, which intuitively describes the interaction of a middle player M
acting as Opponent against a left player L and as Proponent against a right
player R, as in

L M R

B B

qR

qM

tL

fM .

(6.1)

208

In this example, M plays like the negation function on booleans: R asks its
return value by playing the move qR; M in turn asks L for an argument by
playing qM , to which L answers true by playing tL; M eventually answers the
original question by playing fM (in Section 2.1.1, L and R are seen as a single
player, since they are both played by the environment).

However, there is a subtlety: one often needs to restrict attention to a certain
subcategory PA,B Ă PAȂB . There must be projections to PA and PB , first
because it makes the whole categorical formalisation simpler, but also because
we do not get the right notion of copycat strategy otherwise (for a technical
reason). Note that this is not simply a trifling detail, as it is the very reason
why we take all justified sequences in PA (instead of the more traditional choice
of alternating justified sequences of even length).

Example 6.2.2. In HON-style games, PA,B would consist of alternating se-
quences of even length of PAȂB. The projections of a play in PA,B to A and B
may not be alternating or have even length, so it is crucial to be liberal in the
choice of PA.

For composition of strategies, the situation (6.1) is then scaled up to com-
binations of two such situations in which a first middle player M1 plays on the
right with a second one, say M2, as in

L M1 M2 R

B B B.
(6.2)

Plays in such combinations are standardly called interaction sequences, and
typically form a subcategory PA,B,C Ă P(AȂB)ȂC . An important point is that
interaction sequences admit projections to PA,B , PB,C , and PA,C , which satisfy
the obvious equations with respect to further projections to PA, PB , and PC ,
e.g., the following square commutes:

PA,B,C PA,C

PB,C PC .

Example 6.2.3. In HON games, PA,B,C typically consists of alternating justi-
fied sequences on (AȂ B) Ȃ C which end in A or C and whose projections to
AȂ B and B Ȃ C are plays.

Finally, in order to prove associativity of composition, one defines generalised
interaction sequences as a subcategory PA,B,C,D Ă P((AȂB)ȂC)ȂD, again with
projections satisfying the obvious equations.

6.2.1 Plays as a Category-Valued Presheaf

Required: 2.2.5.
Recommended: Ȃ.

Let us now organise all this data (PA, PA,B , PA,B,C , PA,B,C,D, and the
existence of projections) into a simple categorical structure. First, as suggested
by our notation, for all lists L = (A0, . . . ,An−1) of games, we construct a category
PL.

209

Example 6.2.4. In the HON case, we may take PL to consist of alternating
justified sequences on (. . . (A0 Ȃ A1) Ȃ . . .) Ȃ An−1 whose projection to each
Ai Ȃ Ai+1 is a play, and which end in A0 or An−1, the leftmost and rightmost
arenas.

For the same reasons as before, we need projections from PL to PL′ , where
L′ contains one less arena than L. If L is the list A0, . . . ,An−1, we define L−k to
be the list A0, . . . ,Ak−1,Ak+1, . . . ,An−1. We thus need projections δk ∶PL → PL−k

(for “delete k”), for all k ∈ [n].
A similar construction, relevant for defining copycat strategies is insertions

ιk ∶PL → PL+k (for “insert k”), where k ∈ [n] and L+k denotes A0, . . . ,Ak−1,Ak,
Ak,Ak+1, . . .An−1. For example, there is an insertion ι1 from PA,B to PA,B,B .
Intuitively, this functor maps any play u in PA,B to the interaction sequence
in PA,B,B which duplicates all moves on B. So in a situation like (6.2), M2

would act as a “proxy” between M1 and R, repeating M1’s moves to R and
conversely. For a precise definition and an example in the case of HON games,
see Section 6.3.1.

We can express the existence of all insertion and deletion morphisms in a
simple categorical structure. Let ∆ be the simplex category, i.e., the category
whose objects are finite ordinals [n] and whose morphisms [n]→ [m] are order-
preserving functions from n to m. Let us call i the embedding of ∆ into Set.
Recall that A is the set of all games. Then ∆/A (or, more precisely, i ↑ ⌜A⌝)
has finite lists of games as objects, i.e., maps L∶ [n] → A for some n, and as
morphisms (n,L)→ (n′, L′) all monotone maps f making the following triangle
commute:

[n] [n′]
A.

L

f

L′

Example 6.2.5. We will use the following morphisms to define δk and ιk. Let
dnk ∶ [n]→ [n+ 1] miss k ∈ [n], i.e., dnk(i) = i for i < k and dnk(j) = j + 1 for j ≥ k.
E.g., d21 yields a map (A,C) → (A,B,C) for all games A,B,C. Similarly,
consider ink ∶ [n + 1] → [n] which collapses k ∈ [n] ⊆ [n + 1] and k + 1 ∈ [n + 1].
E.g., for n = 2 and k = 0, it yields a map (A,A,B)→ (A,B) for all A and B.

As promised, this yields a way to organise the categories of plays involved in
a typical game model into a coherent categorical structure: we will show below
that, for quite a few game models, the assignment L Ă PL induces a category-
valued presheaf on ∆/A, i.e., a functor (∆/A)op → Cat. Furthermore, the maps
δk and ιk introduced earlier will respectively be given by P(dk) and P(ik).

In the following, we will only need to use this structure up to lists of length 4:

Definition 6.2.6. For any p in N and set A, let A[1,p] denote the full subcat-
egory of ∆/A spanning lists L of length up to p.

In the next sections, we will define strategies, composition and copycat
strategies abstractly, based on the category-valued presheaf P on A[1,4]. This
is quite demanding, but we are rewarded with a high-level view of composition,
which yields abstract proofs of associativity and unitality, under mild hypotheses
on P. We will define a game setting to consist of a set A and a category-valued

210

presheaf satisfying these hypotheses. Of course, it will remain to show, for each
considered game model, that

• plays indeed form a game setting and

• the standard definitions of composition and copycat strategies agree with
the abstract ones.

6.2.2 Copycats and Composition as Polynomial Functors

Required: 6.2.1, 2.2.4.
Recommended: Ȃ.

Let us now start our reconstruction of a game model from an arbitrary
category-valued presheaf P on A[1,4]. Our first step is to define strategies.
Standardly, a strategy σ∶A → B is a prefix-closed set of plays in PA,B (gen-
erally required to be non-empty). Equivalently, it is a functor Pop

A,B → 2, where,
we recall, 2 denotes the ordinal 0 → 1 viewed as a category. In Tsukada and
Ong’s model [97], PA,B is a proper category, and strategies are generalised to
presheaves on PA,B , i.e., functors P

op

A,B → Set. This is indeed a generalisation
because 2 embeds into Set (more on this in Section 6.2.4).

The basis of our approach will be the general notion:

Definition 6.2.7. Let the category of strategies from A to B be PA,B
Ȃ

. The

category of boolean strategies is PA,B
:

, the category of functors P
op

A,B → 2.

The next step in our reconstruction of a game model from A and P is to
define identities and composition.

Definition 6.2.8. A functor is polynomial if it is isomorphic to some finite
composite of functors of the form ∆F , ∏F and ∑F .

This definition may be seen as a generalisation of Fiore’s [35], and would
turn out to be the same if his polynomial functors are ever proved to be closed
under composition.

Remember that we will use two notations for polynomial functors:

• the “full” notation, which we will mainly use in the definitions: it is simply

to write the functor as, say, A
Ȃ ∏FÐÐ→ B

Ȃ ∑GÐÐ→ C
Ȃ ∆HÐÐ→ D

Ȃ
,

• a lighter notation, which we will mainly use in the proofs, in which the
underlying functors and presheaf categories are left implicit, so the same

functor as above would be written A
∏Ð→ B

∑Ð→ C
∆←Ð D.

In particular, note that, in the second notation, we draw arrows in the direction

of the underlying arrow, so the ∆ arrows are reversed, like C
∆←Ð D. This may be

more difficult to read in general, but our diagrams will always be written from
left to right (and most from top-left to bottom-right), so they should not be too
difficult to read. The real point of this notation is that it shifts the focus from
the categories of presheaves to the underlying ones, which helps a lot, since our
proofs will all focus on the level of the base categories, thanks to exact squares
and local pushforward squares.

211

As a warm-up before considering composition, we would like to start with
our abstract definition of copycat strategies. A natural way to define the copycat
strategy idA∶A → A is to decree that it accepts all plays in PA,A that are in
the image of the insertion functor ι0∶PA → PA,A. Indeed, recalling (6.1) and
according to the discussion about insertions right after Example 6.2.4, such
plays are precisely those in which M acts as a proxy between L and R, which
agrees with the standard definition of copycat strategies.

This definition has the advantage of concreteness, but let us give an equi-
valent, polynomial definition. Because an object of a category C is the same
as a functor 1 → C, we may define idA as a functor 1 → PA,A

Ȃ
. Furthermore, 1

is a presheaf category: indeed it is ȂȂ, presheaves over the empty category. So
we may view the copycat strategy over A as a functor ȂȂ → PA,A

Ȃ
. In order to

present it as a polynomial functor, we will need to assume that the insertion
functor ι0∶PA → PA,A is a discrete fibration, whose relevant property here is the
characterisation of left extension along them, as given by Lemma 2.2.27. Here
is our polynomial presentation of copycat:

Proposition 6.2.9. If the insertion functor ι0∶PA → PA,A is a discrete fibra-

tion, then the functor ȂȂ ∏!Ð→ PA
Ȃ ∑ι0ÐÐ→ PA,A

Ȃ
is isomorphic the copycat strategy

idA.

Proof. First, because ∏! is right adjoint to ∆!, it preserves the terminal object
(which is the unique object of ȂȂ), hence maps 1 to the terminal presheaf on PA,
defined to map any play in PA to 1. So we reduce to showing that idA ≅ ∑ι0(1).

By Lemma 2.2.27, we know that (∑ι0 X)(p) ≅ ∑ι0(q)=pX(q) for any presheaf
X on PA and p ∈ PA,A. So in particular when X = 1 we get ∑ι0(1)(p) ≅
∑ι0(q)=p 1 ≅ { 1 if p ∈ Im(ι0)Ȃ otherwise,

as desired.

The next step is to express composition of strategies using the same lan-
guage of polynomial functors. Remember from Section 2.1 that composition of
strategies is standardly defined as follows. The composite σ; τ of two boolean
strategies σ and τ over (A,B) and (B,C) respectively, is defined to accept all
plays p ∈ PA,C for which there exists u ∈ PA,B,C such that δ1(u) = p and δ2(u)
and δ0(u) are accepted by σ and τ respectively. In [97], this is extended to
a functor PA,B

Ȃ× PB,C
Ȃ→ PA,C

Ȃ
, whose definition is essentially a proof-relevant

version of the boolean one:

Definition 6.2.10. The composite σ; τ of two strategies σ and τ over (A,B)
and (B,C) respectively, maps any play p ∈ PA,C to the set of triples (u,x, y)
where u is in PA,B,C is such that δ1(u) = p, x is in σ(δ2(u)), and y in τ(δ0(u)).

Let us present this polynomially. First, by universal property of coproduct
we have PA,B

Ȃ×PB,CȂ≅ PA,B + PA,B
Ȃ

, so the problem reduces to defining a functor
PA,B + PB,C
Ȃ→ PA,C

Ȃ
. Here is our candidate:

Definition 6.2.11. Let mA,B,C denote the polynomial functor

PA,B + PB,C
Ȃ∆δ2+δ0ÐÐÐÐ→ PA,B,C + PA,B,C
Ȃ∏∇ÐÐ→ PA,B,C

Ȃ∑δ1ÐÐ→ PA,C
Ȃ

,

212

where ∇ = [id , id].
This definition is legitimated by:

Proposition 6.2.12. If δ1 is a discrete fibration, mA,B,C agrees with Defini-
tion 6.2.10, i.e., for all σ and τ , we have (σ; τ) ≅ mA,B,C[σ, τ].
Proof. We can express left Kan extension along δ1 as a sum by Lemma 2.2.27.
We also have that ∇ is a discrete opfibration, so∏∇(X)(u) ≅X(inlu)×X(inru)
by Lemma 2.2.28, and therefore:

mA,B,C[σ, τ](p) = ∑δ1 (∏∇ (∆δ2+δ0[σ, τ])) (p)≅ ∑δ1(u)=p∏∇ (∆δ2+δ0[σ, τ]) (u)≅ ∑δ1(u)=p (∆δ2+δ0[σ, τ](inlu) ×∆δ2+δ0[σ, τ](inru))≅ ∑δ1(u)=p[σ, τ]((δ2 + δ0)(inlu)) × [σ, τ]((δ2 + δ0)(inru))≅ ∑δ1(u)=p[σ, τ](inl(δ2(u))) × [σ, τ](inr(δ0(u)))≅ ∑δ1(u)=p σ(δ2(u)) × τ(δ1(u)),
where ∑ means right Kan extension on the first line and disjoint union on all
other lines, which clearly coincides with Tsukada and Ong’s definition.

Remark. The discrete fibredness hypothesis is satisfied in most game models,
with the notable exception of the saturated interpretation of AJM games (see
Section 6.3.3), in which the projection is a non-discrete fibration.

6.2.3 Game Settings, Associativity and Unitality

Required: 6.2.2, 6.1.2.
Recommended: Ȃ.

We have now expressed copycat strategies and composition abstractly, re-
lying only on the postulated category-valued presheaf. Let us now consider
associativity. It has become standard in game semantics to prove associativity
of composition using a zipping result [9] stating that both squares

PA,B,C,D PA,B,D

PB,C,D PB,D

δ2

δ0

δ1

δ0

PA,B,C,D PA,C,D

PA,B,C PA,C

δ1

δ3

δ1

δ2 (6.3)

are pullbacks. This holds in all considered game models.
Finally, we need to add one last bit to our axiomatisation to prove that

copycat strategies are identities for composition. Suppose that u in PA,A,B is
such that δ2(u) = ι0(s) for some sequence s in PA, then we intuitively want to
have u = ι0(δ0(u)), which does not hold in general. We want both squares

PA,B PA

PA,A,B PA,A

δ1

ι0

δ2

ι0

PA,B PB

PA,B,B PB,B

δ0

ι1

δ0

ι0 (6.4)

to be pullbacks, which is a slight generalisation of this intuition.

213

Definition 6.2.13. A game setting consists of a set A (whose elements we
call games or arenas) and a category-valued presheaf P on A[1,4] such that all
projections PA,B,C → PA,C and insertions PA → PA,A are discrete fibrations,
and all squares (6.3) and (6.4) are pullbacks.

We call both squares (6.3) the zipping squares of P and both squares (6.4)
the copycat squares of P.

Remark. By zipping, because discrete fibrations are stable under pullbacks, all
the horizontal projections in the squares (6.3) are discrete fibrations, and simil-
arly, all insertions in the squares 6.4 also are.

One of our main results is:

Theorem 6.2.14. In any game setting, composition of strategies is associative
up to isomorphism, and copycat strategies are units up to isomorphism.

To prove this theorem, let us start with an alternative description of com-
position, which relies on the following intermediate category:

Definition 6.2.15. For any triple of arenas A, B, C, let P(A,B),(B,C) denote
the lax colimit [61] of

PA,B PA,B,C PB,C ,
δ2 δ0

i.e., the initial category equipped with natural transformations

PA,B PA,B,C PB,C

P(A,B),(B,C).

δ2 δ0

m
l r

λ ρ

The obtained category has as objects the disjoint union of objects from PA,B ,
PB,C , and PA,B,C . It inherits the corresponding morphisms, and has additional
morphisms λu∶ δ2u→ u and ρu∶ δ0u→ u for all u satisfying the obvious naturality
requirements that, for all f ∶u→ u′ in PA,B,C ,

δ2(u) δ2(u′)
u u′

δ2(f)

λu λu′

f

δ0(u) δ0(u′)
u u′

δ0(f)

ρu ρu′

f

(6.5)

commute. We have:

Proposition 6.2.16. Composition is isomorphic to the polynomial functor

PA,B + PB,C
Ȃ∏[l,r]ÐÐÐ→ P(A,B),(B,C)

Ȃ∆mÐÐ→ PA,B,C
Ȃ∑δ1ÐÐ→ PA,C

Ȃ
.

Proof. This follows from Lemma 2.2.65 by observing that the square

214

PA,B,C + PA,B,C PA,B,C

PA,B + PB,C P(A,B),(B,C)

∇

δ2+δ0 m

[l,r]

is a cocomma square, where ∇ denotes the copairing [id , id]. Indeed, both
categories have the same universal property, expressed differently.

PA,B + PB,C + PC,D P(A,B),(B,C) + PC,D PA,B,C + PC,D PA,C + PC,D
PA,B + P(B,C),(C,D) P(A,B),(B,C),(C,D) P(A,C),(C,D)

PA,B + PB,C,D PA,B,C,D PA,C,D

PA,B + PB,D P(A,B),(B,D) PA,B,D PA,D

∏

∏ ∏

∆ ∑

∏

∏
∆

∑

∆

∑

∑

∆

∑

∏ ∆ ∑

Figure 6.1: Diagram for associativity

Proving associativity thus reduces to showing that the perimeter of the dia-
gram of Figure 6.1 commutes up to isomorphism. In order to do this, we in-
troduce the category P(A,B),(B,C),(C,D), similar to P(A,B),(B,C) but with four
arenas, which is constructed as the lax colimit of

PB,C

PA,B PA,B,C PB,C,D PC,D

PA,B,C,D.δ3 δ0

δ2

δ0 δ2

δ0

It has as objects the objects of all six categories and morphisms as in those cat-
egories, plus morphisms δi(u) → u whenever this makes sense (and composites
thereof), with the same kind of naturality constraints as P(A,B),(B,C).

In the diagram of Figure 6.1, both little squares commute up to isomorphism
because the underlying squares do. It thus suffices to show that both heptagons
commute up to isomorphism. Both cases are symmetric, so we only treat the
bottom left one. We then need to introduce yet another category, P(A,B),(B,C,D),
which is like P(A,B),(B,C),(C,D), except that PB,C,D is not decomposed into PB,C
and PC,D: it is the lax colimit of

PA,B PA,B,C,D PB,C,D.δ2δ2 δ0

These categories are related by the full embeddings given by the universal
properties of P(A,B),(B,C) and P(A,B),(B,C,D) (indeed, P(A,B),(B,C),(C,D) has lax
cocones from PA,B ← PA,B,C → PB,C and PA,B ← PA,B,C,D → PB,C,D given by
its own definition):

P(A,B),(B,C) Ă P(A,B),(B,C),(C,D) Ă P(A,B),(B,C,D).

The crucial reason why the heptagon commutes is:

215

Lemma 6.2.17. The square

PA,B + PB,C,D P(A,B),(B,C,D)

PA,B + PB,D P(A,B),(B,D)

[l,r]

PA,B+δ1

[l,r]

P(A,B),δ1

is a local pushforward square.

Proof. The square is obviously a pullback, so, by Lemma 2.2.84, it suffices to
show that ∂∗(P(A,B),δ1) is a sheaf for the Grothendieck topology induced by the
embedding [l, r].

Remember that, if F ∶C → D is a functor, a sieve S covers an object d
of D for the topology induced by F if and only if it contains all morphisms
of the form Fc → d. In our case, a sieve S covers l(pA,B) if and only if it
contains all morphisms of the form [l, r](p) → l(pA,B) for p in PA,B + PB,D,
but since there are no morphisms of the form r(−) → l(−), S covers l(pA,B)
if and only if it contains all morphisms of the form l(p) → l(pA,B) for p in
PA,B . In particular, it must contain id l(pA,B) = l(idpA,B

)∶ l(pA,B) → l(pA,B), so
it must be the maximal sieve. Similarly, a sieve S covers r(pB,D) if and only
if it is the maximal sieve. The sheaf condition is therefore not constraining on
objects of the form l(pA,B) and r(pB,D) (all matching families necessarily have
a unique amalgamation given by the identity morphism). For objects of the
form m(uA,B,D), a sieve S is covering if and only if it contains all morphisms of
the form [l, r](p)→m(uA,B,D), but since all such morphisms can be factored as
either λuA,B,D

f or ρuA,B,D
f , a sieve is covering if and only if it contains λuA,B,D

and ρuA,B,D
.

Consider a sieve S covering uA,B,D. A matching family for S is a family
xf ∈ ∂∗(P(A,B),δ1)(c) for all morphisms f ∶ c → m(uA,B,D) in S such that xf ⋅
g = xfg for all f and g, and an amalgamation for such a family is an x ∈
∂∗(P(A,B),δ1)(uA,B,D) such that x ⋅ f = xf for all f ∈ S. If we consider any
matching family x− for S, since ∂∗(X)(c) ≅ X−1(c) and S contains ρuA,B,D

,
xρuA,B,D

is an element of P−1(A,B),δ1(r(δ0(uA,B,D))) ≅ δ−11 (δ0(uA,B,D)), i.e., an
element uB,C,D of PB,C,D such that δ1(uB,C,D) = δ0(uA,B,D). Therefore, by
zipping, we get an element uA,B,C,D of PA,B,C,D that projects to uA,B,D and
uB,C,D, which is exactly an element of P−1(A,B),δ1(m(uA,B,D)). We take uA,B,C,D
as our candidate amalgamation x. It is the only possible choice of amalgamation,
because, any amalgamation u′A,B,C,D must project to uA,B,D (because it must
be an element over m(uA,B,D)) and also to uB,C,D (because we must have
x ⋅ ρuA,B,D

= xρuA,B,D
= uB,C,D), so it must be equal to uA,B,C,D by the zipping

squares (6.3) being pullbacks.
We now show that it is indeed an amalgamation, i.e., that x ⋅ f = xf for

all f ∈ S. This is obviously the case for objects of the form l(pA,B) because
there is only one element above each such object. For objects of the form
r(pB,D), the result come from the fact that all morphisms r(pB,D)→m(uA,B,D)
factors uniquely as r(pB,D) r(f)ÐÐ→ r(δ0(uA,B,D)) ρuA,B,DÐÐÐÐÐ→ m(uA,B,D), and we
have chosen x such that x ⋅ρuA,B,D

= uB,C,D. For objects of the form m(u′A,B,D),
the result comes from the fact that elements above m(u′A,B,D) are in bijection
with those above r(δ0(u′A,B,D)) through − ⋅ ρu′

A,B,D
, and that the result holds

for those objects.

216

PA,B + P(B,C),(C,D) PA,B + PB,C,D PA,B + PB,D

P(A,B),(B,C),(C,D) P(A,B),(B,C,D) P(A,B),(B,D)

P(A,B),(B,C),(C,D) PA,B,C,D PA,B,D

∏

∆ ∑

∏ ∏ ∏
∆ ∑

∆

∆
∆

∑

∆

Figure 6.2: Zoom into the bottom left heptagon of Figure 6.1

This leads us to fill the heptagon in Figure 6.2. The top right square com-
mutes by Lemmas 6.1.2 and 6.2.17. The top triangle commutes up to iso-
morphism by Lemma 2.2.68, the bottom one because the underlying diagram
commutes, and the bottom-right square by Lemma 2.2.70.

