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Résumé

Les séries temporelles sont présentes dans de nombreux domaines d’application tels que

la "nance, l’agronomie, la santé, la surveillance de la Terre ou la prévision météorolo-

gique, pour n’en nommer que quelques-uns. En raison des progrès de la technologie

des capteurs, de telles applications peuvent produire des millions, voir des des milliards,

de séries temporelles par jour, ce qui nécessite des techniques rapides d’analyse et de

synthèse.

Le traitement de ces énormes volumes de données a ouvert de nouveaux dé"s dans

l’analyse des séries temporelles. En particulier, les techniques d’indexation ont montré

de faibles performances lors du traitement des grands volumes des données.

Dans cette thèse, nous abordons le problème de la recherche de similarité dans des

centaines de millions de séries temporelles. Pour cela, nous devons d’abord développer

des opérateurs de recherche e$caces, capables d’interroger une très grande base de don-

nées distribuée de séries temporelles avec de faibles temps de réponse. L’opérateur de

recherche peut être implémenté en utilisant un index avant l’exécution des requêtes.

L’objectif des indices est d’améliorer la vitesse des requêtes de similitude. Dans les

bases de données, l’index est une structure de données basées sur des critères de re-

cherche comme la localisation e$cace de données répondant aux exigences. Les index

rendent souvent le temps de réponse de l’opération de recherche sous linéaire dans la

taille de la base de données. Les systèmes relationnels ont été principalement supportés

par des structures de hachage, B-tree et des structures multidimensionnelles telles que

R-tree, avec des vecteurs binaires jouant un rôle de support. De telles structures fonc-

tionnent bien pour les recherches, et de manière adéquate pour les requêtes de similarité.

Nous proposons trois solutions di(érentes pour traiter le problème de l’indexation des

séries temporelles dans des grandes bases de données. Nos algorithmes nous permettent
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iv 0. Résumé

d’obtenir d’excellentes performances par rapport aux approches traditionnelles.

Nous étudions également le problème de la détection de corrélation parallèle de

toutes paires sur des fenêtres glissantes de séries temporelles. Nous concevons et im-

plémentons une stratégie de calcul incrémental des sketchs dans les fenêtres glissantes.

Cette approche évite de recalculer les sketchs à partir de zéro. En outre, nous déve-

loppons une approche de partitionnement qui projette des sketchs vecteurs de séries

temporelles dans des sous-vecteurs et construit une structure de grille distribuée. Nous

utilisons cette méthode pour détecter les séries temporelles corrélées dans un environ-

nement distribué.

Titre en français

Indexation et analyse de très grandes masses de séries temporelles

Mots-clés

• Séries Temporelles

• Indexation

• Recherche de similarité



Abstract

Time series arise in many application domains such as "nance, agronomy, health, earth

monitoring, weather forecasting, to name a few. Because of advances in sensor technol-

ogy, such applications may produce millions to trillions of time series per day, requiring

fast analytical and summarization techniques.

The processing of these massive volumes of data has opened up new challenges in

time series data mining. In particular, it is to improve indexing techniques that has

shown poor performances when processing large databases.

In this thesis, we focus on the problem of parallel similarity search in such massive

sets of time series. For this, we "rst need to develop e$cient search operators that can

query a very large distributed database of time series with low response times. The

search operator can be implemented by using an index constructed before executing the

queries. The objective of indices is to improve the speed of data retrieval operations. In

databases, the index is a data structure, which based on search criteria, e$ciently locates

data entries satisfying the requirements. Indexes often make the response time of the

lookup operation sublinear in the database size.

After reviewing the state of the art, we propose three novel approaches for parallel

indexing and queryin large time series datasets. First, we propose DPiSAX, a novel and

e$cient parallel solution that includes a parallel index construction algorithm that takes

advantage of distributed environments to build iSAX-based indices over vast volumes of

time series e$ciently. Our solution also involves a parallel query processing algorithm

that, given a similarity query, exploits the available processors of the distributed system

to e$ciently answer the query in parallel by using the constructed parallel index.

Second, we propose RadiusSketch a random projection-based approach that scales

nearly linearly in parallel environments, and provides high quality answers. RadiusS-
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vi 0. Abstract

ketch includes a parallel index construction algorithm that takes advantage of distributed

environments to e$ciently build sketch-based indices over very large databases of time

series, and then query the databases in parallel.

Third, we propose ParCorr, an e$cient parallel solution for detecting similar time

series across distributed data streams. ParCorr uses the sketch principle for representing

the time series. Our solution includes a parallel approach for incremental computation of

the sketches in sliding windows and a partitioning approach that projects sketch vectors

of time series into subvectors and builds a distributed grid structure.

Our solutions have been evaluated using real and synthetics datasets and the results

con"rm their high e$ciency compared to the state of the art.

Title in English

Massive distribution for indexing and mining time series

Keywords

• Time Series

• Indexing

• Similarity Search
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Résumé Étendu

Introduction

Les séries temporelles sont présentes dans de nombreux domaines d’application ("nance,

agronomie, santé, surveillance de la Terre, prévisions météorologiques, etc.). Gérer et

analyser des séries temporelles est crucial pour ces domaines, mais les exigences des

ces applications sont très di$ciles à satisfaire. La recherche de similarité entre séries

temporelles est une clé pour e(ectuer de nombreuses tâches d’exploration de données

telles que la découverte de shapelets, de motifs, la classi"cation ou le clustering. Cette

recherche doit donc être rapide et précise.

A"n d’améliorer les performances de ces requêtes de similitude, l’indexation est l’une

des techniques les plus populaires, qui a été utilisée avec succès dans une variété d’ap-

plications. Malheureusement, créer un index sur des milliards de séries temporelles en

utilisant des approches centralisées traditionnelles prend beaucoup de temps. De plus,

une construction naïve de l’index sur l’environnement parallèle peut conduire à de mau-

vaises performances. La plupart des techniques traditionnelles ont mis l’accent sur : i) la

représentation de données, avec des techniques de réduction de dimensionnalité telles

que Discrete Wavelet Transform, Discrete Fourier Transform ou plus récemment Sym-

bolic Aggregate Approximation ; et ii) des techniques de construction d’index. La ma-

lédiction de la dimensionnalité est le principal obstacle à l’analyse de ces données, et

principalement à l’indexation des séries temporelles.

Bien que les méthodes d’indexation centralisées atteignent de bonnes performances

par rapport à la recherche séquentielle, leurs performances se détériorent à mesure que

la taille de la base de données augmente, ce qui pose des questions sur la "abilité des

méthodes centralisées. Pour traiter des données dont la taille peut aller jusqu’à des di-

ix



x 0. Résumé Étendu

zaines de téraoctets, une solution consiste à les distribuer sur plusieurs machines et les

traiter en parallèle, on d’utiliser des frameworks parallèles, tels que MapReduce [19] ou

Spark [78].

De la même manière, trouver les paires de séries temporelles hautement corrélées

sur des fenêtres glissantes est utile pour de nombreuses applications dans les réseaux de

capteurs, l’analyse "nancière ou la surveillance de réseaux de communication. Ce type de

données nécessite des algorithmes avec des caractéristiques spéci"ques. Ce problème a

été étudié à travers les =ux de données en utilisant des approches centralisées. La plupart

des approches se concentre sur la réduction du temps de calcul des distance entre paires.

Cependant, dans la littérature il n’y a pas de solution e$cace pour l’indexation parallèle

et l’interrogation de séries temporelles dans des environnements distribués.

État de L’art

Time Series

Une série temporelle peut être formellement dé"nie comme suit :

De$nition 1. Une série temporelle est une suite d’observations d’une variable numérique

v représentant l’évolution d’une quantité spéci$que au cours du temps.

T = {(t1,v1), ..., (tn,vn)},vi ∈ R (1)

Où t1 < t2 < ... < tn.

La représentation générale d’une base de données de séries temporelles est une matrice

D avecm × n éléments, où ti = (ti,1, ti,2, · · · , ti,n) est un vecteur désignant la ième série

temporelle, et ti,j désigne le jème valeur de la ième série temporelle.

D =



t1 =< t1,1 t1,2 · · · t1,j · · · t1,n >

t2 =< t2,1 t2,2 · · · t2,j · · · t2,n >
.
.
.

.

.

.
.
.
. · · · ... · · · .

.

.

ti =< ti,1 ti,2 · · · ti,j · · · ti,n >
.
.
.

.

.

.
.
.
. · · · ... · · · .

.

.

tm =< tm,1 tm,2 · · · tm,j · · · tm,n >





xi

Dans certaines applications, les séries temporelles peuvent être produites par un dis-

positif ou un processus qui génère des données en continu. Dans ce cas précis, il s’agit

d’un =ux de données. Ce concept peut être formalisé comme suit :

De$nition 2. Un flux de série temporelle est une série temporelle avec n = ∞, dont les

points de données arrivent en continu à un taux arbitraire.

Ce type de série temporelle est présent dans de nombreuses applications liées, par

exemple, à la "nance, au tra"c internet, aux réseaux électriques, à des expériences scien-

ti"ques et aux capteurs.

Indexation des séries temporelles

Dans le contexte de l’exploration des séries temporelles, l’idée d’indexer des séries tem-

porelles est pertinente pour toutes les techniques d’exploration de données, puisque l’in-

dexation est une technique utilisée pour accélérer la recherche de similarité et l’accès aux

données stockées. Même si plusieurs systèmes de gestion de bases de données ont été

développés pour la gestion des séries temporelles (comme Informix Time Series 1, In-

=uxDB 2, OpenTSDB 3, et DalmatinerDB 4 basé sur RIAK), ils ne peuvent pas supporter

e$cacement les requêtes de recherche de similarité. Au fur et à mesure que les jeux de

données se répandent dans une grande variété de contextes, nous devons relever le dé"

important de développer des méthodes d’indexation des séries temporelles plus e$caces.

Généralement, les techniques d’indexation fonctionnent en deux étapes : d’abord, elles

réduisent la dimensionnalité des séries temporelles en une représentation de faible di-

mension, et ensuite elles les indexent a"n d’accélérer la recherche de similarité sur des

séries chronologiques.

Réduction de dimensionnalité

Pour les très grandes bases de données de séries temporelles, il est important d’estimer

très rapidement la distance entre deux séries temporelles. Ici, la forte dimensionnalité

1https ://www.ibm.com/developerworks/topics/timeseries
2https ://in=uxdata.com/
3http ://opentsdb. net/
4https ://dalmatiner.io/
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des données de séries temporelles pose de véritables dé"s pour leur exploration et en

particulier leur indexation. Dans la littérature, de nombreuses techniques ont été pro-

posées qui représentent des séries temporelles avec une dimensionnalité réduite, puis

appliquent une fonction de distance pour mesurer la similarité entre les séries tempo-

relles transformées. Par exemple, Discrete Fourier Transformation (DFT) [23], Single

Value Decomposition (SVD) [23], Discrete Wavelet Transformation (DWT) [41], Piece-

wise Aggregate Approximation (PAA) [36], Adaptive Piecewise Constant Approxima-

tion (APCA) [13], Chebyshev polynomials (CHEB) [10], Piecewise Linear Approxima-

tion (PLA) [16] et Symbolic Aggregate approXimation (SAX) [47]. Adaptive Piecewise

Constant Approximation (APCA) et Piecewise Linear Approximation (PLA) [16] sont

similaires à Piecewise Aggregate Approximation (PAA) [36], car elles divisent la série

temporelle en segments. Les segments ont une taille "xe, et chaque segment est repré-

senté par une ligne droite avec une certaine pente. La représentation APCA est une

généralisation de PAA où chaque segment a une longueur arbitraire.

Dans [79], les auteurs propose uneméthode de projection aléatoire basée sur des vec-

teurs aléatoires. L’idée de base est de multiplier chaque série temporelle par un ensemble

de vecteurs aléatoires. Le résultat de cette opération est appelé un "sketch". Il est calculé

pour chaque série temporelle. Ensuite, deux séries temporelle peuvent être comparées

en comparant leurs sketches. Les sketches sont utilisés pour calculer une approximation

de la distance entre chaque paire de séries temporelle. Les auteurs montrent que la pro-

jection aléatoire peut calculer l’approximation de di(érents types de distances comme

la distance euclidienne et la distance Lp .

Indexation

Le problème de l’indexation de séries temporelles utilisant des solutions centralisées a

été largement étudié dans la littérature, [6, 10, 23, 65, 12, 69]. Par exemple, dans [6], les

auteurs propose TS-tree , une structure d’index pour une recherche e$cace de similarité

sur des séries temporelles. TS-tree fournit des résumés compacts des sous-arbres, rédui-

sant ainsi l’espace de recherche très e$cacement. Pour garantir une ventilation élevée,

qui à son tour donne des arbres petits et e$caces, les entrées d’index sont quanti"ées

et leur nombre de dimensions est réduit. Dans [23], les auteurs utilisent des R*-trees

pour localiser des séquences multidimensionnelles dans une collection de séries tempo-
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relles. L’idée est de faire correspondre une séquence de grandes séries temporelles en un

ensemble de rectangles multidimensionnels, puis d’indexer les rectangles à l’aide d’un

R*-tree.

Dans [65], les auteurs proposent une représentation symbolique multirésolution ap-

pelée indexable Symbolic Aggregate approXimation (iSAX) qui est basée sur la représen-

tation SAX [47]. L’avantage d’iSAX sur SAX est qu’il permet la comparaison de mots

avec des cardinalités di(érentes, et même des cardinalités di(érentes dans un seul mot.

iSAX peut être utilisé pour créer des indices e$caces sur de très grandes bases de don-

nées. La représentation SAX [47] est basée sur la représentation PAA [44] qui permet une

réduction de la dimensionnalité tout en garantissant une propriété de limite inférieure.

L’idée de PAA est d’avoir une taille de segment "xe, et minimiser la dimensionnalité en

utilisant les valeurs moyennes sur chaque segment.

Dans [11], une version améliorée d’iSAX, appelée iSAX 2.0, a été utilisée pour in-

dexer plus d’un milliard de séries temporelles. Il s’agit d’exploiter deux couches tampon

di(érentes, à savoir First Bu(er Layer (FBL) et Leaf Bu(er Layer (LBL), pour stocker des

parties de l’index et des séries temporelles enmémoire avant de les stocker dans le disque.

Dans le FBL, toutes les séries temporelles qui se retrouveront dans le même sous-arbre

iSAX 2.0 sont groupées et peuvent croître jusqu’à occuper toute la mémoire principale

disponible, puisqu’elles n’ont pas de restriction de taille. Le LBL correspond aux nœuds

feuilles de l’arbre iSAX et il est utilisé pour rassembler toutes les séries temporelles de

nœuds feuilles et les vider sur le disque. les auteurs utilise également une technique

e$cace pour diviser un nœud feuille lorsque sa taille est supérieure à un seuil.

Dans [12], les auteurs proposent deux extensions d’iSAX 2.0, à savoir iSAX 2.0 Clus-

tered et iSAX2 +. Ces extensions se concentrent sur la gestion e$cace des données de

séries temporelles brutes pendant le processus de chargement en masse, en utilisant une

technique qui utilise des tampons de mémoire principale pour regrouper et router des

séries temporelles similaires dans l’arborescence, en e(ectuant l’insertion de manière

e$cace.

Dans [80], au lieu de construire l’index complet iSAX2+ sur l’ensemble de données

complet et d’interroger seulement plus tard, les auteurs proposent de construire de ma-

nière adaptative des parties de l’index, uniquement pour les parties des données concer-

nées par les requêtes.

Dans [69], en se basant sur la représentation de PCA [13] les auteurs proposent
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DSTree qui découpe des séries temporelles en segments de longueurs variables mais

adaptatifs à la forme de la série. DSTree utilise l’écart-type pour dé"nir les limites infé-

rieures. Contrairement à iSAX qui ne prend en charge que le fractionnement horizontal,

et où seules les valeurs moyennes peuvent être utilisées dans le fractionnement, DSTree

utilise des stratégies de fractionnement multiples et fournit plus de manières possibles

de diviser les "chiers de feuilles de séries temporelles.

Indexation de séries temporelles dans des systèmes distribués

Bien que les méthodes de recherche centralisées permettent des gains de temps de plu-

sieurs ordres de grandeur par rapport au balayage séquentiel, leurs performances se

détériorent à mesure que la taille de la base de données augmente, ce qui pose des ques-

tions sur la capacité de ces méthodes centralisées à passer à l’échelle. Pour faire face

à l’augmentation du volume des données, une solution prometteuse est d’exploiter des

frameworks parallèles, tels que MapReduce [19] ou Spark [78], pour créer de puissantes

unités de calcul et de stockage à l’aide de machines ordinaires.

Dans [43], les auteurs proposent une structure d’index parallèle évolutive pour le

traitement de données relationnelles. Cela fait partie d’un framework d’indexation pour

les systèmes MapReduce [19] et est extensible en termes de types de données et de re-

quêtes avec plusieurs types d’index. L’index est organisé en arborescence et stocké en

tant que "chier séquentiel dans le système de "chiers HDFS [62]. Le "chier d’index est

également partitionné en plusieurs blocs, chacun contenant les données d’un certain

nombre de sous-index et certains blocs d’index sont chargés sélectivement dans la mé-

moire. Pour créer un index, il faut passer par un nouveau job MapReduce. Dans la phase

"map", les mappeurs analysent les données et génèrent des "chiers intermédiaires, en-

registrant la façon dont les données sont distribuées en di(érents sous-espaces. Dans la

phase "reduce", chaque reducer collecte les "chiers intermédiaires à partir des mappeurs

pour un sous-espace spéci"que et construit un index local. Les résultats constituent un

ensemble de sous-index, qui sont collectés par le nœud maître pour la construction de

l’index global.

Cependant, aucune des solutions ci-dessus n’est appropriée pour l’indexation de sé-

ries temporelles et la recherche de similarité. Dans l’ensemble, dans la littérature, il

n’existe pas d’index de séries chronologiques conçu/adapté pour fonctionner dans des
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environnements distribués.

Contributions

L’objectif de cette thèse est de développer des nouvelles techniques d’indexation séries

temporelles dans des environnements massivement distribués. Nos contributions sont

les suivantes.

Indexation et interrogation de séries temporelles massivement distribuées avec

DPiSAX. Dans ce travail, nous proposons DPiSAX, une nouvelle solution e$cace et pa-

rallèle qui comprend un algorithme de construction d’un indice parallèle qui pro"te des

environnements distribués pour construire e$cacement des indices basés sur iSAX sur

de grands volumes de séries temporelles. Notre solution implique également un algo-

rithme parallèle de traitement de requêtes qui, étant donné une requête de similarité,

exploite les processeurs disponibles du système distribué pour répondre e$cacement à

la requête en utilisant l’index parallèle construit. Notre proposition a été évaluée à l’aide

de grands volumes de données réelles et de jeux de données synthétiques (jusqu’à 4

milliards de séries chronologiques, pour un volume total de 6 To). Les résultats expéri-

mentaux illustrent l’excellente performance de DPiSAX, ce qui con"rme l’e$cacité de

notre approche.

RadiusSketch : indexation massivement distribuée de séries temporelles. Dans

ce travail, nous proposons une approche basée sur la projection aléatoire (sketch). Les

temps de réponse de cette approche, en fonction de la taille des données, évoluent presque

linéairement dans des environnements parallèles, et elle fournit des réponses de grande

précision. RadiusSketch inclut un algorithme de construction d’index parallèle qui tire

parti des environnements distribués pour construire e$cacement des index basés sur

des sketches à partir de très grands volumes de séries temporelles, et un algorithme de

traitement de requête parallèle qui exploite ces index. Nous illustrons la performance

de notre approche, sur des jeux de données réels et synthétiques de 1 Téraoctets et 500
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millions de séries chronologiques. La méthode de sketch, telle que nous l’avons mise en

œuvre, est supérieure tant en qualité qu’en temps de réponse par rapport à l’approche

de référence de la littérature.

ParCorr : identi$cation e&cace de paires de séries temporelles similaires en pa-

rallèle. Dans ce travail, nous identi"ions les paires de séries temporelles fortement cor-

rélées dans les =ux de données distribués. Nous proposons ParCorr, une solution paral-

lèle e$cace pour détecter des séries temporelles similaires sur des fenêtres glissantes.

ParCorr utilise le principe des sketches pour représenter la série temporelles. Il com-

prend une approche parallèle pour le calcul incrémental des sketches dans les fenêtres

glissantes et une approche de partitionnement qui projette les sketches dans des sous-

vecteurs et construit une structure de grille distribuée. Notre proposition a été évaluée

en utilisant des ensembles de données réels et synthétiques et les résultats con"rment

l’e$cacité et le comportement presque linéaire de la solution proposée par rapport à

l’état de l’art.

