C. Schlasza, P. Ostertag, D. Chrenko, R. Kriesten, and D. Bouquain, Review on the aging mechanisms in li-ion batteries for electric vehicles based on the fmea method, 2014 IEEE Transportation Electrification Conference and Expo (ITEC), pp.1-6, 2014.

J. Vetter, P. Novak, M. R. Wagner, C. Veit, K. Moller et al., Ageing mechanisms in lithium-ion batteries, Journal of Power Sources, vol.147, issue.2, pp.269-281, 2005.

J. Groot, State-of-health estimation of Li-ion batteries: Ageing models, 2014.

M. Safari, M. Morcrette, A. Teyssot, and C. Delacourt, Multimodal physics-based aging model for life prediction of li-ion batteries, Journal of The Electrochemical Society, vol.156, issue.3, pp.145-153, 2009.

J. Barlow, F. França, T. A. Gardner, C. C. Hicks, G. D. Lennox et al., The future of hyperdiverse tropical ecosystems, Nature, vol.559, issue.7715, pp.517-526, 2018.

A. D. Barnosky, E. A. Hadly, J. Bascompte, E. L. Berlow, J. H. Brown et al., Approaching a state shift in earth s biosphere, Nature, vol.486, p.52, 2012.

P. Bihouix, L'age des low tech, vers une civilisation techniquement soutenable, 2014.

P. Servigne and R. Stevens, Comment tout peut s'effondrer, petit manuel de collasologieà l'usage des générations présentes, 2015.

B. Zakeri and S. Syri, Electrical energy storage systems: A comparative life cycle cost analysis, Renewable and Sustainable Energy Reviews, vol.42, pp.569-596, 2015.

G. E. Blomgren, The development and future of lithium ion batteries, Journal of The Electrochemical Society, vol.164, issue.1, pp.5019-5025, 2017.

. Panasonic, Reference : the ncr18650 lithium-ion cell

K. Liu, Y. Liu, D. Lin, A. Pei, and Y. Cui, Materials for lithium-ion battery safety. Science Advances, vol.4, 2018.

M. Christian, A. Julien, K. Mauger, H. Zaghib, and . Groult, Comparative issues of cathode materials for li-ion batteries, Inorganics, vol.2, issue.1, pp.132-154, 2014.

A. Eftekhari, Low voltage anode materials for lithium-ion batteries. Energy Storage Materials, vol.7, pp.157-180, 2017.

K. Kerman, A. Luntz, V. Viswanathan, Y. Chiang, and Z. Chen, Practical challenges hindering the development of solid state li ion batteries, Journal of The Electrochemical Society, vol.164, issue.7, pp.1731-1744, 2017.

T. Placke, R. Kloepsch, S. Dühnen, and M. Winter, Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density, Journal of Solid State Electrochemistry, vol.21, issue.7, pp.1939-1964, 2017.

T. Ohzuku, Y. Iwakoshi, and K. Sawai, Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell, Journal of The Electrochemical Society, vol.140, issue.9, pp.2490-2498, 1993.

V. Agubra and J. Fergus, Lithium ion battery anode aging mechanisms, Materials, vol.6, issue.4, pp.1310-1325, 2013.

F. Grimsmann, T. Gerbert, F. Brauchle, A. Gruhle, J. Parisi et al., Determining the maximum charging currents of lithium-ion cells for small charge quantities, Journal of Power Sources, vol.365, pp.12-16, 2017.

K. Jalkanen, J. Karppinen, L. Skogström, T. Laurila, M. Nisula et al., Cycle aging of commercial nmc/graphite pouch cells at different temperatures, Applied Energy, vol.154, pp.160-172, 2015.

Y. Ji, Y. Zhang, and C. Wang, Li-ion cell operation at low temperatures, Journal of The Electrochemical Society, vol.160, issue.4, pp.636-649, 2013.

T. M. Bandhauer, S. Garimella, and T. F. Fuller, A critical review of thermal issues in lithium-ion batteries, Journal of The Electrochemical Society, vol.158, issue.3, pp.1-25, 2011.

G. Hautier, Prediction of new battery materials based on ab initio computations, Electrochemical Storage Materials: Supply, Processing, Recycling and Modelling, vol.1765, 2016.

E. Zvereva, D. Caliste, and P. Pochet, Interface identification of the solid electrolyte interphase on graphite, Carbon, vol.111, pp.789-795, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02143313

S. Shi, P. Lu, Z. Liu, Y. Qi, . G. Louis et al., Direct calculation of li-ion transport in the solid electrolyte interphase, Journal of the American Chemical Society, vol.134, issue.37, p.22909233, 2012.

Z. Seyed-mohammad-rezvanizaniani, . Liu, L. Babor, and J. Lee, Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle ev safety and mobility, Journal of Power Sources, vol.256, pp.110-124, 2014.

A. Jokar, B. Rajabloo, M. Désilets, and M. Lacroix, Review of simplified pseudo-two-dimensional models of lithium-ion batteries, Journal of Power Sources, vol.327, pp.44-55, 2016.

S. Santhanagopalan, Q. Guo, P. Ramadass, and R. E. White, Review of models for predicting the cycling performance of lithium ion batteries, Journal of Power Sources, vol.156, issue.2, pp.620-628, 2006.

Y. Chen and J. W. Evans, Thermal analysis of lithium-ion batteries, Journal of The Electrochemical Society, vol.143, issue.9, pp.2708-2712, 1996.

R. Darling and J. Newman, Modeling a porous intercalation electrode with two characteristic particle sizes, Journal of The Electrochemical Society, vol.144, issue.12, pp.4201-4208, 1997.

M. Xu, Z. Zhang, X. Wang, L. Jia, and L. Yang, A pseudo three-dimensional electrochemical-thermal model of a prismatic lifepo4 battery during discharge process, Energy, vol.80, pp.303-317, 2015.

T. Danner, M. Singh, S. Hein, J. Kaiser, H. Hahn et al., Thick electrodes for li-ion batteries: A model based analysis, Journal of Power Sources, vol.334, pp.191-201, 2016.

J. Newman and W. Tiedemann, Porous-electrode theory with battery applications, AIChE J, vol.21, pp.25-41, 1975.

D. Aurbach, . Gamolsky, Y. Markovsky, M. Gofer, U. Schmidt et al., On the use of vinylene carbonate (vc) as an additive to electrolyte solutions for li-ion batteries. Electrochimica Acta, vol.47, pp.1423-1439, 2002.

