
HAL Id: tel-02147610
https://theses.hal.science/tel-02147610

Submitted on 4 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visual SLAM for humanoid robot localization and
closed-loop control

Arnaud Tanguy

To cite this version:
Arnaud Tanguy. Visual SLAM for humanoid robot localization and closed-loop control. Micro and
nanotechnologies/Microelectronics. Université Montpellier, 2018. English. �NNT : 2018MONTS082�.
�tel-02147610�

https://theses.hal.science/tel-02147610
https://hal.archives-ouvertes.fr

Délivré par l’Université de Montpellier

Préparée au sein de l’école doctorale :

Information Structures Systèmes (I2S)

Et de l’unité de recherche :

Laboratoire d’Informatique, de Robotique
et de Microélectronique de Montpellier

Spécialité :

Systèmes Automatiques et Microélectroniques

Présentée par Arnaud TANGUY

Visual SLAM for humanoid

robot localization and

closed-loop control

Soutenue le 28 Novembre devant le jury composé de

M. Olivier Stasse Directeur de Recherche LAAS-CNRS Rapporteur

M. David Filliat Professeur ENSTA ParisTech Rapporteur

M. Phillippe Martinet Directeur de recherche INRIA Examinateur

Mme. Claire Dune Maître de conférences Université de Toulon Examinateur

M. Abderrahmane Kheddar Directeur de Recherche CNRS-UM LIRMM Directeur de thèse

M. Andrew Comport Chargé de Recherche CNRS-UM I3S Co-encadrant de thèse

Acknowledgements

I would like to thank all the people who have supported me, directly or indirectly, throughout

this endeavour.

First, comes my family, parents and sisters that have always been here for me. My

parents who have always pushed me to reach my best in all my endeavours, be it academic or

personal. My sisters, that I have somewhat neglected of late. Life is all about choices, and I

chose to pour every bit of energy that was not used in work leading up to the elaboration of

this manuscript, to my passion for climbing and mountaineering. Let this writing be both

an apology, and a reminder never to get so caught up in my own life as to neglect such as

important thing as family, seeing the nephews grow, visiting the Albatross, and much more.

Then my colleagues from I3S, LIRMM and JRL, without whom this experience would

not have been the same. Special thanks to Fernando, Myriana and Majdi, for being true

friends in-and-out of the lab. Special thanks to Stéphane Caron for his constant support and

helpful comments, Kevin for bearing with me1, to Pierre Gergondet without whom the DRC

would not have been possible and for the mc_rtc framework.

My climbing partners, Florian, Angelik, Marie-Doha, Antoine, Julien, Jerôme, Amandine

to name but a few, deserve a special place in this acknowledgement. Without them, I would

definitely have gone crazy. Or maybe I did? Let’s find out this winter!

I would also like to thank my professors for the four year we’ve spent together. Andrew

Comport for sparking my interest in SLAM and inspiring me to undertake this thesis, and for

always being there to support me afterwards. My thanks to you, Abder, for your patience and

capacity to let bygones be bygones, and always focus on what needs to be done. We haven’t

always understood each other, and that’s a shame, a lot would have gone smoother if we had.

Last, but not least, I would like to thank the members of the jury for accepting to share

their valuable time to evaluate this work.

11...2 robots? We need one more!

TITRE : SLAM visuel pour la localisation et la commande en boucle fermée de robots

humanoïdes
RÉSUMÉ :

Cette thèse traite du problème de localisation et contrôle de robots humanoïdes par

rapport à leur environnement, tel qu’observé par ses capteurs embarqués. Le SLAM visuel

dense, consistant en l’estimation simultanée d’une carte 3D de l’environnement et de la

position du robot dans cette carte est exploité pour étendre et robustifier les méthodes de

planification contrôle multi-contact. Celles-ci consistent à établir et exploiter des contacts

robot-environnement pour accomplir des tâches de locomotion et manipulation. Des incerti-

tudes sur la posture initiale du robot, ainsi que des perturbations causées par une modélisation

inadéquate des contacts, ainsi que des perturbations externes oblige à la prise en compte

de l’état du robot et son environnement. Une méthode de calibration corps-complet est

également proposée, afin d’obtenir une connaissance fiable de la chaîne cinématique du robot,

nécessaire pour réaliser de telles tâches. Finalement, une méthode de marche basée sur de

la commande prédictive de modèles est robustifiée par la prise en compte de large perturba-

tions, permettant d’ajuster les trajectoires de pied et du centre de masse afin de garantir sa

stabilité, tout en accomplissant les objectifs désirés. Les méthodes proposées sont illustrées

et validées par de multiples expérimentations sur les robots humanoïdes HRP-2Kai et HRP-4.

TITLE: Visual SLAM for humanoid robot localization and closed-loop control

ABSTRACT: This thesis deals with the problem of localizing and controlling humanoid

robots with respect to its environment, as observed by its on-board sensors. Dense visual

SLAM, consisting in the simultaneous estimation of a 3D map of the environment and of

the robot localization within that maps is exploited to extend and robustify multi-contact

planning and control. Establishing and exploiting robot-environment contacts allows the

accomplishment of both locomotion and manipulation tasks. Uncertainties in the initial

robot posture, and perturbations arising from improper contact-modelling and external causes

are accounted for by observing the state of the robot and its environment. A whole-body

calibration method is also proposed, so that robust knowledge of the robot’s kinematic

structure is known, a prerequisite to all robot-environment interaction tasks. Finally, a

walking method based on model predictive control is robustified by taking into account

large perturbations, and adjusting the footstep and center-of-mass trajectories accordingly

to guarantee stability while accomplishing desired objectives. Several experiments on an

HRP-2Kai and an HRP-4 humanoid robots are presented and discussed to illustrate and

validate each of the proposed methods.

Table of contents

Introduction 1

1 State of the art and motivations 11

1.1 Main aspects of Humanoid Robot control 12

1.1.1 Humanoid robot presentation . 12

1.1.2 Equations of Motion . 14

1.1.3 Dynamic Equilibrium . 18

1.1.4 Quadratic Programming Control 20

1.1.5 Multi-Contact Planning . 22

1.1.6 Model Precitive Control . 23

1.2 Foundations of RGB-D Pose Estimation 24

1.2.1 General overview of pose estimation 25

1.2.2 Obtaining RGB-D images . 28

1.2.3 Pose Estimation from RGB-D images 31

1.3 Keyframe-based Dense Visual SLAM . 35

1.3.1 Overview of the keyframe-based formulation 35

1.3.2 Tracking . 36

1.3.3 Keyframe-Graph . 37

1.3.4 Volumetric SLAM . 38

1.3.5 SLAM without a pose graph . 39

1.4 Towards SLAM in humanoid robotics . 39

2 Eye-Robot Autonomous Calibration 43

2.1 Introduction . 43

2.2 Related work . 46

2.3 Hand-Eye Calibration . 47

2.4 Eye-Robot Calibration of a Kinematic Chain 50

2.4.1 Eye-Joint Calibration . 50

vi Table of contents

2.4.2 Eye-Robot Calibration : Online Kinematic-chain Calibration 51

2.5 Calibration parameter observability . 53

2.5.1 Hand-Eye Observability . 53

2.5.2 Eye-Joint Observability . 56

2.5.3 Eye-Robot Observability . 57

2.6 Results . 57

2.6.1 Implementation . 58

2.6.2 Acquiring Calibration Data . 59

2.6.3 MOCAP-Xtion Calibration . 61

2.6.4 Head-Eye Calibration of HRP-4 63

2.6.5 Eye-Robot calibration of HRP-4 64

2.6.6 Discussion . 66

2.7 Conclusion and Future Work . 67

3 Multi-contact Planning and Control in a Real Environment 69

3.1 Registration of polygonal meshes with a keyframe-map 71

3.1.1 From mesh to pointcloud : uniform mesh sampling 72

3.1.2 From keyframe-map to pointcloud 74

3.2 Robust registration of 3D objects with dense visual SLAM 74

3.2.1 Initial Alignement . 74

3.2.2 Robustness of SLAM . 76

3.2.3 ICP Robustness . 80

3.3 Control w.r.t. to the Environment . 84

3.3.1 Multi-Contact Planning and Registration 84

3.3.2 Closed-loop End-Effector Control 85

3.4 Experiments and Results . 87

3.4.1 Walking phase . 87

3.4.2 Valve . 87

3.4.3 Steering Wheel . 89

3.4.4 Stairs climbing . 89

3.5 Conclusion . 91

4 Closed-loop MPC with Dense Visual SLAM - Stability through Reactive Step-

ping 93

4.1 Introduction and state-of-the-art . 94

4.2 MPC-based gait generation . 96

4.2.1 Cost Function . 97

Table of contents vii

4.2.2 Constraints . 97

4.3 Closed-Loop MPC . 98

4.3.1 Estimation of the floating base . 98

4.3.2 CoM State . 102

4.3.3 ZMP State . 102

4.3.4 Computing the MPC from its estimated state 103

4.3.5 Choice of footstep . 104

4.3.6 Quadratic Programming Controller 104

4.4 Experiments . 105

4.4.1 Stabilization . 106

4.4.2 Drift-free Cartesian space control 107

4.4.3 Push reaction . 111

4.5 Towards walking in uncontrolled environments 112

4.6 Conclusion . 113

Conclusion 115

Appendix A Non-Linear Least Square Minimization on the Lie Algebra 119

A.1 Non-Linear Least Square Minimization 119

A.1.1 Solving M-Estimator with Iteratively Reweighted Least-Square . . 120

A.2 Optimization on the special euclidean manifold 122

A.2.1 Special Euclidean Group . 122

A.2.2 Special euclidean algebra . 123

A.2.3 Derivatives on the special euclidean algebra 124

Appendix B Iterative Closest Point 127

B.1 Common ICP Formulations . 128

B.1.1 Point to Plane ICP . 129

Appendix C List of software 131

References 135

Personal papers 145

List of figures 147

List of tables 149

viii Table of contents

Liste des symboles 151

Introduction

Human beings are extremely proficient in interacting with their environment, and can easily

adapt to any situation. Locomotion and manipulation are both achieved by applying forces at

contact points between the body and the environment, and we are extremely good at it. One

of the best examples for this, from my personal experience, is to look at an Alpinist evolving

in a mountain environment, where you will find all the most complex of scenarios.

The image above shows three representative examples: the first, is climbing down a set

of dozens of ladders leading to the Glacier d’Argentière in the French Alps; the second is

negotiating a narrow rock ridge-line; the third is climbing a steep overhanging wall with

ice-climbing tools. To achieve any of these scenarios, one needs to establish contacts between

parts of the body and suitable surfaces within the environment, figure out the best body

position for stability, how much force to apply, and so on. As humans, we are able to do this

seemingly intuitively, endowing us with the capability to accomplish almost any conceivable

action. This impressive ability to interact with any environment has been a considerable

source of inspiration in the development of humanoid robots. Not contempt with being

designed to look and move like us, with significantly similar degrees of freedom and a

kinematic structure mimicking ours (legs and arms attached to a waist and torso), they also

attempt to replicate our main senses (vision, force sensing, proprioception, etc). The intuition

is that the kinematic and sensory attributes of human beings are extremely well adapted to the

accomplishment of any task within the environment, and that a robot with similar capabilities

2 Introduction

could one day achieve similar feats. A legitimate question is raised : why build a robot to

perform tasks that humans are already capable of?

Several applications are envisioned for humanoid robots: rescue and intervention in

disaster situations (detailed hereafter); home service companions to assist frail and ageing

people2 ; collaborative workers (i.e. as cobots termed “comanoids”) in large manufacturing

assembly plants3 where wheeled and rail-ported robots cannot be used (e.g. aircrafts and

shipyards); amongst other applications.

In rescue and intervention in disaster scenarios, robots are envisioned to replace hu-

mans in hazardous conditions. A strong case for humanoids was made in 2011, when a

magnitude 9 earthquake and subsequent tsunami laid waste to Japan. Besides the expected

devastation, a catastrophic explosion occurred at Fukushima Daiichi’s nuclear power plant,

followed by massive radioactive leaks preventing workers from accessing the area to mitigate

consequences of the disaster. Humans, being unable to access the area, the work had to

be attempted by robots instead, in a complex environment initially designed for humans.

Staircases, ladders, doors, valves, rubble and damaged floors, and so many more challenges

to be expected! Not surprisingly, traditional wheeled robots performed very poorly, and none

came close to successfully accomplishing any tasks.

At the time, humanoid robots were not ready yet to face such real challenges, and in

an effort to encourage further development of humanoid robotics in facing such scenarios,

the DARPA Robotics Challenge4 (DRC) was created. It invited the robotics community to

face eight challenging tasks back-to-back, without any safety tether for the robots, and thus

substantial material risks in case of failure. Those tasks were, in order:

1. Driving a car through a simple track,

2. Getting out of the car (egress),

3. Walking to a door and opening it,

4. Walking to a valve and rotating it by 360 degrees,

5. Walking to a wall, picking up a drill and cutting out a large square window to reach

objects behind it,

6. Walking to a "surprise" tasks. In practice it either consisted in opening a box and

pushing a button, or unplugging and re-plugging an industrial cable,

2https://projetromeo.com
3www.comanoid.eu
4https://www.darpa.mil

Introduction 3

7. Walking through, or clearing a rubble field,

8. Climbing up a set of stairs (with a handrail).

Fig. 1 DRC Tasks performed by IHMC Team [Johnson et al., 2015]

The challenge highlighted the strengths and weaknesses of humanoid robots. It demons-

trated that robots with human-like morphology are well-suited for the tasks, as some of them

managed to complete all the tasks. However, it also highlighted that humanoids are not yet

ready to autonomously face the challenge presented with performing tasks in uncontrolled

environments. The DARPA Robotics Challenge test field (Figure 1) was nowhere near being

as challenging as a real environment would be. The ground was clear of debris, the obstacles

far apart, overall a very controlled environment; and the teams had months of experience in

trying the various tasks at hand. Still, only 3 out of 23 teams managed to complete all the

tasks, and only a single team managed to perform the whole challenge without their robot

falling over. Over the course of the challenge, most robots had some dramatic failure due to (i)

errors in localization and perception of the environment, and (ii) lack of suitable stabilization,

and (iii) human errors, or simply (iv) programming errors (bugs). A comprehensive review

of what went wrong during the challenge was compiled by Atkeson [2015].

In my personal experience as part of team AIST-NEDO [Cisneros et al., 2015] (ranked

10th out of 23 teams, with 5/8 tasks completed), the main limiting factor across all teams was

4 Introduction

the lack of experience in taking into account the state of the robot w.r.t. to its environment

into the control strategies. At the perception level, such estimation was far from mastered,

and most teams were relying on ad-hoc perception methods. In the case of team AIST-NEDO,

the HRP-2Kai humanoid robot used during the challenge had been fitted with a 2D laser

range finder (LRF), used to obtain thee dimensional measurements of the environment in

front of the robot by performing a head-scan motion from a static posture and localizing

itself once w.r.t. to that environment. Sitting amongst the non-expert audience watching the

challenge live, one could hear legitimate questioning

– Why is it so slow? What is it doing?

– Oh look it’s moving now... wait, why did it stop? What is it thinking?

– Oh look at that one with the cute ears?

People truly related, they got exited when the robot succeeded, felt empathy when it failed.

Yet, the recurring conversation was wonder at what could be taking them so long to perform

such simple looking tasks? And with reason. Imagine a human having to stop, stay still,

move its head up and down to figure out where he is and what he’s looking at, and then

closing his eyes and performing the task blindly. Not really a natural and robust way of

achieving complex tasks, is it not? This is exactly what was done during the DRC, by our

team, and many others, and a very, very long time was spent doing it.

This lack of perception could also be found at control level. Most robots in the challenge

fell at least once, and none had an appropriate reaction - if any - to these falls. In our team,

after successfully walking over the debris field our robot simply slowly toppled over on the

last step. It did not attempt to regain balance, which could easily have been achieved by using

the arms to apply some momentum to the body, or simply taking a small step to recover from

the perturbation. It was later determined that the failure occurred due to a mis-estimation

of the step height by about 4cm. Many more examples of such failures could be cited, and

mocking videos of robots failing have even been compiled5.

In recent years, dense visual Simultaneous Localization and Mapping (SLAM) methods

have gained considerable maturity. Based only on data obtained with vision sensors (such as

color and depth cameras), they simultaneously track the sensor motion, and reconstruct a

3D-representation (map) of the observed environment at sensor rate (typically around 30Hz).

Modern methods such as those developed by Audras et al. [2011], Meilland et Comport

[2013a] and Whelan et al. [2012, 2015b] have proved themselves both in terms of robustness

and precision, but haven’t yet been fully exploited in the context of humanoid robot control.

Yet offering both 6D-localization (position and rotation), and three dimensional maps, it

5Video compilation of DRC failures:https://youtu.be/g0TaYhjpOfo

Introduction 5

has the potential to answer the fundamental question that is preventing robots from robustly

interacting with the world, and will constitute the main focus of this thesis.

How can a humanoid robot be controlled with respect to its observed environment?

6 Introduction

Objective The DARPA Robotics Challenge exposed a clear lack of expertise in (i) per-

ceiving the environment in which the robot evolves, (ii) localizing the robot w.r.t. to that

environment, and (iii) exploiting this information to inform control strategies. This thesis

aims at exploring all three aspects by exploiting the capabilities of dense Visual SLAM

algorithms to devise a complete whole-body control framework that accounts for the state of

the robot in its environment. An overview of this framework is provided below (Figure 2),

and its main components will be detailed throughout this thesis.

Fig. 2 Overview of the closed-loop control framework: from a desired goal and 3D models, a
multi-contact planner generates a plan with feasible contacts and associated robot posture.
A Finite State Machine (FSM) is generated to handle the set of constraints and tasks of an
online Quadratic Programming (QP) controller that computes actuator commands qd that
drive a humanoid robot to accomplish desired tasks. The map obtained from SLAM is used to
relate the 3D models with the real environment through registration, while its pose estimates
are used to estimate the full state of the robot, and close the control loop.

Introduction 7

Contributions and plan The main focus of this thesis is the formulation of a closed-loop

approach to humanoid robot control, where Simultaneous Localization and Mapping is used

to perceive the environment and estimate the state of the robot w.r.t. that environment.

• Chapter 1 provides an overview of the state-of-the-art in both humanoid robot control,

and dense visual SLAM algorithms. The importance of taking into account the state

of the robot within its environment, and how it can be incorporated in the traditional

control methods for humanoid robots is further explored.

• Chapter 2 highlights the importance of kinematic-chain calibration to precisely know

the location of any surface on the robot, including its RGB-D sensor. For robust

operation, especially in challenging environments, such calibration procedure should

not require any human intervention, nor any calibration apparatus (printed checker-

board patterns, etc). This is particularly important if we wish to one day have humanoid

robots that can intervene anywhere, and are likely to get damaged in the process. Such

damages are not hypothetical, as the work of Samy et Kheddar [2015], where an

HRP-4 humanoid robot was pushed to investigate strategies for reducing the impact

of the fall. This experiment resulted in damages in the elbow mechanical structure,

far too weak to sustain fall impacts. Both of our robots HRP-4 and HRP-2Kai also

sustained damages during experiments: one caused by the rope-safety mechanism,

where the rope broke the mechanical binding for the camera (Figure 2.1), the other

where HRP-2Kai neck was bent as a result of a collision. In the last two examples, the

damage is particularly impacting, as the transformation between the RGB-D sensor

itself and the robot becomes inaccurate, which affects the localization of all of the

robot links within the environment.

A novel whole-body calibration method was envisioned, to autonomously calibrate

the robot’s kinematic chain online, without requiring any calibration apparatus. The

proposed method relies solely on sensors widely available on any humanoid robot.

Robot motion, acquired from optical joint encoders and dense visual SLAM tracking

of the RGB-D sensor images is used as input to our calibration procedure.

• Chapter 3 considers how complex multi-contact plans generated offline on CAD

models can be successfully executed w.r.t. an environment reconstructed with SLAM.

It is shown that the initial robot state w.r.t. to the environment does not need to be the

one considered during the offline planning phase, and that contacts can robustly be

achieved with a simple task-space closed-loop control of the robot end-effectors, even

under perturbations. Experiments with HRP-2Kai on complex multi-contact plans are

8 Introduction

shown, including walking towards and interacting with an industrial valve, grasping

the wheel of the DRC vehicle, and grasping a staircase handrail.

• Chapter 4 explores dynamic walking. A closed-loop model predictive controller (MPC)

is formulated, and SLAM is exploited to regulate a Cartesian-space controller and make

the robot walk to desired location. The MPC is computed from an estimated state of the

robot obtained with both SLAM and force-torque sensor measurements, and its ability

to react to strong perturbations by altering its footstep and associated center-of-mass

trajectory.

• The conclusion summarizes the main contributions introduced in this manuscript, and

provides perspectives for future improvements.

Fig. 3 Example of multi-contact control experiments with HRP-2Kai and dense visual SLAM.

The work presented in this thesis have been presented in the following peer-reviewed

publications:

• Online Eye-Robot Calibration [SIMPAR 2018] [Tanguy et al., 2018b] covering the

novel Robot-Eye calibration presented in Chapter 2.

Introduction 9

• Closed-Loop RGB-D SLAM Multi-Contact Control for Humanoid Robots [SII

2016] [Tanguy et al., 2016] covering the use of multi-contact plans and closed-loop

control w.r.t. the environment using dense visual SLAM, and is reported in Chapter 3.

• Closed-loop MPC with Dense Visual SLAM - Stability through Reactive Step-

ping [ICRA 2018, submitted] [Tanguy et al., 2018a] covering the work on closed-loop

model predictive control presented in Chapter 4. The work was carried out in close

collaboration with Daniele De Simone (Sapienza University of Rome, DIAG, Italy).

In addition to these contributions, and in order to increase the usefulness and reach of

this work, the methods developed in this thesis are made available as open-source software

whenever possible. See Appendix C for details about published software.

Chapter 1

State of the art and motivations

Humanoid robots are intended to imitate human capabilities. Doing so requires perception to

observe the environment, planning to decide how to best achieve a task in that environment,

and robot action to realize the planned task. Consequently, a high-level representation of any

robot controller can be depicted as

Perception Planning Action
Environment

Robot State
Control

Feedback Loop

Perception Humanoid robots can in general move in all directions of space, and interact

with three dimensional objects. As such, a truly autonomous robot should have

the capability to observe a 3D-map of its surroundings, and know its position and

orientation within that map at all time. To do so, it must rely solely on its on-board

sensors. Most humanoid robots are fitted with at least (i) a vision sensor (camera,

RBB-D sensor, stereo pair, LIDAR, etc), (ii) force-torque sensors, (iii) joint encoders,

and (iv) inertial measurements. Consequently this thesis focuses on methods able to

provide this information from the available sensors. In particular, visual Simultaneous

Localization and Mapping (VSLAM) methods have reached a high degree of maturity,

making them highly suited for that purpose.

Planning Humanoid robots are complex systems, with many redundant degrees of freedom,

and finding how to make them interact with their environment to accomplish desired

tasks is not a trivial problem. Common planning methods will be reviewed here,

including multi-contact planning (e.g. finding contact surfaces and associated postures

that move the robot from one configuration to another), and model predictive control

12 State of the art and motivations

(MPC) (planning trajectory over a future timespan based on some simplified model of

the system).

Control Planning is seen here as a higher level framework that generates reference actions

to be realized by a robot, such as attempting to respect a given whole-body posture,

while keeping it’s center of mass (CoM) at a desired position and moving one of

its end-effectors to a desired location. These are high-level commands, that need to

be tracked by a local controller that generates suitable actuator commands to track

these reference actions, while respecting additional constraints, such as kinematic and

dynamic feasibility, limits on generated torques, etc. In this thesis, we consider in

particular an acceleration-based Quadratic Programming (QP) controller.

Action Desired references generated by the controller are then followed by the system that

is being controlled. This might be a humanoid robot in its real physical environment,

or any kind of simulation of such a system. The important point to note here, is

that this system will not necessarily perfectly achieve the desired state asked by the

controller. Discrepancies can arise due to un-modelled effects, improper contact

modelling, external perturbations, etc.

Feedback Loop The role of a feedback loop is to observe the action of the robot system, and

use this knowledge to alter the control law in such a way that it achieves its desired task.

In practical robot systems, feedback loops are everywhere, from high-level reasoning

to low-level actuator control.

These main components will now be reviewed individually in greater detail, before

considering where and how Simultaneous Localization and Mapping can be used to improve

upon the existing control schemes.

1.1 Main aspects of Humanoid Robot control

Humanoid robots are very complex systems, and controlling them is not an easy task. In

this section, we will review the main aspects of humanoid robots, and what makes them so

special and complex to control.

1.1.1 Humanoid robot presentation

Humanoid robots are human-size and human-shaped robots. That is, they have similar limb

structure, e.g. two legs and two arms attached to a waist and torso respectively. These limbs

1.1 Main aspects of Humanoid Robot control 13

are connected by joints (actuated or passive), providing them with similar degrees of freedom

as we humans have. The word similar has an importance here, as due to limits in mechanical

joints and actuator design, their kinematic capabilities tend to be much less flexible than

that provided by human joints. The humanoid robots HRP-4 [Kaneko et al., 2011] and

HRP-2Kai [Kaneko et al., 2015] (standing for Humanoid Robot Project), both constructed

by the Japanese company Kawada Industries1 are used for most experiments performed in

this thesis. Both robots have a similar kinematic structure, as depicted in Figure 1.1 and 1.2.

HRP-4 has 32 actuated degrees of freedom, plus passive cable actuation in the fingers that

are closed together with a single actuator. It is electrically actuated, and uses Harmonic Drive

technology for transmission, which provides back-drivable high-reduction transmission with

no backlash. HRP-2Kai has similar characteristics, and details can be found in Kaneko et al.

[2015].

Fig. 1.1 HRP-4 kinematic structure. Orange cylinders represent joints around which robot
links move. On HRP-4, all main joints are revolute joints, fingers are a passive cable
mechanism.

Both HRP-4 and HRP-2Kai robots are fitted with a passive shock-absorbing rubber bush

between its sole and a force-torque sensor attached under its ankle joint [Kanehira et al.,

1http://global.kawada.jp/

14 State of the art and motivations

2002]. Its role is two-fold, (i) it protects the force sensor from high impacts that are likely

to occur as the robot is stepping, and (ii) it provides passive compliance while walking,

increasing the robustness of its interaction with the environment. However, as will be later

seen in this thesis, this mechanism also increases the complexity of control, and in particular

the estimation of the robot state. While this particular mechanism is specific to HRP robots,

similar method have been employed by other manufacturers, such as

Fig. 1.2 Passive foot mechanism on HRP-2. Figures from [Kajita et al., 2014, Sec 3.2.2] and
Benallegue et Lamiraux [2015]

1.1.2 Equations of Motion

No work on humanoid robotics would be complete without citing the standard equations

governing the motion of a humanoid robot. The presentation here is largely inspired by the

excellent tutorial by Caron [2018]. Another excellent reference is that of Wieber [2005]. The

equations themselves can be found in any robotics handbooks such as Kajita et al. [2014]

and Featherstone [2014] to cite but a few. They are derived from Newtonian and Lagrangian

mechanisms and describe the motion of a physical system as a function of time and controls.

In their most general form, they are written

F(q(t), q̇(t), q̈(t),uuu(t), t) = 0, (1.1)

where

• t is the time variable,

• q is the vector of generalized coordinates, for instance the vector of joint-angles,

• q̇ is the first time-derivative (velocity) of q,

• q̈ is the second time-derivative (acceleration) of q,

• uuu is the vector of control inputs.

1.1 Main aspects of Humanoid Robot control 15

These equations provide a mapping between the control space (the commands that are

sent to actuators, often referred to as joint space) and the state space of the robot (what we

want to control in practice: the robot’s position and velocity).

Case of manipulators

Manipulators are a particular type of articulated system where at least one link is fixed to the

environment. The fixation is assumed to be strong enough to withstand any effort exerted on

it. Under these assumptions, the equations of motion for a manipulator can be written

MMM(q) q̈+ q̇⊤CCC(q) q̇+ggg(q) = τττ, (1.2)

where, denoting by n = dim(q) the degree of freedom of the robot,

• MMM(q) the n×n inertia matrix,

• CCC(q) the n×n×n Coriolis tensor,

• ggg(q) the n-dimensional gravity vector,

• τττ the n-dimensional vector of actuated torques.

This equation is typically used to represent how the system, starting from a state (q, q̇), reacts

under an applied torque τττ (control).

Case of humanoid robots

We now enter the heart of what makes humanoid robot control so special. Contrary to

manipulators, humanoid robots are under-actuated systems, meaning that some of their

degrees of freedom cannot be controlled directly in the control space. They can make

and break contact with the environment, and through these interactions influence how their

body is moved through space. A reference frame, often referred to as floating base and

occasionally base link, is chosen on the humanoid body (typically its waist), which represents

its configuration in space. This adds 6 unactuated degrees of freedom to fully describe the

position and orientation of the robot in space. A robot with n degrees of freedom is fully

described by q ∈ R
n+6, and the vector of actuated torques is still τ ∈ R

n. The position

and orientation of any other link can be obtained by forward kinematics of its joint space

configuration.

These 6 unactuated degrees of freedom are central to what makes humanoid control

so complex. Its state is entirely dependent on physical interaction with the environment,

16 State of the art and motivations

occurring through forces applied at contact points, and subject to gravity. This has several

implications.

The first implies that, its state cannot be reliably obtained by only considering the control

inputs. Assuming the robot-environment link to be established perfectly as expected, a

forward-kinematics algorithm Featherstone [2014] along with the position and orientation

of contacts can be used to obtain its configuration. Unfortunately, in general, inaccuracies

arising from improper modelling of the physical interactions at contact points, along with

external perturbations will cause it to drift away from it’s desired control. If left unaccounted

for, this drift quickly accumulates, and may lead to disastrous effects, such as the robot

falling. To prevent this, it’s state needs to be estimated, and carefully taken into account,

which will be later reviewed (see Section 4.2).

The second has a strong implication on how humanoid robots are controlled. Since its

floating base degrees of freedom can only be controlled through contact forces applied onto

the environment, they need to be carefully modelled. A good overview of contact mechanics

and their modelling is provided in Abe et al. [2007], where the problem of generating

dynamically consistent motions for computer graphics avatars is considered.

Fig. 1.3 Illustration of environment-contact interactions and constraints with friction-cones
(Figure [Abe et al., 2007])

Point contacts and contact forces Contacts with the environment can be seen as constraints

between each point pCi
on the robot in contact with a corresponding point pDi

in the envi-

ronment. For non-slipping contacts, this constraint expresses kinematically : each robot-

environment contact point is fixed, that is pCi
(q) = pDi

. This also implies constraints on each

1.1 Main aspects of Humanoid Robot control 17

point’s velocity and acceleration

ṗCi
= 0 ⇔ JJJCi

q̇ = 000

p̈Ci
= 0 ⇔ JJJCi

q̈+ q̇⊤HHHC q̇ = 000
,

where JJJCi
and HHHC are respectively the Jacobian and Hessian of the position vector pppCi

(q).

A point contact yields a contact interaction force fff i that prevents geometric overlap

between the robot and environment surfaces (assuming rigid surfaces). This interaction force

is not arbitrary. To respect the non-slipping contact assumption, the contact force is restricted

by the Coulomb friction model, that restricts the tangential component of the force, such that

|| fff i
t || ≤ µ fff i

n, where µ > 0 is a positive coefficient of friction that depends on the material

properties of the surfaces in contact. Furthermore, a contact force does not pull on the body

in case of separation (unilateral contact), which implies that its normal component must be

positive fff i
n ≥ 0. These limits are commonly represented as a friction cone Ki that restricts

the direction and magnitude of the contact force

fff i ∈ Ki =
{

xxx
∣∣ ||xxxt || ≤ µxxxn

}
(1.3)

By the principle of virtual work [Spong et Vidyasagar, 2004, p. 272], a linear map JJJ⊤Ci
fff i

determines the contribution of each contact point to the joint torque. Thus, assuming the

humanoid is making N point contacts C1, . . . ,CN with the environment, their equations of

motion become

MMM(q) q̈+ q̇⊤CCC(q) q̇+ggg(q) = SSS⊤τττ +
N

∑
i=1

JJJ⊤Ci
fff i, (1.4)

where

• SSS is the n(n+6) matrix that selects the n actuated coordinates in q. If the six floating

base coordinates are the first entries of q then SSS = [6×n, IIIn]. This convention will be

followed throughout this thesis.