Publications

• Djamel-Edine Yagoubi, Reza Akbarinia, Florent Masseglia, Themis Palpanas. DPi-

SAX : Massively Distributed Partitioned iSAX. ICDM 2017 : IEEE International

Conference on Data Mining, Nov 2017, New Orleans, United States. pp.1-6, 2017.

• Djamel-Edine Yagoubi, RezaAkbarinia, FlorentMasseglia, Dennis Shasha. RadiusS-

ketch : Massively Distributed Indexing of Time Series. DSAA 2017 : IEEE Inter-

national Conference on Data Science and Advanced Analytics, Oct 2017, Tokyo,

Japan. pp.1-10, 2017

Organisation de la Thèse

La suite de cette thèse est organisé ainsi :

Le chapitre 2, nous passons en revue l’état de l’art. Il est divisé en trois sections prin-

cipales : Dans la section 2.1, nous donnons un aperçu général des principales techniques
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d’exploration de données en environnement centralisé. En particulier, nous traitons trois

problèmes : la classi"cation supervisée, la classi"cation non supervisée, et la découverte

de motifs. Nous introduisons également le problème des mesures de similarité. Dans la

section 2.2.1, nous présentons les techniques de représentation des séries temporelles et

les solutions qui ont été proposées pour traiter le problème de la haute dimensionnalité

des séries temporelles. Dans la section 2.2, nous traitons du problème de l’indexation des

séries temporelles et discutons des méthodes et des techniques proposées dans la litté-

rature. Plus précisément, nous nous intéressons à l’indexation des séries temporelles et

au calcul distribué, qui feront l’objet des chapitres 3 et 4.

Dans le chapitre 3, nous traitons du problème de l’indexation et de l’interrogation de

séries temporelles dans des bases de données très volumineuses. Dans les sections 3.2

et 3.3, nous proposons deux solutions parallèles pour l’indexation et l’interrogation des

données de séries temporelles. Dans la section 3.4, nous évaluons l’e$cacité de notre

approche en e(ectuant des expériences approfondies avec de très grands ensembles de

données réelles et synthétiques.

Dans le chapitre 4, nous proposons une solution pour résoudre le problème de l’in-

dexation et de l’interrogation d’ensembles massifs de séries temporelles. Dans la section

4.1, nous proposons RadiusSketch qui est une approche basée sur la projection aléatoire

pour l’indexation parallèle et l’interrogation des séries chronologiques. Dans la section

4.2, nous validons notre proposition à travers des expériences étendues et di(érentes en

utilisant des ensembles de données très réels et synthétiques.

Dans le chapitre 5, nous traitons le problème de trouver les paires de séries tempo-

relles fortement corrélées sur les fenêtres glissantes. Dans la section 5.2, nous proposons

une solution parallèle pour détecter des séries temporelles similaires sur des fenêtres

glissantes. Dans la section 5.4, nous validons notre approche en e(ectuant diverses ex-

périences approfondies en utilisant des ensembles de données réelles et synthétiques

massives avec de très grandes dimensions. En"n, dans la section 5.5, nous résumons

notre travail et nous discutons d’autres améliorations potentielles.
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Chapter 1

Introduction

1.1 Context

Time series occur in many application domains like economy, medical surveillance,

weather forecasting, biology, agronomy, earth monitoring, hydrology, genetics and mu-

sical querying. This results in the production of very large time series datasets [34, 63,

76, 56, 58, 27, 60, 50, 51]. Mining these datasets is crucial for the underlying applica-

tions, but the exhibit characteristics of time series data make their analysis particularly

di$cult. With such complex and massive sets of time series, fast and accurate similarity

search is a key to perform many data mining tasks like Motifs Discovery, Classi"cation

or Clustering [56]. The problem of high dimensionality in time series data is the main

obstacle for time series data mining, andmainly for de"ning a form of similarity measure

based on human perception.

In order to improve the performance of similarity queries over time series, the in-

dexing is one of the most popular techniques [22], which has been successfully used in a

variety of settings and applications [23, 66, 6, 69, 12, 80]. Unfortunately, creating an index

over billions of time series by using traditional centralized approaches is highly time-

consuming. Moreover, a naive construction of the index in the parallel environments

may lead to poor querying performances. Most state of the art indices have focused

1



2 1. Introduction

on: i) data representation, with dimensionality reduction techniques such as Discrete

Wavelet Transform (DWT), Discrete Fourier Transform (DFT), or more recently Sym-

bolic Aggregate Approximation (SAX); and ii) index building techniques, considering the

index as a tree that calls for optimal navigation among sub-trees and shorter traversals.

An appealing opportunity for improving the index construction time is to take ad-

vantage of the computing power of distributed systems and parallel frameworks such

as MapReduce[19] or Spark [78]. With billions of time series distributed on a cluster

computing nodes, querying and mining principles cannot rely on traditional techniques

and call for dedicated algorithms and a deep combination of parallelism and indexing

techniques.

Similarly, "nding the highly correlated pairs of time series on sliding windows is use-

ful for many applications such as sensor fusion, "nancial trading, or communications

network monitoring, to name a few. This type of data requires algorithms with spe-

ci"c characteristics. The problem has been studied across data streams using centralized

approaches [49, 48, 73, 61, 54, 53, 17, 52]. Most of them focus on reducing the com-

putation time of the pairwise distance computation. However, in the litterature there

is no e$cient solution for parallel indexing and querying of time series in distributed

environments.

1.1.1 Contributions

The objective of this thesis is to develop new indexing techniques allowing fast data

access, and answering fundamental primitives such as KNN queries. Our main contri-

butions are as follows.

Massively Distributed Time Series Indexing and Querying with DPiSAX. In this

work [74], we propose DPiSAX, a novel and e$cient parallel solution that includes a

parallel index construction algorithm that takes advantage of distributed environments

to build iSAX-based indices over vast volumes of time series e$ciently. Our solution

also involves a parallel query processing algorithm that, given a similarity query, ex-
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ploits the available processors of the distributed system to e$ciently answer the query

in parallel by using the constructed parallel index. Our proposal has been evaluated us-

ing large volumes of the real world and synthetic datasets (up to 4 billion time series, for

a total volume of 6TBs). The experimental results illustrate the excellent performance

of DPiSAX, which con"rms the e(ectiveness of our approach.

RadiusSketch: Massively Distributed Indexing of Time Series. In this work [75],

we propose a random projection-based approach that scales nearly linearly in paral-

lel environments, and provides high quality answers. RadiusSketch includes a parallel

index construction algorithm that takes advantage of distributed environments to e$-

ciently build sketch-based indices over very large volumes of time series, and a parallel

query processing algorithm, which given a query, exploits the available processors of

the distributed system to answer the query in parallel by using the constructed index.

We illustrate the performance of our approach, on real and synthetic datasets of up to

1 Terabytes and 500 million time series. The sketch method, as we have implemented,

is superior in both quality and response time comparedwith the state of the art approach.

ParCorr: E&cient Parallel Methods to Identify Similar Time Series Pairs Across

Sliding Windows. In this work, we study the problem of "nding the highly correlated

pairs of time series in distributed data streams. We propose ParCorr, an e$cient parallel

solution for detecting similar time series across slidingwindows. ParCorr uses the sketch

principle for representing the time series. It includes a parallel approach for incremental

computation of the sketches in slidingwindows and a partitioning approach that projects

sketch vectors of time series into subvectors and builds a distributed grid structure. Our

proposal has been evaluated using real and synthetics datasets and the results con"rm

the e$ciency and almost linear scalability of the proposed solution compared to the state

of the art.
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1.1.2 Publications

• Djamel-Edine Yagoubi, RezaAkbarinia, FlorentMasseglia, Themis Palpanas. DPiSAX:

Massively Distributed Partitioned iSAX. IEEE International Conference on Data

Mining (ICDM), New Orleans, United States. pp.1-6, 2017.

• Djamel-Edine Yagoubi, Reza Akbarinia, Florent Masseglia, Dennis Shasha. Ra-

diusSketch: Massively Distributed Indexing of Time Series. IEEE International

Conference on Data Science and Advanced Analytics (DSAA), Tokyo, Japan. pp.1-

10, 2017

1.1.3 Organization of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2, we review the state of the art. It is divided into three main sections: In

Section 2.1, we give a general overview of the main data mining techniques in the cen-

tralized environment. In particular, we deal with three methods: classi"cation, cluster-

ing, Motif Discovery. Also, we introduce the problem of similarity measures. In Section

2.2.1, we introduce the time series representation techniques and solutions that have

been proposed to deal with the problem of high dimensionality in time series data. In

Section 2.2, we deal with the problem of time series indexing, and discuss the methods

and techniques that have been proposed in the literature. Speci"cally, we focus on time

series indexing and distributed computing, which will be the subject of Chapters 3 and

4.

In Chapter 3, we deal with the problem of time series indexing and querying in very

large databases. In Sections 3.2 and 3.3, we propose two parallel solutions for indexing

and querying time series data. In Section 3.4, we assess the e$ciency of our proposed ap-

proach by carrying out extensive experiments with very large real-world and synthetic

datasets.

In Chapter 4, we propose an our solution to deal with the problem of indexing and

querying massive sets of time series. In Section 4.1, we propose RadiusSketch that is
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random projection-based approach for parallel indexing and querying time series. In

Section 4.2, we validate our proposal through extensive, di(erent experiments using

very real-world and synthetic datasets.

In Chapter 5, we deal with the problem of "nding the highly correlated pairs of time

series over sliding windows. In Section 5.2, we propose a parallel solution for detecting

similar time series across sliding windows. In Section 5.4, we validate our approach by

carrying out various extensive experiments using very massive with very large real-

world and synthetic datasets. Finally, in Section 5.5, we summarize our work and we

discuss potential further improvements.





Chapter 2

State of the Art

In this chapter, we introduce the basics and the necessary background of this thesis. The

chapter is organized as follows. First, we formally de"ne time series. Then, we introduce

the problem of similarity search in time series datasets, and discuss the main existing

techniques andmethods that have been proposed for this problem. Afterwards, we focus

on time series representation and indexing, and discuss the most e$cient approaches

proposed in the literature.

2.1 Time Series Data Mining

There has been an increasing amount of research over the last two decades on time series

data mining, knowledge discovery and applications. Consequently, many data mining

algorithms have been developed like : classi"cation, clustering, associations, forecast-

ing, anormality detection, frequent pattern discovery, etc. Time series can be produced in

many applications, such as economy, medical surveillance, climate forecasting, biology,

hydrology, genetics, and musical querying. This results in the production of large vol-

umes of time series that challenge knowledge discovery [56, 51, 50]. With such complex

and massive sets of time series, fast and accurate similarity search is a key to perform

many data mining tasks.

7
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In this section, we de"ne the time series, and discuss brie=y the main techniques that

have been proposed for mining time series datasets.

2.1.1 Time Series

A time series can be formally de"ned as follows:

De$nition 3. A time series T is a sequence of n real-values obtained from some process

over time. All values in the sequence are ordered in time and stored together with a times-

tamp.

T = {(t1,v1), ..., (tn,vn)},vi ∈ R (2.1)

Where t1 < t2 < ... < tn.

For the ease of presentation, a time series can also be represented by the values vi

that it takes.

Example 1. Figure 2.1 shows an example of a time series from an earthquake occurred

few kilometers from Greve in Chianti, Italy [1]. Figure 2.2 shows an example of conversion

from the RGB image color histograms, to a time series. This time series can be used to apply

image matching, to object the characterization of shapes [70].

The general representation of a time series database is a matrixD withm×n elements,

where ti = (ti,1, ti,2, · · · , ti,n) is a vector denoting the ith time series, and ti,j denotes the

jth value of ith time series.

D =



t1 =< t1,1 t1,2 · · · t1,j · · · t1,n >

t2 =< t2,1 t2,2 · · · t2,j · · · t2,n >
.
.
.

.

.

.
.
.
. · · · ... · · · .

.

.

ti =< ti,1 ti,2 · · · ti,j · · · ti,n >
.
.
.

.

.

.
.
.
. · · · ... · · · .

.

.

tm =< tm,1 tm,2 · · · tm,j · · · tm,n >
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Figure 2.1 – Examples of time series data relative to seismic signal from an earthquake
occurred few kilometers from Greve in Chianti, Italy [1]

In some applications, the time series can be produced through a device or process

that is continuously generating data. In this speci"c case, it is called streaming time

series, or a data stream. This concept can be formalized as =ows.

De$nition 4. A time series stream X is a time series with n =∞, whose data points arrive

continuously at an arbitrary rate.

This type of time series is present in many application, e.g., "nance, communication

networks, internet tra$c, online transactions in the "nancial market or retail indus-

try, electric power grids, industry and production processes, scienti"c and engineering

experiments and remote sensors. We can transform timeseriesstreams into static time

series by de"ning an endpoint (or sliding window) to the time series. Then, a traditional

or classical data mining algorithm can be applied to the truncated time series.
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Figure 2.2 – An image data converted to time series from image color histograms.

2.1.2 Data Mining Techniques And Similarity Measurements

Data Mining [72, 26] presents a core step of a knowledge discovery process. Therefore,

mining time series has attracted a lot of attention during the last decade because of

the increasing production of time series data. Nowadays, several techniques have been

developed and applied to time series data [22], e.g. , clustering [38], classi"cation [32],

indexing [23, 66, 6, 69, 12, 80] , motif discovery [45], etc. In most of these tasks, the

similarity measurement is a central sub task.

In this section, we provide a brief overview of the main tasks that have attracted

extensive research interest in time series data mining, including clustering, classi$cation

and motif discovery. Then, we discuss time series similarity measuring approaches.

2.1.2.1 Classi$cation

The classi"cation has become one of the most important data mining tasks. Over the last

few decades there have been a large number of data classi"cation algorithms proposed

in the literature. However, Time series classi"cation problem is di(erent from the tra-

ditional classi"cation problem. In [22] the authors de"ne two types of classi"cation for

time series datasets. The most frequent type is the classi"cation of time series de"ned as

follows. Given sets of time series with a label for each set, the task consists in training a
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classi"er and labeling new time series. The second type is time point classi"cation, the

task is to classify each point in one of the classes. The classi"er learns from the time

points of the training set and given a new time series.

2.1.2.2 Clustering

Clustering is a traditional data mining task useful in many di(erent domains like seis-

mology studies, "nance, economics, communication, automatic control, and online ser-

vices [7, 20, 40]. The clustering techniques are used to group di(erent time series to

produce similar clusters. In [37, 57] the authors de"ned the clustering as "nding natural

groupings of the time series in a database under some similarity or dissimilarity mea-

sure. Therefore, other de"nition must be taken into account. In [57] the clustering is

de"ned as the unsupervised version of classi"cation since the instances are not previ-

ously labeled with class. The community of data mining is still working on this topic

since each application has its own requirements, and no general approach can e$ciently

solve the problems of all applications. Time series clustering results are often illustrated

by dendrograms. These tree diagrams graphically represent the result of a hierarchical

clustering algorithm. Figure 2.3 shows the results of hierarchical clustering over 12 time

series in a dendrogram.

2.1.2.3 Motif Discovery

Motif discovery is another typical task in the "eld of time series datamining, and consists

in "nding the subsequences, frequent patterns, or motifs that appear recurrently in a

longer time series. This problem was "rst proposed in [46]. The idea of motifs was

transferred from symbolic gene time series in bioinformatics to numerical time series

[22]. Generally, there are two types of motif discovery: univariate and multivariate. The

goal of univariate motif discovery is to "nd repeated subsequences in one single and

longer time series or a database of time series. Multivariate motif discovery aims to "nd

motifs that span across di(erent time series for the same time range.
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Figure 2.3 – Example of a time series dendrogram [57]

2.1.2.4 Similarity Measurements

The measurement of similarity between two time series is an essential subroutine in

time series analysis and data mining tasks. In fact, There are over a dozen distance mea-

sures like Euclidean distance [23], Dynamic Time Warping [21], Edit Distance with Real

Penalty [15], distance based on Longest Common Subsequence [68], etc. In [22], four cat-

egories of similarity measures are de"ned in order to calculate the similarity of the time

series: 1) Feature-based distances that extract the features that usually describing time

independent aspects of the series that are compared with static distance functions; 2)

Shape-based distances that compare the overall appearance of the time series; 3) Model-

based distances that "t a model to the data and measure the similarity by comparing the

models; 4) Compression-based distances that analyze how well time series can be com-

pressed alone and together. Figure Figure 2.4 shows the categories of similarity measures

with some examples.

The Euclidean distance (ED) is one of the most straightforward similarity measure-
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Figure 2.4 – Categorization of similarity measures.

ment methods used in time series analysis, and has been widely used [36, 47, 65, 66].

Given two time series X = {x1, ...,xn} and Y = {y1, ...,ym} such that n = m, the Eu-

clidean distance between X and Y is de"ned as [23]:

ED(X ,Y ) =

√√√
i=1∑

n

(xi − yi)2 (2.2)

However, the Euclidean distance is an e(ective measurement of similarity between

two time series [37, 59]. The weaknesses of the Euclidean distance is that it cannot be

applied to time series of di(erent lengths and it doesn’t handle outliers or noise [23].

Figure 2.5 shows an example of the Euclidean distance between two time series X and

Y .

Another popular similarity measure is the Dynamic TimeWarping algorithm (DTW)

[5]. DTW compares time series of di(erent length, as it uses both many-to-one point

and one-to-many point comparisons. Given two time series X = {x1, ...,xn} and Y =

{y1, ...,ym} of length n andm, respectively, DTW starts by building the distance matrix

Dm ∈ Rn×m where :

Dm ∈ Rn×m : di,j = (xi − yj)2, 1 ≤ i ≤ n, 1 ≤ j ≤ m (2.3)
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Figure 2.5 – X and Y are two time series of a particular variable v . The Euclidean dis-
tance results in the sum of the point-to-point distances (gray lines), along all the time
series.

The alignment path is found by calculating the shortest warping path in the ma-

trix of distances between all pairs of time points. However, the optimal path W =

{w1,w2, ...,wl } is the path that minimizes the warping cost :

DTW (X ,Y ) =min{

√√√
l∑

k=1

wk (2.4)

where wk is the matrix element (i, j). This warping path can be calculated using a

dynamic programming approach [8] that evaluates the following recurrence.

f (i, j) =‖ xi − yj ‖ +min(f (i, j − 1), f (i − 1, j), f (i − 1, j − 1)) (2.5)

where ‖ xi −yj ‖ is the distance found in the current cell, and f (i, j) is the cumulative

distance of ‖ xi − yj ‖ and the minimum cumulative distances from the three adjacent

cells.

In [66], the authors show that DTW is signi"cantly more accurate than the Euclidean

distance for small datasets, and the di(erence diminishes as the datasets get larger until

there is no measurable di(erence.
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Figure 2.6 – X and Y are two time series of a particular variable v and di(erent length.
The Dynamic Time Warping distance takes into account the warping of the time axis
of both series in order to better align the two time series.

2.2 Time Series Indexing

In the context of time series data mining, the idea of indexing time series is relevant to all

data mining techniques, since indexing is a technique used to speed up similarity search

and access to stored data. Even though several database management systems have been

developed for the management of time series (such as Informix Time Series1, In=uxDB2,

OpenTSDB3, and DalmatinerDB4 based on RIAK), they do not include similarity search

indexes, focusing on (temporal) SQL-like query workloads. Thus, they cannot e$ciently

support similarity search queries. As the datasets grow more prevalent in a wide variety

of settings, we face the signi"cant challenge of developing more e$cient time series

indexing methods. Generally, the indexing techniques consist of two steps: at "rst, they

reduce the dimensionality of time series into some low-dimensional representation and

secondly index them in order to speedup the similarity search over time series.

1https://www.ibm.com/developerworks/topics/timeseries
2https://in=uxdata.com/
3http://opentsdb.net/
4https://dalmatiner.io/
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2.2.1 Dimensionality reduction

For very large time series databases, it is important to estimate the distance between

two time series very quickly. The high dimensionality of time series data poses big

challenges to time series data mining and especially indexing. In the literature, many

techniques have been proposed that represent time series with reduced dimensionality,

and then apply a distance function to measure the similarity between transformed time

series. For example, Discrete Fourier Transformation (DFT) [23], Single Value Decom-

position (SVD) [23], Discrete Wavelet Transformation (DWT) [41], Piecewise Aggregate

Approximation (PAA) [36], Adaptive Piecewise Constant Approximation (APCA) [13],

Chebyshev polynomials (CHEB) [10], Piecewise Linear Approximation (PLA) [16] and

Symbolic Aggregate approXimation (SAX) [47]. This latter takes the PAA representa-

tion as an input and discretizes it into a small alphabet of symbols as we will show later.