R. Mcmillan, H. Slegr, Z. Shu, and W. Wang, Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes, Journal of Power Sources, pp.20-26, 1999.

S. R. Sivakkumar, J. Y. Nerkar, and A. G. Pandolfo, Rate capability of graphite materials as negative electrodes in lithium-ion capacitors, Electrochimica Acta, vol.55, issue.9, pp.3330-3335, 2010.

J. Seong-jin-an, C. Li, D. Daniel, S. Mohanty, D. L. Nagpure et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (sei) and its relationship to formation cycling, Carbon, vol.105, pp.52-76, 2016.

M. Winter, P. Novak, and A. Monnier, Graphites for lithium-ion cells: The correlation of the first-cycle charge loss with the bet surface area, Journal of The Electrochemical Society, vol.145, issue.2, pp.428-436, 1998.

K. G. Gallagher, S. E. Trask, C. Bauer, T. Woehrle, S. F. Lux et al., Optimizing areal capacities through understanding the limitations of lithium-ion electrodes, Journal of The Electrochemical Society, vol.163, issue.2, pp.138-149, 2016.

T. Yamauchi, K. Mizushima, Y. Satoh, and S. Yamada, Development of a simulator for both properly and safety of a lithium secondary battery, Journal of Power Sources, vol.136, pp.99-107, 2004.

H. Kobayashi, Y. Arachi, S. Emura, H. Kageyama, K. Tatsumi et al., Investigation on lithium de-intercalation mechanism for li1-yni1/3mn1/3co1/3o2, Journal of Power Sources, vol.146, issue.1, pp.640-644, 2005.

N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Li-ion battery materials: present and future, Materials Today, vol.18, issue.5, pp.252-264, 2015.

J. Newman and K. E. Thomas-alya, Electrochemical Systems : third Edition. Electrochemical Society, 2004.

C. M. Doyle, Design and Simulation of Lithium Rechargeable Batteries, 1995.

Y. Guo, R. B. Smith, Z. Yu, D. K. Efetov, J. Wang et al., Li intercalation into graphite: Direct optical imaging and cahn-hilliard reaction dynamics, The Journal of Physical Chemistry Letters, vol.7, issue.11, p.27203128, 2016.

K. Persson, Y. Hinuma, Y. S. Meng, A. Van-der-ven, and G. Ceder, Thermodynamic and kinetic properties of the li-graphite system from first-principles calculations, Phys. Rev. B, vol.82, p.125416, 2010.

L. Cai and R. E. White, Mathematical modeling of a lithium ion battery with thermal effects in comsol inc. multiphysics (mp) software, Journal of Power Sources, vol.196, pp.5985-5989, 2011.

R. B. Smith, E. Khoo, and M. Z. Bazant, Intercalation kinetics in multiphaselayered materials, The Journal of Physical Chemistry C, vol.121, issue.23, pp.12505-12523, 2017.

M. Ecker, S. Kabitz, I. Laresgoiti, and D. U. Sauer, Parameterization of a physico-chemical model of a lithium-ion battery: Ii. model validation, Journal of The Electrochemical Society, vol.162, issue.9, pp.1849-1857, 2015.

M. Ecker, N. Nieto, S. Katz, J. Schmalstieg, H. Blanke et al., Calendar and cycle life study of li(nimnco)o2-based 18650 lithium-ion batteries, Journal of Power Sources, vol.248, pp.839-851, 2014.

M. Doyle, T. F. Fuller, and J. Newman, Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell, J. Electrochem. Soc, vol.140, pp.1526-1533, 1993.

M. Guo and R. E. White, A distributed thermal model for a li-ion electrode plate pair, Journal of Power Sources, vol.221, issue.0, pp.334-344, 2013.

E. E. Petersen, Diffusion in a pore of varying cross section, AIChE Journal, vol.4, issue.3, pp.343-345, 1958.

M. Ebner, D. Chung, R. E. Garcia, and V. Wood, Tortuosity anisotropy in lithium-ion battery electrodes, Advanced Energy Materials, vol.4, issue.5, p.1301278

F. L. Tye and . Tortuosity, Journal of Power Sources, vol.9, issue.2, pp.89-100, 1983.

M. Doyle, J. Newman, A. S. Gozdz, C. N. Schmutz, and J. Tarascon, Comparison of modeling predictions with experimental data from plastic lithium ion cells, J. Electrochem. Soc, vol.143, issue.6, pp.1890-1903, 1996.

D. Chung, M. Ebner, R. David, V. Ely, and . Wood, Validity of the bruggeman relation for porous electrodes. Modelling and Simulation in, Materials Science and Engineering, vol.21, issue.7, p.74009, 2013.

P. Arora and Z. Zhang, Battery separators, Chemical Reviews, vol.104, issue.10, p.15669158, 2004.

M. Safari and C. Delacourt, Modeling of a commercial graphite/lifepo4 Cell, J. Electrochem. Soc, vol.158, issue.5, pp.562-571, 2011.

P. Calbeguen, Analyse de la microstructure des materiaux actifs d electrode positive de batteries lithium-ion, vol.2, 2016.

M. Giona and H. Roman, Fractional diffusion equation on fractals: one-dimensional case and asymptotic behaviour, Journal of Physics A: Mathematical and General, vol.25, issue.8, p.2093, 1992.

S. Havlin and D. Ben-avraham, Diffusion in disordered media, Advances in Physics, vol.51, issue.1, pp.187-292, 2002.

J. Newman, K. E. Thomas, and R. M. Darling, Mathematical Modeling of Lithium Batteries, chapter Mathematical Modeling of Lithium Batteries, 2002.

-. Shao, A. E. Wu, D. Javier, . Devaux, P. Nitash et al., Discharge characteristics of lithium battery electrodes with a semiconducting polymer studied by continuum modeling and experiment, Journal of The Electrochemical Society, vol.161, issue.12, pp.1836-1843, 2014.

A. J. Bard and L. R. Faulkner, Electrochemical Methods : Fundamentals and Application Second Edition, 2001.

Y. Sergey, E. E. Vassiliev, V. A. Levin, and . Nikitina, Kinetic analysis of lithium intercalating systems : cyclic voltammetry, Electrochimica Acta, vol.1, issue.1, p.1, 2001.