Associativity finally follows from:

Lemma 6.2.18. The left square commutes up to isomorphism.

Proof. The classical limit formula for right Kan extensions gives that the right
Kan extension of a presheaf X over C along F ∶C→ D is given at d by the limit

of (C ↑ d)op ∂dÐ→ Cop XÐ→ Set. So, in our case:

• following the left and bottom arrows we obtain a presheaf mapping any
u ∈ PA,B,C,D to the limit of

((PA,B + P(B,C),(C,D)) ↑ u)op → (PA,B + P(B,C),(C,D))op → Set,

• following the top and right arrows, we obtain a presheaf mapping any u

to the limit of

((PA,B + PB,C,D) ↑ u)op → (PA,B + P(B,C),(C,D))op → Set,

where u is seen as an object of P(A,B),(B,C),(C,D) in the formulas. Now, the in-
clusion functor (PA,B+PB,C,D) ↑ u→ (PA,B+P(B,C),(C,D)) ↑ u is readily checked
to be final [76, IX.3], so its opposite is initial and both limits are isomorphic.

This ends the proof of associativity.
Left and right unitality are entirely symmetric, so we only treat one. First,

we observe that, because ι0∶PA → PA,A is a discrete fibration, so is ι0+PA,B ∶PA+
PA,B → PA,A + PA,B . In the diagram of Figure 6.3, the top path is composition
of a strategy on PA,B with the copycat strategy on PA,A and its bottom path
is isomorphic to the identity (because the first three morphisms are isomorphic
to the identity and δ1ι0 = P(d21)P(i20) = P(i20d21) = P(id [2]) = idPA,B

). So if
we manage to show that all the squares commute, we will have proven (left)
unitality.

To pave the diagram, we introduce the category PA,(A,B), which we define
as the lax colimit of

PA PA,B PA,B
δ1

217

Ȃ + PA,B PA + PA,B PA,A + PA,B

PA,B PA,(A,B) P(A,A),(A,B)

PA,B PA,B PA,A,B PA,B .

∏!+PA,B

∏[!,PA,B]

∑ι0+PA,B

∏[l,r]

∆m

∑ι0

∏[l,r]∑Pι0,(A,B)

∆m

∑δ1

∏r

ρ

Figure 6.3: Diagram for left unitality

and Pι0,(A,B)∶PA,(A,B) → P(A,A),(A,B) by its universal property. The top-left
square commutes up to isomorphism because the underlying diagram does, the
bottom-right because it is exact by Lemma 2.2.71.

The bottom-left square commutes as well because the underlying square is
exact, which we prove by the zigzag criterion: by construction of PA,(A,B), any

morphism r(p) → m(p′) in PA,(A,B) can be factored as r(p) r(f)ÐÐ→ r(p′) ρp′ÐÐ→
m(p′), which is our candidate factorisation. For any other such factorisation

r(p) r(g)ÐÐ→ r(q) ρqÐ→ m(q) m(h)ÐÐÐ→ m(p′), we have by construction of PA,(A,B) that
hg = f , from which we get that

p

q p′

q p′

p′

g f

h

h

h

is a lantern.
Finally, the crucial reason why the diagram commutes is:

Lemma 6.2.19. The square

PA + PA,B PA,(A,B)

PA,A + PA,B P(A,A),(A,B)

[l,r]

ι0+PA,B Pι0,(A,B)

[l,r]

is a local pushforward square.

Proof. First, the square is obviously a pullback. It is also routine to check that
Pι0,(A,B) is a discrete fibration. So, by Lemma 2.2.84, it suffices to show that
∂∗(Pι0,(A,B)) is a sheaf. Given a sieve S covering an object of the form l(p) or
r(p), it is trivial to show there is a unique amalgamation for any compatible
family for S, because S necessarily contains the identity. For objects of the
form m(u), a sieve is covering if and only if it contains λu and ρu. In partic-
ular, a compatible family x− for a sieve S covering u must contain an element
s = xλu

over r(δ2(u)). This element is such that ι0(s) = δ2(u) (because it is

218

above r(δ2(u)) and that elements above r(p) are antecedents of p through ι0).
Therefore, because the copycat squares (6.4) are pullbacks, we get an element p
such that δ1(p) = s and ι0(p) = u. In particular, it is an element above u, which
we take as our candidate amalgamation x. This is the only possible choice of
amalgamation because an amalgamation x must be an element over u (which
implies ι0(x) = u) and must restrict to the compatible family, in particular
x ⋅ λu = xλu

= δ2(u), and the copycat squares are pullbacks, so there is a unique
such element.

We now show that p is indeed an amalgamation. It restricts to the desired
elements over objects of the form r(p) because there is only one element above
such an object. For elements of the form l(p), the result comes from the fact that

all morphisms l(p) → m(u) can be written as l(p) l(f)ÐÐ→ l(δ2(u)) λuÐ→ m(u) and
p admitting the desired restriction to xλu

by construction. For elements of the
form m(u′), the result comes from the fact elements above are in bijection with
those above l(δ2(u′)) through − ⋅λu′ , and the result holds for those objects.

This ends the proof of (left) unitality.

6.2.4 The Boolean Case

Required: 6.2.3.
Recommended: Ȃ.

Let us conclude this section by treating the boolean case: until now, our
strategies were given by general presheaves (Definition 6.2.7). We would like to
derive from Theorem 6.2.14 that boolean strategies also form a category.

The bridge to the boolean case is given by the embedding r∶2Ă Set mapping
0 ≤ 1 to Ȃ → 1. This functor has a left adjoint l mapping Ȃ to 0 and collapsing
all non-empty sets to 1. Furthermore, r being fully faithful, we have in fact
a full reflection, which induces a further one between presheaves and boolean
presheaves:

Proposition 6.2.20. For any small category C, post-composition by l and r

yield a full reflection

[Cop ,Set] � [Cop ,2].l!

r!

The left adjoint l! is called booleanisation.

Proof. The pair of functors l! Ȃ r! clearly forms an adjunction and r! is clearly a
full embedding.

Because 2 is complete and cocomplete, replacing Set with 2 in Definition 6.2.8
yields a notion of boolean polynomial functor:

Notation 6.2.21. Any functor F ∶C→ D induces restriction, left Kan extension
and right Kan extension functors between boolean presheaf categories C

:

and D
:

,
respectively denoted by ∆F , ∑F and ∏F . Accordingly, the boolean version of
any polynomial functor P will be denoted by P .

219

We may thus transfer our polynomial definitions of copycat and composition
to boolean strategies. Concrete examples of game settings will be considered in
Section 6.3, for which we have:

Proposition 6.2.22. In all the game settings of Section 6.3, m coincides with
standard composition.

To show that our results in the presheaf case transfer to the boolean case,
we show that the polynomial functors we used commute with booleanisation.
This is easy for left extensions and restrictions:

Proposition 6.2.23. For all functors F ∶C→ D, the following squares commute
up to isomorphism.

[Cop ,Set] [Dop ,Set]
[Cop ,2] [Dop ,2]

∑F

l!

∑̄F

l!

[Cop ,Set] [Dop ,Set]
[Cop ,2] [Dop ,2]

∆F

l!

∆̄F

l!

Proof. Commutation with restriction is obvious because l! is post-composition
by l and ∆F is pre-composition by F . For left Kan extension, the reflection l,
being a left adjoint, preserves colimits, which is precisely what∑F computes.

Things do not work out so well with right extensions in general. In order
to show that our polynomial functors commute with booleanisation, it is thus
useful to delineate a sufficiently large class of limits that are preserved by l:

Lemma 6.2.24. The left adjoint l preserves products.

Proof. A product ∏iXi is non-empty just when each Xi is, hence just when
l(Xi) = 1 for all i, i.e., when ∏i l(Xi) = 1. Thus l(∏iXi) = 1 if and only if∏i l(Xi) = 1, hence l(∏iXi) =∏i l(Xi).
Proposition 6.2.25. booleanisation commutes with ∏F , for any F ∶C→ D such
that for all d ∈ ob(D) the comma category F /d is a coproduct of categories with
a terminal object.

Proof. Indeed, consider any such F . For any X ∈ CȂ and d ∈ D, letting F /d ≅∑i∈nd
Ddi with ϕdi ∶F (cdi) → d denoting the terminal object in Ddi , we have that[[F−, d],X] ≅∏i∈nd

X(cdi). Indeed, we may map any natural transformation α
to the tuple (αcd

i
(ϕdi))i∈nd

and conversely any tuple (xi)i∈nd
to the transform-

ation that maps f ∶Fc → d to xi ⋅ g, where f = ϕdiF (g) is given by universal
property of terminal object. These maps are inverse to each other because α is
natural. Therefore, we have:

l!(∏F (X))(d) = l(∏F (X)(d))≅ l([[F−, d],X])
≅ l(∏i∈nd

X(cdi))≅∏i∈nd
l(X(cdi)) (by Lemma 6.2.24)

≅∏i∈nd
l!(X)(cdi)≅∏i∈nd
[[F−, d], l!(X)]≅∏F (l!(X))(d),

220

as desired.

Proposition 6.2.26. The class of functors F such that ∏F commutes with
booleanisation contains all functors ∇C∶C+C→ C and !∶ Ȃ→ C, and it is closed
under composition and coproduct (i.e., F +G∶C +C′ → D +D′ is in it if F and
G are).

Proof. This is direct for composition and easy consequences of the previous
proposition for everything else.

As desired, we obtain:

Proposition 6.2.27. In any game setting, composition of boolean strategies is
associative and unital up to isomorphism.

Proof. Both results state that two polynomial functors, say P1 and P2 between
categories of the form [Cop ,2] are naturally isomorphic. But knowing that their
set-versions, say P1 and P2, are isomorphic, we may form

[Cop ,Set] [Dop ,Set]

[Cop ,2] [Dop ,2].

P1

P2

l!

P1

P2

l!

In both cases, this diagram commutes serially by Propositions 6.2.23 and 6.2.26,
and we have proved that the top parallel functors are isomorphic. But l! is
epi, which entails that the bottom parallel functors are also isomorphic, as
desired.

Remark. Please note that we have not claimed that boolean composition agrees
with general, set-based composition, i.e., commutation of the diagram below.

PA,B + PB,CȂ PA,C
Ȃ

PA,B + PB,C:

PA,C
:

m

r!

m

r!

In fact it does not in general, and this is the main cause for the failure of stability
of boolean, innocent strategies under composition [46, Section 3.7.2]. What does
hold, however, is

• commutation of booleanisation with composition as on the left below,

• the characterisation of boolean composition given below right, as set-based
composition followed by booleanisation (because l! Ȃ r! is a full reflection,
so the counit is an isomorphism).

PA,B + PB,CȂ PA,C
Ȃ

PA,B + PB,C:

PA,C
:

m

l!

m

l!

PA,B + PB,CȂ PA,C
Ȃ

PA,B + PB,C:

PA,C
:

m

r!

m

l!

221

Let us move on to exhibit a few concrete game settings. We will return to
the boolean case in Section 6.4.3, to deal with innocence.

6.3 Applications

In this section, we show that a number of standard game models fit into our
framework. In Section 6.3.1, we consider HON games, in their p-form, which by
the results of Section 6.2 yields categories of pg and pb-strategies. We then refine
our results by considering variants in which some constraints are imposed on
strategies (or equivalently plays) in Section 6.3.2: first a local form of constraint,
followed by a slightly more involved form, obtained by enriching games with
validity predicates on plays. These variants are shown to form game settings
(hence yield categories of pg and pb-strategies). AJM games are considered in
Section 6.3.3, and also shown to form a game setting. Finally, we explain in
Section 6.3.4 why Blass games fail to form a game setting.

6.3.1 Hyland-Ong/Nickau Games

Required: 6.2.4, 2.1.1.
Recommended: Ȃ.

We define arenas, plays, interaction sequences, etc, as in Section 2.1.1.
A classical lemma in HON games is (and can for example be found in [96]):

Proposition 6.3.1. A justified sequence s on an arena triple (A,B,C) is an
interaction sequence if and only if its projection to (A,B), (B,C), and (A,C)
are plays.

Therefore, we have the wanted projection δi from interaction sequences to
plays. Furthermore, a similar lemma holds for generalised interaction sequences,
yielding projections from generalised interaction sequences to interaction se-
quences.

Let us finally define the insertion functors. The intuition is simply to create
two copies of the kth arena and play whatever is played on it in both copies
(Opponent moves are played in the right-hand copy first, while Proponent moves
are played in the left-hand copy first, which mimics program flow).

Let us start with the simplest case, where s is in PA.

Definition 6.3.2. If s = (n, f,ϕ) is a justified sequence on A, then we define
ι0(s) to be the sequence s̃ = (2n, f̃ , ϕ̃) with f̃(2i − 1) = f(i)ai and f̃(2i) = f(i)ai
(where ai denotes the right-hand copy of A if f(i) is an Opponent move and the
other copy otherwise, and ai is the copy of A that is not ai), ϕ̃(2i − 1) = 2ϕ(i),
and

ϕ̃(2i) = { 2i − 1 if f(i) is an initial move
2ϕ(i) − 1 otherwise.

Proposition 6.3.3. The mapping ι0 thus defined is a functor from PA to PA,A.

Proof. We want to show that, for any justified sequence s in PA, s̃ is an alternat-
ing justified sequence of even length, and everything is direct except for the fact
that it is justified. Then f̃(ϕ̃(2i−1)) = f̃(2ϕ(i−1)) = f(ϕ(i−1))aϕ(i−1) . Because

222

s is a justified sequence, f(ϕ(i − 1)) and f(i − 1) have opposite polarities, so
aϕ(i−1) = ai−1, so f̃(ϕ̃(2i− 1)) = f(ϕ(i− 1))ai−1 Ȃ f(i− 1)ai−1 = f̃(2i− 1). If f(i)
is initial, we have f̃(ϕ̃(2i)) = f̃(2i−1) = f(i)r Ȃ f(i)l = f̃(2i). And finally, when
f(i) is not initial, f̃(2i) = f̃(2ϕ(i)−1) = f(ϕ(i))aϕ(i) Ȃ f(i)aϕ(i) = f(i)ai = f̃(2i).

Finally, to show that ι0 is a functor, we need to show that, if s is a prefix of
t, then s̃ is a prefix of t̃, which is direct.

Example 6.3.4. The justified sequence on B below left, which is not alternating,
yields the copycat play on the right:

B

q

q

a

B B

q

q

q

q

a

a.

Note that this example shows that it is indeed crucial to take PA to be the
set of all justified sequences in our construction if we want to get all copycat

plays in the image of Ȃ ∏Ð→ PA
∑Ð→ PA,A.

In general, the insertion functor ιk ∶PL → PL+k maps the justified sequence
s = (n, f,ϕ) to s̃ = (n + nk, f̃ , ϕ̃) (where nk is the number of moves on the kth
arena in s) defined as follows.

We first define a surjective map α∶n + nk → n that maps each occurrence of
a move in s̃ to the move of s it copies: if f(i) is on the kth arena, then i has
two antecedents through α, and only one otherwise. It is defined as α(0) = 0

(for the induction to go through), α(1) = 1, and

α(i + 1) = { α(i) if f(α(i)) is in the kth arena and α(i) ≠ α(i − 1)
α(i) + 1 otherwise.

We can now define f̃ and ϕ̃ using this map. Let us denote by f(i) the index of
the arena f(i) is played in (in s) and by mi the move m if it is played in the
ith arena (in s̃), then we define f̃ as:

f̃(i) =
̂̂̂̂̂̂
̂̂̂̂
̂̂̂
f(α(i))dk(j) if f(α(i)) = j ≠ k
f(α(i))k+1 if α(i) ≠ α(i − 1) and f(α(i)) is an Opponent move

or α(i) = α(i − 1) and f(α(i)) is a Proponent move
f(α(i))k otherwise,

where dk ∶p → p + 1 misses k: dk(i) = i if i < k and dk(i) = i + 1 if i ≥ k (where p
is the number of arenas s is played on).

For ϕ̃, things are slightly messier because the initial moves in the kth arena
should now be justified by their predecessors, but the rest of the pointers should
be given by s. To define it, let us notice that all i such that f(i) is in the kth
arena have two antecedents through α, say i1 and i2, and that one of them is
such that f̃(i1) is in the kth arena and the other is in the k + 1th arena. Let
us call α−1k (i) and α−1k+1(i) these two antecedents. If we generalise this notation,

223

we get α−1j (i), which denotes the antecedent of i that is played in the jth arena.
Two such antecedents are always equal, but they may not exist. However, there
is always a j such that i has an antecedent through αj , and it has two such
antecedents if and only if f(i) = k (in which case its two antecedents are the
ones described above).

Lemma 6.3.5. If s = (n, f,ϕ), then for all i in n, if α−1j (i) exists, then

f̃(α−1j (i)) = f(i)j.
Proof. Direct.

We define ϕ̃ by:

ϕ̃(α−1j (i)) = ̂̂̂̂̂̂̂̂̂
α−1j+1(i) if j = k and f(i) is initial in Aj
α−1j+1(ϕ(i)) if f(i) is initial in Aj
α−1j (ϕ(i)) otherwise,

where, by convention, α−1p+1(0) = 0 if s is played on p arenas. (The reader may
notice that this construction is a generalisation of the construction of ι0∶PA →
PA,A defined above.)

Proposition 6.3.6. If s is a play (resp. an interaction sequence), then s̃ is an
interaction sequence (resp. a generalised interaction sequence). Furthermore,
the mappings thus defined extend to functors.

Proof. On objects, it is enough to show that s̃ is a justified sequence that ends in
an outmost arena and whose first and last projections are plays (resp. interaction
sequences).

The easiest point is that s̃ ends in one of the outmost arenas. This is direct
if k is not one of the outmost arenas or if it is one of them, but s ends in
the other outmost arena. Otherwise f̃(n + nk) = f(α(n + nk))k+ε = f(n)k+ε,
where ε equals 1 if and only if f(n) is a Proponent move (because we know that
α(n + nk) = α(n + nk − 1)). But we know that s must end with a Proponent
move if it ends in its rightmost arena and with an Opponent move otherwise,
so we have that

f̃(n + nk) = { f(n)1+0 if s ends in its leftmost arena
f(n)p+1 if s ends in its rightmost arena Ap.

Let us now show that s̃ is justified. We consider any α−1j (i) for some i in n

and show that f̃(ϕ̃(α−1j (i))) Ȃ f̃(α−1j (i)).
• The simplest case is when f(i) is not initial in Aj , in which case we

have f̃(ϕ̃(α−1j (i))) = f̃(α−1j (ϕ(i))) = f(ϕ(i))j Ȃ f(i)j = f̃(α−1j (i)), using
Lemma 6.3.5.

• Now, if f(i) is initial in Aj , there are two cases.

– If j = k, then we have f̃(ϕ̃(α−1j (i))) = f̃(α−1j+1(i)) = f(i)j+1 Ȃ f(i)j =
f̃(α−1j (i)).

– Otherwise, f̃(ϕ̃(α−1j (i))) = f̃(α−1j+1(ϕ(i)))) = f(ϕ(i))j+1 Ȃ f(i)j =
f̃(α−1j (i)).

224

The last thing to prove on objects is that the projections of s̃ (which is
played on (A1, . . . ,Ap+1)) to (A1, . . . ,Ap) and (A2, . . . ,Ap+1) are plays (resp.
interaction sequences). We do this by induction on the number of arenas s is
played on:

• if s is played on 1 arena, then there is nothing to prove,

• if s is played on p+1 arenas and the duplicated arena is one of the outmost
arenas, then one of the projections is s itself (so it is indeed a play) and
the other is ι(s′) for some s′ played on p − 1 arenas, so it is a play by
induction hypothesis,

• if s is played on p + 1 arenas and the duplicated arena is none of the
outmost arenas, then both projections are in the same case as the second
projection in the case above, so they are plays by induction hypothesis.

Finally, to prove that ιk is a functor, we need to show that if s is a prefix of
t, then s̃ is a prefix of t̃, which is direct.

Proposition 6.3.7. The category-valued presheaf P defined by respectively tak-
ing PA, PA,B, PA,B,C and PA,B,C,D to be the posets of all justified sequences,
plays, interaction sequences and generalised interaction sequences, for all arenas
A,B,C,D, with projections and insertions as above, forms a game setting.

Proof. For P to be a category-valued presheaf over ∆/A, one should verify that
the simplicial identities hold. They do, but we skip the details.

Copycat plays form a full subcategory and are closed under prefix, hence
insertions ι0∶PA → PA,A are discrete fibrations. Projections δ1∶PA,B,C → PA,C
are discrete fibrations: the restriction of any u ∈ PA,B,C along any p ≤ δ1(u) may
be taken to be the shortest prefix of u whose projection is p (longer such prefixes
end neither in A nor C). The fact that squares (6.3) are pullbacks is a slight
variation on the standard zipping lemma, proved very similarly. Finally, for
squares (6.4), it suffices to notice that, if u in PA,A,B is such that δ2(u) = ι0(s)
for some s in PA, then δ0(u) is mapped to u by ι0 and to s by δ1, and similarly
in the symmetric case.

6.3.2 Constraining Strategies

Required: 6.3.1, 2.1.2.
Recommended: Ȃ.

In the previous section, we consider a rather rough notion of play. Stand-
ardly, further constraints are considered on strategies, such as P -visibility, O-
visibility, well-threadedness, and well-bracketing (when games are equipped with
an appropriate question-answer discipline). For example, a P -visible strategy is
one which only accepts P -visible plays. One then needs to prove that such con-
straints are robust, i.e., are preserved by composition and satisfied by identities.
This is done in a very clean and modular way in Harmer’s thesis [46, Chapter
3]. In order for our framework to apply to such constrained strategies, we may
start from the game setting for unconstrained plays and convert the proof of
robustness of a constraint c into the construction of a sub-game setting Pc that
is restricted to constrained plays.

225

We consider constraints in {P -vis,wb,wt}, respectively denoting P -visibility,
well-bracketing, and well-threadedness.

Proposition 6.3.8. Each set c ⊆ {P -vis,wb,wt} of constraints gives rise to a
game setting Pc and an embedding c∶Pc Ă P of category-valued presheaves.

Proof. We define each PcA,B to be the set of plays defined by our chosen set
of constraints c. We then take PcA to be the full subcategory of PA consist-
ing of projections of such plays, PcA,B,C the full subcategory of PA,B,C whose
projections are in PcA,B and PcB,C , and similarly for PcA,B,C,D.