Figure 2.7 shows an example of such techniques that can signi"cantly reduce the time

and space.

In [23], Faloutsos et al. use DFT-based method to reduce dimensionality. The ba-

sic idea is that any complex time series or signal can be expressed in terms of cosine

waves. Each time series can be represented using complex numbers called the Fourier

Coe$cients. DFT representation is probably one of the "rst dimensionality reduction

techniques known in the literature.

Based on the Discrete Fourier Transform [23], the authors in [41] have developed the

Discrete Wavelet Transform DWT. The DWT can uniquely represent the time series by

a wavelet transform.

Adaptive Piecewise Constant Approximation (APCA) [13] and Piecewise Linear Ap-

proximation (PLA) [16] are similar to Piecewise Aggregate Approximation (PAA) [36],

since they divide the time series into frames. In the former, the frames have "xed size,

and each frame is represented by a straight line with a certain slope. The APCA repre-

sentation is a generalization of PAA where each frame has arbitrary length.

In [79], Zhu et al. propose random projection method based on random vectors. The

basic idea is to multiply each time series with a set of random vectors. The result of that
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Figure 2.7 – Example of techniques that can signi"cantly reduce the dimensionality of
time series [57]

operation is a "sketch" for each time series consisting of the distance (or similarity) of the

time series to each random vector. Then two time series can be compared by comparing

sketches. The sketches are used to approximate the distance between each pair of time

series. The authors show that the random projection can approximate di(erent types

of distances like Euclidean Distance and Lp Distance. The sketch approach is a kind of

Locality Sensitive Hashing [25], by which similar items are hashed to the same buckets

with high probability. In particular, the sketch approach is similar in spirit to SimHash

[14], in which the vectors of data items are hashed based on their angles with random

vectors.

2.2.2 Indexing

The problem of indexing time series using centralized solutions has been widely studied

in the literature, e.g., [6, 10, 23, 65, 12, 69]. For instance, in [6], Assent et al. propose the

TS-tree (time series tree), an index structure for e$cient retrieval and similarity search

over time series. The TS-tree provides compact summaries of subtrees, thus reducing

the search space very e(ectively. To ensure high fanout, which in turn results in small

and e$cient trees, index entries are quantized and dimensionally reduced.

In [10], Cai et al. use Chebyshev polynomials as a basis for dealing with the problem
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of approximating and indexing d-dimensional trajectories and time series. They show

that the Euclidean distance between two d-dimensional trajectories is lower bounded by

the weighted Euclidean distance between the two vectors of Chebyshev coe$cients, and

use this fact to create their index.

In [3], Agrawal et al. use R-Tree to index the "rst few DFT coe$cients of each time

series. In [55], the authors propose an optimization of this later by considering the sym-

metric property of Fourier coe$cients.

In [23], Faloutsos et al. use R*-trees to locate multi dimensional sequences in a col-

lection of time series. The idea is to map a large time series sequence into a set of

multi-dimensional rectangles, and then index the rectangles using an R*-tree.

In [79], Zhu et al. give a review of a simple and easy to maintain multidimensional

index structure, called grid structure. This index structure can be used for indexing

higher-dimensional data. The grid structure can be stored in d-dimensional array in

the main memory. To use grid structure as an index, we need to apply dimensionality

reduction techniques, such as random projection. In [4], the authors propose a new grid-

based indexing approach called grid-based Datawise Dimensionality Reduction (DDR).

They use DDR dimensionality reduction approach and apply quantization to construct

a grid-based index structure.

In [65], Shieh et Keogh propose a multiresolution symbolic representation called

indexable Symbolic Aggregate approXimation (iSAX) which is based on the SAX rep-

resentation [47]. The advantage of iSAX over SAX is that it allows the comparison of

words with di(erent cardinalities, and even di(erent cardinalities within a single word.

iSAX can be used to create e$cient indices over very large databases. The SAX repre-

sentation [47] is based on the PAA representation [44] which allows for dimensionality

reduction while providing the important lower bounding property as we will show later.

The idea of PAA is to have a "xed segment size, and minimize dimensionality by using

the mean values on each segment. Example 2 gives an illustration of PAA.

Example 2. Figure 2.8b shows the PAA representation of X , the time series of Figure 2.8a.

The representation is composed of w = |X |/l values, where l is the segment size. For each

segment, the set of values is replaced with their mean. The length of the $nal representation
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w is the number of segments (and, usually,w << |X |).

The SAX representation takes as input the reduced time series obtained using PAA.

It discretizes this representation into a prede"ned set of symbols, with a given cardi-

nality, where a symbol is a binary number. Example 3 gives an illustration of the SAX

representation.

Example 3. In Figure 2.8c, we have converted the time seriesX to SAX representation with

size 4, and cardinality 4 using the PAA representation shown in Figure 2.8b. We denote

SAX(X ) = [11, 10, 01, 01].
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[12, 12, 014, 02].

Figure 2.8 – A time series X is discretized by obtaining a PAA representation and then
using predetermined break-points to map the PAA coe$cients into SAX symbols

The iSAX representation uses a variable cardinality for each symbol of SAX repre-

sentation, i.e., each symbol is accompanied by a number that denotes its cardinality. We
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denote the iSAX representation of time seriesX by iSAX (X ) and we call it the iSAXword

of the time series X . For example, the iSAX word shown in Figure 2.8d can be written

as iSAX (X ) = [12, 12, 014, 02].

The lower bounding approximation of the Euclidean distance for iSAX representa-

tion iSAX (X ) = {x′
1
, ...,x′w } and iSAX (Y ) = {y′

1
, ...,y′w } of two time series X and Y is

de"ned as:

MINDIST (iSAX (X ), iSAX (Y )) =
√

n
w

√√√
i=1∑

w

(dist(x′i ,y′i ))2

where the function dist(x′i ,y′i ) is the distance between two iSAX symbols x′i and y
′
i . The

lower bounding condition is formulated as:

MINDIST (iSAX (X ), iSAX (Y )) ≤ ED(X ,Y )

Using a variable cardinality allows the iSAX representation to be indexable. We can

build a tree index as follows. Given a cardinality b, an iSAX word length w and leaf

capacity th, we produce a set of bw children for the root node, insert the time series to

their corresponding leaf, and gradually split the leaves by increasing the cardinality by

one character if the number of time series in a leaf node rises above the given threshold

th.

Example 4. Figure 2.9 illustrates an example of iSAX index where each iSAX word has 2

symbols and a maximum cardinality of 4. The root node has 22 children while each child

node forms a binary sub-tree. There are three types of nodes: root node, internal nodes (N2,

N5, N6, N7) and terminal nodes or leaf nodes (N3, N4, N8, N9, N10, N11, N12, N13). Each

leaf node links to a disk $le that contains the corresponding time series. The maximum

number of time series in each leaf $le is de$ned by a threshold th.

The previous studies have shown that the iSAX index is robust with respect to the

choice of parameters (word length, cardinality, leaf threshold) [66, 12, 81]. Moreover, it

can also be used to answer queries with the Dynamic Time Warping (DTW) distance,

through the use of the corresponding lower bounding envelope [39].

In [11], an improved version of iSAX, called iSAX 2.0, has been used to index more
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Figure 2.9 – Example of iSAX Index

than one billion time series. It uses two di(erent bu(er layers, namely First Bu(er Layer

(FBL) and Leaf Bu(er Layer (LBL), for storing parts of the index and time series in mem-

ory before =ushing them into the disk. In the FBL, all the time series time series that

will end up in the same iSAX 2.0 subtree are cluster together and they can grow till they

occupy all the available main memory, since they don’t have a restriction in their size.

The LBL corresponds to leaf nodes and they have the same size as the size of the leaf

nodes. These bu(ers are used to gather all the time series of leaf nodes and =ush them

to disk. It also uses an e$cient technique for splitting a leaf node when its size is higher

than a threshold.

In [12], the authors propose two extensions of iSAX 2.0, namely iSAX 2.0 Clustered

and iSAX2+. These extensions focus on the e$cient handling of the raw time series data

during the bulk loading process, by using a technique that uses main memory bu(ers to

group and route similar time series together down the tree, performing the insertion in

a lazy manner. We view iSAX2+ as the current state of the art in time series indexing.

In [80], instead of building the complete iSAX2+ index over the complete dataset and

querying only later, Zoumpatianos et al. propose to adaptively build parts of the index,

only for the parts of the data on which the user’s issue queries.

In [69], based on PCA representation [13] Wang et al. propose DSTree that segments

time series into variable length segment but adaptive to the shape of the series. DSTree
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uses standard deviation to de"ne the lower bounds. Unlike iSAX which only supports

horizontal splitting, and only the mean values can be used in splitting, the DSTree uses

multiple splitting strategies and provides more possible ways to divide time series leaf

"les.

2.2.3 Similarity Queries

Indexing is a technique used to speed up similarity search. After building the index, three

search procedures can be applied in order to "nd similar time series in the datasets : (i)

Range search; (ii) Exact k nearest neighbors; and (iii) Approximate k nearest neighbors.

In information retrieval, "nding the k nearest neighbors (k-NN) of a query is frequently

used where the k closest results to the query are returned to the user. In this section, we

de"ne Range search and two kinds of k nearest neighbors based queries.

De$nition 5. (Range search)

Given a query time series Q and a set of time series D, α − ranдe query will return a

subset R ⊆ D : |ED(Q,Ri)| < α , where ED(X ,Y ) is the Euclidean distance between the

points X and Y .

Range search is not typically used for real-world applications because the parameter

α cannot be easily determined by the user.

De$nition 6. (Exact k nearest neighbors)

Given a query time series Q and a set of time series D, let R = ExactkNN (Q,D) be the
set of k nearest neighbors ofQ from D. Let ED(X ,Y ) be the Euclidean distance between the
points X and Y , then the set R is de$ned as follows:

(R ⊆ D) ∧ (|R | = k) ∧ (∀a ∈ R,∀b ∈ (D − R),ED(a,Q) ≤ ED(b,Q))

De$nition 7. (Approximate k nearest neighbors)

Given a set of time series D, a query time series Q , and ϵ > 0. We say that R =

AppkNN (Q,D) is the approximate k nearest neighbors of Q from D, if ED(a,Q) ≤ (1 +
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ϵ)ED(b,Q), where a is the kth nearest neighbor from R andb is the true kth nearest neighbor.

2.3 Time Series Indexing in Distributed Systems

Although centralized search methods achieve speed-ups of orders of magnitude com-

paredwith sequential scanning, their performances deteriorate as the size of the database

increases, which poses questions concerning the scalability of centralized methods. To

deal with the massive scale of time series data, a promising solution is to take advan-

tage of parallel frameworks, such as MapReduce [19] or Spark [78], to make powerful

computing and storage units on top of ordinary machines.

In this section, we "rst introduceMapReduce and Spark frameworks, and then present

the parallel indexing solutions.

2.3.1 Parallel Frameworks

In this section, we introduce MapReduce and Spark, the two most popular frameworks

that use ordinary machines of distributed systems for high performance parallel data

processing.

2.3.1.1 MapReduce

MapReduce is one of the most popular solutions for big data processing [9], in particular

due to its automatic management of parallel execution in clusters of machines. Initially

proposed in [19], it was popularized by Hadoop [71], an open-source implementation.

MapReduce divides the computation in two phases, namely map and reduce, which in

turn are carried out by several tasks that process the data in parallel.

The idea behind MapReduce is simple and elegant. Given an input "le, and two

functions map and reduce, each MapReduce job is executed in two main phases: map
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and reduce. In the "rst phase, called map, the input data is divided into a set of splits, and

each split is processed by a map task in a given worker node. These tasks apply the map

function on every key-value pair of their split and generate a set of intermediate pairs.

In the second phase, called reduce, all the values of each intermediate key are grouped

and assigned to a reduce task. Reduce tasks are also assigned to worker machines and

apply the reduce function on the created groups to produce the "nal results.

Each MapReduce job includes two functions: map and reduce. For executing the job,

we need a master node for coordinating the job execution, and some worker nodes for

executing the map and reduce tasks. When a MapReduce job is submitted by a user to

the cluster, after checking the input parameters, e.g., input and output directories, the

input splits (blocks) are computed. The number of input splits can be personalized, but

typically there is one split for each 64MB of data. The location of these splits and some

information about the job are submitted to the master. The master creates a job object

with all the necessary information, including the map and reduce tasks to be executed.

One map task is created per input split. When a worker node, say w , becomes idle, the

master tries to assign a task to it. The map tasks are scheduled using a locality-aware

strategy. Thus, if there is a map task whose input data is kept on w , then the scheduler

assigns that task tow . If there is no such task, the scheduler tries to assign a task whose

data is in the same rack asw (if any). Otherwise, it chooses any task.

Each map task reads its corresponding input split, applies the map function on each

input pair and generates intermediate key-value pairs. , which are "rstly maintained in

a bu(er in main memory. When the content of the bu(er reaches a threshold (by default

80% of its size), the bu(ered data is stored on the disk in a "le called spill.

Once the map task is completed, the master is noti"ed about the location of the gen-

erated intermediate key-values. In the reduce phase, each intermediate key is assigned to

one of the reduce workers. Each reduce worker retrieves the values corresponding to its

assigned keys from all the map workers, and merges them using an external merge-sort.

Then, it groups pairs with the same key and calls the reduce function on the correspond-

ing values. This function will generate the "nal output results. When, all tasks of a job

are completed successfully, the client is noti"ed by the master.
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2.3.1.2 Spark

Spark [78] is an open-source parallel data processing framework that aims at e$ciently

processing large datasets. This programming model can perform data analytics with

in-memory techniques to overcome disk bottlenecks. Spark extends the MapReduce

model to e$ciently support more types of computations, including interactive queries

and stream processing. Spark can be deployed on the Hadoop Distributed File System

(HDFS) [62] as well as standalone. Unlike traditional in-memory systems, the main fea-

ture of Spark is its distributed memory abstraction, called resilient distributed datasets

(RDD). RDD is an e$cient and fault-tolerant abstraction for distributing data in a clus-

ter. With RDD, the data can be easily persisted in main memory as well as on the hard

drive. Spark is basically designed for being used in iterative algorithms.

To execute a Spark job, we need a master node to coordinate job execution, and some

worker nodes to execute a parallel operation. These parallel operations are summarized

to two types:

• Transformations: that are operations to create a new RDD from an existing RDD.

As examples of transformations, we can mention Map, MapToPair, MapPartition,

FlatMap.

• Actions: operations that return a "nal value to driving program or output to ex-

ternal storage, but do not change the original data. Examples of action operations

are: Reduce, Aggregate and Count.

The transformations are not executed until a subsequent action has a need for the

result. Where possible, these RDDs can persist in memory if persist function is called.

In most cases persist increase the performance of the cluster.

2.3.2 Parallel Indexing

In [43], the authors propose a scalable parallel index structure for relational data process-

ing. It is part of an indexing framework for MapReduce systems [19] and is extensible
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in terms of both data and query types with multiple types of indexes. The index is orga-

nized as a tree structure and stored as a sequential "le in the HDFS [62] "le system. The

index "le is also partitioned into multiple blocks, each containing the data of a number

of sub-indexes and some index blocks are loaded selectively into memory. To build an

index using the proposed indexing framework, a new MapReduce job is submitted for

index construction. In the map phase, the mappers scan the data and generate inter-

mediate "les, recording how data are distributed to di(erent sub-spaces. In the reduce

phase, each reducer collects the intermediate "les from the mappers for a speci"c sub-

space and constructs a local index. The results constitute a set of sub-indexes, which are

collected by the master node for the construction of the global index.

ScalaGiST [43] framework develops a distributed query processing service with one

master and multiple workers. Each index worker handles one index block. Upon recep-

tion of a query, the master node forwards it to the worker hosting the root node, which

progressively forwards the request to the other workers. The search results of ScalaGiST

framework are o(sets of the HDFS that refer to the data that satisfy the predicates.

However, none of the above solutions is appropriate for time series indexing and sim-

ilarity search. On thewhole, in the literature there is no time series index designed/adapted

for operation in distributed environments.

2.4 Conclusion

In this chapter, we have discussed the state of the art about time series data mining. We

gave an overview of time series data mining and a brief description of the main tasks in

time series data mining that have attracted extensive research interest.

To the best of our knowledge, in the literature, there is no e$cient solution for par-

allel indexing of time series in distributed environments. In this thesis, we carry out

extensive theoretical and practical studies and propose various parallel indexing and

querying solutions for time series, validated with real-world very large datasets.



Chapter 3

Massively Distributed Time Series

Indexing and Querying with DPiSAX

Indexing is crucial for many data mining tasks that rely on e$cient and e(ective simi-

larity query processing. Consequently, indexing large volumes of time series, along with

high performance similarity query processing, have became topics of high interest. For

many applications across diverse domains though, the amount of data to be processed

might be intractable for a single machine, making existing centralized indexing solutions

ine$cient.

In this chapter, we propose two parallel indexing solutions that gracefully scale to

billions of time series, and a parallel query processing strategy that, given a batch of

queries, e$ciently exploits the index.

The rest of the chapter is organized as follows. In Section 3.1, we present the context

and give an overview of our work. We describe our algorithms in Sections 3.2 and 3.3.

Then, in Section 3.4, we evaluate the proposed algorithms by carrying out extensive

various experiments very large real-world data sets. Finally, we conclude in Section 3.5.

27
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3.1 Motivation and Overview of the Proposal

Nowadays, individuals are able to monitor various indicators for their personal activi-

ties (e.g., through smart-meters or smart-plugs for electricity or water consumption), or

professional activities (e.g., through the sensors installed on plants by farmers). Sensors

technology is also improving over time and the number of sensors is increasing, e.g., in

"nance and seismic studies. With such complex and massive sets of time series, we need

to improve the performance of similarity queries. To do this, indexing is one of the most

popular techniques [22], which has been successfully used in a variety of settings and

applications [23, 66, 6, 69, 12, 80]. Although recent studies have shown that in certain

cases sequential scans can be very e$cient [56, 77], such techniques are only advanta-

geous when the database consists of a single, long time series, and query answers are

small subsequences of this long time series. Such approaches, however, are not bene"-

cial in the general case of querying a mixed database of many small time series [81] (e.g.,

in neuroscience, or manufacturing applications [50]), which is the focus of this study.

Therefore, indexing is required in order to e$ciently support data exploration tasks,

which involve ad-hoc queries.

Interestingly and to the best of our knowledge, there has been no focus on the prob-

lem of similarity search in such massive sets of time series using scalable index con-

struction. However, making an index over billions of time series by using traditional

centralized approached is highly time-consuming. Moreover, a naive construction of

the index on the parallel environment may lead to poor querying performances. This is

illustrated in Figure 3.1 where the time series dataset is naively split on theW distributed

nodes (Figure 3.1a). In this case, a batch of queries B has to be duplicated and sequentially

processed on each node. By means of a dedicated strategy where each query in B could

be oriented to the right partition (i.e., the partition that must correspond to the query)

the querying work load can be signi"cantly reduced (Figure 3.1b shows an ideal case

where B is split inW subsets and really processed in parallel). Our goal is to reach such

an ideal distribution of index construction and query processing in massively distributed

environments. In this work, we propose a parallel solution to construct the state of the

art iSAX-based index [12] over billions of time series by making the most of the parallel

environment by carefully distributing the work load. Our solution takes advantage of



3.1 Motivation and Overview of the Proposal 29

 

 

 

  

 

 

 

 

 

 

 

  

  

 

 

  

  

Q1
Q2
Q3
Q4
Q5

Q1
Q2
Q3
Q4
Q5

Q1
Q2
Q3
Q4
Q5

Q1
Q2
Q3
Q4
Q5

(a) Straightforward implementation: the batch of queries is duplicated on all the computing

nodes, and locally processed in sequential order.
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Figure 3.1 – Straightforward Vs. partitioned strategies for TS indexing and querying.
Load balancing is a major lever.
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the computing power of distributed systems by using parallel frameworks Spark [78].

We provide dedicated strategies and algorithms for a deep combination of parallelism

and indexing techniques, for better query performances. We compare our approach to

the current state of the art index building algorithm, and illustrate its important gains

both in index construction and query processing time.

3.2 Distributed iSAX (DiSAX)

DiSAX, our "rst parallel index construction, sequentially splits the dataset for distribu-

tion into partitions. Then eachworker builds an independent iSAX index on its partition,

with the iSAX representations having the highest possible cardinalities. Representing

each time series with iSAX words of high cardinalities allows us to decide later what

cardinality is really needed, by navigating "on the =y" between cardinalities. The word

of lower cardinality being obtained by removing the trailing bits of each symbol in the

word of higher cardinality. The output of this phase, with a cluster ofW nodes, is a set

ofW iSAX indexes built on each split.