• JJJCi
is Jacobian of the position vector (in the inertial frame) pppCi

(q) of a contact point

Ci.

• fff i is the contact force exerted by the environment on the robot at the contact point Ci.

Contact points Ci are taken at the interface between robot links and the environment. In

the case of surface contacts, when a robot’s surface is in full contact with an environment

surface (such as a foot on the floor), it is sufficient to take Ci’s at the vertices of the contact

polygon [Caron et al., 2015].

18 State of the art and motivations

Surface contacts and contact wrenches A similar representation can be obtained for

surface contacts (such as a flat foot on the floor). Kinematically, this is expressed by the

equality

DTTTC(q) = III4,

where DTTTC is the transform matrix between a robot’s frame with origin at C and an inertial

frame with origin at D [4]. It binds velocities and accelerations as well by

∂
∂ t

DTTTC = 0004×4 ⇔ JJJC q̇ = 000
∂

∂ t2
DTTTC = 0004×4 ⇔ q̈+ q̇⊤HHHC q̇ = 000

(1.5)

where JJJC is the manipulator Jacobian of the contact frame rooted at C, obtained by stacking

• the rotational Jacobian of the contacting link, i.e., the matrix Jrot such that the rotational

velocity ω of the link satisfies ω = JJJrot q̇

• the linear Jacobian JJJC, i.e., the matrix such that the linear velocity ṗC satisfies ṗC = JJJC q̇

Under frame contact constraints, the equations of motion become

MMM(q) q̈+ q̇⊤CCC(q) q̇+ggg(q) = SSS⊤τττ +
N

∑
i=1

JJJ⊤Ci
ωωωCi

, (1.6)

where ωωωCi
=

[
τττCi

fff i

]
is the contact wrench exerted by the environment on the robot at the

link i to which Ci belongs. See [Featherstone, 2014, Chapter 2] for an excellent introduction

to wrenches and, more generally, to spatial vector algebra.

1.1.3 Dynamic Equilibrium

Conservation of momentum dictates that the total sum of contact forces equals the total

change in linear and angular momentum. In the absence of contact forces, it is impossible

for an active body to control the location of its center of mass (CoM).

1.1 Main aspects of Humanoid Robot control 19

Fig. 1.4 Illustration of the interaction between forces acting on a humanoid robot and its
linear and angular momentum (Figure [Caron, 2018])

For a given link i, we write

• mi and Gi its mass and center of mass (CoM), respectively

• Ri its orientation matrix in the absolute frame;

• ωi its angular velocity in the link frame;

• Ii its inertia matrix in the link frame.

• m is the total mass of the robot.

The linear momentum PPPG and angular momentum LG of the system, taken at the CoM G, are

defined by:

PPPG =
1
m

∑
link k

mi ṗGi
(1.7)

LLLG = ∑
link i

mi
~GGi× ṗGi

+RRRiI
l
iω

l
i (1.8)

The fundamental principle of dynamics states that the dynamic wrench of the robot is equal

to the total wrench of forces acting on the system, that is

[
ṖPPG

L̇LLG

]
=

[
ḟff g

000

]
+ ∑

contact i

[
fff c

i

~GCi× fff c
i

]
(1.9)

20 State of the art and motivations

where fff g denotes the gravity force and fff c
i is the contact force exerted by the environment on

the robot at Ci . This equation is also called dynamic balance or the dynamic equilibrium of

the system. It can correspond to the six unactuated components in the equations of motion of

the system (robot + environment) [Wieber, 2005].

1.1.4 Quadratic Programming Control

The equations of motion (1.6) along with the dynamic equilibrium (1.9) constrain how

the humanoid robot moves dynamically under contact constraints, and how joint torques

are affected by contact forces. Controlling the robot now consists in finding a suitable

configuration for the actuated degrees of freedom qqqn−6 that achieves a desired behaviour

of the robot under those physical constraints (such as moving an end-effector to a specific

Cartesian position, while maintaining balance). To do so, it is common to solve a quadratic

programming optimization problem [Abe et al., 2007; Bouyarmane et Kheddar, 2011b], etc.

After giving a brief review of quadratic programming, we will see why it is so well-suited for

the control of humanoid robots, and how it can be exploited to do so.

A quadratic program can be written in standard form as the following minimization

problem
minimize 1

2xxx⊤QQQxxx+ ccc⊤xxx

subject to GGGxxx≤ hhh inequatlity constraints

AAAxxx = bbb equality constraints

(1.10)

Here, xxx is the vector of optimization variables x1, . . . ,xn. The matrix QQQ and vector ccc are used

to define any quadratic objective function on these variables, while the matrix-vector couples

(GGG,hhh) and (AAA,bbb) are used to define inequality and equality constraints, respectively. Vector

inequalities apply coordinate by coordinate. In the case where QQQ is positive definite, the

problem is a special case of the more general field of convex optimization, and can be solved

efficiently. This enables its use to formulate a dynamically consistent whole-body controller

in the context of humanoid robots, or simulated avatars.

We hereby consider the special case of an acceleration-based QP controller, in which

the minimization vector xxx represents the desired joint accelerations q̈ that cause the robot to

move according to a set of quadratic cost functions ggg(i), while respecting (1.6,1.9). Quadratic

objectives regulate the values of kinematic quantities xxxK(q) by choosing their accelerations

ẍxxK(q) at each time step. The value of each objective ggg(i) measures the difference between

the current q̈ and the desired q̈d acceleration

ggg(i) = || q̈− q̈d ||= ||JJJ
(i) q̈+J̇JJ

(i)
q̇− q̈(i)

d ||, (1.11)

1.1 Main aspects of Humanoid Robot control 21

where the Jacobian JJJ(i) describes the linear relationship between joint velocities and the

velocities of regulated kinematic quantities

ẋxxK = J(i) q̇

Specificities of the QP formulation used in this thesis Throughout this thesis, the weigh-

ted quadratic programming controller formulation of Bouyarmane et Kheddar [2011a] will

be used. Further details and task definitions can be found in Vaillant et al. [2016] along with

Joris Vaillant’s thesis. The overall whole-body QP controller can be summed up as follows:

z = argmin
z

N

∑
i=1

wi‖Ti(q, q̇, q̈)‖2 +wλ‖λλλ‖
2

subject to:

1) dynamic constraints (1.6,1.9)

2) sustained contact positions (1.5,1.3)

3) joint limits

4) non-desired collision avoidance constraints

5) self-collision avoidance constraints

(1.12)

The QP decision vector is z = (q̈,λλλ), where q̈ gathers the linear and angular acceleration

of floating-base coordinates and the generalized joint velocities. Meanwhile, λλλ denotes the

vector of conic coordinates of linearised Coulomb friction cones, such that the contact forces f

are equal to S f λλλ with S f the span matrix of cone generators. To actuate a position-controlled

humanoid robot, such as HRP-4, these desired joint accelerations can then be integrated

twice to obtain qD. This desired position is then tracked by a proportional-derivative (PD)

controller on joint encoder values.

Here Ti denotes the residual (difference between actual and desired values) for task i.

Each task is given a relative importance by its weight wi. In case of conflicting objective the

overall motion might not be the expected one, as some of the tasks will fail to converge to

their final objective. Another approach consists in using a strict hierarchy with equality or

inequality constraints, then solved with a hierarchical QP [Escande et al., 2014; Mansard

et al., 2009]. Constraints however always take precedence over task objectives, and will be

respected. Tasks commonly used include

• A posture task Tposture that steers the joint configuration from its current value qn−6 to

a desired configuration qn−6
d .

22 State of the art and motivations

• A CoM task TCoM that steers the robot CoM towards a desired position.

• A surface transform Tsurface task that steers a robot surface towards another one.

• other tasks Tothers

In what follows, tasks are often defined as set-point objective tasks; defined by their associated

task-error εεε i so that Ti = Kpi
εεε i +Kvi

ε̇εε i + ε̈εε i for some stiffness and damping matrices Kpi

and Kvi
, respectively.

Such quadratic programming controllers are by nature local. They express feasible

motions of the whole-body that respect contact constraints (zero velocity at contact points,

and forces within the friction cone) and dynamic equations of motion, while trying to achieve

specified tasks. As such, a QP controller is rarely used alone, and its role is commonly to

track higher level actions, by generating feasible whole-body motions. In the next section,

we will explore how multi-contact planning can be used in conjunction with QP control to

achieve complex tasks.

1.1.5 Multi-Contact Planning

Multi-contact planning unifies locomotion and manipulation in a single framework: moving

an end-effector towards or away from a contact enables locomotion, applying forces on fixed

contacts allows control of the robot’s floating base, while moving by keeping contact with a

mobile part of the environment allows for manipulation. A general multi-contact planning

framework includes two main components: a contact explorer, and a posture generator. The

first finds suitable contacts surfaces in the environment that the robot can use to move towards

its objective. The second, given these available contacts generates statically-stable postures

that respect robot constraints (such as joint and torque limits). By repeatedly establishing

and breaking contacts, the robot is then able to move to its objective.

Since early work in Bretl [2006], two promiment multi-contact planning approaches

have emerged. In Bouyarmane et al. [2012]; Escande et Kheddar [2009] focuses on physical

accuracy, respecting torque limits, collision avoidance, physical plausibility, equilibrium,

etc. The planner generates a sequence of contacts, along with statically-stable postures that

respect the physical constraints imposed. While this formulation allows impressive results,

such as the vertical ladder climbing with HRP-2 achieved in Vaillant et al. [2016], it comes at

the cost of computational efficiency, which is prohibitive for online planning. Furthermore,

practical experience in a wide variety of scenarios (such as DRC tasks) has shown that the

plans obtained were in practice rarely applicable without significant manual-tuning.

1.1 Main aspects of Humanoid Robot control 23

Fig. 1.5 Illustration of multi-contact planning [Carpentier et al., 2016]

Another recent approach is that of Carpentier et al. [2016], where the focus was instead

placed on computational accuracy, at the expense of physical accuracy. In the approach,

a guide trajectory is first computed by considering a simplified model of the robot, with

it’s body (waist and torso) represented as a cylinder while it’s end-effector reachability is

represented with a larger cylinder. This allows to compute efficiently a guide CoM trajectory,

along which contacts are sampled [Tonneau et al., 2018], and suitable postures generated

(see Figure 1.5). The whole planning process runs at interactive rate, allowing its use with

Model Predictive Control (detailed in Section 4.2).

1.1.6 Model Precitive Control

Model Predictive Control (MPC), sometimes called Preview Controller, is a widely used

optimization method that computes future states of a dynamical system under a set of costs

and constraints. In essence, it enables to look for physically feasible actions that will drive

the robot from one state to another. For this reason, Model Predictive Control has been

widely used to model dynamic walking of humanoid robots. With a suitable model of its

dynamics, an MPC can be formulated to compute trajectories of the robot’s CoM that are

compatible with its footstep placement (in the sense that the robot does not fall). Being able

to predict and influence the dynamics of a whole-body humanoid over a large time could be

considered as the Holy Grail of humanoid robotics: it would unify planning and control into

the same framework, and provide with the ability to plan whole-body dynamic trajectories.

Unfortunately, the dynamics of a humanoid robot are very complex, and computing the

evolution of such a system in real-time is a challenging problem. Chretien et al. [2016]

attempted to improve the speed of whole-body dynamic computation (Equation 1.6) so that

it can be itself used a whole-body preview controller. While substancial improvements in

computational speed was achieved thanks to efficient GPGPU programming, we are still a

long way from achieving it.

24 State of the art and motivations

Instead, it is common to rely on simplified models to describe the dynamics of humanoid

robots in restricted scenarios. For instance, in the case of walking, it is common to represent

the robot as a Linear Inverted Pendulum (LIP) [Kajita et al., 2014], where the whole robot

body is assimilated to its center of mass, and the swingfoot leg is considered massless.

Multiple MPC formulations have been proposed to control such a system [Herdt et al., 2010;

Naveau et al., 2017]. These methods all share some common point. The role of the MPC is

to compute a CoM trajectory (or equivalently Zero-Moment Point trajectory) going from one

footstep to the next, without causing the robot to fall. The main criterion states that the robot

is stable if the Zero-Moment Point (ZMP) remains within the convex hull of the support area.

If this criterion is not met, the robot can no longer keep balance with its current contacts, and

either new suitable contacts need to be established, or it will fall. In addition to computing

CoM trajectories, some MPC formulations also include footstep location [Herdt et al., 2010;

Scianca et al., 2016].

1.2 Foundations of RGB-D Pose Estimation

Simultaneous Localization and Mapping (SLAM) consists in the simultaneous estimation of

the state of a robot equipped with on-board sensors, and the construction of a model (the map)

of the environment that the sensors are perceiving. In simple case, the robot state is described

by its pose (position and orientation), but other quantities such as velocity, uncertainties,

etc may be included as well. The map is a representation of the environment in which the

robot operates (objects, landmarks, surfaces, etc). The advantage conferred by the map are

two-fold, (i) it can be exploited to support other tasks and (ii) it limits the drift that would be

introduced by dead-reckoning by exploiting loop-closures (e.g. relocating w.r.t. to previously

known places in the environment).

A comprehensive review of the development of SLAM from an early age can be found in

two successive surveys [Bailey et Durrant-Whyte, 2006; Durrant-Whyte et Bailey, 2006].

These cover mainly the period from 1986-2004, which saw the introduction of the main

probabilistic approaches for SLAM, including approaches based on Extended Kalman Filters

(EKF-SLAM), Rao-Blackwellized particle filters (FastSLAM [Montemerlo et al., 2002]),

and maximum likelihood estimation. It also introduced the challenges connected to robust

and efficient data association. A broader review, including the current state of SLAM, and

perspectives towards semantic-SLAM, where the map embeds higher-level reasoning (objects,

situations, etc) can be found in Cadena et al. [2016]. The reader wishing to understand the

theoretical roots of SLAM arising in probabilistic formulations, and how the realization

1.2 Foundations of RGB-D Pose Estimation 25

that localization is best achieved by simultaneously tracking the pose and building a map is

referred to these reviews.

This thesis focuses on the field of visual SLAM, and more specifically on dense visual

SLAM, that is the problem of tracking a vision sensor (camera, LIDAR, etc) from all available

measurements, and building a dense three dimensional map. A broad review of the main

approaches from 2010-2017 can be found in Taketomi et al. [2017].

With the introduction of low-cost RGB-D sensors providing both color and depth infor-

mation (Asus Xtion, Microsoft Kinect, etc), and along with the computational improvements

most notably introduced by GPGPU parallel computing, tracking the camera motion based

on whole color and depth images and building a dense map that aims at keeping all of the

observed information has become popular. In the next section, the main components of

forming such kind of pose estimation pipeline will be briefly reviewed, before showing how

a complete SLAM can be built from it by introducing the two most common approaches:

the keyframe-based method pioneered by Comport et al. [2007], which serves as the basis

to many subsequent methods, such as Audras et al. [2011]; Kerl et al. [2013]; Meilland et

Comport [2013a], etc; and the voxel-based method introduced in Newcombe et al. [2011a].

1.2.1 General overview of pose estimation

The view registration problem, e.g. the problem of estimating the 6D pose that related two sets

of measurements M and M∗ obtained from the same scene at different viewpoints, has been

widely studied in the field of computer vision. In the case of visual SLAM, measurements are

obtained at high frequency (typically over 30Hz), and it is assumed that the viewpoints do

not vary much between successive measurements, in which case the problem can be solved

by a local pose estimation framework (detailed hereafter). When the viewpoints are far apart,

the local method cannot be reliably used, and the need for global pose estimation methods

arises. Those will not be considered here, and the reader is referred to the thesis of Ireta

[2018] for detailed information.

26 State of the art and motivations

Tracking

Fig. 1.6 View registration problem. Two measurements M and M∗ are taken from the same
scene. The measurement M is obtained by moving the sensor by T(x). If the acquisition
model is known, it can be re-projected onto the viewpoint M∗ through the warping func-
tion ω . The view-registration pipeline aims at estimating the value of T(x) from the two
measurements (M,M∗).

The main idea behind solving the local pose estimation problem is to find the pose T(x)

that minimizes a re-projection error between both sets of measurements. This implies that the

sensor’s projection model, that transforms a point Pi in the environment onto a measurement

Mi is known. In the case of cameras, the pinhole camera model is commonly used. In its

most general form, this is often expressed as the following non-linear minimization problem

T(x) = argmin
T(x)

N

∑
i=1

||M∗
i −ω (T(x),Mi)||

2 ∈ SE(3) (1.13)

where ω (T(x),Mi) is the warping function that transforms a set of measurements Mi onto a

set Mw by the transformation T(x). N is the number of measurements that are both in M and

M∗. The superscript ∗ will be used throughout this thesis to identify the set of measurements

that were obtained first (reference dataset). T(x) is the homogeneous transformation matrix,

which can be decomposed into rotational and translational components.

T(x) = (R(x), t(x)) ∈ SE(3)

, x = [υx,υy,υz,ωx,ωy,ωz] ∈ se(3) is the lie-algebra parametrization of the pose. The

relationship between both is given by the exponential map as

T(x) = e[x]∧ ∈ SE(3)

where [·]∧ is the twist matrix operator.

The main components for solving the minimization problem of (1.23) are as follows.

1.2 Foundations of RGB-D Pose Estimation 27

Acquisition Sampling Matching Weighting Error
Pose

Estimation

Warping

Acquisition and sampling is the process by which a set of points Pi in the environment

are observed by the sensor, and transformed into the corresponding measurement M. For

a camera, 3D points are projected onto the image plane through the pinhole camera model.

If depth measurements are available, this operation is reversible, and the position of the 3D

point can be obtained from the measurements. This property is exploited in RGB-D SLAM

to formulate the warping function.

Warping consists in transforming a measurement M into a measurement Mw =ω (M,T(x)),

where T(x) is the solution to the IRLS problem of Equation 1.13. When a solution is found,

the measurements in Mw coincide with those in M, that is the solution that brings one set of

measurement with its reference has been determined.

Matching refers to the problem of finding correspondences between Mw and M∗. For

local pose estimation, it is common to select the nearest-neighbour, as the viewpoints are

assumed to be close. The problem is much harder in case of global registration.

Weighting is the process by which the influence of outliers is reduced. The importance of

measurements suspected to be outliers is reduced by setting a correspondingly low weight,

while valid points are considered with a high weight. The weighting is typically determined

by robust M-Estimators [Huber, 2011].

Error The error between measurements E(T(x))= [e1 e2 · · ·en]
⊤, with ei =M∗

i −ω(T(x),Mi)

is a function whose norm monotonically reduces as the estimated pose T(x) becomes closer

to the transformation undertaken by the sensor. The formulation of the cost function depends

on the data acquired. In the case of RGB images, the photometric error, that is the diffe-

rence in intensity between neighbouring pixels is usually considered, while depth images

are typically treated by Iterative Closest Point (reviewed extensively later). No matter the

formulation, its gradient is used to drive the minimization in a direction that reduces the

overall error, that is at each step, the estimate gets closer to the pose to be estimated. +

28 State of the art and motivations

Pose estimation Equation 1.23 is commonly solved using non-linear iteratively re-weighted

least squares (IRLS) which is an effective algorithm for solving Lp norm problems and is

well-suited in that context. A general detailed explanation is provided in Appendix A.

The error e(T(x)) is iteratively minimized using a robust Gauss-Newton approach with

M-Estimators. Each iteration computes a transformation x that brings the measurement Mw

in closer alignment with M∗ as

x =−(J⊤WJ)−1J⊤We(T(x)) ∈ R
6 (1.14)

where J represents the stacked Jacobian matrices obtained by derivating the stacked error

functions e(T(x)). The Jacobian is obtained by partial derivation of the error function as

J =
∂E(T(x))

∂x
=

∂e1
∂x1

· · · ∂e1
∂x6

...
. . .

...
∂en

∂x1
· · · ∂en

∂x6

 ∈ R

n×6 (1.15)

The weight matrix W contains the stacked weights ρi associated with each set of coordinates

obtained by M-estimation [Huber, 2011] as

W =

ρ1 0 · · · 0

0 ρ2 · · · 0
...

...
. . .

...

0 0 · · · ρn

∈ R

n×n (1.16)

The solution is then updated as

T(x) = T̂e[x]∧

, where T̂ is the solution obtained at the previous iteration.

1.2.2 Obtaining RGB-D images

In the previous paragraph, the general framework for local pose estimation has been presented.

Let’s now consider the special case of estimation from RGB-D sensors, which will be used

throughout this thesis. RGB-D sensor is considered in a large sense here, as any sensor that

is able to obtain both a color image, and a depthmap.

1.2 Foundations of RGB-D Pose Estimation 29

Color

Depth

Image plane

Fig. 1.7 A 3D point Pi can be projected onto an RGB image forming a point with pixel
coordinates pc

i ∈R
3 of intensity Ii, and onto a depthmap with coordinates pd

i ∈R
3 with depth

Zi. The information contained in color and depth images, along with the camera projection
model allows to revert the process and obtain 3D points from the images.

RGB images An image captured by a camera sensor encodes information about the light

reflected off each observed 3D point, such as its intensity, color, or other properties. Each

ray that reaches the camera lens is projected towards the lens focal point. Crossing the path

of these light rays, on the focal plane, a sensitive sensor (such as a CCD array) converts

properties of the light (intensity, color) into electrical signals, that can be digitalized.

Geometrically, image formation is commonly modeled with a pinhole camera model

(Figure 1.8). Each visible 3D point Pi = [Xi Yi Zi]
⊤ is projected onto the image plane at the

pixel coordinates pi = [ui,vi,1]⊤ as follows.

30 State of the art and motivations

Fig. 1.8 Pinhole Camera Model - The coordinates of a 3D point Mi are projected onto a 2D
frame with pixel coordinates pi. The model of a pinhole camera is employed, where (cx,cy)
are coordinates (in pixels) usually placed at the center of the w×h frame and f is the focal
distance; the skew factor sθ of a pixel is the angle between the image axis h and w. Figure
modified from [Ireta, 2018, p59]

Zi

ui

vi

1

=

f w f sθ cx

0 f h cy

0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

Xi

Yi

Zi

1

(1.17)

where f is the focal distance, sθ is the skew angle of a pixel (which is usually considered

equal to 0), w and h are the width and height of the image, respectively and cx,cy are the

coordinates of the center of the image. These constitute the intrinsic parameters of the camera.

For simplicity, (1.17) can be written as

Zipi = KΠ3Pi

Note that the pinhole model is an approximation of the image formation process, but does

not model all of the physical properties of image formation (it does not include, for example,

geometric distortions or blurring of unfocused objects caused by lenses and finite sized

apertures). It is however a sufficient model for most RGB-D sensors, including the Asus

Xtion that will be used in practice in this thesis.

It is interesting to note here that the information contained in the image (pixel coordinates

(ui,vi) and intensity Ii) is not sufficient to uniquely invert the model and obtain a unique

corresponding 3D point. Instead, a line passing through the focal point and the pixel

1.2 Foundations of RGB-D Pose Estimation 31

pi is obtained, and the 3D point can be anywhere on that line. Uniquely obtaining the

corresponding 3D point requires knowing its depth, represented by Zi. Let’s now consider

how this depth information can be acquired and stored.

Depthmaps For RGB-D pose estimation, it is interesting to know the depth of a point

in the RGB image, such that a corresponding 3D point can be uniquely defined. Thus, a

convenient representation for depth information is that of a depthmap, which is an image

storing for each pixel coordinate the distance Zi from the focal plane to the observed 3D

point. Since Zi is known, it becomes possible to convert pixel coordinates into a unique 3D

point, and conversely using the pinhole model of Equation 1.17.

Obtaining the depth information Zi has been achieved with several technologies and

methods. In recent years, infrared-sensors exploiting structured-light, such as the Asus

Xtion, Microsoft Kinect, or Intel RealSense have become popular. The depth information

is inferred by observing the deformation of a regular pattern of infrared light caused by the

scene’s geometry. Time-of-flight (ToF) sensors are also common, and estimate distances

by measuring the time that the light needs to travel from the light source to the scene and

back to the camera. When no sensor providing depth information is available, it can be

estimated from RGB images. When two RGB cameras are available, this is referred to as

stereo-vision, where correspondences between each pixel in the images are found, and used

to geometrically estimate the depth by triangulation, if the baseline between both cameras is

known. When a single camera is available, estimating the depth information from motion

remains possible, but up to a scale factor (e.g. the metric depth cannot be known), which

makes monocular SLAM methods [Engel et al., 2014; Mur-Artal et al., 2015] possible.

Note that pixel coordinates pd
i in the depthmap and those in the RGB image pc

i do

not necessarily correspond, as they may acquired by different sensors that do not share

the same optical center (such as the RGB and IR receptors). However, given a known

transformation between both optical frames, it is always possible to reproject the depthmap

from the corresponding RGB viewpoint to form the new depth image such that pd
i = pc

i ,

which, as will be seen in the next section is necessary for RGB-D pose estimation. From now

on, unless explicitly required, pixel coordinates will be denoted as pi in both the depthmap

and RGB images, and refer to the same corresponding 3D point.

1.2.3 Pose Estimation from RGB-D images

When frame-to-frame RGB-D registration is performed, the frame-rate of acquisitions allows

to maintain sufficient overlap between consecutive images to formulate a direct error function,

32 State of the art and motivations

comparing (i) photometric information from RGB images and (ii) geometric information

from depth images [Tykkälä et al., 2011].

The advantages w.r.t. to early methods that were considering only keypoints in RGB

images are many. First, the need to design robust keypoint descriptors, that can be used

to robustly find correspondences between images acquired with different viewpoints is

removed. Second, none of the acquired information is discarded, leading to a more robust

formulation. Finally, considering both photometric and geometric information together

provides great advantages in terms of robustness. When a scene is lacking textures, but has

plenty of geometry, the geometric cost constrains the pose estimate, and conversely, when

little geometry is present but a lot of texture is available, the pose is also well constrained.

When the scene is rich in both texture and geometry, the situation then becomes ideal and the

pose will be constrained by both. Thanks to this, in most cases the pose estimation problem

will almost always be well constrained. Specific failure cases still exist, such as when

neither geometry nor texture is available, or when observing geometry from far away with

little texture. In practice, these situation are quite rare, making such a tracking formulation

well-suited for robotics applications.

Let’s now consider the formulation of these two cost functions, and how they can be

exploited to obtain the motion of an RGB-D sensor.

Photometric Error

An error function based on photometric measurements can now be defined [Comport et al.,

2007]. The brightness of each pixel pi is denoted as Ii. As shown in Figure 1.9, a reference

image represented by I ∗ = [I∗1,I
∗
2, . . . ,I

∗
mn] and a current image by I = [I1,I2, . . . ,Imn] are

established. A corresponding pointcloud P∗ can is obtained through the pinhole model

(Equation 1.17). A new image I w can be synthesized between two positions by projecting

the reference poincloud P∗ into the current image I and then by linearly interpolating the

intensity values on a regular array such as:

1.2 Foundations of RGB-D Pose Estimation 33

Fig. 1.9 For the intensity-based minimization of the error function eI , a new image I w

is synthesized from I based on the pose T(x). I ∗ is the reference image (Figure [Ireta,
2018]).

I
w = I

(
ω(T̂T(x),P∗)

)
(1.18)

where the geometric warping function ω(·) obtain the warped pixels such as:

pi
w =

KΠ3T̂T(x)Mi
∗

e⊤3 T̂T(x)M∗
i

=

uw
i

vw
i

1

=

cx + fxXw
i /Zw

i

cy + fyXw
i /Zw

i

1

 ∈ R

3 (1.19)

where K is the intrinsic calibration matrix and Π3 = [I3×3,03] projects the 4×4 pose matrix

onto the 3×4 space and e⊤3 = [0 0 1] extracts the depth component of a 3D point. Generally,

the warped points pw
i do not correspond to an exact pixel coordinate and their intensity I(pw

i)

is interpolated from the surrounding pixels (typically with bilinear interpolation).

A photometric cost function, based on the difference of intensities between neighbouring

pixels can then be defined as

eI,i = I∗(p∗i)− I(pw
i) (1.20)

34 State of the art and motivations

and used as the cost-function in Equation 1.23 to estimate the pose. A photometric Jacobian

can be obtained by partially deriving 1.20 at each pixel as:

JI = ∇Iw
i

∂pw
i

∂Pw
i

∂Pw
i

∂T(x)
=

∇Iw
xi

fx

Z∗i
∇Iw

yi
fy

Z∗i
−∇Iw

yi
Y ∗i fy−∇Iw

xi
X∗i fx

Z∗i
2

−∇Iw
yi

fy−
Y ∗i

(
∇Iw

xi
X∗i fx+∇Iw

yi
Y ∗i fy

)

Z∗i
2

∇Iw
xi

fx−
X∗i

(
∇Iw

xi
X∗i fx+∇Iw

yi
Y ∗i fy

)

Z∗i
2

∇Iw
yi

X∗i fy−∇Iw
xi

Y ∗i fy

Z∗i

⊤

∈ R
1×6 (1.21)

where ∇Iw
i = [∇Iw

xi
,∇Iw

yi
] is the gradient of the image.

Geometric Error

Consider a reference D∗ and a current D depthmap, corresponding respectively to the

RGB image I ∗ and I (that is, each pixel represents the same 3D point). The depthmap

contains the metric distance Zk ∈ R
+ for each pixel, and a corresponding 3D euclidean

point Pi can be computed according to the pinhole model (Equation 1.17). Let’s consider

the pointcloud associated to the depthmaps as measurements M∗ = [P∗1,P
∗
2, . . . ,P

∗
mn] and

M = [P1,P2, . . . ,Pmn]. Similarly to the photometric error, an euclidean distance between

the two pointclouds is considered, such that it is minimal when the clouds are brought into

alignment by the estimated pose. A choice must be made here between transforming the

current cloud onto the reference, or the opposite. Both have advantages, the first is more

computationally efficient as some expensive computations such as normal estimation can be

performed only once on the reference dataset; the second is more computationally intensive

but more accurate, as in the context of SLAM, the reference does not necessarily correspond

to a raw RGB-D measurement, but can be improved over time by integrating data from the

frames being tracked.

eGi
= Mi− f

(
T(x) ,M∗

i

)
∈ R (1.22)

This problem is commonly referred to as Iterative Closest Point algorithm, and was first

introduced by Besl et McKay [1992]. The algorithm is reviewed in details in Appendix B in

the more general case of aligning two clouds of points, and also used extensively in Chapter 3.

Several metrics have been proposed for the distance, the most common being point-to-point

1.3 Keyframe-based Dense Visual SLAM 35

(distance between a point Mi and its nearest neighbour M∗
i in M∗, point-to-plane (distance

between a point Mi and it’s projection on the tangent plane at M∗
i) and plane-to-plane

(distance between both tangent planes), as shown in Figure 1.10. Point-to-plane and plane-to-

plane method tend to have a larger convergence radius, that is they are more robust to larger

change of viewpoint. See Appendix B for details about their formulation, and how nearest

neighbour points can be obtained.

a) Point-to-point b) Point-to-plane c) Plane-to-plane

Fig. 1.10 Common error metrics for geometric pose estimation with Iterative Closest Point
(Figure [Ireta, 2018])

1.3 Keyframe-based Dense Visual SLAM

In the previous section, we have seen the general method to dense tracking of RGB-D images.

Let’s now consider how it can be extended beyond tracking to build large-scale maps of

the environment, and localize within that map. In this section, we focus on keyframe-based

approaches, pioneered by Comport et al. [2007], and since then widely adopted [Engel

et al., 2014; Kerl et al., 2013; Meilland et Comport, 2013a; Mur-Artal et al., 2015], etc.

The main SLAM method used throughout this thesis is that of the multi-keyframe proposed

in [Meilland et Comport, 2013a], that has since been transferred to the industry via the startup

PIXMAP. This method was selected for its demonstrated performance, and its robustness

to outliers with M-Estimators, to motion-blur [Meilland et al., 2013b], and it’s ability to

obtain and exploit high-dynamic range images [Meilland et Comport, 2013a]. Additionally,

super-resolution maps [Meilland et Comport, 2013b] can be generated (that is maps at a

higher resolution than that of the sensor itself).