S. Malifarge, B. Delobel, and C. Delacourt, Determination of tortuosity using impedance spectra analysis of symmetric cell, Journal of The Electrochemical Society, vol.164, issue.11, pp.3329-3334, 2017.

B. Suthar, J. Landesfeind, A. Eldiven, and H. A. Gasteiger, Method to determine the in-plane tortuosity of porous electrodes, Journal of The Electrochemical Society, vol.165, issue.10, pp.2008-2018, 2018.

E. Markevich, M. D. Levi, and D. Aurbach, Comparison between potentiostatic and galvanostatic intermittent titration techniques for determination of chemical diffusion coefficients in ion-insertion electrodes, Journal of Electroanalytical Chemistry, vol.580, issue.2, pp.231-237, 2005.

D. W. Dees, S. Kawauchi, D. P. Abraham, and J. Prakash, Analysis of the galvanostatic intermittent titration technique (gitt) as applied to a lithium-ion porous electrode, Journal of Power Sources, vol.189, issue.1, pp.263-268, 2009.

M. Ender, An extended homogenized porous electrode model for lithium-ion cell electrodes, Journal of Power Sources, vol.282, pp.572-580, 2015.

L. O. Valoen and J. N. Reimers, Transport properties of lipf6 based li-ion battery electrolytes, Journal of The Electrochemical Society, vol.152, issue.5, pp.882-891, 2005.

H. Hafezi and J. Newman, Verification and analysis of transference number measurements by the galvanostatic polarization method, Journal of The Electrochemical Society, vol.147, issue.8, pp.3036-3042, 2000.

M. Farkhondeh, M. Pritzker, M. Fowler, and C. Delacourt, Transport property measurement of binary electrolytes using a four-electrode electrochemical cell, Electrochemistry Communications, vol.67, pp.11-15, 2016.

D. Djian, F. Alloin, S. Martinet, and H. Lignier, Macroporous poly(vinylidene fluoride) membrane as a separator for lithium-ion batteries with high charge rate capacity, Journal of Power Sources, vol.187, issue.2, pp.575-580, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00384867

G. Tonin, G. Vaughan, R. Bouchet, F. Alloin, M. D. Michiel et al., Multiscale characterization of a lithium/sulfur battery by coupling operando x-ray tomography and spatially-resolved diffraction, Scientific Reports, vol.7, issue.1, p.2755, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01691805

C. Edouard, M. Petit, C. Forgez, J. Bernard, and R. Revel, Parameter sensitivity analysis of a simplified electrochemical and thermal model for li-ion batteries aging, Journal of Power Sources, vol.325, pp.482-494, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02000232

M. Ecker, T. K. , D. Tran, P. Dechent, S. Katz et al., Parameterization of a physico-chemical model of a lithium-ion battery: I. determination of parameters, Journal of The Electrochemical Society, vol.162, issue.9, pp.1836-1848, 2015.

S. Stewart and J. Newman, Measuring the salt activity coefficient in lithium-battery electrolytes, Journal of The Electrochemical Society, vol.155, issue.6, pp.458-463, 2008.

S. G. Stewart and J. Newman, The use of UV/vis absorption to measure diffusion coefficients in lipf6 electrolytic solutions, Journal of The Electrochemical Society, vol.155, issue.1, pp.13-16, 2008.

T. F. Fuller, M. Doyle, and J. Newman, Simulation and optimization of the dual lithium ion insertion cell, Journal of The Electrochemical Society, vol.141, issue.1, pp.1-10, 1994.

X. Jin, A. Vora, V. Hoshing, T. Saha, G. Shaver et al., Physically-based reduced-order capacity loss model for graphite anodes in li-ion battery cells, Journal of Power Sources, vol.342, pp.750-761, 2017.

S. Mehrdad-mastali-majdabadi, M. Farhad, R. A. Farkhondeh, M. Fraser, and . Fowler, Simplified electrochemical multi-particle model for lifepo4 cathodes in lithium-ion batteries, Journal of Power Sources, vol.275, pp.633-643, 2015.

B. Suthar, W. C. Paul, D. Northrop, V. R. Rife, and . Subramanian, Effect of porosity, thickness and tortuosity on capacity fade of anode, Journal of The Electrochemical Society, vol.162, issue.9, pp.1708-1717, 2015.

J. Vazquez-arenas, L. E. Gimenez, M. Fowler, T. Han, and C. Shih-ken, A rapid estimation and sensitivity analysis of parameters describing the behavior of commercial li-ion batteries including thermal analysis, Energy Conversion and Management, vol.87, pp.472-482, 2014.

Z. Mao, M. Farkhondeh, M. Pritzker, M. Fowler, and Z. Chen, Multi-particle model for a commercial blended lithium-ion electrode, Journal of The Electrochemical Society, vol.163, issue.3, pp.458-469, 2016.

S. Yang, X. Wang, X. Yang, Y. Bai, Z. Liu et al., Determination of the chemical diffusion coefficient of lithium ions in spherical li, Electrochimica Acta, vol.66, pp.88-93, 2012.

K. Amine, I. Liu, and J. Belharouak, High-temperature storage and cycling of CLiFePO4/graphite Li-ion cells, Electrochem. Com, vol.7, pp.669-673, 2005.

D. Bernardi, E. Pawlikowski, and J. Newman, A general energy balance for battery systems, Journal of The Electrochemical Society, vol.132, issue.1, pp.5-12, 1985.

W. B. Gu and C. Y. Wang, Thermal electrochemical modeling of battery systems, Journal of The Electrochemical Society, vol.147, issue.8, pp.2910-2922, 2000.

K. E. Thomas and J. Newman, Thermal modeling of porous insertion electrodes, Journal of The Electrochemical Society, vol.150, issue.2, pp.176-192, 2003.

Y. Y-ye, N. Shi, J. Cai, X. Lee, and . He, Electro-thermal modeling and experimental validation for lithium ion battery, J. Power Sources, vol.199, pp.227-238, 2012.

M. B. Pinson and M. Z. Bazant, Theory of sei formation in rechargeable batteries: Capacity fade, accelerated aging and lifetime prediction, J. Electrochem. Soc, vol.160, issue.2, pp.243-250, 2011.