The pseudo-code of this index construction can be seen in Algorithm 1. The input is

a data partitions that contains time series in ASCII form. First, the algorithm obtain the

iSAX representation of all time series using the highest possible cardinalities (lines 2-4).

Then each worker builds an independent iSAX index on its partition (lines 5-9) using

the iSAX index insertion function (lines 10-26).

3.2.1 Query Processing

Given a collection of queries Q , in the form of time series, and the index constructed

in the previous section for a database D, we consider the problem of "nding time series

that are similar to Q in D, as presented in de"nitions 6 and 7. We perform such queries

with two search methods: approximate and exact.
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Algorithm 1: DiSAX Index construction

Input: Data partitions P = {P1, P2, . . . , Pn} of a database D,w the length of the
iSAX word

Output: Index structures
1 D.cache(); //cache all the database in the cluster, where each time series has a

unique ID
2 MapToPair( ID of Time series: ID ,Time Series: X )
3 Convert time series X to iSAX_word with high cardinalities and sizew
4 emit (ID ,iSAX_word)

5 MapPartition( Set of <ID,iSAX_word>: iSAX_words )
6 rootNode = new RootNode
7 foreach <ID,iSAX_word> in iSAX_words do
8 rootNode.insert(ID ,iSAX_word)

9 emit (rootNode)

10 Function insert(ID ,iSAX_word)
11 if the subtree corresponding to iSAX_word exists then
12 node = the node corresponding to iSAX_word
13 if node is leaf node then
14 if node is not full then
15 node.insert(ID ,iSAX_word)
16 else
17 newNode = new InternalNode
18 newNode.insert(ID ,iSAX_word)
19 foreach iSAX_word in node do
20 newNode.insert(ID ,iSAX_word)

21 remove(node)

22 else
23 node.insert(ID ,iSAX_word)

24 else
25 newNode = new TerminalNode
26 newNode.insert(ID ,iSAX_word)
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3.2.1.1 Approximate Search

Given a batch B of queries, the master node duplicates B on each worker (node) keeping

an index for a subset of the data (i.e, a data split). Each worker uses its local index to

retrieve time series that correspond to each query Q ∈ B, according to the approximate

k-NN criteria. On each local index, the approximate search is done by traversing the

local index to the terminal node that has the same iSAX representation as the query.

The target terminal node contains at least one and at most th iSAX words, where th is

the leaf threshold. A main memory sequential scan over these iSAX words is performed

in order to obtain the k nearest neighbors using the Euclidean distance. Each worker

w sends all the found time series to the master. Let |W | be the number of workers, the

master thus receivesk×|W | nearest neighbors for each queryQ , sorts them by decreasing

order of their distance to Q , and selects the k top ones.

The algorithm, described in Algorithm 2, starts by obtain the iSAX representation

of all queries time series using the highest possible cardinalities (lines 1-3). Then the

master node duplicates the queries on each partition (worker) (line 4), and each worker

uses its local index to retrieve time series that correspond to each query (lines 5-9), using

the approximate search function (lines 10-15).

3.2.1.2 Exact Search

The exact search proceeds in two steps. In Step 1, the algorithm "rstly uses the ap-

proximate search described in Section 3.2.1.1 to obtain AKNN, an approximate k nearest

neighbours set. Then each worker creates a priority queue to examine the index nodes

that may contain the time series that are probably more similar toQ than those ofAKNN.

Such nodes are identi"ed as in the original iSAX [65, 66], where the lower bound distance

used for priority queue ordering is computed usingMINDIST_PAA_iSAX according to

AKNN. The di(erence is that, instead of a sequential scan of the series found in the

identi"ed leaf nodes, we emit the IDs of the series. In step 2, the algorithm retrieves all

the time series that match the IDs emitted by the workers, and then "nds the k nearest

neighbors using the Euclidean distance.
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Algorithm 2: DiSAX Approximate Search

Input: iSAX Indexes where each partition has one index I = {I1, I2, . . . , In} and a
collection Q of queries time series

Output: k nearest neighbors
1 MapToPair( ID of Time series: ID ,Time Series: q )
2 Convert time series X to iSAX_word with high cardinalities and sizew .
3 emit (ID ,iSAX_word)

4 Duplicate Q on each partition
5 MapPartition( iSAX index, Set of <ID,iSAX_word>: iSAX_words )
6 get the rootNode from iSAX index
7 foreach <ID,iSAX_word> in iSAX_words do
8 rootNode.ApprSearch(ID ,iSAX_word)

9 emit (ApprSearch results)

10 Function ApprSearch(ID ,iSAX_word)
11 node = the node corresponding to iSAX_word
12 if node is a terminal node then
13 Find the k nearest neighbors using Euclidean distance
14 else
15 node.ApprSearch(ID ,iSAX_word);
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The algorithm, described in Algorithm 3. The master node duplicates the queries

on each partition (worker) (line 1), and each worker uses its local index and starts by

putting all the children of the root in priority queue using their lower distance bound

towards the query (line 8), Then the one with the best minimum distance is explored

(line 9), if the best lower bound is bigger than the BSF distance (line 12) the algorithm

stops. If node is an internal node (line 15) then all children are added into the priority

queue.

Algorithm 3: DiSAX Exact Search

Input: iSAX Indexes where each partition has one index I = {I1, I2, . . . , In} and a
collection Q of queries time series

Output: k nearest neighbors
1 Duplicate Q on each partition
2 MapPartition( iSAX index, Q )
3 get the rootNode from iSAX index
4 foreach q in Q do
5 bsf = rootNode.ApprSearch(ID ,iSAX_word of q) rootNode.ExactSearch(ID

,q,bsf )

6 emit (ExactSearch results)

7 Function ExactSearch(ID ,q)
8 bsfDist = In"nite; queue = Initialize a priority queue with all the children of

the root;
9 while node = pop next node from queue do

10 if node is terminal node and MinDist(q,node) < bsfDist then
11 bsf = Find the k nearest neighbors
12 else if MinDist(q, node) ≥ bsfDist then
13 break;
14 else
15 Add the children of the node to priority queue ;

3.2.2 Limitations of DiSAX

The parallel index constructed by DiSAX in a distributed environment is e(ective but

calls for improvements. Actually, it leads to query response times that sometimes are
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high, because the query processing work is not well distributed among the computing

nodes. The reason is that each node should examine all queries in the index, even if the

index contains no similar result for the query.

Furthermore the index obtained by iSAX2+would be very di(erent from the union of

the local distributed iSAX indexes. This also has an impact on the size of the index. Since

merging all the local indexes would call for speci"c algorithms (if it is even possible)

the size of the global index of distributed iSAX is higher than the index of centralized

iSAX2+.

3.3 Distributed Partitioned iSAX

In this section, we present a novel parallel partitioned index construction algorithms,

along with very fast parallel query processing techniques.

Our approach is based on a sampling phase that allows anticipating the distribution

of time series among the computing nodes. Such anticipation is mandatory for an ef-

"cient query processing, since it will allow, later on, to decide what partition contains

the time series that actually correspond to the query. To do so, we "rst extract a sample

from the time series dataset, and analyze it in order to decide how to distribute the time

series in the splits, according to their iSAX representation. However, deciding the good

split criteria calls for careful attention since bad choices may lead to highly imbalanced

partitions, as illustrated in this section with i) DbasicPiSAX, a "rst version of our par-

titioned indexing technique and ii) DPiSAX, the "nal version with, to the best of our

knowledge, the best load balance and the best querying performances obtained for time

series indexing in distributed environments.

3.3.1 Sampling

InDistributed Partitioned iSAX, our index construction combines twomain phaseswhich

are executed one after the other. First, the algorithm starts by sampling the time series
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Table 3.1 – A sample S of 8 time series converted to iSAX representations with iSAX
words of length 2

Time series iSAX words Time series iSAX words

TS1 {01, 00} TS5 {00, 10}
TS2 {00, 01} TS6 {01, 11}
TS3 {01, 01} TS7 {10, 00}
TS4 {00, 00} TS8 {10, 01}

dataset and creates a partitioning table. Then, the time series are partitioned into groups

using the partitioning table. Finally, each group is processed to create an iSAX index for

each partition.

More formally, our sampling is done as follows. Given a number of partitions P and

a time series dataset D, the algorithm takes S sample time series of size L from D using

strati"ed sampling, and distributes them among theW available workers. Each worker

takes S/W time series and emits its iSAX words SWs = {iSAX (tsi), i = 1, ...,L}. The
master collects all the workers’ iSAX words and performs the partitioning algorithm

accordingly. In the following, we describe two partitioning methods that enable sepa-

rating the dataset into non-overlapping subsets based on iSAX representations, namely

"the basic approach" (or DbasicPiSAX) and "the statistical approach" (or DPiSAX). Both

methods proceed with a common simple strategy: successively divide the sample by

splitting the biggest partition into two sub-partitions, until the number of partitions is

equal to the number of workers. However, at each step, once the biggest partition is

identi"ed, the main di(erence is in the assignment strategy (i.e., how is each time series

in the sample assigned to one or the other of the new partitions?).

3.3.2 Basic Approach: DbasicPiSAX

In the basic approach, splitting the biggest partition is done according to the "rst bit of

each symbol in the iSAX words, as we can see in Algorithm 4 (line 1-4). Let us consider

the nth splitting step, each time series is assigned to a new partition depending on the

"rst bit of its nth symbol. Of course, when the number of symbols has been reached for

a partition (i.e., it cannot be divided anymore because the last symbol has been reached)
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(c) DbasicPiSAX indexes after partitioning and indexing. Partition "11" is empty for the

sampling step, but may contain data after indexing.
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(d) DPiSAX indexes after partitioning and indexing. The partitioning principle of DPiSAX

allows better balance.

Figure 3.2 – The result of the partitioning algorithms (DPiSAX and DbasicPiSAX) on
sample S (from Table 3.1) into four partitions.
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then we need to consider the remaining partitions for new splits.

Example 5. Let’s consider Table 3.1, where we use iSAXwords of length two to represent the

time series of a sample S . Suppose that we need to generate four partitions. First, we use the

$rst bit of the $rst segment to de$ne two partitions. The $rst partition contains all the time

series having their $rst iSAX word starting with 1, and the second partition contains the

time series having their $rst iSAX word starting with 0. We obtain two partitions: "0" and

"1". The biggest partition is "0" (i.e., containing the time series TS1 to TS6). This partition

is split again, according to the $rst bit of the second symbol. We now have the following

partitions: from the $rst step, partition "1", and from the second step, partitions "00", and

"01". Now, partition "00" is the biggest one. However, it cannot be split anymore since the

maximum number of symbols has been reached. We choose the next biggest partition, i.e.,

"1". After splitting this partition using the $rst bit of the second segment, we obtain two new

partitions:"11" and "10". Partition "10" contains all the time series of the old partition (i.e.,

partition "1"). Consequently, we have four partitions where partition "11" is empty. Figure

3.2a shows the obtained partitions and Figure 3.2c shows the indexes obtained with these

partitions.

The partitioning Algorithm achieves two goals: 1) generating P partitions; and 2)

preserving vertical division of the iSAX tree. Notice that the second goal is achieved

because our partitioning algorithm uses the "rst bit of each symbol. Therefore, iSAX

words having cardinality 2 are used to produce a set of, at most, 2w partitions. In the

original iSAX index, when the construction starts with a cardinality of 2, a set of 2w

children is produced at the root node. Intuitively, in our running example, when we

compare the centralize index (the original iSAX index) in Figure 2.9, and the parallel

indexes in the Figure 3.2c obtained with the basic partitioning approach, we observe the

vertical division of the original iSAX index.

3.3.3 Limitations of the Basic Approach

Obviously, the partitions obtained with the basic partitioning approach are not balanced.

This is due to two main reasons. First, the partitioning algorithm preserves vertical di-

vision of the original iSAX index and the iSAX index is not balanced. The second reason
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is that, the partitioning algorithm does not take into account the data distribution in the

partitions. Because of the limits in the number of symbols, it is possible to end up with

highly imbalanced partitions, as illustrated by Figure 3.2c and also by our experiments.

Because of this imbalanced distribution of the data, the basic approach is limited in the

size of datasets it can process. If the capacity of a computing node is reached (i.e., the

node in charge of the biggest partition cannot handle the data that corresponds to it),

then the index building process cannot progress.

Moreover, the maximum number of partitions that can be generated is 2w (wherew

is the SAX word length). Since each partition is managed by a computing node for the

local index construction, if the number of partitions is lower than the number of available

computing nodes, then there will be idle nodes. This is a threat for the speed-up of the

approach and calls for better solutions, as presented in the next subsection.

Algorithm 4: DbasicPiSAX Partitioning Function

Input: Sample S of iSAX_words, p number of partitions
Output: Partition Table BT

1 while the number of partitions is less than p do
2 BigPartition = the biggest partition
3 //In the $rst iteration BigPartition = S
4 Divide BigPartition into two partitions

3.3.4 Statistical Approach: DPiSAX

Here, our partitioning paradigm considers the splitting power of each bit in the iSAX

symbols, before actually splitting the partition. As in the basic approach, the biggest

partition is considered for splitting at each step of the partitioning process. The main

di(erence is that we don’t use the "rst bit of the nth symbol for splitting the partition.

Instead, we look for all bits (whatever the symbol) (Algorithm 5 lines 7-11) with the

highest probability to equally distribute the time series of the partition among the two

new sub-partitions that will be created. To this e(ect, we compute for each segment

the µ ± σ interval (lines 4-5), where µ is the mean and σ is the standard deviation, and

we examine for each segment if the break-point of the additional bit (i.e., the bit used to
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generate the two new partitions) lies within the interval µ±σ (line 9). From the segments

for which this is true, we choose the one having µ closer to the break-point (line 10).

In order to illustrate this, let us consider the blue boxes of the diagrams in Figure 3.2c.

We choose the biggest blue box that ensures the best splitting by considering the next

break-point.

Example 6. Let’s consider the same case as described in Example 5. Figure 3.2b shows the

obtained partitions and Figure 3.2d shows the indexes obtained with these partitions. To

generate four partitions, we compute the µ ±σ interval for the $rst segment and the second

segment, and choose the $rst bit of the second segment to de$ne two partitions. The $rst

partition contains all the time series having their second segment in iSAX word starting

with 0, and the second partition contains the time series having their second segment in

iSAX word starting with 1. We obtain two partitions: "0" and "1". The biggest partition is

"0" (i.e., the one containing time series TS1 to TS4, TS7 and TS8). We compute the µ ± σ

interval for all segment over all the time series in this partition. Then, the partition is split

again, according to the $rst bit of the $rst symbol. We now have the following partitions:

from the $rst step, partition "1", and from the second step, partitions "00", and "10". Now,

partition "00" is the biggest one. This partition is split for the third time, according to the

second bit of the $rst symbol and we obtain four partitions.

We also illustrate, in Figure 3.2c, the variability of the distribution of time series for

each symbol. For instance, in partition "00", for node N 6, there is a much higher variability

in the $rst symbol (marked "0" in the diagram, and represented by the blue box) than the

second symbol (marked "01", blue box).

Optimization. Because many time series have the same iSAX representation, we

may end upwith groups of iSAXwords that are the same, evenwhen using themaximum

cardinality (as it is our case). Therefore, we turn this data duplication into an advantage.

Actually, the index construction is done as in Section 3.2, but the di(erence is that in the

insertion function, we provide the algorithm with a bulk insertion function. The goal

of this function is to better consider iSAX words with the same representation and to

improve the index construction cost. This is done by linking all the IDs of time series

having the same representation to only one corresponding iSAX word.
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The pseudo-code of the parallel index construction byDPiSAX is shown inAlgorithm

6. Given a time series dataset, the algorithm "rstly creates the iSAX representation of

each time series in parallel (lines 2-4). Then, it inserts the representations in parallel to

the index by using the bulkInsertion function (lines 5-9). Each time series t is inserted to

the index by the worker (i.e., the processor) that is responsible for the partition to which

t belongs. If the subtree of the partition does not exist, it will be created (lines 23- 25).

Then, the time series t is inserted to its corresponding leaf node in the subtree (lines

14-15). If the node gets full (i.e., its size gets higher than the threshold), then it will be

split (lines 16-20).

Algorithm 5: DPiSAX Partitioning Function

Input: Sample S of iSAX_words, p number of partitions
Output: Partition Table BT

1 while the number of partitions is less than p do
2 BigPartition = the biggest partition
3 //In the $rst iteration BigPartition = S
4 mean[] = ComputeSymbolsMean(BigPartition)
5 stdev[] = ComputeSymbolsStDev(BigPartition)
6 segmentToSplit = null
7 foreach segment s in BigPartition do
8 b = getbreak-point(s)
9 if b within mean[s] ± stdev[s] then

10 if mean[s] close to b then segmentToSplit then
11 segmentToSplit = s

12 Divide BigPartition into two partitions in segmentToSplit

3.3.5 Query Processing

Given a collection of queries Q , in the form of time series, and the index constructed in

the previous section for a databaseD, we consider the problem of "nding time series that

are similar to Q in D, according to the de"nitions of approximate k-NN and exact k-NN

search as presented in de"nitions 6 and 7. Approximate and exact search are performed

as follows:



42 3. Massively Distributed Time Series Indexing and Querying with DPiSAX

Algorithm 6: DPiSAX Index construction

Input: Data partitions P = {P1, P2, . . . , Pn} of a database D,w the length of the
iSAX word, p number of partitions

Output: Index structures
1 D.cache(); //cache all the database in the cluster, where each time series has a

unique ID
2 MapToPair( ID of Time series: ID ,Time Series: X )
3 Convert the time series X to iSAX_word with high cardinalities and sizew
4 emit (ID ,iSAX_word)

5 MapPartition( Set of Set<ID,iSAX_word>: iSAX_words )
6 rootNode = new RootNode
7 foreach Set <ID,iSAX_word> in iSAX_words do
8 rootNode.bulkInsertion(Set<ID,iSAX_word>)

9 emit (rootNode)

10 Function bulkInsertion(Set <ID,iSAX_word>: iSAX_words)
11 if the subtree corresponding to iSAX_words exists then
12 node = the node corresponding to iSAX_words
13 if node is leaf node then
14 if node is not full then
15 node.bulkInsertion(iSAX_words)
16 else
17 newNode = new InternalNode
18 newNode.bulkInsertion(iSAX_words)
19 newNode.bulkInsertion(all iSAX words of node)
20 remove(node)

21 else
22 node.bulkInsertion(iSAX_words)

23 else
24 newNode = new TerminalNode
25 newNode.bulkInsertion(iSAX_words)
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• Approximate search: searching for the approximate k nearest neighbors of the

time series Q is done as in Section 3.2.1.1. The di(erence is that just one iSAX

index is queried instead of all the parallel indexes. Actually, we are able to identify

the right partition where the index is stored and send the corresponding query

by using its iSAX words. Then, we send each query to the partition that has the

same iSAX word as the query. The pseudo-code of DiSAX is shown in Algorithm

7. It starts by obtaining the iSAX representation of all queries time series using

the highest possible cardinalities (lines 1-3). The master sends each query to the

partition (worker) that has the same iSAX word as the query (line 4), and each

worker uses its local index to retrieve time series that correspond to each query

(lines 5-9), using the approximate search function (lines 10-15).

Algorithm 7: DPiSAX Approximate Search

Input: iSAX Indexes where each partition has one index I = {I1, I2, . . . , In} and a
collection Q of Query time series

Output: k nearest neighbors
1 MapToPair( ID of Time series: ID ,Time Series: q )
2 Convert time series X to iSAX_word with high cardinalities and sizew .
3 emit (ID ,iSAX_word)

4 Send each query to the partition that has the same iSAX word as the query
5 MapPartition( iSAX index, Set of <ID,iSAX_word>: iSAX_words )
6 get the the rootNode from iSAX index
7 foreach <ID,iSAX_word> in iSAX_words do
8 rootNode.ApprSearch(ID ,iSAX_word)

9 emit (ApprSearch results)

10 Function ApprSearch(ID ,iSAX_word)
11 node = the node corresponding to iSAX_word
12 if node is terminal node then
13 Find the k nearest neighbors using Euclidean distance
14 else
15 node.ApprSearch(ID ,iSAX_word);

• Exact search: for retrieving the exact k nearest neighbors of a given query time

series q, we "rst use the approximate search, described above, in order to obtain
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an approximate best-so-far k nearest neighbors. Then, each worker performs the

exact search algorithm as described in Section 3.2.1.2. This is described in Algo-

rithm 8. The master sends each query to the partition (worker) that has the same

iSAX word as the query (line 1), and each worker uses its local index and starts

by putting all the children of the root in priority queue using their lower distance

bound towards the query (line 8). Then, the one with the best minimum distance

is explored (line 9). If the best lower bound is bigger than the BSF distance (line

12) then the algorithm stops. If the node is an internal node (line 15) then all its

children are added to the priority queue.