1.3.1 Overview of the keyframe-based formulation

The main idea behind the keyframe-based formulation is that instead of tracking successive

RGB-D frames, which amounts to pure dead-reckoning odometry, a reference frame Ki =

(I∗i ,D
∗
i) is selected. The next k ∈ R

+ frames, denoted as Fk = (Ik,Dk). These k frames

36 State of the art and motivations

are then tracked w.r.t. to that reference keyframe using the photometric and geometric

errors described previously, until robust tracking can no longer be achieved by keeping that

reference frame. In the studied method, a threshold on the median-absolute-deviation of the

error is used. Keyframes are continuously improved by re-projecting the current frame onto

the reference keyframe, and fusing their data (e.g. filling holes in the depthmap, improving

its accuracy, generating super-resolution textures, etc). When tracking can no longer be

achieved w.r.t. to the i− th keyframe, a new one Ki+1 = (I∗k ,D
∗
k) is selected by taking the

last successfully tracked frame as the new reference. For better performance, the n closest

keyframes can be used to predict the current keyframe (see Meilland et Comport [2013a]).

A keyframe-graph is updated, with the new keyframe as a node, and linked to the previous

keyframe node by an edge that stores the estimated transformation T̂ between both keyframes.

The local pose estimation framework can then continue to be used w.r.t. to the new keyframe,

and it’s pose w.r.t. to the initial keyframe can still be determined thanks to the keyframe

graph.

1.3.2 Tracking

For simplicity of notation, the superscript k will be omitted from the following equations.

The motion of each frame k w.r.t. to the keyframe is estimated as

ei(x) =

 α

(
I∗i (P

∗
i)− Ii

(
w(T̂T(x),P

∗
i)
))

N∗i
⊤
(

P∗i −ΠT̂T(x)Pi

)

 ∈ R

2, (1.23)

where the first row of equation (1.23) is the photometric term relating the reference and

current images (I∗ and I) and the second row is a point-to-plane ICP error with projective

data association. The surface normals N∗i are computed for the reference image from the

time integrated set of 3D points P∗. Π projects to non-homogeneous coordinates (see

equation 1.17). The function w(·) is the warping function that transforms the current image

to the reference, based on the current pose estimate. T̂ ∈ SE(3) represents the latest pose

estimate, and T(x) the current pose increment; α is the weight which defines the relative

uncertainty between depth and image measurements.

This nonlinear error is iteratively minimized using the Gauss-Newton method (see

equation 1.3.2)

x =−(J⊤WJ)−1J⊤We(T(x)) ∈ R
6

, where J contains the stacked Jacobian matrices of the errors of equation (1.23), and e is the

stacked error vector, and W is the robust weighting matrix. The pose estimate T̂ is finally

1.3 Keyframe-based Dense Visual SLAM 37

updated using a homogeneous update until convergence as T̂← T̂T(x). This estimation

process is highly local, the viewpoint on the current image needs to remain close to that of

the reference frame, and may be subject to local minima.

1.3.3 Keyframe-Graph

All keyframes K0, . . . ,KN , where N is the number of keyframes are stored in a graph. Its

nodes contain the refined keyframes (I∗i ,D
∗
i), and its edges are composed of the estimated

rigid transformation between the keyframes. This provides a global representation of the ob-

served environment, where each keyframe stores a specific viewpoint, and the transformation

between all viewpoints is known. This way of storing the map information is very efficient,

as keyframes can be directly used for the tracking process, and continuously improved over

time as new data is observed.

Fig. 1.11 Visualization of the keyframe graph generated from a handheld Asus Xtion RGB-D
sensor while observing a mockup staircase of Airbus’ final demonstration for the COMA-
NOID project. Each node represents a keyframe Ki, and are related by a transformation Ti+1

i

estimated by dense RGB-D tracking (purple lines). The keyframe poses are continuously
optimized by exploiting loop-closures (dotted black).

Furthermore, the graph offers many more advantages. It is always possible to go back to

a 3D representation by re-projecting each pixel of the keyframes into a common reference

frame through the pinhole camera model and the transformations between keyframes (see

Section 3.1.2). But one of the main advantages of the keyframe-graph, is that it makes it

possible to create a topological map of the environment, where places previously visited can

38 State of the art and motivations

be recognised, and correctly linked by edges in the graph. The recognition of previously

visited places is a problem known as loop-closure, and in the case of a keyframe-graph

representation, drift detected by loop-closure is rather easy to correct. It is common to use a

2-stage approach for efficiency. First, keypoint descriptors are used to compare the keyframes

(here fern descriptors are used), and find likely candidates. Then the tracking method can

be used to estimate the relative pose between each of the keyframes. If one keyframe can

be successfully re-projected onto an other, a loop closure is formed. Notice that by finding

the transformation between the current keyframe and a previously observed one, we have

formed a closed-loop in the graph, and the observed drift accumulated within that loop.

Thanks to this, the drift can now be corrected with a bundle-adjustment method, where the

transformations between each keyframe in the loop are optimized together to correct the

drift.

1.3.4 Volumetric SLAM

An alternative volumetric approach to SLAM has been concurrently developed to keyframe-

based appraoches. Contrary to keyframe-based approaches, that do not store an explicit

representation of the 3D structure of the environment, volumetric SLAM approaches aim to

maintain a continuous representation of the observed 3D surfaces. In the original algorithm,

KinectFusion [Newcombe et al., 2011b], a physical space of 3m3 is subdivided into a fixed

preallocated grid of 5123 voxels. A variant of the Trucated Signed Distance Function [Curless

et Levoy, 1996] (specifying a relative distance to the actual surface) is used to integrate and

efficiently store every depth measurement into the voxel grid. Camera tracking is achieved

with Generalized ICP Segal et al. [2009], similarly to Section 1.2.3. The approach has since

then been extended to handle moving volumes Roth et Vona [2009], which allows dense

volumetric modelling over an extended area by virtually translating the volumetric model as

the sensor moves. This led to the formulation of Kintinous [Whelan et al., 2012], reaching

similar capabilities to keyframe-based SLAM, and the added ability to reconstruct a 3D mesh

of the environment online. Loop-closures and the ability to generate super-resolution maps

were later added in Whelan et al. [2013] and Whelan et al. [2015a], using a pose graph and

volumetric fusion.

Both volumetric and keyframe-based methods have reach a similar set of features, and

their tracking and mapping performance are on par with each other. Volumetric methods

have the slight advantage of building an explicit continuous representation of the surfaces in

the environment, at the cost of increased computational power. Recently, this representation

has been leverage to reach some impressive extensions to dynamic scenes have recently been

presented [Newcombe et al., 2015] by exploiting the volumetric representation.

1.4 Towards SLAM in humanoid robotics 39

1.3.5 SLAM without a pose graph

Recently, an alternative approach that does not rely on a pose graph has been proposed [Whe-

lan et al., 2015b], and demonstrated tracking and mapping results on-par with the aforemen-

tioned state-of-the art approaches. It attempts to move away from the classical pose-graph

formulation, and adopt a map-centric approach. The model is segmented into two regions,

an active region corresponding to the most recently added measurements, and a an inactive

region corresponding to older measurements. Loop-closures are achieved by attempting

to register active regions onto inactive ones. If this is successful, a loop-closure is formed,

and the model is non-rigidly deformed to reflect this registration. Tracking is achieved

with photometric and geometric pose estimation between the current measurement and the

active part of the model. Additionally, a surfel-based representation is used in-stead of the

traditional pixel-based representation. This allows to store higher-level information (colors,

normals, uncertainty, timestamps, etc) that can used to inform tracking, registration, and

other algorithm such as segmentation. For example, Dense Planar SLAM [Salas-Moreno

et al., 2014] exploits a surfel-based representation for online segmentation of planes in the

map.

1.4 Towards SLAM in humanoid robotics

For the purpose of robustly localizing the sensor w.r.t. to its environment, and exploiting

map information, both volumetric and keyframe-based approaches provide essentially the

same capabilities. Fully exploiting the robot localisation w.r.t. to the map, and information

provided in the map to inform planning and control methods has the potential to change the

face of humanoid robotics, and solve the recurring problems caused by open-loop model-

based control. At the time of undertaking the work presented in this thesis, few works had

considered its use for both planning and closed-loop control. This is mainly due to the fact

that the most significant contributions and available implementation of robust dense visual

SLAM have only been recently introduced in the years 2007-2013.

Early work mostly considered improving the performance of SLAM by exploiting plan-

ning information about the robot motion. In Stasse et al. [2006], the output of a walking

pattern generator was exploited to both initialize a monocular SLAM, and improve its per-

formance with an EKF formulation. Recently, a similar endeavour has been achieved to

robustify ElasticFusion [Scona et al., 2017] with a low-drift kinematic-inertial estimator, that

provides motion-prior and improves robustness to lack of features, and illumination changes.

It’s used was demonstrated with a closed-loop Cartesian-regulated walking controller.

40 State of the art and motivations

The need to exploit the map is obvious. In Stasse et al. [2009] a method was developed for

stepping over obstacles, and in Baudouin et al. [2011] a more generic apprach to replanning

in the presence of obstacles was presented, but the position of obstacles was obtained using

a MOCAP system. Walking over rough terrain was demonstrated in Fallon et al. [2015],

and constitutes one of the first applications, apart from those presented in this thesis, where

a dense map obtained from dense visual SLAM is exploited for online planning. Here, the

Kintinous algorithm is used to obtain the map, and footsteps are segmented by detecting large

enough planar sections within the map and localization is obtained with a kinematic-inertial

state estimator [Fallon et al., 2014]. In this work the map is used to plan the next footsteps,

but no attempt is made to observe, and react to perturbations by modifying the footstep plan.

This was later proposed in Feng et al. [2016], where the center-of-mass (CoM) and center-of-

pressure (CoP) are estimated using EFK with IMU measurements (without SLAM) [Xinjilefu

et al., 2015] and model-predictive control is exploited to recompute footsteps online. It made

the case that reactive footstep planning was far more important and flexible in the context

of fast-walking humanoid robots than traditional postural stabilization methods, and that

it considerably lowers the requirements on precise CoP and CoM tracking. This makes

a strong-case for the exploitation of SLAM with model-predictive walking controllers. In

Chapter 4, we propose a similar method based on a simple SLAM-based estimator, and

demonstrate that is can achieve similar performance while enabling the use of its map to

inform collision avoidance, and walking objectives.

Recent developemnents in multi-contact planning, give hope that the community can one

day reach successful online planning [Carpentier et al., 2016] in any environment, with no

human intervention. But for now, existing methods remain model-based, and an explicit

representation of the environment needs to be provided (often in the form of CAD models).

This greatly restrict the ability of robots to explore previously unmodeled environments.

Preliminary work has started to emerge, attempting to exploit the environment observed

by vision sensors. In Brossette et al. [2013], flat horizontal surfaces are extracted in the

form of a convex polygonal surface from a pointcloud obtained from a single RGB-D sensor

image (providing color and depth information), and a multi-contact plan that accounts for

collisions by exploiting the pointcloud’s convex hull, is generated using a modified version

of Escande et Kheddar [2009]. The reported planning-time for an experiment climbing up a

3-step staircase made up of random furniture pieces is 98.4s for a version of the plan using

only the robot feet, and 122.3s using the upper limbs as well. While far from real-time, this

work shows that existing planning methods can be extended to take into account observed

environments, by devising a vision algorithm that can provide high-level information about

the environment (suitable surfaces, convex hulls for collisions, . . .). This observation is one

1.4 Towards SLAM in humanoid robotics 41

of our main motivations for exploiting the capabilities of SLAM, whose map can be efficiently

exploited to provide suitable information to the planner. Our own approach is presented in

Chapter 3 where complex multi-contact plans generated offline are exploited to control the

robot w.r.t. to the map.

This concludes the review of the state-of-the-art of humanoid robotics and SLAM, and

why it has been deemed important to further explore the use of SLAM to improve multi-

contact planning and control of humanoid robot through the use of both localization and map

information. Let’s now consider the first problem, that of calibration, which is a prerequisites

to the localization of any of the robot limbs w.r.t. to the map.

Chapter 2

Eye-Robot Autonomous Calibration

In the previous chapter, the importance of exploiting localization w.r.t. to SLAM map was

outlined. As will be seen in this chapter, a prerequisite for localizing any of the robot bodies

within that map is the precise knowledge of its kinematic tree geometric parameters, including

the position of the vision sensors with respect to the body. In this chapter, we present a

novel approach that extends the well known Eye-Hand calibration to the online whole-body

calibration of the kinematic tree geometric parameters, which we similarely name Eye-

Robot calibration. Only an on-board RGB-D sensor and joint encoders are required. Online

calibration allows to estimate the state of the kinematic tree at any time and thus account for

inaccurate models, passive joints, mechanical wear, unexpected damages (see Figure 2.1),

etc. One major challenge in achieving such an online self-calibration procedure, with the

available sensors, is that the observability of the calibrated parameters cannot always be

guaranteed. In this work, we determine the effect of joint degrees of freedom on observability.

From this, we propose a novel Eye-Robot calibration method that determines the geometric

transformations between joints. Conditions on joint motion are further used to improve upon

existing kinematic tree parameters when observability is incomplete. In practice a dense

SLAM algorithm is used for online pose estimation and the results are demonstrated with an

HRP-4 humanoid robot.

2.1 Introduction

Robotic systems inherently require some sort of calibration procedure to determine para-

meters that are needed to perform state-estimation, planning and control. One of the most

fundamental set of parameters is kinematics, which relates sensors to actuators through the

geometric configuration of the robot. Whilst this model is most generally provided by the

manufacturer thanks to precision machining, some parameters will change over time. This

44 Eye-Robot Autonomous Calibration

Fig. 2.1 During a stair-climbing experiment, HRP-4 fell on it’s supporting rope, which
damaged the mechanism holding the Asus Xtion in place. This illustrates the importance of
having an autonomous online calibration method for robust operation in real envionments.

?

?

?

Unknown

Kinematic Model
Kinematic Model

Transformations between

- each joint

- robot links and sensors Joint Encoders

Vision Sensors
- RGB-D

- Stereo Pair

- LIDAR

- ...

Robot Motion observed by

sensors

Calibration

Fig. 2.2 Overview of the Eye-Robot calibration method. Transformations between each
joint (blue arrows), and between joints and sensors (green arrow) are initially unknown.
The proposed Eye-Robot calibration procedure uses joint-encoder information along with
the estimated RGB-D sensor pose (obtained from SLAM) to observe whole body motions.
Calibration parameters are obtained by solving Eye-Robot least-squares optimization.

2.1 Introduction 45

may be due to robot modifications and adaptations, passive mechanisms with no sensors, the

addition of new sensors, or simply due to normal wear and tear. The accuracy and robustness

of a robotic system is highly dependent on these calibration parameters and a solution to

this problem is to develop life-long self-calibrating methods. In this thesis a generic solution

is proposed to continuously estimate these parameters using only encoder information and

Dense Visual SLAM, along with the observation of the contact configuration.

We exemplify our study with humanoid robots. They require accurate calibration to

continuously interact with the environment. They are complex systems designed to be as

versatile as humans in their interactions (e.g. locomotion in complex cluttered and uneven

terrain) and manipulation (e.g. opening a valve, climbing a ladder, drilling). They are also

modelled with a large set of parameters, including the kinematic tree topology, link lengths,

joint angles, sensor locations, etc. Reliable planning and control of their actions need these

parameters to be determined with the accuracy required by the tasks to be achieved.

In the literature, apart from few recent papers, kinematic parameters are assumed to be

known and unchanging, and mechanical links to be accurately calibrated by the manufacturer.

Our contribution is to calibrate the kinematic tree’s geometric pose parameters online using

an on-board RGB-D sensor (for 6dof localisation and mapping) and joint encoders (optical).

The floating-base 6D configuration (translation and rotation) w.r.t. to SLAM’s environment

map is also determined.

Transformation between the

camera frame and the robot joint

to which it is connected

Extrinsic Camera Calibration Kinematic Tree Calibration

Transformation between

joints

Fig. 2.3 Extrinsic camera calibration and kinematic tree calibration are generally considered
separately. The Eye-Robot formulation solves both simulateneously.

46 Eye-Robot Autonomous Calibration

2.2 Related work

There are several efficient methods for kinematic chain calibration offline. In this chapter,

a particular focus is made on methods suitable for online self-calibration, with minimal

requirements for both the robot and the environment.

In Roncone et al. [2014] a method based on self-touch was proposed: using sensory

covers with thousands of tactile arrays, kinematic loops are formed by exploiting an existing

imprecise forward kinematic model. Correspondences are established between predicted

contact points and the sensed ones, which allows the refinement of kinematic parameters.

While the idea is interesting, the sensory requirements are considerable.

Another common approach consists of forming a virtual closed loop between the camera

and an end effector, by exploiting self-observation. In Hersch et al. [2008]; Martinez-Cantin

et al. [2010], each end-effector’s motion is observed by the robot’s camera. As is the case

with the sensory skin, this creates closed-loop constraints. Unfortunately this approach

only corrects joint offsets and link lengths. These methods also suffer from two important

drawbacks: observability issues, and the problem of robustly localizing the end-effectors.

The later is often avoided by rigidly attaching calibration markers to the end-effectors during

calibration [Kastner et al., 2015; Pradeep et al., 2014]. There are also additional uncertainties

regarding the extrinsic pose of the calibration target w.r.t. the end effector. In Section 3.2.3

we describe one of our former pattern-free extrinsic RGB-D sensor calibration approaches

that was used prior to this chapter’s proposed calibration. It relies on finding the sensor

pose that minimizes the ICP-based registration error between the robot CAD model and

the self-observations of the robot links obtained from D6DSLAM. This somewhat alleviates

the difficulties caused by pattern-based approaches, but remains both an inconvenient and

imprecise method.

Most recently, a generic online self-calibration algorithm was presented in Maye et al.

[2016]. It uses information theory to identify measurements that lead to improvements in

calibration, and automatically detects and locks unobservable directions in parameter-space.

This results in an online algorithm that listens to incoming sensor streams and builds a

minimal set of data for estimating calibration parameters. The latter are continuously updated

when they are observable; otherwise their initial guess is kept. This is truly a remarkable

work, however, it does not provide any guarantee that the parameters will eventually become

observable. In calibrating a humanoid robot, one needs to make sure that the robot motions

are suitable to guarantee full-observability of all kinematic parameters.

In order to perform Eye-Robot calibration it is necessary to estimate the pose of the

camera. The most prominent method for determining the camera extrinsic calibration

parameters is the Hand-Eye method, first proposed by Tsai et Lenz [1989]. It commonly

2.3 Hand-Eye Calibration 47

relies on calibration patterns, either fixed to the robot or placed within the environment,

a choice mainly driven by lack of suitable marker-less tracking systems. Recently, many

state-of-the-art dense visual simultaneous localization and mapping approaches [Engel et al.,

2015; Meilland et Comport, 2013a; Newcombe et al., 2011b; Whelan et al., 2012; Zhou

et al., 2016] have been made available, and provide a robust pattern-free solution for tracking

the camera pose (either RGB-D sensor, or a stereo pair), but also for reconstructing a 3D

map of the environment, which will be of use in our approach. Any of these prominent

SLAM solution are suitable for our proposed method. We opted for using the SLAM system

of Meilland et Comport [2013a] which is robust and particularly developed for robotics

applications.

We propose a novel online method to calibrate and estimate each of the aforementioned

parameter sets by making full use of dense visual SLAM. Removing the need for calibra-

tion patterns and manual intervention we can achieve online correction of the calibration

parameters at any time, including during normal robot operation. Kinematic parameters

are determined by solving the proposed Eye-Robot calibration procedure which has been

inspired by classic Hand-Eye calibration [Tsai et Lenz, 1989]. Similarly to Chen [1991] for

hand-eye calibration, an analysis is performed on parameter observability to show that not

all robot configurations are observable in a Eye-Robot setting. With full-observability, the

kinematic parameters are obtained without need for any initial guess, which allows to fully

calibrate unknown chains. When parameters are not fully observable, their calibration can

still be improved along the observable directions, while holding the remaining parameters to

their initial guess. Our method is validated in both simulation, and with real experiments

performed on and HRP-4 humanoid robot.

2.3 Hand-Eye Calibration

Hand-Eye calibration was first described in Tsai et Lenz [1989], and has since become a

standard tool for extrinsic calibration of vision sensors. It relates N relative sensor motions

Ai ∈ SE(3) with the corresponding motion Bi ∈ SE(3) of a robot link to which it is rigidly

attached to estimate the robot-sensor transformation X ∈ SE(3). To simplify notations, the

subscript i will often be omitted. Each motion forms the following kinematic equality

AiX = XBi (2.1)

48 Eye-Robot Autonomous Calibration

• Ai is typically obtained by tracking the camera w.r.t. calibration patterns [Heller et al.,

2014; Tsai et Lenz, 1989].

• Bi is commonly obtained through forward kinematics, by assuming that the robot

kinematic parameters are fully available.

Fig. 2.4 Hand-Eye calibration of the rigid-body transformation X between the Hand frame
(HRP4 head) and the Eye frame (RGB-D sensor optical frame). By forming a closed-loop
kinematic chain between the relative motion of the Eye (Ai) and the corresponding motion of
the Hand (Bi), the Hand-Eye method estimates the unknown transformation X.

Reformulation as a lie-algebra least-square minimization

Several methods have been proposed to solve this equation. In Park et Martin [1994], the

rotation and translation are determined separately with standard non-linear least-squares

minimization. In Heller et al. [2014], several formulations are proposed leading to mul-

tivariate polynomial optimization problems, that are globally solved using convex linear

matrix inequality relaxations. A geometric analysis for the uniqueness of a solution is pro-

vided in Chen [1991], which shows that translation and rotation should not be decoupled.

Following these recommendations from the literature, the solution to Equation 2.1 is deter-

mined by solving the following non-linear cost function (Equation 2.2), with the unknown

transformation X ∈ SE(3) parametrized using its lie algebra representation x ∈ se(3) such

that X = expm([x]∧), with [.]∧ being the skew symmetric operator (see Equation 2.11). For

simpler notations, we denote ex = expm([x]∧).

x̂ = argmin
x

N

∑
i=1
||Aie

xX̂− exX̂Bi|| (2.2)

2.3 Hand-Eye Calibration 49

The Lie algebra representation allows simultaneously estimating both rotation and transla-

tion using a minimal number of 6 parameters (3 for rotation, 3 for translation), and robustness

can be improved by using as many measurements as necessary to iteratively solve an over-

determined system of equations.

In this work, we exploit the tracking capabilities of dense visual SLAM systems to

advantageously replace the measurements needed for the computation of A. Using real-time

SLAM localization offers two main advantages over standard methods: the dense method

used is more accurate than conventional methods, and it can also be used to acquire data

online. The Hand-Eye calibration problem can thus be formulated as an online calibration

method, by solving Equation 2.1 from available robot and tracking data.

Jacobian and solution

We acquire a set of N measurements. Each measurement i is a pair of corresponding hand

and eye motions (Ai,Bi). For each measurement, the error is defined as

ei = Aie
xX̂− exX̂Bi (2.3)

The Jacobian is defined as

J =
∂ei

∂x

∣∣∣∣
x=0

(2.4)

The advantage of this formulation with the Jacobian evaluated at identity is that it can

be computed analytically using the properties of the special-euclidean algebra. See Blanco

[2010] for details on the derivation of such a Jacobian. Equation 2.5 provides a detailed

computation of this Jacobian.

Ja = ∂Aie
xX̂

∂x

∣∣∣
x=0

= ∂AB
∂B

∣∣∣
B=e0

A=Ai
∂exX̂

∂x

∣∣∣
x=0

= [I4⊗RAi
] ∂exX̂

∂x

∣∣∣
x=0

=

03×3 −RAi
[x̂1]∧

03×3 −RAi
[x̂2]∧

03×3 −RAi
[x̂3]∧

RAi
−RAi

[x̂4]∧

Jb = ∂exX̂Bi

∂x

∣∣∣
x=0

= ∂AD
∂A

∣∣∣
D=X̂Bi

A=I=e0
∂ex

∂x

∣∣∣
x=0

= [DT ⊗ I3]
∂ex

∂x

∣∣∣
x=0

=

03×3 −[d1]∧

03×3 −[d2]∧

03×3 −[d3]∧

I3×3 −[d4]∧

Ji = Ja−Jb

(2.5)

50 Eye-Robot Autonomous Calibration

where RAi
is the rotation part of Ai, x̂i is the i-th column of X̂ and di is the i-th column of

X̂B.

The full Jacobian is obtained by stacking each measurement’s Jacobian as

J = [J1 . . .JN]
T

e = [e1 . . .eN]
T

Equation 2.2 is can be solved iteratively by Gauss–Newton (or alternatively Levenberg-

Marquardt) minimization. Each iteration provides the update

x =−J+e,

where J+ = (JT J)−1J is the pseudo-inverse of the stacked error Jacobian J and e is the

stacked error. The solution is then iteratively refined until convergence as

X̂ = exX̂

The next section determines conditions on the robot motion that guarantee observability of

the Hand-Eye calibration.

2.4 Eye-Robot Calibration of a Kinematic Chain

Our goal is to calibrate a robot’s kinematic tree, provided that one has an estimate of the

camera pose and joint state. In order to achieve this we show that the problem is related to that

of hand-eye calibration, even if standard hand-eye calibration methods are not sufficient. In

particular, they assume knowledge of the full 6DoF motion of a robot link, which presupposes

a known kinematic model, which is exactly what we aim to determine in this work. First the

classic approach is presented, then we develop our approach to Eye-Robot calibration that

overcomes these limitations, while providing an online calibration procedure.

2.4.1 Eye-Joint Calibration

As mentioned earlier, the most common use of Hand-Eye calibration in robotics has been

to perform the calibration of a vision sensor w.r.t. a robot link. In that case, both A and B

commonly have 6 degrees of freedom each. B is obtained by assuming the kinematic tree

to be known and well-calibrated and its motion is computed by forward kinematics. As

the goal is to extend the method to the calibration of unknown kinematic chains, it cannot

2.4 Eye-Robot Calibration of a Kinematic Chain 51

be determined this way, as the kinematic model is not available for the computation of the

motion B.

Most – if not all – robots are fitted with joint encoders in addition to the vision sensor.

Encoders provide information about the intrinsic motion of the joint, denoted by S ∈ SE(3)

(see Table 2.1 for common joint parametrization). Thus for a sensor attached to a single joint,

one can reformulate the Hand-Eye calibration as

AiX = XSi (2.6)

This can be seen as a special-case of Hand-Eye calibration, where the robot motion is that of

a single joint such that Bi = Si. As will be seen in Section 2.5.2, depending on the type of

joint mechanism used, the motion might not lead to a fully-observable solution. For instance

the solution to X for a revolute joint will not be observable around and along its rotation axis.

Revolute Rx(θ) Revolute Ry(θ) Revolute Rz(θ)

[
1 0 0 0
0 cos(θ) −sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

] [cosθ 0 sinθ 0
0 1 0 0

−sinθ 0 cosθ 0
0 0 0 1

] [cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 0
0 0 0 1

]

Prismatic Px(θ) Prismatic Py(θ) Prismatic Pz(θ)

[
1 0 0 θ
0 1 0 0
0 0 1 0
0 0 0 1

] [
1 0 0 0
0 1 0 θ
0 0 1 0
0 0 0 1

] [
1 0 0 0
0 1 0 0
0 0 1 θ
0 0 0 1

]

Table 2.1 Representation of intrinsic joint motion for revolute (pure rotation) and prismatic
joints (pure translation).

2.4.2 Eye-Robot Calibration : Online Kinematic-chain Calibration

In the previous sections, we described the classic Head-Eye calibration method, and extended

it to online Eye-Joint calibration. We now propose to extend it further to the calibration of a

whole kinematic chain inducing a camera motion. As we will see, this formulation can be

seen as a recursive Eye-Joint calibration, where each intrinsic joint motion contributes to a

part of the full-solution (See section 2.5 for a detailed observability analysis).

Figure 2.5 describes the parameters required for Eye-Robot calibration. Each joint is

parametrized by a known intrinsic transformation Si ∈ SE(3), that depends on the type

of joint used: rotation along the joint axis for a revolute joint, translation along axis for

a prismatic joint, etc. The geometric transformations between joints are defined as the

52 Eye-Robot Autonomous Calibration

Fig. 2.5 A decomposed view of HRP-4 kinematic chain motion between 2 postures. Ac is the
measured camera motion obtained from visual odometry, Si represents each joint’s intrinsic
motion (the definition of S depends on the type of joint used). Xi is the rigid geometric
transformation between the successive joints and is defined w.r.t. a reference robot posture.
Notice that, as is the case for Hand-Eye geometry, a closed-loop is formed, which allows for
the estimation of the parameters, even though the camera motion is not necessarily defined
w.r.t. the same reference frame as the robot motion.

unknown parameters {Xi / Xi ∈ SE(3)}i=1..N (see Figure 2.5), that we wish to estimate. The

minimal unknown parameter vector is defined using their corresponding Lie-algebra twist

representation x = {xi / xi ∈ se(3)}i=1..N . In order to solve for the unknown parameters x,

the state of the robot in several postures needs to be acquired. We exploit the same argument

as for Hand-Eye calibration: the geometric transformations between joints (Xi), excluding

intrinsic joint motion from the transformations, are rigid, thus constant. However, each

joint’s intrinsic state varies. The standard Hand-Eye equation is extended by expressing the

camera motion through all kinematic chain parameters w.r.t. to an initial reference posture

(Figure 2.5) as follows:

AcXNSN . . .X1S1 = XNS∗N . . .XiS∗1, (2.7)

where

• S ∗ = {S∗N , . . . ,S
∗
1} is the reference intrinsic joint state taken as the first measurement.

2.5 Calibration parameter observability 53

• S = {SN , . . . ,S1} is the current intrinsic joint state.

• XiSi is the intrinsic motion of joint i, followed by the geometric transformation of link

i.

• Ac is the observed camera motion corresponding to the movement induced by the

joints S .

This formulation decouples the geometric calibration parameters from the intrinsic joint

state, and ensures that the solution is always provided at the identity (S = {IN , . . . ,I1}).

This makes it possible to start the calibration procedure online from any robot posture and

obtain results independently of the initial robot posture.

Equation 2.7 is solved by non-linear Levenberg-Marquardt optimization stacking the

errors obtained from each individual observed robot posture. However, as the Eye-Joint

formulation does not always lead to a full solution, so does the Eye-Robot formulation.

The next section will describe in details conditions for observability, and in case of a

partial solution, which degrees of freedom are fully determined.

2.5 Calibration parameter observability

2.5.1 Hand-Eye Observability

Observability of Hand-Eye calibration has been studied in detail in Chen [1991] using

the screw motion representation. This representation directly stems from Mozzi-Chasles’

theorem [Chasles, 1831] which states that the most general rigid body displacement can be

produced by a translation along a line, called its screw axis and a rotation about that line. As

such, any twist ξξξ = (υυυ ,ωωω) ∈ se(3) can be expressed equivalently in screw-representation as

follows [Murray et al., 1994, p47].

Screw Motion 2.5.1 A screw S consists of an axis l, a pitch h, and a magnitude θ . A screw

motion represents rotation by an amount θ about the axis l followed by translation by an

amount d = hθ parallel to the axis l. If h = ∞ then the corresponding screw motion consists

of a pure translation along the axis of the screw by a distance θ .

The screw coordinates can be directly determined from the twist ξξξ . The axis of rotation

is given by the line

l =

{
ωωω×υυυ
||ωωω||2

+λωωω : λ ∈ R, ω 6= 0

0+λυ : λ ∈ R, ω = 0
, (2.8)

54 Eye-Robot Autonomous Calibration

h

Fig. 2.6 The displacement of a rigid object from one position to another can be described as
a screw motion [Chen, 1991] : a displacement of a distance hθ and angle θ along the screw
axis~L

where the axis l is a directed line through a point. For ω 6= 0, the axis is a line in the ω

direction going through the point ωωω×υυυ
||ωωω||2

. For ω = 0, the axis is a line in the υ direction going

through the origin.

The pitch angle is

h =
ωωω⊤υυυ

||ωωω||
(2.9)

The pitch of a twist is the ratio of translational motion to rotational motion. If ωωω = 0, we say

that ξξξ has infinite pitch.

The rotation angle is:

θ =

{
||ωωω||, ωωω 6= 0

||υυυ ||, ωωω = 0
(2.10)

The observability of the pose X, based on the observed movements A observed in frame

FA and B in frame FB, depends on the screw congruence theorem (Theorem 2.5.2).