P. Venkat-r-subramanian, . Yu, N. Branko, R. E. Popov, and . White, Modeling lithium diffusion in nickel composite graphite, Journal of Power Sources, vol.96, issue.2, pp.396-405, 2001.

I. J. Ong and J. Newman, Double-layer capacitance in a dual lithium ion insertion cell, Journal of The Electrochemical Society, vol.146, issue.12, pp.4360-4365, 1999.

J. P. Meyers, M. Doyle, R. M. Darling, and J. Newman, The impedance response of a porous electrode composed of intercalation particles, Journal of The Electrochemical Society, vol.147, issue.8, pp.2930-2940, 2000.

T. F. Fuller, M. Doyle, and J. Newman, Relaxation phenomena in lithium-ioninsertion cells, Journal of The Electrochemical Society, vol.141, issue.4, pp.982-990, 1994.

M. Frank, P. J. Kindermann, S. Osswald, G. Klink, J. Ehlert et al., Measurements of lithium-ion concentration equilibration processes inside graphite electrodes, Journal of Power Sources, vol.342, pp.638-643, 2017.

M. Frank, P. J. Kindermann, G. Osswald, J. Ehlert, A. Schuster et al., Reducing inhomogeneous current density distribution in graphite electrodes by design variation, Journal of The Electrochemical Society, vol.164, issue.11, pp.3105-3113, 2017.

J. Stephen, P. Harris, and . Lu, Effects of inhomogeneities :nanoscale to mesoscale on the durability of li-ion batteries, The Journal of Physical Chemistry C, vol.117, issue.13, pp.6481-6492, 2013.

D. Kehrwald, P. R. Shearing, N. P. Brandon, P. K. Sinha, and S. J. Harris, Local tortuosity inhomogeneities in a lithium battery composite electrode, Journal of The Electrochemical Society, vol.158, issue.12, pp.1393-1399, 2011.

D. Burow, K. Sergeeva, S. Calles, K. Schorb, A. Börger et al., Inhomogeneous degradation of graphite anodes in automotive lithium ion batteries under low-temperature pulse cycling conditions, Journal of Power Sources, vol.307, pp.806-814, 2016.

V. Zinth, J. Christian-von-laders, S. V. Wilhelm, M. Erhard, S. Hofmann et al., Inhomogeneity and relaxation phenomena in the graphite anode of a lithium-ion battery probed by in situ neutron diffraction, Journal of Power Sources, vol.361, pp.54-60, 2017.

M. J. Mühlbauer, O. Dolotko, M. Hofmann, H. Ehrenberg, and A. Senyshyn, Effect of fatigue/ageing on the lithium distribution in cylinder-type li-ion batteries, Journal of Power Sources, vol.348, pp.145-149, 2017.

H. Gu, Mathematical analysis of a zn/niooh cell, Journal of The Electrochemical Society, vol.130, issue.7, pp.1459-1464, 1983.

J. R. Dahn, Phase diagram of lic6, Phys. Rev. B, vol.44, pp.9170-9177, 1991.

P. Taheri, A. Mansouri, M. Yazdanpour, and M. Bahrami, Theoretical analysis of potential and current distributions in planar electrodes of lithium-ion batteries, Electrochimica Acta, vol.133, issue.0, pp.197-208, 2014.

C. Wang, A. J. Imran-kakwan, F. E. Appleby, and . Little, In situ investigation of electrochemical lithium intercalation into graphite powder, Journal of Electroanalytical Chemistry, vol.489, issue.2, pp.55-67, 2000.

M. Dawn, J. Bernardi, and . Go, Analysis of pulse and relaxation behavior in lithiumion batteries, Journal of Power Sources, vol.196, issue.1, pp.412-427, 2011.

X. Liu, D. Wang, G. Liu, V. Srinivasan, Z. Liu et al., Distinct charge dynamics in battery electrodes revealed by in situ and operando soft x-ray spectroscopy, Nature Communications, vol.4, p.2568, 2013.

C. Delmas, M. Maccario, L. Croguennec, F. L. Cras, and F. Weill, Lithium deintercalation in lifepo4 nanoparticles via a domino-cascade model, Nature Materials, vol.7, p.665, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00324979

J. Liu, M. Kunz, K. Chen, N. Tamura, and T. J. Richardson, Visualization of charge distribution in a lithium battery electrode, The Journal of Physical Chemistry Letters, vol.1, issue.14, pp.2120-2123, 2010.

T. R. Ferguson and M. Z. Bazant, Phase Transformation Dynamics in Porous Battery Electrodes, 2014.

K. Lee and D. Kum, The impact of inhomogeneous particle size distribution on liion cell performance under galvanostatic and transient loads, 2016 IEEE Transportation Electrification Conference and Expo, pp.454-459, 2016.

F. Röder, S. Sonntag, D. Schröder, and U. Krewer, Simulating the impact of particle size distribution on the performance of graphite electrodes in lithium-ion batteries, Energy Technology, vol.4, issue.12, pp.1588-1597, 2016.

V. R. Subramanian, D. Vinten, D. Diwakar, and . Tapriyal, Efficient macro-micro scale coupled modeling of batteries, Journal of The Electrochemical Society, vol.152, issue.10, pp.2002-2008, 2005.

E. Redondo-iglesias, etude du vieillissement des batteries lithium-ion dans les applications "vehicule electrique" : Combinaison des effets de vieillissement calendaire et de cyclage, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01668529

R. Fu, M. Xiao, and S. Choe, Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power li-ion battery, Journal of Power Sources, vol.224, pp.211-224, 2013.

G. Zhang, C. E. Shaffer, C. Wang, and C. D. Rahn, Insitu measurement of current distribution in a li-ion cell, Journal of The Electrochemical Society, vol.160, issue.4, pp.610-615, 2013.

S. Ng, F. L. Mantia, and P. Novák, A multiple working electrode for electrochemical cells: A tool for current density distribution studies, Angewandte Chemie International Edition, vol.48, issue.3, pp.528-532, 2009.

J. Stephen, A. Harris, D. R. Timmons, C. Baker, and . Monroe, Direct in situ measurements of li transport in li-ion battery negative electrodes, Chemical Physics Letters, vol.485, pp.265-274, 2010.

P. Maire, A. Evans, H. Kaiser, W. Scheifele, and P. Novák, Colorimetric determination of lithium content in electrodes of lithium-ion batteries, Journal of The Electrochemical Society, vol.155, issue.11, pp.862-865, 2008.