We then check that the morphisms factor through the constrained cate-
gories. For projections δ1∶PcA,B,C → PA,C , this is [46, Proposition 3.4.3] for
P -visibility; the implicit proof of [78, Lemma 3.2.4] handles well-bracketing;
well-threadedness follows similarly to P -visibility. For insertions, we easily re-
duce to showing that it is the case for ι0∶PcA → PA,A, which is true by definition
of PcA (note that PcA = PA except when c contains well-bracketing). This yields
the desired category-valued presheaf.

It remains to show that it forms a game setting. Projections δ1 are discrete
fibrations because all involved constraints are stable under prefix, so our candid-
ate restriction, defined exactly like in the previous section, is indeed in PA,B,C .
We then want to show that constrained plays satisfy zipping. But constraints
are merely imposed on the projections of interaction sequences, and thus are
clearly stable under zipping. The case of copycat squares is similar.

Corollary 6.3.9. For all sets of constraints in {P -vis,wb,wt}, arenas and
strategies satisfying these constraints form a category.

Note that we have not claimed that composition in these game settings agrees
with composition in our setting for basic HON games. We will show that they
do indeed agree later.

Remark. One could think of treating O-visibility the same way, but this fails
for the following reason. The play s on the pair of arenas (A,A) pictured on
the left below is O-visible, so we would need its right projection δ0(s) to be in
PcA, or our composition will fail to be unital, because the copycat play ι0(δ0(s))
would not be in PA,A. Unfortunately, that copycat play, which we have drawn
on the right below, is not O-visible, so δ0(s) cannot be in PcA either...

m

m

m

m

m

m

m′

m′

m′

m′

m

m

m

m

m

m

m′

m′

m′

m′

226

At this point, we could consider O-visibility only when plays are already P -
visible, which may help (indeed, notice that our example of s is not P -visible).

Proposition 6.3.10. Each set c ⊆ {P -vis,O-vis,wb,wt} of constraints con-
taining P -vis gives rise to a game setting Pc and an embedding c∶Pc Ă P of
category-valued presheaves.

Proof. The construction is the same as for Proposition 6.3.8. The implicit proof
of [78, Lemma 3.2.4] shows that projections δ1∶PcA,B,C → PA,C factor through
PcA,C . Because copycat strategies are identities for composition, ι0∶PcA → PA,A
factors through PcA,A. From this, we get that all projections and insertions
factor through the constrained categories.

Beyond the constraints mentioned above, a similar result may be proved
for the refined notion of game in McCusker’s thesis [78]. Remember that Mc-
Cusker’s games A are just like arenas, except that they come equipped with
an abstract validity predicate PA, which is a subset of the set LA of legal plays
(P -visible, O-visible, well-bracketed plays), respecting some conditions (see Sec-
tion 2.1.2 for more details). McCusker then defines PAȂB to consist of legal
plays in LAȂB whose projections to A and B are in PA and PB (instead of
simply LA and LB), respectively. He finally proceeds in a similar way to define
interaction sequences and generalised interaction sequences.

In order to organise McCusker’s games into a game setting, we should use
as a base not mere arenas, but the set Ap of pairs (A,PA) of an arena and
a predicate on legal plays satisfying the conditions. From the first projection
p∶Ap → A, we get the solid part of the cube

∆/Ap 1

∆/A 1

∆ Set

∆ Set.

!

⌜Ap⌝

i

!

⌜A⌝

i

β

α

p

We thus derive a functor ∆/p∶∆/Ap → ∆/A as the dashed arrow by univer-
sal property of comma, and for any L ∈ (∆/Ap), we define P

p
L to be the full

subcategory of P(∆/p)(L) spanning plays whose projections satisfy the required
predicates. We thus obtain:

Proposition 6.3.11. The pair (Ap,Pp) forms a game setting.

Proof. The insertions and projections are obviously well-defined. As before,
copycat plays form a full subcategory of PA,A, so insertions are discrete fibra-
tions, and projections are discrete fibrations because validity predicates are
stable under prefix. It only remains to show that zipping and copycat holds,
which again follows from PAȂB being only about projections to A and B.

Corollary 6.3.12. Games and strategies form a category.

227

Beyond this result, we would like to prove that composition and identity in
the constrained game settings agree with the original, which is what we will now
prove.

Definition 6.3.13. Given game settings (A,P) and (B,Q), a morphism between
them consists of a pair of a map f ∶A→ B and a natural transformation

(∆/A)op (∆/B)op
Cat.

(∆/f)op

P Q

α (6.6)

We will denote such a morphism by α∶P→ Q ⋅ f .
In such a situation, the functor ∑αA,B

∶PA,BȂ→ Qf(A),f(B)
Ȃ

maps strategies in
the sense of (A,P) to strategies in the sense of (B,Q). Let us prove that under
mild hypotheses this functor commutes with composition.

Definition 6.3.14. We say that a tuple (A,P, f, α) as above forms a local
morphism on (B,Q) when

• for all A,B in A, αA,B ∶PA,B → Qf(A),f(B) is a discrete fibration and

• for all u ∈ Qf(A),f(B),f(C), α−1A,B,C(u) ≅ α−1A,B(δ2(u)) × α−1B,C(δ0(u)).
Example 6.3.15. In any constrained setting, we have a local morphism αc∶Pc →
P where αc

L∶PcL → PL is given by inclusion. Similarly, we have a local morphism
αp∶Pp → P ⋅p given again by inclusion (where, we recall, p is the functor Ap → A

that forgets the predicate). Indeed, in both settings, all αL’s are inclusions,
hence full embeddings of prefix orderings, and being an interaction sequence is
all about the projections being plays, so the second point is verified as well.

Lemma 6.3.16. A morphism (f,α) as in (6.6) whose components are dis-
crete fibrations is a local morphism if and only if ∂∗(α(A,B),(B,C)), the pre-
sheaf induced by the discrete fibration P(A,B),(B,C) Ă Q(f(A),f(B)),(f(B),f(C)) is
a sheaf for the Grothendieck topology induced by the embedding Qf(A),f(B) +
Qf(B),f(C) Ă Q(f(A),f(B)),(f(B),f(C)).

Proof. Let us denote by A′ the game f(A), etc, and by l and r the embeddings
of QA′,B′ and QB′,C′ into Q(A′,B′),(B′,C′). Let us assume that the morphism
is local. To show that ∂∗(α(A,B),(B,C)) is a sheaf, let us consider an object c
of Q(A′,B′),(B′,C′), a sieve S covering it, and a matching family, and show that
there is a unique amalgamation. If c is of the form l(−) or r(−), then S neces-
sarily contains the identity, so there is indeed a unique amalgamation. If c is
of the form m(w), then S must contain λw and ρw. In particular, any match-
ing family x− thus contains an element pA,B above l(δ2(w)) and an element
pB,C above r(δ0(w)). These elements are such that αA,B(pA,B) = δ2(w) and
αB,C(pB,C) = δ0(w), so because α is local, we get a unique element uA,B,C such
that αA,B,C(uA,B,C) = w, which is exactly an element above m(w), which we
take as our candidate amalgamation. Proving that it is the unique amalgama-
tion is then routine.

Conversely, if ∂∗(α(A,B),(B,C)) is a sheaf, then the unique amalgamation
gives the isomorphism between α−1A,B,C(u) and α−1A,B(δ2(u)) ×α−1B,C(δ0(u)).

228

In order to explain the discrete fibredness hypothesis, consider the case of a
set of constraints c, and imagine that there exists some interaction sequence u
in PA,B,C , but not in PcA,B,C , such that δ2(u) and δ0(u) are in the respective
essential images of PcA,B and PcB,C , say as α(p1) and α(p2). Further assuming
that σ and τ accept p1 and p2, m(∑α(σ),∑α(τ)) clearly accepts δ1(u), while∑α(mα(σ, τ)) does not, because the interaction sequence which could witness
it lies outside Pc (assuming that no interaction sequence from Pc projects to
δ1(u)).
Proposition 6.3.17. For any local morphism α∶P Ă Q ⋅f , the following square
commutes up to isomorphism.

PA,B
Ȃ× PB,C

Ȃ
PA,C
Ȃ

Qf(A),f(B)
Ȃ×Qf(B),f(C)
Ȃ

Qf(A),f(C)
Ȃ

mA

∑αA,B
×∑αB,C

mB

∑αA,C

Proof. By Proposition 6.2.16, the result reduces to the commutation of

PA,B + PB,C P(A,B),(B,C) PA,B,C PA,C

QA′,B′ +QB′,C′ Q(A′,B′),(B′,C′) QA′,B′,C′ QA′,C′

∏

∑

∏

∑

∆

∆

∑

∑

∑

∑

up to isomorphism, where A′ = f(A) and so on. The right-hand square com-
mutes up to isomorphism because the underlying square does, the middle one
commutes by Lemma 2.2.70, and the left-hand one by Lemmas 6.3.16 and 6.1.2.

Corollary 6.3.18. For all set of constraints c, composition in Pc commutes
with embedding into P. Similarly, composition in Pp commutes with embedding
into P.

There are other kinds of constraints like innocence or single-threadedness,
which may not be treated this way. We will deal with innocence in Section 6.4.

6.3.3 AJM Games: a Partial Answer

Required: 6.2.4, 2.1.4.
Recommended: 6.3.1.

Let us now consider the alternative approach to game semantics that are
AJM games [6] (see Section 2.1.4 for more details). On the one hand, this
approach is more elementary than HON games in that games do not feature
justification pointers. On the other hand, games feature a partial equivalence
relation between plays, which needs to be dealt with at the level of strategies.

In order to organise such games into a game setting, we have two sensible
choices for the notion of morphism between plays: beyond the prefix ordering,
we may also incorporate equivalence between plays. Presheaves then amount to
so-called saturated strategies.

The definitions of PA and PA,B are done exactly as explained in Section 2.1.4.
However, we need to slightly change the definition of PA,B,C for it to fit in our

229

setting. Indeed, if we take PA,B,C to be the set of all sequences in MA+MB+MC

whose projections are plays, then δ1 may not be a discrete fibration: if s is a
prefix of δ1(u) and the last moves of u are in B, then there are several prefixes
of u whose projection to (A,C) is s, and all these prefixes form an ordered list of
interaction sequences, so δ1 cannot be a discrete fibration. Therefore, we define
PA,B,C similarly to HON games: an interaction sequence is a sequence of moves
in MA +MB +MC whose projections are plays and whose last move is in A or
C. We define PA,B,C,D similarly.

Using this definition, we can show that AJM games fit in our framework.
However, this has a cost: we will need to be careful when showing that the
composition we derive from our framework is the traditional composition in
AJM games.

Proposition 6.3.19. AJM games form a game setting.

Proof. Insertion functors are obviously well-defined. For projections δ1, it suf-
fices to notice that δ0(u) and δ2(u) being plays, their projections are in PA
and PC , so δ1(u) is a play. Squares (6.3) being pullbacks is once again a slight
variation of the standard zipping lemma. The case of squares (6.4) is treated
exactly like in HON games. To show that projections δ1∶PA,B,C → PA,C are
discrete fibrations, we need to canonically restrict any u ∈ PA,B,C along any
s ≤ δ1(u), which is done just like in HON games.

Proposition 6.3.20. Composition derived from the game setting for AJM
games is isomorphic to traditional composition in AJM games.

Proof. Let us take two strategies σ ∈ PA,BȂ and τ ∈ PB,CȂ and show that σ; τ
accepts a play p if and only if m(σ, τ) does.

If m(σ, τ) accepts p, then there is an interaction sequence u in PA,B,C such
that δ1(u) = p and σ accepts δ2(u) and τ accepts δ0(u). But then, u is also a
witness that σ; τ accepts p.

Conversely, we know that σ; τ accepts p if and only if there is an interaction
sequence u (but not necessarily in PA,B,C) that projects to p and whose projec-
tions are accepted by σ and τ . Then we define ũ to be the longest prefix of u
that ends either in A or C. We have that ũ is in PA,B,C because its projections
to A and C are equal to those of u, and it is a witness that m(σ, τ) accepts
p.

For saturated strategies, the idea is to incorporate for all A,B the partial
equivalence relations ≈A and ≈B into the category of plays.

Proposition 6.3.21. AJM games form a category-valued presheaf by mapping
each list of games to the corresponding set of plays with as morphisms between
any two plays u and v:

• a singleton when there exists some play w such that u ≈ w ≤ v (or equival-
ently there exists w such that u ≤ w ≈ v);

• none otherwise.

However, the obtained category-valued presheaf is not a game setting be-
cause projections PA,B,C → PA,C and insertions PA → PA,A are not discrete

230

fibrations in general. Indeed, the fibres of PA,B,C → PA,C are proper groupoids
in general, thus making it a non-discrete Grothendieck fibration. The case of
PA → PA,A is worse: the restriction of a play in s ∈ PA along a morphism p→ q in
PA,A may at best be mapped to some p′ isomorphic to p in general, thus making
it a Street fibration. Our approach may generalise in this direction, but this will
involve advanced categorical concepts such as stacks (which are to fibrations as
sheaves are to discrete fibrations), so we leave it for future work.

6.3.4 A Non-Example: Blass Games

Required: 6.2.4, 2.1.5.
Recommended: Ȃ.

In the previous sections, we have shown that several approaches to game
semantics form game settings, with the exception of the saturated AJM setting.
It may be instructive to consider Blass’s games [14, 15], as they are well-known
for their non-associative composition. The reader may refer to Section 2.1.5 for
detailed definitions.

For the sake of simplicity, and because it is enough to exhibit a counter-
example, let us consider only alternating Blass games, i.e., pairs A = (T, s) of a
tree T and a starting player s ∈ {O,P}, such that polarity alternates between
O and P . For a Blass game A = (T, s), PA is the set of vertices of T ordered by
position (x ≤ y if x is an ancestor of y in T), seen as a category. We define PA,B
as the set of vertices of the game AȂ B, where Proponent has just played. If
we imagine plays in as both game trees A� and B drawn side-by-side, then an
object of PA,B is a pair (x, y) of a vertex of A� and one of B that is a child of a
pair where it was Proponent’s turn to play (i.e., a pair (O,P)). In other words,
they are the pairs (x, y) of vertices in A� and B of type (O,O) or (P,P), except
maybe the initial pair. We define PA,B,C similarly.

These definitions are the natural ones given by Blass games. We cannot
change the definition of PA,B , because that would change the definition of
strategies, and we want our strategies to correspond to standard strategies in
Blass games. Similarly, we cannot easily change the definition of PA,B,C , be-
cause this definition is at the very base of our definition of composition. How-
ever, with these definition, we cannot have both squares (6.3) be pullbacks in
general. Indeed, consider the case where the respective polarities of A, B, C
and D are O, P , O and P , and A is non-empty. Then, let PlA,B,C,D denote the
left-hand pullback and PrA,B,C,D denote the right-hand one. We will show that
both pullbacks cannot be the same category by exhibiting a play in PlA,B,C,D
which is not in PrA,B,C,D. First, let us observe that the initial polarities from
the respective points of view of AȂ B, B Ȃ C and C ȂD are like so:

A B B C C D

A� B B� C C� D

P P O O P P .

Letting a denote any initial move of A, the sequence a is then legal in PA,B,D
(the polarities are PP both in AȂ B and AȂ D) and the empty sequence is
legal in PB,C,D. Thus, a is legal in PlA,B,C,D by the left-hand pullback. How-
ever, if the two pullbacks were isomorphic, then by the properties of projections

231

a ∈ PlA,B,C,D would be mapped to a ∈ PrA,B,C,D under the isomorphism. But
PrA,B,C,D cannot contain a because this play is illegal in PA,B,C (because the
polarity is PO in AȂ C).

6.4 Innocence

6.4.1 Concurrent Innocence

Required: 6.2.3, 2.1.3, 2.2.7.
Recommended: Ȃ.

In the previous sections, we have constructed a category of games and
strategies parameterised over an arbitrary game setting which unifies a num-
ber of such categories as instances of the same construction. However, in game
models of purely functional languages, the relevant category is the identity-on-
objects subcategory of innocent strategies. In this section, we extend game
settings with a notion of view, which allows us to construct a subcategory of
innocent strategies.

In order to achieve this, we will use the recent recasting of innocence as a
sheaf condition [51, 50, 97]. Starting from HON games, the first step is to refine
the posets PA, PA,B , and PA,B,C,D into proper categories (with exactly the same
objects), say P+A, P+A,B , and P+A,B,C,D, with the crucial feature that for any play
p ∈ P+A,B and index i of a move in p, there is a morphism ̂p̂i → p. This of course
does not hold with the prefix ordering, as the view is rarely a prefix. This idea
was introduced in [80] in a slightly different setting.

Passing from P to P+ raises the issue of how to extend the abstract frame-
work. Should it now contain two category-valued presheaves? Or should we
simply forget about prefix-based strategies and accept P+ as the new basic set
up? We do not make any definitive choice here, but for simplicity and modular-
ity reasons, we choose to first work with P+ only, and introduce P in a second
stage.

Indeed, perhaps surprisingly, the approach using simply P+ works for Tsu-
kada and Ong’s model. If we take P+L to be the categories with the same objects
as PL for HON games with the P -visibility constraint, but whose morphisms are
given by block-preserving maps (see Section 2.1.3 for more details), we have:

Proposition 6.4.1. Tsukada and Ong’s P+ forms a game setting.

Proof. This mainly follows from Lemmas 39, 46 and 47 of [96] or is obvious. The
only non-obvious point that is not shown by these lemmas is that the zipping
squares are pullbacks (because Lemma 47 is only about objects). Noticing
that the zipping lemma is all about choosing a good pushout will save us some
trouble. Indeed, if u = (n, f,ϕ) is in PA,B,D and v = (m,g,ψ) is in PB,C,D and
their projections to (B,D) are equal, they may be represented as the back faces
of the cube below, and the zipping w of u and v may be seen as a good choice
of pushout, compatible with pointers, and such that the maps n→ q and m→ q

are increasing, as in

232

p m

n q

MB,D MB,C,D

MA,B,D MA,B,C,D,

g

f
h

where p is the length of δ0(u). Such a square is a pushout if and only if (i) n
and m are jointly surjective and (ii) i in q is in the image of both n and m if
and only if it is in the image of p (because all the relevant maps are monic).
This pushout (or rather, the maps n→ q and m→ q) is standardly given by the
zipping lemma (although it is usually not explained from this point of view).
We are going to build maps n → q and m → q that make the square above a
pushout as is done in the zipping lemma.

One builds n → q and m → q by induction on (n,m), by looking at the
switching automata for PA,B,D and PB,C,D and combining them into the switch-
ing automaton for PA,B,C,D. The different automata are as drawn below.

p1 p2

p3 p2

OD

PA

PD

OB

OA

PB

q1 q2

q1 q3

OD

OC

PD

OB

PC

PB

p1q1 p2q2

p3q1 p2q3

OD

PA OC

PD

OB

PCOA

PB

The automata respectively start in state p1, q1, and p1q1, and to know the
antecedents of k + 1 in q, we just keep track of the biggest i in n and j in m

that already have an image as well as the state pq our automaton is in, and,
based on that information, choose whether i + 1 or j + 1 (or both) are mapped
to k + 1. An induction invariant is that i and j are such that δ0(u∣i) = δ1(v∣j).
For example, if the automaton is in the state p1q1, then the first automaton
is in state p1, so the next move in u is either an Opponent move in D or a
Proponent move in A, and the second automaton is in state q1, so the next
move in v is either an Opponent move in D or a Proponent move in B. But
we know that both projections to (B,D) are equal up to i and j, so if the next
move of u is in D, then so is the next move of v, and that is what the zipping
chooses (both i + 1 and j + 1 are mapped to k + 1). Otherwise, the next move
in u is a Proponent move in A, and that is what the zipping chooses (only
i + 1 is mapped to k + 1). Pointers in w are inherited from those in u and v

(which is well-defined because these pointers agree on (B,D)). To prove that
the sequence thus defined is the standard zipping of u and v, we need to show
that it is a justified sequence (which is mostly obvious because the pointers are
inherited from u and v) and that its projections to (A,B,D) and (B,C,D) are

233

u and v, which is by adhesivity (Lemma 4.2.5). Indeed, both horizontal faces
are pushouts along monos, and the back faces are pullbacks because they are
projections, so the front faces are also pullbacks.

Now, we want to show that the same idea can be used to show that

PA,B,C,D PA,B,D

PB,C,D PB,D

is a pullback on morphisms as well. The idea is that, if u = (n, f,ϕ) and
u′ = (n′, f ′, ϕ′), a morphism u → u′ is simply a map n → n′ satisfying some
additional conditions. In particular, if we have two morphisms α∶u → u′ and
β∶ v → v′ whose projections to (B,D) are equal, then we have a diagram as the
solid part of

p m

n q

p′ m′

n′ q′

MB,D MB,C,D

MA,B,D MA,B,C,D,

β

g′

inl

α
γ

h
inl′

f ′

h′

inr

inr′

where γ∶ q → q′, obtained by universal property of pushout, is our candidate
morphism from w to w′. First, let us notice that this is the only possible
choice of γ because inl and inr are jointly surjective. Another point that can
directly be checked is that the projections of γ are indeed α and β (again by
adhesivity, as above). Therefore, the only thing left to show is that γ is a
morphism from w to w′, which means that it is injective, compatible with h

and h′, pointers, and maps basic blocks to basic blocks. The first point is
by extensivity (Lemma 4.2.6). The second is by uniqueness in the universal
property of q. For compatibility with pointers, if we call χ the pointer function
w inherits from α and β (and similarly χ′ for w′), inl and inr being jointly
surjective, we may compute, for moves i in A + PB +D (i.e., for moves i such
that i and ϕ(i) are in A +B +D)

γ(χ(inl(i))) = γ(inl(ϕ(i))) by definition of χ= inl
′(α(ϕ(i)))= inl
′(ϕ′(α(i)))= χ′(inl′(α(i))) by definition of χ′= χ′(γ(inl(i))),

where the penultimate equality comes from the fact that the definition of χ′ only
depends on the state of the automaton and the “types” of u′i+1 and v′j+1, and the
existence of α and β ensure that we are in the same state of the automaton when

234

building k + 1 (in w) and γ(k + 1) (in w′). A similar computation shows that γ
also preserves pointers for moves of the form inr(j) for moves in B +C +D.