Screw Congruence Theorem 2.5.2 (Chen) Screw Congruence Theorem: Let X = (Rx, tx)

be the transformation that takes a Cartesian frame FA into exact alignment with another

Cartesian frame FB. Also let (dA,θA,LA) and (dB,θB,LB) be two screw motion descriptions

of an object obtained in FA and FB, respectively. L represents the screw axis (defined by a

point c and a direction n), θ is the rotation angle along that axis, and d is the translation

2.5 Calibration parameter observability 55

along the screw axis. Then

dA = dB

θA = θB

nA = RX nB

cA = RX cB + tx− (nT
Atx)nA

, where cA and cB are the position vectors of LA and LB, and nA and nB are the direction

vectors of LA and LB, respectively.

This theorem states that both A and B share the same screw transformation since they undergo

the same movement, e.g. that the screw motion is independent of the frame in which it is

observed. This is easy to visualize with a simple example. Consider what happens if you

screw a screw into a wall. No matter where you observe the motion from, the screw will have

undergone the same rotation around its own axis and the same translation along its axis.

Here Chen’s work is reformulated using a Lie Group representation. Consider the

tangent spaces of the matrices A and B such that [ααα]∧ = logm(A) ∈ se(3) and [βββ]∧ =

logm(B) ∈ se(3). The tangent matrices [ααα]∧ and [βββ]∧ are composed of both angular and

linear components as follows:

[.]∧ =

[
[ωωω]× υυυ

0 0

]
(2.11)

The linear component can be decomposed by projection into a component parallel to the

rotation axis υυυ || = (υυυ⊤u)u and a component perpendicular υυυ⊥ = υυυ −υυυ ||. Following the

screw congruence theory [Chen, 1991], it can be shown that the rotation around the screw

axis and the translation along the axis are invariant to coordinate frames such that t||α = t||
β

and θα = θβ .

Using this theorem, Chen has shown that for well-defined screws

• The head-eye geometry can be uniquely determined from two robot motions if and

only if the two screw axes are skew or intersecting lines

• Necessary and sufficient condition of a uniqueness solution for the head-eye geometry

is that the screw axes of two robot motions are either skew or intersecting lines.

These conditions are easily achieved if the robot motion can perform a full 6D-motion

(translations and rotations simultaneously). In other cases, a partial solution may still exist,

which will be exploited to formulate our Eye-Robot calibration.

56 Eye-Robot Autonomous Calibration

2.5.2 Eye-Joint Observability

Fig. 2.7 Observability of Eye-Joint motions. 1DoF revolute joint (a) only provide observable
rotation and translation around their rotation axis, while 2DoF revolute joints provide
observable rotations and translations around two axes.

The observability of Eye-Joint formulation can be seen as a special case of Hand-Eye

observability, where the robot motion Bi = Si only represents the intrinsic joint motion,

which is in general not a full 6D transformation, and does not induce a full 6D motion of the

eye frame Ai.

Ball-Joint It is clear that in the case of ball-joint, the solution X is fully determined. Indeed

in order to obtain full observability, the screw axes LA and LB mustn’t be parallel, which is

possible in the case of a ball joint.

Revolute Joint The motion of a revolute joint is a 1DoF rotation around its axis. In that

case, t|| = 0 and θ = θ̂ is measured by the joint encoder. The relationship between the screw

axis and its translation are, however, dependent on X. Subsequently it can be seen that the

two invariant screw parameters do not provide any constraints for estimating the unknown

calibration pose along and around the joint’s rotation axis. The remaining 4 degrees of

freedom are however fully determined.

From this analysis, we can now obtain a partial solution to the Eye-Joint calibration of a

single revolute joint. Consider a joint rotating around its x-axis. Assuming a known initial

guess x∗x = [υ∗x ,0,0,ω
∗
x ,0,0]

T along the non-observable axis x, the remaining degrees of

freedom (translation and rotation along y and z axes) can be determined by solving 2.2 for

xyz = [υy,υz,ωy,ωz]
T .

2.6 Results 57

x̂ = argmin
xyz

N

∑
i=1
||(Aiexpm([x̃]∧)− expm([x̃]∧)Bi|| (2.12)

, where x̃ = [υ∗x ,υy,υz,ω
∗
x ,ωy,ωz]

T . That is, only the observable DoF are obtained, and the

others are kept to their initial value, such as the known manufacturer’s calibration if available.

This makes it possible to improve calibration of the observable degrees of freedom online

while keeping a known calibration (e.g. manufacturer’s) for the others. A similar method can

be applied to all other joint types.

2.5.3 Eye-Robot Observability

The observability of kinematic chain calibration is obtained by recursively applying Eye-Joint

observability results, starting from the first joint attached to the sensor and moving down the

chain.

In the case of HRP-4 (Figure 2.5), most links are attached to a pair of revolute joints

sharing the same rotation center. In that case the solution is fully determined. The RGB-D

sensor is attached to the neck pitch and yaw revolute joints. Thus the sensor pose w.r.t. to

these two joints may fully be determined. Once determined motion of the chest yaw and

pitch joint provides additional constraints and the chest-to-sensor transformation becomes

fully known as well. In case one of the joint configuration on the robot does not admit a full

solution, then the partial-solution strategy presented in Section 2.5.2 can be used to provide

an initial guess allowing to ignore the unobservable degrees of freedom in the optimization.

2.6 Results

Our method is applied and evaluated on several practical use-cases that were faced in practice

during this thesis, and that provided motivation to this chapter.

The Hand-Eye method presented in Section 2.3 is used to calibrate

• HRP4’s RGB-D sensor

• MOCAP markers placed on HRP4 body

• MOCAP markers placed on a hand held object for which ground-truth transformation

is known, allowing for evaluation of the results.

The Eye-Robot method presented in Section 2.4 is demonstrated on

58 Eye-Robot Autonomous Calibration

• As an alternative method to HRP4’s RGB-D sensor calibration

• To simultaneously calibrate HRP4’s torso, head, and RGB-D sensor

First we present our efficient C++ implementation that performs real-time Hand-Eye and

Eye-Robot calibration. We then detail results on the aforementioned use-cases.

2.6.1 Implementation

We release our open-source C++ implementation1 of online eye-robot calibration. The

implementation relies on the open-source C++ optimization framework Roboptim2 [Moulard

et al., 2013], which enables straightforward definition of optimization problems, and is

compatible with a wide range of solvers. Both Hand-Eye (Equation 2.1) and Eye-Robot

(Equation 2.2) problems are solved using the Levenberg-Marquardt solver of the Eigen

library.

Hand-Eye

The implementation of Hand-Eye minimization is straightforward. The cost function of

Equation 2.3 and it’s Jacobian from Equation 2.5 are implemented. The problem is then

solved using a Levengerg-Marquardt implementation.

Eye-Robot

As discussed in Section 2.5, eye-robot calibration does not always admit a full solution. As

such, special treatment is required to ensure that either a solution can be obtained, or that an

initial guess is provided for the degrees of freedom that cannot be estimated.

For revolute joints with one degrees of freedom, translation and rotation along its rotation

axis cannot be observed. For such joints, an initial guess is fixed along these directions, and

only the 4 remaining degrees of freedom are considered in the optimization vector.

For revolute joints with more than one degree of freedom, a solution can be obtained.

Amongst those are ball-joint, rarely found on a humanoid robot, for which a solution is

directly observable. Another more common case is that of joints sharing the same rotation

center, but a different rotation axis. This is for instance the case of HRP-4 neck and torso,

both having a yaw and pitch rotation. In that case, a solution can be obtained by considering

both joints as one. Let Sy denote the intrinsic yaw rotation and Sp denote the pitch rotation.

1 https://github.com/arntanguy/robcalib
2http://roboptim.net

2.6 Results 59

The full joint motion can be simply expressed as S = SySp, whose motion fully constrain the

eye-joint calibration.

Whether a joint configuration will constrain the eye-robot calibration can be known

a-priori from the robot’s kinematic model, and calibration on observable directions can be

obtained.

2.6.2 Acquiring Calibration Data

Hand-Eye calibration relies on the availability of a set of N pose pairs (Ai, Bi) that each

represent the same motion undergone by both the eye-frame and hand-frame. To ensure

robust results, it is important to consider

• That both Ai and Bi were acquired at the same time, and represent the same rigid body

motion

• That the set of all measurements best constrains the minimization

• That each measurement is as noise-free as possible to ensure best accuracy

In this section we expose practical strategies to obtain a suitable set of measurements that

ensure good calibration results.

Ideal sampling frequency

Hand-Eye calibration aims at finding the rigid-body transformation between the hand and

eye-frame, with both frames being commonly measured by two unrelated estimators, usually

running unsynchronized and at different frequencies. To obtain robust calibration results, it

is paramount that the timing errors are kept to a minimum. The estimators used and timing

data available is highly dependent on the calibration use-case. For instance

1. For calibrating the transformation between MOCAP markers and a robot, one will use

the pose tracked by the MOCAP system obtained at high frequency (commonly more

than 100Hz), and that of the robot link, commonly obtained by forward kinematics at

higher frequency (200Hz in case of HRP-4).

2. For calibrating the transformation between MOCAP markers and an RGB-D sensor,

one will use the MOCAP tracking, and visual odometry such as SLAM running at

lower frequency (typically 30Hz)

60 Eye-Robot Autonomous Calibration

t

t

Sensor A

Sensor B

Fig. 2.8 Illustration of sampling from two sensors A and B running at different varying
frequencies fa =

1
ta+∆a

and fb =
1

tb+∆b
. Each vertical tick represents a sensor data. ∆a and ∆b

are used to show that the sensor acquisition time is not necessarely constant and might vary
over time. For RGBD-to-MOCAP Hand-Eye calibration, Sensor A is the tracked RGB-D
pose from SLAM with fa = 30Hz, and Sensor B is the tracked pose from MOCAP with
fb = 100Hz. The arrows show the closest possible sampling times for each sensor.

Due to the widely different frequencies and sources of tracking, it is generally impossible

to guarantee that the data will be acquired at the same time. In an ideal case, one would

obtain stamped sensor data synchronized to a common clock time, which would allow to

accurately find the closest pose estimates in time. As shown in Figure 2.8, hand and eye data

is generally not perfectly synchronized due to the difference in the aquisition frequencies.

Obtaining fully synchronized data would in that context require an estimator able to predict

the future pose of lower-frequency estimators, or retain a subset of synchronized data.

Even in the ideal case where sensor timing is fully known, the level of synchonization

depicted in Figure 2.8 does not prove sufficient to acquire data at the frequency of the

slowest sensor. Consider a sensor acquired at a sampling rate fa = 30Hz and another one

at fb = 100Hz. In the worst case, the difference in acquisition time for each absolute pose

is ∆a = 1
2 fb

= 5ms. For a realtive pose, this brings the maximum to ∆r = 2∆a = 10ms, a

maximum of up to 30% of the sampling frequency!

As will be shown in the next section, sampling data at such a high-frequency is not

necessarily the best choice, as the relative motion is quite small and estimation inaccuracies

will also play a large role. To finish with sampling frequency consideration, one can guarantee

the maximum synchronization delay by choosing an the sampling frequency fs such that the

fs∆r < ∆r, where ∆r is the maximum error expressed as a percentage of sampling time. For

instance, if one wants to guarantee less than 1% of sampling-time error with these example

frequencies, a sampling rate of fs < ∆r fb = 1Hz needs to be selected, which gurantees a

maximal time error of ∆r

fs
= 10ms on data sampled every 1000ms.

Constraining the Hand-Eye Minimization

We have shown how to best choose sampling frequency in the case of hand and eye-frame

estimations obtained at different rates. Section 2.5.1 demonstrated minimal and sufficient

2.6 Results 61

conditions on the input data to guarantee that a valid unique solution is obtained. However, it

left out practical considerations on how to make sure that this result is the most accurate.

Systems such as MOCAP and SLAM both provide an absolute pose w.r.t. to a global

reference frame at high frequency (30− 200Hz). From these absolute poses, one needs

to obtain a set of relative poses that is both best suited for constraining the Hand-Eye

minimzation, and that minimizes the amount of noise and outliers. It has been shown by Tsai

et Lenz [1989] that it is best to maximize the rotational motion between measurments by

selecting pairs of poses that are as far as possible in that respect (see Figure 1.11).

Precision and Robustness using SLAM Keyframe-Graph

The afformentioned method to obtain good measurements for calibration provide a good

general-purpose way of calibrating any sensor. However, in the case of SLAM, we can further

improve on the robustness of the results by exploiting the keyframe-graph (see Figure 1.11).

Besides combining all of the afformentioned recommendations (a lower sampling rate and

maximizing the distance and rotation between the poses), the keyframe-graph offers one

considerable advantage: it is continously refined even after the keyframe has been created.

This is done by exploiting loop-closures (i.e. recognizing that we are near previously explored

keyframes) to perfom a bundle-adjustement step of all poses in the graph. As such, the

keyframe poses are much more precise and reliable than those obtained during tracking.

Relative poses may be simply obtained by computing the relative transformation between

each keyframe and the all other keyframes in the graph. This provides the largest amount of

constraints with N2 transformations, N being the number of keyframes. A sequence of 30

seconds of motion will easily provide more than 20 keyframes, which provides more than

400 robust poses to constrain the minimization.

2.6.3 MOCAP-Xtion Calibration

To evaluate the dense Hand-Eye formulation, we have created a simple set-up where both the

Xtion and reflective VICON markers are fixed on a rigid metal plate, providing groundtruth

for the pose to be calibrated. These frames where placed manually as accurately as possible,

but some uncertainty on the order of a couple of degrees remains about the orientation around

roll and pitch axes.

Several trials are performed where motion in front of a staircase are performed for a

short duration varying between 1 and 2 minutes. The Dense Hand-Eye method described in

Section 2.3 is applied online to compute the extrinsic pose parameters between the MOCAP

markers frame and the Asus Xtion optical frame. The Asus Xtion is tracked with PX2M

62 Eye-Robot Autonomous Calibration

Fig. 2.9 Setup for groundtruth evaluation of dense Hand-Eye calibration. The Xtion and
VICON markers have been disposed in a known configuration to provide groundtruth for X.

SLAM, and the MOCAP markers are tracked with a VICON system. Figure 2.11 and

Table 2.2 report calibration results obtained from one of these calibration using various pose

sampling strategies. All results were obtained from the same recorded sequence.

Fig. 2.10 Images from the calibration sequence, camera-ruler calibration is moved by hand
around the staircase, camera motion is tracked with SLAM while the ruler motion is tracked
with the VICON MOCAP system to provide input data for Hand-Eye calibration

Keyframe result referers to the sampling strategy described in 2.6.2. N = 34 keyframes

were generated by PX2M for this sequence, and the maximum amount of relative

poses (N2 = 1156) was generated from it. This is the only method for which reliable

results could be obtained for each calibration. Furthermore results were consistent

across all calibration trials. Rough convergence was achieved with as little as N = 10

keyframes, and the most accurate stable convergence is achieved with more than

N = 30 keyframes.

Relative results were obtained by sampling each pose at PX2M’s frequency (30Hz). Conver-

gence results is highly variable depending on the quality of tracking in each sequence.

2.6 Results 63

Method Translation (m) Rotation (deg) Translation Error (m) Rotation Error (deg)

Keyframe
[
−0.0454
0.8022
0.0309

] [89.5959
−6.4655∗
3.0252∗

]
0.0124 7.1497

Relative
[
−0.0407
0.5999
0.0115

] [87.8761
−7.0858∗
1.9854∗

]
0.2002 7.6591

Expected
[
−0.0400

0.800
0.0200

] [90.0000
0.∗
0.∗

]
0 0∗

Table 2.2 Hand-Eye Calibration results for various pose-sampling strategies. Note that
groundtruth values marked with a ∗ are imprecise.

The poor convergence results are due to noise and outliers in the pose tracking. Addi-

tionnaly, PX2M loop-closure mechanism results in sharp jumps in the estimated pose,

which are highly detrimental to the calibration dataset.

Fig. 2.11 Convergence of Hand-Eye calibration on the MOCAP-Xtion calibration setup.
Imprecisions in convergence in roll and pitch rotations are mainly due to inaccuracies in the
groundtruth measurements for the calibration object. Best convergence is reached for N = 34
keyframes corresponding to N2 = 1156 relative pose measurements.

2.6.4 Head-Eye Calibration of HRP-4

To enable control strategies of HRP-4 w.r.t. to its environment knowing the precise pose of

the vision sensors on the robot is of paramount importance. As illustrated by Figure 2.1,

64 Eye-Robot Autonomous Calibration

unexpected events during robot control can affect the position of the sensor w.r.t. the robot.

Here, during stair climbing trials, the robot fell on its supporting rope, which damaged the

right side of the head, and in particular the screw-mechanism holding the Asus Xtion sensor

on the robot. This unexpected event modified the extrinsic robot-to-sensor calibration, and a

pattern-free method can recalibrate the sensor online without requiring to stop operations. In

practice, the calibration of HRP-4 was performed by generating both translational motions of

its CoM in all directions within its double support polygon for stability, and rotations of the

RGB-D sensor. To avoid an issue of SLAM with pure rotations (see 3.2.3) in poorly textured

environment, such motion is purposefully avoided, and the waist joints are used to generate

non-pure rotations. However, in sufficiently contrainting environments, it is best to add head

movements as well, as they will better constrain the hand-eye solution.

2.6.5 Eye-Robot calibration of HRP-4

First, using real data with HRP-4, we show that using the Eye-Joint method presented in

Section 2.5.2 the extrinsic camera calibration can be obtained. We then illustrate the use

of online Eye-Robot calibration in its full observability case by exploiting the ball-joint

equivalence of HRP-4 torso and head joints. We show that the calibrated kinematic chain is

consistent with our observability analysis in Section 2.5. All real experiments are performed

using the SLAM of Meilland et al. [2013b], and the HRP-4 humanoid robot, controlled with

the quadratic programming controller [Vaillant et al., 2016].

The HRP-4 humanoid robot has many degrees of freedom, an is fitted with very precise

high-end optical encoders, and an Asus Xtion RGB-D sensor, making it a perfect candidate

robot to test our proposed calibration techniques. All of HRP-4 joints are revolute, and many

of its joints can be assimilated to fully-observable ball-joint. The head rotates around yaw

and pitch axes, so does the torso, as well as the leg waist joints. Other joints, such as the

knee have only one degree of freedom.

Experiments

In a first experiment performed on the HRP-4 robot, we illustrate the equivalence between

the classic Eye-Hand calibration, and the proposed Eye-Joint calibration to determine the

camera-to-robot extrinsic calibration parameters. The initial camera-to-robot transformation

is randomly chosen, and a motion is performed using both neck joints simultaneously. The

two neck joints are considered as a single ball-joint. As predicted by the screw-congruence

theory, the algorithm starts to converge with only two relative measurements, but greater

accuracy is obtained over time. The complementary video further illustrate the online aspect

2.6 Results 65

Fig. 2.12 Eye-Robot calibration of HRP-4 waist-to-camera transformations. A) The transfor-
mation between the torso joint and the head joint, and that between the head joint and the
camera are initially unknown. B) Results of the eye-joint calibration procedure obtained from
a simulated robot motion, where both the torso and head joints are moved simultaneously.
The camera pose along with encoder values are obtained from the simulated kinematic tree.
Calibration results are continuously improved online as new data becomes available.

of the calibration by estimating the location of the robot w.r.t. SLAM’s map [Tanguy et al.,

2016] using the live calibration results. As can be seen in the video and in Figure 2.13 the

erroneous initial calibration results in the environment being misplaced w.r.t. the robot, while

the end-result of the calibration correctly locates the robot.

In a second experiment, we show the Eye-Robot calibration method applied to the whole

kinematic chain between the waist and the camera. In this configuration, the full geometric

transformation between the torso and head joints, and head joint to the RGB-D sensor can

be determined. Figure 2.12 shows the initial joint configuration along with the calibration

results obtained after a few seconds of simulated robot motion. Both the torso and head

joints are exited along their two degrees of freedom (rotation around the pitch and yaw

axes) to guarantee full observability. Camera pose measurements are determined by forward

kinematics of the ground-truth kinematic chain.

66 Eye-Robot Autonomous Calibration

Fig. 2.13 Online Eye-Robot calibration of the kinematic tree geometric parameters for
HRP-4’s torso, head joints and camera (Hand-Eye). The floating base 6D (orienation and
translation) is additionally calibrated w.r.t. the environment’s point cloud.

The same experiment is then performed on a real HRP-4 humanoid robot. Here, camera

motion is obtained from dense visual SLAM [Meilland et Comport, 2013a], and joint angles

from high-resolution optical encoders. As can be observed in Figure 2.13, aside from

obtaining convincing calibration for the considered joints, the pose of the robot’s floating

base w.r.t. to SLAM’s real-time map can also be determined. This is achieved by exploiting

the known pose of the RGB-D sensor within SLAM’s map, along with the kinematic chain

being refined. Once convergence is reached, the robot attitude is determined. The associated

video further illustrate the online aspect of the calibration by estimating the location of

the robot w.r.t. SLAM’s map [Tanguy et al., 2016] using the live calibration results. As

can be seen in the video and in Figure 2.13 the erroneous initial calibration results in the

environment being misplaced w.r.t. the robot, while the end-result of the calibration correctly

locates the robot.

2.6.6 Discussion

Calibration feasibility depends on the type of joints and their configuration. In particular,

ball-joints parameters are fully observable. This is the case for many robots, in particular

humanoids for which a common design is to have head, torso, and hips in a configuration akin

to ball-joints. In this case, the proposed method is a direct generalization of the Hand-Eye

calibration method to Eye-Joint calibration. For joints with only one degree of freedom,

eye-joint calibration never admits a fully observable solution. In particular, for revolute

joints, an ambiguity remains in both the translation and rotation along the joint’s rotation

2.7 Conclusion and Future Work 67

axis. Such joint configuration is commonly found and we propose two main solutions for

their calibration. The first focuses on calibrating the 4 observable DoF, which is achieved

by locking the unobservable parameters (along the joint’s axis) to an initial reference value,

assumed to be available (Section 2.5.2). Obtaining an accurate estimate of this initial

value is however non-trivial, and one would most-likely fall back to using the manufacturer’s

calibration. For humanoid robots, the compromise of using the online calibration approach for

the observable parameters, while using a known reference value for the others (manufacturer

data, external calibration...) is best suited.

2.7 Conclusion and Future Work

Starting from Hand-Eye calibration results, we propose a novel method that performs online

whole-body calibration of a kinematic chain using only joint encoders, and an RGB-D sensor.

Contrary to Hand-Eye methods, no a-priori calibration of the kinematic chain is assumed

available. It is necessary to replace the use of end-effector robot motion by that of the

joints intrinsic motion, which leads to the study of Eye-Joint geometry, where the robot

motion is entirely determined by its intrinsic joint motion. Hand-Eye observability results are

applied to this restricted problem, and we demonstrate that full observability of the geometric

parameters is achieved for ball-joints, or equivalently two or more revolute joints sharing the

same rotation center. We further consider solving Eye-Joint calibration for common joint

types for which full observability cannot be achieved. In this case, screw theory is used to

determine and calibrate the observable directions, while keeping an initial guess for the non-

observable directions. Building upon these results, we then reformulate Hand-Eye calibration

to a full kinematic chain calibration, denoted as Eye-Robot calibration, and successfully

apply the method with both simulated and real experiments to the calibration of the upper-

body of an HRP-4 humanoid robot. Future work will focus on quantitative evaluation of the

calibration results and of the influence of uncertainties in sensor measurements.

Chapter 3

Multi-contact Planning and Control in a

Real Environment

In the previous chapter, we have seen how the kinematic model of the robot can be obtained,

including the transformation between vision sensors and the robot body. This is a prerequisite

to localizing any of the robot surfaces within the SLAM map. In this chapter, the problem of

exploiting the robot localization w.r.t. to its environment will be considered.

Multi-contact control and interaction is a key behaviour for humanoids because it allows

to: (i) create closed kinematics chains to drive higher forces; (ii) plan for stable postures

using additional contact supports by means of hands and/or any other limbs; and (iii) perform

complex locomotion in confined spaces. State-of-the-art multi-contact planning methods

cannot yet be computed in real-time w.r.t. to an unknown environment. Fortunately, with a

lot of applications, especially in industrial settings such as shipyards or buildings, a large

part of the environment can be known a-priori. Planning can then be achieved w.r.t. to CAD

models of the environment surfaces relevant to the tasks at hand.

Dense localization and mapping has established itself as one of the most promising

solution to both obtain a precise map and localization of a robot w.r.t. to it. Even so, few

working solutions have been exploited in the context of humanoid locomotion. Previously

real-time walking and navigation coupled to dense real-time vision was first presented

with Meilland et Comport [2013a]. More recently real-time footstep-planning abilities

coupled to real-time vision have been demonstrated using dense stereo SLAM in Fallon et al.

[2015] for the case of uneven terrain walking. To our knowledge no attempts have gone

further than walking.

We propose a full system that integrates the multi-contact planner and QP controller

framework detailed in Bouyarmane et Kheddar [2011b]; Vaillant et al. [2016] with the state-

of-the-art 6D dense SLAM detailed in Meilland et Comport [2013a]. Whilst both perception

70 Multi-contact Planning and Control in a Real Environment

Fig. 3.1 HRP-2Kai reaching for contacts in challenging environments. Localization of the
robot is shown w.r.t. to D6DSLAM’s map.

and multi-contact control modules have been previously published, combining them together

is a non-trivial task that has lead to many integration challenges. In this chapter, we will look

at how to

1. obtain a 3D representation of the environment?

2. find objects in this representation, and in particular surfaces on these objects?

3. localize a robot w.r.t. to these objects?

4. use the localization of the robot w.r.t. to desired surfaces to robustly achieve contact

with its end-effectors

Answering these questions make it possible to execute multi-contact plans in a real environ-

ment, without presupposing that the robot is precisely placed w.r.t. to the surfaces of interest.

We demonstrate such possibilities via a set of several representative humanoid tasks: walking,

climbing and grasping tasks. In summary, the following trials have all been conducted after

an extended walking phase starting from an arbitrary unknown initial location: (i) Grasping a

valve, and (ii) Grasping a car handlebar. The following are performed without walking, but

from an approximate initial location: (iii) Grasping a steering wheel, (iv) Executing the first

step of a complex multi-contact stair-climbing plan.

3.1 Registration of polygonal meshes with a keyframe-map 71

3.1 Registration of polygonal meshes with a keyframe-map

Three dimensional scenes may be stored and manipulated with several representations. That

which is most suitable is heavily dependant on the application. In the field of computer

graphics, polygonal meshes (represented as a collection of triangular surfaces) are by far

the most commonly used for their properties that greatly simplify the rendering process.

Robotics has had a long history of using such polygonal meshes, to model robot links, but

also the surfaces they are expected to interact with. Another common representation heavily

used in robotics application is that of point clouds, in which objects are defined as a set of

independent three dimensional points. They are often acquired directly through sensors such

as LIDARs.

In the case of SLAM, several representations are used depending on the method. In Com-

port et al. [2007] and subsequent methods [Kerl et al., 2013; Meilland et Comport, 2013a]

a keyframe representation is used, while Newcombe et al. [2011a] and others [Whelan

et al., 2012] uses a voxel representation. Each representation has its own set of advantages,

and provides an efficient way of storing and accessing the map, thus allowing the SLAM

approaches to run at camera rate. It is necessary to keep these internal representations, as they

are best suited for their applications: keyframe-graphs and voxels are well-suited for SLAM,

meshes for computer graphics, point clouds for 3D sensors, etc. Yet it is often necessary to

relate these representations to solve a specific problem; here the localization of a 3D meshes

w.r.t. to SLAM’s keyframe-graph.

The first, proposed by Viola et Wells III [1997] exploits mutual information (a measure

of the quantity of information shared by signals based on entropy) as a cost-function for

minimization. Its effectiveness was demonstrated in many scenarios : alignment of a 3D head

model (pointcloud representation) with a grayscale 2D image; Computed Tomography (CT)

scan and Magnetic Resonance Image (MRI) of a patient, etc. In Dame et Marchand [2010], a

similar method was used to align aerial images with a template extracted from a geographic

map. For our application, one could directly choose to exploit mutual information between

the mesh representation and the keyframes. Better yet, a keyframe-map representation of the

object of interest could be built a-priori, and then used for registration with the map acquired

online. This would allow to fully exploit the rich map built by our SLAM algorithm (such as

high dynamic range [Meilland et al., 2013a]) to obtain robust registration. Unfortunately, due

to time constraints preceding the DARPA Robotics Challenge, this option was not explored

further.

Instead, we chose to convert both meshes and keyframe-maps to the simpler pointcloud

representation, with some trade-offs (conversion time, loss caused by sampling, etc). Point-

clouds were chosen as the common representation as they are (i) easy to obtain from both

72 Multi-contact Planning and Control in a Real Environment

meshes and keyframe-maps, (ii) many registration algorithm have been developed to exploit

them. Amongst those, the most popular is the Iterative Closest Point algorithm proposed

by Besl et McKay [1992] (described in Section 1.2.3 and Appendix B). In the remaining of

this chapter, we will show how pointclouds can be sampled from meshes, and converted from

keyframe-maps; and present two main robustness improvements that were developed for

the DARPA Robotics Challenge. The first improves mapping and tracking of SLAM in the

presence of self-observations, the second provides robust registration with scale variations

between the mesh and pointcloud.

3.1.1 From mesh to pointcloud : uniform mesh sampling

This section focuses on obtaining uniformly distributed pointclouds from meshes. Meshes

are assumed to be composed of triangular surfaces, as they are the most widely available,

and conversion from other polygonal representations is often trivial. Furthermore, we wish

to obtaing a uniformly distributed cloud of points which provides a neutral distribution of

points, where no implicit importance is given to any part of the mesh. The method described

here is inspired by the python pyntcloud implementation [David de la Iglesia, 2017], and I

have implemented it as an open-source C++ library1 to be used with the registration tools

developped in this thesis. This sampling can be further filtered with Poisson disk sampling,

to guarantee that all samples are at least distance r apart [Bridson, 2007]. Figure 3.2 shows

sampling results obtained by uniformly sampling a total of N ∈ N
+ points on a triangular

mesh as follows.

(a) (b) (c)

Fig. 3.2 Uniform point cloud with N = 100000 points sampled from a triangular mesh of
the Airbus A400M demonstrator (scale 1:1 aircraft part). (a) Triangular faces and surface
rendered with flat lighting (b) Uniform point cloud representation (c) Uniform point cloud
representation with surface normals

1 https://github.com/arntanguy/mesh_sampling

3.1 Registration of polygonal meshes with a keyframe-map 73

The mesh is defined here by M triangles. Each of the 3 triangle vertices are represented

by its vertex coordinates v, vertex color c and vertex normal n, such that

T = { T1, ...,TM | M ∈ N
+},

Ti = { (vi
1,v

i
2,v

i
3) | v ∈ R

3

(ni
1,n

i
2,n

i
3) | n ∈ R

3

(ci
1,c

i
2,c

i
3) | c ∈ R

3}

(3.1)

,

The amount of points sampled per triangle Ti is dependent on its area ai.

ai =
||(vi

2−vi
1)∧ (v

i
3−vi

1)||2
2

(3.2)

The number of point to sample per-triangle can be obtained as

s = N ∗
ai

∑
M
j=0 a j

(3.3)

Thus si points need to be sampled per triangle. Randomly sampling a point to lie within

a triangle can be easily and efficiently achieved using a barycentric coordinate system. In

this coordinate system, a random point lying inside a triangle can be generated simply by a

linear combination with weights α,β ,γ ∈ [0,1] such that

α +β + γ ≤ 1

ps = αvi
1 +βvi

2 + γvi
3

(3.4)

Since γ = 1− (α +β), one only needs to randomly choose a value for α ∈ [0,1] and

β ∈ [0,1]. To ensure that the barycentric constraint of Equation 3.4 is respected, if α +β ≥ 0

then α = 1−α and β = 1−β . Note that if the mesh has vertex colors defined as ci
1,c

i
2,c

i
3 ∈R,

then they can be interpolated for each sampled point using Equation 3.2 using the color

vectors instead of the vertex coordinates.

If the normal direction ni is known for each vertex vi, then the sampled point normal can

be interpolated as

ns =
ni

1 +ni
2 +ni

3

||ni
1 +ni

2 +ni
3||2

(3.5)

If the vertex-normal direction is unknown, it can still be obtained as n = (vi
2−vi

1)∧ (v
i
3−

vi
1). However, in such a case, further steps should be taken to ensure that the normal direction

remains consistent across all triangles, and always points towards the outside of the mesh.