Algorithm 8: DPiSAX Exact Search

Input: iSAX Indexes where each partitions has one index I = {I1, I2, . . . , In} and
a collection Q of queries time series

Output: k nearest neighbors
1 Send each query to the partition that has the same iSAX word as the query
2 MapPartition( iSAX index, Q )
3 get the rootNode from iSAX index
4 foreach q in Q do
5 bsf = rootNode.ApprSearch(ID ,iSAX_word of q) rootNode.ExactSearch(ID

,q,bsf )

6 emit (ExactSearch results)

7 Function ExactSearch(ID ,q)
8 bsfDist = In"nite; queue = Initialize a priority queue with all the children of

the root;
9 while node = pop next node from queue do

10 if node is terminal node and MinDist(q,node) < bsfDist then
11 bsf = Finds the k nearest neighbors
12 else if MinDist(q, node) ≥ bsfDist then
13 break;
14 else
15 Add the children of the node to priority queue ;
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Table 3.2 – Default parameters

Parameters Value Parameters Value

iSAX word length 8 Leaf capacity 1,000
Basic cardinality 2 Number of machines 32
Maximum cardinality 512 Sampling fraction 10%

3.4 Performance Evaluation

In this section, we report experimental results that show the quality and the performance

of DPiSAX for indexing time series.

The parallel experimental evaluationwas conducted on a cluster of 32machines, each

operated by Linux, with 64 Gigabytes of main memory, Intel Xeon CPU with 8 cores and

250 Gigabytes hard disk. The iSAX2+ approach was executed on a single machine with

the same characteristics.

We evaluate the performance of three versions of our solution: 1) DiSAX is the par-

allel implementation of iSax as described in Section 3.2 ; 2) DbasicPiSAX is the sampling-

based indexing algorithmwith basic partitioning as described in Section 3.3.2; 3) DPiSAX

is our complete solution, with the statistical partitioning described in Section 3.3.4. Fur-

thermore, we compare our solutions to two state of the art baselines: the most e$cient

centralized version of iSAX index (i.e., iSAX2+ [12]), and Parallel Linear Search (PLS),

which is a parallel version of the UCR Suite fast sequential search (with all applicable

optimizations in our context: no computation of square root, and early abandoning) [56].

Our experiments are divided into two sections. In Section 3.4.2, we measure the

index construction times with di(erent parameters. In Section 3.4.3, we focus on the

query performance of our approach.

we implemented our approaches on top of Apache-Spark [78] as a distributed envi-

ronment, using the Java programming language. The iSAX2+ index is also implemented

with Java.
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3.4.1 Datasets and Settings

We carried out our experiments on two real world and synthetic datasets, up to 6 Ter-

abytes and 4 billion series. The "rst real world data represents seismic time series col-

lected from the IRIS Seismic Data Access repository [30]. After preprocessing, it contains

40 millions time series of 256 values, for a total size of 150Gb. The second real world data

is the TexMex corpus [31]. It contains 1 Billion time series (SIFT feature vectors) of 128

points each (derived from 1 Billion images). Our synthetic datasets are generated using

a Random Walk principle, each data series consisting of 256 points. At each time point

the generator draws a random number from a Gaussian distribution N(0,1), then adds

the value of the last number to the new number. This type of generator has been widely

used in the past. [3, 23, 6, 65, 11, 12, 80]. Table 3.2 shows the default parameters (unless

otherwise speci"ed in the text) used for each approach. The iSAXword length, PAA size,

leaf capacity, basic cardinality, and maximum cardinality were chosen to be optimal for

iSAX, which previous works [65, 66, 11, 12, 80] have shown to work well across data

with very di(erent characteristics.

3.4.2 Index Construction Time

In this section, we measure the index construction time in DPiSAX, DbasicPiSAX and

DiSAX, and compare it to the construction time of the iSAX2+ index.

Figure 3.3 reports the index construction times for all approaches on our Random

Walk dataset. The index construction time increases with the number of time series for

all approaches. This time is much lower in the case of all parallel approaches, than that

of the centralized iSAX2+. On 32 machines, and for a dataset of one billion time series,

DPiSAX builds the index in 65 minutes, DbasicPiSAX in 76 minutes and DiSAX in 64

minutes, while the iSAX2+ index is built in more than 5 days on a single node.

Figure 3.4 shows the same evaluation on the TexMex dataset. We can observe very

similar behavior of our parallel approaches. As for the previous experiment, reported in

Figure 3.3, the centralized version of iSAX2+ builds the index on a single machine in up

to 4 days. We only report the response time of scalable approaches in Figure 3.4, for a
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Figure 3.3 – Logarithmic scale. Construction time as a function of dataset size. Parallel
algorithms (DiSAX and DPiSAX) are run on a cluster of 32 nodes. iSAX2+ is run on a
single node. With 1 billion Random Walk TS, iSAX2+ needs 5 days and our distributed
algorithms need less than 2 hours.

better visual comparison of their performances.

Figure 3.5 reports an extended view on the index construction times, only for parallel

approaches, and with datasets having size up to 4 billion time series (6.2TB). The running

time increases with the number of time series for DPiSAX and DiSAX. DbasicPiSAX

does not scale and cannot execute on datasets having size above 1Tb. This is due to its

imbalanced partitions, where one of the computing node receives so much data that it

cannot build the index. This will be better discussed with Figure 3.8.

Figures 3.6 and 3.7 illustrate the parallel speed-up of our approach on the Random

Walk (Figure 3.6) and the TexMex (Figure 3.7) datasets. The results show a near opti-

mal gain for DPiSAX and DiSAX on our dataset. From the "gure 3.6, we observe that

the construction time for DbasicPiSAX is the same with 32 nodes and 40 nodes, this is

because DbasicPiSAX does not use all the available processors. Actually, the basic par-

titioning algorithm (as described in Section 3.3.2) is limited in the number of partitions

it can generate. By construction, it is able to generate up to 2
8
= 256 partitions (more
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Figure 3.6 – Construction time as a function of cluster size. DPiSAX and DiSAX have
has a near optimal parallel speed-up. With 1 billion TS from the Random Walk dataset.

generally, 2w partitions where w is the SAX word length). In order to fully exploit the

computing of all 320 cores, we need to build 320 partitions. This is over the maximum

number of partitions that DbasicPiSAX is able to manage (i.e., in this case, 256).

Figure 3.8 reports our measures of load balance, on 32 nodes and one billion time

series, where partitions are sorted by decreasing order of the measured criteria: number

of nodes in the local trees (Fig. 3.8a), number of time series in the partitions (Fig. 3.8b)

and index depth (Fig. 3.8c). Our results illustrate the near ideal balance of our DPiSAX

approach, while DbasicPiSAX is totally unbalanced. The number of time series, for in-

stance, in the case of DbasicPiSAX, ranges from 0 (which means an empty partition) to

100 millions (i.e., 10% of the data is indexed on one partition out of 320). DiSAX is per-

fectly balanced in the index construction phase owing to its sequential split of the data

in the partitioning phase, but totally imbalanced in querying because it has to send the

whole batch of queries to all partitions, leading to poor performances as illustrated in

the remaining of our experiments.

Figure 3.9 reports the performance gains of our parallel approaches on the central-

ized version of iSAX2+ on our synthetic and real datasets. The results show that DPiSAX

is between 40 and 120 times faster than iSAX2+. We observe that the performance gain
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Figure 3.7 – Construction time as a function of cluster size. DPiSAX and DiSAX have
has a near optimal parallel speed-up. With 1 billion TS from the TexMex dataset.

depends on the dataset size in relation to the number of Spark nodes used in the de-

ployment. Note that the time Spark needs to deploy on 32 nodes is accounted for in our

measurements. Thus, given the very short time needed to construct the DPiSAX index

on the seismic dataset (420 seconds), the proportion of time taken by the Spark deploy-

ment when compared to index construction, is higher than the much larger Random

Walk dataset.

Our experiments with varying leaf capacity show that this parameter has a negligible

e(ect on performance (results omitted for brevity). This is because the RDD implemen-

tation used by Spark avoids the performance penalty related to disk I/O, which is heavily

a(ected by the choice of the leaf capacity [12].

3.4.3 Query Performance

In the following experiments, we evaluate the querying performance of our algorithms,

and compare them to the state of the art. In the case of our synthetic data, we generate

Random Walk queries with the same distribution as described in Section 3.4.1. For the



3.4 Performance Evaluation 51

 1

 10

 100

 1000

 10000

 100000

 0  50  100  150  200  250

N
u

m
b

e
r 

o
f 

n
o

d
e

s 
in

 lo
ca

l i
n

d
e

x

Partition

DPiSAX
DbasicPiSAX

DiSAX
Average iSAX2+

(a) number of nodes

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 0  50  100  150  200  250

N
u

m
b

e
r 

o
f 

ti
m

e
 s

e
ri
e

s

Partition

DPiSAX

DbasicPiSAX

DiSAX

(b) number of time series

 5

 10

 15

 20

 25

 30

 35

 0  50  100  150  200  250

L
o

ca
l i

n
d

e
x 

d
e

p
th

Partition

DPiSAX
DbasicPiSAX

DiSAX

(c) Local index depth

Figure 3.8 – Load balance in partitions: distribution of the number of nodes (a), of the
number of time series (b), and of index depth (c), sorted by decreasing order in the par-
titions. The strong imbalance of DbasicPiSAX is the main reason of failure on massive
datasets (ı.e., above 1 billion TS).
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Figure 3.9 – Performance gain on iSAX2+ in construction time, over seismic (40 mil-
lions TS), Random Walk (RW, 1 billion TS) and TexMex (1 billion TS), with a cluster of
32 nodes.

seismic data, we obtained seismic time series from the same IRIS Seismic Data Access

repository [30] to be used as queries. In the case of the TexMex corpus, similar series

correspond to similar images. The corpus contains 104 example queries together with

information about which image in the corpus is the nearest neighbor. In any dataset, for

each time series t in the query batch, the goal is to check if the approach is able to "nd

the k time series that are considered to be the most similar to t in this dataset, both with

exact and approximate K-NN search.

Figure 3.10 compares the search time of approximate k nearest neighbors queries

for the parallel approaches proposed in this work. We can observe that the response

time increases with the number of queries for all approaches. However, for DPiSAX

the search time is lower than DbasicPiSAX (owing to the better partition balancing) and

much better than DiSAX (owing to DPiSAX’s cability of splitting the query batch and

redirect the queries to the adequate partitions). In our experiments, we also compared

the search time of parallel approaches to that of iSAX2+ for answering approximate k

nearest neighbors queries with a varying size of query batch. We observed that the

approximate search time of DPiSAX is better than that of the iSAX2+ by a factor of up
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Figure 3.12 – Cumulative time (Indexing + Exact 10-NN) over Random Walk dataset
(limited to 1 billion TS because DbasicPiSAX does not scale on bigger datasets), cluster
of 32 nodes.

to 16 (e.g., the search time for 10 millions queries is 2270 sec for iSAX2+ and 138 sec for

DPiSAX).

Figure 3.11 gives the exact search run time of our parallel approaches on the index

constructed over 1 billion time series. We observe that DPiSAX is always faster than

DbasicPiSAX and DiSAX, owing to its near ideal load balance.

Figure 3.12 compares cumulative time (Indexing + Exact 10-NN) of DPiSAX, Dba-

sicPiSAX and DiSAX to PLS. A direct use of PLS is justi"ed under 1K queries. Above

that limit, the cumulative time of building the index and querying is much lower for our

approaches, which are the clear winners.

Figure 3.13 illustrates the performance gains of our approaches on the centralized

version of iSAX2+ and on PLS on synthetic and real world datasets, with batches of

10K queries (indexing time not included). We observe that DPiSAX and DbasicPiSAX

have the best performance, owing to their query redirection mechanisms. However,

DbasicPiSAX is not always as e$cient as DPiSAX because of a less balanced partitioning.

DPiSAX is generally between 19 and 43 times faster than iSAX2+ and PLS.
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Figure 3.13 – Performance gain (query only) of our parallel approaches on iSAX2+ and
PLS, for exact 10-NN search time, batches of 10k queries, over seismic, Random Walk
(RW) and TexMex datasets.

3.5 Conclusions

We proposed DPiSAX, a novel and e$cient parallel solution to index and query billions

of time series. We evaluated the performance of our solution over large volumes of real

world and synthetic datasets (up to 4 billion time series, for a total volume of 6TBs).

The experimental results illustrate the excellent performance of DPiSAX (e.g., an index-

ing time of less than 2 hours for more than one billion time series, while the state of

the art centralized algorithm needs several days). The results also show that the dis-

tributed querying algorithm of DPiSAX is able to process millions of similarity queries

over collections of billions of time series with very fast execution times (e.g., 140s for

10M queries), thanks to our load balancing mechanism. Overall, the experimental re-

sults show that by using our parallel techniques, the indexing and mining of very large

volumes of time series can now be done in very small execution times, which are impos-

sible to achieve using traditional centralized approaches.





Chapter 4

RadiusSketch: Massively Distributed

Indexing of Time Series

In centralized systems, one of the e$cient ways to index time series for the purpose

of similarity search is to combine a sketch approach with grid structures [17]. Random

projection is based on the idea of taking the inner product of each time series, considered

as a vector, with a set of random vectors whose entries are +1 or -1 [17]. The resulting

sequence of inner products is called a sketch vector (or sketch for short). The goal is to

reduce the problem of comparing pairs of time series to the problem of comparing their

sketches, which are normally much shorter.

To avoid comparing the sketch of each time series of the database with that of the

searched time series, [17] uses grid structures on pairs of sketch entries (e.g., the "rst

and second entry in one grid, the third and fourth in the second grid, and so on) to

reduce the complexity of search. Given the sketches s and s′ of two time series t and

t ′, the more grids in which s and s′ coincide, the greater the likelihood that t and t ′

are similar. In time series data mining, sketch-based approaches have also been used

to identify representative trends [18, 29], maintain histograms [67], and to compute ap-

proximate wavelet coe$cients [24], etc. All aspects of the sketch-based approach are

parallelizable: the computation of sketches, the creation of multiple grid structures, and

the computation of pairwise similarity. However, a straight parallel implementation of

57
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existing techniques would under-exploit the available computing power.

In this work, we propose a parallel solution to construct a sketch-based index over

billions of time series. Our solution makes the most of the parallel environment by

exploiting each available core. Our contributions are as follows:

• We propose a parallel index construction algorithm that takes advantage of dis-

tributed environments to e$ciently build sketch-based indices over very large vol-

umes of time series. In our approach, we provide a greedy technique that uses idle

processors of the system to increase query precision.

• We propose a parallel query processing algorithm, which given a query, exploits

the available processors of the distributed system to answer the query in parallel by

using the constructed index which has already been distributed among the nodes

of the system at construction time.

The rest of this chapter is organized as follows. In Section 4.1, we describe the details

of our parallel index construction and query processing algorithms. In Section 4.2, we

present a detailed experimental evaluation to verify the e(ectiveness of Sketch Approach

compared to iSAX2+. Finally, we conclude in Section 4.3.

4.1 Parallel Sketch Approach

This section reviews our algorithm for sketches, discusses the index structure required,

and then shows how to parallelize the construction both to increase speed and improve

quality.

4.1.1 The Sketch Approach

The sketch approach, as developed by Kushilevitz et al. [42], Indyk et al. [28], and

Achlioptas [2], provides a very nice guarantee: with high probability a random map-
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bolic Aggregate approXimation (SAX) distance. Here, a comparison on 1, 000 couples
of time series from our seismic dataset.

ping taking b points in Rm to points in (Rd)2b+1 (the (2b+1)-fold cross-product of Rd with
itself) approximately preserves distances (with higher "delity the larger b is).

In our version of this idea, given a point (a time series or a windo of a time series)

t ∈ Rm, we compute its dot product with N random vectors ri ∈ {1,−1}m. This results in
N inner products called the sketch (or random projection) of ti . Speci"cally, sketch(ti) =
(ti • r1, ti • r2, ..., ti • rN). We compute sketches for t1, ..., tb using the same random

vectors r1, ..., rN . By the Johnson-Lindenstrauss lemma [33], the distance ‖sket!(ti) −
sket!(tj)‖ is a good appproximation of ‖ti − tj‖. Speci"cally, if ‖sket!(ti) − sket!(tj)‖
< ‖sket!(tk) − sket!(tm)‖, then it’s very likely that ‖ti − tj‖ < ‖tk − tm‖.

Figure 4.1 gives an illustration of the Symbolic Aggregate approXimation distance

(SAX distance) and sketch distance, compared to the actual Euclidean distance. This is

done for 1, 000 couples of random time series from a seismic dataset (detailed in Section

3.2). We report in Figure 4.1 the distance between i) the corresponding sketches of size

120, and ii) the SAX distance, where the cardinality y is 128, the number of segments

w is 120, and the time series are not normalized. We did the same experiment with the

maximum possible values of parameters for SAX (i.e., the cardinality y is 512 and the
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number of segments w is 120 ) and, even in this case, the SAX distance between time

series is still much lower, i.e., approximately half of the actual one in average. The sketch

distance turns out to be a better approximation.

In our approach, we use a set of grid structures to hold the time series sketches. Each

grid maintains the sketch values corresponding to a speci"c set of random vectors over

all time series. Let |д | be the number of random vectors assigned to each grid, and N

the total number of random vectors, then the total number of grids is b = N /|д |. The
distance of time series in di(erent grids may be di(erent. We consider two time series

similar if they are similar in a given (large) fraction of grids.

Example 7. Let’s consider two time series t=(2, 2, 5, 2, 6, 5) and t ′=(2, 1, 6, 5, 5, 6). Suppose

that we have generated four random vectors as follows : r1=(1, -1, 1, -1, 1, 1), r2=(1, 1, 1, -1,

-1, 1), r3=(-1, 1, 1, 1, -1, 1) and r4=(1, 1, 1, -1, 1, 1). Then the sketches of t and t ′, i.e. the inner

products computed as described above, are respectively s=(14, 6, 6, 18) and s′=(13, 5, 11,

15). In this example, we create two grids, Grid1 and Grid2, as depicted in $gure 4.2. Grid1
is built according to the sketches calculated with respect to vectors r1 and r2 (where t has

sketch values 14 and 6 and t ′ has sketch values 13 and 5). In other words, Grid1 captures

the values of the sketches of t and t ′ on the $rst two dimensions (vectors). Grid2 is built

according to vectors r3 and r4 (where t has sketch values 5 and 18 and t ′ has sketch values

11 and 15). Thus, Grid2 captures the values of the sketches on the last two dimensions. We

observe that t and t ′ are close to one another in Grid1. On the other hand, t and t ′ are far

apart in Grid2.

4.1.2 Partitioning Sketch Vectors

In the following, we use correlation and distance more or less interchangeably because

one can be computed from the other once the data is normalized. Speci"cally, the Pear-

son correlation is related to the Euclidean distance as follows: Here x̂ and ŷ are obtained

from the raw time series by computing

x̂ =
x − avд(x)

σx
(4.1)
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Figure 4.2 – Two series (s1 and s2) may be similar in some dimensions (here, illustrated
by Grid1) and dissimilar in other dimensions (Grid2). The higher their similarity, the
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where σx =

√√
n∑

i=1

(xi − avд(x))2. (4.2)

Multi-dimensional search structures don’t work well for more than four dimensions

in practice [64]. For this reason, as indicated in Example 7, we adopt a "rst algorithmic

framework that partitions each sketch vector into subvectors and builds grid structures

for the subvectors as follows:

• Partition each sketch vector s of size N into groups of some size |д |.

• The ith group of each sketch vector s is placed in the ith grid structure (of dimen-

sion |д |).

• If two sketch vectors s and s′ are within distance c×d in more than a given fraction

f of the groups, then the corresponding time series are candidate highly correlated

time series and should be checked exactly.

For example, if each sketch vector is of length N = 40, we might partition each one

into ten groups of size |д | = 4. This would yield 10 grid structures. Suppose that the
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fraction f is 90%, then a time series t is considered as similar to a searched time series

t ′, if they are similar in at least ninw grids.