Finally, we must show that γ preserves basic blocks, i.e., that if h(k) is
in PA +MB +MC + OD, then γ(k + 1) = γ(k) + 1. Each k corresponds to an
arrow in the switching automaton, which is the arrow taken while building h.
In the switching automaton on (A,B,C,D), the horizontal arrows correspond
to steps in the construction of h where k has an antecedent in n and one in m

(and they correspond to certain pairs of arrows in both switching automata),
the left-hand side ones correspond to steps where k only has an antecedent in
n (and to certain arrows of the switching automaton on (A,B,D)) and the
other ones to steps where k only has an antecedent in m. Consider any k such
that h(k) is in PA +MB +MC +OD. It corresponds to one of the arrows, but
cannot be the OA or PD arrows. If it corresponds to an arrow that points
to one of the right-hand states, we know that k has an antecedent j in m,
and we have γ(k + 1) = γ(inr(j) + 1) = γ(inr(j + 1)) because all arrows from
some right-hand state come from the switching automaton on (B,C,D), so
we know the next move also has an antecedent in m. But β preserves basic
blocks and g(j) = h(inr(j)) = h(k) is in PB +C +OD (because we only took the
arrows that point to one of the right-hand states), so β(j + 1) = β(j) + 1. Now,
because k corresponds to an arrow that points to a right-hand state, we know
that the next arrow also comes from the switching automaton for (B,C,D),
so inr′(β(j) + 1) = inr′(β(j)) + 1. This finally gives the desired result because
inr′(β(j)) = γ(inr(j)). The proof is similar when we take one of the arrows that
point to one of the left-hand states.

Returning to the abstract setting, the new data thus merely consists of a full
subcategory iA,B ∶ VA,B Ă PA,B , for all A,B, whose objects are called views.

Definition 6.4.2. The category of innocent strategies is the essential image of∏iA,B
∶VA,BȂ→ PA,B

Ȃ
(or equivalently the category of sheaves for the Grothendieck

topology induced by iA,B, by Lemma 2.2.84). The domain VA,B
Ȃ

is the category
of behaviours.

We now would like to establish that in any game setting equipped with
such full embeddings, innocent strategies form a subcategory. However, our
proof relies on two additional properties. The first one, already observed in [97,
Lemma 32], states that one can reconstruct uniquely any interaction sequence
from its projection to PA,C , say u, together with a compatible family, indexed by
all views v of u, of interaction sequences projecting to v. The second property
essentially says that any morphism v → δ2(u) from a view v ∈ VA,B to the
projection of some interaction sequence u ∈ P+A,B,C factors canonically through
δ2(w) of some interaction sequence w whose projection δ1(w) is a view (and
similarly for δ0).

Let us introduce both properties in more detail.
The first property essentially says that interaction is local. The projec-

tion PA,B,C → PA,C , as a discrete fibration, induces a presheaf ∂∗(δ1) on PA,C

which we will require to be in the essential image of ∏iA,B
∶VA,CȂ→ PA,C

Ȃ
. By

Lemma 2.2.84, this is equivalent to requiring that ∂∗(δ1) be a sheaf for the
Grothendieck topology induced by the embedding iA,C . Similarly, we require

235

the presheaf induced by ι0∶PA → PA,A to be a sheaf for the Grothendieck topo-
logy induced by the embedding VA,A → PA,A. Let us record this as:

Definition 6.4.3. A game setting (A,P) equipped with full embeddings iA,B
from VA,B to PA,B is local if and only if ∂∗(δ1) and ∂∗(ι0) are sheaves.

Proposition 6.4.4. Tsukada and Ong’s P+ is local.

Proof. For δ1, the result is precisely [97, Lemma 32]. For ι0, just observe that
a play is copycat if and only if all its views are.

So locality is the first property we need to require of our game settings with
views. The second property has to do with projections, e.g., δ2∶PA,B,C → PA,B .
It essentially says that any morphism v → δ2(u) with v ∈ VA,B and u ∈ PA,B,C
factors “canonically” through some δ2(w) with w ∈ VA,B,C , where VA,B,C is the
pullback

VA,B,C PA,B,C

VA,C PA,C .

δ1

iA,C

In order to define such canonicity, we appeal to the theory of analytic func-
tors [59, 98, 99].

Definition 6.4.5 (Weber [98, 99]). A functor T ∶C → D admits generic fac-
torisations relative to an object d ∈ D if and only if any f ∶d → Tc admits a
factorisation as below left

d

Ta Tc

g
f

Th

d Tb

Ta Tc

g

g′

Th

Th′
Tk

such that for all commuting squares as the exterior above right, there exists a
lifting k as shown such that g′ = Tk○g and h = h′k. The middle object a is called
the arity of f – all generic factorisations share the same a up to isomorphism.

For all subcategories B Ă C and E Ă D, a functor C → D admitting gen-
eric factorisations relative to all objects of E with arities in B is called (B,E)-
analytic [39].

Definition 6.4.6. A game setting (A,P) equipped with full embeddings iA,B
from VA,B to PA,B is view-analytic when δ2 is (VA,B,C ,VA,B)-analytic and δ0
is (VA,B,C ,VB,C)-analytic.

Proposition 6.4.7. Tsukada and Ong’s game setting [97] is view-analytic.

The following proof is due to Takeshi Tsukada (private communcation):

Proof. Let us take a play u = (n, f,ϕ) in PA,B,C , a view v = (p, g,ψ) in VA,B ,
and a morphism α∶ v → δ2(u). We want to show that there exists w in PA,B,C
whose projection δ1(w) is in VA,C and morphisms β∶ v → δ2(w) and γ∶w → u

such that α = δ2(γ)○β. We further want that, for any other such w′, β′, and γ′,

236

there exists a morphism ζ ∶w → w′ such that δ2(ζ) ○ β = β′ and γ′ ○ ζ = γ. (We
only treat the case of δ2, proving the same properties for δ0 follows exactly the
same pattern.)

For all i in n, let us define the sequence wiA,B,C of indices of u by induction
as follows:

w0
A,B,C = ε,

wiA,B,C = { wi−1A,B,C ⋅ i if f(i) is in OA, MB , or PC
w
ϕ(i)
A,B,C ⋅ i if f(i) is in PA or OC .

Our candidate w will more or less be wα(p)A,B,C (this is slightly wrong because it
is not always exactly an interaction sequence). To prove that v embed into w,
we also define the families viA,B and viB,C of sequences, which are only defined
if f(i) is in MA +MB or MB +MC respectively:

viA,B =
̂̂̂̂̂
̂̂̂̂
̂̂
i if f(i) is in OB and f(ϕ(i)) is in MC

vi−1A,B ⋅ i if f(i) is in OA or PB
v
ϕ(i)
A,B ⋅ i if f(i) is in PA or OB (and f(ϕ(i)) is not in MC),

v0B,C = ε,
viB,C = { vi−1B,C ⋅ i if f(i) is in OB or PC

v
ϕ(i)
B,C ⋅ i if f(i) is in PB or OC .

We now want to prove the following properties as preliminary work towards the
result:

(i) α(v) = vα(p)A,B (where α of a sequence is its application to each move in the
sequence),

(ii) for all i in n, viA,B and viB,C are previews and included in wiA,B,C (when
they are defined),

(iii) for all i in n, wiA,B,C is a pre-interaction sequence (a sequence whose left
and right projections are preplays),

(iv) for all i in n, δ1(wiA,B,C) is a preview.

We prove (i) by induction on the length of v: if v is only one move, then the
result is obvious, otherwise v = v′ ⋅m with v′ = (p′, g′, ψ′) a view. If p′ + 1 is
even, then

v
α(p′+1)
A,B = vα(p′+1)−1A,B ⋅ α(p′ + 1)

= vα(p′)A,B ⋅ α(p′ + 1) by preservation of OP -blocks

= α(v) by induction hypothesis.

237

When p′ + 1 is odd, we have

v
α(p′+1)
A,B = vϕ(α(p′+1))A,B ⋅ α(p′ + 1)

= vα(ψ(p′+1))A,B ⋅ α(p′ + 1)
= vα(p′)A,B ⋅ α(p′ + 1) because all Opponent moves point

to their predecessors in views= α(v) by induction hypothesis.

For (ii), proving that viA,B and viB,C are views is a simple induction on i:
it suffices to show that all Opponent moves point to their predecessors, which
is direct by definition. To prove that they are included in wiA,B,C , we proceeed
by induction on i. If i is 0, then the result is obvious. Otherwise, if viA,B is
defined (otherwise there is nothing to prove), then the result is obvious when
f(i) is in OA, PA, or PB (because viA,B and wiA,B,C follow the “same” recursive
definition) and when f(i) is in OB and f(ϕ(i)) in MC (because this is the
base case for viA,B). When f(i) is in OB and f(ϕ(i)) is not in MC , then

viA,B = vϕ(i)A,B ⋅ i ⊆ wϕ(i)A,B,C ⋅ i by induction hypothesis, but δ0(u) is a play and thus

i, being a Proponent move (in δ0(u)) must point into ̂δ0(u)̂i−1 = vi−1B,C (because
vi−1B,C is a view and its last move is i − 1). But then ϕ(i) ∈ vi−1B,C ⊆ wi−1A,B,C by

induction hypothesis, so necessarily wϕ(i)A,B,C ⊆ wiA,B,C , and finally viA,B ⊆ wiA,B,C
(the case of viB,C is similar).

For (iii), we also proceed by induction on i. The projections are obviously
alternating and justified, and the proof of P -visibility follows directly from (ii).

Finally, (iv) is obvious by definition of wiA,B,C since the beginning of each
basic block points to the end of the preceding one.

We can now put all this together to prove the result. Our candidate w is
w
α(p)
A,B,C , augmented with the moves of the basic block containing α(p) from

α(p) + 1 to the end of the block. By (iii), w is an interaction sequence (it
is a pre-interaction sequence, all Proponent moves point into their views in
both projections (same trick as in the proof of (ii)) and it ends in either A or
C because we augmented it with the last moves of the block). Its projection
to (A,C) is a view by (iv), because we only possibly added the last move of

the last basic block to wα(p)A,B,C , and that last move cannot change the view (it
is a Proponent move). We choose β∶ v → δ2(w) to be the obvious morphism
induced by α, which exists by (i) and (ii), and we choose γ∶w → u to be
given by inclusion. We obviously have that α = δ2(γ) ○ β. The existence of
the ζ morphism for any other such decomposition comes from the fact that w
is actually the smallest interaction sequence that is a view when projected to(A,C), is contained in u, and contains v (this is direct from the definition of
wiA,B,C).

We may now state our main result about innocence:

Definition 6.4.8. An innocent game setting is a game setting (A,P) equipped
with full embeddings iA,B ∶VA,B Ă PA,B, which is both local and view-analytic.

Theorem 6.4.9. In any innocent game setting, innocent strategies form a sub-
category.

238

We prove this theorem in two lemmas. The first states stability of innocence
under composition; the second says that copycat strategies are innocent.

Lemma 6.4.10. In any innocent game setting, the composite of two innocent
strategies is again innocent.

Proof. Because a strategy X, say on (A,B), is innocent if and only if it is
isomorphic to ∏iA,B

(∆iA,B
(X)), it suffices to show that starting from any pair

of behaviours [B1,B2] ∈ VA,B +VB,CȂ, if we extend them to innocent strategies,
compose, and eventually apply innocentisation (i.e., ∏iA,C

○∆iA,C
), then the last

step is redundant. In other words, we need to show that the perimeter of

VA,B +VB,C PA,B + PB,C P(A,B),(B,C) PA,B,C PA,C

VA,B +VB,C V(A,B),(B,C) VA,B,C VA,C

VA,B +VB,C PA,B + PB,C P(A,B),(B,C) PA,B,C PA,C

∏ ∏ ∆ ∑

∏
∆

∏

∆

∆ ∑

∏

∆

∏

∏ ∏ ∆ ∑

commutes up to isomorphism. We proceed by showing that innocentisation is
redundant at every intermediate step, but this requires us to define intermediate
categories of views adequately. In particular, to define V(A,B),(B,C), consider
first the lax colimit C of PA,B ← VA,B,C → PB,C , and then restrict it to its full
subcategory spanning objects from VA,B,C , VA,B , and VB,C .

Returning to our claim, the top-left square commutes by Lemma 2.2.68, the
top square because the underlying diagram commutes, the top-right square by
Lemma 2.2.70, the bottom-left square because the underlying diagram com-
mutes, and the bottom-right one by locality and Lemma 6.1.2.

Let us finally show that the bottom square is exact, using the zigzag criterion
and view-analyticity. Let us take v in V(A,B),(B,C), uA,B,C in PA,B,C , and a
morphism f ∶ v →m(uA,B,C) in P(A,B),(B,C). If v has the form m(vA,B,C), then
the zigzag criterion holds directly by taking vA,B,C . Otherwise, if v is of the form

l(vA,B), then f is of the form l(vA,B) l(f0)ÐÐÐ→ l(δ2(uA,B,C)) λuA,B,CÐÐÐÐÐ→ m(uA,B,C),
which factors through some l(δ2(vA,B,C)) by view-analyticity, and the zigzag
criterion holds. The proof is similar if v is of the form r(vB,C).

We finally prove innocence of identities:

Lemma 6.4.11. Copycat strategies are innocent.

Proof. We proceed as for preservation of innocence by composition: by showing
that copycat is the same as copycat followed by innocentisation. This yields the
diagram

Ȃ PA PA,A

Ȃ VA VA,A

Ȃ PA PA,A,

∏

∏

∏

∑

∆∆

∑

∏

∑

∏

239

where VA is defined as the marked pullback. The bottom-left square commutes
because underlying functors do, the top-left one commutes by Lemma 2.2.68,
the bottom-right one commutes by locality and Lemma 6.1.2, and the top-right
one by Lemma 2.2.70.

6.4.2 Prefix-Based Innocence

Required: 6.4.1.
Recommended: Ȃ.

In the previous section, we have shown that innocent strategies behave well
in any innocent game setting. However, our only concrete example of an inno-
cent game setting for now is Tsukada and Ong’s P+. There is in fact a further
example, given by enriching arenas with bracketing information and restrict-
ing P+A,B to well-bracketed plays [97, Section VII]. This shows that innocence is
stable under cg-composition. But we are also interested in pb-composition of in-
nocent strategies, since most of the examples are of this form. As mentioned be-
fore, innocence is not stable under pb-composition in general [46, Section 3.7.2],
unless one restricts to deterministic strategies. In an attempt to better under-
stand this phenomenon, we first move in this section from cg-composition to
pg-composition, and prove that innocence remains stable there. In the next sec-
tion, we will explain why this does not carry over to pb-composition, although,
as is well-known, it does on deterministic strategies.

We proceed by first defining innocent pg-strategies in an extended framework
and then showing that our definition extends the standard one. We then show
that pg-innocent strategies include copycats and are closed under composition.

Definition 6.4.12. Consider game settings (A,P+) and (A,P) with the same
set of arenas and V making P+ innocent, further equipped with a componentwise
identity-on-objects natural embedding k∶P Ă P+ such that each iA,B ∶VA,B Ă
P+A,B factors through kA,B. Let a presheaf on PA,B be innocent via P+, or P+-

innocent, if and only if it is in the essential image of VA,B
Ȃ ∏iA,BÐÐÐ→ P+A,B

Ȃ ∆kA,BÐÐÐ→
PA,B
Ȃ

. Similarly, let a presheaf on PA,A be P+-copycat if and only if it is in the

essential image of 1 ≅ ȂȂ ∏!Ð→ P+A
Ȃ ∑ι0ÐÐ→ P+A,A

Ȃ ∆kA,AÐÐÐ→ PA,A
Ȃ

.

In such a setting, one could consider studying (V,P) directly. However, it
will rarely form an innocent game setting (essentially only when k is an iso-
morphism).

Example 6.4.13. Let us take the classical HON setting with P -visible plays,
which only differs from Tsukada and Ong’s setting by its morphisms. A match-
ing family for a play p in PA,C is then the data, for all views v that are a prefix
of p, of an interaction sequence uv that projects to v, and such that uv is a prefix
of uv′ when v is a prefix of v′. Matching families for p are thus isomorphic to
interaction sequences that project to the longest prefix of p that is a view. If
∂∗(δ1) were a sheaf, it would mean that there is a single way to amalgamate
matching families. In other words, for all plays p and interaction sequence uv
that projects to the longest prefix v of p that is a view, there should be a unique u
that projects to p and that admits uv as a prefix, which is clearly false in general.

240

Let us now state the transfer result.

Proposition 6.4.14. In the setting of Definition 6.4.12, if all naturality squares

PA,B,C PA,C

P+A,B,C P+A,C

and

PA PA,A

P+A P+A,A

are pullbacks, then P+-innocent strategies are closed under composition and com-
prise P+-copycat strategies, which are exactly copycat strategies.

Proof. We proceed as in the previous section: we first need to show that the
exterior of the following diagram commutes up to isomorphism

PA,B + PB,C P(A,B),(B,C) PA,B,C PA,C

VA,B +VB,C P+A,B + P+B,C P+(A,B),(B,C) P+A,B,C P+A,C

VA,C

VA,B +VB,C P+A,B + P+B,C P+(A,B),(B,C) P+A,B,C P+A,C

PA,B + PB,C P(A,B),(B,C) PA,B,C PA,C ,

∏ ∆ ∑∏

∏

∆

∏

∏ ∆ ∑

∆

∏

∆ ∆

∆ ∑

∆

∆

∏

∆ ∆

∆ ∑

∆

∆

(Theorem 6.4.9)

where the diagram should be read starting from VA,B +VB,C . Indeed, the top
path corresponds to composition of two P+-innocent strategies followed by inno-
centisation, while the bottom one simply corresponds to composition. Because
the triangle and top square commute (because the underlying diagrams do) and
the bottom part of the diagram is exactly the same as the top one, by The-
orem 6.4.9, this reduces to exactness of the top-left and top-right squares. The
former follows by construction of P+(A,B),(B,C), using the zigzag criterion. The
latter follows by discrete fibredness of P+A,B,C → P+A,C and the square being a
pullback, using Lemma 2.2.70.

The fact that copycat strategies are P+-innocent amounts to commutation
of

Ȃ P+A P+A,A

Ȃ PA PA,A

∏ ∑

∏

∆

∑

∆

up to isomorphism. The left-hand square is exact by Lemma 2.2.71 and the
right-hand one is by Lemma 2.2.70, so the diagram commutes. This also shows

241

that P+-copycat strategies are all copycat strategies, so they are exactly the
units of composition.

Of course, we have:

Proposition 6.4.15. Both hypotheses are satisfied in the case of HON games
with P -visibility, with P+ being Tsukada and Ong’s games.

Proof. This is simply because morphisms in HON games are exactly morphisms
in Tsukada and Ong’s games that are also prefixes.

We will see in the next section why this notion of P+-innocence indeed makes
sense for HON games by showing that boolean P+-innocent strategies are exactly
traditional innocent strategies of HON games.

6.4.3 Boolean Innocence

Required: 6.4.2.
Recommended: Ȃ.

We finally consider boolean innocence. Let us start by showing that the
notion of P+-innocence indeed makes sense, since boolean P+-innocent strategies
correspond to traditional innocent strategies in HON games (where boolean P+-
innocence and copycats are the obvious boolean counterparts to P+-innocence
and copycats).

Proposition 6.4.16. A strategy in the standard HON sense is innocent if and
only if it is boolean P+-innocent for Tsukada and Ong’s P+. It is copycat if and
only if it is boolean P+-copycat.

Proof. A boolean P+-innocent strategy is (isomorphic to) the image of a beha-
viour B in VA,B through ∆kA,B

○∏iA,B
. Let us compute this on a play p:

∆kA,B
(∏iA,B

(B))(p) = ∏iA,B
(B)(kA,B(p))

≅ ∫
v∈VA,B

B(v)[iA,B(v),kA,B(p)]

≅ ⋀
v∈VA,B

B(v)[iA,B(v),kA,B(p)] because 2 is an order

≅ ⋀
f ∶iA,B(v)→kA,B(p)

B(v) because 0Ȃ = 1,

which means that the strategy accepts p if and only if it accepts all of the views
v that map into p, which is exactly the traditional definition of an innocent
strategy. Conversely, any innocent strategy is isomorphic to ∆kA,B

○∏iA,B
○∆jA,B

of itself (where jA,B ∶VA,B → PA,B is the functor such that iA,B = kA,B jA,B)
because this functor does not change the value of presheaves on views, and the
result accepts a play if and only if it accepts all of its views, just like the strategy
we started from. The case of copycats is similar.

As mentioned before, innocent boolean strategies are not closed under com-
position. One usually either imposes a further determinism constraint, or relaxes
the innocence constraint. It might be instructive to see how trying to derive the

242

boolean case from the set-based one using our methods directly points to the
problem.

Indeed, suppose given any innocent game setting (A,P,V, i). We would like
to show that two boolean polynomial functors, say

P1, P2∶VA,B +VB,C
:→ PA,C

:

coincide. Here P1 is right extension to plays followed by composition and P2 is
the same, followed by innocentisation, i.e., restriction to views followed by right
extension to plays. (Let us note in passing that the arguments we are going
to give directly apply to the case where, instead of an innocent game setting(A,P,V, i), we have an innocent game setting equipped with a subcategory of

plays (A,V jÐ→ P
kÐ→ P+) and study P+-innocent boolean strategies.) A first

attempt to show this would be to show that

VA,B +VB,C
Ȃ

PA,C
Ȃ

VA,B +VB,C
:

PA,C
:

Pi

l!

Pi

l!

commutes (where, remember, l! is as in Proposition 6.2.20), like when we de-
duced from associativity and unitality of composition of set-based strategies
that composition of boolean strategies is also associative and unital. However,
this does not hold because ∏iA,B

is not in the class of functors that commute
with l! in general.

A second attempt is to show that each Pi factors as

VA,B +VB,C
Ȃ

PA,C
Ȃ

VA,B +VB,C
:

PA,C
:

.

Pi

r!

Pi

l!

Then because we have already shown that P1 ≅ P2, we would automatically get
P1 ≅ P2 as desired.

Now, both functors have the form

VA,B +VB,C
: QÐ→ PA,B,C

: ∑δ1ÐÐ→ PA,C
: RÐ→ PA,C

:

,

where Q and R are only composed of ∆s and ∏s. One can show that ∏s and
∆s commute with r!, so we may hope to prove the desired factorisation like so:

VA,B +VB,C
Ȃ

PA,B,C
Ȃ

PA,C
Ȃ

PA,C
Ȃ

VA,B +VB,C
:

PA,B,C
:

PA,C
:

PA,C
:

PA,C
:

r!

Q

Q

r!

∑δ1

∑δ1

r!

R

R

r!
l!∼?

where the right triangle commutes up to isomorphism because l! Ȃ r! is a re-
flection. (We could try other factorisations, by changing where we insert the
counit of l! Ȃ r!, but for P2, both Q and R contain a ∏ functor, which means

243

that they cannot commute to l!.) The only problematic square is the marked
one. And indeed, if the considered boolean strategies, say X1 and X2, are non-
deterministic, then ∑δ1(r!(Q[X1,X2])) may accept some p ∈ PA,C in more than
one way (see [46, 3.7.2]), which readily makes it non-isomorphic to any presheaf
in the image of r!.