Thus, the set of points sampled for a triangle Ti is

74 Multi-contact Planning and Control in a Real Environment

Pi = {(ps,ns,cs)1, . . . ,(ps,ns,cs)s} (3.6)

, and the whole cloud is defined as the union of each triangle cloud

P =
M⋃

i=1

Pi (3.7)

3.1.2 From keyframe-map to pointcloud

Keyframe-based SLAM methods represent the map as a graph of keyframes, where each

keyframe contains both refined color and depthmap images, and its pose is determined w.r.t.

to nearby keyframes in the graph. This pose relates each keyframe to its neighbours in the

graph, which allows to locate it w.r.t. to a global reference frame. Furthermore, each point in

a keyframe (color and depth) can be re-projected as a 3D point thanks to the pinhole camera

model, where Equation 1.17 relates each pixel pn in a keyframe with its 3D counterpart Pn

through the camera intrinsic parameters (see Figure 1.7,1.8). However, when directly applied

to all pixels of all keyframes, the resulting pointcloud size quickly becomes considerably

large. A voxel-grid filter is used to reduce the amount of points to a desired density. The space

occupied by the pointcloud is subdivided into cubes of dimension d. Each cube contains an

arbitrary number of points from the original cloud, and only the centroid of these points is

kept in the final filtered pointcloud.

3.2 Robust registration of 3D objects with dense visual SLAM

In the previous section, we have shown how 3D meshes and SLAM’s keyframe-map can be

converted to a common pointcloud representation, and motivated the choice of the Iterative

Closest Point algorithm. In this section, we consider several methods of initialization for the

algorithm, extend it to support registration of objects with different scales (a requirement of

the DARPA Robotics Challenge), and also describe how visual SLAM can be made robust to

self-observations.

3.2.1 Initial Alignement

In its formulation presented in Algorithm 1, the ICP algorithm is clearly a local method. From

an arbitrary initial alignment between pointclouds, no guarantee can be provided that the

algorithm will converge globally to the desired solution. This is due to the nearest-neighbour

distance formulation, where only the closest point to the current alignment estimate are

3.2 Robust registration of 3D objects with dense visual SLAM 75

considered, which can easily lead to local minimas. Because of this local matching step,

the algorithm can only improve the alignment of already pre-registered point clouds, but is

not suitable to globally locate a model in a general scene. Solving the registration problem

globally is a hard open problem. Recently, Yang et al. [2013] proposed a first solution that

guarantees global convergence of the ICP algorithm. It alternates between using branch and

bound and ICP to efficiently explore the space of possible rotations and translations. While

this solution is very promising, it is currently very slow, with solutions ranging from a few

minutes to a few hours depending on how much of the space has to be explored. Further

work is looking at improving the convergence speed by increasing the convergence radius of

the ICP step [Ireta Munoz et Comport, 2017; Straub et al., 2017]. While real-time alignment

is not required as SLAM’s map remains globally consistent and registration can be performed

only once, a long convergence time (currently of the order of minutes) remains prohibitive

for real applications.

A pragmatic approach is to find, an initial alignment T̂ that brings the pointclouds close

enough to be within the convergence radius of ICP. In Rusu et al. [2009] it was proposed

to use Fast Point Feature Histograms (FPFH) features to describe local geometry around

a subset of 3D points in a cloud, in conjunction with a RANSAC algorithm. The idea is to

randomly select a set of points in both clouds, around which features are computed. The

solution with minimal distance between sets of features is then kept as an initial guess to be

refined with ICP. Such methods are interesting, but no guarantee is provided that they will

converge to a valid initial guess. Furthermore, in our practical experience, such methods were

rarely able to find an exploitable guess. This is due in part to the nature of the environments,

which are mostly composed of planar surfaces and do not provide enough local geometry

around sampled points. A remaining option is to manually provide the initial estimate, which

can be achieved in several ways. Assuming no a-priori knowledge about the model and the

environment, the estimate needs to be manually defined by a human operator. This task

can be made simple by manually picking correspondences between a minimum of three

non-coplanar points in each cloud (or four coplanar ones), and performing a simple SVD

decomposition, which guarantees a unique initial guess. This provides a generic way of

initializing ICP, at the cost of requiring a human operator.

However, in the context of controlling a humanoid robot, a lot of contextual information

is available: what the robot is trying to achieve, where the object is likely to be according to

the robot, etc. In Tanguy et al. [2016] we showed that this information can often be used in

practice to successfully initialize ICP, without requiring human intervention. For example, in

an experiment, the robot is placed by an operator in a sitting posture within the driving seat

of a vehicle. It’s initial posture can thus be guessed with reasonable accuracy: its encoders

76 Multi-contact Planning and Control in a Real Environment

provide initialization for the kinematic parameters, and floating base posture can be guessed

by supposing the buttocks link to be in flat contact with the seat. To get an initial guess of the

driving wheel pose, its pose w.r.t. the driving seat is also required, which can be obtained

from the car model. Another commonly occurring scenario is that of re-registering an object

in case odometry tracking fails. In that situation, assuming the robot hasn’t moved much

since the loss of odometry, the initial guess can simply be taken as the latest known position

of the robot w.r.t. the object.

In summary:

• Global ICP registration is prohibitive because of its large computation time. While

real-time is not necessary as registration occurs only once while planning the motion,

operational time is desired (e.g. reactive enough to be used in a teleoperation setting,

such as that of the DRC).

• Feature-based initial alignment does not provide any guarantee to succeed, and has

been found to be quite unreliable in practice.

• Manual initialization is not ideal as it requires a human operator, but it is sometimes

possible to use known information about the robot in its environment to obtain a

sufficient initial guess.

• The SLAM algorithm re-located based on testing local keyframes for a minimal error

and variance threshold could also be used to directly initialize the CAD model within

its initial calibration.

3.2.2 Robustness of SLAM

Self-occlusion

With the exception of recent developments in deformable SLAM that remain limited to

highly controlled motion, such as Innmann et al. [2016]; Newcombe et al. [2015] and many

more, state-of-the-art approaches make the assumption of a rigid scene in order to keep

geometric consistency throughout tracking. Unfortunately, non-rigid motion within any of

the environment in which the robots are expected to evolve (factories, households, etc) is

rarely avoidable. Motion observed within the camera field-of-view can be separated into

motions that do not depend on robot actions (such as a human moving, objects in motion...),

and motions that are caused by the robot itself (self-observation of the robot links, interacting

with the environment). For the first category, no a-prioi assumption can be made, the motion

is entirely outside of our control. Most state-of-the art SLAM systems have some robustness

3.2 Robust registration of 3D objects with dense visual SLAM 77

a. c. d.

Fig. 3.3 a. An external view of HRP4 CAD model – b. Links visible within the RGB-D
sensor filed-of-view (green area) are rendered from the optical frame perspective – c-d. Live
example on HRP-2. All visible links are masked.

mechanisms that will allow to discard motion as outliers. D6DSLAM uses iteratively re-

weighted least-square with M-Estimators to filter out outliers (Appendix A). This method

is robust to small discrepancies within the field-of-view, but cannot handle the large image

occlusions that are likely to occur with self-observation. Imagine the robot performing the

valve turning scenario of the DRC. It will need to look at the valve, and grasp it with it’s end

effector. In this scenario, the arm motion occupies a large part of the sensor’s field-of-view

(FoV) and, if left unchecked, can cause poor tracking of D6DSLAM, along with erroneous

keyframes degrading the map quality.

Contrary to external motions, self-observation is entirely within our control. It cannot be

prevented from happening, but we can know when and where they are occurring, and prevent

them from interfering with D6DSLAM’s tracking and mapping. The main idea is to alter the

photometric matching algorithm to avoid taking into account areas where the robot links are

visible. To do so, using the robot’s kinematic state obtained from forward kinematics of the

joint encoders and the robot model, we render a binary mask of the robot’s CAD model from

the sensor’s perspective (see Fig. 3.3). In order to account for small deviations between the

CAD rendering and the actual robot state, we apply a small dilatation to the generated mask.

To each of the robot link frame Li is associated a set of triangles, defined by their vertices

{v j
i } (refer to Section 3.1 for a description of mesh representation). Each vertex can be

78 Multi-contact Planning and Control in a Real Environment

expressed w.r.t. to the camera frame as

v j
i XC = FK(B,Li,q)

−1 v j
i X−1

Li
FK(B,C,q)

Each triangle, defined by 3 of these vertices, can then be rasterized onto the image plane

using the pinhole model of Equation 1.17. This equation links a pixel pi on the image plane

with a 3D point through the intrinsic matrix. The position of a vertex w.r.t. to the camera

itself depends on the extrinsic sensor calibration, which once again illustrates the importance

of Hand-Eye calibration. Rasterization is achieved efficiently with GLSL fragment shaders,

which results in a mask defined as

M : Ω → [0,1]

(pi) 7→

{
0, pi is in at least one link triangle

1, pi is not in any link triangle

D6DSLAM’s tracking equation 1.23 is modified to incorporate this mask in the following

way

em(x) = M
(

w(T̂T(x),P∗)
)

e(x) (3.8)

In effect, we are considering the error as an outlier at each pixel where the robot is visible.

Figure 3.3 shows an example of this masking strategy on HRP-2.

While this masking scheme effectively improves the robustness, potentially large portions

of the input sensor data are effectively ignored, which can lead to tracking inaccuracies, or

even in extreme cases loss of tracking. In addition to dealing with self-occlusion, some steps,

not considered here ought to be taken in order to update D6DSLAM’s map according to the

robots predictable actions within the environment, i.e. if the task is to move an object, then

the corresponding object in the map ought to be updated.

Pure rotations

Our experiments revealed an issue that seems to be inherent to the dense visual SLAM ap-

proach, whereby pure rotations in poorly textured environments do not sufficiently constrain

the tracking equation 1.23, which leads to erroneous estimations. Instead of a pure rotation,

considerable drift in translation in a plane normal to the rotation axis is observed (as much as

10cm in extreme cases). For instance, a pure rotation of 55 along the vertical axis z might

lead to 13cm error along the y axis (Figure 3.4). This occurs mainly when there is little

texture in the environment, and the issue has been observed with two of the leading dense

3.2 Robust registration of 3D objects with dense visual SLAM 79

SLAM approaches: D6DSLAM [Meilland et Comport, 2013a] and ElasticFusion [Whelan

et al., 2015b].

Looking at textured parts of the environment with a minimal amount of large planar

surfaces helps to better constrain the visual tracking equations. As the robot is capable of

changing the camera viewpoint, active vision [Aloimonos et al., 1988] was considered to

improve the performance of SLAM in such environments. The main idea is to automatically

choose the viewpoint that maximizes the amount of information (entropy) constraining the

tracking cost function (1.23). However, this idea was not investigated further, and instead

a human-in-the loop approach was favoured. We implemented a new task within our QP

controller, that drives the RGB-D sensor to look at specific surfaces in the environment. This

task minimizes the error between a vector normal to the focal plane of the RGB sensor and

a vector going from the RGB sensor to the environment’s surface. These surfaces were

provided manually during the planning phase to avoid viewpoints that would lead to known

tracking inaccuracies. In the future, it would be interesting to reconsider the use active vision

strategies, which would provide robustness improvements in a-priori unknown environments.

Fig. 3.4 Example of tracking error with pure rotation in untextured environment. The RGB-D
sensor is rotated manually mainly along its yaw (vertical) axis. As this is a near-pure rotation,
no translation is expected, but erroneous translation of up to 13cm along the yaw axis is
observed.

80 Multi-contact Planning and Control in a Real Environment

3.2.3 ICP Robustness

One of the prerequisites of the DARPA Robotics Challenge was the ability to handle some

discrepancies in the objects laid out in the final’s test environment. The expected discrepan-

cies were of two kind: either a difference of scale on the whole model (such as bigger steps

on a staircase, bigger valve...), or variations in the shape of the object (such as a valve with 3

or 4 inner connecting rug).

Robustness to scale-variations : ICP formulation in Sim(3)

Scale discrepancies can be integrated in all of the previous ICP formulations with minor

alterations. The state is redefined as an element of Sim(3) with the addition of a scale

parameter λ ∈R. The formulation of the cost-functions remain the same, and the Jacobian can

be trivially recomputed for the Sim(3) formulation. Solving equation B.1 then simultaneously

finds the best pose that aligns the model with the environment, and the scale factor that

minimizes the discrepancies between the model and the target cloud.

T =

λ r11 r12 r13 tx

r21 λ r22 r23 ty

r31 r32 λ r33 tz

0 0 0 1

 ∈ SIM(3)

ξ = [υx υy υz ωx ωy ωz λ] ∈ Sim(3)

(3.9)

3.2 Robust registration of 3D objects with dense visual SLAM 81

a) b)

Fig. 3.5 ICP alignment for the DRC valve task. A pointcloud is sampled from a valve 3D mesh,
and placed at an initial location (red). It is then registered (green) onto a pointcloud acquired
from HRP-2Kai LIDAR sensor (grey). a) point-to-point ICP - due to scale differences
between the model and the real valve, the alignment is of poor quality. b) point-to-point ICP
in Sim(3) is able to find the correct scale factor λ = 1.3 and obtain robust registration results.

Figure 3.5 shows an example of this method used on the DRC Valve turning task. Note

that the scale and alignment are correctly estimated here, even though the number of rungs in

the valve differs. To obtain better results, one could use a parametric model for the valve

rungs, and estimate the best number of rungs online by performing successive ICP alignments

and gradually increasing the number of rungs depending on the residual error.

Detecting discrepencies between the model and the environment

One of the steps of the ICP algorithm consists in computing the distance between the CAD

model and map point clouds. Once the ICP algorithm has converged, this error directly

represent the minimal distance between each point in the CAD model cloud and its closest-

neighbour in the map. This metric can be used to detect large model discrepancies: model

points, where the error is larger than usual, are likely to be outliers, e.g. pieces that are

present in the model but not in the environment. Figure 3.6 provides a visual representation

of this metric as a heatmap. A smart way to define a threshold to discriminate between

true outliers and points that are within the registration error, is to use M-Estimators on the

model’s distance map. Indeed, assuming that more than 50 percent of points in the model are

present in the environment and have been correctly aligned by ICP, the remaining points can

be robustly identified as outliers.

82 Multi-contact Planning and Control in a Real Environment

a. b.

c. d.

Fig. 3.6 Registration of a CAD model of an A400M Aircraft circuit breaker panel with
the environment reconstructed from D6DSLAM. a,b. Initial registration can be modified
manually using an interactive 3D marker, c,d. Registration results. Heatmaps represent the
closest distance between the model and pointcloud and vice-versa, scale ranges from no
error in blue to red which represents 2cm of squared distance (1.4cm). Notice that from
this heatmap, it is clear that there are discrepancies between the model and the pointcloud,
such as a missing hand-rail, since some areas that were not reconstructed as the environment
wasn’t thoroughly scanned.

ICP-based Extrinsic RGB-D Calibration

Before developing the dense Hand-Eye calibration method presented in Chapter 2, we

formulated a calibration procedure relying on self-observation of the robot end-effectors.

Inspired by the self-observation methods requiring calibration patterns, such as Birbach et al.

[2012], we devised a pattern-free self-observation method by using ICP to align the 3D mesh

of the robot with the corresponding observed pointcloud obtained with SLAM.

3.2 Robust registration of 3D objects with dense visual SLAM 83

Fig. 3.7 Example of ICP-based extrinsic calibration. Left shows the uncalibrated sensor pose,
the gripper frame, and a CAD model of the gripper registered onto the pointcloud acquired
from D6DSLAM. The right part validates the calibration result on a posture that was not part
of the calibration set. Notice that the pointcloud is correctly aligned onto the robot’s gripper.

The full transformation from an arbitrary inertial frame 0 to the end-effector frame E can

is expressed as
ET0 =

ETC
CTH(x)HT0

where

• CTH(x) ∈ SE(3) Is the transformation between the robot’s head link and the RGB-D

optical frame, i.e. the pose to be calibrated

• ETC ∈ SE(3) is the transformation between the camera optical frame and the end-

effector, estimated with ICP.

• HT0 ∈ SE(3) is the transformation between the inertial frame and the robot’s head

link, obtained by forward kinematics of the robot encoders

• ET0 ∈ SE(3) is the transformation between the inertial frame and the robot’s end-

effector link, obtained by forward kinematics of the robot encoders

This leads to the following iterative least-squares minimization formulation

x̂ = argmin
x

N

∑
i=1
||ETC

C
T̂H expm(x)HT0−

ET0|| (3.10)

The robot assumes a set of N random but feasible static postures for which the arm gripper

is visible in the camera sensor’s field-of-view (see Fig. 3.7). For each posture, a simple

head-scan motion is performed to generate a 3D map of the gripper and obtain the required

84 Multi-contact Planning and Control in a Real Environment

transformation ETC. All other transformations are obtained through forward kinematics of

the current robot state, defined by the robot model and joint encoders. This non-linear error

is iteratively minimized using a Gauss-Newton approach such that

x =−(J⊤J)−1J⊤e, (3.11)

where J contains the stacked Jacobian matrices of the errors of equation 3.10 (refer to

Equation 2.5 for a similar analytical computation) and e the stacked errors from each of the

N posture measurements. The calibration pose is updated with

C
T̂H =

C
T̂H expm(x)

The final pose
C

T̂H yields the transformation from the previously non-calibrated sensor

pose to the calibrated one. Its accuracy depends on several factors: accuracy of the encoders,

quality of the registration and variability in the gripper postures. Due to the lack of variability

in the possible self-observable motions that can be generated, this calibration method is far

inferior to the proposed dense Hand-Eye calibration.

3.3 Control w.r.t. to the Environment

We have shown how a 3D environment can be acquired with keyframe-based dense SLAM,

and how the mesh of an object can be located within that environment thanks to ICP

registration. Let’s now consider how to exploit this capability to plan and execute multi-

contact actions w.r.t. to the environment.

3.3.1 Multi-Contact Planning and Registration

A multi-contact planning algorithm provides a sequence of contacts between surfaces on

the robot and surfaces in the environment. Typically, this plan is generated w.r.t. to CAD

models of the environment, whereby contact surfaces are either automatically sampled, or

manually provided. In any case, during the offline planning phase, a set of contact surfaces

are defined with respect to the reference CAD model M of the expected environment with

which the robot needs to interact (staircase, car, ladder...). A frame on each contact surface,

where the robot end-effector will need to establish contact is defined such that the pose of

each contact w.r.t. to the model M is C = {C1XM, · · · , CnXM}. With the proposed ICP-based

method, this model can be registered onto the SLAM map defined w.r.t. to a global reference

3.3 Control w.r.t. to the Environment 85

frame S, which provides the transformation MXS. The pose of each contact within SLAM

map is then obtained as CiXS =
CiXM

MXS. Figure 3.8 provides an overview of this process.

Fig. 3.8 Generation of a Multi-Contact stair climbing plan. Suitable contact surfaces are
identified on the 3D model of a staircase: red dot for left foot contact, blue dot for right
foot contact, and green dot for hand-to-handrail contacts. The Multi-Contact planner finds
a sequence of statically stable postures and contact transitions needed to perform the step
climbing motion. Finally, ICP is used to relate this offline plan with the real staircase
through registration of the 3D model with SLAM’s acquired map, converted to pointcloud
representation.

3.3.2 Closed-loop End-Effector Control

In our multi-contact planning framework [Escande et Kheddar, 2009], contact transitions are

achieved by removing one contact, while ensuring that the robot remains statically-stable

on all remaining contacts. The robot end-effector, that we denote as E, is then controlled

to reach the next desired contact frame, that we denote as Cd . In practice, the whole-body

QP controller ensures that the multi-contact planner constraints are satisfied (stability by

placing the CoM w.r.t. to the other contacts, joint and torque limits, etc), and is tasked with

moving the end-effector. In this section, we show how the localization of the robot w.r.t. to

SLAM map can be exploited to achieve closed-loop end-effector control, and robustly reach

contact surfaces in the environment, even in the presence of perturbations. Furthermore, the

initial configuration qi of the robot does not need to correspond to the initial configuration

q∗i considered during the offline planning phase, as long as the end-effector can still reach

the desired contact surface without breaking any constraints.

First, let’s express the end-effector position EXS w.r.t. to the SLAM reference frame S.

EXS(t,q) =
E XC(q)

CXS(t) (3.12)

86 Multi-contact Planning and Control in a Real Environment

, where CXS(t) is the pose of the RGB-D sensor frame tracked by SLAM, and EXC(q) is

the transformation between the RGB-D sensor frame and the robot’s end-effector frame,

obtained by forward kinematics using the robot high-precision optical encoders. Note that

this transformation depends on extrinsic hand-eye calibration (Chapter 2) between the RGB-

D sensor and the robot’s head-link, and as such, any calibration error will lead to imprecision

in end-effector control within SLAM map.

The relative transformation between the end-effector and the desired contact surface is

Cd XE(t,q) = Cd XS
EX−1

S (t,q) (3.13)

This defines a tracking error that can be added as an end-effector task to our QP controller,

which will find the robot configuration q that minimizes the error (3.13), while respecting the

constraints imposed by the multi-contact plan. Note that the cost function here depends on

odometry, which means that the error will be altered according to both SLAM tracking and

encoder readings. As such, it is able to react to perturbations (see Figure 3.13). Also note that

this method only supports local adjustments: if the current robot configuration is too far away

from the one initially planned, it might be impossible for the local QP controller to realize the

motion while satisfying all constraints. In that case, replanning becomes necessary, which

can not be achieved online with our current framework.

CAD

Model
Planner Registration Error QP Control

WarpingTracking
Predicted

Keyframe
Nearest

Keyframes

Keyframe

Graph

RobotKinematics
Pointcloud

Constraints

Fig. 3.9 Closed-loop end-effector control. Contact frames are defined w.r.t. to a CAD model
by a multi-contact planner, and then registered onto a keyframe-graph map acquired with
dense visual SLAM. The RGB-D pose is tracked, and used to compute the position of the
robot end-effector in the SLAM map. A task is formulated based on the relative error between
the end-effector and the desired contact, and a QP controller computes the desired joint
configuration that moves the end-effector towards this frame.

3.4 Experiments and Results 87

3.4 Experiments and Results

The following experiments aim to demonstrate the ability of the autonomous system to reach

the desired contacts, and execute multi-contact plans within an environment where no a-priori

map, nor well-calibrated initial pose for the robot is available. All trials are carried out on an

HRP-2Kai (used for the DRC), using a low-cost Asus Xtion Pro Live RGB-D sensor and

PIXMAP’s D6DSLAM system [Meilland et Comport, 2013a].

3.4.1 Walking phase

For the walking phase two fixed walking targets are defined w.r.t. the registered CAD model

M . The first is a waypoint used to manually ensure a collision-free path to the second, a

final target is placed at the expected starting position used during the offline multi-contact

planning phase. The posture generator and walking controller from [Kajita et al., 2006] are

used to effectively execute the walk. Although technical limitations did not allow us to adjust

the walking plan online w.r.t. visual odometry, D6DSLAM’s tracking and mapping is left

active so as to demonstrate its ability to provide sufficiently robust localization to achieve

other tasks. Chapter 4 will demonstrate the ability to robustly walk to a desired Cartesian

location with dense visual SLAM and a closed-loop MPC (see Figure 4.9).

3.4.2 Valve

Inspired by the valve task of the DRC, we aim to, after an extended walking phase from

an uncalibrated initial location, establish a gripper-valve contact that would allow us to

manipulate it.

Setup

HRP-2Kai is placed in an initial configuration ensuring that the valve is visible within the

environment to be mapped. That is, facing in the direction of the valve from roughly 4 meters

away. The walking targets of Section 3.4.1, along with a grasp target are attached to the valve

CAD model.

Walk

As no a-priori map is available, not enough information is yet available for precise registration.

Thus, a rough manual initial registration is performed, which provides walking targets

(waypoint and destination). As the robot walks, the D6DSLAM algorithm maps and tracks

88 Multi-contact Planning and Control in a Real Environment

a. b.

c. d.

Fig. 3.10 HRP-2Kai localized within D6DSLAM’s 3D reconstructed map at various stages of
the valve-grasping trial. a. Initial position arbitrarily chosen far from the valve, b-c. Walking
towards the valve. The SLAM map becomes more accurate as new images are observed. d.

Grasping the valve using the proposed end-effector control method.

the robot’s motion. Rolling-shutter and motion blur estimation [Meilland et al., 2013b] are

used to minimize the impact of the high velocity and jerkiness of the walking motion. Still,

we observe some inaccuracies in the pointcloud, such as the ones visible in Fig. 3.10, most

notably on the rightmost part, where sections of the pointcloud are mapped in double. This

is most likely due to inaccuracies in the pose estimation of some keyframes added during

the fast walking motion. This problem could be lessened by first scanning the environment

from a stable posture, and walking within the scanned area without mapping, to prevent the

creation of inaccurate keyframes. Instead, we opted to perform a head-scan of the target

(without resetting the map) from the final walking target, to provide a locally accurate map

followed by a second more accurate registration.

3.4 Experiments and Results 89

Grasp

A simple control strategy is adopted. Without a-priori planning, the QP-controller is tasked

with moving the end-effector to the valve target. In order to avoid collisions with the valve, a

waypoint in both position and orientation is added directly in front of the desired contact.

Throughout the whole motion, the relative pose between the end-effector and its target is

updated according to the D6DSLAM pose, as described in 3.3.2. For additional robustness, a

guarded approach is used whereby the motion is stopped once a force threshold is attained

on the gripper. Our experiment shows that, even after walking with live-mapping and no

a-priori map, successful grasping may be achieved.

3.4.3 Steering Wheel

HRP-2Kai is manually placed into the driver’s seat before being actuated. As such the initial

pose of the robot cannot be fully controlled, and trying to blindly grasp the wheel would

be impossible. First, a head-scan is performed to acquire a map of the car’s dashboard,

including the target steering wheel. Even though the initial posture of the robot cannot be

fully determined, good convergence of the ICP registration may be achieved without manual

initialization, by assuming a plausible initial position of the steering wheel with respect to

the robot. We apply the same control strategy as for the valve. A waypoint is defined to

avoid collision with the dashboard and the steering wheel, and the target is continuously

updated. One should note that due to the narrow space between the robot and the wheel,

self-observation is unavoidable. The masking scheme presented in section 3.2.2 prevents this

from affecting the tracking and mapping process.

3.4.4 Stairs climbing

While the previous experiments are simple enough not to use a multi-contact planner, stair

climbing uses it fully. In this section, we demonstrate our ability to robustly reach planned

contacts from an unknown initial configuration, and under heavy perturbations.

Setup

HRP-2Kai is placed in an initial configuration qi close to the one qs given as input to the

MCP. It is placed so that the QP controller is in a configuration where all its tasks are feasible.

The stairs are mapped using a simple head-scan, and their planning model is registered, along

with all planned contacts.

90 Multi-contact Planning and Control in a Real Environment

a. b.

c. d.

Fig. 3.11 Wheel grapsing. a-b. Real HRP-2Kai during various while grasping the wheel. c-d.

Control view with the robot localized w.r.t. to SLAM map.

Fig. 3.12 Combined view of the stairs climbing experiment. The left figure shows the
gripper’s grasping pose (leftmost frame) that would have been tasked by the MCP without
registration, and the corrected registered grasping frame onto the handrail. The others show
HRP-2Kai climbing the first step.

3.5 Conclusion 91

Closed-loop

The QP is tasked with reaching the first handrail contact of a predefined stair-climbing

sequence. Figure 3.13 starts with open-loop control w.r.t. to the MCP only and transitions

to a closed-loop control strategy. It can clearly be seen that the contact position is modified

when transitioning to closed-loop control. This is the result of registration, that accounts for

the difference of initial configuration between qi and qs. This can be visually observed in

Figure 3.12 where both the planned contact and registered contact are shown. We introduce

considerable perturbations by pulling the robot backwards on its ankle flexibilities. The

contact trajectory is continuously updated based on D6DSLAM odometry as described

in 3.3.2, and consequently, the desired contact is reached.

3.5 Conclusion

In this chapter, we have demonstrated how offline multi-contact planning w.r.t. to CAD

models can be related to keyframe-based maps acquired online with dense visual SLAM. This

is achieved by first converting both the keyframe-map and the CAD model to a pointcloud

representation, and applying Iterative Closest Point registration to align the CAD model with

the observed environment. Robustness to outlier is improved with M-Estimators, and to global

scale variation by reformulating ICP cost functions in SIM(3). Once registration is achieved,

the robot can be localized in real-time w.r.t. to the environment thanks to the D6DSLAM pose

tracking, and the robot’s kinematic model (including extrinsic camera calibration), obtained

by exploiting the calibration method presented in Chapter 2. Robustness to self-observation

is achieved by using the current state of the kinematic model to render a binary-mask of

the areas where self-observation occurs from the RGB-D sensor’s perspective. Knowing

the robot’s location w.r.t. to desired contact surfaces of the multi-contact plan allows to

formulate a closed-loop end-effector control method which is shown to robustly achieve

contact establishment, even under heavy perturbations.

However, whole-body control of a humanoid robot consists of much-more than just

end-effector control. To robustly achieve complex dynamic multi-contact actions, one needs

to precisely control its center of mass and interaction forces. In the next chapter, we will

see how SLAM can be exploited in the context of closed-loop Model Predictive Control for

walking under perturbations.

92 Multi-contact Planning and Control in a Real Environment

Fig. 3.13 Closed-loop control of the gripper end-effector tasked with grasping the first
handrail contact of a multi-contact stair climbing plan. The white area represents control w.r.t.

the planning reference, while the gray area corresponds to closed-loop SLAM control. Two
independent experiments are considered, on the left contact is reached without additional
perturbations, while on the right the robot is manually pulled back at the vertical line. The
expected contact position (xre f ,yre f ,zre f) and controlled gripper position (x,y,z) are reported.

Chapter 4

Closed-loop MPC with Dense Visual

SLAM - Stability through Reactive

Stepping

In the previous chapter, we have shown how a dense map generated reconstructed with

visual SLAM can be exploited to achieve multi-contact plans starting from arbitrary initial

configurations. Furthermore, we have shown how end-effectors can be robustly controlled to

reach targets based on both SLAM’s tracking and the map information. We now consider the

problem of locomotion within that map, and show that walking can be seamlessly combined

with the execution of multi-contact plans described in the preceding chapter.

Model Predictive Control (MPC) is a widely used technique for humanoid gait generation

due to its capability to handle several constraints that characterize humanoid locomotion. The

use of simplified models to describe the humanoid dynamics (the Linear Inverted Pendulum)

allows to perform computations in real time, giving the robot the fundamental capacity to

re-plan its motion to follow external inputs (e.g. reference velocity, footstep plans). However,

usually the MPC does not take into account the current state of the robot when computing

the reference motion, losing the ability to react to external disturbances. In this paper a

closed-loop MPC scheme is proposed to estimate the robot’s real state through Simultaneous

Localization and Mapping (SLAM) and proprioceptive sensors (force/torque). With the

proposed control scheme it is shown that the robot is able to react to external disturbances

(push), by stepping to recover from the loss of balance. Moreover the localization allows

the robot to navigate to target positions in the environment without being affected by the

drift generated by imperfect open-loop control execution. We validate the proposed scheme

through two different experiments with a HRP-4 humanoid robot.

94 Closed-loop MPC with Dense Visual SLAM - Stability through Reactive Stepping

Fig. 4.1 HRP-4 walking with the proposed closed-loop MPC with dense visual SLAM
feedback. The estimated LIP pendulum state obtained from SLAM and force-sensor mea-
surements is shown as a red line going from the ZMP estimate to the robot’s CoM. The
green line represents the desired pendulum state. Blue and green squares are respectively the
desired optimal footstep, and a non-optimal footstep that minimizes changes of the footstep
trajectory.

4.1 Introduction and state-of-the-art

In recent years, humanoid robots have been given increasingly more attention due to their

ability to perform complex tasks, thanks to their highly redundant kinematic structure.