N. Paul, J. Keil, F. M. Kindermann, S. Schebesta, O. Dolotko et al., Aging in 18650-type li-ion cells examined with neutron diffraction, electrochemical analysis and physico-chemical modeling, Journal of Energy Storage, vol.17, pp.383-394, 2018.

K. G. Gallagher, D. W. Dees, A. N. Jansen, D. P. Abraham, and S. Kang, A volume averaged approach to the numerical modeling of phase-transition intercalation electrodes presented for lixc6, Journal of The Electrochemical Society, vol.159, issue.12, pp.2029-2037, 2012.

J. Christensen and J. Newman, Cyclable lithium and capacity loss in li-ion cells, Journal of The Electrochemical Society, vol.152, issue.4, pp.818-829, 2005.

C. R. Birkl, M. R. Roberts, E. Mcturk, P. G. Bruce, and D. A. Howey, Degradation diagnostics for lithium ion cells, Journal of Power Sources, vol.341, pp.373-386, 2017.

S. Schindler and M. A. Danzer, A novel mechanistic modeling framework for analysis of electrode balancing and degradation modes in commercial lithium-ion cells, Journal of Power Sources, vol.343, pp.226-236, 2017.

P. Arora, R. E. White, and M. Doyle, Capacity fade mechanisms and side reactions in lithium-ion batteries, Journal of The Electrochemical Society, vol.145, issue.10, pp.3647-3667, 1998.

C. Hendricks, N. Williard, S. Mathew, and M. Pecht, A failure modes, mechanisms, and effects analysis (FMmea) of lithium-ion batteries, Journal of Power Sources, vol.297, pp.113-120, 2015.

A. Bhandari and J. Bhattacharya, Manganese dissolution from spinel cathode: Few unanswered questions, Journal of The Electrochemical Society, vol.164, issue.2, pp.106-127, 2017.

C. Delacourt, A. Kwong, X. Liu, R. Qiao, W. L. Yang et al., Effect of manganese contamination on the solid-electrolyte-interphase properties in li-ion batteries, Journal of the Electrochemical Society, vol.160, issue.8, pp.1099-1107, 2013.

M. Marcinek, J. Syzdek, M. Marczewski, M. Piszcz, L. Niedzicki et al., Electrolytes for li-ion transport -review, Solid State Ionics, vol.276, pp.107-126, 2015.

O. Borodin, X. Ren, J. Vatamanu, A. Von, W. Cresce et al., Modeling insight into battery electrolyte electrochemical stability and interfacial structure, Accounts of Chemical Research, vol.50, issue.12, p.29164857, 2017.

Y. Matsumura, S. Wang, and J. Mondori, Mechanism leading to irreversible capacity loss in li ion rechargeable batteries, Journal of The Electrochemical Society, vol.142, issue.9, pp.2914-2918, 1995.

Y. Qian, P. Niehoff, M. Barner, M. Gatzke, and X. Mannighoff, Influence of electrolyte additives on the cathode electrolyte interphase (cei) formation on nmc in half cells with li metal counter electrode, Journal of Power Sources, vol.329, pp.31-40, 2016.

M. Gauthier, T. J. Carney, A. Grimaud, L. Giordano, N. Pour et al., Electrode-electrolyte interface in li-ion batteries: Current understanding and new insights, J. Phys. Chem. Lett, vol.6, issue.22, pp.4653-4672, 2015.

R. Imhof and P. Novak, In situ investigation of the electrochemical reduction of carbonate electrolyte solutions at graphite electrodes, Journal of The Electrochemical Society, vol.145, issue.4, pp.1081-1087, 1998.

E. Peled, D. Golodnitsky, and G. Ardel, Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes, Journal of The Electrochemical Society, vol.144, issue.8, pp.208-210, 1997.

S. Malmgren, K. Ciosek, M. Hahlin, T. Gustafsson, M. Gorgoi et al., Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard x-ray photoelectron spectroscopy, Electrochimica Acta, vol.97, pp.23-32, 2013.

A. V. Cresce, S. M. Russell, D. R. Baker, K. J. Gaskell, and K. Xu, In situ and quantitative characterization of solid electrolyte interphases, Nano Letters, vol.14, issue.3, p.24475938, 2014.

E. Peled, D. Tow, A. Merson, A. Gladkich, L. Burstein et al., Composition, depth profiles and lateral distribution of materials in the sei built on hopg-tof sims and xps studies, Proceedings of the 10th International Meeting on Lithium Batteries, vol.97, pp.52-57, 2001.

P. Verma, P. Maire, and P. Novak, A review of the features and analyses of the solid electrolyte interphase in li-ion batteries, Electrochimica Acta, vol.55, issue.22, pp.6332-6341, 2010.

T. Yoshida, M. Takahashi, S. Morikawa, C. Ihara, H. Katsukawa et al., Degradation mechanism and life prediction of lithium-ion batteries, Journal of The Electrochemical Society, vol.153, issue.3, pp.576-582, 2006.

M. Uitz, M. Sternad, S. Breuer, C. Taubert, T. Traunig et al., Aging of tesla's 18650 lithium-ion cells: Correlating solid-electrolyteinterphase evolution with fading in capacity and power, Journal of The Electrochemical Society, vol.164, issue.14, pp.3503-3510, 2017.

M. Lu, H. Cheng, and Y. Yang, A comparison of solid electrolyte interphase (sei) on the artificial graphite anode of the aged and cycled commercial lithium ion cells, Electrochimica Acta, vol.53, issue.9, pp.3539-3546, 2008.

P. Keil, S. F. Schuster, J. Wilhelm, J. Travi, A. Hauser et al., Calendar aging of lithium-ion batteries: I. impact of the graphite anode on capacity fade, Journal of The Electrochemical Society, vol.163, issue.9, pp.1872-1880, 2016.

T. H. Nupur-nikkan-sinha, H. M. Marks, A. J. Dahn, J. C. Smith, D. J. Burns et al., The rate of active lithium loss from a soft carbon negative electrode as a function of temperature, time and electrode potential, Journal of The Electrochemical Society, vol.159, issue.10, pp.1672-1681, 2012.