Remark. Exactly the same argument explains why boolean composition cannot
agree with set-based composition in general (as was noted in Remark 6.2.4).

Standardly, the problem is overcome by restricting to deterministic strategies,
for which the marked square commutes.

Finally, we proceed similarly in the case of copycat strategies. In this case,
the problematic square

PA
Ȃ

PA,A
Ȃ

PA
:

PA,A
:

∑ι0

r!

∑ι0

r!

does commute, because the involved colimits are coproducts which are either
empty or singleton:

Proposition 6.4.17. In any innocent game setting (A,P,V, i), boolean copycat
strategies are innocent. This extends to the setting of Proposition 6.4.14, so
that, as is standard, copycats are innocent pb-strategies.

Proof. For any behaviour B and play p, because ι0 is a discrete fibration, we
have ∑ι0(r!(B))(p) ≅ ∑ι0(s)=p r(B(s)) by Lemma 2.2.27, which is non-empty if
and only if there is an s in PA such that ι0(s) = p and B(s) = 1. We also have

r! (∑ι0(B)) (p) ≅ r (∫ sB(s) ⋅ [p, ι0(s)]), which is non-empty if and only if there

is an s in PA equipped with a morphism f ∶p → ι0(s) and such that B(s) = 1.
By discrete fibredness of ι0, both conditions above are equivalent. Therefore,
commutation of the diagram above reduces to showing that ∑ι0(r!(B))(p) is
either empty or a singleton, which is direct from the formula given above.

6.5 Perspectives

We have introduced game settings and their innocent variant, a categorical
framework for game semantics, aiming at unifying existing game models and
facilitating the construction of new ones. Under mild hypotheses, we get cate-
gories of games and strategies in an abstract way, and, under further hypotheses,
a category of games and innocent strategies. We have shown how this may be
extended to categories with fewer morphisms and to boolean strategies, and
how composition in all these different settings are related. We have shown that
many traditional and recent models fit in this setting, and also exhibited some
limitations of game settings (games where composition is not associative and
composition of boolean innocent strategies).

A lot remains to be done, starting with the incorporation of further instances.
The saturated view of AJM games (Section 6.3.3) seems at hand, but will involve

244

significantly more advanced category theory, as Street fibrations and stacks will
replace discrete fibrations and sheaves. We would first need to generalise the
lemmas of exactness from fibrations to Street fibrations, which should prove very
easy, but the tougher part would be to prove that local pushforward squares
(with a Street fibration) are distributive. Indeed, our current method uses the
adjoint equivalence between presheaves and discrete fibrations, and it is not
clear whether this would work with Street fibrations.

A less obvious direction is the treatment of more exotic game models [5,
80, 81, 84, 83, 47, 92, 21], notably those based on event structures. It also
seems that strategies may compose in our game model (defined in Chapter 5),
based on the proof of Proposition 6.4.7. So maybe our game model also fits this
framework.

Another direction is categorification: instead of reasoning up to isomorph-
ism, we could refine our point of view and prove that games and strategies in
fact form a bicategory, as, e.g., in [92].

We also plan to go beyond mere categories of games and strategies and
construct structured categories of various kinds, depending on the considered
language. These could be, e.g., cartesian closed, symmetric monoidal closed,
linear, or Freyd categories. Indeed, proving that we have a category of games
and strategies is actually a weak result if we want to interpret any serious
language in it. This brings us to another research direction: beyond game
models, we should investigate game semantics, i.e., the correspondence with
operational semantics, as initiated in [27] in a different setting.

Beyond the realm of game semantics itself, we have the following formula
for composition:

(σ; τ)(p) = ∑δ1(∏∇(∆δ2+δ0([σ, τ])))(p)
≅ ∫ u∏∇(∆δ2+δ0([σ,τ]))(u) × [p, δ1u]
≅ ∫ u

σ(δ2(u)) × τ(δ0(u)) × [p, δ1u],
which looks awfully like Day convolution. Indeed, it seems like this could be
written as

(σ; τ)(p) ≅ ∫ (p1,p2)∈PA,B×PB,C

σ(p1) × τ(p2) × Pop

A,C(p1 ⊗ p2, p)
where ⊗ is a kind of object that represents the hiding of p1 and p2 along B if they
coincide, and some “error” element otherwise. The idea is that, in some cases
(e.g., simple games), we have that PA,B,C ≅ PA,B ×PB

PB,C , so each interaction
sequence u is actually given by a pair (p1, p2) with p1 in PA,B and p2 in PB,C ,
in which case the formula above makes sense. For it to make sense in general
seems to require a slight generalisation of Day convolution from the context of
monoidal categories to a broader one: indeed, we want to take the objects p1
and p2 in different categories, and the tensorial product lands in yet another
category.

245

Bibliography

[1] LICS 2015. Proc. 30th Symposium on Logic in Computer Science, 2015.
IEEE.

[2] Samson Abramsky. Sequentiality vs. concurrency in games and lo-
gic. Mathematical Structures in Computer Science, 13(4):531–565, 2003.
doi: 10.1017/S0960129503003980. URL https://doi.org/10.1017/

S0960129503003980.

[3] Samson Abramsky and Radha Jagadeesan. Games and full completeness
for multiplicative linear logic. Journal of Symbolic Logic, 59(2):543–574,
1994.

[4] Samson Abramsky and Radha Jagadeesan. A game semantics for generic
polymorphism. Annals of Pure and Applied Logic, 133(1-3):3–37, 2005.

[5] Samson Abramsky and Paul-André Melliès. Concurrent games and full
completeness. In LICS, pages 431–442. IEEE, 1999. doi: 10.1109/LICS.
1999.782638.

[6] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full ab-
straction for PCF. Information and Computation, 163(2):409–470, 2000.
doi: 10.1006/inco.2000.2930.

[7] Samson Abramsky, Dan R. Ghica, Andrzej S. Murawski, C.-H. Luke Ong,
and Ian D. B. Stark. Nominal games and full abstraction for the nu-calculus.
In Logic in Computer Science, 2004. Proceedings of the 19th Annual IEEE
Symposium on, pages 150–159. IEEE, 2004.

[8] Jean-Marc Andreoli. Logic programming with focusing proofs in linear
logic. Journal of Logic and Computation, 2(3):297–347, 1992. doi: 10.1093/
logcom/2.3.297. URL http://dx.doi.org/10.1093/logcom/2.3.297.

[9] Patrick Baillot, Vincent Danos, Thomas Ehrhard, and Laurent Regnier.
Believe it or not, AJM’s Games Model is a Model of Classical Linear Logic.
In LICS, pages 68–75. IEEE, 1997. ISBN 0-8186-7925-5. doi: 10.1109/
LICS.1997.614933.

[10] Paolo Baldan, Andrea Corradini, Tobias Heindel, Barbara König, and
Paweł Sobociński. Processes and unfoldings: concurrent computations in
adhesive categories. Mathematical Structures in Computer Science, 24(4),
2014. doi: 10.1017/S096012951200031X.

246

[11] Henk Barendregt. The lambda calculus: its syntax and semantics. Studies
in logic and the foundations of Mathematics, 1984.

[12] Gérard Berry and Gérard Boudol. The chemical abstract machine. In Proc.
17th International Symposium on Principles of Programming Languages,
pages 81–94, 1990. doi: 10.1145/96709.96717.

[13] Gérard Berry and Pierre-Louis Curien. Sequential algorithms on concrete
data structures. Theoretical Computer Science, 20(3):265–321, 1982.

[14] Andreas Blass. Degrees of indeterminacy in games. Fundamenta Mathem-
atica, LXXVII:151–162, 1972.

[15] Andreas Blass. A game semantics for linear logic. Annals of Pure and
Applied Logic, 56(1–3):183–220, 1992. doi: 10.1016/0168-0072(92)90073-9.

[16] Pierre Boudes. Thick subtrees, games and experiments. In TLCA,
volume 5608 of LNCS, pages 65–79. Springer, 2009. doi: 10.1007/
978-3-642-02273-9_7.

[17] Aldridge K. Bousfield. Constructions of factorization systems in categories.
Journal of Pure and Applied Algebra, 9(2-3):287–329, 1977.

[18] Nathan J. Bowler. A unified approach to the construction of categories of
games. PhD thesis, University of Cambridge, 2011.

[19] Aurelio Carboni, Stephen Lack, and Robert F. C. Walters. Introduction to
extensive and distributive categories. Journal of Pure and Applied Algebra,
84(2), 1993.

[20] Simon Castellan, Pierre Clairambault, and Glynn Winskel. Concurrent
Hyland-Ong games. GaLoP, 2014.

[21] Simon Castellan, Pierre Clairambault, and Glynn Winskel. The parallel
intensionally fully abstract games model of PCF. In LICS 2015 [1].

[22] Pierre Clairambault. Strong functors and interleaving fixpoints in game
semantics. RAIRO - Theor. Inf. and Applic., 47(1):25–68, 2013. doi: 10.
1051/ita/2012028. URL https://doi.org/10.1051/ita/2012028.

[23] Thierry Coquand. A semantics of evidence for classical arithmetic. Journal
of Symbolic Logic, 60(1):325–337, 1995. doi: 10.2307/2275524.

[24] Clovis Eberhart and Tom Hirschowitz. Presheaves for Processes and Un-
foldings. http://www.lama.univ-savoie.fr/~eberhart/ProcUnfold.

pdf, 2015. Online extended abstract for a talk at CALCO Early Ideas.

[25] Clovis Eberhart and Tom Hirschowitz. Justified sequences in string dia-
grams: a comparison between two approaches to concurrent game se-
mantics. Preprint, 2016. URL https://hal.archives-ouvertes.fr/

hal-01372582.

247

[26] Clovis Eberhart and Tom Hirschowitz. Justified sequences in string dia-
grams: a comparison between two approaches to concurrent game se-
mantics. In Proc. 7th International Conference on Algebra and Coalgebra
in Computer Science, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2017. To appear.

[27] Clovis Eberhart and Tom Hirschowitz. Game semantics as a singular
functor, and definability as geometric realisation. Preprint, 2017. URL
https://hal.archives-ouvertes.fr/hal-01527171.

[28] Clovis Eberhart and Tom Hirschowitz. What’s in a game? A theory of
game models. Accepted for publication at LICS 2018, November 2017.
URL https://hal.archives-ouvertes.fr/hal-01634162.

[29] Clovis Eberhart, Tom Hirschowitz, and Thomas Seiller. An intensionally
fully-abstract sheaf model for π. In Proc. 6th International Conference on
Algebra and Coalgebra in Computer Science, volume 35 of LIPIcs, pages
86–100. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:
10.4230/LIPIcs.CALCO.2015.86.

[30] Clovis Eberhart, Tom Hirschowitz, and Thomas Seiller. An intensionally
fully-abstract sheaf model for π (expanded version). Logical Methods in
Computer Science, 13(4), 2017. doi: 10.23638/LMCS-13(4:9)2017. URL
https://doi.org/10.23638/LMCS-13(4:9)2017.

[31] Charles Ehresmann. Catégories structurées. Annales scientifiques de l’Ecole
Normale Supérieure, 80(4):349–426, 1963.

[32] Charles Ehresmann. Catégories et structures. Dunod, 1965.

[33] Hartmut Ehrig. Introduction to the algebraic theory of graph grammars. In
Graph-Grammars and Their Application to Computer Science and Biology,
volume 73 of LNCS. Springer, 1979.

[34] Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila Ribeiro,
Annika Wagner, and Andrea Corradini. Algebraic approaches to graph
transformation–part II: Single pushout approach and comparison with
double pushout approach. In Handbook Of Graph Grammars And Com-
puting By Graph Transformation: Volume 1: Foundations, pages 247–312.
World Scientific, 1997.

[35] Marcelo P. Fiore. Discrete generalised polynomial functors - (extended
abstract). In Proc. 39th International Colloquium on Automata, Languages
and Programming, volume 7392 of LNCS, pages 214–226. Springer, 2012.
doi: 10.1007/978-3-642-31585-5_22.

[36] Cédric Fournet and Georges Gonthier. The reflexive cham and the join-
calculus. In Proc. 23rd International Symposium on Principles of Pro-
gramming Languages, pages 372–385, 1996. ISBN 0-89791-769-3. doi:
10.1145/237721.237805.

[37] Richard H. G. Garner. Polycategories. PhD thesis, University of Cam-
bridge, 2006.

248

[38] Richard H. G. Garner. A homotopy-theoretic universal property of Lein-
ster’s operad for weak ω-categories. Math. Proc. Camb. Phil. Soc., 147:
615–628, 2009.

[39] Richard H. G. Garner and Tom Hirschowitz. Shapely monads and
analytic functors. Journal of Logic and Computation, 28(1):33–83,
2018. doi: 10.1093/logcom/exx029. URL http://dx.doi.org/10.1093/

logcom/exx029.

[40] Dan R. Ghica and Andrzej S. Murawski. Angelic semantics of fine-grained
concurrency. Annals of Pure and Applied Logic, 151(2–3):89 – 114, 2008.
doi: 10.1016/j.apal.2007.10.005. URL http://www.sciencedirect.com/

science/article/pii/S0168007207000851.

[41] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50, 1987.

[42] Marco Grandis and Robert Paré. Limits in double categories. Cahiers de
Topologie et Géométrie Différentielle Catégoriques, 40(3):162–220, 1999.

[43] Marco Grandis and Robert Paré. Adjoints for double categories. Cahiers
de Topologie et Géométrie Différentielle Catégoriques, 45(3):193–240, 2004.

[44] Marco Grandis and Robert Paré. Kan extensions in double categories (On
weak double categories, Part III). Theory and Applications of Categories,
20(8):152–185, 2008.

[45] René Guitart. Relations et carrés exacts. Annales des Sciences Math-
ématiques du Québec, 4(2):103–125, 1980.

[46] Russell Harmer. Games and Full Abstraction for Nondeterministic Lan-
guages. PhD thesis, Imperial College, University of London, 1999.

[47] Russell Harmer, J. Martin E. Hyland, and Paul-André Melliès. Categorical
combinatorics for innocent strategies. In Proc. 22nd Symposium on Logic in
Computer Science, pages 379–388. IEEE, 2007. doi: 10.1109/LICS.2007.14.

[48] Michel Hirschowitz, André Hirschowitz, and Tom Hirschowitz. A theory
for game theories. In Proc. 27th Foundations of Software Technology and
Theoretical Computer Science, pages 192–203. Springer, 2007.

[49] Tom Hirschowitz. Full abstraction for fair testing in CCS. In Proc. 5th
International Conference on Algebra and Coalgebra in Computer Science,
volume 8089 of LNCS, pages 175–190. Springer, 2013. doi: 10.1007/
978-3-642-40206-7_14.

[50] Tom Hirschowitz. Full abstraction for fair testing in CCS (expanded ver-
sion). Logical Methods in Computer Science, 10(4), 2014. doi: 10.2168/
LMCS-10(4:2)2014.

[51] Tom Hirschowitz and Damien Pous. Innocent strategies as presheaves and
interactive equivalences for CCS. In Proc. of Interaction and Concurrency
Experience, pages 2–24. Electronic Proceedings in Theoretical Computer
Science, 2011. doi: 10.4204/EPTCS.59.2.

249

[52] Kohei Honda and Nobuko Yoshida. Game-Theoretic Analysis of
Call-by-Value Computation. tcs, 221(1-2):393–456, 1999. doi:
10.1016/S0304-3975(99)00039-0. URL https://doi.org/10.1016/

S0304-3975(99)00039-0.

[53] Dominic J. D. Hughes. Games and definability for System F. In Logic in
Computer Science, 1997. LICS’97. Proceedings., 12th Annual IEEE Sym-
posium on, pages 76–86. IEEE, 1997.

[54] J. Martin E. Hyland. Game semantics. Semantics and logics of computa-
tion, 14:131, 1997.

[55] J. Martin E. Hyland. Game semantics. In Andrew M. Pitts and Peter Dy-
bjer, editors, Semantics and Logics of Computation, pages 131–184. Cam-
bridge University Press, 1997.

[56] J. Martin E. Hyland and C.-H. Luke Ong. On full abstraction for PCF:
I, II, and III. Information and Computation, 163(2):285–408, 2000. doi:
10.1006/inco.2000.2917.

[57] Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium
- Volume 2. Oxford University Press, 2002.

[58] André Joyal. Remarques sur la théorie des jeux à deux personnes. Gazette
des Sciences Mathématiques du Québec, 1(4):46–52, 1977.

[59] André Joyal. Foncteurs analytiques et espèces de structure. In Combin-
atoire énumérative (Montréal 1985), volume 1234 of Lecture Notes in Math-
ematics, pages 126–159. Springer, 1986.

[60] G. Maxwell Kelly. Basic concepts of enriched category theory, volume 64
of London Mathematical Society Lecture Note Series. Cambridge Univer-
sity Press, 1982. Republished as: Reprints in Theory and Applications of
Categories 10 (2005).

[61] G. Maxwell Kelly. Elementary observations on 2-categorical limits. Bulletin
of the Australian Mathematical Society, 39:301–317, 1989.

[62] Joachim Kock. Notes on polynomial functors. Working notes, 2009. URL
http://mat.uab.es/~kock/cat/polynomial.pdf.

[63] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-
Order and Symbolic Computation, 20(3):199–207, 2007. ISSN 1573-
0557. doi: 10.1007/s10990-007-9018-9. URL https://doi.org/10.1007/

s10990-007-9018-9.

[64] Stephen Lack and Paweł Sobociński. Adhesive categories. In Proc.
7th Foundations of Software Science and Computational Structures,
volume 2987 of LNCS, pages 273–288. Springer, 2004. doi: 10.1007/
978-3-540-24727-2_20.

[65] Yves Lafont. Interaction combinators. iandcomp, 137(1):69–101, 1997.
doi: 10.1006/inco.1997.2643. URL https://doi.org/10.1006/inco.

1997.2643.

250

[66] James Laird. A categorical semantics of higher order store. Electronic notes
in Theoretical Computer Science, 69:209–226, 2003.

[67] James Laird. A game semantics of the asynchronous pi-calculus. In Proc.
16th International Conference on Concurrency Theory, volume 3653 of
LNCS, pages 51–65. Springer, 2005. doi: 10.1007/11539452_8.

[68] James Laird. Game semantics and linear CPS interpretation. Theoretical
computer science, 333(1-2):199–224, 2005.

[69] James Laird. Game semantics for higher-order concurrency. In Proc.
26th Foundations of Software Technology and Theoretical Computer Sci-
ence, volume 4337 of LNCS, pages 417–428. Springer, 2006. doi: 10.1007/
11944836_38.

[70] James Laird. Game semantics for call-by-value polymorphism. In Samson
Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide,
and Paul G. Spirakis, editors, Automata, Languages and Programming,
pages 187–198, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN
978-3-642-14162-1.

[71] James Laird. Game Semantics for a Polymorphic Programming Lan-
guage. J. ACM, 60(4):29:1–29:27, September 2013. ISSN 0004-5411. doi:
10.1145/2508028.2505986. URL http://doi.acm.org/10.1145/2508028.

2505986.

[72] Tom Leinster. Higher Operads, Higher Categories, volume 298 of London
Mathematical Society Lecture Notes. Cambridge University Press, Cam-
bridge, 2004.

[73] Paul Blain Levy. Morphisms between plays. GaLoP, 2013.

[74] Ralph Loader. Finitary pcf is not decidable. Theoretical Computer Science,
266(1-2):341–364, 2001.

[75] Paul Lorenzen and Kuno Lorenz. Dialogische logik. Wissenschaftliche
Buchgesellschaft, 1978.

[76] Saunders Mac Lane. Categories for the Working Mathematician. Number 5
in Graduate Texts in Mathematics. Springer, 2nd edition, 1998.

[77] Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic: A
First Introduction to Topos Theory. Universitext. Springer, 1992.

[78] Guy McCusker. Games and Full Abstraction for a Functional Metalanguage
with Recursive Types. PhD thesis, Imperial College, University of London,
1996.

[79] Paul-André Mellies. Asynchronous games 1: Uniformity by group invari-
ance, 2003.

[80] Paul-André Melliès. Asynchronous games 2: the true concurrency of in-
nocence. In Proc. 15th International Conference on Concurrency The-
ory, volume 3170 of LNCS, pages 448–465. Springer, 2004. doi: 10.1007/
978-3-540-28644-8_29.

251

[81] Paul-André Melliès. Asynchronous games 4: A fully complete model of
propositional linear logic. In Proc. 20th Symposium on Logic in Computer
Science, pages 386–395. IEEE, 2005. ISBN 0-7695-2266-1. doi: 10.1109/
LICS.2005.6.

[82] Paul-André Melliès. Asynchronous games 3: An innocent model of linear
logic. Electronic Notes in Theoretical Computer Science, 122:171–192, 2005.

[83] Paul-André Melliès. Game semantics in string diagrams. In Proc. 27th
Symposium on Logic in Computer Science, pages 481–490. IEEE, 2012.
doi: 10.1109/LICS.2012.58.

[84] Paul-André Melliès and Samuel Mimram. Asynchronous games: Innocence
without alternation. In Proc. 19th International Conference on Concur-
rency Theory, volume 4703 of LNCS, pages 395–411. Springer, 2007. doi:
10.1007/978-3-540-74407-8_27.

[85] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, I/II. Information and Computation, 100(1):1–77, 1992.

[86] Andrzej S. Murawski and Nikos Tzevelekos. Nominal game semantics.
Foundations and Trends in Programming Languages, 2(4):191–269, 2016.
doi: 10.1561/2500000017. URL https://doi.org/10.1561/2500000017.

[87] Hanno Nickau. Hereditarily sequential functionals. In Proc. Logical Found-
ations of Computer Science, volume 813 of LNCS, pages 253–264. Springer,
1994. doi: 10.1007/3-540-58140-5_25.

[88] Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Event structures
and domains, part 1. Theoretical Computer Science, 13:65–108, 1981.

[89] Robert Paré. Universal covering categories. Rendiconti dell’Istituto di
Matematica dell’Università di Trieste, 1993.

[90] Robert Paré. Yoneda theory for double categories. Theory and Applications
of Categories, 25(17):436–489, 2011.

[91] Michal R. Przybylek. The other pullback lemma. ArXiv e-prints, November
2013.

[92] Silvain Rideau and Glynn Winskel. Concurrent strategies. In Proc. 26th
Symposium on Logic in Computer Science, pages 409–418. IEEE, 2011. doi:
10.1109/LICS.2011.13.