However, those systems are also challenging to control because they have very complex

dynamics. Therefore researchers tend to use simplified models to approximate the humanoid

robot dynamics. When dealing with humanoid locomotion, the most commonly used model

4.1 Introduction and state-of-the-art 95

Push Stabilizer

Open-loop MPC

Stabilizer

Closed-loop MPC

Fig. 4.2 Closed-loop MPC causes the robot to step to prevent the ZMP from going outside
of the support foot area, which cannot be compensated with the embedded fixed-footstep
stabilizer.

to approximate the dynamics of walking is the Linear Inverted Pendulum (LIP) [Kajita et al.,

2014], and the use of Model Predictive Control (MPC) has become predominant [Herdt et al.,

2010; Naveau et al., 2017]. In traditional MPC-based gait generation techniques, a reference

motion is generated without taking into account the current robot state, however, planning

a motion starting from the current robot state is often necessary to react to unexpected

situations and to obtain more robust motions. In this paper the problem of closed-loop MPC

is tackled [Feng et al., 2016; Villa et Wieber, 2017], and the robot state is estimated using

SLAM and force/torque sensor measurements.

The use of SLAM for humanoid locomotion planning has been widely used, since the

introduction of dense RGB-D approaches, such as Meilland et Comport [2013a]; Whelan

et al. [2012] because they both provide a dense 3D map of the explored environment and

6D localization at sensor framerate with centimeteric precision. With this information, it

becomes possible to plan robot actions w.r.t. the environment. In Fallon et al. [2015], a pair

96 Closed-loop MPC with Dense Visual SLAM - Stability through Reactive Stepping

of Multisense stereo cameras are used to generate RGB-D inputs for use with Kintinuous

SLAM [Whelan et al., 2012]. A footstep plan for walking over a rough brick field is generated

from its map, while the robot state is estimated with a kinematic-inertial estimator Fallon

et al. [2014]. Footsteps are selected within the map, but no attempt is made to change the next

robot’s footstep should its state differ from a feasible one. In Scona et al. [2017], kinematic-

inertial measurements are used to improve the robustness of ElasticFusion [Whelan et al.,

2015b], and are applied to a Cartesian walking controller to repeatedly walk towards goal

positions in the environment.

4.2 MPC-based gait generation

When dealing with a complex system like a humanoid robot, it is a common practice to rely

on a simplified model, the Linear Inverted Pendulum (LIP) [Kajita et al., 2014] to describe

the humanoid behaviour during locomotion. The reason why the LIP is widely used when

dealing with humanoid locomotion is because its dynamics approximate well the motion of

the Center of Mass (CoM) of a biped robot, and the differential equations governing the two

directions of motion x and y are linear, identical and decoupled. So, from now on, only the

sagittal component of motion will be referred to.

Consider, without loss of generality, the evolution of the sagittal component of motion x

ẋc

ẍc

ẋz

=

0 1 0

η2 0 −η2

0 0 0

xc

ẋc

xz

+

0

0

1

 ẋz (4.1)

where xc is the position of the CoM, xz the position of the Zero-Moment Point (ZMP),

η =
√

g/h and h the constant height of the CoM. In the motion model (4.1) we assume

controls ẋz which are piece-wise constant over time intervals of duration δ .

The gait generation is based on the intrinsically stable MPC [Scianca et al., 2016], where

the decision variables are the ZMP velocities (ẋi
z, ẏi

z), i = 1, . . . ,N and the footstep positions

and orientations (x j
f , y

j
f , θ

j
f), j = 1, . . . ,M, over a prediction horizon Th = Nδ .

The choice of a MPC-based gait generation allows us to give the robot a high-level task,

through an appropriate cost function to be minimized, and also to impose constraints to

enforce stability, to maintain balance and to guarantee the kinematic feasibility of the robot

motion.

4.2 MPC-based gait generation 97

4.2.1 Cost Function

In the formulation proposed here, the aim is to have the robot track high-level reference

sagittal and coronal velocities (vx,vy), and an angular velocity ω , by an appropriate selection

of ZMP velocities (ẋi
z, ẏi

z) and footstep positions and orientations (x j
f , y

j
f , θ

j
f). However to

maintain linearity in the MPC formulation, the footstep orientations must be chosen before

the computation of their positions [Herdt et al., 2010].

Therefore, a first optimization problem is solved, minimizing a function that takes into

account the reference angular velocity ω to determine the footstep orientations θ
j

f

M

∑
j=1

(
θ

j
f −θ

j−1
f

Ts
−ω

)2

, (4.2)

where Ts is the constant duration of a step, subject to the linear constraint |θ j
f −θ

j−1
f | ≤ θmax,

that limits to θmax the maximum difference in orientation between two consecutive footsteps.

Once the foot orientations are decided, the footstep locations and the ZMP velocities can

be computed via the minimization of a second cost function

N

∑
i=1

(
(ẋk+i

z)2 +(ẏk+i
z)2+

kx(ẋ
k+i
c − vx cos(iωδ)+ vy sin(iωδ))2+

ky(ẏ
k+i
c − vx sin(iωδ)− vy cos(iωδ))2

)
,

(4.3)

where the first two terms penalize the control effort, while the last two terms are meant to

minimize the deviation from the reference velocities (vx,vy).

4.2.2 Constraints

In the following the three constraints enforced in the proposed MPC scheme will be briefly

presented. The first, introduced in Scianca et al. [2016], is the stability constraint, which

takes the form
1
η

1− eδη

1− eNδη

N

∑
i=1

eiδη ẋk+i
z = xk

c +
ẋk

c

η
− xk

z. (4.4)

This constraint will guarantee the boundedness of the computed CoM trajectory.

In order to guarantee balance during locomotion, we must guarantee that the ZMP is at

any time instant inside the robot current support polygon. To do so we define a rectangle

98 Closed-loop MPC with Dense Visual SLAM - Stability through Reactive Stepping

with sides dz
x ,d

z
y , and therefore the balance constraint takes the form

RT
j

δ ∑
k+i−1
l=k ẋl

z− x
j
f

δ ∑
k+i−1
l=k ẏl

z− y
j
f

≤

1
2

(
d z

x

d z
y

)
−RT

j

(
xk

z

yk
z

)
, (4.5)

where R j is the rotation matrix associated to the angle θ
j

f .

The last constraint is to guarantee that the choice of the next footstep is in a location that

avoids self collisions and is inside the robot kinematic limits:

RT
j−1

(
x

j
f − x

j−1
f

y
j
f − y

j−1
f

)
≤±

(
0

ℓ

)
+

1
2

(
d f

x

d f
y

)
, (4.6)

where df
x and df

y are the sides of a rectangle defining the feasibility zone, and l is a reference

distance between two consecutive footsteps.

4.3 Closed-Loop MPC

Decision variables (future ZMP velocities and next footstep locations) are computed by

solving the QP formulation of the MPC described in Sect. 4.2, which requires an initial state

of the pendulum, defined by its CoM position and velocity xc, ẋc and its ZMP position xz.

Traditional MPC gait generation typically envolves this state from an initial value (supposed

known) by forward integration of its decision variables through a LIP motion model. This

assumes that the underlying system represented by the reduced LIP model is behaving

perfectly as expected. Unfortunately, real physical systems are subject to interactions with

their environment, which can easily perturbate the state of the system (imperfect contacts,

external forces, poor tracking of the reference pendulum by the underlying system). It is

proposed here to estimate the state of the system, and periodically use it to compute an

updated MPC solution. The next sections will show how this estimation is achieved, and

used to obtain a closed-loop MPC formulation.

4.3.1 Estimation of the floating base

The robot’s floating base pose BX0 and velocity BV0 is a prerequisite to estimating its CoM

and ZMP state. In this work, two simple estimators are considered.

The first provides ground-truth measurement obtained from a high-precision VICON

mocap system composed of 8 infrared cameras. Reflective markers are placed on the robot’s

4.3 Closed-Loop MPC 99

MPC

Force

VICON

SLAM

 QP

Controller

Fig. 4.3 Overview of the proposed closed-loop MPC. A LIP reduced model is used to
represent the dynamics of a humanoid robot walking on flat floor. The pendulum state is
estimated from HRP-4 sensors: its CoM position and velocity is obtained with dense visual
slam from RGB-D measurements, and its ZMP from force-sensor measurements. This state is
used to compute the MPC predictions, i.e. the future ZMP velocities and associated footsteps.
Through integration, these references converted to reference position are then tracked by
a quadratic programming controller that sends a desired whole-body configuration to the
position-controlled robot.

floating base link, forming a frame V , and tracked by the system with high accuracy at a rate

of 100Hz.
BX0 =

B XV
V X0. (4.7)

The second is obtained from the dense visual SLAM method of Meilland et Comport

[2013a], where RGB-D images from the robot’s Asus Xtion sensor are used to estimate

the pose of the sensor’s optical frame S. Contrary to IMU-based estimators usually used

in walking scenarios, visual SLAM provides the full position and orientation in a global

world-frame.
BX0 =

B XH
HXS

SX0. (4.8)

Note that the transformation between the VICON markers frame and the floating base BXV ,

and between the camera optical frame and the robot’s head link SXH requires calibration.

Both are obtained by Hand-Eye calibration [Tanguy et al., 2018b] with RobCalib software1.

1https://github.com/arntanguy/robcalib

100 Closed-loop MPC with Dense Visual SLAM - Stability through Reactive Stepping

Push Prediction Step Recover

Fig. 4.4 Reaction to a push during a real experiment with HRP-4. During the push, the
ZMP-CoM pendulum estimated from SLAM and force sensor measurements reaches the
edge of the foot (red line) while the robot’s CoM is displaced forward. As a result, the MPC
computes a new optimal footstep (blue square) and computes a footstep trajectory to bring
its next swinging foot there. The cartesian-regulator controls the MPC target velocity to walk
back to its initial position.

The transformation between the head link and the floating base BXH depends on an accurate

kinematic tree calibration, and joint-encoder measurements. HRP-4 is fitted with high-

accuracy optical encoders, providing this information at control rate (200Hz).

Pose estimates obtained from both VICON and SLAM are noisy, and its velocity is not

directly estimated. The use of the Savitzky-Golay filter Savitzky et Golay [1964] is proposed,

for which an open-source implementation2 is provided based on Gram-Polynomials [Gorry,

1990]. This filter has two main advantages: first, when applied at the end-point of a filtering-

window, no additional delays are introduced, and the nth order derivative can be readily

obtained. Second, it can be efficiently implemented as a convolution, whose weights depend

on the size of the time window, the order of Gram-polynomials, and its derivative order.

Position can be directly smoothened by the filter. Rotation smoothing for a time window

consists of solving the following maximum likelihood

R̂ = argmin
R∈SO(3)

∑
k

dgeo(R,Rk), (4.9)

where dgeo(R1,R2)
2 = 1

2 ||logm(RT
1 R2)||frobenius.

Many methods exist for solving this problem. One of them consists in applying a temporal

convolution, followed by an orthogonalization, which can be shown to be a 2nd order Taylor

2https://github.com/arntanguy/gram_savitzky_golay

4.3 Closed-Loop MPC 101

Fig. 4.5 This HRP-4 is fitted with a passive mechanism between its ankles and feet soles,
which provides a spring-damper compliant system. Its state is taken into account by estima-
ting the robot’s floating base with dense visual SLAM and validated with a VICON tracking
system, with reflective IR markers attached to the floating base link. The ZMP is estimated
from ankle force-torque sensors. Note that here it is depicted outside of the robot’s support
polygon and triggers a step from the MPC.

approximation of the geodesic distance [Gramkow, 2001].

R̃ = ∑k wkRk

UDVT = svd(R̃)

R̂ = UVT

(4.10)

102 Closed-loop MPC with Dense Visual SLAM - Stability through Reactive Stepping

This implies that rotation matrices can be directly smoothened at any point in a time window

by the Gram-Savitzky-Golay convolution coefficients. Consequently, the filtered floating

base position and velocity can be readily obtained.

4.3.2 CoM State

Knowing the floating base position and velocity, and the kinematic and inertial model of the

robot, the CoM position is trivially obtained as Ct0. However, our MPC formulation expects

its state to be expressed w.r.t. the current support foot. HRP-4 feet are fitted with a passive

mechanical flexibility between its ankles and the feet soles that act as a spring-damper to

protect the force sensors by reducing impacts, and provide some mechanical compliance

while walking. The state of this mechanism is not measured but needs to be taken into

account in order to correctly express the CoM in the support foot frame.

In the proposed MPC, the support foot is assumed to be flat on the floor. Let’s denote

by ppp
f
0 = (x f ,y f ,0) the position of the support foot in the inertial frame, and θ

f
z its rotation

around the floor normal axis nnnz = [0,0,1]T . This frame assumes that the support foot stays

in perfect contact with the floor, and that discrepancies in the CoM state are coming from the

robot’s passive ankle mechanism. In this frame, the CoM is expressed as

x̃c =

[
RRR(θ

f
z) ppp

f
0

0 1

]
Ct0. (4.11)

Its velocity is also expressed in the flat support foot frame. This implicitly embeds the

state of the flexibility in the measurement of the CoM state, as long as the real robot’s foot

sole remains in perfect contact with the floor.

4.3.3 ZMP State

The ZMP can be computed w.r.t. to the CoM as

xz = xc−
ẍc

η2 . (4.12)

In practice ẍc can be obtained from accelerometer measurements, or by differentiating the

CoM position obtained from the above estimate twice, which proves unreliable.

Since HRP-4 is fitted with force-torque sensors under its ankles providing measurements

at control-rate (200Hz), a more reliable expression of the ZMP can be obtained, without

the need for differentiation. The main interest is in the ZMP expressed in the ground plane,

passing through a point ppp0 and orthogonal to the unit vector nnnz. Let (fff 0,τττ0) be the total

4.3 Closed-Loop MPC 103

contact-wrench measured by the left and right foot force-torque sensors, expressed at the

point ppp0. The ZMP is defined as a point Z where the moment of the contact wrench aligns

with nnnz [Caron et al., 2017], that is nnnz× τττZ = 0. Consequently

−nnnz× (pppz× fff)+nnnz× τττ0 = 0 (4.13)

−(nnnz · fff)pppZ +(nnnz · pppZ) fff +nnnz× τττ0 = 0 (4.14)

With the additional constraint of the ZMP being obtained in the ground plane nnnz · pppZ = 0, we

obtain

pppZ =
nnnz× τττ0

nnnz · fff
(4.15)

4.3.4 Computing the MPC from its estimated state

Once the estimated state x̃ = (x̃c, ˜̇xc, x̃z) is computed, the MPC is initialized with it. This

means that the prediction of the evolution of the system via the LIP model (4.1) over the

prediction horizon Th is performed using the estimation as the initial condition. Moreover the

cost function (4.3) and the constraints (4.4,4.5,4.6) are built using the estimated robot state.

However, the robot state estimation x̃ is only available at the frequency of the slowest

sensor, here SLAM (30Hz) or VICON (100Hz), both lower than the control rate (200Hz).

Hence the state is not available at every control iteration. When no measured state is available,

the initial LIP state is computed by integration of (4.1). The controls ẋi
z, i = 1, . . . ,N, are

those computed by the optimization performed by the MPC in the previous iteration. The

integration leads to

xk+1
c

ẋk+1
c

xk+1
z

= A

xk
c

ẋk
c

xk
z

+Bẋk

z (4.16)

where the matrices A and B have the form

A =

cosh(ηδ) sinh(ηδ)
η 1− cosh(ηδ)

η sinh(ηδ) cosh(ηδ) −η sinh(ηδ)

0 0 1

 , (4.17)

B =

δ − sinh(ηδ)
η

1− cosh(ηδ)

δ

 . (4.18)

104 Closed-loop MPC with Dense Visual SLAM - Stability through Reactive Stepping

In this way, a reference whole-body control can be provided at every iteration, by propagating

the MPC solution, computed either from the estimated robot state, or its integrated internal

state.

4.3.5 Choice of footstep

When the loop on the MPC is closed, its solution is computed based on the estimated state

(x̃c, ˜̇xc, x̃z). Hence, at any time instant the optimal solution found by the optimization, will in

general be different from the previous one, even in the absence of a real perturbation in the

state (due to measurement noise and uncertainties). This leads to different optimal footstep

target solutions at every MPC iteration. When tracked with a whole-body QP controller, these

abrupt changes will be smoothened to some extent depending on the task gains, reducing

tracking precision of the swing foot trajectory, and leading to shaky motions. To overcome

this issue, two possible solutions are considered.

The first consists in adding to the cost function (4.3) a term of the form

k f

((
x

j
f − x̄

j
f

)2
+
(

y
j
f − ȳ

j
f

)2
)
, (4.19)

that penalizes the difference between the predicted footstep (x j
f ,y j

f) and the previously chosen

footstep (x̄ j
f ,ȳ j

f). However this also affects the other high-level tasks assigned to the robot,

e.g. the reference velocity tracking, because the robot minimizes the difference between two

footsteps therefore making steps as short as possible.

The second option relies on the fact that the solution found by the MPC is the optimal

one, but it’s not the unique solution that satisfies the constraints. Therefore, if the constraints

are still satisfied by keeping the previously found footsteps with the new ZMP trajectory, it

is chosen to keep it, even if it is not the optimal in terms of cost function. In this way we

somewhat filter the continuous change of predicted footsteps, and only the latest optimal

solution of the MPC is chosen if the previous one becomes invalid because it violates the

constraints, which guarantees robot balance.

4.3.6 Quadratic Programming Controller

The desired MPC solution is then tracked by a whole-body quadratic controller (QP), which

generates whole-body motion for the real model. A detailed explanation of the QP controller

used in this work can be found in [Bouyarmane et Kheddar, 2012; Escande et al., 2013].

Its decision vector is z = (q̈,λλλ), where q̈ gathers the linear and angular acceleration of

floating-base coordinates, and the generalized joint velocities. λλλ denotes the vector of conic

4.4 Experiments 105

coordinates of linearized Coulomb friction cones, such that the contact forces f are equal to

S f λλλ with S f the span matrix of cone generators. The cost function includes various tasks T

that drive the whole-body state towards a desired configuration. We consider here

• TCoM tracks the desired CoM position xc and velocity ẋc.

• TTra jectory tracks the desired swing foot target xf.

• TCoP tracks the desired ZMP through admittance control, achieved by the embedded

stabilizer.

• TPosture is a reference posture that keeps the robot upright.

The overall QP can be summed up as follows:

z = argmin
z

N

∑
i=1

wi‖Ti(q, q̇, q̈)‖2 +wλ‖λλλ‖
2

subject to:

1) dynamic constraints

2) sustained contact positions

3) joint limits

4) non-desired collision avoidance constraints

5) self-collision avoidance constraints

(4.20)

Here, wi and wλ are task weights, and Ti(q, q̇, q̈) denotes the residual of the ith task. The

reader is referred to Vaillant et al. [2016] for details on the formulation of all these constraints.

The obtained reference acceleration q̈ is integrated twice to obtain a desired joint configuration

q which is then executed by the actuators proportional-derivative (PD) controllers.

4.4 Experiments

The proposed work is based on the MPC formulation presented in Scianca et al. [2016].

Including footstep generation into the formulation enables an intuitive and flexible way to

control the locomotion of a humanoid robot. Walking is achieved by specifying a reference

velocity. Footsteps, CoM and ZMP trajectories are chosen accordingly. This work has

previously been demonstrated for open-loop control of a NAO humanoid robot, including

pursuit avoidance scenarios in the presence of obstacles [De Simone et al., 2017]. However,

it has never been demonstrated applied to large-scale humanoids such as HRP-4. In this

106 Closed-loop MPC with Dense Visual SLAM - Stability through Reactive Stepping

section, we show that the MPC can be successfully applied to such a robot while validating

its closed-loop implementation.

A first experiment validates the walking performance with a simple Cartesian regulator

based on SLAM localization that makes the robot walk to specified targets in its environment.

The second experiment validates the closed-loop aspect of the MPC by reacting to

perturbations that would otherwise make the robot fall, even in the presence of a stabilizer.

For all experiments, ground-truth floating base position is obtained from a VICON motion

capture system, and SLAM estimations are obtained from Asus Xtion’s RGB-D frames with

D6DSLAM [Meilland et Comport, 2013a] software. A video is provided for each experiment

respectively.

4.4.1 Stabilization

P
o
s
it

io
n
 (

m
)

Time (s)

Push

Fall

Fig. 4.6 HRP-4 pushed with Kawada stabilizer and an open-loop MPC. The black arrows
correspond to pushes that were not strong enough to force the ZMP outside of the foot
support area. For the red arrow at time 41s, the robot was pushed sufficiently strongly, and
the stabilizer could no longer keep the robot balance. The only way to recover in that situation
is to make a step forward, and capture the ZMP in the next footstep, which can be achieved
with the proposed closed-loop MPC.

The desired ZMP computed by the MPC is sent to the embedded stabilizer of HRP-

4 [Yokoi et al., 2004]. Its role is to compensate deviations from a reference ZMP trajectory

by accelerating the torso in the opposite direction. This is achieved by modifying the desired

ankle joint reference. In case of a perturbation too large to be recovered without taking a

4.4 Experiments 107

step, the robot would normally fall. Instead, with our proposed closed-loop MPC the robot

takes a step forward, and the stabilizer tracks the new reference ZMP (see Figure 4.10, and

the video).

Recently, Caron et al. [2018b] proposed a review of such stabilization methods, and

extended it to whole-body admittance control, demonstrated in the context of stair climbing.

The reader is referred to this review for further details on common stabilization algorithms.

4.4.2 Drift-free Cartesian space control

An additional benefit to the proposed closed-loop control is its ability to robustly reach

target position specified in the environment. To illustrate this, we implemented a simple

Cartesian regulator that computes reference velocities (vx,vy,ω) for the MPC according to

its position and orientation relative to a desired world position (xd,yd,θd). The floating base

pose (x̃b, ỹb, θ̃b) is chosen as the robot’s reference surface, and is estimated with SLAM.

Ground-truth measurements are obtained as (xv,yv,θv) with the VICON tracking system.

vx

vy

ω

=

λx(xd− x̃b)

λy(yd− ỹb)

λθ (θd− θ̃b)

 (4.21)

108 Closed-loop MPC with Dense Visual SLAM - Stability through Reactive Stepping
F
o
rw

a
rd

S
id

e

P
o
s
it

io
n
 (

m
)

C
o
u
p
le

 (
N

/m
)

A
n
g
le

 (
ra

d
)

P
o
s
it

io
n
 (

m
)

C
o
u
p
le

 (
N

/m
)

A
n
g
le

 (
ra

d
)

Time (s) Time (s)

Without Stabilizer Kawada Stabilizer

Fig. 4.7 Effect of HRP-4 passive spring-damper mechanism located between it’s ankle force-
sensor and foot sole. In each case, the robot is manually pushed until the ZMP reaches the
edge of the foot, i.e. just when the opposite edge of the foot starts lifting, and suddently
released. Floating base displacement is observed by both VICON and SLAM measurements,
force-sensor couple measurements are shown along the axis affected by the push, and ZMP
is estimated from both feet force-sensors. The measured and desired ankle pitch and roll
angles are also shown, and clearly show the effect of Kawada stabilizer.

4.4 Experiments 109

Open-loop Closed-loop

Fig. 4.8 Comparison between closed-loop and open-loop Cartesian regulation after walking
forward and to its left twice. Considerable drift is observed in the open-loop case, while the
closed-loop controller regains the expected position. This image corresponds to t = 110s for
open-loop and t = 200s for closed-loop in Figure 4.9

Figure 4.9 shows the result of HRP-4 repeatedly walking from an initial position t0 =

(0,0,0) towards a target t1 = (1,0.5,0), then coming back to its initial position before

walking towards a second target t2 = (1,−0.5,0). Without feedback on the regulator, the

open-loop walking controller drifts considerably, it accumulates around 10cm of translational

error for a walk of 1m, which quickly leads to dramatic errors of localization, reaching about

80cm after 200s of walking. No particular effort was made to limit the drift, as closed-loop

Cartesian regulation can easily mitigate it. The drift itself is the result of two main effects.

The first is that the desired footstep trajectories are not perfectly tracked by the QP controller.

To lessen the undesirable impacts at touchdown of the swing-foot, due to unaccounted effects

arising from the ankle flexibilities that are not accounted for by the open-loop low-level QP

controller, it was experimentally determined that it was best to undershoot the z component

than to potentially reach the floor with non zero velocity. This trick could be avoided by

more accurate closed-loop end-effector control as proposed in Section 3.3.2. This effect

likely causes the robot to tilt forwards slightly (which is easily compensated by the stabilizer),

and thus walk further than expected. The second, is due to imperfect foot-floor interactions.

The ground in the experiment hall has quite low friction, which can easily result in the feet

110 Closed-loop MPC with Dense Visual SLAM - Stability through Reactive Stepping

slipping due to unaccounted for momentum effects. Not seen on the figure, a considerable

drift was observed in rotation, as well as translation.

Target SLAM VICON

1.0

0.5

0.0

-0.5

1.5

50 100 150 2000

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

50 100 150 200 250 300 350

Open Loop Closed Loop

P
o
s
it

io
n
 (

m
)

Time (s) Time (s)

Fig. 4.9 HRP-4 walks to specific places in the environment. A Cartesian-regulator conti-
nuously computes MPC reference velocities based on the robot’s position w.r.t. its target as
estimated from SLAM measurements. It’s trajectory is validated by both VICON ground-
truth data, and visual markers on the floor. Considerable drift up to 70cm along x and 20cm
along y is observed with the open-loop Cartesian regulator, while its closed-loop counterpart
converges with less than 5cm error.

When using the estimated robot state, the closed-loop regulator is however able to drive

the velocity-based MPC to accurately reach each target, without noticeable drift. Notice a

sharp jump in the pose of SLAM x̃b at time t = 140s of the closed-loop experiment, and the

corresponding slight overshoot of the target measured by the vicon xv. The robot having

reached a previously explored part of the environment, a loop-closure event was triggered,

and the keyframe-graph was optimized to take it into account, thus correcting the accumulated

drift of SLAM over the first 140s of walking. The subsequent targets are reached accurately.

Note that the Cartesian-regulator formulation in Equation 4.21 is too simple for most

practical application. As it stands, weights (λx,λy,λθ) need to be adaptively increased when

the error reaches close to zero to ensure good convergence to the desired position, and

reduced when the error is large to avoid walking at maximum velocity all the time. This was

mainly used as a simple example, but any regulation scheme that selects MPC velocities to

go towards a target can be used instead. For instance, in De Simone et al. [2017], a unicycle

model was used to generate more natural looking motions and avoid humans walking towards

the robot.

4.4 Experiments 111

4.4.3 Push reaction

In the second experiment, the robot is stepping in place with a low-weight Cartesian-regulator

(λx = λy = λθ = 0.2) when it is pushed from behind. The MPC is computed from the

estimated robot state (x̃c, ˜̇xc, x̃z), obtained by the combination of SLAM and force-torque

sensors. When perturbed, the MPC decides to change it’s desired footstep, and computes

a new corresponding ZMP velocity trajectory. This behaviour emerges as a result of the

optimization: in order to find an optimal solution that satisfies the constraints (bringing

the future ZMP trajectory back inside the support foot polygon while respecting kinematic

feasibility), the MPC has to move the ZMP forward thus performing a step.

Figure 4.10 shows this behaviour on a real perturbation. As can be seen from the first

plot, around time 194.7s, the perturbation becomes large enough for the ZMP to exit the

balance constraint area (defined as a sub-rectangle of the real foot) with sufficient velocity,

and the MPC has no choice but to alter its desired footstep. The shaky behaviour of the

footstep solution can be seen on the MPC footstep plot, as the experiment was performed

without penalizing any change of footstep. Note that here no attempt is made at explicitly

smoothing the desired footstep trajectory with strong damping, as suggested in Feng et al.

[2016]. The swing-foot trajectory task in the whole-body QP controller somewhat smoothes

jerks in the footstep trajectory, but as the error remains tracked in position with high stiffness

to ensure that the footstep trajectory is ultimately followed, the actual foot motion remains

shaky. We also noticed the predicted effect of this jerkiness onto the CoM state, causing in

extreme cases self-amplifying perturbations (rarely observed to be significant enough for

failure). Furthermore as they suggested, we also noticed that reactive footstep allowed for

less accurate control of the CoM and ZMP, as mistakes are quickly recovered at the next step.

The estimates of the floating base state obtained from SLAM proved sufficiently robust to

achieve closed-loop MPC control, although significantly less shaky footstep trajectories were

observed when performing feedback from VICON tracking data instead.

112 Closed-loop MPC with Dense Visual SLAM - Stability through Reactive Stepping

Estimated ZMP

MPC Footstep

ZMP Constraint Front

ZMP Constraint Back

P
o
s
it

io
n
 (

m
)

SLAM Pos x
SLAM Pos y

VICON Pos x
VICON Pos y SLAM Vel x VICON Vel x

V
e
lo

c
it

y
 (

m
/s

)

Fig. 4.10 A strong push forward causes the MPC to step forward to prevent loss of balance.
Left - the estimated ZMP from force-sensor measurements is leaving the stability constraint
area at time 194.7s, the MPC plans a step forward to compensate. Middle - Estimation of the
floating base position from SLAM and VICON measurements along the x and y direction.
Right - Estimation of the floating base velocity.

4.5 Towards walking in uncontrolled environments

The experiments presented thus-far do not exploit the map of SLAM, as its use has not yet been

implemented into the closed-loop MPC controller. Yet, with the MPC formulation presented

here, two obvious ways of doing so present themselves. The first is to use the registration

scheme presented in Chapter 3 along with the closed-loop Cartesian regulator to walk towards

an object in the environment. This could be used in-stead of the walking pattern generator

used and run open-loop for the experiments presented in this chapter. To ensure collision-

free path with the environment, more elaborate path planning trajectories are of course

required. This leads to the second opportunity to exploit the map. The MPC formulation

can trivially be extended to add obstacle-avoidance constraints, as proposed in De Simone

et al. [2017], further restricting the kinematic-reachability constraint of Equation 4.6 with

additional inequality constraints. The obstacles can be easily segmented from the map by

exploiting the simple assumption that the robot is walking on flat floor, which is a prerequisite

of this MPC-formulation. In that case, any point in the map above a small threshold above

the ground plane can be considered as a potential obstacle. A simple clustering on those

points, followed by the estimation of their convex hull (or simply its projection on the ground

plane) provides all the information needed for preventing footsteps from colliding with the

environment. Unfortunately, neither has been implemented here, and future work will take it

into account.

These improvements concern the MPC presentation formulated here. However, only

the implementation of more elaborate methods is preventing us from applying this to more

complex environments. In Caron et Kheddar [2017], and his subsequent relative work,

an MPC formulation was presented to walk over rough terrain of any shape (assuming

4.6 Conclusion 113

planar contacts and kinematic feasibility). This particular work hasn’t been tried outside of

simulation yet, but a similar method was used and demonstrated in recent work in stabilizing

the HRP-4 [Caron et al., 2018b] in the case of stair climbing. In that experiment, and for

walking over any kind of rough terrain, the missing block is clearly the estimation of the

contact surfaces in the map, as was done in Fallon et al. [2015]. One could go further, by

exploiting Dense planar SLAM [Salas-Moreno et al., 2014] (or similar implementations) to

obtain potential footstep in real-time, along with the solver formulation proposed in Caron

et al. [2018a] to automatically select the best footstep to make. With a closed-loop formulation

of such an MPC formulation, it becomes conceivable to walk over rough terrain, such as the

brick field at the DRC challenge without stopping for planning any footstep, and with the

ability to react to perturbations by changing the footsteps. The only missing ingredient here

is its implementation.

4.6 Conclusion

In this work a closed-loop formulation of the intrinsically stable MPC for humanoid gait ge-

neration Scianca et al. [2016] has been presented, where the robot CoM position and velocity

are estimated with visual SLAM, while the ZMP position is computed from force/torque

sensor measurements. The closed-loop implementation of the MPC allows the robot to

react to external disturbances through stepping, enhancing the overall robustness of the

control scheme. Moreover, the visual localization of the robot in the environment, allows

it to navigate with precision to specific locations, recovering from the drift generated by

uncertainties and unmodelled interactions with the environment (e.g. foot slipping).

However, the capabilities of SLAM, haven’t been fully exploited, and in particular its map

has remained unused. With the MPC formulation presented here, obstacle avoidance could

easily be integrated by segmenting objects above the floor and adding them as inequality

constraints in the MPC. With a better path-planning algorithm, one could then walk on flat

floor in between obstacles.

An even more complete and interesting extension to this work would be to apply its main

ideas to an efficient MPC formulation designed to walk over rough terrain such as Caron

et al. [2018a] along with an automatic detection of flat surfaces as recent example with

dense planar SLAM has shown possible to walk over any rough terrain without any manual

planning, and automatically select the best footstep, even under perturbations.