T. Waldmann, M. Wilka, M. Kasper, M. Fleischhammer, and M. Wohlfahrt-mehrens, Temperature dependent ageing mechanisms in lithium-ion batteries -a post-mortem study, Journal of Power Sources, vol.262, pp.129-135, 2014.

H. Park, T. Yoon, J. Mun, J. H. Ryu, J. J. Kim et al., A comparative study on thermal stability of two solid electrolyte interphase (sei) films on graphite negative electrode, Journal of The Electrochemical Society, vol.160, issue.9, pp.1539-1543, 2013.

O. Haik, S. Ganin, G. Gershinsky, E. Zinigrad, B. Markovsky et al., On the thermal behavior of lithium intercalated graphites, Journal of The Electrochemical Society, vol.158, issue.8, pp.913-923, 2011.

R. Spotnitz and J. Franklin, Abuse behavior of high-power, lithium-ion cells, Journal of Power Sources, vol.113, issue.1, pp.81-100, 2003.

T. Waldmann, B. Hogg, and M. Wohlfahrt-mehrens, Li plating as unwanted side reaction in commercial li-ion cells, Journal of Power Sources, vol.384, pp.107-124, 2018.

Z. Li, J. Huang, V. Bor-yann-liaw, J. Metzler, and . Zhang, A review of lithium deposition in lithium-ion and lithium metal secondary batteries, Journal of Power Sources, vol.254, pp.168-182, 2014.

N. Legrand, B. Knosp, P. Desprez, and F. Lapicque, Physical characterization of the charging process of a li-ion battery and prediction of li plating by electrochemical modelling, Journal of Power Sources, vol.245, pp.208-216, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01276644

M. Tang, P. Albertus, and J. Newman, Two-dimensional modeling of lithium deposition during cell charging, Journal of The Electrochemical Society, vol.156, issue.5, pp.390-399, 2009.

C. Kim, K. M. Jeong, K. Kim, and C. Yi, Effects of capacity ratios between anode and cathode on electrochemical properties for lithium polymer batteries

, Electrochimica Acta, vol.155, pp.431-436, 2015.

J. Cannarella and C. B. Arnold, The effects of defects on localized plating in lithiumion batteries, Journal of The Electrochemical Society, vol.162, issue.7, pp.1365-1373, 2015.

M. Petzl and M. A. Danzer, Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries, Journal of Power Sources, vol.254, pp.80-87, 2014.

B. Bitzer and A. Gruhle, A new method for detecting lithium plating by measuring the cell thickness, Journal of Power Sources, vol.262, pp.297-302, 2014.

C. Birkenmaier, B. Bitzer, M. Harzheim, A. Hintennach, and T. Schleid, Lithium plating on graphite negative electrodes: Innovative qualitative and quantitative investigation methods, Journal of The Electrochemical Society, vol.162, issue.14, pp.2646-2650, 2015.

X. Yang, Y. Leng, G. Zhang, S. Ge, and C. Wang, Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging, Journal of Power Sources, vol.360, pp.28-40, 2017.

E. Sarasketa-zabala, F. Aguesse, I. Villarreal, L. M. Rodriguez-martinez, C. M. Lopez et al., Understanding lithium inventory loss and sudden performance fade in cylindrical cells during cycling with deep-discharge steps, J. Phys. Chem. C, vol.119, issue.2, pp.896-906, 2015.

T. Waldmann and M. Wohlfahrt-mehrens, Effects of rest time after li plating on safety behavior arc tests with commercial high-energy 18650 li-ion cells, Electrochimica Acta, vol.230, pp.454-460, 2017.

M. Fleischhammer, T. Waldmann, and G. Bisle, Björn-Ingo Hogg, and Margret Wohlfahrt-Mehrens. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries, Journal of Power Sources, vol.274, pp.432-439, 2015.

H. Buqa, A. Würsig, D. Goers, L. J. Hardwick, M. Holzapfel et al., Behaviour of highly crystalline graphites in lithium-ion cells with propylene carbonate containing electrolytes, 12th International Meeting on Lithium Batteries12th International Meeting on Lithium Batteries, 2005.

O. Dolotko, A. Senyshyn, M. J. Mahlbauer, K. Nikolowski, and H. Ehrenberg, Understanding structural changes in nmc li-ion cells by in situ neutron diffraction, Journal of Power Sources, vol.255, pp.197-203, 2014.

J. Cannarella and C. B. Arnold, Stress evolution and capacity fade in constrained lithium-ion pouch cells, J. Power Sources, vol.245, pp.745-751, 2014.

M. Ender, J. Joos, T. Carraro, and E. Ivers-tiffee, Three-dimensional reconstruction of a composite cathode for lithium-ion cells, Electrochemistry Communications, vol.13, issue.2, pp.166-168, 2011.

M. Ender, J. Joos, A. Weber, and E. Ivers-tiffée, Anode microstructures from high-energy and high-power lithium-ion cylindrical cells obtained by x-ray nano-tomography, Journal of Power Sources, vol.269, pp.912-919, 2014.

S. Bhattacharya, A. R. Riahi, and A. T. Alpas, A transmission electron microscopy study of crack formation and propagation in electrochemically cycled graphite electrode in lithium-ion cells, Journal of Power Sources, vol.196, issue.20, pp.8719-8727, 2011.

S. Frisco, A. Kumar, J. F. Whitacre, and S. Litster, Understanding li-ion battery anode degradation and pore morphological changes through nano-resolution x-ray computed tomography, Journal of the Electrochemical Society, vol.163, issue.13, pp.2636-2640, 2016.

B. Son, M. Ryou, J. Choi, S. Kim, Y. M. Jang-myoun-ko et al., Effect of cathode/anode area ratio on electrochemical performance of lithiumion batteries, Journal of Power Sources, vol.243, pp.641-647, 2013.

P. Ramadass, B. Haran, R. White, and B. N. Popov, Performance study of commercial licoo2 and spinel-based li-ion cells, Journal of Power Sources, vol.111, issue.2, pp.210-220, 2002.

P. Ramadass, B. Haran, R. White, N. Branko, and . Popov, Capacity fade of sony 18650 cells cycled at elevated temperatures: Part ii. capacity fade analysis, Journal of Power Sources, vol.112, issue.2, pp.614-620, 2002.

M. Broussely, . Ph, F. Biensan, . Bonhomme, . Ph et al., Main aging mechanisms in li ion batteries, 12th International Meeting on Lithium Batteries12th International Meeting on Lithium Batteries, vol.146, pp.90-96, 2005.