[93] Dana S. Scott. Domains for denotational semantics. In Mogens Nielsen and
Erik Meineche Schmidt, editors, Automata, Languages and Programming,
pages 577–610, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg. ISBN
978-3-540-39308-5.

[94] Michael Shulman. Framed bicategories and monoidal fibrations. Theory
and Applications of Categories, 13(9):147–163, 2008.

[95] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard
isomorphism, volume 149. Elsevier, 2006.

252

[96] Takeshi Tsukada and C.-H. Luke Ong. Innocent strategies are sheaves over
plays - deterministic, non-deterministic and probabilistic innocence. CoRR,
abs/1409.2764, 2014. URL http://arxiv.org/abs/1409.2764.

[97] Takeshi Tsukada and C.-H. Luke Ong. Nondeterminism in game semantics
via sheaves. In LICS 2015 [1].

[98] Mark Weber. Generic morphisms, parametric representations and weakly
cartesian monads. Theory and Applications of Categories, 13:191–234,
2004.

[99] Mark Weber. Familial 2-functors and parametric right adjoints. Theory
and Applications of Categories, 18(22):665–732, 2007.

253

Appendix A

A Proof of View-Analyticity

in Tsukada and Ong’s Model

This appendix exposes the original proof of view-analyticity in Tsukada and
Ong’s model, as we proved it. It requires tools from Chapter 5, and while it is
arguably more complex than Takeshi Tsukada’s proof, we have chosen to keep
it inside this dissertation because it shows that we can define a notion of hiding
on plays defined as string diagrams for the λ-calculus.

We first need to introduce a notion of interaction sequence in the setting of
string diagrams, which we will simply call an interaction. Let (A Ȃ B Ȃ C) be
the position given by the pushout:

B (A Ȃ B)
(B Ȃ C) (A Ȃ B Ȃ C).

t

s1

If we draw this position, we get:

BA C .

In any position reached by a play starting from (A Ȃ B Ȃ C), players can be
split in two groups: the avatars of the left-hand player and those of the right-
hand one. Similarly, edges can be split into three groups, depending on which
edge they stem from.

Definition A.0.1. Let I(A,B,C) denote the full subcategory of E(A Ȃ B Ȃ
C) spanning plays whose “internal” moves (those that are played on an edge
stemming from the middle one) are β moves. We call such plays interactions.

Let us show on an example how interactions on (A,B,C) can be mapped to
plays on (A,C). Let us consider the interaction on the left of Figure A.1, and
its mapping to a play on (A,C) on the right (written with the initial position
at the top for readability). The interaction of Figure A.1 corresponds to the
interaction sequence:

254

A B C

C⋅c

A B C

B⋅b C⋅c

A B C

A⋅a B⋅b C⋅c

A B C

A⋅a B⋅b C⋅c

A B C

C⋅c′

A⋅a B⋅b C⋅c

A B C

B⋅b′ C⋅c′

A⋅a B⋅b C⋅c

A B C

A⋅a′ B⋅b′ C⋅c′

A C

C⋅c

A C

C⋅c

A C

A⋅a C⋅c

A C

A⋅a C⋅c

A C

C⋅c′

A⋅a C⋅c

A C

C⋅c′

A⋅a C⋅c

A C

A⋅a′ C⋅c′

Figure A.1: An interaction and its projection

A B C

c

b

a

c′

b′

a′.

One can map the interaction on the left to the play on the right by playing
only Λ and @ moves. For this to make sense, we have to show that any move
that is played in the interaction may be played in the play created by playing
only Λ and @ moves.

To prove this, the idea is to take a linearisation of our play U and to draw
zones in every intermediate position Xi. Each zone in Xi will correspond to a
player in the projection of Xi to (A Ȃ C). They are defined inductively by:

255

• in the initial position X0, there is only one zone and it encompasses the
whole position,

• after an @ move, zones “do not change”, in the sense that the newly created
player is incorporated to the zones of the player who played the @ move,

• after a β move, all zones are left unaltered except for the (only) zone that
contains the edge the β move is played on, which is extended with the
newly created player,

• after a Λ move, all zones are left unchanged, and a new zone is created,
containing all players that are in the (unique) zone of the player who
played the Λ move, plus the newly created player.

To prove that this actually works requires a few lemmas that are simply proved
by mutual induction on the number of moves in a play (this is purely technical
and not difficult).

In the drawing of Figure A.1, there are three zones in the interaction’s
bottom-most position: one that contains the top two players and the left-side
one, one that contains the bottom two players and the left-side one, and one
that contains the left-side and right-side players.

Since a single zone is created when a Λ move is played and zones are left
unchanged in the other cases, we can see that zones correspond to players in
the projection. More precisely, zones even have the same “interface” as players
(incoming and outgoing edges), except that zones may have the same incoming
edge multiple times in their interfaces: @ moves add an outgoing edge both to
a player and an interface, Λ moves create both a player and an interface with
the outgoing edge replaced by an incoming one, and β moves do not change the
shape of the interface (except that it may duplicate some incoming edges). This
shows that all moves that are played in the interaction can also be played in the
projection on (A,C), which is thus well defined.

Now, we want to take a zone Z ofXi and define its history, i.e., the “smallest”
subplay of U that starts from its initial position X0 and contains Z. The history
is defined recursively as:

• the empty play if Z is the only zone of X0,

• if Z is a zone of Xn+1, then its history is the history of the zone in Xn

it comes from, plus the move played between Xn and Xn+1 if the created
player is in Z (i.e., take all moves that happen in Z, except if they are Λ

moves and Z is the zone where the initial player is).

To prove Proposition 6.4.7, we will take a well-chosen zone Z, define W to be
its history, and show that W corresponds to an interaction sequence wA,B,C
that satisfies all the properties to show that Tsukada and Ong’s game setting is
view-analytic.

Proof sketch of Proposition 6.4.7. Consider an interaction sequence uA,B,C , a
view vA,B , and a morphism f ∶ vA,B → δ2(uA,B,C) (the construction is the same
for δ0(uA,B,C)). Just like there is a full embedding from plays as justified se-
quences to plays as string diagrams, there is a full embedding of interaction
sequences into interactions, which takes all moves of uA,B,C and plays a Λ move

256

for each Opponent move from the point of view of the interaction sequence (i.e.,
Opponent moves in C and Proponent moves in A), @ moves for Proponent
moves, and β moves for internal moves on B. Let U denote the interaction that
corresponds to uA,B,C through this mapping. Now, each move of uA,B,C corres-
ponds to a move of U , so, in particular, the last move of f(vA,B) corresponds
to some move in U . That move can either be an Opponent move in A or a
Proponent move in B, which means that it corresponds to either an @ move
or a β move. In particular, it corresponds to a zone of U : the zone the move
is played on (were the move a Λ, it would be slightly more difficult because
it might correspond to two different zones, but this case never happens). We
define W to be the history of that zone, plus all the moves that happen in that
zone until the next @ move (including all these extra moves is needed to ensure
that W corresponds to a play that ends in A or C).

Now we want to show that: (i) W corresponds to an interaction sequence
wA,B,C on (A,B,C) through the mapping defined above, (ii) f canonically
factors through δ2(wA,B,C), and (iii) δ1(wA,B,C) is a view, which will prove
view-analyticity.

For the first point, W corresponds to an interaction sequence if and only if it
ends in A or C and its obvious left and right projections correspond to plays as
justified sequences. The first point is by definition of W . For the projections, we
know that they correspond to P -visible justified sequences (because all string
diagrammatic plays do), so we just need to show that they are alternating and
of even length. Because U is built from uA,B,C , by the switching condition, we
know that there is at most one positive player in any of the Xn’s, so whenever
a positive player is created, they must play the next move (or at least be part
of it if the next move is a β). Now, if we look at one of the projections of U ,
say the one to (A,B), if a Λ move happens in the projection of W (such a move
may be the projection of a β move of U), then it creates a positive player in
the zone, which will necessarily play the next move in U . This next move must
therefore also be in W . If the Λ move is not in W , then a positive player is
indeed created, but it is not in the zone, so the move it plays will not be in W

either. Therefore, W always takes two moves of U of opposite polarities in a
row, so it is alternating and of even length.

For the second point, we have a morphism h∶wA,B,C → uA,B,C given by
the fact that it is a sub-sequence of uA,B,C (more precisely, it is given by the
inclusion ofW into U and the fact that the mapping of interaction sequences into
interactions is fully faithful). Moreover, all moves of vA,B are necessarily played
in wA,B,C because W contains the final move of f(vA,B), so it must contain the
views of all involved players (by construction of string diagrams). Since vA,B
is a view, it becomes a branch V when turned into a string diagram, and since
we know where to map the final player into W , there is at most one map from
V to the projection WA,B of W to (A,B). But that map must exist because
W contains all the moves that made playing the last move of vA,B possible
in U . Therefore, there is a unique morphism V → WA,B that corresponds to
the morphism vA,B → δ2(uA,B,C). Since the mapping is fully faithful, this
means that there is a morphism g∶ vA,B → δ2(wA,B,C) (because projections of
interaction sequences are compatible with projections of interactions). We have
f = δ2(h)g.

Finally, for the last point, we need to show that the projection δ1(wA,B,C)
257

is a view, for which it is sufficient to show that the projection of W to (A,C)
is a view. To show that a string diagram is a view, it suffices to show that it
is non-empty and that the player who plays the next move is always the newly
created player. It is obviously non-empty because W contains the last move
of f(vA,B) and ends in either A or C. Now, since the moves that are played
in W are only the ones that create a new player in a determined zone and
zones bijectively correspond to players in the projection to (A,C), moves of W
“follow” the distinguished zone, which is either the expanded zone (in the case
of β or @ moves) or the newly created one (in the case of Λ moves), so they
follow the newly created player.

258

Résumé

La programmation concurrente a grandement gagné en popularité ces dernières
années, notamment grâce à l’augmentation du nombre de cœurs par processeur
et à la mise en œuvre pratique de la programmation distribuée. Cependant, la
programmation concurrente est bien moins intuitive que les paradigmes de pro-
grammation traditionnels, et la plupart des programmes reste donc incapable
d’utiliser plusieurs cœurs en parallèle. Une façon de rendre la programmation
concurrente plus intuitive pourrait être de créer des langages spécifiquement
pour faire de la concurrence, mais cela nécessite de comprendre les notions qui
sous-tendent la programmation concurrente. On peut faire un parallèle avec
la programmation fonctionnelle : un aspect intéressant (pour un théoricien)
d’OCaml ou de Haskell est que ce sont des langages dont le développement
s’appuie sur une théorie bien comprise. On peut utiliser ces langages pour tes-
ter l’efficacité des techniques de programmation fonctionnelle sur de vrais pro-
blèmes, plutôt que sur des problèmes académiques. Si ces techniques s’avèrent
utiles, les paradigmes de programmation fonctionnelle peuvent être ajoutés à
des langages plus « grand public », tels que Python ou C++, où ils pourront
être utilisés pour résoudre certains problèmes plus facilement. Ce travail est une
contribution à la sémantique de jeux concurrents, un domaine de recherche qui
utilise la sémantique de jeux pour mieux comprendre la concurrence.

Sémantique des langages de programmation

La sémantique des langages de programmation (que l’on appellera aussi simple-
ment sémantique) est un domaine de l’informatique dont le but est de donner
un sens mathématique aux programmes informatiques. En effet, un terme d’un
langage n’est rien de plus qu’une suite de symboles, et elle n’a pas de sens en
soi. Elle ne fait sens que dans le contexte d’un langage de programmation par-
ticulier. L’idée de la sémantique est de construire des modèles mathématiques
des langages de programmation pour prouver des propriétés de ces langages.

Il y a plusieurs raisons pour lesquelles on peut vouloir donner un sens mathé-
matique à un programme : prouver que les programmes écrits dans un certain
langage ont de bonnes propriétés, prouver qu’un programme particulier à le
comportement attendu, prouver qu’un programme s’arrête en un temps raison-
nable, prouver que deux programmes ont le même comportement... Une autre
raison d’étudier les langages de programmation réside dans les liens qu’ils en-
tretiennent avec la logique. C’est ce qu’on appelle la correspondance de Curry-
Howard [95]. Sous sa forme la plus basique, cette correspondance dit qu’un type
A d’un langage de programmation peut aussi être vu comme une formule logique

259

JAK d’une certaine logique, et vice versa. Mais ce qui est intéressant dans cette
correspondance est le point suivant : les programmes de type A correspondent
à des preuves de JAK dans la logique. La correspondance va même plus loin, en
disant que la composition des programmes correspond à des coupures dans la
logique (une coupure est une étape dans une preuve où l’on ne prouve rien de
nouveau, par exemple quand on introduit un lemme). Enfin, la correspondance
est aussi dynamique, au sens où la normalisation (l’exécution) d’un programme
correspond à l’élimination des coupures de la preuve (l’élimination des coupures
est un processus qui transforme une preuve en une autre preuve de la même for-
mule qui ne contient aucune coupure, et qui peut être vue comme le fait de
remplacer tous les lemmes par leurs preuves chaque fois qu’ils sont utilisés, au
lieu de prouver les lemmes une seule fois pour toutes). La sémantique est donc
une façon de mieux comprendre la logique, et vice versa.

Une carte (surannée) de la sémantique

On va maintenant ébaucher une vue légèrement périmée de la sémantique (que
nous nous efforcerons de corriger dans un second temps, en montrant que le
paysage de la sémantique est plus complexe).

La sémantique peut prendre différentes formes, plus ou moins adaptées à
démontrer certains types de propriétés. Il y a deux branches principales : la
sémantique opérationnelle, qui décrit un programme comme une sorte de ma-
chine, et la sémantique dénotationnelle, qui décrit les programmes comme des
structures mathématiques bien connues.

Sémantique opérationnelle

La sémantique opérationnelle est probablement la façon de représenter les pro-
grammes qui est la plus proche des intuitions qu’ont les programmeurs. Elle
décrit les programmes comme des suites d’instructions exécutées par une sorte
de machine. Cette description est très proche de ce qui se passe en effet dans un
ordinateur, mais les ensembles d’instructions utilisés en sémantique opération-
nelle simplifient les instructions réellement utilisées.

La sémantique opérationnelle revêt différentes formes, mais toutes se con-
forment au schéma esquissé ci-dessus. La forme de sémantique opérationnelle
la plus commune s’appuie sur les systèmes de transitions étiquetés (ou LTS,
pour labelled transition system), qui sont en gros des graphes dont les sommets
sont les différents états possibles d’un programme et les arêtes sont les étapes
d’exécution d’un programme qui commence dans un certain état et finit dans un
autre. Donner les règles de réduction d’un langage formel (tel que le λ-calcul [11]
ou le π-calcul [85]) correspond exactement à définir un LTS dont les sommets
sont les termes du langage et les arêtes sont les réductions possibles. Voici, par
exemple, un LTS très simple pour le λ-calcul :

M’(λx.M)N →M[N/x] M →M ′

MN →M ′N
N → N ′

MN →MN ′
.

Certains LTS s’appuient sur la notion de machine abstraite [63]. Comme
leur nom l’indique, les machines abstraites sont dans un certain sens encore
plus proche de l’idée d’une machine qui exécute une suite d’instructions. Elles

260

exécutent en général un programme (ou terme) en face d’un contexte appelé
pile, et le terme et la pile peuvent tous deux être modifiés par les différentes
instructions de la machine. Par exemple, la machine peut empiler les arguments
d’une application puis les dépiler au moment de les utiliser. C’est exactement
ce que fait cette machine pour le λ-calcul :

MN Ȃ π →M ȂN ∶∶ π (λx.M) ȂN ∶∶ π →M[N/x] Ȃ π.

Ici, π désigne la pile (une suite de λ-termes). La première règle dit que, face à
une application, la machine empile l’argument, et la seconde dit que, face à une
abstraction, la machine dépile un argument et effectue la substitution.

Sémantique dénotationnelle

On a vu que, pour la sémantique opérationnelle, l’interprétation d’un pro-
gramme est proche de sa syntaxe. À l’inverse, en sémantique dénotationnelle, les
programmes sont représentés par des structures mathématiques connues. L’idée
est d’interpréter un type A par un certain type d’espace JAK (par exemple, des
espaces topologiques) et les programmes de type A → B par des morphismes
de JAK dans JBK (dans le cas des espaces topologiques, les morphismes sont les
fonctions continues).

Les domaines de Scott [93] offrent un exemple d’une telle sémantique. Gros-
sièrement, un domaine de Scott est un ensemble muni d’un ordre qui représente
de le niveau d’« information » que l’on possède sur un certain type d’objet : x < y
signifie que y donne plus d’informations sur l’objet qu’il représente que x. Par
exemple, le domaine de Scott pour les entiers naturels a un plus petit élément �
(on ne sait rien sur l’entier en question) et un élément pour chaque entier (qui
sont tous plus grands que �, mais incomparables entre eux) qui représentent le
fait que l’on connaît la valeur de l’entier :

0 1 2 3 . . .

�.
Un morphisme entre domaines de Scott est en gros une fonction croissante. En
termes de ce que cela représente pour les programmes, cela signifie que, plus un
programme a d’informations sur ses entrées, plus il peut produire d’information
sur sa sortie. Par exemple, la dénotation (l’interprétation) d’un programme qui
calcule le prédécesseur, mais boucle sur 0, serait la fonction qui envoie � et 0

sur � et chaque n > 0 sur n − 1.
Pour qu’une sémantique dénotationnelle soit considérée comme « bonne »,

elle doit satisfaire plusieurs critères. Supposons qu’on nous donne une rela-
tion sur les termes d’un langage qui dit si deux termes ont le même compor-
tement (par exemple, ils renvoient toujours le même résultat quand on leur
donne les mêmes entrées). La première propriété (et la plus évidente) qu’une
sémantique dénotationnelle doit satisfaire est la correction, c’est-à-dire que deux
programmes dont le comportement est différent doivent avoir des dénotations
différentes. Il est très difficile de dire quoi que ce soit sur une sémantique qui ne
respecte même pas cette propriété. La seconde propriété est la complétude, c’est-
à-dire que deux programmes qui ont le même comportement doivent avoir des

261

dénotations égales. Quand une sémantique satisfait ces deux propriétés, on dit
qu’elle est pleinement abstraite. La pleine abstraction est une propriété intéres-
sante dans le sens où il suffit d’étudier l’égalité dans le modèle pour en déduire
si deux programmes ont des comportements équivalents. Une autre propriété
intéressante est la définissabilité (compacte) du modèle, c’est-à-dire de savoir si
tous les éléments du modèle sont l’image d’un terme du langage.

Enfin, une propriété cruciale de la sémantique dénotationnelle est la com-
positionalité, c’est-à-dire que la dénotation d’un programme peut se déduire de
celles de ses sous-programmes. Par exemple, dans le cas du λ-calcul, on voudrait
pouvoir calculer JMNK à partir de JMK et JNK. Si l’on considère M comme une
fonction de type A→ B dont l’argument N est de type A, on est tenté de définir
JMNK comme JMK (JNK), ce qui est en effet une définition compositionnelle. (La
véritable définition est en fait légèrement plus complexe car il faut interpréter
des dérivations de typage, et non des termes.)

La sémantique aujourd’hui

Aujourd’hui, il existe un spectre impressionnant de modèles de langages de
programmation, dont certains peuvent aussi bien être vus comme dénotationnels
que comme opérationnels. L’exemple parfait de ce cas de figure est la sémantique
de jeux : elle peut à la fois être vue comme une sémantique dénotationnelle
parce qu’elle interprète les programmes par des stratégies sur une une notion
générale de jeu, mais, les stratégies encodent aussi les possibles exécutions du
programme, ce qui rend cette interprétation dynamique, et, dans de nombreux
cas, les stratégies sont en bijection avec les formes normales du langage, ce qui
rend le modèle très proche de la syntaxe, ce qui sont deux raisons de penser
qu’elle est aussi proche de la sémantique opérationnelle.

Avec le temps, la définition des mots « dénotationnel » et « opérationnel » a
changé pour prendre un sens plus large. Par exemple, il a longtemps été admis
qu’un modèle qui n’est pas pleinement abstrait n’est pas un modèle dénota-
tionnel (plus particulièrement s’ils ne sont pas complets, car si un modèle n’est
pas correct, il ne mérite peut-être même pas le nom de modèle), mais beaucoup
aujourd’hui considèrent ces modèles comme dénotationnels, dans une certaine
mesure. Certains modèles sont indiscutablement dénotationnels (par exemple les
domaines de Scott) alors que d’autres ne le sont pas du tout (par exemple les
LTS). Entre ces deux extrêmes, il existe tout un continuum de modèles que l’on
peut voir comme plus ou moins dénotationnels, et ce en s’appuyant principale-
ment sur deux points. Le premier est à quel point les structures utilisées pour
interpréter les types et les programmes est « mathématique ». Plus les modèles
s’appuient sur des structures communes (par exemple les espaces topologiques
ou les espaces vectoriels), plus ils sont considérés comme dénotationnels. Plus
ils s’appuient sur des structures ad hoc (par exemple des LTS ou des catégories
dérivées de la syntaxe du langage), moins ils sont considérés comme dénotation-
nels. Le second critère que l’on prend en compte est si le modèle a de bonnes
propriétés (telles que la pleine fidélité) ou non : plus ils ont de bonnes propriétés,
plus ils sont considérés dénotationnels. Sur ces deux points, la sémantique de
jeux est dans une situation intermédiaire : les stratégies ne sont pas aussi com-
munes que les espaces vectoriels ou topologiques, mais elles ne sont pas non plus
des structures ad hoc, et bien que le modèle ne soit pas pleinement abstrait, il

262

est compositionnel, indépendant de la syntaxe et un quotient extensionnel donne
un modèle pleinement abstrait.

De façon similaire, la notion de modèle opérationnel a évoluée avec le temps.
Auparavant, on considérait qu’un modèle était opérationnel si la structure pour
interpréter les termes était dérivée de la syntaxe, comme c’est le cas pour les
LTS. Aujourd’hui, les modèles opérationnels possèdent une dimension supplé-
mentaire : un modèle est considéré comme opérationnel s’il est dynamique, c’est-
à-dire que l’on peut retrouver l’exécution d’un programme à partir de son in-
terprétation.

Il est probable que, de nos jours, la dichotomie entre modèles opérationnels
et dénotationnels soit trop grossière pour être vraiment pertinente. Peut-être
qu’une façon pertinente de la raffiner serait de définir plusieurs axes sur lesquels
placer un modèle : selon qu’ils s’appuient sur des structures mathématiques
communes (comme les espaces topologiques) ou soient syntaxiques (comme les
LTS), qu’ils soient statiques (fonctions entre espaces) ou dynamiques (straté-
gies), qu’ils soient intentionnels (où l’égalité se dérive de la réduction des termes)
ou extensionnels (où l’égalité se dérive d’une notion d’observation), etc.