Conclusion

In this thesis, we have outlined the importance of estimating both the state of the robot and its

environment, and exploiting it for both planning and control of a humanoid robot behaviour.

In particular, we showed that recent developments in dense visual Simultaneous Localization

and Mapping have enabled such an endeavour, by providing both the location of the robot’s

vision sensor, and a three dimensional map of the explored parts of its surroundings.

To precisely localize any surface on the robot body within the map reconstructed with

SLAM, it is necessary to have an accurate model of the robot’s kinematic tree, including the

pose of the vision sensor w.r.t. to that body. A novel method named Eye-Robot calibration,

extending the classic Hand-Eye formulation to whole-body calibration was proposed. It relies

solely on sensors available on any humanoid robot, that is joint encoders and a vision sensor

(here RGB-D) suitable for tracking using dense pose estimation algorithms. The motion of

the vision sensor tracked with dense visual SLAM, and that of the joint encoders are jointly

considered to estimate the kinematic model. The original intent was to provide whole-body

online calibration of any robot. However, during the development of the method, it was

realized that information considered about the robot motion does not always provide full

observability of these parameters. Driving on previous work considering the observability of

the Hand-Eye calibration using screw-congruence theory, the observability of the Eye-Robot

calibration was analysed, and used to obtain a solution along the observable directions,

while retaining the manufacturer’s calibration along the others. Robot-Eye calibration of the

HRP-4 upper body was demonstrated (including its extrinsic camera calibration), and dense

Hand-Eye calibration on calibrating MOCAP markers w.r.t. to either an RGB-D sensor, or

the robot body.

A method to exploit the map and robot localization to successfully accomplish multi-

contact plans generated offline w.r.t. to CAD models was proposed. The models used for

planning are located within the reconstructed map of the real environment by a proposed

variant of the Iterative Closest Point algorithm. The proposed ICP formulation is robust to

change of scales between the model and the map, and Iteratively Re-weighted Least-Squares

with robust M-Estimation is used to provide a robust estimation in the presence of outliers.

116 Closed-loop MPC with Dense Visual SLAM - Stability through Reactive Stepping

Furthermore, it was realized that unavoidable robot motion within the RGB-D sensor field-

of-view contradicts the rigid-scene assumption of the dense visual SLAM algorithms, leading

to tracking inaccuracies and failures. For lack of a suitable non-rigid SLAM algorithm, we

proposed to modify the photometric and geometric tracking function to discard the pixels

corresponding to the visible limbs of the robot as outliers. This is achieved by rendering the

robot’s CAD model from the RGB-D sensor’s viewpoint onto a binary mask, subsequently

used as an outlier filter in the cost function. The pose estimated from SLAM was then used to

formulate a closed-loop task to our quadratic programming controller that aligns any robot

surface with the registered target surfaces provided by the multi-contact plan. The approach

was successfully demonstrated on experiments with an HRP-2Kai, tasked with executing

several multi-contact plans, such as grasping a valve, a car wheel, etc. Starting from an initial

uncontrolled configuration, the robot was able to robustly achieve the plans, by relying on

a walking controller to reach the desired initial configuration when necessary, and robustly

establishing contacts even under voluntary perturbations (push).

Finally, it was shown that SLAM can successfully be used, in conjunction with force-

torque sensors, to estimate the position and velocity of the robot’s center-of-mass and

zero-moment point, with sufficient accuracy to enable the formulation of a closed-loop

MPC controller. Experiments on the HRP-4 humanoid show that it can successfully recover

from heavy perturbation by computing suitable footsteps and ZMP trajectories, where it

would otherwise have fallen without stepping. With the addition of a simple closed-loop

Cartesian controller, the ability to precisely walk to any Cartesian location within the map is

demonstrated.

The Dream

When starting this thesis, it was already clear that dense visual SLAM had the potential to

revolutionize the control of humanoid robots and to finally move away from the controlled

laboratory experiments towards evolving in uncontrolled and a-priori unknown environments.

First steps were taken in that direction both in this thesis and related works, but so far, only the

surface of what can ultimately be achieved has been scratched. Considerable advancements

have been made in both humanoid robotics and SLAM in the four years since this thesis

begun. Walking has evolved from flat floors, to any flat surface in 3D, gravels, rubble,

staircases, and even snow! Whole-body multi-contact planning that was initially restricted

to laborious and slow offline planning is starting to reach online solutions, which will, in

the near future, enable online planning in any environment. And nothing prevents it from

4.6 Conclusion 117

exploiting estimated map information in stead of the classical model-based approach that has

been adopted so far.

On its side, SLAM is undergoing a major shift towards higher level reasoning about

map information. Algorithms reasoning at the level of surfaces (Planar SLAM) and objects

(SLAM++) have been developed, and a lot of recent work has focused on semantic represen-

tations of the map. Semantic maps will provide the missing link to full control a robot in

unknown environment. They will provide all the information needed to inform multi-contact

planning. Where can the robot establish contact with its surroundings? Which object can it

interact with? What can it do with the objects?

With these challenges solved, work on humanoids will shift from the tedious control

aspects with humans-in-the-loop towards higher level reasoning. Instead of asking how,

we’ll soon find ourselves asking what? What task do we want the robot to accomplish?

Only then will it be able to explore and understand it’s environment, navigate through it, and

accomplish complex tasks without human intervention.

Appendix A

Non-Linear Least Square Minimization

on the Lie Algebra

A.1 Non-Linear Least Square Minimization

In computer vision or robotics, it is common to require fitting a model to a set of mea-

sured data. In the case of least-square problems, this dataset consists of N data pairs

S=
{
(xi,yi)

}
i=1..N obtained by observation. The aim is to find the parameters ξ ∈ R

m of a

model f (x,ξ) that best fit the data. This fit is measured by its residual that represents the

difference between the actual value and a value predicted by the model.

ri = yi− f (xi,ξ)

The state variable ξ is obtained by minimizing the sum of squared residuals S = ∑
n
i=1 r2

i .

The sum of residuals should decrease when the estimated state improves the data fit, and

increase otherwise.

ξ̂ = argmin
ξ

n

∑
i=1

r2
i

In some cases a closed-form solution exists to such a non-linear least-square problem, but

this is in general not the case. When no such closed-form solution exist, it is common to rely

on numerical iterative algorithms. One of the most common method is to use Gauss-Newton

algorithm. The concept is to linearise the state around its best estimate ξ̂ , and iteratively

improve that estimate as

ξ k+1 = ξ k + ξ̂ (A.1)

120 Non-Linear Least Square Minimization on the Lie Algebra

The solution as iteration k is incremented by the shift vector ξ̂ . Each residual is related to the

state variables

ei = Jiξ̂

where Ji =
∂εi

∂ξ
is the error Jacobian. That is each residual contributes to directing the state

in a direction that reduces the total residual error. The full system is solved by stacking the

Jacobian and errors for each residual and inverting the system

ξ̂ = J+e

where J+ = (JT J)−1JT is the pseudo-inverse of the stacked Jacobian J = [J1, . . . ,JN]
T and

e = [e1, . . . ,eN]
T .

The update equation A.1 is computed until convergence of the algorithm. The definition

of convergence depends on the application. Most commonly, the algorithm is considered to

converge when the the sum of squared residuals is below a threshold, or when the rate of

convergence becomes too small. Note that this method is highly subject to local minima, and

global convergence cannot be guaranteed.

Ordinary least-square is optimal under some very restrictive conditions. It assumes a

constant variance in the errors: outliers in the dataset have a tendency to pull the least-

square solution towards them since their residual error is much larger than that of the valid

measurements. Fortunately, least-square problems can be reformulated using robust statics,

and solved with the iteratively re-weighted least-square method.

A.1.1 Solving M-Estimator with Iteratively Reweighted Least-Square

In 1964, Huber Huber et al. [1964] proposed generalizing maximum likelihood estimation to

the minimization of ∑
n
i=1 ρ(ri(ξ)). The solutions to

ξ̂M = argmin
ξM

n

∑
i=1

ρ
(
ri(ξ)

)

are called M-Estimators. ρ(.) is a function chosen to provide the estimator desirable pro-

perties in term of bias and efficiency when the data fits the assumed distribution. Note

that assuming normally distributed residuals, ρ(z) = 1
2z2 results in the ordinary least-square

estimate. Some M-Estimators are influenced by the scale of the residuals, thus we formulate

A.1 Non-Linear Least Square Minimization 121

a scale-invariant version of the M-Estimator. Let r̃(ξ) = ri(ξ)
τ

ξ̂M = argmin
ξM

n

∑
i=1

ρ (r̃i(ξ)) (A.2)

where τ is a measured of the scale

τ =
median(|ri−median(r)|)

0.6745

It is often simpler to differentiate w.r.t. to ξ and solve for the root of the derivative. When

that differentiation is possible, the M-Estimator is said to be of ψ-type, otherwise it is said to

be of ρ-type.

ψ-type M-Estimator are used in most practical case. If ρ is differentiable, the computation

of ξ̂ is much easier. Set
∂ρ

∂ξ j
= 0

for each j = 1, . . . ,m, resulting in a set of m non-linear equations

n

∑
i=1

∂ r̃i(ξ)

∂ξ
ψ(r̃i)

where ψ = ρ ′ ◦ r̃i(ξ), called the influence function. Table A.1 references weights obtained

for the most commonly used M-Estimator influence functions. Taking from the literature, the

proportionality factors of b= 4.6851, c= 2.3849 and a= 1.2107 ensures 95% of efficiency in

the case of Gaussian noise. We refer the reader to Comport [2005] for a detailed explanation.

For most choices of ρ(.) or ψ(.), no close-form solution exists. In that case, the solution can

be iteratively determined using the iteratively re-weighted least-square algorithm.

Iteratively Reweighted Least-Mean Square (IRLS) is used to estimate the weighted

least-square solution to equation A.2 as

ξ̂ k+1 =
(
JT [W−1]kJ

)−1JT [W−1]kri (A.3)

where W = diag(ω1, . . . ,ωN) is a diagonal matrix of weight coefficients. Coefficients for

common M-Estimators are provided in Table A.1.

Solving for the M-Estimator instead of the ordinary least-square provides robustness to

outliers, which proves to be important for real-applications, especially when considering

122 Non-Linear Least Square Minimization on the Lie Algebra

Function Huber Tukey Cauchy

ρ(u)

1
2u2, |u| ≤ a

a
2(2|u|−a), |u|> a

b2

6 (1− (1− (u
b
)2)3), |u| ≤ b

b2

6 , |u|> b

c2

2
log

(
1+

(u

c

)2
)

ψ(u)
u, |u| ≤ a

a u
|u| , |u|> a

−u
τ (1− (u

b
)2)2 |u| ≤ b

0 |u|> b

u

1+(u
c
)2

ω(u)
1, |u| ≤ a

a1
u
, |u|> a

(1− (u
b
)2)2, |u| ≤ b

0, |u|> b

1

1+
(

u
c

)2

Table A.1 Various robust cost functions and their corresponding influence and weight func-
tions. Functions ρ(.) corresponds to the robust probability distribution, psi(.) is the partial
derivative of ρ(.) w.r.t. the parameters r, and ω(.) is the corresponding weight factor for an
IRLS implementation.

data measured from vision sensors that can easily break assumptions of the modelled cost

function.

A.2 Optimization on the special euclidean manifold

A common problem consists of finding a rigid-body transformation w.r.t. to observed data.

SLAM algorithm use visual cues, along with a camera projection model to track the 6D-pose

of the camera; the Hand-Eye calibration method proposed in Chapter 2 uses robot and

sensor motions to obtain the transformation between the kinematic chain’s joints. In recent

years, Lie algebra, and in particular its special euclidean group SE(3) has become a de-facto

standard for formulating least-mean square problems involving rigid-body transformations.

In this section we will briefly summarize this representation, and its advantages. We refer the

reader to the excellent book by Ma et al. [2003] for an in-depth analysis.

A.2.1 Special Euclidean Group

An object is considered rigid if and only if the distance between any points is constant. Two

points with coordinates x(t) ∈ R
3 and y(t) ∈ R

3 must satisfy:

A.2 Optimization on the special euclidean manifold 123

∃c ∈ R,∀t ∈ R ||x(t)−y(t)| |= c (A.4)

A rigid body motion is a family of transformation that describes how the coordinates of

every point on the object changes as a function of time. As the distances between all points

of a rigid body object are constant (Eq. A.4), a rigid body motion can be defined with respect

to one unique point lying on the object.

A convenient way of representing rigid body motions is Special Euclidean group, be-

longing to the broader category of Lie groups. Denoted by SE(3), it can be represented

by the set of homogeneous matrices T composed of a rotation and translation, represented

respectively by R∈ SO(3) and t∈R
3. All rigid body motions can be described as an element

of the following set:

SE(3) =

{
T =

[
R t

01x3 1

] ∣∣∣ R ∈ SO(3), t ∈ R
3×1

}
⊂ R

4×4

SO(3) =
{

R ∈ R
3x3

∣∣∣ RT R = I3,det(R) = 1
}

(A.5)

where T(t) is called the homogeneous matrix. Homogeneous coordinates unify computations

of rotation and translation in a single matrix form. The coordinates of a point x0 ∈ R
3

expressed in a frame (e.g. world frame) can be expressed relative to a current frame (camera)

at time t as

x(t) = T(t)x0 = R(t)x0 + t(t) (A.6)

This representation, while intuitive isn’t optimal. Indeed, in matrix form, there are 12 free

parameters (9 for the rotation matrix, 3 for the translation), while only 6 are needed to fully

represent a 3D rigid body motion (3 for rotation, 3 for translation). To respect the structure of

the special euclidean group, these parameters cannot be chosen arbitrarily, and the additional

computational complexity of optimizing 12 parameters instead of 6 is non-negligible. Any

element of the special euclidean group SE(3) may be represented in its associated algebra

se(3), which provides such a compact minimal representation.

A.2.2 Special euclidean algebra

In SO(3) the rotation matrix is represented with 9 non-free parameters: they must respect

the constraint that RT R = I3. This imposes 6 independent constraints on these 9 parameters,

hence the dimension of the rotation space is 3, and 6 parameters are in fact redundant.

124 Non-Linear Least Square Minimization on the Lie Algebra

The space of all skew-symmetric matrices, also called tangent space at the identity of the

matrix group SO(3) achieves such a minimal representation

so(3) =

[ω]× =

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 | ω ∈ R

3

(A.7)

An element of ω ∈ so(3) is related to its rotation matrix by

R(t) = e[ωt]xt = I3 +[ωt]×+
([ωt]×)

2

2!
+ . . .+

([ωt]×)
n

n!
(A.8)

The special euclidean group also has an associated Lie algebra where se(3) is called the

tangent space of the matrix group SE(3), of the form

se(3) = {[ξ]∧ =

[
[ω]× υ

0 0

]
|ω ∈ so(3),υ ∈ R

3×1} (A.9)

An element of ξ ∈ se(3) is related to its transformation matrix by

T(t) = e[ξ t]∧ =

[
e[ωt]× (I− e[ωt]×)[ω]×υ +ωωT υt

0 1

]
(A.10)

The computation of this exponential map is usually achieved with the Rodrigues’ formula.

A.2.3 Derivatives on the special euclidean algebra

Computing jacobians of cost-function dependent on se(3) element often requires obtaining

the derivative of the exponential map
∂e[ξ]∧

∂ξ
. For an arbitrary value of ξ , an analytical

formula is hard to obtain. Fortunately deriving the exponential map around the identity leads

to a simple Jacobian composed of the generators of the lie algebra.

A.2 Optimization on the special euclidean manifold 125

J0 =
∂eξ

∂ξ

∣∣∣∣∣
ξ=0

=

υx υy υz ωx ωy ωz

r11

r12

r13

tx

r21

r22

r23

ty

r31

r32

r33

tz

0 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 1 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 −1 0 0

0 1 0 0 0 0

0 0 0 0 −1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 1 0 0 0

(A.11)

In the context of iterative least-square minimization, it is generally possible to express

the cost function such that the Jacobian is expressed at identity. Consider a cost-function

f (T) where T ∈ SE(3). At iteration k of the minimization, it can be expressed as either

f (Tk) = f (Tk−1e[ξ]∧), or f (Tk) = f (e[ξ]∧Tk−1), where ξ is the optimization shift-variable

close to the identity-vector of the algebra. Choosing pre or pos-multiplication depends on

the cost-function, and may provide efficiency advantages by allowing to pre-compute the

Jacobian in some cases. A detailed example of this principle is described with the proposed

Hand-Eye cost-function (Equation 2.2) and its analytical jacobian computation (Equation 2.5).

Robot-Eye formulation (Equation 2.7), D6DSLAM cost function (Equation 1.23), and other

cost-functions presented in this thesis also rely on this principle.

Appendix B

Iterative Closest Point

The Iterative Closest Point (ICP) method was first introduced by Besl et McKay [1992] in

1992, and has since become a well-known and widely used algorithm for registering two sets

of closely related cloud of points (in 2D or 3D) under Euclidean transformations. The concept

is simple, the algorithm iteratively finds the transformation that minimizes a distance between

both point sets. To do so, it alternates between two phases (i) finding the closest points

between a reference cloud P∗ and a registration candidate P and (ii) solving a least-square

minimization problem that finds an euclidean transformation T̂ ∈ SE(3) minimizing the

distance between both clouds.

ξ̂ξξ = argmin
ξξξ

f (P∗,P,ξξξ) (B.1)

where f is an error function whose value is low when the pointclouds are correctly registered.

Some common error functions will be detailed further in the following sections.

In the literature, several choices of representation can be found for the minimization

vector ξξξ corresponding to the pose T̂. In Besl et McKay [1992], a quaternion and translation

vector are used. In this thesis, we choose to use a special euclidean algebra as the minimal

representation for the pose between the clouds. All methods presented in this section are

provided as an open-source C++ library1.

The ICP algorithm can be defined as follow:

1 https://github.com/arntanguy/icp

128 Iterative Closest Point

Algorithm 1 Iterative Closest Point Algorithm

INPUT: reference cloud P∗, current cloud P , initial guess T̂
1: Find the closest points in the reference cloud P∗ for each point in the current cloud P .

This is typically done by building a kd-tree composed of the points of P∗, and searching
for the nearest neighbour of each point of P in it.

2: Find the transformation ξξξ that minimizes the error f between the point matches (eq.
B.1).

3: Transform all points of the current cloud using the obtained transformation ξξξ : ∀P ∈
P∗, P = T(ξξξ)T̂P.

4: Iterate until the convergence criterion is reached (error function close to zero, variation
in translation and rotation too small...).

B.1 Common ICP Formulations

Point to Point ICP One common error function for ICP is to use the euclidean distance

between each matching pair of points as the error function. First, we define an error vector

for a pair of matching points Pi ∈ R
4 and P∗i ∈ R

4 and ei = [ex,ey,ez]
T ∈ R

3 as

f : (R4,R4,se(3)) → R
3

(Pi,Pi
∗,ξξξ) 7→ ei = Pi−T(ξξξ)T̂Pi

∗
(B.2)

The error Jacobian can be expressed as

Ji =
∂ei

∂ξξξ
=

∂eξξξ

∂ξξξ
T̂Pi

∗ = [I3 − [T̂Pi
∗]×] ∈ R

3×6 (B.3)

ei = Jiξξξ ∈ R
3×1 (B.4)

Solving the equation for ξξξ :

ξξξ =

[
υ

ω

]
=−Ji

+ei ∈ R
6×1 (B.5)

, where J+ = (JT J)−1J ∈ R
6×6 is the pseudo-inverse of the Jacobian. Finally, the pose is

updated as

T̂ = ei
ξ T̂ (B.6)

T̂ is re-computed in each iteration of the equation B.2 until convergence is reached (variation

of the error low, small change in rotational and translational error...).

B.1 Common ICP Formulations 129

All of the above method has been derived for optimization of the pose given a single

point. In practice, we want to perform the optimization algorithm on pointclouds. Doing

so is simple, all we need to do is stack up the Jacobian and errors for each point into a big

matrix and vector, and perform the minimization step (eq. B.5) using these. Consider two

pointclouds P∗ and P defined as

P = {P1,P2, · · · ,Pn} ∈ R
4×n (B.7)

P
∗ = {P1

∗,P2
∗, · · · ,Pn∗

∗} ∈ R
4×n∗ (B.8)

We then find all matching pairs of points between the two pointclouds (by using a nearest

neighbour search on a kd-tree for instance). The correspondence set can be expressed as

Pm = {(p∗1,Pφ(1)), · · · ,(p
∗
n∗ ,Pφ(n))} (B.9)

where φ(i) is a function matching the index a point i from the reference cloud into the current

cloud. Using the point matches from the set Pm, the stacked jacobian and error is now

expressed as

J =

J1

J2
...

Jn∗

∈ R

3n×1 e =

e1

e2
...

en∗

∈ R

3n×6 (B.10)

where

ei = f (p∗i ,pφ(i),ξ) = pφ(i)−T(ξ)T̂p∗i (B.11)

The minimization is then computed using equation B.5 and B.6.

ξ =

[
υ

ω

]
=−J+e ∈ R

6×1 (B.12)

B.1.1 Point to Plane ICP

While point to point ICP computes the error directly as the euclidean distance between pairs

of points, point to plane ICP concerns itself with the distance between a point and the surface

tangent to a matching point on the other cloud. In effect, the euclidean distance between

130 Iterative Closest Point

pairs of points is computed, and then projected along the normal of either the reference point

or the current point.

Using the current normal

f : (R4,R4,R4,se(3)) → R

(ni,Pi,Pi
∗,ξξξ) 7→ ei = ni

T Π0(Pφ(i)−T(ξ)T̂P∗i)
(B.13)

Notice that the error is now a scalar instead of a vector as was the case for point to point ICP.

This is due to the fact that the error is projected along the normal direction. As the normal is

a constant with respect to the pose, computing the new jacobian is simple

Jip2plane = ni
T Jip2point =

nix

niy

niz

yei
niz− zei

niy

zei
nix− xei

niz

yei
niy− yei

nix

T

∈ R
1×6 (B.14)

Since we know have the Jacobian and error for a single point correspondence, we can

now, similarly to the point to point method, define a stacked Jacobian and error, and perform

the minimization using equation B.12 and B.6 applied with the above matrices.

Using the reference normal Using the reference normal presents one main advantage

w.r.t. using the current normal: accuracy. In many systems, such as SLAM, the reference

pointcloud is iteratively refined as new keyframes are added, thus providing a better normal

estimation. In that case, the error can be defined as

f : (R4,R4,R4,se(3)) → R

(ni,Pi,Pi
∗,ξξξ) 7→ ei = R(ξ)R̂n∗i

T Π0(Pφ(i)−T(ξ)T̂P∗i)
(B.15)

Appendix C

List of software

In order to increase the reach and usefulness of this work, efforts were made to provide

ready-to-use C++ libraries and applications for the main subjects studied in this thesis.

Unfortunately not all of the work presented here could be made publicly available as of yet.

RobCalib

Shorthand for Robot Calibraion, this library implements both online Hand-Eye and Robot-

Eye calibration with dense visual SLAM. It was used extensively in this thesis, in particular

to provide Hand-Eye calibration for HRP4 RGB-D sensor, MOCAP markers frame on the

robot, and on a dataset recorded with a hand-held RGB-D sensor. It can be used as a library to

provide online calibration, or through sample ROS-based applications are provided to provide

ready-to-use calibration tools. For implementation details, please refer to Section 2.6.1.

https://github.com/arntanguy/robcalib

RBVis - Robot Visualization

This library allows to render a model of the robot from any desired perspective. This was

developed and used to generate the self-occlusion masks presented in Section3.2.2, but is

suitable for any robot supported by RBDyn.

https://gite.lirmm.fr/atanguy/rbvis

132 List of software

Iterative Closest Point Library

The ICP method described in Section ?? and the robustness improvements of Section 3.2.3

were implemented an published as an open-source C++ library. This library has been

extensively used in this thesis for all ICP-registration applications, such as the results

depicted by Figure 3.6, 3.8, 3.5. It was also integrated into the choreonoid application and

used during the DARPA Robotics Challenge.

https://github.com/arntanguy/icp

Uniform Mesh Sampling

The uniform mesh sampling method described by Section 3.1.1 was implemented as an

open-source C++ library. This library was heavily inspired by the great python library

pyntcloud David de la Iglesia [2017]. The main advantage of this sampling method is that it

guarantees a uniform distribution of points regardless of the arrangement of triangles in the

mesh.

https://github.com/arntanguy/mesh_sampling

Savitzky-Golay Filtering based on Gram Polynomials

Savitzky-Golay is a widely described, and very popular method for filtering signals. Yet,

to our knowledge, no good open-source C++ implementation was available. We provide

a generic and efficient implementation based on Gram polynomials. This library has been

extensively used in this thesis to filter noisy 6D-pose and velocities obtained from various

odometry methods, and by my colleagues at LIRMM in their own projects.

https://github.com/arntanguy/gram_savitzky_golay

Multi-Contact QP Control Framework (mc_rtc)

mc_rtc is a framework for QP-based multi-contact control of humanoid robots. This is the

basis upon which all control method were built and implemented. Substantial improvements

were made during this thesis, such as

Closed-Loop Implementation The method described in Chapter 3 was integrated within

the framework and can be used with any supported robot.

133

State Estimation Various state-estimation method were implemented to estimate the attitude

of the floating base from SLAM or VICON trackers and to estimate CoP and ZMP

from force sensors measurements.

Trajectory Task defines end-effector trajectories that follow bezier curves passing through

user specified waypoints. This was used to provide smooth end-effector motions for

entering the A400M Aircraft.

LookAt Task to look at and track surface in the environment with the vision sensor.

Various Contributions

Besides the aforementioned list of software, during the course of this thesis, I was brought

to interact and make some minor contributions to many libraries and applications, such as

PX2M, Roboptim, Sophus, ElasticFusion, ORB2-SLAM, Rviz, and more.

References

[Abe et al. 2007] ABE, Yeuhi ; DA SILVA, Marco ; POPOVIĆ, Jovan: Multiobjective control
with frictional contacts. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation Eurographics Association (Veranst.), 2007, S. 249–258

[Aloimonos et al. 1988] ALOIMONOS, John ; WEISS, Isaac ; BANDYOPADHYAY, Amit:
Active vision. In: International journal of computer vision 1 (1988), Nr. 4, S. 333–356

[Atkeson 2015] ATKESON, Christopher G.: What Happened at the DARPA Robotics
Challenge? https://www.cs.cmu.edu/~cga/drc/events. 2015

[Audras et al. 2011] AUDRAS, Cedric ; COMPORT, A ; MEILLAND, Maxime ; RIVES,
Patrick: Real-time dense appearance-based SLAM for RGB-D sensors. In: Australasian
Conf. on Robotics and Automation Bd. 2, 2011, S. 2

[Bailey et Durrant-Whyte 2006] BAILEY, Tim ; DURRANT-WHYTE, Hugh: Simultaneous
localization and mapping (SLAM): Part II. In: IEEE Robotics and Automation Magazine
13 (2006), Nr. 3, S. 108–117

[Baudouin et al. 2011] BAUDOUIN, Léo ; PERRIN, Nicolas ; MOULARD, Thomas ;
LAMIRAUX, Florent ; STASSE, Olivier ; YOSHIDA, Eiichi: Real-time replanning using
3d environment for humanoid robot. In: 11th IEEE-RAS International Conference on
Humanoid Robots (Humanoids) IEEE (Veranst.), 2011, S. 584–589

[Benallegue et Lamiraux 2015] BENALLEGUE, Mehdi ; LAMIRAUX, Florent: Estimation
and stabilization of humanoid flexibility deformation using only inertial measurement
units and contact information. In: International Journal of Humanoid Robotics 12 (2015),
Nr. 03, S. 1550025

[Besl et McKay 1992] BESL, P. ; MCKAY, N.: A Method for Registration of 3-D
Shapes. In: IEEE Transactions on Pattern Analysis and Machine Intelligence Bd. 14,
1992, S. 239–256

[Birbach et al. 2012] BIRBACH, Oliver ; BÄUML, Berthold ; FRESE, Udo: Automatic and
self-contained calibration of a multi-sensorial humanoid’s upper body. In: Proceedings
- IEEE International Conference on Robotics and Automation (2012), S. 3103–3108. –
ISBN 9781467314039

[Blanco 2010] BLANCO, Jl: A tutorial on se (3) transformation parameterizations and
on-manifold optimization. In: University of Malaga, Tech. Rep (2010)

136 References

[Bouyarmane et Kheddar 2011a] BOUYARMANE, Karim ; KHEDDAR, Abderrahmane:
Multi-contact stances planning for multiple agents. In: IEEE International Conference on
Robotics and Automation, 2011, S. 5246–5253

[Bouyarmane et Kheddar 2011b] BOUYARMANE, Karim ; KHEDDAR, Abderrahmane:
Using a multi-objective controller to synthesize simulated humanoid robot motion with
changing contact configurations. In: IEEE International Conference on Intelligent Robots
and Systems, 2011, S. 4414–4419

[Bouyarmane et Kheddar 2012] BOUYARMANE, Karim ; KHEDDAR, Abderrahmane:
Humanoid robot locomotion and manipulation step planning. In: Advanced Robotics
(2012), July/September

[Bouyarmane et al. 2012] BOUYARMANE, Karim ; VAILLANT, Joris ; KEITH, François ;
KHEDDAR, Abderrahmane: Exploring humanoid robots locomotion capabilities in virtual
disaster response scenarios. In: IEEE-RAS International Conference on Humanoid Robots
(Humanoids) IEEE (Veranst.), 2012, S. 337–342

[Bretl 2006] BRETL, Timothy: Motion planning of multi-limbed robots subject to equi-
librium constraints: The free-climbing robot problem. In: The International Journal of
Robotics Research 25 (2006), Nr. 4, S. 317–342

[Bridson 2007] BRIDSON, Robert: Fast Poisson disk sampling in arbitrary dimensions. In:
SIGGRAPH sketches, 2007, S. 22

[Brossette et al. 2013] BROSSETTE, Stanislas ; VAILLANT, Joris ; KEITH, François ;
ESCANDE, Adrien ; KHEDDAR, Abderrahmane: Point-Cloud Multi-Contact Planning
for Humanoids: Preliminary Results. In: IEEE Conference on Robotics Automation and
Mechatronics. Manila, Philippines, 12-15 November 2013, S. 19–24

[Cadena et al. 2016] CADENA, C. ; CARLONE, L. ; CARRILLO, H. ; LATIF, Y. ; SCA-
RAMUZZA, D. ; NEIRA, J. ; REID, I. ; LEONARD, J.J.: Past, Present, and Future of
Simultaneous Localization And Mapping: Towards the Robust-Perception Age. In: IEEE
Transactions on Robotics 32 (2016), Nr. 6, S. 1309–1332

[Caron et al. 2018a] CARON, Stéphane ; ESCANDE, Adrien ; LANARI, Leonardo ; MAL-
LEIN, Bastien: Capturability-based Analysis, Optimization and Control of 3D Bipedal
Walking. In: arXiv preprint arXiv:1801.07022 (2018)

[Caron et Kheddar 2017] CARON, Stéphane ; KHEDDAR, Abderrahmane: Dynamic
walking over rough terrains by nonlinear predictive control of the floating-base inverted
pendulum. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) IEEE (Veranst.), 2017, S. 5017–5024

[Caron et al. 2018b] CARON, Stéphane ; KHEDDAR, Abderrahmane ; TEMPIER, Olivier:
Stair Climbing Stabilization of the HRP-4 Humanoid Robot using Whole-body Admittance
Control. September 2018. – URL https://hal.archives-ouvertes.fr/hal-01875387. – working
paper or preprint

References 137

[Caron et al. 2015] CARON, Stéphane ; PHAM, Quang-Cuong ; NAKAMURA, Yoshihiko:
Stability of surface contacts for humanoid robots: Closed-form formulae of the contact
wrench cone for rectangular support areas. In: IEEE International Conference on Robotics
and Automation (ICRA) IEEE (Veranst.), 2015, S. 5107–5112

[Caron et al. 2017] CARON, Stéphane ; PHAM, Quang-Cuong ; NAKAMURA, Yoshihiko:
Zmp support areas for multicontact mobility under frictional constraints. In: IEEE
Transactions on Robotics 33 (2017), Nr. 1, S. 67–80

[Caron 2018] CARON, Stéphane: Equations of motion. https://scaron.info/teaching/
equations-of-motion.html. 2018