4.1.3 Massively Distributed Index construction

Our approach for sketch construction in massively distributed environments proceeds

in two steps: 1) Local construction of sketch vectors and groups, on the distributed com-

puting nodes; 2) Global construction of grids, with one computing node per grid.

4.1.3.1 Local construction of sketch vectors and groups

Before distributing the construction of sketch vectors, the master node creates a set of

N random vectors of size n, such that each vector ri =< ri,1, ri,2, · · · , ri,n >, contains
n elements. Each element ri,j ∈ ri is a random variable in {1,−1} with probability 1/2

for each value. Let R be the set of random vectors. R is duplicated on all workers (i.e.,

processors of the distributed system), so they all share the same random vectors.

Let D be the input dataset involving l times series. Each time series t ∈ D is of length

n: t =< t1, t2, · · · , tn >. D can be represented as a matrix as follows:

D =



t1 =< t1,1 · · · t1,n >
.
.
.

. . .
.
.
.

tl =< tl ,1 · · · tl ,n >



(4.3)

During the "rst step of sketch construction, each mapper takes a set of time series

P ⊆ D, and projects them to the random vectors of R, in order to create their sketches.

Let sj =< sj,1 sj,2 · · · sj,N >, be the sketch of a time series tj , then sj,i ∈ s is the inner

product between tj and ri . The sketch of tj can be written as sj = tj • R.

Let p be the number of time series involved in P , then the result of random projection

in a mapper is a collection X of p sketches, each corresponding to one times series of P :
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XN×l =



s1 =< s1,1 · · · s1,N >
.
.
.

. . .
.
.
.

sp =< sp,1 · · · sp,k >



(4.4)

The sketches are partitioned into equal subvectors, or groups, according to the size

of sketches and vectors. If, for instance, sketch vectors have length 40, and groups have

size four, we partition each vector into ten groups (of size four). For distribution needs,

the mapper assigns to each group an ID in [1..NumberO f Groups].

With a sequential construction of groups, where groups are contiguous, the mappers

simply have to emit < key,value > pairs wherekey is the unique ID of a group andvalue

is a tuple made of the data values of the sketch for these dimensions, and the time series

ID.

Example 8. Let us consider sj the sketch of series tj , such that sj =< 2, 4, 5, 9 >, and {д1,д2}
the set of two contiguous groups of size two that can be built on sj (i.e., д1 = (sj,1, sj,2),
д2 = (sj,3, sj,4)). In the simple version of our approach, this information is communicated

to reducers (in charge of building the corresponding grids) by emitting two < key,value >

pairs: < key = д1, value = ((2, 4), 1) > for the information about д1 and < key = д2,

value = ((5, 9), 1) > for the information about д2.

4.1.3.2 Optimized shu*ling for massive distribution

In cases when a dimension may be involved in multiple groups, a mapper emits each

dimension ID (rather than the group ID) as the key, while the value embeds a couple,

made of the data value of the sketch for this dimension and the series ID. The goal is to

avoid sending redundant information that is repeated from one group to another. This is

even more important when the number of random groups is large, because redundancy

increases with the number of overlapping groups. Example 9 illustrates this principle.

Example 9. Let us consider the sketch and series of Example 8 (sj =< 2, 4, 5, 9 >). Let

us now consider {д1, ...,д5} a set of 5 groups of size two built on {sj,1, ..., sj,4}, the four

dimensions of sj . Here, д1 = (sj,1, sj,2), д2 = (sj,1, sj,3), д3 = (sj,1, sj,4), д4 = (sj,2, sj,3), д5 =



64 4. RadiusSketch: Massively Distributed Indexing of Time Series

(sj,2, sj,4) and there are overlapping groups. The basic approach described in Section 4.1.3.1

aims to emit a < key,value > pair, for each group, embedding dimension IDs, data values

and time series IDs. However, that implies communicating much redundant information.

That would be, for instance, key = (sj,1, sj,2) and value = ((2, 4), 1) for the information

about д1 in sj . However, sj,1 is involved in three di+erent groups and would therefore be

emitted three times as part of di+erent keys, resulting in unnecessary communication in the

shu;ing phase. This is why we choose to separate data transfer and grid construction. Grid

construction is partly realized by mappers, and also by reducers. Each mapper will send

a single dimension, the corresponding data value and the series ID, so the reducer builds

the grid upon receipt. For group д1, for instance, we would emit two pairs. In the $rst one,

we have key = (sj,1) and value = (2, 1). And in the second one, we have key = (sj,2) and
value = (4, 1). Then, for groupд2, there will be only one pair to emit, where key = (sj,3) and
value = (5, 1). This is the same forд3 where only one pair, embedding compact information,

has to be emitted.

4.1.3.3 Global construction of grids

Algorithm 9: Index construction

Input: Data partitions P = {P1, P2, . . . , Pn} of a database D and a collection R of
random vectors

Output: Grid structures
// Map Task

1 +atMapToPair( Time Series: T )
2 - Project T to R
3 - Partition sketch into equal groups
4 forall дroups do
5 emit (key: ID of group, value:(T ID and group data) )

// Reduce Task

6 reduceByKey( key: ID of group, list(values) )
7 - Use the list of values to build a d-dimensional grid structure
8 emit (key:ID of group, values : grid structure)

Reducers receive local information from mappers, from which they construct grids.



4.1 Parallel Sketch Approach 65

Algorithm 10: Query processing

Input: Grids Structures, a collection R of random vectors and a collection Q of
Query time series

Output: List of time series
// Map Task 1

1 +atMapToPair( Time Series: Tq )
2 - Project Tq to R
3 - Partition sketch into equal groups
4 forall дroups do
5 emit (key: ID of group, value: Tq ID and group data)

6 - Combine the values of the previous job result with the result of previous task,
where key: ID of group and value:(Grid Structure , list(values))

// Map Task 2

7 +atMapToPair( key: ID of group, value:(Grid Structure , list(values)) )
8 foreach group in values do
9 if group ∃ Grid Structure then

10 emit (key: Tq ID, value: IDs of the found time series)

// Reduce Task

11 reduceByKey( key: Tq ID, value: list(values) )
12 foreach found time series do
13 - Computes the number of occurrence
14 if the found time series has the greatest count value then
15 emit (key: Tq ID, value: ID of the found time series)

More precisely, in the reduce phase, each reducer receives a group ID, and the list of all

generated values (group data and sketch ID). It uses the list to build a d-dimensional grid

structure. Each grid is stored in a d-dimensional array in the mappers main memory

or in HDFS (Hadoop Distributed File System), where each group is mapped to a cell

according to its values. The pseudo-code of our index construction in Spark is shown in

algorithm 9.
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4.1.4 F-RadiusSketch

The above framework circumvents the curse of dimensionality by making the groups

small enough that grid structures can be used. Our goal is to achieve extremely high

recall (above 0.8) and reasonable precision (above 0.58). Increasing the size of the sketch

vector improves the accuracy of the distance estimate but increases the search time.

In our experiments, accuracy improved noticeably as the sizes increased to about 256.

Beyond that, accuracy does not improve much and performance su(ers. Because the

dimensions used for comparison in the grids do not have to be disjoint, we build grids

based on random and possibly overlapping combinations of dimensions. Our strategy is

to choose the same number of combinations as the available processors.

Let the similarity sim(t , t ′) of two series be the fraction of grids where t and t ′ fall

in the same cell, for all possible grids. We show that by increasing the number of grids,

the standard error in the computed similarity of t and q decreases. LetG be the set of all

grids which can be generated for the sketches. Suppose p is the percentage of the grids

of G, in which q and t are similar. Let Gk be the set of n grids randomly selected from

G, andm(Gk) be the fraction of the grids of Gk in which t and q are similar. Let ∆m be

the standard error in m(Gk), i.e., ∆m = |p −m(Gk)|. The selection of Gk grids from G

can be considered as a sampling process. We know from statistics [35] that by increas-

ing the number of samples, the standard error of the mean of samples decreases. Thus,

increasing the number of random grids decreases the standard error of m(Gk). When

the samples are independent, the standard error of the samples mean is computed as:

∆m =
δ√
k
where δ is the standard deviation of samples’ distribution. The samples aren’t

independent in our case because the grids may overlap, but this is a suggestive approx-

imation. Our goal in random combinations is to get as close as possible to the best

possible results of sketches, in order to lower the error. This goal can be achieved by

adjusting the number of random groups where, according to the discussion above, the

error decreases with the number of random groups.
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Figure 4.3 – Query processing in RadiusSketch. Each mapper identi"es the cell that
correspond to a query and emits the IDs of the corresponding time series (a). If there is
not enough information the mapper does a broader search in the adjacent cells (b).

4.1.5 Query processing

Given a collection of queries Q , in the form of time series, and the index constructed

in the previous section for a database D, we consider the problem of "nding time series

that are similar to Q in D. We perform such a search in three steps, as follows.

Step 1: map. Each mapper receives a subset of the searched time series Q′ ⊂ Q and

the same collection R of random vectors that was used for constructing the index (see

Section 4.1.3.1). The mappers generate in parallel the sketch vector for each given time

series t in their subset of queries, and partition the sketch vectors into groups (the same

dividing principle into groups used for constructing the grid structures is applied). Each

mapper emits the ID of groups as the key, and the sketch ID (i.e., query ID) coupled with

group’s sketch data as value.

Step 2: map. Each mapper takes one or several grid structures of the index and

the emitted groups of step 1 that correspond to the chosen grids. For each sketch of

a searched time series t in a group, the mapper checks in the corresponding grid, the

cell that contains data points similar to t , where each data point contains the ID of the

corresponding times series in the grid structure as depicted in Figure 4.3a. For each time

series t ∈ Q , and for each times series t ′ that belongs to the same cell as t in the grid
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structure, the mapper emits a key-value pair, where the key is the ID of t , and the value

is the ID of t ′.

Step 3: reduce. In the reduce phase, each reducer computes for each given key (i.e.,

the ID of the searched time series) the count of each emitted value, i.e., the IDs of the

found time series in di(erent grids. Then, for the searched time series, the reducer emits

to HDFS the ID of the time series that has the greatest count value.

The pseudo-code of query processing for Spark is given by Algorithm 10.

Searching for the k-nearest neighbours (k-NN) of the time series Q is done as in the

previous section 4.1.5 in three steps steps. The di(erence is that in Step 2, each mapper

returns for each searched time series, k candidate times series from the grid. In addition,

in Step 3, for each query t , k candidates that have the highest counts are returned as

the answer to the query t . Sometimes, in Step 2, the mapper does not "nd enough data

points in cell c, leading to a lack of information for time series retrieval on the third step.

In such cases, all the neighbors of c will be visited until k points are found, as depicted

in "gure 4.3b.

4.2 Experiments

In this section, we report experimental results that show the quality and the performance

of our parallel solution for indexing time series.

We evaluate the performance of two versions of our solution: 1) RadiusSketch that is

the basic version of our parallel indexing approach with partitioning; 2) F-RadiusSketch

(Fully Parallel Sketch) that includes RadiusSketch and a random overlapping combina-

tion technique that improves quality by using idle machines to create new groups whose

sketch indexes overlap with the partitioned groups. We compare our solutions with the

most e$cient version of the iSAX index (i.e., iSAX2+2) proposed in [12]. We imple-

mented two versions of our approach, one for centralized environments and the other

version on top of Apache-Spark [78] for a distributed environment, using the Java pro-

gramming language. The iSAX2+ index [12] is also implemented with Java, in a central-
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ized version only.

The parallel experimental evaluation was conducted on a cluster of 32 machines,

each operated by Linux, with 64 Gigabytes of main memory, and Intel Xeon X5670 CPU

and 250 Gigabytes hard disk. The centralized versions of sketches and iSAX2+ were

executed on a single machine with the same characteristics.

Our experiments are divided into two sections. In Section 4.2.2, we measure the grid

construction times with di(erent parameters. In Section 4.2.3, we focus on the query

performance of the sketch approach, both in terms of response time and accuracy.

4.2.1 Datasets and Setting

4.2.1.1 Datasets

We carried out our experiments on both real-word and synthetic datasets. The "rst one

is a seismic dataset of 40 million time series, where each time series has a length of 256.

It has a total size of 491 Gigabytes. For the second one, we generated a dataset of 500

million time series using a randomwalk data series generator, each data series consisting

of 256 points. At each time point the generator draws a random number from a Gaussian

distribution N(0,1), then adds the value (which may be negative) of the last number to

the new number. The total size of our synthetic dataset is 1 Terabytes.

4.2.1.2 Parameters

Table 4.1 shows the default parameters (unless otherwise speci"ed in the text) used

for each approach. For Sketch and RadiusSketch, the number of groups is given by

SketchSize/ GroupSize . For F-RadiusSketch, the number of groups may be up to 256,

depending on the number of exploited cores. When necessary, parameters are speci"ed

in the name of the approach reported in our experiments. For instance, Sketch(4, 120)
stands for the sketch approach with group size = 4 and sketch size = 120 (and the

number of groups is 120/4 = 30, since this is the default number of groups) while
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F −RadiusSketch(2, 60, 256) stands for F-RadiusSketch with groups of size 2, sketches of

size 60 and the number of groups is 256

Method Parameters Method Parameters

F-RadiusSketch Group size = 2 iSAX2+ Threshold = 8,000

Sketch size = 60 Word length w = 8

Number of groups = 256

RadiusSketch Group size = 2 Sketch Group size = 2

Sketch size = 120 Sketch size = 60

Table 4.1 – Default parameters

4.2.2 Grid Construction Time

In this section, wemeasure the index construction time in RadiusSketch and F-RadiusSketch,

and compare it to the construction time of the iSAX2+ index.

Figures 4.4 and 4.5 report the index construction times for both of the tested datasets.

The index construction time increases with the number of time series for all approaches.

In our distributed testbed, the index construction time is lower than it is in a centralized

environment, with time reduced almost linearly. Figure 4.4 reports the construction

time of centralized approaches (iSAX2+ and sketches) in days, while the scale unit is in

minutes for RadiusSketch (60 groups of size 2) and F-RadiusSketch (256 groups of size

2). For 500 million time series, on the random walk dataset, the RadiusSketch index is

built in 35 minutes on 32 machines, while the iSAX2+ index is built in more than 3 days

on a single node.

To illustrate the parallel speed-up of our approach, Figures 4.6a and 4.6b show the

relationship between the execution time and the number of nodes. For both of our ap-

proaches, we report the total construction timewith andwithout I/O cost (e.g., RadiusSketch-

I/O is without I/O cost). The results illustrate a near optimal gain for F-RadiusSketch on

the random walk dataset. For instance, the construction time is almost 60 minutes with-

out I/O cost with 8 nodes, and drops down to 30 minutes without I/O cost for 16 nodes
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Figure 4.4 – Construction time as a function of dataset size (random walk dataset).
Parallel algorithms (RadiusSketch and F-RadiusSketch) are run on a cluster of 32
nodes. Sequential algorithms (iSAX2+ and Sketch) are run on a single node.
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Figure 4.5 – Construction time as a function of dataset size (seismic dataset). Parallel
algorithms (RadiusSketch and F-RadiusSketch) are run on a cluster of 32 nodes. Se-
quential algorithms (iSAX2+ and Sketch) are run on a single node.
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(a) random walk dataset

(b) seismic dataset

Figure 4.6 – Construction time as a function of cluster size. F-RadiusSketch has a near
optimal parallel speed-up on the random walk dataset.
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(a) random walk dataset

(b) seismic dataset

Figure 4.7 – Shu|ing as a function of dataset size. The shu|ing costs of RadiusSketch
and F-RadiusSketch increase linearly.
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(a) random walk dataset

(b) seismic dataset

Figure 4.8 – Search time of sketch versions and iSAX2+. Parallel algorithms (RadiusS-
ketch and F-RadiusSketch) are run on a cluster of 32 nodes. Sequential algorithms
(iSAX2+ and Sketch) are run on a single node.
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(a) random walk dataset

(b) seismic dataset

Figure 4.9 – The e(ect of the number of combinations on recall is roughly logarithmic
and monotonically increasing (Avg. value for 1M queries).
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(a) random walk dataset

(b) seismic dataset

Figure 4.10 – Recall of sketches and iSAX2+ (Avg value for 1M queries). Increasing
the number of grids with F-RadiusSketch gives higher recall. Parallel algorithms (Ra-
diusSketch and F-RadiusSketch) are run on a cluster of 32 nodes. Sequential algorithms
(iSAX2+ and Sketch) are run on a single node.
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(a) random walk dataset

(b) seismic dataset

Figure 4.11 – Precision of sketches and iSAX2+ (Avg value for 1M queries). Increasing
the number of grids with F-RadiusSketch gives higher precision. Parallel algorithms
(RadiusSketch and F-RadiusSketch) are run on a cluster of 32 nodes. Sequential algo-
rithms (iSAX2+ and Sketch) are run on a single node.
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(i.e., the in-memory construction time is reduced by a factor of two when the number of

nodes is doubled).

Figures 4.7a and 4.7b show the shu|ing cost for a varying number of time series. We

observe that the shu|ing cost increases linearly, which illustrates that our approaches

are able to scale on massively distributed environments. We also observe a very similar

shu|ing cost between F-RadiusSketch and RadiusSketch. This result is mainly due to

the shu|ing optimization presented in Section 4.1.3.2.

4.2.3 Query Performance

Given a query q, let TP , TN , FP and FN be the true positive/negative and false posi-

tive/negative results of an index, respectively. To evaluate the retrieval capacity of an

index, we consider two measures:

• Recall: we search for the 20 most similar series to q according to the index. Then,

we compare the result to a linear search with q on the whole dataset, where the

top 10 similar series are returned. The number of true positive candidate series

returned by the index is counted among the top 20 series given by the index.

• Precision: here, the same principle is applied but restricted to the top 10 series

returned by the index.

In both cases, we set precision = VP/(VP + FP) and recall = VP/(VP + FN ). In
the following experiments, for the seismic dataset the queries are time series randomly

picked from the dataset. For the random walk dataset, we generate random queries with

the same distribution. For each time series t in the query, the goal is: i) to check if the

approach is able to retrieve t (if it exists in the case of random walk); and ii) to "nd the

nine other time series that are considered to be the most similar to t in the dataset.

Figures 4.8a and 4.8b compare the search time of the sketch approaches to that of

iSAX2+ for answering queries with a varying size of query batch. These "gures show

that, in our experiments, the search time of RadiusSketch and F-RadiusSketch is better
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than that of the iSAX2+ by a factor of 13, e.g., the search time for 10 million queries is

2700s for iSAX2+ and 200s for F-RadiusSketch.

Figures 4.9a and 4.9b illustrate the impact of the number of combinations (i.e number

of groups) on the recall of F-RadiusSketch. We observe that the recall increases with the

number of groups. For instance, when the number of groups is 256, we observe a recall

of 0.80 for the random walk dataset and 0.55 for the seismic dataset. This shows the

trend of the recall as a function of the number of combinations. The e(ect is roughly

logarithmic and monotonically increasing.

Figures 4.10a and 4.10b illustrate the recall of di(erent tested approaches, with vary-

ing parameters for the sketch approaches. For all the settings, the recall performance

of sketches is higher than iSAX2+. We observe that F-RadiusSketch outperforms all the

other approaches when the number of combinations is maximum. For instance, with 256

groups, the recall of F-RadiusSketch is up to 80%, while that of iSAX2+ is 26%.

The same experiment has been done to study precision, with very similar results as

reported in Figures 4.11a and 4.11b.

4.3 Conclusion

RadiusSketch is a simple-to-implement high performance method to perform similar-

ity search at scale. It achieves better runtime performance and better quality than its

state-of-the-art competitor iSAX2+ in a sequential environment. Further, RadiusSketch

parallelizes naturally and nearly linearly.



Chapter 5

E&cient Parallel Methods to Identify

Similar Time Series Pairs Across

Sliding Windows

In this chapter, we address the problem of "nding the highly correlated pairs of time

series over a time window and then sliding that window to "nd the highly correlated

pairs over multiple windows such that each successive window starts only a little time

after the previous window. Doing this e$ciently and in parallel could help in applica-

tions such as sensor fusion, "nancial trading, or communications network monitoring,

to name a few. We propose a parallel incremental sketching approach that gives linear

speedup over most of its steps and reduces the quadratic work by communicating time

series identi"ers instead of time series themselves. We compare our approach with the

state of the art nearest neighbor method iSAX [12].

The rest of this chapter is organized as follows. In Section 5.1, we give the motivation

and an overview of our work. In Section 5.2, we formally de"ne the problem we address,

and in Section 5.5, we describe the details of our solution. In Section 5.4, we evaluate the

performance of our solution through experiments in a distributed environment using

real and synthetics datasets. Finally, in Section 5.5 we conclude.