Sémantique de jeux

Nous avons expliqué ce que sont la sémantique opérationnelle et la sémantique
dénotationnelle (tout en restant à un niveau plutôt informel) et avons affirmé
que la sémantique de jeux peut être vue comme les l’une ou l’autre. Nous allons
maintenant expliquer avec un peu plus de détails ce qu’est la sémantique de
jeux, car elle est au cœur de ce travail.

La naissance de la sémantique de jeux

La sémantique de jeux est née dans le monde de la logique, sous la forme de
la logique de dialogue [75]. La logique de dialogue définit les preuves d’une
formule comme deux entités qui débattent pour savoir si la formule est valide :
Joueur, qui essaie de montrer que la formule est vraie, et Opposant, qui essaie de
montrer qu’elle est fausse. Il s’agit d’un jeu formel qui décrit un débat entre deux
personnes (sensées) qui débattent pour savoir si une proposition mathématique
est vraie ou non : ils continuent de défendre leur position respective jusqu’à ce
qu’un d’entre eux soit convaincu qu’il avait tort. Une formule est vraie si Joueur
a une stratégie gagnante dans un certain jeu formel sur cette formule, ce qui
revient à dire qu’il est toujours capable de convaincre Opposant que la formule
est vraie, peu importe les objections levées par Opposant.

La logique de dialogues a ensuite été introduite dans le monde des langages
de programmation sous le nom de sémantique de jeux par une longue liste d’au-
teurs, en particulier Berry et Curien [13] (sous le nom d’algorithmes séquen-
tiels), qui sont les premiers à avoir utiliser la notion d’interaction en sémantique
des langages de programmation et à donner une sémantique séquentielle et dé-
notationnelle d’un langage d’ordre supérieur, Blass [14, 15], qui a exhibé un
lien entre sémantique de jeux et logique linéaire [41], Joyal [58], qui fut le pre-
mier a construire une catégorie de jeux et stratégies, Coquand [23], qui a lié la
sémantique des jeux à la dynamique de l’élimination des coupures (et donc à
l’évaluation des programmes), Abramsky, Jagadeesan et Malacaria [6], ainsi que

263

Hyland et Ong [56] et Nickau [87], qui ont construit les modèles de jeux les plus
connus, et qui sont encore utilisés aujourd’hui : les jeux AJM et les jeux HON.

Les idées de base de la sémantique des jeux viennent directement de la lo-
gique de dialogues : les types sont interprétés par des jeux formels (que l’on peut
voir comme des formules) et les programmes par des stratégies décrivant l’inter-
action du programme avec son environnement (et que l’on peut voir comme des
preuves). Rentrons un peu plus dans les détails : les types sont interprétés par
des jeux (que l’on appelle parfois des arènes) sur lesquels on définit une notion
de parties. Les parties représentent toutes les interactions qu’un élément d’un
type donné peut avoir avec son environnement. Les programmes sont ensuite
interprétés par des stratégies dans ce jeu, c’est-à-dire que ce sont des ensembles
de parties qui satisfont certaines contraintes. Ces parties sont toutes les interac-
tions que ce programme peut avoir avec l’environnement. Ici, en revanche, à la
différence de la logique de dialogues, les stratégies ne servent qu’à calculer des
valeurs, et il n’y a pas de notion de stratégie « gagnante ».

Par exemple, on peut définir les parties sur le jeu des entiers naturels comme
les suites (q N)∗, où q est un coup dans le jeu qui représente l’environnement
qui demande la valeur du nombre (q pour « question ») et N est n’importe
quel entier naturel, qui représente le programme retournant ce nombre comme
résultat. La stratégie qui correspond à un compteur qui augmente de 1 chaque
fois qu’il est appelé serait l’ensemble des parties de la forme q 1 q 2 . . . q n. Pour
les fonctions de type int → int, on peut définir les parties comme les suites
de la forme (qr (ql Nl)∗ Nr)∗, où qr est un coup qui représente l’environnement
demandant le résultat de la fonction (r pour « right », comme dans la copie
droite de int), Nr représente le programme renvoyant son résultat à l’environ-
nement, ql représente le programme demandant la valeur de son argument (l
pour « left ») et Nl représente l’environnement donnant la valeur de l’argument
à la fonction. Une séquence telle que décrite ci-dessus correspond donc à l’en-
vironnement demandant le résultat d’une fonction un certain nombre de fois,
et, à chaque fois, la fonction demande à son tour la valeur de son argument un
certain nombre de fois avant de retourner son résultat. Par exemple, la straté-
gie associée à la fonction successeur contiendrait toutes les parties de la forme
qr ql n

1
l (n1+1)r . . . qr ql nkl (nk+1)r. La structure exacte des parties dépend de

quelle sémantique de jeux on utilise et importe peu ici, car les exemples ci-dessus
donnent une bonne idée de ce que peuvent être des parties et des stratégies.

Deux autres idées sont présentes dans presque tous les modèles de jeux.
La première est l’innocence, qui dit que les programmes purs (ceux qui n’uti-
lisent que de la programmation purement fonctionnelle) sont interprétés par des
stratégies innocentes. Le comportement de ces stratégies dépend d’une quantité
d’information limitée sur l’histoire de la partie. L’information à laquelle une
telle stratégie a accès encode le morceau de l’interaction entre le programme et
l’environnement qui a mené à la situation présente. En particulier, une fonc-
tion ne ajuster son comportement qu’en fonction de ce qui s’est passé lors de
l’appel courant à la fonction. Par exemple, la stratégie associée au programme
du compteur décrit plus haut n’est pas innocente parce qu’elle doit se souve-
nir de la dernière réponse qu’elle a donné, alors qu’une stratégie innocente ne
peut s’appuyer que sur qr (et, en effet, le compteur est un programme impur).
En revanche, la stratégie associée à la fonction successeur est innocente car sa
réponse (nk + 1)r ne dépend que de nkl .

264

Enfin, un aspect important de la sémantique de jeux est le façon de compo-
ser les stratégies. En effet, les modèles de jeux sont compositionnels, et il y a
en particulier une notion de composition de stratégies qui correspond à la com-
position des programmes. Elle est définie en deux étapes appelées composition
parallèle et masquage. La composition parallèle est ce qui permet aux stratégies
d’interagir. Pour la définir, il faut une notion de « partie » sur trois jeux : si on
se donne une stratégie σ sur les jeux A et B et une stratégie τ sur les jeux B

et C, la composition parallèle σ∥τ est une stratégie sur les jeux A, B et C. Elle
accepte de jouer une partie sur (A,B,C) si et seulement si σ accepte de jouer
sa projection sur (A,B) et τ accepte de jouer sa projection sur (B,C). L’idée
est que σ et τ communiquent sur le jeu B. La deuxième étape (le masquage),
consiste à effacer ce qui se passe sur B pour faire une stratégies seulement sur
les jeux A et C.

Comme nous l’avons déjà mentionné, les modèles de jeux peuvent à la fois
être considérés comme dénotationnels parce que les programmes sont interprétés
par des stratégies, qui sont des structures générales. D’un autre côté, ils sont
aussi opérationnels parce que les stratégies sont souvent en bijection avec les
formes normales et que l’interprétation des programmes correspond exactement
à ses interactions avec l’environnement, ce qui en fait des modèles proches de
l’exécution dynamique.

Le monde hétéroclite des modèles de jeux

Aujourd’hui, les modèles de jeux existants prennent racines dans des idées et
des formalismes différents, ce qui donne un paysage très divers. Blass [14, 15]
a construit ce qui est probablement considéré comme un des premiers modèles
de jeux. Dans son approche, un jeu est décrit par l’arbre de ses positions et les
parties sont les branches de cet arbre. Dans le cas des fonctions de type A→ B,
les parties peuvent être vues comme la paire d’une branche dans A et d’une
branche dans B. Une stratégie est juste le choix d’un coup à jouer à chaque
position de l’arbre. La composition des stratégies est définie en jouant sur trois
arbres en même temps (puis en masquant ce qui se passe sur l’arbre central).
Malheureusement, la composition des stratégies n’est pas associative (à cause
d’un problème technique sur la polarité des coups).

Les premiers modèles de jeux qui ont été largement utilisés, et dont des
variantes sont encore utilisées de nos jours, sont les jeux AJM [6] et HON [56],
qui ont tous deux été développés dans les années 90. Chez AJM, les jeux sont
définis comme des ensembles de coups munis de conditions pour savoir quelles
suites de coups sont des parties valides. Chez HON , les jeux sont définis comme
des ensembles de coups structurés et les parties comme des séquences structurées
(la structure exacte importe peu ici). Les deux modèles définissent ensuite les
stratégies comme des ensembles de partis clos par préfixes et la composition
de stratégies par composition parallèle et masquage (les deux opérations sont
définies de manière similaire dans les deux modèles).

Aujourd’hui, il existe de nombreuses variantes des jeux HON et AJM, con-
struites pour résoudre différents problèmes. Premièrement, un certain nombre
de ces variantes, qui imposent des conditions supplémentaires pour qu’une sé-
quence soit une partie valide, sont décrites dans la thèse de Harmer [46]. Cer-
taines variantes ne sont pas couvertes par cette référence, par exemple [52], dans

265

laquelle la polarité des coups est renversée. Certaines variantes enrichissent les
jeux avec de la structure supplémentaire, par exemple des « liens copycat » [70],
des actions de groupe [79, 7, 86] ou de la « cohérence » [68]. Certains modèles
s’appuient sur les mêmes idées que les jeux AJM et HON, mais on peut insé-
rer des jeux dans d’autres jeux, par exemple dans les jeux polymorphes [53],
les jeux variables [4], les jeux ouverts [22] ou les jeux contextuels [71]. D’autres
variantes ne peuvent être classées ni comme des jeux AJM, ni comme des jeux
HON, mais s’appuient sur les mêmes idées, comme par exemple la catégorie sé-
quoïdale construite dans [66]. Certains modèles définissent les jeux comme des
arbres (un peu à la manière de Blass) et les stratégies comme des morphismes
de jeux [54, 47].

De plus, la sémantique de jeux a donné naissance à de nombreux modèles
concurrents. Cela parait naturel, dans le sens où un point fondamental de
la concurrence est l’interaction des agents, et l’interaction est précisément au
cœur de la sémantique de jeux. Certains de ces modèles s’appuient sur les jeux
HON [67, 69, 40, 97], d’autres sur des structures plus exotiques. Parmi ces struc-
tures, on trouve les structures d’événements [88], dont un des points centraux
est la notion de conflit entre événements, qui n’existe pas dans les modèles évo-
qués ci-dessus. Elles sont donc adaptées à l’étude de la concurrence et ont donné
naissance à de nombreux modèles [92, 20, 21] intéressants. Grossièrement, elles
décrivent les positions par des ensembles d’événements compatibles, les coups
consistent à ajouter un événement à une position, et les stratégies sont des
morphismes entre jeux. Melliès a fait un travail important pour comprendre le
cœur de la sémantique des jeux avec ses jeux asynchrones [80, 82, 81, 84], qui
s’appuient aussi sur des structures d’événements.

Les terrains de jeux [50, 29, 30] sont une autre structure exotique utilisée en
sémantique de jeux. Les travaux rédigés dans cette thèse s’inspirent profondé-
ment de cette structure. Pour simplifier, les terrains de jeux sont des catégories
doubles (en gros des catégories avec des morphismes verticaux et horizontaux et
où la composition n’est définie qu’entre morphismes de la même classe) dont les
objets sont les positions d’un jeu, les morphismes horizontaux sont les inclusions
de positions et les morphismes verticaux les parties dans le jeu. Elles doivent
satisfaire un certain nombre de propriétés pour que la construction fasse sens en
tant que modèle de jeux. À partir d’un terrain de jeux, on peut définir de façon
abstraite la catégorie E(X) des parties qui commencent à la position X. Les
stratégies sont ensuite définies comme des préfaisceaux sur E(X), l’idée étant
que cette définition est une généralisation de la notion standard de stratégie
en tant qu’ensemble de parties clos par préfixe. Cette méthode a cependant un
défaut qui est que, à ce jour, on ne sait pas comment composer les stratégies
par composition parallèle et masquage. Tous les exemples connus de terrains de
jeux font partie du cadre plus général dans lequel les parties sont définies comme
des diagrammes de cordes (qui sont des formalisations de dessins intuitifs uti-
lisés en sémantique des jeux). Dans ce cadre, les coups sont définis comme des
diagrammes de corde de base et les parties comme des coups collés les uns aux
autres. La plupart des travaux décrits dans cette thèse s’inscrivent dans cette
lignée des diagrammes de cordes.

266

Motivation et contributions

L’idée principale qui a motivé ce travail a été de mieux comprendre le paysage
des modèles de jeux. Plus précisément, alors qu’il y a de nombreux modèles de
jeux, dont certains sont très similaires et d’autres basés sur des idées totalement
différentes, il y a très peu de littérature qui tisse des liens entre ces différents
modèles. Notre but a été de comprendre les modèles de jeux, en particulier à
travers l’abstraction : nous avons essayé d’isoler des propriétés vérifiées dans
différents modèles de jeux et d’en donner des versions abstraites pour étudier la
classe des modèles qui vérifient ces propriétés pour prouver de façon abstraite
des propriétés de tous ces modèles. Un autre point caractéristique de notre ap-
proche est notre utilisation constante d’outils catégoriques avancés pour rendre
les constructions et les preuves plus efficaces. Pour cela, nous avons bénéficié
de travaux précédents effectués dans le même état d’esprit, à savoir les récents
travaux qui ont interprété l’innocence comme une condition de faisceau, grâce
à une notion de morphisme entre parties due à Melliès. Un outil que nous intro-
duisons pour la première fois en sémantique des jeux est la théorie des carrés
exacts [45], qui est un outil clé dans notre travail et donne des preuves efficaces
dans les chapitres 5 et 6.

Contributions principales

Nous donnons ici une liste des résultats principaux de chacune des contributions
qui constituent cette thèse. Un peu plus bas, des sections sont dédiées à chaque
contribution pour l’expliquer plus en détail.

Modèles fibrés Notre première contribution, étudiée dans le chapitre 4, suit
le motif d’abstraction évoqué plus haut. Toutes les instances connues de modèles
à base de diagrammes de cordes (un pour CCS [50], un pour le π-calcul [29], un
pour les jeux HON, que nous étudions au chapitre 5 et un pour le join-calcul [36]
qui reste non publié) sont construits de la même manière : on définit d’abord
les positions comme des sortes de graphes, puis les coups comme des arêtes de
dimension supérieure et enfin les parties comme des composées de coups. Nous
appelons ces positions et parties des diagrammes de cordes car ils formalisent ce
que les physiciens appellent ainsi. Pour pouvoir définir une catégorie de parties
qui commencent à une position donnée, ces modèles doivent être fibrés, ce qui
dit en gros que toute partie peut être restreinte aux sous-positions de sa position
initiale. On donne d’abord une façon abstraite de construire des modèles à
base de diagrammes de cordes à partir d’une description opérationnelle d’un
langage qui généralise les constructions déjà existantes. On donne ensuite un
critère nécessaire et suffisant pour que notre modèle soit fibré et un autre critère,
seulement suffisant, mais plus simple à prouver. Cette contribution est basée
sur [25].

Un pont entre modèles Notre seconde contribution principale, étudiée dans
le chapitre 5, est une connexion entre deux variantes des jeux HON. La première
variante [97] s’appuie sur la définition de séquence justifiée, qui est standard en
sémantique des jeux, alors que le second suit l’approche à base de diagrammes de
cordes telle que décrite dans notre contribution précédente. Il y a un lien informel

267

évident entre les deux modèles, dans le sens où ils définissent tous deux les
stratégies innocentes comme des faisceaux pour une topologie de Grothendieck
induite par le plongement des vues dans les parties. On montre que ce lien
peut être rendu plus solide : les deux modèles sont équivalents dans le sens où
ils produisent des catégories de stratégies innocentes équivalentes. On donne
d’abord un premier argument à base d’arbres de dérivation dans un calcul des
séquents ad hoc qui décrit les jeux HON, mais l’argument est trop peu formel,
et on donne donc ensuite une preuve plus formelle, sans utiliser les arbres de
dérivation. Cette contribution se base sur [26] (qui donne l’argument avec les
arbres de dérivation) et sa version longue [25] (qui donne la preuve directe).

Un noyau des modèles de jeux Notre dernière contribution principale, étu-
diée dans le chapitre 6, développe un cadre général pour étudier les modèles de
jeux. L’idée est d’essayer de réduire les modèles de jeux à quelques propriétés
basiques sur les parties et de retrouver les constructions principales des mo-
dèles de jeux à partir de ces propriétés de base. En se donnant une structure
qui représente les parties, on montre comment définir un notion de stratégie
concurrent et comment les composer en faisant une composition parallèle et
un masquage. On montre que, sous certaines conditions, la composition des
stratégies est associative et unitaire. On montre ensuite comment définir une
catégorie de stratégies innocentes, sous réserve d’avoir un peu plus de structure.
On montre aussi que ce beaucoup de modèles de jeux existants rentrent dans ce
cadre. Cette contribution est basée sur [28].

Contributions qui n’apparaissent pas dans cette thèse

Nous donnons ici quelques contributions que l’on considère comme mineures ou
qui ne sont pas étudiées dans cette thèse.

Diagrammes de cordes pour les traces concurrentes et les dépliages

La première de ces contributions est décrite dans le chapitre 3, qui se base
sur [24], et que l’on utilise comme une introduction aux diagrammes de cordes,
qui seront très utilisés dans les chapitres 4 et 5. On montre comment les utiliser
pour modéliser les traces concurrentes simplement, on donne quelques exemples
d’applications de cette construction, et on l’illustre sur l’exemple des réseaux de
Petri.

Un modèle de jeux pour le π-calcul Dans [29] et sa version longue [30], on
construit un modèle du π-calcul qui est intentionnellement pleinement abstrait
pour l’équivalence de tests équitable (la pleine abstraction intensionnelle est sim-
plement la définissabilité, avec le sous-entendu qu’un quotient du modèle donne
un modèle pleinement abstrait, quotient qui est par ailleurs souvent inévitable,
vu que les modèles pleinement abstraits ne sont parfois pas récursivement pré-
sentables [74]). On définit d’abord une notion de partie pour le π-calcul à base
de diagrammes de cordes (ce sera d’ailleurs l’exemple utilisé dans le chapitre 4),
puis on montre comment interpréter les termes par des stratégies. Pour montrer
que cette interprétation est intentionnellement pleinement abstraite, on utilise
la théorie des terrains de jeux, qui nous donne de façon abstraite un LTS qui
correspond à notre notion de stratégie, LTS que l’on relie à celui du π-calcul.

268

Plusieurs idées développées dans le chapitre 4 trouvent leur source dans ce pa-
pier, en particulier l’utilisation des systèmes de factorisation pour montrer que
le modèle est fibré.

Interpréter les termes par des stratégies de façon abstraite Dans [27],
on étudie l’interprétation des termes par des stratégies dans les modèles de
jeux de façon abstraite. L’idée est de définir une notion de paraterme qui est
suffisamment large pour inclure les vues, les parties et les termes. On définit
ensuite l’interprétation des termes par des stratégies de façon abstraite sous la
forme d’un foncteur singulier. Cette construction généralise des constructions
existantes. On retrouve ensuite un résultat fondamental de la sémantique des
jeux, la définissabilité (qui dit que toute stratégie innocente finie est isomorphe
à l’interprétation d’une valeur), sous la forme de la réalisation géométrique.

Modèles fibrés

Dans le chapitre 4, on montre comment construire des modèles à base de dia-
grammes de cordes et montrer qu’ils sont fibrés sous certaines conditions. On
suppose donnée une catégorie de base C qui décrit la sémantique opérationnelle
d’un langage. Cette catégorie est équipée d’une notion de dimension. Les objets
de petite dimension sont appelés les joueurs et les canaux et décrivent les posi-
tions du jeux, qui sont en gros des graphes de joueurs et de canaux. Les joueurs
sont les agents de notre jeu et les canaux sont leurs moyens de communiquer
entre eux. Par exemple, pour le π-calcul, une position est simplement une repré-
sentation de la topologie du réseau de communication entre les différents agents,
comme dans :

x y,

c

a

qui représente un position avec deux joueurs x et y qui peuvent communiquer à
travers le canal a, et x a connaissance d’un canal privé c. Les objets de dimension
supérieure décrivent la dynamique du jeu. Par exemple, pour le π-calcul, une
synchronisation dans laquelle x envoie le canal c sur a et où y le reçoit est
dessinée comme à gauche ci-dessous.

x′

x

y′

y

c

a
x′

x

y′

y

c

a

x′ y′

c

a

x y

c

a

269

Ici, la position initiale de la synchronisation est dessinée en bas et la position
finale en haut, et l’on peut voir que, dans la position finale, l’avatar y′ de y a
connaissance du canal c que x a envoyé. La synchronisation est un des objets de
dimension supérieure de la catégorie C correspondant au π-calcul. Pour chaque
objet de dimension supérieure de C, on se donne un tel dessin, que l’on appelle
un coup. On appelle le foncteur qui associe à chaque objet de dimension supé-
rieure un coup une signature. Une partie est une composée de coups (qui ne fait
que coller plusieurs coups les uns aux autres). Formellement, les positions sont
des préfaisceaux sur les deux premières dimensions de C (il s’agit bien d’une
représentation formelle de la même chose car les dessins correspondent aux ca-
tégories d’éléments des objets de C). Les coups sont des cospans Y →M ← X

de préfaisceaux sur C, où X est la position initiale, Y la position finale et M
représente le coup. Par exemple, le cospan correspondant à la synchronisation
dans le π-calcul est dessiné à droite de celle-ci, avec X en base, Y en haut, M
au milieu et où tous les morphismes sont des inclusions.

À partir de n’importe quelle signature S, on construit une pseudo double
catégorie DS. Pour simplifier, il s’agit d’une structure mathématique qui possède
un ensemble d’objets (ici, les positions), pour chaque paire d’objets X et Y , un
ensemble de morphismes horizontaux X → Y (ici, les inclusions de la position
X dans la position Y) et un ensemble de morphismes verticaux Y X (ici, les
parties dont la position initiale est X et la position finale Y). Elles ont aussi,
pour tout carré tel que celui dessiné ci-dessous, un ensemble de cellules α (qui
représentent ici le fait que u est incluse dans u′ dans un certain sens).