A. Blyr, C. Sigala, G. Amatucci, D. Guyomard, Y. Chabre et al., Selfdischarge of limn2o4/c li-ion cells in their discharged state: Understanding by means of three-electrode measurements, Journal of The Electrochemical Society, vol.145, issue.1, pp.194-209, 1998.

R. Spotnitz, Simulation of capacity fade in lithium-ion batteries, Journal of Power Sources, vol.113, issue.1, pp.72-80, 2003.

H. Zheng, Q. Sun, G. Liu, X. Song, and V. S. Battaglia, Correlation between dissolution behavior and electrochemical cycling performance for lini1/3Co1/3mn1/3o2-based cells, Journal of Power Sources, vol.207, pp.134-140, 2012.

X. Lin, J. Park, L. Liu, Y. Lee, A. M. Sastry et al., A comprehensive capacity fade model and analysis for li-ion batteries, Journal of The Electrochemical Society, vol.160, issue.10, pp.1701-1710, 2013.

M. Safari and C. Delacourt, Simulation-based analysis of aging phenomena in a commercial graphite/lifepo4 cell, Journal of The Electrochemical Society, vol.158, issue.12, pp.1436-1447, 2011.

M. Dubarry and B. Y. Liaw, Identify capacity fading mechanism in a commercial lifepo4 cell, J. Power Sources, vol.194, pp.541-549, 2009.

F. L. Mantia, C. D. Wessells, H. D. Deshazer, and Y. Cui, Reliable reference electrodes for lithium-ion batteries, Electrochemistry Communications, vol.31, pp.141-144, 2013.

J. Costard, M. Ender, M. Weiss, and E. Ivers-tiffée, Three-electrode setups for lithium-ion batteries: Ii. experimental study of different reference electrode designs and their implications for half-cell impedance spectra, Journal of The Electrochemical Society, vol.164, issue.2, pp.80-87, 2017.

M. Ender, A. Weber, and I. Ellen, Analysis of three-electrode setups for ac-impedance measurements on lithium-ion cells by fem simulations, Journal of The Electrochemical Society, vol.159, issue.2, pp.128-136, 2011.

C. Heubner, U. Langklotz, M. Schneider, and A. Michaelis, Analysis of the counter-electrode potential in a 3-electrode lithium ion battery cell, Journal of Electroanalytical Chemistry, vol.759, pp.91-94, 2015.

T. Baumhofer, M. Bruhl, S. Rothgang, and D. U. Sauer, Production caused variation in capacity aging trend and correlation to initial cell performance, Journal of Power Sources, vol.247, pp.332-338, 2014.

Q. Zhang and R. E. White, Capacity fade analysis of a lithium ion cell, Journal of Power Sources, vol.179, issue.2, pp.793-798, 2008.

A. J. Smith, J. C. Burns, X. Zhao, D. Xiong, and J. R. Dahn, A high precision coulometry study of the sei growth in li/graphite cells, Journal of The Electrochemical Society, vol.158, issue.5, pp.447-452, 2011.

S. Grolleau, A. Delaille, H. Gualous, P. Gyan, R. Revel et al., Calendar aging of commercial graphite/lifepo4 cell: Predicting capacity fade under time dependent storage conditions, Journal of Power Sources, vol.255, pp.450-458, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01002804

M. Broussely, P. Herreyre, P. Biensan, . Kasztejna, R. Nechev et al., Aging mechanism in li ion cells and calendar life predictions, Proceedings of the 10th International Meeting on Lithium Batteries, vol.97, pp.13-21, 2001.

R. Yazami, F. Yvan, and . Reynier, Mechanism of self-discharge in graphite : lithium anode, Electrochimica Acta, vol.47, issue.8, pp.1217-1223, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00418086

C. Delacourt and M. Safari, Life simulation of a graphite/lifepo4 Cell under cycling and storage, Journal of The Electrochemical Society, vol.159, issue.8, pp.1283-1291, 2012.

M. Safari and C. Delacourt, Aging of a commercial graphite/lifepo4 cell, J. Electrochem. Soc, vol.158, issue.10, pp.1123-1135, 2011.

J. Li, N. Lotfi, R. G. Landers, and J. Park, A single particle model for lithium-ion batteries with electrolyte and stress-enhanced diffusion physics, Journal of The Electrochemical Society, vol.164, issue.4, pp.874-883, 2017.

J. Li, N. Lotfi, G. Robert, J. Landers, and . Park, A single particle-based battery degradation model including chemical and mechanical degradation physics, ECS Transactions, vol.77, issue.11, pp.1003-1014, 2017.

Y. Qi and S. J. Harris, In situ observation of strains during lithiation of a graphite electrode, Journal of The Electrochemical Society, vol.157, issue.6, pp.741-747, 2010.

A. Zaban, E. Zinigrad, and D. Aurbach, Impedance spectroscopy of li electrodes. 4. a general simple model of the li-solution interphase in polar aprotic systems, J. Phys. Chem, vol.100, issue.8, pp.3089-3101, 1996.

E. Peled and S. Menkin, Review sei: Past, present and future, Journal of The Electrochemical Society, vol.164, issue.7, pp.1703-1719, 2017.

E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems -the solid electrolyte interphase model, J. Electrochem. Soc, vol.126, issue.12, pp.2047-2051, 1979.

D. Aurbach, The Role Of Surface Films on Electrodes in Li-Ion Batteries, chapter The Role Of Surface Films on Electrodes in Li-Ion Batteries, 2002.

A. Victor, J. W. Agubra, and . Fergus, The formation and stability of the solid electrolyte interface on the graphite anode, Journal of Power Sources, vol.268, pp.153-162, 2014.

E. Peled, D. Golodnitsky, A. Ulus, and V. Yufit, Effect of carbon substrate on sei composition and morphology, Polymer Batteries and Fuel Cells:Selection of Papers from First International Conference, vol.50, pp.391-395, 2004.

J. Collins, G. Gourdin, M. Foster, and D. Qu, Carbon surface functionalities and sei formation during li intercalation, Carbon, vol.92, pp.193-244, 2015.

R. Darling and J. Newman, Modeling side reactions in composite liymn2o4 electrodes, Journal of The Electrochemical Society, vol.145, issue.3, pp.990-998, 1998.