81
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5.1 Motivation and Overview of the Proposal

An easy-to-understandmotivating use case for "nding slidingwindows correlation comes

from "nance. In that application, the time series consist of prices of trades of di(er-

ent stocks. The problem is to "nd pairs of stocks whose return pro"les look similar

over the most recent time period (typically, a few seconds). A pair of time series (e.g.

Google and Apple prices) that were similar before and have since diverged, where say

Google went up more than Apple, might present a trading opportunity: sell the one

that has gone up relative to the other and buy the other one. The return pro"le is

based on the weighted average price (by volume) of the stock over time t (perhaps dis-

cretized in milliseconds), denoted wprice(t). The return at t is the fractional change,

(wprice(t) −wprice(t − 1))/wprice(t − 1).

While prices are stable over time (e.g. a stock whose price is 100 will tend to stay

around 100), the returns resemble white noise. We call such time series “uncoopera-

tive”, because standard dimensionality reduction techniques such as Fourier or Wavelet

Transforms either sacri"ce too much accuracy or reduce the dimensionality too little.

Random sketch-based methods and some other explicit encoding methods work well for

both cooperative and uncooperative time series. Moreover, the sketch-based methods

work nearly as well as Fourier/Wavelet methods for cooperative time series. So, for the

sake of generality, in this work we use the sketch method of [17], and compare the result

with the state-of-the-art explicit encoding method iSax [12].

The need for speed comes from increasing scale and the advantage of reacting quickly.

An irony of improving technology is that sensor speeds and numbers increase vastly

faster than computational speed. For this reason, linear or near linear-time algorithms

become increasingly vital to give timely responses in the face of the =ood of data. Inmost

applications, speed turns out to be of greater importance than completeness, so a minor

loss in recall is often acceptable as long as precision is high. In trading, for example,

there is only a "ctitious monetary loss in missing an opportunity, but the opportunities

a system reports should be real and must be timely to be actionable.

Our motivating example comes from sensor fusion for earth science. Correlations of

distant sensors in seismic data may indicate a large scale event. Consider, for example,
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a set of sensors spaced over several possible earthquake zones. Temporal correlations of

pairs of sensors over a time window may suggest that these pairs are responding to the

same seismic cause. Missing some correlations is acceptable, because a major event will

reveal many correlations so a recall of 90% or more is quite enough.

In this work, we propose ParCorr, an e$cient parallel solution for detecting similar

time series across sliding windows. ParCorr uses the sketch principle for representing

the time series. Our ParCorr solution includes the following contributions:

• A parallel approach for incremental computation of the sketches in sliding win-

dows. This approach avoids the need for recomputing the sketches from scratch,

after the modi"cations in the content of the sliding window.

• A partitioning approach that projects sketch vectors of time series into subvec-

tors and builds a distributed grid structure for the subvectors in parallel. Each

subvector projection can be processed in parallel.

• An e$cient algorithm for parallel detection of correlated time series candidates

from the distributed grids. In our algorithm, we minimize both the size and the

number of messages needed for candidate detection.

5.2 Problem De$nition

A streaming time series is a potentially unending series of values in time order. A data

stream, for our purposes, is a set of streaming time series. They are normalized to have

zero mean and unit standard deviation. Correlation over windows from the same or

di(erent series has many variants. This work focuses on the synchronous variation,

de"ned as follows:

Given a data stream of Ns streaming time series, a start time ps , and a window sizew ,

"nd, for each time windowW of sizew , all pairs of streaming time series ts1 and ts2 such

that ts1 during time windowW is highly correlated (over 0.7 typically) with ts2 during

the same time window.
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Euclidean distance is the target metric of the state of the art iSAX algorithm. In

addition, Euclidean distance is related to Pearson correlation as follows:

D2(x̂ , ŷ) = 2 ×m × (1 − corr (x ,y)) (5.1)

Here x̂ and ŷ are obtained from the raw time series by computing x̂ =
x−avд(x)

σx
,

where σx =
√∑m

i=1(xi − avд(x))2.m is the length of the time series. So, we o(er parallel

algorithms for both sliding window Euclidean and correlation metrics in this work.

5.3 Algorithmic Approach

Following [17], our basic approach to "nd similar pairs of sliding windows in time series

(whether Euclidean distance or Pearson correlation, for starters) is to compute the dot

product of each normalized time series over a window sizew with a set of random vec-

tors. That is, for each time series ti and window sizew and time period k ..(k +w −1), we
compute the dot product of ti[k ..k +w −1]with r random (−1/+1) vectors of sizew . The

r dot products thus computed constitute the “sketch” of ti at time period k ..(k +w − 1).
Next we compare the sketches of the various time series to see which ones are close in

sketch space (if w >> r , which is often the case, this is cheaper than working directly

on the time series) and then identify those close ones.

The theoretical underpinning of the use of sketches is given by the Johnson-Lindenstrauss

lemma [33].

Lemma 1. Given a collection C of m time series with length n, for any two time series
−→x ,−→y ∈ C , if ϵ < 1/2 and n = 9loдm

ϵ2
, then

(1 − ϵ) ≤ ‖ −→s (−→x ) − −→s (−→y ) ‖2

‖ −→x − −→y ‖2
≤ (1 + ϵ)

holds with probability 1/2, where−→s (−→x ) is the Gaussian sketch of−→x of at leastn dimensions.
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The Johnson-Lindenstrauss lemma implies that the distance ‖sket!(ti)−sket!(tj)‖
is a good appproximation of ‖ti−tj‖. Speci"cally, if ‖sket!(ti)−sket!(tj)‖ < ‖sket!(tk)−
sket!(tm)‖, then it’s very likely that ‖ti − tj‖ < ‖tk − tm‖.

The sketch approach, as developed by Kushilevitz et al. [42], Indyk et al. [28], and

Achlioptas [2] makes use of these guarantees. Note that the sketch approach is closely

related to Locality Sensitive Hashing [25], by which similar items are hashed to the same

buckets with high probability. In particular, the sketch approach is very similar in spirit

to SimHash [14], in which the vectors of data items are hashed based on their angles

with random vectors. The major contribution of our work consists of combining an

incremental strategy with a parallel mixing algorithm and an e$cient communication

strategy.

5.3.1 The case of sliding windows

In the case of sliding windows, we want to "nd the most similar time series pairs at

jumps of a basic window b, e.g. for windows in time ranges 0 to w − 1 seconds, b to

b +w − 1 seconds, 2b ..2b +w − 1, ... where b << w .

There are two main challenges:

1. If we compute the sketches from scratch at each basic window, we are doing some

redundant computation. We call that the naive method. Instead, we want to compute

the sketches incrementally and in parallel.

2. When scaling this to a parallel system, we want to reduce communication costs

as much as possible. We need to develop good strategies for this as communication is

quadratic in the number of execution nodes, so constant coe$cients matter.

5.3.2 Parallel incremental computation of sketches

To explain the incremental algorithm consider the example of Figure 5.1. The sketch for

random vector v1 is the dot product of the time series with v1, i.e. 1× (−1)+ 2× 1+ ... +
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Figure 5.1 – A streaming time series, two random vectors, and the sketches that cor-
respond to their dot product before and after the update on the data stream. The "rst
sketch of the time series is computed on the six "rst values, and the second sketch is
computed on the six last values. After the update, the “outdated” values are removed
and the “incoming” ones are added to the streaming time series, so the work is propor-
tional to the size of the basic window rather than the full window.

4 × (−1) = 4.

Now if the basic window is of size 2, as illustrated by the “outdated” and “incoming”

boxes of Figure 5.1, then we add the next two points of the time series (in this case having

values (2, 1) and generate two more random +/- 1 numbers for each random vector, in

this case (−1,−1) for v1 and (−1, 1) for v2. To update the dot product for v1 we subtract

the contribution of the oldest two time points, viz. 1 × (−1) + 2 × 1 = 1, and add in the

contribution of 2× (−1)+ (1×−1) = −3 yielding a new sketch entry of 4− 1+ (−3) = 0.

That illustrates the idea of incremental updating.

In general, the algorithm proceeds as following:

1. Partition time series among parallel sites. Replicate r random +1/-1 vectors each

of size w to all sites. These random vectors will later be updated in a replicated

fashion.

2. For each site,
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(a) Initially, take the "rstw data points of each time series at that site and form

the dot product with all r random vectors. So each time series t will be rep-

resented by r dot products. They constitute sketch(t).
(b) while data comes in, when data for the ith basic window of size b appears

for all time series, extend each random vector by a new random +1/-1 vector

of size b. Then for each time series t and random vector v , update the dot

product of t with v by subtracting v[0..b − 1] · t[(i − 1)b −w ...ib −w − 1] and
adding v[w ..w + b − 1] · t[(i − 1)b ..ib − 1]. Change the sketch(t) with all the

updated dot products.

This step has time complexity proportional to the number of time series × size of

basic windows × the number of random vectors. It is perfectly parallelizable.

Step 1 calls for parallel updates of the local random vectors on each site. It is manda-

tory that all the sites share the same random vectors. A possible approach would be

for the master node, after the completion of each new sliding window, to generate new

vectors of +/- 1 having the basic window size, and send them to the sites. This takes

little time but is awkward to do in Spark. Our approach is therefore to generate and

send oversized random vectors (say, twice the size of the sliding window) at setup time.

A site then just has to loop inside the (oversized) random vector, simulating an endless

source of +/- 1 values that are the same for all the sites.

5.3.3 Parallel mixing

Once the sketch vectors have been constructed incrementally, the next step is to "nd

sketch vector pairs that are close to one another. Such pairs might then indicate that

their corresponding time series are highly correlated (or similar based on some other

distance metric).

Multi-dimensional search structures do not work well for more than four dimen-

sions in practice [64]. For this reason, as indicated in the following example, we adopt a

framework that partitions each sketch vector into subvectors and builds grid structures

for the subvectors.
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We "rst explain how this works by example and then show the pseudo-code.

Example 1. Suppose we have seven time series with sketch values as shown in Table

5.1.

Table 5.1 – A sample S of 7 time series with sketch values of length 6

time series sketch values
sketch(ts1) (11, 12, 23, 24, 15, 16)
sketch(ts2) (11, 12, 13, 14, 15, 16)
sketch(ts3) (21, 22, 13, 14, 25, 26)
sketch(ts4) (21, 22, 13, 14, 25, 26)
sketch(ts5) (11, 12, 33, 34, 25, 26)
sketch(ts6) (31, 32, 33, 34, 15, 16)
sketch(ts7) (21, 22, 33, 34, 15, 16)

First, we partition these into pairs and send the values [0 1] of each sketch vector

to site 1 (Table 5.2) where this will be formed into a grid (and the time series identi"ers

will be placed in cells (i,j), e.g., (31,32)). Analogously, we send partitions [2 3] and [4 5]

of each sketch vector to sites 2 and 3 respectively, where the second and third grids will

be formed. In the "rst grid, ts1, ts2, and ts5 map to the same grid cell; ts6 is by itself;

and ts3, ts4, and ts7 all map to the same cell (Table 5.3). Thus, in grid 1 we have three

partitions of time series identi"ers. If two time series are in the same partition, then they

are candidates for similarity.

Now we construct a mapping ts_to_node that maps time series identi"ers to nodes

(for now, think of each node as a single computational site, but one could imagine placing

many nodes on a single site or spreading a node amongmany sites). For this example, let

us say ts_to_node is the identity function. So we send the relevant parts of the partition

ts1, ts2, ts5 to nodes 1, 2, and 5. Similarly, we send the relevant parts of ts3, ts4, and ts7 to

nodes 3, 4, and 7. And so on (Table 5.4). Assuming the “opt” communication strategy (see

next subsection), the relevant part of a partition with respect to a time series t consists of

t itself and the time series with identi"ers higher than t . We call that a “candidate cluster

of time series”. We ignore clusters with just one element, as pairs cannot be derived out

of them.
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Table 5.2 – Step 1 of the algorithm: sketch partitioning. Each sketch vector is parti-
tioned into three pairs. The ith pair of the sketch vector for each time series s goes to a
grid i. The values of the ith pair determine where in that grid the identifer s is placed.

sketch subvectors
[0 1] [2 3] [4 5]

sketch(ts1)
sketch(ts2)
sketch(ts3)
sketch(ts4)
sketch(ts5)
sketch(ts6)
sketch(ts7)

(11, 12)
(11, 12)
(21, 22)
(21, 22)
(11, 12)
(31, 32)
(21, 22)

(23, 24)
(13, 14)
(13, 14)
(13, 14)
(33, 34)
(33, 34)
(33, 34)

(15, 16)
(15, 16)
(25, 26)
(25, 26)
(25, 26)
(15, 16)
(15, 16)

assigned to grid / at site
1 2 3

Table 5.3 – Step 2 of the algorithm: grid construction. Time series placed in the same
grid cells are grouped in partitions.

grid cell time series IDs

1
(11, 12) ts1, ts2, ts5
(21, 22) ts3, ts4, ts7
(31, 32) ts6

2
(13, 14) ts2, ts3, ts4
(23, 24) ts1
(33, 34) ts5, ts6, ts7

3
(15, 16) ts1, ts2, ts6, ts7
(25, 26) ts3, ts4, ts5

Let us say we require that some fraction f of the grids should put two time series

in the same grid cell for us to be willing to consider that pair of time series to be worth

checking in detail. For this example, set f to 2/3 (Figure 5.2).

Each node takes care of those time series that map to that node. So for example,

node 1 shows that ts1 and ts2 satisfy the requirement. Node 2 shows nothing new con-

cerning ts2. Node 3 shows that ts3 and ts4 satisfy the requirement. Node 4 and node 5

show nothing new concerning ts4 and ts5 respectively. Node 6 shows that ts6 and ts7

satisfy the requirement. Node 7 shows nothing new (in fact the last node will never
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Table 5.4 – Steps 4 and 5 of the algorithm: "nding frequently collocated pairs (in the
example, at least 2 out of 3 grids).

node TS clusters
candidate pairs

f ≥ 2/3

ts_to_node(ts1)
ts1, ts2, ts5
ts1, ts2, ts6, ts7

ts1, ts2

ts_to_node(ts2)

ts2, ts5
ts2, ts3, ts4
ts2, ts6, ts7

ts_to_node(ts3)

ts3, ts4, ts7
ts3, ts4
ts3, ts4, ts5

ts3, ts4

ts_to_node(ts4)
ts4, ts7
ts4, ts5

ts_to_node(ts5) ts5, ts6, ts7

ts_to_node(ts6)
ts6, ts7
ts6, ts7

ts6, ts7

show anything new, so need not be considered). All those that satisfy the requirement

can be tested for direct correlation. In this example, this would entail computing correla-

tions on the last windows of lengthw of ts1 and ts2; ts3 and ts4; and ts6 and ts7 (Table 5.4).

Generalizing from this example, here is the algorithm:

1. Partition the sketch vectors, which all have length r , into groups of size k (e.g. if

r is 60 and k is 2, then the partition would be 0,1, 2,3, 4,5, ..., 58,59 and we would

take indexes 0 and 1 of each sketch vector and put it in the "rst partition. So each

partition would consist of N mini-vectors of size 2 each.).

2. Each site computes a grid and puts time series identi"ers in grid cell (Table 5.3).

So, for each site s ,

(a) for each time series t , place the identi"er of t in a grid cell corresponding to

sketch(t)[Is], where Is are the indexes assigned to site s.

(b) Next form a partition of the time series identi"ers such that each member of
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Figure 5.2 – Two series (s1 and s2) may be similar in some dimensions (here, illustrated
by Grid1) and dissimilar in other dimensions (Grid2). If the series are close in a large
fraction of the grids, they are likely to be similar. So, if that fraction exceeds some
threshold f (2/3 in the toy example), then the algorithm checks for explicit correlation.

the partition corresponds to a non-empty grid cell. So, two time series t1 and

t2 will fall into the same partition if sketch(t1)[Is] maps to the same grid cell

as sketch(t2)[Is]. Denote the partitioning induced by this grid search on site

s as partitioning(s).

(c) Each element of the partition p in partitioning(s) represents a set of time

series. If we sort them by their id, then p can represent ts_p_1, ts_p_2, ....

3. We estimate that two time series are close if they are in the same grid cells in a

fraction f of the grids. (The parameter f is determined by a calibration step that

in turn depends on the desired correlation threshold, as we will explain in the

experimental section.) We start by constructing “candidate clusters of time series”

based on each grid.

4. Send each candidate cluster of time series identi"er to every node corresponding

to the time series in that cluster (Table 5.4). Call the mapping function between

time series ids and nodes ts_to_node, to be de"ned as the “opt” strategy in the next

subsection ( For this discussion, we assume that ts_to_node is 1 to 1. If not, then

if a node has say the time series groups corresponding to i1, i2, and i3, then keep

those groups separate.)
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5. At each destination node, two time series are candidates for explicit analysis if

they are in the same grid cell for some fraction f of the grids (Table 5.4). If so,

compute the Pearson correlation on those two time series.

5.3.4 Communication strategies for detecting correlated candi-

dates

Step 4 of the above algorithm requires the communication of information about each pair

(ti , t j) to one node of the system where its grid score (i.e., the number of grids in which

the two time series are in the same cell) is computed. This communication may be done

using di(erent strategies, which in turn can have a large impact on the performance of

our approach. This should come as no surprise: parallel approaches often require an

optimization of communication. We compare three strategies for communicating the

pairs of each grid cell:

• All pairs communication (basic): In this strategy, for each cell c that contains

|count(c)| time series, all pairs (ti , tj) are generated and sent to a reducer using

the pair as key (in the pair, we assume i < j). This ensures that all information

about a pair will be sent to one reducer where its grid score can be compared with

threshold f . This is the straightforward approach and will be denoted as “basic”

in the rest of this chapter.

• All time series to each responsible reducer (semi-opt): In this strategy, for

each time series t there is a reducer rt that is responsible for detecting the candidate

time series that are correlated to t . Given a grid cell c , for each time series t ∈
contents(c), all time series of c are sent to rt . If, among the time series that rt

receives, the number of occurrences of a time series t ′ is more than the threshold

f , then the pair (t , t ′) is considered as a candidate pair. This is the semi-optimized

(semi-opt in the rest of this chapter) strategy.

• Part of time series to each responsible reducer (opt): In this strategy (em-

bodied in step 4 of the algorithm of the previous sub-section), as in the previous

strategy, for each time series t there is a reducer rt that is responsible for detecting
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the time series that are potentially correlated to t . But here, only some of time

series of the cell are sent to rt . Let’s assume a total order on the ids of the time

series, say t1 < t2 < . . . < tn. Given a grid cell contents(c) = {t1, . . . , ts}, for each
time series t ∈ contents(c), the time series with ids higher than that of t are sent

to rt . The idea behind this strategy is that for a potential candidate pair (ti , tj),
we need only to count its occurrences in the one with the lower identi"er (i) of

the time series, not in both of them. As explained in the following analysis, this

strategy requires the least amount of communication and is denoted “opt” in the

rest of this chapter.

Below, we analyze the communication cost of the three strategies in terms of the size

and the number of messages to be communicated for each cell. In the “basic” strategy,

for the contents of each cell contents(c) = {t1, . . . , ts}, all pairs (ti , tj) are generated and

sent to the reducers. Thus, the number of messages for the cell c is equal to count(c) ×
(count(c) − 1)/2. The size of each message is 2, so the size of data transferred for cell c

is count(c) × (count(c) − 1). Note that in a distributed system, the number of messages

is the principal factor for measuring communication cost of the algorithms. Thus, this

approach does not have a good communication cost, as the number of messages for a

cell c is O(count(c)2).

In the “semi-opt” strategy, for each cell c , the node containing each grid communi-

cates (count(c)−1) time series to the node that must compute the grid score. This means

that the number of sent messages is count(c), and the total size of the communicated

data is count(c) × count(c) − 1 time series ids per grid cell. In this strategy the number

of messages is O(count(c)) which is much better than the basic strategy.

In the last strategy, i.e., “opt”, for each cell contents(c) = {t1, . . . , ts}, we communicate

count(c) messages per grid cell, i.e., one message to each node that is responsible for a

time series in contents(c). The size of the message depends on the id of the time series.

Let t1, . . . , ts be the order of the time series ids. Then, we send {t2, . . . , ts} to rt1 , {t3, . . . , ts}
to rt2 , etc. Therefore the total size of communicated data for cell c is (count(c) − 1) +
(count(c)−2)+ . . . +1 = count(c)×(count(c)−1)/2. This strategy sends the same number

of messages as “semi-opt” (i.e., O(count(c))) for each cell, but the size of communicated

data is smaller. Our experiments illustrate the bene"ts of this reduction in size.
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5.3.5 Complexity analysis of parallel mixing

Let us analyze the time and space needed by our approach to perform parallel mixing.