Y Y ′

X X ′

k

u u′

h

α

On veut ensuite définir une catégorie E(X) des parties de position initiale X
et dont les morphismes u → u′ représenteraient le fait que u′ est une extension
de u (formellement, E(X) dépend de S, mais nous ne notons pas la dépendance
pour ne pas alourdir la notation). La définition naturelle d’un morphisme de
u∶Y X dans u′∶Y ′ X est une triplet d’un morphisme vertical w∶Z → Y ,
d’un morphisme horizontal h∶Z → Y ′ et d’une cellule α comme ceci :

Z Y ′

Y

X X.

h

w

u′

u

●

●
●α

Pour pouvoir définit une catégorie, il faut être capable de composer ces mor-
phismes, ce qui nécessite de trouver une façon canonique de compléter le dia-
gramme ci-dessous :

270

Z ′′ Z ′ Y ′′

Z Y ′

Y

X X X.

h′

w′

u′′

h

w

u′

u

●

●

●

●

●
●

β

α

α′

Il faut donc être capable de restreindre toute partie w′ à une sous-position Z de
sa position initiale. Plus précisément, on veut que, pour toute partie u∶Y X

et morphisme X ′ →X, il existe une partie u′∶Y ′ X ′ et une cellule α comme
ci-dessous telle que, pour tout diagramme de la forme

Y ′′

Y ′ Y

X ′′

X ′ X,

k

h

u

k′

h′

u′′
k′′

h′′

●

●

α

α′
α′′

u′●

il existe un morphisme pointillé et une cellule correspondante (ce qui signifie que
u′ est bien une restriction de u le long de h, ce qui est nécessaire pour que la
composition soit bien définie dans E(X)). On dit d’un modèle qui vérifie cette
propriété qu’il est fibré.

Pour prouver cette propriété, on utilise les systèmes de factorisation [17].
Cet outil algébrique permet de factoriser tout morphisme d’une catégorie sous
la forme r○l, où l et r appartiennent à des classes L et R fixées et qui sont ortho-
gonales, ce qui signifie qu’elles possèdent une certaine propriété de relèvement.
On construit un système de factorisation dont la classe L est générée par les
jambes X →M de tous les cospans Y →M ←X de notre signature (c’est-à-dire
tous les coups). Comme les parties u∶Y X sont des cospans de préfaisceaux
Y → U ← X, on est en fait en face de la situation décrite par le diagramme à
gauche ci-dessous, que l’on complète en factorisant l ○ h en h′ ○ l′ (à l’aide du
système de factorisation) puis en prenant le produit fibré de f et h′.

Y ′ Y

U ′ U

X ′ X

h′′

h′

h

f

l

f ′

l′

Y ′′

Y ′ Y

U ′′

U ′ U

X ′′

X ′ X

h′′

h′

h

f

l

q′′

q′

q

f ′′

l′′

s′′

s′

s

f ′

l′

271

On obtient la propriété désirée en construisant s′ et s′′ dans le diagramme de
droite : le premier vient de la propriété de relèvement de notre système de
factorisation et le deuxième de la propriété universelle du produit fibré.

Il reste ensuite à prouver que Y ′ → U ′ ← X ′ est une partie, ce que l’on fait
par récurrence, en supposant que c’est le cas pour les coups. On donne ensuite
un critère suffisant sur C pour que la restriction soit une partie.

Un pont entre modèles

Dans le chapitre 5, on commence par construire une variante des jeux HON
basée sur les diagrammes de cordes, tel qu’expliqué dans A, puis on construit
une traduction entre cette variante et une autre (basée sur la notion standard
de séquence justifiée), à la fois au niveau des parties et au niveau des stratégies.
On part d’un calcul des séquents qui décrit les jeux d’arènes et qui rappelle
fortement un calcul des séquents focalisé pour la logique intuitionniste. On dérive
une signature SHON de ce calcul des séquents. Ici, les canaux sont des jeux à
deux joueurs, que l’on dessine comme des arêtes entre les deux joueurs, que l’on
dessine comme des sommets. Les positions ressemblent typiquement à

B ,
x y

A C

où, dans cette position particulière, x joue comme Joueur sur B et Opposant
sur A et y comme Joueur sur C et Opposant sur C. Les arêtes pendantes repré-
sentent l’interaction avec l’environnement. Cette position représente typique-
ment une fonction de type A → B, modélisée par x, et une de type B → C,
modélisée par y. Les joueurs qui n’ont que des arêtes entrantes représentent les
parties du programme qui sont en train de calculer, alors que celles qui pos-
sèdent une arête sortante attendent qu’une autre partie du programme l’appelle
(sur cette arête sortante).

La dynamique de ce jeu est dérivée de l’élimination des coupures de notre
calcul et est dessinée :

Ȃ

Ȃ

Ȃ

Ȃ
Γn

Γ1

A⋅m

Λ

∆m.

∆1

@

A

β

x y

x′

y′

La façon la plus simple de comprendre cette interaction est probablement d’un
point de vue de l’exécution des programmes. Dans la position initiale (en bas du
dessin), x est une fonction de type Γ1 → . . .→ Γn → A qui produit des résultats
de type A en ayant accès à des ressources de type Γ1, . . . , Γn, alors que y est une
partie de programme en train de calculer et a accès à des ressources de types
∆1, . . . , ∆m et A (produite par x). L’interaction représente y qui demande à x
sa valeur de retour. Dans la position finale (en haut du dessin), les polarités des
deux joueurs ont changé : l’avatar x′ de x est maintenant en train de calculer,
alors que l’avatar y′ de y attend que x′ ait fini de calculer et lui renvoie une valeur
(c’est la raison pour laquelle x′ a « accès » à y′ : il s’agit d’un continuation).

272

Remarquons qu’y′ a toujours accès à x, au cas où il aurait besoin de le rappeler
plus tard lors de son exécution.

On dérive de cette signature une pseudo double catégorie DHON dont les
objets sont les positions, les morphismes horizontaux les inclusions de positions
et les morphismes verticaux les parties, tel que décrit dans A. On montre ensuite
que SHON vérifie les conditions pour que DHON soit fibrée, d’où on dérive une
catégorie E(X) de parties de position initiale X. En particulier, on dérive des
catégories E(A Ȃ B) au-dessus de chaque position de la forme

.
xA B

On dérive aussi des sous-catégories EV(A Ȃ B) qui contiennent uniquement les
vues, qui sont des partie particulières, définies de façon légèrement ad hoc. On
définit ensuite les stratégies comme les préfaisceaux sur E(A Ȃ B) (comme dans
les autres modèles à base de diagrammes de cordes) et les stratégies innocentes

comme les préfaisceaux qui sont dans l’image de ∏i∶EV(A Ȃ B)Ȃ→ E(A Ȃ B)Ȃ
,

où i est le plongement de EV(A Ȃ B) dans E(A Ȃ B), où C
Ȃ

est la catégorie des
préfaisceaux sur C et ∏ est l’extension de Kan à droite.

Il existe aussi des catégories standard correspondant à celles-ci dans le cadre
des jeux HON basés sur des séquences justifiées : la catégorie PA,B des parties sur
les arènes (A,B) et la catégorie VA,B des vues. De façon similaire, les stratégies
sont définies comme des préfaisceaux sur PA,B et les stratégies innocentes comme
celles qui sont dans l’image de ∏iHON

(où iHON est le plongement de VA,B dans
PA,B).

Durant la plus grande partie du reste du chapitre, on construit un carré
commutatif comme à gauche ci-dessous, où F est un plongement plein et FV est
une équivalence de catégories.

VA,B PA,B

EV(A Ȃ B) E(A Ȃ B)
iTO

FV

i

F

VA,B
Ȃ

PA,B
Ȃ

EV(A Ȃ B)Ȃ
E(A Ȃ B)Ȃ

∏iTO

∆
FV

∏i

∆F

En particulier, on a que EV(A Ȃ B)Ȃ
et VA,B
Ȃ

sont équivalentes à travers le fonc-
teur de restriction ∆FV . Mais on peut même aller plus loin : comme FV est une
équivalence de catégories et F est plein et fidèle, le carré est exact [45], ce qui
veut dire que le carré de droite commute à isomorphisme près. Cela signifie que
les catégories de stratégies innocentes des deux modèles sont équivalentes et que
cette équivalence est compatible avec les foncteurs de saturation ∏i et ∏iHON

.
Les différences entre ces deux variantes sont donc principalement de l’ordre de
la présentation.

La partie difficile de ce travail est de définir les foncteurs F et FV évoqués
ci-dessus. Le second est simplement défini comme la restriction du premier aux
vues, donc la partie la plus difficile est de définir F . On donne deux façons de le
faire : d’abord en utilisant un argument informel, puis en donnant une preuve
formelle.

La première façon fait appel à des arbres de dérivation pour un calcul des sé-
quents ad hoc. On définit une catégorie T(A Ȃ B) dont les objets sont les arbres

273

de conclusion (A Ȃ B) et dont les morphismes sont les inclusions d’arbres, et
une sous-catégorie B(A Ȃ B) de branches de conclusion (A Ȃ B). On décompose
le carré en

VA,B B(A Ȃ B) EV(A Ȃ B)
PA,B T(A Ȃ B) E(A Ȃ B)iTO i

en montrant d’abord que T(A Ȃ B) est équivalente à E(A Ȃ B), que cette
équivalence se restreint à une équivalence entre B(A Ȃ B) et EV(A Ȃ B), puis
en construisant un plongement plein de PA,B dans T(A Ȃ B) et en prouvant
qu’il se restreint à une équivalence entre VA,B et B(A Ȃ B). Cet argument n’est
cependant pas totalement satisfaisant au sens où les arbres ne sont pas traités
suffisamment formellement et un traitement formel ne rendrait pas le problème
plus simple à résoudre que sans utiliser T(A Ȃ B).

On donne donc une construction formelle de F et FV sans passer par T(A Ȃ
B). Les preuves de ce chapitre sont beaucoup plus ad hoc que dans le reste de
cette thèse, ce qui n’est pas très surprenant, dans le sens où on essaie de tisser
du lien entre deux modèles qui sont construits en utilisant des méthodes très
différentes.

Un noyau des modèles de jeux

Dans le chapitre 6, on décrit comment définir plusieurs catégories de stratégies à
partir d’une description basique d’un modèle de jeux. On se donne un foncteur
P qui décrit un modèle de jeux. Pour tout jeu A, P donne une catégorie PA
des parties sur le jeu A. Il donne aussi, pour tous jeux A et B, une catégorie
PA,B de parties sur la paire de jeux (A,B), et ainsi de suite pour les triplets
et quadruplets de jeux. Il donne aussi des foncteurs d’insertion, par exemple
ι0∶PA,B → PA,A,B qui, typiquement, ne fait que dupliquer ce qui se passe sur
A ; et des foncteurs de suppression, par exemple δ1∶PA,B,C → PA,C qui, typique-
ment, efface ce qui se passe sur B.

On dérive de façon abstraite une notion de stratégie d’un tel P : une stratégie
sur la paire de jeux (A,B) est un préfaisceau sur PA,B (on étudie les stratégies
sur les paires de jeux pour montrer qu’elles forment une catégorie, mais on
pourrait définir des stratégies sur un seul jeu de la même façon). L’idée est
qu’une stratégie σ accepte une partie p si σ(p) ≠ Ȃ (plus précisément, σ(p) est
l’ensemble des états dans lesquels la stratégie peut se retrouver après avoir joué
p). Pour montrer que les jeux et stratégies forment une catégorie, on définit la
composition en tant que composition parallèle plus masquage et des identités
pour cette composition, connues sous le nom de stratégies copycat.

La composition parallèle σ∥τ de deux stratégies σ sur (A,B) et τ sur (B,C)
accepte de joueur une séquence d’interaction (une partie sur trois jeux) u si et
seulement si σ accepte de jouer la projection δ2(u) du u sur (A,B) et τ accepte
de jouer la projection δ0(u) du u sur (B,C). Le masquage d’une stratégie σ
sur PA,B,C accepte de jouer une partie p si et seulement s’il existe une séquence
d’interaction u qui se projette sur p et que σ accepte de jouer, c’est-à-dire qu’elle
accepte de jouer les mêmes parties que σ, sauf que l’on masque se qui se passe
sur B. Enfin, la stratégie copycat sur le jeu A est la stratégie sur PA,A qui
« recopie » tous les coups joués par Opposant.

274

Dans le cadre que nous définissons dans ce chapitre, la composition et les
stratégies copycat sont toutes deux définies par des foncteurs polynomiaux.
Étant donné un foncteur F ∶C → D, le foncteur de restriction ∆F ∶DȂ → C

Ȃ
est

donné par pré-composition par F op . Il admet des adjoints à gauche et à droite∑F ∶CȂ→ D
Ȃ

et ∏F ∶CȂ→ D
Ȃ

, appelés extensions de Kan à gauche et à droite, res-
pectivement. Pour comprendre ∑F à un niveau intuitif, il faut imaginer que le
préfaisceau ∑F (X) est non-vide au-dessus d’un élément d s’il existe un anté-
cédent c de d tel que X est non-vide au-dessus de c. Pour ∏F , l’intuition est
que X doit être non-vide au-dessus de tous les antécédents de d. On peut donc
penser à ces foncteurs comme à des foncteurs ∃ et ∀. Un foncteur de C

Ȃ
dans D

Ȃ

est polynomial si c’est une composée d’un nombre quelconque de restrictions et
extensions de Kan à gauche et à droite.

La composition doit être un foncteur de PA,B
Ȃ×PB,C

Ȃ
dans PA,C
Ȃ

. On peut la
voir de façon équivalente comme un foncteur de PA,B + PB,C

Ȃ
dans PA,C
Ȃ

. On la
définit comme la composée

PA,B + PB,C
Ȃ∆δ2+δ0ÐÐÐÐ→ PA,B,C + PA,B,C
Ȃ∏∇ÐÐ→ PA,B,C

Ȃ∑δ1ÐÐ→ PA,C
Ȃ

,

où ∇ est le foncteur codiagonal. Il s’agit bien d’une définition polynomiale, et
l’idée derrière cette définition est exactement celle de la composition parallèle
suivie du masquage, ce que l’on peut voir en calculant de ce que fait ce foncteur
avec la description des extensions de Kan qu’on a donnée plus haut. La composée
des deux premiers foncteurs est la composition parallèle : si on appelle θ l’image
de [σ, τ], alors θ accepte de jouer une séquence d’interaction u si et seulement
si, pour chacun de ses antécédents (c’est-à-dire inlu et inru), [σ, τ] accepte de
jouer (δ2+δ0)(u′), c’est-à-dire que σ accepte de jouer δ2(u) et τ accepte de jouer
δ0(u). Le dernier foncteur ∑δ1 est le masquage : si on appelle τ l’image de σ,
alors τ accepte de jouer p si et seulement s’il existe une séquence d’interaction
u qui se projette sur p et est acceptée par σ.

Les stratégies copycat sont aussi définies comme des foncteurs polynomiaux.
On peut voir la stratégie copycat sur A comme un foncteur de 1 vers PA,A

Ȃ
.

Comme 1 ≅ ȂȂ, on peut la définir comme :

ȂȂ ∏!Ð→ PA
Ȃ ∑ι0ÐÐ→ PA,A
Ȃ

.

L’idée est que ∏! est le préfaisceau terminal sur PA, donc il accepte toutes les
parties sur PA, et ∑ι0(σ) accepte une partie p si et seulement si p est de la
forme ι0(p′) et σ accepte p′. Comme ι0 correspond typiquement à recopier ce
qui se passe sur une copie de A sur l’autre, la composée est bien la stratégie
copycat sur A : elle accepte de jouer p si et seulement si Joueur recopie tout ce
qu’Opposant fait.

Notre but est ensuite de montrer que les jeux et les stratégies forment une
catégorie dont la composition et les identités sont celles qu’on vient de définir,
ce qui signifie que la composition doit être associative et neutre pour les straté-
gies copycat. On prouve que c’est le cas sous certaines conditions. La condition
principale est inspirée de la méthode traditionnelle pour prouver que la compo-
sition des stratégies est associative, à savoir le lemme du zipping, qui dit que,
dans certains cas, si deux séquences d’interaction se projettent sur la même par-
tie, alors il existe une unique séquence d’interaction généralisée (une partie sur
quatre jeux) qui se projette sur ces deux séquences d’interaction.

275

Nous faisons tout ceci pour notre notion de stratégie concurrente et nous
voudrions obtenir les mêmes résultats pour les stratégies « traditionnelles »,
que l’on voit comme des foncteurs Pop

A,B → 2, où 2 est l’ordinale 0→ 1 vu comme
une catégorie. On dérive du fait que les jeux et stratégies concurrentes forment
une catégorie que c’est aussi le cas pour les jeux et stratégies traditionnelles.
On étudie également un certain nombre de modèles de jeux pour montrer qu’ils
rentrent dans ce cadre et que la composition des stratégies définie abstraitement
dans notre cadre correspond à la composition dans ces différents modèles.

Enfin, on s’attaque à la question de l’innocence. On suppose donnée une

sous-catégorie pleine VA,B
iA,BÐÐ→ PA,B de vues pour chaque catégorie PA,B . On

définit ensuite les stratégies innocentes comme les préfaisceaux dans l’image de

VA,B
Ȃ ∏iA,BÐÐÐ→ PA,B

Ȃ
. L’idée derrière cette définition est qu’un préfaisceau ∏iA,B

(σ)
accepte de jouer p si et seulement si, pour tout morphisme v → p d’une vue v
dans p, σ accepte de jouer v. Pour que cette définition soit la bonne, il faut que
PA,B contienne suffisamment de morphismes de parties (dans le cas des jeux
HON, il s’agit des morphismes donnés par Melliès [80], ensuite réutilisés par
Levy [73] puis Tsukada et Ong [96]). Un tel préfaisceau accepte de jouer une
partie p si et seulement s’il accepte de jouer toutes les vues de p, ce qui est
l’idée même de l’innocence. On souhaite montrer que les jeux et les stratégies
innocentes forment une sous-catégorie de la catégorie des jeux et stratégies, ce
que l’on fait en imposant que le modèle vérifie certaines propriétés.

Il est peut-être intéressant de voir quelles méthodes on utilise pour prouver
ce genre de résultat. Prenons par exemple la préservation de l’innocence, qui
dit que la composée de deux stratégies innocentes est encore innocente. Elle est
prouvée en étudiant le diagramme suivant. (Il n’est pas nécessaire de comprendre
ce diagramme.)

VA,B +VB,C V(A,B),(B,C) VA,B,C VA,C

VA,B +VB,C PA,B + PB,C P(A,B),(B,C) PA,B,C PA,C

∏

∏

∆ ∑

∏ ∏

∏ ∏ ∆ ∑

Remarquons d’abord que la question de savoir si le diagramme commute ou non
n’a aucun sens parce qu’il n’y a ni point de départ, ni point d’arrivée dans ce
diagramme. En revanche, quand on passe aux catégories de préfaisceaux (où
les ∆, ∑ et ∏ servent à dire quoi faire sur les foncteurs), les flèches étiquetées
∆ se retournent, et on peut se demander si le diagramme commute. Sur les
catégories de préfaisceaux, la ligne du bas correspond à prendre deux stratégies
innocentes et les composer, donc, si le diagramme commute, la composée de
deux stratégies innocentes est dans l’image de ∏iA,C

, et donc innocente. Dans le
diagramme entre catégories de préfaisceaux, le carré de gauche commute parce
que la carré sous-jacent commute et celui du milieu parce que le carré sous-jacent
est exact. Il ne nous reste donc qu’à montrer que le carré de droite commute,
ce qui est plus difficile. Quasiment toutes les preuves de ce chapitre suivent le
même schéma. On étudie le diagramme sous-jacent et

• pour les carrés faits seulement de ∆ (ou de ∏ ou de ∑), on montre que le
diagramme sous-jacent commute,

276

• pour les carrés de la forme

A B

C D

∏

∆ ∆

∏

A B

C D

∑

∆ ∆

∑

on montre que le carré est exact, ce qui montre que le carré entre catégories
de préfaisceaux commute à isomorphisme près,

• pour les carrés de la forme

A B

C D

∑

∏ ∏

∑

on doit utiliser des preuves plus complexes.

277

Abstract

Game semantics is a class of models of programming languages in which types
are interpreted as games and programs as strategies. Such game models have
successfully covered diverse features, such as functional and imperative pro-
gramming, or control operators. They have recently been extended to non-
deterministic and concurrent languages, which generated an in-depth recasting
of the standard approach: plays are now organised into a category, on which
strategies are presheaves. The fundamental notion of innocence has also been
recast as a sheaf condition. This thesis is a study of various constructions ap-
pearing in this new approach to game semantics.

We first consider a pattern common to several game models of concurrent
languages, in which games and plays are first organised into a double category,
from which strategies are then derived. We provide an abstract construction of
such a double category from more basic data, and prove that, under suitable
hypotheses, the result allows the construction of strategies.

Our second contribution is to relate two established techniques for defining
plays: the standard one, based on justified sequences, and a more recent one,
based on string diagrams. We (fully) embed the former into the latter and prove
that they induce essentially the same model.

Finally, we propose an axiomatisation of the notions of game and play, from
which we formally derive a category of games and strategies. We also refine
the axioms to deal with innocence, and prove that, under suitable hypotheses,
innocent strategies are stable under composition.

Résumé

La sémantique des jeux est une approche pour modéliser les langages de
programmation dans laquelle les types sont interprétés par des jeux et les pro-
grammes par des stratégies. Ces modèles de jeux ont couvert des constructions
fonctionnelles et impératives, des opérateurs de contrôle, etc. L’approche a ré-
cemment été étendue aux langages non-déterministes et concurrents, provoquant
au passage un changement de perspective profond : les parties sont maintenant
organisées en une catégorie, sur laquelle les stratégies sont des préfaisceaux. La
notion fondamentale d’innocence a aussi été caractérisée comme une condition
de faisceau. Cette thèse s’attache à l’étude de quelques constructions apparais-
sant dans ces nouveaux modèles de jeux.

D’abord, constatant que, dans plusieurs de ces modèles, l’étape cruciale con-
siste à définir une catégorie double de jeux et de parties, nous proposons une
construction abstraite d’une telle catégorie double à partir de données de base,
puis nous démontrons que, sous des hypothèses adéquates, le résultat obtenu
permet en effet la construction des stratégies.

Dans un second temps, nous établissons un lien entre deux techniques exis-
tantes pour définir les parties : la technique standard, fondée sur les séquences
justifiées, et une autre plus récente utilisant les diagrammes de cordes. Nous
définissons un plongement (plein) de la première dans la seconde et prouvons
qu’elles induisent essentiellement le même modèle.

Enfin, nous proposons une axiomatisation des notions de jeu et de partie, de
laquelle nous tirons une catégorie de jeux et stratégies. Nous raffinons ensuite les
axiomes pour traiter l’innocence et nous démontrons que, sous des hypothèses
adéquates, les stratégies innocentes sont stables par composition.

278