[Carpentier et al. 2016] CARPENTIER, Justin ; TONNEAU, Steve ; NAVEAU, Maximilien ;
STASSE, Olivier ; MANSARD, Nicolas: A versatile and efficient pattern generator for
generalized legged locomotion. In: IEEE International Conference on Robotics and
Automation (ICRA) IEEE (Veranst.), 2016, S. 3555–3561

[Chasles 1831] CHASLES, M: Note sur les propriétés générales du système de deux
corps semblables entre eux, placés d’une manière quelconque dans l’espace; et sur le
déplacement fini, ou infiniment petit d’un corps solide libre. In: Bulletin des Sciences
Mathématiques de Firussac XJV (1831), S. 321–326

[Chen 1991] CHEN, H.H.: A screw motion approach to uniqueness analysis of head-eye
geometry. In: Proceedings. 1991 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (1991), S. 145–151

[Chretien et al. 2016] CHRETIEN, Benjamin ; ESCANDE, Adrien ; KHEDDAR, Abderrah-
mane: GPU robot motion planning using semi-infinite nonlinear programming. In: IEEE
Transactions on Parallel and Distributed Systems (2016)

[Cisneros et al. 2015] CISNEROS, Rafael ; KAJITA, Shuuji ; SAKAGUCHI, Takeshi ;
NAKAOKA, Shin’ichiro ; MORISAWA, Mitsuharu ; KANEKO, Kenji ; KANEHIRO, Fumio:
Task-level teleoperated manipulation for the HRP-2Kai humanoid robot. In: IEEE-RAS
15th International Conference on Humanoid Robots, 2015, S. 1102–1108

[Comport 2005] COMPORT, Andrew I.: Towards a computer imagination: Robust real-
time 3D tracking of rigid and articulated objects for augmented reality and robotics,
Université de Rennes I, Dissertation, 2005. – 291 S. – URL http://www.i3s.unice.fr/
{~}comport/publications/2005{_}these{_}comport.pdf

[Comport et al. 2007] COMPORT, Andrew I. ; MALIS, Ezio ; RIVES, Patrick: Accurate
Quadrifocal Tracking for Robust 3D Visual Odometry. In: IEEE International Conference
on Robotics and Automation (ICRA) Citeseer (Veranst.), 2007, S. 40–45

[Curless et Levoy 1996] CURLESS, Brian ; LEVOY, Marc: A volumetric method for buil-
ding complex models from range images. In: Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques ACM (Veranst.), 1996, S. 303–312

[Dame et Marchand 2010] DAME, Amaury ; MARCHAND, Eric: Accurate Real-time
Tracking Using Mutual Information. In: IEEE International Symposium on Mixed and
Augmented Reality (2010), S. 47–56. ISBN 978-1-4244-9343-2

138 References

[David de la Iglesia 2017] DAVID DE LA IGLESIA: 3D point cloud generation from 3D
triangular mesh.
https://medium.com/@daviddelaiglesiacastro/
3d-point-cloud-generation-from-3d-triangular-mesh-bbb602ecf238. 2017

[De Simone et al. 2017] DE SIMONE, Daniele ; SCIANCA, Nicola ; FERRARI, Paolo ;
LANARI, Leonardo ; ORIOLO, Giuseppe: MPC-based humanoid pursuit-evasion in the
presence of obstacles. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017, S. 5245–5250

[Durrant-Whyte et Bailey 2006] DURRANT-WHYTE, Hugh ; BAILEY, Tim: Simultaneous
localization and mapping: part I. In: IEEE robotics and automation magazine 13 (2006),
Nr. 2, S. 99–110

[Engel et al. 2015] ENGEL, J. ; STUECKLER, J. ; CREMERS, D.: Large-Scale Direct
SLAM with Stereo Cameras. In: International Conference on Intelligent Robots and
Systems, September 2015

[Engel et al. 2014] ENGEL, Jakob ; SCHÖPS, Thomas ; CREMERS, Daniel: LSD-SLAM:
Large-scale direct monocular SLAM. In: European Conference on Computer Vision
Springer (Veranst.), 2014, S. 834–849

[Escande et Kheddar 2009] ESCANDE, Adrien ; KHEDDAR, Abderrahmane: Contact
planning for acyclic motion with tasks constraints. In: Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on IEEE (Veranst.), 2009, S. 435–440

[Escande et al. 2013] ESCANDE, Adrien ; KHEDDAR, Abderrahmane ; MIOSSEC, Sylvain:
Planning contact points for humanoid robots. In: Robotics and Autonomous Systems 61
(2013), Nr. 5, S. 428–442

[Escande et al. 2014] ESCANDE, Adrien ; MANSARD, Nicolas ; WIEBER, Pierre-Brice:
Hierarchical quadratic programming: Fast online humanoid-robot motion generation. In:
The International Journal of Robotics Research 33 (2014), Nr. 7, S. 1006–1028

[Fallon et al. 2014] FALLON, Maurice F. ; ANTONE, Matthew ; ROY, Nicholas ; TELLER,
Seth: Drift-free humanoid state estimation fusing kinematic, inertial and lidar sensing.
In: 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids) IEEE
(Veranst.), 2014, S. 112–119

[Fallon et al. 2015] FALLON, Maurice F. ; MARION, Pat ; DEITS, Robin ; WHELAN,
Thomas ; ANTONE, Matthew ; MCDONALD, John ; TEDRAKE, Russ: Continuous
humanoid locomotion over uneven terrain using stereo fusion. In: IEEE-RAS International
Conference on Humanoid Robots. Seoul, Korea, 3-5 November 2015, S. 881–888

[Featherstone 2014] FEATHERSTONE, Roy: Rigid body dynamics algorithms. Springer,
2014

[Feng et al. 2016] FENG, Siyuan ; XINJILEFU, X ; ATKESON, Christopher G. ; KIM,
Joohyung: Robust dynamic walking using online foot step optimization. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) IEEE (Veranst.), 2016,
S. 5373–5378

References 139

[Gorry 1990] GORRY, Peter A.: General Least-Squares Smoothing and Differentiation
by the Convolution (Savitzky-Golay) Method. In: Analytical Chemistry 62 (1990), Nr. 6,
S. 570–573

[Gramkow 2001] GRAMKOW, Claus: On averaging rotations. In: Journal of Mathematical
Imaging and Vision 15 (2001), Nr. 1-2, S. 7–16

[Heller et al. 2014] HELLER, Jan ; HENRION, Didier ; PAJDLA, Tomas: Hand-eye
and robot-world calibration by global polynomial optimization. In: Proceedings - IEEE
International Conference on Robotics and Automation (2014), S. 3157–3164

[Herdt et al. 2010] HERDT, A. ; PERRIN, N. ; WIEBER, P. B.: Walking without thinking
about it. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010,
S. 190–195. – ISSN 2153-0858

[Hersch et al. 2008] HERSCH, Micha ; SAUSER, Eric ; BILLARD, Aude: Online Learning
of the Body Schema. In: International Journal of Humanoid Robotics 05 (2008), Nr. 02,
S. 161–181. – ISSN 0219-8436

[Huber 2011] HUBER, Peter J.: Robust statistics. In: International Encyclopedia of
Statistical Science. Springer, 2011, S. 1248–1251

[Huber et al. 1964] HUBER, Peter J. et al.: Robust estimation of a location parameter. In:
The annals of mathematical statistics 35 (1964), Nr. 1, S. 73–101

[Innmann et al. 2016] INNMANN, Matthias ; ZOLLHÖFER, Michael ; NIESSNER, Matthias ;
THEOBALT, Christian ; STAMMINGER, Marc: VolumeDeform: Real-time volumetric non-
rigid reconstruction. In: European Conference on Computer Vision Springer (Veranst.),
2016, S. 362–379

[Ireta 2018] IRETA, Fernando: Global Pose Estimation and Tracking for RGB-D Locali-

zation and 3D Mapping, UNIVERSITÉ DE NICE SOPHIA ANTIPOLIS, Dissertation,
2018

[Ireta Munoz et Comport 2017] IRETA MUNOZ, Fernando I. ; COMPORT, Andrew I.:
Global Point-to-hyperplane ICP: Local and Global Pose Estimation by Fusing Color and
Depth. In: IEEE International Conference on Multisensor Fusion and Integration for
Intelligent Systems. Daegu, South Korea, 2017

[Johnson et al. 2015] JOHNSON, Matthew ; SHREWSBURY, Brandon ; BERTRAND,
Sylvain ; WU, Tingfan ; DURAN, Daniel ; FLOYD, Marshall ; ABELES, Peter ; STEPHEN,
Douglas ; MERTINS, Nathan ; LESMAN, Alex ; CARFF, John ; RIFENBURGH, William ;
KAVETI, Pushyami ; STRAATMAN, Wessel ; SMITH, Jesper ; GRIFFIOEN, Maarten ;
LAYTON, Brooke ; DE BOER, Tomas ; KOOLEN, Twan ; NEUHAUS, Peter ; PRATT, Jerry:
Team IHMC’s lessons learned from the DARPA robotics challenge trials. In: Journal of
Field Robotics 32 (2015), Nr. 2, S. 192–208

[Kajita et al. 2014] KAJITA, Shuuji ; HIRUKAWA, Hirohisa ; HARADA, Kensuke ; YOKOI,
Kazuhito: Introduction to Humanoid Robotics. Bd. 101. 2014. – ISBN 364254536X

140 References

[Kajita et al. 2006] KAJITA, Shuuji ; MORISAWA, Mitsuharu ; HARADA, Kensuke ;
KANEKO, Kenji ; KANEHIRO, Fumio ; FUJIWARA, Kiyoshi ; HIRUKAWA, Hirohisa: Biped
walking pattern generator allowing auxiliary zmp control. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2006, S. 2993–2999

[Kanehira et al. 2002] KANEHIRA, Noriyuki ; KAWASAKI, TU ; OHTA, Shigehiko ;
ISMUMI, T ; KAWADA, Tadahiro ; KANEHIRO, Fumio ; KAJITA, Shuuji ; KANEKO, Kenji:
Design and experiments of advanced leg module (HRP-2L) for humanoid robot (HRP-2)
development. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
Bd. 3 IEEE (Veranst.), 2002, S. 2455–2460

[Kaneko et al. 2011] KANEKO, Kenji ; KANEHIRO, Fumio ; MORISAWA, Mitsuharu ;
AKACHI, Kazuhiko ; MIYAMORI, Go ; HAYASHI, Atsushi ; KANEHIRA, Noriyuki:
Humanoid robot hrp-4-humanoid robotics platform with lightweight and slim body. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) IEEE
(Veranst.), 2011, S. 4400–4407

[Kaneko et al. 2015] KANEKO, Kenji ; MORISAWA, Mitsuharu ; KAJITA, Shuuji ; NA-
KAOKA, Shin’ichiro ; SAKAGUCHI, Takeshi ; CISNEROS, Rafael ; KANEHIRO, Fumio:
Humanoid robot HRP-2Kai—Improvement of HRP-2 towards disaster response tasks.
In: IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) IEEE
(Veranst.), 2015, S. 132–139

[Kastner et al. 2015] KASTNER, Tobias ; ROFER, Thomas ; LAUE, Tim: Automatic robot
calibration for the NAO. In: Lecture Notes in Artificial Intelligence (Subseries of Lecture
Notes in Computer Science) 8992 (2015), S. 233–244. – ISBN 9783319186146

[Kerl et al. 2013] KERL, Christian ; STURM, Jurgen ; CREMERS, Daniel: Dense visual
SLAM for RGB-D cameras. In: IEEE International Conference on Intelligent Robots and
Systems, 2013, S. 2100–2106

[Ma et al. 2003] MA, Yi ; SOATTO, Stefano ; KOSECKA, Jana ; SASTRY, S. S.: An
Invitation to 3-D Vision: From Images to Geometric Models. SpringerVerlag, 2003. –
ISBN 0387008934

[Mansard et al. 2009] MANSARD, Nicolas ; KHATIB, Oussama ; KHEDDAR, Abderrah-
mane: A unified approach to integrate unilateral constraints in the stack of tasks. In: IEEE
Transactions on Robotics 25 (2009), Nr. 3, S. 670–685

[Martinez-Cantin et al. 2010] MARTINEZ-CANTIN, Ruben ; LOPES, Manuel ; MONTE-
SANO, Luis: Body schema acquisition through active learning. In: Proceedings - IEEE
International Conference on Robotics and Automation (2010), S. 1860–1866. – ISBN
9781424450381

[Maye et al. 2016] MAYE, Jérôme ; SOMMER, Hannes ; AGAMENNONI, Gabriel ; SIEG-
WART, Roland ; FURGALE, Paul: Online self-calibration for robotic systems. In: The
International Journal of Robotics Research 35 (2016), Nr. 4, S. 357–380

[Meilland et al. 2013a] MEILLAND, Maxime ; BARAT, Christian ; COMPORT, Andrew:
3d high dynamic range dense visual slam and its application to real-time object re-lighting.
In: IEEE International Symposium on Mixed and Augmented Reality, 2013, S. 143–152

References 141

[Meilland et Comport 2013a] MEILLAND, Maxime ; COMPORT, Andrew I.: On unifying
key-frame and voxel-based dense visual SLAM at large scales. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. Tokyo, Japan, 3-7 November 2013, S. 3677–
3683

[Meilland et Comport 2013b] MEILLAND, Maxime ; COMPORT, Andrew I.: Super-
resolution 3D tracking and mapping. In: IEEE International Conference on Robotics and
Automation, 6-10 May 2013, S. 5717–5723

[Meilland et al. 2013b] MEILLAND, Maxime ; DRUMMOND, Tom ; COMPORT, Andrew I.:
A unified rolling shutter and motion blur model for 3D visual registration. In: IEEE
International Conference on Computer Vision (2013), S. 2016–2023

[Montemerlo et al. 2002] MONTEMERLO, Michael ; THRUN, Sebastian ; KOLLER,
Daphne ; WEGBREIT, Ben et al.: FastSLAM: A factored solution to the simultaneous
localization and mapping problem. In: Aaai/iaai 593598 (2002)

[Moulard et al. 2013] MOULARD, Thomas ; LAMIRAUX, Florent ; BOUYARMANE, Karim ;
YOSHIDA, Eiichi: Roboptim: an optimization framework for robotics. In: Robomec, 2013

[Mur-Artal et al. 2015] MUR-ARTAL, Raul ; MONTIEL, Jose Maria M. ; TARDOS, Juan D.:
ORB-SLAM: a versatile and accurate monocular SLAM system. In: IEEE Transactions
on Robotics 31 (2015), Nr. 5, S. 1147–1163

[Murray et al. 1994] MURRAY, Richard M. ; SASTRY, S. S. ; ZEXIANG, Li: A Mathemati-
cal Introduction to Robotic Manipulation. 1st. Boca Raton, FL, USA : CRC Press, Inc.,
1994

[Naveau et al. 2017] NAVEAU, Maximilien ; KUDRUSS, Manuel ; STASSE, Olivier ;
KIRCHES, Christian ; MOMBAUR, Katja ; SOUÈRES, Philippe: A reactive walking pattern
generator based on nonlinear model predictive control. In: IEEE Robotics and Automation
Letters 2 (2017), Nr. 1, S. 10–17

[Newcombe et al. 2015] NEWCOMBE, Richard A. ; FOX, Dieter ; SEITZ, Steven M.: Dyna-
micfusion: Reconstruction and tracking of non-rigid scenes in real-time. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, 2015, S. 343–352

[Newcombe et al. 2011a] NEWCOMBE, Richard A. ; IZADI, Shahram ; HILLIGES, Otmar ;
MOLYNEAUX, David ; KIM, David ; DAVISON, Andrew J. ; KOHI, Pushmeet ; SHOTTON,
Jamie ; HODGES, Steve ; FITZGIBBON, Andrew: KinectFusion: Real-time dense surface
mapping and tracking. In: 10th IEEE international symposium on Mixed and augmented
reality (ISMAR) IEEE (Veranst.), 2011, S. 127–136

[Newcombe et al. 2011b] NEWCOMBE, Richard A. ; LOVEGROVE, Steven J. ; DAVISON,
Andrew J.: DTAM: Dense Tracking and Mapping in Real-time. In: Proceedings of
the 2011 International Conference on Computer Vision. Washington, DC, USA : IEEE
Computer Society, 2011, S. 2320–2327. – ISBN 978-1-4577-1101-5

[Park et Martin 1994] PARK, Frank C. ; MARTIN, Bryan J.: Robot Sensor Calibration:
Solving AX = XB on the Euclidean Group. In: IEEE Transactions on Robotics and
Automation 10 (1994), Nr. 5, S. 717–721

142 References

[Pradeep et al. 2014] PRADEEP, Vijay ; KONOLIGE, Kurt ; BERGER, Eric: Calibrating
a multi-arm multi-sensor robot: A bundle adjustment approach. In: Springer Tracts in
Advanced Robotics Bd. 79, 2014, S. 211–225. – ISBN 9783642285714

[Roncone et al. 2014] RONCONE, Alessandro ; HOFFMANN, Matej ; PATTACINI, Ugo ;
METTA, Giorgio: Automatic kinematic chain calibration using artificial skin: Self-touch
in the iCub humanoid robot. In: Proceedings - IEEE International Conference on Robotics
and Automation (2014), S. 2305–2312. – ISBN 9781479936847

[Roth et Vona 2009] ROTH, Henry ; VONA, Marsette: Moving Volume KinectFusion. In:
IEEE-RAS International Conference on Humanoid Robots Bd. 9, 2009, S. 62–67

[Rusu et al. 2009] RUSU, Radu B. ; BLODOW, Nico ; BEETZ, Michael: Fast point feature
histograms (FPFH) for 3D registration. In: Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on IEEE (Veranst.), 2009, S. 3212–3217

[Salas-Moreno et al. 2014] SALAS-MORENO, Renato F. ; GLOCKEN, Ben ; KELLY,
Paul H. ; DAVISON, Andrew J.: Dense planar SLAM. In: IEEE International Symposium
on Mixed and Augmented Reality (ISMAR) IEEE (Veranst.), 2014, S. 157–164

[Samy et Kheddar 2015] SAMY, Vincent ; KHEDDAR, Abderrahmane: Falls control using
posture reshaping and active compliance. In: IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids) IEEE (Veranst.), 2015, S. 908–913

[Savitzky et Golay 1964] SAVITZKY, Abraham ; GOLAY, Marcel J.: Smoothing and
differentiation of data by simplified least squares procedures. In: Analytical chemistry 36
(1964), Nr. 8, S. 1627–1639

[Scianca et al. 2016] SCIANCA, Nicola ; COGNETTI, Marco ; DE SIMONE, Daniele ;
LANARI, Leonardo ; ORIOLO, Giuseppe: Intrinsically stable MPC for humanoid gait
generation. In: 16th IEEE-RAS Int. Conf. on Humanoid Robots, 2016, S. 101–108

[Scona et al. 2017] SCONA, Raluca ; NOBILI, Simona ; PETILLOT, Yvan R. ; FALLON,
Maurice: Direct visual SLAM fusing proprioception for a humanoid robot. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) IEEE (Veranst.), 2017,
S. 1419–1426

[Segal et al. 2009] SEGAL, Aleksandr ; HAEHNEL, Dirk ; THRUN, Sebastian: Generalized-
icp. In: Robotics: science and systems Bd. 2, 2009, S. 435

[Spong et Vidyasagar 2004] SPONG, Mark W. ; VIDYASAGAR, Mathukumalli: Robot
dynamics and control. John Wiley & Sons, 2004

[Stasse et al. 2006] STASSE, Olivier ; DAVISON, Andrew J. ; SELLAOUTI, Ramzi ;
YOKOI, Kazuhito: Real-time 3d slam for humanoid robot considering pattern generator
information. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
2006, S. 348–355

[Stasse et al. 2009] STASSE, Olivier ; VERRELST, Bjorn ; VANDERBORGHT, Bram ;
YOKOI, Kazuhito: Strategies for humanoid robots to dynamically walk over large obstacles.
In: IEEE Transactions on Robotics 25 (2009), Nr. 4, S. 960–967

References 143

[Straub et al. 2017] STRAUB, Julian ; CAMPBELL, Trevor ; HOW, Jonathan P. ; FISHER III,
John W.: Efficient Global Point Cloud Alignment using Bayesian Nonparametric Mixtures.
In: CVPR, URL https://arxiv.org/abs/1603.04868, 2017

[Taketomi et al. 2017] TAKETOMI, Takafumi ; UCHIYAMA, Hideaki ; IKEDA, Sei: Visual
SLAM algorithms: a survey from 2010 to 2016. In: IPSJ Transactions on Computer
Vision and Applications 9 (2017), Nr. 1, S. 16

[Tanguy et al. 2018a] TANGUY, Arnaud ; DE SIMONE, Daniele ; COMPORT, An-
drew I. ; ORIOLO, Giuseppe ; KHEDDAR, Abderrahmane: Closed-loop MPC with
Dense Visual SLAM-Stability through Reactive Stepping. September 2018. – URL
https://hal.archives-ouvertes.fr/hal-01883725. – Preprint - Submitted to the 2019 IEEE
International Conference on Robotics and Autonmation (ICRA)

[Tanguy et al. 2016] TANGUY, Arnaud ; GERGONDET, Pierre ; COMPORT, Andrew I. ;
KHEDDAR, Abderrahmane: Closed-loop RGB-D SLAM Multi-Contact Control for huma-
noid robots. In: IEEE/SICE International Symposium on System Integration (SII). Sapporo,
Japan, December 2016, S. 51–57. – URL https://hal.archives-ouvertes.fr/hal-01568048

[Tanguy et al. 2018b] TANGUY, Arnaud ; KHEDDAR, Abderrahmane ; COMPORT, An-
drew I.: Online eye-robot self-calibration. In: 2018 IEEE International Conference on
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). Brisbane,
France : IEEE, May 2018. – URL https://hal.archives-ouvertes.fr/hal-01883715

[Tonneau et al. 2018] TONNEAU, Steve ; DEL PRETE, Andrea ; PETTRÉ, Julien ; PARK,
Chonhyon ; MANOCHA, Dinesh ; MANSARD, Nicolas: An efficient acyclic contact
planner for multiped robots. In: IEEE Transactions on Robotics (2018)

[Tsai et Lenz 1989] TSAI, Roger Y. ; LENZ, Reimar K.: A New Technique for Fully
Autonomous and Efficient 3D Robotics Hand/Eye Calibration. In: IEEE Transactions on
Robotics and Automation 5 (1989), Nr. 3, S. 345–358

[Tykkälä et al. 2011] TYKKÄLÄ, Tommi ; AUDRAS, Cédric ; COMPORT, Andrew I.: Direct
iterative closest point for real-time visual odometry. In: IEEE International Conference on
Computer Vision Workshops (ICCV Workshops) IEEE (Veranst.), 2011, S. 2050–2056

[Vaillant et al. 2016] VAILLANT, Joris ; KHEDDAR, Abderrahmane ; AUDREN, Hervé ;
KEITH, François ; BROSSETTE, Stanislas ; ESCANDE, Adrien ; BOUYARMANE, Karim ;
KANEKO, Kenji ; MORISAWA, Mitsuharu ; GERGONDET, Pierre ; YOSHIDA, Eiichi ;
KAJITA, Suuji ; KANEHIRO, Fumio: Multi-contact vertical ladder climbing with an HRP-2
humanoid. In: Autonomous Robots 40 (2016), Nr. 3, S. 561–580

[Villa et Wieber 2017] VILLA, N. A. ; WIEBER, P.: Model predictive control of biped
walking with bounded uncertainties. In: IEEE-RAS 17th International Conference on
Humanoid Robotics (Humanoids), Nov 2017, S. 836–841. – ISSN 2164-0580

[Viola et Wells III 1997] VIOLA, Paul ; WELLS III, William M.: Alignment by maximiza-
tion of mutual information. In: International journal of computer vision 24 (1997), Nr. 2,
S. 137–154

144 References

[Whelan et al. 2012] WHELAN, T. ; KAESS, M. ; FALLON, M.F. ; JOHANNSSON, H. ;
LEONARD, J.J. ; MCDONALD, J.B.: Kintinuous: Spatially Extended KinectFusion. In:
RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras. Sydney, Australia,
Jul 2012

[Whelan et al. 2015a] WHELAN, Thomas ; KAESS, Michael ; JOHANNSSON, Hordur ;
FALLON, Maurice ; LEONARD, John J. ; MCDONALD, John: Real-time large-scale dense
RGB-D SLAM with volumetric fusion. In: The International Journal of Robotics Research
34 (2015), Nr. 4-5, S. 598–626

[Whelan et al. 2013] WHELAN, Thomas ; KAESS, Michael ; LEONARD, John J. ; MC-
DONALD, John: Deformation-based loop closure for large scale dense RGB-D SLAM.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) IEEE
(Veranst.), 2013, S. 548–555

[Whelan et al. 2015b] WHELAN, Thomas ; LEUTENEGGER, Stefan ; SALAS-MORENO,
R ; GLOCKER, Ben ; DAVISON, Andrew: ElasticFusion: Dense SLAM without a pose
graph. In: International Journal of Robotics Research (IJRR), 2015

[Wieber 2005] WIEBER, Pierre-Brice: Some comments on the structure of the dynamics
of articulated motion. In: Fast Motions in Biomechanics and Robotics, 2005

[Xinjilefu et al. 2015] XINJILEFU, X ; FENG, Siyuan ; ATKESON, Christopher G.: Center
of mass estimator for humanoids and its application in modelling error compensation,
fall detection and prevention. In: Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th
International Conference on IEEE (Veranst.), 2015, S. 67–73

[Yang et al. 2013] YANG, Jiaolong ; LI, Hongdong ; JIA, Yunde: Go-icp: Solving 3d
registration efficiently and globally optimally. In: IEEE International Conference on
Computer Vision, 2013, S. 1457–1464

[Yokoi et al. 2004] YOKOI, Kazuhito ; KANEHIRO, Fumio ; KANEKO, Kenji ; KAJITA,
Shuuji ; FUJIWARA, Kiyoshi ; HIRUKAWA, Hirohisa: Experimental study of humanoid
robot HRP-1S. In: The International Journal of Robotics Research 23 (2004), Nr. 4-5,
S. 351–362

[Zhou et al. 2016] ZHOU, Haoyin ; NI, Kai ; ZHOU, Qian ; ZHANG, Tao: An SfM
Algorithm With Good Convergence That Addresses Outliers for Realizing Mono-SLAM.
In: IEEE Transactions on Industrial Informatics 12 (2016), Nr. 2, S. 515–523

Personal papers

Tanguy et al. 2016 TANGUY, Arnaud ; GERGONDET, Pierre ; COMPORT, Andrew I. ;
KHEDDAR, Abderrahmane: Closed-loop RGB-D SLAM Multi-Contact Control for humanoid
robots. In: IEEE/SICE International Symposium on System Integration (SII). Sapporo, Japan,
December 2016, S. 51–57. – URL https://hal.archives-ouvertes.fr/hal-01568048

Tanguy et al. 2018b TANGUY, Arnaud ; KHEDDAR, Abderrahmane ; COMPORT, Andrew I.:
Online eye-robot self-calibration. In: 2018 IEEE International Conference on Simulation,
Modeling, and Programming for Autonomous Robots (SIMPAR). Brisbane, France : IEEE,
May 2018. – URL https://hal.archives-ouvertes.fr/hal-01883715

Tanguy et al. 2018a TANGUY, Arnaud ; DE SIMONE, Daniele ; COMPORT, Andrew I. ;
ORIOLO, Giuseppe ; KHEDDAR, Abderrahmane: Closed-loop MPC with Dense Visual SLAM-
Stability through Reactive Stepping. September 2018. – URL https://hal.archives-ouvertes.
fr/hal-01883725. – Preprint - Submitted to the 2019 IEEE International Conference on
Robotics and Autonmation (ICRA)

List of figures

1 Tasks of the DARPA Robotics Challenge 3

2 Overview of the closed-loop framework 6

3 Various closed-loop experiments with HRP-2Kai 8

1.1 Kinematic structure of HRP-4 . 13

1.2 Passive flexibility on HRP-2 feet . 14

1.3 Modelling of Environment-Contact Interactions 16

1.4 Interaction forces acting on a humanoid 19

1.5 Overview of multi-contact planning . 23

1.6 View Registration Problem . 26

1.7 Realtionship between points in RGB-D images and the environment 29

1.8 Pinhole Camera Model . 30

1.9 Photometric Error . 33

1.10 Geometric Error . 35

1.11 Keyframe-Graph . 37

2.1 Damaged Xtion requiring calibration . 44

2.2 Overview of the Eye-Robot calibration method 44

2.3 Types of calibration . 45

2.4 Hand-Eye Calibration . 48

2.5 Kinematic Frames required by Eye-Robot calibration 52

2.6 Screw motion . 54

2.7 Observability of Eye-Joint motions . 56

2.8 Sampling from two sensors running at different frequencies 60

2.9 Groundtruth evaluation setup for Hand-Eye calibration 62

2.10 Calibration Sequence . 62

2.11 Convergence results for Hand-Eye Calibration 63

2.12 Eye-Robot Calibration Results . 65

2.13 Online Eye-Robot Calibration . 66

148 List of figures

3.1 Various contact-reaching tasks for HRP-2Kai 70

3.2 Uniform Mesh Sampling . 72

3.3 Masking HRP-4 visible links . 77

3.4 Tracking error with pure rotation . 79

3.5 ICP with scale example on the DRC Valve Task 81

3.6 A400M Registration Heatmap . 82

3.7 ICP-based Extrinsic Calibration . 83

3.8 Registration of a Multi-Contact Plan . 85

3.9 End-Effector closed-loop control . 86

3.10 Valve grasping with HRP-2Kai . 88

3.11 Wheel-grasping with HRP-2Kai . 90

3.12 Stair climbing with closed-loop gripper control 90

3.13 Gripper reaction to pushes while reaching for a handrail 92

4.1 HRP-4 walking with closed-loop MPC with SLAM 94

4.2 Advantage of closed-loop MPC over stabilization 95

4.3 Overview of closed-loop MPC . 99

4.4 Timelapse of the MPC reaction to a push 100

4.5 Estimation of HRP-4 state for the MPC 101

4.6 Fall with Kawada Stabilizer . 106

4.7 Observation of HRP-4 spring-damper and Kawada stabilizer 108

4.8 Open-loop vs closed-loop Cartesian regulator 109

4.9 Walking with closed-loop Cartesian regulator 110

4.10 MPC stepping in reaction to a strong push 112

List of tables

2.1 Intrinsic joint motion . 51

2.2 Hand-Eye Calibration Results . 63

A.1 Robust M-Estimator Influence Functions 122

Liste des symboles

.× . Cartesian product

.∧ . Cross product

.+ Upper Bound of variable .

.− Lower Bound of variable .

.−1 Inverse of .

.T Transpose of .

∂a
∂b

Derivative of a with respect to b

v̂ 3D skew-symmetric matrix such that v̂u = v∧u

a ·b Dot product between a and b

∇. Gradient operator

~v,v Denotes a vector

x Optimization variable (usually in se(3))

Superscripts

f Variable describing the external forces

q Variable describing the robot’s joint configuration

R 3D Rotation

t 3D translation vector

Jaci Jacobian of Body i

152 Liste des symboles

BXA 3D transformation from frame A to frame B

Bi Body i

Fi Frame i

Ji Joint i

nB Number of bodies

nJ Number of Joints

Ti Task i

XJ
i Transformation from the reference frame of joint i to the reference frame of its

successor body

Xx
i Static transformation of joint i

Subscripts

R The Real space

R
+ The set of positive Reals

SE(3) Special Euclidean Group (Rotations and Translations)

se(3) The Lie algebra manifold associated with SE(3)

SO(3) Special Orthogonal Group (Rotations)

so(3) The Lie algebra manifold associated with SO(3)

Other Symbols

0n Matrix zero of dimension n

1n Matrix identity of dimension n

Acronyms / Abbreviations

D6DSLAM SLAM software of Meilland et Comport [2013a]

SLAM Simultaneous Localization and Mapping

s.t. subject to

Liste des symboles 153

w.r.t. with respect to

DoF Degrees of freedom

FK Forward Kinematics

ICP Iterative Closest Point

IK Inverse Kinematics

PG Posture Generation

QP Quadratic Problem

RX, RY, RZ Rotations around~x,~y, and~z

TX, TY, TZ Translations along~x,~y, and~z