J. Christensen and J. Newman, Effect of anode film resistance on the charge/discharge capacity of a lithium-ion battery, Journal of The Electrochemical Society, vol.150, issue.11, pp.1416-1420, 2003.

J. Christensen and J. Newman, A mathematical model for the lithium-ion negative electrode solid electrolyte interphase, Journal of The Electrochemical Society, vol.151, issue.11, pp.1977-1988, 2004.

P. Ramadass, B. Haran, M. Parthasarathy, R. Gomadam, B. N. White et al., Development of first principles capacity fade model for li-ion cells, Journal of The Electrochemical Society, vol.151, issue.2, pp.196-203, 2004.

P. Ramaraja, J. Ramasamy, B. N. Lee, and . Popov, Simulation of capacity loss in carbon electrode for lithium-ion cells during storage, Journal of Power Sources, vol.166, issue.1, pp.266-272, 2007.

J. Harry, P. Ploehn, R. E. Ramadass, and . White, Solvent diffusion model for aging of lithium-ion battery cells, Journal of The Electrochemical Society, vol.151, issue.3, pp.456-462, 2004.

D. Aurbach, . Markovsky, . Weissman, Y. Levi, and . Ein-eli, On the correlation between surface chemistry and performance of graphite negative electrodes for li ion batteries. Electrochimica Acta, vol.45, pp.67-86, 1999.

Y. Wang, S. Nakamura, M. Ue, and P. B. Balbuena, Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries reduction mechanisms of ethylene carbonate, Journal of the American Chemical Society, vol.123, issue.47, p.11716728, 2001.

O. Borodin, G. D. Smith, and P. Fan, Molecular dynamics simulations of lithium alkyl carbonates, The Journal of Physical Chemistry B, vol.110, issue.45, p.17092027, 2006.

A. J. Smith, H. M. Dahn, J. C. Burns, and J. R. Dahn, Long-term low-rate cycling of licoo2/graphite li-ion cells at 55°c, Journal of The Electrochemical Society, vol.159, issue.6, pp.705-710, 2012.

M. Frank, J. Kindermann, A. Keil, A. Frank, and . Jossen, A sei modeling approach distinguishing between capacity and power fade, Journal of The Electrochemical Society, vol.164, issue.12, pp.287-294, 2017.

D. Li, D. L. Danilov, B. Zwikirsch, M. Fichtner, Y. Yang et al., Modeling the degradation mechanisms of c6/lifepo4 batteries, Journal of Power Sources, vol.375, pp.106-117, 2018.

P. Liu, J. Wang, J. Hicks-garner, E. Sherman, S. Soukiazian et al., Aging mechanims of LiFePO4 batteries deduced by electrochemical and structural analyses, J. Electrochem. Soc, vol.157, issue.4, pp.499-507, 2010.

A. A. Tahmasbi, T. Kadyk, and M. H. Eikerling, Statistical physics-based model of solid electrolyte interphase growth in lithium ion batteries, Journal of The Electrochemical Society, vol.164, issue.6, pp.1307-1313, 2017.

Y. Park and S. Lee, Effects of particle size on the thermal stability of lithiated graphite anode, Electrochimica Acta, vol.54, issue.12, pp.3339-3343, 2009.

S. Klink, P. Weide, M. Muhler, W. Schuhmann, and F. L. Mantia, New insights into sei formation in lithium ion batteries: Inhomogeneous distribution of irreversible charge losses across graphite electrodes, ECS Transactions, vol.62, issue.1, pp.265-271, 2014.

R. N. Methekar, P. W. Northrop, K. Chen, R. D. Braatz, and V. R. Subramanian, Kinetic Monte Carlo simulation of surface heterogeneity in graphite anodes for lithium-ion batteries: Passive layer formation, J. Electrochem. Soc, vol.158, pp.363-370, 2011.

F. Röder, R. D. Braatz, and U. Krewer, Multi-scale simulation of heterogeneous surface film growth mechanisms in lithium-ion batteries, Journal of The Electrochemical Society, vol.164, issue.11, pp.3335-3344, 2017.

F. Single, A. Birger-horstmann, and . Latz, Dynamics and morphology of solid electrolyte interphase (sei), Phys. Chem. Chem. Phys, vol.18, pp.17810-17814, 2016.

F. Single, A. Birger-horstmann, and . Latz, Revealing sei morphology: In-depth analysis of a modeling approach, Journal of The Electrochemical Society, vol.164, issue.11, pp.3132-3145, 2017.

E. Redondo-iglesias, P. Venet, and S. Pelissier, Global model for self-discharge and capacity fade in lithium-ion batteries based on the generalized eyring relationship, IEEE Transactions on Vehicular Technology, issue.99, pp.1-1, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01593047

P. Arora, M. Doyle, and R. E. White, Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes, Journal of The Electrochemical Society, vol.146, issue.10, pp.3543-3553, 1999.

T. Hao-ge, N. Aoki, S. Ikeda, T. Suga, Z. Isobe et al., Investigating lithium plating in lithium-ion batteries at low temperatures using electrochemical model with nmr assisted parameterization, Journal of The Electrochemical Society, vol.164, issue.6, pp.1050-1060, 2017.

S. Hein and A. Latz, Influence of local lithium metal deposition in 3d microstructures on local and global behavior of lithium-ion batteries, Electrochimica Acta, vol.201, pp.354-365, 2016.

R. D. Perkins, A. V. Randall, X. Zhang, and G. L. Plett, Controls oriented reduced order modeling of lithium deposition on overcharge, Journal of Power Sources, vol.209, pp.318-325, 2012.

T. Waldmann, M. Kasper, and M. Wohlfahrt-mehrens, Optimization of charging strategy by prevention of lithium deposition on anodes in high-energy lithium-ion batteries : Electrochemical experiments, Electrochimica Acta, vol.178, pp.525-532, 2015.

F. Grimsmann, F. Brauchle, T. Gerbert, A. Gruhle, J. Parisi et al., Impact of different aging mechanisms on the thickness change and the quick-charge capability of lithium-ion cells, Journal of Energy Storage, vol.14, pp.158-162, 2017.

M. Petzl, M. Kasper, and M. A. Danzer, Lithium plating in a commercial lithium-ion battery: A low-temperature aging study, Journal of Power Sources, vol.275, pp.799-807, 2015.