The redistribution in Step 1 is proportional to the number of time series times the

number of random vectors (because the number of random vectors equals the size of

each sketch vector). Note that it is independent of the size of the window. This step is

very well parallelizable at the level of nodes and linear in the number of time series. Step

2 (inserting into grids) is linear in the number of time series, cheaper than Step 1.

The dominant time of our approach is that of Steps 3 and 4 in which the responsible

node of each grid constructs the candidate clusters of time series, and sends them to the

corresponding node based on ts_to_node. If ts_to_node is many to one, then even in the

worst case the number of messages is proportional to the number of destination nodes

and the total message tra$c from a node is proportional to the square of the number of

time series × the size of each time series identi"er. That is a very pessimistic worst case

because it corresponds to all time series mapping to the same grid cell in every grid. As

we will see in the experimental section, the total tra$c per node is linear in the number

of time series in practice. Because time series ids are under 32 bits, the total tra$c is

light.

The last step, i.e. 5, is proportional to the size of the output, because a large fraction

of pairs that pass the sketch "ltering step in fact meet the correlation threshold.

The bulk of the space required for our approach is the space needed for keeping the

grids for indexing the sliding windows. This space depends on the number of grids and

the number of time series. The number of grids itself depends on the size of the sketches

in the sliding window, and the group size (number of dimensions in each grid). Let д be

the group size, s be the sketch vector size, and n the number of time series. Then, the

number of grids required for indexing the sliding window data is s
д
. In each grid, we

need to keep the id of each time series in its corresponding cell. Thus, the total space

required for storing the grids is O(n × idsize × s
д
), where n is the number of time series,

idsize is the size of an id, s is the sketch vector size and д the group size. Notice that in

practice, the size of our grid-based index is much less than the space required for keeping
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the time series in the sliding windows. For example, suppose the group size is 2, and the

sketch vector size is 32 (for a sliding window of size 256). Then, the space required to

store all grids is equivalent to 16 × n identi"ers, which is less than the space needed to

store n sliding windows of size 256.

So, in practice, the entire procedure requires work that is the sum of i (formation

of sketch vectors): number of time series × size of basic windows × number of random

vectors, ii (parallel mixing, grid computation): number of time series × number of ran-

dom vectors, iii (parallel mixing, candidate identi"cation) for each grid cell, square of

the number of time series × size of time series identi"ers, iv (for veri"cation of candi-

date pairs): number of highly correlated pairs × window size, This work, except for the

communication step (which depends on the communications infrastructure), is entirely

parallelizable. Which term dominates depends on how high the threshold is. For very

high thresholds, part iv will be negligible, iii will be small, and so i and ii will dominate.

If the threshold is low (not normally an interesting case) the algorithm could be nearly

as expensive as comparing every pair of time series.

5.4 Experiments

In this section, we report experimental results that show the quality and the performance

of our parallel incremental sketching approach, illustrating performance, scalability, re-

call, and precision. We compare our work with iSAX and show vastly improved speed

at some cost in recall.

The parallel experimental evaluation was conducted on a cluster of 32 machines,

with operating system Linux x86_64 kernel 3.10.0, each machine having 64 Gigabytes of

main memory, an Intel Xeon CPU with 8 cores and a 256 Gigabytes hard disk.

We implemented the approaches on top of Apache-Spark 1.6.2 [78], using the Java

programming language.

Data streams are simulated by distributing the data beforehand and using synchro-

nized sliding windows on each site. This setup allowed us to better evaluate the perfor-
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mance gains of our approach without depending on the speci"c characteristics or opti-

mization of any dedicated streaming environment (e.g. Spark streaming, Flink, Storm,

etc.).

5.4.1 Comparisons

We compare ParrCorr to:

• Parallel Linear Search. This is the straightforward comparison that compares

each time series to all the other ones, computing a Pearson correlation. Corre-

lations are sorted by decreasing order and the top-correlated ones are kept. It is

implemented in parallel (each computing node compares the series it contains to

all the series of the other nodes).

• iSax [12]. This index allows processing similarity queries using both an exact

and an approximate approach. iSax shows an improvement over Parallel Linear

Search: when a computing node receives a time series to be compared to its local

time series, rather than applying a linear search it will use a local iSax index as a

"lter to identify the most similar time series.

In the data stream context, these algorithms are applied from scratch, after each

update (each basic window-sizedmove of the slidingwindow). For iSax, the local indexes

have to be built again after each update.

5.4.2 Datasets

We carried out our experiments on both synthetic and seismic datasets.

Synthetic dataset: Each time series in our synthetic dataset consists of 2000 values.

At each time point, the generator draws a random number from a Gaussian distribution

N(0,1), then adds the value of the last number to the new number. The number of time
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series varies from one million to 100 million depending on the experiment. This type of

random walk generator has been widely used in the past. [3, 23, 6, 65, 11, 12, 80].

Seismic dataset: The real world data represents seismic time series collected from the

IRIS Seismic Data Access repository [30] at various earthquake zones. After preprocess-

ing, the seismic dataset contains 5 million time series of 2000 values each.

To detect seismic events, there are three main types of algorithms: energy detectors,

array detectors and matched "lter detectors. The latter is a new kind of detector, where

a representative time series is used as a template (i.e., a “matched "lter”) and correlated

against a continuous data stream to detect new occurrences of that same signal. How-

ever, such "lters require a large number of templates, making indexing an appealing

approach. A time series at a given sensor functions like a geophysical "ngerprint for

earthquakes. A seismic signal that closely matches a previous observation can be used

as evidence that the newly observed event must have occurred very close to the event

that generated the "rst observation. Moreover, if the signals are similar we can assume

that the characteristics of the earthquakes are similar. There are many examples where

almost identical signals produced by di(erent earthquakes have been observed. This is

typically the case during seismic crises that can last days or months, while similar signals

can be recorded even if years apart. Detecting such correlations is a small variation of

our problem, where all time series are compared with a few templates. Here we address

the harder problem of "nding all correlations among the set of time series. This might

be useful in an application in which we want to detect, in a real time fashion, where

similar seismic events are occurring.

5.4.3 Parameters

Table 5.5 shows the default parameters used for each experiment, unless otherwise spec-

i"ed. A typical application might have a large ratio between the sliding window size

and the basic window size, where the basic window indicates the time interval between

the recalculation of similarity. We’ve chosen a ratio of 50, which we have found to be

reasonable for many applications. ParCorr does better relative to the other algorithms

with a smaller basic window size of 10 for example, but 50 is more reasonable for high
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Table 5.5 – Default parameters

Parameters Value

Sliding Window Size 500
Basic Window Size 20
iSAX Word Length 8
Leaf Capacity Threshold 1,000
Basic Cardinality 2
Maximum Cardinality 512
Number Of Machines 32
Correlation Threshold 0.7

frequency measurements. The iSAX word length, leaf capacity, basic cardinality, and

maximum cardinality were chosen to be optimal for iSAX (and were taken from [12]).

All histograms in the "gures have error bars (usually so small as to be invisible) that

go from a minimum value to a maximum value (i.e. 100% con"dence interval) with the

histogram height representing the mean.

We calibrate the fraction f (needed for detecting candidate items in the grids) by

using a small sample database. We increase f until reaching the desired recall (e.g.,

0.95) on the small sample, and then we use the found fraction in our experiments on big

datasets.

5.4.4 Recall and Precision Measures

To understand these concepts in our applications, consider the correlation problem: we

want to "nd all pairs of time series that have at least a correlation of some speci"ed

threshold during a given window. Call that set Strue In that context, the recall of a

method that "nds a set Smethod is |(Strue ∩ Smethod)|/|Strue | and the precision is |(Strue ∩
Smethod)|/|Smethod |. This would also be true for Euclidean distances. These are completely

standard uses of these terms applied to pairs and similarity metrics.

In our experiments, the default correlation threshold for Pearson is 0.7. We have also

tried 0.8 and 0.9. With a Pearson threshold of 0.8, the sketch recall was over 96% and

the speedup compared with iSAX was a factor of 17.56. With a Pearson threshold of 0.9,
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the sketch recall was over 95.7% and the speedup compared with iSAX was a factor of

18. Given any Pearson correlation, the threshold for Euclidean distance is computed by

using formula 5.1.

5.4.5 Communication Strategies

Before presenting the results of our approach in detail, we evaluate here the impact of the

communication strategy to detect correlated pairs. This corresponds to the discussion

and analysis given in Section 5.3.4. We conducted this experiment on 5 million time

series, with a basicwindow of 32 and a slidingwindow of 256. As expected and illustrated

by Figure 5.3, our optimized strategy gives the best performance (response time), but the

size of the gain is surprising. Therefore, in the experiments presented below, we use this

optimized strategy.
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Figure 5.3 – Execution time (not including the pair checking time) for each of the com-
munication strategies introduced in Section 5.3.4. The algorithms are run on a cluster
of 32 nodes and 5 million time series (basic window of 32 and sliding window of 256).
The optimized strategy gives the best response time.
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Figure 5.4 – Execution time for the calculation of the correlations for each sliding win-
dow as a function of basic window size for the random walk dataset. The algorithms
are run on a cluster of 32 nodes and 5 million time series. The time for ParCorr in-
creases as the basic window size increases, because updating the sketch vector takes
slightly longer. All parameters other than basic window size are set to their values
from Table 5.5.
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Figure 5.5 – Execution time for the calculation of the correlations for each sliding win-
dow for the seismic dataset. The algorithms are run on a cluster of 32 nodes and 5 mil-
lion time series. All parameters are set to their values from Table 5.5.
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5.4.6 Results

Figure 5.4 shows that ParCorr is orders of magnitude faster for parallel correlation than

the iSAX methods for the random walk dataset, though its time increases as the basic

window size increases. For instance, with a basic window of 20, ParCorr takes at most

160 seconds to process a sliding window, while iSAX Approximate needs 1990 seconds.

We attribute this advantage to two factors: the calculation of sketches is incremental and

the parallelization of the algorithm is natural. These results also hold for the seismic data

as can be seen in Figure 5.5.
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Figure 5.6 – Execution time for the calculation of the correlations for each sliding win-
dow as a function of dataset size for the random walk dataset. The algorithms are run
on a cluster of 32 nodes. All parameters are set to their values from Table 5.5. Note
that ParCorr scales to larger datasets nearly linearly and the times remain practical.
The other methods exceeded the measurement window.

Figure 5.6 shows that ParCorr scales well to large datasets containing up to 100 mil-

lion time series. iSAX approximate is consistently about 50% faster than ISAX exact.

Our competitors (Parallel linear search, iSAX Approximate/Exact) do not scale since

they cannot handle more than 5 million time series due to the fact that both memory

usage and communication costs become hard to bear.

Figure 5.7 shows that both iSAX and ParCorr enjoy a roughly linear speedup, whereas

Figure 5.8 shows that ParrCorr is orders of magnitude faster in absolute time at all de-
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Figure 5.7 – SpeedUp: All algorithms enjoy linear speedup with roughly the same
slope as the number of processing nodes increase. All parameters are set to their val-
ues from Table 5.5.
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dow as a function of the number of processing nodes for the random walk dataset. The
algorithms are run on 5 million time series. All parameters are set to their values from
Table 5.5.
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Figure 5.9 – Execution time for each sliding window on a single node for the random
walk dataset. The dataset is 1 million time series. All parameters are set to their values
from Table 5.5.
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Figure 5.10 – Execution time for each sliding window on a single node for the seismic
dataset. The dataset is 1 million time series. All parameters are set to their values from
Table 5.5.
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grees of parallelization. ParCorr needs at most 598 seconds on 8 nodes (169 seconds on

32 nodes) while iSAX Approximate needs at most 13460 seconds (9784 seconds on 32

nodes).

Figure 5.9 shows that ParCorr’s performance (using Spark) is comparable to iSAX

(running natively without Spark) on a single node. ParCorr shows a small advantage

but not as much as in a parallel setting, because Spark entails some overhead. These

results are consistent with the results for the seismic data as shown in Figure 5.10.
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Figure 5.11 – Let Peuc be the set of pairs of time series whose "nal w values fall within
the distance threshold in the case of Euclidean distance. And let Pcorr be the set of
pairs of time series whose "nal w values fall above the threshold in the case of Pear-
son. The precision is the fraction of the set of pairs found by each algorithm that be-
long to Peuc or Pcorr, respectively. ParCorr has 100% precision because it checks can-
didate pairs that are produced by the sketch algorithm.

Figure 5.11 shows the high precision of ParCorr and iSAX. ParCorr veri"es all the

candidate pairs that the sketch "lter produces. iSAX Exact incorporates a veri"cation

step as well. These results hold also for seismic data as seen in Figure 5.13.

Figure 5.12 shows that iSAX Exact gives perfect recall because of its bounding box

guarantee. ParCorr gives no such guarantee, so for applications that require 100% recall,

iSAX Exact should be used. Empirically, ParCorr yields a recall of over 90%, as shown in

Figure 5.14.

The experiments on real and synthetic data show that ParCorr is fast, scales well,
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Figure 5.12 – Let Peuc and Pcorr be de"ned as in the caption of Figure 5.11. The recall
is the fraction of Peuc or Pcorr, respectively, that is found by each algorithm. Note that
iSAX exact gives higher recall than ParCorr.
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Figure 5.13 – For seismic precision, iSAX Exact and ParCorr both achieve 100% preci-
sion for Euclidean. ParCorr also achieves 100% precision for Pearson correlation.
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Figure 5.14 – For seismic data, iSAX Exact achieves perfect recall. ParCorr achieves
over 90% for both Euclidean and Pearson correlation.

guarantees 100% precision, and achieves very high recall. This reduction in recall is

acceptable for many applications, especially given the high gain in response time.

5.5 Conclusion

Finding similar pairs of time series on sliding windows is useful for many applications.

Methods to do so for hundreds of millions of time series in a highly e$cient and scalable

fashion is the contribution of this work. Compared with the previous state of the art

iSAX, our solution is faster and scalable while showing only very little loss in recall. For

many applications, where scalability is mandatory, this is highly bene"cial.



Chapter 6

Conclusions

This thesis is done in the context of parallel mining of time series inmassively distributed

environments. We have focused on the problem of time series indexing in big data,

aiming to improve and accelerate similarity query processing which is of high interest

for various applications that deal with big data sets. In this chapter, we summarize and

discuss our main contributions and we give some research directions for future work.

6.1 Contributions

This thesis includes the following main contributions related to time series indexing in

massively distributed environments.

6.1.1 Massively Distributed Time Series Indexing and Querying

with DPiSAX

In this contribution, our main challenge was the parallelization of the index creation

and the processing of queries in parallel using that index. The index, in this part of the

thesis, builds on the principles of iSAX. We proposed DPiSAX (Distributed Partitioned

107
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iSAX), our solution for large-scale indexing of time series using the iSAX representation.

By means of our distributed approach, indexing scales up to billions of time series. Our

proposal includes algorithms to query the index and to support exact and approximate

k-nearest neighbor queries. Our approach has been extensively evaluated with both syn-

thetic and real-world datasets. The high scalability of our solution DPiSAX comparing

to other alternatives con"rms its e(ectiveness.

6.1.2 RadiusSketch: Parallel Indexing of Time Series

In this part of the thesis, we addressed the problem of indexing and retrieving time se-

ries by means of sketches representations. Our main challenge was the parallelization

of the sketches and answering the queries in parallel using these structures. We have

proposed a random projection-based approach that scales nearly linearly in parallel en-

vironments and provides high-quality answers. Our proposal includes a parallel index

construction algorithm that takes advantage of distributed environments to e$ciently

build sketch-based indices over very large volumes of time series. We also proposed

a parallel query processing algorithm for approximate k-nearest neighbor queries. We

have extensively evaluated our approach using both synthetic and real-world datasets.

The sketch method, as we have implemented, is superior in both quality and response

time compared to the centralized state of the art approach.

6.1.3 ParCorr: E&cient ParallelMethods to Identify Similar Time

Series Pairs Across Sliding Windows

Here, we addressed the problem of all-pair parallel correlation detection across sliding

windows of time series in a data stream. The goal is to have an up-to-date result, at

any point in time, despite the demanding constraints of data streams. We have proposed

an e$cient parallel solution for detecting similar time series across sliding windows.

Our proposal uses the sketch principle for representing the time series. It includes a

parallel approach for incremental computation of the sketches in sliding windows, and

a partitioning approach that projects sketch vectors of time series into subvectors and
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builds a distributed grid structure. Our approach has been evaluated using real and

synthetics datasets. The results con"rm the e$ciency and almost linear scalability of

the proposed solution compared to the state of the art.

6.2 Directions for Future Work

The results presented in this thesis leave room to further improvement. For instance,

We may use Spark Streaming for "nding the highly correlated pairs of time series over

a time window. The main goal would be to make the system more scalable since Spark

Streaming is an extension of the core Spark API that enables scalable, high-throughput,

fault-tolerant stream processing of live data streams. This would require implementing

ParrCorr using DStreams and windowed DStream. Another possible future work con-

cerns a joint study of DPiSAX and RadiusSketch, in order to reach an e$cient approach

that would bene"t from both principles. This is an ongoing work that has already started

and builds on top of the results of this thesis. We give some preliminary results in the

following, with a "rst synthetic study of RadiusSketch and DPiSAX.

We started to compare the performance of two versions of our solution: 1) DPiSAX

that is the parallel implementation of iSax with the statistical partitioning described in

3; 2) RadiusSketch is the parallel sketch indexing approach with partitioning described

in 4. To that end, we measured the index construction times with di(erent parameters

(e.g., dataset size, cluster size, communication cost), and the query performance of the

two approaches, both in terms of response time and accuracy.

The experimental evaluation was conducted on the Nef platform, using a cluster of

16 machines. We carried out our experiments on the Random Walk dataset of 1 Billion

time series, where the length of each time series was 256. Table 6.1 shows the default

parameters (unless otherwise speci"ed in the text) used for each approach.
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Parameters

RadiusSketch Group size = 2

Sketch size = 60

DPiSAX iSAX word length = 8

Leaf capacity = 1,000

Basic cardinality = 2

Maximum cardinality = 512

Sampling fraction = 10%

Table 6.1 – Default parameters

First, we measured the index construction time of DPiSAX and RadiusSketch. Fig-

ure 3.3 reports the index construction times for all approaches on our Random Walk

dataset. We observe that the index construction time of RadiusSketch is slightly better

then DPiSAX, but they are generally not signi"cantly di(erent in our experiments.

Figure 6.1 – Construction time of DPiSAX and RadiusSketch for 1 billion Random
Walk time series

Second, we evaluated the querying performance of DPiSAX, and compared them to
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RadiusSketch. Given a query q, let T be the set of the true candidates and C the set of

the given candidates. In our experiments, we measured two metrics:

• Recall: |T ∩C |/|T |

• Precision: |T ∩C |/|C |

Note that in our experiments, we have |T | = |C |, thus recall is equal to precision.

This is why, we only report the results of precision.

Figure 6.2 – Search time for 1000 queries as a function of k nearest neighbors of
DPiSAX-exact, DPiSAX-Approximate, RadiusSketch

Figures 6.2 and 6.3 compares the search time of approximate and exact k nearest

neighbors queries for the parallel approaches. Figure 6.2 reports the response time of

DPiSAXwith exact search, which is much longer. For readability, we report in Figure 6.3

the response times of approximate approaches only. We can observe that the response

time increases with the number k nearest neighbors for RadiusSketch. However, for

DPiSAX the search time of approximatek nearest neighbors is nearly constant and lower

than RadiusSketch and exact k nearest neighbors.

Figures 6.4 illustrate the precision of di(erent tested approaches, with varying val-

ues of k , the number of nearest neighbors to be found. We observe that the recall of

DPiSAX-exact is the best (as expected). We also observe that RadiusSketch o(ers better
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Figure 6.3 – Search time for 1000 queries as a function of k nearest neighbors of
DPiSAX-Approximate and RadiusSketch

Figure 6.4 – Precision of RadiusSketch and DPiSAX (average value for 1000 queries).

performances than DPiSAX-Approximate. This is the trade-o( that has to be studied

in detail. We want to "nd new principles in each of these approaches, getting inspired

from the other, in order to improve and obtain better response times and/or better pre-

cision. RadiusSketch, for instance, may be "ne tuned for faster execution by reducing

the length of sketches. However, that has a negative impact on precision. This trade-o(

between response time and precision is classic for a large number of problems in com-
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puter science in general, and particularly for data analytics. It is at the core of this future

work.
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